1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2007 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 /* Copyright (c) 1990 Mentat Inc. */ 26 27 #pragma ident "%Z%%M% %I% %E% SMI" 28 29 /* 30 * This file contains the interface control functions for IP. 31 */ 32 33 #include <sys/types.h> 34 #include <sys/stream.h> 35 #include <sys/dlpi.h> 36 #include <sys/stropts.h> 37 #include <sys/strsun.h> 38 #include <sys/sysmacros.h> 39 #include <sys/strlog.h> 40 #include <sys/ddi.h> 41 #include <sys/sunddi.h> 42 #include <sys/cmn_err.h> 43 #include <sys/kstat.h> 44 #include <sys/debug.h> 45 #include <sys/zone.h> 46 #include <sys/sunldi.h> 47 #include <sys/file.h> 48 49 #include <sys/kmem.h> 50 #include <sys/systm.h> 51 #include <sys/param.h> 52 #include <sys/socket.h> 53 #include <sys/isa_defs.h> 54 #include <net/if.h> 55 #include <net/if_arp.h> 56 #include <net/if_types.h> 57 #include <net/if_dl.h> 58 #include <net/route.h> 59 #include <sys/sockio.h> 60 #include <netinet/in.h> 61 #include <netinet/ip6.h> 62 #include <netinet/icmp6.h> 63 #include <netinet/igmp_var.h> 64 #include <sys/strsun.h> 65 #include <sys/policy.h> 66 #include <sys/ethernet.h> 67 68 #include <inet/common.h> /* for various inet/mi.h and inet/nd.h needs */ 69 #include <inet/mi.h> 70 #include <inet/nd.h> 71 #include <inet/arp.h> 72 #include <inet/mib2.h> 73 #include <inet/ip.h> 74 #include <inet/ip6.h> 75 #include <inet/ip6_asp.h> 76 #include <inet/tcp.h> 77 #include <inet/ip_multi.h> 78 #include <inet/ip_ire.h> 79 #include <inet/ip_ftable.h> 80 #include <inet/ip_rts.h> 81 #include <inet/ip_ndp.h> 82 #include <inet/ip_if.h> 83 #include <inet/ip_impl.h> 84 #include <inet/tun.h> 85 #include <inet/sctp_ip.h> 86 #include <inet/ip_netinfo.h> 87 #include <inet/mib2.h> 88 89 #include <net/pfkeyv2.h> 90 #include <inet/ipsec_info.h> 91 #include <inet/sadb.h> 92 #include <inet/ipsec_impl.h> 93 #include <sys/iphada.h> 94 95 96 #include <netinet/igmp.h> 97 #include <inet/ip_listutils.h> 98 #include <inet/ipclassifier.h> 99 #include <sys/mac.h> 100 101 #include <sys/systeminfo.h> 102 #include <sys/bootconf.h> 103 104 #include <sys/tsol/tndb.h> 105 #include <sys/tsol/tnet.h> 106 107 /* The character which tells where the ill_name ends */ 108 #define IPIF_SEPARATOR_CHAR ':' 109 110 /* IP ioctl function table entry */ 111 typedef struct ipft_s { 112 int ipft_cmd; 113 pfi_t ipft_pfi; 114 int ipft_min_size; 115 int ipft_flags; 116 } ipft_t; 117 #define IPFT_F_NO_REPLY 0x1 /* IP ioctl does not expect any reply */ 118 #define IPFT_F_SELF_REPLY 0x2 /* ioctl callee does the ioctl reply */ 119 120 typedef struct ip_sock_ar_s { 121 union { 122 area_t ip_sock_area; 123 ared_t ip_sock_ared; 124 areq_t ip_sock_areq; 125 } ip_sock_ar_u; 126 queue_t *ip_sock_ar_q; 127 } ip_sock_ar_t; 128 129 static int nd_ill_forward_get(queue_t *, mblk_t *, caddr_t, cred_t *); 130 static int nd_ill_forward_set(queue_t *q, mblk_t *mp, 131 char *value, caddr_t cp, cred_t *ioc_cr); 132 133 static boolean_t ip_addr_ok_v4(ipaddr_t addr, ipaddr_t subnet_mask); 134 static ip_m_t *ip_m_lookup(t_uscalar_t mac_type); 135 static int ip_sioctl_addr_tail(ipif_t *ipif, sin_t *sin, queue_t *q, 136 mblk_t *mp, boolean_t need_up); 137 static int ip_sioctl_dstaddr_tail(ipif_t *ipif, sin_t *sin, queue_t *q, 138 mblk_t *mp, boolean_t need_up); 139 static int ip_sioctl_slifzone_tail(ipif_t *ipif, zoneid_t zoneid, 140 queue_t *q, mblk_t *mp, boolean_t need_up); 141 static int ip_sioctl_flags_tail(ipif_t *ipif, uint64_t flags, queue_t *q, 142 mblk_t *mp, boolean_t need_up); 143 static int ip_sioctl_netmask_tail(ipif_t *ipif, sin_t *sin, queue_t *q, 144 mblk_t *mp); 145 static int ip_sioctl_subnet_tail(ipif_t *ipif, in6_addr_t, in6_addr_t, 146 queue_t *q, mblk_t *mp, boolean_t need_up); 147 static int ip_sioctl_arp_common(ill_t *ill, queue_t *q, mblk_t *mp, 148 sin_t *sin, boolean_t x_arp_ioctl, boolean_t if_arp_ioctl); 149 static ipaddr_t ip_subnet_mask(ipaddr_t addr, ipif_t **, ip_stack_t *); 150 static void ip_wput_ioctl(queue_t *q, mblk_t *mp); 151 static void ipsq_flush(ill_t *ill); 152 static void ipsq_clean_all(ill_t *ill); 153 static void ipsq_clean_ring(ill_t *ill, ill_rx_ring_t *rx_ring); 154 static int ip_sioctl_token_tail(ipif_t *ipif, sin6_t *sin6, int addrlen, 155 queue_t *q, mblk_t *mp, boolean_t need_up); 156 static void ipsq_delete(ipsq_t *); 157 158 static ipif_t *ipif_allocate(ill_t *ill, int id, uint_t ire_type, 159 boolean_t initialize); 160 static void ipif_check_bcast_ires(ipif_t *test_ipif); 161 static void ipif_down_delete_ire(ire_t *ire, char *ipif); 162 static void ipif_delete_cache_ire(ire_t *, char *); 163 static int ipif_logical_down(ipif_t *ipif, queue_t *q, mblk_t *mp); 164 static void ipif_free(ipif_t *ipif); 165 static void ipif_free_tail(ipif_t *ipif); 166 static void ipif_mtu_change(ire_t *ire, char *ipif_arg); 167 static void ipif_multicast_down(ipif_t *ipif); 168 static void ipif_recreate_interface_routes(ipif_t *old_ipif, ipif_t *ipif); 169 static void ipif_set_default(ipif_t *ipif); 170 static int ipif_set_values(queue_t *q, mblk_t *mp, 171 char *interf_name, uint_t *ppa); 172 static int ipif_set_values_tail(ill_t *ill, ipif_t *ipif, mblk_t *mp, 173 queue_t *q); 174 static ipif_t *ipif_lookup_on_name(char *name, size_t namelen, 175 boolean_t do_alloc, boolean_t *exists, boolean_t isv6, zoneid_t zoneid, 176 queue_t *q, mblk_t *mp, ipsq_func_t func, int *error, ip_stack_t *); 177 static int ipif_up(ipif_t *ipif, queue_t *q, mblk_t *mp); 178 static void ipif_update_other_ipifs(ipif_t *old_ipif, ill_group_t *illgrp); 179 180 static int ill_alloc_ppa(ill_if_t *, ill_t *); 181 static int ill_arp_off(ill_t *ill); 182 static int ill_arp_on(ill_t *ill); 183 static void ill_delete_interface_type(ill_if_t *); 184 static int ill_dl_up(ill_t *ill, ipif_t *ipif, mblk_t *mp, queue_t *q); 185 static void ill_dl_down(ill_t *ill); 186 static void ill_down(ill_t *ill); 187 static void ill_downi(ire_t *ire, char *ill_arg); 188 static void ill_downi_mrtun_srcif(ire_t *ire, char *ill_arg); 189 static void ill_down_tail(ill_t *ill); 190 static void ill_free_mib(ill_t *ill); 191 static void ill_glist_delete(ill_t *); 192 static boolean_t ill_has_usable_ipif(ill_t *); 193 static int ill_lock_ipsq_ills(ipsq_t *sq, ill_t **list, int); 194 static void ill_nominate_bcast_rcv(ill_group_t *illgrp); 195 static void ill_phyint_free(ill_t *ill); 196 static void ill_phyint_reinit(ill_t *ill); 197 static void ill_set_nce_router_flags(ill_t *, boolean_t); 198 static void ill_set_phys_addr_tail(ipsq_t *, queue_t *, mblk_t *, void *); 199 static void ill_signal_ipsq_ills(ipsq_t *, boolean_t); 200 static boolean_t ill_split_ipsq(ipsq_t *cur_sq); 201 static void ill_stq_cache_delete(ire_t *, char *); 202 203 static boolean_t ip_ether_v6intfid(uint_t, uint8_t *, in6_addr_t *); 204 static boolean_t ip_nodef_v6intfid(uint_t, uint8_t *, in6_addr_t *); 205 static boolean_t ip_ether_v6mapinfo(uint_t, uint8_t *, uint8_t *, uint32_t *, 206 in6_addr_t *); 207 static boolean_t ip_ether_v4mapinfo(uint_t, uint8_t *, uint8_t *, uint32_t *, 208 ipaddr_t *); 209 static boolean_t ip_ib_v6intfid(uint_t, uint8_t *, in6_addr_t *); 210 static boolean_t ip_ib_v6mapinfo(uint_t, uint8_t *, uint8_t *, uint32_t *, 211 in6_addr_t *); 212 static boolean_t ip_ib_v4mapinfo(uint_t, uint8_t *, uint8_t *, uint32_t *, 213 ipaddr_t *); 214 215 static void ipif_save_ire(ipif_t *, ire_t *); 216 static void ipif_remove_ire(ipif_t *, ire_t *); 217 static void ip_cgtp_bcast_add(ire_t *, ire_t *, ip_stack_t *); 218 static void ip_cgtp_bcast_delete(ire_t *, ip_stack_t *); 219 220 /* 221 * Per-ill IPsec capabilities management. 222 */ 223 static ill_ipsec_capab_t *ill_ipsec_capab_alloc(void); 224 static void ill_ipsec_capab_free(ill_ipsec_capab_t *); 225 static void ill_ipsec_capab_add(ill_t *, uint_t, boolean_t); 226 static void ill_ipsec_capab_delete(ill_t *, uint_t); 227 static boolean_t ill_ipsec_capab_resize_algparm(ill_ipsec_capab_t *, int); 228 static void ill_capability_proto(ill_t *, int, mblk_t *); 229 static void ill_capability_dispatch(ill_t *, mblk_t *, dl_capability_sub_t *, 230 boolean_t); 231 static void ill_capability_id_ack(ill_t *, mblk_t *, dl_capability_sub_t *); 232 static void ill_capability_mdt_ack(ill_t *, mblk_t *, dl_capability_sub_t *); 233 static void ill_capability_mdt_reset(ill_t *, mblk_t **); 234 static void ill_capability_ipsec_ack(ill_t *, mblk_t *, dl_capability_sub_t *); 235 static void ill_capability_ipsec_reset(ill_t *, mblk_t **); 236 static void ill_capability_hcksum_ack(ill_t *, mblk_t *, dl_capability_sub_t *); 237 static void ill_capability_hcksum_reset(ill_t *, mblk_t **); 238 static void ill_capability_zerocopy_ack(ill_t *, mblk_t *, 239 dl_capability_sub_t *); 240 static void ill_capability_zerocopy_reset(ill_t *, mblk_t **); 241 static void ill_capability_lso_ack(ill_t *, mblk_t *, dl_capability_sub_t *); 242 static void ill_capability_lso_reset(ill_t *, mblk_t **); 243 static void ill_capability_dls_ack(ill_t *, mblk_t *, dl_capability_sub_t *); 244 static mac_resource_handle_t ill_ring_add(void *, mac_resource_t *); 245 static void ill_capability_dls_reset(ill_t *, mblk_t **); 246 static void ill_capability_dls_disable(ill_t *); 247 248 static void illgrp_cache_delete(ire_t *, char *); 249 static void illgrp_delete(ill_t *ill); 250 static void illgrp_reset_schednext(ill_t *ill); 251 252 static ill_t *ill_prev_usesrc(ill_t *); 253 static int ill_relink_usesrc_ills(ill_t *, ill_t *, uint_t); 254 static void ill_disband_usesrc_group(ill_t *); 255 256 static void conn_cleanup_stale_ire(conn_t *, caddr_t); 257 258 /* 259 * if we go over the memory footprint limit more than once in this msec 260 * interval, we'll start pruning aggressively. 261 */ 262 int ip_min_frag_prune_time = 0; 263 264 /* 265 * max # of IPsec algorithms supported. Limited to 1 byte by PF_KEY 266 * and the IPsec DOI 267 */ 268 #define MAX_IPSEC_ALGS 256 269 270 #define BITSPERBYTE 8 271 #define BITS(type) (BITSPERBYTE * (long)sizeof (type)) 272 273 #define IPSEC_ALG_ENABLE(algs, algid) \ 274 ((algs)[(algid) / BITS(ipsec_capab_elem_t)] |= \ 275 (1 << ((algid) % BITS(ipsec_capab_elem_t)))) 276 277 #define IPSEC_ALG_IS_ENABLED(algid, algs) \ 278 ((algs)[(algid) / BITS(ipsec_capab_elem_t)] & \ 279 (1 << ((algid) % BITS(ipsec_capab_elem_t)))) 280 281 typedef uint8_t ipsec_capab_elem_t; 282 283 /* 284 * Per-algorithm parameters. Note that at present, only encryption 285 * algorithms have variable keysize (IKE does not provide a way to negotiate 286 * auth algorithm keysize). 287 * 288 * All sizes here are in bits. 289 */ 290 typedef struct 291 { 292 uint16_t minkeylen; 293 uint16_t maxkeylen; 294 } ipsec_capab_algparm_t; 295 296 /* 297 * Per-ill capabilities. 298 */ 299 struct ill_ipsec_capab_s { 300 ipsec_capab_elem_t *encr_hw_algs; 301 ipsec_capab_elem_t *auth_hw_algs; 302 uint32_t algs_size; /* size of _hw_algs in bytes */ 303 /* algorithm key lengths */ 304 ipsec_capab_algparm_t *encr_algparm; 305 uint32_t encr_algparm_size; 306 uint32_t encr_algparm_end; 307 }; 308 309 /* 310 * The field values are larger than strictly necessary for simple 311 * AR_ENTRY_ADDs but the padding lets us accomodate the socket ioctls. 312 */ 313 static area_t ip_area_template = { 314 AR_ENTRY_ADD, /* area_cmd */ 315 sizeof (ip_sock_ar_t) + (IP_ADDR_LEN*2) + sizeof (struct sockaddr_dl), 316 /* area_name_offset */ 317 /* area_name_length temporarily holds this structure length */ 318 sizeof (area_t), /* area_name_length */ 319 IP_ARP_PROTO_TYPE, /* area_proto */ 320 sizeof (ip_sock_ar_t), /* area_proto_addr_offset */ 321 IP_ADDR_LEN, /* area_proto_addr_length */ 322 sizeof (ip_sock_ar_t) + IP_ADDR_LEN, 323 /* area_proto_mask_offset */ 324 0, /* area_flags */ 325 sizeof (ip_sock_ar_t) + IP_ADDR_LEN + IP_ADDR_LEN, 326 /* area_hw_addr_offset */ 327 /* Zero length hw_addr_length means 'use your idea of the address' */ 328 0 /* area_hw_addr_length */ 329 }; 330 331 /* 332 * AR_ENTRY_ADD/DELETE templates have been added for IPv6 external resolver 333 * support 334 */ 335 static area_t ip6_area_template = { 336 AR_ENTRY_ADD, /* area_cmd */ 337 sizeof (ip_sock_ar_t) + (IPV6_ADDR_LEN*2) + sizeof (sin6_t), 338 /* area_name_offset */ 339 /* area_name_length temporarily holds this structure length */ 340 sizeof (area_t), /* area_name_length */ 341 IP_ARP_PROTO_TYPE, /* area_proto */ 342 sizeof (ip_sock_ar_t), /* area_proto_addr_offset */ 343 IPV6_ADDR_LEN, /* area_proto_addr_length */ 344 sizeof (ip_sock_ar_t) + IPV6_ADDR_LEN, 345 /* area_proto_mask_offset */ 346 0, /* area_flags */ 347 sizeof (ip_sock_ar_t) + IPV6_ADDR_LEN + IPV6_ADDR_LEN, 348 /* area_hw_addr_offset */ 349 /* Zero length hw_addr_length means 'use your idea of the address' */ 350 0 /* area_hw_addr_length */ 351 }; 352 353 static ared_t ip_ared_template = { 354 AR_ENTRY_DELETE, 355 sizeof (ared_t) + IP_ADDR_LEN, 356 sizeof (ared_t), 357 IP_ARP_PROTO_TYPE, 358 sizeof (ared_t), 359 IP_ADDR_LEN 360 }; 361 362 static ared_t ip6_ared_template = { 363 AR_ENTRY_DELETE, 364 sizeof (ared_t) + IPV6_ADDR_LEN, 365 sizeof (ared_t), 366 IP_ARP_PROTO_TYPE, 367 sizeof (ared_t), 368 IPV6_ADDR_LEN 369 }; 370 371 /* 372 * A template for an IPv6 AR_ENTRY_QUERY template has not been created, as 373 * as the areq doesn't include an IP address in ill_dl_up() (the only place a 374 * areq is used). 375 */ 376 static areq_t ip_areq_template = { 377 AR_ENTRY_QUERY, /* cmd */ 378 sizeof (areq_t)+(2*IP_ADDR_LEN), /* name offset */ 379 sizeof (areq_t), /* name len (filled by ill_arp_alloc) */ 380 IP_ARP_PROTO_TYPE, /* protocol, from arps perspective */ 381 sizeof (areq_t), /* target addr offset */ 382 IP_ADDR_LEN, /* target addr_length */ 383 0, /* flags */ 384 sizeof (areq_t) + IP_ADDR_LEN, /* sender addr offset */ 385 IP_ADDR_LEN, /* sender addr length */ 386 AR_EQ_DEFAULT_XMIT_COUNT, /* xmit_count */ 387 AR_EQ_DEFAULT_XMIT_INTERVAL, /* (re)xmit_interval in milliseconds */ 388 AR_EQ_DEFAULT_MAX_BUFFERED /* max # of requests to buffer */ 389 /* anything else filled in by the code */ 390 }; 391 392 static arc_t ip_aru_template = { 393 AR_INTERFACE_UP, 394 sizeof (arc_t), /* Name offset */ 395 sizeof (arc_t) /* Name length (set by ill_arp_alloc) */ 396 }; 397 398 static arc_t ip_ard_template = { 399 AR_INTERFACE_DOWN, 400 sizeof (arc_t), /* Name offset */ 401 sizeof (arc_t) /* Name length (set by ill_arp_alloc) */ 402 }; 403 404 static arc_t ip_aron_template = { 405 AR_INTERFACE_ON, 406 sizeof (arc_t), /* Name offset */ 407 sizeof (arc_t) /* Name length (set by ill_arp_alloc) */ 408 }; 409 410 static arc_t ip_aroff_template = { 411 AR_INTERFACE_OFF, 412 sizeof (arc_t), /* Name offset */ 413 sizeof (arc_t) /* Name length (set by ill_arp_alloc) */ 414 }; 415 416 417 static arma_t ip_arma_multi_template = { 418 AR_MAPPING_ADD, 419 sizeof (arma_t) + 3*IP_ADDR_LEN + IP_MAX_HW_LEN, 420 /* Name offset */ 421 sizeof (arma_t), /* Name length (set by ill_arp_alloc) */ 422 IP_ARP_PROTO_TYPE, 423 sizeof (arma_t), /* proto_addr_offset */ 424 IP_ADDR_LEN, /* proto_addr_length */ 425 sizeof (arma_t) + IP_ADDR_LEN, /* proto_mask_offset */ 426 sizeof (arma_t) + 2*IP_ADDR_LEN, /* proto_extract_mask_offset */ 427 ACE_F_PERMANENT | ACE_F_MAPPING, /* flags */ 428 sizeof (arma_t) + 3*IP_ADDR_LEN, /* hw_addr_offset */ 429 IP_MAX_HW_LEN, /* hw_addr_length */ 430 0, /* hw_mapping_start */ 431 }; 432 433 static ipft_t ip_ioctl_ftbl[] = { 434 { IP_IOC_IRE_DELETE, ip_ire_delete, sizeof (ipid_t), 0 }, 435 { IP_IOC_IRE_DELETE_NO_REPLY, ip_ire_delete, sizeof (ipid_t), 436 IPFT_F_NO_REPLY }, 437 { IP_IOC_IRE_ADVISE_NO_REPLY, ip_ire_advise, sizeof (ipic_t), 438 IPFT_F_NO_REPLY }, 439 { IP_IOC_RTS_REQUEST, ip_rts_request, 0, IPFT_F_SELF_REPLY }, 440 { 0 } 441 }; 442 443 /* Simple ICMP IP Header Template */ 444 static ipha_t icmp_ipha = { 445 IP_SIMPLE_HDR_VERSION, 0, 0, 0, 0, 0, IPPROTO_ICMP 446 }; 447 448 /* Flag descriptors for ip_ipif_report */ 449 static nv_t ipif_nv_tbl[] = { 450 { IPIF_UP, "UP" }, 451 { IPIF_BROADCAST, "BROADCAST" }, 452 { ILLF_DEBUG, "DEBUG" }, 453 { PHYI_LOOPBACK, "LOOPBACK" }, 454 { IPIF_POINTOPOINT, "POINTOPOINT" }, 455 { ILLF_NOTRAILERS, "NOTRAILERS" }, 456 { PHYI_RUNNING, "RUNNING" }, 457 { ILLF_NOARP, "NOARP" }, 458 { PHYI_PROMISC, "PROMISC" }, 459 { PHYI_ALLMULTI, "ALLMULTI" }, 460 { PHYI_INTELLIGENT, "INTELLIGENT" }, 461 { ILLF_MULTICAST, "MULTICAST" }, 462 { PHYI_MULTI_BCAST, "MULTI_BCAST" }, 463 { IPIF_UNNUMBERED, "UNNUMBERED" }, 464 { IPIF_DHCPRUNNING, "DHCP" }, 465 { IPIF_PRIVATE, "PRIVATE" }, 466 { IPIF_NOXMIT, "NOXMIT" }, 467 { IPIF_NOLOCAL, "NOLOCAL" }, 468 { IPIF_DEPRECATED, "DEPRECATED" }, 469 { IPIF_PREFERRED, "PREFERRED" }, 470 { IPIF_TEMPORARY, "TEMPORARY" }, 471 { IPIF_ADDRCONF, "ADDRCONF" }, 472 { PHYI_VIRTUAL, "VIRTUAL" }, 473 { ILLF_ROUTER, "ROUTER" }, 474 { ILLF_NONUD, "NONUD" }, 475 { IPIF_ANYCAST, "ANYCAST" }, 476 { ILLF_NORTEXCH, "NORTEXCH" }, 477 { ILLF_IPV4, "IPV4" }, 478 { ILLF_IPV6, "IPV6" }, 479 { IPIF_MIPRUNNING, "MIP" }, 480 { IPIF_NOFAILOVER, "NOFAILOVER" }, 481 { PHYI_FAILED, "FAILED" }, 482 { PHYI_STANDBY, "STANDBY" }, 483 { PHYI_INACTIVE, "INACTIVE" }, 484 { PHYI_OFFLINE, "OFFLINE" }, 485 }; 486 487 static uchar_t ip_six_byte_all_ones[] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF }; 488 489 static ip_m_t ip_m_tbl[] = { 490 { DL_ETHER, IFT_ETHER, ip_ether_v4mapinfo, ip_ether_v6mapinfo, 491 ip_ether_v6intfid }, 492 { DL_CSMACD, IFT_ISO88023, ip_ether_v4mapinfo, ip_ether_v6mapinfo, 493 ip_nodef_v6intfid }, 494 { DL_TPB, IFT_ISO88024, ip_ether_v4mapinfo, ip_ether_v6mapinfo, 495 ip_nodef_v6intfid }, 496 { DL_TPR, IFT_ISO88025, ip_ether_v4mapinfo, ip_ether_v6mapinfo, 497 ip_nodef_v6intfid }, 498 { DL_FDDI, IFT_FDDI, ip_ether_v4mapinfo, ip_ether_v6mapinfo, 499 ip_ether_v6intfid }, 500 { DL_IB, IFT_IB, ip_ib_v4mapinfo, ip_ib_v6mapinfo, 501 ip_ib_v6intfid }, 502 { SUNW_DL_VNI, IFT_OTHER, NULL, NULL, NULL}, 503 { DL_OTHER, IFT_OTHER, ip_ether_v4mapinfo, ip_ether_v6mapinfo, 504 ip_nodef_v6intfid } 505 }; 506 507 static ill_t ill_null; /* Empty ILL for init. */ 508 char ipif_loopback_name[] = "lo0"; 509 static char *ipv4_forward_suffix = ":ip_forwarding"; 510 static char *ipv6_forward_suffix = ":ip6_forwarding"; 511 static sin6_t sin6_null; /* Zero address for quick clears */ 512 static sin_t sin_null; /* Zero address for quick clears */ 513 514 /* When set search for unused ipif_seqid */ 515 static ipif_t ipif_zero; 516 517 /* 518 * ppa arena is created after these many 519 * interfaces have been plumbed. 520 */ 521 uint_t ill_no_arena = 12; /* Setable in /etc/system */ 522 523 /* 524 * Enable soft rings if ip_squeue_soft_ring or ip_squeue_fanout 525 * is set and ip_soft_rings_cnt > 0. ip_squeue_soft_ring is 526 * set through platform specific code (Niagara/Ontario). 527 */ 528 #define SOFT_RINGS_ENABLED() (ip_soft_rings_cnt ? \ 529 (ip_squeue_soft_ring || ip_squeue_fanout) : B_FALSE) 530 531 #define ILL_CAPAB_DLS (ILL_CAPAB_SOFT_RING | ILL_CAPAB_POLL) 532 533 static uint_t 534 ipif_rand(ip_stack_t *ipst) 535 { 536 ipst->ips_ipif_src_random = ipst->ips_ipif_src_random * 1103515245 + 537 12345; 538 return ((ipst->ips_ipif_src_random >> 16) & 0x7fff); 539 } 540 541 /* 542 * Allocate per-interface mibs. 543 * Returns true if ok. False otherwise. 544 * ipsq may not yet be allocated (loopback case ). 545 */ 546 static boolean_t 547 ill_allocate_mibs(ill_t *ill) 548 { 549 /* Already allocated? */ 550 if (ill->ill_ip_mib != NULL) { 551 if (ill->ill_isv6) 552 ASSERT(ill->ill_icmp6_mib != NULL); 553 return (B_TRUE); 554 } 555 556 ill->ill_ip_mib = kmem_zalloc(sizeof (*ill->ill_ip_mib), 557 KM_NOSLEEP); 558 if (ill->ill_ip_mib == NULL) { 559 return (B_FALSE); 560 } 561 562 /* Setup static information */ 563 SET_MIB(ill->ill_ip_mib->ipIfStatsEntrySize, 564 sizeof (mib2_ipIfStatsEntry_t)); 565 if (ill->ill_isv6) { 566 ill->ill_ip_mib->ipIfStatsIPVersion = MIB2_INETADDRESSTYPE_ipv6; 567 SET_MIB(ill->ill_ip_mib->ipIfStatsAddrEntrySize, 568 sizeof (mib2_ipv6AddrEntry_t)); 569 SET_MIB(ill->ill_ip_mib->ipIfStatsRouteEntrySize, 570 sizeof (mib2_ipv6RouteEntry_t)); 571 SET_MIB(ill->ill_ip_mib->ipIfStatsNetToMediaEntrySize, 572 sizeof (mib2_ipv6NetToMediaEntry_t)); 573 SET_MIB(ill->ill_ip_mib->ipIfStatsMemberEntrySize, 574 sizeof (ipv6_member_t)); 575 SET_MIB(ill->ill_ip_mib->ipIfStatsGroupSourceEntrySize, 576 sizeof (ipv6_grpsrc_t)); 577 } else { 578 ill->ill_ip_mib->ipIfStatsIPVersion = MIB2_INETADDRESSTYPE_ipv4; 579 SET_MIB(ill->ill_ip_mib->ipIfStatsAddrEntrySize, 580 sizeof (mib2_ipAddrEntry_t)); 581 SET_MIB(ill->ill_ip_mib->ipIfStatsRouteEntrySize, 582 sizeof (mib2_ipRouteEntry_t)); 583 SET_MIB(ill->ill_ip_mib->ipIfStatsNetToMediaEntrySize, 584 sizeof (mib2_ipNetToMediaEntry_t)); 585 SET_MIB(ill->ill_ip_mib->ipIfStatsMemberEntrySize, 586 sizeof (ip_member_t)); 587 SET_MIB(ill->ill_ip_mib->ipIfStatsGroupSourceEntrySize, 588 sizeof (ip_grpsrc_t)); 589 590 /* 591 * For a v4 ill, we are done at this point, because per ill 592 * icmp mibs are only used for v6. 593 */ 594 return (B_TRUE); 595 } 596 597 ill->ill_icmp6_mib = kmem_zalloc(sizeof (*ill->ill_icmp6_mib), 598 KM_NOSLEEP); 599 if (ill->ill_icmp6_mib == NULL) { 600 kmem_free(ill->ill_ip_mib, sizeof (*ill->ill_ip_mib)); 601 ill->ill_ip_mib = NULL; 602 return (B_FALSE); 603 } 604 /* static icmp info */ 605 ill->ill_icmp6_mib->ipv6IfIcmpEntrySize = 606 sizeof (mib2_ipv6IfIcmpEntry_t); 607 /* 608 * The ipIfStatsIfindex and ipv6IfIcmpIndex will be assigned later 609 * after the phyint merge occurs in ipif_set_values -> ill_glist_insert 610 * -> ill_phyint_reinit 611 */ 612 return (B_TRUE); 613 } 614 615 /* 616 * Common code for preparation of ARP commands. Two points to remember: 617 * 1) The ill_name is tacked on at the end of the allocated space so 618 * the templates name_offset field must contain the total space 619 * to allocate less the name length. 620 * 621 * 2) The templates name_length field should contain the *template* 622 * length. We use it as a parameter to bcopy() and then write 623 * the real ill_name_length into the name_length field of the copy. 624 * (Always called as writer.) 625 */ 626 mblk_t * 627 ill_arp_alloc(ill_t *ill, uchar_t *template, caddr_t addr) 628 { 629 arc_t *arc = (arc_t *)template; 630 char *cp; 631 int len; 632 mblk_t *mp; 633 uint_t name_length = ill->ill_name_length; 634 uint_t template_len = arc->arc_name_length; 635 636 len = arc->arc_name_offset + name_length; 637 mp = allocb(len, BPRI_HI); 638 if (mp == NULL) 639 return (NULL); 640 cp = (char *)mp->b_rptr; 641 mp->b_wptr = (uchar_t *)&cp[len]; 642 if (template_len) 643 bcopy(template, cp, template_len); 644 if (len > template_len) 645 bzero(&cp[template_len], len - template_len); 646 mp->b_datap->db_type = M_PROTO; 647 648 arc = (arc_t *)cp; 649 arc->arc_name_length = name_length; 650 cp = (char *)arc + arc->arc_name_offset; 651 bcopy(ill->ill_name, cp, name_length); 652 653 if (addr) { 654 area_t *area = (area_t *)mp->b_rptr; 655 656 cp = (char *)area + area->area_proto_addr_offset; 657 bcopy(addr, cp, area->area_proto_addr_length); 658 if (area->area_cmd == AR_ENTRY_ADD) { 659 cp = (char *)area; 660 len = area->area_proto_addr_length; 661 if (area->area_proto_mask_offset) 662 cp += area->area_proto_mask_offset; 663 else 664 cp += area->area_proto_addr_offset + len; 665 while (len-- > 0) 666 *cp++ = (char)~0; 667 } 668 } 669 return (mp); 670 } 671 672 mblk_t * 673 ipif_area_alloc(ipif_t *ipif) 674 { 675 return (ill_arp_alloc(ipif->ipif_ill, (uchar_t *)&ip_area_template, 676 (char *)&ipif->ipif_lcl_addr)); 677 } 678 679 mblk_t * 680 ipif_ared_alloc(ipif_t *ipif) 681 { 682 return (ill_arp_alloc(ipif->ipif_ill, (uchar_t *)&ip_ared_template, 683 (char *)&ipif->ipif_lcl_addr)); 684 } 685 686 mblk_t * 687 ill_ared_alloc(ill_t *ill, ipaddr_t addr) 688 { 689 return (ill_arp_alloc(ill, (uchar_t *)&ip_ared_template, 690 (char *)&addr)); 691 } 692 693 /* 694 * Completely vaporize a lower level tap and all associated interfaces. 695 * ill_delete is called only out of ip_close when the device control 696 * stream is being closed. 697 */ 698 void 699 ill_delete(ill_t *ill) 700 { 701 ipif_t *ipif; 702 ill_t *prev_ill; 703 ip_stack_t *ipst = ill->ill_ipst; 704 705 /* 706 * ill_delete may be forcibly entering the ipsq. The previous 707 * ioctl may not have completed and may need to be aborted. 708 * ipsq_flush takes care of it. If we don't need to enter the 709 * the ipsq forcibly, the 2nd invocation of ipsq_flush in 710 * ill_delete_tail is sufficient. 711 */ 712 ipsq_flush(ill); 713 714 /* 715 * Nuke all interfaces. ipif_free will take down the interface, 716 * remove it from the list, and free the data structure. 717 * Walk down the ipif list and remove the logical interfaces 718 * first before removing the main ipif. We can't unplumb 719 * zeroth interface first in the case of IPv6 as reset_conn_ill 720 * -> ip_ll_delmulti_v6 de-references ill_ipif for checking 721 * POINTOPOINT. 722 * 723 * If ill_ipif was not properly initialized (i.e low on memory), 724 * then no interfaces to clean up. In this case just clean up the 725 * ill. 726 */ 727 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) 728 ipif_free(ipif); 729 730 /* 731 * Used only by ill_arp_on and ill_arp_off, which are writers. 732 * So nobody can be using this mp now. Free the mp allocated for 733 * honoring ILLF_NOARP 734 */ 735 freemsg(ill->ill_arp_on_mp); 736 ill->ill_arp_on_mp = NULL; 737 738 /* Clean up msgs on pending upcalls for mrouted */ 739 reset_mrt_ill(ill); 740 741 /* 742 * ipif_free -> reset_conn_ipif will remove all multicast 743 * references for IPv4. For IPv6, we need to do it here as 744 * it points only at ills. 745 */ 746 reset_conn_ill(ill); 747 748 /* 749 * ill_down will arrange to blow off any IRE's dependent on this 750 * ILL, and shut down fragmentation reassembly. 751 */ 752 ill_down(ill); 753 754 /* Let SCTP know, so that it can remove this from its list. */ 755 sctp_update_ill(ill, SCTP_ILL_REMOVE); 756 757 /* 758 * If an address on this ILL is being used as a source address then 759 * clear out the pointers in other ILLs that point to this ILL. 760 */ 761 rw_enter(&ipst->ips_ill_g_usesrc_lock, RW_WRITER); 762 if (ill->ill_usesrc_grp_next != NULL) { 763 if (ill->ill_usesrc_ifindex == 0) { /* usesrc ILL ? */ 764 ill_disband_usesrc_group(ill); 765 } else { /* consumer of the usesrc ILL */ 766 prev_ill = ill_prev_usesrc(ill); 767 prev_ill->ill_usesrc_grp_next = 768 ill->ill_usesrc_grp_next; 769 } 770 } 771 rw_exit(&ipst->ips_ill_g_usesrc_lock); 772 } 773 774 static void 775 ipif_non_duplicate(ipif_t *ipif) 776 { 777 ill_t *ill = ipif->ipif_ill; 778 mutex_enter(&ill->ill_lock); 779 if (ipif->ipif_flags & IPIF_DUPLICATE) { 780 ipif->ipif_flags &= ~IPIF_DUPLICATE; 781 ASSERT(ill->ill_ipif_dup_count > 0); 782 ill->ill_ipif_dup_count--; 783 } 784 mutex_exit(&ill->ill_lock); 785 } 786 787 /* 788 * Send all deferred messages without waiting for their ACKs. 789 */ 790 void 791 ill_send_all_deferred_mp(ill_t *ill) 792 { 793 mblk_t *mp, *next; 794 795 /* 796 * Clear ill_dlpi_pending so that the message is not queued in 797 * ill_dlpi_send(). 798 */ 799 ill->ill_dlpi_pending = DL_PRIM_INVAL; 800 801 for (mp = ill->ill_dlpi_deferred; mp != NULL; mp = next) { 802 next = mp->b_next; 803 mp->b_next = NULL; 804 ill_dlpi_send(ill, mp); 805 } 806 ill->ill_dlpi_deferred = NULL; 807 } 808 809 /* 810 * ill_delete_tail is called from ip_modclose after all references 811 * to the closing ill are gone. The wait is done in ip_modclose 812 */ 813 void 814 ill_delete_tail(ill_t *ill) 815 { 816 mblk_t **mpp; 817 ipif_t *ipif; 818 ip_stack_t *ipst = ill->ill_ipst; 819 820 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 821 ipif_non_duplicate(ipif); 822 ipif_down_tail(ipif); 823 } 824 825 ASSERT(ill->ill_ipif_dup_count == 0 && 826 ill->ill_arp_down_mp == NULL && 827 ill->ill_arp_del_mapping_mp == NULL); 828 829 /* 830 * If polling capability is enabled (which signifies direct 831 * upcall into IP and driver has ill saved as a handle), 832 * we need to make sure that unbind has completed before we 833 * let the ill disappear and driver no longer has any reference 834 * to this ill. 835 */ 836 mutex_enter(&ill->ill_lock); 837 while (ill->ill_state_flags & ILL_DL_UNBIND_IN_PROGRESS) 838 cv_wait(&ill->ill_cv, &ill->ill_lock); 839 mutex_exit(&ill->ill_lock); 840 841 /* 842 * Clean up polling and soft ring capabilities 843 */ 844 if (ill->ill_capabilities & (ILL_CAPAB_POLL|ILL_CAPAB_SOFT_RING)) 845 ill_capability_dls_disable(ill); 846 847 /* 848 * Send the detach if there's one to send (i.e., if we're above a 849 * style 2 DLPI driver). 850 */ 851 if (ill->ill_detach_mp != NULL) { 852 ill_dlpi_send(ill, ill->ill_detach_mp); 853 ill->ill_detach_mp = NULL; 854 } 855 856 if (ill->ill_net_type != IRE_LOOPBACK) 857 qprocsoff(ill->ill_rq); 858 859 /* 860 * We do an ipsq_flush once again now. New messages could have 861 * landed up from below (M_ERROR or M_HANGUP). Similarly ioctls 862 * could also have landed up if an ioctl thread had looked up 863 * the ill before we set the ILL_CONDEMNED flag, but not yet 864 * enqueued the ioctl when we did the ipsq_flush last time. 865 */ 866 ipsq_flush(ill); 867 868 /* 869 * Free capabilities. 870 */ 871 if (ill->ill_ipsec_capab_ah != NULL) { 872 ill_ipsec_capab_delete(ill, DL_CAPAB_IPSEC_AH); 873 ill_ipsec_capab_free(ill->ill_ipsec_capab_ah); 874 ill->ill_ipsec_capab_ah = NULL; 875 } 876 877 if (ill->ill_ipsec_capab_esp != NULL) { 878 ill_ipsec_capab_delete(ill, DL_CAPAB_IPSEC_ESP); 879 ill_ipsec_capab_free(ill->ill_ipsec_capab_esp); 880 ill->ill_ipsec_capab_esp = NULL; 881 } 882 883 if (ill->ill_mdt_capab != NULL) { 884 kmem_free(ill->ill_mdt_capab, sizeof (ill_mdt_capab_t)); 885 ill->ill_mdt_capab = NULL; 886 } 887 888 if (ill->ill_hcksum_capab != NULL) { 889 kmem_free(ill->ill_hcksum_capab, sizeof (ill_hcksum_capab_t)); 890 ill->ill_hcksum_capab = NULL; 891 } 892 893 if (ill->ill_zerocopy_capab != NULL) { 894 kmem_free(ill->ill_zerocopy_capab, 895 sizeof (ill_zerocopy_capab_t)); 896 ill->ill_zerocopy_capab = NULL; 897 } 898 899 if (ill->ill_lso_capab != NULL) { 900 kmem_free(ill->ill_lso_capab, sizeof (ill_lso_capab_t)); 901 ill->ill_lso_capab = NULL; 902 } 903 904 if (ill->ill_dls_capab != NULL) { 905 CONN_DEC_REF(ill->ill_dls_capab->ill_unbind_conn); 906 ill->ill_dls_capab->ill_unbind_conn = NULL; 907 kmem_free(ill->ill_dls_capab, 908 sizeof (ill_dls_capab_t) + 909 (sizeof (ill_rx_ring_t) * ILL_MAX_RINGS)); 910 ill->ill_dls_capab = NULL; 911 } 912 913 ASSERT(!(ill->ill_capabilities & ILL_CAPAB_POLL)); 914 915 while (ill->ill_ipif != NULL) 916 ipif_free_tail(ill->ill_ipif); 917 918 ill_down_tail(ill); 919 920 /* 921 * We have removed all references to ilm from conn and the ones joined 922 * within the kernel. 923 * 924 * We don't walk conns, mrts and ires because 925 * 926 * 1) reset_conn_ill and reset_mrt_ill cleans up conns and mrts. 927 * 2) ill_down ->ill_downi walks all the ires and cleans up 928 * ill references. 929 */ 930 ASSERT(ilm_walk_ill(ill) == 0); 931 /* 932 * Take us out of the list of ILLs. ill_glist_delete -> ill_phyint_free 933 * could free the phyint. No more reference to the phyint after this 934 * point. 935 */ 936 (void) ill_glist_delete(ill); 937 938 rw_enter(&ipst->ips_ip_g_nd_lock, RW_WRITER); 939 if (ill->ill_ndd_name != NULL) 940 nd_unload(&ipst->ips_ip_g_nd, ill->ill_ndd_name); 941 rw_exit(&ipst->ips_ip_g_nd_lock); 942 943 944 if (ill->ill_frag_ptr != NULL) { 945 uint_t count; 946 947 for (count = 0; count < ILL_FRAG_HASH_TBL_COUNT; count++) { 948 mutex_destroy(&ill->ill_frag_hash_tbl[count].ipfb_lock); 949 } 950 mi_free(ill->ill_frag_ptr); 951 ill->ill_frag_ptr = NULL; 952 ill->ill_frag_hash_tbl = NULL; 953 } 954 955 freemsg(ill->ill_nd_lla_mp); 956 /* Free all retained control messages. */ 957 mpp = &ill->ill_first_mp_to_free; 958 do { 959 while (mpp[0]) { 960 mblk_t *mp; 961 mblk_t *mp1; 962 963 mp = mpp[0]; 964 mpp[0] = mp->b_next; 965 for (mp1 = mp; mp1 != NULL; mp1 = mp1->b_cont) { 966 mp1->b_next = NULL; 967 mp1->b_prev = NULL; 968 } 969 freemsg(mp); 970 } 971 } while (mpp++ != &ill->ill_last_mp_to_free); 972 973 ill_free_mib(ill); 974 /* Drop refcnt here */ 975 netstack_rele(ill->ill_ipst->ips_netstack); 976 ill->ill_ipst = NULL; 977 978 ILL_TRACE_CLEANUP(ill); 979 } 980 981 static void 982 ill_free_mib(ill_t *ill) 983 { 984 ip_stack_t *ipst = ill->ill_ipst; 985 986 /* 987 * MIB statistics must not be lost, so when an interface 988 * goes away the counter values will be added to the global 989 * MIBs. 990 */ 991 if (ill->ill_ip_mib != NULL) { 992 if (ill->ill_isv6) { 993 ip_mib2_add_ip_stats(&ipst->ips_ip6_mib, 994 ill->ill_ip_mib); 995 } else { 996 ip_mib2_add_ip_stats(&ipst->ips_ip_mib, 997 ill->ill_ip_mib); 998 } 999 1000 kmem_free(ill->ill_ip_mib, sizeof (*ill->ill_ip_mib)); 1001 ill->ill_ip_mib = NULL; 1002 } 1003 if (ill->ill_icmp6_mib != NULL) { 1004 ip_mib2_add_icmp6_stats(&ipst->ips_icmp6_mib, 1005 ill->ill_icmp6_mib); 1006 kmem_free(ill->ill_icmp6_mib, sizeof (*ill->ill_icmp6_mib)); 1007 ill->ill_icmp6_mib = NULL; 1008 } 1009 } 1010 1011 /* 1012 * Concatenate together a physical address and a sap. 1013 * 1014 * Sap_lengths are interpreted as follows: 1015 * sap_length == 0 ==> no sap 1016 * sap_length > 0 ==> sap is at the head of the dlpi address 1017 * sap_length < 0 ==> sap is at the tail of the dlpi address 1018 */ 1019 static void 1020 ill_dlur_copy_address(uchar_t *phys_src, uint_t phys_length, 1021 t_scalar_t sap_src, t_scalar_t sap_length, uchar_t *dst) 1022 { 1023 uint16_t sap_addr = (uint16_t)sap_src; 1024 1025 if (sap_length == 0) { 1026 if (phys_src == NULL) 1027 bzero(dst, phys_length); 1028 else 1029 bcopy(phys_src, dst, phys_length); 1030 } else if (sap_length < 0) { 1031 if (phys_src == NULL) 1032 bzero(dst, phys_length); 1033 else 1034 bcopy(phys_src, dst, phys_length); 1035 bcopy(&sap_addr, (char *)dst + phys_length, sizeof (sap_addr)); 1036 } else { 1037 bcopy(&sap_addr, dst, sizeof (sap_addr)); 1038 if (phys_src == NULL) 1039 bzero((char *)dst + sap_length, phys_length); 1040 else 1041 bcopy(phys_src, (char *)dst + sap_length, phys_length); 1042 } 1043 } 1044 1045 /* 1046 * Generate a dl_unitdata_req mblk for the device and address given. 1047 * addr_length is the length of the physical portion of the address. 1048 * If addr is NULL include an all zero address of the specified length. 1049 * TRUE? In any case, addr_length is taken to be the entire length of the 1050 * dlpi address, including the absolute value of sap_length. 1051 */ 1052 mblk_t * 1053 ill_dlur_gen(uchar_t *addr, uint_t addr_length, t_uscalar_t sap, 1054 t_scalar_t sap_length) 1055 { 1056 dl_unitdata_req_t *dlur; 1057 mblk_t *mp; 1058 t_scalar_t abs_sap_length; /* absolute value */ 1059 1060 abs_sap_length = ABS(sap_length); 1061 mp = ip_dlpi_alloc(sizeof (*dlur) + addr_length + abs_sap_length, 1062 DL_UNITDATA_REQ); 1063 if (mp == NULL) 1064 return (NULL); 1065 dlur = (dl_unitdata_req_t *)mp->b_rptr; 1066 /* HACK: accomodate incompatible DLPI drivers */ 1067 if (addr_length == 8) 1068 addr_length = 6; 1069 dlur->dl_dest_addr_length = addr_length + abs_sap_length; 1070 dlur->dl_dest_addr_offset = sizeof (*dlur); 1071 dlur->dl_priority.dl_min = 0; 1072 dlur->dl_priority.dl_max = 0; 1073 ill_dlur_copy_address(addr, addr_length, sap, sap_length, 1074 (uchar_t *)&dlur[1]); 1075 return (mp); 1076 } 1077 1078 /* 1079 * Add the 'mp' to the list of pending mp's headed by ill_pending_mp 1080 * Return an error if we already have 1 or more ioctls in progress. 1081 * This is used only for non-exclusive ioctls. Currently this is used 1082 * for SIOC*ARP and SIOCGTUNPARAM ioctls. Most set ioctls are exclusive 1083 * and thus need to use ipsq_pending_mp_add. 1084 */ 1085 boolean_t 1086 ill_pending_mp_add(ill_t *ill, conn_t *connp, mblk_t *add_mp) 1087 { 1088 ASSERT(MUTEX_HELD(&ill->ill_lock)); 1089 ASSERT((add_mp->b_next == NULL) && (add_mp->b_prev == NULL)); 1090 /* 1091 * M_IOCDATA from ioctls, M_IOCTL from tunnel ioctls. 1092 */ 1093 ASSERT((add_mp->b_datap->db_type == M_IOCDATA) || 1094 (add_mp->b_datap->db_type == M_IOCTL)); 1095 1096 ASSERT(MUTEX_HELD(&connp->conn_lock)); 1097 /* 1098 * Return error if the conn has started closing. The conn 1099 * could have finished cleaning up the pending mp list, 1100 * If so we should not add another mp to the list negating 1101 * the cleanup. 1102 */ 1103 if (connp->conn_state_flags & CONN_CLOSING) 1104 return (B_FALSE); 1105 /* 1106 * Add the pending mp to the head of the list, chained by b_next. 1107 * Note down the conn on which the ioctl request came, in b_prev. 1108 * This will be used to later get the conn, when we get a response 1109 * on the ill queue, from some other module (typically arp) 1110 */ 1111 add_mp->b_next = (void *)ill->ill_pending_mp; 1112 add_mp->b_queue = CONNP_TO_WQ(connp); 1113 ill->ill_pending_mp = add_mp; 1114 if (connp != NULL) 1115 connp->conn_oper_pending_ill = ill; 1116 return (B_TRUE); 1117 } 1118 1119 /* 1120 * Retrieve the ill_pending_mp and return it. We have to walk the list 1121 * of mblks starting at ill_pending_mp, and match based on the ioc_id. 1122 */ 1123 mblk_t * 1124 ill_pending_mp_get(ill_t *ill, conn_t **connpp, uint_t ioc_id) 1125 { 1126 mblk_t *prev = NULL; 1127 mblk_t *curr = NULL; 1128 uint_t id; 1129 conn_t *connp; 1130 1131 /* 1132 * When the conn closes, conn_ioctl_cleanup needs to clean 1133 * up the pending mp, but it does not know the ioc_id and 1134 * passes in a zero for it. 1135 */ 1136 mutex_enter(&ill->ill_lock); 1137 if (ioc_id != 0) 1138 *connpp = NULL; 1139 1140 /* Search the list for the appropriate ioctl based on ioc_id */ 1141 for (prev = NULL, curr = ill->ill_pending_mp; curr != NULL; 1142 prev = curr, curr = curr->b_next) { 1143 id = ((struct iocblk *)curr->b_rptr)->ioc_id; 1144 connp = Q_TO_CONN(curr->b_queue); 1145 /* Match based on the ioc_id or based on the conn */ 1146 if ((id == ioc_id) || (ioc_id == 0 && connp == *connpp)) 1147 break; 1148 } 1149 1150 if (curr != NULL) { 1151 /* Unlink the mblk from the pending mp list */ 1152 if (prev != NULL) { 1153 prev->b_next = curr->b_next; 1154 } else { 1155 ASSERT(ill->ill_pending_mp == curr); 1156 ill->ill_pending_mp = curr->b_next; 1157 } 1158 1159 /* 1160 * conn refcnt must have been bumped up at the start of 1161 * the ioctl. So we can safely access the conn. 1162 */ 1163 ASSERT(CONN_Q(curr->b_queue)); 1164 *connpp = Q_TO_CONN(curr->b_queue); 1165 curr->b_next = NULL; 1166 curr->b_queue = NULL; 1167 } 1168 1169 mutex_exit(&ill->ill_lock); 1170 1171 return (curr); 1172 } 1173 1174 /* 1175 * Add the pending mp to the list. There can be only 1 pending mp 1176 * in the list. Any exclusive ioctl that needs to wait for a response 1177 * from another module or driver needs to use this function to set 1178 * the ipsq_pending_mp to the ioctl mblk and wait for the response from 1179 * the other module/driver. This is also used while waiting for the 1180 * ipif/ill/ire refcnts to drop to zero in bringing down an ipif. 1181 */ 1182 boolean_t 1183 ipsq_pending_mp_add(conn_t *connp, ipif_t *ipif, queue_t *q, mblk_t *add_mp, 1184 int waitfor) 1185 { 1186 ipsq_t *ipsq = ipif->ipif_ill->ill_phyint->phyint_ipsq; 1187 1188 ASSERT(IAM_WRITER_IPIF(ipif)); 1189 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 1190 ASSERT((add_mp->b_next == NULL) && (add_mp->b_prev == NULL)); 1191 ASSERT(ipsq->ipsq_pending_mp == NULL); 1192 /* 1193 * The caller may be using a different ipif than the one passed into 1194 * ipsq_current_start() (e.g., suppose an ioctl that came in on the V4 1195 * ill needs to wait for the V6 ill to quiesce). So we can't ASSERT 1196 * that `ipsq_current_ipif == ipif'. 1197 */ 1198 ASSERT(ipsq->ipsq_current_ipif != NULL); 1199 1200 /* 1201 * M_IOCDATA from ioctls, M_IOCTL from tunnel ioctls, 1202 * M_ERROR/M_HANGUP/M_PROTO/M_PCPROTO from the driver. 1203 */ 1204 ASSERT((DB_TYPE(add_mp) == M_IOCDATA) || (DB_TYPE(add_mp) == M_IOCTL) || 1205 (DB_TYPE(add_mp) == M_ERROR) || (DB_TYPE(add_mp) == M_HANGUP) || 1206 (DB_TYPE(add_mp) == M_PROTO) || (DB_TYPE(add_mp) == M_PCPROTO)); 1207 1208 if (connp != NULL) { 1209 ASSERT(MUTEX_HELD(&connp->conn_lock)); 1210 /* 1211 * Return error if the conn has started closing. The conn 1212 * could have finished cleaning up the pending mp list, 1213 * If so we should not add another mp to the list negating 1214 * the cleanup. 1215 */ 1216 if (connp->conn_state_flags & CONN_CLOSING) 1217 return (B_FALSE); 1218 } 1219 mutex_enter(&ipsq->ipsq_lock); 1220 ipsq->ipsq_pending_ipif = ipif; 1221 /* 1222 * Note down the queue in b_queue. This will be returned by 1223 * ipsq_pending_mp_get. Caller will then use these values to restart 1224 * the processing 1225 */ 1226 add_mp->b_next = NULL; 1227 add_mp->b_queue = q; 1228 ipsq->ipsq_pending_mp = add_mp; 1229 ipsq->ipsq_waitfor = waitfor; 1230 1231 if (connp != NULL) 1232 connp->conn_oper_pending_ill = ipif->ipif_ill; 1233 mutex_exit(&ipsq->ipsq_lock); 1234 return (B_TRUE); 1235 } 1236 1237 /* 1238 * Retrieve the ipsq_pending_mp and return it. There can be only 1 mp 1239 * queued in the list. 1240 */ 1241 mblk_t * 1242 ipsq_pending_mp_get(ipsq_t *ipsq, conn_t **connpp) 1243 { 1244 mblk_t *curr = NULL; 1245 1246 mutex_enter(&ipsq->ipsq_lock); 1247 *connpp = NULL; 1248 if (ipsq->ipsq_pending_mp == NULL) { 1249 mutex_exit(&ipsq->ipsq_lock); 1250 return (NULL); 1251 } 1252 1253 /* There can be only 1 such excl message */ 1254 curr = ipsq->ipsq_pending_mp; 1255 ASSERT(curr != NULL && curr->b_next == NULL); 1256 ipsq->ipsq_pending_ipif = NULL; 1257 ipsq->ipsq_pending_mp = NULL; 1258 ipsq->ipsq_waitfor = 0; 1259 mutex_exit(&ipsq->ipsq_lock); 1260 1261 if (CONN_Q(curr->b_queue)) { 1262 /* 1263 * This mp did a refhold on the conn, at the start of the ioctl. 1264 * So we can safely return a pointer to the conn to the caller. 1265 */ 1266 *connpp = Q_TO_CONN(curr->b_queue); 1267 } else { 1268 *connpp = NULL; 1269 } 1270 curr->b_next = NULL; 1271 curr->b_prev = NULL; 1272 return (curr); 1273 } 1274 1275 /* 1276 * Cleanup the ioctl mp queued in ipsq_pending_mp 1277 * - Called in the ill_delete path 1278 * - Called in the M_ERROR or M_HANGUP path on the ill. 1279 * - Called in the conn close path. 1280 */ 1281 boolean_t 1282 ipsq_pending_mp_cleanup(ill_t *ill, conn_t *connp) 1283 { 1284 mblk_t *mp; 1285 ipsq_t *ipsq; 1286 queue_t *q; 1287 ipif_t *ipif; 1288 1289 ASSERT(IAM_WRITER_ILL(ill)); 1290 ipsq = ill->ill_phyint->phyint_ipsq; 1291 mutex_enter(&ipsq->ipsq_lock); 1292 /* 1293 * If connp is null, unconditionally clean up the ipsq_pending_mp. 1294 * This happens in M_ERROR/M_HANGUP. We need to abort the current ioctl 1295 * even if it is meant for another ill, since we have to enqueue 1296 * a new mp now in ipsq_pending_mp to complete the ipif_down. 1297 * If connp is non-null we are called from the conn close path. 1298 */ 1299 mp = ipsq->ipsq_pending_mp; 1300 if (mp == NULL || (connp != NULL && 1301 mp->b_queue != CONNP_TO_WQ(connp))) { 1302 mutex_exit(&ipsq->ipsq_lock); 1303 return (B_FALSE); 1304 } 1305 /* Now remove from the ipsq_pending_mp */ 1306 ipsq->ipsq_pending_mp = NULL; 1307 q = mp->b_queue; 1308 mp->b_next = NULL; 1309 mp->b_prev = NULL; 1310 mp->b_queue = NULL; 1311 1312 /* If MOVE was in progress, clear the move_in_progress fields also. */ 1313 ill = ipsq->ipsq_pending_ipif->ipif_ill; 1314 if (ill->ill_move_in_progress) { 1315 ILL_CLEAR_MOVE(ill); 1316 } else if (ill->ill_up_ipifs) { 1317 ill_group_cleanup(ill); 1318 } 1319 1320 ipif = ipsq->ipsq_pending_ipif; 1321 ipsq->ipsq_pending_ipif = NULL; 1322 ipsq->ipsq_waitfor = 0; 1323 ipsq->ipsq_current_ipif = NULL; 1324 ipsq->ipsq_current_ioctl = 0; 1325 mutex_exit(&ipsq->ipsq_lock); 1326 1327 if (DB_TYPE(mp) == M_IOCTL || DB_TYPE(mp) == M_IOCDATA) { 1328 if (connp == NULL) { 1329 ip_ioctl_finish(q, mp, ENXIO, NO_COPYOUT, NULL); 1330 } else { 1331 ip_ioctl_finish(q, mp, ENXIO, CONN_CLOSE, NULL); 1332 mutex_enter(&ipif->ipif_ill->ill_lock); 1333 ipif->ipif_state_flags &= ~IPIF_CHANGING; 1334 mutex_exit(&ipif->ipif_ill->ill_lock); 1335 } 1336 } else { 1337 /* 1338 * IP-MT XXX In the case of TLI/XTI bind / optmgmt this can't 1339 * be just inet_freemsg. we have to restart it 1340 * otherwise the thread will be stuck. 1341 */ 1342 inet_freemsg(mp); 1343 } 1344 return (B_TRUE); 1345 } 1346 1347 /* 1348 * The ill is closing. Cleanup all the pending mps. Called exclusively 1349 * towards the end of ill_delete. The refcount has gone to 0. So nobody 1350 * knows this ill, and hence nobody can add an mp to this list 1351 */ 1352 static void 1353 ill_pending_mp_cleanup(ill_t *ill) 1354 { 1355 mblk_t *mp; 1356 queue_t *q; 1357 1358 ASSERT(IAM_WRITER_ILL(ill)); 1359 1360 mutex_enter(&ill->ill_lock); 1361 /* 1362 * Every mp on the pending mp list originating from an ioctl 1363 * added 1 to the conn refcnt, at the start of the ioctl. 1364 * So bump it down now. See comments in ip_wput_nondata() 1365 */ 1366 while (ill->ill_pending_mp != NULL) { 1367 mp = ill->ill_pending_mp; 1368 ill->ill_pending_mp = mp->b_next; 1369 mutex_exit(&ill->ill_lock); 1370 1371 q = mp->b_queue; 1372 ASSERT(CONN_Q(q)); 1373 mp->b_next = NULL; 1374 mp->b_prev = NULL; 1375 mp->b_queue = NULL; 1376 ip_ioctl_finish(q, mp, ENXIO, NO_COPYOUT, NULL); 1377 mutex_enter(&ill->ill_lock); 1378 } 1379 ill->ill_pending_ipif = NULL; 1380 1381 mutex_exit(&ill->ill_lock); 1382 } 1383 1384 /* 1385 * Called in the conn close path and ill delete path 1386 */ 1387 static void 1388 ipsq_xopq_mp_cleanup(ill_t *ill, conn_t *connp) 1389 { 1390 ipsq_t *ipsq; 1391 mblk_t *prev; 1392 mblk_t *curr; 1393 mblk_t *next; 1394 queue_t *q; 1395 mblk_t *tmp_list = NULL; 1396 1397 ASSERT(IAM_WRITER_ILL(ill)); 1398 if (connp != NULL) 1399 q = CONNP_TO_WQ(connp); 1400 else 1401 q = ill->ill_wq; 1402 1403 ipsq = ill->ill_phyint->phyint_ipsq; 1404 /* 1405 * Cleanup the ioctl mp's queued in ipsq_xopq_pending_mp if any. 1406 * In the case of ioctl from a conn, there can be only 1 mp 1407 * queued on the ipsq. If an ill is being unplumbed, only messages 1408 * related to this ill are flushed, like M_ERROR or M_HANGUP message. 1409 * ioctls meant for this ill form conn's are not flushed. They will 1410 * be processed during ipsq_exit and will not find the ill and will 1411 * return error. 1412 */ 1413 mutex_enter(&ipsq->ipsq_lock); 1414 for (prev = NULL, curr = ipsq->ipsq_xopq_mphead; curr != NULL; 1415 curr = next) { 1416 next = curr->b_next; 1417 if (curr->b_queue == q || curr->b_queue == RD(q)) { 1418 /* Unlink the mblk from the pending mp list */ 1419 if (prev != NULL) { 1420 prev->b_next = curr->b_next; 1421 } else { 1422 ASSERT(ipsq->ipsq_xopq_mphead == curr); 1423 ipsq->ipsq_xopq_mphead = curr->b_next; 1424 } 1425 if (ipsq->ipsq_xopq_mptail == curr) 1426 ipsq->ipsq_xopq_mptail = prev; 1427 /* 1428 * Create a temporary list and release the ipsq lock 1429 * New elements are added to the head of the tmp_list 1430 */ 1431 curr->b_next = tmp_list; 1432 tmp_list = curr; 1433 } else { 1434 prev = curr; 1435 } 1436 } 1437 mutex_exit(&ipsq->ipsq_lock); 1438 1439 while (tmp_list != NULL) { 1440 curr = tmp_list; 1441 tmp_list = curr->b_next; 1442 curr->b_next = NULL; 1443 curr->b_prev = NULL; 1444 curr->b_queue = NULL; 1445 if (DB_TYPE(curr) == M_IOCTL || DB_TYPE(curr) == M_IOCDATA) { 1446 ip_ioctl_finish(q, curr, ENXIO, connp != NULL ? 1447 CONN_CLOSE : NO_COPYOUT, NULL); 1448 } else { 1449 /* 1450 * IP-MT XXX In the case of TLI/XTI bind / optmgmt 1451 * this can't be just inet_freemsg. we have to 1452 * restart it otherwise the thread will be stuck. 1453 */ 1454 inet_freemsg(curr); 1455 } 1456 } 1457 } 1458 1459 /* 1460 * This conn has started closing. Cleanup any pending ioctl from this conn. 1461 * STREAMS ensures that there can be at most 1 ioctl pending on a stream. 1462 */ 1463 void 1464 conn_ioctl_cleanup(conn_t *connp) 1465 { 1466 mblk_t *curr; 1467 ipsq_t *ipsq; 1468 ill_t *ill; 1469 boolean_t refheld; 1470 1471 /* 1472 * Is any exclusive ioctl pending ? If so clean it up. If the 1473 * ioctl has not yet started, the mp is pending in the list headed by 1474 * ipsq_xopq_head. If the ioctl has started the mp could be present in 1475 * ipsq_pending_mp. If the ioctl timed out in the streamhead but 1476 * is currently executing now the mp is not queued anywhere but 1477 * conn_oper_pending_ill is null. The conn close will wait 1478 * till the conn_ref drops to zero. 1479 */ 1480 mutex_enter(&connp->conn_lock); 1481 ill = connp->conn_oper_pending_ill; 1482 if (ill == NULL) { 1483 mutex_exit(&connp->conn_lock); 1484 return; 1485 } 1486 1487 curr = ill_pending_mp_get(ill, &connp, 0); 1488 if (curr != NULL) { 1489 mutex_exit(&connp->conn_lock); 1490 CONN_DEC_REF(connp); 1491 inet_freemsg(curr); 1492 return; 1493 } 1494 /* 1495 * We may not be able to refhold the ill if the ill/ipif 1496 * is changing. But we need to make sure that the ill will 1497 * not vanish. So we just bump up the ill_waiter count. 1498 */ 1499 refheld = ill_waiter_inc(ill); 1500 mutex_exit(&connp->conn_lock); 1501 if (refheld) { 1502 if (ipsq_enter(ill, B_TRUE)) { 1503 ill_waiter_dcr(ill); 1504 /* 1505 * Check whether this ioctl has started and is 1506 * pending now in ipsq_pending_mp. If it is not 1507 * found there then check whether this ioctl has 1508 * not even started and is in the ipsq_xopq list. 1509 */ 1510 if (!ipsq_pending_mp_cleanup(ill, connp)) 1511 ipsq_xopq_mp_cleanup(ill, connp); 1512 ipsq = ill->ill_phyint->phyint_ipsq; 1513 ipsq_exit(ipsq, B_TRUE, B_TRUE); 1514 return; 1515 } 1516 } 1517 1518 /* 1519 * The ill is also closing and we could not bump up the 1520 * ill_waiter_count or we could not enter the ipsq. Leave 1521 * the cleanup to ill_delete 1522 */ 1523 mutex_enter(&connp->conn_lock); 1524 while (connp->conn_oper_pending_ill != NULL) 1525 cv_wait(&connp->conn_refcv, &connp->conn_lock); 1526 mutex_exit(&connp->conn_lock); 1527 if (refheld) 1528 ill_waiter_dcr(ill); 1529 } 1530 1531 /* 1532 * ipcl_walk function for cleaning up conn_*_ill fields. 1533 */ 1534 static void 1535 conn_cleanup_ill(conn_t *connp, caddr_t arg) 1536 { 1537 ill_t *ill = (ill_t *)arg; 1538 ire_t *ire; 1539 1540 mutex_enter(&connp->conn_lock); 1541 if (connp->conn_multicast_ill == ill) { 1542 /* Revert to late binding */ 1543 connp->conn_multicast_ill = NULL; 1544 connp->conn_orig_multicast_ifindex = 0; 1545 } 1546 if (connp->conn_incoming_ill == ill) 1547 connp->conn_incoming_ill = NULL; 1548 if (connp->conn_outgoing_ill == ill) 1549 connp->conn_outgoing_ill = NULL; 1550 if (connp->conn_outgoing_pill == ill) 1551 connp->conn_outgoing_pill = NULL; 1552 if (connp->conn_nofailover_ill == ill) 1553 connp->conn_nofailover_ill = NULL; 1554 if (connp->conn_xmit_if_ill == ill) 1555 connp->conn_xmit_if_ill = NULL; 1556 if (connp->conn_ire_cache != NULL) { 1557 ire = connp->conn_ire_cache; 1558 /* 1559 * ip_newroute creates IRE_CACHE with ire_stq coming from 1560 * interface X and ipif coming from interface Y, if interface 1561 * X and Y are part of the same IPMPgroup. Thus whenever 1562 * interface X goes down, remove all references to it by 1563 * checking both on ire_ipif and ire_stq. 1564 */ 1565 if ((ire->ire_ipif != NULL && ire->ire_ipif->ipif_ill == ill) || 1566 (ire->ire_type == IRE_CACHE && 1567 ire->ire_stq == ill->ill_wq)) { 1568 connp->conn_ire_cache = NULL; 1569 mutex_exit(&connp->conn_lock); 1570 ire_refrele_notr(ire); 1571 return; 1572 } 1573 } 1574 mutex_exit(&connp->conn_lock); 1575 1576 } 1577 1578 /* ARGSUSED */ 1579 void 1580 ipif_all_down_tail(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 1581 { 1582 ill_t *ill = q->q_ptr; 1583 ipif_t *ipif; 1584 1585 ASSERT(IAM_WRITER_IPSQ(ipsq)); 1586 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 1587 ipif_non_duplicate(ipif); 1588 ipif_down_tail(ipif); 1589 } 1590 ill_down_tail(ill); 1591 freemsg(mp); 1592 ipsq_current_finish(ipsq); 1593 } 1594 1595 /* 1596 * ill_down_start is called when we want to down this ill and bring it up again 1597 * It is called when we receive an M_ERROR / M_HANGUP. In this case we shut down 1598 * all interfaces, but don't tear down any plumbing. 1599 */ 1600 boolean_t 1601 ill_down_start(queue_t *q, mblk_t *mp) 1602 { 1603 ill_t *ill = q->q_ptr; 1604 ipif_t *ipif; 1605 1606 ASSERT(IAM_WRITER_ILL(ill)); 1607 1608 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) 1609 (void) ipif_down(ipif, NULL, NULL); 1610 1611 ill_down(ill); 1612 1613 (void) ipsq_pending_mp_cleanup(ill, NULL); 1614 1615 ipsq_current_start(ill->ill_phyint->phyint_ipsq, ill->ill_ipif, 0); 1616 1617 /* 1618 * Atomically test and add the pending mp if references are active. 1619 */ 1620 mutex_enter(&ill->ill_lock); 1621 if (!ill_is_quiescent(ill)) { 1622 /* call cannot fail since `conn_t *' argument is NULL */ 1623 (void) ipsq_pending_mp_add(NULL, ill->ill_ipif, ill->ill_rq, 1624 mp, ILL_DOWN); 1625 mutex_exit(&ill->ill_lock); 1626 return (B_FALSE); 1627 } 1628 mutex_exit(&ill->ill_lock); 1629 return (B_TRUE); 1630 } 1631 1632 static void 1633 ill_down(ill_t *ill) 1634 { 1635 ip_stack_t *ipst = ill->ill_ipst; 1636 1637 /* Blow off any IREs dependent on this ILL. */ 1638 ire_walk(ill_downi, (char *)ill, ipst); 1639 1640 mutex_enter(&ipst->ips_ire_mrtun_lock); 1641 if (ipst->ips_ire_mrtun_count != 0) { 1642 mutex_exit(&ipst->ips_ire_mrtun_lock); 1643 ire_walk_ill_mrtun(0, 0, ill_downi_mrtun_srcif, 1644 (char *)ill, NULL, ipst); 1645 } else { 1646 mutex_exit(&ipst->ips_ire_mrtun_lock); 1647 } 1648 1649 /* 1650 * If any interface based forwarding table exists 1651 * Blow off the ires there dependent on this ill 1652 */ 1653 mutex_enter(&ipst->ips_ire_srcif_table_lock); 1654 if (ipst->ips_ire_srcif_table_count > 0) { 1655 mutex_exit(&ipst->ips_ire_srcif_table_lock); 1656 ire_walk_srcif_table_v4(ill_downi_mrtun_srcif, (char *)ill, 1657 ipst); 1658 } else { 1659 mutex_exit(&ipst->ips_ire_srcif_table_lock); 1660 } 1661 1662 /* Remove any conn_*_ill depending on this ill */ 1663 ipcl_walk(conn_cleanup_ill, (caddr_t)ill, ipst); 1664 1665 if (ill->ill_group != NULL) { 1666 illgrp_delete(ill); 1667 } 1668 } 1669 1670 static void 1671 ill_down_tail(ill_t *ill) 1672 { 1673 int i; 1674 1675 /* Destroy ill_srcif_table if it exists */ 1676 /* Lock not reqd really because nobody should be able to access */ 1677 mutex_enter(&ill->ill_lock); 1678 if (ill->ill_srcif_table != NULL) { 1679 ill->ill_srcif_refcnt = 0; 1680 for (i = 0; i < IP_SRCIF_TABLE_SIZE; i++) { 1681 rw_destroy(&ill->ill_srcif_table[i].irb_lock); 1682 } 1683 kmem_free(ill->ill_srcif_table, 1684 IP_SRCIF_TABLE_SIZE * sizeof (irb_t)); 1685 ill->ill_srcif_table = NULL; 1686 ill->ill_srcif_refcnt = 0; 1687 ill->ill_mrtun_refcnt = 0; 1688 } 1689 mutex_exit(&ill->ill_lock); 1690 } 1691 1692 /* 1693 * ire_walk routine used to delete every IRE that depends on queues 1694 * associated with 'ill'. (Always called as writer.) 1695 */ 1696 static void 1697 ill_downi(ire_t *ire, char *ill_arg) 1698 { 1699 ill_t *ill = (ill_t *)ill_arg; 1700 1701 /* 1702 * ip_newroute creates IRE_CACHE with ire_stq coming from 1703 * interface X and ipif coming from interface Y, if interface 1704 * X and Y are part of the same IPMP group. Thus whenever interface 1705 * X goes down, remove all references to it by checking both 1706 * on ire_ipif and ire_stq. 1707 */ 1708 if ((ire->ire_ipif != NULL && ire->ire_ipif->ipif_ill == ill) || 1709 (ire->ire_type == IRE_CACHE && ire->ire_stq == ill->ill_wq)) { 1710 ire_delete(ire); 1711 } 1712 } 1713 1714 /* 1715 * A seperate routine for deleting revtun and srcif based routes 1716 * are needed because the ires only deleted when the interface 1717 * is unplumbed. Also these ires have ire_in_ill non-null as well. 1718 * we want to keep mobile IP specific code separate. 1719 */ 1720 static void 1721 ill_downi_mrtun_srcif(ire_t *ire, char *ill_arg) 1722 { 1723 ill_t *ill = (ill_t *)ill_arg; 1724 1725 ASSERT(ire->ire_in_ill != NULL); 1726 1727 if ((ire->ire_in_ill != NULL && ire->ire_in_ill == ill) || 1728 (ire->ire_stq == ill->ill_wq) || (ire->ire_stq == ill->ill_rq)) { 1729 ire_delete(ire); 1730 } 1731 } 1732 1733 /* 1734 * Remove ire/nce from the fastpath list. 1735 */ 1736 void 1737 ill_fastpath_nack(ill_t *ill) 1738 { 1739 nce_fastpath_list_dispatch(ill, NULL, NULL); 1740 } 1741 1742 /* Consume an M_IOCACK of the fastpath probe. */ 1743 void 1744 ill_fastpath_ack(ill_t *ill, mblk_t *mp) 1745 { 1746 mblk_t *mp1 = mp; 1747 1748 /* 1749 * If this was the first attempt turn on the fastpath probing. 1750 */ 1751 mutex_enter(&ill->ill_lock); 1752 if (ill->ill_dlpi_fastpath_state == IDS_INPROGRESS) 1753 ill->ill_dlpi_fastpath_state = IDS_OK; 1754 mutex_exit(&ill->ill_lock); 1755 1756 /* Free the M_IOCACK mblk, hold on to the data */ 1757 mp = mp->b_cont; 1758 freeb(mp1); 1759 if (mp == NULL) 1760 return; 1761 if (mp->b_cont != NULL) { 1762 /* 1763 * Update all IRE's or NCE's that are waiting for 1764 * fastpath update. 1765 */ 1766 nce_fastpath_list_dispatch(ill, ndp_fastpath_update, mp); 1767 mp1 = mp->b_cont; 1768 freeb(mp); 1769 mp = mp1; 1770 } else { 1771 ip0dbg(("ill_fastpath_ack: no b_cont\n")); 1772 } 1773 1774 freeb(mp); 1775 } 1776 1777 /* 1778 * Throw an M_IOCTL message downstream asking "do you know fastpath?" 1779 * The data portion of the request is a dl_unitdata_req_t template for 1780 * what we would send downstream in the absence of a fastpath confirmation. 1781 */ 1782 int 1783 ill_fastpath_probe(ill_t *ill, mblk_t *dlur_mp) 1784 { 1785 struct iocblk *ioc; 1786 mblk_t *mp; 1787 1788 if (dlur_mp == NULL) 1789 return (EINVAL); 1790 1791 mutex_enter(&ill->ill_lock); 1792 switch (ill->ill_dlpi_fastpath_state) { 1793 case IDS_FAILED: 1794 /* 1795 * Driver NAKed the first fastpath ioctl - assume it doesn't 1796 * support it. 1797 */ 1798 mutex_exit(&ill->ill_lock); 1799 return (ENOTSUP); 1800 case IDS_UNKNOWN: 1801 /* This is the first probe */ 1802 ill->ill_dlpi_fastpath_state = IDS_INPROGRESS; 1803 break; 1804 default: 1805 break; 1806 } 1807 mutex_exit(&ill->ill_lock); 1808 1809 if ((mp = mkiocb(DL_IOC_HDR_INFO)) == NULL) 1810 return (EAGAIN); 1811 1812 mp->b_cont = copyb(dlur_mp); 1813 if (mp->b_cont == NULL) { 1814 freeb(mp); 1815 return (EAGAIN); 1816 } 1817 1818 ioc = (struct iocblk *)mp->b_rptr; 1819 ioc->ioc_count = msgdsize(mp->b_cont); 1820 1821 putnext(ill->ill_wq, mp); 1822 return (0); 1823 } 1824 1825 void 1826 ill_capability_probe(ill_t *ill) 1827 { 1828 /* 1829 * Do so only if negotiation is enabled, capabilities are unknown, 1830 * and a capability negotiation is not already in progress. 1831 */ 1832 if (ill->ill_dlpi_capab_state != IDS_UNKNOWN && 1833 ill->ill_dlpi_capab_state != IDS_RENEG) 1834 return; 1835 1836 ill->ill_dlpi_capab_state = IDS_INPROGRESS; 1837 ip1dbg(("ill_capability_probe: starting capability negotiation\n")); 1838 ill_capability_proto(ill, DL_CAPABILITY_REQ, NULL); 1839 } 1840 1841 void 1842 ill_capability_reset(ill_t *ill) 1843 { 1844 mblk_t *sc_mp = NULL; 1845 mblk_t *tmp; 1846 1847 /* 1848 * Note here that we reset the state to UNKNOWN, and later send 1849 * down the DL_CAPABILITY_REQ without first setting the state to 1850 * INPROGRESS. We do this in order to distinguish the 1851 * DL_CAPABILITY_ACK response which may come back in response to 1852 * a "reset" apart from the "probe" DL_CAPABILITY_REQ. This would 1853 * also handle the case where the driver doesn't send us back 1854 * a DL_CAPABILITY_ACK in response, since the "probe" routine 1855 * requires the state to be in UNKNOWN anyway. In any case, all 1856 * features are turned off until the state reaches IDS_OK. 1857 */ 1858 ill->ill_dlpi_capab_state = IDS_UNKNOWN; 1859 1860 /* 1861 * Disable sub-capabilities and request a list of sub-capability 1862 * messages which will be sent down to the driver. Each handler 1863 * allocates the corresponding dl_capability_sub_t inside an 1864 * mblk, and links it to the existing sc_mp mblk, or return it 1865 * as sc_mp if it's the first sub-capability (the passed in 1866 * sc_mp is NULL). Upon returning from all capability handlers, 1867 * sc_mp will be pulled-up, before passing it downstream. 1868 */ 1869 ill_capability_mdt_reset(ill, &sc_mp); 1870 ill_capability_hcksum_reset(ill, &sc_mp); 1871 ill_capability_zerocopy_reset(ill, &sc_mp); 1872 ill_capability_ipsec_reset(ill, &sc_mp); 1873 ill_capability_dls_reset(ill, &sc_mp); 1874 ill_capability_lso_reset(ill, &sc_mp); 1875 1876 /* Nothing to send down in order to disable the capabilities? */ 1877 if (sc_mp == NULL) 1878 return; 1879 1880 tmp = msgpullup(sc_mp, -1); 1881 freemsg(sc_mp); 1882 if ((sc_mp = tmp) == NULL) { 1883 cmn_err(CE_WARN, "ill_capability_reset: unable to send down " 1884 "DL_CAPABILITY_REQ (ENOMEM)\n"); 1885 return; 1886 } 1887 1888 ip1dbg(("ill_capability_reset: resetting negotiated capabilities\n")); 1889 ill_capability_proto(ill, DL_CAPABILITY_REQ, sc_mp); 1890 } 1891 1892 /* 1893 * Request or set new-style hardware capabilities supported by DLS provider. 1894 */ 1895 static void 1896 ill_capability_proto(ill_t *ill, int type, mblk_t *reqp) 1897 { 1898 mblk_t *mp; 1899 dl_capability_req_t *capb; 1900 size_t size = 0; 1901 uint8_t *ptr; 1902 1903 if (reqp != NULL) 1904 size = MBLKL(reqp); 1905 1906 mp = ip_dlpi_alloc(sizeof (dl_capability_req_t) + size, type); 1907 if (mp == NULL) { 1908 freemsg(reqp); 1909 return; 1910 } 1911 ptr = mp->b_rptr; 1912 1913 capb = (dl_capability_req_t *)ptr; 1914 ptr += sizeof (dl_capability_req_t); 1915 1916 if (reqp != NULL) { 1917 capb->dl_sub_offset = sizeof (dl_capability_req_t); 1918 capb->dl_sub_length = size; 1919 bcopy(reqp->b_rptr, ptr, size); 1920 ptr += size; 1921 mp->b_cont = reqp->b_cont; 1922 freeb(reqp); 1923 } 1924 ASSERT(ptr == mp->b_wptr); 1925 1926 ill_dlpi_send(ill, mp); 1927 } 1928 1929 static void 1930 ill_capability_id_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *outers) 1931 { 1932 dl_capab_id_t *id_ic; 1933 uint_t sub_dl_cap = outers->dl_cap; 1934 dl_capability_sub_t *inners; 1935 uint8_t *capend; 1936 1937 ASSERT(sub_dl_cap == DL_CAPAB_ID_WRAPPER); 1938 1939 /* 1940 * Note: range checks here are not absolutely sufficient to 1941 * make us robust against malformed messages sent by drivers; 1942 * this is in keeping with the rest of IP's dlpi handling. 1943 * (Remember, it's coming from something else in the kernel 1944 * address space) 1945 */ 1946 1947 capend = (uint8_t *)(outers + 1) + outers->dl_length; 1948 if (capend > mp->b_wptr) { 1949 cmn_err(CE_WARN, "ill_capability_id_ack: " 1950 "malformed sub-capability too long for mblk"); 1951 return; 1952 } 1953 1954 id_ic = (dl_capab_id_t *)(outers + 1); 1955 1956 if (outers->dl_length < sizeof (*id_ic) || 1957 (inners = &id_ic->id_subcap, 1958 inners->dl_length > (outers->dl_length - sizeof (*inners)))) { 1959 cmn_err(CE_WARN, "ill_capability_id_ack: malformed " 1960 "encapsulated capab type %d too long for mblk", 1961 inners->dl_cap); 1962 return; 1963 } 1964 1965 if (!dlcapabcheckqid(&id_ic->id_mid, ill->ill_lmod_rq)) { 1966 ip1dbg(("ill_capability_id_ack: mid token for capab type %d " 1967 "isn't as expected; pass-thru module(s) detected, " 1968 "discarding capability\n", inners->dl_cap)); 1969 return; 1970 } 1971 1972 /* Process the encapsulated sub-capability */ 1973 ill_capability_dispatch(ill, mp, inners, B_TRUE); 1974 } 1975 1976 /* 1977 * Process Multidata Transmit capability negotiation ack received from a 1978 * DLS Provider. isub must point to the sub-capability (DL_CAPAB_MDT) of a 1979 * DL_CAPABILITY_ACK message. 1980 */ 1981 static void 1982 ill_capability_mdt_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub) 1983 { 1984 mblk_t *nmp = NULL; 1985 dl_capability_req_t *oc; 1986 dl_capab_mdt_t *mdt_ic, *mdt_oc; 1987 ill_mdt_capab_t **ill_mdt_capab; 1988 uint_t sub_dl_cap = isub->dl_cap; 1989 uint8_t *capend; 1990 1991 ASSERT(sub_dl_cap == DL_CAPAB_MDT); 1992 1993 ill_mdt_capab = (ill_mdt_capab_t **)&ill->ill_mdt_capab; 1994 1995 /* 1996 * Note: range checks here are not absolutely sufficient to 1997 * make us robust against malformed messages sent by drivers; 1998 * this is in keeping with the rest of IP's dlpi handling. 1999 * (Remember, it's coming from something else in the kernel 2000 * address space) 2001 */ 2002 2003 capend = (uint8_t *)(isub + 1) + isub->dl_length; 2004 if (capend > mp->b_wptr) { 2005 cmn_err(CE_WARN, "ill_capability_mdt_ack: " 2006 "malformed sub-capability too long for mblk"); 2007 return; 2008 } 2009 2010 mdt_ic = (dl_capab_mdt_t *)(isub + 1); 2011 2012 if (mdt_ic->mdt_version != MDT_VERSION_2) { 2013 cmn_err(CE_CONT, "ill_capability_mdt_ack: " 2014 "unsupported MDT sub-capability (version %d, expected %d)", 2015 mdt_ic->mdt_version, MDT_VERSION_2); 2016 return; 2017 } 2018 2019 if (!dlcapabcheckqid(&mdt_ic->mdt_mid, ill->ill_lmod_rq)) { 2020 ip1dbg(("ill_capability_mdt_ack: mid token for MDT " 2021 "capability isn't as expected; pass-thru module(s) " 2022 "detected, discarding capability\n")); 2023 return; 2024 } 2025 2026 if (mdt_ic->mdt_flags & DL_CAPAB_MDT_ENABLE) { 2027 2028 if (*ill_mdt_capab == NULL) { 2029 *ill_mdt_capab = kmem_zalloc(sizeof (ill_mdt_capab_t), 2030 KM_NOSLEEP); 2031 2032 if (*ill_mdt_capab == NULL) { 2033 cmn_err(CE_WARN, "ill_capability_mdt_ack: " 2034 "could not enable MDT version %d " 2035 "for %s (ENOMEM)\n", MDT_VERSION_2, 2036 ill->ill_name); 2037 return; 2038 } 2039 } 2040 2041 ip1dbg(("ill_capability_mdt_ack: interface %s supports " 2042 "MDT version %d (%d bytes leading, %d bytes trailing " 2043 "header spaces, %d max pld bufs, %d span limit)\n", 2044 ill->ill_name, MDT_VERSION_2, 2045 mdt_ic->mdt_hdr_head, mdt_ic->mdt_hdr_tail, 2046 mdt_ic->mdt_max_pld, mdt_ic->mdt_span_limit)); 2047 2048 (*ill_mdt_capab)->ill_mdt_version = MDT_VERSION_2; 2049 (*ill_mdt_capab)->ill_mdt_on = 1; 2050 /* 2051 * Round the following values to the nearest 32-bit; ULP 2052 * may further adjust them to accomodate for additional 2053 * protocol headers. We pass these values to ULP during 2054 * bind time. 2055 */ 2056 (*ill_mdt_capab)->ill_mdt_hdr_head = 2057 roundup(mdt_ic->mdt_hdr_head, 4); 2058 (*ill_mdt_capab)->ill_mdt_hdr_tail = 2059 roundup(mdt_ic->mdt_hdr_tail, 4); 2060 (*ill_mdt_capab)->ill_mdt_max_pld = mdt_ic->mdt_max_pld; 2061 (*ill_mdt_capab)->ill_mdt_span_limit = mdt_ic->mdt_span_limit; 2062 2063 ill->ill_capabilities |= ILL_CAPAB_MDT; 2064 } else { 2065 uint_t size; 2066 uchar_t *rptr; 2067 2068 size = sizeof (dl_capability_req_t) + 2069 sizeof (dl_capability_sub_t) + sizeof (dl_capab_mdt_t); 2070 2071 if ((nmp = ip_dlpi_alloc(size, DL_CAPABILITY_REQ)) == NULL) { 2072 cmn_err(CE_WARN, "ill_capability_mdt_ack: " 2073 "could not enable MDT for %s (ENOMEM)\n", 2074 ill->ill_name); 2075 return; 2076 } 2077 2078 rptr = nmp->b_rptr; 2079 /* initialize dl_capability_req_t */ 2080 oc = (dl_capability_req_t *)nmp->b_rptr; 2081 oc->dl_sub_offset = sizeof (dl_capability_req_t); 2082 oc->dl_sub_length = sizeof (dl_capability_sub_t) + 2083 sizeof (dl_capab_mdt_t); 2084 nmp->b_rptr += sizeof (dl_capability_req_t); 2085 2086 /* initialize dl_capability_sub_t */ 2087 bcopy(isub, nmp->b_rptr, sizeof (*isub)); 2088 nmp->b_rptr += sizeof (*isub); 2089 2090 /* initialize dl_capab_mdt_t */ 2091 mdt_oc = (dl_capab_mdt_t *)nmp->b_rptr; 2092 bcopy(mdt_ic, mdt_oc, sizeof (*mdt_ic)); 2093 2094 nmp->b_rptr = rptr; 2095 2096 ip1dbg(("ill_capability_mdt_ack: asking interface %s " 2097 "to enable MDT version %d\n", ill->ill_name, 2098 MDT_VERSION_2)); 2099 2100 /* set ENABLE flag */ 2101 mdt_oc->mdt_flags |= DL_CAPAB_MDT_ENABLE; 2102 2103 /* nmp points to a DL_CAPABILITY_REQ message to enable MDT */ 2104 ill_dlpi_send(ill, nmp); 2105 } 2106 } 2107 2108 static void 2109 ill_capability_mdt_reset(ill_t *ill, mblk_t **sc_mp) 2110 { 2111 mblk_t *mp; 2112 dl_capab_mdt_t *mdt_subcap; 2113 dl_capability_sub_t *dl_subcap; 2114 int size; 2115 2116 if (!ILL_MDT_CAPABLE(ill)) 2117 return; 2118 2119 ASSERT(ill->ill_mdt_capab != NULL); 2120 /* 2121 * Clear the capability flag for MDT but retain the ill_mdt_capab 2122 * structure since it's possible that another thread is still 2123 * referring to it. The structure only gets deallocated when 2124 * we destroy the ill. 2125 */ 2126 ill->ill_capabilities &= ~ILL_CAPAB_MDT; 2127 2128 size = sizeof (*dl_subcap) + sizeof (*mdt_subcap); 2129 2130 mp = allocb(size, BPRI_HI); 2131 if (mp == NULL) { 2132 ip1dbg(("ill_capability_mdt_reset: unable to allocate " 2133 "request to disable MDT\n")); 2134 return; 2135 } 2136 2137 mp->b_wptr = mp->b_rptr + size; 2138 2139 dl_subcap = (dl_capability_sub_t *)mp->b_rptr; 2140 dl_subcap->dl_cap = DL_CAPAB_MDT; 2141 dl_subcap->dl_length = sizeof (*mdt_subcap); 2142 2143 mdt_subcap = (dl_capab_mdt_t *)(dl_subcap + 1); 2144 mdt_subcap->mdt_version = ill->ill_mdt_capab->ill_mdt_version; 2145 mdt_subcap->mdt_flags = 0; 2146 mdt_subcap->mdt_hdr_head = 0; 2147 mdt_subcap->mdt_hdr_tail = 0; 2148 2149 if (*sc_mp != NULL) 2150 linkb(*sc_mp, mp); 2151 else 2152 *sc_mp = mp; 2153 } 2154 2155 /* 2156 * Send a DL_NOTIFY_REQ to the specified ill to enable 2157 * DL_NOTE_PROMISC_ON/OFF_PHYS notifications. 2158 * Invoked by ill_capability_ipsec_ack() before enabling IPsec hardware 2159 * acceleration. 2160 * Returns B_TRUE on success, B_FALSE if the message could not be sent. 2161 */ 2162 static boolean_t 2163 ill_enable_promisc_notify(ill_t *ill) 2164 { 2165 mblk_t *mp; 2166 dl_notify_req_t *req; 2167 2168 IPSECHW_DEBUG(IPSECHW_PKT, ("ill_enable_promisc_notify:\n")); 2169 2170 mp = ip_dlpi_alloc(sizeof (dl_notify_req_t), DL_NOTIFY_REQ); 2171 if (mp == NULL) 2172 return (B_FALSE); 2173 2174 req = (dl_notify_req_t *)mp->b_rptr; 2175 req->dl_notifications = DL_NOTE_PROMISC_ON_PHYS | 2176 DL_NOTE_PROMISC_OFF_PHYS; 2177 2178 ill_dlpi_send(ill, mp); 2179 2180 return (B_TRUE); 2181 } 2182 2183 2184 /* 2185 * Allocate an IPsec capability request which will be filled by our 2186 * caller to turn on support for one or more algorithms. 2187 */ 2188 static mblk_t * 2189 ill_alloc_ipsec_cap_req(ill_t *ill, dl_capability_sub_t *isub) 2190 { 2191 mblk_t *nmp; 2192 dl_capability_req_t *ocap; 2193 dl_capab_ipsec_t *ocip; 2194 dl_capab_ipsec_t *icip; 2195 uint8_t *ptr; 2196 icip = (dl_capab_ipsec_t *)(isub + 1); 2197 2198 /* 2199 * The first time around, we send a DL_NOTIFY_REQ to enable 2200 * PROMISC_ON/OFF notification from the provider. We need to 2201 * do this before enabling the algorithms to avoid leakage of 2202 * cleartext packets. 2203 */ 2204 2205 if (!ill_enable_promisc_notify(ill)) 2206 return (NULL); 2207 2208 /* 2209 * Allocate new mblk which will contain a new capability 2210 * request to enable the capabilities. 2211 */ 2212 2213 nmp = ip_dlpi_alloc(sizeof (dl_capability_req_t) + 2214 sizeof (dl_capability_sub_t) + isub->dl_length, DL_CAPABILITY_REQ); 2215 if (nmp == NULL) 2216 return (NULL); 2217 2218 ptr = nmp->b_rptr; 2219 2220 /* initialize dl_capability_req_t */ 2221 ocap = (dl_capability_req_t *)ptr; 2222 ocap->dl_sub_offset = sizeof (dl_capability_req_t); 2223 ocap->dl_sub_length = sizeof (dl_capability_sub_t) + isub->dl_length; 2224 ptr += sizeof (dl_capability_req_t); 2225 2226 /* initialize dl_capability_sub_t */ 2227 bcopy(isub, ptr, sizeof (*isub)); 2228 ptr += sizeof (*isub); 2229 2230 /* initialize dl_capab_ipsec_t */ 2231 ocip = (dl_capab_ipsec_t *)ptr; 2232 bcopy(icip, ocip, sizeof (*icip)); 2233 2234 nmp->b_wptr = (uchar_t *)(&ocip->cip_data[0]); 2235 return (nmp); 2236 } 2237 2238 /* 2239 * Process an IPsec capability negotiation ack received from a DLS Provider. 2240 * isub must point to the sub-capability (DL_CAPAB_IPSEC_AH or 2241 * DL_CAPAB_IPSEC_ESP) of a DL_CAPABILITY_ACK message. 2242 */ 2243 static void 2244 ill_capability_ipsec_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub) 2245 { 2246 dl_capab_ipsec_t *icip; 2247 dl_capab_ipsec_alg_t *ialg; /* ptr to input alg spec. */ 2248 dl_capab_ipsec_alg_t *oalg; /* ptr to output alg spec. */ 2249 uint_t cipher, nciphers; 2250 mblk_t *nmp; 2251 uint_t alg_len; 2252 boolean_t need_sadb_dump; 2253 uint_t sub_dl_cap = isub->dl_cap; 2254 ill_ipsec_capab_t **ill_capab; 2255 uint64_t ill_capab_flag; 2256 uint8_t *capend, *ciphend; 2257 boolean_t sadb_resync; 2258 2259 ASSERT(sub_dl_cap == DL_CAPAB_IPSEC_AH || 2260 sub_dl_cap == DL_CAPAB_IPSEC_ESP); 2261 2262 if (sub_dl_cap == DL_CAPAB_IPSEC_AH) { 2263 ill_capab = (ill_ipsec_capab_t **)&ill->ill_ipsec_capab_ah; 2264 ill_capab_flag = ILL_CAPAB_AH; 2265 } else { 2266 ill_capab = (ill_ipsec_capab_t **)&ill->ill_ipsec_capab_esp; 2267 ill_capab_flag = ILL_CAPAB_ESP; 2268 } 2269 2270 /* 2271 * If the ill capability structure exists, then this incoming 2272 * DL_CAPABILITY_ACK is a response to a "renegotiation" cycle. 2273 * If this is so, then we'd need to resynchronize the SADB 2274 * after re-enabling the offloaded ciphers. 2275 */ 2276 sadb_resync = (*ill_capab != NULL); 2277 2278 /* 2279 * Note: range checks here are not absolutely sufficient to 2280 * make us robust against malformed messages sent by drivers; 2281 * this is in keeping with the rest of IP's dlpi handling. 2282 * (Remember, it's coming from something else in the kernel 2283 * address space) 2284 */ 2285 2286 capend = (uint8_t *)(isub + 1) + isub->dl_length; 2287 if (capend > mp->b_wptr) { 2288 cmn_err(CE_WARN, "ill_capability_ipsec_ack: " 2289 "malformed sub-capability too long for mblk"); 2290 return; 2291 } 2292 2293 /* 2294 * There are two types of acks we process here: 2295 * 1. acks in reply to a (first form) generic capability req 2296 * (no ENABLE flag set) 2297 * 2. acks in reply to a ENABLE capability req. 2298 * (ENABLE flag set) 2299 * 2300 * We process the subcapability passed as argument as follows: 2301 * 1 do initializations 2302 * 1.1 initialize nmp = NULL 2303 * 1.2 set need_sadb_dump to B_FALSE 2304 * 2 for each cipher in subcapability: 2305 * 2.1 if ENABLE flag is set: 2306 * 2.1.1 update per-ill ipsec capabilities info 2307 * 2.1.2 set need_sadb_dump to B_TRUE 2308 * 2.2 if ENABLE flag is not set: 2309 * 2.2.1 if nmp is NULL: 2310 * 2.2.1.1 allocate and initialize nmp 2311 * 2.2.1.2 init current pos in nmp 2312 * 2.2.2 copy current cipher to current pos in nmp 2313 * 2.2.3 set ENABLE flag in nmp 2314 * 2.2.4 update current pos 2315 * 3 if nmp is not equal to NULL, send enable request 2316 * 3.1 send capability request 2317 * 4 if need_sadb_dump is B_TRUE 2318 * 4.1 enable promiscuous on/off notifications 2319 * 4.2 call ill_dlpi_send(isub->dlcap) to send all 2320 * AH or ESP SA's to interface. 2321 */ 2322 2323 nmp = NULL; 2324 oalg = NULL; 2325 need_sadb_dump = B_FALSE; 2326 icip = (dl_capab_ipsec_t *)(isub + 1); 2327 ialg = (dl_capab_ipsec_alg_t *)(&icip->cip_data[0]); 2328 2329 nciphers = icip->cip_nciphers; 2330 ciphend = (uint8_t *)(ialg + icip->cip_nciphers); 2331 2332 if (ciphend > capend) { 2333 cmn_err(CE_WARN, "ill_capability_ipsec_ack: " 2334 "too many ciphers for sub-capability len"); 2335 return; 2336 } 2337 2338 for (cipher = 0; cipher < nciphers; cipher++) { 2339 alg_len = sizeof (dl_capab_ipsec_alg_t); 2340 2341 if (ialg->alg_flag & DL_CAPAB_ALG_ENABLE) { 2342 /* 2343 * TBD: when we provide a way to disable capabilities 2344 * from above, need to manage the request-pending state 2345 * and fail if we were not expecting this ACK. 2346 */ 2347 IPSECHW_DEBUG(IPSECHW_CAPAB, 2348 ("ill_capability_ipsec_ack: got ENABLE ACK\n")); 2349 2350 /* 2351 * Update IPsec capabilities for this ill 2352 */ 2353 2354 if (*ill_capab == NULL) { 2355 IPSECHW_DEBUG(IPSECHW_CAPAB, 2356 ("ill_capability_ipsec_ack: " 2357 "allocating ipsec_capab for ill\n")); 2358 *ill_capab = ill_ipsec_capab_alloc(); 2359 2360 if (*ill_capab == NULL) { 2361 cmn_err(CE_WARN, 2362 "ill_capability_ipsec_ack: " 2363 "could not enable IPsec Hardware " 2364 "acceleration for %s (ENOMEM)\n", 2365 ill->ill_name); 2366 return; 2367 } 2368 } 2369 2370 ASSERT(ialg->alg_type == DL_CAPAB_IPSEC_ALG_AUTH || 2371 ialg->alg_type == DL_CAPAB_IPSEC_ALG_ENCR); 2372 2373 if (ialg->alg_prim >= MAX_IPSEC_ALGS) { 2374 cmn_err(CE_WARN, 2375 "ill_capability_ipsec_ack: " 2376 "malformed IPsec algorithm id %d", 2377 ialg->alg_prim); 2378 continue; 2379 } 2380 2381 if (ialg->alg_type == DL_CAPAB_IPSEC_ALG_AUTH) { 2382 IPSEC_ALG_ENABLE((*ill_capab)->auth_hw_algs, 2383 ialg->alg_prim); 2384 } else { 2385 ipsec_capab_algparm_t *alp; 2386 2387 IPSEC_ALG_ENABLE((*ill_capab)->encr_hw_algs, 2388 ialg->alg_prim); 2389 if (!ill_ipsec_capab_resize_algparm(*ill_capab, 2390 ialg->alg_prim)) { 2391 cmn_err(CE_WARN, 2392 "ill_capability_ipsec_ack: " 2393 "no space for IPsec alg id %d", 2394 ialg->alg_prim); 2395 continue; 2396 } 2397 alp = &((*ill_capab)->encr_algparm[ 2398 ialg->alg_prim]); 2399 alp->minkeylen = ialg->alg_minbits; 2400 alp->maxkeylen = ialg->alg_maxbits; 2401 } 2402 ill->ill_capabilities |= ill_capab_flag; 2403 /* 2404 * indicate that a capability was enabled, which 2405 * will be used below to kick off a SADB dump 2406 * to the ill. 2407 */ 2408 need_sadb_dump = B_TRUE; 2409 } else { 2410 IPSECHW_DEBUG(IPSECHW_CAPAB, 2411 ("ill_capability_ipsec_ack: enabling alg 0x%x\n", 2412 ialg->alg_prim)); 2413 2414 if (nmp == NULL) { 2415 nmp = ill_alloc_ipsec_cap_req(ill, isub); 2416 if (nmp == NULL) { 2417 /* 2418 * Sending the PROMISC_ON/OFF 2419 * notification request failed. 2420 * We cannot enable the algorithms 2421 * since the Provider will not 2422 * notify IP of promiscous mode 2423 * changes, which could lead 2424 * to leakage of packets. 2425 */ 2426 cmn_err(CE_WARN, 2427 "ill_capability_ipsec_ack: " 2428 "could not enable IPsec Hardware " 2429 "acceleration for %s (ENOMEM)\n", 2430 ill->ill_name); 2431 return; 2432 } 2433 /* ptr to current output alg specifier */ 2434 oalg = (dl_capab_ipsec_alg_t *)nmp->b_wptr; 2435 } 2436 2437 /* 2438 * Copy current alg specifier, set ENABLE 2439 * flag, and advance to next output alg. 2440 * For now we enable all IPsec capabilities. 2441 */ 2442 ASSERT(oalg != NULL); 2443 bcopy(ialg, oalg, alg_len); 2444 oalg->alg_flag |= DL_CAPAB_ALG_ENABLE; 2445 nmp->b_wptr += alg_len; 2446 oalg = (dl_capab_ipsec_alg_t *)nmp->b_wptr; 2447 } 2448 2449 /* move to next input algorithm specifier */ 2450 ialg = (dl_capab_ipsec_alg_t *) 2451 ((char *)ialg + alg_len); 2452 } 2453 2454 if (nmp != NULL) 2455 /* 2456 * nmp points to a DL_CAPABILITY_REQ message to enable 2457 * IPsec hardware acceleration. 2458 */ 2459 ill_dlpi_send(ill, nmp); 2460 2461 if (need_sadb_dump) 2462 /* 2463 * An acknowledgement corresponding to a request to 2464 * enable acceleration was received, notify SADB. 2465 */ 2466 ill_ipsec_capab_add(ill, sub_dl_cap, sadb_resync); 2467 } 2468 2469 /* 2470 * Given an mblk with enough space in it, create sub-capability entries for 2471 * DL_CAPAB_IPSEC_{AH,ESP} types which consist of previously-advertised 2472 * offloaded ciphers (both AUTH and ENCR) with their enable flags cleared, 2473 * in preparation for the reset the DL_CAPABILITY_REQ message. 2474 */ 2475 static void 2476 ill_fill_ipsec_reset(uint_t nciphers, int stype, uint_t slen, 2477 ill_ipsec_capab_t *ill_cap, mblk_t *mp) 2478 { 2479 dl_capab_ipsec_t *oipsec; 2480 dl_capab_ipsec_alg_t *oalg; 2481 dl_capability_sub_t *dl_subcap; 2482 int i, k; 2483 2484 ASSERT(nciphers > 0); 2485 ASSERT(ill_cap != NULL); 2486 ASSERT(mp != NULL); 2487 ASSERT(MBLKTAIL(mp) >= sizeof (*dl_subcap) + sizeof (*oipsec) + slen); 2488 2489 /* dl_capability_sub_t for "stype" */ 2490 dl_subcap = (dl_capability_sub_t *)mp->b_wptr; 2491 dl_subcap->dl_cap = stype; 2492 dl_subcap->dl_length = sizeof (dl_capab_ipsec_t) + slen; 2493 mp->b_wptr += sizeof (dl_capability_sub_t); 2494 2495 /* dl_capab_ipsec_t for "stype" */ 2496 oipsec = (dl_capab_ipsec_t *)mp->b_wptr; 2497 oipsec->cip_version = 1; 2498 oipsec->cip_nciphers = nciphers; 2499 mp->b_wptr = (uchar_t *)&oipsec->cip_data[0]; 2500 2501 /* create entries for "stype" AUTH ciphers */ 2502 for (i = 0; i < ill_cap->algs_size; i++) { 2503 for (k = 0; k < BITSPERBYTE; k++) { 2504 if ((ill_cap->auth_hw_algs[i] & (1 << k)) == 0) 2505 continue; 2506 2507 oalg = (dl_capab_ipsec_alg_t *)mp->b_wptr; 2508 bzero((void *)oalg, sizeof (*oalg)); 2509 oalg->alg_type = DL_CAPAB_IPSEC_ALG_AUTH; 2510 oalg->alg_prim = k + (BITSPERBYTE * i); 2511 mp->b_wptr += sizeof (dl_capab_ipsec_alg_t); 2512 } 2513 } 2514 /* create entries for "stype" ENCR ciphers */ 2515 for (i = 0; i < ill_cap->algs_size; i++) { 2516 for (k = 0; k < BITSPERBYTE; k++) { 2517 if ((ill_cap->encr_hw_algs[i] & (1 << k)) == 0) 2518 continue; 2519 2520 oalg = (dl_capab_ipsec_alg_t *)mp->b_wptr; 2521 bzero((void *)oalg, sizeof (*oalg)); 2522 oalg->alg_type = DL_CAPAB_IPSEC_ALG_ENCR; 2523 oalg->alg_prim = k + (BITSPERBYTE * i); 2524 mp->b_wptr += sizeof (dl_capab_ipsec_alg_t); 2525 } 2526 } 2527 } 2528 2529 /* 2530 * Macro to count number of 1s in a byte (8-bit word). The total count is 2531 * accumulated into the passed-in argument (sum). We could use SPARCv9's 2532 * POPC instruction, but our macro is more flexible for an arbitrary length 2533 * of bytes, such as {auth,encr}_hw_algs. These variables are currently 2534 * 256-bits long (MAX_IPSEC_ALGS), so if we know for sure that the length 2535 * stays that way, we can reduce the number of iterations required. 2536 */ 2537 #define COUNT_1S(val, sum) { \ 2538 uint8_t x = val & 0xff; \ 2539 x = (x & 0x55) + ((x >> 1) & 0x55); \ 2540 x = (x & 0x33) + ((x >> 2) & 0x33); \ 2541 sum += (x & 0xf) + ((x >> 4) & 0xf); \ 2542 } 2543 2544 /* ARGSUSED */ 2545 static void 2546 ill_capability_ipsec_reset(ill_t *ill, mblk_t **sc_mp) 2547 { 2548 mblk_t *mp; 2549 ill_ipsec_capab_t *cap_ah = ill->ill_ipsec_capab_ah; 2550 ill_ipsec_capab_t *cap_esp = ill->ill_ipsec_capab_esp; 2551 uint64_t ill_capabilities = ill->ill_capabilities; 2552 int ah_cnt = 0, esp_cnt = 0; 2553 int ah_len = 0, esp_len = 0; 2554 int i, size = 0; 2555 2556 if (!(ill_capabilities & (ILL_CAPAB_AH | ILL_CAPAB_ESP))) 2557 return; 2558 2559 ASSERT(cap_ah != NULL || !(ill_capabilities & ILL_CAPAB_AH)); 2560 ASSERT(cap_esp != NULL || !(ill_capabilities & ILL_CAPAB_ESP)); 2561 2562 /* Find out the number of ciphers for AH */ 2563 if (cap_ah != NULL) { 2564 for (i = 0; i < cap_ah->algs_size; i++) { 2565 COUNT_1S(cap_ah->auth_hw_algs[i], ah_cnt); 2566 COUNT_1S(cap_ah->encr_hw_algs[i], ah_cnt); 2567 } 2568 if (ah_cnt > 0) { 2569 size += sizeof (dl_capability_sub_t) + 2570 sizeof (dl_capab_ipsec_t); 2571 /* dl_capab_ipsec_t contains one dl_capab_ipsec_alg_t */ 2572 ah_len = (ah_cnt - 1) * sizeof (dl_capab_ipsec_alg_t); 2573 size += ah_len; 2574 } 2575 } 2576 2577 /* Find out the number of ciphers for ESP */ 2578 if (cap_esp != NULL) { 2579 for (i = 0; i < cap_esp->algs_size; i++) { 2580 COUNT_1S(cap_esp->auth_hw_algs[i], esp_cnt); 2581 COUNT_1S(cap_esp->encr_hw_algs[i], esp_cnt); 2582 } 2583 if (esp_cnt > 0) { 2584 size += sizeof (dl_capability_sub_t) + 2585 sizeof (dl_capab_ipsec_t); 2586 /* dl_capab_ipsec_t contains one dl_capab_ipsec_alg_t */ 2587 esp_len = (esp_cnt - 1) * sizeof (dl_capab_ipsec_alg_t); 2588 size += esp_len; 2589 } 2590 } 2591 2592 if (size == 0) { 2593 ip1dbg(("ill_capability_ipsec_reset: capabilities exist but " 2594 "there's nothing to reset\n")); 2595 return; 2596 } 2597 2598 mp = allocb(size, BPRI_HI); 2599 if (mp == NULL) { 2600 ip1dbg(("ill_capability_ipsec_reset: unable to allocate " 2601 "request to disable IPSEC Hardware Acceleration\n")); 2602 return; 2603 } 2604 2605 /* 2606 * Clear the capability flags for IPSec HA but retain the ill 2607 * capability structures since it's possible that another thread 2608 * is still referring to them. The structures only get deallocated 2609 * when we destroy the ill. 2610 * 2611 * Various places check the flags to see if the ill is capable of 2612 * hardware acceleration, and by clearing them we ensure that new 2613 * outbound IPSec packets are sent down encrypted. 2614 */ 2615 ill->ill_capabilities &= ~(ILL_CAPAB_AH | ILL_CAPAB_ESP); 2616 2617 /* Fill in DL_CAPAB_IPSEC_AH sub-capability entries */ 2618 if (ah_cnt > 0) { 2619 ill_fill_ipsec_reset(ah_cnt, DL_CAPAB_IPSEC_AH, ah_len, 2620 cap_ah, mp); 2621 ASSERT(mp->b_rptr + size >= mp->b_wptr); 2622 } 2623 2624 /* Fill in DL_CAPAB_IPSEC_ESP sub-capability entries */ 2625 if (esp_cnt > 0) { 2626 ill_fill_ipsec_reset(esp_cnt, DL_CAPAB_IPSEC_ESP, esp_len, 2627 cap_esp, mp); 2628 ASSERT(mp->b_rptr + size >= mp->b_wptr); 2629 } 2630 2631 /* 2632 * At this point we've composed a bunch of sub-capabilities to be 2633 * encapsulated in a DL_CAPABILITY_REQ and later sent downstream 2634 * by the caller. Upon receiving this reset message, the driver 2635 * must stop inbound decryption (by destroying all inbound SAs) 2636 * and let the corresponding packets come in encrypted. 2637 */ 2638 2639 if (*sc_mp != NULL) 2640 linkb(*sc_mp, mp); 2641 else 2642 *sc_mp = mp; 2643 } 2644 2645 static void 2646 ill_capability_dispatch(ill_t *ill, mblk_t *mp, dl_capability_sub_t *subp, 2647 boolean_t encapsulated) 2648 { 2649 boolean_t legacy = B_FALSE; 2650 2651 /* 2652 * If this DL_CAPABILITY_ACK came in as a response to our "reset" 2653 * DL_CAPABILITY_REQ, ignore it during this cycle. We've just 2654 * instructed the driver to disable its advertised capabilities, 2655 * so there's no point in accepting any response at this moment. 2656 */ 2657 if (ill->ill_dlpi_capab_state == IDS_UNKNOWN) 2658 return; 2659 2660 /* 2661 * Note that only the following two sub-capabilities may be 2662 * considered as "legacy", since their original definitions 2663 * do not incorporate the dl_mid_t module ID token, and hence 2664 * may require the use of the wrapper sub-capability. 2665 */ 2666 switch (subp->dl_cap) { 2667 case DL_CAPAB_IPSEC_AH: 2668 case DL_CAPAB_IPSEC_ESP: 2669 legacy = B_TRUE; 2670 break; 2671 } 2672 2673 /* 2674 * For legacy sub-capabilities which don't incorporate a queue_t 2675 * pointer in their structures, discard them if we detect that 2676 * there are intermediate modules in between IP and the driver. 2677 */ 2678 if (!encapsulated && legacy && ill->ill_lmod_cnt > 1) { 2679 ip1dbg(("ill_capability_dispatch: unencapsulated capab type " 2680 "%d discarded; %d module(s) present below IP\n", 2681 subp->dl_cap, ill->ill_lmod_cnt)); 2682 return; 2683 } 2684 2685 switch (subp->dl_cap) { 2686 case DL_CAPAB_IPSEC_AH: 2687 case DL_CAPAB_IPSEC_ESP: 2688 ill_capability_ipsec_ack(ill, mp, subp); 2689 break; 2690 case DL_CAPAB_MDT: 2691 ill_capability_mdt_ack(ill, mp, subp); 2692 break; 2693 case DL_CAPAB_HCKSUM: 2694 ill_capability_hcksum_ack(ill, mp, subp); 2695 break; 2696 case DL_CAPAB_ZEROCOPY: 2697 ill_capability_zerocopy_ack(ill, mp, subp); 2698 break; 2699 case DL_CAPAB_POLL: 2700 if (!SOFT_RINGS_ENABLED()) 2701 ill_capability_dls_ack(ill, mp, subp); 2702 break; 2703 case DL_CAPAB_SOFT_RING: 2704 if (SOFT_RINGS_ENABLED()) 2705 ill_capability_dls_ack(ill, mp, subp); 2706 break; 2707 case DL_CAPAB_LSO: 2708 ill_capability_lso_ack(ill, mp, subp); 2709 break; 2710 default: 2711 ip1dbg(("ill_capability_dispatch: unknown capab type %d\n", 2712 subp->dl_cap)); 2713 } 2714 } 2715 2716 /* 2717 * As part of negotiating polling capability, the driver tells us 2718 * the default (or normal) blanking interval and packet threshold 2719 * (the receive timer fires if blanking interval is reached or 2720 * the packet threshold is reached). 2721 * 2722 * As part of manipulating the polling interval, we always use our 2723 * estimated interval (avg service time * number of packets queued 2724 * on the squeue) but we try to blank for a minimum of 2725 * rr_normal_blank_time * rr_max_blank_ratio. We disable the 2726 * packet threshold during this time. When we are not in polling mode 2727 * we set the blank interval typically lower, rr_normal_pkt_cnt * 2728 * rr_min_blank_ratio but up the packet cnt by a ratio of 2729 * rr_min_pkt_cnt_ratio so that we are still getting chains if 2730 * possible although for a shorter interval. 2731 */ 2732 #define RR_MAX_BLANK_RATIO 20 2733 #define RR_MIN_BLANK_RATIO 10 2734 #define RR_MAX_PKT_CNT_RATIO 3 2735 #define RR_MIN_PKT_CNT_RATIO 3 2736 2737 /* 2738 * These can be tuned via /etc/system. 2739 */ 2740 int rr_max_blank_ratio = RR_MAX_BLANK_RATIO; 2741 int rr_min_blank_ratio = RR_MIN_BLANK_RATIO; 2742 int rr_max_pkt_cnt_ratio = RR_MAX_PKT_CNT_RATIO; 2743 int rr_min_pkt_cnt_ratio = RR_MIN_PKT_CNT_RATIO; 2744 2745 static mac_resource_handle_t 2746 ill_ring_add(void *arg, mac_resource_t *mrp) 2747 { 2748 ill_t *ill = (ill_t *)arg; 2749 mac_rx_fifo_t *mrfp = (mac_rx_fifo_t *)mrp; 2750 ill_rx_ring_t *rx_ring; 2751 int ip_rx_index; 2752 2753 ASSERT(mrp != NULL); 2754 if (mrp->mr_type != MAC_RX_FIFO) { 2755 return (NULL); 2756 } 2757 ASSERT(ill != NULL); 2758 ASSERT(ill->ill_dls_capab != NULL); 2759 2760 mutex_enter(&ill->ill_lock); 2761 for (ip_rx_index = 0; ip_rx_index < ILL_MAX_RINGS; ip_rx_index++) { 2762 rx_ring = &ill->ill_dls_capab->ill_ring_tbl[ip_rx_index]; 2763 ASSERT(rx_ring != NULL); 2764 2765 if (rx_ring->rr_ring_state == ILL_RING_FREE) { 2766 time_t normal_blank_time = 2767 mrfp->mrf_normal_blank_time; 2768 uint_t normal_pkt_cnt = 2769 mrfp->mrf_normal_pkt_count; 2770 2771 bzero(rx_ring, sizeof (ill_rx_ring_t)); 2772 2773 rx_ring->rr_blank = mrfp->mrf_blank; 2774 rx_ring->rr_handle = mrfp->mrf_arg; 2775 rx_ring->rr_ill = ill; 2776 rx_ring->rr_normal_blank_time = normal_blank_time; 2777 rx_ring->rr_normal_pkt_cnt = normal_pkt_cnt; 2778 2779 rx_ring->rr_max_blank_time = 2780 normal_blank_time * rr_max_blank_ratio; 2781 rx_ring->rr_min_blank_time = 2782 normal_blank_time * rr_min_blank_ratio; 2783 rx_ring->rr_max_pkt_cnt = 2784 normal_pkt_cnt * rr_max_pkt_cnt_ratio; 2785 rx_ring->rr_min_pkt_cnt = 2786 normal_pkt_cnt * rr_min_pkt_cnt_ratio; 2787 2788 rx_ring->rr_ring_state = ILL_RING_INUSE; 2789 mutex_exit(&ill->ill_lock); 2790 2791 DTRACE_PROBE2(ill__ring__add, (void *), ill, 2792 (int), ip_rx_index); 2793 return ((mac_resource_handle_t)rx_ring); 2794 } 2795 } 2796 2797 /* 2798 * We ran out of ILL_MAX_RINGS worth rx_ring structures. If 2799 * we have devices which can overwhelm this limit, ILL_MAX_RING 2800 * should be made configurable. Meanwhile it cause no panic because 2801 * driver will pass ip_input a NULL handle which will make 2802 * IP allocate the default squeue and Polling mode will not 2803 * be used for this ring. 2804 */ 2805 cmn_err(CE_NOTE, "Reached maximum number of receiving rings (%d) " 2806 "for %s\n", ILL_MAX_RINGS, ill->ill_name); 2807 2808 mutex_exit(&ill->ill_lock); 2809 return (NULL); 2810 } 2811 2812 static boolean_t 2813 ill_capability_dls_init(ill_t *ill) 2814 { 2815 ill_dls_capab_t *ill_dls = ill->ill_dls_capab; 2816 conn_t *connp; 2817 size_t sz; 2818 ip_stack_t *ipst = ill->ill_ipst; 2819 2820 if (ill->ill_capabilities & ILL_CAPAB_SOFT_RING) { 2821 if (ill_dls == NULL) { 2822 cmn_err(CE_PANIC, "ill_capability_dls_init: " 2823 "soft_ring enabled for ill=%s (%p) but data " 2824 "structs uninitialized\n", ill->ill_name, 2825 (void *)ill); 2826 } 2827 return (B_TRUE); 2828 } else if (ill->ill_capabilities & ILL_CAPAB_POLL) { 2829 if (ill_dls == NULL) { 2830 cmn_err(CE_PANIC, "ill_capability_dls_init: " 2831 "polling enabled for ill=%s (%p) but data " 2832 "structs uninitialized\n", ill->ill_name, 2833 (void *)ill); 2834 } 2835 return (B_TRUE); 2836 } 2837 2838 if (ill_dls != NULL) { 2839 ill_rx_ring_t *rx_ring = ill_dls->ill_ring_tbl; 2840 /* Soft_Ring or polling is being re-enabled */ 2841 2842 connp = ill_dls->ill_unbind_conn; 2843 ASSERT(rx_ring != NULL); 2844 bzero((void *)ill_dls, sizeof (ill_dls_capab_t)); 2845 bzero((void *)rx_ring, 2846 sizeof (ill_rx_ring_t) * ILL_MAX_RINGS); 2847 ill_dls->ill_ring_tbl = rx_ring; 2848 ill_dls->ill_unbind_conn = connp; 2849 return (B_TRUE); 2850 } 2851 2852 if ((connp = ipcl_conn_create(IPCL_TCPCONN, KM_NOSLEEP, 2853 ipst->ips_netstack)) == NULL) 2854 return (B_FALSE); 2855 2856 sz = sizeof (ill_dls_capab_t); 2857 sz += sizeof (ill_rx_ring_t) * ILL_MAX_RINGS; 2858 2859 ill_dls = kmem_zalloc(sz, KM_NOSLEEP); 2860 if (ill_dls == NULL) { 2861 cmn_err(CE_WARN, "ill_capability_dls_init: could not " 2862 "allocate dls_capab for %s (%p)\n", ill->ill_name, 2863 (void *)ill); 2864 CONN_DEC_REF(connp); 2865 return (B_FALSE); 2866 } 2867 2868 /* Allocate space to hold ring table */ 2869 ill_dls->ill_ring_tbl = (ill_rx_ring_t *)&ill_dls[1]; 2870 ill->ill_dls_capab = ill_dls; 2871 ill_dls->ill_unbind_conn = connp; 2872 return (B_TRUE); 2873 } 2874 2875 /* 2876 * ill_capability_dls_disable: disable soft_ring and/or polling 2877 * capability. Since any of the rings might already be in use, need 2878 * to call ipsq_clean_all() which gets behind the squeue to disable 2879 * direct calls if necessary. 2880 */ 2881 static void 2882 ill_capability_dls_disable(ill_t *ill) 2883 { 2884 ill_dls_capab_t *ill_dls = ill->ill_dls_capab; 2885 2886 if (ill->ill_capabilities & ILL_CAPAB_DLS) { 2887 ipsq_clean_all(ill); 2888 ill_dls->ill_tx = NULL; 2889 ill_dls->ill_tx_handle = NULL; 2890 ill_dls->ill_dls_change_status = NULL; 2891 ill_dls->ill_dls_bind = NULL; 2892 ill_dls->ill_dls_unbind = NULL; 2893 } 2894 2895 ASSERT(!(ill->ill_capabilities & ILL_CAPAB_DLS)); 2896 } 2897 2898 static void 2899 ill_capability_dls_capable(ill_t *ill, dl_capab_dls_t *idls, 2900 dl_capability_sub_t *isub) 2901 { 2902 uint_t size; 2903 uchar_t *rptr; 2904 dl_capab_dls_t dls, *odls; 2905 ill_dls_capab_t *ill_dls; 2906 mblk_t *nmp = NULL; 2907 dl_capability_req_t *ocap; 2908 uint_t sub_dl_cap = isub->dl_cap; 2909 2910 if (!ill_capability_dls_init(ill)) 2911 return; 2912 ill_dls = ill->ill_dls_capab; 2913 2914 /* Copy locally to get the members aligned */ 2915 bcopy((void *)idls, (void *)&dls, 2916 sizeof (dl_capab_dls_t)); 2917 2918 /* Get the tx function and handle from dld */ 2919 ill_dls->ill_tx = (ip_dld_tx_t)dls.dls_tx; 2920 ill_dls->ill_tx_handle = (void *)dls.dls_tx_handle; 2921 2922 if (sub_dl_cap == DL_CAPAB_SOFT_RING) { 2923 ill_dls->ill_dls_change_status = 2924 (ip_dls_chg_soft_ring_t)dls.dls_ring_change_status; 2925 ill_dls->ill_dls_bind = (ip_dls_bind_t)dls.dls_ring_bind; 2926 ill_dls->ill_dls_unbind = 2927 (ip_dls_unbind_t)dls.dls_ring_unbind; 2928 ill_dls->ill_dls_soft_ring_cnt = ip_soft_rings_cnt; 2929 } 2930 2931 size = sizeof (dl_capability_req_t) + sizeof (dl_capability_sub_t) + 2932 isub->dl_length; 2933 2934 if ((nmp = ip_dlpi_alloc(size, DL_CAPABILITY_REQ)) == NULL) { 2935 cmn_err(CE_WARN, "ill_capability_dls_capable: could " 2936 "not allocate memory for CAPAB_REQ for %s (%p)\n", 2937 ill->ill_name, (void *)ill); 2938 return; 2939 } 2940 2941 /* initialize dl_capability_req_t */ 2942 rptr = nmp->b_rptr; 2943 ocap = (dl_capability_req_t *)rptr; 2944 ocap->dl_sub_offset = sizeof (dl_capability_req_t); 2945 ocap->dl_sub_length = sizeof (dl_capability_sub_t) + isub->dl_length; 2946 rptr += sizeof (dl_capability_req_t); 2947 2948 /* initialize dl_capability_sub_t */ 2949 bcopy(isub, rptr, sizeof (*isub)); 2950 rptr += sizeof (*isub); 2951 2952 odls = (dl_capab_dls_t *)rptr; 2953 rptr += sizeof (dl_capab_dls_t); 2954 2955 /* initialize dl_capab_dls_t to be sent down */ 2956 dls.dls_rx_handle = (uintptr_t)ill; 2957 dls.dls_rx = (uintptr_t)ip_input; 2958 dls.dls_ring_add = (uintptr_t)ill_ring_add; 2959 2960 if (sub_dl_cap == DL_CAPAB_SOFT_RING) { 2961 dls.dls_ring_cnt = ip_soft_rings_cnt; 2962 dls.dls_ring_assign = (uintptr_t)ip_soft_ring_assignment; 2963 dls.dls_flags = SOFT_RING_ENABLE; 2964 } else { 2965 dls.dls_flags = POLL_ENABLE; 2966 ip1dbg(("ill_capability_dls_capable: asking interface %s " 2967 "to enable polling\n", ill->ill_name)); 2968 } 2969 bcopy((void *)&dls, (void *)odls, 2970 sizeof (dl_capab_dls_t)); 2971 ASSERT(nmp->b_wptr == (nmp->b_rptr + size)); 2972 /* 2973 * nmp points to a DL_CAPABILITY_REQ message to 2974 * enable either soft_ring or polling 2975 */ 2976 ill_dlpi_send(ill, nmp); 2977 } 2978 2979 static void 2980 ill_capability_dls_reset(ill_t *ill, mblk_t **sc_mp) 2981 { 2982 mblk_t *mp; 2983 dl_capab_dls_t *idls; 2984 dl_capability_sub_t *dl_subcap; 2985 int size; 2986 2987 if (!(ill->ill_capabilities & ILL_CAPAB_DLS)) 2988 return; 2989 2990 ASSERT(ill->ill_dls_capab != NULL); 2991 2992 size = sizeof (*dl_subcap) + sizeof (*idls); 2993 2994 mp = allocb(size, BPRI_HI); 2995 if (mp == NULL) { 2996 ip1dbg(("ill_capability_dls_reset: unable to allocate " 2997 "request to disable soft_ring\n")); 2998 return; 2999 } 3000 3001 mp->b_wptr = mp->b_rptr + size; 3002 3003 dl_subcap = (dl_capability_sub_t *)mp->b_rptr; 3004 dl_subcap->dl_length = sizeof (*idls); 3005 if (ill->ill_capabilities & ILL_CAPAB_SOFT_RING) 3006 dl_subcap->dl_cap = DL_CAPAB_SOFT_RING; 3007 else 3008 dl_subcap->dl_cap = DL_CAPAB_POLL; 3009 3010 idls = (dl_capab_dls_t *)(dl_subcap + 1); 3011 if (ill->ill_capabilities & ILL_CAPAB_SOFT_RING) 3012 idls->dls_flags = SOFT_RING_DISABLE; 3013 else 3014 idls->dls_flags = POLL_DISABLE; 3015 3016 if (*sc_mp != NULL) 3017 linkb(*sc_mp, mp); 3018 else 3019 *sc_mp = mp; 3020 } 3021 3022 /* 3023 * Process a soft_ring/poll capability negotiation ack received 3024 * from a DLS Provider.isub must point to the sub-capability 3025 * (DL_CAPAB_SOFT_RING/DL_CAPAB_POLL) of a DL_CAPABILITY_ACK message. 3026 */ 3027 static void 3028 ill_capability_dls_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub) 3029 { 3030 dl_capab_dls_t *idls; 3031 uint_t sub_dl_cap = isub->dl_cap; 3032 uint8_t *capend; 3033 3034 ASSERT(sub_dl_cap == DL_CAPAB_SOFT_RING || 3035 sub_dl_cap == DL_CAPAB_POLL); 3036 3037 if (ill->ill_isv6) 3038 return; 3039 3040 /* 3041 * Note: range checks here are not absolutely sufficient to 3042 * make us robust against malformed messages sent by drivers; 3043 * this is in keeping with the rest of IP's dlpi handling. 3044 * (Remember, it's coming from something else in the kernel 3045 * address space) 3046 */ 3047 capend = (uint8_t *)(isub + 1) + isub->dl_length; 3048 if (capend > mp->b_wptr) { 3049 cmn_err(CE_WARN, "ill_capability_dls_ack: " 3050 "malformed sub-capability too long for mblk"); 3051 return; 3052 } 3053 3054 /* 3055 * There are two types of acks we process here: 3056 * 1. acks in reply to a (first form) generic capability req 3057 * (dls_flag will be set to SOFT_RING_CAPABLE or POLL_CAPABLE) 3058 * 2. acks in reply to a SOFT_RING_ENABLE or POLL_ENABLE 3059 * capability req. 3060 */ 3061 idls = (dl_capab_dls_t *)(isub + 1); 3062 3063 if (!dlcapabcheckqid(&idls->dls_mid, ill->ill_lmod_rq)) { 3064 ip1dbg(("ill_capability_dls_ack: mid token for dls " 3065 "capability isn't as expected; pass-thru " 3066 "module(s) detected, discarding capability\n")); 3067 if (ill->ill_capabilities & ILL_CAPAB_DLS) { 3068 /* 3069 * This is a capability renegotitation case. 3070 * The interface better be unusable at this 3071 * point other wise bad things will happen 3072 * if we disable direct calls on a running 3073 * and up interface. 3074 */ 3075 ill_capability_dls_disable(ill); 3076 } 3077 return; 3078 } 3079 3080 switch (idls->dls_flags) { 3081 default: 3082 /* Disable if unknown flag */ 3083 case SOFT_RING_DISABLE: 3084 case POLL_DISABLE: 3085 ill_capability_dls_disable(ill); 3086 break; 3087 case SOFT_RING_CAPABLE: 3088 case POLL_CAPABLE: 3089 /* 3090 * If the capability was already enabled, its safe 3091 * to disable it first to get rid of stale information 3092 * and then start enabling it again. 3093 */ 3094 ill_capability_dls_disable(ill); 3095 ill_capability_dls_capable(ill, idls, isub); 3096 break; 3097 case SOFT_RING_ENABLE: 3098 case POLL_ENABLE: 3099 mutex_enter(&ill->ill_lock); 3100 if (sub_dl_cap == DL_CAPAB_SOFT_RING && 3101 !