1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2008 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 /* Copyright (c) 1990 Mentat Inc. */ 26 27 #pragma ident "%Z%%M% %I% %E% SMI" 28 29 /* 30 * This file contains the interface control functions for IP. 31 */ 32 33 #include <sys/types.h> 34 #include <sys/stream.h> 35 #include <sys/dlpi.h> 36 #include <sys/stropts.h> 37 #include <sys/strsun.h> 38 #include <sys/sysmacros.h> 39 #include <sys/strlog.h> 40 #include <sys/ddi.h> 41 #include <sys/sunddi.h> 42 #include <sys/cmn_err.h> 43 #include <sys/kstat.h> 44 #include <sys/debug.h> 45 #include <sys/zone.h> 46 #include <sys/sunldi.h> 47 #include <sys/file.h> 48 #include <sys/bitmap.h> 49 50 #include <sys/kmem.h> 51 #include <sys/systm.h> 52 #include <sys/param.h> 53 #include <sys/socket.h> 54 #include <sys/isa_defs.h> 55 #include <net/if.h> 56 #include <net/if_arp.h> 57 #include <net/if_types.h> 58 #include <net/if_dl.h> 59 #include <net/route.h> 60 #include <sys/sockio.h> 61 #include <netinet/in.h> 62 #include <netinet/ip6.h> 63 #include <netinet/icmp6.h> 64 #include <netinet/igmp_var.h> 65 #include <sys/strsun.h> 66 #include <sys/policy.h> 67 #include <sys/ethernet.h> 68 69 #include <inet/common.h> /* for various inet/mi.h and inet/nd.h needs */ 70 #include <inet/mi.h> 71 #include <inet/nd.h> 72 #include <inet/arp.h> 73 #include <inet/mib2.h> 74 #include <inet/ip.h> 75 #include <inet/ip6.h> 76 #include <inet/ip6_asp.h> 77 #include <inet/tcp.h> 78 #include <inet/ip_multi.h> 79 #include <inet/ip_ire.h> 80 #include <inet/ip_ftable.h> 81 #include <inet/ip_rts.h> 82 #include <inet/ip_ndp.h> 83 #include <inet/ip_if.h> 84 #include <inet/ip_impl.h> 85 #include <inet/tun.h> 86 #include <inet/sctp_ip.h> 87 #include <inet/ip_netinfo.h> 88 #include <inet/mib2.h> 89 90 #include <net/pfkeyv2.h> 91 #include <inet/ipsec_info.h> 92 #include <inet/sadb.h> 93 #include <inet/ipsec_impl.h> 94 #include <sys/iphada.h> 95 96 97 #include <netinet/igmp.h> 98 #include <inet/ip_listutils.h> 99 #include <inet/ipclassifier.h> 100 #include <sys/mac.h> 101 102 #include <sys/systeminfo.h> 103 #include <sys/bootconf.h> 104 105 #include <sys/tsol/tndb.h> 106 #include <sys/tsol/tnet.h> 107 108 /* The character which tells where the ill_name ends */ 109 #define IPIF_SEPARATOR_CHAR ':' 110 111 /* IP ioctl function table entry */ 112 typedef struct ipft_s { 113 int ipft_cmd; 114 pfi_t ipft_pfi; 115 int ipft_min_size; 116 int ipft_flags; 117 } ipft_t; 118 #define IPFT_F_NO_REPLY 0x1 /* IP ioctl does not expect any reply */ 119 #define IPFT_F_SELF_REPLY 0x2 /* ioctl callee does the ioctl reply */ 120 121 typedef struct ip_sock_ar_s { 122 union { 123 area_t ip_sock_area; 124 ared_t ip_sock_ared; 125 areq_t ip_sock_areq; 126 } ip_sock_ar_u; 127 queue_t *ip_sock_ar_q; 128 } ip_sock_ar_t; 129 130 static int nd_ill_forward_get(queue_t *, mblk_t *, caddr_t, cred_t *); 131 static int nd_ill_forward_set(queue_t *q, mblk_t *mp, 132 char *value, caddr_t cp, cred_t *ioc_cr); 133 134 static boolean_t ill_is_quiescent(ill_t *); 135 static boolean_t ip_addr_ok_v4(ipaddr_t addr, ipaddr_t subnet_mask); 136 static ip_m_t *ip_m_lookup(t_uscalar_t mac_type); 137 static int ip_sioctl_addr_tail(ipif_t *ipif, sin_t *sin, queue_t *q, 138 mblk_t *mp, boolean_t need_up); 139 static int ip_sioctl_dstaddr_tail(ipif_t *ipif, sin_t *sin, queue_t *q, 140 mblk_t *mp, boolean_t need_up); 141 static int ip_sioctl_slifzone_tail(ipif_t *ipif, zoneid_t zoneid, 142 queue_t *q, mblk_t *mp, boolean_t need_up); 143 static int ip_sioctl_flags_tail(ipif_t *ipif, uint64_t flags, queue_t *q, 144 mblk_t *mp, boolean_t need_up); 145 static int ip_sioctl_netmask_tail(ipif_t *ipif, sin_t *sin, queue_t *q, 146 mblk_t *mp); 147 static int ip_sioctl_subnet_tail(ipif_t *ipif, in6_addr_t, in6_addr_t, 148 queue_t *q, mblk_t *mp, boolean_t need_up); 149 static int ip_sioctl_plink_ipmod(ipsq_t *ipsq, queue_t *q, mblk_t *mp, 150 int ioccmd, struct linkblk *li, boolean_t doconsist); 151 static ipaddr_t ip_subnet_mask(ipaddr_t addr, ipif_t **, ip_stack_t *); 152 static void ip_wput_ioctl(queue_t *q, mblk_t *mp); 153 static void ipsq_flush(ill_t *ill); 154 155 static int ip_sioctl_token_tail(ipif_t *ipif, sin6_t *sin6, int addrlen, 156 queue_t *q, mblk_t *mp, boolean_t need_up); 157 static void ipsq_delete(ipsq_t *); 158 159 static ipif_t *ipif_allocate(ill_t *ill, int id, uint_t ire_type, 160 boolean_t initialize); 161 static void ipif_check_bcast_ires(ipif_t *test_ipif); 162 static ire_t **ipif_create_bcast_ires(ipif_t *ipif, ire_t **irep); 163 static boolean_t ipif_comp_multi(ipif_t *old_ipif, ipif_t *new_ipif, 164 boolean_t isv6); 165 static void ipif_down_delete_ire(ire_t *ire, char *ipif); 166 static void ipif_delete_cache_ire(ire_t *, char *); 167 static int ipif_logical_down(ipif_t *ipif, queue_t *q, mblk_t *mp); 168 static void ipif_free(ipif_t *ipif); 169 static void ipif_free_tail(ipif_t *ipif); 170 static void ipif_mtu_change(ire_t *ire, char *ipif_arg); 171 static void ipif_multicast_down(ipif_t *ipif); 172 static void ipif_recreate_interface_routes(ipif_t *old_ipif, ipif_t *ipif); 173 static void ipif_set_default(ipif_t *ipif); 174 static int ipif_set_values(queue_t *q, mblk_t *mp, 175 char *interf_name, uint_t *ppa); 176 static int ipif_set_values_tail(ill_t *ill, ipif_t *ipif, mblk_t *mp, 177 queue_t *q); 178 static ipif_t *ipif_lookup_on_name(char *name, size_t namelen, 179 boolean_t do_alloc, boolean_t *exists, boolean_t isv6, zoneid_t zoneid, 180 queue_t *q, mblk_t *mp, ipsq_func_t func, int *error, ip_stack_t *); 181 static int ipif_up(ipif_t *ipif, queue_t *q, mblk_t *mp); 182 static void ipif_update_other_ipifs(ipif_t *old_ipif, ill_group_t *illgrp); 183 184 static int ill_alloc_ppa(ill_if_t *, ill_t *); 185 static int ill_arp_off(ill_t *ill); 186 static int ill_arp_on(ill_t *ill); 187 static void ill_delete_interface_type(ill_if_t *); 188 static int ill_dl_up(ill_t *ill, ipif_t *ipif, mblk_t *mp, queue_t *q); 189 static void ill_dl_down(ill_t *ill); 190 static void ill_down(ill_t *ill); 191 static void ill_downi(ire_t *ire, char *ill_arg); 192 static void ill_free_mib(ill_t *ill); 193 static void ill_glist_delete(ill_t *); 194 static boolean_t ill_has_usable_ipif(ill_t *); 195 static int ill_lock_ipsq_ills(ipsq_t *sq, ill_t **list, int); 196 static void ill_nominate_bcast_rcv(ill_group_t *illgrp); 197 static void ill_phyint_free(ill_t *ill); 198 static void ill_phyint_reinit(ill_t *ill); 199 static void ill_set_nce_router_flags(ill_t *, boolean_t); 200 static void ill_set_phys_addr_tail(ipsq_t *, queue_t *, mblk_t *, void *); 201 static void ill_signal_ipsq_ills(ipsq_t *, boolean_t); 202 static boolean_t ill_split_ipsq(ipsq_t *cur_sq); 203 static void ill_stq_cache_delete(ire_t *, char *); 204 205 static boolean_t ip_ether_v6intfid(uint_t, uint8_t *, in6_addr_t *); 206 static boolean_t ip_nodef_v6intfid(uint_t, uint8_t *, in6_addr_t *); 207 static boolean_t ip_ether_v6mapinfo(uint_t, uint8_t *, uint8_t *, uint32_t *, 208 in6_addr_t *); 209 static boolean_t ip_ether_v4mapinfo(uint_t, uint8_t *, uint8_t *, uint32_t *, 210 ipaddr_t *); 211 static boolean_t ip_ib_v6intfid(uint_t, uint8_t *, in6_addr_t *); 212 static boolean_t ip_ib_v6mapinfo(uint_t, uint8_t *, uint8_t *, uint32_t *, 213 in6_addr_t *); 214 static boolean_t ip_ib_v4mapinfo(uint_t, uint8_t *, uint8_t *, uint32_t *, 215 ipaddr_t *); 216 217 static void ipif_save_ire(ipif_t *, ire_t *); 218 static void ipif_remove_ire(ipif_t *, ire_t *); 219 static void ip_cgtp_bcast_add(ire_t *, ire_t *, ip_stack_t *); 220 static void ip_cgtp_bcast_delete(ire_t *, ip_stack_t *); 221 222 /* 223 * Per-ill IPsec capabilities management. 224 */ 225 static ill_ipsec_capab_t *ill_ipsec_capab_alloc(void); 226 static void ill_ipsec_capab_free(ill_ipsec_capab_t *); 227 static void ill_ipsec_capab_add(ill_t *, uint_t, boolean_t); 228 static void ill_ipsec_capab_delete(ill_t *, uint_t); 229 static boolean_t ill_ipsec_capab_resize_algparm(ill_ipsec_capab_t *, int); 230 static void ill_capability_proto(ill_t *, int, mblk_t *); 231 static void ill_capability_dispatch(ill_t *, mblk_t *, dl_capability_sub_t *, 232 boolean_t); 233 static void ill_capability_id_ack(ill_t *, mblk_t *, dl_capability_sub_t *); 234 static void ill_capability_mdt_ack(ill_t *, mblk_t *, dl_capability_sub_t *); 235 static void ill_capability_mdt_reset(ill_t *, mblk_t **); 236 static void ill_capability_ipsec_ack(ill_t *, mblk_t *, dl_capability_sub_t *); 237 static void ill_capability_ipsec_reset(ill_t *, mblk_t **); 238 static void ill_capability_hcksum_ack(ill_t *, mblk_t *, dl_capability_sub_t *); 239 static void ill_capability_hcksum_reset(ill_t *, mblk_t **); 240 static void ill_capability_zerocopy_ack(ill_t *, mblk_t *, 241 dl_capability_sub_t *); 242 static void ill_capability_zerocopy_reset(ill_t *, mblk_t **); 243 static void ill_capability_lso_ack(ill_t *, mblk_t *, dl_capability_sub_t *); 244 static void ill_capability_lso_reset(ill_t *, mblk_t **); 245 static void ill_capability_dls_ack(ill_t *, mblk_t *, dl_capability_sub_t *); 246 static mac_resource_handle_t ill_ring_add(void *, mac_resource_t *); 247 static void ill_capability_dls_reset(ill_t *, mblk_t **); 248 static void ill_capability_dls_disable(ill_t *); 249 250 static void illgrp_cache_delete(ire_t *, char *); 251 static void illgrp_delete(ill_t *ill); 252 static void illgrp_reset_schednext(ill_t *ill); 253 254 static ill_t *ill_prev_usesrc(ill_t *); 255 static int ill_relink_usesrc_ills(ill_t *, ill_t *, uint_t); 256 static void ill_disband_usesrc_group(ill_t *); 257 258 static void conn_cleanup_stale_ire(conn_t *, caddr_t); 259 260 #ifdef DEBUG 261 static void ill_trace_cleanup(const ill_t *); 262 static void ipif_trace_cleanup(const ipif_t *); 263 #endif 264 265 /* 266 * if we go over the memory footprint limit more than once in this msec 267 * interval, we'll start pruning aggressively. 268 */ 269 int ip_min_frag_prune_time = 0; 270 271 /* 272 * max # of IPsec algorithms supported. Limited to 1 byte by PF_KEY 273 * and the IPsec DOI 274 */ 275 #define MAX_IPSEC_ALGS 256 276 277 #define BITSPERBYTE 8 278 #define BITS(type) (BITSPERBYTE * (long)sizeof (type)) 279 280 #define IPSEC_ALG_ENABLE(algs, algid) \ 281 ((algs)[(algid) / BITS(ipsec_capab_elem_t)] |= \ 282 (1 << ((algid) % BITS(ipsec_capab_elem_t)))) 283 284 #define IPSEC_ALG_IS_ENABLED(algid, algs) \ 285 ((algs)[(algid) / BITS(ipsec_capab_elem_t)] & \ 286 (1 << ((algid) % BITS(ipsec_capab_elem_t)))) 287 288 typedef uint8_t ipsec_capab_elem_t; 289 290 /* 291 * Per-algorithm parameters. Note that at present, only encryption 292 * algorithms have variable keysize (IKE does not provide a way to negotiate 293 * auth algorithm keysize). 294 * 295 * All sizes here are in bits. 296 */ 297 typedef struct 298 { 299 uint16_t minkeylen; 300 uint16_t maxkeylen; 301 } ipsec_capab_algparm_t; 302 303 /* 304 * Per-ill capabilities. 305 */ 306 struct ill_ipsec_capab_s { 307 ipsec_capab_elem_t *encr_hw_algs; 308 ipsec_capab_elem_t *auth_hw_algs; 309 uint32_t algs_size; /* size of _hw_algs in bytes */ 310 /* algorithm key lengths */ 311 ipsec_capab_algparm_t *encr_algparm; 312 uint32_t encr_algparm_size; 313 uint32_t encr_algparm_end; 314 }; 315 316 /* 317 * The field values are larger than strictly necessary for simple 318 * AR_ENTRY_ADDs but the padding lets us accomodate the socket ioctls. 319 */ 320 static area_t ip_area_template = { 321 AR_ENTRY_ADD, /* area_cmd */ 322 sizeof (ip_sock_ar_t) + (IP_ADDR_LEN*2) + sizeof (struct sockaddr_dl), 323 /* area_name_offset */ 324 /* area_name_length temporarily holds this structure length */ 325 sizeof (area_t), /* area_name_length */ 326 IP_ARP_PROTO_TYPE, /* area_proto */ 327 sizeof (ip_sock_ar_t), /* area_proto_addr_offset */ 328 IP_ADDR_LEN, /* area_proto_addr_length */ 329 sizeof (ip_sock_ar_t) + IP_ADDR_LEN, 330 /* area_proto_mask_offset */ 331 0, /* area_flags */ 332 sizeof (ip_sock_ar_t) + IP_ADDR_LEN + IP_ADDR_LEN, 333 /* area_hw_addr_offset */ 334 /* Zero length hw_addr_length means 'use your idea of the address' */ 335 0 /* area_hw_addr_length */ 336 }; 337 338 /* 339 * AR_ENTRY_ADD/DELETE templates have been added for IPv6 external resolver 340 * support 341 */ 342 static area_t ip6_area_template = { 343 AR_ENTRY_ADD, /* area_cmd */ 344 sizeof (ip_sock_ar_t) + (IPV6_ADDR_LEN*2) + sizeof (sin6_t), 345 /* area_name_offset */ 346 /* area_name_length temporarily holds this structure length */ 347 sizeof (area_t), /* area_name_length */ 348 IP_ARP_PROTO_TYPE, /* area_proto */ 349 sizeof (ip_sock_ar_t), /* area_proto_addr_offset */ 350 IPV6_ADDR_LEN, /* area_proto_addr_length */ 351 sizeof (ip_sock_ar_t) + IPV6_ADDR_LEN, 352 /* area_proto_mask_offset */ 353 0, /* area_flags */ 354 sizeof (ip_sock_ar_t) + IPV6_ADDR_LEN + IPV6_ADDR_LEN, 355 /* area_hw_addr_offset */ 356 /* Zero length hw_addr_length means 'use your idea of the address' */ 357 0 /* area_hw_addr_length */ 358 }; 359 360 static ared_t ip_ared_template = { 361 AR_ENTRY_DELETE, 362 sizeof (ared_t) + IP_ADDR_LEN, 363 sizeof (ared_t), 364 IP_ARP_PROTO_TYPE, 365 sizeof (ared_t), 366 IP_ADDR_LEN 367 }; 368 369 static ared_t ip6_ared_template = { 370 AR_ENTRY_DELETE, 371 sizeof (ared_t) + IPV6_ADDR_LEN, 372 sizeof (ared_t), 373 IP_ARP_PROTO_TYPE, 374 sizeof (ared_t), 375 IPV6_ADDR_LEN 376 }; 377 378 /* 379 * A template for an IPv6 AR_ENTRY_QUERY template has not been created, as 380 * as the areq doesn't include an IP address in ill_dl_up() (the only place a 381 * areq is used). 382 */ 383 static areq_t ip_areq_template = { 384 AR_ENTRY_QUERY, /* cmd */ 385 sizeof (areq_t)+(2*IP_ADDR_LEN), /* name offset */ 386 sizeof (areq_t), /* name len (filled by ill_arp_alloc) */ 387 IP_ARP_PROTO_TYPE, /* protocol, from arps perspective */ 388 sizeof (areq_t), /* target addr offset */ 389 IP_ADDR_LEN, /* target addr_length */ 390 0, /* flags */ 391 sizeof (areq_t) + IP_ADDR_LEN, /* sender addr offset */ 392 IP_ADDR_LEN, /* sender addr length */ 393 AR_EQ_DEFAULT_XMIT_COUNT, /* xmit_count */ 394 AR_EQ_DEFAULT_XMIT_INTERVAL, /* (re)xmit_interval in milliseconds */ 395 AR_EQ_DEFAULT_MAX_BUFFERED /* max # of requests to buffer */ 396 /* anything else filled in by the code */ 397 }; 398 399 static arc_t ip_aru_template = { 400 AR_INTERFACE_UP, 401 sizeof (arc_t), /* Name offset */ 402 sizeof (arc_t) /* Name length (set by ill_arp_alloc) */ 403 }; 404 405 static arc_t ip_ard_template = { 406 AR_INTERFACE_DOWN, 407 sizeof (arc_t), /* Name offset */ 408 sizeof (arc_t) /* Name length (set by ill_arp_alloc) */ 409 }; 410 411 static arc_t ip_aron_template = { 412 AR_INTERFACE_ON, 413 sizeof (arc_t), /* Name offset */ 414 sizeof (arc_t) /* Name length (set by ill_arp_alloc) */ 415 }; 416 417 static arc_t ip_aroff_template = { 418 AR_INTERFACE_OFF, 419 sizeof (arc_t), /* Name offset */ 420 sizeof (arc_t) /* Name length (set by ill_arp_alloc) */ 421 }; 422 423 424 static arma_t ip_arma_multi_template = { 425 AR_MAPPING_ADD, 426 sizeof (arma_t) + 3*IP_ADDR_LEN + IP_MAX_HW_LEN, 427 /* Name offset */ 428 sizeof (arma_t), /* Name length (set by ill_arp_alloc) */ 429 IP_ARP_PROTO_TYPE, 430 sizeof (arma_t), /* proto_addr_offset */ 431 IP_ADDR_LEN, /* proto_addr_length */ 432 sizeof (arma_t) + IP_ADDR_LEN, /* proto_mask_offset */ 433 sizeof (arma_t) + 2*IP_ADDR_LEN, /* proto_extract_mask_offset */ 434 ACE_F_PERMANENT | ACE_F_MAPPING, /* flags */ 435 sizeof (arma_t) + 3*IP_ADDR_LEN, /* hw_addr_offset */ 436 IP_MAX_HW_LEN, /* hw_addr_length */ 437 0, /* hw_mapping_start */ 438 }; 439 440 static ipft_t ip_ioctl_ftbl[] = { 441 { IP_IOC_IRE_DELETE, ip_ire_delete, sizeof (ipid_t), 0 }, 442 { IP_IOC_IRE_DELETE_NO_REPLY, ip_ire_delete, sizeof (ipid_t), 443 IPFT_F_NO_REPLY }, 444 { IP_IOC_IRE_ADVISE_NO_REPLY, ip_ire_advise, sizeof (ipic_t), 445 IPFT_F_NO_REPLY }, 446 { IP_IOC_RTS_REQUEST, ip_rts_request, 0, IPFT_F_SELF_REPLY }, 447 { 0 } 448 }; 449 450 /* Simple ICMP IP Header Template */ 451 static ipha_t icmp_ipha = { 452 IP_SIMPLE_HDR_VERSION, 0, 0, 0, 0, 0, IPPROTO_ICMP 453 }; 454 455 /* Flag descriptors for ip_ipif_report */ 456 static nv_t ipif_nv_tbl[] = { 457 { IPIF_UP, "UP" }, 458 { IPIF_BROADCAST, "BROADCAST" }, 459 { ILLF_DEBUG, "DEBUG" }, 460 { PHYI_LOOPBACK, "LOOPBACK" }, 461 { IPIF_POINTOPOINT, "POINTOPOINT" }, 462 { ILLF_NOTRAILERS, "NOTRAILERS" }, 463 { PHYI_RUNNING, "RUNNING" }, 464 { ILLF_NOARP, "NOARP" }, 465 { PHYI_PROMISC, "PROMISC" }, 466 { PHYI_ALLMULTI, "ALLMULTI" }, 467 { PHYI_INTELLIGENT, "INTELLIGENT" }, 468 { ILLF_MULTICAST, "MULTICAST" }, 469 { PHYI_MULTI_BCAST, "MULTI_BCAST" }, 470 { IPIF_UNNUMBERED, "UNNUMBERED" }, 471 { IPIF_DHCPRUNNING, "DHCP" }, 472 { IPIF_PRIVATE, "PRIVATE" }, 473 { IPIF_NOXMIT, "NOXMIT" }, 474 { IPIF_NOLOCAL, "NOLOCAL" }, 475 { IPIF_DEPRECATED, "DEPRECATED" }, 476 { IPIF_PREFERRED, "PREFERRED" }, 477 { IPIF_TEMPORARY, "TEMPORARY" }, 478 { IPIF_ADDRCONF, "ADDRCONF" }, 479 { PHYI_VIRTUAL, "VIRTUAL" }, 480 { ILLF_ROUTER, "ROUTER" }, 481 { ILLF_NONUD, "NONUD" }, 482 { IPIF_ANYCAST, "ANYCAST" }, 483 { ILLF_NORTEXCH, "NORTEXCH" }, 484 { ILLF_IPV4, "IPV4" }, 485 { ILLF_IPV6, "IPV6" }, 486 { IPIF_NOFAILOVER, "NOFAILOVER" }, 487 { PHYI_FAILED, "FAILED" }, 488 { PHYI_STANDBY, "STANDBY" }, 489 { PHYI_INACTIVE, "INACTIVE" }, 490 { PHYI_OFFLINE, "OFFLINE" }, 491 }; 492 493 static uchar_t ip_six_byte_all_ones[] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF }; 494 495 static ip_m_t ip_m_tbl[] = { 496 { DL_ETHER, IFT_ETHER, ip_ether_v4mapinfo, ip_ether_v6mapinfo, 497 ip_ether_v6intfid }, 498 { DL_CSMACD, IFT_ISO88023, ip_ether_v4mapinfo, ip_ether_v6mapinfo, 499 ip_nodef_v6intfid }, 500 { DL_TPB, IFT_ISO88024, ip_ether_v4mapinfo, ip_ether_v6mapinfo, 501 ip_nodef_v6intfid }, 502 { DL_TPR, IFT_ISO88025, ip_ether_v4mapinfo, ip_ether_v6mapinfo, 503 ip_nodef_v6intfid }, 504 { DL_FDDI, IFT_FDDI, ip_ether_v4mapinfo, ip_ether_v6mapinfo, 505 ip_ether_v6intfid }, 506 { DL_IB, IFT_IB, ip_ib_v4mapinfo, ip_ib_v6mapinfo, 507 ip_ib_v6intfid }, 508 { SUNW_DL_VNI, IFT_OTHER, NULL, NULL, NULL}, 509 { DL_OTHER, IFT_OTHER, ip_ether_v4mapinfo, ip_ether_v6mapinfo, 510 ip_nodef_v6intfid } 511 }; 512 513 static ill_t ill_null; /* Empty ILL for init. */ 514 char ipif_loopback_name[] = "lo0"; 515 static char *ipv4_forward_suffix = ":ip_forwarding"; 516 static char *ipv6_forward_suffix = ":ip6_forwarding"; 517 static sin6_t sin6_null; /* Zero address for quick clears */ 518 static sin_t sin_null; /* Zero address for quick clears */ 519 520 /* When set search for unused ipif_seqid */ 521 static ipif_t ipif_zero; 522 523 /* 524 * ppa arena is created after these many 525 * interfaces have been plumbed. 526 */ 527 uint_t ill_no_arena = 12; /* Setable in /etc/system */ 528 529 /* 530 * Enable soft rings if ip_squeue_soft_ring or ip_squeue_fanout 531 * is set and ip_soft_rings_cnt > 0. ip_squeue_soft_ring is 532 * set through platform specific code (Niagara/Ontario). 533 */ 534 #define SOFT_RINGS_ENABLED() (ip_soft_rings_cnt ? \ 535 (ip_squeue_soft_ring || ip_squeue_fanout) : B_FALSE) 536 537 #define ILL_CAPAB_DLS (ILL_CAPAB_SOFT_RING | ILL_CAPAB_POLL) 538 539 static uint_t 540 ipif_rand(ip_stack_t *ipst) 541 { 542 ipst->ips_ipif_src_random = ipst->ips_ipif_src_random * 1103515245 + 543 12345; 544 return ((ipst->ips_ipif_src_random >> 16) & 0x7fff); 545 } 546 547 /* 548 * Allocate per-interface mibs. 549 * Returns true if ok. False otherwise. 550 * ipsq may not yet be allocated (loopback case ). 551 */ 552 static boolean_t 553 ill_allocate_mibs(ill_t *ill) 554 { 555 /* Already allocated? */ 556 if (ill->ill_ip_mib != NULL) { 557 if (ill->ill_isv6) 558 ASSERT(ill->ill_icmp6_mib != NULL); 559 return (B_TRUE); 560 } 561 562 ill->ill_ip_mib = kmem_zalloc(sizeof (*ill->ill_ip_mib), 563 KM_NOSLEEP); 564 if (ill->ill_ip_mib == NULL) { 565 return (B_FALSE); 566 } 567 568 /* Setup static information */ 569 SET_MIB(ill->ill_ip_mib->ipIfStatsEntrySize, 570 sizeof (mib2_ipIfStatsEntry_t)); 571 if (ill->ill_isv6) { 572 ill->ill_ip_mib->ipIfStatsIPVersion = MIB2_INETADDRESSTYPE_ipv6; 573 SET_MIB(ill->ill_ip_mib->ipIfStatsAddrEntrySize, 574 sizeof (mib2_ipv6AddrEntry_t)); 575 SET_MIB(ill->ill_ip_mib->ipIfStatsRouteEntrySize, 576 sizeof (mib2_ipv6RouteEntry_t)); 577 SET_MIB(ill->ill_ip_mib->ipIfStatsNetToMediaEntrySize, 578 sizeof (mib2_ipv6NetToMediaEntry_t)); 579 SET_MIB(ill->ill_ip_mib->ipIfStatsMemberEntrySize, 580 sizeof (ipv6_member_t)); 581 SET_MIB(ill->ill_ip_mib->ipIfStatsGroupSourceEntrySize, 582 sizeof (ipv6_grpsrc_t)); 583 } else { 584 ill->ill_ip_mib->ipIfStatsIPVersion = MIB2_INETADDRESSTYPE_ipv4; 585 SET_MIB(ill->ill_ip_mib->ipIfStatsAddrEntrySize, 586 sizeof (mib2_ipAddrEntry_t)); 587 SET_MIB(ill->ill_ip_mib->ipIfStatsRouteEntrySize, 588 sizeof (mib2_ipRouteEntry_t)); 589 SET_MIB(ill->ill_ip_mib->ipIfStatsNetToMediaEntrySize, 590 sizeof (mib2_ipNetToMediaEntry_t)); 591 SET_MIB(ill->ill_ip_mib->ipIfStatsMemberEntrySize, 592 sizeof (ip_member_t)); 593 SET_MIB(ill->ill_ip_mib->ipIfStatsGroupSourceEntrySize, 594 sizeof (ip_grpsrc_t)); 595 596 /* 597 * For a v4 ill, we are done at this point, because per ill 598 * icmp mibs are only used for v6. 599 */ 600 return (B_TRUE); 601 } 602 603 ill->ill_icmp6_mib = kmem_zalloc(sizeof (*ill->ill_icmp6_mib), 604 KM_NOSLEEP); 605 if (ill->ill_icmp6_mib == NULL) { 606 kmem_free(ill->ill_ip_mib, sizeof (*ill->ill_ip_mib)); 607 ill->ill_ip_mib = NULL; 608 return (B_FALSE); 609 } 610 /* static icmp info */ 611 ill->ill_icmp6_mib->ipv6IfIcmpEntrySize = 612 sizeof (mib2_ipv6IfIcmpEntry_t); 613 /* 614 * The ipIfStatsIfindex and ipv6IfIcmpIndex will be assigned later 615 * after the phyint merge occurs in ipif_set_values -> ill_glist_insert 616 * -> ill_phyint_reinit 617 */ 618 return (B_TRUE); 619 } 620 621 /* 622 * Common code for preparation of ARP commands. Two points to remember: 623 * 1) The ill_name is tacked on at the end of the allocated space so 624 * the templates name_offset field must contain the total space 625 * to allocate less the name length. 626 * 627 * 2) The templates name_length field should contain the *template* 628 * length. We use it as a parameter to bcopy() and then write 629 * the real ill_name_length into the name_length field of the copy. 630 * (Always called as writer.) 631 */ 632 mblk_t * 633 ill_arp_alloc(ill_t *ill, uchar_t *template, caddr_t addr) 634 { 635 arc_t *arc = (arc_t *)template; 636 char *cp; 637 int len; 638 mblk_t *mp; 639 uint_t name_length = ill->ill_name_length; 640 uint_t template_len = arc->arc_name_length; 641 642 len = arc->arc_name_offset + name_length; 643 mp = allocb(len, BPRI_HI); 644 if (mp == NULL) 645 return (NULL); 646 cp = (char *)mp->b_rptr; 647 mp->b_wptr = (uchar_t *)&cp[len]; 648 if (template_len) 649 bcopy(template, cp, template_len); 650 if (len > template_len) 651 bzero(&cp[template_len], len - template_len); 652 mp->b_datap->db_type = M_PROTO; 653 654 arc = (arc_t *)cp; 655 arc->arc_name_length = name_length; 656 cp = (char *)arc + arc->arc_name_offset; 657 bcopy(ill->ill_name, cp, name_length); 658 659 if (addr) { 660 area_t *area = (area_t *)mp->b_rptr; 661 662 cp = (char *)area + area->area_proto_addr_offset; 663 bcopy(addr, cp, area->area_proto_addr_length); 664 if (area->area_cmd == AR_ENTRY_ADD) { 665 cp = (char *)area; 666 len = area->area_proto_addr_length; 667 if (area->area_proto_mask_offset) 668 cp += area->area_proto_mask_offset; 669 else 670 cp += area->area_proto_addr_offset + len; 671 while (len-- > 0) 672 *cp++ = (char)~0; 673 } 674 } 675 return (mp); 676 } 677 678 mblk_t * 679 ipif_area_alloc(ipif_t *ipif) 680 { 681 return (ill_arp_alloc(ipif->ipif_ill, (uchar_t *)&ip_area_template, 682 (char *)&ipif->ipif_lcl_addr)); 683 } 684 685 mblk_t * 686 ipif_ared_alloc(ipif_t *ipif) 687 { 688 return (ill_arp_alloc(ipif->ipif_ill, (uchar_t *)&ip_ared_template, 689 (char *)&ipif->ipif_lcl_addr)); 690 } 691 692 mblk_t * 693 ill_ared_alloc(ill_t *ill, ipaddr_t addr) 694 { 695 return (ill_arp_alloc(ill, (uchar_t *)&ip_ared_template, 696 (char *)&addr)); 697 } 698 699 /* 700 * Completely vaporize a lower level tap and all associated interfaces. 701 * ill_delete is called only out of ip_close when the device control 702 * stream is being closed. 703 */ 704 void 705 ill_delete(ill_t *ill) 706 { 707 ipif_t *ipif; 708 ill_t *prev_ill; 709 ip_stack_t *ipst = ill->ill_ipst; 710 711 /* 712 * ill_delete may be forcibly entering the ipsq. The previous 713 * ioctl may not have completed and may need to be aborted. 714 * ipsq_flush takes care of it. If we don't need to enter the 715 * the ipsq forcibly, the 2nd invocation of ipsq_flush in 716 * ill_delete_tail is sufficient. 717 */ 718 ipsq_flush(ill); 719 720 /* 721 * Nuke all interfaces. ipif_free will take down the interface, 722 * remove it from the list, and free the data structure. 723 * Walk down the ipif list and remove the logical interfaces 724 * first before removing the main ipif. We can't unplumb 725 * zeroth interface first in the case of IPv6 as reset_conn_ill 726 * -> ip_ll_delmulti_v6 de-references ill_ipif for checking 727 * POINTOPOINT. 728 * 729 * If ill_ipif was not properly initialized (i.e low on memory), 730 * then no interfaces to clean up. In this case just clean up the 731 * ill. 732 */ 733 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) 734 ipif_free(ipif); 735 736 /* 737 * Used only by ill_arp_on and ill_arp_off, which are writers. 738 * So nobody can be using this mp now. Free the mp allocated for 739 * honoring ILLF_NOARP 740 */ 741 freemsg(ill->ill_arp_on_mp); 742 ill->ill_arp_on_mp = NULL; 743 744 /* Clean up msgs on pending upcalls for mrouted */ 745 reset_mrt_ill(ill); 746 747 /* 748 * ipif_free -> reset_conn_ipif will remove all multicast 749 * references for IPv4. For IPv6, we need to do it here as 750 * it points only at ills. 751 */ 752 reset_conn_ill(ill); 753 754 /* 755 * ill_down will arrange to blow off any IRE's dependent on this 756 * ILL, and shut down fragmentation reassembly. 757 */ 758 ill_down(ill); 759 760 /* Let SCTP know, so that it can remove this from its list. */ 761 sctp_update_ill(ill, SCTP_ILL_REMOVE); 762 763 /* 764 * If an address on this ILL is being used as a source address then 765 * clear out the pointers in other ILLs that point to this ILL. 766 */ 767 rw_enter(&ipst->ips_ill_g_usesrc_lock, RW_WRITER); 768 if (ill->ill_usesrc_grp_next != NULL) { 769 if (ill->ill_usesrc_ifindex == 0) { /* usesrc ILL ? */ 770 ill_disband_usesrc_group(ill); 771 } else { /* consumer of the usesrc ILL */ 772 prev_ill = ill_prev_usesrc(ill); 773 prev_ill->ill_usesrc_grp_next = 774 ill->ill_usesrc_grp_next; 775 } 776 } 777 rw_exit(&ipst->ips_ill_g_usesrc_lock); 778 } 779 780 static void 781 ipif_non_duplicate(ipif_t *ipif) 782 { 783 ill_t *ill = ipif->ipif_ill; 784 mutex_enter(&ill->ill_lock); 785 if (ipif->ipif_flags & IPIF_DUPLICATE) { 786 ipif->ipif_flags &= ~IPIF_DUPLICATE; 787 ASSERT(ill->ill_ipif_dup_count > 0); 788 ill->ill_ipif_dup_count--; 789 } 790 mutex_exit(&ill->ill_lock); 791 } 792 793 /* 794 * ill_delete_tail is called from ip_modclose after all references 795 * to the closing ill are gone. The wait is done in ip_modclose 796 */ 797 void 798 ill_delete_tail(ill_t *ill) 799 { 800 mblk_t **mpp; 801 ipif_t *ipif; 802 ip_stack_t *ipst = ill->ill_ipst; 803 804 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 805 ipif_non_duplicate(ipif); 806 ipif_down_tail(ipif); 807 } 808 809 ASSERT(ill->ill_ipif_dup_count == 0 && 810 ill->ill_arp_down_mp == NULL && 811 ill->ill_arp_del_mapping_mp == NULL); 812 813 /* 814 * If polling capability is enabled (which signifies direct 815 * upcall into IP and driver has ill saved as a handle), 816 * we need to make sure that unbind has completed before we 817 * let the ill disappear and driver no longer has any reference 818 * to this ill. 819 */ 820 mutex_enter(&ill->ill_lock); 821 while (ill->ill_state_flags & ILL_DL_UNBIND_IN_PROGRESS) 822 cv_wait(&ill->ill_cv, &ill->ill_lock); 823 mutex_exit(&ill->ill_lock); 824 825 /* 826 * Clean up polling and soft ring capabilities 827 */ 828 if (ill->ill_capabilities & (ILL_CAPAB_POLL|ILL_CAPAB_SOFT_RING)) 829 ill_capability_dls_disable(ill); 830 831 if (ill->ill_net_type != IRE_LOOPBACK) 832 qprocsoff(ill->ill_rq); 833 834 /* 835 * We do an ipsq_flush once again now. New messages could have 836 * landed up from below (M_ERROR or M_HANGUP). Similarly ioctls 837 * could also have landed up if an ioctl thread had looked up 838 * the ill before we set the ILL_CONDEMNED flag, but not yet 839 * enqueued the ioctl when we did the ipsq_flush last time. 840 */ 841 ipsq_flush(ill); 842 843 /* 844 * Free capabilities. 845 */ 846 if (ill->ill_ipsec_capab_ah != NULL) { 847 ill_ipsec_capab_delete(ill, DL_CAPAB_IPSEC_AH); 848 ill_ipsec_capab_free(ill->ill_ipsec_capab_ah); 849 ill->ill_ipsec_capab_ah = NULL; 850 } 851 852 if (ill->ill_ipsec_capab_esp != NULL) { 853 ill_ipsec_capab_delete(ill, DL_CAPAB_IPSEC_ESP); 854 ill_ipsec_capab_free(ill->ill_ipsec_capab_esp); 855 ill->ill_ipsec_capab_esp = NULL; 856 } 857 858 if (ill->ill_mdt_capab != NULL) { 859 kmem_free(ill->ill_mdt_capab, sizeof (ill_mdt_capab_t)); 860 ill->ill_mdt_capab = NULL; 861 } 862 863 if (ill->ill_hcksum_capab != NULL) { 864 kmem_free(ill->ill_hcksum_capab, sizeof (ill_hcksum_capab_t)); 865 ill->ill_hcksum_capab = NULL; 866 } 867 868 if (ill->ill_zerocopy_capab != NULL) { 869 kmem_free(ill->ill_zerocopy_capab, 870 sizeof (ill_zerocopy_capab_t)); 871 ill->ill_zerocopy_capab = NULL; 872 } 873 874 if (ill->ill_lso_capab != NULL) { 875 kmem_free(ill->ill_lso_capab, sizeof (ill_lso_capab_t)); 876 ill->ill_lso_capab = NULL; 877 } 878 879 if (ill->ill_dls_capab != NULL) { 880 CONN_DEC_REF(ill->ill_dls_capab->ill_unbind_conn); 881 ill->ill_dls_capab->ill_unbind_conn = NULL; 882 kmem_free(ill->ill_dls_capab, 883 sizeof (ill_dls_capab_t) + 884 (sizeof (ill_rx_ring_t) * ILL_MAX_RINGS)); 885 ill->ill_dls_capab = NULL; 886 } 887 888 ASSERT(!(ill->ill_capabilities & ILL_CAPAB_POLL)); 889 890 while (ill->ill_ipif != NULL) 891 ipif_free_tail(ill->ill_ipif); 892 893 /* 894 * We have removed all references to ilm from conn and the ones joined 895 * within the kernel. 896 * 897 * We don't walk conns, mrts and ires because 898 * 899 * 1) reset_conn_ill and reset_mrt_ill cleans up conns and mrts. 900 * 2) ill_down ->ill_downi walks all the ires and cleans up 901 * ill references. 902 */ 903 ASSERT(ilm_walk_ill(ill) == 0); 904 /* 905 * Take us out of the list of ILLs. ill_glist_delete -> ill_phyint_free 906 * could free the phyint. No more reference to the phyint after this 907 * point. 908 */ 909 (void) ill_glist_delete(ill); 910 911 rw_enter(&ipst->ips_ip_g_nd_lock, RW_WRITER); 912 if (ill->ill_ndd_name != NULL) 913 nd_unload(&ipst->ips_ip_g_nd, ill->ill_ndd_name); 914 rw_exit(&ipst->ips_ip_g_nd_lock); 915 916 917 if (ill->ill_frag_ptr != NULL) { 918 uint_t count; 919 920 for (count = 0; count < ILL_FRAG_HASH_TBL_COUNT; count++) { 921 mutex_destroy(&ill->ill_frag_hash_tbl[count].ipfb_lock); 922 } 923 mi_free(ill->ill_frag_ptr); 924 ill->ill_frag_ptr = NULL; 925 ill->ill_frag_hash_tbl = NULL; 926 } 927 928 freemsg(ill->ill_nd_lla_mp); 929 /* Free all retained control messages. */ 930 mpp = &ill->ill_first_mp_to_free; 931 do { 932 while (mpp[0]) { 933 mblk_t *mp; 934 mblk_t *mp1; 935 936 mp = mpp[0]; 937 mpp[0] = mp->b_next; 938 for (mp1 = mp; mp1 != NULL; mp1 = mp1->b_cont) { 939 mp1->b_next = NULL; 940 mp1->b_prev = NULL; 941 } 942 freemsg(mp); 943 } 944 } while (mpp++ != &ill->ill_last_mp_to_free); 945 946 ill_free_mib(ill); 947 948 #ifdef DEBUG 949 ill_trace_cleanup(ill); 950 #endif 951 952 /* Drop refcnt here */ 953 netstack_rele(ill->ill_ipst->ips_netstack); 954 ill->ill_ipst = NULL; 955 } 956 957 static void 958 ill_free_mib(ill_t *ill) 959 { 960 ip_stack_t *ipst = ill->ill_ipst; 961 962 /* 963 * MIB statistics must not be lost, so when an interface 964 * goes away the counter values will be added to the global 965 * MIBs. 966 */ 967 if (ill->ill_ip_mib != NULL) { 968 if (ill->ill_isv6) { 969 ip_mib2_add_ip_stats(&ipst->ips_ip6_mib, 970 ill->ill_ip_mib); 971 } else { 972 ip_mib2_add_ip_stats(&ipst->ips_ip_mib, 973 ill->ill_ip_mib); 974 } 975 976 kmem_free(ill->ill_ip_mib, sizeof (*ill->ill_ip_mib)); 977 ill->ill_ip_mib = NULL; 978 } 979 if (ill->ill_icmp6_mib != NULL) { 980 ip_mib2_add_icmp6_stats(&ipst->ips_icmp6_mib, 981 ill->ill_icmp6_mib); 982 kmem_free(ill->ill_icmp6_mib, sizeof (*ill->ill_icmp6_mib)); 983 ill->ill_icmp6_mib = NULL; 984 } 985 } 986 987 /* 988 * Concatenate together a physical address and a sap. 989 * 990 * Sap_lengths are interpreted as follows: 991 * sap_length == 0 ==> no sap 992 * sap_length > 0 ==> sap is at the head of the dlpi address 993 * sap_length < 0 ==> sap is at the tail of the dlpi address 994 */ 995 static void 996 ill_dlur_copy_address(uchar_t *phys_src, uint_t phys_length, 997 t_scalar_t sap_src, t_scalar_t sap_length, uchar_t *dst) 998 { 999 uint16_t sap_addr = (uint16_t)sap_src; 1000 1001 if (sap_length == 0) { 1002 if (phys_src == NULL) 1003 bzero(dst, phys_length); 1004 else 1005 bcopy(phys_src, dst, phys_length); 1006 } else if (sap_length < 0) { 1007 if (phys_src == NULL) 1008 bzero(dst, phys_length); 1009 else 1010 bcopy(phys_src, dst, phys_length); 1011 bcopy(&sap_addr, (char *)dst + phys_length, sizeof (sap_addr)); 1012 } else { 1013 bcopy(&sap_addr, dst, sizeof (sap_addr)); 1014 if (phys_src == NULL) 1015 bzero((char *)dst + sap_length, phys_length); 1016 else 1017 bcopy(phys_src, (char *)dst + sap_length, phys_length); 1018 } 1019 } 1020 1021 /* 1022 * Generate a dl_unitdata_req mblk for the device and address given. 1023 * addr_length is the length of the physical portion of the address. 1024 * If addr is NULL include an all zero address of the specified length. 1025 * TRUE? In any case, addr_length is taken to be the entire length of the 1026 * dlpi address, including the absolute value of sap_length. 1027 */ 1028 mblk_t * 1029 ill_dlur_gen(uchar_t *addr, uint_t addr_length, t_uscalar_t sap, 1030 t_scalar_t sap_length) 1031 { 1032 dl_unitdata_req_t *dlur; 1033 mblk_t *mp; 1034 t_scalar_t abs_sap_length; /* absolute value */ 1035 1036 abs_sap_length = ABS(sap_length); 1037 mp = ip_dlpi_alloc(sizeof (*dlur) + addr_length + abs_sap_length, 1038 DL_UNITDATA_REQ); 1039 if (mp == NULL) 1040 return (NULL); 1041 dlur = (dl_unitdata_req_t *)mp->b_rptr; 1042 /* HACK: accomodate incompatible DLPI drivers */ 1043 if (addr_length == 8) 1044 addr_length = 6; 1045 dlur->dl_dest_addr_length = addr_length + abs_sap_length; 1046 dlur->dl_dest_addr_offset = sizeof (*dlur); 1047 dlur->dl_priority.dl_min = 0; 1048 dlur->dl_priority.dl_max = 0; 1049 ill_dlur_copy_address(addr, addr_length, sap, sap_length, 1050 (uchar_t *)&dlur[1]); 1051 return (mp); 1052 } 1053 1054 /* 1055 * Add the 'mp' to the list of pending mp's headed by ill_pending_mp 1056 * Return an error if we already have 1 or more ioctls in progress. 1057 * This is used only for non-exclusive ioctls. Currently this is used 1058 * for SIOC*ARP and SIOCGTUNPARAM ioctls. Most set ioctls are exclusive 1059 * and thus need to use ipsq_pending_mp_add. 1060 */ 1061 boolean_t 1062 ill_pending_mp_add(ill_t *ill, conn_t *connp, mblk_t *add_mp) 1063 { 1064 ASSERT(MUTEX_HELD(&ill->ill_lock)); 1065 ASSERT((add_mp->b_next == NULL) && (add_mp->b_prev == NULL)); 1066 /* 1067 * M_IOCDATA from ioctls, M_IOCTL from tunnel ioctls. 1068 */ 1069 ASSERT((add_mp->b_datap->db_type == M_IOCDATA) || 1070 (add_mp->b_datap->db_type == M_IOCTL)); 1071 1072 ASSERT(MUTEX_HELD(&connp->conn_lock)); 1073 /* 1074 * Return error if the conn has started closing. The conn 1075 * could have finished cleaning up the pending mp list, 1076 * If so we should not add another mp to the list negating 1077 * the cleanup. 1078 */ 1079 if (connp->conn_state_flags & CONN_CLOSING) 1080 return (B_FALSE); 1081 /* 1082 * Add the pending mp to the head of the list, chained by b_next. 1083 * Note down the conn on which the ioctl request came, in b_prev. 1084 * This will be used to later get the conn, when we get a response 1085 * on the ill queue, from some other module (typically arp) 1086 */ 1087 add_mp->b_next = (void *)ill->ill_pending_mp; 1088 add_mp->b_queue = CONNP_TO_WQ(connp); 1089 ill->ill_pending_mp = add_mp; 1090 if (connp != NULL) 1091 connp->conn_oper_pending_ill = ill; 1092 return (B_TRUE); 1093 } 1094 1095 /* 1096 * Retrieve the ill_pending_mp and return it. We have to walk the list 1097 * of mblks starting at ill_pending_mp, and match based on the ioc_id. 1098 */ 1099 mblk_t * 1100 ill_pending_mp_get(ill_t *ill, conn_t **connpp, uint_t ioc_id) 1101 { 1102 mblk_t *prev = NULL; 1103 mblk_t *curr = NULL; 1104 uint_t id; 1105 conn_t *connp; 1106 1107 /* 1108 * When the conn closes, conn_ioctl_cleanup needs to clean 1109 * up the pending mp, but it does not know the ioc_id and 1110 * passes in a zero for it. 1111 */ 1112 mutex_enter(&ill->ill_lock); 1113 if (ioc_id != 0) 1114 *connpp = NULL; 1115 1116 /* Search the list for the appropriate ioctl based on ioc_id */ 1117 for (prev = NULL, curr = ill->ill_pending_mp; curr != NULL; 1118 prev = curr, curr = curr->b_next) { 1119 id = ((struct iocblk *)curr->b_rptr)->ioc_id; 1120 connp = Q_TO_CONN(curr->b_queue); 1121 /* Match based on the ioc_id or based on the conn */ 1122 if ((id == ioc_id) || (ioc_id == 0 && connp == *connpp)) 1123 break; 1124 } 1125 1126 if (curr != NULL) { 1127 /* Unlink the mblk from the pending mp list */ 1128 if (prev != NULL) { 1129 prev->b_next = curr->b_next; 1130 } else { 1131 ASSERT(ill->ill_pending_mp == curr); 1132 ill->ill_pending_mp = curr->b_next; 1133 } 1134 1135 /* 1136 * conn refcnt must have been bumped up at the start of 1137 * the ioctl. So we can safely access the conn. 1138 */ 1139 ASSERT(CONN_Q(curr->b_queue)); 1140 *connpp = Q_TO_CONN(curr->b_queue); 1141 curr->b_next = NULL; 1142 curr->b_queue = NULL; 1143 } 1144 1145 mutex_exit(&ill->ill_lock); 1146 1147 return (curr); 1148 } 1149 1150 /* 1151 * Add the pending mp to the list. There can be only 1 pending mp 1152 * in the list. Any exclusive ioctl that needs to wait for a response 1153 * from another module or driver needs to use this function to set 1154 * the ipsq_pending_mp to the ioctl mblk and wait for the response from 1155 * the other module/driver. This is also used while waiting for the 1156 * ipif/ill/ire refcnts to drop to zero in bringing down an ipif. 1157 */ 1158 boolean_t 1159 ipsq_pending_mp_add(conn_t *connp, ipif_t *ipif, queue_t *q, mblk_t *add_mp, 1160 int waitfor) 1161 { 1162 ipsq_t *ipsq = ipif->ipif_ill->ill_phyint->phyint_ipsq; 1163 1164 ASSERT(IAM_WRITER_IPIF(ipif)); 1165 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 1166 ASSERT((add_mp->b_next == NULL) && (add_mp->b_prev == NULL)); 1167 ASSERT(ipsq->ipsq_pending_mp == NULL); 1168 /* 1169 * The caller may be using a different ipif than the one passed into 1170 * ipsq_current_start() (e.g., suppose an ioctl that came in on the V4 1171 * ill needs to wait for the V6 ill to quiesce). So we can't ASSERT 1172 * that `ipsq_current_ipif == ipif'. 1173 */ 1174 ASSERT(ipsq->ipsq_current_ipif != NULL); 1175 1176 /* 1177 * M_IOCDATA from ioctls, M_IOCTL from tunnel ioctls, 1178 * M_ERROR/M_HANGUP/M_PROTO/M_PCPROTO from the driver. 1179 */ 1180 ASSERT((DB_TYPE(add_mp) == M_IOCDATA) || (DB_TYPE(add_mp) == M_IOCTL) || 1181 (DB_TYPE(add_mp) == M_ERROR) || (DB_TYPE(add_mp) == M_HANGUP) || 1182 (DB_TYPE(add_mp) == M_PROTO) || (DB_TYPE(add_mp) == M_PCPROTO)); 1183 1184 if (connp != NULL) { 1185 ASSERT(MUTEX_HELD(&connp->conn_lock)); 1186 /* 1187 * Return error if the conn has started closing. The conn 1188 * could have finished cleaning up the pending mp list, 1189 * If so we should not add another mp to the list negating 1190 * the cleanup. 1191 */ 1192 if (connp->conn_state_flags & CONN_CLOSING) 1193 return (B_FALSE); 1194 } 1195 mutex_enter(&ipsq->ipsq_lock); 1196 ipsq->ipsq_pending_ipif = ipif; 1197 /* 1198 * Note down the queue in b_queue. This will be returned by 1199 * ipsq_pending_mp_get. Caller will then use these values to restart 1200 * the processing 1201 */ 1202 add_mp->b_next = NULL; 1203 add_mp->b_queue = q; 1204 ipsq->ipsq_pending_mp = add_mp; 1205 ipsq->ipsq_waitfor = waitfor; 1206 1207 if (connp != NULL) 1208 connp->conn_oper_pending_ill = ipif->ipif_ill; 1209 mutex_exit(&ipsq->ipsq_lock); 1210 return (B_TRUE); 1211 } 1212 1213 /* 1214 * Retrieve the ipsq_pending_mp and return it. There can be only 1 mp 1215 * queued in the list. 1216 */ 1217 mblk_t * 1218 ipsq_pending_mp_get(ipsq_t *ipsq, conn_t **connpp) 1219 { 1220 mblk_t *curr = NULL; 1221 1222 mutex_enter(&ipsq->ipsq_lock); 1223 *connpp = NULL; 1224 if (ipsq->ipsq_pending_mp == NULL) { 1225 mutex_exit(&ipsq->ipsq_lock); 1226 return (NULL); 1227 } 1228 1229 /* There can be only 1 such excl message */ 1230 curr = ipsq->ipsq_pending_mp; 1231 ASSERT(curr != NULL && curr->b_next == NULL); 1232 ipsq->ipsq_pending_ipif = NULL; 1233 ipsq->ipsq_pending_mp = NULL; 1234 ipsq->ipsq_waitfor = 0; 1235 mutex_exit(&ipsq->ipsq_lock); 1236 1237 if (CONN_Q(curr->b_queue)) { 1238 /* 1239 * This mp did a refhold on the conn, at the start of the ioctl. 1240 * So we can safely return a pointer to the conn to the caller. 1241 */ 1242 *connpp = Q_TO_CONN(curr->b_queue); 1243 } else { 1244 *connpp = NULL; 1245 } 1246 curr->b_next = NULL; 1247 curr->b_prev = NULL; 1248 return (curr); 1249 } 1250 1251 /* 1252 * Cleanup the ioctl mp queued in ipsq_pending_mp 1253 * - Called in the ill_delete path 1254 * - Called in the M_ERROR or M_HANGUP path on the ill. 1255 * - Called in the conn close path. 1256 */ 1257 boolean_t 1258 ipsq_pending_mp_cleanup(ill_t *ill, conn_t *connp) 1259 { 1260 mblk_t *mp; 1261 ipsq_t *ipsq; 1262 queue_t *q; 1263 ipif_t *ipif; 1264 1265 ASSERT(IAM_WRITER_ILL(ill)); 1266 ipsq = ill->ill_phyint->phyint_ipsq; 1267 mutex_enter(&ipsq->ipsq_lock); 1268 /* 1269 * If connp is null, unconditionally clean up the ipsq_pending_mp. 1270 * This happens in M_ERROR/M_HANGUP. We need to abort the current ioctl 1271 * even if it is meant for another ill, since we have to enqueue 1272 * a new mp now in ipsq_pending_mp to complete the ipif_down. 1273 * If connp is non-null we are called from the conn close path. 1274 */ 1275 mp = ipsq->ipsq_pending_mp; 1276 if (mp == NULL || (connp != NULL && 1277 mp->b_queue != CONNP_TO_WQ(connp))) { 1278 mutex_exit(&ipsq->ipsq_lock); 1279 return (B_FALSE); 1280 } 1281 /* Now remove from the ipsq_pending_mp */ 1282 ipsq->ipsq_pending_mp = NULL; 1283 q = mp->b_queue; 1284 mp->b_next = NULL; 1285 mp->b_prev = NULL; 1286 mp->b_queue = NULL; 1287 1288 /* If MOVE was in progress, clear the move_in_progress fields also. */ 1289 ill = ipsq->ipsq_pending_ipif->ipif_ill; 1290 if (ill->ill_move_in_progress) { 1291 ILL_CLEAR_MOVE(ill); 1292 } else if (ill->ill_up_ipifs) { 1293 ill_group_cleanup(ill); 1294 } 1295 1296 ipif = ipsq->ipsq_pending_ipif; 1297 ipsq->ipsq_pending_ipif = NULL; 1298 ipsq->ipsq_waitfor = 0; 1299 ipsq->ipsq_current_ipif = NULL; 1300 ipsq->ipsq_current_ioctl = 0; 1301 ipsq->ipsq_current_done = B_TRUE; 1302 mutex_exit(&ipsq->ipsq_lock); 1303 1304 if (DB_TYPE(mp) == M_IOCTL || DB_TYPE(mp) == M_IOCDATA) { 1305 if (connp == NULL) { 1306 ip_ioctl_finish(q, mp, ENXIO, NO_COPYOUT, NULL); 1307 } else { 1308 ip_ioctl_finish(q, mp, ENXIO, CONN_CLOSE, NULL); 1309 mutex_enter(&ipif->ipif_ill->ill_lock); 1310 ipif->ipif_state_flags &= ~IPIF_CHANGING; 1311 mutex_exit(&ipif->ipif_ill->ill_lock); 1312 } 1313 } else { 1314 /* 1315 * IP-MT XXX In the case of TLI/XTI bind / optmgmt this can't 1316 * be just inet_freemsg. we have to restart it 1317 * otherwise the thread will be stuck. 1318 */ 1319 inet_freemsg(mp); 1320 } 1321 return (B_TRUE); 1322 } 1323 1324 /* 1325 * The ill is closing. Cleanup all the pending mps. Called exclusively 1326 * towards the end of ill_delete. The refcount has gone to 0. So nobody 1327 * knows this ill, and hence nobody can add an mp to this list 1328 */ 1329 static void 1330 ill_pending_mp_cleanup(ill_t *ill) 1331 { 1332 mblk_t *mp; 1333 queue_t *q; 1334 1335 ASSERT(IAM_WRITER_ILL(ill)); 1336 1337 mutex_enter(&ill->ill_lock); 1338 /* 1339 * Every mp on the pending mp list originating from an ioctl 1340 * added 1 to the conn refcnt, at the start of the ioctl. 1341 * So bump it down now. See comments in ip_wput_nondata() 1342 */ 1343 while (ill->ill_pending_mp != NULL) { 1344 mp = ill->ill_pending_mp; 1345 ill->ill_pending_mp = mp->b_next; 1346 mutex_exit(&ill->ill_lock); 1347 1348 q = mp->b_queue; 1349 ASSERT(CONN_Q(q)); 1350 mp->b_next = NULL; 1351 mp->b_prev = NULL; 1352 mp->b_queue = NULL; 1353 ip_ioctl_finish(q, mp, ENXIO, NO_COPYOUT, NULL); 1354 mutex_enter(&ill->ill_lock); 1355 } 1356 ill->ill_pending_ipif = NULL; 1357 1358 mutex_exit(&ill->ill_lock); 1359 } 1360 1361 /* 1362 * Called in the conn close path and ill delete path 1363 */ 1364 static void 1365 ipsq_xopq_mp_cleanup(ill_t *ill, conn_t *connp) 1366 { 1367 ipsq_t *ipsq; 1368 mblk_t *prev; 1369 mblk_t *curr; 1370 mblk_t *next; 1371 queue_t *q; 1372 mblk_t *tmp_list = NULL; 1373 1374 ASSERT(IAM_WRITER_ILL(ill)); 1375 if (connp != NULL) 1376 q = CONNP_TO_WQ(connp); 1377 else 1378 q = ill->ill_wq; 1379 1380 ipsq = ill->ill_phyint->phyint_ipsq; 1381 /* 1382 * Cleanup the ioctl mp's queued in ipsq_xopq_pending_mp if any. 1383 * In the case of ioctl from a conn, there can be only 1 mp 1384 * queued on the ipsq. If an ill is being unplumbed, only messages 1385 * related to this ill are flushed, like M_ERROR or M_HANGUP message. 1386 * ioctls meant for this ill form conn's are not flushed. They will 1387 * be processed during ipsq_exit and will not find the ill and will 1388 * return error. 1389 */ 1390 mutex_enter(&ipsq->ipsq_lock); 1391 for (prev = NULL, curr = ipsq->ipsq_xopq_mphead; curr != NULL; 1392 curr = next) { 1393 next = curr->b_next; 1394 if (curr->b_queue == q || curr->b_queue == RD(q)) { 1395 /* Unlink the mblk from the pending mp list */ 1396 if (prev != NULL) { 1397 prev->b_next = curr->b_next; 1398 } else { 1399 ASSERT(ipsq->ipsq_xopq_mphead == curr); 1400 ipsq->ipsq_xopq_mphead = curr->b_next; 1401 } 1402 if (ipsq->ipsq_xopq_mptail == curr) 1403 ipsq->ipsq_xopq_mptail = prev; 1404 /* 1405 * Create a temporary list and release the ipsq lock 1406 * New elements are added to the head of the tmp_list 1407 */ 1408 curr->b_next = tmp_list; 1409 tmp_list = curr; 1410 } else { 1411 prev = curr; 1412 } 1413 } 1414 mutex_exit(&ipsq->ipsq_lock); 1415 1416 while (tmp_list != NULL) { 1417 curr = tmp_list; 1418 tmp_list = curr->b_next; 1419 curr->b_next = NULL; 1420 curr->b_prev = NULL; 1421 curr->b_queue = NULL; 1422 if (DB_TYPE(curr) == M_IOCTL || DB_TYPE(curr) == M_IOCDATA) { 1423 ip_ioctl_finish(q, curr, ENXIO, connp != NULL ? 1424 CONN_CLOSE : NO_COPYOUT, NULL); 1425 } else { 1426 /* 1427 * IP-MT XXX In the case of TLI/XTI bind / optmgmt 1428 * this can't be just inet_freemsg. we have to 1429 * restart it otherwise the thread will be stuck. 1430 */ 1431 inet_freemsg(curr); 1432 } 1433 } 1434 } 1435 1436 /* 1437 * This conn has started closing. Cleanup any pending ioctl from this conn. 1438 * STREAMS ensures that there can be at most 1 ioctl pending on a stream. 1439 */ 1440 void 1441 conn_ioctl_cleanup(conn_t *connp) 1442 { 1443 mblk_t *curr; 1444 ipsq_t *ipsq; 1445 ill_t *ill; 1446 boolean_t refheld; 1447 1448 /* 1449 * Is any exclusive ioctl pending ? If so clean it up. If the 1450 * ioctl has not yet started, the mp is pending in the list headed by 1451 * ipsq_xopq_head. If the ioctl has started the mp could be present in 1452 * ipsq_pending_mp. If the ioctl timed out in the streamhead but 1453 * is currently executing now the mp is not queued anywhere but 1454 * conn_oper_pending_ill is null. The conn close will wait 1455 * till the conn_ref drops to zero. 1456 */ 1457 mutex_enter(&connp->conn_lock); 1458 ill = connp->conn_oper_pending_ill; 1459 if (ill == NULL) { 1460 mutex_exit(&connp->conn_lock); 1461 return; 1462 } 1463 1464 curr = ill_pending_mp_get(ill, &connp, 0); 1465 if (curr != NULL) { 1466 mutex_exit(&connp->conn_lock); 1467 CONN_DEC_REF(connp); 1468 inet_freemsg(curr); 1469 return; 1470 } 1471 /* 1472 * We may not be able to refhold the ill if the ill/ipif 1473 * is changing. But we need to make sure that the ill will 1474 * not vanish. So we just bump up the ill_waiter count. 1475 */ 1476 refheld = ill_waiter_inc(ill); 1477 mutex_exit(&connp->conn_lock); 1478 if (refheld) { 1479 if (ipsq_enter(ill, B_TRUE)) { 1480 ill_waiter_dcr(ill); 1481 /* 1482 * Check whether this ioctl has started and is 1483 * pending now in ipsq_pending_mp. If it is not 1484 * found there then check whether this ioctl has 1485 * not even started and is in the ipsq_xopq list. 1486 */ 1487 if (!ipsq_pending_mp_cleanup(ill, connp)) 1488 ipsq_xopq_mp_cleanup(ill, connp); 1489 ipsq = ill->ill_phyint->phyint_ipsq; 1490 ipsq_exit(ipsq, B_TRUE, B_TRUE); 1491 return; 1492 } 1493 } 1494 1495 /* 1496 * The ill is also closing and we could not bump up the 1497 * ill_waiter_count or we could not enter the ipsq. Leave 1498 * the cleanup to ill_delete 1499 */ 1500 mutex_enter(&connp->conn_lock); 1501 while (connp->conn_oper_pending_ill != NULL) 1502 cv_wait(&connp->conn_refcv, &connp->conn_lock); 1503 mutex_exit(&connp->conn_lock); 1504 if (refheld) 1505 ill_waiter_dcr(ill); 1506 } 1507 1508 /* 1509 * ipcl_walk function for cleaning up conn_*_ill fields. 1510 */ 1511 static void 1512 conn_cleanup_ill(conn_t *connp, caddr_t arg) 1513 { 1514 ill_t *ill = (ill_t *)arg; 1515 ire_t *ire; 1516 1517 mutex_enter(&connp->conn_lock); 1518 if (connp->conn_multicast_ill == ill) { 1519 /* Revert to late binding */ 1520 connp->conn_multicast_ill = NULL; 1521 connp->conn_orig_multicast_ifindex = 0; 1522 } 1523 if (connp->conn_incoming_ill == ill) 1524 connp->conn_incoming_ill = NULL; 1525 if (connp->conn_outgoing_ill == ill) 1526 connp->conn_outgoing_ill = NULL; 1527 if (connp->conn_outgoing_pill == ill) 1528 connp->conn_outgoing_pill = NULL; 1529 if (connp->conn_nofailover_ill == ill) 1530 connp->conn_nofailover_ill = NULL; 1531 if (connp->conn_dhcpinit_ill == ill) { 1532 connp->conn_dhcpinit_ill = NULL; 1533 ASSERT(ill->ill_dhcpinit != 0); 1534 atomic_dec_32(&ill->ill_dhcpinit); 1535 } 1536 if (connp->conn_ire_cache != NULL) { 1537 ire = connp->conn_ire_cache; 1538 /* 1539 * ip_newroute creates IRE_CACHE with ire_stq coming from 1540 * interface X and ipif coming from interface Y, if interface 1541 * X and Y are part of the same IPMPgroup. Thus whenever 1542 * interface X goes down, remove all references to it by 1543 * checking both on ire_ipif and ire_stq. 1544 */ 1545 if ((ire->ire_ipif != NULL && ire->ire_ipif->ipif_ill == ill) || 1546 (ire->ire_type == IRE_CACHE && 1547 ire->ire_stq == ill->ill_wq)) { 1548 connp->conn_ire_cache = NULL; 1549 mutex_exit(&connp->conn_lock); 1550 ire_refrele_notr(ire); 1551 return; 1552 } 1553 } 1554 mutex_exit(&connp->conn_lock); 1555 1556 } 1557 1558 /* ARGSUSED */ 1559 void 1560 ipif_all_down_tail(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 1561 { 1562 ill_t *ill = q->q_ptr; 1563 ipif_t *ipif; 1564 1565 ASSERT(IAM_WRITER_IPSQ(ipsq)); 1566 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 1567 ipif_non_duplicate(ipif); 1568 ipif_down_tail(ipif); 1569 } 1570 freemsg(mp); 1571 ipsq_current_finish(ipsq); 1572 } 1573 1574 /* 1575 * ill_down_start is called when we want to down this ill and bring it up again 1576 * It is called when we receive an M_ERROR / M_HANGUP. In this case we shut down 1577 * all interfaces, but don't tear down any plumbing. 1578 */ 1579 boolean_t 1580 ill_down_start(queue_t *q, mblk_t *mp) 1581 { 1582 ill_t *ill = q->q_ptr; 1583 ipif_t *ipif; 1584 1585 ASSERT(IAM_WRITER_ILL(ill)); 1586 1587 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) 1588 (void) ipif_down(ipif, NULL, NULL); 1589 1590 ill_down(ill); 1591 1592 (void) ipsq_pending_mp_cleanup(ill, NULL); 1593 1594 ipsq_current_start(ill->ill_phyint->phyint_ipsq, ill->ill_ipif, 0); 1595 1596 /* 1597 * Atomically test and add the pending mp if references are active. 1598 */ 1599 mutex_enter(&ill->ill_lock); 1600 if (!ill_is_quiescent(ill)) { 1601 /* call cannot fail since `conn_t *' argument is NULL */ 1602 (void) ipsq_pending_mp_add(NULL, ill->ill_ipif, ill->ill_rq, 1603 mp, ILL_DOWN); 1604 mutex_exit(&ill->ill_lock); 1605 return (B_FALSE); 1606 } 1607 mutex_exit(&ill->ill_lock); 1608 return (B_TRUE); 1609 } 1610 1611 static void 1612 ill_down(ill_t *ill) 1613 { 1614 ip_stack_t *ipst = ill->ill_ipst; 1615 1616 /* Blow off any IREs dependent on this ILL. */ 1617 ire_walk(ill_downi, (char *)ill, ipst); 1618 1619 /* Remove any conn_*_ill depending on this ill */ 1620 ipcl_walk(conn_cleanup_ill, (caddr_t)ill, ipst); 1621 1622 if (ill->ill_group != NULL) { 1623 illgrp_delete(ill); 1624 } 1625 } 1626 1627 /* 1628 * ire_walk routine used to delete every IRE that depends on queues 1629 * associated with 'ill'. (Always called as writer.) 1630 */ 1631 static void 1632 ill_downi(ire_t *ire, char *ill_arg) 1633 { 1634 ill_t *ill = (ill_t *)ill_arg; 1635 1636 /* 1637 * ip_newroute creates IRE_CACHE with ire_stq coming from 1638 * interface X and ipif coming from interface Y, if interface 1639 * X and Y are part of the same IPMP group. Thus whenever interface 1640 * X goes down, remove all references to it by checking both 1641 * on ire_ipif and ire_stq. 1642 */ 1643 if ((ire->ire_ipif != NULL && ire->ire_ipif->ipif_ill == ill) || 1644 (ire->ire_type == IRE_CACHE && ire->ire_stq == ill->ill_wq)) { 1645 ire_delete(ire); 1646 } 1647 } 1648 1649 /* 1650 * Remove ire/nce from the fastpath list. 1651 */ 1652 void 1653 ill_fastpath_nack(ill_t *ill) 1654 { 1655 nce_fastpath_list_dispatch(ill, NULL, NULL); 1656 } 1657 1658 /* Consume an M_IOCACK of the fastpath probe. */ 1659 void 1660 ill_fastpath_ack(ill_t *ill, mblk_t *mp) 1661 { 1662 mblk_t *mp1 = mp; 1663 1664 /* 1665 * If this was the first attempt turn on the fastpath probing. 1666 */ 1667 mutex_enter(&ill->ill_lock); 1668 if (ill->ill_dlpi_fastpath_state == IDS_INPROGRESS) 1669 ill->ill_dlpi_fastpath_state = IDS_OK; 1670 mutex_exit(&ill->ill_lock); 1671 1672 /* Free the M_IOCACK mblk, hold on to the data */ 1673 mp = mp->b_cont; 1674 freeb(mp1); 1675 if (mp == NULL) 1676 return; 1677 if (mp->b_cont != NULL) { 1678 /* 1679 * Update all IRE's or NCE's that are waiting for 1680 * fastpath update. 1681 */ 1682 nce_fastpath_list_dispatch(ill, ndp_fastpath_update, mp); 1683 mp1 = mp->b_cont; 1684 freeb(mp); 1685 mp = mp1; 1686 } else { 1687 ip0dbg(("ill_fastpath_ack: no b_cont\n")); 1688 } 1689 1690 freeb(mp); 1691 } 1692 1693 /* 1694 * Throw an M_IOCTL message downstream asking "do you know fastpath?" 1695 * The data portion of the request is a dl_unitdata_req_t template for 1696 * what we would send downstream in the absence of a fastpath confirmation. 1697 */ 1698 int 1699 ill_fastpath_probe(ill_t *ill, mblk_t *dlur_mp) 1700 { 1701 struct iocblk *ioc; 1702 mblk_t *mp; 1703 1704 if (dlur_mp == NULL) 1705 return (EINVAL); 1706 1707 mutex_enter(&ill->ill_lock); 1708 switch (ill->ill_dlpi_fastpath_state) { 1709 case IDS_FAILED: 1710 /* 1711 * Driver NAKed the first fastpath ioctl - assume it doesn't 1712 * support it. 1713 */ 1714 mutex_exit(&ill->ill_lock); 1715 return (ENOTSUP); 1716 case IDS_UNKNOWN: 1717 /* This is the first probe */ 1718 ill->ill_dlpi_fastpath_state = IDS_INPROGRESS; 1719 break; 1720 default: 1721 break; 1722 } 1723 mutex_exit(&ill->ill_lock); 1724 1725 if ((mp = mkiocb(DL_IOC_HDR_INFO)) == NULL) 1726 return (EAGAIN); 1727 1728 mp->b_cont = copyb(dlur_mp); 1729 if (mp->b_cont == NULL) { 1730 freeb(mp); 1731 return (EAGAIN); 1732 } 1733 1734 ioc = (struct iocblk *)mp->b_rptr; 1735 ioc->ioc_count = msgdsize(mp->b_cont); 1736 1737 putnext(ill->ill_wq, mp); 1738 return (0); 1739 } 1740 1741 void 1742 ill_capability_probe(ill_t *ill) 1743 { 1744 /* 1745 * Do so only if capabilities are still unknown. 1746 */ 1747 if (ill->ill_dlpi_capab_state != IDS_UNKNOWN) 1748 return; 1749 1750 ill->ill_dlpi_capab_state = IDS_INPROGRESS; 1751 ip1dbg(("ill_capability_probe: starting capability negotiation\n")); 1752 ill_capability_proto(ill, DL_CAPABILITY_REQ, NULL); 1753 } 1754 1755 void 1756 ill_capability_reset(ill_t *ill) 1757 { 1758 mblk_t *sc_mp = NULL; 1759 mblk_t *tmp; 1760 1761 /* 1762 * Note here that we reset the state to UNKNOWN, and later send 1763 * down the DL_CAPABILITY_REQ without first setting the state to 1764 * INPROGRESS. We do this in order to distinguish the 1765 * DL_CAPABILITY_ACK response which may come back in response to 1766 * a "reset" apart from the "probe" DL_CAPABILITY_REQ. This would 1767 * also handle the case where the driver doesn't send us back 1768 * a DL_CAPABILITY_ACK in response, since the "probe" routine 1769 * requires the state to be in UNKNOWN anyway. In any case, all 1770 * features are turned off until the state reaches IDS_OK. 1771 */ 1772 ill->ill_dlpi_capab_state = IDS_UNKNOWN; 1773 ill->ill_capab_reneg = B_FALSE; 1774 1775 /* 1776 * Disable sub-capabilities and request a list of sub-capability 1777 * messages which will be sent down to the driver. Each handler 1778 * allocates the corresponding dl_capability_sub_t inside an 1779 * mblk, and links it to the existing sc_mp mblk, or return it 1780 * as sc_mp if it's the first sub-capability (the passed in 1781 * sc_mp is NULL). Upon returning from all capability handlers, 1782 * sc_mp will be pulled-up, before passing it downstream. 1783 */ 1784 ill_capability_mdt_reset(ill, &sc_mp); 1785 ill_capability_hcksum_reset(ill, &sc_mp); 1786 ill_capability_zerocopy_reset(ill, &sc_mp); 1787 ill_capability_ipsec_reset(ill, &sc_mp); 1788 ill_capability_dls_reset(ill, &sc_mp); 1789 ill_capability_lso_reset(ill, &sc_mp); 1790 1791 /* Nothing to send down in order to disable the capabilities? */ 1792 if (sc_mp == NULL) 1793 return; 1794 1795 tmp = msgpullup(sc_mp, -1); 1796 freemsg(sc_mp); 1797 if ((sc_mp = tmp) == NULL) { 1798 cmn_err(CE_WARN, "ill_capability_reset: unable to send down " 1799 "DL_CAPABILITY_REQ (ENOMEM)\n"); 1800 return; 1801 } 1802 1803 ip1dbg(("ill_capability_reset: resetting negotiated capabilities\n")); 1804 ill_capability_proto(ill, DL_CAPABILITY_REQ, sc_mp); 1805 } 1806 1807 /* 1808 * Request or set new-style hardware capabilities supported by DLS provider. 1809 */ 1810 static void 1811 ill_capability_proto(ill_t *ill, int type, mblk_t *reqp) 1812 { 1813 mblk_t *mp; 1814 dl_capability_req_t *capb; 1815 size_t size = 0; 1816 uint8_t *ptr; 1817 1818 if (reqp != NULL) 1819 size = MBLKL(reqp); 1820 1821 mp = ip_dlpi_alloc(sizeof (dl_capability_req_t) + size, type); 1822 if (mp == NULL) { 1823 freemsg(reqp); 1824 return; 1825 } 1826 ptr = mp->b_rptr; 1827 1828 capb = (dl_capability_req_t *)ptr; 1829 ptr += sizeof (dl_capability_req_t); 1830 1831 if (reqp != NULL) { 1832 capb->dl_sub_offset = sizeof (dl_capability_req_t); 1833 capb->dl_sub_length = size; 1834 bcopy(reqp->b_rptr, ptr, size); 1835 ptr += size; 1836 mp->b_cont = reqp->b_cont; 1837 freeb(reqp); 1838 } 1839 ASSERT(ptr == mp->b_wptr); 1840 1841 ill_dlpi_send(ill, mp); 1842 } 1843 1844 static void 1845 ill_capability_id_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *outers) 1846 { 1847 dl_capab_id_t *id_ic; 1848 uint_t sub_dl_cap = outers->dl_cap; 1849 dl_capability_sub_t *inners; 1850 uint8_t *capend; 1851 1852 ASSERT(sub_dl_cap == DL_CAPAB_ID_WRAPPER); 1853 1854 /* 1855 * Note: range checks here are not absolutely sufficient to 1856 * make us robust against malformed messages sent by drivers; 1857 * this is in keeping with the rest of IP's dlpi handling. 1858 * (Remember, it's coming from something else in the kernel 1859 * address space) 1860 */ 1861 1862 capend = (uint8_t *)(outers + 1) + outers->dl_length; 1863 if (capend > mp->b_wptr) { 1864 cmn_err(CE_WARN, "ill_capability_id_ack: " 1865 "malformed sub-capability too long for mblk"); 1866 return; 1867 } 1868 1869 id_ic = (dl_capab_id_t *)(outers + 1); 1870 1871 if (outers->dl_length < sizeof (*id_ic) || 1872 (inners = &id_ic->id_subcap, 1873 inners->dl_length > (outers->dl_length - sizeof (*inners)))) { 1874 cmn_err(CE_WARN, "ill_capability_id_ack: malformed " 1875 "encapsulated capab type %d too long for mblk", 1876 inners->dl_cap); 1877 return; 1878 } 1879 1880 if (!dlcapabcheckqid(&id_ic->id_mid, ill->ill_lmod_rq)) { 1881 ip1dbg(("ill_capability_id_ack: mid token for capab type %d " 1882 "isn't as expected; pass-thru module(s) detected, " 1883 "discarding capability\n", inners->dl_cap)); 1884 return; 1885 } 1886 1887 /* Process the encapsulated sub-capability */ 1888 ill_capability_dispatch(ill, mp, inners, B_TRUE); 1889 } 1890 1891 /* 1892 * Process Multidata Transmit capability negotiation ack received from a 1893 * DLS Provider. isub must point to the sub-capability (DL_CAPAB_MDT) of a 1894 * DL_CAPABILITY_ACK message. 1895 */ 1896 static void 1897 ill_capability_mdt_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub) 1898 { 1899 mblk_t *nmp = NULL; 1900 dl_capability_req_t *oc; 1901 dl_capab_mdt_t *mdt_ic, *mdt_oc; 1902 ill_mdt_capab_t **ill_mdt_capab; 1903 uint_t sub_dl_cap = isub->dl_cap; 1904 uint8_t *capend; 1905 1906 ASSERT(sub_dl_cap == DL_CAPAB_MDT); 1907 1908 ill_mdt_capab = (ill_mdt_capab_t **)&ill->ill_mdt_capab; 1909 1910 /* 1911 * Note: range checks here are not absolutely sufficient to 1912 * make us robust against malformed messages sent by drivers; 1913 * this is in keeping with the rest of IP's dlpi handling. 1914 * (Remember, it's coming from something else in the kernel 1915 * address space) 1916 */ 1917 1918 capend = (uint8_t *)(isub + 1) + isub->dl_length; 1919 if (capend > mp->b_wptr) { 1920 cmn_err(CE_WARN, "ill_capability_mdt_ack: " 1921 "malformed sub-capability too long for mblk"); 1922 return; 1923 } 1924 1925 mdt_ic = (dl_capab_mdt_t *)(isub + 1); 1926 1927 if (mdt_ic->mdt_version != MDT_VERSION_2) { 1928 cmn_err(CE_CONT, "ill_capability_mdt_ack: " 1929 "unsupported MDT sub-capability (version %d, expected %d)", 1930 mdt_ic->mdt_version, MDT_VERSION_2); 1931 return; 1932 } 1933 1934 if (!dlcapabcheckqid(&mdt_ic->mdt_mid, ill->ill_lmod_rq)) { 1935 ip1dbg(("ill_capability_mdt_ack: mid token for MDT " 1936 "capability isn't as expected; pass-thru module(s) " 1937 "detected, discarding capability\n")); 1938 return; 1939 } 1940 1941 if (mdt_ic->mdt_flags & DL_CAPAB_MDT_ENABLE) { 1942 1943 if (*ill_mdt_capab == NULL) { 1944 *ill_mdt_capab = kmem_zalloc(sizeof (ill_mdt_capab_t), 1945 KM_NOSLEEP); 1946 1947 if (*ill_mdt_capab == NULL) { 1948 cmn_err(CE_WARN, "ill_capability_mdt_ack: " 1949 "could not enable MDT version %d " 1950 "for %s (ENOMEM)\n", MDT_VERSION_2, 1951 ill->ill_name); 1952 return; 1953 } 1954 } 1955 1956 ip1dbg(("ill_capability_mdt_ack: interface %s supports " 1957 "MDT version %d (%d bytes leading, %d bytes trailing " 1958 "header spaces, %d max pld bufs, %d span limit)\n", 1959 ill->ill_name, MDT_VERSION_2, 1960 mdt_ic->mdt_hdr_head, mdt_ic->mdt_hdr_tail, 1961 mdt_ic->mdt_max_pld, mdt_ic->mdt_span_limit)); 1962 1963 (*ill_mdt_capab)->ill_mdt_version = MDT_VERSION_2; 1964 (*ill_mdt_capab)->ill_mdt_on = 1; 1965 /* 1966 * Round the following values to the nearest 32-bit; ULP 1967 * may further adjust them to accomodate for additional 1968 * protocol headers. We pass these values to ULP during 1969 * bind time. 1970 */ 1971 (*ill_mdt_capab)->ill_mdt_hdr_head = 1972 roundup(mdt_ic->mdt_hdr_head, 4); 1973 (*ill_mdt_capab)->ill_mdt_hdr_tail = 1974 roundup(mdt_ic->mdt_hdr_tail, 4); 1975 (*ill_mdt_capab)->ill_mdt_max_pld = mdt_ic->mdt_max_pld; 1976 (*ill_mdt_capab)->ill_mdt_span_limit = mdt_ic->mdt_span_limit; 1977 1978 ill->ill_capabilities |= ILL_CAPAB_MDT; 1979 } else { 1980 uint_t size; 1981 uchar_t *rptr; 1982 1983 size = sizeof (dl_capability_req_t) + 1984 sizeof (dl_capability_sub_t) + sizeof (dl_capab_mdt_t); 1985 1986 if ((nmp = ip_dlpi_alloc(size, DL_CAPABILITY_REQ)) == NULL) { 1987 cmn_err(CE_WARN, "ill_capability_mdt_ack: " 1988 "could not enable MDT for %s (ENOMEM)\n", 1989 ill->ill_name); 1990 return; 1991 } 1992 1993 rptr = nmp->b_rptr; 1994 /* initialize dl_capability_req_t */ 1995 oc = (dl_capability_req_t *)nmp->b_rptr; 1996 oc->dl_sub_offset = sizeof (dl_capability_req_t); 1997 oc->dl_sub_length = sizeof (dl_capability_sub_t) + 1998 sizeof (dl_capab_mdt_t); 1999 nmp->b_rptr += sizeof (dl_capability_req_t); 2000 2001 /* initialize dl_capability_sub_t */ 2002 bcopy(isub, nmp->b_rptr, sizeof (*isub)); 2003 nmp->b_rptr += sizeof (*isub); 2004 2005 /* initialize dl_capab_mdt_t */ 2006 mdt_oc = (dl_capab_mdt_t *)nmp->b_rptr; 2007 bcopy(mdt_ic, mdt_oc, sizeof (*mdt_ic)); 2008 2009 nmp->b_rptr = rptr; 2010 2011 ip1dbg(("ill_capability_mdt_ack: asking interface %s " 2012 "to enable MDT version %d\n", ill->ill_name, 2013 MDT_VERSION_2)); 2014 2015 /* set ENABLE flag */ 2016 mdt_oc->mdt_flags |= DL_CAPAB_MDT_ENABLE; 2017 2018 /* nmp points to a DL_CAPABILITY_REQ message to enable MDT */ 2019 ill_dlpi_send(ill, nmp); 2020 } 2021 } 2022 2023 static void 2024 ill_capability_mdt_reset(ill_t *ill, mblk_t **sc_mp) 2025 { 2026 mblk_t *mp; 2027 dl_capab_mdt_t *mdt_subcap; 2028 dl_capability_sub_t *dl_subcap; 2029 int size; 2030 2031 if (!ILL_MDT_CAPABLE(ill)) 2032 return; 2033 2034 ASSERT(ill->ill_mdt_capab != NULL); 2035 /* 2036 * Clear the capability flag for MDT but retain the ill_mdt_capab 2037 * structure since it's possible that another thread is still 2038 * referring to it. The structure only gets deallocated when 2039 * we destroy the ill. 2040 */ 2041 ill->ill_capabilities &= ~ILL_CAPAB_MDT; 2042 2043 size = sizeof (*dl_subcap) + sizeof (*mdt_subcap); 2044 2045 mp = allocb(size, BPRI_HI); 2046 if (mp == NULL) { 2047 ip1dbg(("ill_capability_mdt_reset: unable to allocate " 2048 "request to disable MDT\n")); 2049 return; 2050 } 2051 2052 mp->b_wptr = mp->b_rptr + size; 2053 2054 dl_subcap = (dl_capability_sub_t *)mp->b_rptr; 2055 dl_subcap->dl_cap = DL_CAPAB_MDT; 2056 dl_subcap->dl_length = sizeof (*mdt_subcap); 2057 2058 mdt_subcap = (dl_capab_mdt_t *)(dl_subcap + 1); 2059 mdt_subcap->mdt_version = ill->ill_mdt_capab->ill_mdt_version; 2060 mdt_subcap->mdt_flags = 0; 2061 mdt_subcap->mdt_hdr_head = 0; 2062 mdt_subcap->mdt_hdr_tail = 0; 2063 2064 if (*sc_mp != NULL) 2065 linkb(*sc_mp, mp); 2066 else 2067 *sc_mp = mp; 2068 } 2069 2070 /* 2071 * Send a DL_NOTIFY_REQ to the specified ill to enable 2072 * DL_NOTE_PROMISC_ON/OFF_PHYS notifications. 2073 * Invoked by ill_capability_ipsec_ack() before enabling IPsec hardware 2074 * acceleration. 2075 * Returns B_TRUE on success, B_FALSE if the message could not be sent. 2076 */ 2077 static boolean_t 2078 ill_enable_promisc_notify(ill_t *ill) 2079 { 2080 mblk_t *mp; 2081 dl_notify_req_t *req; 2082 2083 IPSECHW_DEBUG(IPSECHW_PKT, ("ill_enable_promisc_notify:\n")); 2084 2085 mp = ip_dlpi_alloc(sizeof (dl_notify_req_t), DL_NOTIFY_REQ); 2086 if (mp == NULL) 2087 return (B_FALSE); 2088 2089 req = (dl_notify_req_t *)mp->b_rptr; 2090 req->dl_notifications = DL_NOTE_PROMISC_ON_PHYS | 2091 DL_NOTE_PROMISC_OFF_PHYS; 2092 2093 ill_dlpi_send(ill, mp); 2094 2095 return (B_TRUE); 2096 } 2097 2098 2099 /* 2100 * Allocate an IPsec capability request which will be filled by our 2101 * caller to turn on support for one or more algorithms. 2102 */ 2103 static mblk_t * 2104 ill_alloc_ipsec_cap_req(ill_t *ill, dl_capability_sub_t *isub) 2105 { 2106 mblk_t *nmp; 2107 dl_capability_req_t *ocap; 2108 dl_capab_ipsec_t *ocip; 2109 dl_capab_ipsec_t *icip; 2110 uint8_t *ptr; 2111 icip = (dl_capab_ipsec_t *)(isub + 1); 2112 2113 /* 2114 * The first time around, we send a DL_NOTIFY_REQ to enable 2115 * PROMISC_ON/OFF notification from the provider. We need to 2116 * do this before enabling the algorithms to avoid leakage of 2117 * cleartext packets. 2118 */ 2119 2120 if (!ill_enable_promisc_notify(ill)) 2121 return (NULL); 2122 2123 /* 2124 * Allocate new mblk which will contain a new capability 2125 * request to enable the capabilities. 2126 */ 2127 2128 nmp = ip_dlpi_alloc(sizeof (dl_capability_req_t) + 2129 sizeof (dl_capability_sub_t) + isub->dl_length, DL_CAPABILITY_REQ); 2130 if (nmp == NULL) 2131 return (NULL); 2132 2133 ptr = nmp->b_rptr; 2134 2135 /* initialize dl_capability_req_t */ 2136 ocap = (dl_capability_req_t *)ptr; 2137 ocap->dl_sub_offset = sizeof (dl_capability_req_t); 2138 ocap->dl_sub_length = sizeof (dl_capability_sub_t) + isub->dl_length; 2139 ptr += sizeof (dl_capability_req_t); 2140 2141 /* initialize dl_capability_sub_t */ 2142 bcopy(isub, ptr, sizeof (*isub)); 2143 ptr += sizeof (*isub); 2144 2145 /* initialize dl_capab_ipsec_t */ 2146 ocip = (dl_capab_ipsec_t *)ptr; 2147 bcopy(icip, ocip, sizeof (*icip)); 2148 2149 nmp->b_wptr = (uchar_t *)(&ocip->cip_data[0]); 2150 return (nmp); 2151 } 2152 2153 /* 2154 * Process an IPsec capability negotiation ack received from a DLS Provider. 2155 * isub must point to the sub-capability (DL_CAPAB_IPSEC_AH or 2156 * DL_CAPAB_IPSEC_ESP) of a DL_CAPABILITY_ACK message. 2157 */ 2158 static void 2159 ill_capability_ipsec_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub) 2160 { 2161 dl_capab_ipsec_t *icip; 2162 dl_capab_ipsec_alg_t *ialg; /* ptr to input alg spec. */ 2163 dl_capab_ipsec_alg_t *oalg; /* ptr to output alg spec. */ 2164 uint_t cipher, nciphers; 2165 mblk_t *nmp; 2166 uint_t alg_len; 2167 boolean_t need_sadb_dump; 2168 uint_t sub_dl_cap = isub->dl_cap; 2169 ill_ipsec_capab_t **ill_capab; 2170 uint64_t ill_capab_flag; 2171 uint8_t *capend, *ciphend; 2172 boolean_t sadb_resync; 2173 2174 ASSERT(sub_dl_cap == DL_CAPAB_IPSEC_AH || 2175 sub_dl_cap == DL_CAPAB_IPSEC_ESP); 2176 2177 if (sub_dl_cap == DL_CAPAB_IPSEC_AH) { 2178 ill_capab = (ill_ipsec_capab_t **)&ill->ill_ipsec_capab_ah; 2179 ill_capab_flag = ILL_CAPAB_AH; 2180 } else { 2181 ill_capab = (ill_ipsec_capab_t **)&ill->ill_ipsec_capab_esp; 2182 ill_capab_flag = ILL_CAPAB_ESP; 2183 } 2184 2185 /* 2186 * If the ill capability structure exists, then this incoming 2187 * DL_CAPABILITY_ACK is a response to a "renegotiation" cycle. 2188 * If this is so, then we'd need to resynchronize the SADB 2189 * after re-enabling the offloaded ciphers. 2190 */ 2191 sadb_resync = (*ill_capab != NULL); 2192 2193 /* 2194 * Note: range checks here are not absolutely sufficient to 2195 * make us robust against malformed messages sent by drivers; 2196 * this is in keeping with the rest of IP's dlpi handling. 2197 * (Remember, it's coming from something else in the kernel 2198 * address space) 2199 */ 2200 2201 capend = (uint8_t *)(isub + 1) + isub->dl_length; 2202 if (capend > mp->b_wptr) { 2203 cmn_err(CE_WARN, "ill_capability_ipsec_ack: " 2204 "malformed sub-capability too long for mblk"); 2205 return; 2206 } 2207 2208 /* 2209 * There are two types of acks we process here: 2210 * 1. acks in reply to a (first form) generic capability req 2211 * (no ENABLE flag set) 2212 * 2. acks in reply to a ENABLE capability req. 2213 * (ENABLE flag set) 2214 * 2215 * We process the subcapability passed as argument as follows: 2216 * 1 do initializations 2217 * 1.1 initialize nmp = NULL 2218 * 1.2 set need_sadb_dump to B_FALSE 2219 * 2 for each cipher in subcapability: 2220 * 2.1 if ENABLE flag is set: 2221 * 2.1.1 update per-ill ipsec capabilities info 2222 * 2.1.2 set need_sadb_dump to B_TRUE 2223 * 2.2 if ENABLE flag is not set: 2224 * 2.2.1 if nmp is NULL: 2225 * 2.2.1.1 allocate and initialize nmp 2226 * 2.2.1.2 init current pos in nmp 2227 * 2.2.2 copy current cipher to current pos in nmp 2228 * 2.2.3 set ENABLE flag in nmp 2229 * 2.2.4 update current pos 2230 * 3 if nmp is not equal to NULL, send enable request 2231 * 3.1 send capability request 2232 * 4 if need_sadb_dump is B_TRUE 2233 * 4.1 enable promiscuous on/off notifications 2234 * 4.2 call ill_dlpi_send(isub->dlcap) to send all 2235 * AH or ESP SA's to interface. 2236 */ 2237 2238 nmp = NULL; 2239 oalg = NULL; 2240 need_sadb_dump = B_FALSE; 2241 icip = (dl_capab_ipsec_t *)(isub + 1); 2242 ialg = (dl_capab_ipsec_alg_t *)(&icip->cip_data[0]); 2243 2244 nciphers = icip->cip_nciphers; 2245 ciphend = (uint8_t *)(ialg + icip->cip_nciphers); 2246 2247 if (ciphend > capend) { 2248 cmn_err(CE_WARN, "ill_capability_ipsec_ack: " 2249 "too many ciphers for sub-capability len"); 2250 return; 2251 } 2252 2253 for (cipher = 0; cipher < nciphers; cipher++) { 2254 alg_len = sizeof (dl_capab_ipsec_alg_t); 2255 2256 if (ialg->alg_flag & DL_CAPAB_ALG_ENABLE) { 2257 /* 2258 * TBD: when we provide a way to disable capabilities 2259 * from above, need to manage the request-pending state 2260 * and fail if we were not expecting this ACK. 2261 */ 2262 IPSECHW_DEBUG(IPSECHW_CAPAB, 2263 ("ill_capability_ipsec_ack: got ENABLE ACK\n")); 2264 2265 /* 2266 * Update IPsec capabilities for this ill 2267 */ 2268 2269 if (*ill_capab == NULL) { 2270 IPSECHW_DEBUG(IPSECHW_CAPAB, 2271 ("ill_capability_ipsec_ack: " 2272 "allocating ipsec_capab for ill\n")); 2273 *ill_capab = ill_ipsec_capab_alloc(); 2274 2275 if (*ill_capab == NULL) { 2276 cmn_err(CE_WARN, 2277 "ill_capability_ipsec_ack: " 2278 "could not enable IPsec Hardware " 2279 "acceleration for %s (ENOMEM)\n", 2280 ill->ill_name); 2281 return; 2282 } 2283 } 2284 2285 ASSERT(ialg->alg_type == DL_CAPAB_IPSEC_ALG_AUTH || 2286 ialg->alg_type == DL_CAPAB_IPSEC_ALG_ENCR); 2287 2288 if (ialg->alg_prim >= MAX_IPSEC_ALGS) { 2289 cmn_err(CE_WARN, 2290 "ill_capability_ipsec_ack: " 2291 "malformed IPsec algorithm id %d", 2292 ialg->alg_prim); 2293 continue; 2294 } 2295 2296 if (ialg->alg_type == DL_CAPAB_IPSEC_ALG_AUTH) { 2297 IPSEC_ALG_ENABLE((*ill_capab)->auth_hw_algs, 2298 ialg->alg_prim); 2299 } else { 2300 ipsec_capab_algparm_t *alp; 2301 2302 IPSEC_ALG_ENABLE((*ill_capab)->encr_hw_algs, 2303 ialg->alg_prim); 2304 if (!ill_ipsec_capab_resize_algparm(*ill_capab, 2305 ialg->alg_prim)) { 2306 cmn_err(CE_WARN, 2307 "ill_capability_ipsec_ack: " 2308 "no space for IPsec alg id %d", 2309 ialg->alg_prim); 2310 continue; 2311 } 2312 alp = &((*ill_capab)->encr_algparm[ 2313 ialg->alg_prim]); 2314 alp->minkeylen = ialg->alg_minbits; 2315 alp->maxkeylen = ialg->alg_maxbits; 2316 } 2317 ill->ill_capabilities |= ill_capab_flag; 2318 /* 2319 * indicate that a capability was enabled, which 2320 * will be used below to kick off a SADB dump 2321 * to the ill. 2322 */ 2323 need_sadb_dump = B_TRUE; 2324 } else { 2325 IPSECHW_DEBUG(IPSECHW_CAPAB, 2326 ("ill_capability_ipsec_ack: enabling alg 0x%x\n", 2327 ialg->alg_prim)); 2328 2329 if (nmp == NULL) { 2330 nmp = ill_alloc_ipsec_cap_req(ill, isub); 2331 if (nmp == NULL) { 2332 /* 2333 * Sending the PROMISC_ON/OFF 2334 * notification request failed. 2335 * We cannot enable the algorithms 2336 * since the Provider will not 2337 * notify IP of promiscous mode 2338 * changes, which could lead 2339 * to leakage of packets. 2340 */ 2341 cmn_err(CE_WARN, 2342 "ill_capability_ipsec_ack: " 2343 "could not enable IPsec Hardware " 2344 "acceleration for %s (ENOMEM)\n", 2345 ill->ill_name); 2346 return; 2347 } 2348 /* ptr to current output alg specifier */ 2349 oalg = (dl_capab_ipsec_alg_t *)nmp->b_wptr; 2350 } 2351 2352 /* 2353 * Copy current alg specifier, set ENABLE 2354 * flag, and advance to next output alg. 2355 * For now we enable all IPsec capabilities. 2356 */ 2357 ASSERT(oalg != NULL); 2358 bcopy(ialg, oalg, alg_len); 2359 oalg->alg_flag |= DL_CAPAB_ALG_ENABLE; 2360 nmp->b_wptr += alg_len; 2361 oalg = (dl_capab_ipsec_alg_t *)nmp->b_wptr; 2362 } 2363 2364 /* move to next input algorithm specifier */ 2365 ialg = (dl_capab_ipsec_alg_t *) 2366 ((char *)ialg + alg_len); 2367 } 2368 2369 if (nmp != NULL) 2370 /* 2371 * nmp points to a DL_CAPABILITY_REQ message to enable 2372 * IPsec hardware acceleration. 2373 */ 2374 ill_dlpi_send(ill, nmp); 2375 2376 if (need_sadb_dump) 2377 /* 2378 * An acknowledgement corresponding to a request to 2379 * enable acceleration was received, notify SADB. 2380 */ 2381 ill_ipsec_capab_add(ill, sub_dl_cap, sadb_resync); 2382 } 2383 2384 /* 2385 * Given an mblk with enough space in it, create sub-capability entries for 2386 * DL_CAPAB_IPSEC_{AH,ESP} types which consist of previously-advertised 2387 * offloaded ciphers (both AUTH and ENCR) with their enable flags cleared, 2388 * in preparation for the reset the DL_CAPABILITY_REQ message. 2389 */ 2390 static void 2391 ill_fill_ipsec_reset(uint_t nciphers, int stype, uint_t slen, 2392 ill_ipsec_capab_t *ill_cap, mblk_t *mp) 2393 { 2394 dl_capab_ipsec_t *oipsec; 2395 dl_capab_ipsec_alg_t *oalg; 2396 dl_capability_sub_t *dl_subcap; 2397 int i, k; 2398 2399 ASSERT(nciphers > 0); 2400 ASSERT(ill_cap != NULL); 2401 ASSERT(mp != NULL); 2402 ASSERT(MBLKTAIL(mp) >= sizeof (*dl_subcap) + sizeof (*oipsec) + slen); 2403 2404 /* dl_capability_sub_t for "stype" */ 2405 dl_subcap = (dl_capability_sub_t *)mp->b_wptr; 2406 dl_subcap->dl_cap = stype; 2407 dl_subcap->dl_length = sizeof (dl_capab_ipsec_t) + slen; 2408 mp->b_wptr += sizeof (dl_capability_sub_t); 2409 2410 /* dl_capab_ipsec_t for "stype" */ 2411 oipsec = (dl_capab_ipsec_t *)mp->b_wptr; 2412 oipsec->cip_version = 1; 2413 oipsec->cip_nciphers = nciphers; 2414 mp->b_wptr = (uchar_t *)&oipsec->cip_data[0]; 2415 2416 /* create entries for "stype" AUTH ciphers */ 2417 for (i = 0; i < ill_cap->algs_size; i++) { 2418 for (k = 0; k < BITSPERBYTE; k++) { 2419 if ((ill_cap->auth_hw_algs[i] & (1 << k)) == 0) 2420 continue; 2421 2422 oalg = (dl_capab_ipsec_alg_t *)mp->b_wptr; 2423 bzero((void *)oalg, sizeof (*oalg)); 2424 oalg->alg_type = DL_CAPAB_IPSEC_ALG_AUTH; 2425 oalg->alg_prim = k + (BITSPERBYTE * i); 2426 mp->b_wptr += sizeof (dl_capab_ipsec_alg_t); 2427 } 2428 } 2429 /* create entries for "stype" ENCR ciphers */ 2430 for (i = 0; i < ill_cap->algs_size; i++) { 2431 for (k = 0; k < BITSPERBYTE; k++) { 2432 if ((ill_cap->encr_hw_algs[i] & (1 << k)) == 0) 2433 continue; 2434 2435 oalg = (dl_capab_ipsec_alg_t *)mp->b_wptr; 2436 bzero((void *)oalg, sizeof (*oalg)); 2437 oalg->alg_type = DL_CAPAB_IPSEC_ALG_ENCR; 2438 oalg->alg_prim = k + (BITSPERBYTE * i); 2439 mp->b_wptr += sizeof (dl_capab_ipsec_alg_t); 2440 } 2441 } 2442 } 2443 2444 /* 2445 * Macro to count number of 1s in a byte (8-bit word). The total count is 2446 * accumulated into the passed-in argument (sum). We could use SPARCv9's 2447 * POPC instruction, but our macro is more flexible for an arbitrary length 2448 * of bytes, such as {auth,encr}_hw_algs. These variables are currently 2449 * 256-bits long (MAX_IPSEC_ALGS), so if we know for sure that the length 2450 * stays that way, we can reduce the number of iterations required. 2451 */ 2452 #define COUNT_1S(val, sum) { \ 2453 uint8_t x = val & 0xff; \ 2454 x = (x & 0x55) + ((x >> 1) & 0x55); \ 2455 x = (x & 0x33) + ((x >> 2) & 0x33); \ 2456 sum += (x & 0xf) + ((x >> 4) & 0xf); \ 2457 } 2458 2459 /* ARGSUSED */ 2460 static void 2461 ill_capability_ipsec_reset(ill_t *ill, mblk_t **sc_mp) 2462 { 2463 mblk_t *mp; 2464 ill_ipsec_capab_t *cap_ah = ill->ill_ipsec_capab_ah; 2465 ill_ipsec_capab_t *cap_esp = ill->ill_ipsec_capab_esp; 2466 uint64_t ill_capabilities = ill->ill_capabilities; 2467 int ah_cnt = 0, esp_cnt = 0; 2468 int ah_len = 0, esp_len = 0; 2469 int i, size = 0; 2470 2471 if (!(ill_capabilities & (ILL_CAPAB_AH | ILL_CAPAB_ESP))) 2472 return; 2473 2474 ASSERT(cap_ah != NULL || !(ill_capabilities & ILL_CAPAB_AH)); 2475 ASSERT(cap_esp != NULL || !(ill_capabilities & ILL_CAPAB_ESP)); 2476 2477 /* Find out the number of ciphers for AH */ 2478 if (cap_ah != NULL) { 2479 for (i = 0; i < cap_ah->algs_size; i++) { 2480 COUNT_1S(cap_ah->auth_hw_algs[i], ah_cnt); 2481 COUNT_1S(cap_ah->encr_hw_algs[i], ah_cnt); 2482 } 2483 if (ah_cnt > 0) { 2484 size += sizeof (dl_capability_sub_t) + 2485 sizeof (dl_capab_ipsec_t); 2486 /* dl_capab_ipsec_t contains one dl_capab_ipsec_alg_t */ 2487 ah_len = (ah_cnt - 1) * sizeof (dl_capab_ipsec_alg_t); 2488 size += ah_len; 2489 } 2490 } 2491 2492 /* Find out the number of ciphers for ESP */ 2493 if (cap_esp != NULL) { 2494 for (i = 0; i < cap_esp->algs_size; i++) { 2495 COUNT_1S(cap_esp->auth_hw_algs[i], esp_cnt); 2496 COUNT_1S(cap_esp->encr_hw_algs[i], esp_cnt); 2497 } 2498 if (esp_cnt > 0) { 2499 size += sizeof (dl_capability_sub_t) + 2500 sizeof (dl_capab_ipsec_t); 2501 /* dl_capab_ipsec_t contains one dl_capab_ipsec_alg_t */ 2502 esp_len = (esp_cnt - 1) * sizeof (dl_capab_ipsec_alg_t); 2503 size += esp_len; 2504 } 2505 } 2506 2507 if (size == 0) { 2508 ip1dbg(("ill_capability_ipsec_reset: capabilities exist but " 2509 "there's nothing to reset\n")); 2510 return; 2511 } 2512 2513 mp = allocb(size, BPRI_HI); 2514 if (mp == NULL) { 2515 ip1dbg(("ill_capability_ipsec_reset: unable to allocate " 2516 "request to disable IPSEC Hardware Acceleration\n")); 2517 return; 2518 } 2519 2520 /* 2521 * Clear the capability flags for IPsec HA but retain the ill 2522 * capability structures since it's possible that another thread 2523 * is still referring to them. The structures only get deallocated 2524 * when we destroy the ill. 2525 * 2526 * Various places check the flags to see if the ill is capable of 2527 * hardware acceleration, and by clearing them we ensure that new 2528 * outbound IPsec packets are sent down encrypted. 2529 */ 2530 ill->ill_capabilities &= ~(ILL_CAPAB_AH | ILL_CAPAB_ESP); 2531 2532 /* Fill in DL_CAPAB_IPSEC_AH sub-capability entries */ 2533 if (ah_cnt > 0) { 2534 ill_fill_ipsec_reset(ah_cnt, DL_CAPAB_IPSEC_AH, ah_len, 2535 cap_ah, mp); 2536 ASSERT(mp->b_rptr + size >= mp->b_wptr); 2537 } 2538 2539 /* Fill in DL_CAPAB_IPSEC_ESP sub-capability entries */ 2540 if (esp_cnt > 0) { 2541 ill_fill_ipsec_reset(esp_cnt, DL_CAPAB_IPSEC_ESP, esp_len, 2542 cap_esp, mp); 2543 ASSERT(mp->b_rptr + size >= mp->b_wptr); 2544 } 2545 2546 /* 2547 * At this point we've composed a bunch of sub-capabilities to be 2548 * encapsulated in a DL_CAPABILITY_REQ and later sent downstream 2549 * by the caller. Upon receiving this reset message, the driver 2550 * must stop inbound decryption (by destroying all inbound SAs) 2551 * and let the corresponding packets come in encrypted. 2552 */ 2553 2554 if (*sc_mp != NULL) 2555 linkb(*sc_mp, mp); 2556 else 2557 *sc_mp = mp; 2558 } 2559 2560 static void 2561 ill_capability_dispatch(ill_t *ill, mblk_t *mp, dl_capability_sub_t *subp, 2562 boolean_t encapsulated) 2563 { 2564 boolean_t legacy = B_FALSE; 2565 2566 /* 2567 * If this DL_CAPABILITY_ACK came in as a response to our "reset" 2568 * DL_CAPABILITY_REQ, ignore it during this cycle. We've just 2569 * instructed the driver to disable its advertised capabilities, 2570 * so there's no point in accepting any response at this moment. 2571 */ 2572 if (ill->ill_dlpi_capab_state == IDS_UNKNOWN) 2573 return; 2574 2575 /* 2576 * Note that only the following two sub-capabilities may be 2577 * considered as "legacy", since their original definitions 2578 * do not incorporate the dl_mid_t module ID token, and hence 2579 * may require the use of the wrapper sub-capability. 2580 */ 2581 switch (subp->dl_cap) { 2582 case DL_CAPAB_IPSEC_AH: 2583 case DL_CAPAB_IPSEC_ESP: 2584 legacy = B_TRUE; 2585 break; 2586 } 2587 2588 /* 2589 * For legacy sub-capabilities which don't incorporate a queue_t 2590 * pointer in their structures, discard them if we detect that 2591 * there are intermediate modules in between IP and the driver. 2592 */ 2593 if (!encapsulated && legacy && ill->ill_lmod_cnt > 1) { 2594 ip1dbg(("ill_capability_dispatch: unencapsulated capab type " 2595 "%d discarded; %d module(s) present below IP\n", 2596 subp->dl_cap, ill->ill_lmod_cnt)); 2597 return; 2598 } 2599 2600 switch (subp->dl_cap) { 2601 case DL_CAPAB_IPSEC_AH: 2602 case DL_CAPAB_IPSEC_ESP: 2603 ill_capability_ipsec_ack(ill, mp, subp); 2604 break; 2605 case DL_CAPAB_MDT: 2606 ill_capability_mdt_ack(ill, mp, subp); 2607 break; 2608 case DL_CAPAB_HCKSUM: 2609 ill_capability_hcksum_ack(ill, mp, subp); 2610 break; 2611 case DL_CAPAB_ZEROCOPY: 2612 ill_capability_zerocopy_ack(ill, mp, subp); 2613 break; 2614 case DL_CAPAB_POLL: 2615 if (!SOFT_RINGS_ENABLED()) 2616 ill_capability_dls_ack(ill, mp, subp); 2617 break; 2618 case DL_CAPAB_SOFT_RING: 2619 if (SOFT_RINGS_ENABLED()) 2620 ill_capability_dls_ack(ill, mp, subp); 2621 break; 2622 case DL_CAPAB_LSO: 2623 ill_capability_lso_ack(ill, mp, subp); 2624 break; 2625 default: 2626 ip1dbg(("ill_capability_dispatch: unknown capab type %d\n", 2627 subp->dl_cap)); 2628 } 2629 } 2630 2631 /* 2632 * As part of negotiating polling capability, the driver tells us 2633 * the default (or normal) blanking interval and packet threshold 2634 * (the receive timer fires if blanking interval is reached or 2635 * the packet threshold is reached). 2636 * 2637 * As part of manipulating the polling interval, we always use our 2638 * estimated interval (avg service time * number of packets queued 2639 * on the squeue) but we try to blank for a minimum of 2640 * rr_normal_blank_time * rr_max_blank_ratio. We disable the 2641 * packet threshold during this time. When we are not in polling mode 2642 * we set the blank interval typically lower, rr_normal_pkt_cnt * 2643 * rr_min_blank_ratio but up the packet cnt by a ratio of 2644 * rr_min_pkt_cnt_ratio so that we are still getting chains if 2645 * possible although for a shorter interval. 2646 */ 2647 #define RR_MAX_BLANK_RATIO 20 2648 #define RR_MIN_BLANK_RATIO 10 2649 #define RR_MAX_PKT_CNT_RATIO 3 2650 #define RR_MIN_PKT_CNT_RATIO 3 2651 2652 /* 2653 * These can be tuned via /etc/system. 2654 */ 2655 int rr_max_blank_ratio = RR_MAX_BLANK_RATIO; 2656 int rr_min_blank_ratio = RR_MIN_BLANK_RATIO; 2657 int rr_max_pkt_cnt_ratio = RR_MAX_PKT_CNT_RATIO; 2658 int rr_min_pkt_cnt_ratio = RR_MIN_PKT_CNT_RATIO; 2659 2660 static mac_resource_handle_t 2661 ill_ring_add(void *arg, mac_resource_t *mrp) 2662 { 2663 ill_t *ill = (ill_t *)arg; 2664 mac_rx_fifo_t *mrfp = (mac_rx_fifo_t *)mrp; 2665 ill_rx_ring_t *rx_ring; 2666 int ip_rx_index; 2667 2668 ASSERT(mrp != NULL); 2669 if (mrp->mr_type != MAC_RX_FIFO) { 2670 return (NULL); 2671 } 2672 ASSERT(ill != NULL); 2673 ASSERT(ill->ill_dls_capab != NULL); 2674 2675 mutex_enter(&ill->ill_lock); 2676 for (ip_rx_index = 0; ip_rx_index < ILL_MAX_RINGS; ip_rx_index++) { 2677 rx_ring = &ill->ill_dls_capab->ill_ring_tbl[ip_rx_index]; 2678 ASSERT(rx_ring != NULL); 2679 2680 if (rx_ring->rr_ring_state == ILL_RING_FREE) { 2681 time_t normal_blank_time = 2682 mrfp->mrf_normal_blank_time; 2683 uint_t normal_pkt_cnt = 2684 mrfp->mrf_normal_pkt_count; 2685 2686 bzero(rx_ring, sizeof (ill_rx_ring_t)); 2687 2688 rx_ring->rr_blank = mrfp->mrf_blank; 2689 rx_ring->rr_handle = mrfp->mrf_arg; 2690 rx_ring->rr_ill = ill; 2691 rx_ring->rr_normal_blank_time = normal_blank_time; 2692 rx_ring->rr_normal_pkt_cnt = normal_pkt_cnt; 2693 2694 rx_ring->rr_max_blank_time = 2695 normal_blank_time * rr_max_blank_ratio; 2696 rx_ring->rr_min_blank_time = 2697 normal_blank_time * rr_min_blank_ratio; 2698 rx_ring->rr_max_pkt_cnt = 2699 normal_pkt_cnt * rr_max_pkt_cnt_ratio; 2700 rx_ring->rr_min_pkt_cnt = 2701 normal_pkt_cnt * rr_min_pkt_cnt_ratio; 2702 2703 rx_ring->rr_ring_state = ILL_RING_INUSE; 2704 mutex_exit(&ill->ill_lock); 2705 2706 DTRACE_PROBE2(ill__ring__add, (void *), ill, 2707 (int), ip_rx_index); 2708 return ((mac_resource_handle_t)rx_ring); 2709 } 2710 } 2711 2712 /* 2713 * We ran out of ILL_MAX_RINGS worth rx_ring structures. If 2714 * we have devices which can overwhelm this limit, ILL_MAX_RING 2715 * should be made configurable. Meanwhile it cause no panic because 2716 * driver will pass ip_input a NULL handle which will make 2717 * IP allocate the default squeue and Polling mode will not 2718 * be used for this ring. 2719 */ 2720 cmn_err(CE_NOTE, "Reached maximum number of receiving rings (%d) " 2721 "for %s\n", ILL_MAX_RINGS, ill->ill_name); 2722 2723 mutex_exit(&ill->ill_lock); 2724 return (NULL); 2725 } 2726 2727 static boolean_t 2728 ill_capability_dls_init(ill_t *ill) 2729 { 2730 ill_dls_capab_t *ill_dls = ill->ill_dls_capab; 2731 conn_t *connp; 2732 size_t sz; 2733 ip_stack_t *ipst = ill->ill_ipst; 2734 2735 if (ill->ill_capabilities & ILL_CAPAB_SOFT_RING) { 2736 if (ill_dls == NULL) { 2737 cmn_err(CE_PANIC, "ill_capability_dls_init: " 2738 "soft_ring enabled for ill=%s (%p) but data " 2739 "structs uninitialized\n", ill->ill_name, 2740 (void *)ill); 2741 } 2742 return (B_TRUE); 2743 } else if (ill->ill_capabilities & ILL_CAPAB_POLL) { 2744 if (ill_dls == NULL) { 2745 cmn_err(CE_PANIC, "ill_capability_dls_init: " 2746 "polling enabled for ill=%s (%p) but data " 2747 "structs uninitialized\n", ill->ill_name, 2748 (void *)ill); 2749 } 2750 return (B_TRUE); 2751 } 2752 2753 if (ill_dls != NULL) { 2754 ill_rx_ring_t *rx_ring = ill_dls->ill_ring_tbl; 2755 /* Soft_Ring or polling is being re-enabled */ 2756 2757 connp = ill_dls->ill_unbind_conn; 2758 ASSERT(rx_ring != NULL); 2759 bzero((void *)ill_dls, sizeof (ill_dls_capab_t)); 2760 bzero((void *)rx_ring, 2761 sizeof (ill_rx_ring_t) * ILL_MAX_RINGS); 2762 ill_dls->ill_ring_tbl = rx_ring; 2763 ill_dls->ill_unbind_conn = connp; 2764 return (B_TRUE); 2765 } 2766 2767 if ((connp = ipcl_conn_create(IPCL_TCPCONN, KM_NOSLEEP, 2768 ipst->ips_netstack)) == NULL) 2769 return (B_FALSE); 2770 2771 sz = sizeof (ill_dls_capab_t); 2772 sz += sizeof (ill_rx_ring_t) * ILL_MAX_RINGS; 2773 2774 ill_dls = kmem_zalloc(sz, KM_NOSLEEP); 2775 if (ill_dls == NULL) { 2776 cmn_err(CE_WARN, "ill_capability_dls_init: could not " 2777 "allocate dls_capab for %s (%p)\n", ill->ill_name, 2778 (void *)ill); 2779 CONN_DEC_REF(connp); 2780 return (B_FALSE); 2781 } 2782 2783 /* Allocate space to hold ring table */ 2784 ill_dls->ill_ring_tbl = (ill_rx_ring_t *)&ill_dls[1]; 2785 ill->ill_dls_capab = ill_dls; 2786 ill_dls->ill_unbind_conn = connp; 2787 return (B_TRUE); 2788 } 2789 2790 /* 2791 * ill_capability_dls_disable: disable soft_ring and/or polling 2792 * capability. Since any of the rings might already be in use, need 2793 * to call ip_squeue_clean_all() which gets behind the squeue to disable 2794 * direct calls if necessary. 2795 */ 2796 static void 2797 ill_capability_dls_disable(ill_t *ill) 2798 { 2799 ill_dls_capab_t *ill_dls = ill->ill_dls_capab; 2800 2801 if (ill->ill_capabilities & ILL_CAPAB_DLS) { 2802 ip_squeue_clean_all(ill); 2803 ill_dls->ill_tx = NULL; 2804 ill_dls->ill_tx_handle = NULL; 2805 ill_dls->ill_dls_change_status = NULL; 2806 ill_dls->ill_dls_bind = NULL; 2807 ill_dls->ill_dls_unbind = NULL; 2808 } 2809 2810 ASSERT(!(ill->ill_capabilities & ILL_CAPAB_DLS)); 2811 } 2812 2813 static void 2814 ill_capability_dls_capable(ill_t *ill, dl_capab_dls_t *idls, 2815 dl_capability_sub_t *isub) 2816 { 2817 uint_t size; 2818 uchar_t *rptr; 2819 dl_capab_dls_t dls, *odls; 2820 ill_dls_capab_t *ill_dls; 2821 mblk_t *nmp = NULL; 2822 dl_capability_req_t *ocap; 2823 uint_t sub_dl_cap = isub->dl_cap; 2824 2825 if (!ill_capability_dls_init(ill)) 2826 return; 2827 ill_dls = ill->ill_dls_capab; 2828 2829 /* Copy locally to get the members aligned */ 2830 bcopy((void *)idls, (void *)&dls, 2831 sizeof (dl_capab_dls_t)); 2832 2833 /* Get the tx function and handle from dld */ 2834 ill_dls->ill_tx = (ip_dld_tx_t)dls.dls_tx; 2835 ill_dls->ill_tx_handle = (void *)dls.dls_tx_handle; 2836 2837 if (sub_dl_cap == DL_CAPAB_SOFT_RING) { 2838 ill_dls->ill_dls_change_status = 2839 (ip_dls_chg_soft_ring_t)dls.dls_ring_change_status; 2840 ill_dls->ill_dls_bind = (ip_dls_bind_t)dls.dls_ring_bind; 2841 ill_dls->ill_dls_unbind = 2842 (ip_dls_unbind_t)dls.dls_ring_unbind; 2843 ill_dls->ill_dls_soft_ring_cnt = ip_soft_rings_cnt; 2844 } 2845 2846 size = sizeof (dl_capability_req_t) + sizeof (dl_capability_sub_t) + 2847 isub->dl_length; 2848 2849 if ((nmp = ip_dlpi_alloc(size, DL_CAPABILITY_REQ)) == NULL) { 2850 cmn_err(CE_WARN, "ill_capability_dls_capable: could " 2851 "not allocate memory for CAPAB_REQ for %s (%p)\n", 2852 ill->ill_name, (void *)ill); 2853 return; 2854 } 2855 2856 /* initialize dl_capability_req_t */ 2857 rptr = nmp->b_rptr; 2858 ocap = (dl_capability_req_t *)rptr; 2859 ocap->dl_sub_offset = sizeof (dl_capability_req_t); 2860 ocap->dl_sub_length = sizeof (dl_capability_sub_t) + isub->dl_length; 2861 rptr += sizeof (dl_capability_req_t); 2862 2863 /* initialize dl_capability_sub_t */ 2864 bcopy(isub, rptr, sizeof (*isub)); 2865 rptr += sizeof (*isub); 2866 2867 odls = (dl_capab_dls_t *)rptr; 2868 rptr += sizeof (dl_capab_dls_t); 2869 2870 /* initialize dl_capab_dls_t to be sent down */ 2871 dls.dls_rx_handle = (uintptr_t)ill; 2872 dls.dls_rx = (uintptr_t)ip_input; 2873 dls.dls_ring_add = (uintptr_t)ill_ring_add; 2874 2875 if (sub_dl_cap == DL_CAPAB_SOFT_RING) { 2876 dls.dls_ring_cnt = ip_soft_rings_cnt; 2877 dls.dls_ring_assign = (uintptr_t)ip_soft_ring_assignment; 2878 dls.dls_flags = SOFT_RING_ENABLE; 2879 } else { 2880 dls.dls_flags = POLL_ENABLE; 2881 ip1dbg(("ill_capability_dls_capable: asking interface %s " 2882 "to enable polling\n", ill->ill_name)); 2883 } 2884 bcopy((void *)&dls, (void *)odls, 2885 sizeof (dl_capab_dls_t)); 2886 ASSERT(nmp->b_wptr == (nmp->b_rptr + size)); 2887 /* 2888 * nmp points to a DL_CAPABILITY_REQ message to 2889 * enable either soft_ring or polling 2890 */ 2891 ill_dlpi_send(ill, nmp); 2892 } 2893 2894 static void 2895 ill_capability_dls_reset(ill_t *ill, mblk_t **sc_mp) 2896 { 2897 mblk_t *mp; 2898 dl_capab_dls_t *idls; 2899 dl_capability_sub_t *dl_subcap; 2900 int size; 2901 2902 if (!(ill->ill_capabilities & ILL_CAPAB_DLS)) 2903 return; 2904 2905 ASSERT(ill->ill_dls_capab != NULL); 2906 2907 size = sizeof (*dl_subcap) + sizeof (*idls); 2908 2909 mp = allocb(size, BPRI_HI); 2910 if (mp == NULL) { 2911 ip1dbg(("ill_capability_dls_reset: unable to allocate " 2912 "request to disable soft_ring\n")); 2913 return; 2914 } 2915 2916 mp->b_wptr = mp->b_rptr + size; 2917 2918 dl_subcap = (dl_capability_sub_t *)mp->b_rptr; 2919 dl_subcap->dl_length = sizeof (*idls); 2920 if (ill->ill_capabilities & ILL_CAPAB_SOFT_RING) 2921 dl_subcap->dl_cap = DL_CAPAB_SOFT_RING; 2922 else 2923 dl_subcap->dl_cap = DL_CAPAB_POLL; 2924 2925 idls = (dl_capab_dls_t *)(dl_subcap + 1); 2926 if (ill->ill_capabilities & ILL_CAPAB_SOFT_RING) 2927 idls->dls_flags = SOFT_RING_DISABLE; 2928 else 2929 idls->dls_flags = POLL_DISABLE; 2930 2931 if (*sc_mp != NULL) 2932 linkb(*sc_mp, mp); 2933 else 2934 *sc_mp = mp; 2935 } 2936 2937 /* 2938 * Process a soft_ring/poll capability negotiation ack received 2939 * from a DLS Provider.isub must point to the sub-capability 2940 * (DL_CAPAB_SOFT_RING/DL_CAPAB_POLL) of a DL_CAPABILITY_ACK message. 2941 */ 2942 static void 2943 ill_capability_dls_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub) 2944 { 2945 dl_capab_dls_t *idls; 2946 uint_t sub_dl_cap = isub->dl_cap; 2947 uint8_t *capend; 2948 2949 ASSERT(sub_dl_cap == DL_CAPAB_SOFT_RING || 2950 sub_dl_cap == DL_CAPAB_POLL); 2951 2952 if (ill->ill_isv6) 2953 return; 2954 2955 /* 2956 * Note: range checks here are not absolutely sufficient to 2957 * make us robust against malformed messages sent by drivers; 2958 * this is in keeping with the rest of IP's dlpi handling. 2959 * (Remember, it's coming from something else in the kernel 2960 * address space) 2961 */ 2962 capend = (uint8_t *)(isub + 1) + isub->dl_length; 2963 if (capend > mp->b_wptr) { 2964 cmn_err(CE_WARN, "ill_capability_dls_ack: " 2965 "malformed sub-capability too long for mblk"); 2966 return; 2967 } 2968 2969 /* 2970 * There are two types of acks we process here: 2971 * 1. acks in reply to a (first form) generic capability req 2972 * (dls_flag will be set to SOFT_RING_CAPABLE or POLL_CAPABLE) 2973 * 2. acks in reply to a SOFT_RING_ENABLE or POLL_ENABLE 2974 * capability req. 2975 */ 2976 idls = (dl_capab_dls_t *)(isub + 1); 2977 2978 if (!dlcapabcheckqid(&idls->dls_mid, ill->ill_lmod_rq)) { 2979 ip1dbg(("ill_capability_dls_ack: mid token for dls " 2980 "capability isn't as expected; pass-thru " 2981 "module(s) detected, discarding capability\n")); 2982 if (ill->ill_capabilities & ILL_CAPAB_DLS) { 2983 /* 2984 * This is a capability renegotitation case. 2985 * The interface better be unusable at this 2986 * point other wise bad things will happen 2987 * if we disable direct calls on a running 2988 * and up interface. 2989 */ 2990 ill_capability_dls_disable(ill); 2991 } 2992 return; 2993 } 2994 2995 switch (idls->dls_flags) { 2996 default: 2997 /* Disable if unknown flag */ 2998 case SOFT_RING_DISABLE: 2999 case POLL_DISABLE: 3000 ill_capability_dls_disable(ill); 3001 break; 3002 case SOFT_RING_CAPABLE: 3003 case POLL_CAPABLE: 3004 /* 3005 * If the capability was already enabled, its safe 3006 * to disable it first to get rid of stale information 3007 * and then start enabling it again. 3008 */ 3009 ill_capability_dls_disable(ill); 3010 ill_capability_dls_capable(ill, idls, isub); 3011 break; 3012 case SOFT_RING_ENABLE: 3013 case POLL_ENABLE: 3014 mutex_enter(&ill->ill_lock); 3015 if (sub_dl_cap == DL_CAPAB_SOFT_RING && 3016 !(ill->ill_capabilities & ILL_CAPAB_SOFT_RING)) { 3017 ASSERT(ill->ill_dls_capab != NULL); 3018 ill->ill_capabilities |= ILL_CAPAB_SOFT_RING; 3019 } 3020 if (sub_dl_cap == DL_CAPAB_POLL && 3021 !(ill->ill_capabilities & ILL_CAPAB_POLL)) { 3022 ASSERT(ill->ill_dls_capab != NULL); 3023 ill->ill_capabilities |= ILL_CAPAB_POLL; 3024 ip1dbg(("ill_capability_dls_ack: interface %s " 3025 "has enabled polling\n", ill->ill_name)); 3026 } 3027 mutex_exit(&ill->ill_lock); 3028 break; 3029 } 3030 } 3031 3032 /* 3033 * Process a hardware checksum offload capability negotiation ack received 3034 * from a DLS Provider.isub must point to the sub-capability (DL_CAPAB_HCKSUM) 3035 * of a DL_CAPABILITY_ACK message. 