1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License, Version 1.0 only 6 * (the "License"). You may not use this file except in compliance 7 * with the License. 8 * 9 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 10 * or http://www.opensolaris.org/os/licensing. 11 * See the License for the specific language governing permissions 12 * and limitations under the License. 13 * 14 * When distributing Covered Code, include this CDDL HEADER in each 15 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 16 * If applicable, add the following below this CDDL HEADER, with the 17 * fields enclosed by brackets "[]" replaced with your own identifying 18 * information: Portions Copyright [yyyy] [name of copyright owner] 19 * 20 * CDDL HEADER END 21 */ 22 /* 23 * Copyright 2005 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 /* Copyright (c) 1990 Mentat Inc. */ 27 28 #pragma ident "%Z%%M% %I% %E% SMI" 29 30 /* 31 * This file contains the interface control functions for IP. 32 */ 33 34 #include <sys/types.h> 35 #include <sys/stream.h> 36 #include <sys/dlpi.h> 37 #include <sys/stropts.h> 38 #include <sys/strsun.h> 39 #include <sys/sysmacros.h> 40 #include <sys/strlog.h> 41 #include <sys/ddi.h> 42 #include <sys/sunddi.h> 43 #include <sys/cmn_err.h> 44 #include <sys/kstat.h> 45 #include <sys/debug.h> 46 #include <sys/zone.h> 47 48 #include <sys/kmem.h> 49 #include <sys/systm.h> 50 #include <sys/param.h> 51 #include <sys/socket.h> 52 #define _SUN_TPI_VERSION 2 53 #include <sys/tihdr.h> 54 #include <sys/isa_defs.h> 55 #include <net/if.h> 56 #include <net/if_arp.h> 57 #include <net/if_types.h> 58 #include <net/if_dl.h> 59 #include <net/route.h> 60 #include <sys/sockio.h> 61 #include <netinet/in.h> 62 #include <netinet/ip6.h> 63 #include <netinet/icmp6.h> 64 #include <netinet/igmp_var.h> 65 #include <sys/strsun.h> 66 #include <sys/policy.h> 67 #include <sys/ethernet.h> 68 69 #include <inet/common.h> /* for various inet/mi.h and inet/nd.h needs */ 70 #include <inet/mi.h> 71 #include <inet/nd.h> 72 #include <inet/arp.h> 73 #include <inet/mib2.h> 74 #include <inet/ip.h> 75 #include <inet/ip6.h> 76 #include <inet/ip6_asp.h> 77 #include <inet/tcp.h> 78 #include <inet/ip_multi.h> 79 #include <inet/ip_ire.h> 80 #include <inet/ip_rts.h> 81 #include <inet/ip_ndp.h> 82 #include <inet/ip_if.h> 83 #include <inet/tun.h> 84 #include <inet/sctp_ip.h> 85 86 #include <net/pfkeyv2.h> 87 #include <inet/ipsec_info.h> 88 #include <inet/sadb.h> 89 #include <inet/ipsec_impl.h> 90 /* EXPORT DELETE START */ 91 #include <sys/iphada.h> 92 /* EXPORT DELETE END */ 93 94 95 #include <netinet/igmp.h> 96 #include <inet/ip_listutils.h> 97 #include <netinet/ip_mroute.h> 98 #include <inet/ipclassifier.h> 99 #include <sys/mac.h> 100 101 #include <sys/systeminfo.h> 102 #include <sys/bootconf.h> 103 104 /* The character which tells where the ill_name ends */ 105 #define IPIF_SEPARATOR_CHAR ':' 106 107 /* IP ioctl function table entry */ 108 typedef struct ipft_s { 109 int ipft_cmd; 110 pfi_t ipft_pfi; 111 int ipft_min_size; 112 int ipft_flags; 113 } ipft_t; 114 #define IPFT_F_NO_REPLY 0x1 /* IP ioctl does not expect any reply */ 115 #define IPFT_F_SELF_REPLY 0x2 /* ioctl callee does the ioctl reply */ 116 117 typedef struct ip_sock_ar_s { 118 union { 119 area_t ip_sock_area; 120 ared_t ip_sock_ared; 121 areq_t ip_sock_areq; 122 } ip_sock_ar_u; 123 queue_t *ip_sock_ar_q; 124 } ip_sock_ar_t; 125 126 static int nd_ill_forward_get(queue_t *, mblk_t *, caddr_t, cred_t *); 127 static int nd_ill_forward_set(queue_t *q, mblk_t *mp, 128 char *value, caddr_t cp, cred_t *ioc_cr); 129 130 static boolean_t ip_addr_ok_v4(ipaddr_t addr, ipaddr_t subnet_mask); 131 static ip_m_t *ip_m_lookup(t_uscalar_t mac_type); 132 static int ip_sioctl_addr_tail(ipif_t *ipif, sin_t *sin, queue_t *q, 133 mblk_t *mp, boolean_t need_up); 134 static int ip_sioctl_dstaddr_tail(ipif_t *ipif, sin_t *sin, queue_t *q, 135 mblk_t *mp, boolean_t need_up); 136 static int ip_sioctl_slifzone_tail(ipif_t *ipif, zoneid_t zoneid, 137 queue_t *q, mblk_t *mp, boolean_t need_up); 138 static int ip_sioctl_flags_tail(ipif_t *ipif, uint64_t flags, queue_t *q, 139 mblk_t *mp, boolean_t need_up); 140 static int ip_sioctl_netmask_tail(ipif_t *ipif, sin_t *sin, queue_t *q, 141 mblk_t *mp); 142 static int ip_sioctl_subnet_tail(ipif_t *ipif, in6_addr_t, in6_addr_t, 143 queue_t *q, mblk_t *mp, boolean_t need_up); 144 static int ip_sioctl_arp_common(ill_t *ill, queue_t *q, mblk_t *mp, 145 sin_t *sin, boolean_t x_arp_ioctl, boolean_t if_arp_ioctl); 146 static ipaddr_t ip_subnet_mask(ipaddr_t addr, ipif_t **); 147 static void ip_wput_ioctl(queue_t *q, mblk_t *mp); 148 static void ipsq_flush(ill_t *ill); 149 static void ipsq_clean_all(ill_t *ill); 150 static void ipsq_clean_ring(ill_t *ill, ill_rx_ring_t *rx_ring); 151 static int ip_sioctl_token_tail(ipif_t *ipif, sin6_t *sin6, int addrlen, 152 queue_t *q, mblk_t *mp, boolean_t need_up); 153 static void ipsq_delete(ipsq_t *); 154 155 static ipif_t *ipif_allocate(ill_t *ill, int id, uint_t ire_type, 156 boolean_t initialize); 157 static void ipif_check_bcast_ires(ipif_t *test_ipif); 158 static void ipif_down_delete_ire(ire_t *ire, char *ipif); 159 static void ipif_delete_cache_ire(ire_t *, char *); 160 static int ipif_logical_down(ipif_t *ipif, queue_t *q, mblk_t *mp); 161 static void ipif_down_tail(ipif_t *ipif); 162 static void ipif_free(ipif_t *ipif); 163 static void ipif_free_tail(ipif_t *ipif); 164 static void ipif_mask_reply(ipif_t *); 165 static void ipif_mtu_change(ire_t *ire, char *ipif_arg); 166 static void ipif_multicast_down(ipif_t *ipif); 167 static void ipif_recreate_interface_routes(ipif_t *old_ipif, ipif_t *ipif); 168 static void ipif_set_default(ipif_t *ipif); 169 static int ipif_set_values(queue_t *q, mblk_t *mp, 170 char *interf_name, uint_t *ppa); 171 static int ipif_set_values_tail(ill_t *ill, ipif_t *ipif, mblk_t *mp, 172 queue_t *q); 173 static ipif_t *ipif_lookup_on_name(char *name, size_t namelen, 174 boolean_t do_alloc, boolean_t *exists, boolean_t isv6, zoneid_t zoneid, 175 queue_t *q, mblk_t *mp, ipsq_func_t func, int *error); 176 static int ipif_up(ipif_t *ipif, queue_t *q, mblk_t *mp); 177 static void ipif_update_other_ipifs(ipif_t *old_ipif, ill_group_t *illgrp); 178 179 static int ill_alloc_ppa(ill_if_t *, ill_t *); 180 static int ill_arp_off(ill_t *ill); 181 static int ill_arp_on(ill_t *ill); 182 static void ill_delete_interface_type(ill_if_t *); 183 static int ill_dl_up(ill_t *ill, ipif_t *ipif, mblk_t *mp, queue_t *q); 184 static void ill_down(ill_t *ill); 185 static void ill_downi(ire_t *ire, char *ill_arg); 186 static void ill_downi_mrtun_srcif(ire_t *ire, char *ill_arg); 187 static void ill_down_tail(ill_t *ill); 188 static void ill_free_mib(ill_t *ill); 189 static void ill_glist_delete(ill_t *); 190 static boolean_t ill_has_usable_ipif(ill_t *); 191 static int ill_lock_ipsq_ills(ipsq_t *sq, ill_t **list, int); 192 static void ill_nominate_bcast_rcv(ill_group_t *illgrp); 193 static void ill_phyint_free(ill_t *ill); 194 static void ill_phyint_reinit(ill_t *ill); 195 static void ill_set_nce_router_flags(ill_t *, boolean_t); 196 static void ill_signal_ipsq_ills(ipsq_t *, boolean_t); 197 static boolean_t ill_split_ipsq(ipsq_t *cur_sq); 198 static void ill_stq_cache_delete(ire_t *, char *); 199 200 static boolean_t ip_ether_v6intfid(uint_t, uint8_t *, in6_addr_t *); 201 static boolean_t ip_nodef_v6intfid(uint_t, uint8_t *, in6_addr_t *); 202 static boolean_t ip_ether_v6mapinfo(uint_t, uint8_t *, uint8_t *, uint32_t *, 203 in6_addr_t *); 204 static boolean_t ip_ether_v4mapinfo(uint_t, uint8_t *, uint8_t *, uint32_t *, 205 ipaddr_t *); 206 static boolean_t ip_ib_v6intfid(uint_t, uint8_t *, in6_addr_t *); 207 static boolean_t ip_ib_v6mapinfo(uint_t, uint8_t *, uint8_t *, uint32_t *, 208 in6_addr_t *); 209 static boolean_t ip_ib_v4mapinfo(uint_t, uint8_t *, uint8_t *, uint32_t *, 210 ipaddr_t *); 211 212 static void ipif_save_ire(ipif_t *, ire_t *); 213 static void ipif_remove_ire(ipif_t *, ire_t *); 214 static void ip_cgtp_bcast_add(ire_t *, ire_t *); 215 static void ip_cgtp_bcast_delete(ire_t *); 216 217 /* 218 * Per-ill IPsec capabilities management. 219 */ 220 static ill_ipsec_capab_t *ill_ipsec_capab_alloc(void); 221 static void ill_ipsec_capab_free(ill_ipsec_capab_t *); 222 static void ill_ipsec_capab_add(ill_t *, uint_t, boolean_t); 223 static void ill_ipsec_capab_delete(ill_t *, uint_t); 224 static boolean_t ill_ipsec_capab_resize_algparm(ill_ipsec_capab_t *, int); 225 static void ill_capability_proto(ill_t *, int, mblk_t *); 226 static void ill_capability_dispatch(ill_t *, mblk_t *, dl_capability_sub_t *, 227 boolean_t); 228 static void ill_capability_id_ack(ill_t *, mblk_t *, dl_capability_sub_t *); 229 static void ill_capability_mdt_ack(ill_t *, mblk_t *, dl_capability_sub_t *); 230 static void ill_capability_mdt_reset(ill_t *, mblk_t **); 231 /* EXPORT DELETE START */ 232 static void ill_capability_ipsec_ack(ill_t *, mblk_t *, dl_capability_sub_t *); 233 static void ill_capability_ipsec_reset(ill_t *, mblk_t **); 234 /* EXPORT DELETE END */ 235 static void ill_capability_hcksum_ack(ill_t *, mblk_t *, dl_capability_sub_t *); 236 static void ill_capability_hcksum_reset(ill_t *, mblk_t **); 237 static void ill_capability_zerocopy_ack(ill_t *, mblk_t *, 238 dl_capability_sub_t *); 239 static void ill_capability_zerocopy_reset(ill_t *, mblk_t **); 240 241 static void ill_capability_poll_ack(ill_t *, mblk_t *, dl_capability_sub_t *); 242 static mac_resource_handle_t ill_ring_add(void *, mac_resource_t *); 243 static void ill_capability_poll_reset(ill_t *, mblk_t **); 244 245 static void illgrp_cache_delete(ire_t *, char *); 246 static void illgrp_delete(ill_t *ill); 247 static void illgrp_reset_schednext(ill_t *ill); 248 249 static ill_t *ill_prev_usesrc(ill_t *); 250 static int ill_relink_usesrc_ills(ill_t *, ill_t *, uint_t); 251 static void ill_disband_usesrc_group(ill_t *); 252 253 static void conn_cleanup_stale_ire(conn_t *, caddr_t); 254 255 /* 256 * if we go over the memory footprint limit more than once in this msec 257 * interval, we'll start pruning aggressively. 258 */ 259 int ip_min_frag_prune_time = 0; 260 261 /* 262 * max # of IPsec algorithms supported. Limited to 1 byte by PF_KEY 263 * and the IPsec DOI 264 */ 265 #define MAX_IPSEC_ALGS 256 266 267 #define BITSPERBYTE 8 268 #define BITS(type) (BITSPERBYTE * (long)sizeof (type)) 269 270 #define IPSEC_ALG_ENABLE(algs, algid) \ 271 ((algs)[(algid) / BITS(ipsec_capab_elem_t)] |= \ 272 (1 << ((algid) % BITS(ipsec_capab_elem_t)))) 273 274 #define IPSEC_ALG_IS_ENABLED(algid, algs) \ 275 ((algs)[(algid) / BITS(ipsec_capab_elem_t)] & \ 276 (1 << ((algid) % BITS(ipsec_capab_elem_t)))) 277 278 typedef uint8_t ipsec_capab_elem_t; 279 280 /* 281 * Per-algorithm parameters. Note that at present, only encryption 282 * algorithms have variable keysize (IKE does not provide a way to negotiate 283 * auth algorithm keysize). 284 * 285 * All sizes here are in bits. 286 */ 287 typedef struct 288 { 289 uint16_t minkeylen; 290 uint16_t maxkeylen; 291 } ipsec_capab_algparm_t; 292 293 /* 294 * Per-ill capabilities. 295 */ 296 struct ill_ipsec_capab_s { 297 ipsec_capab_elem_t *encr_hw_algs; 298 ipsec_capab_elem_t *auth_hw_algs; 299 uint32_t algs_size; /* size of _hw_algs in bytes */ 300 /* algorithm key lengths */ 301 ipsec_capab_algparm_t *encr_algparm; 302 uint32_t encr_algparm_size; 303 uint32_t encr_algparm_end; 304 }; 305 306 /* 307 * List of AH and ESP IPsec acceleration capable ills 308 */ 309 typedef struct ipsec_capab_ill_s { 310 uint_t ill_index; 311 boolean_t ill_isv6; 312 struct ipsec_capab_ill_s *next; 313 } ipsec_capab_ill_t; 314 315 static ipsec_capab_ill_t *ipsec_capab_ills_ah; 316 static ipsec_capab_ill_t *ipsec_capab_ills_esp; 317 krwlock_t ipsec_capab_ills_lock; 318 319 /* 320 * The field values are larger than strictly necessary for simple 321 * AR_ENTRY_ADDs but the padding lets us accomodate the socket ioctls. 322 */ 323 static area_t ip_area_template = { 324 AR_ENTRY_ADD, /* area_cmd */ 325 sizeof (ip_sock_ar_t) + (IP_ADDR_LEN*2) + sizeof (struct sockaddr_dl), 326 /* area_name_offset */ 327 /* area_name_length temporarily holds this structure length */ 328 sizeof (area_t), /* area_name_length */ 329 IP_ARP_PROTO_TYPE, /* area_proto */ 330 sizeof (ip_sock_ar_t), /* area_proto_addr_offset */ 331 IP_ADDR_LEN, /* area_proto_addr_length */ 332 sizeof (ip_sock_ar_t) + IP_ADDR_LEN, 333 /* area_proto_mask_offset */ 334 0, /* area_flags */ 335 sizeof (ip_sock_ar_t) + IP_ADDR_LEN + IP_ADDR_LEN, 336 /* area_hw_addr_offset */ 337 /* Zero length hw_addr_length means 'use your idea of the address' */ 338 0 /* area_hw_addr_length */ 339 }; 340 341 /* 342 * AR_ENTRY_ADD/DELETE templates have been added for IPv6 external resolver 343 * support 344 */ 345 static area_t ip6_area_template = { 346 AR_ENTRY_ADD, /* area_cmd */ 347 sizeof (ip_sock_ar_t) + (IPV6_ADDR_LEN*2) + sizeof (sin6_t), 348 /* area_name_offset */ 349 /* area_name_length temporarily holds this structure length */ 350 sizeof (area_t), /* area_name_length */ 351 IP_ARP_PROTO_TYPE, /* area_proto */ 352 sizeof (ip_sock_ar_t), /* area_proto_addr_offset */ 353 IPV6_ADDR_LEN, /* area_proto_addr_length */ 354 sizeof (ip_sock_ar_t) + IPV6_ADDR_LEN, 355 /* area_proto_mask_offset */ 356 0, /* area_flags */ 357 sizeof (ip_sock_ar_t) + IPV6_ADDR_LEN + IPV6_ADDR_LEN, 358 /* area_hw_addr_offset */ 359 /* Zero length hw_addr_length means 'use your idea of the address' */ 360 0 /* area_hw_addr_length */ 361 }; 362 363 static ared_t ip_ared_template = { 364 AR_ENTRY_DELETE, 365 sizeof (ared_t) + IP_ADDR_LEN, 366 sizeof (ared_t), 367 IP_ARP_PROTO_TYPE, 368 sizeof (ared_t), 369 IP_ADDR_LEN 370 }; 371 372 static ared_t ip6_ared_template = { 373 AR_ENTRY_DELETE, 374 sizeof (ared_t) + IPV6_ADDR_LEN, 375 sizeof (ared_t), 376 IP_ARP_PROTO_TYPE, 377 sizeof (ared_t), 378 IPV6_ADDR_LEN 379 }; 380 381 /* 382 * A template for an IPv6 AR_ENTRY_QUERY template has not been created, as 383 * as the areq doesn't include an IP address in ill_dl_up() (the only place a 384 * areq is used). 385 */ 386 static areq_t ip_areq_template = { 387 AR_ENTRY_QUERY, /* cmd */ 388 sizeof (areq_t)+(2*IP_ADDR_LEN), /* name offset */ 389 sizeof (areq_t), /* name len (filled by ill_arp_alloc) */ 390 IP_ARP_PROTO_TYPE, /* protocol, from arps perspective */ 391 sizeof (areq_t), /* target addr offset */ 392 IP_ADDR_LEN, /* target addr_length */ 393 0, /* flags */ 394 sizeof (areq_t) + IP_ADDR_LEN, /* sender addr offset */ 395 IP_ADDR_LEN, /* sender addr length */ 396 6, /* xmit_count */ 397 1000, /* (re)xmit_interval in milliseconds */ 398 4 /* max # of requests to buffer */ 399 /* anything else filled in by the code */ 400 }; 401 402 static arc_t ip_aru_template = { 403 AR_INTERFACE_UP, 404 sizeof (arc_t), /* Name offset */ 405 sizeof (arc_t) /* Name length (set by ill_arp_alloc) */ 406 }; 407 408 static arc_t ip_ard_template = { 409 AR_INTERFACE_DOWN, 410 sizeof (arc_t), /* Name offset */ 411 sizeof (arc_t) /* Name length (set by ill_arp_alloc) */ 412 }; 413 414 static arc_t ip_aron_template = { 415 AR_INTERFACE_ON, 416 sizeof (arc_t), /* Name offset */ 417 sizeof (arc_t) /* Name length (set by ill_arp_alloc) */ 418 }; 419 420 static arc_t ip_aroff_template = { 421 AR_INTERFACE_OFF, 422 sizeof (arc_t), /* Name offset */ 423 sizeof (arc_t) /* Name length (set by ill_arp_alloc) */ 424 }; 425 426 427 static arma_t ip_arma_multi_template = { 428 AR_MAPPING_ADD, 429 sizeof (arma_t) + 3*IP_ADDR_LEN + IP_MAX_HW_LEN, 430 /* Name offset */ 431 sizeof (arma_t), /* Name length (set by ill_arp_alloc) */ 432 IP_ARP_PROTO_TYPE, 433 sizeof (arma_t), /* proto_addr_offset */ 434 IP_ADDR_LEN, /* proto_addr_length */ 435 sizeof (arma_t) + IP_ADDR_LEN, /* proto_mask_offset */ 436 sizeof (arma_t) + 2*IP_ADDR_LEN, /* proto_extract_mask_offset */ 437 ACE_F_PERMANENT | ACE_F_MAPPING, /* flags */ 438 sizeof (arma_t) + 3*IP_ADDR_LEN, /* hw_addr_offset */ 439 IP_MAX_HW_LEN, /* hw_addr_length */ 440 0, /* hw_mapping_start */ 441 }; 442 443 static ipft_t ip_ioctl_ftbl[] = { 444 { IP_IOC_IRE_DELETE, ip_ire_delete, sizeof (ipid_t), 0 }, 445 { IP_IOC_IRE_DELETE_NO_REPLY, ip_ire_delete, sizeof (ipid_t), 446 IPFT_F_NO_REPLY }, 447 { IP_IOC_IRE_ADVISE_NO_REPLY, ip_ire_advise, sizeof (ipic_t), 448 IPFT_F_NO_REPLY }, 449 { IP_IOC_RTS_REQUEST, ip_rts_request, 0, IPFT_F_SELF_REPLY }, 450 { 0 } 451 }; 452 453 /* Simple ICMP IP Header Template */ 454 static ipha_t icmp_ipha = { 455 IP_SIMPLE_HDR_VERSION, 0, 0, 0, 0, 0, IPPROTO_ICMP 456 }; 457 458 /* Flag descriptors for ip_ipif_report */ 459 static nv_t ipif_nv_tbl[] = { 460 { IPIF_UP, "UP" }, 461 { IPIF_BROADCAST, "BROADCAST" }, 462 { ILLF_DEBUG, "DEBUG" }, 463 { PHYI_LOOPBACK, "LOOPBACK" }, 464 { IPIF_POINTOPOINT, "POINTOPOINT" }, 465 { ILLF_NOTRAILERS, "NOTRAILERS" }, 466 { PHYI_RUNNING, "RUNNING" }, 467 { ILLF_NOARP, "NOARP" }, 468 { PHYI_PROMISC, "PROMISC" }, 469 { PHYI_ALLMULTI, "ALLMULTI" }, 470 { PHYI_INTELLIGENT, "INTELLIGENT" }, 471 { ILLF_MULTICAST, "MULTICAST" }, 472 { PHYI_MULTI_BCAST, "MULTI_BCAST" }, 473 { IPIF_UNNUMBERED, "UNNUMBERED" }, 474 { IPIF_DHCPRUNNING, "DHCP" }, 475 { IPIF_PRIVATE, "PRIVATE" }, 476 { IPIF_NOXMIT, "NOXMIT" }, 477 { IPIF_NOLOCAL, "NOLOCAL" }, 478 { IPIF_DEPRECATED, "DEPRECATED" }, 479 { IPIF_PREFERRED, "PREFERRED" }, 480 { IPIF_TEMPORARY, "TEMPORARY" }, 481 { IPIF_ADDRCONF, "ADDRCONF" }, 482 { PHYI_VIRTUAL, "VIRTUAL" }, 483 { ILLF_ROUTER, "ROUTER" }, 484 { ILLF_NONUD, "NONUD" }, 485 { IPIF_ANYCAST, "ANYCAST" }, 486 { ILLF_NORTEXCH, "NORTEXCH" }, 487 { ILLF_IPV4, "IPV4" }, 488 { ILLF_IPV6, "IPV6" }, 489 { IPIF_MIPRUNNING, "MIP" }, 490 { IPIF_NOFAILOVER, "NOFAILOVER" }, 491 { PHYI_FAILED, "FAILED" }, 492 { PHYI_STANDBY, "STANDBY" }, 493 { PHYI_INACTIVE, "INACTIVE" }, 494 { PHYI_OFFLINE, "OFFLINE" }, 495 }; 496 497 static uchar_t ip_six_byte_all_ones[] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF }; 498 499 static ip_m_t ip_m_tbl[] = { 500 { DL_ETHER, IFT_ETHER, ip_ether_v4mapinfo, ip_ether_v6mapinfo, 501 ip_ether_v6intfid }, 502 { DL_CSMACD, IFT_ISO88023, ip_ether_v4mapinfo, ip_ether_v6mapinfo, 503 ip_nodef_v6intfid }, 504 { DL_TPB, IFT_ISO88024, ip_ether_v4mapinfo, ip_ether_v6mapinfo, 505 ip_nodef_v6intfid }, 506 { DL_TPR, IFT_ISO88025, ip_ether_v4mapinfo, ip_ether_v6mapinfo, 507 ip_nodef_v6intfid }, 508 { DL_FDDI, IFT_FDDI, ip_ether_v4mapinfo, ip_ether_v6mapinfo, 509 ip_ether_v6intfid }, 510 { DL_IB, IFT_IB, ip_ib_v4mapinfo, ip_ib_v6mapinfo, 511 ip_ib_v6intfid }, 512 { SUNW_DL_VNI, IFT_OTHER, NULL, NULL, NULL}, 513 { DL_OTHER, IFT_OTHER, ip_ether_v4mapinfo, ip_ether_v6mapinfo, 514 ip_nodef_v6intfid } 515 }; 516 517 static ill_t ill_null; /* Empty ILL for init. */ 518 char ipif_loopback_name[] = "lo0"; 519 static char *ipv4_forward_suffix = ":ip_forwarding"; 520 static char *ipv6_forward_suffix = ":ip6_forwarding"; 521 static kstat_t *loopback_ksp = NULL; 522 static sin6_t sin6_null; /* Zero address for quick clears */ 523 static sin_t sin_null; /* Zero address for quick clears */ 524 static uint_t ill_index = 1; /* Used to assign interface indicies */ 525 /* When set search for unused index */ 526 static boolean_t ill_index_wrap = B_FALSE; 527 /* When set search for unused ipif_seqid */ 528 static ipif_t ipif_zero; 529 uint_t ipif_src_random; 530 531 /* 532 * For details on the protection offered by these locks please refer 533 * to the notes under the Synchronization section at the start of ip.c 534 */ 535 krwlock_t ill_g_lock; /* The global ill_g_lock */ 536 kmutex_t ip_addr_avail_lock; /* Address availability check lock */ 537 ipsq_t *ipsq_g_head; /* List of all ipsq's on the system */ 538 539 krwlock_t ill_g_usesrc_lock; /* Protects usesrc related fields */ 540 541 /* 542 * illgrp_head/ifgrp_head is protected by IP's perimeter. 543 */ 544 static ill_group_t *illgrp_head_v4; /* Head of IPv4 ill groups */ 545 ill_group_t *illgrp_head_v6; /* Head of IPv6 ill groups */ 546 547 ill_g_head_t ill_g_heads[MAX_G_HEADS]; /* ILL List Head */ 548 549 /* 550 * ppa arena is created after these many 551 * interfaces have been plumbed. 552 */ 553 uint_t ill_no_arena = 12; 554 555 #pragma align CACHE_ALIGN_SIZE(phyint_g_list) 556 static phyint_list_t phyint_g_list; /* start of phyint list */ 557 558 static uint_t 559 ipif_rand(void) 560 { 561 ipif_src_random = ipif_src_random * 1103515245 + 12345; 562 return ((ipif_src_random >> 16) & 0x7fff); 563 } 564 565 /* 566 * Allocate per-interface mibs. Only used for ipv6. 567 * Returns true if ok. False otherwise. 568 * ipsq may not yet be allocated (loopback case ). 569 */ 570 static boolean_t 571 ill_allocate_mibs(ill_t *ill) 572 { 573 ASSERT(ill->ill_isv6); 574 575 /* Already allocated? */ 576 if (ill->ill_ip6_mib != NULL) { 577 ASSERT(ill->ill_icmp6_mib != NULL); 578 return (B_TRUE); 579 } 580 581 ill->ill_ip6_mib = kmem_zalloc(sizeof (*ill->ill_ip6_mib), 582 KM_NOSLEEP); 583 if (ill->ill_ip6_mib == NULL) { 584 return (B_FALSE); 585 } 586 ill->ill_icmp6_mib = kmem_zalloc(sizeof (*ill->ill_icmp6_mib), 587 KM_NOSLEEP); 588 if (ill->ill_icmp6_mib == NULL) { 589 kmem_free(ill->ill_ip6_mib, sizeof (*ill->ill_ip6_mib)); 590 ill->ill_ip6_mib = NULL; 591 return (B_FALSE); 592 } 593 /* 594 * The ipv6Ifindex and ipv6IfIcmpIndex will be assigned later 595 * after the phyint merge occurs in ipif_set_values -> ill_glist_insert 596 * -> ill_phyint_reinit 597 */ 598 return (B_TRUE); 599 } 600 601 /* 602 * Common code for preparation of ARP commands. Two points to remember: 603 * 1) The ill_name is tacked on at the end of the allocated space so 604 * the templates name_offset field must contain the total space 605 * to allocate less the name length. 606 * 607 * 2) The templates name_length field should contain the *template* 608 * length. We use it as a parameter to bcopy() and then write 609 * the real ill_name_length into the name_length field of the copy. 610 * (Always called as writer.) 611 */ 612 mblk_t * 613 ill_arp_alloc(ill_t *ill, uchar_t *template, caddr_t addr) 614 { 615 arc_t *arc = (arc_t *)template; 616 char *cp; 617 int len; 618 mblk_t *mp; 619 uint_t name_length = ill->ill_name_length; 620 uint_t template_len = arc->arc_name_length; 621 622 len = arc->arc_name_offset + name_length; 623 mp = allocb(len, BPRI_HI); 624 if (mp == NULL) 625 return (NULL); 626 cp = (char *)mp->b_rptr; 627 mp->b_wptr = (uchar_t *)&cp[len]; 628 if (template_len) 629 bcopy(template, cp, template_len); 630 if (len > template_len) 631 bzero(&cp[template_len], len - template_len); 632 mp->b_datap->db_type = M_PROTO; 633 634 arc = (arc_t *)cp; 635 arc->arc_name_length = name_length; 636 cp = (char *)arc + arc->arc_name_offset; 637 bcopy(ill->ill_name, cp, name_length); 638 639 if (addr) { 640 area_t *area = (area_t *)mp->b_rptr; 641 642 cp = (char *)area + area->area_proto_addr_offset; 643 bcopy(addr, cp, area->area_proto_addr_length); 644 if (area->area_cmd == AR_ENTRY_ADD) { 645 cp = (char *)area; 646 len = area->area_proto_addr_length; 647 if (area->area_proto_mask_offset) 648 cp += area->area_proto_mask_offset; 649 else 650 cp += area->area_proto_addr_offset + len; 651 while (len-- > 0) 652 *cp++ = (char)~0; 653 } 654 } 655 return (mp); 656 } 657 658 /* 659 * Completely vaporize a lower level tap and all associated interfaces. 660 * ill_delete is called only out of ip_close when the device control 661 * stream is being closed. 662 */ 663 void 664 ill_delete(ill_t *ill) 665 { 666 ipif_t *ipif; 667 ill_t *prev_ill; 668 669 /* 670 * ill_delete may be forcibly entering the ipsq. The previous 671 * ioctl may not have completed and may need to be aborted. 672 * ipsq_flush takes care of it. If we don't need to enter the 673 * the ipsq forcibly, the 2nd invocation of ipsq_flush in 674 * ill_delete_tail is sufficient. 675 */ 676 ipsq_flush(ill); 677 678 /* 679 * Nuke all interfaces. ipif_free will take down the interface, 680 * remove it from the list, and free the data structure. 681 * Walk down the ipif list and remove the logical interfaces 682 * first before removing the main ipif. We can't unplumb 683 * zeroth interface first in the case of IPv6 as reset_conn_ill 684 * -> ip_ll_delmulti_v6 de-references ill_ipif for checking 685 * POINTOPOINT. 686 * 687 * If ill_ipif was not properly initialized (i.e low on memory), 688 * then no interfaces to clean up. In this case just clean up the 689 * ill. 690 */ 691 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) 692 ipif_free(ipif); 693 694 /* 695 * Used only by ill_arp_on and ill_arp_off, which are writers. 696 * So nobody can be using this mp now. Free the mp allocated for 697 * honoring ILLF_NOARP 698 */ 699 freemsg(ill->ill_arp_on_mp); 700 ill->ill_arp_on_mp = NULL; 701 702 /* Clean up msgs on pending upcalls for mrouted */ 703 reset_mrt_ill(ill); 704 705 /* 706 * ipif_free -> reset_conn_ipif will remove all multicast 707 * references for IPv4. For IPv6, we need to do it here as 708 * it points only at ills. 709 */ 710 reset_conn_ill(ill); 711 712 /* 713 * ill_down will arrange to blow off any IRE's dependent on this 714 * ILL, and shut down fragmentation reassembly. 715 */ 716 ill_down(ill); 717 718 /* Let SCTP know, so that it can remove this from its list. */ 719 sctp_update_ill(ill, SCTP_ILL_REMOVE); 720 721 /* 722 * If an address on this ILL is being used as a source address then 723 * clear out the pointers in other ILLs that point to this ILL. 724 */ 725 rw_enter(&ill_g_usesrc_lock, RW_WRITER); 726 if (ill->ill_usesrc_grp_next != NULL) { 727 if (ill->ill_usesrc_ifindex == 0) { /* usesrc ILL ? */ 728 ill_disband_usesrc_group(ill); 729 } else { /* consumer of the usesrc ILL */ 730 prev_ill = ill_prev_usesrc(ill); 731 prev_ill->ill_usesrc_grp_next = 732 ill->ill_usesrc_grp_next; 733 } 734 } 735 rw_exit(&ill_g_usesrc_lock); 736 } 737 738 /* 739 * ill_delete_tail is called from ip_modclose after all references 740 * to the closing ill are gone. The wait is done in ip_modclose 741 */ 742 void 743 ill_delete_tail(ill_t *ill) 744 { 745 mblk_t **mpp; 746 ipif_t *ipif; 747 748 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) 749 ipif_down_tail(ipif); 750 751 /* 752 * Send the detach if there's one to send (i.e., if we're above a 753 * style 2 DLPI driver). 754 */ 755 if (ill->ill_detach_mp != NULL) { 756 ill_dlpi_send(ill, ill->ill_detach_mp); 757 ill->ill_detach_mp = NULL; 758 } 759 760 /* 761 * If polling capability is enabled (which signifies direct 762 * upcall into IP and driver has ill saved as a handle), 763 * we need to make sure that unbind has completed before we 764 * let the ill disappear and driver no longer has any reference 765 * to this ill. 766 */ 767 mutex_enter(&ill->ill_lock); 768 if (ill->ill_capabilities & ILL_CAPAB_POLL) { 769 while (!(ill->ill_state_flags & ILL_DL_UNBIND_DONE)) 770 cv_wait(&ill->ill_cv, &ill->ill_lock); 771 } 772 mutex_exit(&ill->ill_lock); 773 774 if (ill->ill_net_type != IRE_LOOPBACK) 775 qprocsoff(ill->ill_rq); 776 777 /* 778 * We do an ipsq_flush once again now. New messages could have 779 * landed up from below (M_ERROR or M_HANGUP). Similarly ioctls 780 * could also have landed up if an ioctl thread had looked up 781 * the ill before we set the ILL_CONDEMNED flag, but not yet 782 * enqueued the ioctl when we did the ipsq_flush last time. 783 */ 784 ipsq_flush(ill); 785 786 /* 787 * Free capabilities. 788 */ 789 if (ill->ill_ipsec_capab_ah != NULL) { 790 ill_ipsec_capab_delete(ill, DL_CAPAB_IPSEC_AH); 791 ill_ipsec_capab_free(ill->ill_ipsec_capab_ah); 792 ill->ill_ipsec_capab_ah = NULL; 793 } 794 795 if (ill->ill_ipsec_capab_esp != NULL) { 796 ill_ipsec_capab_delete(ill, DL_CAPAB_IPSEC_ESP); 797 ill_ipsec_capab_free(ill->ill_ipsec_capab_esp); 798 ill->ill_ipsec_capab_esp = NULL; 799 } 800 801 if (ill->ill_mdt_capab != NULL) { 802 kmem_free(ill->ill_mdt_capab, sizeof (ill_mdt_capab_t)); 803 ill->ill_mdt_capab = NULL; 804 } 805 806 if (ill->ill_hcksum_capab != NULL) { 807 kmem_free(ill->ill_hcksum_capab, sizeof (ill_hcksum_capab_t)); 808 ill->ill_hcksum_capab = NULL; 809 } 810 811 if (ill->ill_zerocopy_capab != NULL) { 812 kmem_free(ill->ill_zerocopy_capab, 813 sizeof (ill_zerocopy_capab_t)); 814 ill->ill_zerocopy_capab = NULL; 815 } 816 817 /* 818 * Clean up polling capabilities 819 */ 820 if (ill->ill_capabilities & ILL_CAPAB_POLL) 821 ipsq_clean_all(ill); 822 823 if (ill->ill_poll_capab != NULL) { 824 CONN_DEC_REF(ill->ill_poll_capab->ill_unbind_conn); 825 ill->ill_poll_capab->ill_unbind_conn = NULL; 826 kmem_free(ill->ill_poll_capab, 827 sizeof (ill_poll_capab_t) + 828 (sizeof (ill_rx_ring_t) * ILL_MAX_RINGS)); 829 ill->ill_poll_capab = NULL; 830 } 831 832 ASSERT(!(ill->ill_capabilities & ILL_CAPAB_POLL)); 833 834 while (ill->ill_ipif != NULL) 835 ipif_free_tail(ill->ill_ipif); 836 837 ill_down_tail(ill); 838 839 /* 840 * We have removed all references to ilm from conn and the ones joined 841 * within the kernel. 842 * 843 * We don't walk conns, mrts and ires because 844 * 845 * 1) reset_conn_ill and reset_mrt_ill cleans up conns and mrts. 846 * 2) ill_down ->ill_downi walks all the ires and cleans up 847 * ill references. 848 */ 849 ASSERT(ilm_walk_ill(ill) == 0); 850 /* 851 * Take us out of the list of ILLs. ill_glist_delete -> ill_phyint_free 852 * could free the phyint. No more reference to the phyint after this 853 * point. 854 */ 855 (void) ill_glist_delete(ill); 856 857 rw_enter(&ip_g_nd_lock, RW_WRITER); 858 if (ill->ill_ndd_name != NULL) 859 nd_unload(&ip_g_nd, ill->ill_ndd_name); 860 rw_exit(&ip_g_nd_lock); 861 862 863 if (ill->ill_frag_ptr != NULL) { 864 uint_t count; 865 866 for (count = 0; count < ILL_FRAG_HASH_TBL_COUNT; count++) { 867 mutex_destroy(&ill->ill_frag_hash_tbl[count].ipfb_lock); 868 } 869 mi_free(ill->ill_frag_ptr); 870 ill->ill_frag_ptr = NULL; 871 ill->ill_frag_hash_tbl = NULL; 872 } 873 if (ill->ill_nd_lla_mp != NULL) 874 freemsg(ill->ill_nd_lla_mp); 875 /* Free all retained control messages. */ 876 mpp = &ill->ill_first_mp_to_free; 877 do { 878 while (mpp[0]) { 879 mblk_t *mp; 880 mblk_t *mp1; 881 882 mp = mpp[0]; 883 mpp[0] = mp->b_next; 884 for (mp1 = mp; mp1 != NULL; mp1 = mp1->b_cont) { 885 mp1->b_next = NULL; 886 mp1->b_prev = NULL; 887 } 888 freemsg(mp); 889 } 890 } while (mpp++ != &ill->ill_last_mp_to_free); 891 892 ill_free_mib(ill); 893 ILL_TRACE_CLEANUP(ill); 894 } 895 896 static void 897 ill_free_mib(ill_t *ill) 898 { 899 if (ill->ill_ip6_mib != NULL) { 900 kmem_free(ill->ill_ip6_mib, sizeof (*ill->ill_ip6_mib)); 901 ill->ill_ip6_mib = NULL; 902 } 903 if (ill->ill_icmp6_mib != NULL) { 904 kmem_free(ill->ill_icmp6_mib, sizeof (*ill->ill_icmp6_mib)); 905 ill->ill_icmp6_mib = NULL; 906 } 907 } 908 909 /* 910 * Concatenate together a physical address and a sap. 911 * 912 * Sap_lengths are interpreted as follows: 913 * sap_length == 0 ==> no sap 914 * sap_length > 0 ==> sap is at the head of the dlpi address 915 * sap_length < 0 ==> sap is at the tail of the dlpi address 916 */ 917 static void 918 ill_dlur_copy_address(uchar_t *phys_src, uint_t phys_length, 919 t_scalar_t sap_src, t_scalar_t sap_length, uchar_t *dst) 920 { 921 uint16_t sap_addr = (uint16_t)sap_src; 922 923 if (sap_length == 0) { 924 if (phys_src == NULL) 925 bzero(dst, phys_length); 926 else 927 bcopy(phys_src, dst, phys_length); 928 } else if (sap_length < 0) { 929 if (phys_src == NULL) 930 bzero(dst, phys_length); 931 else 932 bcopy(phys_src, dst, phys_length); 933 bcopy(&sap_addr, (char *)dst + phys_length, sizeof (sap_addr)); 934 } else { 935 bcopy(&sap_addr, dst, sizeof (sap_addr)); 936 if (phys_src == NULL) 937 bzero((char *)dst + sap_length, phys_length); 938 else 939 bcopy(phys_src, (char *)dst + sap_length, phys_length); 940 } 941 } 942 943 /* 944 * Generate a dl_unitdata_req mblk for the device and address given. 945 * addr_length is the length of the physical portion of the address. 946 * If addr is NULL include an all zero address of the specified length. 947 * TRUE? In any case, addr_length is taken to be the entire length of the 948 * dlpi address, including the absolute value of sap_length. 949 */ 950 mblk_t * 951 ill_dlur_gen(uchar_t *addr, uint_t addr_length, t_uscalar_t sap, 952 t_scalar_t sap_length) 953 { 954 dl_unitdata_req_t *dlur; 955 mblk_t *mp; 956 t_scalar_t abs_sap_length; /* absolute value */ 957 958 abs_sap_length = ABS(sap_length); 959 mp = ip_dlpi_alloc(sizeof (*dlur) + addr_length + abs_sap_length, 960 DL_UNITDATA_REQ); 961 if (mp == NULL) 962 return (NULL); 963 dlur = (dl_unitdata_req_t *)mp->b_rptr; 964 /* HACK: accomodate incompatible DLPI drivers */ 965 if (addr_length == 8) 966 addr_length = 6; 967 dlur->dl_dest_addr_length = addr_length + abs_sap_length; 968 dlur->dl_dest_addr_offset = sizeof (*dlur); 969 dlur->dl_priority.dl_min = 0; 970 dlur->dl_priority.dl_max = 0; 971 ill_dlur_copy_address(addr, addr_length, sap, sap_length, 972 (uchar_t *)&dlur[1]); 973 return (mp); 974 } 975 976 /* 977 * Add the 'mp' to the list of pending mp's headed by ill_pending_mp 978 * Return an error if we already have 1 or more ioctls in progress. 979 * This is used only for non-exclusive ioctls. Currently this is used 980 * for SIOC*ARP and SIOCGTUNPARAM ioctls. Most set ioctls are exclusive 981 * and thus need to use ipsq_pending_mp_add. 982 */ 983 boolean_t 984 ill_pending_mp_add(ill_t *ill, conn_t *connp, mblk_t *add_mp) 985 { 986 ASSERT(MUTEX_HELD(&ill->ill_lock)); 987 ASSERT((add_mp->b_next == NULL) && (add_mp->b_prev == NULL)); 988 /* 989 * M_IOCDATA from ioctls, M_IOCTL from tunnel ioctls. 990 */ 991 ASSERT((add_mp->b_datap->db_type == M_IOCDATA) || 992 (add_mp->b_datap->db_type == M_IOCTL)); 993 994 ASSERT(MUTEX_HELD(&connp->conn_lock)); 995 /* 996 * Return error if the conn has started closing. The conn 997 * could have finished cleaning up the pending mp list, 998 * If so we should not add another mp to the list negating 999 * the cleanup. 1000 */ 1001 if (connp->conn_state_flags & CONN_CLOSING) 1002 return (B_FALSE); 1003 /* 1004 * Add the pending mp to the head of the list, chained by b_next. 1005 * Note down the conn on which the ioctl request came, in b_prev. 1006 * This will be used to later get the conn, when we get a response 1007 * on the ill queue, from some other module (typically arp) 1008 */ 1009 add_mp->b_next = (void *)ill->ill_pending_mp; 1010 add_mp->b_queue = CONNP_TO_WQ(connp); 1011 ill->ill_pending_mp = add_mp; 1012 if (connp != NULL) 1013 connp->conn_oper_pending_ill = ill; 1014 return (B_TRUE); 1015 } 1016 1017 /* 1018 * Retrieve the ill_pending_mp and return it. We have to walk the list 1019 * of mblks starting at ill_pending_mp, and match based on the ioc_id. 1020 */ 1021 mblk_t * 1022 ill_pending_mp_get(ill_t *ill, conn_t **connpp, uint_t ioc_id) 1023 { 1024 mblk_t *prev = NULL; 1025 mblk_t *curr = NULL; 1026 uint_t id; 1027 conn_t *connp; 1028 1029 /* 1030 * When the conn closes, conn_ioctl_cleanup needs to clean 1031 * up the pending mp, but it does not know the ioc_id and 1032 * passes in a zero for it. 1033 */ 1034 mutex_enter(&ill->ill_lock); 1035 if (ioc_id != 0) 1036 *connpp = NULL; 1037 1038 /* Search the list for the appropriate ioctl based on ioc_id */ 1039 for (prev = NULL, curr = ill->ill_pending_mp; curr != NULL; 1040 prev = curr, curr = curr->b_next) { 1041 id = ((struct iocblk *)curr->b_rptr)->ioc_id; 1042 connp = Q_TO_CONN(curr->b_queue); 1043 /* Match based on the ioc_id or based on the conn */ 1044 if ((id == ioc_id) || (ioc_id == 0 && connp == *connpp)) 1045 break; 1046 } 1047 1048 if (curr != NULL) { 1049 /* Unlink the mblk from the pending mp list */ 1050 if (prev != NULL) { 1051 prev->b_next = curr->b_next; 1052 } else { 1053 ASSERT(ill->ill_pending_mp == curr); 1054 ill->ill_pending_mp = curr->b_next; 1055 } 1056 1057 /* 1058 * conn refcnt must have been bumped up at the start of 1059 * the ioctl. So we can safely access the conn. 1060 */ 1061 ASSERT(CONN_Q(curr->b_queue)); 1062 *connpp = Q_TO_CONN(curr->b_queue); 1063 curr->b_next = NULL; 1064 curr->b_queue = NULL; 1065 } 1066 1067 mutex_exit(&ill->ill_lock); 1068 1069 return (curr); 1070 } 1071 1072 /* 1073 * Add the pending mp to the list. There can be only 1 pending mp 1074 * in the list. Any exclusive ioctl that needs to wait for a response 1075 * from another module or driver needs to use this function to set 1076 * the ipsq_pending_mp to the ioctl mblk and wait for the response from 1077 * the other module/driver. This is also used while waiting for the 1078 * ipif/ill/ire refcnts to drop to zero in bringing down an ipif. 1079 */ 1080 boolean_t 1081 ipsq_pending_mp_add(conn_t *connp, ipif_t *ipif, queue_t *q, mblk_t *add_mp, 1082 int waitfor) 1083 { 1084 ipsq_t *ipsq; 1085 1086 ASSERT(IAM_WRITER_IPIF(ipif)); 1087 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 1088 ASSERT((add_mp->b_next == NULL) && (add_mp->b_prev == NULL)); 1089 /* 1090 * M_IOCDATA from ioctls, M_IOCTL from tunnel ioctls, 1091 * M_ERROR/M_HANGUP from driver 1092 */ 1093 ASSERT((DB_TYPE(add_mp) == M_IOCDATA) || (DB_TYPE(add_mp) == M_IOCTL) || 1094 (DB_TYPE(add_mp) == M_ERROR) || (DB_TYPE(add_mp) == M_HANGUP)); 1095 1096 ipsq = ipif->ipif_ill->ill_phyint->phyint_ipsq; 1097 if (connp != NULL) { 1098 ASSERT(MUTEX_HELD(&connp->conn_lock)); 1099 /* 1100 * Return error if the conn has started closing. The conn 1101 * could have finished cleaning up the pending mp list, 1102 * If so we should not add another mp to the list negating 1103 * the cleanup. 1104 */ 1105 if (connp->conn_state_flags & CONN_CLOSING) 1106 return (B_FALSE); 1107 } 1108 mutex_enter(&ipsq->ipsq_lock); 1109 ipsq->ipsq_pending_ipif = ipif; 1110 /* 1111 * Note down the queue in b_queue. This will be returned by 1112 * ipsq_pending_mp_get. Caller will then use these values to restart 1113 * the processing 1114 */ 1115 add_mp->b_next = NULL; 1116 add_mp->b_queue = q; 1117 ipsq->ipsq_pending_mp = add_mp; 1118 ipsq->ipsq_waitfor = waitfor; 1119 /* 1120 * ipsq_current_ipif is needed to restart the operation from 1121 * ipif_ill_refrele_tail when the last reference to the ipi/ill 1122 * is gone. Since this is not an ioctl ipsq_current_ipif has not 1123 * been set until now. 1124 */ 1125 if (DB_TYPE(add_mp) == M_ERROR || DB_TYPE(add_mp) == M_HANGUP) { 1126 ASSERT(ipsq->ipsq_current_ipif == NULL); 1127 ipsq->ipsq_current_ipif = ipif; 1128 ipsq->ipsq_last_cmd = DB_TYPE(add_mp); 1129 } 1130 if (connp != NULL) 1131 connp->conn_oper_pending_ill = ipif->ipif_ill; 1132 mutex_exit(&ipsq->ipsq_lock); 1133 return (B_TRUE); 1134 } 1135 1136 /* 1137 * Retrieve the ipsq_pending_mp and return it. There can be only 1 mp 1138 * queued in the list. 1139 */ 1140 mblk_t * 1141 ipsq_pending_mp_get(ipsq_t *ipsq, conn_t **connpp) 1142 { 1143 mblk_t *curr = NULL; 1144 1145 mutex_enter(&ipsq->ipsq_lock); 1146 *connpp = NULL; 1147 if (ipsq->ipsq_pending_mp == NULL) { 1148 mutex_exit(&ipsq->ipsq_lock); 1149 return (NULL); 1150 } 1151 1152 /* There can be only 1 such excl message */ 1153 curr = ipsq->ipsq_pending_mp; 1154 ASSERT(curr != NULL && curr->b_next == NULL); 1155 ipsq->ipsq_pending_ipif = NULL; 1156 ipsq->ipsq_pending_mp = NULL; 1157 ipsq->ipsq_waitfor = 0; 1158 mutex_exit(&ipsq->ipsq_lock); 1159 1160 if (CONN_Q(curr->b_queue)) { 1161 /* 1162 * This mp did a refhold on the conn, at the start of the ioctl. 1163 * So we can safely return a pointer to the conn to the caller. 1164 */ 1165 *connpp = Q_TO_CONN(curr->b_queue); 1166 } else { 1167 *connpp = NULL; 1168 } 1169 curr->b_next = NULL; 1170 curr->b_prev = NULL; 1171 return (curr); 1172 } 1173 1174 /* 1175 * Cleanup the ioctl mp queued in ipsq_pending_mp 1176 * - Called in the ill_delete path 1177 * - Called in the M_ERROR or M_HANGUP path on the ill. 1178 * - Called in the conn close path. 1179 */ 1180 boolean_t 1181 ipsq_pending_mp_cleanup(ill_t *ill, conn_t *connp) 1182 { 1183 mblk_t *mp; 1184 ipsq_t *ipsq; 1185 queue_t *q; 1186 ipif_t *ipif; 1187 1188 ASSERT(IAM_WRITER_ILL(ill)); 1189 ipsq = ill->ill_phyint->phyint_ipsq; 1190 mutex_enter(&ipsq->ipsq_lock); 1191 /* 1192 * If connp is null, unconditionally clean up the ipsq_pending_mp. 1193 * This happens in M_ERROR/M_HANGUP. We need to abort the current ioctl 1194 * even if it is meant for another ill, since we have to enqueue 1195 * a new mp now in ipsq_pending_mp to complete the ipif_down. 1196 * If connp is non-null we are called from the conn close path. 1197 */ 1198 mp = ipsq->ipsq_pending_mp; 1199 if (mp == NULL || (connp != NULL && 1200 mp->b_queue != CONNP_TO_WQ(connp))) { 1201 mutex_exit(&ipsq->ipsq_lock); 1202 return (B_FALSE); 1203 } 1204 /* Now remove from the ipsq_pending_mp */ 1205 ipsq->ipsq_pending_mp = NULL; 1206 q = mp->b_queue; 1207 mp->b_next = NULL; 1208 mp->b_prev = NULL; 1209 mp->b_queue = NULL; 1210 1211 /* If MOVE was in progress, clear the move_in_progress fields also. */ 1212 ill = ipsq->ipsq_pending_ipif->ipif_ill; 1213 if (ill->ill_move_in_progress) { 1214 ILL_CLEAR_MOVE(ill); 1215 } else if (ill->ill_up_ipifs) { 1216 ill_group_cleanup(ill); 1217 } 1218 1219 ipif = ipsq->ipsq_pending_ipif; 1220 ipsq->ipsq_pending_ipif = NULL; 1221 ipsq->ipsq_waitfor = 0; 1222 ipsq->ipsq_current_ipif = NULL; 1223 mutex_exit(&ipsq->ipsq_lock); 1224 1225 if (DB_TYPE(mp) == M_IOCTL || DB_TYPE(mp) == M_IOCDATA) { 1226 ip_ioctl_finish(q, mp, ENXIO, connp != NULL ? CONN_CLOSE : 1227 NO_COPYOUT, connp != NULL ? ipif : NULL, NULL); 1228 } else { 1229 /* 1230 * IP-MT XXX In the case of TLI/XTI bind / optmgmt this can't 1231 * be just ip_ioctl_freemsg. we have to restart it 1232 * otherwise the thread will be stuck. 1233 */ 1234 ip_ioctl_freemsg(mp); 1235 } 1236 return (B_TRUE); 1237 } 1238 1239 /* 1240 * The ill is closing. Cleanup all the pending mps. Called exclusively 1241 * towards the end of ill_delete. The refcount has gone to 0. So nobody 1242 * knows this ill, and hence nobody can add an mp to this list 1243 */ 1244 static void 1245 ill_pending_mp_cleanup(ill_t *ill) 1246 { 1247 mblk_t *mp; 1248 queue_t *q; 1249 1250 ASSERT(IAM_WRITER_ILL(ill)); 1251 1252 mutex_enter(&ill->ill_lock); 1253 /* 1254 * Every mp on the pending mp list originating from an ioctl 1255 * added 1 to the conn refcnt, at the start of the ioctl. 1256 * So bump it down now. See comments in ip_wput_nondata() 1257 */ 1258 while (ill->ill_pending_mp != NULL) { 1259 mp = ill->ill_pending_mp; 1260 ill->ill_pending_mp = mp->b_next; 1261 mutex_exit(&ill->ill_lock); 1262 1263 q = mp->b_queue; 1264 ASSERT(CONN_Q(q)); 1265 mp->b_next = NULL; 1266 mp->b_prev = NULL; 1267 mp->b_queue = NULL; 1268 ip_ioctl_finish(q, mp, ENXIO, NO_COPYOUT, NULL, NULL); 1269 mutex_enter(&ill->ill_lock); 1270 } 1271 ill->ill_pending_ipif = NULL; 1272 1273 mutex_exit(&ill->ill_lock); 1274 } 1275 1276 /* 1277 * Called in the conn close path and ill delete path 1278 */ 1279 static void 1280 ipsq_xopq_mp_cleanup(ill_t *ill, conn_t *connp) 1281 { 1282 ipsq_t *ipsq; 1283 mblk_t *prev; 1284 mblk_t *curr; 1285 mblk_t *next; 1286 queue_t *q; 1287 mblk_t *tmp_list = NULL; 1288 1289 ASSERT(IAM_WRITER_ILL(ill)); 1290 if (connp != NULL) 1291 q = CONNP_TO_WQ(connp); 1292 else 1293 q = ill->ill_wq; 1294 1295 ipsq = ill->ill_phyint->phyint_ipsq; 1296 /* 1297 * Cleanup the ioctl mp's queued in ipsq_xopq_pending_mp if any. 1298 * In the case of ioctl from a conn, there can be only 1 mp 1299 * queued on the ipsq. If an ill is being unplumbed, only messages 1300 * related to this ill are flushed, like M_ERROR or M_HANGUP message. 1301 * ioctls meant for this ill form conn's are not flushed. They will 1302 * be processed during ipsq_exit and will not find the ill and will 1303 * return error. 1304 */ 1305 mutex_enter(&ipsq->ipsq_lock); 1306 for (prev = NULL, curr = ipsq->ipsq_xopq_mphead; curr != NULL; 1307 curr = next) { 1308 next = curr->b_next; 1309 if (curr->b_queue == q || curr->b_queue == RD(q)) { 1310 /* Unlink the mblk from the pending mp list */ 1311 if (prev != NULL) { 1312 prev->b_next = curr->b_next; 1313 } else { 1314 ASSERT(ipsq->ipsq_xopq_mphead == curr); 1315 ipsq->ipsq_xopq_mphead = curr->b_next; 1316 } 1317 if (ipsq->ipsq_xopq_mptail == curr) 1318 ipsq->ipsq_xopq_mptail = prev; 1319 /* 1320 * Create a temporary list and release the ipsq lock 1321 * New elements are added to the head of the tmp_list 1322 */ 1323 curr->b_next = tmp_list; 1324 tmp_list = curr; 1325 } else { 1326 prev = curr; 1327 } 1328 } 1329 mutex_exit(&ipsq->ipsq_lock); 1330 1331 while (tmp_list != NULL) { 1332 curr = tmp_list; 1333 tmp_list = curr->b_next; 1334 curr->b_next = NULL; 1335 curr->b_prev = NULL; 1336 curr->b_queue = NULL; 1337 if (DB_TYPE(curr) == M_IOCTL || DB_TYPE(curr) == M_IOCDATA) { 1338 ip_ioctl_finish(q, curr, ENXIO, connp != NULL ? 1339 CONN_CLOSE : NO_COPYOUT, NULL, NULL); 1340 } else { 1341 /* 1342 * IP-MT XXX In the case of TLI/XTI bind / optmgmt 1343 * this can't be just ip_ioctl_freemsg. we have to 1344 * restart it otherwise the thread will be stuck. 1345 */ 1346 ip_ioctl_freemsg(curr); 1347 } 1348 } 1349 } 1350 1351 /* 1352 * This conn has started closing. Cleanup any pending ioctl from this conn. 1353 * STREAMS ensures that there can be at most 1 ioctl pending on a stream. 1354 */ 1355 void 1356 conn_ioctl_cleanup(conn_t *connp) 1357 { 1358 mblk_t *curr; 1359 ipsq_t *ipsq; 1360 ill_t *ill; 1361 boolean_t refheld; 1362 1363 /* 1364 * Is any exclusive ioctl pending ? If so clean it up. If the 1365 * ioctl has not yet started, the mp is pending in the list headed by 1366 * ipsq_xopq_head. If the ioctl has started the mp could be present in 1367 * ipsq_pending_mp. If the ioctl timed out in the streamhead but 1368 * is currently executing now the mp is not queued anywhere but 1369 * conn_oper_pending_ill is null. The conn close will wait 1370 * till the conn_ref drops to zero. 1371 */ 1372 mutex_enter(&connp->conn_lock); 1373 ill = connp->conn_oper_pending_ill; 1374 if (ill == NULL) { 1375 mutex_exit(&connp->conn_lock); 1376 return; 1377 } 1378 1379 curr = ill_pending_mp_get(ill, &connp, 0); 1380 if (curr != NULL) { 1381 mutex_exit(&connp->conn_lock); 1382 CONN_DEC_REF(connp); 1383 ip_ioctl_freemsg(curr); 1384 return; 1385 } 1386 /* 1387 * We may not be able to refhold the ill if the ill/ipif 1388 * is changing. But we need to make sure that the ill will 1389 * not vanish. So we just bump up the ill_waiter count. 1390 */ 1391 refheld = ill_waiter_inc(ill); 1392 mutex_exit(&connp->conn_lock); 1393 if (refheld) { 1394 if (ipsq_enter(ill, B_TRUE)) { 1395 ill_waiter_dcr(ill); 1396 /* 1397 * Check whether this ioctl has started and is 1398 * pending now in ipsq_pending_mp. If it is not 1399 * found there then check whether this ioctl has 1400 * not even started and is in the ipsq_xopq list. 1401 */ 1402 if (!ipsq_pending_mp_cleanup(ill, connp)) 1403 ipsq_xopq_mp_cleanup(ill, connp); 1404 ipsq = ill->ill_phyint->phyint_ipsq; 1405 ipsq_exit(ipsq, B_TRUE, B_TRUE); 1406 return; 1407 } 1408 } 1409 1410 /* 1411 * The ill is also closing and we could not bump up the 1412 * ill_waiter_count or we could not enter the ipsq. Leave 1413 * the cleanup to ill_delete 1414 */ 1415 mutex_enter(&connp->conn_lock); 1416 while (connp->conn_oper_pending_ill != NULL) 1417 cv_wait(&connp->conn_refcv, &connp->conn_lock); 1418 mutex_exit(&connp->conn_lock); 1419 if (refheld) 1420 ill_waiter_dcr(ill); 1421 } 1422 1423 /* 1424 * ipcl_walk function for cleaning up conn_*_ill fields. 1425 */ 1426 static void 1427 conn_cleanup_ill(conn_t *connp, caddr_t arg) 1428 { 1429 ill_t *ill = (ill_t *)arg; 1430 ire_t *ire; 1431 1432 mutex_enter(&connp->conn_lock); 1433 if (connp->conn_multicast_ill == ill) { 1434 /* Revert to late binding */ 1435 connp->conn_multicast_ill = NULL; 1436 connp->conn_orig_multicast_ifindex = 0; 1437 } 1438 if (connp->conn_incoming_ill == ill) 1439 connp->conn_incoming_ill = NULL; 1440 if (connp->conn_outgoing_ill == ill) 1441 connp->conn_outgoing_ill = NULL; 1442 if (connp->conn_outgoing_pill == ill) 1443 connp->conn_outgoing_pill = NULL; 1444 if (connp->conn_nofailover_ill == ill) 1445 connp->conn_nofailover_ill = NULL; 1446 if (connp->conn_xmit_if_ill == ill) 1447 connp->conn_xmit_if_ill = NULL; 1448 if (connp->conn_ire_cache != NULL) { 1449 ire = connp->conn_ire_cache; 1450 /* 1451 * ip_newroute creates IRE_CACHE with ire_stq coming from 1452 * interface X and ipif coming from interface Y, if interface 1453 * X and Y are part of the same IPMPgroup. Thus whenever 1454 * interface X goes down, remove all references to it by 1455 * checking both on ire_ipif and ire_stq. 1456 */ 1457 if ((ire->ire_ipif != NULL && ire->ire_ipif->ipif_ill == ill) || 1458 (ire->ire_type == IRE_CACHE && 1459 ire->ire_stq == ill->ill_wq)) { 1460 connp->conn_ire_cache = NULL; 1461 mutex_exit(&connp->conn_lock); 1462 ire_refrele_notr(ire); 1463 return; 1464 } 1465 } 1466 mutex_exit(&connp->conn_lock); 1467 1468 } 1469 1470 /* ARGSUSED */ 1471 void 1472 ipif_all_down_tail(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 1473 { 1474 ill_t *ill = q->q_ptr; 1475 ipif_t *ipif; 1476 1477 ASSERT(IAM_WRITER_IPSQ(ipsq)); 1478 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) 1479 ipif_down_tail(ipif); 1480 ill_down_tail(ill); 1481 freemsg(mp); 1482 ipsq->ipsq_current_ipif = NULL; 1483 } 1484 1485 /* 1486 * ill_down_start is called when we want to down this ill and bring it up again 1487 * It is called when we receive an M_ERROR / M_HANGUP. In this case we shut down 1488 * all interfaces, but don't tear down any plumbing. 1489 */ 1490 boolean_t 1491 ill_down_start(queue_t *q, mblk_t *mp) 1492 { 1493 ill_t *ill; 1494 ipif_t *ipif; 1495 1496 ill = q->q_ptr; 1497 1498 ASSERT(IAM_WRITER_ILL(ill)); 1499 1500 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) 1501 (void) ipif_down(ipif, NULL, NULL); 1502 1503 ill_down(ill); 1504 1505 (void) ipsq_pending_mp_cleanup(ill, NULL); 1506 mutex_enter(&ill->ill_lock); 1507 /* 1508 * Atomically test and add the pending mp if references are 1509 * still active. 1510 */ 1511 if (!ill_is_quiescent(ill)) { 1512 /* 1513 * Get rid of any pending mps and cleanup. Call will 1514 * not fail since we are passing a null connp. 1515 */ 1516 (void) ipsq_pending_mp_add(NULL, ill->ill_ipif, ill->ill_rq, 1517 mp, ILL_DOWN); 1518 mutex_exit(&ill->ill_lock); 1519 return (B_FALSE); 1520 } 1521 mutex_exit(&ill->ill_lock); 1522 return (B_TRUE); 1523 } 1524 1525 static void 1526 ill_down(ill_t *ill) 1527 { 1528 /* Blow off any IREs dependent on this ILL. */ 1529 ire_walk(ill_downi, (char *)ill); 1530 1531 mutex_enter(&ire_mrtun_lock); 1532 if (ire_mrtun_count != 0) { 1533 mutex_exit(&ire_mrtun_lock); 1534 ire_walk_ill_mrtun(0, 0, ill_downi_mrtun_srcif, 1535 (char *)ill, NULL); 1536 } else { 1537 mutex_exit(&ire_mrtun_lock); 1538 } 1539 1540 /* 1541 * If any interface based forwarding table exists 1542 * Blow off the ires there dependent on this ill 1543 */ 1544 mutex_enter(&ire_srcif_table_lock); 1545 if (ire_srcif_table_count > 0) { 1546 mutex_exit(&ire_srcif_table_lock); 1547 ire_walk_srcif_table_v4(ill_downi_mrtun_srcif, (char *)ill); 1548 } else { 1549 mutex_exit(&ire_srcif_table_lock); 1550 } 1551 1552 /* Remove any conn_*_ill depending on this ill */ 1553 ipcl_walk(conn_cleanup_ill, (caddr_t)ill); 1554 1555 if (ill->ill_group != NULL) { 1556 illgrp_delete(ill); 1557 } 1558 1559 } 1560 1561 static void 1562 ill_down_tail(ill_t *ill) 1563 { 1564 int i; 1565 1566 /* Destroy ill_srcif_table if it exists */ 1567 /* Lock not reqd really because nobody should be able to access */ 1568 mutex_enter(&ill->ill_lock); 1569 if (ill->ill_srcif_table != NULL) { 1570 ill->ill_srcif_refcnt = 0; 1571 for (i = 0; i < IP_SRCIF_TABLE_SIZE; i++) { 1572 rw_destroy(&ill->ill_srcif_table[i].irb_lock); 1573 } 1574 kmem_free(ill->ill_srcif_table, 1575 IP_SRCIF_TABLE_SIZE * sizeof (irb_t)); 1576 ill->ill_srcif_table = NULL; 1577 ill->ill_srcif_refcnt = 0; 1578 ill->ill_mrtun_refcnt = 0; 1579 } 1580 mutex_exit(&ill->ill_lock); 1581 } 1582 1583 /* 1584 * ire_walk routine used to delete every IRE that depends on queues 1585 * associated with 'ill'. (Always called as writer.) 1586 */ 1587 static void 1588 ill_downi(ire_t *ire, char *ill_arg) 1589 { 1590 ill_t *ill = (ill_t *)ill_arg; 1591 1592 /* 1593 * ip_newroute creates IRE_CACHE with ire_stq coming from 1594 * interface X and ipif coming from interface Y, if interface 1595 * X and Y are part of the same IPMP group. Thus whenever interface 1596 * X goes down, remove all references to it by checking both 1597 * on ire_ipif and ire_stq. 1598 */ 1599 if ((ire->ire_ipif != NULL && ire->ire_ipif->ipif_ill == ill) || 1600 (ire->ire_type == IRE_CACHE && ire->ire_stq == ill->ill_wq)) { 1601 ire_delete(ire); 1602 } 1603 } 1604 1605 /* 1606 * A seperate routine for deleting revtun and srcif based routes 1607 * are needed because the ires only deleted when the interface 1608 * is unplumbed. Also these ires have ire_in_ill non-null as well. 1609 * we want to keep mobile IP specific code separate. 1610 */ 1611 static void 1612 ill_downi_mrtun_srcif(ire_t *ire, char *ill_arg) 1613 { 1614 ill_t *ill = (ill_t *)ill_arg; 1615 1616 ASSERT(ire->ire_in_ill != NULL); 1617 1618 if ((ire->ire_in_ill != NULL && ire->ire_in_ill == ill) || 1619 (ire->ire_stq == ill->ill_wq) || (ire->ire_stq == ill->ill_rq)) { 1620 ire_delete(ire); 1621 } 1622 } 1623 1624 /* 1625 * Remove ire/nce from the fastpath list. 1626 */ 1627 void 1628 ill_fastpath_nack(ill_t *ill) 1629 { 1630 if (ill->ill_isv6) { 1631 nce_fastpath_list_dispatch(ill, NULL, NULL); 1632 } else { 1633 ire_fastpath_list_dispatch(ill, NULL, NULL); 1634 } 1635 } 1636 1637 /* Consume an M_IOCACK of the fastpath probe. */ 1638 void 1639 ill_fastpath_ack(ill_t *ill, mblk_t *mp) 1640 { 1641 mblk_t *mp1 = mp; 1642 1643 /* 1644 * If this was the first attempt turn on the fastpath probing. 1645 */ 1646 mutex_enter(&ill->ill_lock); 1647 if (ill->ill_dlpi_fastpath_state == IDMS_INPROGRESS) 1648 ill->ill_dlpi_fastpath_state = IDMS_OK; 1649 mutex_exit(&ill->ill_lock); 1650 1651 /* Free the M_IOCACK mblk, hold on to the data */ 1652 mp = mp->b_cont; 1653 freeb(mp1); 1654 if (mp == NULL) 1655 return; 1656 if (mp->b_cont != NULL) { 1657 /* 1658 * Update all IRE's or NCE's that are waiting for 1659 * fastpath update. 