(ill->ill_capabilities & ILL_CAPAB_SOFT_RING)) { 3102 ASSERT(ill->ill_dls_capab != NULL); 3103 ill->ill_capabilities |= ILL_CAPAB_SOFT_RING; 3104 } 3105 if (sub_dl_cap == DL_CAPAB_POLL && 3106 !(ill->ill_capabilities & ILL_CAPAB_POLL)) { 3107 ASSERT(ill->ill_dls_capab != NULL); 3108 ill->ill_capabilities |= ILL_CAPAB_POLL; 3109 ip1dbg(("ill_capability_dls_ack: interface %s " 3110 "has enabled polling\n", ill->ill_name)); 3111 } 3112 mutex_exit(&ill->ill_lock); 3113 break; 3114 } 3115 } 3116 3117 /* 3118 * Process a hardware checksum offload capability negotiation ack received 3119 * from a DLS Provider.isub must point to the sub-capability (DL_CAPAB_HCKSUM) 3120 * of a DL_CAPABILITY_ACK message. 3121 */ 3122 static void 3123 ill_capability_hcksum_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub) 3124 { 3125 dl_capability_req_t *ocap; 3126 dl_capab_hcksum_t *ihck, *ohck; 3127 ill_hcksum_capab_t **ill_hcksum; 3128 mblk_t *nmp = NULL; 3129 uint_t sub_dl_cap = isub->dl_cap; 3130 uint8_t *capend; 3131 3132 ASSERT(sub_dl_cap == DL_CAPAB_HCKSUM); 3133 3134 ill_hcksum = (ill_hcksum_capab_t **)&ill->ill_hcksum_capab; 3135 3136 /* 3137 * Note: range checks here are not absolutely sufficient to 3138 * make us robust against malformed messages sent by drivers; 3139 * this is in keeping with the rest of IP's dlpi handling. 3140 * (Remember, it's coming from something else in the kernel 3141 * address space) 3142 */ 3143 capend = (uint8_t *)(isub + 1) + isub->dl_length; 3144 if (capend > mp->b_wptr) { 3145 cmn_err(CE_WARN, "ill_capability_hcksum_ack: " 3146 "malformed sub-capability too long for mblk"); 3147 return; 3148 } 3149 3150 /* 3151 * There are two types of acks we process here: 3152 * 1. acks in reply to a (first form) generic capability req 3153 * (no ENABLE flag set) 3154 * 2. acks in reply to a ENABLE capability req. 3155 * (ENABLE flag set) 3156 */ 3157 ihck = (dl_capab_hcksum_t *)(isub + 1); 3158 3159 if (ihck->hcksum_version != HCKSUM_VERSION_1) { 3160 cmn_err(CE_CONT, "ill_capability_hcksum_ack: " 3161 "unsupported hardware checksum " 3162 "sub-capability (version %d, expected %d)", 3163 ihck->hcksum_version, HCKSUM_VERSION_1); 3164 return; 3165 } 3166 3167 if (!dlcapabcheckqid(&ihck->hcksum_mid, ill->ill_lmod_rq)) { 3168 ip1dbg(("ill_capability_hcksum_ack: mid token for hardware " 3169 "checksum capability isn't as expected; pass-thru " 3170 "module(s) detected, discarding capability\n")); 3171 return; 3172 } 3173 3174 #define CURR_HCKSUM_CAPAB \ 3175 (HCKSUM_INET_PARTIAL | HCKSUM_INET_FULL_V4 | \ 3176 HCKSUM_INET_FULL_V6 | HCKSUM_IPHDRCKSUM) 3177 3178 if ((ihck->hcksum_txflags & HCKSUM_ENABLE) && 3179 (ihck->hcksum_txflags & CURR_HCKSUM_CAPAB)) { 3180 /* do ENABLE processing */ 3181 if (*ill_hcksum == NULL) { 3182 *ill_hcksum = kmem_zalloc(sizeof (ill_hcksum_capab_t), 3183 KM_NOSLEEP); 3184 3185 if (*ill_hcksum == NULL) { 3186 cmn_err(CE_WARN, "ill_capability_hcksum_ack: " 3187 "could not enable hcksum version %d " 3188 "for %s (ENOMEM)\n", HCKSUM_CURRENT_VERSION, 3189 ill->ill_name); 3190 return; 3191 } 3192 } 3193 3194 (*ill_hcksum)->ill_hcksum_version = ihck->hcksum_version; 3195 (*ill_hcksum)->ill_hcksum_txflags = ihck->hcksum_txflags; 3196 ill->ill_capabilities |= ILL_CAPAB_HCKSUM; 3197 ip1dbg(("ill_capability_hcksum_ack: interface %s " 3198 "has enabled hardware checksumming\n ", 3199 ill->ill_name)); 3200 } else if (ihck->hcksum_txflags & CURR_HCKSUM_CAPAB) { 3201 /* 3202 * Enabling hardware checksum offload 3203 * Currently IP supports {TCP,UDP}/IPv4 3204 * partial and full cksum offload and 3205 * IPv4 header checksum offload. 3206 * Allocate new mblk which will 3207 * contain a new capability request 3208 * to enable hardware checksum offload. 3209 */ 3210 uint_t size; 3211 uchar_t *rptr; 3212 3213 size = sizeof (dl_capability_req_t) + 3214 sizeof (dl_capability_sub_t) + isub->dl_length; 3215 3216 if ((nmp = ip_dlpi_alloc(size, DL_CAPABILITY_REQ)) == NULL) { 3217 cmn_err(CE_WARN, "ill_capability_hcksum_ack: " 3218 "could not enable hardware cksum for %s (ENOMEM)\n", 3219 ill->ill_name); 3220 return; 3221 } 3222 3223 rptr = nmp->b_rptr; 3224 /* initialize dl_capability_req_t */ 3225 ocap = (dl_capability_req_t *)nmp->b_rptr; 3226 ocap->dl_sub_offset = 3227 sizeof (dl_capability_req_t); 3228 ocap->dl_sub_length = 3229 sizeof (dl_capability_sub_t) + 3230 isub->dl_length; 3231 nmp->b_rptr += sizeof (dl_capability_req_t); 3232 3233 /* initialize dl_capability_sub_t */ 3234 bcopy(isub, nmp->b_rptr, sizeof (*isub)); 3235 nmp->b_rptr += sizeof (*isub); 3236 3237 /* initialize dl_capab_hcksum_t */ 3238 ohck = (dl_capab_hcksum_t *)nmp->b_rptr; 3239 bcopy(ihck, ohck, sizeof (*ihck)); 3240 3241 nmp->b_rptr = rptr; 3242 ASSERT(nmp->b_wptr == (nmp->b_rptr + size)); 3243 3244 /* Set ENABLE flag */ 3245 ohck->hcksum_txflags &= CURR_HCKSUM_CAPAB; 3246 ohck->hcksum_txflags |= HCKSUM_ENABLE; 3247 3248 /* 3249 * nmp points to a DL_CAPABILITY_REQ message to enable 3250 * hardware checksum acceleration. 3251 */ 3252 ill_dlpi_send(ill, nmp); 3253 } else { 3254 ip1dbg(("ill_capability_hcksum_ack: interface %s has " 3255 "advertised %x hardware checksum capability flags\n", 3256 ill->ill_name, ihck->hcksum_txflags)); 3257 } 3258 } 3259 3260 static void 3261 ill_capability_hcksum_reset(ill_t *ill, mblk_t **sc_mp) 3262 { 3263 mblk_t *mp; 3264 dl_capab_hcksum_t *hck_subcap; 3265 dl_capability_sub_t *dl_subcap; 3266 int size; 3267 3268 if (!ILL_HCKSUM_CAPABLE(ill)) 3269 return; 3270 3271 ASSERT(ill->ill_hcksum_capab != NULL); 3272 /* 3273 * Clear the capability flag for hardware checksum offload but 3274 * retain the ill_hcksum_capab structure since it's possible that 3275 * another thread is still referring to it. The structure only 3276 * gets deallocated when we destroy the ill. 3277 */ 3278 ill->ill_capabilities &= ~ILL_CAPAB_HCKSUM; 3279 3280 size = sizeof (*dl_subcap) + sizeof (*hck_subcap); 3281 3282 mp = allocb(size, BPRI_HI); 3283 if (mp == NULL) { 3284 ip1dbg(("ill_capability_hcksum_reset: unable to allocate " 3285 "request to disable hardware checksum offload\n")); 3286 return; 3287 } 3288 3289 mp->b_wptr = mp->b_rptr + size; 3290 3291 dl_subcap = (dl_capability_sub_t *)mp->b_rptr; 3292 dl_subcap->dl_cap = DL_CAPAB_HCKSUM; 3293 dl_subcap->dl_length = sizeof (*hck_subcap); 3294 3295 hck_subcap = (dl_capab_hcksum_t *)(dl_subcap + 1); 3296 hck_subcap->hcksum_version = ill->ill_hcksum_capab->ill_hcksum_version; 3297 hck_subcap->hcksum_txflags = 0; 3298 3299 if (*sc_mp != NULL) 3300 linkb(*sc_mp, mp); 3301 else 3302 *sc_mp = mp; 3303 } 3304 3305 static void 3306 ill_capability_zerocopy_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub) 3307 { 3308 mblk_t *nmp = NULL; 3309 dl_capability_req_t *oc; 3310 dl_capab_zerocopy_t *zc_ic, *zc_oc; 3311 ill_zerocopy_capab_t **ill_zerocopy_capab; 3312 uint_t sub_dl_cap = isub->dl_cap; 3313 uint8_t *capend; 3314 3315 ASSERT(sub_dl_cap == DL_CAPAB_ZEROCOPY); 3316 3317 ill_zerocopy_capab = (ill_zerocopy_capab_t **)&ill->ill_zerocopy_capab; 3318 3319 /* 3320 * Note: range checks here are not absolutely sufficient to 3321 * make us robust against malformed messages sent by drivers; 3322 * this is in keeping with the rest of IP's dlpi handling. 3323 * (Remember, it's coming from something else in the kernel 3324 * address space) 3325 */ 3326 capend = (uint8_t *)(isub + 1) + isub->dl_length; 3327 if (capend > mp->b_wptr) { 3328 cmn_err(CE_WARN, "ill_capability_zerocopy_ack: " 3329 "malformed sub-capability too long for mblk"); 3330 return; 3331 } 3332 3333 zc_ic = (dl_capab_zerocopy_t *)(isub + 1); 3334 if (zc_ic->zerocopy_version != ZEROCOPY_VERSION_1) { 3335 cmn_err(CE_CONT, "ill_capability_zerocopy_ack: " 3336 "unsupported ZEROCOPY sub-capability (version %d, " 3337 "expected %d)", zc_ic->zerocopy_version, 3338 ZEROCOPY_VERSION_1); 3339 return; 3340 } 3341 3342 if (!dlcapabcheckqid(&zc_ic->zerocopy_mid, ill->ill_lmod_rq)) { 3343 ip1dbg(("ill_capability_zerocopy_ack: mid token for zerocopy " 3344 "capability isn't as expected; pass-thru module(s) " 3345 "detected, discarding capability\n")); 3346 return; 3347 } 3348 3349 if ((zc_ic->zerocopy_flags & DL_CAPAB_VMSAFE_MEM) != 0) { 3350 if (*ill_zerocopy_capab == NULL) { 3351 *ill_zerocopy_capab = 3352 kmem_zalloc(sizeof (ill_zerocopy_capab_t), 3353 KM_NOSLEEP); 3354 3355 if (*ill_zerocopy_capab == NULL) { 3356 cmn_err(CE_WARN, "ill_capability_zerocopy_ack: " 3357 "could not enable Zero-copy version %d " 3358 "for %s (ENOMEM)\n", ZEROCOPY_VERSION_1, 3359 ill->ill_name); 3360 return; 3361 } 3362 } 3363 3364 ip1dbg(("ill_capability_zerocopy_ack: interface %s " 3365 "supports Zero-copy version %d\n", ill->ill_name, 3366 ZEROCOPY_VERSION_1)); 3367 3368 (*ill_zerocopy_capab)->ill_zerocopy_version = 3369 zc_ic->zerocopy_version; 3370 (*ill_zerocopy_capab)->ill_zerocopy_flags = 3371 zc_ic->zerocopy_flags; 3372 3373 ill->ill_capabilities |= ILL_CAPAB_ZEROCOPY; 3374 } else { 3375 uint_t size; 3376 uchar_t *rptr; 3377 3378 size = sizeof (dl_capability_req_t) + 3379 sizeof (dl_capability_sub_t) + 3380 sizeof (dl_capab_zerocopy_t); 3381 3382 if ((nmp = ip_dlpi_alloc(size, DL_CAPABILITY_REQ)) == NULL) { 3383 cmn_err(CE_WARN, "ill_capability_zerocopy_ack: " 3384 "could not enable zerocopy for %s (ENOMEM)\n", 3385 ill->ill_name); 3386 return; 3387 } 3388 3389 rptr = nmp->b_rptr; 3390 /* initialize dl_capability_req_t */ 3391 oc = (dl_capability_req_t *)rptr; 3392 oc->dl_sub_offset = sizeof (dl_capability_req_t); 3393 oc->dl_sub_length = sizeof (dl_capability_sub_t) + 3394 sizeof (dl_capab_zerocopy_t); 3395 rptr += sizeof (dl_capability_req_t); 3396 3397 /* initialize dl_capability_sub_t */ 3398 bcopy(isub, rptr, sizeof (*isub)); 3399 rptr += sizeof (*isub); 3400 3401 /* initialize dl_capab_zerocopy_t */ 3402 zc_oc = (dl_capab_zerocopy_t *)rptr; 3403 *zc_oc = *zc_ic; 3404 3405 ip1dbg(("ill_capability_zerocopy_ack: asking interface %s " 3406 "to enable zero-copy version %d\n", ill->ill_name, 3407 ZEROCOPY_VERSION_1)); 3408 3409 /* set VMSAFE_MEM flag */ 3410 zc_oc->zerocopy_flags |= DL_CAPAB_VMSAFE_MEM; 3411 3412 /* nmp points to a DL_CAPABILITY_REQ message to enable zcopy */ 3413 ill_dlpi_send(ill, nmp); 3414 } 3415 } 3416 3417 static void 3418 ill_capability_zerocopy_reset(ill_t *ill, mblk_t **sc_mp) 3419 { 3420 mblk_t *mp; 3421 dl_capab_zerocopy_t *zerocopy_subcap; 3422 dl_capability_sub_t *dl_subcap; 3423 int size; 3424 3425 if (!(ill->ill_capabilities & ILL_CAPAB_ZEROCOPY)) 3426 return; 3427 3428 ASSERT(ill->ill_zerocopy_capab != NULL); 3429 /* 3430 * Clear the capability flag for Zero-copy but retain the 3431 * ill_zerocopy_capab structure since it's possible that another 3432 * thread is still referring to it. The structure only gets 3433 * deallocated when we destroy the ill. 3434 */ 3435 ill->ill_capabilities &= ~ILL_CAPAB_ZEROCOPY; 3436 3437 size = sizeof (*dl_subcap) + sizeof (*zerocopy_subcap); 3438 3439 mp = allocb(size, BPRI_HI); 3440 if (mp == NULL) { 3441 ip1dbg(("ill_capability_zerocopy_reset: unable to allocate " 3442 "request to disable Zero-copy\n")); 3443 return; 3444 } 3445 3446 mp->b_wptr = mp->b_rptr + size; 3447 3448 dl_subcap = (dl_capability_sub_t *)mp->b_rptr; 3449 dl_subcap->dl_cap = DL_CAPAB_ZEROCOPY; 3450 dl_subcap->dl_length = sizeof (*zerocopy_subcap); 3451 3452 zerocopy_subcap = (dl_capab_zerocopy_t *)(dl_subcap + 1); 3453 zerocopy_subcap->zerocopy_version = 3454 ill->ill_zerocopy_capab->ill_zerocopy_version; 3455 zerocopy_subcap->zerocopy_flags = 0; 3456 3457 if (*sc_mp != NULL) 3458 linkb(*sc_mp, mp); 3459 else 3460 *sc_mp = mp; 3461 } 3462 3463 /* 3464 * Process Large Segment Offload capability negotiation ack received from a 3465 * DLS Provider. isub must point to the sub-capability (DL_CAPAB_LSO) of a 3466 * DL_CAPABILITY_ACK message. 3467 */ 3468 static void 3469 ill_capability_lso_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub) 3470 { 3471 mblk_t *nmp = NULL; 3472 dl_capability_req_t *oc; 3473 dl_capab_lso_t *lso_ic, *lso_oc; 3474 ill_lso_capab_t **ill_lso_capab; 3475 uint_t sub_dl_cap = isub->dl_cap; 3476 uint8_t *capend; 3477 3478 ASSERT(sub_dl_cap == DL_CAPAB_LSO); 3479 3480 ill_lso_capab = (ill_lso_capab_t **)&ill->ill_lso_capab; 3481 3482 /* 3483 * Note: range checks here are not absolutely sufficient to 3484 * make us robust against malformed messages sent by drivers; 3485 * this is in keeping with the rest of IP's dlpi handling. 3486 * (Remember, it's coming from something else in the kernel 3487 * address space) 3488 */ 3489 capend = (uint8_t *)(isub + 1) + isub->dl_length; 3490 if (capend > mp->b_wptr) { 3491 cmn_err(CE_WARN, "ill_capability_lso_ack: " 3492 "malformed sub-capability too long for mblk"); 3493 return; 3494 } 3495 3496 lso_ic = (dl_capab_lso_t *)(isub + 1); 3497 3498 if (lso_ic->lso_version != LSO_VERSION_1) { 3499 cmn_err(CE_CONT, "ill_capability_lso_ack: " 3500 "unsupported LSO sub-capability (version %d, expected %d)", 3501 lso_ic->lso_version, LSO_VERSION_1); 3502 return; 3503 } 3504 3505 if (!dlcapabcheckqid(&lso_ic->lso_mid, ill->ill_lmod_rq)) { 3506 ip1dbg(("ill_capability_lso_ack: mid token for LSO " 3507 "capability isn't as expected; pass-thru module(s) " 3508 "detected, discarding capability\n")); 3509 return; 3510 } 3511 3512 if ((lso_ic->lso_flags & LSO_TX_ENABLE) && 3513 (lso_ic->lso_flags & LSO_TX_BASIC_TCP_IPV4)) { 3514 if (*ill_lso_capab == NULL) { 3515 *ill_lso_capab = kmem_zalloc(sizeof (ill_lso_capab_t), 3516 KM_NOSLEEP); 3517 3518 if (*ill_lso_capab == NULL) { 3519 cmn_err(CE_WARN, "ill_capability_lso_ack: " 3520 "could not enable LSO version %d " 3521 "for %s (ENOMEM)\n", LSO_VERSION_1, 3522 ill->ill_name); 3523 return; 3524 } 3525 } 3526 3527 (*ill_lso_capab)->ill_lso_version = lso_ic->lso_version; 3528 (*ill_lso_capab)->ill_lso_flags = lso_ic->lso_flags; 3529 (*ill_lso_capab)->ill_lso_max = lso_ic->lso_max; 3530 ill->ill_capabilities |= ILL_CAPAB_LSO; 3531 3532 ip1dbg(("ill_capability_lso_ack: interface %s " 3533 "has enabled LSO\n ", ill->ill_name)); 3534 } else if (lso_ic->lso_flags & LSO_TX_BASIC_TCP_IPV4) { 3535 uint_t size; 3536 uchar_t *rptr; 3537 3538 size = sizeof (dl_capability_req_t) + 3539 sizeof (dl_capability_sub_t) + sizeof (dl_capab_lso_t); 3540 3541 if ((nmp = ip_dlpi_alloc(size, DL_CAPABILITY_REQ)) == NULL) { 3542 cmn_err(CE_WARN, "ill_capability_lso_ack: " 3543 "could not enable LSO for %s (ENOMEM)\n", 3544 ill->ill_name); 3545 return; 3546 } 3547 3548 rptr = nmp->b_rptr; 3549 /* initialize dl_capability_req_t */ 3550 oc = (dl_capability_req_t *)nmp->b_rptr; 3551 oc->dl_sub_offset = sizeof (dl_capability_req_t); 3552 oc->dl_sub_length = sizeof (dl_capability_sub_t) + 3553 sizeof (dl_capab_lso_t); 3554 nmp->b_rptr += sizeof (dl_capability_req_t); 3555 3556 /* initialize dl_capability_sub_t */ 3557 bcopy(isub, nmp->b_rptr, sizeof (*isub)); 3558 nmp->b_rptr += sizeof (*isub); 3559 3560 /* initialize dl_capab_lso_t */ 3561 lso_oc = (dl_capab_lso_t *)nmp->b_rptr; 3562 bcopy(lso_ic, lso_oc, sizeof (*lso_ic)); 3563 3564 nmp->b_rptr = rptr; 3565 ASSERT(nmp->b_wptr == (nmp->b_rptr + size)); 3566 3567 /* set ENABLE flag */ 3568 lso_oc->lso_flags |= LSO_TX_ENABLE; 3569 3570 /* nmp points to a DL_CAPABILITY_REQ message to enable LSO */ 3571 ill_dlpi_send(ill, nmp); 3572 } else { 3573 ip1dbg(("ill_capability_lso_ack: interface %s has " 3574 "advertised %x LSO capability flags\n", 3575 ill->ill_name, lso_ic->lso_flags)); 3576 } 3577 } 3578 3579 3580 static void 3581 ill_capability_lso_reset(ill_t *ill, mblk_t **sc_mp) 3582 { 3583 mblk_t *mp; 3584 dl_capab_lso_t *lso_subcap; 3585 dl_capability_sub_t *dl_subcap; 3586 int size; 3587 3588 if (!(ill->ill_capabilities & ILL_CAPAB_LSO)) 3589 return; 3590 3591 ASSERT(ill->ill_lso_capab != NULL); 3592 /* 3593 * Clear the capability flag for LSO but retain the 3594 * ill_lso_capab structure since it's possible that another 3595 * thread is still referring to it. The structure only gets 3596 * deallocated when we destroy the ill. 3597 */ 3598 ill->ill_capabilities &= ~ILL_CAPAB_LSO; 3599 3600 size = sizeof (*dl_subcap) + sizeof (*lso_subcap); 3601 3602 mp = allocb(size, BPRI_HI); 3603 if (mp == NULL) { 3604 ip1dbg(("ill_capability_lso_reset: unable to allocate " 3605 "request to disable LSO\n")); 3606 return; 3607 } 3608 3609 mp->b_wptr = mp->b_rptr + size; 3610 3611 dl_subcap = (dl_capability_sub_t *)mp->b_rptr; 3612 dl_subcap->dl_cap = DL_CAPAB_LSO; 3613 dl_subcap->dl_length = sizeof (*lso_subcap); 3614 3615 lso_subcap = (dl_capab_lso_t *)(dl_subcap + 1); 3616 lso_subcap->lso_version = ill->ill_lso_capab->ill_lso_version; 3617 lso_subcap->lso_flags = 0; 3618 3619 if (*sc_mp != NULL) 3620 linkb(*sc_mp, mp); 3621 else 3622 *sc_mp = mp; 3623 } 3624 3625 /* 3626 * Consume a new-style hardware capabilities negotiation ack. 3627 * Called from ip_rput_dlpi_writer(). 3628 */ 3629 void 3630 ill_capability_ack(ill_t *ill, mblk_t *mp) 3631 { 3632 dl_capability_ack_t *capp; 3633 dl_capability_sub_t *subp, *endp; 3634 3635 if (ill->ill_dlpi_capab_state == IDS_INPROGRESS) 3636 ill->ill_dlpi_capab_state = IDS_OK; 3637 3638 capp = (dl_capability_ack_t *)mp->b_rptr; 3639 3640 if (capp->dl_sub_length == 0) 3641 /* no new-style capabilities */ 3642 return; 3643 3644 /* make sure the driver supplied correct dl_sub_length */ 3645 if ((sizeof (*capp) + capp->dl_sub_length) > MBLKL(mp)) { 3646 ip0dbg(("ill_capability_ack: bad DL_CAPABILITY_ACK, " 3647 "invalid dl_sub_length (%d)\n", capp->dl_sub_length)); 3648 return; 3649 } 3650 3651 #define SC(base, offset) (dl_capability_sub_t *)(((uchar_t *)(base))+(offset)) 3652 /* 3653 * There are sub-capabilities. Process the ones we know about. 3654 * Loop until we don't have room for another sub-cap header.. 3655 */ 3656 for (subp = SC(capp, capp->dl_sub_offset), 3657 endp = SC(subp, capp->dl_sub_length - sizeof (*subp)); 3658 subp <= endp; 3659 subp = SC(subp, sizeof (dl_capability_sub_t) + subp->dl_length)) { 3660 3661 switch (subp->dl_cap) { 3662 case DL_CAPAB_ID_WRAPPER: 3663 ill_capability_id_ack(ill, mp, subp); 3664 break; 3665 default: 3666 ill_capability_dispatch(ill, mp, subp, B_FALSE); 3667 break; 3668 } 3669 } 3670 #undef SC 3671 } 3672 3673 /* 3674 * This routine is called to scan the fragmentation reassembly table for 3675 * the specified ILL for any packets that are starting to smell. 3676 * dead_interval is the maximum time in seconds that will be tolerated. It 3677 * will either be the value specified in ip_g_frag_timeout, or zero if the 3678 * ILL is shutting down and it is time to blow everything off. 3679 * 3680 * It returns the number of seconds (as a time_t) that the next frag timer 3681 * should be scheduled for, 0 meaning that the timer doesn't need to be 3682 * re-started. Note that the method of calculating next_timeout isn't 3683 * entirely accurate since time will flow between the time we grab 3684 * current_time and the time we schedule the next timeout. This isn't a 3685 * big problem since this is the timer for sending an ICMP reassembly time 3686 * exceeded messages, and it doesn't have to be exactly accurate. 3687 * 3688 * This function is 3689 * sometimes called as writer, although this is not required. 3690 */ 3691 time_t 3692 ill_frag_timeout(ill_t *ill, time_t dead_interval) 3693 { 3694 ipfb_t *ipfb; 3695 ipfb_t *endp; 3696 ipf_t *ipf; 3697 ipf_t *ipfnext; 3698 mblk_t *mp; 3699 time_t current_time = gethrestime_sec(); 3700 time_t next_timeout = 0; 3701 uint32_t hdr_length; 3702 mblk_t *send_icmp_head; 3703 mblk_t *send_icmp_head_v6; 3704 zoneid_t zoneid; 3705 ip_stack_t *ipst = ill->ill_ipst; 3706 3707 ipfb = ill->ill_frag_hash_tbl; 3708 if (ipfb == NULL) 3709 return (B_FALSE); 3710 endp = &ipfb[ILL_FRAG_HASH_TBL_COUNT]; 3711 /* Walk the frag hash table. */ 3712 for (; ipfb < endp; ipfb++) { 3713 send_icmp_head = NULL; 3714 send_icmp_head_v6 = NULL; 3715 mutex_enter(&ipfb->ipfb_lock); 3716 while ((ipf = ipfb->ipfb_ipf) != 0) { 3717 time_t frag_time = current_time - ipf->ipf_timestamp; 3718 time_t frag_timeout; 3719 3720 if (frag_time < dead_interval) { 3721 /* 3722 * There are some outstanding fragments 3723 * that will timeout later. Make note of 3724 * the time so that we can reschedule the 3725 * next timeout appropriately. 3726 */ 3727 frag_timeout = dead_interval - frag_time; 3728 if (next_timeout == 0 || 3729 frag_timeout < next_timeout) { 3730 next_timeout = frag_timeout; 3731 } 3732 break; 3733 } 3734 /* Time's up. Get it out of here. */ 3735 hdr_length = ipf->ipf_nf_hdr_len; 3736 ipfnext = ipf->ipf_hash_next; 3737 if (ipfnext) 3738 ipfnext->ipf_ptphn = ipf->ipf_ptphn; 3739 *ipf->ipf_ptphn = ipfnext; 3740 mp = ipf->ipf_mp->b_cont; 3741 for (; mp; mp = mp->b_cont) { 3742 /* Extra points for neatness. */ 3743 IP_REASS_SET_START(mp, 0); 3744 IP_REASS_SET_END(mp, 0); 3745 } 3746 mp = ipf->ipf_mp->b_cont; 3747 ill->ill_frag_count -= ipf->ipf_count; 3748 ASSERT(ipfb->ipfb_count >= ipf->ipf_count); 3749 ipfb->ipfb_count -= ipf->ipf_count; 3750 ASSERT(ipfb->ipfb_frag_pkts > 0); 3751 ipfb->ipfb_frag_pkts--; 3752 /* 3753 * We do not send any icmp message from here because 3754 * we currently are holding the ipfb_lock for this 3755 * hash chain. If we try and send any icmp messages 3756 * from here we may end up via a put back into ip 3757 * trying to get the same lock, causing a recursive 3758 * mutex panic. Instead we build a list and send all 3759 * the icmp messages after we have dropped the lock. 3760 */ 3761 if (ill->ill_isv6) { 3762 if (hdr_length != 0) { 3763 mp->b_next = send_icmp_head_v6; 3764 send_icmp_head_v6 = mp; 3765 } else { 3766 freemsg(mp); 3767 } 3768 } else { 3769 if (hdr_length != 0) { 3770 mp->b_next = send_icmp_head; 3771 send_icmp_head = mp; 3772 } else { 3773 freemsg(mp); 3774 } 3775 } 3776 BUMP_MIB(ill->ill_ip_mib, ipIfStatsReasmFails); 3777 freeb(ipf->ipf_mp); 3778 } 3779 mutex_exit(&ipfb->ipfb_lock); 3780 /* 3781 * Now need to send any icmp messages that we delayed from 3782 * above. 3783 */ 3784 while (send_icmp_head_v6 != NULL) { 3785 ip6_t *ip6h; 3786 3787 mp = send_icmp_head_v6; 3788 send_icmp_head_v6 = send_icmp_head_v6->b_next; 3789 mp->b_next = NULL; 3790 if (mp->b_datap->db_type == M_CTL) 3791 ip6h = (ip6_t *)mp->b_cont->b_rptr; 3792 else 3793 ip6h = (ip6_t *)mp->b_rptr; 3794 zoneid = ipif_lookup_addr_zoneid_v6(&ip6h->ip6_dst, 3795 ill, ipst); 3796 if (zoneid == ALL_ZONES) { 3797 freemsg(mp); 3798 } else { 3799 icmp_time_exceeded_v6(ill->ill_wq, mp, 3800 ICMP_REASSEMBLY_TIME_EXCEEDED, B_FALSE, 3801 B_FALSE, zoneid, ipst); 3802 } 3803 } 3804 while (send_icmp_head != NULL) { 3805 ipaddr_t dst; 3806 3807 mp = send_icmp_head; 3808 send_icmp_head = send_icmp_head->b_next; 3809 mp->b_next = NULL; 3810 3811 if (mp->b_datap->db_type == M_CTL) 3812 dst = ((ipha_t *)mp->b_cont->b_rptr)->ipha_dst; 3813 else 3814 dst = ((ipha_t *)mp->b_rptr)->ipha_dst; 3815 3816 zoneid = ipif_lookup_addr_zoneid(dst, ill, ipst); 3817 if (zoneid == ALL_ZONES) { 3818 freemsg(mp); 3819 } else { 3820 icmp_time_exceeded(ill->ill_wq, mp, 3821 ICMP_REASSEMBLY_TIME_EXCEEDED, zoneid, 3822 ipst); 3823 } 3824 } 3825 } 3826 /* 3827 * A non-dying ILL will use the return value to decide whether to 3828 * restart the frag timer, and for how long. 3829 */ 3830 return (next_timeout); 3831 } 3832 3833 /* 3834 * This routine is called when the approximate count of mblk memory used 3835 * for the specified ILL has exceeded max_count. 3836 */ 3837 void 3838 ill_frag_prune(ill_t *ill, uint_t max_count) 3839 { 3840 ipfb_t *ipfb; 3841 ipf_t *ipf; 3842 size_t count; 3843 3844 /* 3845 * If we are here within ip_min_frag_prune_time msecs remove 3846 * ill_frag_free_num_pkts oldest packets from each bucket and increment 3847 * ill_frag_free_num_pkts. 3848 */ 3849 mutex_enter(&ill->ill_lock); 3850 if (TICK_TO_MSEC(lbolt - ill->ill_last_frag_clean_time) <= 3851 (ip_min_frag_prune_time != 0 ? 3852 ip_min_frag_prune_time : msec_per_tick)) { 3853 3854 ill->ill_frag_free_num_pkts++; 3855 3856 } else { 3857 ill->ill_frag_free_num_pkts = 0; 3858 } 3859 ill->ill_last_frag_clean_time = lbolt; 3860 mutex_exit(&ill->ill_lock); 3861 3862 /* 3863 * free ill_frag_free_num_pkts oldest packets from each bucket. 3864 */ 3865 if (ill->ill_frag_free_num_pkts != 0) { 3866 int ix; 3867 3868 for (ix = 0; ix < ILL_FRAG_HASH_TBL_COUNT; ix++) { 3869 ipfb = &ill->ill_frag_hash_tbl[ix]; 3870 mutex_enter(&ipfb->ipfb_lock); 3871 if (ipfb->ipfb_ipf != NULL) { 3872 ill_frag_free_pkts(ill, ipfb, ipfb->ipfb_ipf, 3873 ill->ill_frag_free_num_pkts); 3874 } 3875 mutex_exit(&ipfb->ipfb_lock); 3876 } 3877 } 3878 /* 3879 * While the reassembly list for this ILL is too big, prune a fragment 3880 * queue by age, oldest first. Note that the per ILL count is 3881 * approximate, while the per frag hash bucket counts are accurate. 3882 */ 3883 while (ill->ill_frag_count > max_count) { 3884 int ix; 3885 ipfb_t *oipfb = NULL; 3886 uint_t oldest = UINT_MAX; 3887 3888 count = 0; 3889 for (ix = 0; ix < ILL_FRAG_HASH_TBL_COUNT; ix++) { 3890 ipfb = &ill->ill_frag_hash_tbl[ix]; 3891 mutex_enter(&ipfb->ipfb_lock); 3892 ipf = ipfb->ipfb_ipf; 3893 if (ipf != NULL && ipf->ipf_gen < oldest) { 3894 oldest = ipf->ipf_gen; 3895 oipfb = ipfb; 3896 } 3897 count += ipfb->ipfb_count; 3898 mutex_exit(&ipfb->ipfb_lock); 3899 } 3900 /* Refresh the per ILL count */ 3901 ill->ill_frag_count = count; 3902 if (oipfb == NULL) { 3903 ill->ill_frag_count = 0; 3904 break; 3905 } 3906 if (count <= max_count) 3907 return; /* Somebody beat us to it, nothing to do */ 3908 mutex_enter(&oipfb->ipfb_lock); 3909 ipf = oipfb->ipfb_ipf; 3910 if (ipf != NULL) { 3911 ill_frag_free_pkts(ill, oipfb, ipf, 1); 3912 } 3913 mutex_exit(&oipfb->ipfb_lock); 3914 } 3915 } 3916 3917 /* 3918 * free 'free_cnt' fragmented packets starting at ipf. 3919 */ 3920 void 3921 ill_frag_free_pkts(ill_t *ill, ipfb_t *ipfb, ipf_t *ipf, int free_cnt) 3922 { 3923 size_t count; 3924 mblk_t *mp; 3925 mblk_t *tmp; 3926 ipf_t **ipfp = ipf->ipf_ptphn; 3927 3928 ASSERT(MUTEX_HELD(&ipfb->ipfb_lock)); 3929 ASSERT(ipfp != NULL); 3930 ASSERT(ipf != NULL); 3931 3932 while (ipf != NULL && free_cnt-- > 0) { 3933 count = ipf->ipf_count; 3934 mp = ipf->ipf_mp; 3935 ipf = ipf->ipf_hash_next; 3936 for (tmp = mp; tmp; tmp = tmp->b_cont) { 3937 IP_REASS_SET_START(tmp, 0); 3938 IP_REASS_SET_END(tmp, 0); 3939 } 3940 ill->ill_frag_count -= count; 3941 ASSERT(ipfb->ipfb_count >= count); 3942 ipfb->ipfb_count -= count; 3943 ASSERT(ipfb->ipfb_frag_pkts > 0); 3944 ipfb->ipfb_frag_pkts--; 3945 freemsg(mp); 3946 BUMP_MIB(ill->ill_ip_mib, ipIfStatsReasmFails); 3947 } 3948 3949 if (ipf) 3950 ipf->ipf_ptphn = ipfp; 3951 ipfp[0] = ipf; 3952 } 3953 3954 #define ND_FORWARD_WARNING "The <if>:ip*_forwarding ndd variables are " \ 3955 "obsolete and may be removed in a future release of Solaris. Use " \ 3956 "ifconfig(1M) to manipulate the forwarding status of an interface." 3957 3958 /* 3959 * For obsolete per-interface forwarding configuration; 3960 * called in response to ND_GET. 3961 */ 3962 /* ARGSUSED */ 3963 static int 3964 nd_ill_forward_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *ioc_cr) 3965 { 3966 ill_t *ill = (ill_t *)cp; 3967 3968 cmn_err(CE_WARN, ND_FORWARD_WARNING); 3969 3970 (void) mi_mpprintf(mp, "%d", (ill->ill_flags & ILLF_ROUTER) != 0); 3971 return (0); 3972 } 3973 3974 /* 3975 * For obsolete per-interface forwarding configuration; 3976 * called in response to ND_SET. 3977 */ 3978 /* ARGSUSED */ 3979 static int 3980 nd_ill_forward_set(queue_t *q, mblk_t *mp, char *valuestr, caddr_t cp, 3981 cred_t *ioc_cr) 3982 { 3983 long value; 3984 int retval; 3985 ip_stack_t *ipst = CONNQ_TO_IPST(q); 3986 3987 cmn_err(CE_WARN, ND_FORWARD_WARNING); 3988 3989 if (ddi_strtol(valuestr, NULL, 10, &value) != 0 || 3990 value < 0 || value > 1) { 3991 return (EINVAL); 3992 } 3993 3994 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 3995 retval = ill_forward_set(q, mp, (value != 0), cp); 3996 rw_exit(&ipst->ips_ill_g_lock); 3997 return (retval); 3998 } 3999 4000 /* 4001 * Set an ill's ILLF_ROUTER flag appropriately. If the ill is part of an 4002 * IPMP group, make sure all ill's in the group adopt the new policy. Send 4003 * up RTS_IFINFO routing socket messages for each interface whose flags we 4004 * change. 4005 */ 4006 /* ARGSUSED */ 4007 int 4008 ill_forward_set(queue_t *q, mblk_t *mp, boolean_t enable, caddr_t cp) 4009 { 4010 ill_t *ill = (ill_t *)cp; 4011 ill_group_t *illgrp; 4012 ip_stack_t *ipst = ill->ill_ipst; 4013 4014 ASSERT(IAM_WRITER_ILL(ill) || RW_READ_HELD(&ipst->ips_ill_g_lock)); 4015 4016 if ((enable && (ill->ill_flags & ILLF_ROUTER)) || 4017 (!enable && !(ill->ill_flags & ILLF_ROUTER)) || 4018 (ill->ill_phyint->phyint_flags & PHYI_LOOPBACK)) 4019 return (EINVAL); 4020 4021 /* 4022 * If the ill is in an IPMP group, set the forwarding policy on all 4023 * members of the group to the same value. 4024 */ 4025 illgrp = ill->ill_group; 4026 if (illgrp != NULL) { 4027 ill_t *tmp_ill; 4028 4029 for (tmp_ill = illgrp->illgrp_ill; tmp_ill != NULL; 4030 tmp_ill = tmp_ill->ill_group_next) { 4031 ip1dbg(("ill_forward_set: %s %s forwarding on %s", 4032 (enable ? "Enabling" : "Disabling"), 4033 (tmp_ill->ill_isv6 ? "IPv6" : "IPv4"), 4034 tmp_ill->ill_name)); 4035 mutex_enter(&tmp_ill->ill_lock); 4036 if (enable) 4037 tmp_ill->ill_flags |= ILLF_ROUTER; 4038 else 4039 tmp_ill->ill_flags &= ~ILLF_ROUTER; 4040 mutex_exit(&tmp_ill->ill_lock); 4041 if (tmp_ill->ill_isv6) 4042 ill_set_nce_router_flags(tmp_ill, enable); 4043 /* Notify routing socket listeners of this change. */ 4044 ip_rts_ifmsg(tmp_ill->ill_ipif); 4045 } 4046 } else { 4047 ip1dbg(("ill_forward_set: %s %s forwarding on %s", 4048 (enable ? "Enabling" : "Disabling"), 4049 (ill->ill_isv6 ? "IPv6" : "IPv4"), ill->ill_name)); 4050 mutex_enter(&ill->ill_lock); 4051 if (enable) 4052 ill->ill_flags |= ILLF_ROUTER; 4053 else 4054 ill->ill_flags &= ~ILLF_ROUTER; 4055 mutex_exit(&ill->ill_lock); 4056 if (ill->ill_isv6) 4057 ill_set_nce_router_flags(ill, enable); 4058 /* Notify routing socket listeners of this change. */ 4059 ip_rts_ifmsg(ill->ill_ipif); 4060 } 4061 4062 return (0); 4063 } 4064 4065 /* 4066 * Based on the ILLF_ROUTER flag of an ill, make sure all local nce's for 4067 * addresses assigned to the ill have the NCE_F_ISROUTER flag appropriately 4068 * set or clear. 4069 */ 4070 static void 4071 ill_set_nce_router_flags(ill_t *ill, boolean_t enable) 4072 { 4073 ipif_t *ipif; 4074 nce_t *nce; 4075 4076 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 4077 nce = ndp_lookup_v6(ill, &ipif->ipif_v6lcl_addr, B_FALSE); 4078 if (nce != NULL) { 4079 mutex_enter(&nce->nce_lock); 4080 if (enable) 4081 nce->nce_flags |= NCE_F_ISROUTER; 4082 else 4083 nce->nce_flags &= ~NCE_F_ISROUTER; 4084 mutex_exit(&nce->nce_lock); 4085 NCE_REFRELE(nce); 4086 } 4087 } 4088 } 4089 4090 /* 4091 * Given an ill with a _valid_ name, add the ip_forwarding ndd variable 4092 * for this ill. Make sure the v6/v4 question has been answered about this 4093 * ill. The creation of this ndd variable is only for backwards compatibility. 4094 * The preferred way to control per-interface IP forwarding is through the 4095 * ILLF_ROUTER interface flag. 4096 */ 4097 static int 4098 ill_set_ndd_name(ill_t *ill) 4099 { 4100 char *suffix; 4101 ip_stack_t *ipst = ill->ill_ipst; 4102 4103 ASSERT(IAM_WRITER_ILL(ill)); 4104 4105 if (ill->ill_isv6) 4106 suffix = ipv6_forward_suffix; 4107 else 4108 suffix = ipv4_forward_suffix; 4109 4110 ill->ill_ndd_name = ill->ill_name + ill->ill_name_length; 4111 bcopy(ill->ill_name, ill->ill_ndd_name, ill->ill_name_length - 1); 4112 /* 4113 * Copies over the '\0'. 4114 * Note that strlen(suffix) is always bounded. 4115 */ 4116 bcopy(suffix, ill->ill_ndd_name + ill->ill_name_length - 1, 4117 strlen(suffix) + 1); 4118 4119 /* 4120 * Use of the nd table requires holding the reader lock. 4121 * Modifying the nd table thru nd_load/nd_unload requires 4122 * the writer lock. 4123 */ 4124 rw_enter(&ipst->ips_ip_g_nd_lock, RW_WRITER); 4125 if (!nd_load(&ipst->ips_ip_g_nd, ill->ill_ndd_name, nd_ill_forward_get, 4126 nd_ill_forward_set, (caddr_t)ill)) { 4127 /* 4128 * If the nd_load failed, it only meant that it could not 4129 * allocate a new bunch of room for further NDD expansion. 4130 * Because of that, the ill_ndd_name will be set to 0, and 4131 * this interface is at the mercy of the global ip_forwarding 4132 * variable. 4133 */ 4134 rw_exit(&ipst->ips_ip_g_nd_lock); 4135 ill->ill_ndd_name = NULL; 4136 return (ENOMEM); 4137 } 4138 rw_exit(&ipst->ips_ip_g_nd_lock); 4139 return (0); 4140 } 4141 4142 /* 4143 * Intializes the context structure and returns the first ill in the list 4144 * cuurently start_list and end_list can have values: 4145 * MAX_G_HEADS Traverse both IPV4 and IPV6 lists. 4146 * IP_V4_G_HEAD Traverse IPV4 list only. 4147 * IP_V6_G_HEAD Traverse IPV6 list only. 4148 */ 4149 4150 /* 4151 * We don't check for CONDEMNED ills here. Caller must do that if 4152 * necessary under the ill lock. 4153 */ 4154 ill_t * 4155 ill_first(int start_list, int end_list, ill_walk_context_t *ctx, 4156 ip_stack_t *ipst) 4157 { 4158 ill_if_t *ifp; 4159 ill_t *ill; 4160 avl_tree_t *avl_tree; 4161 4162 ASSERT(RW_LOCK_HELD(&ipst->ips_ill_g_lock)); 4163 ASSERT(end_list <= MAX_G_HEADS && start_list >= 0); 4164 4165 /* 4166 * setup the lists to search 4167 */ 4168 if (end_list != MAX_G_HEADS) { 4169 ctx->ctx_current_list = start_list; 4170 ctx->ctx_last_list = end_list; 4171 } else { 4172 ctx->ctx_last_list = MAX_G_HEADS - 1; 4173 ctx->ctx_current_list = 0; 4174 } 4175 4176 while (ctx->ctx_current_list <= ctx->ctx_last_list) { 4177 ifp = IP_VX_ILL_G_LIST(ctx->ctx_current_list, ipst); 4178 if (ifp != (ill_if_t *) 4179 &IP_VX_ILL_G_LIST(ctx->ctx_current_list, ipst)) { 4180 avl_tree = &ifp->illif_avl_by_ppa; 4181 ill = avl_first(avl_tree); 4182 /* 4183 * ill is guaranteed to be non NULL or ifp should have 4184 * not existed. 4185 */ 4186 ASSERT(ill != NULL); 4187 return (ill); 4188 } 4189 ctx->ctx_current_list++; 4190 } 4191 4192 return (NULL); 4193 } 4194 4195 /* 4196 * returns the next ill in the list. ill_first() must have been called 4197 * before calling ill_next() or bad things will happen. 4198 */ 4199 4200 /* 4201 * We don't check for CONDEMNED ills here. Caller must do that if 4202 * necessary under the ill lock. 4203 */ 4204 ill_t * 4205 ill_next(ill_walk_context_t *ctx, ill_t *lastill) 4206 { 4207 ill_if_t *ifp; 4208 ill_t *ill; 4209 ip_stack_t *ipst = lastill->ill_ipst; 4210 4211 ASSERT(lastill->ill_ifptr != (ill_if_t *) 4212 &IP_VX_ILL_G_LIST(ctx->ctx_current_list, ipst)); 4213 if ((ill = avl_walk(&lastill->ill_ifptr->illif_avl_by_ppa, lastill, 4214 AVL_AFTER)) != NULL) { 4215 return (ill); 4216 } 4217 4218 /* goto next ill_ifp in the list. */ 4219 ifp = lastill->ill_ifptr->illif_next; 4220 4221 /* make sure not at end of circular list */ 4222 while (ifp == 4223 (ill_if_t *)&IP_VX_ILL_G_LIST(ctx->ctx_current_list, ipst)) { 4224 if (++ctx->ctx_current_list > ctx->ctx_last_list) 4225 return (NULL); 4226 ifp = IP_VX_ILL_G_LIST(ctx->ctx_current_list, ipst); 4227 } 4228 4229 return (avl_first(&ifp->illif_avl_by_ppa)); 4230 } 4231 4232 /* 4233 * Check interface name for correct format which is name+ppa. 4234 * name can contain characters and digits, the right most digits 4235 * make up the ppa number. use of octal is not allowed, name must contain 4236 * a ppa, return pointer to the start of ppa. 4237 * In case of error return NULL. 4238 */ 4239 static char * 4240 ill_get_ppa_ptr(char *name) 4241 { 4242 int namelen = mi_strlen(name); 4243 4244 int len = namelen; 4245 4246 name += len; 4247 while (len > 0) { 4248 name--; 4249 if (*name < '0' || *name > '9') 4250 break; 4251 len--; 4252 } 4253 4254 /* empty string, all digits, or no trailing digits */ 4255 if (len == 0 || len == (int)namelen) 4256 return (NULL); 4257 4258 name++; 4259 /* check for attempted use of octal */ 4260 if (*name == '0' && len != (int)namelen - 1) 4261 return (NULL); 4262 return (name); 4263 } 4264 4265 /* 4266 * use avl tree to locate the ill. 4267 */ 4268 static ill_t * 4269 ill_find_by_name(char *name, boolean_t isv6, queue_t *q, mblk_t *mp, 4270 ipsq_func_t func, int *error, ip_stack_t *ipst) 4271 { 4272 char *ppa_ptr = NULL; 4273 int len; 4274 uint_t ppa; 4275 ill_t *ill = NULL; 4276 ill_if_t *ifp; 4277 int list; 4278 ipsq_t *ipsq; 4279 4280 if (error != NULL) 4281 *error = 0; 4282 4283 /* 4284 * get ppa ptr 4285 */ 4286 if (isv6) 4287 list = IP_V6_G_HEAD; 4288 else 4289 list = IP_V4_G_HEAD; 4290 4291 if ((ppa_ptr = ill_get_ppa_ptr(name)) == NULL) { 4292 if (error != NULL) 4293 *error = ENXIO; 4294 return (NULL); 4295 } 4296 4297 len = ppa_ptr - name + 1; 4298 4299 ppa = stoi(&ppa_ptr); 4300 4301 ifp = IP_VX_ILL_G_LIST(list, ipst); 4302 4303 while (ifp != (ill_if_t *)&IP_VX_ILL_G_LIST(list, ipst)) { 4304 /* 4305 * match is done on len - 1 as the name is not null 4306 * terminated it contains ppa in addition to the interface 4307 * name. 4308 */ 4309 if ((ifp->illif_name_len == len) && 4310 bcmp(ifp->illif_name, name, len - 1) == 0) { 4311 break; 4312 } else { 4313 ifp = ifp->illif_next; 4314 } 4315 } 4316 4317 4318 if (ifp == (ill_if_t *)&IP_VX_ILL_G_LIST(list, ipst)) { 4319 /* 4320 * Even the interface type does not exist. 4321 */ 4322 if (error != NULL) 4323 *error = ENXIO; 4324 return (NULL); 4325 } 4326 4327 ill = avl_find(&ifp->illif_avl_by_ppa, (void *) &ppa, NULL); 4328 if (ill != NULL) { 4329 /* 4330 * The block comment at the start of ipif_down 4331 * explains the use of the macros used below 4332 */ 4333 GRAB_CONN_LOCK(q); 4334 mutex_enter(&ill->ill_lock); 4335 if (ILL_CAN_LOOKUP(ill)) { 4336 ill_refhold_locked(ill); 4337 mutex_exit(&ill->ill_lock); 4338 RELEASE_CONN_LOCK(q); 4339 return (ill); 4340 } else if (ILL_CAN_WAIT(ill, q)) { 4341 ipsq = ill->ill_phyint->phyint_ipsq; 4342 mutex_enter(&ipsq->ipsq_lock); 4343 mutex_exit(&ill->ill_lock); 4344 ipsq_enq(ipsq, q, mp, func, NEW_OP, ill); 4345 mutex_exit(&ipsq->ipsq_lock); 4346 RELEASE_CONN_LOCK(q); 4347 *error = EINPROGRESS; 4348 return (NULL); 4349 } 4350 mutex_exit(&ill->ill_lock); 4351 RELEASE_CONN_LOCK(q); 4352 } 4353 if (error != NULL) 4354 *error = ENXIO; 4355 return (NULL); 4356 } 4357 4358 /* 4359 * comparison function for use with avl. 4360 */ 4361 static int 4362 ill_compare_ppa(const void *ppa_ptr, const void *ill_ptr) 4363 { 4364 uint_t ppa; 4365 uint_t ill_ppa; 4366 4367 ASSERT(ppa_ptr != NULL && ill_ptr != NULL); 4368 4369 ppa = *((uint_t *)ppa_ptr); 4370 ill_ppa = ((const ill_t *)ill_ptr)->ill_ppa; 4371 /* 4372 * We want the ill with the lowest ppa to be on the 4373 * top. 4374 */ 4375 if (ill_ppa < ppa) 4376 return (1); 4377 if (ill_ppa > ppa) 4378 return (-1); 4379 return (0); 4380 } 4381 4382 /* 4383 * remove an interface type from the global list. 4384 */ 4385 static void 4386 ill_delete_interface_type(ill_if_t *interface) 4387 { 4388 ASSERT(interface != NULL); 4389 ASSERT(avl_numnodes(&interface->illif_avl_by_ppa) == 0); 4390 4391 avl_destroy(&interface->illif_avl_by_ppa); 4392 if (interface->illif_ppa_arena != NULL) 4393 vmem_destroy(interface->illif_ppa_arena); 4394 4395 remque(interface); 4396 4397 mi_free(interface); 4398 } 4399 4400 /* Defined in ip_netinfo.c */ 4401 extern ddi_taskq_t *eventq_queue_nic; 4402 4403 /* 4404 * remove ill from the global list. 4405 */ 4406 static void 4407 ill_glist_delete(ill_t *ill) 4408 { 4409 char *nicname; 4410 size_t nicnamelen; 4411 hook_nic_event_t *info; 4412 ip_stack_t *ipst; 4413 4414 if (ill == NULL) 4415 return; 4416 ipst = ill->ill_ipst; 4417 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 4418 4419 if (ill->ill_name != NULL) { 4420 nicname = kmem_alloc(ill->ill_name_length, KM_NOSLEEP); 4421 if (nicname != NULL) { 4422 bcopy(ill->ill_name, nicname, ill->ill_name_length); 4423 nicnamelen = ill->ill_name_length; 4424 } 4425 } else { 4426 nicname = NULL; 4427 nicnamelen = 0; 4428 } 4429 4430 /* 4431 * If the ill was never inserted into the AVL tree 4432 * we skip the if branch. 4433 */ 4434 if (ill->ill_ifptr != NULL) { 4435 /* 4436 * remove from AVL tree and free ppa number 4437 */ 4438 avl_remove(&ill->ill_ifptr->illif_avl_by_ppa, ill); 4439 4440 if (ill->ill_ifptr->illif_ppa_arena != NULL) { 4441 vmem_free(ill->ill_ifptr->illif_ppa_arena, 4442 (void *)(uintptr_t)(ill->ill_ppa+1), 1); 4443 } 4444 if (avl_numnodes(&ill->ill_ifptr->illif_avl_by_ppa) == 0) { 4445 ill_delete_interface_type(ill->ill_ifptr); 4446 } 4447 4448 /* 4449 * Indicate ill is no longer in the list. 4450 */ 4451 ill->ill_ifptr = NULL; 4452 ill->ill_name_length = 0; 4453 ill->ill_name[0] = '\0'; 4454 ill->ill_ppa = UINT_MAX; 4455 } 4456 4457 /* 4458 * Run the unplumb hook after the NIC has disappeared from being 4459 * visible so that attempts to revalidate its existance will fail. 4460 * 4461 * This needs to be run inside the ill_g_lock perimeter to ensure 4462 * that the ordering of delivered events to listeners matches the 4463 * order of them in the kernel. 4464 */ 4465 if ((info = ill->ill_nic_event_info) != NULL) { 4466 if (info->hne_event != NE_DOWN) { 4467 ip2dbg(("ill_glist_delete: unexpected nic event %d " 4468 "attached for %s\n", info->hne_event, 4469 ill->ill_name)); 4470 if (info->hne_data != NULL) 4471 kmem_free(info->hne_data, info->hne_datalen); 4472 kmem_free(info, sizeof (hook_nic_event_t)); 4473 } else { 4474 if (ddi_taskq_dispatch(eventq_queue_nic, 4475 ip_ne_queue_func, (void *)info, DDI_SLEEP) 4476 == DDI_FAILURE) { 4477 ip2dbg(("ill_glist_delete: ddi_taskq_dispatch " 4478 "failed\n")); 4479 if (info->hne_data != NULL) 4480 kmem_free(info->hne_data, 4481 info->hne_datalen); 4482 kmem_free(info, sizeof (hook_nic_event_t)); 4483 } 4484 } 4485 } 4486 4487 /* Generate NE_UNPLUMB event for ill_name. */ 4488 info = kmem_alloc(sizeof (hook_nic_event_t), KM_NOSLEEP); 4489 if (info != NULL) { 4490 info->hne_nic = ill->ill_phyint->phyint_ifindex; 4491 info->hne_lif = 0; 4492 info->hne_event = NE_UNPLUMB; 4493 info->hne_data = nicname; 4494 info->hne_datalen = nicnamelen; 4495 info->hne_family = ill->ill_isv6 ? 4496 ipst->ips_ipv6_net_data : ipst->ips_ipv4_net_data; 4497 } else { 4498 ip2dbg(("ill_glist_delete: could not attach UNPLUMB nic event " 4499 "information for %s (ENOMEM)\n", ill->ill_name)); 4500 if (nicname != NULL) 4501 kmem_free(nicname, nicnamelen); 4502 } 4503 4504 ill->ill_nic_event_info = info; 4505 4506 ill_phyint_free(ill); 4507 rw_exit(&ipst->ips_ill_g_lock); 4508 } 4509 4510 /* 4511 * allocate a ppa, if the number of plumbed interfaces of this type are 4512 * less than ill_no_arena do a linear search to find a unused ppa. 4513 * When the number goes beyond ill_no_arena switch to using an arena. 4514 * Note: ppa value of zero cannot be allocated from vmem_arena as it 4515 * is the return value for an error condition, so allocation starts at one 4516 * and is decremented by one. 4517 */ 4518 static int 4519 ill_alloc_ppa(ill_if_t *ifp, ill_t *ill) 4520 { 4521 ill_t *tmp_ill; 4522 uint_t start, end; 4523 int ppa; 4524 4525 if (ifp->illif_ppa_arena == NULL && 4526 (avl_numnodes(&ifp->illif_avl_by_ppa) + 1 > ill_no_arena)) { 4527 /* 4528 * Create an arena. 4529 */ 4530 ifp->illif_ppa_arena = vmem_create(ifp->illif_name, 4531 (void *)1, UINT_MAX - 1, 1, NULL, NULL, 4532 NULL, 0, VM_SLEEP | VMC_IDENTIFIER); 4533 /* allocate what has already been assigned */ 4534 for (tmp_ill = avl_first(&ifp->illif_avl_by_ppa); 4535 tmp_ill != NULL; tmp_ill = avl_walk(&ifp->illif_avl_by_ppa, 4536 tmp_ill, AVL_AFTER)) { 4537 ppa = (int)(uintptr_t)vmem_xalloc(ifp->illif_ppa_arena, 4538 1, /* size */ 4539 1, /* align/quantum */ 4540 0, /* phase */ 4541 0, /* nocross */ 4542 (void *)((uintptr_t)tmp_ill->ill_ppa + 1), /* minaddr */ 4543 (void *)((uintptr_t)tmp_ill->ill_ppa + 2), /* maxaddr */ 4544 VM_NOSLEEP|VM_FIRSTFIT); 4545 if (ppa == 0) { 4546 ip1dbg(("ill_alloc_ppa: ppa allocation" 4547 " failed while switching")); 4548 vmem_destroy(ifp->illif_ppa_arena); 4549 ifp->illif_ppa_arena = NULL; 4550 break; 4551 } 4552 } 4553 } 4554 4555 if (ifp->illif_ppa_arena != NULL) { 4556 if (ill->ill_ppa == UINT_MAX) { 4557 ppa = (int)(uintptr_t)vmem_alloc(ifp->illif_ppa_arena, 4558 1, VM_NOSLEEP|VM_FIRSTFIT); 4559 if (ppa == 0) 4560 return (EAGAIN); 4561 ill->ill_ppa = --ppa; 4562 } else { 4563 ppa = (int)(uintptr_t)vmem_xalloc(ifp->illif_ppa_arena, 4564 1, /* size */ 4565 1, /* align/quantum */ 4566 0, /* phase */ 4567 0, /* nocross */ 4568 (void *)(uintptr_t)(ill->ill_ppa + 1), /* minaddr */ 4569 (void *)(uintptr_t)(ill->ill_ppa + 2), /* maxaddr */ 4570 VM_NOSLEEP|VM_FIRSTFIT); 4571 /* 4572 * Most likely the allocation failed because 4573 * the requested ppa was in use. 4574 */ 4575 if (ppa == 0) 4576 return (EEXIST); 4577 } 4578 return (0); 4579 } 4580 4581 /* 4582 * No arena is in use and not enough (>ill_no_arena) interfaces have 4583 * been plumbed to create one. Do a linear search to get a unused ppa. 4584 */ 4585 if (ill->ill_ppa == UINT_MAX) { 4586 end = UINT_MAX - 1; 4587 start = 0; 4588 } else { 4589 end = start = ill->ill_ppa; 4590 } 4591 4592 tmp_ill = avl_find(&ifp->illif_avl_by_ppa, (void *)&start, NULL); 4593 while (tmp_ill != NULL && tmp_ill->ill_ppa == start) { 4594 if (start++ >= end) { 4595 if (ill->ill_ppa == UINT_MAX) 4596 return (EAGAIN); 4597 else 4598 return (EEXIST); 4599 } 4600 tmp_ill = avl_walk(&ifp->illif_avl_by_ppa, tmp_ill, AVL_AFTER); 4601 } 4602 ill->ill_ppa = start; 4603 return (0); 4604 } 4605 4606 /* 4607 * Insert ill into the list of configured ill's. Once this function completes, 4608 * the ill is globally visible and is available through lookups. More precisely 4609 * this happens after the caller drops the ill_g_lock. 4610 */ 4611 static int 4612 ill_glist_insert(ill_t *ill, char *name, boolean_t isv6) 4613 { 4614 ill_if_t *ill_interface; 4615 avl_index_t where = 0; 4616 int error; 4617 int name_length; 4618 int index; 4619 boolean_t check_length = B_FALSE; 4620 ip_stack_t *ipst = ill->ill_ipst; 4621 4622 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); 4623 4624 name_length = mi_strlen(name) + 1; 4625 4626 if (isv6) 4627 index = IP_V6_G_HEAD; 4628 else 4629 index = IP_V4_G_HEAD; 4630 4631 ill_interface = IP_VX_ILL_G_LIST(index, ipst); 4632 /* 4633 * Search for interface type based on name 4634 */ 4635 while (ill_interface != (ill_if_t *)&IP_VX_ILL_G_LIST(index, ipst)) { 4636 if ((ill_interface->illif_name_len == name_length) && 4637 (strcmp(ill_interface->illif_name, name) == 0)) { 4638 break; 4639 } 4640 ill_interface = ill_interface->illif_next; 4641 } 4642 4643 /* 4644 * Interface type not found, create one. 4645 */ 4646 if (ill_interface == (ill_if_t *)&IP_VX_ILL_G_LIST(index, ipst)) { 4647 4648 ill_g_head_t ghead; 4649 4650 /* 4651 * allocate ill_if_t structure 4652 */ 4653 4654 ill_interface = (ill_if_t *)mi_zalloc(sizeof (ill_if_t)); 4655 if (ill_interface == NULL) { 4656 return (ENOMEM); 4657 } 4658 4659 4660 4661 (void) strcpy(ill_interface->illif_name, name); 4662 ill_interface->illif_name_len = name_length; 4663 4664 avl_create(&ill_interface->illif_avl_by_ppa, 4665 ill_compare_ppa, sizeof (ill_t), 4666 offsetof(struct ill_s, ill_avl_byppa)); 4667 4668 /* 4669 * link the structure in the back to maintain order 4670 * of configuration for ifconfig output. 4671 */ 4672 ghead = ipst->ips_ill_g_heads[index]; 4673 insque(ill_interface, ghead.ill_g_list_tail); 4674 4675 } 4676 4677 if (ill->ill_ppa == UINT_MAX) 4678 check_length = B_TRUE; 4679 4680 error = ill_alloc_ppa(ill_interface, ill); 4681 if (error != 0) { 4682 if (avl_numnodes(&ill_interface->illif_avl_by_ppa) == 0) 4683 ill_delete_interface_type(ill->ill_ifptr); 4684 return (error); 4685 } 4686 4687 /* 4688 * When the ppa is choosen by the system, check that there is 4689 * enough space to insert ppa. if a specific ppa was passed in this 4690 * check is not required as the interface name passed in will have 4691 * the right ppa in it. 4692 */ 4693 if (check_length) { 4694 /* 4695 * UINT_MAX - 1 should fit in 10 chars, alloc 12 chars. 4696 */ 4697 char buf[sizeof (uint_t) * 3]; 4698 4699 /* 4700 * convert ppa to string to calculate the amount of space 4701 * required for it in the name. 4702 */ 4703 numtos(ill->ill_ppa, buf); 4704 4705 /* Do we have enough space to insert ppa ? */ 4706 4707 if ((mi_strlen(name) + mi_strlen(buf) + 1) > LIFNAMSIZ) { 4708 /* Free ppa and interface type struct */ 4709 if (ill_interface->illif_ppa_arena != NULL) { 4710 vmem_free(ill_interface->illif_ppa_arena, 4711 (void *)(uintptr_t)(ill->ill_ppa+1), 1); 4712 } 4713 if (avl_numnodes(&ill_interface->illif_avl_by_ppa) == 4714 0) { 4715 ill_delete_interface_type(ill->ill_ifptr); 4716 } 4717 4718 return (EINVAL); 4719 } 4720 } 4721 4722 (void) sprintf(ill->ill_name, "%s%u", name, ill->ill_ppa); 4723 ill->ill_name_length = mi_strlen(ill->ill_name) + 1; 4724 4725 (void) avl_find(&ill_interface->illif_avl_by_ppa, &ill->ill_ppa, 4726 &where); 4727 ill->ill_ifptr = ill_interface; 4728 avl_insert(&ill_interface->illif_avl_by_ppa, ill, where); 4729 4730 ill_phyint_reinit(ill); 4731 return (0); 4732 } 4733 4734 /* Initialize the per phyint (per IPMP group) ipsq used for serialization */ 4735 static boolean_t 4736 ipsq_init(ill_t *ill) 4737 { 4738 ipsq_t *ipsq; 4739 4740 /* Init the ipsq and impicitly enter as writer */ 4741 ill->ill_phyint->phyint_ipsq = 4742 kmem_zalloc(sizeof (ipsq_t), KM_NOSLEEP); 4743 if (ill->ill_phyint->phyint_ipsq == NULL) 4744 return (B_FALSE); 4745 ipsq = ill->ill_phyint->phyint_ipsq; 4746 ipsq->ipsq_phyint_list = ill->ill_phyint; 4747 ill->ill_phyint->phyint_ipsq_next = NULL; 4748 mutex_init(&ipsq->ipsq_lock, NULL, MUTEX_DEFAULT, 0); 4749 ipsq->ipsq_refs = 1; 4750 ipsq->ipsq_writer = curthread; 4751 ipsq->ipsq_reentry_cnt = 1; 4752 ipsq->ipsq_ipst = ill->ill_ipst; /* No netstack_hold */ 4753 #ifdef ILL_DEBUG 4754 ipsq->ipsq_depth = getpcstack((pc_t *)ipsq->ipsq_stack, IP_STACK_DEPTH); 4755 #endif 4756 (void) strcpy(ipsq->ipsq_name, ill->ill_name); 4757 return (B_TRUE); 4758 } 4759 4760 /* 4761 * ill_init is called by ip_open when a device control stream is opened. 4762 * It does a few initializations, and shoots a DL_INFO_REQ message down 4763 * to the driver. The response is later picked up in ip_rput_dlpi and 4764 * used to set up default mechanisms for talking to the driver. (Always 4765 * called as writer.) 4766 * 4767 * If this function returns error, ip_open will call ip_close which in 4768 * turn will call ill_delete to clean up any memory allocated here that 4769 * is not yet freed. 4770 */ 4771 int 4772 ill_init(queue_t *q, ill_t *ill) 4773 { 4774 int count; 4775 dl_info_req_t *dlir; 4776 mblk_t *info_mp; 4777 uchar_t *frag_ptr; 4778 4779 /* 4780 * The ill is initialized to zero by mi_alloc*(). In addition 4781 * some fields already contain valid values, initialized in 4782 * ip_open(), before we reach here. 4783 */ 4784 mutex_init(&ill->ill_lock, NULL, MUTEX_DEFAULT, 0); 4785 4786 ill->ill_rq = q; 4787 ill->ill_wq = WR(q); 4788 4789 info_mp = allocb(MAX(sizeof (dl_info_req_t), sizeof (dl_info_ack_t)), 4790 BPRI_HI); 4791 if (info_mp == NULL) 4792 return (ENOMEM); 4793 4794 /* 4795 * Allocate sufficient space to contain our fragment hash table and 4796 * the device name. 4797 */ 4798 frag_ptr = (uchar_t *)mi_zalloc(ILL_FRAG_HASH_TBL_SIZE + 4799 2 * LIFNAMSIZ + 5 + strlen(ipv6_forward_suffix)); 4800 if (frag_ptr == NULL) { 4801 freemsg(info_mp); 4802 return (ENOMEM); 4803 } 4804 ill->ill_frag_ptr = frag_ptr; 4805 ill->ill_frag_free_num_pkts = 0; 4806 ill->ill_last_frag_clean_time = 0; 4807 ill->ill_frag_hash_tbl = (ipfb_t *)frag_ptr; 4808 ill->ill_name = (char *)(frag_ptr + ILL_FRAG_HASH_TBL_SIZE); 4809 for (count = 0; count < ILL_FRAG_HASH_TBL_COUNT; count++) { 4810 mutex_init(&ill->ill_frag_hash_tbl[count].ipfb_lock, 4811 NULL, MUTEX_DEFAULT, NULL); 4812 } 4813 4814 ill->ill_phyint = (phyint_t *)mi_zalloc(sizeof (phyint_t)); 4815 if (ill->ill_phyint == NULL) { 4816 freemsg(info_mp); 4817 mi_free(frag_ptr); 4818 return (ENOMEM); 4819 } 4820 4821 mutex_init(&ill->ill_phyint->phyint_lock, NULL, MUTEX_DEFAULT, 0); 4822 /* 4823 * For now pretend this is a v4 ill. We need to set phyint_ill* 4824 * at this point because of the following reason. If we can't 4825 * enter the ipsq at some point and cv_wait, the writer that 4826 * wakes us up tries to locate us using the list of all phyints 4827 * in an ipsq and the ills from the phyint thru the phyint_ill*. 4828 * If we don't set it now, we risk a missed wakeup. 4829 */ 4830 ill->ill_phyint->phyint_illv4 = ill; 4831 ill->ill_ppa = UINT_MAX; 4832 ill->ill_fastpath_list = &ill->ill_fastpath_list; 4833 4834 if (!ipsq_init(ill)) { 4835 freemsg(info_mp); 4836 mi_free(frag_ptr); 4837 mi_free(ill->ill_phyint); 4838 return (ENOMEM); 4839 } 4840 4841 ill->ill_state_flags |= ILL_LL_SUBNET_PENDING; 4842 4843 4844 /* Frag queue limit stuff */ 4845 ill->ill_frag_count = 0; 4846 ill->ill_ipf_gen = 0; 4847 4848 ill->ill_global_timer = INFINITY; 4849 ill->ill_mcast_type = IGMP_V3_ROUTER; /* == MLD_V2_ROUTER */ 4850 ill->ill_mcast_v1_time = ill->ill_mcast_v2_time = 0; 4851 ill->ill_mcast_v1_tset = ill->ill_mcast_v2_tset = 0; 4852 ill->ill_mcast_rv = MCAST_DEF_ROBUSTNESS; 4853 ill->ill_mcast_qi = MCAST_DEF_QUERY_INTERVAL; 4854 4855 /* 4856 * Initialize IPv6 configuration variables. The IP module is always 4857 * opened as an IPv4 module. Instead tracking down the cases where 4858 * it switches to do ipv6, we'll just initialize the IPv6 configuration 4859 * here for convenience, this has no effect until the ill is set to do 4860 * IPv6. 4861 */ 4862 ill->ill_reachable_time = ND_REACHABLE_TIME; 4863 ill->ill_reachable_retrans_time = ND_RETRANS_TIMER; 4864 ill->ill_xmit_count = ND_MAX_MULTICAST_SOLICIT; 4865 ill->ill_max_buf = ND_MAX_Q; 4866 ill->ill_refcnt = 0; 4867 4868 /* Send down the Info Request to the driver. */ 4869 info_mp->b_datap->db_type = M_PCPROTO; 4870 dlir = (dl_info_req_t *)info_mp->b_rptr; 4871 info_mp->b_wptr = (uchar_t *)&dlir[1]; 4872 dlir->dl_primitive = DL_INFO_REQ; 4873 4874 ill->ill_dlpi_pending = DL_PRIM_INVAL; 4875 4876 qprocson(q); 4877 ill_dlpi_send(ill, info_mp); 4878 4879 return (0); 4880 } 4881 4882 /* 4883 * ill_dls_info 4884 * creates datalink socket info from the device. 4885 */ 4886 int 4887 ill_dls_info(struct sockaddr_dl *sdl, const ipif_t *ipif) 4888 { 4889 size_t len; 4890 ill_t *ill = ipif->ipif_ill; 4891 4892 sdl->sdl_family = AF_LINK; 4893 sdl->sdl_index = ill->ill_phyint->phyint_ifindex; 4894 sdl->sdl_type = ill->ill_type; 4895 (void) ipif_get_name(ipif, sdl->sdl_data, sizeof (sdl->sdl_data)); 4896 len = strlen(sdl->sdl_data); 4897 ASSERT(len < 256); 4898 sdl->sdl_nlen = (uchar_t)len; 4899 sdl->sdl_alen = ill->ill_phys_addr_length; 4900 sdl->sdl_slen = 0; 4901 if (ill->ill_phys_addr_length != 0 && ill->ill_phys_addr != NULL) 4902 bcopy(ill->ill_phys_addr, &sdl->sdl_data[len], sdl->sdl_alen); 4903 4904 return (sizeof (struct sockaddr_dl)); 4905 } 4906 4907 /* 4908 * ill_xarp_info 4909 * creates xarp info from the device. 4910 */ 4911 static int 4912 ill_xarp_info(struct sockaddr_dl *sdl, ill_t *ill) 4913 { 4914 sdl->sdl_family = AF_LINK; 4915 sdl->sdl_index = ill->ill_phyint->phyint_ifindex; 4916 sdl->sdl_type = ill->ill_type; 4917 (void) ipif_get_name(ill->ill_ipif, sdl->sdl_data, 4918 sizeof (sdl->sdl_data)); 4919 sdl->sdl_nlen = (uchar_t)mi_strlen(sdl->sdl_data); 4920 sdl->sdl_alen = ill->ill_phys_addr_length; 4921 sdl->sdl_slen = 0; 4922 return (sdl->sdl_nlen); 4923 } 4924 4925 static int 4926 loopback_kstat_update(kstat_t *ksp, int rw) 4927 { 4928 kstat_named_t *kn; 4929 netstackid_t stackid; 4930 netstack_t *ns; 4931 ip_stack_t *ipst; 4932 4933 if (ksp == NULL || ksp->ks_data == NULL) 4934 return (EIO); 4935 4936 if (rw == KSTAT_WRITE) 4937 return (EACCES); 4938 4939 kn = KSTAT_NAMED_PTR(ksp); 4940 stackid = (zoneid_t)(uintptr_t)ksp->ks_private; 4941 4942 ns = netstack_find_by_stackid(stackid); 4943 if (ns == NULL) 4944 return (-1); 4945 4946 ipst = ns->netstack_ip; 4947 if (ipst == NULL) { 4948 netstack_rele(ns); 4949 return (-1); 4950 } 4951 kn[0].value.ui32 = ipst->ips_loopback_packets; 4952 kn[1].value.ui32 = ipst->ips_loopback_packets; 4953 netstack_rele(ns); 4954 return (0); 4955 } 4956 4957 4958 /* 4959 * Has ifindex been plumbed already. 4960 * Compares both phyint_ifindex and phyint_group_ifindex. 4961 */ 4962 static boolean_t 4963 phyint_exists(uint_t index, ip_stack_t *ipst) 4964 { 4965 phyint_t *phyi; 4966 4967 ASSERT(index != 0); 4968 ASSERT(RW_LOCK_HELD(&ipst->ips_ill_g_lock)); 4969 /* 4970 * Indexes are stored in the phyint - a common structure 4971 * to both IPv4 and IPv6. 4972 */ 4973 phyi = avl_first(&ipst->ips_phyint_g_list->phyint_list_avl_by_index); 4974 for (; phyi != NULL; 4975 phyi = avl_walk(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 4976 phyi, AVL_AFTER)) { 4977 if (phyi->phyint_ifindex == index || 4978 phyi->phyint_group_ifindex == index) 4979 return (B_TRUE); 4980 } 4981 return (B_FALSE); 4982 } 4983 4984 /* Pick a unique ifindex */ 4985 boolean_t 4986 ip_assign_ifindex(uint_t *indexp, ip_stack_t *ipst) 4987 { 4988 uint_t starting_index; 4989 4990 if (!ipst->ips_ill_index_wrap) { 4991 *indexp = ipst->ips_ill_index++; 4992 if (ipst->ips_ill_index == 0) { 4993 /* Reached the uint_t limit Next time wrap */ 4994 ipst->ips_ill_index_wrap = B_TRUE; 4995 } 4996 return (B_TRUE); 4997 } 4998 4999 /* 5000 * Start reusing unused indexes. Note that we hold the ill_g_lock 5001 * at this point and don't want to call any function that attempts 5002 * to get the lock again. 5003 */ 5004 starting_index = ipst->ips_ill_index++; 5005 for (; ipst->ips_ill_index != starting_index; ipst->ips_ill_index++) { 5006 if (ipst->ips_ill_index != 0 && 5007 !phyint_exists(ipst->ips_ill_index, ipst)) { 5008 /* found unused index - use it */ 5009 *indexp = ipst->ips_ill_index; 5010 return (B_TRUE); 5011 } 5012 } 5013 5014 /* 5015 * all interface indicies are inuse. 5016 */ 5017 return (B_FALSE); 5018 } 5019 5020 /* 5021 * Assign a unique interface index for the phyint. 5022 */ 5023 static boolean_t 5024 phyint_assign_ifindex(phyint_t *phyi, ip_stack_t *ipst) 5025 { 5026 ASSERT(phyi->phyint_ifindex == 0); 5027 return (ip_assign_ifindex(&phyi->phyint_ifindex, ipst)); 5028 } 5029 5030 /* 5031 * Return a pointer to the ill which matches the supplied name. Note that 5032 * the ill name length includes the null termination character. (May be 5033 * called as writer.) 5034 * If do_alloc and the interface is "lo0" it will be automatically created. 5035 * Cannot bump up reference on condemned ills. So dup detect can't be done 5036 * using this func. 5037 */ 5038 ill_t * 5039 ill_lookup_on_name(char *name, boolean_t do_alloc, boolean_t isv6, 5040 queue_t *q, mblk_t *mp, ipsq_func_t func, int *error, boolean_t *did_alloc, 5041 ip_stack_t *ipst) 5042 { 5043 ill_t *ill; 5044 ipif_t *ipif; 5045 kstat_named_t *kn; 5046 boolean_t isloopback; 5047 ipsq_t *old_ipsq; 5048 in6_addr_t ov6addr; 5049 5050 isloopback = mi_strcmp(name, ipif_loopback_name) == 0; 5051 5052 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 5053 ill = ill_find_by_name(name, isv6, q, mp, func, error, ipst); 5054 rw_exit(&ipst->ips_ill_g_lock); 5055 if (ill != NULL || (error != NULL && *error == EINPROGRESS)) 5056 return (ill); 5057 5058 /* 5059 * Couldn't find it. Does this happen to be a lookup for the 5060 * loopback device and are we allowed to allocate it? 5061 */ 5062 if (!isloopback || !do_alloc) 5063 return (NULL); 5064 5065 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 5066 5067 ill = ill_find_by_name(name, isv6, q, mp, func, error, ipst); 5068 if (ill != NULL || (error != NULL && *error == EINPROGRESS)) { 5069 rw_exit(&ipst->ips_ill_g_lock); 5070 return (ill); 5071 } 5072 5073 /* Create the loopback device on demand */ 5074 ill = (ill_t *)(mi_alloc(sizeof (ill_t) + 5075 sizeof (ipif_loopback_name), BPRI_MED)); 5076 if (ill == NULL) 5077 goto done; 5078 5079 *ill = ill_null; 5080 mutex_init(&ill->ill_lock, NULL, MUTEX_DEFAULT, NULL); 5081 ill->ill_ipst = ipst; 5082 netstack_hold(ipst->ips_netstack); 5083 /* 5084 * For exclusive stacks we set the zoneid to zero 5085 * to make IP operate as if in the global zone. 5086 */ 5087 ill->ill_zoneid = GLOBAL_ZONEID; 5088 5089 ill->ill_phyint = (phyint_t *)mi_zalloc(sizeof (phyint_t)); 5090 if (ill->ill_phyint == NULL) 5091 goto done; 5092 5093 if (isv6) 5094 ill->ill_phyint->phyint_illv6 = ill; 5095 else 5096 ill->ill_phyint->phyint_illv4 = ill; 5097 mutex_init(&ill->ill_phyint->phyint_lock, NULL, MUTEX_DEFAULT, 0); 5098 ill->ill_max_frag = IP_LOOPBACK_MTU; 5099 /* Add room for tcp+ip headers */ 5100 if (isv6) { 5101 ill->ill_isv6 = B_TRUE; 5102 ill->ill_max_frag += IPV6_HDR_LEN + 20; /* for TCP */ 5103 } else { 5104 ill->ill_max_frag += IP_SIMPLE_HDR_LENGTH + 20; 5105 } 5106 if (!ill_allocate_mibs(ill)) 5107 goto done; 5108 ill->ill_max_mtu = ill->ill_max_frag; 5109 /* 5110 * ipif_loopback_name can't be pointed at directly because its used 5111 * by both the ipv4 and ipv6 interfaces. When the ill is removed 5112 * from the glist, ill_glist_delete() sets the first character of 5113 * ill_name to '\0'. 5114 */ 5115 ill->ill_name = (char *)ill + sizeof (*ill); 5116 (void) strcpy(ill->ill_name, ipif_loopback_name); 5117 ill->ill_name_length = sizeof (ipif_loopback_name); 5118 /* Set ill_name_set for ill_phyint_reinit to work properly */ 5119 5120 ill->ill_global_timer = INFINITY; 5121 ill->ill_mcast_type = IGMP_V3_ROUTER; /* == MLD_V2_ROUTER */ 5122 ill->ill_mcast_v1_time = ill->ill_mcast_v2_time = 0; 5123 ill->ill_mcast_v1_tset = ill->ill_mcast_v2_tset = 0; 5124 ill->ill_mcast_rv = MCAST_DEF_ROBUSTNESS; 5125 ill->ill_mcast_qi = MCAST_DEF_QUERY_INTERVAL; 5126 5127 /* No resolver here. */ 5128 ill->ill_net_type = IRE_LOOPBACK; 5129 5130 /* Initialize the ipsq */ 5131 if (!ipsq_init(ill)) 5132 goto done; 5133 5134 ill->ill_phyint->phyint_ipsq->ipsq_writer = NULL; 5135 ill->ill_phyint->phyint_ipsq->ipsq_reentry_cnt--; 5136 ASSERT(ill->ill_phyint->phyint_ipsq->ipsq_reentry_cnt == 0); 5137 #ifdef ILL_DEBUG 5138 ill->ill_phyint->phyint_ipsq->ipsq_depth = 0; 5139 #endif 5140 ipif = ipif_allocate(ill, 0L, IRE_LOOPBACK, B_TRUE); 5141 if (ipif == NULL) 5142 goto done; 5143 5144 ill->ill_flags = ILLF_MULTICAST; 5145 5146 ov6addr = ipif->ipif_v6lcl_addr; 5147 /* Set up default loopback address and mask. */ 5148 if (!isv6) { 5149 ipaddr_t inaddr_loopback = htonl(INADDR_LOOPBACK); 5150 5151 IN6_IPADDR_TO_V4MAPPED(inaddr_loopback, &ipif->ipif_v6lcl_addr); 5152 ipif->ipif_v6src_addr = ipif->ipif_v6lcl_addr; 5153 V4MASK_TO_V6(htonl(IN_CLASSA_NET), ipif->ipif_v6net_mask); 5154 V6_MASK_COPY(ipif->ipif_v6lcl_addr, ipif->ipif_v6net_mask, 5155 ipif->ipif_v6subnet); 5156 ill->ill_flags |= ILLF_IPV4; 5157 } else { 5158 ipif->ipif_v6lcl_addr = ipv6_loopback; 5159 ipif->ipif_v6src_addr = ipif->ipif_v6lcl_addr; 5160 ipif->ipif_v6net_mask = ipv6_all_ones; 5161 V6_MASK_COPY(ipif->ipif_v6lcl_addr, ipif->ipif_v6net_mask, 5162 ipif->ipif_v6subnet); 5163 ill->ill_flags |= ILLF_IPV6; 5164 } 5165 5166 /* 5167 * Chain us in at the end of the ill list. hold the ill 5168 * before we make it globally visible. 1 for the lookup. 5169 */ 5170 ill->ill_refcnt = 0; 5171 ill_refhold(ill); 5172 5173 ill->ill_frag_count = 0; 5174 ill->ill_frag_free_num_pkts = 0; 5175 ill->ill_last_frag_clean_time = 0; 5176 5177 old_ipsq = ill->ill_phyint->phyint_ipsq; 5178 5179 if (ill_glist_insert(ill, "lo", isv6) != 0) 5180 cmn_err(CE_PANIC, "cannot insert loopback interface"); 5181 5182 /* Let SCTP know so that it can add this to its list */ 5183 sctp_update_ill(ill, SCTP_ILL_INSERT); 5184 5185 /* 5186 * We have already assigned ipif_v6lcl_addr above, but we need to 5187 * call sctp_update_ipif_addr() after SCTP_ILL_INSERT, which 5188 * requires to be after ill_glist_insert() since we need the 5189 * ill_index set. Pass on ipv6_loopback as the old address. 5190 */ 5191 sctp_update_ipif_addr(ipif, ov6addr); 5192 5193 /* 5194 * If the ipsq was changed in ill_phyint_reinit free the old ipsq. 5195 */ 5196 if (old_ipsq != ill->ill_phyint->phyint_ipsq) { 5197 /* Loopback ills aren't in any IPMP group */ 5198 ASSERT(!(old_ipsq->ipsq_flags & IPSQ_GROUP)); 5199 ipsq_delete(old_ipsq); 5200 } 5201 5202 /* 5203 * Delay this till the ipif is allocated as ipif_allocate 5204 * de-references ill_phyint for getting the ifindex. We 5205 * can't do this before ipif_allocate because ill_phyint_reinit 5206 * -> phyint_assign_ifindex expects ipif to be present. 5207 */ 5208 mutex_enter(&ill->ill_phyint->phyint_lock); 5209 ill->ill_phyint->phyint_flags |= PHYI_LOOPBACK | PHYI_VIRTUAL; 5210 mutex_exit(&ill->ill_phyint->phyint_lock); 5211 5212 if (ipst->ips_loopback_ksp == NULL) { 5213 /* Export loopback interface statistics */ 5214 ipst->ips_loopback_ksp = kstat_create_netstack("lo", 0, 5215 ipif_loopback_name, "net", 5216 KSTAT_TYPE_NAMED, 2, 0, 5217 ipst->ips_netstack->netstack_stackid); 5218 if (ipst->ips_loopback_ksp != NULL) { 5219 ipst->ips_loopback_ksp->ks_update = 5220 loopback_kstat_update; 5221 kn = KSTAT_NAMED_PTR(ipst->ips_loopback_ksp); 5222 kstat_named_init(&kn[0], "ipackets", KSTAT_DATA_UINT32); 5223 kstat_named_init(&kn[1], "opackets", KSTAT_DATA_UINT32); 5224 ipst->ips_loopback_ksp->ks_private = 5225 (void *)(uintptr_t)ipst->ips_netstack-> 5226 netstack_stackid; 5227 kstat_install(ipst->ips_loopback_ksp); 5228 } 5229 } 5230 5231 if (error != NULL) 5232 *error = 0; 5233 *did_alloc = B_TRUE; 5234 rw_exit(&ipst->ips_ill_g_lock); 5235 return (ill); 5236 done: 5237 if (ill != NULL) { 5238 if (ill->ill_phyint != NULL) { 5239 ipsq_t *ipsq; 5240 5241 ipsq = ill->ill_phyint->phyint_ipsq; 5242 if (ipsq != NULL) { 5243 ipsq->ipsq_ipst = NULL; 5244 kmem_free(ipsq, sizeof (ipsq_t)); 5245 } 5246 mi_free(ill->ill_phyint); 5247 } 5248 ill_free_mib(ill); 5249 if (ill->ill_ipst != NULL) 5250 netstack_rele(ill->ill_ipst->ips_netstack); 5251 mi_free(ill); 5252 } 5253 rw_exit(&ipst->ips_ill_g_lock); 5254 if (error != NULL) 5255 *error = ENOMEM; 5256 return (NULL); 5257 } 5258 5259 /* 5260 * For IPP calls - use the ip_stack_t for global stack. 5261 */ 5262 ill_t * 5263 ill_lookup_on_ifindex_global_instance(uint_t index, boolean_t isv6, 5264 queue_t *q, mblk_t *mp, ipsq_func_t func, int *err) 5265 { 5266 ip_stack_t *ipst; 5267 ill_t *ill; 5268 5269 ipst = netstack_find_by_stackid(GLOBAL_NETSTACKID)->netstack_ip; 5270 if (ipst == NULL) { 5271 cmn_err(CE_WARN, "No ip_stack_t for zoneid zero!\n"); 5272 return (NULL); 5273 } 5274 5275 ill = ill_lookup_on_ifindex(index, isv6, q, mp, func, err, ipst); 5276 netstack_rele(ipst->ips_netstack); 5277 return (ill); 5278 } 5279 5280 /* 5281 * Return a pointer to the ill which matches the index and IP version type. 5282 */ 5283 ill_t * 5284 ill_lookup_on_ifindex(uint_t index, boolean_t isv6, queue_t *q, mblk_t *mp, 5285 ipsq_func_t func, int *err, ip_stack_t *ipst) 5286 { 5287 ill_t *ill; 5288 ipsq_t *ipsq; 5289 phyint_t *phyi; 5290 5291 ASSERT((q == NULL && mp == NULL && func == NULL && err == NULL) || 5292 (q != NULL && mp != NULL && func != NULL && err != NULL)); 5293 5294 if (err != NULL) 5295 *err = 0; 5296 5297 /* 5298 * Indexes are stored in the phyint - a common structure 5299 * to both IPv4 and IPv6. 5300 */ 5301 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 5302 phyi = avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 5303 (void *) &index, NULL); 5304 if (phyi != NULL) { 5305 ill = isv6 ? phyi->phyint_illv6: phyi->phyint_illv4; 5306 if (ill != NULL) { 5307 /* 5308 * The block comment at the start of ipif_down 5309 * explains the use of the macros used below 5310 */ 5311 GRAB_CONN_LOCK(q); 5312 mutex_enter(&ill->ill_lock); 5313 if (ILL_CAN_LOOKUP(ill)) { 5314 ill_refhold_locked(ill); 5315 mutex_exit(&ill->ill_lock); 5316 RELEASE_CONN_LOCK(q); 5317 rw_exit(&ipst->ips_ill_g_lock); 5318 return (ill); 5319 } else if (ILL_CAN_WAIT(ill, q)) { 5320 ipsq = ill->ill_phyint->phyint_ipsq; 5321 mutex_enter(&ipsq->ipsq_lock); 5322 rw_exit(&ipst->ips_ill_g_lock); 5323 mutex_exit(&ill->ill_lock); 5324 ipsq_enq(ipsq, q, mp, func, NEW_OP, ill); 5325 mutex_exit(&ipsq->ipsq_lock); 5326 RELEASE_CONN_LOCK(q); 5327 *err = EINPROGRESS; 5328 return (NULL); 5329 } 5330 RELEASE_CONN_LOCK(q); 5331 mutex_exit(&ill->ill_lock); 5332 } 5333 } 5334 rw_exit(&ipst->ips_ill_g_lock); 5335 if (err != NULL) 5336 *err = ENXIO; 5337 return (NULL); 5338 } 5339 5340 /* 5341 * Return the ifindex next in sequence after the passed in ifindex. 5342 * If there is no next ifindex for the given protocol, return 0. 5343 */ 5344 uint_t 5345 ill_get_next_ifindex(uint_t index, boolean_t isv6, ip_stack_t *ipst) 5346 { 5347 phyint_t *phyi; 5348 phyint_t *phyi_initial; 5349 uint_t ifindex; 5350 5351 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 5352 5353 if (index == 0) { 5354 phyi = avl_first( 5355 &ipst->ips_phyint_g_list->phyint_list_avl_by_index); 5356 } else { 5357 phyi = phyi_initial = avl_find( 5358 &ipst->ips_phyint_g_list->phyint_list_avl_by_index, 5359 (void *) &index, NULL); 5360 } 5361 5362 for (; phyi != NULL; 5363 phyi = avl_walk(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 5364 phyi, AVL_AFTER)) { 5365 /* 5366 * If we're not returning the first interface in the tree 5367 * and we still haven't moved past the phyint_t that 5368 * corresponds to index, avl_walk needs to be called again 5369 */ 5370 if (!((index != 0) && (phyi == phyi_initial))) { 5371 if (isv6) { 5372 if ((phyi->phyint_illv6) && 5373 ILL_CAN_LOOKUP(phyi->phyint_illv6) && 5374 (phyi->phyint_illv6->ill_isv6 == 1)) 5375 break; 5376 } else { 5377 if ((phyi->phyint_illv4) && 5378 ILL_CAN_LOOKUP(phyi->phyint_illv4) && 5379 (phyi->phyint_illv4->ill_isv6 == 0)) 5380 break; 5381 } 5382 } 5383 } 5384 5385 rw_exit(&ipst->ips_ill_g_lock); 5386 5387 if (phyi != NULL) 5388 ifindex = phyi->phyint_ifindex; 5389 else 5390 ifindex = 0; 5391 5392 return (ifindex); 5393 } 5394 5395 5396 /* 5397 * Return the ifindex for the named interface. 5398 * If there is no next ifindex for the interface, return 0. 5399 */ 5400 uint_t 5401 ill_get_ifindex_by_name(char *name, ip_stack_t *ipst) 5402 { 5403 phyint_t *phyi; 5404 avl_index_t where = 0; 5405 uint_t ifindex; 5406 5407 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 5408 5409 if ((phyi = avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_name, 5410 name, &where)) == NULL) { 5411 rw_exit(&ipst->ips_ill_g_lock); 5412 return (0); 5413 } 5414 5415 ifindex = phyi->phyint_ifindex; 5416 5417 rw_exit(&ipst->ips_ill_g_lock); 5418 5419 return (ifindex); 5420 } 5421 5422 5423 /* 5424 * Obtain a reference to the ill. The ill_refcnt is a dynamic refcnt 5425 * that gives a running thread a reference to the ill. This reference must be 5426 * released by the thread when it is done accessing the ill and related 5427 * objects. ill_refcnt can not be used to account for static references 5428 * such as other structures pointing to an ill. Callers must generally 5429 * check whether an ill can be refheld by using ILL_CAN_LOOKUP macros 5430 * or be sure that the ill is not being deleted or changing state before 5431 * calling the refhold functions. A non-zero ill_refcnt ensures that the 5432 * ill won't change any of its critical state such as address, netmask etc. 5433 */ 5434 void 5435 ill_refhold(ill_t *ill) 5436 { 5437 mutex_enter(&ill->ill_lock); 5438 ill->ill_refcnt++; 5439 ILL_TRACE_REF(ill); 5440 mutex_exit(&ill->ill_lock); 5441 } 5442 5443 void 5444 ill_refhold_locked(ill_t *ill) 5445 { 5446 ASSERT(MUTEX_HELD(&ill->ill_lock)); 5447 ill->ill_refcnt++; 5448 ILL_TRACE_REF(ill); 5449 } 5450 5451 int 5452 ill_check_and_refhold(ill_t *ill) 5453 { 5454 mutex_enter(&ill->ill_lock); 5455 if (ILL_CAN_LOOKUP(ill)) { 5456 ill_refhold_locked(ill); 5457 mutex_exit(&ill->ill_lock); 5458 return (0); 5459 } 5460 mutex_exit(&ill->ill_lock); 5461 return (ILL_LOOKUP_FAILED); 5462 } 5463 5464 /* 5465 * Must not be called while holding any locks. Otherwise if this is 5466 * the last reference to be released, there is a chance of recursive mutex 5467 * panic due to ill_refrele -> ipif_ill_refrele_tail -> qwriter_ip trying 5468 * to restart an ioctl. 5469 */ 5470 void 5471 ill_refrele(ill_t *ill) 5472 { 5473 mutex_enter(&ill->ill_lock); 5474 ASSERT(ill->ill_refcnt != 0); 5475 ill->ill_refcnt--; 5476 ILL_UNTRACE_REF(ill); 5477 if (ill->ill_refcnt != 0) { 5478 /* Every ire pointing to the ill adds 1 to ill_refcnt */ 5479 mutex_exit(&ill->ill_lock); 5480 return; 5481 } 5482 5483 /* Drops the ill_lock */ 5484 ipif_ill_refrele_tail(ill); 5485 } 5486 5487 /* 5488 * Obtain a weak reference count on the ill. This reference ensures the 5489 * ill won't be freed, but the ill may change any of its critical state 5490 * such as netmask, address etc. Returns an error if the ill has started 5491 * closing. 5492 */ 5493 boolean_t 5494 ill_waiter_inc(ill_t *ill) 5495 { 5496 mutex_enter(&ill->ill_lock); 5497 if (ill->ill_state_flags & ILL_CONDEMNED) { 5498 mutex_exit(&ill->ill_lock); 5499 return (B_FALSE); 5500 } 5501 ill->ill_waiters++; 5502 mutex_exit(&ill->ill_lock); 5503 return (B_TRUE); 5504 } 5505 5506 void 5507 ill_waiter_dcr(ill_t *ill) 5508 { 5509 mutex_enter(&ill->ill_lock); 5510 ill->ill_waiters--; 5511 if (ill->ill_waiters == 0) 5512 cv_broadcast(&ill->ill_cv); 5513 mutex_exit(&ill->ill_lock); 5514 } 5515 5516 /* 5517 * Named Dispatch routine to produce a formatted report on all ILLs. 5518 * This report is accessed by using the ndd utility to "get" ND variable 5519 * "ip_ill_status". 5520 */ 5521 /* ARGSUSED */ 5522 int 5523 ip_ill_report(queue_t *q, mblk_t *mp, caddr_t arg, cred_t *ioc_cr) 5524 { 5525 ill_t *ill; 5526 ill_walk_context_t ctx; 5527 ip_stack_t *ipst; 5528 5529 ipst = CONNQ_TO_IPST(q); 5530 5531 (void) mi_mpprintf(mp, 5532 "ILL " MI_COL_HDRPAD_STR 5533 /* 01234567[89ABCDEF] */ 5534 "rq " MI_COL_HDRPAD_STR 5535 /* 01234567[89ABCDEF] */ 5536 "wq " MI_COL_HDRPAD_STR 5537 /* 01234567[89ABCDEF] */ 5538 "upcnt mxfrg err name"); 5539 /* 12345 12345 123 xxxxxxxx */ 5540 5541 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 5542 ill = ILL_START_WALK_ALL(&ctx, ipst); 5543 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 5544 (void) mi_mpprintf(mp, 5545 MI_COL_PTRFMT_STR MI_COL_PTRFMT_STR MI_COL_PTRFMT_STR 5546 "%05u %05u %03d %s", 5547 (void *)ill, (void *)ill->ill_rq, (void *)ill->ill_wq, 5548 ill->ill_ipif_up_count, 5549 ill->ill_max_frag, ill->ill_error, ill->ill_name); 5550 } 5551 rw_exit(&ipst->ips_ill_g_lock); 5552 5553 return (0); 5554 } 5555 5556 /* 5557 * Named Dispatch routine to produce a formatted report on all IPIFs. 5558 * This report is accessed by using the ndd utility to "get" ND variable 5559 * "ip_ipif_status". 5560 */ 5561 /* ARGSUSED */ 5562 int 5563 ip_ipif_report(queue_t *q, mblk_t *mp, caddr_t arg, cred_t *ioc_cr) 5564 { 5565 char buf1[INET6_ADDRSTRLEN]; 5566 char buf2[INET6_ADDRSTRLEN]; 5567 char buf3[INET6_ADDRSTRLEN]; 5568 char buf4[INET6_ADDRSTRLEN]; 5569 char buf5[INET6_ADDRSTRLEN]; 5570 char buf6[INET6_ADDRSTRLEN]; 5571 char buf[LIFNAMSIZ]; 5572 ill_t *ill; 5573 ipif_t *ipif; 5574 nv_t *nvp; 5575 uint64_t flags; 5576 zoneid_t zoneid; 5577 ill_walk_context_t ctx; 5578 ip_stack_t *ipst = CONNQ_TO_IPST(q); 5579 5580 (void) mi_mpprintf(mp, 5581 "IPIF metric mtu in/out/forward name zone flags...\n" 5582 "\tlocal address\n" 5583 "\tsrc address\n" 5584 "\tsubnet\n" 5585 "\tmask\n" 5586 "\tbroadcast\n" 5587 "\tp-p-dst"); 5588 5589 ASSERT(q->q_next == NULL); 5590 zoneid = Q_TO_CONN(q)->conn_zoneid; /* IP is a driver */ 5591 5592 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 5593 ill = ILL_START_WALK_ALL(&ctx, ipst); 5594 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 5595 for (ipif = ill->ill_ipif; ipif != NULL; 5596 ipif = ipif->ipif_next) { 5597 if (zoneid != GLOBAL_ZONEID && 5598 zoneid != ipif->ipif_zoneid && 5599 ipif->ipif_zoneid != ALL_ZONES) 5600 continue; 5601 (void) mi_mpprintf(mp, 5602 MI_COL_PTRFMT_STR 5603 "%04u %05u %u/%u/%u %s %d", 5604 (void *)ipif, 5605 ipif->ipif_metric, ipif->ipif_mtu, 5606 ipif->ipif_ib_pkt_count, 5607 ipif->ipif_ob_pkt_count, 5608 ipif->ipif_fo_pkt_count, 5609 ipif_get_name(ipif, buf, sizeof (buf)), 5610 ipif->ipif_zoneid); 5611 5612 flags = ipif->ipif_flags | ipif->ipif_ill->ill_flags | 5613 ipif->ipif_ill->ill_phyint->phyint_flags; 5614 5615 /* Tack on text strings for any flags. */ 5616 nvp = ipif_nv_tbl; 5617 for (; nvp < A_END(ipif_nv_tbl); nvp++) { 5618 if (nvp->nv_value & flags) 5619 (void) mi_mpprintf_nr(mp, " %s", 5620 nvp->nv_name); 5621 } 5622 (void) mi_mpprintf(mp, 5623 "\t%s\n\t%s\n\t%s\n\t%s\n\t%s\n\t%s", 5624 inet_ntop(AF_INET6, 5625 &ipif->ipif_v6lcl_addr, buf1, sizeof (buf1)), 5626 inet_ntop(AF_INET6, 5627 &ipif->ipif_v6src_addr, buf2, sizeof (buf2)), 5628 inet_ntop(AF_INET6, 5629 &ipif->ipif_v6subnet, buf3, sizeof (buf3)), 5630 inet_ntop(AF_INET6, 5631 &ipif->ipif_v6net_mask, buf4, sizeof (buf4)), 5632 inet_ntop(AF_INET6, 5633 &ipif->ipif_v6brd_addr, buf5, sizeof (buf5)), 5634 inet_ntop(AF_INET6, 5635 &ipif->ipif_v6pp_dst_addr, 5636 buf6, sizeof (buf6))); 5637 } 5638 } 5639 rw_exit(&ipst->ips_ill_g_lock); 5640 return (0); 5641 } 5642 5643 /* 5644 * ip_ll_subnet_defaults is called when we get the DL_INFO_ACK back from the 5645 * driver. We construct best guess defaults for lower level information that 5646 * we need. If an interface is brought up without injection of any overriding 5647 * information from outside, we have to be ready to go with these defaults. 5648 * When we get the first DL_INFO_ACK (from ip_open() sending a DL_INFO_REQ) 5649 * we primarely want the dl_provider_style. 5650 * The subsequent DL_INFO_ACK is received after doing a DL_ATTACH and DL_BIND 5651 * at which point we assume the other part of the information is valid. 5652 */ 5653 void 5654 ip_ll_subnet_defaults(ill_t *ill, mblk_t *mp) 5655 { 5656 uchar_t *brdcst_addr; 5657 uint_t brdcst_addr_length, phys_addr_length; 5658 t_scalar_t sap_length; 5659 dl_info_ack_t *dlia; 5660 ip_m_t *ipm; 5661 dl_qos_cl_sel1_t *sel1; 5662 5663 ASSERT(IAM_WRITER_ILL(ill)); 5664 5665 /* 5666 * Till the ill is fully up ILL_CHANGING will be set and 5667 * the ill is not globally visible. So no need for a lock. 5668 */ 5669 dlia = (dl_info_ack_t *)mp->b_rptr; 5670 ill->ill_mactype = dlia->dl_mac_type; 5671 5672 ipm = ip_m_lookup(dlia->dl_mac_type); 5673 if (ipm == NULL) { 5674 ipm = ip_m_lookup(DL_OTHER); 5675 ASSERT(ipm != NULL); 5676 } 5677 ill->ill_media = ipm; 5678 5679 /* 5680 * When the new DLPI stuff is ready we'll pull lengths 5681 * from dlia. 5682 */ 5683 if (dlia->dl_version == DL_VERSION_2) { 5684 brdcst_addr_length = dlia->dl_brdcst_addr_length; 5685 brdcst_addr = mi_offset_param(mp, dlia->dl_brdcst_addr_offset, 5686 brdcst_addr_length); 5687 if (brdcst_addr == NULL) { 5688 brdcst_addr_length = 0; 5689 } 5690 sap_length = dlia->dl_sap_length; 5691 phys_addr_length = dlia->dl_addr_length - ABS(sap_length); 5692 ip1dbg(("ip: bcast_len %d, sap_len %d, phys_len %d\n", 5693 brdcst_addr_length, sap_length, phys_addr_length)); 5694 } else { 5695 brdcst_addr_length = 6; 5696 brdcst_addr = ip_six_byte_all_ones; 5697 sap_length = -2; 5698 phys_addr_length = brdcst_addr_length; 5699 } 5700 5701 ill->ill_bcast_addr_length = brdcst_addr_length; 5702 ill->ill_phys_addr_length = phys_addr_length; 5703 ill->ill_sap_length = sap_length; 5704 ill->ill_max_frag = dlia->dl_max_sdu; 5705 ill->ill_max_mtu = ill->ill_max_frag; 5706 5707 ill->ill_type = ipm->ip_m_type; 5708 5709 if (!ill->ill_dlpi_style_set) { 5710 if (dlia->dl_provider_style == DL_STYLE2) 5711 ill->ill_needs_attach = 1; 5712 5713 /* 5714 * Allocate the first ipif on this ill. We don't delay it 5715 * further as ioctl handling assumes atleast one ipif to 5716 * be present. 5717 * 5718 * At this point we don't know whether the ill is v4 or v6. 5719 * We will know this whan the SIOCSLIFNAME happens and 5720 * the correct value for ill_isv6 will be assigned in 5721 * ipif_set_values(). We need to hold the ill lock and 5722 * clear the ILL_LL_SUBNET_PENDING flag and atomically do 5723 * the wakeup. 5724 */ 5725 (void) ipif_allocate(ill, 0, IRE_LOCAL, 5726 dlia->dl_provider_style == DL_STYLE2 ? B_FALSE : B_TRUE); 5727 mutex_enter(&ill->ill_lock); 5728 ASSERT(ill->ill_dlpi_style_set == 0); 5729 ill->ill_dlpi_style_set = 1; 5730 ill->ill_state_flags &= ~ILL_LL_SUBNET_PENDING; 5731 cv_broadcast(&ill->ill_cv); 5732 mutex_exit(&ill->ill_lock); 5733 freemsg(mp); 5734 return; 5735 } 5736 ASSERT(ill->ill_ipif != NULL); 5737 /* 5738 * We know whether it is IPv4 or IPv6 now, as this is the 5739 * second DL_INFO_ACK we are recieving in response to the 5740 * DL_INFO_REQ sent in ipif_set_values. 5741 */ 5742 if (ill->ill_isv6) 5743 ill->ill_sap = IP6_DL_SAP; 5744 else 5745 ill->ill_sap = IP_DL_SAP; 5746 /* 5747 * Set ipif_mtu which is used to set the IRE's 5748 * ire_max_frag value. The driver could have sent 5749 * a different mtu from what it sent last time. No 5750 * need to call ipif_mtu_change because IREs have 5751 * not yet been created. 5752 */ 5753 ill->ill_ipif->ipif_mtu = ill->ill_max_mtu; 5754 /* 5755 * Clear all the flags that were set based on ill_bcast_addr_length 5756 * and ill_phys_addr_length (in ipif_set_values) as these could have 5757 * changed now and we need to re-evaluate. 5758 */ 5759 ill->ill_flags &= ~(ILLF_MULTICAST | ILLF_NONUD | ILLF_NOARP); 5760 ill->ill_ipif->ipif_flags &= ~(IPIF_BROADCAST | IPIF_POINTOPOINT); 5761 5762 /* 5763 * Free ill_resolver_mp and ill_bcast_mp as things could have 5764 * changed now. 5765 */ 5766 if (ill->ill_bcast_addr_length == 0) { 5767 if (ill->ill_resolver_mp != NULL) 5768 freemsg(ill->ill_resolver_mp); 5769 if (ill->ill_bcast_mp != NULL) 5770 freemsg(ill->ill_bcast_mp); 5771 if (ill->ill_flags & ILLF_XRESOLV) 5772 ill->ill_net_type = IRE_IF_RESOLVER; 5773 else 5774 ill->ill_net_type = IRE_IF_NORESOLVER; 5775 ill->ill_resolver_mp = ill_dlur_gen(NULL, 5776 ill->ill_phys_addr_length, 5777 ill->ill_sap, 5778 ill->ill_sap_length); 5779 ill->ill_bcast_mp = copymsg(ill->ill_resolver_mp); 5780 5781 if (ill->ill_isv6) 5782 /* 5783 * Note: xresolv interfaces will eventually need NOARP 5784 * set here as well, but that will require those 5785 * external resolvers to have some knowledge of 5786 * that flag and act appropriately. Not to be changed 5787 * at present. 5788 */ 5789 ill->ill_flags |= ILLF_NONUD; 5790 else 5791 ill->ill_flags |= ILLF_NOARP; 5792 5793 if (ill->ill_phys_addr_length == 0) { 5794 if (ill->ill_media->ip_m_mac_type == SUNW_DL_VNI) { 5795 ill->ill_ipif->ipif_flags |= IPIF_NOXMIT; 5796 ill->ill_phyint->phyint_flags |= PHYI_VIRTUAL; 5797 } else { 5798 /* pt-pt supports multicast. */ 5799 ill->ill_flags |= ILLF_MULTICAST; 5800 ill->ill_ipif->ipif_flags |= IPIF_POINTOPOINT; 5801 } 5802 } 5803 } else { 5804 ill->ill_net_type = IRE_IF_RESOLVER; 5805 if (ill->ill_bcast_mp != NULL) 5806 freemsg(ill->ill_bcast_mp); 5807 ill->ill_bcast_mp = ill_dlur_gen(brdcst_addr, 5808 ill->ill_bcast_addr_length, ill->ill_sap, 5809 ill->ill_sap_length); 5810 /* 5811 * Later detect lack of DLPI driver multicast 5812 * capability by catching DL_ENABMULTI errors in 5813 * ip_rput_dlpi. 5814 */ 5815 ill->ill_flags |= ILLF_MULTICAST; 5816 if (!ill->ill_isv6) 5817 ill->ill_ipif->ipif_flags |= IPIF_BROADCAST; 5818 } 5819 /* By default an interface does not support any CoS marking */ 5820 ill->ill_flags &= ~ILLF_COS_ENABLED; 5821 5822 /* 5823 * If we get QoS information in DL_INFO_ACK, the device supports 5824 * some form of CoS marking, set ILLF_COS_ENABLED. 5825 */ 5826 sel1 = (dl_qos_cl_sel1_t *)mi_offset_param(mp, dlia->dl_qos_offset, 5827 dlia->dl_qos_length); 5828 if ((sel1 != NULL) && (sel1->dl_qos_type == DL_QOS_CL_SEL1)) { 5829 ill->ill_flags |= ILLF_COS_ENABLED; 5830 } 5831 5832 /* Clear any previous error indication. */ 5833 ill->ill_error = 0; 5834 freemsg(mp); 5835 } 5836 5837 /* 5838 * Perform various checks to verify that an address would make sense as a 5839 * local, remote, or subnet interface address. 5840 */ 5841 static boolean_t 5842 ip_addr_ok_v4(ipaddr_t addr, ipaddr_t subnet_mask) 5843 { 5844 ipaddr_t net_mask; 5845 5846 /* 5847 * Don't allow all zeroes, all ones or experimental address, but allow 5848 * all ones netmask. 5849 */ 5850 if ((net_mask = ip_net_mask(addr)) == 0) 5851 return (B_FALSE); 5852 /* A given netmask overrides the "guess" netmask */ 5853 if (subnet_mask != 0) 5854 net_mask = subnet_mask; 5855 if ((net_mask != ~(ipaddr_t)0) && ((addr == (addr & net_mask)) || 5856 (addr == (addr | ~net_mask)))) { 5857 return (B_FALSE); 5858 } 5859 if (CLASSD(addr)) 5860 return (B_FALSE); 5861 5862 return (B_TRUE); 5863 } 5864 5865 /* 5866 * ipif_lookup_group 5867 * Returns held ipif 5868 */ 5869 ipif_t * 5870 ipif_lookup_group(ipaddr_t group, zoneid_t zoneid, ip_stack_t *ipst) 5871 { 5872 ire_t *ire; 5873 ipif_t *ipif; 5874 5875 ire = ire_lookup_multi(group, zoneid, ipst); 5876 if (ire == NULL) 5877 return (NULL); 5878 ipif = ire->ire_ipif; 5879 ipif_refhold(ipif); 5880 ire_refrele(ire); 5881 return (ipif); 5882 } 5883 5884 /* 5885 * Look for an ipif with the specified interface address and destination. 5886 * The destination address is used only for matching point-to-point interfaces. 5887 */ 5888 ipif_t * 5889 ipif_lookup_interface(ipaddr_t if_addr, ipaddr_t dst, queue_t *q, mblk_t *mp, 5890 ipsq_func_t func, int *error, ip_stack_t *ipst) 5891 { 5892 ipif_t *ipif; 5893 ill_t *ill; 5894 ill_walk_context_t ctx; 5895 ipsq_t *ipsq; 5896 5897 if (error != NULL) 5898 *error = 0; 5899 5900 /* 5901 * First match all the point-to-point interfaces 5902 * before looking at non-point-to-point interfaces. 5903 * This is done to avoid returning non-point-to-point 5904 * ipif instead of unnumbered point-to-point ipif. 5905 */ 5906 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 5907 ill = ILL_START_WALK_V4(&ctx, ipst); 5908 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 5909 GRAB_CONN_LOCK(q); 5910 mutex_enter(&ill->ill_lock); 5911 for (ipif = ill->ill_ipif; ipif != NULL; 5912 ipif = ipif->ipif_next) { 5913 /* Allow the ipif to be down */ 5914 if ((ipif->ipif_flags & IPIF_POINTOPOINT) && 5915 (ipif->ipif_lcl_addr == if_addr) && 5916 (ipif->ipif_pp_dst_addr == dst)) { 5917 /* 5918 * The block comment at the start of ipif_down 5919 * explains the use of the macros used below 5920 */ 5921 if (IPIF_CAN_LOOKUP(ipif)) { 5922 ipif_refhold_locked(ipif); 5923 mutex_exit(&ill->ill_lock); 5924 RELEASE_CONN_LOCK(q); 5925 rw_exit(&ipst->ips_ill_g_lock); 5926 return (ipif); 5927 } else if (IPIF_CAN_WAIT(ipif, q)) { 5928 ipsq = ill->ill_phyint->phyint_ipsq; 5929 mutex_enter(&ipsq->ipsq_lock); 5930 mutex_exit(&ill->ill_lock); 5931 rw_exit(&ipst->ips_ill_g_lock); 5932 ipsq_enq(ipsq, q, mp, func, NEW_OP, 5933 ill); 5934 mutex_exit(&ipsq->ipsq_lock); 5935 RELEASE_CONN_LOCK(q); 5936 *error = EINPROGRESS; 5937 return (NULL); 5938 } 5939 } 5940 } 5941 mutex_exit(&ill->ill_lock); 5942 RELEASE_CONN_LOCK(q); 5943 } 5944 rw_exit(&ipst->ips_ill_g_lock); 5945 5946 /* lookup the ipif based on interface address */ 5947 ipif = ipif_lookup_addr(if_addr, NULL, ALL_ZONES, q, mp, func, error, 5948 ipst); 5949 ASSERT(ipif == NULL || !ipif->ipif_isv6); 5950 return (ipif); 5951 } 5952 5953 /* 5954 * Look for an ipif with the specified address. For point-point links 5955 * we look for matches on either the destination address and the local 5956 * address, but we ignore the check on the local address if IPIF_UNNUMBERED 5957 * is set. 5958 * Matches on a specific ill if match_ill is set. 5959 */ 5960 ipif_t * 5961 ipif_lookup_addr(ipaddr_t addr, ill_t *match_ill, zoneid_t zoneid, queue_t *q, 5962 mblk_t *mp, ipsq_func_t func, int *error, ip_stack_t *ipst) 5963 { 5964 ipif_t *ipif; 5965 ill_t *ill; 5966 boolean_t ptp = B_FALSE; 5967 ipsq_t *ipsq; 5968 ill_walk_context_t ctx; 5969 5970 if (error != NULL) 5971 *error = 0; 5972 5973 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 5974 /* 5975 * Repeat twice, first based on local addresses and 5976 * next time for pointopoint. 5977 */ 5978 repeat: 5979 ill = ILL_START_WALK_V4(&ctx, ipst); 5980 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 5981 if (match_ill != NULL && ill != match_ill) { 5982 continue; 5983 } 5984 GRAB_CONN_LOCK(q); 5985 mutex_enter(&ill->ill_lock); 5986 for (ipif = ill->ill_ipif; ipif != NULL; 5987 ipif = ipif->ipif_next) { 5988 if (zoneid != ALL_ZONES && 5989 zoneid != ipif->ipif_zoneid && 5990 ipif->ipif_zoneid != ALL_ZONES) 5991 continue; 5992 /* Allow the ipif to be down */ 5993 if ((!ptp && (ipif->ipif_lcl_addr == addr) && 5994 ((ipif->ipif_flags & IPIF_UNNUMBERED) == 0)) || 5995 (ptp && (ipif->ipif_flags & IPIF_POINTOPOINT) && 5996 (ipif->ipif_pp_dst_addr == addr))) { 5997 /* 5998 * The block comment at the start of ipif_down 5999 * explains the use of the macros used below 6000 */ 6001 if (IPIF_CAN_LOOKUP(ipif)) { 6002 ipif_refhold_locked(ipif); 6003 mutex_exit(&ill->ill_lock); 6004 RELEASE_CONN_LOCK(q); 6005 rw_exit(&ipst->ips_ill_g_lock); 6006 return (ipif); 6007 } else if (IPIF_CAN_WAIT(ipif, q)) { 6008 ipsq = ill->ill_phyint->phyint_ipsq; 6009 mutex_enter(&ipsq->ipsq_lock); 6010 mutex_exit(&ill->ill_lock); 6011 rw_exit(&ipst->ips_ill_g_lock); 6012 ipsq_enq(ipsq, q, mp, func, NEW_OP, 6013 ill); 6014 mutex_exit(&ipsq->ipsq_lock); 6015 RELEASE_CONN_LOCK(q); 6016 *error = EINPROGRESS; 6017 return (NULL); 6018 } 6019 } 6020 } 6021 mutex_exit(&ill->ill_lock); 6022 RELEASE_CONN_LOCK(q); 6023 } 6024 6025 /* If we already did the ptp case, then we are done */ 6026 if (ptp) { 6027 rw_exit(&ipst->ips_ill_g_lock); 6028 if (error != NULL) 6029 *error = ENXIO; 6030 return (NULL); 6031 } 6032 ptp = B_TRUE; 6033 goto repeat; 6034 } 6035 6036 /* 6037 * Look for an ipif with the specified address. For point-point links 6038 * we look for matches on either the destination address and the local 6039 * address, but we ignore the check on the local address if IPIF_UNNUMBERED 6040 * is set. 6041 * Matches on a specific ill if match_ill is set. 6042 * Return the zoneid for the ipif which matches. ALL_ZONES if no match. 6043 */ 6044 zoneid_t 6045 ipif_lookup_addr_zoneid(ipaddr_t addr, ill_t *match_ill, ip_stack_t *ipst) 6046 { 6047 zoneid_t zoneid; 6048 ipif_t *ipif; 6049 ill_t *ill; 6050 boolean_t ptp = B_FALSE; 6051 ill_walk_context_t ctx; 6052 6053 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 6054 /* 6055 * Repeat twice, first based on local addresses and 6056 * next time for pointopoint. 6057 */ 6058 repeat: 6059 ill = ILL_START_WALK_V4(&ctx, ipst); 6060 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 6061 if (match_ill != NULL && ill != match_ill) { 6062 continue; 6063 } 6064 mutex_enter(&ill->ill_lock); 6065 for (ipif = ill->ill_ipif; ipif != NULL; 6066 ipif = ipif->ipif_next) { 6067 /* Allow the ipif to be down */ 6068 if ((!ptp && (ipif->ipif_lcl_addr == addr) && 6069 ((ipif->ipif_flags & IPIF_UNNUMBERED) == 0)) || 6070 (ptp && (ipif->ipif_flags & IPIF_POINTOPOINT) && 6071 (ipif->ipif_pp_dst_addr == addr)) && 6072 !(ipif->ipif_state_flags & IPIF_CONDEMNED)) { 6073 zoneid = ipif->ipif_zoneid; 6074 mutex_exit(&ill->ill_lock); 6075 rw_exit(&ipst->ips_ill_g_lock); 6076 /* 6077 * If ipif_zoneid was ALL_ZONES then we have 6078 * a trusted extensions shared IP address. 6079 * In that case GLOBAL_ZONEID works to send. 6080 */ 6081 if (zoneid == ALL_ZONES) 6082 zoneid = GLOBAL_ZONEID; 6083 return (zoneid); 6084 } 6085 } 6086 mutex_exit(&ill->ill_lock); 6087 } 6088 6089 /* If we already did the ptp case, then we are done */ 6090 if (ptp) { 6091 rw_exit(&ipst->ips_ill_g_lock); 6092 return (ALL_ZONES); 6093 } 6094 ptp = B_TRUE; 6095 goto repeat; 6096 } 6097 6098 /* 6099 * Look for an ipif that matches the specified remote address i.e. the 6100 * ipif that would receive the specified packet. 6101 * First look for directly connected interfaces and then do a recursive 6102 * IRE lookup and pick the first ipif corresponding to the source address in the 6103 * ire. 6104 * Returns: held ipif 6105 */ 6106 ipif_t * 6107 ipif_lookup_remote(ill_t *ill, ipaddr_t addr, zoneid_t zoneid) 6108 { 6109 ipif_t *ipif; 6110 ire_t *ire; 6111 ip_stack_t *ipst = ill->ill_ipst; 6112 6113 ASSERT(!ill->ill_isv6); 6114 6115 /* 6116 * Someone could be changing this ipif currently or change it 6117 * after we return this. Thus a few packets could use the old 6118 * old values. However structure updates/creates (ire, ilg, ilm etc) 6119 * will atomically be updated or cleaned up with the new value 6120 * Thus we don't need a lock to check the flags or other attrs below. 6121 */ 6122 mutex_enter(&ill->ill_lock); 6123 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 6124 if (!IPIF_CAN_LOOKUP(ipif)) 6125 continue; 6126 if (zoneid != ALL_ZONES && zoneid != ipif->ipif_zoneid && 6127 ipif->ipif_zoneid != ALL_ZONES) 6128 continue; 6129 /* Allow the ipif to be down */ 6130 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 6131 if ((ipif->ipif_pp_dst_addr == addr) || 6132 (!(ipif->ipif_flags & IPIF_UNNUMBERED) && 6133 ipif->ipif_lcl_addr == addr)) { 6134 ipif_refhold_locked(ipif); 6135 mutex_exit(&ill->ill_lock); 6136 return (ipif); 6137 } 6138 } else if (ipif->ipif_subnet == (addr & ipif->ipif_net_mask)) { 6139 ipif_refhold_locked(ipif); 6140 mutex_exit(&ill->ill_lock); 6141 return (ipif); 6142 } 6143 } 6144 mutex_exit(&ill->ill_lock); 6145 ire = ire_route_lookup(addr, 0, 0, 0, NULL, NULL, zoneid, 6146 NULL, MATCH_IRE_RECURSIVE, ipst); 6147 if (ire != NULL) { 6148 /* 6149 * The callers of this function wants to know the 6150 * interface on which they have to send the replies 6151 * back. For IRE_CACHES that have ire_stq and ire_ipif 6152 * derived from different ills, we really don't care 6153 * what we return here. 6154 */ 6155 ipif = ire->ire_ipif; 6156 if (ipif != NULL) { 6157 ipif_refhold(ipif); 6158 ire_refrele(ire); 6159 return (ipif); 6160 } 6161 ire_refrele(ire); 6162 } 6163 /* Pick the first interface */ 6164 ipif = ipif_get_next_ipif(NULL, ill); 6165 return (ipif); 6166 } 6167 6168 /* 6169 * This func does not prevent refcnt from increasing. But if 6170 * the caller has taken steps to that effect, then this func 6171 * can be used to determine whether the ill has become quiescent 6172 */ 6173 boolean_t 6174 ill_is_quiescent(ill_t *ill) 6175 { 6176 ipif_t *ipif; 6177 6178 ASSERT(MUTEX_HELD(&ill->ill_lock)); 6179 6180 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 6181 if (ipif->ipif_refcnt != 0 || ipif->ipif_ire_cnt != 0) { 6182 return (B_FALSE); 6183 } 6184 } 6185 if (ill->ill_ire_cnt != 0 || ill->ill_refcnt != 0 || 6186 ill->ill_nce_cnt != 0 || ill->ill_srcif_refcnt != 0 || 6187 ill->ill_mrtun_refcnt != 0) { 6188 return (B_FALSE); 6189 } 6190 return (B_TRUE); 6191 } 6192 6193 /* 6194 * This func does not prevent refcnt from increasing. But if 6195 * the caller has taken steps to that effect, then this func 6196 * can be used to determine whether the ipif has become quiescent 6197 */ 6198 static boolean_t 6199 ipif_is_quiescent(ipif_t *ipif) 6200 { 6201 ill_t *ill; 6202 6203 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 6204 6205 if (ipif->ipif_refcnt != 0 || ipif->ipif_ire_cnt != 0) { 6206 return (B_FALSE); 6207 } 6208 6209 ill = ipif->ipif_ill; 6210 if (ill->ill_ipif_up_count != 0 || ill->ill_ipif_dup_count != 0 || 6211 ill->ill_logical_down) { 6212 return (B_TRUE); 6213 } 6214 6215 /* This is the last ipif going down or being deleted on this ill */ 6216 if (ill->ill_ire_cnt != 0 || ill->ill_refcnt != 0) { 6217 return (B_FALSE); 6218 } 6219 6220 return (B_TRUE); 6221 } 6222 6223 /* 6224 * This func does not prevent refcnt from increasing. But if 6225 * the caller has taken steps to that effect, then this func 6226 * can be used to determine whether the ipifs marked with IPIF_MOVING 6227 * have become quiescent and can be moved in a failover/failback. 6228 */ 6229 static ipif_t * 6230 ill_quiescent_to_move(ill_t *ill) 6231 { 6232 ipif_t *ipif; 6233 6234 ASSERT(MUTEX_HELD(&ill->ill_lock)); 6235 6236 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 6237 if (ipif->ipif_state_flags & IPIF_MOVING) { 6238 if (ipif->ipif_refcnt != 0 || ipif->ipif_ire_cnt != 0) { 6239 return (ipif); 6240 } 6241 } 6242 } 6243 return (NULL); 6244 } 6245 6246 /* 6247 * The ipif/ill/ire has been refreled. Do the tail processing. 6248 * Determine if the ipif or ill in question has become quiescent and if so 6249 * wakeup close and/or restart any queued pending ioctl that is waiting 6250 * for the ipif_down (or ill_down) 6251 */ 6252 void 6253 ipif_ill_refrele_tail(ill_t *ill) 6254 { 6255 mblk_t *mp; 6256 conn_t *connp; 6257 ipsq_t *ipsq; 6258 ipif_t *ipif; 6259 dl_notify_ind_t *dlindp; 6260 6261 ASSERT(MUTEX_HELD(&ill->ill_lock)); 6262 6263 if ((ill->ill_state_flags & ILL_CONDEMNED) && 6264 ill_is_quiescent(ill)) { 6265 /* ill_close may be waiting */ 6266 cv_broadcast(&ill->ill_cv); 6267 } 6268 6269 /* ipsq can't change because ill_lock is held */ 6270 ipsq = ill->ill_phyint->phyint_ipsq; 6271 if (ipsq->ipsq_waitfor == 0) { 6272 /* Not waiting for anything, just return. */ 6273 mutex_exit(&ill->ill_lock); 6274 return; 6275 } 6276 ASSERT(ipsq->ipsq_pending_mp != NULL && 6277 ipsq->ipsq_pending_ipif != NULL); 6278 /* 6279 * ipif->ipif_refcnt must go down to zero for restarting REMOVEIF. 6280 * Last ipif going down needs to down the ill, so ill_ire_cnt must 6281 * be zero for restarting an ioctl that ends up downing the ill. 6282 */ 6283 ipif = ipsq->ipsq_pending_ipif; 6284 if (ipif->ipif_ill != ill) { 6285 /* The ioctl is pending on some other ill. */ 6286 mutex_exit(&ill->ill_lock); 6287 return; 6288 } 6289 6290 switch (ipsq->ipsq_waitfor) { 6291 case IPIF_DOWN: 6292 case IPIF_FREE: 6293 if (!ipif_is_quiescent(ipif)) { 6294 mutex_exit(&ill->ill_lock); 6295 return; 6296 } 6297 break; 6298 6299 case ILL_DOWN: 6300 case ILL_FREE: 6301 /* 6302 * case ILL_FREE arises only for loopback. otherwise ill_delete 6303 * waits synchronously in ip_close, and no message is queued in 6304 * ipsq_pending_mp at all in this case 6305 */ 6306 if (!ill_is_quiescent(ill)) { 6307 mutex_exit(&ill->ill_lock); 6308 return; 6309 } 6310 6311 break; 6312 6313 case ILL_MOVE_OK: 6314 if (ill_quiescent_to_move(ill) != NULL) { 6315 mutex_exit(&ill->ill_lock); 6316 return; 6317 } 6318 6319 break; 6320 default: 6321 cmn_err(CE_PANIC, "ipsq: %p unknown ipsq_waitfor %d\n", 6322 (void *)ipsq, ipsq->ipsq_waitfor); 6323 } 6324 6325 /* 6326 * Incr refcnt for the qwriter_ip call below which 6327 * does a refrele 6328 */ 6329 ill_refhold_locked(ill); 6330 mutex_exit(&ill->ill_lock); 6331 6332 mp = ipsq_pending_mp_get(ipsq, &connp); 6333 ASSERT(mp != NULL); 6334 6335 switch (mp->b_datap->db_type) { 6336 case M_PCPROTO: 6337 case M_PROTO: 6338 /* 6339 * For now, only DL_NOTIFY_IND messages can use this facility. 