3036 */ 3037 static void 3038 ill_capability_hcksum_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub) 3039 { 3040 dl_capability_req_t *ocap; 3041 dl_capab_hcksum_t *ihck, *ohck; 3042 ill_hcksum_capab_t **ill_hcksum; 3043 mblk_t *nmp = NULL; 3044 uint_t sub_dl_cap = isub->dl_cap; 3045 uint8_t *capend; 3046 3047 ASSERT(sub_dl_cap == DL_CAPAB_HCKSUM); 3048 3049 ill_hcksum = (ill_hcksum_capab_t **)&ill->ill_hcksum_capab; 3050 3051 /* 3052 * Note: range checks here are not absolutely sufficient to 3053 * make us robust against malformed messages sent by drivers; 3054 * this is in keeping with the rest of IP's dlpi handling. 3055 * (Remember, it's coming from something else in the kernel 3056 * address space) 3057 */ 3058 capend = (uint8_t *)(isub + 1) + isub->dl_length; 3059 if (capend > mp->b_wptr) { 3060 cmn_err(CE_WARN, "ill_capability_hcksum_ack: " 3061 "malformed sub-capability too long for mblk"); 3062 return; 3063 } 3064 3065 /* 3066 * There are two types of acks we process here: 3067 * 1. acks in reply to a (first form) generic capability req 3068 * (no ENABLE flag set) 3069 * 2. acks in reply to a ENABLE capability req. 3070 * (ENABLE flag set) 3071 */ 3072 ihck = (dl_capab_hcksum_t *)(isub + 1); 3073 3074 if (ihck->hcksum_version != HCKSUM_VERSION_1) { 3075 cmn_err(CE_CONT, "ill_capability_hcksum_ack: " 3076 "unsupported hardware checksum " 3077 "sub-capability (version %d, expected %d)", 3078 ihck->hcksum_version, HCKSUM_VERSION_1); 3079 return; 3080 } 3081 3082 if (!dlcapabcheckqid(&ihck->hcksum_mid, ill->ill_lmod_rq)) { 3083 ip1dbg(("ill_capability_hcksum_ack: mid token for hardware " 3084 "checksum capability isn't as expected; pass-thru " 3085 "module(s) detected, discarding capability\n")); 3086 return; 3087 } 3088 3089 #define CURR_HCKSUM_CAPAB \ 3090 (HCKSUM_INET_PARTIAL | HCKSUM_INET_FULL_V4 | \ 3091 HCKSUM_INET_FULL_V6 | HCKSUM_IPHDRCKSUM) 3092 3093 if ((ihck->hcksum_txflags & HCKSUM_ENABLE) && 3094 (ihck->hcksum_txflags & CURR_HCKSUM_CAPAB)) { 3095 /* do ENABLE processing */ 3096 if (*ill_hcksum == NULL) { 3097 *ill_hcksum = kmem_zalloc(sizeof (ill_hcksum_capab_t), 3098 KM_NOSLEEP); 3099 3100 if (*ill_hcksum == NULL) { 3101 cmn_err(CE_WARN, "ill_capability_hcksum_ack: " 3102 "could not enable hcksum version %d " 3103 "for %s (ENOMEM)\n", HCKSUM_CURRENT_VERSION, 3104 ill->ill_name); 3105 return; 3106 } 3107 } 3108 3109 (*ill_hcksum)->ill_hcksum_version = ihck->hcksum_version; 3110 (*ill_hcksum)->ill_hcksum_txflags = ihck->hcksum_txflags; 3111 ill->ill_capabilities |= ILL_CAPAB_HCKSUM; 3112 ip1dbg(("ill_capability_hcksum_ack: interface %s " 3113 "has enabled hardware checksumming\n ", 3114 ill->ill_name)); 3115 } else if (ihck->hcksum_txflags & CURR_HCKSUM_CAPAB) { 3116 /* 3117 * Enabling hardware checksum offload 3118 * Currently IP supports {TCP,UDP}/IPv4 3119 * partial and full cksum offload and 3120 * IPv4 header checksum offload. 3121 * Allocate new mblk which will 3122 * contain a new capability request 3123 * to enable hardware checksum offload. 3124 */ 3125 uint_t size; 3126 uchar_t *rptr; 3127 3128 size = sizeof (dl_capability_req_t) + 3129 sizeof (dl_capability_sub_t) + isub->dl_length; 3130 3131 if ((nmp = ip_dlpi_alloc(size, DL_CAPABILITY_REQ)) == NULL) { 3132 cmn_err(CE_WARN, "ill_capability_hcksum_ack: " 3133 "could not enable hardware cksum for %s (ENOMEM)\n", 3134 ill->ill_name); 3135 return; 3136 } 3137 3138 rptr = nmp->b_rptr; 3139 /* initialize dl_capability_req_t */ 3140 ocap = (dl_capability_req_t *)nmp->b_rptr; 3141 ocap->dl_sub_offset = 3142 sizeof (dl_capability_req_t); 3143 ocap->dl_sub_length = 3144 sizeof (dl_capability_sub_t) + 3145 isub->dl_length; 3146 nmp->b_rptr += sizeof (dl_capability_req_t); 3147 3148 /* initialize dl_capability_sub_t */ 3149 bcopy(isub, nmp->b_rptr, sizeof (*isub)); 3150 nmp->b_rptr += sizeof (*isub); 3151 3152 /* initialize dl_capab_hcksum_t */ 3153 ohck = (dl_capab_hcksum_t *)nmp->b_rptr; 3154 bcopy(ihck, ohck, sizeof (*ihck)); 3155 3156 nmp->b_rptr = rptr; 3157 ASSERT(nmp->b_wptr == (nmp->b_rptr + size)); 3158 3159 /* Set ENABLE flag */ 3160 ohck->hcksum_txflags &= CURR_HCKSUM_CAPAB; 3161 ohck->hcksum_txflags |= HCKSUM_ENABLE; 3162 3163 /* 3164 * nmp points to a DL_CAPABILITY_REQ message to enable 3165 * hardware checksum acceleration. 3166 */ 3167 ill_dlpi_send(ill, nmp); 3168 } else { 3169 ip1dbg(("ill_capability_hcksum_ack: interface %s has " 3170 "advertised %x hardware checksum capability flags\n", 3171 ill->ill_name, ihck->hcksum_txflags)); 3172 } 3173 } 3174 3175 static void 3176 ill_capability_hcksum_reset(ill_t *ill, mblk_t **sc_mp) 3177 { 3178 mblk_t *mp; 3179 dl_capab_hcksum_t *hck_subcap; 3180 dl_capability_sub_t *dl_subcap; 3181 int size; 3182 3183 if (!ILL_HCKSUM_CAPABLE(ill)) 3184 return; 3185 3186 ASSERT(ill->ill_hcksum_capab != NULL); 3187 /* 3188 * Clear the capability flag for hardware checksum offload but 3189 * retain the ill_hcksum_capab structure since it's possible that 3190 * another thread is still referring to it. The structure only 3191 * gets deallocated when we destroy the ill. 3192 */ 3193 ill->ill_capabilities &= ~ILL_CAPAB_HCKSUM; 3194 3195 size = sizeof (*dl_subcap) + sizeof (*hck_subcap); 3196 3197 mp = allocb(size, BPRI_HI); 3198 if (mp == NULL) { 3199 ip1dbg(("ill_capability_hcksum_reset: unable to allocate " 3200 "request to disable hardware checksum offload\n")); 3201 return; 3202 } 3203 3204 mp->b_wptr = mp->b_rptr + size; 3205 3206 dl_subcap = (dl_capability_sub_t *)mp->b_rptr; 3207 dl_subcap->dl_cap = DL_CAPAB_HCKSUM; 3208 dl_subcap->dl_length = sizeof (*hck_subcap); 3209 3210 hck_subcap = (dl_capab_hcksum_t *)(dl_subcap + 1); 3211 hck_subcap->hcksum_version = ill->ill_hcksum_capab->ill_hcksum_version; 3212 hck_subcap->hcksum_txflags = 0; 3213 3214 if (*sc_mp != NULL) 3215 linkb(*sc_mp, mp); 3216 else 3217 *sc_mp = mp; 3218 } 3219 3220 static void 3221 ill_capability_zerocopy_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub) 3222 { 3223 mblk_t *nmp = NULL; 3224 dl_capability_req_t *oc; 3225 dl_capab_zerocopy_t *zc_ic, *zc_oc; 3226 ill_zerocopy_capab_t **ill_zerocopy_capab; 3227 uint_t sub_dl_cap = isub->dl_cap; 3228 uint8_t *capend; 3229 3230 ASSERT(sub_dl_cap == DL_CAPAB_ZEROCOPY); 3231 3232 ill_zerocopy_capab = (ill_zerocopy_capab_t **)&ill->ill_zerocopy_capab; 3233 3234 /* 3235 * Note: range checks here are not absolutely sufficient to 3236 * make us robust against malformed messages sent by drivers; 3237 * this is in keeping with the rest of IP's dlpi handling. 3238 * (Remember, it's coming from something else in the kernel 3239 * address space) 3240 */ 3241 capend = (uint8_t *)(isub + 1) + isub->dl_length; 3242 if (capend > mp->b_wptr) { 3243 cmn_err(CE_WARN, "ill_capability_zerocopy_ack: " 3244 "malformed sub-capability too long for mblk"); 3245 return; 3246 } 3247 3248 zc_ic = (dl_capab_zerocopy_t *)(isub + 1); 3249 if (zc_ic->zerocopy_version != ZEROCOPY_VERSION_1) { 3250 cmn_err(CE_CONT, "ill_capability_zerocopy_ack: " 3251 "unsupported ZEROCOPY sub-capability (version %d, " 3252 "expected %d)", zc_ic->zerocopy_version, 3253 ZEROCOPY_VERSION_1); 3254 return; 3255 } 3256 3257 if (!dlcapabcheckqid(&zc_ic->zerocopy_mid, ill->ill_lmod_rq)) { 3258 ip1dbg(("ill_capability_zerocopy_ack: mid token for zerocopy " 3259 "capability isn't as expected; pass-thru module(s) " 3260 "detected, discarding capability\n")); 3261 return; 3262 } 3263 3264 if ((zc_ic->zerocopy_flags & DL_CAPAB_VMSAFE_MEM) != 0) { 3265 if (*ill_zerocopy_capab == NULL) { 3266 *ill_zerocopy_capab = 3267 kmem_zalloc(sizeof (ill_zerocopy_capab_t), 3268 KM_NOSLEEP); 3269 3270 if (*ill_zerocopy_capab == NULL) { 3271 cmn_err(CE_WARN, "ill_capability_zerocopy_ack: " 3272 "could not enable Zero-copy version %d " 3273 "for %s (ENOMEM)\n", ZEROCOPY_VERSION_1, 3274 ill->ill_name); 3275 return; 3276 } 3277 } 3278 3279 ip1dbg(("ill_capability_zerocopy_ack: interface %s " 3280 "supports Zero-copy version %d\n", ill->ill_name, 3281 ZEROCOPY_VERSION_1)); 3282 3283 (*ill_zerocopy_capab)->ill_zerocopy_version = 3284 zc_ic->zerocopy_version; 3285 (*ill_zerocopy_capab)->ill_zerocopy_flags = 3286 zc_ic->zerocopy_flags; 3287 3288 ill->ill_capabilities |= ILL_CAPAB_ZEROCOPY; 3289 } else { 3290 uint_t size; 3291 uchar_t *rptr; 3292 3293 size = sizeof (dl_capability_req_t) + 3294 sizeof (dl_capability_sub_t) + 3295 sizeof (dl_capab_zerocopy_t); 3296 3297 if ((nmp = ip_dlpi_alloc(size, DL_CAPABILITY_REQ)) == NULL) { 3298 cmn_err(CE_WARN, "ill_capability_zerocopy_ack: " 3299 "could not enable zerocopy for %s (ENOMEM)\n", 3300 ill->ill_name); 3301 return; 3302 } 3303 3304 rptr = nmp->b_rptr; 3305 /* initialize dl_capability_req_t */ 3306 oc = (dl_capability_req_t *)rptr; 3307 oc->dl_sub_offset = sizeof (dl_capability_req_t); 3308 oc->dl_sub_length = sizeof (dl_capability_sub_t) + 3309 sizeof (dl_capab_zerocopy_t); 3310 rptr += sizeof (dl_capability_req_t); 3311 3312 /* initialize dl_capability_sub_t */ 3313 bcopy(isub, rptr, sizeof (*isub)); 3314 rptr += sizeof (*isub); 3315 3316 /* initialize dl_capab_zerocopy_t */ 3317 zc_oc = (dl_capab_zerocopy_t *)rptr; 3318 *zc_oc = *zc_ic; 3319 3320 ip1dbg(("ill_capability_zerocopy_ack: asking interface %s " 3321 "to enable zero-copy version %d\n", ill->ill_name, 3322 ZEROCOPY_VERSION_1)); 3323 3324 /* set VMSAFE_MEM flag */ 3325 zc_oc->zerocopy_flags |= DL_CAPAB_VMSAFE_MEM; 3326 3327 /* nmp points to a DL_CAPABILITY_REQ message to enable zcopy */ 3328 ill_dlpi_send(ill, nmp); 3329 } 3330 } 3331 3332 static void 3333 ill_capability_zerocopy_reset(ill_t *ill, mblk_t **sc_mp) 3334 { 3335 mblk_t *mp; 3336 dl_capab_zerocopy_t *zerocopy_subcap; 3337 dl_capability_sub_t *dl_subcap; 3338 int size; 3339 3340 if (!(ill->ill_capabilities & ILL_CAPAB_ZEROCOPY)) 3341 return; 3342 3343 ASSERT(ill->ill_zerocopy_capab != NULL); 3344 /* 3345 * Clear the capability flag for Zero-copy but retain the 3346 * ill_zerocopy_capab structure since it's possible that another 3347 * thread is still referring to it. The structure only gets 3348 * deallocated when we destroy the ill. 3349 */ 3350 ill->ill_capabilities &= ~ILL_CAPAB_ZEROCOPY; 3351 3352 size = sizeof (*dl_subcap) + sizeof (*zerocopy_subcap); 3353 3354 mp = allocb(size, BPRI_HI); 3355 if (mp == NULL) { 3356 ip1dbg(("ill_capability_zerocopy_reset: unable to allocate " 3357 "request to disable Zero-copy\n")); 3358 return; 3359 } 3360 3361 mp->b_wptr = mp->b_rptr + size; 3362 3363 dl_subcap = (dl_capability_sub_t *)mp->b_rptr; 3364 dl_subcap->dl_cap = DL_CAPAB_ZEROCOPY; 3365 dl_subcap->dl_length = sizeof (*zerocopy_subcap); 3366 3367 zerocopy_subcap = (dl_capab_zerocopy_t *)(dl_subcap + 1); 3368 zerocopy_subcap->zerocopy_version = 3369 ill->ill_zerocopy_capab->ill_zerocopy_version; 3370 zerocopy_subcap->zerocopy_flags = 0; 3371 3372 if (*sc_mp != NULL) 3373 linkb(*sc_mp, mp); 3374 else 3375 *sc_mp = mp; 3376 } 3377 3378 /* 3379 * Process Large Segment Offload capability negotiation ack received from a 3380 * DLS Provider. isub must point to the sub-capability (DL_CAPAB_LSO) of a 3381 * DL_CAPABILITY_ACK message. 3382 */ 3383 static void 3384 ill_capability_lso_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub) 3385 { 3386 mblk_t *nmp = NULL; 3387 dl_capability_req_t *oc; 3388 dl_capab_lso_t *lso_ic, *lso_oc; 3389 ill_lso_capab_t **ill_lso_capab; 3390 uint_t sub_dl_cap = isub->dl_cap; 3391 uint8_t *capend; 3392 3393 ASSERT(sub_dl_cap == DL_CAPAB_LSO); 3394 3395 ill_lso_capab = (ill_lso_capab_t **)&ill->ill_lso_capab; 3396 3397 /* 3398 * Note: range checks here are not absolutely sufficient to 3399 * make us robust against malformed messages sent by drivers; 3400 * this is in keeping with the rest of IP's dlpi handling. 3401 * (Remember, it's coming from something else in the kernel 3402 * address space) 3403 */ 3404 capend = (uint8_t *)(isub + 1) + isub->dl_length; 3405 if (capend > mp->b_wptr) { 3406 cmn_err(CE_WARN, "ill_capability_lso_ack: " 3407 "malformed sub-capability too long for mblk"); 3408 return; 3409 } 3410 3411 lso_ic = (dl_capab_lso_t *)(isub + 1); 3412 3413 if (lso_ic->lso_version != LSO_VERSION_1) { 3414 cmn_err(CE_CONT, "ill_capability_lso_ack: " 3415 "unsupported LSO sub-capability (version %d, expected %d)", 3416 lso_ic->lso_version, LSO_VERSION_1); 3417 return; 3418 } 3419 3420 if (!dlcapabcheckqid(&lso_ic->lso_mid, ill->ill_lmod_rq)) { 3421 ip1dbg(("ill_capability_lso_ack: mid token for LSO " 3422 "capability isn't as expected; pass-thru module(s) " 3423 "detected, discarding capability\n")); 3424 return; 3425 } 3426 3427 if ((lso_ic->lso_flags & LSO_TX_ENABLE) && 3428 (lso_ic->lso_flags & LSO_TX_BASIC_TCP_IPV4)) { 3429 if (*ill_lso_capab == NULL) { 3430 *ill_lso_capab = kmem_zalloc(sizeof (ill_lso_capab_t), 3431 KM_NOSLEEP); 3432 3433 if (*ill_lso_capab == NULL) { 3434 cmn_err(CE_WARN, "ill_capability_lso_ack: " 3435 "could not enable LSO version %d " 3436 "for %s (ENOMEM)\n", LSO_VERSION_1, 3437 ill->ill_name); 3438 return; 3439 } 3440 } 3441 3442 (*ill_lso_capab)->ill_lso_version = lso_ic->lso_version; 3443 (*ill_lso_capab)->ill_lso_flags = lso_ic->lso_flags; 3444 (*ill_lso_capab)->ill_lso_max = lso_ic->lso_max; 3445 ill->ill_capabilities |= ILL_CAPAB_LSO; 3446 3447 ip1dbg(("ill_capability_lso_ack: interface %s " 3448 "has enabled LSO\n ", ill->ill_name)); 3449 } else if (lso_ic->lso_flags & LSO_TX_BASIC_TCP_IPV4) { 3450 uint_t size; 3451 uchar_t *rptr; 3452 3453 size = sizeof (dl_capability_req_t) + 3454 sizeof (dl_capability_sub_t) + sizeof (dl_capab_lso_t); 3455 3456 if ((nmp = ip_dlpi_alloc(size, DL_CAPABILITY_REQ)) == NULL) { 3457 cmn_err(CE_WARN, "ill_capability_lso_ack: " 3458 "could not enable LSO for %s (ENOMEM)\n", 3459 ill->ill_name); 3460 return; 3461 } 3462 3463 rptr = nmp->b_rptr; 3464 /* initialize dl_capability_req_t */ 3465 oc = (dl_capability_req_t *)nmp->b_rptr; 3466 oc->dl_sub_offset = sizeof (dl_capability_req_t); 3467 oc->dl_sub_length = sizeof (dl_capability_sub_t) + 3468 sizeof (dl_capab_lso_t); 3469 nmp->b_rptr += sizeof (dl_capability_req_t); 3470 3471 /* initialize dl_capability_sub_t */ 3472 bcopy(isub, nmp->b_rptr, sizeof (*isub)); 3473 nmp->b_rptr += sizeof (*isub); 3474 3475 /* initialize dl_capab_lso_t */ 3476 lso_oc = (dl_capab_lso_t *)nmp->b_rptr; 3477 bcopy(lso_ic, lso_oc, sizeof (*lso_ic)); 3478 3479 nmp->b_rptr = rptr; 3480 ASSERT(nmp->b_wptr == (nmp->b_rptr + size)); 3481 3482 /* set ENABLE flag */ 3483 lso_oc->lso_flags |= LSO_TX_ENABLE; 3484 3485 /* nmp points to a DL_CAPABILITY_REQ message to enable LSO */ 3486 ill_dlpi_send(ill, nmp); 3487 } else { 3488 ip1dbg(("ill_capability_lso_ack: interface %s has " 3489 "advertised %x LSO capability flags\n", 3490 ill->ill_name, lso_ic->lso_flags)); 3491 } 3492 } 3493 3494 3495 static void 3496 ill_capability_lso_reset(ill_t *ill, mblk_t **sc_mp) 3497 { 3498 mblk_t *mp; 3499 dl_capab_lso_t *lso_subcap; 3500 dl_capability_sub_t *dl_subcap; 3501 int size; 3502 3503 if (!(ill->ill_capabilities & ILL_CAPAB_LSO)) 3504 return; 3505 3506 ASSERT(ill->ill_lso_capab != NULL); 3507 /* 3508 * Clear the capability flag for LSO but retain the 3509 * ill_lso_capab structure since it's possible that another 3510 * thread is still referring to it. The structure only gets 3511 * deallocated when we destroy the ill. 3512 */ 3513 ill->ill_capabilities &= ~ILL_CAPAB_LSO; 3514 3515 size = sizeof (*dl_subcap) + sizeof (*lso_subcap); 3516 3517 mp = allocb(size, BPRI_HI); 3518 if (mp == NULL) { 3519 ip1dbg(("ill_capability_lso_reset: unable to allocate " 3520 "request to disable LSO\n")); 3521 return; 3522 } 3523 3524 mp->b_wptr = mp->b_rptr + size; 3525 3526 dl_subcap = (dl_capability_sub_t *)mp->b_rptr; 3527 dl_subcap->dl_cap = DL_CAPAB_LSO; 3528 dl_subcap->dl_length = sizeof (*lso_subcap); 3529 3530 lso_subcap = (dl_capab_lso_t *)(dl_subcap + 1); 3531 lso_subcap->lso_version = ill->ill_lso_capab->ill_lso_version; 3532 lso_subcap->lso_flags = 0; 3533 3534 if (*sc_mp != NULL) 3535 linkb(*sc_mp, mp); 3536 else 3537 *sc_mp = mp; 3538 } 3539 3540 /* 3541 * Consume a new-style hardware capabilities negotiation ack. 3542 * Called from ip_rput_dlpi_writer(). 3543 */ 3544 void 3545 ill_capability_ack(ill_t *ill, mblk_t *mp) 3546 { 3547 dl_capability_ack_t *capp; 3548 dl_capability_sub_t *subp, *endp; 3549 3550 if (ill->ill_dlpi_capab_state == IDS_INPROGRESS) 3551 ill->ill_dlpi_capab_state = IDS_OK; 3552 3553 capp = (dl_capability_ack_t *)mp->b_rptr; 3554 3555 if (capp->dl_sub_length == 0) 3556 /* no new-style capabilities */ 3557 return; 3558 3559 /* make sure the driver supplied correct dl_sub_length */ 3560 if ((sizeof (*capp) + capp->dl_sub_length) > MBLKL(mp)) { 3561 ip0dbg(("ill_capability_ack: bad DL_CAPABILITY_ACK, " 3562 "invalid dl_sub_length (%d)\n", capp->dl_sub_length)); 3563 return; 3564 } 3565 3566 #define SC(base, offset) (dl_capability_sub_t *)(((uchar_t *)(base))+(offset)) 3567 /* 3568 * There are sub-capabilities. Process the ones we know about. 3569 * Loop until we don't have room for another sub-cap header.. 3570 */ 3571 for (subp = SC(capp, capp->dl_sub_offset), 3572 endp = SC(subp, capp->dl_sub_length - sizeof (*subp)); 3573 subp <= endp; 3574 subp = SC(subp, sizeof (dl_capability_sub_t) + subp->dl_length)) { 3575 3576 switch (subp->dl_cap) { 3577 case DL_CAPAB_ID_WRAPPER: 3578 ill_capability_id_ack(ill, mp, subp); 3579 break; 3580 default: 3581 ill_capability_dispatch(ill, mp, subp, B_FALSE); 3582 break; 3583 } 3584 } 3585 #undef SC 3586 } 3587 3588 /* 3589 * This routine is called to scan the fragmentation reassembly table for 3590 * the specified ILL for any packets that are starting to smell. 3591 * dead_interval is the maximum time in seconds that will be tolerated. It 3592 * will either be the value specified in ip_g_frag_timeout, or zero if the 3593 * ILL is shutting down and it is time to blow everything off. 3594 * 3595 * It returns the number of seconds (as a time_t) that the next frag timer 3596 * should be scheduled for, 0 meaning that the timer doesn't need to be 3597 * re-started. Note that the method of calculating next_timeout isn't 3598 * entirely accurate since time will flow between the time we grab 3599 * current_time and the time we schedule the next timeout. This isn't a 3600 * big problem since this is the timer for sending an ICMP reassembly time 3601 * exceeded messages, and it doesn't have to be exactly accurate. 3602 * 3603 * This function is 3604 * sometimes called as writer, although this is not required. 3605 */ 3606 time_t 3607 ill_frag_timeout(ill_t *ill, time_t dead_interval) 3608 { 3609 ipfb_t *ipfb; 3610 ipfb_t *endp; 3611 ipf_t *ipf; 3612 ipf_t *ipfnext; 3613 mblk_t *mp; 3614 time_t current_time = gethrestime_sec(); 3615 time_t next_timeout = 0; 3616 uint32_t hdr_length; 3617 mblk_t *send_icmp_head; 3618 mblk_t *send_icmp_head_v6; 3619 zoneid_t zoneid; 3620 ip_stack_t *ipst = ill->ill_ipst; 3621 3622 ipfb = ill->ill_frag_hash_tbl; 3623 if (ipfb == NULL) 3624 return (B_FALSE); 3625 endp = &ipfb[ILL_FRAG_HASH_TBL_COUNT]; 3626 /* Walk the frag hash table. */ 3627 for (; ipfb < endp; ipfb++) { 3628 send_icmp_head = NULL; 3629 send_icmp_head_v6 = NULL; 3630 mutex_enter(&ipfb->ipfb_lock); 3631 while ((ipf = ipfb->ipfb_ipf) != 0) { 3632 time_t frag_time = current_time - ipf->ipf_timestamp; 3633 time_t frag_timeout; 3634 3635 if (frag_time < dead_interval) { 3636 /* 3637 * There are some outstanding fragments 3638 * that will timeout later. Make note of 3639 * the time so that we can reschedule the 3640 * next timeout appropriately. 3641 */ 3642 frag_timeout = dead_interval - frag_time; 3643 if (next_timeout == 0 || 3644 frag_timeout < next_timeout) { 3645 next_timeout = frag_timeout; 3646 } 3647 break; 3648 } 3649 /* Time's up. Get it out of here. */ 3650 hdr_length = ipf->ipf_nf_hdr_len; 3651 ipfnext = ipf->ipf_hash_next; 3652 if (ipfnext) 3653 ipfnext->ipf_ptphn = ipf->ipf_ptphn; 3654 *ipf->ipf_ptphn = ipfnext; 3655 mp = ipf->ipf_mp->b_cont; 3656 for (; mp; mp = mp->b_cont) { 3657 /* Extra points for neatness. */ 3658 IP_REASS_SET_START(mp, 0); 3659 IP_REASS_SET_END(mp, 0); 3660 } 3661 mp = ipf->ipf_mp->b_cont; 3662 ill->ill_frag_count -= ipf->ipf_count; 3663 ASSERT(ipfb->ipfb_count >= ipf->ipf_count); 3664 ipfb->ipfb_count -= ipf->ipf_count; 3665 ASSERT(ipfb->ipfb_frag_pkts > 0); 3666 ipfb->ipfb_frag_pkts--; 3667 /* 3668 * We do not send any icmp message from here because 3669 * we currently are holding the ipfb_lock for this 3670 * hash chain. If we try and send any icmp messages 3671 * from here we may end up via a put back into ip 3672 * trying to get the same lock, causing a recursive 3673 * mutex panic. Instead we build a list and send all 3674 * the icmp messages after we have dropped the lock. 3675 */ 3676 if (ill->ill_isv6) { 3677 if (hdr_length != 0) { 3678 mp->b_next = send_icmp_head_v6; 3679 send_icmp_head_v6 = mp; 3680 } else { 3681 freemsg(mp); 3682 } 3683 } else { 3684 if (hdr_length != 0) { 3685 mp->b_next = send_icmp_head; 3686 send_icmp_head = mp; 3687 } else { 3688 freemsg(mp); 3689 } 3690 } 3691 BUMP_MIB(ill->ill_ip_mib, ipIfStatsReasmFails); 3692 freeb(ipf->ipf_mp); 3693 } 3694 mutex_exit(&ipfb->ipfb_lock); 3695 /* 3696 * Now need to send any icmp messages that we delayed from 3697 * above. 3698 */ 3699 while (send_icmp_head_v6 != NULL) { 3700 ip6_t *ip6h; 3701 3702 mp = send_icmp_head_v6; 3703 send_icmp_head_v6 = send_icmp_head_v6->b_next; 3704 mp->b_next = NULL; 3705 if (mp->b_datap->db_type == M_CTL) 3706 ip6h = (ip6_t *)mp->b_cont->b_rptr; 3707 else 3708 ip6h = (ip6_t *)mp->b_rptr; 3709 zoneid = ipif_lookup_addr_zoneid_v6(&ip6h->ip6_dst, 3710 ill, ipst); 3711 if (zoneid == ALL_ZONES) { 3712 freemsg(mp); 3713 } else { 3714 icmp_time_exceeded_v6(ill->ill_wq, mp, 3715 ICMP_REASSEMBLY_TIME_EXCEEDED, B_FALSE, 3716 B_FALSE, zoneid, ipst); 3717 } 3718 } 3719 while (send_icmp_head != NULL) { 3720 ipaddr_t dst; 3721 3722 mp = send_icmp_head; 3723 send_icmp_head = send_icmp_head->b_next; 3724 mp->b_next = NULL; 3725 3726 if (mp->b_datap->db_type == M_CTL) 3727 dst = ((ipha_t *)mp->b_cont->b_rptr)->ipha_dst; 3728 else 3729 dst = ((ipha_t *)mp->b_rptr)->ipha_dst; 3730 3731 zoneid = ipif_lookup_addr_zoneid(dst, ill, ipst); 3732 if (zoneid == ALL_ZONES) { 3733 freemsg(mp); 3734 } else { 3735 icmp_time_exceeded(ill->ill_wq, mp, 3736 ICMP_REASSEMBLY_TIME_EXCEEDED, zoneid, 3737 ipst); 3738 } 3739 } 3740 } 3741 /* 3742 * A non-dying ILL will use the return value to decide whether to 3743 * restart the frag timer, and for how long. 3744 */ 3745 return (next_timeout); 3746 } 3747 3748 /* 3749 * This routine is called when the approximate count of mblk memory used 3750 * for the specified ILL has exceeded max_count. 3751 */ 3752 void 3753 ill_frag_prune(ill_t *ill, uint_t max_count) 3754 { 3755 ipfb_t *ipfb; 3756 ipf_t *ipf; 3757 size_t count; 3758 3759 /* 3760 * If we are here within ip_min_frag_prune_time msecs remove 3761 * ill_frag_free_num_pkts oldest packets from each bucket and increment 3762 * ill_frag_free_num_pkts. 3763 */ 3764 mutex_enter(&ill->ill_lock); 3765 if (TICK_TO_MSEC(lbolt - ill->ill_last_frag_clean_time) <= 3766 (ip_min_frag_prune_time != 0 ? 3767 ip_min_frag_prune_time : msec_per_tick)) { 3768 3769 ill->ill_frag_free_num_pkts++; 3770 3771 } else { 3772 ill->ill_frag_free_num_pkts = 0; 3773 } 3774 ill->ill_last_frag_clean_time = lbolt; 3775 mutex_exit(&ill->ill_lock); 3776 3777 /* 3778 * free ill_frag_free_num_pkts oldest packets from each bucket. 3779 */ 3780 if (ill->ill_frag_free_num_pkts != 0) { 3781 int ix; 3782 3783 for (ix = 0; ix < ILL_FRAG_HASH_TBL_COUNT; ix++) { 3784 ipfb = &ill->ill_frag_hash_tbl[ix]; 3785 mutex_enter(&ipfb->ipfb_lock); 3786 if (ipfb->ipfb_ipf != NULL) { 3787 ill_frag_free_pkts(ill, ipfb, ipfb->ipfb_ipf, 3788 ill->ill_frag_free_num_pkts); 3789 } 3790 mutex_exit(&ipfb->ipfb_lock); 3791 } 3792 } 3793 /* 3794 * While the reassembly list for this ILL is too big, prune a fragment 3795 * queue by age, oldest first. Note that the per ILL count is 3796 * approximate, while the per frag hash bucket counts are accurate. 3797 */ 3798 while (ill->ill_frag_count > max_count) { 3799 int ix; 3800 ipfb_t *oipfb = NULL; 3801 uint_t oldest = UINT_MAX; 3802 3803 count = 0; 3804 for (ix = 0; ix < ILL_FRAG_HASH_TBL_COUNT; ix++) { 3805 ipfb = &ill->ill_frag_hash_tbl[ix]; 3806 mutex_enter(&ipfb->ipfb_lock); 3807 ipf = ipfb->ipfb_ipf; 3808 if (ipf != NULL && ipf->ipf_gen < oldest) { 3809 oldest = ipf->ipf_gen; 3810 oipfb = ipfb; 3811 } 3812 count += ipfb->ipfb_count; 3813 mutex_exit(&ipfb->ipfb_lock); 3814 } 3815 /* Refresh the per ILL count */ 3816 ill->ill_frag_count = count; 3817 if (oipfb == NULL) { 3818 ill->ill_frag_count = 0; 3819 break; 3820 } 3821 if (count <= max_count) 3822 return; /* Somebody beat us to it, nothing to do */ 3823 mutex_enter(&oipfb->ipfb_lock); 3824 ipf = oipfb->ipfb_ipf; 3825 if (ipf != NULL) { 3826 ill_frag_free_pkts(ill, oipfb, ipf, 1); 3827 } 3828 mutex_exit(&oipfb->ipfb_lock); 3829 } 3830 } 3831 3832 /* 3833 * free 'free_cnt' fragmented packets starting at ipf. 3834 */ 3835 void 3836 ill_frag_free_pkts(ill_t *ill, ipfb_t *ipfb, ipf_t *ipf, int free_cnt) 3837 { 3838 size_t count; 3839 mblk_t *mp; 3840 mblk_t *tmp; 3841 ipf_t **ipfp = ipf->ipf_ptphn; 3842 3843 ASSERT(MUTEX_HELD(&ipfb->ipfb_lock)); 3844 ASSERT(ipfp != NULL); 3845 ASSERT(ipf != NULL); 3846 3847 while (ipf != NULL && free_cnt-- > 0) { 3848 count = ipf->ipf_count; 3849 mp = ipf->ipf_mp; 3850 ipf = ipf->ipf_hash_next; 3851 for (tmp = mp; tmp; tmp = tmp->b_cont) { 3852 IP_REASS_SET_START(tmp, 0); 3853 IP_REASS_SET_END(tmp, 0); 3854 } 3855 ill->ill_frag_count -= count; 3856 ASSERT(ipfb->ipfb_count >= count); 3857 ipfb->ipfb_count -= count; 3858 ASSERT(ipfb->ipfb_frag_pkts > 0); 3859 ipfb->ipfb_frag_pkts--; 3860 freemsg(mp); 3861 BUMP_MIB(ill->ill_ip_mib, ipIfStatsReasmFails); 3862 } 3863 3864 if (ipf) 3865 ipf->ipf_ptphn = ipfp; 3866 ipfp[0] = ipf; 3867 } 3868 3869 #define ND_FORWARD_WARNING "The <if>:ip*_forwarding ndd variables are " \ 3870 "obsolete and may be removed in a future release of Solaris. Use " \ 3871 "ifconfig(1M) to manipulate the forwarding status of an interface." 3872 3873 /* 3874 * For obsolete per-interface forwarding configuration; 3875 * called in response to ND_GET. 3876 */ 3877 /* ARGSUSED */ 3878 static int 3879 nd_ill_forward_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *ioc_cr) 3880 { 3881 ill_t *ill = (ill_t *)cp; 3882 3883 cmn_err(CE_WARN, ND_FORWARD_WARNING); 3884 3885 (void) mi_mpprintf(mp, "%d", (ill->ill_flags & ILLF_ROUTER) != 0); 3886 return (0); 3887 } 3888 3889 /* 3890 * For obsolete per-interface forwarding configuration; 3891 * called in response to ND_SET. 3892 */ 3893 /* ARGSUSED */ 3894 static int 3895 nd_ill_forward_set(queue_t *q, mblk_t *mp, char *valuestr, caddr_t cp, 3896 cred_t *ioc_cr) 3897 { 3898 long value; 3899 int retval; 3900 ip_stack_t *ipst = CONNQ_TO_IPST(q); 3901 3902 cmn_err(CE_WARN, ND_FORWARD_WARNING); 3903 3904 if (ddi_strtol(valuestr, NULL, 10, &value) != 0 || 3905 value < 0 || value > 1) { 3906 return (EINVAL); 3907 } 3908 3909 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 3910 retval = ill_forward_set((ill_t *)cp, (value != 0)); 3911 rw_exit(&ipst->ips_ill_g_lock); 3912 return (retval); 3913 } 3914 3915 /* 3916 * Set an ill's ILLF_ROUTER flag appropriately. If the ill is part of an 3917 * IPMP group, make sure all ill's in the group adopt the new policy. Send 3918 * up RTS_IFINFO routing socket messages for each interface whose flags we 3919 * change. 3920 */ 3921 int 3922 ill_forward_set(ill_t *ill, boolean_t enable) 3923 { 3924 ill_group_t *illgrp; 3925 ip_stack_t *ipst = ill->ill_ipst; 3926 3927 ASSERT(IAM_WRITER_ILL(ill) || RW_READ_HELD(&ipst->ips_ill_g_lock)); 3928 3929 if ((enable && (ill->ill_flags & ILLF_ROUTER)) || 3930 (!enable && !(ill->ill_flags & ILLF_ROUTER))) 3931 return (0); 3932 3933 if (IS_LOOPBACK(ill)) 3934 return (EINVAL); 3935 3936 /* 3937 * If the ill is in an IPMP group, set the forwarding policy on all 3938 * members of the group to the same value. 3939 */ 3940 illgrp = ill->ill_group; 3941 if (illgrp != NULL) { 3942 ill_t *tmp_ill; 3943 3944 for (tmp_ill = illgrp->illgrp_ill; tmp_ill != NULL; 3945 tmp_ill = tmp_ill->ill_group_next) { 3946 ip1dbg(("ill_forward_set: %s %s forwarding on %s", 3947 (enable ? "Enabling" : "Disabling"), 3948 (tmp_ill->ill_isv6 ? "IPv6" : "IPv4"), 3949 tmp_ill->ill_name)); 3950 mutex_enter(&tmp_ill->ill_lock); 3951 if (enable) 3952 tmp_ill->ill_flags |= ILLF_ROUTER; 3953 else 3954 tmp_ill->ill_flags &= ~ILLF_ROUTER; 3955 mutex_exit(&tmp_ill->ill_lock); 3956 if (tmp_ill->ill_isv6) 3957 ill_set_nce_router_flags(tmp_ill, enable); 3958 /* Notify routing socket listeners of this change. */ 3959 ip_rts_ifmsg(tmp_ill->ill_ipif); 3960 } 3961 } else { 3962 ip1dbg(("ill_forward_set: %s %s forwarding on %s", 3963 (enable ? "Enabling" : "Disabling"), 3964 (ill->ill_isv6 ? "IPv6" : "IPv4"), ill->ill_name)); 3965 mutex_enter(&ill->ill_lock); 3966 if (enable) 3967 ill->ill_flags |= ILLF_ROUTER; 3968 else 3969 ill->ill_flags &= ~ILLF_ROUTER; 3970 mutex_exit(&ill->ill_lock); 3971 if (ill->ill_isv6) 3972 ill_set_nce_router_flags(ill, enable); 3973 /* Notify routing socket listeners of this change. */ 3974 ip_rts_ifmsg(ill->ill_ipif); 3975 } 3976 3977 return (0); 3978 } 3979 3980 /* 3981 * Based on the ILLF_ROUTER flag of an ill, make sure all local nce's for 3982 * addresses assigned to the ill have the NCE_F_ISROUTER flag appropriately 3983 * set or clear. 3984 */ 3985 static void 3986 ill_set_nce_router_flags(ill_t *ill, boolean_t enable) 3987 { 3988 ipif_t *ipif; 3989 nce_t *nce; 3990 3991 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 3992 nce = ndp_lookup_v6(ill, &ipif->ipif_v6lcl_addr, B_FALSE); 3993 if (nce != NULL) { 3994 mutex_enter(&nce->nce_lock); 3995 if (enable) 3996 nce->nce_flags |= NCE_F_ISROUTER; 3997 else 3998 nce->nce_flags &= ~NCE_F_ISROUTER; 3999 mutex_exit(&nce->nce_lock); 4000 NCE_REFRELE(nce); 4001 } 4002 } 4003 } 4004 4005 /* 4006 * Given an ill with a _valid_ name, add the ip_forwarding ndd variable 4007 * for this ill. Make sure the v6/v4 question has been answered about this 4008 * ill. The creation of this ndd variable is only for backwards compatibility. 4009 * The preferred way to control per-interface IP forwarding is through the 4010 * ILLF_ROUTER interface flag. 4011 */ 4012 static int 4013 ill_set_ndd_name(ill_t *ill) 4014 { 4015 char *suffix; 4016 ip_stack_t *ipst = ill->ill_ipst; 4017 4018 ASSERT(IAM_WRITER_ILL(ill)); 4019 4020 if (ill->ill_isv6) 4021 suffix = ipv6_forward_suffix; 4022 else 4023 suffix = ipv4_forward_suffix; 4024 4025 ill->ill_ndd_name = ill->ill_name + ill->ill_name_length; 4026 bcopy(ill->ill_name, ill->ill_ndd_name, ill->ill_name_length - 1); 4027 /* 4028 * Copies over the '\0'. 4029 * Note that strlen(suffix) is always bounded. 4030 */ 4031 bcopy(suffix, ill->ill_ndd_name + ill->ill_name_length - 1, 4032 strlen(suffix) + 1); 4033 4034 /* 4035 * Use of the nd table requires holding the reader lock. 4036 * Modifying the nd table thru nd_load/nd_unload requires 4037 * the writer lock. 4038 */ 4039 rw_enter(&ipst->ips_ip_g_nd_lock, RW_WRITER); 4040 if (!nd_load(&ipst->ips_ip_g_nd, ill->ill_ndd_name, nd_ill_forward_get, 4041 nd_ill_forward_set, (caddr_t)ill)) { 4042 /* 4043 * If the nd_load failed, it only meant that it could not 4044 * allocate a new bunch of room for further NDD expansion. 4045 * Because of that, the ill_ndd_name will be set to 0, and 4046 * this interface is at the mercy of the global ip_forwarding 4047 * variable. 4048 */ 4049 rw_exit(&ipst->ips_ip_g_nd_lock); 4050 ill->ill_ndd_name = NULL; 4051 return (ENOMEM); 4052 } 4053 rw_exit(&ipst->ips_ip_g_nd_lock); 4054 return (0); 4055 } 4056 4057 /* 4058 * Intializes the context structure and returns the first ill in the list 4059 * cuurently start_list and end_list can have values: 4060 * MAX_G_HEADS Traverse both IPV4 and IPV6 lists. 4061 * IP_V4_G_HEAD Traverse IPV4 list only. 4062 * IP_V6_G_HEAD Traverse IPV6 list only. 4063 */ 4064 4065 /* 4066 * We don't check for CONDEMNED ills here. Caller must do that if 4067 * necessary under the ill lock. 4068 */ 4069 ill_t * 4070 ill_first(int start_list, int end_list, ill_walk_context_t *ctx, 4071 ip_stack_t *ipst) 4072 { 4073 ill_if_t *ifp; 4074 ill_t *ill; 4075 avl_tree_t *avl_tree; 4076 4077 ASSERT(RW_LOCK_HELD(&ipst->ips_ill_g_lock)); 4078 ASSERT(end_list <= MAX_G_HEADS && start_list >= 0); 4079 4080 /* 4081 * setup the lists to search 4082 */ 4083 if (end_list != MAX_G_HEADS) { 4084 ctx->ctx_current_list = start_list; 4085 ctx->ctx_last_list = end_list; 4086 } else { 4087 ctx->ctx_last_list = MAX_G_HEADS - 1; 4088 ctx->ctx_current_list = 0; 4089 } 4090 4091 while (ctx->ctx_current_list <= ctx->ctx_last_list) { 4092 ifp = IP_VX_ILL_G_LIST(ctx->ctx_current_list, ipst); 4093 if (ifp != (ill_if_t *) 4094 &IP_VX_ILL_G_LIST(ctx->ctx_current_list, ipst)) { 4095 avl_tree = &ifp->illif_avl_by_ppa; 4096 ill = avl_first(avl_tree); 4097 /* 4098 * ill is guaranteed to be non NULL or ifp should have 4099 * not existed. 4100 */ 4101 ASSERT(ill != NULL); 4102 return (ill); 4103 } 4104 ctx->ctx_current_list++; 4105 } 4106 4107 return (NULL); 4108 } 4109 4110 /* 4111 * returns the next ill in the list. ill_first() must have been called 4112 * before calling ill_next() or bad things will happen. 4113 */ 4114 4115 /* 4116 * We don't check for CONDEMNED ills here. Caller must do that if 4117 * necessary under the ill lock. 4118 */ 4119 ill_t * 4120 ill_next(ill_walk_context_t *ctx, ill_t *lastill) 4121 { 4122 ill_if_t *ifp; 4123 ill_t *ill; 4124 ip_stack_t *ipst = lastill->ill_ipst; 4125 4126 ASSERT(lastill->ill_ifptr != (ill_if_t *) 4127 &IP_VX_ILL_G_LIST(ctx->ctx_current_list, ipst)); 4128 if ((ill = avl_walk(&lastill->ill_ifptr->illif_avl_by_ppa, lastill, 4129 AVL_AFTER)) != NULL) { 4130 return (ill); 4131 } 4132 4133 /* goto next ill_ifp in the list. */ 4134 ifp = lastill->ill_ifptr->illif_next; 4135 4136 /* make sure not at end of circular list */ 4137 while (ifp == 4138 (ill_if_t *)&IP_VX_ILL_G_LIST(ctx->ctx_current_list, ipst)) { 4139 if (++ctx->ctx_current_list > ctx->ctx_last_list) 4140 return (NULL); 4141 ifp = IP_VX_ILL_G_LIST(ctx->ctx_current_list, ipst); 4142 } 4143 4144 return (avl_first(&ifp->illif_avl_by_ppa)); 4145 } 4146 4147 /* 4148 * Check interface name for correct format which is name+ppa. 4149 * name can contain characters and digits, the right most digits 4150 * make up the ppa number. use of octal is not allowed, name must contain 4151 * a ppa, return pointer to the start of ppa. 4152 * In case of error return NULL. 4153 */ 4154 static char * 4155 ill_get_ppa_ptr(char *name) 4156 { 4157 int namelen = mi_strlen(name); 4158 4159 int len = namelen; 4160 4161 name += len; 4162 while (len > 0) { 4163 name--; 4164 if (*name < '0' || *name > '9') 4165 break; 4166 len--; 4167 } 4168 4169 /* empty string, all digits, or no trailing digits */ 4170 if (len == 0 || len == (int)namelen) 4171 return (NULL); 4172 4173 name++; 4174 /* check for attempted use of octal */ 4175 if (*name == '0' && len != (int)namelen - 1) 4176 return (NULL); 4177 return (name); 4178 } 4179 4180 /* 4181 * use avl tree to locate the ill. 4182 */ 4183 static ill_t * 4184 ill_find_by_name(char *name, boolean_t isv6, queue_t *q, mblk_t *mp, 4185 ipsq_func_t func, int *error, ip_stack_t *ipst) 4186 { 4187 char *ppa_ptr = NULL; 4188 int len; 4189 uint_t ppa; 4190 ill_t *ill = NULL; 4191 ill_if_t *ifp; 4192 int list; 4193 ipsq_t *ipsq; 4194 4195 if (error != NULL) 4196 *error = 0; 4197 4198 /* 4199 * get ppa ptr 4200 */ 4201 if (isv6) 4202 list = IP_V6_G_HEAD; 4203 else 4204 list = IP_V4_G_HEAD; 4205 4206 if ((ppa_ptr = ill_get_ppa_ptr(name)) == NULL) { 4207 if (error != NULL) 4208 *error = ENXIO; 4209 return (NULL); 4210 } 4211 4212 len = ppa_ptr - name + 1; 4213 4214 ppa = stoi(&ppa_ptr); 4215 4216 ifp = IP_VX_ILL_G_LIST(list, ipst); 4217 4218 while (ifp != (ill_if_t *)&IP_VX_ILL_G_LIST(list, ipst)) { 4219 /* 4220 * match is done on len - 1 as the name is not null 4221 * terminated it contains ppa in addition to the interface 4222 * name. 4223 */ 4224 if ((ifp->illif_name_len == len) && 4225 bcmp(ifp->illif_name, name, len - 1) == 0) { 4226 break; 4227 } else { 4228 ifp = ifp->illif_next; 4229 } 4230 } 4231 4232 4233 if (ifp == (ill_if_t *)&IP_VX_ILL_G_LIST(list, ipst)) { 4234 /* 4235 * Even the interface type does not exist. 4236 */ 4237 if (error != NULL) 4238 *error = ENXIO; 4239 return (NULL); 4240 } 4241 4242 ill = avl_find(&ifp->illif_avl_by_ppa, (void *) &ppa, NULL); 4243 if (ill != NULL) { 4244 /* 4245 * The block comment at the start of ipif_down 4246 * explains the use of the macros used below 4247 */ 4248 GRAB_CONN_LOCK(q); 4249 mutex_enter(&ill->ill_lock); 4250 if (ILL_CAN_LOOKUP(ill)) { 4251 ill_refhold_locked(ill); 4252 mutex_exit(&ill->ill_lock); 4253 RELEASE_CONN_LOCK(q); 4254 return (ill); 4255 } else if (ILL_CAN_WAIT(ill, q)) { 4256 ipsq = ill->ill_phyint->phyint_ipsq; 4257 mutex_enter(&ipsq->ipsq_lock); 4258 mutex_exit(&ill->ill_lock); 4259 ipsq_enq(ipsq, q, mp, func, NEW_OP, ill); 4260 mutex_exit(&ipsq->ipsq_lock); 4261 RELEASE_CONN_LOCK(q); 4262 if (error != NULL) 4263 *error = EINPROGRESS; 4264 return (NULL); 4265 } 4266 mutex_exit(&ill->ill_lock); 4267 RELEASE_CONN_LOCK(q); 4268 } 4269 if (error != NULL) 4270 *error = ENXIO; 4271 return (NULL); 4272 } 4273 4274 /* 4275 * comparison function for use with avl. 4276 */ 4277 static int 4278 ill_compare_ppa(const void *ppa_ptr, const void *ill_ptr) 4279 { 4280 uint_t ppa; 4281 uint_t ill_ppa; 4282 4283 ASSERT(ppa_ptr != NULL && ill_ptr != NULL); 4284 4285 ppa = *((uint_t *)ppa_ptr); 4286 ill_ppa = ((const ill_t *)ill_ptr)->ill_ppa; 4287 /* 4288 * We want the ill with the lowest ppa to be on the 4289 * top. 4290 */ 4291 if (ill_ppa < ppa) 4292 return (1); 4293 if (ill_ppa > ppa) 4294 return (-1); 4295 return (0); 4296 } 4297 4298 /* 4299 * remove an interface type from the global list. 4300 */ 4301 static void 4302 ill_delete_interface_type(ill_if_t *interface) 4303 { 4304 ASSERT(interface != NULL); 4305 ASSERT(avl_numnodes(&interface->illif_avl_by_ppa) == 0); 4306 4307 avl_destroy(&interface->illif_avl_by_ppa); 4308 if (interface->illif_ppa_arena != NULL) 4309 vmem_destroy(interface->illif_ppa_arena); 4310 4311 remque(interface); 4312 4313 mi_free(interface); 4314 } 4315 4316 /* 4317 * remove ill from the global list. 4318 */ 4319 static void 4320 ill_glist_delete(ill_t *ill) 4321 { 4322 hook_nic_event_t *info; 4323 ip_stack_t *ipst; 4324 4325 if (ill == NULL) 4326 return; 4327 ipst = ill->ill_ipst; 4328 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 4329 4330 /* 4331 * If the ill was never inserted into the AVL tree 4332 * we skip the if branch. 4333 */ 4334 if (ill->ill_ifptr != NULL) { 4335 /* 4336 * remove from AVL tree and free ppa number 4337 */ 4338 avl_remove(&ill->ill_ifptr->illif_avl_by_ppa, ill); 4339 4340 if (ill->ill_ifptr->illif_ppa_arena != NULL) { 4341 vmem_free(ill->ill_ifptr->illif_ppa_arena, 4342 (void *)(uintptr_t)(ill->ill_ppa+1), 1); 4343 } 4344 if (avl_numnodes(&ill->ill_ifptr->illif_avl_by_ppa) == 0) { 4345 ill_delete_interface_type(ill->ill_ifptr); 4346 } 4347 4348 /* 4349 * Indicate ill is no longer in the list. 4350 */ 4351 ill->ill_ifptr = NULL; 4352 ill->ill_name_length = 0; 4353 ill->ill_name[0] = '\0'; 4354 ill->ill_ppa = UINT_MAX; 4355 } 4356 4357 /* 4358 * Run the unplumb hook after the NIC has disappeared from being 4359 * visible so that attempts to revalidate its existance will fail. 4360 * 4361 * This needs to be run inside the ill_g_lock perimeter to ensure 4362 * that the ordering of delivered events to listeners matches the 4363 * order of them in the kernel. 4364 */ 4365 info = ill->ill_nic_event_info; 4366 if (info != NULL && info->hne_event == NE_DOWN) { 4367 mutex_enter(&ill->ill_lock); 4368 ill_nic_info_dispatch(ill); 4369 mutex_exit(&ill->ill_lock); 4370 } 4371 4372 /* Generate NE_UNPLUMB event for ill_name. */ 4373 (void) ill_hook_event_create(ill, 0, NE_UNPLUMB, ill->ill_name, 4374 ill->ill_name_length); 4375 4376 ill_phyint_free(ill); 4377 rw_exit(&ipst->ips_ill_g_lock); 4378 } 4379 4380 /* 4381 * allocate a ppa, if the number of plumbed interfaces of this type are 4382 * less than ill_no_arena do a linear search to find a unused ppa. 4383 * When the number goes beyond ill_no_arena switch to using an arena. 4384 * Note: ppa value of zero cannot be allocated from vmem_arena as it 4385 * is the return value for an error condition, so allocation starts at one 4386 * and is decremented by one. 4387 */ 4388 static int 4389 ill_alloc_ppa(ill_if_t *ifp, ill_t *ill) 4390 { 4391 ill_t *tmp_ill; 4392 uint_t start, end; 4393 int ppa; 4394 4395 if (ifp->illif_ppa_arena == NULL && 4396 (avl_numnodes(&ifp->illif_avl_by_ppa) + 1 > ill_no_arena)) { 4397 /* 4398 * Create an arena. 4399 */ 4400 ifp->illif_ppa_arena = vmem_create(ifp->illif_name, 4401 (void *)1, UINT_MAX - 1, 1, NULL, NULL, 4402 NULL, 0, VM_SLEEP | VMC_IDENTIFIER); 4403 /* allocate what has already been assigned */ 4404 for (tmp_ill = avl_first(&ifp->illif_avl_by_ppa); 4405 tmp_ill != NULL; tmp_ill = avl_walk(&ifp->illif_avl_by_ppa, 4406 tmp_ill, AVL_AFTER)) { 4407 ppa = (int)(uintptr_t)vmem_xalloc(ifp->illif_ppa_arena, 4408 1, /* size */ 4409 1, /* align/quantum */ 4410 0, /* phase */ 4411 0, /* nocross */ 4412 /* minaddr */ 4413 (void *)((uintptr_t)tmp_ill->ill_ppa + 1), 4414 /* maxaddr */ 4415 (void *)((uintptr_t)tmp_ill->ill_ppa + 2), 4416 VM_NOSLEEP|VM_FIRSTFIT); 4417 if (ppa == 0) { 4418 ip1dbg(("ill_alloc_ppa: ppa allocation" 4419 " failed while switching")); 4420 vmem_destroy(ifp->illif_ppa_arena); 4421 ifp->illif_ppa_arena = NULL; 4422 break; 4423 } 4424 } 4425 } 4426 4427 if (ifp->illif_ppa_arena != NULL) { 4428 if (ill->ill_ppa == UINT_MAX) { 4429 ppa = (int)(uintptr_t)vmem_alloc(ifp->illif_ppa_arena, 4430 1, VM_NOSLEEP|VM_FIRSTFIT); 4431 if (ppa == 0) 4432 return (EAGAIN); 4433 ill->ill_ppa = --ppa; 4434 } else { 4435 ppa = (int)(uintptr_t)vmem_xalloc(ifp->illif_ppa_arena, 4436 1, /* size */ 4437 1, /* align/quantum */ 4438 0, /* phase */ 4439 0, /* nocross */ 4440 (void *)(uintptr_t)(ill->ill_ppa + 1), /* minaddr */ 4441 (void *)(uintptr_t)(ill->ill_ppa + 2), /* maxaddr */ 4442 VM_NOSLEEP|VM_FIRSTFIT); 4443 /* 4444 * Most likely the allocation failed because 4445 * the requested ppa was in use. 4446 */ 4447 if (ppa == 0) 4448 return (EEXIST); 4449 } 4450 return (0); 4451 } 4452 4453 /* 4454 * No arena is in use and not enough (>ill_no_arena) interfaces have 4455 * been plumbed to create one. Do a linear search to get a unused ppa. 4456 */ 4457 if (ill->ill_ppa == UINT_MAX) { 4458 end = UINT_MAX - 1; 4459 start = 0; 4460 } else { 4461 end = start = ill->ill_ppa; 4462 } 4463 4464 tmp_ill = avl_find(&ifp->illif_avl_by_ppa, (void *)&start, NULL); 4465 while (tmp_ill != NULL && tmp_ill->ill_ppa == start) { 4466 if (start++ >= end) { 4467 if (ill->ill_ppa == UINT_MAX) 4468 return (EAGAIN); 4469 else 4470 return (EEXIST); 4471 } 4472 tmp_ill = avl_walk(&ifp->illif_avl_by_ppa, tmp_ill, AVL_AFTER); 4473 } 4474 ill->ill_ppa = start; 4475 return (0); 4476 } 4477 4478 /* 4479 * Insert ill into the list of configured ill's. Once this function completes, 4480 * the ill is globally visible and is available through lookups. More precisely 4481 * this happens after the caller drops the ill_g_lock. 4482 */ 4483 static int 4484 ill_glist_insert(ill_t *ill, char *name, boolean_t isv6) 4485 { 4486 ill_if_t *ill_interface; 4487 avl_index_t where = 0; 4488 int error; 4489 int name_length; 4490 int index; 4491 boolean_t check_length = B_FALSE; 4492 ip_stack_t *ipst = ill->ill_ipst; 4493 4494 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); 4495 4496 name_length = mi_strlen(name) + 1; 4497 4498 if (isv6) 4499 index = IP_V6_G_HEAD; 4500 else 4501 index = IP_V4_G_HEAD; 4502 4503 ill_interface = IP_VX_ILL_G_LIST(index, ipst); 4504 /* 4505 * Search for interface type based on name 4506 */ 4507 while (ill_interface != (ill_if_t *)&IP_VX_ILL_G_LIST(index, ipst)) { 4508 if ((ill_interface->illif_name_len == name_length) && 4509 (strcmp(ill_interface->illif_name, name) == 0)) { 4510 break; 4511 } 4512 ill_interface = ill_interface->illif_next; 4513 } 4514 4515 /* 4516 * Interface type not found, create one. 4517 */ 4518 if (ill_interface == (ill_if_t *)&IP_VX_ILL_G_LIST(index, ipst)) { 4519 4520 ill_g_head_t ghead; 4521 4522 /* 4523 * allocate ill_if_t structure 4524 */ 4525 4526 ill_interface = (ill_if_t *)mi_zalloc(sizeof (ill_if_t)); 4527 if (ill_interface == NULL) { 4528 return (ENOMEM); 4529 } 4530 4531 4532 4533 (void) strcpy(ill_interface->illif_name, name); 4534 ill_interface->illif_name_len = name_length; 4535 4536 avl_create(&ill_interface->illif_avl_by_ppa, 4537 ill_compare_ppa, sizeof (ill_t), 4538 offsetof(struct ill_s, ill_avl_byppa)); 4539 4540 /* 4541 * link the structure in the back to maintain order 4542 * of configuration for ifconfig output. 4543 */ 4544 ghead = ipst->ips_ill_g_heads[index]; 4545 insque(ill_interface, ghead.ill_g_list_tail); 4546 4547 } 4548 4549 if (ill->ill_ppa == UINT_MAX) 4550 check_length = B_TRUE; 4551 4552 error = ill_alloc_ppa(ill_interface, ill); 4553 if (error != 0) { 4554 if (avl_numnodes(&ill_interface->illif_avl_by_ppa) == 0) 4555 ill_delete_interface_type(ill->ill_ifptr); 4556 return (error); 4557 } 4558 4559 /* 4560 * When the ppa is choosen by the system, check that there is 4561 * enough space to insert ppa. if a specific ppa was passed in this 4562 * check is not required as the interface name passed in will have 4563 * the right ppa in it. 4564 */ 4565 if (check_length) { 4566 /* 4567 * UINT_MAX - 1 should fit in 10 chars, alloc 12 chars. 4568 */ 4569 char buf[sizeof (uint_t) * 3]; 4570 4571 /* 4572 * convert ppa to string to calculate the amount of space 4573 * required for it in the name. 4574 */ 4575 numtos(ill->ill_ppa, buf); 4576 4577 /* Do we have enough space to insert ppa ? */ 4578 4579 if ((mi_strlen(name) + mi_strlen(buf) + 1) > LIFNAMSIZ) { 4580 /* Free ppa and interface type struct */ 4581 if (ill_interface->illif_ppa_arena != NULL) { 4582 vmem_free(ill_interface->illif_ppa_arena, 4583 (void *)(uintptr_t)(ill->ill_ppa+1), 1); 4584 } 4585 if (avl_numnodes(&ill_interface->illif_avl_by_ppa) == 4586 0) { 4587 ill_delete_interface_type(ill->ill_ifptr); 4588 } 4589 4590 return (EINVAL); 4591 } 4592 } 4593 4594 (void) sprintf(ill->ill_name, "%s%u", name, ill->ill_ppa); 4595 ill->ill_name_length = mi_strlen(ill->ill_name) + 1; 4596 4597 (void) avl_find(&ill_interface->illif_avl_by_ppa, &ill->ill_ppa, 4598 &where); 4599 ill->ill_ifptr = ill_interface; 4600 avl_insert(&ill_interface->illif_avl_by_ppa, ill, where); 4601 4602 ill_phyint_reinit(ill); 4603 return (0); 4604 } 4605 4606 /* Initialize the per phyint (per IPMP group) ipsq used for serialization */ 4607 static boolean_t 4608 ipsq_init(ill_t *ill) 4609 { 4610 ipsq_t *ipsq; 4611 4612 /* Init the ipsq and impicitly enter as writer */ 4613 ill->ill_phyint->phyint_ipsq = 4614 kmem_zalloc(sizeof (ipsq_t), KM_NOSLEEP); 4615 if (ill->ill_phyint->phyint_ipsq == NULL) 4616 return (B_FALSE); 4617 ipsq = ill->ill_phyint->phyint_ipsq; 4618 ipsq->ipsq_phyint_list = ill->ill_phyint; 4619 ill->ill_phyint->phyint_ipsq_next = NULL; 4620 mutex_init(&ipsq->ipsq_lock, NULL, MUTEX_DEFAULT, 0); 4621 ipsq->ipsq_refs = 1; 4622 ipsq->ipsq_writer = curthread; 4623 ipsq->ipsq_reentry_cnt = 1; 4624 ipsq->ipsq_ipst = ill->ill_ipst; /* No netstack_hold */ 4625 #ifdef DEBUG 4626 ipsq->ipsq_depth = getpcstack((pc_t *)ipsq->ipsq_stack, 4627 IPSQ_STACK_DEPTH); 4628 #endif 4629 (void) strcpy(ipsq->ipsq_name, ill->ill_name); 4630 return (B_TRUE); 4631 } 4632 4633 /* 4634 * ill_init is called by ip_open when a device control stream is opened. 4635 * It does a few initializations, and shoots a DL_INFO_REQ message down 4636 * to the driver. The response is later picked up in ip_rput_dlpi and 4637 * used to set up default mechanisms for talking to the driver. (Always 4638 * called as writer.) 4639 * 4640 * If this function returns error, ip_open will call ip_close which in 4641 * turn will call ill_delete to clean up any memory allocated here that 4642 * is not yet freed. 4643 */ 4644 int 4645 ill_init(queue_t *q, ill_t *ill) 4646 { 4647 int count; 4648 dl_info_req_t *dlir; 4649 mblk_t *info_mp; 4650 uchar_t *frag_ptr; 4651 4652 /* 4653 * The ill is initialized to zero by mi_alloc*(). In addition 4654 * some fields already contain valid values, initialized in 4655 * ip_open(), before we reach here. 4656 */ 4657 mutex_init(&ill->ill_lock, NULL, MUTEX_DEFAULT, 0); 4658 4659 ill->ill_rq = q; 4660 ill->ill_wq = WR(q); 4661 4662 info_mp = allocb(MAX(sizeof (dl_info_req_t), sizeof (dl_info_ack_t)), 4663 BPRI_HI); 4664 if (info_mp == NULL) 4665 return (ENOMEM); 4666 4667 /* 4668 * Allocate sufficient space to contain our fragment hash table and 4669 * the device name. 4670 */ 4671 frag_ptr = (uchar_t *)mi_zalloc(ILL_FRAG_HASH_TBL_SIZE + 4672 2 * LIFNAMSIZ + 5 + strlen(ipv6_forward_suffix)); 4673 if (frag_ptr == NULL) { 4674 freemsg(info_mp); 4675 return (ENOMEM); 4676 } 4677 ill->ill_frag_ptr = frag_ptr; 4678 ill->ill_frag_free_num_pkts = 0; 4679 ill->ill_last_frag_clean_time = 0; 4680 ill->ill_frag_hash_tbl = (ipfb_t *)frag_ptr; 4681 ill->ill_name = (char *)(frag_ptr + ILL_FRAG_HASH_TBL_SIZE); 4682 for (count = 0; count < ILL_FRAG_HASH_TBL_COUNT; count++) { 4683 mutex_init(&ill->ill_frag_hash_tbl[count].ipfb_lock, 4684 NULL, MUTEX_DEFAULT, NULL); 4685 } 4686 4687 ill->ill_phyint = (phyint_t *)mi_zalloc(sizeof (phyint_t)); 4688 if (ill->ill_phyint == NULL) { 4689 freemsg(info_mp); 4690 mi_free(frag_ptr); 4691 return (ENOMEM); 4692 } 4693 4694 mutex_init(&ill->ill_phyint->phyint_lock, NULL, MUTEX_DEFAULT, 0); 4695 /* 4696 * For now pretend this is a v4 ill. We need to set phyint_ill* 4697 * at this point because of the following reason. If we can't 4698 * enter the ipsq at some point and cv_wait, the writer that 4699 * wakes us up tries to locate us using the list of all phyints 4700 * in an ipsq and the ills from the phyint thru the phyint_ill*. 4701 * If we don't set it now, we risk a missed wakeup. 4702 */ 4703 ill->ill_phyint->phyint_illv4 = ill; 4704 ill->ill_ppa = UINT_MAX; 4705 ill->ill_fastpath_list = &ill->ill_fastpath_list; 4706 4707 if (!ipsq_init(ill)) { 4708 freemsg(info_mp); 4709 mi_free(frag_ptr); 4710 mi_free(ill->ill_phyint); 4711 return (ENOMEM); 4712 } 4713 4714 ill->ill_state_flags |= ILL_LL_SUBNET_PENDING; 4715 4716 4717 /* Frag queue limit stuff */ 4718 ill->ill_frag_count = 0; 4719 ill->ill_ipf_gen = 0; 4720 4721 ill->ill_global_timer = INFINITY; 4722 ill->ill_mcast_v1_time = ill->ill_mcast_v2_time = 0; 4723 ill->ill_mcast_v1_tset = ill->ill_mcast_v2_tset = 0; 4724 ill->ill_mcast_rv = MCAST_DEF_ROBUSTNESS; 4725 ill->ill_mcast_qi = MCAST_DEF_QUERY_INTERVAL; 4726 4727 /* 4728 * Initialize IPv6 configuration variables. The IP module is always 4729 * opened as an IPv4 module. Instead tracking down the cases where 4730 * it switches to do ipv6, we'll just initialize the IPv6 configuration 4731 * here for convenience, this has no effect until the ill is set to do 4732 * IPv6. 4733 */ 4734 ill->ill_reachable_time = ND_REACHABLE_TIME; 4735 ill->ill_reachable_retrans_time = ND_RETRANS_TIMER; 4736 ill->ill_xmit_count = ND_MAX_MULTICAST_SOLICIT; 4737 ill->ill_max_buf = ND_MAX_Q; 4738 ill->ill_refcnt = 0; 4739 4740 /* Send down the Info Request to the driver. */ 4741 info_mp->b_datap->db_type = M_PCPROTO; 4742 dlir = (dl_info_req_t *)info_mp->b_rptr; 4743 info_mp->b_wptr = (uchar_t *)&dlir[1]; 4744 dlir->dl_primitive = DL_INFO_REQ; 4745 4746 ill->ill_dlpi_pending = DL_PRIM_INVAL; 4747 4748 qprocson(q); 4749 ill_dlpi_send(ill, info_mp); 4750 4751 return (0); 4752 } 4753 4754 /* 4755 * ill_dls_info 4756 * creates datalink socket info from the device. 4757 */ 4758 int 4759 ill_dls_info(struct sockaddr_dl *sdl, const ipif_t *ipif) 4760 { 4761 size_t len; 4762 ill_t *ill = ipif->ipif_ill; 4763 4764 sdl->sdl_family = AF_LINK; 4765 sdl->sdl_index = ill->ill_phyint->phyint_ifindex; 4766 sdl->sdl_type = ill->ill_type; 4767 ipif_get_name(ipif, sdl->sdl_data, sizeof (sdl->sdl_data)); 4768 len = strlen(sdl->sdl_data); 4769 ASSERT(len < 256); 4770 sdl->sdl_nlen = (uchar_t)len; 4771 sdl->sdl_alen = ill->ill_phys_addr_length; 4772 sdl->sdl_slen = 0; 4773 if (ill->ill_phys_addr_length != 0 && ill->ill_phys_addr != NULL) 4774 bcopy(ill->ill_phys_addr, &sdl->sdl_data[len], sdl->sdl_alen); 4775 4776 return (sizeof (struct sockaddr_dl)); 4777 } 4778 4779 /* 4780 * ill_xarp_info 4781 * creates xarp info from the device. 4782 */ 4783 static int 4784 ill_xarp_info(struct sockaddr_dl *sdl, ill_t *ill) 4785 { 4786 sdl->sdl_family = AF_LINK; 4787 sdl->sdl_index = ill->ill_phyint->phyint_ifindex; 4788 sdl->sdl_type = ill->ill_type; 4789 ipif_get_name(ill->ill_ipif, sdl->sdl_data, sizeof (sdl->sdl_data)); 4790 sdl->sdl_nlen = (uchar_t)mi_strlen(sdl->sdl_data); 4791 sdl->sdl_alen = ill->ill_phys_addr_length; 4792 sdl->sdl_slen = 0; 4793 return (sdl->sdl_nlen); 4794 } 4795 4796 static int 4797 loopback_kstat_update(kstat_t *ksp, int rw) 4798 { 4799 kstat_named_t *kn; 4800 netstackid_t stackid; 4801 netstack_t *ns; 4802 ip_stack_t *ipst; 4803 4804 if (ksp == NULL || ksp->ks_data == NULL) 4805 return (EIO); 4806 4807 if (rw == KSTAT_WRITE) 4808 return (EACCES); 4809 4810 kn = KSTAT_NAMED_PTR(ksp); 4811 stackid = (zoneid_t)(uintptr_t)ksp->ks_private; 4812 4813 ns = netstack_find_by_stackid(stackid); 4814 if (ns == NULL) 4815 return (-1); 4816 4817 ipst = ns->netstack_ip; 4818 if (ipst == NULL) { 4819 netstack_rele(ns); 4820 return (-1); 4821 } 4822 kn[0].value.ui32 = ipst->ips_loopback_packets; 4823 kn[1].value.ui32 = ipst->ips_loopback_packets; 4824 netstack_rele(ns); 4825 return (0); 4826 } 4827 4828 4829 /* 4830 * Has ifindex been plumbed already. 4831 * Compares both phyint_ifindex and phyint_group_ifindex. 4832 */ 4833 static boolean_t 4834 phyint_exists(uint_t index, ip_stack_t *ipst) 4835 { 4836 phyint_t *phyi; 4837 4838 ASSERT(index != 0); 4839 ASSERT(RW_LOCK_HELD(&ipst->ips_ill_g_lock)); 4840 /* 4841 * Indexes are stored in the phyint - a common structure 4842 * to both IPv4 and IPv6. 4843 */ 4844 phyi = avl_first(&ipst->ips_phyint_g_list->phyint_list_avl_by_index); 4845 for (; phyi != NULL; 4846 phyi = avl_walk(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 4847 phyi, AVL_AFTER)) { 4848 if (phyi->phyint_ifindex == index || 4849 phyi->phyint_group_ifindex == index) 4850 return (B_TRUE); 4851 } 4852 return (B_FALSE); 4853 } 4854 4855 /* Pick a unique ifindex */ 4856 boolean_t 4857 ip_assign_ifindex(uint_t *indexp, ip_stack_t *ipst) 4858 { 4859 uint_t starting_index; 4860 4861 if (!ipst->ips_ill_index_wrap) { 4862 *indexp = ipst->ips_ill_index++; 4863 if (ipst->ips_ill_index == 0) { 4864 /* Reached the uint_t limit Next time wrap */ 4865 ipst->ips_ill_index_wrap = B_TRUE; 4866 } 4867 return (B_TRUE); 4868 } 4869 4870 /* 4871 * Start reusing unused indexes. Note that we hold the ill_g_lock 4872 * at this point and don't want to call any function that attempts 4873 * to get the lock again. 4874 */ 4875 starting_index = ipst->ips_ill_index++; 4876 for (; ipst->ips_ill_index != starting_index; ipst->ips_ill_index++) { 4877 if (ipst->ips_ill_index != 0 && 4878 !phyint_exists(ipst->ips_ill_index, ipst)) { 4879 /* found unused index - use it */ 4880 *indexp = ipst->ips_ill_index; 4881 return (B_TRUE); 4882 } 4883 } 4884 4885 /* 4886 * all interface indicies are inuse. 4887 */ 4888 return (B_FALSE); 4889 } 4890 4891 /* 4892 * Assign a unique interface index for the phyint. 4893 */ 4894 static boolean_t 4895 phyint_assign_ifindex(phyint_t *phyi, ip_stack_t *ipst) 4896 { 4897 ASSERT(phyi->phyint_ifindex == 0); 4898 return (ip_assign_ifindex(&phyi->phyint_ifindex, ipst)); 4899 } 4900 4901 /* 4902 * Return a pointer to the ill which matches the supplied name. Note that 4903 * the ill name length includes the null termination character. (May be 4904 * called as writer.) 4905 * If do_alloc and the interface is "lo0" it will be automatically created. 4906 * Cannot bump up reference on condemned ills. So dup detect can't be done 4907 * using this func. 4908 */ 4909 ill_t * 4910 ill_lookup_on_name(char *name, boolean_t do_alloc, boolean_t isv6, 4911 queue_t *q, mblk_t *mp, ipsq_func_t func, int *error, boolean_t *did_alloc, 4912 ip_stack_t *ipst) 4913 { 4914 ill_t *ill; 4915 ipif_t *ipif; 4916 kstat_named_t *kn; 4917 boolean_t isloopback; 4918 ipsq_t *old_ipsq; 4919 in6_addr_t ov6addr; 4920 4921 isloopback = mi_strcmp(name, ipif_loopback_name) == 0; 4922 4923 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 4924 ill = ill_find_by_name(name, isv6, q, mp, func, error, ipst); 4925 rw_exit(&ipst->ips_ill_g_lock); 4926 if (ill != NULL || (error != NULL && *error == EINPROGRESS)) 4927 return (ill); 4928 4929 /* 4930 * Couldn't find it. Does this happen to be a lookup for the 4931 * loopback device and are we allowed to allocate it? 4932 */ 4933 if (!isloopback || !do_alloc) 4934 return (NULL); 4935 4936 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 4937 4938 ill = ill_find_by_name(name, isv6, q, mp, func, error, ipst); 4939 if (ill != NULL || (error != NULL && *error == EINPROGRESS)) { 4940 rw_exit(&ipst->ips_ill_g_lock); 4941 return (ill); 4942 } 4943 4944 /* Create the loopback device on demand */ 4945 ill = (ill_t *)(mi_alloc(sizeof (ill_t) + 4946 sizeof (ipif_loopback_name), BPRI_MED)); 4947 if (ill == NULL) 4948 goto done; 4949 4950 *ill = ill_null; 4951 mutex_init(&ill->ill_lock, NULL, MUTEX_DEFAULT, NULL); 4952 ill->ill_ipst = ipst; 4953 netstack_hold(ipst->ips_netstack); 4954 /* 4955 * For exclusive stacks we set the zoneid to zero 4956 * to make IP operate as if in the global zone. 4957 */ 4958 ill->ill_zoneid = GLOBAL_ZONEID; 4959 4960 ill->ill_phyint = (phyint_t *)mi_zalloc(sizeof (phyint_t)); 4961 if (ill->ill_phyint == NULL) 4962 goto done; 4963 4964 if (isv6) 4965 ill->ill_phyint->phyint_illv6 = ill; 4966 else 4967 ill->ill_phyint->phyint_illv4 = ill; 4968 mutex_init(&ill->ill_phyint->phyint_lock, NULL, MUTEX_DEFAULT, 0); 4969 ill->ill_max_frag = IP_LOOPBACK_MTU; 4970 /* Add room for tcp+ip headers */ 4971 if (isv6) { 4972 ill->ill_isv6 = B_TRUE; 4973 ill->ill_max_frag += IPV6_HDR_LEN + 20; /* for TCP */ 4974 } else { 4975 ill->ill_max_frag += IP_SIMPLE_HDR_LENGTH + 20; 4976 } 4977 if (!ill_allocate_mibs(ill)) 4978 goto done; 4979 ill->ill_max_mtu = ill->ill_max_frag; 4980 /* 4981 * ipif_loopback_name can't be pointed at directly because its used 4982 * by both the ipv4 and ipv6 interfaces. When the ill is removed 4983 * from the glist, ill_glist_delete() sets the first character of 4984 * ill_name to '\0'. 4985 */ 4986 ill->ill_name = (char *)ill + sizeof (*ill); 4987 (void) strcpy(ill->ill_name, ipif_loopback_name); 4988 ill->ill_name_length = sizeof (ipif_loopback_name); 4989 /* Set ill_dlpi_pending for ipsq_current_finish() to work properly */ 4990 ill->ill_dlpi_pending = DL_PRIM_INVAL; 4991 4992 ill->ill_global_timer = INFINITY; 4993 ill->ill_mcast_v1_time = ill->ill_mcast_v2_time = 0; 4994 ill->ill_mcast_v1_tset = ill->ill_mcast_v2_tset = 0; 4995 ill->ill_mcast_rv = MCAST_DEF_ROBUSTNESS; 4996 ill->ill_mcast_qi = MCAST_DEF_QUERY_INTERVAL; 4997 4998 /* No resolver here. */ 4999 ill->ill_net_type = IRE_LOOPBACK; 5000 5001 /* Initialize the ipsq */ 5002 if (!ipsq_init(ill)) 5003 goto done; 5004 5005 ill->ill_phyint->phyint_ipsq->ipsq_writer = NULL; 5006 ill->ill_phyint->phyint_ipsq->ipsq_reentry_cnt--; 5007 ASSERT(ill->ill_phyint->phyint_ipsq->ipsq_reentry_cnt == 0); 5008 #ifdef DEBUG 5009 ill->ill_phyint->phyint_ipsq->ipsq_depth = 0; 5010 #endif 5011 ipif = ipif_allocate(ill, 0L, IRE_LOOPBACK, B_TRUE); 5012 if (ipif == NULL) 5013 goto done; 5014 5015 ill->ill_flags = ILLF_MULTICAST; 5016 5017 ov6addr = ipif->ipif_v6lcl_addr; 5018 /* Set up default loopback address and mask. */ 5019 if (!isv6) { 5020 ipaddr_t inaddr_loopback = htonl(INADDR_LOOPBACK); 5021 5022 IN6_IPADDR_TO_V4MAPPED(inaddr_loopback, &ipif->ipif_v6lcl_addr); 5023 ipif->ipif_v6src_addr = ipif->ipif_v6lcl_addr; 5024 V4MASK_TO_V6(htonl(IN_CLASSA_NET), ipif->ipif_v6net_mask); 5025 V6_MASK_COPY(ipif->ipif_v6lcl_addr, ipif->ipif_v6net_mask, 5026 ipif->ipif_v6subnet); 5027 ill->ill_flags |= ILLF_IPV4; 5028 } else { 5029 ipif->ipif_v6lcl_addr = ipv6_loopback; 5030 ipif->ipif_v6src_addr = ipif->ipif_v6lcl_addr; 5031 ipif->ipif_v6net_mask = ipv6_all_ones; 5032 V6_MASK_COPY(ipif->ipif_v6lcl_addr, ipif->ipif_v6net_mask, 5033 ipif->ipif_v6subnet); 5034 ill->ill_flags |= ILLF_IPV6; 5035 } 5036 5037 /* 5038 * Chain us in at the end of the ill list. hold the ill 5039 * before we make it globally visible. 1 for the lookup. 5040 */ 5041 ill->ill_refcnt = 0; 5042 ill_refhold(ill); 5043 5044 ill->ill_frag_count = 0; 5045 ill->ill_frag_free_num_pkts = 0; 5046 ill->ill_last_frag_clean_time = 0; 5047 5048 old_ipsq = ill->ill_phyint->phyint_ipsq; 5049 5050 if (ill_glist_insert(ill, "lo", isv6) != 0) 5051 cmn_err(CE_PANIC, "cannot insert loopback interface"); 5052 5053 /* Let SCTP know so that it can add this to its list */ 5054 sctp_update_ill(ill, SCTP_ILL_INSERT); 5055 5056 /* 5057 * We have already assigned ipif_v6lcl_addr above, but we need to 5058 * call sctp_update_ipif_addr() after SCTP_ILL_INSERT, which 5059 * requires to be after ill_glist_insert() since we need the 5060 * ill_index set. Pass on ipv6_loopback as the old address. 5061 */ 5062 sctp_update_ipif_addr(ipif, ov6addr); 5063 5064 /* 5065 * If the ipsq was changed in ill_phyint_reinit free the old ipsq. 5066 */ 5067 if (old_ipsq != ill->ill_phyint->phyint_ipsq) { 5068 /* Loopback ills aren't in any IPMP group */ 5069 ASSERT(!(old_ipsq->ipsq_flags & IPSQ_GROUP)); 5070 ipsq_delete(old_ipsq); 5071 } 5072 5073 /* 5074 * Delay this till the ipif is allocated as ipif_allocate 5075 * de-references ill_phyint for getting the ifindex. We 5076 * can't do this before ipif_allocate because ill_phyint_reinit 5077 * -> phyint_assign_ifindex expects ipif to be present. 5078 */ 5079 mutex_enter(&ill->ill_phyint->phyint_lock); 5080 ill->ill_phyint->phyint_flags |= PHYI_LOOPBACK | PHYI_VIRTUAL; 5081 mutex_exit(&ill->ill_phyint->phyint_lock); 5082 5083 if (ipst->ips_loopback_ksp == NULL) { 5084 /* Export loopback interface statistics */ 5085 ipst->ips_loopback_ksp = kstat_create_netstack("lo", 0, 5086 ipif_loopback_name, "net", 5087 KSTAT_TYPE_NAMED, 2, 0, 5088 ipst->ips_netstack->netstack_stackid); 5089 if (ipst->ips_loopback_ksp != NULL) { 5090 ipst->ips_loopback_ksp->ks_update = 5091 loopback_kstat_update; 5092 kn = KSTAT_NAMED_PTR(ipst->ips_loopback_ksp); 5093 kstat_named_init(&kn[0], "ipackets", KSTAT_DATA_UINT32); 5094 kstat_named_init(&kn[1], "opackets", KSTAT_DATA_UINT32); 5095 ipst->ips_loopback_ksp->ks_private = 5096 (void *)(uintptr_t)ipst->ips_netstack-> 5097 netstack_stackid; 5098 kstat_install(ipst->ips_loopback_ksp); 5099 } 5100 } 5101 5102 if (error != NULL) 5103 *error = 0; 5104 *did_alloc = B_TRUE; 5105 rw_exit(&ipst->ips_ill_g_lock); 5106 return (ill); 5107 done: 5108 if (ill != NULL) { 5109 if (ill->ill_phyint != NULL) { 5110 ipsq_t *ipsq; 5111 5112 ipsq = ill->ill_phyint->phyint_ipsq; 5113 if (ipsq != NULL) { 5114 ipsq->ipsq_ipst = NULL; 5115 kmem_free(ipsq, sizeof (ipsq_t)); 5116 } 5117 mi_free(ill->ill_phyint); 5118 } 5119 ill_free_mib(ill); 5120 if (ill->ill_ipst != NULL) 5121 netstack_rele(ill->ill_ipst->ips_netstack); 5122 mi_free(ill); 5123 } 5124 rw_exit(&ipst->ips_ill_g_lock); 5125 if (error != NULL) 5126 *error = ENOMEM; 5127 return (NULL); 5128 } 5129 5130 /* 5131 * For IPP calls - use the ip_stack_t for global stack. 5132 */ 5133 ill_t * 5134 ill_lookup_on_ifindex_global_instance(uint_t index, boolean_t isv6, 5135 queue_t *q, mblk_t *mp, ipsq_func_t func, int *err) 5136 { 5137 ip_stack_t *ipst; 5138 ill_t *ill; 5139 5140 ipst = netstack_find_by_stackid(GLOBAL_NETSTACKID)->netstack_ip; 5141 if (ipst == NULL) { 5142 cmn_err(CE_WARN, "No ip_stack_t for zoneid zero!\n"); 5143 return (NULL); 5144 } 5145 5146 ill = ill_lookup_on_ifindex(index, isv6, q, mp, func, err, ipst); 5147 netstack_rele(ipst->ips_netstack); 5148 return (ill); 5149 } 5150 5151 /* 5152 * Return a pointer to the ill which matches the index and IP version type. 5153 */ 5154 ill_t * 5155 ill_lookup_on_ifindex(uint_t index, boolean_t isv6, queue_t *q, mblk_t *mp, 5156 ipsq_func_t func, int *err, ip_stack_t *ipst) 5157 { 5158 ill_t *ill; 5159 ipsq_t *ipsq; 5160 phyint_t *phyi; 5161 5162 ASSERT((q == NULL && mp == NULL && func == NULL && err == NULL) || 5163 (q != NULL && mp != NULL && func != NULL && err != NULL)); 5164 5165 if (err != NULL) 5166 *err = 0; 5167 5168 /* 5169 * Indexes are stored in the phyint - a common structure 5170 * to both IPv4 and IPv6. 5171 */ 5172 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 5173 phyi = avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 5174 (void *) &index, NULL); 5175 if (phyi != NULL) { 5176 ill = isv6 ? phyi->phyint_illv6: phyi->phyint_illv4; 5177 if (ill != NULL) { 5178 /* 5179 * The block comment at the start of ipif_down 5180 * explains the use of the macros used below 5181 */ 5182 GRAB_CONN_LOCK(q); 5183 mutex_enter(&ill->ill_lock); 5184 if (ILL_CAN_LOOKUP(ill)) { 5185 ill_refhold_locked(ill); 5186 mutex_exit(&ill->ill_lock); 5187 RELEASE_CONN_LOCK(q); 5188 rw_exit(&ipst->ips_ill_g_lock); 5189 return (ill); 5190 } else if (ILL_CAN_WAIT(ill, q)) { 5191 ipsq = ill->ill_phyint->phyint_ipsq; 5192 mutex_enter(&ipsq->ipsq_lock); 5193 rw_exit(&ipst->ips_ill_g_lock); 5194 mutex_exit(&ill->ill_lock); 5195 ipsq_enq(ipsq, q, mp, func, NEW_OP, ill); 5196 mutex_exit(&ipsq->ipsq_lock); 5197 RELEASE_CONN_LOCK(q); 5198 if (err != NULL) 5199 *err = EINPROGRESS; 5200 return (NULL); 5201 } 5202 RELEASE_CONN_LOCK(q); 5203 mutex_exit(&ill->ill_lock); 5204 } 5205 } 5206 rw_exit(&ipst->ips_ill_g_lock); 5207 if (err != NULL) 5208 *err = ENXIO; 5209 return (NULL); 5210 } 5211 5212 /* 5213 * Return the ifindex next in sequence after the passed in ifindex. 5214 * If there is no next ifindex for the given protocol, return 0. 5215 */ 5216 uint_t 5217 ill_get_next_ifindex(uint_t index, boolean_t isv6, ip_stack_t *ipst) 5218 { 5219 phyint_t *phyi; 5220 phyint_t *phyi_initial; 5221 uint_t ifindex; 5222 5223 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 5224 5225 if (index == 0) { 5226 phyi = avl_first( 5227 &ipst->ips_phyint_g_list->phyint_list_avl_by_index); 5228 } else { 5229 phyi = phyi_initial = avl_find( 5230 &ipst->ips_phyint_g_list->phyint_list_avl_by_index, 5231 (void *) &index, NULL); 5232 } 5233 5234 for (; phyi != NULL; 5235 phyi = avl_walk(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 5236 phyi, AVL_AFTER)) { 5237 /* 5238 * If we're not returning the first interface in the tree 5239 * and we still haven't moved past the phyint_t that 5240 * corresponds to index, avl_walk needs to be called again 5241 */ 5242 if (!((index != 0) && (phyi == phyi_initial))) { 5243 if (isv6) { 5244 if ((phyi->phyint_illv6) && 5245 ILL_CAN_LOOKUP(phyi->phyint_illv6) && 5246 (phyi->phyint_illv6->ill_isv6 == 1)) 5247 break; 5248 } else { 5249 if ((phyi->phyint_illv4) && 5250 ILL_CAN_LOOKUP(phyi->phyint_illv4) && 5251 (phyi->phyint_illv4->ill_isv6 == 0)) 5252 break; 5253 } 5254 } 5255 } 5256 5257 rw_exit(&ipst->ips_ill_g_lock); 5258 5259 if (phyi != NULL) 5260 ifindex = phyi->phyint_ifindex; 5261 else 5262 ifindex = 0; 5263 5264 return (ifindex); 5265 } 5266 5267 5268 /* 5269 * Return the ifindex for the named interface. 5270 * If there is no next ifindex for the interface, return 0. 5271 */ 5272 uint_t 5273 ill_get_ifindex_by_name(char *name, ip_stack_t *ipst) 5274 { 5275 phyint_t *phyi; 5276 avl_index_t where = 0; 5277 uint_t ifindex; 5278 5279 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 5280 5281 if ((phyi = avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_name, 5282 name, &where)) == NULL) { 5283 rw_exit(&ipst->ips_ill_g_lock); 5284 return (0); 5285 } 5286 5287 ifindex = phyi->phyint_ifindex; 5288 5289 rw_exit(&ipst->ips_ill_g_lock); 5290 5291 return (ifindex); 5292 } 5293 5294 5295 /* 5296 * Obtain a reference to the ill. The ill_refcnt is a dynamic refcnt 5297 * that gives a running thread a reference to the ill. This reference must be 5298 * released by the thread when it is done accessing the ill and related 5299 * objects. ill_refcnt can not be used to account for static references 5300 * such as other structures pointing to an ill. Callers must generally 5301 * check whether an ill can be refheld by using ILL_CAN_LOOKUP macros 5302 * or be sure that the ill is not being deleted or changing state before 5303 * calling the refhold functions. A non-zero ill_refcnt ensures that the 5304 * ill won't change any of its critical state such as address, netmask etc. 5305 */ 5306 void 5307 ill_refhold(ill_t *ill) 5308 { 5309 mutex_enter(&ill->ill_lock); 5310 ill->ill_refcnt++; 5311 ILL_TRACE_REF(ill); 5312 mutex_exit(&ill->ill_lock); 5313 } 5314 5315 void 5316 ill_refhold_locked(ill_t *ill) 5317 { 5318 ASSERT(MUTEX_HELD(&ill->ill_lock)); 5319 ill->ill_refcnt++; 5320 ILL_TRACE_REF(ill); 5321 } 5322 5323 int 5324 ill_check_and_refhold(ill_t *ill) 5325 { 5326 mutex_enter(&ill->ill_lock); 5327 if (ILL_CAN_LOOKUP(ill)) { 5328 ill_refhold_locked(ill); 5329 mutex_exit(&ill->ill_lock); 5330 return (0); 5331 } 5332 mutex_exit(&ill->ill_lock); 5333 return (ILL_LOOKUP_FAILED); 5334 } 5335 5336 /* 5337 * Must not be called while holding any locks. Otherwise if this is 5338 * the last reference to be released, there is a chance of recursive mutex 5339 * panic due to ill_refrele -> ipif_ill_refrele_tail -> qwriter_ip trying 5340 * to restart an ioctl. 5341 */ 5342 void 5343 ill_refrele(ill_t *ill) 5344 { 5345 mutex_enter(&ill->ill_lock); 5346 ASSERT(ill->ill_refcnt != 0); 5347 ill->ill_refcnt--; 5348 ILL_UNTRACE_REF(ill); 5349 if (ill->ill_refcnt != 0) { 5350 /* Every ire pointing to the ill adds 1 to ill_refcnt */ 5351 mutex_exit(&ill->ill_lock); 5352 return; 5353 } 5354 5355 /* Drops the ill_lock */ 5356 ipif_ill_refrele_tail(ill); 5357 } 5358 5359 /* 5360 * Obtain a weak reference count on the ill. This reference ensures the 5361 * ill won't be freed, but the ill may change any of its critical state 5362 * such as netmask, address etc. Returns an error if the ill has started 5363 * closing. 5364 */ 5365 boolean_t 5366 ill_waiter_inc(ill_t *ill) 5367 { 5368 mutex_enter(&ill->ill_lock); 5369 if (ill->ill_state_flags & ILL_CONDEMNED) { 5370 mutex_exit(&ill->ill_lock); 5371 return (B_FALSE); 5372 } 5373 ill->ill_waiters++; 5374 mutex_exit(&ill->ill_lock); 5375 return (B_TRUE); 5376 } 5377 5378 void 5379 ill_waiter_dcr(ill_t *ill) 5380 { 5381 mutex_enter(&ill->ill_lock); 5382 ill->ill_waiters--; 5383 if (ill->ill_waiters == 0) 5384 cv_broadcast(&ill->ill_cv); 5385 mutex_exit(&ill->ill_lock); 5386 } 5387 5388 /* 5389 * Named Dispatch routine to produce a formatted report on all ILLs. 5390 * This report is accessed by using the ndd utility to "get" ND variable 5391 * "ip_ill_status". 5392 */ 5393 /* ARGSUSED */ 5394 int 5395 ip_ill_report(queue_t *q, mblk_t *mp, caddr_t arg, cred_t *ioc_cr) 5396 { 5397 ill_t *ill; 5398 ill_walk_context_t ctx; 5399 ip_stack_t *ipst; 5400 5401 ipst = CONNQ_TO_IPST(q); 5402 5403 (void) mi_mpprintf(mp, 5404 "ILL " MI_COL_HDRPAD_STR 5405 /* 01234567[89ABCDEF] */ 5406 "rq " MI_COL_HDRPAD_STR 5407 /* 01234567[89ABCDEF] */ 5408 "wq " MI_COL_HDRPAD_STR 5409 /* 01234567[89ABCDEF] */ 5410 "upcnt mxfrg err name"); 5411 /* 12345 12345 123 xxxxxxxx */ 5412 5413 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 5414 ill = ILL_START_WALK_ALL(&ctx, ipst); 5415 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 5416 (void) mi_mpprintf(mp, 5417 MI_COL_PTRFMT_STR MI_COL_PTRFMT_STR MI_COL_PTRFMT_STR 5418 "%05u %05u %03d %s", 5419 (void *)ill, (void *)ill->ill_rq, (void *)ill->ill_wq, 5420 ill->ill_ipif_up_count, 5421 ill->ill_max_frag, ill->ill_error, ill->ill_name); 5422 } 5423 rw_exit(&ipst->ips_ill_g_lock); 5424 5425 return (0); 5426 } 5427 5428 /* 5429 * Named Dispatch routine to produce a formatted report on all IPIFs. 5430 * This report is accessed by using the ndd utility to "get" ND variable 5431 * "ip_ipif_status". 5432 */ 5433 /* ARGSUSED */ 5434 int 5435 ip_ipif_report(queue_t *q, mblk_t *mp, caddr_t arg, cred_t *ioc_cr) 5436 { 5437 char buf1[INET6_ADDRSTRLEN]; 5438 char buf2[INET6_ADDRSTRLEN]; 5439 char buf3[INET6_ADDRSTRLEN]; 5440 char buf4[INET6_ADDRSTRLEN]; 5441 char buf5[INET6_ADDRSTRLEN]; 5442 char buf6[INET6_ADDRSTRLEN]; 5443 char buf[LIFNAMSIZ]; 5444 ill_t *ill; 5445 ipif_t *ipif; 5446 nv_t *nvp; 5447 uint64_t flags; 5448 zoneid_t zoneid; 5449 ill_walk_context_t ctx; 5450 ip_stack_t *ipst = CONNQ_TO_IPST(q); 5451 5452 (void) mi_mpprintf(mp, 5453 "IPIF metric mtu in/out/forward name zone flags...\n" 5454 "\tlocal address\n" 5455 "\tsrc address\n" 5456 "\tsubnet\n" 5457 "\tmask\n" 5458 "\tbroadcast\n" 5459 "\tp-p-dst"); 5460 5461 ASSERT(q->q_next == NULL); 5462 zoneid = Q_TO_CONN(q)->conn_zoneid; /* IP is a driver */ 5463 5464 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 5465 ill = ILL_START_WALK_ALL(&ctx, ipst); 5466 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 5467 for (ipif = ill->ill_ipif; ipif != NULL; 5468 ipif = ipif->ipif_next) { 5469 if (zoneid != GLOBAL_ZONEID && 5470 zoneid != ipif->ipif_zoneid && 5471 ipif->ipif_zoneid != ALL_ZONES) 5472 continue; 5473 5474 ipif_get_name(ipif, buf, sizeof (buf)); 5475 (void) mi_mpprintf(mp, 5476 MI_COL_PTRFMT_STR 5477 "%04u %05u %u/%u/%u %s %d", 5478 (void *)ipif, 5479 ipif->ipif_metric, ipif->ipif_mtu, 5480 ipif->ipif_ib_pkt_count, 5481 ipif->ipif_ob_pkt_count, 5482 ipif->ipif_fo_pkt_count, 5483 buf, 5484 ipif->ipif_zoneid); 5485 5486 flags = ipif->ipif_flags | ipif->ipif_ill->ill_flags | 5487 ipif->ipif_ill->ill_phyint->phyint_flags; 5488 5489 /* Tack on text strings for any flags. */ 5490 nvp = ipif_nv_tbl; 5491 for (; nvp < A_END(ipif_nv_tbl); nvp++) { 5492 if (nvp->nv_value & flags) 5493 (void) mi_mpprintf_nr(mp, " %s", 5494 nvp->nv_name); 5495 } 5496 (void) mi_mpprintf(mp, 5497 "\t%s\n\t%s\n\t%s\n\t%s\n\t%s\n\t%s", 5498 inet_ntop(AF_INET6, 5499 &ipif->ipif_v6lcl_addr, buf1, sizeof (buf1)), 5500 inet_ntop(AF_INET6, 5501 &ipif->ipif_v6src_addr, buf2, sizeof (buf2)), 5502 inet_ntop(AF_INET6, 5503 &ipif->ipif_v6subnet, buf3, sizeof (buf3)), 5504 inet_ntop(AF_INET6, 5505 &ipif->ipif_v6net_mask, buf4, sizeof (buf4)), 5506 inet_ntop(AF_INET6, 5507 &ipif->ipif_v6brd_addr, buf5, sizeof (buf5)), 5508 inet_ntop(AF_INET6, 5509 &ipif->ipif_v6pp_dst_addr, buf6, sizeof (buf6))); 5510 } 5511 } 5512 rw_exit(&ipst->ips_ill_g_lock); 5513 return (0); 5514 } 5515 5516 /* 5517 * ip_ll_subnet_defaults is called when we get the DL_INFO_ACK back from the 5518 * driver. We construct best guess defaults for lower level information that 5519 * we need. If an interface is brought up without injection of any overriding 5520 * information from outside, we have to be ready to go with these defaults. 5521 * When we get the first DL_INFO_ACK (from ip_open() sending a DL_INFO_REQ) 5522 * we primarely want the dl_provider_style. 5523 * The subsequent DL_INFO_ACK is received after doing a DL_ATTACH and DL_BIND 5524 * at which point we assume the other part of the information is valid. 5525 */ 5526 void 5527 ip_ll_subnet_defaults(ill_t *ill, mblk_t *mp) 5528 { 5529 uchar_t *brdcst_addr; 5530 uint_t brdcst_addr_length, phys_addr_length; 5531 t_scalar_t sap_length; 5532 dl_info_ack_t *dlia; 5533 ip_m_t *ipm; 5534 dl_qos_cl_sel1_t *sel1; 5535 5536 ASSERT(IAM_WRITER_ILL(ill)); 5537 5538 /* 5539 * Till the ill is fully up ILL_CHANGING will be set and 5540 * the ill is not globally visible. So no need for a lock. 5541 */ 5542 dlia = (dl_info_ack_t *)mp->b_rptr; 5543 ill->ill_mactype = dlia->dl_mac_type; 5544 5545 ipm = ip_m_lookup(dlia->dl_mac_type); 5546 if (ipm == NULL) { 5547 ipm = ip_m_lookup(DL_OTHER); 5548 ASSERT(ipm != NULL); 5549 } 5550 ill->ill_media = ipm; 5551 5552 /* 5553 * When the new DLPI stuff is ready we'll pull lengths 5554 * from dlia. 5555 */ 5556 if (dlia->dl_version == DL_VERSION_2) { 5557 brdcst_addr_length = dlia->dl_brdcst_addr_length; 5558 brdcst_addr = mi_offset_param(mp, dlia->dl_brdcst_addr_offset, 5559 brdcst_addr_length); 5560 if (brdcst_addr == NULL) { 5561 brdcst_addr_length = 0; 5562 } 5563 sap_length = dlia->dl_sap_length; 5564 phys_addr_length = dlia->dl_addr_length - ABS(sap_length); 5565 ip1dbg(("ip: bcast_len %d, sap_len %d, phys_len %d\n", 5566 brdcst_addr_length, sap_length, phys_addr_length)); 5567 } else { 5568 brdcst_addr_length = 6; 5569 brdcst_addr = ip_six_byte_all_ones; 5570 sap_length = -2; 5571 phys_addr_length = brdcst_addr_length; 5572 } 5573 5574 ill->ill_bcast_addr_length = brdcst_addr_length; 5575 ill->ill_phys_addr_length = phys_addr_length; 5576 ill->ill_sap_length = sap_length; 5577 ill->ill_max_frag = dlia->dl_max_sdu; 5578 ill->ill_max_mtu = ill->ill_max_frag; 5579 5580 ill->ill_type = ipm->ip_m_type; 5581 5582 if (!ill->ill_dlpi_style_set) { 5583 if (dlia->dl_provider_style == DL_STYLE2) 5584 ill->ill_needs_attach = 1; 5585 5586 /* 5587 * Allocate the first ipif on this ill. We don't delay it 5588 * further as ioctl handling assumes atleast one ipif to 5589 * be present. 5590 * 5591 * At this point we don't know whether the ill is v4 or v6. 5592 * We will know this whan the SIOCSLIFNAME happens and 5593 * the correct value for ill_isv6 will be assigned in 5594 * ipif_set_values(). We need to hold the ill lock and 5595 * clear the ILL_LL_SUBNET_PENDING flag and atomically do 5596 * the wakeup. 5597 */ 5598 (void) ipif_allocate(ill, 0, IRE_LOCAL, 5599 dlia->dl_provider_style == DL_STYLE2 ? B_FALSE : B_TRUE); 5600 mutex_enter(&ill->ill_lock); 5601 ASSERT(ill->ill_dlpi_style_set == 0); 5602 ill->ill_dlpi_style_set = 1; 5603 ill->ill_state_flags &= ~ILL_LL_SUBNET_PENDING; 5604 cv_broadcast(&ill->ill_cv); 5605 mutex_exit(&ill->ill_lock); 5606 freemsg(mp); 5607 return; 5608 } 5609 ASSERT(ill->ill_ipif != NULL); 5610 /* 5611 * We know whether it is IPv4 or IPv6 now, as this is the 5612 * second DL_INFO_ACK we are recieving in response to the 5613 * DL_INFO_REQ sent in ipif_set_values. 5614 */ 5615 if (ill->ill_isv6) 5616 ill->ill_sap = IP6_DL_SAP; 5617 else 5618 ill->ill_sap = IP_DL_SAP; 5619 /* 5620 * Set ipif_mtu which is used to set the IRE's 5621 * ire_max_frag value. The driver could have sent 5622 * a different mtu from what it sent last time. No 5623 * need to call ipif_mtu_change because IREs have 5624 * not yet been created. 5625 */ 5626 ill->ill_ipif->ipif_mtu = ill->ill_max_mtu; 5627 /* 5628 * Clear all the flags that were set based on ill_bcast_addr_length 5629 * and ill_phys_addr_length (in ipif_set_values) as these could have 5630 * changed now and we need to re-evaluate. 5631 */ 5632 ill->ill_flags &= ~(ILLF_MULTICAST | ILLF_NONUD | ILLF_NOARP); 5633 ill->ill_ipif->ipif_flags &= ~(IPIF_BROADCAST | IPIF_POINTOPOINT); 5634 5635 /* 5636 * Free ill_resolver_mp and ill_bcast_mp as things could have 5637 * changed now. 5638 */ 5639 if (ill->ill_bcast_addr_length == 0) { 5640 if (ill->ill_resolver_mp != NULL) 5641 freemsg(ill->ill_resolver_mp); 5642 if (ill->ill_bcast_mp != NULL) 5643 freemsg(ill->ill_bcast_mp); 5644 if (ill->ill_flags & ILLF_XRESOLV) 5645 ill->ill_net_type = IRE_IF_RESOLVER; 5646 else 5647 ill->ill_net_type = IRE_IF_NORESOLVER; 5648 ill->ill_resolver_mp = ill_dlur_gen(NULL, 5649 ill->ill_phys_addr_length, 5650 ill->ill_sap, 5651 ill->ill_sap_length); 5652 ill->ill_bcast_mp = copymsg(ill->ill_resolver_mp); 5653 5654 if (ill->ill_isv6) 5655 /* 5656 * Note: xresolv interfaces will eventually need NOARP 5657 * set here as well, but that will require those 5658 * external resolvers to have some knowledge of 5659 * that flag and act appropriately. Not to be changed 5660 * at present. 5661 */ 5662 ill->ill_flags |= ILLF_NONUD; 5663 else 5664 ill->ill_flags |= ILLF_NOARP; 5665 5666 if (ill->ill_phys_addr_length == 0) { 5667 if (ill->ill_media->ip_m_mac_type == SUNW_DL_VNI) { 5668 ill->ill_ipif->ipif_flags |= IPIF_NOXMIT; 5669 ill->ill_phyint->phyint_flags |= PHYI_VIRTUAL; 5670 } else { 5671 /* pt-pt supports multicast. */ 5672 ill->ill_flags |= ILLF_MULTICAST; 5673 ill->ill_ipif->ipif_flags |= IPIF_POINTOPOINT; 5674 } 5675 } 5676 } else { 5677 ill->ill_net_type = IRE_IF_RESOLVER; 5678 if (ill->ill_bcast_mp != NULL) 5679 freemsg(ill->ill_bcast_mp); 5680 ill->ill_bcast_mp = ill_dlur_gen(brdcst_addr, 5681 ill->ill_bcast_addr_length, ill->ill_sap, 5682 ill->ill_sap_length); 5683 /* 5684 * Later detect lack of DLPI driver multicast 5685 * capability by catching DL_ENABMULTI errors in 5686 * ip_rput_dlpi. 5687 */ 5688 ill->ill_flags |= ILLF_MULTICAST; 5689 if (!ill->ill_isv6) 5690 ill->ill_ipif->ipif_flags |= IPIF_BROADCAST; 5691 } 5692 /* By default an interface does not support any CoS marking */ 5693 ill->ill_flags &= ~ILLF_COS_ENABLED; 5694 5695 /* 5696 * If we get QoS information in DL_INFO_ACK, the device supports 5697 * some form of CoS marking, set ILLF_COS_ENABLED. 5698 */ 5699 sel1 = (dl_qos_cl_sel1_t *)mi_offset_param(mp, dlia->dl_qos_offset, 5700 dlia->dl_qos_length); 5701 if ((sel1 != NULL) && (sel1->dl_qos_type == DL_QOS_CL_SEL1)) { 5702 ill->ill_flags |= ILLF_COS_ENABLED; 5703 } 5704 5705 /* Clear any previous error indication. */ 5706 ill->ill_error = 0; 5707 freemsg(mp); 5708 } 5709 5710 /* 5711 * Perform various checks to verify that an address would make sense as a 5712 * local, remote, or subnet interface address. 5713 */ 5714 static boolean_t 5715 ip_addr_ok_v4(ipaddr_t addr, ipaddr_t subnet_mask) 5716 { 5717 ipaddr_t net_mask; 5718 5719 /* 5720 * Don't allow all zeroes, or all ones, but allow 5721 * all ones netmask. 5722 */ 5723 if ((net_mask = ip_net_mask(addr)) == 0) 5724 return (B_FALSE); 5725 /* A given netmask overrides the "guess" netmask */ 5726 if (subnet_mask != 0) 5727 net_mask = subnet_mask; 5728 if ((net_mask != ~(ipaddr_t)0) && ((addr == (addr & net_mask)) || 5729 (addr == (addr | ~net_mask)))) { 5730 return (B_FALSE); 5731 } 5732 5733 /* 5734 * Even if the netmask is all ones, we do not allow address to be 5735 * 255.255.255.255 5736 */ 5737 if (addr == INADDR_BROADCAST) 5738 return (B_FALSE); 5739 5740 if (CLASSD(addr)) 5741 return (B_FALSE); 5742 5743 return (B_TRUE); 5744 } 5745 5746 #define V6_IPIF_LINKLOCAL(p) \ 5747 IN6_IS_ADDR_LINKLOCAL(&(p)->ipif_v6lcl_addr) 5748 5749 /* 5750 * Compare two given ipifs and check if the second one is better than 5751 * the first one using the order of preference (not taking deprecated 5752 * into acount) specified in ipif_lookup_multicast(). 5753 */ 5754 static boolean_t 5755 ipif_comp_multi(ipif_t *old_ipif, ipif_t *new_ipif, boolean_t isv6) 5756 { 5757 /* Check the least preferred first. */ 5758 if (IS_LOOPBACK(old_ipif->ipif_ill)) { 5759 /* If both ipifs are the same, use the first one. */ 5760 if (IS_LOOPBACK(new_ipif->ipif_ill)) 5761 return (B_FALSE); 5762 else 5763 return (B_TRUE); 5764 } 5765 5766 /* For IPv6, check for link local address. */ 5767 if (isv6 && V6_IPIF_LINKLOCAL(old_ipif)) { 5768 if (IS_LOOPBACK(new_ipif->ipif_ill) || 5769 V6_IPIF_LINKLOCAL(new_ipif)) { 5770 /* The second one is equal or less preferred. */ 5771 return (B_FALSE); 5772 } else { 5773 return (B_TRUE); 5774 } 5775 } 5776 5777 /* Then check for point to point interface. */ 5778 if (old_ipif->ipif_flags & IPIF_POINTOPOINT) { 5779 if (IS_LOOPBACK(new_ipif->ipif_ill) || 5780 (isv6 && V6_IPIF_LINKLOCAL(new_ipif)) || 5781 (new_ipif->ipif_flags & IPIF_POINTOPOINT)) { 5782 return (B_FALSE); 5783 } else { 5784 return (B_TRUE); 5785 } 5786 } 5787 5788 /* old_ipif is a normal interface, so no need to use the new one. */ 5789 return (B_FALSE); 5790 } 5791 5792 /* 5793 * Find any non-virtual, not condemned, and up multicast capable interface 5794 * given an IP instance and zoneid. Order of preference is: 5795 * 5796 * 1. normal 5797 * 1.1 normal, but deprecated 5798 * 2. point to point 5799 * 2.1 point to point, but deprecated 5800 * 3. link local 5801 * 3.1 link local, but deprecated 5802 * 4. loopback. 5803 */ 5804 ipif_t * 5805 ipif_lookup_multicast(ip_stack_t *ipst, zoneid_t zoneid, boolean_t isv6) 5806 { 5807 ill_t *ill; 5808 ill_walk_context_t ctx; 5809 ipif_t *ipif; 5810 ipif_t *saved_ipif = NULL; 5811 ipif_t *dep_ipif = NULL; 5812 5813 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 5814 if (isv6) 5815 ill = ILL_START_WALK_V6(&ctx, ipst); 5816 else 5817 ill = ILL_START_WALK_V4(&ctx, ipst); 5818 5819 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 5820 mutex_enter(&ill->ill_lock); 5821 if (IS_VNI(ill) || !ILL_CAN_LOOKUP(ill) || 5822 !(ill->ill_flags & ILLF_MULTICAST)) { 5823 mutex_exit(&ill->ill_lock); 5824 continue; 5825 } 5826 for (ipif = ill->ill_ipif; ipif != NULL; 5827 ipif = ipif->ipif_next) { 5828 if (zoneid != ipif->ipif_zoneid && 5829 zoneid != ALL_ZONES && 5830 ipif->ipif_zoneid != ALL_ZONES) { 5831 continue; 5832 } 5833 if (!(ipif->ipif_flags & IPIF_UP) || 5834 !IPIF_CAN_LOOKUP(ipif)) { 5835 continue; 5836 } 5837 5838 /* 5839 * Found one candidate. If it is deprecated, 5840 * remember it in dep_ipif. If it is not deprecated, 5841 * remember it in saved_ipif. 5842 */ 5843 if (ipif->ipif_flags & IPIF_DEPRECATED) { 5844 if (dep_ipif == NULL) { 5845 dep_ipif = ipif; 5846 } else if (ipif_comp_multi(dep_ipif, ipif, 5847 isv6)) { 5848 /* 5849 * If the previous dep_ipif does not 5850 * belong to the same ill, we've done 5851 * a ipif_refhold() on it. So we need 5852 * to release it. 5853 */ 5854 if (dep_ipif->ipif_ill != ill) 5855 ipif_refrele(dep_ipif); 5856 dep_ipif = ipif; 5857 } 5858 continue; 5859 } 5860 if (saved_ipif == NULL) { 5861 saved_ipif = ipif; 5862 } else { 5863 if (ipif_comp_multi(saved_ipif, ipif, isv6)) { 5864 if (saved_ipif->ipif_ill != ill) 5865 ipif_refrele(saved_ipif); 5866 saved_ipif = ipif; 5867 } 5868 } 5869 } 5870 /* 5871 * Before going to the next ill, do a ipif_refhold() on the 5872 * saved ones. 5873 */ 5874 if (saved_ipif != NULL && saved_ipif->ipif_ill == ill) 5875 ipif_refhold_locked(saved_ipif); 5876 if (dep_ipif != NULL && dep_ipif->ipif_ill == ill) 5877 ipif_refhold_locked(dep_ipif); 5878 mutex_exit(&ill->ill_lock); 5879 } 5880 rw_exit(&ipst->ips_ill_g_lock); 5881 5882 /* 5883 * If we have only the saved_ipif, return it. But if we have both 5884 * saved_ipif and dep_ipif, check to see which one is better. 5885 */ 5886 if (saved_ipif != NULL) { 5887 if (dep_ipif != NULL) { 5888 if (ipif_comp_multi(saved_ipif, dep_ipif, isv6)) { 5889 ipif_refrele(saved_ipif); 5890 return (dep_ipif); 5891 } else { 5892 ipif_refrele(dep_ipif); 5893 return (saved_ipif); 5894 } 5895 } 5896 return (saved_ipif); 5897 } else { 5898 return (dep_ipif); 5899 } 5900 } 5901 5902 /* 5903 * This function is called when an application does not specify an interface 5904 * to be used for multicast traffic (joining a group/sending data). It 5905 * calls ire_lookup_multi() to look for an interface route for the 5906 * specified multicast group. Doing this allows the administrator to add 5907 * prefix routes for multicast to indicate which interface to be used for 5908 * multicast traffic in the above scenario. The route could be for all 5909 * multicast (224.0/4), for a single multicast group (a /32 route) or 5910 * anything in between. If there is no such multicast route, we just find 5911 * any multicast capable interface and return it. The returned ipif 5912 * is refhold'ed. 5913 */ 5914 ipif_t * 5915 ipif_lookup_group(ipaddr_t group, zoneid_t zoneid, ip_stack_t *ipst) 5916 { 5917 ire_t *ire; 5918 ipif_t *ipif; 5919 5920 ire = ire_lookup_multi(group, zoneid, ipst); 5921 if (ire != NULL) { 5922 ipif = ire->ire_ipif; 5923 ipif_refhold(ipif); 5924 ire_refrele(ire); 5925 return (ipif); 5926 } 5927 5928 return (ipif_lookup_multicast(ipst, zoneid, B_FALSE)); 5929 } 5930 5931 /* 5932 * Look for an ipif with the specified interface address and destination. 5933 * The destination address is used only for matching point-to-point interfaces. 5934 */ 5935 ipif_t * 5936 ipif_lookup_interface(ipaddr_t if_addr, ipaddr_t dst, queue_t *q, mblk_t *mp, 5937 ipsq_func_t func, int *error, ip_stack_t *ipst) 5938 { 5939 ipif_t *ipif; 5940 ill_t *ill; 5941 ill_walk_context_t ctx; 5942 ipsq_t *ipsq; 5943 5944 if (error != NULL) 5945 *error = 0; 5946 5947 /* 5948 * First match all the point-to-point interfaces 5949 * before looking at non-point-to-point interfaces. 5950 * This is done to avoid returning non-point-to-point 5951 * ipif instead of unnumbered point-to-point ipif. 5952 */ 5953 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 5954 ill = ILL_START_WALK_V4(&ctx, ipst); 5955 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 5956 GRAB_CONN_LOCK(q); 5957 mutex_enter(&ill->ill_lock); 5958 for (ipif = ill->ill_ipif; ipif != NULL; 5959 ipif = ipif->ipif_next) { 5960 /* Allow the ipif to be down */ 5961 if ((ipif->ipif_flags & IPIF_POINTOPOINT) && 5962 (ipif->ipif_lcl_addr == if_addr) && 5963 (ipif->ipif_pp_dst_addr == dst)) { 5964 /* 5965 * The block comment at the start of ipif_down 5966 * explains the use of the macros used below 5967 */ 5968 if (IPIF_CAN_LOOKUP(ipif)) { 5969 ipif_refhold_locked(ipif); 5970 mutex_exit(&ill->ill_lock); 5971 RELEASE_CONN_LOCK(q); 5972 rw_exit(&ipst->ips_ill_g_lock); 5973 return (ipif); 5974 } else if (IPIF_CAN_WAIT(ipif, q)) { 5975 ipsq = ill->ill_phyint->phyint_ipsq; 5976 mutex_enter(&ipsq->ipsq_lock); 5977 mutex_exit(&ill->ill_lock); 5978 rw_exit(&ipst->ips_ill_g_lock); 5979 ipsq_enq(ipsq, q, mp, func, NEW_OP, 5980 ill); 5981 mutex_exit(&ipsq->ipsq_lock); 5982 RELEASE_CONN_LOCK(q); 5983 if (error != NULL) 5984 *error = EINPROGRESS; 5985 return (NULL); 5986 } 5987 } 5988 } 5989 mutex_exit(&ill->ill_lock); 5990 RELEASE_CONN_LOCK(q); 5991 } 5992 rw_exit(&ipst->ips_ill_g_lock); 5993 5994 /* lookup the ipif based on interface address */ 5995 ipif = ipif_lookup_addr(if_addr, NULL, ALL_ZONES, q, mp, func, error, 5996 ipst); 5997 ASSERT(ipif == NULL || !ipif->ipif_isv6); 5998 return (ipif); 5999 } 6000 6001 /* 6002 * Look for an ipif with the specified address. For point-point links 6003 * we look for matches on either the destination address and the local 6004 * address, but we ignore the check on the local address if IPIF_UNNUMBERED 6005 * is set. 6006 * Matches on a specific ill if match_ill is set. 6007 */ 6008 ipif_t * 6009 ipif_lookup_addr(ipaddr_t addr, ill_t *match_ill, zoneid_t zoneid, queue_t *q, 6010 mblk_t *mp, ipsq_func_t func, int *error, ip_stack_t *ipst) 6011 { 6012 ipif_t *ipif; 6013 ill_t *ill; 6014 boolean_t ptp = B_FALSE; 6015 ipsq_t *ipsq; 6016 ill_walk_context_t ctx; 6017 6018 if (error != NULL) 6019 *error = 0; 6020 6021 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 6022 /* 6023 * Repeat twice, first based on local addresses and 6024 * next time for pointopoint. 6025 */ 6026 repeat: 6027 ill = ILL_START_WALK_V4(&ctx, ipst); 6028 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 6029 if (match_ill != NULL && ill != match_ill) { 6030 continue; 6031 } 6032 GRAB_CONN_LOCK(q); 6033 mutex_enter(&ill->ill_lock); 6034 for (ipif = ill->ill_ipif; ipif != NULL; 6035 ipif = ipif->ipif_next) { 6036 if (zoneid != ALL_ZONES && 6037 zoneid != ipif->ipif_zoneid && 6038 ipif->ipif_zoneid != ALL_ZONES) 6039 continue; 6040 /* Allow the ipif to be down */ 6041 if ((!ptp && (ipif->ipif_lcl_addr == addr) && 6042 ((ipif->ipif_flags & IPIF_UNNUMBERED) == 0)) || 6043 (ptp && (ipif->ipif_flags & IPIF_POINTOPOINT) && 6044 (ipif->ipif_pp_dst_addr == addr))) { 6045 /* 6046 * The block comment at the start of ipif_down 6047 * explains the use of the macros used below 6048 */ 6049 if (IPIF_CAN_LOOKUP(ipif)) { 6050 ipif_refhold_locked(ipif); 6051 mutex_exit(&ill->ill_lock); 6052 RELEASE_CONN_LOCK(q); 6053 rw_exit(&ipst->ips_ill_g_lock); 6054 return (ipif); 6055 } else if (IPIF_CAN_WAIT(ipif, q)) { 6056 ipsq = ill->ill_phyint->phyint_ipsq; 6057 mutex_enter(&ipsq->ipsq_lock); 6058 mutex_exit(&ill->ill_lock); 6059 rw_exit(&ipst->ips_ill_g_lock); 6060 ipsq_enq(ipsq, q, mp, func, NEW_OP, 6061 ill); 6062 mutex_exit(&ipsq->ipsq_lock); 6063 RELEASE_CONN_LOCK(q); 6064 if (error != NULL) 6065 *error = EINPROGRESS; 6066 return (NULL); 6067 } 6068 } 6069 } 6070 mutex_exit(&ill->ill_lock); 6071 RELEASE_CONN_LOCK(q); 6072 } 6073 6074 /* If we already did the ptp case, then we are done */ 6075 if (ptp) { 6076 rw_exit(&ipst->ips_ill_g_lock); 6077 if (error != NULL) 6078 *error = ENXIO; 6079 return (NULL); 6080 } 6081 ptp = B_TRUE; 6082 goto repeat; 6083 } 6084 6085 /* 6086 * Look for an ipif with the specified address. For point-point links 6087 * we look for matches on either the destination address and the local 6088 * address, but we ignore the check on the local address if IPIF_UNNUMBERED 6089 * is set. 6090 * Matches on a specific ill if match_ill is set. 6091 * Return the zoneid for the ipif which matches. ALL_ZONES if no match. 6092 */ 6093 zoneid_t 6094 ipif_lookup_addr_zoneid(ipaddr_t addr, ill_t *match_ill, ip_stack_t *ipst) 6095 { 6096 zoneid_t zoneid; 6097 ipif_t *ipif; 6098 ill_t *ill; 6099 boolean_t ptp = B_FALSE; 6100 ill_walk_context_t ctx; 6101 6102 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 6103 /* 6104 * Repeat twice, first based on local addresses and 6105 * next time for pointopoint. 6106 */ 6107 repeat: 6108 ill = ILL_START_WALK_V4(&ctx, ipst); 6109 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 6110 if (match_ill != NULL && ill != match_ill) { 6111 continue; 6112 } 6113 mutex_enter(&ill->ill_lock); 6114 for (ipif = ill->ill_ipif; ipif != NULL; 6115 ipif = ipif->ipif_next) { 6116 /* Allow the ipif to be down */ 6117 if ((!ptp && (ipif->ipif_lcl_addr == addr) && 6118 ((ipif->ipif_flags & IPIF_UNNUMBERED) == 0)) || 6119 (ptp && (ipif->ipif_flags & IPIF_POINTOPOINT) && 6120 (ipif->ipif_pp_dst_addr == addr)) && 6121 !(ipif->ipif_state_flags & IPIF_CONDEMNED)) { 6122 zoneid = ipif->ipif_zoneid; 6123 mutex_exit(&ill->ill_lock); 6124 rw_exit(&ipst->ips_ill_g_lock); 6125 /* 6126 * If ipif_zoneid was ALL_ZONES then we have 6127 * a trusted extensions shared IP address. 6128 * In that case GLOBAL_ZONEID works to send. 6129 */ 6130 if (zoneid == ALL_ZONES) 6131 zoneid = GLOBAL_ZONEID; 6132 return (zoneid); 6133 } 6134 } 6135 mutex_exit(&ill->ill_lock); 6136 } 6137 6138 /* If we already did the ptp case, then we are done */ 6139 if (ptp) { 6140 rw_exit(&ipst->ips_ill_g_lock); 6141 return (ALL_ZONES); 6142 } 6143 ptp = B_TRUE; 6144 goto repeat; 6145 } 6146 6147 /* 6148 * Look for an ipif that matches the specified remote address i.e. the 6149 * ipif that would receive the specified packet. 6150 * First look for directly connected interfaces and then do a recursive 6151 * IRE lookup and pick the first ipif corresponding to the source address in the 6152 * ire. 6153 * Returns: held ipif 6154 */ 6155 ipif_t * 6156 ipif_lookup_remote(ill_t *ill, ipaddr_t addr, zoneid_t zoneid) 6157 { 6158 ipif_t *ipif; 6159 ire_t *ire; 6160 ip_stack_t *ipst = ill->ill_ipst; 6161 6162 ASSERT(!ill->ill_isv6); 6163 6164 /* 6165 * Someone could be changing this ipif currently or change it 6166 * after we return this. Thus a few packets could use the old 6167 * old values. However structure updates/creates (ire, ilg, ilm etc) 6168 * will atomically be updated or cleaned up with the new value 6169 * Thus we don't need a lock to check the flags or other attrs below. 6170 */ 6171 mutex_enter(&ill->ill_lock); 6172 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 6173 if (!IPIF_CAN_LOOKUP(ipif)) 6174 continue; 6175 if (zoneid != ALL_ZONES && zoneid != ipif->ipif_zoneid && 6176 ipif->ipif_zoneid != ALL_ZONES) 6177 continue; 6178 /* Allow the ipif to be down */ 6179 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 6180 if ((ipif->ipif_pp_dst_addr == addr) || 6181 (!