1660 */ 1661 if (ill->ill_isv6) { 1662 /* 1663 * update nce's in the fastpath list. 1664 */ 1665 nce_fastpath_list_dispatch(ill, 1666 ndp_fastpath_update, mp); 1667 } else { 1668 1669 /* 1670 * update ire's in the fastpath list. 1671 */ 1672 ire_fastpath_list_dispatch(ill, 1673 ire_fastpath_update, mp); 1674 /* 1675 * Check if we need to traverse reverse tunnel table. 1676 * Since there is only single ire_type (IRE_MIPRTUN) 1677 * in the table, we don't need to match on ire_type. 1678 * We have to check ire_mrtun_count and not the 1679 * ill_mrtun_refcnt since ill_mrtun_refcnt is set 1680 * on the incoming ill and here we are dealing with 1681 * outgoing ill. 1682 */ 1683 mutex_enter(&ire_mrtun_lock); 1684 if (ire_mrtun_count != 0) { 1685 mutex_exit(&ire_mrtun_lock); 1686 ire_walk_ill_mrtun(MATCH_IRE_WQ, IRE_MIPRTUN, 1687 (void (*)(ire_t *, void *)) 1688 ire_fastpath_update, mp, ill); 1689 } else { 1690 mutex_exit(&ire_mrtun_lock); 1691 } 1692 } 1693 mp1 = mp->b_cont; 1694 freeb(mp); 1695 mp = mp1; 1696 } else { 1697 ip0dbg(("ill_fastpath_ack: no b_cont\n")); 1698 } 1699 1700 freeb(mp); 1701 } 1702 1703 /* 1704 * Throw an M_IOCTL message downstream asking "do you know fastpath?" 1705 * The data portion of the request is a dl_unitdata_req_t template for 1706 * what we would send downstream in the absence of a fastpath confirmation. 1707 */ 1708 int 1709 ill_fastpath_probe(ill_t *ill, mblk_t *dlur_mp) 1710 { 1711 struct iocblk *ioc; 1712 mblk_t *mp; 1713 1714 if (dlur_mp == NULL) 1715 return (EINVAL); 1716 1717 mutex_enter(&ill->ill_lock); 1718 switch (ill->ill_dlpi_fastpath_state) { 1719 case IDMS_FAILED: 1720 /* 1721 * Driver NAKed the first fastpath ioctl - assume it doesn't 1722 * support it. 1723 */ 1724 mutex_exit(&ill->ill_lock); 1725 return (ENOTSUP); 1726 case IDMS_UNKNOWN: 1727 /* This is the first probe */ 1728 ill->ill_dlpi_fastpath_state = IDMS_INPROGRESS; 1729 break; 1730 default: 1731 break; 1732 } 1733 mutex_exit(&ill->ill_lock); 1734 1735 if ((mp = mkiocb(DL_IOC_HDR_INFO)) == NULL) 1736 return (EAGAIN); 1737 1738 mp->b_cont = copyb(dlur_mp); 1739 if (mp->b_cont == NULL) { 1740 freeb(mp); 1741 return (EAGAIN); 1742 } 1743 1744 ioc = (struct iocblk *)mp->b_rptr; 1745 ioc->ioc_count = msgdsize(mp->b_cont); 1746 1747 putnext(ill->ill_wq, mp); 1748 return (0); 1749 } 1750 1751 void 1752 ill_capability_probe(ill_t *ill) 1753 { 1754 /* 1755 * Do so only if negotiation is enabled, capabilities are unknown, 1756 * and a capability negotiation is not already in progress. 1757 */ 1758 if (ill->ill_capab_state != IDMS_UNKNOWN && 1759 ill->ill_capab_state != IDMS_RENEG) 1760 return; 1761 1762 ill->ill_capab_state = IDMS_INPROGRESS; 1763 ip1dbg(("ill_capability_probe: starting capability negotiation\n")); 1764 ill_capability_proto(ill, DL_CAPABILITY_REQ, NULL); 1765 } 1766 1767 void 1768 ill_capability_reset(ill_t *ill) 1769 { 1770 mblk_t *sc_mp = NULL; 1771 mblk_t *tmp; 1772 1773 /* 1774 * Note here that we reset the state to UNKNOWN, and later send 1775 * down the DL_CAPABILITY_REQ without first setting the state to 1776 * INPROGRESS. We do this in order to distinguish the 1777 * DL_CAPABILITY_ACK response which may come back in response to 1778 * a "reset" apart from the "probe" DL_CAPABILITY_REQ. This would 1779 * also handle the case where the driver doesn't send us back 1780 * a DL_CAPABILITY_ACK in response, since the "probe" routine 1781 * requires the state to be in UNKNOWN anyway. In any case, all 1782 * features are turned off until the state reaches IDMS_OK. 1783 */ 1784 ill->ill_capab_state = IDMS_UNKNOWN; 1785 1786 /* 1787 * Disable sub-capabilities and request a list of sub-capability 1788 * messages which will be sent down to the driver. Each handler 1789 * allocates the corresponding dl_capability_sub_t inside an 1790 * mblk, and links it to the existing sc_mp mblk, or return it 1791 * as sc_mp if it's the first sub-capability (the passed in 1792 * sc_mp is NULL). Upon returning from all capability handlers, 1793 * sc_mp will be pulled-up, before passing it downstream. 1794 */ 1795 ill_capability_mdt_reset(ill, &sc_mp); 1796 ill_capability_hcksum_reset(ill, &sc_mp); 1797 ill_capability_zerocopy_reset(ill, &sc_mp); 1798 /* EXPORT DELETE START */ 1799 ill_capability_ipsec_reset(ill, &sc_mp); 1800 /* EXPORT DELETE END */ 1801 ill_capability_poll_reset(ill, &sc_mp); 1802 1803 /* Nothing to send down in order to disable the capabilities? */ 1804 if (sc_mp == NULL) 1805 return; 1806 1807 tmp = msgpullup(sc_mp, -1); 1808 freemsg(sc_mp); 1809 if ((sc_mp = tmp) == NULL) { 1810 cmn_err(CE_WARN, "ill_capability_reset: unable to send down " 1811 "DL_CAPABILITY_REQ (ENOMEM)\n"); 1812 return; 1813 } 1814 1815 ip1dbg(("ill_capability_reset: resetting negotiated capabilities\n")); 1816 ill_capability_proto(ill, DL_CAPABILITY_REQ, sc_mp); 1817 } 1818 1819 /* 1820 * Request or set new-style hardware capabilities supported by DLS provider. 1821 */ 1822 static void 1823 ill_capability_proto(ill_t *ill, int type, mblk_t *reqp) 1824 { 1825 mblk_t *mp; 1826 dl_capability_req_t *capb; 1827 size_t size = 0; 1828 uint8_t *ptr; 1829 1830 if (reqp != NULL) 1831 size = MBLKL(reqp); 1832 1833 mp = ip_dlpi_alloc(sizeof (dl_capability_req_t) + size, type); 1834 if (mp == NULL) { 1835 freemsg(reqp); 1836 return; 1837 } 1838 ptr = mp->b_rptr; 1839 1840 capb = (dl_capability_req_t *)ptr; 1841 ptr += sizeof (dl_capability_req_t); 1842 1843 if (reqp != NULL) { 1844 capb->dl_sub_offset = sizeof (dl_capability_req_t); 1845 capb->dl_sub_length = size; 1846 bcopy(reqp->b_rptr, ptr, size); 1847 ptr += size; 1848 mp->b_cont = reqp->b_cont; 1849 freeb(reqp); 1850 } 1851 ASSERT(ptr == mp->b_wptr); 1852 1853 ill_dlpi_send(ill, mp); 1854 } 1855 1856 static void 1857 ill_capability_id_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *outers) 1858 { 1859 dl_capab_id_t *id_ic; 1860 uint_t sub_dl_cap = outers->dl_cap; 1861 dl_capability_sub_t *inners; 1862 uint8_t *capend; 1863 1864 ASSERT(sub_dl_cap == DL_CAPAB_ID_WRAPPER); 1865 1866 /* 1867 * Note: range checks here are not absolutely sufficient to 1868 * make us robust against malformed messages sent by drivers; 1869 * this is in keeping with the rest of IP's dlpi handling. 1870 * (Remember, it's coming from something else in the kernel 1871 * address space) 1872 */ 1873 1874 capend = (uint8_t *)(outers + 1) + outers->dl_length; 1875 if (capend > mp->b_wptr) { 1876 cmn_err(CE_WARN, "ill_capability_id_ack: " 1877 "malformed sub-capability too long for mblk"); 1878 return; 1879 } 1880 1881 id_ic = (dl_capab_id_t *)(outers + 1); 1882 1883 if (outers->dl_length < sizeof (*id_ic) || 1884 (inners = &id_ic->id_subcap, 1885 inners->dl_length > (outers->dl_length - sizeof (*inners)))) { 1886 cmn_err(CE_WARN, "ill_capability_id_ack: malformed " 1887 "encapsulated capab type %d too long for mblk", 1888 inners->dl_cap); 1889 return; 1890 } 1891 1892 if (!dlcapabcheckqid(&id_ic->id_mid, ill->ill_lmod_rq)) { 1893 ip1dbg(("ill_capability_id_ack: mid token for capab type %d " 1894 "isn't as expected; pass-thru module(s) detected, " 1895 "discarding capability\n", inners->dl_cap)); 1896 return; 1897 } 1898 1899 /* Process the encapsulated sub-capability */ 1900 ill_capability_dispatch(ill, mp, inners, B_TRUE); 1901 } 1902 1903 /* 1904 * Process Multidata Transmit capability negotiation ack received from a 1905 * DLS Provider. isub must point to the sub-capability (DL_CAPAB_MDT) of a 1906 * DL_CAPABILITY_ACK message. 1907 */ 1908 static void 1909 ill_capability_mdt_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub) 1910 { 1911 mblk_t *nmp = NULL; 1912 dl_capability_req_t *oc; 1913 dl_capab_mdt_t *mdt_ic, *mdt_oc; 1914 ill_mdt_capab_t **ill_mdt_capab; 1915 uint_t sub_dl_cap = isub->dl_cap; 1916 uint8_t *capend; 1917 1918 ASSERT(sub_dl_cap == DL_CAPAB_MDT); 1919 1920 ill_mdt_capab = (ill_mdt_capab_t **)&ill->ill_mdt_capab; 1921 1922 /* 1923 * Note: range checks here are not absolutely sufficient to 1924 * make us robust against malformed messages sent by drivers; 1925 * this is in keeping with the rest of IP's dlpi handling. 1926 * (Remember, it's coming from something else in the kernel 1927 * address space) 1928 */ 1929 1930 capend = (uint8_t *)(isub + 1) + isub->dl_length; 1931 if (capend > mp->b_wptr) { 1932 cmn_err(CE_WARN, "ill_capability_mdt_ack: " 1933 "malformed sub-capability too long for mblk"); 1934 return; 1935 } 1936 1937 mdt_ic = (dl_capab_mdt_t *)(isub + 1); 1938 1939 if (mdt_ic->mdt_version != MDT_VERSION_2) { 1940 cmn_err(CE_CONT, "ill_capability_mdt_ack: " 1941 "unsupported MDT sub-capability (version %d, expected %d)", 1942 mdt_ic->mdt_version, MDT_VERSION_2); 1943 return; 1944 } 1945 1946 if (!dlcapabcheckqid(&mdt_ic->mdt_mid, ill->ill_lmod_rq)) { 1947 ip1dbg(("ill_capability_mdt_ack: mid token for MDT " 1948 "capability isn't as expected; pass-thru module(s) " 1949 "detected, discarding capability\n")); 1950 return; 1951 } 1952 1953 if (mdt_ic->mdt_flags & DL_CAPAB_MDT_ENABLE) { 1954 1955 if (*ill_mdt_capab == NULL) { 1956 *ill_mdt_capab = kmem_zalloc(sizeof (ill_mdt_capab_t), 1957 KM_NOSLEEP); 1958 1959 if (*ill_mdt_capab == NULL) { 1960 cmn_err(CE_WARN, "ill_capability_mdt_ack: " 1961 "could not enable MDT version %d " 1962 "for %s (ENOMEM)\n", MDT_VERSION_2, 1963 ill->ill_name); 1964 return; 1965 } 1966 } 1967 1968 ip1dbg(("ill_capability_mdt_ack: interface %s supports " 1969 "MDT version %d (%d bytes leading, %d bytes trailing " 1970 "header spaces, %d max pld bufs, %d span limit)\n", 1971 ill->ill_name, MDT_VERSION_2, 1972 mdt_ic->mdt_hdr_head, mdt_ic->mdt_hdr_tail, 1973 mdt_ic->mdt_max_pld, mdt_ic->mdt_span_limit)); 1974 1975 (*ill_mdt_capab)->ill_mdt_version = MDT_VERSION_2; 1976 (*ill_mdt_capab)->ill_mdt_on = 1; 1977 /* 1978 * Round the following values to the nearest 32-bit; ULP 1979 * may further adjust them to accomodate for additional 1980 * protocol headers. We pass these values to ULP during 1981 * bind time. 1982 */ 1983 (*ill_mdt_capab)->ill_mdt_hdr_head = 1984 roundup(mdt_ic->mdt_hdr_head, 4); 1985 (*ill_mdt_capab)->ill_mdt_hdr_tail = 1986 roundup(mdt_ic->mdt_hdr_tail, 4); 1987 (*ill_mdt_capab)->ill_mdt_max_pld = mdt_ic->mdt_max_pld; 1988 (*ill_mdt_capab)->ill_mdt_span_limit = mdt_ic->mdt_span_limit; 1989 1990 ill->ill_capabilities |= ILL_CAPAB_MDT; 1991 } else { 1992 uint_t size; 1993 uchar_t *rptr; 1994 1995 size = sizeof (dl_capability_req_t) + 1996 sizeof (dl_capability_sub_t) + sizeof (dl_capab_mdt_t); 1997 1998 if ((nmp = ip_dlpi_alloc(size, DL_CAPABILITY_REQ)) == NULL) { 1999 cmn_err(CE_WARN, "ill_capability_mdt_ack: " 2000 "could not enable MDT for %s (ENOMEM)\n", 2001 ill->ill_name); 2002 return; 2003 } 2004 2005 rptr = nmp->b_rptr; 2006 /* initialize dl_capability_req_t */ 2007 oc = (dl_capability_req_t *)nmp->b_rptr; 2008 oc->dl_sub_offset = sizeof (dl_capability_req_t); 2009 oc->dl_sub_length = sizeof (dl_capability_sub_t) + 2010 sizeof (dl_capab_mdt_t); 2011 nmp->b_rptr += sizeof (dl_capability_req_t); 2012 2013 /* initialize dl_capability_sub_t */ 2014 bcopy(isub, nmp->b_rptr, sizeof (*isub)); 2015 nmp->b_rptr += sizeof (*isub); 2016 2017 /* initialize dl_capab_mdt_t */ 2018 mdt_oc = (dl_capab_mdt_t *)nmp->b_rptr; 2019 bcopy(mdt_ic, mdt_oc, sizeof (*mdt_ic)); 2020 2021 nmp->b_rptr = rptr; 2022 2023 ip1dbg(("ill_capability_mdt_ack: asking interface %s " 2024 "to enable MDT version %d\n", ill->ill_name, 2025 MDT_VERSION_2)); 2026 2027 /* set ENABLE flag */ 2028 mdt_oc->mdt_flags |= DL_CAPAB_MDT_ENABLE; 2029 2030 /* nmp points to a DL_CAPABILITY_REQ message to enable MDT */ 2031 ill_dlpi_send(ill, nmp); 2032 } 2033 } 2034 2035 static void 2036 ill_capability_mdt_reset(ill_t *ill, mblk_t **sc_mp) 2037 { 2038 mblk_t *mp; 2039 dl_capab_mdt_t *mdt_subcap; 2040 dl_capability_sub_t *dl_subcap; 2041 int size; 2042 2043 if (!(ill->ill_capabilities & ILL_CAPAB_MDT)) 2044 return; 2045 2046 ASSERT(ill->ill_mdt_capab != NULL); 2047 /* 2048 * Clear the capability flag for MDT but retain the ill_mdt_capab 2049 * structure since it's possible that another thread is still 2050 * referring to it. The structure only gets deallocated when 2051 * we destroy the ill. 2052 */ 2053 ill->ill_capabilities &= ~ILL_CAPAB_MDT; 2054 2055 size = sizeof (*dl_subcap) + sizeof (*mdt_subcap); 2056 2057 mp = allocb(size, BPRI_HI); 2058 if (mp == NULL) { 2059 ip1dbg(("ill_capability_mdt_reset: unable to allocate " 2060 "request to disable MDT\n")); 2061 return; 2062 } 2063 2064 mp->b_wptr = mp->b_rptr + size; 2065 2066 dl_subcap = (dl_capability_sub_t *)mp->b_rptr; 2067 dl_subcap->dl_cap = DL_CAPAB_MDT; 2068 dl_subcap->dl_length = sizeof (*mdt_subcap); 2069 2070 mdt_subcap = (dl_capab_mdt_t *)(dl_subcap + 1); 2071 mdt_subcap->mdt_version = ill->ill_mdt_capab->ill_mdt_version; 2072 mdt_subcap->mdt_flags = 0; 2073 mdt_subcap->mdt_hdr_head = 0; 2074 mdt_subcap->mdt_hdr_tail = 0; 2075 2076 if (*sc_mp != NULL) 2077 linkb(*sc_mp, mp); 2078 else 2079 *sc_mp = mp; 2080 } 2081 2082 /* EXPORT DELETE START */ 2083 /* 2084 * Send a DL_NOTIFY_REQ to the specified ill to enable 2085 * DL_NOTE_PROMISC_ON/OFF_PHYS notifications. 2086 * Invoked by ill_capability_ipsec_ack() before enabling IPsec hardware 2087 * acceleration. 2088 * Returns B_TRUE on success, B_FALSE if the message could not be sent. 2089 */ 2090 static boolean_t 2091 ill_enable_promisc_notify(ill_t *ill) 2092 { 2093 mblk_t *mp; 2094 dl_notify_req_t *req; 2095 2096 IPSECHW_DEBUG(IPSECHW_PKT, ("ill_enable_promisc_notify:\n")); 2097 2098 mp = ip_dlpi_alloc(sizeof (dl_notify_req_t), DL_NOTIFY_REQ); 2099 if (mp == NULL) 2100 return (B_FALSE); 2101 2102 req = (dl_notify_req_t *)mp->b_rptr; 2103 req->dl_notifications = DL_NOTE_PROMISC_ON_PHYS | 2104 DL_NOTE_PROMISC_OFF_PHYS; 2105 2106 ill_dlpi_send(ill, mp); 2107 2108 return (B_TRUE); 2109 } 2110 2111 2112 /* 2113 * Allocate an IPsec capability request which will be filled by our 2114 * caller to turn on support for one or more algorithms. 2115 */ 2116 static mblk_t * 2117 ill_alloc_ipsec_cap_req(ill_t *ill, dl_capability_sub_t *isub) 2118 { 2119 mblk_t *nmp; 2120 dl_capability_req_t *ocap; 2121 dl_capab_ipsec_t *ocip; 2122 dl_capab_ipsec_t *icip; 2123 uint8_t *ptr; 2124 icip = (dl_capab_ipsec_t *)(isub + 1); 2125 2126 /* 2127 * The first time around, we send a DL_NOTIFY_REQ to enable 2128 * PROMISC_ON/OFF notification from the provider. We need to 2129 * do this before enabling the algorithms to avoid leakage of 2130 * cleartext packets. 2131 */ 2132 2133 if (!ill_enable_promisc_notify(ill)) 2134 return (NULL); 2135 2136 /* 2137 * Allocate new mblk which will contain a new capability 2138 * request to enable the capabilities. 2139 */ 2140 2141 nmp = ip_dlpi_alloc(sizeof (dl_capability_req_t) + 2142 sizeof (dl_capability_sub_t) + isub->dl_length, DL_CAPABILITY_REQ); 2143 if (nmp == NULL) 2144 return (NULL); 2145 2146 ptr = nmp->b_rptr; 2147 2148 /* initialize dl_capability_req_t */ 2149 ocap = (dl_capability_req_t *)ptr; 2150 ocap->dl_sub_offset = sizeof (dl_capability_req_t); 2151 ocap->dl_sub_length = sizeof (dl_capability_sub_t) + isub->dl_length; 2152 ptr += sizeof (dl_capability_req_t); 2153 2154 /* initialize dl_capability_sub_t */ 2155 bcopy(isub, ptr, sizeof (*isub)); 2156 ptr += sizeof (*isub); 2157 2158 /* initialize dl_capab_ipsec_t */ 2159 ocip = (dl_capab_ipsec_t *)ptr; 2160 bcopy(icip, ocip, sizeof (*icip)); 2161 2162 nmp->b_wptr = (uchar_t *)(&ocip->cip_data[0]); 2163 return (nmp); 2164 } 2165 2166 /* 2167 * Process an IPsec capability negotiation ack received from a DLS Provider. 2168 * isub must point to the sub-capability (DL_CAPAB_IPSEC_AH or 2169 * DL_CAPAB_IPSEC_ESP) of a DL_CAPABILITY_ACK message. 2170 */ 2171 static void 2172 ill_capability_ipsec_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub) 2173 { 2174 dl_capab_ipsec_t *icip; 2175 dl_capab_ipsec_alg_t *ialg; /* ptr to input alg spec. */ 2176 dl_capab_ipsec_alg_t *oalg; /* ptr to output alg spec. */ 2177 uint_t cipher, nciphers; 2178 mblk_t *nmp; 2179 uint_t alg_len; 2180 boolean_t need_sadb_dump; 2181 uint_t sub_dl_cap = isub->dl_cap; 2182 ill_ipsec_capab_t **ill_capab; 2183 uint64_t ill_capab_flag; 2184 uint8_t *capend, *ciphend; 2185 boolean_t sadb_resync; 2186 2187 ASSERT(sub_dl_cap == DL_CAPAB_IPSEC_AH || 2188 sub_dl_cap == DL_CAPAB_IPSEC_ESP); 2189 2190 if (sub_dl_cap == DL_CAPAB_IPSEC_AH) { 2191 ill_capab = (ill_ipsec_capab_t **)&ill->ill_ipsec_capab_ah; 2192 ill_capab_flag = ILL_CAPAB_AH; 2193 } else { 2194 ill_capab = (ill_ipsec_capab_t **)&ill->ill_ipsec_capab_esp; 2195 ill_capab_flag = ILL_CAPAB_ESP; 2196 } 2197 2198 /* 2199 * If the ill capability structure exists, then this incoming 2200 * DL_CAPABILITY_ACK is a response to a "renegotiation" cycle. 2201 * If this is so, then we'd need to resynchronize the SADB 2202 * after re-enabling the offloaded ciphers. 2203 */ 2204 sadb_resync = (*ill_capab != NULL); 2205 2206 /* 2207 * Note: range checks here are not absolutely sufficient to 2208 * make us robust against malformed messages sent by drivers; 2209 * this is in keeping with the rest of IP's dlpi handling. 2210 * (Remember, it's coming from something else in the kernel 2211 * address space) 2212 */ 2213 2214 capend = (uint8_t *)(isub + 1) + isub->dl_length; 2215 if (capend > mp->b_wptr) { 2216 cmn_err(CE_WARN, "ill_capability_ipsec_ack: " 2217 "malformed sub-capability too long for mblk"); 2218 return; 2219 } 2220 2221 /* 2222 * There are two types of acks we process here: 2223 * 1. acks in reply to a (first form) generic capability req 2224 * (no ENABLE flag set) 2225 * 2. acks in reply to a ENABLE capability req. 2226 * (ENABLE flag set) 2227 * 2228 * We process the subcapability passed as argument as follows: 2229 * 1 do initializations 2230 * 1.1 initialize nmp = NULL 2231 * 1.2 set need_sadb_dump to B_FALSE 2232 * 2 for each cipher in subcapability: 2233 * 2.1 if ENABLE flag is set: 2234 * 2.1.1 update per-ill ipsec capabilities info 2235 * 2.1.2 set need_sadb_dump to B_TRUE 2236 * 2.2 if ENABLE flag is not set: 2237 * 2.2.1 if nmp is NULL: 2238 * 2.2.1.1 allocate and initialize nmp 2239 * 2.2.1.2 init current pos in nmp 2240 * 2.2.2 copy current cipher to current pos in nmp 2241 * 2.2.3 set ENABLE flag in nmp 2242 * 2.2.4 update current pos 2243 * 3 if nmp is not equal to NULL, send enable request 2244 * 3.1 send capability request 2245 * 4 if need_sadb_dump is B_TRUE 2246 * 4.1 enable promiscuous on/off notifications 2247 * 4.2 call ill_dlpi_send(isub->dlcap) to send all 2248 * AH or ESP SA's to interface. 2249 */ 2250 2251 nmp = NULL; 2252 oalg = NULL; 2253 need_sadb_dump = B_FALSE; 2254 icip = (dl_capab_ipsec_t *)(isub + 1); 2255 ialg = (dl_capab_ipsec_alg_t *)(&icip->cip_data[0]); 2256 2257 nciphers = icip->cip_nciphers; 2258 ciphend = (uint8_t *)(ialg + icip->cip_nciphers); 2259 2260 if (ciphend > capend) { 2261 cmn_err(CE_WARN, "ill_capability_ipsec_ack: " 2262 "too many ciphers for sub-capability len"); 2263 return; 2264 } 2265 2266 for (cipher = 0; cipher < nciphers; cipher++) { 2267 alg_len = sizeof (dl_capab_ipsec_alg_t); 2268 2269 if (ialg->alg_flag & DL_CAPAB_ALG_ENABLE) { 2270 /* 2271 * TBD: when we provide a way to disable capabilities 2272 * from above, need to manage the request-pending state 2273 * and fail if we were not expecting this ACK. 2274 */ 2275 IPSECHW_DEBUG(IPSECHW_CAPAB, 2276 ("ill_capability_ipsec_ack: got ENABLE ACK\n")); 2277 2278 /* 2279 * Update IPsec capabilities for this ill 2280 */ 2281 2282 if (*ill_capab == NULL) { 2283 IPSECHW_DEBUG(IPSECHW_CAPAB, 2284 ("ill_capability_ipsec_ack: " 2285 "allocating ipsec_capab for ill\n")); 2286 *ill_capab = ill_ipsec_capab_alloc(); 2287 2288 if (*ill_capab == NULL) { 2289 cmn_err(CE_WARN, 2290 "ill_capability_ipsec_ack: " 2291 "could not enable IPsec Hardware " 2292 "acceleration for %s (ENOMEM)\n", 2293 ill->ill_name); 2294 return; 2295 } 2296 } 2297 2298 ASSERT(ialg->alg_type == DL_CAPAB_IPSEC_ALG_AUTH || 2299 ialg->alg_type == DL_CAPAB_IPSEC_ALG_ENCR); 2300 2301 if (ialg->alg_prim >= MAX_IPSEC_ALGS) { 2302 cmn_err(CE_WARN, 2303 "ill_capability_ipsec_ack: " 2304 "malformed IPsec algorithm id %d", 2305 ialg->alg_prim); 2306 continue; 2307 } 2308 2309 if (ialg->alg_type == DL_CAPAB_IPSEC_ALG_AUTH) { 2310 IPSEC_ALG_ENABLE((*ill_capab)->auth_hw_algs, 2311 ialg->alg_prim); 2312 } else { 2313 ipsec_capab_algparm_t *alp; 2314 2315 IPSEC_ALG_ENABLE((*ill_capab)->encr_hw_algs, 2316 ialg->alg_prim); 2317 if (!ill_ipsec_capab_resize_algparm(*ill_capab, 2318 ialg->alg_prim)) { 2319 cmn_err(CE_WARN, 2320 "ill_capability_ipsec_ack: " 2321 "no space for IPsec alg id %d", 2322 ialg->alg_prim); 2323 continue; 2324 } 2325 alp = &((*ill_capab)->encr_algparm[ 2326 ialg->alg_prim]); 2327 alp->minkeylen = ialg->alg_minbits; 2328 alp->maxkeylen = ialg->alg_maxbits; 2329 } 2330 ill->ill_capabilities |= ill_capab_flag; 2331 /* 2332 * indicate that a capability was enabled, which 2333 * will be used below to kick off a SADB dump 2334 * to the ill. 2335 */ 2336 need_sadb_dump = B_TRUE; 2337 } else { 2338 IPSECHW_DEBUG(IPSECHW_CAPAB, 2339 ("ill_capability_ipsec_ack: enabling alg 0x%x\n", 2340 ialg->alg_prim)); 2341 2342 if (nmp == NULL) { 2343 nmp = ill_alloc_ipsec_cap_req(ill, isub); 2344 if (nmp == NULL) { 2345 /* 2346 * Sending the PROMISC_ON/OFF 2347 * notification request failed. 2348 * We cannot enable the algorithms 2349 * since the Provider will not 2350 * notify IP of promiscous mode 2351 * changes, which could lead 2352 * to leakage of packets. 2353 */ 2354 cmn_err(CE_WARN, 2355 "ill_capability_ipsec_ack: " 2356 "could not enable IPsec Hardware " 2357 "acceleration for %s (ENOMEM)\n", 2358 ill->ill_name); 2359 return; 2360 } 2361 /* ptr to current output alg specifier */ 2362 oalg = (dl_capab_ipsec_alg_t *)nmp->b_wptr; 2363 } 2364 2365 /* 2366 * Copy current alg specifier, set ENABLE 2367 * flag, and advance to next output alg. 2368 * For now we enable all IPsec capabilities. 2369 */ 2370 ASSERT(oalg != NULL); 2371 bcopy(ialg, oalg, alg_len); 2372 oalg->alg_flag |= DL_CAPAB_ALG_ENABLE; 2373 nmp->b_wptr += alg_len; 2374 oalg = (dl_capab_ipsec_alg_t *)nmp->b_wptr; 2375 } 2376 2377 /* move to next input algorithm specifier */ 2378 ialg = (dl_capab_ipsec_alg_t *) 2379 ((char *)ialg + alg_len); 2380 } 2381 2382 if (nmp != NULL) 2383 /* 2384 * nmp points to a DL_CAPABILITY_REQ message to enable 2385 * IPsec hardware acceleration. 2386 */ 2387 ill_dlpi_send(ill, nmp); 2388 2389 if (need_sadb_dump) 2390 /* 2391 * An acknowledgement corresponding to a request to 2392 * enable acceleration was received, notify SADB. 2393 */ 2394 ill_ipsec_capab_add(ill, sub_dl_cap, sadb_resync); 2395 } 2396 2397 /* 2398 * Given an mblk with enough space in it, create sub-capability entries for 2399 * DL_CAPAB_IPSEC_{AH,ESP} types which consist of previously-advertised 2400 * offloaded ciphers (both AUTH and ENCR) with their enable flags cleared, 2401 * in preparation for the reset the DL_CAPABILITY_REQ message. 2402 */ 2403 static void 2404 ill_fill_ipsec_reset(uint_t nciphers, int stype, uint_t slen, 2405 ill_ipsec_capab_t *ill_cap, mblk_t *mp) 2406 { 2407 dl_capab_ipsec_t *oipsec; 2408 dl_capab_ipsec_alg_t *oalg; 2409 dl_capability_sub_t *dl_subcap; 2410 int i, k; 2411 2412 ASSERT(nciphers > 0); 2413 ASSERT(ill_cap != NULL); 2414 ASSERT(mp != NULL); 2415 ASSERT(MBLKTAIL(mp) >= sizeof (*dl_subcap) + sizeof (*oipsec) + slen); 2416 2417 /* dl_capability_sub_t for "stype" */ 2418 dl_subcap = (dl_capability_sub_t *)mp->b_wptr; 2419 dl_subcap->dl_cap = stype; 2420 dl_subcap->dl_length = sizeof (dl_capab_ipsec_t) + slen; 2421 mp->b_wptr += sizeof (dl_capability_sub_t); 2422 2423 /* dl_capab_ipsec_t for "stype" */ 2424 oipsec = (dl_capab_ipsec_t *)mp->b_wptr; 2425 oipsec->cip_version = 1; 2426 oipsec->cip_nciphers = nciphers; 2427 mp->b_wptr = (uchar_t *)&oipsec->cip_data[0]; 2428 2429 /* create entries for "stype" AUTH ciphers */ 2430 for (i = 0; i < ill_cap->algs_size; i++) { 2431 for (k = 0; k < BITSPERBYTE; k++) { 2432 if ((ill_cap->auth_hw_algs[i] & (1 << k)) == 0) 2433 continue; 2434 2435 oalg = (dl_capab_ipsec_alg_t *)mp->b_wptr; 2436 bzero((void *)oalg, sizeof (*oalg)); 2437 oalg->alg_type = DL_CAPAB_IPSEC_ALG_AUTH; 2438 oalg->alg_prim = k + (BITSPERBYTE * i); 2439 mp->b_wptr += sizeof (dl_capab_ipsec_alg_t); 2440 } 2441 } 2442 /* create entries for "stype" ENCR ciphers */ 2443 for (i = 0; i < ill_cap->algs_size; i++) { 2444 for (k = 0; k < BITSPERBYTE; k++) { 2445 if ((ill_cap->encr_hw_algs[i] & (1 << k)) == 0) 2446 continue; 2447 2448 oalg = (dl_capab_ipsec_alg_t *)mp->b_wptr; 2449 bzero((void *)oalg, sizeof (*oalg)); 2450 oalg->alg_type = DL_CAPAB_IPSEC_ALG_ENCR; 2451 oalg->alg_prim = k + (BITSPERBYTE * i); 2452 mp->b_wptr += sizeof (dl_capab_ipsec_alg_t); 2453 } 2454 } 2455 } 2456 2457 /* 2458 * Macro to count number of 1s in a byte (8-bit word). The total count is 2459 * accumulated into the passed-in argument (sum). We could use SPARCv9's 2460 * POPC instruction, but our macro is more flexible for an arbitrary length 2461 * of bytes, such as {auth,encr}_hw_algs. These variables are currently 2462 * 256-bits long (MAX_IPSEC_ALGS), so if we know for sure that the length 2463 * stays that way, we can reduce the number of iterations required. 2464 */ 2465 #define COUNT_1S(val, sum) { \ 2466 uint8_t x = val & 0xff; \ 2467 x = (x & 0x55) + ((x >> 1) & 0x55); \ 2468 x = (x & 0x33) + ((x >> 2) & 0x33); \ 2469 sum += (x & 0xf) + ((x >> 4) & 0xf); \ 2470 } 2471 2472 /* ARGSUSED */ 2473 static void 2474 ill_capability_ipsec_reset(ill_t *ill, mblk_t **sc_mp) 2475 { 2476 mblk_t *mp; 2477 ill_ipsec_capab_t *cap_ah = ill->ill_ipsec_capab_ah; 2478 ill_ipsec_capab_t *cap_esp = ill->ill_ipsec_capab_esp; 2479 uint64_t ill_capabilities = ill->ill_capabilities; 2480 int ah_cnt = 0, esp_cnt = 0; 2481 int ah_len = 0, esp_len = 0; 2482 int i, size = 0; 2483 2484 if (!(ill_capabilities & (ILL_CAPAB_AH | ILL_CAPAB_ESP))) 2485 return; 2486 2487 ASSERT(cap_ah != NULL || !(ill_capabilities & ILL_CAPAB_AH)); 2488 ASSERT(cap_esp != NULL || !(ill_capabilities & ILL_CAPAB_ESP)); 2489 2490 /* Find out the number of ciphers for AH */ 2491 if (cap_ah != NULL) { 2492 for (i = 0; i < cap_ah->algs_size; i++) { 2493 COUNT_1S(cap_ah->auth_hw_algs[i], ah_cnt); 2494 COUNT_1S(cap_ah->encr_hw_algs[i], ah_cnt); 2495 } 2496 if (ah_cnt > 0) { 2497 size += sizeof (dl_capability_sub_t) + 2498 sizeof (dl_capab_ipsec_t); 2499 /* dl_capab_ipsec_t contains one dl_capab_ipsec_alg_t */ 2500 ah_len = (ah_cnt - 1) * sizeof (dl_capab_ipsec_alg_t); 2501 size += ah_len; 2502 } 2503 } 2504 2505 /* Find out the number of ciphers for ESP */ 2506 if (cap_esp != NULL) { 2507 for (i = 0; i < cap_esp->algs_size; i++) { 2508 COUNT_1S(cap_esp->auth_hw_algs[i], esp_cnt); 2509 COUNT_1S(cap_esp->encr_hw_algs[i], esp_cnt); 2510 } 2511 if (esp_cnt > 0) { 2512 size += sizeof (dl_capability_sub_t) + 2513 sizeof (dl_capab_ipsec_t); 2514 /* dl_capab_ipsec_t contains one dl_capab_ipsec_alg_t */ 2515 esp_len = (esp_cnt - 1) * sizeof (dl_capab_ipsec_alg_t); 2516 size += esp_len; 2517 } 2518 } 2519 2520 if (size == 0) { 2521 ip1dbg(("ill_capability_ipsec_reset: capabilities exist but " 2522 "there's nothing to reset\n")); 2523 return; 2524 } 2525 2526 mp = allocb(size, BPRI_HI); 2527 if (mp == NULL) { 2528 ip1dbg(("ill_capability_ipsec_reset: unable to allocate " 2529 "request to disable IPSEC Hardware Acceleration\n")); 2530 return; 2531 } 2532 2533 /* 2534 * Clear the capability flags for IPSec HA but retain the ill 2535 * capability structures since it's possible that another thread 2536 * is still referring to them. The structures only get deallocated 2537 * when we destroy the ill. 2538 * 2539 * Various places check the flags to see if the ill is capable of 2540 * hardware acceleration, and by clearing them we ensure that new 2541 * outbound IPSec packets are sent down encrypted. 2542 */ 2543 ill->ill_capabilities &= ~(ILL_CAPAB_AH | ILL_CAPAB_ESP); 2544 2545 /* Fill in DL_CAPAB_IPSEC_AH sub-capability entries */ 2546 if (ah_cnt > 0) { 2547 ill_fill_ipsec_reset(ah_cnt, DL_CAPAB_IPSEC_AH, ah_len, 2548 cap_ah, mp); 2549 ASSERT(mp->b_rptr + size >= mp->b_wptr); 2550 } 2551 2552 /* Fill in DL_CAPAB_IPSEC_ESP sub-capability entries */ 2553 if (esp_cnt > 0) { 2554 ill_fill_ipsec_reset(esp_cnt, DL_CAPAB_IPSEC_ESP, esp_len, 2555 cap_esp, mp); 2556 ASSERT(mp->b_rptr + size >= mp->b_wptr); 2557 } 2558 2559 /* 2560 * At this point we've composed a bunch of sub-capabilities to be 2561 * encapsulated in a DL_CAPABILITY_REQ and later sent downstream 2562 * by the caller. Upon receiving this reset message, the driver 2563 * must stop inbound decryption (by destroying all inbound SAs) 2564 * and let the corresponding packets come in encrypted. 2565 */ 2566 2567 if (*sc_mp != NULL) 2568 linkb(*sc_mp, mp); 2569 else 2570 *sc_mp = mp; 2571 } 2572 /* EXPORT DELETE END */ 2573 2574 static void 2575 ill_capability_dispatch(ill_t *ill, mblk_t *mp, dl_capability_sub_t *subp, 2576 boolean_t encapsulated) 2577 { 2578 boolean_t legacy = B_FALSE; 2579 2580 /* 2581 * If this DL_CAPABILITY_ACK came in as a response to our "reset" 2582 * DL_CAPABILITY_REQ, ignore it during this cycle. We've just 2583 * instructed the driver to disable its advertised capabilities, 2584 * so there's no point in accepting any response at this moment. 2585 */ 2586 if (ill->ill_capab_state == IDMS_UNKNOWN) 2587 return; 2588 2589 /* EXPORT DELETE START */ 2590 /* 2591 * Note that only the following two sub-capabilities may be 2592 * considered as "legacy", since their original definitions 2593 * do not incorporate the dl_mid_t module ID token, and hence 2594 * may require the use of the wrapper sub-capability. 2595 */ 2596 switch (subp->dl_cap) { 2597 case DL_CAPAB_IPSEC_AH: 2598 case DL_CAPAB_IPSEC_ESP: 2599 legacy = B_TRUE; 2600 break; 2601 } 2602 /* EXPORT DELETE END */ 2603 2604 /* 2605 * For legacy sub-capabilities which don't incorporate a queue_t 2606 * pointer in their structures, discard them if we detect that 2607 * there are intermediate modules in between IP and the driver. 2608 */ 2609 if (!encapsulated && legacy && ill->ill_lmod_cnt > 1) { 2610 ip1dbg(("ill_capability_dispatch: unencapsulated capab type " 2611 "%d discarded; %d module(s) present below IP\n", 2612 subp->dl_cap, ill->ill_lmod_cnt)); 2613 return; 2614 } 2615 2616 switch (subp->dl_cap) { 2617 /* EXPORT DELETE START */ 2618 case DL_CAPAB_IPSEC_AH: 2619 case DL_CAPAB_IPSEC_ESP: 2620 ill_capability_ipsec_ack(ill, mp, subp); 2621 break; 2622 /* EXPORT DELETE END */ 2623 case DL_CAPAB_MDT: 2624 ill_capability_mdt_ack(ill, mp, subp); 2625 break; 2626 case DL_CAPAB_HCKSUM: 2627 ill_capability_hcksum_ack(ill, mp, subp); 2628 break; 2629 case DL_CAPAB_ZEROCOPY: 2630 ill_capability_zerocopy_ack(ill, mp, subp); 2631 break; 2632 case DL_CAPAB_POLL: 2633 ill_capability_poll_ack(ill, mp, subp); 2634 break; 2635 default: 2636 ip1dbg(("ill_capability_dispatch: unknown capab type %d\n", 2637 subp->dl_cap)); 2638 } 2639 } 2640 2641 /* 2642 * As part of negotiating polling capability, the driver tells us 2643 * the default (or normal) blanking interval and packet threshold 2644 * (the receive timer fires if blanking interval is reached or 2645 * the packet threshold is reached). 2646 * 2647 * As part of manipulating the polling interval, we always use our 2648 * estimated interval (avg service time * number of packets queued 2649 * on the squeue) but we try to blank for a minimum of 2650 * rr_normal_blank_time * rr_max_blank_ratio. We disable the 2651 * packet threshold during this time. When we are not in polling mode 2652 * we set the blank interval typically lower, rr_normal_pkt_cnt * 2653 * rr_min_blank_ratio but up the packet cnt by a ratio of 2654 * rr_min_pkt_cnt_ratio so that we are still getting chains if 2655 * possible although for a shorter interval. 2656 */ 2657 #define RR_MAX_BLANK_RATIO 20 2658 #define RR_MIN_BLANK_RATIO 10 2659 #define RR_MAX_PKT_CNT_RATIO 3 2660 #define RR_MIN_PKT_CNT_RATIO 3 2661 2662 /* 2663 * These can be tuned via /etc/system. 2664 */ 2665 int rr_max_blank_ratio = RR_MAX_BLANK_RATIO; 2666 int rr_min_blank_ratio = RR_MIN_BLANK_RATIO; 2667 int rr_max_pkt_cnt_ratio = RR_MAX_PKT_CNT_RATIO; 2668 int rr_min_pkt_cnt_ratio = RR_MIN_PKT_CNT_RATIO; 2669 2670 static mac_resource_handle_t 2671 ill_ring_add(void *arg, mac_resource_t *mrp) 2672 { 2673 ill_t *ill = (ill_t *)arg; 2674 mac_rx_fifo_t *mrfp = (mac_rx_fifo_t *)mrp; 2675 ill_rx_ring_t *rx_ring; 2676 int ip_rx_index; 2677 2678 if (mrp->mr_type != MAC_RX_FIFO) { 2679 return (NULL); 2680 } 2681 ASSERT(ill != NULL); 2682 ASSERT(ill->ill_poll_capab != NULL); 2683 ASSERT(mrp != NULL); 2684 2685 mutex_enter(&ill->ill_lock); 2686 for (ip_rx_index = 0; ip_rx_index < ILL_MAX_RINGS; ip_rx_index++) { 2687 rx_ring = &ill->ill_poll_capab->ill_ring_tbl[ip_rx_index]; 2688 ASSERT(rx_ring != NULL); 2689 2690 if (rx_ring->rr_ring_state == ILL_RING_FREE) { 2691 time_t normal_blank_time = 2692 mrfp->mrf_normal_blank_time; 2693 uint_t normal_pkt_cnt = 2694 mrfp->mrf_normal_pkt_count; 2695 2696 bzero(rx_ring, sizeof (ill_rx_ring_t)); 2697 2698 rx_ring->rr_blank = mrfp->mrf_blank; 2699 rx_ring->rr_handle = mrfp->mrf_arg; 2700 rx_ring->rr_ill = ill; 2701 rx_ring->rr_normal_blank_time = normal_blank_time; 2702 rx_ring->rr_normal_pkt_cnt = normal_pkt_cnt; 2703 2704 rx_ring->rr_max_blank_time = 2705 normal_blank_time * rr_max_blank_ratio; 2706 rx_ring->rr_min_blank_time = 2707 normal_blank_time * rr_min_blank_ratio; 2708 rx_ring->rr_max_pkt_cnt = 2709 normal_pkt_cnt * rr_max_pkt_cnt_ratio; 2710 rx_ring->rr_min_pkt_cnt = 2711 normal_pkt_cnt * rr_min_pkt_cnt_ratio; 2712 2713 rx_ring->rr_ring_state = ILL_RING_INUSE; 2714 mutex_exit(&ill->ill_lock); 2715 2716 DTRACE_PROBE2(ill__ring__add, (void *), ill, 2717 (int), ip_rx_index); 2718 return ((mac_resource_handle_t)rx_ring); 2719 } 2720 } 2721 2722 /* 2723 * We ran out of ILL_MAX_RINGS worth rx_ring structures. If 2724 * we have devices which can overwhelm this limit, ILL_MAX_RING 2725 * should be made configurable. Meanwhile it cause no panic because 2726 * driver will pass ip_input a NULL handle which will make 2727 * IP allocate the default squeue and Polling mode will not 2728 * be used for this ring. 2729 */ 2730 cmn_err(CE_NOTE, "Reached maximum number of receiving rings (%d) " 2731 "for %s\n", ILL_MAX_RINGS, ill->ill_name); 2732 2733 mutex_exit(&ill->ill_lock); 2734 return (NULL); 2735 } 2736 2737 static boolean_t 2738 ill_capability_poll_init(ill_t *ill) 2739 { 2740 ill_poll_capab_t *ill_poll = ill->ill_poll_capab; 2741 conn_t *connp; 2742 size_t sz; 2743 2744 if (ill->ill_capabilities & ILL_CAPAB_POLL) { 2745 if (ill_poll == NULL) { 2746 cmn_err(CE_PANIC, "ill_capability_poll_init: " 2747 "polling enabled for ill=%s (%p) but data " 2748 "structs uninitialized\n", ill->ill_name, 2749 (void *)ill); 2750 } 2751 return (B_TRUE); 2752 } 2753 2754 if (ill_poll != NULL) { 2755 ill_rx_ring_t *rx_ring = ill_poll->ill_ring_tbl; 2756 /* Polling is being re-enabled */ 2757 2758 connp = ill_poll->ill_unbind_conn; 2759 ASSERT(rx_ring != NULL); 2760 bzero((void *)ill_poll, sizeof (ill_poll_capab_t)); 2761 bzero((void *)rx_ring, 2762 sizeof (ill_rx_ring_t) * ILL_MAX_RINGS); 2763 ill_poll->ill_ring_tbl = rx_ring; 2764 ill_poll->ill_unbind_conn = connp; 2765 return (B_TRUE); 2766 } 2767 2768 if ((connp = ipcl_conn_create(IPCL_TCPCONN, KM_NOSLEEP)) == NULL) 2769 return (B_FALSE); 2770 2771 sz = sizeof (ill_poll_capab_t); 2772 sz += sizeof (ill_rx_ring_t) * ILL_MAX_RINGS; 2773 2774 ill_poll = kmem_zalloc(sz, KM_NOSLEEP); 2775 if (ill_poll == NULL) { 2776 cmn_err(CE_WARN, "ill_capability_poll_init: could not " 2777 "allocate poll_capab for %s (%p)\n", ill->ill_name, 2778 (void *)ill); 2779 CONN_DEC_REF(connp); 2780 return (B_FALSE); 2781 } 2782 2783 /* Allocate space to hold ring table */ 2784 ill_poll->ill_ring_tbl = (ill_rx_ring_t *)&ill_poll[1]; 2785 ill->ill_poll_capab = ill_poll; 2786 ill_poll->ill_unbind_conn = connp; 2787 return (B_TRUE); 2788 } 2789 2790 /* 2791 * ill_capability_poll_disable: disable polling capability. Since 2792 * any of the rings might already be in use, need to call ipsq_clean_all() 2793 * which gets behind the squeue to disable direct calls if necessary. 2794 * Clean up the direct tx function pointers as well. 2795 */ 2796 static void 2797 ill_capability_poll_disable(ill_t *ill) 2798 { 2799 ill_poll_capab_t *ill_poll = ill->ill_poll_capab; 2800 2801 if (ill->ill_capabilities & ILL_CAPAB_POLL) { 2802 ipsq_clean_all(ill); 2803 ill_poll->ill_tx = NULL; 2804 ill_poll->ill_tx_handle = NULL; 2805 } 2806 2807 ASSERT(!(ill->ill_capabilities & ILL_CAPAB_POLL)); 2808 } 2809 2810 static void 2811 ill_capability_poll_capable(ill_t *ill, dl_capab_poll_t *ipoll, 2812 dl_capability_sub_t *isub) 2813 { 2814 uint_t size; 2815 uchar_t *rptr; 2816 dl_capab_poll_t poll, *opoll; 2817 ill_poll_capab_t *ill_poll; 2818 mblk_t *nmp = NULL; 2819 dl_capability_req_t *ocap; 2820 2821 if (!ill_capability_poll_init(ill)) 2822 return; 2823 ill_poll = ill->ill_poll_capab; 2824 2825 /* Copy locally to get the members aligned */ 2826 bcopy((void *)ipoll, (void *)&poll, sizeof (dl_capab_poll_t)); 2827 2828 /* Get the tx function and handle from the driver */ 2829 ill_poll->ill_tx = (ip_mac_tx_t)poll.poll_tx; 2830 ill_poll->ill_tx_handle = (void *)poll.poll_tx_handle; 2831 2832 size = sizeof (dl_capability_req_t) + sizeof (dl_capability_sub_t) + 2833 isub->dl_length; 2834 2835 if ((nmp = ip_dlpi_alloc(size, DL_CAPABILITY_REQ)) == NULL) { 2836 cmn_err(CE_WARN, "ill_capability_poll_ack: could not allocate " 2837 "memory for CAPAB_REQ for %s (%p)\n", ill->ill_name, 2838 (void *)ill); 2839 return; 2840 } 2841 2842 /* initialize dl_capability_req_t */ 2843 rptr = nmp->b_rptr; 2844 ocap = (dl_capability_req_t *)rptr; 2845 ocap->dl_sub_offset = sizeof (dl_capability_req_t); 2846 ocap->dl_sub_length = sizeof (dl_capability_sub_t) + isub->dl_length; 2847 rptr += sizeof (dl_capability_req_t); 2848 2849 /* initialize dl_capability_sub_t */ 2850 bcopy(isub, rptr, sizeof (*isub)); 2851 rptr += sizeof (*isub); 2852 2853 opoll = (dl_capab_poll_t *)rptr; 2854 rptr += sizeof (dl_capab_poll_t); 2855 2856 /* initialize dl_capab_poll_t to be sent down */ 2857 poll.poll_rx_handle = (uintptr_t)ill; 2858 poll.poll_rx = (uintptr_t)ip_input; 2859 poll.poll_ring_add = (uintptr_t)ill_ring_add; 2860 poll.poll_flags = POLL_ENABLE; 2861 bcopy((void *)&poll, (void *)opoll, sizeof (dl_capab_poll_t)); 2862 ASSERT(nmp->b_wptr == (nmp->b_rptr + size)); 2863 2864 /* nmp points to a DL_CAPABILITY_REQ message to enable polling */ 2865 ill_dlpi_send(ill, nmp); 2866 } 2867 2868 2869 /* 2870 * Process a polling capability negotiation ack received 2871 * from a DLS Provider.isub must point to the sub-capability (DL_CAPAB_POLL) 2872 * of a DL_CAPABILITY_ACK message. 2873 */ 2874 static void 2875 ill_capability_poll_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub) 2876 { 2877 dl_capab_poll_t *ipoll; 2878 uint_t sub_dl_cap = isub->dl_cap; 2879 uint8_t *capend; 2880 2881 2882 ASSERT(sub_dl_cap == DL_CAPAB_POLL); 2883 2884 /* 2885 * Don't enable polling for ipv6 ill's 2886 */ 2887 if (ill->ill_isv6) { 2888 return; 2889 } 2890 2891 /* 2892 * Note: range checks here are not absolutely sufficient to 2893 * make us robust against malformed messages sent by drivers; 2894 * this is in keeping with the rest of IP's dlpi handling. 2895 * (Remember, it's coming from something else in the kernel 2896 * address space) 2897 */ 2898 capend = (uint8_t *)(isub + 1) + isub->dl_length; 2899 if (capend > mp->b_wptr) { 2900 cmn_err(CE_WARN, "ill_capability_poll_ack: " 2901 "malformed sub-capability too long for mblk"); 2902 return; 2903 } 2904 2905 /* 2906 * There are two types of acks we process here: 2907 * 1. acks in reply to a (first form) generic capability req 2908 * (poll_flag will be set to POLL_CAPABLE) 2909 * 2. acks in reply to a POLL_ENABLE capability req. 2910 * (POLL_ENABLE flag set) 2911 */ 2912 ipoll = (dl_capab_poll_t *)(isub + 1); 2913 2914 if (!dlcapabcheckqid(&ipoll->poll_mid, ill->ill_lmod_rq)) { 2915 ip1dbg(("ill_capability_poll_ack: mid token for polling " 2916 "capability isn't as expected; pass-thru " 2917 "module(s) detected, discarding capability\n")); 2918 if (ill->ill_capabilities & ILL_CAPAB_POLL) { 2919 /* 2920 * This is a capability renegotitation case. 2921 * The interface better be unusable at this 2922 * point other wise bad things will happen 2923 * if we disable direct calls on a running 2924 * and up interface. 2925 */ 2926 ill_capability_poll_disable(ill); 2927 } 2928 return; 2929 } 2930 2931 switch (ipoll->poll_flags) { 2932 default: 2933 /* Disable if unknown flag */ 2934 case POLL_DISABLE: 2935 ill_capability_poll_disable(ill); 2936 break; 2937 case POLL_CAPABLE: 2938 /* 2939 * If the capability was already enabled, its safe 2940 * to disable it first to get rid of stale information 2941 * and then start enabling it again. 2942 */ 2943 ill_capability_poll_disable(ill); 2944 ill_capability_poll_capable(ill, ipoll, isub); 2945 break; 2946 case POLL_ENABLE: 2947 if (!(ill->ill_capabilities & ILL_CAPAB_POLL)) { 2948 ASSERT(ill->ill_poll_capab != NULL); 2949 ill->ill_capabilities |= ILL_CAPAB_POLL; 2950 } 2951 break; 2952 } 2953 } 2954 2955 static void 2956 ill_capability_poll_reset(ill_t *ill, mblk_t **sc_mp) 2957 { 2958 mblk_t *mp; 2959 dl_capab_poll_t *ipoll; 2960 dl_capability_sub_t *dl_subcap; 2961 int size; 2962 2963 if (!(ill->ill_capabilities & ILL_CAPAB_POLL)) 2964 return; 2965 2966 ASSERT(ill->ill_poll_capab != NULL); 2967 2968 /* 2969 * Disable polling capability 2970 */ 2971 ill_capability_poll_disable(ill); 2972 2973 size = sizeof (*dl_subcap) + sizeof (*ipoll); 2974 2975 mp = allocb(size, BPRI_HI); 2976 if (mp == NULL) { 2977 ip1dbg(("ill_capability_poll_reset: unable to allocate " 2978 "request to disable polling\n")); 2979 return; 2980 } 2981 2982 mp->b_wptr = mp->b_rptr + size; 2983 2984 dl_subcap = (dl_capability_sub_t *)mp->b_rptr; 2985 dl_subcap->dl_cap = DL_CAPAB_POLL; 2986 dl_subcap->dl_length = sizeof (*ipoll); 2987 2988 ipoll = (dl_capab_poll_t *)(dl_subcap + 1); 2989 ipoll->poll_flags = POLL_DISABLE; 2990 2991 if (*sc_mp != NULL) 2992 linkb(*sc_mp, mp); 2993 else 2994 *sc_mp = mp; 2995 } 2996 2997 2998 /* 2999 * Process a hardware checksum offload capability negotiation ack received 3000 * from a DLS Provider.isub must point to the sub-capability (DL_CAPAB_HCKSUM) 3001 * of a DL_CAPABILITY_ACK message. 3002 */ 3003 static void 3004 ill_capability_hcksum_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub) 3005 { 3006 dl_capability_req_t *ocap; 3007 dl_capab_hcksum_t *ihck, *ohck; 3008 ill_hcksum_capab_t **ill_hcksum; 3009 mblk_t *nmp = NULL; 3010 uint_t sub_dl_cap = isub->dl_cap; 3011 uint8_t *capend; 3012 3013 ASSERT(sub_dl_cap == DL_CAPAB_HCKSUM); 3014 3015 ill_hcksum = (ill_hcksum_capab_t **)&ill->ill_hcksum_capab; 3016 3017 /* 3018 * Note: range checks here are not absolutely sufficient to 3019 * make us robust against malformed messages sent by drivers; 3020 * this is in keeping with the rest of IP's dlpi handling. 3021 * (Remember, it's coming from something else in the kernel 3022 * address space) 3023 */ 3024 capend = (uint8_t *)(isub + 1) + isub->dl_length; 3025 if (capend > mp->b_wptr) { 3026 cmn_err(CE_WARN, "ill_capability_hcksum_ack: " 3027 "malformed sub-capability too long for mblk"); 3028 return; 3029 } 3030 3031 /* 3032 * There are two types of acks we process here: 3033 * 1. acks in reply to a (first form) generic capability req 3034 * (no ENABLE flag set) 3035 * 2. acks in reply to a ENABLE capability req. 3036 * (ENABLE flag set) 3037 */ 3038 ihck = (dl_capab_hcksum_t *)(isub + 1); 3039 3040 if (ihck->hcksum_version != HCKSUM_VERSION_1) { 3041 cmn_err(CE_CONT, "ill_capability_hcksum_ack: " 3042 "unsupported hardware checksum " 3043 "sub-capability (version %d, expected %d)", 3044 ihck->hcksum_version, HCKSUM_VERSION_1); 3045 return; 3046 } 3047 3048 if (!dlcapabcheckqid(&ihck->hcksum_mid, ill->ill_lmod_rq)) { 3049 ip1dbg(("ill_capability_hcksum_ack: mid token for hardware " 3050 "checksum capability isn't as expected; pass-thru " 3051 "module(s) detected, discarding capability\n")); 3052 return; 3053 } 3054 3055 #define CURR_HCKSUM_CAPAB \ 3056 (HCKSUM_INET_PARTIAL | HCKSUM_INET_FULL_V4 | HCKSUM_IPHDRCKSUM) 3057 3058 if ((ihck->hcksum_txflags & HCKSUM_ENABLE) && 3059 (ihck->hcksum_txflags & CURR_HCKSUM_CAPAB)) { 3060 /* do ENABLE processing */ 3061 if (*ill_hcksum == NULL) { 3062 *ill_hcksum = kmem_zalloc(sizeof (ill_hcksum_capab_t), 3063 KM_NOSLEEP); 3064 3065 if (*ill_hcksum == NULL) { 3066 cmn_err(CE_WARN, "ill_capability_hcksum_ack: " 3067 "could not enable hcksum version %d " 3068 "for %s (ENOMEM)\n", HCKSUM_CURRENT_VERSION, 3069 ill->ill_name); 3070 return; 3071 } 3072 } 3073 3074 (*ill_hcksum)->ill_hcksum_version = ihck->hcksum_version; 3075 (*ill_hcksum)->ill_hcksum_txflags = ihck->hcksum_txflags; 3076 ill->ill_capabilities |= ILL_CAPAB_HCKSUM; 3077 ip1dbg(("ill_capability_hcksum_ack: interface %s " 3078 "has enabled hardware checksumming\n ", 3079 ill->ill_name)); 3080 } else if (ihck->hcksum_txflags & CURR_HCKSUM_CAPAB) { 3081 /* 3082 * Enabling hardware checksum offload 3083 * Currently IP supports {TCP,UDP}/IPv4 3084 * partial and full cksum offload and 3085 * IPv4 header checksum offload. 3086 * Allocate new mblk which will 3087 * contain a new capability request 3088 * to enable hardware checksum offload. 3089 */ 3090 uint_t size; 3091 uchar_t *rptr; 3092 3093 size = sizeof (dl_capability_req_t) + 3094 sizeof (dl_capability_sub_t) + isub->dl_length; 3095 3096 if ((nmp = ip_dlpi_alloc(size, DL_CAPABILITY_REQ)) == NULL) { 3097 cmn_err(CE_WARN, "ill_capability_hcksum_ack: " 3098 "could not enable hardware cksum for %s (ENOMEM)\n", 3099 ill->ill_name); 3100 return; 3101 } 3102 3103 rptr = nmp->b_rptr; 3104 /* initialize dl_capability_req_t */ 3105 ocap = (dl_capability_req_t *)nmp->b_rptr; 3106 ocap->dl_sub_offset = 3107 sizeof (dl_capability_req_t); 3108 ocap->dl_sub_length = 3109 sizeof (dl_capability_sub_t) + 3110 isub->dl_length; 3111 nmp->b_rptr += sizeof (dl_capability_req_t); 3112 3113 /* initialize dl_capability_sub_t */ 3114 bcopy(isub, nmp->b_rptr, sizeof (*isub)); 3115 nmp->b_rptr += sizeof (*isub); 3116 3117 /* initialize dl_capab_hcksum_t */ 3118 ohck = (dl_capab_hcksum_t *)nmp->b_rptr; 3119 bcopy(ihck, ohck, sizeof (*ihck)); 3120 3121 nmp->b_rptr = rptr; 3122 ASSERT(nmp->b_wptr == (nmp->b_rptr + size)); 3123 3124 /* Set ENABLE flag */ 3125 ohck->hcksum_txflags &= CURR_HCKSUM_CAPAB; 3126 ohck->hcksum_txflags |= HCKSUM_ENABLE; 3127 3128 /* 3129 * nmp points to a DL_CAPABILITY_REQ message to enable 3130 * hardware checksum acceleration. 3131 */ 3132 ill_dlpi_send(ill, nmp); 3133 } else 3134 ip1dbg(("ill_capability_hcksum_ack: interface %s has " 3135 "advertised %x hardware checksum capability flags\n", 3136 ill->ill_name, ihck->hcksum_txflags)); 3137 } 3138 3139 static void 3140 ill_capability_hcksum_reset(ill_t *ill, mblk_t **sc_mp) 3141 { 3142 mblk_t *mp; 3143 dl_capab_hcksum_t *hck_subcap; 3144 dl_capability_sub_t *dl_subcap; 3145 int size; 3146 3147 if (!(ill->ill_capabilities & ILL_CAPAB_HCKSUM)) 3148 return; 3149 3150 ASSERT(ill->ill_hcksum_capab != NULL); 3151 /* 3152 * Clear the capability flag for hardware checksum offload but 3153 * retain the ill_hcksum_capab structure since it's possible that 3154 * another thread is still referring to it. The structure only 3155 * gets deallocated when we destroy the ill. 3156 */ 3157 ill->ill_capabilities &= ~ILL_CAPAB_HCKSUM; 3158 3159 size = sizeof (*dl_subcap) + sizeof (*hck_subcap); 3160 3161 mp = allocb(size, BPRI_HI); 3162 if (mp == NULL) { 3163 ip1dbg(("ill_capability_hcksum_reset: unable to allocate " 3164 "request to disable hardware checksum offload\n")); 3165 return; 3166 } 3167 3168 mp->b_wptr = mp->b_rptr + size; 3169 3170 dl_subcap = (dl_capability_sub_t *)mp->b_rptr; 3171 dl_subcap->dl_cap = DL_CAPAB_HCKSUM; 3172 dl_subcap->dl_length = sizeof (*hck_subcap); 3173 3174 hck_subcap = (dl_capab_hcksum_t *)(dl_subcap + 1); 3175 hck_subcap->hcksum_version = ill->ill_hcksum_capab->ill_hcksum_version; 3176 hck_subcap->hcksum_txflags = 0; 3177 3178 if (*sc_mp != NULL) 3179 linkb(*sc_mp, mp); 3180 else 3181 *sc_mp = mp; 3182 } 3183 3184 static void 3185 ill_capability_zerocopy_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub) 3186 { 3187 mblk_t *nmp = NULL; 3188 dl_capability_req_t *oc; 3189 dl_capab_zerocopy_t *zc_ic, *zc_oc; 3190 ill_zerocopy_capab_t **ill_zerocopy_capab; 3191 uint_t sub_dl_cap = isub->dl_cap; 3192 uint8_t *capend; 3193 3194 ASSERT(sub_dl_cap == DL_CAPAB_ZEROCOPY); 3195 3196 ill_zerocopy_capab = (ill_zerocopy_capab_t **)&ill->ill_zerocopy_capab; 3197 3198 /* 3199 * Note: range checks here are not absolutely sufficient to 3200 * make us robust against malformed messages sent by drivers; 3201 * this is in keeping with the rest of IP's dlpi handling. 3202 * (Remember, it's coming from something else in the kernel 3203 * address space) 3204 */ 3205 capend = (uint8_t *)(isub + 1) + isub->dl_length; 3206 if (capend > mp->b_wptr) { 3207 cmn_err(CE_WARN, "ill_capability_zerocopy_ack: " 3208 "malformed sub-capability too long for mblk"); 3209 return; 3210 } 3211 3212 zc_ic = (dl_capab_zerocopy_t *)(isub + 1); 3213 if (zc_ic->zerocopy_version != ZEROCOPY_VERSION_1) { 3214 cmn_err(CE_CONT, "ill_capability_zerocopy_ack: " 3215 "unsupported ZEROCOPY sub-capability (version %d, " 3216 "expected %d)", zc_ic->zerocopy_version, 3217 ZEROCOPY_VERSION_1); 3218 return; 3219 } 3220 3221 if (!dlcapabcheckqid(&zc_ic->zerocopy_mid, ill->ill_lmod_rq)) { 3222 ip1dbg(("ill_capability_zerocopy_ack: mid token for zerocopy " 3223 "capability isn't as expected; pass-thru module(s) " 3224 "detected, discarding capability\n")); 3225 return; 3226 } 3227 3228 if ((zc_ic->zerocopy_flags & DL_CAPAB_VMSAFE_MEM) != 0) { 3229 if (*ill_zerocopy_capab == NULL) { 3230 *ill_zerocopy_capab = 3231 kmem_zalloc(sizeof (ill_zerocopy_capab_t), 3232 KM_NOSLEEP); 3233 3234 if (*ill_zerocopy_capab == NULL) { 3235 cmn_err(CE_WARN, "ill_capability_zerocopy_ack: " 3236 "could not enable Zero-copy version %d " 3237 "for %s (ENOMEM)\n", ZEROCOPY_VERSION_1, 3238 ill->ill_name); 3239 return; 3240 } 3241 } 3242 3243 ip1dbg(("ill_capability_zerocopy_ack: interface %s " 3244 "supports Zero-copy version %d\n", ill->ill_name, 3245 ZEROCOPY_VERSION_1)); 3246 3247 (*ill_zerocopy_capab)->ill_zerocopy_version = 3248 zc_ic->zerocopy_version; 3249 (*ill_zerocopy_capab)->ill_zerocopy_flags = 3250 zc_ic->zerocopy_flags; 3251 3252 ill->ill_capabilities |= ILL_CAPAB_ZEROCOPY; 3253 } else { 3254 uint_t size; 3255 uchar_t *rptr; 3256 3257 size = sizeof (dl_capability_req_t) + 3258 sizeof (dl_capability_sub_t) + 3259 sizeof (dl_capab_zerocopy_t); 3260 3261 if ((nmp = ip_dlpi_alloc(size, DL_CAPABILITY_REQ)) == NULL) { 3262 cmn_err(CE_WARN, "ill_capability_zerocopy_ack: " 3263 "could not enable zerocopy for %s (ENOMEM)\n", 3264 ill->ill_name); 3265 return; 3266 } 3267 3268 rptr = nmp->b_rptr; 3269 /* initialize dl_capability_req_t */ 3270 oc = (dl_capability_req_t *)rptr; 3271 oc->dl_sub_offset = sizeof (dl_capability_req_t); 3272 oc->dl_sub_length = sizeof (dl_capability_sub_t) + 3273 sizeof (dl_capab_zerocopy_t); 3274 rptr += sizeof (dl_capability_req_t); 3275 3276 /* initialize dl_capability_sub_t */ 3277 bcopy(isub, rptr, sizeof (*isub)); 3278 rptr += sizeof (*isub); 3279 3280 /* initialize dl_capab_zerocopy_t */ 3281 zc_oc = (dl_capab_zerocopy_t *)rptr; 3282 *zc_oc = *zc_ic; 3283 3284 ip1dbg(("ill_capability_zerocopy_ack: asking interface %s " 3285 "to enable zero-copy version %d\n", ill->ill_name, 3286 ZEROCOPY_VERSION_1)); 3287 3288 /* set VMSAFE_MEM flag */ 3289 zc_oc->zerocopy_flags |= DL_CAPAB_VMSAFE_MEM; 3290 3291 /* nmp points to a DL_CAPABILITY_REQ message to enable zcopy */ 3292 ill_dlpi_send(ill, nmp); 3293 } 3294 } 3295 3296 static void 3297 ill_capability_zerocopy_reset(ill_t *ill, mblk_t **sc_mp) 3298 { 3299 mblk_t *mp; 3300 dl_capab_zerocopy_t *zerocopy_subcap; 3301 dl_capability_sub_t *dl_subcap; 3302 int size; 3303 3304 if (!(ill->ill_capabilities & ILL_CAPAB_ZEROCOPY)) 3305 return; 3306 3307 ASSERT(ill->ill_zerocopy_capab != NULL); 3308 /* 3309 * Clear the capability flag for Zero-copy but retain the 3310 * ill_zerocopy_capab structure since it's possible that another 3311 * thread is still referring to it. The structure only gets 3312 * deallocated when we destroy the ill. 3313 */ 3314 ill->ill_capabilities &= ~ILL_CAPAB_ZEROCOPY; 3315 3316 size = sizeof (*dl_subcap) + sizeof (*zerocopy_subcap); 3317 3318 mp = allocb(size, BPRI_HI); 3319 if (mp == NULL) { 3320 ip1dbg(("ill_capability_zerocopy_reset: unable to allocate " 3321 "request to disable Zero-copy\n")); 3322 return; 3323 } 3324 3325 mp->b_wptr = mp->b_rptr + size; 3326 3327 dl_subcap = (dl_capability_sub_t *)mp->b_rptr; 3328 dl_subcap->dl_cap = DL_CAPAB_ZEROCOPY; 3329 dl_subcap->dl_length = sizeof (*zerocopy_subcap); 3330 3331 zerocopy_subcap = (dl_capab_zerocopy_t *)(dl_subcap + 1); 3332 zerocopy_subcap->zerocopy_version = 3333 ill->ill_zerocopy_capab->ill_zerocopy_version; 3334 zerocopy_subcap->zerocopy_flags = 0; 3335 3336 if (*sc_mp != NULL) 3337 linkb(*sc_mp, mp); 3338 else 3339 *sc_mp = mp; 3340 } 3341 3342 /* 3343 * Consume a new-style hardware capabilities negotiation ack. 3344 * Called from ip_rput_dlpi_writer(). 3345 */ 3346 void 3347 ill_capability_ack(ill_t *ill, mblk_t *mp) 3348 { 3349 dl_capability_ack_t *capp; 3350 dl_capability_sub_t *subp, *endp; 3351 3352 if (ill->ill_capab_state == IDMS_INPROGRESS) 3353 ill->ill_capab_state = IDMS_OK; 3354 3355 capp = (dl_capability_ack_t *)mp->b_rptr; 3356 3357 if (capp->dl_sub_length == 0) 3358 /* no new-style capabilities */ 3359 return; 3360 3361 /* make sure the driver supplied correct dl_sub_length */ 3362 if ((sizeof (*capp) + capp->dl_sub_length) > MBLKL(mp)) { 3363 ip0dbg(("ill_capability_ack: bad DL_CAPABILITY_ACK, " 3364 "invalid dl_sub_length (%d)\n", capp->dl_sub_length)); 3365 return; 3366 } 3367 3368 #define SC(base, offset) (dl_capability_sub_t *)(((uchar_t *)(base))+(offset)) 3369 /* 3370 * There are sub-capabilities. Process the ones we know about. 