6340 */ 6341 dlindp = (dl_notify_ind_t *)mp->b_rptr; 6342 ASSERT(dlindp->dl_primitive == DL_NOTIFY_IND); 6343 6344 switch (dlindp->dl_notification) { 6345 case DL_NOTE_PHYS_ADDR: 6346 qwriter_ip(NULL, ill, ill->ill_rq, mp, 6347 ill_set_phys_addr_tail, CUR_OP, B_TRUE); 6348 return; 6349 default: 6350 ASSERT(0); 6351 } 6352 break; 6353 6354 case M_ERROR: 6355 case M_HANGUP: 6356 qwriter_ip(NULL, ill, ill->ill_rq, mp, ipif_all_down_tail, 6357 CUR_OP, B_TRUE); 6358 return; 6359 6360 case M_IOCTL: 6361 case M_IOCDATA: 6362 qwriter_ip(NULL, ill, (connp != NULL ? CONNP_TO_WQ(connp) : 6363 ill->ill_wq), mp, ip_reprocess_ioctl, CUR_OP, B_TRUE); 6364 return; 6365 6366 default: 6367 cmn_err(CE_PANIC, "ipif_ill_refrele_tail mp %p " 6368 "db_type %d\n", (void *)mp, mp->b_datap->db_type); 6369 } 6370 } 6371 6372 #ifdef ILL_DEBUG 6373 /* Reuse trace buffer from beginning (if reached the end) and record trace */ 6374 void 6375 th_trace_rrecord(th_trace_t *th_trace) 6376 { 6377 tr_buf_t *tr_buf; 6378 uint_t lastref; 6379 6380 lastref = th_trace->th_trace_lastref; 6381 lastref++; 6382 if (lastref == TR_BUF_MAX) 6383 lastref = 0; 6384 th_trace->th_trace_lastref = lastref; 6385 tr_buf = &th_trace->th_trbuf[lastref]; 6386 tr_buf->tr_depth = getpcstack(tr_buf->tr_stack, IP_STACK_DEPTH); 6387 } 6388 6389 th_trace_t * 6390 th_trace_ipif_lookup(ipif_t *ipif) 6391 { 6392 int bucket_id; 6393 th_trace_t *th_trace; 6394 6395 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 6396 6397 bucket_id = IP_TR_HASH(curthread); 6398 ASSERT(bucket_id < IP_TR_HASH_MAX); 6399 6400 for (th_trace = ipif->ipif_trace[bucket_id]; th_trace != NULL; 6401 th_trace = th_trace->th_next) { 6402 if (th_trace->th_id == curthread) 6403 return (th_trace); 6404 } 6405 return (NULL); 6406 } 6407 6408 void 6409 ipif_trace_ref(ipif_t *ipif) 6410 { 6411 int bucket_id; 6412 th_trace_t *th_trace; 6413 6414 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 6415 6416 if (ipif->ipif_trace_disable) 6417 return; 6418 6419 /* 6420 * Attempt to locate the trace buffer for the curthread. 6421 * If it does not exist, then allocate a new trace buffer 6422 * and link it in list of trace bufs for this ipif, at the head 6423 */ 6424 th_trace = th_trace_ipif_lookup(ipif); 6425 if (th_trace == NULL) { 6426 bucket_id = IP_TR_HASH(curthread); 6427 th_trace = (th_trace_t *)kmem_zalloc(sizeof (th_trace_t), 6428 KM_NOSLEEP); 6429 if (th_trace == NULL) { 6430 ipif->ipif_trace_disable = B_TRUE; 6431 ipif_trace_cleanup(ipif); 6432 return; 6433 } 6434 th_trace->th_id = curthread; 6435 th_trace->th_next = ipif->ipif_trace[bucket_id]; 6436 th_trace->th_prev = &ipif->ipif_trace[bucket_id]; 6437 if (th_trace->th_next != NULL) 6438 th_trace->th_next->th_prev = &th_trace->th_next; 6439 ipif->ipif_trace[bucket_id] = th_trace; 6440 } 6441 ASSERT(th_trace->th_refcnt >= 0 && 6442 th_trace->th_refcnt < TR_BUF_MAX -1); 6443 th_trace->th_refcnt++; 6444 th_trace_rrecord(th_trace); 6445 } 6446 6447 void 6448 ipif_untrace_ref(ipif_t *ipif) 6449 { 6450 th_trace_t *th_trace; 6451 6452 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 6453 6454 if (ipif->ipif_trace_disable) 6455 return; 6456 th_trace = th_trace_ipif_lookup(ipif); 6457 ASSERT(th_trace != NULL); 6458 ASSERT(th_trace->th_refcnt > 0); 6459 6460 th_trace->th_refcnt--; 6461 th_trace_rrecord(th_trace); 6462 } 6463 6464 th_trace_t * 6465 th_trace_ill_lookup(ill_t *ill) 6466 { 6467 th_trace_t *th_trace; 6468 int bucket_id; 6469 6470 ASSERT(MUTEX_HELD(&ill->ill_lock)); 6471 6472 bucket_id = IP_TR_HASH(curthread); 6473 ASSERT(bucket_id < IP_TR_HASH_MAX); 6474 6475 for (th_trace = ill->ill_trace[bucket_id]; th_trace != NULL; 6476 th_trace = th_trace->th_next) { 6477 if (th_trace->th_id == curthread) 6478 return (th_trace); 6479 } 6480 return (NULL); 6481 } 6482 6483 void 6484 ill_trace_ref(ill_t *ill) 6485 { 6486 int bucket_id; 6487 th_trace_t *th_trace; 6488 6489 ASSERT(MUTEX_HELD(&ill->ill_lock)); 6490 if (ill->ill_trace_disable) 6491 return; 6492 /* 6493 * Attempt to locate the trace buffer for the curthread. 6494 * If it does not exist, then allocate a new trace buffer 6495 * and link it in list of trace bufs for this ill, at the head 6496 */ 6497 th_trace = th_trace_ill_lookup(ill); 6498 if (th_trace == NULL) { 6499 bucket_id = IP_TR_HASH(curthread); 6500 th_trace = (th_trace_t *)kmem_zalloc(sizeof (th_trace_t), 6501 KM_NOSLEEP); 6502 if (th_trace == NULL) { 6503 ill->ill_trace_disable = B_TRUE; 6504 ill_trace_cleanup(ill); 6505 return; 6506 } 6507 th_trace->th_id = curthread; 6508 th_trace->th_next = ill->ill_trace[bucket_id]; 6509 th_trace->th_prev = &ill->ill_trace[bucket_id]; 6510 if (th_trace->th_next != NULL) 6511 th_trace->th_next->th_prev = &th_trace->th_next; 6512 ill->ill_trace[bucket_id] = th_trace; 6513 } 6514 ASSERT(th_trace->th_refcnt >= 0 && 6515 th_trace->th_refcnt < TR_BUF_MAX - 1); 6516 6517 th_trace->th_refcnt++; 6518 th_trace_rrecord(th_trace); 6519 } 6520 6521 void 6522 ill_untrace_ref(ill_t *ill) 6523 { 6524 th_trace_t *th_trace; 6525 6526 ASSERT(MUTEX_HELD(&ill->ill_lock)); 6527 6528 if (ill->ill_trace_disable) 6529 return; 6530 th_trace = th_trace_ill_lookup(ill); 6531 ASSERT(th_trace != NULL); 6532 ASSERT(th_trace->th_refcnt > 0); 6533 6534 th_trace->th_refcnt--; 6535 th_trace_rrecord(th_trace); 6536 } 6537 6538 /* 6539 * Verify that this thread has no refs to the ipif and free 6540 * the trace buffers 6541 */ 6542 /* ARGSUSED */ 6543 void 6544 ipif_thread_exit(ipif_t *ipif, void *dummy) 6545 { 6546 th_trace_t *th_trace; 6547 6548 mutex_enter(&ipif->ipif_ill->ill_lock); 6549 6550 th_trace = th_trace_ipif_lookup(ipif); 6551 if (th_trace == NULL) { 6552 mutex_exit(&ipif->ipif_ill->ill_lock); 6553 return; 6554 } 6555 ASSERT(th_trace->th_refcnt == 0); 6556 /* unlink th_trace and free it */ 6557 *th_trace->th_prev = th_trace->th_next; 6558 if (th_trace->th_next != NULL) 6559 th_trace->th_next->th_prev = th_trace->th_prev; 6560 th_trace->th_next = NULL; 6561 th_trace->th_prev = NULL; 6562 kmem_free(th_trace, sizeof (th_trace_t)); 6563 6564 mutex_exit(&ipif->ipif_ill->ill_lock); 6565 } 6566 6567 /* 6568 * Verify that this thread has no refs to the ill and free 6569 * the trace buffers 6570 */ 6571 /* ARGSUSED */ 6572 void 6573 ill_thread_exit(ill_t *ill, void *dummy) 6574 { 6575 th_trace_t *th_trace; 6576 6577 mutex_enter(&ill->ill_lock); 6578 6579 th_trace = th_trace_ill_lookup(ill); 6580 if (th_trace == NULL) { 6581 mutex_exit(&ill->ill_lock); 6582 return; 6583 } 6584 ASSERT(th_trace->th_refcnt == 0); 6585 /* unlink th_trace and free it */ 6586 *th_trace->th_prev = th_trace->th_next; 6587 if (th_trace->th_next != NULL) 6588 th_trace->th_next->th_prev = th_trace->th_prev; 6589 th_trace->th_next = NULL; 6590 th_trace->th_prev = NULL; 6591 kmem_free(th_trace, sizeof (th_trace_t)); 6592 6593 mutex_exit(&ill->ill_lock); 6594 } 6595 #endif 6596 6597 #ifdef ILL_DEBUG 6598 void 6599 ip_thread_exit(ip_stack_t *ipst) 6600 { 6601 ill_t *ill; 6602 ipif_t *ipif; 6603 ill_walk_context_t ctx; 6604 6605 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 6606 ill = ILL_START_WALK_ALL(&ctx, ipst); 6607 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 6608 for (ipif = ill->ill_ipif; ipif != NULL; 6609 ipif = ipif->ipif_next) { 6610 ipif_thread_exit(ipif, NULL); 6611 } 6612 ill_thread_exit(ill, NULL); 6613 } 6614 rw_exit(&ipst->ips_ill_g_lock); 6615 6616 ire_walk(ire_thread_exit, NULL, ipst); 6617 ndp_walk_common(ipst->ips_ndp4, NULL, nce_thread_exit, NULL, B_FALSE); 6618 ndp_walk_common(ipst->ips_ndp6, NULL, nce_thread_exit, NULL, B_FALSE); 6619 } 6620 6621 /* 6622 * Called when ipif is unplumbed or when memory alloc fails 6623 */ 6624 void 6625 ipif_trace_cleanup(ipif_t *ipif) 6626 { 6627 int i; 6628 th_trace_t *th_trace; 6629 th_trace_t *th_trace_next; 6630 6631 for (i = 0; i < IP_TR_HASH_MAX; i++) { 6632 for (th_trace = ipif->ipif_trace[i]; th_trace != NULL; 6633 th_trace = th_trace_next) { 6634 th_trace_next = th_trace->th_next; 6635 kmem_free(th_trace, sizeof (th_trace_t)); 6636 } 6637 ipif->ipif_trace[i] = NULL; 6638 } 6639 } 6640 6641 /* 6642 * Called when ill is unplumbed or when memory alloc fails 6643 */ 6644 void 6645 ill_trace_cleanup(ill_t *ill) 6646 { 6647 int i; 6648 th_trace_t *th_trace; 6649 th_trace_t *th_trace_next; 6650 6651 for (i = 0; i < IP_TR_HASH_MAX; i++) { 6652 for (th_trace = ill->ill_trace[i]; th_trace != NULL; 6653 th_trace = th_trace_next) { 6654 th_trace_next = th_trace->th_next; 6655 kmem_free(th_trace, sizeof (th_trace_t)); 6656 } 6657 ill->ill_trace[i] = NULL; 6658 } 6659 } 6660 6661 #else 6662 void ip_thread_exit(void) {} 6663 #endif 6664 6665 void 6666 ipif_refhold_locked(ipif_t *ipif) 6667 { 6668 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 6669 ipif->ipif_refcnt++; 6670 IPIF_TRACE_REF(ipif); 6671 } 6672 6673 void 6674 ipif_refhold(ipif_t *ipif) 6675 { 6676 ill_t *ill; 6677 6678 ill = ipif->ipif_ill; 6679 mutex_enter(&ill->ill_lock); 6680 ipif->ipif_refcnt++; 6681 IPIF_TRACE_REF(ipif); 6682 mutex_exit(&ill->ill_lock); 6683 } 6684 6685 /* 6686 * Must not be called while holding any locks. Otherwise if this is 6687 * the last reference to be released there is a chance of recursive mutex 6688 * panic due to ipif_refrele -> ipif_ill_refrele_tail -> qwriter_ip trying 6689 * to restart an ioctl. 6690 */ 6691 void 6692 ipif_refrele(ipif_t *ipif) 6693 { 6694 ill_t *ill; 6695 6696 ill = ipif->ipif_ill; 6697 6698 mutex_enter(&ill->ill_lock); 6699 ASSERT(ipif->ipif_refcnt != 0); 6700 ipif->ipif_refcnt--; 6701 IPIF_UNTRACE_REF(ipif); 6702 if (ipif->ipif_refcnt != 0) { 6703 mutex_exit(&ill->ill_lock); 6704 return; 6705 } 6706 6707 /* Drops the ill_lock */ 6708 ipif_ill_refrele_tail(ill); 6709 } 6710 6711 ipif_t * 6712 ipif_get_next_ipif(ipif_t *curr, ill_t *ill) 6713 { 6714 ipif_t *ipif; 6715 6716 mutex_enter(&ill->ill_lock); 6717 for (ipif = (curr == NULL ? ill->ill_ipif : curr->ipif_next); 6718 ipif != NULL; ipif = ipif->ipif_next) { 6719 if (!IPIF_CAN_LOOKUP(ipif)) 6720 continue; 6721 ipif_refhold_locked(ipif); 6722 mutex_exit(&ill->ill_lock); 6723 return (ipif); 6724 } 6725 mutex_exit(&ill->ill_lock); 6726 return (NULL); 6727 } 6728 6729 /* 6730 * TODO: make this table extendible at run time 6731 * Return a pointer to the mac type info for 'mac_type' 6732 */ 6733 static ip_m_t * 6734 ip_m_lookup(t_uscalar_t mac_type) 6735 { 6736 ip_m_t *ipm; 6737 6738 for (ipm = ip_m_tbl; ipm < A_END(ip_m_tbl); ipm++) 6739 if (ipm->ip_m_mac_type == mac_type) 6740 return (ipm); 6741 return (NULL); 6742 } 6743 6744 /* 6745 * ip_rt_add is called to add an IPv4 route to the forwarding table. 6746 * ipif_arg is passed in to associate it with the correct interface. 6747 * We may need to restart this operation if the ipif cannot be looked up 6748 * due to an exclusive operation that is currently in progress. The restart 6749 * entry point is specified by 'func' 6750 */ 6751 int 6752 ip_rt_add(ipaddr_t dst_addr, ipaddr_t mask, ipaddr_t gw_addr, 6753 ipaddr_t src_addr, int flags, ipif_t *ipif_arg, ipif_t *src_ipif, 6754 ire_t **ire_arg, boolean_t ioctl_msg, queue_t *q, mblk_t *mp, 6755 ipsq_func_t func, struct rtsa_s *sp, ip_stack_t *ipst) 6756 { 6757 ire_t *ire; 6758 ire_t *gw_ire = NULL; 6759 ipif_t *ipif = NULL; 6760 boolean_t ipif_refheld = B_FALSE; 6761 uint_t type; 6762 int match_flags = MATCH_IRE_TYPE; 6763 int error; 6764 tsol_gc_t *gc = NULL; 6765 tsol_gcgrp_t *gcgrp = NULL; 6766 boolean_t gcgrp_xtraref = B_FALSE; 6767 6768 ip1dbg(("ip_rt_add:")); 6769 6770 if (ire_arg != NULL) 6771 *ire_arg = NULL; 6772 6773 /* 6774 * If this is the case of RTF_HOST being set, then we set the netmask 6775 * to all ones (regardless if one was supplied). 6776 */ 6777 if (flags & RTF_HOST) 6778 mask = IP_HOST_MASK; 6779 6780 /* 6781 * Prevent routes with a zero gateway from being created (since 6782 * interfaces can currently be plumbed and brought up no assigned 6783 * address). 6784 * For routes with RTA_SRCIFP, the gateway address can be 0.0.0.0. 6785 */ 6786 if (gw_addr == 0 && src_ipif == NULL) 6787 return (ENETUNREACH); 6788 /* 6789 * Get the ipif, if any, corresponding to the gw_addr 6790 */ 6791 if (gw_addr != 0) { 6792 ipif = ipif_lookup_interface(gw_addr, dst_addr, q, mp, func, 6793 &error, ipst); 6794 if (ipif != NULL) { 6795 if (IS_VNI(ipif->ipif_ill)) { 6796 ipif_refrele(ipif); 6797 return (EINVAL); 6798 } 6799 ipif_refheld = B_TRUE; 6800 } else if (error == EINPROGRESS) { 6801 ip1dbg(("ip_rt_add: null and EINPROGRESS")); 6802 return (EINPROGRESS); 6803 } else { 6804 error = 0; 6805 } 6806 } 6807 6808 if (ipif != NULL) { 6809 ip1dbg(("ip_rt_add: ipif_lookup_interface done ipif nonnull")); 6810 ASSERT(!MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 6811 } else { 6812 ip1dbg(("ip_rt_add: ipif_lookup_interface done ipif is null")); 6813 } 6814 6815 /* 6816 * GateD will attempt to create routes with a loopback interface 6817 * address as the gateway and with RTF_GATEWAY set. We allow 6818 * these routes to be added, but create them as interface routes 6819 * since the gateway is an interface address. 6820 */ 6821 if ((ipif != NULL) && (ipif->ipif_ire_type == IRE_LOOPBACK)) { 6822 flags &= ~RTF_GATEWAY; 6823 if (gw_addr == INADDR_LOOPBACK && dst_addr == INADDR_LOOPBACK && 6824 mask == IP_HOST_MASK) { 6825 ire = ire_ctable_lookup(dst_addr, 0, IRE_LOOPBACK, ipif, 6826 ALL_ZONES, NULL, match_flags, ipst); 6827 if (ire != NULL) { 6828 ire_refrele(ire); 6829 if (ipif_refheld) 6830 ipif_refrele(ipif); 6831 return (EEXIST); 6832 } 6833 ip1dbg(("ipif_up_done: 0x%p creating IRE 0x%x" 6834 "for 0x%x\n", (void *)ipif, 6835 ipif->ipif_ire_type, 6836 ntohl(ipif->ipif_lcl_addr))); 6837 ire = ire_create( 6838 (uchar_t *)&dst_addr, /* dest address */ 6839 (uchar_t *)&mask, /* mask */ 6840 (uchar_t *)&ipif->ipif_src_addr, 6841 NULL, /* no gateway */ 6842 NULL, 6843 &ipif->ipif_mtu, 6844 NULL, 6845 ipif->ipif_rq, /* recv-from queue */ 6846 NULL, /* no send-to queue */ 6847 ipif->ipif_ire_type, /* LOOPBACK */ 6848 NULL, 6849 ipif, 6850 NULL, 6851 0, 6852 0, 6853 0, 6854 (ipif->ipif_flags & IPIF_PRIVATE) ? 6855 RTF_PRIVATE : 0, 6856 &ire_uinfo_null, 6857 NULL, 6858 NULL, 6859 ipst); 6860 6861 if (ire == NULL) { 6862 if (ipif_refheld) 6863 ipif_refrele(ipif); 6864 return (ENOMEM); 6865 } 6866 error = ire_add(&ire, q, mp, func, B_FALSE); 6867 if (error == 0) 6868 goto save_ire; 6869 if (ipif_refheld) 6870 ipif_refrele(ipif); 6871 return (error); 6872 6873 } 6874 } 6875 6876 /* 6877 * Traditionally, interface routes are ones where RTF_GATEWAY isn't set 6878 * and the gateway address provided is one of the system's interface 6879 * addresses. By using the routing socket interface and supplying an 6880 * RTA_IFP sockaddr with an interface index, an alternate method of 6881 * specifying an interface route to be created is available which uses 6882 * the interface index that specifies the outgoing interface rather than 6883 * the address of an outgoing interface (which may not be able to 6884 * uniquely identify an interface). When coupled with the RTF_GATEWAY 6885 * flag, routes can be specified which not only specify the next-hop to 6886 * be used when routing to a certain prefix, but also which outgoing 6887 * interface should be used. 6888 * 6889 * Previously, interfaces would have unique addresses assigned to them 6890 * and so the address assigned to a particular interface could be used 6891 * to identify a particular interface. One exception to this was the 6892 * case of an unnumbered interface (where IPIF_UNNUMBERED was set). 6893 * 6894 * With the advent of IPv6 and its link-local addresses, this 6895 * restriction was relaxed and interfaces could share addresses between 6896 * themselves. In fact, typically all of the link-local interfaces on 6897 * an IPv6 node or router will have the same link-local address. In 6898 * order to differentiate between these interfaces, the use of an 6899 * interface index is necessary and this index can be carried inside a 6900 * RTA_IFP sockaddr (which is actually a sockaddr_dl). One restriction 6901 * of using the interface index, however, is that all of the ipif's that 6902 * are part of an ill have the same index and so the RTA_IFP sockaddr 6903 * cannot be used to differentiate between ipif's (or logical 6904 * interfaces) that belong to the same ill (physical interface). 6905 * 6906 * For example, in the following case involving IPv4 interfaces and 6907 * logical interfaces 6908 * 6909 * 192.0.2.32 255.255.255.224 192.0.2.33 U if0 6910 * 192.0.2.32 255.255.255.224 192.0.2.34 U if0:1 6911 * 192.0.2.32 255.255.255.224 192.0.2.35 U if0:2 6912 * 6913 * the ipif's corresponding to each of these interface routes can be 6914 * uniquely identified by the "gateway" (actually interface address). 6915 * 6916 * In this case involving multiple IPv6 default routes to a particular 6917 * link-local gateway, the use of RTA_IFP is necessary to specify which 6918 * default route is of interest: 6919 * 6920 * default fe80::123:4567:89ab:cdef U if0 6921 * default fe80::123:4567:89ab:cdef U if1 6922 */ 6923 6924 /* RTF_GATEWAY not set */ 6925 if (!(flags & RTF_GATEWAY)) { 6926 queue_t *stq; 6927 queue_t *rfq = NULL; 6928 ill_t *in_ill = NULL; 6929 6930 if (sp != NULL) { 6931 ip2dbg(("ip_rt_add: gateway security attributes " 6932 "cannot be set with interface route\n")); 6933 if (ipif_refheld) 6934 ipif_refrele(ipif); 6935 return (EINVAL); 6936 } 6937 6938 /* 6939 * As the interface index specified with the RTA_IFP sockaddr is 6940 * the same for all ipif's off of an ill, the matching logic 6941 * below uses MATCH_IRE_ILL if such an index was specified. 6942 * This means that routes sharing the same prefix when added 6943 * using a RTA_IFP sockaddr must have distinct interface 6944 * indices (namely, they must be on distinct ill's). 6945 * 6946 * On the other hand, since the gateway address will usually be 6947 * different for each ipif on the system, the matching logic 6948 * uses MATCH_IRE_IPIF in the case of a traditional interface 6949 * route. This means that interface routes for the same prefix 6950 * can be created if they belong to distinct ipif's and if a 6951 * RTA_IFP sockaddr is not present. 6952 */ 6953 if (ipif_arg != NULL) { 6954 if (ipif_refheld) { 6955 ipif_refrele(ipif); 6956 ipif_refheld = B_FALSE; 6957 } 6958 ipif = ipif_arg; 6959 match_flags |= MATCH_IRE_ILL; 6960 } else { 6961 /* 6962 * Check the ipif corresponding to the gw_addr 6963 */ 6964 if (ipif == NULL) 6965 return (ENETUNREACH); 6966 match_flags |= MATCH_IRE_IPIF; 6967 } 6968 ASSERT(ipif != NULL); 6969 /* 6970 * If src_ipif is not NULL, we have to create 6971 * an ire with non-null ire_in_ill value 6972 */ 6973 if (src_ipif != NULL) { 6974 in_ill = src_ipif->ipif_ill; 6975 } 6976 6977 /* 6978 * We check for an existing entry at this point. 6979 * 6980 * Since a netmask isn't passed in via the ioctl interface 6981 * (SIOCADDRT), we don't check for a matching netmask in that 6982 * case. 6983 */ 6984 if (!ioctl_msg) 6985 match_flags |= MATCH_IRE_MASK; 6986 if (src_ipif != NULL) { 6987 /* Look up in the special table */ 6988 ire = ire_srcif_table_lookup(dst_addr, IRE_INTERFACE, 6989 ipif, src_ipif->ipif_ill, match_flags); 6990 } else { 6991 ire = ire_ftable_lookup(dst_addr, mask, 0, 6992 IRE_INTERFACE, ipif, NULL, ALL_ZONES, 0, 6993 NULL, match_flags, ipst); 6994 } 6995 if (ire != NULL) { 6996 ire_refrele(ire); 6997 if (ipif_refheld) 6998 ipif_refrele(ipif); 6999 return (EEXIST); 7000 } 7001 7002 if (src_ipif != NULL) { 7003 /* 7004 * Create the special ire for the IRE table 7005 * which hangs out of ire_in_ill. This ire 7006 * is in-between IRE_CACHE and IRE_INTERFACE. 7007 * Thus rfq is non-NULL. 7008 */ 7009 rfq = ipif->ipif_rq; 7010 } 7011 /* Create the usual interface ires */ 7012 7013 stq = (ipif->ipif_net_type == IRE_IF_RESOLVER) 7014 ? ipif->ipif_rq : ipif->ipif_wq; 7015 7016 /* 7017 * Create a copy of the IRE_LOOPBACK, 7018 * IRE_IF_NORESOLVER or IRE_IF_RESOLVER with 7019 * the modified address and netmask. 7020 */ 7021 ire = ire_create( 7022 (uchar_t *)&dst_addr, 7023 (uint8_t *)&mask, 7024 (uint8_t *)&ipif->ipif_src_addr, 7025 NULL, 7026 NULL, 7027 &ipif->ipif_mtu, 7028 NULL, 7029 rfq, 7030 stq, 7031 ipif->ipif_net_type, 7032 ipif->ipif_resolver_mp, 7033 ipif, 7034 in_ill, 7035 0, 7036 0, 7037 0, 7038 flags, 7039 &ire_uinfo_null, 7040 NULL, 7041 NULL, 7042 ipst); 7043 if (ire == NULL) { 7044 if (ipif_refheld) 7045 ipif_refrele(ipif); 7046 return (ENOMEM); 7047 } 7048 7049 /* 7050 * Some software (for example, GateD and Sun Cluster) attempts 7051 * to create (what amount to) IRE_PREFIX routes with the 7052 * loopback address as the gateway. This is primarily done to 7053 * set up prefixes with the RTF_REJECT flag set (for example, 7054 * when generating aggregate routes.) 7055 * 7056 * If the IRE type (as defined by ipif->ipif_net_type) is 7057 * IRE_LOOPBACK, then we map the request into a 7058 * IRE_IF_NORESOLVER. 7059 * 7060 * Needless to say, the real IRE_LOOPBACK is NOT created by this 7061 * routine, but rather using ire_create() directly. 7062 * 7063 */ 7064 if (ipif->ipif_net_type == IRE_LOOPBACK) 7065 ire->ire_type = IRE_IF_NORESOLVER; 7066 7067 error = ire_add(&ire, q, mp, func, B_FALSE); 7068 if (error == 0) 7069 goto save_ire; 7070 7071 /* 7072 * In the result of failure, ire_add() will have already 7073 * deleted the ire in question, so there is no need to 7074 * do that here. 7075 */ 7076 if (ipif_refheld) 7077 ipif_refrele(ipif); 7078 return (error); 7079 } 7080 if (ipif_refheld) { 7081 ipif_refrele(ipif); 7082 ipif_refheld = B_FALSE; 7083 } 7084 7085 if (src_ipif != NULL) { 7086 /* RTA_SRCIFP is not supported on RTF_GATEWAY */ 7087 ip2dbg(("ip_rt_add: SRCIF cannot be set with gateway route\n")); 7088 return (EINVAL); 7089 } 7090 /* 7091 * Get an interface IRE for the specified gateway. 7092 * If we don't have an IRE_IF_NORESOLVER or IRE_IF_RESOLVER for the 7093 * gateway, it is currently unreachable and we fail the request 7094 * accordingly. 7095 */ 7096 ipif = ipif_arg; 7097 if (ipif_arg != NULL) 7098 match_flags |= MATCH_IRE_ILL; 7099 gw_ire = ire_ftable_lookup(gw_addr, 0, 0, IRE_INTERFACE, ipif_arg, NULL, 7100 ALL_ZONES, 0, NULL, match_flags, ipst); 7101 if (gw_ire == NULL) 7102 return (ENETUNREACH); 7103 7104 /* 7105 * We create one of three types of IREs as a result of this request 7106 * based on the netmask. A netmask of all ones (which is automatically 7107 * assumed when RTF_HOST is set) results in an IRE_HOST being created. 7108 * An all zeroes netmask implies a default route so an IRE_DEFAULT is 7109 * created. Otherwise, an IRE_PREFIX route is created for the 7110 * destination prefix. 7111 */ 7112 if (mask == IP_HOST_MASK) 7113 type = IRE_HOST; 7114 else if (mask == 0) 7115 type = IRE_DEFAULT; 7116 else 7117 type = IRE_PREFIX; 7118 7119 /* check for a duplicate entry */ 7120 ire = ire_ftable_lookup(dst_addr, mask, gw_addr, type, ipif_arg, 7121 NULL, ALL_ZONES, 0, NULL, 7122 match_flags | MATCH_IRE_MASK | MATCH_IRE_GW, ipst); 7123 if (ire != NULL) { 7124 ire_refrele(gw_ire); 7125 ire_refrele(ire); 7126 return (EEXIST); 7127 } 7128 7129 /* Security attribute exists */ 7130 if (sp != NULL) { 7131 tsol_gcgrp_addr_t ga; 7132 7133 /* find or create the gateway credentials group */ 7134 ga.ga_af = AF_INET; 7135 IN6_IPADDR_TO_V4MAPPED(gw_addr, &ga.ga_addr); 7136 7137 /* we hold reference to it upon success */ 7138 gcgrp = gcgrp_lookup(&ga, B_TRUE); 7139 if (gcgrp == NULL) { 7140 ire_refrele(gw_ire); 7141 return (ENOMEM); 7142 } 7143 7144 /* 7145 * Create and add the security attribute to the group; a 7146 * reference to the group is made upon allocating a new 7147 * entry successfully. If it finds an already-existing 7148 * entry for the security attribute in the group, it simply 7149 * returns it and no new reference is made to the group. 7150 */ 7151 gc = gc_create(sp, gcgrp, &gcgrp_xtraref); 7152 if (gc == NULL) { 7153 /* release reference held by gcgrp_lookup */ 7154 GCGRP_REFRELE(gcgrp); 7155 ire_refrele(gw_ire); 7156 return (ENOMEM); 7157 } 7158 } 7159 7160 /* Create the IRE. */ 7161 ire = ire_create( 7162 (uchar_t *)&dst_addr, /* dest address */ 7163 (uchar_t *)&mask, /* mask */ 7164 /* src address assigned by the caller? */ 7165 (uchar_t *)(((src_addr != INADDR_ANY) && 7166 (flags & RTF_SETSRC)) ? &src_addr : NULL), 7167 (uchar_t *)&gw_addr, /* gateway address */ 7168 NULL, /* no in-srcaddress */ 7169 &gw_ire->ire_max_frag, 7170 NULL, /* no Fast Path header */ 7171 NULL, /* no recv-from queue */ 7172 NULL, /* no send-to queue */ 7173 (ushort_t)type, /* IRE type */ 7174 NULL, 7175 ipif_arg, 7176 NULL, 7177 0, 7178 0, 7179 0, 7180 flags, 7181 &gw_ire->ire_uinfo, /* Inherit ULP info from gw */ 7182 gc, /* security attribute */ 7183 NULL, 7184 ipst); 7185 7186 /* 7187 * The ire holds a reference to the 'gc' and the 'gc' holds a 7188 * reference to the 'gcgrp'. We can now release the extra reference 7189 * the 'gcgrp' acquired in the gcgrp_lookup, if it was not used. 7190 */ 7191 if (gcgrp_xtraref) 7192 GCGRP_REFRELE(gcgrp); 7193 if (ire == NULL) { 7194 if (gc != NULL) 7195 GC_REFRELE(gc); 7196 ire_refrele(gw_ire); 7197 return (ENOMEM); 7198 } 7199 7200 /* 7201 * POLICY: should we allow an RTF_HOST with address INADDR_ANY? 7202 * SUN/OS socket stuff does but do we really want to allow 0.0.0.0? 7203 */ 7204 7205 /* Add the new IRE. */ 7206 error = ire_add(&ire, q, mp, func, B_FALSE); 7207 if (error != 0) { 7208 /* 7209 * In the result of failure, ire_add() will have already 7210 * deleted the ire in question, so there is no need to 7211 * do that here. 7212 */ 7213 ire_refrele(gw_ire); 7214 return (error); 7215 } 7216 7217 if (flags & RTF_MULTIRT) { 7218 /* 7219 * Invoke the CGTP (multirouting) filtering module 7220 * to add the dst address in the filtering database. 7221 * Replicated inbound packets coming from that address 7222 * will be filtered to discard the duplicates. 7223 * It is not necessary to call the CGTP filter hook 7224 * when the dst address is a broadcast or multicast, 7225 * because an IP source address cannot be a broadcast 7226 * or a multicast. 7227 */ 7228 ire_t *ire_dst = ire_ctable_lookup(ire->ire_addr, 0, 7229 IRE_BROADCAST, NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 7230 if (ire_dst != NULL) { 7231 ip_cgtp_bcast_add(ire, ire_dst, ipst); 7232 ire_refrele(ire_dst); 7233 goto save_ire; 7234 } 7235 if ((ip_cgtp_filter_ops != NULL) && !CLASSD(ire->ire_addr) && 7236 ipst->ips_netstack->netstack_stackid == GLOBAL_NETSTACKID) { 7237 int res = ip_cgtp_filter_ops->cfo_add_dest_v4( 7238 ire->ire_addr, 7239 ire->ire_gateway_addr, 7240 ire->ire_src_addr, 7241 gw_ire->ire_src_addr); 7242 if (res != 0) { 7243 ire_refrele(gw_ire); 7244 ire_delete(ire); 7245 return (res); 7246 } 7247 } 7248 } 7249 7250 /* 7251 * Now that the prefix IRE entry has been created, delete any 7252 * existing gateway IRE cache entries as well as any IRE caches 7253 * using the gateway, and force them to be created through 7254 * ip_newroute. 7255 */ 7256 if (gc != NULL) { 7257 ASSERT(gcgrp != NULL); 7258 ire_clookup_delete_cache_gw(gw_addr, ALL_ZONES, ipst); 7259 } 7260 7261 save_ire: 7262 if (gw_ire != NULL) { 7263 ire_refrele(gw_ire); 7264 } 7265 /* 7266 * We do not do save_ire for the routes added with RTA_SRCIFP 7267 * flag. This route is only added and deleted by mipagent. 7268 * So, for simplicity of design, we refrain from saving 7269 * ires that are created with srcif value. This may change 7270 * in future if we find more usage of srcifp feature. 7271 */ 7272 if (ipif != NULL && src_ipif == NULL) { 7273 /* 7274 * Save enough information so that we can recreate the IRE if 7275 * the interface goes down and then up. The metrics associated 7276 * with the route will be saved as well when rts_setmetrics() is 7277 * called after the IRE has been created. In the case where 7278 * memory cannot be allocated, none of this information will be 7279 * saved. 7280 */ 7281 ipif_save_ire(ipif, ire); 7282 } 7283 if (ioctl_msg) 7284 ip_rts_rtmsg(RTM_OLDADD, ire, 0, ipst); 7285 if (ire_arg != NULL) { 7286 /* 7287 * Store the ire that was successfully added into where ire_arg 7288 * points to so that callers don't have to look it up 7289 * themselves (but they are responsible for ire_refrele()ing 7290 * the ire when they are finished with it). 7291 */ 7292 *ire_arg = ire; 7293 } else { 7294 ire_refrele(ire); /* Held in ire_add */ 7295 } 7296 if (ipif_refheld) 7297 ipif_refrele(ipif); 7298 return (0); 7299 } 7300 7301 /* 7302 * ip_rt_delete is called to delete an IPv4 route. 7303 * ipif_arg is passed in to associate it with the correct interface. 7304 * src_ipif is passed to associate the incoming interface of the packet. 7305 * We may need to restart this operation if the ipif cannot be looked up 7306 * due to an exclusive operation that is currently in progress. The restart 7307 * entry point is specified by 'func' 7308 */ 7309 /* ARGSUSED4 */ 7310 int 7311 ip_rt_delete(ipaddr_t dst_addr, ipaddr_t mask, ipaddr_t gw_addr, 7312 uint_t rtm_addrs, int flags, ipif_t *ipif_arg, ipif_t *src_ipif, 7313 boolean_t ioctl_msg, queue_t *q, mblk_t *mp, ipsq_func_t func, 7314 ip_stack_t *ipst) 7315 { 7316 ire_t *ire = NULL; 7317 ipif_t *ipif; 7318 boolean_t ipif_refheld = B_FALSE; 7319 uint_t type; 7320 uint_t match_flags = MATCH_IRE_TYPE; 7321 int err = 0; 7322 7323 ip1dbg(("ip_rt_delete:")); 7324 /* 7325 * If this is the case of RTF_HOST being set, then we set the netmask 7326 * to all ones. Otherwise, we use the netmask if one was supplied. 7327 */ 7328 if (flags & RTF_HOST) { 7329 mask = IP_HOST_MASK; 7330 match_flags |= MATCH_IRE_MASK; 7331 } else if (rtm_addrs & RTA_NETMASK) { 7332 match_flags |= MATCH_IRE_MASK; 7333 } 7334 7335 /* 7336 * Note that RTF_GATEWAY is never set on a delete, therefore 7337 * we check if the gateway address is one of our interfaces first, 7338 * and fall back on RTF_GATEWAY routes. 7339 * 7340 * This makes it possible to delete an original 7341 * IRE_IF_NORESOLVER/IRE_IF_RESOLVER - consistent with SunOS 4.1. 7342 * 7343 * As the interface index specified with the RTA_IFP sockaddr is the 7344 * same for all ipif's off of an ill, the matching logic below uses 7345 * MATCH_IRE_ILL if such an index was specified. This means a route 7346 * sharing the same prefix and interface index as the the route 7347 * intended to be deleted might be deleted instead if a RTA_IFP sockaddr 7348 * is specified in the request. 7349 * 7350 * On the other hand, since the gateway address will usually be 7351 * different for each ipif on the system, the matching logic 7352 * uses MATCH_IRE_IPIF in the case of a traditional interface 7353 * route. This means that interface routes for the same prefix can be 7354 * uniquely identified if they belong to distinct ipif's and if a 7355 * RTA_IFP sockaddr is not present. 7356 * 7357 * For more detail on specifying routes by gateway address and by 7358 * interface index, see the comments in ip_rt_add(). 7359 * gw_addr could be zero in some cases when both RTA_SRCIFP and 7360 * RTA_IFP are specified. If RTA_SRCIFP is specified and both 7361 * RTA_IFP and gateway_addr are NULL/zero, then delete will not 7362 * succeed. 7363 */ 7364 if (src_ipif != NULL) { 7365 if (ipif_arg == NULL && gw_addr != 0) { 7366 ipif_arg = ipif_lookup_interface(gw_addr, dst_addr, 7367 q, mp, func, &err, ipst); 7368 if (ipif_arg != NULL) 7369 ipif_refheld = B_TRUE; 7370 } 7371 if (ipif_arg == NULL) { 7372 err = (err == EINPROGRESS) ? err : ESRCH; 7373 return (err); 7374 } 7375 ipif = ipif_arg; 7376 } else { 7377 ipif = ipif_lookup_interface(gw_addr, dst_addr, 7378 q, mp, func, &err, ipst); 7379 if (ipif != NULL) 7380 ipif_refheld = B_TRUE; 7381 else if (err == EINPROGRESS) 7382 return (err); 7383 else 7384 err = 0; 7385 } 7386 if (ipif != NULL) { 7387 if (ipif_arg != NULL) { 7388 if (ipif_refheld) { 7389 ipif_refrele(ipif); 7390 ipif_refheld = B_FALSE; 7391 } 7392 ipif = ipif_arg; 7393 match_flags |= MATCH_IRE_ILL; 7394 } else { 7395 match_flags |= MATCH_IRE_IPIF; 7396 } 7397 if (src_ipif != NULL) { 7398 ire = ire_srcif_table_lookup(dst_addr, IRE_INTERFACE, 7399 ipif, src_ipif->ipif_ill, match_flags); 7400 } else { 7401 if (ipif->ipif_ire_type == IRE_LOOPBACK) { 7402 ire = ire_ctable_lookup(dst_addr, 0, 7403 IRE_LOOPBACK, ipif, ALL_ZONES, NULL, 7404 match_flags, ipst); 7405 } 7406 if (ire == NULL) { 7407 ire = ire_ftable_lookup(dst_addr, mask, 0, 7408 IRE_INTERFACE, ipif, NULL, ALL_ZONES, 0, 7409 NULL, match_flags, ipst); 7410 } 7411 } 7412 } 7413 7414 if (ire == NULL) { 7415 /* 7416 * At this point, the gateway address is not one of our own 7417 * addresses or a matching interface route was not found. We 7418 * set the IRE type to lookup based on whether 7419 * this is a host route, a default route or just a prefix. 7420 * 7421 * If an ipif_arg was passed in, then the lookup is based on an 7422 * interface index so MATCH_IRE_ILL is added to match_flags. 7423 * In any case, MATCH_IRE_IPIF is cleared and MATCH_IRE_GW is 7424 * set as the route being looked up is not a traditional 7425 * interface route. 7426 * Since we do not add gateway route with srcipif, we don't 7427 * expect to find it either. 7428 */ 7429 if (src_ipif != NULL) { 7430 if (ipif_refheld) 7431 ipif_refrele(ipif); 7432 return (ESRCH); 7433 } else { 7434 match_flags &= ~MATCH_IRE_IPIF; 7435 match_flags |= MATCH_IRE_GW; 7436 if (ipif_arg != NULL) 7437 match_flags |= MATCH_IRE_ILL; 7438 if (mask == IP_HOST_MASK) 7439 type = IRE_HOST; 7440 else if (mask == 0) 7441 type = IRE_DEFAULT; 7442 else 7443 type = IRE_PREFIX; 7444 ire = ire_ftable_lookup(dst_addr, mask, gw_addr, type, 7445 ipif_arg, NULL, ALL_ZONES, 0, NULL, match_flags, 7446 ipst); 7447 } 7448 } 7449 7450 if (ipif_refheld) 7451 ipif_refrele(ipif); 7452 7453 /* ipif is not refheld anymore */ 7454 if (ire == NULL) 7455 return (ESRCH); 7456 7457 if (ire->ire_flags & RTF_MULTIRT) { 7458 /* 7459 * Invoke the CGTP (multirouting) filtering module 7460 * to remove the dst address from the filtering database. 7461 * Packets coming from that address will no longer be 7462 * filtered to remove duplicates. 7463 */ 7464 if (ip_cgtp_filter_ops != NULL && 7465 ipst->ips_netstack->netstack_stackid == GLOBAL_NETSTACKID) { 7466 err = ip_cgtp_filter_ops->cfo_del_dest_v4( 7467 ire->ire_addr, ire->ire_gateway_addr); 7468 } 7469 ip_cgtp_bcast_delete(ire, ipst); 7470 } 7471 7472 ipif = ire->ire_ipif; 7473 /* 7474 * Removing from ipif_saved_ire_mp is not necessary 7475 * when src_ipif being non-NULL. ip_rt_add does not 7476 * save the ires which src_ipif being non-NULL. 7477 */ 7478 if (ipif != NULL && src_ipif == NULL) { 7479 ipif_remove_ire(ipif, ire); 7480 } 7481 if (ioctl_msg) 7482 ip_rts_rtmsg(RTM_OLDDEL, ire, 0, ipst); 7483 ire_delete(ire); 7484 ire_refrele(ire); 7485 return (err); 7486 } 7487 7488 /* 7489 * ip_siocaddrt is called to complete processing of an SIOCADDRT IOCTL. 7490 */ 7491 /* ARGSUSED */ 7492 int 7493 ip_siocaddrt(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 7494 ip_ioctl_cmd_t *ipip, void *dummy_if_req) 7495 { 7496 ipaddr_t dst_addr; 7497 ipaddr_t gw_addr; 7498 ipaddr_t mask; 7499 int error = 0; 7500 mblk_t *mp1; 7501 struct rtentry *rt; 7502 ipif_t *ipif = NULL; 7503 ip_stack_t *ipst; 7504 7505 ASSERT(q->q_next == NULL); 7506 ipst = CONNQ_TO_IPST(q); 7507 7508 ip1dbg(("ip_siocaddrt:")); 7509 /* Existence of mp1 verified in ip_wput_nondata */ 7510 mp1 = mp->b_cont->b_cont; 7511 rt = (struct rtentry *)mp1->b_rptr; 7512 7513 dst_addr = ((sin_t *)&rt->rt_dst)->sin_addr.s_addr; 7514 gw_addr = ((sin_t *)&rt->rt_gateway)->sin_addr.s_addr; 7515 7516 /* 7517 * If the RTF_HOST flag is on, this is a request to assign a gateway 7518 * to a particular host address. In this case, we set the netmask to 7519 * all ones for the particular destination address. Otherwise, 7520 * determine the netmask to be used based on dst_addr and the interfaces 7521 * in use. 7522 */ 7523 if (rt->rt_flags & RTF_HOST) { 7524 mask = IP_HOST_MASK; 7525 } else { 7526 /* 7527 * Note that ip_subnet_mask returns a zero mask in the case of 7528 * default (an all-zeroes address). 7529 */ 7530 mask = ip_subnet_mask(dst_addr, &ipif, ipst); 7531 } 7532 7533 error = ip_rt_add(dst_addr, mask, gw_addr, 0, rt->rt_flags, NULL, NULL, 7534 NULL, B_TRUE, q, mp, ip_process_ioctl, NULL, ipst); 7535 if (ipif != NULL) 7536 ipif_refrele(ipif); 7537 return (error); 7538 } 7539 7540 /* 7541 * ip_siocdelrt is called to complete processing of an SIOCDELRT IOCTL. 7542 */ 7543 /* ARGSUSED */ 7544 int 7545 ip_siocdelrt(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 7546 ip_ioctl_cmd_t *ipip, void *dummy_if_req) 7547 { 7548 ipaddr_t dst_addr; 7549 ipaddr_t gw_addr; 7550 ipaddr_t mask; 7551 int error; 7552 mblk_t *mp1; 7553 struct rtentry *rt; 7554 ipif_t *ipif = NULL; 7555 ip_stack_t *ipst; 7556 7557 ASSERT(q->q_next == NULL); 7558 ipst = CONNQ_TO_IPST(q); 7559 7560 ip1dbg(("ip_siocdelrt:")); 7561 /* Existence of mp1 verified in ip_wput_nondata */ 7562 mp1 = mp->b_cont->b_cont; 7563 rt = (struct rtentry *)mp1->b_rptr; 7564 7565 dst_addr = ((sin_t *)&rt->rt_dst)->sin_addr.s_addr; 7566 gw_addr = ((sin_t *)&rt->rt_gateway)->sin_addr.s_addr; 7567 7568 /* 7569 * If the RTF_HOST flag is on, this is a request to delete a gateway 7570 * to a particular host address. In this case, we set the netmask to 7571 * all ones for the particular destination address. Otherwise, 7572 * determine the netmask to be used based on dst_addr and the interfaces 7573 * in use. 7574 */ 7575 if (rt->rt_flags & RTF_HOST) { 7576 mask = IP_HOST_MASK; 7577 } else { 7578 /* 7579 * Note that ip_subnet_mask returns a zero mask in the case of 7580 * default (an all-zeroes address). 7581 */ 7582 mask = ip_subnet_mask(dst_addr, &ipif, ipst); 7583 } 7584 7585 error = ip_rt_delete(dst_addr, mask, gw_addr, 7586 RTA_DST | RTA_GATEWAY | RTA_NETMASK, rt->rt_flags, NULL, NULL, 7587 B_TRUE, q, mp, ip_process_ioctl, ipst); 7588 if (ipif != NULL) 7589 ipif_refrele(ipif); 7590 return (error); 7591 } 7592 7593 /* 7594 * Enqueue the mp onto the ipsq, chained by b_next. 7595 * b_prev stores the function to be executed later, and b_queue the queue 7596 * where this mp originated. 7597 */ 7598 void 7599 ipsq_enq(ipsq_t *ipsq, queue_t *q, mblk_t *mp, ipsq_func_t func, int type, 7600 ill_t *pending_ill) 7601 { 7602 conn_t *connp = NULL; 7603 7604 ASSERT(MUTEX_HELD(&ipsq->ipsq_lock)); 7605 ASSERT(func != NULL); 7606 7607 mp->b_queue = q; 7608 mp->b_prev = (void *)func; 7609 mp->b_next = NULL; 7610 7611 switch (type) { 7612 case CUR_OP: 7613 if (ipsq->ipsq_mptail != NULL) { 7614 ASSERT(ipsq->ipsq_mphead != NULL); 7615 ipsq->ipsq_mptail->b_next = mp; 7616 } else { 7617 ASSERT(ipsq->ipsq_mphead == NULL); 7618 ipsq->ipsq_mphead = mp; 7619 } 7620 ipsq->ipsq_mptail = mp; 7621 break; 7622 7623 case NEW_OP: 7624 if (ipsq->ipsq_xopq_mptail != NULL) { 7625 ASSERT(ipsq->ipsq_xopq_mphead != NULL); 7626 ipsq->ipsq_xopq_mptail->b_next = mp; 7627 } else { 7628 ASSERT(ipsq->ipsq_xopq_mphead == NULL); 7629 ipsq->ipsq_xopq_mphead = mp; 7630 } 7631 ipsq->ipsq_xopq_mptail = mp; 7632 break; 7633 default: 7634 cmn_err(CE_PANIC, "ipsq_enq %d type \n", type); 7635 } 7636 7637 if (CONN_Q(q) && pending_ill != NULL) { 7638 connp = Q_TO_CONN(q); 7639 7640 ASSERT(MUTEX_HELD(&connp->conn_lock)); 7641 connp->conn_oper_pending_ill = pending_ill; 7642 } 7643 } 7644 7645 /* 7646 * Return the mp at the head of the ipsq. After emptying the ipsq 7647 * look at the next ioctl, if this ioctl is complete. Otherwise 7648 * return, we will resume when we complete the current ioctl. 7649 * The current ioctl will wait till it gets a response from the 7650 * driver below. 7651 */ 7652 static mblk_t * 7653 ipsq_dq(ipsq_t *ipsq) 7654 { 7655 mblk_t *mp; 7656 7657 ASSERT(MUTEX_HELD(&ipsq->ipsq_lock)); 7658 7659 mp = ipsq->ipsq_mphead; 7660 if (mp != NULL) { 7661 ipsq->ipsq_mphead = mp->b_next; 7662 if (ipsq->ipsq_mphead == NULL) 7663 ipsq->ipsq_mptail = NULL; 7664 mp->b_next = NULL; 7665 return (mp); 7666 } 7667 if (ipsq->ipsq_current_ipif != NULL) 7668 return (NULL); 7669 mp = ipsq->ipsq_xopq_mphead; 7670 if (mp != NULL) { 7671 ipsq->ipsq_xopq_mphead = mp->b_next; 7672 if (ipsq->ipsq_xopq_mphead == NULL) 7673 ipsq->ipsq_xopq_mptail = NULL; 7674 mp->b_next = NULL; 7675 return (mp); 7676 } 7677 return (NULL); 7678 } 7679 7680 /* 7681 * Enter the ipsq corresponding to ill, by waiting synchronously till 7682 * we can enter the ipsq exclusively. Unless 'force' is used, the ipsq 7683 * will have to drain completely before ipsq_enter returns success. 7684 * ipsq_current_ipif will be set if some exclusive ioctl is in progress, 7685 * and the ipsq_exit logic will start the next enqueued ioctl after 7686 * completion of the current ioctl. If 'force' is used, we don't wait 7687 * for the enqueued ioctls. This is needed when a conn_close wants to 7688 * enter the ipsq and abort an ioctl that is somehow stuck. Unplumb 7689 * of an ill can also use this option. But we dont' use it currently. 7690 */ 7691 #define ENTER_SQ_WAIT_TICKS 100 7692 boolean_t 7693 ipsq_enter(ill_t *ill, boolean_t force) 7694 { 7695 ipsq_t *ipsq; 7696 boolean_t waited_enough = B_FALSE; 7697 7698 /* 7699 * Holding the ill_lock prevents <ill-ipsq> assocs from changing. 7700 * Since the <ill-ipsq> assocs could change while we wait for the 7701 * writer, it is easier to wait on a fixed global rather than try to 7702 * cv_wait on a changing ipsq. 7703 */ 7704 mutex_enter(&ill->ill_lock); 7705 for (;;) { 7706 if (ill->ill_state_flags & ILL_CONDEMNED) { 7707 mutex_exit(&ill->ill_lock); 7708 return (B_FALSE); 7709 } 7710 7711 ipsq = ill->ill_phyint->phyint_ipsq; 7712 mutex_enter(&ipsq->ipsq_lock); 7713 if (ipsq->ipsq_writer == NULL && 7714 (ipsq->ipsq_current_ipif == NULL || waited_enough)) { 7715 break; 7716 } else if (ipsq->ipsq_writer != NULL) { 7717 mutex_exit(&ipsq->ipsq_lock); 7718 cv_wait(&ill->ill_cv, &ill->ill_lock); 7719 } else { 7720 mutex_exit(&ipsq->ipsq_lock); 7721 if (force) { 7722 (void) cv_timedwait(&ill->ill_cv, 7723 &ill->ill_lock, 7724 lbolt + ENTER_SQ_WAIT_TICKS); 7725 waited_enough = B_TRUE; 7726 continue; 7727 } else { 7728 cv_wait(&ill->ill_cv, &ill->ill_lock); 7729 } 7730 } 7731 } 7732 7733 ASSERT(ipsq->ipsq_mphead == NULL && ipsq->ipsq_mptail == NULL); 7734 ASSERT(ipsq->ipsq_reentry_cnt == 0); 7735 ipsq->ipsq_writer = curthread; 7736 ipsq->ipsq_reentry_cnt++; 7737 #ifdef ILL_DEBUG 7738 ipsq->ipsq_depth = getpcstack(ipsq->ipsq_stack, IP_STACK_DEPTH); 7739 #endif 7740 mutex_exit(&ipsq->ipsq_lock); 7741 mutex_exit(&ill->ill_lock); 7742 return (B_TRUE); 7743 } 7744 7745 /* 7746 * The ipsq_t (ipsq) is the synchronization data structure used to serialize 7747 * certain critical operations like plumbing (i.e. most set ioctls), 7748 * multicast joins, igmp/mld timers, IPMP operations etc. On a non-IPMP 7749 * system there is 1 ipsq per phyint. On an IPMP system there is 1 ipsq per 7750 * IPMP group. The ipsq serializes exclusive ioctls issued by applications 7751 * on a per ipsq basis in ipsq_xopq_mphead. It also protects against multiple 7752 * threads executing in the ipsq. Responses from the driver pertain to the 7753 * current ioctl (say a DL_BIND_ACK in response to a DL_BIND_REQUEST initiated 7754 * as part of bringing up the interface) and are enqueued in ipsq_mphead. 7755 * 7756 * If a thread does not want to reenter the ipsq when it is already writer, 7757 * it must make sure that the specified reentry point to be called later 7758 * when the ipsq is empty, nor any code path starting from the specified reentry 7759 * point must never ever try to enter the ipsq again. Otherwise it can lead 7760 * to an infinite loop. The reentry point ip_rput_dlpi_writer is an example. 7761 * When the thread that is currently exclusive finishes, it (ipsq_exit) 7762 * dequeues the requests waiting to become exclusive in ipsq_mphead and calls 7763 * the reentry point. When the list at ipsq_mphead becomes empty ipsq_exit 7764 * proceeds to dequeue the next ioctl in ipsq_xopq_mphead and start the next 7765 * ioctl if the current ioctl has completed. If the current ioctl is still 7766 * in progress it simply returns. The current ioctl could be waiting for 7767 * a response from another module (arp_ or the driver or could be waiting for 7768 * the ipif/ill/ire refcnts to drop to zero. In such a case the ipsq_pending_mp 7769 * and ipsq_pending_ipif are set. ipsq_current_ipif is set throughout the 7770 * execution of the ioctl and ipsq_exit does not start the next ioctl unless 7771 * ipsq_current_ipif is clear which happens only on ioctl completion. 7772 */ 7773 7774 /* 7775 * Try to enter the ipsq exclusively, corresponding to ipif or ill. (only 1 of 7776 * ipif or ill can be specified). The caller ensures ipif or ill is valid by 7777 * ref-holding it if necessary. If the ipsq cannot be entered, the mp is queued 7778 * completion. 7779 */ 7780 ipsq_t * 7781 ipsq_try_enter(ipif_t *ipif, ill_t *ill, queue_t *q, mblk_t *mp, 7782 ipsq_func_t func, int type, boolean_t reentry_ok) 7783 { 7784 ipsq_t *ipsq; 7785 7786 /* Only 1 of ipif or ill can be specified */ 7787 ASSERT((ipif != NULL) ^ (ill != NULL)); 7788 if (ipif != NULL) 7789 ill = ipif->ipif_ill; 7790 7791 /* 7792 * lock ordering ill_g_lock -> conn_lock -> ill_lock -> ipsq_lock 7793 * ipsq of an ill can't change when ill_lock is held. 7794 */ 7795 GRAB_CONN_LOCK(q); 7796 mutex_enter(&ill->ill_lock); 7797 ipsq = ill->ill_phyint->phyint_ipsq; 7798 mutex_enter(&ipsq->ipsq_lock); 7799 7800 /* 7801 * 1. Enter the ipsq if we are already writer and reentry is ok. 7802 * (Note: If the caller does not specify reentry_ok then neither 7803 * 'func' nor any of its callees must ever attempt to enter the ipsq 7804 * again. Otherwise it can lead to an infinite loop 7805 * 2. Enter the ipsq if there is no current writer and this attempted 7806 * entry is part of the current ioctl or operation 7807 * 3. Enter the ipsq if there is no current writer and this is a new 7808 * ioctl (or operation) and the ioctl (or operation) queue is 7809 * empty and there is no ioctl (or operation) currently in progress 7810 */ 7811 if ((ipsq->ipsq_writer == NULL && ((type == CUR_OP) || 7812 (type == NEW_OP && ipsq->ipsq_xopq_mphead == NULL && 7813 ipsq->ipsq_current_ipif == NULL))) || 7814 (ipsq->ipsq_writer == curthread && reentry_ok)) { 7815 /* Success. */ 7816 ipsq->ipsq_reentry_cnt++; 7817 ipsq->ipsq_writer = curthread; 7818 mutex_exit(&ipsq->ipsq_lock); 7819 mutex_exit(&ill->ill_lock); 7820 RELEASE_CONN_LOCK(q); 7821 #ifdef ILL_DEBUG 7822 ipsq->ipsq_depth = getpcstack(ipsq->ipsq_stack, IP_STACK_DEPTH); 7823 #endif 7824 return (ipsq); 7825 } 7826 7827 ipsq_enq(ipsq, q, mp, func, type, ill); 7828 7829 mutex_exit(&ipsq->ipsq_lock); 7830 mutex_exit(&ill->ill_lock); 7831 RELEASE_CONN_LOCK(q); 7832 return (NULL); 7833 } 7834 7835 /* 7836 * Try to enter the ipsq exclusively, corresponding to ipif or ill. (only 1 of 7837 * ipif or ill can be specified). The caller ensures ipif or ill is valid by 7838 * ref-holding it if necessary. If the ipsq cannot be entered, the mp is queued 7839 * completion. 7840 * 7841 * This function does a refrele on the ipif/ill. 7842 */ 7843 void 7844 qwriter_ip(ipif_t *ipif, ill_t *ill, queue_t *q, mblk_t *mp, 7845 ipsq_func_t func, int type, boolean_t reentry_ok) 7846 { 7847 ipsq_t *ipsq; 7848 7849 ipsq = ipsq_try_enter(ipif, ill, q, mp, func, type, reentry_ok); 7850 /* 7851 * Caller must have done a refhold on the ipif. ipif_refrele 7852 * happens on the passed ipif. We can do this since we are 7853 * already exclusive, or we won't access ipif henceforth, Both 7854 * this func and caller will just return if we ipsq_try_enter 7855 * fails above. This is needed because func needs to 7856 * see the correct refcount. Eg. removeif can work only then. 7857 */ 7858 if (ipif != NULL) 7859 ipif_refrele(ipif); 7860 else 7861 ill_refrele(ill); 7862 if (ipsq != NULL) { 7863 (*func)(ipsq, q, mp, NULL); 7864 ipsq_exit(ipsq, B_TRUE, B_TRUE); 7865 } 7866 } 7867 7868 /* 7869 * If there are more than ILL_GRP_CNT ills in a group, 7870 * we use kmem alloc'd buffers, else use the stack 7871 */ 7872 #define ILL_GRP_CNT 14 7873 /* 7874 * Drain the ipsq, if there are messages on it, and then leave the ipsq. 7875 * Called by a thread that is currently exclusive on this ipsq. 7876 */ 7877 void 7878 ipsq_exit(ipsq_t *ipsq, boolean_t start_igmp_timer, boolean_t start_mld_timer) 7879 { 7880 queue_t *q; 7881 mblk_t *mp; 7882 ipsq_func_t func; 7883 int next; 7884 ill_t **ill_list = NULL; 7885 size_t ill_list_size = 0; 7886 int cnt = 0; 7887 boolean_t need_ipsq_free = B_FALSE; 7888 ip_stack_t *ipst = ipsq->ipsq_ipst; 7889 7890 ASSERT(IAM_WRITER_IPSQ(ipsq)); 7891 mutex_enter(&ipsq->ipsq_lock); 7892 ASSERT(ipsq->ipsq_reentry_cnt >= 1); 7893 if (ipsq->ipsq_reentry_cnt != 1) { 7894 ipsq->ipsq_reentry_cnt--; 7895 mutex_exit(&ipsq->ipsq_lock); 7896 return; 7897 } 7898 7899 mp = ipsq_dq(ipsq); 7900 while (mp != NULL) { 7901 again: 7902 mutex_exit(&ipsq->ipsq_lock); 7903 func = (ipsq_func_t)mp->b_prev; 7904 q = (queue_t *)mp->b_queue; 7905 mp->b_prev = NULL; 7906 mp->b_queue = NULL; 7907 7908 /* 7909 * If 'q' is an conn queue, it is valid, since we did a 7910 * a refhold on the connp, at the start of the ioctl. 7911 * If 'q' is an ill queue, it is valid, since close of an 7912 * ill will clean up the 'ipsq'. 7913 */ 7914 (*func)(ipsq, q, mp, NULL); 7915 7916 mutex_enter(&ipsq->ipsq_lock); 7917 mp = ipsq_dq(ipsq); 7918 } 7919 7920 mutex_exit(&ipsq->ipsq_lock); 7921 7922 /* 7923 * Need to grab the locks in the right order. Need to 7924 * atomically check (under ipsq_lock) that there are no 7925 * messages before relinquishing the ipsq. Also need to 7926 * atomically wakeup waiters on ill_cv while holding ill_lock. 7927 * Holding ill_g_lock ensures that ipsq list of ills is stable. 7928 * If we need to call ill_split_ipsq and change <ill-ipsq> we need 7929 * to grab ill_g_lock as writer. 7930 */ 7931 rw_enter(&ipst->ips_ill_g_lock, 7932 ipsq->ipsq_split ? RW_WRITER : RW_READER); 7933 7934 /* ipsq_refs can't change while ill_g_lock is held as reader */ 7935 if (ipsq->ipsq_refs != 0) { 7936 /* At most 2 ills v4/v6 per phyint */ 7937 cnt = ipsq->ipsq_refs << 1; 7938 ill_list_size = cnt * sizeof (ill_t *); 7939 /* 7940 * If memory allocation fails, we will do the split 7941 * the next time ipsq_exit is called for whatever reason. 7942 * As long as the ipsq_split flag is set the need to 7943 * split is remembered. 7944 */ 7945 ill_list = kmem_zalloc(ill_list_size, KM_NOSLEEP); 7946 if (ill_list != NULL) 7947 cnt = ill_lock_ipsq_ills(ipsq, ill_list, cnt); 7948 } 7949 mutex_enter(&ipsq->ipsq_lock); 7950 mp = ipsq_dq(ipsq); 7951 if (mp != NULL) { 7952 /* oops, some message has landed up, we can't get out */ 7953 if (ill_list != NULL) 7954 ill_unlock_ills(ill_list, cnt); 7955 rw_exit(&ipst->ips_ill_g_lock); 7956 if (ill_list != NULL) 7957 kmem_free(ill_list, ill_list_size); 7958 ill_list = NULL; 7959 ill_list_size = 0; 7960 cnt = 0; 7961 goto again; 7962 } 7963 7964 /* 7965 * Split only if no ioctl is pending and if memory alloc succeeded 7966 * above. 7967 */ 7968 if (ipsq->ipsq_split && ipsq->ipsq_current_ipif == NULL && 7969 ill_list != NULL) { 7970 /* 7971 * No new ill can join this ipsq since we are holding the 7972 * ill_g_lock. Hence ill_split_ipsq can safely traverse the 7973 * ipsq. ill_split_ipsq may fail due to memory shortage. 7974 * If so we will retry on the next ipsq_exit. 7975 */ 7976 ipsq->ipsq_split = ill_split_ipsq(ipsq); 7977 } 7978 7979 /* 7980 * We are holding the ipsq lock, hence no new messages can 7981 * land up on the ipsq, and there are no messages currently. 7982 * Now safe to get out. Wake up waiters and relinquish ipsq 7983 * atomically while holding ill locks. 7984 */ 7985 ipsq->ipsq_writer = NULL; 7986 ipsq->ipsq_reentry_cnt--; 7987 ASSERT(ipsq->ipsq_reentry_cnt == 0); 7988 #ifdef ILL_DEBUG 7989 ipsq->ipsq_depth = 0; 7990 #endif 7991 mutex_exit(&ipsq->ipsq_lock); 7992 /* 7993 * For IPMP this should wake up all ills in this ipsq. 7994 * We need to hold the ill_lock while waking up waiters to 7995 * avoid missed wakeups. But there is no need to acquire all 7996 * the ill locks and then wakeup. If we have not acquired all 7997 * the locks (due to memory failure above) ill_signal_ipsq_ills 7998 * wakes up ills one at a time after getting the right ill_lock 7999 */ 8000 ill_signal_ipsq_ills(ipsq, ill_list != NULL); 8001 if (ill_list != NULL) 8002 ill_unlock_ills(ill_list, cnt); 8003 if (ipsq->ipsq_refs == 0) 8004 need_ipsq_free = B_TRUE; 8005 rw_exit(&ipst->ips_ill_g_lock); 8006 if (ill_list != 0) 8007 kmem_free(ill_list, ill_list_size); 8008 8009 if (need_ipsq_free) { 8010 /* 8011 * Free the ipsq. ipsq_refs can't increase because ipsq can't be 8012 * looked up. ipsq can be looked up only thru ill or phyint 8013 * and there are no ills/phyint on this ipsq. 8014 */ 8015 ipsq_delete(ipsq); 8016 } 8017 /* 8018 * Now start any igmp or mld timers that could not be started 8019 * while inside the ipsq. The timers can't be started while inside 8020 * the ipsq, since igmp_start_timers may need to call untimeout() 8021 * which can't be done while holding a lock i.e. the ipsq. Otherwise 8022 * there could be a deadlock since the timeout handlers 8023 * mld_timeout_handler / igmp_timeout_handler also synchronously 8024 * wait in ipsq_enter() trying to get the ipsq. 8025 * 8026 * However there is one exception to the above. If this thread is 8027 * itself the igmp/mld timeout handler thread, then we don't want 8028 * to start any new timer until the current handler is done. The 8029 * handler thread passes in B_FALSE for start_igmp/mld_timers, while 8030 * all others pass B_TRUE. 8031 */ 8032 if (start_igmp_timer) { 8033 mutex_enter(&ipst->ips_igmp_timer_lock); 8034 next = ipst->ips_igmp_deferred_next; 8035 ipst->ips_igmp_deferred_next = INFINITY; 8036 mutex_exit(&ipst->ips_igmp_timer_lock); 8037 8038 if (next != INFINITY) 8039 igmp_start_timers(next, ipst); 8040 } 8041 8042 if (start_mld_timer) { 8043 mutex_enter(&ipst->ips_mld_timer_lock); 8044 next = ipst->ips_mld_deferred_next; 8045 ipst->ips_mld_deferred_next = INFINITY; 8046 mutex_exit(&ipst->ips_mld_timer_lock); 8047 8048 if (next != INFINITY) 8049 mld_start_timers(next, ipst); 8050 } 8051 } 8052 8053 /* 8054 * Start the current exclusive operation on `ipsq'; associate it with `ipif' 8055 * and `ioccmd'. 8056 */ 8057 void 8058 ipsq_current_start(ipsq_t *ipsq, ipif_t *ipif, int ioccmd) 8059 { 8060 ASSERT(IAM_WRITER_IPSQ(ipsq)); 8061 8062 mutex_enter(&ipsq->ipsq_lock); 8063 ASSERT(ipsq->ipsq_current_ipif == NULL); 8064 ASSERT(ipsq->ipsq_current_ioctl == 0); 8065 ipsq->ipsq_current_ipif = ipif; 8066 ipsq->ipsq_current_ioctl = ioccmd; 8067 mutex_exit(&ipsq->ipsq_lock); 8068 } 8069 8070 /* 8071 * Finish the current exclusive operation on `ipsq'. Note that other 8072 * operations will not be able to proceed until an ipsq_exit() is done. 8073 */ 8074 void 8075 ipsq_current_finish(ipsq_t *ipsq) 8076 { 8077 ipif_t *ipif = ipsq->ipsq_current_ipif; 8078 8079 ASSERT(IAM_WRITER_IPSQ(ipsq)); 8080 8081 /* 8082 * For SIOCSLIFREMOVEIF, the ipif has been already been blown away 8083 * (but we're careful to never set IPIF_CHANGING in that case). 8084 */ 8085 if (ipsq->ipsq_current_ioctl != SIOCLIFREMOVEIF) { 8086 mutex_enter(&ipif->ipif_ill->ill_lock); 8087 ipif->ipif_state_flags &= ~IPIF_CHANGING; 8088 8089 /* Send any queued event */ 8090 ill_nic_info_dispatch(ipif->ipif_ill); 8091 mutex_exit(&ipif->ipif_ill->ill_lock); 8092 } 8093 8094 mutex_enter(&ipsq->ipsq_lock); 8095 ASSERT(ipsq->ipsq_current_ipif != NULL); 8096 ipsq->ipsq_current_ipif = NULL; 8097 ipsq->ipsq_current_ioctl = 0; 8098 mutex_exit(&ipsq->ipsq_lock); 8099 } 8100 8101 /* 8102 * The ill is closing. Flush all messages on the ipsq that originated 8103 * from this ill. Usually there wont' be any messages on the ipsq_xopq_mphead 8104 * for this ill since ipsq_enter could not have entered until then. 8105 * New messages can't be queued since the CONDEMNED flag is set. 8106 */ 8107 static void 8108 ipsq_flush(ill_t *ill) 8109 { 8110 queue_t *q; 8111 mblk_t *prev; 8112 mblk_t *mp; 8113 mblk_t *mp_next; 8114 ipsq_t *ipsq; 8115 8116 ASSERT(IAM_WRITER_ILL(ill)); 8117 ipsq = ill->ill_phyint->phyint_ipsq; 8118 /* 8119 * Flush any messages sent up by the driver. 8120 */ 8121 mutex_enter(&ipsq->ipsq_lock); 8122 for (prev = NULL, mp = ipsq->ipsq_mphead; mp != NULL; mp = mp_next) { 8123 mp_next = mp->b_next; 8124 q = mp->b_queue; 8125 if (q == ill->ill_rq || q == ill->ill_wq) { 8126 /* Remove the mp from the ipsq */ 8127 if (prev == NULL) 8128 ipsq->ipsq_mphead = mp->b_next; 8129 else 8130 prev->b_next = mp->b_next; 8131 if (ipsq->ipsq_mptail == mp) { 8132 ASSERT(mp_next == NULL); 8133 ipsq->ipsq_mptail = prev; 8134 } 8135 inet_freemsg(mp); 8136 } else { 8137 prev = mp; 8138 } 8139 } 8140 mutex_exit(&ipsq->ipsq_lock); 8141 (void) ipsq_pending_mp_cleanup(ill, NULL); 8142 ipsq_xopq_mp_cleanup(ill, NULL); 8143 ill_pending_mp_cleanup(ill); 8144 } 8145 8146 /* 8147 * Clean up one squeue element. ill_inuse_ref is protected by ill_lock. 8148 * The real cleanup happens behind the squeue via ip_squeue_clean function but 8149 * we need to protect ourselfs from 2 threads trying to cleanup at the same 8150 * time (possible with one port going down for aggr and someone tearing down the 8151 * entire aggr simultaneously. So we use ill_inuse_ref protected by ill_lock 8152 * to indicate when the cleanup has started (1 ref) and when the cleanup 8153 * is done (0 ref). When a new ring gets assigned to squeue, we start by 8154 * putting 2 ref on ill_inuse_ref. 8155 */ 8156 static void 8157 ipsq_clean_ring(ill_t *ill, ill_rx_ring_t *rx_ring) 8158 { 8159 conn_t *connp; 8160 squeue_t *sqp; 8161 mblk_t *mp; 8162 8163 ASSERT(rx_ring != NULL); 8164 8165 /* Just clean one squeue */ 8166 mutex_enter(&ill->ill_lock); 8167 /* 8168 * Reset the ILL_SOFT_RING_ASSIGN bit so that 8169 * ip_squeue_soft_ring_affinty() will not go 8170 * ahead with assigning rings. 8171 */ 8172 ill->ill_state_flags &= ~ILL_SOFT_RING_ASSIGN; 8173 while (rx_ring->rr_ring_state == ILL_RING_INPROC) 8174 /* Some operations pending on the ring. Wait */ 8175 cv_wait(&ill->ill_cv, &ill->ill_lock); 8176 8177 if (rx_ring->rr_ring_state != ILL_RING_INUSE) { 8178 /* 8179 * Someone already trying to clean 8180 * this squeue or its already been cleaned. 8181 */ 8182 mutex_exit(&ill->ill_lock); 8183 return; 8184 } 8185 sqp = rx_ring->rr_sqp; 8186 8187 if (sqp == NULL) { 8188 /* 8189 * The rx_ring never had a squeue assigned to it. 8190 * We are under ill_lock so we can clean it up 8191 * here itself since no one can get to it. 8192 */ 8193 rx_ring->rr_blank = NULL; 8194 rx_ring->rr_handle = NULL; 8195 rx_ring->rr_sqp = NULL; 8196 rx_ring->rr_ring_state = ILL_RING_FREE; 8197 mutex_exit(&ill->ill_lock); 8198 return; 8199 } 8200 8201 /* Set the state that its being cleaned */ 8202 rx_ring->rr_ring_state = ILL_RING_BEING_FREED; 8203 ASSERT(sqp != NULL); 8204 mutex_exit(&ill->ill_lock); 8205 8206 /* 8207 * Use the preallocated ill_unbind_conn for this purpose 8208 */ 8209 connp = ill->ill_dls_capab->ill_unbind_conn; 8210 8211 ASSERT(!connp->conn_tcp->tcp_closemp.b_prev); 8212 TCP_DEBUG_GETPCSTACK(connp->conn_tcp->tcmp_stk, 15); 8213 if (connp->conn_tcp->tcp_closemp.b_prev == NULL) 8214 connp->conn_tcp->tcp_closemp_used = 1; 8215 else 8216 connp->conn_tcp->tcp_closemp_used++; 8217 mp = &connp->conn_tcp->tcp_closemp; 8218 CONN_INC_REF(connp); 8219 squeue_enter(sqp, mp, ip_squeue_clean, connp, NULL); 8220 8221 mutex_enter(&ill->ill_lock); 8222 while (rx_ring->rr_ring_state != ILL_RING_FREE) 8223 cv_wait(&ill->ill_cv, &ill->ill_lock); 8224 8225 mutex_exit(&ill->ill_lock); 8226 } 8227 8228 static void 8229 ipsq_clean_all(ill_t *ill) 8230 { 8231 int idx; 8232 8233 /* 8234 * No need to clean if poll_capab isn't set for this ill 8235 */ 8236 if (!(ill->ill_capabilities & (ILL_CAPAB_POLL|ILL_CAPAB_SOFT_RING))) 8237 return; 8238 8239 for (idx = 0; idx < ILL_MAX_RINGS; idx++) { 8240 ill_rx_ring_t *ipr = &ill->ill_dls_capab->ill_ring_tbl[idx]; 8241 ipsq_clean_ring(ill, ipr); 8242 } 8243 8244 ill->ill_capabilities &= ~(ILL_CAPAB_POLL|ILL_CAPAB_SOFT_RING); 8245 } 8246 8247 /* ARGSUSED */ 8248 int 8249 ip_sioctl_slifoindex(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 8250 ip_ioctl_cmd_t *ipip, void *ifreq) 8251 { 8252 ill_t *ill; 8253 struct lifreq *lifr = (struct lifreq *)ifreq; 8254 boolean_t isv6; 8255 conn_t *connp; 8256 ip_stack_t *ipst; 8257 8258 connp = Q_TO_CONN(q); 8259 ipst = connp->conn_netstack->netstack_ip; 8260 isv6 = connp->conn_af_isv6; 8261 /* 8262 * Set original index. 8263 * Failover and failback move logical interfaces 8264 * from one physical interface to another. The 8265 * original index indicates the parent of a logical 8266 * interface, in other words, the physical interface 8267 * the logical interface will be moved back to on 8268 * failback. 8269 */ 8270 8271 /* 8272 * Don't allow the original index to be changed 8273 * for non-failover addresses, autoconfigured 8274 * addresses, or IPv6 link local addresses. 8275 */ 8276 if (((ipif->ipif_flags & (IPIF_NOFAILOVER | IPIF_ADDRCONF)) != NULL) || 8277 (isv6 && IN6_IS_ADDR_LINKLOCAL(&ipif->ipif_v6lcl_addr))) { 8278 return (EINVAL); 8279 } 8280 /* 8281 * The new original index must be in use by some 8282 * physical interface. 8283 */ 8284 ill = ill_lookup_on_ifindex(lifr->lifr_index, isv6, NULL, NULL, 8285 NULL, NULL, ipst); 8286 if (ill == NULL) 8287 return (ENXIO); 8288 ill_refrele(ill); 8289 8290 ipif->ipif_orig_ifindex = lifr->lifr_index; 8291 /* 8292 * When this ipif gets failed back, don't 8293 * preserve the original id, as it is no 8294 * longer applicable. 8295 */ 8296 ipif->ipif_orig_ipifid = 0; 8297 /* 8298 * For IPv4, change the original index of any 8299 * multicast addresses associated with the 8300 * ipif to the new value. 8301 */ 8302 if (!isv6) { 8303 ilm_t *ilm; 8304 8305 mutex_enter(&ipif->ipif_ill->ill_lock); 8306 for (ilm = ipif->ipif_ill->ill_ilm; ilm != NULL; 8307 ilm = ilm->ilm_next) { 8308 if (ilm->ilm_ipif == ipif) { 8309 ilm->ilm_orig_ifindex = lifr->lifr_index; 8310 } 8311 } 8312 mutex_exit(&ipif->ipif_ill->ill_lock); 8313 } 8314 return (0); 8315 } 8316 8317 /* ARGSUSED */ 8318 int 8319 ip_sioctl_get_oindex(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 8320 ip_ioctl_cmd_t *ipip, void *ifreq) 8321 { 8322 struct lifreq *lifr = (struct lifreq *)ifreq; 8323 8324 /* 8325 * Get the original interface index i.e the one 8326 * before FAILOVER if it ever happened. 8327 */ 8328 lifr->lifr_index = ipif->ipif_orig_ifindex; 8329 return (0); 8330 } 8331 8332 /* 8333 * Parse an iftun_req structure coming down SIOC[GS]TUNPARAM ioctls, 8334 * refhold and return the associated ipif 8335 */ 8336 int 8337 ip_extract_tunreq(queue_t *q, mblk_t *mp, ipif_t **ipifp, ipsq_func_t func) 8338 { 8339 boolean_t exists; 8340 struct iftun_req *ta; 8341 ipif_t *ipif; 8342 ill_t *ill; 8343 boolean_t isv6; 8344 mblk_t *mp1; 8345 int error; 8346 conn_t *connp; 8347 ip_stack_t *ipst; 8348 8349 /* Existence verified in ip_wput_nondata */ 8350 mp1 = mp->b_cont->b_cont; 8351 ta = (struct iftun_req *)mp1->b_rptr; 8352 /* 8353 * Null terminate the string to protect against buffer 8354 * overrun. String was generated by user code and may not 8355 * be trusted. 8356 */ 8357 ta->ifta_lifr_name[LIFNAMSIZ - 1] = '\0'; 8358 8359 connp = Q_TO_CONN(q); 8360 isv6 = connp->conn_af_isv6; 8361 ipst = connp->conn_netstack->netstack_ip; 8362 8363 /* Disallows implicit create */ 8364 ipif = ipif_lookup_on_name(ta->ifta_lifr_name, 8365 mi_strlen(ta->ifta_lifr_name), B_FALSE, &exists, isv6, 8366 connp->conn_zoneid, CONNP_TO_WQ(connp), mp, func, &error, ipst); 8367 if (ipif == NULL) 8368 return (error); 8369 8370 if (ipif->ipif_id != 0) { 8371 /* 8372 * We really don't want to set/get tunnel parameters 8373 * on virtual tunnel interfaces. Only allow the 8374 * base tunnel to do these. 8375 */ 8376 ipif_refrele(ipif); 8377 return (EINVAL); 8378 } 8379 8380 /* 8381 * Send down to tunnel mod for ioctl processing. 8382 * Will finish ioctl in ip_rput_other(). 8383 */ 8384 ill = ipif->ipif_ill; 8385 if (ill->ill_net_type == IRE_LOOPBACK) { 8386 ipif_refrele(ipif); 8387 return (EOPNOTSUPP); 8388 } 8389 8390 if (ill->ill_wq == NULL) { 8391 ipif_refrele(ipif); 8392 return (ENXIO); 8393 } 8394 /* 8395 * Mark the ioctl as coming from an IPv6 interface for 8396 * tun's convenience. 8397 */ 8398 if (ill->ill_isv6) 8399 ta->ifta_flags |= 0x80000000; 8400 *ipifp = ipif; 8401 return (0); 8402 } 8403 8404 /* 8405 * Parse an ifreq or lifreq struct coming down ioctls and refhold 8406 * and return the associated ipif. 8407 * Return value: 8408 * Non zero: An error has occurred. ci may not be filled out. 8409 * zero : ci is filled out with the ioctl cmd in ci.ci_name, and 8410 * a held ipif in ci.ci_ipif. 8411 */ 8412 int 8413 ip_extract_lifreq_cmn(queue_t *q, mblk_t *mp, int cmd_type, int flags, 8414 cmd_info_t *ci, ipsq_func_t func) 8415 { 8416 sin_t *sin; 8417 sin6_t *sin6; 8418 char *name; 8419 struct ifreq *ifr; 8420 struct lifreq *lifr; 8421 ipif_t *ipif = NULL; 8422 ill_t *ill; 8423 conn_t *connp; 8424 boolean_t isv6; 8425 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 8426 boolean_t exists; 8427 int err; 8428 mblk_t *mp1; 8429 zoneid_t zoneid; 8430 ip_stack_t *ipst; 8431 8432 if (q->q_next != NULL) { 8433 ill = (ill_t *)q->q_ptr; 8434 isv6 = ill->ill_isv6; 8435 connp = NULL; 8436 zoneid = ALL_ZONES; 8437 ipst = ill->ill_ipst; 8438 } else { 8439 ill = NULL; 8440 connp = Q_TO_CONN(q); 8441 isv6 = connp->conn_af_isv6; 8442 zoneid = connp->conn_zoneid; 8443 if (zoneid == GLOBAL_ZONEID) { 8444 /* global zone can access ipifs in all zones */ 8445 zoneid = ALL_ZONES; 8446 } 8447 ipst = connp->conn_netstack->netstack_ip; 8448 } 8449 8450 /* Has been checked in ip_wput_nondata */ 8451 mp1 = mp->b_cont->b_cont; 8452 8453 8454 if (cmd_type == IF_CMD) { 8455 /* This a old style SIOC[GS]IF* command */ 8456 ifr = (struct ifreq *)mp1->b_rptr; 8457 /* 8458 * Null terminate the string to protect against buffer 8459 * overrun. String was generated by user code and may not 8460 * be trusted. 8461 */ 8462 ifr->ifr_name[IFNAMSIZ - 1] = '\0'; 8463 sin = (sin_t *)&ifr->ifr_addr; 8464 name = ifr->ifr_name; 8465 ci->ci_sin = sin; 8466 ci->ci_sin6 = NULL; 8467 ci->ci_lifr = (struct lifreq *)ifr; 8468 } else { 8469 /* This a new style SIOC[GS]LIF* command */ 8470 ASSERT(cmd_type == LIF_CMD); 8471 lifr = (struct lifreq *)mp1->b_rptr; 8472 /* 8473 * Null terminate the string to protect against buffer 8474 * overrun. String was generated by user code and may not 8475 * be trusted. 8476 */ 8477 lifr->lifr_name[LIFNAMSIZ - 1] = '\0'; 8478 name = lifr->lifr_name; 8479 sin = (sin_t *)&lifr->lifr_addr; 8480 sin6 = (sin6_t *)&lifr->lifr_addr; 8481 if (iocp->ioc_cmd == SIOCSLIFGROUPNAME) { 8482 (void) strncpy(ci->ci_groupname, lifr->lifr_groupname, 8483 LIFNAMSIZ); 8484 } 8485 ci->ci_sin = sin; 8486 ci->ci_sin6 = sin6; 8487 ci->ci_lifr = lifr; 8488 } 8489 8490 if (iocp->ioc_cmd == SIOCSLIFNAME) { 8491 /* 8492 * The ioctl will be failed if the ioctl comes down 8493 * an conn stream 8494 */ 8495 if (ill == NULL) { 8496 /* 8497 * Not an ill queue, return EINVAL same as the 8498 * old error code. 8499 */ 8500 return (ENXIO); 8501 } 8502 ipif = ill->ill_ipif; 8503 ipif_refhold(ipif); 8504 } else { 8505 ipif = ipif_lookup_on_name(name, mi_strlen(name), B_FALSE, 8506 &exists, isv6, zoneid, 8507 (connp == NULL) ? q : CONNP_TO_WQ(connp), mp, func, &err, 8508 ipst); 8509 if (ipif == NULL) { 8510 if (err == EINPROGRESS) 8511 return (err); 8512 if (iocp->ioc_cmd == SIOCLIFFAILOVER || 8513 iocp->ioc_cmd == SIOCLIFFAILBACK) { 8514 /* 8515 * Need to try both v4 and v6 since this 8516 * ioctl can come down either v4 or v6 8517 * socket. The lifreq.lifr_family passed 8518 * down by this ioctl is AF_UNSPEC. 8519 */ 8520 ipif = ipif_lookup_on_name(name, 8521 mi_strlen(name), B_FALSE, &exists, !isv6, 8522 zoneid, (connp == NULL) ? q : 8523 CONNP_TO_WQ(connp), mp, func, &err, ipst); 8524 if (err == EINPROGRESS) 8525 return (err); 8526 } 8527 err = 0; /* Ensure we don't use it below */ 8528 } 8529 } 8530 8531 /* 8532 * Old style [GS]IFCMD does not admit IPv6 ipif 8533 */ 8534 if (ipif != NULL && ipif->ipif_isv6 && cmd_type == IF_CMD) { 8535 ipif_refrele(ipif); 8536 return (ENXIO); 8537 } 8538 8539 if (ipif == NULL && ill != NULL && ill->ill_ipif != NULL && 8540 name[0] == '\0') { 8541 /* 8542 * Handle a or a SIOC?IF* with a null name 8543 * during plumb (on the ill queue before the I_PLINK). 8544 */ 8545 ipif = ill->ill_ipif; 8546 ipif_refhold(ipif); 8547 } 8548 8549 if (ipif == NULL) 8550 return (ENXIO); 8551 8552 /* 8553 * Allow only GET operations if this ipif has been created 8554 * temporarily due to a MOVE operation. 8555 */ 8556 if (ipif->ipif_replace_zero && !(flags & IPI_REPL)) { 8557 ipif_refrele(ipif); 8558 return (EINVAL); 8559 } 8560 8561 ci->ci_ipif = ipif; 8562 return (0); 8563 } 8564 8565 /* 8566 * Return the total number of ipifs. 8567 */ 8568 static uint_t 8569 ip_get_numifs(zoneid_t zoneid, ip_stack_t *ipst) 8570 { 8571 uint_t numifs = 0; 8572 ill_t *ill; 8573 ill_walk_context_t ctx; 8574 ipif_t *ipif; 8575 8576 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 8577 ill = ILL_START_WALK_V4(&ctx, ipst); 8578 8579 while (ill != NULL) { 8580 for (ipif = ill->ill_ipif; ipif != NULL; 8581 ipif = ipif->ipif_next) { 8582 if (ipif->ipif_zoneid == zoneid || 8583 ipif->ipif_zoneid == ALL_ZONES) 8584 numifs++; 8585 } 8586 ill = ill_next(&ctx, ill); 8587 } 8588 rw_exit(&ipst->ips_ill_g_lock); 8589 return (numifs); 8590 } 8591 8592 /* 8593 * Return the total number of ipifs. 8594 */ 8595 static uint_t 8596 ip_get_numlifs(int family, int lifn_flags, zoneid_t zoneid, ip_stack_t *ipst) 8597 { 8598 uint_t numifs = 0; 8599 ill_t *ill; 8600 ipif_t *ipif; 8601 ill_walk_context_t ctx; 8602 8603 ip1dbg(("ip_get_numlifs(%d %u %d)\n", family, lifn_flags, (int)zoneid)); 8604 8605 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 8606 if (family == AF_INET) 8607 ill = ILL_START_WALK_V4(&ctx, ipst); 8608 else if (family == AF_INET6) 8609 ill = ILL_START_WALK_V6(&ctx, ipst); 8610 else 8611 ill = ILL_START_WALK_ALL(&ctx, ipst); 8612 8613 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 8614 for (ipif = ill->ill_ipif; ipif != NULL; 8615 ipif = ipif->ipif_next) { 8616 if ((ipif->ipif_flags & IPIF_NOXMIT) && 8617 !(lifn_flags & LIFC_NOXMIT)) 8618 continue; 8619 if ((ipif->ipif_flags & IPIF_TEMPORARY) && 8620 !(lifn_flags & LIFC_TEMPORARY)) 8621 continue; 8622 if (((ipif->ipif_flags & 8623 (IPIF_NOXMIT|IPIF_NOLOCAL| 8624 IPIF_DEPRECATED)) || 8625 (ill->ill_phyint->phyint_flags & 8626 PHYI_LOOPBACK) || 8627 !(ipif->ipif_flags & IPIF_UP)) && 8628 (lifn_flags & LIFC_EXTERNAL_SOURCE)) 8629 continue; 8630 8631 if (zoneid != ipif->ipif_zoneid && 8632 ipif->ipif_zoneid != ALL_ZONES && 8633 (zoneid != GLOBAL_ZONEID || 8634 !(lifn_flags & LIFC_ALLZONES))) 8635 continue; 8636 8637 numifs++; 8638 } 8639 } 8640 rw_exit(&ipst->ips_ill_g_lock); 8641 return (numifs); 8642 } 8643 8644 uint_t 8645 ip_get_lifsrcofnum(ill_t *ill) 8646 { 8647 uint_t numifs = 0; 8648 ill_t *ill_head = ill; 8649 ip_stack_t *ipst = ill->ill_ipst; 8650 8651 /* 8652 * ill_g_usesrc_lock protects ill_usesrc_grp_next, for example, some 8653 * other thread may be trying to relink the ILLs in this usesrc group 8654 * and adjusting the ill_usesrc_grp_next pointers 8655 */ 8656 rw_enter(&ipst->ips_ill_g_usesrc_lock, RW_READER); 8657 if ((ill->ill_usesrc_ifindex == 0) && 8658 (ill->ill_usesrc_grp_next != NULL)) { 8659 for (; (ill != NULL) && (ill->ill_usesrc_grp_next != ill_head); 8660 ill = ill->ill_usesrc_grp_next) 8661 numifs++; 8662 } 8663 rw_exit(&ipst->ips_ill_g_usesrc_lock); 8664 8665 return (numifs); 8666 } 8667 8668 /* Null values are passed in for ipif, sin, and ifreq */ 8669 /* ARGSUSED */ 8670 int 8671 ip_sioctl_get_ifnum(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, 8672 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) 8673 { 8674 int *nump; 8675 conn_t *connp = Q_TO_CONN(q); 8676 8677 ASSERT(q->q_next == NULL); /* not a valid ioctl for ip as a module */ 8678 8679 /* Existence of b_cont->b_cont checked in ip_wput_nondata */ 8680 nump = (int *)mp->b_cont->b_cont->b_rptr; 8681 8682 *nump = ip_get_numifs(connp->conn_zoneid, 8683 connp->conn_netstack->netstack_ip); 8684 ip1dbg(("ip_sioctl_get_ifnum numifs %d", *nump)); 8685 return (0); 8686 } 8687 8688 /* Null values are passed in for ipif, sin, and ifreq */ 8689 /* ARGSUSED */ 8690 int 8691 ip_sioctl_get_lifnum(ipif_t *dummy_ipif, sin_t *dummy_sin, 8692 queue_t *q, mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) 8693 { 8694 struct lifnum *lifn; 8695 mblk_t *mp1; 8696 conn_t *connp = Q_TO_CONN(q); 8697 8698 ASSERT(q->q_next == NULL); /* not a valid ioctl for ip as a module */ 8699 8700 /* Existence checked in ip_wput_nondata */ 8701 mp1 = mp->b_cont->b_cont; 8702 8703 lifn = (struct lifnum *)mp1->b_rptr; 8704 switch (lifn->lifn_family) { 8705 case AF_UNSPEC: 8706 case AF_INET: 8707 case AF_INET6: 8708 break; 8709 default: 8710 return (EAFNOSUPPORT); 8711 } 8712 8713 lifn->lifn_count = ip_get_numlifs(lifn->lifn_family, lifn->lifn_flags, 8714 connp->conn_zoneid, connp->conn_netstack->netstack_ip); 8715 ip1dbg(("ip_sioctl_get_lifnum numifs %d", lifn->lifn_count)); 8716 return (0); 8717 } 8718 8719 /* ARGSUSED */ 8720 int 8721 ip_sioctl_get_ifconf(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, 8722 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) 8723 { 8724 STRUCT_HANDLE(ifconf, ifc); 8725 mblk_t *mp1; 8726 struct iocblk *iocp; 8727 struct ifreq *ifr; 8728 ill_walk_context_t ctx; 8729 ill_t *ill; 8730 ipif_t *ipif; 8731 struct sockaddr_in *sin; 8732 int32_t ifclen; 8733 zoneid_t zoneid; 8734 ip_stack_t *ipst = CONNQ_TO_IPST(q); 8735 8736 ASSERT(q->q_next == NULL); /* not valid ioctls for ip as a module */ 8737 8738 ip1dbg(("ip_sioctl_get_ifconf")); 8739 /* Existence verified in ip_wput_nondata */ 8740 mp1 = mp->b_cont->b_cont; 8741 iocp = (struct iocblk *)mp->b_rptr; 8742 zoneid = Q_TO_CONN(q)->conn_zoneid; 8743 8744 /* 8745 * The original SIOCGIFCONF passed in a struct ifconf which specified 8746 * the user buffer address and length into which the list of struct 8747 * ifreqs was to be copied. Since AT&T Streams does not seem to 8748 * allow M_COPYOUT to be used in conjunction with I_STR IOCTLS, 8749 * the SIOCGIFCONF operation was redefined to simply provide 8750 * a large output buffer into which we are supposed to jam the ifreq 8751 * array. The same ioctl command code was used, despite the fact that 8752 * both the applications and the kernel code had to change, thus making 8753 * it impossible to support both interfaces. 8754 * 8755 * For reasons not good enough to try to explain, the following 8756 * algorithm is used for deciding what to do with one of these: 8757 * If the IOCTL comes in as an I_STR, it is assumed to be of the new 8758 * form with the output buffer coming down as the continuation message. 8759 * If it arrives as a TRANSPARENT IOCTL, it is assumed to be old style, 8760 * and we have to copy in the ifconf structure to find out how big the 8761 * output buffer is and where to copy out to. Sure no problem... 8762 * 8763 */ 8764 STRUCT_SET_HANDLE(ifc, iocp->ioc_flag, NULL); 8765 if ((mp1->b_wptr - mp1->b_rptr) == STRUCT_SIZE(ifc)) { 8766 int numifs = 0; 8767 size_t ifc_bufsize; 8768 8769 /* 8770 * Must be (better be!) continuation of a TRANSPARENT 8771 * IOCTL. We just copied in the ifconf structure. 8772 */ 8773 STRUCT_SET_HANDLE(ifc, iocp->ioc_flag, 8774 (struct ifconf *)mp1->b_rptr); 8775 8776 /* 8777 * Allocate a buffer to hold requested information. 8778 * 8779 * If ifc_len is larger than what is needed, we only 8780 * allocate what we will use. 8781 * 8782 * If ifc_len is smaller than what is needed, return 8783 * EINVAL. 8784 * 8785 * XXX: the ill_t structure can hava 2 counters, for 8786 * v4 and v6 (not just ill_ipif_up_count) to store the 8787 * number of interfaces for a device, so we don't need 8788 * to count them here... 8789 */ 8790 numifs = ip_get_numifs(zoneid, ipst); 8791 8792 ifclen = STRUCT_FGET(ifc, ifc_len); 8793 ifc_bufsize = numifs * sizeof (struct ifreq); 8794 if (ifc_bufsize > ifclen) { 8795 if (iocp->ioc_cmd == O_SIOCGIFCONF) { 8796 /* old behaviour */ 8797 return (EINVAL); 8798 } else { 8799 ifc_bufsize = ifclen; 8800 } 8801 } 8802 8803 mp1 = mi_copyout_alloc(q, mp, 8804 STRUCT_FGETP(ifc, ifc_buf), ifc_bufsize, B_FALSE); 8805 if (mp1 == NULL) 8806 return (ENOMEM); 8807 8808 mp1->b_wptr = mp1->b_rptr + ifc_bufsize; 8809 } 8810 bzero(mp1->b_rptr, mp1->b_wptr - mp1->b_rptr); 8811 /* 8812 * the SIOCGIFCONF ioctl only knows about 8813 * IPv4 addresses, so don't try to tell 8814 * it about interfaces with IPv6-only 8815 * addresses. (Last parm 'isv6' is B_FALSE) 8816 */ 8817 8818 ifr = (struct ifreq *)mp1->b_rptr; 8819 8820 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 8821 ill = ILL_START_WALK_V4(&ctx, ipst); 8822 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 8823 for (ipif = ill->ill_ipif; ipif != NULL; 8824 ipif = ipif->ipif_next) { 8825 if (zoneid != ipif->ipif_zoneid && 8826 ipif->ipif_zoneid != ALL_ZONES) 8827 continue; 8828 if ((uchar_t *)&ifr[1] > mp1->b_wptr) { 8829 if (iocp->ioc_cmd == O_SIOCGIFCONF) { 8830 /* old behaviour */ 8831 rw_exit(&ipst->ips_ill_g_lock); 8832 return (EINVAL); 8833 } else { 8834 goto if_copydone; 8835 } 8836 } 8837 (void) ipif_get_name(ipif, 8838 ifr->ifr_name, 8839 sizeof (ifr->ifr_name)); 8840 sin = (sin_t *)&ifr->ifr_addr; 8841 *sin = sin_null; 8842 sin->sin_family = AF_INET; 8843 sin->sin_addr.s_addr = ipif->ipif_lcl_addr; 8844 ifr++; 8845 } 8846 } 8847 if_copydone: 8848 rw_exit(&ipst->ips_ill_g_lock); 8849 mp1->b_wptr = (uchar_t *)ifr; 8850 8851 if (STRUCT_BUF(ifc) != NULL) { 8852 STRUCT_FSET(ifc, ifc_len, 8853 (int)((uchar_t *)ifr - mp1->b_rptr)); 8854 } 8855 return (0); 8856 } 8857 8858 /* 8859 * Get the interfaces using the address hosted on the interface passed in, 8860 * as a source adddress 8861 */ 8862 /* ARGSUSED */ 8863 int 8864 ip_sioctl_get_lifsrcof(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, 8865 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) 8866 { 8867 mblk_t *mp1; 8868 ill_t *ill, *ill_head; 8869 ipif_t *ipif, *orig_ipif; 8870 int numlifs = 0; 8871 size_t lifs_bufsize, lifsmaxlen; 8872 struct lifreq *lifr; 8873 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 8874 uint_t ifindex; 8875 zoneid_t zoneid; 8876 int err = 0; 8877 boolean_t isv6 = B_FALSE; 8878 struct sockaddr_in *sin; 8879 struct sockaddr_in6 *sin6; 8880 STRUCT_HANDLE(lifsrcof, lifs); 8881 ip_stack_t *ipst; 8882 8883 ipst = CONNQ_TO_IPST(q); 8884 8885 ASSERT(q->q_next == NULL); 8886 8887 zoneid = Q_TO_CONN(q)->conn_zoneid; 8888 8889 /* Existence verified in ip_wput_nondata */ 8890 mp1 = mp->b_cont->b_cont; 8891 8892 /* 8893 * Must be (better be!) continuation of a TRANSPARENT 8894 * IOCTL. We just copied in the lifsrcof structure. 8895 */ 8896 STRUCT_SET_HANDLE(lifs, iocp->ioc_flag, 8897 (struct lifsrcof *)mp1->b_rptr); 8898 8899 if (MBLKL(mp1) != STRUCT_SIZE(lifs)) 8900 return (EINVAL); 8901 8902 ifindex = STRUCT_FGET(lifs, lifs_ifindex); 8903 isv6 = (Q_TO_CONN(q))->conn_af_isv6; 8904 ipif = ipif_lookup_on_ifindex(ifindex, isv6, zoneid, q, mp, 8905 ip_process_ioctl, &err, ipst); 8906 if (ipif == NULL) { 8907 ip1dbg(("ip_sioctl_get_lifsrcof: no ipif for ifindex %d\n", 8908 ifindex)); 8909 return (err); 8910 } 8911 8912 8913 /* Allocate a buffer to hold requested information */ 8914 numlifs = ip_get_lifsrcofnum(ipif->ipif_ill); 8915 lifs_bufsize = numlifs * sizeof (struct lifreq); 8916 lifsmaxlen = STRUCT_FGET(lifs, lifs_maxlen); 8917 /* The actual size needed is always returned in lifs_len */ 8918 STRUCT_FSET(lifs, lifs_len, lifs_bufsize); 8919 8920 /* If the amount we need is more than what is passed in, abort */ 8921 if (lifs_bufsize > lifsmaxlen || lifs_bufsize == 0) { 8922 ipif_refrele(ipif); 8923 return (0); 8924 } 8925 8926 mp1 = mi_copyout_alloc(q, mp, 8927 STRUCT_FGETP(lifs, lifs_buf), lifs_bufsize, B_FALSE); 8928 if (mp1 == NULL) { 8929 ipif_refrele(ipif); 8930 return (ENOMEM); 8931 } 8932 8933 mp1->b_wptr = mp1->b_rptr + lifs_bufsize; 8934 bzero(mp1->b_rptr, lifs_bufsize); 8935 8936 lifr = (struct lifreq *)mp1->b_rptr; 8937 8938 ill = ill_head = ipif->ipif_ill; 8939 orig_ipif = ipif; 8940 8941 /* ill_g_usesrc_lock protects ill_usesrc_grp_next */ 8942 rw_enter(&ipst->ips_ill_g_usesrc_lock, RW_READER); 8943 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 8944 8945 ill = ill->ill_usesrc_grp_next; /* start from next ill */ 8946 for (; (ill != NULL) && (ill != ill_head); 8947 ill = ill->ill_usesrc_grp_next) { 8948 8949 if ((uchar_t *)&lifr[1] > mp1->b_wptr) 8950 break; 8951 8952 ipif = ill->ill_ipif; 8953 (void) ipif_get_name(ipif, 8954 lifr->lifr_name, sizeof (lifr->lifr_name)); 8955 if (ipif->ipif_isv6) { 8956 sin6 = (sin6_t *)&lifr->lifr_addr; 8957 *sin6 = sin6_null; 8958 sin6->sin6_family = AF_INET6; 8959 sin6->sin6_addr = ipif->ipif_v6lcl_addr; 8960 lifr->lifr_addrlen = ip_mask_to_plen_v6( 8961 &ipif->ipif_v6net_mask); 8962 } else { 8963 sin = (sin_t *)&lifr->lifr_addr; 8964 *sin = sin_null; 8965 sin->sin_family = AF_INET; 8966 sin->sin_addr.s_addr = ipif->ipif_lcl_addr; 8967 lifr->lifr_addrlen = ip_mask_to_plen( 8968 ipif->ipif_net_mask); 8969 } 8970 lifr++; 8971 } 8972 rw_exit(&ipst->ips_ill_g_usesrc_lock); 8973 rw_exit(&ipst->ips_ill_g_lock); 8974 ipif_refrele(orig_ipif); 8975 mp1->b_wptr = (uchar_t *)lifr; 8976 STRUCT_FSET(lifs, lifs_len, (int)((uchar_t *)lifr - mp1->b_rptr)); 8977 8978 return (0); 8979 } 8980 8981 /* ARGSUSED */ 8982 int 8983 ip_sioctl_get_lifconf(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, 8984 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) 8985 { 8986 mblk_t *mp1; 8987 int list; 8988 ill_t *ill; 8989 ipif_t *ipif; 8990 int flags; 8991 int numlifs = 0; 8992 size_t lifc_bufsize; 8993 struct lifreq *lifr; 8994 sa_family_t family; 8995 struct sockaddr_in *sin; 8996 struct sockaddr_in6 *sin6; 8997 ill_walk_context_t ctx; 8998 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 8999 int32_t lifclen; 9000 zoneid_t zoneid; 9001 STRUCT_HANDLE(lifconf, lifc); 9002 ip_stack_t *ipst = CONNQ_TO_IPST(q); 9003 9004 ip1dbg(("ip_sioctl_get_lifconf")); 9005 9006 ASSERT(q->q_next == NULL); 9007 9008 zoneid = Q_TO_CONN(q)->conn_zoneid; 9009 9010 /* Existence verified in ip_wput_nondata */ 9011 mp1 = mp->b_cont->b_cont; 9012 9013 /* 9014 * An extended version of SIOCGIFCONF that takes an 9015 * additional address family and flags field. 9016 * AF_UNSPEC retrieve both IPv4 and IPv6. 9017 * Unless LIFC_NOXMIT is specified the IPIF_NOXMIT 9018 * interfaces are omitted. 9019 * Similarly, IPIF_TEMPORARY interfaces are omitted 9020 * unless LIFC_TEMPORARY is specified. 9021 * If LIFC_EXTERNAL_SOURCE is specified, IPIF_NOXMIT, 9022 * IPIF_NOLOCAL, PHYI_LOOPBACK, IPIF_DEPRECATED and 9023 * not IPIF_UP interfaces are omitted. LIFC_EXTERNAL_SOURCE 9024 * has priority over LIFC_NOXMIT. 9025 */ 9026 STRUCT_SET_HANDLE(lifc, iocp->ioc_flag, NULL); 9027 9028 if ((mp1->b_wptr - mp1->b_rptr) != STRUCT_SIZE(lifc)) 9029 return (EINVAL); 9030 9031 /* 9032 * Must be (better be!) continuation of a TRANSPARENT 9033 * IOCTL. We just copied in the lifconf structure. 9034 */ 9035 STRUCT_SET_HANDLE(lifc, iocp->ioc_flag, (struct lifconf *)mp1->b_rptr); 9036 9037 family = STRUCT_FGET(lifc, lifc_family); 9038 flags = STRUCT_FGET(lifc, lifc_flags); 9039 9040 switch (family) { 9041 case AF_UNSPEC: 9042 /* 9043 * walk all ILL's. 9044 */ 9045 list = MAX_G_HEADS; 9046 break; 9047 case AF_INET: 9048 /* 9049 * walk only IPV4 ILL's. 9050 */ 9051 list = IP_V4_G_HEAD; 9052 break; 9053 case AF_INET6: 9054 /* 9055 * walk only IPV6 ILL's. 9056 */ 9057 list = IP_V6_G_HEAD; 9058 break; 9059 default: 9060 return (EAFNOSUPPORT); 9061 } 9062 9063 /* 9064 * Allocate a buffer to hold requested information. 9065 * 9066 * If lifc_len is larger than what is needed, we only 9067 * allocate what we will use. 9068 * 9069 * If lifc_len is smaller than what is needed, return 9070 * EINVAL. 9071 */ 9072 numlifs = ip_get_numlifs(family, flags, zoneid, ipst); 9073 lifc_bufsize = numlifs * sizeof (struct lifreq); 9074 lifclen = STRUCT_FGET(lifc, lifc_len); 9075 if (lifc_bufsize > lifclen) { 9076 if (iocp->ioc_cmd == O_SIOCGLIFCONF) 9077 return (EINVAL); 9078 else 9079 lifc_bufsize = lifclen; 9080 } 9081 9082 mp1 = mi_copyout_alloc(q, mp, 9083 STRUCT_FGETP(lifc, lifc_buf), lifc_bufsize, B_FALSE); 9084 if (mp1 == NULL) 9085 return (ENOMEM); 9086 9087 mp1->b_wptr = mp1->b_rptr + lifc_bufsize; 9088 bzero(mp1->b_rptr, mp1->b_wptr - mp1->b_rptr); 9089 9090 lifr = (struct lifreq *)mp1->b_rptr; 9091 9092 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 9093 ill = ill_first(list, list, &ctx, ipst); 9094 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 9095 for (ipif = ill->ill_ipif; ipif != NULL; 9096 ipif = ipif->ipif_next) { 9097 if ((ipif->ipif_flags & IPIF_NOXMIT) && 9098 !(flags & LIFC_NOXMIT)) 9099 continue; 9100 9101 if ((ipif->ipif_flags & IPIF_TEMPORARY) && 9102 !(flags & LIFC_TEMPORARY)) 9103 continue; 9104 9105 if (((ipif->ipif_flags & 9106 (IPIF_NOXMIT|IPIF_NOLOCAL| 9107 IPIF_DEPRECATED)) || 9108 (ill->ill_phyint->phyint_flags & 9109 PHYI_LOOPBACK) || 9110 !(ipif->ipif_flags & IPIF_UP)) && 9111 (flags & LIFC_EXTERNAL_SOURCE)) 9112 continue; 9113 9114 if (zoneid != ipif->ipif_zoneid && 9115 ipif->ipif_zoneid != ALL_ZONES && 9116 (zoneid != GLOBAL_ZONEID || 9117 !(flags & LIFC_ALLZONES))) 9118 continue; 9119 9120 if ((uchar_t *)&lifr[1] > mp1->b_wptr) { 9121 if (iocp->ioc_cmd == O_SIOCGLIFCONF) { 9122 rw_exit(&ipst->ips_ill_g_lock); 9123 return (EINVAL); 9124 } else { 9125 goto lif_copydone; 9126 } 9127 } 9128 9129 (void) ipif_get_name(ipif, 9130 lifr->lifr_name, 9131 sizeof (lifr->lifr_name)); 9132 if (ipif->ipif_isv6) { 9133 sin6 = (sin6_t *)&lifr->lifr_addr; 9134 *sin6 = sin6_null; 9135 sin6->sin6_family = AF_INET6; 9136 sin6->sin6_addr = 9137 ipif->ipif_v6lcl_addr; 9138 lifr->lifr_addrlen = 9139 ip_mask_to_plen_v6( 9140 &ipif->ipif_v6net_mask); 9141 } else { 9142 sin = (sin_t *)&lifr->lifr_addr; 9143 *sin = sin_null; 9144 sin->sin_family = AF_INET; 9145 sin->sin_addr.s_addr = 9146 ipif->ipif_lcl_addr; 9147 lifr->lifr_addrlen = 9148 ip_mask_to_plen( 9149 ipif->ipif_net_mask); 9150 } 9151 lifr++; 9152 } 9153 } 9154 lif_copydone: 9155 rw_exit(&ipst->ips_ill_g_lock); 9156 9157 mp1->b_wptr = (uchar_t *)lifr; 9158 if (STRUCT_BUF(lifc) != NULL) { 9159 STRUCT_FSET(lifc, lifc_len, 9160 (int)((uchar_t *)lifr - mp1->b_rptr)); 9161 } 9162 return (0); 9163 } 9164 9165 /* ARGSUSED */ 9166 int 9167 ip_sioctl_set_ipmpfailback(ipif_t *dummy_ipif, sin_t *dummy_sin, 9168 queue_t *q, mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) 9169 { 9170 ip_stack_t *ipst; 9171 9172 if (q->q_next == NULL) 9173 ipst = CONNQ_TO_IPST(q); 9174 else 9175 ipst = ILLQ_TO_IPST(q); 9176 9177 /* Existence of b_cont->b_cont checked in ip_wput_nondata */ 9178 ipst->ips_ipmp_enable_failback = *(int *)mp->b_cont->b_cont->b_rptr; 9179 return (0); 9180 } 9181 9182 static void 9183 ip_sioctl_ip6addrpolicy(queue_t *q, mblk_t *mp) 9184 { 9185 ip6_asp_t *table; 9186 size_t table_size; 9187 mblk_t *data_mp; 9188 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 9189 ip_stack_t *ipst; 9190 9191 if (q->q_next == NULL) 9192 ipst = CONNQ_TO_IPST(q); 9193 else 9194 ipst = ILLQ_TO_IPST(q); 9195 9196 /* These two ioctls are I_STR only */ 9197 if (iocp->ioc_count == TRANSPARENT) { 9198 miocnak(q, mp, 0, EINVAL); 9199 return; 9200 } 9201 9202 data_mp = mp->b_cont; 9203 if (data_mp == NULL) { 9204 /* The user passed us a NULL argument */ 9205 table = NULL; 9206 table_size = iocp->ioc_count; 9207 } else { 9208 /* 9209 * The user provided a table. The stream head 9210 * may have copied in the user data in chunks, 9211 * so make sure everything is pulled up 9212 * properly. 9213 */ 9214 if (MBLKL(data_mp) < iocp->ioc_count) { 9215 mblk_t *new_data_mp; 9216 if ((new_data_mp = msgpullup(data_mp, -1)) == 9217 NULL) { 9218 miocnak(q, mp, 0, ENOMEM); 9219 return; 9220 } 9221 freemsg(data_mp); 9222 data_mp = new_data_mp; 9223 mp->b_cont = data_mp; 9224 } 9225 table = (ip6_asp_t *)data_mp->b_rptr; 9226 table_size = iocp->ioc_count; 9227 } 9228 9229 switch (iocp->ioc_cmd) { 9230 case SIOCGIP6ADDRPOLICY: 9231 iocp->ioc_rval = ip6_asp_get(table, table_size, ipst); 9232 if (iocp->ioc_rval == -1) 9233 iocp->ioc_error = EINVAL; 9234 #if defined(_SYSCALL32_IMPL) && _LONG_LONG_ALIGNMENT_32 == 4 9235 else if (table != NULL && 9236 (iocp->ioc_flag & IOC_MODELS) == IOC_ILP32) { 9237 ip6_asp_t *src = table; 9238 ip6_asp32_t *dst = (void *)table; 9239 int count = table_size / sizeof (ip6_asp_t); 9240 int i; 9241 9242 /* 9243 * We need to do an in-place shrink of the array 9244 * to match the alignment attributes of the 9245 * 32-bit ABI looking at it. 9246 */ 9247 /* LINTED: logical expression always true: op "||" */ 9248 ASSERT(sizeof (*src) > sizeof (*dst)); 9249 for (i = 1; i < count; i++) 9250 bcopy(src + i, dst + i, sizeof (*dst)); 9251 } 9252 #endif 9253 break; 9254 9255 case SIOCSIP6ADDRPOLICY: 9256 ASSERT(mp->b_prev == NULL); 9257 mp->b_prev = (void *)q; 9258 #if defined(_SYSCALL32_IMPL) && _LONG_LONG_ALIGNMENT_32 == 4 9259 /* 9260 * We pass in the datamodel here so that the ip6_asp_replace() 9261 * routine can handle converting from 32-bit to native formats 9262 * where necessary. 9263 * 9264 * A better way to handle this might be to convert the inbound 9265 * data structure here, and hang it off a new 'mp'; thus the 9266 * ip6_asp_replace() logic would always be dealing with native 9267 * format data structures.. 9268 * 9269 * (An even simpler way to handle these ioctls is to just 9270 * add a 32-bit trailing 'pad' field to the ip6_asp_t structure 9271 * and just recompile everything that depends on it.) 9272 */ 9273 #endif 9274 ip6_asp_replace(mp, table, table_size, B_FALSE, ipst, 9275 iocp->ioc_flag & IOC_MODELS); 9276 return; 9277 } 9278 9279 DB_TYPE(mp) = (iocp->ioc_error == 0) ? M_IOCACK : M_IOCNAK; 9280 qreply(q, mp); 9281 } 9282 9283 static void 9284 ip_sioctl_dstinfo(queue_t *q, mblk_t *mp) 9285 { 9286 mblk_t *data_mp; 9287 struct dstinforeq *dir; 9288 uint8_t *end, *cur; 9289 in6_addr_t *daddr, *saddr; 9290 ipaddr_t v4daddr; 9291 ire_t *ire; 9292 char *slabel, *dlabel; 9293 boolean_t isipv4; 9294 int match_ire; 9295 ill_t *dst_ill; 9296 ipif_t *src_ipif, *ire_ipif; 9297 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 9298 zoneid_t zoneid; 9299 ip_stack_t *ipst = CONNQ_TO_IPST(q); 9300 9301 ASSERT(q->q_next == NULL); /* this ioctl not allowed if ip is module */ 9302 zoneid = Q_TO_CONN(q)->conn_zoneid; 9303 9304 /* 9305 * This ioctl is I_STR only, and must have a 9306 * data mblk following the M_IOCTL mblk. 9307 */ 9308 data_mp = mp->b_cont; 9309 if (iocp->ioc_count == TRANSPARENT || data_mp == NULL) { 9310 miocnak(q, mp, 0, EINVAL); 9311 return; 9312 } 9313 9314 if (MBLKL(data_mp) < iocp->ioc_count) { 9315 mblk_t *new_data_mp; 9316 9317 if ((new_data_mp = msgpullup(data_mp, -1)) == NULL) { 9318 miocnak(q, mp, 0, ENOMEM); 9319 return; 9320 } 9321 freemsg(data_mp); 9322 data_mp = new_data_mp; 9323 mp->b_cont = data_mp; 9324 } 9325 match_ire = MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT | MATCH_IRE_PARENT; 9326 9327 for (cur = data_mp->b_rptr, end = data_mp->b_wptr; 9328 end - cur >= sizeof (struct dstinforeq); 9329 cur += sizeof (struct dstinforeq)) { 9330 dir = (struct dstinforeq *)cur; 9331 daddr = &dir->dir_daddr; 9332 saddr = &dir->dir_saddr; 9333 9334 /* 9335 * ip_addr_scope_v6() and ip6_asp_lookup() handle 9336 * v4 mapped addresses; ire_ftable_lookup[_v6]() 9337 * and ipif_select_source[_v6]() do not. 9338 */ 9339 dir->dir_dscope = ip_addr_scope_v6(daddr); 9340 dlabel = ip6_asp_lookup(daddr, &dir->dir_precedence, ipst); 9341 9342 isipv4 = IN6_IS_ADDR_V4MAPPED(daddr); 9343 if (isipv4) { 9344 IN6_V4MAPPED_TO_IPADDR(daddr, v4daddr); 9345 ire = ire_ftable_lookup(v4daddr, NULL, NULL, 9346 0, NULL, NULL, zoneid, 0, NULL, match_ire, ipst); 9347 } else { 9348 ire = ire_ftable_lookup_v6(daddr, NULL, NULL, 9349 0, NULL, NULL, zoneid, 0, NULL, match_ire, ipst); 9350 } 9351 if (ire == NULL) { 9352 dir->dir_dreachable = 0; 9353 9354 /* move on to next dst addr */ 9355 continue; 9356 } 9357 dir->dir_dreachable = 1; 9358 9359 ire_ipif = ire->ire_ipif; 9360 if (ire_ipif == NULL) 9361 goto next_dst; 9362 9363 /* 9364 * We expect to get back an interface ire or a 9365 * gateway ire cache entry. For both types, the 9366 * output interface is ire_ipif->ipif_ill. 9367 */ 9368 dst_ill = ire_ipif->ipif_ill; 9369 dir->dir_dmactype = dst_ill->ill_mactype; 9370 9371 if (isipv4) { 9372 src_ipif = ipif_select_source(dst_ill, v4daddr, zoneid); 9373 } else { 9374 src_ipif = ipif_select_source_v6(dst_ill, 9375 daddr, RESTRICT_TO_NONE, IPV6_PREFER_SRC_DEFAULT, 9376 zoneid); 9377 } 9378 if (src_ipif == NULL) 9379 goto next_dst; 9380 9381 *saddr = src_ipif->ipif_v6lcl_addr; 9382 dir->dir_sscope = ip_addr_scope_v6(saddr); 9383 slabel = ip6_asp_lookup(saddr, NULL, ipst); 9384 dir->dir_labelmatch = ip6_asp_labelcmp(dlabel, slabel); 9385 dir->dir_sdeprecated = 9386 (src_ipif->ipif_flags & IPIF_DEPRECATED) ? 1 : 0; 9387 ipif_refrele(src_ipif); 9388 next_dst: 9389 ire_refrele(ire); 9390 } 9391 miocack(q, mp, iocp->ioc_count, 0); 9392 } 9393 9394 9395 /* 9396 * Check if this is an address assigned to this machine. 9397 * Skips interfaces that are down by using ire checks. 9398 * Translates mapped addresses to v4 addresses and then 9399 * treats them as such, returning true if the v4 address 9400 * associated with this mapped address is configured. 9401 * Note: Applications will have to be careful what they do 9402 * with the response; use of mapped addresses limits 9403 * what can be done with the socket, especially with 9404 * respect to socket options and ioctls - neither IPv4 9405 * options nor IPv6 sticky options/ancillary data options 9406 * may be used. 9407 */ 9408 /* ARGSUSED */ 9409 int 9410 ip_sioctl_tmyaddr(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 9411 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 9412 { 9413 struct sioc_addrreq *sia; 9414 sin_t *sin; 9415 ire_t *ire; 9416 mblk_t *mp1; 9417 zoneid_t zoneid; 9418 ip_stack_t *ipst; 9419 9420 ip1dbg(("ip_sioctl_tmyaddr")); 9421 9422 ASSERT(q->q_next == NULL); /* this ioctl not allowed if ip is module */ 9423 zoneid = Q_TO_CONN(q)->conn_zoneid; 9424 ipst = CONNQ_TO_IPST(q); 9425 9426 /* Existence verified in ip_wput_nondata */ 9427 mp1 = mp->b_cont->b_cont; 9428 sia = (struct sioc_addrreq *)mp1->b_rptr; 9429 sin = (sin_t *)&sia->sa_addr; 9430 switch (sin->sin_family) { 9431 case AF_INET6: { 9432 sin6_t *sin6 = (sin6_t *)sin; 9433 9434 if (IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) { 9435 ipaddr_t v4_addr; 9436 9437 IN6_V4MAPPED_TO_IPADDR(&sin6->sin6_addr, 9438 v4_addr); 9439 ire = ire_ctable_lookup(v4_addr, 0, 9440 IRE_LOCAL|IRE_LOOPBACK, NULL, zoneid, 9441 NULL, MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY, ipst); 9442 } else { 9443 in6_addr_t v6addr; 9444 9445 v6addr = sin6->sin6_addr; 9446 ire = ire_ctable_lookup_v6(&v6addr, 0, 9447 IRE_LOCAL|IRE_LOOPBACK, NULL, zoneid, 9448 NULL, MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY, ipst); 9449 } 9450 break; 9451 } 9452 case AF_INET: { 9453 ipaddr_t v4addr; 9454 9455 v4addr = sin->sin_addr.s_addr; 9456 ire = ire_ctable_lookup(v4addr, 0, 9457 IRE_LOCAL|IRE_LOOPBACK, NULL, zoneid, 9458 NULL, MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY, ipst); 9459 break; 9460 } 9461 default: 9462 return (EAFNOSUPPORT); 9463 } 9464 if (ire != NULL) { 9465 sia->sa_res = 1; 9466 ire_refrele(ire); 9467 } else { 9468 sia->sa_res = 0; 9469 } 9470 return (0); 9471 } 9472 9473 /* 9474 * Check if this is an address assigned on-link i.e. neighbor, 9475 * and makes sure it's reachable from the current zone. 9476 * Returns true for my addresses as well. 9477 * Translates mapped addresses to v4 addresses and then 9478 * treats them as such, returning true if the v4 address 9479 * associated with this mapped address is configured. 9480 * Note: Applications will have to be careful what they do 9481 * with the response; use of mapped addresses limits 9482 * what can be done with the socket, especially with 9483 * respect to socket options and ioctls - neither IPv4 9484 * options nor IPv6 sticky options/ancillary data options 9485 * may be used. 9486 */ 9487 /* ARGSUSED */ 9488 int 9489 ip_sioctl_tonlink(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 9490 ip_ioctl_cmd_t *ipip, void *duymmy_ifreq) 9491 { 9492 struct sioc_addrreq *sia; 9493 sin_t *sin; 9494 mblk_t *mp1; 9495 ire_t *ire = NULL; 9496 zoneid_t zoneid; 9497 ip_stack_t *ipst; 9498 9499 ip1dbg(("ip_sioctl_tonlink")); 9500 9501 ASSERT(q->q_next == NULL); /* this ioctl not allowed if ip is module */ 9502 zoneid = Q_TO_CONN(q)->conn_zoneid; 9503 ipst = CONNQ_TO_IPST(q); 9504 9505 /* Existence verified in ip_wput_nondata */ 9506 mp1 = mp->b_cont->b_cont; 9507 sia = (struct sioc_addrreq *)mp1->b_rptr; 9508 sin = (sin_t *)&sia->sa_addr; 9509 9510 /* 9511 * Match addresses with a zero gateway field to avoid 9512 * routes going through a router. 9513 * Exclude broadcast and multicast addresses. 9514 */ 9515 switch (sin->sin_family) { 9516 case AF_INET6: { 9517 sin6_t *sin6 = (sin6_t *)sin; 9518 9519 if (IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) { 9520 ipaddr_t v4_addr; 9521 9522 IN6_V4MAPPED_TO_IPADDR(&sin6->sin6_addr, 9523 v4_addr); 9524 if (!CLASSD(v4_addr)) { 9525 ire = ire_route_lookup(v4_addr, 0, 0, 0, 9526 NULL, NULL, zoneid, NULL, 9527 MATCH_IRE_GW, ipst); 9528 } 9529 } else { 9530 in6_addr_t v6addr; 9531 in6_addr_t v6gw; 9532 9533 v6addr = sin6->sin6_addr; 9534 v6gw = ipv6_all_zeros; 9535 if (!IN6_IS_ADDR_MULTICAST(&v6addr)) { 9536 ire = ire_route_lookup_v6(&v6addr, 0, 9537 &v6gw, 0, NULL, NULL, zoneid, 9538 NULL, MATCH_IRE_GW, ipst); 9539 } 9540 } 9541 break; 9542 } 9543 case AF_INET: { 9544 ipaddr_t v4addr; 9545 9546 v4addr = sin->sin_addr.s_addr; 9547 if (!CLASSD(v4addr)) { 9548 ire = ire_route_lookup(v4addr, 0, 0, 0, 9549 NULL, NULL, zoneid, NULL, 9550 MATCH_IRE_GW, ipst); 9551 } 9552 break; 9553 } 9554 default: 9555 return (EAFNOSUPPORT); 9556 } 9557 sia->sa_res = 0; 9558 if (ire != NULL) { 9559 if (ire->ire_type & (IRE_INTERFACE|IRE_CACHE| 9560 IRE_LOCAL|IRE_LOOPBACK)) { 9561 sia->sa_res = 1; 9562 } 9563 ire_refrele(ire); 9564 } 9565 return (0); 9566 } 9567 9568 /* 9569 * TBD: implement when kernel maintaines a list of site prefixes. 9570 */ 9571 /* ARGSUSED */ 9572 int 9573 ip_sioctl_tmysite(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 9574 ip_ioctl_cmd_t *ipip, void *ifreq) 9575 { 9576 return (ENXIO); 9577 } 9578 9579 /* ARGSUSED */ 9580 int 9581 ip_sioctl_tunparam(ipif_t *ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 9582 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 9583 { 9584 ill_t *ill; 9585 mblk_t *mp1; 9586 conn_t *connp; 9587 boolean_t success; 9588 9589 ip1dbg(("ip_sioctl_tunparam(%s:%u %p)\n", 9590 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 9591 /* ioctl comes down on an conn */ 9592 ASSERT(!(q->q_flag & QREADR) && q->q_next == NULL); 9593 connp = Q_TO_CONN(q); 9594 9595 mp->b_datap->db_type = M_IOCTL; 9596 9597 /* 9598 * Send down a copy. (copymsg does not copy b_next/b_prev). 9599 * The original mp contains contaminated b_next values due to 'mi', 9600 * which is needed to do the mi_copy_done. Unfortunately if we 9601 * send down the original mblk itself and if we are popped due to an 9602 * an unplumb before the response comes back from tunnel, 9603 * the streamhead (which does a freemsg) will see this contaminated 9604 * message and the assertion in freemsg about non-null b_next/b_prev 9605 * will panic a DEBUG kernel. 