(ipif->ipif_flags & IPIF_UNNUMBERED) && 6182 ipif->ipif_lcl_addr == addr)) { 6183 ipif_refhold_locked(ipif); 6184 mutex_exit(&ill->ill_lock); 6185 return (ipif); 6186 } 6187 } else if (ipif->ipif_subnet == (addr & ipif->ipif_net_mask)) { 6188 ipif_refhold_locked(ipif); 6189 mutex_exit(&ill->ill_lock); 6190 return (ipif); 6191 } 6192 } 6193 mutex_exit(&ill->ill_lock); 6194 ire = ire_route_lookup(addr, 0, 0, 0, NULL, NULL, zoneid, 6195 NULL, MATCH_IRE_RECURSIVE, ipst); 6196 if (ire != NULL) { 6197 /* 6198 * The callers of this function wants to know the 6199 * interface on which they have to send the replies 6200 * back. For IRE_CACHES that have ire_stq and ire_ipif 6201 * derived from different ills, we really don't care 6202 * what we return here. 6203 */ 6204 ipif = ire->ire_ipif; 6205 if (ipif != NULL) { 6206 ipif_refhold(ipif); 6207 ire_refrele(ire); 6208 return (ipif); 6209 } 6210 ire_refrele(ire); 6211 } 6212 /* Pick the first interface */ 6213 ipif = ipif_get_next_ipif(NULL, ill); 6214 return (ipif); 6215 } 6216 6217 /* 6218 * This func does not prevent refcnt from increasing. But if 6219 * the caller has taken steps to that effect, then this func 6220 * can be used to determine whether the ill has become quiescent 6221 */ 6222 static boolean_t 6223 ill_is_quiescent(ill_t *ill) 6224 { 6225 ipif_t *ipif; 6226 6227 ASSERT(MUTEX_HELD(&ill->ill_lock)); 6228 6229 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 6230 if (ipif->ipif_refcnt != 0 || !IPIF_DOWN_OK(ipif)) { 6231 return (B_FALSE); 6232 } 6233 } 6234 if (!ILL_DOWN_OK(ill) || ill->ill_refcnt != 0) { 6235 return (B_FALSE); 6236 } 6237 return (B_TRUE); 6238 } 6239 6240 boolean_t 6241 ill_is_freeable(ill_t *ill) 6242 { 6243 ipif_t *ipif; 6244 6245 ASSERT(MUTEX_HELD(&ill->ill_lock)); 6246 6247 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 6248 if (ipif->ipif_refcnt != 0 || !IPIF_FREE_OK(ipif)) { 6249 return (B_FALSE); 6250 } 6251 } 6252 if (!ILL_FREE_OK(ill) || ill->ill_refcnt != 0) { 6253 return (B_FALSE); 6254 } 6255 return (B_TRUE); 6256 } 6257 6258 /* 6259 * This func does not prevent refcnt from increasing. But if 6260 * the caller has taken steps to that effect, then this func 6261 * can be used to determine whether the ipif has become quiescent 6262 */ 6263 static boolean_t 6264 ipif_is_quiescent(ipif_t *ipif) 6265 { 6266 ill_t *ill; 6267 6268 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 6269 6270 if (ipif->ipif_refcnt != 0 || !IPIF_DOWN_OK(ipif)) { 6271 return (B_FALSE); 6272 } 6273 6274 ill = ipif->ipif_ill; 6275 if (ill->ill_ipif_up_count != 0 || ill->ill_ipif_dup_count != 0 || 6276 ill->ill_logical_down) { 6277 return (B_TRUE); 6278 } 6279 6280 /* This is the last ipif going down or being deleted on this ill */ 6281 if (!ILL_DOWN_OK(ill) || ill->ill_refcnt != 0) { 6282 return (B_FALSE); 6283 } 6284 6285 return (B_TRUE); 6286 } 6287 6288 /* 6289 * return true if the ipif can be destroyed: the ipif has to be quiescent 6290 * with zero references from ire/nce/ilm to it. 6291 */ 6292 static boolean_t 6293 ipif_is_freeable(ipif_t *ipif) 6294 { 6295 6296 ill_t *ill; 6297 6298 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 6299 6300 if (ipif->ipif_refcnt != 0 || !IPIF_FREE_OK(ipif)) { 6301 return (B_FALSE); 6302 } 6303 6304 ill = ipif->ipif_ill; 6305 if (ill->ill_ipif_up_count != 0 || ill->ill_ipif_dup_count != 0 || 6306 ill->ill_logical_down) { 6307 return (B_TRUE); 6308 } 6309 6310 /* This is the last ipif going down or being deleted on this ill */ 6311 if (!ILL_FREE_OK(ill) || ill->ill_refcnt != 0) { 6312 return (B_FALSE); 6313 } 6314 6315 return (B_TRUE); 6316 } 6317 6318 /* 6319 * This func does not prevent refcnt from increasing. But if 6320 * the caller has taken steps to that effect, then this func 6321 * can be used to determine whether the ipifs marked with IPIF_MOVING 6322 * have become quiescent and can be moved in a failover/failback. 6323 */ 6324 static ipif_t * 6325 ill_quiescent_to_move(ill_t *ill) 6326 { 6327 ipif_t *ipif; 6328 6329 ASSERT(MUTEX_HELD(&ill->ill_lock)); 6330 6331 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 6332 if (ipif->ipif_state_flags & IPIF_MOVING) { 6333 if (ipif->ipif_refcnt != 0 || 6334 !IPIF_DOWN_OK(ipif)) { 6335 return (ipif); 6336 } 6337 } 6338 } 6339 return (NULL); 6340 } 6341 6342 /* 6343 * The ipif/ill/ire has been refreled. Do the tail processing. 6344 * Determine if the ipif or ill in question has become quiescent and if so 6345 * wakeup close and/or restart any queued pending ioctl that is waiting 6346 * for the ipif_down (or ill_down) 6347 */ 6348 void 6349 ipif_ill_refrele_tail(ill_t *ill) 6350 { 6351 mblk_t *mp; 6352 conn_t *connp; 6353 ipsq_t *ipsq; 6354 ipif_t *ipif; 6355 dl_notify_ind_t *dlindp; 6356 6357 ASSERT(MUTEX_HELD(&ill->ill_lock)); 6358 6359 if ((ill->ill_state_flags & ILL_CONDEMNED) && 6360 ill_is_freeable(ill)) { 6361 /* ill_close may be waiting */ 6362 cv_broadcast(&ill->ill_cv); 6363 } 6364 6365 /* ipsq can't change because ill_lock is held */ 6366 ipsq = ill->ill_phyint->phyint_ipsq; 6367 if (ipsq->ipsq_waitfor == 0) { 6368 /* Not waiting for anything, just return. */ 6369 mutex_exit(&ill->ill_lock); 6370 return; 6371 } 6372 ASSERT(ipsq->ipsq_pending_mp != NULL && 6373 ipsq->ipsq_pending_ipif != NULL); 6374 /* 6375 * ipif->ipif_refcnt must go down to zero for restarting REMOVEIF. 6376 * Last ipif going down needs to down the ill, so ill_ire_cnt must 6377 * be zero for restarting an ioctl that ends up downing the ill. 6378 */ 6379 ipif = ipsq->ipsq_pending_ipif; 6380 if (ipif->ipif_ill != ill) { 6381 /* The ioctl is pending on some other ill. */ 6382 mutex_exit(&ill->ill_lock); 6383 return; 6384 } 6385 6386 switch (ipsq->ipsq_waitfor) { 6387 case IPIF_DOWN: 6388 if (!ipif_is_quiescent(ipif)) { 6389 mutex_exit(&ill->ill_lock); 6390 return; 6391 } 6392 break; 6393 case IPIF_FREE: 6394 if (!ipif_is_freeable(ipif)) { 6395 mutex_exit(&ill->ill_lock); 6396 return; 6397 } 6398 break; 6399 6400 case ILL_DOWN: 6401 if (!ill_is_quiescent(ill)) { 6402 mutex_exit(&ill->ill_lock); 6403 return; 6404 } 6405 break; 6406 case ILL_FREE: 6407 /* 6408 * case ILL_FREE arises only for loopback. otherwise ill_delete 6409 * waits synchronously in ip_close, and no message is queued in 6410 * ipsq_pending_mp at all in this case 6411 */ 6412 if (!ill_is_freeable(ill)) { 6413 mutex_exit(&ill->ill_lock); 6414 return; 6415 } 6416 break; 6417 6418 case ILL_MOVE_OK: 6419 if (ill_quiescent_to_move(ill) != NULL) { 6420 mutex_exit(&ill->ill_lock); 6421 return; 6422 } 6423 break; 6424 default: 6425 cmn_err(CE_PANIC, "ipsq: %p unknown ipsq_waitfor %d\n", 6426 (void *)ipsq, ipsq->ipsq_waitfor); 6427 } 6428 6429 /* 6430 * Incr refcnt for the qwriter_ip call below which 6431 * does a refrele 6432 */ 6433 ill_refhold_locked(ill); 6434 mp = ipsq_pending_mp_get(ipsq, &connp); 6435 mutex_exit(&ill->ill_lock); 6436 6437 ASSERT(mp != NULL); 6438 /* 6439 * NOTE: all of the qwriter_ip() calls below use CUR_OP since 6440 * we can only get here when the current operation decides it 6441 * it needs to quiesce via ipsq_pending_mp_add(). 6442 */ 6443 switch (mp->b_datap->db_type) { 6444 case M_PCPROTO: 6445 case M_PROTO: 6446 /* 6447 * For now, only DL_NOTIFY_IND messages can use this facility. 6448 */ 6449 dlindp = (dl_notify_ind_t *)mp->b_rptr; 6450 ASSERT(dlindp->dl_primitive == DL_NOTIFY_IND); 6451 6452 switch (dlindp->dl_notification) { 6453 case DL_NOTE_PHYS_ADDR: 6454 qwriter_ip(ill, ill->ill_rq, mp, 6455 ill_set_phys_addr_tail, CUR_OP, B_TRUE); 6456 return; 6457 default: 6458 ASSERT(0); 6459 } 6460 break; 6461 6462 case M_ERROR: 6463 case M_HANGUP: 6464 qwriter_ip(ill, ill->ill_rq, mp, ipif_all_down_tail, CUR_OP, 6465 B_TRUE); 6466 return; 6467 6468 case M_IOCTL: 6469 case M_IOCDATA: 6470 qwriter_ip(ill, (connp != NULL ? CONNP_TO_WQ(connp) : 6471 ill->ill_wq), mp, ip_reprocess_ioctl, CUR_OP, B_TRUE); 6472 return; 6473 6474 default: 6475 cmn_err(CE_PANIC, "ipif_ill_refrele_tail mp %p " 6476 "db_type %d\n", (void *)mp, mp->b_datap->db_type); 6477 } 6478 } 6479 6480 #ifdef DEBUG 6481 /* Reuse trace buffer from beginning (if reached the end) and record trace */ 6482 static void 6483 th_trace_rrecord(th_trace_t *th_trace) 6484 { 6485 tr_buf_t *tr_buf; 6486 uint_t lastref; 6487 6488 lastref = th_trace->th_trace_lastref; 6489 lastref++; 6490 if (lastref == TR_BUF_MAX) 6491 lastref = 0; 6492 th_trace->th_trace_lastref = lastref; 6493 tr_buf = &th_trace->th_trbuf[lastref]; 6494 tr_buf->tr_time = lbolt; 6495 tr_buf->tr_depth = getpcstack(tr_buf->tr_stack, TR_STACK_DEPTH); 6496 } 6497 6498 static void 6499 th_trace_free(void *value) 6500 { 6501 th_trace_t *th_trace = value; 6502 6503 ASSERT(th_trace->th_refcnt == 0); 6504 kmem_free(th_trace, sizeof (*th_trace)); 6505 } 6506 6507 /* 6508 * Find or create the per-thread hash table used to track object references. 6509 * The ipst argument is NULL if we shouldn't allocate. 6510 * 6511 * Accesses per-thread data, so there's no need to lock here. 6512 */ 6513 static mod_hash_t * 6514 th_trace_gethash(ip_stack_t *ipst) 6515 { 6516 th_hash_t *thh; 6517 6518 if ((thh = tsd_get(ip_thread_data)) == NULL && ipst != NULL) { 6519 mod_hash_t *mh; 6520 char name[256]; 6521 size_t objsize, rshift; 6522 int retv; 6523 6524 if ((thh = kmem_alloc(sizeof (*thh), KM_NOSLEEP)) == NULL) 6525 return (NULL); 6526 (void) snprintf(name, sizeof (name), "th_trace_%p", curthread); 6527 6528 /* 6529 * We use mod_hash_create_extended here rather than the more 6530 * obvious mod_hash_create_ptrhash because the latter has a 6531 * hard-coded KM_SLEEP, and we'd prefer to fail rather than 6532 * block. 6533 */ 6534 objsize = MAX(MAX(sizeof (ill_t), sizeof (ipif_t)), 6535 MAX(sizeof (ire_t), sizeof (nce_t))); 6536 rshift = highbit(objsize); 6537 mh = mod_hash_create_extended(name, 64, mod_hash_null_keydtor, 6538 th_trace_free, mod_hash_byptr, (void *)rshift, 6539 mod_hash_ptrkey_cmp, KM_NOSLEEP); 6540 if (mh == NULL) { 6541 kmem_free(thh, sizeof (*thh)); 6542 return (NULL); 6543 } 6544 thh->thh_hash = mh; 6545 thh->thh_ipst = ipst; 6546 /* 6547 * We trace ills, ipifs, ires, and nces. All of these are 6548 * per-IP-stack, so the lock on the thread list is as well. 6549 */ 6550 rw_enter(&ip_thread_rwlock, RW_WRITER); 6551 list_insert_tail(&ip_thread_list, thh); 6552 rw_exit(&ip_thread_rwlock); 6553 retv = tsd_set(ip_thread_data, thh); 6554 ASSERT(retv == 0); 6555 } 6556 return (thh != NULL ? thh->thh_hash : NULL); 6557 } 6558 6559 boolean_t 6560 th_trace_ref(const void *obj, ip_stack_t *ipst) 6561 { 6562 th_trace_t *th_trace; 6563 mod_hash_t *mh; 6564 mod_hash_val_t val; 6565 6566 if ((mh = th_trace_gethash(ipst)) == NULL) 6567 return (B_FALSE); 6568 6569 /* 6570 * Attempt to locate the trace buffer for this obj and thread. 6571 * If it does not exist, then allocate a new trace buffer and 6572 * insert into the hash. 6573 */ 6574 if (mod_hash_find(mh, (mod_hash_key_t)obj, &val) == MH_ERR_NOTFOUND) { 6575 th_trace = kmem_zalloc(sizeof (th_trace_t), KM_NOSLEEP); 6576 if (th_trace == NULL) 6577 return (B_FALSE); 6578 6579 th_trace->th_id = curthread; 6580 if (mod_hash_insert(mh, (mod_hash_key_t)obj, 6581 (mod_hash_val_t)th_trace) != 0) { 6582 kmem_free(th_trace, sizeof (th_trace_t)); 6583 return (B_FALSE); 6584 } 6585 } else { 6586 th_trace = (th_trace_t *)val; 6587 } 6588 6589 ASSERT(th_trace->th_refcnt >= 0 && 6590 th_trace->th_refcnt < TR_BUF_MAX - 1); 6591 6592 th_trace->th_refcnt++; 6593 th_trace_rrecord(th_trace); 6594 return (B_TRUE); 6595 } 6596 6597 /* 6598 * For the purpose of tracing a reference release, we assume that global 6599 * tracing is always on and that the same thread initiated the reference hold 6600 * is releasing. 6601 */ 6602 void 6603 th_trace_unref(const void *obj) 6604 { 6605 int retv; 6606 mod_hash_t *mh; 6607 th_trace_t *th_trace; 6608 mod_hash_val_t val; 6609 6610 mh = th_trace_gethash(NULL); 6611 retv = mod_hash_find(mh, (mod_hash_key_t)obj, &val); 6612 ASSERT(retv == 0); 6613 th_trace = (th_trace_t *)val; 6614 6615 ASSERT(th_trace->th_refcnt > 0); 6616 th_trace->th_refcnt--; 6617 th_trace_rrecord(th_trace); 6618 } 6619 6620 /* 6621 * If tracing has been disabled, then we assume that the reference counts are 6622 * now useless, and we clear them out before destroying the entries. 6623 */ 6624 void 6625 th_trace_cleanup(const void *obj, boolean_t trace_disable) 6626 { 6627 th_hash_t *thh; 6628 mod_hash_t *mh; 6629 mod_hash_val_t val; 6630 th_trace_t *th_trace; 6631 int retv; 6632 6633 rw_enter(&ip_thread_rwlock, RW_READER); 6634 for (thh = list_head(&ip_thread_list); thh != NULL; 6635 thh = list_next(&ip_thread_list, thh)) { 6636 if (mod_hash_find(mh = thh->thh_hash, (mod_hash_key_t)obj, 6637 &val) == 0) { 6638 th_trace = (th_trace_t *)val; 6639 if (trace_disable) 6640 th_trace->th_refcnt = 0; 6641 retv = mod_hash_destroy(mh, (mod_hash_key_t)obj); 6642 ASSERT(retv == 0); 6643 } 6644 } 6645 rw_exit(&ip_thread_rwlock); 6646 } 6647 6648 void 6649 ipif_trace_ref(ipif_t *ipif) 6650 { 6651 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 6652 6653 if (ipif->ipif_trace_disable) 6654 return; 6655 6656 if (!th_trace_ref(ipif, ipif->ipif_ill->ill_ipst)) { 6657 ipif->ipif_trace_disable = B_TRUE; 6658 ipif_trace_cleanup(ipif); 6659 } 6660 } 6661 6662 void 6663 ipif_untrace_ref(ipif_t *ipif) 6664 { 6665 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 6666 6667 if (!ipif->ipif_trace_disable) 6668 th_trace_unref(ipif); 6669 } 6670 6671 void 6672 ill_trace_ref(ill_t *ill) 6673 { 6674 ASSERT(MUTEX_HELD(&ill->ill_lock)); 6675 6676 if (ill->ill_trace_disable) 6677 return; 6678 6679 if (!th_trace_ref(ill, ill->ill_ipst)) { 6680 ill->ill_trace_disable = B_TRUE; 6681 ill_trace_cleanup(ill); 6682 } 6683 } 6684 6685 void 6686 ill_untrace_ref(ill_t *ill) 6687 { 6688 ASSERT(MUTEX_HELD(&ill->ill_lock)); 6689 6690 if (!ill->ill_trace_disable) 6691 th_trace_unref(ill); 6692 } 6693 6694 /* 6695 * Called when ipif is unplumbed or when memory alloc fails. Note that on 6696 * failure, ipif_trace_disable is set. 6697 */ 6698 static void 6699 ipif_trace_cleanup(const ipif_t *ipif) 6700 { 6701 th_trace_cleanup(ipif, ipif->ipif_trace_disable); 6702 } 6703 6704 /* 6705 * Called when ill is unplumbed or when memory alloc fails. Note that on 6706 * failure, ill_trace_disable is set. 6707 */ 6708 static void 6709 ill_trace_cleanup(const ill_t *ill) 6710 { 6711 th_trace_cleanup(ill, ill->ill_trace_disable); 6712 } 6713 #endif /* DEBUG */ 6714 6715 void 6716 ipif_refhold_locked(ipif_t *ipif) 6717 { 6718 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 6719 ipif->ipif_refcnt++; 6720 IPIF_TRACE_REF(ipif); 6721 } 6722 6723 void 6724 ipif_refhold(ipif_t *ipif) 6725 { 6726 ill_t *ill; 6727 6728 ill = ipif->ipif_ill; 6729 mutex_enter(&ill->ill_lock); 6730 ipif->ipif_refcnt++; 6731 IPIF_TRACE_REF(ipif); 6732 mutex_exit(&ill->ill_lock); 6733 } 6734 6735 /* 6736 * Must not be called while holding any locks. Otherwise if this is 6737 * the last reference to be released there is a chance of recursive mutex 6738 * panic due to ipif_refrele -> ipif_ill_refrele_tail -> qwriter_ip trying 6739 * to restart an ioctl. 6740 */ 6741 void 6742 ipif_refrele(ipif_t *ipif) 6743 { 6744 ill_t *ill; 6745 6746 ill = ipif->ipif_ill; 6747 6748 mutex_enter(&ill->ill_lock); 6749 ASSERT(ipif->ipif_refcnt != 0); 6750 ipif->ipif_refcnt--; 6751 IPIF_UNTRACE_REF(ipif); 6752 if (ipif->ipif_refcnt != 0) { 6753 mutex_exit(&ill->ill_lock); 6754 return; 6755 } 6756 6757 /* Drops the ill_lock */ 6758 ipif_ill_refrele_tail(ill); 6759 } 6760 6761 ipif_t * 6762 ipif_get_next_ipif(ipif_t *curr, ill_t *ill) 6763 { 6764 ipif_t *ipif; 6765 6766 mutex_enter(&ill->ill_lock); 6767 for (ipif = (curr == NULL ? ill->ill_ipif : curr->ipif_next); 6768 ipif != NULL; ipif = ipif->ipif_next) { 6769 if (!IPIF_CAN_LOOKUP(ipif)) 6770 continue; 6771 ipif_refhold_locked(ipif); 6772 mutex_exit(&ill->ill_lock); 6773 return (ipif); 6774 } 6775 mutex_exit(&ill->ill_lock); 6776 return (NULL); 6777 } 6778 6779 /* 6780 * TODO: make this table extendible at run time 6781 * Return a pointer to the mac type info for 'mac_type' 6782 */ 6783 static ip_m_t * 6784 ip_m_lookup(t_uscalar_t mac_type) 6785 { 6786 ip_m_t *ipm; 6787 6788 for (ipm = ip_m_tbl; ipm < A_END(ip_m_tbl); ipm++) 6789 if (ipm->ip_m_mac_type == mac_type) 6790 return (ipm); 6791 return (NULL); 6792 } 6793 6794 /* 6795 * ip_rt_add is called to add an IPv4 route to the forwarding table. 6796 * ipif_arg is passed in to associate it with the correct interface. 6797 * We may need to restart this operation if the ipif cannot be looked up 6798 * due to an exclusive operation that is currently in progress. The restart 6799 * entry point is specified by 'func' 6800 */ 6801 int 6802 ip_rt_add(ipaddr_t dst_addr, ipaddr_t mask, ipaddr_t gw_addr, 6803 ipaddr_t src_addr, int flags, ipif_t *ipif_arg, ire_t **ire_arg, 6804 boolean_t ioctl_msg, queue_t *q, mblk_t *mp, ipsq_func_t func, 6805 struct rtsa_s *sp, ip_stack_t *ipst) 6806 { 6807 ire_t *ire; 6808 ire_t *gw_ire = NULL; 6809 ipif_t *ipif = NULL; 6810 boolean_t ipif_refheld = B_FALSE; 6811 uint_t type; 6812 int match_flags = MATCH_IRE_TYPE; 6813 int error; 6814 tsol_gc_t *gc = NULL; 6815 tsol_gcgrp_t *gcgrp = NULL; 6816 boolean_t gcgrp_xtraref = B_FALSE; 6817 6818 ip1dbg(("ip_rt_add:")); 6819 6820 if (ire_arg != NULL) 6821 *ire_arg = NULL; 6822 6823 /* 6824 * If this is the case of RTF_HOST being set, then we set the netmask 6825 * to all ones (regardless if one was supplied). 6826 */ 6827 if (flags & RTF_HOST) 6828 mask = IP_HOST_MASK; 6829 6830 /* 6831 * Prevent routes with a zero gateway from being created (since 6832 * interfaces can currently be plumbed and brought up no assigned 6833 * address). 6834 */ 6835 if (gw_addr == 0) 6836 return (ENETUNREACH); 6837 /* 6838 * Get the ipif, if any, corresponding to the gw_addr 6839 */ 6840 ipif = ipif_lookup_interface(gw_addr, dst_addr, q, mp, func, &error, 6841 ipst); 6842 if (ipif != NULL) { 6843 if (IS_VNI(ipif->ipif_ill)) { 6844 ipif_refrele(ipif); 6845 return (EINVAL); 6846 } 6847 ipif_refheld = B_TRUE; 6848 } else if (error == EINPROGRESS) { 6849 ip1dbg(("ip_rt_add: null and EINPROGRESS")); 6850 return (EINPROGRESS); 6851 } else { 6852 error = 0; 6853 } 6854 6855 if (ipif != NULL) { 6856 ip1dbg(("ip_rt_add: ipif_lookup_interface done ipif nonnull")); 6857 ASSERT(!MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 6858 } else { 6859 ip1dbg(("ip_rt_add: ipif_lookup_interface done ipif is null")); 6860 } 6861 6862 /* 6863 * GateD will attempt to create routes with a loopback interface 6864 * address as the gateway and with RTF_GATEWAY set. We allow 6865 * these routes to be added, but create them as interface routes 6866 * since the gateway is an interface address. 6867 */ 6868 if ((ipif != NULL) && (ipif->ipif_ire_type == IRE_LOOPBACK)) { 6869 flags &= ~RTF_GATEWAY; 6870 if (gw_addr == INADDR_LOOPBACK && dst_addr == INADDR_LOOPBACK && 6871 mask == IP_HOST_MASK) { 6872 ire = ire_ctable_lookup(dst_addr, 0, IRE_LOOPBACK, ipif, 6873 ALL_ZONES, NULL, match_flags, ipst); 6874 if (ire != NULL) { 6875 ire_refrele(ire); 6876 if (ipif_refheld) 6877 ipif_refrele(ipif); 6878 return (EEXIST); 6879 } 6880 ip1dbg(("ipif_up_done: 0x%p creating IRE 0x%x" 6881 "for 0x%x\n", (void *)ipif, 6882 ipif->ipif_ire_type, 6883 ntohl(ipif->ipif_lcl_addr))); 6884 ire = ire_create( 6885 (uchar_t *)&dst_addr, /* dest address */ 6886 (uchar_t *)&mask, /* mask */ 6887 (uchar_t *)&ipif->ipif_src_addr, 6888 NULL, /* no gateway */ 6889 &ipif->ipif_mtu, 6890 NULL, 6891 ipif->ipif_rq, /* recv-from queue */ 6892 NULL, /* no send-to queue */ 6893 ipif->ipif_ire_type, /* LOOPBACK */ 6894 ipif, 6895 0, 6896 0, 6897 0, 6898 (ipif->ipif_flags & IPIF_PRIVATE) ? 6899 RTF_PRIVATE : 0, 6900 &ire_uinfo_null, 6901 NULL, 6902 NULL, 6903 ipst); 6904 6905 if (ire == NULL) { 6906 if (ipif_refheld) 6907 ipif_refrele(ipif); 6908 return (ENOMEM); 6909 } 6910 error = ire_add(&ire, q, mp, func, B_FALSE); 6911 if (error == 0) 6912 goto save_ire; 6913 if (ipif_refheld) 6914 ipif_refrele(ipif); 6915 return (error); 6916 6917 } 6918 } 6919 6920 /* 6921 * Traditionally, interface routes are ones where RTF_GATEWAY isn't set 6922 * and the gateway address provided is one of the system's interface 6923 * addresses. By using the routing socket interface and supplying an 6924 * RTA_IFP sockaddr with an interface index, an alternate method of 6925 * specifying an interface route to be created is available which uses 6926 * the interface index that specifies the outgoing interface rather than 6927 * the address of an outgoing interface (which may not be able to 6928 * uniquely identify an interface). When coupled with the RTF_GATEWAY 6929 * flag, routes can be specified which not only specify the next-hop to 6930 * be used when routing to a certain prefix, but also which outgoing 6931 * interface should be used. 6932 * 6933 * Previously, interfaces would have unique addresses assigned to them 6934 * and so the address assigned to a particular interface could be used 6935 * to identify a particular interface. One exception to this was the 6936 * case of an unnumbered interface (where IPIF_UNNUMBERED was set). 6937 * 6938 * With the advent of IPv6 and its link-local addresses, this 6939 * restriction was relaxed and interfaces could share addresses between 6940 * themselves. In fact, typically all of the link-local interfaces on 6941 * an IPv6 node or router will have the same link-local address. In 6942 * order to differentiate between these interfaces, the use of an 6943 * interface index is necessary and this index can be carried inside a 6944 * RTA_IFP sockaddr (which is actually a sockaddr_dl). One restriction 6945 * of using the interface index, however, is that all of the ipif's that 6946 * are part of an ill have the same index and so the RTA_IFP sockaddr 6947 * cannot be used to differentiate between ipif's (or logical 6948 * interfaces) that belong to the same ill (physical interface). 6949 * 6950 * For example, in the following case involving IPv4 interfaces and 6951 * logical interfaces 6952 * 6953 * 192.0.2.32 255.255.255.224 192.0.2.33 U if0 6954 * 192.0.2.32 255.255.255.224 192.0.2.34 U if0:1 6955 * 192.0.2.32 255.255.255.224 192.0.2.35 U if0:2 6956 * 6957 * the ipif's corresponding to each of these interface routes can be 6958 * uniquely identified by the "gateway" (actually interface address). 6959 * 6960 * In this case involving multiple IPv6 default routes to a particular 6961 * link-local gateway, the use of RTA_IFP is necessary to specify which 6962 * default route is of interest: 6963 * 6964 * default fe80::123:4567:89ab:cdef U if0 6965 * default fe80::123:4567:89ab:cdef U if1 6966 */ 6967 6968 /* RTF_GATEWAY not set */ 6969 if (!(flags & RTF_GATEWAY)) { 6970 queue_t *stq; 6971 6972 if (sp != NULL) { 6973 ip2dbg(("ip_rt_add: gateway security attributes " 6974 "cannot be set with interface route\n")); 6975 if (ipif_refheld) 6976 ipif_refrele(ipif); 6977 return (EINVAL); 6978 } 6979 6980 /* 6981 * As the interface index specified with the RTA_IFP sockaddr is 6982 * the same for all ipif's off of an ill, the matching logic 6983 * below uses MATCH_IRE_ILL if such an index was specified. 6984 * This means that routes sharing the same prefix when added 6985 * using a RTA_IFP sockaddr must have distinct interface 6986 * indices (namely, they must be on distinct ill's). 6987 * 6988 * On the other hand, since the gateway address will usually be 6989 * different for each ipif on the system, the matching logic 6990 * uses MATCH_IRE_IPIF in the case of a traditional interface 6991 * route. This means that interface routes for the same prefix 6992 * can be created if they belong to distinct ipif's and if a 6993 * RTA_IFP sockaddr is not present. 6994 */ 6995 if (ipif_arg != NULL) { 6996 if (ipif_refheld) { 6997 ipif_refrele(ipif); 6998 ipif_refheld = B_FALSE; 6999 } 7000 ipif = ipif_arg; 7001 match_flags |= MATCH_IRE_ILL; 7002 } else { 7003 /* 7004 * Check the ipif corresponding to the gw_addr 7005 */ 7006 if (ipif == NULL) 7007 return (ENETUNREACH); 7008 match_flags |= MATCH_IRE_IPIF; 7009 } 7010 ASSERT(ipif != NULL); 7011 7012 /* 7013 * We check for an existing entry at this point. 7014 * 7015 * Since a netmask isn't passed in via the ioctl interface 7016 * (SIOCADDRT), we don't check for a matching netmask in that 7017 * case. 7018 */ 7019 if (!ioctl_msg) 7020 match_flags |= MATCH_IRE_MASK; 7021 ire = ire_ftable_lookup(dst_addr, mask, 0, IRE_INTERFACE, ipif, 7022 NULL, ALL_ZONES, 0, NULL, match_flags, ipst); 7023 if (ire != NULL) { 7024 ire_refrele(ire); 7025 if (ipif_refheld) 7026 ipif_refrele(ipif); 7027 return (EEXIST); 7028 } 7029 7030 stq = (ipif->ipif_net_type == IRE_IF_RESOLVER) 7031 ? ipif->ipif_rq : ipif->ipif_wq; 7032 7033 /* 7034 * Create a copy of the IRE_LOOPBACK, 7035 * IRE_IF_NORESOLVER or IRE_IF_RESOLVER with 7036 * the modified address and netmask. 7037 */ 7038 ire = ire_create( 7039 (uchar_t *)&dst_addr, 7040 (uint8_t *)&mask, 7041 (uint8_t *)&ipif->ipif_src_addr, 7042 NULL, 7043 &ipif->ipif_mtu, 7044 NULL, 7045 NULL, 7046 stq, 7047 ipif->ipif_net_type, 7048 ipif, 7049 0, 7050 0, 7051 0, 7052 flags, 7053 &ire_uinfo_null, 7054 NULL, 7055 NULL, 7056 ipst); 7057 if (ire == NULL) { 7058 if (ipif_refheld) 7059 ipif_refrele(ipif); 7060 return (ENOMEM); 7061 } 7062 7063 /* 7064 * Some software (for example, GateD and Sun Cluster) attempts 7065 * to create (what amount to) IRE_PREFIX routes with the 7066 * loopback address as the gateway. This is primarily done to 7067 * set up prefixes with the RTF_REJECT flag set (for example, 7068 * when generating aggregate routes.) 7069 * 7070 * If the IRE type (as defined by ipif->ipif_net_type) is 7071 * IRE_LOOPBACK, then we map the request into a 7072 * IRE_IF_NORESOLVER. We also OR in the RTF_BLACKHOLE flag as 7073 * these interface routes, by definition, can only be that. 7074 * 7075 * Needless to say, the real IRE_LOOPBACK is NOT created by this 7076 * routine, but rather using ire_create() directly. 7077 * 7078 */ 7079 if (ipif->ipif_net_type == IRE_LOOPBACK) { 7080 ire->ire_type = IRE_IF_NORESOLVER; 7081 ire->ire_flags |= RTF_BLACKHOLE; 7082 } 7083 7084 error = ire_add(&ire, q, mp, func, B_FALSE); 7085 if (error == 0) 7086 goto save_ire; 7087 7088 /* 7089 * In the result of failure, ire_add() will have already 7090 * deleted the ire in question, so there is no need to 7091 * do that here. 7092 */ 7093 if (ipif_refheld) 7094 ipif_refrele(ipif); 7095 return (error); 7096 } 7097 if (ipif_refheld) { 7098 ipif_refrele(ipif); 7099 ipif_refheld = B_FALSE; 7100 } 7101 7102 /* 7103 * Get an interface IRE for the specified gateway. 7104 * If we don't have an IRE_IF_NORESOLVER or IRE_IF_RESOLVER for the 7105 * gateway, it is currently unreachable and we fail the request 7106 * accordingly. 7107 */ 7108 ipif = ipif_arg; 7109 if (ipif_arg != NULL) 7110 match_flags |= MATCH_IRE_ILL; 7111 gw_ire = ire_ftable_lookup(gw_addr, 0, 0, IRE_INTERFACE, ipif_arg, NULL, 7112 ALL_ZONES, 0, NULL, match_flags, ipst); 7113 if (gw_ire == NULL) 7114 return (ENETUNREACH); 7115 7116 /* 7117 * We create one of three types of IREs as a result of this request 7118 * based on the netmask. A netmask of all ones (which is automatically 7119 * assumed when RTF_HOST is set) results in an IRE_HOST being created. 7120 * An all zeroes netmask implies a default route so an IRE_DEFAULT is 7121 * created. Otherwise, an IRE_PREFIX route is created for the 7122 * destination prefix. 7123 */ 7124 if (mask == IP_HOST_MASK) 7125 type = IRE_HOST; 7126 else if (mask == 0) 7127 type = IRE_DEFAULT; 7128 else 7129 type = IRE_PREFIX; 7130 7131 /* check for a duplicate entry */ 7132 ire = ire_ftable_lookup(dst_addr, mask, gw_addr, type, ipif_arg, 7133 NULL, ALL_ZONES, 0, NULL, 7134 match_flags | MATCH_IRE_MASK | MATCH_IRE_GW, ipst); 7135 if (ire != NULL) { 7136 ire_refrele(gw_ire); 7137 ire_refrele(ire); 7138 return (EEXIST); 7139 } 7140 7141 /* Security attribute exists */ 7142 if (sp != NULL) { 7143 tsol_gcgrp_addr_t ga; 7144 7145 /* find or create the gateway credentials group */ 7146 ga.ga_af = AF_INET; 7147 IN6_IPADDR_TO_V4MAPPED(gw_addr, &ga.ga_addr); 7148 7149 /* we hold reference to it upon success */ 7150 gcgrp = gcgrp_lookup(&ga, B_TRUE); 7151 if (gcgrp == NULL) { 7152 ire_refrele(gw_ire); 7153 return (ENOMEM); 7154 } 7155 7156 /* 7157 * Create and add the security attribute to the group; a 7158 * reference to the group is made upon allocating a new 7159 * entry successfully. If it finds an already-existing 7160 * entry for the security attribute in the group, it simply 7161 * returns it and no new reference is made to the group. 7162 */ 7163 gc = gc_create(sp, gcgrp, &gcgrp_xtraref); 7164 if (gc == NULL) { 7165 /* release reference held by gcgrp_lookup */ 7166 GCGRP_REFRELE(gcgrp); 7167 ire_refrele(gw_ire); 7168 return (ENOMEM); 7169 } 7170 } 7171 7172 /* Create the IRE. */ 7173 ire = ire_create( 7174 (uchar_t *)&dst_addr, /* dest address */ 7175 (uchar_t *)&mask, /* mask */ 7176 /* src address assigned by the caller? */ 7177 (uchar_t *)(((src_addr != INADDR_ANY) && 7178 (flags & RTF_SETSRC)) ? &src_addr : NULL), 7179 (uchar_t *)&gw_addr, /* gateway address */ 7180 &gw_ire->ire_max_frag, 7181 NULL, /* no src nce */ 7182 NULL, /* no recv-from queue */ 7183 NULL, /* no send-to queue */ 7184 (ushort_t)type, /* IRE type */ 7185 ipif_arg, 7186 0, 7187 0, 7188 0, 7189 flags, 7190 &gw_ire->ire_uinfo, /* Inherit ULP info from gw */ 7191 gc, /* security attribute */ 7192 NULL, 7193 ipst); 7194 7195 /* 7196 * The ire holds a reference to the 'gc' and the 'gc' holds a 7197 * reference to the 'gcgrp'. We can now release the extra reference 7198 * the 'gcgrp' acquired in the gcgrp_lookup, if it was not used. 7199 */ 7200 if (gcgrp_xtraref) 7201 GCGRP_REFRELE(gcgrp); 7202 if (ire == NULL) { 7203 if (gc != NULL) 7204 GC_REFRELE(gc); 7205 ire_refrele(gw_ire); 7206 return (ENOMEM); 7207 } 7208 7209 /* 7210 * POLICY: should we allow an RTF_HOST with address INADDR_ANY? 7211 * SUN/OS socket stuff does but do we really want to allow 0.0.0.0? 7212 */ 7213 7214 /* Add the new IRE. */ 7215 error = ire_add(&ire, q, mp, func, B_FALSE); 7216 if (error != 0) { 7217 /* 7218 * In the result of failure, ire_add() will have already 7219 * deleted the ire in question, so there is no need to 7220 * do that here. 7221 */ 7222 ire_refrele(gw_ire); 7223 return (error); 7224 } 7225 7226 if (flags & RTF_MULTIRT) { 7227 /* 7228 * Invoke the CGTP (multirouting) filtering module 7229 * to add the dst address in the filtering database. 7230 * Replicated inbound packets coming from that address 7231 * will be filtered to discard the duplicates. 7232 * It is not necessary to call the CGTP filter hook 7233 * when the dst address is a broadcast or multicast, 7234 * because an IP source address cannot be a broadcast 7235 * or a multicast. 7236 */ 7237 ire_t *ire_dst = ire_ctable_lookup(ire->ire_addr, 0, 7238 IRE_BROADCAST, NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 7239 if (ire_dst != NULL) { 7240 ip_cgtp_bcast_add(ire, ire_dst, ipst); 7241 ire_refrele(ire_dst); 7242 goto save_ire; 7243 } 7244 if (ipst->ips_ip_cgtp_filter_ops != NULL && 7245 !CLASSD(ire->ire_addr)) { 7246 int res = ipst->ips_ip_cgtp_filter_ops->cfo_add_dest_v4( 7247 ipst->ips_netstack->netstack_stackid, 7248 ire->ire_addr, 7249 ire->ire_gateway_addr, 7250 ire->ire_src_addr, 7251 gw_ire->ire_src_addr); 7252 if (res != 0) { 7253 ire_refrele(gw_ire); 7254 ire_delete(ire); 7255 return (res); 7256 } 7257 } 7258 } 7259 7260 /* 7261 * Now that the prefix IRE entry has been created, delete any 7262 * existing gateway IRE cache entries as well as any IRE caches 7263 * using the gateway, and force them to be created through 7264 * ip_newroute. 7265 */ 7266 if (gc != NULL) { 7267 ASSERT(gcgrp != NULL); 7268 ire_clookup_delete_cache_gw(gw_addr, ALL_ZONES, ipst); 7269 } 7270 7271 save_ire: 7272 if (gw_ire != NULL) { 7273 ire_refrele(gw_ire); 7274 } 7275 if (ipif != NULL) { 7276 /* 7277 * Save enough information so that we can recreate the IRE if 7278 * the interface goes down and then up. The metrics associated 7279 * with the route will be saved as well when rts_setmetrics() is 7280 * called after the IRE has been created. In the case where 7281 * memory cannot be allocated, none of this information will be 7282 * saved. 7283 */ 7284 ipif_save_ire(ipif, ire); 7285 } 7286 if (ioctl_msg) 7287 ip_rts_rtmsg(RTM_OLDADD, ire, 0, ipst); 7288 if (ire_arg != NULL) { 7289 /* 7290 * Store the ire that was successfully added into where ire_arg 7291 * points to so that callers don't have to look it up 7292 * themselves (but they are responsible for ire_refrele()ing 7293 * the ire when they are finished with it). 7294 */ 7295 *ire_arg = ire; 7296 } else { 7297 ire_refrele(ire); /* Held in ire_add */ 7298 } 7299 if (ipif_refheld) 7300 ipif_refrele(ipif); 7301 return (0); 7302 } 7303 7304 /* 7305 * ip_rt_delete is called to delete an IPv4 route. 7306 * ipif_arg is passed in to associate it with the correct interface. 7307 * We may need to restart this operation if the ipif cannot be looked up 7308 * due to an exclusive operation that is currently in progress. The restart 7309 * entry point is specified by 'func' 7310 */ 7311 /* ARGSUSED4 */ 7312 int 7313 ip_rt_delete(ipaddr_t dst_addr, ipaddr_t mask, ipaddr_t gw_addr, 7314 uint_t rtm_addrs, int flags, ipif_t *ipif_arg, boolean_t ioctl_msg, 7315 queue_t *q, mblk_t *mp, ipsq_func_t func, ip_stack_t *ipst) 7316 { 7317 ire_t *ire = NULL; 7318 ipif_t *ipif; 7319 boolean_t ipif_refheld = B_FALSE; 7320 uint_t type; 7321 uint_t match_flags = MATCH_IRE_TYPE; 7322 int err = 0; 7323 7324 ip1dbg(("ip_rt_delete:")); 7325 /* 7326 * If this is the case of RTF_HOST being set, then we set the netmask 7327 * to all ones. Otherwise, we use the netmask if one was supplied. 7328 */ 7329 if (flags & RTF_HOST) { 7330 mask = IP_HOST_MASK; 7331 match_flags |= MATCH_IRE_MASK; 7332 } else if (rtm_addrs & RTA_NETMASK) { 7333 match_flags |= MATCH_IRE_MASK; 7334 } 7335 7336 /* 7337 * Note that RTF_GATEWAY is never set on a delete, therefore 7338 * we check if the gateway address is one of our interfaces first, 7339 * and fall back on RTF_GATEWAY routes. 7340 * 7341 * This makes it possible to delete an original 7342 * IRE_IF_NORESOLVER/IRE_IF_RESOLVER - consistent with SunOS 4.1. 7343 * 7344 * As the interface index specified with the RTA_IFP sockaddr is the 7345 * same for all ipif's off of an ill, the matching logic below uses 7346 * MATCH_IRE_ILL if such an index was specified. This means a route 7347 * sharing the same prefix and interface index as the the route 7348 * intended to be deleted might be deleted instead if a RTA_IFP sockaddr 7349 * is specified in the request. 7350 * 7351 * On the other hand, since the gateway address will usually be 7352 * different for each ipif on the system, the matching logic 7353 * uses MATCH_IRE_IPIF in the case of a traditional interface 7354 * route. This means that interface routes for the same prefix can be 7355 * uniquely identified if they belong to distinct ipif's and if a 7356 * RTA_IFP sockaddr is not present. 7357 * 7358 * For more detail on specifying routes by gateway address and by 7359 * interface index, see the comments in ip_rt_add(). 7360 */ 7361 ipif = ipif_lookup_interface(gw_addr, dst_addr, q, mp, func, &err, 7362 ipst); 7363 if (ipif != NULL) 7364 ipif_refheld = B_TRUE; 7365 else if (err == EINPROGRESS) 7366 return (err); 7367 else 7368 err = 0; 7369 if (ipif != NULL) { 7370 if (ipif_arg != NULL) { 7371 if (ipif_refheld) { 7372 ipif_refrele(ipif); 7373 ipif_refheld = B_FALSE; 7374 } 7375 ipif = ipif_arg; 7376 match_flags |= MATCH_IRE_ILL; 7377 } else { 7378 match_flags |= MATCH_IRE_IPIF; 7379 } 7380 if (ipif->ipif_ire_type == IRE_LOOPBACK) { 7381 ire = ire_ctable_lookup(dst_addr, 0, IRE_LOOPBACK, ipif, 7382 ALL_ZONES, NULL, match_flags, ipst); 7383 } 7384 if (ire == NULL) { 7385 ire = ire_ftable_lookup(dst_addr, mask, 0, 7386 IRE_INTERFACE, ipif, NULL, ALL_ZONES, 0, NULL, 7387 match_flags, ipst); 7388 } 7389 } 7390 7391 if (ire == NULL) { 7392 /* 7393 * At this point, the gateway address is not one of our own 7394 * addresses or a matching interface route was not found. We 7395 * set the IRE type to lookup based on whether 7396 * this is a host route, a default route or just a prefix. 7397 * 7398 * If an ipif_arg was passed in, then the lookup is based on an 7399 * interface index so MATCH_IRE_ILL is added to match_flags. 7400 * In any case, MATCH_IRE_IPIF is cleared and MATCH_IRE_GW is 7401 * set as the route being looked up is not a traditional 7402 * interface route. 7403 */ 7404 match_flags &= ~MATCH_IRE_IPIF; 7405 match_flags |= MATCH_IRE_GW; 7406 if (ipif_arg != NULL) 7407 match_flags |= MATCH_IRE_ILL; 7408 if (mask == IP_HOST_MASK) 7409 type = IRE_HOST; 7410 else if (mask == 0) 7411 type = IRE_DEFAULT; 7412 else 7413 type = IRE_PREFIX; 7414 ire = ire_ftable_lookup(dst_addr, mask, gw_addr, type, ipif_arg, 7415 NULL, ALL_ZONES, 0, NULL, match_flags, ipst); 7416 } 7417 7418 if (ipif_refheld) 7419 ipif_refrele(ipif); 7420 7421 /* ipif is not refheld anymore */ 7422 if (ire == NULL) 7423 return (ESRCH); 7424 7425 if (ire->ire_flags & RTF_MULTIRT) { 7426 /* 7427 * Invoke the CGTP (multirouting) filtering module 7428 * to remove the dst address from the filtering database. 7429 * Packets coming from that address will no longer be 7430 * filtered to remove duplicates. 7431 */ 7432 if (ipst->ips_ip_cgtp_filter_ops != NULL) { 7433 err = ipst->ips_ip_cgtp_filter_ops->cfo_del_dest_v4( 7434 ipst->ips_netstack->netstack_stackid, 7435 ire->ire_addr, ire->ire_gateway_addr); 7436 } 7437 ip_cgtp_bcast_delete(ire, ipst); 7438 } 7439 7440 ipif = ire->ire_ipif; 7441 if (ipif != NULL) 7442 ipif_remove_ire(ipif, ire); 7443 if (ioctl_msg) 7444 ip_rts_rtmsg(RTM_OLDDEL, ire, 0, ipst); 7445 ire_delete(ire); 7446 ire_refrele(ire); 7447 return (err); 7448 } 7449 7450 /* 7451 * ip_siocaddrt is called to complete processing of an SIOCADDRT IOCTL. 7452 */ 7453 /* ARGSUSED */ 7454 int 7455 ip_siocaddrt(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 7456 ip_ioctl_cmd_t *ipip, void *dummy_if_req) 7457 { 7458 ipaddr_t dst_addr; 7459 ipaddr_t gw_addr; 7460 ipaddr_t mask; 7461 int error = 0; 7462 mblk_t *mp1; 7463 struct rtentry *rt; 7464 ipif_t *ipif = NULL; 7465 ip_stack_t *ipst; 7466 7467 ASSERT(q->q_next == NULL); 7468 ipst = CONNQ_TO_IPST(q); 7469 7470 ip1dbg(("ip_siocaddrt:")); 7471 /* Existence of mp1 verified in ip_wput_nondata */ 7472 mp1 = mp->b_cont->b_cont; 7473 rt = (struct rtentry *)mp1->b_rptr; 7474 7475 dst_addr = ((sin_t *)&rt->rt_dst)->sin_addr.s_addr; 7476 gw_addr = ((sin_t *)&rt->rt_gateway)->sin_addr.s_addr; 7477 7478 /* 7479 * If the RTF_HOST flag is on, this is a request to assign a gateway 7480 * to a particular host address. In this case, we set the netmask to 7481 * all ones for the particular destination address. Otherwise, 7482 * determine the netmask to be used based on dst_addr and the interfaces 7483 * in use. 7484 */ 7485 if (rt->rt_flags & RTF_HOST) { 7486 mask = IP_HOST_MASK; 7487 } else { 7488 /* 7489 * Note that ip_subnet_mask returns a zero mask in the case of 7490 * default (an all-zeroes address). 7491 */ 7492 mask = ip_subnet_mask(dst_addr, &ipif, ipst); 7493 } 7494 7495 error = ip_rt_add(dst_addr, mask, gw_addr, 0, rt->rt_flags, NULL, NULL, 7496 B_TRUE, q, mp, ip_process_ioctl, NULL, ipst); 7497 if (ipif != NULL) 7498 ipif_refrele(ipif); 7499 return (error); 7500 } 7501 7502 /* 7503 * ip_siocdelrt is called to complete processing of an SIOCDELRT IOCTL. 7504 */ 7505 /* ARGSUSED */ 7506 int 7507 ip_siocdelrt(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 7508 ip_ioctl_cmd_t *ipip, void *dummy_if_req) 7509 { 7510 ipaddr_t dst_addr; 7511 ipaddr_t gw_addr; 7512 ipaddr_t mask; 7513 int error; 7514 mblk_t *mp1; 7515 struct rtentry *rt; 7516 ipif_t *ipif = NULL; 7517 ip_stack_t *ipst; 7518 7519 ASSERT(q->q_next == NULL); 7520 ipst = CONNQ_TO_IPST(q); 7521 7522 ip1dbg(("ip_siocdelrt:")); 7523 /* Existence of mp1 verified in ip_wput_nondata */ 7524 mp1 = mp->b_cont->b_cont; 7525 rt = (struct rtentry *)mp1->b_rptr; 7526 7527 dst_addr = ((sin_t *)&rt->rt_dst)->sin_addr.s_addr; 7528 gw_addr = ((sin_t *)&rt->rt_gateway)->sin_addr.s_addr; 7529 7530 /* 7531 * If the RTF_HOST flag is on, this is a request to delete a gateway 7532 * to a particular host address. In this case, we set the netmask to 7533 * all ones for the particular destination address. Otherwise, 7534 * determine the netmask to be used based on dst_addr and the interfaces 7535 * in use. 7536 */ 7537 if (rt->rt_flags & RTF_HOST) { 7538 mask = IP_HOST_MASK; 7539 } else { 7540 /* 7541 * Note that ip_subnet_mask returns a zero mask in the case of 7542 * default (an all-zeroes address). 7543 */ 7544 mask = ip_subnet_mask(dst_addr, &ipif, ipst); 7545 } 7546 7547 error = ip_rt_delete(dst_addr, mask, gw_addr, 7548 RTA_DST | RTA_GATEWAY | RTA_NETMASK, rt->rt_flags, NULL, B_TRUE, q, 7549 mp, ip_process_ioctl, ipst); 7550 if (ipif != NULL) 7551 ipif_refrele(ipif); 7552 return (error); 7553 } 7554 7555 /* 7556 * Enqueue the mp onto the ipsq, chained by b_next. 7557 * b_prev stores the function to be executed later, and b_queue the queue 7558 * where this mp originated. 7559 */ 7560 void 7561 ipsq_enq(ipsq_t *ipsq, queue_t *q, mblk_t *mp, ipsq_func_t func, int type, 7562 ill_t *pending_ill) 7563 { 7564 conn_t *connp = NULL; 7565 7566 ASSERT(MUTEX_HELD(&ipsq->ipsq_lock)); 7567 ASSERT(func != NULL); 7568 7569 mp->b_queue = q; 7570 mp->b_prev = (void *)func; 7571 mp->b_next = NULL; 7572 7573 switch (type) { 7574 case CUR_OP: 7575 if (ipsq->ipsq_mptail != NULL) { 7576 ASSERT(ipsq->ipsq_mphead != NULL); 7577 ipsq->ipsq_mptail->b_next = mp; 7578 } else { 7579 ASSERT(ipsq->ipsq_mphead == NULL); 7580 ipsq->ipsq_mphead = mp; 7581 } 7582 ipsq->ipsq_mptail = mp; 7583 break; 7584 7585 case NEW_OP: 7586 if (ipsq->ipsq_xopq_mptail != NULL) { 7587 ASSERT(ipsq->ipsq_xopq_mphead != NULL); 7588 ipsq->ipsq_xopq_mptail->b_next = mp; 7589 } else { 7590 ASSERT(ipsq->ipsq_xopq_mphead == NULL); 7591 ipsq->ipsq_xopq_mphead = mp; 7592 } 7593 ipsq->ipsq_xopq_mptail = mp; 7594 break; 7595 default: 7596 cmn_err(CE_PANIC, "ipsq_enq %d type \n", type); 7597 } 7598 7599 if (CONN_Q(q) && pending_ill != NULL) { 7600 connp = Q_TO_CONN(q); 7601 7602 ASSERT(MUTEX_HELD(&connp->conn_lock)); 7603 connp->conn_oper_pending_ill = pending_ill; 7604 } 7605 } 7606 7607 /* 7608 * Return the mp at the head of the ipsq. After emptying the ipsq 7609 * look at the next ioctl, if this ioctl is complete. Otherwise 7610 * return, we will resume when we complete the current ioctl. 7611 * The current ioctl will wait till it gets a response from the 7612 * driver below. 7613 */ 7614 static mblk_t * 7615 ipsq_dq(ipsq_t *ipsq) 7616 { 7617 mblk_t *mp; 7618 7619 ASSERT(MUTEX_HELD(&ipsq->ipsq_lock)); 7620 7621 mp = ipsq->ipsq_mphead; 7622 if (mp != NULL) { 7623 ipsq->ipsq_mphead = mp->b_next; 7624 if (ipsq->ipsq_mphead == NULL) 7625 ipsq->ipsq_mptail = NULL; 7626 mp->b_next = NULL; 7627 return (mp); 7628 } 7629 if (ipsq->ipsq_current_ipif != NULL) 7630 return (NULL); 7631 mp = ipsq->ipsq_xopq_mphead; 7632 if (mp != NULL) { 7633 ipsq->ipsq_xopq_mphead = mp->b_next; 7634 if (ipsq->ipsq_xopq_mphead == NULL) 7635 ipsq->ipsq_xopq_mptail = NULL; 7636 mp->b_next = NULL; 7637 return (mp); 7638 } 7639 return (NULL); 7640 } 7641 7642 /* 7643 * Enter the ipsq corresponding to ill, by waiting synchronously till 7644 * we can enter the ipsq exclusively. Unless 'force' is used, the ipsq 7645 * will have to drain completely before ipsq_enter returns success. 7646 * ipsq_current_ipif will be set if some exclusive ioctl is in progress, 7647 * and the ipsq_exit logic will start the next enqueued ioctl after 7648 * completion of the current ioctl. If 'force' is used, we don't wait 7649 * for the enqueued ioctls. This is needed when a conn_close wants to 7650 * enter the ipsq and abort an ioctl that is somehow stuck. Unplumb 7651 * of an ill can also use this option. But we dont' use it currently. 7652 */ 7653 #define ENTER_SQ_WAIT_TICKS 100 7654 boolean_t 7655 ipsq_enter(ill_t *ill, boolean_t force) 7656 { 7657 ipsq_t *ipsq; 7658 boolean_t waited_enough = B_FALSE; 7659 7660 /* 7661 * Holding the ill_lock prevents <ill-ipsq> assocs from changing. 7662 * Since the <ill-ipsq> assocs could change while we wait for the 7663 * writer, it is easier to wait on a fixed global rather than try to 7664 * cv_wait on a changing ipsq. 7665 */ 7666 mutex_enter(&ill->ill_lock); 7667 for (;;) { 7668 if (ill->ill_state_flags & ILL_CONDEMNED) { 7669 mutex_exit(&ill->ill_lock); 7670 return (B_FALSE); 7671 } 7672 7673 ipsq = ill->ill_phyint->phyint_ipsq; 7674 mutex_enter(&ipsq->ipsq_lock); 7675 if (ipsq->ipsq_writer == NULL && 7676 (ipsq->ipsq_current_ipif == NULL || waited_enough)) { 7677 break; 7678 } else if (ipsq->ipsq_writer != NULL) { 7679 mutex_exit(&ipsq->ipsq_lock); 7680 cv_wait(&ill->ill_cv, &ill->ill_lock); 7681 } else { 7682 mutex_exit(&ipsq->ipsq_lock); 7683 if (force) { 7684 (void) cv_timedwait(&ill->ill_cv, 7685 &ill->ill_lock, 7686 lbolt + ENTER_SQ_WAIT_TICKS); 7687 waited_enough = B_TRUE; 7688 continue; 7689 } else { 7690 cv_wait(&ill->ill_cv, &ill->ill_lock); 7691 } 7692 } 7693 } 7694 7695 ASSERT(ipsq->ipsq_mphead == NULL && ipsq->ipsq_mptail == NULL); 7696 ASSERT(ipsq->ipsq_reentry_cnt == 0); 7697 ipsq->ipsq_writer = curthread; 7698 ipsq->ipsq_reentry_cnt++; 7699 #ifdef DEBUG 7700 ipsq->ipsq_depth = getpcstack(ipsq->ipsq_stack, IPSQ_STACK_DEPTH); 7701 #endif 7702 mutex_exit(&ipsq->ipsq_lock); 7703 mutex_exit(&ill->ill_lock); 7704 return (B_TRUE); 7705 } 7706 7707 /* 7708 * The ipsq_t (ipsq) is the synchronization data structure used to serialize 7709 * certain critical operations like plumbing (i.e. most set ioctls), 7710 * multicast joins, igmp/mld timers, IPMP operations etc. On a non-IPMP 7711 * system there is 1 ipsq per phyint. On an IPMP system there is 1 ipsq per 7712 * IPMP group. The ipsq serializes exclusive ioctls issued by applications 7713 * on a per ipsq basis in ipsq_xopq_mphead. It also protects against multiple 7714 * threads executing in the ipsq. Responses from the driver pertain to the 7715 * current ioctl (say a DL_BIND_ACK in response to a DL_BIND_REQUEST initiated 7716 * as part of bringing up the interface) and are enqueued in ipsq_mphead. 7717 * 7718 * If a thread does not want to reenter the ipsq when it is already writer, 7719 * it must make sure that the specified reentry point to be called later 7720 * when the ipsq is empty, nor any code path starting from the specified reentry 7721 * point must never ever try to enter the ipsq again. Otherwise it can lead 7722 * to an infinite loop. The reentry point ip_rput_dlpi_writer is an example. 7723 * When the thread that is currently exclusive finishes, it (ipsq_exit) 7724 * dequeues the requests waiting to become exclusive in ipsq_mphead and calls 7725 * the reentry point. When the list at ipsq_mphead becomes empty ipsq_exit 7726 * proceeds to dequeue the next ioctl in ipsq_xopq_mphead and start the next 7727 * ioctl if the current ioctl has completed. If the current ioctl is still 7728 * in progress it simply returns. The current ioctl could be waiting for 7729 * a response from another module (arp_ or the driver or could be waiting for 7730 * the ipif/ill/ire refcnts to drop to zero. In such a case the ipsq_pending_mp 7731 * and ipsq_pending_ipif are set. ipsq_current_ipif is set throughout the 7732 * execution of the ioctl and ipsq_exit does not start the next ioctl unless 7733 * ipsq_current_ipif is clear which happens only on ioctl completion. 7734 */ 7735 7736 /* 7737 * Try to enter the ipsq exclusively, corresponding to ipif or ill. (only 1 of 7738 * ipif or ill can be specified). The caller ensures ipif or ill is valid by 7739 * ref-holding it if necessary. If the ipsq cannot be entered, the mp is queued 7740 * completion. 7741 */ 7742 ipsq_t * 7743 ipsq_try_enter(ipif_t *ipif, ill_t *ill, queue_t *q, mblk_t *mp, 7744 ipsq_func_t func, int type, boolean_t reentry_ok) 7745 { 7746 ipsq_t *ipsq; 7747 7748 /* Only 1 of ipif or ill can be specified */ 7749 ASSERT((ipif != NULL) ^ (ill != NULL)); 7750 if (ipif != NULL) 7751 ill = ipif->ipif_ill; 7752 7753 /* 7754 * lock ordering ill_g_lock -> conn_lock -> ill_lock -> ipsq_lock 7755 * ipsq of an ill can't change when ill_lock is held. 7756 */ 7757 GRAB_CONN_LOCK(q); 7758 mutex_enter(&ill->ill_lock); 7759 ipsq = ill->ill_phyint->phyint_ipsq; 7760 mutex_enter(&ipsq->ipsq_lock); 7761 7762 /* 7763 * 1. Enter the ipsq if we are already writer and reentry is ok. 7764 * (Note: If the caller does not specify reentry_ok then neither 7765 * 'func' nor any of its callees must ever attempt to enter the ipsq 7766 * again. Otherwise it can lead to an infinite loop 7767 * 2. Enter the ipsq if there is no current writer and this attempted 7768 * entry is part of the current ioctl or operation 7769 * 3. Enter the ipsq if there is no current writer and this is a new 7770 * ioctl (or operation) and the ioctl (or operation) queue is 7771 * empty and there is no ioctl (or operation) currently in progress 7772 */ 7773 if ((ipsq->ipsq_writer == NULL && ((type == CUR_OP) || 7774 (type == NEW_OP && ipsq->ipsq_xopq_mphead == NULL && 7775 ipsq->ipsq_current_ipif == NULL))) || 7776 (ipsq->ipsq_writer == curthread && reentry_ok)) { 7777 /* Success. */ 7778 ipsq->ipsq_reentry_cnt++; 7779 ipsq->ipsq_writer = curthread; 7780 mutex_exit(&ipsq->ipsq_lock); 7781 mutex_exit(&ill->ill_lock); 7782 RELEASE_CONN_LOCK(q); 7783 #ifdef DEBUG 7784 ipsq->ipsq_depth = getpcstack(ipsq->ipsq_stack, 7785 IPSQ_STACK_DEPTH); 7786 #endif 7787 return (ipsq); 7788 } 7789 7790 ipsq_enq(ipsq, q, mp, func, type, ill); 7791 7792 mutex_exit(&ipsq->ipsq_lock); 7793 mutex_exit(&ill->ill_lock); 7794 RELEASE_CONN_LOCK(q); 7795 return (NULL); 7796 } 7797 7798 /* 7799 * Try to enter the IPSQ corresponding to `ill' as writer. The caller ensures 7800 * ill is valid by refholding it if necessary; we will refrele. If the IPSQ 7801 * cannot be entered, the mp is queued for completion. 7802 */ 7803 void 7804 qwriter_ip(ill_t *ill, queue_t *q, mblk_t *mp, ipsq_func_t func, int type, 7805 boolean_t reentry_ok) 7806 { 7807 ipsq_t *ipsq; 7808 7809 ipsq = ipsq_try_enter(NULL, ill, q, mp, func, type, reentry_ok); 7810 7811 /* 7812 * Drop the caller's refhold on the ill. This is safe since we either 7813 * entered the IPSQ (and thus are exclusive), or failed to enter the 7814 * IPSQ, in which case we return without accessing ill anymore. This 7815 * is needed because func needs to see the correct refcount. 7816 * e.g. removeif can work only then. 7817 */ 7818 ill_refrele(ill); 7819 if (ipsq != NULL) { 7820 (*func)(ipsq, q, mp, NULL); 7821 ipsq_exit(ipsq, B_TRUE, B_TRUE); 7822 } 7823 } 7824 7825 /* 7826 * If there are more than ILL_GRP_CNT ills in a group, 7827 * we use kmem alloc'd buffers, else use the stack 7828 */ 7829 #define ILL_GRP_CNT 14 7830 /* 7831 * Drain the ipsq, if there are messages on it, and then leave the ipsq. 7832 * Called by a thread that is currently exclusive on this ipsq. 7833 */ 7834 void 7835 ipsq_exit(ipsq_t *ipsq, boolean_t start_igmp_timer, boolean_t start_mld_timer) 7836 { 7837 queue_t *q; 7838 mblk_t *mp; 7839 ipsq_func_t func; 7840 int next; 7841 ill_t **ill_list = NULL; 7842 size_t ill_list_size = 0; 7843 int cnt = 0; 7844 boolean_t need_ipsq_free = B_FALSE; 7845 ip_stack_t *ipst = ipsq->ipsq_ipst; 7846 7847 ASSERT(IAM_WRITER_IPSQ(ipsq)); 7848 mutex_enter(&ipsq->ipsq_lock); 7849 ASSERT(ipsq->ipsq_reentry_cnt >= 1); 7850 if (ipsq->ipsq_reentry_cnt != 1) { 7851 ipsq->ipsq_reentry_cnt--; 7852 mutex_exit(&ipsq->ipsq_lock); 7853 return; 7854 } 7855 7856 mp = ipsq_dq(ipsq); 7857 while (mp != NULL) { 7858 again: 7859 mutex_exit(&ipsq->ipsq_lock); 7860 func = (ipsq_func_t)mp->b_prev; 7861 q = (queue_t *)mp->b_queue; 7862 mp->b_prev = NULL; 7863 mp->b_queue = NULL; 7864 7865 /* 7866 * If 'q' is an conn queue, it is valid, since we did a 7867 * a refhold on the connp, at the start of the ioctl. 7868 * If 'q' is an ill queue, it is valid, since close of an 7869 * ill will clean up the 'ipsq'. 7870 */ 7871 (*func)(ipsq, q, mp, NULL); 7872 7873 mutex_enter(&ipsq->ipsq_lock); 7874 mp = ipsq_dq(ipsq); 7875 } 7876 7877 mutex_exit(&ipsq->ipsq_lock); 7878 7879 /* 7880 * Need to grab the locks in the right order. Need to 7881 * atomically check (under ipsq_lock) that there are no 7882 * messages before relinquishing the ipsq. Also need to 7883 * atomically wakeup waiters on ill_cv while holding ill_lock. 7884 * Holding ill_g_lock ensures that ipsq list of ills is stable. 7885 * If we need to call ill_split_ipsq and change <ill-ipsq> we need 7886 * to grab ill_g_lock as writer. 7887 */ 7888 rw_enter(&ipst->ips_ill_g_lock, 7889 ipsq->ipsq_split ? RW_WRITER : RW_READER); 7890 7891 /* ipsq_refs can't change while ill_g_lock is held as reader */ 7892 if (ipsq->ipsq_refs != 0) { 7893 /* At most 2 ills v4/v6 per phyint */ 7894 cnt = ipsq->ipsq_refs << 1; 7895 ill_list_size = cnt * sizeof (ill_t *); 7896 /* 7897 * If memory allocation fails, we will do the split 7898 * the next time ipsq_exit is called for whatever reason. 7899 * As long as the ipsq_split flag is set the need to 7900 * split is remembered. 7901 */ 7902 ill_list = kmem_zalloc(ill_list_size, KM_NOSLEEP); 7903 if (ill_list != NULL) 7904 cnt = ill_lock_ipsq_ills(ipsq, ill_list, cnt); 7905 } 7906 mutex_enter(&ipsq->ipsq_lock); 7907 mp = ipsq_dq(ipsq); 7908 if (mp != NULL) { 7909 /* oops, some message has landed up, we can't get out */ 7910 if (ill_list != NULL) 7911 ill_unlock_ills(ill_list, cnt); 7912 rw_exit(&ipst->ips_ill_g_lock); 7913 if (ill_list != NULL) 7914 kmem_free(ill_list, ill_list_size); 7915 ill_list = NULL; 7916 ill_list_size = 0; 7917 cnt = 0; 7918 goto again; 7919 } 7920 7921 /* 7922 * Split only if no ioctl is pending and if memory alloc succeeded 7923 * above. 7924 */ 7925 if (ipsq->ipsq_split && ipsq->ipsq_current_ipif == NULL && 7926 ill_list != NULL) { 7927 /* 7928 * No new ill can join this ipsq since we are holding the 7929 * ill_g_lock. Hence ill_split_ipsq can safely traverse the 7930 * ipsq. ill_split_ipsq may fail due to memory shortage. 7931 * If so we will retry on the next ipsq_exit. 7932 */ 7933 ipsq->ipsq_split = ill_split_ipsq(ipsq); 7934 } 7935 7936 /* 7937 * We are holding the ipsq lock, hence no new messages can 7938 * land up on the ipsq, and there are no messages currently. 7939 * Now safe to get out. Wake up waiters and relinquish ipsq 7940 * atomically while holding ill locks. 7941 */ 7942 ipsq->ipsq_writer = NULL; 7943 ipsq->ipsq_reentry_cnt--; 7944 ASSERT(ipsq->ipsq_reentry_cnt == 0); 7945 #ifdef DEBUG 7946 ipsq->ipsq_depth = 0; 7947 #endif 7948 mutex_exit(&ipsq->ipsq_lock); 7949 /* 7950 * For IPMP this should wake up all ills in this ipsq. 7951 * We need to hold the ill_lock while waking up waiters to 7952 * avoid missed wakeups. But there is no need to acquire all 7953 * the ill locks and then wakeup. If we have not acquired all 7954 * the locks (due to memory failure above) ill_signal_ipsq_ills 7955 * wakes up ills one at a time after getting the right ill_lock 7956 */ 7957 ill_signal_ipsq_ills(ipsq, ill_list != NULL); 7958 if (ill_list != NULL) 7959 ill_unlock_ills(ill_list, cnt); 7960 if (ipsq->ipsq_refs == 0) 7961 need_ipsq_free = B_TRUE; 7962 rw_exit(&ipst->ips_ill_g_lock); 7963 if (ill_list != 0) 7964 kmem_free(ill_list, ill_list_size); 7965 7966 if (need_ipsq_free) { 7967 /* 7968 * Free the ipsq. ipsq_refs can't increase because ipsq can't be 7969 * looked up. ipsq can be looked up only thru ill or phyint 7970 * and there are no ills/phyint on this ipsq. 7971 */ 7972 ipsq_delete(ipsq); 7973 } 7974 /* 7975 * Now start any igmp or mld timers that could not be started 7976 * while inside the ipsq. The timers can't be started while inside 7977 * the ipsq, since igmp_start_timers may need to call untimeout() 7978 * which can't be done while holding a lock i.e. the ipsq. Otherwise 7979 * there could be a deadlock since the timeout handlers 7980 * mld_timeout_handler / igmp_timeout_handler also synchronously 7981 * wait in ipsq_enter() trying to get the ipsq. 7982 * 7983 * However there is one exception to the above. If this thread is 7984 * itself the igmp/mld timeout handler thread, then we don't want 7985 * to start any new timer until the current handler is done. The 7986 * handler thread passes in B_FALSE for start_igmp/mld_timers, while 7987 * all others pass B_TRUE. 7988 */ 7989 if (start_igmp_timer) { 7990 mutex_enter(&ipst->ips_igmp_timer_lock); 7991 next = ipst->ips_igmp_deferred_next; 7992 ipst->ips_igmp_deferred_next = INFINITY; 7993 mutex_exit(&ipst->ips_igmp_timer_lock); 7994 7995 if (next != INFINITY) 7996 igmp_start_timers(next, ipst); 7997 } 7998 7999 if (start_mld_timer) { 8000 mutex_enter(&ipst->ips_mld_timer_lock); 8001 next = ipst->ips_mld_deferred_next; 8002 ipst->ips_mld_deferred_next = INFINITY; 8003 mutex_exit(&ipst->ips_mld_timer_lock); 8004 8005 if (next != INFINITY) 8006 mld_start_timers(next, ipst); 8007 } 8008 } 8009 8010 /* 8011 * Start the current exclusive operation on `ipsq'; associate it with `ipif' 8012 * and `ioccmd'. 8013 */ 8014 void 8015 ipsq_current_start(ipsq_t *ipsq, ipif_t *ipif, int ioccmd) 8016 { 8017 ASSERT(IAM_WRITER_IPSQ(ipsq)); 8018 8019 mutex_enter(&ipsq->ipsq_lock); 8020 ASSERT(ipsq->ipsq_current_ipif == NULL); 8021 ASSERT(ipsq->ipsq_current_ioctl == 0); 8022 ipsq->ipsq_current_done = B_FALSE; 8023 ipsq->ipsq_current_ipif = ipif; 8024 ipsq->ipsq_current_ioctl = ioccmd; 8025 mutex_exit(&ipsq->ipsq_lock); 8026 } 8027 8028 /* 8029 * Finish the current exclusive operation on `ipsq'. Usually, this will allow 8030 * the next exclusive operation to begin once we ipsq_exit(). However, if 8031 * pending DLPI operations remain, then we will wait for the queue to drain 8032 * before allowing the next exclusive operation to begin. This ensures that 8033 * DLPI operations from one exclusive operation are never improperly processed 8034 * as part of a subsequent exclusive operation. 8035 */ 8036 void 8037 ipsq_current_finish(ipsq_t *ipsq) 8038 { 8039 ipif_t *ipif = ipsq->ipsq_current_ipif; 8040 t_uscalar_t dlpi_pending = DL_PRIM_INVAL; 8041 8042 ASSERT(IAM_WRITER_IPSQ(ipsq)); 8043 8044 /* 8045 * For SIOCSLIFREMOVEIF, the ipif has been already been blown away 8046 * (but in that case, IPIF_CHANGING will already be clear and no 8047 * pending DLPI messages can remain). 8048 */ 8049 if (ipsq->ipsq_current_ioctl != SIOCLIFREMOVEIF) { 8050 ill_t *ill = ipif->ipif_ill; 8051 8052 mutex_enter(&ill->ill_lock); 8053 dlpi_pending = ill->ill_dlpi_pending; 8054 ipif->ipif_state_flags &= ~IPIF_CHANGING; 8055 /* Send any queued event */ 8056 ill_nic_info_dispatch(ill); 8057 mutex_exit(&ill->ill_lock); 8058 } 8059 8060 mutex_enter(&ipsq->ipsq_lock); 8061 ipsq->ipsq_current_ioctl = 0; 8062 ipsq->ipsq_current_done = B_TRUE; 8063 if (dlpi_pending == DL_PRIM_INVAL) 8064 ipsq->ipsq_current_ipif = NULL; 8065 mutex_exit(&ipsq->ipsq_lock); 8066 } 8067 8068 /* 8069 * The ill is closing. Flush all messages on the ipsq that originated 8070 * from this ill. Usually there wont' be any messages on the ipsq_xopq_mphead 8071 * for this ill since ipsq_enter could not have entered until then. 8072 * New messages can't be queued since the CONDEMNED flag is set. 8073 */ 8074 static void 8075 ipsq_flush(ill_t *ill) 8076 { 8077 queue_t *q; 8078 mblk_t *prev; 8079 mblk_t *mp; 8080 mblk_t *mp_next; 8081 ipsq_t *ipsq; 8082 8083 ASSERT(IAM_WRITER_ILL(ill)); 8084 ipsq = ill->ill_phyint->phyint_ipsq; 8085 /* 8086 * Flush any messages sent up by the driver. 8087 */ 8088 mutex_enter(&ipsq->ipsq_lock); 8089 for (prev = NULL, mp = ipsq->ipsq_mphead; mp != NULL; mp = mp_next) { 8090 mp_next = mp->b_next; 8091 q = mp->b_queue; 8092 if (q == ill->ill_rq || q == ill->ill_wq) { 8093 /* Remove the mp from the ipsq */ 8094 if (prev == NULL) 8095 ipsq->ipsq_mphead = mp->b_next; 8096 else 8097 prev->b_next = mp->b_next; 8098 if (ipsq->ipsq_mptail == mp) { 8099 ASSERT(mp_next == NULL); 8100 ipsq->ipsq_mptail = prev; 8101 } 8102 inet_freemsg(mp); 8103 } else { 8104 prev = mp; 8105 } 8106 } 8107 mutex_exit(&ipsq->ipsq_lock); 8108 (void) ipsq_pending_mp_cleanup(ill, NULL); 8109 ipsq_xopq_mp_cleanup(ill, NULL); 8110 ill_pending_mp_cleanup(ill); 8111 } 8112 8113 /* ARGSUSED */ 8114 int 8115 ip_sioctl_slifoindex(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 8116 ip_ioctl_cmd_t *ipip, void *ifreq) 8117 { 8118 ill_t *ill; 8119 struct lifreq *lifr = (struct lifreq *)ifreq; 8120 boolean_t isv6; 8121 conn_t *connp; 8122 ip_stack_t *ipst; 8123 8124 connp = Q_TO_CONN(q); 8125 ipst = connp->conn_netstack->netstack_ip; 8126 isv6 = connp->conn_af_isv6; 8127 /* 8128 * Set original index. 8129 * Failover and failback move logical interfaces 8130 * from one physical interface to another. The 8131 * original index indicates the parent of a logical 8132 * interface, in other words, the physical interface 8133 * the logical interface will be moved back to on 8134 * failback. 8135 */ 8136 8137 /* 8138 * Don't allow the original index to be changed 8139 * for non-failover addresses, autoconfigured 8140 * addresses, or IPv6 link local addresses. 8141 */ 8142 if (((ipif->ipif_flags & (IPIF_NOFAILOVER | IPIF_ADDRCONF)) != NULL) || 8143 (isv6 && IN6_IS_ADDR_LINKLOCAL(&ipif->ipif_v6lcl_addr))) { 8144 return (EINVAL); 8145 } 8146 /* 8147 * The new original index must be in use by some 8148 * physical interface. 8149 */ 8150 ill = ill_lookup_on_ifindex(lifr->lifr_index, isv6, NULL, NULL, 8151 NULL, NULL, ipst); 8152 if (ill == NULL) 8153 return (ENXIO); 8154 ill_refrele(ill); 8155 8156 ipif->ipif_orig_ifindex = lifr->lifr_index; 8157 /* 8158 * When this ipif gets failed back, don't 8159 * preserve the original id, as it is no 8160 * longer applicable. 8161 */ 8162 ipif->ipif_orig_ipifid = 0; 8163 /* 8164 * For IPv4, change the original index of any 8165 * multicast addresses associated with the 8166 * ipif to the new value. 8167 */ 8168 if (!isv6) { 8169 ilm_t *ilm; 8170 8171 mutex_enter(&ipif->ipif_ill->ill_lock); 8172 for (ilm = ipif->ipif_ill->ill_ilm; ilm != NULL; 8173 ilm = ilm->ilm_next) { 8174 if (ilm->ilm_ipif == ipif) { 8175 ilm->ilm_orig_ifindex = lifr->lifr_index; 8176 } 8177 } 8178 mutex_exit(&ipif->ipif_ill->ill_lock); 8179 } 8180 return (0); 8181 } 8182 8183 /* ARGSUSED */ 8184 int 8185 ip_sioctl_get_oindex(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 8186 ip_ioctl_cmd_t *ipip, void *ifreq) 8187 { 8188 struct lifreq *lifr = (struct lifreq *)ifreq; 8189 8190 /* 8191 * Get the original interface index i.e the one 8192 * before FAILOVER if it ever happened. 8193 */ 8194 lifr->lifr_index = ipif->ipif_orig_ifindex; 8195 return (0); 8196 } 8197 8198 /* 8199 * Parse an iftun_req structure coming down SIOC[GS]TUNPARAM ioctls, 8200 * refhold and return the associated ipif 8201 */ 8202 /* ARGSUSED */ 8203 int 8204 ip_extract_tunreq(queue_t *q, mblk_t *mp, const ip_ioctl_cmd_t *ipip, 8205 cmd_info_t *ci, ipsq_func_t func) 8206 { 8207 boolean_t exists; 8208 struct iftun_req *ta; 8209 ipif_t *ipif; 8210 ill_t *ill; 8211 boolean_t isv6; 8212 mblk_t *mp1; 8213 int error; 8214 conn_t *connp; 8215 ip_stack_t *ipst; 8216 8217 /* Existence verified in ip_wput_nondata */ 8218 mp1 = mp->b_cont->b_cont; 8219 ta = (struct iftun_req *)mp1->b_rptr; 8220 /* 8221 * Null terminate the string to protect against buffer 8222 * overrun. String was generated by user code and may not 8223 * be trusted. 8224 */ 8225 ta->ifta_lifr_name[LIFNAMSIZ - 1] = '\0'; 8226 8227 connp = Q_TO_CONN(q); 8228 isv6 = connp->conn_af_isv6; 8229 ipst = connp->conn_netstack->netstack_ip; 8230 8231 /* Disallows implicit create */ 8232 ipif = ipif_lookup_on_name(ta->ifta_lifr_name, 8233 mi_strlen(ta->ifta_lifr_name), B_FALSE, &exists, isv6, 8234 connp->conn_zoneid, CONNP_TO_WQ(connp), mp, func, &error, ipst); 8235 if (ipif == NULL) 8236 return (error); 8237 8238 if (ipif->ipif_id != 0) { 8239 /* 8240 * We really don't want to set/get tunnel parameters 8241 * on virtual tunnel interfaces. Only allow the 8242 * base tunnel to do these. 8243 */ 8244 ipif_refrele(ipif); 8245 return (EINVAL); 8246 } 8247 8248 /* 8249 * Send down to tunnel mod for ioctl processing. 8250 * Will finish ioctl in ip_rput_other(). 8251 */ 8252 ill = ipif->ipif_ill; 8253 if (ill->ill_net_type == IRE_LOOPBACK) { 8254 ipif_refrele(ipif); 8255 return (EOPNOTSUPP); 8256 } 8257 8258 if (ill->ill_wq == NULL) { 8259 ipif_refrele(ipif); 8260 return (ENXIO); 8261 } 8262 /* 8263 * Mark the ioctl as coming from an IPv6 interface for 8264 * tun's convenience. 8265 */ 8266 if (ill->ill_isv6) 8267 ta->ifta_flags |= 0x80000000; 8268 ci->ci_ipif = ipif; 8269 return (0); 8270 } 8271 8272 /* 8273 * Parse an ifreq or lifreq struct coming down ioctls and refhold 8274 * and return the associated ipif. 8275 * Return value: 8276 * Non zero: An error has occurred. ci may not be filled out. 8277 * zero : ci is filled out with the ioctl cmd in ci.ci_name, and 8278 * a held ipif in ci.ci_ipif. 8279 */ 8280 int 8281 ip_extract_lifreq(queue_t *q, mblk_t *mp, const ip_ioctl_cmd_t *ipip, 8282 cmd_info_t *ci, ipsq_func_t func) 8283 { 8284 sin_t *sin; 8285 sin6_t *sin6; 8286 char *name; 8287 struct ifreq *ifr; 8288 struct lifreq *lifr; 8289 ipif_t *ipif = NULL; 8290 ill_t *ill; 8291 conn_t *connp; 8292 boolean_t isv6; 8293 boolean_t exists; 8294 int err; 8295 mblk_t *mp1; 8296 zoneid_t zoneid; 8297 ip_stack_t *ipst; 8298 8299 if (q->q_next != NULL) { 8300 ill = (ill_t *)q->q_ptr; 8301 isv6 = ill->ill_isv6; 8302 connp = NULL; 8303 zoneid = ALL_ZONES; 8304 ipst = ill->ill_ipst; 8305 } else { 8306 ill = NULL; 8307 connp = Q_TO_CONN(q); 8308 isv6 = connp->conn_af_isv6; 8309 zoneid = connp->conn_zoneid; 8310 if (zoneid == GLOBAL_ZONEID) { 8311 /* global zone can access ipifs in all zones */ 8312 zoneid = ALL_ZONES; 8313 } 8314 ipst = connp->conn_netstack->netstack_ip; 8315 } 8316 8317 /* Has been checked in ip_wput_nondata */ 8318 mp1 = mp->b_cont->b_cont; 8319 8320 if (ipip->ipi_cmd_type == IF_CMD) { 8321 /* This a old style SIOC[GS]IF* command */ 8322 ifr = (struct ifreq *)mp1->b_rptr; 8323 /* 8324 * Null terminate the string to protect against buffer 8325 * overrun. String was generated by user code and may not 8326 * be trusted. 8327 */ 8328 ifr->ifr_name[IFNAMSIZ - 1] = '\0'; 8329 sin = (sin_t *)&ifr->ifr_addr; 8330 name = ifr->ifr_name; 8331 ci->ci_sin = sin; 8332 ci->ci_sin6 = NULL; 8333 ci->ci_lifr = (struct lifreq *)ifr; 8334 } else { 8335 /* This a new style SIOC[GS]LIF* command */ 8336 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 8337 lifr = (struct lifreq *)mp1->b_rptr; 8338 /* 8339 * Null terminate the string to protect against buffer 8340 * overrun. String was generated by user code and may not 8341 * be trusted. 8342 */ 8343 lifr->lifr_name[LIFNAMSIZ - 1] = '\0'; 8344 name = lifr->lifr_name; 8345 sin = (sin_t *)&lifr->lifr_addr; 8346 sin6 = (sin6_t *)&lifr->lifr_addr; 8347 if (ipip->ipi_cmd == SIOCSLIFGROUPNAME) { 8348 (void) strncpy(ci->ci_groupname, lifr->lifr_groupname, 8349 LIFNAMSIZ); 8350 } 8351 ci->ci_sin = sin; 8352 ci->ci_sin6 = sin6; 8353 ci->ci_lifr = lifr; 8354 } 8355 8356 if (ipip->ipi_cmd == SIOCSLIFNAME) { 8357 /* 8358 * The ioctl will be failed if the ioctl comes down 8359 * an conn stream 8360 */ 8361 if (ill == NULL) { 8362 /* 8363 * Not an ill queue, return EINVAL same as the 8364 * old error code. 8365 */ 8366 return (ENXIO); 8367 } 8368 ipif = ill->ill_ipif; 8369 ipif_refhold(ipif); 8370 } else { 8371 ipif = ipif_lookup_on_name(name, mi_strlen(name), B_FALSE, 8372 &exists, isv6, zoneid, 8373 (connp == NULL) ? q : CONNP_TO_WQ(connp), mp, func, &err, 8374 ipst); 8375 if (ipif == NULL) { 8376 if (err == EINPROGRESS) 8377 return (err); 8378 if (ipip->ipi_cmd == SIOCLIFFAILOVER || 8379 ipip->ipi_cmd == SIOCLIFFAILBACK) { 8380 /* 8381 * Need to try both v4 and v6 since this 8382 * ioctl can come down either v4 or v6 8383 * socket. The lifreq.lifr_family passed 8384 * down by this ioctl is AF_UNSPEC. 8385 */ 8386 ipif = ipif_lookup_on_name(name, 8387 mi_strlen(name), B_FALSE, &exists, !isv6, 8388 zoneid, (connp == NULL) ? q : 8389 CONNP_TO_WQ(connp), mp, func, &err, ipst); 8390 if (err == EINPROGRESS) 8391 return (err); 8392 } 8393 err = 0; /* Ensure we don't use it below */ 8394 } 8395 } 8396 8397 /* 8398 * Old style [GS]IFCMD does not admit IPv6 ipif 8399 */ 8400 if (ipif != NULL && ipif->ipif_isv6 && ipip->ipi_cmd_type == IF_CMD) { 8401 ipif_refrele(ipif); 8402 return (ENXIO); 8403 } 8404 8405 if (ipif == NULL && ill != NULL && ill->ill_ipif != NULL && 8406 name[0] == '\0') { 8407 /* 8408 * Handle a or a SIOC?IF* with a null name 8409 * during plumb (on the ill queue before the I_PLINK). 8410 */ 8411 ipif = ill->ill_ipif; 8412 ipif_refhold(ipif); 8413 } 8414 8415 if (ipif == NULL) 8416 return (ENXIO); 8417 8418 /* 8419 * Allow only GET operations if this ipif has been created 8420 * temporarily due to a MOVE operation. 8421 */ 8422 if (ipif->ipif_replace_zero && !(ipip->ipi_flags & IPI_REPL)) { 8423 ipif_refrele(ipif); 8424 return (EINVAL); 8425 } 8426 8427 ci->ci_ipif = ipif; 8428 return (0); 8429 } 8430 8431 /* 8432 * Return the total number of ipifs. 8433 */ 8434 static uint_t 8435 ip_get_numifs(zoneid_t zoneid, ip_stack_t *ipst) 8436 { 8437 uint_t numifs = 0; 8438 ill_t *ill; 8439 ill_walk_context_t ctx; 8440 ipif_t *ipif; 8441 8442 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 8443 ill = ILL_START_WALK_V4(&ctx, ipst); 8444 8445 while (ill != NULL) { 8446 for (ipif = ill->ill_ipif; ipif != NULL; 8447 ipif = ipif->ipif_next) { 8448 if (ipif->ipif_zoneid == zoneid || 8449 ipif->ipif_zoneid == ALL_ZONES) 8450 numifs++; 8451 } 8452 ill = ill_next(&ctx, ill); 8453 } 8454 rw_exit(&ipst->ips_ill_g_lock); 8455 return (numifs); 8456 } 8457 8458 /* 8459 * Return the total number of ipifs. 8460 */ 8461 static uint_t 8462 ip_get_numlifs(int family, int lifn_flags, zoneid_t zoneid, ip_stack_t *ipst) 8463 { 8464 uint_t numifs = 0; 8465 ill_t *ill; 8466 ipif_t *ipif; 8467 ill_walk_context_t ctx; 8468 8469 ip1dbg(("ip_get_numlifs(%d %u %d)\n", family, lifn_flags, (int)zoneid)); 8470 8471 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 8472 if (family == AF_INET) 8473 ill = ILL_START_WALK_V4(&ctx, ipst); 8474 else if (family == AF_INET6) 8475 ill = ILL_START_WALK_V6(&ctx, ipst); 8476 else 8477 ill = ILL_START_WALK_ALL(&ctx, ipst); 8478 8479 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 8480 for (ipif = ill->ill_ipif; ipif != NULL; 8481 ipif = ipif->ipif_next) { 8482 if ((ipif->ipif_flags & IPIF_NOXMIT) && 8483 !(lifn_flags & LIFC_NOXMIT)) 8484 continue; 8485 if ((ipif->ipif_flags & IPIF_TEMPORARY) && 8486 !(lifn_flags & LIFC_TEMPORARY)) 8487 continue; 8488 if (((ipif->ipif_flags & 8489 (IPIF_NOXMIT|IPIF_NOLOCAL| 8490 IPIF_DEPRECATED)) || 8491 IS_LOOPBACK(ill) || 8492 !(ipif->ipif_flags & IPIF_UP)) && 8493 (lifn_flags & LIFC_EXTERNAL_SOURCE)) 8494 continue; 8495 8496 if (zoneid != ipif->ipif_zoneid && 8497 ipif->ipif_zoneid != ALL_ZONES && 8498 (zoneid != GLOBAL_ZONEID || 8499 !(lifn_flags & LIFC_ALLZONES))) 8500 continue; 8501 8502 numifs++; 8503 } 8504 } 8505 rw_exit(&ipst->ips_ill_g_lock); 8506 return (numifs); 8507 } 8508 8509 uint_t 8510 ip_get_lifsrcofnum(ill_t *ill) 8511 { 8512 uint_t numifs = 0; 8513 ill_t *ill_head = ill; 8514 ip_stack_t *ipst = ill->ill_ipst; 8515 8516 /* 8517 * ill_g_usesrc_lock protects ill_usesrc_grp_next, for example, some 8518 * other thread may be trying to relink the ILLs in this usesrc group 8519 * and adjusting the ill_usesrc_grp_next pointers 8520 */ 8521 rw_enter(&ipst->ips_ill_g_usesrc_lock, RW_READER); 8522 if ((ill->ill_usesrc_ifindex == 0) && 8523 (ill->ill_usesrc_grp_next != NULL)) { 8524 for (; (ill != NULL) && (ill->ill_usesrc_grp_next != ill_head); 8525 ill = ill->ill_usesrc_grp_next) 8526 numifs++; 8527 } 8528 rw_exit(&ipst->ips_ill_g_usesrc_lock); 8529 8530 return (numifs); 8531 } 8532 8533 /* Null values are passed in for ipif, sin, and ifreq */ 8534 /* ARGSUSED */ 8535 int 8536 ip_sioctl_get_ifnum(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, 8537 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) 8538 { 8539 int *nump; 8540 conn_t *connp = Q_TO_CONN(q); 8541 8542 ASSERT(q->q_next == NULL); /* not a valid ioctl for ip as a module */ 8543 8544 /* Existence of b_cont->b_cont checked in ip_wput_nondata */ 8545 nump = (int *)mp->b_cont->b_cont->b_rptr; 8546 8547 *nump = ip_get_numifs(connp->conn_zoneid, 8548 connp->conn_netstack->netstack_ip); 8549 ip1dbg(("ip_sioctl_get_ifnum numifs %d", *nump)); 8550 return (0); 8551 } 8552 8553 /* Null values are passed in for ipif, sin, and ifreq */ 8554 /* ARGSUSED */ 8555 int 8556 ip_sioctl_get_lifnum(ipif_t *dummy_ipif, sin_t *dummy_sin, 8557 queue_t *q, mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) 8558 { 8559 struct lifnum *lifn; 8560 mblk_t *mp1; 8561 conn_t *connp = Q_TO_CONN(q); 8562 8563 ASSERT(q->q_next == NULL); /* not a valid ioctl for ip as a module */ 8564 8565 /* Existence checked in ip_wput_nondata */ 8566 mp1 = mp->b_cont->b_cont; 8567 8568 lifn = (struct lifnum *)mp1->b_rptr; 8569 switch (lifn->lifn_family) { 8570 case AF_UNSPEC: 8571 case AF_INET: 8572 case AF_INET6: 8573 break; 8574 default: 8575 return (EAFNOSUPPORT); 8576 } 8577 8578 lifn->lifn_count = ip_get_numlifs(lifn->lifn_family, lifn->lifn_flags, 8579 connp->conn_zoneid, connp->conn_netstack->netstack_ip); 8580 ip1dbg(("ip_sioctl_get_lifnum numifs %d", lifn->lifn_count)); 8581 return (0); 8582 } 8583 8584 /* ARGSUSED */ 8585 int 8586 ip_sioctl_get_ifconf(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, 8587 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) 8588 { 8589 STRUCT_HANDLE(ifconf, ifc); 8590 mblk_t *mp1; 8591 struct iocblk *iocp; 8592 struct ifreq *ifr; 8593 ill_walk_context_t ctx; 8594 ill_t *ill; 8595 ipif_t *ipif; 8596 struct sockaddr_in *sin; 8597 int32_t ifclen; 8598 zoneid_t zoneid; 8599 ip_stack_t *ipst = CONNQ_TO_IPST(q); 8600 8601 ASSERT(q->q_next == NULL); /* not valid ioctls for ip as a module */ 8602 8603 ip1dbg(("ip_sioctl_get_ifconf")); 8604 /* Existence verified in ip_wput_nondata */ 8605 mp1 = mp->b_cont->b_cont; 8606 iocp = (struct iocblk *)mp->b_rptr; 8607 zoneid = Q_TO_CONN(q)->conn_zoneid; 8608 8609 /* 8610 * The original SIOCGIFCONF passed in a struct ifconf which specified 8611 * the user buffer address and length into which the list of struct 8612 * ifreqs was to be copied. Since AT&T Streams does not seem to 8613 * allow M_COPYOUT to be used in conjunction with I_STR IOCTLS, 8614 * the SIOCGIFCONF operation was redefined to simply provide 8615 * a large output buffer into which we are supposed to jam the ifreq 8616 * array. The same ioctl command code was used, despite the fact that 8617 * both the applications and the kernel code had to change, thus making 8618 * it impossible to support both interfaces. 8619 * 8620 * For reasons not good enough to try to explain, the following 8621 * algorithm is used for deciding what to do with one of these: 8622 * If the IOCTL comes in as an I_STR, it is assumed to be of the new 8623 * form with the output buffer coming down as the continuation message. 8624 * If it arrives as a TRANSPARENT IOCTL, it is assumed to be old style, 8625 * and we have to copy in the ifconf structure to find out how big the 8626 * output buffer is and where to copy out to. Sure no problem... 8627 * 8628 */ 8629 STRUCT_SET_HANDLE(ifc, iocp->ioc_flag, NULL); 8630 if ((mp1->b_wptr - mp1->b_rptr) == STRUCT_SIZE(ifc)) { 8631 int numifs = 0; 8632 size_t ifc_bufsize; 8633 8634 /* 8635 * Must be (better be!) continuation of a TRANSPARENT 8636 * IOCTL. We just copied in the ifconf structure. 8637 */ 8638 STRUCT_SET_HANDLE(ifc, iocp->ioc_flag, 8639 (struct ifconf *)mp1->b_rptr); 8640 8641 /* 8642 * Allocate a buffer to hold requested information. 8643 * 8644 * If ifc_len is larger than what is needed, we only 8645 * allocate what we will use. 8646 * 8647 * If ifc_len is smaller than what is needed, return 8648 * EINVAL. 8649 * 8650 * XXX: the ill_t structure can hava 2 counters, for 8651 * v4 and v6 (not just ill_ipif_up_count) to store the 8652 * number of interfaces for a device, so we don't need 8653 * to count them here... 8654 */ 8655 numifs = ip_get_numifs(zoneid, ipst); 8656 8657 ifclen = STRUCT_FGET(ifc, ifc_len); 8658 ifc_bufsize = numifs * sizeof (struct ifreq); 8659 if (ifc_bufsize > ifclen) { 8660 if (iocp->ioc_cmd == O_SIOCGIFCONF) { 8661 /* old behaviour */ 8662 return (EINVAL); 8663 } else { 8664 ifc_bufsize = ifclen; 8665 } 8666 } 8667 8668 mp1 = mi_copyout_alloc(q, mp, 8669 STRUCT_FGETP(ifc, ifc_buf), ifc_bufsize, B_FALSE); 8670 if (mp1 == NULL) 8671 return (ENOMEM); 8672 8673 mp1->b_wptr = mp1->b_rptr + ifc_bufsize; 8674 } 8675 bzero(mp1->b_rptr, mp1->b_wptr - mp1->b_rptr); 8676 /* 8677 * the SIOCGIFCONF ioctl only knows about 8678 * IPv4 addresses, so don't try to tell 8679 * it about interfaces with IPv6-only 8680 * addresses. (Last parm 'isv6' is B_FALSE) 8681 */ 8682 8683 ifr = (struct ifreq *)mp1->b_rptr; 8684 8685 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 8686 ill = ILL_START_WALK_V4(&ctx, ipst); 8687 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 8688 for (ipif = ill->ill_ipif; ipif != NULL; 8689 ipif = ipif->ipif_next) { 8690 if (zoneid != ipif->ipif_zoneid && 8691 ipif->ipif_zoneid != ALL_ZONES) 8692 continue; 8693 if ((uchar_t *)&ifr[1] > mp1->b_wptr) { 8694 if (iocp->ioc_cmd == O_SIOCGIFCONF) { 8695 /* old behaviour */ 8696 rw_exit(&ipst->ips_ill_g_lock); 8697 return (EINVAL); 8698 } else { 8699 goto if_copydone; 8700 } 8701 } 8702 ipif_get_name(ipif, ifr->ifr_name, 8703 sizeof (ifr->ifr_name)); 8704 sin = (sin_t *)&ifr->ifr_addr; 8705 *sin = sin_null; 8706 sin->sin_family = AF_INET; 8707 sin->sin_addr.s_addr = ipif->ipif_lcl_addr; 8708 ifr++; 8709 } 8710 } 8711 if_copydone: 8712 rw_exit(&ipst->ips_ill_g_lock); 8713 mp1->b_wptr = (uchar_t *)ifr; 8714 8715 if (STRUCT_BUF(ifc) != NULL) { 8716 STRUCT_FSET(ifc, ifc_len, 8717 (int)((uchar_t *)ifr - mp1->b_rptr)); 8718 } 8719 return (0); 8720 } 8721 8722 /* 8723 * Get the interfaces using the address hosted on the interface passed in, 8724 * as a source adddress 8725 */ 8726 /* ARGSUSED */ 8727 int 8728 ip_sioctl_get_lifsrcof(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, 8729 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) 8730 { 8731 mblk_t *mp1; 8732 ill_t *ill, *ill_head; 8733 ipif_t *ipif, *orig_ipif; 8734 int numlifs = 0; 8735 size_t lifs_bufsize, lifsmaxlen; 8736 struct lifreq *lifr; 8737 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 8738 uint_t ifindex; 8739 zoneid_t zoneid; 8740 int err = 0; 8741 boolean_t isv6 = B_FALSE; 8742 struct sockaddr_in *sin; 8743 struct sockaddr_in6 *sin6; 8744 STRUCT_HANDLE(lifsrcof, lifs); 8745 ip_stack_t *ipst; 8746 8747 ipst = CONNQ_TO_IPST(q); 8748 8749 ASSERT(q->q_next == NULL); 8750 8751 zoneid = Q_TO_CONN(q)->conn_zoneid; 8752 8753 /* Existence verified in ip_wput_nondata */ 8754 mp1 = mp->b_cont->b_cont; 8755 8756 /* 8757 * Must be (better be!) continuation of a TRANSPARENT 8758 * IOCTL. We just copied in the lifsrcof structure. 8759 */ 8760 STRUCT_SET_HANDLE(lifs, iocp->ioc_flag, 8761 (struct lifsrcof *)mp1->b_rptr); 8762 8763 if (MBLKL(mp1) != STRUCT_SIZE(lifs)) 8764 return (EINVAL); 8765 8766 ifindex = STRUCT_FGET(lifs, lifs_ifindex); 8767 isv6 = (Q_TO_CONN(q))->conn_af_isv6; 8768 ipif = ipif_lookup_on_ifindex(ifindex, isv6, zoneid, q, mp, 8769 ip_process_ioctl, &err, ipst); 8770 if (ipif == NULL) { 8771 ip1dbg(("ip_sioctl_get_lifsrcof: no ipif for ifindex %d\n", 8772 ifindex)); 8773 return (err); 8774 } 8775 8776 8777 /* Allocate a buffer to hold requested information */ 8778 numlifs = ip_get_lifsrcofnum(ipif->ipif_ill); 8779 lifs_bufsize = numlifs * sizeof (struct lifreq); 8780 lifsmaxlen = STRUCT_FGET(lifs, lifs_maxlen); 8781 /* The actual size needed is always returned in lifs_len */ 8782 STRUCT_FSET(lifs, lifs_len, lifs_bufsize); 8783 8784 /* If the amount we need is more than what is passed in, abort */ 8785 if (lifs_bufsize > lifsmaxlen || lifs_bufsize == 0) { 8786 ipif_refrele(ipif); 8787 return (0); 8788 } 8789 8790 mp1 = mi_copyout_alloc(q, mp, 8791 STRUCT_FGETP(lifs, lifs_buf), lifs_bufsize, B_FALSE); 8792 if (mp1 == NULL) { 8793 ipif_refrele(ipif); 8794 return (ENOMEM); 8795 } 8796 8797 mp1->b_wptr = mp1->b_rptr + lifs_bufsize; 8798 bzero(mp1->b_rptr, lifs_bufsize); 8799 8800 lifr = (struct lifreq *)mp1->b_rptr; 8801 8802 ill = ill_head = ipif->ipif_ill; 8803 orig_ipif = ipif; 8804 8805 /* ill_g_usesrc_lock protects ill_usesrc_grp_next */ 8806 rw_enter(&ipst->ips_ill_g_usesrc_lock, RW_READER); 8807 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 8808 8809 ill = ill->ill_usesrc_grp_next; /* start from next ill */ 8810 for (; (ill != NULL) && (ill != ill_head); 8811 ill = ill->ill_usesrc_grp_next) { 8812 8813 if ((uchar_t *)&lifr[1] > mp1->b_wptr) 8814 break; 8815 8816 ipif = ill->ill_ipif; 8817 ipif_get_name(ipif, lifr->lifr_name, sizeof (lifr->lifr_name)); 8818 if (ipif->ipif_isv6) { 8819 sin6 = (sin6_t *)&lifr->lifr_addr; 8820 *sin6 = sin6_null; 8821 sin6->sin6_family = AF_INET6; 8822 sin6->sin6_addr = ipif->ipif_v6lcl_addr; 8823 lifr->lifr_addrlen = ip_mask_to_plen_v6( 8824 &ipif->ipif_v6net_mask); 8825 } else { 8826 sin = (sin_t *)&lifr->lifr_addr; 8827 *sin = sin_null; 8828 sin->sin_family = AF_INET; 8829 sin->sin_addr.s_addr = ipif->ipif_lcl_addr; 8830 lifr->lifr_addrlen = ip_mask_to_plen( 8831 ipif->ipif_net_mask); 8832 } 8833 lifr++; 8834 } 8835 rw_exit(&ipst->ips_ill_g_usesrc_lock); 8836 rw_exit(&ipst->ips_ill_g_lock); 8837 ipif_refrele(orig_ipif); 8838 mp1->b_wptr = (uchar_t *)lifr; 8839 STRUCT_FSET(lifs, lifs_len, (int)((uchar_t *)lifr - mp1->b_rptr)); 8840 8841 return (0); 8842 } 8843 8844 /* ARGSUSED */ 8845 int 8846 ip_sioctl_get_lifconf(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, 8847 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) 8848 { 8849 mblk_t *mp1; 8850 int list; 8851 ill_t *ill; 8852 ipif_t *ipif; 8853 int flags; 8854 int numlifs = 0; 8855 size_t lifc_bufsize; 8856 struct lifreq *lifr; 8857 sa_family_t family; 8858 struct sockaddr_in *sin; 8859 struct sockaddr_in6 *sin6; 8860 ill_walk_context_t ctx; 8861 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 8862 int32_t lifclen; 8863 zoneid_t zoneid; 8864 STRUCT_HANDLE(lifconf, lifc); 8865 ip_stack_t *ipst = CONNQ_TO_IPST(q); 8866 8867 ip1dbg(("ip_sioctl_get_lifconf")); 8868 8869 ASSERT(q->q_next == NULL); 8870 8871 zoneid = Q_TO_CONN(q)->conn_zoneid; 8872 8873 /* Existence verified in ip_wput_nondata */ 8874 mp1 = mp->b_cont->b_cont; 8875 8876 /* 8877 * An extended version of SIOCGIFCONF that takes an 8878 * additional address family and flags field. 8879 * AF_UNSPEC retrieve both IPv4 and IPv6. 8880 * Unless LIFC_NOXMIT is specified the IPIF_NOXMIT 8881 * interfaces are omitted. 8882 * Similarly, IPIF_TEMPORARY interfaces are omitted 8883 * unless LIFC_TEMPORARY is specified. 8884 * If LIFC_EXTERNAL_SOURCE is specified, IPIF_NOXMIT, 8885 * IPIF_NOLOCAL, PHYI_LOOPBACK, IPIF_DEPRECATED and 8886 * not IPIF_UP interfaces are omitted. LIFC_EXTERNAL_SOURCE 8887 * has priority over LIFC_NOXMIT. 8888 */ 8889 STRUCT_SET_HANDLE(lifc, iocp->ioc_flag, NULL); 8890 8891 if ((mp1->b_wptr - mp1->b_rptr) != STRUCT_SIZE(lifc)) 8892 return (EINVAL); 8893 8894 /* 8895 * Must be (better be!) continuation of a TRANSPARENT 8896 * IOCTL. We just copied in the lifconf structure. 8897 */ 8898 STRUCT_SET_HANDLE(lifc, iocp->ioc_flag, (struct lifconf *)mp1->b_rptr); 8899 8900 family = STRUCT_FGET(lifc, lifc_family); 8901 flags = STRUCT_FGET(lifc, lifc_flags); 8902 8903 switch (family) { 8904 case AF_UNSPEC: 8905 /* 8906 * walk all ILL's. 8907 */ 8908 list = MAX_G_HEADS; 8909 break; 8910 case AF_INET: 8911 /* 8912 * walk only IPV4 ILL's. 8913 */ 8914 list = IP_V4_G_HEAD; 8915 break; 8916 case AF_INET6: 8917 /* 8918 * walk only IPV6 ILL's. 8919 */ 8920 list = IP_V6_G_HEAD; 8921 break; 8922 default: 8923 return (EAFNOSUPPORT); 8924 } 8925 8926 /* 8927 * Allocate a buffer to hold requested information. 8928 * 8929 * If lifc_len is larger than what is needed, we only 8930 * allocate what we will use. 8931 * 8932 * If lifc_len is smaller than what is needed, return 8933 * EINVAL. 8934 */ 8935 numlifs = ip_get_numlifs(family, flags, zoneid, ipst); 8936 lifc_bufsize = numlifs * sizeof (struct lifreq); 8937 lifclen = STRUCT_FGET(lifc, lifc_len); 8938 if (lifc_bufsize > lifclen) { 8939 if (iocp->ioc_cmd == O_SIOCGLIFCONF) 8940 return (EINVAL); 8941 else 8942 lifc_bufsize = lifclen; 8943 } 8944 8945 mp1 = mi_copyout_alloc(q, mp, 8946 STRUCT_FGETP(lifc, lifc_buf), lifc_bufsize, B_FALSE); 8947 if (mp1 == NULL) 8948 return (ENOMEM); 8949 8950 mp1->b_wptr = mp1->b_rptr + lifc_bufsize; 8951 bzero(mp1->b_rptr, mp1->b_wptr - mp1->b_rptr); 8952 8953 lifr = (struct lifreq *)mp1->b_rptr; 8954 8955 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 8956 ill = ill_first(list, list, &ctx, ipst); 8957 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 8958 for (ipif = ill->ill_ipif; ipif != NULL; 8959 ipif = ipif->ipif_next) { 8960 if ((ipif->ipif_flags & IPIF_NOXMIT) && 8961 !(flags & LIFC_NOXMIT)) 8962 continue; 8963 8964 if ((ipif->ipif_flags & IPIF_TEMPORARY) && 8965 !(flags & LIFC_TEMPORARY)) 8966 continue; 8967 8968 if (((ipif->ipif_flags & 8969 (IPIF_NOXMIT|IPIF_NOLOCAL| 8970 IPIF_DEPRECATED)) || 8971 IS_LOOPBACK(ill) || 8972 !(ipif->ipif_flags & IPIF_UP)) && 8973 (flags & LIFC_EXTERNAL_SOURCE)) 8974 continue; 8975 8976 if (zoneid != ipif->ipif_zoneid && 8977 ipif->ipif_zoneid != ALL_ZONES && 8978 (zoneid != GLOBAL_ZONEID || 8979 !(flags & LIFC_ALLZONES))) 8980 continue; 8981 8982 if ((uchar_t *)&lifr[1] > mp1->b_wptr) { 8983 if (iocp->ioc_cmd == O_SIOCGLIFCONF) { 8984 rw_exit(&ipst->ips_ill_g_lock); 8985 return (EINVAL); 8986 } else { 8987 goto lif_copydone; 8988 } 8989 } 8990 8991 ipif_get_name(ipif, lifr->lifr_name, 8992 sizeof (lifr->lifr_name)); 8993 if (ipif->ipif_isv6) { 8994 sin6 = (sin6_t *)&lifr->lifr_addr; 8995 *sin6 = sin6_null; 8996 sin6->sin6_family = AF_INET6; 8997 sin6->sin6_addr = 8998 ipif->ipif_v6lcl_addr; 8999 lifr->lifr_addrlen = 9000 ip_mask_to_plen_v6( 9001 &ipif->ipif_v6net_mask); 9002 } else { 9003 sin = (sin_t *)&lifr->lifr_addr; 9004 *sin = sin_null; 9005 sin->sin_family = AF_INET; 9006 sin->sin_addr.s_addr = 9007 ipif->ipif_lcl_addr; 9008 lifr->lifr_addrlen = 9009 ip_mask_to_plen( 9010 ipif->ipif_net_mask); 9011 } 9012 lifr++; 9013 } 9014 } 9015 lif_copydone: 9016 rw_exit(&ipst->ips_ill_g_lock); 9017 9018 mp1->b_wptr = (uchar_t *)lifr; 9019 if (STRUCT_BUF(lifc) != NULL) { 9020 STRUCT_FSET(lifc, lifc_len, 9021 (int)((uchar_t *)lifr - mp1->b_rptr)); 9022 } 9023 return (0); 9024 } 9025 9026 /* ARGSUSED */ 9027 int 9028 ip_sioctl_set_ipmpfailback(ipif_t *dummy_ipif, sin_t *dummy_sin, 9029 queue_t *q, mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) 9030 { 9031 ip_stack_t *ipst; 9032 9033 if (q->q_next == NULL) 9034 ipst = CONNQ_TO_IPST(q); 9035 else 9036 ipst = ILLQ_TO_IPST(q); 9037 9038 /* Existence of b_cont->b_cont checked in ip_wput_nondata */ 9039 ipst->ips_ipmp_enable_failback = *(int *)mp->b_cont->b_cont->b_rptr; 9040 return (0); 9041 } 9042 9043 static void 9044 ip_sioctl_ip6addrpolicy(queue_t *q, mblk_t *mp) 9045 { 9046 ip6_asp_t *table; 9047 size_t table_size; 9048 mblk_t *data_mp; 9049 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 9050 ip_stack_t *ipst; 9051 9052 if (q->q_next == NULL) 9053 ipst = CONNQ_TO_IPST(q); 9054 else 9055 ipst = ILLQ_TO_IPST(q); 9056 9057 /* These two ioctls are I_STR only */ 9058 if (iocp->ioc_count == TRANSPARENT) { 9059 miocnak(q, mp, 0, EINVAL); 9060 return; 9061 } 9062 9063 data_mp = mp->b_cont; 9064 if (data_mp == NULL) { 9065 /* The user passed us a NULL argument */ 9066 table = NULL; 9067 table_size = iocp->ioc_count; 9068 } else { 9069 /* 9070 * The user provided a table. The stream head 9071 * may have copied in the user data in chunks, 9072 * so make sure everything is pulled up 9073 * properly. 9074 */ 9075 if (MBLKL(data_mp) < iocp->ioc_count) { 9076 mblk_t *new_data_mp; 9077 if ((new_data_mp = msgpullup(data_mp, -1)) == 9078 NULL) { 9079 miocnak(q, mp, 0, ENOMEM); 9080 return; 9081 } 9082 freemsg(data_mp); 9083 data_mp = new_data_mp; 9084 mp->b_cont = data_mp; 9085 } 9086 table = (ip6_asp_t *)data_mp->b_rptr; 9087 table_size = iocp->ioc_count; 9088 } 9089 9090 switch (iocp->ioc_cmd) { 9091 case SIOCGIP6ADDRPOLICY: 9092 iocp->ioc_rval = ip6_asp_get(table, table_size, ipst); 9093 if (iocp->ioc_rval == -1) 9094 iocp->ioc_error = EINVAL; 9095 #if defined(_SYSCALL32_IMPL) && _LONG_LONG_ALIGNMENT_32 == 4 9096 else if (table != NULL && 9097 (iocp->ioc_flag & IOC_MODELS) == IOC_ILP32) { 9098 ip6_asp_t *src = table; 9099 ip6_asp32_t *dst = (void *)table; 9100 int count = table_size / sizeof (ip6_asp_t); 9101 int i; 9102 9103 /* 9104 * We need to do an in-place shrink of the array 9105 * to match the alignment attributes of the 9106 * 32-bit ABI looking at it. 9107 */ 9108 /* LINTED: logical expression always true: op "||" */ 9109 ASSERT(sizeof (*src) > sizeof (*dst)); 9110 for (i = 1; i < count; i++) 9111 bcopy(src + i, dst + i, sizeof (*dst)); 9112 } 9113 #endif 9114 break; 9115 9116 case SIOCSIP6ADDRPOLICY: 9117 ASSERT(mp->b_prev == NULL); 9118 mp->b_prev = (void *)q; 9119 #if defined(_SYSCALL32_IMPL) && _LONG_LONG_ALIGNMENT_32 == 4 9120 /* 9121 * We pass in the datamodel here so that the ip6_asp_replace() 9122 * routine can handle converting from 32-bit to native formats 9123 * where necessary. 9124 * 9125 * A better way to handle this might be to convert the inbound 9126 * data structure here, and hang it off a new 'mp'; thus the 9127 * ip6_asp_replace() logic would always be dealing with native 9128 * format data structures.. 9129 * 9130 * (An even simpler way to handle these ioctls is to just 9131 * add a 32-bit trailing 'pad' field to the ip6_asp_t structure 9132 * and just recompile everything that depends on it.) 9133 */ 9134 #endif 9135 ip6_asp_replace(mp, table, table_size, B_FALSE, ipst, 9136 iocp->ioc_flag & IOC_MODELS); 9137 return; 9138 } 9139 9140 DB_TYPE(mp) = (iocp->ioc_error == 0) ? M_IOCACK : M_IOCNAK; 9141 qreply(q, mp); 9142 } 9143 9144 static void 9145 ip_sioctl_dstinfo(queue_t *q, mblk_t *mp) 9146 { 9147 mblk_t *data_mp; 9148 struct dstinforeq *dir; 9149 uint8_t *end, *cur; 9150 in6_addr_t *daddr, *saddr; 9151 ipaddr_t v4daddr; 9152 ire_t *ire; 9153 char *slabel, *dlabel; 9154 boolean_t isipv4; 9155 int match_ire; 9156 ill_t *dst_ill; 9157 ipif_t *src_ipif, *ire_ipif; 9158 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 9159 zoneid_t zoneid; 9160 ip_stack_t *ipst = CONNQ_TO_IPST(q); 9161 9162 ASSERT(q->q_next == NULL); /* this ioctl not allowed if ip is module */ 9163 zoneid = Q_TO_CONN(q)->conn_zoneid; 9164 9165 /* 9166 * This ioctl is I_STR only, and must have a 9167 * data mblk following the M_IOCTL mblk. 9168 */ 9169 data_mp = mp->b_cont; 9170 if (iocp->ioc_count == TRANSPARENT || data_mp == NULL) { 9171 miocnak(q, mp, 0, EINVAL); 9172 return; 9173 } 9174 9175 if (MBLKL(data_mp) < iocp->ioc_count) { 9176 mblk_t *new_data_mp; 9177 9178 if ((new_data_mp = msgpullup(data_mp, -1)) == NULL) { 9179 miocnak(q, mp, 0, ENOMEM); 9180 return; 9181 } 9182 freemsg(data_mp); 9183 data_mp = new_data_mp; 9184 mp->b_cont = data_mp; 9185 } 9186 match_ire = MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT | MATCH_IRE_PARENT; 9187 9188 for (cur = data_mp->b_rptr, end = data_mp->b_wptr; 9189 end - cur >= sizeof (struct dstinforeq); 9190 cur += sizeof (struct dstinforeq)) { 9191 dir = (struct dstinforeq *)cur; 9192 daddr = &dir->dir_daddr; 9193 saddr = &dir->dir_saddr; 9194 9195 /* 9196 * ip_addr_scope_v6() and ip6_asp_lookup() handle 9197 * v4 mapped addresses; ire_ftable_lookup[_v6]() 9198 * and ipif_select_source[_v6]() do not. 9199 */ 9200 dir->dir_dscope = ip_addr_scope_v6(daddr); 9201 dlabel = ip6_asp_lookup(daddr, &dir->dir_precedence, ipst); 9202 9203 isipv4 = IN6_IS_ADDR_V4MAPPED(daddr); 9204 if (isipv4) { 9205 IN6_V4MAPPED_TO_IPADDR(daddr, v4daddr); 9206 ire = ire_ftable_lookup(v4daddr, NULL, NULL, 9207 0, NULL, NULL, zoneid, 0, NULL, match_ire, ipst); 9208 } else { 9209 ire = ire_ftable_lookup_v6(daddr, NULL, NULL, 9210 0, NULL, NULL, zoneid, 0, NULL, match_ire, ipst); 9211 } 9212 if (ire == NULL) { 9213 dir->dir_dreachable = 0; 9214 9215 /* move on to next dst addr */ 9216 continue; 9217 } 9218 dir->dir_dreachable = 1; 9219 9220 ire_ipif = ire->ire_ipif; 9221 if (ire_ipif == NULL) 9222 goto next_dst; 9223 9224 /* 9225 * We expect to get back an interface ire or a 9226 * gateway ire cache entry. For both types, the 9227 * output interface is ire_ipif->ipif_ill. 9228 */ 9229 dst_ill = ire_ipif->ipif_ill; 9230 dir->dir_dmactype = dst_ill->ill_mactype; 9231 9232 if (isipv4) { 9233 src_ipif = ipif_select_source(dst_ill, v4daddr, zoneid); 9234 } else { 9235 src_ipif = ipif_select_source_v6(dst_ill, 9236 daddr, RESTRICT_TO_NONE, IPV6_PREFER_SRC_DEFAULT, 9237 zoneid); 9238 } 9239 if (src_ipif == NULL) 9240 goto next_dst; 9241 9242 *saddr = src_ipif->ipif_v6lcl_addr; 9243 dir->dir_sscope = ip_addr_scope_v6(saddr); 9244 slabel = ip6_asp_lookup(saddr, NULL, ipst); 9245 dir->dir_labelmatch = ip6_asp_labelcmp(dlabel, slabel); 9246 dir->dir_sdeprecated = 9247 (src_ipif->ipif_flags & IPIF_DEPRECATED) ? 1 : 0; 9248 ipif_refrele(src_ipif); 9249 next_dst: 9250 ire_refrele(ire); 9251 } 9252 miocack(q, mp, iocp->ioc_count, 0); 9253 } 9254 9255 9256 /* 9257 * Check if this is an address assigned to this machine. 9258 * Skips interfaces that are down by using ire checks. 9259 * Translates mapped addresses to v4 addresses and then 9260 * treats them as such, returning true if the v4 address 9261 * associated with this mapped address is configured. 9262 * Note: Applications will have to be careful what they do 9263 * with the response; use of mapped addresses limits 9264 * what can be done with the socket, especially with 9265 * respect to socket options and ioctls - neither IPv4 9266 * options nor IPv6 sticky options/ancillary data options 9267 * may be used. 9268 */ 9269 /* ARGSUSED */ 9270 int 9271 ip_sioctl_tmyaddr(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 9272 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 9273 { 9274 struct sioc_addrreq *sia; 9275 sin_t *sin; 9276 ire_t *ire; 9277 mblk_t *mp1; 9278 zoneid_t zoneid; 9279 ip_stack_t *ipst; 9280 9281 ip1dbg(("ip_sioctl_tmyaddr")); 9282 9283 ASSERT(q->q_next == NULL); /* this ioctl not allowed if ip is module */ 9284 zoneid = Q_TO_CONN(q)->conn_zoneid; 9285 ipst = CONNQ_TO_IPST(q); 9286 9287 /* Existence verified in ip_wput_nondata */ 9288 mp1 = mp->b_cont->b_cont; 9289 sia = (struct sioc_addrreq *)mp1->b_rptr; 9290 sin = (sin_t *)&sia->sa_addr; 9291 switch (sin->sin_family) { 9292 case AF_INET6: { 9293 sin6_t *sin6 = (sin6_t *)sin; 9294 9295 if (IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) { 9296 ipaddr_t v4_addr; 9297 9298 IN6_V4MAPPED_TO_IPADDR(&sin6->sin6_addr, 9299 v4_addr); 9300 ire = ire_ctable_lookup(v4_addr, 0, 9301 IRE_LOCAL|IRE_LOOPBACK, NULL, zoneid, 9302 NULL, MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY, ipst); 9303 } else { 9304 in6_addr_t v6addr; 9305 9306 v6addr = sin6->sin6_addr; 9307 ire = ire_ctable_lookup_v6(&v6addr, 0, 9308 IRE_LOCAL|IRE_LOOPBACK, NULL, zoneid, 9309 NULL, MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY, ipst); 9310 } 9311 break; 9312 } 9313 case AF_INET: { 9314 ipaddr_t v4addr; 9315 9316 v4addr = sin->sin_addr.s_addr; 9317 ire = ire_ctable_lookup(v4addr, 0, 9318 IRE_LOCAL|IRE_LOOPBACK, NULL, zoneid, 9319 NULL, MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY, ipst); 9320 break; 9321 } 9322 default: 9323 return (EAFNOSUPPORT); 9324 } 9325 if (ire != NULL) { 9326 sia->sa_res = 1; 9327 ire_refrele(ire); 9328 } else { 9329 sia->sa_res = 0; 9330 } 9331 return (0); 9332 } 9333 9334 /* 9335 * Check if this is an address assigned on-link i.e. neighbor, 9336 * and makes sure it's reachable from the current zone. 9337 * Returns true for my addresses as well. 9338 * Translates mapped addresses to v4 addresses and then 9339 * treats them as such, returning true if the v4 address 9340 * associated with this mapped address is configured. 9341 * Note: Applications will have to be careful what they do 9342 * with the response; use of mapped addresses limits 9343 * what can be done with the socket, especially with 9344 * respect to socket options and ioctls - neither IPv4 9345 * options nor IPv6 sticky options/ancillary data options 9346 * may be used. 9347 */ 9348 /* ARGSUSED */ 9349 int 9350 ip_sioctl_tonlink(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 9351 ip_ioctl_cmd_t *ipip, void *duymmy_ifreq) 9352 { 9353 struct sioc_addrreq *sia; 9354 sin_t *sin; 9355 mblk_t *mp1; 9356 ire_t *ire = NULL; 9357 zoneid_t zoneid; 9358 ip_stack_t *ipst; 9359 9360 ip1dbg(("ip_sioctl_tonlink")); 9361 9362 ASSERT(q->q_next == NULL); /* this ioctl not allowed if ip is module */ 9363 zoneid = Q_TO_CONN(q)->conn_zoneid; 9364 ipst = CONNQ_TO_IPST(q); 9365 9366 /* Existence verified in ip_wput_nondata */ 9367 mp1 = mp->b_cont->b_cont; 9368 sia = (struct sioc_addrreq *)mp1->b_rptr; 9369 sin = (sin_t *)&sia->sa_addr; 9370 9371 /* 9372 * Match addresses with a zero gateway field to avoid 9373 * routes going through a router. 9374 * Exclude broadcast and multicast addresses. 9375 */ 9376 switch (sin->sin_family) { 9377 case AF_INET6: { 9378 sin6_t *sin6 = (sin6_t *)sin; 9379 9380 if (IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) { 9381 ipaddr_t v4_addr; 9382 9383 IN6_V4MAPPED_TO_IPADDR(&sin6->sin6_addr, 9384 v4_addr); 9385 if (!CLASSD(v4_addr)) { 9386 ire = ire_route_lookup(v4_addr, 0, 0, 0, 9387 NULL, NULL, zoneid, NULL, 9388 MATCH_IRE_GW, ipst); 9389 } 9390 } else { 9391 in6_addr_t v6addr; 9392 in6_addr_t v6gw; 9393 9394 v6addr = sin6->sin6_addr; 9395 v6gw = ipv6_all_zeros; 9396 if (!IN6_IS_ADDR_MULTICAST(&v6addr)) { 9397 ire = ire_route_lookup_v6(&v6addr, 0, 9398 &v6gw, 0, NULL, NULL, zoneid, 9399 NULL, MATCH_IRE_GW, ipst); 9400 } 9401 } 9402 break; 9403 } 9404 case AF_INET: { 9405 ipaddr_t v4addr; 9406 9407 v4addr = sin->sin_addr.s_addr; 9408 if (!CLASSD(v4addr)) { 9409 ire = ire_route_lookup(v4addr, 0, 0, 0, 9410 NULL, NULL, zoneid, NULL, 9411 MATCH_IRE_GW, ipst); 9412 } 9413 break; 9414 } 9415 default: 9416 return (EAFNOSUPPORT); 9417 } 9418 sia->sa_res = 0; 9419 if (ire != NULL) { 9420 if (ire->ire_type & (IRE_INTERFACE|IRE_CACHE| 9421 IRE_LOCAL|IRE_LOOPBACK)) { 9422 sia->sa_res = 1; 9423 } 9424 ire_refrele(ire); 9425 } 9426 return (0); 9427 } 9428 9429 /* 9430 * TBD: implement when kernel maintaines a list of site prefixes. 