3371 * Loop until we don't have room for another sub-cap header.. 3372 */ 3373 for (subp = SC(capp, capp->dl_sub_offset), 3374 endp = SC(subp, capp->dl_sub_length - sizeof (*subp)); 3375 subp <= endp; 3376 subp = SC(subp, sizeof (dl_capability_sub_t) + subp->dl_length)) { 3377 3378 switch (subp->dl_cap) { 3379 case DL_CAPAB_ID_WRAPPER: 3380 ill_capability_id_ack(ill, mp, subp); 3381 break; 3382 default: 3383 ill_capability_dispatch(ill, mp, subp, B_FALSE); 3384 break; 3385 } 3386 } 3387 #undef SC 3388 } 3389 3390 /* 3391 * This routine is called to scan the fragmentation reassembly table for 3392 * the specified ILL for any packets that are starting to smell. 3393 * dead_interval is the maximum time in seconds that will be tolerated. It 3394 * will either be the value specified in ip_g_frag_timeout, or zero if the 3395 * ILL is shutting down and it is time to blow everything off. 3396 * 3397 * It returns the number of seconds (as a time_t) that the next frag timer 3398 * should be scheduled for, 0 meaning that the timer doesn't need to be 3399 * re-started. Note that the method of calculating next_timeout isn't 3400 * entirely accurate since time will flow between the time we grab 3401 * current_time and the time we schedule the next timeout. This isn't a 3402 * big problem since this is the timer for sending an ICMP reassembly time 3403 * exceeded messages, and it doesn't have to be exactly accurate. 3404 * 3405 * This function is 3406 * sometimes called as writer, although this is not required. 3407 */ 3408 time_t 3409 ill_frag_timeout(ill_t *ill, time_t dead_interval) 3410 { 3411 ipfb_t *ipfb; 3412 ipfb_t *endp; 3413 ipf_t *ipf; 3414 ipf_t *ipfnext; 3415 mblk_t *mp; 3416 time_t current_time = gethrestime_sec(); 3417 time_t next_timeout = 0; 3418 uint32_t hdr_length; 3419 mblk_t *send_icmp_head; 3420 mblk_t *send_icmp_head_v6; 3421 3422 ipfb = ill->ill_frag_hash_tbl; 3423 if (ipfb == NULL) 3424 return (B_FALSE); 3425 endp = &ipfb[ILL_FRAG_HASH_TBL_COUNT]; 3426 /* Walk the frag hash table. */ 3427 for (; ipfb < endp; ipfb++) { 3428 send_icmp_head = NULL; 3429 send_icmp_head_v6 = NULL; 3430 mutex_enter(&ipfb->ipfb_lock); 3431 while ((ipf = ipfb->ipfb_ipf) != 0) { 3432 time_t frag_time = current_time - ipf->ipf_timestamp; 3433 time_t frag_timeout; 3434 3435 if (frag_time < dead_interval) { 3436 /* 3437 * There are some outstanding fragments 3438 * that will timeout later. Make note of 3439 * the time so that we can reschedule the 3440 * next timeout appropriately. 3441 */ 3442 frag_timeout = dead_interval - frag_time; 3443 if (next_timeout == 0 || 3444 frag_timeout < next_timeout) { 3445 next_timeout = frag_timeout; 3446 } 3447 break; 3448 } 3449 /* Time's up. Get it out of here. */ 3450 hdr_length = ipf->ipf_nf_hdr_len; 3451 ipfnext = ipf->ipf_hash_next; 3452 if (ipfnext) 3453 ipfnext->ipf_ptphn = ipf->ipf_ptphn; 3454 *ipf->ipf_ptphn = ipfnext; 3455 mp = ipf->ipf_mp->b_cont; 3456 for (; mp; mp = mp->b_cont) { 3457 /* Extra points for neatness. */ 3458 IP_REASS_SET_START(mp, 0); 3459 IP_REASS_SET_END(mp, 0); 3460 } 3461 mp = ipf->ipf_mp->b_cont; 3462 ill->ill_frag_count -= ipf->ipf_count; 3463 ASSERT(ipfb->ipfb_count >= ipf->ipf_count); 3464 ipfb->ipfb_count -= ipf->ipf_count; 3465 ASSERT(ipfb->ipfb_frag_pkts > 0); 3466 ipfb->ipfb_frag_pkts--; 3467 /* 3468 * We do not send any icmp message from here because 3469 * we currently are holding the ipfb_lock for this 3470 * hash chain. If we try and send any icmp messages 3471 * from here we may end up via a put back into ip 3472 * trying to get the same lock, causing a recursive 3473 * mutex panic. Instead we build a list and send all 3474 * the icmp messages after we have dropped the lock. 3475 */ 3476 if (ill->ill_isv6) { 3477 BUMP_MIB(ill->ill_ip6_mib, ipv6ReasmFails); 3478 if (hdr_length != 0) { 3479 mp->b_next = send_icmp_head_v6; 3480 send_icmp_head_v6 = mp; 3481 } else { 3482 freemsg(mp); 3483 } 3484 } else { 3485 BUMP_MIB(&ip_mib, ipReasmFails); 3486 if (hdr_length != 0) { 3487 mp->b_next = send_icmp_head; 3488 send_icmp_head = mp; 3489 } else { 3490 freemsg(mp); 3491 } 3492 } 3493 freeb(ipf->ipf_mp); 3494 } 3495 mutex_exit(&ipfb->ipfb_lock); 3496 /* 3497 * Now need to send any icmp messages that we delayed from 3498 * above. 3499 */ 3500 while (send_icmp_head_v6 != NULL) { 3501 mp = send_icmp_head_v6; 3502 send_icmp_head_v6 = send_icmp_head_v6->b_next; 3503 mp->b_next = NULL; 3504 icmp_time_exceeded_v6(ill->ill_wq, mp, 3505 ICMP_REASSEMBLY_TIME_EXCEEDED, B_FALSE, B_FALSE); 3506 } 3507 while (send_icmp_head != NULL) { 3508 mp = send_icmp_head; 3509 send_icmp_head = send_icmp_head->b_next; 3510 mp->b_next = NULL; 3511 icmp_time_exceeded(ill->ill_wq, mp, 3512 ICMP_REASSEMBLY_TIME_EXCEEDED); 3513 } 3514 } 3515 /* 3516 * A non-dying ILL will use the return value to decide whether to 3517 * restart the frag timer, and for how long. 3518 */ 3519 return (next_timeout); 3520 } 3521 3522 /* 3523 * This routine is called when the approximate count of mblk memory used 3524 * for the specified ILL has exceeded max_count. 3525 */ 3526 void 3527 ill_frag_prune(ill_t *ill, uint_t max_count) 3528 { 3529 ipfb_t *ipfb; 3530 ipf_t *ipf; 3531 size_t count; 3532 3533 /* 3534 * If we are here within ip_min_frag_prune_time msecs remove 3535 * ill_frag_free_num_pkts oldest packets from each bucket and increment 3536 * ill_frag_free_num_pkts. 3537 */ 3538 mutex_enter(&ill->ill_lock); 3539 if (TICK_TO_MSEC(lbolt - ill->ill_last_frag_clean_time) <= 3540 (ip_min_frag_prune_time != 0 ? 3541 ip_min_frag_prune_time : msec_per_tick)) { 3542 3543 ill->ill_frag_free_num_pkts++; 3544 3545 } else { 3546 ill->ill_frag_free_num_pkts = 0; 3547 } 3548 ill->ill_last_frag_clean_time = lbolt; 3549 mutex_exit(&ill->ill_lock); 3550 3551 /* 3552 * free ill_frag_free_num_pkts oldest packets from each bucket. 3553 */ 3554 if (ill->ill_frag_free_num_pkts != 0) { 3555 int ix; 3556 3557 for (ix = 0; ix < ILL_FRAG_HASH_TBL_COUNT; ix++) { 3558 ipfb = &ill->ill_frag_hash_tbl[ix]; 3559 mutex_enter(&ipfb->ipfb_lock); 3560 if (ipfb->ipfb_ipf != NULL) { 3561 ill_frag_free_pkts(ill, ipfb, ipfb->ipfb_ipf, 3562 ill->ill_frag_free_num_pkts); 3563 } 3564 mutex_exit(&ipfb->ipfb_lock); 3565 } 3566 } 3567 /* 3568 * While the reassembly list for this ILL is too big, prune a fragment 3569 * queue by age, oldest first. Note that the per ILL count is 3570 * approximate, while the per frag hash bucket counts are accurate. 3571 */ 3572 while (ill->ill_frag_count > max_count) { 3573 int ix; 3574 ipfb_t *oipfb = NULL; 3575 uint_t oldest = UINT_MAX; 3576 3577 count = 0; 3578 for (ix = 0; ix < ILL_FRAG_HASH_TBL_COUNT; ix++) { 3579 ipfb = &ill->ill_frag_hash_tbl[ix]; 3580 mutex_enter(&ipfb->ipfb_lock); 3581 ipf = ipfb->ipfb_ipf; 3582 if (ipf != NULL && ipf->ipf_gen < oldest) { 3583 oldest = ipf->ipf_gen; 3584 oipfb = ipfb; 3585 } 3586 count += ipfb->ipfb_count; 3587 mutex_exit(&ipfb->ipfb_lock); 3588 } 3589 /* Refresh the per ILL count */ 3590 ill->ill_frag_count = count; 3591 if (oipfb == NULL) { 3592 ill->ill_frag_count = 0; 3593 break; 3594 } 3595 if (count <= max_count) 3596 return; /* Somebody beat us to it, nothing to do */ 3597 mutex_enter(&oipfb->ipfb_lock); 3598 ipf = oipfb->ipfb_ipf; 3599 if (ipf != NULL) { 3600 ill_frag_free_pkts(ill, oipfb, ipf, 1); 3601 } 3602 mutex_exit(&oipfb->ipfb_lock); 3603 } 3604 } 3605 3606 /* 3607 * free 'free_cnt' fragmented packets starting at ipf. 3608 */ 3609 void 3610 ill_frag_free_pkts(ill_t *ill, ipfb_t *ipfb, ipf_t *ipf, int free_cnt) 3611 { 3612 size_t count; 3613 mblk_t *mp; 3614 mblk_t *tmp; 3615 ipf_t **ipfp = ipf->ipf_ptphn; 3616 3617 ASSERT(MUTEX_HELD(&ipfb->ipfb_lock)); 3618 ASSERT(ipfp != NULL); 3619 ASSERT(ipf != NULL); 3620 3621 while (ipf != NULL && free_cnt-- > 0) { 3622 count = ipf->ipf_count; 3623 mp = ipf->ipf_mp; 3624 ipf = ipf->ipf_hash_next; 3625 for (tmp = mp; tmp; tmp = tmp->b_cont) { 3626 IP_REASS_SET_START(tmp, 0); 3627 IP_REASS_SET_END(tmp, 0); 3628 } 3629 ill->ill_frag_count -= count; 3630 ASSERT(ipfb->ipfb_count >= count); 3631 ipfb->ipfb_count -= count; 3632 ASSERT(ipfb->ipfb_frag_pkts > 0); 3633 ipfb->ipfb_frag_pkts--; 3634 freemsg(mp); 3635 BUMP_MIB(&ip_mib, ipReasmFails); 3636 } 3637 3638 if (ipf) 3639 ipf->ipf_ptphn = ipfp; 3640 ipfp[0] = ipf; 3641 } 3642 3643 #define ND_FORWARD_WARNING "The <if>:ip*_forwarding ndd variables are " \ 3644 "obsolete and may be removed in a future release of Solaris. Use " \ 3645 "ifconfig(1M) to manipulate the forwarding status of an interface." 3646 3647 /* 3648 * For obsolete per-interface forwarding configuration; 3649 * called in response to ND_GET. 3650 */ 3651 /* ARGSUSED */ 3652 static int 3653 nd_ill_forward_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *ioc_cr) 3654 { 3655 ill_t *ill = (ill_t *)cp; 3656 3657 cmn_err(CE_WARN, ND_FORWARD_WARNING); 3658 3659 (void) mi_mpprintf(mp, "%d", (ill->ill_flags & ILLF_ROUTER) != 0); 3660 return (0); 3661 } 3662 3663 /* 3664 * For obsolete per-interface forwarding configuration; 3665 * called in response to ND_SET. 3666 */ 3667 /* ARGSUSED */ 3668 static int 3669 nd_ill_forward_set(queue_t *q, mblk_t *mp, char *valuestr, caddr_t cp, 3670 cred_t *ioc_cr) 3671 { 3672 long value; 3673 int retval; 3674 3675 cmn_err(CE_WARN, ND_FORWARD_WARNING); 3676 3677 if (ddi_strtol(valuestr, NULL, 10, &value) != 0 || 3678 value < 0 || value > 1) { 3679 return (EINVAL); 3680 } 3681 3682 rw_enter(&ill_g_lock, RW_READER); 3683 retval = ill_forward_set(q, mp, (value != 0), cp); 3684 rw_exit(&ill_g_lock); 3685 return (retval); 3686 } 3687 3688 /* 3689 * Set an ill's ILLF_ROUTER flag appropriately. If the ill is part of an 3690 * IPMP group, make sure all ill's in the group adopt the new policy. Send 3691 * up RTS_IFINFO routing socket messages for each interface whose flags we 3692 * change. 3693 */ 3694 /* ARGSUSED */ 3695 int 3696 ill_forward_set(queue_t *q, mblk_t *mp, boolean_t enable, caddr_t cp) 3697 { 3698 ill_t *ill = (ill_t *)cp; 3699 ill_group_t *illgrp; 3700 3701 ASSERT(IAM_WRITER_ILL(ill) || RW_READ_HELD(&ill_g_lock)); 3702 3703 if ((enable && (ill->ill_flags & ILLF_ROUTER)) || 3704 (!enable && !(ill->ill_flags & ILLF_ROUTER)) || 3705 (ill->ill_phyint->phyint_flags & PHYI_LOOPBACK)) 3706 return (EINVAL); 3707 3708 /* 3709 * If the ill is in an IPMP group, set the forwarding policy on all 3710 * members of the group to the same value. 3711 */ 3712 illgrp = ill->ill_group; 3713 if (illgrp != NULL) { 3714 ill_t *tmp_ill; 3715 3716 for (tmp_ill = illgrp->illgrp_ill; tmp_ill != NULL; 3717 tmp_ill = tmp_ill->ill_group_next) { 3718 ip1dbg(("ill_forward_set: %s %s forwarding on %s", 3719 (enable ? "Enabling" : "Disabling"), 3720 (tmp_ill->ill_isv6 ? "IPv6" : "IPv4"), 3721 tmp_ill->ill_name)); 3722 mutex_enter(&tmp_ill->ill_lock); 3723 if (enable) 3724 tmp_ill->ill_flags |= ILLF_ROUTER; 3725 else 3726 tmp_ill->ill_flags &= ~ILLF_ROUTER; 3727 mutex_exit(&tmp_ill->ill_lock); 3728 if (tmp_ill->ill_isv6) 3729 ill_set_nce_router_flags(tmp_ill, enable); 3730 /* Notify routing socket listeners of this change. */ 3731 ip_rts_ifmsg(tmp_ill->ill_ipif); 3732 } 3733 } else { 3734 ip1dbg(("ill_forward_set: %s %s forwarding on %s", 3735 (enable ? "Enabling" : "Disabling"), 3736 (ill->ill_isv6 ? "IPv6" : "IPv4"), ill->ill_name)); 3737 mutex_enter(&ill->ill_lock); 3738 if (enable) 3739 ill->ill_flags |= ILLF_ROUTER; 3740 else 3741 ill->ill_flags &= ~ILLF_ROUTER; 3742 mutex_exit(&ill->ill_lock); 3743 if (ill->ill_isv6) 3744 ill_set_nce_router_flags(ill, enable); 3745 /* Notify routing socket listeners of this change. */ 3746 ip_rts_ifmsg(ill->ill_ipif); 3747 } 3748 3749 return (0); 3750 } 3751 3752 /* 3753 * Based on the ILLF_ROUTER flag of an ill, make sure all local nce's for 3754 * addresses assigned to the ill have the NCE_F_ISROUTER flag appropriately 3755 * set or clear. 3756 */ 3757 static void 3758 ill_set_nce_router_flags(ill_t *ill, boolean_t enable) 3759 { 3760 ipif_t *ipif; 3761 nce_t *nce; 3762 3763 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 3764 nce = ndp_lookup(ill, &ipif->ipif_v6lcl_addr, B_FALSE); 3765 if (nce != NULL) { 3766 mutex_enter(&nce->nce_lock); 3767 if (enable) 3768 nce->nce_flags |= NCE_F_ISROUTER; 3769 else 3770 nce->nce_flags &= ~NCE_F_ISROUTER; 3771 mutex_exit(&nce->nce_lock); 3772 NCE_REFRELE(nce); 3773 } 3774 } 3775 } 3776 3777 /* 3778 * Given an ill with a _valid_ name, add the ip_forwarding ndd variable 3779 * for this ill. Make sure the v6/v4 question has been answered about this 3780 * ill. The creation of this ndd variable is only for backwards compatibility. 3781 * The preferred way to control per-interface IP forwarding is through the 3782 * ILLF_ROUTER interface flag. 3783 */ 3784 static int 3785 ill_set_ndd_name(ill_t *ill) 3786 { 3787 char *suffix; 3788 3789 ASSERT(IAM_WRITER_ILL(ill)); 3790 3791 if (ill->ill_isv6) 3792 suffix = ipv6_forward_suffix; 3793 else 3794 suffix = ipv4_forward_suffix; 3795 3796 ill->ill_ndd_name = ill->ill_name + ill->ill_name_length; 3797 bcopy(ill->ill_name, ill->ill_ndd_name, ill->ill_name_length - 1); 3798 /* 3799 * Copies over the '\0'. 3800 * Note that strlen(suffix) is always bounded. 3801 */ 3802 bcopy(suffix, ill->ill_ndd_name + ill->ill_name_length - 1, 3803 strlen(suffix) + 1); 3804 3805 /* 3806 * Use of the nd table requires holding the reader lock. 3807 * Modifying the nd table thru nd_load/nd_unload requires 3808 * the writer lock. 3809 */ 3810 rw_enter(&ip_g_nd_lock, RW_WRITER); 3811 if (!nd_load(&ip_g_nd, ill->ill_ndd_name, nd_ill_forward_get, 3812 nd_ill_forward_set, (caddr_t)ill)) { 3813 /* 3814 * If the nd_load failed, it only meant that it could not 3815 * allocate a new bunch of room for further NDD expansion. 3816 * Because of that, the ill_ndd_name will be set to 0, and 3817 * this interface is at the mercy of the global ip_forwarding 3818 * variable. 3819 */ 3820 rw_exit(&ip_g_nd_lock); 3821 ill->ill_ndd_name = NULL; 3822 return (ENOMEM); 3823 } 3824 rw_exit(&ip_g_nd_lock); 3825 return (0); 3826 } 3827 3828 /* 3829 * Intializes the context structure and returns the first ill in the list 3830 * cuurently start_list and end_list can have values: 3831 * MAX_G_HEADS Traverse both IPV4 and IPV6 lists. 3832 * IP_V4_G_HEAD Traverse IPV4 list only. 3833 * IP_V6_G_HEAD Traverse IPV6 list only. 3834 */ 3835 3836 /* 3837 * We don't check for CONDEMNED ills here. Caller must do that if 3838 * necessary under the ill lock. 3839 */ 3840 ill_t * 3841 ill_first(int start_list, int end_list, ill_walk_context_t *ctx) 3842 { 3843 ill_if_t *ifp; 3844 ill_t *ill; 3845 avl_tree_t *avl_tree; 3846 3847 ASSERT(RW_LOCK_HELD(&ill_g_lock)); 3848 ASSERT(end_list <= MAX_G_HEADS && start_list >= 0); 3849 3850 /* 3851 * setup the lists to search 3852 */ 3853 if (end_list != MAX_G_HEADS) { 3854 ctx->ctx_current_list = start_list; 3855 ctx->ctx_last_list = end_list; 3856 } else { 3857 ctx->ctx_last_list = MAX_G_HEADS - 1; 3858 ctx->ctx_current_list = 0; 3859 } 3860 3861 while (ctx->ctx_current_list <= ctx->ctx_last_list) { 3862 ifp = IP_VX_ILL_G_LIST(ctx->ctx_current_list); 3863 if (ifp != (ill_if_t *) 3864 &IP_VX_ILL_G_LIST(ctx->ctx_current_list)) { 3865 avl_tree = &ifp->illif_avl_by_ppa; 3866 ill = avl_first(avl_tree); 3867 /* 3868 * ill is guaranteed to be non NULL or ifp should have 3869 * not existed. 3870 */ 3871 ASSERT(ill != NULL); 3872 return (ill); 3873 } 3874 ctx->ctx_current_list++; 3875 } 3876 3877 return (NULL); 3878 } 3879 3880 /* 3881 * returns the next ill in the list. ill_first() must have been called 3882 * before calling ill_next() or bad things will happen. 3883 */ 3884 3885 /* 3886 * We don't check for CONDEMNED ills here. Caller must do that if 3887 * necessary under the ill lock. 3888 */ 3889 ill_t * 3890 ill_next(ill_walk_context_t *ctx, ill_t *lastill) 3891 { 3892 ill_if_t *ifp; 3893 ill_t *ill; 3894 3895 3896 ASSERT(RW_LOCK_HELD(&ill_g_lock)); 3897 ASSERT(lastill->ill_ifptr != (ill_if_t *) 3898 &IP_VX_ILL_G_LIST(ctx->ctx_current_list)); 3899 if ((ill = avl_walk(&lastill->ill_ifptr->illif_avl_by_ppa, lastill, 3900 AVL_AFTER)) != NULL) { 3901 return (ill); 3902 } 3903 3904 /* goto next ill_ifp in the list. */ 3905 ifp = lastill->ill_ifptr->illif_next; 3906 3907 /* make sure not at end of circular list */ 3908 while (ifp == (ill_if_t *)&IP_VX_ILL_G_LIST(ctx->ctx_current_list)) { 3909 if (++ctx->ctx_current_list > ctx->ctx_last_list) 3910 return (NULL); 3911 ifp = IP_VX_ILL_G_LIST(ctx->ctx_current_list); 3912 } 3913 3914 return (avl_first(&ifp->illif_avl_by_ppa)); 3915 } 3916 3917 /* 3918 * Check interface name for correct format which is name+ppa. 3919 * name can contain characters and digits, the right most digits 3920 * make up the ppa number. use of octal is not allowed, name must contain 3921 * a ppa, return pointer to the start of ppa. 3922 * In case of error return NULL. 3923 */ 3924 static char * 3925 ill_get_ppa_ptr(char *name) 3926 { 3927 int namelen = mi_strlen(name); 3928 3929 int len = namelen; 3930 3931 name += len; 3932 while (len > 0) { 3933 name--; 3934 if (*name < '0' || *name > '9') 3935 break; 3936 len--; 3937 } 3938 3939 /* empty string, all digits, or no trailing digits */ 3940 if (len == 0 || len == (int)namelen) 3941 return (NULL); 3942 3943 name++; 3944 /* check for attempted use of octal */ 3945 if (*name == '0' && len != (int)namelen - 1) 3946 return (NULL); 3947 return (name); 3948 } 3949 3950 /* 3951 * use avl tree to locate the ill. 3952 */ 3953 static ill_t * 3954 ill_find_by_name(char *name, boolean_t isv6, queue_t *q, mblk_t *mp, 3955 ipsq_func_t func, int *error) 3956 { 3957 char *ppa_ptr = NULL; 3958 int len; 3959 uint_t ppa; 3960 ill_t *ill = NULL; 3961 ill_if_t *ifp; 3962 int list; 3963 ipsq_t *ipsq; 3964 3965 if (error != NULL) 3966 *error = 0; 3967 3968 /* 3969 * get ppa ptr 3970 */ 3971 if (isv6) 3972 list = IP_V6_G_HEAD; 3973 else 3974 list = IP_V4_G_HEAD; 3975 3976 if ((ppa_ptr = ill_get_ppa_ptr(name)) == NULL) { 3977 if (error != NULL) 3978 *error = ENXIO; 3979 return (NULL); 3980 } 3981 3982 len = ppa_ptr - name + 1; 3983 3984 ppa = stoi(&ppa_ptr); 3985 3986 ifp = IP_VX_ILL_G_LIST(list); 3987 3988 while (ifp != (ill_if_t *)&IP_VX_ILL_G_LIST(list)) { 3989 /* 3990 * match is done on len - 1 as the name is not null 3991 * terminated it contains ppa in addition to the interface 3992 * name. 3993 */ 3994 if ((ifp->illif_name_len == len) && 3995 bcmp(ifp->illif_name, name, len - 1) == 0) { 3996 break; 3997 } else { 3998 ifp = ifp->illif_next; 3999 } 4000 } 4001 4002 4003 if (ifp == (ill_if_t *)&IP_VX_ILL_G_LIST(list)) { 4004 /* 4005 * Even the interface type does not exist. 4006 */ 4007 if (error != NULL) 4008 *error = ENXIO; 4009 return (NULL); 4010 } 4011 4012 ill = avl_find(&ifp->illif_avl_by_ppa, (void *) &ppa, NULL); 4013 if (ill != NULL) { 4014 /* 4015 * The block comment at the start of ipif_down 4016 * explains the use of the macros used below 4017 */ 4018 GRAB_CONN_LOCK(q); 4019 mutex_enter(&ill->ill_lock); 4020 if (ILL_CAN_LOOKUP(ill)) { 4021 ill_refhold_locked(ill); 4022 mutex_exit(&ill->ill_lock); 4023 RELEASE_CONN_LOCK(q); 4024 return (ill); 4025 } else if (ILL_CAN_WAIT(ill, q)) { 4026 ipsq = ill->ill_phyint->phyint_ipsq; 4027 mutex_enter(&ipsq->ipsq_lock); 4028 mutex_exit(&ill->ill_lock); 4029 ipsq_enq(ipsq, q, mp, func, NEW_OP, ill); 4030 mutex_exit(&ipsq->ipsq_lock); 4031 RELEASE_CONN_LOCK(q); 4032 *error = EINPROGRESS; 4033 return (NULL); 4034 } 4035 mutex_exit(&ill->ill_lock); 4036 RELEASE_CONN_LOCK(q); 4037 } 4038 if (error != NULL) 4039 *error = ENXIO; 4040 return (NULL); 4041 } 4042 4043 /* 4044 * comparison function for use with avl. 4045 */ 4046 static int 4047 ill_compare_ppa(const void *ppa_ptr, const void *ill_ptr) 4048 { 4049 uint_t ppa; 4050 uint_t ill_ppa; 4051 4052 ASSERT(ppa_ptr != NULL && ill_ptr != NULL); 4053 4054 ppa = *((uint_t *)ppa_ptr); 4055 ill_ppa = ((const ill_t *)ill_ptr)->ill_ppa; 4056 /* 4057 * We want the ill with the lowest ppa to be on the 4058 * top. 4059 */ 4060 if (ill_ppa < ppa) 4061 return (1); 4062 if (ill_ppa > ppa) 4063 return (-1); 4064 return (0); 4065 } 4066 4067 /* 4068 * remove an interface type from the global list. 4069 */ 4070 static void 4071 ill_delete_interface_type(ill_if_t *interface) 4072 { 4073 ASSERT(RW_WRITE_HELD(&ill_g_lock)); 4074 4075 ASSERT(interface != NULL); 4076 ASSERT(avl_numnodes(&interface->illif_avl_by_ppa) == 0); 4077 4078 avl_destroy(&interface->illif_avl_by_ppa); 4079 if (interface->illif_ppa_arena != NULL) 4080 vmem_destroy(interface->illif_ppa_arena); 4081 4082 remque(interface); 4083 4084 mi_free(interface); 4085 } 4086 4087 /* 4088 * remove ill from the global list. 4089 */ 4090 static void 4091 ill_glist_delete(ill_t *ill) 4092 { 4093 if (ill == NULL) 4094 return; 4095 4096 rw_enter(&ill_g_lock, RW_WRITER); 4097 /* 4098 * If the ill was never inserted into the AVL tree 4099 * we skip the if branch. 4100 */ 4101 if (ill->ill_ifptr != NULL) { 4102 /* 4103 * remove from AVL tree and free ppa number 4104 */ 4105 avl_remove(&ill->ill_ifptr->illif_avl_by_ppa, ill); 4106 4107 if (ill->ill_ifptr->illif_ppa_arena != NULL) { 4108 vmem_free(ill->ill_ifptr->illif_ppa_arena, 4109 (void *)(uintptr_t)(ill->ill_ppa+1), 1); 4110 } 4111 if (avl_numnodes(&ill->ill_ifptr->illif_avl_by_ppa) == 0) { 4112 ill_delete_interface_type(ill->ill_ifptr); 4113 } 4114 4115 /* 4116 * Indicate ill is no longer in the list. 4117 */ 4118 ill->ill_ifptr = NULL; 4119 ill->ill_name_length = 0; 4120 ill->ill_name[0] = '\0'; 4121 ill->ill_ppa = UINT_MAX; 4122 } 4123 ill_phyint_free(ill); 4124 rw_exit(&ill_g_lock); 4125 } 4126 4127 /* 4128 * allocate a ppa, if the number of plumbed interfaces of this type are 4129 * less than ill_no_arena do a linear search to find a unused ppa. 4130 * When the number goes beyond ill_no_arena switch to using an arena. 4131 * Note: ppa value of zero cannot be allocated from vmem_arena as it 4132 * is the return value for an error condition, so allocation starts at one 4133 * and is decremented by one. 4134 */ 4135 static int 4136 ill_alloc_ppa(ill_if_t *ifp, ill_t *ill) 4137 { 4138 ill_t *tmp_ill; 4139 uint_t start, end; 4140 int ppa; 4141 4142 if (ifp->illif_ppa_arena == NULL && 4143 (avl_numnodes(&ifp->illif_avl_by_ppa) + 1 > ill_no_arena)) { 4144 /* 4145 * Create an arena. 4146 */ 4147 ifp->illif_ppa_arena = vmem_create(ifp->illif_name, 4148 (void *)1, UINT_MAX - 1, 1, NULL, NULL, 4149 NULL, 0, VM_SLEEP | VMC_IDENTIFIER); 4150 /* allocate what has already been assigned */ 4151 for (tmp_ill = avl_first(&ifp->illif_avl_by_ppa); 4152 tmp_ill != NULL; tmp_ill = avl_walk(&ifp->illif_avl_by_ppa, 4153 tmp_ill, AVL_AFTER)) { 4154 ppa = (int)(uintptr_t)vmem_xalloc(ifp->illif_ppa_arena, 4155 1, /* size */ 4156 1, /* align/quantum */ 4157 0, /* phase */ 4158 0, /* nocross */ 4159 (void *)((uintptr_t)tmp_ill->ill_ppa + 1), /* minaddr */ 4160 (void *)((uintptr_t)tmp_ill->ill_ppa + 2), /* maxaddr */ 4161 VM_NOSLEEP|VM_FIRSTFIT); 4162 if (ppa == 0) { 4163 ip1dbg(("ill_alloc_ppa: ppa allocation" 4164 " failed while switching")); 4165 vmem_destroy(ifp->illif_ppa_arena); 4166 ifp->illif_ppa_arena = NULL; 4167 break; 4168 } 4169 } 4170 } 4171 4172 if (ifp->illif_ppa_arena != NULL) { 4173 if (ill->ill_ppa == UINT_MAX) { 4174 ppa = (int)(uintptr_t)vmem_alloc(ifp->illif_ppa_arena, 4175 1, VM_NOSLEEP|VM_FIRSTFIT); 4176 if (ppa == 0) 4177 return (EAGAIN); 4178 ill->ill_ppa = --ppa; 4179 } else { 4180 ppa = (int)(uintptr_t)vmem_xalloc(ifp->illif_ppa_arena, 4181 1, /* size */ 4182 1, /* align/quantum */ 4183 0, /* phase */ 4184 0, /* nocross */ 4185 (void *)(uintptr_t)(ill->ill_ppa + 1), /* minaddr */ 4186 (void *)(uintptr_t)(ill->ill_ppa + 2), /* maxaddr */ 4187 VM_NOSLEEP|VM_FIRSTFIT); 4188 /* 4189 * Most likely the allocation failed because 4190 * the requested ppa was in use. 4191 */ 4192 if (ppa == 0) 4193 return (EEXIST); 4194 } 4195 return (0); 4196 } 4197 4198 /* 4199 * No arena is in use and not enough (>ill_no_arena) interfaces have 4200 * been plumbed to create one. Do a linear search to get a unused ppa. 4201 */ 4202 if (ill->ill_ppa == UINT_MAX) { 4203 end = UINT_MAX - 1; 4204 start = 0; 4205 } else { 4206 end = start = ill->ill_ppa; 4207 } 4208 4209 tmp_ill = avl_find(&ifp->illif_avl_by_ppa, (void *)&start, NULL); 4210 while (tmp_ill != NULL && tmp_ill->ill_ppa == start) { 4211 if (start++ >= end) { 4212 if (ill->ill_ppa == UINT_MAX) 4213 return (EAGAIN); 4214 else 4215 return (EEXIST); 4216 } 4217 tmp_ill = avl_walk(&ifp->illif_avl_by_ppa, tmp_ill, AVL_AFTER); 4218 } 4219 ill->ill_ppa = start; 4220 return (0); 4221 } 4222 4223 /* 4224 * Insert ill into the list of configured ill's. Once this function completes, 4225 * the ill is globally visible and is available through lookups. More precisely 4226 * this happens after the caller drops the ill_g_lock. 4227 */ 4228 static int 4229 ill_glist_insert(ill_t *ill, char *name, boolean_t isv6) 4230 { 4231 ill_if_t *ill_interface; 4232 avl_index_t where = 0; 4233 int error; 4234 int name_length; 4235 int index; 4236 boolean_t check_length = B_FALSE; 4237 4238 ASSERT(RW_WRITE_HELD(&ill_g_lock)); 4239 4240 name_length = mi_strlen(name) + 1; 4241 4242 if (isv6) 4243 index = IP_V6_G_HEAD; 4244 else 4245 index = IP_V4_G_HEAD; 4246 4247 ill_interface = IP_VX_ILL_G_LIST(index); 4248 /* 4249 * Search for interface type based on name 4250 */ 4251 while (ill_interface != (ill_if_t *)&IP_VX_ILL_G_LIST(index)) { 4252 if ((ill_interface->illif_name_len == name_length) && 4253 (strcmp(ill_interface->illif_name, name) == 0)) { 4254 break; 4255 } 4256 ill_interface = ill_interface->illif_next; 4257 } 4258 4259 /* 4260 * Interface type not found, create one. 4261 */ 4262 if (ill_interface == (ill_if_t *)&IP_VX_ILL_G_LIST(index)) { 4263 4264 ill_g_head_t ghead; 4265 4266 /* 4267 * allocate ill_if_t structure 4268 */ 4269 4270 ill_interface = (ill_if_t *)mi_zalloc(sizeof (ill_if_t)); 4271 if (ill_interface == NULL) { 4272 return (ENOMEM); 4273 } 4274 4275 4276 4277 (void) strcpy(ill_interface->illif_name, name); 4278 ill_interface->illif_name_len = name_length; 4279 4280 avl_create(&ill_interface->illif_avl_by_ppa, 4281 ill_compare_ppa, sizeof (ill_t), 4282 offsetof(struct ill_s, ill_avl_byppa)); 4283 4284 /* 4285 * link the structure in the back to maintain order 4286 * of configuration for ifconfig output. 4287 */ 4288 ghead = ill_g_heads[index]; 4289 insque(ill_interface, ghead.ill_g_list_tail); 4290 4291 } 4292 4293 if (ill->ill_ppa == UINT_MAX) 4294 check_length = B_TRUE; 4295 4296 error = ill_alloc_ppa(ill_interface, ill); 4297 if (error != 0) { 4298 if (avl_numnodes(&ill_interface->illif_avl_by_ppa) == 0) 4299 ill_delete_interface_type(ill->ill_ifptr); 4300 return (error); 4301 } 4302 4303 /* 4304 * When the ppa is choosen by the system, check that there is 4305 * enough space to insert ppa. if a specific ppa was passed in this 4306 * check is not required as the interface name passed in will have 4307 * the right ppa in it. 4308 */ 4309 if (check_length) { 4310 /* 4311 * UINT_MAX - 1 should fit in 10 chars, alloc 12 chars. 4312 */ 4313 char buf[sizeof (uint_t) * 3]; 4314 4315 /* 4316 * convert ppa to string to calculate the amount of space 4317 * required for it in the name. 4318 */ 4319 numtos(ill->ill_ppa, buf); 4320 4321 /* Do we have enough space to insert ppa ? */ 4322 4323 if ((mi_strlen(name) + mi_strlen(buf) + 1) > LIFNAMSIZ) { 4324 /* Free ppa and interface type struct */ 4325 if (ill_interface->illif_ppa_arena != NULL) { 4326 vmem_free(ill_interface->illif_ppa_arena, 4327 (void *)(uintptr_t)(ill->ill_ppa+1), 1); 4328 } 4329 if (avl_numnodes(&ill_interface->illif_avl_by_ppa) == 4330 0) { 4331 ill_delete_interface_type(ill->ill_ifptr); 4332 } 4333 4334 return (EINVAL); 4335 } 4336 } 4337 4338 (void) sprintf(ill->ill_name, "%s%u", name, ill->ill_ppa); 4339 ill->ill_name_length = mi_strlen(ill->ill_name) + 1; 4340 4341 (void) avl_find(&ill_interface->illif_avl_by_ppa, &ill->ill_ppa, 4342 &where); 4343 ill->ill_ifptr = ill_interface; 4344 avl_insert(&ill_interface->illif_avl_by_ppa, ill, where); 4345 4346 ill_phyint_reinit(ill); 4347 return (0); 4348 } 4349 4350 /* Initialize the per phyint (per IPMP group) ipsq used for serialization */ 4351 static boolean_t 4352 ipsq_init(ill_t *ill) 4353 { 4354 ipsq_t *ipsq; 4355 4356 /* Init the ipsq and impicitly enter as writer */ 4357 ill->ill_phyint->phyint_ipsq = 4358 kmem_zalloc(sizeof (ipsq_t), KM_NOSLEEP); 4359 if (ill->ill_phyint->phyint_ipsq == NULL) 4360 return (B_FALSE); 4361 ipsq = ill->ill_phyint->phyint_ipsq; 4362 ipsq->ipsq_phyint_list = ill->ill_phyint; 4363 ill->ill_phyint->phyint_ipsq_next = NULL; 4364 mutex_init(&ipsq->ipsq_lock, NULL, MUTEX_DEFAULT, 0); 4365 ipsq->ipsq_refs = 1; 4366 ipsq->ipsq_writer = curthread; 4367 ipsq->ipsq_reentry_cnt = 1; 4368 #ifdef ILL_DEBUG 4369 ipsq->ipsq_depth = getpcstack((pc_t *)ipsq->ipsq_stack, IP_STACK_DEPTH); 4370 #endif 4371 (void) strcpy(ipsq->ipsq_name, ill->ill_name); 4372 return (B_TRUE); 4373 } 4374 4375 /* 4376 * ill_init is called by ip_open when a device control stream is opened. 4377 * It does a few initializations, and shoots a DL_INFO_REQ message down 4378 * to the driver. The response is later picked up in ip_rput_dlpi and 4379 * used to set up default mechanisms for talking to the driver. (Always 4380 * called as writer.) 4381 * 4382 * If this function returns error, ip_open will call ip_close which in 4383 * turn will call ill_delete to clean up any memory allocated here that 4384 * is not yet freed. 4385 */ 4386 int 4387 ill_init(queue_t *q, ill_t *ill) 4388 { 4389 int count; 4390 dl_info_req_t *dlir; 4391 mblk_t *info_mp; 4392 uchar_t *frag_ptr; 4393 4394 /* 4395 * The ill is initialized to zero by mi_alloc*(). In addition 4396 * some fields already contain valid values, initialized in 4397 * ip_open(), before we reach here. 4398 */ 4399 mutex_init(&ill->ill_lock, NULL, MUTEX_DEFAULT, 0); 4400 4401 ill->ill_rq = q; 4402 ill->ill_wq = WR(q); 4403 4404 info_mp = allocb(MAX(sizeof (dl_info_req_t), sizeof (dl_info_ack_t)), 4405 BPRI_HI); 4406 if (info_mp == NULL) 4407 return (ENOMEM); 4408 4409 /* 4410 * Allocate sufficient space to contain our fragment hash table and 4411 * the device name. 4412 */ 4413 frag_ptr = (uchar_t *)mi_zalloc(ILL_FRAG_HASH_TBL_SIZE + 4414 2 * LIFNAMSIZ + 5 + strlen(ipv6_forward_suffix)); 4415 if (frag_ptr == NULL) { 4416 freemsg(info_mp); 4417 return (ENOMEM); 4418 } 4419 ill->ill_frag_ptr = frag_ptr; 4420 ill->ill_frag_free_num_pkts = 0; 4421 ill->ill_last_frag_clean_time = 0; 4422 ill->ill_frag_hash_tbl = (ipfb_t *)frag_ptr; 4423 ill->ill_name = (char *)(frag_ptr + ILL_FRAG_HASH_TBL_SIZE); 4424 for (count = 0; count < ILL_FRAG_HASH_TBL_COUNT; count++) { 4425 mutex_init(&ill->ill_frag_hash_tbl[count].ipfb_lock, 4426 NULL, MUTEX_DEFAULT, NULL); 4427 } 4428 4429 ill->ill_phyint = (phyint_t *)mi_zalloc(sizeof (phyint_t)); 4430 if (ill->ill_phyint == NULL) { 4431 freemsg(info_mp); 4432 mi_free(frag_ptr); 4433 return (ENOMEM); 4434 } 4435 4436 mutex_init(&ill->ill_phyint->phyint_lock, NULL, MUTEX_DEFAULT, 0); 4437 /* 4438 * For now pretend this is a v4 ill. We need to set phyint_ill* 4439 * at this point because of the following reason. If we can't 4440 * enter the ipsq at some point and cv_wait, the writer that 4441 * wakes us up tries to locate us using the list of all phyints 4442 * in an ipsq and the ills from the phyint thru the phyint_ill*. 4443 * If we don't set it now, we risk a missed wakeup. 4444 */ 4445 ill->ill_phyint->phyint_illv4 = ill; 4446 ill->ill_ppa = UINT_MAX; 4447 ill->ill_fastpath_list = &ill->ill_fastpath_list; 4448 4449 if (!ipsq_init(ill)) { 4450 freemsg(info_mp); 4451 mi_free(frag_ptr); 4452 mi_free(ill->ill_phyint); 4453 return (ENOMEM); 4454 } 4455 4456 ill->ill_state_flags |= ILL_LL_SUBNET_PENDING; 4457 4458 4459 /* Frag queue limit stuff */ 4460 ill->ill_frag_count = 0; 4461 ill->ill_ipf_gen = 0; 4462 4463 ill->ill_global_timer = INFINITY; 4464 ill->ill_mcast_type = IGMP_V3_ROUTER; /* == MLD_V2_ROUTER */ 4465 ill->ill_mcast_v1_time = ill->ill_mcast_v2_time = 0; 4466 ill->ill_mcast_v1_tset = ill->ill_mcast_v2_tset = 0; 4467 ill->ill_mcast_rv = MCAST_DEF_ROBUSTNESS; 4468 ill->ill_mcast_qi = MCAST_DEF_QUERY_INTERVAL; 4469 4470 /* 4471 * Initialize IPv6 configuration variables. The IP module is always 4472 * opened as an IPv4 module. Instead tracking down the cases where 4473 * it switches to do ipv6, we'll just initialize the IPv6 configuration 4474 * here for convenience, this has no effect until the ill is set to do 4475 * IPv6. 4476 */ 4477 ill->ill_reachable_time = ND_REACHABLE_TIME; 4478 ill->ill_reachable_retrans_time = ND_RETRANS_TIMER; 4479 ill->ill_xmit_count = ND_MAX_MULTICAST_SOLICIT; 4480 ill->ill_max_buf = ND_MAX_Q; 4481 ill->ill_refcnt = 0; 4482 4483 /* Send down the Info Request to the driver. */ 4484 info_mp->b_datap->db_type = M_PCPROTO; 4485 dlir = (dl_info_req_t *)info_mp->b_rptr; 4486 info_mp->b_wptr = (uchar_t *)&dlir[1]; 4487 dlir->dl_primitive = DL_INFO_REQ; 4488 4489 ill->ill_dlpi_pending = DL_PRIM_INVAL; 4490 4491 qprocson(q); 4492 ill_dlpi_send(ill, info_mp); 4493 4494 return (0); 4495 } 4496 4497 /* 4498 * ill_dls_info 4499 * creates datalink socket info from the device. 4500 */ 4501 int 4502 ill_dls_info(struct sockaddr_dl *sdl, ipif_t *ipif) 4503 { 4504 size_t length; 4505 ill_t *ill = ipif->ipif_ill; 4506 4507 sdl->sdl_family = AF_LINK; 4508 sdl->sdl_index = ill->ill_phyint->phyint_ifindex; 4509 sdl->sdl_type = ipif->ipif_type; 4510 (void) ipif_get_name(ipif, sdl->sdl_data, sizeof (sdl->sdl_data)); 4511 length = mi_strlen(sdl->sdl_data); 4512 ASSERT(length < 256); 4513 sdl->sdl_nlen = (uchar_t)length; 4514 sdl->sdl_alen = ill->ill_phys_addr_length; 4515 mutex_enter(&ill->ill_lock); 4516 if (ill->ill_phys_addr_length != 0 && ill->ill_phys_addr != NULL) { 4517 bcopy(ill->ill_phys_addr, &sdl->sdl_data[length], 4518 ill->ill_phys_addr_length); 4519 } 4520 mutex_exit(&ill->ill_lock); 4521 sdl->sdl_slen = 0; 4522 return (sizeof (struct sockaddr_dl)); 4523 } 4524 4525 /* 4526 * ill_xarp_info 4527 * creates xarp info from the device. 4528 */ 4529 static int 4530 ill_xarp_info(struct sockaddr_dl *sdl, ill_t *ill) 4531 { 4532 sdl->sdl_family = AF_LINK; 4533 sdl->sdl_index = ill->ill_phyint->phyint_ifindex; 4534 sdl->sdl_type = ill->ill_type; 4535 (void) ipif_get_name(ill->ill_ipif, sdl->sdl_data, 4536 sizeof (sdl->sdl_data)); 4537 sdl->sdl_nlen = (uchar_t)mi_strlen(sdl->sdl_data); 4538 sdl->sdl_alen = ill->ill_phys_addr_length; 4539 sdl->sdl_slen = 0; 4540 return (sdl->sdl_nlen); 4541 } 4542 4543 static int 4544 loopback_kstat_update(kstat_t *ksp, int rw) 4545 { 4546 kstat_named_t *kn = KSTAT_NAMED_PTR(ksp); 4547 4548 if (rw == KSTAT_WRITE) 4549 return (EACCES); 4550 kn[0].value.ui32 = loopback_packets; 4551 kn[1].value.ui32 = loopback_packets; 4552 return (0); 4553 } 4554 4555 4556 /* 4557 * Has ifindex been plumbed already. 4558 */ 4559 static boolean_t 4560 phyint_exists(uint_t index) 4561 { 4562 phyint_t *phyi; 4563 4564 ASSERT(RW_LOCK_HELD(&ill_g_lock)); 4565 /* 4566 * Indexes are stored in the phyint - a common structure 4567 * to both IPv4 and IPv6. 4568 */ 4569 phyi = avl_find(&phyint_g_list.phyint_list_avl_by_index, 4570 (void *) &index, NULL); 4571 return (phyi != NULL); 4572 } 4573 4574 /* 4575 * Assign a unique interface index for the phyint. 4576 */ 4577 static boolean_t 4578 phyint_assign_ifindex(phyint_t *phyi) 4579 { 4580 uint_t starting_index; 4581 4582 ASSERT(phyi->phyint_ifindex == 0); 4583 if (!ill_index_wrap) { 4584 phyi->phyint_ifindex = ill_index++; 4585 if (ill_index == 0) { 4586 /* Reached the uint_t limit Next time wrap */ 4587 ill_index_wrap = B_TRUE; 4588 } 4589 return (B_TRUE); 4590 } 4591 4592 /* 4593 * Start reusing unused indexes. Note that we hold the ill_g_lock 4594 * at this point and don't want to call any function that attempts 4595 * to get the lock again. 4596 */ 4597 starting_index = ill_index++; 4598 for (; ill_index != starting_index; ill_index++) { 4599 if (ill_index != 0 && !phyint_exists(ill_index)) { 4600 /* found unused index - use it */ 4601 phyi->phyint_ifindex = ill_index; 4602 return (B_TRUE); 4603 } 4604 } 4605 4606 /* 4607 * all interface indicies are inuse. 4608 */ 4609 return (B_FALSE); 4610 } 4611 4612 /* 4613 * Return a pointer to the ill which matches the supplied name. Note that 4614 * the ill name length includes the null termination character. (May be 4615 * called as writer.) 4616 * If do_alloc and the interface is "lo0" it will be automatically created. 4617 * Cannot bump up reference on condemned ills. So dup detect can't be done 4618 * using this func. 4619 */ 4620 ill_t * 4621 ill_lookup_on_name(char *name, boolean_t do_alloc, boolean_t isv6, 4622 queue_t *q, mblk_t *mp, ipsq_func_t func, int *error, boolean_t *did_alloc) 4623 { 4624 ill_t *ill; 4625 ipif_t *ipif; 4626 kstat_named_t *kn; 4627 boolean_t isloopback; 4628 ipsq_t *old_ipsq; 4629 4630 isloopback = mi_strcmp(name, ipif_loopback_name) == 0; 4631 4632 rw_enter(&ill_g_lock, RW_READER); 4633 ill = ill_find_by_name(name, isv6, q, mp, func, error); 4634 rw_exit(&ill_g_lock); 4635 if (ill != NULL || (error != NULL && *error == EINPROGRESS)) 4636 return (ill); 4637 4638 /* 4639 * Couldn't find it. Does this happen to be a lookup for the 4640 * loopback device and are we allowed to allocate it? 4641 */ 4642 if (!isloopback || !do_alloc) 4643 return (NULL); 4644 4645 rw_enter(&ill_g_lock, RW_WRITER); 4646 4647 ill = ill_find_by_name(name, isv6, q, mp, func, error); 4648 if (ill != NULL || (error != NULL && *error == EINPROGRESS)) { 4649 rw_exit(&ill_g_lock); 4650 return (ill); 4651 } 4652 4653 /* Create the loopback device on demand */ 4654 ill = (ill_t *)(mi_alloc(sizeof (ill_t) + 4655 sizeof (ipif_loopback_name), BPRI_MED)); 4656 if (ill == NULL) 4657 goto done; 4658 4659 *ill = ill_null; 4660 mutex_init(&ill->ill_lock, NULL, MUTEX_DEFAULT, NULL); 4661 ill->ill_phyint = (phyint_t *)mi_zalloc(sizeof (phyint_t)); 4662 if (ill->ill_phyint == NULL) 4663 goto done; 4664 4665 if (isv6) 4666 ill->ill_phyint->phyint_illv6 = ill; 4667 else 4668 ill->ill_phyint->phyint_illv4 = ill; 4669 mutex_init(&ill->ill_phyint->phyint_lock, NULL, MUTEX_DEFAULT, 0); 4670 ill->ill_max_frag = IP_LOOPBACK_MTU; 4671 /* Add room for tcp+ip headers */ 4672 if (isv6) { 4673 ill->ill_isv6 = B_TRUE; 4674 ill->ill_max_frag += IPV6_HDR_LEN + 20; /* for TCP */ 4675 if (!ill_allocate_mibs(ill)) 4676 goto done; 4677 } else { 4678 ill->ill_max_frag += IP_SIMPLE_HDR_LENGTH + 20; 4679 } 4680 ill->ill_max_mtu = ill->ill_max_frag; 4681 /* 4682 * ipif_loopback_name can't be pointed at directly because its used 4683 * by both the ipv4 and ipv6 interfaces. When the ill is removed 4684 * from the glist, ill_glist_delete() sets the first character of 4685 * ill_name to '\0'. 4686 */ 4687 ill->ill_name = (char *)ill + sizeof (*ill); 4688 (void) strcpy(ill->ill_name, ipif_loopback_name); 4689 ill->ill_name_length = sizeof (ipif_loopback_name); 4690 /* Set ill_name_set for ill_phyint_reinit to work properly */ 4691 4692 ill->ill_global_timer = INFINITY; 4693 ill->ill_mcast_type = IGMP_V3_ROUTER; /* == MLD_V2_ROUTER */ 4694 ill->ill_mcast_v1_time = ill->ill_mcast_v2_time = 0; 4695 ill->ill_mcast_v1_tset = ill->ill_mcast_v2_tset = 0; 4696 ill->ill_mcast_rv = MCAST_DEF_ROBUSTNESS; 4697 ill->ill_mcast_qi = MCAST_DEF_QUERY_INTERVAL; 4698 4699 /* No resolver here. */ 4700 ill->ill_net_type = IRE_LOOPBACK; 4701 4702 /* Initialize the ipsq */ 4703 if (!ipsq_init(ill)) 4704 goto done; 4705 4706 ill->ill_phyint->phyint_ipsq->ipsq_writer = NULL; 4707 ill->ill_phyint->phyint_ipsq->ipsq_reentry_cnt--; 4708 ASSERT(ill->ill_phyint->phyint_ipsq->ipsq_reentry_cnt == 0); 4709 #ifdef ILL_DEBUG 4710 ill->ill_phyint->phyint_ipsq->ipsq_depth = 0; 4711 #endif 4712 ipif = ipif_allocate(ill, 0L, IRE_LOOPBACK, B_TRUE); 4713 if (ipif == NULL) 4714 goto done; 4715 4716 ill->ill_flags = ILLF_MULTICAST; 4717 4718 /* Set up default loopback address and mask. */ 4719 if (!isv6) { 4720 ipaddr_t inaddr_loopback = htonl(INADDR_LOOPBACK); 4721 4722 IN6_IPADDR_TO_V4MAPPED(inaddr_loopback, &ipif->ipif_v6lcl_addr); 4723 ipif->ipif_v6src_addr = ipif->ipif_v6lcl_addr; 4724 V4MASK_TO_V6(htonl(IN_CLASSA_NET), ipif->ipif_v6net_mask); 4725 V6_MASK_COPY(ipif->ipif_v6lcl_addr, ipif->ipif_v6net_mask, 4726 ipif->ipif_v6subnet); 4727 ill->ill_flags |= ILLF_IPV4; 4728 } else { 4729 ipif->ipif_v6lcl_addr = ipv6_loopback; 4730 ipif->ipif_v6src_addr = ipif->ipif_v6lcl_addr; 4731 ipif->ipif_v6net_mask = ipv6_all_ones; 4732 V6_MASK_COPY(ipif->ipif_v6lcl_addr, ipif->ipif_v6net_mask, 4733 ipif->ipif_v6subnet); 4734 ill->ill_flags |= ILLF_IPV6; 4735 } 4736 4737 /* 4738 * Chain us in at the end of the ill list. hold the ill 4739 * before we make it globally visible. 1 for the lookup. 4740 */ 4741 ill->ill_refcnt = 0; 4742 ill_refhold(ill); 4743 4744 ill->ill_frag_count = 0; 4745 ill->ill_frag_free_num_pkts = 0; 4746 ill->ill_last_frag_clean_time = 0; 4747 4748 old_ipsq = ill->ill_phyint->phyint_ipsq; 4749 4750 if (ill_glist_insert(ill, "lo", isv6) != 0) 4751 cmn_err(CE_PANIC, "cannot insert loopback interface"); 4752 4753 /* Let SCTP know so that it can add this to its list */ 4754 sctp_update_ill(ill, SCTP_ILL_INSERT); 4755 4756 /* Let SCTP know about this IPIF, so that it can add it to its list */ 4757 sctp_update_ipif(ipif, SCTP_IPIF_INSERT); 4758 4759 /* 4760 * If the ipsq was changed in ill_phyint_reinit free the old ipsq. 4761 */ 4762 if (old_ipsq != ill->ill_phyint->phyint_ipsq) { 4763 /* Loopback ills aren't in any IPMP group */ 4764 ASSERT(!(old_ipsq->ipsq_flags & IPSQ_GROUP)); 4765 ipsq_delete(old_ipsq); 4766 } 4767 4768 /* 4769 * Delay this till the ipif is allocated as ipif_allocate 4770 * de-references ill_phyint for getting the ifindex. We 4771 * can't do this before ipif_allocate because ill_phyint_reinit 4772 * -> phyint_assign_ifindex expects ipif to be present. 4773 */ 4774 mutex_enter(&ill->ill_phyint->phyint_lock); 4775 ill->ill_phyint->phyint_flags |= PHYI_LOOPBACK | PHYI_VIRTUAL; 4776 mutex_exit(&ill->ill_phyint->phyint_lock); 4777 4778 if (loopback_ksp == NULL) { 4779 /* Export loopback interface statistics */ 4780 loopback_ksp = kstat_create("lo", 0, ipif_loopback_name, "net", 4781 KSTAT_TYPE_NAMED, 2, 0); 4782 if (loopback_ksp != NULL) { 4783 loopback_ksp->ks_update = loopback_kstat_update; 4784 kn = KSTAT_NAMED_PTR(loopback_ksp); 4785 kstat_named_init(&kn[0], "ipackets", KSTAT_DATA_UINT32); 4786 kstat_named_init(&kn[1], "opackets", KSTAT_DATA_UINT32); 4787 kstat_install(loopback_ksp); 4788 } 4789 } 4790 4791 if (error != NULL) 4792 *error = 0; 4793 *did_alloc = B_TRUE; 4794 rw_exit(&ill_g_lock); 4795 return (ill); 4796 done: 4797 if (ill != NULL) { 4798 if (ill->ill_phyint != NULL) { 4799 ipsq_t *ipsq; 4800 4801 ipsq = ill->ill_phyint->phyint_ipsq; 4802 if (ipsq != NULL) 4803 kmem_free(ipsq, sizeof (ipsq_t)); 4804 mi_free(ill->ill_phyint); 4805 } 4806 ill_free_mib(ill); 4807 mi_free(ill); 4808 } 4809 rw_exit(&ill_g_lock); 4810 if (error != NULL) 4811 *error = ENOMEM; 4812 return (NULL); 4813 } 4814 4815 /* 4816 * Return a pointer to the ill which matches the index and IP version type. 4817 */ 4818 ill_t * 4819 ill_lookup_on_ifindex(uint_t index, boolean_t isv6, queue_t *q, mblk_t *mp, 4820 ipsq_func_t func, int *err) 4821 { 4822 ill_t *ill; 4823 ipsq_t *ipsq; 4824 phyint_t *phyi; 4825 4826 ASSERT((q == NULL && mp == NULL && func == NULL && err == NULL) || 4827 (q != NULL && mp != NULL && func != NULL && err != NULL)); 4828 4829 if (err != NULL) 4830 *err = 0; 4831 4832 /* 4833 * Indexes are stored in the phyint - a common structure 4834 * to both IPv4 and IPv6. 4835 */ 4836 rw_enter(&ill_g_lock, RW_READER); 4837 phyi = avl_find(&phyint_g_list.phyint_list_avl_by_index, 4838 (void *) &index, NULL); 4839 if (phyi != NULL) { 4840 ill = isv6 ? phyi->phyint_illv6: phyi->phyint_illv4; 4841 if (ill != NULL) { 4842 /* 4843 * The block comment at the start of ipif_down 4844 * explains the use of the macros used below 4845 */ 4846 GRAB_CONN_LOCK(q); 4847 mutex_enter(&ill->ill_lock); 4848 if (ILL_CAN_LOOKUP(ill)) { 4849 ill_refhold_locked(ill); 4850 mutex_exit(&ill->ill_lock); 4851 RELEASE_CONN_LOCK(q); 4852 rw_exit(&ill_g_lock); 4853 return (ill); 4854 } else if (ILL_CAN_WAIT(ill, q)) { 4855 ipsq = ill->ill_phyint->phyint_ipsq; 4856 mutex_enter(&ipsq->ipsq_lock); 4857 rw_exit(&ill_g_lock); 4858 mutex_exit(&ill->ill_lock); 4859 ipsq_enq(ipsq, q, mp, func, NEW_OP, ill); 4860 mutex_exit(&ipsq->ipsq_lock); 4861 RELEASE_CONN_LOCK(q); 4862 *err = EINPROGRESS; 4863 return (NULL); 4864 } 4865 RELEASE_CONN_LOCK(q); 4866 mutex_exit(&ill->ill_lock); 4867 } 4868 } 4869 rw_exit(&ill_g_lock); 4870 if (err != NULL) 4871 *err = ENXIO; 4872 return (NULL); 4873 } 4874 4875 /* 4876 * Obtain a reference to the ill. The ill_refcnt is a dynamic refcnt 4877 * that gives a running thread a reference to the ill. This reference must be 4878 * released by the thread when it is done accessing the ill and related 4879 * objects. ill_refcnt can not be used to account for static references 4880 * such as other structures pointing to an ill. Callers must generally 4881 * check whether an ill can be refheld by using ILL_CAN_LOOKUP macros 4882 * or be sure that the ill is not being deleted or changing state before 4883 * calling the refhold functions. A non-zero ill_refcnt ensures that the 4884 * ill won't change any of its critical state such as address, netmask etc. 4885 */ 4886 void 4887 ill_refhold(ill_t *ill) 4888 { 4889 mutex_enter(&ill->ill_lock); 4890 ill->ill_refcnt++; 4891 ILL_TRACE_REF(ill); 4892 mutex_exit(&ill->ill_lock); 4893 } 4894 4895 void 4896 ill_refhold_locked(ill_t *ill) 4897 { 4898 ASSERT(MUTEX_HELD(&ill->ill_lock)); 4899 ill->ill_refcnt++; 4900 ILL_TRACE_REF(ill); 4901 } 4902 4903 int 4904 ill_check_and_refhold(ill_t *ill) 4905 { 4906 mutex_enter(&ill->ill_lock); 4907 if (ILL_CAN_LOOKUP(ill)) { 4908 ill_refhold_locked(ill); 4909 mutex_exit(&ill->ill_lock); 4910 return (0); 4911 } 4912 mutex_exit(&ill->ill_lock); 4913 return (ILL_LOOKUP_FAILED); 4914 } 4915 4916 /* 4917 * Must not be called while holding any locks. Otherwise if this is 4918 * the last reference to be released, there is a chance of recursive mutex 4919 * panic due to ill_refrele -> ipif_ill_refrele_tail -> qwriter_ip trying 4920 * to restart an ioctl. 4921 */ 4922 void 4923 ill_refrele(ill_t *ill) 4924 { 4925 mutex_enter(&ill->ill_lock); 4926 ASSERT(ill->ill_refcnt != 0); 4927 ill->ill_refcnt--; 4928 ILL_UNTRACE_REF(ill); 4929 if (ill->ill_refcnt != 0) { 4930 /* Every ire pointing to the ill adds 1 to ill_refcnt */ 4931 mutex_exit(&ill->ill_lock); 4932 return; 4933 } 4934 4935 /* Drops the ill_lock */ 4936 ipif_ill_refrele_tail(ill); 4937 } 4938 4939 /* 4940 * Obtain a weak reference count on the ill. This reference ensures the 4941 * ill won't be freed, but the ill may change any of its critical state 4942 * such as netmask, address etc. Returns an error if the ill has started 4943 * closing. 4944 */ 4945 boolean_t 4946 ill_waiter_inc(ill_t *ill) 4947 { 4948 mutex_enter(&ill->ill_lock); 4949 if (ill->ill_state_flags & ILL_CONDEMNED) { 4950 mutex_exit(&ill->ill_lock); 4951 return (B_FALSE); 4952 } 4953 ill->ill_waiters++; 4954 mutex_exit(&ill->ill_lock); 4955 return (B_TRUE); 4956 } 4957 4958 void 4959 ill_waiter_dcr(ill_t *ill) 4960 { 4961 mutex_enter(&ill->ill_lock); 4962 ill->ill_waiters--; 4963 if (ill->ill_waiters == 0) 4964 cv_broadcast(&ill->ill_cv); 4965 mutex_exit(&ill->ill_lock); 4966 } 4967 4968 /* 4969 * Named Dispatch routine to produce a formatted report on all ILLs. 4970 * This report is accessed by using the ndd utility to "get" ND variable 4971 * "ip_ill_status". 4972 */ 4973 /* ARGSUSED */ 4974 int 4975 ip_ill_report(queue_t *q, mblk_t *mp, caddr_t arg, cred_t *ioc_cr) 4976 { 4977 ill_t *ill; 4978 ill_walk_context_t ctx; 4979 4980 (void) mi_mpprintf(mp, 4981 "ILL " MI_COL_HDRPAD_STR 4982 /* 01234567[89ABCDEF] */ 4983 "rq " MI_COL_HDRPAD_STR 4984 /* 01234567[89ABCDEF] */ 4985 "wq " MI_COL_HDRPAD_STR 4986 /* 01234567[89ABCDEF] */ 4987 "upcnt mxfrg err name"); 4988 /* 12345 12345 123 xxxxxxxx */ 4989 4990 rw_enter(&ill_g_lock, RW_READER); 4991 ill = ILL_START_WALK_ALL(&ctx); 4992 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 4993 (void) mi_mpprintf(mp, 4994 MI_COL_PTRFMT_STR MI_COL_PTRFMT_STR MI_COL_PTRFMT_STR 4995 "%05u %05u %03d %s", 4996 (void *)ill, (void *)ill->ill_rq, (void *)ill->ill_wq, 4997 ill->ill_ipif_up_count, 4998 ill->ill_max_frag, ill->ill_error, ill->ill_name); 4999 } 5000 rw_exit(&ill_g_lock); 5001 5002 return (0); 5003 } 5004 5005 /* 5006 * Named Dispatch routine to produce a formatted report on all IPIFs. 5007 * This report is accessed by using the ndd utility to "get" ND variable 5008 * "ip_ipif_status". 5009 */ 5010 /* ARGSUSED */ 5011 int 5012 ip_ipif_report(queue_t *q, mblk_t *mp, caddr_t arg, cred_t *ioc_cr) 5013 { 5014 char buf1[INET6_ADDRSTRLEN]; 5015 char buf2[INET6_ADDRSTRLEN]; 5016 char buf3[INET6_ADDRSTRLEN]; 5017 char buf4[INET6_ADDRSTRLEN]; 5018 char buf5[INET6_ADDRSTRLEN]; 5019 char buf6[INET6_ADDRSTRLEN]; 5020 char buf[LIFNAMSIZ]; 5021 ill_t *ill; 5022 ipif_t *ipif; 5023 nv_t *nvp; 5024 uint64_t flags; 5025 zoneid_t zoneid; 5026 ill_walk_context_t ctx; 5027 5028 (void) mi_mpprintf(mp, 5029 "IPIF metric mtu in/out/forward name zone flags...\n" 5030 "\tlocal address\n" 5031 "\tsrc address\n" 5032 "\tsubnet\n" 5033 "\tmask\n" 5034 "\tbroadcast\n" 5035 "\tp-p-dst"); 5036 5037 ASSERT(q->q_next == NULL); 5038 zoneid = Q_TO_CONN(q)->conn_zoneid; /* IP is a driver */ 5039 5040 rw_enter(&ill_g_lock, RW_READER); 5041 ill = ILL_START_WALK_ALL(&ctx); 5042 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 5043 for (ipif = ill->ill_ipif; ipif; ipif = ipif->ipif_next) { 5044 if (zoneid != GLOBAL_ZONEID && 5045 zoneid != ipif->ipif_zoneid) 5046 continue; 5047 (void) mi_mpprintf(mp, 5048 MI_COL_PTRFMT_STR 5049 "%04u %05u %u/%u/%u %s %d", 5050 (void *)ipif, 5051 ipif->ipif_metric, ipif->ipif_mtu, 5052 ipif->ipif_ib_pkt_count, 5053 ipif->ipif_ob_pkt_count, 5054 ipif->ipif_fo_pkt_count, 5055 ipif_get_name(ipif, buf, sizeof (buf)), 5056 ipif->ipif_zoneid); 5057 5058 flags = ipif->ipif_flags | ipif->ipif_ill->ill_flags | 5059 ipif->ipif_ill->ill_phyint->phyint_flags; 5060 5061 /* Tack on text strings for any flags. */ 5062 nvp = ipif_nv_tbl; 5063 for (; nvp < A_END(ipif_nv_tbl); nvp++) { 5064 if (nvp->nv_value & flags) 5065 (void) mi_mpprintf_nr(mp, " %s", 5066 nvp->nv_name); 5067 } 5068 (void) mi_mpprintf(mp, 5069 "\t%s\n\t%s\n\t%s\n\t%s\n\t%s\n\t%s", 5070 inet_ntop(AF_INET6, 5071 &ipif->ipif_v6lcl_addr, buf1, sizeof (buf1)), 5072 inet_ntop(AF_INET6, 5073 &ipif->ipif_v6src_addr, buf2, sizeof (buf2)), 5074 inet_ntop(AF_INET6, 5075 &ipif->ipif_v6subnet, buf3, sizeof (buf3)), 5076 inet_ntop(AF_INET6, 5077 &ipif->ipif_v6net_mask, buf4, sizeof (buf4)), 5078 inet_ntop(AF_INET6, 5079 &ipif->ipif_v6brd_addr, buf5, sizeof (buf5)), 5080 inet_ntop(AF_INET6, 5081 &ipif->ipif_v6pp_dst_addr, 5082 buf6, sizeof (buf6))); 5083 } 5084 } 5085 rw_exit(&ill_g_lock); 5086 return (0); 5087 } 5088 5089 /* 5090 * ip_ll_subnet_defaults is called when we get the DL_INFO_ACK back from the 5091 * driver. We construct best guess defaults for lower level information that 5092 * we need. If an interface is brought up without injection of any overriding 5093 * information from outside, we have to be ready to go with these defaults. 5094 * When we get the first DL_INFO_ACK (from ip_open() sending a DL_INFO_REQ) 5095 * we primarely want the dl_provider_style. 5096 * The subsequent DL_INFO_ACK is received after doing a DL_ATTACH and DL_BIND 5097 * at which point we assume the other part of the information is valid. 5098 */ 5099 void 5100 ip_ll_subnet_defaults(ill_t *ill, mblk_t *mp) 5101 { 5102 uchar_t *brdcst_addr; 5103 uint_t brdcst_addr_length, phys_addr_length; 5104 t_scalar_t sap_length; 5105 dl_info_ack_t *dlia; 5106 ip_m_t *ipm; 5107 dl_qos_cl_sel1_t *sel1; 5108 5109 ASSERT(IAM_WRITER_ILL(ill)); 5110 5111 /* 5112 * Till the ill is fully up ILL_CHANGING will be set and 5113 * the ill is not globally visible. So no need for a lock. 5114 */ 5115 dlia = (dl_info_ack_t *)mp->b_rptr; 5116 ill->ill_mactype = dlia->dl_mac_type; 5117 5118 ipm = ip_m_lookup(dlia->dl_mac_type); 5119 if (ipm == NULL) { 5120 ipm = ip_m_lookup(DL_OTHER); 5121 ASSERT(ipm != NULL); 5122 } 5123 ill->ill_media = ipm; 5124 5125 /* 5126 * When the new DLPI stuff is ready we'll pull lengths 5127 * from dlia. 5128 */ 5129 if (dlia->dl_version == DL_VERSION_2) { 5130 brdcst_addr_length = dlia->dl_brdcst_addr_length; 5131 brdcst_addr = mi_offset_param(mp, dlia->dl_brdcst_addr_offset, 5132 brdcst_addr_length); 5133 if (brdcst_addr == NULL) { 5134 brdcst_addr_length = 0; 5135 } 5136 sap_length = dlia->dl_sap_length; 5137 phys_addr_length = dlia->dl_addr_length - ABS(sap_length); 5138 ip1dbg(("ip: bcast_len %d, sap_len %d, phys_len %d\n", 5139 brdcst_addr_length, sap_length, phys_addr_length)); 5140 } else { 5141 brdcst_addr_length = 6; 5142 brdcst_addr = ip_six_byte_all_ones; 5143 sap_length = -2; 5144 phys_addr_length = brdcst_addr_length; 5145 } 5146 5147 ill->ill_bcast_addr_length = brdcst_addr_length; 5148 ill->ill_phys_addr_length = phys_addr_length; 5149 ill->ill_sap_length = sap_length; 5150 ill->ill_max_frag = dlia->dl_max_sdu; 5151 ill->ill_max_mtu = ill->ill_max_frag; 5152 5153 ill->ill_type = ipm->ip_m_type; 5154 5155 if (!ill->ill_dlpi_style_set) { 5156 if (dlia->dl_provider_style == DL_STYLE2) 5157 ill->ill_needs_attach = 1; 5158 5159 /* 5160 * Allocate the first ipif on this ill. We don't delay it 5161 * further as ioctl handling assumes atleast one ipif to 5162 * be present. 5163 * 5164 * At this point we don't know whether the ill is v4 or v6. 