9606 */ 9607 mp1 = copymsg(mp); 9608 if (mp1 == NULL) 9609 return (ENOMEM); 9610 9611 ill = ipif->ipif_ill; 9612 mutex_enter(&connp->conn_lock); 9613 mutex_enter(&ill->ill_lock); 9614 if (ipip->ipi_cmd == SIOCSTUNPARAM || ipip->ipi_cmd == OSIOCSTUNPARAM) { 9615 success = ipsq_pending_mp_add(connp, ipif, CONNP_TO_WQ(connp), 9616 mp, 0); 9617 } else { 9618 success = ill_pending_mp_add(ill, connp, mp); 9619 } 9620 mutex_exit(&ill->ill_lock); 9621 mutex_exit(&connp->conn_lock); 9622 9623 if (success) { 9624 ip1dbg(("sending down tunparam request ")); 9625 putnext(ill->ill_wq, mp1); 9626 return (EINPROGRESS); 9627 } else { 9628 /* The conn has started closing */ 9629 freemsg(mp1); 9630 return (EINTR); 9631 } 9632 } 9633 9634 static int 9635 ip_sioctl_arp_common(ill_t *ill, queue_t *q, mblk_t *mp, sin_t *sin, 9636 boolean_t x_arp_ioctl, boolean_t if_arp_ioctl) 9637 { 9638 mblk_t *mp1; 9639 mblk_t *mp2; 9640 mblk_t *pending_mp; 9641 ipaddr_t ipaddr; 9642 area_t *area; 9643 struct iocblk *iocp; 9644 conn_t *connp; 9645 struct arpreq *ar; 9646 struct xarpreq *xar; 9647 boolean_t success; 9648 int flags, alength; 9649 char *lladdr; 9650 ip_stack_t *ipst; 9651 9652 ASSERT(!(q->q_flag & QREADR) && q->q_next == NULL); 9653 connp = Q_TO_CONN(q); 9654 ipst = connp->conn_netstack->netstack_ip; 9655 9656 iocp = (struct iocblk *)mp->b_rptr; 9657 /* 9658 * ill has already been set depending on whether 9659 * bsd style or interface style ioctl. 9660 */ 9661 ASSERT(ill != NULL); 9662 9663 /* 9664 * Is this one of the new SIOC*XARP ioctls? 9665 */ 9666 if (x_arp_ioctl) { 9667 /* We have a chain - M_IOCTL-->MI_COPY_MBLK-->XARPREQ_MBLK */ 9668 xar = (struct xarpreq *)mp->b_cont->b_cont->b_rptr; 9669 ar = NULL; 9670 9671 flags = xar->xarp_flags; 9672 lladdr = LLADDR(&xar->xarp_ha); 9673 /* 9674 * Validate against user's link layer address length 9675 * input and name and addr length limits. 9676 */ 9677 alength = ill->ill_phys_addr_length; 9678 if (iocp->ioc_cmd == SIOCSXARP) { 9679 if (alength != xar->xarp_ha.sdl_alen || 9680 (alength + xar->xarp_ha.sdl_nlen > 9681 sizeof (xar->xarp_ha.sdl_data))) 9682 return (EINVAL); 9683 } 9684 } else { 9685 /* We have a chain - M_IOCTL-->MI_COPY_MBLK-->ARPREQ_MBLK */ 9686 ar = (struct arpreq *)mp->b_cont->b_cont->b_rptr; 9687 xar = NULL; 9688 9689 flags = ar->arp_flags; 9690 lladdr = ar->arp_ha.sa_data; 9691 /* 9692 * Theoretically, the sa_family could tell us what link 9693 * layer type this operation is trying to deal with. By 9694 * common usage AF_UNSPEC means ethernet. We'll assume 9695 * any attempt to use the SIOC?ARP ioctls is for ethernet, 9696 * for now. Our new SIOC*XARP ioctls can be used more 9697 * generally. 9698 * 9699 * If the underlying media happens to have a non 6 byte 9700 * address, arp module will fail set/get, but the del 9701 * operation will succeed. 9702 */ 9703 alength = 6; 9704 if ((iocp->ioc_cmd != SIOCDARP) && 9705 (alength != ill->ill_phys_addr_length)) { 9706 return (EINVAL); 9707 } 9708 } 9709 9710 /* 9711 * We are going to pass up to ARP a packet chain that looks 9712 * like: 9713 * 9714 * M_IOCTL-->ARP_op_MBLK-->ORIG_M_IOCTL-->MI_COPY_MBLK-->[X]ARPREQ_MBLK 9715 * 9716 * Get a copy of the original IOCTL mblk to head the chain, 9717 * to be sent up (in mp1). Also get another copy to store 9718 * in the ill_pending_mp list, for matching the response 9719 * when it comes back from ARP. 9720 */ 9721 mp1 = copyb(mp); 9722 pending_mp = copymsg(mp); 9723 if (mp1 == NULL || pending_mp == NULL) { 9724 if (mp1 != NULL) 9725 freeb(mp1); 9726 if (pending_mp != NULL) 9727 inet_freemsg(pending_mp); 9728 return (ENOMEM); 9729 } 9730 9731 ipaddr = sin->sin_addr.s_addr; 9732 9733 mp2 = ill_arp_alloc(ill, (uchar_t *)&ip_area_template, 9734 (caddr_t)&ipaddr); 9735 if (mp2 == NULL) { 9736 freeb(mp1); 9737 inet_freemsg(pending_mp); 9738 return (ENOMEM); 9739 } 9740 /* Put together the chain. */ 9741 mp1->b_cont = mp2; 9742 mp1->b_datap->db_type = M_IOCTL; 9743 mp2->b_cont = mp; 9744 mp2->b_datap->db_type = M_DATA; 9745 9746 iocp = (struct iocblk *)mp1->b_rptr; 9747 9748 /* 9749 * An M_IOCDATA's payload (struct copyresp) is mostly the same as an 9750 * M_IOCTL's payload (struct iocblk), but 'struct copyresp' has a 9751 * cp_private field (or cp_rval on 32-bit systems) in place of the 9752 * ioc_count field; set ioc_count to be correct. 9753 */ 9754 iocp->ioc_count = MBLKL(mp1->b_cont); 9755 9756 /* 9757 * Set the proper command in the ARP message. 9758 * Convert the SIOC{G|S|D}ARP calls into our 9759 * AR_ENTRY_xxx calls. 9760 */ 9761 area = (area_t *)mp2->b_rptr; 9762 switch (iocp->ioc_cmd) { 9763 case SIOCDARP: 9764 case SIOCDXARP: 9765 /* 9766 * We defer deleting the corresponding IRE until 9767 * we return from arp. 9768 */ 9769 area->area_cmd = AR_ENTRY_DELETE; 9770 area->area_proto_mask_offset = 0; 9771 break; 9772 case SIOCGARP: 9773 case SIOCGXARP: 9774 area->area_cmd = AR_ENTRY_SQUERY; 9775 area->area_proto_mask_offset = 0; 9776 break; 9777 case SIOCSARP: 9778 case SIOCSXARP: { 9779 /* 9780 * Delete the corresponding ire to make sure IP will 9781 * pick up any change from arp. 9782 */ 9783 if (!if_arp_ioctl) { 9784 (void) ip_ire_clookup_and_delete(ipaddr, NULL, ipst); 9785 break; 9786 } else { 9787 ipif_t *ipif = ipif_get_next_ipif(NULL, ill); 9788 if (ipif != NULL) { 9789 (void) ip_ire_clookup_and_delete(ipaddr, ipif, 9790 ipst); 9791 ipif_refrele(ipif); 9792 } 9793 break; 9794 } 9795 } 9796 } 9797 iocp->ioc_cmd = area->area_cmd; 9798 9799 /* 9800 * Before sending 'mp' to ARP, we have to clear the b_next 9801 * and b_prev. Otherwise if STREAMS encounters such a message 9802 * in freemsg(), (because ARP can close any time) it can cause 9803 * a panic. But mi code needs the b_next and b_prev values of 9804 * mp->b_cont, to complete the ioctl. So we store it here 9805 * in pending_mp->bcont, and restore it in ip_sioctl_iocack() 9806 * when the response comes down from ARP. 9807 */ 9808 pending_mp->b_cont->b_next = mp->b_cont->b_next; 9809 pending_mp->b_cont->b_prev = mp->b_cont->b_prev; 9810 mp->b_cont->b_next = NULL; 9811 mp->b_cont->b_prev = NULL; 9812 9813 mutex_enter(&connp->conn_lock); 9814 mutex_enter(&ill->ill_lock); 9815 /* conn has not yet started closing, hence this can't fail */ 9816 success = ill_pending_mp_add(ill, connp, pending_mp); 9817 ASSERT(success); 9818 mutex_exit(&ill->ill_lock); 9819 mutex_exit(&connp->conn_lock); 9820 9821 /* 9822 * Fill in the rest of the ARP operation fields. 9823 */ 9824 area->area_hw_addr_length = alength; 9825 bcopy(lladdr, 9826 (char *)area + area->area_hw_addr_offset, 9827 area->area_hw_addr_length); 9828 /* Translate the flags. */ 9829 if (flags & ATF_PERM) 9830 area->area_flags |= ACE_F_PERMANENT; 9831 if (flags & ATF_PUBL) 9832 area->area_flags |= ACE_F_PUBLISH; 9833 if (flags & ATF_AUTHORITY) 9834 area->area_flags |= ACE_F_AUTHORITY; 9835 9836 /* 9837 * Up to ARP it goes. The response will come 9838 * back in ip_wput as an M_IOCACK message, and 9839 * will be handed to ip_sioctl_iocack for 9840 * completion. 9841 */ 9842 putnext(ill->ill_rq, mp1); 9843 return (EINPROGRESS); 9844 } 9845 9846 /* ARGSUSED */ 9847 int 9848 ip_sioctl_xarp(ipif_t *ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 9849 ip_ioctl_cmd_t *ipip, void *ifreq) 9850 { 9851 struct xarpreq *xar; 9852 boolean_t isv6; 9853 mblk_t *mp1; 9854 int err; 9855 conn_t *connp; 9856 int ifnamelen; 9857 ire_t *ire = NULL; 9858 ill_t *ill = NULL; 9859 struct sockaddr_in *sin; 9860 boolean_t if_arp_ioctl = B_FALSE; 9861 ip_stack_t *ipst; 9862 9863 /* ioctl comes down on an conn */ 9864 ASSERT(!(q->q_flag & QREADR) && q->q_next == NULL); 9865 connp = Q_TO_CONN(q); 9866 isv6 = connp->conn_af_isv6; 9867 ipst = connp->conn_netstack->netstack_ip; 9868 9869 /* Existance verified in ip_wput_nondata */ 9870 mp1 = mp->b_cont->b_cont; 9871 9872 ASSERT(MBLKL(mp1) >= sizeof (*xar)); 9873 xar = (struct xarpreq *)mp1->b_rptr; 9874 sin = (sin_t *)&xar->xarp_pa; 9875 9876 if (isv6 || (xar->xarp_ha.sdl_family != AF_LINK) || 9877 (xar->xarp_pa.ss_family != AF_INET)) 9878 return (ENXIO); 9879 9880 ifnamelen = xar->xarp_ha.sdl_nlen; 9881 if (ifnamelen != 0) { 9882 char *cptr, cval; 9883 9884 if (ifnamelen >= LIFNAMSIZ) 9885 return (EINVAL); 9886 9887 /* 9888 * Instead of bcopying a bunch of bytes, 9889 * null-terminate the string in-situ. 9890 */ 9891 cptr = xar->xarp_ha.sdl_data + ifnamelen; 9892 cval = *cptr; 9893 *cptr = '\0'; 9894 ill = ill_lookup_on_name(xar->xarp_ha.sdl_data, 9895 B_FALSE, isv6, CONNP_TO_WQ(connp), mp, ip_process_ioctl, 9896 &err, NULL, ipst); 9897 *cptr = cval; 9898 if (ill == NULL) 9899 return (err); 9900 if (ill->ill_net_type != IRE_IF_RESOLVER) { 9901 ill_refrele(ill); 9902 return (ENXIO); 9903 } 9904 9905 if_arp_ioctl = B_TRUE; 9906 } else { 9907 /* 9908 * PSARC 2003/088 states that if sdl_nlen == 0, it behaves 9909 * as an extended BSD ioctl. The kernel uses the IP address 9910 * to figure out the network interface. 9911 */ 9912 ire = ire_cache_lookup(sin->sin_addr.s_addr, ALL_ZONES, NULL, 9913 ipst); 9914 if ((ire == NULL) || (ire->ire_type == IRE_LOOPBACK) || 9915 ((ill = ire_to_ill(ire)) == NULL) || 9916 (ill->ill_net_type != IRE_IF_RESOLVER)) { 9917 if (ire != NULL) 9918 ire_refrele(ire); 9919 ire = ire_ftable_lookup(sin->sin_addr.s_addr, 9920 0, 0, IRE_IF_RESOLVER, NULL, NULL, ALL_ZONES, 0, 9921 NULL, MATCH_IRE_TYPE, ipst); 9922 if ((ire == NULL) || 9923 ((ill = ire_to_ill(ire)) == NULL)) { 9924 if (ire != NULL) 9925 ire_refrele(ire); 9926 return (ENXIO); 9927 } 9928 } 9929 ASSERT(ire != NULL && ill != NULL); 9930 } 9931 9932 err = ip_sioctl_arp_common(ill, q, mp, sin, B_TRUE, if_arp_ioctl); 9933 if (if_arp_ioctl) 9934 ill_refrele(ill); 9935 if (ire != NULL) 9936 ire_refrele(ire); 9937 9938 return (err); 9939 } 9940 9941 /* 9942 * ARP IOCTLs. 9943 * How does IP get in the business of fronting ARP configuration/queries? 9944 * Well its like this, the Berkeley ARP IOCTLs (SIOCGARP, SIOCDARP, SIOCSARP) 9945 * are by tradition passed in through a datagram socket. That lands in IP. 9946 * As it happens, this is just as well since the interface is quite crude in 9947 * that it passes in no information about protocol or hardware types, or 9948 * interface association. After making the protocol assumption, IP is in 9949 * the position to look up the name of the ILL, which ARP will need, and 9950 * format a request that can be handled by ARP. The request is passed up 9951 * stream to ARP, and the original IOCTL is completed by IP when ARP passes 9952 * back a response. ARP supports its own set of more general IOCTLs, in 9953 * case anyone is interested. 9954 */ 9955 /* ARGSUSED */ 9956 int 9957 ip_sioctl_arp(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 9958 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 9959 { 9960 struct arpreq *ar; 9961 struct sockaddr_in *sin; 9962 ire_t *ire; 9963 boolean_t isv6; 9964 mblk_t *mp1; 9965 int err; 9966 conn_t *connp; 9967 ill_t *ill; 9968 ip_stack_t *ipst; 9969 9970 /* ioctl comes down on an conn */ 9971 ASSERT(!(q->q_flag & QREADR) && q->q_next == NULL); 9972 connp = Q_TO_CONN(q); 9973 ipst = CONNQ_TO_IPST(q); 9974 isv6 = connp->conn_af_isv6; 9975 if (isv6) 9976 return (ENXIO); 9977 9978 /* Existance verified in ip_wput_nondata */ 9979 mp1 = mp->b_cont->b_cont; 9980 9981 ar = (struct arpreq *)mp1->b_rptr; 9982 sin = (sin_t *)&ar->arp_pa; 9983 9984 /* 9985 * We need to let ARP know on which interface the IP 9986 * address has an ARP mapping. In the IPMP case, a 9987 * simple forwarding table lookup will return the 9988 * IRE_IF_RESOLVER for the first interface in the group, 9989 * which might not be the interface on which the 9990 * requested IP address was resolved due to the ill 9991 * selection algorithm (see ip_newroute_get_dst_ill()). 9992 * So we do a cache table lookup first: if the IRE cache 9993 * entry for the IP address is still there, it will 9994 * contain the ill pointer for the right interface, so 9995 * we use that. If the cache entry has been flushed, we 9996 * fall back to the forwarding table lookup. This should 9997 * be rare enough since IRE cache entries have a longer 9998 * life expectancy than ARP cache entries. 9999 */ 10000 ire = ire_cache_lookup(sin->sin_addr.s_addr, ALL_ZONES, NULL, ipst); 10001 if ((ire == NULL) || (ire->ire_type == IRE_LOOPBACK) || 10002 ((ill = ire_to_ill(ire)) == NULL)) { 10003 if (ire != NULL) 10004 ire_refrele(ire); 10005 ire = ire_ftable_lookup(sin->sin_addr.s_addr, 10006 0, 0, IRE_IF_RESOLVER, NULL, NULL, ALL_ZONES, 0, 10007 NULL, MATCH_IRE_TYPE, ipst); 10008 if ((ire == NULL) || ((ill = ire_to_ill(ire)) == NULL)) { 10009 if (ire != NULL) 10010 ire_refrele(ire); 10011 return (ENXIO); 10012 } 10013 } 10014 ASSERT(ire != NULL && ill != NULL); 10015 10016 err = ip_sioctl_arp_common(ill, q, mp, sin, B_FALSE, B_FALSE); 10017 ire_refrele(ire); 10018 return (err); 10019 } 10020 10021 /* 10022 * Do I_PLINK/I_LINK or I_PUNLINK/I_UNLINK with consistency checks and also 10023 * atomically set/clear the muxids. Also complete the ioctl by acking or 10024 * naking it. Note that the code is structured such that the link type, 10025 * whether it's persistent or not, is treated equally. ifconfig(1M) and 10026 * its clones use the persistent link, while pppd(1M) and perhaps many 10027 * other daemons may use non-persistent link. When combined with some 10028 * ill_t states, linking and unlinking lower streams may be used as 10029 * indicators of dynamic re-plumbing events [see PSARC/1999/348]. 10030 */ 10031 /* ARGSUSED */ 10032 void 10033 ip_sioctl_plink(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 10034 { 10035 mblk_t *mp1; 10036 mblk_t *mp2; 10037 struct linkblk *li; 10038 queue_t *ipwq; 10039 char *name; 10040 struct qinit *qinfo; 10041 struct ipmx_s *ipmxp; 10042 ill_t *ill = NULL; 10043 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 10044 int err = 0; 10045 boolean_t entered_ipsq = B_FALSE; 10046 boolean_t islink; 10047 queue_t *dwq = NULL; 10048 ip_stack_t *ipst; 10049 10050 if (CONN_Q(q)) 10051 ipst = CONNQ_TO_IPST(q); 10052 else 10053 ipst = ILLQ_TO_IPST(q); 10054 10055 ASSERT(iocp->ioc_cmd == I_PLINK || iocp->ioc_cmd == I_PUNLINK || 10056 iocp->ioc_cmd == I_LINK || iocp->ioc_cmd == I_UNLINK); 10057 10058 islink = (iocp->ioc_cmd == I_PLINK || iocp->ioc_cmd == I_LINK) ? 10059 B_TRUE : B_FALSE; 10060 10061 mp1 = mp->b_cont; /* This is the linkblk info */ 10062 li = (struct linkblk *)mp1->b_rptr; 10063 10064 /* 10065 * ARP has added this special mblk, and the utility is asking us 10066 * to perform consistency checks, and also atomically set the 10067 * muxid. Ifconfig is an example. It achieves this by using 10068 * /dev/arp as the mux to plink the arp stream, and pushes arp on 10069 * to /dev/udp[6] stream for use as the mux when plinking the IP 10070 * stream. SIOCSLIFMUXID is not required. See ifconfig.c, arp.c 10071 * and other comments in this routine for more details. 10072 */ 10073 mp2 = mp1->b_cont; /* This is added by ARP */ 10074 10075 /* 10076 * If I_{P}LINK/I_{P}UNLINK is issued by a utility other than 10077 * ifconfig which didn't push ARP on top of the dummy mux, we won't 10078 * get the special mblk above. For backward compatibility, we just 10079 * return success. The utility will use SIOCSLIFMUXID to store 10080 * the muxids. This is not atomic, and can leave the streams 10081 * unplumbable if the utility is interrrupted, before it does the 10082 * SIOCSLIFMUXID. 10083 */ 10084 if (mp2 == NULL) { 10085 /* 10086 * At this point we don't know whether or not this is the 10087 * IP module stream or the ARP device stream. We need to 10088 * walk the lower stream in order to find this out, since 10089 * the capability negotiation is done only on the IP module 10090 * stream. IP module instance is identified by the module 10091 * name IP, non-null q_next, and it's wput not being ip_lwput. 10092 * STREAMS ensures that the lower stream (l_qbot) will not 10093 * vanish until this ioctl completes. So we can safely walk 10094 * the stream or refer to the q_ptr. 10095 */ 10096 ipwq = li->l_qbot; 10097 while (ipwq != NULL) { 10098 qinfo = ipwq->q_qinfo; 10099 name = qinfo->qi_minfo->mi_idname; 10100 if (name != NULL && name[0] != NULL && 10101 (strcmp(name, ip_mod_info.mi_idname) == 0) && 10102 ((void *)(qinfo->qi_putp) != (void *)ip_lwput) && 10103 (ipwq->q_next != NULL)) { 10104 break; 10105 } 10106 ipwq = ipwq->q_next; 10107 } 10108 /* 10109 * This looks like an IP module stream, so trigger 10110 * the capability reset or re-negotiation if necessary. 10111 */ 10112 if (ipwq != NULL) { 10113 ill = ipwq->q_ptr; 10114 ASSERT(ill != NULL); 10115 10116 if (ipsq == NULL) { 10117 ipsq = ipsq_try_enter(NULL, ill, q, mp, 10118 ip_sioctl_plink, NEW_OP, B_TRUE); 10119 if (ipsq == NULL) 10120 return; 10121 entered_ipsq = B_TRUE; 10122 } 10123 ASSERT(IAM_WRITER_ILL(ill)); 10124 /* 10125 * Store the upper read queue of the module 10126 * immediately below IP, and count the total 10127 * number of lower modules. Do this only 10128 * for I_PLINK or I_LINK event. 10129 */ 10130 ill->ill_lmod_rq = NULL; 10131 ill->ill_lmod_cnt = 0; 10132 if (islink && (dwq = ipwq->q_next) != NULL) { 10133 ill->ill_lmod_rq = RD(dwq); 10134 10135 while (dwq != NULL) { 10136 ill->ill_lmod_cnt++; 10137 dwq = dwq->q_next; 10138 } 10139 } 10140 /* 10141 * There's no point in resetting or re-negotiating if 10142 * we are not bound to the driver, so only do this if 10143 * the DLPI state is idle (up); we assume such state 10144 * since ill_ipif_up_count gets incremented in 10145 * ipif_up_done(), which is after we are bound to the 10146 * driver. Note that in the case of logical 10147 * interfaces, IP won't rebind to the driver unless 10148 * the ill_ipif_up_count is 0, meaning that all other 10149 * IP interfaces (including the main ipif) are in the 10150 * down state. Because of this, we use such counter 10151 * as an indicator, instead of relying on the IPIF_UP 10152 * flag, which is per ipif instance. 10153 */ 10154 if (ill->ill_ipif_up_count > 0) { 10155 if (islink) 10156 ill_capability_probe(ill); 10157 else 10158 ill_capability_reset(ill); 10159 } 10160 } 10161 goto done; 10162 } 10163 10164 /* 10165 * This is an I_{P}LINK sent down by ifconfig on 10166 * /dev/arp. ARP has appended this last (3rd) mblk, 10167 * giving more info. STREAMS ensures that the lower 10168 * stream (l_qbot) will not vanish until this ioctl 10169 * completes. So we can safely walk the stream or refer 10170 * to the q_ptr. 10171 */ 10172 ipmxp = (struct ipmx_s *)mp2->b_rptr; 10173 if (ipmxp->ipmx_arpdev_stream) { 10174 /* 10175 * The operation is occuring on the arp-device 10176 * stream. 10177 */ 10178 ill = ill_lookup_on_name(ipmxp->ipmx_name, B_FALSE, B_FALSE, 10179 q, mp, ip_sioctl_plink, &err, NULL, ipst); 10180 if (ill == NULL) { 10181 if (err == EINPROGRESS) { 10182 return; 10183 } else { 10184 err = EINVAL; 10185 goto done; 10186 } 10187 } 10188 10189 if (ipsq == NULL) { 10190 ipsq = ipsq_try_enter(NULL, ill, q, mp, ip_sioctl_plink, 10191 NEW_OP, B_TRUE); 10192 if (ipsq == NULL) { 10193 ill_refrele(ill); 10194 return; 10195 } 10196 entered_ipsq = B_TRUE; 10197 } 10198 ASSERT(IAM_WRITER_ILL(ill)); 10199 ill_refrele(ill); 10200 /* 10201 * To ensure consistency between IP and ARP, 10202 * the following LIFO scheme is used in 10203 * plink/punlink. (IP first, ARP last). 10204 * This is because the muxid's are stored 10205 * in the IP stream on the ill. 10206 * 10207 * I_{P}LINK: ifconfig plinks the IP stream before 10208 * plinking the ARP stream. On an arp-dev 10209 * stream, IP checks that it is not yet 10210 * plinked, and it also checks that the 10211 * corresponding IP stream is already plinked. 10212 * 10213 * I_{P}UNLINK: ifconfig punlinks the ARP stream 10214 * before punlinking the IP stream. IP does 10215 * not allow punlink of the IP stream unless 10216 * the arp stream has been punlinked. 10217 * 10218 */ 10219 if ((islink && 10220 (ill->ill_arp_muxid != 0 || ill->ill_ip_muxid == 0)) || 10221 (!islink && 10222 ill->ill_arp_muxid != li->l_index)) { 10223 err = EINVAL; 10224 goto done; 10225 } 10226 if (islink) { 10227 ill->ill_arp_muxid = li->l_index; 10228 } else { 10229 ill->ill_arp_muxid = 0; 10230 } 10231 } else { 10232 /* 10233 * This must be the IP module stream with or 10234 * without arp. Walk the stream and locate the 10235 * IP module. An IP module instance is 10236 * identified by the module name IP, non-null 10237 * q_next, and it's wput not being ip_lwput. 10238 */ 10239 ipwq = li->l_qbot; 10240 while (ipwq != NULL) { 10241 qinfo = ipwq->q_qinfo; 10242 name = qinfo->qi_minfo->mi_idname; 10243 if (name != NULL && name[0] != NULL && 10244 (strcmp(name, ip_mod_info.mi_idname) == 0) && 10245 ((void *)(qinfo->qi_putp) != (void *)ip_lwput) && 10246 (ipwq->q_next != NULL)) { 10247 break; 10248 } 10249 ipwq = ipwq->q_next; 10250 } 10251 if (ipwq != NULL) { 10252 ill = ipwq->q_ptr; 10253 ASSERT(ill != NULL); 10254 10255 if (ipsq == NULL) { 10256 ipsq = ipsq_try_enter(NULL, ill, q, mp, 10257 ip_sioctl_plink, NEW_OP, B_TRUE); 10258 if (ipsq == NULL) 10259 return; 10260 entered_ipsq = B_TRUE; 10261 } 10262 ASSERT(IAM_WRITER_ILL(ill)); 10263 /* 10264 * Return error if the ip_mux_id is 10265 * non-zero and command is I_{P}LINK. 10266 * If command is I_{P}UNLINK, return 10267 * error if the arp-devstr is not 10268 * yet punlinked. 10269 */ 10270 if ((islink && ill->ill_ip_muxid != 0) || 10271 (!islink && ill->ill_arp_muxid != 0)) { 10272 err = EINVAL; 10273 goto done; 10274 } 10275 ill->ill_lmod_rq = NULL; 10276 ill->ill_lmod_cnt = 0; 10277 if (islink) { 10278 /* 10279 * Store the upper read queue of the module 10280 * immediately below IP, and count the total 10281 * number of lower modules. 10282 */ 10283 if ((dwq = ipwq->q_next) != NULL) { 10284 ill->ill_lmod_rq = RD(dwq); 10285 10286 while (dwq != NULL) { 10287 ill->ill_lmod_cnt++; 10288 dwq = dwq->q_next; 10289 } 10290 } 10291 ill->ill_ip_muxid = li->l_index; 10292 } else { 10293 ill->ill_ip_muxid = 0; 10294 } 10295 10296 /* 10297 * See comments above about resetting/re- 10298 * negotiating driver sub-capabilities. 10299 */ 10300 if (ill->ill_ipif_up_count > 0) { 10301 if (islink) 10302 ill_capability_probe(ill); 10303 else 10304 ill_capability_reset(ill); 10305 } 10306 } 10307 } 10308 done: 10309 iocp->ioc_count = 0; 10310 iocp->ioc_error = err; 10311 if (err == 0) 10312 mp->b_datap->db_type = M_IOCACK; 10313 else 10314 mp->b_datap->db_type = M_IOCNAK; 10315 qreply(q, mp); 10316 10317 /* Conn was refheld in ip_sioctl_copyin_setup */ 10318 if (CONN_Q(q)) 10319 CONN_OPER_PENDING_DONE(Q_TO_CONN(q)); 10320 if (entered_ipsq) 10321 ipsq_exit(ipsq, B_TRUE, B_TRUE); 10322 } 10323 10324 /* 10325 * Search the ioctl command in the ioctl tables and return a pointer 10326 * to the ioctl command information. The ioctl command tables are 10327 * static and fully populated at compile time. 10328 */ 10329 ip_ioctl_cmd_t * 10330 ip_sioctl_lookup(int ioc_cmd) 10331 { 10332 int index; 10333 ip_ioctl_cmd_t *ipip; 10334 ip_ioctl_cmd_t *ipip_end; 10335 10336 if (ioc_cmd == IPI_DONTCARE) 10337 return (NULL); 10338 10339 /* 10340 * Do a 2 step search. First search the indexed table 10341 * based on the least significant byte of the ioctl cmd. 10342 * If we don't find a match, then search the misc table 10343 * serially. 10344 */ 10345 index = ioc_cmd & 0xFF; 10346 if (index < ip_ndx_ioctl_count) { 10347 ipip = &ip_ndx_ioctl_table[index]; 10348 if (ipip->ipi_cmd == ioc_cmd) { 10349 /* Found a match in the ndx table */ 10350 return (ipip); 10351 } 10352 } 10353 10354 /* Search the misc table */ 10355 ipip_end = &ip_misc_ioctl_table[ip_misc_ioctl_count]; 10356 for (ipip = ip_misc_ioctl_table; ipip < ipip_end; ipip++) { 10357 if (ipip->ipi_cmd == ioc_cmd) 10358 /* Found a match in the misc table */ 10359 return (ipip); 10360 } 10361 10362 return (NULL); 10363 } 10364 10365 /* 10366 * Wrapper function for resuming deferred ioctl processing 10367 * Used for SIOCGDSTINFO, SIOCGIP6ADDRPOLICY, SIOCGMSFILTER, 10368 * SIOCSMSFILTER, SIOCGIPMSFILTER, and SIOCSIPMSFILTER currently. 10369 */ 10370 /* ARGSUSED */ 10371 void 10372 ip_sioctl_copyin_resume(ipsq_t *dummy_ipsq, queue_t *q, mblk_t *mp, 10373 void *dummy_arg) 10374 { 10375 ip_sioctl_copyin_setup(q, mp); 10376 } 10377 10378 /* 10379 * ip_sioctl_copyin_setup is called by ip_wput with any M_IOCTL message 10380 * that arrives. Most of the IOCTLs are "socket" IOCTLs which we handle 10381 * in either I_STR or TRANSPARENT form, using the mi_copy facility. 10382 * We establish here the size of the block to be copied in. mi_copyin 10383 * arranges for this to happen, an processing continues in ip_wput with 10384 * an M_IOCDATA message. 10385 */ 10386 void 10387 ip_sioctl_copyin_setup(queue_t *q, mblk_t *mp) 10388 { 10389 int copyin_size; 10390 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 10391 ip_ioctl_cmd_t *ipip; 10392 cred_t *cr; 10393 ip_stack_t *ipst; 10394 10395 if (CONN_Q(q)) 10396 ipst = CONNQ_TO_IPST(q); 10397 else 10398 ipst = ILLQ_TO_IPST(q); 10399 10400 ipip = ip_sioctl_lookup(iocp->ioc_cmd); 10401 if (ipip == NULL) { 10402 /* 10403 * The ioctl is not one we understand or own. 10404 * Pass it along to be processed down stream, 10405 * if this is a module instance of IP, else nak 10406 * the ioctl. 10407 */ 10408 if (q->q_next == NULL) { 10409 goto nak; 10410 } else { 10411 putnext(q, mp); 10412 return; 10413 } 10414 } 10415 10416 /* 10417 * If this is deferred, then we will do all the checks when we 10418 * come back. 10419 */ 10420 if ((iocp->ioc_cmd == SIOCGDSTINFO || 10421 iocp->ioc_cmd == SIOCGIP6ADDRPOLICY) && !ip6_asp_can_lookup(ipst)) { 10422 ip6_asp_pending_op(q, mp, ip_sioctl_copyin_resume); 10423 return; 10424 } 10425 10426 /* 10427 * Only allow a very small subset of IP ioctls on this stream if 10428 * IP is a module and not a driver. Allowing ioctls to be processed 10429 * in this case may cause assert failures or data corruption. 10430 * Typically G[L]IFFLAGS, SLIFNAME/IF_UNITSEL are the only few 10431 * ioctls allowed on an IP module stream, after which this stream 10432 * normally becomes a multiplexor (at which time the stream head 10433 * will fail all ioctls). 10434 */ 10435 if ((q->q_next != NULL) && !(ipip->ipi_flags & IPI_MODOK)) { 10436 if (ipip->ipi_flags & IPI_PASS_DOWN) { 10437 /* 10438 * Pass common Streams ioctls which the IP 10439 * module does not own or consume along to 10440 * be processed down stream. 10441 */ 10442 putnext(q, mp); 10443 return; 10444 } else { 10445 goto nak; 10446 } 10447 } 10448 10449 /* Make sure we have ioctl data to process. */ 10450 if (mp->b_cont == NULL && !(ipip->ipi_flags & IPI_NULL_BCONT)) 10451 goto nak; 10452 10453 /* 10454 * Prefer dblk credential over ioctl credential; some synthesized 10455 * ioctls have kcred set because there's no way to crhold() 10456 * a credential in some contexts. (ioc_cr is not crfree() by 10457 * the framework; the caller of ioctl needs to hold the reference 10458 * for the duration of the call). 10459 */ 10460 cr = DB_CREDDEF(mp, iocp->ioc_cr); 10461 10462 /* Make sure normal users don't send down privileged ioctls */ 10463 if ((ipip->ipi_flags & IPI_PRIV) && 10464 (cr != NULL) && secpolicy_ip_config(cr, B_TRUE) != 0) { 10465 /* We checked the privilege earlier but log it here */ 10466 miocnak(q, mp, 0, secpolicy_ip_config(cr, B_FALSE)); 10467 return; 10468 } 10469 10470 /* 10471 * The ioctl command tables can only encode fixed length 10472 * ioctl data. If the length is variable, the table will 10473 * encode the length as zero. Such special cases are handled 10474 * below in the switch. 10475 */ 10476 if (ipip->ipi_copyin_size != 0) { 10477 mi_copyin(q, mp, NULL, ipip->ipi_copyin_size); 10478 return; 10479 } 10480 10481 switch (iocp->ioc_cmd) { 10482 case O_SIOCGIFCONF: 10483 case SIOCGIFCONF: 10484 /* 10485 * This IOCTL is hilarious. See comments in 10486 * ip_sioctl_get_ifconf for the story. 10487 */ 10488 if (iocp->ioc_count == TRANSPARENT) 10489 copyin_size = SIZEOF_STRUCT(ifconf, 10490 iocp->ioc_flag); 10491 else 10492 copyin_size = iocp->ioc_count; 10493 mi_copyin(q, mp, NULL, copyin_size); 10494 return; 10495 10496 case O_SIOCGLIFCONF: 10497 case SIOCGLIFCONF: 10498 copyin_size = SIZEOF_STRUCT(lifconf, iocp->ioc_flag); 10499 mi_copyin(q, mp, NULL, copyin_size); 10500 return; 10501 10502 case SIOCGLIFSRCOF: 10503 copyin_size = SIZEOF_STRUCT(lifsrcof, iocp->ioc_flag); 10504 mi_copyin(q, mp, NULL, copyin_size); 10505 return; 10506 case SIOCGIP6ADDRPOLICY: 10507 ip_sioctl_ip6addrpolicy(q, mp); 10508 ip6_asp_table_refrele(ipst); 10509 return; 10510 10511 case SIOCSIP6ADDRPOLICY: 10512 ip_sioctl_ip6addrpolicy(q, mp); 10513 return; 10514 10515 case SIOCGDSTINFO: 10516 ip_sioctl_dstinfo(q, mp); 10517 ip6_asp_table_refrele(ipst); 10518 return; 10519 10520 case I_PLINK: 10521 case I_PUNLINK: 10522 case I_LINK: 10523 case I_UNLINK: 10524 /* 10525 * We treat non-persistent link similarly as the persistent 10526 * link case, in terms of plumbing/unplumbing, as well as 10527 * dynamic re-plumbing events indicator. See comments 10528 * in ip_sioctl_plink() for more. 10529 * 10530 * Request can be enqueued in the 'ipsq' while waiting 10531 * to become exclusive. So bump up the conn ref. 10532 */ 10533 if (CONN_Q(q)) 10534 CONN_INC_REF(Q_TO_CONN(q)); 10535 ip_sioctl_plink(NULL, q, mp, NULL); 10536 return; 10537 10538 case ND_GET: 10539 case ND_SET: 10540 /* 10541 * Use of the nd table requires holding the reader lock. 10542 * Modifying the nd table thru nd_load/nd_unload requires 10543 * the writer lock. 10544 */ 10545 rw_enter(&ipst->ips_ip_g_nd_lock, RW_READER); 10546 if (nd_getset(q, ipst->ips_ip_g_nd, mp)) { 10547 rw_exit(&ipst->ips_ip_g_nd_lock); 10548 10549 if (iocp->ioc_error) 10550 iocp->ioc_count = 0; 10551 mp->b_datap->db_type = M_IOCACK; 10552 qreply(q, mp); 10553 return; 10554 } 10555 rw_exit(&ipst->ips_ip_g_nd_lock); 10556 /* 10557 * We don't understand this subioctl of ND_GET / ND_SET. 10558 * Maybe intended for some driver / module below us 10559 */ 10560 if (q->q_next) { 10561 putnext(q, mp); 10562 } else { 10563 iocp->ioc_error = ENOENT; 10564 mp->b_datap->db_type = M_IOCNAK; 10565 iocp->ioc_count = 0; 10566 qreply(q, mp); 10567 } 10568 return; 10569 10570 case IP_IOCTL: 10571 ip_wput_ioctl(q, mp); 10572 return; 10573 default: 10574 cmn_err(CE_PANIC, "should not happen "); 10575 } 10576 nak: 10577 if (mp->b_cont != NULL) { 10578 freemsg(mp->b_cont); 10579 mp->b_cont = NULL; 10580 } 10581 iocp->ioc_error = EINVAL; 10582 mp->b_datap->db_type = M_IOCNAK; 10583 iocp->ioc_count = 0; 10584 qreply(q, mp); 10585 } 10586 10587 /* ip_wput hands off ARP IOCTL responses to us */ 10588 void 10589 ip_sioctl_iocack(queue_t *q, mblk_t *mp) 10590 { 10591 struct arpreq *ar; 10592 struct xarpreq *xar; 10593 area_t *area; 10594 mblk_t *area_mp; 10595 struct iocblk *iocp; 10596 mblk_t *orig_ioc_mp, *tmp; 10597 struct iocblk *orig_iocp; 10598 ill_t *ill; 10599 conn_t *connp = NULL; 10600 uint_t ioc_id; 10601 mblk_t *pending_mp; 10602 int x_arp_ioctl = B_FALSE, ifx_arp_ioctl = B_FALSE; 10603 int *flagsp; 10604 char *storage = NULL; 10605 sin_t *sin; 10606 ipaddr_t addr; 10607 int err; 10608 ip_stack_t *ipst; 10609 10610 ill = q->q_ptr; 10611 ASSERT(ill != NULL); 10612 ipst = ill->ill_ipst; 10613 10614 /* 10615 * We should get back from ARP a packet chain that looks like: 10616 * M_IOCACK-->ARP_op_MBLK-->ORIG_M_IOCTL-->MI_COPY_MBLK-->[X]ARPREQ_MBLK 10617 */ 10618 if (!(area_mp = mp->b_cont) || 10619 (area_mp->b_wptr - area_mp->b_rptr) < sizeof (ip_sock_ar_t) || 10620 !(orig_ioc_mp = area_mp->b_cont) || 10621 !orig_ioc_mp->b_cont || !orig_ioc_mp->b_cont->b_cont) { 10622 freemsg(mp); 10623 return; 10624 } 10625 10626 orig_iocp = (struct iocblk *)orig_ioc_mp->b_rptr; 10627 10628 tmp = (orig_ioc_mp->b_cont)->b_cont; 10629 if ((orig_iocp->ioc_cmd == SIOCGXARP) || 10630 (orig_iocp->ioc_cmd == SIOCSXARP) || 10631 (orig_iocp->ioc_cmd == SIOCDXARP)) { 10632 x_arp_ioctl = B_TRUE; 10633 xar = (struct xarpreq *)tmp->b_rptr; 10634 sin = (sin_t *)&xar->xarp_pa; 10635 flagsp = &xar->xarp_flags; 10636 storage = xar->xarp_ha.sdl_data; 10637 if (xar->xarp_ha.sdl_nlen != 0) 10638 ifx_arp_ioctl = B_TRUE; 10639 } else { 10640 ar = (struct arpreq *)tmp->b_rptr; 10641 sin = (sin_t *)&ar->arp_pa; 10642 flagsp = &ar->arp_flags; 10643 storage = ar->arp_ha.sa_data; 10644 } 10645 10646 iocp = (struct iocblk *)mp->b_rptr; 10647 10648 /* 10649 * Pick out the originating queue based on the ioc_id. 10650 */ 10651 ioc_id = iocp->ioc_id; 10652 pending_mp = ill_pending_mp_get(ill, &connp, ioc_id); 10653 if (pending_mp == NULL) { 10654 ASSERT(connp == NULL); 10655 inet_freemsg(mp); 10656 return; 10657 } 10658 ASSERT(connp != NULL); 10659 q = CONNP_TO_WQ(connp); 10660 10661 /* Uncouple the internally generated IOCTL from the original one */ 10662 area = (area_t *)area_mp->b_rptr; 10663 area_mp->b_cont = NULL; 10664 10665 /* 10666 * Restore the b_next and b_prev used by mi code. This is needed 10667 * to complete the ioctl using mi* functions. We stored them in 10668 * the pending mp prior to sending the request to ARP. 10669 */ 10670 orig_ioc_mp->b_cont->b_next = pending_mp->b_cont->b_next; 10671 orig_ioc_mp->b_cont->b_prev = pending_mp->b_cont->b_prev; 10672 inet_freemsg(pending_mp); 10673 10674 /* 10675 * We're done if there was an error or if this is not an SIOCG{X}ARP 10676 * Catch the case where there is an IRE_CACHE by no entry in the 10677 * arp table. 10678 */ 10679 addr = sin->sin_addr.s_addr; 10680 if (iocp->ioc_error && iocp->ioc_cmd == AR_ENTRY_SQUERY) { 10681 ire_t *ire; 10682 dl_unitdata_req_t *dlup; 10683 mblk_t *llmp; 10684 int addr_len; 10685 ill_t *ipsqill = NULL; 10686 10687 if (ifx_arp_ioctl) { 10688 /* 10689 * There's no need to lookup the ill, since 10690 * we've already done that when we started 10691 * processing the ioctl and sent the message 10692 * to ARP on that ill. So use the ill that 10693 * is stored in q->q_ptr. 10694 */ 10695 ipsqill = ill; 10696 ire = ire_ctable_lookup(addr, 0, IRE_CACHE, 10697 ipsqill->ill_ipif, ALL_ZONES, 10698 NULL, MATCH_IRE_TYPE | MATCH_IRE_ILL, ipst); 10699 } else { 10700 ire = ire_ctable_lookup(addr, 0, IRE_CACHE, 10701 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 10702 if (ire != NULL) 10703 ipsqill = ire_to_ill(ire); 10704 } 10705 10706 if ((x_arp_ioctl) && (ipsqill != NULL)) 10707 storage += ill_xarp_info(&xar->xarp_ha, ipsqill); 10708 10709 if (ire != NULL) { 10710 /* 10711 * Since the ire obtained from cachetable is used for 10712 * mac addr copying below, treat an incomplete ire as if 10713 * as if we never found it. 10714 */ 10715 if (ire->ire_nce != NULL && 10716 ire->ire_nce->nce_state != ND_REACHABLE) { 10717 ire_refrele(ire); 10718 ire = NULL; 10719 ipsqill = NULL; 10720 goto errack; 10721 } 10722 *flagsp = ATF_INUSE; 10723 llmp = (ire->ire_nce != NULL ? 10724 ire->ire_nce->nce_res_mp : NULL); 10725 if (llmp != NULL && ipsqill != NULL) { 10726 uchar_t *macaddr; 10727 10728 addr_len = ipsqill->ill_phys_addr_length; 10729 if (x_arp_ioctl && ((addr_len + 10730 ipsqill->ill_name_length) > 10731 sizeof (xar->xarp_ha.sdl_data))) { 10732 ire_refrele(ire); 10733 freemsg(mp); 10734 ip_ioctl_finish(q, orig_ioc_mp, 10735 EINVAL, NO_COPYOUT, NULL); 10736 return; 10737 } 10738 *flagsp |= ATF_COM; 10739 dlup = (dl_unitdata_req_t *)llmp->b_rptr; 10740 if (ipsqill->ill_sap_length < 0) 10741 macaddr = llmp->b_rptr + 10742 dlup->dl_dest_addr_offset; 10743 else 10744 macaddr = llmp->b_rptr + 10745 dlup->dl_dest_addr_offset + 10746 ipsqill->ill_sap_length; 10747 /* 10748 * For SIOCGARP, MAC address length 10749 * validation has already been done 10750 * before the ioctl was issued to ARP to 10751 * allow it to progress only on 6 byte 10752 * addressable (ethernet like) media. Thus 10753 * the mac address copying can not overwrite 10754 * the sa_data area below. 10755 */ 10756 bcopy(macaddr, storage, addr_len); 10757 } 10758 /* Ditch the internal IOCTL. */ 10759 freemsg(mp); 10760 ire_refrele(ire); 10761 ip_ioctl_finish(q, orig_ioc_mp, 0, COPYOUT, NULL); 10762 return; 10763 } 10764 } 10765 10766 /* 10767 * Delete the coresponding IRE_CACHE if any. 10768 * Reset the error if there was one (in case there was no entry 10769 * in arp.) 10770 */ 10771 if (iocp->ioc_cmd == AR_ENTRY_DELETE) { 10772 ipif_t *ipintf = NULL; 10773 10774 if (ifx_arp_ioctl) { 10775 /* 10776 * There's no need to lookup the ill, since 10777 * we've already done that when we started 10778 * processing the ioctl and sent the message 10779 * to ARP on that ill. So use the ill that 10780 * is stored in q->q_ptr. 10781 */ 10782 ipintf = ill->ill_ipif; 10783 } 10784 if (ip_ire_clookup_and_delete(addr, ipintf, ipst)) { 10785 /* 10786 * The address in "addr" may be an entry for a 10787 * router. If that's true, then any off-net 10788 * IRE_CACHE entries that go through the router 10789 * with address "addr" must be clobbered. Use 10790 * ire_walk to achieve this goal. 10791 */ 10792 if (ifx_arp_ioctl) 10793 ire_walk_ill_v4(MATCH_IRE_ILL, 0, 10794 ire_delete_cache_gw, (char *)&addr, ill); 10795 else 10796 ire_walk_v4(ire_delete_cache_gw, (char *)&addr, 10797 ALL_ZONES, ipst); 10798 iocp->ioc_error = 0; 10799 } 10800 } 10801 errack: 10802 if (iocp->ioc_error || iocp->ioc_cmd != AR_ENTRY_SQUERY) { 10803 err = iocp->ioc_error; 10804 freemsg(mp); 10805 ip_ioctl_finish(q, orig_ioc_mp, err, NO_COPYOUT, NULL); 10806 return; 10807 } 10808 10809 /* 10810 * Completion of an SIOCG{X}ARP. Translate the information from 10811 * the area_t into the struct {x}arpreq. 10812 */ 10813 if (x_arp_ioctl) { 10814 storage += ill_xarp_info(&xar->xarp_ha, ill); 10815 if ((ill->ill_phys_addr_length + ill->ill_name_length) > 10816 sizeof (xar->xarp_ha.sdl_data)) { 10817 freemsg(mp); 10818 ip_ioctl_finish(q, orig_ioc_mp, EINVAL, NO_COPYOUT, 10819 NULL); 10820 return; 10821 } 10822 } 10823 *flagsp = ATF_INUSE; 10824 if (area->area_flags & ACE_F_PERMANENT) 10825 *flagsp |= ATF_PERM; 10826 if (area->area_flags & ACE_F_PUBLISH) 10827 *flagsp |= ATF_PUBL; 10828 if (area->area_flags & ACE_F_AUTHORITY) 10829 *flagsp |= ATF_AUTHORITY; 10830 if (area->area_hw_addr_length != 0) { 10831 *flagsp |= ATF_COM; 10832 /* 10833 * For SIOCGARP, MAC address length validation has 10834 * already been done before the ioctl was issued to ARP 10835 * to allow it to progress only on 6 byte addressable 10836 * (ethernet like) media. Thus the mac address copying 10837 * can not overwrite the sa_data area below. 10838 */ 10839 bcopy((char *)area + area->area_hw_addr_offset, 10840 storage, area->area_hw_addr_length); 10841 } 10842 10843 /* Ditch the internal IOCTL. */ 10844 freemsg(mp); 10845 /* Complete the original. */ 10846 ip_ioctl_finish(q, orig_ioc_mp, 0, COPYOUT, NULL); 10847 } 10848 10849 /* 10850 * Create a new logical interface. If ipif_id is zero (i.e. not a logical 10851 * interface) create the next available logical interface for this 10852 * physical interface. 10853 * If ipif is NULL (i.e. the lookup didn't find one) attempt to create an 10854 * ipif with the specified name. 10855 * 10856 * If the address family is not AF_UNSPEC then set the address as well. 10857 * 10858 * If ip_sioctl_addr returns EINPROGRESS then the ioctl (the copyout) 10859 * is completed when the DL_BIND_ACK arrive in ip_rput_dlpi_writer. 10860 * 10861 * Executed as a writer on the ill or ill group. 10862 * So no lock is needed to traverse the ipif chain, or examine the 10863 * phyint flags. 10864 */ 10865 /* ARGSUSED */ 10866 int 10867 ip_sioctl_addif(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 10868 ip_ioctl_cmd_t *dummy_ipip, void *dummy_ifreq) 10869 { 10870 mblk_t *mp1; 10871 struct lifreq *lifr; 10872 boolean_t isv6; 10873 boolean_t exists; 10874 char *name; 10875 char *endp; 10876 char *cp; 10877 int namelen; 10878 ipif_t *ipif; 10879 long id; 10880 ipsq_t *ipsq; 10881 ill_t *ill; 10882 sin_t *sin; 10883 int err = 0; 10884 boolean_t found_sep = B_FALSE; 10885 conn_t *connp; 10886 zoneid_t zoneid; 10887 int orig_ifindex = 0; 10888 ip_stack_t *ipst = CONNQ_TO_IPST(q); 10889 10890 ASSERT(q->q_next == NULL); 10891 ip1dbg(("ip_sioctl_addif\n")); 10892 /* Existence of mp1 has been checked in ip_wput_nondata */ 10893 mp1 = mp->b_cont->b_cont; 10894 /* 10895 * Null terminate the string to protect against buffer 10896 * overrun. String was generated by user code and may not 10897 * be trusted. 10898 */ 10899 lifr = (struct lifreq *)mp1->b_rptr; 10900 lifr->lifr_name[LIFNAMSIZ - 1] = '\0'; 10901 name = lifr->lifr_name; 10902 ASSERT(CONN_Q(q)); 10903 connp = Q_TO_CONN(q); 10904 isv6 = connp->conn_af_isv6; 10905 zoneid = connp->conn_zoneid; 10906 namelen = mi_strlen(name); 10907 if (namelen == 0) 10908 return (EINVAL); 10909 10910 exists = B_FALSE; 10911 if ((namelen + 1 == sizeof (ipif_loopback_name)) && 10912 (mi_strcmp(name, ipif_loopback_name) == 0)) { 10913 /* 10914 * Allow creating lo0 using SIOCLIFADDIF. 10915 * can't be any other writer thread. So can pass null below 10916 * for the last 4 args to ipif_lookup_name. 10917 */ 10918 ipif = ipif_lookup_on_name(lifr->lifr_name, namelen, B_TRUE, 10919 &exists, isv6, zoneid, NULL, NULL, NULL, NULL, ipst); 10920 /* Prevent any further action */ 10921 if (ipif == NULL) { 10922 return (ENOBUFS); 10923 } else if (!exists) { 10924 /* We created the ipif now and as writer */ 10925 ipif_refrele(ipif); 10926 return (0); 10927 } else { 10928 ill = ipif->ipif_ill; 10929 ill_refhold(ill); 10930 ipif_refrele(ipif); 10931 } 10932 } else { 10933 /* Look for a colon in the name. */ 10934 endp = &name[namelen]; 10935 for (cp = endp; --cp > name; ) { 10936 if (*cp == IPIF_SEPARATOR_CHAR) { 10937 found_sep = B_TRUE; 10938 /* 10939 * Reject any non-decimal aliases for plumbing 10940 * of logical interfaces. Aliases with leading 10941 * zeroes are also rejected as they introduce 10942 * ambiguity in the naming of the interfaces. 10943 * Comparing with "0" takes care of all such 10944 * cases. 10945 */ 10946 if ((strncmp("0", cp+1, 1)) == 0) 10947 return (EINVAL); 10948 10949 if (ddi_strtol(cp+1, &endp, 10, &id) != 0 || 10950 id <= 0 || *endp != '\0') { 10951 return (EINVAL); 10952 } 10953 *cp = '\0'; 10954 break; 10955 } 10956 } 10957 ill = ill_lookup_on_name(name, B_FALSE, isv6, 10958 CONNP_TO_WQ(connp), mp, ip_process_ioctl, &err, NULL, ipst); 10959 if (found_sep) 10960 *cp = IPIF_SEPARATOR_CHAR; 10961 if (ill == NULL) 10962 return (err); 10963 } 10964 10965 ipsq = ipsq_try_enter(NULL, ill, q, mp, ip_process_ioctl, NEW_OP, 10966 B_TRUE); 10967 10968 /* 10969 * Release the refhold due to the lookup, now that we are excl 10970 * or we are just returning 10971 */ 10972 ill_refrele(ill); 10973 10974 if (ipsq == NULL) 10975 return (EINPROGRESS); 10976 10977 /* 10978 * If the interface is failed, inactive or offlined, look for a working 10979 * interface in the ill group and create the ipif there. If we can't 10980 * find a good interface, create the ipif anyway so that in.mpathd can 10981 * move it to the first repaired interface. 10982 */ 10983 if ((ill->ill_phyint->phyint_flags & 10984 (PHYI_FAILED|PHYI_INACTIVE|PHYI_OFFLINE)) && 10985 ill->ill_phyint->phyint_groupname_len != 0) { 10986 phyint_t *phyi; 10987 char *groupname = ill->ill_phyint->phyint_groupname; 10988 10989 /* 10990 * We're looking for a working interface, but it doesn't matter 10991 * if it's up or down; so instead of following the group lists, 10992 * we look at each physical interface and compare the groupname. 10993 * We're only interested in interfaces with IPv4 (resp. IPv6) 10994 * plumbed when we're adding an IPv4 (resp. IPv6) ipif. 10995 * Otherwise we create the ipif on the failed interface. 10996 */ 10997 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 10998 phyi = avl_first(&ipst->ips_phyint_g_list-> 10999 phyint_list_avl_by_index); 11000 for (; phyi != NULL; 11001 phyi = avl_walk(&ipst->ips_phyint_g_list-> 11002 phyint_list_avl_by_index, 11003 phyi, AVL_AFTER)) { 11004 if (phyi->phyint_groupname_len == 0) 11005 continue; 11006 ASSERT(phyi->phyint_groupname != NULL); 11007 if (mi_strcmp(groupname, phyi->phyint_groupname) == 0 && 11008 !(phyi->phyint_flags & 11009 (PHYI_FAILED|PHYI_INACTIVE|PHYI_OFFLINE)) && 11010 (ill->ill_isv6 ? (phyi->phyint_illv6 != NULL) : 11011 (phyi->phyint_illv4 != NULL))) { 11012 break; 11013 } 11014 } 11015 rw_exit(&ipst->ips_ill_g_lock); 11016 11017 if (phyi != NULL) { 11018 orig_ifindex = ill->ill_phyint->phyint_ifindex; 11019 ill = (ill->ill_isv6 ? phyi->phyint_illv6 : 11020 phyi->phyint_illv4); 11021 } 11022 } 11023 11024 /* 11025 * We are now exclusive on the ipsq, so an ill move will be serialized 11026 * before or after us. 11027 */ 11028 ASSERT(IAM_WRITER_ILL(ill)); 11029 ASSERT(ill->ill_move_in_progress == B_FALSE); 11030 11031 if (found_sep && orig_ifindex == 0) { 11032 /* Now see if there is an IPIF with this unit number. */ 11033 for (ipif = ill->ill_ipif; ipif != NULL; 11034 ipif = ipif->ipif_next) { 11035 if (ipif->ipif_id == id) { 11036 err = EEXIST; 11037 goto done; 11038 } 11039 } 11040 } 11041 11042 /* 11043 * We use IRE_LOCAL for lo0:1 etc. for "receive only" use 11044 * of lo0. We never come here when we plumb lo0:0. It 11045 * happens in ipif_lookup_on_name. 11046 * The specified unit number is ignored when we create the ipif on a 11047 * different interface. However, we save it in ipif_orig_ipifid below so 11048 * that the ipif fails back to the right position. 11049 */ 11050 if ((ipif = ipif_allocate(ill, (found_sep && orig_ifindex == 0) ? 11051 id : -1, IRE_LOCAL, B_TRUE)) == NULL) { 11052 err = ENOBUFS; 11053 goto done; 11054 } 11055 11056 /* Return created name with ioctl */ 11057 (void) sprintf(lifr->lifr_name, "%s%c%d", ill->ill_name, 11058 IPIF_SEPARATOR_CHAR, ipif->ipif_id); 11059 ip1dbg(("created %s\n", lifr->lifr_name)); 11060 11061 /* Set address */ 11062 sin = (sin_t *)&lifr->lifr_addr; 11063 if (sin->sin_family != AF_UNSPEC) { 11064 err = ip_sioctl_addr(ipif, sin, q, mp, 11065 &ip_ndx_ioctl_table[SIOCLIFADDR_NDX], lifr); 11066 } 11067 11068 /* Set ifindex and unit number for failback */ 11069 if (err == 0 && orig_ifindex != 0) { 11070 ipif->ipif_orig_ifindex = orig_ifindex; 11071 if (found_sep) { 11072 ipif->ipif_orig_ipifid = id; 11073 } 11074 } 11075 11076 done: 11077 ipsq_exit(ipsq, B_TRUE, B_TRUE); 11078 return (err); 11079 } 11080 11081 /* 11082 * Remove an existing logical interface. If ipif_id is zero (i.e. not a logical 11083 * interface) delete it based on the IP address (on this physical interface). 11084 * Otherwise delete it based on the ipif_id. 11085 * Also, special handling to allow a removeif of lo0. 11086 */ 11087 /* ARGSUSED */ 11088 int 11089 ip_sioctl_removeif(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11090 ip_ioctl_cmd_t *ipip, void *dummy_if_req) 11091 { 11092 conn_t *connp; 11093 ill_t *ill = ipif->ipif_ill; 11094 boolean_t success; 11095 ip_stack_t *ipst; 11096 11097 ipst = CONNQ_TO_IPST(q); 11098 11099 ASSERT(q->q_next == NULL); 11100 ip1dbg(("ip_sioctl_remove_if(%s:%u %p)\n", 11101 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11102 ASSERT(IAM_WRITER_IPIF(ipif)); 11103 11104 connp = Q_TO_CONN(q); 11105 /* 11106 * Special case for unplumbing lo0 (the loopback physical interface). 11107 * If unplumbing lo0, the incoming address structure has been 11108 * initialized to all zeros. When unplumbing lo0, all its logical 11109 * interfaces must be removed too. 11110 * 11111 * Note that this interface may be called to remove a specific 11112 * loopback logical interface (eg, lo0:1). But in that case 11113 * ipif->ipif_id != 0 so that the code path for that case is the 11114 * same as any other interface (meaning it skips the code directly 11115 * below). 11116 */ 11117 if (ipif->ipif_id == 0 && ipif->ipif_net_type == IRE_LOOPBACK) { 11118 if (sin->sin_family == AF_UNSPEC && 11119 (IN6_IS_ADDR_UNSPECIFIED(&((sin6_t *)sin)->sin6_addr))) { 11120 /* 11121 * Mark it condemned. No new ref. will be made to ill. 11122 */ 11123 mutex_enter(&ill->ill_lock); 11124 ill->ill_state_flags |= ILL_CONDEMNED; 11125 for (ipif = ill->ill_ipif; ipif != NULL; 11126 ipif = ipif->ipif_next) { 11127 ipif->ipif_state_flags |= IPIF_CONDEMNED; 11128 } 11129 mutex_exit(&ill->ill_lock); 11130 11131 ipif = ill->ill_ipif; 11132 /* unplumb the loopback interface */ 11133 ill_delete(ill); 11134 mutex_enter(&connp->conn_lock); 11135 mutex_enter(&ill->ill_lock); 11136 ASSERT(ill->ill_group == NULL); 11137 11138 /* Are any references to this ill active */ 11139 if (ill_is_quiescent(ill)) { 11140 mutex_exit(&ill->ill_lock); 11141 mutex_exit(&connp->conn_lock); 11142 ill_delete_tail(ill); 11143 mi_free(ill); 11144 return (0); 11145 } 11146 success = ipsq_pending_mp_add(connp, ipif, 11147 CONNP_TO_WQ(connp), mp, ILL_FREE); 11148 mutex_exit(&connp->conn_lock); 11149 mutex_exit(&ill->ill_lock); 11150 if (success) 11151 return (EINPROGRESS); 11152 else 11153 return (EINTR); 11154 } 11155 } 11156 11157 /* 11158 * We are exclusive on the ipsq, so an ill move will be serialized 11159 * before or after us. 11160 */ 11161 ASSERT(ill->ill_move_in_progress == B_FALSE); 11162 11163 if (ipif->ipif_id == 0) { 11164 /* Find based on address */ 11165 if (ipif->ipif_isv6) { 11166 sin6_t *sin6; 11167 11168 if (sin->sin_family != AF_INET6) 11169 return (EAFNOSUPPORT); 11170 11171 sin6 = (sin6_t *)sin; 11172 /* We are a writer, so we should be able to lookup */ 11173 ipif = ipif_lookup_addr_v6(&sin6->sin6_addr, 11174 ill, ALL_ZONES, NULL, NULL, NULL, NULL, ipst); 11175 if (ipif == NULL) { 11176 /* 11177 * Maybe the address in on another interface in 11178 * the same IPMP group? We check this below. 11179 */ 11180 ipif = ipif_lookup_addr_v6(&sin6->sin6_addr, 11181 NULL, ALL_ZONES, NULL, NULL, NULL, NULL, 11182 ipst); 11183 } 11184 } else { 11185 ipaddr_t addr; 11186 11187 if (sin->sin_family != AF_INET) 11188 return (EAFNOSUPPORT); 11189 11190 addr = sin->sin_addr.s_addr; 11191 /* We are a writer, so we should be able to lookup */ 11192 ipif = ipif_lookup_addr(addr, ill, ALL_ZONES, NULL, 11193 NULL, NULL, NULL, ipst); 11194 if (ipif == NULL) { 11195 /* 11196 * Maybe the address in on another interface in 11197 * the same IPMP group? We check this below. 11198 */ 11199 ipif = ipif_lookup_addr(addr, NULL, ALL_ZONES, 11200 NULL, NULL, NULL, NULL, ipst); 11201 } 11202 } 11203 if (ipif == NULL) { 11204 return (EADDRNOTAVAIL); 11205 } 11206 /* 11207 * When the address to be removed is hosted on a different 11208 * interface, we check if the interface is in the same IPMP 11209 * group as the specified one; if so we proceed with the 11210 * removal. 11211 * ill->ill_group is NULL when the ill is down, so we have to 11212 * compare the group names instead. 11213 */ 11214 if (ipif->ipif_ill != ill && 11215 (ipif->ipif_ill->ill_phyint->phyint_groupname_len == 0 || 11216 ill->ill_phyint->phyint_groupname_len == 0 || 11217 mi_strcmp(ipif->ipif_ill->ill_phyint->phyint_groupname, 11218 ill->ill_phyint->phyint_groupname) != 0)) { 11219 ipif_refrele(ipif); 11220 return (EADDRNOTAVAIL); 11221 } 11222 11223 /* This is a writer */ 11224 ipif_refrele(ipif); 11225 } 11226 11227 /* 11228 * Can not delete instance zero since it is tied to the ill. 11229 */ 11230 if (ipif->ipif_id == 0) 11231 return (EBUSY); 11232 11233 mutex_enter(&ill->ill_lock); 11234 ipif->ipif_state_flags |= IPIF_CONDEMNED; 11235 mutex_exit(&ill->ill_lock); 11236 11237 ipif_free(ipif); 11238 11239 mutex_enter(&connp->conn_lock); 11240 mutex_enter(&ill->ill_lock); 11241 11242 /* Are any references to this ipif active */ 11243 if (ipif->ipif_refcnt == 0 && ipif->ipif_ire_cnt == 0) { 11244 mutex_exit(&ill->ill_lock); 11245 mutex_exit(&connp->conn_lock); 11246 ipif_non_duplicate(ipif); 11247 ipif_down_tail(ipif); 11248 ipif_free_tail(ipif); 11249 return (0); 11250 } 11251 success = ipsq_pending_mp_add(connp, ipif, CONNP_TO_WQ(connp), mp, 11252 IPIF_FREE); 11253 mutex_exit(&ill->ill_lock); 11254 mutex_exit(&connp->conn_lock); 11255 if (success) 11256 return (EINPROGRESS); 11257 else 11258 return (EINTR); 11259 } 11260 11261 /* 11262 * Restart the removeif ioctl. The refcnt has gone down to 0. 11263 * The ipif is already condemned. So can't find it thru lookups. 11264 */ 11265 /* ARGSUSED */ 11266 int 11267 ip_sioctl_removeif_restart(ipif_t *ipif, sin_t *dummy_sin, queue_t *q, 11268 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *dummy_if_req) 11269 { 11270 ill_t *ill; 11271 11272 ip1dbg(("ip_sioctl_removeif_restart(%s:%u %p)\n", 11273 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11274 if (ipif->ipif_id == 0 && ipif->ipif_net_type == IRE_LOOPBACK) { 11275 ill = ipif->ipif_ill; 11276 ASSERT(IAM_WRITER_ILL(ill)); 11277 ASSERT((ipif->ipif_state_flags & IPIF_CONDEMNED) && 11278 (ill->ill_state_flags & IPIF_CONDEMNED)); 11279 ill_delete_tail(ill); 11280 mi_free(ill); 11281 return (0); 11282 } 11283 11284 ill = ipif->ipif_ill; 11285 ASSERT(IAM_WRITER_IPIF(ipif)); 11286 ASSERT(ipif->ipif_state_flags & IPIF_CONDEMNED); 11287 11288 ipif_non_duplicate(ipif); 11289 ipif_down_tail(ipif); 11290 ipif_free_tail(ipif); 11291 11292 ILL_UNMARK_CHANGING(ill); 11293 return (0); 11294 } 11295 11296 /* 11297 * Set the local interface address. 11298 * Allow an address of all zero when the interface is down. 11299 */ 11300 /* ARGSUSED */ 11301 int 11302 ip_sioctl_addr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11303 ip_ioctl_cmd_t *dummy_ipip, void *dummy_ifreq) 11304 { 11305 int err = 0; 11306 in6_addr_t v6addr; 11307 boolean_t need_up = B_FALSE; 11308 11309 ip1dbg(("ip_sioctl_addr(%s:%u %p)\n", 11310 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11311 11312 ASSERT(IAM_WRITER_IPIF(ipif)); 11313 11314 if (ipif->ipif_isv6) { 11315 sin6_t *sin6; 11316 ill_t *ill; 11317 phyint_t *phyi; 11318 11319 if (sin->sin_family != AF_INET6) 11320 return (EAFNOSUPPORT); 11321 11322 sin6 = (sin6_t *)sin; 11323 v6addr = sin6->sin6_addr; 11324 ill = ipif->ipif_ill; 11325 phyi = ill->ill_phyint; 11326 11327 /* 11328 * Enforce that true multicast interfaces have a link-local 11329 * address for logical unit 0. 11330 */ 11331 if (ipif->ipif_id == 0 && 11332 (ill->ill_flags & ILLF_MULTICAST) && 11333 !(ipif->ipif_flags & (IPIF_POINTOPOINT)) && 11334 !(phyi->phyint_flags & (PHYI_LOOPBACK)) && 11335 !IN6_IS_ADDR_LINKLOCAL(&v6addr)) { 11336 return (EADDRNOTAVAIL); 11337 } 11338 11339 /* 11340 * up interfaces shouldn't have the unspecified address 11341 * unless they also have the IPIF_NOLOCAL flags set and 11342 * have a subnet assigned. 11343 */ 11344 if ((ipif->ipif_flags & IPIF_UP) && 11345 IN6_IS_ADDR_UNSPECIFIED(&v6addr) && 11346 (!(ipif->ipif_flags & IPIF_NOLOCAL) || 11347 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6subnet))) { 11348 return (EADDRNOTAVAIL); 11349 } 11350 11351 if (!ip_local_addr_ok_v6(&v6addr, &ipif->ipif_v6net_mask)) 11352 return (EADDRNOTAVAIL); 11353 } else { 11354 ipaddr_t addr; 11355 11356 if (sin->sin_family != AF_INET) 11357 return (EAFNOSUPPORT); 11358 11359 addr = sin->sin_addr.s_addr; 11360 11361 /* Allow 0 as the local address. */ 11362 if (addr != 0 && !ip_addr_ok_v4(addr, ipif->ipif_net_mask)) 11363 return (EADDRNOTAVAIL); 11364 11365 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 11366 } 11367 11368 11369 /* 11370 * Even if there is no change we redo things just to rerun 11371 * ipif_set_default. 11372 */ 11373 if (ipif->ipif_flags & IPIF_UP) { 11374 /* 11375 * Setting a new local address, make sure 11376 * we have net and subnet bcast ire's for 11377 * the old address if we need them. 11378 */ 11379 if (!ipif->ipif_isv6) 11380 ipif_check_bcast_ires(ipif); 11381 /* 11382 * If the interface is already marked up, 11383 * we call ipif_down which will take care 11384 * of ditching any IREs that have been set 11385 * up based on the old interface address. 11386 */ 11387 err = ipif_logical_down(ipif, q, mp); 11388 if (err == EINPROGRESS) 11389 return (err); 11390 ipif_down_tail(ipif); 11391 need_up = 1; 11392 } 11393 11394 err = ip_sioctl_addr_tail(ipif, sin, q, mp, need_up); 11395 return (err); 11396 } 11397 11398 int 11399 ip_sioctl_addr_tail(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11400 boolean_t need_up) 11401 { 11402 in6_addr_t v6addr; 11403 in6_addr_t ov6addr; 11404 ipaddr_t addr; 11405 sin6_t *sin6; 11406 int sinlen; 11407 int err = 0; 11408 ill_t *ill = ipif->ipif_ill; 11409 boolean_t need_dl_down; 11410 boolean_t need_arp_down; 11411 struct iocblk *iocp; 11412 11413 iocp = (mp != NULL) ? (struct iocblk *)mp->b_rptr : NULL; 11414 11415 ip1dbg(("ip_sioctl_addr_tail(%s:%u %p)\n", 11416 ill->ill_name, ipif->ipif_id, (void *)ipif)); 11417 ASSERT(IAM_WRITER_IPIF(ipif)); 11418 11419 /* Must cancel any pending timer before taking the ill_lock */ 11420 if (ipif->ipif_recovery_id != 0) 11421 (void) untimeout(ipif->ipif_recovery_id); 11422 ipif->ipif_recovery_id = 0; 11423 11424 if (ipif->ipif_isv6) { 11425 sin6 = (sin6_t *)sin; 11426 v6addr = sin6->sin6_addr; 11427 sinlen = sizeof (struct sockaddr_in6); 11428 } else { 11429 addr = sin->sin_addr.s_addr; 11430 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 11431 sinlen = sizeof (struct sockaddr_in); 11432 } 11433 mutex_enter(&ill->ill_lock); 11434 ov6addr = ipif->ipif_v6lcl_addr; 11435 ipif->ipif_v6lcl_addr = v6addr; 11436 sctp_update_ipif_addr(ipif, ov6addr); 11437 if (ipif->ipif_flags & (IPIF_ANYCAST | IPIF_NOLOCAL)) { 11438 ipif->ipif_v6src_addr = ipv6_all_zeros; 11439 } else { 11440 ipif->ipif_v6src_addr = v6addr; 11441 } 11442 ipif->ipif_addr_ready = 0; 11443 11444 /* 11445 * If the interface was previously marked as a duplicate, then since 11446 * we've now got a "new" address, it should no longer be considered a 11447 * duplicate -- even if the "new" address is the same as the old one. 11448 * Note that if all ipifs are down, we may have a pending ARP down 11449 * event to handle. This is because we want to recover from duplicates 11450 * and thus delay tearing down ARP until the duplicates have been 11451 * removed or disabled. 11452 */ 11453 need_dl_down = need_arp_down = B_FALSE; 11454 if (ipif->ipif_flags & IPIF_DUPLICATE) { 11455 need_arp_down = !need_up; 11456 ipif->ipif_flags &= ~IPIF_DUPLICATE; 11457 if (--ill->ill_ipif_dup_count == 0 && !need_up && 11458 ill->ill_ipif_up_count == 0 && ill->ill_dl_up) { 11459 need_dl_down = B_TRUE; 11460 } 11461 } 11462 11463 if (ipif->ipif_isv6 && IN6_IS_ADDR_6TO4(&v6addr) && 11464 !ill->ill_is_6to4tun) { 11465 queue_t *wqp = ill->ill_wq; 11466 11467 /* 11468 * The local address of this interface is a 6to4 address, 11469 * check if this interface is in fact a 6to4 tunnel or just 11470 * an interface configured with a 6to4 address. We are only 11471 * interested in the former. 11472 */ 11473 if (wqp != NULL) { 11474 while ((wqp->q_next != NULL) && 11475 (wqp->q_next->q_qinfo != NULL) && 11476 (wqp->q_next->q_qinfo->qi_minfo != NULL)) { 11477 11478 if (wqp->q_next->q_qinfo->qi_minfo->mi_idnum 11479 == TUN6TO4_MODID) { 11480 /* set for use in IP */ 11481 ill->ill_is_6to4tun = 1; 11482 break; 11483 } 11484 wqp = wqp->q_next; 11485 } 11486 } 11487 } 11488 11489 ipif_set_default(ipif); 11490 11491 /* 11492 * When publishing an interface address change event, we only notify 11493 * the event listeners of the new address. It is assumed that if they 11494 * actively care about the addresses assigned that they will have 11495 * already discovered the previous address assigned (if there was one.) 11496 * 11497 * Don't attach nic event message for SIOCLIFADDIF ioctl. 11498 */ 11499 if (iocp != NULL && iocp->ioc_cmd != SIOCLIFADDIF) { 11500 hook_nic_event_t *info; 11501 if ((info = ipif->ipif_ill->ill_nic_event_info) != NULL) { 11502 ip2dbg(("ip_sioctl_addr_tail: unexpected nic event %d " 11503 "attached for %s\n", info->hne_event, 11504 ill->ill_name)); 11505 if (info->hne_data != NULL) 11506 kmem_free(info->hne_data, info->hne_datalen); 11507 kmem_free(info, sizeof (hook_nic_event_t)); 11508 } 11509 11510 info = kmem_alloc(sizeof (hook_nic_event_t), KM_NOSLEEP); 11511 if (info != NULL) { 11512 ip_stack_t *ipst = ill->ill_ipst; 11513 11514 info->hne_nic = 11515 ipif->ipif_ill->ill_phyint->phyint_hook_ifindex; 11516 info->hne_lif = MAP_IPIF_ID(ipif->ipif_id); 11517 info->hne_event = NE_ADDRESS_CHANGE; 11518 info->hne_family = ipif->ipif_isv6 ? 11519 ipst->ips_ipv6_net_data : ipst->ips_ipv4_net_data; 11520 info->hne_data = kmem_alloc(sinlen, KM_NOSLEEP); 11521 if (info->hne_data != NULL) { 11522 info->hne_datalen = sinlen; 11523 bcopy(sin, info->hne_data, sinlen); 11524 } else { 11525 ip2dbg(("ip_sioctl_addr_tail: could not attach " 11526 "address information for ADDRESS_CHANGE nic" 11527 " event of %s (ENOMEM)\n", 11528 ipif->ipif_ill->ill_name)); 11529 kmem_free(info, sizeof (hook_nic_event_t)); 11530 } 11531 } else 11532 ip2dbg(("ip_sioctl_addr_tail: could not attach " 11533 "ADDRESS_CHANGE nic event information for %s " 11534 "(ENOMEM)\n", ipif->ipif_ill->ill_name)); 11535 11536 ipif->ipif_ill->ill_nic_event_info = info; 11537 } 11538 11539 mutex_exit(&ill->ill_lock); 11540 11541 if (need_up) { 11542 /* 11543 * Now bring the interface back up. If this 11544 * is the only IPIF for the ILL, ipif_up 11545 * will have to re-bind to the device, so 11546 * we may get back EINPROGRESS, in which 11547 * case, this IOCTL will get completed in 11548 * ip_rput_dlpi when we see the DL_BIND_ACK. 11549 */ 11550 err = ipif_up(ipif, q, mp); 11551 } 11552 11553 if (need_dl_down) 11554 ill_dl_down(ill); 11555 if (need_arp_down) 11556 ipif_arp_down(ipif); 11557 11558 return (err); 11559 } 11560 11561 11562 /* 11563 * Restart entry point to restart the address set operation after the 11564 * refcounts have dropped to zero. 11565 */ 11566 /* ARGSUSED */ 11567 int 11568 ip_sioctl_addr_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11569 ip_ioctl_cmd_t *ipip, void *ifreq) 11570 { 11571 ip1dbg(("ip_sioctl_addr_restart(%s:%u %p)\n", 11572 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11573 ASSERT(IAM_WRITER_IPIF(ipif)); 11574 ipif_down_tail(ipif); 11575 return (ip_sioctl_addr_tail(ipif, sin, q, mp, B_TRUE)); 11576 } 11577 11578 /* ARGSUSED */ 11579 int 11580 ip_sioctl_get_addr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11581 ip_ioctl_cmd_t *ipip, void *if_req) 11582 { 11583 sin6_t *sin6 = (struct sockaddr_in6 *)sin; 11584 struct lifreq *lifr = (struct lifreq *)if_req; 11585 11586 ip1dbg(("ip_sioctl_get_addr(%s:%u %p)\n", 11587 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11588 /* 11589 * The net mask and address can't change since we have a 11590 * reference to the ipif. So no lock is necessary. 11591 */ 11592 if (ipif->ipif_isv6) { 11593 *sin6 = sin6_null; 11594 sin6->sin6_family = AF_INET6; 11595 sin6->sin6_addr = ipif->ipif_v6lcl_addr; 11596 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 11597 lifr->lifr_addrlen = 11598 ip_mask_to_plen_v6(&ipif->ipif_v6net_mask); 11599 } else { 11600 *sin = sin_null; 11601 sin->sin_family = AF_INET; 11602 sin->sin_addr.s_addr = ipif->ipif_lcl_addr; 11603 if (ipip->ipi_cmd_type == LIF_CMD) { 11604 lifr->lifr_addrlen = 11605 ip_mask_to_plen(ipif->ipif_net_mask); 11606 } 11607 } 11608 return (0); 11609 } 11610 11611 /* 11612 * Set the destination address for a pt-pt interface. 11613 */ 11614 /* ARGSUSED */ 11615 int 11616 ip_sioctl_dstaddr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11617 ip_ioctl_cmd_t *ipip, void *if_req) 11618 { 11619 int err = 0; 11620 in6_addr_t v6addr; 11621 boolean_t need_up = B_FALSE; 11622 11623 ip1dbg(("ip_sioctl_dstaddr(%s:%u %p)\n", 11624 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11625 ASSERT(IAM_WRITER_IPIF(ipif)); 11626 11627 if (ipif->ipif_isv6) { 11628 sin6_t *sin6; 11629 11630 if (sin->sin_family != AF_INET6) 11631 return (EAFNOSUPPORT); 11632 11633 sin6 = (sin6_t *)sin; 11634 v6addr = sin6->sin6_addr; 11635 11636 if (!ip_remote_addr_ok_v6(&v6addr, &ipif->ipif_v6net_mask)) 11637 return (EADDRNOTAVAIL); 11638 } else { 11639 ipaddr_t addr; 11640 11641 if (sin->sin_family != AF_INET) 11642 return (EAFNOSUPPORT); 11643 11644 addr = sin->sin_addr.s_addr; 11645 if (!ip_addr_ok_v4(addr, ipif->ipif_net_mask)) 11646 return (EADDRNOTAVAIL); 11647 11648 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 11649 } 11650 11651 if (IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6pp_dst_addr, &v6addr)) 11652 return (0); /* No change */ 11653 11654 if (ipif->ipif_flags & IPIF_UP) { 11655 /* 11656 * If the interface is already marked up, 11657 * we call ipif_down which will take care 11658 * of ditching any IREs that have been set 11659 * up based on the old pp dst address. 11660 */ 11661 err = ipif_logical_down(ipif, q, mp); 11662 if (err == EINPROGRESS) 11663 return (err); 11664 ipif_down_tail(ipif); 11665 need_up = B_TRUE; 11666 } 11667 /* 11668 * could return EINPROGRESS. If so ioctl will complete in 11669 * ip_rput_dlpi_writer 11670 */ 11671 err = ip_sioctl_dstaddr_tail(ipif, sin, q, mp, need_up); 11672 return (err); 11673 } 11674 11675 static int 11676 ip_sioctl_dstaddr_tail(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11677 boolean_t need_up) 11678 { 11679 in6_addr_t v6addr; 11680 ill_t *ill = ipif->ipif_ill; 11681 int err = 0; 11682 boolean_t need_dl_down; 11683 boolean_t need_arp_down; 11684 11685 ip1dbg(("ip_sioctl_dstaddr_tail(%s:%u %p)\n", ill->ill_name, 11686 ipif->ipif_id, (void *)ipif)); 11687 11688 /* Must cancel any pending timer before taking the ill_lock */ 11689 if (ipif->ipif_recovery_id != 0) 11690 (void) untimeout(ipif->ipif_recovery_id); 11691 ipif->ipif_recovery_id = 0; 11692 11693 if (ipif->ipif_isv6) { 11694 sin6_t *sin6; 11695 11696 sin6 = (sin6_t *)sin; 11697 v6addr = sin6->sin6_addr; 11698 } else { 11699 ipaddr_t addr; 11700 11701 addr = sin->sin_addr.s_addr; 11702 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 11703 } 11704 mutex_enter(&ill->ill_lock); 11705 /* Set point to point destination address. */ 11706 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) { 11707 /* 11708 * Allow this as a means of creating logical 11709 * pt-pt interfaces on top of e.g. an Ethernet. 11710 * XXX Undocumented HACK for testing. 11711 * pt-pt interfaces are created with NUD disabled. 11712 */ 11713 ipif->ipif_flags |= IPIF_POINTOPOINT; 11714 ipif->ipif_flags &= ~IPIF_BROADCAST; 11715 if (ipif->ipif_isv6) 11716 ill->ill_flags |= ILLF_NONUD; 11717 } 11718 11719 /* 11720 * If the interface was previously marked as a duplicate, then since 11721 * we've now got a "new" address, it should no longer be considered a 11722 * duplicate -- even if the "new" address is the same as the old one. 11723 * Note that if all ipifs are down, we may have a pending ARP down 11724 * event to handle. 11725 */ 11726 need_dl_down = need_arp_down = B_FALSE; 11727 if (ipif->ipif_flags & IPIF_DUPLICATE) { 11728 need_arp_down = !need_up; 11729 ipif->ipif_flags &= ~IPIF_DUPLICATE; 11730 if (--ill->ill_ipif_dup_count == 0 && !need_up && 11731 ill->ill_ipif_up_count == 0 && ill->ill_dl_up) { 11732 need_dl_down = B_TRUE; 11733 } 11734 } 11735 11736 /* Set the new address. */ 11737 ipif->ipif_v6pp_dst_addr = v6addr; 11738 /* Make sure subnet tracks pp_dst */ 11739 ipif->ipif_v6subnet = ipif->ipif_v6pp_dst_addr; 11740 mutex_exit(&ill->ill_lock); 11741 11742 if (need_up) { 11743 /* 11744 * Now bring the interface back up. If this 11745 * is the only IPIF for the ILL, ipif_up 11746 * will have to re-bind to the device, so 11747 * we may get back EINPROGRESS, in which 11748 * case, this IOCTL will get completed in 11749 * ip_rput_dlpi when we see the DL_BIND_ACK. 11750 */ 11751 err = ipif_up(ipif, q, mp); 11752 } 11753 11754 if (need_dl_down) 11755 ill_dl_down(ill); 11756 11757 if (need_arp_down) 11758 ipif_arp_down(ipif); 11759 return (err); 11760 } 11761 11762 /* 11763 * Restart entry point to restart the dstaddress set operation after the 11764 * refcounts have dropped to zero. 11765 */ 11766 /* ARGSUSED */ 11767 int 11768 ip_sioctl_dstaddr_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11769 ip_ioctl_cmd_t *ipip, void *ifreq) 11770 { 11771 ip1dbg(("ip_sioctl_dstaddr_restart(%s:%u %p)\n", 11772 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11773 ipif_down_tail(ipif); 11774 return (ip_sioctl_dstaddr_tail(ipif, sin, q, mp, B_TRUE)); 11775 } 11776 11777 /* ARGSUSED */ 11778 int 11779 ip_sioctl_get_dstaddr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11780 ip_ioctl_cmd_t *ipip, void *if_req) 11781 { 11782 sin6_t *sin6 = (struct sockaddr_in6 *)sin; 11783 11784 ip1dbg(("ip_sioctl_get_dstaddr(%s:%u %p)\n", 11785 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11786 /* 11787 * Get point to point destination address. The addresses can't 11788 * change since we hold a reference to the ipif. 11789 */ 11790 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) 11791 return (EADDRNOTAVAIL); 11792 11793 if (ipif->ipif_isv6) { 11794 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 11795 *sin6 = sin6_null; 11796 sin6->sin6_family = AF_INET6; 11797 sin6->sin6_addr = ipif->ipif_v6pp_dst_addr; 11798 } else { 11799 *sin = sin_null; 11800 sin->sin_family = AF_INET; 11801 sin->sin_addr.s_addr = ipif->ipif_pp_dst_addr; 11802 } 11803 return (0); 11804 } 11805 11806 /* 11807 * part of ipmp, make this func return the active/inactive state and 11808 * caller can set once atomically instead of multiple mutex_enter/mutex_exit 11809 */ 11810 /* 11811 * This function either sets or clears the IFF_INACTIVE flag. 11812 * 11813 * As long as there are some addresses or multicast memberships on the 11814 * IPv4 or IPv6 interface of the "phyi" that does not belong in here, we 11815 * will consider it to be ACTIVE (clear IFF_INACTIVE) i.e the interface 11816 * will be used for outbound packets. 11817 * 11818 * Caller needs to verify the validity of setting IFF_INACTIVE. 11819 */ 11820 static void 11821 phyint_inactive(phyint_t *phyi) 11822 { 11823 ill_t *ill_v4; 11824 ill_t *ill_v6; 11825 ipif_t *ipif; 11826 ilm_t *ilm; 11827 11828 ill_v4 = phyi->phyint_illv4; 11829 ill_v6 = phyi->phyint_illv6; 11830 11831 /* 11832 * No need for a lock while traversing the list since iam 11833 * a writer 11834 */ 11835 if (ill_v4 != NULL) { 11836 ASSERT(IAM_WRITER_ILL(ill_v4)); 11837 for (ipif = ill_v4->ill_ipif; ipif != NULL; 11838 ipif = ipif->ipif_next) { 11839 if (ipif->ipif_orig_ifindex != phyi->phyint_ifindex) { 11840 mutex_enter(&phyi->phyint_lock); 11841 phyi->phyint_flags &= ~PHYI_INACTIVE; 11842 mutex_exit(&phyi->phyint_lock); 11843 return; 11844 } 11845 } 11846 for (ilm = ill_v4->ill_ilm; ilm != NULL; 11847 ilm = ilm->ilm_next) { 11848 if (ilm->ilm_orig_ifindex != phyi->phyint_ifindex) { 11849 mutex_enter(&phyi->phyint_lock); 11850 phyi->phyint_flags &= ~PHYI_INACTIVE; 11851 mutex_exit(&phyi->phyint_lock); 11852 return; 11853 } 11854 } 11855 } 11856 if (ill_v6 != NULL) { 11857 ill_v6 = phyi->phyint_illv6; 11858 for (ipif = ill_v6->ill_ipif; ipif != NULL; 11859 ipif = ipif->ipif_next) { 11860 if (ipif->ipif_orig_ifindex != phyi->phyint_ifindex) { 11861 mutex_enter(&phyi->phyint_lock); 11862 phyi->phyint_flags &= ~PHYI_INACTIVE; 11863 mutex_exit(&phyi->phyint_lock); 11864 return; 11865 } 11866 } 11867 for (ilm = ill_v6->ill_ilm; ilm != NULL; 11868 ilm = ilm->ilm_next) { 11869 if (ilm->ilm_orig_ifindex != phyi->phyint_ifindex) { 11870 mutex_enter(&phyi->phyint_lock); 11871 phyi->phyint_flags &= ~PHYI_INACTIVE; 11872 mutex_exit(&phyi->phyint_lock); 11873 return; 11874 } 11875 } 11876 } 11877 mutex_enter(&phyi->phyint_lock); 11878 phyi->phyint_flags |= PHYI_INACTIVE; 11879 mutex_exit(&phyi->phyint_lock); 11880 } 11881 11882 /* 11883 * This function is called only when the phyint flags change. Currently 11884 * called from ip_sioctl_flags. We re-do the broadcast nomination so 11885 * that we can select a good ill. 11886 */ 11887 static void 11888 ip_redo_nomination(phyint_t *phyi) 11889 { 11890 ill_t *ill_v4; 11891 11892 ill_v4 = phyi->phyint_illv4; 11893 11894 if (ill_v4 != NULL && ill_v4->ill_group != NULL) { 11895 ASSERT(IAM_WRITER_ILL(ill_v4)); 11896 if (ill_v4->ill_group->illgrp_ill_count > 1) 11897 ill_nominate_bcast_rcv(ill_v4->ill_group); 11898 } 11899 } 11900 11901 /* 11902 * Heuristic to check if ill is INACTIVE. 11903 * Checks if ill has an ipif with an usable ip address. 11904 * 11905 * Return values: 11906 * B_TRUE - ill is INACTIVE; has no usable ipif 11907 * B_FALSE - ill is not INACTIVE; ill has at least one usable ipif 11908 */ 11909 static boolean_t 11910 ill_is_inactive(ill_t *ill) 11911 { 11912 ipif_t *ipif; 11913 11914 /* Check whether it is in an IPMP group */ 11915 if (ill->ill_phyint->phyint_groupname == NULL) 11916 return (B_FALSE); 11917 11918 if (ill->ill_ipif_up_count == 0) 11919 return (B_TRUE); 11920 11921 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 11922 uint64_t flags = ipif->ipif_flags; 11923 11924 /* 11925 * This ipif is usable if it is IPIF_UP and not a 11926 * dedicated test address. A dedicated test address 11927 * is marked IPIF_NOFAILOVER *and* IPIF_DEPRECATED 11928 * (note in particular that V6 test addresses are 11929 * link-local data addresses and thus are marked 11930 * IPIF_NOFAILOVER but not IPIF_DEPRECATED). 11931 */ 11932 if ((flags & IPIF_UP) && 11933 ((flags & (IPIF_DEPRECATED|IPIF_NOFAILOVER)) != 11934 (IPIF_DEPRECATED|IPIF_NOFAILOVER))) 11935 return (B_FALSE); 11936 } 11937 return (B_TRUE); 11938 } 11939 11940 /* 11941 * Set interface flags. 11942 * Need to do special action for IPIF_UP, IPIF_DEPRECATED, IPIF_NOXMIT, 11943 * IPIF_NOLOCAL, ILLF_NONUD, ILLF_NOARP, IPIF_PRIVATE, IPIF_ANYCAST, 11944 * IPIF_PREFERRED, PHYI_STANDBY, PHYI_FAILED and PHYI_OFFLINE. 11945 * 11946 * NOTE : We really don't enforce that ipif_id zero should be used 11947 * for setting any flags other than IFF_LOGINT_FLAGS. This 11948 * is because applications generally does SICGLIFFLAGS and 11949 * ORs in the new flags (that affects the logical) and does a 11950 * SIOCSLIFFLAGS. Thus, "flags" below could contain bits other 11951 * than IFF_LOGINT_FLAGS. One could check whether "turn_on" - the 11952 * flags that will be turned on is correct with respect to 11953 * ipif_id 0. For backward compatibility reasons, it is not done. 11954 */ 11955 /* ARGSUSED */ 11956 int 11957 ip_sioctl_flags(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11958 ip_ioctl_cmd_t *ipip, void *if_req) 11959 { 11960 uint64_t turn_on; 11961 uint64_t turn_off; 11962 int err; 11963 boolean_t need_up = B_FALSE; 11964 phyint_t *phyi; 11965 ill_t *ill; 11966 uint64_t intf_flags; 11967 boolean_t phyint_flags_modified = B_FALSE; 11968 uint64_t flags; 11969 struct ifreq *ifr; 11970 struct lifreq *lifr; 11971 boolean_t set_linklocal = B_FALSE; 11972 boolean_t zero_source = B_FALSE; 11973 ip_stack_t *ipst; 11974 11975 ip1dbg(("ip_sioctl_flags(%s:%u %p)\n", 11976 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11977 11978 ASSERT(IAM_WRITER_IPIF(ipif)); 11979 11980 ill = ipif->ipif_ill; 11981 phyi = ill->ill_phyint; 11982 ipst = ill->ill_ipst; 11983 11984 if (ipip->ipi_cmd_type == IF_CMD) { 11985 ifr = (struct ifreq *)if_req; 11986 flags = (uint64_t)(ifr->ifr_flags & 0x0000ffff); 11987 } else { 11988 lifr = (struct lifreq *)if_req; 11989 flags = lifr->lifr_flags; 11990 } 11991 11992 intf_flags = ipif->ipif_flags | ill->ill_flags | phyi->phyint_flags; 11993 11994 /* 11995 * Has the flags been set correctly till now ? 11996 */ 11997 ASSERT((phyi->phyint_flags & ~(IFF_PHYINT_FLAGS)) == 0); 11998 ASSERT((ill->ill_flags & ~(IFF_PHYINTINST_FLAGS)) == 0); 11999 ASSERT((ipif->ipif_flags & ~(IFF_LOGINT_FLAGS)) == 0); 12000 /* 12001 * Compare the new flags to the old, and partition 12002 * into those coming on and those going off. 12003 * For the 16 bit command keep the bits above bit 16 unchanged. 12004 */ 12005 if (ipip->ipi_cmd == SIOCSIFFLAGS) 12006 flags |= intf_flags & ~0xFFFF; 12007 12008 /* 12009 * First check which bits will change and then which will 12010 * go on and off 12011 */ 12012 turn_on = (flags ^ intf_flags) & ~IFF_CANTCHANGE; 12013 if (!turn_on) 12014 return (0); /* No change */ 12015 12016 turn_off = intf_flags & turn_on; 12017 turn_on ^= turn_off; 12018 err = 0; 12019 12020 /* 12021 * Don't allow any bits belonging to the logical interface 12022 * to be set or cleared on the replacement ipif that was 12023 * created temporarily during a MOVE. 12024 */ 12025 if (ipif->ipif_replace_zero && 12026 ((turn_on|turn_off) & IFF_LOGINT_FLAGS) != 0) { 12027 return (EINVAL); 12028 } 12029 12030 /* 12031 * Only allow the IFF_XRESOLV and IFF_TEMPORARY flags to be set on 12032 * IPv6 interfaces. 12033 */ 12034 if ((turn_on & (IFF_XRESOLV|IFF_TEMPORARY)) && !(ipif->ipif_isv6)) 12035 return (EINVAL); 12036 12037 /* 12038 * Don't allow the IFF_ROUTER flag to be turned on on loopback 12039 * interfaces. It makes no sense in that context. 12040 */ 12041 if ((turn_on & IFF_ROUTER) && (phyi->phyint_flags & PHYI_LOOPBACK)) 12042 return (EINVAL); 12043 12044 if (flags & (IFF_NOLOCAL|IFF_ANYCAST)) 12045 zero_source = B_TRUE; 12046 12047 /* 12048 * For IPv6 ipif_id 0, don't allow the interface to be up without 12049 * a link local address if IFF_NOLOCAL or IFF_ANYCAST are not set. 12050 * If the link local address isn't set, and can be set, it will get 12051 * set later on in this function. 12052 */ 12053 if (ipif->ipif_id == 0 && ipif->ipif_isv6 && 12054 (flags & IFF_UP) && !zero_source && 12055 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr)) { 12056 if (ipif_cant_setlinklocal(ipif)) 12057 return (EINVAL); 12058 set_linklocal = B_TRUE; 12059 } 12060 12061 /* 12062 * ILL cannot be part of a usesrc group and and IPMP group at the 12063 * same time. No need to grab ill_g_usesrc_lock here, see 12064 * synchronization notes in ip.c 12065 */ 12066 if (turn_on & PHYI_STANDBY && 12067 ipif->ipif_ill->ill_usesrc_grp_next != NULL) { 12068 return (EINVAL); 12069 } 12070 12071 /* 12072 * If we modify physical interface flags, we'll potentially need to 12073 * send up two routing socket messages for the changes (one for the 12074 * IPv4 ill, and another for the IPv6 ill). Note that here. 12075 */ 12076 if ((turn_on|turn_off) & IFF_PHYINT_FLAGS) 12077 phyint_flags_modified = B_TRUE; 12078 12079 /* 12080 * If we are setting or clearing FAILED or STANDBY or OFFLINE, 12081 * we need to flush the IRE_CACHES belonging to this ill. 12082 * We handle this case here without doing the DOWN/UP dance 12083 * like it is done for other flags. If some other flags are 12084 * being turned on/off with FAILED/STANDBY/OFFLINE, the code 12085 * below will handle it by bringing it down and then 12086 * bringing it UP. 12087 */ 12088 if ((turn_on|turn_off) & (PHYI_FAILED|PHYI_STANDBY|PHYI_OFFLINE)) { 12089 ill_t *ill_v4, *ill_v6; 12090 12091 ill_v4 = phyi->phyint_illv4; 12092 ill_v6 = phyi->phyint_illv6; 12093 12094 /* 12095 * First set the INACTIVE flag if needed. Then delete the ires. 12096 * ire_add will atomically prevent creating new IRE_CACHEs 12097 * unless hidden flag is set. 12098 * PHYI_FAILED and PHYI_INACTIVE are exclusive 12099 */ 12100 if ((turn_on & PHYI_FAILED) && 12101 ((intf_flags & PHYI_STANDBY) || 12102 !ipst->ips_ipmp_enable_failback)) { 12103 /* Reset PHYI_INACTIVE when PHYI_FAILED is being set */ 12104 phyi->phyint_flags &= ~PHYI_INACTIVE; 12105 } 12106 if ((turn_off & PHYI_FAILED) && 12107 ((intf_flags & PHYI_STANDBY) || 12108 (!ipst->ips_ipmp_enable_failback && 12109 ill_is_inactive(ill)))) { 12110 phyint_inactive(phyi); 12111 } 12112 12113 if (turn_on & PHYI_STANDBY) { 12114 /* 12115 * We implicitly set INACTIVE only when STANDBY is set. 12116 * INACTIVE is also set on non-STANDBY phyint when user 12117 * disables FAILBACK using configuration file. 12118 * Do not allow STANDBY to be set on such INACTIVE 12119 * phyint 12120 */ 12121 if (phyi->phyint_flags & PHYI_INACTIVE) 12122 return (EINVAL); 12123 if (!(phyi->phyint_flags & PHYI_FAILED)) 12124 phyint_inactive(phyi); 12125 } 12126 if (turn_off & PHYI_STANDBY) { 12127 if (ipst->ips_ipmp_enable_failback) { 12128 /* 12129 * Reset PHYI_INACTIVE. 12130 */ 12131 phyi->phyint_flags &= ~PHYI_INACTIVE; 12132 } else if (ill_is_inactive(ill) && 12133 !(phyi->phyint_flags & PHYI_FAILED)) { 12134 /* 12135 * Need to set INACTIVE, when user sets 12136 * STANDBY on a non-STANDBY phyint and 12137 * later resets STANDBY 12138 */ 12139 phyint_inactive(phyi); 12140 } 12141 } 12142 /* 12143 * We should always send up a message so that the 12144 * daemons come to know of it. Note that the zeroth 12145 * interface can be down and the check below for IPIF_UP 12146 * will not make sense as we are actually setting 12147 * a phyint flag here. We assume that the ipif used 12148 * is always the zeroth ipif. (ip_rts_ifmsg does not 12149 * send up any message for non-zero ipifs). 12150 */ 12151 phyint_flags_modified = B_TRUE; 12152 12153 if (ill_v4 != NULL) { 12154 ire_walk_ill_v4(MATCH_IRE_ILL | MATCH_IRE_TYPE, 12155 IRE_CACHE, ill_stq_cache_delete, 12156 (char *)ill_v4, ill_v4); 12157 illgrp_reset_schednext(ill_v4); 12158 } 12159 if (ill_v6 != NULL) { 12160 ire_walk_ill_v6(MATCH_IRE_ILL | MATCH_IRE_TYPE, 12161 IRE_CACHE, ill_stq_cache_delete, 12162 (char *)ill_v6, ill_v6); 12163 illgrp_reset_schednext(ill_v6); 12164 } 12165 } 12166 12167 /* 12168 * If ILLF_ROUTER changes, we need to change the ip forwarding 12169 * status of the interface and, if the interface is part of an IPMP 12170 * group, all other interfaces that are part of the same IPMP 12171 * group. 12172 */ 12173 if ((turn_on | turn_off) & ILLF_ROUTER) { 12174 (void) ill_forward_set(q, mp, ((turn_on & ILLF_ROUTER) != 0), 12175 (caddr_t)ill); 12176 } 12177 12178 /* 12179 * If the interface is not UP and we are not going to 12180 * bring it UP, record the flags and return. When the 12181 * interface comes UP later, the right actions will be 12182 * taken. 12183 */ 12184 if (!(ipif->ipif_flags & IPIF_UP) && 12185 !(turn_on & IPIF_UP)) { 12186 /* Record new flags in their respective places. */ 12187 mutex_enter(&ill->ill_lock); 12188 mutex_enter(&ill->ill_phyint->phyint_lock); 12189 ipif->ipif_flags |= (turn_on & IFF_LOGINT_FLAGS); 12190 ipif->ipif_flags &= (~turn_off & IFF_LOGINT_FLAGS); 12191 ill->ill_flags |= (turn_on & IFF_PHYINTINST_FLAGS); 12192 ill->ill_flags &= (~turn_off & IFF_PHYINTINST_FLAGS); 12193 phyi->phyint_flags |= (turn_on & IFF_PHYINT_FLAGS); 12194 phyi->phyint_flags &= (~turn_off & IFF_PHYINT_FLAGS); 12195 mutex_exit(&ill->ill_lock); 12196 mutex_exit(&ill->ill_phyint->phyint_lock); 12197 12198 /* 12199 * We do the broadcast and nomination here rather 12200 * than waiting for a FAILOVER/FAILBACK to happen. In 12201 * the case of FAILBACK from INACTIVE standby to the 12202 * interface that has been repaired, PHYI_FAILED has not 12203 * been cleared yet. If there are only two interfaces in 12204 * that group, all we have is a FAILED and INACTIVE 12205 * interface. If we do the nomination soon after a failback, 12206 * the broadcast nomination code would select the 12207 * INACTIVE interface for receiving broadcasts as FAILED is 12208 * not yet cleared. As we don't want STANDBY/INACTIVE to 12209 * receive broadcast packets, we need to redo nomination 12210 * when the FAILED is cleared here. Thus, in general we 12211 * always do the nomination here for FAILED, STANDBY 12212 * and OFFLINE. 12213 */ 12214 if (((turn_on | turn_off) & 12215 (PHYI_FAILED|PHYI_STANDBY|PHYI_OFFLINE))) { 12216 ip_redo_nomination(phyi); 12217 } 12218 if (phyint_flags_modified) { 12219 if (phyi->phyint_illv4 != NULL) { 12220 ip_rts_ifmsg(phyi->phyint_illv4-> 12221 ill_ipif); 12222 } 12223 if (phyi->phyint_illv6 != NULL) { 12224 ip_rts_ifmsg(phyi->phyint_illv6-> 12225 ill_ipif); 12226 } 12227 } 12228 return (0); 12229 } else if (set_linklocal || zero_source) { 12230 mutex_enter(&ill->ill_lock); 12231 if (set_linklocal) 12232 ipif->ipif_state_flags |= IPIF_SET_LINKLOCAL; 12233 if (zero_source) 12234 ipif->ipif_state_flags |= IPIF_ZERO_SOURCE; 12235 mutex_exit(&ill->ill_lock); 12236 } 12237 12238 /* 12239 * Disallow IPv6 interfaces coming up that have the unspecified address, 12240 * or point-to-point interfaces with an unspecified destination. We do 12241 * allow the address to be unspecified for IPIF_NOLOCAL interfaces that 12242 * have a subnet assigned, which is how in.ndpd currently manages its 12243 * onlink prefix list when no addresses are configured with those 12244 * prefixes. 12245 */ 12246 if (ipif->ipif_isv6 && 12247 ((IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr) && 12248 (!(ipif->ipif_flags & IPIF_NOLOCAL) && !(turn_on & IPIF_NOLOCAL) || 12249 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6subnet))) || 12250 ((ipif->ipif_flags & IPIF_POINTOPOINT) && 12251 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6pp_dst_addr)))) { 12252 return (EINVAL); 12253 } 12254 12255 /* 12256 * Prevent IPv4 point-to-point interfaces with a 0.0.0.0 destination 12257 * from being brought up. 12258 */ 12259 if (!ipif->ipif_isv6 && 12260 ((ipif->ipif_flags & IPIF_POINTOPOINT) && 12261 ipif->ipif_pp_dst_addr == INADDR_ANY)) { 12262 return (EINVAL); 12263 } 12264 12265 /* 12266 * The only flag changes that we currently take specific action on 12267 * is IPIF_UP, IPIF_DEPRECATED, IPIF_NOXMIT, IPIF_NOLOCAL, 12268 * ILLF_NOARP, ILLF_NONUD, IPIF_PRIVATE, IPIF_ANYCAST, and 12269 * IPIF_PREFERRED. This is done by bring the ipif down, changing 12270 * the flags and bringing it back up again. 12271 */ 12272 if ((turn_on|turn_off) & 12273 (IPIF_UP|IPIF_DEPRECATED|IPIF_NOXMIT|IPIF_NOLOCAL|ILLF_NOARP| 12274 ILLF_NONUD|IPIF_PRIVATE|IPIF_ANYCAST|IPIF_PREFERRED)) { 12275 /* 12276 * Taking this ipif down, make sure we have 12277 * valid net and subnet bcast ire's for other 12278 * logical interfaces, if we need them. 12279 */ 12280 if (!ipif->ipif_isv6) 12281 ipif_check_bcast_ires(ipif); 12282 12283 if (((ipif->ipif_flags | turn_on) & IPIF_UP) && 12284 !(turn_off & IPIF_UP)) { 12285 need_up = B_TRUE; 12286 if (ipif->ipif_flags & IPIF_UP) 12287 ill->ill_logical_down = 1; 12288 turn_on &= ~IPIF_UP; 12289 } 12290 err = ipif_down(ipif, q, mp); 12291 ip1dbg(("ipif_down returns %d err ", err)); 12292 if (err == EINPROGRESS) 12293 return (err); 12294 ipif_down_tail(ipif); 12295 } 12296 return (ip_sioctl_flags_tail(ipif, flags, q, mp, need_up)); 12297 } 12298 12299 static int 12300 ip_sioctl_flags_tail(ipif_t *ipif, uint64_t flags, queue_t *q, mblk_t *mp, 12301 boolean_t need_up) 12302 { 12303 ill_t *ill; 12304 phyint_t *phyi; 12305 uint64_t turn_on; 12306 uint64_t turn_off; 12307 uint64_t intf_flags; 12308 boolean_t phyint_flags_modified = B_FALSE; 12309 int err = 0; 12310 boolean_t set_linklocal = B_FALSE; 12311 boolean_t zero_source = B_FALSE; 12312 12313 ip1dbg(("ip_sioctl_flags_tail(%s:%u)\n", 12314 ipif->ipif_ill->ill_name, ipif->ipif_id)); 12315 12316 ASSERT(IAM_WRITER_IPIF(ipif)); 12317 12318 ill = ipif->ipif_ill; 12319 phyi = ill->ill_phyint; 12320 12321 intf_flags = ipif->ipif_flags | ill->ill_flags | phyi->phyint_flags; 12322 turn_on = (flags ^ intf_flags) & ~(IFF_CANTCHANGE | IFF_UP); 12323 12324 turn_off = intf_flags & turn_on; 12325 turn_on ^= turn_off; 12326 12327 if ((turn_on|turn_off) & (PHYI_FAILED|PHYI_STANDBY|PHYI_OFFLINE)) 12328 phyint_flags_modified = B_TRUE; 12329 12330 /* 12331 * Now we change the flags. Track current value of 12332 * other flags in their respective places. 12333 */ 12334 mutex_enter(&ill->ill_lock); 12335 mutex_enter(&phyi->phyint_lock); 12336 ipif->ipif_flags |= (turn_on & IFF_LOGINT_FLAGS); 12337 ipif->ipif_flags &= (~turn_off & IFF_LOGINT_FLAGS); 12338 ill->ill_flags |= (turn_on & IFF_PHYINTINST_FLAGS); 12339 ill->ill_flags &= (~turn_off & IFF_PHYINTINST_FLAGS); 12340 phyi->phyint_flags |= (turn_on & IFF_PHYINT_FLAGS); 12341 phyi->phyint_flags &= (~turn_off & IFF_PHYINT_FLAGS); 12342 if (ipif->ipif_state_flags & IPIF_SET_LINKLOCAL) { 12343 set_linklocal = B_TRUE; 12344 ipif->ipif_state_flags &= ~IPIF_SET_LINKLOCAL; 12345 } 12346 if (ipif->ipif_state_flags & IPIF_ZERO_SOURCE) { 12347 zero_source = B_TRUE; 12348 ipif->ipif_state_flags &= ~IPIF_ZERO_SOURCE; 12349 } 12350 mutex_exit(&ill->ill_lock); 12351 mutex_exit(&phyi->phyint_lock); 12352 12353 if (((turn_on | turn_off) & (PHYI_FAILED|PHYI_STANDBY|PHYI_OFFLINE))) 12354 ip_redo_nomination(phyi); 12355 12356 if (set_linklocal) 12357 (void) ipif_setlinklocal(ipif); 12358 12359 if (zero_source) 12360 ipif->ipif_v6src_addr = ipv6_all_zeros; 12361 else 12362 ipif->ipif_v6src_addr = ipif->ipif_v6lcl_addr; 12363 12364 if (need_up) { 12365 /* 12366 * XXX ipif_up really does not know whether a phyint flags 12367 * was modified or not. So, it sends up information on 12368 * only one routing sockets message. As we don't bring up 12369 * the interface and also set STANDBY/FAILED simultaneously 12370 * it should be okay. 12371 */ 12372 err = ipif_up(ipif, q, mp); 12373 } else { 12374 /* 12375 * Make sure routing socket sees all changes to the flags. 12376 * ipif_up_done* handles this when we use ipif_up. 12377 */ 12378 if (phyint_flags_modified) { 12379 if (phyi->phyint_illv4 != NULL) { 12380 ip_rts_ifmsg(phyi->phyint_illv4-> 12381 ill_ipif); 12382 } 12383 if (phyi->phyint_illv6 != NULL) { 12384 ip_rts_ifmsg(phyi->phyint_illv6-> 12385 ill_ipif); 12386 } 12387 } else { 12388 ip_rts_ifmsg(ipif); 12389 } 12390 /* 12391 * Update the flags in SCTP's IPIF list, ipif_up() will do 12392 * this in need_up case. 12393 */ 12394 sctp_update_ipif(ipif, SCTP_IPIF_UPDATE); 12395 } 12396 return (err); 12397 } 12398 12399 /* 12400 * Restart entry point to restart the flags restart operation after the 12401 * refcounts have dropped to zero. 12402 */ 12403 /* ARGSUSED */ 12404 int 12405 ip_sioctl_flags_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12406 ip_ioctl_cmd_t *ipip, void *if_req) 12407 { 12408 int err; 12409 struct ifreq *ifr = (struct ifreq *)if_req; 12410 struct lifreq *lifr = (struct lifreq *)if_req; 12411 12412 ip1dbg(("ip_sioctl_flags_restart(%s:%u %p)\n", 12413 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12414 12415 ipif_down_tail(ipif); 12416 if (ipip->ipi_cmd_type == IF_CMD) { 12417 /* 12418 * Since ip_sioctl_flags expects an int and ifr_flags 12419 * is a short we need to cast ifr_flags into an int 12420 * to avoid having sign extension cause bits to get 12421 * set that should not be. 12422 */ 12423 err = ip_sioctl_flags_tail(ipif, 12424 (uint64_t)(ifr->ifr_flags & 0x0000ffff), 12425 q, mp, B_TRUE); 12426 } else { 12427 err = ip_sioctl_flags_tail(ipif, lifr->lifr_flags, 12428 q, mp, B_TRUE); 12429 } 12430 return (err); 12431 } 12432 12433 /* 12434 * Can operate on either a module or a driver queue. 12435 */ 12436 /* ARGSUSED */ 12437 int 12438 ip_sioctl_get_flags(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12439 ip_ioctl_cmd_t *ipip, void *if_req) 12440 { 12441 /* 12442 * Has the flags been set correctly till now ? 12443 */ 12444 ill_t *ill = ipif->ipif_ill; 12445 phyint_t *phyi = ill->ill_phyint; 12446 12447 ip1dbg(("ip_sioctl_get_flags(%s:%u %p)\n", 12448 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12449 ASSERT((phyi->phyint_flags & ~(IFF_PHYINT_FLAGS)) == 0); 12450 ASSERT((ill->ill_flags & ~(IFF_PHYINTINST_FLAGS)) == 0); 12451 ASSERT((ipif->ipif_flags & ~(IFF_LOGINT_FLAGS)) == 0); 12452 12453 /* 12454 * Need a lock since some flags can be set even when there are 12455 * references to the ipif. 12456 */ 12457 mutex_enter(&ill->ill_lock); 12458 if (ipip->ipi_cmd_type == IF_CMD) { 12459 struct ifreq *ifr = (struct ifreq *)if_req; 12460 12461 /* Get interface flags (low 16 only). */ 12462 ifr->ifr_flags = ((ipif->ipif_flags | 12463 ill->ill_flags | phyi->phyint_flags) & 0xffff); 12464 } else { 12465 struct lifreq *lifr = (struct lifreq *)if_req; 12466 12467 /* Get interface flags. */ 12468 lifr->lifr_flags = ipif->ipif_flags | 12469 ill->ill_flags | phyi->phyint_flags; 12470 } 12471 mutex_exit(&ill->ill_lock); 12472 return (0); 12473 } 12474 12475 /* ARGSUSED */ 12476 int 12477 ip_sioctl_mtu(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12478 ip_ioctl_cmd_t *ipip, void *if_req) 12479 { 12480 int mtu; 12481 int ip_min_mtu; 12482 struct ifreq *ifr; 12483 struct lifreq *lifr; 12484 ire_t *ire; 12485 ip_stack_t *ipst; 12486 12487 ip1dbg(("ip_sioctl_mtu(%s:%u %p)\n", ipif->ipif_ill->ill_name, 12488 ipif->ipif_id, (void *)ipif)); 12489 if (ipip->ipi_cmd_type == IF_CMD) { 12490 ifr = (struct ifreq *)if_req; 12491 mtu = ifr->ifr_metric; 12492 } else { 12493 lifr = (struct lifreq *)if_req; 12494 mtu = lifr->lifr_mtu; 12495 } 12496 12497 if (ipif->ipif_isv6) 12498 ip_min_mtu = IPV6_MIN_MTU; 12499 else 12500 ip_min_mtu = IP_MIN_MTU; 12501 12502 if (mtu > ipif->ipif_ill->ill_max_frag || mtu < ip_min_mtu) 12503 return (EINVAL); 12504 12505 /* 12506 * Change the MTU size in all relevant ire's. 12507 * Mtu change Vs. new ire creation - protocol below. 12508 * First change ipif_mtu and the ire_max_frag of the 12509 * interface ire. Then do an ire walk and change the 12510 * ire_max_frag of all affected ires. During ire_add 12511 * under the bucket lock, set the ire_max_frag of the 12512 * new ire being created from the ipif/ire from which 12513 * it is being derived. If an mtu change happens after 12514 * the ire is added, the new ire will be cleaned up. 12515 * Conversely if the mtu change happens before the ire 12516 * is added, ire_add will see the new value of the mtu. 12517 */ 12518 ipif->ipif_mtu = mtu; 12519 ipif->ipif_flags |= IPIF_FIXEDMTU; 12520 12521 if (ipif->ipif_isv6) 12522 ire = ipif_to_ire_v6(ipif); 12523 else 12524 ire = ipif_to_ire(ipif); 12525 if (ire != NULL) { 12526 ire->ire_max_frag = ipif->ipif_mtu; 12527 ire_refrele(ire); 12528 } 12529 ipst = ipif->ipif_ill->ill_ipst; 12530 if (ipif->ipif_flags & IPIF_UP) { 12531 if (ipif->ipif_isv6) 12532 ire_walk_v6(ipif_mtu_change, (char *)ipif, ALL_ZONES, 12533 ipst); 12534 else 12535 ire_walk_v4(ipif_mtu_change, (char *)ipif, ALL_ZONES, 12536 ipst); 12537 } 12538 /* Update the MTU in SCTP's list */ 12539 sctp_update_ipif(ipif, SCTP_IPIF_UPDATE); 12540 return (0); 12541 } 12542 12543 /* Get interface MTU. */ 12544 /* ARGSUSED */ 12545 int 12546 ip_sioctl_get_mtu(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12547 ip_ioctl_cmd_t *ipip, void *if_req) 12548 { 12549 struct ifreq *ifr; 12550 struct lifreq *lifr; 12551 12552 ip1dbg(("ip_sioctl_get_mtu(%s:%u %p)\n", 12553 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12554 if (ipip->ipi_cmd_type == IF_CMD) { 12555 ifr = (struct ifreq *)if_req; 12556 ifr->ifr_metric = ipif->ipif_mtu; 12557 } else { 12558 lifr = (struct lifreq *)if_req; 12559 lifr->lifr_mtu = ipif->ipif_mtu; 12560 } 12561 return (0); 12562 } 12563 12564 /* Set interface broadcast address. */ 12565 /* ARGSUSED2 */ 12566 int 12567 ip_sioctl_brdaddr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12568 ip_ioctl_cmd_t *ipip, void *if_req) 12569 { 12570 ipaddr_t addr; 12571 ire_t *ire; 12572 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 12573 12574 ip1dbg(("ip_sioctl_brdaddr(%s:%u)\n", ipif->ipif_ill->ill_name, 12575 ipif->ipif_id)); 12576 12577 ASSERT(IAM_WRITER_IPIF(ipif)); 12578 if (!(ipif->ipif_flags & IPIF_BROADCAST)) 12579 return (EADDRNOTAVAIL); 12580 12581 ASSERT(!(ipif->ipif_isv6)); /* No IPv6 broadcast */ 12582 12583 if (sin->sin_family != AF_INET) 12584 return (EAFNOSUPPORT); 12585 12586 addr = sin->sin_addr.s_addr; 12587 if (ipif->ipif_flags & IPIF_UP) { 12588 /* 12589 * If we are already up, make sure the new 12590 * broadcast address makes sense. If it does, 12591 * there should be an IRE for it already. 12592 * Don't match on ipif, only on the ill 12593 * since we are sharing these now. Don't use 12594 * MATCH_IRE_ILL_GROUP as we are looking for 12595 * the broadcast ire on this ill and each ill 12596 * in the group has its own broadcast ire. 12597 */ 12598 ire = ire_ctable_lookup(addr, 0, IRE_BROADCAST, 12599 ipif, ALL_ZONES, NULL, 12600 (MATCH_IRE_ILL | MATCH_IRE_TYPE), ipst); 12601 if (ire == NULL) { 12602 return (EINVAL); 12603 } else { 12604 ire_refrele(ire); 12605 } 12606 } 12607 /* 12608 * Changing the broadcast addr for this ipif. 12609 * Make sure we have valid net and subnet bcast 12610 * ire's for other logical interfaces, if needed. 12611 */ 12612 if (addr != ipif->ipif_brd_addr) 12613 ipif_check_bcast_ires(ipif); 12614 IN6_IPADDR_TO_V4MAPPED(addr, &ipif->ipif_v6brd_addr); 12615 return (0); 12616 } 12617 12618 /* Get interface broadcast address. */ 12619 /* ARGSUSED */ 12620 int 12621 ip_sioctl_get_brdaddr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12622 ip_ioctl_cmd_t *ipip, void *if_req) 12623 { 12624 ip1dbg(("ip_sioctl_get_brdaddr(%s:%u %p)\n", 12625 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12626 if (!(ipif->ipif_flags & IPIF_BROADCAST)) 12627 return (EADDRNOTAVAIL); 12628 12629 /* IPIF_BROADCAST not possible with IPv6 */ 12630 ASSERT(!ipif->ipif_isv6); 12631 *sin = sin_null; 12632 sin->sin_family = AF_INET; 12633 sin->sin_addr.s_addr = ipif->ipif_brd_addr; 12634 return (0); 12635 } 12636 12637 /* 12638 * This routine is called to handle the SIOCS*IFNETMASK IOCTL. 12639 */ 12640 /* ARGSUSED */ 12641 int 12642 ip_sioctl_netmask(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12643 ip_ioctl_cmd_t *ipip, void *if_req) 12644 { 12645 int err = 0; 12646 in6_addr_t v6mask; 12647 12648 ip1dbg(("ip_sioctl_netmask(%s:%u %p)\n", 12649 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12650 12651 ASSERT(IAM_WRITER_IPIF(ipif)); 12652 12653 if (ipif->ipif_isv6) { 12654 sin6_t *sin6; 12655 12656 if (sin->sin_family != AF_INET6) 12657 return (EAFNOSUPPORT); 12658 12659 sin6 = (sin6_t *)sin; 12660 v6mask = sin6->sin6_addr; 12661 } else { 12662 ipaddr_t mask; 12663 12664 if (sin->sin_family != AF_INET) 12665 return (EAFNOSUPPORT); 12666 12667 mask = sin->sin_addr.s_addr; 12668 V4MASK_TO_V6(mask, v6mask); 12669 } 12670 12671 /* 12672 * No big deal if the interface isn't already up, or the mask 12673 * isn't really changing, or this is pt-pt. 12674 */ 12675 if (!(ipif->ipif_flags & IPIF_UP) || 12676 IN6_ARE_ADDR_EQUAL(&v6mask, &ipif->ipif_v6net_mask) || 12677 (ipif->ipif_flags & IPIF_POINTOPOINT)) { 12678 ipif->ipif_v6net_mask = v6mask; 12679 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) { 12680 V6_MASK_COPY(ipif->ipif_v6lcl_addr, 12681 ipif->ipif_v6net_mask, 12682 ipif->ipif_v6subnet); 12683 } 12684 return (0); 12685 } 12686 /* 12687 * Make sure we have valid net and subnet broadcast ire's 12688 * for the old netmask, if needed by other logical interfaces. 12689 */ 12690 if (!ipif->ipif_isv6) 12691 ipif_check_bcast_ires(ipif); 12692 12693 err = ipif_logical_down(ipif, q, mp); 12694 if (err == EINPROGRESS) 12695 return (err); 12696 ipif_down_tail(ipif); 12697 err = ip_sioctl_netmask_tail(ipif, sin, q, mp); 12698 return (err); 12699 } 12700 12701 static int 12702 ip_sioctl_netmask_tail(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp) 12703 { 12704 in6_addr_t v6mask; 12705 int err = 0; 12706 12707 ip1dbg(("ip_sioctl_netmask_tail(%s:%u %p)\n", 12708 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12709 12710 if (ipif->ipif_isv6) { 12711 sin6_t *sin6; 12712 12713 sin6 = (sin6_t *)sin; 12714 v6mask = sin6->sin6_addr; 12715 } else { 12716 ipaddr_t mask; 12717 12718 mask = sin->sin_addr.s_addr; 12719 V4MASK_TO_V6(mask, v6mask); 12720 } 12721 12722 ipif->ipif_v6net_mask = v6mask; 12723 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) { 12724 V6_MASK_COPY(ipif->ipif_v6lcl_addr, ipif->ipif_v6net_mask, 12725 ipif->ipif_v6subnet); 12726 } 12727 err = ipif_up(ipif, q, mp); 12728 12729 if (err == 0 || err == EINPROGRESS) { 12730 /* 12731 * The interface must be DL_BOUND if this packet has to 12732 * go out on the wire. Since we only go through a logical 12733 * down and are bound with the driver during an internal 12734 * down/up that is satisfied. 