9431 */ 9432 /* ARGSUSED */ 9433 int 9434 ip_sioctl_tmysite(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 9435 ip_ioctl_cmd_t *ipip, void *ifreq) 9436 { 9437 return (ENXIO); 9438 } 9439 9440 /* ARGSUSED */ 9441 int 9442 ip_sioctl_tunparam(ipif_t *ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 9443 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 9444 { 9445 ill_t *ill; 9446 mblk_t *mp1; 9447 conn_t *connp; 9448 boolean_t success; 9449 9450 ip1dbg(("ip_sioctl_tunparam(%s:%u %p)\n", 9451 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 9452 /* ioctl comes down on an conn */ 9453 ASSERT(!(q->q_flag & QREADR) && q->q_next == NULL); 9454 connp = Q_TO_CONN(q); 9455 9456 mp->b_datap->db_type = M_IOCTL; 9457 9458 /* 9459 * Send down a copy. (copymsg does not copy b_next/b_prev). 9460 * The original mp contains contaminated b_next values due to 'mi', 9461 * which is needed to do the mi_copy_done. Unfortunately if we 9462 * send down the original mblk itself and if we are popped due to an 9463 * an unplumb before the response comes back from tunnel, 9464 * the streamhead (which does a freemsg) will see this contaminated 9465 * message and the assertion in freemsg about non-null b_next/b_prev 9466 * will panic a DEBUG kernel. 9467 */ 9468 mp1 = copymsg(mp); 9469 if (mp1 == NULL) 9470 return (ENOMEM); 9471 9472 ill = ipif->ipif_ill; 9473 mutex_enter(&connp->conn_lock); 9474 mutex_enter(&ill->ill_lock); 9475 if (ipip->ipi_cmd == SIOCSTUNPARAM || ipip->ipi_cmd == OSIOCSTUNPARAM) { 9476 success = ipsq_pending_mp_add(connp, ipif, CONNP_TO_WQ(connp), 9477 mp, 0); 9478 } else { 9479 success = ill_pending_mp_add(ill, connp, mp); 9480 } 9481 mutex_exit(&ill->ill_lock); 9482 mutex_exit(&connp->conn_lock); 9483 9484 if (success) { 9485 ip1dbg(("sending down tunparam request ")); 9486 putnext(ill->ill_wq, mp1); 9487 return (EINPROGRESS); 9488 } else { 9489 /* The conn has started closing */ 9490 freemsg(mp1); 9491 return (EINTR); 9492 } 9493 } 9494 9495 /* 9496 * ARP IOCTLs. 9497 * How does IP get in the business of fronting ARP configuration/queries? 9498 * Well it's like this, the Berkeley ARP IOCTLs (SIOCGARP, SIOCDARP, SIOCSARP) 9499 * are by tradition passed in through a datagram socket. That lands in IP. 9500 * As it happens, this is just as well since the interface is quite crude in 9501 * that it passes in no information about protocol or hardware types, or 9502 * interface association. After making the protocol assumption, IP is in 9503 * the position to look up the name of the ILL, which ARP will need, and 9504 * format a request that can be handled by ARP. The request is passed up 9505 * stream to ARP, and the original IOCTL is completed by IP when ARP passes 9506 * back a response. ARP supports its own set of more general IOCTLs, in 9507 * case anyone is interested. 9508 */ 9509 /* ARGSUSED */ 9510 int 9511 ip_sioctl_arp(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 9512 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 9513 { 9514 mblk_t *mp1; 9515 mblk_t *mp2; 9516 mblk_t *pending_mp; 9517 ipaddr_t ipaddr; 9518 area_t *area; 9519 struct iocblk *iocp; 9520 conn_t *connp; 9521 struct arpreq *ar; 9522 struct xarpreq *xar; 9523 int flags, alength; 9524 char *lladdr; 9525 ip_stack_t *ipst; 9526 ill_t *ill = ipif->ipif_ill; 9527 boolean_t if_arp_ioctl = B_FALSE; 9528 9529 ASSERT(!(q->q_flag & QREADR) && q->q_next == NULL); 9530 connp = Q_TO_CONN(q); 9531 ipst = connp->conn_netstack->netstack_ip; 9532 9533 if (ipip->ipi_cmd_type == XARP_CMD) { 9534 /* We have a chain - M_IOCTL-->MI_COPY_MBLK-->XARPREQ_MBLK */ 9535 xar = (struct xarpreq *)mp->b_cont->b_cont->b_rptr; 9536 ar = NULL; 9537 9538 flags = xar->xarp_flags; 9539 lladdr = LLADDR(&xar->xarp_ha); 9540 if_arp_ioctl = (xar->xarp_ha.sdl_nlen != 0); 9541 /* 9542 * Validate against user's link layer address length 9543 * input and name and addr length limits. 9544 */ 9545 alength = ill->ill_phys_addr_length; 9546 if (ipip->ipi_cmd == SIOCSXARP) { 9547 if (alength != xar->xarp_ha.sdl_alen || 9548 (alength + xar->xarp_ha.sdl_nlen > 9549 sizeof (xar->xarp_ha.sdl_data))) 9550 return (EINVAL); 9551 } 9552 } else { 9553 /* We have a chain - M_IOCTL-->MI_COPY_MBLK-->ARPREQ_MBLK */ 9554 ar = (struct arpreq *)mp->b_cont->b_cont->b_rptr; 9555 xar = NULL; 9556 9557 flags = ar->arp_flags; 9558 lladdr = ar->arp_ha.sa_data; 9559 /* 9560 * Theoretically, the sa_family could tell us what link 9561 * layer type this operation is trying to deal with. By 9562 * common usage AF_UNSPEC means ethernet. We'll assume 9563 * any attempt to use the SIOC?ARP ioctls is for ethernet, 9564 * for now. Our new SIOC*XARP ioctls can be used more 9565 * generally. 9566 * 9567 * If the underlying media happens to have a non 6 byte 9568 * address, arp module will fail set/get, but the del 9569 * operation will succeed. 9570 */ 9571 alength = 6; 9572 if ((ipip->ipi_cmd != SIOCDARP) && 9573 (alength != ill->ill_phys_addr_length)) { 9574 return (EINVAL); 9575 } 9576 } 9577 9578 /* 9579 * We are going to pass up to ARP a packet chain that looks 9580 * like: 9581 * 9582 * M_IOCTL-->ARP_op_MBLK-->ORIG_M_IOCTL-->MI_COPY_MBLK-->[X]ARPREQ_MBLK 9583 * 9584 * Get a copy of the original IOCTL mblk to head the chain, 9585 * to be sent up (in mp1). Also get another copy to store 9586 * in the ill_pending_mp list, for matching the response 9587 * when it comes back from ARP. 9588 */ 9589 mp1 = copyb(mp); 9590 pending_mp = copymsg(mp); 9591 if (mp1 == NULL || pending_mp == NULL) { 9592 if (mp1 != NULL) 9593 freeb(mp1); 9594 if (pending_mp != NULL) 9595 inet_freemsg(pending_mp); 9596 return (ENOMEM); 9597 } 9598 9599 ipaddr = sin->sin_addr.s_addr; 9600 9601 mp2 = ill_arp_alloc(ill, (uchar_t *)&ip_area_template, 9602 (caddr_t)&ipaddr); 9603 if (mp2 == NULL) { 9604 freeb(mp1); 9605 inet_freemsg(pending_mp); 9606 return (ENOMEM); 9607 } 9608 /* Put together the chain. */ 9609 mp1->b_cont = mp2; 9610 mp1->b_datap->db_type = M_IOCTL; 9611 mp2->b_cont = mp; 9612 mp2->b_datap->db_type = M_DATA; 9613 9614 iocp = (struct iocblk *)mp1->b_rptr; 9615 9616 /* 9617 * An M_IOCDATA's payload (struct copyresp) is mostly the same as an 9618 * M_IOCTL's payload (struct iocblk), but 'struct copyresp' has a 9619 * cp_private field (or cp_rval on 32-bit systems) in place of the 9620 * ioc_count field; set ioc_count to be correct. 9621 */ 9622 iocp->ioc_count = MBLKL(mp1->b_cont); 9623 9624 /* 9625 * Set the proper command in the ARP message. 9626 * Convert the SIOC{G|S|D}ARP calls into our 9627 * AR_ENTRY_xxx calls. 9628 */ 9629 area = (area_t *)mp2->b_rptr; 9630 switch (iocp->ioc_cmd) { 9631 case SIOCDARP: 9632 case SIOCDXARP: 9633 /* 9634 * We defer deleting the corresponding IRE until 9635 * we return from arp. 9636 */ 9637 area->area_cmd = AR_ENTRY_DELETE; 9638 area->area_proto_mask_offset = 0; 9639 break; 9640 case SIOCGARP: 9641 case SIOCGXARP: 9642 area->area_cmd = AR_ENTRY_SQUERY; 9643 area->area_proto_mask_offset = 0; 9644 break; 9645 case SIOCSARP: 9646 case SIOCSXARP: 9647 /* 9648 * Delete the corresponding ire to make sure IP will 9649 * pick up any change from arp. 9650 */ 9651 if (!if_arp_ioctl) { 9652 (void) ip_ire_clookup_and_delete(ipaddr, NULL, ipst); 9653 } else { 9654 ipif_t *ipif = ipif_get_next_ipif(NULL, ill); 9655 if (ipif != NULL) { 9656 (void) ip_ire_clookup_and_delete(ipaddr, ipif, 9657 ipst); 9658 ipif_refrele(ipif); 9659 } 9660 } 9661 break; 9662 } 9663 iocp->ioc_cmd = area->area_cmd; 9664 9665 /* 9666 * Fill in the rest of the ARP operation fields. 9667 */ 9668 area->area_hw_addr_length = alength; 9669 bcopy(lladdr, (char *)area + area->area_hw_addr_offset, alength); 9670 9671 /* Translate the flags. */ 9672 if (flags & ATF_PERM) 9673 area->area_flags |= ACE_F_PERMANENT; 9674 if (flags & ATF_PUBL) 9675 area->area_flags |= ACE_F_PUBLISH; 9676 if (flags & ATF_AUTHORITY) 9677 area->area_flags |= ACE_F_AUTHORITY; 9678 9679 /* 9680 * Before sending 'mp' to ARP, we have to clear the b_next 9681 * and b_prev. Otherwise if STREAMS encounters such a message 9682 * in freemsg(), (because ARP can close any time) it can cause 9683 * a panic. But mi code needs the b_next and b_prev values of 9684 * mp->b_cont, to complete the ioctl. So we store it here 9685 * in pending_mp->bcont, and restore it in ip_sioctl_iocack() 9686 * when the response comes down from ARP. 9687 */ 9688 pending_mp->b_cont->b_next = mp->b_cont->b_next; 9689 pending_mp->b_cont->b_prev = mp->b_cont->b_prev; 9690 mp->b_cont->b_next = NULL; 9691 mp->b_cont->b_prev = NULL; 9692 9693 mutex_enter(&connp->conn_lock); 9694 mutex_enter(&ill->ill_lock); 9695 /* conn has not yet started closing, hence this can't fail */ 9696 VERIFY(ill_pending_mp_add(ill, connp, pending_mp) != 0); 9697 mutex_exit(&ill->ill_lock); 9698 mutex_exit(&connp->conn_lock); 9699 9700 /* 9701 * Up to ARP it goes. The response will come back in ip_wput() as an 9702 * M_IOCACK, and will be handed to ip_sioctl_iocack() for completion. 9703 */ 9704 putnext(ill->ill_rq, mp1); 9705 return (EINPROGRESS); 9706 } 9707 9708 /* 9709 * Parse an [x]arpreq structure coming down SIOC[GSD][X]ARP ioctls, identify 9710 * the associated sin and refhold and return the associated ipif via `ci'. 9711 */ 9712 int 9713 ip_extract_arpreq(queue_t *q, mblk_t *mp, const ip_ioctl_cmd_t *ipip, 9714 cmd_info_t *ci, ipsq_func_t func) 9715 { 9716 mblk_t *mp1; 9717 int err; 9718 sin_t *sin; 9719 conn_t *connp; 9720 ipif_t *ipif; 9721 ire_t *ire = NULL; 9722 ill_t *ill = NULL; 9723 boolean_t exists; 9724 ip_stack_t *ipst; 9725 struct arpreq *ar; 9726 struct xarpreq *xar; 9727 struct sockaddr_dl *sdl; 9728 9729 /* ioctl comes down on a conn */ 9730 ASSERT(!(q->q_flag & QREADR) && q->q_next == NULL); 9731 connp = Q_TO_CONN(q); 9732 if (connp->conn_af_isv6) 9733 return (ENXIO); 9734 9735 ipst = connp->conn_netstack->netstack_ip; 9736 9737 /* Verified in ip_wput_nondata */ 9738 mp1 = mp->b_cont->b_cont; 9739 9740 if (ipip->ipi_cmd_type == XARP_CMD) { 9741 ASSERT(MBLKL(mp1) >= sizeof (struct xarpreq)); 9742 xar = (struct xarpreq *)mp1->b_rptr; 9743 sin = (sin_t *)&xar->xarp_pa; 9744 sdl = &xar->xarp_ha; 9745 9746 if (sdl->sdl_family != AF_LINK || sin->sin_family != AF_INET) 9747 return (ENXIO); 9748 if (sdl->sdl_nlen >= LIFNAMSIZ) 9749 return (EINVAL); 9750 } else { 9751 ASSERT(ipip->ipi_cmd_type == ARP_CMD); 9752 ASSERT(MBLKL(mp1) >= sizeof (struct arpreq)); 9753 ar = (struct arpreq *)mp1->b_rptr; 9754 sin = (sin_t *)&ar->arp_pa; 9755 } 9756 9757 if (ipip->ipi_cmd_type == XARP_CMD && sdl->sdl_nlen != 0) { 9758 ipif = ipif_lookup_on_name(sdl->sdl_data, sdl->sdl_nlen, 9759 B_FALSE, &exists, B_FALSE, ALL_ZONES, CONNP_TO_WQ(connp), 9760 mp, func, &err, ipst); 9761 if (ipif == NULL) 9762 return (err); 9763 if (ipif->ipif_id != 0 || 9764 ipif->ipif_net_type != IRE_IF_RESOLVER) { 9765 ipif_refrele(ipif); 9766 return (ENXIO); 9767 } 9768 } else { 9769 /* 9770 * Either an SIOC[DGS]ARP or an SIOC[DGS]XARP with sdl_nlen == 9771 * 0: use the IP address to figure out the ill. In the IPMP 9772 * case, a simple forwarding table lookup will return the 9773 * IRE_IF_RESOLVER for the first interface in the group, which 9774 * might not be the interface on which the requested IP 9775 * address was resolved due to the ill selection algorithm 9776 * (see ip_newroute_get_dst_ill()). So we do a cache table 9777 * lookup first: if the IRE cache entry for the IP address is 9778 * still there, it will contain the ill pointer for the right 9779 * interface, so we use that. If the cache entry has been 9780 * flushed, we fall back to the forwarding table lookup. This 9781 * should be rare enough since IRE cache entries have a longer 9782 * life expectancy than ARP cache entries. 9783 */ 9784 ire = ire_cache_lookup(sin->sin_addr.s_addr, ALL_ZONES, NULL, 9785 ipst); 9786 if ((ire == NULL) || (ire->ire_type == IRE_LOOPBACK) || 9787 ((ill = ire_to_ill(ire)) == NULL) || 9788 (ill->ill_net_type != IRE_IF_RESOLVER)) { 9789 if (ire != NULL) 9790 ire_refrele(ire); 9791 ire = ire_ftable_lookup(sin->sin_addr.s_addr, 9792 0, 0, IRE_IF_RESOLVER, NULL, NULL, ALL_ZONES, 0, 9793 NULL, MATCH_IRE_TYPE, ipst); 9794 if (ire == NULL || ((ill = ire_to_ill(ire)) == NULL)) { 9795 9796 if (ire != NULL) 9797 ire_refrele(ire); 9798 return (ENXIO); 9799 } 9800 } 9801 ASSERT(ire != NULL && ill != NULL); 9802 ipif = ill->ill_ipif; 9803 ipif_refhold(ipif); 9804 ire_refrele(ire); 9805 } 9806 ci->ci_sin = sin; 9807 ci->ci_ipif = ipif; 9808 return (0); 9809 } 9810 9811 /* 9812 * Do I_PLINK/I_LINK or I_PUNLINK/I_UNLINK with consistency checks and also 9813 * atomically set/clear the muxids. Also complete the ioctl by acking or 9814 * naking it. Note that the code is structured such that the link type, 9815 * whether it's persistent or not, is treated equally. ifconfig(1M) and 9816 * its clones use the persistent link, while pppd(1M) and perhaps many 9817 * other daemons may use non-persistent link. When combined with some 9818 * ill_t states, linking and unlinking lower streams may be used as 9819 * indicators of dynamic re-plumbing events [see PSARC/1999/348]. 9820 */ 9821 /* ARGSUSED */ 9822 void 9823 ip_sioctl_plink(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 9824 { 9825 mblk_t *mp1, *mp2; 9826 struct linkblk *li; 9827 struct ipmx_s *ipmxp; 9828 ill_t *ill; 9829 int ioccmd = ((struct iocblk *)mp->b_rptr)->ioc_cmd; 9830 int err = 0; 9831 boolean_t entered_ipsq = B_FALSE; 9832 boolean_t islink; 9833 ip_stack_t *ipst; 9834 9835 if (CONN_Q(q)) 9836 ipst = CONNQ_TO_IPST(q); 9837 else 9838 ipst = ILLQ_TO_IPST(q); 9839 9840 ASSERT(ioccmd == I_PLINK || ioccmd == I_PUNLINK || 9841 ioccmd == I_LINK || ioccmd == I_UNLINK); 9842 9843 islink = (ioccmd == I_PLINK || ioccmd == I_LINK); 9844 9845 mp1 = mp->b_cont; /* This is the linkblk info */ 9846 li = (struct linkblk *)mp1->b_rptr; 9847 9848 /* 9849 * ARP has added this special mblk, and the utility is asking us 9850 * to perform consistency checks, and also atomically set the 9851 * muxid. Ifconfig is an example. It achieves this by using 9852 * /dev/arp as the mux to plink the arp stream, and pushes arp on 9853 * to /dev/udp[6] stream for use as the mux when plinking the IP 9854 * stream. SIOCSLIFMUXID is not required. See ifconfig.c, arp.c 9855 * and other comments in this routine for more details. 9856 */ 9857 mp2 = mp1->b_cont; /* This is added by ARP */ 9858 9859 /* 9860 * If I_{P}LINK/I_{P}UNLINK is issued by a utility other than 9861 * ifconfig which didn't push ARP on top of the dummy mux, we won't 9862 * get the special mblk above. For backward compatibility, we 9863 * request ip_sioctl_plink_ipmod() to skip the consistency checks. 9864 * The utility will use SIOCSLIFMUXID to store the muxids. This is 9865 * not atomic, and can leave the streams unplumbable if the utility 9866 * is interrupted before it does the SIOCSLIFMUXID. 9867 */ 9868 if (mp2 == NULL) { 9869 err = ip_sioctl_plink_ipmod(ipsq, q, mp, ioccmd, li, B_FALSE); 9870 if (err == EINPROGRESS) 9871 return; 9872 goto done; 9873 } 9874 9875 /* 9876 * This is an I_{P}LINK sent down by ifconfig through the ARP module; 9877 * ARP has appended this last mblk to tell us whether the lower stream 9878 * is an arp-dev stream or an IP module stream. 9879 */ 9880 ipmxp = (struct ipmx_s *)mp2->b_rptr; 9881 if (ipmxp->ipmx_arpdev_stream) { 9882 /* 9883 * The lower stream is the arp-dev stream. 9884 */ 9885 ill = ill_lookup_on_name(ipmxp->ipmx_name, B_FALSE, B_FALSE, 9886 q, mp, ip_sioctl_plink, &err, NULL, ipst); 9887 if (ill == NULL) { 9888 if (err == EINPROGRESS) 9889 return; 9890 err = EINVAL; 9891 goto done; 9892 } 9893 9894 if (ipsq == NULL) { 9895 ipsq = ipsq_try_enter(NULL, ill, q, mp, ip_sioctl_plink, 9896 NEW_OP, B_TRUE); 9897 if (ipsq == NULL) { 9898 ill_refrele(ill); 9899 return; 9900 } 9901 entered_ipsq = B_TRUE; 9902 } 9903 ASSERT(IAM_WRITER_ILL(ill)); 9904 ill_refrele(ill); 9905 9906 /* 9907 * To ensure consistency between IP and ARP, the following 9908 * LIFO scheme is used in plink/punlink. (IP first, ARP last). 9909 * This is because the muxid's are stored in the IP stream on 9910 * the ill. 9911 * 9912 * I_{P}LINK: ifconfig plinks the IP stream before plinking 9913 * the ARP stream. On an arp-dev stream, IP checks that it is 9914 * not yet plinked, and it also checks that the corresponding 9915 * IP stream is already plinked. 9916 * 9917 * I_{P}UNLINK: ifconfig punlinks the ARP stream before 9918 * punlinking the IP stream. IP does not allow punlink of the 9919 * IP stream unless the arp stream has been punlinked. 9920 */ 9921 if ((islink && 9922 (ill->ill_arp_muxid != 0 || ill->ill_ip_muxid == 0)) || 9923 (!islink && ill->ill_arp_muxid != li->l_index)) { 9924 err = EINVAL; 9925 goto done; 9926 } 9927 ill->ill_arp_muxid = islink ? li->l_index : 0; 9928 } else { 9929 /* 9930 * The lower stream is probably an IP module stream. Do 9931 * consistency checking. 9932 */ 9933 err = ip_sioctl_plink_ipmod(ipsq, q, mp, ioccmd, li, B_TRUE); 9934 if (err == EINPROGRESS) 9935 return; 9936 } 9937 done: 9938 if (err == 0) 9939 miocack(q, mp, 0, 0); 9940 else 9941 miocnak(q, mp, 0, err); 9942 9943 /* Conn was refheld in ip_sioctl_copyin_setup */ 9944 if (CONN_Q(q)) 9945 CONN_OPER_PENDING_DONE(Q_TO_CONN(q)); 9946 if (entered_ipsq) 9947 ipsq_exit(ipsq, B_TRUE, B_TRUE); 9948 } 9949 9950 /* 9951 * Process I_{P}LINK and I_{P}UNLINK requests named by `ioccmd' and pointed to 9952 * by `mp' and `li' for the IP module stream (if li->q_bot is in fact an IP 9953 * module stream). If `doconsist' is set, then do the extended consistency 9954 * checks requested by ifconfig(1M) and (atomically) set ill_ip_muxid here. 9955 * Returns zero on success, EINPROGRESS if the operation is still pending, or 9956 * an error code on failure. 9957 */ 9958 static int 9959 ip_sioctl_plink_ipmod(ipsq_t *ipsq, queue_t *q, mblk_t *mp, int ioccmd, 9960 struct linkblk *li, boolean_t doconsist) 9961 { 9962 ill_t *ill; 9963 queue_t *ipwq, *dwq; 9964 const char *name; 9965 struct qinit *qinfo; 9966 boolean_t islink = (ioccmd == I_PLINK || ioccmd == I_LINK); 9967 boolean_t entered_ipsq = B_FALSE; 9968 9969 /* 9970 * Walk the lower stream to verify it's the IP module stream. 9971 * The IP module is identified by its name, wput function, 9972 * and non-NULL q_next. STREAMS ensures that the lower stream 9973 * (li->l_qbot) will not vanish until this ioctl completes. 9974 */ 9975 for (ipwq = li->l_qbot; ipwq != NULL; ipwq = ipwq->q_next) { 9976 qinfo = ipwq->q_qinfo; 9977 name = qinfo->qi_minfo->mi_idname; 9978 if (name != NULL && strcmp(name, ip_mod_info.mi_idname) == 0 && 9979 qinfo->qi_putp != (pfi_t)ip_lwput && ipwq->q_next != NULL) { 9980 break; 9981 } 9982 } 9983 9984 /* 9985 * If this isn't an IP module stream, bail. 9986 */ 9987 if (ipwq == NULL) 9988 return (0); 9989 9990 ill = ipwq->q_ptr; 9991 ASSERT(ill != NULL); 9992 9993 if (ipsq == NULL) { 9994 ipsq = ipsq_try_enter(NULL, ill, q, mp, ip_sioctl_plink, 9995 NEW_OP, B_TRUE); 9996 if (ipsq == NULL) 9997 return (EINPROGRESS); 9998 entered_ipsq = B_TRUE; 9999 } 10000 ASSERT(IAM_WRITER_ILL(ill)); 10001 10002 if (doconsist) { 10003 /* 10004 * Consistency checking requires that I_{P}LINK occurs 10005 * prior to setting ill_ip_muxid, and that I_{P}UNLINK 10006 * occurs prior to clearing ill_arp_muxid. 10007 */ 10008 if ((islink && ill->ill_ip_muxid != 0) || 10009 (!islink && ill->ill_arp_muxid != 0)) { 10010 if (entered_ipsq) 10011 ipsq_exit(ipsq, B_TRUE, B_TRUE); 10012 return (EINVAL); 10013 } 10014 } 10015 10016 /* 10017 * As part of I_{P}LINKing, stash the number of downstream modules and 10018 * the read queue of the module immediately below IP in the ill. 10019 * These are used during the capability negotiation below. 10020 */ 10021 ill->ill_lmod_rq = NULL; 10022 ill->ill_lmod_cnt = 0; 10023 if (islink && ((dwq = ipwq->q_next) != NULL)) { 10024 ill->ill_lmod_rq = RD(dwq); 10025 for (; dwq != NULL; dwq = dwq->q_next) 10026 ill->ill_lmod_cnt++; 10027 } 10028 10029 if (doconsist) 10030 ill->ill_ip_muxid = islink ? li->l_index : 0; 10031 10032 /* 10033 * If there's at least one up ipif on this ill, then we're bound to 10034 * the underlying driver via DLPI. In that case, renegotiate 10035 * capabilities to account for any possible change in modules 10036 * interposed between IP and the driver. 10037 */ 10038 if (ill->ill_ipif_up_count > 0) { 10039 if (islink) 10040 ill_capability_probe(ill); 10041 else 10042 ill_capability_reset(ill); 10043 } 10044 10045 if (entered_ipsq) 10046 ipsq_exit(ipsq, B_TRUE, B_TRUE); 10047 10048 return (0); 10049 } 10050 10051 /* 10052 * Search the ioctl command in the ioctl tables and return a pointer 10053 * to the ioctl command information. The ioctl command tables are 10054 * static and fully populated at compile time. 10055 */ 10056 ip_ioctl_cmd_t * 10057 ip_sioctl_lookup(int ioc_cmd) 10058 { 10059 int index; 10060 ip_ioctl_cmd_t *ipip; 10061 ip_ioctl_cmd_t *ipip_end; 10062 10063 if (ioc_cmd == IPI_DONTCARE) 10064 return (NULL); 10065 10066 /* 10067 * Do a 2 step search. First search the indexed table 10068 * based on the least significant byte of the ioctl cmd. 10069 * If we don't find a match, then search the misc table 10070 * serially. 10071 */ 10072 index = ioc_cmd & 0xFF; 10073 if (index < ip_ndx_ioctl_count) { 10074 ipip = &ip_ndx_ioctl_table[index]; 10075 if (ipip->ipi_cmd == ioc_cmd) { 10076 /* Found a match in the ndx table */ 10077 return (ipip); 10078 } 10079 } 10080 10081 /* Search the misc table */ 10082 ipip_end = &ip_misc_ioctl_table[ip_misc_ioctl_count]; 10083 for (ipip = ip_misc_ioctl_table; ipip < ipip_end; ipip++) { 10084 if (ipip->ipi_cmd == ioc_cmd) 10085 /* Found a match in the misc table */ 10086 return (ipip); 10087 } 10088 10089 return (NULL); 10090 } 10091 10092 /* 10093 * Wrapper function for resuming deferred ioctl processing 10094 * Used for SIOCGDSTINFO, SIOCGIP6ADDRPOLICY, SIOCGMSFILTER, 10095 * SIOCSMSFILTER, SIOCGIPMSFILTER, and SIOCSIPMSFILTER currently. 10096 */ 10097 /* ARGSUSED */ 10098 void 10099 ip_sioctl_copyin_resume(ipsq_t *dummy_ipsq, queue_t *q, mblk_t *mp, 10100 void *dummy_arg) 10101 { 10102 ip_sioctl_copyin_setup(q, mp); 10103 } 10104 10105 /* 10106 * ip_sioctl_copyin_setup is called by ip_wput with any M_IOCTL message 10107 * that arrives. Most of the IOCTLs are "socket" IOCTLs which we handle 10108 * in either I_STR or TRANSPARENT form, using the mi_copy facility. 10109 * We establish here the size of the block to be copied in. mi_copyin 10110 * arranges for this to happen, an processing continues in ip_wput with 10111 * an M_IOCDATA message. 10112 */ 10113 void 10114 ip_sioctl_copyin_setup(queue_t *q, mblk_t *mp) 10115 { 10116 int copyin_size; 10117 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 10118 ip_ioctl_cmd_t *ipip; 10119 cred_t *cr; 10120 ip_stack_t *ipst; 10121 10122 if (CONN_Q(q)) 10123 ipst = CONNQ_TO_IPST(q); 10124 else 10125 ipst = ILLQ_TO_IPST(q); 10126 10127 ipip = ip_sioctl_lookup(iocp->ioc_cmd); 10128 if (ipip == NULL) { 10129 /* 10130 * The ioctl is not one we understand or own. 10131 * Pass it along to be processed down stream, 10132 * if this is a module instance of IP, else nak 10133 * the ioctl. 10134 */ 10135 if (q->q_next == NULL) { 10136 goto nak; 10137 } else { 10138 putnext(q, mp); 10139 return; 10140 } 10141 } 10142 10143 /* 10144 * If this is deferred, then we will do all the checks when we 10145 * come back. 10146 */ 10147 if ((iocp->ioc_cmd == SIOCGDSTINFO || 10148 iocp->ioc_cmd == SIOCGIP6ADDRPOLICY) && !ip6_asp_can_lookup(ipst)) { 10149 ip6_asp_pending_op(q, mp, ip_sioctl_copyin_resume); 10150 return; 10151 } 10152 10153 /* 10154 * Only allow a very small subset of IP ioctls on this stream if 10155 * IP is a module and not a driver. Allowing ioctls to be processed 10156 * in this case may cause assert failures or data corruption. 10157 * Typically G[L]IFFLAGS, SLIFNAME/IF_UNITSEL are the only few 10158 * ioctls allowed on an IP module stream, after which this stream 10159 * normally becomes a multiplexor (at which time the stream head 10160 * will fail all ioctls). 10161 */ 10162 if ((q->q_next != NULL) && !(ipip->ipi_flags & IPI_MODOK)) { 10163 if (ipip->ipi_flags & IPI_PASS_DOWN) { 10164 /* 10165 * Pass common Streams ioctls which the IP 10166 * module does not own or consume along to 10167 * be processed down stream. 10168 */ 10169 putnext(q, mp); 10170 return; 10171 } else { 10172 goto nak; 10173 } 10174 } 10175 10176 /* Make sure we have ioctl data to process. */ 10177 if (mp->b_cont == NULL && !(ipip->ipi_flags & IPI_NULL_BCONT)) 10178 goto nak; 10179 10180 /* 10181 * Prefer dblk credential over ioctl credential; some synthesized 10182 * ioctls have kcred set because there's no way to crhold() 10183 * a credential in some contexts. (ioc_cr is not crfree() by 10184 * the framework; the caller of ioctl needs to hold the reference 10185 * for the duration of the call). 10186 */ 10187 cr = DB_CREDDEF(mp, iocp->ioc_cr); 10188 10189 /* Make sure normal users don't send down privileged ioctls */ 10190 if ((ipip->ipi_flags & IPI_PRIV) && 10191 (cr != NULL) && secpolicy_ip_config(cr, B_TRUE) != 0) { 10192 /* We checked the privilege earlier but log it here */ 10193 miocnak(q, mp, 0, secpolicy_ip_config(cr, B_FALSE)); 10194 return; 10195 } 10196 10197 /* 10198 * The ioctl command tables can only encode fixed length 10199 * ioctl data. If the length is variable, the table will 10200 * encode the length as zero. Such special cases are handled 10201 * below in the switch. 10202 */ 10203 if (ipip->ipi_copyin_size != 0) { 10204 mi_copyin(q, mp, NULL, ipip->ipi_copyin_size); 10205 return; 10206 } 10207 10208 switch (iocp->ioc_cmd) { 10209 case O_SIOCGIFCONF: 10210 case SIOCGIFCONF: 10211 /* 10212 * This IOCTL is hilarious. See comments in 10213 * ip_sioctl_get_ifconf for the story. 10214 */ 10215 if (iocp->ioc_count == TRANSPARENT) 10216 copyin_size = SIZEOF_STRUCT(ifconf, 10217 iocp->ioc_flag); 10218 else 10219 copyin_size = iocp->ioc_count; 10220 mi_copyin(q, mp, NULL, copyin_size); 10221 return; 10222 10223 case O_SIOCGLIFCONF: 10224 case SIOCGLIFCONF: 10225 copyin_size = SIZEOF_STRUCT(lifconf, iocp->ioc_flag); 10226 mi_copyin(q, mp, NULL, copyin_size); 10227 return; 10228 10229 case SIOCGLIFSRCOF: 10230 copyin_size = SIZEOF_STRUCT(lifsrcof, iocp->ioc_flag); 10231 mi_copyin(q, mp, NULL, copyin_size); 10232 return; 10233 case SIOCGIP6ADDRPOLICY: 10234 ip_sioctl_ip6addrpolicy(q, mp); 10235 ip6_asp_table_refrele(ipst); 10236 return; 10237 10238 case SIOCSIP6ADDRPOLICY: 10239 ip_sioctl_ip6addrpolicy(q, mp); 10240 return; 10241 10242 case SIOCGDSTINFO: 10243 ip_sioctl_dstinfo(q, mp); 10244 ip6_asp_table_refrele(ipst); 10245 return; 10246 10247 case I_PLINK: 10248 case I_PUNLINK: 10249 case I_LINK: 10250 case I_UNLINK: 10251 /* 10252 * We treat non-persistent link similarly as the persistent 10253 * link case, in terms of plumbing/unplumbing, as well as 10254 * dynamic re-plumbing events indicator. See comments 10255 * in ip_sioctl_plink() for more. 10256 * 10257 * Request can be enqueued in the 'ipsq' while waiting 10258 * to become exclusive. So bump up the conn ref. 10259 */ 10260 if (CONN_Q(q)) 10261 CONN_INC_REF(Q_TO_CONN(q)); 10262 ip_sioctl_plink(NULL, q, mp, NULL); 10263 return; 10264 10265 case ND_GET: 10266 case ND_SET: 10267 /* 10268 * Use of the nd table requires holding the reader lock. 10269 * Modifying the nd table thru nd_load/nd_unload requires 10270 * the writer lock. 10271 */ 10272 rw_enter(&ipst->ips_ip_g_nd_lock, RW_READER); 10273 if (nd_getset(q, ipst->ips_ip_g_nd, mp)) { 10274 rw_exit(&ipst->ips_ip_g_nd_lock); 10275 10276 if (iocp->ioc_error) 10277 iocp->ioc_count = 0; 10278 mp->b_datap->db_type = M_IOCACK; 10279 qreply(q, mp); 10280 return; 10281 } 10282 rw_exit(&ipst->ips_ip_g_nd_lock); 10283 /* 10284 * We don't understand this subioctl of ND_GET / ND_SET. 10285 * Maybe intended for some driver / module below us 10286 */ 10287 if (q->q_next) { 10288 putnext(q, mp); 10289 } else { 10290 iocp->ioc_error = ENOENT; 10291 mp->b_datap->db_type = M_IOCNAK; 10292 iocp->ioc_count = 0; 10293 qreply(q, mp); 10294 } 10295 return; 10296 10297 case IP_IOCTL: 10298 ip_wput_ioctl(q, mp); 10299 return; 10300 default: 10301 cmn_err(CE_PANIC, "should not happen "); 10302 } 10303 nak: 10304 if (mp->b_cont != NULL) { 10305 freemsg(mp->b_cont); 10306 mp->b_cont = NULL; 10307 } 10308 iocp->ioc_error = EINVAL; 10309 mp->b_datap->db_type = M_IOCNAK; 10310 iocp->ioc_count = 0; 10311 qreply(q, mp); 10312 } 10313 10314 /* ip_wput hands off ARP IOCTL responses to us */ 10315 void 10316 ip_sioctl_iocack(queue_t *q, mblk_t *mp) 10317 { 10318 struct arpreq *ar; 10319 struct xarpreq *xar; 10320 area_t *area; 10321 mblk_t *area_mp; 10322 struct iocblk *iocp; 10323 mblk_t *orig_ioc_mp, *tmp; 10324 struct iocblk *orig_iocp; 10325 ill_t *ill; 10326 conn_t *connp = NULL; 10327 uint_t ioc_id; 10328 mblk_t *pending_mp; 10329 int x_arp_ioctl = B_FALSE, ifx_arp_ioctl = B_FALSE; 10330 int *flagsp; 10331 char *storage = NULL; 10332 sin_t *sin; 10333 ipaddr_t addr; 10334 int err; 10335 ip_stack_t *ipst; 10336 10337 ill = q->q_ptr; 10338 ASSERT(ill != NULL); 10339 ipst = ill->ill_ipst; 10340 10341 /* 10342 * We should get back from ARP a packet chain that looks like: 10343 * M_IOCACK-->ARP_op_MBLK-->ORIG_M_IOCTL-->MI_COPY_MBLK-->[X]ARPREQ_MBLK 10344 */ 10345 if (!(area_mp = mp->b_cont) || 10346 (area_mp->b_wptr - area_mp->b_rptr) < sizeof (ip_sock_ar_t) || 10347 !(orig_ioc_mp = area_mp->b_cont) || 10348 !orig_ioc_mp->b_cont || !orig_ioc_mp->b_cont->b_cont) { 10349 freemsg(mp); 10350 return; 10351 } 10352 10353 orig_iocp = (struct iocblk *)orig_ioc_mp->b_rptr; 10354 10355 tmp = (orig_ioc_mp->b_cont)->b_cont; 10356 if ((orig_iocp->ioc_cmd == SIOCGXARP) || 10357 (orig_iocp->ioc_cmd == SIOCSXARP) || 10358 (orig_iocp->ioc_cmd == SIOCDXARP)) { 10359 x_arp_ioctl = B_TRUE; 10360 xar = (struct xarpreq *)tmp->b_rptr; 10361 sin = (sin_t *)&xar->xarp_pa; 10362 flagsp = &xar->xarp_flags; 10363 storage = xar->xarp_ha.sdl_data; 10364 if (xar->xarp_ha.sdl_nlen != 0) 10365 ifx_arp_ioctl = B_TRUE; 10366 } else { 10367 ar = (struct arpreq *)tmp->b_rptr; 10368 sin = (sin_t *)&ar->arp_pa; 10369 flagsp = &ar->arp_flags; 10370 storage = ar->arp_ha.sa_data; 10371 } 10372 10373 iocp = (struct iocblk *)mp->b_rptr; 10374 10375 /* 10376 * Pick out the originating queue based on the ioc_id. 10377 */ 10378 ioc_id = iocp->ioc_id; 10379 pending_mp = ill_pending_mp_get(ill, &connp, ioc_id); 10380 if (pending_mp == NULL) { 10381 ASSERT(connp == NULL); 10382 inet_freemsg(mp); 10383 return; 10384 } 10385 ASSERT(connp != NULL); 10386 q = CONNP_TO_WQ(connp); 10387 10388 /* Uncouple the internally generated IOCTL from the original one */ 10389 area = (area_t *)area_mp->b_rptr; 10390 area_mp->b_cont = NULL; 10391 10392 /* 10393 * Restore the b_next and b_prev used by mi code. This is needed 10394 * to complete the ioctl using mi* functions. We stored them in 10395 * the pending mp prior to sending the request to ARP. 10396 */ 10397 orig_ioc_mp->b_cont->b_next = pending_mp->b_cont->b_next; 10398 orig_ioc_mp->b_cont->b_prev = pending_mp->b_cont->b_prev; 10399 inet_freemsg(pending_mp); 10400 10401 /* 10402 * We're done if there was an error or if this is not an SIOCG{X}ARP 10403 * Catch the case where there is an IRE_CACHE by no entry in the 10404 * arp table. 10405 */ 10406 addr = sin->sin_addr.s_addr; 10407 if (iocp->ioc_error && iocp->ioc_cmd == AR_ENTRY_SQUERY) { 10408 ire_t *ire; 10409 dl_unitdata_req_t *dlup; 10410 mblk_t *llmp; 10411 int addr_len; 10412 ill_t *ipsqill = NULL; 10413 10414 if (ifx_arp_ioctl) { 10415 /* 10416 * There's no need to lookup the ill, since 10417 * we've already done that when we started 10418 * processing the ioctl and sent the message 10419 * to ARP on that ill. So use the ill that 10420 * is stored in q->q_ptr. 10421 */ 10422 ipsqill = ill; 10423 ire = ire_ctable_lookup(addr, 0, IRE_CACHE, 10424 ipsqill->ill_ipif, ALL_ZONES, 10425 NULL, MATCH_IRE_TYPE | MATCH_IRE_ILL, ipst); 10426 } else { 10427 ire = ire_ctable_lookup(addr, 0, IRE_CACHE, 10428 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 10429 if (ire != NULL) 10430 ipsqill = ire_to_ill(ire); 10431 } 10432 10433 if ((x_arp_ioctl) && (ipsqill != NULL)) 10434 storage += ill_xarp_info(&xar->xarp_ha, ipsqill); 10435 10436 if (ire != NULL) { 10437 /* 10438 * Since the ire obtained from cachetable is used for 10439 * mac addr copying below, treat an incomplete ire as if 10440 * as if we never found it. 10441 */ 10442 if (ire->ire_nce != NULL && 10443 ire->ire_nce->nce_state != ND_REACHABLE) { 10444 ire_refrele(ire); 10445 ire = NULL; 10446 ipsqill = NULL; 10447 goto errack; 10448 } 10449 *flagsp = ATF_INUSE; 10450 llmp = (ire->ire_nce != NULL ? 10451 ire->ire_nce->nce_res_mp : NULL); 10452 if (llmp != NULL && ipsqill != NULL) { 10453 uchar_t *macaddr; 10454 10455 addr_len = ipsqill->ill_phys_addr_length; 10456 if (x_arp_ioctl && ((addr_len + 10457 ipsqill->ill_name_length) > 10458 sizeof (xar->xarp_ha.sdl_data))) { 10459 ire_refrele(ire); 10460 freemsg(mp); 10461 ip_ioctl_finish(q, orig_ioc_mp, 10462 EINVAL, NO_COPYOUT, NULL); 10463 return; 10464 } 10465 *flagsp |= ATF_COM; 10466 dlup = (dl_unitdata_req_t *)llmp->b_rptr; 10467 if (ipsqill->ill_sap_length < 0) 10468 macaddr = llmp->b_rptr + 10469 dlup->dl_dest_addr_offset; 10470 else 10471 macaddr = llmp->b_rptr + 10472 dlup->dl_dest_addr_offset + 10473 ipsqill->ill_sap_length; 10474 /* 10475 * For SIOCGARP, MAC address length 10476 * validation has already been done 10477 * before the ioctl was issued to ARP to 10478 * allow it to progress only on 6 byte 10479 * addressable (ethernet like) media. Thus 10480 * the mac address copying can not overwrite 10481 * the sa_data area below. 10482 */ 10483 bcopy(macaddr, storage, addr_len); 10484 } 10485 /* Ditch the internal IOCTL. */ 10486 freemsg(mp); 10487 ire_refrele(ire); 10488 ip_ioctl_finish(q, orig_ioc_mp, 0, COPYOUT, NULL); 10489 return; 10490 } 10491 } 10492 10493 /* 10494 * Delete the coresponding IRE_CACHE if any. 10495 * Reset the error if there was one (in case there was no entry 10496 * in arp.) 10497 */ 10498 if (iocp->ioc_cmd == AR_ENTRY_DELETE) { 10499 ipif_t *ipintf = NULL; 10500 10501 if (ifx_arp_ioctl) { 10502 /* 10503 * There's no need to lookup the ill, since 10504 * we've already done that when we started 10505 * processing the ioctl and sent the message 10506 * to ARP on that ill. So use the ill that 10507 * is stored in q->q_ptr. 10508 */ 10509 ipintf = ill->ill_ipif; 10510 } 10511 if (ip_ire_clookup_and_delete(addr, ipintf, ipst)) { 10512 /* 10513 * The address in "addr" may be an entry for a 10514 * router. If that's true, then any off-net 10515 * IRE_CACHE entries that go through the router 10516 * with address "addr" must be clobbered. Use 10517 * ire_walk to achieve this goal. 10518 */ 10519 if (ifx_arp_ioctl) 10520 ire_walk_ill_v4(MATCH_IRE_ILL, 0, 10521 ire_delete_cache_gw, (char *)&addr, ill); 10522 else 10523 ire_walk_v4(ire_delete_cache_gw, (char *)&addr, 10524 ALL_ZONES, ipst); 10525 iocp->ioc_error = 0; 10526 } 10527 } 10528 errack: 10529 if (iocp->ioc_error || iocp->ioc_cmd != AR_ENTRY_SQUERY) { 10530 err = iocp->ioc_error; 10531 freemsg(mp); 10532 ip_ioctl_finish(q, orig_ioc_mp, err, NO_COPYOUT, NULL); 10533 return; 10534 } 10535 10536 /* 10537 * Completion of an SIOCG{X}ARP. Translate the information from 10538 * the area_t into the struct {x}arpreq. 10539 */ 10540 if (x_arp_ioctl) { 10541 storage += ill_xarp_info(&xar->xarp_ha, ill); 10542 if ((ill->ill_phys_addr_length + ill->ill_name_length) > 10543 sizeof (xar->xarp_ha.sdl_data)) { 10544 freemsg(mp); 10545 ip_ioctl_finish(q, orig_ioc_mp, EINVAL, NO_COPYOUT, 10546 NULL); 10547 return; 10548 } 10549 } 10550 *flagsp = ATF_INUSE; 10551 if (area->area_flags & ACE_F_PERMANENT) 10552 *flagsp |= ATF_PERM; 10553 if (area->area_flags & ACE_F_PUBLISH) 10554 *flagsp |= ATF_PUBL; 10555 if (area->area_flags & ACE_F_AUTHORITY) 10556 *flagsp |= ATF_AUTHORITY; 10557 if (area->area_hw_addr_length != 0) { 10558 *flagsp |= ATF_COM; 10559 /* 10560 * For SIOCGARP, MAC address length validation has 10561 * already been done before the ioctl was issued to ARP 10562 * to allow it to progress only on 6 byte addressable 10563 * (ethernet like) media. Thus the mac address copying 10564 * can not overwrite the sa_data area below. 10565 */ 10566 bcopy((char *)area + area->area_hw_addr_offset, 10567 storage, area->area_hw_addr_length); 10568 } 10569 10570 /* Ditch the internal IOCTL. */ 10571 freemsg(mp); 10572 /* Complete the original. */ 10573 ip_ioctl_finish(q, orig_ioc_mp, 0, COPYOUT, NULL); 10574 } 10575 10576 /* 10577 * Create a new logical interface. If ipif_id is zero (i.e. not a logical 10578 * interface) create the next available logical interface for this 10579 * physical interface. 10580 * If ipif is NULL (i.e. the lookup didn't find one) attempt to create an 10581 * ipif with the specified name. 10582 * 10583 * If the address family is not AF_UNSPEC then set the address as well. 10584 * 10585 * If ip_sioctl_addr returns EINPROGRESS then the ioctl (the copyout) 10586 * is completed when the DL_BIND_ACK arrive in ip_rput_dlpi_writer. 10587 * 10588 * Executed as a writer on the ill or ill group. 10589 * So no lock is needed to traverse the ipif chain, or examine the 10590 * phyint flags. 10591 */ 10592 /* ARGSUSED */ 10593 int 10594 ip_sioctl_addif(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 10595 ip_ioctl_cmd_t *dummy_ipip, void *dummy_ifreq) 10596 { 10597 mblk_t *mp1; 10598 struct lifreq *lifr; 10599 boolean_t isv6; 10600 boolean_t exists; 10601 char *name; 10602 char *endp; 10603 char *cp; 10604 int namelen; 10605 ipif_t *ipif; 10606 long id; 10607 ipsq_t *ipsq; 10608 ill_t *ill; 10609 sin_t *sin; 10610 int err = 0; 10611 boolean_t found_sep = B_FALSE; 10612 conn_t *connp; 10613 zoneid_t zoneid; 10614 int orig_ifindex = 0; 10615 ip_stack_t *ipst = CONNQ_TO_IPST(q); 10616 10617 ASSERT(q->q_next == NULL); 10618 ip1dbg(("ip_sioctl_addif\n")); 10619 /* Existence of mp1 has been checked in ip_wput_nondata */ 10620 mp1 = mp->b_cont->b_cont; 10621 /* 10622 * Null terminate the string to protect against buffer 10623 * overrun. String was generated by user code and may not 10624 * be trusted. 10625 */ 10626 lifr = (struct lifreq *)mp1->b_rptr; 10627 lifr->lifr_name[LIFNAMSIZ - 1] = '\0'; 10628 name = lifr->lifr_name; 10629 ASSERT(CONN_Q(q)); 10630 connp = Q_TO_CONN(q); 10631 isv6 = connp->conn_af_isv6; 10632 zoneid = connp->conn_zoneid; 10633 namelen = mi_strlen(name); 10634 if (namelen == 0) 10635 return (EINVAL); 10636 10637 exists = B_FALSE; 10638 if ((namelen + 1 == sizeof (ipif_loopback_name)) && 10639 (mi_strcmp(name, ipif_loopback_name) == 0)) { 10640 /* 10641 * Allow creating lo0 using SIOCLIFADDIF. 10642 * can't be any other writer thread. So can pass null below 10643 * for the last 4 args to ipif_lookup_name. 10644 */ 10645 ipif = ipif_lookup_on_name(lifr->lifr_name, namelen, B_TRUE, 10646 &exists, isv6, zoneid, NULL, NULL, NULL, NULL, ipst); 10647 /* Prevent any further action */ 10648 if (ipif == NULL) { 10649 return (ENOBUFS); 10650 } else if (!exists) { 10651 /* We created the ipif now and as writer */ 10652 ipif_refrele(ipif); 10653 return (0); 10654 } else { 10655 ill = ipif->ipif_ill; 10656 ill_refhold(ill); 10657 ipif_refrele(ipif); 10658 } 10659 } else { 10660 /* Look for a colon in the name. */ 10661 endp = &name[namelen]; 10662 for (cp = endp; --cp > name; ) { 10663 if (*cp == IPIF_SEPARATOR_CHAR) { 10664 found_sep = B_TRUE; 10665 /* 10666 * Reject any non-decimal aliases for plumbing 10667 * of logical interfaces. Aliases with leading 10668 * zeroes are also rejected as they introduce 10669 * ambiguity in the naming of the interfaces. 10670 * Comparing with "0" takes care of all such 10671 * cases. 10672 */ 10673 if ((strncmp("0", cp+1, 1)) == 0) 10674 return (EINVAL); 10675 10676 if (ddi_strtol(cp+1, &endp, 10, &id) != 0 || 10677 id <= 0 || *endp != '\0') { 10678 return (EINVAL); 10679 } 10680 *cp = '\0'; 10681 break; 10682 } 10683 } 10684 ill = ill_lookup_on_name(name, B_FALSE, isv6, 10685 CONNP_TO_WQ(connp), mp, ip_process_ioctl, &err, NULL, ipst); 10686 if (found_sep) 10687 *cp = IPIF_SEPARATOR_CHAR; 10688 if (ill == NULL) 10689 return (err); 10690 } 10691 10692 ipsq = ipsq_try_enter(NULL, ill, q, mp, ip_process_ioctl, NEW_OP, 10693 B_TRUE); 10694 10695 /* 10696 * Release the refhold due to the lookup, now that we are excl 10697 * or we are just returning 10698 */ 10699 ill_refrele(ill); 10700 10701 if (ipsq == NULL) 10702 return (EINPROGRESS); 10703 10704 /* 10705 * If the interface is failed, inactive or offlined, look for a working 10706 * interface in the ill group and create the ipif there. If we can't 10707 * find a good interface, create the ipif anyway so that in.mpathd can 10708 * move it to the first repaired interface. 10709 */ 10710 if ((ill->ill_phyint->phyint_flags & 10711 (PHYI_FAILED|PHYI_INACTIVE|PHYI_OFFLINE)) && 10712 ill->ill_phyint->phyint_groupname_len != 0) { 10713 phyint_t *phyi; 10714 char *groupname = ill->ill_phyint->phyint_groupname; 10715 10716 /* 10717 * We're looking for a working interface, but it doesn't matter 10718 * if it's up or down; so instead of following the group lists, 10719 * we look at each physical interface and compare the groupname. 10720 * We're only interested in interfaces with IPv4 (resp. IPv6) 10721 * plumbed when we're adding an IPv4 (resp. IPv6) ipif. 10722 * Otherwise we create the ipif on the failed interface. 10723 */ 10724 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 10725 phyi = avl_first(&ipst->ips_phyint_g_list-> 10726 phyint_list_avl_by_index); 10727 for (; phyi != NULL; 10728 phyi = avl_walk(&ipst->ips_phyint_g_list-> 10729 phyint_list_avl_by_index, 10730 phyi, AVL_AFTER)) { 10731 if (phyi->phyint_groupname_len == 0) 10732 continue; 10733 ASSERT(phyi->phyint_groupname != NULL); 10734 if (mi_strcmp(groupname, phyi->phyint_groupname) == 0 && 10735 !(phyi->phyint_flags & 10736 (PHYI_FAILED|PHYI_INACTIVE|PHYI_OFFLINE)) && 10737 (ill->ill_isv6 ? (phyi->phyint_illv6 != NULL) : 10738 (phyi->phyint_illv4 != NULL))) { 10739 break; 10740 } 10741 } 10742 rw_exit(&ipst->ips_ill_g_lock); 10743 10744 if (phyi != NULL) { 10745 orig_ifindex = ill->ill_phyint->phyint_ifindex; 10746 ill = (ill->ill_isv6 ? phyi->phyint_illv6 : 10747 phyi->phyint_illv4); 10748 } 10749 } 10750 10751 /* 10752 * We are now exclusive on the ipsq, so an ill move will be serialized 10753 * before or after us. 10754 */ 10755 ASSERT(IAM_WRITER_ILL(ill)); 10756 ASSERT(ill->ill_move_in_progress == B_FALSE); 10757 10758 if (found_sep && orig_ifindex == 0) { 10759 /* Now see if there is an IPIF with this unit number. */ 10760 for (ipif = ill->ill_ipif; ipif != NULL; 10761 ipif = ipif->ipif_next) { 10762 if (ipif->ipif_id == id) { 10763 err = EEXIST; 10764 goto done; 10765 } 10766 } 10767 } 10768 10769 /* 10770 * We use IRE_LOCAL for lo0:1 etc. for "receive only" use 10771 * of lo0. We never come here when we plumb lo0:0. It 10772 * happens in ipif_lookup_on_name. 10773 * The specified unit number is ignored when we create the ipif on a 10774 * different interface. However, we save it in ipif_orig_ipifid below so 10775 * that the ipif fails back to the right position. 10776 */ 10777 if ((ipif = ipif_allocate(ill, (found_sep && orig_ifindex == 0) ? 10778 id : -1, IRE_LOCAL, B_TRUE)) == NULL) { 10779 err = ENOBUFS; 10780 goto done; 10781 } 10782 10783 /* Return created name with ioctl */ 10784 (void) sprintf(lifr->lifr_name, "%s%c%d", ill->ill_name, 10785 IPIF_SEPARATOR_CHAR, ipif->ipif_id); 10786 ip1dbg(("created %s\n", lifr->lifr_name)); 10787 10788 /* Set address */ 10789 sin = (sin_t *)&lifr->lifr_addr; 10790 if (sin->sin_family != AF_UNSPEC) { 10791 err = ip_sioctl_addr(ipif, sin, q, mp, 10792 &ip_ndx_ioctl_table[SIOCLIFADDR_NDX], lifr); 10793 } 10794 10795 /* Set ifindex and unit number for failback */ 10796 if (err == 0 && orig_ifindex != 0) { 10797 ipif->ipif_orig_ifindex = orig_ifindex; 10798 if (found_sep) { 10799 ipif->ipif_orig_ipifid = id; 10800 } 10801 } 10802 10803 done: 10804 ipsq_exit(ipsq, B_TRUE, B_TRUE); 10805 return (err); 10806 } 10807 10808 /* 10809 * Remove an existing logical interface. If ipif_id is zero (i.e. not a logical 10810 * interface) delete it based on the IP address (on this physical interface). 10811 * Otherwise delete it based on the ipif_id. 10812 * Also, special handling to allow a removeif of lo0. 10813 */ 10814 /* ARGSUSED */ 10815 int 10816 ip_sioctl_removeif(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10817 ip_ioctl_cmd_t *ipip, void *dummy_if_req) 10818 { 10819 conn_t *connp; 10820 ill_t *ill = ipif->ipif_ill; 10821 boolean_t success; 10822 ip_stack_t *ipst; 10823 10824 ipst = CONNQ_TO_IPST(q); 10825 10826 ASSERT(q->q_next == NULL); 10827 ip1dbg(("ip_sioctl_remove_if(%s:%u %p)\n", 10828 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 10829 ASSERT(IAM_WRITER_IPIF(ipif)); 10830 10831 connp = Q_TO_CONN(q); 10832 /* 10833 * Special case for unplumbing lo0 (the loopback physical interface). 10834 * If unplumbing lo0, the incoming address structure has been 10835 * initialized to all zeros. When unplumbing lo0, all its logical 10836 * interfaces must be removed too. 10837 * 10838 * Note that this interface may be called to remove a specific 10839 * loopback logical interface (eg, lo0:1). But in that case 10840 * ipif->ipif_id != 0 so that the code path for that case is the 10841 * same as any other interface (meaning it skips the code directly 10842 * below). 10843 */ 10844 if (ipif->ipif_id == 0 && ipif->ipif_net_type == IRE_LOOPBACK) { 10845 if (sin->sin_family == AF_UNSPEC && 10846 (IN6_IS_ADDR_UNSPECIFIED(&((sin6_t *)sin)->sin6_addr))) { 10847 /* 10848 * Mark it condemned. No new ref. will be made to ill. 10849 */ 10850 mutex_enter(&ill->ill_lock); 10851 ill->ill_state_flags |= ILL_CONDEMNED; 10852 for (ipif = ill->ill_ipif; ipif != NULL; 10853 ipif = ipif->ipif_next) { 10854 ipif->ipif_state_flags |= IPIF_CONDEMNED; 10855 } 10856 mutex_exit(&ill->ill_lock); 10857 10858 ipif = ill->ill_ipif; 10859 /* unplumb the loopback interface */ 10860 ill_delete(ill); 10861 mutex_enter(&connp->conn_lock); 10862 mutex_enter(&ill->ill_lock); 10863 ASSERT(ill->ill_group == NULL); 10864 10865 /* Are any references to this ill active */ 10866 if (ill_is_freeable(ill)) { 10867 mutex_exit(&ill->ill_lock); 10868 mutex_exit(&connp->conn_lock); 10869 ill_delete_tail(ill); 10870 mutex_enter(&ill->ill_lock); 10871 ill_nic_info_dispatch(ill); 10872 mutex_exit(&ill->ill_lock); 10873 mi_free(ill); 10874 return (0); 10875 } 10876 success = ipsq_pending_mp_add(connp, ipif, 10877 CONNP_TO_WQ(connp), mp, ILL_FREE); 10878 mutex_exit(&connp->conn_lock); 10879 mutex_exit(&ill->ill_lock); 10880 if (success) 10881 return (EINPROGRESS); 10882 else 10883 return (EINTR); 10884 } 10885 } 10886 10887 /* 10888 * We are exclusive on the ipsq, so an ill move will be serialized 10889 * before or after us. 10890 */ 10891 ASSERT(ill->ill_move_in_progress == B_FALSE); 10892 10893 if (ipif->ipif_id == 0) { 10894 10895 ipsq_t *ipsq; 10896 10897 /* Find based on address */ 10898 if (ipif->ipif_isv6) { 10899 sin6_t *sin6; 10900 10901 if (sin->sin_family != AF_INET6) 10902 return (EAFNOSUPPORT); 10903 10904 sin6 = (sin6_t *)sin; 10905 /* We are a writer, so we should be able to lookup */ 10906 ipif = ipif_lookup_addr_v6(&sin6->sin6_addr, 10907 ill, ALL_ZONES, NULL, NULL, NULL, NULL, ipst); 10908 if (ipif == NULL) { 10909 /* 10910 * Maybe the address in on another interface in 10911 * the same IPMP group? We check this below. 10912 */ 10913 ipif = ipif_lookup_addr_v6(&sin6->sin6_addr, 10914 NULL, ALL_ZONES, NULL, NULL, NULL, NULL, 10915 ipst); 10916 } 10917 } else { 10918 ipaddr_t addr; 10919 10920 if (sin->sin_family != AF_INET) 10921 return (EAFNOSUPPORT); 10922 10923 addr = sin->sin_addr.s_addr; 10924 /* We are a writer, so we should be able to lookup */ 10925 ipif = ipif_lookup_addr(addr, ill, ALL_ZONES, NULL, 10926 NULL, NULL, NULL, ipst); 10927 if (ipif == NULL) { 10928 /* 10929 * Maybe the address in on another interface in 10930 * the same IPMP group? We check this below. 10931 */ 10932 ipif = ipif_lookup_addr(addr, NULL, ALL_ZONES, 10933 NULL, NULL, NULL, NULL, ipst); 10934 } 10935 } 10936 if (ipif == NULL) { 10937 return (EADDRNOTAVAIL); 10938 } 10939 10940 /* 10941 * It is possible for a user to send an SIOCLIFREMOVEIF with 10942 * lifr_name of the physical interface but with an ip address 10943 * lifr_addr of a logical interface plumbed over it. 10944 * So update ipsq_current_ipif once ipif points to the 10945 * correct interface after doing ipif_lookup_addr(). 10946 */ 10947 ipsq = ipif->ipif_ill->ill_phyint->phyint_ipsq; 10948 ASSERT(ipsq != NULL); 10949 10950 mutex_enter(&ipsq->ipsq_lock); 10951 ipsq->ipsq_current_ipif = ipif; 10952 mutex_exit(&ipsq->ipsq_lock); 10953 10954 /* 10955 * When the address to be removed is hosted on a different 10956 * interface, we check if the interface is in the same IPMP 10957 * group as the specified one; if so we proceed with the 10958 * removal. 10959 * ill->ill_group is NULL when the ill is down, so we have to 10960 * compare the group names instead. 10961 */ 10962 if (ipif->ipif_ill != ill && 10963 (ipif->ipif_ill->ill_phyint->phyint_groupname_len == 0 || 10964 ill->ill_phyint->phyint_groupname_len == 0 || 10965 mi_strcmp(ipif->ipif_ill->ill_phyint->phyint_groupname, 10966 ill->ill_phyint->phyint_groupname) != 0)) { 10967 ipif_refrele(ipif); 10968 return (EADDRNOTAVAIL); 10969 } 10970 10971 /* This is a writer */ 10972 ipif_refrele(ipif); 10973 } 10974 10975 /* 10976 * Can not delete instance zero since it is tied to the ill. 10977 */ 10978 if (ipif->ipif_id == 0) 10979 return (EBUSY); 10980 10981 mutex_enter(&ill->ill_lock); 10982 ipif->ipif_state_flags |= IPIF_CONDEMNED; 10983 mutex_exit(&ill->ill_lock); 10984 10985 ipif_free(ipif); 10986 10987 mutex_enter(&connp->conn_lock); 10988 mutex_enter(&ill->ill_lock); 10989 10990 10991 /* Are any references to this ipif active */ 10992 if (ipif_is_freeable(ipif)) { 10993 mutex_exit(&ill->ill_lock); 10994 mutex_exit(&connp->conn_lock); 10995 ipif_non_duplicate(ipif); 10996 ipif_down_tail(ipif); 10997 ipif_free_tail(ipif); /* frees ipif */ 10998 return (0); 10999 } 11000 success = ipsq_pending_mp_add(connp, ipif, CONNP_TO_WQ(connp), mp, 11001 IPIF_FREE); 11002 mutex_exit(&ill->ill_lock); 11003 mutex_exit(&connp->conn_lock); 11004 if (success) 11005 return (EINPROGRESS); 11006 else 11007 return (EINTR); 11008 } 11009 11010 /* 11011 * Restart the removeif ioctl. The refcnt has gone down to 0. 11012 * The ipif is already condemned. So can't find it thru lookups. 11013 */ 11014 /* ARGSUSED */ 11015 int 11016 ip_sioctl_removeif_restart(ipif_t *ipif, sin_t *dummy_sin, queue_t *q, 11017 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *dummy_if_req) 11018 { 11019 ill_t *ill = ipif->ipif_ill; 11020 11021 ASSERT(IAM_WRITER_IPIF(ipif)); 11022 ASSERT(ipif->ipif_state_flags & IPIF_CONDEMNED); 11023 11024 ip1dbg(("ip_sioctl_removeif_restart(%s:%u %p)\n", 11025 ill->ill_name, ipif->ipif_id, (void *)ipif)); 11026 11027 if (ipif->ipif_id == 0 && ipif->ipif_net_type == IRE_LOOPBACK) { 11028 ASSERT(ill->ill_state_flags & ILL_CONDEMNED); 11029 ill_delete_tail(ill); 11030 mutex_enter(&ill->ill_lock); 11031 ill_nic_info_dispatch(ill); 11032 mutex_exit(&ill->ill_lock); 11033 mi_free(ill); 11034 return (0); 11035 } 11036 11037 ipif_non_duplicate(ipif); 11038 ipif_down_tail(ipif); 11039 ipif_free_tail(ipif); 11040 11041 ILL_UNMARK_CHANGING(ill); 11042 return (0); 11043 } 11044 11045 /* 11046 * Set the local interface address. 11047 * Allow an address of all zero when the interface is down. 11048 */ 11049 /* ARGSUSED */ 11050 int 11051 ip_sioctl_addr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11052 ip_ioctl_cmd_t *dummy_ipip, void *dummy_ifreq) 11053 { 11054 int err = 0; 11055 in6_addr_t v6addr; 11056 boolean_t need_up = B_FALSE; 11057 11058 ip1dbg(("ip_sioctl_addr(%s:%u %p)\n", 11059 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11060 11061 ASSERT(IAM_WRITER_IPIF(ipif)); 11062 11063 if (ipif->ipif_isv6) { 11064 sin6_t *sin6; 11065 ill_t *ill; 11066 phyint_t *phyi; 11067 11068 if (sin->sin_family != AF_INET6) 11069 return (EAFNOSUPPORT); 11070 11071 sin6 = (sin6_t *)sin; 11072 v6addr = sin6->sin6_addr; 11073 ill = ipif->ipif_ill; 11074 phyi = ill->ill_phyint; 11075 11076 /* 11077 * Enforce that true multicast interfaces have a link-local 11078 * address for logical unit 0. 11079 */ 11080 if (ipif->ipif_id == 0 && 11081 (ill->ill_flags & ILLF_MULTICAST) && 11082 !(ipif->ipif_flags & (IPIF_POINTOPOINT)) && 11083 !(phyi->phyint_flags & (PHYI_LOOPBACK)) && 11084 !IN6_IS_ADDR_LINKLOCAL(&v6addr)) { 11085 return (EADDRNOTAVAIL); 11086 } 11087 11088 /* 11089 * up interfaces shouldn't have the unspecified address 11090 * unless they also have the IPIF_NOLOCAL flags set and 11091 * have a subnet assigned. 11092 */ 11093 if ((ipif->ipif_flags & IPIF_UP) && 11094 IN6_IS_ADDR_UNSPECIFIED(&v6addr) && 11095 (!(ipif->ipif_flags & IPIF_NOLOCAL) || 11096 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6subnet))) { 11097 return (EADDRNOTAVAIL); 11098 } 11099 11100 if (!ip_local_addr_ok_v6(&v6addr, &ipif->ipif_v6net_mask)) 11101 return (EADDRNOTAVAIL); 11102 } else { 11103 ipaddr_t addr; 11104 11105 if (sin->sin_family != AF_INET) 11106 return (EAFNOSUPPORT); 11107 11108 addr = sin->sin_addr.s_addr; 11109 11110 /* Allow 0 as the local address. */ 11111 if (addr != 0 && !ip_addr_ok_v4(addr, ipif->ipif_net_mask)) 11112 return (EADDRNOTAVAIL); 11113 11114 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 11115 } 11116 11117 11118 /* 11119 * Even if there is no change we redo things just to rerun 11120 * ipif_set_default. 11121 */ 11122 if (ipif->ipif_flags & IPIF_UP) { 11123 /* 11124 * Setting a new local address, make sure 11125 * we have net and subnet bcast ire's for 11126 * the old address if we need them. 11127 */ 11128 if (!ipif->ipif_isv6) 11129 ipif_check_bcast_ires(ipif); 11130 /* 11131 * If the interface is already marked up, 11132 * we call ipif_down which will take care 11133 * of ditching any IREs that have been set 11134 * up based on the old interface address. 11135 */ 11136 err = ipif_logical_down(ipif, q, mp); 11137 if (err == EINPROGRESS) 11138 return (err); 11139 ipif_down_tail(ipif); 11140 need_up = 1; 11141 } 11142 11143 err = ip_sioctl_addr_tail(ipif, sin, q, mp, need_up); 11144 return (err); 11145 } 11146 11147 int 11148 ip_sioctl_addr_tail(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11149 boolean_t need_up) 11150 { 11151 in6_addr_t v6addr; 11152 in6_addr_t ov6addr; 11153 ipaddr_t addr; 11154 sin6_t *sin6; 11155 int sinlen; 11156 int err = 0; 11157 ill_t *ill = ipif->ipif_ill; 11158 boolean_t need_dl_down; 11159 boolean_t need_arp_down; 11160 struct iocblk *iocp; 11161 11162 iocp = (mp != NULL) ? (struct iocblk *)mp->b_rptr : NULL; 11163 11164 ip1dbg(("ip_sioctl_addr_tail(%s:%u %p)\n", 11165 ill->ill_name, ipif->ipif_id, (void *)ipif)); 11166 ASSERT(IAM_WRITER_IPIF(ipif)); 11167 11168 /* Must cancel any pending timer before taking the ill_lock */ 11169 if (ipif->ipif_recovery_id != 0) 11170 (void) untimeout(ipif->ipif_recovery_id); 11171 ipif->ipif_recovery_id = 0; 11172 11173 if (ipif->ipif_isv6) { 11174 sin6 = (sin6_t *)sin; 11175 v6addr = sin6->sin6_addr; 11176 sinlen = sizeof (struct sockaddr_in6); 11177 } else { 11178 addr = sin->sin_addr.s_addr; 11179 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 11180 sinlen = sizeof (struct sockaddr_in); 11181 } 11182 mutex_enter(&ill->ill_lock); 11183 ov6addr = ipif->ipif_v6lcl_addr; 11184 ipif->ipif_v6lcl_addr = v6addr; 11185 sctp_update_ipif_addr(ipif, ov6addr); 11186 if (ipif->ipif_flags & (IPIF_ANYCAST | IPIF_NOLOCAL)) { 11187 ipif->ipif_v6src_addr = ipv6_all_zeros; 11188 } else { 11189 ipif->ipif_v6src_addr = v6addr; 11190 } 11191 ipif->ipif_addr_ready = 0; 11192 11193 /* 11194 * If the interface was previously marked as a duplicate, then since 11195 * we've now got a "new" address, it should no longer be considered a 11196 * duplicate -- even if the "new" address is the same as the old one. 11197 * Note that if all ipifs are down, we may have a pending ARP down 11198 * event to handle. This is because we want to recover from duplicates 11199 * and thus delay tearing down ARP until the duplicates have been 11200 * removed or disabled. 11201 */ 11202 need_dl_down = need_arp_down = B_FALSE; 11203 if (ipif->ipif_flags & IPIF_DUPLICATE) { 11204 need_arp_down = !need_up; 11205 ipif->ipif_flags &= ~IPIF_DUPLICATE; 11206 if (--ill->ill_ipif_dup_count == 0 && !need_up && 11207 ill->ill_ipif_up_count == 0 && ill->ill_dl_up) { 11208 need_dl_down = B_TRUE; 11209 } 11210 } 11211 11212 if (ipif->ipif_isv6 && IN6_IS_ADDR_6TO4(&v6addr) && 11213 !ill->ill_is_6to4tun) { 11214 queue_t *wqp = ill->ill_wq; 11215 11216 /* 11217 * The local address of this interface is a 6to4 address, 11218 * check if this interface is in fact a 6to4 tunnel or just 11219 * an interface configured with a 6to4 address. We are only 11220 * interested in the former. 11221 */ 11222 if (wqp != NULL) { 11223 while ((wqp->q_next != NULL) && 11224 (wqp->q_next->q_qinfo != NULL) && 11225 (wqp->q_next->q_qinfo->qi_minfo != NULL)) { 11226 11227 if (wqp->q_next->q_qinfo->qi_minfo->mi_idnum 11228 == TUN6TO4_MODID) { 11229 /* set for use in IP */ 11230 ill->ill_is_6to4tun = 1; 11231 break; 11232 } 11233 wqp = wqp->q_next; 11234 } 11235 } 11236 } 11237 11238 ipif_set_default(ipif); 11239 11240 /* 11241 * When publishing an interface address change event, we only notify 11242 * the event listeners of the new address. It is assumed that if they 11243 * actively care about the addresses assigned that they will have 11244 * already discovered the previous address assigned (if there was one.) 11245 * 11246 * Don't attach nic event message for SIOCLIFADDIF ioctl. 11247 */ 11248 if (iocp != NULL && iocp->ioc_cmd != SIOCLIFADDIF) { 11249 (void) ill_hook_event_create(ill, MAP_IPIF_ID(ipif->ipif_id), 11250 NE_ADDRESS_CHANGE, sin, sinlen); 11251 } 11252 11253 mutex_exit(&ill->ill_lock); 11254 11255 if (need_up) { 11256 /* 11257 * Now bring the interface back up. If this 11258 * is the only IPIF for the ILL, ipif_up 11259 * will have to re-bind to the device, so 11260 * we may get back EINPROGRESS, in which 11261 * case, this IOCTL will get completed in 11262 * ip_rput_dlpi when we see the DL_BIND_ACK. 11263 */ 11264 err = ipif_up(ipif, q, mp); 11265 } 11266 11267 if (need_dl_down) 11268 ill_dl_down(ill); 11269 if (need_arp_down) 11270 ipif_arp_down(ipif); 11271 11272 return (err); 11273 } 11274 11275 11276 /* 11277 * Restart entry point to restart the address set operation after the 11278 * refcounts have dropped to zero. 11279 */ 11280 /* ARGSUSED */ 11281 int 11282 ip_sioctl_addr_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11283 ip_ioctl_cmd_t *ipip, void *ifreq) 11284 { 11285 ip1dbg(("ip_sioctl_addr_restart(%s:%u %p)\n", 11286 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11287 ASSERT(IAM_WRITER_IPIF(ipif)); 11288 ipif_down_tail(ipif); 11289 return (ip_sioctl_addr_tail(ipif, sin, q, mp, B_TRUE)); 11290 } 11291 11292 /* ARGSUSED */ 11293 int 11294 ip_sioctl_get_addr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11295 ip_ioctl_cmd_t *ipip, void *if_req) 11296 { 11297 sin6_t *sin6 = (struct sockaddr_in6 *)sin; 11298 struct lifreq *lifr = (struct lifreq *)if_req; 11299 11300 ip1dbg(("ip_sioctl_get_addr(%s:%u %p)\n", 11301 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11302 /* 11303 * The net mask and address can't change since we have a 11304 * reference to the ipif. So no lock is necessary. 11305 */ 11306 if (ipif->ipif_isv6) { 11307 *sin6 = sin6_null; 11308 sin6->sin6_family = AF_INET6; 11309 sin6->sin6_addr = ipif->ipif_v6lcl_addr; 11310 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 11311 lifr->lifr_addrlen = 11312 ip_mask_to_plen_v6(&ipif->ipif_v6net_mask); 11313 } else { 11314 *sin = sin_null; 11315 sin->sin_family = AF_INET; 11316 sin->sin_addr.s_addr = ipif->ipif_lcl_addr; 11317 if (ipip->ipi_cmd_type == LIF_CMD) { 11318 lifr->lifr_addrlen = 11319 ip_mask_to_plen(ipif->ipif_net_mask); 11320 } 11321 } 11322 return (0); 11323 } 11324 11325 /* 11326 * Set the destination address for a pt-pt interface. 11327 */ 11328 /* ARGSUSED */ 11329 int 11330 ip_sioctl_dstaddr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11331 ip_ioctl_cmd_t *ipip, void *if_req) 11332 { 11333 int err = 0; 11334 in6_addr_t v6addr; 11335 boolean_t need_up = B_FALSE; 11336 11337 ip1dbg(("ip_sioctl_dstaddr(%s:%u %p)\n", 11338 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11339 ASSERT(IAM_WRITER_IPIF(ipif)); 11340 11341 if (ipif->ipif_isv6) { 11342 sin6_t *sin6; 11343 11344 if (sin->sin_family != AF_INET6) 11345 return (EAFNOSUPPORT); 11346 11347 sin6 = (sin6_t *)sin; 11348 v6addr = sin6->sin6_addr; 11349 11350 if (!ip_remote_addr_ok_v6(&v6addr, &ipif->ipif_v6net_mask)) 11351 return (EADDRNOTAVAIL); 11352 } else { 11353 ipaddr_t addr; 11354 11355 if (sin->sin_family != AF_INET) 11356 return (EAFNOSUPPORT); 11357 11358 addr = sin->sin_addr.s_addr; 11359 if (!ip_addr_ok_v4(addr, ipif->ipif_net_mask)) 11360 return (EADDRNOTAVAIL); 11361 11362 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 11363 } 11364 11365 if (IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6pp_dst_addr, &v6addr)) 11366 return (0); /* No change */ 11367 11368 if (ipif->ipif_flags & IPIF_UP) { 11369 /* 11370 * If the interface is already marked up, 11371 * we call ipif_down which will take care 11372 * of ditching any IREs that have been set 11373 * up based on the old pp dst address. 11374 */ 11375 err = ipif_logical_down(ipif, q, mp); 11376 if (err == EINPROGRESS) 11377 return (err); 11378 ipif_down_tail(ipif); 11379 need_up = B_TRUE; 11380 } 11381 /* 11382 * could return EINPROGRESS. If so ioctl will complete in 11383 * ip_rput_dlpi_writer 11384 */ 11385 err = ip_sioctl_dstaddr_tail(ipif, sin, q, mp, need_up); 11386 return (err); 11387 } 11388 11389 static int 11390 ip_sioctl_dstaddr_tail(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11391 boolean_t need_up) 11392 { 11393 in6_addr_t v6addr; 11394 ill_t *ill = ipif->ipif_ill; 11395 int err = 0; 11396 boolean_t need_dl_down; 11397 boolean_t need_arp_down; 11398 11399 ip1dbg(("ip_sioctl_dstaddr_tail(%s:%u %p)\n", ill->ill_name, 11400 ipif->ipif_id, (void *)ipif)); 11401 11402 /* Must cancel any pending timer before taking the ill_lock */ 11403 if (ipif->ipif_recovery_id != 0) 11404 (void) untimeout(ipif->ipif_recovery_id); 11405 ipif->ipif_recovery_id = 0; 11406 11407 if (ipif->ipif_isv6) { 11408 sin6_t *sin6; 11409 11410 sin6 = (sin6_t *)sin; 11411 v6addr = sin6->sin6_addr; 11412 } else { 11413 ipaddr_t addr; 11414 11415 addr = sin->sin_addr.s_addr; 11416 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 11417 } 11418 mutex_enter(&ill->ill_lock); 11419 /* Set point to point destination address. */ 11420 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) { 11421 /* 11422 * Allow this as a means of creating logical 11423 * pt-pt interfaces on top of e.g. an Ethernet. 11424 * XXX Undocumented HACK for testing. 11425 * pt-pt interfaces are created with NUD disabled. 11426 */ 11427 ipif->ipif_flags |= IPIF_POINTOPOINT; 11428 ipif->ipif_flags &= ~IPIF_BROADCAST; 11429 if (ipif->ipif_isv6) 11430 ill->ill_flags |= ILLF_NONUD; 11431 } 11432 11433 /* 11434 * If the interface was previously marked as a duplicate, then since 11435 * we've now got a "new" address, it should no longer be considered a 11436 * duplicate -- even if the "new" address is the same as the old one. 11437 * Note that if all ipifs are down, we may have a pending ARP down 11438 * event to handle. 11439 */ 11440 need_dl_down = need_arp_down = B_FALSE; 11441 if (ipif->ipif_flags & IPIF_DUPLICATE) { 11442 need_arp_down = !need_up; 11443 ipif->ipif_flags &= ~IPIF_DUPLICATE; 11444 if (--ill->ill_ipif_dup_count == 0 && !need_up && 11445 ill->ill_ipif_up_count == 0 && ill->ill_dl_up) { 11446 need_dl_down = B_TRUE; 11447 } 11448 } 11449 11450 /* Set the new address. */ 11451 ipif->ipif_v6pp_dst_addr = v6addr; 11452 /* Make sure subnet tracks pp_dst */ 11453 ipif->ipif_v6subnet = ipif->ipif_v6pp_dst_addr; 11454 mutex_exit(&ill->ill_lock); 11455 11456 if (need_up) { 11457 /* 11458 * Now bring the interface back up. If this 11459 * is the only IPIF for the ILL, ipif_up 11460 * will have to re-bind to the device, so 11461 * we may get back EINPROGRESS, in which 11462 * case, this IOCTL will get completed in 11463 * ip_rput_dlpi when we see the DL_BIND_ACK. 11464 */ 11465 err = ipif_up(ipif, q, mp); 11466 } 11467 11468 if (need_dl_down) 11469 ill_dl_down(ill); 11470 11471 if (need_arp_down) 11472 ipif_arp_down(ipif); 11473 return (err); 11474 } 11475 11476 /* 11477 * Restart entry point to restart the dstaddress set operation after the 11478 * refcounts have dropped to zero. 11479 */ 11480 /* ARGSUSED */ 11481 int 11482 ip_sioctl_dstaddr_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11483 ip_ioctl_cmd_t *ipip, void *ifreq) 11484 { 11485 ip1dbg(("ip_sioctl_dstaddr_restart(%s:%u %p)\n", 11486 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11487 ipif_down_tail(ipif); 11488 return (ip_sioctl_dstaddr_tail(ipif, sin, q, mp, B_TRUE)); 11489 } 11490 11491 /* ARGSUSED */ 11492 int 11493 ip_sioctl_get_dstaddr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11494 ip_ioctl_cmd_t *ipip, void *if_req) 11495 { 11496 sin6_t *sin6 = (struct sockaddr_in6 *)sin; 11497 11498 ip1dbg(("ip_sioctl_get_dstaddr(%s:%u %p)\n", 11499 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11500 /* 11501 * Get point to point destination address. The addresses can't 11502 * change since we hold a reference to the ipif. 11503 */ 11504 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) 11505 return (EADDRNOTAVAIL); 11506 11507 if (ipif->ipif_isv6) { 11508 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 11509 *sin6 = sin6_null; 11510 sin6->sin6_family = AF_INET6; 11511 sin6->sin6_addr = ipif->ipif_v6pp_dst_addr; 11512 } else { 11513 *sin = sin_null; 11514 sin->sin_family = AF_INET; 11515 sin->sin_addr.s_addr = ipif->ipif_pp_dst_addr; 11516 } 11517 return (0); 11518 } 11519 11520 /* 11521 * part of ipmp, make this func return the active/inactive state and 11522 * caller can set once atomically instead of multiple mutex_enter/mutex_exit 11523 */ 11524 /* 11525 * This function either sets or clears the IFF_INACTIVE flag. 11526 * 11527 * As long as there are some addresses or multicast memberships on the 11528 * IPv4 or IPv6 interface of the "phyi" that does not belong in here, we 11529 * will consider it to be ACTIVE (clear IFF_INACTIVE) i.e the interface 11530 * will be used for outbound packets. 11531 * 11532 * Caller needs to verify the validity of setting IFF_INACTIVE. 11533 */ 11534 static void 11535 phyint_inactive(phyint_t *phyi) 11536 { 11537 ill_t *ill_v4; 11538 ill_t *ill_v6; 11539 ipif_t *ipif; 11540 ilm_t *ilm; 11541 11542 ill_v4 = phyi->phyint_illv4; 11543 ill_v6 = phyi->phyint_illv6; 11544 11545 /* 11546 * No need for a lock while traversing the list since iam 11547 * a writer 11548 */ 11549 if (ill_v4 != NULL) { 11550 ASSERT(IAM_WRITER_ILL(ill_v4)); 11551 for (ipif = ill_v4->ill_ipif; ipif != NULL; 11552 ipif = ipif->ipif_next) { 11553 if (ipif->ipif_orig_ifindex != phyi->phyint_ifindex) { 11554 mutex_enter(&phyi->phyint_lock); 11555 phyi->phyint_flags &= ~PHYI_INACTIVE; 11556 mutex_exit(&phyi->phyint_lock); 11557 return; 11558 } 11559 } 11560 for (ilm = ill_v4->ill_ilm; ilm != NULL; 11561 ilm = ilm->ilm_next) { 11562 if (ilm->ilm_orig_ifindex != phyi->phyint_ifindex) { 11563 mutex_enter(&phyi->phyint_lock); 11564 phyi->phyint_flags &= ~PHYI_INACTIVE; 11565 mutex_exit(&phyi->phyint_lock); 11566 return; 11567 } 11568 } 11569 } 11570 if (ill_v6 != NULL) { 11571 ill_v6 = phyi->phyint_illv6; 11572 for (ipif = ill_v6->ill_ipif; ipif != NULL; 11573 ipif = ipif->ipif_next) { 11574 if (ipif->ipif_orig_ifindex != phyi->phyint_ifindex) { 11575 mutex_enter(&phyi->phyint_lock); 11576 phyi->phyint_flags &= ~PHYI_INACTIVE; 11577 mutex_exit(&phyi->phyint_lock); 11578 return; 11579 } 11580 } 11581 for (ilm = ill_v6->ill_ilm; ilm != NULL; 11582 ilm = ilm->ilm_next) { 11583 if (ilm->ilm_orig_ifindex != phyi->phyint_ifindex) { 11584 mutex_enter(&phyi->phyint_lock); 11585 phyi->phyint_flags &= ~PHYI_INACTIVE; 11586 mutex_exit(&phyi->phyint_lock); 11587 return; 11588 } 11589 } 11590 } 11591 mutex_enter(&phyi->phyint_lock); 11592 phyi->phyint_flags |= PHYI_INACTIVE; 11593 mutex_exit(&phyi->phyint_lock); 11594 } 11595 11596 /* 11597 * This function is called only when the phyint flags change. Currently 11598 * called from ip_sioctl_flags. We re-do the broadcast nomination so 11599 * that we can select a good ill. 11600 */ 11601 static void 11602 ip_redo_nomination(phyint_t *phyi) 11603 { 11604 ill_t *ill_v4; 11605 11606 ill_v4 = phyi->phyint_illv4; 11607 11608 if (ill_v4 != NULL && ill_v4->ill_group != NULL) { 11609 ASSERT(IAM_WRITER_ILL(ill_v4)); 11610 if (ill_v4->ill_group->illgrp_ill_count > 1) 11611 ill_nominate_bcast_rcv(ill_v4->ill_group); 11612 } 11613 } 11614 11615 /* 11616 * Heuristic to check if ill is INACTIVE. 11617 * Checks if ill has an ipif with an usable ip address. 11618 * 11619 * Return values: 11620 * B_TRUE - ill is INACTIVE; has no usable ipif 11621 * B_FALSE - ill is not INACTIVE; ill has at least one usable ipif 11622 */ 11623 static boolean_t 11624 ill_is_inactive(ill_t *ill) 11625 { 11626 ipif_t *ipif; 11627 11628 /* Check whether it is in an IPMP group */ 11629 if (ill->ill_phyint->phyint_groupname == NULL) 11630 return (B_FALSE); 11631 11632 if (ill->ill_ipif_up_count == 0) 11633 return (B_TRUE); 11634 11635 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 11636 uint64_t flags = ipif->ipif_flags; 11637 11638 /* 11639 * This ipif is usable if it is IPIF_UP and not a 11640 * dedicated test address. A dedicated test address 11641 * is marked IPIF_NOFAILOVER *and* IPIF_DEPRECATED 11642 * (note in particular that V6 test addresses are 11643 * link-local data addresses and thus are marked 11644 * IPIF_NOFAILOVER but not IPIF_DEPRECATED). 11645 */ 11646 if ((flags & IPIF_UP) && 11647 ((flags & (IPIF_DEPRECATED|IPIF_NOFAILOVER)) != 11648 (IPIF_DEPRECATED|IPIF_NOFAILOVER))) 11649 return (B_FALSE); 11650 } 11651 return (B_TRUE); 11652 } 11653 11654 /* 11655 * Set interface flags. 11656 * Need to do special action for IPIF_UP, IPIF_DEPRECATED, IPIF_NOXMIT, 11657 * IPIF_NOLOCAL, ILLF_NONUD, ILLF_NOARP, IPIF_PRIVATE, IPIF_ANYCAST, 11658 * IPIF_PREFERRED, PHYI_STANDBY, PHYI_FAILED and PHYI_OFFLINE. 11659 * 11660 * NOTE : We really don't enforce that ipif_id zero should be used 11661 * for setting any flags other than IFF_LOGINT_FLAGS. This 11662 * is because applications generally does SICGLIFFLAGS and 11663 * ORs in the new flags (that affects the logical) and does a 11664 * SIOCSLIFFLAGS. Thus, "flags" below could contain bits other 11665 * than IFF_LOGINT_FLAGS. One could check whether "turn_on" - the 11666 * flags that will be turned on is correct with respect to 11667 * ipif_id 0. For backward compatibility reasons, it is not done. 11668 */ 11669 /* ARGSUSED */ 11670 int 11671 ip_sioctl_flags(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11672 ip_ioctl_cmd_t *ipip, void *if_req) 11673 { 11674 uint64_t turn_on; 11675 uint64_t turn_off; 11676 int err; 11677 boolean_t need_up = B_FALSE; 11678 phyint_t *phyi; 11679 ill_t *ill; 11680 uint64_t intf_flags; 11681 boolean_t phyint_flags_modified = B_FALSE; 11682 uint64_t flags; 11683 struct ifreq *ifr; 11684 struct lifreq *lifr; 11685 boolean_t set_linklocal = B_FALSE; 11686 boolean_t zero_source = B_FALSE; 11687 ip_stack_t *ipst; 11688 11689 ip1dbg(("ip_sioctl_flags(%s:%u %p)\n", 11690 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11691 11692 ASSERT(IAM_WRITER_IPIF(ipif)); 11693 11694 ill = ipif->ipif_ill; 11695 phyi = ill->ill_phyint; 11696 ipst = ill->ill_ipst; 11697 11698 if (ipip->ipi_cmd_type == IF_CMD) { 11699 ifr = (struct ifreq *)if_req; 11700 flags = (uint64_t)(ifr->ifr_flags & 0x0000ffff); 11701 } else { 11702 lifr = (struct lifreq *)if_req; 11703 flags = lifr->lifr_flags; 11704 } 11705 11706 intf_flags = ipif->ipif_flags | ill->ill_flags | phyi->phyint_flags; 11707 11708 /* 11709 * Has the flags been set correctly till now ? 11710 */ 11711 ASSERT((phyi->phyint_flags & ~(IFF_PHYINT_FLAGS)) == 0); 11712 ASSERT((ill->ill_flags & ~(IFF_PHYINTINST_FLAGS)) == 0); 11713 ASSERT((ipif->ipif_flags & ~(IFF_LOGINT_FLAGS)) == 0); 11714 /* 11715 * Compare the new flags to the old, and partition 11716 * into those coming on and those going off. 11717 * For the 16 bit command keep the bits above bit 16 unchanged. 11718 */ 11719 if (ipip->ipi_cmd == SIOCSIFFLAGS) 11720 flags |= intf_flags & ~0xFFFF; 11721 11722 /* 11723 * First check which bits will change and then which will 11724 * go on and off 11725 */ 11726 turn_on = (flags ^ intf_flags) & ~IFF_CANTCHANGE; 11727 if (!turn_on) 11728 return (0); /* No change */ 11729 11730 turn_off = intf_flags & turn_on; 11731 turn_on ^= turn_off; 11732 err = 0; 11733 11734 /* 11735 * Don't allow any bits belonging to the logical interface 11736 * to be set or cleared on the replacement ipif that was 11737 * created temporarily during a MOVE. 11738 */ 11739 if (ipif->ipif_replace_zero && 11740 ((turn_on|turn_off) & IFF_LOGINT_FLAGS) != 0) { 11741 return (EINVAL); 11742 } 11743 11744 /* 11745 * Only allow the IFF_XRESOLV and IFF_TEMPORARY flags to be set on 11746 * IPv6 interfaces. 11747 */ 11748 if ((turn_on & (IFF_XRESOLV|IFF_TEMPORARY)) && !(ipif->ipif_isv6)) 11749 return (EINVAL); 11750 11751 /* 11752 * cannot turn off IFF_NOXMIT on VNI interfaces. 11753 */ 11754 if ((turn_off & IFF_NOXMIT) && IS_VNI(ipif->ipif_ill)) 11755 return (EINVAL); 11756 11757 /* 11758 * Don't allow the IFF_ROUTER flag to be turned on on loopback 11759 * interfaces. It makes no sense in that context. 11760 */ 11761 if ((turn_on & IFF_ROUTER) && (phyi->phyint_flags & PHYI_LOOPBACK)) 11762 return (EINVAL); 11763 11764 if (flags & (IFF_NOLOCAL|IFF_ANYCAST)) 11765 zero_source = B_TRUE; 11766 11767 /* 11768 * For IPv6 ipif_id 0, don't allow the interface to be up without 11769 * a link local address if IFF_NOLOCAL or IFF_ANYCAST are not set. 11770 * If the link local address isn't set, and can be set, it will get 11771 * set later on in this function. 11772 */ 11773 if (ipif->ipif_id == 0 && ipif->ipif_isv6 && 11774 (flags & IFF_UP) && !zero_source && 11775 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr)) { 11776 if (ipif_cant_setlinklocal(ipif)) 11777 return (EINVAL); 11778 set_linklocal = B_TRUE; 11779 } 11780 11781 /* 11782 * ILL cannot be part of a usesrc group and and IPMP group at the 11783 * same time. No need to grab ill_g_usesrc_lock here, see 11784 * synchronization notes in ip.c 11785 */ 11786 if (turn_on & PHYI_STANDBY && 11787 ipif->ipif_ill->ill_usesrc_grp_next != NULL) { 11788 return (EINVAL); 11789 } 11790 11791 /* 11792 * If we modify physical interface flags, we'll potentially need to 11793 * send up two routing socket messages for the changes (one for the 11794 * IPv4 ill, and another for the IPv6 ill). Note that here. 11795 */ 11796 if ((turn_on|turn_off) & IFF_PHYINT_FLAGS) 11797 phyint_flags_modified = B_TRUE; 11798 11799 /* 11800 * If we are setting or clearing FAILED or STANDBY or OFFLINE, 11801 * we need to flush the IRE_CACHES belonging to this ill. 11802 * We handle this case here without doing the DOWN/UP dance 11803 * like it is done for other flags. If some other flags are 11804 * being turned on/off with FAILED/STANDBY/OFFLINE, the code 11805 * below will handle it by bringing it down and then 11806 * bringing it UP. 11807 */ 11808 if ((turn_on|turn_off) & (PHYI_FAILED|PHYI_STANDBY|PHYI_OFFLINE)) { 11809 ill_t *ill_v4, *ill_v6; 11810 11811 ill_v4 = phyi->phyint_illv4; 11812 ill_v6 = phyi->phyint_illv6; 11813 11814 /* 11815 * First set the INACTIVE flag if needed. Then delete the ires. 11816 * ire_add will atomically prevent creating new IRE_CACHEs 11817 * unless hidden flag is set. 11818 * PHYI_FAILED and PHYI_INACTIVE are exclusive 11819 */ 11820 if ((turn_on & PHYI_FAILED) && 11821 ((intf_flags & PHYI_STANDBY) || 11822 !ipst->ips_ipmp_enable_failback)) { 11823 /* Reset PHYI_INACTIVE when PHYI_FAILED is being set */ 11824 phyi->phyint_flags &= ~PHYI_INACTIVE; 11825 } 11826 if ((turn_off & PHYI_FAILED) && 11827 ((intf_flags & PHYI_STANDBY) || 11828 (!ipst->ips_ipmp_enable_failback && 11829 ill_is_inactive(ill)))) { 11830 phyint_inactive(phyi); 11831 } 11832 11833 if (turn_on & PHYI_STANDBY) { 11834 /* 11835 * We implicitly set INACTIVE only when STANDBY is set. 11836 * INACTIVE is also set on non-STANDBY phyint when user 11837 * disables FAILBACK using configuration file. 11838 * Do not allow STANDBY to be set on such INACTIVE 11839 * phyint 11840 */ 11841 if (phyi->phyint_flags & PHYI_INACTIVE) 11842 return (EINVAL); 11843 if (!(phyi->phyint_flags & PHYI_FAILED)) 11844 phyint_inactive(phyi); 11845 } 11846 if (turn_off & PHYI_STANDBY) { 11847 if (ipst->ips_ipmp_enable_failback) { 11848 /* 11849 * Reset PHYI_INACTIVE. 11850 */ 11851 phyi->phyint_flags &= ~PHYI_INACTIVE; 11852 } else if (ill_is_inactive(ill) && 11853 !(phyi->phyint_flags & PHYI_FAILED)) { 11854 /* 11855 * Need to set INACTIVE, when user sets 11856 * STANDBY on a non-STANDBY phyint and 11857 * later resets STANDBY 11858 */ 11859 phyint_inactive(phyi); 11860 } 11861 } 11862 /* 11863 * We should always send up a message so that the 11864 * daemons come to know of it. Note that the zeroth 11865 * interface can be down and the check below for IPIF_UP 11866 * will not make sense as we are actually setting 11867 * a phyint flag here. We assume that the ipif used 11868 * is always the zeroth ipif. (ip_rts_ifmsg does not 11869 * send up any message for non-zero ipifs). 11870 */ 11871 phyint_flags_modified = B_TRUE; 11872 11873 if (ill_v4 != NULL) { 11874 ire_walk_ill_v4(MATCH_IRE_ILL | MATCH_IRE_TYPE, 11875 IRE_CACHE, ill_stq_cache_delete, 11876 (char *)ill_v4, ill_v4); 11877 illgrp_reset_schednext(ill_v4); 11878 } 11879 if (ill_v6 != NULL) { 11880 ire_walk_ill_v6(MATCH_IRE_ILL | MATCH_IRE_TYPE, 11881 IRE_CACHE, ill_stq_cache_delete, 11882 (char *)ill_v6, ill_v6); 11883 illgrp_reset_schednext(ill_v6); 11884 } 11885 } 11886 11887 /* 11888 * If ILLF_ROUTER changes, we need to change the ip forwarding 11889 * status of the interface and, if the interface is part of an IPMP 11890 * group, all other interfaces that are part of the same IPMP 11891 * group. 11892 */ 11893 if ((turn_on | turn_off) & ILLF_ROUTER) 11894 (void) ill_forward_set(ill, ((turn_on & ILLF_ROUTER) != 0)); 11895 11896 /* 11897 * If the interface is not UP and we are not going to 11898 * bring it UP, record the flags and return. When the 11899 * interface comes UP later, the right actions will be 11900 * taken. 11901 */ 11902 if (!(ipif->ipif_flags & IPIF_UP) && 11903 !(turn_on & IPIF_UP)) { 11904 /* Record new flags in their respective places. */ 11905 mutex_enter(&ill->ill_lock); 11906 mutex_enter(&ill->ill_phyint->phyint_lock); 11907 ipif->ipif_flags |= (turn_on & IFF_LOGINT_FLAGS); 11908 ipif->ipif_flags &= (~turn_off & IFF_LOGINT_FLAGS); 11909 ill->ill_flags |= (turn_on & IFF_PHYINTINST_FLAGS); 11910 ill->ill_flags &= (~turn_off & IFF_PHYINTINST_FLAGS); 11911 phyi->phyint_flags |= (turn_on & IFF_PHYINT_FLAGS); 11912 phyi->phyint_flags &= (~turn_off & IFF_PHYINT_FLAGS); 11913 mutex_exit(&ill->ill_lock); 11914 mutex_exit(&ill->ill_phyint->phyint_lock); 11915 11916 /* 11917 * We do the broadcast and nomination here rather 11918 * than waiting for a FAILOVER/FAILBACK to happen. In 11919 * the case of FAILBACK from INACTIVE standby to the 11920 * interface that has been repaired, PHYI_FAILED has not 11921 * been cleared yet. If there are only two interfaces in 11922 * that group, all we have is a FAILED and INACTIVE 11923 * interface. If we do the nomination soon after a failback, 11924 * the broadcast nomination code would select the 11925 * INACTIVE interface for receiving broadcasts as FAILED is 11926 * not yet cleared. As we don't want STANDBY/INACTIVE to 11927 * receive broadcast packets, we need to redo nomination 11928 * when the FAILED is cleared here. Thus, in general we 11929 * always do the nomination here for FAILED, STANDBY 11930 * and OFFLINE. 11931 */ 11932 if (((turn_on | turn_off) & 11933 (PHYI_FAILED|PHYI_STANDBY|PHYI_OFFLINE))) { 11934 ip_redo_nomination(phyi); 11935 } 11936 if (phyint_flags_modified) { 11937 if (phyi->phyint_illv4 != NULL) { 11938 ip_rts_ifmsg(phyi->phyint_illv4-> 11939 ill_ipif); 11940 } 11941 if (phyi->phyint_illv6 != NULL) { 11942 ip_rts_ifmsg(phyi->phyint_illv6-> 11943 ill_ipif); 11944 } 11945 } 11946 return (0); 11947 } else if (set_linklocal || zero_source) { 11948 mutex_enter(&ill->ill_lock); 11949 if (set_linklocal) 11950 ipif->ipif_state_flags |= IPIF_SET_LINKLOCAL; 11951 if (zero_source) 11952 ipif->ipif_state_flags |= IPIF_ZERO_SOURCE; 11953 mutex_exit(&ill->ill_lock); 11954 } 11955 11956 /* 11957 * Disallow IPv6 interfaces coming up that have the unspecified address, 11958 * or point-to-point interfaces with an unspecified destination. We do 11959 * allow the address to be unspecified for IPIF_NOLOCAL interfaces that 11960 * have a subnet assigned, which is how in.ndpd currently manages its 11961 * onlink prefix list when no addresses are configured with those 11962 * prefixes. 11963 */ 11964 if (ipif->ipif_isv6 && 11965 ((IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr) && 11966 (!(ipif->ipif_flags & IPIF_NOLOCAL) && !(turn_on & IPIF_NOLOCAL) || 11967 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6subnet))) || 11968 ((ipif->ipif_flags & IPIF_POINTOPOINT) && 11969 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6pp_dst_addr)))) { 11970 return (EINVAL); 11971 } 11972 11973 /* 11974 * Prevent IPv4 point-to-point interfaces with a 0.0.0.0 destination 11975 * from being brought up. 11976 */ 11977 if (!ipif->ipif_isv6 && 11978 ((ipif->ipif_flags & IPIF_POINTOPOINT) && 11979 ipif->ipif_pp_dst_addr == INADDR_ANY)) { 11980 return (EINVAL); 11981 } 11982 11983 /* 11984 * The only flag changes that we currently take specific action on 11985 * is IPIF_UP, IPIF_DEPRECATED, IPIF_NOXMIT, IPIF_NOLOCAL, 11986 * ILLF_NOARP, ILLF_NONUD, IPIF_PRIVATE, IPIF_ANYCAST, and 11987 * IPIF_PREFERRED. This is done by bring the ipif down, changing 11988 * the flags and bringing it back up again. 11989 */ 11990 if ((turn_on|turn_off) & 11991 (IPIF_UP|IPIF_DEPRECATED|IPIF_NOXMIT|IPIF_NOLOCAL|ILLF_NOARP| 11992 ILLF_NONUD|IPIF_PRIVATE|IPIF_ANYCAST|IPIF_PREFERRED)) { 11993 /* 11994 * Taking this ipif down, make sure we have 11995 * valid net and subnet bcast ire's for other 11996 * logical interfaces, if we need them. 11997 */ 11998 if (!ipif->ipif_isv6) 11999 ipif_check_bcast_ires(ipif); 12000 12001 if (((ipif->ipif_flags | turn_on) & IPIF_UP) && 12002 !(turn_off & IPIF_UP)) { 12003 need_up = B_TRUE; 12004 if (ipif->ipif_flags & IPIF_UP) 12005 ill->ill_logical_down = 1; 12006 turn_on &= ~IPIF_UP; 12007 } 12008 err = ipif_down(ipif, q, mp); 12009 ip1dbg(("ipif_down returns %d err ", err)); 12010 if (err == EINPROGRESS) 12011 return (err); 12012 ipif_down_tail(ipif); 12013 } 12014 return (ip_sioctl_flags_tail(ipif, flags, q, mp, need_up)); 12015 } 12016 12017 static int 12018 ip_sioctl_flags_tail(ipif_t *ipif, uint64_t flags, queue_t *q, mblk_t *mp, 12019 boolean_t need_up) 12020 { 12021 ill_t *ill; 12022 phyint_t *phyi; 12023 uint64_t turn_on; 12024 uint64_t turn_off; 12025 uint64_t intf_flags; 12026 boolean_t phyint_flags_modified = B_FALSE; 12027 int err = 0; 12028 boolean_t set_linklocal = B_FALSE; 12029 boolean_t zero_source = B_FALSE; 12030 12031 ip1dbg(("ip_sioctl_flags_tail(%s:%u)\n", 12032 ipif->ipif_ill->ill_name, ipif->ipif_id)); 12033 12034 ASSERT(IAM_WRITER_IPIF(ipif)); 12035 12036 ill = ipif->ipif_ill; 12037 phyi = ill->ill_phyint; 12038 12039 intf_flags = ipif->ipif_flags | ill->ill_flags | phyi->phyint_flags; 12040 turn_on = (flags ^ intf_flags) & ~(IFF_CANTCHANGE | IFF_UP); 12041 12042 turn_off = intf_flags & turn_on; 12043 turn_on ^= turn_off; 12044 12045 if ((turn_on|turn_off) & (PHYI_FAILED|PHYI_STANDBY|PHYI_OFFLINE)) 12046 phyint_flags_modified = B_TRUE; 12047 12048 /* 12049 * Now we change the flags. Track current value of 12050 * other flags in their respective places. 12051 */ 12052 mutex_enter(&ill->ill_lock); 12053 mutex_enter(&phyi->phyint_lock); 12054 ipif->ipif_flags |= (turn_on & IFF_LOGINT_FLAGS); 12055 ipif->ipif_flags &= (~turn_off & IFF_LOGINT_FLAGS); 12056 ill->ill_flags |= (turn_on & IFF_PHYINTINST_FLAGS); 12057 ill->ill_flags &= (~turn_off & IFF_PHYINTINST_FLAGS); 12058 phyi->phyint_flags |= (turn_on & IFF_PHYINT_FLAGS); 12059 phyi->phyint_flags &= (~turn_off & IFF_PHYINT_FLAGS); 12060 if (ipif->ipif_state_flags & IPIF_SET_LINKLOCAL) { 12061 set_linklocal = B_TRUE; 12062 ipif->ipif_state_flags &= ~IPIF_SET_LINKLOCAL; 12063 } 12064 if (ipif->ipif_state_flags & IPIF_ZERO_SOURCE) { 12065 zero_source = B_TRUE; 12066 ipif->ipif_state_flags &= ~IPIF_ZERO_SOURCE; 12067 } 12068 mutex_exit(&ill->ill_lock); 12069 mutex_exit(&phyi->phyint_lock); 12070 12071 if (((turn_on | turn_off) & (PHYI_FAILED|PHYI_STANDBY|PHYI_OFFLINE))) 12072 ip_redo_nomination(phyi); 12073 12074 if (set_linklocal) 12075 (void) ipif_setlinklocal(ipif); 12076 12077 if (zero_source) 12078 ipif->ipif_v6src_addr = ipv6_all_zeros; 12079 else 12080 ipif->ipif_v6src_addr = ipif->ipif_v6lcl_addr; 12081 12082 if (need_up) { 12083 /* 12084 * XXX ipif_up really does not know whether a phyint flags 12085 * was modified or not. So, it sends up information on 12086 * only one routing sockets message. As we don't bring up 12087 * the interface and also set STANDBY/FAILED simultaneously 12088 * it should be okay. 12089 */ 12090 err = ipif_up(ipif, q, mp); 12091 } else { 12092 /* 12093 * Make sure routing socket sees all changes to the flags. 12094 * ipif_up_done* handles this when we use ipif_up. 12095 */ 12096 if (phyint_flags_modified) { 12097 if (phyi->phyint_illv4 != NULL) { 12098 ip_rts_ifmsg(phyi->phyint_illv4-> 12099 ill_ipif); 12100 } 12101 if (phyi->phyint_illv6 != NULL) { 12102 ip_rts_ifmsg(phyi->phyint_illv6-> 12103 ill_ipif); 12104 } 12105 } else { 12106 ip_rts_ifmsg(ipif); 12107 } 12108 /* 12109 * Update the flags in SCTP's IPIF list, ipif_up() will do 12110 * this in need_up case. 12111 */ 12112 sctp_update_ipif(ipif, SCTP_IPIF_UPDATE); 12113 } 12114 return (err); 12115 } 12116 12117 /* 12118 * Restart entry point to restart the flags restart operation after the 12119 * refcounts have dropped to zero. 12120 */ 12121 /* ARGSUSED */ 12122 int 12123 ip_sioctl_flags_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12124 ip_ioctl_cmd_t *ipip, void *if_req) 12125 { 12126 int err; 12127 struct ifreq *ifr = (struct ifreq *)if_req; 12128 struct lifreq *lifr = (struct lifreq *)if_req; 12129 12130 ip1dbg(("ip_sioctl_flags_restart(%s:%u %p)\n", 12131 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12132 12133 ipif_down_tail(ipif); 12134 if (ipip->ipi_cmd_type == IF_CMD) { 12135 /* 12136 * Since ip_sioctl_flags expects an int and ifr_flags 12137 * is a short we need to cast ifr_flags into an int 12138 * to avoid having sign extension cause bits to get 12139 * set that should not be. 12140 */ 12141 err = ip_sioctl_flags_tail(ipif, 12142 (uint64_t)(ifr->ifr_flags & 0x0000ffff), 12143 q, mp, B_TRUE); 12144 } else { 12145 err = ip_sioctl_flags_tail(ipif, lifr->lifr_flags, 12146 q, mp, B_TRUE); 12147 } 12148 return (err); 12149 } 12150 12151 /* 12152 * Can operate on either a module or a driver queue. 12153 */ 12154 /* ARGSUSED */ 12155 int 12156 ip_sioctl_get_flags(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12157 ip_ioctl_cmd_t *ipip, void *if_req) 12158 { 12159 /* 12160 * Has the flags been set correctly till now ? 12161 */ 12162 ill_t *ill = ipif->ipif_ill; 12163 phyint_t *phyi = ill->ill_phyint; 12164 12165 ip1dbg(("ip_sioctl_get_flags(%s:%u %p)\n", 12166 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12167 ASSERT((phyi->phyint_flags & ~(IFF_PHYINT_FLAGS)) == 0); 12168 ASSERT((ill->ill_flags & ~(IFF_PHYINTINST_FLAGS)) == 0); 12169 ASSERT((ipif->ipif_flags & ~(IFF_LOGINT_FLAGS)) == 0); 12170 12171 /* 12172 * Need a lock since some flags can be set even when there are 12173 * references to the ipif. 12174 */ 12175 mutex_enter(&ill->ill_lock); 12176 if (ipip->ipi_cmd_type == IF_CMD) { 12177 struct ifreq *ifr = (struct ifreq *)if_req; 12178 12179 /* Get interface flags (low 16 only). */ 12180 ifr->ifr_flags = ((ipif->ipif_flags | 12181 ill->ill_flags | phyi->phyint_flags) & 0xffff); 12182 } else { 12183 struct lifreq *lifr = (struct lifreq *)if_req; 12184 12185 /* Get interface flags. */ 12186 lifr->lifr_flags = ipif->ipif_flags | 12187 ill->ill_flags | phyi->phyint_flags; 12188 } 12189 mutex_exit(&ill->ill_lock); 12190 return (0); 12191 } 12192 12193 /* ARGSUSED */ 12194 int 12195 ip_sioctl_mtu(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12196 ip_ioctl_cmd_t *ipip, void *if_req) 12197 { 12198 int mtu; 12199 int ip_min_mtu; 12200 struct ifreq *ifr; 12201 struct lifreq *lifr; 12202 ire_t *ire; 12203 ip_stack_t *ipst; 12204 12205 ip1dbg(("ip_sioctl_mtu(%s:%u %p)\n", ipif->ipif_ill->ill_name, 12206 ipif->ipif_id, (void *)ipif)); 12207 if (ipip->ipi_cmd_type == IF_CMD) { 12208 ifr = (struct ifreq *)if_req; 12209 mtu = ifr->ifr_metric; 12210 } else { 12211 lifr = (struct lifreq *)if_req; 12212 mtu = lifr->lifr_mtu; 12213 } 12214 12215 if (ipif->ipif_isv6) 12216 ip_min_mtu = IPV6_MIN_MTU; 12217 else 12218 ip_min_mtu = IP_MIN_MTU; 12219 12220 if (mtu > ipif->ipif_ill->ill_max_frag || mtu < ip_min_mtu) 12221 return (EINVAL); 12222 12223 /* 12224 * Change the MTU size in all relevant ire's. 12225 * Mtu change Vs. new ire creation - protocol below. 12226 * First change ipif_mtu and the ire_max_frag of the 12227 * interface ire. Then do an ire walk and change the 12228 * ire_max_frag of all affected ires. During ire_add 12229 * under the bucket lock, set the ire_max_frag of the 12230 * new ire being created from the ipif/ire from which 12231 * it is being derived. If an mtu change happens after 12232 * the ire is added, the new ire will be cleaned up. 12233 * Conversely if the mtu change happens before the ire 12234 * is added, ire_add will see the new value of the mtu. 12235 */ 12236 ipif->ipif_mtu = mtu; 12237 ipif->ipif_flags |= IPIF_FIXEDMTU; 12238 12239 if (ipif->ipif_isv6) 12240 ire = ipif_to_ire_v6(ipif); 12241 else 12242 ire = ipif_to_ire(ipif); 12243 if (ire != NULL) { 12244 ire->ire_max_frag = ipif->ipif_mtu; 12245 ire_refrele(ire); 12246 } 12247 ipst = ipif->ipif_ill->ill_ipst; 12248 if (ipif->ipif_flags & IPIF_UP) { 12249 if (ipif->ipif_isv6) 12250 ire_walk_v6(ipif_mtu_change, (char *)ipif, ALL_ZONES, 12251 ipst); 12252 else 12253 ire_walk_v4(ipif_mtu_change, (char *)ipif, ALL_ZONES, 12254 ipst); 12255 } 12256 /* Update the MTU in SCTP's list */ 12257 sctp_update_ipif(ipif, SCTP_IPIF_UPDATE); 12258 return (0); 12259 } 12260 12261 /* Get interface MTU. */ 12262 /* ARGSUSED */ 12263 int 12264 ip_sioctl_get_mtu(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12265 ip_ioctl_cmd_t *ipip, void *if_req) 12266 { 12267 struct ifreq *ifr; 12268 struct lifreq *lifr; 12269 12270 ip1dbg(("ip_sioctl_get_mtu(%s:%u %p)\n", 12271 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12272 if (ipip->ipi_cmd_type == IF_CMD) { 12273 ifr = (struct ifreq *)if_req; 12274 ifr->ifr_metric = ipif->ipif_mtu; 12275 } else { 12276 lifr = (struct lifreq *)if_req; 12277 lifr->lifr_mtu = ipif->ipif_mtu; 12278 } 12279 return (0); 12280 } 12281 12282 /* Set interface broadcast address. */ 12283 /* ARGSUSED2 */ 12284 int 12285 ip_sioctl_brdaddr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12286 ip_ioctl_cmd_t *ipip, void *if_req) 12287 { 12288 ipaddr_t addr; 12289 ire_t *ire; 12290 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 12291 12292 ip1dbg(("ip_sioctl_brdaddr(%s:%u)\n", ipif->ipif_ill->ill_name, 12293 ipif->ipif_id)); 12294 12295 ASSERT(IAM_WRITER_IPIF(ipif)); 12296 if (!(ipif->ipif_flags & IPIF_BROADCAST)) 12297 return (EADDRNOTAVAIL); 12298 12299 ASSERT(!(ipif->ipif_isv6)); /* No IPv6 broadcast */ 12300 12301 if (sin->sin_family != AF_INET) 12302 return (EAFNOSUPPORT); 12303 12304 addr = sin->sin_addr.s_addr; 12305 if (ipif->ipif_flags & IPIF_UP) { 12306 /* 12307 * If we are already up, make sure the new 12308 * broadcast address makes sense. If it does, 12309 * there should be an IRE for it already. 12310 * Don't match on ipif, only on the ill 12311 * since we are sharing these now. Don't use 12312 * MATCH_IRE_ILL_GROUP as we are looking for 12313 * the broadcast ire on this ill and each ill 12314 * in the group has its own broadcast ire. 12315 */ 12316 ire = ire_ctable_lookup(addr, 0, IRE_BROADCAST, 12317 ipif, ALL_ZONES, NULL, 12318 (MATCH_IRE_ILL | MATCH_IRE_TYPE), ipst); 12319 if (ire == NULL) { 12320 return (EINVAL); 12321 } else { 12322 ire_refrele(ire); 12323 } 12324 } 12325 /* 12326 * Changing the broadcast addr for this ipif. 12327 * Make sure we have valid net and subnet bcast 12328 * ire's for other logical interfaces, if needed. 12329 */ 12330 if (addr != ipif->ipif_brd_addr) 12331 ipif_check_bcast_ires(ipif); 12332 IN6_IPADDR_TO_V4MAPPED(addr, &ipif->ipif_v6brd_addr); 12333 return (0); 12334 } 12335 12336 /* Get interface broadcast address. */ 12337 /* ARGSUSED */ 12338 int 12339 ip_sioctl_get_brdaddr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12340 ip_ioctl_cmd_t *ipip, void *if_req) 12341 { 12342 ip1dbg(("ip_sioctl_get_brdaddr(%s:%u %p)\n", 12343 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12344 if (!(ipif->ipif_flags & IPIF_BROADCAST)) 12345 return (EADDRNOTAVAIL); 12346 12347 /* IPIF_BROADCAST not possible with IPv6 */ 12348 ASSERT(!ipif->ipif_isv6); 12349 *sin = sin_null; 12350 sin->sin_family = AF_INET; 12351 sin->sin_addr.s_addr = ipif->ipif_brd_addr; 12352 return (0); 12353 } 12354 12355 /* 12356 * This routine is called to handle the SIOCS*IFNETMASK IOCTL. 12357 */ 12358 /* ARGSUSED */ 12359 int 12360 ip_sioctl_netmask(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12361 ip_ioctl_cmd_t *ipip, void *if_req) 12362 { 12363 int err = 0; 12364 in6_addr_t v6mask; 12365 12366 ip1dbg(("ip_sioctl_netmask(%s:%u %p)\n", 12367 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12368 12369 ASSERT(IAM_WRITER_IPIF(ipif)); 12370 12371 if (ipif->ipif_isv6) { 12372 sin6_t *sin6; 12373 12374 if (sin->sin_family != AF_INET6) 12375 return (EAFNOSUPPORT); 12376 12377 sin6 = (sin6_t *)sin; 12378 v6mask = sin6->sin6_addr; 12379 } else { 12380 ipaddr_t mask; 12381 12382 if (sin->sin_family != AF_INET) 12383 return (EAFNOSUPPORT); 12384 12385 mask = sin->sin_addr.s_addr; 12386 V4MASK_TO_V6(mask, v6mask); 12387 } 12388 12389 /* 12390 * No big deal if the interface isn't already up, or the mask 12391 * isn't really changing, or this is pt-pt. 12392 */ 12393 if (!(ipif->ipif_flags & IPIF_UP) || 12394 IN6_ARE_ADDR_EQUAL(&v6mask, &ipif->ipif_v6net_mask) || 12395 (ipif->ipif_flags & IPIF_POINTOPOINT)) { 12396 ipif->ipif_v6net_mask = v6mask; 12397 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) { 12398 V6_MASK_COPY(ipif->ipif_v6lcl_addr, 12399 ipif->ipif_v6net_mask, 12400 ipif->ipif_v6subnet); 12401 } 12402 return (0); 12403 } 12404 /* 12405 * Make sure we have valid net and subnet broadcast ire's 12406 * for the old netmask, if needed by other logical interfaces. 12407 */ 12408 if (!ipif->ipif_isv6) 12409 ipif_check_bcast_ires(ipif); 12410 12411 err = ipif_logical_down(ipif, q, mp); 12412 if (err == EINPROGRESS) 12413 return (err); 12414 ipif_down_tail(ipif); 12415 err = ip_sioctl_netmask_tail(ipif, sin, q, mp); 12416 return (err); 12417 } 12418 12419 static int 12420 ip_sioctl_netmask_tail(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp) 12421 { 12422 in6_addr_t v6mask; 12423 int err = 0; 12424 12425 ip1dbg(("ip_sioctl_netmask_tail(%s:%u %p)\n", 12426 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12427 12428 if (ipif->ipif_isv6) { 12429 sin6_t *sin6; 12430 12431 sin6 = (sin6_t *)sin; 12432 v6mask = sin6->sin6_addr; 12433 } else { 12434 ipaddr_t mask; 12435 12436 mask = sin->sin_addr.s_addr; 12437 V4MASK_TO_V6(mask, v6mask); 12438 } 12439 12440 ipif->ipif_v6net_mask = v6mask; 12441 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) { 12442 V6_MASK_COPY(ipif->ipif_v6lcl_addr, ipif->ipif_v6net_mask, 12443 ipif->ipif_v6subnet); 12444 } 12445 err = ipif_up(ipif, q, mp); 12446 12447 if (err == 0 || err == EINPROGRESS) { 12448 /* 12449 * The interface must be DL_BOUND if this packet has to 12450 * go out on the wire. Since we only go through a logical 12451 * down and are bound with the driver during an internal 12452 * down/up that is satisfied. 