5165 * We will know this whan the SIOCSLIFNAME happens and 5166 * the correct value for ill_isv6 will be assigned in 5167 * ipif_set_values(). We need to hold the ill lock and 5168 * clear the ILL_LL_SUBNET_PENDING flag and atomically do 5169 * the wakeup. 5170 */ 5171 (void) ipif_allocate(ill, 0, IRE_LOCAL, 5172 dlia->dl_provider_style == DL_STYLE2 ? B_FALSE : B_TRUE); 5173 mutex_enter(&ill->ill_lock); 5174 ASSERT(ill->ill_dlpi_style_set == 0); 5175 ill->ill_dlpi_style_set = 1; 5176 ill->ill_state_flags &= ~ILL_LL_SUBNET_PENDING; 5177 cv_broadcast(&ill->ill_cv); 5178 mutex_exit(&ill->ill_lock); 5179 freemsg(mp); 5180 return; 5181 } 5182 ASSERT(ill->ill_ipif != NULL); 5183 /* 5184 * We know whether it is IPv4 or IPv6 now, as this is the 5185 * second DL_INFO_ACK we are recieving in response to the 5186 * DL_INFO_REQ sent in ipif_set_values. 5187 */ 5188 if (ill->ill_isv6) 5189 ill->ill_sap = IP6_DL_SAP; 5190 else 5191 ill->ill_sap = IP_DL_SAP; 5192 /* 5193 * Set ipif_mtu which is used to set the IRE's 5194 * ire_max_frag value. The driver could have sent 5195 * a different mtu from what it sent last time. No 5196 * need to call ipif_mtu_change because IREs have 5197 * not yet been created. 5198 */ 5199 ill->ill_ipif->ipif_mtu = ill->ill_max_mtu; 5200 /* 5201 * Clear all the flags that were set based on ill_bcast_addr_length 5202 * and ill_phys_addr_length (in ipif_set_values) as these could have 5203 * changed now and we need to re-evaluate. 5204 */ 5205 ill->ill_flags &= ~(ILLF_MULTICAST | ILLF_NONUD | ILLF_NOARP); 5206 ill->ill_ipif->ipif_flags &= ~(IPIF_BROADCAST | IPIF_POINTOPOINT); 5207 5208 /* 5209 * Free ill_resolver_mp and ill_bcast_mp as things could have 5210 * changed now. 5211 */ 5212 if (ill->ill_bcast_addr_length == 0) { 5213 if (ill->ill_resolver_mp != NULL) 5214 freemsg(ill->ill_resolver_mp); 5215 if (ill->ill_bcast_mp != NULL) 5216 freemsg(ill->ill_bcast_mp); 5217 if (ill->ill_flags & ILLF_XRESOLV) 5218 ill->ill_net_type = IRE_IF_RESOLVER; 5219 else 5220 ill->ill_net_type = IRE_IF_NORESOLVER; 5221 ill->ill_resolver_mp = ill_dlur_gen(NULL, 5222 ill->ill_phys_addr_length, 5223 ill->ill_sap, 5224 ill->ill_sap_length); 5225 ill->ill_bcast_mp = copymsg(ill->ill_resolver_mp); 5226 5227 if (ill->ill_isv6) 5228 /* 5229 * Note: xresolv interfaces will eventually need NOARP 5230 * set here as well, but that will require those 5231 * external resolvers to have some knowledge of 5232 * that flag and act appropriately. Not to be changed 5233 * at present. 5234 */ 5235 ill->ill_flags |= ILLF_NONUD; 5236 else 5237 ill->ill_flags |= ILLF_NOARP; 5238 5239 if (ill->ill_phys_addr_length == 0) { 5240 if (ill->ill_media->ip_m_mac_type == SUNW_DL_VNI) { 5241 ill->ill_ipif->ipif_flags |= IPIF_NOXMIT; 5242 ill->ill_phyint->phyint_flags |= PHYI_VIRTUAL; 5243 } else { 5244 /* pt-pt supports multicast. */ 5245 ill->ill_flags |= ILLF_MULTICAST; 5246 ill->ill_ipif->ipif_flags |= IPIF_POINTOPOINT; 5247 } 5248 } 5249 } else { 5250 ill->ill_net_type = IRE_IF_RESOLVER; 5251 if (ill->ill_bcast_mp != NULL) 5252 freemsg(ill->ill_bcast_mp); 5253 ill->ill_bcast_mp = ill_dlur_gen(brdcst_addr, 5254 ill->ill_bcast_addr_length, ill->ill_sap, 5255 ill->ill_sap_length); 5256 /* 5257 * Later detect lack of DLPI driver multicast 5258 * capability by catching DL_ENABMULTI errors in 5259 * ip_rput_dlpi. 5260 */ 5261 ill->ill_flags |= ILLF_MULTICAST; 5262 if (!ill->ill_isv6) 5263 ill->ill_ipif->ipif_flags |= IPIF_BROADCAST; 5264 } 5265 /* By default an interface does not support any CoS marking */ 5266 ill->ill_flags &= ~ILLF_COS_ENABLED; 5267 5268 /* 5269 * If we get QoS information in DL_INFO_ACK, the device supports 5270 * some form of CoS marking, set ILLF_COS_ENABLED. 5271 */ 5272 sel1 = (dl_qos_cl_sel1_t *)mi_offset_param(mp, dlia->dl_qos_offset, 5273 dlia->dl_qos_length); 5274 if ((sel1 != NULL) && (sel1->dl_qos_type == DL_QOS_CL_SEL1)) { 5275 ill->ill_flags |= ILLF_COS_ENABLED; 5276 } 5277 5278 /* Clear any previous error indication. */ 5279 ill->ill_error = 0; 5280 freemsg(mp); 5281 } 5282 5283 /* 5284 * Perform various checks to verify that an address would make sense as a 5285 * local, remote, or subnet interface address. 5286 */ 5287 static boolean_t 5288 ip_addr_ok_v4(ipaddr_t addr, ipaddr_t subnet_mask) 5289 { 5290 ipaddr_t net_mask; 5291 5292 /* 5293 * Don't allow all zeroes, all ones or experimental address, but allow 5294 * all ones netmask. 5295 */ 5296 if ((net_mask = ip_net_mask(addr)) == 0) 5297 return (B_FALSE); 5298 /* A given netmask overrides the "guess" netmask */ 5299 if (subnet_mask != 0) 5300 net_mask = subnet_mask; 5301 if ((net_mask != ~(ipaddr_t)0) && ((addr == (addr & net_mask)) || 5302 (addr == (addr | ~net_mask)))) { 5303 return (B_FALSE); 5304 } 5305 if (CLASSD(addr)) 5306 return (B_FALSE); 5307 5308 return (B_TRUE); 5309 } 5310 5311 /* 5312 * ipif_lookup_group 5313 * Returns held ipif 5314 */ 5315 ipif_t * 5316 ipif_lookup_group(ipaddr_t group, zoneid_t zoneid) 5317 { 5318 ire_t *ire; 5319 ipif_t *ipif; 5320 5321 ire = ire_lookup_multi(group, zoneid); 5322 if (ire == NULL) 5323 return (NULL); 5324 ipif = ire->ire_ipif; 5325 ipif_refhold(ipif); 5326 ire_refrele(ire); 5327 return (ipif); 5328 } 5329 5330 /* 5331 * Look for an ipif with the specified interface address and destination. 5332 * The destination address is used only for matching point-to-point interfaces. 5333 */ 5334 ipif_t * 5335 ipif_lookup_interface(ipaddr_t if_addr, ipaddr_t dst, queue_t *q, mblk_t *mp, 5336 ipsq_func_t func, int *error) 5337 { 5338 ipif_t *ipif; 5339 ill_t *ill; 5340 ill_walk_context_t ctx; 5341 ipsq_t *ipsq; 5342 5343 if (error != NULL) 5344 *error = 0; 5345 5346 /* 5347 * First match all the point-to-point interfaces 5348 * before looking at non-point-to-point interfaces. 5349 * This is done to avoid returning non-point-to-point 5350 * ipif instead of unnumbered point-to-point ipif. 5351 */ 5352 rw_enter(&ill_g_lock, RW_READER); 5353 ill = ILL_START_WALK_V4(&ctx); 5354 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 5355 GRAB_CONN_LOCK(q); 5356 mutex_enter(&ill->ill_lock); 5357 for (ipif = ill->ill_ipif; ipif != NULL; 5358 ipif = ipif->ipif_next) { 5359 /* Allow the ipif to be down */ 5360 if ((ipif->ipif_flags & IPIF_POINTOPOINT) && 5361 (ipif->ipif_lcl_addr == if_addr) && 5362 (ipif->ipif_pp_dst_addr == dst)) { 5363 /* 5364 * The block comment at the start of ipif_down 5365 * explains the use of the macros used below 5366 */ 5367 if (IPIF_CAN_LOOKUP(ipif)) { 5368 ipif_refhold_locked(ipif); 5369 mutex_exit(&ill->ill_lock); 5370 RELEASE_CONN_LOCK(q); 5371 rw_exit(&ill_g_lock); 5372 return (ipif); 5373 } else if (IPIF_CAN_WAIT(ipif, q)) { 5374 ipsq = ill->ill_phyint->phyint_ipsq; 5375 mutex_enter(&ipsq->ipsq_lock); 5376 mutex_exit(&ill->ill_lock); 5377 rw_exit(&ill_g_lock); 5378 ipsq_enq(ipsq, q, mp, func, NEW_OP, 5379 ill); 5380 mutex_exit(&ipsq->ipsq_lock); 5381 RELEASE_CONN_LOCK(q); 5382 *error = EINPROGRESS; 5383 return (NULL); 5384 } 5385 } 5386 } 5387 mutex_exit(&ill->ill_lock); 5388 RELEASE_CONN_LOCK(q); 5389 } 5390 rw_exit(&ill_g_lock); 5391 5392 /* lookup the ipif based on interface address */ 5393 ipif = ipif_lookup_addr(if_addr, NULL, ALL_ZONES, q, mp, func, error); 5394 ASSERT(ipif == NULL || !ipif->ipif_isv6); 5395 return (ipif); 5396 } 5397 5398 /* 5399 * Look for an ipif with the specified address. For point-point links 5400 * we look for matches on either the destination address and the local 5401 * address, but we ignore the check on the local address if IPIF_UNNUMBERED 5402 * is set. 5403 * Matches on a specific ill if match_ill is set. 5404 */ 5405 ipif_t * 5406 ipif_lookup_addr(ipaddr_t addr, ill_t *match_ill, zoneid_t zoneid, queue_t *q, 5407 mblk_t *mp, ipsq_func_t func, int *error) 5408 { 5409 ipif_t *ipif; 5410 ill_t *ill; 5411 boolean_t ptp = B_FALSE; 5412 ipsq_t *ipsq; 5413 ill_walk_context_t ctx; 5414 5415 if (error != NULL) 5416 *error = 0; 5417 5418 rw_enter(&ill_g_lock, RW_READER); 5419 /* 5420 * Repeat twice, first based on local addresses and 5421 * next time for pointopoint. 5422 */ 5423 repeat: 5424 ill = ILL_START_WALK_V4(&ctx); 5425 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 5426 if (match_ill != NULL && ill != match_ill) { 5427 continue; 5428 } 5429 GRAB_CONN_LOCK(q); 5430 mutex_enter(&ill->ill_lock); 5431 for (ipif = ill->ill_ipif; ipif != NULL; 5432 ipif = ipif->ipif_next) { 5433 if (zoneid != ALL_ZONES && zoneid != ipif->ipif_zoneid) 5434 continue; 5435 /* Allow the ipif to be down */ 5436 if ((!ptp && (ipif->ipif_lcl_addr == addr) && 5437 ((ipif->ipif_flags & IPIF_UNNUMBERED) == 0)) || 5438 (ptp && (ipif->ipif_flags & IPIF_POINTOPOINT) && 5439 (ipif->ipif_pp_dst_addr == addr))) { 5440 /* 5441 * The block comment at the start of ipif_down 5442 * explains the use of the macros used below 5443 */ 5444 if (IPIF_CAN_LOOKUP(ipif)) { 5445 ipif_refhold_locked(ipif); 5446 mutex_exit(&ill->ill_lock); 5447 RELEASE_CONN_LOCK(q); 5448 rw_exit(&ill_g_lock); 5449 return (ipif); 5450 } else if (IPIF_CAN_WAIT(ipif, q)) { 5451 ipsq = ill->ill_phyint->phyint_ipsq; 5452 mutex_enter(&ipsq->ipsq_lock); 5453 mutex_exit(&ill->ill_lock); 5454 rw_exit(&ill_g_lock); 5455 ipsq_enq(ipsq, q, mp, func, NEW_OP, 5456 ill); 5457 mutex_exit(&ipsq->ipsq_lock); 5458 RELEASE_CONN_LOCK(q); 5459 *error = EINPROGRESS; 5460 return (NULL); 5461 } 5462 } 5463 } 5464 mutex_exit(&ill->ill_lock); 5465 RELEASE_CONN_LOCK(q); 5466 } 5467 5468 /* Now try the ptp case */ 5469 if (ptp) { 5470 rw_exit(&ill_g_lock); 5471 if (error != NULL) 5472 *error = ENXIO; 5473 return (NULL); 5474 } 5475 ptp = B_TRUE; 5476 goto repeat; 5477 } 5478 5479 /* 5480 * Look for an ipif that matches the specified remote address i.e. the 5481 * ipif that would receive the specified packet. 5482 * First look for directly connected interfaces and then do a recursive 5483 * IRE lookup and pick the first ipif corresponding to the source address in the 5484 * ire. 5485 * Returns: held ipif 5486 */ 5487 ipif_t * 5488 ipif_lookup_remote(ill_t *ill, ipaddr_t addr, zoneid_t zoneid) 5489 { 5490 ipif_t *ipif; 5491 ire_t *ire; 5492 5493 ASSERT(!ill->ill_isv6); 5494 5495 /* 5496 * Someone could be changing this ipif currently or change it 5497 * after we return this. Thus a few packets could use the old 5498 * old values. However structure updates/creates (ire, ilg, ilm etc) 5499 * will atomically be updated or cleaned up with the new value 5500 * Thus we don't need a lock to check the flags or other attrs below. 5501 */ 5502 mutex_enter(&ill->ill_lock); 5503 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 5504 if (!IPIF_CAN_LOOKUP(ipif)) 5505 continue; 5506 if (zoneid != ALL_ZONES && zoneid != ipif->ipif_zoneid) 5507 continue; 5508 /* Allow the ipif to be down */ 5509 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 5510 if ((ipif->ipif_pp_dst_addr == addr) || 5511 (!(ipif->ipif_flags & IPIF_UNNUMBERED) && 5512 ipif->ipif_lcl_addr == addr)) { 5513 ipif_refhold_locked(ipif); 5514 mutex_exit(&ill->ill_lock); 5515 return (ipif); 5516 } 5517 } else if (ipif->ipif_subnet == (addr & ipif->ipif_net_mask)) { 5518 ipif_refhold_locked(ipif); 5519 mutex_exit(&ill->ill_lock); 5520 return (ipif); 5521 } 5522 } 5523 mutex_exit(&ill->ill_lock); 5524 ire = ire_route_lookup(addr, 0, 0, 0, NULL, NULL, zoneid, 5525 MATCH_IRE_RECURSIVE); 5526 if (ire != NULL) { 5527 /* 5528 * The callers of this function wants to know the 5529 * interface on which they have to send the replies 5530 * back. For IRE_CACHES that have ire_stq and ire_ipif 5531 * derived from different ills, we really don't care 5532 * what we return here. 5533 */ 5534 ipif = ire->ire_ipif; 5535 if (ipif != NULL) { 5536 ipif_refhold(ipif); 5537 ire_refrele(ire); 5538 return (ipif); 5539 } 5540 ire_refrele(ire); 5541 } 5542 /* Pick the first interface */ 5543 ipif = ipif_get_next_ipif(NULL, ill); 5544 return (ipif); 5545 } 5546 5547 /* 5548 * This func does not prevent refcnt from increasing. But if 5549 * the caller has taken steps to that effect, then this func 5550 * can be used to determine whether the ill has become quiescent 5551 */ 5552 boolean_t 5553 ill_is_quiescent(ill_t *ill) 5554 { 5555 ipif_t *ipif; 5556 5557 ASSERT(MUTEX_HELD(&ill->ill_lock)); 5558 5559 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 5560 if (ipif->ipif_refcnt != 0 || ipif->ipif_ire_cnt != 0) 5561 return (B_FALSE); 5562 } 5563 if (ill->ill_ire_cnt != 0 || ill->ill_refcnt != 0 || 5564 ill->ill_nce_cnt != 0 || ill->ill_srcif_refcnt != 0 || 5565 ill->ill_mrtun_refcnt != 0) 5566 return (B_FALSE); 5567 return (B_TRUE); 5568 } 5569 5570 /* 5571 * This func does not prevent refcnt from increasing. But if 5572 * the caller has taken steps to that effect, then this func 5573 * can be used to determine whether the ipif has become quiescent 5574 */ 5575 static boolean_t 5576 ipif_is_quiescent(ipif_t *ipif) 5577 { 5578 ill_t *ill; 5579 5580 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 5581 5582 if (ipif->ipif_refcnt != 0 || ipif->ipif_ire_cnt != 0) 5583 return (B_FALSE); 5584 5585 ill = ipif->ipif_ill; 5586 if (ill->ill_ipif_up_count != 0 || ill->ill_logical_down) 5587 return (B_TRUE); 5588 5589 /* This is the last ipif going down or being deleted on this ill */ 5590 if (ill->ill_ire_cnt != 0 || ill->ill_refcnt != 0) 5591 return (B_FALSE); 5592 5593 return (B_TRUE); 5594 } 5595 5596 /* 5597 * This func does not prevent refcnt from increasing. But if 5598 * the caller has taken steps to that effect, then this func 5599 * can be used to determine whether the ipifs marked with IPIF_MOVING 5600 * have become quiescent and can be moved in a failover/failback. 5601 */ 5602 static ipif_t * 5603 ill_quiescent_to_move(ill_t *ill) 5604 { 5605 ipif_t *ipif; 5606 5607 ASSERT(MUTEX_HELD(&ill->ill_lock)); 5608 5609 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 5610 if (ipif->ipif_state_flags & IPIF_MOVING) { 5611 if (ipif->ipif_refcnt != 0 || ipif->ipif_ire_cnt != 0) { 5612 return (ipif); 5613 } 5614 } 5615 } 5616 return (NULL); 5617 } 5618 5619 /* 5620 * The ipif/ill/ire has been refreled. Do the tail processing. 5621 * Determine if the ipif or ill in question has become quiescent and if so 5622 * wakeup close and/or restart any queued pending ioctl that is waiting 5623 * for the ipif_down (or ill_down) 5624 */ 5625 void 5626 ipif_ill_refrele_tail(ill_t *ill) 5627 { 5628 mblk_t *mp; 5629 conn_t *connp; 5630 ipsq_t *ipsq; 5631 ipif_t *ipif; 5632 5633 ASSERT(MUTEX_HELD(&ill->ill_lock)); 5634 5635 if ((ill->ill_state_flags & ILL_CONDEMNED) && 5636 ill_is_quiescent(ill)) { 5637 /* ill_close may be waiting */ 5638 cv_broadcast(&ill->ill_cv); 5639 } 5640 5641 /* ipsq can't change because ill_lock is held */ 5642 ipsq = ill->ill_phyint->phyint_ipsq; 5643 if (ipsq->ipsq_waitfor == 0) { 5644 /* Not waiting for anything, just return. */ 5645 mutex_exit(&ill->ill_lock); 5646 return; 5647 } 5648 ASSERT(ipsq->ipsq_pending_mp != NULL && 5649 ipsq->ipsq_pending_ipif != NULL); 5650 /* 5651 * ipif->ipif_refcnt must go down to zero for restarting REMOVEIF. 5652 * Last ipif going down needs to down the ill, so ill_ire_cnt must 5653 * be zero for restarting an ioctl that ends up downing the ill. 5654 */ 5655 ipif = ipsq->ipsq_pending_ipif; 5656 if (ipif->ipif_ill != ill) { 5657 /* The ioctl is pending on some other ill. */ 5658 mutex_exit(&ill->ill_lock); 5659 return; 5660 } 5661 5662 switch (ipsq->ipsq_waitfor) { 5663 case IPIF_DOWN: 5664 case IPIF_FREE: 5665 if (!ipif_is_quiescent(ipif)) { 5666 mutex_exit(&ill->ill_lock); 5667 return; 5668 } 5669 break; 5670 5671 case ILL_DOWN: 5672 case ILL_FREE: 5673 /* 5674 * case ILL_FREE arises only for loopback. otherwise ill_delete 5675 * waits synchronously in ip_close, and no message is queued in 5676 * ipsq_pending_mp at all in this case 5677 */ 5678 if (!ill_is_quiescent(ill)) { 5679 mutex_exit(&ill->ill_lock); 5680 return; 5681 } 5682 5683 break; 5684 5685 case ILL_MOVE_OK: 5686 if (ill_quiescent_to_move(ill) != NULL) { 5687 mutex_exit(&ill->ill_lock); 5688 return; 5689 } 5690 5691 break; 5692 default: 5693 cmn_err(CE_PANIC, "ipsq: %p unknown ipsq_waitfor %d\n", 5694 (void *)ipsq, ipsq->ipsq_waitfor); 5695 } 5696 5697 /* 5698 * Incr refcnt for the qwriter_ip call below which 5699 * does a refrele 5700 */ 5701 ill_refhold_locked(ill); 5702 mutex_exit(&ill->ill_lock); 5703 5704 mp = ipsq_pending_mp_get(ipsq, &connp); 5705 ASSERT(mp != NULL); 5706 5707 switch (mp->b_datap->db_type) { 5708 case M_ERROR: 5709 case M_HANGUP: 5710 (void) qwriter_ip(NULL, ill, ill->ill_rq, mp, 5711 ipif_all_down_tail, CUR_OP, B_TRUE); 5712 return; 5713 5714 case M_IOCTL: 5715 case M_IOCDATA: 5716 (void) qwriter_ip(NULL, ill, 5717 (connp != NULL ? CONNP_TO_WQ(connp) : ill->ill_wq), mp, 5718 ip_reprocess_ioctl, CUR_OP, B_TRUE); 5719 return; 5720 5721 default: 5722 cmn_err(CE_PANIC, "ipif_ill_refrele_tail mp %p " 5723 "db_type %d\n", (void *)mp, mp->b_datap->db_type); 5724 } 5725 } 5726 5727 #ifdef ILL_DEBUG 5728 /* Reuse trace buffer from beginning (if reached the end) and record trace */ 5729 void 5730 th_trace_rrecord(th_trace_t *th_trace) 5731 { 5732 tr_buf_t *tr_buf; 5733 uint_t lastref; 5734 5735 lastref = th_trace->th_trace_lastref; 5736 lastref++; 5737 if (lastref == TR_BUF_MAX) 5738 lastref = 0; 5739 th_trace->th_trace_lastref = lastref; 5740 tr_buf = &th_trace->th_trbuf[lastref]; 5741 tr_buf->tr_depth = getpcstack(tr_buf->tr_stack, IP_STACK_DEPTH); 5742 } 5743 5744 th_trace_t * 5745 th_trace_ipif_lookup(ipif_t *ipif) 5746 { 5747 int bucket_id; 5748 th_trace_t *th_trace; 5749 5750 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 5751 5752 bucket_id = IP_TR_HASH(curthread); 5753 ASSERT(bucket_id < IP_TR_HASH_MAX); 5754 5755 for (th_trace = ipif->ipif_trace[bucket_id]; th_trace != NULL; 5756 th_trace = th_trace->th_next) { 5757 if (th_trace->th_id == curthread) 5758 return (th_trace); 5759 } 5760 return (NULL); 5761 } 5762 5763 void 5764 ipif_trace_ref(ipif_t *ipif) 5765 { 5766 int bucket_id; 5767 th_trace_t *th_trace; 5768 5769 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 5770 5771 if (ipif->ipif_trace_disable) 5772 return; 5773 5774 /* 5775 * Attempt to locate the trace buffer for the curthread. 5776 * If it does not exist, then allocate a new trace buffer 5777 * and link it in list of trace bufs for this ipif, at the head 5778 */ 5779 th_trace = th_trace_ipif_lookup(ipif); 5780 if (th_trace == NULL) { 5781 bucket_id = IP_TR_HASH(curthread); 5782 th_trace = (th_trace_t *)kmem_zalloc(sizeof (th_trace_t), 5783 KM_NOSLEEP); 5784 if (th_trace == NULL) { 5785 ipif->ipif_trace_disable = B_TRUE; 5786 ipif_trace_cleanup(ipif); 5787 return; 5788 } 5789 th_trace->th_id = curthread; 5790 th_trace->th_next = ipif->ipif_trace[bucket_id]; 5791 th_trace->th_prev = &ipif->ipif_trace[bucket_id]; 5792 if (th_trace->th_next != NULL) 5793 th_trace->th_next->th_prev = &th_trace->th_next; 5794 ipif->ipif_trace[bucket_id] = th_trace; 5795 } 5796 ASSERT(th_trace->th_refcnt >= 0 && 5797 th_trace->th_refcnt < TR_BUF_MAX -1); 5798 th_trace->th_refcnt++; 5799 th_trace_rrecord(th_trace); 5800 } 5801 5802 void 5803 ipif_untrace_ref(ipif_t *ipif) 5804 { 5805 th_trace_t *th_trace; 5806 5807 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 5808 5809 if (ipif->ipif_trace_disable) 5810 return; 5811 th_trace = th_trace_ipif_lookup(ipif); 5812 ASSERT(th_trace != NULL); 5813 ASSERT(th_trace->th_refcnt > 0); 5814 5815 th_trace->th_refcnt--; 5816 th_trace_rrecord(th_trace); 5817 } 5818 5819 th_trace_t * 5820 th_trace_ill_lookup(ill_t *ill) 5821 { 5822 th_trace_t *th_trace; 5823 int bucket_id; 5824 5825 ASSERT(MUTEX_HELD(&ill->ill_lock)); 5826 5827 bucket_id = IP_TR_HASH(curthread); 5828 ASSERT(bucket_id < IP_TR_HASH_MAX); 5829 5830 for (th_trace = ill->ill_trace[bucket_id]; th_trace != NULL; 5831 th_trace = th_trace->th_next) { 5832 if (th_trace->th_id == curthread) 5833 return (th_trace); 5834 } 5835 return (NULL); 5836 } 5837 5838 void 5839 ill_trace_ref(ill_t *ill) 5840 { 5841 int bucket_id; 5842 th_trace_t *th_trace; 5843 5844 ASSERT(MUTEX_HELD(&ill->ill_lock)); 5845 if (ill->ill_trace_disable) 5846 return; 5847 /* 5848 * Attempt to locate the trace buffer for the curthread. 5849 * If it does not exist, then allocate a new trace buffer 5850 * and link it in list of trace bufs for this ill, at the head 5851 */ 5852 th_trace = th_trace_ill_lookup(ill); 5853 if (th_trace == NULL) { 5854 bucket_id = IP_TR_HASH(curthread); 5855 th_trace = (th_trace_t *)kmem_zalloc(sizeof (th_trace_t), 5856 KM_NOSLEEP); 5857 if (th_trace == NULL) { 5858 ill->ill_trace_disable = B_TRUE; 5859 ill_trace_cleanup(ill); 5860 return; 5861 } 5862 th_trace->th_id = curthread; 5863 th_trace->th_next = ill->ill_trace[bucket_id]; 5864 th_trace->th_prev = &ill->ill_trace[bucket_id]; 5865 if (th_trace->th_next != NULL) 5866 th_trace->th_next->th_prev = &th_trace->th_next; 5867 ill->ill_trace[bucket_id] = th_trace; 5868 } 5869 ASSERT(th_trace->th_refcnt >= 0 && 5870 th_trace->th_refcnt < TR_BUF_MAX - 1); 5871 5872 th_trace->th_refcnt++; 5873 th_trace_rrecord(th_trace); 5874 } 5875 5876 void 5877 ill_untrace_ref(ill_t *ill) 5878 { 5879 th_trace_t *th_trace; 5880 5881 ASSERT(MUTEX_HELD(&ill->ill_lock)); 5882 5883 if (ill->ill_trace_disable) 5884 return; 5885 th_trace = th_trace_ill_lookup(ill); 5886 ASSERT(th_trace != NULL); 5887 ASSERT(th_trace->th_refcnt > 0); 5888 5889 th_trace->th_refcnt--; 5890 th_trace_rrecord(th_trace); 5891 } 5892 5893 /* 5894 * Verify that this thread has no refs to the ipif and free 5895 * the trace buffers 5896 */ 5897 /* ARGSUSED */ 5898 void 5899 ipif_thread_exit(ipif_t *ipif, void *dummy) 5900 { 5901 th_trace_t *th_trace; 5902 5903 mutex_enter(&ipif->ipif_ill->ill_lock); 5904 5905 th_trace = th_trace_ipif_lookup(ipif); 5906 if (th_trace == NULL) { 5907 mutex_exit(&ipif->ipif_ill->ill_lock); 5908 return; 5909 } 5910 ASSERT(th_trace->th_refcnt == 0); 5911 /* unlink th_trace and free it */ 5912 *th_trace->th_prev = th_trace->th_next; 5913 if (th_trace->th_next != NULL) 5914 th_trace->th_next->th_prev = th_trace->th_prev; 5915 th_trace->th_next = NULL; 5916 th_trace->th_prev = NULL; 5917 kmem_free(th_trace, sizeof (th_trace_t)); 5918 5919 mutex_exit(&ipif->ipif_ill->ill_lock); 5920 } 5921 5922 /* 5923 * Verify that this thread has no refs to the ill and free 5924 * the trace buffers 5925 */ 5926 /* ARGSUSED */ 5927 void 5928 ill_thread_exit(ill_t *ill, void *dummy) 5929 { 5930 th_trace_t *th_trace; 5931 5932 mutex_enter(&ill->ill_lock); 5933 5934 th_trace = th_trace_ill_lookup(ill); 5935 if (th_trace == NULL) { 5936 mutex_exit(&ill->ill_lock); 5937 return; 5938 } 5939 ASSERT(th_trace->th_refcnt == 0); 5940 /* unlink th_trace and free it */ 5941 *th_trace->th_prev = th_trace->th_next; 5942 if (th_trace->th_next != NULL) 5943 th_trace->th_next->th_prev = th_trace->th_prev; 5944 th_trace->th_next = NULL; 5945 th_trace->th_prev = NULL; 5946 kmem_free(th_trace, sizeof (th_trace_t)); 5947 5948 mutex_exit(&ill->ill_lock); 5949 } 5950 #endif 5951 5952 #ifdef ILL_DEBUG 5953 void 5954 ip_thread_exit(void) 5955 { 5956 ill_t *ill; 5957 ipif_t *ipif; 5958 ill_walk_context_t ctx; 5959 5960 rw_enter(&ill_g_lock, RW_READER); 5961 ill = ILL_START_WALK_ALL(&ctx); 5962 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 5963 for (ipif = ill->ill_ipif; ipif != NULL; 5964 ipif = ipif->ipif_next) { 5965 ipif_thread_exit(ipif, NULL); 5966 } 5967 ill_thread_exit(ill, NULL); 5968 } 5969 rw_exit(&ill_g_lock); 5970 5971 ire_walk(ire_thread_exit, NULL); 5972 ndp_walk_impl(NULL, nce_thread_exit, NULL, B_FALSE); 5973 } 5974 5975 /* 5976 * Called when ipif is unplumbed or when memory alloc fails 5977 */ 5978 void 5979 ipif_trace_cleanup(ipif_t *ipif) 5980 { 5981 int i; 5982 th_trace_t *th_trace; 5983 th_trace_t *th_trace_next; 5984 5985 for (i = 0; i < IP_TR_HASH_MAX; i++) { 5986 for (th_trace = ipif->ipif_trace[i]; th_trace != NULL; 5987 th_trace = th_trace_next) { 5988 th_trace_next = th_trace->th_next; 5989 kmem_free(th_trace, sizeof (th_trace_t)); 5990 } 5991 ipif->ipif_trace[i] = NULL; 5992 } 5993 } 5994 5995 /* 5996 * Called when ill is unplumbed or when memory alloc fails 5997 */ 5998 void 5999 ill_trace_cleanup(ill_t *ill) 6000 { 6001 int i; 6002 th_trace_t *th_trace; 6003 th_trace_t *th_trace_next; 6004 6005 for (i = 0; i < IP_TR_HASH_MAX; i++) { 6006 for (th_trace = ill->ill_trace[i]; th_trace != NULL; 6007 th_trace = th_trace_next) { 6008 th_trace_next = th_trace->th_next; 6009 kmem_free(th_trace, sizeof (th_trace_t)); 6010 } 6011 ill->ill_trace[i] = NULL; 6012 } 6013 } 6014 6015 #else 6016 void ip_thread_exit(void) {} 6017 #endif 6018 6019 void 6020 ipif_refhold_locked(ipif_t *ipif) 6021 { 6022 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 6023 ipif->ipif_refcnt++; 6024 IPIF_TRACE_REF(ipif); 6025 } 6026 6027 void 6028 ipif_refhold(ipif_t *ipif) 6029 { 6030 ill_t *ill; 6031 6032 ill = ipif->ipif_ill; 6033 mutex_enter(&ill->ill_lock); 6034 ipif->ipif_refcnt++; 6035 IPIF_TRACE_REF(ipif); 6036 mutex_exit(&ill->ill_lock); 6037 } 6038 6039 /* 6040 * Must not be called while holding any locks. Otherwise if this is 6041 * the last reference to be released there is a chance of recursive mutex 6042 * panic due to ipif_refrele -> ipif_ill_refrele_tail -> qwriter_ip trying 6043 * to restart an ioctl. 6044 */ 6045 void 6046 ipif_refrele(ipif_t *ipif) 6047 { 6048 ill_t *ill; 6049 6050 ill = ipif->ipif_ill; 6051 6052 mutex_enter(&ill->ill_lock); 6053 ASSERT(ipif->ipif_refcnt != 0); 6054 ipif->ipif_refcnt--; 6055 IPIF_UNTRACE_REF(ipif); 6056 if (ipif->ipif_refcnt != 0) { 6057 mutex_exit(&ill->ill_lock); 6058 return; 6059 } 6060 6061 /* Drops the ill_lock */ 6062 ipif_ill_refrele_tail(ill); 6063 } 6064 6065 ipif_t * 6066 ipif_get_next_ipif(ipif_t *curr, ill_t *ill) 6067 { 6068 ipif_t *ipif; 6069 6070 mutex_enter(&ill->ill_lock); 6071 for (ipif = (curr == NULL ? ill->ill_ipif : curr->ipif_next); 6072 ipif != NULL; ipif = ipif->ipif_next) { 6073 if (!IPIF_CAN_LOOKUP(ipif)) 6074 continue; 6075 ipif_refhold_locked(ipif); 6076 mutex_exit(&ill->ill_lock); 6077 return (ipif); 6078 } 6079 mutex_exit(&ill->ill_lock); 6080 return (NULL); 6081 } 6082 6083 /* 6084 * TODO: make this table extendible at run time 6085 * Return a pointer to the mac type info for 'mac_type' 6086 */ 6087 static ip_m_t * 6088 ip_m_lookup(t_uscalar_t mac_type) 6089 { 6090 ip_m_t *ipm; 6091 6092 for (ipm = ip_m_tbl; ipm < A_END(ip_m_tbl); ipm++) 6093 if (ipm->ip_m_mac_type == mac_type) 6094 return (ipm); 6095 return (NULL); 6096 } 6097 6098 /* 6099 * ip_rt_add is called to add an IPv4 route to the forwarding table. 6100 * ipif_arg is passed in to associate it with the correct interface. 6101 * We may need to restart this operation if the ipif cannot be looked up 6102 * due to an exclusive operation that is currently in progress. The restart 6103 * entry point is specified by 'func' 6104 */ 6105 int 6106 ip_rt_add(ipaddr_t dst_addr, ipaddr_t mask, ipaddr_t gw_addr, 6107 ipaddr_t src_addr, int flags, ipif_t *ipif_arg, ipif_t *src_ipif, 6108 ire_t **ire_arg, boolean_t ioctl_msg, queue_t *q, mblk_t *mp, 6109 ipsq_func_t func) 6110 { 6111 ire_t *ire; 6112 ire_t *gw_ire = NULL; 6113 ipif_t *ipif = NULL; 6114 boolean_t ipif_refheld = B_FALSE; 6115 uint_t type; 6116 int match_flags = MATCH_IRE_TYPE; 6117 int error; 6118 6119 ip1dbg(("ip_rt_add:")); 6120 6121 if (ire_arg != NULL) 6122 *ire_arg = NULL; 6123 6124 /* 6125 * If this is the case of RTF_HOST being set, then we set the netmask 6126 * to all ones (regardless if one was supplied). 6127 */ 6128 if (flags & RTF_HOST) 6129 mask = IP_HOST_MASK; 6130 6131 /* 6132 * Prevent routes with a zero gateway from being created (since 6133 * interfaces can currently be plumbed and brought up no assigned 6134 * address). 6135 * For routes with RTA_SRCIFP, the gateway address can be 0.0.0.0. 6136 */ 6137 if (gw_addr == 0 && src_ipif == NULL) 6138 return (ENETUNREACH); 6139 /* 6140 * Get the ipif, if any, corresponding to the gw_addr 6141 */ 6142 if (gw_addr != 0) { 6143 ipif = ipif_lookup_interface(gw_addr, dst_addr, q, mp, func, 6144 &error); 6145 if (ipif != NULL) { 6146 if (IS_VNI(ipif->ipif_ill)) { 6147 ipif_refrele(ipif); 6148 return (EINVAL); 6149 } 6150 ipif_refheld = B_TRUE; 6151 } else if (error == EINPROGRESS) { 6152 ip1dbg(("ip_rt_add: null and EINPROGRESS")); 6153 return (EINPROGRESS); 6154 } else { 6155 error = 0; 6156 } 6157 } 6158 6159 if (ipif != NULL) { 6160 ip1dbg(("ip_rt_add: ipif_lookup_interface done ipif nonnull")); 6161 ASSERT(!MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 6162 } else { 6163 ip1dbg(("ip_rt_add: ipif_lookup_interface done ipif is null")); 6164 } 6165 6166 /* 6167 * GateD will attempt to create routes with a loopback interface 6168 * address as the gateway and with RTF_GATEWAY set. We allow 6169 * these routes to be added, but create them as interface routes 6170 * since the gateway is an interface address. 6171 */ 6172 if ((ipif != NULL) && (ipif->ipif_ire_type == IRE_LOOPBACK)) 6173 flags &= ~RTF_GATEWAY; 6174 6175 /* 6176 * Traditionally, interface routes are ones where RTF_GATEWAY isn't set 6177 * and the gateway address provided is one of the system's interface 6178 * addresses. By using the routing socket interface and supplying an 6179 * RTA_IFP sockaddr with an interface index, an alternate method of 6180 * specifying an interface route to be created is available which uses 6181 * the interface index that specifies the outgoing interface rather than 6182 * the address of an outgoing interface (which may not be able to 6183 * uniquely identify an interface). When coupled with the RTF_GATEWAY 6184 * flag, routes can be specified which not only specify the next-hop to 6185 * be used when routing to a certain prefix, but also which outgoing 6186 * interface should be used. 6187 * 6188 * Previously, interfaces would have unique addresses assigned to them 6189 * and so the address assigned to a particular interface could be used 6190 * to identify a particular interface. One exception to this was the 6191 * case of an unnumbered interface (where IPIF_UNNUMBERED was set). 6192 * 6193 * With the advent of IPv6 and its link-local addresses, this 6194 * restriction was relaxed and interfaces could share addresses between 6195 * themselves. In fact, typically all of the link-local interfaces on 6196 * an IPv6 node or router will have the same link-local address. In 6197 * order to differentiate between these interfaces, the use of an 6198 * interface index is necessary and this index can be carried inside a 6199 * RTA_IFP sockaddr (which is actually a sockaddr_dl). One restriction 6200 * of using the interface index, however, is that all of the ipif's that 6201 * are part of an ill have the same index and so the RTA_IFP sockaddr 6202 * cannot be used to differentiate between ipif's (or logical 6203 * interfaces) that belong to the same ill (physical interface). 6204 * 6205 * For example, in the following case involving IPv4 interfaces and 6206 * logical interfaces 6207 * 6208 * 192.0.2.32 255.255.255.224 192.0.2.33 U if0 6209 * 192.0.2.32 255.255.255.224 192.0.2.34 U if0:1 6210 * 192.0.2.32 255.255.255.224 192.0.2.35 U if0:2 6211 * 6212 * the ipif's corresponding to each of these interface routes can be 6213 * uniquely identified by the "gateway" (actually interface address). 6214 * 6215 * In this case involving multiple IPv6 default routes to a particular 6216 * link-local gateway, the use of RTA_IFP is necessary to specify which 6217 * default route is of interest: 6218 * 6219 * default fe80::123:4567:89ab:cdef U if0 6220 * default fe80::123:4567:89ab:cdef U if1 6221 */ 6222 6223 /* RTF_GATEWAY not set */ 6224 if (!(flags & RTF_GATEWAY)) { 6225 queue_t *stq; 6226 queue_t *rfq = NULL; 6227 ill_t *in_ill = NULL; 6228 6229 /* 6230 * As the interface index specified with the RTA_IFP sockaddr is 6231 * the same for all ipif's off of an ill, the matching logic 6232 * below uses MATCH_IRE_ILL if such an index was specified. 6233 * This means that routes sharing the same prefix when added 6234 * using a RTA_IFP sockaddr must have distinct interface 6235 * indices (namely, they must be on distinct ill's). 6236 * 6237 * On the other hand, since the gateway address will usually be 6238 * different for each ipif on the system, the matching logic 6239 * uses MATCH_IRE_IPIF in the case of a traditional interface 6240 * route. This means that interface routes for the same prefix 6241 * can be created if they belong to distinct ipif's and if a 6242 * RTA_IFP sockaddr is not present. 6243 */ 6244 if (ipif_arg != NULL) { 6245 if (ipif_refheld) { 6246 ipif_refrele(ipif); 6247 ipif_refheld = B_FALSE; 6248 } 6249 ipif = ipif_arg; 6250 match_flags |= MATCH_IRE_ILL; 6251 } else { 6252 /* 6253 * Check the ipif corresponding to the gw_addr 6254 */ 6255 if (ipif == NULL) 6256 return (ENETUNREACH); 6257 match_flags |= MATCH_IRE_IPIF; 6258 } 6259 ASSERT(ipif != NULL); 6260 /* 6261 * If src_ipif is not NULL, we have to create 6262 * an ire with non-null ire_in_ill value 6263 */ 6264 if (src_ipif != NULL) { 6265 in_ill = src_ipif->ipif_ill; 6266 } 6267 6268 /* 6269 * We check for an existing entry at this point. 6270 * 6271 * Since a netmask isn't passed in via the ioctl interface 6272 * (SIOCADDRT), we don't check for a matching netmask in that 6273 * case. 6274 */ 6275 if (!ioctl_msg) 6276 match_flags |= MATCH_IRE_MASK; 6277 if (src_ipif != NULL) { 6278 /* Look up in the special table */ 6279 ire = ire_srcif_table_lookup(dst_addr, IRE_INTERFACE, 6280 ipif, src_ipif->ipif_ill, match_flags); 6281 } else { 6282 ire = ire_ftable_lookup(dst_addr, mask, 0, 6283 IRE_INTERFACE, ipif, NULL, ALL_ZONES, 0, 6284 match_flags); 6285 } 6286 if (ire != NULL) { 6287 ire_refrele(ire); 6288 if (ipif_refheld) 6289 ipif_refrele(ipif); 6290 return (EEXIST); 6291 } 6292 6293 if (src_ipif != NULL) { 6294 /* 6295 * Create the special ire for the IRE table 6296 * which hangs out of ire_in_ill. This ire 6297 * is in-between IRE_CACHE and IRE_INTERFACE. 6298 * Thus rfq is non-NULL. 6299 */ 6300 rfq = ipif->ipif_rq; 6301 } 6302 /* Create the usual interface ires */ 6303 6304 stq = (ipif->ipif_net_type == IRE_IF_RESOLVER) 6305 ? ipif->ipif_rq : ipif->ipif_wq; 6306 6307 /* 6308 * Create a copy of the IRE_LOOPBACK, 6309 * IRE_IF_NORESOLVER or IRE_IF_RESOLVER with 6310 * the modified address and netmask. 6311 */ 6312 ire = ire_create( 6313 (uchar_t *)&dst_addr, 6314 (uint8_t *)&mask, 6315 (uint8_t *)&ipif->ipif_src_addr, 6316 NULL, 6317 NULL, 6318 &ipif->ipif_mtu, 6319 NULL, 6320 rfq, 6321 stq, 6322 ipif->ipif_net_type, 6323 ipif->ipif_resolver_mp, 6324 ipif, 6325 in_ill, 6326 0, 6327 0, 6328 0, 6329 flags, 6330 &ire_uinfo_null); 6331 if (ire == NULL) { 6332 if (ipif_refheld) 6333 ipif_refrele(ipif); 6334 return (ENOMEM); 6335 } 6336 6337 /* 6338 * Some software (for example, GateD and Sun Cluster) attempts 6339 * to create (what amount to) IRE_PREFIX routes with the 6340 * loopback address as the gateway. This is primarily done to 6341 * set up prefixes with the RTF_REJECT flag set (for example, 6342 * when generating aggregate routes.) 6343 * 6344 * If the IRE type (as defined by ipif->ipif_net_type) is 6345 * IRE_LOOPBACK, then we map the request into a 6346 * IRE_IF_NORESOLVER. 6347 * 6348 * Needless to say, the real IRE_LOOPBACK is NOT created by this 6349 * routine, but rather using ire_create() directly. 6350 */ 6351 if (ipif->ipif_net_type == IRE_LOOPBACK) 6352 ire->ire_type = IRE_IF_NORESOLVER; 6353 error = ire_add(&ire, q, mp, func); 6354 if (error == 0) 6355 goto save_ire; 6356 6357 /* 6358 * In the result of failure, ire_add() will have already 6359 * deleted the ire in question, so there is no need to 6360 * do that here. 6361 */ 6362 if (ipif_refheld) 6363 ipif_refrele(ipif); 6364 return (error); 6365 } 6366 if (ipif_refheld) { 6367 ipif_refrele(ipif); 6368 ipif_refheld = B_FALSE; 6369 } 6370 6371 if (src_ipif != NULL) { 6372 /* RTA_SRCIFP is not supported on RTF_GATEWAY */ 6373 ip2dbg(("ip_rt_add: SRCIF cannot be set with gateway route\n")); 6374 return (EINVAL); 6375 } 6376 /* 6377 * Get an interface IRE for the specified gateway. 6378 * If we don't have an IRE_IF_NORESOLVER or IRE_IF_RESOLVER for the 6379 * gateway, it is currently unreachable and we fail the request 6380 * accordingly. 6381 */ 6382 ipif = ipif_arg; 6383 if (ipif_arg != NULL) 6384 match_flags |= MATCH_IRE_ILL; 6385 gw_ire = ire_ftable_lookup(gw_addr, 0, 0, IRE_INTERFACE, ipif_arg, NULL, 6386 ALL_ZONES, 0, match_flags); 6387 if (gw_ire == NULL) 6388 return (ENETUNREACH); 6389 6390 /* 6391 * We create one of three types of IREs as a result of this request 6392 * based on the netmask. A netmask of all ones (which is automatically 6393 * assumed when RTF_HOST is set) results in an IRE_HOST being created. 6394 * An all zeroes netmask implies a default route so an IRE_DEFAULT is 6395 * created. Otherwise, an IRE_PREFIX route is created for the 6396 * destination prefix. 6397 */ 6398 if (mask == IP_HOST_MASK) 6399 type = IRE_HOST; 6400 else if (mask == 0) 6401 type = IRE_DEFAULT; 6402 else 6403 type = IRE_PREFIX; 6404 6405 /* check for a duplicate entry */ 6406 ire = ire_ftable_lookup(dst_addr, mask, gw_addr, type, ipif_arg, 6407 NULL, ALL_ZONES, 0, match_flags | MATCH_IRE_MASK | MATCH_IRE_GW); 6408 if (ire != NULL) { 6409 ire_refrele(gw_ire); 6410 ire_refrele(ire); 6411 return (EEXIST); 6412 } 6413 6414 /* Create the IRE. */ 6415 ire = ire_create( 6416 (uchar_t *)&dst_addr, /* dest address */ 6417 (uchar_t *)&mask, /* mask */ 6418 /* src address assigned by the caller? */ 6419 (uchar_t *)(((src_addr != INADDR_ANY) && 6420 (flags & RTF_SETSRC)) ? &src_addr : NULL), 6421 (uchar_t *)&gw_addr, /* gateway address */ 6422 NULL, /* no in-srcaddress */ 6423 &gw_ire->ire_max_frag, 6424 NULL, /* no Fast Path header */ 6425 NULL, /* no recv-from queue */ 6426 NULL, /* no send-to queue */ 6427 (ushort_t)type, /* IRE type */ 6428 NULL, 6429 ipif_arg, 6430 NULL, 6431 0, 6432 0, 6433 0, 6434 flags, 6435 &gw_ire->ire_uinfo); /* Inherit ULP info from gw */ 6436 if (ire == NULL) { 6437 ire_refrele(gw_ire); 6438 return (ENOMEM); 6439 } 6440 6441 /* 6442 * POLICY: should we allow an RTF_HOST with address INADDR_ANY? 6443 * SUN/OS socket stuff does but do we really want to allow 0.0.0.0? 6444 */ 6445 6446 /* Add the new IRE. */ 6447 error = ire_add(&ire, q, mp, func); 6448 if (error != 0) { 6449 /* 6450 * In the result of failure, ire_add() will have already 6451 * deleted the ire in question, so there is no need to 6452 * do that here. 6453 */ 6454 ire_refrele(gw_ire); 6455 return (error); 6456 } 6457 6458 if (flags & RTF_MULTIRT) { 6459 /* 6460 * Invoke the CGTP (multirouting) filtering module 6461 * to add the dst address in the filtering database. 6462 * Replicated inbound packets coming from that address 6463 * will be filtered to discard the duplicates. 6464 * It is not necessary to call the CGTP filter hook 6465 * when the dst address is a broadcast or multicast, 6466 * because an IP source address cannot be a broadcast 6467 * or a multicast. 6468 */ 6469 ire_t *ire_dst = ire_ctable_lookup(ire->ire_addr, 0, 6470 IRE_BROADCAST, NULL, NULL, MATCH_IRE_TYPE); 6471 if (ire_dst != NULL) { 6472 ip_cgtp_bcast_add(ire, ire_dst); 6473 ire_refrele(ire_dst); 6474 goto save_ire; 6475 } 6476 if ((ip_cgtp_filter_ops != NULL) && !CLASSD(ire->ire_addr)) { 6477 int res = ip_cgtp_filter_ops->cfo_add_dest_v4( 6478 ire->ire_addr, 6479 ire->ire_gateway_addr, 6480 ire->ire_src_addr, 6481 gw_ire->ire_src_addr); 6482 if (res != 0) { 6483 ire_refrele(gw_ire); 6484 ire_delete(ire); 6485 return (res); 6486 } 6487 } 6488 } 6489 6490 save_ire: 6491 if (gw_ire != NULL) { 6492 ire_refrele(gw_ire); 6493 } 6494 /* 6495 * We do not do save_ire for the routes added with RTA_SRCIFP 6496 * flag. This route is only added and deleted by mipagent. 6497 * So, for simplicity of design, we refrain from saving 6498 * ires that are created with srcif value. This may change 6499 * in future if we find more usage of srcifp feature. 6500 */ 6501 if (ipif != NULL && src_ipif == NULL) { 6502 /* 6503 * Save enough information so that we can recreate the IRE if 6504 * the interface goes down and then up. The metrics associated 6505 * with the route will be saved as well when rts_setmetrics() is 6506 * called after the IRE has been created. In the case where 6507 * memory cannot be allocated, none of this information will be 6508 * saved. 6509 */ 6510 ipif_save_ire(ipif, ire); 6511 } 6512 if (ioctl_msg) 6513 ip_rts_rtmsg(RTM_OLDADD, ire, 0); 6514 if (ire_arg != NULL) { 6515 /* 6516 * Store the ire that was successfully added into where ire_arg 6517 * points to so that callers don't have to look it up 6518 * themselves (but they are responsible for ire_refrele()ing 6519 * the ire when they are finished with it). 6520 */ 6521 *ire_arg = ire; 6522 } else { 6523 ire_refrele(ire); /* Held in ire_add */ 6524 } 6525 if (ipif_refheld) 6526 ipif_refrele(ipif); 6527 return (0); 6528 } 6529 6530 /* 6531 * ip_rt_delete is called to delete an IPv4 route. 6532 * ipif_arg is passed in to associate it with the correct interface. 6533 * src_ipif is passed to associate the incoming interface of the packet. 6534 * We may need to restart this operation if the ipif cannot be looked up 6535 * due to an exclusive operation that is currently in progress. The restart 6536 * entry point is specified by 'func' 6537 */ 6538 /* ARGSUSED4 */ 6539 int 6540 ip_rt_delete(ipaddr_t dst_addr, ipaddr_t mask, ipaddr_t gw_addr, 6541 uint_t rtm_addrs, int flags, ipif_t *ipif_arg, ipif_t *src_ipif, 6542 boolean_t ioctl_msg, queue_t *q, mblk_t *mp, ipsq_func_t func) 6543 { 6544 ire_t *ire = NULL; 6545 ipif_t *ipif; 6546 boolean_t ipif_refheld = B_FALSE; 6547 uint_t type; 6548 uint_t match_flags = MATCH_IRE_TYPE; 6549 int err = 0; 6550 6551 ip1dbg(("ip_rt_delete:")); 6552 /* 6553 * If this is the case of RTF_HOST being set, then we set the netmask 6554 * to all ones. Otherwise, we use the netmask if one was supplied. 6555 */ 6556 if (flags & RTF_HOST) { 6557 mask = IP_HOST_MASK; 6558 match_flags |= MATCH_IRE_MASK; 6559 } else if (rtm_addrs & RTA_NETMASK) { 6560 match_flags |= MATCH_IRE_MASK; 6561 } 6562 6563 /* 6564 * Note that RTF_GATEWAY is never set on a delete, therefore 6565 * we check if the gateway address is one of our interfaces first, 6566 * and fall back on RTF_GATEWAY routes. 6567 * 6568 * This makes it possible to delete an original 6569 * IRE_IF_NORESOLVER/IRE_IF_RESOLVER - consistent with SunOS 4.1. 6570 * 6571 * As the interface index specified with the RTA_IFP sockaddr is the 6572 * same for all ipif's off of an ill, the matching logic below uses 6573 * MATCH_IRE_ILL if such an index was specified. This means a route 6574 * sharing the same prefix and interface index as the the route 6575 * intended to be deleted might be deleted instead if a RTA_IFP sockaddr 6576 * is specified in the request. 6577 * 6578 * On the other hand, since the gateway address will usually be 6579 * different for each ipif on the system, the matching logic 6580 * uses MATCH_IRE_IPIF in the case of a traditional interface 6581 * route. This means that interface routes for the same prefix can be 6582 * uniquely identified if they belong to distinct ipif's and if a 6583 * RTA_IFP sockaddr is not present. 6584 * 6585 * For more detail on specifying routes by gateway address and by 6586 * interface index, see the comments in ip_rt_add(). 6587 * gw_addr could be zero in some cases when both RTA_SRCIFP and 6588 * RTA_IFP are specified. If RTA_SRCIFP is specified and both 6589 * RTA_IFP and gateway_addr are NULL/zero, then delete will not 6590 * succeed. 6591 */ 6592 if (src_ipif != NULL) { 6593 if (ipif_arg == NULL && gw_addr != 0) { 6594 ipif_arg = ipif_lookup_interface(gw_addr, dst_addr, 6595 q, mp, func, &err); 6596 if (ipif_arg != NULL) 6597 ipif_refheld = B_TRUE; 6598 } 6599 if (ipif_arg == NULL) { 6600 err = (err == EINPROGRESS) ? err : ESRCH; 6601 return (err); 6602 } 6603 ipif = ipif_arg; 6604 } else { 6605 ipif = ipif_lookup_interface(gw_addr, dst_addr, 6606 q, mp, func, &err); 6607 if (ipif != NULL) 6608 ipif_refheld = B_TRUE; 6609 else if (err == EINPROGRESS) 6610 return (err); 6611 else 6612 err = 0; 6613 } 6614 if (ipif != NULL) { 6615 if (ipif_arg != NULL) { 6616 if (ipif_refheld) { 6617 ipif_refrele(ipif); 6618 ipif_refheld = B_FALSE; 6619 } 6620 ipif = ipif_arg; 6621 match_flags |= MATCH_IRE_ILL; 6622 } else { 6623 match_flags |= MATCH_IRE_IPIF; 6624 } 6625 if (src_ipif != NULL) { 6626 ire = ire_srcif_table_lookup(dst_addr, IRE_INTERFACE, 6627 ipif, src_ipif->ipif_ill, match_flags); 6628 } else { 6629 if (ipif->ipif_ire_type == IRE_LOOPBACK) { 6630 ire = ire_ctable_lookup(dst_addr, 0, 6631 IRE_LOOPBACK, ipif, ALL_ZONES, match_flags); 6632 } 6633 if (ire == NULL) { 6634 ire = ire_ftable_lookup(dst_addr, mask, 0, 6635 IRE_INTERFACE, ipif, NULL, ALL_ZONES, 0, 6636 match_flags); 6637 } 6638 } 6639 } 6640 6641 if (ire == NULL) { 6642 /* 6643 * At this point, the gateway address is not one of our own 6644 * addresses or a matching interface route was not found. We 6645 * set the IRE type to lookup based on whether 6646 * this is a host route, a default route or just a prefix. 6647 * 6648 * If an ipif_arg was passed in, then the lookup is based on an 6649 * interface index so MATCH_IRE_ILL is added to match_flags. 6650 * In any case, MATCH_IRE_IPIF is cleared and MATCH_IRE_GW is 6651 * set as the route being looked up is not a traditional 6652 * interface route. 6653 * Since we do not add gateway route with srcipif, we don't 6654 * expect to find it either. 6655 */ 6656 if (src_ipif != NULL) { 6657 if (ipif_refheld) 6658 ipif_refrele(ipif); 6659 return (ESRCH); 6660 } else { 6661 match_flags &= ~MATCH_IRE_IPIF; 6662 match_flags |= MATCH_IRE_GW; 6663 if (ipif_arg != NULL) 6664 match_flags |= MATCH_IRE_ILL; 6665 if (mask == IP_HOST_MASK) 6666 type = IRE_HOST; 6667 else if (mask == 0) 6668 type = IRE_DEFAULT; 6669 else 6670 type = IRE_PREFIX; 6671 ire = ire_ftable_lookup(dst_addr, mask, gw_addr, type, 6672 ipif_arg, NULL, ALL_ZONES, 0, match_flags); 6673 if (ire == NULL && type == IRE_HOST) { 6674 ire = ire_ftable_lookup(dst_addr, mask, gw_addr, 6675 IRE_HOST_REDIRECT, ipif_arg, NULL, 6676 ALL_ZONES, 0, match_flags); 6677 } 6678 } 6679 } 6680 6681 if (ipif_refheld) 6682 ipif_refrele(ipif); 6683 6684 /* ipif is not refheld anymore */ 6685 if (ire == NULL) 6686 return (ESRCH); 6687 6688 if (ire->ire_flags & RTF_MULTIRT) { 6689 /* 6690 * Invoke the CGTP (multirouting) filtering module 6691 * to remove the dst address from the filtering database. 6692 * Packets coming from that address will no longer be 6693 * filtered to remove duplicates. 6694 */ 6695 if (ip_cgtp_filter_ops != NULL) { 6696 err = ip_cgtp_filter_ops->cfo_del_dest_v4(ire->ire_addr, 6697 ire->ire_gateway_addr); 6698 } 6699 ip_cgtp_bcast_delete(ire); 6700 } 6701 6702 ipif = ire->ire_ipif; 6703 /* 6704 * Removing from ipif_saved_ire_mp is not necessary 6705 * when src_ipif being non-NULL. ip_rt_add does not 6706 * save the ires which src_ipif being non-NULL. 6707 */ 6708 if (ipif != NULL && src_ipif == NULL) { 6709 ipif_remove_ire(ipif, ire); 6710 } 6711 if (ioctl_msg) 6712 ip_rts_rtmsg(RTM_OLDDEL, ire, 0); 6713 ire_delete(ire); 6714 ire_refrele(ire); 6715 return (err); 6716 } 6717 6718 /* 6719 * ip_siocaddrt is called to complete processing of an SIOCADDRT IOCTL. 6720 */ 6721 /* ARGSUSED */ 6722 int 6723 ip_siocaddrt(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 6724 ip_ioctl_cmd_t *ipip, void *dummy_if_req) 6725 { 6726 ipaddr_t dst_addr; 6727 ipaddr_t gw_addr; 6728 ipaddr_t mask; 6729 int error = 0; 6730 mblk_t *mp1; 6731 struct rtentry *rt; 6732 ipif_t *ipif = NULL; 6733 6734 ip1dbg(("ip_siocaddrt:")); 6735 /* Existence of mp1 verified in ip_wput_nondata */ 6736 mp1 = mp->b_cont->b_cont; 6737 rt = (struct rtentry *)mp1->b_rptr; 6738 6739 dst_addr = ((sin_t *)&rt->rt_dst)->sin_addr.s_addr; 6740 gw_addr = ((sin_t *)&rt->rt_gateway)->sin_addr.s_addr; 6741 6742 /* 6743 * If the RTF_HOST flag is on, this is a request to assign a gateway 6744 * to a particular host address. In this case, we set the netmask to 6745 * all ones for the particular destination address. Otherwise, 6746 * determine the netmask to be used based on dst_addr and the interfaces 6747 * in use. 6748 */ 6749 if (rt->rt_flags & RTF_HOST) { 6750 mask = IP_HOST_MASK; 6751 } else { 6752 /* 6753 * Note that ip_subnet_mask returns a zero mask in the case of 6754 * default (an all-zeroes address). 6755 */ 6756 mask = ip_subnet_mask(dst_addr, &ipif); 6757 } 6758 6759 error = ip_rt_add(dst_addr, mask, gw_addr, 0, rt->rt_flags, 6760 NULL, NULL, NULL, B_TRUE, q, mp, ip_process_ioctl); 6761 if (ipif != NULL) 6762 ipif_refrele(ipif); 6763 return (error); 6764 } 6765 6766 /* 6767 * ip_siocdelrt is called to complete processing of an SIOCDELRT IOCTL. 6768 */ 6769 /* ARGSUSED */ 6770 int 6771 ip_siocdelrt(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 6772 ip_ioctl_cmd_t *ipip, void *dummy_if_req) 6773 { 6774 ipaddr_t dst_addr; 6775 ipaddr_t gw_addr; 6776 ipaddr_t mask; 6777 int error; 6778 mblk_t *mp1; 6779 struct rtentry *rt; 6780 ipif_t *ipif = NULL; 6781 6782 ip1dbg(("ip_siocdelrt:")); 6783 /* Existence of mp1 verified in ip_wput_nondata */ 6784 mp1 = mp->b_cont->b_cont; 6785 rt = (struct rtentry *)mp1->b_rptr; 6786 6787 dst_addr = ((sin_t *)&rt->rt_dst)->sin_addr.s_addr; 6788 gw_addr = ((sin_t *)&rt->rt_gateway)->sin_addr.s_addr; 6789 6790 /* 6791 * If the RTF_HOST flag is on, this is a request to delete a gateway 6792 * to a particular host address. In this case, we set the netmask to 6793 * all ones for the particular destination address. Otherwise, 6794 * determine the netmask to be used based on dst_addr and the interfaces 6795 * in use. 6796 */ 6797 if (rt->rt_flags & RTF_HOST) { 6798 mask = IP_HOST_MASK; 6799 } else { 6800 /* 6801 * Note that ip_subnet_mask returns a zero mask in the case of 6802 * default (an all-zeroes address). 6803 */ 6804 mask = ip_subnet_mask(dst_addr, &ipif); 6805 } 6806 6807 error = ip_rt_delete(dst_addr, mask, gw_addr, 6808 RTA_DST | RTA_GATEWAY | RTA_NETMASK, rt->rt_flags, NULL, NULL, 6809 B_TRUE, q, mp, ip_process_ioctl); 6810 if (ipif != NULL) 6811 ipif_refrele(ipif); 6812 return (error); 6813 } 6814 6815 /* 6816 * Enqueue the mp onto the ipsq, chained by b_next. 6817 * b_prev stores the function to be executed later, and b_queue the queue 6818 * where this mp originated. 6819 */ 6820 void 6821 ipsq_enq(ipsq_t *ipsq, queue_t *q, mblk_t *mp, ipsq_func_t func, int type, 6822 ill_t *pending_ill) 6823 { 6824 conn_t *connp = NULL; 6825 6826 ASSERT(MUTEX_HELD(&ipsq->ipsq_lock)); 6827 ASSERT(func != NULL); 6828 6829 mp->b_queue = q; 6830 mp->b_prev = (void *)func; 6831 mp->b_next = NULL; 6832 6833 switch (type) { 6834 case CUR_OP: 6835 if (ipsq->ipsq_mptail != NULL) { 6836 ASSERT(ipsq->ipsq_mphead != NULL); 6837 ipsq->ipsq_mptail->b_next = mp; 6838 } else { 6839 ASSERT(ipsq->ipsq_mphead == NULL); 6840 ipsq->ipsq_mphead = mp; 6841 } 6842 ipsq->ipsq_mptail = mp; 6843 break; 6844 6845 case NEW_OP: 6846 if (ipsq->ipsq_xopq_mptail != NULL) { 6847 ASSERT(ipsq->ipsq_xopq_mphead != NULL); 6848 ipsq->ipsq_xopq_mptail->b_next = mp; 6849 } else { 6850 ASSERT(ipsq->ipsq_xopq_mphead == NULL); 6851 ipsq->ipsq_xopq_mphead = mp; 6852 } 6853 ipsq->ipsq_xopq_mptail = mp; 6854 break; 6855 default: 6856 cmn_err(CE_PANIC, "ipsq_enq %d type \n", type); 6857 } 6858 6859 if (CONN_Q(q) && pending_ill != NULL) { 6860 connp = Q_TO_CONN(q); 6861 6862 ASSERT(MUTEX_HELD(&connp->conn_lock)); 6863 connp->conn_oper_pending_ill = pending_ill; 6864 } 6865 } 6866 6867 /* 6868 * Return the mp at the head of the ipsq. After emptying the ipsq 6869 * look at the next ioctl, if this ioctl is complete. Otherwise 6870 * return, we will resume when we complete the current ioctl. 6871 * The current ioctl will wait till it gets a response from the 6872 * driver below. 6873 */ 6874 static mblk_t * 6875 ipsq_dq(ipsq_t *ipsq) 6876 { 6877 mblk_t *mp; 6878 6879 ASSERT(MUTEX_HELD(&ipsq->ipsq_lock)); 6880 6881 mp = ipsq->ipsq_mphead; 6882 if (mp != NULL) { 6883 ipsq->ipsq_mphead = mp->b_next; 6884 if (ipsq->ipsq_mphead == NULL) 6885 ipsq->ipsq_mptail = NULL; 6886 mp->b_next = NULL; 6887 return (mp); 6888 } 6889 if (ipsq->ipsq_current_ipif != NULL) 6890 return (NULL); 6891 mp = ipsq->ipsq_xopq_mphead; 6892 if (mp != NULL) { 6893 ipsq->ipsq_xopq_mphead = mp->b_next; 6894 if (ipsq->ipsq_xopq_mphead == NULL) 6895 ipsq->ipsq_xopq_mptail = NULL; 6896 mp->b_next = NULL; 6897 return (mp); 6898 } 6899 return (NULL); 6900 } 6901 6902 /* 6903 * Enter the ipsq corresponding to ill, by waiting synchronously till 6904 * we can enter the ipsq exclusively. Unless 'force' is used, the ipsq 6905 * will have to drain completely before ipsq_enter returns success. 6906 * ipsq_current_ipif will be set if some exclusive ioctl is in progress, 6907 * and the ipsq_exit logic will start the next enqueued ioctl after 6908 * completion of the current ioctl. If 'force' is used, we don't wait 6909 * for the enqueued ioctls. This is needed when a conn_close wants to 6910 * enter the ipsq and abort an ioctl that is somehow stuck. Unplumb 6911 * of an ill can also use this option. But we dont' use it currently. 6912 */ 6913 #define ENTER_SQ_WAIT_TICKS 100 6914 boolean_t 6915 ipsq_enter(ill_t *ill, boolean_t force) 6916 { 6917 ipsq_t *ipsq; 6918 boolean_t waited_enough = B_FALSE; 6919 6920 /* 6921 * Holding the ill_lock prevents <ill-ipsq> assocs from changing. 