12735 */ 12736 if (!ipif->ipif_isv6 && ipif->ipif_ill->ill_wq != NULL) { 12737 /* Potentially broadcast an address mask reply. */ 12738 ipif_mask_reply(ipif); 12739 } 12740 } 12741 return (err); 12742 } 12743 12744 /* ARGSUSED */ 12745 int 12746 ip_sioctl_netmask_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12747 ip_ioctl_cmd_t *ipip, void *if_req) 12748 { 12749 ip1dbg(("ip_sioctl_netmask_restart(%s:%u %p)\n", 12750 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12751 ipif_down_tail(ipif); 12752 return (ip_sioctl_netmask_tail(ipif, sin, q, mp)); 12753 } 12754 12755 /* Get interface net mask. */ 12756 /* ARGSUSED */ 12757 int 12758 ip_sioctl_get_netmask(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12759 ip_ioctl_cmd_t *ipip, void *if_req) 12760 { 12761 struct lifreq *lifr = (struct lifreq *)if_req; 12762 struct sockaddr_in6 *sin6 = (sin6_t *)sin; 12763 12764 ip1dbg(("ip_sioctl_get_netmask(%s:%u %p)\n", 12765 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12766 12767 /* 12768 * net mask can't change since we have a reference to the ipif. 12769 */ 12770 if (ipif->ipif_isv6) { 12771 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 12772 *sin6 = sin6_null; 12773 sin6->sin6_family = AF_INET6; 12774 sin6->sin6_addr = ipif->ipif_v6net_mask; 12775 lifr->lifr_addrlen = 12776 ip_mask_to_plen_v6(&ipif->ipif_v6net_mask); 12777 } else { 12778 *sin = sin_null; 12779 sin->sin_family = AF_INET; 12780 sin->sin_addr.s_addr = ipif->ipif_net_mask; 12781 if (ipip->ipi_cmd_type == LIF_CMD) { 12782 lifr->lifr_addrlen = 12783 ip_mask_to_plen(ipif->ipif_net_mask); 12784 } 12785 } 12786 return (0); 12787 } 12788 12789 /* ARGSUSED */ 12790 int 12791 ip_sioctl_metric(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12792 ip_ioctl_cmd_t *ipip, void *if_req) 12793 { 12794 12795 ip1dbg(("ip_sioctl_metric(%s:%u %p)\n", 12796 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12797 /* 12798 * Set interface metric. We don't use this for 12799 * anything but we keep track of it in case it is 12800 * important to routing applications or such. 12801 */ 12802 if (ipip->ipi_cmd_type == IF_CMD) { 12803 struct ifreq *ifr; 12804 12805 ifr = (struct ifreq *)if_req; 12806 ipif->ipif_metric = ifr->ifr_metric; 12807 } else { 12808 struct lifreq *lifr; 12809 12810 lifr = (struct lifreq *)if_req; 12811 ipif->ipif_metric = lifr->lifr_metric; 12812 } 12813 return (0); 12814 } 12815 12816 12817 /* ARGSUSED */ 12818 int 12819 ip_sioctl_get_metric(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12820 ip_ioctl_cmd_t *ipip, void *if_req) 12821 { 12822 12823 /* Get interface metric. */ 12824 ip1dbg(("ip_sioctl_get_metric(%s:%u %p)\n", 12825 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12826 if (ipip->ipi_cmd_type == IF_CMD) { 12827 struct ifreq *ifr; 12828 12829 ifr = (struct ifreq *)if_req; 12830 ifr->ifr_metric = ipif->ipif_metric; 12831 } else { 12832 struct lifreq *lifr; 12833 12834 lifr = (struct lifreq *)if_req; 12835 lifr->lifr_metric = ipif->ipif_metric; 12836 } 12837 12838 return (0); 12839 } 12840 12841 /* ARGSUSED */ 12842 int 12843 ip_sioctl_muxid(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12844 ip_ioctl_cmd_t *ipip, void *if_req) 12845 { 12846 12847 ip1dbg(("ip_sioctl_muxid(%s:%u %p)\n", 12848 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12849 /* 12850 * Set the muxid returned from I_PLINK. 12851 */ 12852 if (ipip->ipi_cmd_type == IF_CMD) { 12853 struct ifreq *ifr = (struct ifreq *)if_req; 12854 12855 ipif->ipif_ill->ill_ip_muxid = ifr->ifr_ip_muxid; 12856 ipif->ipif_ill->ill_arp_muxid = ifr->ifr_arp_muxid; 12857 } else { 12858 struct lifreq *lifr = (struct lifreq *)if_req; 12859 12860 ipif->ipif_ill->ill_ip_muxid = lifr->lifr_ip_muxid; 12861 ipif->ipif_ill->ill_arp_muxid = lifr->lifr_arp_muxid; 12862 } 12863 return (0); 12864 } 12865 12866 /* ARGSUSED */ 12867 int 12868 ip_sioctl_get_muxid(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12869 ip_ioctl_cmd_t *ipip, void *if_req) 12870 { 12871 12872 ip1dbg(("ip_sioctl_get_muxid(%s:%u %p)\n", 12873 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12874 /* 12875 * Get the muxid saved in ill for I_PUNLINK. 12876 */ 12877 if (ipip->ipi_cmd_type == IF_CMD) { 12878 struct ifreq *ifr = (struct ifreq *)if_req; 12879 12880 ifr->ifr_ip_muxid = ipif->ipif_ill->ill_ip_muxid; 12881 ifr->ifr_arp_muxid = ipif->ipif_ill->ill_arp_muxid; 12882 } else { 12883 struct lifreq *lifr = (struct lifreq *)if_req; 12884 12885 lifr->lifr_ip_muxid = ipif->ipif_ill->ill_ip_muxid; 12886 lifr->lifr_arp_muxid = ipif->ipif_ill->ill_arp_muxid; 12887 } 12888 return (0); 12889 } 12890 12891 /* 12892 * Set the subnet prefix. Does not modify the broadcast address. 12893 */ 12894 /* ARGSUSED */ 12895 int 12896 ip_sioctl_subnet(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12897 ip_ioctl_cmd_t *ipip, void *if_req) 12898 { 12899 int err = 0; 12900 in6_addr_t v6addr; 12901 in6_addr_t v6mask; 12902 boolean_t need_up = B_FALSE; 12903 int addrlen; 12904 12905 ip1dbg(("ip_sioctl_subnet(%s:%u %p)\n", 12906 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12907 12908 ASSERT(IAM_WRITER_IPIF(ipif)); 12909 addrlen = ((struct lifreq *)if_req)->lifr_addrlen; 12910 12911 if (ipif->ipif_isv6) { 12912 sin6_t *sin6; 12913 12914 if (sin->sin_family != AF_INET6) 12915 return (EAFNOSUPPORT); 12916 12917 sin6 = (sin6_t *)sin; 12918 v6addr = sin6->sin6_addr; 12919 if (!ip_remote_addr_ok_v6(&v6addr, &ipv6_all_ones)) 12920 return (EADDRNOTAVAIL); 12921 } else { 12922 ipaddr_t addr; 12923 12924 if (sin->sin_family != AF_INET) 12925 return (EAFNOSUPPORT); 12926 12927 addr = sin->sin_addr.s_addr; 12928 if (!ip_addr_ok_v4(addr, 0xFFFFFFFF)) 12929 return (EADDRNOTAVAIL); 12930 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 12931 /* Add 96 bits */ 12932 addrlen += IPV6_ABITS - IP_ABITS; 12933 } 12934 12935 if (ip_plen_to_mask_v6(addrlen, &v6mask) == NULL) 12936 return (EINVAL); 12937 12938 /* Check if bits in the address is set past the mask */ 12939 if (!V6_MASK_EQ(v6addr, v6mask, v6addr)) 12940 return (EINVAL); 12941 12942 if (IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6subnet, &v6addr) && 12943 IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6net_mask, &v6mask)) 12944 return (0); /* No change */ 12945 12946 if (ipif->ipif_flags & IPIF_UP) { 12947 /* 12948 * If the interface is already marked up, 12949 * we call ipif_down which will take care 12950 * of ditching any IREs that have been set 12951 * up based on the old interface address. 12952 */ 12953 err = ipif_logical_down(ipif, q, mp); 12954 if (err == EINPROGRESS) 12955 return (err); 12956 ipif_down_tail(ipif); 12957 need_up = B_TRUE; 12958 } 12959 12960 err = ip_sioctl_subnet_tail(ipif, v6addr, v6mask, q, mp, need_up); 12961 return (err); 12962 } 12963 12964 static int 12965 ip_sioctl_subnet_tail(ipif_t *ipif, in6_addr_t v6addr, in6_addr_t v6mask, 12966 queue_t *q, mblk_t *mp, boolean_t need_up) 12967 { 12968 ill_t *ill = ipif->ipif_ill; 12969 int err = 0; 12970 12971 ip1dbg(("ip_sioctl_subnet_tail(%s:%u %p)\n", 12972 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12973 12974 /* Set the new address. */ 12975 mutex_enter(&ill->ill_lock); 12976 ipif->ipif_v6net_mask = v6mask; 12977 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) { 12978 V6_MASK_COPY(v6addr, ipif->ipif_v6net_mask, 12979 ipif->ipif_v6subnet); 12980 } 12981 mutex_exit(&ill->ill_lock); 12982 12983 if (need_up) { 12984 /* 12985 * Now bring the interface back up. If this 12986 * is the only IPIF for the ILL, ipif_up 12987 * will have to re-bind to the device, so 12988 * we may get back EINPROGRESS, in which 12989 * case, this IOCTL will get completed in 12990 * ip_rput_dlpi when we see the DL_BIND_ACK. 12991 */ 12992 err = ipif_up(ipif, q, mp); 12993 if (err == EINPROGRESS) 12994 return (err); 12995 } 12996 return (err); 12997 } 12998 12999 /* ARGSUSED */ 13000 int 13001 ip_sioctl_subnet_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 13002 ip_ioctl_cmd_t *ipip, void *if_req) 13003 { 13004 int addrlen; 13005 in6_addr_t v6addr; 13006 in6_addr_t v6mask; 13007 struct lifreq *lifr = (struct lifreq *)if_req; 13008 13009 ip1dbg(("ip_sioctl_subnet_restart(%s:%u %p)\n", 13010 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 13011 ipif_down_tail(ipif); 13012 13013 addrlen = lifr->lifr_addrlen; 13014 if (ipif->ipif_isv6) { 13015 sin6_t *sin6; 13016 13017 sin6 = (sin6_t *)sin; 13018 v6addr = sin6->sin6_addr; 13019 } else { 13020 ipaddr_t addr; 13021 13022 addr = sin->sin_addr.s_addr; 13023 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 13024 addrlen += IPV6_ABITS - IP_ABITS; 13025 } 13026 (void) ip_plen_to_mask_v6(addrlen, &v6mask); 13027 13028 return (ip_sioctl_subnet_tail(ipif, v6addr, v6mask, q, mp, B_TRUE)); 13029 } 13030 13031 /* ARGSUSED */ 13032 int 13033 ip_sioctl_get_subnet(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 13034 ip_ioctl_cmd_t *ipip, void *if_req) 13035 { 13036 struct lifreq *lifr = (struct lifreq *)if_req; 13037 struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)sin; 13038 13039 ip1dbg(("ip_sioctl_get_subnet(%s:%u %p)\n", 13040 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 13041 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 13042 13043 if (ipif->ipif_isv6) { 13044 *sin6 = sin6_null; 13045 sin6->sin6_family = AF_INET6; 13046 sin6->sin6_addr = ipif->ipif_v6subnet; 13047 lifr->lifr_addrlen = 13048 ip_mask_to_plen_v6(&ipif->ipif_v6net_mask); 13049 } else { 13050 *sin = sin_null; 13051 sin->sin_family = AF_INET; 13052 sin->sin_addr.s_addr = ipif->ipif_subnet; 13053 lifr->lifr_addrlen = ip_mask_to_plen(ipif->ipif_net_mask); 13054 } 13055 return (0); 13056 } 13057 13058 /* 13059 * Set the IPv6 address token. 13060 */ 13061 /* ARGSUSED */ 13062 int 13063 ip_sioctl_token(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 13064 ip_ioctl_cmd_t *ipi, void *if_req) 13065 { 13066 ill_t *ill = ipif->ipif_ill; 13067 int err; 13068 in6_addr_t v6addr; 13069 in6_addr_t v6mask; 13070 boolean_t need_up = B_FALSE; 13071 int i; 13072 sin6_t *sin6 = (sin6_t *)sin; 13073 struct lifreq *lifr = (struct lifreq *)if_req; 13074 int addrlen; 13075 13076 ip1dbg(("ip_sioctl_token(%s:%u %p)\n", 13077 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 13078 ASSERT(IAM_WRITER_IPIF(ipif)); 13079 13080 addrlen = lifr->lifr_addrlen; 13081 /* Only allow for logical unit zero i.e. not on "le0:17" */ 13082 if (ipif->ipif_id != 0) 13083 return (EINVAL); 13084 13085 if (!ipif->ipif_isv6) 13086 return (EINVAL); 13087 13088 if (addrlen > IPV6_ABITS) 13089 return (EINVAL); 13090 13091 v6addr = sin6->sin6_addr; 13092 13093 /* 13094 * The length of the token is the length from the end. To get 13095 * the proper mask for this, compute the mask of the bits not 13096 * in the token; ie. the prefix, and then xor to get the mask. 13097 */ 13098 if (ip_plen_to_mask_v6(IPV6_ABITS - addrlen, &v6mask) == NULL) 13099 return (EINVAL); 13100 for (i = 0; i < 4; i++) { 13101 v6mask.s6_addr32[i] ^= (uint32_t)0xffffffff; 13102 } 13103 13104 if (V6_MASK_EQ(v6addr, v6mask, ill->ill_token) && 13105 ill->ill_token_length == addrlen) 13106 return (0); /* No change */ 13107 13108 if (ipif->ipif_flags & IPIF_UP) { 13109 err = ipif_logical_down(ipif, q, mp); 13110 if (err == EINPROGRESS) 13111 return (err); 13112 ipif_down_tail(ipif); 13113 need_up = B_TRUE; 13114 } 13115 err = ip_sioctl_token_tail(ipif, sin6, addrlen, q, mp, need_up); 13116 return (err); 13117 } 13118 13119 static int 13120 ip_sioctl_token_tail(ipif_t *ipif, sin6_t *sin6, int addrlen, queue_t *q, 13121 mblk_t *mp, boolean_t need_up) 13122 { 13123 in6_addr_t v6addr; 13124 in6_addr_t v6mask; 13125 ill_t *ill = ipif->ipif_ill; 13126 int i; 13127 int err = 0; 13128 13129 ip1dbg(("ip_sioctl_token_tail(%s:%u %p)\n", 13130 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 13131 v6addr = sin6->sin6_addr; 13132 /* 13133 * The length of the token is the length from the end. To get 13134 * the proper mask for this, compute the mask of the bits not 13135 * in the token; ie. the prefix, and then xor to get the mask. 13136 */ 13137 (void) ip_plen_to_mask_v6(IPV6_ABITS - addrlen, &v6mask); 13138 for (i = 0; i < 4; i++) 13139 v6mask.s6_addr32[i] ^= (uint32_t)0xffffffff; 13140 13141 mutex_enter(&ill->ill_lock); 13142 V6_MASK_COPY(v6addr, v6mask, ill->ill_token); 13143 ill->ill_token_length = addrlen; 13144 mutex_exit(&ill->ill_lock); 13145 13146 if (need_up) { 13147 /* 13148 * Now bring the interface back up. If this 13149 * is the only IPIF for the ILL, ipif_up 13150 * will have to re-bind to the device, so 13151 * we may get back EINPROGRESS, in which 13152 * case, this IOCTL will get completed in 13153 * ip_rput_dlpi when we see the DL_BIND_ACK. 13154 */ 13155 err = ipif_up(ipif, q, mp); 13156 if (err == EINPROGRESS) 13157 return (err); 13158 } 13159 return (err); 13160 } 13161 13162 /* ARGSUSED */ 13163 int 13164 ip_sioctl_get_token(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 13165 ip_ioctl_cmd_t *ipi, void *if_req) 13166 { 13167 ill_t *ill; 13168 sin6_t *sin6 = (sin6_t *)sin; 13169 struct lifreq *lifr = (struct lifreq *)if_req; 13170 13171 ip1dbg(("ip_sioctl_get_token(%s:%u %p)\n", 13172 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 13173 if (ipif->ipif_id != 0) 13174 return (EINVAL); 13175 13176 ill = ipif->ipif_ill; 13177 if (!ill->ill_isv6) 13178 return (ENXIO); 13179 13180 *sin6 = sin6_null; 13181 sin6->sin6_family = AF_INET6; 13182 ASSERT(!IN6_IS_ADDR_V4MAPPED(&ill->ill_token)); 13183 sin6->sin6_addr = ill->ill_token; 13184 lifr->lifr_addrlen = ill->ill_token_length; 13185 return (0); 13186 } 13187 13188 /* 13189 * Set (hardware) link specific information that might override 13190 * what was acquired through the DL_INFO_ACK. 13191 * The logic is as follows. 13192 * 13193 * become exclusive 13194 * set CHANGING flag 13195 * change mtu on affected IREs 13196 * clear CHANGING flag 13197 * 13198 * An ire add that occurs before the CHANGING flag is set will have its mtu 13199 * changed by the ip_sioctl_lnkinfo. 13200 * 13201 * During the time the CHANGING flag is set, no new ires will be added to the 13202 * bucket, and ire add will fail (due the CHANGING flag). 13203 * 13204 * An ire add that occurs after the CHANGING flag is set will have the right mtu 13205 * before it is added to the bucket. 13206 * 13207 * Obviously only 1 thread can set the CHANGING flag and we need to become 13208 * exclusive to set the flag. 13209 */ 13210 /* ARGSUSED */ 13211 int 13212 ip_sioctl_lnkinfo(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 13213 ip_ioctl_cmd_t *ipi, void *if_req) 13214 { 13215 ill_t *ill = ipif->ipif_ill; 13216 ipif_t *nipif; 13217 int ip_min_mtu; 13218 boolean_t mtu_walk = B_FALSE; 13219 struct lifreq *lifr = (struct lifreq *)if_req; 13220 lif_ifinfo_req_t *lir; 13221 ire_t *ire; 13222 13223 ip1dbg(("ip_sioctl_lnkinfo(%s:%u %p)\n", 13224 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 13225 lir = &lifr->lifr_ifinfo; 13226 ASSERT(IAM_WRITER_IPIF(ipif)); 13227 13228 /* Only allow for logical unit zero i.e. not on "le0:17" */ 13229 if (ipif->ipif_id != 0) 13230 return (EINVAL); 13231 13232 /* Set interface MTU. */ 13233 if (ipif->ipif_isv6) 13234 ip_min_mtu = IPV6_MIN_MTU; 13235 else 13236 ip_min_mtu = IP_MIN_MTU; 13237 13238 /* 13239 * Verify values before we set anything. Allow zero to 13240 * mean unspecified. 13241 */ 13242 if (lir->lir_maxmtu != 0 && 13243 (lir->lir_maxmtu > ill->ill_max_frag || 13244 lir->lir_maxmtu < ip_min_mtu)) 13245 return (EINVAL); 13246 if (lir->lir_reachtime != 0 && 13247 lir->lir_reachtime > ND_MAX_REACHTIME) 13248 return (EINVAL); 13249 if (lir->lir_reachretrans != 0 && 13250 lir->lir_reachretrans > ND_MAX_REACHRETRANSTIME) 13251 return (EINVAL); 13252 13253 mutex_enter(&ill->ill_lock); 13254 ill->ill_state_flags |= ILL_CHANGING; 13255 for (nipif = ill->ill_ipif; nipif != NULL; 13256 nipif = nipif->ipif_next) { 13257 nipif->ipif_state_flags |= IPIF_CHANGING; 13258 } 13259 13260 mutex_exit(&ill->ill_lock); 13261 13262 if (lir->lir_maxmtu != 0) { 13263 ill->ill_max_mtu = lir->lir_maxmtu; 13264 ill->ill_mtu_userspecified = 1; 13265 mtu_walk = B_TRUE; 13266 } 13267 13268 if (lir->lir_reachtime != 0) 13269 ill->ill_reachable_time = lir->lir_reachtime; 13270 13271 if (lir->lir_reachretrans != 0) 13272 ill->ill_reachable_retrans_time = lir->lir_reachretrans; 13273 13274 ill->ill_max_hops = lir->lir_maxhops; 13275 13276 ill->ill_max_buf = ND_MAX_Q; 13277 13278 if (mtu_walk) { 13279 /* 13280 * Set the MTU on all ipifs associated with this ill except 13281 * for those whose MTU was fixed via SIOCSLIFMTU. 13282 */ 13283 for (nipif = ill->ill_ipif; nipif != NULL; 13284 nipif = nipif->ipif_next) { 13285 if (nipif->ipif_flags & IPIF_FIXEDMTU) 13286 continue; 13287 13288 nipif->ipif_mtu = ill->ill_max_mtu; 13289 13290 if (!(nipif->ipif_flags & IPIF_UP)) 13291 continue; 13292 13293 if (nipif->ipif_isv6) 13294 ire = ipif_to_ire_v6(nipif); 13295 else 13296 ire = ipif_to_ire(nipif); 13297 if (ire != NULL) { 13298 ire->ire_max_frag = ipif->ipif_mtu; 13299 ire_refrele(ire); 13300 } 13301 if (ill->ill_isv6) { 13302 ire_walk_ill_v6(MATCH_IRE_ILL, 0, 13303 ipif_mtu_change, (char *)nipif, 13304 ill); 13305 } else { 13306 ire_walk_ill_v4(MATCH_IRE_ILL, 0, 13307 ipif_mtu_change, (char *)nipif, 13308 ill); 13309 } 13310 } 13311 } 13312 13313 mutex_enter(&ill->ill_lock); 13314 for (nipif = ill->ill_ipif; nipif != NULL; 13315 nipif = nipif->ipif_next) { 13316 nipif->ipif_state_flags &= ~IPIF_CHANGING; 13317 } 13318 ILL_UNMARK_CHANGING(ill); 13319 mutex_exit(&ill->ill_lock); 13320 13321 return (0); 13322 } 13323 13324 /* ARGSUSED */ 13325 int 13326 ip_sioctl_get_lnkinfo(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 13327 ip_ioctl_cmd_t *ipi, void *if_req) 13328 { 13329 struct lif_ifinfo_req *lir; 13330 ill_t *ill = ipif->ipif_ill; 13331 13332 ip1dbg(("ip_sioctl_get_lnkinfo(%s:%u %p)\n", 13333 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 13334 if (ipif->ipif_id != 0) 13335 return (EINVAL); 13336 13337 lir = &((struct lifreq *)if_req)->lifr_ifinfo; 13338 lir->lir_maxhops = ill->ill_max_hops; 13339 lir->lir_reachtime = ill->ill_reachable_time; 13340 lir->lir_reachretrans = ill->ill_reachable_retrans_time; 13341 lir->lir_maxmtu = ill->ill_max_mtu; 13342 13343 return (0); 13344 } 13345 13346 /* 13347 * Return best guess as to the subnet mask for the specified address. 13348 * Based on the subnet masks for all the configured interfaces. 13349 * 13350 * We end up returning a zero mask in the case of default, multicast or 13351 * experimental. 13352 */ 13353 static ipaddr_t 13354 ip_subnet_mask(ipaddr_t addr, ipif_t **ipifp, ip_stack_t *ipst) 13355 { 13356 ipaddr_t net_mask; 13357 ill_t *ill; 13358 ipif_t *ipif; 13359 ill_walk_context_t ctx; 13360 ipif_t *fallback_ipif = NULL; 13361 13362 net_mask = ip_net_mask(addr); 13363 if (net_mask == 0) { 13364 *ipifp = NULL; 13365 return (0); 13366 } 13367 13368 /* Let's check to see if this is maybe a local subnet route. */ 13369 /* this function only applies to IPv4 interfaces */ 13370 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 13371 ill = ILL_START_WALK_V4(&ctx, ipst); 13372 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 13373 mutex_enter(&ill->ill_lock); 13374 for (ipif = ill->ill_ipif; ipif != NULL; 13375 ipif = ipif->ipif_next) { 13376 if (!IPIF_CAN_LOOKUP(ipif)) 13377 continue; 13378 if (!(ipif->ipif_flags & IPIF_UP)) 13379 continue; 13380 if ((ipif->ipif_subnet & net_mask) == 13381 (addr & net_mask)) { 13382 /* 13383 * Don't trust pt-pt interfaces if there are 13384 * other interfaces. 13385 */ 13386 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 13387 if (fallback_ipif == NULL) { 13388 ipif_refhold_locked(ipif); 13389 fallback_ipif = ipif; 13390 } 13391 continue; 13392 } 13393 13394 /* 13395 * Fine. Just assume the same net mask as the 13396 * directly attached subnet interface is using. 13397 */ 13398 ipif_refhold_locked(ipif); 13399 mutex_exit(&ill->ill_lock); 13400 rw_exit(&ipst->ips_ill_g_lock); 13401 if (fallback_ipif != NULL) 13402 ipif_refrele(fallback_ipif); 13403 *ipifp = ipif; 13404 return (ipif->ipif_net_mask); 13405 } 13406 } 13407 mutex_exit(&ill->ill_lock); 13408 } 13409 rw_exit(&ipst->ips_ill_g_lock); 13410 13411 *ipifp = fallback_ipif; 13412 return ((fallback_ipif != NULL) ? 13413 fallback_ipif->ipif_net_mask : net_mask); 13414 } 13415 13416 /* 13417 * ip_sioctl_copyin_setup calls ip_wput_ioctl to process the IP_IOCTL ioctl. 13418 */ 13419 static void 13420 ip_wput_ioctl(queue_t *q, mblk_t *mp) 13421 { 13422 IOCP iocp; 13423 ipft_t *ipft; 13424 ipllc_t *ipllc; 13425 mblk_t *mp1; 13426 cred_t *cr; 13427 int error = 0; 13428 conn_t *connp; 13429 13430 ip1dbg(("ip_wput_ioctl")); 13431 iocp = (IOCP)mp->b_rptr; 13432 mp1 = mp->b_cont; 13433 if (mp1 == NULL) { 13434 iocp->ioc_error = EINVAL; 13435 mp->b_datap->db_type = M_IOCNAK; 13436 iocp->ioc_count = 0; 13437 qreply(q, mp); 13438 return; 13439 } 13440 13441 /* 13442 * These IOCTLs provide various control capabilities to 13443 * upstream agents such as ULPs and processes. There 13444 * are currently two such IOCTLs implemented. They 13445 * are used by TCP to provide update information for 13446 * existing IREs and to forcibly delete an IRE for a 13447 * host that is not responding, thereby forcing an 13448 * attempt at a new route. 13449 */ 13450 iocp->ioc_error = EINVAL; 13451 if (!pullupmsg(mp1, sizeof (ipllc->ipllc_cmd))) 13452 goto done; 13453 13454 ipllc = (ipllc_t *)mp1->b_rptr; 13455 for (ipft = ip_ioctl_ftbl; ipft->ipft_pfi; ipft++) { 13456 if (ipllc->ipllc_cmd == ipft->ipft_cmd) 13457 break; 13458 } 13459 /* 13460 * prefer credential from mblk over ioctl; 13461 * see ip_sioctl_copyin_setup 13462 */ 13463 cr = DB_CREDDEF(mp, iocp->ioc_cr); 13464 13465 /* 13466 * Refhold the conn in case the request gets queued up in some lookup 13467 */ 13468 ASSERT(CONN_Q(q)); 13469 connp = Q_TO_CONN(q); 13470 CONN_INC_REF(connp); 13471 if (ipft->ipft_pfi && 13472 ((mp1->b_wptr - mp1->b_rptr) >= ipft->ipft_min_size || 13473 pullupmsg(mp1, ipft->ipft_min_size))) { 13474 error = (*ipft->ipft_pfi)(q, 13475 (ipft->ipft_flags & IPFT_F_SELF_REPLY) ? mp : mp1, cr); 13476 } 13477 if (ipft->ipft_flags & IPFT_F_SELF_REPLY) { 13478 /* 13479 * CONN_OPER_PENDING_DONE happens in the function called 13480 * through ipft_pfi above. 13481 */ 13482 return; 13483 } 13484 13485 CONN_OPER_PENDING_DONE(connp); 13486 if (ipft->ipft_flags & IPFT_F_NO_REPLY) { 13487 freemsg(mp); 13488 return; 13489 } 13490 iocp->ioc_error = error; 13491 13492 done: 13493 mp->b_datap->db_type = M_IOCACK; 13494 if (iocp->ioc_error) 13495 iocp->ioc_count = 0; 13496 qreply(q, mp); 13497 } 13498 13499 /* 13500 * Lookup an ipif using the sequence id (ipif_seqid) 13501 */ 13502 ipif_t * 13503 ipif_lookup_seqid(ill_t *ill, uint_t seqid) 13504 { 13505 ipif_t *ipif; 13506 13507 ASSERT(MUTEX_HELD(&ill->ill_lock)); 13508 13509 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 13510 if (ipif->ipif_seqid == seqid && IPIF_CAN_LOOKUP(ipif)) 13511 return (ipif); 13512 } 13513 return (NULL); 13514 } 13515 13516 /* 13517 * Assign a unique id for the ipif. This is used later when we send 13518 * IRES to ARP for resolution where we initialize ire_ipif_seqid 13519 * to the value pointed by ire_ipif->ipif_seqid. Later when the 13520 * IRE is added, we verify that ipif has not disappeared. 13521 */ 13522 13523 static void 13524 ipif_assign_seqid(ipif_t *ipif) 13525 { 13526 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 13527 13528 ipif->ipif_seqid = atomic_add_64_nv(&ipst->ips_ipif_g_seqid, 1); 13529 } 13530 13531 /* 13532 * Insert the ipif, so that the list of ipifs on the ill will be sorted 13533 * with respect to ipif_id. Note that an ipif with an ipif_id of -1 will 13534 * be inserted into the first space available in the list. The value of 13535 * ipif_id will then be set to the appropriate value for its position. 13536 */ 13537 static int 13538 ipif_insert(ipif_t *ipif, boolean_t acquire_g_lock, boolean_t acquire_ill_lock) 13539 { 13540 ill_t *ill; 13541 ipif_t *tipif; 13542 ipif_t **tipifp; 13543 int id; 13544 ip_stack_t *ipst; 13545 13546 ASSERT(ipif->ipif_ill->ill_net_type == IRE_LOOPBACK || 13547 IAM_WRITER_IPIF(ipif)); 13548 13549 ill = ipif->ipif_ill; 13550 ASSERT(ill != NULL); 13551 ipst = ill->ill_ipst; 13552 13553 /* 13554 * In the case of lo0:0 we already hold the ill_g_lock. 13555 * ill_lookup_on_name (acquires ill_g_lock) -> ipif_allocate -> 13556 * ipif_insert. Another such caller is ipif_move. 13557 */ 13558 if (acquire_g_lock) 13559 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 13560 if (acquire_ill_lock) 13561 mutex_enter(&ill->ill_lock); 13562 id = ipif->ipif_id; 13563 tipifp = &(ill->ill_ipif); 13564 if (id == -1) { /* need to find a real id */ 13565 id = 0; 13566 while ((tipif = *tipifp) != NULL) { 13567 ASSERT(tipif->ipif_id >= id); 13568 if (tipif->ipif_id != id) 13569 break; /* non-consecutive id */ 13570 id++; 13571 tipifp = &(tipif->ipif_next); 13572 } 13573 /* limit number of logical interfaces */ 13574 if (id >= ipst->ips_ip_addrs_per_if) { 13575 if (acquire_ill_lock) 13576 mutex_exit(&ill->ill_lock); 13577 if (acquire_g_lock) 13578 rw_exit(&ipst->ips_ill_g_lock); 13579 return (-1); 13580 } 13581 ipif->ipif_id = id; /* assign new id */ 13582 } else if (id < ipst->ips_ip_addrs_per_if) { 13583 /* we have a real id; insert ipif in the right place */ 13584 while ((tipif = *tipifp) != NULL) { 13585 ASSERT(tipif->ipif_id != id); 13586 if (tipif->ipif_id > id) 13587 break; /* found correct location */ 13588 tipifp = &(tipif->ipif_next); 13589 } 13590 } else { 13591 if (acquire_ill_lock) 13592 mutex_exit(&ill->ill_lock); 13593 if (acquire_g_lock) 13594 rw_exit(&ipst->ips_ill_g_lock); 13595 return (-1); 13596 } 13597 13598 ASSERT(tipifp != &(ill->ill_ipif) || id == 0); 13599 13600 ipif->ipif_next = tipif; 13601 *tipifp = ipif; 13602 if (acquire_ill_lock) 13603 mutex_exit(&ill->ill_lock); 13604 if (acquire_g_lock) 13605 rw_exit(&ipst->ips_ill_g_lock); 13606 return (0); 13607 } 13608 13609 /* 13610 * Allocate and initialize a new interface control structure. (Always 13611 * called as writer.) 13612 * When ipif_allocate() is called from ip_ll_subnet_defaults, the ill 13613 * is not part of the global linked list of ills. ipif_seqid is unique 13614 * in the system and to preserve the uniqueness, it is assigned only 13615 * when ill becomes part of the global list. At that point ill will 13616 * have a name. If it doesn't get assigned here, it will get assigned 13617 * in ipif_set_values() as part of SIOCSLIFNAME processing. 13618 * Aditionally, if we come here from ip_ll_subnet_defaults, we don't set 13619 * the interface flags or any other information from the DL_INFO_ACK for 13620 * DL_STYLE2 drivers (initialize == B_FALSE), since we won't have them at 13621 * this point. The flags etc. will be set in ip_ll_subnet_defaults when the 13622 * second DL_INFO_ACK comes in from the driver. 13623 */ 13624 static ipif_t * 13625 ipif_allocate(ill_t *ill, int id, uint_t ire_type, boolean_t initialize) 13626 { 13627 ipif_t *ipif; 13628 phyint_t *phyi; 13629 13630 ip1dbg(("ipif_allocate(%s:%d ill %p)\n", 13631 ill->ill_name, id, (void *)ill)); 13632 ASSERT(ire_type == IRE_LOOPBACK || IAM_WRITER_ILL(ill)); 13633 13634 if ((ipif = (ipif_t *)mi_alloc(sizeof (ipif_t), BPRI_MED)) == NULL) 13635 return (NULL); 13636 *ipif = ipif_zero; /* start clean */ 13637 13638 ipif->ipif_ill = ill; 13639 ipif->ipif_id = id; /* could be -1 */ 13640 /* 13641 * Inherit the zoneid from the ill; for the shared stack instance 13642 * this is always the global zone 13643 */ 13644 ipif->ipif_zoneid = ill->ill_zoneid; 13645 13646 mutex_init(&ipif->ipif_saved_ire_lock, NULL, MUTEX_DEFAULT, NULL); 13647 13648 ipif->ipif_refcnt = 0; 13649 ipif->ipif_saved_ire_cnt = 0; 13650 13651 if (ipif_insert(ipif, ire_type != IRE_LOOPBACK, B_TRUE)) { 13652 mi_free(ipif); 13653 return (NULL); 13654 } 13655 /* -1 id should have been replaced by real id */ 13656 id = ipif->ipif_id; 13657 ASSERT(id >= 0); 13658 13659 if (ill->ill_name[0] != '\0') 13660 ipif_assign_seqid(ipif); 13661 13662 /* 13663 * Keep a copy of original id in ipif_orig_ipifid. Failback 13664 * will attempt to restore the original id. The SIOCSLIFOINDEX 13665 * ioctl sets ipif_orig_ipifid to zero. 13666 */ 13667 ipif->ipif_orig_ipifid = id; 13668 13669 /* 13670 * We grab the ill_lock and phyint_lock to protect the flag changes. 13671 * The ipif is still not up and can't be looked up until the 13672 * ioctl completes and the IPIF_CHANGING flag is cleared. 13673 */ 13674 mutex_enter(&ill->ill_lock); 13675 mutex_enter(&ill->ill_phyint->phyint_lock); 13676 /* 13677 * Set the running flag when logical interface zero is created. 13678 * For subsequent logical interfaces, a DLPI link down 13679 * notification message may have cleared the running flag to 13680 * indicate the link is down, so we shouldn't just blindly set it. 13681 */ 13682 if (id == 0) 13683 ill->ill_phyint->phyint_flags |= PHYI_RUNNING; 13684 ipif->ipif_ire_type = ire_type; 13685 phyi = ill->ill_phyint; 13686 ipif->ipif_orig_ifindex = phyi->phyint_ifindex; 13687 13688 if (ipif->ipif_isv6) { 13689 ill->ill_flags |= ILLF_IPV6; 13690 } else { 13691 ipaddr_t inaddr_any = INADDR_ANY; 13692 13693 ill->ill_flags |= ILLF_IPV4; 13694 13695 /* Keep the IN6_IS_ADDR_V4MAPPED assertions happy */ 13696 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 13697 &ipif->ipif_v6lcl_addr); 13698 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 13699 &ipif->ipif_v6src_addr); 13700 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 13701 &ipif->ipif_v6subnet); 13702 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 13703 &ipif->ipif_v6net_mask); 13704 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 13705 &ipif->ipif_v6brd_addr); 13706 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 13707 &ipif->ipif_v6pp_dst_addr); 13708 } 13709 13710 /* 13711 * Don't set the interface flags etc. now, will do it in 13712 * ip_ll_subnet_defaults. 13713 */ 13714 if (!initialize) { 13715 mutex_exit(&ill->ill_lock); 13716 mutex_exit(&ill->ill_phyint->phyint_lock); 13717 return (ipif); 13718 } 13719 ipif->ipif_mtu = ill->ill_max_mtu; 13720 13721 if (ill->ill_bcast_addr_length != 0) { 13722 /* 13723 * Later detect lack of DLPI driver multicast 13724 * capability by catching DL_ENABMULTI errors in 13725 * ip_rput_dlpi. 13726 */ 13727 ill->ill_flags |= ILLF_MULTICAST; 13728 if (!ipif->ipif_isv6) 13729 ipif->ipif_flags |= IPIF_BROADCAST; 13730 } else { 13731 if (ill->ill_net_type != IRE_LOOPBACK) { 13732 if (ipif->ipif_isv6) 13733 /* 13734 * Note: xresolv interfaces will eventually need 13735 * NOARP set here as well, but that will require 13736 * those external resolvers to have some 13737 * knowledge of that flag and act appropriately. 13738 * Not to be changed at present. 13739 */ 13740 ill->ill_flags |= ILLF_NONUD; 13741 else 13742 ill->ill_flags |= ILLF_NOARP; 13743 } 13744 if (ill->ill_phys_addr_length == 0) { 13745 if (ill->ill_media && 13746 ill->ill_media->ip_m_mac_type == SUNW_DL_VNI) { 13747 ipif->ipif_flags |= IPIF_NOXMIT; 13748 phyi->phyint_flags |= PHYI_VIRTUAL; 13749 } else { 13750 /* pt-pt supports multicast. */ 13751 ill->ill_flags |= ILLF_MULTICAST; 13752 if (ill->ill_net_type == IRE_LOOPBACK) { 13753 phyi->phyint_flags |= 13754 (PHYI_LOOPBACK | PHYI_VIRTUAL); 13755 } else { 13756 ipif->ipif_flags |= IPIF_POINTOPOINT; 13757 } 13758 } 13759 } 13760 } 13761 mutex_exit(&ill->ill_lock); 13762 mutex_exit(&ill->ill_phyint->phyint_lock); 13763 return (ipif); 13764 } 13765 13766 /* 13767 * If appropriate, send a message up to the resolver delete the entry 13768 * for the address of this interface which is going out of business. 13769 * (Always called as writer). 13770 * 13771 * NOTE : We need to check for NULL mps as some of the fields are 13772 * initialized only for some interface types. See ipif_resolver_up() 13773 * for details. 13774 */ 13775 void 13776 ipif_arp_down(ipif_t *ipif) 13777 { 13778 mblk_t *mp; 13779 ill_t *ill = ipif->ipif_ill; 13780 13781 ip1dbg(("ipif_arp_down(%s:%u)\n", ill->ill_name, ipif->ipif_id)); 13782 ASSERT(IAM_WRITER_IPIF(ipif)); 13783 13784 /* Delete the mapping for the local address */ 13785 mp = ipif->ipif_arp_del_mp; 13786 if (mp != NULL) { 13787 ip1dbg(("ipif_arp_down: arp cmd %x for %s:%u\n", 13788 *(unsigned *)mp->b_rptr, ill->ill_name, ipif->ipif_id)); 13789 putnext(ill->ill_rq, mp); 13790 ipif->ipif_arp_del_mp = NULL; 13791 } 13792 13793 /* 13794 * If this is the last ipif that is going down and there are no 13795 * duplicate addresses we may yet attempt to re-probe, then we need to 13796 * clean up ARP completely. 13797 */ 13798 if (ill->ill_ipif_up_count == 0 && ill->ill_ipif_dup_count == 0) { 13799 13800 /* Send up AR_INTERFACE_DOWN message */ 13801 mp = ill->ill_arp_down_mp; 13802 if (mp != NULL) { 13803 ip1dbg(("ipif_arp_down: arp cmd %x for %s:%u\n", 13804 *(unsigned *)mp->b_rptr, ill->ill_name, 13805 ipif->ipif_id)); 13806 putnext(ill->ill_rq, mp); 13807 ill->ill_arp_down_mp = NULL; 13808 } 13809 13810 /* Tell ARP to delete the multicast mappings */ 13811 mp = ill->ill_arp_del_mapping_mp; 13812 if (mp != NULL) { 13813 ip1dbg(("ipif_arp_down: arp cmd %x for %s:%u\n", 13814 *(unsigned *)mp->b_rptr, ill->ill_name, 13815 ipif->ipif_id)); 13816 putnext(ill->ill_rq, mp); 13817 ill->ill_arp_del_mapping_mp = NULL; 13818 } 13819 } 13820 } 13821 13822 /* 13823 * This function sets up the multicast mappings in ARP. When ipif_resolver_up 13824 * calls this function, it passes a non-NULL arp_add_mapping_mp indicating 13825 * that it wants the add_mp allocated in this function to be returned 13826 * wihtout sending it to arp. When ip_rput_dlpi_writer calls this to 13827 * just re-do the multicast, it wants us to send the add_mp to ARP also. 13828 * ipif_resolver_up does not want us to do the "add" i.e sending to ARP, 13829 * as it does a ipif_arp_down after calling this function - which will 13830 * remove what we add here. 13831 * 13832 * Returns -1 on failures and 0 on success. 13833 */ 13834 int 13835 ipif_arp_setup_multicast(ipif_t *ipif, mblk_t **arp_add_mapping_mp) 13836 { 13837 mblk_t *del_mp = NULL; 13838 mblk_t *add_mp = NULL; 13839 mblk_t *mp; 13840 ill_t *ill = ipif->ipif_ill; 13841 phyint_t *phyi = ill->ill_phyint; 13842 ipaddr_t addr, mask, extract_mask = 0; 13843 arma_t *arma; 13844 uint8_t *maddr, *bphys_addr; 13845 uint32_t hw_start; 13846 dl_unitdata_req_t *dlur; 13847 13848 ASSERT(IAM_WRITER_IPIF(ipif)); 13849 if (ipif->ipif_flags & IPIF_POINTOPOINT) 13850 return (0); 13851 13852 /* 13853 * Delete the existing mapping from ARP. Normally ipif_down 13854 * -> ipif_arp_down should send this up to ARP. The only 13855 * reason we would find this when we are switching from 13856 * Multicast to Broadcast where we did not do a down. 13857 */ 13858 mp = ill->ill_arp_del_mapping_mp; 13859 if (mp != NULL) { 13860 ip1dbg(("ipif_arp_down: arp cmd %x for %s:%u\n", 13861 *(unsigned *)mp->b_rptr, ill->ill_name, ipif->ipif_id)); 13862 putnext(ill->ill_rq, mp); 13863 ill->ill_arp_del_mapping_mp = NULL; 13864 } 13865 13866 if (arp_add_mapping_mp != NULL) 13867 *arp_add_mapping_mp = NULL; 13868 13869 /* 13870 * Check that the address is not to long for the constant 13871 * length reserved in the template arma_t. 13872 */ 13873 if (ill->ill_phys_addr_length > IP_MAX_HW_LEN) 13874 return (-1); 13875 13876 /* Add mapping mblk */ 13877 addr = (ipaddr_t)htonl(INADDR_UNSPEC_GROUP); 13878 mask = (ipaddr_t)htonl(IN_CLASSD_NET); 13879 add_mp = ill_arp_alloc(ill, (uchar_t *)&ip_arma_multi_template, 13880 (caddr_t)&addr); 13881 if (add_mp == NULL) 13882 return (-1); 13883 arma = (arma_t *)add_mp->b_rptr; 13884 maddr = (uint8_t *)arma + arma->arma_hw_addr_offset; 13885 bcopy(&mask, (char *)arma + arma->arma_proto_mask_offset, IP_ADDR_LEN); 13886 arma->arma_hw_addr_length = ill->ill_phys_addr_length; 13887 13888 /* 13889 * Determine the broadcast address. 13890 */ 13891 dlur = (dl_unitdata_req_t *)ill->ill_bcast_mp->b_rptr; 13892 if (ill->ill_sap_length < 0) 13893 bphys_addr = (uchar_t *)dlur + dlur->dl_dest_addr_offset; 13894 else 13895 bphys_addr = (uchar_t *)dlur + 13896 dlur->dl_dest_addr_offset + ill->ill_sap_length; 13897 /* 13898 * Check PHYI_MULTI_BCAST and length of physical 13899 * address to determine if we use the mapping or the 13900 * broadcast address. 13901 */ 13902 if (!(phyi->phyint_flags & PHYI_MULTI_BCAST)) 13903 if (!MEDIA_V4MINFO(ill->ill_media, ill->ill_phys_addr_length, 13904 bphys_addr, maddr, &hw_start, &extract_mask)) 13905 phyi->phyint_flags |= PHYI_MULTI_BCAST; 13906 13907 if ((phyi->phyint_flags & PHYI_MULTI_BCAST) || 13908 (ill->ill_flags & ILLF_MULTICAST)) { 13909 /* Make sure this will not match the "exact" entry. */ 13910 addr = (ipaddr_t)htonl(INADDR_ALLHOSTS_GROUP); 13911 del_mp = ill_arp_alloc(ill, (uchar_t *)&ip_ared_template, 13912 (caddr_t)&addr); 13913 if (del_mp == NULL) { 13914 freemsg(add_mp); 13915 return (-1); 13916 } 13917 bcopy(&extract_mask, (char *)arma + 13918 arma->arma_proto_extract_mask_offset, IP_ADDR_LEN); 13919 if (phyi->phyint_flags & PHYI_MULTI_BCAST) { 13920 /* Use link-layer broadcast address for MULTI_BCAST */ 13921 bcopy(bphys_addr, maddr, ill->ill_phys_addr_length); 13922 ip2dbg(("ipif_arp_setup_multicast: adding" 13923 " MULTI_BCAST ARP setup for %s\n", ill->ill_name)); 13924 } else { 13925 arma->arma_hw_mapping_start = hw_start; 13926 ip2dbg(("ipif_arp_setup_multicast: adding multicast" 13927 " ARP setup for %s\n", ill->ill_name)); 13928 } 13929 } else { 13930 freemsg(add_mp); 13931 ASSERT(del_mp == NULL); 13932 /* It is neither MULTICAST nor MULTI_BCAST */ 13933 return (0); 13934 } 13935 ASSERT(add_mp != NULL && del_mp != NULL); 13936 ASSERT(ill->ill_arp_del_mapping_mp == NULL); 13937 ill->ill_arp_del_mapping_mp = del_mp; 13938 if (arp_add_mapping_mp != NULL) { 13939 /* The caller just wants the mblks allocated */ 13940 *arp_add_mapping_mp = add_mp; 13941 } else { 13942 /* The caller wants us to send it to arp */ 13943 putnext(ill->ill_rq, add_mp); 13944 } 13945 return (0); 13946 } 13947 13948 /* 13949 * Get the resolver set up for a new interface address. 13950 * (Always called as writer.) 13951 * Called both for IPv4 and IPv6 interfaces, 13952 * though it only sets up the resolver for v6 13953 * if it's an xresolv interface (one using an external resolver). 13954 * Honors ILLF_NOARP. 13955 * The enumerated value res_act is used to tune the behavior. 13956 * If set to Res_act_initial, then we set up all the resolver 13957 * structures for a new interface. If set to Res_act_move, then 13958 * we just send an AR_ENTRY_ADD message up to ARP for IPv4 13959 * interfaces; this is called by ip_rput_dlpi_writer() to handle 13960 * asynchronous hardware address change notification. If set to 13961 * Res_act_defend, then we tell ARP that it needs to send a single 13962 * gratuitous message in defense of the address. 13963 * Returns error on failure. 13964 */ 13965 int 13966 ipif_resolver_up(ipif_t *ipif, enum ip_resolver_action res_act) 13967 { 13968 caddr_t addr; 13969 mblk_t *arp_up_mp = NULL; 13970 mblk_t *arp_down_mp = NULL; 13971 mblk_t *arp_add_mp = NULL; 13972 mblk_t *arp_del_mp = NULL; 13973 mblk_t *arp_add_mapping_mp = NULL; 13974 mblk_t *arp_del_mapping_mp = NULL; 13975 ill_t *ill = ipif->ipif_ill; 13976 uchar_t *area_p = NULL; 13977 uchar_t *ared_p = NULL; 13978 int err = ENOMEM; 13979 boolean_t was_dup; 13980 13981 ip1dbg(("ipif_resolver_up(%s:%u) flags 0x%x\n", 13982 ill->ill_name, ipif->ipif_id, (uint_t)ipif->ipif_flags)); 13983 ASSERT(IAM_WRITER_IPIF(ipif)); 13984 13985 was_dup = B_FALSE; 13986 if (res_act == Res_act_initial) { 13987 ipif->ipif_addr_ready = 0; 13988 /* 13989 * We're bringing an interface up here. There's no way that we 13990 * should need to shut down ARP now. 13991 */ 13992 mutex_enter(&ill->ill_lock); 13993 if (ipif->ipif_flags & IPIF_DUPLICATE) { 13994 ipif->ipif_flags &= ~IPIF_DUPLICATE; 13995 ill->ill_ipif_dup_count--; 13996 was_dup = B_TRUE; 13997 } 13998 mutex_exit(&ill->ill_lock); 13999 } 14000 if (ipif->ipif_recovery_id != 0) 14001 (void) untimeout(ipif->ipif_recovery_id); 14002 ipif->ipif_recovery_id = 0; 14003 if (ill->ill_net_type != IRE_IF_RESOLVER) { 14004 ipif->ipif_addr_ready = 1; 14005 return (0); 14006 } 14007 /* NDP will set the ipif_addr_ready flag when it's ready */ 14008 if (ill->ill_isv6 && !(ill->ill_flags & ILLF_XRESOLV)) 14009 return (0); 14010 14011 if (ill->ill_isv6) { 14012 /* 14013 * External resolver for IPv6 14014 */ 14015 ASSERT(res_act == Res_act_initial); 14016 if (!IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr)) { 14017 addr = (caddr_t)&ipif->ipif_v6lcl_addr; 14018 area_p = (uchar_t *)&ip6_area_template; 14019 ared_p = (uchar_t *)&ip6_ared_template; 14020 } 14021 } else { 14022 /* 14023 * IPv4 arp case. If the ARP stream has already started 14024 * closing, fail this request for ARP bringup. Else 14025 * record the fact that an ARP bringup is pending. 14026 */ 14027 mutex_enter(&ill->ill_lock); 14028 if (ill->ill_arp_closing) { 14029 mutex_exit(&ill->ill_lock); 14030 err = EINVAL; 14031 goto failed; 14032 } else { 14033 if (ill->ill_ipif_up_count == 0 && 14034 ill->ill_ipif_dup_count == 0 && !was_dup) 14035 ill->ill_arp_bringup_pending = 1; 14036 mutex_exit(&ill->ill_lock); 14037 } 14038 if (ipif->ipif_lcl_addr != INADDR_ANY) { 14039 addr = (caddr_t)&ipif->ipif_lcl_addr; 14040 area_p = (uchar_t *)&ip_area_template; 14041 ared_p = (uchar_t *)&ip_ared_template; 14042 } 14043 } 14044 14045 /* 14046 * Add an entry for the local address in ARP only if it 14047 * is not UNNUMBERED and the address is not INADDR_ANY. 14048 */ 14049 if (!(ipif->ipif_flags & IPIF_UNNUMBERED) && area_p != NULL) { 14050 area_t *area; 14051 14052 /* Now ask ARP to publish our address. */ 14053 arp_add_mp = ill_arp_alloc(ill, area_p, addr); 14054 if (arp_add_mp == NULL) 14055 goto failed; 14056 area = (area_t *)arp_add_mp->b_rptr; 14057 if (res_act != Res_act_initial) { 14058 /* 14059 * Copy the new hardware address and length into 14060 * arp_add_mp to be sent to ARP. 14061 */ 14062 area->area_hw_addr_length = ill->ill_phys_addr_length; 14063 bcopy(ill->ill_phys_addr, 14064 ((char *)area + area->area_hw_addr_offset), 14065 area->area_hw_addr_length); 14066 } 14067 14068 area->area_flags = ACE_F_PERMANENT | ACE_F_PUBLISH | 14069 ACE_F_MYADDR; 14070 14071 if (res_act == Res_act_defend) { 14072 area->area_flags |= ACE_F_DEFEND; 14073 /* 14074 * If we're just defending our address now, then 14075 * there's no need to set up ARP multicast mappings. 14076 * The publish command is enough. 14077 */ 14078 goto done; 14079 } 14080 14081 if (res_act != Res_act_initial) 14082 goto arp_setup_multicast; 14083 14084 /* 14085 * Allocate an ARP deletion message so we know we can tell ARP 14086 * when the interface goes down. 14087 */ 14088 arp_del_mp = ill_arp_alloc(ill, ared_p, addr); 14089 if (arp_del_mp == NULL) 14090 goto failed; 14091 14092 } else { 14093 if (res_act != Res_act_initial) 14094 goto done; 14095 } 14096 /* 14097 * Need to bring up ARP or setup multicast mapping only 14098 * when the first interface is coming UP. 14099 */ 14100 if (ill->ill_ipif_up_count != 0 || ill->ill_ipif_dup_count != 0 || 14101 was_dup) { 14102 goto done; 14103 } 14104 14105 /* 14106 * Allocate an ARP down message (to be saved) and an ARP up 14107 * message. 14108 */ 14109 arp_down_mp = ill_arp_alloc(ill, (uchar_t *)&ip_ard_template, 0); 14110 if (arp_down_mp == NULL) 14111 goto failed; 14112 14113 arp_up_mp = ill_arp_alloc(ill, (uchar_t *)&ip_aru_template, 0); 14114 if (arp_up_mp == NULL) 14115 goto failed; 14116 14117 if (ipif->ipif_flags & IPIF_POINTOPOINT) 14118 goto done; 14119 14120 arp_setup_multicast: 14121 /* 14122 * Setup the multicast mappings. This function initializes 14123 * ill_arp_del_mapping_mp also. This does not need to be done for 14124 * IPv6. 14125 */ 14126 if (!ill->ill_isv6) { 14127 err = ipif_arp_setup_multicast(ipif, &arp_add_mapping_mp); 14128 if (err != 0) 14129 goto failed; 14130 ASSERT(ill->ill_arp_del_mapping_mp != NULL); 14131 ASSERT(arp_add_mapping_mp != NULL); 14132 } 14133 14134 done: 14135 if (arp_del_mp != NULL) { 14136 ASSERT(ipif->ipif_arp_del_mp == NULL); 14137 ipif->ipif_arp_del_mp = arp_del_mp; 14138 } 14139 if (arp_down_mp != NULL) { 14140 ASSERT(ill->ill_arp_down_mp == NULL); 14141 ill->ill_arp_down_mp = arp_down_mp; 14142 } 14143 if (arp_del_mapping_mp != NULL) { 14144 ASSERT(ill->ill_arp_del_mapping_mp == NULL); 14145 ill->ill_arp_del_mapping_mp = arp_del_mapping_mp; 14146 } 14147 if (arp_up_mp != NULL) { 14148 ip1dbg(("ipif_resolver_up: ARP_UP for %s:%u\n", 14149 ill->ill_name, ipif->ipif_id)); 14150 putnext(ill->ill_rq, arp_up_mp); 14151 } 14152 if (arp_add_mp != NULL) { 14153 ip1dbg(("ipif_resolver_up: ARP_ADD for %s:%u\n", 14154 ill->ill_name, ipif->ipif_id)); 14155 /* 14156 * If it's an extended ARP implementation, then we'll wait to 14157 * hear that DAD has finished before using the interface. 14158 */ 14159 if (!ill->ill_arp_extend) 14160 ipif->ipif_addr_ready = 1; 14161 putnext(ill->ill_rq, arp_add_mp); 14162 } else { 14163 ipif->ipif_addr_ready = 1; 14164 } 14165 if (arp_add_mapping_mp != NULL) { 14166 ip1dbg(("ipif_resolver_up: MAPPING_ADD for %s:%u\n", 14167 ill->ill_name, ipif->ipif_id)); 14168 putnext(ill->ill_rq, arp_add_mapping_mp); 14169 } 14170 if (res_act != Res_act_initial) 14171 return (0); 14172 14173 if (ill->ill_flags & ILLF_NOARP) 14174 err = ill_arp_off(ill); 14175 else 14176 err = ill_arp_on(ill); 14177 if (err != 0) { 14178 ip0dbg(("ipif_resolver_up: arp_on/off failed %d\n", err)); 14179 freemsg(ipif->ipif_arp_del_mp); 14180 freemsg(ill->ill_arp_down_mp); 14181 freemsg(ill->ill_arp_del_mapping_mp); 14182 ipif->ipif_arp_del_mp = NULL; 14183 ill->ill_arp_down_mp = NULL; 14184 ill->ill_arp_del_mapping_mp = NULL; 14185 return (err); 14186 } 14187 return ((ill->ill_ipif_up_count != 0 || was_dup || 14188 ill->ill_ipif_dup_count != 0) ? 0 : EINPROGRESS); 14189 14190 failed: 14191 ip1dbg(("ipif_resolver_up: FAILED\n")); 14192 freemsg(arp_add_mp); 14193 freemsg(arp_del_mp); 14194 freemsg(arp_add_mapping_mp); 14195 freemsg(arp_up_mp); 14196 freemsg(arp_down_mp); 14197 ill->ill_arp_bringup_pending = 0; 14198 return (err); 14199 } 14200 14201 /* 14202 * This routine restarts IPv4 duplicate address detection (DAD) when a link has 14203 * just gone back up. 14204 */ 14205 static void 14206 ipif_arp_start_dad(ipif_t *ipif) 14207 { 14208 ill_t *ill = ipif->ipif_ill; 14209 mblk_t *arp_add_mp; 14210 area_t *area; 14211 14212 if (ill->ill_net_type != IRE_IF_RESOLVER || ill->ill_arp_closing || 14213 (ipif->ipif_flags & IPIF_UNNUMBERED) || 14214 ipif->ipif_lcl_addr == INADDR_ANY || 14215 (arp_add_mp = ill_arp_alloc(ill, (uchar_t *)&ip_area_template, 14216 (char *)&ipif->ipif_lcl_addr)) == NULL) { 14217 /* 14218 * If we can't contact ARP for some reason, that's not really a 14219 * problem. Just send out the routing socket notification that 14220 * DAD completion would have done, and continue. 14221 */ 14222 ipif_mask_reply(ipif); 14223 ip_rts_ifmsg(ipif); 14224 ip_rts_newaddrmsg(RTM_ADD, 0, ipif); 14225 sctp_update_ipif(ipif, SCTP_IPIF_UP); 14226 ipif->ipif_addr_ready = 1; 14227 return; 14228 } 14229 14230 /* Setting the 'unverified' flag restarts DAD */ 14231 area = (area_t *)arp_add_mp->b_rptr; 14232 area->area_flags = ACE_F_PERMANENT | ACE_F_PUBLISH | ACE_F_MYADDR | 14233 ACE_F_UNVERIFIED; 14234 putnext(ill->ill_rq, arp_add_mp); 14235 } 14236 14237 static void 14238 ipif_ndp_start_dad(ipif_t *ipif) 14239 { 14240 nce_t *nce; 14241 14242 nce = ndp_lookup_v6(ipif->ipif_ill, &ipif->ipif_v6lcl_addr, B_FALSE); 14243 if (nce == NULL) 14244 return; 14245 14246 if (!ndp_restart_dad(nce)) { 14247 /* 14248 * If we can't restart DAD for some reason, that's not really a 14249 * problem. Just send out the routing socket notification that 14250 * DAD completion would have done, and continue. 14251 */ 14252 ip_rts_ifmsg(ipif); 14253 ip_rts_newaddrmsg(RTM_ADD, 0, ipif); 14254 sctp_update_ipif(ipif, SCTP_IPIF_UP); 14255 ipif->ipif_addr_ready = 1; 14256 } 14257 NCE_REFRELE(nce); 14258 } 14259 14260 /* 14261 * Restart duplicate address detection on all interfaces on the given ill. 14262 * 14263 * This is called when an interface transitions from down to up 14264 * (DL_NOTE_LINK_UP) or up to down (DL_NOTE_LINK_DOWN). 14265 * 14266 * Note that since the underlying physical link has transitioned, we must cause 14267 * at least one routing socket message to be sent here, either via DAD 14268 * completion or just by default on the first ipif. (If we don't do this, then 14269 * in.mpathd will see long delays when doing link-based failure recovery.) 14270 */ 14271 void 14272 ill_restart_dad(ill_t *ill, boolean_t went_up) 14273 { 14274 ipif_t *ipif; 14275 14276 if (ill == NULL) 14277 return; 14278 14279 /* 14280 * If layer two doesn't support duplicate address detection, then just 14281 * send the routing socket message now and be done with it. 14282 */ 14283 if ((ill->ill_isv6 && (ill->ill_flags & ILLF_XRESOLV)) || 14284 (!ill->ill_isv6 && !ill->ill_arp_extend)) { 14285 ip_rts_ifmsg(ill->ill_ipif); 14286 return; 14287 } 14288 14289 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 14290 if (went_up) { 14291 if (ipif->ipif_flags & IPIF_UP) { 14292 if (ill->ill_isv6) 14293 ipif_ndp_start_dad(ipif); 14294 else 14295 ipif_arp_start_dad(ipif); 14296 } else if (ill->ill_isv6 && 14297 (ipif->ipif_flags & IPIF_DUPLICATE)) { 14298 /* 14299 * For IPv4, the ARP module itself will 14300 * automatically start the DAD process when it 14301 * sees DL_NOTE_LINK_UP. We respond to the 14302 * AR_CN_READY at the completion of that task. 14303 * For IPv6, we must kick off the bring-up 14304 * process now. 14305 */ 14306 ndp_do_recovery(ipif); 14307 } else { 14308 /* 14309 * Unfortunately, the first ipif is "special" 14310 * and represents the underlying ill in the 14311 * routing socket messages. Thus, when this 14312 * one ipif is down, we must still notify so 14313 * that the user knows the IFF_RUNNING status 14314 * change. (If the first ipif is up, then 14315 * we'll handle eventual routing socket 14316 * notification via DAD completion.) 14317 */ 14318 if (ipif == ill->ill_ipif) 14319 ip_rts_ifmsg(ill->ill_ipif); 14320 } 14321 } else { 14322 /* 14323 * After link down, we'll need to send a new routing 14324 * message when the link comes back, so clear 14325 * ipif_addr_ready. 14326 */ 14327 ipif->ipif_addr_ready = 0; 14328 } 14329 } 14330 14331 /* 14332 * If we've torn down links, then notify the user right away. 14333 */ 14334 if (!went_up) 14335 ip_rts_ifmsg(ill->ill_ipif); 14336 } 14337 14338 /* 14339 * Wakeup all threads waiting to enter the ipsq, and sleeping 14340 * on any of the ills in this ipsq. The ill_lock of the ill 14341 * must be held so that waiters don't miss wakeups 14342 */ 14343 static void 14344 ill_signal_ipsq_ills(ipsq_t *ipsq, boolean_t caller_holds_lock) 14345 { 14346 phyint_t *phyint; 14347 14348 phyint = ipsq->ipsq_phyint_list; 14349 while (phyint != NULL) { 14350 if (phyint->phyint_illv4) { 14351 if (!caller_holds_lock) 14352 mutex_enter(&phyint->phyint_illv4->ill_lock); 14353 ASSERT(MUTEX_HELD(&phyint->phyint_illv4->ill_lock)); 14354 cv_broadcast(&phyint->phyint_illv4->ill_cv); 14355 if (!caller_holds_lock) 14356 mutex_exit(&phyint->phyint_illv4->ill_lock); 14357 } 14358 if (phyint->phyint_illv6) { 14359 if (!caller_holds_lock) 14360 mutex_enter(&phyint->phyint_illv6->ill_lock); 14361 ASSERT(MUTEX_HELD(&phyint->phyint_illv6->ill_lock)); 14362 cv_broadcast(&phyint->phyint_illv6->ill_cv); 14363 if (!caller_holds_lock) 14364 mutex_exit(&phyint->phyint_illv6->ill_lock); 14365 } 14366 phyint = phyint->phyint_ipsq_next; 14367 } 14368 } 14369 14370 static ipsq_t * 14371 ipsq_create(char *groupname, ip_stack_t *ipst) 14372 { 14373 ipsq_t *ipsq; 14374 14375 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); 14376 ipsq = kmem_zalloc(sizeof (ipsq_t), KM_NOSLEEP); 14377 if (ipsq == NULL) { 14378 return (NULL); 14379 } 14380 14381 if (groupname != NULL) 14382 (void) strcpy(ipsq->ipsq_name, groupname); 14383 else 14384 ipsq->ipsq_name[0] = '\0'; 14385 14386 mutex_init(&ipsq->ipsq_lock, NULL, MUTEX_DEFAULT, NULL); 14387 ipsq->ipsq_flags |= IPSQ_GROUP; 14388 ipsq->ipsq_next = ipst->ips_ipsq_g_head; 14389 ipst->ips_ipsq_g_head = ipsq; 14390 ipsq->ipsq_ipst = ipst; /* No netstack_hold */ 14391 return (ipsq); 14392 } 14393 14394 /* 14395 * Return an ipsq correspoding to the groupname. If 'create' is true 14396 * allocate a new ipsq if one does not exist. Usually an ipsq is associated 14397 * uniquely with an IPMP group. However during IPMP groupname operations, 14398 * multiple IPMP groups may be associated with a single ipsq. But no 14399 * IPMP group can be associated with more than 1 ipsq at any time. 14400 * For example 14401 * Interfaces IPMP grpname ipsq ipsq_name ipsq_refs 14402 * hme1, hme2 mpk17-84 ipsq1 mpk17-84 2 14403 * hme3, hme4 mpk17-85 ipsq2 mpk17-85 2 14404 * 14405 * Now the command ifconfig hme3 group mpk17-84 results in the temporary 14406 * status shown below during the execution of the above command. 14407 * hme1, hme2, hme3, hme4 mpk17-84, mpk17-85 ipsq1 mpk17-84 4 14408 * 14409 * After the completion of the above groupname command we return to the stable 14410 * state shown below. 14411 * hme1, hme2, hme3 mpk17-84 ipsq1 mpk17-84 3 14412 * hme4 mpk17-85 ipsq2 mpk17-85 1 14413 * 14414 * Because of the above, we don't search based on the ipsq_name since that 14415 * would miss the correct ipsq during certain windows as shown above. 14416 * The ipsq_name is only used during split of an ipsq to return the ipsq to its 14417 * natural state. 14418 */ 14419 static ipsq_t * 14420 ip_ipsq_lookup(char *groupname, boolean_t create, ipsq_t *exclude_ipsq, 14421 ip_stack_t *ipst) 14422 { 14423 ipsq_t *ipsq; 14424 int group_len; 14425 phyint_t *phyint; 14426 14427 ASSERT(RW_LOCK_HELD(&ipst->ips_ill_g_lock)); 14428 14429 group_len = strlen(groupname); 14430 ASSERT(group_len != 0); 14431 group_len++; 14432 14433 for (ipsq = ipst->ips_ipsq_g_head; 14434 ipsq != NULL; 14435 ipsq = ipsq->ipsq_next) { 14436 /* 14437 * When an ipsq is being split, and ill_split_ipsq 14438 * calls this function, we exclude it from being considered. 14439 */ 14440 if (ipsq == exclude_ipsq) 14441 continue; 14442 14443 /* 14444 * Compare against the ipsq_name. The groupname change happens 14445 * in 2 phases. The 1st phase merges the from group into 14446 * the to group's ipsq, by calling ill_merge_groups and restarts 14447 * the ioctl. The 2nd phase then locates the ipsq again thru 14448 * ipsq_name. At this point the phyint_groupname has not been 14449 * updated. 14450 */ 14451 if ((group_len == strlen(ipsq->ipsq_name) + 1) && 14452 (bcmp(ipsq->ipsq_name, groupname, group_len) == 0)) { 14453 /* 14454 * Verify that an ipmp groupname is exactly 14455 * part of 1 ipsq and is not found in any other 14456 * ipsq. 14457 */ 14458 ASSERT(ip_ipsq_lookup(groupname, B_FALSE, ipsq, ipst) == 14459 NULL); 14460 return (ipsq); 14461 } 14462 14463 /* 14464 * Comparison against ipsq_name alone is not sufficient. 14465 * In the case when groups are currently being 14466 * merged, the ipsq could hold other IPMP groups temporarily. 14467 * so we walk the phyint list and compare against the 14468 * phyint_groupname as well. 14469 */ 14470 phyint = ipsq->ipsq_phyint_list; 14471 while (phyint != NULL) { 14472 if ((group_len == phyint->phyint_groupname_len) && 14473 (bcmp(phyint->phyint_groupname, groupname, 14474 group_len) == 0)) { 14475 /* 14476 * Verify that an ipmp groupname is exactly 14477 * part of 1 ipsq and is not found in any other 14478 * ipsq. 14479 */ 14480 ASSERT(ip_ipsq_lookup(groupname, B_FALSE, ipsq, 14481 ipst) == NULL); 14482 return (ipsq); 14483 } 14484 phyint = phyint->phyint_ipsq_next; 14485 } 14486 } 14487 if (create) 14488 ipsq = ipsq_create(groupname, ipst); 14489 return (ipsq); 14490 } 14491 14492 static void 14493 ipsq_delete(ipsq_t *ipsq) 14494 { 14495 ipsq_t *nipsq; 14496 ipsq_t *pipsq = NULL; 14497 ip_stack_t *ipst = ipsq->ipsq_ipst; 14498 14499 /* 14500 * We don't hold the ipsq lock, but we are sure no new 14501 * messages can land up, since the ipsq_refs is zero. 14502 * i.e. this ipsq is unnamed and no phyint or phyint group 14503 * is associated with this ipsq. (Lookups are based on ill_name 14504 * or phyint_groupname) 14505 */ 14506 ASSERT(ipsq->ipsq_refs == 0); 14507 ASSERT(ipsq->ipsq_xopq_mphead == NULL && ipsq->ipsq_mphead == NULL); 14508 ASSERT(ipsq->ipsq_pending_mp == NULL); 14509 if (!(ipsq->ipsq_flags & IPSQ_GROUP)) { 14510 /* 14511 * This is not the ipsq of an IPMP group. 14512 */ 14513 ipsq->ipsq_ipst = NULL; 14514 kmem_free(ipsq, sizeof (ipsq_t)); 14515 return; 14516 } 14517 14518 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 14519 14520 /* 14521 * Locate the ipsq before we can remove it from 14522 * the singly linked list of ipsq's. 14523 */ 14524 for (nipsq = ipst->ips_ipsq_g_head; nipsq != NULL; 14525 nipsq = nipsq->ipsq_next) { 14526 if (nipsq == ipsq) { 14527 break; 14528 } 14529 pipsq = nipsq; 14530 } 14531 14532 ASSERT(nipsq == ipsq); 14533 14534 /* unlink ipsq from the list */ 14535 if (pipsq != NULL) 14536 pipsq->ipsq_next = ipsq->ipsq_next; 14537 else 14538 ipst->ips_ipsq_g_head = ipsq->ipsq_next; 14539 ipsq->ipsq_ipst = NULL; 14540 kmem_free(ipsq, sizeof (ipsq_t)); 14541 rw_exit(&ipst->ips_ill_g_lock); 14542 } 14543 14544 static void 14545 ill_move_to_new_ipsq(ipsq_t *old_ipsq, ipsq_t *new_ipsq, mblk_t *current_mp, 14546 queue_t *q) 14547 { 14548 ASSERT(MUTEX_HELD(&new_ipsq->ipsq_lock)); 14549 ASSERT(old_ipsq->ipsq_mphead == NULL && old_ipsq->ipsq_mptail == NULL); 14550 ASSERT(old_ipsq->ipsq_pending_ipif == NULL); 14551 ASSERT(old_ipsq->ipsq_pending_mp == NULL); 14552 ASSERT(current_mp != NULL); 14553 14554 ipsq_enq(new_ipsq, q, current_mp, (ipsq_func_t)ip_process_ioctl, 14555 NEW_OP, NULL); 14556 14557 ASSERT(new_ipsq->ipsq_xopq_mptail != NULL && 14558 new_ipsq->ipsq_xopq_mphead != NULL); 14559 14560 /* 14561 * move from old ipsq to the new ipsq. 14562 */ 14563 new_ipsq->ipsq_xopq_mptail->b_next = old_ipsq->ipsq_xopq_mphead; 14564 if (old_ipsq->ipsq_xopq_mphead != NULL) 14565 new_ipsq->ipsq_xopq_mptail = old_ipsq->ipsq_xopq_mptail; 14566 14567 old_ipsq->ipsq_xopq_mphead = old_ipsq->ipsq_xopq_mptail = NULL; 14568 } 14569 14570 void 14571 ill_group_cleanup(ill_t *ill) 14572 { 14573 ill_t *ill_v4; 14574 ill_t *ill_v6; 14575 ipif_t *ipif; 14576 14577 ill_v4 = ill->ill_phyint->phyint_illv4; 14578 ill_v6 = ill->ill_phyint->phyint_illv6; 14579 14580 if (ill_v4 != NULL) { 14581 mutex_enter(&ill_v4->ill_lock); 14582 for (ipif = ill_v4->ill_ipif; ipif != NULL; 14583 ipif = ipif->ipif_next) { 14584 IPIF_UNMARK_MOVING(ipif); 14585 } 14586 ill_v4->ill_up_ipifs = B_FALSE; 14587 mutex_exit(&ill_v4->ill_lock); 14588 } 14589 14590 if (ill_v6 != NULL) { 14591 mutex_enter(&ill_v6->ill_lock); 14592 for (ipif = ill_v6->ill_ipif; ipif != NULL; 14593 ipif = ipif->ipif_next) { 14594 IPIF_UNMARK_MOVING(ipif); 14595 } 14596 ill_v6->ill_up_ipifs = B_FALSE; 14597 mutex_exit(&ill_v6->ill_lock); 14598 } 14599 } 14600 /* 14601 * This function is called when an ill has had a change in its group status 14602 * to bring up all the ipifs that were up before the change. 14603 */ 14604 int 14605 ill_up_ipifs(ill_t *ill, queue_t *q, mblk_t *mp) 14606 { 14607 ipif_t *ipif; 14608 ill_t *ill_v4; 14609 ill_t *ill_v6; 14610 ill_t *from_ill; 14611 int err = 0; 14612 14613 14614 ASSERT(IAM_WRITER_ILL(ill)); 14615 14616 /* 14617 * Except for ipif_state_flags and ill_state_flags the other 14618 * fields of the ipif/ill that are modified below are protected 14619 * implicitly since we are a writer. We would have tried to down 14620 * even an ipif that was already down, in ill_down_ipifs. So we 14621 * just blindly clear the IPIF_CHANGING flag here on all ipifs. 14622 */ 14623 ill_v4 = ill->ill_phyint->phyint_illv4; 14624 ill_v6 = ill->ill_phyint->phyint_illv6; 14625 if (ill_v4 != NULL) { 14626 ill_v4->ill_up_ipifs = B_TRUE; 14627 for (ipif = ill_v4->ill_ipif; ipif != NULL; 14628 ipif = ipif->ipif_next) { 14629 mutex_enter(&ill_v4->ill_lock); 14630 ipif->ipif_state_flags &= ~IPIF_CHANGING; 14631 IPIF_UNMARK_MOVING(ipif); 14632 mutex_exit(&ill_v4->ill_lock); 14633 if (ipif->ipif_was_up) { 14634 if (!(ipif->ipif_flags & IPIF_UP)) 14635 err = ipif_up(ipif, q, mp); 14636 ipif->ipif_was_up = B_FALSE; 14637 if (err != 0) { 14638 /* 14639 * Can there be any other error ? 14640 */ 14641 ASSERT(err == EINPROGRESS); 14642 return (err); 14643 } 14644 } 14645 } 14646 mutex_enter(&ill_v4->ill_lock); 14647 ill_v4->ill_state_flags &= ~ILL_CHANGING; 14648 mutex_exit(&ill_v4->ill_lock); 14649 ill_v4->ill_up_ipifs = B_FALSE; 14650 if (ill_v4->ill_move_in_progress) { 14651 ASSERT(ill_v4->ill_move_peer != NULL); 14652 ill_v4->ill_move_in_progress = B_FALSE; 14653 from_ill = ill_v4->ill_move_peer; 14654 from_ill->ill_move_in_progress = B_FALSE; 14655 from_ill->ill_move_peer = NULL; 14656 mutex_enter(&from_ill->ill_lock); 14657 from_ill->ill_state_flags &= ~ILL_CHANGING; 14658 mutex_exit(&from_ill->ill_lock); 14659 if (ill_v6 == NULL) { 14660 if (from_ill->ill_phyint->phyint_flags & 14661 PHYI_STANDBY) { 14662 phyint_inactive(from_ill->ill_phyint); 14663 } 14664 if (ill_v4->ill_phyint->phyint_flags & 14665 PHYI_STANDBY) { 14666 phyint_inactive(ill_v4->ill_phyint); 14667 } 14668 } 14669 ill_v4->ill_move_peer = NULL; 14670 } 14671 } 14672 14673 if (ill_v6 != NULL) { 14674 ill_v6->ill_up_ipifs = B_TRUE; 14675 for (ipif = ill_v6->ill_ipif; ipif != NULL; 14676 ipif = ipif->ipif_next) { 14677 mutex_enter(&ill_v6->ill_lock); 14678 ipif->ipif_state_flags &= ~IPIF_CHANGING; 14679 IPIF_UNMARK_MOVING(ipif); 14680 mutex_exit(&ill_v6->ill_lock); 14681 if (ipif->ipif_was_up) { 14682 if (!(ipif->ipif_flags & IPIF_UP)) 14683 err = ipif_up(ipif, q, mp); 14684 ipif->ipif_was_up = B_FALSE; 14685 if (err != 0) { 14686 /* 14687 * Can there be any other error ? 14688 */ 14689 ASSERT(err == EINPROGRESS); 14690 return (err); 14691 } 14692 } 14693 } 14694 mutex_enter(&ill_v6->ill_lock); 14695 ill_v6->ill_state_flags &= ~ILL_CHANGING; 14696 mutex_exit(&ill_v6->ill_lock); 14697 ill_v6->ill_up_ipifs = B_FALSE; 14698 if (ill_v6->ill_move_in_progress) { 14699 ASSERT(ill_v6->ill_move_peer != NULL); 14700 ill_v6->ill_move_in_progress = B_FALSE; 14701 from_ill = ill_v6->ill_move_peer; 14702 from_ill->ill_move_in_progress = B_FALSE; 14703 from_ill->ill_move_peer = NULL; 14704 mutex_enter(&from_ill->ill_lock); 14705 from_ill->ill_state_flags &= ~ILL_CHANGING; 14706 mutex_exit(&from_ill->ill_lock); 14707 if (from_ill->ill_phyint->phyint_flags & PHYI_STANDBY) { 14708 phyint_inactive(from_ill->ill_phyint); 14709 } 14710 if (ill_v6->ill_phyint->phyint_flags & PHYI_STANDBY) { 14711 phyint_inactive(ill_v6->ill_phyint); 14712 } 14713 ill_v6->ill_move_peer = NULL; 14714 } 14715 } 14716 return (0); 14717 } 14718 14719 /* 14720 * bring down all the approriate ipifs. 14721 */ 14722 /* ARGSUSED */ 14723 static void 14724 ill_down_ipifs(ill_t *ill, mblk_t *mp, int index, boolean_t chk_nofailover) 14725 { 14726 ipif_t *ipif; 14727 14728 ASSERT(IAM_WRITER_ILL(ill)); 14729 14730 /* 14731 * Except for ipif_state_flags the other fields of the ipif/ill that 14732 * are modified below are protected implicitly since we are a writer 14733 */ 14734 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 14735 if (chk_nofailover && (ipif->ipif_flags & IPIF_NOFAILOVER)) 14736 continue; 14737 if (index == 0 || index == ipif->ipif_orig_ifindex) { 14738 /* 14739 * We go through the ipif_down logic even if the ipif 14740 * is already down, since routes can be added based 14741 * on down ipifs. Going through ipif_down once again 14742 * will delete any IREs created based on these routes. 14743 */ 14744 if (ipif->ipif_flags & IPIF_UP) 14745 ipif->ipif_was_up = B_TRUE; 14746 /* 14747 * If called with chk_nofailover true ipif is moving. 14748 */ 14749 mutex_enter(&ill->ill_lock); 14750 if (chk_nofailover) { 14751 ipif->ipif_state_flags |= 14752 IPIF_MOVING | IPIF_CHANGING; 14753 } else { 14754 ipif->ipif_state_flags |= IPIF_CHANGING; 14755 } 14756 mutex_exit(&ill->ill_lock); 14757 /* 14758 * Need to re-create net/subnet bcast ires if 14759 * they are dependent on ipif. 14760 */ 14761 if (!ipif->ipif_isv6) 14762 ipif_check_bcast_ires(ipif); 14763 (void) ipif_logical_down(ipif, NULL, NULL); 14764 ipif_non_duplicate(ipif); 14765 ipif_down_tail(ipif); 14766 /* 14767 * We don't do ipif_multicast_down for IPv4 in 14768 * ipif_down. We need to set this so that 14769 * ipif_multicast_up will join the 14770 * ALLHOSTS_GROUP on to_ill. 14771 */ 14772 ipif->ipif_multicast_up = B_FALSE; 14773 } 14774 } 14775 } 14776 14777 #define IPSQ_INC_REF(ipsq, ipst) { \ 14778 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); \ 14779 (ipsq)->ipsq_refs++; \ 14780 } 14781 14782 #define IPSQ_DEC_REF(ipsq, ipst) { \ 14783 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); \ 14784 (ipsq)->ipsq_refs--; \ 14785 if ((ipsq)->ipsq_refs == 0) \ 14786 (ipsq)->ipsq_name[0] = '\0'; \ 14787 } 14788 14789 /* 14790 * Change the ipsq of all the ill's whose current ipsq is 'cur_ipsq' to 14791 * new_ipsq. 14792 */ 14793 static void 14794 ill_merge_ipsq(ipsq_t *cur_ipsq, ipsq_t *new_ipsq, ip_stack_t *ipst) 14795 { 14796 phyint_t *phyint; 14797 phyint_t *next_phyint; 14798 14799 /* 14800 * To change the ipsq of an ill, we need to hold the ill_g_lock as 14801 * writer and the ill_lock of the ill in question. Also the dest 14802 * ipsq can't vanish while we hold the ill_g_lock as writer. 14803 */ 14804 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); 14805 14806 phyint = cur_ipsq->ipsq_phyint_list; 14807 cur_ipsq->ipsq_phyint_list = NULL; 14808 while (phyint != NULL) { 14809 next_phyint = phyint->phyint_ipsq_next; 14810 IPSQ_DEC_REF(cur_ipsq, ipst); 14811 phyint->phyint_ipsq_next = new_ipsq->ipsq_phyint_list; 14812 new_ipsq->ipsq_phyint_list = phyint; 14813 IPSQ_INC_REF(new_ipsq, ipst); 14814 phyint->phyint_ipsq = new_ipsq; 14815 phyint = next_phyint; 14816 } 14817 } 14818 14819 #define SPLIT_SUCCESS 0 14820 #define SPLIT_NOT_NEEDED 1 14821 #define SPLIT_FAILED 2 14822 14823 int 14824 ill_split_to_grp_ipsq(phyint_t *phyint, ipsq_t *cur_ipsq, boolean_t need_retry, 14825 ip_stack_t *ipst) 14826 { 14827 ipsq_t *newipsq = NULL; 14828 14829 /* 14830 * Assertions denote pre-requisites for changing the ipsq of 14831 * a phyint 14832 */ 14833 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); 14834 /* 14835 * <ill-phyint> assocs can't change while ill_g_lock 14836 * is held as writer. See ill_phyint_reinit() 14837 */ 14838 ASSERT(phyint->phyint_illv4 == NULL || 14839 MUTEX_HELD(&phyint->phyint_illv4->ill_lock)); 14840 ASSERT(phyint->phyint_illv6 == NULL || 14841 MUTEX_HELD(&phyint->phyint_illv6->ill_lock)); 14842 14843 if ((phyint->phyint_groupname_len != 14844 (strlen(cur_ipsq->ipsq_name) + 1) || 14845 bcmp(phyint->phyint_groupname, cur_ipsq->ipsq_name, 14846 phyint->phyint_groupname_len) != 0)) { 14847 /* 14848 * Once we fail in creating a new ipsq due to memory shortage, 14849 * don't attempt to create new ipsq again, based on another 14850 * phyint, since we want all phyints belonging to an IPMP group 14851 * to be in the same ipsq even in the event of mem alloc fails. 14852 */ 14853 newipsq = ip_ipsq_lookup(phyint->phyint_groupname, !need_retry, 14854 cur_ipsq, ipst); 14855 if (newipsq == NULL) { 14856 /* Memory allocation failure */ 14857 return (SPLIT_FAILED); 14858 } else { 14859 /* ipsq_refs protected by ill_g_lock (writer) */ 14860 IPSQ_DEC_REF(cur_ipsq, ipst); 14861 phyint->phyint_ipsq = newipsq; 14862 phyint->phyint_ipsq_next = newipsq->ipsq_phyint_list; 14863 newipsq->ipsq_phyint_list = phyint; 14864 IPSQ_INC_REF(newipsq, ipst); 14865 return (SPLIT_SUCCESS); 14866 } 14867 } 14868 return (SPLIT_NOT_NEEDED); 14869 } 14870 14871 /* 14872 * The ill locks of the phyint and the ill_g_lock (writer) must be held 14873 * to do this split 14874 */ 14875 static int 14876 ill_split_to_own_ipsq(phyint_t *phyint, ipsq_t *cur_ipsq, ip_stack_t *ipst) 14877 { 14878 ipsq_t *newipsq; 14879 14880 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); 14881 /* 14882 * <ill-phyint> assocs can't change while ill_g_lock 14883 * is held as writer. See ill_phyint_reinit() 14884 */ 14885 14886 ASSERT(phyint->phyint_illv4 == NULL || 14887 MUTEX_HELD(&phyint->phyint_illv4->ill_lock)); 14888 ASSERT(phyint->phyint_illv6 == NULL || 14889 MUTEX_HELD(&phyint->phyint_illv6->ill_lock)); 14890 14891 if (!ipsq_init((phyint->phyint_illv4 != NULL) ? 14892 phyint->phyint_illv4: phyint->phyint_illv6)) { 14893 /* 14894 * ipsq_init failed due to no memory 14895 * caller will use the same ipsq 14896 */ 14897 return (SPLIT_FAILED); 14898 } 14899 14900 /* ipsq_ref is protected by ill_g_lock (writer) */ 14901 IPSQ_DEC_REF(cur_ipsq, ipst); 14902 14903 /* 14904 * This is a new ipsq that is unknown to the world. 14905 * So we don't need to hold ipsq_lock, 14906 */ 14907 newipsq = phyint->phyint_ipsq; 14908 newipsq->ipsq_writer = NULL; 14909 newipsq->ipsq_reentry_cnt--; 14910 ASSERT(newipsq->ipsq_reentry_cnt == 0); 14911 #ifdef ILL_DEBUG 14912 newipsq->ipsq_depth = 0; 14913 #endif 14914 14915 return (SPLIT_SUCCESS); 14916 } 14917 14918 /* 14919 * Change the ipsq of all the ill's whose current ipsq is 'cur_ipsq' to 14920 * ipsq's representing their individual groups or themselves. Return 14921 * whether split needs to be retried again later. 14922 */ 14923 static boolean_t 14924 ill_split_ipsq(ipsq_t *cur_ipsq) 14925 { 14926 phyint_t *phyint; 14927 phyint_t *next_phyint; 14928 int error; 14929 boolean_t need_retry = B_FALSE; 14930 ip_stack_t *ipst = cur_ipsq->ipsq_ipst; 14931 14932 phyint = cur_ipsq->ipsq_phyint_list; 14933 cur_ipsq->ipsq_phyint_list = NULL; 14934 while (phyint != NULL) { 14935 next_phyint = phyint->phyint_ipsq_next; 14936 /* 14937 * 'created' will tell us whether the callee actually 14938 * created an ipsq. Lack of memory may force the callee 14939 * to return without creating an ipsq. 14940 */ 14941 if (phyint->phyint_groupname == NULL) { 14942 error = ill_split_to_own_ipsq(phyint, cur_ipsq, ipst); 14943 } else { 14944 error = ill_split_to_grp_ipsq(phyint, cur_ipsq, 14945 need_retry, ipst); 14946 } 14947 14948 switch (error) { 14949 case SPLIT_FAILED: 14950 need_retry = B_TRUE; 14951 /* FALLTHRU */ 14952 case SPLIT_NOT_NEEDED: 14953 /* 14954 * Keep it on the list. 14955 */ 14956 phyint->phyint_ipsq_next = cur_ipsq->ipsq_phyint_list; 14957 cur_ipsq->ipsq_phyint_list = phyint; 14958 break; 14959 case SPLIT_SUCCESS: 14960 break; 14961 default: 14962 ASSERT(0); 14963 } 14964 14965 phyint = next_phyint; 14966 } 14967 return (need_retry); 14968 } 14969 14970 /* 14971 * given an ipsq 'ipsq' lock all ills associated with this ipsq. 14972 * and return the ills in the list. This list will be 14973 * needed to unlock all the ills later on by the caller. 14974 * The <ill-ipsq> associations could change between the 14975 * lock and unlock. Hence the unlock can't traverse the 14976 * ipsq to get the list of ills. 14977 */ 14978 static int 14979 ill_lock_ipsq_ills(ipsq_t *ipsq, ill_t **list, int list_max) 14980 { 14981 int cnt = 0; 14982 phyint_t *phyint; 14983 ip_stack_t *ipst = ipsq->ipsq_ipst; 14984 14985 /* 14986 * The caller holds ill_g_lock to ensure that the ill memberships 14987 * of the ipsq don't change 14988 */ 14989 ASSERT(RW_LOCK_HELD(&ipst->ips_ill_g_lock)); 14990 14991 phyint = ipsq->ipsq_phyint_list; 14992 while (phyint != NULL) { 14993 if (phyint->phyint_illv4 != NULL) { 14994 ASSERT(cnt < list_max); 14995 list[cnt++] = phyint->phyint_illv4; 14996 } 14997 if (phyint->phyint_illv6 != NULL) { 14998 ASSERT(cnt < list_max); 14999 list[cnt++] = phyint->phyint_illv6; 15000 } 15001 phyint = phyint->phyint_ipsq_next; 15002 } 15003 ill_lock_ills(list, cnt); 15004 return (cnt); 15005 } 15006 15007 void 15008 ill_lock_ills(ill_t **list, int cnt) 15009 { 15010 int i; 15011 15012 if (cnt > 1) { 15013 boolean_t try_again; 15014 do { 15015 try_again = B_FALSE; 15016 for (i = 0; i < cnt - 1; i++) { 15017 if (list[i] < list[i + 1]) { 15018 ill_t *tmp; 15019 15020 /* swap the elements */ 15021 tmp = list[i]; 15022 list[i] = list[i + 1]; 15023 list[i + 1] = tmp; 15024 try_again = B_TRUE; 15025 } 15026 } 15027 } while (try_again); 15028 } 15029 15030 for (i = 0; i < cnt; i++) { 15031 if (i == 0) { 15032 if (list[i] != NULL) 15033 mutex_enter(&list[i]->ill_lock); 15034 else 15035 return; 15036 } else if ((list[i-1] != list[i]) && (list[i] != NULL)) { 15037 mutex_enter(&list[i]->ill_lock); 15038 } 15039 } 15040 } 15041 15042 void 15043 ill_unlock_ills(ill_t **list, int cnt) 15044 { 15045 int i; 15046 15047 for (i = 0; i < cnt; i++) { 15048 if ((i == 0) && (list[i] != NULL)) { 15049 mutex_exit(&list[i]->ill_lock); 15050 } else if ((list[i-1] != list[i]) && (list[i] != NULL)) { 15051 mutex_exit(&list[i]->ill_lock); 15052 } 15053 } 15054 } 15055 15056 /* 15057 * Merge all the ills from 1 ipsq group into another ipsq group. 15058 * The source ipsq group is specified by the ipsq associated with 15059 * 'from_ill'. The destination ipsq group is specified by the ipsq 15060 * associated with 'to_ill' or 'groupname' respectively. 15061 * Note that ipsq itself does not have a reference count mechanism 15062 * and functions don't look up an ipsq and pass it around. Instead 15063 * functions pass around an ill or groupname, and the ipsq is looked 15064 * up from the ill or groupname and the required operation performed 15065 * atomically with the lookup on the ipsq. 15066 */ 15067 static int 15068 ill_merge_groups(ill_t *from_ill, ill_t *to_ill, char *groupname, mblk_t *mp, 15069 queue_t *q) 15070 { 15071 ipsq_t *old_ipsq; 15072 ipsq_t *new_ipsq; 15073 ill_t **ill_list; 15074 int cnt; 15075 size_t ill_list_size; 15076 boolean_t became_writer_on_new_sq = B_FALSE; 15077 ip_stack_t *ipst = from_ill->ill_ipst; 15078 15079 ASSERT(to_ill == NULL || ipst == to_ill->ill_ipst); 15080 /* Exactly 1 of 'to_ill' and groupname can be specified. */ 15081 ASSERT((to_ill != NULL) ^ (groupname != NULL)); 15082 15083 /* 15084 * Need to hold ill_g_lock as writer and also the ill_lock to 15085 * change the <ill-ipsq> assoc of an ill. Need to hold the 15086 * ipsq_lock to prevent new messages from landing on an ipsq. 15087 */ 15088 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 15089 15090 old_ipsq = from_ill->ill_phyint->phyint_ipsq; 15091 if (groupname != NULL) 15092 new_ipsq = ip_ipsq_lookup(groupname, B_TRUE, NULL, ipst); 15093 else { 15094 new_ipsq = to_ill->ill_phyint->phyint_ipsq; 15095 } 15096 15097 ASSERT(old_ipsq != NULL && new_ipsq != NULL); 15098 15099 /* 15100 * both groups are on the same ipsq. 15101 */ 15102 if (old_ipsq == new_ipsq) { 15103 rw_exit(&ipst->ips_ill_g_lock); 15104 return (0); 15105 } 15106 15107 cnt = old_ipsq->ipsq_refs << 1; 15108 ill_list_size = cnt * sizeof (ill_t *); 15109 ill_list = kmem_zalloc(ill_list_size, KM_NOSLEEP); 15110 if (ill_list == NULL) { 15111 rw_exit(&ipst->ips_ill_g_lock); 15112 return (ENOMEM); 15113 } 15114 cnt = ill_lock_ipsq_ills(old_ipsq, ill_list, cnt); 15115 15116 /* Need ipsq lock to enque messages on new ipsq or to become writer */ 15117 mutex_enter(&new_ipsq->ipsq_lock); 15118 if ((new_ipsq->ipsq_writer == NULL && 15119 new_ipsq->ipsq_current_ipif == NULL) || 15120 (new_ipsq->ipsq_writer == curthread)) { 15121 new_ipsq->ipsq_writer = curthread; 15122 new_ipsq->ipsq_reentry_cnt++; 15123 became_writer_on_new_sq = B_TRUE; 15124 } 15125 15126 /* 15127 * We are holding ill_g_lock as writer and all the ill locks of 15128 * the old ipsq. So the old_ipsq can't be looked up, and hence no new 15129 * message can land up on the old ipsq even though we don't hold the 15130 * ipsq_lock of the old_ipsq. Now move all messages to the newipsq. 15131 */ 15132 ill_move_to_new_ipsq(old_ipsq, new_ipsq, mp, q); 15133 15134 /* 15135 * now change the ipsq of all ills in the 'old_ipsq' to 'new_ipsq'. 15136 * 'new_ipsq' has been looked up, and it can't change its <ill-ipsq> 15137 * assocs. till we release the ill_g_lock, and hence it can't vanish. 15138 */ 15139 ill_merge_ipsq(old_ipsq, new_ipsq, ipst); 15140 15141 /* 15142 * Mark the new ipsq as needing a split since it is currently 15143 * being shared by more than 1 IPMP group. The split will 15144 * occur at the end of ipsq_exit 15145 */ 15146 new_ipsq->ipsq_split = B_TRUE; 15147 15148 /* Now release all the locks */ 15149 mutex_exit(&new_ipsq->ipsq_lock); 15150 ill_unlock_ills(ill_list, cnt); 15151 rw_exit(&ipst->ips_ill_g_lock); 15152 15153 kmem_free(ill_list, ill_list_size); 15154 15155 /* 15156 * If we succeeded in becoming writer on the new ipsq, then 15157 * drain the new ipsq and start processing all enqueued messages 15158 * including the current ioctl we are processing which is either 15159 * a set groupname or failover/failback. 15160 */ 15161 if (became_writer_on_new_sq) 15162 ipsq_exit(new_ipsq, B_TRUE, B_TRUE); 15163 15164 /* 15165 * syncq has been changed and all the messages have been moved. 15166 */ 15167 mutex_enter(&old_ipsq->ipsq_lock); 15168 old_ipsq->ipsq_current_ipif = NULL; 15169 old_ipsq->ipsq_current_ioctl = 0; 15170 mutex_exit(&old_ipsq->ipsq_lock); 15171 return (EINPROGRESS); 15172 } 15173 15174 /* 15175 * Delete and add the loopback copy and non-loopback copy of 15176 * the BROADCAST ire corresponding to ill and addr. Used to 15177 * group broadcast ires together when ill becomes part of 15178 * a group. 15179 * 15180 * This function is also called when ill is leaving the group 15181 * so that the ires belonging to the group gets re-grouped. 15182 */ 15183 static void 15184 ill_bcast_delete_and_add(ill_t *ill, ipaddr_t addr) 15185 { 15186 ire_t *ire, *nire, *nire_next, *ire_head = NULL; 15187 ire_t **ire_ptpn = &ire_head; 15188 ip_stack_t *ipst = ill->ill_ipst; 15189 15190 /* 15191 * The loopback and non-loopback IREs are inserted in the order in which 15192 * they're found, on the basis that they are correctly ordered (loopback 15193 * first). 15194 */ 15195 for (;;) { 15196 ire = ire_ctable_lookup(addr, 0, IRE_BROADCAST, ill->ill_ipif, 15197 ALL_ZONES, NULL, MATCH_IRE_TYPE | MATCH_IRE_ILL, ipst); 15198 if (ire == NULL) 15199 break; 15200 15201 /* 15202 * we are passing in KM_SLEEP because it is not easy to 15203 * go back to a sane state in case of memory failure. 15204 */ 15205 nire = kmem_cache_alloc(ire_cache, KM_SLEEP); 15206 ASSERT(nire != NULL); 15207 bzero(nire, sizeof (ire_t)); 15208 /* 15209 * Don't use ire_max_frag directly since we don't 15210 * hold on to 'ire' until we add the new ire 'nire' and 15211 * we don't want the new ire to have a dangling reference 15212 * to 'ire'. The ire_max_frag of a broadcast ire must 15213 * be in sync with the ipif_mtu of the associate ipif. 15214 * For eg. this happens as a result of SIOCSLIFNAME, 15215 * SIOCSLIFLNKINFO or a DL_NOTE_SDU_SIZE inititated by 15216 * the driver. A change in ire_max_frag triggered as 15217 * as a result of path mtu discovery, or due to an 15218 * IP_IOC_IRE_ADVISE_NOREPLY from the transport or due a 15219 * route change -mtu command does not apply to broadcast ires. 15220 * 15221 * XXX We need a recovery strategy here if ire_init fails 15222 */ 15223 if (ire_init(nire, 15224 (uchar_t *)&ire->ire_addr, 15225 (uchar_t *)&ire->ire_mask, 15226 (uchar_t *)&ire->ire_src_addr, 15227 (uchar_t *)&ire->ire_gateway_addr, 15228 (uchar_t *)&ire->ire_in_src_addr, 15229 ire->ire_stq == NULL ? &ip_loopback_mtu : 15230 &ire->ire_ipif->ipif_mtu, 15231 (ire->ire_nce != NULL ? ire->ire_nce->nce_fp_mp : NULL), 15232 ire->ire_rfq, 15233 ire->ire_stq, 15234 ire->ire_type, 15235 (ire->ire_nce != NULL? ire->ire_nce->nce_res_mp : NULL), 15236 ire->ire_ipif, 15237 ire->ire_in_ill, 15238 ire->ire_cmask, 15239 ire->ire_phandle, 15240 ire->ire_ihandle, 15241 ire->ire_flags, 15242 &ire->ire_uinfo, 15243 NULL, 15244 NULL, 15245 ipst) == NULL) { 15246 cmn_err(CE_PANIC, "ire_init() failed"); 15247 } 15248 ire_delete(ire); 15249 ire_refrele(ire); 15250 15251 /* 15252 * The newly created IREs are inserted at the tail of the list 15253 * starting with ire_head. As we've just allocated them no one 15254 * knows about them so it's safe. 15255 */ 15256 *ire_ptpn = nire; 15257 ire_ptpn = &nire->ire_next; 15258 } 15259 15260 for (nire = ire_head; nire != NULL; nire = nire_next) { 15261 int error; 15262 ire_t *oire; 15263 /* unlink the IRE from our list before calling ire_add() */ 15264 nire_next = nire->ire_next; 15265 nire->ire_next = NULL; 15266 15267 /* ire_add adds the ire at the right place in the list */ 15268 oire = nire; 15269 error = ire_add(&nire, NULL, NULL, NULL, B_FALSE); 15270 ASSERT(error == 0); 15271 ASSERT(oire == nire); 15272 ire_refrele(nire); /* Held in ire_add */ 15273 } 15274 } 15275 15276 /* 15277 * This function is usually called when an ill is inserted in 15278 * a group and all the ipifs are already UP. As all the ipifs 15279 * are already UP, the broadcast ires have already been created 15280 * and been inserted. But, ire_add_v4 would not have grouped properly. 15281 * We need to re-group for the benefit of ip_wput_ire which 15282 * expects BROADCAST ires to be grouped properly to avoid sending 15283 * more than one copy of the broadcast packet per group. 15284 * 15285 * NOTE : We don't check for ill_ipif_up_count to be non-zero here 15286 * because when ipif_up_done ends up calling this, ires have 15287 * already been added before illgrp_insert i.e before ill_group 15288 * has been initialized. 15289 */ 15290 static void 15291 ill_group_bcast_for_xmit(ill_t *ill) 15292 { 15293 ill_group_t *illgrp; 15294 ipif_t *ipif; 15295 ipaddr_t addr; 15296 ipaddr_t net_mask; 15297 ipaddr_t subnet_netmask; 15298 15299 illgrp = ill->ill_group; 15300 15301 /* 15302 * This function is called even when an ill is deleted from 15303 * the group. Hence, illgrp could be null. 15304 */ 15305 if (illgrp != NULL && illgrp->illgrp_ill_count == 1) 15306 return; 15307 15308 /* 15309 * Delete all the BROADCAST ires matching this ill and add 15310 * them back. This time, ire_add_v4 should take care of 15311 * grouping them with others because ill is part of the 15312 * group. 15313 */ 15314 ill_bcast_delete_and_add(ill, 0); 15315 ill_bcast_delete_and_add(ill, INADDR_BROADCAST); 15316 15317 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 15318 15319 if ((ipif->ipif_lcl_addr != INADDR_ANY) && 15320 !(ipif->ipif_flags & IPIF_NOLOCAL)) { 15321 net_mask = ip_net_mask(ipif->ipif_lcl_addr); 15322 } else { 15323 net_mask = htonl(IN_CLASSA_NET); 15324 } 15325 addr = net_mask & ipif->ipif_subnet; 15326 ill_bcast_delete_and_add(ill, addr); 15327 ill_bcast_delete_and_add(ill, ~net_mask | addr); 15328 15329 subnet_netmask = ipif->ipif_net_mask; 15330 addr = ipif->ipif_subnet; 15331 ill_bcast_delete_and_add(ill, addr); 15332 ill_bcast_delete_and_add(ill, ~subnet_netmask | addr); 15333 } 15334 } 15335 15336 /* 15337 * This function is called from illgrp_delete when ill is being deleted 15338 * from the group. 15339 * 15340 * As ill is not there in the group anymore, any address belonging 15341 * to this ill should be cleared of IRE_MARK_NORECV. 15342 */ 15343 static void 15344 ill_clear_bcast_mark(ill_t *ill, ipaddr_t addr) 15345 { 15346 ire_t *ire; 15347 irb_t *irb; 15348 ip_stack_t *ipst = ill->ill_ipst; 15349 15350 ASSERT(ill->ill_group == NULL); 15351 15352 ire = ire_ctable_lookup(addr, 0, IRE_BROADCAST, ill->ill_ipif, 15353 ALL_ZONES, NULL, MATCH_IRE_TYPE | MATCH_IRE_ILL, ipst); 15354 15355 if (ire != NULL) { 15356 /* 15357 * IPMP and plumbing operations are serialized on the ipsq, so 15358 * no one will insert or delete a broadcast ire under our feet. 15359 */ 15360 irb = ire->ire_bucket; 15361 rw_enter(&irb->irb_lock, RW_READER); 15362 ire_refrele(ire); 15363 15364 for (; ire != NULL; ire = ire->ire_next) { 15365 if (ire->ire_addr != addr) 15366 break; 15367 if (ire_to_ill(ire) != ill) 15368 continue; 15369 15370 ASSERT(!(ire->ire_marks & IRE_MARK_CONDEMNED)); 15371 ire->ire_marks &= ~IRE_MARK_NORECV; 15372 } 15373 rw_exit(&irb->irb_lock); 15374 } 15375 } 15376 15377 /* 15378 * This function must be called only after the broadcast ires 15379 * have been grouped together. For a given address addr, nominate 15380 * only one of the ires whose interface is not FAILED or OFFLINE. 15381 * 15382 * This is also called when an ipif goes down, so that we can nominate 15383 * a different ire with the same address for receiving. 15384 */ 15385 static void 15386 ill_mark_bcast(ill_group_t *illgrp, ipaddr_t addr, ip_stack_t *ipst) 15387 { 15388 irb_t *irb; 15389 ire_t *ire; 15390 ire_t *ire1; 15391 ire_t *save_ire; 15392 ire_t **irep = NULL; 15393 boolean_t first = B_TRUE; 15394 ire_t *clear_ire = NULL; 15395 ire_t *start_ire = NULL; 15396 ire_t *new_lb_ire; 15397 ire_t *new_nlb_ire; 15398 boolean_t new_lb_ire_used = B_FALSE; 15399 boolean_t new_nlb_ire_used = B_FALSE; 15400 uint64_t match_flags; 15401 uint64_t phyi_flags; 15402 boolean_t fallback = B_FALSE; 15403 uint_t max_frag; 15404 15405 ire = ire_ctable_lookup(addr, 0, IRE_BROADCAST, NULL, ALL_ZONES, 15406 NULL, MATCH_IRE_TYPE, ipst); 15407 /* 15408 * We may not be able to find some ires if a previous 15409 * ire_create failed. This happens when an ipif goes 15410 * down and we are unable to create BROADCAST ires due 15411 * to memory failure. Thus, we have to check for NULL 15412 * below. This should handle the case for LOOPBACK, 15413 * POINTOPOINT and interfaces with some POINTOPOINT 15414 * logicals for which there are no BROADCAST ires. 15415 */ 15416 if (ire == NULL) 15417 return; 15418 /* 15419 * Currently IRE_BROADCASTS are deleted when an ipif 15420 * goes down which runs exclusively. Thus, setting 15421 * IRE_MARK_RCVD should not race with ire_delete marking 15422 * IRE_MARK_CONDEMNED. We grab the lock below just to 15423 * be consistent with other parts of the code that walks 15424 * a given bucket. 15425 */ 15426 save_ire = ire; 15427 irb = ire->ire_bucket; 15428 new_lb_ire = kmem_cache_alloc(ire_cache, KM_NOSLEEP); 15429 if (new_lb_ire == NULL) { 15430 ire_refrele(ire); 15431 return; 15432 } 15433 new_nlb_ire = kmem_cache_alloc(ire_cache, KM_NOSLEEP); 15434 if (new_nlb_ire == NULL) { 15435 ire_refrele(ire); 15436 kmem_cache_free(ire_cache, new_lb_ire); 15437 return; 15438 } 15439 IRB_REFHOLD(irb); 15440 rw_enter(&irb->irb_lock, RW_WRITER); 15441 /* 15442 * Get to the first ire matching the address and the 15443 * group. If the address does not match we are done 15444 * as we could not find the IRE. If the address matches 15445 * we should get to the first one matching the group. 15446 */ 15447 while (ire != NULL) { 15448 if (ire->ire_addr != addr || 15449 ire->ire_ipif->ipif_ill->ill_group == illgrp) { 15450 break; 15451 } 15452 ire = ire->ire_next; 15453 } 15454 match_flags = PHYI_FAILED | PHYI_INACTIVE; 15455 start_ire = ire; 15456 redo: 15457 while (ire != NULL && ire->ire_addr == addr && 15458 ire->ire_ipif->ipif_ill->ill_group == illgrp) { 15459 /* 15460 * The first ire for any address within a group 15461 * should always be the one with IRE_MARK_NORECV cleared 15462 * so that ip_wput_ire can avoid searching for one. 15463 * Note down the insertion point which will be used 15464 * later. 15465 */ 15466 if (first && (irep == NULL)) 15467 irep = ire->ire_ptpn; 15468 /* 15469 * PHYI_FAILED is set when the interface fails. 15470 * This interface might have become good, but the 15471 * daemon has not yet detected. We should still 15472 * not receive on this. PHYI_OFFLINE should never 15473 * be picked as this has been offlined and soon 15474 * be removed. 15475 */ 15476 phyi_flags = ire->ire_ipif->ipif_ill->ill_phyint->phyint_flags; 15477 if (phyi_flags & PHYI_OFFLINE) { 15478 ire->ire_marks |= IRE_MARK_NORECV; 15479 ire = ire->ire_next; 15480 continue; 15481 } 15482 if (phyi_flags & match_flags) { 15483 ire->ire_marks |= IRE_MARK_NORECV; 15484 ire = ire->ire_next; 15485 if ((phyi_flags & (PHYI_FAILED | PHYI_INACTIVE)) == 15486 PHYI_INACTIVE) { 15487 fallback = B_TRUE; 15488 } 15489 continue; 15490 } 15491 if (first) { 15492 /* 15493 * We will move this to the front of the list later 15494 * on. 15495 */ 15496 clear_ire = ire; 15497 ire->ire_marks &= ~IRE_MARK_NORECV; 15498 } else { 15499 ire->ire_marks |= IRE_MARK_NORECV; 15500 } 15501 first = B_FALSE; 15502 ire = ire->ire_next; 15503 } 15504 /* 15505 * If we never nominated anybody, try nominating at least 15506 * an INACTIVE, if we found one. Do it only once though. 15507 */ 15508 if (first && (match_flags == (PHYI_FAILED | PHYI_INACTIVE)) && 15509 fallback) { 15510 match_flags = PHYI_FAILED; 15511 ire = start_ire; 15512 irep = NULL; 15513 goto redo; 15514 } 15515 ire_refrele(save_ire); 15516 15517 /* 15518 * irep non-NULL indicates that we entered the while loop 15519 * above. If clear_ire is at the insertion point, we don't 15520 * have to do anything. clear_ire will be NULL if all the 15521 * interfaces are failed. 15522 * 15523 * We cannot unlink and reinsert the ire at the right place 15524 * in the list since there can be other walkers of this bucket. 15525 * Instead we delete and recreate the ire 15526 */ 15527 if (clear_ire != NULL && irep != NULL && *irep != clear_ire) { 15528 ire_t *clear_ire_stq = NULL; 15529 mblk_t *fp_mp = NULL, *res_mp = NULL; 15530 15531 bzero(new_lb_ire, sizeof (ire_t)); 15532 if (clear_ire->ire_nce != NULL) { 15533 fp_mp = clear_ire->ire_nce->nce_fp_mp; 15534 res_mp = clear_ire->ire_nce->nce_res_mp; 15535 } 15536 /* XXX We need a recovery strategy here. */ 15537 if (ire_init(new_lb_ire, 15538 (uchar_t *)&clear_ire->ire_addr, 15539 (uchar_t *)&clear_ire->ire_mask, 15540 (uchar_t *)&clear_ire->ire_src_addr, 15541 (uchar_t *)&clear_ire->ire_gateway_addr, 15542 (uchar_t *)&clear_ire->ire_in_src_addr, 15543 &clear_ire->ire_max_frag, 15544 fp_mp, 15545 clear_ire->ire_rfq, 15546 clear_ire->ire_stq, 15547 clear_ire->ire_type, 15548 res_mp, 15549 clear_ire->ire_ipif, 15550 clear_ire->ire_in_ill, 15551 clear_ire->ire_cmask, 15552 clear_ire->ire_phandle, 15553 clear_ire->ire_ihandle, 15554 clear_ire->ire_flags, 15555 &clear_ire->ire_uinfo, 15556 NULL, 15557 NULL, 15558 ipst) == NULL) 15559 cmn_err(CE_PANIC, "ire_init() failed"); 15560 if (clear_ire->ire_stq == NULL) { 15561 ire_t *ire_next = clear_ire->ire_next; 15562 if (ire_next != NULL && 15563 ire_next->ire_stq != NULL && 15564 ire_next->ire_addr == clear_ire->ire_addr && 15565 ire_next->ire_ipif->ipif_ill == 15566 clear_ire->ire_ipif->ipif_ill) { 15567 clear_ire_stq = ire_next; 15568 15569 bzero(new_nlb_ire, sizeof (ire_t)); 15570 if (clear_ire_stq->ire_nce != NULL) { 15571 fp_mp = 15572 clear_ire_stq->ire_nce->nce_fp_mp; 15573 res_mp = 15574 clear_ire_stq->ire_nce->nce_res_mp; 15575 } else { 15576 fp_mp = res_mp = NULL; 15577 } 15578 /* XXX We need a recovery strategy here. */ 15579 if (ire_init(new_nlb_ire, 15580 (uchar_t *)&clear_ire_stq->ire_addr, 15581 (uchar_t *)&clear_ire_stq->ire_mask, 15582 (uchar_t *)&clear_ire_stq->ire_src_addr, 15583 (uchar_t *)&clear_ire_stq->ire_gateway_addr, 15584 (uchar_t *)&clear_ire_stq->ire_in_src_addr, 15585 &clear_ire_stq->ire_max_frag, 15586 fp_mp, 15587 clear_ire_stq->ire_rfq, 15588 clear_ire_stq->ire_stq, 15589 clear_ire_stq->ire_type, 15590 res_mp, 15591 clear_ire_stq->ire_ipif, 15592 clear_ire_stq->ire_in_ill, 15593 clear_ire_stq->ire_cmask, 15594 clear_ire_stq->ire_phandle, 15595 clear_ire_stq->ire_ihandle, 15596 clear_ire_stq->ire_flags, 15597 &clear_ire_stq->ire_uinfo, 15598 NULL, 15599 NULL, 15600 ipst) == NULL) 15601 cmn_err(CE_PANIC, "ire_init() failed"); 15602 } 15603 } 15604 15605 /* 15606 * Delete the ire. We can't call ire_delete() since 15607 * we are holding the bucket lock. We can't release the 15608 * bucket lock since we can't allow irep to change. So just 15609 * mark it CONDEMNED. The IRB_REFRELE will delete the 15610 * ire from the list and do the refrele. 15611 */ 15612 clear_ire->ire_marks |= IRE_MARK_CONDEMNED; 15613 irb->irb_marks |= IRB_MARK_CONDEMNED; 15614 15615 if (clear_ire_stq != NULL && clear_ire_stq->ire_nce != NULL) { 15616 nce_fastpath_list_delete(clear_ire_stq->ire_nce); 15617 clear_ire_stq->ire_marks |= IRE_MARK_CONDEMNED; 15618 } 15619 15620 /* 15621 * Also take care of otherfields like ib/ob pkt count 15622 * etc. Need to dup them. ditto in ill_bcast_delete_and_add 15623 */ 15624 15625 /* Set the max_frag before adding the ire */ 15626 max_frag = *new_lb_ire->ire_max_fragp; 15627 new_lb_ire->ire_max_fragp = NULL; 15628 new_lb_ire->ire_max_frag = max_frag; 15629 15630 /* Add the new ire's. Insert at *irep */ 15631 new_lb_ire->ire_bucket = clear_ire->ire_bucket; 15632 ire1 = *irep; 15633 if (ire1 != NULL) 15634 ire1->ire_ptpn = &new_lb_ire->ire_next; 15635 new_lb_ire->ire_next = ire1; 15636 /* Link the new one in. */ 15637 new_lb_ire->ire_ptpn = irep; 15638 membar_producer(); 15639 *irep = new_lb_ire; 15640 new_lb_ire_used = B_TRUE; 15641 BUMP_IRE_STATS(ipst->ips_ire_stats_v4, ire_stats_inserted); 15642 new_lb_ire->ire_bucket->irb_ire_cnt++; 15643 new_lb_ire->ire_ipif->ipif_ire_cnt++; 15644 15645 if (clear_ire_stq != NULL) { 15646 /* Set the max_frag before adding the ire */ 15647 max_frag = *new_nlb_ire->ire_max_fragp; 15648 new_nlb_ire->ire_max_fragp = NULL; 15649 new_nlb_ire->ire_max_frag = max_frag; 15650 15651 new_nlb_ire->ire_bucket = clear_ire->ire_bucket; 15652 irep = &new_lb_ire->ire_next; 15653 /* Add the new ire. Insert at *irep */ 15654 ire1 = *irep; 15655 if (ire1 != NULL) 15656 ire1->ire_ptpn = &new_nlb_ire->ire_next; 15657 new_nlb_ire->ire_next = ire1; 15658 /* Link the new one in. */ 15659 new_nlb_ire->ire_ptpn = irep; 15660 membar_producer(); 15661 *irep = new_nlb_ire; 15662 new_nlb_ire_used = B_TRUE; 15663 BUMP_IRE_STATS(ipst->ips_ire_stats_v4, 15664 ire_stats_inserted); 15665 new_nlb_ire->ire_bucket->irb_ire_cnt++; 15666 new_nlb_ire->ire_ipif->ipif_ire_cnt++; 15667 ((ill_t *)new_nlb_ire->ire_stq->q_ptr)->ill_ire_cnt++; 15668 } 15669 } 15670 rw_exit(&irb->irb_lock); 15671 if (!new_lb_ire_used) 15672 kmem_cache_free(ire_cache, new_lb_ire); 15673 if (!new_nlb_ire_used) 15674 kmem_cache_free(ire_cache, new_nlb_ire); 15675 IRB_REFRELE(irb); 15676 } 15677 15678 /* 15679 * Whenever an ipif goes down we have to renominate a different 15680 * broadcast ire to receive. Whenever an ipif comes up, we need 15681 * to make sure that we have only one nominated to receive. 15682 */ 15683 static void 15684 ipif_renominate_bcast(ipif_t *ipif) 15685 { 15686 ill_t *ill = ipif->ipif_ill; 15687 ipaddr_t subnet_addr; 15688 ipaddr_t net_addr; 15689 ipaddr_t net_mask = 0; 15690 ipaddr_t subnet_netmask; 15691 ipaddr_t addr; 15692 ill_group_t *illgrp; 15693 ip_stack_t *ipst = ill->ill_ipst; 15694 15695 illgrp = ill->ill_group; 15696 /* 15697 * If this is the last ipif going down, it might take 15698 * the ill out of the group. In that case ipif_down -> 15699 * illgrp_delete takes care of doing the nomination. 15700 * ipif_down does not call for this case. 15701 */ 15702 ASSERT(illgrp != NULL); 15703 15704 /* There could not have been any ires associated with this */ 15705 if (ipif->ipif_subnet == 0) 15706 return; 15707 15708 ill_mark_bcast(illgrp, 0, ipst); 15709 ill_mark_bcast(illgrp, INADDR_BROADCAST, ipst); 15710 15711 if ((ipif->ipif_lcl_addr != INADDR_ANY) && 15712 !(ipif->ipif_flags & IPIF_NOLOCAL)) { 15713 net_mask = ip_net_mask(ipif->ipif_lcl_addr); 15714 } else { 15715 net_mask = htonl(IN_CLASSA_NET); 15716 } 15717 addr = net_mask & ipif->ipif_subnet; 15718 ill_mark_bcast(illgrp, addr, ipst); 15719 15720 net_addr = ~net_mask | addr; 15721 ill_mark_bcast(illgrp, net_addr, ipst); 15722 15723 subnet_netmask = ipif->ipif_net_mask; 15724 addr = ipif->ipif_subnet; 15725 ill_mark_bcast(illgrp, addr, ipst); 15726 15727 subnet_addr = ~subnet_netmask | addr; 15728 ill_mark_bcast(illgrp, subnet_addr, ipst); 15729 } 15730 15731 /* 15732 * Whenever we form or delete ill groups, we need to nominate one set of 15733 * BROADCAST ires for receiving in the group. 15734 * 15735 * 1) When ipif_up_done -> ilgrp_insert calls this function, BROADCAST ires 15736 * have been added, but ill_ipif_up_count is 0. Thus, we don't assert 15737 * for ill_ipif_up_count to be non-zero. This is the only case where 15738 * ill_ipif_up_count is zero and we would still find the ires. 15739 * 15740 * 2) ip_sioctl_group_name/ifgrp_insert calls this function, at least one 15741 * ipif is UP and we just have to do the nomination. 15742 * 15743 * 3) When ill_handoff_responsibility calls us, some ill has been removed 15744 * from the group. So, we have to do the nomination. 15745 * 15746 * Because of (3), there could be just one ill in the group. But we have 15747 * to nominate still as IRE_MARK_NORCV may have been marked on this. 15748 * Thus, this function does not optimize when there is only one ill as 15749 * it is not correct for (3). 15750 */ 15751 static void 15752 ill_nominate_bcast_rcv(ill_group_t *illgrp) 15753 { 15754 ill_t *ill; 15755 ipif_t *ipif; 15756 ipaddr_t subnet_addr; 15757 ipaddr_t prev_subnet_addr = 0; 15758 ipaddr_t net_addr; 15759 ipaddr_t prev_net_addr = 0; 15760 ipaddr_t net_mask = 0; 15761 ipaddr_t subnet_netmask; 15762 ipaddr_t addr; 15763 ip_stack_t *ipst; 15764 15765 /* 15766 * When the last memeber is leaving, there is nothing to 15767 * nominate. 15768 */ 15769 if (illgrp->illgrp_ill_count == 0) { 15770 ASSERT(illgrp->illgrp_ill == NULL); 15771 return; 15772 } 15773 15774 ill = illgrp->illgrp_ill; 15775 ASSERT(!ill->ill_isv6); 15776 ipst = ill->ill_ipst; 15777 /* 15778 * We assume that ires with same address and belonging to the 15779 * same group, has been grouped together. Nominating a *single* 15780 * ill in the group for sending and receiving broadcast is done 15781 * by making sure that the first BROADCAST ire (which will be 15782 * the one returned by ire_ctable_lookup for ip_rput and the 15783 * one that will be used in ip_wput_ire) will be the one that 15784 * will not have IRE_MARK_NORECV set. 15785 * 15786 * 1) ip_rput checks and discards packets received on ires marked 15787 * with IRE_MARK_NORECV. Thus, we don't send up duplicate 15788 * broadcast packets. We need to clear IRE_MARK_NORECV on the 15789 * first ire in the group for every broadcast address in the group. 15790 * ip_rput will accept packets only on the first ire i.e only 15791 * one copy of the ill. 15792 * 15793 * 2) ip_wput_ire needs to send out just one copy of the broadcast 15794 * packet for the whole group. It needs to send out on the ill 15795 * whose ire has not been marked with IRE_MARK_NORECV. If it sends 15796 * on the one marked with IRE_MARK_NORECV, ip_rput will accept 15797 * the copy echoed back on other port where the ire is not marked 15798 * with IRE_MARK_NORECV. 15799 * 15800 * Note that we just need to have the first IRE either loopback or 15801 * non-loopback (either of them may not exist if ire_create failed 15802 * during ipif_down) with IRE_MARK_NORECV not set. ip_rput will 15803 * always hit the first one and hence will always accept one copy. 15804 * 15805 * We have a broadcast ire per ill for all the unique prefixes 15806 * hosted on that ill. As we don't have a way of knowing the 15807 * unique prefixes on a given ill and hence in the whole group, 15808 * we just call ill_mark_bcast on all the prefixes that exist 15809 * in the group. For the common case of one prefix, the code 15810 * below optimizes by remebering the last address used for 15811 * markng. In the case of multiple prefixes, this will still 15812 * optimize depending the order of prefixes. 