12453 */ 12454 if (!ipif->ipif_isv6 && ipif->ipif_ill->ill_wq != NULL) { 12455 /* Potentially broadcast an address mask reply. */ 12456 ipif_mask_reply(ipif); 12457 } 12458 } 12459 return (err); 12460 } 12461 12462 /* ARGSUSED */ 12463 int 12464 ip_sioctl_netmask_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12465 ip_ioctl_cmd_t *ipip, void *if_req) 12466 { 12467 ip1dbg(("ip_sioctl_netmask_restart(%s:%u %p)\n", 12468 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12469 ipif_down_tail(ipif); 12470 return (ip_sioctl_netmask_tail(ipif, sin, q, mp)); 12471 } 12472 12473 /* Get interface net mask. */ 12474 /* ARGSUSED */ 12475 int 12476 ip_sioctl_get_netmask(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12477 ip_ioctl_cmd_t *ipip, void *if_req) 12478 { 12479 struct lifreq *lifr = (struct lifreq *)if_req; 12480 struct sockaddr_in6 *sin6 = (sin6_t *)sin; 12481 12482 ip1dbg(("ip_sioctl_get_netmask(%s:%u %p)\n", 12483 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12484 12485 /* 12486 * net mask can't change since we have a reference to the ipif. 12487 */ 12488 if (ipif->ipif_isv6) { 12489 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 12490 *sin6 = sin6_null; 12491 sin6->sin6_family = AF_INET6; 12492 sin6->sin6_addr = ipif->ipif_v6net_mask; 12493 lifr->lifr_addrlen = 12494 ip_mask_to_plen_v6(&ipif->ipif_v6net_mask); 12495 } else { 12496 *sin = sin_null; 12497 sin->sin_family = AF_INET; 12498 sin->sin_addr.s_addr = ipif->ipif_net_mask; 12499 if (ipip->ipi_cmd_type == LIF_CMD) { 12500 lifr->lifr_addrlen = 12501 ip_mask_to_plen(ipif->ipif_net_mask); 12502 } 12503 } 12504 return (0); 12505 } 12506 12507 /* ARGSUSED */ 12508 int 12509 ip_sioctl_metric(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12510 ip_ioctl_cmd_t *ipip, void *if_req) 12511 { 12512 12513 ip1dbg(("ip_sioctl_metric(%s:%u %p)\n", 12514 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12515 /* 12516 * Set interface metric. We don't use this for 12517 * anything but we keep track of it in case it is 12518 * important to routing applications or such. 12519 */ 12520 if (ipip->ipi_cmd_type == IF_CMD) { 12521 struct ifreq *ifr; 12522 12523 ifr = (struct ifreq *)if_req; 12524 ipif->ipif_metric = ifr->ifr_metric; 12525 } else { 12526 struct lifreq *lifr; 12527 12528 lifr = (struct lifreq *)if_req; 12529 ipif->ipif_metric = lifr->lifr_metric; 12530 } 12531 return (0); 12532 } 12533 12534 12535 /* ARGSUSED */ 12536 int 12537 ip_sioctl_get_metric(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12538 ip_ioctl_cmd_t *ipip, void *if_req) 12539 { 12540 12541 /* Get interface metric. */ 12542 ip1dbg(("ip_sioctl_get_metric(%s:%u %p)\n", 12543 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12544 if (ipip->ipi_cmd_type == IF_CMD) { 12545 struct ifreq *ifr; 12546 12547 ifr = (struct ifreq *)if_req; 12548 ifr->ifr_metric = ipif->ipif_metric; 12549 } else { 12550 struct lifreq *lifr; 12551 12552 lifr = (struct lifreq *)if_req; 12553 lifr->lifr_metric = ipif->ipif_metric; 12554 } 12555 12556 return (0); 12557 } 12558 12559 /* ARGSUSED */ 12560 int 12561 ip_sioctl_muxid(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12562 ip_ioctl_cmd_t *ipip, void *if_req) 12563 { 12564 12565 ip1dbg(("ip_sioctl_muxid(%s:%u %p)\n", 12566 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12567 /* 12568 * Set the muxid returned from I_PLINK. 12569 */ 12570 if (ipip->ipi_cmd_type == IF_CMD) { 12571 struct ifreq *ifr = (struct ifreq *)if_req; 12572 12573 ipif->ipif_ill->ill_ip_muxid = ifr->ifr_ip_muxid; 12574 ipif->ipif_ill->ill_arp_muxid = ifr->ifr_arp_muxid; 12575 } else { 12576 struct lifreq *lifr = (struct lifreq *)if_req; 12577 12578 ipif->ipif_ill->ill_ip_muxid = lifr->lifr_ip_muxid; 12579 ipif->ipif_ill->ill_arp_muxid = lifr->lifr_arp_muxid; 12580 } 12581 return (0); 12582 } 12583 12584 /* ARGSUSED */ 12585 int 12586 ip_sioctl_get_muxid(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12587 ip_ioctl_cmd_t *ipip, void *if_req) 12588 { 12589 12590 ip1dbg(("ip_sioctl_get_muxid(%s:%u %p)\n", 12591 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12592 /* 12593 * Get the muxid saved in ill for I_PUNLINK. 12594 */ 12595 if (ipip->ipi_cmd_type == IF_CMD) { 12596 struct ifreq *ifr = (struct ifreq *)if_req; 12597 12598 ifr->ifr_ip_muxid = ipif->ipif_ill->ill_ip_muxid; 12599 ifr->ifr_arp_muxid = ipif->ipif_ill->ill_arp_muxid; 12600 } else { 12601 struct lifreq *lifr = (struct lifreq *)if_req; 12602 12603 lifr->lifr_ip_muxid = ipif->ipif_ill->ill_ip_muxid; 12604 lifr->lifr_arp_muxid = ipif->ipif_ill->ill_arp_muxid; 12605 } 12606 return (0); 12607 } 12608 12609 /* 12610 * Set the subnet prefix. Does not modify the broadcast address. 12611 */ 12612 /* ARGSUSED */ 12613 int 12614 ip_sioctl_subnet(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12615 ip_ioctl_cmd_t *ipip, void *if_req) 12616 { 12617 int err = 0; 12618 in6_addr_t v6addr; 12619 in6_addr_t v6mask; 12620 boolean_t need_up = B_FALSE; 12621 int addrlen; 12622 12623 ip1dbg(("ip_sioctl_subnet(%s:%u %p)\n", 12624 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12625 12626 ASSERT(IAM_WRITER_IPIF(ipif)); 12627 addrlen = ((struct lifreq *)if_req)->lifr_addrlen; 12628 12629 if (ipif->ipif_isv6) { 12630 sin6_t *sin6; 12631 12632 if (sin->sin_family != AF_INET6) 12633 return (EAFNOSUPPORT); 12634 12635 sin6 = (sin6_t *)sin; 12636 v6addr = sin6->sin6_addr; 12637 if (!ip_remote_addr_ok_v6(&v6addr, &ipv6_all_ones)) 12638 return (EADDRNOTAVAIL); 12639 } else { 12640 ipaddr_t addr; 12641 12642 if (sin->sin_family != AF_INET) 12643 return (EAFNOSUPPORT); 12644 12645 addr = sin->sin_addr.s_addr; 12646 if (!ip_addr_ok_v4(addr, 0xFFFFFFFF)) 12647 return (EADDRNOTAVAIL); 12648 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 12649 /* Add 96 bits */ 12650 addrlen += IPV6_ABITS - IP_ABITS; 12651 } 12652 12653 if (ip_plen_to_mask_v6(addrlen, &v6mask) == NULL) 12654 return (EINVAL); 12655 12656 /* Check if bits in the address is set past the mask */ 12657 if (!V6_MASK_EQ(v6addr, v6mask, v6addr)) 12658 return (EINVAL); 12659 12660 if (IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6subnet, &v6addr) && 12661 IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6net_mask, &v6mask)) 12662 return (0); /* No change */ 12663 12664 if (ipif->ipif_flags & IPIF_UP) { 12665 /* 12666 * If the interface is already marked up, 12667 * we call ipif_down which will take care 12668 * of ditching any IREs that have been set 12669 * up based on the old interface address. 12670 */ 12671 err = ipif_logical_down(ipif, q, mp); 12672 if (err == EINPROGRESS) 12673 return (err); 12674 ipif_down_tail(ipif); 12675 need_up = B_TRUE; 12676 } 12677 12678 err = ip_sioctl_subnet_tail(ipif, v6addr, v6mask, q, mp, need_up); 12679 return (err); 12680 } 12681 12682 static int 12683 ip_sioctl_subnet_tail(ipif_t *ipif, in6_addr_t v6addr, in6_addr_t v6mask, 12684 queue_t *q, mblk_t *mp, boolean_t need_up) 12685 { 12686 ill_t *ill = ipif->ipif_ill; 12687 int err = 0; 12688 12689 ip1dbg(("ip_sioctl_subnet_tail(%s:%u %p)\n", 12690 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12691 12692 /* Set the new address. */ 12693 mutex_enter(&ill->ill_lock); 12694 ipif->ipif_v6net_mask = v6mask; 12695 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) { 12696 V6_MASK_COPY(v6addr, ipif->ipif_v6net_mask, 12697 ipif->ipif_v6subnet); 12698 } 12699 mutex_exit(&ill->ill_lock); 12700 12701 if (need_up) { 12702 /* 12703 * Now bring the interface back up. If this 12704 * is the only IPIF for the ILL, ipif_up 12705 * will have to re-bind to the device, so 12706 * we may get back EINPROGRESS, in which 12707 * case, this IOCTL will get completed in 12708 * ip_rput_dlpi when we see the DL_BIND_ACK. 12709 */ 12710 err = ipif_up(ipif, q, mp); 12711 if (err == EINPROGRESS) 12712 return (err); 12713 } 12714 return (err); 12715 } 12716 12717 /* ARGSUSED */ 12718 int 12719 ip_sioctl_subnet_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12720 ip_ioctl_cmd_t *ipip, void *if_req) 12721 { 12722 int addrlen; 12723 in6_addr_t v6addr; 12724 in6_addr_t v6mask; 12725 struct lifreq *lifr = (struct lifreq *)if_req; 12726 12727 ip1dbg(("ip_sioctl_subnet_restart(%s:%u %p)\n", 12728 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12729 ipif_down_tail(ipif); 12730 12731 addrlen = lifr->lifr_addrlen; 12732 if (ipif->ipif_isv6) { 12733 sin6_t *sin6; 12734 12735 sin6 = (sin6_t *)sin; 12736 v6addr = sin6->sin6_addr; 12737 } else { 12738 ipaddr_t addr; 12739 12740 addr = sin->sin_addr.s_addr; 12741 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 12742 addrlen += IPV6_ABITS - IP_ABITS; 12743 } 12744 (void) ip_plen_to_mask_v6(addrlen, &v6mask); 12745 12746 return (ip_sioctl_subnet_tail(ipif, v6addr, v6mask, q, mp, B_TRUE)); 12747 } 12748 12749 /* ARGSUSED */ 12750 int 12751 ip_sioctl_get_subnet(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12752 ip_ioctl_cmd_t *ipip, void *if_req) 12753 { 12754 struct lifreq *lifr = (struct lifreq *)if_req; 12755 struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)sin; 12756 12757 ip1dbg(("ip_sioctl_get_subnet(%s:%u %p)\n", 12758 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12759 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 12760 12761 if (ipif->ipif_isv6) { 12762 *sin6 = sin6_null; 12763 sin6->sin6_family = AF_INET6; 12764 sin6->sin6_addr = ipif->ipif_v6subnet; 12765 lifr->lifr_addrlen = 12766 ip_mask_to_plen_v6(&ipif->ipif_v6net_mask); 12767 } else { 12768 *sin = sin_null; 12769 sin->sin_family = AF_INET; 12770 sin->sin_addr.s_addr = ipif->ipif_subnet; 12771 lifr->lifr_addrlen = ip_mask_to_plen(ipif->ipif_net_mask); 12772 } 12773 return (0); 12774 } 12775 12776 /* 12777 * Set the IPv6 address token. 12778 */ 12779 /* ARGSUSED */ 12780 int 12781 ip_sioctl_token(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12782 ip_ioctl_cmd_t *ipi, void *if_req) 12783 { 12784 ill_t *ill = ipif->ipif_ill; 12785 int err; 12786 in6_addr_t v6addr; 12787 in6_addr_t v6mask; 12788 boolean_t need_up = B_FALSE; 12789 int i; 12790 sin6_t *sin6 = (sin6_t *)sin; 12791 struct lifreq *lifr = (struct lifreq *)if_req; 12792 int addrlen; 12793 12794 ip1dbg(("ip_sioctl_token(%s:%u %p)\n", 12795 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12796 ASSERT(IAM_WRITER_IPIF(ipif)); 12797 12798 addrlen = lifr->lifr_addrlen; 12799 /* Only allow for logical unit zero i.e. not on "le0:17" */ 12800 if (ipif->ipif_id != 0) 12801 return (EINVAL); 12802 12803 if (!ipif->ipif_isv6) 12804 return (EINVAL); 12805 12806 if (addrlen > IPV6_ABITS) 12807 return (EINVAL); 12808 12809 v6addr = sin6->sin6_addr; 12810 12811 /* 12812 * The length of the token is the length from the end. To get 12813 * the proper mask for this, compute the mask of the bits not 12814 * in the token; ie. the prefix, and then xor to get the mask. 12815 */ 12816 if (ip_plen_to_mask_v6(IPV6_ABITS - addrlen, &v6mask) == NULL) 12817 return (EINVAL); 12818 for (i = 0; i < 4; i++) { 12819 v6mask.s6_addr32[i] ^= (uint32_t)0xffffffff; 12820 } 12821 12822 if (V6_MASK_EQ(v6addr, v6mask, ill->ill_token) && 12823 ill->ill_token_length == addrlen) 12824 return (0); /* No change */ 12825 12826 if (ipif->ipif_flags & IPIF_UP) { 12827 err = ipif_logical_down(ipif, q, mp); 12828 if (err == EINPROGRESS) 12829 return (err); 12830 ipif_down_tail(ipif); 12831 need_up = B_TRUE; 12832 } 12833 err = ip_sioctl_token_tail(ipif, sin6, addrlen, q, mp, need_up); 12834 return (err); 12835 } 12836 12837 static int 12838 ip_sioctl_token_tail(ipif_t *ipif, sin6_t *sin6, int addrlen, queue_t *q, 12839 mblk_t *mp, boolean_t need_up) 12840 { 12841 in6_addr_t v6addr; 12842 in6_addr_t v6mask; 12843 ill_t *ill = ipif->ipif_ill; 12844 int i; 12845 int err = 0; 12846 12847 ip1dbg(("ip_sioctl_token_tail(%s:%u %p)\n", 12848 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12849 v6addr = sin6->sin6_addr; 12850 /* 12851 * The length of the token is the length from the end. To get 12852 * the proper mask for this, compute the mask of the bits not 12853 * in the token; ie. the prefix, and then xor to get the mask. 12854 */ 12855 (void) ip_plen_to_mask_v6(IPV6_ABITS - addrlen, &v6mask); 12856 for (i = 0; i < 4; i++) 12857 v6mask.s6_addr32[i] ^= (uint32_t)0xffffffff; 12858 12859 mutex_enter(&ill->ill_lock); 12860 V6_MASK_COPY(v6addr, v6mask, ill->ill_token); 12861 ill->ill_token_length = addrlen; 12862 mutex_exit(&ill->ill_lock); 12863 12864 if (need_up) { 12865 /* 12866 * Now bring the interface back up. If this 12867 * is the only IPIF for the ILL, ipif_up 12868 * will have to re-bind to the device, so 12869 * we may get back EINPROGRESS, in which 12870 * case, this IOCTL will get completed in 12871 * ip_rput_dlpi when we see the DL_BIND_ACK. 12872 */ 12873 err = ipif_up(ipif, q, mp); 12874 if (err == EINPROGRESS) 12875 return (err); 12876 } 12877 return (err); 12878 } 12879 12880 /* ARGSUSED */ 12881 int 12882 ip_sioctl_get_token(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12883 ip_ioctl_cmd_t *ipi, void *if_req) 12884 { 12885 ill_t *ill; 12886 sin6_t *sin6 = (sin6_t *)sin; 12887 struct lifreq *lifr = (struct lifreq *)if_req; 12888 12889 ip1dbg(("ip_sioctl_get_token(%s:%u %p)\n", 12890 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12891 if (ipif->ipif_id != 0) 12892 return (EINVAL); 12893 12894 ill = ipif->ipif_ill; 12895 if (!ill->ill_isv6) 12896 return (ENXIO); 12897 12898 *sin6 = sin6_null; 12899 sin6->sin6_family = AF_INET6; 12900 ASSERT(!IN6_IS_ADDR_V4MAPPED(&ill->ill_token)); 12901 sin6->sin6_addr = ill->ill_token; 12902 lifr->lifr_addrlen = ill->ill_token_length; 12903 return (0); 12904 } 12905 12906 /* 12907 * Set (hardware) link specific information that might override 12908 * what was acquired through the DL_INFO_ACK. 12909 * The logic is as follows. 12910 * 12911 * become exclusive 12912 * set CHANGING flag 12913 * change mtu on affected IREs 12914 * clear CHANGING flag 12915 * 12916 * An ire add that occurs before the CHANGING flag is set will have its mtu 12917 * changed by the ip_sioctl_lnkinfo. 12918 * 12919 * During the time the CHANGING flag is set, no new ires will be added to the 12920 * bucket, and ire add will fail (due the CHANGING flag). 12921 * 12922 * An ire add that occurs after the CHANGING flag is set will have the right mtu 12923 * before it is added to the bucket. 12924 * 12925 * Obviously only 1 thread can set the CHANGING flag and we need to become 12926 * exclusive to set the flag. 12927 */ 12928 /* ARGSUSED */ 12929 int 12930 ip_sioctl_lnkinfo(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12931 ip_ioctl_cmd_t *ipi, void *if_req) 12932 { 12933 ill_t *ill = ipif->ipif_ill; 12934 ipif_t *nipif; 12935 int ip_min_mtu; 12936 boolean_t mtu_walk = B_FALSE; 12937 struct lifreq *lifr = (struct lifreq *)if_req; 12938 lif_ifinfo_req_t *lir; 12939 ire_t *ire; 12940 12941 ip1dbg(("ip_sioctl_lnkinfo(%s:%u %p)\n", 12942 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12943 lir = &lifr->lifr_ifinfo; 12944 ASSERT(IAM_WRITER_IPIF(ipif)); 12945 12946 /* Only allow for logical unit zero i.e. not on "le0:17" */ 12947 if (ipif->ipif_id != 0) 12948 return (EINVAL); 12949 12950 /* Set interface MTU. */ 12951 if (ipif->ipif_isv6) 12952 ip_min_mtu = IPV6_MIN_MTU; 12953 else 12954 ip_min_mtu = IP_MIN_MTU; 12955 12956 /* 12957 * Verify values before we set anything. Allow zero to 12958 * mean unspecified. 12959 */ 12960 if (lir->lir_maxmtu != 0 && 12961 (lir->lir_maxmtu > ill->ill_max_frag || 12962 lir->lir_maxmtu < ip_min_mtu)) 12963 return (EINVAL); 12964 if (lir->lir_reachtime != 0 && 12965 lir->lir_reachtime > ND_MAX_REACHTIME) 12966 return (EINVAL); 12967 if (lir->lir_reachretrans != 0 && 12968 lir->lir_reachretrans > ND_MAX_REACHRETRANSTIME) 12969 return (EINVAL); 12970 12971 mutex_enter(&ill->ill_lock); 12972 ill->ill_state_flags |= ILL_CHANGING; 12973 for (nipif = ill->ill_ipif; nipif != NULL; 12974 nipif = nipif->ipif_next) { 12975 nipif->ipif_state_flags |= IPIF_CHANGING; 12976 } 12977 12978 mutex_exit(&ill->ill_lock); 12979 12980 if (lir->lir_maxmtu != 0) { 12981 ill->ill_max_mtu = lir->lir_maxmtu; 12982 ill->ill_mtu_userspecified = 1; 12983 mtu_walk = B_TRUE; 12984 } 12985 12986 if (lir->lir_reachtime != 0) 12987 ill->ill_reachable_time = lir->lir_reachtime; 12988 12989 if (lir->lir_reachretrans != 0) 12990 ill->ill_reachable_retrans_time = lir->lir_reachretrans; 12991 12992 ill->ill_max_hops = lir->lir_maxhops; 12993 12994 ill->ill_max_buf = ND_MAX_Q; 12995 12996 if (mtu_walk) { 12997 /* 12998 * Set the MTU on all ipifs associated with this ill except 12999 * for those whose MTU was fixed via SIOCSLIFMTU. 13000 */ 13001 for (nipif = ill->ill_ipif; nipif != NULL; 13002 nipif = nipif->ipif_next) { 13003 if (nipif->ipif_flags & IPIF_FIXEDMTU) 13004 continue; 13005 13006 nipif->ipif_mtu = ill->ill_max_mtu; 13007 13008 if (!(nipif->ipif_flags & IPIF_UP)) 13009 continue; 13010 13011 if (nipif->ipif_isv6) 13012 ire = ipif_to_ire_v6(nipif); 13013 else 13014 ire = ipif_to_ire(nipif); 13015 if (ire != NULL) { 13016 ire->ire_max_frag = ipif->ipif_mtu; 13017 ire_refrele(ire); 13018 } 13019 if (ill->ill_isv6) { 13020 ire_walk_ill_v6(MATCH_IRE_ILL, 0, 13021 ipif_mtu_change, (char *)nipif, 13022 ill); 13023 } else { 13024 ire_walk_ill_v4(MATCH_IRE_ILL, 0, 13025 ipif_mtu_change, (char *)nipif, 13026 ill); 13027 } 13028 } 13029 } 13030 13031 mutex_enter(&ill->ill_lock); 13032 for (nipif = ill->ill_ipif; nipif != NULL; 13033 nipif = nipif->ipif_next) { 13034 nipif->ipif_state_flags &= ~IPIF_CHANGING; 13035 } 13036 ILL_UNMARK_CHANGING(ill); 13037 mutex_exit(&ill->ill_lock); 13038 13039 return (0); 13040 } 13041 13042 /* ARGSUSED */ 13043 int 13044 ip_sioctl_get_lnkinfo(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 13045 ip_ioctl_cmd_t *ipi, void *if_req) 13046 { 13047 struct lif_ifinfo_req *lir; 13048 ill_t *ill = ipif->ipif_ill; 13049 13050 ip1dbg(("ip_sioctl_get_lnkinfo(%s:%u %p)\n", 13051 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 13052 if (ipif->ipif_id != 0) 13053 return (EINVAL); 13054 13055 lir = &((struct lifreq *)if_req)->lifr_ifinfo; 13056 lir->lir_maxhops = ill->ill_max_hops; 13057 lir->lir_reachtime = ill->ill_reachable_time; 13058 lir->lir_reachretrans = ill->ill_reachable_retrans_time; 13059 lir->lir_maxmtu = ill->ill_max_mtu; 13060 13061 return (0); 13062 } 13063 13064 /* 13065 * Return best guess as to the subnet mask for the specified address. 13066 * Based on the subnet masks for all the configured interfaces. 13067 * 13068 * We end up returning a zero mask in the case of default, multicast or 13069 * experimental. 13070 */ 13071 static ipaddr_t 13072 ip_subnet_mask(ipaddr_t addr, ipif_t **ipifp, ip_stack_t *ipst) 13073 { 13074 ipaddr_t net_mask; 13075 ill_t *ill; 13076 ipif_t *ipif; 13077 ill_walk_context_t ctx; 13078 ipif_t *fallback_ipif = NULL; 13079 13080 net_mask = ip_net_mask(addr); 13081 if (net_mask == 0) { 13082 *ipifp = NULL; 13083 return (0); 13084 } 13085 13086 /* Let's check to see if this is maybe a local subnet route. */ 13087 /* this function only applies to IPv4 interfaces */ 13088 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 13089 ill = ILL_START_WALK_V4(&ctx, ipst); 13090 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 13091 mutex_enter(&ill->ill_lock); 13092 for (ipif = ill->ill_ipif; ipif != NULL; 13093 ipif = ipif->ipif_next) { 13094 if (!IPIF_CAN_LOOKUP(ipif)) 13095 continue; 13096 if (!(ipif->ipif_flags & IPIF_UP)) 13097 continue; 13098 if ((ipif->ipif_subnet & net_mask) == 13099 (addr & net_mask)) { 13100 /* 13101 * Don't trust pt-pt interfaces if there are 13102 * other interfaces. 13103 */ 13104 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 13105 if (fallback_ipif == NULL) { 13106 ipif_refhold_locked(ipif); 13107 fallback_ipif = ipif; 13108 } 13109 continue; 13110 } 13111 13112 /* 13113 * Fine. Just assume the same net mask as the 13114 * directly attached subnet interface is using. 13115 */ 13116 ipif_refhold_locked(ipif); 13117 mutex_exit(&ill->ill_lock); 13118 rw_exit(&ipst->ips_ill_g_lock); 13119 if (fallback_ipif != NULL) 13120 ipif_refrele(fallback_ipif); 13121 *ipifp = ipif; 13122 return (ipif->ipif_net_mask); 13123 } 13124 } 13125 mutex_exit(&ill->ill_lock); 13126 } 13127 rw_exit(&ipst->ips_ill_g_lock); 13128 13129 *ipifp = fallback_ipif; 13130 return ((fallback_ipif != NULL) ? 13131 fallback_ipif->ipif_net_mask : net_mask); 13132 } 13133 13134 /* 13135 * ip_sioctl_copyin_setup calls ip_wput_ioctl to process the IP_IOCTL ioctl. 13136 */ 13137 static void 13138 ip_wput_ioctl(queue_t *q, mblk_t *mp) 13139 { 13140 IOCP iocp; 13141 ipft_t *ipft; 13142 ipllc_t *ipllc; 13143 mblk_t *mp1; 13144 cred_t *cr; 13145 int error = 0; 13146 conn_t *connp; 13147 13148 ip1dbg(("ip_wput_ioctl")); 13149 iocp = (IOCP)mp->b_rptr; 13150 mp1 = mp->b_cont; 13151 if (mp1 == NULL) { 13152 iocp->ioc_error = EINVAL; 13153 mp->b_datap->db_type = M_IOCNAK; 13154 iocp->ioc_count = 0; 13155 qreply(q, mp); 13156 return; 13157 } 13158 13159 /* 13160 * These IOCTLs provide various control capabilities to 13161 * upstream agents such as ULPs and processes. There 13162 * are currently two such IOCTLs implemented. They 13163 * are used by TCP to provide update information for 13164 * existing IREs and to forcibly delete an IRE for a 13165 * host that is not responding, thereby forcing an 13166 * attempt at a new route. 13167 */ 13168 iocp->ioc_error = EINVAL; 13169 if (!pullupmsg(mp1, sizeof (ipllc->ipllc_cmd))) 13170 goto done; 13171 13172 ipllc = (ipllc_t *)mp1->b_rptr; 13173 for (ipft = ip_ioctl_ftbl; ipft->ipft_pfi; ipft++) { 13174 if (ipllc->ipllc_cmd == ipft->ipft_cmd) 13175 break; 13176 } 13177 /* 13178 * prefer credential from mblk over ioctl; 13179 * see ip_sioctl_copyin_setup 13180 */ 13181 cr = DB_CREDDEF(mp, iocp->ioc_cr); 13182 13183 /* 13184 * Refhold the conn in case the request gets queued up in some lookup 13185 */ 13186 ASSERT(CONN_Q(q)); 13187 connp = Q_TO_CONN(q); 13188 CONN_INC_REF(connp); 13189 if (ipft->ipft_pfi && 13190 ((mp1->b_wptr - mp1->b_rptr) >= ipft->ipft_min_size || 13191 pullupmsg(mp1, ipft->ipft_min_size))) { 13192 error = (*ipft->ipft_pfi)(q, 13193 (ipft->ipft_flags & IPFT_F_SELF_REPLY) ? mp : mp1, cr); 13194 } 13195 if (ipft->ipft_flags & IPFT_F_SELF_REPLY) { 13196 /* 13197 * CONN_OPER_PENDING_DONE happens in the function called 13198 * through ipft_pfi above. 13199 */ 13200 return; 13201 } 13202 13203 CONN_OPER_PENDING_DONE(connp); 13204 if (ipft->ipft_flags & IPFT_F_NO_REPLY) { 13205 freemsg(mp); 13206 return; 13207 } 13208 iocp->ioc_error = error; 13209 13210 done: 13211 mp->b_datap->db_type = M_IOCACK; 13212 if (iocp->ioc_error) 13213 iocp->ioc_count = 0; 13214 qreply(q, mp); 13215 } 13216 13217 /* 13218 * Lookup an ipif using the sequence id (ipif_seqid) 13219 */ 13220 ipif_t * 13221 ipif_lookup_seqid(ill_t *ill, uint_t seqid) 13222 { 13223 ipif_t *ipif; 13224 13225 ASSERT(MUTEX_HELD(&ill->ill_lock)); 13226 13227 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 13228 if (ipif->ipif_seqid == seqid && IPIF_CAN_LOOKUP(ipif)) 13229 return (ipif); 13230 } 13231 return (NULL); 13232 } 13233 13234 /* 13235 * Assign a unique id for the ipif. This is used later when we send 13236 * IRES to ARP for resolution where we initialize ire_ipif_seqid 13237 * to the value pointed by ire_ipif->ipif_seqid. Later when the 13238 * IRE is added, we verify that ipif has not disappeared. 13239 */ 13240 13241 static void 13242 ipif_assign_seqid(ipif_t *ipif) 13243 { 13244 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 13245 13246 ipif->ipif_seqid = atomic_add_64_nv(&ipst->ips_ipif_g_seqid, 1); 13247 } 13248 13249 /* 13250 * Insert the ipif, so that the list of ipifs on the ill will be sorted 13251 * with respect to ipif_id. Note that an ipif with an ipif_id of -1 will 13252 * be inserted into the first space available in the list. The value of 13253 * ipif_id will then be set to the appropriate value for its position. 13254 */ 13255 static int 13256 ipif_insert(ipif_t *ipif, boolean_t acquire_g_lock, boolean_t acquire_ill_lock) 13257 { 13258 ill_t *ill; 13259 ipif_t *tipif; 13260 ipif_t **tipifp; 13261 int id; 13262 ip_stack_t *ipst; 13263 13264 ASSERT(ipif->ipif_ill->ill_net_type == IRE_LOOPBACK || 13265 IAM_WRITER_IPIF(ipif)); 13266 13267 ill = ipif->ipif_ill; 13268 ASSERT(ill != NULL); 13269 ipst = ill->ill_ipst; 13270 13271 /* 13272 * In the case of lo0:0 we already hold the ill_g_lock. 13273 * ill_lookup_on_name (acquires ill_g_lock) -> ipif_allocate -> 13274 * ipif_insert. Another such caller is ipif_move. 13275 */ 13276 if (acquire_g_lock) 13277 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 13278 if (acquire_ill_lock) 13279 mutex_enter(&ill->ill_lock); 13280 id = ipif->ipif_id; 13281 tipifp = &(ill->ill_ipif); 13282 if (id == -1) { /* need to find a real id */ 13283 id = 0; 13284 while ((tipif = *tipifp) != NULL) { 13285 ASSERT(tipif->ipif_id >= id); 13286 if (tipif->ipif_id != id) 13287 break; /* non-consecutive id */ 13288 id++; 13289 tipifp = &(tipif->ipif_next); 13290 } 13291 /* limit number of logical interfaces */ 13292 if (id >= ipst->ips_ip_addrs_per_if) { 13293 if (acquire_ill_lock) 13294 mutex_exit(&ill->ill_lock); 13295 if (acquire_g_lock) 13296 rw_exit(&ipst->ips_ill_g_lock); 13297 return (-1); 13298 } 13299 ipif->ipif_id = id; /* assign new id */ 13300 } else if (id < ipst->ips_ip_addrs_per_if) { 13301 /* we have a real id; insert ipif in the right place */ 13302 while ((tipif = *tipifp) != NULL) { 13303 ASSERT(tipif->ipif_id != id); 13304 if (tipif->ipif_id > id) 13305 break; /* found correct location */ 13306 tipifp = &(tipif->ipif_next); 13307 } 13308 } else { 13309 if (acquire_ill_lock) 13310 mutex_exit(&ill->ill_lock); 13311 if (acquire_g_lock) 13312 rw_exit(&ipst->ips_ill_g_lock); 13313 return (-1); 13314 } 13315 13316 ASSERT(tipifp != &(ill->ill_ipif) || id == 0); 13317 13318 ipif->ipif_next = tipif; 13319 *tipifp = ipif; 13320 if (acquire_ill_lock) 13321 mutex_exit(&ill->ill_lock); 13322 if (acquire_g_lock) 13323 rw_exit(&ipst->ips_ill_g_lock); 13324 return (0); 13325 } 13326 13327 static void 13328 ipif_remove(ipif_t *ipif, boolean_t acquire_ill_lock) 13329 { 13330 ipif_t **ipifp; 13331 ill_t *ill = ipif->ipif_ill; 13332 13333 ASSERT(RW_WRITE_HELD(&ill->ill_ipst->ips_ill_g_lock)); 13334 if (acquire_ill_lock) 13335 mutex_enter(&ill->ill_lock); 13336 else 13337 ASSERT(MUTEX_HELD(&ill->ill_lock)); 13338 13339 ipifp = &ill->ill_ipif; 13340 for (; *ipifp != NULL; ipifp = &ipifp[0]->ipif_next) { 13341 if (*ipifp == ipif) { 13342 *ipifp = ipif->ipif_next; 13343 break; 13344 } 13345 } 13346 13347 if (acquire_ill_lock) 13348 mutex_exit(&ill->ill_lock); 13349 } 13350 13351 /* 13352 * Allocate and initialize a new interface control structure. (Always 13353 * called as writer.) 13354 * When ipif_allocate() is called from ip_ll_subnet_defaults, the ill 13355 * is not part of the global linked list of ills. ipif_seqid is unique 13356 * in the system and to preserve the uniqueness, it is assigned only 13357 * when ill becomes part of the global list. At that point ill will 13358 * have a name. If it doesn't get assigned here, it will get assigned 13359 * in ipif_set_values() as part of SIOCSLIFNAME processing. 13360 * Aditionally, if we come here from ip_ll_subnet_defaults, we don't set 13361 * the interface flags or any other information from the DL_INFO_ACK for 13362 * DL_STYLE2 drivers (initialize == B_FALSE), since we won't have them at 13363 * this point. The flags etc. will be set in ip_ll_subnet_defaults when the 13364 * second DL_INFO_ACK comes in from the driver. 13365 */ 13366 static ipif_t * 13367 ipif_allocate(ill_t *ill, int id, uint_t ire_type, boolean_t initialize) 13368 { 13369 ipif_t *ipif; 13370 phyint_t *phyi; 13371 13372 ip1dbg(("ipif_allocate(%s:%d ill %p)\n", 13373 ill->ill_name, id, (void *)ill)); 13374 ASSERT(ire_type == IRE_LOOPBACK || IAM_WRITER_ILL(ill)); 13375 13376 if ((ipif = (ipif_t *)mi_alloc(sizeof (ipif_t), BPRI_MED)) == NULL) 13377 return (NULL); 13378 *ipif = ipif_zero; /* start clean */ 13379 13380 ipif->ipif_ill = ill; 13381 ipif->ipif_id = id; /* could be -1 */ 13382 /* 13383 * Inherit the zoneid from the ill; for the shared stack instance 13384 * this is always the global zone 13385 */ 13386 ipif->ipif_zoneid = ill->ill_zoneid; 13387 13388 mutex_init(&ipif->ipif_saved_ire_lock, NULL, MUTEX_DEFAULT, NULL); 13389 13390 ipif->ipif_refcnt = 0; 13391 ipif->ipif_saved_ire_cnt = 0; 13392 13393 if (ipif_insert(ipif, ire_type != IRE_LOOPBACK, B_TRUE)) { 13394 mi_free(ipif); 13395 return (NULL); 13396 } 13397 /* -1 id should have been replaced by real id */ 13398 id = ipif->ipif_id; 13399 ASSERT(id >= 0); 13400 13401 if (ill->ill_name[0] != '\0') 13402 ipif_assign_seqid(ipif); 13403 13404 /* 13405 * Keep a copy of original id in ipif_orig_ipifid. Failback 13406 * will attempt to restore the original id. The SIOCSLIFOINDEX 13407 * ioctl sets ipif_orig_ipifid to zero. 13408 */ 13409 ipif->ipif_orig_ipifid = id; 13410 13411 /* 13412 * We grab the ill_lock and phyint_lock to protect the flag changes. 13413 * The ipif is still not up and can't be looked up until the 13414 * ioctl completes and the IPIF_CHANGING flag is cleared. 13415 */ 13416 mutex_enter(&ill->ill_lock); 13417 mutex_enter(&ill->ill_phyint->phyint_lock); 13418 /* 13419 * Set the running flag when logical interface zero is created. 13420 * For subsequent logical interfaces, a DLPI link down 13421 * notification message may have cleared the running flag to 13422 * indicate the link is down, so we shouldn't just blindly set it. 13423 */ 13424 if (id == 0) 13425 ill->ill_phyint->phyint_flags |= PHYI_RUNNING; 13426 ipif->ipif_ire_type = ire_type; 13427 phyi = ill->ill_phyint; 13428 ipif->ipif_orig_ifindex = phyi->phyint_ifindex; 13429 13430 if (ipif->ipif_isv6) { 13431 ill->ill_flags |= ILLF_IPV6; 13432 } else { 13433 ipaddr_t inaddr_any = INADDR_ANY; 13434 13435 ill->ill_flags |= ILLF_IPV4; 13436 13437 /* Keep the IN6_IS_ADDR_V4MAPPED assertions happy */ 13438 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 13439 &ipif->ipif_v6lcl_addr); 13440 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 13441 &ipif->ipif_v6src_addr); 13442 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 13443 &ipif->ipif_v6subnet); 13444 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 13445 &ipif->ipif_v6net_mask); 13446 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 13447 &ipif->ipif_v6brd_addr); 13448 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 13449 &ipif->ipif_v6pp_dst_addr); 13450 } 13451 13452 /* 13453 * Don't set the interface flags etc. now, will do it in 13454 * ip_ll_subnet_defaults. 13455 */ 13456 if (!initialize) { 13457 mutex_exit(&ill->ill_lock); 13458 mutex_exit(&ill->ill_phyint->phyint_lock); 13459 return (ipif); 13460 } 13461 ipif->ipif_mtu = ill->ill_max_mtu; 13462 13463 if (ill->ill_bcast_addr_length != 0) { 13464 /* 13465 * Later detect lack of DLPI driver multicast 13466 * capability by catching DL_ENABMULTI errors in 13467 * ip_rput_dlpi. 13468 */ 13469 ill->ill_flags |= ILLF_MULTICAST; 13470 if (!ipif->ipif_isv6) 13471 ipif->ipif_flags |= IPIF_BROADCAST; 13472 } else { 13473 if (ill->ill_net_type != IRE_LOOPBACK) { 13474 if (ipif->ipif_isv6) 13475 /* 13476 * Note: xresolv interfaces will eventually need 13477 * NOARP set here as well, but that will require 13478 * those external resolvers to have some 13479 * knowledge of that flag and act appropriately. 13480 * Not to be changed at present. 13481 */ 13482 ill->ill_flags |= ILLF_NONUD; 13483 else 13484 ill->ill_flags |= ILLF_NOARP; 13485 } 13486 if (ill->ill_phys_addr_length == 0) { 13487 if (ill->ill_media && 13488 ill->ill_media->ip_m_mac_type == SUNW_DL_VNI) { 13489 ipif->ipif_flags |= IPIF_NOXMIT; 13490 phyi->phyint_flags |= PHYI_VIRTUAL; 13491 } else { 13492 /* pt-pt supports multicast. */ 13493 ill->ill_flags |= ILLF_MULTICAST; 13494 if (ill->ill_net_type == IRE_LOOPBACK) { 13495 phyi->phyint_flags |= 13496 (PHYI_LOOPBACK | PHYI_VIRTUAL); 13497 } else { 13498 ipif->ipif_flags |= IPIF_POINTOPOINT; 13499 } 13500 } 13501 } 13502 } 13503 mutex_exit(&ill->ill_lock); 13504 mutex_exit(&ill->ill_phyint->phyint_lock); 13505 return (ipif); 13506 } 13507 13508 /* 13509 * If appropriate, send a message up to the resolver delete the entry 13510 * for the address of this interface which is going out of business. 13511 * (Always called as writer). 13512 * 13513 * NOTE : We need to check for NULL mps as some of the fields are 13514 * initialized only for some interface types. See ipif_resolver_up() 13515 * for details. 13516 */ 13517 void 13518 ipif_arp_down(ipif_t *ipif) 13519 { 13520 mblk_t *mp; 13521 ill_t *ill = ipif->ipif_ill; 13522 13523 ip1dbg(("ipif_arp_down(%s:%u)\n", ill->ill_name, ipif->ipif_id)); 13524 ASSERT(IAM_WRITER_IPIF(ipif)); 13525 13526 /* Delete the mapping for the local address */ 13527 mp = ipif->ipif_arp_del_mp; 13528 if (mp != NULL) { 13529 ip1dbg(("ipif_arp_down: arp cmd %x for %s:%u\n", 13530 *(unsigned *)mp->b_rptr, ill->ill_name, ipif->ipif_id)); 13531 putnext(ill->ill_rq, mp); 13532 ipif->ipif_arp_del_mp = NULL; 13533 } 13534 13535 /* 13536 * If this is the last ipif that is going down and there are no 13537 * duplicate addresses we may yet attempt to re-probe, then we need to 13538 * clean up ARP completely. 13539 */ 13540 if (ill->ill_ipif_up_count == 0 && ill->ill_ipif_dup_count == 0) { 13541 13542 /* Send up AR_INTERFACE_DOWN message */ 13543 mp = ill->ill_arp_down_mp; 13544 if (mp != NULL) { 13545 ip1dbg(("ipif_arp_down: arp cmd %x for %s:%u\n", 13546 *(unsigned *)mp->b_rptr, ill->ill_name, 13547 ipif->ipif_id)); 13548 putnext(ill->ill_rq, mp); 13549 ill->ill_arp_down_mp = NULL; 13550 } 13551 13552 /* Tell ARP to delete the multicast mappings */ 13553 mp = ill->ill_arp_del_mapping_mp; 13554 if (mp != NULL) { 13555 ip1dbg(("ipif_arp_down: arp cmd %x for %s:%u\n", 13556 *(unsigned *)mp->b_rptr, ill->ill_name, 13557 ipif->ipif_id)); 13558 putnext(ill->ill_rq, mp); 13559 ill->ill_arp_del_mapping_mp = NULL; 13560 } 13561 } 13562 } 13563 13564 /* 13565 * This function sets up the multicast mappings in ARP. When ipif_resolver_up 13566 * calls this function, it passes a non-NULL arp_add_mapping_mp indicating 13567 * that it wants the add_mp allocated in this function to be returned 13568 * wihtout sending it to arp. When ip_rput_dlpi_writer calls this to 13569 * just re-do the multicast, it wants us to send the add_mp to ARP also. 13570 * ipif_resolver_up does not want us to do the "add" i.e sending to ARP, 13571 * as it does a ipif_arp_down after calling this function - which will 13572 * remove what we add here. 13573 * 13574 * Returns -1 on failures and 0 on success. 13575 */ 13576 int 13577 ipif_arp_setup_multicast(ipif_t *ipif, mblk_t **arp_add_mapping_mp) 13578 { 13579 mblk_t *del_mp = NULL; 13580 mblk_t *add_mp = NULL; 13581 mblk_t *mp; 13582 ill_t *ill = ipif->ipif_ill; 13583 phyint_t *phyi = ill->ill_phyint; 13584 ipaddr_t addr, mask, extract_mask = 0; 13585 arma_t *arma; 13586 uint8_t *maddr, *bphys_addr; 13587 uint32_t hw_start; 13588 dl_unitdata_req_t *dlur; 13589 13590 ASSERT(IAM_WRITER_IPIF(ipif)); 13591 if (ipif->ipif_flags & IPIF_POINTOPOINT) 13592 return (0); 13593 13594 /* 13595 * Delete the existing mapping from ARP. Normally ipif_down 13596 * -> ipif_arp_down should send this up to ARP. The only 13597 * reason we would find this when we are switching from 13598 * Multicast to Broadcast where we did not do a down. 13599 */ 13600 mp = ill->ill_arp_del_mapping_mp; 13601 if (mp != NULL) { 13602 ip1dbg(("ipif_arp_down: arp cmd %x for %s:%u\n", 13603 *(unsigned *)mp->b_rptr, ill->ill_name, ipif->ipif_id)); 13604 putnext(ill->ill_rq, mp); 13605 ill->ill_arp_del_mapping_mp = NULL; 13606 } 13607 13608 if (arp_add_mapping_mp != NULL) 13609 *arp_add_mapping_mp = NULL; 13610 13611 /* 13612 * Check that the address is not to long for the constant 13613 * length reserved in the template arma_t. 13614 */ 13615 if (ill->ill_phys_addr_length > IP_MAX_HW_LEN) 13616 return (-1); 13617 13618 /* Add mapping mblk */ 13619 addr = (ipaddr_t)htonl(INADDR_UNSPEC_GROUP); 13620 mask = (ipaddr_t)htonl(IN_CLASSD_NET); 13621 add_mp = ill_arp_alloc(ill, (uchar_t *)&ip_arma_multi_template, 13622 (caddr_t)&addr); 13623 if (add_mp == NULL) 13624 return (-1); 13625 arma = (arma_t *)add_mp->b_rptr; 13626 maddr = (uint8_t *)arma + arma->arma_hw_addr_offset; 13627 bcopy(&mask, (char *)arma + arma->arma_proto_mask_offset, IP_ADDR_LEN); 13628 arma->arma_hw_addr_length = ill->ill_phys_addr_length; 13629 13630 /* 13631 * Determine the broadcast address. 13632 */ 13633 dlur = (dl_unitdata_req_t *)ill->ill_bcast_mp->b_rptr; 13634 if (ill->ill_sap_length < 0) 13635 bphys_addr = (uchar_t *)dlur + dlur->dl_dest_addr_offset; 13636 else 13637 bphys_addr = (uchar_t *)dlur + 13638 dlur->dl_dest_addr_offset + ill->ill_sap_length; 13639 /* 13640 * Check PHYI_MULTI_BCAST and length of physical 13641 * address to determine if we use the mapping or the 13642 * broadcast address. 13643 */ 13644 if (!(phyi->phyint_flags & PHYI_MULTI_BCAST)) 13645 if (!MEDIA_V4MINFO(ill->ill_media, ill->ill_phys_addr_length, 13646 bphys_addr, maddr, &hw_start, &extract_mask)) 13647 phyi->phyint_flags |= PHYI_MULTI_BCAST; 13648 13649 if ((phyi->phyint_flags & PHYI_MULTI_BCAST) || 13650 (ill->ill_flags & ILLF_MULTICAST)) { 13651 /* Make sure this will not match the "exact" entry. */ 13652 addr = (ipaddr_t)htonl(INADDR_ALLHOSTS_GROUP); 13653 del_mp = ill_arp_alloc(ill, (uchar_t *)&ip_ared_template, 13654 (caddr_t)&addr); 13655 if (del_mp == NULL) { 13656 freemsg(add_mp); 13657 return (-1); 13658 } 13659 bcopy(&extract_mask, (char *)arma + 13660 arma->arma_proto_extract_mask_offset, IP_ADDR_LEN); 13661 if (phyi->phyint_flags & PHYI_MULTI_BCAST) { 13662 /* Use link-layer broadcast address for MULTI_BCAST */ 13663 bcopy(bphys_addr, maddr, ill->ill_phys_addr_length); 13664 ip2dbg(("ipif_arp_setup_multicast: adding" 13665 " MULTI_BCAST ARP setup for %s\n", ill->ill_name)); 13666 } else { 13667 arma->arma_hw_mapping_start = hw_start; 13668 ip2dbg(("ipif_arp_setup_multicast: adding multicast" 13669 " ARP setup for %s\n", ill->ill_name)); 13670 } 13671 } else { 13672 freemsg(add_mp); 13673 ASSERT(del_mp == NULL); 13674 /* It is neither MULTICAST nor MULTI_BCAST */ 13675 return (0); 13676 } 13677 ASSERT(add_mp != NULL && del_mp != NULL); 13678 ASSERT(ill->ill_arp_del_mapping_mp == NULL); 13679 ill->ill_arp_del_mapping_mp = del_mp; 13680 if (arp_add_mapping_mp != NULL) { 13681 /* The caller just wants the mblks allocated */ 13682 *arp_add_mapping_mp = add_mp; 13683 } else { 13684 /* The caller wants us to send it to arp */ 13685 putnext(ill->ill_rq, add_mp); 13686 } 13687 return (0); 13688 } 13689 13690 /* 13691 * Get the resolver set up for a new interface address. 13692 * (Always called as writer.) 13693 * Called both for IPv4 and IPv6 interfaces, 13694 * though it only sets up the resolver for v6 13695 * if it's an xresolv interface (one using an external resolver). 13696 * Honors ILLF_NOARP. 13697 * The enumerated value res_act is used to tune the behavior. 13698 * If set to Res_act_initial, then we set up all the resolver 13699 * structures for a new interface. If set to Res_act_move, then 13700 * we just send an AR_ENTRY_ADD message up to ARP for IPv4 13701 * interfaces; this is called by ip_rput_dlpi_writer() to handle 13702 * asynchronous hardware address change notification. If set to 13703 * Res_act_defend, then we tell ARP that it needs to send a single 13704 * gratuitous message in defense of the address. 13705 * Returns error on failure. 13706 */ 13707 int 13708 ipif_resolver_up(ipif_t *ipif, enum ip_resolver_action res_act) 13709 { 13710 caddr_t addr; 13711 mblk_t *arp_up_mp = NULL; 13712 mblk_t *arp_down_mp = NULL; 13713 mblk_t *arp_add_mp = NULL; 13714 mblk_t *arp_del_mp = NULL; 13715 mblk_t *arp_add_mapping_mp = NULL; 13716 mblk_t *arp_del_mapping_mp = NULL; 13717 ill_t *ill = ipif->ipif_ill; 13718 uchar_t *area_p = NULL; 13719 uchar_t *ared_p = NULL; 13720 int err = ENOMEM; 13721 boolean_t was_dup; 13722 13723 ip1dbg(("ipif_resolver_up(%s:%u) flags 0x%x\n", 13724 ill->ill_name, ipif->ipif_id, (uint_t)ipif->ipif_flags)); 13725 ASSERT(IAM_WRITER_IPIF(ipif)); 13726 13727 was_dup = B_FALSE; 13728 if (res_act == Res_act_initial) { 13729 ipif->ipif_addr_ready = 0; 13730 /* 13731 * We're bringing an interface up here. There's no way that we 13732 * should need to shut down ARP now. 13733 */ 13734 mutex_enter(&ill->ill_lock); 13735 if (ipif->ipif_flags & IPIF_DUPLICATE) { 13736 ipif->ipif_flags &= ~IPIF_DUPLICATE; 13737 ill->ill_ipif_dup_count--; 13738 was_dup = B_TRUE; 13739 } 13740 mutex_exit(&ill->ill_lock); 13741 } 13742 if (ipif->ipif_recovery_id != 0) 13743 (void) untimeout(ipif->ipif_recovery_id); 13744 ipif->ipif_recovery_id = 0; 13745 if (ill->ill_net_type != IRE_IF_RESOLVER) { 13746 ipif->ipif_addr_ready = 1; 13747 return (0); 13748 } 13749 /* NDP will set the ipif_addr_ready flag when it's ready */ 13750 if (ill->ill_isv6 && !(ill->ill_flags & ILLF_XRESOLV)) 13751 return (0); 13752 13753 if (ill->ill_isv6) { 13754 /* 13755 * External resolver for IPv6 13756 */ 13757 ASSERT(res_act == Res_act_initial); 13758 if (!IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr)) { 13759 addr = (caddr_t)&ipif->ipif_v6lcl_addr; 13760 area_p = (uchar_t *)&ip6_area_template; 13761 ared_p = (uchar_t *)&ip6_ared_template; 13762 } 13763 } else { 13764 /* 13765 * IPv4 arp case. If the ARP stream has already started 13766 * closing, fail this request for ARP bringup. Else 13767 * record the fact that an ARP bringup is pending. 13768 */ 13769 mutex_enter(&ill->ill_lock); 13770 if (ill->ill_arp_closing) { 13771 mutex_exit(&ill->ill_lock); 13772 err = EINVAL; 13773 goto failed; 13774 } else { 13775 if (ill->ill_ipif_up_count == 0 && 13776 ill->ill_ipif_dup_count == 0 && !was_dup) 13777 ill->ill_arp_bringup_pending = 1; 13778 mutex_exit(&ill->ill_lock); 13779 } 13780 if (ipif->ipif_lcl_addr != INADDR_ANY) { 13781 addr = (caddr_t)&ipif->ipif_lcl_addr; 13782 area_p = (uchar_t *)&ip_area_template; 13783 ared_p = (uchar_t *)&ip_ared_template; 13784 } 13785 } 13786 13787 /* 13788 * Add an entry for the local address in ARP only if it 13789 * is not UNNUMBERED and the address is not INADDR_ANY. 13790 */ 13791 if (!(ipif->ipif_flags & IPIF_UNNUMBERED) && area_p != NULL) { 13792 area_t *area; 13793 13794 /* Now ask ARP to publish our address. */ 13795 arp_add_mp = ill_arp_alloc(ill, area_p, addr); 13796 if (arp_add_mp == NULL) 13797 goto failed; 13798 area = (area_t *)arp_add_mp->b_rptr; 13799 if (res_act != Res_act_initial) { 13800 /* 13801 * Copy the new hardware address and length into 13802 * arp_add_mp to be sent to ARP. 13803 */ 13804 area->area_hw_addr_length = ill->ill_phys_addr_length; 13805 bcopy(ill->ill_phys_addr, 13806 ((char *)area + area->area_hw_addr_offset), 13807 area->area_hw_addr_length); 13808 } 13809 13810 area->area_flags = ACE_F_PERMANENT | ACE_F_PUBLISH | 13811 ACE_F_MYADDR; 13812 13813 if (res_act == Res_act_defend) { 13814 area->area_flags |= ACE_F_DEFEND; 13815 /* 13816 * If we're just defending our address now, then 13817 * there's no need to set up ARP multicast mappings. 13818 * The publish command is enough. 13819 */ 13820 goto done; 13821 } 13822 13823 if (res_act != Res_act_initial) 13824 goto arp_setup_multicast; 13825 13826 /* 13827 * Allocate an ARP deletion message so we know we can tell ARP 13828 * when the interface goes down. 13829 */ 13830 arp_del_mp = ill_arp_alloc(ill, ared_p, addr); 13831 if (arp_del_mp == NULL) 13832 goto failed; 13833 13834 } else { 13835 if (res_act != Res_act_initial) 13836 goto done; 13837 } 13838 /* 13839 * Need to bring up ARP or setup multicast mapping only 13840 * when the first interface is coming UP. 13841 */ 13842 if (ill->ill_ipif_up_count != 0 || ill->ill_ipif_dup_count != 0 || 13843 was_dup) { 13844 goto done; 13845 } 13846 13847 /* 13848 * Allocate an ARP down message (to be saved) and an ARP up 13849 * message. 13850 */ 13851 arp_down_mp = ill_arp_alloc(ill, (uchar_t *)&ip_ard_template, 0); 13852 if (arp_down_mp == NULL) 13853 goto failed; 13854 13855 arp_up_mp = ill_arp_alloc(ill, (uchar_t *)&ip_aru_template, 0); 13856 if (arp_up_mp == NULL) 13857 goto failed; 13858 13859 if (ipif->ipif_flags & IPIF_POINTOPOINT) 13860 goto done; 13861 13862 arp_setup_multicast: 13863 /* 13864 * Setup the multicast mappings. This function initializes 13865 * ill_arp_del_mapping_mp also. This does not need to be done for 13866 * IPv6. 13867 */ 13868 if (!ill->ill_isv6) { 13869 err = ipif_arp_setup_multicast(ipif, &arp_add_mapping_mp); 13870 if (err != 0) 13871 goto failed; 13872 ASSERT(ill->ill_arp_del_mapping_mp != NULL); 13873 ASSERT(arp_add_mapping_mp != NULL); 13874 } 13875 13876 done: 13877 if (arp_del_mp != NULL) { 13878 ASSERT(ipif->ipif_arp_del_mp == NULL); 13879 ipif->ipif_arp_del_mp = arp_del_mp; 13880 } 13881 if (arp_down_mp != NULL) { 13882 ASSERT(ill->ill_arp_down_mp == NULL); 13883 ill->ill_arp_down_mp = arp_down_mp; 13884 } 13885 if (arp_del_mapping_mp != NULL) { 13886 ASSERT(ill->ill_arp_del_mapping_mp == NULL); 13887 ill->ill_arp_del_mapping_mp = arp_del_mapping_mp; 13888 } 13889 if (arp_up_mp != NULL) { 13890 ip1dbg(("ipif_resolver_up: ARP_UP for %s:%u\n", 13891 ill->ill_name, ipif->ipif_id)); 13892 putnext(ill->ill_rq, arp_up_mp); 13893 } 13894 if (arp_add_mp != NULL) { 13895 ip1dbg(("ipif_resolver_up: ARP_ADD for %s:%u\n", 13896 ill->ill_name, ipif->ipif_id)); 13897 /* 13898 * If it's an extended ARP implementation, then we'll wait to 13899 * hear that DAD has finished before using the interface. 13900 */ 13901 if (!ill->ill_arp_extend) 13902 ipif->ipif_addr_ready = 1; 13903 putnext(ill->ill_rq, arp_add_mp); 13904 } else { 13905 ipif->ipif_addr_ready = 1; 13906 } 13907 if (arp_add_mapping_mp != NULL) { 13908 ip1dbg(("ipif_resolver_up: MAPPING_ADD for %s:%u\n", 13909 ill->ill_name, ipif->ipif_id)); 13910 putnext(ill->ill_rq, arp_add_mapping_mp); 13911 } 13912 if (res_act != Res_act_initial) 13913 return (0); 13914 13915 if (ill->ill_flags & ILLF_NOARP) 13916 err = ill_arp_off(ill); 13917 else 13918 err = ill_arp_on(ill); 13919 if (err != 0) { 13920 ip0dbg(("ipif_resolver_up: arp_on/off failed %d\n", err)); 13921 freemsg(ipif->ipif_arp_del_mp); 13922 freemsg(ill->ill_arp_down_mp); 13923 freemsg(ill->ill_arp_del_mapping_mp); 13924 ipif->ipif_arp_del_mp = NULL; 13925 ill->ill_arp_down_mp = NULL; 13926 ill->ill_arp_del_mapping_mp = NULL; 13927 return (err); 13928 } 13929 return ((ill->ill_ipif_up_count != 0 || was_dup || 13930 ill->ill_ipif_dup_count != 0) ? 0 : EINPROGRESS); 13931 13932 failed: 13933 ip1dbg(("ipif_resolver_up: FAILED\n")); 13934 freemsg(arp_add_mp); 13935 freemsg(arp_del_mp); 13936 freemsg(arp_add_mapping_mp); 13937 freemsg(arp_up_mp); 13938 freemsg(arp_down_mp); 13939 ill->ill_arp_bringup_pending = 0; 13940 return (err); 13941 } 13942 13943 /* 13944 * This routine restarts IPv4 duplicate address detection (DAD) when a link has 13945 * just gone back up. 13946 */ 13947 static void 13948 ipif_arp_start_dad(ipif_t *ipif) 13949 { 13950 ill_t *ill = ipif->ipif_ill; 13951 mblk_t *arp_add_mp; 13952 area_t *area; 13953 13954 if (ill->ill_net_type != IRE_IF_RESOLVER || ill->ill_arp_closing || 13955 (ipif->ipif_flags & IPIF_UNNUMBERED) || 13956 ipif->ipif_lcl_addr == INADDR_ANY || 13957 (arp_add_mp = ill_arp_alloc(ill, (uchar_t *)&ip_area_template, 13958 (char *)&ipif->ipif_lcl_addr)) == NULL) { 13959 /* 13960 * If we can't contact ARP for some reason, that's not really a 13961 * problem. Just send out the routing socket notification that 13962 * DAD completion would have done, and continue. 13963 */ 13964 ipif_mask_reply(ipif); 13965 ip_rts_ifmsg(ipif); 13966 ip_rts_newaddrmsg(RTM_ADD, 0, ipif); 13967 sctp_update_ipif(ipif, SCTP_IPIF_UP); 13968 ipif->ipif_addr_ready = 1; 13969 return; 13970 } 13971 13972 /* Setting the 'unverified' flag restarts DAD */ 13973 area = (area_t *)arp_add_mp->b_rptr; 13974 area->area_flags = ACE_F_PERMANENT | ACE_F_PUBLISH | ACE_F_MYADDR | 13975 ACE_F_UNVERIFIED; 13976 putnext(ill->ill_rq, arp_add_mp); 13977 } 13978 13979 static void 13980 ipif_ndp_start_dad(ipif_t *ipif) 13981 { 13982 nce_t *nce; 13983 13984 nce = ndp_lookup_v6(ipif->ipif_ill, &ipif->ipif_v6lcl_addr, B_FALSE); 13985 if (nce == NULL) 13986 return; 13987 13988 if (!ndp_restart_dad(nce)) { 13989 /* 13990 * If we can't restart DAD for some reason, that's not really a 13991 * problem. Just send out the routing socket notification that 13992 * DAD completion would have done, and continue. 13993 */ 13994 ip_rts_ifmsg(ipif); 13995 ip_rts_newaddrmsg(RTM_ADD, 0, ipif); 13996 sctp_update_ipif(ipif, SCTP_IPIF_UP); 13997 ipif->ipif_addr_ready = 1; 13998 } 13999 NCE_REFRELE(nce); 14000 } 14001 14002 /* 14003 * Restart duplicate address detection on all interfaces on the given ill. 14004 * 14005 * This is called when an interface transitions from down to up 14006 * (DL_NOTE_LINK_UP) or up to down (DL_NOTE_LINK_DOWN). 14007 * 14008 * Note that since the underlying physical link has transitioned, we must cause 14009 * at least one routing socket message to be sent here, either via DAD 14010 * completion or just by default on the first ipif. (If we don't do this, then 14011 * in.mpathd will see long delays when doing link-based failure recovery.) 14012 */ 14013 void 14014 ill_restart_dad(ill_t *ill, boolean_t went_up) 14015 { 14016 ipif_t *ipif; 14017 14018 if (ill == NULL) 14019 return; 14020 14021 /* 14022 * If layer two doesn't support duplicate address detection, then just 14023 * send the routing socket message now and be done with it. 14024 */ 14025 if ((ill->ill_isv6 && (ill->ill_flags & ILLF_XRESOLV)) || 14026 (!ill->ill_isv6 && !ill->ill_arp_extend)) { 14027 ip_rts_ifmsg(ill->ill_ipif); 14028 return; 14029 } 14030 14031 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 14032 if (went_up) { 14033 if (ipif->ipif_flags & IPIF_UP) { 14034 if (ill->ill_isv6) 14035 ipif_ndp_start_dad(ipif); 14036 else 14037 ipif_arp_start_dad(ipif); 14038 } else if (ill->ill_isv6 && 14039 (ipif->ipif_flags & IPIF_DUPLICATE)) { 14040 /* 14041 * For IPv4, the ARP module itself will 14042 * automatically start the DAD process when it 14043 * sees DL_NOTE_LINK_UP. We respond to the 14044 * AR_CN_READY at the completion of that task. 14045 * For IPv6, we must kick off the bring-up 14046 * process now. 14047 */ 14048 ndp_do_recovery(ipif); 14049 } else { 14050 /* 14051 * Unfortunately, the first ipif is "special" 14052 * and represents the underlying ill in the 14053 * routing socket messages. Thus, when this 14054 * one ipif is down, we must still notify so 14055 * that the user knows the IFF_RUNNING status 14056 * change. (If the first ipif is up, then 14057 * we'll handle eventual routing socket 14058 * notification via DAD completion.) 14059 */ 14060 if (ipif == ill->ill_ipif) 14061 ip_rts_ifmsg(ill->ill_ipif); 14062 } 14063 } else { 14064 /* 14065 * After link down, we'll need to send a new routing 14066 * message when the link comes back, so clear 14067 * ipif_addr_ready. 14068 */ 14069 ipif->ipif_addr_ready = 0; 14070 } 14071 } 14072 14073 /* 14074 * If we've torn down links, then notify the user right away. 14075 */ 14076 if (!went_up) 14077 ip_rts_ifmsg(ill->ill_ipif); 14078 } 14079 14080 /* 14081 * Wakeup all threads waiting to enter the ipsq, and sleeping 14082 * on any of the ills in this ipsq. The ill_lock of the ill 14083 * must be held so that waiters don't miss wakeups 14084 */ 14085 static void 14086 ill_signal_ipsq_ills(ipsq_t *ipsq, boolean_t caller_holds_lock) 14087 { 14088 phyint_t *phyint; 14089 14090 phyint = ipsq->ipsq_phyint_list; 14091 while (phyint != NULL) { 14092 if (phyint->phyint_illv4) { 14093 if (!caller_holds_lock) 14094 mutex_enter(&phyint->phyint_illv4->ill_lock); 14095 ASSERT(MUTEX_HELD(&phyint->phyint_illv4->ill_lock)); 14096 cv_broadcast(&phyint->phyint_illv4->ill_cv); 14097 if (!caller_holds_lock) 14098 mutex_exit(&phyint->phyint_illv4->ill_lock); 14099 } 14100 if (phyint->phyint_illv6) { 14101 if (!caller_holds_lock) 14102 mutex_enter(&phyint->phyint_illv6->ill_lock); 14103 ASSERT(MUTEX_HELD(&phyint->phyint_illv6->ill_lock)); 14104 cv_broadcast(&phyint->phyint_illv6->ill_cv); 14105 if (!caller_holds_lock) 14106 mutex_exit(&phyint->phyint_illv6->ill_lock); 14107 } 14108 phyint = phyint->phyint_ipsq_next; 14109 } 14110 } 14111 14112 static ipsq_t * 14113 ipsq_create(char *groupname, ip_stack_t *ipst) 14114 { 14115 ipsq_t *ipsq; 14116 14117 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); 14118 ipsq = kmem_zalloc(sizeof (ipsq_t), KM_NOSLEEP); 14119 if (ipsq == NULL) { 14120 return (NULL); 14121 } 14122 14123 if (groupname != NULL) 14124 (void) strcpy(ipsq->ipsq_name, groupname); 14125 else 14126 ipsq->ipsq_name[0] = '\0'; 14127 14128 mutex_init(&ipsq->ipsq_lock, NULL, MUTEX_DEFAULT, NULL); 14129 ipsq->ipsq_flags |= IPSQ_GROUP; 14130 ipsq->ipsq_next = ipst->ips_ipsq_g_head; 14131 ipst->ips_ipsq_g_head = ipsq; 14132 ipsq->ipsq_ipst = ipst; /* No netstack_hold */ 14133 return (ipsq); 14134 } 14135 14136 /* 14137 * Return an ipsq correspoding to the groupname. If 'create' is true 14138 * allocate a new ipsq if one does not exist. Usually an ipsq is associated 14139 * uniquely with an IPMP group. However during IPMP groupname operations, 14140 * multiple IPMP groups may be associated with a single ipsq. But no 14141 * IPMP group can be associated with more than 1 ipsq at any time. 14142 * For example 14143 * Interfaces IPMP grpname ipsq ipsq_name ipsq_refs 14144 * hme1, hme2 mpk17-84 ipsq1 mpk17-84 2 14145 * hme3, hme4 mpk17-85 ipsq2 mpk17-85 2 14146 * 14147 * Now the command ifconfig hme3 group mpk17-84 results in the temporary 14148 * status shown below during the execution of the above command. 14149 * hme1, hme2, hme3, hme4 mpk17-84, mpk17-85 ipsq1 mpk17-84 4 14150 * 14151 * After the completion of the above groupname command we return to the stable 14152 * state shown below. 14153 * hme1, hme2, hme3 mpk17-84 ipsq1 mpk17-84 3 14154 * hme4 mpk17-85 ipsq2 mpk17-85 1 14155 * 14156 * Because of the above, we don't search based on the ipsq_name since that 14157 * would miss the correct ipsq during certain windows as shown above. 14158 * The ipsq_name is only used during split of an ipsq to return the ipsq to its 14159 * natural state. 14160 */ 14161 static ipsq_t * 14162 ip_ipsq_lookup(char *groupname, boolean_t create, ipsq_t *exclude_ipsq, 14163 ip_stack_t *ipst) 14164 { 14165 ipsq_t *ipsq; 14166 int group_len; 14167 phyint_t *phyint; 14168 14169 ASSERT(RW_LOCK_HELD(&ipst->ips_ill_g_lock)); 14170 14171 group_len = strlen(groupname); 14172 ASSERT(group_len != 0); 14173 group_len++; 14174 14175 for (ipsq = ipst->ips_ipsq_g_head; 14176 ipsq != NULL; 14177 ipsq = ipsq->ipsq_next) { 14178 /* 14179 * When an ipsq is being split, and ill_split_ipsq 14180 * calls this function, we exclude it from being considered. 14181 */ 14182 if (ipsq == exclude_ipsq) 14183 continue; 14184 14185 /* 14186 * Compare against the ipsq_name. The groupname change happens 14187 * in 2 phases. The 1st phase merges the from group into 14188 * the to group's ipsq, by calling ill_merge_groups and restarts 14189 * the ioctl. The 2nd phase then locates the ipsq again thru 14190 * ipsq_name. At this point the phyint_groupname has not been 14191 * updated. 14192 */ 14193 if ((group_len == strlen(ipsq->ipsq_name) + 1) && 14194 (bcmp(ipsq->ipsq_name, groupname, group_len) == 0)) { 14195 /* 14196 * Verify that an ipmp groupname is exactly 14197 * part of 1 ipsq and is not found in any other 14198 * ipsq. 14199 */ 14200 ASSERT(ip_ipsq_lookup(groupname, B_FALSE, ipsq, ipst) == 14201 NULL); 14202 return (ipsq); 14203 } 14204 14205 /* 14206 * Comparison against ipsq_name alone is not sufficient. 14207 * In the case when groups are currently being 14208 * merged, the ipsq could hold other IPMP groups temporarily. 14209 * so we walk the phyint list and compare against the 14210 * phyint_groupname as well. 14211 */ 14212 phyint = ipsq->ipsq_phyint_list; 14213 while (phyint != NULL) { 14214 if ((group_len == phyint->phyint_groupname_len) && 14215 (bcmp(phyint->phyint_groupname, groupname, 14216 group_len) == 0)) { 14217 /* 14218 * Verify that an ipmp groupname is exactly 14219 * part of 1 ipsq and is not found in any other 14220 * ipsq. 14221 */ 14222 ASSERT(ip_ipsq_lookup(groupname, B_FALSE, ipsq, 14223 ipst) == NULL); 14224 return (ipsq); 14225 } 14226 phyint = phyint->phyint_ipsq_next; 14227 } 14228 } 14229 if (create) 14230 ipsq = ipsq_create(groupname, ipst); 14231 return (ipsq); 14232 } 14233 14234 static void 14235 ipsq_delete(ipsq_t *ipsq) 14236 { 14237 ipsq_t *nipsq; 14238 ipsq_t *pipsq = NULL; 14239 ip_stack_t *ipst = ipsq->ipsq_ipst; 14240 14241 /* 14242 * We don't hold the ipsq lock, but we are sure no new 14243 * messages can land up, since the ipsq_refs is zero. 14244 * i.e. this ipsq is unnamed and no phyint or phyint group 14245 * is associated with this ipsq. (Lookups are based on ill_name 14246 * or phyint_groupname) 14247 */ 14248 ASSERT(ipsq->ipsq_refs == 0); 14249 ASSERT(ipsq->ipsq_xopq_mphead == NULL && ipsq->ipsq_mphead == NULL); 14250 ASSERT(ipsq->ipsq_pending_mp == NULL); 14251 if (!(ipsq->ipsq_flags & IPSQ_GROUP)) { 14252 /* 14253 * This is not the ipsq of an IPMP group. 14254 */ 14255 ipsq->ipsq_ipst = NULL; 14256 kmem_free(ipsq, sizeof (ipsq_t)); 14257 return; 14258 } 14259 14260 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 14261 14262 /* 14263 * Locate the ipsq before we can remove it from 14264 * the singly linked list of ipsq's. 14265 */ 14266 for (nipsq = ipst->ips_ipsq_g_head; nipsq != NULL; 14267 nipsq = nipsq->ipsq_next) { 14268 if (nipsq == ipsq) { 14269 break; 14270 } 14271 pipsq = nipsq; 14272 } 14273 14274 ASSERT(nipsq == ipsq); 14275 14276 /* unlink ipsq from the list */ 14277 if (pipsq != NULL) 14278 pipsq->ipsq_next = ipsq->ipsq_next; 14279 else 14280 ipst->ips_ipsq_g_head = ipsq->ipsq_next; 14281 ipsq->ipsq_ipst = NULL; 14282 kmem_free(ipsq, sizeof (ipsq_t)); 14283 rw_exit(&ipst->ips_ill_g_lock); 14284 } 14285 14286 static void 14287 ill_move_to_new_ipsq(ipsq_t *old_ipsq, ipsq_t *new_ipsq, mblk_t *current_mp, 14288 queue_t *q) 14289 { 14290 ASSERT(MUTEX_HELD(&new_ipsq->ipsq_lock)); 14291 ASSERT(old_ipsq->ipsq_mphead == NULL && old_ipsq->ipsq_mptail == NULL); 14292 ASSERT(old_ipsq->ipsq_pending_ipif == NULL); 14293 ASSERT(old_ipsq->ipsq_pending_mp == NULL); 14294 ASSERT(current_mp != NULL); 14295 14296 ipsq_enq(new_ipsq, q, current_mp, (ipsq_func_t)ip_process_ioctl, 14297 NEW_OP, NULL); 14298 14299 ASSERT(new_ipsq->ipsq_xopq_mptail != NULL && 14300 new_ipsq->ipsq_xopq_mphead != NULL); 14301 14302 /* 14303 * move from old ipsq to the new ipsq. 14304 */ 14305 new_ipsq->ipsq_xopq_mptail->b_next = old_ipsq->ipsq_xopq_mphead; 14306 if (old_ipsq->ipsq_xopq_mphead != NULL) 14307 new_ipsq->ipsq_xopq_mptail = old_ipsq->ipsq_xopq_mptail; 14308 14309 old_ipsq->ipsq_xopq_mphead = old_ipsq->ipsq_xopq_mptail = NULL; 14310 } 14311 14312 void 14313 ill_group_cleanup(ill_t *ill) 14314 { 14315 ill_t *ill_v4; 14316 ill_t *ill_v6; 14317 ipif_t *ipif; 14318 14319 ill_v4 = ill->ill_phyint->phyint_illv4; 14320 ill_v6 = ill->ill_phyint->phyint_illv6; 14321 14322 if (ill_v4 != NULL) { 14323 mutex_enter(&ill_v4->ill_lock); 14324 for (ipif = ill_v4->ill_ipif; ipif != NULL; 14325 ipif = ipif->ipif_next) { 14326 IPIF_UNMARK_MOVING(ipif); 14327 } 14328 ill_v4->ill_up_ipifs = B_FALSE; 14329 mutex_exit(&ill_v4->ill_lock); 14330 } 14331 14332 if (ill_v6 != NULL) { 14333 mutex_enter(&ill_v6->ill_lock); 14334 for (ipif = ill_v6->ill_ipif; ipif != NULL; 14335 ipif = ipif->ipif_next) { 14336 IPIF_UNMARK_MOVING(ipif); 14337 } 14338 ill_v6->ill_up_ipifs = B_FALSE; 14339 mutex_exit(&ill_v6->ill_lock); 14340 } 14341 } 14342 /* 14343 * This function is called when an ill has had a change in its group status 14344 * to bring up all the ipifs that were up before the change. 14345 */ 14346 int 14347 ill_up_ipifs(ill_t *ill, queue_t *q, mblk_t *mp) 14348 { 14349 ipif_t *ipif; 14350 ill_t *ill_v4; 14351 ill_t *ill_v6; 14352 ill_t *from_ill; 14353 int err = 0; 14354 14355 14356 ASSERT(IAM_WRITER_ILL(ill)); 14357 14358 /* 14359 * Except for ipif_state_flags and ill_state_flags the other 14360 * fields of the ipif/ill that are modified below are protected 14361 * implicitly since we are a writer. We would have tried to down 14362 * even an ipif that was already down, in ill_down_ipifs. So we 14363 * just blindly clear the IPIF_CHANGING flag here on all ipifs. 14364 */ 14365 ill_v4 = ill->ill_phyint->phyint_illv4; 14366 ill_v6 = ill->ill_phyint->phyint_illv6; 14367 if (ill_v4 != NULL) { 14368 ill_v4->ill_up_ipifs = B_TRUE; 14369 for (ipif = ill_v4->ill_ipif; ipif != NULL; 14370 ipif = ipif->ipif_next) { 14371 mutex_enter(&ill_v4->ill_lock); 14372 ipif->ipif_state_flags &= ~IPIF_CHANGING; 14373 IPIF_UNMARK_MOVING(ipif); 14374 mutex_exit(&ill_v4->ill_lock); 14375 if (ipif->ipif_was_up) { 14376 if (!(ipif->ipif_flags & IPIF_UP)) 14377 err = ipif_up(ipif, q, mp); 14378 ipif->ipif_was_up = B_FALSE; 14379 if (err != 0) { 14380 /* 14381 * Can there be any other error ? 14382 */ 14383 ASSERT(err == EINPROGRESS); 14384 return (err); 14385 } 14386 } 14387 } 14388 mutex_enter(&ill_v4->ill_lock); 14389 ill_v4->ill_state_flags &= ~ILL_CHANGING; 14390 mutex_exit(&ill_v4->ill_lock); 14391 ill_v4->ill_up_ipifs = B_FALSE; 14392 if (ill_v4->ill_move_in_progress) { 14393 ASSERT(ill_v4->ill_move_peer != NULL); 14394 ill_v4->ill_move_in_progress = B_FALSE; 14395 from_ill = ill_v4->ill_move_peer; 14396 from_ill->ill_move_in_progress = B_FALSE; 14397 from_ill->ill_move_peer = NULL; 14398 mutex_enter(&from_ill->ill_lock); 14399 from_ill->ill_state_flags &= ~ILL_CHANGING; 14400 mutex_exit(&from_ill->ill_lock); 14401 if (ill_v6 == NULL) { 14402 if (from_ill->ill_phyint->phyint_flags & 14403 PHYI_STANDBY) { 14404 phyint_inactive(from_ill->ill_phyint); 14405 } 14406 if (ill_v4->ill_phyint->phyint_flags & 14407 PHYI_STANDBY) { 14408 phyint_inactive(ill_v4->ill_phyint); 14409 } 14410 } 14411 ill_v4->ill_move_peer = NULL; 14412 } 14413 } 14414 14415 if (ill_v6 != NULL) { 14416 ill_v6->ill_up_ipifs = B_TRUE; 14417 for (ipif = ill_v6->ill_ipif; ipif != NULL; 14418 ipif = ipif->ipif_next) { 14419 mutex_enter(&ill_v6->ill_lock); 14420 ipif->ipif_state_flags &= ~IPIF_CHANGING; 14421 IPIF_UNMARK_MOVING(ipif); 14422 mutex_exit(&ill_v6->ill_lock); 14423 if (ipif->ipif_was_up) { 14424 if (!(ipif->ipif_flags & IPIF_UP)) 14425 err = ipif_up(ipif, q, mp); 14426 ipif->ipif_was_up = B_FALSE; 14427 if (err != 0) { 14428 /* 14429 * Can there be any other error ? 14430 */ 14431 ASSERT(err == EINPROGRESS); 14432 return (err); 14433 } 14434 } 14435 } 14436 mutex_enter(&ill_v6->ill_lock); 14437 ill_v6->ill_state_flags &= ~ILL_CHANGING; 14438 mutex_exit(&ill_v6->ill_lock); 14439 ill_v6->ill_up_ipifs = B_FALSE; 14440 if (ill_v6->ill_move_in_progress) { 14441 ASSERT(ill_v6->ill_move_peer != NULL); 14442 ill_v6->ill_move_in_progress = B_FALSE; 14443 from_ill = ill_v6->ill_move_peer; 14444 from_ill->ill_move_in_progress = B_FALSE; 14445 from_ill->ill_move_peer = NULL; 14446 mutex_enter(&from_ill->ill_lock); 14447 from_ill->ill_state_flags &= ~ILL_CHANGING; 14448 mutex_exit(&from_ill->ill_lock); 14449 if (from_ill->ill_phyint->phyint_flags & PHYI_STANDBY) { 14450 phyint_inactive(from_ill->ill_phyint); 14451 } 14452 if (ill_v6->ill_phyint->phyint_flags & PHYI_STANDBY) { 14453 phyint_inactive(ill_v6->ill_phyint); 14454 } 14455 ill_v6->ill_move_peer = NULL; 14456 } 14457 } 14458 return (0); 14459 } 14460 14461 /* 14462 * bring down all the approriate ipifs. 14463 */ 14464 /* ARGSUSED */ 14465 static void 14466 ill_down_ipifs(ill_t *ill, mblk_t *mp, int index, boolean_t chk_nofailover) 14467 { 14468 ipif_t *ipif; 14469 14470 ASSERT(IAM_WRITER_ILL(ill)); 14471 14472 /* 14473 * Except for ipif_state_flags the other fields of the ipif/ill that 14474 * are modified below are protected implicitly since we are a writer 14475 */ 14476 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 14477 if (chk_nofailover && (ipif->ipif_flags & IPIF_NOFAILOVER)) 14478 continue; 14479 if (index == 0 || index == ipif->ipif_orig_ifindex) { 14480 /* 14481 * We go through the ipif_down logic even if the ipif 14482 * is already down, since routes can be added based 14483 * on down ipifs. Going through ipif_down once again 14484 * will delete any IREs created based on these routes. 14485 */ 14486 if (ipif->ipif_flags & IPIF_UP) 14487 ipif->ipif_was_up = B_TRUE; 14488 /* 14489 * If called with chk_nofailover true ipif is moving. 14490 */ 14491 mutex_enter(&ill->ill_lock); 14492 if (chk_nofailover) { 14493 ipif->ipif_state_flags |= 14494 IPIF_MOVING | IPIF_CHANGING; 14495 } else { 14496 ipif->ipif_state_flags |= IPIF_CHANGING; 14497 } 14498 mutex_exit(&ill->ill_lock); 14499 /* 14500 * Need to re-create net/subnet bcast ires if 14501 * they are dependent on ipif. 14502 */ 14503 if (!ipif->ipif_isv6) 14504 ipif_check_bcast_ires(ipif); 14505 (void) ipif_logical_down(ipif, NULL, NULL); 14506 ipif_non_duplicate(ipif); 14507 ipif_down_tail(ipif); 14508 } 14509 } 14510 } 14511 14512 #define IPSQ_INC_REF(ipsq, ipst) { \ 14513 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); \ 14514 (ipsq)->ipsq_refs++; \ 14515 } 14516 14517 #define IPSQ_DEC_REF(ipsq, ipst) { \ 14518 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); \ 14519 (ipsq)->ipsq_refs--; \ 14520 if ((ipsq)->ipsq_refs == 0) \ 14521 (ipsq)->ipsq_name[0] = '\0'; \ 14522 } 14523 14524 /* 14525 * Change the ipsq of all the ill's whose current ipsq is 'cur_ipsq' to 14526 * new_ipsq. 14527 */ 14528 static void 14529 ill_merge_ipsq(ipsq_t *cur_ipsq, ipsq_t *new_ipsq, ip_stack_t *ipst) 14530 { 14531 phyint_t *phyint; 14532 phyint_t *next_phyint; 14533 14534 /* 14535 * To change the ipsq of an ill, we need to hold the ill_g_lock as 14536 * writer and the ill_lock of the ill in question. Also the dest 14537 * ipsq can't vanish while we hold the ill_g_lock as writer. 14538 */ 14539 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); 14540 14541 phyint = cur_ipsq->ipsq_phyint_list; 14542 cur_ipsq->ipsq_phyint_list = NULL; 14543 while (phyint != NULL) { 14544 next_phyint = phyint->phyint_ipsq_next; 14545 IPSQ_DEC_REF(cur_ipsq, ipst); 14546 phyint->phyint_ipsq_next = new_ipsq->ipsq_phyint_list; 14547 new_ipsq->ipsq_phyint_list = phyint; 14548 IPSQ_INC_REF(new_ipsq, ipst); 14549 phyint->phyint_ipsq = new_ipsq; 14550 phyint = next_phyint; 14551 } 14552 } 14553 14554 #define SPLIT_SUCCESS 0 14555 #define SPLIT_NOT_NEEDED 1 14556 #define SPLIT_FAILED 2 14557 14558 int 14559 ill_split_to_grp_ipsq(phyint_t *phyint, ipsq_t *cur_ipsq, boolean_t need_retry, 14560 ip_stack_t *ipst) 14561 { 14562 ipsq_t *newipsq = NULL; 14563 14564 /* 14565 * Assertions denote pre-requisites for changing the ipsq of 14566 * a phyint 14567 */ 14568 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); 14569 /* 14570 * <ill-phyint> assocs can't change while ill_g_lock 14571 * is held as writer. See ill_phyint_reinit() 14572 */ 14573 ASSERT(phyint->phyint_illv4 == NULL || 14574 MUTEX_HELD(&phyint->phyint_illv4->ill_lock)); 14575 ASSERT(phyint->phyint_illv6 == NULL || 14576 MUTEX_HELD(&phyint->phyint_illv6->ill_lock)); 14577 14578 if ((phyint->phyint_groupname_len != 14579 (strlen(cur_ipsq->ipsq_name) + 1) || 14580 bcmp(phyint->phyint_groupname, cur_ipsq->ipsq_name, 14581 phyint->phyint_groupname_len) != 0)) { 14582 /* 14583 * Once we fail in creating a new ipsq due to memory shortage, 14584 * don't attempt to create new ipsq again, based on another 14585 * phyint, since we want all phyints belonging to an IPMP group 14586 * to be in the same ipsq even in the event of mem alloc fails. 14587 */ 14588 newipsq = ip_ipsq_lookup(phyint->phyint_groupname, !need_retry, 14589 cur_ipsq, ipst); 14590 if (newipsq == NULL) { 14591 /* Memory allocation failure */ 14592 return (SPLIT_FAILED); 14593 } else { 14594 /* ipsq_refs protected by ill_g_lock (writer) */ 14595 IPSQ_DEC_REF(cur_ipsq, ipst); 14596 phyint->phyint_ipsq = newipsq; 14597 phyint->phyint_ipsq_next = newipsq->ipsq_phyint_list; 14598 newipsq->ipsq_phyint_list = phyint; 14599 IPSQ_INC_REF(newipsq, ipst); 14600 return (SPLIT_SUCCESS); 14601 } 14602 } 14603 return (SPLIT_NOT_NEEDED); 14604 } 14605 14606 /* 14607 * The ill locks of the phyint and the ill_g_lock (writer) must be held 14608 * to do this split 14609 */ 14610 static int 14611 ill_split_to_own_ipsq(phyint_t *phyint, ipsq_t *cur_ipsq, ip_stack_t *ipst) 14612 { 14613 ipsq_t *newipsq; 14614 14615 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); 14616 /* 14617 * <ill-phyint> assocs can't change while ill_g_lock 14618 * is held as writer. See ill_phyint_reinit() 14619 */ 14620 14621 ASSERT(phyint->phyint_illv4 == NULL || 14622 MUTEX_HELD(&phyint->phyint_illv4->ill_lock)); 14623 ASSERT(phyint->phyint_illv6 == NULL || 14624 MUTEX_HELD(&phyint->phyint_illv6->ill_lock)); 14625 14626 if (!ipsq_init((phyint->phyint_illv4 != NULL) ? 14627 phyint->phyint_illv4: phyint->phyint_illv6)) { 14628 /* 14629 * ipsq_init failed due to no memory 14630 * caller will use the same ipsq 14631 */ 14632 return (SPLIT_FAILED); 14633 } 14634 14635 /* ipsq_ref is protected by ill_g_lock (writer) */ 14636 IPSQ_DEC_REF(cur_ipsq, ipst); 14637 14638 /* 14639 * This is a new ipsq that is unknown to the world. 14640 * So we don't need to hold ipsq_lock, 14641 */ 14642 newipsq = phyint->phyint_ipsq; 14643 newipsq->ipsq_writer = NULL; 14644 newipsq->ipsq_reentry_cnt--; 14645 ASSERT(newipsq->ipsq_reentry_cnt == 0); 14646 #ifdef DEBUG 14647 newipsq->ipsq_depth = 0; 14648 #endif 14649 14650 return (SPLIT_SUCCESS); 14651 } 14652 14653 /* 14654 * Change the ipsq of all the ill's whose current ipsq is 'cur_ipsq' to 14655 * ipsq's representing their individual groups or themselves. Return 14656 * whether split needs to be retried again later. 14657 */ 14658 static boolean_t 14659 ill_split_ipsq(ipsq_t *cur_ipsq) 14660 { 14661 phyint_t *phyint; 14662 phyint_t *next_phyint; 14663 int error; 14664 boolean_t need_retry = B_FALSE; 14665 ip_stack_t *ipst = cur_ipsq->ipsq_ipst; 14666 14667 phyint = cur_ipsq->ipsq_phyint_list; 14668 cur_ipsq->ipsq_phyint_list = NULL; 14669 while (phyint != NULL) { 14670 next_phyint = phyint->phyint_ipsq_next; 14671 /* 14672 * 'created' will tell us whether the callee actually 14673 * created an ipsq. Lack of memory may force the callee 14674 * to return without creating an ipsq. 14675 */ 14676 if (phyint->phyint_groupname == NULL) { 14677 error = ill_split_to_own_ipsq(phyint, cur_ipsq, ipst); 14678 } else { 14679 error = ill_split_to_grp_ipsq(phyint, cur_ipsq, 14680 need_retry, ipst); 14681 } 14682 14683 switch (error) { 14684 case SPLIT_FAILED: 14685 need_retry = B_TRUE; 14686 /* FALLTHRU */ 14687 case SPLIT_NOT_NEEDED: 14688 /* 14689 * Keep it on the list. 14690 */ 14691 phyint->phyint_ipsq_next = cur_ipsq->ipsq_phyint_list; 14692 cur_ipsq->ipsq_phyint_list = phyint; 14693 break; 14694 case SPLIT_SUCCESS: 14695 break; 14696 default: 14697 ASSERT(0); 14698 } 14699 14700 phyint = next_phyint; 14701 } 14702 return (need_retry); 14703 } 14704 14705 /* 14706 * given an ipsq 'ipsq' lock all ills associated with this ipsq. 14707 * and return the ills in the list. This list will be 14708 * needed to unlock all the ills later on by the caller. 14709 * The <ill-ipsq> associations could change between the 14710 * lock and unlock. Hence the unlock can't traverse the 14711 * ipsq to get the list of ills. 14712 */ 14713 static int 14714 ill_lock_ipsq_ills(ipsq_t *ipsq, ill_t **list, int list_max) 14715 { 14716 int cnt = 0; 14717 phyint_t *phyint; 14718 ip_stack_t *ipst = ipsq->ipsq_ipst; 14719 14720 /* 14721 * The caller holds ill_g_lock to ensure that the ill memberships 14722 * of the ipsq don't change 14723 */ 14724 ASSERT(RW_LOCK_HELD(&ipst->ips_ill_g_lock)); 14725 14726 phyint = ipsq->ipsq_phyint_list; 14727 while (phyint != NULL) { 14728 if (phyint->phyint_illv4 != NULL) { 14729 ASSERT(cnt < list_max); 14730 list[cnt++] = phyint->phyint_illv4; 14731 } 14732 if (phyint->phyint_illv6 != NULL) { 14733 ASSERT(cnt < list_max); 14734 list[cnt++] = phyint->phyint_illv6; 14735 } 14736 phyint = phyint->phyint_ipsq_next; 14737 } 14738 ill_lock_ills(list, cnt); 14739 return (cnt); 14740 } 14741 14742 void 14743 ill_lock_ills(ill_t **list, int cnt) 14744 { 14745 int i; 14746 14747 if (cnt > 1) { 14748 boolean_t try_again; 14749 do { 14750 try_again = B_FALSE; 14751 for (i = 0; i < cnt - 1; i++) { 14752 if (list[i] < list[i + 1]) { 14753 ill_t *tmp; 14754 14755 /* swap the elements */ 14756 tmp = list[i]; 14757 list[i] = list[i + 1]; 14758 list[i + 1] = tmp; 14759 try_again = B_TRUE; 14760 } 14761 } 14762 } while (try_again); 14763 } 14764 14765 for (i = 0; i < cnt; i++) { 14766 if (i == 0) { 14767 if (list[i] != NULL) 14768 mutex_enter(&list[i]->ill_lock); 14769 else 14770 return; 14771 } else if ((list[i-1] != list[i]) && (list[i] != NULL)) { 14772 mutex_enter(&list[i]->ill_lock); 14773 } 14774 } 14775 } 14776 14777 void 14778 ill_unlock_ills(ill_t **list, int cnt) 14779 { 14780 int i; 14781 14782 for (i = 0; i < cnt; i++) { 14783 if ((i == 0) && (list[i] != NULL)) { 14784 mutex_exit(&list[i]->ill_lock); 14785 } else if ((list[i-1] != list[i]) && (list[i] != NULL)) { 14786 mutex_exit(&list[i]->ill_lock); 14787 } 14788 } 14789 } 14790 14791 /* 14792 * Merge all the ills from 1 ipsq group into another ipsq group. 14793 * The source ipsq group is specified by the ipsq associated with 14794 * 'from_ill'. The destination ipsq group is specified by the ipsq 14795 * associated with 'to_ill' or 'groupname' respectively. 14796 * Note that ipsq itself does not have a reference count mechanism 14797 * and functions don't look up an ipsq and pass it around. Instead 14798 * functions pass around an ill or groupname, and the ipsq is looked 14799 * up from the ill or groupname and the required operation performed 14800 * atomically with the lookup on the ipsq. 14801 */ 14802 static int 14803 ill_merge_groups(ill_t *from_ill, ill_t *to_ill, char *groupname, mblk_t *mp, 14804 queue_t *q) 14805 { 14806 ipsq_t *old_ipsq; 14807 ipsq_t *new_ipsq; 14808 ill_t **ill_list; 14809 int cnt; 14810 size_t ill_list_size; 14811 boolean_t became_writer_on_new_sq = B_FALSE; 14812 ip_stack_t *ipst = from_ill->ill_ipst; 14813 14814 ASSERT(to_ill == NULL || ipst == to_ill->ill_ipst); 14815 /* Exactly 1 of 'to_ill' and groupname can be specified. */ 14816 ASSERT((to_ill != NULL) ^ (groupname != NULL)); 14817 14818 /* 14819 * Need to hold ill_g_lock as writer and also the ill_lock to 14820 * change the <ill-ipsq> assoc of an ill. Need to hold the 14821 * ipsq_lock to prevent new messages from landing on an ipsq. 14822 */ 14823 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 14824 14825 old_ipsq = from_ill->ill_phyint->phyint_ipsq; 14826 if (groupname != NULL) 14827 new_ipsq = ip_ipsq_lookup(groupname, B_TRUE, NULL, ipst); 14828 else { 14829 new_ipsq = to_ill->ill_phyint->phyint_ipsq; 14830 } 14831 14832 ASSERT(old_ipsq != NULL && new_ipsq != NULL); 14833 14834 /* 14835 * both groups are on the same ipsq. 14836 */ 14837 if (old_ipsq == new_ipsq) { 14838 rw_exit(&ipst->ips_ill_g_lock); 14839 return (0); 14840 } 14841 14842 cnt = old_ipsq->ipsq_refs << 1; 14843 ill_list_size = cnt * sizeof (ill_t *); 14844 ill_list = kmem_zalloc(ill_list_size, KM_NOSLEEP); 14845 if (ill_list == NULL) { 14846 rw_exit(&ipst->ips_ill_g_lock); 14847 return (ENOMEM); 14848 } 14849 cnt = ill_lock_ipsq_ills(old_ipsq, ill_list, cnt); 14850 14851 /* Need ipsq lock to enque messages on new ipsq or to become writer */ 14852 mutex_enter(&new_ipsq->ipsq_lock); 14853 if ((new_ipsq->ipsq_writer == NULL && 14854 new_ipsq->ipsq_current_ipif == NULL) || 14855 (new_ipsq->ipsq_writer == curthread)) { 14856 new_ipsq->ipsq_writer = curthread; 14857 new_ipsq->ipsq_reentry_cnt++; 14858 became_writer_on_new_sq = B_TRUE; 14859 } 14860 14861 /* 14862 * We are holding ill_g_lock as writer and all the ill locks of 14863 * the old ipsq. So the old_ipsq can't be looked up, and hence no new 14864 * message can land up on the old ipsq even though we don't hold the 14865 * ipsq_lock of the old_ipsq. Now move all messages to the newipsq. 14866 */ 14867 ill_move_to_new_ipsq(old_ipsq, new_ipsq, mp, q); 14868 14869 /* 14870 * now change the ipsq of all ills in the 'old_ipsq' to 'new_ipsq'. 14871 * 'new_ipsq' has been looked up, and it can't change its <ill-ipsq> 14872 * assocs. till we release the ill_g_lock, and hence it can't vanish. 14873 */ 14874 ill_merge_ipsq(old_ipsq, new_ipsq, ipst); 14875 14876 /* 14877 * Mark the new ipsq as needing a split since it is currently 14878 * being shared by more than 1 IPMP group. The split will 14879 * occur at the end of ipsq_exit 14880 */ 14881 new_ipsq->ipsq_split = B_TRUE; 14882 14883 /* Now release all the locks */ 14884 mutex_exit(&new_ipsq->ipsq_lock); 14885 ill_unlock_ills(ill_list, cnt); 14886 rw_exit(&ipst->ips_ill_g_lock); 14887 14888 kmem_free(ill_list, ill_list_size); 14889 14890 /* 14891 * If we succeeded in becoming writer on the new ipsq, then 14892 * drain the new ipsq and start processing all enqueued messages 14893 * including the current ioctl we are processing which is either 14894 * a set groupname or failover/failback. 14895 */ 14896 if (became_writer_on_new_sq) 14897 ipsq_exit(new_ipsq, B_TRUE, B_TRUE); 14898 14899 /* 14900 * syncq has been changed and all the messages have been moved. 14901 */ 14902 mutex_enter(&old_ipsq->ipsq_lock); 14903 old_ipsq->ipsq_current_ipif = NULL; 14904 old_ipsq->ipsq_current_ioctl = 0; 14905 old_ipsq->ipsq_current_done = B_TRUE; 14906 mutex_exit(&old_ipsq->ipsq_lock); 14907 return (EINPROGRESS); 14908 } 14909 14910 /* 14911 * Delete and add the loopback copy and non-loopback copy of 14912 * the BROADCAST ire corresponding to ill and addr. Used to 14913 * group broadcast ires together when ill becomes part of 14914 * a group. 14915 * 14916 * This function is also called when ill is leaving the group 14917 * so that the ires belonging to the group gets re-grouped. 14918 */ 14919 static void 14920 ill_bcast_delete_and_add(ill_t *ill, ipaddr_t addr) 14921 { 14922 ire_t *ire, *nire, *nire_next, *ire_head = NULL; 14923 ire_t **ire_ptpn = &ire_head; 14924 ip_stack_t *ipst = ill->ill_ipst; 14925 14926 /* 14927 * The loopback and non-loopback IREs are inserted in the order in which 14928 * they're found, on the basis that they are correctly ordered (loopback 14929 * first). 14930 */ 14931 for (;;) { 14932 ire = ire_ctable_lookup(addr, 0, IRE_BROADCAST, ill->ill_ipif, 14933 ALL_ZONES, NULL, MATCH_IRE_TYPE | MATCH_IRE_ILL, ipst); 14934 if (ire == NULL) 14935 break; 14936 14937 /* 14938 * we are passing in KM_SLEEP because it is not easy to 14939 * go back to a sane state in case of memory failure. 14940 */ 14941 nire = kmem_cache_alloc(ire_cache, KM_SLEEP); 14942 ASSERT(nire != NULL); 14943 bzero(nire, sizeof (ire_t)); 14944 /* 14945 * Don't use ire_max_frag directly since we don't 14946 * hold on to 'ire' until we add the new ire 'nire' and 14947 * we don't want the new ire to have a dangling reference 14948 * to 'ire'. The ire_max_frag of a broadcast ire must 14949 * be in sync with the ipif_mtu of the associate ipif. 14950 * For eg. this happens as a result of SIOCSLIFNAME, 14951 * SIOCSLIFLNKINFO or a DL_NOTE_SDU_SIZE inititated by 14952 * the driver. A change in ire_max_frag triggered as 14953 * as a result of path mtu discovery, or due to an 14954 * IP_IOC_IRE_ADVISE_NOREPLY from the transport or due a 14955 * route change -mtu command does not apply to broadcast ires. 14956 * 14957 * XXX We need a recovery strategy here if ire_init fails 14958 */ 14959 if (ire_init(nire, 14960 (uchar_t *)&ire->ire_addr, 14961 (uchar_t *)&ire->ire_mask, 14962 (uchar_t *)&ire->ire_src_addr, 14963 (uchar_t *)&ire->ire_gateway_addr, 14964 ire->ire_stq == NULL ? &ip_loopback_mtu : 14965 &ire->ire_ipif->ipif_mtu, 14966 ire->ire_nce, 14967 ire->ire_rfq, 14968 ire->ire_stq, 14969 ire->ire_type, 14970 ire->ire_ipif, 14971 ire->ire_cmask, 14972 ire->ire_phandle, 14973 ire->ire_ihandle, 14974 ire->ire_flags, 14975 &ire->ire_uinfo, 14976 NULL, 14977 NULL, 14978 ipst) == NULL) { 14979 cmn_err(CE_PANIC, "ire_init() failed"); 14980 } 14981 ire_delete(ire); 14982 ire_refrele(ire); 14983 14984 /* 14985 * The newly created IREs are inserted at the tail of the list 14986 * starting with ire_head. As we've just allocated them no one 14987 * knows about them so it's safe. 14988 */ 14989 *ire_ptpn = nire; 14990 ire_ptpn = &nire->ire_next; 14991 } 14992 14993 for (nire = ire_head; nire != NULL; nire = nire_next) { 14994 int error; 14995 ire_t *oire; 14996 /* unlink the IRE from our list before calling ire_add() */ 14997 nire_next = nire->ire_next; 14998 nire->ire_next = NULL; 14999 15000 /* ire_add adds the ire at the right place in the list */ 15001 oire = nire; 15002 error = ire_add(&nire, NULL, NULL, NULL, B_FALSE); 15003 ASSERT(error == 0); 15004 ASSERT(oire == nire); 15005 ire_refrele(nire); /* Held in ire_add */ 15006 } 15007 } 15008 15009 /* 15010 * This function is usually called when an ill is inserted in 15011 * a group and all the ipifs are already UP. As all the ipifs 15012 * are already UP, the broadcast ires have already been created 15013 * and been inserted. But, ire_add_v4 would not have grouped properly. 15014 * We need to re-group for the benefit of ip_wput_ire which 15015 * expects BROADCAST ires to be grouped properly to avoid sending 15016 * more than one copy of the broadcast packet per group. 15017 * 15018 * NOTE : We don't check for ill_ipif_up_count to be non-zero here 15019 * because when ipif_up_done ends up calling this, ires have 15020 * already been added before illgrp_insert i.e before ill_group 15021 * has been initialized. 15022 */ 15023 static void 15024 ill_group_bcast_for_xmit(ill_t *ill) 15025 { 15026 ill_group_t *illgrp; 15027 ipif_t *ipif; 15028 ipaddr_t addr; 15029 ipaddr_t net_mask; 15030 ipaddr_t subnet_netmask; 15031 15032 illgrp = ill->ill_group; 15033 15034 /* 15035 * This function is called even when an ill is deleted from 15036 * the group. Hence, illgrp could be null. 15037 */ 15038 if (illgrp != NULL && illgrp->illgrp_ill_count == 1) 15039 return; 15040 15041 /* 15042 * Delete all the BROADCAST ires matching this ill and add 15043 * them back. This time, ire_add_v4 should take care of 15044 * grouping them with others because ill is part of the 15045 * group. 15046 */ 15047 ill_bcast_delete_and_add(ill, 0); 15048 ill_bcast_delete_and_add(ill, INADDR_BROADCAST); 15049 15050 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 15051 15052 if ((ipif->ipif_lcl_addr != INADDR_ANY) && 15053 !(ipif->ipif_flags & IPIF_NOLOCAL)) { 15054 net_mask = ip_net_mask(ipif->ipif_lcl_addr); 15055 } else { 15056 net_mask = htonl(IN_CLASSA_NET); 15057 } 15058 addr = net_mask & ipif->ipif_subnet; 15059 ill_bcast_delete_and_add(ill, addr); 15060 ill_bcast_delete_and_add(ill, ~net_mask | addr); 15061 15062 subnet_netmask = ipif->ipif_net_mask; 15063 addr = ipif->ipif_subnet; 15064 ill_bcast_delete_and_add(ill, addr); 15065 ill_bcast_delete_and_add(ill, ~subnet_netmask | addr); 15066 } 15067 } 15068 15069 /* 15070 * This function is called from illgrp_delete when ill is being deleted 15071 * from the group. 15072 * 15073 * As ill is not there in the group anymore, any address belonging 15074 * to this ill should be cleared of IRE_MARK_NORECV. 15075 */ 15076 static void 15077 ill_clear_bcast_mark(ill_t *ill, ipaddr_t addr) 15078 { 15079 ire_t *ire; 15080 irb_t *irb; 15081 ip_stack_t *ipst = ill->ill_ipst; 15082 15083 ASSERT(ill->ill_group == NULL); 15084 15085 ire = ire_ctable_lookup(addr, 0, IRE_BROADCAST, ill->ill_ipif, 15086 ALL_ZONES, NULL, MATCH_IRE_TYPE | MATCH_IRE_ILL, ipst); 15087 15088 if (ire != NULL) { 15089 /* 15090 * IPMP and plumbing operations are serialized on the ipsq, so 15091 * no one will insert or delete a broadcast ire under our feet. 15092 */ 15093 irb = ire->ire_bucket; 15094 rw_enter(&irb->irb_lock, RW_READER); 15095 ire_refrele(ire); 15096 15097 for (; ire != NULL; ire = ire->ire_next) { 15098 if (ire->ire_addr != addr) 15099 break; 15100 if (ire_to_ill(ire) != ill) 15101 continue; 15102 15103 ASSERT(!(ire->ire_marks & IRE_MARK_CONDEMNED)); 15104 ire->ire_marks &= ~IRE_MARK_NORECV; 15105 } 15106 rw_exit(&irb->irb_lock); 15107 } 15108 } 15109 15110 /* 15111 * This function must be called only after the broadcast ires 15112 * have been grouped together. For a given address addr, nominate 15113 * only one of the ires whose interface is not FAILED or OFFLINE. 15114 * 15115 * This is also called when an ipif goes down, so that we can nominate 15116 * a different ire with the same address for receiving. 15117 */ 15118 static void 15119 ill_mark_bcast(ill_group_t *illgrp, ipaddr_t addr, ip_stack_t *ipst) 15120 { 15121 irb_t *irb; 15122 ire_t *ire; 15123 ire_t *ire1; 15124 ire_t *save_ire; 15125 ire_t **irep = NULL; 15126 boolean_t first = B_TRUE; 15127 ire_t *clear_ire = NULL; 15128 ire_t *start_ire = NULL; 15129 ire_t *new_lb_ire; 15130 ire_t *new_nlb_ire; 15131 boolean_t new_lb_ire_used = B_FALSE; 15132 boolean_t new_nlb_ire_used = B_FALSE; 15133 uint64_t match_flags; 15134 uint64_t phyi_flags; 15135 boolean_t fallback = B_FALSE; 15136 uint_t max_frag; 15137 15138 ire = ire_ctable_lookup(addr, 0, IRE_BROADCAST, NULL, ALL_ZONES, 15139 NULL, MATCH_IRE_TYPE, ipst); 15140 /* 15141 * We may not be able to find some ires if a previous 15142 * ire_create failed. This happens when an ipif goes 15143 * down and we are unable to create BROADCAST ires due 15144 * to memory failure. Thus, we have to check for NULL 15145 * below. This should handle the case for LOOPBACK, 15146 * POINTOPOINT and interfaces with some POINTOPOINT 15147 * logicals for which there are no BROADCAST ires. 15148 */ 15149 if (ire == NULL) 15150 return; 15151 /* 15152 * Currently IRE_BROADCASTS are deleted when an ipif 15153 * goes down which runs exclusively. Thus, setting 15154 * IRE_MARK_RCVD should not race with ire_delete marking 15155 * IRE_MARK_CONDEMNED. We grab the lock below just to 15156 * be consistent with other parts of the code that walks 15157 * a given bucket. 15158 */ 15159 save_ire = ire; 15160 irb = ire->ire_bucket; 15161 new_lb_ire = kmem_cache_alloc(ire_cache, KM_NOSLEEP); 15162 if (new_lb_ire == NULL) { 15163 ire_refrele(ire); 15164 return; 15165 } 15166 new_nlb_ire = kmem_cache_alloc(ire_cache, KM_NOSLEEP); 15167 if (new_nlb_ire == NULL) { 15168 ire_refrele(ire); 15169 kmem_cache_free(ire_cache, new_lb_ire); 15170 return; 15171 } 15172 IRB_REFHOLD(irb); 15173 rw_enter(&irb->irb_lock, RW_WRITER); 15174 /* 15175 * Get to the first ire matching the address and the 15176 * group. If the address does not match we are done 15177 * as we could not find the IRE. If the address matches 15178 * we should get to the first one matching the group. 15179 */ 15180 while (ire != NULL) { 15181 if (ire->ire_addr != addr || 15182 ire->ire_ipif->ipif_ill->ill_group == illgrp) { 15183 break; 15184 } 15185 ire = ire->ire_next; 15186 } 15187 match_flags = PHYI_FAILED | PHYI_INACTIVE; 15188 start_ire = ire; 15189 redo: 15190 while (ire != NULL && ire->ire_addr == addr && 15191 ire->ire_ipif->ipif_ill->ill_group == illgrp) { 15192 /* 15193 * The first ire for any address within a group 15194 * should always be the one with IRE_MARK_NORECV cleared 15195 * so that ip_wput_ire can avoid searching for one. 15196 * Note down the insertion point which will be used 15197 * later. 15198 */ 15199 if (first && (irep == NULL)) 15200 irep = ire->ire_ptpn; 15201 /* 15202 * PHYI_FAILED is set when the interface fails. 15203 * This interface might have become good, but the 15204 * daemon has not yet detected. We should still 15205 * not receive on this. PHYI_OFFLINE should never 15206 * be picked as this has been offlined and soon 15207 * be removed. 15208 */ 15209 phyi_flags = ire->ire_ipif->ipif_ill->ill_phyint->phyint_flags; 15210 if (phyi_flags & PHYI_OFFLINE) { 15211 ire->ire_marks |= IRE_MARK_NORECV; 15212 ire = ire->ire_next; 15213 continue; 15214 } 15215 if (phyi_flags & match_flags) { 15216 ire->ire_marks |= IRE_MARK_NORECV; 15217 ire = ire->ire_next; 15218 if ((phyi_flags & (PHYI_FAILED | PHYI_INACTIVE)) == 15219 PHYI_INACTIVE) { 15220 fallback = B_TRUE; 15221 } 15222 continue; 15223 } 15224 if (first) { 15225 /* 15226 * We will move this to the front of the list later 15227 * on. 15228 */ 15229 clear_ire = ire; 15230 ire->ire_marks &= ~IRE_MARK_NORECV; 15231 } else { 15232 ire->ire_marks |= IRE_MARK_NORECV; 15233 } 15234 first = B_FALSE; 15235 ire = ire->ire_next; 15236 } 15237 /* 15238 * If we never nominated anybody, try nominating at least 15239 * an INACTIVE, if we found one. Do it only once though. 15240 */ 15241 if (first && (match_flags == (PHYI_FAILED | PHYI_INACTIVE)) && 15242 fallback) { 15243 match_flags = PHYI_FAILED; 15244 ire = start_ire; 15245 irep = NULL; 15246 goto redo; 15247 } 15248 ire_refrele(save_ire); 15249 15250 /* 15251 * irep non-NULL indicates that we entered the while loop 15252 * above. If clear_ire is at the insertion point, we don't 15253 * have to do anything. clear_ire will be NULL if all the 15254 * interfaces are failed. 15255 * 15256 * We cannot unlink and reinsert the ire at the right place 15257 * in the list since there can be other walkers of this bucket. 15258 * Instead we delete and recreate the ire 15259 */ 15260 if (clear_ire != NULL && irep != NULL && *irep != clear_ire) { 15261 ire_t *clear_ire_stq = NULL; 15262 15263 bzero(new_lb_ire, sizeof (ire_t)); 15264 /* XXX We need a recovery strategy here. */ 15265 if (ire_init(new_lb_ire, 15266 (uchar_t *)&clear_ire->ire_addr, 15267 (uchar_t *)&clear_ire->ire_mask, 15268 (uchar_t *)&clear_ire->ire_src_addr, 15269 (uchar_t *)&clear_ire->ire_gateway_addr, 15270 &clear_ire->ire_max_frag, 15271 NULL, /* let ire_nce_init derive the resolver info */ 15272 clear_ire->ire_rfq, 15273 clear_ire->ire_stq, 15274 clear_ire->ire_type, 15275 clear_ire->ire_ipif, 15276 clear_ire->ire_cmask, 15277 clear_ire->ire_phandle, 15278 clear_ire->ire_ihandle, 15279 clear_ire->ire_flags, 15280 &clear_ire->ire_uinfo, 15281 NULL, 15282 NULL, 15283 ipst) == NULL) 15284 cmn_err(CE_PANIC, "ire_init() failed"); 15285 if (clear_ire->ire_stq == NULL) { 15286 ire_t *ire_next = clear_ire->ire_next; 15287 if (ire_next != NULL && 15288 ire_next->ire_stq != NULL && 15289 ire_next->ire_addr == clear_ire->ire_addr && 15290 ire_next->ire_ipif->ipif_ill == 15291 clear_ire->ire_ipif->ipif_ill) { 15292 clear_ire_stq = ire_next; 15293 15294 bzero(new_nlb_ire, sizeof (ire_t)); 15295 /* XXX We need a recovery strategy here. */ 15296 if (ire_init(new_nlb_ire, 15297 (uchar_t *)&clear_ire_stq->ire_addr, 15298 (uchar_t *)&clear_ire_stq->ire_mask, 15299 (uchar_t *)&clear_ire_stq->ire_src_addr, 15300 (uchar_t *)&clear_ire_stq->ire_gateway_addr, 15301 &clear_ire_stq->ire_max_frag, 15302 NULL, 15303 clear_ire_stq->ire_rfq, 15304 clear_ire_stq->ire_stq, 15305 clear_ire_stq->ire_type, 15306 clear_ire_stq->ire_ipif, 15307 clear_ire_stq->ire_cmask, 15308 clear_ire_stq->ire_phandle, 15309 clear_ire_stq->ire_ihandle, 15310 clear_ire_stq->ire_flags, 15311 &clear_ire_stq->ire_uinfo, 15312 NULL, 15313 NULL, 15314 ipst) == NULL) 15315 cmn_err(CE_PANIC, "ire_init() failed"); 15316 } 15317 } 15318 15319 /* 15320 * Delete the ire. We can't call ire_delete() since 15321 * we are holding the bucket lock. We can't release the 15322 * bucket lock since we can't allow irep to change. So just 15323 * mark it CONDEMNED. The IRB_REFRELE will delete the 15324 * ire from the list and do the refrele. 15325 */ 15326 clear_ire->ire_marks |= IRE_MARK_CONDEMNED; 15327 irb->irb_marks |= IRB_MARK_CONDEMNED; 15328 15329 if (clear_ire_stq != NULL && clear_ire_stq->ire_nce != NULL) { 15330 nce_fastpath_list_delete(clear_ire_stq->ire_nce); 15331 clear_ire_stq->ire_marks |= IRE_MARK_CONDEMNED; 15332 } 15333 15334 /* 15335 * Also take care of otherfields like ib/ob pkt count 15336 * etc. Need to dup them. ditto in ill_bcast_delete_and_add 15337 */ 15338 15339 /* Set the max_frag before adding the ire */ 15340 max_frag = *new_lb_ire->ire_max_fragp; 15341 new_lb_ire->ire_max_fragp = NULL; 15342 new_lb_ire->ire_max_frag = max_frag; 15343 15344 /* Add the new ire's. Insert at *irep */ 15345 new_lb_ire->ire_bucket = clear_ire->ire_bucket; 15346 ire1 = *irep; 15347 if (ire1 != NULL) 15348 ire1->ire_ptpn = &new_lb_ire->ire_next; 15349 new_lb_ire->ire_next = ire1; 15350 /* Link the new one in. */ 15351 new_lb_ire->ire_ptpn = irep; 15352 membar_producer(); 15353 *irep = new_lb_ire; 15354 new_lb_ire_used = B_TRUE; 15355 BUMP_IRE_STATS(ipst->ips_ire_stats_v4, ire_stats_inserted); 15356 new_lb_ire->ire_bucket->irb_ire_cnt++; 15357 DTRACE_PROBE3(ipif__incr__cnt, (ipif_t *), new_lb_ire->ire_ipif, 15358 (char *), "ire", (void *), new_lb_ire); 15359 new_lb_ire->ire_ipif->ipif_ire_cnt++; 15360 15361 if (clear_ire_stq != NULL) { 15362 /* Set the max_frag before adding the ire */ 15363 max_frag = *new_nlb_ire->ire_max_fragp; 15364 new_nlb_ire->ire_max_fragp = NULL; 15365 new_nlb_ire->ire_max_frag = max_frag; 15366 15367 new_nlb_ire->ire_bucket = clear_ire->ire_bucket; 15368 irep = &new_lb_ire->ire_next; 15369 /* Add the new ire. Insert at *irep */ 15370 ire1 = *irep; 15371 if (ire1 != NULL) 15372 ire1->ire_ptpn = &new_nlb_ire->ire_next; 15373 new_nlb_ire->ire_next = ire1; 15374 /* Link the new one in. */ 15375 new_nlb_ire->ire_ptpn = irep; 15376 membar_producer(); 15377 *irep = new_nlb_ire; 15378 new_nlb_ire_used = B_TRUE; 15379 BUMP_IRE_STATS(ipst->ips_ire_stats_v4, 15380 ire_stats_inserted); 15381 new_nlb_ire->ire_bucket->irb_ire_cnt++; 15382 DTRACE_PROBE3(ipif__incr__cnt, 15383 (ipif_t *), new_nlb_ire->ire_ipif, 15384 (char *), "ire", (void *), new_nlb_ire); 15385 new_nlb_ire->ire_ipif->ipif_ire_cnt++; 15386 DTRACE_PROBE3(ill__incr__cnt, 15387 (ill_t *), new_nlb_ire->ire_stq->q_ptr, 15388 (char *), "ire", (void *), new_nlb_ire); 15389 ((ill_t *)(new_nlb_ire->ire_stq->q_ptr))->ill_ire_cnt++; 15390 } 15391 } 15392 rw_exit(&irb->irb_lock); 15393 if (!new_lb_ire_used) 15394 kmem_cache_free(ire_cache, new_lb_ire); 15395 if (!new_nlb_ire_used) 15396 kmem_cache_free(ire_cache, new_nlb_ire); 15397 IRB_REFRELE(irb); 15398 } 15399 15400 /* 15401 * Whenever an ipif goes down we have to renominate a different 15402 * broadcast ire to receive. Whenever an ipif comes up, we need 15403 * to make sure that we have only one nominated to receive. 15404 */ 15405 static void 15406 ipif_renominate_bcast(ipif_t *ipif) 15407 { 15408 ill_t *ill = ipif->ipif_ill; 15409 ipaddr_t subnet_addr; 15410 ipaddr_t net_addr; 15411 ipaddr_t net_mask = 0; 15412 ipaddr_t subnet_netmask; 15413 ipaddr_t addr; 15414 ill_group_t *illgrp; 15415 ip_stack_t *ipst = ill->ill_ipst; 15416 15417 illgrp = ill->ill_group; 15418 /* 15419 * If this is the last ipif going down, it might take 15420 * the ill out of the group. In that case ipif_down -> 15421 * illgrp_delete takes care of doing the nomination. 15422 * ipif_down does not call for this case. 15423 */ 15424 ASSERT(illgrp != NULL); 15425 15426 /* There could not have been any ires associated with this */ 15427 if (ipif->ipif_subnet == 0) 15428 return; 15429 15430 ill_mark_bcast(illgrp, 0, ipst); 15431 ill_mark_bcast(illgrp, INADDR_BROADCAST, ipst); 15432 15433 if ((ipif->ipif_lcl_addr != INADDR_ANY) && 15434 !(ipif->ipif_flags & IPIF_NOLOCAL)) { 15435 net_mask = ip_net_mask(ipif->ipif_lcl_addr); 15436 } else { 15437 net_mask = htonl(IN_CLASSA_NET); 15438 } 15439 addr = net_mask & ipif->ipif_subnet; 15440 ill_mark_bcast(illgrp, addr, ipst); 15441 15442 net_addr = ~net_mask | addr; 15443 ill_mark_bcast(illgrp, net_addr, ipst); 15444 15445 subnet_netmask = ipif->ipif_net_mask; 15446 addr = ipif->ipif_subnet; 15447 ill_mark_bcast(illgrp, addr, ipst); 15448 15449 subnet_addr = ~subnet_netmask | addr; 15450 ill_mark_bcast(illgrp, subnet_addr, ipst); 15451 } 15452 15453 /* 15454 * Whenever we form or delete ill groups, we need to nominate one set of 15455 * BROADCAST ires for receiving in the group. 15456 * 15457 * 1) When ipif_up_done -> ilgrp_insert calls this function, BROADCAST ires 15458 * have been added, but ill_ipif_up_count is 0. Thus, we don't assert 15459 * for ill_ipif_up_count to be non-zero. This is the only case where 15460 * ill_ipif_up_count is zero and we would still find the ires. 15461 * 15462 * 2) ip_sioctl_group_name/ifgrp_insert calls this function, at least one 15463 * ipif is UP and we just have to do the nomination. 15464 * 15465 * 3) When ill_handoff_responsibility calls us, some ill has been removed 15466 * from the group. So, we have to do the nomination. 15467 * 15468 * Because of (3), there could be just one ill in the group. But we have 15469 * to nominate still as IRE_MARK_NORCV may have been marked on this. 15470 * Thus, this function does not optimize when there is only one ill as 15471 * it is not correct for (3). 15472 */ 15473 static void 15474 ill_nominate_bcast_rcv(ill_group_t *illgrp) 15475 { 15476 ill_t *ill; 15477 ipif_t *ipif; 15478 ipaddr_t subnet_addr; 15479 ipaddr_t prev_subnet_addr = 0; 15480 ipaddr_t net_addr; 15481 ipaddr_t prev_net_addr = 0; 15482 ipaddr_t net_mask = 0; 15483 ipaddr_t subnet_netmask; 15484 ipaddr_t addr; 15485 ip_stack_t *ipst; 15486 15487 /* 15488 * When the last memeber is leaving, there is nothing to 15489 * nominate. 