6922 * Since the <ill-ipsq> assocs could change while we wait for the 6923 * writer, it is easier to wait on a fixed global rather than try to 6924 * cv_wait on a changing ipsq. 6925 */ 6926 mutex_enter(&ill->ill_lock); 6927 for (;;) { 6928 if (ill->ill_state_flags & ILL_CONDEMNED) { 6929 mutex_exit(&ill->ill_lock); 6930 return (B_FALSE); 6931 } 6932 6933 ipsq = ill->ill_phyint->phyint_ipsq; 6934 mutex_enter(&ipsq->ipsq_lock); 6935 if (ipsq->ipsq_writer == NULL && 6936 (ipsq->ipsq_current_ipif == NULL || waited_enough)) { 6937 break; 6938 } else if (ipsq->ipsq_writer != NULL) { 6939 mutex_exit(&ipsq->ipsq_lock); 6940 cv_wait(&ill->ill_cv, &ill->ill_lock); 6941 } else { 6942 mutex_exit(&ipsq->ipsq_lock); 6943 if (force) { 6944 (void) cv_timedwait(&ill->ill_cv, 6945 &ill->ill_lock, 6946 lbolt + ENTER_SQ_WAIT_TICKS); 6947 waited_enough = B_TRUE; 6948 continue; 6949 } else { 6950 cv_wait(&ill->ill_cv, &ill->ill_lock); 6951 } 6952 } 6953 } 6954 6955 ASSERT(ipsq->ipsq_mphead == NULL && ipsq->ipsq_mptail == NULL); 6956 ASSERT(ipsq->ipsq_reentry_cnt == 0); 6957 ipsq->ipsq_writer = curthread; 6958 ipsq->ipsq_reentry_cnt++; 6959 #ifdef ILL_DEBUG 6960 ipsq->ipsq_depth = getpcstack(ipsq->ipsq_stack, IP_STACK_DEPTH); 6961 #endif 6962 mutex_exit(&ipsq->ipsq_lock); 6963 mutex_exit(&ill->ill_lock); 6964 return (B_TRUE); 6965 } 6966 6967 /* 6968 * The ipsq_t (ipsq) is the synchronization data structure used to serialize 6969 * certain critical operations like plumbing (i.e. most set ioctls), 6970 * multicast joins, igmp/mld timers, IPMP operations etc. On a non-IPMP 6971 * system there is 1 ipsq per phyint. On an IPMP system there is 1 ipsq per 6972 * IPMP group. The ipsq serializes exclusive ioctls issued by applications 6973 * on a per ipsq basis in ipsq_xopq_mphead. It also protects against multiple 6974 * threads executing in the ipsq. Responses from the driver pertain to the 6975 * current ioctl (say a DL_BIND_ACK in response to a DL_BIND_REQUEST initiated 6976 * as part of bringing up the interface) and are enqueued in ipsq_mphead. 6977 * 6978 * If a thread does not want to reenter the ipsq when it is already writer, 6979 * it must make sure that the specified reentry point to be called later 6980 * when the ipsq is empty, nor any code path starting from the specified reentry 6981 * point must never ever try to enter the ipsq again. Otherwise it can lead 6982 * to an infinite loop. The reentry point ip_rput_dlpi_writer is an example. 6983 * When the thread that is currently exclusive finishes, it (ipsq_exit) 6984 * dequeues the requests waiting to become exclusive in ipsq_mphead and calls 6985 * the reentry point. When the list at ipsq_mphead becomes empty ipsq_exit 6986 * proceeds to dequeue the next ioctl in ipsq_xopq_mphead and start the next 6987 * ioctl if the current ioctl has completed. If the current ioctl is still 6988 * in progress it simply returns. The current ioctl could be waiting for 6989 * a response from another module (arp_ or the driver or could be waiting for 6990 * the ipif/ill/ire refcnts to drop to zero. In such a case the ipsq_pending_mp 6991 * and ipsq_pending_ipif are set. ipsq_current_ipif is set throughout the 6992 * execution of the ioctl and ipsq_exit does not start the next ioctl unless 6993 * ipsq_current_ipif is clear which happens only on ioctl completion. 6994 */ 6995 6996 /* 6997 * Try to enter the ipsq exclusively, corresponding to ipif or ill. (only 1 of 6998 * ipif or ill can be specified). The caller ensures ipif or ill is valid by 6999 * ref-holding it if necessary. If the ipsq cannot be entered, the mp is queued 7000 * completion. 7001 */ 7002 ipsq_t * 7003 ipsq_try_enter(ipif_t *ipif, ill_t *ill, queue_t *q, mblk_t *mp, 7004 ipsq_func_t func, int type, boolean_t reentry_ok) 7005 { 7006 ipsq_t *ipsq; 7007 7008 /* Only 1 of ipif or ill can be specified */ 7009 ASSERT((ipif != NULL) ^ (ill != NULL)); 7010 if (ipif != NULL) 7011 ill = ipif->ipif_ill; 7012 7013 /* 7014 * lock ordering ill_g_lock -> conn_lock -> ill_lock -> ipsq_lock 7015 * ipsq of an ill can't change when ill_lock is held. 7016 */ 7017 GRAB_CONN_LOCK(q); 7018 mutex_enter(&ill->ill_lock); 7019 ipsq = ill->ill_phyint->phyint_ipsq; 7020 mutex_enter(&ipsq->ipsq_lock); 7021 7022 /* 7023 * 1. Enter the ipsq if we are already writer and reentry is ok. 7024 * (Note: If the caller does not specify reentry_ok then neither 7025 * 'func' nor any of its callees must ever attempt to enter the ipsq 7026 * again. Otherwise it can lead to an infinite loop 7027 * 2. Enter the ipsq if there is no current writer and this attempted 7028 * entry is part of the current ioctl or operation 7029 * 3. Enter the ipsq if there is no current writer and this is a new 7030 * ioctl (or operation) and the ioctl (or operation) queue is 7031 * empty and there is no ioctl (or operation) currently in progress 7032 */ 7033 if ((ipsq->ipsq_writer == NULL && ((type == CUR_OP) || 7034 (type == NEW_OP && ipsq->ipsq_xopq_mphead == NULL && 7035 ipsq->ipsq_current_ipif == NULL))) || 7036 (ipsq->ipsq_writer == curthread && reentry_ok)) { 7037 /* Success. */ 7038 ipsq->ipsq_reentry_cnt++; 7039 ipsq->ipsq_writer = curthread; 7040 mutex_exit(&ipsq->ipsq_lock); 7041 mutex_exit(&ill->ill_lock); 7042 RELEASE_CONN_LOCK(q); 7043 #ifdef ILL_DEBUG 7044 ipsq->ipsq_depth = getpcstack(ipsq->ipsq_stack, IP_STACK_DEPTH); 7045 #endif 7046 return (ipsq); 7047 } 7048 7049 ipsq_enq(ipsq, q, mp, func, type, ill); 7050 7051 mutex_exit(&ipsq->ipsq_lock); 7052 mutex_exit(&ill->ill_lock); 7053 RELEASE_CONN_LOCK(q); 7054 return (NULL); 7055 } 7056 7057 /* 7058 * Try to enter the ipsq exclusively, corresponding to ipif or ill. (only 1 of 7059 * ipif or ill can be specified). The caller ensures ipif or ill is valid by 7060 * ref-holding it if necessary. If the ipsq cannot be entered, the mp is queued 7061 * completion. 7062 * 7063 * This function does a refrele on the ipif/ill. 7064 */ 7065 void 7066 qwriter_ip(ipif_t *ipif, ill_t *ill, queue_t *q, mblk_t *mp, 7067 ipsq_func_t func, int type, boolean_t reentry_ok) 7068 { 7069 ipsq_t *ipsq; 7070 7071 ipsq = ipsq_try_enter(ipif, ill, q, mp, func, type, reentry_ok); 7072 /* 7073 * Caller must have done a refhold on the ipif. ipif_refrele 7074 * happens on the passed ipif. We can do this since we are 7075 * already exclusive, or we won't access ipif henceforth, Both 7076 * this func and caller will just return if we ipsq_try_enter 7077 * fails above. This is needed because func needs to 7078 * see the correct refcount. Eg. removeif can work only then. 7079 */ 7080 if (ipif != NULL) 7081 ipif_refrele(ipif); 7082 else 7083 ill_refrele(ill); 7084 if (ipsq != NULL) { 7085 (*func)(ipsq, q, mp, NULL); 7086 ipsq_exit(ipsq, B_TRUE, B_TRUE); 7087 } 7088 } 7089 7090 /* 7091 * If there are more than ILL_GRP_CNT ills in a group, 7092 * we use kmem alloc'd buffers, else use the stack 7093 */ 7094 #define ILL_GRP_CNT 14 7095 /* 7096 * Drain the ipsq, if there are messages on it, and then leave the ipsq. 7097 * Called by a thread that is currently exclusive on this ipsq. 7098 */ 7099 void 7100 ipsq_exit(ipsq_t *ipsq, boolean_t start_igmp_timer, boolean_t start_mld_timer) 7101 { 7102 queue_t *q; 7103 mblk_t *mp; 7104 ipsq_func_t func; 7105 int next; 7106 ill_t **ill_list = NULL; 7107 size_t ill_list_size = 0; 7108 int cnt = 0; 7109 boolean_t need_ipsq_free = B_FALSE; 7110 7111 ASSERT(IAM_WRITER_IPSQ(ipsq)); 7112 mutex_enter(&ipsq->ipsq_lock); 7113 ASSERT(ipsq->ipsq_reentry_cnt >= 1); 7114 if (ipsq->ipsq_reentry_cnt != 1) { 7115 ipsq->ipsq_reentry_cnt--; 7116 mutex_exit(&ipsq->ipsq_lock); 7117 return; 7118 } 7119 7120 mp = ipsq_dq(ipsq); 7121 while (mp != NULL) { 7122 again: 7123 mutex_exit(&ipsq->ipsq_lock); 7124 func = (ipsq_func_t)mp->b_prev; 7125 q = (queue_t *)mp->b_queue; 7126 mp->b_prev = NULL; 7127 mp->b_queue = NULL; 7128 7129 /* 7130 * If 'q' is an conn queue, it is valid, since we did a 7131 * a refhold on the connp, at the start of the ioctl. 7132 * If 'q' is an ill queue, it is valid, since close of an 7133 * ill will clean up the 'ipsq'. 7134 */ 7135 (*func)(ipsq, q, mp, NULL); 7136 7137 mutex_enter(&ipsq->ipsq_lock); 7138 mp = ipsq_dq(ipsq); 7139 } 7140 7141 mutex_exit(&ipsq->ipsq_lock); 7142 7143 /* 7144 * Need to grab the locks in the right order. Need to 7145 * atomically check (under ipsq_lock) that there are no 7146 * messages before relinquishing the ipsq. Also need to 7147 * atomically wakeup waiters on ill_cv while holding ill_lock. 7148 * Holding ill_g_lock ensures that ipsq list of ills is stable. 7149 * If we need to call ill_split_ipsq and change <ill-ipsq> we need 7150 * to grab ill_g_lock as writer. 7151 */ 7152 rw_enter(&ill_g_lock, ipsq->ipsq_split ? RW_WRITER : RW_READER); 7153 7154 /* ipsq_refs can't change while ill_g_lock is held as reader */ 7155 if (ipsq->ipsq_refs != 0) { 7156 /* At most 2 ills v4/v6 per phyint */ 7157 cnt = ipsq->ipsq_refs << 1; 7158 ill_list_size = cnt * sizeof (ill_t *); 7159 /* 7160 * If memory allocation fails, we will do the split 7161 * the next time ipsq_exit is called for whatever reason. 7162 * As long as the ipsq_split flag is set the need to 7163 * split is remembered. 7164 */ 7165 ill_list = kmem_zalloc(ill_list_size, KM_NOSLEEP); 7166 if (ill_list != NULL) 7167 cnt = ill_lock_ipsq_ills(ipsq, ill_list, cnt); 7168 } 7169 mutex_enter(&ipsq->ipsq_lock); 7170 mp = ipsq_dq(ipsq); 7171 if (mp != NULL) { 7172 /* oops, some message has landed up, we can't get out */ 7173 if (ill_list != NULL) 7174 ill_unlock_ills(ill_list, cnt); 7175 rw_exit(&ill_g_lock); 7176 if (ill_list != NULL) 7177 kmem_free(ill_list, ill_list_size); 7178 ill_list = NULL; 7179 ill_list_size = 0; 7180 cnt = 0; 7181 goto again; 7182 } 7183 7184 /* 7185 * Split only if no ioctl is pending and if memory alloc succeeded 7186 * above. 7187 */ 7188 if (ipsq->ipsq_split && ipsq->ipsq_current_ipif == NULL && 7189 ill_list != NULL) { 7190 /* 7191 * No new ill can join this ipsq since we are holding the 7192 * ill_g_lock. Hence ill_split_ipsq can safely traverse the 7193 * ipsq. ill_split_ipsq may fail due to memory shortage. 7194 * If so we will retry on the next ipsq_exit. 7195 */ 7196 ipsq->ipsq_split = ill_split_ipsq(ipsq); 7197 } 7198 7199 /* 7200 * We are holding the ipsq lock, hence no new messages can 7201 * land up on the ipsq, and there are no messages currently. 7202 * Now safe to get out. Wake up waiters and relinquish ipsq 7203 * atomically while holding ill locks. 7204 */ 7205 ipsq->ipsq_writer = NULL; 7206 ipsq->ipsq_reentry_cnt--; 7207 ASSERT(ipsq->ipsq_reentry_cnt == 0); 7208 #ifdef ILL_DEBUG 7209 ipsq->ipsq_depth = 0; 7210 #endif 7211 mutex_exit(&ipsq->ipsq_lock); 7212 /* 7213 * For IPMP this should wake up all ills in this ipsq. 7214 * We need to hold the ill_lock while waking up waiters to 7215 * avoid missed wakeups. But there is no need to acquire all 7216 * the ill locks and then wakeup. If we have not acquired all 7217 * the locks (due to memory failure above) ill_signal_ipsq_ills 7218 * wakes up ills one at a time after getting the right ill_lock 7219 */ 7220 ill_signal_ipsq_ills(ipsq, ill_list != NULL); 7221 if (ill_list != NULL) 7222 ill_unlock_ills(ill_list, cnt); 7223 if (ipsq->ipsq_refs == 0) 7224 need_ipsq_free = B_TRUE; 7225 rw_exit(&ill_g_lock); 7226 if (ill_list != 0) 7227 kmem_free(ill_list, ill_list_size); 7228 7229 if (need_ipsq_free) { 7230 /* 7231 * Free the ipsq. ipsq_refs can't increase because ipsq can't be 7232 * looked up. ipsq can be looked up only thru ill or phyint 7233 * and there are no ills/phyint on this ipsq. 7234 */ 7235 ipsq_delete(ipsq); 7236 } 7237 /* 7238 * Now start any igmp or mld timers that could not be started 7239 * while inside the ipsq. The timers can't be started while inside 7240 * the ipsq, since igmp_start_timers may need to call untimeout() 7241 * which can't be done while holding a lock i.e. the ipsq. Otherwise 7242 * there could be a deadlock since the timeout handlers 7243 * mld_timeout_handler / igmp_timeout_handler also synchronously 7244 * wait in ipsq_enter() trying to get the ipsq. 7245 * 7246 * However there is one exception to the above. If this thread is 7247 * itself the igmp/mld timeout handler thread, then we don't want 7248 * to start any new timer until the current handler is done. The 7249 * handler thread passes in B_FALSE for start_igmp/mld_timers, while 7250 * all others pass B_TRUE. 7251 */ 7252 if (start_igmp_timer) { 7253 mutex_enter(&igmp_timer_lock); 7254 next = igmp_deferred_next; 7255 igmp_deferred_next = INFINITY; 7256 mutex_exit(&igmp_timer_lock); 7257 7258 if (next != INFINITY) 7259 igmp_start_timers(next); 7260 } 7261 7262 if (start_mld_timer) { 7263 mutex_enter(&mld_timer_lock); 7264 next = mld_deferred_next; 7265 mld_deferred_next = INFINITY; 7266 mutex_exit(&mld_timer_lock); 7267 7268 if (next != INFINITY) 7269 mld_start_timers(next); 7270 } 7271 } 7272 7273 /* 7274 * The ill is closing. Flush all messages on the ipsq that originated 7275 * from this ill. Usually there wont' be any messages on the ipsq_xopq_mphead 7276 * for this ill since ipsq_enter could not have entered until then. 7277 * New messages can't be queued since the CONDEMNED flag is set. 7278 */ 7279 static void 7280 ipsq_flush(ill_t *ill) 7281 { 7282 queue_t *q; 7283 mblk_t *prev; 7284 mblk_t *mp; 7285 mblk_t *mp_next; 7286 ipsq_t *ipsq; 7287 7288 ASSERT(IAM_WRITER_ILL(ill)); 7289 ipsq = ill->ill_phyint->phyint_ipsq; 7290 /* 7291 * Flush any messages sent up by the driver. 7292 */ 7293 mutex_enter(&ipsq->ipsq_lock); 7294 for (prev = NULL, mp = ipsq->ipsq_mphead; mp != NULL; mp = mp_next) { 7295 mp_next = mp->b_next; 7296 q = mp->b_queue; 7297 if (q == ill->ill_rq || q == ill->ill_wq) { 7298 /* Remove the mp from the ipsq */ 7299 if (prev == NULL) 7300 ipsq->ipsq_mphead = mp->b_next; 7301 else 7302 prev->b_next = mp->b_next; 7303 if (ipsq->ipsq_mptail == mp) { 7304 ASSERT(mp_next == NULL); 7305 ipsq->ipsq_mptail = prev; 7306 } 7307 ip_ioctl_freemsg(mp); 7308 } else { 7309 prev = mp; 7310 } 7311 } 7312 mutex_exit(&ipsq->ipsq_lock); 7313 (void) ipsq_pending_mp_cleanup(ill, NULL); 7314 ipsq_xopq_mp_cleanup(ill, NULL); 7315 ill_pending_mp_cleanup(ill); 7316 } 7317 7318 /* 7319 * Clean up one squeue element. ill_inuse_ref is protected by ill_lock. 7320 * The real cleanup happens behind the squeue via ip_squeue_clean function but 7321 * we need to protect ourselfs from 2 threads trying to cleanup at the same 7322 * time (possible with one port going down for aggr and someone tearing down the 7323 * entire aggr simultaneously. So we use ill_inuse_ref protected by ill_lock 7324 * to indicate when the cleanup has started (1 ref) and when the cleanup 7325 * is done (0 ref). When a new ring gets assigned to squeue, we start by 7326 * putting 2 ref on ill_inuse_ref. 7327 */ 7328 static void 7329 ipsq_clean_ring(ill_t *ill, ill_rx_ring_t *rx_ring) 7330 { 7331 conn_t *connp; 7332 squeue_t *sqp; 7333 mblk_t *mp; 7334 7335 ASSERT(rx_ring != NULL); 7336 7337 /* Just clean one squeue */ 7338 mutex_enter(&ill->ill_lock); 7339 while (rx_ring->rr_ring_state == ILL_RING_INPROC) 7340 /* Some operations pending on the ring. Wait */ 7341 cv_wait(&ill->ill_cv, &ill->ill_lock); 7342 7343 if (rx_ring->rr_ring_state != ILL_RING_INUSE) { 7344 /* 7345 * Someone already trying to clean 7346 * this squeue or its already been cleaned. 7347 */ 7348 mutex_exit(&ill->ill_lock); 7349 return; 7350 } 7351 sqp = rx_ring->rr_sqp; 7352 7353 if (sqp == NULL) { 7354 /* 7355 * The rx_ring never had a squeue assigned to it. 7356 * We are under ill_lock so we can clean it up 7357 * here itself since no one can get to it. 7358 */ 7359 rx_ring->rr_blank = NULL; 7360 rx_ring->rr_handle = NULL; 7361 rx_ring->rr_sqp = NULL; 7362 rx_ring->rr_ring_state = ILL_RING_FREE; 7363 mutex_exit(&ill->ill_lock); 7364 return; 7365 } 7366 7367 /* Set the state that its being cleaned */ 7368 rx_ring->rr_ring_state = ILL_RING_BEING_FREED; 7369 ASSERT(sqp != NULL); 7370 mutex_exit(&ill->ill_lock); 7371 7372 /* 7373 * Use the preallocated ill_unbind_conn for this purpose 7374 */ 7375 connp = ill->ill_poll_capab->ill_unbind_conn; 7376 mp = &connp->conn_tcp->tcp_closemp; 7377 CONN_INC_REF(connp); 7378 squeue_enter(sqp, mp, ip_squeue_clean, connp, NULL); 7379 7380 mutex_enter(&ill->ill_lock); 7381 while (rx_ring->rr_ring_state != ILL_RING_FREE) 7382 cv_wait(&ill->ill_cv, &ill->ill_lock); 7383 7384 mutex_exit(&ill->ill_lock); 7385 } 7386 7387 static void 7388 ipsq_clean_all(ill_t *ill) 7389 { 7390 int idx; 7391 7392 /* 7393 * No need to clean if poll_capab isn't set for this ill 7394 */ 7395 if (!(ill->ill_capabilities & ILL_CAPAB_POLL)) 7396 return; 7397 7398 ill->ill_capabilities &= ~ILL_CAPAB_POLL; 7399 7400 for (idx = 0; idx < ILL_MAX_RINGS; idx++) { 7401 ill_rx_ring_t *ipr = &ill->ill_poll_capab->ill_ring_tbl[idx]; 7402 ipsq_clean_ring(ill, ipr); 7403 } 7404 } 7405 7406 /* ARGSUSED */ 7407 int 7408 ip_sioctl_slifoindex(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 7409 ip_ioctl_cmd_t *ipip, void *ifreq) 7410 { 7411 ill_t *ill; 7412 struct lifreq *lifr = (struct lifreq *)ifreq; 7413 boolean_t isv6; 7414 conn_t *connp; 7415 7416 connp = Q_TO_CONN(q); 7417 isv6 = connp->conn_af_isv6; 7418 /* 7419 * Set original index. 7420 * Failover and failback move logical interfaces 7421 * from one physical interface to another. The 7422 * original index indicates the parent of a logical 7423 * interface, in other words, the physical interface 7424 * the logical interface will be moved back to on 7425 * failback. 7426 */ 7427 7428 /* 7429 * Don't allow the original index to be changed 7430 * for non-failover addresses, autoconfigured 7431 * addresses, or IPv6 link local addresses. 7432 */ 7433 if (((ipif->ipif_flags & (IPIF_NOFAILOVER | IPIF_ADDRCONF)) != NULL) || 7434 (isv6 && IN6_IS_ADDR_LINKLOCAL(&ipif->ipif_v6lcl_addr))) { 7435 return (EINVAL); 7436 } 7437 /* 7438 * The new original index must be in use by some 7439 * physical interface. 7440 */ 7441 ill = ill_lookup_on_ifindex(lifr->lifr_index, isv6, NULL, NULL, 7442 NULL, NULL); 7443 if (ill == NULL) 7444 return (ENXIO); 7445 ill_refrele(ill); 7446 7447 ipif->ipif_orig_ifindex = lifr->lifr_index; 7448 /* 7449 * When this ipif gets failed back, don't 7450 * preserve the original id, as it is no 7451 * longer applicable. 7452 */ 7453 ipif->ipif_orig_ipifid = 0; 7454 /* 7455 * For IPv4, change the original index of any 7456 * multicast addresses associated with the 7457 * ipif to the new value. 7458 */ 7459 if (!isv6) { 7460 ilm_t *ilm; 7461 7462 mutex_enter(&ipif->ipif_ill->ill_lock); 7463 for (ilm = ipif->ipif_ill->ill_ilm; ilm != NULL; 7464 ilm = ilm->ilm_next) { 7465 if (ilm->ilm_ipif == ipif) { 7466 ilm->ilm_orig_ifindex = lifr->lifr_index; 7467 } 7468 } 7469 mutex_exit(&ipif->ipif_ill->ill_lock); 7470 } 7471 return (0); 7472 } 7473 7474 /* ARGSUSED */ 7475 int 7476 ip_sioctl_get_oindex(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 7477 ip_ioctl_cmd_t *ipip, void *ifreq) 7478 { 7479 struct lifreq *lifr = (struct lifreq *)ifreq; 7480 7481 /* 7482 * Get the original interface index i.e the one 7483 * before FAILOVER if it ever happened. 7484 */ 7485 lifr->lifr_index = ipif->ipif_orig_ifindex; 7486 return (0); 7487 } 7488 7489 /* 7490 * Parse an iftun_req structure coming down SIOC[GS]TUNPARAM ioctls, 7491 * refhold and return the associated ipif 7492 */ 7493 int 7494 ip_extract_tunreq(queue_t *q, mblk_t *mp, ipif_t **ipifp, ipsq_func_t func) 7495 { 7496 boolean_t exists; 7497 struct iftun_req *ta; 7498 ipif_t *ipif; 7499 ill_t *ill; 7500 boolean_t isv6; 7501 mblk_t *mp1; 7502 int error; 7503 conn_t *connp; 7504 7505 /* Existence verified in ip_wput_nondata */ 7506 mp1 = mp->b_cont->b_cont; 7507 ta = (struct iftun_req *)mp1->b_rptr; 7508 /* 7509 * Null terminate the string to protect against buffer 7510 * overrun. String was generated by user code and may not 7511 * be trusted. 7512 */ 7513 ta->ifta_lifr_name[LIFNAMSIZ - 1] = '\0'; 7514 7515 connp = Q_TO_CONN(q); 7516 isv6 = connp->conn_af_isv6; 7517 7518 /* Disallows implicit create */ 7519 ipif = ipif_lookup_on_name(ta->ifta_lifr_name, 7520 mi_strlen(ta->ifta_lifr_name), B_FALSE, &exists, isv6, 7521 connp->conn_zoneid, CONNP_TO_WQ(connp), mp, func, &error); 7522 if (ipif == NULL) 7523 return (error); 7524 7525 if (ipif->ipif_id != 0) { 7526 /* 7527 * We really don't want to set/get tunnel parameters 7528 * on virtual tunnel interfaces. Only allow the 7529 * base tunnel to do these. 7530 */ 7531 ipif_refrele(ipif); 7532 return (EINVAL); 7533 } 7534 7535 /* 7536 * Send down to tunnel mod for ioctl processing. 7537 * Will finish ioctl in ip_rput_other(). 7538 */ 7539 ill = ipif->ipif_ill; 7540 if (ill->ill_net_type == IRE_LOOPBACK) { 7541 ipif_refrele(ipif); 7542 return (EOPNOTSUPP); 7543 } 7544 7545 if (ill->ill_wq == NULL) { 7546 ipif_refrele(ipif); 7547 return (ENXIO); 7548 } 7549 /* 7550 * Mark the ioctl as coming from an IPv6 interface for 7551 * tun's convenience. 7552 */ 7553 if (ill->ill_isv6) 7554 ta->ifta_flags |= 0x80000000; 7555 *ipifp = ipif; 7556 return (0); 7557 } 7558 7559 /* 7560 * Parse an ifreq or lifreq struct coming down ioctls and refhold 7561 * and return the associated ipif. 7562 * Return value: 7563 * Non zero: An error has occurred. ci may not be filled out. 7564 * zero : ci is filled out with the ioctl cmd in ci.ci_name, and 7565 * a held ipif in ci.ci_ipif. 7566 */ 7567 int 7568 ip_extract_lifreq_cmn(queue_t *q, mblk_t *mp, int cmd_type, int flags, 7569 cmd_info_t *ci, ipsq_func_t func) 7570 { 7571 sin_t *sin; 7572 sin6_t *sin6; 7573 char *name; 7574 struct ifreq *ifr; 7575 struct lifreq *lifr; 7576 ipif_t *ipif = NULL; 7577 ill_t *ill; 7578 conn_t *connp; 7579 boolean_t isv6; 7580 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 7581 boolean_t exists; 7582 int err; 7583 mblk_t *mp1; 7584 zoneid_t zoneid; 7585 7586 if (q->q_next != NULL) { 7587 ill = (ill_t *)q->q_ptr; 7588 isv6 = ill->ill_isv6; 7589 connp = NULL; 7590 zoneid = ALL_ZONES; 7591 } else { 7592 ill = NULL; 7593 connp = Q_TO_CONN(q); 7594 isv6 = connp->conn_af_isv6; 7595 zoneid = connp->conn_zoneid; 7596 if (zoneid == GLOBAL_ZONEID) { 7597 /* global zone can access ipifs in all zones */ 7598 zoneid = ALL_ZONES; 7599 } 7600 } 7601 7602 /* Has been checked in ip_wput_nondata */ 7603 mp1 = mp->b_cont->b_cont; 7604 7605 7606 if (cmd_type == IF_CMD) { 7607 /* This a old style SIOC[GS]IF* command */ 7608 ifr = (struct ifreq *)mp1->b_rptr; 7609 /* 7610 * Null terminate the string to protect against buffer 7611 * overrun. String was generated by user code and may not 7612 * be trusted. 7613 */ 7614 ifr->ifr_name[IFNAMSIZ - 1] = '\0'; 7615 sin = (sin_t *)&ifr->ifr_addr; 7616 name = ifr->ifr_name; 7617 ci->ci_sin = sin; 7618 ci->ci_sin6 = NULL; 7619 ci->ci_lifr = (struct lifreq *)ifr; 7620 } else { 7621 /* This a new style SIOC[GS]LIF* command */ 7622 ASSERT(cmd_type == LIF_CMD); 7623 lifr = (struct lifreq *)mp1->b_rptr; 7624 /* 7625 * Null terminate the string to protect against buffer 7626 * overrun. String was generated by user code and may not 7627 * be trusted. 7628 */ 7629 lifr->lifr_name[LIFNAMSIZ - 1] = '\0'; 7630 name = lifr->lifr_name; 7631 sin = (sin_t *)&lifr->lifr_addr; 7632 sin6 = (sin6_t *)&lifr->lifr_addr; 7633 if (iocp->ioc_cmd == SIOCSLIFGROUPNAME) { 7634 (void) strncpy(ci->ci_groupname, lifr->lifr_groupname, 7635 LIFNAMSIZ); 7636 } 7637 ci->ci_sin = sin; 7638 ci->ci_sin6 = sin6; 7639 ci->ci_lifr = lifr; 7640 } 7641 7642 7643 if (iocp->ioc_cmd == SIOCSLIFNAME) { 7644 /* 7645 * The ioctl will be failed if the ioctl comes down 7646 * an conn stream 7647 */ 7648 if (ill == NULL) { 7649 /* 7650 * Not an ill queue, return EINVAL same as the 7651 * old error code. 7652 */ 7653 return (ENXIO); 7654 } 7655 ipif = ill->ill_ipif; 7656 ipif_refhold(ipif); 7657 } else { 7658 ipif = ipif_lookup_on_name(name, mi_strlen(name), B_FALSE, 7659 &exists, isv6, zoneid, 7660 (connp == NULL) ? q : CONNP_TO_WQ(connp), mp, func, &err); 7661 if (ipif == NULL) { 7662 if (err == EINPROGRESS) 7663 return (err); 7664 if (iocp->ioc_cmd == SIOCLIFFAILOVER || 7665 iocp->ioc_cmd == SIOCLIFFAILBACK) { 7666 /* 7667 * Need to try both v4 and v6 since this 7668 * ioctl can come down either v4 or v6 7669 * socket. The lifreq.lifr_family passed 7670 * down by this ioctl is AF_UNSPEC. 7671 */ 7672 ipif = ipif_lookup_on_name(name, 7673 mi_strlen(name), B_FALSE, &exists, !isv6, 7674 zoneid, (connp == NULL) ? q : 7675 CONNP_TO_WQ(connp), mp, func, &err); 7676 if (err == EINPROGRESS) 7677 return (err); 7678 } 7679 err = 0; /* Ensure we don't use it below */ 7680 } 7681 } 7682 7683 /* 7684 * Old style [GS]IFCMD does not admit IPv6 ipif 7685 */ 7686 if (ipif != NULL && ipif->ipif_isv6 && cmd_type == IF_CMD) { 7687 ipif_refrele(ipif); 7688 return (ENXIO); 7689 } 7690 7691 if (ipif == NULL && ill != NULL && ill->ill_ipif != NULL && 7692 name[0] == '\0') { 7693 /* 7694 * Handle a or a SIOC?IF* with a null name 7695 * during plumb (on the ill queue before the I_PLINK). 7696 */ 7697 ipif = ill->ill_ipif; 7698 ipif_refhold(ipif); 7699 } 7700 7701 if (ipif == NULL) 7702 return (ENXIO); 7703 7704 /* 7705 * Allow only GET operations if this ipif has been created 7706 * temporarily due to a MOVE operation. 7707 */ 7708 if (ipif->ipif_replace_zero && !(flags & IPI_REPL)) { 7709 ipif_refrele(ipif); 7710 return (EINVAL); 7711 } 7712 7713 ci->ci_ipif = ipif; 7714 return (0); 7715 } 7716 7717 /* 7718 * Return the total number of ipifs. 7719 */ 7720 static uint_t 7721 ip_get_numifs(zoneid_t zoneid) 7722 { 7723 uint_t numifs = 0; 7724 ill_t *ill; 7725 ill_walk_context_t ctx; 7726 ipif_t *ipif; 7727 7728 rw_enter(&ill_g_lock, RW_READER); 7729 ill = ILL_START_WALK_V4(&ctx); 7730 7731 while (ill != NULL) { 7732 for (ipif = ill->ill_ipif; ipif != NULL; 7733 ipif = ipif->ipif_next) { 7734 if (ipif->ipif_zoneid == zoneid) 7735 numifs++; 7736 } 7737 ill = ill_next(&ctx, ill); 7738 } 7739 rw_exit(&ill_g_lock); 7740 return (numifs); 7741 } 7742 7743 /* 7744 * Return the total number of ipifs. 7745 */ 7746 static uint_t 7747 ip_get_numlifs(int family, int lifn_flags, zoneid_t zoneid) 7748 { 7749 uint_t numifs = 0; 7750 ill_t *ill; 7751 ipif_t *ipif; 7752 ill_walk_context_t ctx; 7753 7754 ip1dbg(("ip_get_numlifs(%d %u %d)\n", family, lifn_flags, (int)zoneid)); 7755 7756 rw_enter(&ill_g_lock, RW_READER); 7757 if (family == AF_INET) 7758 ill = ILL_START_WALK_V4(&ctx); 7759 else if (family == AF_INET6) 7760 ill = ILL_START_WALK_V6(&ctx); 7761 else 7762 ill = ILL_START_WALK_ALL(&ctx); 7763 7764 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 7765 for (ipif = ill->ill_ipif; ipif != NULL; 7766 ipif = ipif->ipif_next) { 7767 if ((ipif->ipif_flags & IPIF_NOXMIT) && 7768 !(lifn_flags & LIFC_NOXMIT)) 7769 continue; 7770 if ((ipif->ipif_flags & IPIF_TEMPORARY) && 7771 !(lifn_flags & LIFC_TEMPORARY)) 7772 continue; 7773 if (((ipif->ipif_flags & 7774 (IPIF_NOXMIT|IPIF_NOLOCAL| 7775 IPIF_DEPRECATED)) || 7776 (ill->ill_phyint->phyint_flags & 7777 PHYI_LOOPBACK) || 7778 !(ipif->ipif_flags & IPIF_UP)) && 7779 (lifn_flags & LIFC_EXTERNAL_SOURCE)) 7780 continue; 7781 7782 if (zoneid != ipif->ipif_zoneid && 7783 (zoneid != GLOBAL_ZONEID || 7784 !(lifn_flags & LIFC_ALLZONES))) 7785 continue; 7786 7787 numifs++; 7788 } 7789 } 7790 rw_exit(&ill_g_lock); 7791 return (numifs); 7792 } 7793 7794 uint_t 7795 ip_get_lifsrcofnum(ill_t *ill) 7796 { 7797 uint_t numifs = 0; 7798 ill_t *ill_head = ill; 7799 7800 /* 7801 * ill_g_usesrc_lock protects ill_usesrc_grp_next, for example, some 7802 * other thread may be trying to relink the ILLs in this usesrc group 7803 * and adjusting the ill_usesrc_grp_next pointers 7804 */ 7805 rw_enter(&ill_g_usesrc_lock, RW_READER); 7806 if ((ill->ill_usesrc_ifindex == 0) && 7807 (ill->ill_usesrc_grp_next != NULL)) { 7808 for (; (ill != NULL) && (ill->ill_usesrc_grp_next != ill_head); 7809 ill = ill->ill_usesrc_grp_next) 7810 numifs++; 7811 } 7812 rw_exit(&ill_g_usesrc_lock); 7813 7814 return (numifs); 7815 } 7816 7817 /* Null values are passed in for ipif, sin, and ifreq */ 7818 /* ARGSUSED */ 7819 int 7820 ip_sioctl_get_ifnum(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, 7821 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) 7822 { 7823 int *nump; 7824 7825 ASSERT(q->q_next == NULL); /* not a valid ioctl for ip as a module */ 7826 7827 /* Existence of b_cont->b_cont checked in ip_wput_nondata */ 7828 nump = (int *)mp->b_cont->b_cont->b_rptr; 7829 7830 *nump = ip_get_numifs(Q_TO_CONN(q)->conn_zoneid); 7831 ip1dbg(("ip_sioctl_get_ifnum numifs %d", *nump)); 7832 return (0); 7833 } 7834 7835 /* Null values are passed in for ipif, sin, and ifreq */ 7836 /* ARGSUSED */ 7837 int 7838 ip_sioctl_get_lifnum(ipif_t *dummy_ipif, sin_t *dummy_sin, 7839 queue_t *q, mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) 7840 { 7841 struct lifnum *lifn; 7842 mblk_t *mp1; 7843 7844 ASSERT(q->q_next == NULL); /* not a valid ioctl for ip as a module */ 7845 7846 /* Existence checked in ip_wput_nondata */ 7847 mp1 = mp->b_cont->b_cont; 7848 7849 lifn = (struct lifnum *)mp1->b_rptr; 7850 switch (lifn->lifn_family) { 7851 case AF_UNSPEC: 7852 case AF_INET: 7853 case AF_INET6: 7854 break; 7855 default: 7856 return (EAFNOSUPPORT); 7857 } 7858 7859 lifn->lifn_count = ip_get_numlifs(lifn->lifn_family, lifn->lifn_flags, 7860 Q_TO_CONN(q)->conn_zoneid); 7861 ip1dbg(("ip_sioctl_get_lifnum numifs %d", lifn->lifn_count)); 7862 return (0); 7863 } 7864 7865 /* ARGSUSED */ 7866 int 7867 ip_sioctl_get_ifconf(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, 7868 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) 7869 { 7870 STRUCT_HANDLE(ifconf, ifc); 7871 mblk_t *mp1; 7872 struct iocblk *iocp; 7873 struct ifreq *ifr; 7874 ill_walk_context_t ctx; 7875 ill_t *ill; 7876 ipif_t *ipif; 7877 struct sockaddr_in *sin; 7878 int32_t ifclen; 7879 zoneid_t zoneid; 7880 7881 ASSERT(q->q_next == NULL); /* not valid ioctls for ip as a module */ 7882 7883 ip1dbg(("ip_sioctl_get_ifconf")); 7884 /* Existence verified in ip_wput_nondata */ 7885 mp1 = mp->b_cont->b_cont; 7886 iocp = (struct iocblk *)mp->b_rptr; 7887 zoneid = Q_TO_CONN(q)->conn_zoneid; 7888 7889 /* 7890 * The original SIOCGIFCONF passed in a struct ifconf which specified 7891 * the user buffer address and length into which the list of struct 7892 * ifreqs was to be copied. Since AT&T Streams does not seem to 7893 * allow M_COPYOUT to be used in conjunction with I_STR IOCTLS, 7894 * the SIOCGIFCONF operation was redefined to simply provide 7895 * a large output buffer into which we are supposed to jam the ifreq 7896 * array. The same ioctl command code was used, despite the fact that 7897 * both the applications and the kernel code had to change, thus making 7898 * it impossible to support both interfaces. 7899 * 7900 * For reasons not good enough to try to explain, the following 7901 * algorithm is used for deciding what to do with one of these: 7902 * If the IOCTL comes in as an I_STR, it is assumed to be of the new 7903 * form with the output buffer coming down as the continuation message. 7904 * If it arrives as a TRANSPARENT IOCTL, it is assumed to be old style, 7905 * and we have to copy in the ifconf structure to find out how big the 7906 * output buffer is and where to copy out to. Sure no problem... 7907 * 7908 */ 7909 STRUCT_SET_HANDLE(ifc, iocp->ioc_flag, NULL); 7910 if ((mp1->b_wptr - mp1->b_rptr) == STRUCT_SIZE(ifc)) { 7911 int numifs = 0; 7912 size_t ifc_bufsize; 7913 7914 /* 7915 * Must be (better be!) continuation of a TRANSPARENT 7916 * IOCTL. We just copied in the ifconf structure. 7917 */ 7918 STRUCT_SET_HANDLE(ifc, iocp->ioc_flag, 7919 (struct ifconf *)mp1->b_rptr); 7920 7921 /* 7922 * Allocate a buffer to hold requested information. 7923 * 7924 * If ifc_len is larger than what is needed, we only 7925 * allocate what we will use. 7926 * 7927 * If ifc_len is smaller than what is needed, return 7928 * EINVAL. 7929 * 7930 * XXX: the ill_t structure can hava 2 counters, for 7931 * v4 and v6 (not just ill_ipif_up_count) to store the 7932 * number of interfaces for a device, so we don't need 7933 * to count them here... 7934 */ 7935 numifs = ip_get_numifs(zoneid); 7936 7937 ifclen = STRUCT_FGET(ifc, ifc_len); 7938 ifc_bufsize = numifs * sizeof (struct ifreq); 7939 if (ifc_bufsize > ifclen) { 7940 if (iocp->ioc_cmd == O_SIOCGIFCONF) { 7941 /* old behaviour */ 7942 return (EINVAL); 7943 } else { 7944 ifc_bufsize = ifclen; 7945 } 7946 } 7947 7948 mp1 = mi_copyout_alloc(q, mp, 7949 STRUCT_FGETP(ifc, ifc_buf), ifc_bufsize, B_FALSE); 7950 if (mp1 == NULL) 7951 return (ENOMEM); 7952 7953 mp1->b_wptr = mp1->b_rptr + ifc_bufsize; 7954 } 7955 bzero(mp1->b_rptr, mp1->b_wptr - mp1->b_rptr); 7956 /* 7957 * the SIOCGIFCONF ioctl only knows about 7958 * IPv4 addresses, so don't try to tell 7959 * it about interfaces with IPv6-only 7960 * addresses. (Last parm 'isv6' is B_FALSE) 7961 */ 7962 7963 ifr = (struct ifreq *)mp1->b_rptr; 7964 7965 rw_enter(&ill_g_lock, RW_READER); 7966 ill = ILL_START_WALK_V4(&ctx); 7967 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 7968 for (ipif = ill->ill_ipif; ipif; 7969 ipif = ipif->ipif_next) { 7970 if (zoneid != ipif->ipif_zoneid) 7971 continue; 7972 if ((uchar_t *)&ifr[1] > mp1->b_wptr) { 7973 if (iocp->ioc_cmd == O_SIOCGIFCONF) { 7974 /* old behaviour */ 7975 rw_exit(&ill_g_lock); 7976 return (EINVAL); 7977 } else { 7978 goto if_copydone; 7979 } 7980 } 7981 (void) ipif_get_name(ipif, 7982 ifr->ifr_name, 7983 sizeof (ifr->ifr_name)); 7984 sin = (sin_t *)&ifr->ifr_addr; 7985 *sin = sin_null; 7986 sin->sin_family = AF_INET; 7987 sin->sin_addr.s_addr = ipif->ipif_lcl_addr; 7988 ifr++; 7989 } 7990 } 7991 if_copydone: 7992 rw_exit(&ill_g_lock); 7993 mp1->b_wptr = (uchar_t *)ifr; 7994 7995 if (STRUCT_BUF(ifc) != NULL) { 7996 STRUCT_FSET(ifc, ifc_len, 7997 (int)((uchar_t *)ifr - mp1->b_rptr)); 7998 } 7999 return (0); 8000 } 8001 8002 /* 8003 * Get the interfaces using the address hosted on the interface passed in, 8004 * as a source adddress 8005 */ 8006 /* ARGSUSED */ 8007 int 8008 ip_sioctl_get_lifsrcof(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, 8009 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) 8010 { 8011 mblk_t *mp1; 8012 ill_t *ill, *ill_head; 8013 ipif_t *ipif, *orig_ipif; 8014 int numlifs = 0; 8015 size_t lifs_bufsize, lifsmaxlen; 8016 struct lifreq *lifr; 8017 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 8018 uint_t ifindex; 8019 zoneid_t zoneid; 8020 int err = 0; 8021 boolean_t isv6 = B_FALSE; 8022 struct sockaddr_in *sin; 8023 struct sockaddr_in6 *sin6; 8024 8025 STRUCT_HANDLE(lifsrcof, lifs); 8026 8027 ASSERT(q->q_next == NULL); 8028 8029 zoneid = Q_TO_CONN(q)->conn_zoneid; 8030 8031 /* Existence verified in ip_wput_nondata */ 8032 mp1 = mp->b_cont->b_cont; 8033 8034 /* 8035 * Must be (better be!) continuation of a TRANSPARENT 8036 * IOCTL. We just copied in the lifsrcof structure. 8037 */ 8038 STRUCT_SET_HANDLE(lifs, iocp->ioc_flag, 8039 (struct lifsrcof *)mp1->b_rptr); 8040 8041 if (MBLKL(mp1) != STRUCT_SIZE(lifs)) 8042 return (EINVAL); 8043 8044 ifindex = STRUCT_FGET(lifs, lifs_ifindex); 8045 isv6 = (Q_TO_CONN(q))->conn_af_isv6; 8046 ipif = ipif_lookup_on_ifindex(ifindex, isv6, zoneid, q, mp, 8047 ip_process_ioctl, &err); 8048 if (ipif == NULL) { 8049 ip1dbg(("ip_sioctl_get_lifsrcof: no ipif for ifindex %d\n", 8050 ifindex)); 8051 return (err); 8052 } 8053 8054 8055 /* Allocate a buffer to hold requested information */ 8056 numlifs = ip_get_lifsrcofnum(ipif->ipif_ill); 8057 lifs_bufsize = numlifs * sizeof (struct lifreq); 8058 lifsmaxlen = STRUCT_FGET(lifs, lifs_maxlen); 8059 /* The actual size needed is always returned in lifs_len */ 8060 STRUCT_FSET(lifs, lifs_len, lifs_bufsize); 8061 8062 /* If the amount we need is more than what is passed in, abort */ 8063 if (lifs_bufsize > lifsmaxlen || lifs_bufsize == 0) { 8064 ipif_refrele(ipif); 8065 return (0); 8066 } 8067 8068 mp1 = mi_copyout_alloc(q, mp, 8069 STRUCT_FGETP(lifs, lifs_buf), lifs_bufsize, B_FALSE); 8070 if (mp1 == NULL) { 8071 ipif_refrele(ipif); 8072 return (ENOMEM); 8073 } 8074 8075 mp1->b_wptr = mp1->b_rptr + lifs_bufsize; 8076 bzero(mp1->b_rptr, lifs_bufsize); 8077 8078 lifr = (struct lifreq *)mp1->b_rptr; 8079 8080 ill = ill_head = ipif->ipif_ill; 8081 orig_ipif = ipif; 8082 8083 /* ill_g_usesrc_lock protects ill_usesrc_grp_next */ 8084 rw_enter(&ill_g_usesrc_lock, RW_READER); 8085 rw_enter(&ill_g_lock, RW_READER); 8086 8087 ill = ill->ill_usesrc_grp_next; /* start from next ill */ 8088 for (; (ill != NULL) && (ill != ill_head); 8089 ill = ill->ill_usesrc_grp_next) { 8090 8091 if ((uchar_t *)&lifr[1] > mp1->b_wptr) 8092 break; 8093 8094 ipif = ill->ill_ipif; 8095 (void) ipif_get_name(ipif, 8096 lifr->lifr_name, sizeof (lifr->lifr_name)); 8097 if (ipif->ipif_isv6) { 8098 sin6 = (sin6_t *)&lifr->lifr_addr; 8099 *sin6 = sin6_null; 8100 sin6->sin6_family = AF_INET6; 8101 sin6->sin6_addr = ipif->ipif_v6lcl_addr; 8102 lifr->lifr_addrlen = ip_mask_to_plen_v6( 8103 &ipif->ipif_v6net_mask); 8104 } else { 8105 sin = (sin_t *)&lifr->lifr_addr; 8106 *sin = sin_null; 8107 sin->sin_family = AF_INET; 8108 sin->sin_addr.s_addr = ipif->ipif_lcl_addr; 8109 lifr->lifr_addrlen = ip_mask_to_plen( 8110 ipif->ipif_net_mask); 8111 } 8112 lifr++; 8113 } 8114 rw_exit(&ill_g_usesrc_lock); 8115 rw_exit(&ill_g_lock); 8116 ipif_refrele(orig_ipif); 8117 mp1->b_wptr = (uchar_t *)lifr; 8118 STRUCT_FSET(lifs, lifs_len, (int)((uchar_t *)lifr - mp1->b_rptr)); 8119 8120 return (0); 8121 } 8122 8123 /* ARGSUSED */ 8124 int 8125 ip_sioctl_get_lifconf(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, 8126 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) 8127 { 8128 mblk_t *mp1; 8129 int list; 8130 ill_t *ill; 8131 ipif_t *ipif; 8132 int flags; 8133 int numlifs = 0; 8134 size_t lifc_bufsize; 8135 struct lifreq *lifr; 8136 sa_family_t family; 8137 struct sockaddr_in *sin; 8138 struct sockaddr_in6 *sin6; 8139 ill_walk_context_t ctx; 8140 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 8141 int32_t lifclen; 8142 zoneid_t zoneid; 8143 STRUCT_HANDLE(lifconf, lifc); 8144 8145 ip1dbg(("ip_sioctl_get_lifconf")); 8146 8147 ASSERT(q->q_next == NULL); 8148 8149 zoneid = Q_TO_CONN(q)->conn_zoneid; 8150 8151 /* Existence verified in ip_wput_nondata */ 8152 mp1 = mp->b_cont->b_cont; 8153 8154 /* 8155 * An extended version of SIOCGIFCONF that takes an 8156 * additional address family and flags field. 8157 * AF_UNSPEC retrieve both IPv4 and IPv6. 8158 * Unless LIFC_NOXMIT is specified the IPIF_NOXMIT 8159 * interfaces are omitted. 8160 * Similarly, IPIF_TEMPORARY interfaces are omitted 8161 * unless LIFC_TEMPORARY is specified. 8162 * If LIFC_EXTERNAL_SOURCE is specified, IPIF_NOXMIT, 8163 * IPIF_NOLOCAL, PHYI_LOOPBACK, IPIF_DEPRECATED and 8164 * not IPIF_UP interfaces are omitted. LIFC_EXTERNAL_SOURCE 8165 * has priority over LIFC_NOXMIT. 8166 */ 8167 STRUCT_SET_HANDLE(lifc, iocp->ioc_flag, NULL); 8168 8169 if ((mp1->b_wptr - mp1->b_rptr) != STRUCT_SIZE(lifc)) 8170 return (EINVAL); 8171 8172 /* 8173 * Must be (better be!) continuation of a TRANSPARENT 8174 * IOCTL. We just copied in the lifconf structure. 8175 */ 8176 STRUCT_SET_HANDLE(lifc, iocp->ioc_flag, (struct lifconf *)mp1->b_rptr); 8177 8178 family = STRUCT_FGET(lifc, lifc_family); 8179 flags = STRUCT_FGET(lifc, lifc_flags); 8180 8181 switch (family) { 8182 case AF_UNSPEC: 8183 /* 8184 * walk all ILL's. 8185 */ 8186 list = MAX_G_HEADS; 8187 break; 8188 case AF_INET: 8189 /* 8190 * walk only IPV4 ILL's. 8191 */ 8192 list = IP_V4_G_HEAD; 8193 break; 8194 case AF_INET6: 8195 /* 8196 * walk only IPV6 ILL's. 8197 */ 8198 list = IP_V6_G_HEAD; 8199 break; 8200 default: 8201 return (EAFNOSUPPORT); 8202 } 8203 8204 /* 8205 * Allocate a buffer to hold requested information. 8206 * 8207 * If lifc_len is larger than what is needed, we only 8208 * allocate what we will use. 8209 * 8210 * If lifc_len is smaller than what is needed, return 8211 * EINVAL. 8212 */ 8213 numlifs = ip_get_numlifs(family, flags, zoneid); 8214 lifc_bufsize = numlifs * sizeof (struct lifreq); 8215 lifclen = STRUCT_FGET(lifc, lifc_len); 8216 if (lifc_bufsize > lifclen) { 8217 if (iocp->ioc_cmd == O_SIOCGLIFCONF) 8218 return (EINVAL); 8219 else 8220 lifc_bufsize = lifclen; 8221 } 8222 8223 mp1 = mi_copyout_alloc(q, mp, 8224 STRUCT_FGETP(lifc, lifc_buf), lifc_bufsize, B_FALSE); 8225 if (mp1 == NULL) 8226 return (ENOMEM); 8227 8228 mp1->b_wptr = mp1->b_rptr + lifc_bufsize; 8229 bzero(mp1->b_rptr, mp1->b_wptr - mp1->b_rptr); 8230 8231 lifr = (struct lifreq *)mp1->b_rptr; 8232 8233 rw_enter(&ill_g_lock, RW_READER); 8234 ill = ill_first(list, list, &ctx); 8235 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 8236 for (ipif = ill->ill_ipif; ipif != NULL; 8237 ipif = ipif->ipif_next) { 8238 if ((ipif->ipif_flags & IPIF_NOXMIT) && 8239 !(flags & LIFC_NOXMIT)) 8240 continue; 8241 8242 if ((ipif->ipif_flags & IPIF_TEMPORARY) && 8243 !(flags & LIFC_TEMPORARY)) 8244 continue; 8245 8246 if (((ipif->ipif_flags & 8247 (IPIF_NOXMIT|IPIF_NOLOCAL| 8248 IPIF_DEPRECATED)) || 8249 (ill->ill_phyint->phyint_flags & 8250 PHYI_LOOPBACK) || 8251 !(ipif->ipif_flags & IPIF_UP)) && 8252 (flags & LIFC_EXTERNAL_SOURCE)) 8253 continue; 8254 8255 if (zoneid != ipif->ipif_zoneid && 8256 (zoneid != GLOBAL_ZONEID || 8257 !(flags & LIFC_ALLZONES))) 8258 continue; 8259 8260 if ((uchar_t *)&lifr[1] > mp1->b_wptr) { 8261 if (iocp->ioc_cmd == O_SIOCGLIFCONF) { 8262 rw_exit(&ill_g_lock); 8263 return (EINVAL); 8264 } else { 8265 goto lif_copydone; 8266 } 8267 } 8268 8269 (void) ipif_get_name(ipif, 8270 lifr->lifr_name, 8271 sizeof (lifr->lifr_name)); 8272 if (ipif->ipif_isv6) { 8273 sin6 = (sin6_t *)&lifr->lifr_addr; 8274 *sin6 = sin6_null; 8275 sin6->sin6_family = AF_INET6; 8276 sin6->sin6_addr = 8277 ipif->ipif_v6lcl_addr; 8278 lifr->lifr_addrlen = 8279 ip_mask_to_plen_v6( 8280 &ipif->ipif_v6net_mask); 8281 } else { 8282 sin = (sin_t *)&lifr->lifr_addr; 8283 *sin = sin_null; 8284 sin->sin_family = AF_INET; 8285 sin->sin_addr.s_addr = 8286 ipif->ipif_lcl_addr; 8287 lifr->lifr_addrlen = 8288 ip_mask_to_plen( 8289 ipif->ipif_net_mask); 8290 } 8291 lifr++; 8292 } 8293 } 8294 lif_copydone: 8295 rw_exit(&ill_g_lock); 8296 8297 mp1->b_wptr = (uchar_t *)lifr; 8298 if (STRUCT_BUF(lifc) != NULL) { 8299 STRUCT_FSET(lifc, lifc_len, 8300 (int)((uchar_t *)lifr - mp1->b_rptr)); 8301 } 8302 return (0); 8303 } 8304 8305 static void 8306 ip_sioctl_ip6addrpolicy(queue_t *q, mblk_t *mp) 8307 { 8308 ip6_asp_t *table; 8309 size_t table_size; 8310 mblk_t *data_mp; 8311 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 8312 8313 /* These two ioctls are I_STR only */ 8314 if (iocp->ioc_count == TRANSPARENT) { 8315 miocnak(q, mp, 0, EINVAL); 8316 return; 8317 } 8318 8319 data_mp = mp->b_cont; 8320 if (data_mp == NULL) { 8321 /* The user passed us a NULL argument */ 8322 table = NULL; 8323 table_size = iocp->ioc_count; 8324 } else { 8325 /* 8326 * The user provided a table. The stream head 8327 * may have copied in the user data in chunks, 8328 * so make sure everything is pulled up 8329 * properly. 8330 */ 8331 if (MBLKL(data_mp) < iocp->ioc_count) { 8332 mblk_t *new_data_mp; 8333 if ((new_data_mp = msgpullup(data_mp, -1)) == 8334 NULL) { 8335 miocnak(q, mp, 0, ENOMEM); 8336 return; 8337 } 8338 freemsg(data_mp); 8339 data_mp = new_data_mp; 8340 mp->b_cont = data_mp; 8341 } 8342 table = (ip6_asp_t *)data_mp->b_rptr; 8343 table_size = iocp->ioc_count; 8344 } 8345 8346 switch (iocp->ioc_cmd) { 8347 case SIOCGIP6ADDRPOLICY: 8348 iocp->ioc_rval = ip6_asp_get(table, table_size); 8349 if (iocp->ioc_rval == -1) 8350 iocp->ioc_error = EINVAL; 8351 #if defined(_SYSCALL32_IMPL) && _LONG_LONG_ALIGNMENT_32 == 4 8352 else if (table != NULL && 8353 (iocp->ioc_flag & IOC_MODELS) == IOC_ILP32) { 8354 ip6_asp_t *src = table; 8355 ip6_asp32_t *dst = (void *)table; 8356 int count = table_size / sizeof (ip6_asp_t); 8357 int i; 8358 8359 /* 8360 * We need to do an in-place shrink of the array 8361 * to match the alignment attributes of the 8362 * 32-bit ABI looking at it. 8363 */ 8364 /* LINTED: logical expression always true: op "||" */ 8365 ASSERT(sizeof (*src) > sizeof (*dst)); 8366 for (i = 1; i < count; i++) 8367 bcopy(src + i, dst + i, sizeof (*dst)); 8368 } 8369 #endif 8370 break; 8371 8372 case SIOCSIP6ADDRPOLICY: 8373 ASSERT(mp->b_prev == NULL); 8374 mp->b_prev = (void *)q; 8375 #if defined(_SYSCALL32_IMPL) && _LONG_LONG_ALIGNMENT_32 == 4 8376 /* 8377 * We pass in the datamodel here so that the ip6_asp_replace() 8378 * routine can handle converting from 32-bit to native formats 8379 * where necessary. 8380 * 8381 * A better way to handle this might be to convert the inbound 8382 * data structure here, and hang it off a new 'mp'; thus the 8383 * ip6_asp_replace() logic would always be dealing with native 8384 * format data structures.. 8385 * 8386 * (An even simpler way to handle these ioctls is to just 8387 * add a 32-bit trailing 'pad' field to the ip6_asp_t structure 8388 * and just recompile everything that depends on it.) 8389 */ 8390 #endif 8391 ip6_asp_replace(mp, table, table_size, B_FALSE, 8392 iocp->ioc_flag & IOC_MODELS); 8393 return; 8394 } 8395 8396 DB_TYPE(mp) = (iocp->ioc_error == 0) ? M_IOCACK : M_IOCNAK; 8397 qreply(q, mp); 8398 } 8399 8400 static void 8401 ip_sioctl_dstinfo(queue_t *q, mblk_t *mp) 8402 { 8403 mblk_t *data_mp; 8404 struct dstinforeq *dir; 8405 uint8_t *end, *cur; 8406 in6_addr_t *daddr, *saddr; 8407 ipaddr_t v4daddr; 8408 ire_t *ire; 8409 char *slabel, *dlabel; 8410 boolean_t isipv4; 8411 int match_ire; 8412 ill_t *dst_ill; 8413 ipif_t *src_ipif, *ire_ipif; 8414 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 8415 zoneid_t zoneid; 8416 8417 ASSERT(q->q_next == NULL); /* this ioctl not allowed if ip is module */ 8418 zoneid = Q_TO_CONN(q)->conn_zoneid; 8419 8420 /* 8421 * This ioctl is I_STR only, and must have a 8422 * data mblk following the M_IOCTL mblk. 8423 */ 8424 data_mp = mp->b_cont; 8425 if (iocp->ioc_count == TRANSPARENT || data_mp == NULL) { 8426 miocnak(q, mp, 0, EINVAL); 8427 return; 8428 } 8429 8430 if (MBLKL(data_mp) < iocp->ioc_count) { 8431 mblk_t *new_data_mp; 8432 8433 if ((new_data_mp = msgpullup(data_mp, -1)) == NULL) { 8434 miocnak(q, mp, 0, ENOMEM); 8435 return; 8436 } 8437 freemsg(data_mp); 8438 data_mp = new_data_mp; 8439 mp->b_cont = data_mp; 8440 } 8441 match_ire = MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT | MATCH_IRE_PARENT; 8442 8443 for (cur = data_mp->b_rptr, end = data_mp->b_wptr; 8444 end - cur >= sizeof (struct dstinforeq); 8445 cur += sizeof (struct dstinforeq)) { 8446 dir = (struct dstinforeq *)cur; 8447 daddr = &dir->dir_daddr; 8448 saddr = &dir->dir_saddr; 8449 8450 /* 8451 * ip_addr_scope_v6() and ip6_asp_lookup() handle 8452 * v4 mapped addresses; ire_ftable_lookup[_v6]() 8453 * and ipif_select_source[_v6]() do not. 8454 */ 8455 dir->dir_dscope = ip_addr_scope_v6(daddr); 8456 dlabel = ip6_asp_lookup(daddr, &dir->dir_precedence); 8457 8458 isipv4 = IN6_IS_ADDR_V4MAPPED(daddr); 8459 if (isipv4) { 8460 IN6_V4MAPPED_TO_IPADDR(daddr, v4daddr); 8461 ire = ire_ftable_lookup(v4daddr, NULL, NULL, 8462 0, NULL, NULL, zoneid, 0, match_ire); 8463 } else { 8464 ire = ire_ftable_lookup_v6(daddr, NULL, NULL, 8465 0, NULL, NULL, zoneid, 0, match_ire); 8466 } 8467 if (ire == NULL) { 8468 dir->dir_dreachable = 0; 8469 8470 /* move on to next dst addr */ 8471 continue; 8472 } 8473 dir->dir_dreachable = 1; 8474 8475 ire_ipif = ire->ire_ipif; 8476 if (ire_ipif == NULL) 8477 goto next_dst; 8478 8479 /* 8480 * We expect to get back an interface ire or a 8481 * gateway ire cache entry. For both types, the 8482 * output interface is ire_ipif->ipif_ill. 8483 */ 8484 dst_ill = ire_ipif->ipif_ill; 8485 dir->dir_dmactype = dst_ill->ill_mactype; 8486 8487 if (isipv4) { 8488 src_ipif = ipif_select_source(dst_ill, v4daddr, zoneid); 8489 } else { 8490 src_ipif = ipif_select_source_v6(dst_ill, 8491 daddr, B_FALSE, IPV6_PREFER_SRC_DEFAULT, 8492 zoneid); 8493 } 8494 if (src_ipif == NULL) 8495 goto next_dst; 8496 8497 *saddr = src_ipif->ipif_v6lcl_addr; 8498 dir->dir_sscope = ip_addr_scope_v6(saddr); 8499 slabel = ip6_asp_lookup(saddr, NULL); 8500 dir->dir_labelmatch = ip6_asp_labelcmp(dlabel, slabel); 8501 dir->dir_sdeprecated = 8502 (src_ipif->ipif_flags & IPIF_DEPRECATED) ? 1 : 0; 8503 ipif_refrele(src_ipif); 8504 next_dst: 8505 ire_refrele(ire); 8506 } 8507 miocack(q, mp, iocp->ioc_count, 0); 8508 } 8509 8510 8511 /* 8512 * Check if this is an address assigned to this machine. 8513 * Skips interfaces that are down by using ire checks. 8514 * Translates mapped addresses to v4 addresses and then 8515 * treats them as such, returning true if the v4 address 8516 * associated with this mapped address is configured. 8517 * Note: Applications will have to be careful what they do 8518 * with the response; use of mapped addresses limits 8519 * what can be done with the socket, especially with 8520 * respect to socket options and ioctls - neither IPv4 8521 * options nor IPv6 sticky options/ancillary data options 8522 * may be used. 8523 */ 8524 /* ARGSUSED */ 8525 int 8526 ip_sioctl_tmyaddr(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 8527 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 8528 { 8529 struct sioc_addrreq *sia; 8530 sin_t *sin; 8531 ire_t *ire; 8532 mblk_t *mp1; 8533 zoneid_t zoneid; 8534 8535 ip1dbg(("ip_sioctl_tmyaddr")); 8536 8537 ASSERT(q->q_next == NULL); /* this ioctl not allowed if ip is module */ 8538 zoneid = Q_TO_CONN(q)->conn_zoneid; 8539 8540 /* Existence verified in ip_wput_nondata */ 8541 mp1 = mp->b_cont->b_cont; 8542 sia = (struct sioc_addrreq *)mp1->b_rptr; 8543 sin = (sin_t *)&sia->sa_addr; 8544 switch (sin->sin_family) { 8545 case AF_INET6: { 8546 sin6_t *sin6 = (sin6_t *)sin; 8547 8548 if (IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) { 8549 ipaddr_t v4_addr; 8550 8551 IN6_V4MAPPED_TO_IPADDR(&sin6->sin6_addr, 8552 v4_addr); 8553 ire = ire_ctable_lookup(v4_addr, 0, 8554 IRE_LOCAL|IRE_LOOPBACK, NULL, zoneid, 8555 MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY); 8556 } else { 8557 in6_addr_t v6addr; 8558 8559 v6addr = sin6->sin6_addr; 8560 ire = ire_ctable_lookup_v6(&v6addr, 0, 8561 IRE_LOCAL|IRE_LOOPBACK, NULL, zoneid, 8562 MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY); 8563 } 8564 break; 8565 } 8566 case AF_INET: { 8567 ipaddr_t v4addr; 8568 8569 v4addr = sin->sin_addr.s_addr; 8570 ire = ire_ctable_lookup(v4addr, 0, 8571 IRE_LOCAL|IRE_LOOPBACK, NULL, zoneid, 8572 MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY); 8573 break; 8574 } 8575 default: 8576 return (EAFNOSUPPORT); 8577 } 8578 if (ire != NULL) { 8579 sia->sa_res = 1; 8580 ire_refrele(ire); 8581 } else { 8582 sia->sa_res = 0; 8583 } 8584 return (0); 8585 } 8586 8587 /* 8588 * Check if this is an address assigned on-link i.e. neighbor, 8589 * and makes sure it's reachable from the current zone. 8590 * Returns true for my addresses as well. 8591 * Translates mapped addresses to v4 addresses and then 8592 * treats them as such, returning true if the v4 address 8593 * associated with this mapped address is configured. 8594 * Note: Applications will have to be careful what they do 8595 * with the response; use of mapped addresses limits 8596 * what can be done with the socket, especially with 8597 * respect to socket options and ioctls - neither IPv4 8598 * options nor IPv6 sticky options/ancillary data options 8599 * may be used. 8600 */ 8601 /* ARGSUSED */ 8602 int 8603 ip_sioctl_tonlink(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 8604 ip_ioctl_cmd_t *ipip, void *duymmy_ifreq) 8605 { 8606 struct sioc_addrreq *sia; 8607 sin_t *sin; 8608 mblk_t *mp1; 8609 ire_t *ire = NULL; 8610 zoneid_t zoneid; 8611 8612 ip1dbg(("ip_sioctl_tonlink")); 8613 8614 ASSERT(q->q_next == NULL); /* this ioctl not allowed if ip is module */ 8615 zoneid = Q_TO_CONN(q)->conn_zoneid; 8616 8617 /* Existence verified in ip_wput_nondata */ 8618 mp1 = mp->b_cont->b_cont; 8619 sia = (struct sioc_addrreq *)mp1->b_rptr; 8620 sin = (sin_t *)&sia->sa_addr; 8621 8622 /* 8623 * Match addresses with a zero gateway field to avoid 8624 * routes going through a router. 8625 * Exclude broadcast and multicast addresses. 8626 */ 8627 switch (sin->sin_family) { 8628 case AF_INET6: { 8629 sin6_t *sin6 = (sin6_t *)sin; 8630 8631 if (IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) { 8632 ipaddr_t v4_addr; 8633 8634 IN6_V4MAPPED_TO_IPADDR(&sin6->sin6_addr, 8635 v4_addr); 8636 if (!CLASSD(v4_addr)) { 8637 ire = ire_route_lookup(v4_addr, 0, 0, 0, 8638 NULL, NULL, zoneid, MATCH_IRE_GW); 8639 } 8640 } else { 8641 in6_addr_t v6addr; 8642 in6_addr_t v6gw; 8643 8644 v6addr = sin6->sin6_addr; 8645 v6gw = ipv6_all_zeros; 8646 if (!IN6_IS_ADDR_MULTICAST(&v6addr)) { 8647 ire = ire_route_lookup_v6(&v6addr, 0, 8648 &v6gw, 0, NULL, NULL, zoneid, 8649 MATCH_IRE_GW); 8650 } 8651 } 8652 break; 8653 } 8654 case AF_INET: { 8655 ipaddr_t v4addr; 8656 8657 v4addr = sin->sin_addr.s_addr; 8658 if (!CLASSD(v4addr)) { 8659 ire = ire_route_lookup(v4addr, 0, 0, 0, 8660 NULL, NULL, zoneid, MATCH_IRE_GW); 8661 } 8662 break; 8663 } 8664 default: 8665 return (EAFNOSUPPORT); 8666 } 8667 sia->sa_res = 0; 8668 if (ire != NULL) { 8669 if (ire->ire_type & (IRE_INTERFACE|IRE_CACHE| 8670 IRE_LOCAL|IRE_LOOPBACK)) { 8671 sia->sa_res = 1; 8672 } 8673 ire_refrele(ire); 8674 } 8675 return (0); 8676 } 8677 8678 /* 8679 * TBD: implement when kernel maintaines a list of site prefixes. 8680 */ 8681 /* ARGSUSED */ 8682 int 8683 ip_sioctl_tmysite(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 8684 ip_ioctl_cmd_t *ipip, void *ifreq) 8685 { 8686 return (ENXIO); 8687 } 8688 8689 /* ARGSUSED */ 8690 int 8691 ip_sioctl_tunparam(ipif_t *ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 8692 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 8693 { 8694 ill_t *ill; 8695 mblk_t *mp1; 8696 conn_t *connp; 8697 boolean_t success; 8698 8699 ip1dbg(("ip_sioctl_tunparam(%s:%u %p)\n", 8700 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 8701 /* ioctl comes down on an conn */ 8702 ASSERT(!(q->q_flag & QREADR) && q->q_next == NULL); 8703 connp = Q_TO_CONN(q); 8704 8705 mp->b_datap->db_type = M_IOCTL; 8706 8707 /* 8708 * Send down a copy. (copymsg does not copy b_next/b_prev). 8709 * The original mp contains contaminated b_next values due to 'mi', 8710 * which is needed to do the mi_copy_done. Unfortunately if we 8711 * send down the original mblk itself and if we are popped due to an 8712 * an unplumb before the response comes back from tunnel, 8713 * the streamhead (which does a freemsg) will see this contaminated 8714 * message and the assertion in freemsg about non-null b_next/b_prev 8715 * will panic a DEBUG kernel. 