15813 * 15814 * The only unique address across the whole group is 0.0.0.0 and 15815 * 255.255.255.255 and thus we call only once. ill_mark_bcast enables 15816 * the first ire in the bucket for receiving and disables the 15817 * others. 15818 */ 15819 ill_mark_bcast(illgrp, 0, ipst); 15820 ill_mark_bcast(illgrp, INADDR_BROADCAST, ipst); 15821 for (; ill != NULL; ill = ill->ill_group_next) { 15822 15823 for (ipif = ill->ill_ipif; ipif != NULL; 15824 ipif = ipif->ipif_next) { 15825 15826 if (!(ipif->ipif_flags & IPIF_UP) || 15827 ipif->ipif_subnet == 0) { 15828 continue; 15829 } 15830 if ((ipif->ipif_lcl_addr != INADDR_ANY) && 15831 !(ipif->ipif_flags & IPIF_NOLOCAL)) { 15832 net_mask = ip_net_mask(ipif->ipif_lcl_addr); 15833 } else { 15834 net_mask = htonl(IN_CLASSA_NET); 15835 } 15836 addr = net_mask & ipif->ipif_subnet; 15837 if (prev_net_addr == 0 || prev_net_addr != addr) { 15838 ill_mark_bcast(illgrp, addr, ipst); 15839 net_addr = ~net_mask | addr; 15840 ill_mark_bcast(illgrp, net_addr, ipst); 15841 } 15842 prev_net_addr = addr; 15843 15844 subnet_netmask = ipif->ipif_net_mask; 15845 addr = ipif->ipif_subnet; 15846 if (prev_subnet_addr == 0 || 15847 prev_subnet_addr != addr) { 15848 ill_mark_bcast(illgrp, addr, ipst); 15849 subnet_addr = ~subnet_netmask | addr; 15850 ill_mark_bcast(illgrp, subnet_addr, ipst); 15851 } 15852 prev_subnet_addr = addr; 15853 } 15854 } 15855 } 15856 15857 /* 15858 * This function is called while forming ill groups. 15859 * 15860 * Currently, we handle only allmulti groups. We want to join 15861 * allmulti on only one of the ills in the groups. In future, 15862 * when we have link aggregation, we may have to join normal 15863 * multicast groups on multiple ills as switch does inbound load 15864 * balancing. Following are the functions that calls this 15865 * function : 15866 * 15867 * 1) ill_recover_multicast : Interface is coming back UP. 15868 * When the first ipif comes back UP, ipif_up_done/ipif_up_done_v6 15869 * will call ill_recover_multicast to recover all the multicast 15870 * groups. We need to make sure that only one member is joined 15871 * in the ill group. 15872 * 15873 * 2) ip_addmulti/ip_addmulti_v6 : ill groups has already been formed. 15874 * Somebody is joining allmulti. We need to make sure that only one 15875 * member is joined in the group. 15876 * 15877 * 3) illgrp_insert : If allmulti has already joined, we need to make 15878 * sure that only one member is joined in the group. 15879 * 15880 * 4) ip_delmulti/ip_delmulti_v6 : Somebody in the group is leaving 15881 * allmulti who we have nominated. We need to pick someother ill. 15882 * 15883 * 5) illgrp_delete : The ill we nominated is leaving the group, 15884 * we need to pick a new ill to join the group. 15885 * 15886 * For (1), (2), (5) - we just have to check whether there is 15887 * a good ill joined in the group. If we could not find any ills 15888 * joined the group, we should join. 15889 * 15890 * For (4), the one that was nominated to receive, left the group. 15891 * There could be nobody joined in the group when this function is 15892 * called. 15893 * 15894 * For (3) - we need to explicitly check whether there are multiple 15895 * ills joined in the group. 15896 * 15897 * For simplicity, we don't differentiate any of the above cases. We 15898 * just leave the group if it is joined on any of them and join on 15899 * the first good ill. 15900 */ 15901 int 15902 ill_nominate_mcast_rcv(ill_group_t *illgrp) 15903 { 15904 ilm_t *ilm; 15905 ill_t *ill; 15906 ill_t *fallback_inactive_ill = NULL; 15907 ill_t *fallback_failed_ill = NULL; 15908 int ret = 0; 15909 15910 /* 15911 * Leave the allmulti on all the ills and start fresh. 15912 */ 15913 for (ill = illgrp->illgrp_ill; ill != NULL; 15914 ill = ill->ill_group_next) { 15915 if (ill->ill_join_allmulti) 15916 (void) ip_leave_allmulti(ill->ill_ipif); 15917 } 15918 15919 /* 15920 * Choose a good ill. Fallback to inactive or failed if 15921 * none available. We need to fallback to FAILED in the 15922 * case where we have 2 interfaces in a group - where 15923 * one of them is failed and another is a good one and 15924 * the good one (not marked inactive) is leaving the group. 15925 */ 15926 ret = 0; 15927 for (ill = illgrp->illgrp_ill; ill != NULL; 15928 ill = ill->ill_group_next) { 15929 /* Never pick an offline interface */ 15930 if (ill->ill_phyint->phyint_flags & PHYI_OFFLINE) 15931 continue; 15932 15933 if (ill->ill_phyint->phyint_flags & PHYI_FAILED) { 15934 fallback_failed_ill = ill; 15935 continue; 15936 } 15937 if (ill->ill_phyint->phyint_flags & PHYI_INACTIVE) { 15938 fallback_inactive_ill = ill; 15939 continue; 15940 } 15941 for (ilm = ill->ill_ilm; ilm != NULL; ilm = ilm->ilm_next) { 15942 if (IN6_IS_ADDR_UNSPECIFIED(&ilm->ilm_v6addr)) { 15943 ret = ip_join_allmulti(ill->ill_ipif); 15944 /* 15945 * ip_join_allmulti can fail because of memory 15946 * failures. So, make sure we join at least 15947 * on one ill. 15948 */ 15949 if (ill->ill_join_allmulti) 15950 return (0); 15951 } 15952 } 15953 } 15954 if (ret != 0) { 15955 /* 15956 * If we tried nominating above and failed to do so, 15957 * return error. We might have tried multiple times. 15958 * But, return the latest error. 15959 */ 15960 return (ret); 15961 } 15962 if ((ill = fallback_inactive_ill) != NULL) { 15963 for (ilm = ill->ill_ilm; ilm != NULL; ilm = ilm->ilm_next) { 15964 if (IN6_IS_ADDR_UNSPECIFIED(&ilm->ilm_v6addr)) { 15965 ret = ip_join_allmulti(ill->ill_ipif); 15966 return (ret); 15967 } 15968 } 15969 } else if ((ill = fallback_failed_ill) != NULL) { 15970 for (ilm = ill->ill_ilm; ilm != NULL; ilm = ilm->ilm_next) { 15971 if (IN6_IS_ADDR_UNSPECIFIED(&ilm->ilm_v6addr)) { 15972 ret = ip_join_allmulti(ill->ill_ipif); 15973 return (ret); 15974 } 15975 } 15976 } 15977 return (0); 15978 } 15979 15980 /* 15981 * This function is called from illgrp_delete after it is 15982 * deleted from the group to reschedule responsibilities 15983 * to a different ill. 15984 */ 15985 static void 15986 ill_handoff_responsibility(ill_t *ill, ill_group_t *illgrp) 15987 { 15988 ilm_t *ilm; 15989 ipif_t *ipif; 15990 ipaddr_t subnet_addr; 15991 ipaddr_t net_addr; 15992 ipaddr_t net_mask = 0; 15993 ipaddr_t subnet_netmask; 15994 ipaddr_t addr; 15995 ip_stack_t *ipst = ill->ill_ipst; 15996 15997 ASSERT(ill->ill_group == NULL); 15998 /* 15999 * Broadcast Responsibility: 16000 * 16001 * 1. If this ill has been nominated for receiving broadcast 16002 * packets, we need to find a new one. Before we find a new 16003 * one, we need to re-group the ires that are part of this new 16004 * group (assumed by ill_nominate_bcast_rcv). We do this by 16005 * calling ill_group_bcast_for_xmit(ill) which will do the right 16006 * thing for us. 16007 * 16008 * 2. If this ill was not nominated for receiving broadcast 16009 * packets, we need to clear the IRE_MARK_NORECV flag 16010 * so that we continue to send up broadcast packets. 16011 */ 16012 if (!ill->ill_isv6) { 16013 /* 16014 * Case 1 above : No optimization here. Just redo the 16015 * nomination. 16016 */ 16017 ill_group_bcast_for_xmit(ill); 16018 ill_nominate_bcast_rcv(illgrp); 16019 16020 /* 16021 * Case 2 above : Lookup and clear IRE_MARK_NORECV. 16022 */ 16023 ill_clear_bcast_mark(ill, 0); 16024 ill_clear_bcast_mark(ill, INADDR_BROADCAST); 16025 16026 for (ipif = ill->ill_ipif; ipif != NULL; 16027 ipif = ipif->ipif_next) { 16028 16029 if (!(ipif->ipif_flags & IPIF_UP) || 16030 ipif->ipif_subnet == 0) { 16031 continue; 16032 } 16033 if ((ipif->ipif_lcl_addr != INADDR_ANY) && 16034 !(ipif->ipif_flags & IPIF_NOLOCAL)) { 16035 net_mask = ip_net_mask(ipif->ipif_lcl_addr); 16036 } else { 16037 net_mask = htonl(IN_CLASSA_NET); 16038 } 16039 addr = net_mask & ipif->ipif_subnet; 16040 ill_clear_bcast_mark(ill, addr); 16041 16042 net_addr = ~net_mask | addr; 16043 ill_clear_bcast_mark(ill, net_addr); 16044 16045 subnet_netmask = ipif->ipif_net_mask; 16046 addr = ipif->ipif_subnet; 16047 ill_clear_bcast_mark(ill, addr); 16048 16049 subnet_addr = ~subnet_netmask | addr; 16050 ill_clear_bcast_mark(ill, subnet_addr); 16051 } 16052 } 16053 16054 /* 16055 * Multicast Responsibility. 16056 * 16057 * If we have joined allmulti on this one, find a new member 16058 * in the group to join allmulti. As this ill is already part 16059 * of allmulti, we don't have to join on this one. 16060 * 16061 * If we have not joined allmulti on this one, there is no 16062 * responsibility to handoff. But we need to take new 16063 * responsibility i.e, join allmulti on this one if we need 16064 * to. 16065 */ 16066 if (ill->ill_join_allmulti) { 16067 (void) ill_nominate_mcast_rcv(illgrp); 16068 } else { 16069 for (ilm = ill->ill_ilm; ilm != NULL; ilm = ilm->ilm_next) { 16070 if (IN6_IS_ADDR_UNSPECIFIED(&ilm->ilm_v6addr)) { 16071 (void) ip_join_allmulti(ill->ill_ipif); 16072 break; 16073 } 16074 } 16075 } 16076 16077 /* 16078 * We intentionally do the flushing of IRE_CACHES only matching 16079 * on the ill and not on groups. Note that we are already deleted 16080 * from the group. 16081 * 16082 * This will make sure that all IRE_CACHES whose stq is pointing 16083 * at ill_wq or ire_ipif->ipif_ill pointing at this ill will get 16084 * deleted and IRE_CACHES that are not pointing at this ill will 16085 * be left alone. 16086 */ 16087 if (ill->ill_isv6) { 16088 ire_walk_ill_v6(MATCH_IRE_ILL | MATCH_IRE_TYPE, 16089 IRE_CACHE, illgrp_cache_delete, (char *)ill, ill); 16090 } else { 16091 ire_walk_ill_v4(MATCH_IRE_ILL | MATCH_IRE_TYPE, 16092 IRE_CACHE, illgrp_cache_delete, (char *)ill, ill); 16093 } 16094 16095 /* 16096 * Some conn may have cached one of the IREs deleted above. By removing 16097 * the ire reference, we clean up the extra reference to the ill held in 16098 * ire->ire_stq. 16099 */ 16100 ipcl_walk(conn_cleanup_stale_ire, NULL, ipst); 16101 16102 /* 16103 * Re-do source address selection for all the members in the 16104 * group, if they borrowed source address from one of the ipifs 16105 * in this ill. 16106 */ 16107 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 16108 if (ill->ill_isv6) { 16109 ipif_update_other_ipifs_v6(ipif, illgrp); 16110 } else { 16111 ipif_update_other_ipifs(ipif, illgrp); 16112 } 16113 } 16114 } 16115 16116 /* 16117 * Delete the ill from the group. The caller makes sure that it is 16118 * in a group and it okay to delete from the group. So, we always 16119 * delete here. 16120 */ 16121 static void 16122 illgrp_delete(ill_t *ill) 16123 { 16124 ill_group_t *illgrp; 16125 ill_group_t *tmpg; 16126 ill_t *tmp_ill; 16127 ip_stack_t *ipst = ill->ill_ipst; 16128 16129 /* 16130 * Reset illgrp_ill_schednext if it was pointing at us. 16131 * We need to do this before we set ill_group to NULL. 16132 */ 16133 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 16134 mutex_enter(&ill->ill_lock); 16135 16136 illgrp_reset_schednext(ill); 16137 16138 illgrp = ill->ill_group; 16139 16140 /* Delete the ill from illgrp. */ 16141 if (illgrp->illgrp_ill == ill) { 16142 illgrp->illgrp_ill = ill->ill_group_next; 16143 } else { 16144 tmp_ill = illgrp->illgrp_ill; 16145 while (tmp_ill->ill_group_next != ill) { 16146 tmp_ill = tmp_ill->ill_group_next; 16147 ASSERT(tmp_ill != NULL); 16148 } 16149 tmp_ill->ill_group_next = ill->ill_group_next; 16150 } 16151 ill->ill_group = NULL; 16152 ill->ill_group_next = NULL; 16153 16154 illgrp->illgrp_ill_count--; 16155 mutex_exit(&ill->ill_lock); 16156 rw_exit(&ipst->ips_ill_g_lock); 16157 16158 /* 16159 * As this ill is leaving the group, we need to hand off 16160 * the responsibilities to the other ills in the group, if 16161 * this ill had some responsibilities. 16162 */ 16163 16164 ill_handoff_responsibility(ill, illgrp); 16165 16166 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 16167 16168 if (illgrp->illgrp_ill_count == 0) { 16169 16170 ASSERT(illgrp->illgrp_ill == NULL); 16171 if (ill->ill_isv6) { 16172 if (illgrp == ipst->ips_illgrp_head_v6) { 16173 ipst->ips_illgrp_head_v6 = illgrp->illgrp_next; 16174 } else { 16175 tmpg = ipst->ips_illgrp_head_v6; 16176 while (tmpg->illgrp_next != illgrp) { 16177 tmpg = tmpg->illgrp_next; 16178 ASSERT(tmpg != NULL); 16179 } 16180 tmpg->illgrp_next = illgrp->illgrp_next; 16181 } 16182 } else { 16183 if (illgrp == ipst->ips_illgrp_head_v4) { 16184 ipst->ips_illgrp_head_v4 = illgrp->illgrp_next; 16185 } else { 16186 tmpg = ipst->ips_illgrp_head_v4; 16187 while (tmpg->illgrp_next != illgrp) { 16188 tmpg = tmpg->illgrp_next; 16189 ASSERT(tmpg != NULL); 16190 } 16191 tmpg->illgrp_next = illgrp->illgrp_next; 16192 } 16193 } 16194 mutex_destroy(&illgrp->illgrp_lock); 16195 mi_free(illgrp); 16196 } 16197 rw_exit(&ipst->ips_ill_g_lock); 16198 16199 /* 16200 * Even though the ill is out of the group its not necessary 16201 * to set ipsq_split as TRUE as the ipifs could be down temporarily 16202 * We will split the ipsq when phyint_groupname is set to NULL. 16203 */ 16204 16205 /* 16206 * Send a routing sockets message if we are deleting from 16207 * groups with names. 16208 */ 16209 if (ill->ill_phyint->phyint_groupname_len != 0) 16210 ip_rts_ifmsg(ill->ill_ipif); 16211 } 16212 16213 /* 16214 * Re-do source address selection. This is normally called when 16215 * an ill joins the group or when a non-NOLOCAL/DEPRECATED/ANYCAST 16216 * ipif comes up. 16217 */ 16218 void 16219 ill_update_source_selection(ill_t *ill) 16220 { 16221 ipif_t *ipif; 16222 16223 ASSERT(IAM_WRITER_ILL(ill)); 16224 16225 if (ill->ill_group != NULL) 16226 ill = ill->ill_group->illgrp_ill; 16227 16228 for (; ill != NULL; ill = ill->ill_group_next) { 16229 for (ipif = ill->ill_ipif; ipif != NULL; 16230 ipif = ipif->ipif_next) { 16231 if (ill->ill_isv6) 16232 ipif_recreate_interface_routes_v6(NULL, ipif); 16233 else 16234 ipif_recreate_interface_routes(NULL, ipif); 16235 } 16236 } 16237 } 16238 16239 /* 16240 * Insert ill in a group headed by illgrp_head. The caller can either 16241 * pass a groupname in which case we search for a group with the 16242 * same name to insert in or pass a group to insert in. This function 16243 * would only search groups with names. 16244 * 16245 * NOTE : The caller should make sure that there is at least one ipif 16246 * UP on this ill so that illgrp_scheduler can pick this ill 16247 * for outbound packets. If ill_ipif_up_count is zero, we have 16248 * already sent a DL_UNBIND to the driver and we don't want to 16249 * send anymore packets. We don't assert for ipif_up_count 16250 * to be greater than zero, because ipif_up_done wants to call 16251 * this function before bumping up the ipif_up_count. See 16252 * ipif_up_done() for details. 16253 */ 16254 int 16255 illgrp_insert(ill_group_t **illgrp_head, ill_t *ill, char *groupname, 16256 ill_group_t *grp_to_insert, boolean_t ipif_is_coming_up) 16257 { 16258 ill_group_t *illgrp; 16259 ill_t *prev_ill; 16260 phyint_t *phyi; 16261 ip_stack_t *ipst = ill->ill_ipst; 16262 16263 ASSERT(ill->ill_group == NULL); 16264 16265 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 16266 mutex_enter(&ill->ill_lock); 16267 16268 if (groupname != NULL) { 16269 /* 16270 * Look for a group with a matching groupname to insert. 16271 */ 16272 for (illgrp = *illgrp_head; illgrp != NULL; 16273 illgrp = illgrp->illgrp_next) { 16274 16275 ill_t *tmp_ill; 16276 16277 /* 16278 * If we have an ill_group_t in the list which has 16279 * no ill_t assigned then we must be in the process of 16280 * removing this group. We skip this as illgrp_delete() 16281 * will remove it from the list. 16282 */ 16283 if ((tmp_ill = illgrp->illgrp_ill) == NULL) { 16284 ASSERT(illgrp->illgrp_ill_count == 0); 16285 continue; 16286 } 16287 16288 ASSERT(tmp_ill->ill_phyint != NULL); 16289 phyi = tmp_ill->ill_phyint; 16290 /* 16291 * Look at groups which has names only. 16292 */ 16293 if (phyi->phyint_groupname_len == 0) 16294 continue; 16295 /* 16296 * Names are stored in the phyint common to both 16297 * IPv4 and IPv6. 16298 */ 16299 if (mi_strcmp(phyi->phyint_groupname, 16300 groupname) == 0) { 16301 break; 16302 } 16303 } 16304 } else { 16305 /* 16306 * If the caller passes in a NULL "grp_to_insert", we 16307 * allocate one below and insert this singleton. 16308 */ 16309 illgrp = grp_to_insert; 16310 } 16311 16312 ill->ill_group_next = NULL; 16313 16314 if (illgrp == NULL) { 16315 illgrp = (ill_group_t *)mi_zalloc(sizeof (ill_group_t)); 16316 if (illgrp == NULL) { 16317 return (ENOMEM); 16318 } 16319 illgrp->illgrp_next = *illgrp_head; 16320 *illgrp_head = illgrp; 16321 illgrp->illgrp_ill = ill; 16322 illgrp->illgrp_ill_count = 1; 16323 ill->ill_group = illgrp; 16324 /* 16325 * Used in illgrp_scheduler to protect multiple threads 16326 * from traversing the list. 16327 */ 16328 mutex_init(&illgrp->illgrp_lock, NULL, MUTEX_DEFAULT, 0); 16329 } else { 16330 ASSERT(ill->ill_net_type == 16331 illgrp->illgrp_ill->ill_net_type); 16332 ASSERT(ill->ill_type == illgrp->illgrp_ill->ill_type); 16333 16334 /* Insert ill at tail of this group */ 16335 prev_ill = illgrp->illgrp_ill; 16336 while (prev_ill->ill_group_next != NULL) 16337 prev_ill = prev_ill->ill_group_next; 16338 prev_ill->ill_group_next = ill; 16339 ill->ill_group = illgrp; 16340 illgrp->illgrp_ill_count++; 16341 /* 16342 * Inherit group properties. Currently only forwarding 16343 * is the property we try to keep the same with all the 16344 * ills. When there are more, we will abstract this into 16345 * a function. 16346 */ 16347 ill->ill_flags &= ~ILLF_ROUTER; 16348 ill->ill_flags |= (illgrp->illgrp_ill->ill_flags & ILLF_ROUTER); 16349 } 16350 mutex_exit(&ill->ill_lock); 16351 rw_exit(&ipst->ips_ill_g_lock); 16352 16353 /* 16354 * 1) When ipif_up_done() calls this function, ipif_up_count 16355 * may be zero as it has not yet been bumped. But the ires 16356 * have already been added. So, we do the nomination here 16357 * itself. But, when ip_sioctl_groupname calls this, it checks 16358 * for ill_ipif_up_count != 0. Thus we don't check for 16359 * ill_ipif_up_count here while nominating broadcast ires for 16360 * receive. 16361 * 16362 * 2) Similarly, we need to call ill_group_bcast_for_xmit here 16363 * to group them properly as ire_add() has already happened 16364 * in the ipif_up_done() case. For ip_sioctl_groupname/ifgrp_insert 16365 * case, we need to do it here anyway. 16366 */ 16367 if (!ill->ill_isv6) { 16368 ill_group_bcast_for_xmit(ill); 16369 ill_nominate_bcast_rcv(illgrp); 16370 } 16371 16372 if (!ipif_is_coming_up) { 16373 /* 16374 * When ipif_up_done() calls this function, the multicast 16375 * groups have not been joined yet. So, there is no point in 16376 * nomination. ip_join_allmulti will handle groups when 16377 * ill_recover_multicast is called from ipif_up_done() later. 16378 */ 16379 (void) ill_nominate_mcast_rcv(illgrp); 16380 /* 16381 * ipif_up_done calls ill_update_source_selection 16382 * anyway. Moreover, we don't want to re-create 16383 * interface routes while ipif_up_done() still has reference 16384 * to them. Refer to ipif_up_done() for more details. 16385 */ 16386 ill_update_source_selection(ill); 16387 } 16388 16389 /* 16390 * Send a routing sockets message if we are inserting into 16391 * groups with names. 16392 */ 16393 if (groupname != NULL) 16394 ip_rts_ifmsg(ill->ill_ipif); 16395 return (0); 16396 } 16397 16398 /* 16399 * Return the first phyint matching the groupname. There could 16400 * be more than one when there are ill groups. 16401 * 16402 * If 'usable' is set, then we exclude ones that are marked with any of 16403 * (PHYI_FAILED|PHYI_STANDBY|PHYI_OFFLINE|PHYI_INACTIVE). 16404 * Needs work: called only from ip_sioctl_groupname and from the ipmp/netinfo 16405 * emulation of ipmp. 16406 */ 16407 phyint_t * 16408 phyint_lookup_group(char *groupname, boolean_t usable, ip_stack_t *ipst) 16409 { 16410 phyint_t *phyi; 16411 16412 ASSERT(RW_LOCK_HELD(&ipst->ips_ill_g_lock)); 16413 /* 16414 * Group names are stored in the phyint - a common structure 16415 * to both IPv4 and IPv6. 16416 */ 16417 phyi = avl_first(&ipst->ips_phyint_g_list->phyint_list_avl_by_index); 16418 for (; phyi != NULL; 16419 phyi = avl_walk(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 16420 phyi, AVL_AFTER)) { 16421 if (phyi->phyint_groupname_len == 0) 16422 continue; 16423 /* 16424 * Skip the ones that should not be used since the callers 16425 * sometime use this for sending packets. 16426 */ 16427 if (usable && (phyi->phyint_flags & 16428 (PHYI_FAILED|PHYI_STANDBY|PHYI_OFFLINE|PHYI_INACTIVE))) 16429 continue; 16430 16431 ASSERT(phyi->phyint_groupname != NULL); 16432 if (mi_strcmp(groupname, phyi->phyint_groupname) == 0) 16433 return (phyi); 16434 } 16435 return (NULL); 16436 } 16437 16438 16439 /* 16440 * Return the first usable phyint matching the group index. By 'usable' 16441 * we exclude ones that are marked ununsable with any of 16442 * (PHYI_FAILED|PHYI_STANDBY|PHYI_OFFLINE|PHYI_INACTIVE). 16443 * 16444 * Used only for the ipmp/netinfo emulation of ipmp. 16445 */ 16446 phyint_t * 16447 phyint_lookup_group_ifindex(uint_t group_ifindex, ip_stack_t *ipst) 16448 { 16449 phyint_t *phyi; 16450 16451 ASSERT(RW_LOCK_HELD(&ipst->ips_ill_g_lock)); 16452 16453 if (!ipst->ips_ipmp_hook_emulation) 16454 return (NULL); 16455 16456 /* 16457 * Group indicies are stored in the phyint - a common structure 16458 * to both IPv4 and IPv6. 16459 */ 16460 phyi = avl_first(&ipst->ips_phyint_g_list->phyint_list_avl_by_index); 16461 for (; phyi != NULL; 16462 phyi = avl_walk(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 16463 phyi, AVL_AFTER)) { 16464 /* Ignore the ones that do not have a group */ 16465 if (phyi->phyint_groupname_len == 0) 16466 continue; 16467 16468 ASSERT(phyi->phyint_group_ifindex != 0); 16469 /* 16470 * Skip the ones that should not be used since the callers 16471 * sometime use this for sending packets. 16472 */ 16473 if (phyi->phyint_flags & 16474 (PHYI_FAILED|PHYI_STANDBY|PHYI_OFFLINE|PHYI_INACTIVE)) 16475 continue; 16476 if (phyi->phyint_group_ifindex == group_ifindex) 16477 return (phyi); 16478 } 16479 return (NULL); 16480 } 16481 16482 16483 /* 16484 * MT notes on creation and deletion of IPMP groups 16485 * 16486 * Creation and deletion of IPMP groups introduce the need to merge or 16487 * split the associated serialization objects i.e the ipsq's. Normally all 16488 * the ills in an IPMP group would map to a single ipsq. If IPMP is not enabled 16489 * an ill-pair(v4, v6) i.e. phyint would map to a single ipsq. However during 16490 * the execution of the SIOCSLIFGROUPNAME command the picture changes. There 16491 * is a need to change the <ill-ipsq> association and we have to operate on both 16492 * the source and destination IPMP groups. For eg. attempting to set the 16493 * groupname of hme0 to mpk17-85 when it already belongs to mpk17-84 has to 16494 * handle 2 IPMP groups and 2 ipsqs. All the ills belonging to either of the 16495 * source or destination IPMP group are mapped to a single ipsq for executing 16496 * the SIOCSLIFGROUPNAME command. This is termed as a merge of the ipsq's. 16497 * The <ill-ipsq> mapping is restored back to normal at a later point. This is 16498 * termed as a split of the ipsq. The converse of the merge i.e. a split of the 16499 * ipsq happens while unwinding from ipsq_exit. If at least 1 set groupname 16500 * occurred on the ipsq, then the ipsq_split flag is set. This indicates the 16501 * ipsq has to be examined for redoing the <ill-ipsq> associations. 16502 * 16503 * In the above example the ioctl handling code locates the current ipsq of hme0 16504 * which is ipsq(mpk17-84). It then enters the above ipsq immediately or 16505 * eventually (after queueing the ioctl in ipsq(mpk17-84)). Then it locates 16506 * the destination ipsq which is ipsq(mpk17-85) and merges the source ipsq into 16507 * the destination ipsq. If the destination ipsq is not busy, it also enters 16508 * the destination ipsq exclusively. Now the actual groupname setting operation 16509 * can proceed. If the destination ipsq is busy, the operation is enqueued 16510 * on the destination (merged) ipsq and will be handled in the unwind from 16511 * ipsq_exit. 16512 * 16513 * To prevent other threads accessing the ill while the group name change is 16514 * in progres, we bring down the ipifs which also removes the ill from the 16515 * group. The group is changed in phyint and when the first ipif on the ill 16516 * is brought up, the ill is inserted into the right IPMP group by 16517 * illgrp_insert. 16518 */ 16519 /* ARGSUSED */ 16520 int 16521 ip_sioctl_groupname(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 16522 ip_ioctl_cmd_t *ipip, void *ifreq) 16523 { 16524 int i; 16525 char *tmp; 16526 int namelen; 16527 ill_t *ill = ipif->ipif_ill; 16528 ill_t *ill_v4, *ill_v6; 16529 int err = 0; 16530 phyint_t *phyi; 16531 phyint_t *phyi_tmp; 16532 struct lifreq *lifr; 16533 mblk_t *mp1; 16534 char *groupname; 16535 ipsq_t *ipsq; 16536 ip_stack_t *ipst = ill->ill_ipst; 16537 16538 ASSERT(IAM_WRITER_IPIF(ipif)); 16539 16540 /* Existance verified in ip_wput_nondata */ 16541 mp1 = mp->b_cont->b_cont; 16542 lifr = (struct lifreq *)mp1->b_rptr; 16543 groupname = lifr->lifr_groupname; 16544 16545 if (ipif->ipif_id != 0) 16546 return (EINVAL); 16547 16548 phyi = ill->ill_phyint; 16549 ASSERT(phyi != NULL); 16550 16551 if (phyi->phyint_flags & PHYI_VIRTUAL) 16552 return (EINVAL); 16553 16554 tmp = groupname; 16555 for (i = 0; i < LIFNAMSIZ && *tmp != '\0'; tmp++, i++) 16556 ; 16557 16558 if (i == LIFNAMSIZ) { 16559 /* no null termination */ 16560 return (EINVAL); 16561 } 16562 16563 /* 16564 * Calculate the namelen exclusive of the null 16565 * termination character. 16566 */ 16567 namelen = tmp - groupname; 16568 16569 ill_v4 = phyi->phyint_illv4; 16570 ill_v6 = phyi->phyint_illv6; 16571 16572 /* 16573 * ILL cannot be part of a usesrc group and and IPMP group at the 16574 * same time. No need to grab the ill_g_usesrc_lock here, see 16575 * synchronization notes in ip.c 16576 */ 16577 if (ipif->ipif_ill->ill_usesrc_grp_next != NULL) { 16578 return (EINVAL); 16579 } 16580 16581 /* 16582 * mark the ill as changing. 16583 * this should queue all new requests on the syncq. 16584 */ 16585 GRAB_ILL_LOCKS(ill_v4, ill_v6); 16586 16587 if (ill_v4 != NULL) 16588 ill_v4->ill_state_flags |= ILL_CHANGING; 16589 if (ill_v6 != NULL) 16590 ill_v6->ill_state_flags |= ILL_CHANGING; 16591 RELEASE_ILL_LOCKS(ill_v4, ill_v6); 16592 16593 if (namelen == 0) { 16594 /* 16595 * Null string means remove this interface from the 16596 * existing group. 16597 */ 16598 if (phyi->phyint_groupname_len == 0) { 16599 /* 16600 * Never was in a group. 16601 */ 16602 err = 0; 16603 goto done; 16604 } 16605 16606 /* 16607 * IPv4 or IPv6 may be temporarily out of the group when all 16608 * the ipifs are down. Thus, we need to check for ill_group to 16609 * be non-NULL. 16610 */ 16611 if (ill_v4 != NULL && ill_v4->ill_group != NULL) { 16612 ill_down_ipifs(ill_v4, mp, 0, B_FALSE); 16613 mutex_enter(&ill_v4->ill_lock); 16614 if (!ill_is_quiescent(ill_v4)) { 16615 /* 16616 * ipsq_pending_mp_add will not fail since 16617 * connp is NULL 16618 */ 16619 (void) ipsq_pending_mp_add(NULL, 16620 ill_v4->ill_ipif, q, mp, ILL_DOWN); 16621 mutex_exit(&ill_v4->ill_lock); 16622 err = EINPROGRESS; 16623 goto done; 16624 } 16625 mutex_exit(&ill_v4->ill_lock); 16626 } 16627 16628 if (ill_v6 != NULL && ill_v6->ill_group != NULL) { 16629 ill_down_ipifs(ill_v6, mp, 0, B_FALSE); 16630 mutex_enter(&ill_v6->ill_lock); 16631 if (!ill_is_quiescent(ill_v6)) { 16632 (void) ipsq_pending_mp_add(NULL, 16633 ill_v6->ill_ipif, q, mp, ILL_DOWN); 16634 mutex_exit(&ill_v6->ill_lock); 16635 err = EINPROGRESS; 16636 goto done; 16637 } 16638 mutex_exit(&ill_v6->ill_lock); 16639 } 16640 16641 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 16642 GRAB_ILL_LOCKS(ill_v4, ill_v6); 16643 mutex_enter(&phyi->phyint_lock); 16644 ASSERT(phyi->phyint_groupname != NULL); 16645 mi_free(phyi->phyint_groupname); 16646 phyi->phyint_groupname = NULL; 16647 phyi->phyint_groupname_len = 0; 16648 16649 /* Restore the ifindex used to be the per interface one */ 16650 phyi->phyint_group_ifindex = 0; 16651 phyi->phyint_hook_ifindex = phyi->phyint_ifindex; 16652 mutex_exit(&phyi->phyint_lock); 16653 RELEASE_ILL_LOCKS(ill_v4, ill_v6); 16654 rw_exit(&ipst->ips_ill_g_lock); 16655 err = ill_up_ipifs(ill, q, mp); 16656 16657 /* 16658 * set the split flag so that the ipsq can be split 16659 */ 16660 mutex_enter(&phyi->phyint_ipsq->ipsq_lock); 16661 phyi->phyint_ipsq->ipsq_split = B_TRUE; 16662 mutex_exit(&phyi->phyint_ipsq->ipsq_lock); 16663 16664 } else { 16665 if (phyi->phyint_groupname_len != 0) { 16666 ASSERT(phyi->phyint_groupname != NULL); 16667 /* Are we inserting in the same group ? */ 16668 if (mi_strcmp(groupname, 16669 phyi->phyint_groupname) == 0) { 16670 err = 0; 16671 goto done; 16672 } 16673 } 16674 16675 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 16676 /* 16677 * Merge ipsq for the group's. 16678 * This check is here as multiple groups/ills might be 16679 * sharing the same ipsq. 16680 * If we have to merege than the operation is restarted 16681 * on the new ipsq. 16682 */ 16683 ipsq = ip_ipsq_lookup(groupname, B_FALSE, NULL, ipst); 16684 if (phyi->phyint_ipsq != ipsq) { 16685 rw_exit(&ipst->ips_ill_g_lock); 16686 err = ill_merge_groups(ill, NULL, groupname, mp, q); 16687 goto done; 16688 } 16689 /* 16690 * Running exclusive on new ipsq. 16691 */ 16692 16693 ASSERT(ipsq != NULL); 16694 ASSERT(ipsq->ipsq_writer == curthread); 16695 16696 /* 16697 * Check whether the ill_type and ill_net_type matches before 16698 * we allocate any memory so that the cleanup is easier. 16699 * 16700 * We can't group dissimilar ones as we can't load spread 16701 * packets across the group because of potential link-level 16702 * header differences. 16703 */ 16704 phyi_tmp = phyint_lookup_group(groupname, B_FALSE, ipst); 16705 if (phyi_tmp != NULL) { 16706 if ((ill_v4 != NULL && 16707 phyi_tmp->phyint_illv4 != NULL) && 16708 ((ill_v4->ill_net_type != 16709 phyi_tmp->phyint_illv4->ill_net_type) || 16710 (ill_v4->ill_type != 16711 phyi_tmp->phyint_illv4->ill_type))) { 16712 mutex_enter(&phyi->phyint_ipsq->ipsq_lock); 16713 phyi->phyint_ipsq->ipsq_split = B_TRUE; 16714 mutex_exit(&phyi->phyint_ipsq->ipsq_lock); 16715 rw_exit(&ipst->ips_ill_g_lock); 16716 return (EINVAL); 16717 } 16718 if ((ill_v6 != NULL && 16719 phyi_tmp->phyint_illv6 != NULL) && 16720 ((ill_v6->ill_net_type != 16721 phyi_tmp->phyint_illv6->ill_net_type) || 16722 (ill_v6->ill_type != 16723 phyi_tmp->phyint_illv6->ill_type))) { 16724 mutex_enter(&phyi->phyint_ipsq->ipsq_lock); 16725 phyi->phyint_ipsq->ipsq_split = B_TRUE; 16726 mutex_exit(&phyi->phyint_ipsq->ipsq_lock); 16727 rw_exit(&ipst->ips_ill_g_lock); 16728 return (EINVAL); 16729 } 16730 } 16731 16732 rw_exit(&ipst->ips_ill_g_lock); 16733 16734 /* 16735 * bring down all v4 ipifs. 16736 */ 16737 if (ill_v4 != NULL) { 16738 ill_down_ipifs(ill_v4, mp, 0, B_FALSE); 16739 } 16740 16741 /* 16742 * bring down all v6 ipifs. 16743 */ 16744 if (ill_v6 != NULL) { 16745 ill_down_ipifs(ill_v6, mp, 0, B_FALSE); 16746 } 16747 16748 /* 16749 * make sure all ipifs are down and there are no active 16750 * references. Call to ipsq_pending_mp_add will not fail 16751 * since connp is NULL. 16752 */ 16753 if (ill_v4 != NULL) { 16754 mutex_enter(&ill_v4->ill_lock); 16755 if (!ill_is_quiescent(ill_v4)) { 16756 (void) ipsq_pending_mp_add(NULL, 16757 ill_v4->ill_ipif, q, mp, ILL_DOWN); 16758 mutex_exit(&ill_v4->ill_lock); 16759 err = EINPROGRESS; 16760 goto done; 16761 } 16762 mutex_exit(&ill_v4->ill_lock); 16763 } 16764 16765 if (ill_v6 != NULL) { 16766 mutex_enter(&ill_v6->ill_lock); 16767 if (!ill_is_quiescent(ill_v6)) { 16768 (void) ipsq_pending_mp_add(NULL, 16769 ill_v6->ill_ipif, q, mp, ILL_DOWN); 16770 mutex_exit(&ill_v6->ill_lock); 16771 err = EINPROGRESS; 16772 goto done; 16773 } 16774 mutex_exit(&ill_v6->ill_lock); 16775 } 16776 16777 /* 16778 * allocate including space for null terminator 16779 * before we insert. 16780 */ 16781 tmp = (char *)mi_alloc(namelen + 1, BPRI_MED); 16782 if (tmp == NULL) 16783 return (ENOMEM); 16784 16785 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 16786 GRAB_ILL_LOCKS(ill_v4, ill_v6); 16787 mutex_enter(&phyi->phyint_lock); 16788 if (phyi->phyint_groupname_len != 0) { 16789 ASSERT(phyi->phyint_groupname != NULL); 16790 mi_free(phyi->phyint_groupname); 16791 } 16792 16793 /* 16794 * setup the new group name. 16795 */ 16796 phyi->phyint_groupname = tmp; 16797 bcopy(groupname, phyi->phyint_groupname, namelen + 1); 16798 phyi->phyint_groupname_len = namelen + 1; 16799 16800 if (ipst->ips_ipmp_hook_emulation) { 16801 /* 16802 * If the group already exists we use the existing 16803 * group_ifindex, otherwise we pick a new index here. 16804 */ 16805 if (phyi_tmp != NULL) { 16806 phyi->phyint_group_ifindex = 16807 phyi_tmp->phyint_group_ifindex; 16808 } else { 16809 /* XXX We need a recovery strategy here. */ 16810 if (!ip_assign_ifindex( 16811 &phyi->phyint_group_ifindex, ipst)) 16812 cmn_err(CE_PANIC, 16813 "ip_assign_ifindex() failed"); 16814 } 16815 } 16816 /* 16817 * Select whether the netinfo and hook use the per-interface 16818 * or per-group ifindex. 16819 */ 16820 if (ipst->ips_ipmp_hook_emulation) 16821 phyi->phyint_hook_ifindex = phyi->phyint_group_ifindex; 16822 else 16823 phyi->phyint_hook_ifindex = phyi->phyint_ifindex; 16824 16825 if (ipst->ips_ipmp_hook_emulation && 16826 phyi_tmp != NULL) { 16827 /* First phyint in group - group PLUMB event */ 16828 ill_nic_info_plumb(ill, B_TRUE); 16829 } 16830 mutex_exit(&phyi->phyint_lock); 16831 RELEASE_ILL_LOCKS(ill_v4, ill_v6); 16832 rw_exit(&ipst->ips_ill_g_lock); 16833 16834 err = ill_up_ipifs(ill, q, mp); 16835 } 16836 16837 done: 16838 /* 16839 * normally ILL_CHANGING is cleared in ill_up_ipifs. 16840 */ 16841 if (err != EINPROGRESS) { 16842 GRAB_ILL_LOCKS(ill_v4, ill_v6); 16843 if (ill_v4 != NULL) 16844 ill_v4->ill_state_flags &= ~ILL_CHANGING; 16845 if (ill_v6 != NULL) 16846 ill_v6->ill_state_flags &= ~ILL_CHANGING; 16847 RELEASE_ILL_LOCKS(ill_v4, ill_v6); 16848 } 16849 return (err); 16850 } 16851 16852 /* ARGSUSED */ 16853 int 16854 ip_sioctl_get_groupname(ipif_t *ipif, sin_t *dummy_sin, queue_t *q, 16855 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 16856 { 16857 ill_t *ill; 16858 phyint_t *phyi; 16859 struct lifreq *lifr; 16860 mblk_t *mp1; 16861 16862 /* Existence verified in ip_wput_nondata */ 16863 mp1 = mp->b_cont->b_cont; 16864 lifr = (struct lifreq *)mp1->b_rptr; 16865 ill = ipif->ipif_ill; 16866 phyi = ill->ill_phyint; 16867 16868 lifr->lifr_groupname[0] = '\0'; 16869 /* 16870 * ill_group may be null if all the interfaces 16871 * are down. But still, the phyint should always 16872 * hold the name. 16873 */ 16874 if (phyi->phyint_groupname_len != 0) { 16875 bcopy(phyi->phyint_groupname, lifr->lifr_groupname, 16876 phyi->phyint_groupname_len); 16877 } 16878 16879 return (0); 16880 } 16881 16882 16883 typedef struct conn_move_s { 16884 ill_t *cm_from_ill; 16885 ill_t *cm_to_ill; 16886 int cm_ifindex; 16887 } conn_move_t; 16888 16889 /* 16890 * ipcl_walk function for moving conn_multicast_ill for a given ill. 16891 */ 16892 static void 16893 conn_move(conn_t *connp, caddr_t arg) 16894 { 16895 conn_move_t *connm; 16896 int ifindex; 16897 int i; 16898 ill_t *from_ill; 16899 ill_t *to_ill; 16900 ilg_t *ilg; 16901 ilm_t *ret_ilm; 16902 16903 connm = (conn_move_t *)arg; 16904 ifindex = connm->cm_ifindex; 16905 from_ill = connm->cm_from_ill; 16906 to_ill = connm->cm_to_ill; 16907 16908 /* Change IP_BOUND_IF/IPV6_BOUND_IF associations. */ 16909 16910 /* All multicast fields protected by conn_lock */ 16911 mutex_enter(&connp->conn_lock); 16912 ASSERT(connp->conn_outgoing_ill == connp->conn_incoming_ill); 16913 if ((connp->conn_outgoing_ill == from_ill) && 16914 (ifindex == 0 || connp->conn_orig_bound_ifindex == ifindex)) { 16915 connp->conn_outgoing_ill = to_ill; 16916 connp->conn_incoming_ill = to_ill; 16917 } 16918 16919 /* Change IP_MULTICAST_IF/IPV6_MULTICAST_IF associations */ 16920 16921 if ((connp->conn_multicast_ill == from_ill) && 16922 (ifindex == 0 || connp->conn_orig_multicast_ifindex == ifindex)) { 16923 connp->conn_multicast_ill = connm->cm_to_ill; 16924 } 16925 16926 /* Change IP_XMIT_IF associations */ 16927 if ((connp->conn_xmit_if_ill == from_ill) && 16928 (ifindex == 0 || connp->conn_orig_xmit_ifindex == ifindex)) { 16929 connp->conn_xmit_if_ill = to_ill; 16930 } 16931 /* 16932 * Change the ilg_ill to point to the new one. This assumes 16933 * ilm_move_v6 has moved the ilms to new_ill and the driver 16934 * has been told to receive packets on this interface. 16935 * ilm_move_v6 FAILBACKS all the ilms successfully always. 16936 * But when doing a FAILOVER, it might fail with ENOMEM and so 16937 * some ilms may not have moved. We check to see whether 16938 * the ilms have moved to to_ill. We can't check on from_ill 16939 * as in the process of moving, we could have split an ilm 16940 * in to two - which has the same orig_ifindex and v6group. 16941 * 16942 * For IPv4, ilg_ipif moves implicitly. The code below really 16943 * does not do anything for IPv4 as ilg_ill is NULL for IPv4. 16944 */ 16945 for (i = connp->conn_ilg_inuse - 1; i >= 0; i--) { 16946 ilg = &connp->conn_ilg[i]; 16947 if ((ilg->ilg_ill == from_ill) && 16948 (ifindex == 0 || ilg->ilg_orig_ifindex == ifindex)) { 16949 /* ifindex != 0 indicates failback */ 16950 if (ifindex != 0) { 16951 connp->conn_ilg[i].ilg_ill = to_ill; 16952 continue; 16953 } 16954 16955 ret_ilm = ilm_lookup_ill_index_v6(to_ill, 16956 &ilg->ilg_v6group, ilg->ilg_orig_ifindex, 16957 connp->conn_zoneid); 16958 16959 if (ret_ilm != NULL) 16960 connp->conn_ilg[i].ilg_ill = to_ill; 16961 } 16962 } 16963 mutex_exit(&connp->conn_lock); 16964 } 16965 16966 static void 16967 conn_move_ill(ill_t *from_ill, ill_t *to_ill, int ifindex) 16968 { 16969 conn_move_t connm; 16970 ip_stack_t *ipst = from_ill->ill_ipst; 16971 16972 connm.cm_from_ill = from_ill; 16973 connm.cm_to_ill = to_ill; 16974 connm.cm_ifindex = ifindex; 16975 16976 ipcl_walk(conn_move, (caddr_t)&connm, ipst); 16977 } 16978 16979 /* 16980 * ilm has been moved from from_ill to to_ill. 16981 * Send DL_DISABMULTI_REQ to ill and DL_ENABMULTI_REQ on to_ill. 16982 * appropriately. 16983 * 16984 * NOTE : We can't reuse the code in ip_ll_addmulti/delmulti because 16985 * the code there de-references ipif_ill to get the ill to 16986 * send multicast requests. It does not work as ipif is on its 16987 * move and already moved when this function is called. 16988 * Thus, we need to use from_ill and to_ill send down multicast 16989 * requests. 16990 */ 16991 static void 16992 ilm_send_multicast_reqs(ill_t *from_ill, ill_t *to_ill) 16993 { 16994 ipif_t *ipif; 16995 ilm_t *ilm; 16996 16997 /* 16998 * See whether we need to send down DL_ENABMULTI_REQ on 16999 * to_ill as ilm has just been added. 17000 */ 17001 ASSERT(IAM_WRITER_ILL(to_ill)); 17002 ASSERT(IAM_WRITER_ILL(from_ill)); 17003 17004 ILM_WALKER_HOLD(to_ill); 17005 for (ilm = to_ill->ill_ilm; ilm != NULL; ilm = ilm->ilm_next) { 17006 17007 if (!ilm->ilm_is_new || (ilm->ilm_flags & ILM_DELETED)) 17008 continue; 17009 /* 17010 * no locks held, ill/ipif cannot dissappear as long 17011 * as we are writer. 17012 */ 17013 ipif = to_ill->ill_ipif; 17014 /* 17015 * No need to hold any lock as we are the writer and this 17016 * can only be changed by a writer. 17017 */ 17018 ilm->ilm_is_new = B_FALSE; 17019 17020 if (to_ill->ill_net_type != IRE_IF_RESOLVER || 17021 ipif->ipif_flags & IPIF_POINTOPOINT) { 17022 ip1dbg(("ilm_send_multicast_reqs: to_ill not " 17023 "resolver\n")); 17024 continue; /* Must be IRE_IF_NORESOLVER */ 17025 } 17026 17027 17028 if (to_ill->ill_phyint->phyint_flags & PHYI_MULTI_BCAST) { 17029 ip1dbg(("ilm_send_multicast_reqs: " 17030 "to_ill MULTI_BCAST\n")); 17031 goto from; 17032 } 17033 17034 if (to_ill->ill_isv6) 17035 mld_joingroup(ilm); 17036 else 17037 igmp_joingroup(ilm); 17038 17039 if (to_ill->ill_ipif_up_count == 0) { 17040 /* 17041 * Nobody there. All multicast addresses will be 17042 * re-joined when we get the DL_BIND_ACK bringing the 17043 * interface up. 17044 */ 17045 ilm->ilm_notify_driver = B_FALSE; 17046 ip1dbg(("ilm_send_multicast_reqs: to_ill nobody up\n")); 17047 goto from; 17048 } 17049 17050 /* 17051 * For allmulti address, we want to join on only one interface. 17052 * Checking for ilm_numentries_v6 is not correct as you may 17053 * find an ilm with zero address on to_ill, but we may not 17054 * have nominated to_ill for receiving. Thus, if we have 17055 * nominated from_ill (ill_join_allmulti is set), nominate 17056 * only if to_ill is not already nominated (to_ill normally 17057 * should not have been nominated if "from_ill" has already 17058 * been nominated. As we don't prevent failovers from happening 17059 * across groups, we don't assert). 17060 */ 17061 if (IN6_IS_ADDR_UNSPECIFIED(&ilm->ilm_v6addr)) { 17062 /* 17063 * There is no need to hold ill locks as we are 17064 * writer on both ills and when ill_join_allmulti 17065 * is changed the thread is always a writer. 17066 */ 17067 if (from_ill->ill_join_allmulti && 17068 !to_ill->ill_join_allmulti) { 17069 (void) ip_join_allmulti(to_ill->ill_ipif); 17070 } 17071 } else if (ilm->ilm_notify_driver) { 17072 17073 /* 17074 * This is a newly moved ilm so we need to tell the 17075 * driver about the new group. There can be more than 17076 * one ilm's for the same group in the list each with a 17077 * different orig_ifindex. We have to inform the driver 17078 * once. In ilm_move_v[4,6] we only set the flag 17079 * ilm_notify_driver for the first ilm. 17080 */ 17081 17082 (void) ip_ll_send_enabmulti_req(to_ill, 17083 &ilm->ilm_v6addr); 17084 } 17085 17086 ilm->ilm_notify_driver = B_FALSE; 17087 17088 /* 17089 * See whether we need to send down DL_DISABMULTI_REQ on 17090 * from_ill as ilm has just been removed. 17091 */ 17092 from: 17093 ipif = from_ill->ill_ipif; 17094 if (from_ill->ill_net_type != IRE_IF_RESOLVER || 17095 ipif->ipif_flags & IPIF_POINTOPOINT) { 17096 ip1dbg(("ilm_send_multicast_reqs: " 17097 "from_ill not resolver\n")); 17098 continue; /* Must be IRE_IF_NORESOLVER */ 17099 } 17100 17101 if (from_ill->ill_phyint->phyint_flags & PHYI_MULTI_BCAST) { 17102 ip1dbg(("ilm_send_multicast_reqs: " 17103 "from_ill MULTI_BCAST\n")); 17104 continue; 17105 } 17106 17107 if (IN6_IS_ADDR_UNSPECIFIED(&ilm->ilm_v6addr)) { 17108 if (from_ill->ill_join_allmulti) 17109 (void) ip_leave_allmulti(from_ill->ill_ipif); 17110 } else if (ilm_numentries_v6(from_ill, &ilm->ilm_v6addr) == 0) { 17111 (void) ip_ll_send_disabmulti_req(from_ill, 17112 &ilm->ilm_v6addr); 17113 } 17114 } 17115 ILM_WALKER_RELE(to_ill); 17116 } 17117 17118 /* 17119 * This function is called when all multicast memberships needs 17120 * to be moved from "from_ill" to "to_ill" for IPv6. This function is 17121 * called only once unlike the IPv4 counterpart where it is called after 17122 * every logical interface is moved. The reason is due to multicast 17123 * memberships are joined using an interface address in IPv4 while in 17124 * IPv6, interface index is used. 17125 */ 17126 static void 17127 ilm_move_v6(ill_t *from_ill, ill_t *to_ill, int ifindex) 17128 { 17129 ilm_t *ilm; 17130 ilm_t *ilm_next; 17131 ilm_t *new_ilm; 17132 ilm_t **ilmp; 17133 int count; 17134 char buf[INET6_ADDRSTRLEN]; 17135 in6_addr_t ipv6_snm = ipv6_solicited_node_mcast; 17136 ip_stack_t *ipst = from_ill->ill_ipst; 17137 17138 ASSERT(MUTEX_HELD(&to_ill->ill_lock)); 17139 ASSERT(MUTEX_HELD(&from_ill->ill_lock)); 17140 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); 17141 17142 if (ifindex == 0) { 17143 /* 17144 * Form the solicited node mcast address which is used later. 17145 */ 17146 ipif_t *ipif; 17147 17148 ipif = from_ill->ill_ipif; 17149 ASSERT(ipif->ipif_id == 0); 17150 17151 ipv6_snm.s6_addr32[3] |= ipif->ipif_v6lcl_addr.s6_addr32[3]; 17152 } 17153 17154 ilmp = &from_ill->ill_ilm; 17155 for (ilm = from_ill->ill_ilm; ilm != NULL; ilm = ilm_next) { 17156 ilm_next = ilm->ilm_next; 17157 17158 if (ilm->ilm_flags & ILM_DELETED) { 17159 ilmp = &ilm->ilm_next; 17160 continue; 17161 } 17162 17163 new_ilm = ilm_lookup_ill_index_v6(to_ill, &ilm->ilm_v6addr, 17164 ilm->ilm_orig_ifindex, ilm->ilm_zoneid); 17165 ASSERT(ilm->ilm_orig_ifindex != 0); 17166 if (ilm->ilm_orig_ifindex == ifindex) { 17167 /* 17168 * We are failing back multicast memberships. 17169 * If the same ilm exists in to_ill, it means somebody 17170 * has joined the same group there e.g. ff02::1 17171 * is joined within the kernel when the interfaces 17172 * came UP. 17173 */ 17174 ASSERT(ilm->ilm_ipif == NULL); 17175 if (new_ilm != NULL) { 17176 new_ilm->ilm_refcnt += ilm->ilm_refcnt; 17177 if (new_ilm->ilm_fmode != MODE_IS_EXCLUDE || 17178 !SLIST_IS_EMPTY(new_ilm->ilm_filter)) { 17179 new_ilm->ilm_is_new = B_TRUE; 17180 } 17181 } else { 17182 /* 17183 * check if we can just move the ilm 17184 */ 17185 if (from_ill->ill_ilm_walker_cnt != 0) { 17186 /* 17187 * We have walkers we cannot move 17188 * the ilm, so allocate a new ilm, 17189 * this (old) ilm will be marked 17190 * ILM_DELETED at the end of the loop 17191 * and will be freed when the 17192 * last walker exits. 17193 */ 17194 new_ilm = (ilm_t *)mi_zalloc 17195 (sizeof (ilm_t)); 17196 if (new_ilm == NULL) { 17197 ip0dbg(("ilm_move_v6: " 17198 "FAILBACK of IPv6" 17199 " multicast address %s : " 17200 "from %s to" 17201 " %s failed : ENOMEM \n", 17202 inet_ntop(AF_INET6, 17203 &ilm->ilm_v6addr, buf, 17204 sizeof (buf)), 17205 from_ill->ill_name, 17206 to_ill->ill_name)); 17207 17208 ilmp = &ilm->ilm_next; 17209 continue; 17210 } 17211 *new_ilm = *ilm; 17212 /* 17213 * we don't want new_ilm linked to 17214 * ilm's filter list. 17215 */ 17216 new_ilm->ilm_filter = NULL; 17217 } else { 17218 /* 17219 * No walkers we can move the ilm. 17220 * lets take it out of the list. 17221 */ 17222 *ilmp = ilm->ilm_next; 17223 ilm->ilm_next = NULL; 17224 new_ilm = ilm; 17225 } 17226 17227 /* 17228 * if this is the first ilm for the group 17229 * set ilm_notify_driver so that we notify the 17230 * driver in ilm_send_multicast_reqs. 17231 */ 17232 if (ilm_lookup_ill_v6(to_ill, 17233 &new_ilm->ilm_v6addr, ALL_ZONES) == NULL) 17234 new_ilm->ilm_notify_driver = B_TRUE; 17235 17236 new_ilm->ilm_ill = to_ill; 17237 /* Add to the to_ill's list */ 17238 new_ilm->ilm_next = to_ill->ill_ilm; 17239 to_ill->ill_ilm = new_ilm; 17240 /* 17241 * set the flag so that mld_joingroup is 17242 * called in ilm_send_multicast_reqs(). 17243 */ 17244 new_ilm->ilm_is_new = B_TRUE; 17245 } 17246 goto bottom; 17247 } else if (ifindex != 0) { 17248 /* 17249 * If this is FAILBACK (ifindex != 0) and the ifindex 17250 * has not matched above, look at the next ilm. 17251 */ 17252 ilmp = &ilm->ilm_next; 17253 continue; 17254 } 17255 /* 17256 * If we are here, it means ifindex is 0. Failover 17257 * everything. 17258 * 17259 * We need to handle solicited node mcast address 17260 * and all_nodes mcast address differently as they 17261 * are joined witin the kenrel (ipif_multicast_up) 17262 * and potentially from the userland. We are called 17263 * after the ipifs of from_ill has been moved. 17264 * If we still find ilms on ill with solicited node 17265 * mcast address or all_nodes mcast address, it must 17266 * belong to the UP interface that has not moved e.g. 17267 * ipif_id 0 with the link local prefix does not move. 17268 * We join this on the new ill accounting for all the 17269 * userland memberships so that applications don't 17270 * see any failure. 17271 * 17272 * We need to make sure that we account only for the 17273 * solicited node and all node multicast addresses 17274 * that was brought UP on these. In the case of 17275 * a failover from A to B, we might have ilms belonging 17276 * to A (ilm_orig_ifindex pointing at A) on B accounting 17277 * for the membership from the userland. If we are failing 17278 * over from B to C now, we will find the ones belonging 17279 * to A on B. These don't account for the ill_ipif_up_count. 17280 * They just move from B to C. The check below on 17281 * ilm_orig_ifindex ensures that. 17282 */ 17283 if ((ilm->ilm_orig_ifindex == 17284 from_ill->ill_phyint->phyint_ifindex) && 17285 (IN6_ARE_ADDR_EQUAL(&ipv6_snm, &ilm->ilm_v6addr) || 17286 IN6_ARE_ADDR_EQUAL(&ipv6_all_hosts_mcast, 17287 &ilm->ilm_v6addr))) { 17288 ASSERT(ilm->ilm_refcnt > 0); 17289 count = ilm->ilm_refcnt - from_ill->ill_ipif_up_count; 17290 /* 17291 * For indentation reasons, we are not using a 17292 * "else" here. 17293 */ 17294 if (count == 0) { 17295 ilmp = &ilm->ilm_next; 17296 continue; 17297 } 17298 ilm->ilm_refcnt -= count; 17299 if (new_ilm != NULL) { 17300 /* 17301 * Can find one with the same 17302 * ilm_orig_ifindex, if we are failing 17303 * over to a STANDBY. This happens 17304 * when somebody wants to join a group 17305 * on a STANDBY interface and we 17306 * internally join on a different one. 17307 * If we had joined on from_ill then, a 17308 * failover now will find a new ilm 17309 * with this index. 17310 */ 17311 ip1dbg(("ilm_move_v6: FAILOVER, found" 17312 " new ilm on %s, group address %s\n", 17313 to_ill->ill_name, 17314 inet_ntop(AF_INET6, 17315 &ilm->ilm_v6addr, buf, 17316 sizeof (buf)))); 17317 new_ilm->ilm_refcnt += count; 17318 if (new_ilm->ilm_fmode != MODE_IS_EXCLUDE || 17319 !SLIST_IS_EMPTY(new_ilm->ilm_filter)) { 17320 new_ilm->ilm_is_new = B_TRUE; 17321 } 17322 } else { 17323 new_ilm = (ilm_t *)mi_zalloc(sizeof (ilm_t)); 17324 if (new_ilm == NULL) { 17325 ip0dbg(("ilm_move_v6: FAILOVER of IPv6" 17326 " multicast address %s : from %s to" 17327 " %s failed : ENOMEM \n", 17328 inet_ntop(AF_INET6, 17329 &ilm->ilm_v6addr, buf, 17330 sizeof (buf)), from_ill->ill_name, 17331 to_ill->ill_name)); 17332 ilmp = &ilm->ilm_next; 17333 continue; 17334 } 17335 *new_ilm = *ilm; 17336 new_ilm->ilm_filter = NULL; 17337 new_ilm->ilm_refcnt = count; 17338 new_ilm->ilm_timer = INFINITY; 17339 new_ilm->ilm_rtx.rtx_timer = INFINITY; 17340 new_ilm->ilm_is_new = B_TRUE; 17341 /* 17342 * If the to_ill has not joined this 17343 * group we need to tell the driver in 17344 * ill_send_multicast_reqs. 17345 */ 17346 if (ilm_lookup_ill_v6(to_ill, 17347 &new_ilm->ilm_v6addr, ALL_ZONES) == NULL) 17348 new_ilm->ilm_notify_driver = B_TRUE; 17349 17350 new_ilm->ilm_ill = to_ill; 17351 /* Add to the to_ill's list */ 17352 new_ilm->ilm_next = to_ill->ill_ilm; 17353 to_ill->ill_ilm = new_ilm; 17354 ASSERT(new_ilm->ilm_ipif == NULL); 17355 } 17356 if (ilm->ilm_refcnt == 0) { 17357 goto bottom; 17358 } else { 17359 new_ilm->ilm_fmode = MODE_IS_EXCLUDE; 17360 CLEAR_SLIST(new_ilm->ilm_filter); 17361 ilmp = &ilm->ilm_next; 17362 } 17363 continue; 17364 } else { 17365 /* 17366 * ifindex = 0 means, move everything pointing at 17367 * from_ill. We are doing this becuase ill has 17368 * either FAILED or became INACTIVE. 17369 * 17370 * As we would like to move things later back to 17371 * from_ill, we want to retain the identity of this 17372 * ilm. Thus, we don't blindly increment the reference 17373 * count on the ilms matching the address alone. We 17374 * need to match on the ilm_orig_index also. new_ilm 17375 * was obtained by matching ilm_orig_index also. 17376 */ 17377 if (new_ilm != NULL) { 17378 /* 17379 * This is possible only if a previous restore 17380 * was incomplete i.e restore to 17381 * ilm_orig_ifindex left some ilms because 17382 * of some failures. Thus when we are failing 17383 * again, we might find our old friends there. 17384 */ 17385 ip1dbg(("ilm_move_v6: FAILOVER, found new ilm" 17386 " on %s, group address %s\n", 17387 to_ill->ill_name, 17388 inet_ntop(AF_INET6, 17389 &ilm->ilm_v6addr, buf, 17390 sizeof (buf)))); 17391 new_ilm->ilm_refcnt += ilm->ilm_refcnt; 17392 if (new_ilm->ilm_fmode != MODE_IS_EXCLUDE || 17393 !SLIST_IS_EMPTY(new_ilm->ilm_filter)) { 17394 new_ilm->ilm_is_new = B_TRUE; 17395 } 17396 } else { 17397 if (from_ill->ill_ilm_walker_cnt != 0) { 17398 new_ilm = (ilm_t *) 17399 mi_zalloc(sizeof (ilm_t)); 17400 if (new_ilm == NULL) { 17401 ip0dbg(("ilm_move_v6: " 17402 "FAILOVER of IPv6" 17403 " multicast address %s : " 17404 "from %s to" 17405 " %s failed : ENOMEM \n", 17406 inet_ntop(AF_INET6, 17407 &ilm->ilm_v6addr, buf, 17408 sizeof (buf)), 17409 from_ill->ill_name, 17410 to_ill->ill_name)); 17411 17412 ilmp = &ilm->ilm_next; 17413 continue; 17414 } 17415 *new_ilm = *ilm; 17416 new_ilm->ilm_filter = NULL; 17417 } else { 17418 *ilmp = ilm->ilm_next; 17419 new_ilm = ilm; 17420 } 17421 /* 17422 * If the to_ill has not joined this 17423 * group we need to tell the driver in 17424 * ill_send_multicast_reqs. 17425 */ 17426 if (ilm_lookup_ill_v6(to_ill, 17427 &new_ilm->ilm_v6addr, ALL_ZONES) == NULL) 17428 new_ilm->ilm_notify_driver = B_TRUE; 17429 17430 /* Add to the to_ill's list */ 17431 new_ilm->ilm_next = to_ill->ill_ilm; 17432 to_ill->ill_ilm = new_ilm; 17433 ASSERT(ilm->ilm_ipif == NULL); 17434 new_ilm->ilm_ill = to_ill; 17435 new_ilm->ilm_is_new = B_TRUE; 17436 } 17437 17438 } 17439 17440 bottom: 17441 /* 17442 * Revert multicast filter state to (EXCLUDE, NULL). 17443 * new_ilm->ilm_is_new should already be set if needed. 17444 */ 17445 new_ilm->ilm_fmode = MODE_IS_EXCLUDE; 17446 CLEAR_SLIST(new_ilm->ilm_filter); 17447 /* 17448 * We allocated/got a new ilm, free the old one. 17449 */ 17450 if (new_ilm != ilm) { 17451 if (from_ill->ill_ilm_walker_cnt == 0) { 17452 *ilmp = ilm->ilm_next; 17453 ilm->ilm_next = NULL; 17454 FREE_SLIST(ilm->ilm_filter); 17455 FREE_SLIST(ilm->ilm_pendsrcs); 17456 FREE_SLIST(ilm->ilm_rtx.rtx_allow); 17457 FREE_SLIST(ilm->ilm_rtx.rtx_block); 17458 mi_free((char *)ilm); 17459 } else { 17460 ilm->ilm_flags |= ILM_DELETED; 17461 from_ill->ill_ilm_cleanup_reqd = 1; 17462 ilmp = &ilm->ilm_next; 17463 } 17464 } 17465 } 17466 } 17467 17468 /* 17469 * Move all the multicast memberships to to_ill. Called when 17470 * an ipif moves from "from_ill" to "to_ill". This function is slightly 17471 * different from IPv6 counterpart as multicast memberships are associated 17472 * with ills in IPv6. This function is called after every ipif is moved 17473 * unlike IPv6, where it is moved only once. 17474 */ 17475 static void 17476 ilm_move_v4(ill_t *from_ill, ill_t *to_ill, ipif_t *ipif) 17477 { 17478 ilm_t *ilm; 17479 ilm_t *ilm_next; 17480 ilm_t *new_ilm; 17481 ilm_t **ilmp; 17482 ip_stack_t *ipst = from_ill->ill_ipst; 17483 17484 ASSERT(MUTEX_HELD(&to_ill->ill_lock)); 17485 ASSERT(MUTEX_HELD(&from_ill->ill_lock)); 17486 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); 17487 17488 ilmp = &from_ill->ill_ilm; 17489 for (ilm = from_ill->ill_ilm; ilm != NULL; ilm = ilm_next) { 17490 ilm_next = ilm->ilm_next; 17491 17492 if (ilm->ilm_flags & ILM_DELETED) { 17493 ilmp = &ilm->ilm_next; 17494 continue; 17495 } 17496 17497 ASSERT(ilm->ilm_ipif != NULL); 17498 17499 if (ilm->ilm_ipif != ipif) { 17500 ilmp = &ilm->ilm_next; 17501 continue; 17502 } 17503 17504 if (V4_PART_OF_V6(ilm->ilm_v6addr) == 17505 htonl(INADDR_ALLHOSTS_GROUP)) { 17506 /* 17507 * We joined this in ipif_multicast_up 17508 * and we never did an ipif_multicast_down 17509 * for IPv4. If nobody else from the userland 17510 * has reference, we free the ilm, and later 17511 * when this ipif comes up on the new ill, 17512 * we will join this again. 17513 */ 17514 if (--ilm->ilm_refcnt == 0) 17515 goto delete_ilm; 17516 17517 new_ilm = ilm_lookup_ipif(ipif, 17518 V4_PART_OF_V6(ilm->ilm_v6addr)); 17519 if (new_ilm != NULL) { 17520 new_ilm->ilm_refcnt += ilm->ilm_refcnt; 17521 /* 17522 * We still need to deal with the from_ill. 17523 */ 17524 new_ilm->ilm_is_new = B_TRUE; 17525 new_ilm->ilm_fmode = MODE_IS_EXCLUDE; 17526 CLEAR_SLIST(new_ilm->ilm_filter); 17527 goto delete_ilm; 17528 } 17529 /* 17530 * If we could not find one e.g. ipif is 17531 * still down on to_ill, we add this ilm 17532 * on ill_new to preserve the reference 17533 * count. 17534 */ 17535 } 17536 /* 17537 * When ipifs move, ilms always move with it 17538 * to the NEW ill. Thus we should never be 17539 * able to find ilm till we really move it here. 17540 */ 17541 ASSERT(ilm_lookup_ipif(ipif, 17542 V4_PART_OF_V6(ilm->ilm_v6addr)) == NULL); 17543 17544 if (from_ill->ill_ilm_walker_cnt != 0) { 17545 new_ilm = (ilm_t *)mi_zalloc(sizeof (ilm_t)); 17546 if (new_ilm == NULL) { 17547 char buf[INET6_ADDRSTRLEN]; 17548 ip0dbg(("ilm_move_v4: FAILBACK of IPv4" 17549 " multicast address %s : " 17550 "from %s to" 17551 " %s failed : ENOMEM \n", 17552 inet_ntop(AF_INET, 17553 &ilm->ilm_v6addr, buf, 17554 sizeof (buf)), 17555 from_ill->ill_name, 17556 to_ill->ill_name)); 17557 17558 ilmp = &ilm->ilm_next; 17559 continue; 17560 } 17561 *new_ilm = *ilm; 17562 /* We don't want new_ilm linked to ilm's filter list */ 17563 new_ilm->ilm_filter = NULL; 17564 } else { 17565 /* Remove from the list */ 17566 *ilmp = ilm->ilm_next; 17567 new_ilm = ilm; 17568 } 17569 17570 /* 17571 * If we have never joined this group on the to_ill 17572 * make sure we tell the driver. 17573 */ 17574 if (ilm_lookup_ill_v6(to_ill, &new_ilm->ilm_v6addr, 17575 ALL_ZONES) == NULL) 17576 new_ilm->ilm_notify_driver = B_TRUE; 17577 17578 /* Add to the to_ill's list */ 17579 new_ilm->ilm_next = to_ill->ill_ilm; 17580 to_ill->ill_ilm = new_ilm; 17581 new_ilm->ilm_is_new = B_TRUE; 17582 17583 /* 17584 * Revert multicast filter state to (EXCLUDE, NULL) 17585 */ 17586 new_ilm->ilm_fmode = MODE_IS_EXCLUDE; 17587 CLEAR_SLIST(new_ilm->ilm_filter); 17588 17589 /* 17590 * Delete only if we have allocated a new ilm. 17591 */ 17592 if (new_ilm != ilm) { 17593 delete_ilm: 17594 if (from_ill->ill_ilm_walker_cnt == 0) { 17595 /* Remove from the list */ 17596 *ilmp = ilm->ilm_next; 17597 ilm->ilm_next = NULL; 17598 FREE_SLIST(ilm->ilm_filter); 17599 FREE_SLIST(ilm->ilm_pendsrcs); 17600 FREE_SLIST(ilm->ilm_rtx.rtx_allow); 17601 FREE_SLIST(ilm->ilm_rtx.rtx_block); 17602 mi_free((char *)ilm); 17603 } else { 17604 ilm->ilm_flags |= ILM_DELETED; 17605 from_ill->ill_ilm_cleanup_reqd = 1; 17606 ilmp = &ilm->ilm_next; 17607 } 17608 } 17609 } 17610 } 17611 17612 static uint_t 17613 ipif_get_id(ill_t *ill, uint_t id) 17614 { 17615 uint_t unit; 17616 ipif_t *tipif; 17617 boolean_t found = B_FALSE; 17618 ip_stack_t *ipst = ill->ill_ipst; 17619 17620 /* 17621 * During failback, we want to go back to the same id 17622 * instead of the smallest id so that the original 17623 * configuration is maintained. id is non-zero in that 17624 * case. 17625 */ 17626 if (id != 0) { 17627 /* 17628 * While failing back, if we still have an ipif with 17629 * MAX_ADDRS_PER_IF, it means this will be replaced 17630 * as soon as we return from this function. It was 17631 * to set to MAX_ADDRS_PER_IF by the caller so that 17632 * we can choose the smallest id. Thus we return zero 17633 * in that case ignoring the hint. 17634 */ 17635 if (ill->ill_ipif->ipif_id == MAX_ADDRS_PER_IF) 17636 return (0); 17637 for (tipif = ill->ill_ipif; tipif != NULL; 17638 tipif = tipif->ipif_next) { 17639 if (tipif->ipif_id == id) { 17640 found = B_TRUE; 17641 break; 17642 } 17643 } 17644 /* 17645 * If somebody already plumbed another logical 17646 * with the same id, we won't be able to find it. 17647 */ 17648 if (!found) 17649 return (id); 17650 } 17651 for (unit = 0; unit <= ipst->ips_ip_addrs_per_if; unit++) { 17652 found = B_FALSE; 17653 for (tipif = ill->ill_ipif; tipif != NULL; 17654 tipif = tipif->ipif_next) { 17655 if (tipif->ipif_id == unit) { 17656 found = B_TRUE; 17657 break; 17658 } 17659 } 17660 if (!found) 17661 break; 17662 } 17663 return (unit); 17664 } 17665 17666 /* ARGSUSED */ 17667 static int 17668 ipif_move(ipif_t *ipif, ill_t *to_ill, queue_t *q, mblk_t *mp, 17669 ipif_t **rep_ipif_ptr) 17670 { 17671 ill_t *from_ill; 17672 ipif_t *rep_ipif; 17673 ipif_t **ipifp; 17674 uint_t unit; 17675 int err = 0; 17676 ipif_t *to_ipif; 17677 struct iocblk *iocp; 17678 boolean_t failback_cmd; 17679 boolean_t remove_ipif; 17680 int rc; 17681 ip_stack_t *ipst; 17682 17683 ASSERT(IAM_WRITER_ILL(to_ill)); 17684 ASSERT(IAM_WRITER_IPIF(ipif)); 17685 17686 iocp = (struct iocblk *)mp->b_rptr; 17687 failback_cmd = (iocp->ioc_cmd == SIOCLIFFAILBACK); 17688 remove_ipif = B_FALSE; 17689 17690 from_ill = ipif->ipif_ill; 17691 ipst = from_ill->ill_ipst; 17692 17693 ASSERT(MUTEX_HELD(&to_ill->ill_lock)); 17694 ASSERT(MUTEX_HELD(&from_ill->ill_lock)); 17695 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); 17696 17697 /* 17698 * Don't move LINK LOCAL addresses as they are tied to 17699 * physical interface. 17700 */ 17701 if (from_ill->ill_isv6 && 17702 IN6_IS_ADDR_LINKLOCAL(&ipif->ipif_v6lcl_addr)) { 17703 ipif->ipif_was_up = B_FALSE; 17704 IPIF_UNMARK_MOVING(ipif); 17705 return (0); 17706 } 17707 17708 /* 17709 * We set the ipif_id to maximum so that the search for 17710 * ipif_id will pick the lowest number i.e 0 in the 17711 * following 2 cases : 17712 * 17713 * 1) We have a replacement ipif at the head of to_ill. 17714 * We can't remove it yet as we can exceed ip_addrs_per_if 17715 * on to_ill and hence the MOVE might fail. We want to 17716 * remove it only if we could move the ipif. Thus, by 17717 * setting it to the MAX value, we make the search in 17718 * ipif_get_id return the zeroth id. 17719 * 17720 * 2) When DR pulls out the NIC and re-plumbs the interface, 17721 * we might just have a zero address plumbed on the ipif 17722 * with zero id in the case of IPv4. We remove that while 17723 * doing the failback. We want to remove it only if we 17724 * could move the ipif. Thus, by setting it to the MAX 17725 * value, we make the search in ipif_get_id return the 17726 * zeroth id. 17727 * 17728 * Both (1) and (2) are done only when when we are moving 17729 * an ipif (either due to failover/failback) which originally 17730 * belonged to this interface i.e the ipif_orig_ifindex is 17731 * the same as to_ill's ifindex. This is needed so that 17732 * FAILOVER from A -> B ( A failed) followed by FAILOVER 17733 * from B -> A (B is being removed from the group) and 17734 * FAILBACK from A -> B restores the original configuration. 17735 * Without the check for orig_ifindex, the second FAILOVER 17736 * could make the ipif belonging to B replace the A's zeroth 17737 * ipif and the subsequent failback re-creating the replacement 17738 * ipif again. 17739 * 17740 * NOTE : We created the replacement ipif when we did a 17741 * FAILOVER (See below). We could check for FAILBACK and 17742 * then look for replacement ipif to be removed. But we don't 17743 * want to do that because we wan't to allow the possibility 17744 * of a FAILOVER from A -> B (which creates the replacement ipif), 17745 * followed by a *FAILOVER* from B -> A instead of a FAILBACK 17746 * from B -> A. 17747 */ 17748 to_ipif = to_ill->ill_ipif; 17749 if ((to_ill->ill_phyint->phyint_ifindex == 17750 ipif->ipif_orig_ifindex) && 17751 IPIF_REPL_CHECK(to_ipif, failback_cmd)) { 17752 ASSERT(to_ipif->ipif_id == 0); 17753 remove_ipif = B_TRUE; 17754 to_ipif->ipif_id = MAX_ADDRS_PER_IF; 17755 } 17756 /* 17757 * Find the lowest logical unit number on the to_ill. 17758 * If we are failing back, try to get the original id 17759 * rather than the lowest one so that the original 17760 * configuration is maintained. 17761 * 17762 * XXX need a better scheme for this. 17763 */ 17764 if (failback_cmd) { 17765 unit = ipif_get_id(to_ill, ipif->ipif_orig_ipifid); 17766 } else { 17767 unit = ipif_get_id(to_ill, 0); 17768 } 17769 17770 /* Reset back to zero in case we fail below */ 17771 if (to_ipif->ipif_id == MAX_ADDRS_PER_IF) 17772 to_ipif->ipif_id = 0; 17773 17774 if (unit == ipst->ips_ip_addrs_per_if) { 17775 ipif->ipif_was_up = B_FALSE; 17776 IPIF_UNMARK_MOVING(ipif); 17777 return (EINVAL); 17778 } 17779 17780 /* 17781 * ipif is ready to move from "from_ill" to "to_ill". 17782 * 17783 * 1) If we are moving ipif with id zero, create a 17784 * replacement ipif for this ipif on from_ill. If this fails 17785 * fail the MOVE operation. 17786 * 17787 * 2) Remove the replacement ipif on to_ill if any. 17788 * We could remove the replacement ipif when we are moving 17789 * the ipif with id zero. But what if somebody already 17790 * unplumbed it ? Thus we always remove it if it is present. 17791 * We want to do it only if we are sure we are going to 17792 * move the ipif to to_ill which is why there are no 17793 * returns due to error till ipif is linked to to_ill. 17794 * Note that the first ipif that we failback will always 17795 * be zero if it is present. 17796 */ 17797 if (ipif->ipif_id == 0) { 17798 ipaddr_t inaddr_any = INADDR_ANY; 17799 17800 rep_ipif = (ipif_t *)mi_alloc(sizeof (ipif_t), BPRI_MED); 17801 if (rep_ipif == NULL) { 17802 ipif->ipif_was_up = B_FALSE; 17803 IPIF_UNMARK_MOVING(ipif); 17804 return (ENOMEM); 17805 } 17806 *rep_ipif = ipif_zero; 17807 /* 17808 * Before we put the ipif on the list, store the addresses 17809 * as mapped addresses as some of the ioctls e.g SIOCGIFADDR 17810 * assumes so. This logic is not any different from what 17811 * ipif_allocate does. 17812 */ 17813 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 17814 &rep_ipif->ipif_v6lcl_addr); 17815 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 17816 &rep_ipif->ipif_v6src_addr); 17817 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 17818 &rep_ipif->ipif_v6subnet); 17819 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 17820 &rep_ipif->ipif_v6net_mask); 17821 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 17822 &rep_ipif->ipif_v6brd_addr); 17823 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 17824 &rep_ipif->ipif_v6pp_dst_addr); 17825 /* 17826 * We mark IPIF_NOFAILOVER so that this can never 17827 * move. 17828 */ 17829 rep_ipif->ipif_flags = ipif->ipif_flags | IPIF_NOFAILOVER; 17830 rep_ipif->ipif_flags &= ~IPIF_UP & ~IPIF_DUPLICATE; 17831 rep_ipif->ipif_replace_zero = B_TRUE; 17832 mutex_init(&rep_ipif->ipif_saved_ire_lock, NULL, 17833 MUTEX_DEFAULT, NULL); 17834 rep_ipif->ipif_id = 0; 17835 rep_ipif->ipif_ire_type = ipif->ipif_ire_type; 17836 rep_ipif->ipif_ill = from_ill; 17837 rep_ipif->ipif_orig_ifindex = 17838 from_ill->ill_phyint->phyint_ifindex; 17839 /* Insert at head */ 17840 rep_ipif->ipif_next = from_ill->ill_ipif; 17841 from_ill->ill_ipif = rep_ipif; 17842 /* 17843 * We don't really care to let apps know about 17844 * this interface. 17845 */ 17846 } 17847 17848 if (remove_ipif) { 17849 /* 17850 * We set to a max value above for this case to get 17851 * id zero. ASSERT that we did get one. 17852 */ 17853 ASSERT((to_ipif->ipif_id == 0) && (unit == 0)); 17854 rep_ipif = to_ipif; 17855 to_ill->ill_ipif = rep_ipif->ipif_next; 17856 rep_ipif->ipif_next = NULL; 17857 /* 17858 * If some apps scanned and find this interface, 17859 * it is time to let them know, so that they can 17860 * delete it. 17861 */ 17862 17863 *rep_ipif_ptr = rep_ipif; 17864 } 17865 17866 /* Get it out of the ILL interface list. */ 17867 ipifp = &ipif->ipif_ill->ill_ipif; 17868 for (; *ipifp != NULL; ipifp = &ipifp[0]->ipif_next) { 17869 if (*ipifp == ipif) { 17870 *ipifp = ipif->ipif_next; 17871 break; 17872 } 17873 } 17874 17875 /* Assign the new ill */ 17876 ipif->ipif_ill = to_ill; 17877 ipif->ipif_id = unit; 17878 /* id has already been checked */ 17879 rc = ipif_insert(ipif, B_FALSE, B_FALSE); 17880 ASSERT(rc == 0); 17881 /* Let SCTP update its list */ 17882 sctp_move_ipif(ipif, from_ill, to_ill); 17883 /* 17884 * Handle the failover and failback of ipif_t between 17885 * ill_t that have differing maximum mtu values. 17886 */ 17887 if (ipif->ipif_mtu > to_ill->ill_max_mtu) { 17888 if (ipif->ipif_saved_mtu == 0) { 17889 /* 17890 * As this ipif_t is moving to an ill_t 17891 * that has a lower ill_max_mtu, its 17892 * ipif_mtu needs to be saved so it can 17893 * be restored during failback or during 17894 * failover to an ill_t which has a 17895 * higher ill_max_mtu. 17896 */ 17897 ipif->ipif_saved_mtu = ipif->ipif_mtu; 17898 ipif->ipif_mtu = to_ill->ill_max_mtu; 17899 } else { 17900 /* 17901 * The ipif_t is, once again, moving to 17902 * an ill_t that has a lower maximum mtu 17903 * value. 17904 */ 17905 ipif->ipif_mtu = to_ill->ill_max_mtu; 17906 } 17907 } else if (ipif->ipif_mtu < to_ill->ill_max_mtu && 17908 ipif->ipif_saved_mtu != 0) { 17909 /* 17910 * The mtu of this ipif_t had to be reduced 17911 * during an earlier failover; this is an 17912 * opportunity for it to be increased (either as 17913 * part of another failover or a failback). 17914 */ 17915 if (ipif->ipif_saved_mtu <= to_ill->ill_max_mtu) { 17916 ipif->ipif_mtu = ipif->ipif_saved_mtu; 17917 ipif->ipif_saved_mtu = 0; 17918 } else { 17919 ipif->ipif_mtu = to_ill->ill_max_mtu; 17920 } 17921 } 17922 17923 /* 17924 * We preserve all the other fields of the ipif including 17925 * ipif_saved_ire_mp. The routes that are saved here will 17926 * be recreated on the new interface and back on the old 17927 * interface when we move back. 17928 */ 17929 ASSERT(ipif->ipif_arp_del_mp == NULL); 17930 17931 return (err); 17932 } 17933 17934 static int 17935 ipif_move_all(ill_t *from_ill, ill_t *to_ill, queue_t *q, mblk_t *mp, 17936 int ifindex, ipif_t **rep_ipif_ptr) 17937 { 17938 ipif_t *mipif; 17939 ipif_t *ipif_next; 17940 int err; 17941 17942 /* 17943 * We don't really try to MOVE back things if some of the 17944 * operations fail. The daemon will take care of moving again 17945 * later on. 17946 */ 17947 for (mipif = from_ill->ill_ipif; mipif != NULL; mipif = ipif_next) { 17948 ipif_next = mipif->ipif_next; 17949 if (!(mipif->ipif_flags & IPIF_NOFAILOVER) && 17950 (ifindex == 0 || ifindex == mipif->ipif_orig_ifindex)) { 17951 17952 err = ipif_move(mipif, to_ill, q, mp, rep_ipif_ptr); 17953 17954 /* 17955 * When the MOVE fails, it is the job of the 17956 * application to take care of this properly 17957 * i.e try again if it is ENOMEM. 17958 */ 17959 if (mipif->ipif_ill != from_ill) { 17960 /* 17961 * ipif has moved. 17962 * 17963 * Move the multicast memberships associated 17964 * with this ipif to the new ill. For IPv6, we 17965 * do it once after all the ipifs are moved 17966 * (in ill_move) as they are not associated 17967 * with ipifs. 17968 * 17969 * We need to move the ilms as the ipif has 17970 * already been moved to a new ill even 17971 * in the case of errors. Neither 17972 * ilm_free(ipif) will find the ilm 17973 * when somebody unplumbs this ipif nor 17974 * ilm_delete(ilm) will be able to find the 17975 * ilm, if we don't move now. 17976 */ 17977 if (!from_ill->ill_isv6) 17978 ilm_move_v4(from_ill, to_ill, mipif); 17979 } 17980 17981 if (err != 0) 17982 return (err); 17983 } 17984 } 17985 return (0); 17986 } 17987 17988 static int 17989 ill_move(ill_t *from_ill, ill_t *to_ill, queue_t *q, mblk_t *mp) 17990 { 17991 int ifindex; 17992 int err; 17993 struct iocblk *iocp; 17994 ipif_t *ipif; 17995 ipif_t *rep_ipif_ptr = NULL; 17996 ipif_t *from_ipif = NULL; 17997 boolean_t check_rep_if = B_FALSE; 17998 ip_stack_t *ipst = from_ill->ill_ipst; 17999 18000 iocp = (struct iocblk *)mp->b_rptr; 18001 if (iocp->ioc_cmd == SIOCLIFFAILOVER) { 18002 /* 18003 * Move everything pointing at from_ill to to_ill. 18004 * We acheive this by passing in 0 as ifindex. 18005 */ 18006 ifindex = 0; 18007 } else { 18008 /* 18009 * Move everything pointing at from_ill whose original 18010 * ifindex of connp, ipif, ilm points at to_ill->ill_index. 18011 * We acheive this by passing in ifindex rather than 0. 18012 * Multicast vifs, ilgs move implicitly because ipifs move. 18013 */ 18014 ASSERT(iocp->ioc_cmd == SIOCLIFFAILBACK); 18015 ifindex = to_ill->ill_phyint->phyint_ifindex; 18016 } 18017 18018 /* 18019 * Determine if there is at least one ipif that would move from 18020 * 'from_ill' to 'to_ill'. If so, it is possible that the replacement 18021 * ipif (if it exists) on the to_ill would be consumed as a result of 18022 * the move, in which case we need to quiesce the replacement ipif also. 18023 */ 18024 for (from_ipif = from_ill->ill_ipif; from_ipif != NULL; 18025 from_ipif = from_ipif->ipif_next) { 18026 if (((ifindex == 0) || 18027 (ifindex == from_ipif->ipif_orig_ifindex)) && 18028 !(from_ipif->ipif_flags & IPIF_NOFAILOVER)) { 18029 check_rep_if = B_TRUE; 18030 break; 18031 } 18032 } 18033 18034 18035 ill_down_ipifs(from_ill, mp, ifindex, B_TRUE); 18036 18037 GRAB_ILL_LOCKS(from_ill, to_ill); 18038 if ((ipif = ill_quiescent_to_move(from_ill)) != NULL) { 18039 (void) ipsq_pending_mp_add(NULL, ipif, q, 18040 mp, ILL_MOVE_OK); 18041 RELEASE_ILL_LOCKS(from_ill, to_ill); 18042 return (EINPROGRESS); 18043 } 18044 18045 /* Check if the replacement ipif is quiescent to delete */ 18046 if (check_rep_if && IPIF_REPL_CHECK(to_ill->ill_ipif, 18047 (iocp->ioc_cmd == SIOCLIFFAILBACK))) { 18048 to_ill->ill_ipif->ipif_state_flags |= 18049 IPIF_MOVING | IPIF_CHANGING; 18050 if ((ipif = ill_quiescent_to_move(to_ill)) != NULL) { 18051 (void) ipsq_pending_mp_add(NULL, ipif, q, 18052 mp, ILL_MOVE_OK); 18053 RELEASE_ILL_LOCKS(from_ill, to_ill); 18054 return (EINPROGRESS); 18055 } 18056 } 18057 RELEASE_ILL_LOCKS(from_ill, to_ill); 18058 18059 ASSERT(!MUTEX_HELD(&to_ill->ill_lock)); 18060 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 18061 GRAB_ILL_LOCKS(from_ill, to_ill); 18062 err = ipif_move_all(from_ill, to_ill, q, mp, ifindex, &rep_ipif_ptr); 18063 18064 /* ilm_move is done inside ipif_move for IPv4 */ 18065 if (err == 0 && from_ill->ill_isv6) 18066 ilm_move_v6(from_ill, to_ill, ifindex); 18067 18068 RELEASE_ILL_LOCKS(from_ill, to_ill); 18069 rw_exit(&ipst->ips_ill_g_lock); 18070 18071 /* 18072 * send rts messages and multicast messages. 18073 */ 18074 if (rep_ipif_ptr != NULL) { 18075 if (rep_ipif_ptr->ipif_recovery_id != 0) { 18076 (void) untimeout(rep_ipif_ptr->ipif_recovery_id); 18077 rep_ipif_ptr->ipif_recovery_id = 0; 18078 } 18079 ip_rts_ifmsg(rep_ipif_ptr); 18080 ip_rts_newaddrmsg(RTM_DELETE, 0, rep_ipif_ptr); 18081 IPIF_TRACE_CLEANUP(rep_ipif_ptr); 18082 mi_free(rep_ipif_ptr); 18083 } 18084 18085 conn_move_ill(from_ill, to_ill, ifindex); 18086 18087 return (err); 18088 } 18089 18090 /* 18091 * Used to extract arguments for FAILOVER/FAILBACK ioctls. 18092 * Also checks for the validity of the arguments. 18093 * Note: We are already exclusive inside the from group. 18094 * It is upto the caller to release refcnt on the to_ill's. 18095 */ 18096 static int 18097 ip_extract_move_args(queue_t *q, mblk_t *mp, ill_t **ill_from_v4, 18098 ill_t **ill_from_v6, ill_t **ill_to_v4, ill_t **ill_to_v6) 18099 { 18100 int dst_index; 18101 ipif_t *ipif_v4, *ipif_v6; 18102 struct lifreq *lifr; 18103 mblk_t *mp1; 18104 boolean_t exists; 18105 sin_t *sin; 18106 int err = 0; 18107 ip_stack_t *ipst; 18108 18109 if (CONN_Q(q)) 18110 ipst = CONNQ_TO_IPST(q); 18111 else 18112 ipst = ILLQ_TO_IPST(q); 18113 18114 18115 if ((mp1 = mp->b_cont) == NULL) 18116 return (EPROTO); 18117 18118 if ((mp1 = mp1->b_cont) == NULL) 18119 return (EPROTO); 18120 18121 lifr = (struct lifreq *)mp1->b_rptr; 18122 sin = (sin_t *)&lifr->lifr_addr; 18123 18124 /* 18125 * We operate on both IPv4 and IPv6. Thus, we don't allow IPv4/IPv6 18126 * specific operations. 18127 */ 18128 if (sin->sin_family != AF_UNSPEC) 18129 return (EINVAL); 18130 18131 /* 18132 * Get ipif with id 0. We are writer on the from ill. So we can pass 18133 * NULLs for the last 4 args and we know the lookup won't fail 18134 * with EINPROGRESS. 18135 */ 18136 ipif_v4 = ipif_lookup_on_name(lifr->lifr_name, 18137 mi_strlen(lifr->lifr_name), B_FALSE, &exists, B_FALSE, 18138 ALL_ZONES, NULL, NULL, NULL, NULL, ipst); 18139 ipif_v6 = ipif_lookup_on_name(lifr->lifr_name, 18140 mi_strlen(lifr->lifr_name), B_FALSE, &exists, B_TRUE, 18141 ALL_ZONES, NULL, NULL, NULL, NULL, ipst); 18142 18143 if (ipif_v4 == NULL && ipif_v6 == NULL) 18144 return (ENXIO); 18145 18146 if (ipif_v4 != NULL) { 18147 ASSERT(ipif_v4->ipif_refcnt != 0); 18148 if (ipif_v4->ipif_id != 0) { 18149 err = EINVAL; 18150 goto done; 18151 } 18152 18153 ASSERT(IAM_WRITER_IPIF(ipif_v4)); 18154 *ill_from_v4 = ipif_v4->ipif_ill; 18155 } 18156 18157 if (ipif_v6 != NULL) { 18158 ASSERT(ipif_v6->ipif_refcnt != 0); 18159 if (ipif_v6->ipif_id != 0) { 18160 err = EINVAL; 18161 goto done; 18162 } 18163 18164 ASSERT(IAM_WRITER_IPIF(ipif_v6)); 18165 *ill_from_v6 = ipif_v6->ipif_ill; 18166 } 18167 18168 err = 0; 18169 dst_index = lifr->lifr_movetoindex; 18170 *ill_to_v4 = ill_lookup_on_ifindex(dst_index, B_FALSE, 18171 q, mp, ip_process_ioctl, &err, ipst); 18172 if (err != 0) { 18173 /* 18174 * There could be only v6. 18175 */ 18176 if (err != ENXIO) 18177 goto done; 18178 err = 0; 18179 } 18180 18181 *ill_to_v6 = ill_lookup_on_ifindex(dst_index, B_TRUE, 18182 q, mp, ip_process_ioctl, &err, ipst); 18183 if (err != 0) { 18184 if (err != ENXIO) 18185 goto done; 18186 if (*ill_to_v4 == NULL) { 18187 err = ENXIO; 18188 goto done; 18189 } 18190 err = 0; 18191 } 18192 18193 /* 18194 * If we have something to MOVE i.e "from" not NULL, 18195 * "to" should be non-NULL. 18196 */ 18197 if ((*ill_from_v4 != NULL && *ill_to_v4 == NULL) || 18198 (*ill_from_v6 != NULL && *ill_to_v6 == NULL)) { 18199 err = EINVAL; 18200 } 18201 18202 done: 18203 if (ipif_v4 != NULL) 18204 ipif_refrele(ipif_v4); 18205 if (ipif_v6 != NULL) 18206 ipif_refrele(ipif_v6); 18207 return (err); 18208 } 18209 18210 /* 18211 * FAILOVER and FAILBACK are modelled as MOVE operations. 18212 * 18213 * We don't check whether the MOVE is within the same group or 18214 * not, because this ioctl can be used as a generic mechanism 18215 * to failover from interface A to B, though things will function 18216 * only if they are really part of the same group. Moreover, 18217 * all ipifs may be down and hence temporarily out of the group. 18218 * 18219 * ipif's that need to be moved are first brought down; V4 ipifs are brought 18220 * down first and then V6. For each we wait for the ipif's to become quiescent. 18221 * Bringing down the ipifs ensures that all ires pointing to these ipifs's 18222 * have been deleted and there are no active references. Once quiescent the 18223 * ipif's are moved and brought up on the new ill. 18224 * 18225 * Normally the source ill and destination ill belong to the same IPMP group 18226 * and hence the same ipsq_t. In the event they don't belong to the same 18227 * same group the two ipsq's are first merged into one ipsq - that of the 18228 * to_ill. The multicast memberships on the source and destination ill cannot 18229 * change during the move operation since multicast joins/leaves also have to 18230 * execute on the same ipsq and are hence serialized. 18231 */ 18232 /* ARGSUSED */ 18233 int 18234 ip_sioctl_move(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 18235 ip_ioctl_cmd_t *ipip, void *ifreq) 18236 { 18237 ill_t *ill_to_v4 = NULL; 18238 ill_t *ill_to_v6 = NULL; 18239 ill_t *ill_from_v4 = NULL; 18240 ill_t *ill_from_v6 = NULL; 18241 int err = 0; 18242 18243 /* 18244 * setup from and to ill's, we can get EINPROGRESS only for 18245 * to_ill's. 18246 */ 18247 err = ip_extract_move_args(q, mp, &ill_from_v4, &ill_from_v6, 18248 &ill_to_v4, &ill_to_v6); 18249 18250 if (err != 0) { 18251 ip0dbg(("ip_sioctl_move: extract args failed\n")); 18252 goto done; 18253 } 18254 18255 /* 18256 * nothing to do. 18257 */ 18258 if ((ill_from_v4 != NULL) && (ill_from_v4 == ill_to_v4)) { 18259 goto done; 18260 } 18261 18262 /* 18263 * nothing to do. 18264 */ 18265 if ((ill_from_v6 != NULL) && (ill_from_v6 == ill_to_v6)) { 18266 goto done; 18267 } 18268 18269 /* 18270 * Mark the ill as changing. 18271 * ILL_CHANGING flag is cleared when the ipif's are brought up 18272 * in ill_up_ipifs in case of error they are cleared below. 18273 */ 18274 18275 GRAB_ILL_LOCKS(ill_from_v4, ill_from_v6); 18276 if (ill_from_v4 != NULL) 18277 ill_from_v4->ill_state_flags |= ILL_CHANGING; 18278 if (ill_from_v6 != NULL) 18279 ill_from_v6->ill_state_flags |= ILL_CHANGING; 18280 RELEASE_ILL_LOCKS(ill_from_v4, ill_from_v6); 18281 18282 /* 18283 * Make sure that both src and dst are 18284 * in the same syncq group. If not make it happen. 18285 * We are not holding any locks because we are the writer 18286 * on the from_ipsq and we will hold locks in ill_merge_groups 18287 * to protect to_ipsq against changing. 18288 */ 18289 if (ill_from_v4 != NULL) { 18290 if (ill_from_v4->ill_phyint->phyint_ipsq != 18291 ill_to_v4->ill_phyint->phyint_ipsq) { 18292 err = ill_merge_groups(ill_from_v4, ill_to_v4, 18293 NULL, mp, q); 18294 goto err_ret; 18295 18296 } 18297 ASSERT(!MUTEX_HELD(&ill_to_v4->ill_lock)); 18298 } else { 18299 18300 if (ill_from_v6->ill_phyint->phyint_ipsq != 18301 ill_to_v6->ill_phyint->phyint_ipsq) { 18302 err = ill_merge_groups(ill_from_v6, ill_to_v6, 18303 NULL, mp, q); 18304 goto err_ret; 18305 18306 } 18307 ASSERT(!MUTEX_HELD(&ill_to_v6->ill_lock)); 18308 } 18309 18310 /* 18311 * Now that the ipsq's have been merged and we are the writer 18312 * lets mark to_ill as changing as well. 18313 */ 18314 18315 GRAB_ILL_LOCKS(ill_to_v4, ill_to_v6); 18316 if (ill_to_v4 != NULL) 18317 ill_to_v4->ill_state_flags |= ILL_CHANGING; 18318 if (ill_to_v6 != NULL) 18319 ill_to_v6->ill_state_flags |= ILL_CHANGING; 18320 RELEASE_ILL_LOCKS(ill_to_v4, ill_to_v6); 18321 18322 /* 18323 * Its ok for us to proceed with the move even if 18324 * ill_pending_mp is non null on one of the from ill's as the reply 18325 * should not be looking at the ipif, it should only care about the 18326 * ill itself. 18327 */ 18328 18329 /* 18330 * lets move ipv4 first. 18331 */ 18332 if (ill_from_v4 != NULL) { 18333 ASSERT(IAM_WRITER_ILL(ill_to_v4)); 18334 ill_from_v4->ill_move_in_progress = B_TRUE; 18335 ill_to_v4->ill_move_in_progress = B_TRUE; 18336 ill_to_v4->ill_move_peer = ill_from_v4; 18337 ill_from_v4->ill_move_peer = ill_to_v4; 18338 err = ill_move(ill_from_v4, ill_to_v4, q, mp); 18339 } 18340 18341 /* 18342 * Now lets move ipv6. 18343 */ 18344 if (err == 0 && ill_from_v6 != NULL) { 18345 ASSERT(IAM_WRITER_ILL(ill_to_v6)); 18346 ill_from_v6->ill_move_in_progress = B_TRUE; 18347 ill_to_v6->ill_move_in_progress = B_TRUE; 18348 ill_to_v6->ill_move_peer = ill_from_v6; 18349 ill_from_v6->ill_move_peer = ill_to_v6; 18350 err = ill_move(ill_from_v6, ill_to_v6, q, mp); 18351 } 18352 18353 err_ret: 18354 /* 18355 * EINPROGRESS means we are waiting for the ipif's that need to be 18356 * moved to become quiescent. 18357 */ 18358 if (err == EINPROGRESS) { 18359 goto done; 18360 } 18361 18362 /* 18363 * if err is set ill_up_ipifs will not be called 18364 * lets clear the flags. 18365 */ 18366 18367 GRAB_ILL_LOCKS(ill_to_v4, ill_to_v6); 18368 GRAB_ILL_LOCKS(ill_from_v4, ill_from_v6); 18369 /* 18370 * Some of the clearing may be redundant. But it is simple 18371 * not making any extra checks. 18372 */ 18373 if (ill_from_v6 != NULL) { 18374 ill_from_v6->ill_move_in_progress = B_FALSE; 18375 ill_from_v6->ill_move_peer = NULL; 18376 ill_from_v6->ill_state_flags &= ~ILL_CHANGING; 18377 } 18378 if (ill_from_v4 != NULL) { 18379 ill_from_v4->ill_move_in_progress = B_FALSE; 18380 ill_from_v4->ill_move_peer = NULL; 18381 ill_from_v4->ill_state_flags &= ~ILL_CHANGING; 18382 } 18383 if (ill_to_v6 != NULL) { 18384 ill_to_v6->ill_move_in_progress = B_FALSE; 18385 ill_to_v6->ill_move_peer = NULL; 18386 ill_to_v6->ill_state_flags &= ~ILL_CHANGING; 18387 } 18388 if (ill_to_v4 != NULL) { 18389 ill_to_v4->ill_move_in_progress = B_FALSE; 18390 ill_to_v4->ill_move_peer = NULL; 18391 ill_to_v4->ill_state_flags &= ~ILL_CHANGING; 18392 } 18393 18394 /* 18395 * Check for setting INACTIVE, if STANDBY is set and FAILED is not set. 18396 * Do this always to maintain proper state i.e even in case of errors. 18397 * As phyint_inactive looks at both v4 and v6 interfaces, 18398 * we need not call on both v4 and v6 interfaces. 18399 */ 18400 if (ill_from_v4 != NULL) { 18401 if ((ill_from_v4->ill_phyint->phyint_flags & 18402 (PHYI_STANDBY | PHYI_FAILED)) == PHYI_STANDBY) { 18403 phyint_inactive(ill_from_v4->ill_phyint); 18404 } 18405 } else if (ill_from_v6 != NULL) { 18406 if ((ill_from_v6->ill_phyint->phyint_flags & 18407 (PHYI_STANDBY | PHYI_FAILED)) == PHYI_STANDBY) { 18408 phyint_inactive(ill_from_v6->ill_phyint); 18409 } 18410 } 18411 18412 if (ill_to_v4 != NULL) { 18413 if (ill_to_v4->ill_phyint->phyint_flags & PHYI_INACTIVE) { 18414 ill_to_v4->ill_phyint->phyint_flags &= ~PHYI_INACTIVE; 18415 } 18416 } else if (ill_to_v6 != NULL) { 18417 if (ill_to_v6->ill_phyint->phyint_flags & PHYI_INACTIVE) { 18418 ill_to_v6->ill_phyint->phyint_flags &= ~PHYI_INACTIVE; 18419 } 18420 } 18421 18422 RELEASE_ILL_LOCKS(ill_to_v4, ill_to_v6); 18423 RELEASE_ILL_LOCKS(ill_from_v4, ill_from_v6); 18424 18425 no_err: 18426 /* 18427 * lets bring the interfaces up on the to_ill. 18428 */ 18429 if (err == 0) { 18430 err = ill_up_ipifs(ill_to_v4 == NULL ? ill_to_v6:ill_to_v4, 18431 q, mp); 18432 } 18433 18434 if (err == 0) { 18435 if (ill_from_v4 != NULL && ill_to_v4 != NULL) 18436 ilm_send_multicast_reqs(ill_from_v4, ill_to_v4); 18437 18438 if (ill_from_v6 != NULL && ill_to_v6 != NULL) 18439 ilm_send_multicast_reqs(ill_from_v6, ill_to_v6); 18440 } 18441 done: 18442 18443 if (ill_to_v4 != NULL) { 18444 ill_refrele(ill_to_v4); 18445 } 18446 if (ill_to_v6 != NULL) { 18447 ill_refrele(ill_to_v6); 18448 } 18449 18450 return (err); 18451 } 18452 18453 static void 18454 ill_dl_down(ill_t *ill) 18455 { 18456 /* 18457 * The ill is down; unbind but stay attached since we're still 18458 * associated with a PPA. If we have negotiated DLPI capabilites 18459 * with the data link service provider (IDS_OK) then reset them. 18460 * The interval between unbinding and rebinding is potentially 18461 * unbounded hence we cannot assume things will be the same. 18462 * The DLPI capabilities will be probed again when the data link 18463 * is brought up. 18464 */ 18465 mblk_t *mp = ill->ill_unbind_mp; 18466 hook_nic_event_t *info; 18467 18468 ip1dbg(("ill_dl_down(%s)\n", ill->ill_name)); 18469 18470 ill->ill_unbind_mp = NULL; 18471 if (mp != NULL) { 18472 ip1dbg(("ill_dl_down: %s (%u) for %s\n", 18473 dlpi_prim_str(*(int *)mp->b_rptr), *(int *)mp->b_rptr, 18474 ill->ill_name)); 18475 mutex_enter(&ill->ill_lock); 18476 ill->ill_state_flags |= ILL_DL_UNBIND_IN_PROGRESS; 18477 mutex_exit(&ill->ill_lock); 18478 if (ill->ill_dlpi_capab_state == IDS_OK) 18479 ill_capability_reset(ill); 18480 ill_dlpi_send(ill, mp); 18481 } 18482 18483 /* 18484 * Toss all of our multicast memberships. We could keep them, but 18485 * then we'd have to do bookkeeping of any joins and leaves performed 18486 * by the application while the the interface is down (we can't just 18487 * issue them because arp cannot currently process AR_ENTRY_SQUERY's 18488 * on a downed interface). 18489 */ 18490 ill_leave_multicast(ill); 18491 18492 mutex_enter(&ill->ill_lock); 18493 18494 ill->ill_dl_up = 0; 18495 18496 if ((info = ill->ill_nic_event_info) != NULL) { 18497 ip2dbg(("ill_dl_down:unexpected nic event %d attached for %s\n", 18498 info->hne_event, ill->ill_name)); 18499 if (info->hne_data != NULL) 18500 kmem_free(info->hne_data, info->hne_datalen); 18501 kmem_free(info, sizeof (hook_nic_event_t)); 18502 } 18503 18504 info = kmem_alloc(sizeof (hook_nic_event_t), KM_NOSLEEP); 18505 if (info != NULL) { 18506 ip_stack_t *ipst = ill->ill_ipst; 18507 18508 info->hne_nic = ill->ill_phyint->phyint_hook_ifindex; 18509 info->hne_lif = 0; 18510 info->hne_event = NE_DOWN; 18511 info->hne_data = NULL; 18512 info->hne_datalen = 0; 18513 info->hne_family = ill->ill_isv6 ? 18514 ipst->ips_ipv6_net_data : ipst->ips_ipv4_net_data; 18515 } else 18516 ip2dbg(("ill_dl_down: could not attach DOWN nic event " 18517 "information for %s (ENOMEM)\n", ill->ill_name)); 18518 18519 ill->ill_nic_event_info = info; 18520 18521 mutex_exit(&ill->ill_lock); 18522 } 18523 18524 void 18525 ill_dlpi_dispatch(ill_t *ill, mblk_t *mp) 18526 { 18527 union DL_primitives *dlp; 18528 t_uscalar_t prim; 18529 18530 ASSERT(DB_TYPE(mp) == M_PROTO || DB_TYPE(mp) == M_PCPROTO); 18531 18532 dlp = (union DL_primitives *)mp->b_rptr; 18533 prim = dlp->dl_primitive; 18534 18535 ip1dbg(("ill_dlpi_dispatch: sending %s (%u) to %s\n", 18536 dlpi_prim_str(prim), prim, ill->ill_name)); 18537 18538 switch (prim) { 18539 case DL_PHYS_ADDR_REQ: 18540 { 18541 dl_phys_addr_req_t *dlpap = (dl_phys_addr_req_t *)mp->b_rptr; 18542 ill->ill_phys_addr_pend = dlpap->dl_addr_type; 18543 break; 18544 } 18545 case DL_BIND_REQ: 18546 mutex_enter(&ill->ill_lock); 18547 ill->ill_state_flags &= ~ILL_DL_UNBIND_IN_PROGRESS; 18548 mutex_exit(&ill->ill_lock); 18549 break; 18550 } 18551 18552 /* 18553 * Except for the ACKs for the M_PCPROTO messages, all other ACKs 18554 * are dropped by ip_rput() if ILL_CONDEMNED is set. Therefore 18555 * we only wait for the ACK of the DL_UNBIND_REQ. 18556 */ 18557 mutex_enter(&ill->ill_lock); 18558 if (!(ill->ill_state_flags & ILL_CONDEMNED) || 18559 (prim == DL_UNBIND_REQ)) { 18560 ill->ill_dlpi_pending = prim; 18561 } 18562 mutex_exit(&ill->ill_lock); 18563 18564 /* 18565 * Some drivers send M_FLUSH up to IP as part of unbind 18566 * request. When this M_FLUSH is sent back to the driver, 18567 * this can go after we send the detach request if the 18568 * M_FLUSH ends up in IP's syncq. To avoid that, we reply 18569 * to the M_FLUSH in ip_rput and locally generate another 18570 * M_FLUSH for the correctness. This will get freed in 18571 * ip_wput_nondata. 18572 */ 18573 if (prim == DL_UNBIND_REQ) 18574 (void) putnextctl1(ill->ill_rq, M_FLUSH, FLUSHRW); 18575 18576 putnext(ill->ill_wq, mp); 18577 } 18578 18579 /* 18580 * Send a DLPI control message to the driver but make sure there 18581 * is only one outstanding message. Uses ill_dlpi_pending to tell 18582 * when it must queue. ip_rput_dlpi_writer calls ill_dlpi_done() 18583 * when an ACK or a NAK is received to process the next queued message. 18584 * 18585 * We don't protect ill_dlpi_pending with any lock. This is okay as 18586 * every place where its accessed, ip is exclusive while accessing 18587 * ill_dlpi_pending except when this function is called from ill_init() 18588 */ 18589 void 18590 ill_dlpi_send(ill_t *ill, mblk_t *mp) 18591 { 18592 mblk_t **mpp; 18593 18594 ASSERT(IAM_WRITER_ILL(ill)); 18595 ASSERT(DB_TYPE(mp) == M_PROTO || DB_TYPE(mp) == M_PCPROTO); 18596 18597 if (ill->ill_dlpi_pending != DL_PRIM_INVAL) { 18598 /* Must queue message. Tail insertion */ 18599 mpp = &ill->ill_dlpi_deferred; 18600 while (*mpp != NULL) 18601 mpp = &((*mpp)->b_next); 18602 18603 ip1dbg(("ill_dlpi_send: deferring request for %s\n", 18604 ill->ill_name)); 18605 18606 *mpp = mp; 18607 return; 18608 } 18609 18610 ill_dlpi_dispatch(ill, mp); 18611 } 18612 18613 /* 18614 * Called when an DLPI control message has been acked or nacked to 18615 * send down the next queued message (if any). 18616 */ 18617 void 18618 ill_dlpi_done(ill_t *ill, t_uscalar_t prim) 18619 { 18620 mblk_t *mp; 18621 18622 ASSERT(IAM_WRITER_ILL(ill)); 18623 18624 ASSERT(prim != DL_PRIM_INVAL); 18625 if (ill->ill_dlpi_pending != prim) { 18626 if (ill->ill_dlpi_pending == DL_PRIM_INVAL) { 18627 (void) mi_strlog(ill->ill_rq, 1, 18628 SL_CONSOLE|SL_ERROR|SL_TRACE, 18629 "ill_dlpi_done: unsolicited ack for %s from %s\n", 18630 dlpi_prim_str(prim), ill->ill_name); 18631 } else { 18632 (void) mi_strlog(ill->ill_rq, 1, 18633 SL_CONSOLE|SL_ERROR|SL_TRACE, 18634 "ill_dlpi_done: unexpected ack for %s from %s " 18635 "(expecting ack for %s)\n", 18636 dlpi_prim_str(prim), ill->ill_name, 18637 dlpi_prim_str(ill->ill_dlpi_pending)); 18638 } 18639 return; 18640 } 18641 18642 ip1dbg(("ill_dlpi_done: %s has completed %s (%u)\n", ill->ill_name, 18643 dlpi_prim_str(ill->ill_dlpi_pending), ill->ill_dlpi_pending)); 18644 18645 if ((mp = ill->ill_dlpi_deferred) == NULL) { 18646 mutex_enter(&ill->ill_lock); 18647 ill->ill_dlpi_pending = DL_PRIM_INVAL; 18648 cv_signal(&ill->ill_cv); 18649 mutex_exit(&ill->ill_lock); 18650 return; 18651 } 18652 18653 ill->ill_dlpi_deferred = mp->b_next; 18654 mp->b_next = NULL; 18655 18656 ill_dlpi_dispatch(ill, mp); 18657 } 18658 18659 void 18660 conn_delete_ire(conn_t *connp, caddr_t arg) 18661 { 18662 ipif_t *ipif = (ipif_t *)arg; 18663 ire_t *ire; 18664 18665 /* 18666 * Look at the cached ires on conns which has pointers to ipifs. 18667 * We just call ire_refrele which clears up the reference 18668 * to ire. Called when a conn closes. Also called from ipif_free 18669 * to cleanup indirect references to the stale ipif via the cached ire. 18670 */ 18671 mutex_enter(&connp->conn_lock); 18672 ire = connp->conn_ire_cache; 18673 if (ire != NULL && (ipif == NULL || ire->ire_ipif == ipif)) { 18674 connp->conn_ire_cache = NULL; 18675 mutex_exit(&connp->conn_lock); 18676 IRE_REFRELE_NOTR(ire); 18677 return; 18678 } 18679 mutex_exit(&connp->conn_lock); 18680 18681 } 18682 18683 /* 18684 * Some operations (illgrp_delete(), ipif_down()) conditionally delete a number 18685 * of IREs. Those IREs may have been previously cached in the conn structure. 18686 * This ipcl_walk() walker function releases all references to such IREs based 18687 * on the condemned flag. 18688 */ 18689 /* ARGSUSED */ 18690 void 18691 conn_cleanup_stale_ire(conn_t *connp, caddr_t arg) 18692 { 18693 ire_t *ire; 18694 18695 mutex_enter(&connp->conn_lock); 18696 ire = connp->conn_ire_cache; 18697 if (ire != NULL && (ire->ire_marks & IRE_MARK_CONDEMNED)) { 18698 connp->conn_ire_cache = NULL; 18699 mutex_exit(&connp->conn_lock); 18700 IRE_REFRELE_NOTR(ire); 18701 return; 18702 } 18703 mutex_exit(&connp->conn_lock); 18704 } 18705 18706 /* 18707 * Take down a specific interface, but don't lose any information about it. 18708 * Also delete interface from its interface group (ifgrp). 18709 * (Always called as writer.) 18710 * This function goes through the down sequence even if the interface is 18711 * already down. There are 2 reasons. 18712 * a. Currently we permit interface routes that depend on down interfaces 18713 * to be added. This behaviour itself is questionable. However it appears 18714 * that both Solaris and 4.3 BSD have exhibited this behaviour for a long 18715 * time. We go thru the cleanup in order to remove these routes. 18716 * b. The bringup of the interface could fail in ill_dl_up i.e. we get 18717 * DL_ERROR_ACK in response to the the DL_BIND request. The interface is 18718 * down, but we need to cleanup i.e. do ill_dl_down and 18719 * ip_rput_dlpi_writer (DL_ERROR_ACK) -> ipif_down. 18720 * 18721 * IP-MT notes: 18722 * 18723 * Model of reference to interfaces. 18724 * 18725 * The following members in ipif_t track references to the ipif. 18726 * int ipif_refcnt; Active reference count 18727 * uint_t ipif_ire_cnt; Number of ire's referencing this ipif 18728 * The following members in ill_t track references to the ill. 18729 * int ill_refcnt; active refcnt 18730 * uint_t ill_ire_cnt; Number of ires referencing ill 18731 * uint_t ill_nce_cnt; Number of nces referencing ill 18732 * 18733 * Reference to an ipif or ill can be obtained in any of the following ways. 18734 * 18735 * Through the lookup functions ipif_lookup_* / ill_lookup_* functions 18736 * Pointers to ipif / ill from other data structures viz ire and conn. 18737 * Implicit reference to the ipif / ill by holding a reference to the ire. 18738 * 18739 * The ipif/ill lookup functions return a reference held ipif / ill. 18740 * ipif_refcnt and ill_refcnt track the reference counts respectively. 18741 * This is a purely dynamic reference count associated with threads holding 18742 * references to the ipif / ill. Pointers from other structures do not 18743 * count towards this reference count. 18744 * 18745 * ipif_ire_cnt/ill_ire_cnt is the number of ire's associated with the 18746 * ipif/ill. This is incremented whenever a new ire is created referencing the 18747 * ipif/ill. This is done atomically inside ire_add_v[46] where the ire is 18748 * actually added to the ire hash table. The count is decremented in 18749 * ire_inactive where the ire is destroyed. 18750 * 18751 * nce's reference ill's thru nce_ill and the count of nce's associated with 18752 * an ill is recorded in ill_nce_cnt. This is incremented atomically in 18753 * ndp_add() where the nce is actually added to the table. Similarly it is 18754 * decremented in ndp_inactive where the nce is destroyed. 18755 * 18756 * Flow of ioctls involving interface down/up 18757 * 18758 * The following is the sequence of an attempt to set some critical flags on an 18759 * up interface. 18760 * ip_sioctl_flags 18761 * ipif_down 18762 * wait for ipif to be quiescent 18763 * ipif_down_tail 18764 * ip_sioctl_flags_tail 18765 * 18766 * All set ioctls that involve down/up sequence would have a skeleton similar 18767 * to the above. All the *tail functions are called after the refcounts have 18768 * dropped to the appropriate values. 18769 * 18770 * The mechanism to quiesce an ipif is as follows. 18771 * 18772 * Mark the ipif as IPIF_CHANGING. No more lookups will be allowed 18773 * on the ipif. Callers either pass a flag requesting wait or the lookup 18774 * functions will return NULL. 18775 * 18776 * Delete all ires referencing this ipif 18777 * 18778 * Any thread attempting to do an ipif_refhold on an ipif that has been 18779 * obtained thru a cached pointer will first make sure that 18780 * the ipif can be refheld using the macro IPIF_CAN_LOOKUP and only then 18781 * increment the refcount. 18782 * 18783 * The above guarantees that the ipif refcount will eventually come down to 18784 * zero and the ipif will quiesce, once all threads that currently hold a 18785 * reference to the ipif refrelease the ipif. The ipif is quiescent after the 18786 * ipif_refcount has dropped to zero and all ire's associated with this ipif 18787 * have also been ire_inactive'd. i.e. when ipif_ire_cnt and ipif_refcnt both 18788 * drop to zero. 18789 * 18790 * Lookups during the IPIF_CHANGING/ILL_CHANGING interval. 18791 * 18792 * Threads trying to lookup an ipif or ill can pass a flag requesting 18793 * wait and restart if the ipif / ill cannot be looked up currently. 18794 * For eg. bind, and route operations (Eg. route add / delete) cannot return 18795 * failure if the ipif is currently undergoing an exclusive operation, and 18796 * hence pass the flag. The mblk is then enqueued in the ipsq and the operation 18797 * is restarted by ipsq_exit() when the currently exclusive ioctl completes. 