15490 */ 15491 if (illgrp->illgrp_ill_count == 0) { 15492 ASSERT(illgrp->illgrp_ill == NULL); 15493 return; 15494 } 15495 15496 ill = illgrp->illgrp_ill; 15497 ASSERT(!ill->ill_isv6); 15498 ipst = ill->ill_ipst; 15499 /* 15500 * We assume that ires with same address and belonging to the 15501 * same group, has been grouped together. Nominating a *single* 15502 * ill in the group for sending and receiving broadcast is done 15503 * by making sure that the first BROADCAST ire (which will be 15504 * the one returned by ire_ctable_lookup for ip_rput and the 15505 * one that will be used in ip_wput_ire) will be the one that 15506 * will not have IRE_MARK_NORECV set. 15507 * 15508 * 1) ip_rput checks and discards packets received on ires marked 15509 * with IRE_MARK_NORECV. Thus, we don't send up duplicate 15510 * broadcast packets. We need to clear IRE_MARK_NORECV on the 15511 * first ire in the group for every broadcast address in the group. 15512 * ip_rput will accept packets only on the first ire i.e only 15513 * one copy of the ill. 15514 * 15515 * 2) ip_wput_ire needs to send out just one copy of the broadcast 15516 * packet for the whole group. It needs to send out on the ill 15517 * whose ire has not been marked with IRE_MARK_NORECV. If it sends 15518 * on the one marked with IRE_MARK_NORECV, ip_rput will accept 15519 * the copy echoed back on other port where the ire is not marked 15520 * with IRE_MARK_NORECV. 15521 * 15522 * Note that we just need to have the first IRE either loopback or 15523 * non-loopback (either of them may not exist if ire_create failed 15524 * during ipif_down) with IRE_MARK_NORECV not set. ip_rput will 15525 * always hit the first one and hence will always accept one copy. 15526 * 15527 * We have a broadcast ire per ill for all the unique prefixes 15528 * hosted on that ill. As we don't have a way of knowing the 15529 * unique prefixes on a given ill and hence in the whole group, 15530 * we just call ill_mark_bcast on all the prefixes that exist 15531 * in the group. For the common case of one prefix, the code 15532 * below optimizes by remebering the last address used for 15533 * markng. In the case of multiple prefixes, this will still 15534 * optimize depending the order of prefixes. 15535 * 15536 * The only unique address across the whole group is 0.0.0.0 and 15537 * 255.255.255.255 and thus we call only once. ill_mark_bcast enables 15538 * the first ire in the bucket for receiving and disables the 15539 * others. 15540 */ 15541 ill_mark_bcast(illgrp, 0, ipst); 15542 ill_mark_bcast(illgrp, INADDR_BROADCAST, ipst); 15543 for (; ill != NULL; ill = ill->ill_group_next) { 15544 15545 for (ipif = ill->ill_ipif; ipif != NULL; 15546 ipif = ipif->ipif_next) { 15547 15548 if (!(ipif->ipif_flags & IPIF_UP) || 15549 ipif->ipif_subnet == 0) { 15550 continue; 15551 } 15552 if ((ipif->ipif_lcl_addr != INADDR_ANY) && 15553 !(ipif->ipif_flags & IPIF_NOLOCAL)) { 15554 net_mask = ip_net_mask(ipif->ipif_lcl_addr); 15555 } else { 15556 net_mask = htonl(IN_CLASSA_NET); 15557 } 15558 addr = net_mask & ipif->ipif_subnet; 15559 if (prev_net_addr == 0 || prev_net_addr != addr) { 15560 ill_mark_bcast(illgrp, addr, ipst); 15561 net_addr = ~net_mask | addr; 15562 ill_mark_bcast(illgrp, net_addr, ipst); 15563 } 15564 prev_net_addr = addr; 15565 15566 subnet_netmask = ipif->ipif_net_mask; 15567 addr = ipif->ipif_subnet; 15568 if (prev_subnet_addr == 0 || 15569 prev_subnet_addr != addr) { 15570 ill_mark_bcast(illgrp, addr, ipst); 15571 subnet_addr = ~subnet_netmask | addr; 15572 ill_mark_bcast(illgrp, subnet_addr, ipst); 15573 } 15574 prev_subnet_addr = addr; 15575 } 15576 } 15577 } 15578 15579 /* 15580 * This function is called while forming ill groups. 15581 * 15582 * Currently, we handle only allmulti groups. We want to join 15583 * allmulti on only one of the ills in the groups. In future, 15584 * when we have link aggregation, we may have to join normal 15585 * multicast groups on multiple ills as switch does inbound load 15586 * balancing. Following are the functions that calls this 15587 * function : 15588 * 15589 * 1) ill_recover_multicast : Interface is coming back UP. 15590 * When the first ipif comes back UP, ipif_up_done/ipif_up_done_v6 15591 * will call ill_recover_multicast to recover all the multicast 15592 * groups. We need to make sure that only one member is joined 15593 * in the ill group. 15594 * 15595 * 2) ip_addmulti/ip_addmulti_v6 : ill groups has already been formed. 15596 * Somebody is joining allmulti. We need to make sure that only one 15597 * member is joined in the group. 15598 * 15599 * 3) illgrp_insert : If allmulti has already joined, we need to make 15600 * sure that only one member is joined in the group. 15601 * 15602 * 4) ip_delmulti/ip_delmulti_v6 : Somebody in the group is leaving 15603 * allmulti who we have nominated. We need to pick someother ill. 15604 * 15605 * 5) illgrp_delete : The ill we nominated is leaving the group, 15606 * we need to pick a new ill to join the group. 15607 * 15608 * For (1), (2), (5) - we just have to check whether there is 15609 * a good ill joined in the group. If we could not find any ills 15610 * joined the group, we should join. 15611 * 15612 * For (4), the one that was nominated to receive, left the group. 15613 * There could be nobody joined in the group when this function is 15614 * called. 15615 * 15616 * For (3) - we need to explicitly check whether there are multiple 15617 * ills joined in the group. 15618 * 15619 * For simplicity, we don't differentiate any of the above cases. We 15620 * just leave the group if it is joined on any of them and join on 15621 * the first good ill. 15622 */ 15623 int 15624 ill_nominate_mcast_rcv(ill_group_t *illgrp) 15625 { 15626 ilm_t *ilm; 15627 ill_t *ill; 15628 ill_t *fallback_inactive_ill = NULL; 15629 ill_t *fallback_failed_ill = NULL; 15630 int ret = 0; 15631 15632 /* 15633 * Leave the allmulti on all the ills and start fresh. 15634 */ 15635 for (ill = illgrp->illgrp_ill; ill != NULL; 15636 ill = ill->ill_group_next) { 15637 if (ill->ill_join_allmulti) 15638 (void) ip_leave_allmulti(ill->ill_ipif); 15639 } 15640 15641 /* 15642 * Choose a good ill. Fallback to inactive or failed if 15643 * none available. We need to fallback to FAILED in the 15644 * case where we have 2 interfaces in a group - where 15645 * one of them is failed and another is a good one and 15646 * the good one (not marked inactive) is leaving the group. 15647 */ 15648 ret = 0; 15649 for (ill = illgrp->illgrp_ill; ill != NULL; 15650 ill = ill->ill_group_next) { 15651 /* Never pick an offline interface */ 15652 if (ill->ill_phyint->phyint_flags & PHYI_OFFLINE) 15653 continue; 15654 15655 if (ill->ill_phyint->phyint_flags & PHYI_FAILED) { 15656 fallback_failed_ill = ill; 15657 continue; 15658 } 15659 if (ill->ill_phyint->phyint_flags & PHYI_INACTIVE) { 15660 fallback_inactive_ill = ill; 15661 continue; 15662 } 15663 for (ilm = ill->ill_ilm; ilm != NULL; ilm = ilm->ilm_next) { 15664 if (IN6_IS_ADDR_UNSPECIFIED(&ilm->ilm_v6addr)) { 15665 ret = ip_join_allmulti(ill->ill_ipif); 15666 /* 15667 * ip_join_allmulti can fail because of memory 15668 * failures. So, make sure we join at least 15669 * on one ill. 15670 */ 15671 if (ill->ill_join_allmulti) 15672 return (0); 15673 } 15674 } 15675 } 15676 if (ret != 0) { 15677 /* 15678 * If we tried nominating above and failed to do so, 15679 * return error. We might have tried multiple times. 15680 * But, return the latest error. 15681 */ 15682 return (ret); 15683 } 15684 if ((ill = fallback_inactive_ill) != NULL) { 15685 for (ilm = ill->ill_ilm; ilm != NULL; ilm = ilm->ilm_next) { 15686 if (IN6_IS_ADDR_UNSPECIFIED(&ilm->ilm_v6addr)) { 15687 ret = ip_join_allmulti(ill->ill_ipif); 15688 return (ret); 15689 } 15690 } 15691 } else if ((ill = fallback_failed_ill) != NULL) { 15692 for (ilm = ill->ill_ilm; ilm != NULL; ilm = ilm->ilm_next) { 15693 if (IN6_IS_ADDR_UNSPECIFIED(&ilm->ilm_v6addr)) { 15694 ret = ip_join_allmulti(ill->ill_ipif); 15695 return (ret); 15696 } 15697 } 15698 } 15699 return (0); 15700 } 15701 15702 /* 15703 * This function is called from illgrp_delete after it is 15704 * deleted from the group to reschedule responsibilities 15705 * to a different ill. 15706 */ 15707 static void 15708 ill_handoff_responsibility(ill_t *ill, ill_group_t *illgrp) 15709 { 15710 ilm_t *ilm; 15711 ipif_t *ipif; 15712 ipaddr_t subnet_addr; 15713 ipaddr_t net_addr; 15714 ipaddr_t net_mask = 0; 15715 ipaddr_t subnet_netmask; 15716 ipaddr_t addr; 15717 ip_stack_t *ipst = ill->ill_ipst; 15718 15719 ASSERT(ill->ill_group == NULL); 15720 /* 15721 * Broadcast Responsibility: 15722 * 15723 * 1. If this ill has been nominated for receiving broadcast 15724 * packets, we need to find a new one. Before we find a new 15725 * one, we need to re-group the ires that are part of this new 15726 * group (assumed by ill_nominate_bcast_rcv). We do this by 15727 * calling ill_group_bcast_for_xmit(ill) which will do the right 15728 * thing for us. 15729 * 15730 * 2. If this ill was not nominated for receiving broadcast 15731 * packets, we need to clear the IRE_MARK_NORECV flag 15732 * so that we continue to send up broadcast packets. 15733 */ 15734 if (!ill->ill_isv6) { 15735 /* 15736 * Case 1 above : No optimization here. Just redo the 15737 * nomination. 15738 */ 15739 ill_group_bcast_for_xmit(ill); 15740 ill_nominate_bcast_rcv(illgrp); 15741 15742 /* 15743 * Case 2 above : Lookup and clear IRE_MARK_NORECV. 15744 */ 15745 ill_clear_bcast_mark(ill, 0); 15746 ill_clear_bcast_mark(ill, INADDR_BROADCAST); 15747 15748 for (ipif = ill->ill_ipif; ipif != NULL; 15749 ipif = ipif->ipif_next) { 15750 15751 if (!(ipif->ipif_flags & IPIF_UP) || 15752 ipif->ipif_subnet == 0) { 15753 continue; 15754 } 15755 if ((ipif->ipif_lcl_addr != INADDR_ANY) && 15756 !(ipif->ipif_flags & IPIF_NOLOCAL)) { 15757 net_mask = ip_net_mask(ipif->ipif_lcl_addr); 15758 } else { 15759 net_mask = htonl(IN_CLASSA_NET); 15760 } 15761 addr = net_mask & ipif->ipif_subnet; 15762 ill_clear_bcast_mark(ill, addr); 15763 15764 net_addr = ~net_mask | addr; 15765 ill_clear_bcast_mark(ill, net_addr); 15766 15767 subnet_netmask = ipif->ipif_net_mask; 15768 addr = ipif->ipif_subnet; 15769 ill_clear_bcast_mark(ill, addr); 15770 15771 subnet_addr = ~subnet_netmask | addr; 15772 ill_clear_bcast_mark(ill, subnet_addr); 15773 } 15774 } 15775 15776 /* 15777 * Multicast Responsibility. 15778 * 15779 * If we have joined allmulti on this one, find a new member 15780 * in the group to join allmulti. As this ill is already part 15781 * of allmulti, we don't have to join on this one. 15782 * 15783 * If we have not joined allmulti on this one, there is no 15784 * responsibility to handoff. But we need to take new 15785 * responsibility i.e, join allmulti on this one if we need 15786 * to. 15787 */ 15788 if (ill->ill_join_allmulti) { 15789 (void) ill_nominate_mcast_rcv(illgrp); 15790 } else { 15791 for (ilm = ill->ill_ilm; ilm != NULL; ilm = ilm->ilm_next) { 15792 if (IN6_IS_ADDR_UNSPECIFIED(&ilm->ilm_v6addr)) { 15793 (void) ip_join_allmulti(ill->ill_ipif); 15794 break; 15795 } 15796 } 15797 } 15798 15799 /* 15800 * We intentionally do the flushing of IRE_CACHES only matching 15801 * on the ill and not on groups. Note that we are already deleted 15802 * from the group. 15803 * 15804 * This will make sure that all IRE_CACHES whose stq is pointing 15805 * at ill_wq or ire_ipif->ipif_ill pointing at this ill will get 15806 * deleted and IRE_CACHES that are not pointing at this ill will 15807 * be left alone. 15808 */ 15809 if (ill->ill_isv6) { 15810 ire_walk_ill_v6(MATCH_IRE_ILL | MATCH_IRE_TYPE, 15811 IRE_CACHE, illgrp_cache_delete, (char *)ill, ill); 15812 } else { 15813 ire_walk_ill_v4(MATCH_IRE_ILL | MATCH_IRE_TYPE, 15814 IRE_CACHE, illgrp_cache_delete, (char *)ill, ill); 15815 } 15816 15817 /* 15818 * Some conn may have cached one of the IREs deleted above. By removing 15819 * the ire reference, we clean up the extra reference to the ill held in 15820 * ire->ire_stq. 15821 */ 15822 ipcl_walk(conn_cleanup_stale_ire, NULL, ipst); 15823 15824 /* 15825 * Re-do source address selection for all the members in the 15826 * group, if they borrowed source address from one of the ipifs 15827 * in this ill. 15828 */ 15829 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 15830 if (ill->ill_isv6) { 15831 ipif_update_other_ipifs_v6(ipif, illgrp); 15832 } else { 15833 ipif_update_other_ipifs(ipif, illgrp); 15834 } 15835 } 15836 } 15837 15838 /* 15839 * Delete the ill from the group. The caller makes sure that it is 15840 * in a group and it okay to delete from the group. So, we always 15841 * delete here. 15842 */ 15843 static void 15844 illgrp_delete(ill_t *ill) 15845 { 15846 ill_group_t *illgrp; 15847 ill_group_t *tmpg; 15848 ill_t *tmp_ill; 15849 ip_stack_t *ipst = ill->ill_ipst; 15850 15851 /* 15852 * Reset illgrp_ill_schednext if it was pointing at us. 15853 * We need to do this before we set ill_group to NULL. 15854 */ 15855 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 15856 mutex_enter(&ill->ill_lock); 15857 15858 illgrp_reset_schednext(ill); 15859 15860 illgrp = ill->ill_group; 15861 15862 /* Delete the ill from illgrp. */ 15863 if (illgrp->illgrp_ill == ill) { 15864 illgrp->illgrp_ill = ill->ill_group_next; 15865 } else { 15866 tmp_ill = illgrp->illgrp_ill; 15867 while (tmp_ill->ill_group_next != ill) { 15868 tmp_ill = tmp_ill->ill_group_next; 15869 ASSERT(tmp_ill != NULL); 15870 } 15871 tmp_ill->ill_group_next = ill->ill_group_next; 15872 } 15873 ill->ill_group = NULL; 15874 ill->ill_group_next = NULL; 15875 15876 illgrp->illgrp_ill_count--; 15877 mutex_exit(&ill->ill_lock); 15878 rw_exit(&ipst->ips_ill_g_lock); 15879 15880 /* 15881 * As this ill is leaving the group, we need to hand off 15882 * the responsibilities to the other ills in the group, if 15883 * this ill had some responsibilities. 15884 */ 15885 15886 ill_handoff_responsibility(ill, illgrp); 15887 15888 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 15889 15890 if (illgrp->illgrp_ill_count == 0) { 15891 15892 ASSERT(illgrp->illgrp_ill == NULL); 15893 if (ill->ill_isv6) { 15894 if (illgrp == ipst->ips_illgrp_head_v6) { 15895 ipst->ips_illgrp_head_v6 = illgrp->illgrp_next; 15896 } else { 15897 tmpg = ipst->ips_illgrp_head_v6; 15898 while (tmpg->illgrp_next != illgrp) { 15899 tmpg = tmpg->illgrp_next; 15900 ASSERT(tmpg != NULL); 15901 } 15902 tmpg->illgrp_next = illgrp->illgrp_next; 15903 } 15904 } else { 15905 if (illgrp == ipst->ips_illgrp_head_v4) { 15906 ipst->ips_illgrp_head_v4 = illgrp->illgrp_next; 15907 } else { 15908 tmpg = ipst->ips_illgrp_head_v4; 15909 while (tmpg->illgrp_next != illgrp) { 15910 tmpg = tmpg->illgrp_next; 15911 ASSERT(tmpg != NULL); 15912 } 15913 tmpg->illgrp_next = illgrp->illgrp_next; 15914 } 15915 } 15916 mutex_destroy(&illgrp->illgrp_lock); 15917 mi_free(illgrp); 15918 } 15919 rw_exit(&ipst->ips_ill_g_lock); 15920 15921 /* 15922 * Even though the ill is out of the group its not necessary 15923 * to set ipsq_split as TRUE as the ipifs could be down temporarily 15924 * We will split the ipsq when phyint_groupname is set to NULL. 15925 */ 15926 15927 /* 15928 * Send a routing sockets message if we are deleting from 15929 * groups with names. 15930 */ 15931 if (ill->ill_phyint->phyint_groupname_len != 0) 15932 ip_rts_ifmsg(ill->ill_ipif); 15933 } 15934 15935 /* 15936 * Re-do source address selection. This is normally called when 15937 * an ill joins the group or when a non-NOLOCAL/DEPRECATED/ANYCAST 15938 * ipif comes up. 15939 */ 15940 void 15941 ill_update_source_selection(ill_t *ill) 15942 { 15943 ipif_t *ipif; 15944 15945 ASSERT(IAM_WRITER_ILL(ill)); 15946 15947 if (ill->ill_group != NULL) 15948 ill = ill->ill_group->illgrp_ill; 15949 15950 for (; ill != NULL; ill = ill->ill_group_next) { 15951 for (ipif = ill->ill_ipif; ipif != NULL; 15952 ipif = ipif->ipif_next) { 15953 if (ill->ill_isv6) 15954 ipif_recreate_interface_routes_v6(NULL, ipif); 15955 else 15956 ipif_recreate_interface_routes(NULL, ipif); 15957 } 15958 } 15959 } 15960 15961 /* 15962 * Insert ill in a group headed by illgrp_head. The caller can either 15963 * pass a groupname in which case we search for a group with the 15964 * same name to insert in or pass a group to insert in. This function 15965 * would only search groups with names. 15966 * 15967 * NOTE : The caller should make sure that there is at least one ipif 15968 * UP on this ill so that illgrp_scheduler can pick this ill 15969 * for outbound packets. If ill_ipif_up_count is zero, we have 15970 * already sent a DL_UNBIND to the driver and we don't want to 15971 * send anymore packets. We don't assert for ipif_up_count 15972 * to be greater than zero, because ipif_up_done wants to call 15973 * this function before bumping up the ipif_up_count. See 15974 * ipif_up_done() for details. 15975 */ 15976 int 15977 illgrp_insert(ill_group_t **illgrp_head, ill_t *ill, char *groupname, 15978 ill_group_t *grp_to_insert, boolean_t ipif_is_coming_up) 15979 { 15980 ill_group_t *illgrp; 15981 ill_t *prev_ill; 15982 phyint_t *phyi; 15983 ip_stack_t *ipst = ill->ill_ipst; 15984 15985 ASSERT(ill->ill_group == NULL); 15986 15987 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 15988 mutex_enter(&ill->ill_lock); 15989 15990 if (groupname != NULL) { 15991 /* 15992 * Look for a group with a matching groupname to insert. 15993 */ 15994 for (illgrp = *illgrp_head; illgrp != NULL; 15995 illgrp = illgrp->illgrp_next) { 15996 15997 ill_t *tmp_ill; 15998 15999 /* 16000 * If we have an ill_group_t in the list which has 16001 * no ill_t assigned then we must be in the process of 16002 * removing this group. We skip this as illgrp_delete() 16003 * will remove it from the list. 16004 */ 16005 if ((tmp_ill = illgrp->illgrp_ill) == NULL) { 16006 ASSERT(illgrp->illgrp_ill_count == 0); 16007 continue; 16008 } 16009 16010 ASSERT(tmp_ill->ill_phyint != NULL); 16011 phyi = tmp_ill->ill_phyint; 16012 /* 16013 * Look at groups which has names only. 16014 */ 16015 if (phyi->phyint_groupname_len == 0) 16016 continue; 16017 /* 16018 * Names are stored in the phyint common to both 16019 * IPv4 and IPv6. 16020 */ 16021 if (mi_strcmp(phyi->phyint_groupname, 16022 groupname) == 0) { 16023 break; 16024 } 16025 } 16026 } else { 16027 /* 16028 * If the caller passes in a NULL "grp_to_insert", we 16029 * allocate one below and insert this singleton. 16030 */ 16031 illgrp = grp_to_insert; 16032 } 16033 16034 ill->ill_group_next = NULL; 16035 16036 if (illgrp == NULL) { 16037 illgrp = (ill_group_t *)mi_zalloc(sizeof (ill_group_t)); 16038 if (illgrp == NULL) { 16039 return (ENOMEM); 16040 } 16041 illgrp->illgrp_next = *illgrp_head; 16042 *illgrp_head = illgrp; 16043 illgrp->illgrp_ill = ill; 16044 illgrp->illgrp_ill_count = 1; 16045 ill->ill_group = illgrp; 16046 /* 16047 * Used in illgrp_scheduler to protect multiple threads 16048 * from traversing the list. 16049 */ 16050 mutex_init(&illgrp->illgrp_lock, NULL, MUTEX_DEFAULT, 0); 16051 } else { 16052 ASSERT(ill->ill_net_type == 16053 illgrp->illgrp_ill->ill_net_type); 16054 ASSERT(ill->ill_type == illgrp->illgrp_ill->ill_type); 16055 16056 /* Insert ill at tail of this group */ 16057 prev_ill = illgrp->illgrp_ill; 16058 while (prev_ill->ill_group_next != NULL) 16059 prev_ill = prev_ill->ill_group_next; 16060 prev_ill->ill_group_next = ill; 16061 ill->ill_group = illgrp; 16062 illgrp->illgrp_ill_count++; 16063 /* 16064 * Inherit group properties. Currently only forwarding 16065 * is the property we try to keep the same with all the 16066 * ills. When there are more, we will abstract this into 16067 * a function. 16068 */ 16069 ill->ill_flags &= ~ILLF_ROUTER; 16070 ill->ill_flags |= (illgrp->illgrp_ill->ill_flags & ILLF_ROUTER); 16071 } 16072 mutex_exit(&ill->ill_lock); 16073 rw_exit(&ipst->ips_ill_g_lock); 16074 16075 /* 16076 * 1) When ipif_up_done() calls this function, ipif_up_count 16077 * may be zero as it has not yet been bumped. But the ires 16078 * have already been added. So, we do the nomination here 16079 * itself. But, when ip_sioctl_groupname calls this, it checks 16080 * for ill_ipif_up_count != 0. Thus we don't check for 16081 * ill_ipif_up_count here while nominating broadcast ires for 16082 * receive. 16083 * 16084 * 2) Similarly, we need to call ill_group_bcast_for_xmit here 16085 * to group them properly as ire_add() has already happened 16086 * in the ipif_up_done() case. For ip_sioctl_groupname/ifgrp_insert 16087 * case, we need to do it here anyway. 16088 */ 16089 if (!ill->ill_isv6) { 16090 ill_group_bcast_for_xmit(ill); 16091 ill_nominate_bcast_rcv(illgrp); 16092 } 16093 16094 if (!ipif_is_coming_up) { 16095 /* 16096 * When ipif_up_done() calls this function, the multicast 16097 * groups have not been joined yet. So, there is no point in 16098 * nomination. ip_join_allmulti will handle groups when 16099 * ill_recover_multicast is called from ipif_up_done() later. 16100 */ 16101 (void) ill_nominate_mcast_rcv(illgrp); 16102 /* 16103 * ipif_up_done calls ill_update_source_selection 16104 * anyway. Moreover, we don't want to re-create 16105 * interface routes while ipif_up_done() still has reference 16106 * to them. Refer to ipif_up_done() for more details. 16107 */ 16108 ill_update_source_selection(ill); 16109 } 16110 16111 /* 16112 * Send a routing sockets message if we are inserting into 16113 * groups with names. 16114 */ 16115 if (groupname != NULL) 16116 ip_rts_ifmsg(ill->ill_ipif); 16117 return (0); 16118 } 16119 16120 /* 16121 * Return the first phyint matching the groupname. There could 16122 * be more than one when there are ill groups. 16123 * 16124 * If 'usable' is set, then we exclude ones that are marked with any of 16125 * (PHYI_FAILED|PHYI_OFFLINE|PHYI_INACTIVE). 16126 * Needs work: called only from ip_sioctl_groupname and from the ipmp/netinfo 16127 * emulation of ipmp. 16128 */ 16129 phyint_t * 16130 phyint_lookup_group(char *groupname, boolean_t usable, ip_stack_t *ipst) 16131 { 16132 phyint_t *phyi; 16133 16134 ASSERT(RW_LOCK_HELD(&ipst->ips_ill_g_lock)); 16135 /* 16136 * Group names are stored in the phyint - a common structure 16137 * to both IPv4 and IPv6. 16138 */ 16139 phyi = avl_first(&ipst->ips_phyint_g_list->phyint_list_avl_by_index); 16140 for (; phyi != NULL; 16141 phyi = avl_walk(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 16142 phyi, AVL_AFTER)) { 16143 if (phyi->phyint_groupname_len == 0) 16144 continue; 16145 /* 16146 * Skip the ones that should not be used since the callers 16147 * sometime use this for sending packets. 16148 */ 16149 if (usable && (phyi->phyint_flags & 16150 (PHYI_FAILED|PHYI_OFFLINE|PHYI_INACTIVE))) 16151 continue; 16152 16153 ASSERT(phyi->phyint_groupname != NULL); 16154 if (mi_strcmp(groupname, phyi->phyint_groupname) == 0) 16155 return (phyi); 16156 } 16157 return (NULL); 16158 } 16159 16160 16161 /* 16162 * Return the first usable phyint matching the group index. By 'usable' 16163 * we exclude ones that are marked ununsable with any of 16164 * (PHYI_FAILED|PHYI_OFFLINE|PHYI_INACTIVE). 16165 * 16166 * Used only for the ipmp/netinfo emulation of ipmp. 16167 */ 16168 phyint_t * 16169 phyint_lookup_group_ifindex(uint_t group_ifindex, ip_stack_t *ipst) 16170 { 16171 phyint_t *phyi; 16172 16173 ASSERT(RW_LOCK_HELD(&ipst->ips_ill_g_lock)); 16174 16175 if (!ipst->ips_ipmp_hook_emulation) 16176 return (NULL); 16177 16178 /* 16179 * Group indicies are stored in the phyint - a common structure 16180 * to both IPv4 and IPv6. 16181 */ 16182 phyi = avl_first(&ipst->ips_phyint_g_list->phyint_list_avl_by_index); 16183 for (; phyi != NULL; 16184 phyi = avl_walk(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 16185 phyi, AVL_AFTER)) { 16186 /* Ignore the ones that do not have a group */ 16187 if (phyi->phyint_groupname_len == 0) 16188 continue; 16189 16190 ASSERT(phyi->phyint_group_ifindex != 0); 16191 /* 16192 * Skip the ones that should not be used since the callers 16193 * sometime use this for sending packets. 16194 */ 16195 if (phyi->phyint_flags & 16196 (PHYI_FAILED|PHYI_OFFLINE|PHYI_INACTIVE)) 16197 continue; 16198 if (phyi->phyint_group_ifindex == group_ifindex) 16199 return (phyi); 16200 } 16201 return (NULL); 16202 } 16203 16204 16205 /* 16206 * MT notes on creation and deletion of IPMP groups 16207 * 16208 * Creation and deletion of IPMP groups introduce the need to merge or 16209 * split the associated serialization objects i.e the ipsq's. Normally all 16210 * the ills in an IPMP group would map to a single ipsq. If IPMP is not enabled 16211 * an ill-pair(v4, v6) i.e. phyint would map to a single ipsq. However during 16212 * the execution of the SIOCSLIFGROUPNAME command the picture changes. There 16213 * is a need to change the <ill-ipsq> association and we have to operate on both 16214 * the source and destination IPMP groups. For eg. attempting to set the 16215 * groupname of hme0 to mpk17-85 when it already belongs to mpk17-84 has to 16216 * handle 2 IPMP groups and 2 ipsqs. All the ills belonging to either of the 16217 * source or destination IPMP group are mapped to a single ipsq for executing 16218 * the SIOCSLIFGROUPNAME command. This is termed as a merge of the ipsq's. 16219 * The <ill-ipsq> mapping is restored back to normal at a later point. This is 16220 * termed as a split of the ipsq. The converse of the merge i.e. a split of the 16221 * ipsq happens while unwinding from ipsq_exit. If at least 1 set groupname 16222 * occurred on the ipsq, then the ipsq_split flag is set. This indicates the 16223 * ipsq has to be examined for redoing the <ill-ipsq> associations. 16224 * 16225 * In the above example the ioctl handling code locates the current ipsq of hme0 16226 * which is ipsq(mpk17-84). It then enters the above ipsq immediately or 16227 * eventually (after queueing the ioctl in ipsq(mpk17-84)). Then it locates 16228 * the destination ipsq which is ipsq(mpk17-85) and merges the source ipsq into 16229 * the destination ipsq. If the destination ipsq is not busy, it also enters 16230 * the destination ipsq exclusively. Now the actual groupname setting operation 16231 * can proceed. If the destination ipsq is busy, the operation is enqueued 16232 * on the destination (merged) ipsq and will be handled in the unwind from 16233 * ipsq_exit. 16234 * 16235 * To prevent other threads accessing the ill while the group name change is 16236 * in progres, we bring down the ipifs which also removes the ill from the 16237 * group. The group is changed in phyint and when the first ipif on the ill 16238 * is brought up, the ill is inserted into the right IPMP group by 16239 * illgrp_insert. 16240 */ 16241 /* ARGSUSED */ 16242 int 16243 ip_sioctl_groupname(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 16244 ip_ioctl_cmd_t *ipip, void *ifreq) 16245 { 16246 int i; 16247 char *tmp; 16248 int namelen; 16249 ill_t *ill = ipif->ipif_ill; 16250 ill_t *ill_v4, *ill_v6; 16251 int err = 0; 16252 phyint_t *phyi; 16253 phyint_t *phyi_tmp; 16254 struct lifreq *lifr; 16255 mblk_t *mp1; 16256 char *groupname; 16257 ipsq_t *ipsq; 16258 ip_stack_t *ipst = ill->ill_ipst; 16259 16260 ASSERT(IAM_WRITER_IPIF(ipif)); 16261 16262 /* Existance verified in ip_wput_nondata */ 16263 mp1 = mp->b_cont->b_cont; 16264 lifr = (struct lifreq *)mp1->b_rptr; 16265 groupname = lifr->lifr_groupname; 16266 16267 if (ipif->ipif_id != 0) 16268 return (EINVAL); 16269 16270 phyi = ill->ill_phyint; 16271 ASSERT(phyi != NULL); 16272 16273 if (phyi->phyint_flags & PHYI_VIRTUAL) 16274 return (EINVAL); 16275 16276 tmp = groupname; 16277 for (i = 0; i < LIFNAMSIZ && *tmp != '\0'; tmp++, i++) 16278 ; 16279 16280 if (i == LIFNAMSIZ) { 16281 /* no null termination */ 16282 return (EINVAL); 16283 } 16284 16285 /* 16286 * Calculate the namelen exclusive of the null 16287 * termination character. 16288 */ 16289 namelen = tmp - groupname; 16290 16291 ill_v4 = phyi->phyint_illv4; 16292 ill_v6 = phyi->phyint_illv6; 16293 16294 /* 16295 * ILL cannot be part of a usesrc group and and IPMP group at the 16296 * same time. No need to grab the ill_g_usesrc_lock here, see 16297 * synchronization notes in ip.c 16298 */ 16299 if (ipif->ipif_ill->ill_usesrc_grp_next != NULL) { 16300 return (EINVAL); 16301 } 16302 16303 /* 16304 * mark the ill as changing. 16305 * this should queue all new requests on the syncq. 16306 */ 16307 GRAB_ILL_LOCKS(ill_v4, ill_v6); 16308 16309 if (ill_v4 != NULL) 16310 ill_v4->ill_state_flags |= ILL_CHANGING; 16311 if (ill_v6 != NULL) 16312 ill_v6->ill_state_flags |= ILL_CHANGING; 16313 RELEASE_ILL_LOCKS(ill_v4, ill_v6); 16314 16315 if (namelen == 0) { 16316 /* 16317 * Null string means remove this interface from the 16318 * existing group. 16319 */ 16320 if (phyi->phyint_groupname_len == 0) { 16321 /* 16322 * Never was in a group. 16323 */ 16324 err = 0; 16325 goto done; 16326 } 16327 16328 /* 16329 * IPv4 or IPv6 may be temporarily out of the group when all 16330 * the ipifs are down. Thus, we need to check for ill_group to 16331 * be non-NULL. 16332 */ 16333 if (ill_v4 != NULL && ill_v4->ill_group != NULL) { 16334 ill_down_ipifs(ill_v4, mp, 0, B_FALSE); 16335 mutex_enter(&ill_v4->ill_lock); 16336 if (!ill_is_quiescent(ill_v4)) { 16337 /* 16338 * ipsq_pending_mp_add will not fail since 16339 * connp is NULL 16340 */ 16341 (void) ipsq_pending_mp_add(NULL, 16342 ill_v4->ill_ipif, q, mp, ILL_DOWN); 16343 mutex_exit(&ill_v4->ill_lock); 16344 err = EINPROGRESS; 16345 goto done; 16346 } 16347 mutex_exit(&ill_v4->ill_lock); 16348 } 16349 16350 if (ill_v6 != NULL && ill_v6->ill_group != NULL) { 16351 ill_down_ipifs(ill_v6, mp, 0, B_FALSE); 16352 mutex_enter(&ill_v6->ill_lock); 16353 if (!ill_is_quiescent(ill_v6)) { 16354 (void) ipsq_pending_mp_add(NULL, 16355 ill_v6->ill_ipif, q, mp, ILL_DOWN); 16356 mutex_exit(&ill_v6->ill_lock); 16357 err = EINPROGRESS; 16358 goto done; 16359 } 16360 mutex_exit(&ill_v6->ill_lock); 16361 } 16362 16363 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 16364 GRAB_ILL_LOCKS(ill_v4, ill_v6); 16365 mutex_enter(&phyi->phyint_lock); 16366 ASSERT(phyi->phyint_groupname != NULL); 16367 mi_free(phyi->phyint_groupname); 16368 phyi->phyint_groupname = NULL; 16369 phyi->phyint_groupname_len = 0; 16370 16371 /* Restore the ifindex used to be the per interface one */ 16372 phyi->phyint_group_ifindex = 0; 16373 phyi->phyint_hook_ifindex = phyi->phyint_ifindex; 16374 mutex_exit(&phyi->phyint_lock); 16375 RELEASE_ILL_LOCKS(ill_v4, ill_v6); 16376 rw_exit(&ipst->ips_ill_g_lock); 16377 err = ill_up_ipifs(ill, q, mp); 16378 16379 /* 16380 * set the split flag so that the ipsq can be split 16381 */ 16382 mutex_enter(&phyi->phyint_ipsq->ipsq_lock); 16383 phyi->phyint_ipsq->ipsq_split = B_TRUE; 16384 mutex_exit(&phyi->phyint_ipsq->ipsq_lock); 16385 16386 } else { 16387 if (phyi->phyint_groupname_len != 0) { 16388 ASSERT(phyi->phyint_groupname != NULL); 16389 /* Are we inserting in the same group ? */ 16390 if (mi_strcmp(groupname, 16391 phyi->phyint_groupname) == 0) { 16392 err = 0; 16393 goto done; 16394 } 16395 } 16396 16397 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 16398 /* 16399 * Merge ipsq for the group's. 16400 * This check is here as multiple groups/ills might be 16401 * sharing the same ipsq. 16402 * If we have to merege than the operation is restarted 16403 * on the new ipsq. 16404 */ 16405 ipsq = ip_ipsq_lookup(groupname, B_FALSE, NULL, ipst); 16406 if (phyi->phyint_ipsq != ipsq) { 16407 rw_exit(&ipst->ips_ill_g_lock); 16408 err = ill_merge_groups(ill, NULL, groupname, mp, q); 16409 goto done; 16410 } 16411 /* 16412 * Running exclusive on new ipsq. 16413 */ 16414 16415 ASSERT(ipsq != NULL); 16416 ASSERT(ipsq->ipsq_writer == curthread); 16417 16418 /* 16419 * Check whether the ill_type and ill_net_type matches before 16420 * we allocate any memory so that the cleanup is easier. 16421 * 16422 * We can't group dissimilar ones as we can't load spread 16423 * packets across the group because of potential link-level 16424 * header differences. 16425 */ 16426 phyi_tmp = phyint_lookup_group(groupname, B_FALSE, ipst); 16427 if (phyi_tmp != NULL) { 16428 if ((ill_v4 != NULL && 16429 phyi_tmp->phyint_illv4 != NULL) && 16430 ((ill_v4->ill_net_type != 16431 phyi_tmp->phyint_illv4->ill_net_type) || 16432 (ill_v4->ill_type != 16433 phyi_tmp->phyint_illv4->ill_type))) { 16434 mutex_enter(&phyi->phyint_ipsq->ipsq_lock); 16435 phyi->phyint_ipsq->ipsq_split = B_TRUE; 16436 mutex_exit(&phyi->phyint_ipsq->ipsq_lock); 16437 rw_exit(&ipst->ips_ill_g_lock); 16438 return (EINVAL); 16439 } 16440 if ((ill_v6 != NULL && 16441 phyi_tmp->phyint_illv6 != NULL) && 16442 ((ill_v6->ill_net_type != 16443 phyi_tmp->phyint_illv6->ill_net_type) || 16444 (ill_v6->ill_type != 16445 phyi_tmp->phyint_illv6->ill_type))) { 16446 mutex_enter(&phyi->phyint_ipsq->ipsq_lock); 16447 phyi->phyint_ipsq->ipsq_split = B_TRUE; 16448 mutex_exit(&phyi->phyint_ipsq->ipsq_lock); 16449 rw_exit(&ipst->ips_ill_g_lock); 16450 return (EINVAL); 16451 } 16452 } 16453 16454 rw_exit(&ipst->ips_ill_g_lock); 16455 16456 /* 16457 * bring down all v4 ipifs. 16458 */ 16459 if (ill_v4 != NULL) { 16460 ill_down_ipifs(ill_v4, mp, 0, B_FALSE); 16461 } 16462 16463 /* 16464 * bring down all v6 ipifs. 16465 */ 16466 if (ill_v6 != NULL) { 16467 ill_down_ipifs(ill_v6, mp, 0, B_FALSE); 16468 } 16469 16470 /* 16471 * make sure all ipifs are down and there are no active 16472 * references. Call to ipsq_pending_mp_add will not fail 16473 * since connp is NULL. 16474 */ 16475 if (ill_v4 != NULL) { 16476 mutex_enter(&ill_v4->ill_lock); 16477 if (!ill_is_quiescent(ill_v4)) { 16478 (void) ipsq_pending_mp_add(NULL, 16479 ill_v4->ill_ipif, q, mp, ILL_DOWN); 16480 mutex_exit(&ill_v4->ill_lock); 16481 err = EINPROGRESS; 16482 goto done; 16483 } 16484 mutex_exit(&ill_v4->ill_lock); 16485 } 16486 16487 if (ill_v6 != NULL) { 16488 mutex_enter(&ill_v6->ill_lock); 16489 if (!ill_is_quiescent(ill_v6)) { 16490 (void) ipsq_pending_mp_add(NULL, 16491 ill_v6->ill_ipif, q, mp, ILL_DOWN); 16492 mutex_exit(&ill_v6->ill_lock); 16493 err = EINPROGRESS; 16494 goto done; 16495 } 16496 mutex_exit(&ill_v6->ill_lock); 16497 } 16498 16499 /* 16500 * allocate including space for null terminator 16501 * before we insert. 16502 */ 16503 tmp = (char *)mi_alloc(namelen + 1, BPRI_MED); 16504 if (tmp == NULL) 16505 return (ENOMEM); 16506 16507 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 16508 GRAB_ILL_LOCKS(ill_v4, ill_v6); 16509 mutex_enter(&phyi->phyint_lock); 16510 if (phyi->phyint_groupname_len != 0) { 16511 ASSERT(phyi->phyint_groupname != NULL); 16512 mi_free(phyi->phyint_groupname); 16513 } 16514 16515 /* 16516 * setup the new group name. 16517 */ 16518 phyi->phyint_groupname = tmp; 16519 bcopy(groupname, phyi->phyint_groupname, namelen + 1); 16520 phyi->phyint_groupname_len = namelen + 1; 16521 16522 if (ipst->ips_ipmp_hook_emulation) { 16523 /* 16524 * If the group already exists we use the existing 16525 * group_ifindex, otherwise we pick a new index here. 16526 */ 16527 if (phyi_tmp != NULL) { 16528 phyi->phyint_group_ifindex = 16529 phyi_tmp->phyint_group_ifindex; 16530 } else { 16531 /* XXX We need a recovery strategy here. */ 16532 if (!ip_assign_ifindex( 16533 &phyi->phyint_group_ifindex, ipst)) 16534 cmn_err(CE_PANIC, 16535 "ip_assign_ifindex() failed"); 16536 } 16537 } 16538 /* 16539 * Select whether the netinfo and hook use the per-interface 16540 * or per-group ifindex. 16541 */ 16542 if (ipst->ips_ipmp_hook_emulation) 16543 phyi->phyint_hook_ifindex = phyi->phyint_group_ifindex; 16544 else 16545 phyi->phyint_hook_ifindex = phyi->phyint_ifindex; 16546 16547 if (ipst->ips_ipmp_hook_emulation && 16548 phyi_tmp != NULL) { 16549 /* First phyint in group - group PLUMB event */ 16550 ill_nic_info_plumb(ill, B_TRUE); 16551 } 16552 mutex_exit(&phyi->phyint_lock); 16553 RELEASE_ILL_LOCKS(ill_v4, ill_v6); 16554 rw_exit(&ipst->ips_ill_g_lock); 16555 16556 err = ill_up_ipifs(ill, q, mp); 16557 } 16558 16559 done: 16560 /* 16561 * normally ILL_CHANGING is cleared in ill_up_ipifs. 16562 */ 16563 if (err != EINPROGRESS) { 16564 GRAB_ILL_LOCKS(ill_v4, ill_v6); 16565 if (ill_v4 != NULL) 16566 ill_v4->ill_state_flags &= ~ILL_CHANGING; 16567 if (ill_v6 != NULL) 16568 ill_v6->ill_state_flags &= ~ILL_CHANGING; 16569 RELEASE_ILL_LOCKS(ill_v4, ill_v6); 16570 } 16571 return (err); 16572 } 16573 16574 /* ARGSUSED */ 16575 int 16576 ip_sioctl_get_groupname(ipif_t *ipif, sin_t *dummy_sin, queue_t *q, 16577 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 16578 { 16579 ill_t *ill; 16580 phyint_t *phyi; 16581 struct lifreq *lifr; 16582 mblk_t *mp1; 16583 16584 /* Existence verified in ip_wput_nondata */ 16585 mp1 = mp->b_cont->b_cont; 16586 lifr = (struct lifreq *)mp1->b_rptr; 16587 ill = ipif->ipif_ill; 16588 phyi = ill->ill_phyint; 16589 16590 lifr->lifr_groupname[0] = '\0'; 16591 /* 16592 * ill_group may be null if all the interfaces 16593 * are down. But still, the phyint should always 16594 * hold the name. 16595 */ 16596 if (phyi->phyint_groupname_len != 0) { 16597 bcopy(phyi->phyint_groupname, lifr->lifr_groupname, 16598 phyi->phyint_groupname_len); 16599 } 16600 16601 return (0); 16602 } 16603 16604 16605 typedef struct conn_move_s { 16606 ill_t *cm_from_ill; 16607 ill_t *cm_to_ill; 16608 int cm_ifindex; 16609 } conn_move_t; 16610 16611 /* 16612 * ipcl_walk function for moving conn_multicast_ill for a given ill. 16613 */ 16614 static void 16615 conn_move(conn_t *connp, caddr_t arg) 16616 { 16617 conn_move_t *connm; 16618 int ifindex; 16619 int i; 16620 ill_t *from_ill; 16621 ill_t *to_ill; 16622 ilg_t *ilg; 16623 ilm_t *ret_ilm; 16624 16625 connm = (conn_move_t *)arg; 16626 ifindex = connm->cm_ifindex; 16627 from_ill = connm->cm_from_ill; 16628 to_ill = connm->cm_to_ill; 16629 16630 /* Change IP_BOUND_IF/IPV6_BOUND_IF associations. */ 16631 16632 /* All multicast fields protected by conn_lock */ 16633 mutex_enter(&connp->conn_lock); 16634 ASSERT(connp->conn_outgoing_ill == connp->conn_incoming_ill); 16635 if ((connp->conn_outgoing_ill == from_ill) && 16636 (ifindex == 0 || connp->conn_orig_bound_ifindex == ifindex)) { 16637 connp->conn_outgoing_ill = to_ill; 16638 connp->conn_incoming_ill = to_ill; 16639 } 16640 16641 /* Change IP_MULTICAST_IF/IPV6_MULTICAST_IF associations */ 16642 16643 if ((connp->conn_multicast_ill == from_ill) && 16644 (ifindex == 0 || connp->conn_orig_multicast_ifindex == ifindex)) { 16645 connp->conn_multicast_ill = connm->cm_to_ill; 16646 } 16647 16648 /* 16649 * Change the ilg_ill to point to the new one. This assumes 16650 * ilm_move_v6 has moved the ilms to new_ill and the driver 16651 * has been told to receive packets on this interface. 16652 * ilm_move_v6 FAILBACKS all the ilms successfully always. 16653 * But when doing a FAILOVER, it might fail with ENOMEM and so 16654 * some ilms may not have moved. We check to see whether 16655 * the ilms have moved to to_ill. We can't check on from_ill 16656 * as in the process of moving, we could have split an ilm 16657 * in to two - which has the same orig_ifindex and v6group. 16658 * 16659 * For IPv4, ilg_ipif moves implicitly. The code below really 16660 * does not do anything for IPv4 as ilg_ill is NULL for IPv4. 16661 */ 16662 for (i = connp->conn_ilg_inuse - 1; i >= 0; i--) { 16663 ilg = &connp->conn_ilg[i]; 16664 if ((ilg->ilg_ill == from_ill) && 16665 (ifindex == 0 || ilg->ilg_orig_ifindex == ifindex)) { 16666 /* ifindex != 0 indicates failback */ 16667 if (ifindex != 0) { 16668 connp->conn_ilg[i].ilg_ill = to_ill; 16669 continue; 16670 } 16671 16672 mutex_enter(&to_ill->ill_lock); 16673 ret_ilm = ilm_lookup_ill_index_v6(to_ill, 16674 &ilg->ilg_v6group, ilg->ilg_orig_ifindex, 16675 connp->conn_zoneid); 16676 mutex_exit(&to_ill->ill_lock); 16677 16678 if (ret_ilm != NULL) 16679 connp->conn_ilg[i].ilg_ill = to_ill; 16680 } 16681 } 16682 mutex_exit(&connp->conn_lock); 16683 } 16684 16685 static void 16686 conn_move_ill(ill_t *from_ill, ill_t *to_ill, int ifindex) 16687 { 16688 conn_move_t connm; 16689 ip_stack_t *ipst = from_ill->ill_ipst; 16690 16691 connm.cm_from_ill = from_ill; 16692 connm.cm_to_ill = to_ill; 16693 connm.cm_ifindex = ifindex; 16694 16695 ipcl_walk(conn_move, (caddr_t)&connm, ipst); 16696 } 16697 16698 /* 16699 * ilm has been moved from from_ill to to_ill. 16700 * Send DL_DISABMULTI_REQ to ill and DL_ENABMULTI_REQ on to_ill. 16701 * appropriately. 16702 * 16703 * NOTE : We can't reuse the code in ip_ll_addmulti/delmulti because 16704 * the code there de-references ipif_ill to get the ill to 16705 * send multicast requests. It does not work as ipif is on its 16706 * move and already moved when this function is called. 16707 * Thus, we need to use from_ill and to_ill send down multicast 16708 * requests. 16709 */ 16710 static void 16711 ilm_send_multicast_reqs(ill_t *from_ill, ill_t *to_ill) 16712 { 16713 ipif_t *ipif; 16714 ilm_t *ilm; 16715 16716 /* 16717 * See whether we need to send down DL_ENABMULTI_REQ on 16718 * to_ill as ilm has just been added. 16719 */ 16720 ASSERT(IAM_WRITER_ILL(to_ill)); 16721 ASSERT(IAM_WRITER_ILL(from_ill)); 16722 16723 ILM_WALKER_HOLD(to_ill); 16724 for (ilm = to_ill->ill_ilm; ilm != NULL; ilm = ilm->ilm_next) { 16725 16726 if (!ilm->ilm_is_new || (ilm->ilm_flags & ILM_DELETED)) 16727 continue; 16728 /* 16729 * no locks held, ill/ipif cannot dissappear as long 16730 * as we are writer. 16731 */ 16732 ipif = to_ill->ill_ipif; 16733 /* 16734 * No need to hold any lock as we are the writer and this 16735 * can only be changed by a writer. 16736 */ 16737 ilm->ilm_is_new = B_FALSE; 16738 16739 if (to_ill->ill_net_type != IRE_IF_RESOLVER || 16740 ipif->ipif_flags & IPIF_POINTOPOINT) { 16741 ip1dbg(("ilm_send_multicast_reqs: to_ill not " 16742 "resolver\n")); 16743 continue; /* Must be IRE_IF_NORESOLVER */ 16744 } 16745 16746 16747 if (to_ill->ill_phyint->phyint_flags & PHYI_MULTI_BCAST) { 16748 ip1dbg(("ilm_send_multicast_reqs: " 16749 "to_ill MULTI_BCAST\n")); 16750 goto from; 16751 } 16752 16753 if (to_ill->ill_isv6) 16754 mld_joingroup(ilm); 16755 else 16756 igmp_joingroup(ilm); 16757 16758 if (to_ill->ill_ipif_up_count == 0) { 16759 /* 16760 * Nobody there. All multicast addresses will be 16761 * re-joined when we get the DL_BIND_ACK bringing the 16762 * interface up. 16763 */ 16764 ilm->ilm_notify_driver = B_FALSE; 16765 ip1dbg(("ilm_send_multicast_reqs: to_ill nobody up\n")); 16766 goto from; 16767 } 16768 16769 /* 16770 * For allmulti address, we want to join on only one interface. 16771 * Checking for ilm_numentries_v6 is not correct as you may 16772 * find an ilm with zero address on to_ill, but we may not 16773 * have nominated to_ill for receiving. Thus, if we have 16774 * nominated from_ill (ill_join_allmulti is set), nominate 16775 * only if to_ill is not already nominated (to_ill normally 16776 * should not have been nominated if "from_ill" has already 16777 * been nominated. As we don't prevent failovers from happening 16778 * across groups, we don't assert). 16779 */ 16780 if (IN6_IS_ADDR_UNSPECIFIED(&ilm->ilm_v6addr)) { 16781 /* 16782 * There is no need to hold ill locks as we are 16783 * writer on both ills and when ill_join_allmulti 16784 * is changed the thread is always a writer. 16785 */ 16786 if (from_ill->ill_join_allmulti && 16787 !to_ill->ill_join_allmulti) { 16788 (void) ip_join_allmulti(to_ill->ill_ipif); 16789 } 16790 } else if (ilm->ilm_notify_driver) { 16791 16792 /* 16793 * This is a newly moved ilm so we need to tell the 16794 * driver about the new group. There can be more than 16795 * one ilm's for the same group in the list each with a 16796 * different orig_ifindex. We have to inform the driver 16797 * once. In ilm_move_v[4,6] we only set the flag 16798 * ilm_notify_driver for the first ilm. 16799 */ 16800 16801 (void) ip_ll_send_enabmulti_req(to_ill, 16802 &ilm->ilm_v6addr); 16803 } 16804 16805 ilm->ilm_notify_driver = B_FALSE; 16806 16807 /* 16808 * See whether we need to send down DL_DISABMULTI_REQ on 16809 * from_ill as ilm has just been removed. 16810 */ 16811 from: 16812 ipif = from_ill->ill_ipif; 16813 if (from_ill->ill_net_type != IRE_IF_RESOLVER || 16814 ipif->ipif_flags & IPIF_POINTOPOINT) { 16815 ip1dbg(("ilm_send_multicast_reqs: " 16816 "from_ill not resolver\n")); 16817 continue; /* Must be IRE_IF_NORESOLVER */ 16818 } 16819 16820 if (from_ill->ill_phyint->phyint_flags & PHYI_MULTI_BCAST) { 16821 ip1dbg(("ilm_send_multicast_reqs: " 16822 "from_ill MULTI_BCAST\n")); 16823 continue; 16824 } 16825 16826 if (IN6_IS_ADDR_UNSPECIFIED(&ilm->ilm_v6addr)) { 16827 if (from_ill->ill_join_allmulti) 16828 (void) ip_leave_allmulti(from_ill->ill_ipif); 16829 } else if (ilm_numentries_v6(from_ill, &ilm->ilm_v6addr) == 0) { 16830 (void) ip_ll_send_disabmulti_req(from_ill, 16831 &ilm->ilm_v6addr); 16832 } 16833 } 16834 ILM_WALKER_RELE(to_ill); 16835 } 16836 16837 /* 16838 * This function is called when all multicast memberships needs 16839 * to be moved from "from_ill" to "to_ill" for IPv6. This function is 16840 * called only once unlike the IPv4 counterpart where it is called after 16841 * every logical interface is moved. The reason is due to multicast 16842 * memberships are joined using an interface address in IPv4 while in 16843 * IPv6, interface index is used. 16844 */ 16845 static void 16846 ilm_move_v6(ill_t *from_ill, ill_t *to_ill, int ifindex) 16847 { 16848 ilm_t *ilm; 16849 ilm_t *ilm_next; 16850 ilm_t *new_ilm; 16851 ilm_t **ilmp; 16852 int count; 16853 char buf[INET6_ADDRSTRLEN]; 16854 in6_addr_t ipv6_snm = ipv6_solicited_node_mcast; 16855 ip_stack_t *ipst = from_ill->ill_ipst; 16856 16857 ASSERT(MUTEX_HELD(&to_ill->ill_lock)); 16858 ASSERT(MUTEX_HELD(&from_ill->ill_lock)); 16859 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); 16860 16861 if (ifindex == 0) { 16862 /* 16863 * Form the solicited node mcast address which is used later. 16864 */ 16865 ipif_t *ipif; 16866 16867 ipif = from_ill->ill_ipif; 16868 ASSERT(ipif->ipif_id == 0); 16869 16870 ipv6_snm.s6_addr32[3] |= ipif->ipif_v6lcl_addr.s6_addr32[3]; 16871 } 16872 16873 ilmp = &from_ill->ill_ilm; 16874 for (ilm = from_ill->ill_ilm; ilm != NULL; ilm = ilm_next) { 16875 ilm_next = ilm->ilm_next; 16876 16877 if (ilm->ilm_flags & ILM_DELETED) { 16878 ilmp = &ilm->ilm_next; 16879 continue; 16880 } 16881 16882 new_ilm = ilm_lookup_ill_index_v6(to_ill, &ilm->ilm_v6addr, 16883 ilm->ilm_orig_ifindex, ilm->ilm_zoneid); 16884 ASSERT(ilm->ilm_orig_ifindex != 0); 16885 if (ilm->ilm_orig_ifindex == ifindex) { 16886 /* 16887 * We are failing back multicast memberships. 16888 * If the same ilm exists in to_ill, it means somebody 16889 * has joined the same group there e.g. ff02::1 16890 * is joined within the kernel when the interfaces 16891 * came UP. 16892 */ 16893 ASSERT(ilm->ilm_ipif == NULL); 16894 if (new_ilm != NULL) { 16895 new_ilm->ilm_refcnt += ilm->ilm_refcnt; 16896 if (new_ilm->ilm_fmode != MODE_IS_EXCLUDE || 16897 !SLIST_IS_EMPTY(new_ilm->ilm_filter)) { 16898 new_ilm->ilm_is_new = B_TRUE; 16899 } 16900 } else { 16901 /* 16902 * check if we can just move the ilm 16903 */ 16904 if (from_ill->ill_ilm_walker_cnt != 0) { 16905 /* 16906 * We have walkers we cannot move 16907 * the ilm, so allocate a new ilm, 16908 * this (old) ilm will be marked 16909 * ILM_DELETED at the end of the loop 16910 * and will be freed when the 16911 * last walker exits. 16912 */ 16913 new_ilm = (ilm_t *)mi_zalloc 16914 (sizeof (ilm_t)); 16915 if (new_ilm == NULL) { 16916 ip0dbg(("ilm_move_v6: " 16917 "FAILBACK of IPv6" 16918 " multicast address %s : " 16919 "from %s to" 16920 " %s failed : ENOMEM \n", 16921 inet_ntop(AF_INET6, 16922 &ilm->ilm_v6addr, buf, 16923 sizeof (buf)), 16924 from_ill->ill_name, 16925 to_ill->ill_name)); 16926 16927 ilmp = &ilm->ilm_next; 16928 continue; 16929 } 16930 *new_ilm = *ilm; 16931 /* 16932 * we don't want new_ilm linked to 16933 * ilm's filter list. 16934 */ 16935 new_ilm->ilm_filter = NULL; 16936 } else { 16937 /* 16938 * No walkers we can move the ilm. 16939 * lets take it out of the list. 16940 */ 16941 *ilmp = ilm->ilm_next; 16942 ilm->ilm_next = NULL; 16943 new_ilm = ilm; 16944 } 16945 16946 /* 16947 * if this is the first ilm for the group 16948 * set ilm_notify_driver so that we notify the 16949 * driver in ilm_send_multicast_reqs. 16950 */ 16951 if (ilm_lookup_ill_v6(to_ill, 16952 &new_ilm->ilm_v6addr, ALL_ZONES) == NULL) 16953 new_ilm->ilm_notify_driver = B_TRUE; 16954 16955 new_ilm->ilm_ill = to_ill; 16956 /* Add to the to_ill's list */ 16957 new_ilm->ilm_next = to_ill->ill_ilm; 16958 to_ill->ill_ilm = new_ilm; 16959 /* 16960 * set the flag so that mld_joingroup is 16961 * called in ilm_send_multicast_reqs(). 16962 */ 16963 new_ilm->ilm_is_new = B_TRUE; 16964 } 16965 goto bottom; 16966 } else if (ifindex != 0) { 16967 /* 16968 * If this is FAILBACK (ifindex != 0) and the ifindex 16969 * has not matched above, look at the next ilm. 16970 */ 16971 ilmp = &ilm->ilm_next; 16972 continue; 16973 } 16974 /* 16975 * If we are here, it means ifindex is 0. Failover 16976 * everything. 16977 * 16978 * We need to handle solicited node mcast address 16979 * and all_nodes mcast address differently as they 16980 * are joined witin the kenrel (ipif_multicast_up) 16981 * and potentially from the userland. We are called 16982 * after the ipifs of from_ill has been moved. 16983 * If we still find ilms on ill with solicited node 16984 * mcast address or all_nodes mcast address, it must 16985 * belong to the UP interface that has not moved e.g. 16986 * ipif_id 0 with the link local prefix does not move. 16987 * We join this on the new ill accounting for all the 16988 * userland memberships so that applications don't 16989 * see any failure. 16990 * 16991 * We need to make sure that we account only for the 16992 * solicited node and all node multicast addresses 16993 * that was brought UP on these. In the case of 16994 * a failover from A to B, we might have ilms belonging 16995 * to A (ilm_orig_ifindex pointing at A) on B accounting 16996 * for the membership from the userland. If we are failing 16997 * over from B to C now, we will find the ones belonging 16998 * to A on B. These don't account for the ill_ipif_up_count. 16999 * They just move from B to C. The check below on 17000 * ilm_orig_ifindex ensures that. 17001 */ 17002 if ((ilm->ilm_orig_ifindex == 17003 from_ill->ill_phyint->phyint_ifindex) && 17004 (IN6_ARE_ADDR_EQUAL(&ipv6_snm, &ilm->ilm_v6addr) || 17005 IN6_ARE_ADDR_EQUAL(&ipv6_all_hosts_mcast, 17006 &ilm->ilm_v6addr))) { 17007 ASSERT(ilm->ilm_refcnt > 0); 17008 count = ilm->ilm_refcnt - from_ill->ill_ipif_up_count; 17009 /* 17010 * For indentation reasons, we are not using a 17011 * "else" here. 17012 */ 17013 if (count == 0) { 17014 ilmp = &ilm->ilm_next; 17015 continue; 17016 } 17017 ilm->ilm_refcnt -= count; 17018 if (new_ilm != NULL) { 17019 /* 17020 * Can find one with the same 17021 * ilm_orig_ifindex, if we are failing 17022 * over to a STANDBY. This happens 17023 * when somebody wants to join a group 17024 * on a STANDBY interface and we 17025 * internally join on a different one. 17026 * If we had joined on from_ill then, a 17027 * failover now will find a new ilm 17028 * with this index. 17029 */ 17030 ip1dbg(("ilm_move_v6: FAILOVER, found" 17031 " new ilm on %s, group address %s\n", 17032 to_ill->ill_name, 17033 inet_ntop(AF_INET6, 17034 &ilm->ilm_v6addr, buf, 17035 sizeof (buf)))); 17036 new_ilm->ilm_refcnt += count; 17037 if (new_ilm->ilm_fmode != MODE_IS_EXCLUDE || 17038 !SLIST_IS_EMPTY(new_ilm->ilm_filter)) { 17039 new_ilm->ilm_is_new = B_TRUE; 17040 } 17041 } else { 17042 new_ilm = (ilm_t *)mi_zalloc(sizeof (ilm_t)); 17043 if (new_ilm == NULL) { 17044 ip0dbg(("ilm_move_v6: FAILOVER of IPv6" 17045 " multicast address %s : from %s to" 17046 " %s failed : ENOMEM \n", 17047 inet_ntop(AF_INET6, 17048 &ilm->ilm_v6addr, buf, 17049 sizeof (buf)), from_ill->ill_name, 17050 to_ill->ill_name)); 17051 ilmp = &ilm->ilm_next; 17052 continue; 17053 } 17054 *new_ilm = *ilm; 17055 new_ilm->ilm_filter = NULL; 17056 new_ilm->ilm_refcnt = count; 17057 new_ilm->ilm_timer = INFINITY; 17058 new_ilm->ilm_rtx.rtx_timer = INFINITY; 17059 new_ilm->ilm_is_new = B_TRUE; 17060 /* 17061 * If the to_ill has not joined this 17062 * group we need to tell the driver in 17063 * ill_send_multicast_reqs. 17064 */ 17065 if (ilm_lookup_ill_v6(to_ill, 17066 &new_ilm->ilm_v6addr, ALL_ZONES) == NULL) 17067 new_ilm->ilm_notify_driver = B_TRUE; 17068 17069 new_ilm->ilm_ill = to_ill; 17070 /* Add to the to_ill's list */ 17071 new_ilm->ilm_next = to_ill->ill_ilm; 17072 to_ill->ill_ilm = new_ilm; 17073 ASSERT(new_ilm->ilm_ipif == NULL); 17074 } 17075 if (ilm->ilm_refcnt == 0) { 17076 goto bottom; 17077 } else { 17078 new_ilm->ilm_fmode = MODE_IS_EXCLUDE; 17079 CLEAR_SLIST(new_ilm->ilm_filter); 17080 ilmp = &ilm->ilm_next; 17081 } 17082 continue; 17083 } else { 17084 /* 17085 * ifindex = 0 means, move everything pointing at 17086 * from_ill. We are doing this becuase ill has 17087 * either FAILED or became INACTIVE. 17088 * 17089 * As we would like to move things later back to 17090 * from_ill, we want to retain the identity of this 17091 * ilm. Thus, we don't blindly increment the reference 17092 * count on the ilms matching the address alone. We 17093 * need to match on the ilm_orig_index also. new_ilm 17094 * was obtained by matching ilm_orig_index also. 17095 */ 17096 if (new_ilm != NULL) { 17097 /* 17098 * This is possible only if a previous restore 17099 * was incomplete i.e restore to 17100 * ilm_orig_ifindex left some ilms because 17101 * of some failures. Thus when we are failing 17102 * again, we might find our old friends there. 17103 */ 17104 ip1dbg(("ilm_move_v6: FAILOVER, found new ilm" 17105 " on %s, group address %s\n", 17106 to_ill->ill_name, 17107 inet_ntop(AF_INET6, 17108 &ilm->ilm_v6addr, buf, 17109 sizeof (buf)))); 17110 new_ilm->ilm_refcnt += ilm->ilm_refcnt; 17111 if (new_ilm->ilm_fmode != MODE_IS_EXCLUDE || 17112 !SLIST_IS_EMPTY(new_ilm->ilm_filter)) { 17113 new_ilm->ilm_is_new = B_TRUE; 17114 } 17115 } else { 17116 if (from_ill->ill_ilm_walker_cnt != 0) { 17117 new_ilm = (ilm_t *) 17118 mi_zalloc(sizeof (ilm_t)); 17119 if (new_ilm == NULL) { 17120 ip0dbg(("ilm_move_v6: " 17121 "FAILOVER of IPv6" 17122 " multicast address %s : " 17123 "from %s to" 17124 " %s failed : ENOMEM \n", 17125 inet_ntop(AF_INET6, 17126 &ilm->ilm_v6addr, buf, 17127 sizeof (buf)), 17128 from_ill->ill_name, 17129 to_ill->ill_name)); 17130 17131 ilmp = &ilm->ilm_next; 17132 continue; 17133 } 17134 *new_ilm = *ilm; 17135 new_ilm->ilm_filter = NULL; 17136 } else { 17137 *ilmp = ilm->ilm_next; 17138 new_ilm = ilm; 17139 } 17140 /* 17141 * If the to_ill has not joined this 17142 * group we need to tell the driver in 17143 * ill_send_multicast_reqs. 17144 */ 17145 if (ilm_lookup_ill_v6(to_ill, 17146 &new_ilm->ilm_v6addr, ALL_ZONES) == NULL) 17147 new_ilm->ilm_notify_driver = B_TRUE; 17148 17149 /* Add to the to_ill's list */ 17150 new_ilm->ilm_next = to_ill->ill_ilm; 17151 to_ill->ill_ilm = new_ilm; 17152 ASSERT(ilm->ilm_ipif == NULL); 17153 new_ilm->ilm_ill = to_ill; 17154 new_ilm->ilm_is_new = B_TRUE; 17155 } 17156 17157 } 17158 17159 bottom: 17160 /* 17161 * Revert multicast filter state to (EXCLUDE, NULL). 17162 * new_ilm->ilm_is_new should already be set if needed. 17163 */ 17164 new_ilm->ilm_fmode = MODE_IS_EXCLUDE; 17165 CLEAR_SLIST(new_ilm->ilm_filter); 17166 /* 17167 * We allocated/got a new ilm, free the old one. 17168 */ 17169 if (new_ilm != ilm) { 17170 if (from_ill->ill_ilm_walker_cnt == 0) { 17171 *ilmp = ilm->ilm_next; 17172 ilm->ilm_next = NULL; 17173 FREE_SLIST(ilm->ilm_filter); 17174 FREE_SLIST(ilm->ilm_pendsrcs); 17175 FREE_SLIST(ilm->ilm_rtx.rtx_allow); 17176 FREE_SLIST(ilm->ilm_rtx.rtx_block); 17177 mi_free((char *)ilm); 17178 } else { 17179 ilm->ilm_flags |= ILM_DELETED; 17180 from_ill->ill_ilm_cleanup_reqd = 1; 17181 ilmp = &ilm->ilm_next; 17182 } 17183 } 17184 } 17185 } 17186 17187 /* 17188 * Move all the multicast memberships to to_ill. Called when 17189 * an ipif moves from "from_ill" to "to_ill". This function is slightly 17190 * different from IPv6 counterpart as multicast memberships are associated 17191 * with ills in IPv6. This function is called after every ipif is moved 17192 * unlike IPv6, where it is moved only once. 17193 */ 17194 static void 17195 ilm_move_v4(ill_t *from_ill, ill_t *to_ill, ipif_t *ipif) 17196 { 17197 ilm_t *ilm; 17198 ilm_t *ilm_next; 17199 ilm_t *new_ilm; 17200 ilm_t **ilmp; 17201 ip_stack_t *ipst = from_ill->ill_ipst; 17202 17203 ASSERT(MUTEX_HELD(&to_ill->ill_lock)); 17204 ASSERT(MUTEX_HELD(&from_ill->ill_lock)); 17205 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); 17206 17207 ilmp = &from_ill->ill_ilm; 17208 for (ilm = from_ill->ill_ilm; ilm != NULL; ilm = ilm_next) { 17209 ilm_next = ilm->ilm_next; 17210 17211 if (ilm->ilm_flags & ILM_DELETED) { 17212 ilmp = &ilm->ilm_next; 17213 continue; 17214 } 17215 17216 ASSERT(ilm->ilm_ipif != NULL); 17217 17218 if (ilm->ilm_ipif != ipif) { 17219 ilmp = &ilm->ilm_next; 17220 continue; 17221 } 17222 17223 if (V4_PART_OF_V6(ilm->ilm_v6addr) == 17224 htonl(INADDR_ALLHOSTS_GROUP)) { 17225 new_ilm = ilm_lookup_ipif(ipif, 17226 V4_PART_OF_V6(ilm->ilm_v6addr)); 17227 if (new_ilm != NULL) { 17228 new_ilm->ilm_refcnt += ilm->ilm_refcnt; 17229 /* 17230 * We still need to deal with the from_ill. 17231 */ 17232 new_ilm->ilm_is_new = B_TRUE; 17233 new_ilm->ilm_fmode = MODE_IS_EXCLUDE; 17234 CLEAR_SLIST(new_ilm->ilm_filter); 17235 goto delete_ilm; 17236 } 17237 /* 17238 * If we could not find one e.g. ipif is 17239 * still down on to_ill, we add this ilm 17240 * on ill_new to preserve the reference 17241 * count. 17242 */ 17243 } 17244 /* 17245 * When ipifs move, ilms always move with it 17246 * to the NEW ill. Thus we should never be 17247 * able to find ilm till we really move it here. 17248 */ 17249 ASSERT(ilm_lookup_ipif(ipif, 17250 V4_PART_OF_V6(ilm->ilm_v6addr)) == NULL); 17251 17252 if (from_ill->ill_ilm_walker_cnt != 0) { 17253 new_ilm = (ilm_t *)mi_zalloc(sizeof (ilm_t)); 17254 if (new_ilm == NULL) { 17255 char buf[INET6_ADDRSTRLEN]; 17256 ip0dbg(("ilm_move_v4: FAILBACK of IPv4" 17257 " multicast address %s : " 17258 "from %s to" 17259 " %s failed : ENOMEM \n", 17260 inet_ntop(AF_INET, 17261 &ilm->ilm_v6addr, buf, 17262 sizeof (buf)), 17263 from_ill->ill_name, 17264 to_ill->ill_name)); 17265 17266 ilmp = &ilm->ilm_next; 17267 continue; 17268 } 17269 *new_ilm = *ilm; 17270 /* We don't want new_ilm linked to ilm's filter list */ 17271 new_ilm->ilm_filter = NULL; 17272 } else { 17273 /* Remove from the list */ 17274 *ilmp = ilm->ilm_next; 17275 new_ilm = ilm; 17276 } 17277 17278 /* 17279 * If we have never joined this group on the to_ill 17280 * make sure we tell the driver. 17281 */ 17282 if (ilm_lookup_ill_v6(to_ill, &new_ilm->ilm_v6addr, 17283 ALL_ZONES) == NULL) 17284 new_ilm->ilm_notify_driver = B_TRUE; 17285 17286 /* Add to the to_ill's list */ 17287 new_ilm->ilm_next = to_ill->ill_ilm; 17288 to_ill->ill_ilm = new_ilm; 17289 new_ilm->ilm_is_new = B_TRUE; 17290 17291 /* 17292 * Revert multicast filter state to (EXCLUDE, NULL) 17293 */ 17294 new_ilm->ilm_fmode = MODE_IS_EXCLUDE; 17295 CLEAR_SLIST(new_ilm->ilm_filter); 17296 17297 /* 17298 * Delete only if we have allocated a new ilm. 17299 */ 17300 if (new_ilm != ilm) { 17301 delete_ilm: 17302 if (from_ill->ill_ilm_walker_cnt == 0) { 17303 /* Remove from the list */ 17304 *ilmp = ilm->ilm_next; 17305 ilm->ilm_next = NULL; 17306 FREE_SLIST(ilm->ilm_filter); 17307 FREE_SLIST(ilm->ilm_pendsrcs); 17308 FREE_SLIST(ilm->ilm_rtx.rtx_allow); 17309 FREE_SLIST(ilm->ilm_rtx.rtx_block); 17310 mi_free((char *)ilm); 17311 } else { 17312 ilm->ilm_flags |= ILM_DELETED; 17313 from_ill->ill_ilm_cleanup_reqd = 1; 17314 ilmp = &ilm->ilm_next; 17315 } 17316 } 17317 } 17318 } 17319 17320 static uint_t 17321 ipif_get_id(ill_t *ill, uint_t id) 17322 { 17323 uint_t unit; 17324 ipif_t *tipif; 17325 boolean_t found = B_FALSE; 17326 ip_stack_t *ipst = ill->ill_ipst; 17327 17328 /* 17329 * During failback, we want to go back to the same id 17330 * instead of the smallest id so that the original 17331 * configuration is maintained. id is non-zero in that 17332 * case. 17333 */ 17334 if (id != 0) { 17335 /* 17336 * While failing back, if we still have an ipif with 17337 * MAX_ADDRS_PER_IF, it means this will be replaced 17338 * as soon as we return from this function. It was 17339 * to set to MAX_ADDRS_PER_IF by the caller so that 17340 * we can choose the smallest id. Thus we return zero 17341 * in that case ignoring the hint. 17342 */ 17343 if (ill->ill_ipif->ipif_id == MAX_ADDRS_PER_IF) 17344 return (0); 17345 for (tipif = ill->ill_ipif; tipif != NULL; 17346 tipif = tipif->ipif_next) { 17347 if (tipif->ipif_id == id) { 17348 found = B_TRUE; 17349 break; 17350 } 17351 } 17352 /* 17353 * If somebody already plumbed another logical 17354 * with the same id, we won't be able to find it. 17355 */ 17356 if (!found) 17357 return (id); 17358 } 17359 for (unit = 0; unit <= ipst->ips_ip_addrs_per_if; unit++) { 17360 found = B_FALSE; 17361 for (tipif = ill->ill_ipif; tipif != NULL; 17362 tipif = tipif->ipif_next) { 17363 if (tipif->ipif_id == unit) { 17364 found = B_TRUE; 17365 break; 17366 } 17367 } 17368 if (!found) 17369 break; 17370 } 17371 return (unit); 17372 } 17373 17374 /* ARGSUSED */ 17375 static int 17376 ipif_move(ipif_t *ipif, ill_t *to_ill, queue_t *q, mblk_t *mp, 17377 ipif_t **rep_ipif_ptr) 17378 { 17379 ill_t *from_ill; 17380 ipif_t *rep_ipif; 17381 uint_t unit; 17382 int err = 0; 17383 ipif_t *to_ipif; 17384 struct iocblk *iocp; 17385 boolean_t failback_cmd; 17386 boolean_t remove_ipif; 17387 int rc; 17388 ip_stack_t *ipst; 17389 17390 ASSERT(IAM_WRITER_ILL(to_ill)); 17391 ASSERT(IAM_WRITER_IPIF(ipif)); 17392 17393 iocp = (struct iocblk *)mp->b_rptr; 17394 failback_cmd = (iocp->ioc_cmd == SIOCLIFFAILBACK); 17395 remove_ipif = B_FALSE; 17396 17397 from_ill = ipif->ipif_ill; 17398 ipst = from_ill->ill_ipst; 17399 17400 ASSERT(MUTEX_HELD(&to_ill->ill_lock)); 17401 ASSERT(MUTEX_HELD(&from_ill->ill_lock)); 17402 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); 17403 17404 /* 17405 * Don't move LINK LOCAL addresses as they are tied to 17406 * physical interface. 17407 */ 17408 if (from_ill->ill_isv6 && 17409 IN6_IS_ADDR_LINKLOCAL(&ipif->ipif_v6lcl_addr)) { 17410 ipif->ipif_was_up = B_FALSE; 17411 IPIF_UNMARK_MOVING(ipif); 17412 return (0); 17413 } 17414 17415 /* 17416 * We set the ipif_id to maximum so that the search for 17417 * ipif_id will pick the lowest number i.e 0 in the 17418 * following 2 cases : 17419 * 17420 * 1) We have a replacement ipif at the head of to_ill. 17421 * We can't remove it yet as we can exceed ip_addrs_per_if 17422 * on to_ill and hence the MOVE might fail. We want to 17423 * remove it only if we could move the ipif. Thus, by 17424 * setting it to the MAX value, we make the search in 17425 * ipif_get_id return the zeroth id. 17426 * 17427 * 2) When DR pulls out the NIC and re-plumbs the interface, 17428 * we might just have a zero address plumbed on the ipif 17429 * with zero id in the case of IPv4. We remove that while 17430 * doing the failback. We want to remove it only if we 17431 * could move the ipif. Thus, by setting it to the MAX 17432 * value, we make the search in ipif_get_id return the 17433 * zeroth id. 17434 * 17435 * Both (1) and (2) are done only when when we are moving 17436 * an ipif (either due to failover/failback) which originally 17437 * belonged to this interface i.e the ipif_orig_ifindex is 17438 * the same as to_ill's ifindex. This is needed so that 17439 * FAILOVER from A -> B ( A failed) followed by FAILOVER 17440 * from B -> A (B is being removed from the group) and 17441 * FAILBACK from A -> B restores the original configuration. 17442 * Without the check for orig_ifindex, the second FAILOVER 17443 * could make the ipif belonging to B replace the A's zeroth 17444 * ipif and the subsequent failback re-creating the replacement 17445 * ipif again. 17446 * 17447 * NOTE : We created the replacement ipif when we did a 17448 * FAILOVER (See below). We could check for FAILBACK and 17449 * then look for replacement ipif to be removed. But we don't 17450 * want to do that because we wan't to allow the possibility 17451 * of a FAILOVER from A -> B (which creates the replacement ipif), 17452 * followed by a *FAILOVER* from B -> A instead of a FAILBACK 17453 * from B -> A. 17454 */ 17455 to_ipif = to_ill->ill_ipif; 17456 if ((to_ill->ill_phyint->phyint_ifindex == 17457 ipif->ipif_orig_ifindex) && 17458 IPIF_REPL_CHECK(to_ipif, failback_cmd)) { 17459 ASSERT(to_ipif->ipif_id == 0); 17460 remove_ipif = B_TRUE; 17461 to_ipif->ipif_id = MAX_ADDRS_PER_IF; 17462 } 17463 /* 17464 * Find the lowest logical unit number on the to_ill. 17465 * If we are failing back, try to get the original id 17466 * rather than the lowest one so that the original 17467 * configuration is maintained. 17468 * 17469 * XXX need a better scheme for this. 17470 */ 17471 if (failback_cmd) { 17472 unit = ipif_get_id(to_ill, ipif->ipif_orig_ipifid); 17473 } else { 17474 unit = ipif_get_id(to_ill, 0); 17475 } 17476 17477 /* Reset back to zero in case we fail below */ 17478 if (to_ipif->ipif_id == MAX_ADDRS_PER_IF) 17479 to_ipif->ipif_id = 0; 17480 17481 if (unit == ipst->ips_ip_addrs_per_if) { 17482 ipif->ipif_was_up = B_FALSE; 17483 IPIF_UNMARK_MOVING(ipif); 17484 return (EINVAL); 17485 } 17486 17487 /* 17488 * ipif is ready to move from "from_ill" to "to_ill". 17489 * 17490 * 1) If we are moving ipif with id zero, create a 17491 * replacement ipif for this ipif on from_ill. If this fails 17492 * fail the MOVE operation. 17493 * 17494 * 2) Remove the replacement ipif on to_ill if any. 17495 * We could remove the replacement ipif when we are moving 17496 * the ipif with id zero. But what if somebody already 17497 * unplumbed it ? Thus we always remove it if it is present. 17498 * We want to do it only if we are sure we are going to 17499 * move the ipif to to_ill which is why there are no 17500 * returns due to error till ipif is linked to to_ill. 17501 * Note that the first ipif that we failback will always 17502 * be zero if it is present. 17503 */ 17504 if (ipif->ipif_id == 0) { 17505 ipaddr_t inaddr_any = INADDR_ANY; 17506 17507 rep_ipif = (ipif_t *)mi_alloc(sizeof (ipif_t), BPRI_MED); 17508 if (rep_ipif == NULL) { 17509 ipif->ipif_was_up = B_FALSE; 17510 IPIF_UNMARK_MOVING(ipif); 17511 return (ENOMEM); 17512 } 17513 *rep_ipif = ipif_zero; 17514 /* 17515 * Before we put the ipif on the list, store the addresses 17516 * as mapped addresses as some of the ioctls e.g SIOCGIFADDR 17517 * assumes so. This logic is not any different from what 17518 * ipif_allocate does. 17519 */ 17520 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 17521 &rep_ipif->ipif_v6lcl_addr); 17522 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 17523 &rep_ipif->ipif_v6src_addr); 17524 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 17525 &rep_ipif->ipif_v6subnet); 17526 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 17527 &rep_ipif->ipif_v6net_mask); 17528 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 17529 &rep_ipif->ipif_v6brd_addr); 17530 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 17531 &rep_ipif->ipif_v6pp_dst_addr); 17532 /* 17533 * We mark IPIF_NOFAILOVER so that this can never 17534 * move. 17535 */ 17536 rep_ipif->ipif_flags = ipif->ipif_flags | IPIF_NOFAILOVER; 17537 rep_ipif->ipif_flags &= ~IPIF_UP & ~IPIF_DUPLICATE; 17538 rep_ipif->ipif_replace_zero = B_TRUE; 17539 mutex_init(&rep_ipif->ipif_saved_ire_lock, NULL, 17540 MUTEX_DEFAULT, NULL); 17541 rep_ipif->ipif_id = 0; 17542 rep_ipif->ipif_ire_type = ipif->ipif_ire_type; 17543 rep_ipif->ipif_ill = from_ill; 17544 rep_ipif->ipif_orig_ifindex = 17545 from_ill->ill_phyint->phyint_ifindex; 17546 /* Insert at head */ 17547 rep_ipif->ipif_next = from_ill->ill_ipif; 17548 from_ill->ill_ipif = rep_ipif; 17549 /* 17550 * We don't really care to let apps know about 17551 * this interface. 17552 */ 17553 } 17554 17555 if (remove_ipif) { 17556 /* 17557 * We set to a max value above for this case to get 17558 * id zero. ASSERT that we did get one. 17559 */ 17560 ASSERT((to_ipif->ipif_id == 0) && (unit == 0)); 17561 rep_ipif = to_ipif; 17562 to_ill->ill_ipif = rep_ipif->ipif_next; 17563 rep_ipif->ipif_next = NULL; 17564 /* 17565 * If some apps scanned and find this interface, 17566 * it is time to let them know, so that they can 17567 * delete it. 17568 */ 17569 17570 *rep_ipif_ptr = rep_ipif; 17571 } 17572 17573 /* Get it out of the ILL interface list. */ 17574 ipif_remove(ipif, B_FALSE); 17575 17576 /* Assign the new ill */ 17577 ipif->ipif_ill = to_ill; 17578 ipif->ipif_id = unit; 17579 /* id has already been checked */ 17580 rc = ipif_insert(ipif, B_FALSE, B_FALSE); 17581 ASSERT(rc == 0); 17582 /* Let SCTP update its list */ 17583 sctp_move_ipif(ipif, from_ill, to_ill); 17584 /* 17585 * Handle the failover and failback of ipif_t between 17586 * ill_t that have differing maximum mtu values. 17587 */ 17588 if (ipif->ipif_mtu > to_ill->ill_max_mtu) { 17589 if (ipif->ipif_saved_mtu == 0) { 17590 /* 17591 * As this ipif_t is moving to an ill_t 17592 * that has a lower ill_max_mtu, its 17593 * ipif_mtu needs to be saved so it can 17594 * be restored during failback or during 17595 * failover to an ill_t which has a 17596 * higher ill_max_mtu. 17597 */ 17598 ipif->ipif_saved_mtu = ipif->ipif_mtu; 17599 ipif->ipif_mtu = to_ill->ill_max_mtu; 17600 } else { 17601 /* 17602 * The ipif_t is, once again, moving to 17603 * an ill_t that has a lower maximum mtu 17604 * value. 17605 */ 17606 ipif->ipif_mtu = to_ill->ill_max_mtu; 17607 } 17608 } else if (ipif->ipif_mtu < to_ill->ill_max_mtu && 17609 ipif->ipif_saved_mtu != 0) { 17610 /* 17611 * The mtu of this ipif_t had to be reduced 17612 * during an earlier failover; this is an 17613 * opportunity for it to be increased (either as 17614 * part of another failover or a failback). 17615 */ 17616 if (ipif->ipif_saved_mtu <= to_ill->ill_max_mtu) { 17617 ipif->ipif_mtu = ipif->ipif_saved_mtu; 17618 ipif->ipif_saved_mtu = 0; 17619 } else { 17620 ipif->ipif_mtu = to_ill->ill_max_mtu; 17621 } 17622 } 17623 17624 /* 17625 * We preserve all the other fields of the ipif including 17626 * ipif_saved_ire_mp. The routes that are saved here will 17627 * be recreated on the new interface and back on the old 17628 * interface when we move back. 17629 */ 17630 ASSERT(ipif->ipif_arp_del_mp == NULL); 17631 17632 return (err); 17633 } 17634 17635 static int 17636 ipif_move_all(ill_t *from_ill, ill_t *to_ill, queue_t *q, mblk_t *mp, 17637 int ifindex, ipif_t **rep_ipif_ptr) 17638 { 17639 ipif_t *mipif; 17640 ipif_t *ipif_next; 17641 int err; 17642 17643 /* 17644 * We don't really try to MOVE back things if some of the 17645 * operations fail. The daemon will take care of moving again 17646 * later on. 17647 */ 17648 for (mipif = from_ill->ill_ipif; mipif != NULL; mipif = ipif_next) { 17649 ipif_next = mipif->ipif_next; 17650 if (!(mipif->ipif_flags & IPIF_NOFAILOVER) && 17651 (ifindex == 0 || ifindex == mipif->ipif_orig_ifindex)) { 17652 17653 err = ipif_move(mipif, to_ill, q, mp, rep_ipif_ptr); 17654 17655 /* 17656 * When the MOVE fails, it is the job of the 17657 * application to take care of this properly 17658 * i.e try again if it is ENOMEM. 17659 */ 17660 if (mipif->ipif_ill != from_ill) { 17661 /* 17662 * ipif has moved. 17663 * 17664 * Move the multicast memberships associated 17665 * with this ipif to the new ill. For IPv6, we 17666 * do it once after all the ipifs are moved 17667 * (in ill_move) as they are not associated 17668 * with ipifs. 17669 * 17670 * We need to move the ilms as the ipif has 17671 * already been moved to a new ill even 17672 * in the case of errors. Neither 17673 * ilm_free(ipif) will find the ilm 17674 * when somebody unplumbs this ipif nor 17675 * ilm_delete(ilm) will be able to find the 17676 * ilm, if we don't move now. 17677 */ 17678 if (!from_ill->ill_isv6) 17679 ilm_move_v4(from_ill, to_ill, mipif); 17680 } 17681 17682 if (err != 0) 17683 return (err); 17684 } 17685 } 17686 return (0); 17687 } 17688 17689 static int 17690 ill_move(ill_t *from_ill, ill_t *to_ill, queue_t *q, mblk_t *mp) 17691 { 17692 int ifindex; 17693 int err; 17694 struct iocblk *iocp; 17695 ipif_t *ipif; 17696 ipif_t *rep_ipif_ptr = NULL; 17697 ipif_t *from_ipif = NULL; 17698 boolean_t check_rep_if = B_FALSE; 17699 ip_stack_t *ipst = from_ill->ill_ipst; 17700 17701 iocp = (struct iocblk *)mp->b_rptr; 17702 if (iocp->ioc_cmd == SIOCLIFFAILOVER) { 17703 /* 17704 * Move everything pointing at from_ill to to_ill. 17705 * We acheive this by passing in 0 as ifindex. 17706 */ 17707 ifindex = 0; 17708 } else { 17709 /* 17710 * Move everything pointing at from_ill whose original 17711 * ifindex of connp, ipif, ilm points at to_ill->ill_index. 17712 * We acheive this by passing in ifindex rather than 0. 17713 * Multicast vifs, ilgs move implicitly because ipifs move. 17714 */ 17715 ASSERT(iocp->ioc_cmd == SIOCLIFFAILBACK); 17716 ifindex = to_ill->ill_phyint->phyint_ifindex; 17717 } 17718 17719 /* 17720 * Determine if there is at least one ipif that would move from 17721 * 'from_ill' to 'to_ill'. If so, it is possible that the replacement 17722 * ipif (if it exists) on the to_ill would be consumed as a result of 17723 * the move, in which case we need to quiesce the replacement ipif also. 17724 */ 17725 for (from_ipif = from_ill->ill_ipif; from_ipif != NULL; 17726 from_ipif = from_ipif->ipif_next) { 17727 if (((ifindex == 0) || 17728 (ifindex == from_ipif->ipif_orig_ifindex)) && 17729 !(from_ipif->ipif_flags & IPIF_NOFAILOVER)) { 17730 check_rep_if = B_TRUE; 17731 break; 17732 } 17733 } 17734 17735 17736 ill_down_ipifs(from_ill, mp, ifindex, B_TRUE); 17737 17738 GRAB_ILL_LOCKS(from_ill, to_ill); 17739 if ((ipif = ill_quiescent_to_move(from_ill)) != NULL) { 17740 (void) ipsq_pending_mp_add(NULL, ipif, q, 17741 mp, ILL_MOVE_OK); 17742 RELEASE_ILL_LOCKS(from_ill, to_ill); 17743 return (EINPROGRESS); 17744 } 17745 17746 /* Check if the replacement ipif is quiescent to delete */ 17747 if (check_rep_if && IPIF_REPL_CHECK(to_ill->ill_ipif, 17748 (iocp->ioc_cmd == SIOCLIFFAILBACK))) { 17749 to_ill->ill_ipif->ipif_state_flags |= 17750 IPIF_MOVING | IPIF_CHANGING; 17751 if ((ipif = ill_quiescent_to_move(to_ill)) != NULL) { 17752 (void) ipsq_pending_mp_add(NULL, ipif, q, 17753 mp, ILL_MOVE_OK); 17754 RELEASE_ILL_LOCKS(from_ill, to_ill); 17755 return (EINPROGRESS); 17756 } 17757 } 17758 RELEASE_ILL_LOCKS(from_ill, to_ill); 17759 17760 ASSERT(!MUTEX_HELD(&to_ill->ill_lock)); 17761 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 17762 GRAB_ILL_LOCKS(from_ill, to_ill); 17763 err = ipif_move_all(from_ill, to_ill, q, mp, ifindex, &rep_ipif_ptr); 17764 17765 /* ilm_move is done inside ipif_move for IPv4 */ 17766 if (err == 0 && from_ill->ill_isv6) 17767 ilm_move_v6(from_ill, to_ill, ifindex); 17768 17769 RELEASE_ILL_LOCKS(from_ill, to_ill); 17770 rw_exit(&ipst->ips_ill_g_lock); 17771 17772 /* 17773 * send rts messages and multicast messages. 17774 */ 17775 if (rep_ipif_ptr != NULL) { 17776 if (rep_ipif_ptr->ipif_recovery_id != 0) { 17777 (void) untimeout(rep_ipif_ptr->ipif_recovery_id); 17778 rep_ipif_ptr->ipif_recovery_id = 0; 17779 } 17780 ip_rts_ifmsg(rep_ipif_ptr); 17781 ip_rts_newaddrmsg(RTM_DELETE, 0, rep_ipif_ptr); 17782 #ifdef DEBUG 17783 ipif_trace_cleanup(rep_ipif_ptr); 17784 #endif 17785 mi_free(rep_ipif_ptr); 17786 } 17787 17788 conn_move_ill(from_ill, to_ill, ifindex); 17789 17790 return (err); 17791 } 17792 17793 /* 17794 * Used to extract arguments for FAILOVER/FAILBACK ioctls. 17795 * Also checks for the validity of the arguments. 17796 * Note: We are already exclusive inside the from group. 17797 * It is upto the caller to release refcnt on the to_ill's. 17798 */ 17799 static int 17800 ip_extract_move_args(queue_t *q, mblk_t *mp, ill_t **ill_from_v4, 17801 ill_t **ill_from_v6, ill_t **ill_to_v4, ill_t **ill_to_v6) 17802 { 17803 int dst_index; 17804 ipif_t *ipif_v4, *ipif_v6; 17805 struct lifreq *lifr; 17806 mblk_t *mp1; 17807 boolean_t exists; 17808 sin_t *sin; 17809 int err = 0; 17810 ip_stack_t *ipst; 17811 17812 if (CONN_Q(q)) 17813 ipst = CONNQ_TO_IPST(q); 17814 else 17815 ipst = ILLQ_TO_IPST(q); 17816 17817 17818 if ((mp1 = mp->b_cont) == NULL) 17819 return (EPROTO); 17820 17821 if ((mp1 = mp1->b_cont) == NULL) 17822 return (EPROTO); 17823 17824 lifr = (struct lifreq *)mp1->b_rptr; 17825 sin = (sin_t *)&lifr->lifr_addr; 17826 17827 /* 17828 * We operate on both IPv4 and IPv6. Thus, we don't allow IPv4/IPv6 17829 * specific operations. 17830 */ 17831 if (sin->sin_family != AF_UNSPEC) 17832 return (EINVAL); 17833 17834 /* 17835 * Get ipif with id 0. We are writer on the from ill. So we can pass 17836 * NULLs for the last 4 args and we know the lookup won't fail 17837 * with EINPROGRESS. 17838 */ 17839 ipif_v4 = ipif_lookup_on_name(lifr->lifr_name, 17840 mi_strlen(lifr->lifr_name), B_FALSE, &exists, B_FALSE, 17841 ALL_ZONES, NULL, NULL, NULL, NULL, ipst); 17842 ipif_v6 = ipif_lookup_on_name(lifr->lifr_name, 17843 mi_strlen(lifr->lifr_name), B_FALSE, &exists, B_TRUE, 17844 ALL_ZONES, NULL, NULL, NULL, NULL, ipst); 17845 17846 if (ipif_v4 == NULL && ipif_v6 == NULL) 17847 return (ENXIO); 17848 17849 if (ipif_v4 != NULL) { 17850 ASSERT(ipif_v4->ipif_refcnt != 0); 17851 if (ipif_v4->ipif_id != 0) { 17852 err = EINVAL; 17853 goto done; 17854 } 17855 17856 ASSERT(IAM_WRITER_IPIF(ipif_v4)); 17857 *ill_from_v4 = ipif_v4->ipif_ill; 17858 } 17859 17860 if (ipif_v6 != NULL) { 17861 ASSERT(ipif_v6->ipif_refcnt != 0); 17862 if (ipif_v6->ipif_id != 0) { 17863 err = EINVAL; 17864 goto done; 17865 } 17866 17867 ASSERT(IAM_WRITER_IPIF(ipif_v6)); 17868 *ill_from_v6 = ipif_v6->ipif_ill; 17869 } 17870 17871 err = 0; 17872 dst_index = lifr->lifr_movetoindex; 17873 *ill_to_v4 = ill_lookup_on_ifindex(dst_index, B_FALSE, 17874 q, mp, ip_process_ioctl, &err, ipst); 17875 if (err != 0) { 17876 /* 17877 * There could be only v6. 17878 */ 17879 if (err != ENXIO) 17880 goto done; 17881 err = 0; 17882 } 17883 17884 *ill_to_v6 = ill_lookup_on_ifindex(dst_index, B_TRUE, 17885 q, mp, ip_process_ioctl, &err, ipst); 17886 if (err != 0) { 17887 if (err != ENXIO) 17888 goto done; 17889 if (*ill_to_v4 == NULL) { 17890 err = ENXIO; 17891 goto done; 17892 } 17893 err = 0; 17894 } 17895 17896 /* 17897 * If we have something to MOVE i.e "from" not NULL, 17898 * "to" should be non-NULL. 17899 */ 17900 if ((*ill_from_v4 != NULL && *ill_to_v4 == NULL) || 17901 (*ill_from_v6 != NULL && *ill_to_v6 == NULL)) { 17902 err = EINVAL; 17903 } 17904 17905 done: 17906 if (ipif_v4 != NULL) 17907 ipif_refrele(ipif_v4); 17908 if (ipif_v6 != NULL) 17909 ipif_refrele(ipif_v6); 17910 return (err); 17911 } 17912 17913 /* 17914 * FAILOVER and FAILBACK are modelled as MOVE operations. 17915 * 17916 * We don't check whether the MOVE is within the same group or 17917 * not, because this ioctl can be used as a generic mechanism 17918 * to failover from interface A to B, though things will function 17919 * only if they are really part of the same group. Moreover, 17920 * all ipifs may be down and hence temporarily out of the group. 17921 * 17922 * ipif's that need to be moved are first brought down; V4 ipifs are brought 17923 * down first and then V6. For each we wait for the ipif's to become quiescent. 17924 * Bringing down the ipifs ensures that all ires pointing to these ipifs's 17925 * have been deleted and there are no active references. Once quiescent the 17926 * ipif's are moved and brought up on the new ill. 17927 * 17928 * Normally the source ill and destination ill belong to the same IPMP group 17929 * and hence the same ipsq_t. In the event they don't belong to the same 17930 * same group the two ipsq's are first merged into one ipsq - that of the 17931 * to_ill. The multicast memberships on the source and destination ill cannot 17932 * change during the move operation since multicast joins/leaves also have to 17933 * execute on the same ipsq and are hence serialized. 17934 */ 17935 /* ARGSUSED */ 17936 int 17937 ip_sioctl_move(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 17938 ip_ioctl_cmd_t *ipip, void *ifreq) 17939 { 17940 ill_t *ill_to_v4 = NULL; 17941 ill_t *ill_to_v6 = NULL; 17942 ill_t *ill_from_v4 = NULL; 17943 ill_t *ill_from_v6 = NULL; 17944 int err = 0; 17945 17946 /* 17947 * setup from and to ill's, we can get EINPROGRESS only for 17948 * to_ill's. 17949 */ 17950 err = ip_extract_move_args(q, mp, &ill_from_v4, &ill_from_v6, 17951 &ill_to_v4, &ill_to_v6); 17952 17953 if (err != 0) { 17954 ip0dbg(("ip_sioctl_move: extract args failed\n")); 17955 goto done; 17956 } 17957 17958 /* 17959 * nothing to do. 17960 */ 17961 if ((ill_from_v4 != NULL) && (ill_from_v4 == ill_to_v4)) { 17962 goto done; 17963 } 17964 17965 /* 17966 * nothing to do. 17967 */ 17968 if ((ill_from_v6 != NULL) && (ill_from_v6 == ill_to_v6)) { 17969 goto done; 17970 } 17971 17972 /* 17973 * Mark the ill as changing. 17974 * ILL_CHANGING flag is cleared when the ipif's are brought up 17975 * in ill_up_ipifs in case of error they are cleared below. 17976 */ 17977 17978 GRAB_ILL_LOCKS(ill_from_v4, ill_from_v6); 17979 if (ill_from_v4 != NULL) 17980 ill_from_v4->ill_state_flags |= ILL_CHANGING; 17981 if (ill_from_v6 != NULL) 17982 ill_from_v6->ill_state_flags |= ILL_CHANGING; 17983 RELEASE_ILL_LOCKS(ill_from_v4, ill_from_v6); 17984 17985 /* 17986 * Make sure that both src and dst are 17987 * in the same syncq group. If not make it happen. 17988 * We are not holding any locks because we are the writer 17989 * on the from_ipsq and we will hold locks in ill_merge_groups 17990 * to protect to_ipsq against changing. 17991 */ 17992 if (ill_from_v4 != NULL) { 17993 if (ill_from_v4->ill_phyint->phyint_ipsq != 17994 ill_to_v4->ill_phyint->phyint_ipsq) { 17995 err = ill_merge_groups(ill_from_v4, ill_to_v4, 17996 NULL, mp, q); 17997 goto err_ret; 17998 17999 } 18000 ASSERT(!MUTEX_HELD(&ill_to_v4->ill_lock)); 18001 } else { 18002 18003 if (ill_from_v6->ill_phyint->phyint_ipsq != 18004 ill_to_v6->ill_phyint->phyint_ipsq) { 18005 err = ill_merge_groups(ill_from_v6, ill_to_v6, 18006 NULL, mp, q); 18007 goto err_ret; 18008 18009 } 18010 ASSERT(!MUTEX_HELD(&ill_to_v6->ill_lock)); 18011 } 18012 18013 /* 18014 * Now that the ipsq's have been merged and we are the writer 18015 * lets mark to_ill as changing as well. 18016 */ 18017 18018 GRAB_ILL_LOCKS(ill_to_v4, ill_to_v6); 18019 if (ill_to_v4 != NULL) 18020 ill_to_v4->ill_state_flags |= ILL_CHANGING; 18021 if (ill_to_v6 != NULL) 18022 ill_to_v6->ill_state_flags |= ILL_CHANGING; 18023 RELEASE_ILL_LOCKS(ill_to_v4, ill_to_v6); 18024 18025 /* 18026 * Its ok for us to proceed with the move even if 18027 * ill_pending_mp is non null on one of the from ill's as the reply 18028 * should not be looking at the ipif, it should only care about the 18029 * ill itself. 18030 */ 18031 18032 /* 18033 * lets move ipv4 first. 18034 */ 18035 if (ill_from_v4 != NULL) { 18036 ASSERT(IAM_WRITER_ILL(ill_to_v4)); 18037 ill_from_v4->ill_move_in_progress = B_TRUE; 18038 ill_to_v4->ill_move_in_progress = B_TRUE; 18039 ill_to_v4->ill_move_peer = ill_from_v4; 18040 ill_from_v4->ill_move_peer = ill_to_v4; 18041 err = ill_move(ill_from_v4, ill_to_v4, q, mp); 18042 } 18043 18044 /* 18045 * Now lets move ipv6. 18046 */ 18047 if (err == 0 && ill_from_v6 != NULL) { 18048 ASSERT(IAM_WRITER_ILL(ill_to_v6)); 18049 ill_from_v6->ill_move_in_progress = B_TRUE; 18050 ill_to_v6->ill_move_in_progress = B_TRUE; 18051 ill_to_v6->ill_move_peer = ill_from_v6; 18052 ill_from_v6->ill_move_peer = ill_to_v6; 18053 err = ill_move(ill_from_v6, ill_to_v6, q, mp); 18054 } 18055 18056 err_ret: 18057 /* 18058 * EINPROGRESS means we are waiting for the ipif's that need to be 18059 * moved to become quiescent. 18060 */ 18061 if (err == EINPROGRESS) { 18062 goto done; 18063 } 18064 18065 /* 18066 * if err is set ill_up_ipifs will not be called 18067 * lets clear the flags. 18068 */ 18069 18070 GRAB_ILL_LOCKS(ill_to_v4, ill_to_v6); 18071 GRAB_ILL_LOCKS(ill_from_v4, ill_from_v6); 18072 /* 18073 * Some of the clearing may be redundant. But it is simple 18074 * not making any extra checks. 18075 */ 18076 if (ill_from_v6 != NULL) { 18077 ill_from_v6->ill_move_in_progress = B_FALSE; 18078 ill_from_v6->ill_move_peer = NULL; 18079 ill_from_v6->ill_state_flags &= ~ILL_CHANGING; 18080 } 18081 if (ill_from_v4 != NULL) { 18082 ill_from_v4->ill_move_in_progress = B_FALSE; 18083 ill_from_v4->ill_move_peer = NULL; 18084 ill_from_v4->ill_state_flags &= ~ILL_CHANGING; 18085 } 18086 if (ill_to_v6 != NULL) { 18087 ill_to_v6->ill_move_in_progress = B_FALSE; 18088 ill_to_v6->ill_move_peer = NULL; 18089 ill_to_v6->ill_state_flags &= ~ILL_CHANGING; 18090 } 18091 if (ill_to_v4 != NULL) { 18092 ill_to_v4->ill_move_in_progress = B_FALSE; 18093 ill_to_v4->ill_move_peer = NULL; 18094 ill_to_v4->ill_state_flags &= ~ILL_CHANGING; 18095 } 18096 18097 /* 18098 * Check for setting INACTIVE, if STANDBY is set and FAILED is not set. 18099 * Do this always to maintain proper state i.e even in case of errors. 18100 * As phyint_inactive looks at both v4 and v6 interfaces, 18101 * we need not call on both v4 and v6 interfaces. 18102 */ 18103 if (ill_from_v4 != NULL) { 18104 if ((ill_from_v4->ill_phyint->phyint_flags & 18105 (PHYI_STANDBY | PHYI_FAILED)) == PHYI_STANDBY) { 18106 phyint_inactive(ill_from_v4->ill_phyint); 18107 } 18108 } else if (ill_from_v6 != NULL) { 18109 if ((ill_from_v6->ill_phyint->phyint_flags & 18110 (PHYI_STANDBY | PHYI_FAILED)) == PHYI_STANDBY) { 18111 phyint_inactive(ill_from_v6->ill_phyint); 18112 } 18113 } 18114 18115 if (ill_to_v4 != NULL) { 18116 if (ill_to_v4->ill_phyint->phyint_flags & PHYI_INACTIVE) { 18117 ill_to_v4->ill_phyint->phyint_flags &= ~PHYI_INACTIVE; 18118 } 18119 } else if (ill_to_v6 != NULL) { 18120 if (ill_to_v6->ill_phyint->phyint_flags & PHYI_INACTIVE) { 18121 ill_to_v6->ill_phyint->phyint_flags &= ~PHYI_INACTIVE; 18122 } 18123 } 18124 18125 RELEASE_ILL_LOCKS(ill_to_v4, ill_to_v6); 18126 RELEASE_ILL_LOCKS(ill_from_v4, ill_from_v6); 18127 18128 no_err: 18129 /* 18130 * lets bring the interfaces up on the to_ill. 18131 */ 18132 if (err == 0) { 18133 err = ill_up_ipifs(ill_to_v4 == NULL ? ill_to_v6:ill_to_v4, 18134 q, mp); 18135 } 18136 18137 if (err == 0) { 18138 if (ill_from_v4 != NULL && ill_to_v4 != NULL) 18139 ilm_send_multicast_reqs(ill_from_v4, ill_to_v4); 18140 18141 if (ill_from_v6 != NULL && ill_to_v6 != NULL) 18142 ilm_send_multicast_reqs(ill_from_v6, ill_to_v6); 18143 } 18144 done: 18145 18146 if (ill_to_v4 != NULL) { 18147 ill_refrele(ill_to_v4); 18148 } 18149 if (ill_to_v6 != NULL) { 18150 ill_refrele(ill_to_v6); 18151 } 18152 18153 return (err); 18154 } 18155 18156 static void 18157 ill_dl_down(ill_t *ill) 18158 { 18159 /* 18160 * The ill is down; unbind but stay attached since we're still 18161 * associated with a PPA. If we have negotiated DLPI capabilites 18162 * with the data link service provider (IDS_OK) then reset them. 18163 * The interval between unbinding and rebinding is potentially 18164 * unbounded hence we cannot assume things will be the same. 18165 * The DLPI capabilities will be probed again when the data link 18166 * is brought up. 18167 */ 18168 mblk_t *mp = ill->ill_unbind_mp; 18169 18170 ip1dbg(("ill_dl_down(%s)\n", ill->ill_name)); 18171 18172 ill->ill_unbind_mp = NULL; 18173 if (mp != NULL) { 18174 ip1dbg(("ill_dl_down: %s (%u) for %s\n", 18175 dl_primstr(*(int *)mp->b_rptr), *(int *)mp->b_rptr, 18176 ill->ill_name)); 18177 mutex_enter(&ill->ill_lock); 18178 ill->ill_state_flags |= ILL_DL_UNBIND_IN_PROGRESS; 18179 mutex_exit(&ill->ill_lock); 18180 /* 18181 * Reset the capabilities if the negotiation is done or is 18182 * still in progress. Note that ill_capability_reset() will 18183 * set ill_dlpi_capab_state to IDS_UNKNOWN, so the subsequent 18184 * DL_CAPABILITY_ACK and DL_NOTE_CAPAB_RENEG will be ignored. 18185 * 18186 * Further, reset ill_capab_reneg to be B_FALSE so that the 18187 * subsequent DL_CAPABILITY_ACK can be ignored, to prevent 18188 * the capabilities renegotiation from happening. 18189 */ 18190 if (ill->ill_dlpi_capab_state != IDS_UNKNOWN) 18191 ill_capability_reset(ill); 18192 ill->ill_capab_reneg = B_FALSE; 18193 18194 ill_dlpi_send(ill, mp); 18195 } 18196 18197 /* 18198 * Toss all of our multicast memberships. We could keep them, but 18199 * then we'd have to do bookkeeping of any joins and leaves performed 18200 * by the application while the the interface is down (we can't just 18201 * issue them because arp cannot currently process AR_ENTRY_SQUERY's 18202 * on a downed interface). 18203 */ 18204 ill_leave_multicast(ill); 18205 18206 mutex_enter(&ill->ill_lock); 18207 ill->ill_dl_up = 0; 18208 (void) ill_hook_event_create(ill, 0, NE_DOWN, NULL, 0); 18209 mutex_exit(&ill->ill_lock); 18210 } 18211 18212 static void 18213 ill_dlpi_dispatch(ill_t *ill, mblk_t *mp) 18214 { 18215 union DL_primitives *dlp; 18216 t_uscalar_t prim; 18217 18218 ASSERT(DB_TYPE(mp) == M_PROTO || DB_TYPE(mp) == M_PCPROTO); 18219 18220 dlp = (union DL_primitives *)mp->b_rptr; 18221 prim = dlp->dl_primitive; 18222 18223 ip1dbg(("ill_dlpi_dispatch: sending %s (%u) to %s\n", 18224 dl_primstr(prim), prim, ill->ill_name)); 18225 18226 switch (prim) { 18227 case DL_PHYS_ADDR_REQ: 18228 { 18229 dl_phys_addr_req_t *dlpap = (dl_phys_addr_req_t *)mp->b_rptr; 18230 ill->ill_phys_addr_pend = dlpap->dl_addr_type; 18231 break; 18232 } 18233 case DL_BIND_REQ: 18234 mutex_enter(&ill->ill_lock); 18235 ill->ill_state_flags &= ~ILL_DL_UNBIND_IN_PROGRESS; 18236 mutex_exit(&ill->ill_lock); 18237 break; 18238 } 18239 18240 /* 18241 * Except for the ACKs for the M_PCPROTO messages, all other ACKs 18242 * are dropped by ip_rput() if ILL_CONDEMNED is set. Therefore 18243 * we only wait for the ACK of the DL_UNBIND_REQ. 18244 */ 18245 mutex_enter(&ill->ill_lock); 18246 if (!(ill->ill_state_flags & ILL_CONDEMNED) || 18247 (prim == DL_UNBIND_REQ)) { 18248 ill->ill_dlpi_pending = prim; 18249 } 18250 mutex_exit(&ill->ill_lock); 18251 18252 putnext(ill->ill_wq, mp); 18253 } 18254 18255 /* 18256 * Helper function for ill_dlpi_send(). 18257 */ 18258 /* ARGSUSED */ 18259 static void 18260 ill_dlpi_send_writer(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *arg) 18261 { 18262 ill_dlpi_send(q->q_ptr, mp); 18263 } 18264 18265 /* 18266 * Send a DLPI control message to the driver but make sure there 18267 * is only one outstanding message. Uses ill_dlpi_pending to tell 18268 * when it must queue. ip_rput_dlpi_writer calls ill_dlpi_done() 18269 * when an ACK or a NAK is received to process the next queued message. 18270 */ 18271 void 18272 ill_dlpi_send(ill_t *ill, mblk_t *mp) 18273 { 18274 mblk_t **mpp; 18275 18276 ASSERT(DB_TYPE(mp) == M_PROTO || DB_TYPE(mp) == M_PCPROTO); 18277 18278 /* 18279 * To ensure that any DLPI requests for current exclusive operation 18280 * are always completely sent before any DLPI messages for other 18281 * operations, require writer access before enqueuing. 18282 */ 18283 if (!IAM_WRITER_ILL(ill)) { 18284 ill_refhold(ill); 18285 /* qwriter_ip() does the ill_refrele() */ 18286 qwriter_ip(ill, ill->ill_wq, mp, ill_dlpi_send_writer, 18287 NEW_OP, B_TRUE); 18288 return; 18289 } 18290 18291 mutex_enter(&ill->ill_lock); 18292 if (ill->ill_dlpi_pending != DL_PRIM_INVAL) { 18293 /* Must queue message. Tail insertion */ 18294 mpp = &ill->ill_dlpi_deferred; 18295 while (*mpp != NULL) 18296 mpp = &((*mpp)->b_next); 18297 18298 ip1dbg(("ill_dlpi_send: deferring request for %s\n", 18299 ill->ill_name)); 18300 18301 *mpp = mp; 18302 mutex_exit(&ill->ill_lock); 18303 return; 18304 } 18305 mutex_exit(&ill->ill_lock); 18306 ill_dlpi_dispatch(ill, mp); 18307 } 18308 18309 /* 18310 * Send all deferred DLPI messages without waiting for their ACKs. 18311 */ 18312 void 18313 ill_dlpi_send_deferred(ill_t *ill) 18314 { 18315 mblk_t *mp, *nextmp; 18316 18317 /* 18318 * Clear ill_dlpi_pending so that the message is not queued in 18319 * ill_dlpi_send(). 18320 */ 18321 mutex_enter(&ill->ill_lock); 18322 ill->ill_dlpi_pending = DL_PRIM_INVAL; 18323 mp = ill->ill_dlpi_deferred; 18324 ill->ill_dlpi_deferred = NULL; 18325 mutex_exit(&ill->ill_lock); 18326 18327 for (; mp != NULL; mp = nextmp) { 18328 nextmp = mp->b_next; 18329 mp->b_next = NULL; 18330 ill_dlpi_send(ill, mp); 18331 } 18332 } 18333 18334 /* 18335 * Check if the DLPI primitive `prim' is pending; print a warning if not. 18336 */ 18337 boolean_t 18338 ill_dlpi_pending(ill_t *ill, t_uscalar_t prim) 18339 { 18340 t_uscalar_t pending; 18341 18342 mutex_enter(&ill->ill_lock); 18343 if (ill->ill_dlpi_pending == prim) { 18344 mutex_exit(&ill->ill_lock); 18345 return (B_TRUE); 18346 } 18347 18348 /* 18349 * During teardown, ill_dlpi_dispatch() will send DLPI requests 18350 * without waiting, so don't print any warnings in that case. 18351 */ 18352 if (ill->ill_state_flags & ILL_CONDEMNED) { 18353 mutex_exit(&ill->ill_lock); 18354 return (B_FALSE); 18355 } 18356 pending = ill->ill_dlpi_pending; 18357 mutex_exit(&ill->ill_lock); 18358 18359 if (pending == DL_PRIM_INVAL) { 18360 (void) mi_strlog(ill->ill_rq, 1, SL_CONSOLE|SL_ERROR|SL_TRACE, 18361 "received unsolicited ack for %s on %s\n", 18362 dl_primstr(prim), ill->ill_name); 18363 } else { 18364 (void) mi_strlog(ill->ill_rq, 1, SL_CONSOLE|SL_ERROR|SL_TRACE, 18365 "received unexpected ack for %s on %s (expecting %s)\n", 18366 dl_primstr(prim), ill->ill_name, dl_primstr(pending)); 18367 } 18368 return (B_FALSE); 18369 } 18370 18371 /* 18372 * Complete the current DLPI operation associated with `prim' on `ill' and 18373 * start the next queued DLPI operation (if any). If there are no queued DLPI 18374 * operations and the ill's current exclusive IPSQ operation has finished 18375 * (i.e., ipsq_current_finish() was called), then clear ipsq_current_ipif to 18376 * allow the next exclusive IPSQ operation to begin upon ipsq_exit(). See 18377 * the comments above ipsq_current_finish() for details. 18378 */ 18379 void 18380 ill_dlpi_done(ill_t *ill, t_uscalar_t prim) 18381 { 18382 mblk_t *mp; 18383 ipsq_t *ipsq = ill->ill_phyint->phyint_ipsq; 18384 18385 ASSERT(IAM_WRITER_IPSQ(ipsq)); 18386 mutex_enter(&ill->ill_lock); 18387 18388 ASSERT(prim != DL_PRIM_INVAL); 18389 ASSERT(ill->ill_dlpi_pending == prim); 18390 18391 ip1dbg(("ill_dlpi_done: %s has completed %s (%u)\n", ill->ill_name, 18392 dl_primstr(ill->ill_dlpi_pending), ill->ill_dlpi_pending)); 18393 18394 if ((mp = ill->ill_dlpi_deferred) == NULL) { 18395 ill->ill_dlpi_pending = DL_PRIM_INVAL; 18396 18397 mutex_enter(&ipsq->ipsq_lock); 18398 if (ipsq->ipsq_current_done) 18399 ipsq->ipsq_current_ipif = NULL; 18400 mutex_exit(&ipsq->ipsq_lock); 18401 18402 cv_signal(&ill->ill_cv); 18403 mutex_exit(&ill->ill_lock); 18404 return; 18405 } 18406 18407 ill->ill_dlpi_deferred = mp->b_next; 18408 mp->b_next = NULL; 18409 mutex_exit(&ill->ill_lock); 18410 18411 ill_dlpi_dispatch(ill, mp); 18412 } 18413 18414 void 18415 conn_delete_ire(conn_t *connp, caddr_t arg) 18416 { 18417 ipif_t *ipif = (ipif_t *)arg; 18418 ire_t *ire; 18419 18420 /* 18421 * Look at the cached ires on conns which has pointers to ipifs. 18422 * We just call ire_refrele which clears up the reference 18423 * to ire. Called when a conn closes. Also called from ipif_free 18424 * to cleanup indirect references to the stale ipif via the cached ire. 18425 */ 18426 mutex_enter(&connp->conn_lock); 18427 ire = connp->conn_ire_cache; 18428 if (ire != NULL && (ipif == NULL || ire->ire_ipif == ipif)) { 18429 connp->conn_ire_cache = NULL; 18430 mutex_exit(&connp->conn_lock); 18431 IRE_REFRELE_NOTR(ire); 18432 return; 18433 } 18434 mutex_exit(&connp->conn_lock); 18435 18436 } 18437 18438 /* 18439 * Some operations (illgrp_delete(), ipif_down()) conditionally delete a number 18440 * of IREs. Those IREs may have been previously cached in the conn structure. 18441 * This ipcl_walk() walker function releases all references to such IREs based 18442 * on the condemned flag. 18443 */ 18444 /* ARGSUSED */ 18445 void 18446 conn_cleanup_stale_ire(conn_t *connp, caddr_t arg) 18447 { 18448 ire_t *ire; 18449 18450 mutex_enter(&connp->conn_lock); 18451 ire = connp->conn_ire_cache; 18452 if (ire != NULL && (ire->ire_marks & IRE_MARK_CONDEMNED)) { 18453 connp->conn_ire_cache = NULL; 18454 mutex_exit(&connp->conn_lock); 18455 IRE_REFRELE_NOTR(ire); 18456 return; 18457 } 18458 mutex_exit(&connp->conn_lock); 18459 } 18460 18461 /* 18462 * Take down a specific interface, but don't lose any information about it. 18463 * Also delete interface from its interface group (ifgrp). 18464 * (Always called as writer.) 18465 * This function goes through the down sequence even if the interface is 18466 * already down. There are 2 reasons. 18467 * a. Currently we permit interface routes that depend on down interfaces 18468 * to be added. This behaviour itself is questionable. However it appears 18469 * that both Solaris and 4.3 BSD have exhibited this behaviour for a long 18470 * time. We go thru the cleanup in order to remove these routes. 18471 * b. The bringup of the interface could fail in ill_dl_up i.e. we get 18472 * DL_ERROR_ACK in response to the the DL_BIND request. The interface is 18473 * down, but we need to cleanup i.e. do ill_dl_down and 18474 * ip_rput_dlpi_writer (DL_ERROR_ACK) -> ipif_down. 18475 * 18476 * IP-MT notes: 18477 * 18478 * Model of reference to interfaces. 