8716 */ 8717 mp1 = copymsg(mp); 8718 if (mp1 == NULL) 8719 return (ENOMEM); 8720 8721 ill = ipif->ipif_ill; 8722 mutex_enter(&connp->conn_lock); 8723 mutex_enter(&ill->ill_lock); 8724 if (ipip->ipi_cmd == SIOCSTUNPARAM || ipip->ipi_cmd == OSIOCSTUNPARAM) { 8725 success = ipsq_pending_mp_add(connp, ipif, CONNP_TO_WQ(connp), 8726 mp, 0); 8727 } else { 8728 success = ill_pending_mp_add(ill, connp, mp); 8729 } 8730 mutex_exit(&ill->ill_lock); 8731 mutex_exit(&connp->conn_lock); 8732 8733 if (success) { 8734 ip1dbg(("sending down tunparam request ")); 8735 putnext(ill->ill_wq, mp1); 8736 return (EINPROGRESS); 8737 } else { 8738 /* The conn has started closing */ 8739 freemsg(mp1); 8740 return (EINTR); 8741 } 8742 } 8743 8744 static int 8745 ip_sioctl_arp_common(ill_t *ill, queue_t *q, mblk_t *mp, sin_t *sin, 8746 boolean_t x_arp_ioctl, boolean_t if_arp_ioctl) 8747 { 8748 mblk_t *mp1; 8749 mblk_t *mp2; 8750 mblk_t *pending_mp; 8751 ipaddr_t ipaddr; 8752 area_t *area; 8753 struct iocblk *iocp; 8754 conn_t *connp; 8755 struct arpreq *ar; 8756 struct xarpreq *xar; 8757 boolean_t success; 8758 int flags, alength; 8759 char *lladdr; 8760 8761 ASSERT(!(q->q_flag & QREADR) && q->q_next == NULL); 8762 connp = Q_TO_CONN(q); 8763 8764 iocp = (struct iocblk *)mp->b_rptr; 8765 /* 8766 * ill has already been set depending on whether 8767 * bsd style or interface style ioctl. 8768 */ 8769 ASSERT(ill != NULL); 8770 8771 /* 8772 * Is this one of the new SIOC*XARP ioctls? 8773 */ 8774 if (x_arp_ioctl) { 8775 /* We have a chain - M_IOCTL-->MI_COPY_MBLK-->XARPREQ_MBLK */ 8776 xar = (struct xarpreq *)mp->b_cont->b_cont->b_rptr; 8777 ar = NULL; 8778 8779 flags = xar->xarp_flags; 8780 lladdr = LLADDR(&xar->xarp_ha); 8781 /* 8782 * Validate against user's link layer address length 8783 * input and name and addr length limits. 8784 */ 8785 alength = ill->ill_phys_addr_length; 8786 if (iocp->ioc_cmd == SIOCSXARP) { 8787 if (alength != xar->xarp_ha.sdl_alen || 8788 (alength + xar->xarp_ha.sdl_nlen > 8789 sizeof (xar->xarp_ha.sdl_data))) 8790 return (EINVAL); 8791 } 8792 } else { 8793 /* We have a chain - M_IOCTL-->MI_COPY_MBLK-->ARPREQ_MBLK */ 8794 ar = (struct arpreq *)mp->b_cont->b_cont->b_rptr; 8795 xar = NULL; 8796 8797 flags = ar->arp_flags; 8798 lladdr = ar->arp_ha.sa_data; 8799 /* 8800 * Theoretically, the sa_family could tell us what link 8801 * layer type this operation is trying to deal with. By 8802 * common usage AF_UNSPEC means ethernet. We'll assume 8803 * any attempt to use the SIOC?ARP ioctls is for ethernet, 8804 * for now. Our new SIOC*XARP ioctls can be used more 8805 * generally. 8806 * 8807 * If the underlying media happens to have a non 6 byte 8808 * address, arp module will fail set/get, but the del 8809 * operation will succeed. 8810 */ 8811 alength = 6; 8812 if ((iocp->ioc_cmd != SIOCDARP) && 8813 (alength != ill->ill_phys_addr_length)) { 8814 return (EINVAL); 8815 } 8816 } 8817 8818 /* 8819 * We are going to pass up to ARP a packet chain that looks 8820 * like: 8821 * 8822 * M_IOCTL-->ARP_op_MBLK-->ORIG_M_IOCTL-->MI_COPY_MBLK-->[X]ARPREQ_MBLK 8823 * 8824 * Get a copy of the original IOCTL mblk to head the chain, 8825 * to be sent up (in mp1). Also get another copy to store 8826 * in the ill_pending_mp list, for matching the response 8827 * when it comes back from ARP. 8828 */ 8829 mp1 = copyb(mp); 8830 pending_mp = copymsg(mp); 8831 if (mp1 == NULL || pending_mp == NULL) { 8832 if (mp1 != NULL) 8833 freeb(mp1); 8834 if (pending_mp != NULL) 8835 ip_ioctl_freemsg(pending_mp); 8836 return (ENOMEM); 8837 } 8838 8839 ipaddr = sin->sin_addr.s_addr; 8840 8841 mp2 = ill_arp_alloc(ill, (uchar_t *)&ip_area_template, 8842 (caddr_t)&ipaddr); 8843 if (mp2 == NULL) { 8844 freeb(mp1); 8845 ip_ioctl_freemsg(pending_mp); 8846 return (ENOMEM); 8847 } 8848 /* Put together the chain. */ 8849 mp1->b_cont = mp2; 8850 mp1->b_datap->db_type = M_IOCTL; 8851 mp2->b_cont = mp; 8852 mp2->b_datap->db_type = M_DATA; 8853 8854 iocp = (struct iocblk *)mp1->b_rptr; 8855 8856 /* 8857 * An M_IOCDATA's payload (struct copyresp) is mostly the same as an 8858 * M_IOCTL's payload (struct iocblk), but 'struct copyresp' has a 8859 * cp_private field (or cp_rval on 32-bit systems) in place of the 8860 * ioc_count field; set ioc_count to be correct. 8861 */ 8862 iocp->ioc_count = MBLKL(mp1->b_cont); 8863 8864 /* 8865 * Set the proper command in the ARP message. 8866 * Convert the SIOC{G|S|D}ARP calls into our 8867 * AR_ENTRY_xxx calls. 8868 */ 8869 area = (area_t *)mp2->b_rptr; 8870 switch (iocp->ioc_cmd) { 8871 case SIOCDARP: 8872 case SIOCDXARP: 8873 /* 8874 * We defer deleting the corresponding IRE until 8875 * we return from arp. 8876 */ 8877 area->area_cmd = AR_ENTRY_DELETE; 8878 area->area_proto_mask_offset = 0; 8879 break; 8880 case SIOCGARP: 8881 case SIOCGXARP: 8882 area->area_cmd = AR_ENTRY_SQUERY; 8883 area->area_proto_mask_offset = 0; 8884 break; 8885 case SIOCSARP: 8886 case SIOCSXARP: { 8887 /* 8888 * Delete the corresponding ire to make sure IP will 8889 * pick up any change from arp. 8890 */ 8891 if (!if_arp_ioctl) { 8892 (void) ip_ire_clookup_and_delete(ipaddr, NULL); 8893 break; 8894 } else { 8895 ipif_t *ipif = ipif_get_next_ipif(NULL, ill); 8896 if (ipif != NULL) { 8897 (void) ip_ire_clookup_and_delete(ipaddr, ipif); 8898 ipif_refrele(ipif); 8899 } 8900 break; 8901 } 8902 } 8903 } 8904 iocp->ioc_cmd = area->area_cmd; 8905 8906 /* 8907 * Before sending 'mp' to ARP, we have to clear the b_next 8908 * and b_prev. Otherwise if STREAMS encounters such a message 8909 * in freemsg(), (because ARP can close any time) it can cause 8910 * a panic. But mi code needs the b_next and b_prev values of 8911 * mp->b_cont, to complete the ioctl. So we store it here 8912 * in pending_mp->bcont, and restore it in ip_sioctl_iocack() 8913 * when the response comes down from ARP. 8914 */ 8915 pending_mp->b_cont->b_next = mp->b_cont->b_next; 8916 pending_mp->b_cont->b_prev = mp->b_cont->b_prev; 8917 mp->b_cont->b_next = NULL; 8918 mp->b_cont->b_prev = NULL; 8919 8920 mutex_enter(&connp->conn_lock); 8921 mutex_enter(&ill->ill_lock); 8922 /* conn has not yet started closing, hence this can't fail */ 8923 success = ill_pending_mp_add(ill, connp, pending_mp); 8924 ASSERT(success); 8925 mutex_exit(&ill->ill_lock); 8926 mutex_exit(&connp->conn_lock); 8927 8928 /* 8929 * Fill in the rest of the ARP operation fields. 8930 */ 8931 area->area_hw_addr_length = alength; 8932 bcopy(lladdr, 8933 (char *)area + area->area_hw_addr_offset, 8934 area->area_hw_addr_length); 8935 /* Translate the flags. */ 8936 if (flags & ATF_PERM) 8937 area->area_flags |= ACE_F_PERMANENT; 8938 if (flags & ATF_PUBL) 8939 area->area_flags |= ACE_F_PUBLISH; 8940 8941 /* 8942 * Up to ARP it goes. The response will come 8943 * back in ip_wput as an M_IOCACK message, and 8944 * will be handed to ip_sioctl_iocack for 8945 * completion. 8946 */ 8947 putnext(ill->ill_rq, mp1); 8948 return (EINPROGRESS); 8949 } 8950 8951 /* ARGSUSED */ 8952 int 8953 ip_sioctl_xarp(ipif_t *ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 8954 ip_ioctl_cmd_t *ipip, void *ifreq) 8955 { 8956 struct xarpreq *xar; 8957 boolean_t isv6; 8958 mblk_t *mp1; 8959 int err; 8960 conn_t *connp; 8961 int ifnamelen; 8962 ire_t *ire = NULL; 8963 ill_t *ill = NULL; 8964 struct sockaddr_in *sin; 8965 boolean_t if_arp_ioctl = B_FALSE; 8966 8967 /* ioctl comes down on an conn */ 8968 ASSERT(!(q->q_flag & QREADR) && q->q_next == NULL); 8969 connp = Q_TO_CONN(q); 8970 isv6 = connp->conn_af_isv6; 8971 8972 /* Existance verified in ip_wput_nondata */ 8973 mp1 = mp->b_cont->b_cont; 8974 8975 ASSERT(MBLKL(mp1) >= sizeof (*xar)); 8976 xar = (struct xarpreq *)mp1->b_rptr; 8977 sin = (sin_t *)&xar->xarp_pa; 8978 8979 if (isv6 || (xar->xarp_ha.sdl_family != AF_LINK) || 8980 (xar->xarp_pa.ss_family != AF_INET)) 8981 return (ENXIO); 8982 8983 ifnamelen = xar->xarp_ha.sdl_nlen; 8984 if (ifnamelen != 0) { 8985 char *cptr, cval; 8986 8987 if (ifnamelen >= LIFNAMSIZ) 8988 return (EINVAL); 8989 8990 /* 8991 * Instead of bcopying a bunch of bytes, 8992 * null-terminate the string in-situ. 8993 */ 8994 cptr = xar->xarp_ha.sdl_data + ifnamelen; 8995 cval = *cptr; 8996 *cptr = '\0'; 8997 ill = ill_lookup_on_name(xar->xarp_ha.sdl_data, 8998 B_FALSE, isv6, CONNP_TO_WQ(connp), mp, ip_process_ioctl, 8999 &err, NULL); 9000 *cptr = cval; 9001 if (ill == NULL) 9002 return (err); 9003 if (ill->ill_net_type != IRE_IF_RESOLVER) { 9004 ill_refrele(ill); 9005 return (ENXIO); 9006 } 9007 9008 if_arp_ioctl = B_TRUE; 9009 } else { 9010 /* 9011 * PSARC 2003/088 states that if sdl_nlen == 0, it behaves 9012 * as an extended BSD ioctl. The kernel uses the IP address 9013 * to figure out the network interface. 9014 */ 9015 ire = ire_cache_lookup(sin->sin_addr.s_addr, ALL_ZONES); 9016 if ((ire == NULL) || (ire->ire_type == IRE_LOOPBACK) || 9017 ((ill = ire_to_ill(ire)) == NULL)) { 9018 if (ire != NULL) 9019 ire_refrele(ire); 9020 ire = ire_ftable_lookup(sin->sin_addr.s_addr, 9021 0, 0, IRE_IF_RESOLVER, NULL, NULL, ALL_ZONES, 0, 9022 MATCH_IRE_TYPE); 9023 if ((ire == NULL) || 9024 ((ill = ire_to_ill(ire)) == NULL)) { 9025 if (ire != NULL) 9026 ire_refrele(ire); 9027 return (ENXIO); 9028 } 9029 } 9030 ASSERT(ire != NULL && ill != NULL); 9031 } 9032 9033 err = ip_sioctl_arp_common(ill, q, mp, sin, B_TRUE, if_arp_ioctl); 9034 if (if_arp_ioctl) 9035 ill_refrele(ill); 9036 if (ire != NULL) 9037 ire_refrele(ire); 9038 9039 return (err); 9040 } 9041 9042 /* 9043 * ARP IOCTLs. 9044 * How does IP get in the business of fronting ARP configuration/queries? 9045 * Well its like this, the Berkeley ARP IOCTLs (SIOCGARP, SIOCDARP, SIOCSARP) 9046 * are by tradition passed in through a datagram socket. That lands in IP. 9047 * As it happens, this is just as well since the interface is quite crude in 9048 * that it passes in no information about protocol or hardware types, or 9049 * interface association. After making the protocol assumption, IP is in 9050 * the position to look up the name of the ILL, which ARP will need, and 9051 * format a request that can be handled by ARP. The request is passed up 9052 * stream to ARP, and the original IOCTL is completed by IP when ARP passes 9053 * back a response. ARP supports its own set of more general IOCTLs, in 9054 * case anyone is interested. 9055 */ 9056 /* ARGSUSED */ 9057 int 9058 ip_sioctl_arp(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 9059 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 9060 { 9061 struct arpreq *ar; 9062 struct sockaddr_in *sin; 9063 ire_t *ire; 9064 boolean_t isv6; 9065 mblk_t *mp1; 9066 int err; 9067 conn_t *connp; 9068 ill_t *ill; 9069 9070 /* ioctl comes down on an conn */ 9071 ASSERT(!(q->q_flag & QREADR) && q->q_next == NULL); 9072 connp = Q_TO_CONN(q); 9073 isv6 = connp->conn_af_isv6; 9074 if (isv6) 9075 return (ENXIO); 9076 9077 /* Existance verified in ip_wput_nondata */ 9078 mp1 = mp->b_cont->b_cont; 9079 9080 ar = (struct arpreq *)mp1->b_rptr; 9081 sin = (sin_t *)&ar->arp_pa; 9082 9083 /* 9084 * We need to let ARP know on which interface the IP 9085 * address has an ARP mapping. In the IPMP case, a 9086 * simple forwarding table lookup will return the 9087 * IRE_IF_RESOLVER for the first interface in the group, 9088 * which might not be the interface on which the 9089 * requested IP address was resolved due to the ill 9090 * selection algorithm (see ip_newroute_get_dst_ill()). 9091 * So we do a cache table lookup first: if the IRE cache 9092 * entry for the IP address is still there, it will 9093 * contain the ill pointer for the right interface, so 9094 * we use that. If the cache entry has been flushed, we 9095 * fall back to the forwarding table lookup. This should 9096 * be rare enough since IRE cache entries have a longer 9097 * life expectancy than ARP cache entries. 9098 */ 9099 ire = ire_cache_lookup(sin->sin_addr.s_addr, ALL_ZONES); 9100 if ((ire == NULL) || (ire->ire_type == IRE_LOOPBACK) || 9101 ((ill = ire_to_ill(ire)) == NULL)) { 9102 if (ire != NULL) 9103 ire_refrele(ire); 9104 ire = ire_ftable_lookup(sin->sin_addr.s_addr, 9105 0, 0, IRE_IF_RESOLVER, NULL, NULL, ALL_ZONES, 0, 9106 MATCH_IRE_TYPE); 9107 if ((ire == NULL) || ((ill = ire_to_ill(ire)) == NULL)) { 9108 if (ire != NULL) 9109 ire_refrele(ire); 9110 return (ENXIO); 9111 } 9112 } 9113 ASSERT(ire != NULL && ill != NULL); 9114 9115 err = ip_sioctl_arp_common(ill, q, mp, sin, B_FALSE, B_FALSE); 9116 ire_refrele(ire); 9117 return (err); 9118 } 9119 9120 /* 9121 * Do I_PLINK/I_LINK or I_PUNLINK/I_UNLINK with consistency checks and also 9122 * atomically set/clear the muxids. Also complete the ioctl by acking or 9123 * naking it. Note that the code is structured such that the link type, 9124 * whether it's persistent or not, is treated equally. ifconfig(1M) and 9125 * its clones use the persistent link, while pppd(1M) and perhaps many 9126 * other daemons may use non-persistent link. When combined with some 9127 * ill_t states, linking and unlinking lower streams may be used as 9128 * indicators of dynamic re-plumbing events [see PSARC/1999/348]. 9129 */ 9130 /* ARGSUSED */ 9131 void 9132 ip_sioctl_plink(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 9133 { 9134 mblk_t *mp1; 9135 mblk_t *mp2; 9136 struct linkblk *li; 9137 queue_t *ipwq; 9138 char *name; 9139 struct qinit *qinfo; 9140 struct ipmx_s *ipmxp; 9141 ill_t *ill = NULL; 9142 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 9143 int err = 0; 9144 boolean_t entered_ipsq = B_FALSE; 9145 boolean_t islink; 9146 queue_t *dwq = NULL; 9147 9148 ASSERT(iocp->ioc_cmd == I_PLINK || iocp->ioc_cmd == I_PUNLINK || 9149 iocp->ioc_cmd == I_LINK || iocp->ioc_cmd == I_UNLINK); 9150 9151 islink = (iocp->ioc_cmd == I_PLINK || iocp->ioc_cmd == I_LINK) ? 9152 B_TRUE : B_FALSE; 9153 9154 mp1 = mp->b_cont; /* This is the linkblk info */ 9155 li = (struct linkblk *)mp1->b_rptr; 9156 9157 /* 9158 * ARP has added this special mblk, and the utility is asking us 9159 * to perform consistency checks, and also atomically set the 9160 * muxid. Ifconfig is an example. It achieves this by using 9161 * /dev/arp as the mux to plink the arp stream, and pushes arp on 9162 * to /dev/udp[6] stream for use as the mux when plinking the IP 9163 * stream. SIOCSLIFMUXID is not required. See ifconfig.c, arp.c 9164 * and other comments in this routine for more details. 9165 */ 9166 mp2 = mp1->b_cont; /* This is added by ARP */ 9167 9168 /* 9169 * If I_{P}LINK/I_{P}UNLINK is issued by a utility other than 9170 * ifconfig which didn't push ARP on top of the dummy mux, we won't 9171 * get the special mblk above. For backward compatibility, we just 9172 * return success. The utility will use SIOCSLIFMUXID to store 9173 * the muxids. This is not atomic, and can leave the streams 9174 * unplumbable if the utility is interrrupted, before it does the 9175 * SIOCSLIFMUXID. 9176 */ 9177 if (mp2 == NULL) { 9178 /* 9179 * At this point we don't know whether or not this is the 9180 * IP module stream or the ARP device stream. We need to 9181 * walk the lower stream in order to find this out, since 9182 * the capability negotiation is done only on the IP module 9183 * stream. IP module instance is identified by the module 9184 * name IP, non-null q_next, and it's wput not being ip_lwput. 9185 * STREAMS ensures that the lower stream (l_qbot) will not 9186 * vanish until this ioctl completes. So we can safely walk 9187 * the stream or refer to the q_ptr. 9188 */ 9189 ipwq = li->l_qbot; 9190 while (ipwq != NULL) { 9191 qinfo = ipwq->q_qinfo; 9192 name = qinfo->qi_minfo->mi_idname; 9193 if (name != NULL && name[0] != NULL && 9194 (strcmp(name, ip_mod_info.mi_idname) == 0) && 9195 ((void *)(qinfo->qi_putp) != (void *)ip_lwput) && 9196 (ipwq->q_next != NULL)) { 9197 break; 9198 } 9199 ipwq = ipwq->q_next; 9200 } 9201 /* 9202 * This looks like an IP module stream, so trigger 9203 * the capability reset or re-negotiation if necessary. 9204 */ 9205 if (ipwq != NULL) { 9206 ill = ipwq->q_ptr; 9207 ASSERT(ill != NULL); 9208 9209 if (ipsq == NULL) { 9210 ipsq = ipsq_try_enter(NULL, ill, q, mp, 9211 ip_sioctl_plink, NEW_OP, B_TRUE); 9212 if (ipsq == NULL) 9213 return; 9214 entered_ipsq = B_TRUE; 9215 } 9216 ASSERT(IAM_WRITER_ILL(ill)); 9217 /* 9218 * Store the upper read queue of the module 9219 * immediately below IP, and count the total 9220 * number of lower modules. Do this only 9221 * for I_PLINK or I_LINK event. 9222 */ 9223 ill->ill_lmod_rq = NULL; 9224 ill->ill_lmod_cnt = 0; 9225 if (islink && (dwq = ipwq->q_next) != NULL) { 9226 ill->ill_lmod_rq = RD(dwq); 9227 9228 while (dwq != NULL) { 9229 ill->ill_lmod_cnt++; 9230 dwq = dwq->q_next; 9231 } 9232 } 9233 /* 9234 * There's no point in resetting or re-negotiating if 9235 * we are not bound to the driver, so only do this if 9236 * the DLPI state is idle (up); we assume such state 9237 * since ill_ipif_up_count gets incremented in 9238 * ipif_up_done(), which is after we are bound to the 9239 * driver. Note that in the case of logical 9240 * interfaces, IP won't rebind to the driver unless 9241 * the ill_ipif_up_count is 0, meaning that all other 9242 * IP interfaces (including the main ipif) are in the 9243 * down state. Because of this, we use such counter 9244 * as an indicator, instead of relying on the IPIF_UP 9245 * flag, which is per ipif instance. 9246 */ 9247 if (ill->ill_ipif_up_count > 0) { 9248 if (islink) 9249 ill_capability_probe(ill); 9250 else 9251 ill_capability_reset(ill); 9252 } 9253 } 9254 goto done; 9255 } 9256 9257 /* 9258 * This is an I_{P}LINK sent down by ifconfig on 9259 * /dev/arp. ARP has appended this last (3rd) mblk, 9260 * giving more info. STREAMS ensures that the lower 9261 * stream (l_qbot) will not vanish until this ioctl 9262 * completes. So we can safely walk the stream or refer 9263 * to the q_ptr. 9264 */ 9265 ipmxp = (struct ipmx_s *)mp2->b_rptr; 9266 if (ipmxp->ipmx_arpdev_stream) { 9267 /* 9268 * The operation is occuring on the arp-device 9269 * stream. 9270 */ 9271 ill = ill_lookup_on_name(ipmxp->ipmx_name, B_FALSE, B_FALSE, 9272 q, mp, ip_sioctl_plink, &err, NULL); 9273 if (ill == NULL) { 9274 if (err == EINPROGRESS) { 9275 return; 9276 } else { 9277 err = EINVAL; 9278 goto done; 9279 } 9280 } 9281 9282 if (ipsq == NULL) { 9283 ipsq = ipsq_try_enter(NULL, ill, q, mp, ip_sioctl_plink, 9284 NEW_OP, B_TRUE); 9285 if (ipsq == NULL) { 9286 ill_refrele(ill); 9287 return; 9288 } 9289 entered_ipsq = B_TRUE; 9290 } 9291 ASSERT(IAM_WRITER_ILL(ill)); 9292 ill_refrele(ill); 9293 /* 9294 * To ensure consistency between IP and ARP, 9295 * the following LIFO scheme is used in 9296 * plink/punlink. (IP first, ARP last). 9297 * This is because the muxid's are stored 9298 * in the IP stream on the ill. 9299 * 9300 * I_{P}LINK: ifconfig plinks the IP stream before 9301 * plinking the ARP stream. On an arp-dev 9302 * stream, IP checks that it is not yet 9303 * plinked, and it also checks that the 9304 * corresponding IP stream is already plinked. 9305 * 9306 * I_{P}UNLINK: ifconfig punlinks the ARP stream 9307 * before punlinking the IP stream. IP does 9308 * not allow punlink of the IP stream unless 9309 * the arp stream has been punlinked. 9310 * 9311 */ 9312 if ((islink && 9313 (ill->ill_arp_muxid != 0 || ill->ill_ip_muxid == 0)) || 9314 (!islink && 9315 ill->ill_arp_muxid != li->l_index)) { 9316 err = EINVAL; 9317 goto done; 9318 } 9319 if (islink) { 9320 ill->ill_arp_muxid = li->l_index; 9321 } else { 9322 ill->ill_arp_muxid = 0; 9323 } 9324 } else { 9325 /* 9326 * This must be the IP module stream with or 9327 * without arp. Walk the stream and locate the 9328 * IP module. An IP module instance is 9329 * identified by the module name IP, non-null 9330 * q_next, and it's wput not being ip_lwput. 9331 */ 9332 ipwq = li->l_qbot; 9333 while (ipwq != NULL) { 9334 qinfo = ipwq->q_qinfo; 9335 name = qinfo->qi_minfo->mi_idname; 9336 if (name != NULL && name[0] != NULL && 9337 (strcmp(name, ip_mod_info.mi_idname) == 0) && 9338 ((void *)(qinfo->qi_putp) != (void *)ip_lwput) && 9339 (ipwq->q_next != NULL)) { 9340 break; 9341 } 9342 ipwq = ipwq->q_next; 9343 } 9344 if (ipwq != NULL) { 9345 ill = ipwq->q_ptr; 9346 ASSERT(ill != NULL); 9347 9348 if (ipsq == NULL) { 9349 ipsq = ipsq_try_enter(NULL, ill, q, mp, 9350 ip_sioctl_plink, NEW_OP, B_TRUE); 9351 if (ipsq == NULL) 9352 return; 9353 entered_ipsq = B_TRUE; 9354 } 9355 ASSERT(IAM_WRITER_ILL(ill)); 9356 /* 9357 * Return error if the ip_mux_id is 9358 * non-zero and command is I_{P}LINK. 9359 * If command is I_{P}UNLINK, return 9360 * error if the arp-devstr is not 9361 * yet punlinked. 9362 */ 9363 if ((islink && ill->ill_ip_muxid != 0) || 9364 (!islink && ill->ill_arp_muxid != 0)) { 9365 err = EINVAL; 9366 goto done; 9367 } 9368 ill->ill_lmod_rq = NULL; 9369 ill->ill_lmod_cnt = 0; 9370 if (islink) { 9371 /* 9372 * Store the upper read queue of the module 9373 * immediately below IP, and count the total 9374 * number of lower modules. 9375 */ 9376 if ((dwq = ipwq->q_next) != NULL) { 9377 ill->ill_lmod_rq = RD(dwq); 9378 9379 while (dwq != NULL) { 9380 ill->ill_lmod_cnt++; 9381 dwq = dwq->q_next; 9382 } 9383 } 9384 ill->ill_ip_muxid = li->l_index; 9385 } else { 9386 ill->ill_ip_muxid = 0; 9387 } 9388 9389 /* 9390 * See comments above about resetting/re- 9391 * negotiating driver sub-capabilities. 9392 */ 9393 if (ill->ill_ipif_up_count > 0) { 9394 if (islink) 9395 ill_capability_probe(ill); 9396 else 9397 ill_capability_reset(ill); 9398 } 9399 } 9400 } 9401 done: 9402 iocp->ioc_count = 0; 9403 iocp->ioc_error = err; 9404 if (err == 0) 9405 mp->b_datap->db_type = M_IOCACK; 9406 else 9407 mp->b_datap->db_type = M_IOCNAK; 9408 qreply(q, mp); 9409 9410 /* Conn was refheld in ip_sioctl_copyin_setup */ 9411 if (CONN_Q(q)) 9412 CONN_OPER_PENDING_DONE(Q_TO_CONN(q)); 9413 if (entered_ipsq) 9414 ipsq_exit(ipsq, B_TRUE, B_TRUE); 9415 } 9416 9417 /* 9418 * Search the ioctl command in the ioctl tables and return a pointer 9419 * to the ioctl command information. The ioctl command tables are 9420 * static and fully populated at compile time. 9421 */ 9422 ip_ioctl_cmd_t * 9423 ip_sioctl_lookup(int ioc_cmd) 9424 { 9425 int index; 9426 ip_ioctl_cmd_t *ipip; 9427 ip_ioctl_cmd_t *ipip_end; 9428 9429 if (ioc_cmd == IPI_DONTCARE) 9430 return (NULL); 9431 9432 /* 9433 * Do a 2 step search. First search the indexed table 9434 * based on the least significant byte of the ioctl cmd. 9435 * If we don't find a match, then search the misc table 9436 * serially. 9437 */ 9438 index = ioc_cmd & 0xFF; 9439 if (index < ip_ndx_ioctl_count) { 9440 ipip = &ip_ndx_ioctl_table[index]; 9441 if (ipip->ipi_cmd == ioc_cmd) { 9442 /* Found a match in the ndx table */ 9443 return (ipip); 9444 } 9445 } 9446 9447 /* Search the misc table */ 9448 ipip_end = &ip_misc_ioctl_table[ip_misc_ioctl_count]; 9449 for (ipip = ip_misc_ioctl_table; ipip < ipip_end; ipip++) { 9450 if (ipip->ipi_cmd == ioc_cmd) 9451 /* Found a match in the misc table */ 9452 return (ipip); 9453 } 9454 9455 return (NULL); 9456 } 9457 9458 /* 9459 * Wrapper function for resuming deferred ioctl processing 9460 * Used for SIOCGDSTINFO, SIOCGIP6ADDRPOLICY, SIOCGMSFILTER, 9461 * SIOCSMSFILTER, SIOCGIPMSFILTER, and SIOCSIPMSFILTER currently. 9462 */ 9463 /* ARGSUSED */ 9464 void 9465 ip_sioctl_copyin_resume(ipsq_t *dummy_ipsq, queue_t *q, mblk_t *mp, 9466 void *dummy_arg) 9467 { 9468 ip_sioctl_copyin_setup(q, mp); 9469 } 9470 9471 /* 9472 * ip_sioctl_copyin_setup is called by ip_wput with any M_IOCTL message 9473 * that arrives. Most of the IOCTLs are "socket" IOCTLs which we handle 9474 * in either I_STR or TRANSPARENT form, using the mi_copy facility. 9475 * We establish here the size of the block to be copied in. mi_copyin 9476 * arranges for this to happen, an processing continues in ip_wput with 9477 * an M_IOCDATA message. 9478 */ 9479 void 9480 ip_sioctl_copyin_setup(queue_t *q, mblk_t *mp) 9481 { 9482 int copyin_size; 9483 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 9484 ip_ioctl_cmd_t *ipip; 9485 cred_t *cr; 9486 9487 ipip = ip_sioctl_lookup(iocp->ioc_cmd); 9488 if (ipip == NULL) { 9489 /* 9490 * The ioctl is not one we understand or own. 9491 * Pass it along to be processed down stream, 9492 * if this is a module instance of IP, else nak 9493 * the ioctl. 9494 */ 9495 if (q->q_next == NULL) { 9496 goto nak; 9497 } else { 9498 putnext(q, mp); 9499 return; 9500 } 9501 } 9502 9503 /* 9504 * If this is deferred, then we will do all the checks when we 9505 * come back. 9506 */ 9507 if ((iocp->ioc_cmd == SIOCGDSTINFO || 9508 iocp->ioc_cmd == SIOCGIP6ADDRPOLICY) && !ip6_asp_can_lookup()) { 9509 ip6_asp_pending_op(q, mp, ip_sioctl_copyin_resume); 9510 return; 9511 } 9512 9513 /* 9514 * Only allow a very small subset of IP ioctls on this stream if 9515 * IP is a module and not a driver. Allowing ioctls to be processed 9516 * in this case may cause assert failures or data corruption. 9517 * Typically G[L]IFFLAGS, SLIFNAME/IF_UNITSEL are the only few 9518 * ioctls allowed on an IP module stream, after which this stream 9519 * normally becomes a multiplexor (at which time the stream head 9520 * will fail all ioctls). 9521 */ 9522 if ((q->q_next != NULL) && !(ipip->ipi_flags & IPI_MODOK)) { 9523 if (ipip->ipi_flags & IPI_PASS_DOWN) { 9524 /* 9525 * Pass common Streams ioctls which the IP 9526 * module does not own or consume along to 9527 * be processed down stream. 9528 */ 9529 putnext(q, mp); 9530 return; 9531 } else { 9532 goto nak; 9533 } 9534 } 9535 9536 /* Make sure we have ioctl data to process. */ 9537 if (mp->b_cont == NULL && !(ipip->ipi_flags & IPI_NULL_BCONT)) 9538 goto nak; 9539 9540 /* 9541 * Prefer dblk credential over ioctl credential; some synthesized 9542 * ioctls have kcred set because there's no way to crhold() 9543 * a credential in some contexts. (ioc_cr is not crfree() by 9544 * the framework; the caller of ioctl needs to hold the reference 9545 * for the duration of the call). 9546 */ 9547 cr = DB_CREDDEF(mp, iocp->ioc_cr); 9548 9549 /* Make sure normal users don't send down privileged ioctls */ 9550 if ((ipip->ipi_flags & IPI_PRIV) && 9551 (cr != NULL) && secpolicy_net_config(cr, B_TRUE) != 0) { 9552 /* We checked the privilege earlier but log it here */ 9553 miocnak(q, mp, 0, secpolicy_net_config(cr, B_FALSE)); 9554 return; 9555 } 9556 9557 /* 9558 * The ioctl command tables can only encode fixed length 9559 * ioctl data. If the length is variable, the table will 9560 * encode the length as zero. Such special cases are handled 9561 * below in the switch. 9562 */ 9563 if (ipip->ipi_copyin_size != 0) { 9564 mi_copyin(q, mp, NULL, ipip->ipi_copyin_size); 9565 return; 9566 } 9567 9568 switch (iocp->ioc_cmd) { 9569 case O_SIOCGIFCONF: 9570 case SIOCGIFCONF: 9571 /* 9572 * This IOCTL is hilarious. See comments in 9573 * ip_sioctl_get_ifconf for the story. 9574 */ 9575 if (iocp->ioc_count == TRANSPARENT) 9576 copyin_size = SIZEOF_STRUCT(ifconf, 9577 iocp->ioc_flag); 9578 else 9579 copyin_size = iocp->ioc_count; 9580 mi_copyin(q, mp, NULL, copyin_size); 9581 return; 9582 9583 case O_SIOCGLIFCONF: 9584 case SIOCGLIFCONF: 9585 copyin_size = SIZEOF_STRUCT(lifconf, iocp->ioc_flag); 9586 mi_copyin(q, mp, NULL, copyin_size); 9587 return; 9588 9589 case SIOCGLIFSRCOF: 9590 copyin_size = SIZEOF_STRUCT(lifsrcof, iocp->ioc_flag); 9591 mi_copyin(q, mp, NULL, copyin_size); 9592 return; 9593 case SIOCGIP6ADDRPOLICY: 9594 ip_sioctl_ip6addrpolicy(q, mp); 9595 ip6_asp_table_refrele(); 9596 return; 9597 9598 case SIOCSIP6ADDRPOLICY: 9599 ip_sioctl_ip6addrpolicy(q, mp); 9600 return; 9601 9602 case SIOCGDSTINFO: 9603 ip_sioctl_dstinfo(q, mp); 9604 ip6_asp_table_refrele(); 9605 return; 9606 9607 case I_PLINK: 9608 case I_PUNLINK: 9609 case I_LINK: 9610 case I_UNLINK: 9611 /* 9612 * We treat non-persistent link similarly as the persistent 9613 * link case, in terms of plumbing/unplumbing, as well as 9614 * dynamic re-plumbing events indicator. See comments 9615 * in ip_sioctl_plink() for more. 9616 * 9617 * Request can be enqueued in the 'ipsq' while waiting 9618 * to become exclusive. So bump up the conn ref. 9619 */ 9620 if (CONN_Q(q)) 9621 CONN_INC_REF(Q_TO_CONN(q)); 9622 ip_sioctl_plink(NULL, q, mp, NULL); 9623 return; 9624 9625 case ND_GET: 9626 case ND_SET: 9627 /* 9628 * Use of the nd table requires holding the reader lock. 9629 * Modifying the nd table thru nd_load/nd_unload requires 9630 * the writer lock. 9631 */ 9632 rw_enter(&ip_g_nd_lock, RW_READER); 9633 if (nd_getset(q, ip_g_nd, mp)) { 9634 rw_exit(&ip_g_nd_lock); 9635 9636 if (iocp->ioc_error) 9637 iocp->ioc_count = 0; 9638 mp->b_datap->db_type = M_IOCACK; 9639 qreply(q, mp); 9640 return; 9641 } 9642 rw_exit(&ip_g_nd_lock); 9643 /* 9644 * We don't understand this subioctl of ND_GET / ND_SET. 9645 * Maybe intended for some driver / module below us 9646 */ 9647 if (q->q_next) { 9648 putnext(q, mp); 9649 } else { 9650 iocp->ioc_error = ENOENT; 9651 mp->b_datap->db_type = M_IOCNAK; 9652 iocp->ioc_count = 0; 9653 qreply(q, mp); 9654 } 9655 return; 9656 9657 case IP_IOCTL: 9658 ip_wput_ioctl(q, mp); 9659 return; 9660 default: 9661 cmn_err(CE_PANIC, "should not happen "); 9662 } 9663 nak: 9664 if (mp->b_cont != NULL) { 9665 freemsg(mp->b_cont); 9666 mp->b_cont = NULL; 9667 } 9668 iocp->ioc_error = EINVAL; 9669 mp->b_datap->db_type = M_IOCNAK; 9670 iocp->ioc_count = 0; 9671 qreply(q, mp); 9672 } 9673 9674 /* ip_wput hands off ARP IOCTL responses to us */ 9675 void 9676 ip_sioctl_iocack(queue_t *q, mblk_t *mp) 9677 { 9678 struct arpreq *ar; 9679 struct xarpreq *xar; 9680 area_t *area; 9681 mblk_t *area_mp; 9682 struct iocblk *iocp; 9683 mblk_t *orig_ioc_mp, *tmp; 9684 struct iocblk *orig_iocp; 9685 ill_t *ill; 9686 conn_t *connp = NULL; 9687 uint_t ioc_id; 9688 mblk_t *pending_mp; 9689 int x_arp_ioctl = B_FALSE, ifx_arp_ioctl = B_FALSE; 9690 int *flagsp; 9691 char *storage = NULL; 9692 sin_t *sin; 9693 ipaddr_t addr; 9694 int err; 9695 9696 ill = q->q_ptr; 9697 ASSERT(ill != NULL); 9698 9699 /* 9700 * We should get back from ARP a packet chain that looks like: 9701 * M_IOCACK-->ARP_op_MBLK-->ORIG_M_IOCTL-->MI_COPY_MBLK-->[X]ARPREQ_MBLK 9702 */ 9703 if (!(area_mp = mp->b_cont) || 9704 (area_mp->b_wptr - area_mp->b_rptr) < sizeof (ip_sock_ar_t) || 9705 !(orig_ioc_mp = area_mp->b_cont) || 9706 !orig_ioc_mp->b_cont || !orig_ioc_mp->b_cont->b_cont) { 9707 freemsg(mp); 9708 return; 9709 } 9710 9711 orig_iocp = (struct iocblk *)orig_ioc_mp->b_rptr; 9712 9713 tmp = (orig_ioc_mp->b_cont)->b_cont; 9714 if ((orig_iocp->ioc_cmd == SIOCGXARP) || 9715 (orig_iocp->ioc_cmd == SIOCSXARP) || 9716 (orig_iocp->ioc_cmd == SIOCDXARP)) { 9717 x_arp_ioctl = B_TRUE; 9718 xar = (struct xarpreq *)tmp->b_rptr; 9719 sin = (sin_t *)&xar->xarp_pa; 9720 flagsp = &xar->xarp_flags; 9721 storage = xar->xarp_ha.sdl_data; 9722 if (xar->xarp_ha.sdl_nlen != 0) 9723 ifx_arp_ioctl = B_TRUE; 9724 } else { 9725 ar = (struct arpreq *)tmp->b_rptr; 9726 sin = (sin_t *)&ar->arp_pa; 9727 flagsp = &ar->arp_flags; 9728 storage = ar->arp_ha.sa_data; 9729 } 9730 9731 iocp = (struct iocblk *)mp->b_rptr; 9732 9733 /* 9734 * Pick out the originating queue based on the ioc_id. 9735 */ 9736 ioc_id = iocp->ioc_id; 9737 pending_mp = ill_pending_mp_get(ill, &connp, ioc_id); 9738 if (pending_mp == NULL) { 9739 ASSERT(connp == NULL); 9740 ip_ioctl_freemsg(mp); 9741 return; 9742 } 9743 ASSERT(connp != NULL); 9744 q = CONNP_TO_WQ(connp); 9745 9746 /* Uncouple the internally generated IOCTL from the original one */ 9747 area = (area_t *)area_mp->b_rptr; 9748 area_mp->b_cont = NULL; 9749 9750 /* 9751 * Restore the b_next and b_prev used by mi code. This is needed 9752 * to complete the ioctl using mi* functions. We stored them in 9753 * the pending mp prior to sending the request to ARP. 9754 */ 9755 orig_ioc_mp->b_cont->b_next = pending_mp->b_cont->b_next; 9756 orig_ioc_mp->b_cont->b_prev = pending_mp->b_cont->b_prev; 9757 ip_ioctl_freemsg(pending_mp); 9758 9759 /* 9760 * We're done if there was an error or if this is not an SIOCG{X}ARP 9761 * Catch the case where there is an IRE_CACHE by no entry in the 9762 * arp table. 9763 */ 9764 addr = sin->sin_addr.s_addr; 9765 if (iocp->ioc_error && iocp->ioc_cmd == AR_ENTRY_SQUERY) { 9766 ire_t *ire; 9767 dl_unitdata_req_t *dlup; 9768 mblk_t *llmp; 9769 int addr_len; 9770 ill_t *ipsqill = NULL; 9771 9772 if (ifx_arp_ioctl) { 9773 /* 9774 * There's no need to lookup the ill, since 9775 * we've already done that when we started 9776 * processing the ioctl and sent the message 9777 * to ARP on that ill. So use the ill that 9778 * is stored in q->q_ptr. 9779 */ 9780 ipsqill = ill; 9781 ire = ire_ctable_lookup(addr, 0, IRE_CACHE, 9782 ipsqill->ill_ipif, ALL_ZONES, 9783 MATCH_IRE_TYPE | MATCH_IRE_ILL); 9784 } else { 9785 ire = ire_ctable_lookup(addr, 0, IRE_CACHE, 9786 NULL, ALL_ZONES, MATCH_IRE_TYPE); 9787 if (ire != NULL) 9788 ipsqill = ire_to_ill(ire); 9789 } 9790 9791 if ((x_arp_ioctl) && (ipsqill != NULL)) 9792 storage += ill_xarp_info(&xar->xarp_ha, ipsqill); 9793 9794 if (ire != NULL) { 9795 *flagsp = ATF_INUSE; 9796 llmp = ire->ire_dlureq_mp; 9797 if (llmp != NULL && ipsqill != NULL) { 9798 uchar_t *macaddr; 9799 9800 addr_len = ipsqill->ill_phys_addr_length; 9801 if (x_arp_ioctl && ((addr_len + 9802 ipsqill->ill_name_length) > 9803 sizeof (xar->xarp_ha.sdl_data))) { 9804 ire_refrele(ire); 9805 freemsg(mp); 9806 ip_ioctl_finish(q, orig_ioc_mp, 9807 EINVAL, NO_COPYOUT, NULL, NULL); 9808 return; 9809 } 9810 *flagsp |= ATF_COM; 9811 dlup = (dl_unitdata_req_t *)llmp->b_rptr; 9812 if (ipsqill->ill_sap_length < 0) 9813 macaddr = llmp->b_rptr + 9814 dlup->dl_dest_addr_offset; 9815 else 9816 macaddr = llmp->b_rptr + 9817 dlup->dl_dest_addr_offset + 9818 ipsqill->ill_sap_length; 9819 /* 9820 * For SIOCGARP, MAC address length 9821 * validation has already been done 9822 * before the ioctl was issued to ARP to 9823 * allow it to progress only on 6 byte 9824 * addressable (ethernet like) media. Thus 9825 * the mac address copying can not overwrite 9826 * the sa_data area below. 9827 */ 9828 bcopy(macaddr, storage, addr_len); 9829 } 9830 /* Ditch the internal IOCTL. */ 9831 freemsg(mp); 9832 ire_refrele(ire); 9833 ip_ioctl_finish(q, orig_ioc_mp, 0, COPYOUT, NULL, NULL); 9834 return; 9835 } 9836 } 9837 9838 /* 9839 * Delete the coresponding IRE_CACHE if any. 9840 * Reset the error if there was one (in case there was no entry 9841 * in arp.) 9842 */ 9843 if (iocp->ioc_cmd == AR_ENTRY_DELETE) { 9844 ipif_t *ipintf = NULL; 9845 9846 if (ifx_arp_ioctl) { 9847 /* 9848 * There's no need to lookup the ill, since 9849 * we've already done that when we started 9850 * processing the ioctl and sent the message 9851 * to ARP on that ill. So use the ill that 9852 * is stored in q->q_ptr. 9853 */ 9854 ipintf = ill->ill_ipif; 9855 } 9856 if (ip_ire_clookup_and_delete(addr, ipintf)) { 9857 /* 9858 * The address in "addr" may be an entry for a 9859 * router. If that's true, then any off-net 9860 * IRE_CACHE entries that go through the router 9861 * with address "addr" must be clobbered. Use 9862 * ire_walk to achieve this goal. 9863 */ 9864 if (ifx_arp_ioctl) 9865 ire_walk_ill_v4(MATCH_IRE_ILL, 0, 9866 ire_delete_cache_gw, (char *)&addr, ill); 9867 else 9868 ire_walk_v4(ire_delete_cache_gw, (char *)&addr, 9869 ALL_ZONES); 9870 iocp->ioc_error = 0; 9871 } 9872 } 9873 9874 if (iocp->ioc_error || iocp->ioc_cmd != AR_ENTRY_SQUERY) { 9875 err = iocp->ioc_error; 9876 freemsg(mp); 9877 ip_ioctl_finish(q, orig_ioc_mp, err, NO_COPYOUT, NULL, NULL); 9878 return; 9879 } 9880 9881 /* 9882 * Completion of an SIOCG{X}ARP. Translate the information from 9883 * the area_t into the struct {x}arpreq. 9884 */ 9885 if (x_arp_ioctl) { 9886 storage += ill_xarp_info(&xar->xarp_ha, ill); 9887 if ((ill->ill_phys_addr_length + ill->ill_name_length) > 9888 sizeof (xar->xarp_ha.sdl_data)) { 9889 freemsg(mp); 9890 ip_ioctl_finish(q, orig_ioc_mp, EINVAL, 9891 NO_COPYOUT, NULL, NULL); 9892 return; 9893 } 9894 } 9895 *flagsp = ATF_INUSE; 9896 if (area->area_flags & ACE_F_PERMANENT) 9897 *flagsp |= ATF_PERM; 9898 if (area->area_flags & ACE_F_PUBLISH) 9899 *flagsp |= ATF_PUBL; 9900 if (area->area_hw_addr_length != 0) { 9901 *flagsp |= ATF_COM; 9902 /* 9903 * For SIOCGARP, MAC address length validation has 9904 * already been done before the ioctl was issued to ARP 9905 * to allow it to progress only on 6 byte addressable 9906 * (ethernet like) media. Thus the mac address copying 9907 * can not overwrite the sa_data area below. 9908 */ 9909 bcopy((char *)area + area->area_hw_addr_offset, 9910 storage, area->area_hw_addr_length); 9911 } 9912 9913 /* Ditch the internal IOCTL. */ 9914 freemsg(mp); 9915 /* Complete the original. */ 9916 ip_ioctl_finish(q, orig_ioc_mp, 0, COPYOUT, NULL, NULL); 9917 } 9918 9919 /* 9920 * Create a new logical interface. If ipif_id is zero (i.e. not a logical 9921 * interface) create the next available logical interface for this 9922 * physical interface. 9923 * If ipif is NULL (i.e. the lookup didn't find one) attempt to create an 9924 * ipif with the specified name. 9925 * 9926 * If the address family is not AF_UNSPEC then set the address as well. 9927 * 9928 * If ip_sioctl_addr returns EINPROGRESS then the ioctl (the copyout) 9929 * is completed when the DL_BIND_ACK arrive in ip_rput_dlpi_writer. 9930 * 9931 * Executed as a writer on the ill or ill group. 9932 * So no lock is needed to traverse the ipif chain, or examine the 9933 * phyint flags. 9934 */ 9935 /* ARGSUSED */ 9936 int 9937 ip_sioctl_addif(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 9938 ip_ioctl_cmd_t *dummy_ipip, void *dummy_ifreq) 9939 { 9940 mblk_t *mp1; 9941 struct lifreq *lifr; 9942 boolean_t isv6; 9943 boolean_t exists; 9944 char *name; 9945 char *endp; 9946 char *cp; 9947 int namelen; 9948 ipif_t *ipif; 9949 long id; 9950 ipsq_t *ipsq; 9951 ill_t *ill; 9952 sin_t *sin; 9953 int err = 0; 9954 boolean_t found_sep = B_FALSE; 9955 conn_t *connp; 9956 zoneid_t zoneid; 9957 int orig_ifindex = 0; 9958 9959 ip1dbg(("ip_sioctl_addif\n")); 9960 /* Existence of mp1 has been checked in ip_wput_nondata */ 9961 mp1 = mp->b_cont->b_cont; 9962 /* 9963 * Null terminate the string to protect against buffer 9964 * overrun. String was generated by user code and may not 9965 * be trusted. 9966 */ 9967 lifr = (struct lifreq *)mp1->b_rptr; 9968 lifr->lifr_name[LIFNAMSIZ - 1] = '\0'; 9969 name = lifr->lifr_name; 9970 ASSERT(CONN_Q(q)); 9971 connp = Q_TO_CONN(q); 9972 isv6 = connp->conn_af_isv6; 9973 zoneid = connp->conn_zoneid; 9974 namelen = mi_strlen(name); 9975 if (namelen == 0) 9976 return (EINVAL); 9977 9978 exists = B_FALSE; 9979 if ((namelen + 1 == sizeof (ipif_loopback_name)) && 9980 (mi_strcmp(name, ipif_loopback_name) == 0)) { 9981 /* 9982 * Allow creating lo0 using SIOCLIFADDIF. 9983 * can't be any other writer thread. So can pass null below 9984 * for the last 4 args to ipif_lookup_name. 9985 */ 9986 ipif = ipif_lookup_on_name(lifr->lifr_name, namelen, 9987 B_TRUE, &exists, isv6, zoneid, NULL, NULL, NULL, NULL); 9988 /* Prevent any further action */ 9989 if (ipif == NULL) { 9990 return (ENOBUFS); 9991 } else if (!exists) { 9992 /* We created the ipif now and as writer */ 9993 ipif_refrele(ipif); 9994 return (0); 9995 } else { 9996 ill = ipif->ipif_ill; 9997 ill_refhold(ill); 9998 ipif_refrele(ipif); 9999 } 10000 } else { 10001 /* Look for a colon in the name. */ 10002 endp = &name[namelen]; 10003 for (cp = endp; --cp > name; ) { 10004 if (*cp == IPIF_SEPARATOR_CHAR) { 10005 found_sep = B_TRUE; 10006 /* 10007 * Reject any non-decimal aliases for plumbing 10008 * of logical interfaces. Aliases with leading 10009 * zeroes are also rejected as they introduce 10010 * ambiguity in the naming of the interfaces. 10011 * Comparing with "0" takes care of all such 10012 * cases. 10013 */ 10014 if ((strncmp("0", cp+1, 1)) == 0) 10015 return (EINVAL); 10016 10017 if (ddi_strtol(cp+1, &endp, 10, &id) != 0 || 10018 id <= 0 || *endp != '\0') { 10019 return (EINVAL); 10020 } 10021 *cp = '\0'; 10022 break; 10023 } 10024 } 10025 ill = ill_lookup_on_name(name, B_FALSE, isv6, 10026 CONNP_TO_WQ(connp), mp, ip_process_ioctl, &err, NULL); 10027 if (found_sep) 10028 *cp = IPIF_SEPARATOR_CHAR; 10029 if (ill == NULL) 10030 return (err); 10031 } 10032 10033 ipsq = ipsq_try_enter(NULL, ill, q, mp, ip_process_ioctl, NEW_OP, 10034 B_TRUE); 10035 10036 /* 10037 * Release the refhold due to the lookup, now that we are excl 10038 * or we are just returning 10039 */ 10040 ill_refrele(ill); 10041 10042 if (ipsq == NULL) 10043 return (EINPROGRESS); 10044 10045 /* 10046 * If the interface is failed, inactive or offlined, look for a working 10047 * interface in the ill group and create the ipif there. If we can't 10048 * find a good interface, create the ipif anyway so that in.mpathd can 10049 * move it to the first repaired interface. 10050 */ 10051 if ((ill->ill_phyint->phyint_flags & 10052 (PHYI_FAILED|PHYI_INACTIVE|PHYI_OFFLINE)) && 10053 ill->ill_phyint->phyint_groupname_len != 0) { 10054 phyint_t *phyi; 10055 char *groupname = ill->ill_phyint->phyint_groupname; 10056 10057 /* 10058 * We're looking for a working interface, but it doesn't matter 10059 * if it's up or down; so instead of following the group lists, 10060 * we look at each physical interface and compare the groupname. 10061 * We're only interested in interfaces with IPv4 (resp. IPv6) 10062 * plumbed when we're adding an IPv4 (resp. IPv6) ipif. 10063 * Otherwise we create the ipif on the failed interface. 10064 */ 10065 rw_enter(&ill_g_lock, RW_READER); 10066 phyi = avl_first(&phyint_g_list.phyint_list_avl_by_index); 10067 for (; phyi != NULL; 10068 phyi = avl_walk(&phyint_g_list.phyint_list_avl_by_index, 10069 phyi, AVL_AFTER)) { 10070 if (phyi->phyint_groupname_len == 0) 10071 continue; 10072 ASSERT(phyi->phyint_groupname != NULL); 10073 if (mi_strcmp(groupname, phyi->phyint_groupname) == 0 && 10074 !(phyi->phyint_flags & 10075 (PHYI_FAILED|PHYI_INACTIVE|PHYI_OFFLINE)) && 10076 (ill->ill_isv6 ? (phyi->phyint_illv6 != NULL) : 10077 (phyi->phyint_illv4 != NULL))) { 10078 break; 10079 } 10080 } 10081 rw_exit(&ill_g_lock); 10082 10083 if (phyi != NULL) { 10084 orig_ifindex = ill->ill_phyint->phyint_ifindex; 10085 ill = (ill->ill_isv6 ? phyi->phyint_illv6 : 10086 phyi->phyint_illv4); 10087 } 10088 } 10089 10090 /* 10091 * We are now exclusive on the ipsq, so an ill move will be serialized 10092 * before or after us. 10093 */ 10094 ASSERT(IAM_WRITER_ILL(ill)); 10095 ASSERT(ill->ill_move_in_progress == B_FALSE); 10096 10097 if (found_sep && orig_ifindex == 0) { 10098 /* Now see if there is an IPIF with this unit number. */ 10099 for (ipif = ill->ill_ipif; ipif; ipif = ipif->ipif_next) { 10100 if (ipif->ipif_id == id) { 10101 err = EEXIST; 10102 goto done; 10103 } 10104 } 10105 } 10106 10107 /* 10108 * We use IRE_LOCAL for lo0:1 etc. for "receive only" use 10109 * of lo0. We never come here when we plumb lo0:0. It 10110 * happens in ipif_lookup_on_name. 10111 * The specified unit number is ignored when we create the ipif on a 10112 * different interface. However, we save it in ipif_orig_ipifid below so 10113 * that the ipif fails back to the right position. 10114 */ 10115 if ((ipif = ipif_allocate(ill, (found_sep && orig_ifindex == 0) ? 10116 id : -1, IRE_LOCAL, B_TRUE)) == NULL) { 10117 err = ENOBUFS; 10118 goto done; 10119 } 10120 10121 /* Return created name with ioctl */ 10122 (void) sprintf(lifr->lifr_name, "%s%c%d", ill->ill_name, 10123 IPIF_SEPARATOR_CHAR, ipif->ipif_id); 10124 ip1dbg(("created %s\n", lifr->lifr_name)); 10125 10126 /* Set address */ 10127 sin = (sin_t *)&lifr->lifr_addr; 10128 if (sin->sin_family != AF_UNSPEC) { 10129 err = ip_sioctl_addr(ipif, sin, q, mp, 10130 &ip_ndx_ioctl_table[SIOCLIFADDR_NDX], lifr); 10131 } 10132 10133 /* Set ifindex and unit number for failback */ 10134 if (err == 0 && orig_ifindex != 0) { 10135 ipif->ipif_orig_ifindex = orig_ifindex; 10136 if (found_sep) { 10137 ipif->ipif_orig_ipifid = id; 10138 } 10139 } 10140 10141 done: 10142 ipsq_exit(ipsq, B_TRUE, B_TRUE); 10143 return (err); 10144 } 10145 10146 /* 10147 * Remove an existing logical interface. If ipif_id is zero (i.e. not a logical 10148 * interface) delete it based on the IP address (on this physical interface). 10149 * Otherwise delete it based on the ipif_id. 10150 * Also, special handling to allow a removeif of lo0. 10151 */ 10152 /* ARGSUSED */ 10153 int 10154 ip_sioctl_removeif(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10155 ip_ioctl_cmd_t *ipip, void *dummy_if_req) 10156 { 10157 conn_t *connp; 10158 ill_t *ill = ipif->ipif_ill; 10159 boolean_t success; 10160 10161 ip1dbg(("ip_sioctl_remove_if(%s:%u %p)\n", 10162 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 10163 ASSERT(IAM_WRITER_IPIF(ipif)); 10164 10165 connp = Q_TO_CONN(q); 10166 /* 10167 * Special case for unplumbing lo0 (the loopback physical interface). 10168 * If unplumbing lo0, the incoming address structure has been 10169 * initialized to all zeros. When unplumbing lo0, all its logical 10170 * interfaces must be removed too. 10171 * 10172 * Note that this interface may be called to remove a specific 10173 * loopback logical interface (eg, lo0:1). But in that case 10174 * ipif->ipif_id != 0 so that the code path for that case is the 10175 * same as any other interface (meaning it skips the code directly 10176 * below). 10177 */ 10178 if (ipif->ipif_id == 0 && ipif->ipif_net_type == IRE_LOOPBACK) { 10179 if (sin->sin_family == AF_UNSPEC && 10180 (IN6_IS_ADDR_UNSPECIFIED(&((sin6_t *)sin)->sin6_addr))) { 10181 /* 10182 * Mark it condemned. No new ref. will be made to ill. 10183 */ 10184 mutex_enter(&ill->ill_lock); 10185 ill->ill_state_flags |= ILL_CONDEMNED; 10186 for (ipif = ill->ill_ipif; ipif != NULL; 10187 ipif = ipif->ipif_next) { 10188 ipif->ipif_state_flags |= IPIF_CONDEMNED; 10189 } 10190 mutex_exit(&ill->ill_lock); 10191 10192 ipif = ill->ill_ipif; 10193 /* unplumb the loopback interface */ 10194 ill_delete(ill); 10195 mutex_enter(&connp->conn_lock); 10196 mutex_enter(&ill->ill_lock); 10197 ASSERT(ill->ill_group == NULL); 10198 10199 /* Are any references to this ill active */ 10200 if (ill_is_quiescent(ill)) { 10201 mutex_exit(&ill->ill_lock); 10202 mutex_exit(&connp->conn_lock); 10203 ill_delete_tail(ill); 10204 return (0); 10205 } 10206 success = ipsq_pending_mp_add(connp, ipif, 10207 CONNP_TO_WQ(connp), mp, ILL_FREE); 10208 mutex_exit(&connp->conn_lock); 10209 mutex_exit(&ill->ill_lock); 10210 if (success) 10211 return (EINPROGRESS); 10212 else 10213 return (EINTR); 10214 } 10215 } 10216 10217 /* 10218 * We are exclusive on the ipsq, so an ill move will be serialized 10219 * before or after us. 10220 */ 10221 ASSERT(ill->ill_move_in_progress == B_FALSE); 10222 10223 if (ipif->ipif_id == 0) { 10224 /* Find based on address */ 10225 if (ipif->ipif_isv6) { 10226 sin6_t *sin6; 10227 10228 if (sin->sin_family != AF_INET6) 10229 return (EAFNOSUPPORT); 10230 10231 sin6 = (sin6_t *)sin; 10232 /* We are a writer, so we should be able to lookup */ 10233 ipif = ipif_lookup_addr_v6(&sin6->sin6_addr, 10234 ill, ALL_ZONES, NULL, NULL, NULL, NULL); 10235 if (ipif == NULL) { 10236 /* 10237 * Maybe the address in on another interface in 10238 * the same IPMP group? We check this below. 10239 */ 10240 ipif = ipif_lookup_addr_v6(&sin6->sin6_addr, 10241 NULL, ALL_ZONES, NULL, NULL, NULL, NULL); 10242 } 10243 } else { 10244 ipaddr_t addr; 10245 10246 if (sin->sin_family != AF_INET) 10247 return (EAFNOSUPPORT); 10248 10249 addr = sin->sin_addr.s_addr; 10250 /* We are a writer, so we should be able to lookup */ 10251 ipif = ipif_lookup_addr(addr, ill, ALL_ZONES, NULL, 10252 NULL, NULL, NULL); 10253 if (ipif == NULL) { 10254 /* 10255 * Maybe the address in on another interface in 10256 * the same IPMP group? We check this below. 10257 */ 10258 ipif = ipif_lookup_addr(addr, NULL, ALL_ZONES, 10259 NULL, NULL, NULL, NULL); 10260 } 10261 } 10262 if (ipif == NULL) { 10263 return (EADDRNOTAVAIL); 10264 } 10265 /* 10266 * When the address to be removed is hosted on a different 10267 * interface, we check if the interface is in the same IPMP 10268 * group as the specified one; if so we proceed with the 10269 * removal. 10270 * ill->ill_group is NULL when the ill is down, so we have to 10271 * compare the group names instead. 10272 */ 10273 if (ipif->ipif_ill != ill && 10274 (ipif->ipif_ill->ill_phyint->phyint_groupname_len == 0 || 10275 ill->ill_phyint->phyint_groupname_len == 0 || 10276 mi_strcmp(ipif->ipif_ill->ill_phyint->phyint_groupname, 10277 ill->ill_phyint->phyint_groupname) != 0)) { 10278 ipif_refrele(ipif); 10279 return (EADDRNOTAVAIL); 10280 } 10281 10282 /* This is a writer */ 10283 ipif_refrele(ipif); 10284 } 10285 10286 /* 10287 * Can not delete instance zero since it is tied to the ill. 10288 */ 10289 if (ipif->ipif_id == 0) 10290 return (EBUSY); 10291 10292 mutex_enter(&ill->ill_lock); 10293 ipif->ipif_state_flags |= IPIF_CONDEMNED; 10294 mutex_exit(&ill->ill_lock); 10295 10296 ipif_free(ipif); 10297 10298 mutex_enter(&connp->conn_lock); 10299 mutex_enter(&ill->ill_lock); 10300 10301 /* Are any references to this ipif active */ 10302 if (ipif->ipif_refcnt == 0 && ipif->ipif_ire_cnt == 0) { 10303 mutex_exit(&ill->ill_lock); 10304 mutex_exit(&connp->conn_lock); 10305 ipif_down_tail(ipif); 10306 ipif_free_tail(ipif); 10307 return (0); 10308 } 10309 success = ipsq_pending_mp_add(connp, ipif, CONNP_TO_WQ(connp), mp, 10310 IPIF_FREE); 10311 mutex_exit(&ill->ill_lock); 10312 mutex_exit(&connp->conn_lock); 10313 if (success) 10314 return (EINPROGRESS); 10315 else 10316 return (EINTR); 10317 } 10318 10319 /* 10320 * Restart the removeif ioctl. The refcnt has gone down to 0. 10321 * The ipif is already condemned. So can't find it thru lookups. 10322 */ 10323 /* ARGSUSED */ 10324 int 10325 ip_sioctl_removeif_restart(ipif_t *ipif, sin_t *dummy_sin, queue_t *q, 10326 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *dummy_if_req) 10327 { 10328 ill_t *ill; 10329 10330 ip1dbg(("ip_sioctl_removeif_restart(%s:%u %p)\n", 10331 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 10332 if (ipif->ipif_id == 0 && ipif->ipif_net_type == IRE_LOOPBACK) { 10333 ill = ipif->ipif_ill; 10334 ASSERT(IAM_WRITER_ILL(ill)); 10335 ASSERT((ipif->ipif_state_flags & IPIF_CONDEMNED) && 10336 (ill->ill_state_flags & IPIF_CONDEMNED)); 10337 ill_delete_tail(ill); 10338 return (0); 10339 } 10340 10341 ill = ipif->ipif_ill; 10342 ASSERT(IAM_WRITER_IPIF(ipif)); 10343 ASSERT(ipif->ipif_state_flags & IPIF_CONDEMNED); 10344 10345 ipif_down_tail(ipif); 10346 ipif_free_tail(ipif); 10347 10348 ILL_UNMARK_CHANGING(ill); 10349 return (0); 10350 } 10351 10352 /* 10353 * Set the local interface address. 10354 * Allow an address of all zero when the interface is down. 10355 */ 10356 /* ARGSUSED */ 10357 int 10358 ip_sioctl_addr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10359 ip_ioctl_cmd_t *dummy_ipip, void *dummy_ifreq) 10360 { 10361 int err = 0; 10362 in6_addr_t v6addr; 10363 boolean_t need_up = B_FALSE; 10364 10365 ip1dbg(("ip_sioctl_addr(%s:%u %p)\n", 10366 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 10367 10368 ASSERT(IAM_WRITER_IPIF(ipif)); 10369 10370 if (ipif->ipif_isv6) { 10371 sin6_t *sin6; 10372 ill_t *ill; 10373 phyint_t *phyi; 10374 10375 if (sin->sin_family != AF_INET6) 10376 return (EAFNOSUPPORT); 10377 10378 sin6 = (sin6_t *)sin; 10379 v6addr = sin6->sin6_addr; 10380 ill = ipif->ipif_ill; 10381 phyi = ill->ill_phyint; 10382 10383 /* 10384 * Enforce that true multicast interfaces have a link-local 10385 * address for logical unit 0. 10386 */ 10387 if (ipif->ipif_id == 0 && 10388 (ill->ill_flags & ILLF_MULTICAST) && 10389 !(ipif->ipif_flags & (IPIF_POINTOPOINT)) && 10390 !(phyi->phyint_flags & (PHYI_LOOPBACK)) && 10391 !IN6_IS_ADDR_LINKLOCAL(&v6addr)) { 10392 return (EADDRNOTAVAIL); 10393 } 10394 10395 /* 10396 * up interfaces shouldn't have the unspecified address 10397 * unless they also have the IPIF_NOLOCAL flags set and 10398 * have a subnet assigned. 10399 */ 10400 if ((ipif->ipif_flags & IPIF_UP) && 10401 IN6_IS_ADDR_UNSPECIFIED(&v6addr) && 10402 (!(ipif->ipif_flags & IPIF_NOLOCAL) || 10403 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6subnet))) { 10404 return (EADDRNOTAVAIL); 10405 } 10406 10407 if (!ip_local_addr_ok_v6(&v6addr, &ipif->ipif_v6net_mask)) 10408 return (EADDRNOTAVAIL); 10409 } else { 10410 ipaddr_t addr; 10411 10412 if (sin->sin_family != AF_INET) 10413 return (EAFNOSUPPORT); 10414 10415 addr = sin->sin_addr.s_addr; 10416 10417 /* Allow 0 as the local address. */ 10418 if (addr != 0 && !ip_addr_ok_v4(addr, ipif->ipif_net_mask)) 10419 return (EADDRNOTAVAIL); 10420 10421 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 10422 } 10423 10424 10425 /* 10426 * Even if there is no change we redo things just to rerun 10427 * ipif_set_default. 10428 */ 10429 if (ipif->ipif_flags & IPIF_UP) { 10430 /* 10431 * Setting a new local address, make sure 10432 * we have net and subnet bcast ire's for 10433 * the old address if we need them. 10434 */ 10435 if (!ipif->ipif_isv6) 10436 ipif_check_bcast_ires(ipif); 10437 /* 10438 * If the interface is already marked up, 10439 * we call ipif_down which will take care 10440 * of ditching any IREs that have been set 10441 * up based on the old interface address. 