18798 * The lookup and enqueue is atomic using the ill_lock and ipsq_lock. The 18799 * lookup is done holding the ill_lock. Hence the ill/ipif state flags can't 18800 * change while the ill_lock is held. Before dropping the ill_lock we acquire 18801 * the ipsq_lock and call ipsq_enq. This ensures that ipsq_exit can't finish 18802 * until we release the ipsq_lock, even though the the ill/ipif state flags 18803 * can change after we drop the ill_lock. 18804 * 18805 * An attempt to send out a packet using an ipif that is currently 18806 * IPIF_CHANGING will fail. No attempt is made in this case to enqueue this 18807 * operation and restart it later when the exclusive condition on the ipif ends. 18808 * This is an example of not passing the wait flag to the lookup functions. For 18809 * example an attempt to refhold and use conn->conn_multicast_ipif and send 18810 * out a multicast packet on that ipif will fail while the ipif is 18811 * IPIF_CHANGING. An attempt to create an IRE_CACHE using an ipif that is 18812 * currently IPIF_CHANGING will also fail. 18813 */ 18814 int 18815 ipif_down(ipif_t *ipif, queue_t *q, mblk_t *mp) 18816 { 18817 ill_t *ill = ipif->ipif_ill; 18818 phyint_t *phyi; 18819 conn_t *connp; 18820 boolean_t success; 18821 boolean_t ipif_was_up = B_FALSE; 18822 ip_stack_t *ipst = ill->ill_ipst; 18823 18824 ASSERT(IAM_WRITER_IPIF(ipif)); 18825 18826 ip1dbg(("ipif_down(%s:%u)\n", ill->ill_name, ipif->ipif_id)); 18827 18828 if (ipif->ipif_flags & IPIF_UP) { 18829 mutex_enter(&ill->ill_lock); 18830 ipif->ipif_flags &= ~IPIF_UP; 18831 ASSERT(ill->ill_ipif_up_count > 0); 18832 --ill->ill_ipif_up_count; 18833 mutex_exit(&ill->ill_lock); 18834 ipif_was_up = B_TRUE; 18835 /* Update status in SCTP's list */ 18836 sctp_update_ipif(ipif, SCTP_IPIF_DOWN); 18837 } 18838 18839 /* 18840 * Blow away v6 memberships we established in ipif_multicast_up(); the 18841 * v4 ones are left alone (as is the ipif_multicast_up flag, so we 18842 * know not to rejoin when the interface is brought back up). 18843 */ 18844 if (ipif->ipif_isv6) 18845 ipif_multicast_down(ipif); 18846 /* 18847 * Remove from the mapping for __sin6_src_id. We insert only 18848 * when the address is not INADDR_ANY. As IPv4 addresses are 18849 * stored as mapped addresses, we need to check for mapped 18850 * INADDR_ANY also. 18851 */ 18852 if (ipif_was_up && !IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr) && 18853 !IN6_IS_ADDR_V4MAPPED_ANY(&ipif->ipif_v6lcl_addr) && 18854 !(ipif->ipif_flags & IPIF_NOLOCAL)) { 18855 int err; 18856 18857 err = ip_srcid_remove(&ipif->ipif_v6lcl_addr, 18858 ipif->ipif_zoneid, ipst); 18859 if (err != 0) { 18860 ip0dbg(("ipif_down: srcid_remove %d\n", err)); 18861 } 18862 } 18863 18864 /* 18865 * Before we delete the ill from the group (if any), we need 18866 * to make sure that we delete all the routes dependent on 18867 * this and also any ipifs dependent on this ipif for 18868 * source address. We need to do before we delete from 18869 * the group because 18870 * 18871 * 1) ipif_down_delete_ire de-references ill->ill_group. 18872 * 18873 * 2) ipif_update_other_ipifs needs to walk the whole group 18874 * for re-doing source address selection. Note that 18875 * ipif_select_source[_v6] called from 18876 * ipif_update_other_ipifs[_v6] will not pick this ipif 18877 * because we have already marked down here i.e cleared 18878 * IPIF_UP. 18879 */ 18880 if (ipif->ipif_isv6) { 18881 ire_walk_v6(ipif_down_delete_ire, (char *)ipif, ALL_ZONES, 18882 ipst); 18883 } else { 18884 ire_walk_v4(ipif_down_delete_ire, (char *)ipif, ALL_ZONES, 18885 ipst); 18886 } 18887 18888 /* 18889 * Need to add these also to be saved and restored when the 18890 * ipif is brought down and up 18891 */ 18892 mutex_enter(&ipst->ips_ire_mrtun_lock); 18893 if (ipst->ips_ire_mrtun_count != 0) { 18894 mutex_exit(&ipst->ips_ire_mrtun_lock); 18895 ire_walk_ill_mrtun(0, 0, ipif_down_delete_ire, 18896 (char *)ipif, NULL, ipst); 18897 } else { 18898 mutex_exit(&ipst->ips_ire_mrtun_lock); 18899 } 18900 18901 mutex_enter(&ipst->ips_ire_srcif_table_lock); 18902 if (ipst->ips_ire_srcif_table_count > 0) { 18903 mutex_exit(&ipst->ips_ire_srcif_table_lock); 18904 ire_walk_srcif_table_v4(ipif_down_delete_ire, (char *)ipif, 18905 ipst); 18906 } else { 18907 mutex_exit(&ipst->ips_ire_srcif_table_lock); 18908 } 18909 18910 /* 18911 * Cleaning up the conn_ire_cache or conns must be done only after the 18912 * ires have been deleted above. Otherwise a thread could end up 18913 * caching an ire in a conn after we have finished the cleanup of the 18914 * conn. The caching is done after making sure that the ire is not yet 18915 * condemned. Also documented in the block comment above ip_output 18916 */ 18917 ipcl_walk(conn_cleanup_stale_ire, NULL, ipst); 18918 /* Also, delete the ires cached in SCTP */ 18919 sctp_ire_cache_flush(ipif); 18920 18921 /* Resolve any IPsec/IKE NAT-T instances that depend on this ipif. */ 18922 nattymod_clean_ipif(ipif); 18923 18924 /* 18925 * Update any other ipifs which have used "our" local address as 18926 * a source address. This entails removing and recreating IRE_INTERFACE 18927 * entries for such ipifs. 18928 */ 18929 if (ipif->ipif_isv6) 18930 ipif_update_other_ipifs_v6(ipif, ill->ill_group); 18931 else 18932 ipif_update_other_ipifs(ipif, ill->ill_group); 18933 18934 if (ipif_was_up) { 18935 /* 18936 * Check whether it is last ipif to leave this group. 18937 * If this is the last ipif to leave, we should remove 18938 * this ill from the group as ipif_select_source will not 18939 * be able to find any useful ipifs if this ill is selected 18940 * for load balancing. 18941 * 18942 * For nameless groups, we should call ifgrp_delete if this 18943 * belongs to some group. As this ipif is going down, we may 18944 * need to reconstruct groups. 18945 */ 18946 phyi = ill->ill_phyint; 18947 /* 18948 * If the phyint_groupname_len is 0, it may or may not 18949 * be in the nameless group. If the phyint_groupname_len is 18950 * not 0, then this ill should be part of some group. 18951 * As we always insert this ill in the group if 18952 * phyint_groupname_len is not zero when the first ipif 18953 * comes up (in ipif_up_done), it should be in a group 18954 * when the namelen is not 0. 18955 * 18956 * NOTE : When we delete the ill from the group,it will 18957 * blow away all the IRE_CACHES pointing either at this ipif or 18958 * ill_wq (illgrp_cache_delete does this). Thus, no IRES 18959 * should be pointing at this ill. 18960 */ 18961 ASSERT(phyi->phyint_groupname_len == 0 || 18962 (phyi->phyint_groupname != NULL && ill->ill_group != NULL)); 18963 18964 if (phyi->phyint_groupname_len != 0) { 18965 if (ill->ill_ipif_up_count == 0) 18966 illgrp_delete(ill); 18967 } 18968 18969 /* 18970 * If we have deleted some of the broadcast ires associated 18971 * with this ipif, we need to re-nominate somebody else if 18972 * the ires that we deleted were the nominated ones. 18973 */ 18974 if (ill->ill_group != NULL && !ill->ill_isv6) 18975 ipif_renominate_bcast(ipif); 18976 } 18977 18978 /* 18979 * neighbor-discovery or arp entries for this interface. 18980 */ 18981 ipif_ndp_down(ipif); 18982 18983 /* 18984 * If mp is NULL the caller will wait for the appropriate refcnt. 18985 * Eg. ip_sioctl_removeif -> ipif_free -> ipif_down 18986 * and ill_delete -> ipif_free -> ipif_down 18987 */ 18988 if (mp == NULL) { 18989 ASSERT(q == NULL); 18990 return (0); 18991 } 18992 18993 if (CONN_Q(q)) { 18994 connp = Q_TO_CONN(q); 18995 mutex_enter(&connp->conn_lock); 18996 } else { 18997 connp = NULL; 18998 } 18999 mutex_enter(&ill->ill_lock); 19000 /* 19001 * Are there any ire's pointing to this ipif that are still active ? 19002 * If this is the last ipif going down, are there any ire's pointing 19003 * to this ill that are still active ? 19004 */ 19005 if (ipif_is_quiescent(ipif)) { 19006 mutex_exit(&ill->ill_lock); 19007 if (connp != NULL) 19008 mutex_exit(&connp->conn_lock); 19009 return (0); 19010 } 19011 19012 ip1dbg(("ipif_down: need to wait, adding pending mp %s ill %p", 19013 ill->ill_name, (void *)ill)); 19014 /* 19015 * Enqueue the mp atomically in ipsq_pending_mp. When the refcount 19016 * drops down, the operation will be restarted by ipif_ill_refrele_tail 19017 * which in turn is called by the last refrele on the ipif/ill/ire. 19018 */ 19019 success = ipsq_pending_mp_add(connp, ipif, q, mp, IPIF_DOWN); 19020 if (!success) { 19021 /* The conn is closing. So just return */ 19022 ASSERT(connp != NULL); 19023 mutex_exit(&ill->ill_lock); 19024 mutex_exit(&connp->conn_lock); 19025 return (EINTR); 19026 } 19027 19028 mutex_exit(&ill->ill_lock); 19029 if (connp != NULL) 19030 mutex_exit(&connp->conn_lock); 19031 return (EINPROGRESS); 19032 } 19033 19034 void 19035 ipif_down_tail(ipif_t *ipif) 19036 { 19037 ill_t *ill = ipif->ipif_ill; 19038 19039 /* 19040 * Skip any loopback interface (null wq). 19041 * If this is the last logical interface on the ill 19042 * have ill_dl_down tell the driver we are gone (unbind) 19043 * Note that lun 0 can ipif_down even though 19044 * there are other logical units that are up. 19045 * This occurs e.g. when we change a "significant" IFF_ flag. 19046 */ 19047 if (ill->ill_wq != NULL && !ill->ill_logical_down && 19048 ill->ill_ipif_up_count == 0 && ill->ill_ipif_dup_count == 0 && 19049 ill->ill_dl_up) { 19050 ill_dl_down(ill); 19051 } 19052 ill->ill_logical_down = 0; 19053 19054 /* 19055 * Have to be after removing the routes in ipif_down_delete_ire. 19056 */ 19057 if (ipif->ipif_isv6) { 19058 if (ill->ill_flags & ILLF_XRESOLV) 19059 ipif_arp_down(ipif); 19060 } else { 19061 ipif_arp_down(ipif); 19062 } 19063 19064 ip_rts_ifmsg(ipif); 19065 ip_rts_newaddrmsg(RTM_DELETE, 0, ipif); 19066 } 19067 19068 /* 19069 * Bring interface logically down without bringing the physical interface 19070 * down e.g. when the netmask is changed. This avoids long lasting link 19071 * negotiations between an ethernet interface and a certain switches. 19072 */ 19073 static int 19074 ipif_logical_down(ipif_t *ipif, queue_t *q, mblk_t *mp) 19075 { 19076 /* 19077 * The ill_logical_down flag is a transient flag. It is set here 19078 * and is cleared once the down has completed in ipif_down_tail. 19079 * This flag does not indicate whether the ill stream is in the 19080 * DL_BOUND state with the driver. Instead this flag is used by 19081 * ipif_down_tail to determine whether to DL_UNBIND the stream with 19082 * the driver. The state of the ill stream i.e. whether it is 19083 * DL_BOUND with the driver or not is indicated by the ill_dl_up flag. 19084 */ 19085 ipif->ipif_ill->ill_logical_down = 1; 19086 return (ipif_down(ipif, q, mp)); 19087 } 19088 19089 /* 19090 * This is called when the SIOCSLIFUSESRC ioctl is processed in IP. 19091 * If the usesrc client ILL is already part of a usesrc group or not, 19092 * in either case a ire_stq with the matching usesrc client ILL will 19093 * locate the IRE's that need to be deleted. We want IREs to be created 19094 * with the new source address. 19095 */ 19096 static void 19097 ipif_delete_cache_ire(ire_t *ire, char *ill_arg) 19098 { 19099 ill_t *ucill = (ill_t *)ill_arg; 19100 19101 ASSERT(IAM_WRITER_ILL(ucill)); 19102 19103 if (ire->ire_stq == NULL) 19104 return; 19105 19106 if ((ire->ire_type == IRE_CACHE) && 19107 ((ill_t *)ire->ire_stq->q_ptr == ucill)) 19108 ire_delete(ire); 19109 } 19110 19111 /* 19112 * ire_walk routine to delete every IRE dependent on the interface 19113 * address that is going down. (Always called as writer.) 19114 * Works for both v4 and v6. 19115 * In addition for checking for ire_ipif matches it also checks for 19116 * IRE_CACHE entries which have the same source address as the 19117 * disappearing ipif since ipif_select_source might have picked 19118 * that source. Note that ipif_down/ipif_update_other_ipifs takes 19119 * care of any IRE_INTERFACE with the disappearing source address. 19120 */ 19121 static void 19122 ipif_down_delete_ire(ire_t *ire, char *ipif_arg) 19123 { 19124 ipif_t *ipif = (ipif_t *)ipif_arg; 19125 ill_t *ire_ill; 19126 ill_t *ipif_ill; 19127 19128 ASSERT(IAM_WRITER_IPIF(ipif)); 19129 if (ire->ire_ipif == NULL) 19130 return; 19131 19132 /* 19133 * For IPv4, we derive source addresses for an IRE from ipif's 19134 * belonging to the same IPMP group as the IRE's outgoing 19135 * interface. If an IRE's outgoing interface isn't in the 19136 * same IPMP group as a particular ipif, then that ipif 19137 * couldn't have been used as a source address for this IRE. 19138 * 19139 * For IPv6, source addresses are only restricted to the IPMP group 19140 * if the IRE is for a link-local address or a multicast address. 19141 * Otherwise, source addresses for an IRE can be chosen from 19142 * interfaces other than the the outgoing interface for that IRE. 19143 * 19144 * For source address selection details, see ipif_select_source() 19145 * and ipif_select_source_v6(). 19146 */ 19147 if (ire->ire_ipversion == IPV4_VERSION || 19148 IN6_IS_ADDR_LINKLOCAL(&ire->ire_addr_v6) || 19149 IN6_IS_ADDR_MULTICAST(&ire->ire_addr_v6)) { 19150 ire_ill = ire->ire_ipif->ipif_ill; 19151 ipif_ill = ipif->ipif_ill; 19152 19153 if (ire_ill->ill_group != ipif_ill->ill_group) { 19154 return; 19155 } 19156 } 19157 19158 19159 if (ire->ire_ipif != ipif) { 19160 /* 19161 * Look for a matching source address. 19162 */ 19163 if (ire->ire_type != IRE_CACHE) 19164 return; 19165 if (ipif->ipif_flags & IPIF_NOLOCAL) 19166 return; 19167 19168 if (ire->ire_ipversion == IPV4_VERSION) { 19169 if (ire->ire_src_addr != ipif->ipif_src_addr) 19170 return; 19171 } else { 19172 if (!IN6_ARE_ADDR_EQUAL(&ire->ire_src_addr_v6, 19173 &ipif->ipif_v6lcl_addr)) 19174 return; 19175 } 19176 ire_delete(ire); 19177 return; 19178 } 19179 /* 19180 * ire_delete() will do an ire_flush_cache which will delete 19181 * all ire_ipif matches 19182 */ 19183 ire_delete(ire); 19184 } 19185 19186 /* 19187 * ire_walk_ill function for deleting all IRE_CACHE entries for an ill when 19188 * 1) an ipif (on that ill) changes the IPIF_DEPRECATED flags, or 19189 * 2) when an interface is brought up or down (on that ill). 19190 * This ensures that the IRE_CACHE entries don't retain stale source 19191 * address selection results. 19192 */ 19193 void 19194 ill_ipif_cache_delete(ire_t *ire, char *ill_arg) 19195 { 19196 ill_t *ill = (ill_t *)ill_arg; 19197 ill_t *ipif_ill; 19198 19199 ASSERT(IAM_WRITER_ILL(ill)); 19200 /* 19201 * We use MATCH_IRE_TYPE/IRE_CACHE while calling ire_walk_ill_v4. 19202 * Hence this should be IRE_CACHE. 19203 */ 19204 ASSERT(ire->ire_type == IRE_CACHE); 19205 19206 /* 19207 * We are called for IRE_CACHES whose ire_ipif matches ill. 19208 * We are only interested in IRE_CACHES that has borrowed 19209 * the source address from ill_arg e.g. ipif_up_done[_v6] 19210 * for which we need to look at ire_ipif->ipif_ill match 19211 * with ill. 19212 */ 19213 ASSERT(ire->ire_ipif != NULL); 19214 ipif_ill = ire->ire_ipif->ipif_ill; 19215 if (ipif_ill == ill || (ill->ill_group != NULL && 19216 ipif_ill->ill_group == ill->ill_group)) { 19217 ire_delete(ire); 19218 } 19219 } 19220 19221 /* 19222 * Delete all the ire whose stq references ill_arg. 19223 */ 19224 static void 19225 ill_stq_cache_delete(ire_t *ire, char *ill_arg) 19226 { 19227 ill_t *ill = (ill_t *)ill_arg; 19228 ill_t *ire_ill; 19229 19230 ASSERT(IAM_WRITER_ILL(ill)); 19231 /* 19232 * We use MATCH_IRE_TYPE/IRE_CACHE while calling ire_walk_ill_v4. 19233 * Hence this should be IRE_CACHE. 19234 */ 19235 ASSERT(ire->ire_type == IRE_CACHE); 19236 19237 /* 19238 * We are called for IRE_CACHES whose ire_stq and ire_ipif 19239 * matches ill. We are only interested in IRE_CACHES that 19240 * has ire_stq->q_ptr pointing at ill_arg. Thus we do the 19241 * filtering here. 19242 */ 19243 ire_ill = (ill_t *)ire->ire_stq->q_ptr; 19244 19245 if (ire_ill == ill) 19246 ire_delete(ire); 19247 } 19248 19249 /* 19250 * This is called when an ill leaves the group. We want to delete 19251 * all IRE_CACHES whose stq is pointing at ill_wq or ire_ipif is 19252 * pointing at ill. 19253 */ 19254 static void 19255 illgrp_cache_delete(ire_t *ire, char *ill_arg) 19256 { 19257 ill_t *ill = (ill_t *)ill_arg; 19258 19259 ASSERT(IAM_WRITER_ILL(ill)); 19260 ASSERT(ill->ill_group == NULL); 19261 /* 19262 * We use MATCH_IRE_TYPE/IRE_CACHE while calling ire_walk_ill_v4. 19263 * Hence this should be IRE_CACHE. 19264 */ 19265 ASSERT(ire->ire_type == IRE_CACHE); 19266 /* 19267 * We are called for IRE_CACHES whose ire_stq and ire_ipif 19268 * matches ill. We are interested in both. 19269 */ 19270 ASSERT((ill == (ill_t *)ire->ire_stq->q_ptr) || 19271 (ire->ire_ipif->ipif_ill == ill)); 19272 19273 ire_delete(ire); 19274 } 19275 19276 /* 19277 * Initiate deallocate of an IPIF. Always called as writer. Called by 19278 * ill_delete or ip_sioctl_removeif. 19279 */ 19280 static void 19281 ipif_free(ipif_t *ipif) 19282 { 19283 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 19284 19285 ASSERT(IAM_WRITER_IPIF(ipif)); 19286 19287 if (ipif->ipif_recovery_id != 0) 19288 (void) untimeout(ipif->ipif_recovery_id); 19289 ipif->ipif_recovery_id = 0; 19290 19291 /* Remove conn references */ 19292 reset_conn_ipif(ipif); 19293 19294 /* 19295 * Make sure we have valid net and subnet broadcast ire's for the 19296 * other ipif's which share them with this ipif. 19297 */ 19298 if (!ipif->ipif_isv6) 19299 ipif_check_bcast_ires(ipif); 19300 19301 /* 19302 * Take down the interface. We can be called either from ill_delete 19303 * or from ip_sioctl_removeif. 19304 */ 19305 (void) ipif_down(ipif, NULL, NULL); 19306 19307 /* 19308 * Now that the interface is down, there's no chance it can still 19309 * become a duplicate. Cancel any timer that may have been set while 19310 * tearing down. 19311 */ 19312 if (ipif->ipif_recovery_id != 0) 19313 (void) untimeout(ipif->ipif_recovery_id); 19314 ipif->ipif_recovery_id = 0; 19315 19316 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 19317 /* Remove pointers to this ill in the multicast routing tables */ 19318 reset_mrt_vif_ipif(ipif); 19319 rw_exit(&ipst->ips_ill_g_lock); 19320 } 19321 19322 /* 19323 * Warning: this is not the only function that calls mi_free on an ipif_t. See 19324 * also ill_move(). 19325 */ 19326 static void 19327 ipif_free_tail(ipif_t *ipif) 19328 { 19329 mblk_t *mp; 19330 ipif_t **ipifp; 19331 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 19332 19333 /* 19334 * Free state for addition IRE_IF_[NO]RESOLVER ire's. 19335 */ 19336 mutex_enter(&ipif->ipif_saved_ire_lock); 19337 mp = ipif->ipif_saved_ire_mp; 19338 ipif->ipif_saved_ire_mp = NULL; 19339 mutex_exit(&ipif->ipif_saved_ire_lock); 19340 freemsg(mp); 19341 19342 /* 19343 * Need to hold both ill_g_lock and ill_lock while 19344 * inserting or removing an ipif from the linked list 19345 * of ipifs hanging off the ill. 19346 */ 19347 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 19348 /* 19349 * Remove all multicast memberships on the interface now. 19350 * This removes IPv4 multicast memberships joined within 19351 * the kernel as ipif_down does not do ipif_multicast_down 19352 * for IPv4. IPv6 is not handled here as the multicast memberships 19353 * are based on ill and not on ipif. 19354 */ 19355 ilm_free(ipif); 19356 19357 /* 19358 * Since we held the ill_g_lock while doing the ilm_free above, 19359 * we can assert the ilms were really deleted and not just marked 19360 * ILM_DELETED. 19361 */ 19362 ASSERT(ilm_walk_ipif(ipif) == 0); 19363 19364 19365 IPIF_TRACE_CLEANUP(ipif); 19366 19367 /* Ask SCTP to take it out of it list */ 19368 sctp_update_ipif(ipif, SCTP_IPIF_REMOVE); 19369 19370 mutex_enter(&ipif->ipif_ill->ill_lock); 19371 /* Get it out of the ILL interface list. */ 19372 ipifp = &ipif->ipif_ill->ill_ipif; 19373 for (; *ipifp != NULL; ipifp = &ipifp[0]->ipif_next) { 19374 if (*ipifp == ipif) { 19375 *ipifp = ipif->ipif_next; 19376 break; 19377 } 19378 } 19379 19380 mutex_exit(&ipif->ipif_ill->ill_lock); 19381 rw_exit(&ipst->ips_ill_g_lock); 19382 19383 mutex_destroy(&ipif->ipif_saved_ire_lock); 19384 19385 ASSERT(!(ipif->ipif_flags & (IPIF_UP | IPIF_DUPLICATE))); 19386 ASSERT(ipif->ipif_recovery_id == 0); 19387 19388 /* Free the memory. */ 19389 mi_free((char *)ipif); 19390 } 19391 19392 /* 19393 * Returns an ipif name in the form "ill_name/unit" if ipif_id is not zero, 19394 * "ill_name" otherwise. 19395 */ 19396 char * 19397 ipif_get_name(const ipif_t *ipif, char *buf, int len) 19398 { 19399 char lbuf[32]; 19400 char *name; 19401 size_t name_len; 19402 19403 buf[0] = '\0'; 19404 if (!ipif) 19405 return (buf); 19406 name = ipif->ipif_ill->ill_name; 19407 name_len = ipif->ipif_ill->ill_name_length; 19408 if (ipif->ipif_id != 0) { 19409 (void) sprintf(lbuf, "%s%c%d", name, IPIF_SEPARATOR_CHAR, 19410 ipif->ipif_id); 19411 name = lbuf; 19412 name_len = mi_strlen(name) + 1; 19413 } 19414 len -= 1; 19415 buf[len] = '\0'; 19416 len = MIN(len, name_len); 19417 bcopy(name, buf, len); 19418 return (buf); 19419 } 19420 19421 /* 19422 * Find an IPIF based on the name passed in. Names can be of the 19423 * form <phys> (e.g., le0), <phys>:<#> (e.g., le0:1), 19424 * The <phys> string can have forms like <dev><#> (e.g., le0), 19425 * <dev><#>.<module> (e.g. le0.foo), or <dev>.<module><#> (e.g. ip.tun3). 19426 * When there is no colon, the implied unit id is zero. <phys> must 19427 * correspond to the name of an ILL. (May be called as writer.) 19428 */ 19429 static ipif_t * 19430 ipif_lookup_on_name(char *name, size_t namelen, boolean_t do_alloc, 19431 boolean_t *exists, boolean_t isv6, zoneid_t zoneid, queue_t *q, 19432 mblk_t *mp, ipsq_func_t func, int *error, ip_stack_t *ipst) 19433 { 19434 char *cp; 19435 char *endp; 19436 long id; 19437 ill_t *ill; 19438 ipif_t *ipif; 19439 uint_t ire_type; 19440 boolean_t did_alloc = B_FALSE; 19441 ipsq_t *ipsq; 19442 19443 if (error != NULL) 19444 *error = 0; 19445 19446 /* 19447 * If the caller wants to us to create the ipif, make sure we have a 19448 * valid zoneid 19449 */ 19450 ASSERT(!do_alloc || zoneid != ALL_ZONES); 19451 19452 if (namelen == 0) { 19453 if (error != NULL) 19454 *error = ENXIO; 19455 return (NULL); 19456 } 19457 19458 *exists = B_FALSE; 19459 /* Look for a colon in the name. */ 19460 endp = &name[namelen]; 19461 for (cp = endp; --cp > name; ) { 19462 if (*cp == IPIF_SEPARATOR_CHAR) 19463 break; 19464 } 19465 19466 if (*cp == IPIF_SEPARATOR_CHAR) { 19467 /* 19468 * Reject any non-decimal aliases for logical 19469 * interfaces. Aliases with leading zeroes 19470 * are also rejected as they introduce ambiguity 19471 * in the naming of the interfaces. 19472 * In order to confirm with existing semantics, 19473 * and to not break any programs/script relying 19474 * on that behaviour, if<0>:0 is considered to be 19475 * a valid interface. 19476 * 19477 * If alias has two or more digits and the first 19478 * is zero, fail. 19479 */ 19480 if (&cp[2] < endp && cp[1] == '0') 19481 return (NULL); 19482 } 19483 19484 if (cp <= name) { 19485 cp = endp; 19486 } else { 19487 *cp = '\0'; 19488 } 19489 19490 /* 19491 * Look up the ILL, based on the portion of the name 19492 * before the slash. ill_lookup_on_name returns a held ill. 19493 * Temporary to check whether ill exists already. If so 19494 * ill_lookup_on_name will clear it. 19495 */ 19496 ill = ill_lookup_on_name(name, do_alloc, isv6, 19497 q, mp, func, error, &did_alloc, ipst); 19498 if (cp != endp) 19499 *cp = IPIF_SEPARATOR_CHAR; 19500 if (ill == NULL) 19501 return (NULL); 19502 19503 /* Establish the unit number in the name. */ 19504 id = 0; 19505 if (cp < endp && *endp == '\0') { 19506 /* If there was a colon, the unit number follows. */ 19507 cp++; 19508 if (ddi_strtol(cp, NULL, 0, &id) != 0) { 19509 ill_refrele(ill); 19510 if (error != NULL) 19511 *error = ENXIO; 19512 return (NULL); 19513 } 19514 } 19515 19516 GRAB_CONN_LOCK(q); 19517 mutex_enter(&ill->ill_lock); 19518 /* Now see if there is an IPIF with this unit number. */ 19519 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 19520 if (ipif->ipif_id == id) { 19521 if (zoneid != ALL_ZONES && 19522 zoneid != ipif->ipif_zoneid && 19523 ipif->ipif_zoneid != ALL_ZONES) { 19524 mutex_exit(&ill->ill_lock); 19525 RELEASE_CONN_LOCK(q); 19526 ill_refrele(ill); 19527 if (error != NULL) 19528 *error = ENXIO; 19529 return (NULL); 19530 } 19531 /* 19532 * The block comment at the start of ipif_down 19533 * explains the use of the macros used below 19534 */ 19535 if (IPIF_CAN_LOOKUP(ipif)) { 19536 ipif_refhold_locked(ipif); 19537 mutex_exit(&ill->ill_lock); 19538 if (!did_alloc) 19539 *exists = B_TRUE; 19540 /* 19541 * Drop locks before calling ill_refrele 19542 * since it can potentially call into 19543 * ipif_ill_refrele_tail which can end up 19544 * in trying to acquire any lock. 19545 */ 19546 RELEASE_CONN_LOCK(q); 19547 ill_refrele(ill); 19548 return (ipif); 19549 } else if (IPIF_CAN_WAIT(ipif, q)) { 19550 ipsq = ill->ill_phyint->phyint_ipsq; 19551 mutex_enter(&ipsq->ipsq_lock); 19552 mutex_exit(&ill->ill_lock); 19553 ipsq_enq(ipsq, q, mp, func, NEW_OP, ill); 19554 mutex_exit(&ipsq->ipsq_lock); 19555 RELEASE_CONN_LOCK(q); 19556 ill_refrele(ill); 19557 *error = EINPROGRESS; 19558 return (NULL); 19559 } 19560 } 19561 } 19562 RELEASE_CONN_LOCK(q); 19563 19564 if (!do_alloc) { 19565 mutex_exit(&ill->ill_lock); 19566 ill_refrele(ill); 19567 if (error != NULL) 19568 *error = ENXIO; 19569 return (NULL); 19570 } 19571 19572 /* 19573 * If none found, atomically allocate and return a new one. 19574 * Historically, we used IRE_LOOPBACK only for lun 0, and IRE_LOCAL 19575 * to support "receive only" use of lo0:1 etc. as is still done 19576 * below as an initial guess. 19577 * However, this is now likely to be overriden later in ipif_up_done() 19578 * when we know for sure what address has been configured on the 19579 * interface, since we might have more than one loopback interface 19580 * with a loopback address, e.g. in the case of zones, and all the 19581 * interfaces with loopback addresses need to be marked IRE_LOOPBACK. 19582 */ 19583 if (ill->ill_net_type == IRE_LOOPBACK && id == 0) 19584 ire_type = IRE_LOOPBACK; 19585 else 19586 ire_type = IRE_LOCAL; 19587 ipif = ipif_allocate(ill, id, ire_type, B_TRUE); 19588 if (ipif != NULL) 19589 ipif_refhold_locked(ipif); 19590 else if (error != NULL) 19591 *error = ENOMEM; 19592 mutex_exit(&ill->ill_lock); 19593 ill_refrele(ill); 19594 return (ipif); 19595 } 19596 19597 /* 19598 * This routine is called whenever a new address comes up on an ipif. If 19599 * we are configured to respond to address mask requests, then we are supposed 19600 * to broadcast an address mask reply at this time. This routine is also 19601 * called if we are already up, but a netmask change is made. This is legal 19602 * but might not make the system manager very popular. (May be called 19603 * as writer.) 19604 */ 19605 void 19606 ipif_mask_reply(ipif_t *ipif) 19607 { 19608 icmph_t *icmph; 19609 ipha_t *ipha; 19610 mblk_t *mp; 19611 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 19612 19613 #define REPLY_LEN (sizeof (icmp_ipha) + sizeof (icmph_t) + IP_ADDR_LEN) 19614 19615 if (!ipst->ips_ip_respond_to_address_mask_broadcast) 19616 return; 19617 19618 /* ICMP mask reply is IPv4 only */ 19619 ASSERT(!ipif->ipif_isv6); 19620 /* ICMP mask reply is not for a loopback interface */ 19621 ASSERT(ipif->ipif_ill->ill_wq != NULL); 19622 19623 mp = allocb(REPLY_LEN, BPRI_HI); 19624 if (mp == NULL) 19625 return; 19626 mp->b_wptr = mp->b_rptr + REPLY_LEN; 19627 19628 ipha = (ipha_t *)mp->b_rptr; 19629 bzero(ipha, REPLY_LEN); 19630 *ipha = icmp_ipha; 19631 ipha->ipha_ttl = ipst->ips_ip_broadcast_ttl; 19632 ipha->ipha_src = ipif->ipif_src_addr; 19633 ipha->ipha_dst = ipif->ipif_brd_addr; 19634 ipha->ipha_length = htons(REPLY_LEN); 19635 ipha->ipha_ident = 0; 19636 19637 icmph = (icmph_t *)&ipha[1]; 19638 icmph->icmph_type = ICMP_ADDRESS_MASK_REPLY; 19639 bcopy(&ipif->ipif_net_mask, &icmph[1], IP_ADDR_LEN); 19640 icmph->icmph_checksum = IP_CSUM(mp, sizeof (ipha_t), 0); 19641 if (icmph->icmph_checksum == 0) 19642 icmph->icmph_checksum = 0xffff; 19643 19644 put(ipif->ipif_wq, mp); 19645 19646 #undef REPLY_LEN 19647 } 19648 19649 /* 19650 * When the mtu in the ipif changes, we call this routine through ire_walk 19651 * to update all the relevant IREs. 19652 * Skip IRE_LOCAL and "loopback" IRE_BROADCAST by checking ire_stq. 19653 */ 19654 static void 19655 ipif_mtu_change(ire_t *ire, char *ipif_arg) 19656 { 19657 ipif_t *ipif = (ipif_t *)ipif_arg; 19658 19659 if (ire->ire_stq == NULL || ire->ire_ipif != ipif) 19660 return; 19661 ire->ire_max_frag = MIN(ipif->ipif_mtu, IP_MAXPACKET); 19662 } 19663 19664 /* 19665 * When the mtu in the ill changes, we call this routine through ire_walk 19666 * to update all the relevant IREs. 19667 * Skip IRE_LOCAL and "loopback" IRE_BROADCAST by checking ire_stq. 19668 */ 19669 void 19670 ill_mtu_change(ire_t *ire, char *ill_arg) 19671 { 19672 ill_t *ill = (ill_t *)ill_arg; 19673 19674 if (ire->ire_stq == NULL || ire->ire_ipif->ipif_ill != ill) 19675 return; 19676 ire->ire_max_frag = ire->ire_ipif->ipif_mtu; 19677 } 19678 19679 /* 19680 * Join the ipif specific multicast groups. 19681 * Must be called after a mapping has been set up in the resolver. (Always 19682 * called as writer.) 19683 */ 19684 void 19685 ipif_multicast_up(ipif_t *ipif) 19686 { 19687 int err, index; 19688 ill_t *ill; 19689 19690 ASSERT(IAM_WRITER_IPIF(ipif)); 19691 19692 ill = ipif->ipif_ill; 19693 index = ill->ill_phyint->phyint_ifindex; 19694 19695 ip1dbg(("ipif_multicast_up\n")); 19696 if (!(ill->ill_flags & ILLF_MULTICAST) || ipif->ipif_multicast_up) 19697 return; 19698 19699 if (ipif->ipif_isv6) { 19700 if (IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr)) 19701 return; 19702 19703 /* Join the all hosts multicast address */ 19704 ip1dbg(("ipif_multicast_up - addmulti\n")); 19705 /* 19706 * Passing B_TRUE means we have to join the multicast 19707 * membership on this interface even though this is 19708 * FAILED. If we join on a different one in the group, 19709 * we will not be able to delete the membership later 19710 * as we currently don't track where we join when we 19711 * join within the kernel unlike applications where 19712 * we have ilg/ilg_orig_index. See ip_addmulti_v6 19713 * for more on this. 19714 */ 19715 err = ip_addmulti_v6(&ipv6_all_hosts_mcast, ill, index, 19716 ipif->ipif_zoneid, ILGSTAT_NONE, MODE_IS_EXCLUDE, NULL); 19717 if (err != 0) { 19718 ip0dbg(("ipif_multicast_up: " 19719 "all_hosts_mcast failed %d\n", 19720 err)); 19721 return; 19722 } 19723 /* 19724 * Enable multicast for the solicited node multicast address 19725 */ 19726 if (!(ipif->ipif_flags & IPIF_NOLOCAL)) { 19727 in6_addr_t ipv6_multi = ipv6_solicited_node_mcast; 19728 19729 ipv6_multi.s6_addr32[3] |= 19730 ipif->ipif_v6lcl_addr.s6_addr32[3]; 19731 19732 err = ip_addmulti_v6(&ipv6_multi, ill, index, 19733 ipif->ipif_zoneid, ILGSTAT_NONE, MODE_IS_EXCLUDE, 19734 NULL); 19735 if (err != 0) { 19736 ip0dbg(("ipif_multicast_up: solicited MC" 19737 " failed %d\n", err)); 19738 (void) ip_delmulti_v6(&ipv6_all_hosts_mcast, 19739 ill, ill->ill_phyint->phyint_ifindex, 19740 ipif->ipif_zoneid, B_TRUE, B_TRUE); 19741 return; 19742 } 19743 } 19744 } else { 19745 if (ipif->ipif_lcl_addr == INADDR_ANY) 19746 return; 19747 19748 /* Join the all hosts multicast address */ 19749 ip1dbg(("ipif_multicast_up - addmulti\n")); 19750 err = ip_addmulti(htonl(INADDR_ALLHOSTS_GROUP), ipif, 19751 ILGSTAT_NONE, MODE_IS_EXCLUDE, NULL); 19752 if (err) { 19753 ip0dbg(("ipif_multicast_up: failed %d\n", err)); 19754 return; 19755 } 19756 } 19757 ipif->ipif_multicast_up = 1; 19758 } 19759 19760 /* 19761 * Blow away any IPv6 multicast groups that we joined in ipif_multicast_up(); 19762 * any explicit memberships are blown away in ill_leave_multicast() when the 19763 * ill is brought down. 19764 */ 19765 static void 19766 ipif_multicast_down(ipif_t *ipif) 19767 { 19768 int err; 19769 19770 ASSERT(IAM_WRITER_IPIF(ipif)); 19771 19772 ip1dbg(("ipif_multicast_down\n")); 19773 if (!ipif->ipif_multicast_up) 19774 return; 19775 19776 ASSERT(ipif->ipif_isv6); 19777 19778 ip1dbg(("ipif_multicast_down - delmulti\n")); 19779 19780 /* 19781 * Leave the all hosts multicast address. Similar to ip_addmulti_v6, 19782 * we should look for ilms on this ill rather than the ones that have 19783 * been failed over here. They are here temporarily. As 19784 * ipif_multicast_up has joined on this ill, we should delete only 19785 * from this ill. 19786 */ 19787 err = ip_delmulti_v6(&ipv6_all_hosts_mcast, ipif->ipif_ill, 19788 ipif->ipif_ill->ill_phyint->phyint_ifindex, ipif->ipif_zoneid, 19789 B_TRUE, B_TRUE); 19790 if (err != 0) { 19791 ip0dbg(("ipif_multicast_down: all_hosts_mcast failed %d\n", 19792 err)); 19793 } 19794 /* 19795 * Disable multicast for the solicited node multicast address 19796 */ 19797 if (!(ipif->ipif_flags & IPIF_NOLOCAL)) { 19798 in6_addr_t ipv6_multi = ipv6_solicited_node_mcast; 19799 19800 ipv6_multi.s6_addr32[3] |= 19801 ipif->ipif_v6lcl_addr.s6_addr32[3]; 19802 19803 err = ip_delmulti_v6(&ipv6_multi, ipif->ipif_ill, 19804 ipif->ipif_ill->ill_phyint->phyint_ifindex, 19805 ipif->ipif_zoneid, B_TRUE, B_TRUE); 19806 19807 if (err != 0) { 19808 ip0dbg(("ipif_multicast_down: sol MC failed %d\n", 19809 err)); 19810 } 19811 } 19812 19813 ipif->ipif_multicast_up = 0; 19814 } 19815 19816 /* 19817 * Used when an interface comes up to recreate any extra routes on this 19818 * interface. 19819 */ 19820 static ire_t ** 19821 ipif_recover_ire(ipif_t *ipif) 19822 { 19823 mblk_t *mp; 19824 ire_t **ipif_saved_irep; 19825 ire_t **irep; 19826 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 19827 19828 ip1dbg(("ipif_recover_ire(%s:%u)", ipif->ipif_ill->ill_name, 19829 ipif->ipif_id)); 19830 19831 mutex_enter(&ipif->ipif_saved_ire_lock); 19832 ipif_saved_irep = (ire_t **)kmem_zalloc(sizeof (ire_t *) * 19833 ipif->ipif_saved_ire_cnt, KM_NOSLEEP); 19834 if (ipif_saved_irep == NULL) { 19835 mutex_exit(&ipif->ipif_saved_ire_lock); 19836 return (NULL); 19837 } 19838 19839 irep = ipif_saved_irep; 19840 for (mp = ipif->ipif_saved_ire_mp; mp != NULL; mp = mp->b_cont) { 19841 ire_t *ire; 19842 queue_t *rfq; 19843 queue_t *stq; 19844 ifrt_t *ifrt; 19845 uchar_t *src_addr; 19846 uchar_t *gateway_addr; 19847 mblk_t *resolver_mp; 19848 ushort_t type; 19849 19850 /* 19851 * When the ire was initially created and then added in 19852 * ip_rt_add(), it was created either using ipif->ipif_net_type 19853 * in the case of a traditional interface route, or as one of 19854 * the IRE_OFFSUBNET types (with the exception of 19855 * IRE_HOST types ire which is created by icmp_redirect() and 19856 * which we don't need to save or recover). In the case where 19857 * ipif->ipif_net_type was IRE_LOOPBACK, ip_rt_add() will update 19858 * the ire_type to IRE_IF_NORESOLVER before calling ire_add() 19859 * to satisfy software like GateD and Sun Cluster which creates 19860 * routes using the the loopback interface's address as a 19861 * gateway. 19862 * 19863 * As ifrt->ifrt_type reflects the already updated ire_type and 19864 * since ire_create() expects that IRE_IF_NORESOLVER will have 19865 * a valid nce_res_mp field (which doesn't make sense for a 19866 * IRE_LOOPBACK), ire_create() will be called in the same way 19867 * here as in ip_rt_add(), namely using ipif->ipif_net_type when 19868 * the route looks like a traditional interface route (where 19869 * ifrt->ifrt_type & IRE_INTERFACE is true) and otherwise using 19870 * the saved ifrt->ifrt_type. This means that in the case where 19871 * ipif->ipif_net_type is IRE_LOOPBACK, the ire created by 19872 * ire_create() will be an IRE_LOOPBACK, it will then be turned 19873 * into an IRE_IF_NORESOLVER and then added by ire_add(). 19874 */ 19875 ifrt = (ifrt_t *)mp->b_rptr; 19876 if (ifrt->ifrt_type & IRE_INTERFACE) { 19877 rfq = NULL; 19878 stq = (ipif->ipif_net_type == IRE_IF_RESOLVER) 19879 ? ipif->ipif_rq : ipif->ipif_wq; 19880 src_addr = (ifrt->ifrt_flags & RTF_SETSRC) 19881 ? (uint8_t *)&ifrt->ifrt_src_addr 19882 : (uint8_t *)&ipif->ipif_src_addr; 19883 gateway_addr = NULL; 19884 resolver_mp = ipif->ipif_resolver_mp; 19885 type = ipif->ipif_net_type; 19886 } else if (ifrt->ifrt_type & IRE_BROADCAST) { 19887 /* Recover multiroute broadcast IRE. */ 19888 rfq = ipif->ipif_rq; 19889 stq = ipif->ipif_wq; 19890 src_addr = (ifrt->ifrt_flags & RTF_SETSRC) 19891 ? (uint8_t *)&ifrt->ifrt_src_addr 19892 : (uint8_t *)&ipif->ipif_src_addr; 19893 gateway_addr = (uint8_t *)&ifrt->ifrt_gateway_addr; 19894 resolver_mp = ipif->ipif_bcast_mp; 19895 type = ifrt->ifrt_type; 19896 } else { 19897 rfq = NULL; 19898 stq = NULL; 19899 src_addr = (ifrt->ifrt_flags & RTF_SETSRC) 19900 ? (uint8_t *)&ifrt->ifrt_src_addr : NULL; 19901 gateway_addr = (uint8_t *)&ifrt->ifrt_gateway_addr; 19902 resolver_mp = NULL; 19903 type = ifrt->ifrt_type; 19904 } 19905 19906 /* 19907 * Create a copy of the IRE with the saved address and netmask. 19908 */ 19909 ip1dbg(("ipif_recover_ire: creating IRE %s (%d) for " 19910 "0x%x/0x%x\n", 19911 ip_nv_lookup(ire_nv_tbl, ifrt->ifrt_type), ifrt->ifrt_type, 19912 ntohl(ifrt->ifrt_addr), 19913 ntohl(ifrt->ifrt_mask))); 19914 ire = ire_create( 19915 (uint8_t *)&ifrt->ifrt_addr, 19916 (uint8_t *)&ifrt->ifrt_mask, 19917 src_addr, 19918 gateway_addr, 19919 NULL, 19920 &ifrt->ifrt_max_frag, 19921 NULL, 19922 rfq, 19923 stq, 19924 type, 19925 resolver_mp, 19926 ipif, 19927 NULL, 19928 0, 19929 0, 19930 0, 19931 ifrt->ifrt_flags, 19932 &ifrt->ifrt_iulp_info, 19933 NULL, 19934 NULL, 19935 ipst); 19936 19937 if (ire == NULL) { 19938 mutex_exit(&ipif->ipif_saved_ire_lock); 19939 kmem_free(ipif_saved_irep, 19940 ipif->ipif_saved_ire_cnt * sizeof (ire_t *)); 19941 return (NULL); 19942 } 19943 19944 /* 19945 * Some software (for example, GateD and Sun Cluster) attempts 19946 * to create (what amount to) IRE_PREFIX routes with the 19947 * loopback address as the gateway. This is primarily done to 19948 * set up prefixes with the RTF_REJECT flag set (for example, 19949 * when generating aggregate routes.) 19950 * 19951 * If the IRE type (as defined by ipif->ipif_net_type) is 19952 * IRE_LOOPBACK, then we map the request into a 19953 * IRE_IF_NORESOLVER. 19954 */ 19955 if (ipif->ipif_net_type == IRE_LOOPBACK) 19956 ire->ire_type = IRE_IF_NORESOLVER; 19957 /* 19958 * ire held by ire_add, will be refreled' towards the 19959 * the end of ipif_up_done 19960 */ 19961 (void) ire_add(&ire, NULL, NULL, NULL, B_FALSE); 19962 *irep = ire; 19963 irep++; 19964 ip1dbg(("ipif_recover_ire: added ire %p\n", (void *)ire)); 19965 } 19966 mutex_exit(&ipif->ipif_saved_ire_lock); 19967 return (ipif_saved_irep); 19968 } 19969 19970 /* 19971 * Used to set the netmask and broadcast address to default values when the 19972 * interface is brought up. (Always called as writer.) 19973 */ 19974 static void 19975 ipif_set_default(ipif_t *ipif) 19976 { 19977 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 19978 19979 if (!ipif->ipif_isv6) { 19980 /* 19981 * Interface holds an IPv4 address. Default 19982 * mask is the natural netmask. 19983 */ 19984 if (!ipif->ipif_net_mask) { 19985 ipaddr_t v4mask; 19986 19987 v4mask = ip_net_mask(ipif->ipif_lcl_addr); 19988 V4MASK_TO_V6(v4mask, ipif->ipif_v6net_mask); 19989 } 19990 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 19991 /* ipif_subnet is ipif_pp_dst_addr for pt-pt */ 19992 ipif->ipif_v6subnet = ipif->ipif_v6pp_dst_addr; 19993 } else { 19994 V6_MASK_COPY(ipif->ipif_v6lcl_addr, 19995 ipif->ipif_v6net_mask, ipif->ipif_v6subnet); 19996 } 19997 /* 19998 * NOTE: SunOS 4.X does this even if the broadcast address 19999 * has been already set thus we do the same here. 20000 */ 20001 if (ipif->ipif_flags & IPIF_BROADCAST) { 20002 ipaddr_t v4addr; 20003 20004 v4addr = ipif->ipif_subnet | ~ipif->ipif_net_mask; 20005 IN6_IPADDR_TO_V4MAPPED(v4addr, &ipif->ipif_v6brd_addr); 20006 } 20007 } else { 20008 /* 20009 * Interface holds an IPv6-only address. Default 20010 * mask is all-ones. 20011 */ 20012 if (IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6net_mask)) 20013 ipif->ipif_v6net_mask = ipv6_all_ones; 20014 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 20015 /* ipif_subnet is ipif_pp_dst_addr for pt-pt */ 20016 ipif->ipif_v6subnet = ipif->ipif_v6pp_dst_addr; 20017 } else { 20018 V6_MASK_COPY(ipif->ipif_v6lcl_addr, 20019 ipif->ipif_v6net_mask, ipif->ipif_v6subnet); 20020 } 20021 } 20022 } 20023 20024 /* 20025 * Return 0 if this address can be used as local address without causing 20026 * duplicate address problems. Otherwise, return EADDRNOTAVAIL if the address 20027 * is already up on a different ill, and EADDRINUSE if it's up on the same ill. 20028 * Special checks are needed to allow the same IPv6 link-local address 20029 * on different ills. 20030 * TODO: allowing the same site-local address on different ill's. 20031 */ 20032 int 20033 ip_addr_availability_check(ipif_t *new_ipif) 20034 { 20035 in6_addr_t our_v6addr; 20036 ill_t *ill; 20037 ipif_t *ipif; 20038 ill_walk_context_t ctx; 20039 ip_stack_t *ipst = new_ipif->ipif_ill->ill_ipst; 20040 20041 ASSERT(IAM_WRITER_IPIF(new_ipif)); 20042 ASSERT(MUTEX_HELD(&ipst->ips_ip_addr_avail_lock)); 20043 ASSERT(RW_READ_HELD(&ipst->ips_ill_g_lock)); 20044 20045 new_ipif->ipif_flags &= ~IPIF_UNNUMBERED; 20046 if (IN6_IS_ADDR_UNSPECIFIED(&new_ipif->ipif_v6lcl_addr) || 20047 IN6_IS_ADDR_V4MAPPED_ANY(&new_ipif->ipif_v6lcl_addr)) 20048 return (0); 20049 20050 our_v6addr = new_ipif->ipif_v6lcl_addr; 20051 20052 if (new_ipif->ipif_isv6) 20053 ill = ILL_START_WALK_V6(&ctx, ipst); 20054 else 20055 ill = ILL_START_WALK_V4(&ctx, ipst); 20056 20057 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 20058 for (ipif = ill->ill_ipif; ipif != NULL; 20059 ipif = ipif->ipif_next) { 20060 if ((ipif == new_ipif) || 20061 !(ipif->ipif_flags & IPIF_UP) || 20062 (ipif->ipif_flags & IPIF_UNNUMBERED)) 20063 continue; 20064 if (IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6lcl_addr, 20065 &our_v6addr)) { 20066 if (new_ipif->ipif_flags & IPIF_POINTOPOINT) 20067 new_ipif->ipif_flags |= IPIF_UNNUMBERED; 20068 else if (ipif->ipif_flags & IPIF_POINTOPOINT) 20069 ipif->ipif_flags |= IPIF_UNNUMBERED; 20070 else if (IN6_IS_ADDR_LINKLOCAL(&our_v6addr) && 20071 new_ipif->ipif_ill != ill) 20072 continue; 20073 else if (IN6_IS_ADDR_SITELOCAL(&our_v6addr) && 20074 new_ipif->ipif_ill != ill) 20075 continue; 20076 else if (new_ipif->ipif_zoneid != 20077 ipif->ipif_zoneid && 20078 ipif->ipif_zoneid != ALL_ZONES && 20079 (ill->ill_phyint->phyint_flags & 20080 PHYI_LOOPBACK)) 20081 continue; 20082 else if (new_ipif->ipif_ill == ill) 20083 return (EADDRINUSE); 20084 else 20085 return (EADDRNOTAVAIL); 20086 } 20087 } 20088 } 20089 20090 return (0); 20091 } 20092 20093 /* 20094 * Bring up an ipif: bring up arp/ndp, bring up the DLPI stream, and add 20095 * IREs for the ipif. 20096 * When the routine returns EINPROGRESS then mp has been consumed and 20097 * the ioctl will be acked from ip_rput_dlpi. 20098 */ 20099 static int 20100 ipif_up(ipif_t *ipif, queue_t *q, mblk_t *mp) 20101 { 20102 ill_t *ill = ipif->ipif_ill; 20103 boolean_t isv6 = ipif->ipif_isv6; 20104 int err = 0; 20105 boolean_t success; 20106 20107 ASSERT(IAM_WRITER_IPIF(ipif)); 20108 20109 ip1dbg(("ipif_up(%s:%u)\n", ill->ill_name, ipif->ipif_id)); 20110 20111 /* Shouldn't get here if it is already up. */ 20112 if (ipif->ipif_flags & IPIF_UP) 20113 return (EALREADY); 20114 20115 /* Skip arp/ndp for any loopback interface. */ 20116 if (ill->ill_wq != NULL) { 20117 conn_t *connp = CONN_Q(q) ? Q_TO_CONN(q) : NULL; 20118 ipsq_t *ipsq = ill->ill_phyint->phyint_ipsq; 20119 20120 if (!ill->ill_dl_up) { 20121 /* 20122 * ill_dl_up is not yet set. i.e. we are yet to 20123 * DL_BIND with the driver and this is the first 20124 * logical interface on the ill to become "up". 20125 * Tell the driver to get going (via DL_BIND_REQ). 20126 * Note that changing "significant" IFF_ flags 20127 * address/netmask etc cause a down/up dance, but 20128 * does not cause an unbind (DL_UNBIND) with the driver 20129 */ 20130 return (ill_dl_up(ill, ipif, mp, q)); 20131 } 20132 20133 /* 20134 * ipif_resolver_up may end up sending an 20135 * AR_INTERFACE_UP message to ARP, which would, in 20136 * turn send a DLPI message to the driver. ioctls are 20137 * serialized and so we cannot send more than one 20138 * interface up message at a time. If ipif_resolver_up 20139 * does send an interface up message to ARP, we get 20140 * EINPROGRESS and we will complete in ip_arp_done. 20141 */ 20142 20143 ASSERT(connp != NULL || !CONN_Q(q)); 20144 ASSERT(ipsq->ipsq_pending_mp == NULL); 20145 if (connp != NULL) 20146 mutex_enter(&connp->conn_lock); 20147 mutex_enter(&ill->ill_lock); 20148 success = ipsq_pending_mp_add(connp, ipif, q, mp, 0); 20149 mutex_exit(&ill->ill_lock); 20150 if (connp != NULL) 20151 mutex_exit(&connp->conn_lock); 20152 if (!success) 20153 return (EINTR); 20154 20155 /* 20156 * Crank up IPv6 neighbor discovery 20157 * Unlike ARP, this should complete when 20158 * ipif_ndp_up returns. However, for 20159 * ILLF_XRESOLV interfaces we also send a 20160 * AR_INTERFACE_UP to the external resolver. 20161 * That ioctl will complete in ip_rput. 20162 */ 20163 if (isv6) { 20164 err = ipif_ndp_up(ipif, &ipif->ipif_v6lcl_addr); 20165 if (err != 0) { 20166 if (err != EINPROGRESS) 20167 mp = ipsq_pending_mp_get(ipsq, &connp); 20168 return (err); 20169 } 20170 } 20171 /* Now, ARP */ 20172 err = ipif_resolver_up(ipif, Res_act_initial); 20173 if (err == EINPROGRESS) { 20174 /* We will complete it in ip_arp_done */ 20175 return (err); 20176 } 20177 mp = ipsq_pending_mp_get(ipsq, &connp); 20178 ASSERT(mp != NULL); 20179 if (err != 0) 20180 return (err); 20181 } else { 20182 /* 20183 * Interfaces without underlying hardware don't do duplicate 20184 * address detection. 20185 */ 20186 ASSERT(!(ipif->ipif_flags & IPIF_DUPLICATE)); 20187 ipif->ipif_addr_ready = 1; 20188 } 20189 return (isv6 ? ipif_up_done_v6(ipif) : ipif_up_done(ipif)); 20190 } 20191 20192 /* 20193 * Perform a bind for the physical device. 20194 * When the routine returns EINPROGRESS then mp has been consumed and 20195 * the ioctl will be acked from ip_rput_dlpi. 20196 * Allocate an unbind message and save it until ipif_down. 20197 */ 20198 static int 20199 ill_dl_up(ill_t *ill, ipif_t *ipif, mblk_t *mp, queue_t *q) 20200 { 20201 mblk_t *areq_mp = NULL; 20202 mblk_t *bind_mp = NULL; 20203 mblk_t *unbind_mp = NULL; 20204 conn_t *connp; 20205 boolean_t success; 20206 20207 ip1dbg(("ill_dl_up(%s)\n", ill->ill_name)); 20208 ASSERT(IAM_WRITER_ILL(ill)); 20209 20210 ASSERT(mp != NULL); 20211 20212 /* Create a resolver cookie for ARP */ 20213 if (!ill->ill_isv6 && ill->ill_net_type == IRE_IF_RESOLVER) { 20214 areq_t *areq; 20215 uint16_t sap_addr; 20216 20217 areq_mp = ill_arp_alloc(ill, 20218 (uchar_t *)&ip_areq_template, 0); 20219 if (areq_mp == NULL) { 20220 return (ENOMEM); 20221 } 20222 freemsg(ill->ill_resolver_mp); 20223 ill->ill_resolver_mp = areq_mp; 20224 areq = (areq_t *)areq_mp->b_rptr; 20225 sap_addr = ill->ill_sap; 20226 bcopy(&sap_addr, areq->areq_sap, sizeof (sap_addr)); 20227 /* 20228 * Wait till we call ill_pending_mp_add to determine 20229 * the success before we free the ill_resolver_mp and 20230 * attach areq_mp in it's place. 20231 */ 20232 } 20233 bind_mp = ip_dlpi_alloc(sizeof (dl_bind_req_t) + sizeof (long), 20234 DL_BIND_REQ); 20235 if (bind_mp == NULL) 20236 goto bad; 20237 ((dl_bind_req_t *)bind_mp->b_rptr)->dl_sap = ill->ill_sap; 20238 ((dl_bind_req_t *)bind_mp->b_rptr)->dl_service_mode = DL_CLDLS; 20239 20240 unbind_mp = ip_dlpi_alloc(sizeof (dl_unbind_req_t), DL_UNBIND_REQ); 20241 if (unbind_mp == NULL) 20242 goto bad; 20243 20244 /* 20245 * Record state needed to complete this operation when the 20246 * DL_BIND_ACK shows up. Also remember the pre-allocated mblks. 20247 */ 20248 ASSERT(WR(q)->q_next == NULL); 20249 connp = Q_TO_CONN(q); 20250 20251 mutex_enter(&connp->conn_lock); 20252 mutex_enter(&ipif->ipif_ill->ill_lock); 20253 success = ipsq_pending_mp_add(connp, ipif, q, mp, 0); 20254 mutex_exit(&ipif->ipif_ill->ill_lock); 20255 mutex_exit(&connp->conn_lock); 20256 if (!success) 20257 goto bad; 20258 20259 /* 20260 * Save the unbind message for ill_dl_down(); it will be consumed when 20261 * the interface goes down. 20262 */ 20263 ASSERT(ill->ill_unbind_mp == NULL); 20264 ill->ill_unbind_mp = unbind_mp; 20265 20266 ill_dlpi_send(ill, bind_mp); 20267 /* Send down link-layer capabilities probe if not already done. */ 20268 ill_capability_probe(ill); 20269 20270 /* 20271 * Sysid used to rely on the fact that netboots set domainname 20272 * and the like. Now that miniroot boots aren't strictly netboots 20273 * and miniroot network configuration is driven from userland 20274 * these things still need to be set. This situation can be detected 20275 * by comparing the interface being configured here to the one 20276 * dhcack was set to reference by the boot loader. Once sysid is 20277 * converted to use dhcp_ipc_getinfo() this call can go away. 20278 */ 20279 if ((ipif->ipif_flags & IPIF_DHCPRUNNING) && (dhcack != NULL) && 20280 (strcmp(ill->ill_name, dhcack) == 0) && 20281 (strlen(srpc_domain) == 0)) { 20282 if (dhcpinit() != 0) 20283 cmn_err(CE_WARN, "no cached dhcp response"); 20284 } 20285 20286 /* 20287 * This operation will complete in ip_rput_dlpi with either 20288 * a DL_BIND_ACK or DL_ERROR_ACK. 20289 */ 20290 return (EINPROGRESS); 20291 bad: 20292 ip1dbg(("ill_dl_up(%s) FAILED\n", ill->ill_name)); 20293 /* 20294 * We don't have to check for possible removal from illgrp 20295 * as we have not yet inserted in illgrp. For groups 20296 * without names, this ipif is still not UP and hence 20297 * this could not have possibly had any influence in forming 20298 * groups. 20299 */ 20300 20301 freemsg(bind_mp); 20302 freemsg(unbind_mp); 20303 return (ENOMEM); 20304 } 20305 20306 uint_t ip_loopback_mtuplus = IP_LOOPBACK_MTU + IP_SIMPLE_HDR_LENGTH + 20; 20307 20308 /* 20309 * DLPI and ARP is up. 20310 * Create all the IREs associated with an interface bring up multicast. 20311 * Set the interface flag and finish other initialization 20312 * that potentially had to be differed to after DL_BIND_ACK. 20313 */ 20314 int 20315 ipif_up_done(ipif_t *ipif) 20316 { 20317 ire_t *ire_array[20]; 20318 ire_t **irep = ire_array; 20319 ire_t **irep1; 20320 ipaddr_t net_mask = 0; 20321 ipaddr_t subnet_mask, route_mask; 20322 ill_t *ill = ipif->ipif_ill; 20323 queue_t *stq; 20324 ipif_t *src_ipif; 20325 ipif_t *tmp_ipif; 20326 boolean_t flush_ire_cache = B_TRUE; 20327 int err = 0; 20328 phyint_t *phyi; 20329 ire_t **ipif_saved_irep = NULL; 20330 int ipif_saved_ire_cnt; 20331 int cnt; 20332 boolean_t src_ipif_held = B_FALSE; 20333 boolean_t ire_added = B_FALSE; 20334 boolean_t loopback = B_FALSE; 20335 ip_stack_t *ipst = ill->ill_ipst; 20336 20337 ip1dbg(("ipif_up_done(%s:%u)\n", 20338 ipif->ipif_ill->ill_name, ipif->ipif_id)); 20339 /* Check if this is a loopback interface */ 20340 if (ipif->ipif_ill->ill_wq == NULL) 20341 loopback = B_TRUE; 20342 20343 ASSERT(!MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 20344 /* 20345 * If all other interfaces for this ill are down or DEPRECATED, 20346 * or otherwise unsuitable for source address selection, remove 20347 * any IRE_CACHE entries for this ill to make sure source 20348 * address selection gets to take this new ipif into account. 20349 * No need to hold ill_lock while traversing the ipif list since 20350 * we are writer 20351 */ 20352 for (tmp_ipif = ill->ill_ipif; tmp_ipif; 20353 tmp_ipif = tmp_ipif->ipif_next) { 20354 if (((tmp_ipif->ipif_flags & 20355 (IPIF_NOXMIT|IPIF_ANYCAST|IPIF_NOLOCAL|IPIF_DEPRECATED)) || 20356 !(tmp_ipif->ipif_flags & IPIF_UP)) || 20357 (tmp_ipif == ipif)) 20358 continue; 20359 /* first useable pre-existing interface */ 20360 flush_ire_cache = B_FALSE; 20361 break; 20362 } 20363 if (flush_ire_cache) 20364 ire_walk_ill_v4(MATCH_IRE_ILL_GROUP | MATCH_IRE_TYPE, 20365 IRE_CACHE, ill_ipif_cache_delete, (char *)ill, ill); 20366 20367 /* 20368 * Figure out which way the send-to queue should go. Only 20369 * IRE_IF_RESOLVER or IRE_IF_NORESOLVER or IRE_LOOPBACK 20370 * should show up here. 20371 */ 20372 switch (ill->ill_net_type) { 20373 case IRE_IF_RESOLVER: 20374 stq = ill->ill_rq; 20375 break; 20376 case IRE_IF_NORESOLVER: 20377 case IRE_LOOPBACK: 20378 stq = ill->ill_wq; 20379 break; 20380 default: 20381 return (EINVAL); 20382 } 20383 20384 if (ill->ill_phyint->phyint_flags & PHYI_LOOPBACK) { 20385 /* 20386 * lo0:1 and subsequent ipifs were marked IRE_LOCAL in 20387 * ipif_lookup_on_name(), but in the case of zones we can have 20388 * several loopback addresses on lo0. So all the interfaces with 20389 * loopback addresses need to be marked IRE_LOOPBACK. 20390 */ 20391 if (V4_PART_OF_V6(ipif->ipif_v6lcl_addr) == 20392 htonl(INADDR_LOOPBACK)) 20393 ipif->ipif_ire_type = IRE_LOOPBACK; 20394 else 20395 ipif->ipif_ire_type = IRE_LOCAL; 20396 } 20397 20398 if (ipif->ipif_flags & (IPIF_NOLOCAL|IPIF_ANYCAST|IPIF_DEPRECATED)) { 20399 /* 20400 * Can't use our source address. Select a different 20401 * source address for the IRE_INTERFACE and IRE_LOCAL 20402 */ 20403 src_ipif = ipif_select_source(ipif->ipif_ill, 20404 ipif->ipif_subnet, ipif->ipif_zoneid); 20405 if (src_ipif == NULL) 20406 src_ipif = ipif; /* Last resort */ 20407 else 20408 src_ipif_held = B_TRUE; 20409 } else { 20410 src_ipif = ipif; 20411 } 20412 20413 /* Create all the IREs associated with this interface */ 20414 if ((ipif->ipif_lcl_addr != INADDR_ANY) && 20415 !(ipif->ipif_flags & IPIF_NOLOCAL)) { 20416 20417 /* 20418 * If we're on a labeled system then make sure that zone- 20419 * private addresses have proper remote host database entries. 20420 */ 20421 if (is_system_labeled() && 20422 ipif->ipif_ire_type != IRE_LOOPBACK && 20423 !tsol_check_interface_address(ipif)) 20424 return (EINVAL); 20425 20426 /* Register the source address for __sin6_src_id */ 20427 err = ip_srcid_insert(&ipif->ipif_v6lcl_addr, 20428 ipif->ipif_zoneid, ipst); 20429 if (err != 0) { 20430 ip0dbg(("ipif_up_done: srcid_insert %d\n", err)); 20431 return (err); 20432 } 20433 20434 /* If the interface address is set, create the local IRE. */ 20435 ip1dbg(("ipif_up_done: 0x%p creating IRE 0x%x for 0x%x\n", 20436 (void *)ipif, 20437 ipif->ipif_ire_type, 20438 ntohl(ipif->ipif_lcl_addr))); 20439 *irep++ = ire_create( 20440 (uchar_t *)&ipif->ipif_lcl_addr, /* dest address */ 20441 (uchar_t *)&ip_g_all_ones, /* mask */ 20442 (uchar_t *)&src_ipif->ipif_src_addr, /* source address */ 20443 NULL, /* no gateway */ 20444 NULL, 20445 &ip_loopback_mtuplus, /* max frag size */ 20446 NULL, 20447 ipif->ipif_rq, /* recv-from queue */ 20448 NULL, /* no send-to queue */ 20449 ipif->ipif_ire_type, /* LOCAL or LOOPBACK */ 20450 NULL, 20451 ipif, 20452 NULL, 20453 0, 20454 0, 20455 0, 20456 (ipif->ipif_flags & IPIF_PRIVATE) ? 20457 RTF_PRIVATE : 0, 20458 &ire_uinfo_null, 20459 NULL, 20460 NULL, 20461 ipst); 20462 } else { 20463 ip1dbg(( 20464 "ipif_up_done: not creating IRE %d for 0x%x: flags 0x%x\n", 20465 ipif->ipif_ire_type, 20466 ntohl(ipif->ipif_lcl_addr), 20467 (uint_t)ipif->ipif_flags)); 20468 } 20469 if ((ipif->ipif_lcl_addr != INADDR_ANY) && 20470 !(ipif->ipif_flags & IPIF_NOLOCAL)) { 20471 net_mask = ip_net_mask(ipif->ipif_lcl_addr); 20472 } else { 20473 net_mask = htonl(IN_CLASSA_NET); /* fallback */ 20474 } 20475 20476 subnet_mask = ipif->ipif_net_mask; 20477 20478 /* 20479 * If mask was not specified, use natural netmask of 20480 * interface address. Also, store this mask back into the 20481 * ipif struct. 20482 */ 20483 if (subnet_mask == 0) { 20484 subnet_mask = net_mask; 20485 V4MASK_TO_V6(subnet_mask, ipif->ipif_v6net_mask); 20486 V6_MASK_COPY(ipif->ipif_v6lcl_addr, ipif->ipif_v6net_mask, 20487 ipif->ipif_v6subnet); 20488 } 20489 20490 /* Set up the IRE_IF_RESOLVER or IRE_IF_NORESOLVER, as appropriate. */ 20491 if (stq != NULL && !(ipif->ipif_flags & IPIF_NOXMIT) && 20492 ipif->ipif_subnet != INADDR_ANY) { 20493 /* ipif_subnet is ipif_pp_dst_addr for pt-pt */ 20494 20495 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 20496 route_mask = IP_HOST_MASK; 20497 } else { 20498 route_mask = subnet_mask; 20499 } 20500 20501 ip1dbg(("ipif_up_done: ipif 0x%p ill 0x%p " 20502 "creating if IRE ill_net_type 0x%x for 0x%x\n", 20503 (void *)ipif, (void *)ill, 20504 ill->ill_net_type, 20505 ntohl(ipif->ipif_subnet))); 20506 *irep++ = ire_create( 20507 (uchar_t *)&ipif->ipif_subnet, /* dest address */ 20508 (uchar_t *)&route_mask, /* mask */ 20509 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 20510 NULL, /* no gateway */ 20511 NULL, 20512 &ipif->ipif_mtu, /* max frag */ 20513 NULL, 20514 NULL, /* no recv queue */ 20515 stq, /* send-to queue */ 20516 ill->ill_net_type, /* IF_[NO]RESOLVER */ 20517 ill->ill_resolver_mp, /* xmit header */ 20518 ipif, 20519 NULL, 20520 0, 20521 0, 20522 0, 20523 (ipif->ipif_flags & IPIF_PRIVATE) ? RTF_PRIVATE: 0, 20524 &ire_uinfo_null, 20525 NULL, 20526 NULL, 20527 ipst); 20528 } 20529 20530 /* 20531 * If the interface address is set, create the broadcast IREs. 20532 * 20533 * ire_create_bcast checks if the proposed new IRE matches 20534 * any existing IRE's with the same physical interface (ILL). 20535 * This should get rid of duplicates. 20536 * ire_create_bcast also check IPIF_NOXMIT and does not create 20537 * any broadcast ires. 20538 */ 20539 if ((ipif->ipif_subnet != INADDR_ANY) && 20540 (ipif->ipif_flags & IPIF_BROADCAST)) { 20541 ipaddr_t addr; 20542 20543 ip1dbg(("ipif_up_done: creating broadcast IRE\n")); 20544 irep = ire_check_and_create_bcast(ipif, 0, irep, 20545 (MATCH_IRE_TYPE | MATCH_IRE_ILL)); 20546 irep = ire_check_and_create_bcast(ipif, INADDR_BROADCAST, irep, 20547 (MATCH_IRE_TYPE | MATCH_IRE_ILL)); 20548 20549 /* 20550 * For backward compatibility, we need to create net 20551 * broadcast ire's based on the old "IP address class 20552 * system." The reason is that some old machines only 20553 * respond to these class derived net broadcast. 20554 * 20555 * But we should not create these net broadcast ire's if 20556 * the subnet_mask is shorter than the IP address class based 20557 * derived netmask. Otherwise, we may create a net 20558 * broadcast address which is the same as an IP address 20559 * on the subnet. Then TCP will refuse to talk to that 20560 * address. 20561 * 20562 * Nor do we need IRE_BROADCAST ire's for the interface 20563 * with the netmask as 0xFFFFFFFF, as IRE_LOCAL for that 20564 * interface is already created. Creating these broadcast 20565 * ire's will only create confusion as the "addr" is going 20566 * to be same as that of the IP address of the interface. 20567 */ 20568 if (net_mask < subnet_mask) { 20569 addr = net_mask & ipif->ipif_subnet; 20570 irep = ire_check_and_create_bcast(ipif, addr, irep, 20571 (MATCH_IRE_TYPE | MATCH_IRE_ILL)); 20572 irep = ire_check_and_create_bcast(ipif, 20573 ~net_mask | addr, irep, 20574 (MATCH_IRE_TYPE | MATCH_IRE_ILL)); 20575 } 20576 20577 if (subnet_mask != 0xFFFFFFFF) { 20578 addr = ipif->ipif_subnet; 20579 irep = ire_check_and_create_bcast(ipif, addr, irep, 20580 (MATCH_IRE_TYPE | MATCH_IRE_ILL)); 20581 irep = ire_check_and_create_bcast(ipif, 20582 ~subnet_mask|addr, irep, 20583 (MATCH_IRE_TYPE | MATCH_IRE_ILL)); 20584 } 20585 } 20586 20587 ASSERT(!MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 20588 20589 /* If an earlier ire_create failed, get out now */ 20590 for (irep1 = irep; irep1 > ire_array; ) { 20591 irep1--; 20592 if (*irep1 == NULL) { 20593 ip1dbg(("ipif_up_done: NULL ire found in ire_array\n")); 20594 err = ENOMEM; 20595 goto bad; 20596 } 20597 } 20598 20599 /* 20600 * Need to atomically check for ip_addr_availablity_check 20601 * under ip_addr_avail_lock, and if it fails got bad, and remove 20602 * from group also.The ill_g_lock is grabbed as reader 20603 * just to make sure no new ills or new ipifs are being added 20604 * to the system while we are checking the uniqueness of addresses. 20605 */ 20606 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 20607 mutex_enter(&ipst->ips_ip_addr_avail_lock); 20608 /* Mark it up, and increment counters. */ 20609 ipif->ipif_flags |= IPIF_UP; 20610 ill->ill_ipif_up_count++; 20611 err = ip_addr_availability_check(ipif); 20612 mutex_exit(&ipst->ips_ip_addr_avail_lock); 20613 rw_exit(&ipst->ips_ill_g_lock); 20614 20615 if (err != 0) { 20616 /* 20617 * Our address may already be up on the same ill. In this case, 20618 * the ARP entry for our ipif replaced the one for the other 20619 * ipif. So we don't want to delete it (otherwise the other ipif 20620 * would be unable to send packets). 20621 * ip_addr_availability_check() identifies this case for us and 20622 * returns EADDRINUSE; we need to turn it into EADDRNOTAVAIL 20623 * which is the expected error code. 20624 */ 20625 if (err == EADDRINUSE) { 20626 freemsg(ipif->ipif_arp_del_mp); 20627 ipif->ipif_arp_del_mp = NULL; 20628 err = EADDRNOTAVAIL; 20629 } 20630 ill->ill_ipif_up_count--; 20631 ipif->ipif_flags &= ~IPIF_UP; 20632 goto bad; 20633 } 20634 20635 /* 20636 * Add in all newly created IREs. ire_create_bcast() has 20637 * already checked for duplicates of the IRE_BROADCAST type. 20638 * We want to add before we call ifgrp_insert which wants 20639 * to know whether IRE_IF_RESOLVER exists or not. 20640 * 20641 * NOTE : We refrele the ire though we may branch to "bad" 20642 * later on where we do ire_delete. This is okay 20643 * because nobody can delete it as we are running 20644 * exclusively. 20645 */ 20646 for (irep1 = irep; irep1 > ire_array; ) { 20647 irep1--; 20648 ASSERT(!MUTEX_HELD(&((*irep1)->ire_ipif->ipif_ill->ill_lock))); 20649 /* 20650 * refheld by ire_add. refele towards the end of the func 20651 */ 20652 (void) ire_add(irep1, NULL, NULL, NULL, B_FALSE); 20653 } 20654 ire_added = B_TRUE; 20655 /* 20656 * Form groups if possible. 20657 * 20658 * If we are supposed to be in a ill_group with a name, insert it 20659 * now as we know that at least one ipif is UP. Otherwise form 20660 * nameless groups. 20661 * 20662 * If ip_enable_group_ifs is set and ipif address is not 0, insert 20663 * this ipif into the appropriate interface group, or create a 20664 * new one. If this is already in a nameless group, we try to form 20665 * a bigger group looking at other ills potentially sharing this 20666 * ipif's prefix. 20667 */ 20668 phyi = ill->ill_phyint; 20669 if (phyi->phyint_groupname_len != 0) { 20670 ASSERT(phyi->phyint_groupname != NULL); 20671 if (ill->ill_ipif_up_count == 1) { 20672 ASSERT(ill->ill_group == NULL); 20673 err = illgrp_insert(&ipst->ips_illgrp_head_v4, ill, 20674 phyi->phyint_groupname, NULL, B_TRUE); 20675 if (err != 0) { 20676 ip1dbg(("ipif_up_done: illgrp allocation " 20677 "failed, error %d\n", err)); 20678 goto bad; 20679 } 20680 } 20681 ASSERT(ill->ill_group != NULL); 20682 } 20683 20684 /* 20685 * When this is part of group, we need to make sure that 20686 * any broadcast ires created because of this ipif coming 20687 * UP gets marked/cleared with IRE_MARK_NORECV appropriately 20688 * so that we don't receive duplicate broadcast packets. 20689 */ 20690 if (ill->ill_group != NULL && ill->ill_ipif_up_count != 0) 20691 ipif_renominate_bcast(ipif); 20692 20693 /* Recover any additional IRE_IF_[NO]RESOLVER entries for this ipif */ 20694 ipif_saved_ire_cnt = ipif->ipif_saved_ire_cnt; 20695 ipif_saved_irep = ipif_recover_ire(ipif); 20696 20697 if (!loopback) { 20698 /* 20699 * If the broadcast address has been set, make sure it makes 20700 * sense based on the interface address. 20701 * Only match on ill since we are sharing broadcast addresses. 20702 */ 20703 if ((ipif->ipif_brd_addr != INADDR_ANY) && 20704 (ipif->ipif_flags & IPIF_BROADCAST)) { 20705 ire_t *ire; 20706 20707 ire = ire_ctable_lookup(ipif->ipif_brd_addr, 0, 20708 IRE_BROADCAST, ipif, ALL_ZONES, 20709 NULL, (MATCH_IRE_TYPE | MATCH_IRE_ILL), ipst); 20710 20711 if (ire == NULL) { 20712 /* 20713 * If there isn't a matching broadcast IRE, 20714 * revert to the default for this netmask. 20715 */ 20716 ipif->ipif_v6brd_addr = ipv6_all_zeros; 20717 mutex_enter(&ipif->ipif_ill->ill_lock); 20718 ipif_set_default(ipif); 20719 mutex_exit(&ipif->ipif_ill->ill_lock); 20720 } else { 20721 ire_refrele(ire); 20722 } 20723 } 20724 20725 } 20726 20727 /* This is the first interface on this ill */ 20728 if (ipif->ipif_ipif_up_count == 1 && !loopback) { 20729 /* 20730 * Need to recover all multicast memberships in the driver. 20731 * This had to be deferred until we had attached. 20732 */ 20733 ill_recover_multicast(ill); 20734 } 20735 /* Join the allhosts multicast address */ 20736 ipif_multicast_up(ipif); 20737 20738 if (!loopback) { 20739 /* 20740 * See whether anybody else would benefit from the 20741 * new ipif that we added. We call this always rather 20742 * than while adding a non-IPIF_NOLOCAL/DEPRECATED/ANYCAST 20743 * ipif is for the benefit of illgrp_insert (done above) 20744 * which does not do source address selection as it does 20745 * not want to re-create interface routes that we are 20746 * having reference to it here. 20747 */ 20748 ill_update_source_selection(ill); 20749 } 20750 20751 for (irep1 = irep; irep1 > ire_array; ) { 20752 irep1--; 20753 if (*irep1 != NULL) { 20754 /* was held in ire_add */ 20755 ire_refrele(*irep1); 20756 } 20757 } 20758 20759 cnt = ipif_saved_ire_cnt; 20760 for (irep1 = ipif_saved_irep; cnt > 0; irep1++, cnt--) { 20761 if (*irep1 != NULL) { 20762 /* was held in ire_add */ 20763 ire_refrele(*irep1); 20764 } 20765 } 20766 20767 if (!loopback && ipif->ipif_addr_ready) { 20768 /* Broadcast an address mask reply. */ 20769 ipif_mask_reply(ipif); 20770 } 20771 if (ipif_saved_irep != NULL) { 20772 kmem_free(ipif_saved_irep, 20773 ipif_saved_ire_cnt * sizeof (ire_t *)); 20774 } 20775 if (src_ipif_held) 20776 ipif_refrele(src_ipif); 20777 20778 /* 20779 * This had to be deferred until we had bound. Tell routing sockets and 20780 * others that this interface is up if it looks like the address has 20781 * been validated. Otherwise, if it isn't ready yet, wait for 20782 * duplicate address detection to do its thing. 20783 */ 20784 if (ipif->ipif_addr_ready) { 20785 ip_rts_ifmsg(ipif); 20786 ip_rts_newaddrmsg(RTM_ADD, 0, ipif); 20787 /* Let SCTP update the status for this ipif */ 20788 sctp_update_ipif(ipif, SCTP_IPIF_UP); 20789 } 20790 return (0); 20791 20792 bad: 20793 ip1dbg(("ipif_up_done: FAILED \n")); 20794 /* 20795 * We don't have to bother removing from ill groups because 20796 * 20797 * 1) For groups with names, we insert only when the first ipif 20798 * comes up. In that case if it fails, it will not be in any 20799 * group. So, we need not try to remove for that case. 20800 * 20801 * 2) For groups without names, either we tried to insert ipif_ill 20802 * in a group as singleton or found some other group to become 20803 * a bigger group. For the former, if it fails we don't have 20804 * anything to do as ipif_ill is not in the group and for the 20805 * latter, there are no failures in illgrp_insert/illgrp_delete 20806 * (ENOMEM can't occur for this. Check ifgrp_insert). 20807 */ 20808 while (irep > ire_array) { 20809 irep--; 20810 if (*irep != NULL) { 20811 ire_delete(*irep); 20812 if (ire_added) 20813 ire_refrele(*irep); 20814 } 20815 } 20816 (void) ip_srcid_remove(&ipif->ipif_v6lcl_addr, ipif->ipif_zoneid, ipst); 20817 20818 if (ipif_saved_irep != NULL) { 20819 kmem_free(ipif_saved_irep, 20820 ipif_saved_ire_cnt * sizeof (ire_t *)); 20821 } 20822 if (src_ipif_held) 20823 ipif_refrele(src_ipif); 20824 20825 ipif_arp_down(ipif); 20826 return (err); 20827 } 20828 20829 /* 20830 * Turn off the ARP with the ILLF_NOARP flag. 20831 */ 20832 static int 20833 ill_arp_off(ill_t *ill) 20834 { 20835 mblk_t *arp_off_mp = NULL; 20836 mblk_t *arp_on_mp = NULL; 20837 20838 ip1dbg(("ill_arp_off(%s)\n", ill->ill_name)); 20839 20840 ASSERT(IAM_WRITER_ILL(ill)); 20841 ASSERT(ill->ill_net_type == IRE_IF_RESOLVER); 20842 20843 /* 20844 * If the on message is still around we've already done 20845 * an arp_off without doing an arp_on thus there is no 20846 * work needed. 20847 */ 20848 if (ill->ill_arp_on_mp != NULL) 20849 return (0); 20850 20851 /* 20852 * Allocate an ARP on message (to be saved) and an ARP off message 20853 */ 20854 arp_off_mp = ill_arp_alloc(ill, (uchar_t *)&ip_aroff_template, 0); 20855 if (!arp_off_mp) 20856 return (ENOMEM); 20857 20858 arp_on_mp = ill_arp_alloc(ill, (uchar_t *)&ip_aron_template, 0); 20859 if (!arp_on_mp) 20860 goto failed; 20861 20862 ASSERT(ill->ill_arp_on_mp == NULL); 20863 ill->ill_arp_on_mp = arp_on_mp; 20864 20865 /* Send an AR_INTERFACE_OFF request */ 20866 putnext(ill->ill_rq, arp_off_mp); 20867 return (0); 20868 failed: 20869 20870 if (arp_off_mp) 20871 freemsg(arp_off_mp); 20872 return (ENOMEM); 20873 } 20874 20875 /* 20876 * Turn on ARP by turning off the ILLF_NOARP flag. 20877 */ 20878 static int 20879 ill_arp_on(ill_t *ill) 20880 { 20881 mblk_t *mp; 20882 20883 ip1dbg(("ipif_arp_on(%s)\n", ill->ill_name)); 20884 20885 ASSERT(ill->ill_net_type == IRE_IF_RESOLVER); 20886 20887 ASSERT(IAM_WRITER_ILL(ill)); 20888 /* 20889 * Send an AR_INTERFACE_ON request if we have already done 20890 * an arp_off (which allocated the message). 20891 */ 20892 if (ill->ill_arp_on_mp != NULL) { 20893 mp = ill->ill_arp_on_mp; 20894 ill->ill_arp_on_mp = NULL; 20895 putnext(ill->ill_rq, mp); 20896 } 20897 return (0); 20898 } 20899 20900 /* 20901 * Called after either deleting ill from the group or when setting 20902 * FAILED or STANDBY on the interface. 20903 */ 20904 static void 20905 illgrp_reset_schednext(ill_t *ill) 20906 { 20907 ill_group_t *illgrp; 20908 ill_t *save_ill; 20909 20910 ASSERT(IAM_WRITER_ILL(ill)); 20911 /* 20912 * When called from illgrp_delete, ill_group will be non-NULL. 20913 * But when called from ip_sioctl_flags, it could be NULL if 20914 * somebody is setting FAILED/INACTIVE on some interface which 20915 * is not part of a group. 20916 */ 20917 illgrp = ill->ill_group; 20918 if (illgrp == NULL) 20919 return; 20920 if (illgrp->illgrp_ill_schednext != ill) 20921 return; 20922 20923 illgrp->illgrp_ill_schednext = NULL; 20924 save_ill = ill; 20925 /* 20926 * Choose a good ill to be the next one for 20927 * outbound traffic. As the flags FAILED/STANDBY is 20928 * not yet marked when called from ip_sioctl_flags, 20929 * we check for ill separately. 20930 */ 20931 for (ill = illgrp->illgrp_ill; ill != NULL; 20932 ill = ill->ill_group_next) { 20933 if ((ill != save_ill) && 20934 !(ill->ill_phyint->phyint_flags & 20935 (PHYI_FAILED|PHYI_INACTIVE|PHYI_OFFLINE))) { 20936 illgrp->illgrp_ill_schednext = ill; 20937 return; 20938 } 20939 } 20940 } 20941 20942 /* 20943 * Given an ill, find the next ill in the group to be scheduled. 20944 * (This should be called by ip_newroute() before ire_create().) 20945 * The passed in ill may be pulled out of the group, after we have picked 20946 * up a different outgoing ill from the same group. However ire add will 20947 * atomically check this. 20948 */ 20949 ill_t * 20950 illgrp_scheduler(ill_t *ill) 20951 { 20952 ill_t *retill; 20953 ill_group_t *illgrp; 20954 int illcnt; 20955 int i; 20956 uint64_t flags; 20957 ip_stack_t *ipst = ill->ill_ipst; 20958 20959 /* 20960 * We don't use a lock to check for the ill_group. If this ill 20961 * is currently being inserted we may end up just returning this 20962 * ill itself. That is ok. 20963 */ 20964 if (ill->ill_group == NULL) { 20965 ill_refhold(ill); 20966 return (ill); 20967 } 20968 20969 /* 20970 * Grab the ill_g_lock as reader to make sure we are dealing with 20971 * a set of stable ills. No ill can be added or deleted or change 20972 * group while we hold the reader lock. 20973 */ 20974 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 20975 if ((illgrp = ill->ill_group) == NULL) { 20976 rw_exit(&ipst->ips_ill_g_lock); 20977 ill_refhold(ill); 20978 return (ill); 20979 } 20980 20981 illcnt = illgrp->illgrp_ill_count; 20982 mutex_enter(&illgrp->illgrp_lock); 20983 retill = illgrp->illgrp_ill_schednext; 20984 20985 if (retill == NULL) 20986 retill = illgrp->illgrp_ill; 20987 20988 /* 20989 * We do a circular search beginning at illgrp_ill_schednext 20990 * or illgrp_ill. We don't check the flags against the ill lock 20991 * since it can change anytime. The ire creation will be atomic 20992 * and will fail if the ill is FAILED or OFFLINE. 20993 */ 20994 for (i = 0; i < illcnt; i++) { 20995 flags = retill->ill_phyint->phyint_flags; 20996 20997 if (!(flags & (PHYI_FAILED|PHYI_INACTIVE|PHYI_OFFLINE)) && 20998 ILL_CAN_LOOKUP(retill)) { 20999 illgrp->illgrp_ill_schednext = retill->ill_group_next; 21000 ill_refhold(retill); 21001 break; 21002 } 21003 retill = retill->ill_group_next; 21004 if (retill == NULL) 21005 retill = illgrp->illgrp_ill; 21006 } 21007 mutex_exit(&illgrp->illgrp_lock); 21008 rw_exit(&ipst->ips_ill_g_lock); 21009 21010 return (i == illcnt ? NULL : retill); 21011 } 21012 21013 /* 21014 * Checks for availbility of a usable source address (if there is one) when the 21015 * destination ILL has the ill_usesrc_ifindex pointing to another ILL. Note 21016 * this selection is done regardless of the destination. 21017 */ 21018 boolean_t 21019 ipif_usesrc_avail(ill_t *ill, zoneid_t zoneid) 21020 { 21021 uint_t ifindex; 21022 ipif_t *ipif = NULL; 21023 ill_t *uill; 21024 boolean_t isv6; 21025 ip_stack_t *ipst = ill->ill_ipst; 21026 21027 ASSERT(ill != NULL); 21028 21029 isv6 = ill->ill_isv6; 21030 ifindex = ill->ill_usesrc_ifindex; 21031 if (ifindex != 0) { 21032 uill = ill_lookup_on_ifindex(ifindex, isv6, NULL, NULL, NULL, 21033 NULL, ipst); 21034 if (uill == NULL) 21035 return (NULL); 21036 mutex_enter(&uill->ill_lock); 21037 for (ipif = uill->ill_ipif; ipif != NULL; 21038 ipif = ipif->ipif_next) { 21039 if (!IPIF_CAN_LOOKUP(ipif)) 21040 continue; 21041 if (ipif->ipif_flags & (IPIF_NOLOCAL|IPIF_ANYCAST)) 21042 continue; 21043 if (!(ipif->ipif_flags & IPIF_UP)) 21044 continue; 21045 if (ipif->ipif_zoneid != zoneid) 21046 continue; 21047 if ((isv6 && 21048 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr)) || 21049 (ipif->ipif_lcl_addr == INADDR_ANY)) 21050 continue; 21051 mutex_exit(&uill->ill_lock); 21052 ill_refrele(uill); 21053 return (B_TRUE); 21054 } 21055 mutex_exit(&uill->ill_lock); 21056 ill_refrele(uill); 21057 } 21058 return (B_FALSE); 21059 } 21060 21061 /* 21062 * Determine the best source address given a destination address and an ill. 21063 * Prefers non-deprecated over deprecated but will return a deprecated 21064 * address if there is no other choice. If there is a usable source address 21065 * on the interface pointed to by ill_usesrc_ifindex then that is given 21066 * first preference. 21067 * 21068 * Returns NULL if there is no suitable source address for the ill. 21069 * This only occurs when there is no valid source address for the ill. 21070 */ 21071 ipif_t * 21072 ipif_select_source(ill_t *ill, ipaddr_t dst, zoneid_t zoneid) 21073 { 21074 ipif_t *ipif; 21075 ipif_t *ipif_dep = NULL; /* Fallback to deprecated */ 21076 ipif_t *ipif_arr[MAX_IPIF_SELECT_SOURCE]; 21077 int index = 0; 21078 boolean_t wrapped = B_FALSE; 21079 boolean_t same_subnet_only = B_FALSE; 21080 boolean_t ipif_same_found, ipif_other_found; 21081 boolean_t specific_found; 21082 ill_t *till, *usill = NULL; 21083 tsol_tpc_t *src_rhtp, *dst_rhtp; 21084 ip_stack_t *ipst = ill->ill_ipst; 21085 21086 if (ill->ill_usesrc_ifindex != 0) { 21087 usill = ill_lookup_on_ifindex(ill->ill_usesrc_ifindex, 21088 B_FALSE, NULL, NULL, NULL, NULL, ipst); 21089 if (usill != NULL) 21090 ill = usill; /* Select source from usesrc ILL */ 21091 else 21092 return (NULL); 21093 } 21094 21095 /* 21096 * If we're dealing with an unlabeled destination on a labeled system, 21097 * make sure that we ignore source addresses that are incompatible with 21098 * the destination's default label. That destination's default label 21099 * must dominate the minimum label on the source address. 21100 */ 21101 dst_rhtp = NULL; 21102 if (is_system_labeled()) { 21103 dst_rhtp = find_tpc(&dst, IPV4_VERSION, B_FALSE); 21104 if (dst_rhtp == NULL) 21105 return (NULL); 21106 if (dst_rhtp->tpc_tp.host_type != UNLABELED) { 21107 TPC_RELE(dst_rhtp); 21108 dst_rhtp = NULL; 21109 } 21110 } 21111 21112 /* 21113 * Holds the ill_g_lock as reader. This makes sure that no ipif/ill 21114 * can be deleted. But an ipif/ill can get CONDEMNED any time. 21115 * After selecting the right ipif, under ill_lock make sure ipif is 21116 * not condemned, and increment refcnt. If ipif is CONDEMNED, 21117 * we retry. Inside the loop we still need to check for CONDEMNED, 21118 * but not under a lock. 21119 */ 21120 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 21121 21122 retry: 21123 till = ill; 21124 ipif_arr[0] = NULL; 21125 21126 if (till->ill_group != NULL) 21127 till = till->ill_group->illgrp_ill; 21128 21129 /* 21130 * Choose one good source address from each ill across the group. 21131 * If possible choose a source address in the same subnet as 21132 * the destination address. 21133 * 21134 * We don't check for PHYI_FAILED or PHYI_INACTIVE or PHYI_OFFLINE 21135 * This is okay because of the following. 21136 * 21137 * If PHYI_FAILED is set and we still have non-deprecated 21138 * addresses, it means the addresses have not yet been 21139 * failed over to a different interface. We potentially 21140 * select them to create IRE_CACHES, which will be later 21141 * flushed when the addresses move over. 21142 * 21143 * If PHYI_INACTIVE is set and we still have non-deprecated 21144 * addresses, it means either the user has configured them 21145 * or PHYI_INACTIVE has not been cleared after the addresses 21146 * been moved over. For the former, in.mpathd does a failover 21147 * when the interface becomes INACTIVE and hence we should 21148 * not find them. Once INACTIVE is set, we don't allow them 21149 * to create logical interfaces anymore. For the latter, a 21150 * flush will happen when INACTIVE is cleared which will 21151 * flush the IRE_CACHES. 21152 * 21153 * If PHYI_OFFLINE is set, all the addresses will be failed 21154 * over soon. We potentially select them to create IRE_CACHEs, 21155 * which will be later flushed when the addresses move over. 21156 * 21157 * NOTE : As ipif_select_source is called to borrow source address 21158 * for an ipif that is part of a group, source address selection 21159 * will be re-done whenever the group changes i.e either an 21160 * insertion/deletion in the group. 21161 * 21162 * Fill ipif_arr[] with source addresses, using these rules: 21163 * 21164 * 1. At most one source address from a given ill ends up 21165 * in ipif_arr[] -- that is, at most one of the ipif's 21166 * associated with a given ill ends up in ipif_arr[]. 21167 * 21168 * 2. If there is at least one non-deprecated ipif in the 21169 * IPMP group with a source address on the same subnet as 21170 * our destination, then fill ipif_arr[] only with 21171 * source addresses on the same subnet as our destination. 21172 * Note that because of (1), only the first 21173 * non-deprecated ipif found with a source address 21174 * matching the destination ends up in ipif_arr[]. 21175 * 21176 * 3. Otherwise, fill ipif_arr[] with non-deprecated source 21177 * addresses not in the same subnet as our destination. 21178 * Again, because of (1), only the first off-subnet source 21179 * address will be chosen. 21180 * 21181 * 4. If there are no non-deprecated ipifs, then just use 21182 * the source address associated with the last deprecated 21183 * one we find that happens to be on the same subnet, 21184 * otherwise the first one not in the same subnet. 21185 */ 21186 specific_found = B_FALSE; 21187 for (; till != NULL; till = till->ill_group_next) { 21188 ipif_same_found = B_FALSE; 21189 ipif_other_found = B_FALSE; 21190 for (ipif = till->ill_ipif; ipif != NULL; 21191 ipif = ipif->ipif_next) { 21192 if (!IPIF_CAN_LOOKUP(ipif)) 21193 continue; 21194 /* Always skip NOLOCAL and ANYCAST interfaces */ 21195 if (ipif->ipif_flags & (IPIF_NOLOCAL|IPIF_ANYCAST)) 21196 continue; 21197 if (!(ipif->ipif_flags & IPIF_UP) || 21198 !ipif->ipif_addr_ready) 21199 continue; 21200 if (ipif->ipif_zoneid != zoneid && 21201 ipif->ipif_zoneid != ALL_ZONES) 21202 continue; 21203 /* 21204 * Interfaces with 0.0.0.0 address are allowed to be UP, 21205 * but are not valid as source addresses. 21206 */ 21207 if (ipif->ipif_lcl_addr == INADDR_ANY) 21208 continue; 21209 21210 /* 21211 * Check compatibility of local address for 21212 * destination's default label if we're on a labeled 21213 * system. Incompatible addresses can't be used at 21214 * all. 21215 */ 21216 if (dst_rhtp != NULL) { 21217 boolean_t incompat; 21218 21219 src_rhtp = find_tpc(&ipif->ipif_lcl_addr, 21220 IPV4_VERSION, B_FALSE); 21221 if (src_rhtp == NULL) 21222 continue; 21223 incompat = 21224 src_rhtp->tpc_tp.host_type != SUN_CIPSO || 21225 src_rhtp->tpc_tp.tp_doi != 21226 dst_rhtp->tpc_tp.tp_doi || 21227 (!_blinrange(&dst_rhtp->tpc_tp.tp_def_label, 21228 &src_rhtp->tpc_tp.tp_sl_range_cipso) && 21229 !blinlset(&dst_rhtp->tpc_tp.tp_def_label, 21230 src_rhtp->tpc_tp.tp_sl_set_cipso)); 21231 TPC_RELE(src_rhtp); 21232 if (incompat) 21233 continue; 21234 } 21235 21236 /* 21237 * We prefer not to use all all-zones addresses, if we 21238 * can avoid it, as they pose problems with unlabeled 21239 * destinations. 21240 */ 21241 if (ipif->ipif_zoneid != ALL_ZONES) { 21242 if (!specific_found && 21243 (!same_subnet_only || 21244 (ipif->ipif_net_mask & dst) == 21245 ipif->ipif_subnet)) { 21246 index = 0; 21247 specific_found = B_TRUE; 21248 ipif_other_found = B_FALSE; 21249 } 21250 } else { 21251 if (specific_found) 21252 continue; 21253 } 21254 if (ipif->ipif_flags & IPIF_DEPRECATED) { 21255 if (ipif_dep == NULL || 21256 (ipif->ipif_net_mask & dst) == 21257 ipif->ipif_subnet) 21258 ipif_dep = ipif; 21259 continue; 21260 } 21261 if ((ipif->ipif_net_mask & dst) == ipif->ipif_subnet) { 21262 /* found a source address in the same subnet */ 21263 if (!same_subnet_only) { 21264 same_subnet_only = B_TRUE; 21265 index = 0; 21266 } 21267 ipif_same_found = B_TRUE; 21268 } else { 21269 if (same_subnet_only || ipif_other_found) 21270 continue; 21271 ipif_other_found = B_TRUE; 21272 } 21273 ipif_arr[index++] = ipif; 21274 if (index == MAX_IPIF_SELECT_SOURCE) { 21275 wrapped = B_TRUE; 21276 index = 0; 21277 } 21278 if (ipif_same_found) 21279 break; 21280 } 21281 } 21282 21283 if (ipif_arr[0] == NULL) { 21284 ipif = ipif_dep; 21285 } else { 21286 if (wrapped) 21287 index = MAX_IPIF_SELECT_SOURCE; 21288 ipif = ipif_arr[ipif_rand(ipst) % index]; 21289 ASSERT(ipif != NULL); 21290 } 21291 21292 if (ipif != NULL) { 21293 mutex_enter(&ipif->ipif_ill->ill_lock); 21294 if (!IPIF_CAN_LOOKUP(ipif)) { 21295 mutex_exit(&ipif->ipif_ill->ill_lock); 21296 goto retry; 21297 } 21298 ipif_refhold_locked(ipif); 21299 mutex_exit(&ipif->ipif_ill->ill_lock); 21300 } 21301 21302 rw_exit(&ipst->ips_ill_g_lock); 21303 if (usill != NULL) 21304 ill_refrele(usill); 21305 if (dst_rhtp != NULL) 21306 TPC_RELE(dst_rhtp); 21307 21308 #ifdef DEBUG 21309 if (ipif == NULL) { 21310 char buf1[INET6_ADDRSTRLEN]; 21311 21312 ip1dbg(("ipif_select_source(%s, %s) -> NULL\n", 21313 ill->ill_name, 21314 inet_ntop(AF_INET, &dst, buf1, sizeof (buf1)))); 21315 } else { 21316 char buf1[INET6_ADDRSTRLEN]; 21317 char buf2[INET6_ADDRSTRLEN]; 21318 21319 ip1dbg(("ipif_select_source(%s, %s) -> %s\n", 21320 ipif->ipif_ill->ill_name, 21321 inet_ntop(AF_INET, &dst, buf1, sizeof (buf1)), 21322 inet_ntop(AF_INET, &ipif->ipif_lcl_addr, 21323 buf2, sizeof (buf2)))); 21324 } 21325 #endif /* DEBUG */ 21326 return (ipif); 21327 } 21328 21329 21330 /* 21331 * If old_ipif is not NULL, see if ipif was derived from old 21332 * ipif and if so, recreate the interface route by re-doing 21333 * source address selection. This happens when ipif_down -> 21334 * ipif_update_other_ipifs calls us. 21335 * 21336 * If old_ipif is NULL, just redo the source address selection 21337 * if needed. This happens when illgrp_insert or ipif_up_done 21338 * calls us. 21339 */ 21340 static void 21341 ipif_recreate_interface_routes(ipif_t *old_ipif, ipif_t *ipif) 21342 { 21343 ire_t *ire; 21344 ire_t *ipif_ire; 21345 queue_t *stq; 21346 ipif_t *nipif; 21347 ill_t *ill; 21348 boolean_t need_rele = B_FALSE; 21349 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 21350 21351 ASSERT(old_ipif == NULL || IAM_WRITER_IPIF(old_ipif)); 21352 ASSERT(IAM_WRITER_IPIF(ipif)); 21353 21354 ill = ipif->ipif_ill; 21355 if (!(ipif->ipif_flags & 21356 (IPIF_NOLOCAL|IPIF_ANYCAST|IPIF_DEPRECATED))) { 21357 /* 21358 * Can't possibly have borrowed the source 21359 * from old_ipif. 21360 */ 21361 return; 21362 } 21363 21364 /* 21365 * Is there any work to be done? No work if the address 21366 * is INADDR_ANY, loopback or NOLOCAL or ANYCAST ( 21367 * ipif_select_source() does not borrow addresses from 21368 * NOLOCAL and ANYCAST interfaces). 21369 */ 21370 if ((old_ipif != NULL) && 21371 ((old_ipif->ipif_lcl_addr == INADDR_ANY) || 21372 (old_ipif->ipif_ill->ill_wq == NULL) || 21373 (old_ipif->ipif_flags & 21374 (IPIF_NOLOCAL|IPIF_ANYCAST)))) { 21375 return; 21376 } 21377 21378 /* 21379 * Perform the same checks as when creating the 21380 * IRE_INTERFACE in ipif_up_done. 21381 */ 21382 if (!(ipif->ipif_flags & IPIF_UP)) 21383 return; 21384 21385 if ((ipif->ipif_flags & IPIF_NOXMIT) || 21386 (ipif->ipif_subnet == INADDR_ANY)) 21387 return; 21388 21389 ipif_ire = ipif_to_ire(ipif); 21390 if (ipif_ire == NULL) 21391 return; 21392 21393 /* 21394 * We know that ipif uses some other source for its 21395 * IRE_INTERFACE. Is it using the source of this 21396 * old_ipif? 21397 */ 21398 if (old_ipif != NULL && 21399 old_ipif->ipif_lcl_addr != ipif_ire->ire_src_addr) { 21400 ire_refrele(ipif_ire); 21401 return; 21402 } 21403 if (ip_debug > 2) { 21404 /* ip1dbg */ 21405 pr_addr_dbg("ipif_recreate_interface_routes: deleting IRE for" 21406 " src %s\n", AF_INET, &ipif_ire->ire_src_addr); 21407 } 21408 21409 stq = ipif_ire->ire_stq; 21410 21411 /* 21412 * Can't use our source address. Select a different 21413 * source address for the IRE_INTERFACE. 21414 */ 21415 nipif = ipif_select_source(ill, ipif->ipif_subnet, ipif->ipif_zoneid); 21416 if (nipif == NULL) { 21417 /* Last resort - all ipif's have IPIF_NOLOCAL */ 21418 nipif = ipif; 21419 } else { 21420 need_rele = B_TRUE; 21421 } 21422 21423 ire = ire_create( 21424 (uchar_t *)&ipif->ipif_subnet, /* dest pref */ 21425 (uchar_t *)&ipif->ipif_net_mask, /* mask */ 21426 (uchar_t *)&nipif->ipif_src_addr, /* src addr */ 21427 NULL, /* no gateway */ 21428 NULL, 21429 &ipif->ipif_mtu, /* max frag */ 21430 NULL, /* fast path header */ 21431 NULL, /* no recv from queue */ 21432 stq, /* send-to queue */ 21433 ill->ill_net_type, /* IF_[NO]RESOLVER */ 21434 ill->ill_resolver_mp, /* xmit header */ 21435 ipif, 21436 NULL, 21437 0, 21438 0, 21439 0, 21440 0, 21441 &ire_uinfo_null, 21442 NULL, 21443 NULL, 21444 ipst); 21445 21446 if (ire != NULL) { 21447 ire_t *ret_ire; 21448 int error; 21449 21450 /* 21451 * We don't need ipif_ire anymore. We need to delete 21452 * before we add so that ire_add does not detect 21453 * duplicates. 21454 */ 21455 ire_delete(ipif_ire); 21456 ret_ire = ire; 21457 error = ire_add(&ret_ire, NULL, NULL, NULL, B_FALSE); 21458 ASSERT(error == 0); 21459 ASSERT(ire == ret_ire); 21460 /* Held in ire_add */ 21461 ire_refrele(ret_ire); 21462 } 21463 /* 21464 * Either we are falling through from above or could not 21465 * allocate a replacement. 21466 */ 21467 ire_refrele(ipif_ire); 21468 if (need_rele) 21469 ipif_refrele(nipif); 21470 } 21471 21472 /* 21473 * This old_ipif is going away. 21474 * 21475 * Determine if any other ipif's is using our address as 21476 * ipif_lcl_addr (due to those being IPIF_NOLOCAL, IPIF_ANYCAST, or 21477 * IPIF_DEPRECATED). 21478 * Find the IRE_INTERFACE for such ipifs and recreate them 21479 * to use an different source address following the rules in 21480 * ipif_up_done. 21481 * 21482 * This function takes an illgrp as an argument so that illgrp_delete 21483 * can call this to update source address even after deleting the 21484 * old_ipif->ipif_ill from the ill group. 21485 */ 21486 static void 21487 ipif_update_other_ipifs(ipif_t *old_ipif, ill_group_t *illgrp) 21488 { 21489 ipif_t *ipif; 21490 ill_t *ill; 21491 char buf[INET6_ADDRSTRLEN]; 21492 21493 ASSERT(IAM_WRITER_IPIF(old_ipif)); 21494 ASSERT(illgrp == NULL || IAM_WRITER_IPIF(old_ipif)); 21495 21496 ill = old_ipif->ipif_ill; 21497 21498 ip1dbg(("ipif_update_other_ipifs(%s, %s)\n", 21499 ill->ill_name, 21500 inet_ntop(AF_INET, &old_ipif->ipif_lcl_addr, 21501 buf, sizeof (buf)))); 21502 /* 21503 * If this part of a group, look at all ills as ipif_select_source 21504 * borrows source address across all the ills in the group. 21505 */ 21506 if (illgrp != NULL) 21507 ill = illgrp->illgrp_ill; 21508 21509 for (; ill != NULL; ill = ill->ill_group_next) { 21510 for (ipif = ill->ill_ipif; ipif != NULL; 21511 ipif = ipif->ipif_next) { 21512 21513 if (ipif == old_ipif) 21514 continue; 21515 21516 ipif_recreate_interface_routes(old_ipif, ipif); 21517 } 21518 } 21519 } 21520 21521 /* ARGSUSED */ 21522 int 21523 if_unitsel_restart(ipif_t *ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 21524 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 21525 { 21526 /* 21527 * ill_phyint_reinit merged the v4 and v6 into a single 21528 * ipsq. Could also have become part of a ipmp group in the 21529 * process, and we might not have been able to complete the 21530 * operation in ipif_set_values, if we could not become 21531 * exclusive. If so restart it here. 21532 */ 21533 return (ipif_set_values_tail(ipif->ipif_ill, ipif, mp, q)); 21534 } 21535 21536 21537 /* 21538 * Can operate on either a module or a driver queue. 21539 * Returns an error if not a module queue. 21540 */ 21541 /* ARGSUSED */ 21542 int 21543 if_unitsel(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 21544 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 21545 { 21546 queue_t *q1 = q; 21547 char *cp; 21548 char interf_name[LIFNAMSIZ]; 21549 uint_t ppa = *(uint_t *)mp->b_cont->b_cont->b_rptr; 21550 21551 if (q->q_next == NULL) { 21552 ip1dbg(( 21553 "if_unitsel: IF_UNITSEL: no q_next\n")); 21554 return (EINVAL); 21555 } 21556 21557 if (((ill_t *)(q->q_ptr))->ill_name[0] != '\0') 21558 return (EALREADY); 21559 21560 do { 21561 q1 = q1->q_next; 21562 } while (q1->q_next); 21563 cp = q1->q_qinfo->qi_minfo->mi_idname; 21564 (void) sprintf(interf_name, "%s%d", cp, ppa); 21565 21566 /* 21567 * Here we are not going to delay the ioack until after 21568 * ACKs from DL_ATTACH_REQ/DL_BIND_REQ. So no need to save the 21569 * original ioctl message before sending the requests. 21570 */ 21571 return (ipif_set_values(q, mp, interf_name, &ppa)); 21572 } 21573 21574 /* ARGSUSED */ 21575 int 21576 ip_sioctl_sifname(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 21577 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 21578 { 21579 return (ENXIO); 21580 } 21581 21582 /* 21583 * Net and subnet broadcast ire's are now specific to the particular 21584 * physical interface (ill) and not to any one locigal interface (ipif). 21585 * However, if a particular logical interface is being taken down, it's 21586 * associated ire's will be taken down as well. Hence, when we go to 21587 * take down or change the local address, broadcast address or netmask 21588 * of a specific logical interface, we must check to make sure that we 21589 * have valid net and subnet broadcast ire's for the other logical 21590 * interfaces which may have been shared with the logical interface 21591 * being brought down or changed. 21592 * 21593 * There is one set of 0.0.0.0 and 255.255.255.255 per ill. Usually it 21594 * is tied to the first interface coming UP. If that ipif is going down, 21595 * we need to recreate them on the next valid ipif. 21596 * 21597 * Note: assume that the ipif passed in is still up so that it's IRE 21598 * entries are still valid. 21599 */ 21600 static void 21601 ipif_check_bcast_ires(ipif_t *test_ipif) 21602 { 21603 ipif_t *ipif; 21604 ire_t *test_subnet_ire, *test_net_ire; 21605 ire_t *test_allzero_ire, *test_allone_ire; 21606 ire_t *ire_array[12]; 21607 ire_t **irep = &ire_array[0]; 21608 ire_t **irep1; 21609 ipaddr_t net_addr, subnet_addr, net_mask, subnet_mask; 21610 ipaddr_t test_net_addr, test_subnet_addr; 21611 ipaddr_t test_net_mask, test_subnet_mask; 21612 boolean_t need_net_bcast_ire = B_FALSE; 21613 boolean_t need_subnet_bcast_ire = B_FALSE; 21614 boolean_t allzero_bcast_ire_created = B_FALSE; 21615 boolean_t allone_bcast_ire_created = B_FALSE; 21616 boolean_t net_bcast_ire_created = B_FALSE; 21617 boolean_t subnet_bcast_ire_created = B_FALSE; 21618 21619 ipif_t *backup_ipif_net = (ipif_t *)NULL; 21620 ipif_t *backup_ipif_subnet = (ipif_t *)NULL; 21621 ipif_t *backup_ipif_allzeros = (ipif_t *)NULL; 21622 ipif_t *backup_ipif_allones = (ipif_t *)NULL; 21623 uint64_t check_flags = IPIF_DEPRECATED | IPIF_NOLOCAL | IPIF_ANYCAST; 21624 ip_stack_t *ipst = test_ipif->ipif_ill->ill_ipst; 21625 21626 ASSERT(!test_ipif->ipif_isv6); 21627 ASSERT(IAM_WRITER_IPIF(test_ipif)); 21628 21629 /* 21630 * No broadcast IREs for the LOOPBACK interface 21631 * or others such as point to point and IPIF_NOXMIT. 21632 */ 21633 if (!(test_ipif->ipif_flags & IPIF_BROADCAST) || 21634 (test_ipif->ipif_flags & IPIF_NOXMIT)) 21635 return; 21636 21637 test_allzero_ire = ire_ctable_lookup(0, 0, IRE_BROADCAST, 21638 test_ipif, ALL_ZONES, NULL, (MATCH_IRE_TYPE | MATCH_IRE_IPIF), 21639 ipst); 21640 21641 test_allone_ire = ire_ctable_lookup(INADDR_BROADCAST, 0, IRE_BROADCAST, 21642 test_ipif, ALL_ZONES, NULL, (MATCH_IRE_TYPE | MATCH_IRE_IPIF), 21643 ipst); 21644 21645 test_net_mask = ip_net_mask(test_ipif->ipif_subnet); 21646 test_subnet_mask = test_ipif->ipif_net_mask; 21647 21648 /* 21649 * If no net mask set, assume the default based on net class. 21650 */ 21651 if (test_subnet_mask == 0) 21652 test_subnet_mask = test_net_mask; 21653 21654 /* 21655 * Check if there is a network broadcast ire associated with this ipif 21656 */ 21657 test_net_addr = test_net_mask & test_ipif->ipif_subnet; 21658 test_net_ire = ire_ctable_lookup(test_net_addr, 0, IRE_BROADCAST, 21659 test_ipif, ALL_ZONES, NULL, (MATCH_IRE_TYPE | MATCH_IRE_IPIF), 21660 ipst); 21661 21662 /* 21663 * Check if there is a subnet broadcast IRE associated with this ipif 21664 */ 21665 test_subnet_addr = test_subnet_mask & test_ipif->ipif_subnet; 21666 test_subnet_ire = ire_ctable_lookup(test_subnet_addr, 0, IRE_BROADCAST, 21667 test_ipif, ALL_ZONES, NULL, (MATCH_IRE_TYPE | MATCH_IRE_IPIF), 21668 ipst); 21669 21670 /* 21671 * No broadcast ire's associated with this ipif. 21672 */ 21673 if ((test_subnet_ire == NULL) && (test_net_ire == NULL) && 21674 (test_allzero_ire == NULL) && (test_allone_ire == NULL)) { 21675 return; 21676 } 21677 21678 /* 21679 * We have established which bcast ires have to be replaced. 21680 * Next we try to locate ipifs that match there ires. 21681 * The rules are simple: If we find an ipif that matches on the subnet 21682 * address it will also match on the net address, the allzeros and 21683 * allones address. Any ipif that matches only on the net address will 21684 * also match the allzeros and allones addresses. 21685 * The other criterion is the ipif_flags. We look for non-deprecated 21686 * (and non-anycast and non-nolocal) ipifs as the best choice. 21687 * ipifs with check_flags matching (deprecated, etc) are used only 21688 * if good ipifs are not available. While looping, we save existing 21689 * deprecated ipifs as backup_ipif. 21690 * We loop through all the ipifs for this ill looking for ipifs 21691 * whose broadcast addr match the ipif passed in, but do not have 21692 * their own broadcast ires. For creating 0.0.0.0 and 21693 * 255.255.255.255 we just need an ipif on this ill to create. 21694 */ 21695 for (ipif = test_ipif->ipif_ill->ill_ipif; ipif != NULL; 21696 ipif = ipif->ipif_next) { 21697 21698 ASSERT(!ipif->ipif_isv6); 21699 /* 21700 * Already checked the ipif passed in. 21701 */ 21702 if (ipif == test_ipif) { 21703 continue; 21704 } 21705 21706 /* 21707 * We only need to recreate broadcast ires if another ipif in 21708 * the same zone uses them. The new ires must be created in the 21709 * same zone. 21710 */ 21711 if (ipif->ipif_zoneid != test_ipif->ipif_zoneid) { 21712 continue; 21713 } 21714 21715 /* 21716 * Only interested in logical interfaces with valid local 21717 * addresses or with the ability to broadcast. 21718 */ 21719 if ((ipif->ipif_subnet == 0) || 21720 !(ipif->ipif_flags & IPIF_BROADCAST) || 21721 (ipif->ipif_flags & IPIF_NOXMIT) || 21722 !(ipif->ipif_flags & IPIF_UP)) { 21723 continue; 21724 } 21725 /* 21726 * Check if there is a net broadcast ire for this 21727 * net address. If it turns out that the ipif we are 21728 * about to take down owns this ire, we must make a 21729 * new one because it is potentially going away. 21730 */ 21731 if (test_net_ire && (!net_bcast_ire_created)) { 21732 net_mask = ip_net_mask(ipif->ipif_subnet); 21733 net_addr = net_mask & ipif->ipif_subnet; 21734 if (net_addr == test_net_addr) { 21735 need_net_bcast_ire = B_TRUE; 21736 /* 21737 * Use DEPRECATED ipif only if no good 21738 * ires are available. subnet_addr is 21739 * a better match than net_addr. 21740 */ 21741 if ((ipif->ipif_flags & check_flags) && 21742 (backup_ipif_net == NULL)) { 21743 backup_ipif_net = ipif; 21744 } 21745 } 21746 } 21747 /* 21748 * Check if there is a subnet broadcast ire for this 21749 * net address. If it turns out that the ipif we are 21750 * about to take down owns this ire, we must make a 21751 * new one because it is potentially going away. 21752 */ 21753 if (test_subnet_ire && (!subnet_bcast_ire_created)) { 21754 subnet_mask = ipif->ipif_net_mask; 21755 subnet_addr = ipif->ipif_subnet; 21756 if (subnet_addr == test_subnet_addr) { 21757 need_subnet_bcast_ire = B_TRUE; 21758 if ((ipif->ipif_flags & check_flags) && 21759 (backup_ipif_subnet == NULL)) { 21760 backup_ipif_subnet = ipif; 21761 } 21762 } 21763 } 21764 21765 21766 /* Short circuit here if this ipif is deprecated */ 21767 if (ipif->ipif_flags & check_flags) { 21768 if ((test_allzero_ire != NULL) && 21769 (!allzero_bcast_ire_created) && 21770 (backup_ipif_allzeros == NULL)) { 21771 backup_ipif_allzeros = ipif; 21772 } 21773 if ((test_allone_ire != NULL) && 21774 (!allone_bcast_ire_created) && 21775 (backup_ipif_allones == NULL)) { 21776 backup_ipif_allones = ipif; 21777 } 21778 continue; 21779 } 21780 21781 /* 21782 * Found an ipif which has the same broadcast ire as the 21783 * ipif passed in and the ipif passed in "owns" the ire. 21784 * Create new broadcast ire's for this broadcast addr. 21785 */ 21786 if (need_net_bcast_ire && !net_bcast_ire_created) { 21787 irep = ire_create_bcast(ipif, net_addr, irep); 21788 irep = ire_create_bcast(ipif, 21789 ~net_mask | net_addr, irep); 21790 net_bcast_ire_created = B_TRUE; 21791 } 21792 if (need_subnet_bcast_ire && !subnet_bcast_ire_created) { 21793 irep = ire_create_bcast(ipif, subnet_addr, irep); 21794 irep = ire_create_bcast(ipif, 21795 ~subnet_mask | subnet_addr, irep); 21796 subnet_bcast_ire_created = B_TRUE; 21797 } 21798 if (test_allzero_ire != NULL && !allzero_bcast_ire_created) { 21799 irep = ire_create_bcast(ipif, 0, irep); 21800 allzero_bcast_ire_created = B_TRUE; 21801 } 21802 if (test_allone_ire != NULL && !allone_bcast_ire_created) { 21803 irep = ire_create_bcast(ipif, INADDR_BROADCAST, irep); 21804 allone_bcast_ire_created = B_TRUE; 21805 } 21806 /* 21807 * Once we have created all the appropriate ires, we 21808 * just break out of this loop to add what we have created. 21809 * This has been indented similar to ire_match_args for 21810 * readability. 