18479 * 18480 * The following members in ipif_t track references to the ipif. 18481 * int ipif_refcnt; Active reference count 18482 * uint_t ipif_ire_cnt; Number of ire's referencing this ipif 18483 * uint_t ipif_ilm_cnt; Number of ilms's references this ipif. 18484 * 18485 * The following members in ill_t track references to the ill. 18486 * int ill_refcnt; active refcnt 18487 * uint_t ill_ire_cnt; Number of ires referencing ill 18488 * uint_t ill_nce_cnt; Number of nces referencing ill 18489 * uint_t ill_ilm_cnt; Number of ilms referencing ill 18490 * 18491 * Reference to an ipif or ill can be obtained in any of the following ways. 18492 * 18493 * Through the lookup functions ipif_lookup_* / ill_lookup_* functions 18494 * Pointers to ipif / ill from other data structures viz ire and conn. 18495 * Implicit reference to the ipif / ill by holding a reference to the ire. 18496 * 18497 * The ipif/ill lookup functions return a reference held ipif / ill. 18498 * ipif_refcnt and ill_refcnt track the reference counts respectively. 18499 * This is a purely dynamic reference count associated with threads holding 18500 * references to the ipif / ill. Pointers from other structures do not 18501 * count towards this reference count. 18502 * 18503 * ipif_ire_cnt/ill_ire_cnt is the number of ire's 18504 * associated with the ipif/ill. This is incremented whenever a new 18505 * ire is created referencing the ipif/ill. This is done atomically inside 18506 * ire_add_v[46] where the ire is actually added to the ire hash table. 18507 * The count is decremented in ire_inactive where the ire is destroyed. 18508 * 18509 * nce's reference ill's thru nce_ill and the count of nce's associated with 18510 * an ill is recorded in ill_nce_cnt. This is incremented atomically in 18511 * ndp_add_v4()/ndp_add_v6() where the nce is actually added to the 18512 * table. Similarly it is decremented in ndp_inactive() where the nce 18513 * is destroyed. 18514 * 18515 * ilm's reference to the ipif (for IPv4 ilm's) or the ill (for IPv6 ilm's) 18516 * is incremented in ilm_add_v6() and decremented before the ilm is freed 18517 * in ilm_walker_cleanup() or ilm_delete(). 18518 * 18519 * Flow of ioctls involving interface down/up 18520 * 18521 * The following is the sequence of an attempt to set some critical flags on an 18522 * up interface. 18523 * ip_sioctl_flags 18524 * ipif_down 18525 * wait for ipif to be quiescent 18526 * ipif_down_tail 18527 * ip_sioctl_flags_tail 18528 * 18529 * All set ioctls that involve down/up sequence would have a skeleton similar 18530 * to the above. All the *tail functions are called after the refcounts have 18531 * dropped to the appropriate values. 18532 * 18533 * The mechanism to quiesce an ipif is as follows. 18534 * 18535 * Mark the ipif as IPIF_CHANGING. No more lookups will be allowed 18536 * on the ipif. Callers either pass a flag requesting wait or the lookup 18537 * functions will return NULL. 18538 * 18539 * Delete all ires referencing this ipif 18540 * 18541 * Any thread attempting to do an ipif_refhold on an ipif that has been 18542 * obtained thru a cached pointer will first make sure that 18543 * the ipif can be refheld using the macro IPIF_CAN_LOOKUP and only then 18544 * increment the refcount. 18545 * 18546 * The above guarantees that the ipif refcount will eventually come down to 18547 * zero and the ipif will quiesce, once all threads that currently hold a 18548 * reference to the ipif refrelease the ipif. The ipif is quiescent after the 18549 * ipif_refcount has dropped to zero and all ire's associated with this ipif 18550 * have also been ire_inactive'd. i.e. when ipif_{ire, ill}_cnt and 18551 * ipif_refcnt both drop to zero. See also: comments above IPIF_DOWN_OK() 18552 * in ip.h 18553 * 18554 * Lookups during the IPIF_CHANGING/ILL_CHANGING interval. 18555 * 18556 * Threads trying to lookup an ipif or ill can pass a flag requesting 18557 * wait and restart if the ipif / ill cannot be looked up currently. 18558 * For eg. bind, and route operations (Eg. route add / delete) cannot return 18559 * failure if the ipif is currently undergoing an exclusive operation, and 18560 * hence pass the flag. The mblk is then enqueued in the ipsq and the operation 18561 * is restarted by ipsq_exit() when the currently exclusive ioctl completes. 18562 * The lookup and enqueue is atomic using the ill_lock and ipsq_lock. The 18563 * lookup is done holding the ill_lock. Hence the ill/ipif state flags can't 18564 * change while the ill_lock is held. Before dropping the ill_lock we acquire 18565 * the ipsq_lock and call ipsq_enq. This ensures that ipsq_exit can't finish 18566 * until we release the ipsq_lock, even though the the ill/ipif state flags 18567 * can change after we drop the ill_lock. 18568 * 18569 * An attempt to send out a packet using an ipif that is currently 18570 * IPIF_CHANGING will fail. No attempt is made in this case to enqueue this 18571 * operation and restart it later when the exclusive condition on the ipif ends. 18572 * This is an example of not passing the wait flag to the lookup functions. For 18573 * example an attempt to refhold and use conn->conn_multicast_ipif and send 18574 * out a multicast packet on that ipif will fail while the ipif is 18575 * IPIF_CHANGING. An attempt to create an IRE_CACHE using an ipif that is 18576 * currently IPIF_CHANGING will also fail. 18577 */ 18578 int 18579 ipif_down(ipif_t *ipif, queue_t *q, mblk_t *mp) 18580 { 18581 ill_t *ill = ipif->ipif_ill; 18582 phyint_t *phyi; 18583 conn_t *connp; 18584 boolean_t success; 18585 boolean_t ipif_was_up = B_FALSE; 18586 ip_stack_t *ipst = ill->ill_ipst; 18587 18588 ASSERT(IAM_WRITER_IPIF(ipif)); 18589 18590 ip1dbg(("ipif_down(%s:%u)\n", ill->ill_name, ipif->ipif_id)); 18591 18592 if (ipif->ipif_flags & IPIF_UP) { 18593 mutex_enter(&ill->ill_lock); 18594 ipif->ipif_flags &= ~IPIF_UP; 18595 ASSERT(ill->ill_ipif_up_count > 0); 18596 --ill->ill_ipif_up_count; 18597 mutex_exit(&ill->ill_lock); 18598 ipif_was_up = B_TRUE; 18599 /* Update status in SCTP's list */ 18600 sctp_update_ipif(ipif, SCTP_IPIF_DOWN); 18601 } 18602 18603 /* 18604 * Blow away memberships we established in ipif_multicast_up(). 18605 */ 18606 ipif_multicast_down(ipif); 18607 18608 /* 18609 * Remove from the mapping for __sin6_src_id. We insert only 18610 * when the address is not INADDR_ANY. As IPv4 addresses are 18611 * stored as mapped addresses, we need to check for mapped 18612 * INADDR_ANY also. 18613 */ 18614 if (ipif_was_up && !IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr) && 18615 !IN6_IS_ADDR_V4MAPPED_ANY(&ipif->ipif_v6lcl_addr) && 18616 !(ipif->ipif_flags & IPIF_NOLOCAL)) { 18617 int err; 18618 18619 err = ip_srcid_remove(&ipif->ipif_v6lcl_addr, 18620 ipif->ipif_zoneid, ipst); 18621 if (err != 0) { 18622 ip0dbg(("ipif_down: srcid_remove %d\n", err)); 18623 } 18624 } 18625 18626 /* 18627 * Before we delete the ill from the group (if any), we need 18628 * to make sure that we delete all the routes dependent on 18629 * this and also any ipifs dependent on this ipif for 18630 * source address. We need to do before we delete from 18631 * the group because 18632 * 18633 * 1) ipif_down_delete_ire de-references ill->ill_group. 18634 * 18635 * 2) ipif_update_other_ipifs needs to walk the whole group 18636 * for re-doing source address selection. Note that 18637 * ipif_select_source[_v6] called from 18638 * ipif_update_other_ipifs[_v6] will not pick this ipif 18639 * because we have already marked down here i.e cleared 18640 * IPIF_UP. 18641 */ 18642 if (ipif->ipif_isv6) { 18643 ire_walk_v6(ipif_down_delete_ire, (char *)ipif, ALL_ZONES, 18644 ipst); 18645 } else { 18646 ire_walk_v4(ipif_down_delete_ire, (char *)ipif, ALL_ZONES, 18647 ipst); 18648 } 18649 18650 /* 18651 * Cleaning up the conn_ire_cache or conns must be done only after the 18652 * ires have been deleted above. Otherwise a thread could end up 18653 * caching an ire in a conn after we have finished the cleanup of the 18654 * conn. The caching is done after making sure that the ire is not yet 18655 * condemned. Also documented in the block comment above ip_output 18656 */ 18657 ipcl_walk(conn_cleanup_stale_ire, NULL, ipst); 18658 /* Also, delete the ires cached in SCTP */ 18659 sctp_ire_cache_flush(ipif); 18660 18661 /* 18662 * Update any other ipifs which have used "our" local address as 18663 * a source address. This entails removing and recreating IRE_INTERFACE 18664 * entries for such ipifs. 18665 */ 18666 if (ipif->ipif_isv6) 18667 ipif_update_other_ipifs_v6(ipif, ill->ill_group); 18668 else 18669 ipif_update_other_ipifs(ipif, ill->ill_group); 18670 18671 if (ipif_was_up) { 18672 /* 18673 * Check whether it is last ipif to leave this group. 18674 * If this is the last ipif to leave, we should remove 18675 * this ill from the group as ipif_select_source will not 18676 * be able to find any useful ipifs if this ill is selected 18677 * for load balancing. 18678 * 18679 * For nameless groups, we should call ifgrp_delete if this 18680 * belongs to some group. As this ipif is going down, we may 18681 * need to reconstruct groups. 18682 */ 18683 phyi = ill->ill_phyint; 18684 /* 18685 * If the phyint_groupname_len is 0, it may or may not 18686 * be in the nameless group. If the phyint_groupname_len is 18687 * not 0, then this ill should be part of some group. 18688 * As we always insert this ill in the group if 18689 * phyint_groupname_len is not zero when the first ipif 18690 * comes up (in ipif_up_done), it should be in a group 18691 * when the namelen is not 0. 18692 * 18693 * NOTE : When we delete the ill from the group,it will 18694 * blow away all the IRE_CACHES pointing either at this ipif or 18695 * ill_wq (illgrp_cache_delete does this). Thus, no IRES 18696 * should be pointing at this ill. 18697 */ 18698 ASSERT(phyi->phyint_groupname_len == 0 || 18699 (phyi->phyint_groupname != NULL && ill->ill_group != NULL)); 18700 18701 if (phyi->phyint_groupname_len != 0) { 18702 if (ill->ill_ipif_up_count == 0) 18703 illgrp_delete(ill); 18704 } 18705 18706 /* 18707 * If we have deleted some of the broadcast ires associated 18708 * with this ipif, we need to re-nominate somebody else if 18709 * the ires that we deleted were the nominated ones. 18710 */ 18711 if (ill->ill_group != NULL && !ill->ill_isv6) 18712 ipif_renominate_bcast(ipif); 18713 } 18714 18715 /* 18716 * neighbor-discovery or arp entries for this interface. 18717 */ 18718 ipif_ndp_down(ipif); 18719 18720 /* 18721 * If mp is NULL the caller will wait for the appropriate refcnt. 18722 * Eg. ip_sioctl_removeif -> ipif_free -> ipif_down 18723 * and ill_delete -> ipif_free -> ipif_down 18724 */ 18725 if (mp == NULL) { 18726 ASSERT(q == NULL); 18727 return (0); 18728 } 18729 18730 if (CONN_Q(q)) { 18731 connp = Q_TO_CONN(q); 18732 mutex_enter(&connp->conn_lock); 18733 } else { 18734 connp = NULL; 18735 } 18736 mutex_enter(&ill->ill_lock); 18737 /* 18738 * Are there any ire's pointing to this ipif that are still active ? 18739 * If this is the last ipif going down, are there any ire's pointing 18740 * to this ill that are still active ? 18741 */ 18742 if (ipif_is_quiescent(ipif)) { 18743 mutex_exit(&ill->ill_lock); 18744 if (connp != NULL) 18745 mutex_exit(&connp->conn_lock); 18746 return (0); 18747 } 18748 18749 ip1dbg(("ipif_down: need to wait, adding pending mp %s ill %p", 18750 ill->ill_name, (void *)ill)); 18751 /* 18752 * Enqueue the mp atomically in ipsq_pending_mp. When the refcount 18753 * drops down, the operation will be restarted by ipif_ill_refrele_tail 18754 * which in turn is called by the last refrele on the ipif/ill/ire. 18755 */ 18756 success = ipsq_pending_mp_add(connp, ipif, q, mp, IPIF_DOWN); 18757 if (!success) { 18758 /* The conn is closing. So just return */ 18759 ASSERT(connp != NULL); 18760 mutex_exit(&ill->ill_lock); 18761 mutex_exit(&connp->conn_lock); 18762 return (EINTR); 18763 } 18764 18765 mutex_exit(&ill->ill_lock); 18766 if (connp != NULL) 18767 mutex_exit(&connp->conn_lock); 18768 return (EINPROGRESS); 18769 } 18770 18771 void 18772 ipif_down_tail(ipif_t *ipif) 18773 { 18774 ill_t *ill = ipif->ipif_ill; 18775 18776 /* 18777 * Skip any loopback interface (null wq). 18778 * If this is the last logical interface on the ill 18779 * have ill_dl_down tell the driver we are gone (unbind) 18780 * Note that lun 0 can ipif_down even though 18781 * there are other logical units that are up. 18782 * This occurs e.g. when we change a "significant" IFF_ flag. 18783 */ 18784 if (ill->ill_wq != NULL && !ill->ill_logical_down && 18785 ill->ill_ipif_up_count == 0 && ill->ill_ipif_dup_count == 0 && 18786 ill->ill_dl_up) { 18787 ill_dl_down(ill); 18788 } 18789 ill->ill_logical_down = 0; 18790 18791 /* 18792 * Have to be after removing the routes in ipif_down_delete_ire. 18793 */ 18794 if (ipif->ipif_isv6) { 18795 if (ill->ill_flags & ILLF_XRESOLV) 18796 ipif_arp_down(ipif); 18797 } else { 18798 ipif_arp_down(ipif); 18799 } 18800 18801 ip_rts_ifmsg(ipif); 18802 ip_rts_newaddrmsg(RTM_DELETE, 0, ipif); 18803 } 18804 18805 /* 18806 * Bring interface logically down without bringing the physical interface 18807 * down e.g. when the netmask is changed. This avoids long lasting link 18808 * negotiations between an ethernet interface and a certain switches. 18809 */ 18810 static int 18811 ipif_logical_down(ipif_t *ipif, queue_t *q, mblk_t *mp) 18812 { 18813 /* 18814 * The ill_logical_down flag is a transient flag. It is set here 18815 * and is cleared once the down has completed in ipif_down_tail. 18816 * This flag does not indicate whether the ill stream is in the 18817 * DL_BOUND state with the driver. Instead this flag is used by 18818 * ipif_down_tail to determine whether to DL_UNBIND the stream with 18819 * the driver. The state of the ill stream i.e. whether it is 18820 * DL_BOUND with the driver or not is indicated by the ill_dl_up flag. 18821 */ 18822 ipif->ipif_ill->ill_logical_down = 1; 18823 return (ipif_down(ipif, q, mp)); 18824 } 18825 18826 /* 18827 * This is called when the SIOCSLIFUSESRC ioctl is processed in IP. 18828 * If the usesrc client ILL is already part of a usesrc group or not, 18829 * in either case a ire_stq with the matching usesrc client ILL will 18830 * locate the IRE's that need to be deleted. We want IREs to be created 18831 * with the new source address. 18832 */ 18833 static void 18834 ipif_delete_cache_ire(ire_t *ire, char *ill_arg) 18835 { 18836 ill_t *ucill = (ill_t *)ill_arg; 18837 18838 ASSERT(IAM_WRITER_ILL(ucill)); 18839 18840 if (ire->ire_stq == NULL) 18841 return; 18842 18843 if ((ire->ire_type == IRE_CACHE) && 18844 ((ill_t *)ire->ire_stq->q_ptr == ucill)) 18845 ire_delete(ire); 18846 } 18847 18848 /* 18849 * ire_walk routine to delete every IRE dependent on the interface 18850 * address that is going down. (Always called as writer.) 18851 * Works for both v4 and v6. 18852 * In addition for checking for ire_ipif matches it also checks for 18853 * IRE_CACHE entries which have the same source address as the 18854 * disappearing ipif since ipif_select_source might have picked 18855 * that source. Note that ipif_down/ipif_update_other_ipifs takes 18856 * care of any IRE_INTERFACE with the disappearing source address. 18857 */ 18858 static void 18859 ipif_down_delete_ire(ire_t *ire, char *ipif_arg) 18860 { 18861 ipif_t *ipif = (ipif_t *)ipif_arg; 18862 ill_t *ire_ill; 18863 ill_t *ipif_ill; 18864 18865 ASSERT(IAM_WRITER_IPIF(ipif)); 18866 if (ire->ire_ipif == NULL) 18867 return; 18868 18869 /* 18870 * For IPv4, we derive source addresses for an IRE from ipif's 18871 * belonging to the same IPMP group as the IRE's outgoing 18872 * interface. If an IRE's outgoing interface isn't in the 18873 * same IPMP group as a particular ipif, then that ipif 18874 * couldn't have been used as a source address for this IRE. 18875 * 18876 * For IPv6, source addresses are only restricted to the IPMP group 18877 * if the IRE is for a link-local address or a multicast address. 18878 * Otherwise, source addresses for an IRE can be chosen from 18879 * interfaces other than the the outgoing interface for that IRE. 18880 * 18881 * For source address selection details, see ipif_select_source() 18882 * and ipif_select_source_v6(). 18883 */ 18884 if (ire->ire_ipversion == IPV4_VERSION || 18885 IN6_IS_ADDR_LINKLOCAL(&ire->ire_addr_v6) || 18886 IN6_IS_ADDR_MULTICAST(&ire->ire_addr_v6)) { 18887 ire_ill = ire->ire_ipif->ipif_ill; 18888 ipif_ill = ipif->ipif_ill; 18889 18890 if (ire_ill->ill_group != ipif_ill->ill_group) { 18891 return; 18892 } 18893 } 18894 18895 18896 if (ire->ire_ipif != ipif) { 18897 /* 18898 * Look for a matching source address. 18899 */ 18900 if (ire->ire_type != IRE_CACHE) 18901 return; 18902 if (ipif->ipif_flags & IPIF_NOLOCAL) 18903 return; 18904 18905 if (ire->ire_ipversion == IPV4_VERSION) { 18906 if (ire->ire_src_addr != ipif->ipif_src_addr) 18907 return; 18908 } else { 18909 if (!IN6_ARE_ADDR_EQUAL(&ire->ire_src_addr_v6, 18910 &ipif->ipif_v6lcl_addr)) 18911 return; 18912 } 18913 ire_delete(ire); 18914 return; 18915 } 18916 /* 18917 * ire_delete() will do an ire_flush_cache which will delete 18918 * all ire_ipif matches 18919 */ 18920 ire_delete(ire); 18921 } 18922 18923 /* 18924 * ire_walk_ill function for deleting all IRE_CACHE entries for an ill when 18925 * 1) an ipif (on that ill) changes the IPIF_DEPRECATED flags, or 18926 * 2) when an interface is brought up or down (on that ill). 18927 * This ensures that the IRE_CACHE entries don't retain stale source 18928 * address selection results. 18929 */ 18930 void 18931 ill_ipif_cache_delete(ire_t *ire, char *ill_arg) 18932 { 18933 ill_t *ill = (ill_t *)ill_arg; 18934 ill_t *ipif_ill; 18935 18936 ASSERT(IAM_WRITER_ILL(ill)); 18937 /* 18938 * We use MATCH_IRE_TYPE/IRE_CACHE while calling ire_walk_ill_v4. 18939 * Hence this should be IRE_CACHE. 18940 */ 18941 ASSERT(ire->ire_type == IRE_CACHE); 18942 18943 /* 18944 * We are called for IRE_CACHES whose ire_ipif matches ill. 18945 * We are only interested in IRE_CACHES that has borrowed 18946 * the source address from ill_arg e.g. ipif_up_done[_v6] 18947 * for which we need to look at ire_ipif->ipif_ill match 18948 * with ill. 18949 */ 18950 ASSERT(ire->ire_ipif != NULL); 18951 ipif_ill = ire->ire_ipif->ipif_ill; 18952 if (ipif_ill == ill || (ill->ill_group != NULL && 18953 ipif_ill->ill_group == ill->ill_group)) { 18954 ire_delete(ire); 18955 } 18956 } 18957 18958 /* 18959 * Delete all the ire whose stq references ill_arg. 18960 */ 18961 static void 18962 ill_stq_cache_delete(ire_t *ire, char *ill_arg) 18963 { 18964 ill_t *ill = (ill_t *)ill_arg; 18965 ill_t *ire_ill; 18966 18967 ASSERT(IAM_WRITER_ILL(ill)); 18968 /* 18969 * We use MATCH_IRE_TYPE/IRE_CACHE while calling ire_walk_ill_v4. 18970 * Hence this should be IRE_CACHE. 18971 */ 18972 ASSERT(ire->ire_type == IRE_CACHE); 18973 18974 /* 18975 * We are called for IRE_CACHES whose ire_stq and ire_ipif 18976 * matches ill. We are only interested in IRE_CACHES that 18977 * has ire_stq->q_ptr pointing at ill_arg. Thus we do the 18978 * filtering here. 18979 */ 18980 ire_ill = (ill_t *)ire->ire_stq->q_ptr; 18981 18982 if (ire_ill == ill) 18983 ire_delete(ire); 18984 } 18985 18986 /* 18987 * This is called when an ill leaves the group. We want to delete 18988 * all IRE_CACHES whose stq is pointing at ill_wq or ire_ipif is 18989 * pointing at ill. 18990 */ 18991 static void 18992 illgrp_cache_delete(ire_t *ire, char *ill_arg) 18993 { 18994 ill_t *ill = (ill_t *)ill_arg; 18995 18996 ASSERT(IAM_WRITER_ILL(ill)); 18997 ASSERT(ill->ill_group == NULL); 18998 /* 18999 * We use MATCH_IRE_TYPE/IRE_CACHE while calling ire_walk_ill_v4. 19000 * Hence this should be IRE_CACHE. 19001 */ 19002 ASSERT(ire->ire_type == IRE_CACHE); 19003 /* 19004 * We are called for IRE_CACHES whose ire_stq and ire_ipif 19005 * matches ill. We are interested in both. 19006 */ 19007 ASSERT((ill == (ill_t *)ire->ire_stq->q_ptr) || 19008 (ire->ire_ipif->ipif_ill == ill)); 19009 19010 ire_delete(ire); 19011 } 19012 19013 /* 19014 * Initiate deallocate of an IPIF. Always called as writer. Called by 19015 * ill_delete or ip_sioctl_removeif. 19016 */ 19017 static void 19018 ipif_free(ipif_t *ipif) 19019 { 19020 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 19021 19022 ASSERT(IAM_WRITER_IPIF(ipif)); 19023 19024 if (ipif->ipif_recovery_id != 0) 19025 (void) untimeout(ipif->ipif_recovery_id); 19026 ipif->ipif_recovery_id = 0; 19027 19028 /* Remove conn references */ 19029 reset_conn_ipif(ipif); 19030 19031 /* 19032 * Make sure we have valid net and subnet broadcast ire's for the 19033 * other ipif's which share them with this ipif. 19034 */ 19035 if (!ipif->ipif_isv6) 19036 ipif_check_bcast_ires(ipif); 19037 19038 /* 19039 * Take down the interface. We can be called either from ill_delete 19040 * or from ip_sioctl_removeif. 19041 */ 19042 (void) ipif_down(ipif, NULL, NULL); 19043 19044 /* 19045 * Now that the interface is down, there's no chance it can still 19046 * become a duplicate. Cancel any timer that may have been set while 19047 * tearing down. 19048 */ 19049 if (ipif->ipif_recovery_id != 0) 19050 (void) untimeout(ipif->ipif_recovery_id); 19051 ipif->ipif_recovery_id = 0; 19052 19053 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 19054 /* Remove pointers to this ill in the multicast routing tables */ 19055 reset_mrt_vif_ipif(ipif); 19056 rw_exit(&ipst->ips_ill_g_lock); 19057 } 19058 19059 /* 19060 * Warning: this is not the only function that calls mi_free on an ipif_t. See 19061 * also ill_move(). 19062 */ 19063 static void 19064 ipif_free_tail(ipif_t *ipif) 19065 { 19066 mblk_t *mp; 19067 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 19068 19069 /* 19070 * Free state for addition IRE_IF_[NO]RESOLVER ire's. 19071 */ 19072 mutex_enter(&ipif->ipif_saved_ire_lock); 19073 mp = ipif->ipif_saved_ire_mp; 19074 ipif->ipif_saved_ire_mp = NULL; 19075 mutex_exit(&ipif->ipif_saved_ire_lock); 19076 freemsg(mp); 19077 19078 /* 19079 * Need to hold both ill_g_lock and ill_lock while 19080 * inserting or removing an ipif from the linked list 19081 * of ipifs hanging off the ill. 19082 */ 19083 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 19084 19085 ASSERT(ilm_walk_ipif(ipif) == 0); 19086 19087 #ifdef DEBUG 19088 ipif_trace_cleanup(ipif); 19089 #endif 19090 19091 /* Ask SCTP to take it out of it list */ 19092 sctp_update_ipif(ipif, SCTP_IPIF_REMOVE); 19093 19094 /* Get it out of the ILL interface list. */ 19095 ipif_remove(ipif, B_TRUE); 19096 rw_exit(&ipst->ips_ill_g_lock); 19097 19098 mutex_destroy(&ipif->ipif_saved_ire_lock); 19099 19100 ASSERT(!(ipif->ipif_flags & (IPIF_UP | IPIF_DUPLICATE))); 19101 ASSERT(ipif->ipif_recovery_id == 0); 19102 19103 /* Free the memory. */ 19104 mi_free(ipif); 19105 } 19106 19107 /* 19108 * Sets `buf' to an ipif name of the form "ill_name:id", or "ill_name" if "id" 19109 * is zero. 19110 */ 19111 void 19112 ipif_get_name(const ipif_t *ipif, char *buf, int len) 19113 { 19114 char lbuf[LIFNAMSIZ]; 19115 char *name; 19116 size_t name_len; 19117 19118 buf[0] = '\0'; 19119 name = ipif->ipif_ill->ill_name; 19120 name_len = ipif->ipif_ill->ill_name_length; 19121 if (ipif->ipif_id != 0) { 19122 (void) sprintf(lbuf, "%s%c%d", name, IPIF_SEPARATOR_CHAR, 19123 ipif->ipif_id); 19124 name = lbuf; 19125 name_len = mi_strlen(name) + 1; 19126 } 19127 len -= 1; 19128 buf[len] = '\0'; 19129 len = MIN(len, name_len); 19130 bcopy(name, buf, len); 19131 } 19132 19133 /* 19134 * Find an IPIF based on the name passed in. Names can be of the 19135 * form <phys> (e.g., le0), <phys>:<#> (e.g., le0:1), 19136 * The <phys> string can have forms like <dev><#> (e.g., le0), 19137 * <dev><#>.<module> (e.g. le0.foo), or <dev>.<module><#> (e.g. ip.tun3). 19138 * When there is no colon, the implied unit id is zero. <phys> must 19139 * correspond to the name of an ILL. (May be called as writer.) 19140 */ 19141 static ipif_t * 19142 ipif_lookup_on_name(char *name, size_t namelen, boolean_t do_alloc, 19143 boolean_t *exists, boolean_t isv6, zoneid_t zoneid, queue_t *q, 19144 mblk_t *mp, ipsq_func_t func, int *error, ip_stack_t *ipst) 19145 { 19146 char *cp; 19147 char *endp; 19148 long id; 19149 ill_t *ill; 19150 ipif_t *ipif; 19151 uint_t ire_type; 19152 boolean_t did_alloc = B_FALSE; 19153 ipsq_t *ipsq; 19154 19155 if (error != NULL) 19156 *error = 0; 19157 19158 /* 19159 * If the caller wants to us to create the ipif, make sure we have a 19160 * valid zoneid 19161 */ 19162 ASSERT(!do_alloc || zoneid != ALL_ZONES); 19163 19164 if (namelen == 0) { 19165 if (error != NULL) 19166 *error = ENXIO; 19167 return (NULL); 19168 } 19169 19170 *exists = B_FALSE; 19171 /* Look for a colon in the name. */ 19172 endp = &name[namelen]; 19173 for (cp = endp; --cp > name; ) { 19174 if (*cp == IPIF_SEPARATOR_CHAR) 19175 break; 19176 } 19177 19178 if (*cp == IPIF_SEPARATOR_CHAR) { 19179 /* 19180 * Reject any non-decimal aliases for logical 19181 * interfaces. Aliases with leading zeroes 19182 * are also rejected as they introduce ambiguity 19183 * in the naming of the interfaces. 19184 * In order to confirm with existing semantics, 19185 * and to not break any programs/script relying 19186 * on that behaviour, if<0>:0 is considered to be 19187 * a valid interface. 19188 * 19189 * If alias has two or more digits and the first 19190 * is zero, fail. 19191 */ 19192 if (&cp[2] < endp && cp[1] == '0') { 19193 if (error != NULL) 19194 *error = EINVAL; 19195 return (NULL); 19196 } 19197 } 19198 19199 if (cp <= name) { 19200 cp = endp; 19201 } else { 19202 *cp = '\0'; 19203 } 19204 19205 /* 19206 * Look up the ILL, based on the portion of the name 19207 * before the slash. ill_lookup_on_name returns a held ill. 19208 * Temporary to check whether ill exists already. If so 19209 * ill_lookup_on_name will clear it. 19210 */ 19211 ill = ill_lookup_on_name(name, do_alloc, isv6, 19212 q, mp, func, error, &did_alloc, ipst); 19213 if (cp != endp) 19214 *cp = IPIF_SEPARATOR_CHAR; 19215 if (ill == NULL) 19216 return (NULL); 19217 19218 /* Establish the unit number in the name. */ 19219 id = 0; 19220 if (cp < endp && *endp == '\0') { 19221 /* If there was a colon, the unit number follows. */ 19222 cp++; 19223 if (ddi_strtol(cp, NULL, 0, &id) != 0) { 19224 ill_refrele(ill); 19225 if (error != NULL) 19226 *error = ENXIO; 19227 return (NULL); 19228 } 19229 } 19230 19231 GRAB_CONN_LOCK(q); 19232 mutex_enter(&ill->ill_lock); 19233 /* Now see if there is an IPIF with this unit number. */ 19234 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 19235 if (ipif->ipif_id == id) { 19236 if (zoneid != ALL_ZONES && 19237 zoneid != ipif->ipif_zoneid && 19238 ipif->ipif_zoneid != ALL_ZONES) { 19239 mutex_exit(&ill->ill_lock); 19240 RELEASE_CONN_LOCK(q); 19241 ill_refrele(ill); 19242 if (error != NULL) 19243 *error = ENXIO; 19244 return (NULL); 19245 } 19246 /* 19247 * The block comment at the start of ipif_down 19248 * explains the use of the macros used below 19249 */ 19250 if (IPIF_CAN_LOOKUP(ipif)) { 19251 ipif_refhold_locked(ipif); 19252 mutex_exit(&ill->ill_lock); 19253 if (!did_alloc) 19254 *exists = B_TRUE; 19255 /* 19256 * Drop locks before calling ill_refrele 19257 * since it can potentially call into 19258 * ipif_ill_refrele_tail which can end up 19259 * in trying to acquire any lock. 19260 */ 19261 RELEASE_CONN_LOCK(q); 19262 ill_refrele(ill); 19263 return (ipif); 19264 } else if (IPIF_CAN_WAIT(ipif, q)) { 19265 ipsq = ill->ill_phyint->phyint_ipsq; 19266 mutex_enter(&ipsq->ipsq_lock); 19267 mutex_exit(&ill->ill_lock); 19268 ipsq_enq(ipsq, q, mp, func, NEW_OP, ill); 19269 mutex_exit(&ipsq->ipsq_lock); 19270 RELEASE_CONN_LOCK(q); 19271 ill_refrele(ill); 19272 if (error != NULL) 19273 *error = EINPROGRESS; 19274 return (NULL); 19275 } 19276 } 19277 } 19278 RELEASE_CONN_LOCK(q); 19279 19280 if (!do_alloc) { 19281 mutex_exit(&ill->ill_lock); 19282 ill_refrele(ill); 19283 if (error != NULL) 19284 *error = ENXIO; 19285 return (NULL); 19286 } 19287 19288 /* 19289 * If none found, atomically allocate and return a new one. 19290 * Historically, we used IRE_LOOPBACK only for lun 0, and IRE_LOCAL 19291 * to support "receive only" use of lo0:1 etc. as is still done 19292 * below as an initial guess. 19293 * However, this is now likely to be overriden later in ipif_up_done() 19294 * when we know for sure what address has been configured on the 19295 * interface, since we might have more than one loopback interface 19296 * with a loopback address, e.g. in the case of zones, and all the 19297 * interfaces with loopback addresses need to be marked IRE_LOOPBACK. 19298 */ 19299 if (ill->ill_net_type == IRE_LOOPBACK && id == 0) 19300 ire_type = IRE_LOOPBACK; 19301 else 19302 ire_type = IRE_LOCAL; 19303 ipif = ipif_allocate(ill, id, ire_type, B_TRUE); 19304 if (ipif != NULL) 19305 ipif_refhold_locked(ipif); 19306 else if (error != NULL) 19307 *error = ENOMEM; 19308 mutex_exit(&ill->ill_lock); 19309 ill_refrele(ill); 19310 return (ipif); 19311 } 19312 19313 /* 19314 * This routine is called whenever a new address comes up on an ipif. If 19315 * we are configured to respond to address mask requests, then we are supposed 19316 * to broadcast an address mask reply at this time. This routine is also 19317 * called if we are already up, but a netmask change is made. This is legal 19318 * but might not make the system manager very popular. (May be called 19319 * as writer.) 19320 */ 19321 void 19322 ipif_mask_reply(ipif_t *ipif) 19323 { 19324 icmph_t *icmph; 19325 ipha_t *ipha; 19326 mblk_t *mp; 19327 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 19328 19329 #define REPLY_LEN (sizeof (icmp_ipha) + sizeof (icmph_t) + IP_ADDR_LEN) 19330 19331 if (!ipst->ips_ip_respond_to_address_mask_broadcast) 19332 return; 19333 19334 /* ICMP mask reply is IPv4 only */ 19335 ASSERT(!ipif->ipif_isv6); 19336 /* ICMP mask reply is not for a loopback interface */ 19337 ASSERT(ipif->ipif_ill->ill_wq != NULL); 19338 19339 mp = allocb(REPLY_LEN, BPRI_HI); 19340 if (mp == NULL) 19341 return; 19342 mp->b_wptr = mp->b_rptr + REPLY_LEN; 19343 19344 ipha = (ipha_t *)mp->b_rptr; 19345 bzero(ipha, REPLY_LEN); 19346 *ipha = icmp_ipha; 19347 ipha->ipha_ttl = ipst->ips_ip_broadcast_ttl; 19348 ipha->ipha_src = ipif->ipif_src_addr; 19349 ipha->ipha_dst = ipif->ipif_brd_addr; 19350 ipha->ipha_length = htons(REPLY_LEN); 19351 ipha->ipha_ident = 0; 19352 19353 icmph = (icmph_t *)&ipha[1]; 19354 icmph->icmph_type = ICMP_ADDRESS_MASK_REPLY; 19355 bcopy(&ipif->ipif_net_mask, &icmph[1], IP_ADDR_LEN); 19356 icmph->icmph_checksum = IP_CSUM(mp, sizeof (ipha_t), 0); 19357 19358 put(ipif->ipif_wq, mp); 19359 19360 #undef REPLY_LEN 19361 } 19362 19363 /* 19364 * When the mtu in the ipif changes, we call this routine through ire_walk 19365 * to update all the relevant IREs. 19366 * Skip IRE_LOCAL and "loopback" IRE_BROADCAST by checking ire_stq. 19367 */ 19368 static void 19369 ipif_mtu_change(ire_t *ire, char *ipif_arg) 19370 { 19371 ipif_t *ipif = (ipif_t *)ipif_arg; 19372 19373 if (ire->ire_stq == NULL || ire->ire_ipif != ipif) 19374 return; 19375 ire->ire_max_frag = MIN(ipif->ipif_mtu, IP_MAXPACKET); 19376 } 19377 19378 /* 19379 * When the mtu in the ill changes, we call this routine through ire_walk 19380 * to update all the relevant IREs. 19381 * Skip IRE_LOCAL and "loopback" IRE_BROADCAST by checking ire_stq. 19382 */ 19383 void 19384 ill_mtu_change(ire_t *ire, char *ill_arg) 19385 { 19386 ill_t *ill = (ill_t *)ill_arg; 19387 19388 if (ire->ire_stq == NULL || ire->ire_ipif->ipif_ill != ill) 19389 return; 19390 ire->ire_max_frag = ire->ire_ipif->ipif_mtu; 19391 } 19392 19393 /* 19394 * Join the ipif specific multicast groups. 19395 * Must be called after a mapping has been set up in the resolver. (Always 19396 * called as writer.) 19397 */ 19398 void 19399 ipif_multicast_up(ipif_t *ipif) 19400 { 19401 int err, index; 19402 ill_t *ill; 19403 19404 ASSERT(IAM_WRITER_IPIF(ipif)); 19405 19406 ill = ipif->ipif_ill; 19407 index = ill->ill_phyint->phyint_ifindex; 19408 19409 ip1dbg(("ipif_multicast_up\n")); 19410 if (!(ill->ill_flags & ILLF_MULTICAST) || ipif->ipif_multicast_up) 19411 return; 19412 19413 if (ipif->ipif_isv6) { 19414 if (IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr)) 19415 return; 19416 19417 /* Join the all hosts multicast address */ 19418 ip1dbg(("ipif_multicast_up - addmulti\n")); 19419 /* 19420 * Passing B_TRUE means we have to join the multicast 19421 * membership on this interface even though this is 19422 * FAILED. If we join on a different one in the group, 19423 * we will not be able to delete the membership later 19424 * as we currently don't track where we join when we 19425 * join within the kernel unlike applications where 19426 * we have ilg/ilg_orig_index. See ip_addmulti_v6 19427 * for more on this. 19428 */ 19429 err = ip_addmulti_v6(&ipv6_all_hosts_mcast, ill, index, 19430 ipif->ipif_zoneid, ILGSTAT_NONE, MODE_IS_EXCLUDE, NULL); 19431 if (err != 0) { 19432 ip0dbg(("ipif_multicast_up: " 19433 "all_hosts_mcast failed %d\n", 19434 err)); 19435 return; 19436 } 19437 /* 19438 * Enable multicast for the solicited node multicast address 19439 */ 19440 if (!(ipif->ipif_flags & IPIF_NOLOCAL)) { 19441 in6_addr_t ipv6_multi = ipv6_solicited_node_mcast; 19442 19443 ipv6_multi.s6_addr32[3] |= 19444 ipif->ipif_v6lcl_addr.s6_addr32[3]; 19445 19446 err = ip_addmulti_v6(&ipv6_multi, ill, index, 19447 ipif->ipif_zoneid, ILGSTAT_NONE, MODE_IS_EXCLUDE, 19448 NULL); 19449 if (err != 0) { 19450 ip0dbg(("ipif_multicast_up: solicited MC" 19451 " failed %d\n", err)); 19452 (void) ip_delmulti_v6(&ipv6_all_hosts_mcast, 19453 ill, ill->ill_phyint->phyint_ifindex, 19454 ipif->ipif_zoneid, B_TRUE, B_TRUE); 19455 return; 19456 } 19457 } 19458 } else { 19459 if (ipif->ipif_lcl_addr == INADDR_ANY) 19460 return; 19461 19462 /* Join the all hosts multicast address */ 19463 ip1dbg(("ipif_multicast_up - addmulti\n")); 19464 err = ip_addmulti(htonl(INADDR_ALLHOSTS_GROUP), ipif, 19465 ILGSTAT_NONE, MODE_IS_EXCLUDE, NULL); 19466 if (err) { 19467 ip0dbg(("ipif_multicast_up: failed %d\n", err)); 19468 return; 19469 } 19470 } 19471 ipif->ipif_multicast_up = 1; 19472 } 19473 19474 /* 19475 * Blow away any multicast groups that we joined in ipif_multicast_up(). 19476 * (Explicit memberships are blown away in ill_leave_multicast() when the 19477 * ill is brought down.) 19478 */ 19479 static void 19480 ipif_multicast_down(ipif_t *ipif) 19481 { 19482 int err; 19483 19484 ASSERT(IAM_WRITER_IPIF(ipif)); 19485 19486 ip1dbg(("ipif_multicast_down\n")); 19487 if (!ipif->ipif_multicast_up) 19488 return; 19489 19490 ip1dbg(("ipif_multicast_down - delmulti\n")); 19491 19492 if (!ipif->ipif_isv6) { 19493 err = ip_delmulti(htonl(INADDR_ALLHOSTS_GROUP), ipif, B_TRUE, 19494 B_TRUE); 19495 if (err != 0) 19496 ip0dbg(("ipif_multicast_down: failed %d\n", err)); 19497 19498 ipif->ipif_multicast_up = 0; 19499 return; 19500 } 19501 19502 /* 19503 * Leave the all hosts multicast address. Similar to ip_addmulti_v6, 19504 * we should look for ilms on this ill rather than the ones that have 19505 * been failed over here. They are here temporarily. As 19506 * ipif_multicast_up has joined on this ill, we should delete only 19507 * from this ill. 19508 */ 19509 err = ip_delmulti_v6(&ipv6_all_hosts_mcast, ipif->ipif_ill, 19510 ipif->ipif_ill->ill_phyint->phyint_ifindex, ipif->ipif_zoneid, 19511 B_TRUE, B_TRUE); 19512 if (err != 0) { 19513 ip0dbg(("ipif_multicast_down: all_hosts_mcast failed %d\n", 19514 err)); 19515 } 19516 /* 19517 * Disable multicast for the solicited node multicast address 19518 */ 19519 if (!(ipif->ipif_flags & IPIF_NOLOCAL)) { 19520 in6_addr_t ipv6_multi = ipv6_solicited_node_mcast; 19521 19522 ipv6_multi.s6_addr32[3] |= 19523 ipif->ipif_v6lcl_addr.s6_addr32[3]; 19524 19525 err = ip_delmulti_v6(&ipv6_multi, ipif->ipif_ill, 19526 ipif->ipif_ill->ill_phyint->phyint_ifindex, 19527 ipif->ipif_zoneid, B_TRUE, B_TRUE); 19528 19529 if (err != 0) { 19530 ip0dbg(("ipif_multicast_down: sol MC failed %d\n", 19531 err)); 19532 } 19533 } 19534 19535 ipif->ipif_multicast_up = 0; 19536 } 19537 19538 /* 19539 * Used when an interface comes up to recreate any extra routes on this 19540 * interface. 19541 */ 19542 static ire_t ** 19543 ipif_recover_ire(ipif_t *ipif) 19544 { 19545 mblk_t *mp; 19546 ire_t **ipif_saved_irep; 19547 ire_t **irep; 19548 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 19549 19550 ip1dbg(("ipif_recover_ire(%s:%u)", ipif->ipif_ill->ill_name, 19551 ipif->ipif_id)); 19552 19553 mutex_enter(&ipif->ipif_saved_ire_lock); 19554 ipif_saved_irep = (ire_t **)kmem_zalloc(sizeof (ire_t *) * 19555 ipif->ipif_saved_ire_cnt, KM_NOSLEEP); 19556 if (ipif_saved_irep == NULL) { 19557 mutex_exit(&ipif->ipif_saved_ire_lock); 19558 return (NULL); 19559 } 19560 19561 irep = ipif_saved_irep; 19562 for (mp = ipif->ipif_saved_ire_mp; mp != NULL; mp = mp->b_cont) { 19563 ire_t *ire; 19564 queue_t *rfq; 19565 queue_t *stq; 19566 ifrt_t *ifrt; 19567 uchar_t *src_addr; 19568 uchar_t *gateway_addr; 19569 ushort_t type; 19570 19571 /* 19572 * When the ire was initially created and then added in 19573 * ip_rt_add(), it was created either using ipif->ipif_net_type 19574 * in the case of a traditional interface route, or as one of 19575 * the IRE_OFFSUBNET types (with the exception of 19576 * IRE_HOST types ire which is created by icmp_redirect() and 19577 * which we don't need to save or recover). In the case where 19578 * ipif->ipif_net_type was IRE_LOOPBACK, ip_rt_add() will update 19579 * the ire_type to IRE_IF_NORESOLVER before calling ire_add() 19580 * to satisfy software like GateD and Sun Cluster which creates 19581 * routes using the the loopback interface's address as a 19582 * gateway. 19583 * 19584 * As ifrt->ifrt_type reflects the already updated ire_type, 19585 * ire_create() will be called in the same way here as 19586 * in ip_rt_add(), namely using ipif->ipif_net_type when 19587 * the route looks like a traditional interface route (where 19588 * ifrt->ifrt_type & IRE_INTERFACE is true) and otherwise using 19589 * the saved ifrt->ifrt_type. This means that in the case where 19590 * ipif->ipif_net_type is IRE_LOOPBACK, the ire created by 19591 * ire_create() will be an IRE_LOOPBACK, it will then be turned 19592 * into an IRE_IF_NORESOLVER and then added by ire_add(). 19593 */ 19594 ifrt = (ifrt_t *)mp->b_rptr; 19595 ASSERT(ifrt->ifrt_type != IRE_CACHE); 19596 if (ifrt->ifrt_type & IRE_INTERFACE) { 19597 rfq = NULL; 19598 stq = (ipif->ipif_net_type == IRE_IF_RESOLVER) 19599 ? ipif->ipif_rq : ipif->ipif_wq; 19600 src_addr = (ifrt->ifrt_flags & RTF_SETSRC) 19601 ? (uint8_t *)&ifrt->ifrt_src_addr 19602 : (uint8_t *)&ipif->ipif_src_addr; 19603 gateway_addr = NULL; 19604 type = ipif->ipif_net_type; 19605 } else if (ifrt->ifrt_type & IRE_BROADCAST) { 19606 /* Recover multiroute broadcast IRE. */ 19607 rfq = ipif->ipif_rq; 19608 stq = ipif->ipif_wq; 19609 src_addr = (ifrt->ifrt_flags & RTF_SETSRC) 19610 ? (uint8_t *)&ifrt->ifrt_src_addr 19611 : (uint8_t *)&ipif->ipif_src_addr; 19612 gateway_addr = (uint8_t *)&ifrt->ifrt_gateway_addr; 19613 type = ifrt->ifrt_type; 19614 } else { 19615 rfq = NULL; 19616 stq = NULL; 19617 src_addr = (ifrt->ifrt_flags & RTF_SETSRC) 19618 ? (uint8_t *)&ifrt->ifrt_src_addr : NULL; 19619 gateway_addr = (uint8_t *)&ifrt->ifrt_gateway_addr; 19620 type = ifrt->ifrt_type; 19621 } 19622 19623 /* 19624 * Create a copy of the IRE with the saved address and netmask. 19625 */ 19626 ip1dbg(("ipif_recover_ire: creating IRE %s (%d) for " 19627 "0x%x/0x%x\n", 19628 ip_nv_lookup(ire_nv_tbl, ifrt->ifrt_type), ifrt->ifrt_type, 19629 ntohl(ifrt->ifrt_addr), 19630 ntohl(ifrt->ifrt_mask))); 19631 ire = ire_create( 19632 (uint8_t *)&ifrt->ifrt_addr, 19633 (uint8_t *)&ifrt->ifrt_mask, 19634 src_addr, 19635 gateway_addr, 19636 &ifrt->ifrt_max_frag, 19637 NULL, 19638 rfq, 19639 stq, 19640 type, 19641 ipif, 19642 0, 19643 0, 19644 0, 19645 ifrt->ifrt_flags, 19646 &ifrt->ifrt_iulp_info, 19647 NULL, 19648 NULL, 19649 ipst); 19650 19651 if (ire == NULL) { 19652 mutex_exit(&ipif->ipif_saved_ire_lock); 19653 kmem_free(ipif_saved_irep, 19654 ipif->ipif_saved_ire_cnt * sizeof (ire_t *)); 19655 return (NULL); 19656 } 19657 19658 /* 19659 * Some software (for example, GateD and Sun Cluster) attempts 19660 * to create (what amount to) IRE_PREFIX routes with the 19661 * loopback address as the gateway. This is primarily done to 19662 * set up prefixes with the RTF_REJECT flag set (for example, 19663 * when generating aggregate routes.) 19664 * 19665 * If the IRE type (as defined by ipif->ipif_net_type) is 19666 * IRE_LOOPBACK, then we map the request into a 19667 * IRE_IF_NORESOLVER. 19668 */ 19669 if (ipif->ipif_net_type == IRE_LOOPBACK) 19670 ire->ire_type = IRE_IF_NORESOLVER; 19671 /* 19672 * ire held by ire_add, will be refreled' towards the 19673 * the end of ipif_up_done 19674 */ 19675 (void) ire_add(&ire, NULL, NULL, NULL, B_FALSE); 19676 *irep = ire; 19677 irep++; 19678 ip1dbg(("ipif_recover_ire: added ire %p\n", (void *)ire)); 19679 } 19680 mutex_exit(&ipif->ipif_saved_ire_lock); 19681 return (ipif_saved_irep); 19682 } 19683 19684 /* 19685 * Used to set the netmask and broadcast address to default values when the 19686 * interface is brought up. (Always called as writer.) 19687 */ 19688 static void 19689 ipif_set_default(ipif_t *ipif) 19690 { 19691 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 19692 19693 if (!ipif->ipif_isv6) { 19694 /* 19695 * Interface holds an IPv4 address. Default 19696 * mask is the natural netmask. 19697 */ 19698 if (!ipif->ipif_net_mask) { 19699 ipaddr_t v4mask; 19700 19701 v4mask = ip_net_mask(ipif->ipif_lcl_addr); 19702 V4MASK_TO_V6(v4mask, ipif->ipif_v6net_mask); 19703 } 19704 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 19705 /* ipif_subnet is ipif_pp_dst_addr for pt-pt */ 19706 ipif->ipif_v6subnet = ipif->ipif_v6pp_dst_addr; 19707 } else { 19708 V6_MASK_COPY(ipif->ipif_v6lcl_addr, 19709 ipif->ipif_v6net_mask, ipif->ipif_v6subnet); 19710 } 19711 /* 19712 * NOTE: SunOS 4.X does this even if the broadcast address 19713 * has been already set thus we do the same here. 19714 */ 19715 if (ipif->ipif_flags & IPIF_BROADCAST) { 19716 ipaddr_t v4addr; 19717 19718 v4addr = ipif->ipif_subnet | ~ipif->ipif_net_mask; 19719 IN6_IPADDR_TO_V4MAPPED(v4addr, &ipif->ipif_v6brd_addr); 19720 } 19721 } else { 19722 /* 19723 * Interface holds an IPv6-only address. Default 19724 * mask is all-ones. 19725 */ 19726 if (IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6net_mask)) 19727 ipif->ipif_v6net_mask = ipv6_all_ones; 19728 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 19729 /* ipif_subnet is ipif_pp_dst_addr for pt-pt */ 19730 ipif->ipif_v6subnet = ipif->ipif_v6pp_dst_addr; 19731 } else { 19732 V6_MASK_COPY(ipif->ipif_v6lcl_addr, 19733 ipif->ipif_v6net_mask, ipif->ipif_v6subnet); 19734 } 19735 } 19736 } 19737 19738 /* 19739 * Return 0 if this address can be used as local address without causing 19740 * duplicate address problems. Otherwise, return EADDRNOTAVAIL if the address 19741 * is already up on a different ill, and EADDRINUSE if it's up on the same ill. 19742 * Special checks are needed to allow the same IPv6 link-local address 19743 * on different ills. 19744 * TODO: allowing the same site-local address on different ill's. 19745 */ 19746 int 19747 ip_addr_availability_check(ipif_t *new_ipif) 19748 { 19749 in6_addr_t our_v6addr; 19750 ill_t *ill; 19751 ipif_t *ipif; 19752 ill_walk_context_t ctx; 19753 ip_stack_t *ipst = new_ipif->ipif_ill->ill_ipst; 19754 19755 ASSERT(IAM_WRITER_IPIF(new_ipif)); 19756 ASSERT(MUTEX_HELD(&ipst->ips_ip_addr_avail_lock)); 19757 ASSERT(RW_READ_HELD(&ipst->ips_ill_g_lock)); 19758 19759 new_ipif->ipif_flags &= ~IPIF_UNNUMBERED; 19760 if (IN6_IS_ADDR_UNSPECIFIED(&new_ipif->ipif_v6lcl_addr) || 19761 IN6_IS_ADDR_V4MAPPED_ANY(&new_ipif->ipif_v6lcl_addr)) 19762 return (0); 19763 19764 our_v6addr = new_ipif->ipif_v6lcl_addr; 19765 19766 if (new_ipif->ipif_isv6) 19767 ill = ILL_START_WALK_V6(&ctx, ipst); 19768 else 19769 ill = ILL_START_WALK_V4(&ctx, ipst); 19770 19771 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 19772 for (ipif = ill->ill_ipif; ipif != NULL; 19773 ipif = ipif->ipif_next) { 19774 if ((ipif == new_ipif) || 19775 !(ipif->ipif_flags & IPIF_UP) || 19776 (ipif->ipif_flags & IPIF_UNNUMBERED)) 19777 continue; 19778 if (IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6lcl_addr, 19779 &our_v6addr)) { 19780 if (new_ipif->ipif_flags & IPIF_POINTOPOINT) 19781 new_ipif->ipif_flags |= IPIF_UNNUMBERED; 19782 else if (ipif->ipif_flags & IPIF_POINTOPOINT) 19783 ipif->ipif_flags |= IPIF_UNNUMBERED; 19784 else if (IN6_IS_ADDR_LINKLOCAL(&our_v6addr) && 19785 new_ipif->ipif_ill != ill) 19786 continue; 19787 else if (IN6_IS_ADDR_SITELOCAL(&our_v6addr) && 19788 new_ipif->ipif_ill != ill) 19789 continue; 19790 else if (new_ipif->ipif_zoneid != 19791 ipif->ipif_zoneid && 19792 ipif->ipif_zoneid != ALL_ZONES && 19793 IS_LOOPBACK(ill)) 19794 continue; 19795 else if (new_ipif->ipif_ill == ill) 19796 return (EADDRINUSE); 19797 else 19798 return (EADDRNOTAVAIL); 19799 } 19800 } 19801 } 19802 19803 return (0); 19804 } 19805 19806 /* 19807 * Bring up an ipif: bring up arp/ndp, bring up the DLPI stream, and add 19808 * IREs for the ipif. 19809 * When the routine returns EINPROGRESS then mp has been consumed and 19810 * the ioctl will be acked from ip_rput_dlpi. 19811 */ 19812 static int 19813 ipif_up(ipif_t *ipif, queue_t *q, mblk_t *mp) 19814 { 19815 ill_t *ill = ipif->ipif_ill; 19816 boolean_t isv6 = ipif->ipif_isv6; 19817 int err = 0; 19818 boolean_t success; 19819 19820 ASSERT(IAM_WRITER_IPIF(ipif)); 19821 19822 ip1dbg(("ipif_up(%s:%u)\n", ill->ill_name, ipif->ipif_id)); 19823 19824 /* Shouldn't get here if it is already up. */ 19825 if (ipif->ipif_flags & IPIF_UP) 19826 return (EALREADY); 19827 19828 /* Skip arp/ndp for any loopback interface. */ 19829 if (ill->ill_wq != NULL) { 19830 conn_t *connp = CONN_Q(q) ? Q_TO_CONN(q) : NULL; 19831 ipsq_t *ipsq = ill->ill_phyint->phyint_ipsq; 19832 19833 if (!ill->ill_dl_up) { 19834 /* 19835 * ill_dl_up is not yet set. i.e. we are yet to 19836 * DL_BIND with the driver and this is the first 19837 * logical interface on the ill to become "up". 19838 * Tell the driver to get going (via DL_BIND_REQ). 19839 * Note that changing "significant" IFF_ flags 19840 * address/netmask etc cause a down/up dance, but 19841 * does not cause an unbind (DL_UNBIND) with the driver 19842 */ 19843 return (ill_dl_up(ill, ipif, mp, q)); 19844 } 19845 19846 /* 19847 * ipif_resolver_up may end up sending an 19848 * AR_INTERFACE_UP message to ARP, which would, in 19849 * turn send a DLPI message to the driver. ioctls are 19850 * serialized and so we cannot send more than one 19851 * interface up message at a time. If ipif_resolver_up 19852 * does send an interface up message to ARP, we get 19853 * EINPROGRESS and we will complete in ip_arp_done. 19854 */ 19855 19856 ASSERT(connp != NULL || !CONN_Q(q)); 19857 ASSERT(ipsq->ipsq_pending_mp == NULL); 19858 if (connp != NULL) 19859 mutex_enter(&connp->conn_lock); 19860 mutex_enter(&ill->ill_lock); 19861 success = ipsq_pending_mp_add(connp, ipif, q, mp, 0); 19862 mutex_exit(&ill->ill_lock); 19863 if (connp != NULL) 19864 mutex_exit(&connp->conn_lock); 19865 if (!success) 19866 return (EINTR); 19867 19868 /* 19869 * Crank up IPv6 neighbor discovery 19870 * Unlike ARP, this should complete when 19871 * ipif_ndp_up returns. However, for 19872 * ILLF_XRESOLV interfaces we also send a 19873 * AR_INTERFACE_UP to the external resolver. 19874 * That ioctl will complete in ip_rput. 19875 */ 19876 if (isv6) { 19877 err = ipif_ndp_up(ipif); 19878 if (err != 0) { 19879 if (err != EINPROGRESS) 19880 mp = ipsq_pending_mp_get(ipsq, &connp); 19881 return (err); 19882 } 19883 } 19884 /* Now, ARP */ 19885 err = ipif_resolver_up(ipif, Res_act_initial); 19886 if (err == EINPROGRESS) { 19887 /* We will complete it in ip_arp_done */ 19888 return (err); 19889 } 19890 mp = ipsq_pending_mp_get(ipsq, &connp); 19891 ASSERT(mp != NULL); 19892 if (err != 0) 19893 return (err); 19894 } else { 19895 /* 19896 * Interfaces without underlying hardware don't do duplicate 19897 * address detection. 19898 */ 19899 ASSERT(!(ipif->ipif_flags & IPIF_DUPLICATE)); 19900 ipif->ipif_addr_ready = 1; 19901 } 19902 return (isv6 ? ipif_up_done_v6(ipif) : ipif_up_done(ipif)); 19903 } 19904 19905 /* 19906 * Perform a bind for the physical device. 19907 * When the routine returns EINPROGRESS then mp has been consumed and 19908 * the ioctl will be acked from ip_rput_dlpi. 19909 * Allocate an unbind message and save it until ipif_down. 19910 */ 19911 static int 19912 ill_dl_up(ill_t *ill, ipif_t *ipif, mblk_t *mp, queue_t *q) 19913 { 19914 areq_t *areq; 19915 mblk_t *areq_mp = NULL; 19916 mblk_t *bind_mp = NULL; 19917 mblk_t *unbind_mp = NULL; 19918 conn_t *connp; 19919 boolean_t success; 19920 uint16_t sap_addr; 19921 19922 ip1dbg(("ill_dl_up(%s)\n", ill->ill_name)); 19923 ASSERT(IAM_WRITER_ILL(ill)); 19924 ASSERT(mp != NULL); 19925 19926 /* Create a resolver cookie for ARP */ 19927 if (!ill->ill_isv6 && ill->ill_net_type == IRE_IF_RESOLVER) { 19928 areq_mp = ill_arp_alloc(ill, (uchar_t *)&ip_areq_template, 0); 19929 if (areq_mp == NULL) 19930 return (ENOMEM); 19931 19932 freemsg(ill->ill_resolver_mp); 19933 ill->ill_resolver_mp = areq_mp; 19934 areq = (areq_t *)areq_mp->b_rptr; 19935 sap_addr = ill->ill_sap; 19936 bcopy(&sap_addr, areq->areq_sap, sizeof (sap_addr)); 19937 } 19938 bind_mp = ip_dlpi_alloc(sizeof (dl_bind_req_t) + sizeof (long), 19939 DL_BIND_REQ); 19940 if (bind_mp == NULL) 19941 goto bad; 19942 ((dl_bind_req_t *)bind_mp->b_rptr)->dl_sap = ill->ill_sap; 19943 ((dl_bind_req_t *)bind_mp->b_rptr)->dl_service_mode = DL_CLDLS; 19944 19945 unbind_mp = ip_dlpi_alloc(sizeof (dl_unbind_req_t), DL_UNBIND_REQ); 19946 if (unbind_mp == NULL) 19947 goto bad; 19948 19949 /* 19950 * Record state needed to complete this operation when the 19951 * DL_BIND_ACK shows up. Also remember the pre-allocated mblks. 19952 */ 19953 ASSERT(WR(q)->q_next == NULL); 19954 connp = Q_TO_CONN(q); 19955 19956 mutex_enter(&connp->conn_lock); 19957 mutex_enter(&ipif->ipif_ill->ill_lock); 19958 success = ipsq_pending_mp_add(connp, ipif, q, mp, 0); 19959 mutex_exit(&ipif->ipif_ill->ill_lock); 19960 mutex_exit(&connp->conn_lock); 19961 if (!success) 19962 goto bad; 19963 19964 /* 19965 * Save the unbind message for ill_dl_down(); it will be consumed when 19966 * the interface goes down. 19967 */ 19968 ASSERT(ill->ill_unbind_mp == NULL); 19969 ill->ill_unbind_mp = unbind_mp; 19970 19971 ill_dlpi_send(ill, bind_mp); 19972 /* Send down link-layer capabilities probe if not already done. */ 19973 ill_capability_probe(ill); 19974 19975 /* 19976 * Sysid used to rely on the fact that netboots set domainname 19977 * and the like. Now that miniroot boots aren't strictly netboots 19978 * and miniroot network configuration is driven from userland 19979 * these things still need to be set. This situation can be detected 19980 * by comparing the interface being configured here to the one 19981 * dhcifname was set to reference by the boot loader. Once sysid is 19982 * converted to use dhcp_ipc_getinfo() this call can go away. 19983 */ 19984 if ((ipif->ipif_flags & IPIF_DHCPRUNNING) && 19985 (strcmp(ill->ill_name, dhcifname) == 0) && 19986 (strlen(srpc_domain) == 0)) { 19987 if (dhcpinit() != 0) 19988 cmn_err(CE_WARN, "no cached dhcp response"); 19989 } 19990 19991 /* 19992 * This operation will complete in ip_rput_dlpi with either 19993 * a DL_BIND_ACK or DL_ERROR_ACK. 19994 */ 19995 return (EINPROGRESS); 19996 bad: 19997 ip1dbg(("ill_dl_up(%s) FAILED\n", ill->ill_name)); 19998 /* 19999 * We don't have to check for possible removal from illgrp 20000 * as we have not yet inserted in illgrp. For groups 20001 * without names, this ipif is still not UP and hence 20002 * this could not have possibly had any influence in forming 20003 * groups. 20004 */ 20005 20006 freemsg(bind_mp); 20007 freemsg(unbind_mp); 20008 return (ENOMEM); 20009 } 20010 20011 uint_t ip_loopback_mtuplus = IP_LOOPBACK_MTU + IP_SIMPLE_HDR_LENGTH + 20; 20012 20013 /* 20014 * DLPI and ARP is up. 20015 * Create all the IREs associated with an interface bring up multicast. 20016 * Set the interface flag and finish other initialization 20017 * that potentially had to be differed to after DL_BIND_ACK. 20018 */ 20019 int 20020 ipif_up_done(ipif_t *ipif) 20021 { 20022 ire_t *ire_array[20]; 20023 ire_t **irep = ire_array; 20024 ire_t **irep1; 20025 ipaddr_t net_mask = 0; 20026 ipaddr_t subnet_mask, route_mask; 20027 ill_t *ill = ipif->ipif_ill; 20028 queue_t *stq; 20029 ipif_t *src_ipif; 20030 ipif_t *tmp_ipif; 20031 boolean_t flush_ire_cache = B_TRUE; 20032 int err = 0; 20033 phyint_t *phyi; 20034 ire_t **ipif_saved_irep = NULL; 20035 int ipif_saved_ire_cnt; 20036 int cnt; 20037 boolean_t src_ipif_held = B_FALSE; 20038 boolean_t ire_added = B_FALSE; 20039 boolean_t loopback = B_FALSE; 20040 ip_stack_t *ipst = ill->ill_ipst; 20041 20042 ip1dbg(("ipif_up_done(%s:%u)\n", 20043 ipif->ipif_ill->ill_name, ipif->ipif_id)); 20044 /* Check if this is a loopback interface */ 20045 if (ipif->ipif_ill->ill_wq == NULL) 20046 loopback = B_TRUE; 20047 20048 ASSERT(!MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 20049 /* 20050 * If all other interfaces for this ill are down or DEPRECATED, 20051 * or otherwise unsuitable for source address selection, remove 20052 * any IRE_CACHE entries for this ill to make sure source 20053 * address selection gets to take this new ipif into account. 20054 * No need to hold ill_lock while traversing the ipif list since 20055 * we are writer 20056 */ 20057 for (tmp_ipif = ill->ill_ipif; tmp_ipif; 20058 tmp_ipif = tmp_ipif->ipif_next) { 20059 if (((tmp_ipif->ipif_flags & 20060 (IPIF_NOXMIT|IPIF_ANYCAST|IPIF_NOLOCAL|IPIF_DEPRECATED)) || 20061 !(tmp_ipif->ipif_flags & IPIF_UP)) || 20062 (tmp_ipif == ipif)) 20063 continue; 20064 /* first useable pre-existing interface */ 20065 flush_ire_cache = B_FALSE; 20066 break; 20067 } 20068 if (flush_ire_cache) 20069 ire_walk_ill_v4(MATCH_IRE_ILL_GROUP | MATCH_IRE_TYPE, 20070 IRE_CACHE, ill_ipif_cache_delete, (char *)ill, ill); 20071 20072 /* 20073 * Figure out which way the send-to queue should go. Only 20074 * IRE_IF_RESOLVER or IRE_IF_NORESOLVER or IRE_LOOPBACK 20075 * should show up here. 20076 */ 20077 switch (ill->ill_net_type) { 20078 case IRE_IF_RESOLVER: 20079 stq = ill->ill_rq; 20080 break; 20081 case IRE_IF_NORESOLVER: 20082 case IRE_LOOPBACK: 20083 stq = ill->ill_wq; 20084 break; 20085 default: 20086 return (EINVAL); 20087 } 20088 20089 if (IS_LOOPBACK(ill)) { 20090 /* 20091 * lo0:1 and subsequent ipifs were marked IRE_LOCAL in 20092 * ipif_lookup_on_name(), but in the case of zones we can have 20093 * several loopback addresses on lo0. So all the interfaces with 20094 * loopback addresses need to be marked IRE_LOOPBACK. 20095 */ 20096 if (V4_PART_OF_V6(ipif->ipif_v6lcl_addr) == 20097 htonl(INADDR_LOOPBACK)) 20098 ipif->ipif_ire_type = IRE_LOOPBACK; 20099 else 20100 ipif->ipif_ire_type = IRE_LOCAL; 20101 } 20102 20103 if (ipif->ipif_flags & (IPIF_NOLOCAL|IPIF_ANYCAST|IPIF_DEPRECATED)) { 20104 /* 20105 * Can't use our source address. Select a different 20106 * source address for the IRE_INTERFACE and IRE_LOCAL 20107 */ 20108 src_ipif = ipif_select_source(ipif->ipif_ill, 20109 ipif->ipif_subnet, ipif->ipif_zoneid); 20110 if (src_ipif == NULL) 20111 src_ipif = ipif; /* Last resort */ 20112 else 20113 src_ipif_held = B_TRUE; 20114 } else { 20115 src_ipif = ipif; 20116 } 20117 20118 /* Create all the IREs associated with this interface */ 20119 if ((ipif->ipif_lcl_addr != INADDR_ANY) && 20120 !(ipif->ipif_flags & IPIF_NOLOCAL)) { 20121 20122 /* 20123 * If we're on a labeled system then make sure that zone- 20124 * private addresses have proper remote host database entries. 20125 */ 20126 if (is_system_labeled() && 20127 ipif->ipif_ire_type != IRE_LOOPBACK && 20128 !tsol_check_interface_address(ipif)) 20129 return (EINVAL); 20130 20131 /* Register the source address for __sin6_src_id */ 20132 err = ip_srcid_insert(&ipif->ipif_v6lcl_addr, 20133 ipif->ipif_zoneid, ipst); 20134 if (err != 0) { 20135 ip0dbg(("ipif_up_done: srcid_insert %d\n", err)); 20136 return (err); 20137 } 20138 20139 /* If the interface address is set, create the local IRE. */ 20140 ip1dbg(("ipif_up_done: 0x%p creating IRE 0x%x for 0x%x\n", 20141 (void *)ipif, 20142 ipif->ipif_ire_type, 20143 ntohl(ipif->ipif_lcl_addr))); 20144 *irep++ = ire_create( 20145 (uchar_t *)&ipif->ipif_lcl_addr, /* dest address */ 20146 (uchar_t *)&ip_g_all_ones, /* mask */ 20147 (uchar_t *)&src_ipif->ipif_src_addr, /* source address */ 20148 NULL, /* no gateway */ 20149 &ip_loopback_mtuplus, /* max frag size */ 20150 NULL, 20151 ipif->ipif_rq, /* recv-from queue */ 20152 NULL, /* no send-to queue */ 20153 ipif->ipif_ire_type, /* LOCAL or LOOPBACK */ 20154 ipif, 20155 0, 20156 0, 20157 0, 20158 (ipif->ipif_flags & IPIF_PRIVATE) ? 20159 RTF_PRIVATE : 0, 20160 &ire_uinfo_null, 20161 NULL, 20162 NULL, 20163 ipst); 20164 } else { 20165 ip1dbg(( 20166 "ipif_up_done: not creating IRE %d for 0x%x: flags 0x%x\n", 20167 ipif->ipif_ire_type, 20168 ntohl(ipif->ipif_lcl_addr), 20169 (uint_t)ipif->ipif_flags)); 20170 } 20171 if ((ipif->ipif_lcl_addr != INADDR_ANY) && 20172 !(ipif->ipif_flags & IPIF_NOLOCAL)) { 20173 net_mask = ip_net_mask(ipif->ipif_lcl_addr); 20174 } else { 20175 net_mask = htonl(IN_CLASSA_NET); /* fallback */ 20176 } 20177 20178 subnet_mask = ipif->ipif_net_mask; 20179 20180 /* 20181 * If mask was not specified, use natural netmask of 20182 * interface address. Also, store this mask back into the 20183 * ipif struct. 20184 */ 20185 if (subnet_mask == 0) { 20186 subnet_mask = net_mask; 20187 V4MASK_TO_V6(subnet_mask, ipif->ipif_v6net_mask); 20188 V6_MASK_COPY(ipif->ipif_v6lcl_addr, ipif->ipif_v6net_mask, 20189 ipif->ipif_v6subnet); 20190 } 20191 20192 /* Set up the IRE_IF_RESOLVER or IRE_IF_NORESOLVER, as appropriate. */ 20193 if (stq != NULL && !(ipif->ipif_flags & IPIF_NOXMIT) && 20194 ipif->ipif_subnet != INADDR_ANY) { 20195 /* ipif_subnet is ipif_pp_dst_addr for pt-pt */ 20196 20197 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 20198 route_mask = IP_HOST_MASK; 20199 } else { 20200 route_mask = subnet_mask; 20201 } 20202 20203 ip1dbg(("ipif_up_done: ipif 0x%p ill 0x%p " 20204 "creating if IRE ill_net_type 0x%x for 0x%x\n", 20205 (void *)ipif, (void *)ill, 20206 ill->ill_net_type, 20207 ntohl(ipif->ipif_subnet))); 20208 *irep++ = ire_create( 20209 (uchar_t *)&ipif->ipif_subnet, /* dest address */ 20210 (uchar_t *)&route_mask, /* mask */ 20211 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 20212 NULL, /* no gateway */ 20213 &ipif->ipif_mtu, /* max frag */ 20214 NULL, 20215 NULL, /* no recv queue */ 20216 stq, /* send-to queue */ 20217 ill->ill_net_type, /* IF_[NO]RESOLVER */ 20218 ipif, 20219 0, 20220 0, 20221 0, 20222 (ipif->ipif_flags & IPIF_PRIVATE) ? RTF_PRIVATE: 0, 20223 &ire_uinfo_null, 20224 NULL, 20225 NULL, 20226 ipst); 20227 } 20228 20229 /* 20230 * Create any necessary broadcast IREs. 20231 */ 20232 if (ipif->ipif_flags & IPIF_BROADCAST) 20233 irep = ipif_create_bcast_ires(ipif, irep); 20234 20235 ASSERT(!MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 20236 20237 /* If an earlier ire_create failed, get out now */ 20238 for (irep1 = irep; irep1 > ire_array; ) { 20239 irep1--; 20240 if (*irep1 == NULL) { 20241 ip1dbg(("ipif_up_done: NULL ire found in ire_array\n")); 20242 err = ENOMEM; 20243 goto bad; 20244 } 20245 } 20246 20247 /* 20248 * Need to atomically check for ip_addr_availablity_check 20249 * under ip_addr_avail_lock, and if it fails got bad, and remove 20250 * from group also.The ill_g_lock is grabbed as reader 20251 * just to make sure no new ills or new ipifs are being added 20252 * to the system while we are checking the uniqueness of addresses. 20253 */ 20254 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 20255 mutex_enter(&ipst->ips_ip_addr_avail_lock); 20256 /* Mark it up, and increment counters. */ 20257 ipif->ipif_flags |= IPIF_UP; 20258 ill->ill_ipif_up_count++; 20259 err = ip_addr_availability_check(ipif); 20260 mutex_exit(&ipst->ips_ip_addr_avail_lock); 20261 rw_exit(&ipst->ips_ill_g_lock); 20262 20263 if (err != 0) { 20264 /* 20265 * Our address may already be up on the same ill. In this case, 20266 * the ARP entry for our ipif replaced the one for the other 20267 * ipif. So we don't want to delete it (otherwise the other ipif 20268 * would be unable to send packets). 20269 * ip_addr_availability_check() identifies this case for us and 20270 * returns EADDRINUSE; we need to turn it into EADDRNOTAVAIL 20271 * which is the expected error code. 20272 */ 20273 if (err == EADDRINUSE) { 20274 freemsg(ipif->ipif_arp_del_mp); 20275 ipif->ipif_arp_del_mp = NULL; 20276 err = EADDRNOTAVAIL; 20277 } 20278 ill->ill_ipif_up_count--; 20279 ipif->ipif_flags &= ~IPIF_UP; 20280 goto bad; 20281 } 20282 20283 /* 20284 * Add in all newly created IREs. ire_create_bcast() has 20285 * already checked for duplicates of the IRE_BROADCAST type. 20286 * We want to add before we call ifgrp_insert which wants 20287 * to know whether IRE_IF_RESOLVER exists or not. 20288 * 20289 * NOTE : We refrele the ire though we may branch to "bad" 20290 * later on where we do ire_delete. This is okay 20291 * because nobody can delete it as we are running 20292 * exclusively. 20293 */ 20294 for (irep1 = irep; irep1 > ire_array; ) { 20295 irep1--; 20296 ASSERT(!MUTEX_HELD(&((*irep1)->ire_ipif->ipif_ill->ill_lock))); 20297 /* 20298 * refheld by ire_add. refele towards the end of the func 20299 */ 20300 (void) ire_add(irep1, NULL, NULL, NULL, B_FALSE); 20301 } 20302 ire_added = B_TRUE; 20303 /* 20304 * Form groups if possible. 20305 * 20306 * If we are supposed to be in a ill_group with a name, insert it 20307 * now as we know that at least one ipif is UP. Otherwise form 20308 * nameless groups. 20309 * 20310 * If ip_enable_group_ifs is set and ipif address is not 0, insert 20311 * this ipif into the appropriate interface group, or create a 20312 * new one. If this is already in a nameless group, we try to form 20313 * a bigger group looking at other ills potentially sharing this 20314 * ipif's prefix. 20315 */ 20316 phyi = ill->ill_phyint; 20317 if (phyi->phyint_groupname_len != 0) { 20318 ASSERT(phyi->phyint_groupname != NULL); 20319 if (ill->ill_ipif_up_count == 1) { 20320 ASSERT(ill->ill_group == NULL); 20321 err = illgrp_insert(&ipst->ips_illgrp_head_v4, ill, 20322 phyi->phyint_groupname, NULL, B_TRUE); 20323 if (err != 0) { 20324 ip1dbg(("ipif_up_done: illgrp allocation " 20325 "failed, error %d\n", err)); 20326 goto bad; 20327 } 20328 } 20329 ASSERT(ill->ill_group != NULL); 20330 } 20331 20332 /* 20333 * When this is part of group, we need to make sure that 20334 * any broadcast ires created because of this ipif coming 20335 * UP gets marked/cleared with IRE_MARK_NORECV appropriately 20336 * so that we don't receive duplicate broadcast packets. 20337 */ 20338 if (ill->ill_group != NULL && ill->ill_ipif_up_count != 0) 20339 ipif_renominate_bcast(ipif); 20340 20341 /* Recover any additional IRE_IF_[NO]RESOLVER entries for this ipif */ 20342 ipif_saved_ire_cnt = ipif->ipif_saved_ire_cnt; 20343 ipif_saved_irep = ipif_recover_ire(ipif); 20344 20345 if (!loopback) { 20346 /* 20347 * If the broadcast address has been set, make sure it makes 20348 * sense based on the interface address. 20349 * Only match on ill since we are sharing broadcast addresses. 20350 */ 20351 if ((ipif->ipif_brd_addr != INADDR_ANY) && 20352 (ipif->ipif_flags & IPIF_BROADCAST)) { 20353 ire_t *ire; 20354 20355 ire = ire_ctable_lookup(ipif->ipif_brd_addr, 0, 20356 IRE_BROADCAST, ipif, ALL_ZONES, 20357 NULL, (MATCH_IRE_TYPE | MATCH_IRE_ILL), ipst); 20358 20359 if (ire == NULL) { 20360 /* 20361 * If there isn't a matching broadcast IRE, 20362 * revert to the default for this netmask. 20363 */ 20364 ipif->ipif_v6brd_addr = ipv6_all_zeros; 20365 mutex_enter(&ipif->ipif_ill->ill_lock); 20366 ipif_set_default(ipif); 20367 mutex_exit(&ipif->ipif_ill->ill_lock); 20368 } else { 20369 ire_refrele(ire); 20370 } 20371 } 20372 20373 } 20374 20375 /* This is the first interface on this ill */ 20376 if (ipif->ipif_ipif_up_count == 1 && !loopback) { 20377 /* 20378 * Need to recover all multicast memberships in the driver. 20379 * This had to be deferred until we had attached. 20380 */ 20381 ill_recover_multicast(ill); 20382 } 20383 /* Join the allhosts multicast address */ 20384 ipif_multicast_up(ipif); 20385 20386 if (!loopback) { 20387 /* 20388 * See whether anybody else would benefit from the 20389 * new ipif that we added. We call this always rather 20390 * than while adding a non-IPIF_NOLOCAL/DEPRECATED/ANYCAST 20391 * ipif is for the benefit of illgrp_insert (done above) 20392 * which does not do source address selection as it does 20393 * not want to re-create interface routes that we are 20394 * having reference to it here. 20395 */ 20396 ill_update_source_selection(ill); 20397 } 20398 20399 for (irep1 = irep; irep1 > ire_array; ) { 20400 irep1--; 20401 if (*irep1 != NULL) { 20402 /* was held in ire_add */ 20403 ire_refrele(*irep1); 20404 } 20405 } 20406 20407 cnt = ipif_saved_ire_cnt; 20408 for (irep1 = ipif_saved_irep; cnt > 0; irep1++, cnt--) { 20409 if (*irep1 != NULL) { 20410 /* was held in ire_add */ 20411 ire_refrele(*irep1); 20412 } 20413 } 20414 20415 if (!loopback && ipif->ipif_addr_ready) { 20416 /* Broadcast an address mask reply. */ 20417 ipif_mask_reply(ipif); 20418 } 20419 if (ipif_saved_irep != NULL) { 20420 kmem_free(ipif_saved_irep, 20421 ipif_saved_ire_cnt * sizeof (ire_t *)); 20422 } 20423 if (src_ipif_held) 20424 ipif_refrele(src_ipif); 20425 20426 /* 20427 * This had to be deferred until we had bound. Tell routing sockets and 20428 * others that this interface is up if it looks like the address has 20429 * been validated. Otherwise, if it isn't ready yet, wait for 20430 * duplicate address detection to do its thing. 20431 */ 20432 if (ipif->ipif_addr_ready) { 20433 ip_rts_ifmsg(ipif); 20434 ip_rts_newaddrmsg(RTM_ADD, 0, ipif); 20435 /* Let SCTP update the status for this ipif */ 20436 sctp_update_ipif(ipif, SCTP_IPIF_UP); 20437 } 20438 return (0); 20439 20440 bad: 20441 ip1dbg(("ipif_up_done: FAILED \n")); 20442 /* 20443 * We don't have to bother removing from ill groups because 20444 * 20445 * 1) For groups with names, we insert only when the first ipif 20446 * comes up. In that case if it fails, it will not be in any 20447 * group. So, we need not try to remove for that case. 20448 * 20449 * 2) For groups without names, either we tried to insert ipif_ill 20450 * in a group as singleton or found some other group to become 20451 * a bigger group. For the former, if it fails we don't have 20452 * anything to do as ipif_ill is not in the group and for the 20453 * latter, there are no failures in illgrp_insert/illgrp_delete 20454 * (ENOMEM can't occur for this. Check ifgrp_insert). 20455 */ 20456 while (irep > ire_array) { 20457 irep--; 20458 if (*irep != NULL) { 20459 ire_delete(*irep); 20460 if (ire_added) 20461 ire_refrele(*irep); 20462 } 20463 } 20464 (void) ip_srcid_remove(&ipif->ipif_v6lcl_addr, ipif->ipif_zoneid, ipst); 20465 20466 if (ipif_saved_irep != NULL) { 20467 kmem_free(ipif_saved_irep, 20468 ipif_saved_ire_cnt * sizeof (ire_t *)); 20469 } 20470 if (src_ipif_held) 20471 ipif_refrele(src_ipif); 20472 20473 ipif_arp_down(ipif); 20474 return (err); 20475 } 20476 20477 /* 20478 * Turn off the ARP with the ILLF_NOARP flag. 20479 */ 20480 static int 20481 ill_arp_off(ill_t *ill) 20482 { 20483 mblk_t *arp_off_mp = NULL; 20484 mblk_t *arp_on_mp = NULL; 20485 20486 ip1dbg(("ill_arp_off(%s)\n", ill->ill_name)); 20487 20488 ASSERT(IAM_WRITER_ILL(ill)); 20489 ASSERT(ill->ill_net_type == IRE_IF_RESOLVER); 20490 20491 /* 20492 * If the on message is still around we've already done 20493 * an arp_off without doing an arp_on thus there is no 20494 * work needed. 20495 */ 20496 if (ill->ill_arp_on_mp != NULL) 20497 return (0); 20498 20499 /* 20500 * Allocate an ARP on message (to be saved) and an ARP off message 20501 */ 20502 arp_off_mp = ill_arp_alloc(ill, (uchar_t *)&ip_aroff_template, 0); 20503 if (!arp_off_mp) 20504 return (ENOMEM); 20505 20506 arp_on_mp = ill_arp_alloc(ill, (uchar_t *)&ip_aron_template, 0); 20507 if (!arp_on_mp) 20508 goto failed; 20509 20510 ASSERT(ill->ill_arp_on_mp == NULL); 20511 ill->ill_arp_on_mp = arp_on_mp; 20512 20513 /* Send an AR_INTERFACE_OFF request */ 20514 putnext(ill->ill_rq, arp_off_mp); 20515 return (0); 20516 failed: 20517 20518 if (arp_off_mp) 20519 freemsg(arp_off_mp); 20520 return (ENOMEM); 20521 } 20522 20523 /* 20524 * Turn on ARP by turning off the ILLF_NOARP flag. 20525 */ 20526 static int 20527 ill_arp_on(ill_t *ill) 20528 { 20529 mblk_t *mp; 20530 20531 ip1dbg(("ipif_arp_on(%s)\n", ill->ill_name)); 20532 20533 ASSERT(ill->ill_net_type == IRE_IF_RESOLVER); 20534 20535 ASSERT(IAM_WRITER_ILL(ill)); 20536 /* 20537 * Send an AR_INTERFACE_ON request if we have already done 20538 * an arp_off (which allocated the message). 20539 */ 20540 if (ill->ill_arp_on_mp != NULL) { 20541 mp = ill->ill_arp_on_mp; 20542 ill->ill_arp_on_mp = NULL; 20543 putnext(ill->ill_rq, mp); 20544 } 20545 return (0); 20546 } 20547 20548 /* 20549 * Called after either deleting ill from the group or when setting 20550 * FAILED or STANDBY on the interface. 20551 */ 20552 static void 20553 illgrp_reset_schednext(ill_t *ill) 20554 { 20555 ill_group_t *illgrp; 20556 ill_t *save_ill; 20557 20558 ASSERT(IAM_WRITER_ILL(ill)); 20559 /* 20560 * When called from illgrp_delete, ill_group will be non-NULL. 20561 * But when called from ip_sioctl_flags, it could be NULL if 20562 * somebody is setting FAILED/INACTIVE on some interface which 20563 * is not part of a group. 20564 */ 20565 illgrp = ill->ill_group; 20566 if (illgrp == NULL) 20567 return; 20568 if (illgrp->illgrp_ill_schednext != ill) 20569 return; 20570 20571 illgrp->illgrp_ill_schednext = NULL; 20572 save_ill = ill; 20573 /* 20574 * Choose a good ill to be the next one for 20575 * outbound traffic. As the flags FAILED/STANDBY is 20576 * not yet marked when called from ip_sioctl_flags, 20577 * we check for ill separately. 20578 */ 20579 for (ill = illgrp->illgrp_ill; ill != NULL; 20580 ill = ill->ill_group_next) { 20581 if ((ill != save_ill) && 20582 !(ill->ill_phyint->phyint_flags & 20583 (PHYI_FAILED|PHYI_INACTIVE|PHYI_OFFLINE))) { 20584 illgrp->illgrp_ill_schednext = ill; 20585 return; 20586 } 20587 } 20588 } 20589 20590 /* 20591 * Given an ill, find the next ill in the group to be scheduled. 20592 * (This should be called by ip_newroute() before ire_create().) 20593 * The passed in ill may be pulled out of the group, after we have picked 20594 * up a different outgoing ill from the same group. However ire add will 20595 * atomically check this. 20596 */ 20597 ill_t * 20598 illgrp_scheduler(ill_t *ill) 20599 { 20600 ill_t *retill; 20601 ill_group_t *illgrp; 20602 int illcnt; 20603 int i; 20604 uint64_t flags; 20605 ip_stack_t *ipst = ill->ill_ipst; 20606 20607 /* 20608 * We don't use a lock to check for the ill_group. If this ill 20609 * is currently being inserted we may end up just returning this 20610 * ill itself. That is ok. 20611 */ 20612 if (ill->ill_group == NULL) { 20613 ill_refhold(ill); 20614 return (ill); 20615 } 20616 20617 /* 20618 * Grab the ill_g_lock as reader to make sure we are dealing with 20619 * a set of stable ills. No ill can be added or deleted or change 20620 * group while we hold the reader lock. 20621 */ 20622 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 20623 if ((illgrp = ill->ill_group) == NULL) { 20624 rw_exit(&ipst->ips_ill_g_lock); 20625 ill_refhold(ill); 20626 return (ill); 20627 } 20628 20629 illcnt = illgrp->illgrp_ill_count; 20630 mutex_enter(&illgrp->illgrp_lock); 20631 retill = illgrp->illgrp_ill_schednext; 20632 20633 if (retill == NULL) 20634 retill = illgrp->illgrp_ill; 20635 20636 /* 20637 * We do a circular search beginning at illgrp_ill_schednext 20638 * or illgrp_ill. We don't check the flags against the ill lock 20639 * since it can change anytime. The ire creation will be atomic 20640 * and will fail if the ill is FAILED or OFFLINE. 20641 */ 20642 for (i = 0; i < illcnt; i++) { 20643 flags = retill->ill_phyint->phyint_flags; 20644 20645 if (!(flags & (PHYI_FAILED|PHYI_INACTIVE|PHYI_OFFLINE)) && 20646 ILL_CAN_LOOKUP(retill)) { 20647 illgrp->illgrp_ill_schednext = retill->ill_group_next; 20648 ill_refhold(retill); 20649 break; 20650 } 20651 retill = retill->ill_group_next; 20652 if (retill == NULL) 20653 retill = illgrp->illgrp_ill; 20654 } 20655 mutex_exit(&illgrp->illgrp_lock); 20656 rw_exit(&ipst->ips_ill_g_lock); 20657 20658 return (i == illcnt ? NULL : retill); 20659 } 20660 20661 /* 20662 * Checks for availbility of a usable source address (if there is one) when the 20663 * destination ILL has the ill_usesrc_ifindex pointing to another ILL. Note 20664 * this selection is done regardless of the destination. 20665 */ 20666 boolean_t 20667 ipif_usesrc_avail(ill_t *ill, zoneid_t zoneid) 20668 { 20669 uint_t ifindex; 20670 ipif_t *ipif = NULL; 20671 ill_t *uill; 20672 boolean_t isv6; 20673 ip_stack_t *ipst = ill->ill_ipst; 20674 20675 ASSERT(ill != NULL); 20676 20677 isv6 = ill->ill_isv6; 20678 ifindex = ill->ill_usesrc_ifindex; 20679 if (ifindex != 0) { 20680 uill = ill_lookup_on_ifindex(ifindex, isv6, NULL, NULL, NULL, 20681 NULL, ipst); 20682 if (uill == NULL) 20683 return (NULL); 20684 mutex_enter(&uill->ill_lock); 20685 for (ipif = uill->ill_ipif; ipif != NULL; 20686 ipif = ipif->ipif_next) { 20687 if (!IPIF_CAN_LOOKUP(ipif)) 20688 continue; 20689 if (ipif->ipif_flags & (IPIF_NOLOCAL|IPIF_ANYCAST)) 20690 continue; 20691 if (!(ipif->ipif_flags & IPIF_UP)) 20692 continue; 20693 if (ipif->ipif_zoneid != zoneid) 20694 continue; 20695 if ((isv6 && 20696 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr)) || 20697 (ipif->ipif_lcl_addr == INADDR_ANY)) 20698 continue; 20699 mutex_exit(&uill->ill_lock); 20700 ill_refrele(uill); 20701 return (B_TRUE); 20702 } 20703 mutex_exit(&uill->ill_lock); 20704 ill_refrele(uill); 20705 } 20706 return (B_FALSE); 20707 } 20708 20709 /* 20710 * Determine the best source address given a destination address and an ill. 20711 * Prefers non-deprecated over deprecated but will return a deprecated 20712 * address if there is no other choice. If there is a usable source address 20713 * on the interface pointed to by ill_usesrc_ifindex then that is given 20714 * first preference. 20715 * 20716 * Returns NULL if there is no suitable source address for the ill. 20717 * This only occurs when there is no valid source address for the ill. 20718 */ 20719 ipif_t * 20720 ipif_select_source(ill_t *ill, ipaddr_t dst, zoneid_t zoneid) 20721 { 20722 ipif_t *ipif; 20723 ipif_t *ipif_dep = NULL; /* Fallback to deprecated */ 20724 ipif_t *ipif_arr[MAX_IPIF_SELECT_SOURCE]; 20725 int index = 0; 20726 boolean_t wrapped = B_FALSE; 20727 boolean_t same_subnet_only = B_FALSE; 20728 boolean_t ipif_same_found, ipif_other_found; 20729 boolean_t specific_found; 20730 ill_t *till, *usill = NULL; 20731 tsol_tpc_t *src_rhtp, *dst_rhtp; 20732 ip_stack_t *ipst = ill->ill_ipst; 20733 20734 if (ill->ill_usesrc_ifindex != 0) { 20735 usill = ill_lookup_on_ifindex(ill->ill_usesrc_ifindex, 20736 B_FALSE, NULL, NULL, NULL, NULL, ipst); 20737 if (usill != NULL) 20738 ill = usill; /* Select source from usesrc ILL */ 20739 else 20740 return (NULL); 20741 } 20742 20743 /* 20744 * If we're dealing with an unlabeled destination on a labeled system, 20745 * make sure that we ignore source addresses that are incompatible with 20746 * the destination's default label. That destination's default label 20747 * must dominate the minimum label on the source address. 20748 */ 20749 dst_rhtp = NULL; 20750 if (is_system_labeled()) { 20751 dst_rhtp = find_tpc(&dst, IPV4_VERSION, B_FALSE); 20752 if (dst_rhtp == NULL) 20753 return (NULL); 20754 if (dst_rhtp->tpc_tp.host_type != UNLABELED) { 20755 TPC_RELE(dst_rhtp); 20756 dst_rhtp = NULL; 20757 } 20758 } 20759 20760 /* 20761 * Holds the ill_g_lock as reader. This makes sure that no ipif/ill 20762 * can be deleted. But an ipif/ill can get CONDEMNED any time. 20763 * After selecting the right ipif, under ill_lock make sure ipif is 20764 * not condemned, and increment refcnt. If ipif is CONDEMNED, 20765 * we retry. Inside the loop we still need to check for CONDEMNED, 20766 * but not under a lock. 20767 */ 20768 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 20769 20770 retry: 20771 till = ill; 20772 ipif_arr[0] = NULL; 20773 20774 if (till->ill_group != NULL) 20775 till = till->ill_group->illgrp_ill; 20776 20777 /* 20778 * Choose one good source address from each ill across the group. 20779 * If possible choose a source address in the same subnet as 20780 * the destination address. 20781 * 20782 * We don't check for PHYI_FAILED or PHYI_INACTIVE or PHYI_OFFLINE 20783 * This is okay because of the following. 20784 * 20785 * If PHYI_FAILED is set and we still have non-deprecated 20786 * addresses, it means the addresses have not yet been 20787 * failed over to a different interface. We potentially 20788 * select them to create IRE_CACHES, which will be later 20789 * flushed when the addresses move over. 20790 * 20791 * If PHYI_INACTIVE is set and we still have non-deprecated 20792 * addresses, it means either the user has configured them 20793 * or PHYI_INACTIVE has not been cleared after the addresses 20794 * been moved over. For the former, in.mpathd does a failover 20795 * when the interface becomes INACTIVE and hence we should 20796 * not find them. Once INACTIVE is set, we don't allow them 20797 * to create logical interfaces anymore. For the latter, a 20798 * flush will happen when INACTIVE is cleared which will 20799 * flush the IRE_CACHES. 20800 * 20801 * If PHYI_OFFLINE is set, all the addresses will be failed 20802 * over soon. We potentially select them to create IRE_CACHEs, 20803 * which will be later flushed when the addresses move over. 20804 * 20805 * NOTE : As ipif_select_source is called to borrow source address 20806 * for an ipif that is part of a group, source address selection 20807 * will be re-done whenever the group changes i.e either an 20808 * insertion/deletion in the group. 20809 * 20810 * Fill ipif_arr[] with source addresses, using these rules: 20811 * 20812 * 1. At most one source address from a given ill ends up 20813 * in ipif_arr[] -- that is, at most one of the ipif's 20814 * associated with a given ill ends up in ipif_arr[]. 20815 * 20816 * 2. If there is at least one non-deprecated ipif in the 20817 * IPMP group with a source address on the same subnet as 20818 * our destination, then fill ipif_arr[] only with 20819 * source addresses on the same subnet as our destination. 20820 * Note that because of (1), only the first 20821 * non-deprecated ipif found with a source address 20822 * matching the destination ends up in ipif_arr[]. 20823 * 20824 * 3. Otherwise, fill ipif_arr[] with non-deprecated source 20825 * addresses not in the same subnet as our destination. 20826 * Again, because of (1), only the first off-subnet source 20827 * address will be chosen. 20828 * 20829 * 4. If there are no non-deprecated ipifs, then just use 20830 * the source address associated with the last deprecated 20831 * one we find that happens to be on the same subnet, 20832 * otherwise the first one not in the same subnet. 20833 */ 20834 specific_found = B_FALSE; 20835 for (; till != NULL; till = till->ill_group_next) { 20836 ipif_same_found = B_FALSE; 20837 ipif_other_found = B_FALSE; 20838 for (ipif = till->ill_ipif; ipif != NULL; 20839 ipif = ipif->ipif_next) { 20840 if (!IPIF_CAN_LOOKUP(ipif)) 20841 continue; 20842 /* Always skip NOLOCAL and ANYCAST interfaces */ 20843 if (ipif->ipif_flags & (IPIF_NOLOCAL|IPIF_ANYCAST)) 20844 continue; 20845 if (!(ipif->ipif_flags & IPIF_UP) || 20846 !ipif->ipif_addr_ready) 20847 continue; 20848 if (ipif->ipif_zoneid != zoneid && 20849 ipif->ipif_zoneid != ALL_ZONES) 20850 continue; 20851 /* 20852 * Interfaces with 0.0.0.0 address are allowed to be UP, 20853 * but are not valid as source addresses. 20854 */ 20855 if (ipif->ipif_lcl_addr == INADDR_ANY) 20856 continue; 20857 20858 /* 20859 * Check compatibility of local address for 20860 * destination's default label if we're on a labeled 20861 * system. Incompatible addresses can't be used at 20862 * all. 20863 */ 20864 if (dst_rhtp != NULL) { 20865 boolean_t incompat; 20866 20867 src_rhtp = find_tpc(&ipif->ipif_lcl_addr, 20868 IPV4_VERSION, B_FALSE); 20869 if (src_rhtp == NULL) 20870 continue; 20871 incompat = 20872 src_rhtp->tpc_tp.host_type != SUN_CIPSO || 20873 src_rhtp->tpc_tp.tp_doi != 20874 dst_rhtp->tpc_tp.tp_doi || 20875 (!_blinrange(&dst_rhtp->tpc_tp.tp_def_label, 20876 &src_rhtp->tpc_tp.tp_sl_range_cipso) && 20877 !blinlset(&dst_rhtp->tpc_tp.tp_def_label, 20878 src_rhtp->tpc_tp.tp_sl_set_cipso)); 20879 TPC_RELE(src_rhtp); 20880 if (incompat) 20881 continue; 20882 } 20883 20884 /* 20885 * We prefer not to use all all-zones addresses, if we 20886 * can avoid it, as they pose problems with unlabeled 20887 * destinations. 20888 */ 20889 if (ipif->ipif_zoneid != ALL_ZONES) { 20890 if (!specific_found && 20891 (!same_subnet_only || 20892 (ipif->ipif_net_mask & dst) == 20893 ipif->ipif_subnet)) { 20894 index = 0; 20895 specific_found = B_TRUE; 20896 ipif_other_found = B_FALSE; 20897 } 20898 } else { 20899 if (specific_found) 20900 continue; 20901 } 20902 if (ipif->ipif_flags & IPIF_DEPRECATED) { 20903 if (ipif_dep == NULL || 20904 (ipif->ipif_net_mask & dst) == 20905 ipif->ipif_subnet) 20906 ipif_dep = ipif; 20907 continue; 20908 } 20909 if ((ipif->ipif_net_mask & dst) == ipif->ipif_subnet) { 20910 /* found a source address in the same subnet */ 20911 if (!same_subnet_only) { 20912 same_subnet_only = B_TRUE; 20913 index = 0; 20914 } 20915 ipif_same_found = B_TRUE; 20916 } else { 20917 if (same_subnet_only || ipif_other_found) 20918 continue; 20919 ipif_other_found = B_TRUE; 20920 } 20921 ipif_arr[index++] = ipif; 20922 if (index == MAX_IPIF_SELECT_SOURCE) { 20923 wrapped = B_TRUE; 20924 index = 0; 20925 } 20926 if (ipif_same_found) 20927 break; 20928 } 20929 } 20930 20931 if (ipif_arr[0] == NULL) { 20932 ipif = ipif_dep; 20933 } else { 20934 if (wrapped) 20935 index = MAX_IPIF_SELECT_SOURCE; 20936 ipif = ipif_arr[ipif_rand(ipst) % index]; 20937 ASSERT(ipif != NULL); 20938 } 20939 20940 if (ipif != NULL) { 20941 mutex_enter(&ipif->ipif_ill->ill_lock); 20942 if (!IPIF_CAN_LOOKUP(ipif)) { 20943 mutex_exit(&ipif->ipif_ill->ill_lock); 20944 goto retry; 20945 } 20946 ipif_refhold_locked(ipif); 20947 mutex_exit(&ipif->ipif_ill->ill_lock); 20948 } 20949 20950 rw_exit(&ipst->ips_ill_g_lock); 20951 if (usill != NULL) 20952 ill_refrele(usill); 20953 if (dst_rhtp != NULL) 20954 TPC_RELE(dst_rhtp); 20955 20956 #ifdef DEBUG 20957 if (ipif == NULL) { 20958 char buf1[INET6_ADDRSTRLEN]; 20959 20960 ip1dbg(("ipif_select_source(%s, %s) -> NULL\n", 20961 ill->ill_name, 20962 inet_ntop(AF_INET, &dst, buf1, sizeof (buf1)))); 20963 } else { 20964 char buf1[INET6_ADDRSTRLEN]; 20965 char buf2[INET6_ADDRSTRLEN]; 20966 20967 ip1dbg(("ipif_select_source(%s, %s) -> %s\n", 20968 ipif->ipif_ill->ill_name, 20969 inet_ntop(AF_INET, &dst, buf1, sizeof (buf1)), 20970 inet_ntop(AF_INET, &ipif->ipif_lcl_addr, 20971 buf2, sizeof (buf2)))); 20972 } 20973 #endif /* DEBUG */ 20974 return (ipif); 20975 } 20976 20977 20978 /* 20979 * If old_ipif is not NULL, see if ipif was derived from old 20980 * ipif and if so, recreate the interface route by re-doing 20981 * source address selection. This happens when ipif_down -> 20982 * ipif_update_other_ipifs calls us. 20983 * 20984 * If old_ipif is NULL, just redo the source address selection 20985 * if needed. This happens when illgrp_insert or ipif_up_done 20986 * calls us. 20987 */ 20988 static void 20989 ipif_recreate_interface_routes(ipif_t *old_ipif, ipif_t *ipif) 20990 { 20991 ire_t *ire; 20992 ire_t *ipif_ire; 20993 queue_t *stq; 20994 ipif_t *nipif; 20995 ill_t *ill; 20996 boolean_t need_rele = B_FALSE; 20997 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 20998 20999 ASSERT(old_ipif == NULL || IAM_WRITER_IPIF(old_ipif)); 21000 ASSERT(IAM_WRITER_IPIF(ipif)); 21001 21002 ill = ipif->ipif_ill; 21003 if (!(ipif->ipif_flags & 21004 (IPIF_NOLOCAL|IPIF_ANYCAST|IPIF_DEPRECATED))) { 21005 /* 21006 * Can't possibly have borrowed the source 21007 * from old_ipif. 21008 */ 21009 return; 21010 } 21011 21012 /* 21013 * Is there any work to be done? No work if the address 21014 * is INADDR_ANY, loopback or NOLOCAL or ANYCAST ( 21015 * ipif_select_source() does not borrow addresses from 21016 * NOLOCAL and ANYCAST interfaces). 21017 */ 21018 if ((old_ipif != NULL) && 21019 ((old_ipif->ipif_lcl_addr == INADDR_ANY) || 21020 (old_ipif->ipif_ill->ill_wq == NULL) || 21021 (old_ipif->ipif_flags & 21022 (IPIF_NOLOCAL|IPIF_ANYCAST)))) { 21023 return; 21024 } 21025 21026 /* 21027 * Perform the same checks as when creating the 21028 * IRE_INTERFACE in ipif_up_done. 21029 */ 21030 if (!(ipif->ipif_flags & IPIF_UP)) 21031 return; 21032 21033 if ((ipif->ipif_flags & IPIF_NOXMIT) || 21034 (ipif->ipif_subnet == INADDR_ANY)) 21035 return; 21036 21037 ipif_ire = ipif_to_ire(ipif); 21038 if (ipif_ire == NULL) 21039 return; 21040 21041 /* 21042 * We know that ipif uses some other source for its 21043 * IRE_INTERFACE. Is it using the source of this 21044 * old_ipif? 21045 */ 21046 if (old_ipif != NULL && 21047 old_ipif->ipif_lcl_addr != ipif_ire->ire_src_addr) { 21048 ire_refrele(ipif_ire); 21049 return; 21050 } 21051 if (ip_debug > 2) { 21052 /* ip1dbg */ 21053 pr_addr_dbg("ipif_recreate_interface_routes: deleting IRE for" 21054 " src %s\n", AF_INET, &ipif_ire->ire_src_addr); 21055 } 21056 21057 stq = ipif_ire->ire_stq; 21058 21059 /* 21060 * Can't use our source address. Select a different 21061 * source address for the IRE_INTERFACE. 21062 */ 21063 nipif = ipif_select_source(ill, ipif->ipif_subnet, ipif->ipif_zoneid); 21064 if (nipif == NULL) { 21065 /* Last resort - all ipif's have IPIF_NOLOCAL */ 21066 nipif = ipif; 21067 } else { 21068 need_rele = B_TRUE; 21069 } 21070 21071 ire = ire_create( 21072 (uchar_t *)&ipif->ipif_subnet, /* dest pref */ 21073 (uchar_t *)&ipif->ipif_net_mask, /* mask */ 21074 (uchar_t *)&nipif->ipif_src_addr, /* src addr */ 21075 NULL, /* no gateway */ 21076 &ipif->ipif_mtu, /* max frag */ 21077 NULL, /* no src nce */ 21078 NULL, /* no recv from queue */ 21079 stq, /* send-to queue */ 21080 ill->ill_net_type, /* IF_[NO]RESOLVER */ 21081 ipif, 21082 0, 21083 0, 21084 0, 21085 0, 21086 &ire_uinfo_null, 21087 NULL, 21088 NULL, 21089 ipst); 21090 21091 if (ire != NULL) { 21092 ire_t *ret_ire; 21093 int error; 21094 21095 /* 21096 * We don't need ipif_ire anymore. We need to delete 21097 * before we add so that ire_add does not detect 21098 * duplicates. 21099 */ 21100 ire_delete(ipif_ire); 21101 ret_ire = ire; 21102 error = ire_add(&ret_ire, NULL, NULL, NULL, B_FALSE); 21103 ASSERT(error == 0); 21104 ASSERT(ire == ret_ire); 21105 /* Held in ire_add */ 21106 ire_refrele(ret_ire); 21107 } 21108 /* 21109 * Either we are falling through from above or could not 21110 * allocate a replacement. 21111 */ 21112 ire_refrele(ipif_ire); 21113 if (need_rele) 21114 ipif_refrele(nipif); 21115 } 21116 21117 /* 21118 * This old_ipif is going away. 21119 * 21120 * Determine if any other ipif's is using our address as 21121 * ipif_lcl_addr (due to those being IPIF_NOLOCAL, IPIF_ANYCAST, or 21122 * IPIF_DEPRECATED). 21123 * Find the IRE_INTERFACE for such ipifs and recreate them 21124 * to use an different source address following the rules in 21125 * ipif_up_done. 21126 * 21127 * This function takes an illgrp as an argument so that illgrp_delete 21128 * can call this to update source address even after deleting the 21129 * old_ipif->ipif_ill from the ill group. 21130 */ 21131 static void 21132 ipif_update_other_ipifs(ipif_t *old_ipif, ill_group_t *illgrp) 21133 { 21134 ipif_t *ipif; 21135 ill_t *ill; 21136 char buf[INET6_ADDRSTRLEN]; 21137 21138 ASSERT(IAM_WRITER_IPIF(old_ipif)); 21139 ASSERT(illgrp == NULL || IAM_WRITER_IPIF(old_ipif)); 21140 21141 ill = old_ipif->ipif_ill; 21142 21143 ip1dbg(("ipif_update_other_ipifs(%s, %s)\n", 21144 ill->ill_name, 21145 inet_ntop(AF_INET, &old_ipif->ipif_lcl_addr, 21146 buf, sizeof (buf)))); 21147 /* 21148 * If this part of a group, look at all ills as ipif_select_source 21149 * borrows source address across all the ills in the group. 21150 */ 21151 if (illgrp != NULL) 21152 ill = illgrp->illgrp_ill; 21153 21154 for (; ill != NULL; ill = ill->ill_group_next) { 21155 for (ipif = ill->ill_ipif; ipif != NULL; 21156 ipif = ipif->ipif_next) { 21157 21158 if (ipif == old_ipif) 21159 continue; 21160 21161 ipif_recreate_interface_routes(old_ipif, ipif); 21162 } 21163 } 21164 } 21165 21166 /* ARGSUSED */ 21167 int 21168 if_unitsel_restart(ipif_t *ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 21169 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 21170 { 21171 /* 21172 * ill_phyint_reinit merged the v4 and v6 into a single 21173 * ipsq. Could also have become part of a ipmp group in the 21174 * process, and we might not have been able to complete the 21175 * operation in ipif_set_values, if we could not become 21176 * exclusive. If so restart it here. 21177 */ 21178 return (ipif_set_values_tail(ipif->ipif_ill, ipif, mp, q)); 21179 } 21180 21181 21182 /* 21183 * Can operate on either a module or a driver queue. 21184 * Returns an error if not a module queue. 21185 */ 21186 /* ARGSUSED */ 21187 int 21188 if_unitsel(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 21189 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 21190 { 21191 queue_t *q1 = q; 21192 char *cp; 21193 char interf_name[LIFNAMSIZ]; 21194 uint_t ppa = *(uint_t *)mp->b_cont->b_cont->b_rptr; 21195 21196 if (q->q_next == NULL) { 21197 ip1dbg(( 21198 "if_unitsel: IF_UNITSEL: no q_next\n")); 21199 return (EINVAL); 21200 } 21201 21202 if (((ill_t *)(q->q_ptr))->ill_name[0] != '\0') 21203 return (EALREADY); 21204 21205 do { 21206 q1 = q1->q_next; 21207 } while (q1->q_next); 21208 cp = q1->q_qinfo->qi_minfo->mi_idname; 21209 (void) sprintf(interf_name, "%s%d", cp, ppa); 21210 21211 /* 21212 * Here we are not going to delay the ioack until after 21213 * ACKs from DL_ATTACH_REQ/DL_BIND_REQ. So no need to save the 21214 * original ioctl message before sending the requests. 21215 */ 21216 return (ipif_set_values(q, mp, interf_name, &ppa)); 21217 } 21218 21219 /* ARGSUSED */ 21220 int 21221 ip_sioctl_sifname(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 21222 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 21223 { 21224 return (ENXIO); 21225 } 21226 21227 /* 21228 * Create any IRE_BROADCAST entries for `ipif', and store those entries in 21229 * `irep'. Returns a pointer to the next free `irep' entry (just like 21230 * ire_check_and_create_bcast()). 21231 */ 21232 static ire_t ** 21233 ipif_create_bcast_ires(ipif_t *ipif, ire_t **irep) 21234 { 21235 ipaddr_t addr; 21236 ipaddr_t netmask = ip_net_mask(ipif->ipif_lcl_addr); 21237 ipaddr_t subnetmask = ipif->ipif_net_mask; 21238 int flags = MATCH_IRE_TYPE | MATCH_IRE_ILL; 21239 21240 ip1dbg(("ipif_create_bcast_ires: creating broadcast IREs\n")); 21241 21242 ASSERT(ipif->ipif_flags & IPIF_BROADCAST); 21243 21244 if (ipif->ipif_lcl_addr == INADDR_ANY || 21245 (ipif->ipif_flags & IPIF_NOLOCAL)) 21246 netmask = htonl(IN_CLASSA_NET); /* fallback */ 21247 21248 irep = ire_check_and_create_bcast(ipif, 0, irep, flags); 21249 irep = ire_check_and_create_bcast(ipif, INADDR_BROADCAST, irep, flags); 21250 21251 /* 21252 * For backward compatibility, we create net broadcast IREs based on 21253 * the old "IP address class system", since some old machines only 21254 * respond to these class derived net broadcast. However, we must not 21255 * create these net broadcast IREs if the subnetmask is shorter than 21256 * the IP address class based derived netmask. Otherwise, we may 21257 * create a net broadcast address which is the same as an IP address 21258 * on the subnet -- and then TCP will refuse to talk to that address. 21259 */ 21260 if (netmask < subnetmask) { 21261 addr = netmask & ipif->ipif_subnet; 21262 irep = ire_check_and_create_bcast(ipif, addr, irep, flags); 21263 irep = ire_check_and_create_bcast(ipif, ~netmask | addr, irep, 21264 flags); 21265 } 21266 21267 /* 21268 * Don't create IRE_BROADCAST IREs for the interface if the subnetmask 21269 * is 0xFFFFFFFF, as an IRE_LOCAL for that interface is already 21270 * created. Creating these broadcast IREs will only create confusion 21271 * as `addr' will be the same as the IP address. 21272 */ 21273 if (subnetmask != 0xFFFFFFFF) { 21274 addr = ipif->ipif_subnet; 21275 irep = ire_check_and_create_bcast(ipif, addr, irep, flags); 21276 irep = ire_check_and_create_bcast(ipif, ~subnetmask | addr, 21277 irep, flags); 21278 } 21279 21280 return (irep); 21281 } 21282 21283 /* 21284 * Broadcast IRE info structure used in the functions below. Since we 21285 * allocate BCAST_COUNT of them on the stack, keep the bit layout compact. 21286 */ 21287 typedef struct bcast_ireinfo { 21288 uchar_t bi_type; /* BCAST_* value from below */ 21289 uchar_t bi_willdie:1, /* will this IRE be going away? */ 21290 bi_needrep:1, /* do we need to replace it? */ 21291 bi_haverep:1, /* have we replaced it? */ 21292 bi_pad:5; 21293 ipaddr_t bi_addr; /* IRE address */ 21294 ipif_t *bi_backup; /* last-ditch ipif to replace it on */ 21295 } bcast_ireinfo_t; 21296 21297 enum { BCAST_ALLONES, BCAST_ALLZEROES, BCAST_NET, BCAST_SUBNET, BCAST_COUNT }; 21298 21299 /* 21300 * Check if `ipif' needs the dying broadcast IRE described by `bireinfop', and 21301 * return B_TRUE if it should immediately be used to recreate the IRE. 21302 */ 21303 static boolean_t 21304 ipif_consider_bcast(ipif_t *ipif, bcast_ireinfo_t *bireinfop) 21305 { 21306 ipaddr_t addr; 21307 21308 ASSERT(!bireinfop->bi_haverep && bireinfop->bi_willdie); 21309 21310 switch (bireinfop->bi_type) { 21311 case BCAST_NET: 21312 addr = ipif->ipif_subnet & ip_net_mask(ipif->ipif_subnet); 21313 if (addr != bireinfop->bi_addr) 21314 return (B_FALSE); 21315 break; 21316 case BCAST_SUBNET: 21317 if (ipif->ipif_subnet != bireinfop->bi_addr) 21318 return (B_FALSE); 21319 break; 21320 } 21321 21322 bireinfop->bi_needrep = 1; 21323 if (ipif->ipif_flags & (IPIF_DEPRECATED|IPIF_NOLOCAL|IPIF_ANYCAST)) { 21324 if (bireinfop->bi_backup == NULL) 21325 bireinfop->bi_backup = ipif; 21326 return (B_FALSE); 21327 } 21328 return (B_TRUE); 21329 } 21330 21331 /* 21332 * Create the broadcast IREs described by `bireinfop' on `ipif', and return 21333 * them ala ire_check_and_create_bcast(). 21334 */ 21335 static ire_t ** 21336 ipif_create_bcast(ipif_t *ipif, bcast_ireinfo_t *bireinfop, ire_t **irep) 21337 { 21338 ipaddr_t mask, addr; 21339 21340 ASSERT(!bireinfop->bi_haverep && bireinfop->bi_needrep); 21341 21342 addr = bireinfop->bi_addr; 21343 irep = ire_create_bcast(ipif, addr, irep); 21344 21345 switch (bireinfop->bi_type) { 21346 case BCAST_NET: 21347 mask = ip_net_mask(ipif->ipif_subnet); 21348 irep = ire_create_bcast(ipif, addr | ~mask, irep); 21349 break; 21350 case BCAST_SUBNET: 21351 mask = ipif->ipif_net_mask; 21352 irep = ire_create_bcast(ipif, addr | ~mask, irep); 21353 break; 21354 } 21355 21356 bireinfop->bi_haverep = 1; 21357 return (irep); 21358 } 21359 21360 /* 21361 * Walk through all of the ipifs on `ill' that will be affected by `test_ipif' 21362 * going away, and determine if any of the broadcast IREs (named by `bireinfop') 21363 * that are going away are still needed. If so, have ipif_create_bcast() 21364 * recreate them (except for the deprecated case, as explained below). 21365 */ 21366 static ire_t ** 21367 ill_create_bcast(ill_t *ill, ipif_t *test_ipif, bcast_ireinfo_t *bireinfo, 21368 ire_t **irep) 21369 { 21370 int i; 21371 ipif_t *ipif; 21372 21373 ASSERT(!ill->ill_isv6); 21374 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 21375 /* 21376 * Skip this ipif if it's (a) the one being taken down, (b) 21377 * not in the same zone, or (c) has no valid local address. 21378 */ 21379 if (ipif == test_ipif || 21380 ipif->ipif_zoneid != test_ipif->ipif_zoneid || 21381 ipif->ipif_subnet == 0 || 21382 (ipif->ipif_flags & (IPIF_UP|IPIF_BROADCAST|IPIF_NOXMIT)) != 21383 (IPIF_UP|IPIF_BROADCAST)) 21384 continue; 21385 21386 /* 21387 * For each dying IRE that hasn't yet been replaced, see if 21388 * `ipif' needs it and whether the IRE should be recreated on 21389 * `ipif'. If `ipif' is deprecated, ipif_consider_bcast() 21390 * will return B_FALSE even if `ipif' needs the IRE on the 21391 * hopes that we'll later find a needy non-deprecated ipif. 21392 * However, the ipif is recorded in bi_backup for possible 21393 * subsequent use by ipif_check_bcast_ires(). 21394 */ 21395 for (i = 0; i < BCAST_COUNT; i++) { 21396 if (!bireinfo[i].bi_willdie || bireinfo[i].bi_haverep) 21397 continue; 21398 if (!ipif_consider_bcast(ipif, &bireinfo[i])) 21399 continue; 21400 irep = ipif_create_bcast(ipif, &bireinfo[i], irep); 21401 } 21402 21403 /* 21404 * If we've replaced all of the broadcast IREs that are going 21405 * to be taken down, we know we're done. 21406 */ 21407 for (i = 0; i < BCAST_COUNT; i++) { 21408 if (bireinfo[i].bi_willdie && !bireinfo[i].bi_haverep) 21409 break; 21410 } 21411 if (i == BCAST_COUNT) 21412 break; 21413 } 21414 return (irep); 21415 } 21416 21417 /* 21418 * Check if `test_ipif' (which is going away) is associated with any existing 21419 * broadcast IREs, and whether any other ipifs (e.g., on the same ill) were 21420 * using those broadcast IREs. If so, recreate the broadcast IREs on one or 21421 * more of those other ipifs. (The old IREs will be deleted in ipif_down().) 