10442 */ 10443 err = ipif_logical_down(ipif, q, mp); 10444 if (err == EINPROGRESS) 10445 return (err); 10446 ipif_down_tail(ipif); 10447 need_up = 1; 10448 } 10449 10450 err = ip_sioctl_addr_tail(ipif, sin, q, mp, need_up); 10451 return (err); 10452 } 10453 10454 int 10455 ip_sioctl_addr_tail(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10456 boolean_t need_up) 10457 { 10458 in6_addr_t v6addr; 10459 ipaddr_t addr; 10460 sin6_t *sin6; 10461 int err = 0; 10462 10463 ip1dbg(("ip_sioctl_addr_tail(%s:%u %p)\n", 10464 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 10465 ASSERT(IAM_WRITER_IPIF(ipif)); 10466 if (ipif->ipif_isv6) { 10467 sin6 = (sin6_t *)sin; 10468 v6addr = sin6->sin6_addr; 10469 } else { 10470 addr = sin->sin_addr.s_addr; 10471 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 10472 } 10473 mutex_enter(&ipif->ipif_ill->ill_lock); 10474 ipif->ipif_v6lcl_addr = v6addr; 10475 if (ipif->ipif_flags & (IPIF_ANYCAST | IPIF_NOLOCAL)) { 10476 ipif->ipif_v6src_addr = ipv6_all_zeros; 10477 } else { 10478 ipif->ipif_v6src_addr = v6addr; 10479 } 10480 10481 if ((ipif->ipif_isv6) && IN6_IS_ADDR_6TO4(&v6addr) && 10482 (!ipif->ipif_ill->ill_is_6to4tun)) { 10483 queue_t *wqp = ipif->ipif_ill->ill_wq; 10484 10485 /* 10486 * The local address of this interface is a 6to4 address, 10487 * check if this interface is in fact a 6to4 tunnel or just 10488 * an interface configured with a 6to4 address. We are only 10489 * interested in the former. 10490 */ 10491 if (wqp != NULL) { 10492 while ((wqp->q_next != NULL) && 10493 (wqp->q_next->q_qinfo != NULL) && 10494 (wqp->q_next->q_qinfo->qi_minfo != NULL)) { 10495 10496 if (wqp->q_next->q_qinfo->qi_minfo->mi_idnum 10497 == TUN6TO4_MODID) { 10498 /* set for use in IP */ 10499 ipif->ipif_ill->ill_is_6to4tun = 1; 10500 break; 10501 } 10502 wqp = wqp->q_next; 10503 } 10504 } 10505 } 10506 10507 ipif_set_default(ipif); 10508 mutex_exit(&ipif->ipif_ill->ill_lock); 10509 10510 if (need_up) { 10511 /* 10512 * Now bring the interface back up. If this 10513 * is the only IPIF for the ILL, ipif_up 10514 * will have to re-bind to the device, so 10515 * we may get back EINPROGRESS, in which 10516 * case, this IOCTL will get completed in 10517 * ip_rput_dlpi when we see the DL_BIND_ACK. 10518 */ 10519 err = ipif_up(ipif, q, mp); 10520 } else { 10521 /* 10522 * Update the IPIF list in SCTP, ipif_up_done() will do it 10523 * if need_up is true. 10524 */ 10525 sctp_update_ipif(ipif, SCTP_IPIF_UPDATE); 10526 } 10527 10528 return (err); 10529 } 10530 10531 10532 /* 10533 * Restart entry point to restart the address set operation after the 10534 * refcounts have dropped to zero. 10535 */ 10536 /* ARGSUSED */ 10537 int 10538 ip_sioctl_addr_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10539 ip_ioctl_cmd_t *ipip, void *ifreq) 10540 { 10541 ip1dbg(("ip_sioctl_addr_restart(%s:%u %p)\n", 10542 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 10543 ASSERT(IAM_WRITER_IPIF(ipif)); 10544 ipif_down_tail(ipif); 10545 return (ip_sioctl_addr_tail(ipif, sin, q, mp, B_TRUE)); 10546 } 10547 10548 /* ARGSUSED */ 10549 int 10550 ip_sioctl_get_addr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10551 ip_ioctl_cmd_t *ipip, void *if_req) 10552 { 10553 sin6_t *sin6 = (struct sockaddr_in6 *)sin; 10554 struct lifreq *lifr = (struct lifreq *)if_req; 10555 10556 ip1dbg(("ip_sioctl_get_addr(%s:%u %p)\n", 10557 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 10558 /* 10559 * The net mask and address can't change since we have a 10560 * reference to the ipif. So no lock is necessary. 10561 */ 10562 if (ipif->ipif_isv6) { 10563 *sin6 = sin6_null; 10564 sin6->sin6_family = AF_INET6; 10565 sin6->sin6_addr = ipif->ipif_v6lcl_addr; 10566 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 10567 lifr->lifr_addrlen = 10568 ip_mask_to_plen_v6(&ipif->ipif_v6net_mask); 10569 } else { 10570 *sin = sin_null; 10571 sin->sin_family = AF_INET; 10572 sin->sin_addr.s_addr = ipif->ipif_lcl_addr; 10573 if (ipip->ipi_cmd_type == LIF_CMD) { 10574 lifr->lifr_addrlen = 10575 ip_mask_to_plen(ipif->ipif_net_mask); 10576 } 10577 } 10578 return (0); 10579 } 10580 10581 /* 10582 * Set the destination address for a pt-pt interface. 10583 */ 10584 /* ARGSUSED */ 10585 int 10586 ip_sioctl_dstaddr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10587 ip_ioctl_cmd_t *ipip, void *if_req) 10588 { 10589 int err = 0; 10590 in6_addr_t v6addr; 10591 boolean_t need_up = B_FALSE; 10592 10593 ip1dbg(("ip_sioctl_dstaddr(%s:%u %p)\n", 10594 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 10595 ASSERT(IAM_WRITER_IPIF(ipif)); 10596 10597 if (ipif->ipif_isv6) { 10598 sin6_t *sin6; 10599 10600 if (sin->sin_family != AF_INET6) 10601 return (EAFNOSUPPORT); 10602 10603 sin6 = (sin6_t *)sin; 10604 v6addr = sin6->sin6_addr; 10605 10606 if (!ip_remote_addr_ok_v6(&v6addr, &ipif->ipif_v6net_mask)) 10607 return (EADDRNOTAVAIL); 10608 } else { 10609 ipaddr_t addr; 10610 10611 if (sin->sin_family != AF_INET) 10612 return (EAFNOSUPPORT); 10613 10614 addr = sin->sin_addr.s_addr; 10615 if (!ip_addr_ok_v4(addr, ipif->ipif_net_mask)) 10616 return (EADDRNOTAVAIL); 10617 10618 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 10619 } 10620 10621 if (IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6pp_dst_addr, &v6addr)) 10622 return (0); /* No change */ 10623 10624 if (ipif->ipif_flags & IPIF_UP) { 10625 /* 10626 * If the interface is already marked up, 10627 * we call ipif_down which will take care 10628 * of ditching any IREs that have been set 10629 * up based on the old pp dst address. 10630 */ 10631 err = ipif_logical_down(ipif, q, mp); 10632 if (err == EINPROGRESS) 10633 return (err); 10634 ipif_down_tail(ipif); 10635 need_up = B_TRUE; 10636 } 10637 /* 10638 * could return EINPROGRESS. If so ioctl will complete in 10639 * ip_rput_dlpi_writer 10640 */ 10641 err = ip_sioctl_dstaddr_tail(ipif, sin, q, mp, need_up); 10642 return (err); 10643 } 10644 10645 static int 10646 ip_sioctl_dstaddr_tail(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10647 boolean_t need_up) 10648 { 10649 in6_addr_t v6addr; 10650 ill_t *ill = ipif->ipif_ill; 10651 int err = 0; 10652 10653 ip1dbg(("ip_sioctl_dstaddr_tail(%s:%u %p)\n", 10654 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 10655 if (ipif->ipif_isv6) { 10656 sin6_t *sin6; 10657 10658 sin6 = (sin6_t *)sin; 10659 v6addr = sin6->sin6_addr; 10660 } else { 10661 ipaddr_t addr; 10662 10663 addr = sin->sin_addr.s_addr; 10664 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 10665 } 10666 mutex_enter(&ill->ill_lock); 10667 /* Set point to point destination address. */ 10668 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) { 10669 /* 10670 * Allow this as a means of creating logical 10671 * pt-pt interfaces on top of e.g. an Ethernet. 10672 * XXX Undocumented HACK for testing. 10673 * pt-pt interfaces are created with NUD disabled. 10674 */ 10675 ipif->ipif_flags |= IPIF_POINTOPOINT; 10676 ipif->ipif_flags &= ~IPIF_BROADCAST; 10677 if (ipif->ipif_isv6) 10678 ipif->ipif_ill->ill_flags |= ILLF_NONUD; 10679 } 10680 10681 /* Set the new address. */ 10682 ipif->ipif_v6pp_dst_addr = v6addr; 10683 /* Make sure subnet tracks pp_dst */ 10684 ipif->ipif_v6subnet = ipif->ipif_v6pp_dst_addr; 10685 mutex_exit(&ill->ill_lock); 10686 10687 if (need_up) { 10688 /* 10689 * Now bring the interface back up. If this 10690 * is the only IPIF for the ILL, ipif_up 10691 * will have to re-bind to the device, so 10692 * we may get back EINPROGRESS, in which 10693 * case, this IOCTL will get completed in 10694 * ip_rput_dlpi when we see the DL_BIND_ACK. 10695 */ 10696 err = ipif_up(ipif, q, mp); 10697 } 10698 return (err); 10699 } 10700 10701 /* 10702 * Restart entry point to restart the dstaddress set operation after the 10703 * refcounts have dropped to zero. 10704 */ 10705 /* ARGSUSED */ 10706 int 10707 ip_sioctl_dstaddr_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10708 ip_ioctl_cmd_t *ipip, void *ifreq) 10709 { 10710 ip1dbg(("ip_sioctl_dstaddr_restart(%s:%u %p)\n", 10711 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 10712 ipif_down_tail(ipif); 10713 return (ip_sioctl_dstaddr_tail(ipif, sin, q, mp, B_TRUE)); 10714 } 10715 10716 /* ARGSUSED */ 10717 int 10718 ip_sioctl_get_dstaddr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10719 ip_ioctl_cmd_t *ipip, void *if_req) 10720 { 10721 sin6_t *sin6 = (struct sockaddr_in6 *)sin; 10722 10723 ip1dbg(("ip_sioctl_get_dstaddr(%s:%u %p)\n", 10724 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 10725 /* 10726 * Get point to point destination address. The addresses can't 10727 * change since we hold a reference to the ipif. 10728 */ 10729 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) 10730 return (EADDRNOTAVAIL); 10731 10732 if (ipif->ipif_isv6) { 10733 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 10734 *sin6 = sin6_null; 10735 sin6->sin6_family = AF_INET6; 10736 sin6->sin6_addr = ipif->ipif_v6pp_dst_addr; 10737 } else { 10738 *sin = sin_null; 10739 sin->sin_family = AF_INET; 10740 sin->sin_addr.s_addr = ipif->ipif_pp_dst_addr; 10741 } 10742 return (0); 10743 } 10744 10745 /* 10746 * part of ipmp, make this func return the active/inactive state and 10747 * caller can set once atomically instead of multiple mutex_enter/mutex_exit 10748 */ 10749 /* 10750 * This function either sets or clears the IFF_INACTIVE flag. 10751 * 10752 * As long as there are some addresses or multicast memberships on the 10753 * IPv4 or IPv6 interface of the "phyi" that does not belong in here, we 10754 * will consider it to be ACTIVE (clear IFF_INACTIVE) i.e the interface 10755 * will be used for outbound packets. 10756 */ 10757 static void 10758 phyint_standby_inactive(phyint_t *phyi) 10759 { 10760 ill_t *ill_v4; 10761 ill_t *ill_v6; 10762 ipif_t *ipif; 10763 ilm_t *ilm; 10764 10765 ill_v4 = phyi->phyint_illv4; 10766 ill_v6 = phyi->phyint_illv6; 10767 10768 /* 10769 * No need for a lock while traversing the list since iam 10770 * a writer 10771 */ 10772 if (ill_v4 != NULL) { 10773 ASSERT(IAM_WRITER_ILL(ill_v4)); 10774 for (ipif = ill_v4->ill_ipif; ipif != NULL; 10775 ipif = ipif->ipif_next) { 10776 if (ipif->ipif_orig_ifindex != phyi->phyint_ifindex) { 10777 mutex_enter(&phyi->phyint_lock); 10778 phyi->phyint_flags &= ~PHYI_INACTIVE; 10779 mutex_exit(&phyi->phyint_lock); 10780 return; 10781 } 10782 } 10783 for (ilm = ill_v4->ill_ilm; ilm != NULL; 10784 ilm = ilm->ilm_next) { 10785 if (ilm->ilm_orig_ifindex != phyi->phyint_ifindex) { 10786 mutex_enter(&phyi->phyint_lock); 10787 phyi->phyint_flags &= ~PHYI_INACTIVE; 10788 mutex_exit(&phyi->phyint_lock); 10789 return; 10790 } 10791 } 10792 } 10793 if (ill_v6 != NULL) { 10794 ill_v6 = phyi->phyint_illv6; 10795 for (ipif = ill_v6->ill_ipif; ipif != NULL; 10796 ipif = ipif->ipif_next) { 10797 if (ipif->ipif_orig_ifindex != phyi->phyint_ifindex) { 10798 mutex_enter(&phyi->phyint_lock); 10799 phyi->phyint_flags &= ~PHYI_INACTIVE; 10800 mutex_exit(&phyi->phyint_lock); 10801 return; 10802 } 10803 } 10804 for (ilm = ill_v6->ill_ilm; ilm != NULL; 10805 ilm = ilm->ilm_next) { 10806 if (ilm->ilm_orig_ifindex != phyi->phyint_ifindex) { 10807 mutex_enter(&phyi->phyint_lock); 10808 phyi->phyint_flags &= ~PHYI_INACTIVE; 10809 mutex_exit(&phyi->phyint_lock); 10810 return; 10811 } 10812 } 10813 } 10814 mutex_enter(&phyi->phyint_lock); 10815 phyi->phyint_flags |= PHYI_INACTIVE; 10816 mutex_exit(&phyi->phyint_lock); 10817 } 10818 10819 /* 10820 * This function is called only when the phyint flags change. Currently 10821 * called from ip_sioctl_flags. We re-do the broadcast nomination so 10822 * that we can select a good ill. 10823 */ 10824 static void 10825 ip_redo_nomination(phyint_t *phyi) 10826 { 10827 ill_t *ill_v4; 10828 10829 ill_v4 = phyi->phyint_illv4; 10830 10831 if (ill_v4 != NULL && ill_v4->ill_group != NULL) { 10832 ASSERT(IAM_WRITER_ILL(ill_v4)); 10833 if (ill_v4->ill_group->illgrp_ill_count > 1) 10834 ill_nominate_bcast_rcv(ill_v4->ill_group); 10835 } 10836 } 10837 10838 /* 10839 * Set interface flags. 10840 * Need to do special action for IPIF_UP, IPIF_DEPRECATED, IPIF_NOXMIT, 10841 * IPIF_NOLOCAL, ILLF_NONUD, ILLF_NOARP, IPIF_PRIVATE, IPIF_ANYCAST, 10842 * IPIF_PREFERRED, PHYI_STANDBY, PHYI_FAILED and PHYI_OFFLINE. 10843 * 10844 * NOTE : We really don't enforce that ipif_id zero should be used 10845 * for setting any flags other than IFF_LOGINT_FLAGS. This 10846 * is because applications generally does SICGLIFFLAGS and 10847 * ORs in the new flags (that affects the logical) and does a 10848 * SIOCSLIFFLAGS. Thus, "flags" below could contain bits other 10849 * than IFF_LOGINT_FLAGS. One could check whether "turn_on" - the 10850 * flags that will be turned on is correct with respect to 10851 * ipif_id 0. For backward compatibility reasons, it is not done. 10852 */ 10853 /* ARGSUSED */ 10854 int 10855 ip_sioctl_flags(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10856 ip_ioctl_cmd_t *ipip, void *if_req) 10857 { 10858 uint64_t turn_on; 10859 uint64_t turn_off; 10860 int err; 10861 boolean_t need_up = B_FALSE; 10862 phyint_t *phyi; 10863 ill_t *ill; 10864 uint64_t intf_flags; 10865 boolean_t phyint_flags_modified = B_FALSE; 10866 uint64_t flags; 10867 struct ifreq *ifr; 10868 struct lifreq *lifr; 10869 boolean_t set_linklocal = B_FALSE; 10870 boolean_t zero_source = B_FALSE; 10871 10872 ip1dbg(("ip_sioctl_flags(%s:%u %p)\n", 10873 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 10874 10875 ASSERT(IAM_WRITER_IPIF(ipif)); 10876 10877 ill = ipif->ipif_ill; 10878 phyi = ill->ill_phyint; 10879 10880 if (ipip->ipi_cmd_type == IF_CMD) { 10881 ifr = (struct ifreq *)if_req; 10882 flags = (uint64_t)(ifr->ifr_flags & 0x0000ffff); 10883 } else { 10884 lifr = (struct lifreq *)if_req; 10885 flags = lifr->lifr_flags; 10886 } 10887 10888 intf_flags = ipif->ipif_flags | ill->ill_flags | phyi->phyint_flags; 10889 10890 /* 10891 * Has the flags been set correctly till now ? 10892 */ 10893 ASSERT((phyi->phyint_flags & ~(IFF_PHYINT_FLAGS)) == 0); 10894 ASSERT((ill->ill_flags & ~(IFF_PHYINTINST_FLAGS)) == 0); 10895 ASSERT((ipif->ipif_flags & ~(IFF_LOGINT_FLAGS)) == 0); 10896 /* 10897 * Compare the new flags to the old, and partition 10898 * into those coming on and those going off. 10899 * For the 16 bit command keep the bits above bit 16 unchanged. 10900 */ 10901 if (ipip->ipi_cmd == SIOCSIFFLAGS) 10902 flags |= intf_flags & ~0xFFFF; 10903 10904 /* 10905 * First check which bits will change and then which will 10906 * go on and off 10907 */ 10908 turn_on = (flags ^ intf_flags) & ~IFF_CANTCHANGE; 10909 if (!turn_on) 10910 return (0); /* No change */ 10911 10912 turn_off = intf_flags & turn_on; 10913 turn_on ^= turn_off; 10914 err = 0; 10915 10916 /* 10917 * Don't allow any bits belonging to the logical interface 10918 * to be set or cleared on the replacement ipif that was 10919 * created temporarily during a MOVE. 10920 */ 10921 if (ipif->ipif_replace_zero && 10922 ((turn_on|turn_off) & IFF_LOGINT_FLAGS) != 0) { 10923 return (EINVAL); 10924 } 10925 10926 /* 10927 * Only allow the IFF_XRESOLV and IFF_TEMPORARY flags to be set on 10928 * IPv6 interfaces. 10929 */ 10930 if ((turn_on & (IFF_XRESOLV|IFF_TEMPORARY)) && !(ipif->ipif_isv6)) 10931 return (EINVAL); 10932 10933 /* 10934 * Don't allow the IFF_ROUTER flag to be turned on on loopback 10935 * interfaces. It makes no sense in that context. 10936 */ 10937 if ((turn_on & IFF_ROUTER) && (phyi->phyint_flags & PHYI_LOOPBACK)) 10938 return (EINVAL); 10939 10940 if (flags & (IFF_NOLOCAL|IFF_ANYCAST)) 10941 zero_source = B_TRUE; 10942 10943 /* 10944 * For IPv6 ipif_id 0, don't allow the interface to be up without 10945 * a link local address if IFF_NOLOCAL or IFF_ANYCAST are not set. 10946 * If the link local address isn't set, and can be set, it will get 10947 * set later on in this function. 10948 */ 10949 if (ipif->ipif_id == 0 && ipif->ipif_isv6 && 10950 (flags & IFF_UP) && !zero_source && 10951 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr)) { 10952 if (ipif_cant_setlinklocal(ipif)) 10953 return (EINVAL); 10954 set_linklocal = B_TRUE; 10955 } 10956 10957 /* 10958 * ILL cannot be part of a usesrc group and and IPMP group at the 10959 * same time. No need to grab ill_g_usesrc_lock here, see 10960 * synchronization notes in ip.c 10961 */ 10962 if (turn_on & PHYI_STANDBY && 10963 ipif->ipif_ill->ill_usesrc_grp_next != NULL) { 10964 return (EINVAL); 10965 } 10966 10967 /* 10968 * If we modify physical interface flags, we'll potentially need to 10969 * send up two routing socket messages for the changes (one for the 10970 * IPv4 ill, and another for the IPv6 ill). Note that here. 10971 */ 10972 if ((turn_on|turn_off) & IFF_PHYINT_FLAGS) 10973 phyint_flags_modified = B_TRUE; 10974 10975 /* 10976 * If we are setting or clearing FAILED or STANDBY or OFFLINE, 10977 * we need to flush the IRE_CACHES belonging to this ill. 10978 * We handle this case here without doing the DOWN/UP dance 10979 * like it is done for other flags. If some other flags are 10980 * being turned on/off with FAILED/STANDBY/OFFLINE, the code 10981 * below will handle it by bringing it down and then 10982 * bringing it UP. 10983 */ 10984 if ((turn_on|turn_off) & (PHYI_FAILED|PHYI_STANDBY|PHYI_OFFLINE)) { 10985 ill_t *ill_v4, *ill_v6; 10986 10987 ill_v4 = phyi->phyint_illv4; 10988 ill_v6 = phyi->phyint_illv6; 10989 10990 /* 10991 * First set the INACTIVE flag if needed. Then delete the ires. 10992 * ire_add will atomically prevent creating new IRE_CACHEs 10993 * unless hidden flag is set 10994 */ 10995 if (turn_on & PHYI_STANDBY) { 10996 /* 10997 * We set INACTIVE only when STANDBY is set. 10998 */ 10999 ASSERT(!(phyi->phyint_flags & PHYI_INACTIVE)); 11000 phyint_standby_inactive(phyi); 11001 } 11002 if (turn_off & PHYI_STANDBY) { 11003 /* 11004 * PHYI_INACTIVE makes sense only when PHYI_STANDBY is 11005 * set. 11006 */ 11007 phyi->phyint_flags &= ~PHYI_INACTIVE; 11008 } 11009 /* 11010 * We should always send up a message so that the 11011 * daemons come to know of it. Note that the zeroth 11012 * interface can be down and the check below for IPIF_UP 11013 * will not make sense as we are actually setting 11014 * a phyint flag here. We assume that the ipif used 11015 * is always the zeroth ipif. (ip_rts_ifmsg does not 11016 * send up any message for non-zero ipifs). 11017 */ 11018 phyint_flags_modified = B_TRUE; 11019 11020 if (ill_v4 != NULL) { 11021 ire_walk_ill_v4(MATCH_IRE_ILL | MATCH_IRE_TYPE, 11022 IRE_CACHE, ill_stq_cache_delete, 11023 (char *)ill_v4, ill_v4); 11024 illgrp_reset_schednext(ill_v4); 11025 } 11026 if (ill_v6 != NULL) { 11027 ire_walk_ill_v6(MATCH_IRE_ILL | MATCH_IRE_TYPE, 11028 IRE_CACHE, ill_stq_cache_delete, 11029 (char *)ill_v6, ill_v6); 11030 illgrp_reset_schednext(ill_v6); 11031 } 11032 } 11033 11034 /* 11035 * If ILLF_ROUTER changes, we need to change the ip forwarding 11036 * status of the interface and, if the interface is part of an IPMP 11037 * group, all other interfaces that are part of the same IPMP 11038 * group. 11039 */ 11040 if ((turn_on | turn_off) & ILLF_ROUTER) { 11041 (void) ill_forward_set(q, mp, ((turn_on & ILLF_ROUTER) != 0), 11042 (caddr_t)ill); 11043 } 11044 11045 /* 11046 * If the interface is not UP and we are not going to 11047 * bring it UP, record the flags and return. When the 11048 * interface comes UP later, the right actions will be 11049 * taken. 11050 */ 11051 if (!(ipif->ipif_flags & IPIF_UP) && 11052 !(turn_on & IPIF_UP)) { 11053 /* Record new flags in their respective places. */ 11054 mutex_enter(&ill->ill_lock); 11055 mutex_enter(&ill->ill_phyint->phyint_lock); 11056 ipif->ipif_flags |= (turn_on & IFF_LOGINT_FLAGS); 11057 ipif->ipif_flags &= (~turn_off & IFF_LOGINT_FLAGS); 11058 ill->ill_flags |= (turn_on & IFF_PHYINTINST_FLAGS); 11059 ill->ill_flags &= (~turn_off & IFF_PHYINTINST_FLAGS); 11060 phyi->phyint_flags |= (turn_on & IFF_PHYINT_FLAGS); 11061 phyi->phyint_flags &= (~turn_off & IFF_PHYINT_FLAGS); 11062 mutex_exit(&ill->ill_lock); 11063 mutex_exit(&ill->ill_phyint->phyint_lock); 11064 11065 /* 11066 * We do the broadcast and nomination here rather 11067 * than waiting for a FAILOVER/FAILBACK to happen. In 11068 * the case of FAILBACK from INACTIVE standby to the 11069 * interface that has been repaired, PHYI_FAILED has not 11070 * been cleared yet. If there are only two interfaces in 11071 * that group, all we have is a FAILED and INACTIVE 11072 * interface. If we do the nomination soon after a failback, 11073 * the broadcast nomination code would select the 11074 * INACTIVE interface for receiving broadcasts as FAILED is 11075 * not yet cleared. As we don't want STANDBY/INACTIVE to 11076 * receive broadcast packets, we need to redo nomination 11077 * when the FAILED is cleared here. Thus, in general we 11078 * always do the nomination here for FAILED, STANDBY 11079 * and OFFLINE. 11080 */ 11081 if (((turn_on | turn_off) & 11082 (PHYI_FAILED|PHYI_STANDBY|PHYI_OFFLINE))) { 11083 ip_redo_nomination(phyi); 11084 } 11085 if (phyint_flags_modified) { 11086 if (phyi->phyint_illv4 != NULL) { 11087 ip_rts_ifmsg(phyi->phyint_illv4-> 11088 ill_ipif); 11089 } 11090 if (phyi->phyint_illv6 != NULL) { 11091 ip_rts_ifmsg(phyi->phyint_illv6-> 11092 ill_ipif); 11093 } 11094 } 11095 return (0); 11096 } else if (set_linklocal || zero_source) { 11097 mutex_enter(&ill->ill_lock); 11098 if (set_linklocal) 11099 ipif->ipif_state_flags |= IPIF_SET_LINKLOCAL; 11100 if (zero_source) 11101 ipif->ipif_state_flags |= IPIF_ZERO_SOURCE; 11102 mutex_exit(&ill->ill_lock); 11103 } 11104 11105 /* 11106 * Disallow IPv6 interfaces coming up that have the unspecified address, 11107 * or point-to-point interfaces with an unspecified destination. We do 11108 * allow the address to be unspecified for IPIF_NOLOCAL interfaces that 11109 * have a subnet assigned, which is how in.ndpd currently manages its 11110 * onlink prefix list when no addresses are configured with those 11111 * prefixes. 11112 */ 11113 if (ipif->ipif_isv6 && 11114 ((IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr) && 11115 (!(ipif->ipif_flags & IPIF_NOLOCAL) && !(turn_on & IPIF_NOLOCAL) || 11116 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6subnet))) || 11117 ((ipif->ipif_flags & IPIF_POINTOPOINT) && 11118 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6pp_dst_addr)))) { 11119 return (EINVAL); 11120 } 11121 11122 /* 11123 * Prevent IPv4 point-to-point interfaces with a 0.0.0.0 destination 11124 * from being brought up. 11125 */ 11126 if (!ipif->ipif_isv6 && 11127 ((ipif->ipif_flags & IPIF_POINTOPOINT) && 11128 ipif->ipif_pp_dst_addr == INADDR_ANY)) { 11129 return (EINVAL); 11130 } 11131 11132 /* 11133 * The only flag changes that we currently take specific action on 11134 * is IPIF_UP, IPIF_DEPRECATED, IPIF_NOXMIT, IPIF_NOLOCAL, 11135 * ILLF_NOARP, ILLF_NONUD, IPIF_PRIVATE, IPIF_ANYCAST, and 11136 * IPIF_PREFERRED. This is done by bring the ipif down, changing 11137 * the flags and bringing it back up again. 11138 */ 11139 if ((turn_on|turn_off) & 11140 (IPIF_UP|IPIF_DEPRECATED|IPIF_NOXMIT|IPIF_NOLOCAL|ILLF_NOARP| 11141 ILLF_NONUD|IPIF_PRIVATE|IPIF_ANYCAST|IPIF_PREFERRED)) { 11142 /* 11143 * Taking this ipif down, make sure we have 11144 * valid net and subnet bcast ire's for other 11145 * logical interfaces, if we need them. 11146 */ 11147 if (!ipif->ipif_isv6) 11148 ipif_check_bcast_ires(ipif); 11149 11150 if (((ipif->ipif_flags | turn_on) & IPIF_UP) && 11151 !(turn_off & IPIF_UP)) { 11152 need_up = B_TRUE; 11153 if (ipif->ipif_flags & IPIF_UP) 11154 ill->ill_logical_down = 1; 11155 turn_on &= ~IPIF_UP; 11156 } 11157 err = ipif_down(ipif, q, mp); 11158 ip1dbg(("ipif_down returns %d err ", err)); 11159 if (err == EINPROGRESS) 11160 return (err); 11161 ipif_down_tail(ipif); 11162 } 11163 return (ip_sioctl_flags_tail(ipif, flags, q, mp, need_up)); 11164 } 11165 11166 static int 11167 ip_sioctl_flags_tail(ipif_t *ipif, uint64_t flags, queue_t *q, mblk_t *mp, 11168 boolean_t need_up) 11169 { 11170 ill_t *ill; 11171 phyint_t *phyi; 11172 uint64_t turn_on; 11173 uint64_t turn_off; 11174 uint64_t intf_flags; 11175 boolean_t phyint_flags_modified = B_FALSE; 11176 int err = 0; 11177 boolean_t set_linklocal = B_FALSE; 11178 boolean_t zero_source = B_FALSE; 11179 11180 ip1dbg(("ip_sioctl_flags_tail(%s:%u)\n", 11181 ipif->ipif_ill->ill_name, ipif->ipif_id)); 11182 11183 ASSERT(IAM_WRITER_IPIF(ipif)); 11184 11185 ill = ipif->ipif_ill; 11186 phyi = ill->ill_phyint; 11187 11188 intf_flags = ipif->ipif_flags | ill->ill_flags | phyi->phyint_flags; 11189 turn_on = (flags ^ intf_flags) & ~(IFF_CANTCHANGE | IFF_UP); 11190 11191 turn_off = intf_flags & turn_on; 11192 turn_on ^= turn_off; 11193 11194 if ((turn_on|turn_off) & (PHYI_FAILED|PHYI_STANDBY|PHYI_OFFLINE)) 11195 phyint_flags_modified = B_TRUE; 11196 11197 /* 11198 * Now we change the flags. Track current value of 11199 * other flags in their respective places. 11200 */ 11201 mutex_enter(&ill->ill_lock); 11202 mutex_enter(&phyi->phyint_lock); 11203 ipif->ipif_flags |= (turn_on & IFF_LOGINT_FLAGS); 11204 ipif->ipif_flags &= (~turn_off & IFF_LOGINT_FLAGS); 11205 ill->ill_flags |= (turn_on & IFF_PHYINTINST_FLAGS); 11206 ill->ill_flags &= (~turn_off & IFF_PHYINTINST_FLAGS); 11207 phyi->phyint_flags |= (turn_on & IFF_PHYINT_FLAGS); 11208 phyi->phyint_flags &= (~turn_off & IFF_PHYINT_FLAGS); 11209 if (ipif->ipif_state_flags & IPIF_SET_LINKLOCAL) { 11210 set_linklocal = B_TRUE; 11211 ipif->ipif_state_flags &= ~IPIF_SET_LINKLOCAL; 11212 } 11213 if (ipif->ipif_state_flags & IPIF_ZERO_SOURCE) { 11214 zero_source = B_TRUE; 11215 ipif->ipif_state_flags &= ~IPIF_ZERO_SOURCE; 11216 } 11217 mutex_exit(&ill->ill_lock); 11218 mutex_exit(&phyi->phyint_lock); 11219 11220 if (((turn_on | turn_off) & (PHYI_FAILED|PHYI_STANDBY|PHYI_OFFLINE))) 11221 ip_redo_nomination(phyi); 11222 11223 if (set_linklocal) 11224 (void) ipif_setlinklocal(ipif); 11225 11226 if (zero_source) 11227 ipif->ipif_v6src_addr = ipv6_all_zeros; 11228 else 11229 ipif->ipif_v6src_addr = ipif->ipif_v6lcl_addr; 11230 11231 if (need_up) { 11232 /* 11233 * XXX ipif_up really does not know whether a phyint flags 11234 * was modified or not. So, it sends up information on 11235 * only one routing sockets message. As we don't bring up 11236 * the interface and also set STANDBY/FAILED simultaneously 11237 * it should be okay. 11238 */ 11239 err = ipif_up(ipif, q, mp); 11240 } else { 11241 /* 11242 * Make sure routing socket sees all changes to the flags. 11243 * ipif_up_done* handles this when we use ipif_up. 11244 */ 11245 if (phyint_flags_modified) { 11246 if (phyi->phyint_illv4 != NULL) { 11247 ip_rts_ifmsg(phyi->phyint_illv4-> 11248 ill_ipif); 11249 } 11250 if (phyi->phyint_illv6 != NULL) { 11251 ip_rts_ifmsg(phyi->phyint_illv6-> 11252 ill_ipif); 11253 } 11254 } else { 11255 ip_rts_ifmsg(ipif); 11256 } 11257 } 11258 return (err); 11259 } 11260 11261 /* 11262 * Restart entry point to restart the flags restart operation after the 11263 * refcounts have dropped to zero. 11264 */ 11265 /* ARGSUSED */ 11266 int 11267 ip_sioctl_flags_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11268 ip_ioctl_cmd_t *ipip, void *if_req) 11269 { 11270 int err; 11271 struct ifreq *ifr = (struct ifreq *)if_req; 11272 struct lifreq *lifr = (struct lifreq *)if_req; 11273 11274 ip1dbg(("ip_sioctl_flags_restart(%s:%u %p)\n", 11275 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11276 11277 ipif_down_tail(ipif); 11278 if (ipip->ipi_cmd_type == IF_CMD) { 11279 /* 11280 * Since ip_sioctl_flags expects an int and ifr_flags 11281 * is a short we need to cast ifr_flags into an int 11282 * to avoid having sign extension cause bits to get 11283 * set that should not be. 11284 */ 11285 err = ip_sioctl_flags_tail(ipif, 11286 (uint64_t)(ifr->ifr_flags & 0x0000ffff), 11287 q, mp, B_TRUE); 11288 } else { 11289 err = ip_sioctl_flags_tail(ipif, lifr->lifr_flags, 11290 q, mp, B_TRUE); 11291 } 11292 return (err); 11293 } 11294 11295 /* ARGSUSED */ 11296 int 11297 ip_sioctl_get_flags(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11298 ip_ioctl_cmd_t *ipip, void *if_req) 11299 { 11300 /* 11301 * Has the flags been set correctly till now ? 11302 */ 11303 ill_t *ill = ipif->ipif_ill; 11304 phyint_t *phyi = ill->ill_phyint; 11305 11306 ip1dbg(("ip_sioctl_get_flags(%s:%u %p)\n", 11307 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11308 ASSERT((phyi->phyint_flags & ~(IFF_PHYINT_FLAGS)) == 0); 11309 ASSERT((ill->ill_flags & ~(IFF_PHYINTINST_FLAGS)) == 0); 11310 ASSERT((ipif->ipif_flags & ~(IFF_LOGINT_FLAGS)) == 0); 11311 11312 /* 11313 * Need a lock since some flags can be set even when there are 11314 * references to the ipif. 11315 */ 11316 mutex_enter(&ill->ill_lock); 11317 if (ipip->ipi_cmd_type == IF_CMD) { 11318 struct ifreq *ifr = (struct ifreq *)if_req; 11319 11320 /* Get interface flags (low 16 only). */ 11321 ifr->ifr_flags = ((ipif->ipif_flags | 11322 ill->ill_flags | phyi->phyint_flags) & 0xffff); 11323 } else { 11324 struct lifreq *lifr = (struct lifreq *)if_req; 11325 11326 /* Get interface flags. */ 11327 lifr->lifr_flags = ipif->ipif_flags | 11328 ill->ill_flags | phyi->phyint_flags; 11329 } 11330 mutex_exit(&ill->ill_lock); 11331 return (0); 11332 } 11333 11334 /* ARGSUSED */ 11335 int 11336 ip_sioctl_mtu(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11337 ip_ioctl_cmd_t *ipip, void *if_req) 11338 { 11339 int mtu; 11340 int ip_min_mtu; 11341 struct ifreq *ifr; 11342 struct lifreq *lifr; 11343 ire_t *ire; 11344 11345 ip1dbg(("ip_sioctl_mtu(%s:%u %p)\n", ipif->ipif_ill->ill_name, 11346 ipif->ipif_id, (void *)ipif)); 11347 if (ipip->ipi_cmd_type == IF_CMD) { 11348 ifr = (struct ifreq *)if_req; 11349 mtu = ifr->ifr_metric; 11350 } else { 11351 lifr = (struct lifreq *)if_req; 11352 mtu = lifr->lifr_mtu; 11353 } 11354 11355 if (ipif->ipif_isv6) 11356 ip_min_mtu = IPV6_MIN_MTU; 11357 else 11358 ip_min_mtu = IP_MIN_MTU; 11359 11360 if (mtu > ipif->ipif_ill->ill_max_frag || mtu < ip_min_mtu) 11361 return (EINVAL); 11362 11363 /* 11364 * Change the MTU size in all relevant ire's. 11365 * Mtu change Vs. new ire creation - protocol below. 11366 * First change ipif_mtu and the ire_max_frag of the 11367 * interface ire. Then do an ire walk and change the 11368 * ire_max_frag of all affected ires. During ire_add 11369 * under the bucket lock, set the ire_max_frag of the 11370 * new ire being created from the ipif/ire from which 11371 * it is being derived. If an mtu change happens after 11372 * the ire is added, the new ire will be cleaned up. 11373 * Conversely if the mtu change happens before the ire 11374 * is added, ire_add will see the new value of the mtu. 11375 */ 11376 ipif->ipif_mtu = mtu; 11377 ipif->ipif_flags |= IPIF_FIXEDMTU; 11378 11379 if (ipif->ipif_isv6) 11380 ire = ipif_to_ire_v6(ipif); 11381 else 11382 ire = ipif_to_ire(ipif); 11383 if (ire != NULL) { 11384 ire->ire_max_frag = ipif->ipif_mtu; 11385 ire_refrele(ire); 11386 } 11387 if (ipif->ipif_flags & IPIF_UP) { 11388 if (ipif->ipif_isv6) 11389 ire_walk_v6(ipif_mtu_change, (char *)ipif, ALL_ZONES); 11390 else 11391 ire_walk_v4(ipif_mtu_change, (char *)ipif, ALL_ZONES); 11392 } 11393 /* Update the MTU in SCTP's list */ 11394 sctp_update_ipif(ipif, SCTP_IPIF_UPDATE); 11395 return (0); 11396 } 11397 11398 /* Get interface MTU. */ 11399 /* ARGSUSED */ 11400 int 11401 ip_sioctl_get_mtu(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11402 ip_ioctl_cmd_t *ipip, void *if_req) 11403 { 11404 struct ifreq *ifr; 11405 struct lifreq *lifr; 11406 11407 ip1dbg(("ip_sioctl_get_mtu(%s:%u %p)\n", 11408 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11409 if (ipip->ipi_cmd_type == IF_CMD) { 11410 ifr = (struct ifreq *)if_req; 11411 ifr->ifr_metric = ipif->ipif_mtu; 11412 } else { 11413 lifr = (struct lifreq *)if_req; 11414 lifr->lifr_mtu = ipif->ipif_mtu; 11415 } 11416 return (0); 11417 } 11418 11419 /* Set interface broadcast address. */ 11420 /* ARGSUSED2 */ 11421 int 11422 ip_sioctl_brdaddr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11423 ip_ioctl_cmd_t *ipip, void *if_req) 11424 { 11425 ipaddr_t addr; 11426 ire_t *ire; 11427 11428 ip1dbg(("ip_sioctl_brdaddr(%s:%u)\n", ipif->ipif_ill->ill_name, 11429 ipif->ipif_id)); 11430 11431 ASSERT(IAM_WRITER_IPIF(ipif)); 11432 if (!(ipif->ipif_flags & IPIF_BROADCAST)) 11433 return (EADDRNOTAVAIL); 11434 11435 ASSERT(!(ipif->ipif_isv6)); /* No IPv6 broadcast */ 11436 11437 if (sin->sin_family != AF_INET) 11438 return (EAFNOSUPPORT); 11439 11440 addr = sin->sin_addr.s_addr; 11441 if (ipif->ipif_flags & IPIF_UP) { 11442 /* 11443 * If we are already up, make sure the new 11444 * broadcast address makes sense. If it does, 11445 * there should be an IRE for it already. 11446 * Don't match on ipif, only on the ill 11447 * since we are sharing these now. Don't use 11448 * MATCH_IRE_ILL_GROUP as we are looking for 11449 * the broadcast ire on this ill and each ill 11450 * in the group has its own broadcast ire. 11451 */ 11452 ire = ire_ctable_lookup(addr, 0, IRE_BROADCAST, 11453 ipif, ALL_ZONES, (MATCH_IRE_ILL | MATCH_IRE_TYPE)); 11454 if (ire == NULL) { 11455 return (EINVAL); 11456 } else { 11457 ire_refrele(ire); 11458 } 11459 } 11460 /* 11461 * Changing the broadcast addr for this ipif. 11462 * Make sure we have valid net and subnet bcast 11463 * ire's for other logical interfaces, if needed. 11464 */ 11465 if (addr != ipif->ipif_brd_addr) 11466 ipif_check_bcast_ires(ipif); 11467 IN6_IPADDR_TO_V4MAPPED(addr, &ipif->ipif_v6brd_addr); 11468 return (0); 11469 } 11470 11471 /* Get interface broadcast address. */ 11472 /* ARGSUSED */ 11473 int 11474 ip_sioctl_get_brdaddr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11475 ip_ioctl_cmd_t *ipip, void *if_req) 11476 { 11477 ip1dbg(("ip_sioctl_get_brdaddr(%s:%u %p)\n", 11478 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11479 if (!(ipif->ipif_flags & IPIF_BROADCAST)) 11480 return (EADDRNOTAVAIL); 11481 11482 /* IPIF_BROADCAST not possible with IPv6 */ 11483 ASSERT(!ipif->ipif_isv6); 11484 *sin = sin_null; 11485 sin->sin_family = AF_INET; 11486 sin->sin_addr.s_addr = ipif->ipif_brd_addr; 11487 return (0); 11488 } 11489 11490 /* 11491 * This routine is called to handle the SIOCS*IFNETMASK IOCTL. 11492 */ 11493 /* ARGSUSED */ 11494 int 11495 ip_sioctl_netmask(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11496 ip_ioctl_cmd_t *ipip, void *if_req) 11497 { 11498 int err = 0; 11499 in6_addr_t v6mask; 11500 11501 ip1dbg(("ip_sioctl_netmask(%s:%u %p)\n", 11502 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11503 11504 ASSERT(IAM_WRITER_IPIF(ipif)); 11505 11506 if (ipif->ipif_isv6) { 11507 sin6_t *sin6; 11508 11509 if (sin->sin_family != AF_INET6) 11510 return (EAFNOSUPPORT); 11511 11512 sin6 = (sin6_t *)sin; 11513 v6mask = sin6->sin6_addr; 11514 } else { 11515 ipaddr_t mask; 11516 11517 if (sin->sin_family != AF_INET) 11518 return (EAFNOSUPPORT); 11519 11520 mask = sin->sin_addr.s_addr; 11521 V4MASK_TO_V6(mask, v6mask); 11522 } 11523 11524 /* 11525 * No big deal if the interface isn't already up, or the mask 11526 * isn't really changing, or this is pt-pt. 11527 */ 11528 if (!(ipif->ipif_flags & IPIF_UP) || 11529 IN6_ARE_ADDR_EQUAL(&v6mask, &ipif->ipif_v6net_mask) || 11530 (ipif->ipif_flags & IPIF_POINTOPOINT)) { 11531 ipif->ipif_v6net_mask = v6mask; 11532 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) { 11533 V6_MASK_COPY(ipif->ipif_v6lcl_addr, 11534 ipif->ipif_v6net_mask, 11535 ipif->ipif_v6subnet); 11536 } 11537 return (0); 11538 } 11539 /* 11540 * Make sure we have valid net and subnet broadcast ire's 11541 * for the old netmask, if needed by other logical interfaces. 11542 */ 11543 if (!ipif->ipif_isv6) 11544 ipif_check_bcast_ires(ipif); 11545 11546 err = ipif_logical_down(ipif, q, mp); 11547 if (err == EINPROGRESS) 11548 return (err); 11549 ipif_down_tail(ipif); 11550 err = ip_sioctl_netmask_tail(ipif, sin, q, mp); 11551 return (err); 11552 } 11553 11554 static int 11555 ip_sioctl_netmask_tail(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp) 11556 { 11557 in6_addr_t v6mask; 11558 int err = 0; 11559 11560 ip1dbg(("ip_sioctl_netmask_tail(%s:%u %p)\n", 11561 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11562 11563 if (ipif->ipif_isv6) { 11564 sin6_t *sin6; 11565 11566 sin6 = (sin6_t *)sin; 11567 v6mask = sin6->sin6_addr; 11568 } else { 11569 ipaddr_t mask; 11570 11571 mask = sin->sin_addr.s_addr; 11572 V4MASK_TO_V6(mask, v6mask); 11573 } 11574 11575 ipif->ipif_v6net_mask = v6mask; 11576 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) { 11577 V6_MASK_COPY(ipif->ipif_v6lcl_addr, ipif->ipif_v6net_mask, 11578 ipif->ipif_v6subnet); 11579 } 11580 err = ipif_up(ipif, q, mp); 11581 11582 if (err == 0 || err == EINPROGRESS) { 11583 /* 11584 * The interface must be DL_BOUND if this packet has to 11585 * go out on the wire. Since we only go through a logical 11586 * down and are bound with the driver during an internal 11587 * down/up that is satisfied. 11588 */ 11589 if (!ipif->ipif_isv6 && ipif->ipif_ill->ill_wq != NULL) { 11590 /* Potentially broadcast an address mask reply. */ 11591 ipif_mask_reply(ipif); 11592 } 11593 } 11594 return (err); 11595 } 11596 11597 /* ARGSUSED */ 11598 int 11599 ip_sioctl_netmask_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11600 ip_ioctl_cmd_t *ipip, void *if_req) 11601 { 11602 ip1dbg(("ip_sioctl_netmask_restart(%s:%u %p)\n", 11603 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11604 ipif_down_tail(ipif); 11605 return (ip_sioctl_netmask_tail(ipif, sin, q, mp)); 11606 } 11607 11608 /* Get interface net mask. */ 11609 /* ARGSUSED */ 11610 int 11611 ip_sioctl_get_netmask(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11612 ip_ioctl_cmd_t *ipip, void *if_req) 11613 { 11614 struct lifreq *lifr = (struct lifreq *)if_req; 11615 struct sockaddr_in6 *sin6 = (sin6_t *)sin; 11616 11617 ip1dbg(("ip_sioctl_get_netmask(%s:%u %p)\n", 11618 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11619 11620 /* 11621 * net mask can't change since we have a reference to the ipif. 11622 */ 11623 if (ipif->ipif_isv6) { 11624 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 11625 *sin6 = sin6_null; 11626 sin6->sin6_family = AF_INET6; 11627 sin6->sin6_addr = ipif->ipif_v6net_mask; 11628 lifr->lifr_addrlen = 11629 ip_mask_to_plen_v6(&ipif->ipif_v6net_mask); 11630 } else { 11631 *sin = sin_null; 11632 sin->sin_family = AF_INET; 11633 sin->sin_addr.s_addr = ipif->ipif_net_mask; 11634 if (ipip->ipi_cmd_type == LIF_CMD) { 11635 lifr->lifr_addrlen = 11636 ip_mask_to_plen(ipif->ipif_net_mask); 11637 } 11638 } 11639 return (0); 11640 } 11641 11642 /* ARGSUSED */ 11643 int 11644 ip_sioctl_metric(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11645 ip_ioctl_cmd_t *ipip, void *if_req) 11646 { 11647 11648 ip1dbg(("ip_sioctl_metric(%s:%u %p)\n", 11649 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11650 /* 11651 * Set interface metric. We don't use this for 11652 * anything but we keep track of it in case it is 11653 * important to routing applications or such. 11654 */ 11655 if (ipip->ipi_cmd_type == IF_CMD) { 11656 struct ifreq *ifr; 11657 11658 ifr = (struct ifreq *)if_req; 11659 ipif->ipif_metric = ifr->ifr_metric; 11660 } else { 11661 struct lifreq *lifr; 11662 11663 lifr = (struct lifreq *)if_req; 11664 ipif->ipif_metric = lifr->lifr_metric; 11665 } 11666 return (0); 11667 } 11668 11669 11670 /* ARGSUSED */ 11671 int 11672 ip_sioctl_get_metric(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11673 ip_ioctl_cmd_t *ipip, void *if_req) 11674 { 11675 11676 /* Get interface metric. */ 11677 ip1dbg(("ip_sioctl_get_metric(%s:%u %p)\n", 11678 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11679 if (ipip->ipi_cmd_type == IF_CMD) { 11680 struct ifreq *ifr; 11681 11682 ifr = (struct ifreq *)if_req; 11683 ifr->ifr_metric = ipif->ipif_metric; 11684 } else { 11685 struct lifreq *lifr; 11686 11687 lifr = (struct lifreq *)if_req; 11688 lifr->lifr_metric = ipif->ipif_metric; 11689 } 11690 11691 return (0); 11692 } 11693 11694 /* ARGSUSED */ 11695 int 11696 ip_sioctl_muxid(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11697 ip_ioctl_cmd_t *ipip, void *if_req) 11698 { 11699 11700 ip1dbg(("ip_sioctl_muxid(%s:%u %p)\n", 11701 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11702 /* 11703 * Set the muxid returned from I_PLINK. 11704 */ 11705 if (ipip->ipi_cmd_type == IF_CMD) { 11706 struct ifreq *ifr = (struct ifreq *)if_req; 11707 11708 ipif->ipif_ill->ill_ip_muxid = ifr->ifr_ip_muxid; 11709 ipif->ipif_ill->ill_arp_muxid = ifr->ifr_arp_muxid; 11710 } else { 11711 struct lifreq *lifr = (struct lifreq *)if_req; 11712 11713 ipif->ipif_ill->ill_ip_muxid = lifr->lifr_ip_muxid; 11714 ipif->ipif_ill->ill_arp_muxid = lifr->lifr_arp_muxid; 11715 } 11716 return (0); 11717 } 11718 11719 /* ARGSUSED */ 11720 int 11721 ip_sioctl_get_muxid(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11722 ip_ioctl_cmd_t *ipip, void *if_req) 11723 { 11724 11725 ip1dbg(("ip_sioctl_get_muxid(%s:%u %p)\n", 11726 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11727 /* 11728 * Get the muxid saved in ill for I_PUNLINK. 11729 */ 11730 if (ipip->ipi_cmd_type == IF_CMD) { 11731 struct ifreq *ifr = (struct ifreq *)if_req; 11732 11733 ifr->ifr_ip_muxid = ipif->ipif_ill->ill_ip_muxid; 11734 ifr->ifr_arp_muxid = ipif->ipif_ill->ill_arp_muxid; 11735 } else { 11736 struct lifreq *lifr = (struct lifreq *)if_req; 11737 11738 lifr->lifr_ip_muxid = ipif->ipif_ill->ill_ip_muxid; 11739 lifr->lifr_arp_muxid = ipif->ipif_ill->ill_arp_muxid; 11740 } 11741 return (0); 11742 } 11743 11744 /* 11745 * Set the subnet prefix. Does not modify the broadcast address. 11746 */ 11747 /* ARGSUSED */ 11748 int 11749 ip_sioctl_subnet(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11750 ip_ioctl_cmd_t *ipip, void *if_req) 11751 { 11752 int err = 0; 11753 in6_addr_t v6addr; 11754 in6_addr_t v6mask; 11755 boolean_t need_up = B_FALSE; 11756 int addrlen; 11757 11758 ip1dbg(("ip_sioctl_subnet(%s:%u %p)\n", 11759 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11760 11761 ASSERT(IAM_WRITER_IPIF(ipif)); 11762 addrlen = ((struct lifreq *)if_req)->lifr_addrlen; 11763 11764 if (ipif->ipif_isv6) { 11765 sin6_t *sin6; 11766 11767 if (sin->sin_family != AF_INET6) 11768 return (EAFNOSUPPORT); 11769 11770 sin6 = (sin6_t *)sin; 11771 v6addr = sin6->sin6_addr; 11772 if (!ip_remote_addr_ok_v6(&v6addr, &ipv6_all_ones)) 11773 return (EADDRNOTAVAIL); 11774 } else { 11775 ipaddr_t addr; 11776 11777 if (sin->sin_family != AF_INET) 11778 return (EAFNOSUPPORT); 11779 11780 addr = sin->sin_addr.s_addr; 11781 if (!ip_addr_ok_v4(addr, 0xFFFFFFFF)) 11782 return (EADDRNOTAVAIL); 11783 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 11784 /* Add 96 bits */ 11785 addrlen += IPV6_ABITS - IP_ABITS; 11786 } 11787 11788 if (ip_plen_to_mask_v6(addrlen, &v6mask) == NULL) 11789 return (EINVAL); 11790 11791 /* Check if bits in the address is set past the mask */ 11792 if (!V6_MASK_EQ(v6addr, v6mask, v6addr)) 11793 return (EINVAL); 11794 11795 if (IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6subnet, &v6addr) && 11796 IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6net_mask, &v6mask)) 11797 return (0); /* No change */ 11798 11799 if (ipif->ipif_flags & IPIF_UP) { 11800 /* 11801 * If the interface is already marked up, 11802 * we call ipif_down which will take care 11803 * of ditching any IREs that have been set 11804 * up based on the old interface address. 11805 */ 11806 err = ipif_logical_down(ipif, q, mp); 11807 if (err == EINPROGRESS) 11808 return (err); 11809 ipif_down_tail(ipif); 11810 need_up = B_TRUE; 11811 } 11812 11813 err = ip_sioctl_subnet_tail(ipif, v6addr, v6mask, q, mp, need_up); 11814 return (err); 11815 } 11816 11817 static int 11818 ip_sioctl_subnet_tail(ipif_t *ipif, in6_addr_t v6addr, in6_addr_t v6mask, 11819 queue_t *q, mblk_t *mp, boolean_t need_up) 11820 { 11821 ill_t *ill = ipif->ipif_ill; 11822 int err = 0; 11823 11824 ip1dbg(("ip_sioctl_subnet_tail(%s:%u %p)\n", 11825 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11826 11827 /* Set the new address. */ 11828 mutex_enter(&ill->ill_lock); 11829 ipif->ipif_v6net_mask = v6mask; 11830 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) { 11831 V6_MASK_COPY(v6addr, ipif->ipif_v6net_mask, 11832 ipif->ipif_v6subnet); 11833 } 11834 mutex_exit(&ill->ill_lock); 11835 11836 if (need_up) { 11837 /* 11838 * Now bring the interface back up. If this 11839 * is the only IPIF for the ILL, ipif_up 11840 * will have to re-bind to the device, so 11841 * we may get back EINPROGRESS, in which 11842 * case, this IOCTL will get completed in 11843 * ip_rput_dlpi when we see the DL_BIND_ACK. 11844 */ 11845 err = ipif_up(ipif, q, mp); 11846 if (err == EINPROGRESS) 11847 return (err); 11848 } 11849 return (err); 11850 } 11851 11852 /* ARGSUSED */ 11853 int 11854 ip_sioctl_subnet_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11855 ip_ioctl_cmd_t *ipip, void *if_req) 11856 { 11857 int addrlen; 11858 in6_addr_t v6addr; 11859 in6_addr_t v6mask; 11860 struct lifreq *lifr = (struct lifreq *)if_req; 11861 11862 ip1dbg(("ip_sioctl_subnet_restart(%s:%u %p)\n", 11863 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11864 ipif_down_tail(ipif); 11865 11866 addrlen = lifr->lifr_addrlen; 11867 if (ipif->ipif_isv6) { 11868 sin6_t *sin6; 11869 11870 sin6 = (sin6_t *)sin; 11871 v6addr = sin6->sin6_addr; 11872 } else { 11873 ipaddr_t addr; 11874 11875 addr = sin->sin_addr.s_addr; 11876 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 11877 addrlen += IPV6_ABITS - IP_ABITS; 11878 } 11879 (void) ip_plen_to_mask_v6(addrlen, &v6mask); 11880 11881 return (ip_sioctl_subnet_tail(ipif, v6addr, v6mask, q, mp, B_TRUE)); 11882 } 11883 11884 /* ARGSUSED */ 11885 int 11886 ip_sioctl_get_subnet(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11887 ip_ioctl_cmd_t *ipip, void *if_req) 11888 { 11889 struct lifreq *lifr = (struct lifreq *)if_req; 11890 struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)sin; 11891 11892 ip1dbg(("ip_sioctl_get_subnet(%s:%u %p)\n", 11893 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11894 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 11895 11896 if (ipif->ipif_isv6) { 11897 *sin6 = sin6_null; 11898 sin6->sin6_family = AF_INET6; 11899 sin6->sin6_addr = ipif->ipif_v6subnet; 11900 lifr->lifr_addrlen = 11901 ip_mask_to_plen_v6(&ipif->ipif_v6net_mask); 11902 } else { 11903 *sin = sin_null; 11904 sin->sin_family = AF_INET; 11905 sin->sin_addr.s_addr = ipif->ipif_subnet; 11906 lifr->lifr_addrlen = ip_mask_to_plen(ipif->ipif_net_mask); 11907 } 11908 return (0); 11909 } 11910 11911 /* 11912 * Set the IPv6 address token. 11913 */ 11914 /* ARGSUSED */ 11915 int 11916 ip_sioctl_token(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11917 ip_ioctl_cmd_t *ipi, void *if_req) 11918 { 11919 ill_t *ill = ipif->ipif_ill; 11920 int err; 11921 in6_addr_t v6addr; 11922 in6_addr_t v6mask; 11923 boolean_t need_up = B_FALSE; 11924 int i; 11925 sin6_t *sin6 = (sin6_t *)sin; 11926 struct lifreq *lifr = (struct lifreq *)if_req; 11927 int addrlen; 11928 11929 ip1dbg(("ip_sioctl_token(%s:%u %p)\n", 11930 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11931 ASSERT(IAM_WRITER_IPIF(ipif)); 11932 11933 addrlen = lifr->lifr_addrlen; 11934 /* Only allow for logical unit zero i.e. not on "le0:17" */ 11935 if (ipif->ipif_id != 0) 11936 return (EINVAL); 11937 11938 if (!ipif->ipif_isv6) 11939 return (EINVAL); 11940 11941 if (addrlen > IPV6_ABITS) 11942 return (EINVAL); 11943 11944 v6addr = sin6->sin6_addr; 11945 11946 /* 11947 * The length of the token is the length from the end. To get 11948 * the proper mask for this, compute the mask of the bits not 11949 * in the token; ie. the prefix, and then xor to get the mask. 11950 */ 11951 if (ip_plen_to_mask_v6(IPV6_ABITS - addrlen, &v6mask) == NULL) 11952 return (EINVAL); 11953 for (i = 0; i < 4; i++) { 11954 v6mask.s6_addr32[i] ^= (uint32_t)0xffffffff; 11955 } 11956 11957 if (V6_MASK_EQ(v6addr, v6mask, ill->ill_token) && 11958 ill->ill_token_length == addrlen) 11959 return (0); /* No change */ 11960 11961 if (ipif->ipif_flags & IPIF_UP) { 11962 err = ipif_logical_down(ipif, q, mp); 11963 if (err == EINPROGRESS) 11964 return (err); 11965 ipif_down_tail(ipif); 11966 need_up = B_TRUE; 11967 } 11968 err = ip_sioctl_token_tail(ipif, sin6, addrlen, q, mp, need_up); 11969 return (err); 11970 } 11971 11972 static int 11973 ip_sioctl_token_tail(ipif_t *ipif, sin6_t *sin6, int addrlen, queue_t *q, 11974 mblk_t *mp, boolean_t need_up) 11975 { 11976 in6_addr_t v6addr; 11977 in6_addr_t v6mask; 11978 ill_t *ill = ipif->ipif_ill; 11979 int i; 11980 int err = 0; 11981 11982 ip1dbg(("ip_sioctl_token_tail(%s:%u %p)\n", 11983 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11984 v6addr = sin6->sin6_addr; 11985 /* 11986 * The length of the token is the length from the end. To get 11987 * the proper mask for this, compute the mask of the bits not 11988 * in the token; ie. the prefix, and then xor to get the mask. 11989 */ 11990 (void) ip_plen_to_mask_v6(IPV6_ABITS - addrlen, &v6mask); 11991 for (i = 0; i < 4; i++) 11992 v6mask.s6_addr32[i] ^= (uint32_t)0xffffffff; 11993 11994 mutex_enter(&ill->ill_lock); 11995 V6_MASK_COPY(v6addr, v6mask, ill->ill_token); 11996 ill->ill_token_length = addrlen; 11997 mutex_exit(&ill->ill_lock); 11998 11999 if (need_up) { 12000 /* 12001 * Now bring the interface back up. If this 12002 * is the only IPIF for the ILL, ipif_up 12003 * will have to re-bind to the device, so 12004 * we may get back EINPROGRESS, in which 12005 * case, this IOCTL will get completed in 12006 * ip_rput_dlpi when we see the DL_BIND_ACK. 12007 */ 12008 err = ipif_up(ipif, q, mp); 12009 if (err == EINPROGRESS) 12010 return (err); 12011 } 12012 return (err); 12013 } 12014 12015 /* ARGSUSED */ 12016 int 12017 ip_sioctl_get_token(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12018 ip_ioctl_cmd_t *ipi, void *if_req) 12019 { 12020 ill_t *ill; 12021 sin6_t *sin6 = (sin6_t *)sin; 12022 struct lifreq *lifr = (struct lifreq *)if_req; 12023 12024 ip1dbg(("ip_sioctl_get_token(%s:%u %p)\n", 12025 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12026 if (ipif->ipif_id != 0) 12027 return (EINVAL); 12028 12029 ill = ipif->ipif_ill; 12030 if (!ill->ill_isv6) 12031 return (ENXIO); 12032 12033 *sin6 = sin6_null; 12034 sin6->sin6_family = AF_INET6; 12035 ASSERT(!IN6_IS_ADDR_V4MAPPED(&ill->ill_token)); 12036 sin6->sin6_addr = ill->ill_token; 12037 lifr->lifr_addrlen = ill->ill_token_length; 12038 return (0); 12039 } 12040 12041 /* 12042 * Set (hardware) link specific information that might override 12043 * what was acquired through the DL_INFO_ACK. 12044 * The logic is as follows. 12045 * 12046 * become exclusive 12047 * set CHANGING flag 12048 * change mtu on affected IREs 12049 * clear CHANGING flag 12050 * 12051 * An ire add that occurs before the CHANGING flag is set will have its mtu 12052 * changed by the ip_sioctl_lnkinfo. 12053 * 12054 * During the time the CHANGING flag is set, no new ires will be added to the 12055 * bucket, and ire add will fail (due the CHANGING flag). 12056 * 12057 * An ire add that occurs after the CHANGING flag is set will have the right mtu 12058 * before it is added to the bucket. 12059 * 12060 * Obviously only 1 thread can set the CHANGING flag and we need to become 12061 * exclusive to set the flag. 12062 */ 12063 /* ARGSUSED */ 12064 int 12065 ip_sioctl_lnkinfo(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12066 ip_ioctl_cmd_t *ipi, void *if_req) 12067 { 12068 ill_t *ill = ipif->ipif_ill; 12069 ipif_t *nipif; 12070 int ip_min_mtu; 12071 boolean_t mtu_walk = B_FALSE; 12072 struct lifreq *lifr = (struct lifreq *)if_req; 12073 lif_ifinfo_req_t *lir; 12074 ire_t *ire; 12075 12076 ip1dbg(("ip_sioctl_lnkinfo(%s:%u %p)\n", 12077 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12078 lir = &lifr->lifr_ifinfo; 12079 ASSERT(IAM_WRITER_IPIF(ipif)); 12080 12081 /* Only allow for logical unit zero i.e. not on "le0:17" */ 12082 if (ipif->ipif_id != 0) 12083 return (EINVAL); 12084 12085 /* Set interface MTU. */ 12086 if (ipif->ipif_isv6) 12087 ip_min_mtu = IPV6_MIN_MTU; 12088 else 12089 ip_min_mtu = IP_MIN_MTU; 12090 12091 /* 12092 * Verify values before we set anything. Allow zero to 12093 * mean unspecified. 12094 */ 12095 if (lir->lir_maxmtu != 0 && 12096 (lir->lir_maxmtu > ill->ill_max_frag || 12097 lir->lir_maxmtu < ip_min_mtu)) 12098 return (EINVAL); 12099 if (lir->lir_reachtime != 0 && 12100 lir->lir_reachtime > ND_MAX_REACHTIME) 12101 return (EINVAL); 12102 if (lir->lir_reachretrans != 0 && 12103 lir->lir_reachretrans > ND_MAX_REACHRETRANSTIME) 12104 return (EINVAL); 12105 12106 mutex_enter(&ill->ill_lock); 12107 ill->ill_state_flags |= ILL_CHANGING; 12108 for (nipif = ill->ill_ipif; nipif != NULL; 12109 nipif = nipif->ipif_next) { 12110 nipif->ipif_state_flags |= IPIF_CHANGING; 12111 } 12112 12113 mutex_exit(&ill->ill_lock); 12114 12115 if (lir->lir_maxmtu != 0) { 12116 ill->ill_max_mtu = lir->lir_maxmtu; 12117 ill->ill_mtu_userspecified = 1; 12118 mtu_walk = B_TRUE; 12119 } 12120 12121 if (lir->lir_reachtime != 0) 12122 ill->ill_reachable_time = lir->lir_reachtime; 12123 12124 if (lir->lir_reachretrans != 0) 12125 ill->ill_reachable_retrans_time = lir->lir_reachretrans; 12126 12127 ill->ill_max_hops = lir->lir_maxhops; 12128 12129 ill->ill_max_buf = ND_MAX_Q; 12130 12131 if (mtu_walk) { 12132 /* 12133 * Set the MTU on all ipifs associated with this ill except 12134 * for those whose MTU was fixed via SIOCSLIFMTU. 12135 */ 12136 for (nipif = ill->ill_ipif; nipif != NULL; 12137 nipif = nipif->ipif_next) { 12138 if (nipif->ipif_flags & IPIF_FIXEDMTU) 12139 continue; 12140 12141 nipif->ipif_mtu = ill->ill_max_mtu; 12142 12143 if (!(nipif->ipif_flags & IPIF_UP)) 12144 continue; 12145 12146 if (nipif->ipif_isv6) 12147 ire = ipif_to_ire_v6(nipif); 12148 else 12149 ire = ipif_to_ire(nipif); 12150 if (ire != NULL) { 12151 ire->ire_max_frag = ipif->ipif_mtu; 12152 ire_refrele(ire); 12153 } 12154 if (ill->ill_isv6) { 12155 ire_walk_ill_v6(MATCH_IRE_ILL, 0, 12156 ipif_mtu_change, (char *)nipif, 12157 ill); 12158 } else { 12159 ire_walk_ill_v4(MATCH_IRE_ILL, 0, 12160 ipif_mtu_change, (char *)nipif, 12161 ill); 12162 } 12163 } 12164 } 12165 12166 mutex_enter(&ill->ill_lock); 12167 for (nipif = ill->ill_ipif; nipif != NULL; 12168 nipif = nipif->ipif_next) { 12169 nipif->ipif_state_flags &= ~IPIF_CHANGING; 12170 } 12171 ILL_UNMARK_CHANGING(ill); 12172 mutex_exit(&ill->ill_lock); 12173 12174 return (0); 12175 } 12176 12177 /* ARGSUSED */ 12178 int 12179 ip_sioctl_get_lnkinfo(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12180 ip_ioctl_cmd_t *ipi, void *if_req) 12181 { 12182 struct lif_ifinfo_req *lir; 12183 ill_t *ill = ipif->ipif_ill; 12184 12185 ip1dbg(("ip_sioctl_get_lnkinfo(%s:%u %p)\n", 12186 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12187 if (ipif->ipif_id != 0) 12188 return (EINVAL); 12189 12190 lir = &((struct lifreq *)if_req)->lifr_ifinfo; 12191 lir->lir_maxhops = ill->ill_max_hops; 12192 lir->lir_reachtime = ill->ill_reachable_time; 12193 lir->lir_reachretrans = ill->ill_reachable_retrans_time; 12194 lir->lir_maxmtu = ill->ill_max_mtu; 12195 12196 return (0); 12197 } 12198 12199 /* 12200 * Return best guess as to the subnet mask for the specified address. 