21811 */ 21812 if (((test_net_ire == NULL) || 21813 (net_bcast_ire_created)) && 21814 ((test_subnet_ire == NULL) || 21815 (subnet_bcast_ire_created)) && 21816 ((test_allzero_ire == NULL) || 21817 (allzero_bcast_ire_created)) && 21818 ((test_allone_ire == NULL) || 21819 (allone_bcast_ire_created))) { 21820 break; 21821 } 21822 } 21823 21824 /* 21825 * Create bcast ires on deprecated ipifs if no non-deprecated ipifs 21826 * exist. 6 pairs of bcast ires are needed. 21827 * Note - the old ires are deleted in ipif_down. 21828 */ 21829 if (need_net_bcast_ire && !net_bcast_ire_created && backup_ipif_net) { 21830 ipif = backup_ipif_net; 21831 irep = ire_create_bcast(ipif, net_addr, irep); 21832 irep = ire_create_bcast(ipif, ~net_mask | net_addr, irep); 21833 net_bcast_ire_created = B_TRUE; 21834 } 21835 if (need_subnet_bcast_ire && !subnet_bcast_ire_created && 21836 backup_ipif_subnet) { 21837 ipif = backup_ipif_subnet; 21838 irep = ire_create_bcast(ipif, subnet_addr, irep); 21839 irep = ire_create_bcast(ipif, 21840 ~subnet_mask | subnet_addr, irep); 21841 subnet_bcast_ire_created = B_TRUE; 21842 } 21843 if (test_allzero_ire != NULL && !allzero_bcast_ire_created && 21844 backup_ipif_allzeros) { 21845 irep = ire_create_bcast(backup_ipif_allzeros, 0, irep); 21846 allzero_bcast_ire_created = B_TRUE; 21847 } 21848 if (test_allone_ire != NULL && !allone_bcast_ire_created && 21849 backup_ipif_allones) { 21850 irep = ire_create_bcast(backup_ipif_allones, 21851 INADDR_BROADCAST, irep); 21852 allone_bcast_ire_created = B_TRUE; 21853 } 21854 21855 /* 21856 * If we can't create all of them, don't add any of them. 21857 * Code in ip_wput_ire and ire_to_ill assumes that we 21858 * always have a non-loopback copy and loopback copy 21859 * for a given address. 21860 */ 21861 for (irep1 = irep; irep1 > ire_array; ) { 21862 irep1--; 21863 if (*irep1 == NULL) { 21864 ip0dbg(("ipif_check_bcast_ires: can't create " 21865 "IRE_BROADCAST, memory allocation failure\n")); 21866 while (irep > ire_array) { 21867 irep--; 21868 if (*irep != NULL) 21869 ire_delete(*irep); 21870 } 21871 goto bad; 21872 } 21873 } 21874 for (irep1 = irep; irep1 > ire_array; ) { 21875 int error; 21876 21877 irep1--; 21878 error = ire_add(irep1, NULL, NULL, NULL, B_FALSE); 21879 if (error == 0) { 21880 ire_refrele(*irep1); /* Held in ire_add */ 21881 } 21882 } 21883 bad: 21884 if (test_allzero_ire != NULL) 21885 ire_refrele(test_allzero_ire); 21886 if (test_allone_ire != NULL) 21887 ire_refrele(test_allone_ire); 21888 if (test_net_ire != NULL) 21889 ire_refrele(test_net_ire); 21890 if (test_subnet_ire != NULL) 21891 ire_refrele(test_subnet_ire); 21892 } 21893 21894 /* 21895 * Extract both the flags (including IFF_CANTCHANGE) such as IFF_IPV* 21896 * from lifr_flags and the name from lifr_name. 21897 * Set IFF_IPV* and ill_isv6 prior to doing the lookup 21898 * since ipif_lookup_on_name uses the _isv6 flags when matching. 21899 * Returns EINPROGRESS when mp has been consumed by queueing it on 21900 * ill_pending_mp and the ioctl will complete in ip_rput. 21901 * 21902 * Can operate on either a module or a driver queue. 21903 * Returns an error if not a module queue. 21904 */ 21905 /* ARGSUSED */ 21906 int 21907 ip_sioctl_slifname(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 21908 ip_ioctl_cmd_t *ipip, void *if_req) 21909 { 21910 int err; 21911 ill_t *ill; 21912 struct lifreq *lifr = (struct lifreq *)if_req; 21913 21914 ASSERT(ipif != NULL); 21915 ip1dbg(("ip_sioctl_slifname %s\n", lifr->lifr_name)); 21916 21917 if (q->q_next == NULL) { 21918 ip1dbg(( 21919 "if_sioctl_slifname: SIOCSLIFNAME: no q_next\n")); 21920 return (EINVAL); 21921 } 21922 21923 ill = (ill_t *)q->q_ptr; 21924 /* 21925 * If we are not writer on 'q' then this interface exists already 21926 * and previous lookups (ipif_extract_lifreq_cmn) found this ipif. 21927 * So return EALREADY 21928 */ 21929 if (ill != ipif->ipif_ill) 21930 return (EALREADY); 21931 21932 if (ill->ill_name[0] != '\0') 21933 return (EALREADY); 21934 21935 /* 21936 * Set all the flags. Allows all kinds of override. Provide some 21937 * sanity checking by not allowing IFF_BROADCAST and IFF_MULTICAST 21938 * unless there is either multicast/broadcast support in the driver 21939 * or it is a pt-pt link. 21940 */ 21941 if (lifr->lifr_flags & (IFF_PROMISC|IFF_ALLMULTI)) { 21942 /* Meaningless to IP thus don't allow them to be set. */ 21943 ip1dbg(("ip_setname: EINVAL 1\n")); 21944 return (EINVAL); 21945 } 21946 /* 21947 * For a DL_STYLE2 driver (ill_needs_attach), we would not have the 21948 * ill_bcast_addr_length info. 21949 */ 21950 if (!ill->ill_needs_attach && 21951 ((lifr->lifr_flags & IFF_MULTICAST) && 21952 !(lifr->lifr_flags & IFF_POINTOPOINT) && 21953 ill->ill_bcast_addr_length == 0)) { 21954 /* Link not broadcast/pt-pt capable i.e. no multicast */ 21955 ip1dbg(("ip_setname: EINVAL 2\n")); 21956 return (EINVAL); 21957 } 21958 if ((lifr->lifr_flags & IFF_BROADCAST) && 21959 ((lifr->lifr_flags & IFF_IPV6) || 21960 (!ill->ill_needs_attach && ill->ill_bcast_addr_length == 0))) { 21961 /* Link not broadcast capable or IPv6 i.e. no broadcast */ 21962 ip1dbg(("ip_setname: EINVAL 3\n")); 21963 return (EINVAL); 21964 } 21965 if (lifr->lifr_flags & IFF_UP) { 21966 /* Can only be set with SIOCSLIFFLAGS */ 21967 ip1dbg(("ip_setname: EINVAL 4\n")); 21968 return (EINVAL); 21969 } 21970 if ((lifr->lifr_flags & (IFF_IPV6|IFF_IPV4)) != IFF_IPV6 && 21971 (lifr->lifr_flags & (IFF_IPV6|IFF_IPV4)) != IFF_IPV4) { 21972 ip1dbg(("ip_setname: EINVAL 5\n")); 21973 return (EINVAL); 21974 } 21975 /* 21976 * Only allow the IFF_XRESOLV flag to be set on IPv6 interfaces. 21977 */ 21978 if ((lifr->lifr_flags & IFF_XRESOLV) && 21979 !(lifr->lifr_flags & IFF_IPV6) && 21980 !(ipif->ipif_isv6)) { 21981 ip1dbg(("ip_setname: EINVAL 6\n")); 21982 return (EINVAL); 21983 } 21984 21985 /* 21986 * The user has done SIOCGLIFFLAGS prior to this ioctl and hence 21987 * we have all the flags here. So, we assign rather than we OR. 21988 * We can't OR the flags here because we don't want to set 21989 * both IFF_IPV4 and IFF_IPV6. We start off as IFF_IPV4 in 21990 * ipif_allocate and become IFF_IPV4 or IFF_IPV6 here depending 21991 * on lifr_flags value here. 21992 */ 21993 /* 21994 * This ill has not been inserted into the global list. 21995 * So we are still single threaded and don't need any lock 21996 */ 21997 ipif->ipif_flags = lifr->lifr_flags & IFF_LOGINT_FLAGS & 21998 ~IFF_DUPLICATE; 21999 ill->ill_flags = lifr->lifr_flags & IFF_PHYINTINST_FLAGS; 22000 ill->ill_phyint->phyint_flags = lifr->lifr_flags & IFF_PHYINT_FLAGS; 22001 22002 /* We started off as V4. */ 22003 if (ill->ill_flags & ILLF_IPV6) { 22004 ill->ill_phyint->phyint_illv6 = ill; 22005 ill->ill_phyint->phyint_illv4 = NULL; 22006 } 22007 err = ipif_set_values(q, mp, lifr->lifr_name, &lifr->lifr_ppa); 22008 return (err); 22009 } 22010 22011 /* ARGSUSED */ 22012 int 22013 ip_sioctl_slifname_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 22014 ip_ioctl_cmd_t *ipip, void *if_req) 22015 { 22016 /* 22017 * ill_phyint_reinit merged the v4 and v6 into a single 22018 * ipsq. Could also have become part of a ipmp group in the 22019 * process, and we might not have been able to complete the 22020 * slifname in ipif_set_values, if we could not become 22021 * exclusive. If so restart it here 22022 */ 22023 return (ipif_set_values_tail(ipif->ipif_ill, ipif, mp, q)); 22024 } 22025 22026 /* 22027 * Return a pointer to the ipif which matches the index, IP version type and 22028 * zoneid. 22029 */ 22030 ipif_t * 22031 ipif_lookup_on_ifindex(uint_t index, boolean_t isv6, zoneid_t zoneid, 22032 queue_t *q, mblk_t *mp, ipsq_func_t func, int *err, ip_stack_t *ipst) 22033 { 22034 ill_t *ill; 22035 ipsq_t *ipsq; 22036 phyint_t *phyi; 22037 ipif_t *ipif; 22038 22039 ASSERT((q == NULL && mp == NULL && func == NULL && err == NULL) || 22040 (q != NULL && mp != NULL && func != NULL && err != NULL)); 22041 22042 if (err != NULL) 22043 *err = 0; 22044 22045 /* 22046 * Indexes are stored in the phyint - a common structure 22047 * to both IPv4 and IPv6. 22048 */ 22049 22050 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 22051 phyi = avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 22052 (void *) &index, NULL); 22053 if (phyi != NULL) { 22054 ill = isv6 ? phyi->phyint_illv6 : phyi->phyint_illv4; 22055 if (ill == NULL) { 22056 rw_exit(&ipst->ips_ill_g_lock); 22057 if (err != NULL) 22058 *err = ENXIO; 22059 return (NULL); 22060 } 22061 GRAB_CONN_LOCK(q); 22062 mutex_enter(&ill->ill_lock); 22063 if (ILL_CAN_LOOKUP(ill)) { 22064 for (ipif = ill->ill_ipif; ipif != NULL; 22065 ipif = ipif->ipif_next) { 22066 if (IPIF_CAN_LOOKUP(ipif) && 22067 (zoneid == ALL_ZONES || 22068 zoneid == ipif->ipif_zoneid || 22069 ipif->ipif_zoneid == ALL_ZONES)) { 22070 ipif_refhold_locked(ipif); 22071 mutex_exit(&ill->ill_lock); 22072 RELEASE_CONN_LOCK(q); 22073 rw_exit(&ipst->ips_ill_g_lock); 22074 return (ipif); 22075 } 22076 } 22077 } else if (ILL_CAN_WAIT(ill, q)) { 22078 ipsq = ill->ill_phyint->phyint_ipsq; 22079 mutex_enter(&ipsq->ipsq_lock); 22080 rw_exit(&ipst->ips_ill_g_lock); 22081 mutex_exit(&ill->ill_lock); 22082 ipsq_enq(ipsq, q, mp, func, NEW_OP, ill); 22083 mutex_exit(&ipsq->ipsq_lock); 22084 RELEASE_CONN_LOCK(q); 22085 *err = EINPROGRESS; 22086 return (NULL); 22087 } 22088 mutex_exit(&ill->ill_lock); 22089 RELEASE_CONN_LOCK(q); 22090 } 22091 rw_exit(&ipst->ips_ill_g_lock); 22092 if (err != NULL) 22093 *err = ENXIO; 22094 return (NULL); 22095 } 22096 22097 typedef struct conn_change_s { 22098 uint_t cc_old_ifindex; 22099 uint_t cc_new_ifindex; 22100 } conn_change_t; 22101 22102 /* 22103 * ipcl_walk function for changing interface index. 22104 */ 22105 static void 22106 conn_change_ifindex(conn_t *connp, caddr_t arg) 22107 { 22108 conn_change_t *connc; 22109 uint_t old_ifindex; 22110 uint_t new_ifindex; 22111 int i; 22112 ilg_t *ilg; 22113 22114 connc = (conn_change_t *)arg; 22115 old_ifindex = connc->cc_old_ifindex; 22116 new_ifindex = connc->cc_new_ifindex; 22117 22118 if (connp->conn_orig_bound_ifindex == old_ifindex) 22119 connp->conn_orig_bound_ifindex = new_ifindex; 22120 22121 if (connp->conn_orig_multicast_ifindex == old_ifindex) 22122 connp->conn_orig_multicast_ifindex = new_ifindex; 22123 22124 if (connp->conn_orig_xmit_ifindex == old_ifindex) 22125 connp->conn_orig_xmit_ifindex = new_ifindex; 22126 22127 for (i = connp->conn_ilg_inuse - 1; i >= 0; i--) { 22128 ilg = &connp->conn_ilg[i]; 22129 if (ilg->ilg_orig_ifindex == old_ifindex) 22130 ilg->ilg_orig_ifindex = new_ifindex; 22131 } 22132 } 22133 22134 /* 22135 * Walk all the ipifs and ilms on this ill and change the orig_ifindex 22136 * to new_index if it matches the old_index. 22137 * 22138 * Failovers typically happen within a group of ills. But somebody 22139 * can remove an ill from the group after a failover happened. If 22140 * we are setting the ifindex after this, we potentially need to 22141 * look at all the ills rather than just the ones in the group. 22142 * We cut down the work by looking at matching ill_net_types 22143 * and ill_types as we could not possibly grouped them together. 22144 */ 22145 static void 22146 ip_change_ifindex(ill_t *ill_orig, conn_change_t *connc) 22147 { 22148 ill_t *ill; 22149 ipif_t *ipif; 22150 uint_t old_ifindex; 22151 uint_t new_ifindex; 22152 ilm_t *ilm; 22153 ill_walk_context_t ctx; 22154 ip_stack_t *ipst = ill_orig->ill_ipst; 22155 22156 old_ifindex = connc->cc_old_ifindex; 22157 new_ifindex = connc->cc_new_ifindex; 22158 22159 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 22160 ill = ILL_START_WALK_ALL(&ctx, ipst); 22161 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 22162 if ((ill_orig->ill_net_type != ill->ill_net_type) || 22163 (ill_orig->ill_type != ill->ill_type)) { 22164 continue; 22165 } 22166 for (ipif = ill->ill_ipif; ipif != NULL; 22167 ipif = ipif->ipif_next) { 22168 if (ipif->ipif_orig_ifindex == old_ifindex) 22169 ipif->ipif_orig_ifindex = new_ifindex; 22170 } 22171 for (ilm = ill->ill_ilm; ilm != NULL; ilm = ilm->ilm_next) { 22172 if (ilm->ilm_orig_ifindex == old_ifindex) 22173 ilm->ilm_orig_ifindex = new_ifindex; 22174 } 22175 } 22176 rw_exit(&ipst->ips_ill_g_lock); 22177 } 22178 22179 /* 22180 * We first need to ensure that the new index is unique, and 22181 * then carry the change across both v4 and v6 ill representation 22182 * of the physical interface. 22183 */ 22184 /* ARGSUSED */ 22185 int 22186 ip_sioctl_slifindex(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 22187 ip_ioctl_cmd_t *ipip, void *ifreq) 22188 { 22189 ill_t *ill; 22190 ill_t *ill_other; 22191 phyint_t *phyi; 22192 int old_index; 22193 conn_change_t connc; 22194 struct ifreq *ifr = (struct ifreq *)ifreq; 22195 struct lifreq *lifr = (struct lifreq *)ifreq; 22196 uint_t index; 22197 ill_t *ill_v4; 22198 ill_t *ill_v6; 22199 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 22200 22201 if (ipip->ipi_cmd_type == IF_CMD) 22202 index = ifr->ifr_index; 22203 else 22204 index = lifr->lifr_index; 22205 22206 /* 22207 * Only allow on physical interface. Also, index zero is illegal. 22208 * 22209 * Need to check for PHYI_FAILED and PHYI_INACTIVE 22210 * 22211 * 1) If PHYI_FAILED is set, a failover could have happened which 22212 * implies a possible failback might have to happen. As failback 22213 * depends on the old index, we should fail setting the index. 22214 * 22215 * 2) If PHYI_INACTIVE is set, in.mpathd does a failover so that 22216 * any addresses or multicast memberships are failed over to 22217 * a non-STANDBY interface. As failback depends on the old 22218 * index, we should fail setting the index for this case also. 22219 * 22220 * 3) If PHYI_OFFLINE is set, a possible failover has happened. 22221 * Be consistent with PHYI_FAILED and fail the ioctl. 22222 */ 22223 ill = ipif->ipif_ill; 22224 phyi = ill->ill_phyint; 22225 if ((phyi->phyint_flags & (PHYI_FAILED|PHYI_INACTIVE|PHYI_OFFLINE)) || 22226 ipif->ipif_id != 0 || index == 0) { 22227 return (EINVAL); 22228 } 22229 old_index = phyi->phyint_ifindex; 22230 22231 /* If the index is not changing, no work to do */ 22232 if (old_index == index) 22233 return (0); 22234 22235 /* 22236 * Use ill_lookup_on_ifindex to determine if the 22237 * new index is unused and if so allow the change. 22238 */ 22239 ill_v6 = ill_lookup_on_ifindex(index, B_TRUE, NULL, NULL, NULL, NULL, 22240 ipst); 22241 ill_v4 = ill_lookup_on_ifindex(index, B_FALSE, NULL, NULL, NULL, NULL, 22242 ipst); 22243 if (ill_v6 != NULL || ill_v4 != NULL) { 22244 if (ill_v4 != NULL) 22245 ill_refrele(ill_v4); 22246 if (ill_v6 != NULL) 22247 ill_refrele(ill_v6); 22248 return (EBUSY); 22249 } 22250 22251 /* 22252 * The new index is unused. Set it in the phyint. 22253 * Locate the other ill so that we can send a routing 22254 * sockets message. 22255 */ 22256 if (ill->ill_isv6) { 22257 ill_other = phyi->phyint_illv4; 22258 } else { 22259 ill_other = phyi->phyint_illv6; 22260 } 22261 22262 phyi->phyint_ifindex = index; 22263 22264 connc.cc_old_ifindex = old_index; 22265 connc.cc_new_ifindex = index; 22266 ip_change_ifindex(ill, &connc); 22267 ipcl_walk(conn_change_ifindex, (caddr_t)&connc, ipst); 22268 22269 /* Send the routing sockets message */ 22270 ip_rts_ifmsg(ipif); 22271 if (ill_other != NULL) 22272 ip_rts_ifmsg(ill_other->ill_ipif); 22273 22274 return (0); 22275 } 22276 22277 /* ARGSUSED */ 22278 int 22279 ip_sioctl_get_lifindex(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 22280 ip_ioctl_cmd_t *ipip, void *ifreq) 22281 { 22282 struct ifreq *ifr = (struct ifreq *)ifreq; 22283 struct lifreq *lifr = (struct lifreq *)ifreq; 22284 22285 ip1dbg(("ip_sioctl_get_lifindex(%s:%u %p)\n", 22286 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 22287 /* Get the interface index */ 22288 if (ipip->ipi_cmd_type == IF_CMD) { 22289 ifr->ifr_index = ipif->ipif_ill->ill_phyint->phyint_ifindex; 22290 } else { 22291 lifr->lifr_index = ipif->ipif_ill->ill_phyint->phyint_ifindex; 22292 } 22293 return (0); 22294 } 22295 22296 /* ARGSUSED */ 22297 int 22298 ip_sioctl_get_lifzone(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 22299 ip_ioctl_cmd_t *ipip, void *ifreq) 22300 { 22301 struct lifreq *lifr = (struct lifreq *)ifreq; 22302 22303 ip1dbg(("ip_sioctl_get_lifzone(%s:%u %p)\n", 22304 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 22305 /* Get the interface zone */ 22306 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 22307 lifr->lifr_zoneid = ipif->ipif_zoneid; 22308 return (0); 22309 } 22310 22311 /* 22312 * Set the zoneid of an interface. 22313 */ 22314 /* ARGSUSED */ 22315 int 22316 ip_sioctl_slifzone(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 22317 ip_ioctl_cmd_t *ipip, void *ifreq) 22318 { 22319 struct lifreq *lifr = (struct lifreq *)ifreq; 22320 int err = 0; 22321 boolean_t need_up = B_FALSE; 22322 zone_t *zptr; 22323 zone_status_t status; 22324 zoneid_t zoneid; 22325 22326 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 22327 if ((zoneid = lifr->lifr_zoneid) == ALL_ZONES) { 22328 if (!is_system_labeled()) 22329 return (ENOTSUP); 22330 zoneid = GLOBAL_ZONEID; 22331 } 22332 22333 /* cannot assign instance zero to a non-global zone */ 22334 if (ipif->ipif_id == 0 && zoneid != GLOBAL_ZONEID) 22335 return (ENOTSUP); 22336 22337 /* 22338 * Cannot assign to a zone that doesn't exist or is shutting down. In 22339 * the event of a race with the zone shutdown processing, since IP 22340 * serializes this ioctl and SIOCGLIFCONF/SIOCLIFREMOVEIF, we know the 22341 * interface will be cleaned up even if the zone is shut down 22342 * immediately after the status check. If the interface can't be brought 22343 * down right away, and the zone is shut down before the restart 22344 * function is called, we resolve the possible races by rechecking the 22345 * zone status in the restart function. 22346 */ 22347 if ((zptr = zone_find_by_id(zoneid)) == NULL) 22348 return (EINVAL); 22349 status = zone_status_get(zptr); 22350 zone_rele(zptr); 22351 22352 if (status != ZONE_IS_READY && status != ZONE_IS_RUNNING) 22353 return (EINVAL); 22354 22355 if (ipif->ipif_flags & IPIF_UP) { 22356 /* 22357 * If the interface is already marked up, 22358 * we call ipif_down which will take care 22359 * of ditching any IREs that have been set 22360 * up based on the old interface address. 22361 */ 22362 err = ipif_logical_down(ipif, q, mp); 22363 if (err == EINPROGRESS) 22364 return (err); 22365 ipif_down_tail(ipif); 22366 need_up = B_TRUE; 22367 } 22368 22369 err = ip_sioctl_slifzone_tail(ipif, lifr->lifr_zoneid, q, mp, need_up); 22370 return (err); 22371 } 22372 22373 static int 22374 ip_sioctl_slifzone_tail(ipif_t *ipif, zoneid_t zoneid, 22375 queue_t *q, mblk_t *mp, boolean_t need_up) 22376 { 22377 int err = 0; 22378 ip_stack_t *ipst; 22379 22380 ip1dbg(("ip_sioctl_zoneid_tail(%s:%u %p)\n", 22381 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 22382 22383 if (CONN_Q(q)) 22384 ipst = CONNQ_TO_IPST(q); 22385 else 22386 ipst = ILLQ_TO_IPST(q); 22387 22388 /* 22389 * For exclusive stacks we don't allow a different zoneid than 22390 * global. 22391 */ 22392 if (ipst->ips_netstack->netstack_stackid != GLOBAL_NETSTACKID && 22393 zoneid != GLOBAL_ZONEID) 22394 return (EINVAL); 22395 22396 /* Set the new zone id. */ 22397 ipif->ipif_zoneid = zoneid; 22398 22399 /* Update sctp list */ 22400 sctp_update_ipif(ipif, SCTP_IPIF_UPDATE); 22401 22402 if (need_up) { 22403 /* 22404 * Now bring the interface back up. If this 22405 * is the only IPIF for the ILL, ipif_up 22406 * will have to re-bind to the device, so 22407 * we may get back EINPROGRESS, in which 22408 * case, this IOCTL will get completed in 22409 * ip_rput_dlpi when we see the DL_BIND_ACK. 22410 */ 22411 err = ipif_up(ipif, q, mp); 22412 } 22413 return (err); 22414 } 22415 22416 /* ARGSUSED */ 22417 int 22418 ip_sioctl_slifzone_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 22419 ip_ioctl_cmd_t *ipip, void *if_req) 22420 { 22421 struct lifreq *lifr = (struct lifreq *)if_req; 22422 zoneid_t zoneid; 22423 zone_t *zptr; 22424 zone_status_t status; 22425 22426 ASSERT(ipif->ipif_id != 0); 22427 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 22428 if ((zoneid = lifr->lifr_zoneid) == ALL_ZONES) 22429 zoneid = GLOBAL_ZONEID; 22430 22431 ip1dbg(("ip_sioctl_slifzone_restart(%s:%u %p)\n", 22432 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 22433 22434 /* 22435 * We recheck the zone status to resolve the following race condition: 22436 * 1) process sends SIOCSLIFZONE to put hme0:1 in zone "myzone"; 22437 * 2) hme0:1 is up and can't be brought down right away; 22438 * ip_sioctl_slifzone() returns EINPROGRESS and the request is queued; 22439 * 3) zone "myzone" is halted; the zone status switches to 22440 * 'shutting_down' and the zones framework sends SIOCGLIFCONF to list 22441 * the interfaces to remove - hme0:1 is not returned because it's not 22442 * yet in "myzone", so it won't be removed; 22443 * 4) the restart function for SIOCSLIFZONE is called; without the 22444 * status check here, we would have hme0:1 in "myzone" after it's been 22445 * destroyed. 22446 * Note that if the status check fails, we need to bring the interface 22447 * back to its state prior to ip_sioctl_slifzone(), hence the call to 22448 * ipif_up_done[_v6](). 22449 */ 22450 status = ZONE_IS_UNINITIALIZED; 22451 if ((zptr = zone_find_by_id(zoneid)) != NULL) { 22452 status = zone_status_get(zptr); 22453 zone_rele(zptr); 22454 } 22455 if (status != ZONE_IS_READY && status != ZONE_IS_RUNNING) { 22456 if (ipif->ipif_isv6) { 22457 (void) ipif_up_done_v6(ipif); 22458 } else { 22459 (void) ipif_up_done(ipif); 22460 } 22461 return (EINVAL); 22462 } 22463 22464 ipif_down_tail(ipif); 22465 22466 return (ip_sioctl_slifzone_tail(ipif, lifr->lifr_zoneid, q, mp, 22467 B_TRUE)); 22468 } 22469 22470 /* ARGSUSED */ 22471 int 22472 ip_sioctl_get_lifusesrc(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 22473 ip_ioctl_cmd_t *ipip, void *ifreq) 22474 { 22475 struct lifreq *lifr = ifreq; 22476 22477 ASSERT(q->q_next == NULL); 22478 ASSERT(CONN_Q(q)); 22479 22480 ip1dbg(("ip_sioctl_get_lifusesrc(%s:%u %p)\n", 22481 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 22482 lifr->lifr_index = ipif->ipif_ill->ill_usesrc_ifindex; 22483 ip1dbg(("ip_sioctl_get_lifusesrc:lifr_index = %d\n", lifr->lifr_index)); 22484 22485 return (0); 22486 } 22487 22488 22489 /* Find the previous ILL in this usesrc group */ 22490 static ill_t * 22491 ill_prev_usesrc(ill_t *uill) 22492 { 22493 ill_t *ill; 22494 22495 for (ill = uill->ill_usesrc_grp_next; 22496 ASSERT(ill), ill->ill_usesrc_grp_next != uill; 22497 ill = ill->ill_usesrc_grp_next) 22498 /* do nothing */; 22499 return (ill); 22500 } 22501 22502 /* 22503 * Release all members of the usesrc group. This routine is called 22504 * from ill_delete when the interface being unplumbed is the 22505 * group head. 22506 */ 22507 static void 22508 ill_disband_usesrc_group(ill_t *uill) 22509 { 22510 ill_t *next_ill, *tmp_ill; 22511 ip_stack_t *ipst = uill->ill_ipst; 22512 22513 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_usesrc_lock)); 22514 next_ill = uill->ill_usesrc_grp_next; 22515 22516 do { 22517 ASSERT(next_ill != NULL); 22518 tmp_ill = next_ill->ill_usesrc_grp_next; 22519 ASSERT(tmp_ill != NULL); 22520 next_ill->ill_usesrc_grp_next = NULL; 22521 next_ill->ill_usesrc_ifindex = 0; 22522 next_ill = tmp_ill; 22523 } while (next_ill->ill_usesrc_ifindex != 0); 22524 uill->ill_usesrc_grp_next = NULL; 22525 } 22526 22527 /* 22528 * Remove the client usesrc ILL from the list and relink to a new list 22529 */ 22530 int 22531 ill_relink_usesrc_ills(ill_t *ucill, ill_t *uill, uint_t ifindex) 22532 { 22533 ill_t *ill, *tmp_ill; 22534 ip_stack_t *ipst = ucill->ill_ipst; 22535 22536 ASSERT((ucill != NULL) && (ucill->ill_usesrc_grp_next != NULL) && 22537 (uill != NULL) && RW_WRITE_HELD(&ipst->ips_ill_g_usesrc_lock)); 22538 22539 /* 22540 * Check if the usesrc client ILL passed in is not already 22541 * in use as a usesrc ILL i.e one whose source address is 22542 * in use OR a usesrc ILL is not already in use as a usesrc 22543 * client ILL 22544 */ 22545 if ((ucill->ill_usesrc_ifindex == 0) || 22546 (uill->ill_usesrc_ifindex != 0)) { 22547 return (-1); 22548 } 22549 22550 ill = ill_prev_usesrc(ucill); 22551 ASSERT(ill->ill_usesrc_grp_next != NULL); 22552 22553 /* Remove from the current list */ 22554 if (ill->ill_usesrc_grp_next->ill_usesrc_grp_next == ill) { 22555 /* Only two elements in the list */ 22556 ASSERT(ill->ill_usesrc_ifindex == 0); 22557 ill->ill_usesrc_grp_next = NULL; 22558 } else { 22559 ill->ill_usesrc_grp_next = ucill->ill_usesrc_grp_next; 22560 } 22561 22562 if (ifindex == 0) { 22563 ucill->ill_usesrc_ifindex = 0; 22564 ucill->ill_usesrc_grp_next = NULL; 22565 return (0); 22566 } 22567 22568 ucill->ill_usesrc_ifindex = ifindex; 22569 tmp_ill = uill->ill_usesrc_grp_next; 22570 uill->ill_usesrc_grp_next = ucill; 22571 ucill->ill_usesrc_grp_next = 22572 (tmp_ill != NULL) ? tmp_ill : uill; 22573 return (0); 22574 } 22575 22576 /* 22577 * Set the ill_usesrc and ill_usesrc_head fields. See synchronization notes in 22578 * ip.c for locking details. 22579 */ 22580 /* ARGSUSED */ 22581 int 22582 ip_sioctl_slifusesrc(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 22583 ip_ioctl_cmd_t *ipip, void *ifreq) 22584 { 22585 struct lifreq *lifr = (struct lifreq *)ifreq; 22586 boolean_t isv6 = B_FALSE, reset_flg = B_FALSE, 22587 ill_flag_changed = B_FALSE; 22588 ill_t *usesrc_ill, *usesrc_cli_ill = ipif->ipif_ill; 22589 int err = 0, ret; 22590 uint_t ifindex; 22591 phyint_t *us_phyint, *us_cli_phyint; 22592 ipsq_t *ipsq = NULL; 22593 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 22594 22595 ASSERT(IAM_WRITER_IPIF(ipif)); 22596 ASSERT(q->q_next == NULL); 22597 ASSERT(CONN_Q(q)); 22598 22599 isv6 = (Q_TO_CONN(q))->conn_af_isv6; 22600 us_cli_phyint = usesrc_cli_ill->ill_phyint; 22601 22602 ASSERT(us_cli_phyint != NULL); 22603 22604 /* 22605 * If the client ILL is being used for IPMP, abort. 22606 * Note, this can be done before ipsq_try_enter since we are already 22607 * exclusive on this ILL 22608 */ 22609 if ((us_cli_phyint->phyint_groupname != NULL) || 22610 (us_cli_phyint->phyint_flags & PHYI_STANDBY)) { 22611 return (EINVAL); 22612 } 22613 22614 ifindex = lifr->lifr_index; 22615 if (ifindex == 0) { 22616 if (usesrc_cli_ill->ill_usesrc_grp_next == NULL) { 22617 /* non usesrc group interface, nothing to reset */ 22618 return (0); 22619 } 22620 ifindex = usesrc_cli_ill->ill_usesrc_ifindex; 22621 /* valid reset request */ 22622 reset_flg = B_TRUE; 22623 } 22624 22625 usesrc_ill = ill_lookup_on_ifindex(ifindex, isv6, q, mp, 22626 ip_process_ioctl, &err, ipst); 22627 22628 if (usesrc_ill == NULL) { 22629 return (err); 22630 } 22631 22632 /* 22633 * The usesrc_cli_ill or the usesrc_ill cannot be part of an IPMP 22634 * group nor can either of the interfaces be used for standy. So 22635 * to guarantee mutual exclusion with ip_sioctl_flags (which sets 22636 * PHYI_STANDBY) and ip_sioctl_groupname (which sets the groupname) 22637 * we need to be exclusive on the ipsq belonging to the usesrc_ill. 22638 * We are already exlusive on this ipsq i.e ipsq corresponding to 22639 * the usesrc_cli_ill 22640 */ 22641 ipsq = ipsq_try_enter(NULL, usesrc_ill, q, mp, ip_process_ioctl, 22642 NEW_OP, B_TRUE); 22643 if (ipsq == NULL) { 22644 err = EINPROGRESS; 22645 /* Operation enqueued on the ipsq of the usesrc ILL */ 22646 goto done; 22647 } 22648 22649 /* Check if the usesrc_ill is used for IPMP */ 22650 us_phyint = usesrc_ill->ill_phyint; 22651 if ((us_phyint->phyint_groupname != NULL) || 22652 (us_phyint->phyint_flags & PHYI_STANDBY)) { 22653 err = EINVAL; 22654 goto done; 22655 } 22656 22657 /* 22658 * If the client is already in use as a usesrc_ill or a usesrc_ill is 22659 * already a client then return EINVAL 22660 */ 22661 if (IS_USESRC_ILL(usesrc_cli_ill) || IS_USESRC_CLI_ILL(usesrc_ill)) { 22662 err = EINVAL; 22663 goto done; 22664 } 22665 22666 /* 22667 * If the ill_usesrc_ifindex field is already set to what it needs to 22668 * be then this is a duplicate operation. 22669 */ 22670 if (!reset_flg && usesrc_cli_ill->ill_usesrc_ifindex == ifindex) { 22671 err = 0; 22672 goto done; 22673 } 22674 22675 ip1dbg(("ip_sioctl_slifusesrc: usesrc_cli_ill %s, usesrc_ill %s," 22676 " v6 = %d", usesrc_cli_ill->ill_name, usesrc_ill->ill_name, 22677 usesrc_ill->ill_isv6)); 22678 22679 /* 22680 * The next step ensures that no new ires will be created referencing 22681 * the client ill, until the ILL_CHANGING flag is cleared. Then 22682 * we go through an ire walk deleting all ire caches that reference 22683 * the client ill. New ires referencing the client ill that are added 22684 * to the ire table before the ILL_CHANGING flag is set, will be 22685 * cleaned up by the ire walk below. Attempt to add new ires referencing 22686 * the client ill while the ILL_CHANGING flag is set will be failed 22687 * during the ire_add in ire_atomic_start. ire_atomic_start atomically 22688 * checks (under the ill_g_usesrc_lock) that the ire being added 22689 * is not stale, i.e the ire_stq and ire_ipif are consistent and 22690 * belong to the same usesrc group. 22691 */ 22692 mutex_enter(&usesrc_cli_ill->ill_lock); 22693 usesrc_cli_ill->ill_state_flags |= ILL_CHANGING; 22694 mutex_exit(&usesrc_cli_ill->ill_lock); 22695 ill_flag_changed = B_TRUE; 22696 22697 if (ipif->ipif_isv6) 22698 ire_walk_v6(ipif_delete_cache_ire, (char *)usesrc_cli_ill, 22699 ALL_ZONES, ipst); 22700 else 22701 ire_walk_v4(ipif_delete_cache_ire, (char *)usesrc_cli_ill, 22702 ALL_ZONES, ipst); 22703 22704 /* 22705 * ill_g_usesrc_lock global lock protects the ill_usesrc_grp_next 22706 * and the ill_usesrc_ifindex fields 22707 */ 22708 rw_enter(&ipst->ips_ill_g_usesrc_lock, RW_WRITER); 22709 22710 if (reset_flg) { 22711 ret = ill_relink_usesrc_ills(usesrc_cli_ill, usesrc_ill, 0); 22712 if (ret != 0) { 22713 err = EINVAL; 22714 } 22715 rw_exit(&ipst->ips_ill_g_usesrc_lock); 22716 goto done; 22717 } 22718 22719 /* 22720 * Four possibilities to consider: 22721 * 1. Both usesrc_ill and usesrc_cli_ill are not part of any usesrc grp 22722 * 2. usesrc_ill is part of a group but usesrc_cli_ill isn't 22723 * 3. usesrc_cli_ill is part of a group but usesrc_ill isn't 22724 * 4. Both are part of their respective usesrc groups 22725 */ 22726 if ((usesrc_ill->ill_usesrc_grp_next == NULL) && 22727 (usesrc_cli_ill->ill_usesrc_grp_next == NULL)) { 22728 ASSERT(usesrc_ill->ill_usesrc_ifindex == 0); 22729 usesrc_cli_ill->ill_usesrc_ifindex = ifindex; 22730 usesrc_ill->ill_usesrc_grp_next = usesrc_cli_ill; 22731 usesrc_cli_ill->ill_usesrc_grp_next = usesrc_ill; 22732 } else if ((usesrc_ill->ill_usesrc_grp_next != NULL) && 22733 (usesrc_cli_ill->ill_usesrc_grp_next == NULL)) { 22734 usesrc_cli_ill->ill_usesrc_ifindex = ifindex; 22735 /* Insert at head of list */ 22736 usesrc_cli_ill->ill_usesrc_grp_next = 22737 usesrc_ill->ill_usesrc_grp_next; 22738 usesrc_ill->ill_usesrc_grp_next = usesrc_cli_ill; 22739 } else { 22740 ret = ill_relink_usesrc_ills(usesrc_cli_ill, usesrc_ill, 22741 ifindex); 22742 if (ret != 0) 22743 err = EINVAL; 22744 } 22745 rw_exit(&ipst->ips_ill_g_usesrc_lock); 22746 22747 done: 22748 if (ill_flag_changed) { 22749 mutex_enter(&usesrc_cli_ill->ill_lock); 22750 usesrc_cli_ill->ill_state_flags &= ~ILL_CHANGING; 22751 mutex_exit(&usesrc_cli_ill->ill_lock); 22752 } 22753 if (ipsq != NULL) 22754 ipsq_exit(ipsq, B_TRUE, B_TRUE); 22755 /* The refrele on the lifr_name ipif is done by ip_process_ioctl */ 22756 ill_refrele(usesrc_ill); 22757 return (err); 22758 } 22759 22760 /* 22761 * comparison function used by avl. 22762 */ 22763 static int 22764 ill_phyint_compare_index(const void *index_ptr, const void *phyip) 22765 { 22766 22767 uint_t index; 22768 22769 ASSERT(phyip != NULL && index_ptr != NULL); 22770 22771 index = *((uint_t *)index_ptr); 22772 /* 22773 * let the phyint with the lowest index be on top. 22774 */ 22775 if (((phyint_t *)phyip)->phyint_ifindex < index) 22776 return (1); 22777 if (((phyint_t *)phyip)->phyint_ifindex > index) 22778 return (-1); 22779 return (0); 22780 } 22781 22782 /* 22783 * comparison function used by avl. 22784 */ 22785 static int 22786 ill_phyint_compare_name(const void *name_ptr, const void *phyip) 22787 { 22788 ill_t *ill; 22789 int res = 0; 22790 22791 ASSERT(phyip != NULL && name_ptr != NULL); 22792 22793 if (((phyint_t *)phyip)->phyint_illv4) 22794 ill = ((phyint_t *)phyip)->phyint_illv4; 22795 else 22796 ill = ((phyint_t *)phyip)->phyint_illv6; 22797 ASSERT(ill != NULL); 22798 22799 res = strcmp(ill->ill_name, (char *)name_ptr); 22800 if (res > 0) 22801 return (1); 22802 else if (res < 0) 22803 return (-1); 22804 return (0); 22805 } 22806 /* 22807 * This function is called from ill_delete when the ill is being 22808 * unplumbed. We remove the reference from the phyint and we also 22809 * free the phyint when there are no more references to it. 22810 */ 22811 static void 22812 ill_phyint_free(ill_t *ill) 22813 { 22814 phyint_t *phyi; 22815 phyint_t *next_phyint; 22816 ipsq_t *cur_ipsq; 22817 ip_stack_t *ipst = ill->ill_ipst; 22818 22819 ASSERT(ill->ill_phyint != NULL); 22820 22821 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); 22822 phyi = ill->ill_phyint; 22823 ill->ill_phyint = NULL; 22824 /* 22825 * ill_init allocates a phyint always to store the copy 22826 * of flags relevant to phyint. At that point in time, we could 22827 * not assign the name and hence phyint_illv4/v6 could not be 22828 * initialized. Later in ipif_set_values, we assign the name to 22829 * the ill, at which point in time we assign phyint_illv4/v6. 22830 * Thus we don't rely on phyint_illv6 to be initialized always. 22831 */ 22832 if (ill->ill_flags & ILLF_IPV6) { 22833 phyi->phyint_illv6 = NULL; 22834 } else { 22835 phyi->phyint_illv4 = NULL; 22836 } 22837 /* 22838 * ipif_down removes it from the group when the last ipif goes 22839 * down. 22840 */ 22841 ASSERT(ill->ill_group == NULL); 22842 22843 if (phyi->phyint_illv4 != NULL || phyi->phyint_illv6 != NULL) 22844 return; 22845 22846 /* 22847 * Make sure this phyint was put in the list. 22848 */ 22849 if (phyi->phyint_ifindex > 0) { 22850 avl_remove(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 22851 phyi); 22852 avl_remove(&ipst->ips_phyint_g_list->phyint_list_avl_by_name, 22853 phyi); 22854 } 22855 /* 22856 * remove phyint from the ipsq list. 22857 */ 22858 cur_ipsq = phyi->phyint_ipsq; 22859 if (phyi == cur_ipsq->ipsq_phyint_list) { 22860 cur_ipsq->ipsq_phyint_list = phyi->phyint_ipsq_next; 22861 } else { 22862 next_phyint = cur_ipsq->ipsq_phyint_list; 22863 while (next_phyint != NULL) { 22864 if (next_phyint->phyint_ipsq_next == phyi) { 22865 next_phyint->phyint_ipsq_next = 22866 phyi->phyint_ipsq_next; 22867 break; 22868 } 22869 next_phyint = next_phyint->phyint_ipsq_next; 22870 } 22871 ASSERT(next_phyint != NULL); 22872 } 22873 IPSQ_DEC_REF(cur_ipsq, ipst); 22874 22875 if (phyi->phyint_groupname_len != 0) { 22876 ASSERT(phyi->phyint_groupname != NULL); 22877 mi_free(phyi->phyint_groupname); 22878 } 22879 mi_free(phyi); 22880 } 22881 22882 /* 22883 * Attach the ill to the phyint structure which can be shared by both 22884 * IPv4 and IPv6 ill. ill_init allocates a phyint to just hold flags. This 22885 * function is called from ipif_set_values and ill_lookup_on_name (for 22886 * loopback) where we know the name of the ill. We lookup the ill and if 22887 * there is one present already with the name use that phyint. Otherwise 22888 * reuse the one allocated by ill_init. 22889 */ 22890 static void 22891 ill_phyint_reinit(ill_t *ill) 22892 { 22893 boolean_t isv6 = ill->ill_isv6; 22894 phyint_t *phyi_old; 22895 phyint_t *phyi; 22896 avl_index_t where = 0; 22897 ill_t *ill_other = NULL; 22898 ipsq_t *ipsq; 22899 ip_stack_t *ipst = ill->ill_ipst; 22900 22901 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); 22902 22903 phyi_old = ill->ill_phyint; 22904 ASSERT(isv6 || (phyi_old->phyint_illv4 == ill && 22905 phyi_old->phyint_illv6 == NULL)); 22906 ASSERT(!isv6 || (phyi_old->phyint_illv6 == ill && 22907 phyi_old->phyint_illv4 == NULL)); 22908 ASSERT(phyi_old->phyint_ifindex == 0); 22909 22910 phyi = avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_name, 22911 ill->ill_name, &where); 22912 22913 /* 22914 * 1. We grabbed the ill_g_lock before inserting this ill into 22915 * the global list of ills. So no other thread could have located 22916 * this ill and hence the ipsq of this ill is guaranteed to be empty. 22917 * 2. Now locate the other protocol instance of this ill. 22918 * 3. Now grab both ill locks in the right order, and the phyint lock of 22919 * the new ipsq. Holding ill locks + ill_g_lock ensures that the ipsq 22920 * of neither ill can change. 22921 * 4. Merge the phyint and thus the ipsq as well of this ill onto the 22922 * other ill. 22923 * 5. Release all locks. 22924 */ 22925 22926 /* 22927 * Look for IPv4 if we are initializing IPv6 or look for IPv6 if 22928 * we are initializing IPv4. 22929 */ 22930 if (phyi != NULL) { 22931 ill_other = (isv6) ? phyi->phyint_illv4 : 22932 phyi->phyint_illv6; 22933 ASSERT(ill_other->ill_phyint != NULL); 22934 ASSERT((isv6 && !ill_other->ill_isv6) || 22935 (!isv6 && ill_other->ill_isv6)); 22936 GRAB_ILL_LOCKS(ill, ill_other); 22937 /* 22938 * We are potentially throwing away phyint_flags which 22939 * could be different from the one that we obtain from 22940 * ill_other->ill_phyint. But it is okay as we are assuming 22941 * that the state maintained within IP is correct. 22942 */ 22943 mutex_enter(&phyi->phyint_lock); 22944 if (isv6) { 22945 ASSERT(phyi->phyint_illv6 == NULL); 22946 phyi->phyint_illv6 = ill; 22947 } else { 22948 ASSERT(phyi->phyint_illv4 == NULL); 22949 phyi->phyint_illv4 = ill; 22950 } 22951 /* 22952 * This is a new ill, currently undergoing SLIFNAME 22953 * So we could not have joined an IPMP group until now. 22954 */ 22955 ASSERT(phyi_old->phyint_ipsq_next == NULL && 22956 phyi_old->phyint_groupname == NULL); 22957 22958 /* 22959 * This phyi_old is going away. Decref ipsq_refs and 22960 * assert it is zero. The ipsq itself will be freed in 22961 * ipsq_exit 22962 */ 22963 ipsq = phyi_old->phyint_ipsq; 22964 IPSQ_DEC_REF(ipsq, ipst); 22965 ASSERT(ipsq->ipsq_refs == 0); 22966 /* Get the singleton phyint out of the ipsq list */ 22967 ASSERT(phyi_old->phyint_ipsq_next == NULL); 22968 ipsq->ipsq_phyint_list = NULL; 22969 phyi_old->phyint_illv4 = NULL; 22970 phyi_old->phyint_illv6 = NULL; 22971 mi_free(phyi_old); 22972 } else { 22973 mutex_enter(&ill->ill_lock); 22974 /* 22975 * We don't need to acquire any lock, since 22976 * the ill is not yet visible globally and we 22977 * have not yet released the ill_g_lock. 22978 */ 22979 phyi = phyi_old; 22980 mutex_enter(&phyi->phyint_lock); 22981 /* XXX We need a recovery strategy here. */ 22982 if (!phyint_assign_ifindex(phyi, ipst)) 22983 cmn_err(CE_PANIC, "phyint_assign_ifindex() failed"); 22984 22985 /* No IPMP group yet, thus the hook uses the ifindex */ 22986 phyi->phyint_hook_ifindex = phyi->phyint_ifindex; 22987 22988 avl_insert(&ipst->ips_phyint_g_list->phyint_list_avl_by_name, 22989 (void *)phyi, where); 22990 22991 (void) avl_find(&ipst->ips_phyint_g_list-> 22992 phyint_list_avl_by_index, 22993 &phyi->phyint_ifindex, &where); 22994 avl_insert(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 22995 (void *)phyi, where); 22996 } 22997 22998 /* 22999 * Reassigning ill_phyint automatically reassigns the ipsq also. 23000 * pending mp is not affected because that is per ill basis. 23001 */ 23002 ill->ill_phyint = phyi; 23003 23004 /* 23005 * Keep the index on ipif_orig_index to be used by FAILOVER. 23006 * We do this here as when the first ipif was allocated, 23007 * ipif_allocate does not know the right interface index. 23008 */ 23009 23010 ill->ill_ipif->ipif_orig_ifindex = ill->ill_phyint->phyint_ifindex; 23011 /* 23012 * Now that the phyint's ifindex has been assigned, complete the 23013 * remaining 23014 */ 23015 23016 ill->ill_ip_mib->ipIfStatsIfIndex = ill->ill_phyint->phyint_ifindex; 23017 if (ill->ill_isv6) { 23018 ill->ill_icmp6_mib->ipv6IfIcmpIfIndex = 23019 ill->ill_phyint->phyint_ifindex; 23020 } 23021 23022 /* 23023 * Generate an event within the hooks framework to indicate that 23024 * a new interface has just been added to IP. For this event to 23025 * be generated, the network interface must, at least, have an 23026 * ifindex assigned to it. 23027 * 23028 * This needs to be run inside the ill_g_lock perimeter to ensure 23029 * that the ordering of delivered events to listeners matches the 23030 * order of them in the kernel. 23031 * 23032 * This function could be called from ill_lookup_on_name. In that case 23033 * the interface is loopback "lo", which will not generate a NIC event. 23034 */ 23035 if (ill->ill_name_length <= 2 || 23036 ill->ill_name[0] != 'l' || ill->ill_name[1] != 'o') { 23037 /* 23038 * Generate nic plumb event for ill_name even if 23039 * ipmp_hook_emulation is set. That avoids generating events 23040 * for the ill_names should ipmp_hook_emulation be turned on 23041 * later. 23042 */ 23043 ill_nic_info_plumb(ill, B_FALSE); 23044 } 23045 RELEASE_ILL_LOCKS(ill, ill_other); 23046 mutex_exit(&phyi->phyint_lock); 23047 } 23048 23049 /* 23050 * Allocate a NE_PLUMB nic info event and store in the ill. 23051 * If 'group' is set we do it for the group name, otherwise the ill name. 23052 * It will be sent when we leave the ipsq. 23053 */ 23054 void 23055 ill_nic_info_plumb(ill_t *ill, boolean_t group) 23056 { 23057 phyint_t *phyi = ill->ill_phyint; 23058 ip_stack_t *ipst = ill->ill_ipst; 23059 hook_nic_event_t *info; 23060 char *name; 23061 int namelen; 23062 23063 ASSERT(MUTEX_HELD(&ill->ill_lock)); 23064 23065 if ((info = ill->ill_nic_event_info) != NULL) { 23066 ip2dbg(("ill_nic_info_plumb: unexpected nic event %d " 23067 "attached for %s\n", info->hne_event, 23068 ill->ill_name)); 23069 if (info->hne_data != NULL) 23070 kmem_free(info->hne_data, info->hne_datalen); 23071 kmem_free(info, sizeof (hook_nic_event_t)); 23072 ill->ill_nic_event_info = NULL; 23073 } 23074 23075 info = kmem_alloc(sizeof (hook_nic_event_t), KM_NOSLEEP); 23076 if (info == NULL) { 23077 ip2dbg(("ill_nic_info_plumb: could not attach PLUMB nic " 23078 "event information for %s (ENOMEM)\n", 23079 ill->ill_name)); 23080 return; 23081 } 23082 23083 if (group) { 23084 ASSERT(phyi->phyint_groupname_len != 0); 23085 namelen = phyi->phyint_groupname_len; 23086 name = phyi->phyint_groupname; 23087 } else { 23088 namelen = ill->ill_name_length; 23089 name = ill->ill_name; 23090 } 23091 23092 info->hne_nic = phyi->phyint_hook_ifindex; 23093 info->hne_lif = 0; 23094 info->hne_event = NE_PLUMB; 23095 info->hne_family = ill->ill_isv6 ? 23096 ipst->ips_ipv6_net_data : ipst->ips_ipv4_net_data; 23097 23098 info->hne_data = kmem_alloc(namelen, KM_NOSLEEP); 23099 if (info->hne_data != NULL) { 23100 info->hne_datalen = namelen; 23101 bcopy(name, info->hne_data, info->hne_datalen); 23102 } else { 23103 ip2dbg(("ill_nic_info_plumb: could not attach " 23104 "name information for PLUMB nic event " 23105 "of %s (ENOMEM)\n", name)); 23106 kmem_free(info, sizeof (hook_nic_event_t)); 23107 info = NULL; 23108 } 23109 ill->ill_nic_event_info = info; 23110 } 23111 23112 /* 23113 * Unhook the nic event message from the ill and enqueue it 23114 * into the nic event taskq. 23115 */ 23116 void 23117 ill_nic_info_dispatch(ill_t *ill) 23118 { 23119 hook_nic_event_t *info; 23120 23121 ASSERT(MUTEX_HELD(&ill->ill_lock)); 23122 23123 if ((info = ill->ill_nic_event_info) != NULL) { 23124 if (ddi_taskq_dispatch(eventq_queue_nic, 23125 ip_ne_queue_func, info, DDI_SLEEP) == DDI_FAILURE) { 23126 ip2dbg(("ill_nic_info_dispatch: " 23127 "ddi_taskq_dispatch failed\n")); 23128 if (info->hne_data != NULL) 23129 kmem_free(info->hne_data, info->hne_datalen); 23130 kmem_free(info, sizeof (hook_nic_event_t)); 23131 } 23132 ill->ill_nic_event_info = NULL; 23133 } 23134 } 23135 23136 /* 23137 * Notify any downstream modules of the name of this interface. 23138 * An M_IOCTL is used even though we don't expect a successful reply. 23139 * Any reply message from the driver (presumably an M_IOCNAK) will 23140 * eventually get discarded somewhere upstream. The message format is 23141 * simply an SIOCSLIFNAME ioctl just as might be sent from ifconfig 23142 * to IP. 23143 */ 23144 static void 23145 ip_ifname_notify(ill_t *ill, queue_t *q) 23146 { 23147 mblk_t *mp1, *mp2; 23148 struct iocblk *iocp; 23149 struct lifreq *lifr; 23150 23151 mp1 = mkiocb(SIOCSLIFNAME); 23152 if (mp1 == NULL) 23153 return; 23154 mp2 = allocb(sizeof (struct lifreq), BPRI_HI); 23155 if (mp2 == NULL) { 23156 freeb(mp1); 23157 return; 23158 } 23159 23160 mp1->b_cont = mp2; 23161 iocp = (struct iocblk *)mp1->b_rptr; 23162 iocp->ioc_count = sizeof (struct lifreq); 23163 23164 lifr = (struct lifreq *)mp2->b_rptr; 23165 mp2->b_wptr += sizeof (struct lifreq); 23166 bzero(lifr, sizeof (struct lifreq)); 23167 23168 (void) strncpy(lifr->lifr_name, ill->ill_name, LIFNAMSIZ); 23169 lifr->lifr_ppa = ill->ill_ppa; 23170 lifr->lifr_flags = (ill->ill_flags & (ILLF_IPV4|ILLF_IPV6)); 23171 23172 putnext(q, mp1); 23173 } 23174 23175 static int 23176 ipif_set_values_tail(ill_t *ill, ipif_t *ipif, mblk_t *mp, queue_t *q) 23177 { 23178 int err; 23179 ip_stack_t *ipst = ill->ill_ipst; 23180 23181 /* Set the obsolete NDD per-interface forwarding name. */ 23182 err = ill_set_ndd_name(ill); 23183 if (err != 0) { 23184 cmn_err(CE_WARN, "ipif_set_values: ill_set_ndd_name (%d)\n", 23185 err); 23186 } 23187 23188 /* Tell downstream modules where they are. */ 23189 ip_ifname_notify(ill, q); 23190 23191 /* 23192 * ill_dl_phys returns EINPROGRESS in the usual case. 23193 * Error cases are ENOMEM ... 23194 */ 23195 err = ill_dl_phys(ill, ipif, mp, q); 23196 23197 /* 23198 * If there is no IRE expiration timer running, get one started. 23199 * igmp and mld timers will be triggered by the first multicast 23200 */ 23201 if (ipst->ips_ip_ire_expire_id == 0) { 23202 /* 23203 * acquire the lock and check again. 23204 */ 23205 mutex_enter(&ipst->ips_ip_trash_timer_lock); 23206 if (ipst->ips_ip_ire_expire_id == 0) { 23207 ipst->ips_ip_ire_expire_id = timeout( 23208 ip_trash_timer_expire, ipst, 23209 MSEC_TO_TICK(ipst->ips_ip_timer_interval)); 23210 } 23211 mutex_exit(&ipst->ips_ip_trash_timer_lock); 23212 } 23213 23214 if (ill->ill_isv6) { 23215 mutex_enter(&ipst->ips_mld_slowtimeout_lock); 23216 if (ipst->ips_mld_slowtimeout_id == 0) { 23217 ipst->ips_mld_slowtimeout_id = timeout(mld_slowtimo, 23218 (void *)ipst, 23219 MSEC_TO_TICK(MCAST_SLOWTIMO_INTERVAL)); 23220 } 23221 mutex_exit(&ipst->ips_mld_slowtimeout_lock); 23222 } else { 23223 mutex_enter(&ipst->ips_igmp_slowtimeout_lock); 23224 if (ipst->ips_igmp_slowtimeout_id == 0) { 23225 ipst->ips_igmp_slowtimeout_id = timeout(igmp_slowtimo, 23226 (void *)ipst, 23227 MSEC_TO_TICK(MCAST_SLOWTIMO_INTERVAL)); 23228 } 23229 mutex_exit(&ipst->ips_igmp_slowtimeout_lock); 23230 } 23231 23232 return (err); 23233 } 23234 23235 /* 23236 * Common routine for ppa and ifname setting. Should be called exclusive. 23237 * 23238 * Returns EINPROGRESS when mp has been consumed by queueing it on 23239 * ill_pending_mp and the ioctl will complete in ip_rput. 23240 * 23241 * NOTE : If ppa is UNIT_MAX, we assign the next valid ppa and return 23242 * the new name and new ppa in lifr_name and lifr_ppa respectively. 23243 * For SLIFNAME, we pass these values back to the userland. 23244 */ 23245 static int 23246 ipif_set_values(queue_t *q, mblk_t *mp, char *interf_name, uint_t *new_ppa_ptr) 23247 { 23248 ill_t *ill; 23249 ipif_t *ipif; 23250 ipsq_t *ipsq; 23251 char *ppa_ptr; 23252 char *old_ptr; 23253 char old_char; 23254 int error; 23255 ip_stack_t *ipst; 23256 23257 ip1dbg(("ipif_set_values: interface %s\n", interf_name)); 23258 ASSERT(q->q_next != NULL); 23259 ASSERT(interf_name != NULL); 23260 23261 ill = (ill_t *)q->q_ptr; 23262 ipst = ill->ill_ipst; 23263 23264 ASSERT(ill->ill_ipst != NULL); 23265 ASSERT(ill->ill_name[0] == '\0'); 23266 ASSERT(IAM_WRITER_ILL(ill)); 23267 ASSERT((mi_strlen(interf_name) + 1) <= LIFNAMSIZ); 23268 ASSERT(ill->ill_ppa == UINT_MAX); 23269 23270 /* The ppa is sent down by ifconfig or is chosen */ 23271 if ((ppa_ptr = ill_get_ppa_ptr(interf_name)) == NULL) { 23272 return (EINVAL); 23273 } 23274 23275 /* 23276 * make sure ppa passed in is same as ppa in the name. 23277 * This check is not made when ppa == UINT_MAX in that case ppa 23278 * in the name could be anything. System will choose a ppa and 23279 * update new_ppa_ptr and inter_name to contain the choosen ppa. 23280 */ 23281 if (*new_ppa_ptr != UINT_MAX) { 23282 /* stoi changes the pointer */ 23283 old_ptr = ppa_ptr; 23284 /* 23285 * ifconfig passed in 0 for the ppa for DLPI 1 style devices 23286 * (they don't have an externally visible ppa). We assign one 23287 * here so that we can manage the interface. Note that in 23288 * the past this value was always 0 for DLPI 1 drivers. 23289 */ 23290 if (*new_ppa_ptr == 0) 23291 *new_ppa_ptr = stoi(&old_ptr); 23292 else if (*new_ppa_ptr != (uint_t)stoi(&old_ptr)) 23293 return (EINVAL); 23294 } 23295 /* 23296 * terminate string before ppa 23297 * save char at that location. 23298 */ 23299 old_char = ppa_ptr[0]; 23300 ppa_ptr[0] = '\0'; 23301 23302 ill->ill_ppa = *new_ppa_ptr; 23303 /* 23304 * Finish as much work now as possible before calling ill_glist_insert 23305 * which makes the ill globally visible and also merges it with the 23306 * other protocol instance of this phyint. The remaining work is 23307 * done after entering the ipsq which may happen sometime later. 23308 * ill_set_ndd_name occurs after the ill has been made globally visible. 23309 */ 23310 ipif = ill->ill_ipif; 23311 23312 /* We didn't do this when we allocated ipif in ip_ll_subnet_defaults */ 23313 ipif_assign_seqid(ipif); 23314 23315 if (!(ill->ill_flags & (ILLF_IPV4|ILLF_IPV6))) 23316 ill->ill_flags |= ILLF_IPV4; 23317 23318 ASSERT(ipif->ipif_next == NULL); /* Only one ipif on ill */ 23319 ASSERT((ipif->ipif_flags & IPIF_UP) == 0); 23320 23321 if (ill->ill_flags & ILLF_IPV6) { 23322 23323 ill->ill_isv6 = B_TRUE; 23324 if (ill->ill_rq != NULL) { 23325 ill->ill_rq->q_qinfo = &rinit_ipv6; 23326 ill->ill_wq->q_qinfo = &winit_ipv6; 23327 } 23328 23329 /* Keep the !IN6_IS_ADDR_V4MAPPED assertions happy */ 23330 ipif->ipif_v6lcl_addr = ipv6_all_zeros; 23331 ipif->ipif_v6src_addr = ipv6_all_zeros; 23332 ipif->ipif_v6subnet = ipv6_all_zeros; 23333 ipif->ipif_v6net_mask = ipv6_all_zeros; 23334 ipif->ipif_v6brd_addr = ipv6_all_zeros; 23335 ipif->ipif_v6pp_dst_addr = ipv6_all_zeros; 23336 /* 23337 * point-to-point or Non-mulicast capable 23338 * interfaces won't do NUD unless explicitly 23339 * configured to do so. 23340 */ 23341 if (ipif->ipif_flags & IPIF_POINTOPOINT || 23342 !(ill->ill_flags & ILLF_MULTICAST)) { 23343 ill->ill_flags |= ILLF_NONUD; 23344 } 23345 /* Make sure IPv4 specific flag is not set on IPv6 if */ 23346 if (ill->ill_flags & ILLF_NOARP) { 23347 /* 23348 * Note: xresolv interfaces will eventually need 23349 * NOARP set here as well, but that will require 23350 * those external resolvers to have some 23351 * knowledge of that flag and act appropriately. 23352 * Not to be changed at present. 23353 */ 23354 ill->ill_flags &= ~ILLF_NOARP; 23355 } 23356 /* 23357 * Set the ILLF_ROUTER flag according to the global 23358 * IPv6 forwarding policy. 23359 */ 23360 if (ipst->ips_ipv6_forward != 0) 23361 ill->ill_flags |= ILLF_ROUTER; 23362 } else if (ill->ill_flags & ILLF_IPV4) { 23363 ill->ill_isv6 = B_FALSE; 23364 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6lcl_addr); 23365 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6src_addr); 23366 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6subnet); 23367 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6net_mask); 23368 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6brd_addr); 23369 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6pp_dst_addr); 23370 /* 23371 * Set the ILLF_ROUTER flag according to the global 23372 * IPv4 forwarding policy. 23373 */ 23374 if (ipst->ips_ip_g_forward != 0) 23375 ill->ill_flags |= ILLF_ROUTER; 23376 } 23377 23378 ASSERT(ill->ill_phyint != NULL); 23379 23380 /* 23381 * The ipIfStatsIfindex and ipv6IfIcmpIfIndex assignments will 23382 * be completed in ill_glist_insert -> ill_phyint_reinit 23383 */ 23384 if (!ill_allocate_mibs(ill)) 23385 return (ENOMEM); 23386 23387 /* 23388 * Pick a default sap until we get the DL_INFO_ACK back from 23389 * the driver. 23390 */ 23391 if (ill->ill_sap == 0) { 23392 if (ill->ill_isv6) 23393 ill->ill_sap = IP6_DL_SAP; 23394 else 23395 ill->ill_sap = IP_DL_SAP; 23396 } 23397 23398 ill->ill_ifname_pending = 1; 23399 ill->ill_ifname_pending_err = 0; 23400 23401 ill_refhold(ill); 23402 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 23403 if ((error = ill_glist_insert(ill, interf_name, 23404 (ill->ill_flags & ILLF_IPV6) == ILLF_IPV6)) > 0) { 23405 ill->ill_ppa = UINT_MAX; 23406 ill->ill_name[0] = '\0'; 23407 /* 23408 * undo null termination done above. 23409 */ 23410 ppa_ptr[0] = old_char; 23411 rw_exit(&ipst->ips_ill_g_lock); 23412 ill_refrele(ill); 23413 return (error); 23414 } 23415 23416 ASSERT(ill->ill_name_length <= LIFNAMSIZ); 23417 23418 /* 23419 * When we return the buffer pointed to by interf_name should contain 23420 * the same name as in ill_name. 23421 * If a ppa was choosen by the system (ppa passed in was UINT_MAX) 23422 * the buffer pointed to by new_ppa_ptr would not contain the right ppa 23423 * so copy full name and update the ppa ptr. 23424 * When ppa passed in != UINT_MAX all values are correct just undo 23425 * null termination, this saves a bcopy. 23426 */ 23427 if (*new_ppa_ptr == UINT_MAX) { 23428 bcopy(ill->ill_name, interf_name, ill->ill_name_length); 23429 *new_ppa_ptr = ill->ill_ppa; 23430 } else { 23431 /* 23432 * undo null termination done above. 23433 */ 23434 ppa_ptr[0] = old_char; 23435 } 23436 23437 /* Let SCTP know about this ILL */ 23438 sctp_update_ill(ill, SCTP_ILL_INSERT); 23439 23440 ipsq = ipsq_try_enter(NULL, ill, q, mp, ip_reprocess_ioctl, NEW_OP, 23441 B_TRUE); 23442 23443 rw_exit(&ipst->ips_ill_g_lock); 23444 ill_refrele(ill); 23445 if (ipsq == NULL) 23446 return (EINPROGRESS); 23447 23448 /* 23449 * If ill_phyint_reinit() changed our ipsq, then start on the new ipsq. 23450 */ 23451 if (ipsq->ipsq_current_ipif == NULL) 23452 ipsq_current_start(ipsq, ipif, SIOCSLIFNAME); 23453 else 23454 ASSERT(ipsq->ipsq_current_ipif == ipif); 23455 23456 error = ipif_set_values_tail(ill, ipif, mp, q); 23457 ipsq_exit(ipsq, B_TRUE, B_TRUE); 23458 if (error != 0 && error != EINPROGRESS) { 23459 /* 23460 * restore previous values 23461 */ 23462 ill->ill_isv6 = B_FALSE; 23463 } 23464 return (error); 23465 } 23466 23467 23468 void 23469 ipif_init(ip_stack_t *ipst) 23470 { 23471 hrtime_t hrt; 23472 int i; 23473 23474 /* 23475 * Can't call drv_getparm here as it is too early in the boot. 23476 * As we use ipif_src_random just for picking a different 23477 * source address everytime, this need not be really random. 23478 */ 23479 hrt = gethrtime(); 23480 ipst->ips_ipif_src_random = 23481 ((hrt >> 32) & 0xffffffff) * (hrt & 0xffffffff); 23482 23483 for (i = 0; i < MAX_G_HEADS; i++) { 23484 ipst->ips_ill_g_heads[i].ill_g_list_head = 23485 (ill_if_t *)&ipst->ips_ill_g_heads[i]; 23486 ipst->ips_ill_g_heads[i].ill_g_list_tail = 23487 (ill_if_t *)&ipst->ips_ill_g_heads[i]; 23488 } 23489 23490 avl_create(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 23491 ill_phyint_compare_index, 23492 sizeof (phyint_t), 23493 offsetof(struct phyint, phyint_avl_by_index)); 23494 avl_create(&ipst->ips_phyint_g_list->phyint_list_avl_by_name, 23495 ill_phyint_compare_name, 23496 sizeof (phyint_t), 23497 offsetof(struct phyint, phyint_avl_by_name)); 23498 } 23499 23500 /* 23501 * This is called by ip_rt_add when src_addr value is other than zero. 23502 * src_addr signifies the source address of the incoming packet. For 23503 * reverse tunnel route we need to create a source addr based routing 23504 * table. This routine creates ip_mrtun_table if it's empty and then 23505 * it adds the route entry hashed by source address. It verifies that 23506 * the outgoing interface is always a non-resolver interface (tunnel). 23507 */ 23508 int 23509 ip_mrtun_rt_add(ipaddr_t in_src_addr, int flags, ipif_t *ipif_arg, 23510 ipif_t *src_ipif, ire_t **ire_arg, queue_t *q, mblk_t *mp, ipsq_func_t func, 23511 ip_stack_t *ipst) 23512 { 23513 ire_t *ire; 23514 ire_t *save_ire; 23515 ipif_t *ipif; 23516 ill_t *in_ill = NULL; 23517 ill_t *out_ill; 23518 queue_t *stq; 23519 mblk_t *dlureq_mp; 23520 int error; 23521 23522 if (ire_arg != NULL) 23523 *ire_arg = NULL; 23524 ASSERT(in_src_addr != INADDR_ANY); 23525 23526 ipif = ipif_arg; 23527 if (ipif != NULL) { 23528 out_ill = ipif->ipif_ill; 23529 } else { 23530 ip1dbg(("ip_mrtun_rt_add: ipif is NULL\n")); 23531 return (EINVAL); 23532 } 23533 23534 if (src_ipif == NULL) { 23535 ip1dbg(("ip_mrtun_rt_add: src_ipif is NULL\n")); 23536 return (EINVAL); 23537 } 23538 in_ill = src_ipif->ipif_ill; 23539 23540 /* 23541 * Check for duplicates. We don't need to 23542 * match out_ill, because the uniqueness of 23543 * a route is only dependent on src_addr and 23544 * in_ill. 23545 */ 23546 ire = ire_mrtun_lookup(in_src_addr, in_ill); 23547 if (ire != NULL) { 23548 ire_refrele(ire); 23549 return (EEXIST); 23550 } 23551 if (ipif->ipif_net_type != IRE_IF_NORESOLVER) { 23552 ip2dbg(("ip_mrtun_rt_add: outgoing interface is type %d\n", 23553 ipif->ipif_net_type)); 23554 return (EINVAL); 23555 } 23556 23557 stq = ipif->ipif_wq; 23558 ASSERT(stq != NULL); 23559 23560 /* 23561 * The outgoing interface must be non-resolver 23562 * interface. 23563 */ 23564 dlureq_mp = ill_dlur_gen(NULL, 23565 out_ill->ill_phys_addr_length, out_ill->ill_sap, 23566 out_ill->ill_sap_length); 23567 23568 if (dlureq_mp == NULL) { 23569 ip1dbg(("ip_newroute: dlureq_mp NULL\n")); 23570 return (ENOMEM); 23571 } 23572 23573 /* Create the IRE. */ 23574 23575 ire = ire_create( 23576 NULL, /* Zero dst addr */ 23577 NULL, /* Zero mask */ 23578 NULL, /* Zero gateway addr */ 23579 NULL, /* Zero ipif_src addr */ 23580 (uint8_t *)&in_src_addr, /* in_src-addr */ 23581 &ipif->ipif_mtu, 23582 NULL, 23583 NULL, /* rfq */ 23584 stq, 23585 IRE_MIPRTUN, 23586 dlureq_mp, 23587 ipif, 23588 in_ill, 23589 0, 23590 0, 23591 0, 23592 flags, 23593 &ire_uinfo_null, 23594 NULL, 23595 NULL, 23596 ipst); 23597 23598 if (ire == NULL) { 23599 freeb(dlureq_mp); 23600 return (ENOMEM); 23601 } 23602 ip2dbg(("ip_mrtun_rt_add: mrtun route is created with type %d\n", 23603 ire->ire_type)); 23604 save_ire = ire; 23605 ASSERT(save_ire != NULL); 23606 error = ire_add_mrtun(&ire, q, mp, func); 23607 /* 23608 * If ire_add_mrtun() failed, the ire passed in was freed 23609 * so there is no need to do so here. 23610 */ 23611 if (error != 0) { 23612 return (error); 23613 } 23614 23615 /* Duplicate check */ 23616 if (ire != save_ire) { 23617 /* route already exists by now */ 23618 ire_refrele(ire); 23619 return (EEXIST); 23620 } 23621 23622 if (ire_arg != NULL) { 23623 /* 23624 * Store the ire that was just added. the caller 23625 * ip_rts_request responsible for doing ire_refrele() 23626 * on it. 23627 */ 23628 *ire_arg = ire; 23629 } else { 23630 ire_refrele(ire); /* held in ire_add_mrtun */ 23631 } 23632 23633 return (0); 23634 } 23635 23636 /* 23637 * It is called by ip_rt_delete() only when mipagent requests to delete 23638 * a reverse tunnel route that was added by ip_mrtun_rt_add() before. 23639 */ 23640 23641 int 23642 ip_mrtun_rt_delete(ipaddr_t in_src_addr, ipif_t *src_ipif) 23643 { 23644 ire_t *ire = NULL; 23645 23646 if (in_src_addr == INADDR_ANY) 23647 return (EINVAL); 23648 if (src_ipif == NULL) 23649 return (EINVAL); 23650 23651 /* search if this route exists in the ip_mrtun_table */ 23652 ire = ire_mrtun_lookup(in_src_addr, src_ipif->ipif_ill); 23653 if (ire == NULL) { 23654 ip2dbg(("ip_mrtun_rt_delete: ire not found\n")); 23655 return (ESRCH); 23656 } 23657 ire_delete(ire); 23658 ire_refrele(ire); 23659 return (0); 23660 } 23661 23662 /* 23663 * Lookup the ipif corresponding to the onlink destination address. For 23664 * point-to-point interfaces, it matches with remote endpoint destination 23665 * address. For point-to-multipoint interfaces it only tries to match the 23666 * destination with the interface's subnet address. The longest, most specific 23667 * match is found to take care of such rare network configurations like - 23668 * le0: 129.146.1.1/16 23669 * le1: 129.146.2.2/24 23670 * It is used only by SO_DONTROUTE at the moment. 23671 */ 23672 ipif_t * 23673 ipif_lookup_onlink_addr(ipaddr_t addr, zoneid_t zoneid, ip_stack_t *ipst) 23674 { 23675 ipif_t *ipif, *best_ipif; 23676 ill_t *ill; 23677 ill_walk_context_t ctx; 23678 23679 ASSERT(zoneid != ALL_ZONES); 23680 best_ipif = NULL; 23681 23682 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 23683 ill = ILL_START_WALK_V4(&ctx, ipst); 23684 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 23685 mutex_enter(&ill->ill_lock); 23686 for (ipif = ill->ill_ipif; ipif != NULL; 23687 ipif = ipif->ipif_next) { 23688 if (!IPIF_CAN_LOOKUP(ipif)) 23689 continue; 23690 if (ipif->ipif_zoneid != zoneid && 23691 ipif->ipif_zoneid != ALL_ZONES) 23692 continue; 23693 /* 23694 * Point-to-point case. Look for exact match with 23695 * destination address. 23696 */ 23697 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 23698 if (ipif->ipif_pp_dst_addr == addr) { 23699 ipif_refhold_locked(ipif); 23700 mutex_exit(&ill->ill_lock); 23701 rw_exit(&ipst->ips_ill_g_lock); 23702 if (best_ipif != NULL) 23703 ipif_refrele(best_ipif); 23704 return (ipif); 23705 } 23706 } else if (ipif->ipif_subnet == (addr & 23707 ipif->ipif_net_mask)) { 23708 /* 23709 * Point-to-multipoint case. Looping through to 23710 * find the most specific match. If there are 23711 * multiple best match ipif's then prefer ipif's 23712 * that are UP. If there is only one best match 23713 * ipif and it is DOWN we must still return it. 23714 */ 23715 if ((best_ipif == NULL) || 23716 (ipif->ipif_net_mask > 23717 best_ipif->ipif_net_mask) || 23718 ((ipif->ipif_net_mask == 23719 best_ipif->ipif_net_mask) && 23720 ((ipif->ipif_flags & IPIF_UP) && 23721 (!(best_ipif->ipif_flags & IPIF_UP))))) { 23722 ipif_refhold_locked(ipif); 23723 mutex_exit(&ill->ill_lock); 23724 rw_exit(&ipst->ips_ill_g_lock); 23725 if (best_ipif != NULL) 23726 ipif_refrele(best_ipif); 23727 best_ipif = ipif; 23728 rw_enter(&ipst->ips_ill_g_lock, 23729 RW_READER); 23730 mutex_enter(&ill->ill_lock); 23731 } 23732 } 23733 } 23734 mutex_exit(&ill->ill_lock); 23735 } 23736 rw_exit(&ipst->ips_ill_g_lock); 23737 return (best_ipif); 23738 } 23739 23740 23741 /* 23742 * Save enough information so that we can recreate the IRE if 23743 * the interface goes down and then up. 23744 */ 23745 static void 23746 ipif_save_ire(ipif_t *ipif, ire_t *ire) 23747 { 23748 mblk_t *save_mp; 23749 23750 save_mp = allocb(sizeof (ifrt_t), BPRI_MED); 23751 if (save_mp != NULL) { 23752 ifrt_t *ifrt; 23753 23754 save_mp->b_wptr += sizeof (ifrt_t); 23755 ifrt = (ifrt_t *)save_mp->b_rptr; 23756 bzero(ifrt, sizeof (ifrt_t)); 23757 ifrt->ifrt_type = ire->ire_type; 23758 ifrt->ifrt_addr = ire->ire_addr; 23759 ifrt->ifrt_gateway_addr = ire->ire_gateway_addr; 23760 ifrt->ifrt_src_addr = ire->ire_src_addr; 23761 ifrt->ifrt_mask = ire->ire_mask; 23762 ifrt->ifrt_flags = ire->ire_flags; 23763 ifrt->ifrt_max_frag = ire->ire_max_frag; 23764 mutex_enter(&ipif->ipif_saved_ire_lock); 23765 save_mp->b_cont = ipif->ipif_saved_ire_mp; 23766 ipif->ipif_saved_ire_mp = save_mp; 23767 ipif->ipif_saved_ire_cnt++; 23768 mutex_exit(&ipif->ipif_saved_ire_lock); 23769 } 23770 } 23771 23772 23773 static void 23774 ipif_remove_ire(ipif_t *ipif, ire_t *ire) 23775 { 23776 mblk_t **mpp; 23777 mblk_t *mp; 23778 ifrt_t *ifrt; 23779 23780 /* Remove from ipif_saved_ire_mp list if it is there */ 23781 mutex_enter(&ipif->ipif_saved_ire_lock); 23782 for (mpp = &ipif->ipif_saved_ire_mp; *mpp != NULL; 23783 mpp = &(*mpp)->b_cont) { 23784 /* 23785 * On a given ipif, the triple of address, gateway and 23786 * mask is unique for each saved IRE (in the case of 23787 * ordinary interface routes, the gateway address is 23788 * all-zeroes). 23789 */ 23790 mp = *mpp; 23791 ifrt = (ifrt_t *)mp->b_rptr; 23792 if (ifrt->ifrt_addr == ire->ire_addr && 23793 ifrt->ifrt_gateway_addr == ire->ire_gateway_addr && 23794 ifrt->ifrt_mask == ire->ire_mask) { 23795 *mpp = mp->b_cont; 23796 ipif->ipif_saved_ire_cnt--; 23797 freeb(mp); 23798 break; 23799 } 23800 } 23801 mutex_exit(&ipif->ipif_saved_ire_lock); 23802 } 23803 23804 23805 /* 23806 * IP multirouting broadcast routes handling 23807 * Append CGTP broadcast IREs to regular ones created 23808 * at ifconfig time. 23809 */ 23810 static void 23811 ip_cgtp_bcast_add(ire_t *ire, ire_t *ire_dst, ip_stack_t *ipst) 23812 { 23813 ire_t *ire_prim; 23814 23815 ASSERT(ire != NULL); 23816 ASSERT(ire_dst != NULL); 23817 23818 ire_prim = ire_ctable_lookup(ire->ire_gateway_addr, 0, 23819 IRE_BROADCAST, NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 23820 if (ire_prim != NULL) { 23821 /* 23822 * We are in the special case of broadcasts for 23823 * CGTP. We add an IRE_BROADCAST that holds 23824 * the RTF_MULTIRT flag, the destination 23825 * address of ire_dst and the low level 23826 * info of ire_prim. In other words, CGTP 23827 * broadcast is added to the redundant ipif. 23828 */ 23829 ipif_t *ipif_prim; 23830 ire_t *bcast_ire; 23831 23832 ipif_prim = ire_prim->ire_ipif; 23833 23834 ip2dbg(("ip_cgtp_filter_bcast_add: " 23835 "ire_dst %p, ire_prim %p, ipif_prim %p\n", 23836 (void *)ire_dst, (void *)ire_prim, 23837 (void *)ipif_prim)); 23838 23839 bcast_ire = ire_create( 23840 (uchar_t *)&ire->ire_addr, 23841 (uchar_t *)&ip_g_all_ones, 23842 (uchar_t *)&ire_dst->ire_src_addr, 23843 (uchar_t *)&ire->ire_gateway_addr, 23844 NULL, 23845 &ipif_prim->ipif_mtu, 23846 NULL, 23847 ipif_prim->ipif_rq, 23848 ipif_prim->ipif_wq, 23849 IRE_BROADCAST, 23850 ipif_prim->ipif_bcast_mp, 23851 ipif_prim, 23852 NULL, 23853 0, 23854 0, 23855 0, 23856 ire->ire_flags, 23857 &ire_uinfo_null, 23858 NULL, 23859 NULL, 23860 ipst); 23861 23862 if (bcast_ire != NULL) { 23863 23864 if (ire_add(&bcast_ire, NULL, NULL, NULL, 23865 B_FALSE) == 0) { 23866 ip2dbg(("ip_cgtp_filter_bcast_add: " 23867 "added bcast_ire %p\n", 23868 (void *)bcast_ire)); 23869 23870 ipif_save_ire(bcast_ire->ire_ipif, 23871 bcast_ire); 23872 ire_refrele(bcast_ire); 23873 } 23874 } 23875 ire_refrele(ire_prim); 23876 } 23877 } 23878 23879 23880 /* 23881 * IP multirouting broadcast routes handling 23882 * Remove the broadcast ire 23883 */ 23884 static void 23885 ip_cgtp_bcast_delete(ire_t *ire, ip_stack_t *ipst) 23886 { 23887 ire_t *ire_dst; 23888 23889 ASSERT(ire != NULL); 23890 ire_dst = ire_ctable_lookup(ire->ire_addr, 0, IRE_BROADCAST, 23891 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 23892 if (ire_dst != NULL) { 23893 ire_t *ire_prim; 23894 23895 ire_prim = ire_ctable_lookup(ire->ire_gateway_addr, 0, 23896 IRE_BROADCAST, NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 23897 if (ire_prim != NULL) { 23898 ipif_t *ipif_prim; 23899 ire_t *bcast_ire; 23900 23901 ipif_prim = ire_prim->ire_ipif; 23902 23903 ip2dbg(("ip_cgtp_filter_bcast_delete: " 23904 "ire_dst %p, ire_prim %p, ipif_prim %p\n", 23905 (void *)ire_dst, (void *)ire_prim, 23906 (void *)ipif_prim)); 23907 23908 bcast_ire = ire_ctable_lookup(ire->ire_addr, 23909 ire->ire_gateway_addr, 23910 IRE_BROADCAST, 23911 ipif_prim, ALL_ZONES, 23912 NULL, 23913 MATCH_IRE_TYPE | MATCH_IRE_GW | MATCH_IRE_IPIF | 23914 MATCH_IRE_MASK, ipst); 23915 23916 if (bcast_ire != NULL) { 23917 ip2dbg(("ip_cgtp_filter_bcast_delete: " 23918 "looked up bcast_ire %p\n", 23919 (void *)bcast_ire)); 23920 ipif_remove_ire(bcast_ire->ire_ipif, 23921 bcast_ire); 23922 ire_delete(bcast_ire); 23923 } 23924 ire_refrele(ire_prim); 23925 } 23926 ire_refrele(ire_dst); 23927 } 23928 } 23929 23930 /* 23931 * IPsec hardware acceleration capabilities related functions. 23932 */ 23933 23934 /* 23935 * Free a per-ill IPsec capabilities structure. 23936 */ 23937 static void 23938 ill_ipsec_capab_free(ill_ipsec_capab_t *capab) 23939 { 23940 if (capab->auth_hw_algs != NULL) 23941 kmem_free(capab->auth_hw_algs, capab->algs_size); 23942 if (capab->encr_hw_algs != NULL) 23943 kmem_free(capab->encr_hw_algs, capab->algs_size); 23944 if (capab->encr_algparm != NULL) 23945 kmem_free(capab->encr_algparm, capab->encr_algparm_size); 23946 kmem_free(capab, sizeof (ill_ipsec_capab_t)); 23947 } 23948 23949 /* 23950 * Allocate a new per-ill IPsec capabilities structure. This structure 23951 * is specific to an IPsec protocol (AH or ESP). It is implemented as 23952 * an array which specifies, for each algorithm, whether this algorithm 23953 * is supported by the ill or not. 23954 */ 23955 static ill_ipsec_capab_t * 23956 ill_ipsec_capab_alloc(void) 23957 { 23958 ill_ipsec_capab_t *capab; 23959 uint_t nelems; 23960 23961 capab = kmem_zalloc(sizeof (ill_ipsec_capab_t), KM_NOSLEEP); 23962 if (capab == NULL) 23963 return (NULL); 23964 23965 /* we need one bit per algorithm */ 23966 nelems = MAX_IPSEC_ALGS / BITS(ipsec_capab_elem_t); 23967 capab->algs_size = nelems * sizeof (ipsec_capab_elem_t); 23968 23969 /* allocate memory to store algorithm flags */ 23970 capab->encr_hw_algs = kmem_zalloc(capab->algs_size, KM_NOSLEEP); 23971 if (capab->encr_hw_algs == NULL) 23972 goto nomem; 23973 capab->auth_hw_algs = kmem_zalloc(capab->algs_size, KM_NOSLEEP); 23974 if (capab->auth_hw_algs == NULL) 23975 goto nomem; 23976 /* 23977 * Leave encr_algparm NULL for now since we won't need it half 23978 * the time 23979 */ 23980 return (capab); 23981 23982 nomem: 23983 ill_ipsec_capab_free(capab); 23984 return (NULL); 23985 } 23986 23987 /* 23988 * Resize capability array. Since we're exclusive, this is OK. 23989 */ 23990 static boolean_t 23991 ill_ipsec_capab_resize_algparm(ill_ipsec_capab_t *capab, int algid) 23992 { 23993 ipsec_capab_algparm_t *nalp, *oalp; 23994 uint32_t olen, nlen; 23995 23996 oalp = capab->encr_algparm; 23997 olen = capab->encr_algparm_size; 23998 23999 if (oalp != NULL) { 24000 if (algid < capab->encr_algparm_end) 24001 return (B_TRUE); 24002 } 24003 24004 nlen = (algid + 1) * sizeof (*nalp); 24005 nalp = kmem_zalloc(nlen, KM_NOSLEEP); 24006 if (nalp == NULL) 24007 return (B_FALSE); 24008 24009 if (oalp != NULL) { 24010 bcopy(oalp, nalp, olen); 24011 kmem_free(oalp, olen); 24012 } 24013 capab->encr_algparm = nalp; 24014 capab->encr_algparm_size = nlen; 24015 capab->encr_algparm_end = algid + 1; 24016 24017 return (B_TRUE); 24018 } 24019 24020 /* 24021 * Compare the capabilities of the specified ill with the protocol 24022 * and algorithms specified by the SA passed as argument. 24023 * If they match, returns B_TRUE, B_FALSE if they do not match. 24024 * 24025 * The ill can be passed as a pointer to it, or by specifying its index 24026 * and whether it is an IPv6 ill (ill_index and ill_isv6 arguments). 24027 * 24028 * Called by ipsec_out_is_accelerated() do decide whether an outbound 24029 * packet is eligible for hardware acceleration, and by 24030 * ill_ipsec_capab_send_all() to decide whether a SA must be sent down 24031 * to a particular ill. 24032 */ 24033 boolean_t 24034 ipsec_capab_match(ill_t *ill, uint_t ill_index, boolean_t ill_isv6, 24035 ipsa_t *sa, netstack_t *ns) 24036 { 24037 boolean_t sa_isv6; 24038 uint_t algid; 24039 struct ill_ipsec_capab_s *cpp; 24040 boolean_t need_refrele = B_FALSE; 24041 ip_stack_t *ipst = ns->netstack_ip; 24042 24043 if (ill == NULL) { 24044 ill = ill_lookup_on_ifindex(ill_index, ill_isv6, NULL, 24045 NULL, NULL, NULL, ipst); 24046 if (ill == NULL) { 24047 ip0dbg(("ipsec_capab_match: ill doesn't exist\n")); 24048 return (B_FALSE); 24049 } 24050 need_refrele = B_TRUE; 24051 } 24052 24053 /* 24054 * Use the address length specified by the SA to determine 24055 * if it corresponds to a IPv6 address, and fail the matching 24056 * if the isv6 flag passed as argument does not match. 24057 * Note: this check is used for SADB capability checking before 24058 * sending SA information to an ill. 24059 */ 24060 sa_isv6 = (sa->ipsa_addrfam == AF_INET6); 24061 if (sa_isv6 != ill_isv6) 24062 /* protocol mismatch */ 24063 goto done; 24064 24065 /* 24066 * Check if the ill supports the protocol, algorithm(s) and 24067 * key size(s) specified by the SA, and get the pointers to 24068 * the algorithms supported by the ill. 24069 */ 24070 switch (sa->ipsa_type) { 24071 24072 case SADB_SATYPE_ESP: 24073 if (!(ill->ill_capabilities & ILL_CAPAB_ESP)) 24074 /* ill does not support ESP acceleration */ 24075 goto done; 24076 cpp = ill->ill_ipsec_capab_esp; 24077 algid = sa->ipsa_auth_alg; 24078 if (!IPSEC_ALG_IS_ENABLED(algid, cpp->auth_hw_algs)) 24079 goto done; 24080 algid = sa->ipsa_encr_alg; 24081 if (!IPSEC_ALG_IS_ENABLED(algid, cpp->encr_hw_algs)) 24082 goto done; 24083 if (algid < cpp->encr_algparm_end) { 24084 ipsec_capab_algparm_t *alp = &cpp->encr_algparm[algid]; 24085 if (sa->ipsa_encrkeybits < alp->minkeylen) 24086 goto done; 24087 if (sa->ipsa_encrkeybits > alp->maxkeylen) 24088 goto done; 24089 } 24090 break; 24091 24092 case SADB_SATYPE_AH: 24093 if (!(ill->ill_capabilities & ILL_CAPAB_AH)) 24094 /* ill does not support AH acceleration */ 24095 goto done; 24096 if (!IPSEC_ALG_IS_ENABLED(sa->ipsa_auth_alg, 24097 ill->ill_ipsec_capab_ah->auth_hw_algs)) 24098 goto done; 24099 break; 24100 } 24101 24102 if (need_refrele) 24103 ill_refrele(ill); 24104 return (B_TRUE); 24105 done: 24106 if (need_refrele) 24107 ill_refrele(ill); 24108 return (B_FALSE); 24109 } 24110 24111 24112 /* 24113 * Add a new ill to the list of IPsec capable ills. 24114 * Called from ill_capability_ipsec_ack() when an ACK was received 24115 * indicating that IPsec hardware processing was enabled for an ill. 24116 * 24117 * ill must point to the ill for which acceleration was enabled. 24118 * dl_cap must be set to DL_CAPAB_IPSEC_AH or DL_CAPAB_IPSEC_ESP. 24119 */ 24120 static void 24121 ill_ipsec_capab_add(ill_t *ill, uint_t dl_cap, boolean_t sadb_resync) 24122 { 24123 ipsec_capab_ill_t **ills, *cur_ill, *new_ill; 24124 uint_t sa_type; 24125 uint_t ipproto; 24126 ip_stack_t *ipst = ill->ill_ipst; 24127 24128 ASSERT((dl_cap == DL_CAPAB_IPSEC_AH) || 24129 (dl_cap == DL_CAPAB_IPSEC_ESP)); 24130 24131 switch (dl_cap) { 24132 case DL_CAPAB_IPSEC_AH: 24133 sa_type = SADB_SATYPE_AH; 24134 ills = &ipst->ips_ipsec_capab_ills_ah; 24135 ipproto = IPPROTO_AH; 24136 break; 24137 case DL_CAPAB_IPSEC_ESP: 24138 sa_type = SADB_SATYPE_ESP; 24139 ills = &ipst->ips_ipsec_capab_ills_esp; 24140 ipproto = IPPROTO_ESP; 24141 break; 24142 } 24143 24144 rw_enter(&ipst->ips_ipsec_capab_ills_lock, RW_WRITER); 24145 24146 /* 24147 * Add ill index to list of hardware accelerators. If 24148 * already in list, do nothing. 24149 */ 24150 for (cur_ill = *ills; cur_ill != NULL && 24151 (cur_ill->ill_index != ill->ill_phyint->phyint_ifindex || 24152 cur_ill->ill_isv6 != ill->ill_isv6); cur_ill = cur_ill->next) 24153 ; 24154 24155 if (cur_ill == NULL) { 24156 /* if this is a new entry for this ill */ 24157 new_ill = kmem_zalloc(sizeof (ipsec_capab_ill_t), KM_NOSLEEP); 24158 if (new_ill == NULL) { 24159 rw_exit(&ipst->ips_ipsec_capab_ills_lock); 24160 return; 24161 } 24162 24163 new_ill->ill_index = ill->ill_phyint->phyint_ifindex; 24164 new_ill->ill_isv6 = ill->ill_isv6; 24165 new_ill->next = *ills; 24166 *ills = new_ill; 24167 } else if (!sadb_resync) { 24168 /* not resync'ing SADB and an entry exists for this ill */ 24169 rw_exit(&ipst->ips_ipsec_capab_ills_lock); 24170 return; 24171 } 24172 24173 rw_exit(&ipst->ips_ipsec_capab_ills_lock); 24174 24175 if (ipst->ips_ipcl_proto_fanout_v6[ipproto].connf_head != NULL) 24176 /* 24177 * IPsec module for protocol loaded, initiate dump 24178 * of the SADB to this ill. 24179 */ 24180 sadb_ill_download(ill, sa_type); 24181 } 24182 24183 /* 24184 * Remove an ill from the list of IPsec capable ills. 24185 */ 24186 static void 24187 ill_ipsec_capab_delete(ill_t *ill, uint_t dl_cap) 24188 { 24189 ipsec_capab_ill_t **ills, *cur_ill, *prev_ill; 24190 ip_stack_t *ipst = ill->ill_ipst; 24191 24192 ASSERT(dl_cap == DL_CAPAB_IPSEC_AH || 24193 dl_cap == DL_CAPAB_IPSEC_ESP); 24194 24195 ills = (dl_cap == DL_CAPAB_IPSEC_AH) ? &ipst->ips_ipsec_capab_ills_ah : 24196 &ipst->ips_ipsec_capab_ills_esp; 24197 24198 rw_enter(&ipst->ips_ipsec_capab_ills_lock, RW_WRITER); 24199 24200 prev_ill = NULL; 24201 for (cur_ill = *ills; cur_ill != NULL && (cur_ill->ill_index != 24202 ill->ill_phyint->phyint_ifindex || cur_ill->ill_isv6 != 24203 ill->ill_isv6); prev_ill = cur_ill, cur_ill = cur_ill->next) 24204 ; 24205 if (cur_ill == NULL) { 24206 /* entry not found */ 24207 rw_exit(&ipst->ips_ipsec_capab_ills_lock); 24208 return; 24209 } 24210 if (prev_ill == NULL) { 24211 /* entry at front of list */ 24212 *ills = NULL; 24213 } else { 24214 prev_ill->next = cur_ill->next; 24215 } 24216 kmem_free(cur_ill, sizeof (ipsec_capab_ill_t)); 24217 rw_exit(&ipst->ips_ipsec_capab_ills_lock); 24218 } 24219 24220 24221 /* 24222 * Handling of DL_CONTROL_REQ messages that must be sent down to 24223 * an ill while having exclusive access. 24224 */ 24225 /* ARGSUSED */ 24226 static void 24227 ill_ipsec_capab_send_writer(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *arg) 24228 { 24229 ill_t *ill = (ill_t *)q->q_ptr; 24230 24231 ill_dlpi_send(ill, mp); 24232 } 24233 24234 24235 /* 24236 * Called by SADB to send a DL_CONTROL_REQ message to every ill 24237 * supporting the specified IPsec protocol acceleration. 24238 * sa_type must be SADB_SATYPE_AH or SADB_SATYPE_ESP. 24239 * We free the mblk and, if sa is non-null, release the held referece. 24240 */ 24241 void 24242 ill_ipsec_capab_send_all(uint_t sa_type, mblk_t *mp, ipsa_t *sa, 24243 netstack_t *ns) 24244 { 24245 ipsec_capab_ill_t *ici, *cur_ici; 24246 ill_t *ill; 24247 mblk_t *nmp, *mp_ship_list = NULL, *next_mp; 24248 ip_stack_t *ipst = ns->netstack_ip; 24249 24250 ici = (sa_type == SADB_SATYPE_AH) ? ipst->ips_ipsec_capab_ills_ah : 24251 ipst->ips_ipsec_capab_ills_esp; 24252 24253 rw_enter(&ipst->ips_ipsec_capab_ills_lock, RW_READER); 24254 24255 for (cur_ici = ici; cur_ici != NULL; cur_ici = cur_ici->next) { 24256 ill = ill_lookup_on_ifindex(cur_ici->ill_index, 24257 cur_ici->ill_isv6, NULL, NULL, NULL, NULL, ipst); 24258 24259 /* 24260 * Handle the case where the ill goes away while the SADB is 24261 * attempting to send messages. If it's going away, it's 24262 * nuking its shadow SADB, so we don't care.. 24263 */ 24264 24265 if (ill == NULL) 24266 continue; 24267 24268 if (sa != NULL) { 24269 /* 24270 * Make sure capabilities match before 24271 * sending SA to ill. 24272 */ 24273 if (!ipsec_capab_match(ill, cur_ici->ill_index, 24274 cur_ici->ill_isv6, sa, ipst->ips_netstack)) { 24275 ill_refrele(ill); 24276 continue; 24277 } 24278 24279 mutex_enter(&sa->ipsa_lock); 24280 sa->ipsa_flags |= IPSA_F_HW; 24281 mutex_exit(&sa->ipsa_lock); 24282 } 24283 24284 /* 24285 * Copy template message, and add it to the front 24286 * of the mblk ship list. We want to avoid holding 24287 * the ipsec_capab_ills_lock while sending the 24288 * message to the ills. 24289 * 24290 * The b_next and b_prev are temporarily used 24291 * to build a list of mblks to be sent down, and to 24292 * save the ill to which they must be sent. 24293 */ 24294 nmp = copymsg(mp); 24295 if (nmp == NULL) { 24296 ill_refrele(ill); 24297 continue; 24298 } 24299 ASSERT(nmp->b_next == NULL && nmp->b_prev == NULL); 24300 nmp->b_next = mp_ship_list; 24301 mp_ship_list = nmp; 24302 nmp->b_prev = (mblk_t *)ill; 24303 } 24304 24305 rw_exit(&ipst->ips_ipsec_capab_ills_lock); 24306 24307 nmp = mp_ship_list; 24308 while (nmp != NULL) { 24309 /* restore the mblk to a sane state */ 24310 next_mp = nmp->b_next; 24311 nmp->b_next = NULL; 24312 ill = (ill_t *)nmp->b_prev; 24313 nmp->b_prev = NULL; 24314 24315 /* 24316 * Ship the mblk to the ill, must be exclusive. Keep the 24317 * reference to the ill as qwriter_ip() does a ill_referele(). 24318 */ 24319 (void) qwriter_ip(NULL, ill, ill->ill_wq, nmp, 24320 ill_ipsec_capab_send_writer, NEW_OP, B_TRUE); 24321 24322 nmp = next_mp; 24323 } 24324 24325 if (sa != NULL) 24326 IPSA_REFRELE(sa); 24327 freemsg(mp); 24328 } 24329 24330 24331 /* 24332 * Derive an interface id from the link layer address. 24333 * Knows about IEEE 802 and IEEE EUI-64 mappings. 24334 */ 24335 static boolean_t 24336 ip_ether_v6intfid(uint_t phys_length, uint8_t *phys_addr, in6_addr_t *v6addr) 24337 { 24338 char *addr; 24339 24340 if (phys_length != ETHERADDRL) 24341 return (B_FALSE); 24342 24343 /* Form EUI-64 like address */ 24344 addr = (char *)&v6addr->s6_addr32[2]; 24345 bcopy((char *)phys_addr, addr, 3); 24346 addr[0] ^= 0x2; /* Toggle Universal/Local bit */ 24347 addr[3] = (char)0xff; 24348 addr[4] = (char)0xfe; 24349 bcopy((char *)phys_addr + 3, addr + 5, 3); 24350 return (B_TRUE); 24351 } 24352 24353 /* ARGSUSED */ 24354 static boolean_t 24355 ip_nodef_v6intfid(uint_t phys_length, uint8_t *phys_addr, in6_addr_t *v6addr) 24356 { 24357 return (B_FALSE); 24358 } 24359 24360 /* ARGSUSED */ 24361 static boolean_t 24362 ip_ether_v6mapinfo(uint_t lla_length, uint8_t *bphys_addr, uint8_t *maddr, 24363 uint32_t *hw_start, in6_addr_t *v6_extract_mask) 24364 { 24365 /* 24366 * Multicast address mappings used over Ethernet/802.X. 24367 * This address is used as a base for mappings. 24368 */ 24369 static uint8_t ipv6_g_phys_multi_addr[] = {0x33, 0x33, 0x00, 24370 0x00, 0x00, 0x00}; 24371 24372 /* 24373 * Extract low order 32 bits from IPv6 multicast address. 24374 * Or that into the link layer address, starting from the 24375 * second byte. 24376 */ 24377 *hw_start = 2; 24378 v6_extract_mask->s6_addr32[0] = 0; 24379 v6_extract_mask->s6_addr32[1] = 0; 24380 v6_extract_mask->s6_addr32[2] = 0; 24381 v6_extract_mask->s6_addr32[3] = 0xffffffffU; 24382 bcopy(ipv6_g_phys_multi_addr, maddr, lla_length); 24383 return (B_TRUE); 24384 } 24385 24386 /* 24387 * Indicate by return value whether multicast is supported. If not, 24388 * this code should not touch/change any parameters. 24389 */ 24390 /* ARGSUSED */ 24391 static boolean_t 24392 ip_ether_v4mapinfo(uint_t phys_length, uint8_t *bphys_addr, uint8_t *maddr, 24393 uint32_t *hw_start, ipaddr_t *extract_mask) 24394 { 24395 /* 24396 * Multicast address mappings used over Ethernet/802.X. 24397 * This address is used as a base for mappings. 24398 */ 24399 static uint8_t ip_g_phys_multi_addr[] = { 0x01, 0x00, 0x5e, 24400 0x00, 0x00, 0x00 }; 24401 24402 if (phys_length != ETHERADDRL) 24403 return (B_FALSE); 24404 24405 *extract_mask = htonl(0x007fffff); 24406 *hw_start = 2; 24407 bcopy(ip_g_phys_multi_addr, maddr, ETHERADDRL); 24408 return (B_TRUE); 24409 } 24410 24411 /* 24412 * Derive IPoIB interface id from the link layer address. 24413 */ 24414 static boolean_t 24415 ip_ib_v6intfid(uint_t phys_length, uint8_t *phys_addr, in6_addr_t *v6addr) 24416 { 24417 char *addr; 24418 24419 if (phys_length != 20) 24420 return (B_FALSE); 24421 addr = (char *)&v6addr->s6_addr32[2]; 24422 bcopy(phys_addr + 12, addr, 8); 24423 /* 24424 * In IBA 1.1 timeframe, some vendors erroneously set the u/l bit 24425 * in the globally assigned EUI-64 GUID to 1, in violation of IEEE 24426 * rules. In these cases, the IBA considers these GUIDs to be in 24427 * "Modified EUI-64" format, and thus toggling the u/l bit is not 24428 * required; vendors are required not to assign global EUI-64's 24429 * that differ only in u/l bit values, thus guaranteeing uniqueness 24430 * of the interface identifier. Whether the GUID is in modified 24431 * or proper EUI-64 format, the ipv6 identifier must have the u/l 24432 * bit set to 1. 24433 */ 24434 addr[0] |= 2; /* Set Universal/Local bit to 1 */ 24435 return (B_TRUE); 24436 } 24437 24438 /* 24439 * Note on mapping from multicast IP addresses to IPoIB multicast link 24440 * addresses. IPoIB multicast link addresses are based on IBA link addresses. 24441 * The format of an IPoIB multicast address is: 24442 * 24443 * 4 byte QPN Scope Sign. Pkey 24444 * +--------------------------------------------+ 24445 * | 00FFFFFF | FF | 1X | X01B | Pkey | GroupID | 24446 * +--------------------------------------------+ 24447 * 24448 * The Scope and Pkey components are properties of the IBA port and 24449 * network interface. They can be ascertained from the broadcast address. 24450 * The Sign. part is the signature, and is 401B for IPv4 and 601B for IPv6. 24451 */ 24452 24453 static boolean_t 24454 ip_ib_v6mapinfo(uint_t lla_length, uint8_t *bphys_addr, uint8_t *maddr, 24455 uint32_t *hw_start, in6_addr_t *v6_extract_mask) 24456 { 24457 /* 24458 * Base IPoIB IPv6 multicast address used for mappings. 24459 * Does not contain the IBA scope/Pkey values. 24460 */ 24461 static uint8_t ipv6_g_phys_ibmulti_addr[] = { 0x00, 0xff, 0xff, 0xff, 24462 0xff, 0x10, 0x60, 0x1b, 0x00, 0x00, 0x00, 0x00, 24463 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }; 24464 24465 /* 24466 * Extract low order 80 bits from IPv6 multicast address. 24467 * Or that into the link layer address, starting from the 24468 * sixth byte. 24469 */ 24470 *hw_start = 6; 24471 bcopy(ipv6_g_phys_ibmulti_addr, maddr, lla_length); 24472 24473 /* 24474 * Now fill in the IBA scope/Pkey values from the broadcast address. 24475 */ 24476 *(maddr + 5) = *(bphys_addr + 5); 24477 *(maddr + 8) = *(bphys_addr + 8); 24478 *(maddr + 9) = *(bphys_addr + 9); 24479 24480 v6_extract_mask->s6_addr32[0] = 0; 24481 v6_extract_mask->s6_addr32[1] = htonl(0x0000ffff); 24482 v6_extract_mask->s6_addr32[2] = 0xffffffffU; 24483 v6_extract_mask->s6_addr32[3] = 0xffffffffU; 24484 return (B_TRUE); 24485 } 24486 24487 static boolean_t 24488 ip_ib_v4mapinfo(uint_t phys_length, uint8_t *bphys_addr, uint8_t *maddr, 24489 uint32_t *hw_start, ipaddr_t *extract_mask) 24490 { 24491 /* 24492 * Base IPoIB IPv4 multicast address used for mappings. 24493 * Does not contain the IBA scope/Pkey values. 24494 */ 24495 static uint8_t ipv4_g_phys_ibmulti_addr[] = { 0x00, 0xff, 0xff, 0xff, 24496 0xff, 0x10, 0x40, 0x1b, 0x00, 0x00, 0x00, 0x00, 24497 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }; 24498 24499 if (phys_length != sizeof (ipv4_g_phys_ibmulti_addr)) 24500 return (B_FALSE); 24501 24502 /* 24503 * Extract low order 28 bits from IPv4 multicast address. 24504 * Or that into the link layer address, starting from the 24505 * sixteenth byte. 24506 */ 24507 *extract_mask = htonl(0x0fffffff); 24508 *hw_start = 16; 24509 bcopy(ipv4_g_phys_ibmulti_addr, maddr, phys_length); 24510 24511 /* 24512 * Now fill in the IBA scope/Pkey values from the broadcast address. 24513 */ 24514 *(maddr + 5) = *(bphys_addr + 5); 24515 *(maddr + 8) = *(bphys_addr + 8); 24516 *(maddr + 9) = *(bphys_addr + 9); 24517 return (B_TRUE); 24518 } 24519 24520 /* 24521 * Returns B_TRUE if an ipif is present in the given zone, matching some flags 24522 * (typically IPIF_UP). If ipifp is non-null, the held ipif is returned there. 24523 * This works for both IPv4 and IPv6; if the passed-in ill is v6, the ipif with 24524 * the link-local address is preferred. 24525 */ 24526 boolean_t 24527 ipif_lookup_zoneid(ill_t *ill, zoneid_t zoneid, int flags, ipif_t **ipifp) 24528 { 24529 ipif_t *ipif; 24530 ipif_t *maybe_ipif = NULL; 24531 24532 mutex_enter(&ill->ill_lock); 24533 if (ill->ill_state_flags & ILL_CONDEMNED) { 24534 mutex_exit(&ill->ill_lock); 24535 if (ipifp != NULL) 24536 *ipifp = NULL; 24537 return (B_FALSE); 24538 } 24539 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 24540 if (!IPIF_CAN_LOOKUP(ipif)) 24541 continue; 24542 if (zoneid != ALL_ZONES && ipif->ipif_zoneid != zoneid && 24543 ipif->ipif_zoneid != ALL_ZONES) 24544 continue; 24545 if ((ipif->ipif_flags & flags) != flags) 24546 continue; 24547 24548 if (ipifp == NULL) { 24549 mutex_exit(&ill->ill_lock); 24550 ASSERT(maybe_ipif == NULL); 24551 return (B_TRUE); 24552 } 24553 if (!ill->ill_isv6 || 24554 IN6_IS_ADDR_LINKLOCAL(&ipif->ipif_v6src_addr)) { 24555 ipif_refhold_locked(ipif); 24556 mutex_exit(&ill->ill_lock); 24557 *ipifp = ipif; 24558 return (B_TRUE); 24559 } 24560 if (maybe_ipif == NULL) 24561 maybe_ipif = ipif; 24562 } 24563 if (ipifp != NULL) { 24564 if (maybe_ipif != NULL) 24565 ipif_refhold_locked(maybe_ipif); 24566 *ipifp = maybe_ipif; 24567 } 24568 mutex_exit(&ill->ill_lock); 24569 return (maybe_ipif != NULL); 24570 } 24571 24572 /* 24573 * Same as ipif_lookup_zoneid() but looks at all the ills in the same group. 24574 */ 24575 boolean_t 24576 ipif_lookup_zoneid_group(ill_t *ill, zoneid_t zoneid, int flags, ipif_t **ipifp) 24577 { 24578 ill_t *illg; 24579 ip_stack_t *ipst = ill->ill_ipst; 24580 24581 /* 24582 * We look at the passed-in ill first without grabbing ill_g_lock. 24583 */ 24584 if (ipif_lookup_zoneid(ill, zoneid, flags, ipifp)) { 24585 return (B_TRUE); 24586 } 24587 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 24588 if (ill->ill_group == NULL) { 24589 /* ill not in a group */ 24590 rw_exit(&ipst->ips_ill_g_lock); 24591 return (B_FALSE); 24592 } 24593 24594 /* 24595 * There's no ipif in the zone on ill, however ill is part of an IPMP 24596 * group. We need to look for an ipif in the zone on all the ills in the 24597 * group. 24598 */ 24599 illg = ill->ill_group->illgrp_ill; 24600 do { 24601 /* 24602 * We don't call ipif_lookup_zoneid() on ill as we already know 24603 * that it's not there. 24604 */ 24605 if (illg != ill && 24606 ipif_lookup_zoneid(illg, zoneid, flags, ipifp)) { 24607 break; 24608 } 24609 } while ((illg = illg->ill_group_next) != NULL); 24610 rw_exit(&ipst->ips_ill_g_lock); 24611 return (illg != NULL); 24612 } 24613 24614 /* 24615 * Check if this ill is only being used to send ICMP probes for IPMP 24616 */ 24617 boolean_t 24618 ill_is_probeonly(ill_t *ill) 24619 { 24620 /* 24621 * Check if the interface is FAILED, or INACTIVE 24622 */ 24623 if (ill->ill_phyint->phyint_flags & (PHYI_FAILED|PHYI_INACTIVE)) 24624 return (B_TRUE); 24625 24626 return (B_FALSE); 24627 } 24628 24629 /* 24630 * Return a pointer to an ipif_t given a combination of (ill_idx,ipif_id) 24631 * If a pointer to an ipif_t is returned then the caller will need to do 24632 * an ill_refrele(). 24633 * 24634 * If there is no real interface which matches the ifindex, then it looks 24635 * for a group that has a matching index. In the case of a group match the 24636 * lifidx must be zero. We don't need emulate the logical interfaces 24637 * since IP Filter's use of netinfo doesn't use that. 24638 */ 24639 ipif_t * 24640 ipif_getby_indexes(uint_t ifindex, uint_t lifidx, boolean_t isv6, 24641 ip_stack_t *ipst) 24642 { 24643 ipif_t *ipif; 24644 ill_t *ill; 24645 24646 ill = ill_lookup_on_ifindex(ifindex, isv6, NULL, NULL, NULL, NULL, 24647 ipst); 24648 24649 if (ill == NULL) { 24650 /* Fallback to group names only if hook_emulation set */ 24651 if (!ipst->ips_ipmp_hook_emulation) 24652 return (NULL); 24653 24654 if (lifidx != 0) 24655 return (NULL); 24656 ill = ill_group_lookup_on_ifindex(ifindex, isv6, ipst); 24657 if (ill == NULL) 24658 return (NULL); 24659 } 24660 24661 mutex_enter(&ill->ill_lock); 24662 if (ill->ill_state_flags & ILL_CONDEMNED) { 24663 mutex_exit(&ill->ill_lock); 24664 ill_refrele(ill); 24665 return (NULL); 24666 } 24667 24668 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 24669 if (!IPIF_CAN_LOOKUP(ipif)) 24670 continue; 24671 if (lifidx == ipif->ipif_id) { 24672 ipif_refhold_locked(ipif); 24673 break; 24674 } 24675 } 24676 24677 mutex_exit(&ill->ill_lock); 24678 ill_refrele(ill); 24679 return (ipif); 24680 } 24681 24682 /* 24683 * Flush the fastpath by deleting any nce's that are waiting for the fastpath, 24684 * There is one exceptions IRE_BROADCAST are difficult to recreate, 24685 * so instead we just nuke their nce_fp_mp's; see ndp_fastpath_flush() 24686 * for details. 24687 */ 24688 void 24689 ill_fastpath_flush(ill_t *ill) 24690 { 24691 ip_stack_t *ipst = ill->ill_ipst; 24692 24693 nce_fastpath_list_dispatch(ill, NULL, NULL); 24694 ndp_walk_common((ill->ill_isv6 ? ipst->ips_ndp6 : ipst->ips_ndp4), 24695 ill, (pfi_t)ndp_fastpath_flush, NULL, B_TRUE); 24696 } 24697 24698 /* 24699 * Set the physical address information for `ill' to the contents of the 24700 * dl_notify_ind_t pointed to by `mp'. Must be called as writer, and will be 24701 * asynchronous if `ill' cannot immediately be quiesced -- in which case 24702 * EINPROGRESS will be returned. 24703 */ 24704 int 24705 ill_set_phys_addr(ill_t *ill, mblk_t *mp) 24706 { 24707 ipsq_t *ipsq = ill->ill_phyint->phyint_ipsq; 24708 dl_notify_ind_t *dlindp = (dl_notify_ind_t *)mp->b_rptr; 24709 24710 ASSERT(IAM_WRITER_IPSQ(ipsq)); 24711 24712 if (dlindp->dl_data != DL_IPV6_LINK_LAYER_ADDR && 24713 dlindp->dl_data != DL_CURR_PHYS_ADDR) { 24714 /* Changing DL_IPV6_TOKEN is not yet supported */ 24715 return (0); 24716 } 24717 24718 /* 24719 * We need to store up to two copies of `mp' in `ill'. Due to the 24720 * design of ipsq_pending_mp_add(), we can't pass them as separate 24721 * arguments to ill_set_phys_addr_tail(). Instead, chain them 24722 * together here, then pull 'em apart in ill_set_phys_addr_tail(). 24723 */ 24724 if ((mp = copyb(mp)) == NULL || (mp->b_cont = copyb(mp)) == NULL) { 24725 freemsg(mp); 24726 return (ENOMEM); 24727 } 24728 24729 ipsq_current_start(ipsq, ill->ill_ipif, 0); 24730 24731 /* 24732 * If we can quiesce the ill, then set the address. If not, then 24733 * ill_set_phys_addr_tail() will be called from ipif_ill_refrele_tail(). 24734 */ 24735 ill_down_ipifs(ill, NULL, 0, B_FALSE); 24736 mutex_enter(&ill->ill_lock); 24737 if (!ill_is_quiescent(ill)) { 24738 /* call cannot fail since `conn_t *' argument is NULL */ 24739 (void) ipsq_pending_mp_add(NULL, ill->ill_ipif, ill->ill_rq, 24740 mp, ILL_DOWN); 24741 mutex_exit(&ill->ill_lock); 24742 return (EINPROGRESS); 24743 } 24744 mutex_exit(&ill->ill_lock); 24745 24746 ill_set_phys_addr_tail(ipsq, ill->ill_rq, mp, NULL); 24747 return (0); 24748 } 24749 24750 /* 24751 * Once the ill associated with `q' has quiesced, set its physical address 24752 * information to the values in `addrmp'. Note that two copies of `addrmp' 24753 * are passed (linked by b_cont), since we sometimes need to save two distinct 24754 * copies in the ill_t, and our context doesn't permit sleeping or allocation 24755 * failure (we'll free the other copy if it's not needed). Since the ill_t 24756 * is quiesced, we know any stale IREs with the old address information have 24757 * already been removed, so we don't need to call ill_fastpath_flush(). 24758 */ 24759 /* ARGSUSED */ 24760 static void 24761 ill_set_phys_addr_tail(ipsq_t *ipsq, queue_t *q, mblk_t *addrmp, void *dummy) 24762 { 24763 ill_t *ill = q->q_ptr; 24764 mblk_t *addrmp2 = unlinkb(addrmp); 24765 dl_notify_ind_t *dlindp = (dl_notify_ind_t *)addrmp->b_rptr; 24766 uint_t addrlen, addroff; 24767 24768 ASSERT(IAM_WRITER_IPSQ(ipsq)); 24769 24770 addroff = dlindp->dl_addr_offset; 24771 addrlen = dlindp->dl_addr_length - ABS(ill->ill_sap_length); 24772 24773 switch (dlindp->dl_data) { 24774 case DL_IPV6_LINK_LAYER_ADDR: 24775 ill_set_ndmp(ill, addrmp, addroff, addrlen); 24776 freemsg(addrmp2); 24777 break; 24778 24779 case DL_CURR_PHYS_ADDR: 24780 freemsg(ill->ill_phys_addr_mp); 24781 ill->ill_phys_addr = addrmp->b_rptr + addroff; 24782 ill->ill_phys_addr_mp = addrmp; 24783 ill->ill_phys_addr_length = addrlen; 24784 24785 if (ill->ill_isv6 && !(ill->ill_flags & ILLF_XRESOLV)) 24786 ill_set_ndmp(ill, addrmp2, addroff, addrlen); 24787 else 24788 freemsg(addrmp2); 24789 break; 24790 default: 24791 ASSERT(0); 24792 } 24793 24794 /* 24795 * If there are ipifs to bring up, ill_up_ipifs() will return nonzero, 24796 * and ipsq_current_finish() will be called by ip_rput_dlpi_writer() 24797 * or ip_arp_done() when the last ipif is brought up. 24798 */ 24799 if (ill_up_ipifs(ill, q, addrmp) == 0) 24800 ipsq_current_finish(ipsq); 24801 } 24802 24803 /* 24804 * Helper routine for setting the ill_nd_lla fields. 24805 */ 24806 void 24807 ill_set_ndmp(ill_t *ill, mblk_t *ndmp, uint_t addroff, uint_t addrlen) 24808 { 24809 freemsg(ill->ill_nd_lla_mp); 24810 ill->ill_nd_lla = ndmp->b_rptr + addroff; 24811 ill->ill_nd_lla_mp = ndmp; 24812 ill->ill_nd_lla_len = addrlen; 24813 } 24814 24815 24816 24817 major_t IP_MAJ; 24818 #define IP "ip" 24819 24820 #define UDP6DEV "/devices/pseudo/udp6@0:udp6" 24821 #define UDPDEV "/devices/pseudo/udp@0:udp" 24822 24823 /* 24824 * Issue REMOVEIF ioctls to have the loopback interfaces 24825 * go away. Other interfaces are either I_LINKed or I_PLINKed; 24826 * the former going away when the user-level processes in the zone 24827 * are killed * and the latter are cleaned up by the stream head 24828 * str_stack_shutdown callback that undoes all I_PLINKs. 24829 */ 24830 void 24831 ip_loopback_cleanup(ip_stack_t *ipst) 24832 { 24833 int error; 24834 ldi_handle_t lh = NULL; 24835 ldi_ident_t li = NULL; 24836 int rval; 24837 cred_t *cr; 24838 struct strioctl iocb; 24839 struct lifreq lifreq; 24840 24841 IP_MAJ = ddi_name_to_major(IP); 24842 24843 #ifdef NS_DEBUG 24844 (void) printf("ip_loopback_cleanup() stackid %d\n", 24845 ipst->ips_netstack->netstack_stackid); 24846 #endif 24847 24848 bzero(&lifreq, sizeof (lifreq)); 24849 (void) strcpy(lifreq.lifr_name, ipif_loopback_name); 24850 24851 error = ldi_ident_from_major(IP_MAJ, &li); 24852 if (error) { 24853 #ifdef DEBUG 24854 printf("ip_loopback_cleanup: lyr ident get failed error %d\n", 24855 error); 24856 #endif 24857 return; 24858 } 24859 24860 cr = zone_get_kcred(netstackid_to_zoneid( 24861 ipst->ips_netstack->netstack_stackid)); 24862 ASSERT(cr != NULL); 24863 error = ldi_open_by_name(UDP6DEV, FREAD|FWRITE, cr, &lh, li); 24864 if (error) { 24865 #ifdef DEBUG 24866 printf("ip_loopback_cleanup: open of UDP6DEV failed error %d\n", 24867 error); 24868 #endif 24869 goto out; 24870 } 24871 iocb.ic_cmd = SIOCLIFREMOVEIF; 24872 iocb.ic_timout = 15; 24873 iocb.ic_len = sizeof (lifreq); 24874 iocb.ic_dp = (char *)&lifreq; 24875 24876 error = ldi_ioctl(lh, I_STR, (intptr_t)&iocb, FKIOCTL, cr, &rval); 24877 /* LINTED - statement has no consequent */ 24878 if (error) { 24879 #ifdef NS_DEBUG 24880 printf("ip_loopback_cleanup: ioctl SIOCLIFREMOVEIF failed on " 24881 "UDP6 error %d\n", error); 24882 #endif 24883 } 24884 (void) ldi_close(lh, FREAD|FWRITE, cr); 24885 lh = NULL; 24886 24887 error = ldi_open_by_name(UDPDEV, FREAD|FWRITE, cr, &lh, li); 24888 if (error) { 24889 #ifdef NS_DEBUG 24890 printf("ip_loopback_cleanup: open of UDPDEV failed error %d\n", 24891 error); 24892 #endif 24893 goto out; 24894 } 24895 24896 iocb.ic_cmd = SIOCLIFREMOVEIF; 24897 iocb.ic_timout = 15; 24898 iocb.ic_len = sizeof (lifreq); 24899 iocb.ic_dp = (char *)&lifreq; 24900 24901 error = ldi_ioctl(lh, I_STR, (intptr_t)&iocb, FKIOCTL, cr, &rval); 24902 /* LINTED - statement has no consequent */ 24903 if (error) { 24904 #ifdef NS_DEBUG 24905 printf("ip_loopback_cleanup: ioctl SIOCLIFREMOVEIF failed on " 24906 "UDP error %d\n", error); 24907 #endif 24908 } 24909 (void) ldi_close(lh, FREAD|FWRITE, cr); 24910 lh = NULL; 24911 24912 out: 24913 /* Close layered handles */ 24914 if (lh) 24915 (void) ldi_close(lh, FREAD|FWRITE, cr); 24916 if (li) 24917 ldi_ident_release(li); 24918 24919 crfree(cr); 24920 } 24921