21422 * 21423 * This is necessary because broadcast IREs are shared. In particular, a 21424 * given ill has one set of all-zeroes and all-ones broadcast IREs (for every 21425 * zone), plus one set of all-subnet-ones, all-subnet-zeroes, all-net-ones, 21426 * and all-net-zeroes for every net/subnet (and every zone) it has IPIF_UP 21427 * ipifs on. Thus, if there are two IPIF_UP ipifs on the same subnet with the 21428 * same zone, they will share the same set of broadcast IREs. 21429 * 21430 * Note: the upper bound of 12 IREs comes from the worst case of replacing all 21431 * six pairs (loopback and non-loopback) of broadcast IREs (all-zeroes, 21432 * all-ones, subnet-zeroes, subnet-ones, net-zeroes, and net-ones). 21433 */ 21434 static void 21435 ipif_check_bcast_ires(ipif_t *test_ipif) 21436 { 21437 ill_t *ill = test_ipif->ipif_ill; 21438 ire_t *ire, *ire_array[12]; /* see note above */ 21439 ire_t **irep1, **irep = &ire_array[0]; 21440 uint_t i, willdie; 21441 ipaddr_t mask = ip_net_mask(test_ipif->ipif_subnet); 21442 bcast_ireinfo_t bireinfo[BCAST_COUNT]; 21443 21444 ASSERT(!test_ipif->ipif_isv6); 21445 ASSERT(IAM_WRITER_IPIF(test_ipif)); 21446 21447 /* 21448 * No broadcast IREs for the LOOPBACK interface 21449 * or others such as point to point and IPIF_NOXMIT. 21450 */ 21451 if (!(test_ipif->ipif_flags & IPIF_BROADCAST) || 21452 (test_ipif->ipif_flags & IPIF_NOXMIT)) 21453 return; 21454 21455 bzero(bireinfo, sizeof (bireinfo)); 21456 bireinfo[0].bi_type = BCAST_ALLZEROES; 21457 bireinfo[0].bi_addr = 0; 21458 21459 bireinfo[1].bi_type = BCAST_ALLONES; 21460 bireinfo[1].bi_addr = INADDR_BROADCAST; 21461 21462 bireinfo[2].bi_type = BCAST_NET; 21463 bireinfo[2].bi_addr = test_ipif->ipif_subnet & mask; 21464 21465 if (test_ipif->ipif_net_mask != 0) 21466 mask = test_ipif->ipif_net_mask; 21467 bireinfo[3].bi_type = BCAST_SUBNET; 21468 bireinfo[3].bi_addr = test_ipif->ipif_subnet & mask; 21469 21470 /* 21471 * Figure out what (if any) broadcast IREs will die as a result of 21472 * `test_ipif' going away. If none will die, we're done. 21473 */ 21474 for (i = 0, willdie = 0; i < BCAST_COUNT; i++) { 21475 ire = ire_ctable_lookup(bireinfo[i].bi_addr, 0, IRE_BROADCAST, 21476 test_ipif, ALL_ZONES, NULL, 21477 (MATCH_IRE_TYPE | MATCH_IRE_IPIF), ill->ill_ipst); 21478 if (ire != NULL) { 21479 willdie++; 21480 bireinfo[i].bi_willdie = 1; 21481 ire_refrele(ire); 21482 } 21483 } 21484 21485 if (willdie == 0) 21486 return; 21487 21488 /* 21489 * Walk through all the ipifs that will be affected by the dying IREs, 21490 * and recreate the IREs as necessary. 21491 */ 21492 irep = ill_create_bcast(ill, test_ipif, bireinfo, irep); 21493 21494 /* 21495 * Scan through the set of broadcast IREs and see if there are any 21496 * that we need to replace that have not yet been replaced. If so, 21497 * replace them using the appropriate backup ipif. 21498 */ 21499 for (i = 0; i < BCAST_COUNT; i++) { 21500 if (bireinfo[i].bi_needrep && !bireinfo[i].bi_haverep) 21501 irep = ipif_create_bcast(bireinfo[i].bi_backup, 21502 &bireinfo[i], irep); 21503 } 21504 21505 /* 21506 * If we can't create all of them, don't add any of them. (Code in 21507 * ip_wput_ire() and ire_to_ill() assumes that we always have a 21508 * non-loopback copy and loopback copy for a given address.) 21509 */ 21510 for (irep1 = irep; irep1 > ire_array; ) { 21511 irep1--; 21512 if (*irep1 == NULL) { 21513 ip0dbg(("ipif_check_bcast_ires: can't create " 21514 "IRE_BROADCAST, memory allocation failure\n")); 21515 while (irep > ire_array) { 21516 irep--; 21517 if (*irep != NULL) 21518 ire_delete(*irep); 21519 } 21520 return; 21521 } 21522 } 21523 21524 for (irep1 = irep; irep1 > ire_array; ) { 21525 irep1--; 21526 if (ire_add(irep1, NULL, NULL, NULL, B_FALSE) == 0) 21527 ire_refrele(*irep1); /* Held in ire_add */ 21528 } 21529 } 21530 21531 /* 21532 * Extract both the flags (including IFF_CANTCHANGE) such as IFF_IPV* 21533 * from lifr_flags and the name from lifr_name. 21534 * Set IFF_IPV* and ill_isv6 prior to doing the lookup 21535 * since ipif_lookup_on_name uses the _isv6 flags when matching. 21536 * Returns EINPROGRESS when mp has been consumed by queueing it on 21537 * ill_pending_mp and the ioctl will complete in ip_rput. 21538 * 21539 * Can operate on either a module or a driver queue. 21540 * Returns an error if not a module queue. 21541 */ 21542 /* ARGSUSED */ 21543 int 21544 ip_sioctl_slifname(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 21545 ip_ioctl_cmd_t *ipip, void *if_req) 21546 { 21547 ill_t *ill = q->q_ptr; 21548 phyint_t *phyi; 21549 ip_stack_t *ipst; 21550 struct lifreq *lifr = if_req; 21551 21552 ASSERT(ipif != NULL); 21553 ip1dbg(("ip_sioctl_slifname %s\n", lifr->lifr_name)); 21554 21555 if (q->q_next == NULL) { 21556 ip1dbg(("if_sioctl_slifname: SIOCSLIFNAME: no q_next\n")); 21557 return (EINVAL); 21558 } 21559 21560 /* 21561 * If we are not writer on 'q' then this interface exists already 21562 * and previous lookups (ip_extract_lifreq()) found this ipif -- 21563 * so return EALREADY. 21564 */ 21565 if (ill != ipif->ipif_ill) 21566 return (EALREADY); 21567 21568 if (ill->ill_name[0] != '\0') 21569 return (EALREADY); 21570 21571 /* 21572 * Set all the flags. Allows all kinds of override. Provide some 21573 * sanity checking by not allowing IFF_BROADCAST and IFF_MULTICAST 21574 * unless there is either multicast/broadcast support in the driver 21575 * or it is a pt-pt link. 21576 */ 21577 if (lifr->lifr_flags & (IFF_PROMISC|IFF_ALLMULTI)) { 21578 /* Meaningless to IP thus don't allow them to be set. */ 21579 ip1dbg(("ip_setname: EINVAL 1\n")); 21580 return (EINVAL); 21581 } 21582 21583 /* 21584 * If there's another ill already with the requested name, ensure 21585 * that it's of the same type. Otherwise, ill_phyint_reinit() will 21586 * fuse together two unrelated ills, which will cause chaos. 21587 */ 21588 ipst = ill->ill_ipst; 21589 phyi = avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_name, 21590 lifr->lifr_name, NULL); 21591 if (phyi != NULL) { 21592 ill_t *ill_mate = phyi->phyint_illv4; 21593 21594 if (ill_mate == NULL) 21595 ill_mate = phyi->phyint_illv6; 21596 ASSERT(ill_mate != NULL); 21597 21598 if (ill_mate->ill_media->ip_m_mac_type != 21599 ill->ill_media->ip_m_mac_type) { 21600 ip1dbg(("if_sioctl_slifname: SIOCSLIFNAME: attempt to " 21601 "use the same ill name on differing media\n")); 21602 return (EINVAL); 21603 } 21604 } 21605 21606 /* 21607 * For a DL_STYLE2 driver (ill_needs_attach), we would not have the 21608 * ill_bcast_addr_length info. 21609 */ 21610 if (!ill->ill_needs_attach && 21611 ((lifr->lifr_flags & IFF_MULTICAST) && 21612 !(lifr->lifr_flags & IFF_POINTOPOINT) && 21613 ill->ill_bcast_addr_length == 0)) { 21614 /* Link not broadcast/pt-pt capable i.e. no multicast */ 21615 ip1dbg(("ip_setname: EINVAL 2\n")); 21616 return (EINVAL); 21617 } 21618 if ((lifr->lifr_flags & IFF_BROADCAST) && 21619 ((lifr->lifr_flags & IFF_IPV6) || 21620 (!ill->ill_needs_attach && ill->ill_bcast_addr_length == 0))) { 21621 /* Link not broadcast capable or IPv6 i.e. no broadcast */ 21622 ip1dbg(("ip_setname: EINVAL 3\n")); 21623 return (EINVAL); 21624 } 21625 if (lifr->lifr_flags & IFF_UP) { 21626 /* Can only be set with SIOCSLIFFLAGS */ 21627 ip1dbg(("ip_setname: EINVAL 4\n")); 21628 return (EINVAL); 21629 } 21630 if ((lifr->lifr_flags & (IFF_IPV6|IFF_IPV4)) != IFF_IPV6 && 21631 (lifr->lifr_flags & (IFF_IPV6|IFF_IPV4)) != IFF_IPV4) { 21632 ip1dbg(("ip_setname: EINVAL 5\n")); 21633 return (EINVAL); 21634 } 21635 /* 21636 * Only allow the IFF_XRESOLV flag to be set on IPv6 interfaces. 21637 */ 21638 if ((lifr->lifr_flags & IFF_XRESOLV) && 21639 !(lifr->lifr_flags & IFF_IPV6) && 21640 !(ipif->ipif_isv6)) { 21641 ip1dbg(("ip_setname: EINVAL 6\n")); 21642 return (EINVAL); 21643 } 21644 21645 /* 21646 * The user has done SIOCGLIFFLAGS prior to this ioctl and hence 21647 * we have all the flags here. So, we assign rather than we OR. 21648 * We can't OR the flags here because we don't want to set 21649 * both IFF_IPV4 and IFF_IPV6. We start off as IFF_IPV4 in 21650 * ipif_allocate and become IFF_IPV4 or IFF_IPV6 here depending 21651 * on lifr_flags value here. 21652 */ 21653 /* 21654 * This ill has not been inserted into the global list. 21655 * So we are still single threaded and don't need any lock 21656 */ 21657 ipif->ipif_flags = lifr->lifr_flags & IFF_LOGINT_FLAGS & ~IFF_DUPLICATE; 21658 ill->ill_flags = lifr->lifr_flags & IFF_PHYINTINST_FLAGS; 21659 ill->ill_phyint->phyint_flags = lifr->lifr_flags & IFF_PHYINT_FLAGS; 21660 21661 /* We started off as V4. */ 21662 if (ill->ill_flags & ILLF_IPV6) { 21663 ill->ill_phyint->phyint_illv6 = ill; 21664 ill->ill_phyint->phyint_illv4 = NULL; 21665 } 21666 21667 return (ipif_set_values(q, mp, lifr->lifr_name, &lifr->lifr_ppa)); 21668 } 21669 21670 /* ARGSUSED */ 21671 int 21672 ip_sioctl_slifname_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 21673 ip_ioctl_cmd_t *ipip, void *if_req) 21674 { 21675 /* 21676 * ill_phyint_reinit merged the v4 and v6 into a single 21677 * ipsq. Could also have become part of a ipmp group in the 21678 * process, and we might not have been able to complete the 21679 * slifname in ipif_set_values, if we could not become 21680 * exclusive. If so restart it here 21681 */ 21682 return (ipif_set_values_tail(ipif->ipif_ill, ipif, mp, q)); 21683 } 21684 21685 /* 21686 * Return a pointer to the ipif which matches the index, IP version type and 21687 * zoneid. 21688 */ 21689 ipif_t * 21690 ipif_lookup_on_ifindex(uint_t index, boolean_t isv6, zoneid_t zoneid, 21691 queue_t *q, mblk_t *mp, ipsq_func_t func, int *err, ip_stack_t *ipst) 21692 { 21693 ill_t *ill; 21694 ipif_t *ipif = NULL; 21695 21696 ASSERT((q == NULL && mp == NULL && func == NULL && err == NULL) || 21697 (q != NULL && mp != NULL && func != NULL && err != NULL)); 21698 21699 if (err != NULL) 21700 *err = 0; 21701 21702 ill = ill_lookup_on_ifindex(index, isv6, q, mp, func, err, ipst); 21703 if (ill != NULL) { 21704 mutex_enter(&ill->ill_lock); 21705 for (ipif = ill->ill_ipif; ipif != NULL; 21706 ipif = ipif->ipif_next) { 21707 if (IPIF_CAN_LOOKUP(ipif) && (zoneid == ALL_ZONES || 21708 zoneid == ipif->ipif_zoneid || 21709 ipif->ipif_zoneid == ALL_ZONES)) { 21710 ipif_refhold_locked(ipif); 21711 break; 21712 } 21713 } 21714 mutex_exit(&ill->ill_lock); 21715 ill_refrele(ill); 21716 if (ipif == NULL && err != NULL) 21717 *err = ENXIO; 21718 } 21719 return (ipif); 21720 } 21721 21722 typedef struct conn_change_s { 21723 uint_t cc_old_ifindex; 21724 uint_t cc_new_ifindex; 21725 } conn_change_t; 21726 21727 /* 21728 * ipcl_walk function for changing interface index. 21729 */ 21730 static void 21731 conn_change_ifindex(conn_t *connp, caddr_t arg) 21732 { 21733 conn_change_t *connc; 21734 uint_t old_ifindex; 21735 uint_t new_ifindex; 21736 int i; 21737 ilg_t *ilg; 21738 21739 connc = (conn_change_t *)arg; 21740 old_ifindex = connc->cc_old_ifindex; 21741 new_ifindex = connc->cc_new_ifindex; 21742 21743 if (connp->conn_orig_bound_ifindex == old_ifindex) 21744 connp->conn_orig_bound_ifindex = new_ifindex; 21745 21746 if (connp->conn_orig_multicast_ifindex == old_ifindex) 21747 connp->conn_orig_multicast_ifindex = new_ifindex; 21748 21749 for (i = connp->conn_ilg_inuse - 1; i >= 0; i--) { 21750 ilg = &connp->conn_ilg[i]; 21751 if (ilg->ilg_orig_ifindex == old_ifindex) 21752 ilg->ilg_orig_ifindex = new_ifindex; 21753 } 21754 } 21755 21756 /* 21757 * Walk all the ipifs and ilms on this ill and change the orig_ifindex 21758 * to new_index if it matches the old_index. 21759 * 21760 * Failovers typically happen within a group of ills. But somebody 21761 * can remove an ill from the group after a failover happened. If 21762 * we are setting the ifindex after this, we potentially need to 21763 * look at all the ills rather than just the ones in the group. 21764 * We cut down the work by looking at matching ill_net_types 21765 * and ill_types as we could not possibly grouped them together. 21766 */ 21767 static void 21768 ip_change_ifindex(ill_t *ill_orig, conn_change_t *connc) 21769 { 21770 ill_t *ill; 21771 ipif_t *ipif; 21772 uint_t old_ifindex; 21773 uint_t new_ifindex; 21774 ilm_t *ilm; 21775 ill_walk_context_t ctx; 21776 ip_stack_t *ipst = ill_orig->ill_ipst; 21777 21778 old_ifindex = connc->cc_old_ifindex; 21779 new_ifindex = connc->cc_new_ifindex; 21780 21781 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 21782 ill = ILL_START_WALK_ALL(&ctx, ipst); 21783 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 21784 if ((ill_orig->ill_net_type != ill->ill_net_type) || 21785 (ill_orig->ill_type != ill->ill_type)) { 21786 continue; 21787 } 21788 for (ipif = ill->ill_ipif; ipif != NULL; 21789 ipif = ipif->ipif_next) { 21790 if (ipif->ipif_orig_ifindex == old_ifindex) 21791 ipif->ipif_orig_ifindex = new_ifindex; 21792 } 21793 for (ilm = ill->ill_ilm; ilm != NULL; ilm = ilm->ilm_next) { 21794 if (ilm->ilm_orig_ifindex == old_ifindex) 21795 ilm->ilm_orig_ifindex = new_ifindex; 21796 } 21797 } 21798 rw_exit(&ipst->ips_ill_g_lock); 21799 } 21800 21801 /* 21802 * We first need to ensure that the new index is unique, and 21803 * then carry the change across both v4 and v6 ill representation 21804 * of the physical interface. 21805 */ 21806 /* ARGSUSED */ 21807 int 21808 ip_sioctl_slifindex(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 21809 ip_ioctl_cmd_t *ipip, void *ifreq) 21810 { 21811 ill_t *ill; 21812 ill_t *ill_other; 21813 phyint_t *phyi; 21814 int old_index; 21815 conn_change_t connc; 21816 struct ifreq *ifr = (struct ifreq *)ifreq; 21817 struct lifreq *lifr = (struct lifreq *)ifreq; 21818 uint_t index; 21819 ill_t *ill_v4; 21820 ill_t *ill_v6; 21821 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 21822 21823 if (ipip->ipi_cmd_type == IF_CMD) 21824 index = ifr->ifr_index; 21825 else 21826 index = lifr->lifr_index; 21827 21828 /* 21829 * Only allow on physical interface. Also, index zero is illegal. 21830 * 21831 * Need to check for PHYI_FAILED and PHYI_INACTIVE 21832 * 21833 * 1) If PHYI_FAILED is set, a failover could have happened which 21834 * implies a possible failback might have to happen. As failback 21835 * depends on the old index, we should fail setting the index. 21836 * 21837 * 2) If PHYI_INACTIVE is set, in.mpathd does a failover so that 21838 * any addresses or multicast memberships are failed over to 21839 * a non-STANDBY interface. As failback depends on the old 21840 * index, we should fail setting the index for this case also. 21841 * 21842 * 3) If PHYI_OFFLINE is set, a possible failover has happened. 21843 * Be consistent with PHYI_FAILED and fail the ioctl. 21844 */ 21845 ill = ipif->ipif_ill; 21846 phyi = ill->ill_phyint; 21847 if ((phyi->phyint_flags & (PHYI_FAILED|PHYI_INACTIVE|PHYI_OFFLINE)) || 21848 ipif->ipif_id != 0 || index == 0) { 21849 return (EINVAL); 21850 } 21851 old_index = phyi->phyint_ifindex; 21852 21853 /* If the index is not changing, no work to do */ 21854 if (old_index == index) 21855 return (0); 21856 21857 /* 21858 * Use ill_lookup_on_ifindex to determine if the 21859 * new index is unused and if so allow the change. 21860 */ 21861 ill_v6 = ill_lookup_on_ifindex(index, B_TRUE, NULL, NULL, NULL, NULL, 21862 ipst); 21863 ill_v4 = ill_lookup_on_ifindex(index, B_FALSE, NULL, NULL, NULL, NULL, 21864 ipst); 21865 if (ill_v6 != NULL || ill_v4 != NULL) { 21866 if (ill_v4 != NULL) 21867 ill_refrele(ill_v4); 21868 if (ill_v6 != NULL) 21869 ill_refrele(ill_v6); 21870 return (EBUSY); 21871 } 21872 21873 /* 21874 * The new index is unused. Set it in the phyint. 21875 * Locate the other ill so that we can send a routing 21876 * sockets message. 21877 */ 21878 if (ill->ill_isv6) { 21879 ill_other = phyi->phyint_illv4; 21880 } else { 21881 ill_other = phyi->phyint_illv6; 21882 } 21883 21884 phyi->phyint_ifindex = index; 21885 21886 /* Update SCTP's ILL list */ 21887 sctp_ill_reindex(ill, old_index); 21888 21889 connc.cc_old_ifindex = old_index; 21890 connc.cc_new_ifindex = index; 21891 ip_change_ifindex(ill, &connc); 21892 ipcl_walk(conn_change_ifindex, (caddr_t)&connc, ipst); 21893 21894 /* Send the routing sockets message */ 21895 ip_rts_ifmsg(ipif); 21896 if (ill_other != NULL) 21897 ip_rts_ifmsg(ill_other->ill_ipif); 21898 21899 return (0); 21900 } 21901 21902 /* ARGSUSED */ 21903 int 21904 ip_sioctl_get_lifindex(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 21905 ip_ioctl_cmd_t *ipip, void *ifreq) 21906 { 21907 struct ifreq *ifr = (struct ifreq *)ifreq; 21908 struct lifreq *lifr = (struct lifreq *)ifreq; 21909 21910 ip1dbg(("ip_sioctl_get_lifindex(%s:%u %p)\n", 21911 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 21912 /* Get the interface index */ 21913 if (ipip->ipi_cmd_type == IF_CMD) { 21914 ifr->ifr_index = ipif->ipif_ill->ill_phyint->phyint_ifindex; 21915 } else { 21916 lifr->lifr_index = ipif->ipif_ill->ill_phyint->phyint_ifindex; 21917 } 21918 return (0); 21919 } 21920 21921 /* ARGSUSED */ 21922 int 21923 ip_sioctl_get_lifzone(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 21924 ip_ioctl_cmd_t *ipip, void *ifreq) 21925 { 21926 struct lifreq *lifr = (struct lifreq *)ifreq; 21927 21928 ip1dbg(("ip_sioctl_get_lifzone(%s:%u %p)\n", 21929 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 21930 /* Get the interface zone */ 21931 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 21932 lifr->lifr_zoneid = ipif->ipif_zoneid; 21933 return (0); 21934 } 21935 21936 /* 21937 * Set the zoneid of an interface. 21938 */ 21939 /* ARGSUSED */ 21940 int 21941 ip_sioctl_slifzone(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 21942 ip_ioctl_cmd_t *ipip, void *ifreq) 21943 { 21944 struct lifreq *lifr = (struct lifreq *)ifreq; 21945 int err = 0; 21946 boolean_t need_up = B_FALSE; 21947 zone_t *zptr; 21948 zone_status_t status; 21949 zoneid_t zoneid; 21950 21951 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 21952 if ((zoneid = lifr->lifr_zoneid) == ALL_ZONES) { 21953 if (!is_system_labeled()) 21954 return (ENOTSUP); 21955 zoneid = GLOBAL_ZONEID; 21956 } 21957 21958 /* cannot assign instance zero to a non-global zone */ 21959 if (ipif->ipif_id == 0 && zoneid != GLOBAL_ZONEID) 21960 return (ENOTSUP); 21961 21962 /* 21963 * Cannot assign to a zone that doesn't exist or is shutting down. In 21964 * the event of a race with the zone shutdown processing, since IP 21965 * serializes this ioctl and SIOCGLIFCONF/SIOCLIFREMOVEIF, we know the 21966 * interface will be cleaned up even if the zone is shut down 21967 * immediately after the status check. If the interface can't be brought 21968 * down right away, and the zone is shut down before the restart 21969 * function is called, we resolve the possible races by rechecking the 21970 * zone status in the restart function. 21971 */ 21972 if ((zptr = zone_find_by_id(zoneid)) == NULL) 21973 return (EINVAL); 21974 status = zone_status_get(zptr); 21975 zone_rele(zptr); 21976 21977 if (status != ZONE_IS_READY && status != ZONE_IS_RUNNING) 21978 return (EINVAL); 21979 21980 if (ipif->ipif_flags & IPIF_UP) { 21981 /* 21982 * If the interface is already marked up, 21983 * we call ipif_down which will take care 21984 * of ditching any IREs that have been set 21985 * up based on the old interface address. 21986 */ 21987 err = ipif_logical_down(ipif, q, mp); 21988 if (err == EINPROGRESS) 21989 return (err); 21990 ipif_down_tail(ipif); 21991 need_up = B_TRUE; 21992 } 21993 21994 err = ip_sioctl_slifzone_tail(ipif, lifr->lifr_zoneid, q, mp, need_up); 21995 return (err); 21996 } 21997 21998 static int 21999 ip_sioctl_slifzone_tail(ipif_t *ipif, zoneid_t zoneid, 22000 queue_t *q, mblk_t *mp, boolean_t need_up) 22001 { 22002 int err = 0; 22003 ip_stack_t *ipst; 22004 22005 ip1dbg(("ip_sioctl_zoneid_tail(%s:%u %p)\n", 22006 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 22007 22008 if (CONN_Q(q)) 22009 ipst = CONNQ_TO_IPST(q); 22010 else 22011 ipst = ILLQ_TO_IPST(q); 22012 22013 /* 22014 * For exclusive stacks we don't allow a different zoneid than 22015 * global. 22016 */ 22017 if (ipst->ips_netstack->netstack_stackid != GLOBAL_NETSTACKID && 22018 zoneid != GLOBAL_ZONEID) 22019 return (EINVAL); 22020 22021 /* Set the new zone id. */ 22022 ipif->ipif_zoneid = zoneid; 22023 22024 /* Update sctp list */ 22025 sctp_update_ipif(ipif, SCTP_IPIF_UPDATE); 22026 22027 if (need_up) { 22028 /* 22029 * Now bring the interface back up. If this 22030 * is the only IPIF for the ILL, ipif_up 22031 * will have to re-bind to the device, so 22032 * we may get back EINPROGRESS, in which 22033 * case, this IOCTL will get completed in 22034 * ip_rput_dlpi when we see the DL_BIND_ACK. 22035 */ 22036 err = ipif_up(ipif, q, mp); 22037 } 22038 return (err); 22039 } 22040 22041 /* ARGSUSED */ 22042 int 22043 ip_sioctl_slifzone_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 22044 ip_ioctl_cmd_t *ipip, void *if_req) 22045 { 22046 struct lifreq *lifr = (struct lifreq *)if_req; 22047 zoneid_t zoneid; 22048 zone_t *zptr; 22049 zone_status_t status; 22050 22051 ASSERT(ipif->ipif_id != 0); 22052 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 22053 if ((zoneid = lifr->lifr_zoneid) == ALL_ZONES) 22054 zoneid = GLOBAL_ZONEID; 22055 22056 ip1dbg(("ip_sioctl_slifzone_restart(%s:%u %p)\n", 22057 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 22058 22059 /* 22060 * We recheck the zone status to resolve the following race condition: 22061 * 1) process sends SIOCSLIFZONE to put hme0:1 in zone "myzone"; 22062 * 2) hme0:1 is up and can't be brought down right away; 22063 * ip_sioctl_slifzone() returns EINPROGRESS and the request is queued; 22064 * 3) zone "myzone" is halted; the zone status switches to 22065 * 'shutting_down' and the zones framework sends SIOCGLIFCONF to list 22066 * the interfaces to remove - hme0:1 is not returned because it's not 22067 * yet in "myzone", so it won't be removed; 22068 * 4) the restart function for SIOCSLIFZONE is called; without the 22069 * status check here, we would have hme0:1 in "myzone" after it's been 22070 * destroyed. 22071 * Note that if the status check fails, we need to bring the interface 22072 * back to its state prior to ip_sioctl_slifzone(), hence the call to 22073 * ipif_up_done[_v6](). 22074 */ 22075 status = ZONE_IS_UNINITIALIZED; 22076 if ((zptr = zone_find_by_id(zoneid)) != NULL) { 22077 status = zone_status_get(zptr); 22078 zone_rele(zptr); 22079 } 22080 if (status != ZONE_IS_READY && status != ZONE_IS_RUNNING) { 22081 if (ipif->ipif_isv6) { 22082 (void) ipif_up_done_v6(ipif); 22083 } else { 22084 (void) ipif_up_done(ipif); 22085 } 22086 return (EINVAL); 22087 } 22088 22089 ipif_down_tail(ipif); 22090 22091 return (ip_sioctl_slifzone_tail(ipif, lifr->lifr_zoneid, q, mp, 22092 B_TRUE)); 22093 } 22094 22095 /* ARGSUSED */ 22096 int 22097 ip_sioctl_get_lifusesrc(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 22098 ip_ioctl_cmd_t *ipip, void *ifreq) 22099 { 22100 struct lifreq *lifr = ifreq; 22101 22102 ASSERT(q->q_next == NULL); 22103 ASSERT(CONN_Q(q)); 22104 22105 ip1dbg(("ip_sioctl_get_lifusesrc(%s:%u %p)\n", 22106 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 22107 lifr->lifr_index = ipif->ipif_ill->ill_usesrc_ifindex; 22108 ip1dbg(("ip_sioctl_get_lifusesrc:lifr_index = %d\n", lifr->lifr_index)); 22109 22110 return (0); 22111 } 22112 22113 22114 /* Find the previous ILL in this usesrc group */ 22115 static ill_t * 22116 ill_prev_usesrc(ill_t *uill) 22117 { 22118 ill_t *ill; 22119 22120 for (ill = uill->ill_usesrc_grp_next; 22121 ASSERT(ill), ill->ill_usesrc_grp_next != uill; 22122 ill = ill->ill_usesrc_grp_next) 22123 /* do nothing */; 22124 return (ill); 22125 } 22126 22127 /* 22128 * Release all members of the usesrc group. This routine is called 22129 * from ill_delete when the interface being unplumbed is the 22130 * group head. 22131 */ 22132 static void 22133 ill_disband_usesrc_group(ill_t *uill) 22134 { 22135 ill_t *next_ill, *tmp_ill; 22136 ip_stack_t *ipst = uill->ill_ipst; 22137 22138 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_usesrc_lock)); 22139 next_ill = uill->ill_usesrc_grp_next; 22140 22141 do { 22142 ASSERT(next_ill != NULL); 22143 tmp_ill = next_ill->ill_usesrc_grp_next; 22144 ASSERT(tmp_ill != NULL); 22145 next_ill->ill_usesrc_grp_next = NULL; 22146 next_ill->ill_usesrc_ifindex = 0; 22147 next_ill = tmp_ill; 22148 } while (next_ill->ill_usesrc_ifindex != 0); 22149 uill->ill_usesrc_grp_next = NULL; 22150 } 22151 22152 /* 22153 * Remove the client usesrc ILL from the list and relink to a new list 22154 */ 22155 int 22156 ill_relink_usesrc_ills(ill_t *ucill, ill_t *uill, uint_t ifindex) 22157 { 22158 ill_t *ill, *tmp_ill; 22159 ip_stack_t *ipst = ucill->ill_ipst; 22160 22161 ASSERT((ucill != NULL) && (ucill->ill_usesrc_grp_next != NULL) && 22162 (uill != NULL) && RW_WRITE_HELD(&ipst->ips_ill_g_usesrc_lock)); 22163 22164 /* 22165 * Check if the usesrc client ILL passed in is not already 22166 * in use as a usesrc ILL i.e one whose source address is 22167 * in use OR a usesrc ILL is not already in use as a usesrc 22168 * client ILL 22169 */ 22170 if ((ucill->ill_usesrc_ifindex == 0) || 22171 (uill->ill_usesrc_ifindex != 0)) { 22172 return (-1); 22173 } 22174 22175 ill = ill_prev_usesrc(ucill); 22176 ASSERT(ill->ill_usesrc_grp_next != NULL); 22177 22178 /* Remove from the current list */ 22179 if (ill->ill_usesrc_grp_next->ill_usesrc_grp_next == ill) { 22180 /* Only two elements in the list */ 22181 ASSERT(ill->ill_usesrc_ifindex == 0); 22182 ill->ill_usesrc_grp_next = NULL; 22183 } else { 22184 ill->ill_usesrc_grp_next = ucill->ill_usesrc_grp_next; 22185 } 22186 22187 if (ifindex == 0) { 22188 ucill->ill_usesrc_ifindex = 0; 22189 ucill->ill_usesrc_grp_next = NULL; 22190 return (0); 22191 } 22192 22193 ucill->ill_usesrc_ifindex = ifindex; 22194 tmp_ill = uill->ill_usesrc_grp_next; 22195 uill->ill_usesrc_grp_next = ucill; 22196 ucill->ill_usesrc_grp_next = 22197 (tmp_ill != NULL) ? tmp_ill : uill; 22198 return (0); 22199 } 22200 22201 /* 22202 * Set the ill_usesrc and ill_usesrc_head fields. See synchronization notes in 22203 * ip.c for locking details. 22204 */ 22205 /* ARGSUSED */ 22206 int 22207 ip_sioctl_slifusesrc(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 22208 ip_ioctl_cmd_t *ipip, void *ifreq) 22209 { 22210 struct lifreq *lifr = (struct lifreq *)ifreq; 22211 boolean_t isv6 = B_FALSE, reset_flg = B_FALSE, 22212 ill_flag_changed = B_FALSE; 22213 ill_t *usesrc_ill, *usesrc_cli_ill = ipif->ipif_ill; 22214 int err = 0, ret; 22215 uint_t ifindex; 22216 phyint_t *us_phyint, *us_cli_phyint; 22217 ipsq_t *ipsq = NULL; 22218 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 22219 22220 ASSERT(IAM_WRITER_IPIF(ipif)); 22221 ASSERT(q->q_next == NULL); 22222 ASSERT(CONN_Q(q)); 22223 22224 isv6 = (Q_TO_CONN(q))->conn_af_isv6; 22225 us_cli_phyint = usesrc_cli_ill->ill_phyint; 22226 22227 ASSERT(us_cli_phyint != NULL); 22228 22229 /* 22230 * If the client ILL is being used for IPMP, abort. 22231 * Note, this can be done before ipsq_try_enter since we are already 22232 * exclusive on this ILL 22233 */ 22234 if ((us_cli_phyint->phyint_groupname != NULL) || 22235 (us_cli_phyint->phyint_flags & PHYI_STANDBY)) { 22236 return (EINVAL); 22237 } 22238 22239 ifindex = lifr->lifr_index; 22240 if (ifindex == 0) { 22241 if (usesrc_cli_ill->ill_usesrc_grp_next == NULL) { 22242 /* non usesrc group interface, nothing to reset */ 22243 return (0); 22244 } 22245 ifindex = usesrc_cli_ill->ill_usesrc_ifindex; 22246 /* valid reset request */ 22247 reset_flg = B_TRUE; 22248 } 22249 22250 usesrc_ill = ill_lookup_on_ifindex(ifindex, isv6, q, mp, 22251 ip_process_ioctl, &err, ipst); 22252 22253 if (usesrc_ill == NULL) { 22254 return (err); 22255 } 22256 22257 /* 22258 * The usesrc_cli_ill or the usesrc_ill cannot be part of an IPMP 22259 * group nor can either of the interfaces be used for standy. So 22260 * to guarantee mutual exclusion with ip_sioctl_flags (which sets 22261 * PHYI_STANDBY) and ip_sioctl_groupname (which sets the groupname) 22262 * we need to be exclusive on the ipsq belonging to the usesrc_ill. 22263 * We are already exlusive on this ipsq i.e ipsq corresponding to 22264 * the usesrc_cli_ill 22265 */ 22266 ipsq = ipsq_try_enter(NULL, usesrc_ill, q, mp, ip_process_ioctl, 22267 NEW_OP, B_TRUE); 22268 if (ipsq == NULL) { 22269 err = EINPROGRESS; 22270 /* Operation enqueued on the ipsq of the usesrc ILL */ 22271 goto done; 22272 } 22273 22274 /* Check if the usesrc_ill is used for IPMP */ 22275 us_phyint = usesrc_ill->ill_phyint; 22276 if ((us_phyint->phyint_groupname != NULL) || 22277 (us_phyint->phyint_flags & PHYI_STANDBY)) { 22278 err = EINVAL; 22279 goto done; 22280 } 22281 22282 /* 22283 * If the client is already in use as a usesrc_ill or a usesrc_ill is 22284 * already a client then return EINVAL 22285 */ 22286 if (IS_USESRC_ILL(usesrc_cli_ill) || IS_USESRC_CLI_ILL(usesrc_ill)) { 22287 err = EINVAL; 22288 goto done; 22289 } 22290 22291 /* 22292 * If the ill_usesrc_ifindex field is already set to what it needs to 22293 * be then this is a duplicate operation. 22294 */ 22295 if (!reset_flg && usesrc_cli_ill->ill_usesrc_ifindex == ifindex) { 22296 err = 0; 22297 goto done; 22298 } 22299 22300 ip1dbg(("ip_sioctl_slifusesrc: usesrc_cli_ill %s, usesrc_ill %s," 22301 " v6 = %d", usesrc_cli_ill->ill_name, usesrc_ill->ill_name, 22302 usesrc_ill->ill_isv6)); 22303 22304 /* 22305 * The next step ensures that no new ires will be created referencing 22306 * the client ill, until the ILL_CHANGING flag is cleared. Then 22307 * we go through an ire walk deleting all ire caches that reference 22308 * the client ill. New ires referencing the client ill that are added 22309 * to the ire table before the ILL_CHANGING flag is set, will be 22310 * cleaned up by the ire walk below. Attempt to add new ires referencing 22311 * the client ill while the ILL_CHANGING flag is set will be failed 22312 * during the ire_add in ire_atomic_start. ire_atomic_start atomically 22313 * checks (under the ill_g_usesrc_lock) that the ire being added 22314 * is not stale, i.e the ire_stq and ire_ipif are consistent and 22315 * belong to the same usesrc group. 22316 */ 22317 mutex_enter(&usesrc_cli_ill->ill_lock); 22318 usesrc_cli_ill->ill_state_flags |= ILL_CHANGING; 22319 mutex_exit(&usesrc_cli_ill->ill_lock); 22320 ill_flag_changed = B_TRUE; 22321 22322 if (ipif->ipif_isv6) 22323 ire_walk_v6(ipif_delete_cache_ire, (char *)usesrc_cli_ill, 22324 ALL_ZONES, ipst); 22325 else 22326 ire_walk_v4(ipif_delete_cache_ire, (char *)usesrc_cli_ill, 22327 ALL_ZONES, ipst); 22328 22329 /* 22330 * ill_g_usesrc_lock global lock protects the ill_usesrc_grp_next 22331 * and the ill_usesrc_ifindex fields 22332 */ 22333 rw_enter(&ipst->ips_ill_g_usesrc_lock, RW_WRITER); 22334 22335 if (reset_flg) { 22336 ret = ill_relink_usesrc_ills(usesrc_cli_ill, usesrc_ill, 0); 22337 if (ret != 0) { 22338 err = EINVAL; 22339 } 22340 rw_exit(&ipst->ips_ill_g_usesrc_lock); 22341 goto done; 22342 } 22343 22344 /* 22345 * Four possibilities to consider: 22346 * 1. Both usesrc_ill and usesrc_cli_ill are not part of any usesrc grp 22347 * 2. usesrc_ill is part of a group but usesrc_cli_ill isn't 22348 * 3. usesrc_cli_ill is part of a group but usesrc_ill isn't 22349 * 4. Both are part of their respective usesrc groups 22350 */ 22351 if ((usesrc_ill->ill_usesrc_grp_next == NULL) && 22352 (usesrc_cli_ill->ill_usesrc_grp_next == NULL)) { 22353 ASSERT(usesrc_ill->ill_usesrc_ifindex == 0); 22354 usesrc_cli_ill->ill_usesrc_ifindex = ifindex; 22355 usesrc_ill->ill_usesrc_grp_next = usesrc_cli_ill; 22356 usesrc_cli_ill->ill_usesrc_grp_next = usesrc_ill; 22357 } else if ((usesrc_ill->ill_usesrc_grp_next != NULL) && 22358 (usesrc_cli_ill->ill_usesrc_grp_next == NULL)) { 22359 usesrc_cli_ill->ill_usesrc_ifindex = ifindex; 22360 /* Insert at head of list */ 22361 usesrc_cli_ill->ill_usesrc_grp_next = 22362 usesrc_ill->ill_usesrc_grp_next; 22363 usesrc_ill->ill_usesrc_grp_next = usesrc_cli_ill; 22364 } else { 22365 ret = ill_relink_usesrc_ills(usesrc_cli_ill, usesrc_ill, 22366 ifindex); 22367 if (ret != 0) 22368 err = EINVAL; 22369 } 22370 rw_exit(&ipst->ips_ill_g_usesrc_lock); 22371 22372 done: 22373 if (ill_flag_changed) { 22374 mutex_enter(&usesrc_cli_ill->ill_lock); 22375 usesrc_cli_ill->ill_state_flags &= ~ILL_CHANGING; 22376 mutex_exit(&usesrc_cli_ill->ill_lock); 22377 } 22378 if (ipsq != NULL) 22379 ipsq_exit(ipsq, B_TRUE, B_TRUE); 22380 /* The refrele on the lifr_name ipif is done by ip_process_ioctl */ 22381 ill_refrele(usesrc_ill); 22382 return (err); 22383 } 22384 22385 /* 22386 * comparison function used by avl. 22387 */ 22388 static int 22389 ill_phyint_compare_index(const void *index_ptr, const void *phyip) 22390 { 22391 22392 uint_t index; 22393 22394 ASSERT(phyip != NULL && index_ptr != NULL); 22395 22396 index = *((uint_t *)index_ptr); 22397 /* 22398 * let the phyint with the lowest index be on top. 22399 */ 22400 if (((phyint_t *)phyip)->phyint_ifindex < index) 22401 return (1); 22402 if (((phyint_t *)phyip)->phyint_ifindex > index) 22403 return (-1); 22404 return (0); 22405 } 22406 22407 /* 22408 * comparison function used by avl. 22409 */ 22410 static int 22411 ill_phyint_compare_name(const void *name_ptr, const void *phyip) 22412 { 22413 ill_t *ill; 22414 int res = 0; 22415 22416 ASSERT(phyip != NULL && name_ptr != NULL); 22417 22418 if (((phyint_t *)phyip)->phyint_illv4) 22419 ill = ((phyint_t *)phyip)->phyint_illv4; 22420 else 22421 ill = ((phyint_t *)phyip)->phyint_illv6; 22422 ASSERT(ill != NULL); 22423 22424 res = strcmp(ill->ill_name, (char *)name_ptr); 22425 if (res > 0) 22426 return (1); 22427 else if (res < 0) 22428 return (-1); 22429 return (0); 22430 } 22431 /* 22432 * This function is called from ill_delete when the ill is being 22433 * unplumbed. We remove the reference from the phyint and we also 22434 * free the phyint when there are no more references to it. 22435 */ 22436 static void 22437 ill_phyint_free(ill_t *ill) 22438 { 22439 phyint_t *phyi; 22440 phyint_t *next_phyint; 22441 ipsq_t *cur_ipsq; 22442 ip_stack_t *ipst = ill->ill_ipst; 22443 22444 ASSERT(ill->ill_phyint != NULL); 22445 22446 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); 22447 phyi = ill->ill_phyint; 22448 ill->ill_phyint = NULL; 22449 /* 22450 * ill_init allocates a phyint always to store the copy 22451 * of flags relevant to phyint. At that point in time, we could 22452 * not assign the name and hence phyint_illv4/v6 could not be 22453 * initialized. Later in ipif_set_values, we assign the name to 22454 * the ill, at which point in time we assign phyint_illv4/v6. 22455 * Thus we don't rely on phyint_illv6 to be initialized always. 22456 */ 22457 if (ill->ill_flags & ILLF_IPV6) { 22458 phyi->phyint_illv6 = NULL; 22459 } else { 22460 phyi->phyint_illv4 = NULL; 22461 } 22462 /* 22463 * ipif_down removes it from the group when the last ipif goes 22464 * down. 22465 */ 22466 ASSERT(ill->ill_group == NULL); 22467 22468 if (phyi->phyint_illv4 != NULL || phyi->phyint_illv6 != NULL) 22469 return; 22470 22471 /* 22472 * Make sure this phyint was put in the list. 22473 */ 22474 if (phyi->phyint_ifindex > 0) { 22475 avl_remove(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 22476 phyi); 22477 avl_remove(&ipst->ips_phyint_g_list->phyint_list_avl_by_name, 22478 phyi); 22479 } 22480 /* 22481 * remove phyint from the ipsq list. 22482 */ 22483 cur_ipsq = phyi->phyint_ipsq; 22484 if (phyi == cur_ipsq->ipsq_phyint_list) { 22485 cur_ipsq->ipsq_phyint_list = phyi->phyint_ipsq_next; 22486 } else { 22487 next_phyint = cur_ipsq->ipsq_phyint_list; 22488 while (next_phyint != NULL) { 22489 if (next_phyint->phyint_ipsq_next == phyi) { 22490 next_phyint->phyint_ipsq_next = 22491 phyi->phyint_ipsq_next; 22492 break; 22493 } 22494 next_phyint = next_phyint->phyint_ipsq_next; 22495 } 22496 ASSERT(next_phyint != NULL); 22497 } 22498 IPSQ_DEC_REF(cur_ipsq, ipst); 22499 22500 if (phyi->phyint_groupname_len != 0) { 22501 ASSERT(phyi->phyint_groupname != NULL); 22502 mi_free(phyi->phyint_groupname); 22503 } 22504 mi_free(phyi); 22505 } 22506 22507 /* 22508 * Attach the ill to the phyint structure which can be shared by both 22509 * IPv4 and IPv6 ill. ill_init allocates a phyint to just hold flags. This 22510 * function is called from ipif_set_values and ill_lookup_on_name (for 22511 * loopback) where we know the name of the ill. We lookup the ill and if 22512 * there is one present already with the name use that phyint. Otherwise 22513 * reuse the one allocated by ill_init. 22514 */ 22515 static void 22516 ill_phyint_reinit(ill_t *ill) 22517 { 22518 boolean_t isv6 = ill->ill_isv6; 22519 phyint_t *phyi_old; 22520 phyint_t *phyi; 22521 avl_index_t where = 0; 22522 ill_t *ill_other = NULL; 22523 ipsq_t *ipsq; 22524 ip_stack_t *ipst = ill->ill_ipst; 22525 22526 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); 22527 22528 phyi_old = ill->ill_phyint; 22529 ASSERT(isv6 || (phyi_old->phyint_illv4 == ill && 22530 phyi_old->phyint_illv6 == NULL)); 22531 ASSERT(!isv6 || (phyi_old->phyint_illv6 == ill && 22532 phyi_old->phyint_illv4 == NULL)); 22533 ASSERT(phyi_old->phyint_ifindex == 0); 22534 22535 phyi = avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_name, 22536 ill->ill_name, &where); 22537 22538 /* 22539 * 1. We grabbed the ill_g_lock before inserting this ill into 22540 * the global list of ills. So no other thread could have located 22541 * this ill and hence the ipsq of this ill is guaranteed to be empty. 22542 * 2. Now locate the other protocol instance of this ill. 22543 * 3. Now grab both ill locks in the right order, and the phyint lock of 22544 * the new ipsq. Holding ill locks + ill_g_lock ensures that the ipsq 22545 * of neither ill can change. 22546 * 4. Merge the phyint and thus the ipsq as well of this ill onto the 22547 * other ill. 22548 * 5. Release all locks. 22549 */ 22550 22551 /* 22552 * Look for IPv4 if we are initializing IPv6 or look for IPv6 if 22553 * we are initializing IPv4. 22554 */ 22555 if (phyi != NULL) { 22556 ill_other = (isv6) ? phyi->phyint_illv4 : 22557 phyi->phyint_illv6; 22558 ASSERT(ill_other->ill_phyint != NULL); 22559 ASSERT((isv6 && !ill_other->ill_isv6) || 22560 (!isv6 && ill_other->ill_isv6)); 22561 GRAB_ILL_LOCKS(ill, ill_other); 22562 /* 22563 * We are potentially throwing away phyint_flags which 22564 * could be different from the one that we obtain from 22565 * ill_other->ill_phyint. But it is okay as we are assuming 22566 * that the state maintained within IP is correct. 22567 */ 22568 mutex_enter(&phyi->phyint_lock); 22569 if (isv6) { 22570 ASSERT(phyi->phyint_illv6 == NULL); 22571 phyi->phyint_illv6 = ill; 22572 } else { 22573 ASSERT(phyi->phyint_illv4 == NULL); 22574 phyi->phyint_illv4 = ill; 22575 } 22576 /* 22577 * This is a new ill, currently undergoing SLIFNAME 22578 * So we could not have joined an IPMP group until now. 22579 */ 22580 ASSERT(phyi_old->phyint_ipsq_next == NULL && 22581 phyi_old->phyint_groupname == NULL); 22582 22583 /* 22584 * This phyi_old is going away. Decref ipsq_refs and 22585 * assert it is zero. The ipsq itself will be freed in 22586 * ipsq_exit 22587 */ 22588 ipsq = phyi_old->phyint_ipsq; 22589 IPSQ_DEC_REF(ipsq, ipst); 22590 ASSERT(ipsq->ipsq_refs == 0); 22591 /* Get the singleton phyint out of the ipsq list */ 22592 ASSERT(phyi_old->phyint_ipsq_next == NULL); 22593 ipsq->ipsq_phyint_list = NULL; 22594 phyi_old->phyint_illv4 = NULL; 22595 phyi_old->phyint_illv6 = NULL; 22596 mi_free(phyi_old); 22597 } else { 22598 mutex_enter(&ill->ill_lock); 22599 /* 22600 * We don't need to acquire any lock, since 22601 * the ill is not yet visible globally and we 22602 * have not yet released the ill_g_lock. 22603 */ 22604 phyi = phyi_old; 22605 mutex_enter(&phyi->phyint_lock); 22606 /* XXX We need a recovery strategy here. */ 22607 if (!phyint_assign_ifindex(phyi, ipst)) 22608 cmn_err(CE_PANIC, "phyint_assign_ifindex() failed"); 22609 22610 /* No IPMP group yet, thus the hook uses the ifindex */ 22611 phyi->phyint_hook_ifindex = phyi->phyint_ifindex; 22612 22613 avl_insert(&ipst->ips_phyint_g_list->phyint_list_avl_by_name, 22614 (void *)phyi, where); 22615 22616 (void) avl_find(&ipst->ips_phyint_g_list-> 22617 phyint_list_avl_by_index, 22618 &phyi->phyint_ifindex, &where); 22619 avl_insert(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 22620 (void *)phyi, where); 22621 } 22622 22623 /* 22624 * Reassigning ill_phyint automatically reassigns the ipsq also. 22625 * pending mp is not affected because that is per ill basis. 22626 */ 22627 ill->ill_phyint = phyi; 22628 22629 /* 22630 * Keep the index on ipif_orig_index to be used by FAILOVER. 22631 * We do this here as when the first ipif was allocated, 22632 * ipif_allocate does not know the right interface index. 22633 */ 22634 22635 ill->ill_ipif->ipif_orig_ifindex = ill->ill_phyint->phyint_ifindex; 22636 /* 22637 * Now that the phyint's ifindex has been assigned, complete the 22638 * remaining 22639 */ 22640 22641 ill->ill_ip_mib->ipIfStatsIfIndex = ill->ill_phyint->phyint_ifindex; 22642 if (ill->ill_isv6) { 22643 ill->ill_icmp6_mib->ipv6IfIcmpIfIndex = 22644 ill->ill_phyint->phyint_ifindex; 22645 ill->ill_mcast_type = ipst->ips_mld_max_version; 22646 } else { 22647 ill->ill_mcast_type = ipst->ips_igmp_max_version; 22648 } 22649 22650 /* 22651 * Generate an event within the hooks framework to indicate that 22652 * a new interface has just been added to IP. For this event to 22653 * be generated, the network interface must, at least, have an 22654 * ifindex assigned to it. 22655 * 22656 * This needs to be run inside the ill_g_lock perimeter to ensure 22657 * that the ordering of delivered events to listeners matches the 22658 * order of them in the kernel. 22659 * 22660 * This function could be called from ill_lookup_on_name. In that case 22661 * the interface is loopback "lo", which will not generate a NIC event. 22662 */ 22663 if (ill->ill_name_length <= 2 || 22664 ill->ill_name[0] != 'l' || ill->ill_name[1] != 'o') { 22665 /* 22666 * Generate nic plumb event for ill_name even if 22667 * ipmp_hook_emulation is set. That avoids generating events 22668 * for the ill_names should ipmp_hook_emulation be turned on 22669 * later. 22670 */ 22671 ill_nic_info_plumb(ill, B_FALSE); 22672 } 22673 RELEASE_ILL_LOCKS(ill, ill_other); 22674 mutex_exit(&phyi->phyint_lock); 22675 } 22676 22677 /* 22678 * Allocate a NE_PLUMB nic info event and store in the ill. 22679 * If 'group' is set we do it for the group name, otherwise the ill name. 22680 * It will be sent when we leave the ipsq. 22681 */ 22682 void 22683 ill_nic_info_plumb(ill_t *ill, boolean_t group) 22684 { 22685 phyint_t *phyi = ill->ill_phyint; 22686 char *name; 22687 int namelen; 22688 22689 ASSERT(MUTEX_HELD(&ill->ill_lock)); 22690 22691 if (group) { 22692 ASSERT(phyi->phyint_groupname_len != 0); 22693 namelen = phyi->phyint_groupname_len; 22694 name = phyi->phyint_groupname; 22695 } else { 22696 namelen = ill->ill_name_length; 22697 name = ill->ill_name; 22698 } 22699 22700 (void) ill_hook_event_create(ill, 0, NE_PLUMB, name, namelen); 22701 } 22702 22703 /* 22704 * Unhook the nic event message from the ill and enqueue it 22705 * into the nic event taskq. 22706 */ 22707 void 22708 ill_nic_info_dispatch(ill_t *ill) 22709 { 22710 hook_nic_event_t *info; 22711 22712 ASSERT(MUTEX_HELD(&ill->ill_lock)); 22713 22714 if ((info = ill->ill_nic_event_info) != NULL) { 22715 if (ddi_taskq_dispatch(eventq_queue_nic, 22716 ip_ne_queue_func, info, DDI_SLEEP) == DDI_FAILURE) { 22717 ip2dbg(("ill_nic_info_dispatch: " 22718 "ddi_taskq_dispatch failed\n")); 22719 if (info->hne_data != NULL) 22720 kmem_free(info->hne_data, info->hne_datalen); 22721 kmem_free(info, sizeof (hook_nic_event_t)); 22722 } 22723 ill->ill_nic_event_info = NULL; 22724 } 22725 } 22726 22727 /* 22728 * Notify any downstream modules of the name of this interface. 22729 * An M_IOCTL is used even though we don't expect a successful reply. 22730 * Any reply message from the driver (presumably an M_IOCNAK) will 22731 * eventually get discarded somewhere upstream. The message format is 22732 * simply an SIOCSLIFNAME ioctl just as might be sent from ifconfig 22733 * to IP. 22734 */ 22735 static void 22736 ip_ifname_notify(ill_t *ill, queue_t *q) 22737 { 22738 mblk_t *mp1, *mp2; 22739 struct iocblk *iocp; 22740 struct lifreq *lifr; 22741 22742 mp1 = mkiocb(SIOCSLIFNAME); 22743 if (mp1 == NULL) 22744 return; 22745 mp2 = allocb(sizeof (struct lifreq), BPRI_HI); 22746 if (mp2 == NULL) { 22747 freeb(mp1); 22748 return; 22749 } 22750 22751 mp1->b_cont = mp2; 22752 iocp = (struct iocblk *)mp1->b_rptr; 22753 iocp->ioc_count = sizeof (struct lifreq); 22754 22755 lifr = (struct lifreq *)mp2->b_rptr; 22756 mp2->b_wptr += sizeof (struct lifreq); 22757 bzero(lifr, sizeof (struct lifreq)); 22758 22759 (void) strncpy(lifr->lifr_name, ill->ill_name, LIFNAMSIZ); 22760 lifr->lifr_ppa = ill->ill_ppa; 22761 lifr->lifr_flags = (ill->ill_flags & (ILLF_IPV4|ILLF_IPV6)); 22762 22763 putnext(q, mp1); 22764 } 22765 22766 static int 22767 ipif_set_values_tail(ill_t *ill, ipif_t *ipif, mblk_t *mp, queue_t *q) 22768 { 22769 int err; 22770 ip_stack_t *ipst = ill->ill_ipst; 22771 22772 /* Set the obsolete NDD per-interface forwarding name. */ 22773 err = ill_set_ndd_name(ill); 22774 if (err != 0) { 22775 cmn_err(CE_WARN, "ipif_set_values: ill_set_ndd_name (%d)\n", 22776 err); 22777 } 22778 22779 /* Tell downstream modules where they are. */ 22780 ip_ifname_notify(ill, q); 22781 22782 /* 22783 * ill_dl_phys returns EINPROGRESS in the usual case. 22784 * Error cases are ENOMEM ... 22785 */ 22786 err = ill_dl_phys(ill, ipif, mp, q); 22787 22788 /* 22789 * If there is no IRE expiration timer running, get one started. 22790 * igmp and mld timers will be triggered by the first multicast 22791 */ 22792 if (ipst->ips_ip_ire_expire_id == 0) { 22793 /* 22794 * acquire the lock and check again. 22795 */ 22796 mutex_enter(&ipst->ips_ip_trash_timer_lock); 22797 if (ipst->ips_ip_ire_expire_id == 0) { 22798 ipst->ips_ip_ire_expire_id = timeout( 22799 ip_trash_timer_expire, ipst, 22800 MSEC_TO_TICK(ipst->ips_ip_timer_interval)); 22801 } 22802 mutex_exit(&ipst->ips_ip_trash_timer_lock); 22803 } 22804 22805 if (ill->ill_isv6) { 22806 mutex_enter(&ipst->ips_mld_slowtimeout_lock); 22807 if (ipst->ips_mld_slowtimeout_id == 0) { 22808 ipst->ips_mld_slowtimeout_id = timeout(mld_slowtimo, 22809 (void *)ipst, 22810 MSEC_TO_TICK(MCAST_SLOWTIMO_INTERVAL)); 22811 } 22812 mutex_exit(&ipst->ips_mld_slowtimeout_lock); 22813 } else { 22814 mutex_enter(&ipst->ips_igmp_slowtimeout_lock); 22815 if (ipst->ips_igmp_slowtimeout_id == 0) { 22816 ipst->ips_igmp_slowtimeout_id = timeout(igmp_slowtimo, 22817 (void *)ipst, 22818 MSEC_TO_TICK(MCAST_SLOWTIMO_INTERVAL)); 22819 } 22820 mutex_exit(&ipst->ips_igmp_slowtimeout_lock); 22821 } 22822 22823 return (err); 22824 } 22825 22826 /* 22827 * Common routine for ppa and ifname setting. Should be called exclusive. 22828 * 22829 * Returns EINPROGRESS when mp has been consumed by queueing it on 22830 * ill_pending_mp and the ioctl will complete in ip_rput. 22831 * 22832 * NOTE : If ppa is UNIT_MAX, we assign the next valid ppa and return 22833 * the new name and new ppa in lifr_name and lifr_ppa respectively. 22834 * For SLIFNAME, we pass these values back to the userland. 22835 */ 22836 static int 22837 ipif_set_values(queue_t *q, mblk_t *mp, char *interf_name, uint_t *new_ppa_ptr) 22838 { 22839 ill_t *ill; 22840 ipif_t *ipif; 22841 ipsq_t *ipsq; 22842 char *ppa_ptr; 22843 char *old_ptr; 22844 char old_char; 22845 int error; 22846 ip_stack_t *ipst; 22847 22848 ip1dbg(("ipif_set_values: interface %s\n", interf_name)); 22849 ASSERT(q->q_next != NULL); 22850 ASSERT(interf_name != NULL); 22851 22852 ill = (ill_t *)q->q_ptr; 22853 ipst = ill->ill_ipst; 22854 22855 ASSERT(ill->ill_ipst != NULL); 22856 ASSERT(ill->ill_name[0] == '\0'); 22857 ASSERT(IAM_WRITER_ILL(ill)); 22858 ASSERT((mi_strlen(interf_name) + 1) <= LIFNAMSIZ); 22859 ASSERT(ill->ill_ppa == UINT_MAX); 22860 22861 /* The ppa is sent down by ifconfig or is chosen */ 22862 if ((ppa_ptr = ill_get_ppa_ptr(interf_name)) == NULL) { 22863 return (EINVAL); 22864 } 22865 22866 /* 22867 * make sure ppa passed in is same as ppa in the name. 22868 * This check is not made when ppa == UINT_MAX in that case ppa 22869 * in the name could be anything. System will choose a ppa and 22870 * update new_ppa_ptr and inter_name to contain the choosen ppa. 22871 */ 22872 if (*new_ppa_ptr != UINT_MAX) { 22873 /* stoi changes the pointer */ 22874 old_ptr = ppa_ptr; 22875 /* 22876 * ifconfig passed in 0 for the ppa for DLPI 1 style devices 22877 * (they don't have an externally visible ppa). We assign one 22878 * here so that we can manage the interface. Note that in 22879 * the past this value was always 0 for DLPI 1 drivers. 22880 */ 22881 if (*new_ppa_ptr == 0) 22882 *new_ppa_ptr = stoi(&old_ptr); 22883 else if (*new_ppa_ptr != (uint_t)stoi(&old_ptr)) 22884 return (EINVAL); 22885 } 22886 /* 22887 * terminate string before ppa 22888 * save char at that location. 22889 */ 22890 old_char = ppa_ptr[0]; 22891 ppa_ptr[0] = '\0'; 22892 22893 ill->ill_ppa = *new_ppa_ptr; 22894 /* 22895 * Finish as much work now as possible before calling ill_glist_insert 22896 * which makes the ill globally visible and also merges it with the 22897 * other protocol instance of this phyint. The remaining work is 22898 * done after entering the ipsq which may happen sometime later. 22899 * ill_set_ndd_name occurs after the ill has been made globally visible. 22900 */ 22901 ipif = ill->ill_ipif; 22902 22903 /* We didn't do this when we allocated ipif in ip_ll_subnet_defaults */ 22904 ipif_assign_seqid(ipif); 22905 22906 if (!(ill->ill_flags & (ILLF_IPV4|ILLF_IPV6))) 22907 ill->ill_flags |= ILLF_IPV4; 22908 22909 ASSERT(ipif->ipif_next == NULL); /* Only one ipif on ill */ 22910 ASSERT((ipif->ipif_flags & IPIF_UP) == 0); 22911 22912 if (ill->ill_flags & ILLF_IPV6) { 22913 22914 ill->ill_isv6 = B_TRUE; 22915 if (ill->ill_rq != NULL) { 22916 ill->ill_rq->q_qinfo = &iprinitv6; 22917 ill->ill_wq->q_qinfo = &ipwinitv6; 22918 } 22919 22920 /* Keep the !IN6_IS_ADDR_V4MAPPED assertions happy */ 22921 ipif->ipif_v6lcl_addr = ipv6_all_zeros; 22922 ipif->ipif_v6src_addr = ipv6_all_zeros; 22923 ipif->ipif_v6subnet = ipv6_all_zeros; 22924 ipif->ipif_v6net_mask = ipv6_all_zeros; 22925 ipif->ipif_v6brd_addr = ipv6_all_zeros; 22926 ipif->ipif_v6pp_dst_addr = ipv6_all_zeros; 22927 /* 22928 * point-to-point or Non-mulicast capable 22929 * interfaces won't do NUD unless explicitly 22930 * configured to do so. 22931 */ 22932 if (ipif->ipif_flags & IPIF_POINTOPOINT || 22933 !(ill->ill_flags & ILLF_MULTICAST)) { 22934 ill->ill_flags |= ILLF_NONUD; 22935 } 22936 /* Make sure IPv4 specific flag is not set on IPv6 if */ 22937 if (ill->ill_flags & ILLF_NOARP) { 22938 /* 22939 * Note: xresolv interfaces will eventually need 22940 * NOARP set here as well, but that will require 22941 * those external resolvers to have some 22942 * knowledge of that flag and act appropriately. 22943 * Not to be changed at present. 22944 */ 22945 ill->ill_flags &= ~ILLF_NOARP; 22946 } 22947 /* 22948 * Set the ILLF_ROUTER flag according to the global 22949 * IPv6 forwarding policy. 22950 */ 22951 if (ipst->ips_ipv6_forward != 0) 22952 ill->ill_flags |= ILLF_ROUTER; 22953 } else if (ill->ill_flags & ILLF_IPV4) { 22954 ill->ill_isv6 = B_FALSE; 22955 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6lcl_addr); 22956 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6src_addr); 22957 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6subnet); 22958 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6net_mask); 22959 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6brd_addr); 22960 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6pp_dst_addr); 22961 /* 22962 * Set the ILLF_ROUTER flag according to the global 22963 * IPv4 forwarding policy. 22964 */ 22965 if (ipst->ips_ip_g_forward != 0) 22966 ill->ill_flags |= ILLF_ROUTER; 22967 } 22968 22969 ASSERT(ill->ill_phyint != NULL); 22970 22971 /* 22972 * The ipIfStatsIfindex and ipv6IfIcmpIfIndex assignments will 22973 * be completed in ill_glist_insert -> ill_phyint_reinit 22974 */ 22975 if (!ill_allocate_mibs(ill)) 22976 return (ENOMEM); 22977 22978 /* 22979 * Pick a default sap until we get the DL_INFO_ACK back from 22980 * the driver. 22981 */ 22982 if (ill->ill_sap == 0) { 22983 if (ill->ill_isv6) 22984 ill->ill_sap = IP6_DL_SAP; 22985 else 22986 ill->ill_sap = IP_DL_SAP; 22987 } 22988 22989 ill->ill_ifname_pending = 1; 22990 ill->ill_ifname_pending_err = 0; 22991 22992 ill_refhold(ill); 22993 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 22994 if ((error = ill_glist_insert(ill, interf_name, 22995 (ill->ill_flags & ILLF_IPV6) == ILLF_IPV6)) > 0) { 22996 ill->ill_ppa = UINT_MAX; 22997 ill->ill_name[0] = '\0'; 22998 /* 22999 * undo null termination done above. 23000 */ 23001 ppa_ptr[0] = old_char; 23002 rw_exit(&ipst->ips_ill_g_lock); 23003 ill_refrele(ill); 23004 return (error); 23005 } 23006 23007 ASSERT(ill->ill_name_length <= LIFNAMSIZ); 23008 23009 /* 23010 * When we return the buffer pointed to by interf_name should contain 23011 * the same name as in ill_name. 23012 * If a ppa was choosen by the system (ppa passed in was UINT_MAX) 23013 * the buffer pointed to by new_ppa_ptr would not contain the right ppa 23014 * so copy full name and update the ppa ptr. 23015 * When ppa passed in != UINT_MAX all values are correct just undo 23016 * null termination, this saves a bcopy. 23017 */ 23018 if (*new_ppa_ptr == UINT_MAX) { 23019 bcopy(ill->ill_name, interf_name, ill->ill_name_length); 23020 *new_ppa_ptr = ill->ill_ppa; 23021 } else { 23022 /* 23023 * undo null termination done above. 23024 */ 23025 ppa_ptr[0] = old_char; 23026 } 23027 23028 /* Let SCTP know about this ILL */ 23029 sctp_update_ill(ill, SCTP_ILL_INSERT); 23030 23031 ipsq = ipsq_try_enter(NULL, ill, q, mp, ip_reprocess_ioctl, NEW_OP, 23032 B_TRUE); 23033 23034 rw_exit(&ipst->ips_ill_g_lock); 23035 ill_refrele(ill); 23036 if (ipsq == NULL) 23037 return (EINPROGRESS); 23038 23039 /* 23040 * If ill_phyint_reinit() changed our ipsq, then start on the new ipsq. 23041 */ 23042 if (ipsq->ipsq_current_ipif == NULL) 23043 ipsq_current_start(ipsq, ipif, SIOCSLIFNAME); 23044 else 23045 ASSERT(ipsq->ipsq_current_ipif == ipif); 23046 23047 error = ipif_set_values_tail(ill, ipif, mp, q); 23048 ipsq_exit(ipsq, B_TRUE, B_TRUE); 23049 if (error != 0 && error != EINPROGRESS) { 23050 /* 23051 * restore previous values 23052 */ 23053 ill->ill_isv6 = B_FALSE; 23054 } 23055 return (error); 23056 } 23057 23058 23059 void 23060 ipif_init(ip_stack_t *ipst) 23061 { 23062 hrtime_t hrt; 23063 int i; 23064 23065 /* 23066 * Can't call drv_getparm here as it is too early in the boot. 23067 * As we use ipif_src_random just for picking a different 23068 * source address everytime, this need not be really random. 23069 */ 23070 hrt = gethrtime(); 23071 ipst->ips_ipif_src_random = 23072 ((hrt >> 32) & 0xffffffff) * (hrt & 0xffffffff); 23073 23074 for (i = 0; i < MAX_G_HEADS; i++) { 23075 ipst->ips_ill_g_heads[i].ill_g_list_head = 23076 (ill_if_t *)&ipst->ips_ill_g_heads[i]; 23077 ipst->ips_ill_g_heads[i].ill_g_list_tail = 23078 (ill_if_t *)&ipst->ips_ill_g_heads[i]; 23079 } 23080 23081 avl_create(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 23082 ill_phyint_compare_index, 23083 sizeof (phyint_t), 23084 offsetof(struct phyint, phyint_avl_by_index)); 23085 avl_create(&ipst->ips_phyint_g_list->phyint_list_avl_by_name, 23086 ill_phyint_compare_name, 23087 sizeof (phyint_t), 23088 offsetof(struct phyint, phyint_avl_by_name)); 23089 } 23090 23091 /* 23092 * Lookup the ipif corresponding to the onlink destination address. For 23093 * point-to-point interfaces, it matches with remote endpoint destination 23094 * address. For point-to-multipoint interfaces it only tries to match the 23095 * destination with the interface's subnet address. The longest, most specific 23096 * match is found to take care of such rare network configurations like - 23097 * le0: 129.146.1.1/16 23098 * le1: 129.146.2.2/24 23099 * It is used only by SO_DONTROUTE at the moment. 23100 */ 23101 ipif_t * 23102 ipif_lookup_onlink_addr(ipaddr_t addr, zoneid_t zoneid, ip_stack_t *ipst) 23103 { 23104 ipif_t *ipif, *best_ipif; 23105 ill_t *ill; 23106 ill_walk_context_t ctx; 23107 23108 ASSERT(zoneid != ALL_ZONES); 23109 best_ipif = NULL; 23110 23111 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 23112 ill = ILL_START_WALK_V4(&ctx, ipst); 23113 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 23114 mutex_enter(&ill->ill_lock); 23115 for (ipif = ill->ill_ipif; ipif != NULL; 23116 ipif = ipif->ipif_next) { 23117 if (!IPIF_CAN_LOOKUP(ipif)) 23118 continue; 23119 if (ipif->ipif_zoneid != zoneid && 23120 ipif->ipif_zoneid != ALL_ZONES) 23121 continue; 23122 /* 23123 * Point-to-point case. Look for exact match with 23124 * destination address. 23125 */ 23126 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 23127 if (ipif->ipif_pp_dst_addr == addr) { 23128 ipif_refhold_locked(ipif); 23129 mutex_exit(&ill->ill_lock); 23130 rw_exit(&ipst->ips_ill_g_lock); 23131 if (best_ipif != NULL) 23132 ipif_refrele(best_ipif); 23133 return (ipif); 23134 } 23135 } else if (ipif->ipif_subnet == (addr & 23136 ipif->ipif_net_mask)) { 23137 /* 23138 * Point-to-multipoint case. Looping through to 23139 * find the most specific match. If there are 23140 * multiple best match ipif's then prefer ipif's 23141 * that are UP. If there is only one best match 23142 * ipif and it is DOWN we must still return it. 23143 */ 23144 if ((best_ipif == NULL) || 23145 (ipif->ipif_net_mask > 23146 best_ipif->ipif_net_mask) || 23147 ((ipif->ipif_net_mask == 23148 best_ipif->ipif_net_mask) && 23149 ((ipif->ipif_flags & IPIF_UP) && 23150 (!(best_ipif->ipif_flags & IPIF_UP))))) { 23151 ipif_refhold_locked(ipif); 23152 mutex_exit(&ill->ill_lock); 23153 rw_exit(&ipst->ips_ill_g_lock); 23154 if (best_ipif != NULL) 23155 ipif_refrele(best_ipif); 23156 best_ipif = ipif; 23157 rw_enter(&ipst->ips_ill_g_lock, 23158 RW_READER); 23159 mutex_enter(&ill->ill_lock); 23160 } 23161 } 23162 } 23163 mutex_exit(&ill->ill_lock); 23164 } 23165 rw_exit(&ipst->ips_ill_g_lock); 23166 return (best_ipif); 23167 } 23168 23169 23170 /* 23171 * Save enough information so that we can recreate the IRE if 23172 * the interface goes down and then up. 23173 */ 23174 static void 23175 ipif_save_ire(ipif_t *ipif, ire_t *ire) 23176 { 23177 mblk_t *save_mp; 23178 23179 save_mp = allocb(sizeof (ifrt_t), BPRI_MED); 23180 if (save_mp != NULL) { 23181 ifrt_t *ifrt; 23182 23183 save_mp->b_wptr += sizeof (ifrt_t); 23184 ifrt = (ifrt_t *)save_mp->b_rptr; 23185 bzero(ifrt, sizeof (ifrt_t)); 23186 ifrt->ifrt_type = ire->ire_type; 23187 ifrt->ifrt_addr = ire->ire_addr; 23188 ifrt->ifrt_gateway_addr = ire->ire_gateway_addr; 23189 ifrt->ifrt_src_addr = ire->ire_src_addr; 23190 ifrt->ifrt_mask = ire->ire_mask; 23191 ifrt->ifrt_flags = ire->ire_flags; 23192 ifrt->ifrt_max_frag = ire->ire_max_frag; 23193 mutex_enter(&ipif->ipif_saved_ire_lock); 23194 save_mp->b_cont = ipif->ipif_saved_ire_mp; 23195 ipif->ipif_saved_ire_mp = save_mp; 23196 ipif->ipif_saved_ire_cnt++; 23197 mutex_exit(&ipif->ipif_saved_ire_lock); 23198 } 23199 } 23200 23201 23202 static void 23203 ipif_remove_ire(ipif_t *ipif, ire_t *ire) 23204 { 23205 mblk_t **mpp; 23206 mblk_t *mp; 23207 ifrt_t *ifrt; 23208 23209 /* Remove from ipif_saved_ire_mp list if it is there */ 23210 mutex_enter(&ipif->ipif_saved_ire_lock); 23211 for (mpp = &ipif->ipif_saved_ire_mp; *mpp != NULL; 23212 mpp = &(*mpp)->b_cont) { 23213 /* 23214 * On a given ipif, the triple of address, gateway and 23215 * mask is unique for each saved IRE (in the case of 23216 * ordinary interface routes, the gateway address is 23217 * all-zeroes). 23218 */ 23219 mp = *mpp; 23220 ifrt = (ifrt_t *)mp->b_rptr; 23221 if (ifrt->ifrt_addr == ire->ire_addr && 23222 ifrt->ifrt_gateway_addr == ire->ire_gateway_addr && 23223 ifrt->ifrt_mask == ire->ire_mask) { 23224 *mpp = mp->b_cont; 23225 ipif->ipif_saved_ire_cnt--; 23226 freeb(mp); 23227 break; 23228 } 23229 } 23230 mutex_exit(&ipif->ipif_saved_ire_lock); 23231 } 23232 23233 23234 /* 23235 * IP multirouting broadcast routes handling 23236 * Append CGTP broadcast IREs to regular ones created 23237 * at ifconfig time. 23238 */ 23239 static void 23240 ip_cgtp_bcast_add(ire_t *ire, ire_t *ire_dst, ip_stack_t *ipst) 23241 { 23242 ire_t *ire_prim; 23243 23244 ASSERT(ire != NULL); 23245 ASSERT(ire_dst != NULL); 23246 23247 ire_prim = ire_ctable_lookup(ire->ire_gateway_addr, 0, 23248 IRE_BROADCAST, NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 23249 if (ire_prim != NULL) { 23250 /* 23251 * We are in the special case of broadcasts for 23252 * CGTP. We add an IRE_BROADCAST that holds 23253 * the RTF_MULTIRT flag, the destination 23254 * address of ire_dst and the low level 23255 * info of ire_prim. In other words, CGTP 23256 * broadcast is added to the redundant ipif. 23257 */ 23258 ipif_t *ipif_prim; 23259 ire_t *bcast_ire; 23260 23261 ipif_prim = ire_prim->ire_ipif; 23262 23263 ip2dbg(("ip_cgtp_filter_bcast_add: " 23264 "ire_dst %p, ire_prim %p, ipif_prim %p\n", 23265 (void *)ire_dst, (void *)ire_prim, 23266 (void *)ipif_prim)); 23267 23268 bcast_ire = ire_create( 23269 (uchar_t *)&ire->ire_addr, 23270 (uchar_t *)&ip_g_all_ones, 23271 (uchar_t *)&ire_dst->ire_src_addr, 23272 (uchar_t *)&ire->ire_gateway_addr, 23273 &ipif_prim->ipif_mtu, 23274 NULL, 23275 ipif_prim->ipif_rq, 23276 ipif_prim->ipif_wq, 23277 IRE_BROADCAST, 23278 ipif_prim, 23279 0, 23280 0, 23281 0, 23282 ire->ire_flags, 23283 &ire_uinfo_null, 23284 NULL, 23285 NULL, 23286 ipst); 23287 23288 if (bcast_ire != NULL) { 23289 23290 if (ire_add(&bcast_ire, NULL, NULL, NULL, 23291 B_FALSE) == 0) { 23292 ip2dbg(("ip_cgtp_filter_bcast_add: " 23293 "added bcast_ire %p\n", 23294 (void *)bcast_ire)); 23295 23296 ipif_save_ire(bcast_ire->ire_ipif, 23297 bcast_ire); 23298 ire_refrele(bcast_ire); 23299 } 23300 } 23301 ire_refrele(ire_prim); 23302 } 23303 } 23304 23305 23306 /* 23307 * IP multirouting broadcast routes handling 23308 * Remove the broadcast ire 23309 */ 23310 static void 23311 ip_cgtp_bcast_delete(ire_t *ire, ip_stack_t *ipst) 23312 { 23313 ire_t *ire_dst; 23314 23315 ASSERT(ire != NULL); 23316 ire_dst = ire_ctable_lookup(ire->ire_addr, 0, IRE_BROADCAST, 23317 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 23318 if (ire_dst != NULL) { 23319 ire_t *ire_prim; 23320 23321 ire_prim = ire_ctable_lookup(ire->ire_gateway_addr, 0, 23322 IRE_BROADCAST, NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 23323 if (ire_prim != NULL) { 23324 ipif_t *ipif_prim; 23325 ire_t *bcast_ire; 23326 23327 ipif_prim = ire_prim->ire_ipif; 23328 23329 ip2dbg(("ip_cgtp_filter_bcast_delete: " 23330 "ire_dst %p, ire_prim %p, ipif_prim %p\n", 23331 (void *)ire_dst, (void *)ire_prim, 23332 (void *)ipif_prim)); 23333 23334 bcast_ire = ire_ctable_lookup(ire->ire_addr, 23335 ire->ire_gateway_addr, 23336 IRE_BROADCAST, 23337 ipif_prim, ALL_ZONES, 23338 NULL, 23339 MATCH_IRE_TYPE | MATCH_IRE_GW | MATCH_IRE_IPIF | 23340 MATCH_IRE_MASK, ipst); 23341 23342 if (bcast_ire != NULL) { 23343 ip2dbg(("ip_cgtp_filter_bcast_delete: " 23344 "looked up bcast_ire %p\n", 23345 (void *)bcast_ire)); 23346 ipif_remove_ire(bcast_ire->ire_ipif, 23347 bcast_ire); 23348 ire_delete(bcast_ire); 23349 ire_refrele(bcast_ire); 23350 } 23351 ire_refrele(ire_prim); 23352 } 23353 ire_refrele(ire_dst); 23354 } 23355 } 23356 23357 /* 23358 * IPsec hardware acceleration capabilities related functions. 23359 */ 23360 23361 /* 23362 * Free a per-ill IPsec capabilities structure. 23363 */ 23364 static void 23365 ill_ipsec_capab_free(ill_ipsec_capab_t *capab) 23366 { 23367 if (capab->auth_hw_algs != NULL) 23368 kmem_free(capab->auth_hw_algs, capab->algs_size); 23369 if (capab->encr_hw_algs != NULL) 23370 kmem_free(capab->encr_hw_algs, capab->algs_size); 23371 if (capab->encr_algparm != NULL) 23372 kmem_free(capab->encr_algparm, capab->encr_algparm_size); 23373 kmem_free(capab, sizeof (ill_ipsec_capab_t)); 23374 } 23375 23376 /* 23377 * Allocate a new per-ill IPsec capabilities structure. This structure 23378 * is specific to an IPsec protocol (AH or ESP). It is implemented as 23379 * an array which specifies, for each algorithm, whether this algorithm 23380 * is supported by the ill or not. 23381 */ 23382 static ill_ipsec_capab_t * 23383 ill_ipsec_capab_alloc(void) 23384 { 23385 ill_ipsec_capab_t *capab; 23386 uint_t nelems; 23387 23388 capab = kmem_zalloc(sizeof (ill_ipsec_capab_t), KM_NOSLEEP); 23389 if (capab == NULL) 23390 return (NULL); 23391 23392 /* we need one bit per algorithm */ 23393 nelems = MAX_IPSEC_ALGS / BITS(ipsec_capab_elem_t); 23394 capab->algs_size = nelems * sizeof (ipsec_capab_elem_t); 23395 23396 /* allocate memory to store algorithm flags */ 23397 capab->encr_hw_algs = kmem_zalloc(capab->algs_size, KM_NOSLEEP); 23398 if (capab->encr_hw_algs == NULL) 23399 goto nomem; 23400 capab->auth_hw_algs = kmem_zalloc(capab->algs_size, KM_NOSLEEP); 23401 if (capab->auth_hw_algs == NULL) 23402 goto nomem; 23403 /* 23404 * Leave encr_algparm NULL for now since we won't need it half 23405 * the time 23406 */ 23407 return (capab); 23408 23409 nomem: 23410 ill_ipsec_capab_free(capab); 23411 return (NULL); 23412 } 23413 23414 /* 23415 * Resize capability array. Since we're exclusive, this is OK. 23416 */ 23417 static boolean_t 23418 ill_ipsec_capab_resize_algparm(ill_ipsec_capab_t *capab, int algid) 23419 { 23420 ipsec_capab_algparm_t *nalp, *oalp; 23421 uint32_t olen, nlen; 23422 23423 oalp = capab->encr_algparm; 23424 olen = capab->encr_algparm_size; 23425 23426 if (oalp != NULL) { 23427 if (algid < capab->encr_algparm_end) 23428 return (B_TRUE); 23429 } 23430 23431 nlen = (algid + 1) * sizeof (*nalp); 23432 nalp = kmem_zalloc(nlen, KM_NOSLEEP); 23433 if (nalp == NULL) 23434 return (B_FALSE); 23435 23436 if (oalp != NULL) { 23437 bcopy(oalp, nalp, olen); 23438 kmem_free(oalp, olen); 23439 } 23440 capab->encr_algparm = nalp; 23441 capab->encr_algparm_size = nlen; 23442 capab->encr_algparm_end = algid + 1; 23443 23444 return (B_TRUE); 23445 } 23446 23447 /* 23448 * Compare the capabilities of the specified ill with the protocol 23449 * and algorithms specified by the SA passed as argument. 23450 * If they match, returns B_TRUE, B_FALSE if they do not match. 23451 * 23452 * The ill can be passed as a pointer to it, or by specifying its index 23453 * and whether it is an IPv6 ill (ill_index and ill_isv6 arguments). 23454 * 23455 * Called by ipsec_out_is_accelerated() do decide whether an outbound 23456 * packet is eligible for hardware acceleration, and by 23457 * ill_ipsec_capab_send_all() to decide whether a SA must be sent down 23458 * to a particular ill. 23459 */ 23460 boolean_t 23461 ipsec_capab_match(ill_t *ill, uint_t ill_index, boolean_t ill_isv6, 23462 ipsa_t *sa, netstack_t *ns) 23463 { 23464 boolean_t sa_isv6; 23465 uint_t algid; 23466 struct ill_ipsec_capab_s *cpp; 23467 boolean_t need_refrele = B_FALSE; 23468 ip_stack_t *ipst = ns->netstack_ip; 23469 23470 if (ill == NULL) { 23471 ill = ill_lookup_on_ifindex(ill_index, ill_isv6, NULL, 23472 NULL, NULL, NULL, ipst); 23473 if (ill == NULL) { 23474 ip0dbg(("ipsec_capab_match: ill doesn't exist\n")); 23475 return (B_FALSE); 23476 } 23477 need_refrele = B_TRUE; 23478 } 23479 23480 /* 23481 * Use the address length specified by the SA to determine 23482 * if it corresponds to a IPv6 address, and fail the matching 23483 * if the isv6 flag passed as argument does not match. 23484 * Note: this check is used for SADB capability checking before 23485 * sending SA information to an ill. 23486 */ 23487 sa_isv6 = (sa->ipsa_addrfam == AF_INET6); 23488 if (sa_isv6 != ill_isv6) 23489 /* protocol mismatch */ 23490 goto done; 23491 23492 /* 23493 * Check if the ill supports the protocol, algorithm(s) and 23494 * key size(s) specified by the SA, and get the pointers to 23495 * the algorithms supported by the ill. 23496 */ 23497 switch (sa->ipsa_type) { 23498 23499 case SADB_SATYPE_ESP: 23500 if (!(ill->ill_capabilities & ILL_CAPAB_ESP)) 23501 /* ill does not support ESP acceleration */ 23502 goto done; 23503 cpp = ill->ill_ipsec_capab_esp; 23504 algid = sa->ipsa_auth_alg; 23505 if (!IPSEC_ALG_IS_ENABLED(algid, cpp->auth_hw_algs)) 23506 goto done; 23507 algid = sa->ipsa_encr_alg; 23508 if (!IPSEC_ALG_IS_ENABLED(algid, cpp->encr_hw_algs)) 23509 goto done; 23510 if (algid < cpp->encr_algparm_end) { 23511 ipsec_capab_algparm_t *alp = &cpp->encr_algparm[algid]; 23512 if (sa->ipsa_encrkeybits < alp->minkeylen) 23513 goto done; 23514 if (sa->ipsa_encrkeybits > alp->maxkeylen) 23515 goto done; 23516 } 23517 break; 23518 23519 case SADB_SATYPE_AH: 23520 if (!(ill->ill_capabilities & ILL_CAPAB_AH)) 23521 /* ill does not support AH acceleration */ 23522 goto done; 23523 if (!IPSEC_ALG_IS_ENABLED(sa->ipsa_auth_alg, 23524 ill->ill_ipsec_capab_ah->auth_hw_algs)) 23525 goto done; 23526 break; 23527 } 23528 23529 if (need_refrele) 23530 ill_refrele(ill); 23531 return (B_TRUE); 23532 done: 23533 if (need_refrele) 23534 ill_refrele(ill); 23535 return (B_FALSE); 23536 } 23537 23538 23539 /* 23540 * Add a new ill to the list of IPsec capable ills. 23541 * Called from ill_capability_ipsec_ack() when an ACK was received 23542 * indicating that IPsec hardware processing was enabled for an ill. 23543 * 23544 * ill must point to the ill for which acceleration was enabled. 23545 * dl_cap must be set to DL_CAPAB_IPSEC_AH or DL_CAPAB_IPSEC_ESP. 23546 */ 23547 static void 23548 ill_ipsec_capab_add(ill_t *ill, uint_t dl_cap, boolean_t sadb_resync) 23549 { 23550 ipsec_capab_ill_t **ills, *cur_ill, *new_ill; 23551 uint_t sa_type; 23552 uint_t ipproto; 23553 ip_stack_t *ipst = ill->ill_ipst; 23554 23555 ASSERT((dl_cap == DL_CAPAB_IPSEC_AH) || 23556 (dl_cap == DL_CAPAB_IPSEC_ESP)); 23557 23558 switch (dl_cap) { 23559 case DL_CAPAB_IPSEC_AH: 23560 sa_type = SADB_SATYPE_AH; 23561 ills = &ipst->ips_ipsec_capab_ills_ah; 23562 ipproto = IPPROTO_AH; 23563 break; 23564 case DL_CAPAB_IPSEC_ESP: 23565 sa_type = SADB_SATYPE_ESP; 23566 ills = &ipst->ips_ipsec_capab_ills_esp; 23567 ipproto = IPPROTO_ESP; 23568 break; 23569 } 23570 23571 rw_enter(&ipst->ips_ipsec_capab_ills_lock, RW_WRITER); 23572 23573 /* 23574 * Add ill index to list of hardware accelerators. If 23575 * already in list, do nothing. 23576 */ 23577 for (cur_ill = *ills; cur_ill != NULL && 23578 (cur_ill->ill_index != ill->ill_phyint->phyint_ifindex || 23579 cur_ill->ill_isv6 != ill->ill_isv6); cur_ill = cur_ill->next) 23580 ; 23581 23582 if (cur_ill == NULL) { 23583 /* if this is a new entry for this ill */ 23584 new_ill = kmem_zalloc(sizeof (ipsec_capab_ill_t), KM_NOSLEEP); 23585 if (new_ill == NULL) { 23586 rw_exit(&ipst->ips_ipsec_capab_ills_lock); 23587 return; 23588 } 23589 23590 new_ill->ill_index = ill->ill_phyint->phyint_ifindex; 23591 new_ill->ill_isv6 = ill->ill_isv6; 23592 new_ill->next = *ills; 23593 *ills = new_ill; 23594 } else if (!sadb_resync) { 23595 /* not resync'ing SADB and an entry exists for this ill */ 23596 rw_exit(&ipst->ips_ipsec_capab_ills_lock); 23597 return; 23598 } 23599 23600 rw_exit(&ipst->ips_ipsec_capab_ills_lock); 23601 23602 if (ipst->ips_ipcl_proto_fanout_v6[ipproto].connf_head != NULL) 23603 /* 23604 * IPsec module for protocol loaded, initiate dump 23605 * of the SADB to this ill. 23606 */ 23607 sadb_ill_download(ill, sa_type); 23608 } 23609 23610 /* 23611 * Remove an ill from the list of IPsec capable ills. 23612 */ 23613 static void 23614 ill_ipsec_capab_delete(ill_t *ill, uint_t dl_cap) 23615 { 23616 ipsec_capab_ill_t **ills, *cur_ill, *prev_ill; 23617 ip_stack_t *ipst = ill->ill_ipst; 23618 23619 ASSERT(dl_cap == DL_CAPAB_IPSEC_AH || 23620 dl_cap == DL_CAPAB_IPSEC_ESP); 23621 23622 ills = (dl_cap == DL_CAPAB_IPSEC_AH) ? &ipst->ips_ipsec_capab_ills_ah : 23623 &ipst->ips_ipsec_capab_ills_esp; 23624 23625 rw_enter(&ipst->ips_ipsec_capab_ills_lock, RW_WRITER); 23626 23627 prev_ill = NULL; 23628 for (cur_ill = *ills; cur_ill != NULL && (cur_ill->ill_index != 23629 ill->ill_phyint->phyint_ifindex || cur_ill->ill_isv6 != 23630 ill->ill_isv6); prev_ill = cur_ill, cur_ill = cur_ill->next) 23631 ; 23632 if (cur_ill == NULL) { 23633 /* entry not found */ 23634 rw_exit(&ipst->ips_ipsec_capab_ills_lock); 23635 return; 23636 } 23637 if (prev_ill == NULL) { 23638 /* entry at front of list */ 23639 *ills = NULL; 23640 } else { 23641 prev_ill->next = cur_ill->next; 23642 } 23643 kmem_free(cur_ill, sizeof (ipsec_capab_ill_t)); 23644 rw_exit(&ipst->ips_ipsec_capab_ills_lock); 23645 } 23646 23647 /* 23648 * Called by SADB to send a DL_CONTROL_REQ message to every ill 23649 * supporting the specified IPsec protocol acceleration. 23650 * sa_type must be SADB_SATYPE_AH or SADB_SATYPE_ESP. 23651 * We free the mblk and, if sa is non-null, release the held referece. 23652 */ 23653 void 23654 ill_ipsec_capab_send_all(uint_t sa_type, mblk_t *mp, ipsa_t *sa, 23655 netstack_t *ns) 23656 { 23657 ipsec_capab_ill_t *ici, *cur_ici; 23658 ill_t *ill; 23659 mblk_t *nmp, *mp_ship_list = NULL, *next_mp; 23660 ip_stack_t *ipst = ns->netstack_ip; 23661 23662 ici = (sa_type == SADB_SATYPE_AH) ? ipst->ips_ipsec_capab_ills_ah : 23663 ipst->ips_ipsec_capab_ills_esp; 23664 23665 rw_enter(&ipst->ips_ipsec_capab_ills_lock, RW_READER); 23666 23667 for (cur_ici = ici; cur_ici != NULL; cur_ici = cur_ici->next) { 23668 ill = ill_lookup_on_ifindex(cur_ici->ill_index, 23669 cur_ici->ill_isv6, NULL, NULL, NULL, NULL, ipst); 23670 23671 /* 23672 * Handle the case where the ill goes away while the SADB is 23673 * attempting to send messages. If it's going away, it's 23674 * nuking its shadow SADB, so we don't care.. 23675 */ 23676 23677 if (ill == NULL) 23678 continue; 23679 23680 if (sa != NULL) { 23681 /* 23682 * Make sure capabilities match before 23683 * sending SA to ill. 23684 */ 23685 if (!ipsec_capab_match(ill, cur_ici->ill_index, 23686 cur_ici->ill_isv6, sa, ipst->ips_netstack)) { 23687 ill_refrele(ill); 23688 continue; 23689 } 23690 23691 mutex_enter(&sa->ipsa_lock); 23692 sa->ipsa_flags |= IPSA_F_HW; 23693 mutex_exit(&sa->ipsa_lock); 23694 } 23695 23696 /* 23697 * Copy template message, and add it to the front 23698 * of the mblk ship list. We want to avoid holding 23699 * the ipsec_capab_ills_lock while sending the 23700 * message to the ills. 23701 * 23702 * The b_next and b_prev are temporarily used 23703 * to build a list of mblks to be sent down, and to 23704 * save the ill to which they must be sent. 23705 */ 23706 nmp = copymsg(mp); 23707 if (nmp == NULL) { 23708 ill_refrele(ill); 23709 continue; 23710 } 23711 ASSERT(nmp->b_next == NULL && nmp->b_prev == NULL); 23712 nmp->b_next = mp_ship_list; 23713 mp_ship_list = nmp; 23714 nmp->b_prev = (mblk_t *)ill; 23715 } 23716 23717 rw_exit(&ipst->ips_ipsec_capab_ills_lock); 23718 23719 for (nmp = mp_ship_list; nmp != NULL; nmp = next_mp) { 23720 /* restore the mblk to a sane state */ 23721 next_mp = nmp->b_next; 23722 nmp->b_next = NULL; 23723 ill = (ill_t *)nmp->b_prev; 23724 nmp->b_prev = NULL; 23725 23726 ill_dlpi_send(ill, nmp); 23727 ill_refrele(ill); 23728 } 23729 23730 if (sa != NULL) 23731 IPSA_REFRELE(sa); 23732 freemsg(mp); 23733 } 23734 23735 /* 23736 * Derive an interface id from the link layer address. 23737 * Knows about IEEE 802 and IEEE EUI-64 mappings. 23738 */ 23739 static boolean_t 23740 ip_ether_v6intfid(uint_t phys_length, uint8_t *phys_addr, in6_addr_t *v6addr) 23741 { 23742 char *addr; 23743 23744 if (phys_length != ETHERADDRL) 23745 return (B_FALSE); 23746 23747 /* Form EUI-64 like address */ 23748 addr = (char *)&v6addr->s6_addr32[2]; 23749 bcopy((char *)phys_addr, addr, 3); 23750 addr[0] ^= 0x2; /* Toggle Universal/Local bit */ 23751 addr[3] = (char)0xff; 23752 addr[4] = (char)0xfe; 23753 bcopy((char *)phys_addr + 3, addr + 5, 3); 23754 return (B_TRUE); 23755 } 23756 23757 /* ARGSUSED */ 23758 static boolean_t 23759 ip_nodef_v6intfid(uint_t phys_length, uint8_t *phys_addr, in6_addr_t *v6addr) 23760 { 23761 return (B_FALSE); 23762 } 23763 23764 /* ARGSUSED */ 23765 static boolean_t 23766 ip_ether_v6mapinfo(uint_t lla_length, uint8_t *bphys_addr, uint8_t *maddr, 23767 uint32_t *hw_start, in6_addr_t *v6_extract_mask) 23768 { 23769 /* 23770 * Multicast address mappings used over Ethernet/802.X. 23771 * This address is used as a base for mappings. 23772 */ 23773 static uint8_t ipv6_g_phys_multi_addr[] = {0x33, 0x33, 0x00, 23774 0x00, 0x00, 0x00}; 23775 23776 /* 23777 * Extract low order 32 bits from IPv6 multicast address. 23778 * Or that into the link layer address, starting from the 23779 * second byte. 23780 */ 23781 *hw_start = 2; 23782 v6_extract_mask->s6_addr32[0] = 0; 23783 v6_extract_mask->s6_addr32[1] = 0; 23784 v6_extract_mask->s6_addr32[2] = 0; 23785 v6_extract_mask->s6_addr32[3] = 0xffffffffU; 23786 bcopy(ipv6_g_phys_multi_addr, maddr, lla_length); 23787 return (B_TRUE); 23788 } 23789 23790 /* 23791 * Indicate by return value whether multicast is supported. If not, 23792 * this code should not touch/change any parameters. 23793 */ 23794 /* ARGSUSED */ 23795 static boolean_t 23796 ip_ether_v4mapinfo(uint_t phys_length, uint8_t *bphys_addr, uint8_t *maddr, 23797 uint32_t *hw_start, ipaddr_t *extract_mask) 23798 { 23799 /* 23800 * Multicast address mappings used over Ethernet/802.X. 23801 * This address is used as a base for mappings. 23802 */ 23803 static uint8_t ip_g_phys_multi_addr[] = { 0x01, 0x00, 0x5e, 23804 0x00, 0x00, 0x00 }; 23805 23806 if (phys_length != ETHERADDRL) 23807 return (B_FALSE); 23808 23809 *extract_mask = htonl(0x007fffff); 23810 *hw_start = 2; 23811 bcopy(ip_g_phys_multi_addr, maddr, ETHERADDRL); 23812 return (B_TRUE); 23813 } 23814 23815 /* 23816 * Derive IPoIB interface id from the link layer address. 23817 */ 23818 static boolean_t 23819 ip_ib_v6intfid(uint_t phys_length, uint8_t *phys_addr, in6_addr_t *v6addr) 23820 { 23821 char *addr; 23822 23823 if (phys_length != 20) 23824 return (B_FALSE); 23825 addr = (char *)&v6addr->s6_addr32[2]; 23826 bcopy(phys_addr + 12, addr, 8); 23827 /* 23828 * In IBA 1.1 timeframe, some vendors erroneously set the u/l bit 23829 * in the globally assigned EUI-64 GUID to 1, in violation of IEEE 23830 * rules. In these cases, the IBA considers these GUIDs to be in 23831 * "Modified EUI-64" format, and thus toggling the u/l bit is not 23832 * required; vendors are required not to assign global EUI-64's 23833 * that differ only in u/l bit values, thus guaranteeing uniqueness 23834 * of the interface identifier. Whether the GUID is in modified 23835 * or proper EUI-64 format, the ipv6 identifier must have the u/l 23836 * bit set to 1. 23837 */ 23838 addr[0] |= 2; /* Set Universal/Local bit to 1 */ 23839 return (B_TRUE); 23840 } 23841 23842 /* 23843 * Note on mapping from multicast IP addresses to IPoIB multicast link 23844 * addresses. IPoIB multicast link addresses are based on IBA link addresses. 23845 * The format of an IPoIB multicast address is: 23846 * 23847 * 4 byte QPN Scope Sign. Pkey 23848 * +--------------------------------------------+ 23849 * | 00FFFFFF | FF | 1X | X01B | Pkey | GroupID | 23850 * +--------------------------------------------+ 23851 * 23852 * The Scope and Pkey components are properties of the IBA port and 23853 * network interface. They can be ascertained from the broadcast address. 23854 * The Sign. part is the signature, and is 401B for IPv4 and 601B for IPv6. 23855 */ 23856 23857 static boolean_t 23858 ip_ib_v6mapinfo(uint_t lla_length, uint8_t *bphys_addr, uint8_t *maddr, 23859 uint32_t *hw_start, in6_addr_t *v6_extract_mask) 23860 { 23861 /* 23862 * Base IPoIB IPv6 multicast address used for mappings. 23863 * Does not contain the IBA scope/Pkey values. 23864 */ 23865 static uint8_t ipv6_g_phys_ibmulti_addr[] = { 0x00, 0xff, 0xff, 0xff, 23866 0xff, 0x10, 0x60, 0x1b, 0x00, 0x00, 0x00, 0x00, 23867 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }; 23868 23869 /* 23870 * Extract low order 80 bits from IPv6 multicast address. 23871 * Or that into the link layer address, starting from the 23872 * sixth byte. 23873 */ 23874 *hw_start = 6; 23875 bcopy(ipv6_g_phys_ibmulti_addr, maddr, lla_length); 23876 23877 /* 23878 * Now fill in the IBA scope/Pkey values from the broadcast address. 23879 */ 23880 *(maddr + 5) = *(bphys_addr + 5); 23881 *(maddr + 8) = *(bphys_addr + 8); 23882 *(maddr + 9) = *(bphys_addr + 9); 23883 23884 v6_extract_mask->s6_addr32[0] = 0; 23885 v6_extract_mask->s6_addr32[1] = htonl(0x0000ffff); 23886 v6_extract_mask->s6_addr32[2] = 0xffffffffU; 23887 v6_extract_mask->s6_addr32[3] = 0xffffffffU; 23888 return (B_TRUE); 23889 } 23890 23891 static boolean_t 23892 ip_ib_v4mapinfo(uint_t phys_length, uint8_t *bphys_addr, uint8_t *maddr, 23893 uint32_t *hw_start, ipaddr_t *extract_mask) 23894 { 23895 /* 23896 * Base IPoIB IPv4 multicast address used for mappings. 23897 * Does not contain the IBA scope/Pkey values. 23898 */ 23899 static uint8_t ipv4_g_phys_ibmulti_addr[] = { 0x00, 0xff, 0xff, 0xff, 23900 0xff, 0x10, 0x40, 0x1b, 0x00, 0x00, 0x00, 0x00, 23901 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }; 23902 23903 if (phys_length != sizeof (ipv4_g_phys_ibmulti_addr)) 23904 return (B_FALSE); 23905 23906 /* 23907 * Extract low order 28 bits from IPv4 multicast address. 23908 * Or that into the link layer address, starting from the 23909 * sixteenth byte. 23910 */ 23911 *extract_mask = htonl(0x0fffffff); 23912 *hw_start = 16; 23913 bcopy(ipv4_g_phys_ibmulti_addr, maddr, phys_length); 23914 23915 /* 23916 * Now fill in the IBA scope/Pkey values from the broadcast address. 23917 */ 23918 *(maddr + 5) = *(bphys_addr + 5); 23919 *(maddr + 8) = *(bphys_addr + 8); 23920 *(maddr + 9) = *(bphys_addr + 9); 23921 return (B_TRUE); 23922 } 23923 23924 /* 23925 * Returns B_TRUE if an ipif is present in the given zone, matching some flags 23926 * (typically IPIF_UP). If ipifp is non-null, the held ipif is returned there. 23927 * This works for both IPv4 and IPv6; if the passed-in ill is v6, the ipif with 23928 * the link-local address is preferred. 23929 */ 23930 boolean_t 23931 ipif_lookup_zoneid(ill_t *ill, zoneid_t zoneid, int flags, ipif_t **ipifp) 23932 { 23933 ipif_t *ipif; 23934 ipif_t *maybe_ipif = NULL; 23935 23936 mutex_enter(&ill->ill_lock); 23937 if (ill->ill_state_flags & ILL_CONDEMNED) { 23938 mutex_exit(&ill->ill_lock); 23939 if (ipifp != NULL) 23940 *ipifp = NULL; 23941 return (B_FALSE); 23942 } 23943 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 23944 if (!IPIF_CAN_LOOKUP(ipif)) 23945 continue; 23946 if (zoneid != ALL_ZONES && ipif->ipif_zoneid != zoneid && 23947 ipif->ipif_zoneid != ALL_ZONES) 23948 continue; 23949 if ((ipif->ipif_flags & flags) != flags) 23950 continue; 23951 23952 if (ipifp == NULL) { 23953 mutex_exit(&ill->ill_lock); 23954 ASSERT(maybe_ipif == NULL); 23955 return (B_TRUE); 23956 } 23957 if (!ill->ill_isv6 || 23958 IN6_IS_ADDR_LINKLOCAL(&ipif->ipif_v6src_addr)) { 23959 ipif_refhold_locked(ipif); 23960 mutex_exit(&ill->ill_lock); 23961 *ipifp = ipif; 23962 return (B_TRUE); 23963 } 23964 if (maybe_ipif == NULL) 23965 maybe_ipif = ipif; 23966 } 23967 if (ipifp != NULL) { 23968 if (maybe_ipif != NULL) 23969 ipif_refhold_locked(maybe_ipif); 23970 *ipifp = maybe_ipif; 23971 } 23972 mutex_exit(&ill->ill_lock); 23973 return (maybe_ipif != NULL); 23974 } 23975 23976 /* 23977 * Same as ipif_lookup_zoneid() but looks at all the ills in the same group. 23978 */ 23979 boolean_t 23980 ipif_lookup_zoneid_group(ill_t *ill, zoneid_t zoneid, int flags, ipif_t **ipifp) 23981 { 23982 ill_t *illg; 23983 ip_stack_t *ipst = ill->ill_ipst; 23984 23985 /* 23986 * We look at the passed-in ill first without grabbing ill_g_lock. 23987 */ 23988 if (ipif_lookup_zoneid(ill, zoneid, flags, ipifp)) { 23989 return (B_TRUE); 23990 } 23991 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 23992 if (ill->ill_group == NULL) { 23993 /* ill not in a group */ 23994 rw_exit(&ipst->ips_ill_g_lock); 23995 return (B_FALSE); 23996 } 23997 23998 /* 23999 * There's no ipif in the zone on ill, however ill is part of an IPMP 24000 * group. We need to look for an ipif in the zone on all the ills in the 24001 * group. 24002 */ 24003 illg = ill->ill_group->illgrp_ill; 24004 do { 24005 /* 24006 * We don't call ipif_lookup_zoneid() on ill as we already know 24007 * that it's not there. 24008 */ 24009 if (illg != ill && 24010 ipif_lookup_zoneid(illg, zoneid, flags, ipifp)) { 24011 break; 24012 } 24013 } while ((illg = illg->ill_group_next) != NULL); 24014 rw_exit(&ipst->ips_ill_g_lock); 24015 return (illg != NULL); 24016 } 24017 24018 /* 24019 * Check if this ill is only being used to send ICMP probes for IPMP 24020 */ 24021 boolean_t 24022 ill_is_probeonly(ill_t *ill) 24023 { 24024 /* 24025 * Check if the interface is FAILED, or INACTIVE 24026 */ 24027 if (ill->ill_phyint->phyint_flags & (PHYI_FAILED|PHYI_INACTIVE)) 24028 return (B_TRUE); 24029 24030 return (B_FALSE); 24031 } 24032 24033 /* 24034 * Return a pointer to an ipif_t given a combination of (ill_idx,ipif_id) 24035 * If a pointer to an ipif_t is returned then the caller will need to do 24036 * an ill_refrele(). 24037 * 24038 * If there is no real interface which matches the ifindex, then it looks 24039 * for a group that has a matching index. In the case of a group match the 24040 * lifidx must be zero. We don't need emulate the logical interfaces 24041 * since IP Filter's use of netinfo doesn't use that. 24042 */ 24043 ipif_t * 24044 ipif_getby_indexes(uint_t ifindex, uint_t lifidx, boolean_t isv6, 24045 ip_stack_t *ipst) 24046 { 24047 ipif_t *ipif; 24048 ill_t *ill; 24049 24050 ill = ill_lookup_on_ifindex(ifindex, isv6, NULL, NULL, NULL, NULL, 24051 ipst); 24052 24053 if (ill == NULL) { 24054 /* Fallback to group names only if hook_emulation set */ 24055 if (!ipst->ips_ipmp_hook_emulation) 24056 return (NULL); 24057 24058 if (lifidx != 0) 24059 return (NULL); 24060 ill = ill_group_lookup_on_ifindex(ifindex, isv6, ipst); 24061 if (ill == NULL) 24062 return (NULL); 24063 } 24064 24065 mutex_enter(&ill->ill_lock); 24066 if (ill->ill_state_flags & ILL_CONDEMNED) { 24067 mutex_exit(&ill->ill_lock); 24068 ill_refrele(ill); 24069 return (NULL); 24070 } 24071 24072 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 24073 if (!IPIF_CAN_LOOKUP(ipif)) 24074 continue; 24075 if (lifidx == ipif->ipif_id) { 24076 ipif_refhold_locked(ipif); 24077 break; 24078 } 24079 } 24080 24081 mutex_exit(&ill->ill_lock); 24082 ill_refrele(ill); 24083 return (ipif); 24084 } 24085 24086 /* 24087 * Flush the fastpath by deleting any nce's that are waiting for the fastpath, 24088 * There is one exceptions IRE_BROADCAST are difficult to recreate, 24089 * so instead we just nuke their nce_fp_mp's; see ndp_fastpath_flush() 24090 * for details. 24091 */ 24092 void 24093 ill_fastpath_flush(ill_t *ill) 24094 { 24095 ip_stack_t *ipst = ill->ill_ipst; 24096 24097 nce_fastpath_list_dispatch(ill, NULL, NULL); 24098 ndp_walk_common((ill->ill_isv6 ? ipst->ips_ndp6 : ipst->ips_ndp4), 24099 ill, (pfi_t)ndp_fastpath_flush, NULL, B_TRUE); 24100 } 24101 24102 /* 24103 * Set the physical address information for `ill' to the contents of the 24104 * dl_notify_ind_t pointed to by `mp'. Must be called as writer, and will be 24105 * asynchronous if `ill' cannot immediately be quiesced -- in which case 24106 * EINPROGRESS will be returned. 24107 */ 24108 int 24109 ill_set_phys_addr(ill_t *ill, mblk_t *mp) 24110 { 24111 ipsq_t *ipsq = ill->ill_phyint->phyint_ipsq; 24112 dl_notify_ind_t *dlindp = (dl_notify_ind_t *)mp->b_rptr; 24113 24114 ASSERT(IAM_WRITER_IPSQ(ipsq)); 24115 24116 if (dlindp->dl_data != DL_IPV6_LINK_LAYER_ADDR && 24117 dlindp->dl_data != DL_CURR_PHYS_ADDR) { 24118 /* Changing DL_IPV6_TOKEN is not yet supported */ 24119 return (0); 24120 } 24121 24122 /* 24123 * We need to store up to two copies of `mp' in `ill'. Due to the 24124 * design of ipsq_pending_mp_add(), we can't pass them as separate 24125 * arguments to ill_set_phys_addr_tail(). Instead, chain them 24126 * together here, then pull 'em apart in ill_set_phys_addr_tail(). 24127 */ 24128 if ((mp = copyb(mp)) == NULL || (mp->b_cont = copyb(mp)) == NULL) { 24129 freemsg(mp); 24130 return (ENOMEM); 24131 } 24132 24133 ipsq_current_start(ipsq, ill->ill_ipif, 0); 24134 24135 /* 24136 * If we can quiesce the ill, then set the address. If not, then 24137 * ill_set_phys_addr_tail() will be called from ipif_ill_refrele_tail(). 24138 */ 24139 ill_down_ipifs(ill, NULL, 0, B_FALSE); 24140 mutex_enter(&ill->ill_lock); 24141 if (!ill_is_quiescent(ill)) { 24142 /* call cannot fail since `conn_t *' argument is NULL */ 24143 (void) ipsq_pending_mp_add(NULL, ill->ill_ipif, ill->ill_rq, 24144 mp, ILL_DOWN); 24145 mutex_exit(&ill->ill_lock); 24146 return (EINPROGRESS); 24147 } 24148 mutex_exit(&ill->ill_lock); 24149 24150 ill_set_phys_addr_tail(ipsq, ill->ill_rq, mp, NULL); 24151 return (0); 24152 } 24153 24154 /* 24155 * Once the ill associated with `q' has quiesced, set its physical address 24156 * information to the values in `addrmp'. Note that two copies of `addrmp' 24157 * are passed (linked by b_cont), since we sometimes need to save two distinct 24158 * copies in the ill_t, and our context doesn't permit sleeping or allocation 24159 * failure (we'll free the other copy if it's not needed). Since the ill_t 24160 * is quiesced, we know any stale IREs with the old address information have 24161 * already been removed, so we don't need to call ill_fastpath_flush(). 24162 */ 24163 /* ARGSUSED */ 24164 static void 24165 ill_set_phys_addr_tail(ipsq_t *ipsq, queue_t *q, mblk_t *addrmp, void *dummy) 24166 { 24167 ill_t *ill = q->q_ptr; 24168 mblk_t *addrmp2 = unlinkb(addrmp); 24169 dl_notify_ind_t *dlindp = (dl_notify_ind_t *)addrmp->b_rptr; 24170 uint_t addrlen, addroff; 24171 24172 ASSERT(IAM_WRITER_IPSQ(ipsq)); 24173 24174 addroff = dlindp->dl_addr_offset; 24175 addrlen = dlindp->dl_addr_length - ABS(ill->ill_sap_length); 24176 24177 switch (dlindp->dl_data) { 24178 case DL_IPV6_LINK_LAYER_ADDR: 24179 ill_set_ndmp(ill, addrmp, addroff, addrlen); 24180 freemsg(addrmp2); 24181 break; 24182 24183 case DL_CURR_PHYS_ADDR: 24184 freemsg(ill->ill_phys_addr_mp); 24185 ill->ill_phys_addr = addrmp->b_rptr + addroff; 24186 ill->ill_phys_addr_mp = addrmp; 24187 ill->ill_phys_addr_length = addrlen; 24188 24189 if (ill->ill_isv6 && !(ill->ill_flags & ILLF_XRESOLV)) 24190 ill_set_ndmp(ill, addrmp2, addroff, addrlen); 24191 else 24192 freemsg(addrmp2); 24193 break; 24194 default: 24195 ASSERT(0); 24196 } 24197 24198 /* 24199 * If there are ipifs to bring up, ill_up_ipifs() will return 24200 * EINPROGRESS, and ipsq_current_finish() will be called by 24201 * ip_rput_dlpi_writer() or ip_arp_done() when the last ipif is 24202 * brought up. 24203 */ 24204 if (ill_up_ipifs(ill, q, addrmp) != EINPROGRESS) 24205 ipsq_current_finish(ipsq); 24206 } 24207 24208 /* 24209 * Helper routine for setting the ill_nd_lla fields. 24210 */ 24211 void 24212 ill_set_ndmp(ill_t *ill, mblk_t *ndmp, uint_t addroff, uint_t addrlen) 24213 { 24214 freemsg(ill->ill_nd_lla_mp); 24215 ill->ill_nd_lla = ndmp->b_rptr + addroff; 24216 ill->ill_nd_lla_mp = ndmp; 24217 ill->ill_nd_lla_len = addrlen; 24218 } 24219 24220 major_t IP_MAJ; 24221 #define IP "ip" 24222 24223 #define UDP6DEV "/devices/pseudo/udp6@0:udp6" 24224 #define UDPDEV "/devices/pseudo/udp@0:udp" 24225 24226 /* 24227 * Issue REMOVEIF ioctls to have the loopback interfaces 24228 * go away. Other interfaces are either I_LINKed or I_PLINKed; 24229 * the former going away when the user-level processes in the zone 24230 * are killed * and the latter are cleaned up by the stream head 24231 * str_stack_shutdown callback that undoes all I_PLINKs. 24232 */ 24233 void 24234 ip_loopback_cleanup(ip_stack_t *ipst) 24235 { 24236 int error; 24237 ldi_handle_t lh = NULL; 24238 ldi_ident_t li = NULL; 24239 int rval; 24240 cred_t *cr; 24241 struct strioctl iocb; 24242 struct lifreq lifreq; 24243 24244 IP_MAJ = ddi_name_to_major(IP); 24245 24246 #ifdef NS_DEBUG 24247 (void) printf("ip_loopback_cleanup() stackid %d\n", 24248 ipst->ips_netstack->netstack_stackid); 24249 #endif 24250 24251 bzero(&lifreq, sizeof (lifreq)); 24252 (void) strcpy(lifreq.lifr_name, ipif_loopback_name); 24253 24254 error = ldi_ident_from_major(IP_MAJ, &li); 24255 if (error) { 24256 #ifdef DEBUG 24257 printf("ip_loopback_cleanup: lyr ident get failed error %d\n", 24258 error); 24259 #endif 24260 return; 24261 } 24262 24263 cr = zone_get_kcred(netstackid_to_zoneid( 24264 ipst->ips_netstack->netstack_stackid)); 24265 ASSERT(cr != NULL); 24266 error = ldi_open_by_name(UDP6DEV, FREAD|FWRITE, cr, &lh, li); 24267 if (error) { 24268 #ifdef DEBUG 24269 printf("ip_loopback_cleanup: open of UDP6DEV failed error %d\n", 24270 error); 24271 #endif 24272 goto out; 24273 } 24274 iocb.ic_cmd = SIOCLIFREMOVEIF; 24275 iocb.ic_timout = 15; 24276 iocb.ic_len = sizeof (lifreq); 24277 iocb.ic_dp = (char *)&lifreq; 24278 24279 error = ldi_ioctl(lh, I_STR, (intptr_t)&iocb, FKIOCTL, cr, &rval); 24280 /* LINTED - statement has no consequent */ 24281 if (error) { 24282 #ifdef NS_DEBUG 24283 printf("ip_loopback_cleanup: ioctl SIOCLIFREMOVEIF failed on " 24284 "UDP6 error %d\n", error); 24285 #endif 24286 } 24287 (void) ldi_close(lh, FREAD|FWRITE, cr); 24288 lh = NULL; 24289 24290 error = ldi_open_by_name(UDPDEV, FREAD|FWRITE, cr, &lh, li); 24291 if (error) { 24292 #ifdef NS_DEBUG 24293 printf("ip_loopback_cleanup: open of UDPDEV failed error %d\n", 24294 error); 24295 #endif 24296 goto out; 24297 } 24298 24299 iocb.ic_cmd = SIOCLIFREMOVEIF; 24300 iocb.ic_timout = 15; 24301 iocb.ic_len = sizeof (lifreq); 24302 iocb.ic_dp = (char *)&lifreq; 24303 24304 error = ldi_ioctl(lh, I_STR, (intptr_t)&iocb, FKIOCTL, cr, &rval); 24305 /* LINTED - statement has no consequent */ 24306 if (error) { 24307 #ifdef NS_DEBUG 24308 printf("ip_loopback_cleanup: ioctl SIOCLIFREMOVEIF failed on " 24309 "UDP error %d\n", error); 24310 #endif 24311 } 24312 (void) ldi_close(lh, FREAD|FWRITE, cr); 24313 lh = NULL; 24314 24315 out: 24316 /* Close layered handles */ 24317 if (lh) 24318 (void) ldi_close(lh, FREAD|FWRITE, cr); 24319 if (li) 24320 ldi_ident_release(li); 24321 24322 crfree(cr); 24323 } 24324 24325 /* 24326 * This needs to be in-sync with nic_event_t definition 24327 */ 24328 static const char * 24329 ill_hook_event2str(nic_event_t event) 24330 { 24331 switch (event) { 24332 case NE_PLUMB: 24333 return ("PLUMB"); 24334 case NE_UNPLUMB: 24335 return ("UNPLUMB"); 24336 case NE_UP: 24337 return ("UP"); 24338 case NE_DOWN: 24339 return ("DOWN"); 24340 case NE_ADDRESS_CHANGE: 24341 return ("ADDRESS_CHANGE"); 24342 default: 24343 return ("UNKNOWN"); 24344 } 24345 } 24346 24347 static void 24348 ill_hook_event_destroy(ill_t *ill) 24349 { 24350 hook_nic_event_t *info; 24351 24352 if ((info = ill->ill_nic_event_info) != NULL) { 24353 if (info->hne_data != NULL) 24354 kmem_free(info->hne_data, info->hne_datalen); 24355 kmem_free(info, sizeof (hook_nic_event_t)); 24356 24357 ill->ill_nic_event_info = NULL; 24358 } 24359 24360 } 24361 24362 boolean_t 24363 ill_hook_event_create(ill_t *ill, lif_if_t lif, nic_event_t event, 24364 nic_event_data_t data, size_t datalen) 24365 { 24366 ip_stack_t *ipst = ill->ill_ipst; 24367 hook_nic_event_t *info; 24368 const char *str = NULL; 24369 24370 /* destroy nic event info if it exists */ 24371 if ((info = ill->ill_nic_event_info) != NULL) { 24372 str = ill_hook_event2str(info->hne_event); 24373 ip2dbg(("ill_hook_event_create: unexpected nic event %s " 24374 "attached for %s\n", str, ill->ill_name)); 24375 ill_hook_event_destroy(ill); 24376 } 24377 24378 /* create a new nic event info */ 24379 if ((info = kmem_alloc(sizeof (hook_nic_event_t), KM_NOSLEEP)) == NULL) 24380 goto fail; 24381 24382 ill->ill_nic_event_info = info; 24383 24384 if (event == NE_UNPLUMB) 24385 info->hne_nic = ill->ill_phyint->phyint_ifindex; 24386 else 24387 info->hne_nic = ill->ill_phyint->phyint_hook_ifindex; 24388 info->hne_lif = lif; 24389 info->hne_event = event; 24390 info->hne_family = ill->ill_isv6 ? 24391 ipst->ips_ipv6_net_data : ipst->ips_ipv4_net_data; 24392 info->hne_data = NULL; 24393 info->hne_datalen = 0; 24394 24395 if (data != NULL && datalen != 0) { 24396 info->hne_data = kmem_alloc(datalen, KM_NOSLEEP); 24397 if (info->hne_data != NULL) { 24398 bcopy(data, info->hne_data, datalen); 24399 info->hne_datalen = datalen; 24400 } else { 24401 ill_hook_event_destroy(ill); 24402 goto fail; 24403 } 24404 } 24405 24406 return (B_TRUE); 24407 fail: 24408 str = ill_hook_event2str(event); 24409 ip2dbg(("ill_hook_event_create: could not attach %s nic event " 24410 "information for %s (ENOMEM)\n", str, ill->ill_name)); 24411 return (B_FALSE); 24412 } 24413