12201 * Based on the subnet masks for all the configured interfaces. 12202 * 12203 * We end up returning a zero mask in the case of default, multicast or 12204 * experimental. 12205 */ 12206 static ipaddr_t 12207 ip_subnet_mask(ipaddr_t addr, ipif_t **ipifp) 12208 { 12209 ipaddr_t net_mask; 12210 ill_t *ill; 12211 ipif_t *ipif; 12212 ill_walk_context_t ctx; 12213 ipif_t *fallback_ipif = NULL; 12214 12215 net_mask = ip_net_mask(addr); 12216 if (net_mask == 0) { 12217 *ipifp = NULL; 12218 return (0); 12219 } 12220 12221 /* Let's check to see if this is maybe a local subnet route. */ 12222 /* this function only applies to IPv4 interfaces */ 12223 rw_enter(&ill_g_lock, RW_READER); 12224 ill = ILL_START_WALK_V4(&ctx); 12225 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 12226 mutex_enter(&ill->ill_lock); 12227 for (ipif = ill->ill_ipif; ipif != NULL; 12228 ipif = ipif->ipif_next) { 12229 if (!IPIF_CAN_LOOKUP(ipif)) 12230 continue; 12231 if (!(ipif->ipif_flags & IPIF_UP)) 12232 continue; 12233 if ((ipif->ipif_subnet & net_mask) == 12234 (addr & net_mask)) { 12235 /* 12236 * Don't trust pt-pt interfaces if there are 12237 * other interfaces. 12238 */ 12239 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 12240 if (fallback_ipif == NULL) { 12241 ipif_refhold_locked(ipif); 12242 fallback_ipif = ipif; 12243 } 12244 continue; 12245 } 12246 12247 /* 12248 * Fine. Just assume the same net mask as the 12249 * directly attached subnet interface is using. 12250 */ 12251 ipif_refhold_locked(ipif); 12252 mutex_exit(&ill->ill_lock); 12253 rw_exit(&ill_g_lock); 12254 if (fallback_ipif != NULL) 12255 ipif_refrele(fallback_ipif); 12256 *ipifp = ipif; 12257 return (ipif->ipif_net_mask); 12258 } 12259 } 12260 mutex_exit(&ill->ill_lock); 12261 } 12262 rw_exit(&ill_g_lock); 12263 12264 *ipifp = fallback_ipif; 12265 return ((fallback_ipif != NULL) ? 12266 fallback_ipif->ipif_net_mask : net_mask); 12267 } 12268 12269 /* 12270 * ip_sioctl_copyin_setup calls ip_wput_ioctl to process the IP_IOCTL ioctl. 12271 */ 12272 static void 12273 ip_wput_ioctl(queue_t *q, mblk_t *mp) 12274 { 12275 IOCP iocp; 12276 ipft_t *ipft; 12277 ipllc_t *ipllc; 12278 mblk_t *mp1; 12279 cred_t *cr; 12280 int error = 0; 12281 conn_t *connp; 12282 12283 ip1dbg(("ip_wput_ioctl")); 12284 iocp = (IOCP)mp->b_rptr; 12285 mp1 = mp->b_cont; 12286 if (mp1 == NULL) { 12287 iocp->ioc_error = EINVAL; 12288 mp->b_datap->db_type = M_IOCNAK; 12289 iocp->ioc_count = 0; 12290 qreply(q, mp); 12291 return; 12292 } 12293 12294 /* 12295 * These IOCTLs provide various control capabilities to 12296 * upstream agents such as ULPs and processes. There 12297 * are currently two such IOCTLs implemented. They 12298 * are used by TCP to provide update information for 12299 * existing IREs and to forcibly delete an IRE for a 12300 * host that is not responding, thereby forcing an 12301 * attempt at a new route. 12302 */ 12303 iocp->ioc_error = EINVAL; 12304 if (!pullupmsg(mp1, sizeof (ipllc->ipllc_cmd))) 12305 goto done; 12306 12307 ipllc = (ipllc_t *)mp1->b_rptr; 12308 for (ipft = ip_ioctl_ftbl; ipft->ipft_pfi; ipft++) { 12309 if (ipllc->ipllc_cmd == ipft->ipft_cmd) 12310 break; 12311 } 12312 /* 12313 * prefer credential from mblk over ioctl; 12314 * see ip_sioctl_copyin_setup 12315 */ 12316 cr = DB_CREDDEF(mp, iocp->ioc_cr); 12317 12318 /* 12319 * Refhold the conn in case the request gets queued up in some lookup 12320 */ 12321 ASSERT(CONN_Q(q)); 12322 connp = Q_TO_CONN(q); 12323 CONN_INC_REF(connp); 12324 if (ipft->ipft_pfi && 12325 ((mp1->b_wptr - mp1->b_rptr) >= ipft->ipft_min_size || 12326 pullupmsg(mp1, ipft->ipft_min_size))) { 12327 error = (*ipft->ipft_pfi)(q, 12328 (ipft->ipft_flags & IPFT_F_SELF_REPLY) ? mp : mp1, cr); 12329 } 12330 if (ipft->ipft_flags & IPFT_F_SELF_REPLY) { 12331 /* 12332 * CONN_OPER_PENDING_DONE happens in the function called 12333 * through ipft_pfi above. 12334 */ 12335 return; 12336 } 12337 12338 CONN_OPER_PENDING_DONE(connp); 12339 if (ipft->ipft_flags & IPFT_F_NO_REPLY) { 12340 freemsg(mp); 12341 return; 12342 } 12343 iocp->ioc_error = error; 12344 12345 done: 12346 mp->b_datap->db_type = M_IOCACK; 12347 if (iocp->ioc_error) 12348 iocp->ioc_count = 0; 12349 qreply(q, mp); 12350 } 12351 12352 /* 12353 * Lookup an ipif using the sequence id (ipif_seqid) 12354 */ 12355 ipif_t * 12356 ipif_lookup_seqid(ill_t *ill, uint_t seqid) 12357 { 12358 ipif_t *ipif; 12359 12360 ASSERT(MUTEX_HELD(&ill->ill_lock)); 12361 12362 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 12363 if (ipif->ipif_seqid == seqid && IPIF_CAN_LOOKUP(ipif)) 12364 return (ipif); 12365 } 12366 return (NULL); 12367 } 12368 12369 uint64_t ipif_g_seqid; 12370 12371 /* 12372 * Assign a unique id for the ipif. This is used later when we send 12373 * IRES to ARP for resolution where we initialize ire_ipif_seqid 12374 * to the value pointed by ire_ipif->ipif_seqid. Later when the 12375 * IRE is added, we verify that ipif has not disappeared. 12376 */ 12377 12378 static void 12379 ipif_assign_seqid(ipif_t *ipif) 12380 { 12381 ipif->ipif_seqid = atomic_add_64_nv(&ipif_g_seqid, 1); 12382 } 12383 12384 /* 12385 * Insert the ipif, so that the list of ipifs on the ill will be sorted 12386 * with respect to ipif_id. Note that an ipif with an ipif_id of -1 will 12387 * be inserted into the first space available in the list. The value of 12388 * ipif_id will then be set to the appropriate value for its position. 12389 */ 12390 static int 12391 ipif_insert(ipif_t *ipif, boolean_t acquire_g_lock, boolean_t acquire_ill_lock) 12392 { 12393 ill_t *ill; 12394 ipif_t *tipif; 12395 ipif_t **tipifp; 12396 int id; 12397 12398 ASSERT(ipif->ipif_ill->ill_net_type == IRE_LOOPBACK || 12399 IAM_WRITER_IPIF(ipif)); 12400 12401 ill = ipif->ipif_ill; 12402 ASSERT(ill != NULL); 12403 12404 /* 12405 * In the case of lo0:0 we already hold the ill_g_lock. 12406 * ill_lookup_on_name (acquires ill_g_lock) -> ipif_allocate -> 12407 * ipif_insert. Another such caller is ipif_move. 12408 */ 12409 if (acquire_g_lock) 12410 rw_enter(&ill_g_lock, RW_WRITER); 12411 if (acquire_ill_lock) 12412 mutex_enter(&ill->ill_lock); 12413 id = ipif->ipif_id; 12414 tipifp = &(ill->ill_ipif); 12415 if (id == -1) { /* need to find a real id */ 12416 id = 0; 12417 while ((tipif = *tipifp) != NULL) { 12418 ASSERT(tipif->ipif_id >= id); 12419 if (tipif->ipif_id != id) 12420 break; /* non-consecutive id */ 12421 id++; 12422 tipifp = &(tipif->ipif_next); 12423 } 12424 /* limit number of logical interfaces */ 12425 if (id >= ip_addrs_per_if) { 12426 if (acquire_ill_lock) 12427 mutex_exit(&ill->ill_lock); 12428 if (acquire_g_lock) 12429 rw_exit(&ill_g_lock); 12430 return (-1); 12431 } 12432 ipif->ipif_id = id; /* assign new id */ 12433 } else if (id < ip_addrs_per_if) { 12434 /* we have a real id; insert ipif in the right place */ 12435 while ((tipif = *tipifp) != NULL) { 12436 ASSERT(tipif->ipif_id != id); 12437 if (tipif->ipif_id > id) 12438 break; /* found correct location */ 12439 tipifp = &(tipif->ipif_next); 12440 } 12441 } else { 12442 if (acquire_ill_lock) 12443 mutex_exit(&ill->ill_lock); 12444 if (acquire_g_lock) 12445 rw_exit(&ill_g_lock); 12446 return (-1); 12447 } 12448 12449 ASSERT(tipifp != &(ill->ill_ipif) || id == 0); 12450 12451 ipif->ipif_next = tipif; 12452 *tipifp = ipif; 12453 if (acquire_ill_lock) 12454 mutex_exit(&ill->ill_lock); 12455 if (acquire_g_lock) 12456 rw_exit(&ill_g_lock); 12457 return (0); 12458 } 12459 12460 /* 12461 * Allocate and initialize a new interface control structure. (Always 12462 * called as writer.) 12463 * When ipif_allocate() is called from ip_ll_subnet_defaults, the ill 12464 * is not part of the global linked list of ills. ipif_seqid is unique 12465 * in the system and to preserve the uniqueness, it is assigned only 12466 * when ill becomes part of the global list. At that point ill will 12467 * have a name. If it doesn't get assigned here, it will get assigned 12468 * in ipif_set_values() as part of SIOCSLIFNAME processing. 12469 * Aditionally, if we come here from ip_ll_subnet_defaults, we don't set 12470 * the interface flags or any other information from the DL_INFO_ACK for 12471 * DL_STYLE2 drivers (initialize == B_FALSE), since we won't have them at 12472 * this point. The flags etc. will be set in ip_ll_subnet_defaults when the 12473 * second DL_INFO_ACK comes in from the driver. 12474 */ 12475 static ipif_t * 12476 ipif_allocate(ill_t *ill, int id, uint_t ire_type, boolean_t initialize) 12477 { 12478 ipif_t *ipif; 12479 phyint_t *phyi; 12480 12481 ip1dbg(("ipif_allocate(%s:%d ill %p)\n", 12482 ill->ill_name, id, (void *)ill)); 12483 ASSERT(ire_type == IRE_LOOPBACK || IAM_WRITER_ILL(ill)); 12484 12485 if ((ipif = (ipif_t *)mi_alloc(sizeof (ipif_t), BPRI_MED)) == NULL) 12486 return (NULL); 12487 *ipif = ipif_zero; /* start clean */ 12488 12489 ipif->ipif_ill = ill; 12490 ipif->ipif_id = id; /* could be -1 */ 12491 ipif->ipif_zoneid = GLOBAL_ZONEID; 12492 12493 mutex_init(&ipif->ipif_saved_ire_lock, NULL, MUTEX_DEFAULT, NULL); 12494 12495 ipif->ipif_refcnt = 0; 12496 ipif->ipif_saved_ire_cnt = 0; 12497 12498 if (ipif_insert(ipif, ire_type != IRE_LOOPBACK, B_TRUE)) { 12499 mi_free(ipif); 12500 return (NULL); 12501 } 12502 /* -1 id should have been replaced by real id */ 12503 id = ipif->ipif_id; 12504 ASSERT(id >= 0); 12505 12506 if (ill->ill_name[0] != '\0') { 12507 ipif_assign_seqid(ipif); 12508 if (ill->ill_phyint->phyint_ifindex != 0) 12509 sctp_update_ipif(ipif, SCTP_IPIF_INSERT); 12510 } 12511 /* 12512 * Keep a copy of original id in ipif_orig_ipifid. Failback 12513 * will attempt to restore the original id. The SIOCSLIFOINDEX 12514 * ioctl sets ipif_orig_ipifid to zero. 12515 */ 12516 ipif->ipif_orig_ipifid = id; 12517 12518 /* 12519 * We grab the ill_lock and phyint_lock to protect the flag changes. 12520 * The ipif is still not up and can't be looked up until the 12521 * ioctl completes and the IPIF_CHANGING flag is cleared. 12522 */ 12523 mutex_enter(&ill->ill_lock); 12524 mutex_enter(&ill->ill_phyint->phyint_lock); 12525 /* 12526 * Set the running flag when logical interface zero is created. 12527 * For subsequent logical interfaces, a DLPI link down 12528 * notification message may have cleared the running flag to 12529 * indicate the link is down, so we shouldn't just blindly set it. 12530 */ 12531 if (id == 0) 12532 ill->ill_phyint->phyint_flags |= PHYI_RUNNING; 12533 ipif->ipif_ire_type = ire_type; 12534 phyi = ill->ill_phyint; 12535 ipif->ipif_orig_ifindex = phyi->phyint_ifindex; 12536 12537 if (ipif->ipif_isv6) { 12538 ill->ill_flags |= ILLF_IPV6; 12539 } else { 12540 ipaddr_t inaddr_any = INADDR_ANY; 12541 12542 ill->ill_flags |= ILLF_IPV4; 12543 12544 /* Keep the IN6_IS_ADDR_V4MAPPED assertions happy */ 12545 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 12546 &ipif->ipif_v6lcl_addr); 12547 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 12548 &ipif->ipif_v6src_addr); 12549 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 12550 &ipif->ipif_v6subnet); 12551 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 12552 &ipif->ipif_v6net_mask); 12553 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 12554 &ipif->ipif_v6brd_addr); 12555 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 12556 &ipif->ipif_v6pp_dst_addr); 12557 } 12558 12559 /* 12560 * Don't set the interface flags etc. now, will do it in 12561 * ip_ll_subnet_defaults. 12562 */ 12563 if (!initialize) { 12564 mutex_exit(&ill->ill_lock); 12565 mutex_exit(&ill->ill_phyint->phyint_lock); 12566 return (ipif); 12567 } 12568 ipif->ipif_mtu = ill->ill_max_mtu; 12569 12570 if (ill->ill_bcast_addr_length != 0) { 12571 /* 12572 * Later detect lack of DLPI driver multicast 12573 * capability by catching DL_ENABMULTI errors in 12574 * ip_rput_dlpi. 12575 */ 12576 ill->ill_flags |= ILLF_MULTICAST; 12577 if (!ipif->ipif_isv6) 12578 ipif->ipif_flags |= IPIF_BROADCAST; 12579 } else { 12580 if (ill->ill_net_type != IRE_LOOPBACK) { 12581 if (ipif->ipif_isv6) 12582 /* 12583 * Note: xresolv interfaces will eventually need 12584 * NOARP set here as well, but that will require 12585 * those external resolvers to have some 12586 * knowledge of that flag and act appropriately. 12587 * Not to be changed at present. 12588 */ 12589 ill->ill_flags |= ILLF_NONUD; 12590 else 12591 ill->ill_flags |= ILLF_NOARP; 12592 } 12593 if (ill->ill_phys_addr_length == 0) { 12594 if (ill->ill_media && 12595 ill->ill_media->ip_m_mac_type == SUNW_DL_VNI) { 12596 ipif->ipif_flags |= IPIF_NOXMIT; 12597 phyi->phyint_flags |= PHYI_VIRTUAL; 12598 } else { 12599 /* pt-pt supports multicast. */ 12600 ill->ill_flags |= ILLF_MULTICAST; 12601 if (ill->ill_net_type == IRE_LOOPBACK) { 12602 phyi->phyint_flags |= 12603 (PHYI_LOOPBACK | PHYI_VIRTUAL); 12604 } else { 12605 ipif->ipif_flags |= IPIF_POINTOPOINT; 12606 } 12607 } 12608 } 12609 } 12610 mutex_exit(&ill->ill_lock); 12611 mutex_exit(&ill->ill_phyint->phyint_lock); 12612 return (ipif); 12613 } 12614 12615 /* 12616 * If appropriate, send a message up to the resolver delete the entry 12617 * for the address of this interface which is going out of business. 12618 * (Always called as writer). 12619 * 12620 * NOTE : We need to check for NULL mps as some of the fields are 12621 * initialized only for some interface types. See ipif_resolver_up() 12622 * for details. 12623 */ 12624 void 12625 ipif_arp_down(ipif_t *ipif) 12626 { 12627 mblk_t *mp; 12628 12629 ip1dbg(("ipif_arp_down(%s:%u)\n", 12630 ipif->ipif_ill->ill_name, ipif->ipif_id)); 12631 ASSERT(IAM_WRITER_IPIF(ipif)); 12632 12633 /* Delete the mapping for the local address */ 12634 mp = ipif->ipif_arp_del_mp; 12635 if (mp != NULL) { 12636 ip1dbg(("ipif_arp_down: %s (%u) for %s:%u\n", 12637 dlpi_prim_str(*(int *)mp->b_rptr), *(int *)mp->b_rptr, 12638 ipif->ipif_ill->ill_name, ipif->ipif_id)); 12639 putnext(ipif->ipif_ill->ill_rq, mp); 12640 ipif->ipif_arp_del_mp = NULL; 12641 } 12642 12643 /* 12644 * If this is the last ipif that is going down, we need 12645 * to clean up ARP completely. 12646 */ 12647 if (ipif->ipif_ill->ill_ipif_up_count == 0) { 12648 12649 /* Send up AR_INTERFACE_DOWN message */ 12650 mp = ipif->ipif_ill->ill_arp_down_mp; 12651 if (mp != NULL) { 12652 ip1dbg(("ipif_arp_down: %s (%u) for %s:%u\n", 12653 dlpi_prim_str(*(int *)mp->b_rptr), 12654 *(int *)mp->b_rptr, ipif->ipif_ill->ill_name, 12655 ipif->ipif_id)); 12656 putnext(ipif->ipif_ill->ill_rq, mp); 12657 ipif->ipif_ill->ill_arp_down_mp = NULL; 12658 } 12659 12660 /* Tell ARP to delete the multicast mappings */ 12661 mp = ipif->ipif_ill->ill_arp_del_mapping_mp; 12662 if (mp != NULL) { 12663 ip1dbg(("ipif_arp_down: %s (%u) for %s:%u\n", 12664 dlpi_prim_str(*(int *)mp->b_rptr), 12665 *(int *)mp->b_rptr, ipif->ipif_ill->ill_name, 12666 ipif->ipif_id)); 12667 putnext(ipif->ipif_ill->ill_rq, mp); 12668 ipif->ipif_ill->ill_arp_del_mapping_mp = NULL; 12669 } 12670 } 12671 } 12672 12673 /* 12674 * This function sets up the multicast mappings in ARP. When ipif_resolver_up 12675 * calls this function, it passes a non-NULL arp_add_mapping_mp indicating 12676 * that it wants the add_mp allocated in this function to be returned 12677 * wihtout sending it to arp. When ip_rput_dlpi_writer calls this to 12678 * just re-do the multicast, it wants us to send the add_mp to ARP also. 12679 * ipif_resolver_up does not want us to do the "add" i.e sending to ARP, 12680 * as it does a ipif_arp_down after calling this function - which will 12681 * remove what we add here. 12682 * 12683 * Returns -1 on failures and 0 on success. 12684 */ 12685 int 12686 ipif_arp_setup_multicast(ipif_t *ipif, mblk_t **arp_add_mapping_mp) 12687 { 12688 mblk_t *del_mp = NULL; 12689 mblk_t *add_mp = NULL; 12690 mblk_t *mp; 12691 ill_t *ill = ipif->ipif_ill; 12692 phyint_t *phyi = ill->ill_phyint; 12693 ipaddr_t addr, mask, extract_mask = 0; 12694 arma_t *arma; 12695 uint8_t *maddr, *bphys_addr; 12696 uint32_t hw_start; 12697 dl_unitdata_req_t *dlur; 12698 12699 ASSERT(IAM_WRITER_IPIF(ipif)); 12700 if (ipif->ipif_flags & IPIF_POINTOPOINT) 12701 return (0); 12702 12703 /* 12704 * Delete the existing mapping from ARP. Normally ipif_down 12705 * -> ipif_arp_down should send this up to ARP. The only 12706 * reason we would find this when we are switching from 12707 * Multicast to Broadcast where we did not do a down. 12708 */ 12709 mp = ill->ill_arp_del_mapping_mp; 12710 if (mp != NULL) { 12711 ip1dbg(("ipif_arp_down: %s (%u) for %s:%u\n", 12712 dlpi_prim_str(*(int *)mp->b_rptr), 12713 *(int *)mp->b_rptr, ill->ill_name, ipif->ipif_id)); 12714 putnext(ill->ill_rq, mp); 12715 ill->ill_arp_del_mapping_mp = NULL; 12716 } 12717 12718 if (arp_add_mapping_mp != NULL) 12719 *arp_add_mapping_mp = NULL; 12720 12721 /* 12722 * Check that the address is not to long for the constant 12723 * length reserved in the template arma_t. 12724 */ 12725 if (ill->ill_phys_addr_length > IP_MAX_HW_LEN) 12726 return (-1); 12727 12728 /* Add mapping mblk */ 12729 addr = (ipaddr_t)htonl(INADDR_UNSPEC_GROUP); 12730 mask = (ipaddr_t)htonl(IN_CLASSD_NET); 12731 add_mp = ill_arp_alloc(ill, (uchar_t *)&ip_arma_multi_template, 12732 (caddr_t)&addr); 12733 if (add_mp == NULL) 12734 return (-1); 12735 arma = (arma_t *)add_mp->b_rptr; 12736 maddr = (uint8_t *)arma + arma->arma_hw_addr_offset; 12737 bcopy(&mask, (char *)arma + arma->arma_proto_mask_offset, IP_ADDR_LEN); 12738 arma->arma_hw_addr_length = ill->ill_phys_addr_length; 12739 12740 /* 12741 * Determine the broadcast address. 12742 */ 12743 dlur = (dl_unitdata_req_t *)ill->ill_bcast_mp->b_rptr; 12744 if (ill->ill_sap_length < 0) 12745 bphys_addr = (uchar_t *)dlur + dlur->dl_dest_addr_offset; 12746 else 12747 bphys_addr = (uchar_t *)dlur + 12748 dlur->dl_dest_addr_offset + ill->ill_sap_length; 12749 /* 12750 * Check PHYI_MULTI_BCAST and length of physical 12751 * address to determine if we use the mapping or the 12752 * broadcast address. 12753 */ 12754 if (!(phyi->phyint_flags & PHYI_MULTI_BCAST)) 12755 if (!MEDIA_V4MINFO(ill->ill_media, ill->ill_phys_addr_length, 12756 bphys_addr, maddr, &hw_start, &extract_mask)) 12757 phyi->phyint_flags |= PHYI_MULTI_BCAST; 12758 12759 if ((phyi->phyint_flags & PHYI_MULTI_BCAST) || 12760 (ill->ill_flags & ILLF_MULTICAST)) { 12761 /* Make sure this will not match the "exact" entry. */ 12762 addr = (ipaddr_t)htonl(INADDR_ALLHOSTS_GROUP); 12763 del_mp = ill_arp_alloc(ill, (uchar_t *)&ip_ared_template, 12764 (caddr_t)&addr); 12765 if (del_mp == NULL) { 12766 freemsg(add_mp); 12767 return (-1); 12768 } 12769 bcopy(&extract_mask, (char *)arma + 12770 arma->arma_proto_extract_mask_offset, IP_ADDR_LEN); 12771 if (phyi->phyint_flags & PHYI_MULTI_BCAST) { 12772 /* Use link-layer broadcast address for MULTI_BCAST */ 12773 bcopy(bphys_addr, maddr, ill->ill_phys_addr_length); 12774 ip2dbg(("ipif_arp_setup_multicast: adding" 12775 " MULTI_BCAST ARP setup for %s\n", ill->ill_name)); 12776 } else { 12777 arma->arma_hw_mapping_start = hw_start; 12778 ip2dbg(("ipif_arp_setup_multicast: adding multicast" 12779 " ARP setup for %s\n", ill->ill_name)); 12780 } 12781 } else { 12782 freemsg(add_mp); 12783 ASSERT(del_mp == NULL); 12784 /* It is neither MULTICAST nor MULTI_BCAST */ 12785 return (0); 12786 } 12787 ASSERT(add_mp != NULL && del_mp != NULL); 12788 ill->ill_arp_del_mapping_mp = del_mp; 12789 if (arp_add_mapping_mp != NULL) { 12790 /* The caller just wants the mblks allocated */ 12791 *arp_add_mapping_mp = add_mp; 12792 } else { 12793 /* The caller wants us to send it to arp */ 12794 putnext(ill->ill_rq, add_mp); 12795 } 12796 return (0); 12797 } 12798 12799 /* 12800 * Get the resolver set up for a new interface address. 12801 * (Always called as writer.) 12802 * Called both for IPv4 and IPv6 interfaces, 12803 * though it only sets up the resolver for v6 12804 * if it's an xresolv interface (one using an external resolver). 12805 * Honors ILLF_NOARP. 12806 * The boolean value arp_just_publish, if B_TRUE, indicates that 12807 * it only needs to send an AR_ENTRY_ADD message up to ARP for 12808 * IPv4 interfaces. Currently, B_TRUE is only set when this 12809 * function is called by ip_rput_dlpi_writer() to handle 12810 * asynchronous hardware address change notification. 12811 * Returns error on failure. 12812 */ 12813 int 12814 ipif_resolver_up(ipif_t *ipif, boolean_t arp_just_publish) 12815 { 12816 caddr_t addr; 12817 mblk_t *arp_up_mp = NULL; 12818 mblk_t *arp_down_mp = NULL; 12819 mblk_t *arp_add_mp = NULL; 12820 mblk_t *arp_del_mp = NULL; 12821 mblk_t *arp_add_mapping_mp = NULL; 12822 mblk_t *arp_del_mapping_mp = NULL; 12823 ill_t *ill = ipif->ipif_ill; 12824 uchar_t *area_p = NULL; 12825 uchar_t *ared_p = NULL; 12826 int err = ENOMEM; 12827 12828 ip1dbg(("ipif_resolver_up(%s:%u) flags 0x%x\n", 12829 ipif->ipif_ill->ill_name, ipif->ipif_id, 12830 (uint_t)ipif->ipif_flags)); 12831 ASSERT(IAM_WRITER_IPIF(ipif)); 12832 12833 if ((ill->ill_net_type != IRE_IF_RESOLVER) || 12834 (ill->ill_isv6 && !(ill->ill_flags & ILLF_XRESOLV))) { 12835 return (0); 12836 } 12837 12838 if (ill->ill_isv6) { 12839 /* 12840 * External resolver for IPv6 12841 */ 12842 ASSERT(!arp_just_publish); 12843 if (!IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr)) { 12844 addr = (caddr_t)&ipif->ipif_v6lcl_addr; 12845 area_p = (uchar_t *)&ip6_area_template; 12846 ared_p = (uchar_t *)&ip6_ared_template; 12847 } 12848 } else { 12849 /* 12850 * IPv4 arp case. If the ARP stream has already started 12851 * closing, fail this request for ARP bringup. Else 12852 * record the fact that an ARP bringup is pending. 12853 */ 12854 mutex_enter(&ill->ill_lock); 12855 if (ill->ill_arp_closing) { 12856 mutex_exit(&ill->ill_lock); 12857 err = EINVAL; 12858 goto failed; 12859 } else { 12860 if (ill->ill_ipif_up_count == 0) 12861 ill->ill_arp_bringup_pending = 1; 12862 mutex_exit(&ill->ill_lock); 12863 } 12864 if (ipif->ipif_lcl_addr != INADDR_ANY) { 12865 addr = (caddr_t)&ipif->ipif_lcl_addr; 12866 area_p = (uchar_t *)&ip_area_template; 12867 ared_p = (uchar_t *)&ip_ared_template; 12868 } 12869 } 12870 12871 /* 12872 * Add an entry for the local address in ARP only if it 12873 * is not UNNUMBERED and the address is not INADDR_ANY. 12874 */ 12875 if (((ipif->ipif_flags & IPIF_UNNUMBERED) == 0) && area_p != NULL) { 12876 /* Now ask ARP to publish our address. */ 12877 arp_add_mp = ill_arp_alloc(ill, area_p, addr); 12878 if (arp_add_mp == NULL) 12879 goto failed; 12880 if (arp_just_publish) { 12881 /* 12882 * Copy the new hardware address and length into 12883 * arp_add_mp to be sent to ARP. 12884 */ 12885 area_t *area = (area_t *)arp_add_mp->b_rptr; 12886 area->area_hw_addr_length = 12887 ill->ill_phys_addr_length; 12888 bcopy((char *)ill->ill_phys_addr, 12889 ((char *)area + area->area_hw_addr_offset), 12890 area->area_hw_addr_length); 12891 } 12892 12893 ((area_t *)arp_add_mp->b_rptr)->area_flags = 12894 ACE_F_PERMANENT | ACE_F_PUBLISH | ACE_F_MYADDR; 12895 12896 if (arp_just_publish) 12897 goto arp_setup_multicast; 12898 12899 /* 12900 * Allocate an ARP deletion message so we know we can tell ARP 12901 * when the interface goes down. 12902 */ 12903 arp_del_mp = ill_arp_alloc(ill, ared_p, addr); 12904 if (arp_del_mp == NULL) 12905 goto failed; 12906 12907 } else { 12908 if (arp_just_publish) 12909 goto done; 12910 } 12911 /* 12912 * Need to bring up ARP or setup multicast mapping only 12913 * when the first interface is coming UP. 12914 */ 12915 if (ill->ill_ipif_up_count != 0) 12916 goto done; 12917 12918 /* 12919 * Allocate an ARP down message (to be saved) and an ARP up 12920 * message. 12921 */ 12922 arp_down_mp = ill_arp_alloc(ill, (uchar_t *)&ip_ard_template, 0); 12923 if (arp_down_mp == NULL) 12924 goto failed; 12925 12926 arp_up_mp = ill_arp_alloc(ill, (uchar_t *)&ip_aru_template, 0); 12927 if (arp_up_mp == NULL) 12928 goto failed; 12929 12930 if (ipif->ipif_flags & IPIF_POINTOPOINT) 12931 goto done; 12932 12933 arp_setup_multicast: 12934 /* 12935 * Setup the multicast mappings. This function initializes 12936 * ill_arp_del_mapping_mp also. This does not need to be done for 12937 * IPv6. 12938 */ 12939 if (!ill->ill_isv6) { 12940 err = ipif_arp_setup_multicast(ipif, &arp_add_mapping_mp); 12941 if (err != 0) 12942 goto failed; 12943 ASSERT(ill->ill_arp_del_mapping_mp != NULL); 12944 ASSERT(arp_add_mapping_mp != NULL); 12945 } 12946 12947 done:; 12948 if (arp_del_mp != NULL) { 12949 ASSERT(ipif->ipif_arp_del_mp == NULL); 12950 ipif->ipif_arp_del_mp = arp_del_mp; 12951 } 12952 if (arp_down_mp != NULL) { 12953 ASSERT(ill->ill_arp_down_mp == NULL); 12954 ill->ill_arp_down_mp = arp_down_mp; 12955 } 12956 if (arp_del_mapping_mp != NULL) { 12957 ASSERT(ill->ill_arp_del_mapping_mp == NULL); 12958 ill->ill_arp_del_mapping_mp = arp_del_mapping_mp; 12959 } 12960 if (arp_up_mp != NULL) { 12961 ip1dbg(("ipif_resolver_up: ARP_UP for %s:%u\n", 12962 ipif->ipif_ill->ill_name, ipif->ipif_id)); 12963 putnext(ill->ill_rq, arp_up_mp); 12964 } 12965 if (arp_add_mp != NULL) { 12966 ip1dbg(("ipif_resolver_up: ARP_ADD for %s:%u\n", 12967 ipif->ipif_ill->ill_name, ipif->ipif_id)); 12968 putnext(ill->ill_rq, arp_add_mp); 12969 } 12970 if (arp_add_mapping_mp != NULL) { 12971 ip1dbg(("ipif_resolver_up: MAPPING_ADD for %s:%u\n", 12972 ipif->ipif_ill->ill_name, ipif->ipif_id)); 12973 putnext(ill->ill_rq, arp_add_mapping_mp); 12974 } 12975 if (arp_just_publish) 12976 return (0); 12977 12978 if (ill->ill_flags & ILLF_NOARP) 12979 err = ill_arp_off(ill); 12980 else 12981 err = ill_arp_on(ill); 12982 if (err) { 12983 ip0dbg(("ipif_resolver_up: arp_on/off failed %d\n", err)); 12984 freemsg(ipif->ipif_arp_del_mp); 12985 if (arp_down_mp != NULL) 12986 freemsg(ill->ill_arp_down_mp); 12987 if (ill->ill_arp_del_mapping_mp != NULL) 12988 freemsg(ill->ill_arp_del_mapping_mp); 12989 ipif->ipif_arp_del_mp = NULL; 12990 ill->ill_arp_down_mp = NULL; 12991 ill->ill_arp_del_mapping_mp = NULL; 12992 return (err); 12993 } 12994 return (ill->ill_ipif_up_count != 0 ? 0 : EINPROGRESS); 12995 12996 failed:; 12997 ip1dbg(("ipif_resolver_up: FAILED\n")); 12998 freemsg(arp_add_mp); 12999 freemsg(arp_del_mp); 13000 freemsg(arp_add_mapping_mp); 13001 freemsg(arp_up_mp); 13002 freemsg(arp_down_mp); 13003 ill->ill_arp_bringup_pending = 0; 13004 return (err); 13005 } 13006 13007 /* 13008 * Wakeup all threads waiting to enter the ipsq, and sleeping 13009 * on any of the ills in this ipsq. The ill_lock of the ill 13010 * must be held so that waiters don't miss wakeups 13011 */ 13012 static void 13013 ill_signal_ipsq_ills(ipsq_t *ipsq, boolean_t caller_holds_lock) 13014 { 13015 phyint_t *phyint; 13016 13017 phyint = ipsq->ipsq_phyint_list; 13018 while (phyint != NULL) { 13019 if (phyint->phyint_illv4) { 13020 if (!caller_holds_lock) 13021 mutex_enter(&phyint->phyint_illv4->ill_lock); 13022 ASSERT(MUTEX_HELD(&phyint->phyint_illv4->ill_lock)); 13023 cv_broadcast(&phyint->phyint_illv4->ill_cv); 13024 if (!caller_holds_lock) 13025 mutex_exit(&phyint->phyint_illv4->ill_lock); 13026 } 13027 if (phyint->phyint_illv6) { 13028 if (!caller_holds_lock) 13029 mutex_enter(&phyint->phyint_illv6->ill_lock); 13030 ASSERT(MUTEX_HELD(&phyint->phyint_illv6->ill_lock)); 13031 cv_broadcast(&phyint->phyint_illv6->ill_cv); 13032 if (!caller_holds_lock) 13033 mutex_exit(&phyint->phyint_illv6->ill_lock); 13034 } 13035 phyint = phyint->phyint_ipsq_next; 13036 } 13037 } 13038 13039 static ipsq_t * 13040 ipsq_create(char *groupname) 13041 { 13042 ipsq_t *ipsq; 13043 13044 ASSERT(RW_WRITE_HELD(&ill_g_lock)); 13045 ipsq = kmem_zalloc(sizeof (ipsq_t), KM_NOSLEEP); 13046 if (ipsq == NULL) { 13047 return (NULL); 13048 } 13049 13050 if (groupname != NULL) 13051 (void) strcpy(ipsq->ipsq_name, groupname); 13052 else 13053 ipsq->ipsq_name[0] = '\0'; 13054 13055 mutex_init(&ipsq->ipsq_lock, NULL, MUTEX_DEFAULT, NULL); 13056 ipsq->ipsq_flags |= IPSQ_GROUP; 13057 ipsq->ipsq_next = ipsq_g_head; 13058 ipsq_g_head = ipsq; 13059 return (ipsq); 13060 } 13061 13062 /* 13063 * Return an ipsq correspoding to the groupname. If 'create' is true 13064 * allocate a new ipsq if one does not exist. Usually an ipsq is associated 13065 * uniquely with an IPMP group. However during IPMP groupname operations, 13066 * multiple IPMP groups may be associated with a single ipsq. But no 13067 * IPMP group can be associated with more than 1 ipsq at any time. 13068 * For example 13069 * Interfaces IPMP grpname ipsq ipsq_name ipsq_refs 13070 * hme1, hme2 mpk17-84 ipsq1 mpk17-84 2 13071 * hme3, hme4 mpk17-85 ipsq2 mpk17-85 2 13072 * 13073 * Now the command ifconfig hme3 group mpk17-84 results in the temporary 13074 * status shown below during the execution of the above command. 13075 * hme1, hme2, hme3, hme4 mpk17-84, mpk17-85 ipsq1 mpk17-84 4 13076 * 13077 * After the completion of the above groupname command we return to the stable 13078 * state shown below. 13079 * hme1, hme2, hme3 mpk17-84 ipsq1 mpk17-84 3 13080 * hme4 mpk17-85 ipsq2 mpk17-85 1 13081 * 13082 * Because of the above, we don't search based on the ipsq_name since that 13083 * would miss the correct ipsq during certain windows as shown above. 13084 * The ipsq_name is only used during split of an ipsq to return the ipsq to its 13085 * natural state. 13086 */ 13087 static ipsq_t * 13088 ip_ipsq_lookup(char *groupname, boolean_t create, ipsq_t *exclude_ipsq) 13089 { 13090 ipsq_t *ipsq; 13091 int group_len; 13092 phyint_t *phyint; 13093 13094 ASSERT(RW_LOCK_HELD(&ill_g_lock)); 13095 13096 group_len = strlen(groupname); 13097 ASSERT(group_len != 0); 13098 group_len++; 13099 13100 for (ipsq = ipsq_g_head; ipsq != NULL; ipsq = ipsq->ipsq_next) { 13101 /* 13102 * When an ipsq is being split, and ill_split_ipsq 13103 * calls this function, we exclude it from being considered. 13104 */ 13105 if (ipsq == exclude_ipsq) 13106 continue; 13107 13108 /* 13109 * Compare against the ipsq_name. The groupname change happens 13110 * in 2 phases. The 1st phase merges the from group into 13111 * the to group's ipsq, by calling ill_merge_groups and restarts 13112 * the ioctl. The 2nd phase then locates the ipsq again thru 13113 * ipsq_name. At this point the phyint_groupname has not been 13114 * updated. 13115 */ 13116 if ((group_len == strlen(ipsq->ipsq_name) + 1) && 13117 (bcmp(ipsq->ipsq_name, groupname, group_len) == 0)) { 13118 /* 13119 * Verify that an ipmp groupname is exactly 13120 * part of 1 ipsq and is not found in any other 13121 * ipsq. 13122 */ 13123 ASSERT(ip_ipsq_lookup(groupname, B_FALSE, ipsq) == 13124 NULL); 13125 return (ipsq); 13126 } 13127 13128 /* 13129 * Comparison against ipsq_name alone is not sufficient. 13130 * In the case when groups are currently being 13131 * merged, the ipsq could hold other IPMP groups temporarily. 13132 * so we walk the phyint list and compare against the 13133 * phyint_groupname as well. 13134 */ 13135 phyint = ipsq->ipsq_phyint_list; 13136 while (phyint != NULL) { 13137 if ((group_len == phyint->phyint_groupname_len) && 13138 (bcmp(phyint->phyint_groupname, groupname, 13139 group_len) == 0)) { 13140 /* 13141 * Verify that an ipmp groupname is exactly 13142 * part of 1 ipsq and is not found in any other 13143 * ipsq. 13144 */ 13145 ASSERT(ip_ipsq_lookup(groupname, B_FALSE, ipsq) 13146 == NULL); 13147 return (ipsq); 13148 } 13149 phyint = phyint->phyint_ipsq_next; 13150 } 13151 } 13152 if (create) 13153 ipsq = ipsq_create(groupname); 13154 return (ipsq); 13155 } 13156 13157 static void 13158 ipsq_delete(ipsq_t *ipsq) 13159 { 13160 ipsq_t *nipsq; 13161 ipsq_t *pipsq = NULL; 13162 13163 /* 13164 * We don't hold the ipsq lock, but we are sure no new 13165 * messages can land up, since the ipsq_refs is zero. 13166 * i.e. this ipsq is unnamed and no phyint or phyint group 13167 * is associated with this ipsq. (Lookups are based on ill_name 13168 * or phyint_group_name) 13169 */ 13170 ASSERT(ipsq->ipsq_refs == 0); 13171 ASSERT(ipsq->ipsq_xopq_mphead == NULL && ipsq->ipsq_mphead == NULL); 13172 ASSERT(ipsq->ipsq_pending_mp == NULL); 13173 if (!(ipsq->ipsq_flags & IPSQ_GROUP)) { 13174 /* 13175 * This is not the ipsq of an IPMP group. 13176 */ 13177 kmem_free(ipsq, sizeof (ipsq_t)); 13178 return; 13179 } 13180 13181 rw_enter(&ill_g_lock, RW_WRITER); 13182 13183 /* 13184 * Locate the ipsq before we can remove it from 13185 * the singly linked list of ipsq's. 13186 */ 13187 for (nipsq = ipsq_g_head; nipsq != NULL; nipsq = nipsq->ipsq_next) { 13188 if (nipsq == ipsq) { 13189 break; 13190 } 13191 pipsq = nipsq; 13192 } 13193 13194 ASSERT(nipsq == ipsq); 13195 13196 /* unlink ipsq from the list */ 13197 if (pipsq != NULL) 13198 pipsq->ipsq_next = ipsq->ipsq_next; 13199 else 13200 ipsq_g_head = ipsq->ipsq_next; 13201 kmem_free(ipsq, sizeof (ipsq_t)); 13202 rw_exit(&ill_g_lock); 13203 } 13204 13205 static void 13206 ill_move_to_new_ipsq(ipsq_t *old_ipsq, ipsq_t *new_ipsq, mblk_t *current_mp, 13207 queue_t *q) 13208 13209 { 13210 13211 ASSERT(MUTEX_HELD(&new_ipsq->ipsq_lock)); 13212 ASSERT(old_ipsq->ipsq_mphead == NULL && old_ipsq->ipsq_mptail == NULL); 13213 ASSERT(old_ipsq->ipsq_pending_ipif == NULL); 13214 ASSERT(old_ipsq->ipsq_pending_mp == NULL); 13215 ASSERT(current_mp != NULL); 13216 13217 ipsq_enq(new_ipsq, q, current_mp, (ipsq_func_t)ip_process_ioctl, 13218 NEW_OP, NULL); 13219 13220 ASSERT(new_ipsq->ipsq_xopq_mptail != NULL && 13221 new_ipsq->ipsq_xopq_mphead != NULL); 13222 13223 /* 13224 * move from old ipsq to the new ipsq. 13225 */ 13226 new_ipsq->ipsq_xopq_mptail->b_next = old_ipsq->ipsq_xopq_mphead; 13227 if (old_ipsq->ipsq_xopq_mphead != NULL) 13228 new_ipsq->ipsq_xopq_mptail = old_ipsq->ipsq_xopq_mptail; 13229 13230 old_ipsq->ipsq_xopq_mphead = old_ipsq->ipsq_xopq_mptail = NULL; 13231 } 13232 13233 void 13234 ill_group_cleanup(ill_t *ill) 13235 { 13236 ill_t *ill_v4; 13237 ill_t *ill_v6; 13238 ipif_t *ipif; 13239 13240 ill_v4 = ill->ill_phyint->phyint_illv4; 13241 ill_v6 = ill->ill_phyint->phyint_illv6; 13242 13243 if (ill_v4 != NULL) { 13244 mutex_enter(&ill_v4->ill_lock); 13245 for (ipif = ill_v4->ill_ipif; ipif != NULL; 13246 ipif = ipif->ipif_next) { 13247 IPIF_UNMARK_MOVING(ipif); 13248 } 13249 ill_v4->ill_up_ipifs = B_FALSE; 13250 mutex_exit(&ill_v4->ill_lock); 13251 } 13252 13253 if (ill_v6 != NULL) { 13254 mutex_enter(&ill_v6->ill_lock); 13255 for (ipif = ill_v6->ill_ipif; ipif != NULL; 13256 ipif = ipif->ipif_next) { 13257 IPIF_UNMARK_MOVING(ipif); 13258 } 13259 ill_v6->ill_up_ipifs = B_FALSE; 13260 mutex_exit(&ill_v6->ill_lock); 13261 } 13262 } 13263 /* 13264 * This function is called when an ill has had a change in its group status 13265 * to bring up all the ipifs that were up before the change. 13266 */ 13267 int 13268 ill_up_ipifs(ill_t *ill, queue_t *q, mblk_t *mp) 13269 { 13270 ipif_t *ipif; 13271 ill_t *ill_v4; 13272 ill_t *ill_v6; 13273 ill_t *from_ill; 13274 int err = 0; 13275 13276 13277 ASSERT(IAM_WRITER_ILL(ill)); 13278 13279 /* 13280 * Except for ipif_state_flags and ill_state_flags the other 13281 * fields of the ipif/ill that are modified below are protected 13282 * implicitly since we are a writer. We would have tried to down 13283 * even an ipif that was already down, in ill_down_ipifs. So we 13284 * just blindly clear the IPIF_CHANGING flag here on all ipifs. 13285 */ 13286 ill_v4 = ill->ill_phyint->phyint_illv4; 13287 ill_v6 = ill->ill_phyint->phyint_illv6; 13288 if (ill_v4 != NULL) { 13289 ill_v4->ill_up_ipifs = B_TRUE; 13290 for (ipif = ill_v4->ill_ipif; ipif != NULL; 13291 ipif = ipif->ipif_next) { 13292 mutex_enter(&ill_v4->ill_lock); 13293 ipif->ipif_state_flags &= ~IPIF_CHANGING; 13294 IPIF_UNMARK_MOVING(ipif); 13295 mutex_exit(&ill_v4->ill_lock); 13296 if (ipif->ipif_was_up) { 13297 if (!(ipif->ipif_flags & IPIF_UP)) 13298 err = ipif_up(ipif, q, mp); 13299 ipif->ipif_was_up = B_FALSE; 13300 if (err != 0) { 13301 /* 13302 * Can there be any other error ? 13303 */ 13304 ASSERT(err == EINPROGRESS); 13305 return (err); 13306 } 13307 } 13308 } 13309 mutex_enter(&ill_v4->ill_lock); 13310 ill_v4->ill_state_flags &= ~ILL_CHANGING; 13311 mutex_exit(&ill_v4->ill_lock); 13312 ill_v4->ill_up_ipifs = B_FALSE; 13313 if (ill_v4->ill_move_in_progress) { 13314 ASSERT(ill_v4->ill_move_peer != NULL); 13315 ill_v4->ill_move_in_progress = B_FALSE; 13316 from_ill = ill_v4->ill_move_peer; 13317 from_ill->ill_move_in_progress = B_FALSE; 13318 from_ill->ill_move_peer = NULL; 13319 mutex_enter(&from_ill->ill_lock); 13320 from_ill->ill_state_flags &= ~ILL_CHANGING; 13321 mutex_exit(&from_ill->ill_lock); 13322 if (ill_v6 == NULL) { 13323 if (from_ill->ill_phyint->phyint_flags & 13324 PHYI_STANDBY) { 13325 phyint_standby_inactive 13326 (from_ill->ill_phyint); 13327 } 13328 if (ill_v4->ill_phyint->phyint_flags & 13329 PHYI_STANDBY) { 13330 phyint_standby_inactive 13331 (ill_v4->ill_phyint); 13332 } 13333 } 13334 ill_v4->ill_move_peer = NULL; 13335 } 13336 } 13337 13338 if (ill_v6 != NULL) { 13339 ill_v6->ill_up_ipifs = B_TRUE; 13340 for (ipif = ill_v6->ill_ipif; ipif != NULL; 13341 ipif = ipif->ipif_next) { 13342 mutex_enter(&ill_v6->ill_lock); 13343 ipif->ipif_state_flags &= ~IPIF_CHANGING; 13344 IPIF_UNMARK_MOVING(ipif); 13345 mutex_exit(&ill_v6->ill_lock); 13346 if (ipif->ipif_was_up) { 13347 if (!(ipif->ipif_flags & IPIF_UP)) 13348 err = ipif_up(ipif, q, mp); 13349 ipif->ipif_was_up = B_FALSE; 13350 if (err != 0) { 13351 /* 13352 * Can there be any other error ? 13353 */ 13354 ASSERT(err == EINPROGRESS); 13355 return (err); 13356 } 13357 } 13358 } 13359 mutex_enter(&ill_v6->ill_lock); 13360 ill_v6->ill_state_flags &= ~ILL_CHANGING; 13361 mutex_exit(&ill_v6->ill_lock); 13362 ill_v6->ill_up_ipifs = B_FALSE; 13363 if (ill_v6->ill_move_in_progress) { 13364 ASSERT(ill_v6->ill_move_peer != NULL); 13365 ill_v6->ill_move_in_progress = B_FALSE; 13366 from_ill = ill_v6->ill_move_peer; 13367 from_ill->ill_move_in_progress = B_FALSE; 13368 from_ill->ill_move_peer = NULL; 13369 mutex_enter(&from_ill->ill_lock); 13370 from_ill->ill_state_flags &= ~ILL_CHANGING; 13371 mutex_exit(&from_ill->ill_lock); 13372 if (from_ill->ill_phyint->phyint_flags & PHYI_STANDBY) { 13373 phyint_standby_inactive(from_ill->ill_phyint); 13374 } 13375 if (ill_v6->ill_phyint->phyint_flags & PHYI_STANDBY) { 13376 phyint_standby_inactive(ill_v6->ill_phyint); 13377 } 13378 ill_v6->ill_move_peer = NULL; 13379 } 13380 } 13381 return (0); 13382 } 13383 13384 /* 13385 * bring down all the approriate ipifs. 13386 */ 13387 /* ARGSUSED */ 13388 static void 13389 ill_down_ipifs(ill_t *ill, mblk_t *mp, int index, boolean_t chk_nofailover) 13390 { 13391 ipif_t *ipif; 13392 13393 ASSERT(IAM_WRITER_ILL(ill)); 13394 13395 /* 13396 * Except for ipif_state_flags the other fields of the ipif/ill that 13397 * are modified below are protected implicitly since we are a writer 13398 */ 13399 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 13400 if (chk_nofailover && (ipif->ipif_flags & IPIF_NOFAILOVER)) 13401 continue; 13402 if (index == 0 || index == ipif->ipif_orig_ifindex) { 13403 /* 13404 * We go through the ipif_down logic even if the ipif 13405 * is already down, since routes can be added based 13406 * on down ipifs. Going through ipif_down once again 13407 * will delete any IREs created based on these routes. 13408 */ 13409 if (ipif->ipif_flags & IPIF_UP) 13410 ipif->ipif_was_up = B_TRUE; 13411 /* 13412 * If called with chk_nofailover true ipif is moving. 13413 */ 13414 mutex_enter(&ill->ill_lock); 13415 if (chk_nofailover) { 13416 ipif->ipif_state_flags |= 13417 IPIF_MOVING | IPIF_CHANGING; 13418 } else { 13419 ipif->ipif_state_flags |= IPIF_CHANGING; 13420 } 13421 mutex_exit(&ill->ill_lock); 13422 /* 13423 * Need to re-create net/subnet bcast ires if 13424 * they are dependent on ipif. 13425 */ 13426 if (!ipif->ipif_isv6) 13427 ipif_check_bcast_ires(ipif); 13428 (void) ipif_logical_down(ipif, NULL, NULL); 13429 ipif_down_tail(ipif); 13430 /* 13431 * We don't do ipif_multicast_down for IPv4 in 13432 * ipif_down. We need to set this so that 13433 * ipif_multicast_up will join the 13434 * ALLHOSTS_GROUP on to_ill. 13435 */ 13436 ipif->ipif_multicast_up = B_FALSE; 13437 } 13438 } 13439 } 13440 13441 #define IPSQ_INC_REF(ipsq) { \ 13442 ASSERT(RW_WRITE_HELD(&ill_g_lock)); \ 13443 (ipsq)->ipsq_refs++; \ 13444 } 13445 13446 #define IPSQ_DEC_REF(ipsq) { \ 13447 ASSERT(RW_WRITE_HELD(&ill_g_lock)); \ 13448 (ipsq)->ipsq_refs--; \ 13449 if ((ipsq)->ipsq_refs == 0) \ 13450 (ipsq)->ipsq_name[0] = '\0'; \ 13451 } 13452 13453 /* 13454 * Change the ipsq of all the ill's whose current ipsq is 'cur_ipsq' to 13455 * new_ipsq. 13456 */ 13457 static void 13458 ill_merge_ipsq(ipsq_t *cur_ipsq, ipsq_t *new_ipsq) 13459 { 13460 phyint_t *phyint; 13461 phyint_t *next_phyint; 13462 13463 /* 13464 * To change the ipsq of an ill, we need to hold the ill_g_lock as 13465 * writer and the ill_lock of the ill in question. Also the dest 13466 * ipsq can't vanish while we hold the ill_g_lock as writer. 13467 */ 13468 ASSERT(RW_WRITE_HELD(&ill_g_lock)); 13469 13470 phyint = cur_ipsq->ipsq_phyint_list; 13471 cur_ipsq->ipsq_phyint_list = NULL; 13472 while (phyint != NULL) { 13473 next_phyint = phyint->phyint_ipsq_next; 13474 IPSQ_DEC_REF(cur_ipsq); 13475 phyint->phyint_ipsq_next = new_ipsq->ipsq_phyint_list; 13476 new_ipsq->ipsq_phyint_list = phyint; 13477 IPSQ_INC_REF(new_ipsq); 13478 phyint->phyint_ipsq = new_ipsq; 13479 phyint = next_phyint; 13480 } 13481 } 13482 13483 #define SPLIT_SUCCESS 0 13484 #define SPLIT_NOT_NEEDED 1 13485 #define SPLIT_FAILED 2 13486 13487 int 13488 ill_split_to_grp_ipsq(phyint_t *phyint, ipsq_t *cur_ipsq, boolean_t need_retry) 13489 { 13490 ipsq_t *newipsq = NULL; 13491 13492 /* 13493 * Assertions denote pre-requisites for changing the ipsq of 13494 * a phyint 13495 */ 13496 ASSERT(RW_WRITE_HELD(&ill_g_lock)); 13497 /* 13498 * <ill-phyint> assocs can't change while ill_g_lock 13499 * is held as writer. See ill_phyint_reinit() 13500 */ 13501 ASSERT(phyint->phyint_illv4 == NULL || 13502 MUTEX_HELD(&phyint->phyint_illv4->ill_lock)); 13503 ASSERT(phyint->phyint_illv6 == NULL || 13504 MUTEX_HELD(&phyint->phyint_illv6->ill_lock)); 13505 13506 if ((phyint->phyint_groupname_len != 13507 (strlen(cur_ipsq->ipsq_name) + 1) || 13508 bcmp(phyint->phyint_groupname, cur_ipsq->ipsq_name, 13509 phyint->phyint_groupname_len) != 0)) { 13510 /* 13511 * Once we fail in creating a new ipsq due to memory shortage, 13512 * don't attempt to create new ipsq again, based on another 13513 * phyint, since we want all phyints belonging to an IPMP group 13514 * to be in the same ipsq even in the event of mem alloc fails. 13515 */ 13516 newipsq = ip_ipsq_lookup(phyint->phyint_groupname, !need_retry, 13517 cur_ipsq); 13518 if (newipsq == NULL) { 13519 /* Memory allocation failure */ 13520 return (SPLIT_FAILED); 13521 } else { 13522 /* ipsq_refs protected by ill_g_lock (writer) */ 13523 IPSQ_DEC_REF(cur_ipsq); 13524 phyint->phyint_ipsq = newipsq; 13525 phyint->phyint_ipsq_next = newipsq->ipsq_phyint_list; 13526 newipsq->ipsq_phyint_list = phyint; 13527 IPSQ_INC_REF(newipsq); 13528 return (SPLIT_SUCCESS); 13529 } 13530 } 13531 return (SPLIT_NOT_NEEDED); 13532 } 13533 13534 /* 13535 * The ill locks of the phyint and the ill_g_lock (writer) must be held 13536 * to do this split 13537 */ 13538 static int 13539 ill_split_to_own_ipsq(phyint_t *phyint, ipsq_t *cur_ipsq) 13540 { 13541 ipsq_t *newipsq; 13542 13543 ASSERT(RW_WRITE_HELD(&ill_g_lock)); 13544 /* 13545 * <ill-phyint> assocs can't change while ill_g_lock 13546 * is held as writer. See ill_phyint_reinit() 13547 */ 13548 13549 ASSERT(phyint->phyint_illv4 == NULL || 13550 MUTEX_HELD(&phyint->phyint_illv4->ill_lock)); 13551 ASSERT(phyint->phyint_illv6 == NULL || 13552 MUTEX_HELD(&phyint->phyint_illv6->ill_lock)); 13553 13554 if (!ipsq_init((phyint->phyint_illv4 != NULL) ? 13555 phyint->phyint_illv4: phyint->phyint_illv6)) { 13556 /* 13557 * ipsq_init failed due to no memory 13558 * caller will use the same ipsq 13559 */ 13560 return (SPLIT_FAILED); 13561 } 13562 13563 /* ipsq_ref is protected by ill_g_lock (writer) */ 13564 IPSQ_DEC_REF(cur_ipsq); 13565 13566 /* 13567 * This is a new ipsq that is unknown to the world. 13568 * So we don't need to hold ipsq_lock, 13569 */ 13570 newipsq = phyint->phyint_ipsq; 13571 newipsq->ipsq_writer = NULL; 13572 newipsq->ipsq_reentry_cnt--; 13573 ASSERT(newipsq->ipsq_reentry_cnt == 0); 13574 #ifdef ILL_DEBUG 13575 newipsq->ipsq_depth = 0; 13576 #endif 13577 13578 return (SPLIT_SUCCESS); 13579 } 13580 13581 /* 13582 * Change the ipsq of all the ill's whose current ipsq is 'cur_ipsq' to 13583 * ipsq's representing their individual groups or themselves. Return 13584 * whether split needs to be retried again later. 13585 */ 13586 static boolean_t 13587 ill_split_ipsq(ipsq_t *cur_ipsq) 13588 { 13589 phyint_t *phyint; 13590 phyint_t *next_phyint; 13591 int error; 13592 boolean_t need_retry = B_FALSE; 13593 13594 phyint = cur_ipsq->ipsq_phyint_list; 13595 cur_ipsq->ipsq_phyint_list = NULL; 13596 while (phyint != NULL) { 13597 next_phyint = phyint->phyint_ipsq_next; 13598 /* 13599 * 'created' will tell us whether the callee actually 13600 * created an ipsq. Lack of memory may force the callee 13601 * to return without creating an ipsq. 13602 */ 13603 if (phyint->phyint_groupname == NULL) { 13604 error = ill_split_to_own_ipsq(phyint, cur_ipsq); 13605 } else { 13606 error = ill_split_to_grp_ipsq(phyint, cur_ipsq, 13607 need_retry); 13608 } 13609 13610 switch (error) { 13611 case SPLIT_FAILED: 13612 need_retry = B_TRUE; 13613 /* FALLTHRU */ 13614 case SPLIT_NOT_NEEDED: 13615 /* 13616 * Keep it on the list. 13617 */ 13618 phyint->phyint_ipsq_next = cur_ipsq->ipsq_phyint_list; 13619 cur_ipsq->ipsq_phyint_list = phyint; 13620 break; 13621 case SPLIT_SUCCESS: 13622 break; 13623 default: 13624 ASSERT(0); 13625 } 13626 13627 phyint = next_phyint; 13628 } 13629 return (need_retry); 13630 } 13631 13632 /* 13633 * given an ipsq 'ipsq' lock all ills associated with this ipsq. 13634 * and return the ills in the list. This list will be 13635 * needed to unlock all the ills later on by the caller. 13636 * The <ill-ipsq> associations could change between the 13637 * lock and unlock. Hence the unlock can't traverse the 13638 * ipsq to get the list of ills. 13639 */ 13640 static int 13641 ill_lock_ipsq_ills(ipsq_t *ipsq, ill_t **list, int list_max) 13642 { 13643 int cnt = 0; 13644 phyint_t *phyint; 13645 13646 /* 13647 * The caller holds ill_g_lock to ensure that the ill memberships 13648 * of the ipsq don't change 13649 */ 13650 ASSERT(RW_LOCK_HELD(&ill_g_lock)); 13651 13652 phyint = ipsq->ipsq_phyint_list; 13653 while (phyint != NULL) { 13654 if (phyint->phyint_illv4 != NULL) { 13655 ASSERT(cnt < list_max); 13656 list[cnt++] = phyint->phyint_illv4; 13657 } 13658 if (phyint->phyint_illv6 != NULL) { 13659 ASSERT(cnt < list_max); 13660 list[cnt++] = phyint->phyint_illv6; 13661 } 13662 phyint = phyint->phyint_ipsq_next; 13663 } 13664 ill_lock_ills(list, cnt); 13665 return (cnt); 13666 } 13667 13668 void 13669 ill_lock_ills(ill_t **list, int cnt) 13670 { 13671 int i; 13672 13673 if (cnt > 1) { 13674 boolean_t try_again; 13675 do { 13676 try_again = B_FALSE; 13677 for (i = 0; i < cnt - 1; i++) { 13678 if (list[i] < list[i + 1]) { 13679 ill_t *tmp; 13680 13681 /* swap the elements */ 13682 tmp = list[i]; 13683 list[i] = list[i + 1]; 13684 list[i + 1] = tmp; 13685 try_again = B_TRUE; 13686 } 13687 } 13688 } while (try_again); 13689 } 13690 13691 for (i = 0; i < cnt; i++) { 13692 if (i == 0) { 13693 if (list[i] != NULL) 13694 mutex_enter(&list[i]->ill_lock); 13695 else 13696 return; 13697 } else if ((list[i-1] != list[i]) && (list[i] != NULL)) { 13698 mutex_enter(&list[i]->ill_lock); 13699 } 13700 } 13701 } 13702 13703 void 13704 ill_unlock_ills(ill_t **list, int cnt) 13705 { 13706 int i; 13707 13708 for (i = 0; i < cnt; i++) { 13709 if ((i == 0) && (list[i] != NULL)) { 13710 mutex_exit(&list[i]->ill_lock); 13711 } else if ((list[i-1] != list[i]) && (list[i] != NULL)) { 13712 mutex_exit(&list[i]->ill_lock); 13713 } 13714 } 13715 } 13716 13717 /* 13718 * Merge all the ills from 1 ipsq group into another ipsq group. 13719 * The source ipsq group is specified by the ipsq associated with 13720 * 'from_ill'. The destination ipsq group is specified by the ipsq 13721 * associated with 'to_ill' or 'groupname' respectively. 13722 * Note that ipsq itself does not have a reference count mechanism 13723 * and functions don't look up an ipsq and pass it around. Instead 13724 * functions pass around an ill or groupname, and the ipsq is looked 13725 * up from the ill or groupname and the required operation performed 13726 * atomically with the lookup on the ipsq. 13727 */ 13728 static int 13729 ill_merge_groups(ill_t *from_ill, ill_t *to_ill, char *groupname, mblk_t *mp, 13730 queue_t *q) 13731 { 13732 ipsq_t *old_ipsq; 13733 ipsq_t *new_ipsq; 13734 ill_t **ill_list; 13735 int cnt; 13736 size_t ill_list_size; 13737 boolean_t became_writer_on_new_sq = B_FALSE; 13738 13739 /* Exactly 1 of 'to_ill' and groupname can be specified. */ 13740 ASSERT((to_ill != NULL) ^ (groupname != NULL)); 13741 13742 /* 13743 * Need to hold ill_g_lock as writer and also the ill_lock to 13744 * change the <ill-ipsq> assoc of an ill. Need to hold the 13745 * ipsq_lock to prevent new messages from landing on an ipsq. 13746 */ 13747 rw_enter(&ill_g_lock, RW_WRITER); 13748 13749 old_ipsq = from_ill->ill_phyint->phyint_ipsq; 13750 if (groupname != NULL) 13751 new_ipsq = ip_ipsq_lookup(groupname, B_TRUE, NULL); 13752 else { 13753 new_ipsq = to_ill->ill_phyint->phyint_ipsq; 13754 } 13755 13756 ASSERT(old_ipsq != NULL && new_ipsq != NULL); 13757 13758 /* 13759 * both groups are on the same ipsq. 13760 */ 13761 if (old_ipsq == new_ipsq) { 13762 rw_exit(&ill_g_lock); 13763 return (0); 13764 } 13765 13766 cnt = old_ipsq->ipsq_refs << 1; 13767 ill_list_size = cnt * sizeof (ill_t *); 13768 ill_list = kmem_zalloc(ill_list_size, KM_NOSLEEP); 13769 if (ill_list == NULL) { 13770 rw_exit(&ill_g_lock); 13771 return (ENOMEM); 13772 } 13773 cnt = ill_lock_ipsq_ills(old_ipsq, ill_list, cnt); 13774 13775 /* Need ipsq lock to enque messages on new ipsq or to become writer */ 13776 mutex_enter(&new_ipsq->ipsq_lock); 13777 if ((new_ipsq->ipsq_writer == NULL && 13778 new_ipsq->ipsq_current_ipif == NULL) || 13779 (new_ipsq->ipsq_writer == curthread)) { 13780 new_ipsq->ipsq_writer = curthread; 13781 new_ipsq->ipsq_reentry_cnt++; 13782 became_writer_on_new_sq = B_TRUE; 13783 } 13784 13785 /* 13786 * We are holding ill_g_lock as writer and all the ill locks of 13787 * the old ipsq. So the old_ipsq can't be looked up, and hence no new 13788 * message can land up on the old ipsq even though we don't hold the 13789 * ipsq_lock of the old_ipsq. Now move all messages to the newipsq. 13790 */ 13791 ill_move_to_new_ipsq(old_ipsq, new_ipsq, mp, q); 13792 13793 /* 13794 * now change the ipsq of all ills in the 'old_ipsq' to 'new_ipsq'. 13795 * 'new_ipsq' has been looked up, and it can't change its <ill-ipsq> 13796 * assocs. till we release the ill_g_lock, and hence it can't vanish. 13797 */ 13798 ill_merge_ipsq(old_ipsq, new_ipsq); 13799 13800 /* 13801 * Mark the new ipsq as needing a split since it is currently 13802 * being shared by more than 1 IPMP group. The split will 13803 * occur at the end of ipsq_exit 13804 */ 13805 new_ipsq->ipsq_split = B_TRUE; 13806 13807 /* Now release all the locks */ 13808 mutex_exit(&new_ipsq->ipsq_lock); 13809 ill_unlock_ills(ill_list, cnt); 13810 rw_exit(&ill_g_lock); 13811 13812 kmem_free(ill_list, ill_list_size); 13813 13814 /* 13815 * If we succeeded in becoming writer on the new ipsq, then 13816 * drain the new ipsq and start processing all enqueued messages 13817 * including the current ioctl we are processing which is either 13818 * a set groupname or failover/failback. 13819 */ 13820 if (became_writer_on_new_sq) 13821 ipsq_exit(new_ipsq, B_TRUE, B_TRUE); 13822 13823 /* 13824 * syncq has been changed and all the messages have been moved. 13825 */ 13826 mutex_enter(&old_ipsq->ipsq_lock); 13827 old_ipsq->ipsq_current_ipif = NULL; 13828 mutex_exit(&old_ipsq->ipsq_lock); 13829 return (EINPROGRESS); 13830 } 13831 13832 /* 13833 * Delete and add the loopback copy and non-loopback copy of 13834 * the BROADCAST ire corresponding to ill and addr. Used to 13835 * group broadcast ires together when ill becomes part of 13836 * a group. 13837 * 13838 * This function is also called when ill is leaving the group 13839 * so that the ires belonging to the group gets re-grouped. 13840 */ 13841 static void 13842 ill_bcast_delete_and_add(ill_t *ill, ipaddr_t addr) 13843 { 13844 ire_t *ire, *nire, *nire_next, *ire_head = NULL; 13845 ire_t **ire_ptpn = &ire_head; 13846 13847 /* 13848 * The loopback and non-loopback IREs are inserted in the order in which 13849 * they're found, on the basis that they are correctly ordered (loopback 13850 * first). 13851 */ 13852 for (;;) { 13853 ire = ire_ctable_lookup(addr, 0, IRE_BROADCAST, ill->ill_ipif, 13854 ALL_ZONES, MATCH_IRE_TYPE | MATCH_IRE_ILL); 13855 if (ire == NULL) 13856 break; 13857 13858 /* 13859 * we are passing in KM_SLEEP because it is not easy to 13860 * go back to a sane state in case of memory failure. 13861 */ 13862 nire = kmem_cache_alloc(ire_cache, KM_SLEEP); 13863 ASSERT(nire != NULL); 13864 bzero(nire, sizeof (ire_t)); 13865 /* 13866 * Don't use ire_max_frag directly since we don't 13867 * hold on to 'ire' until we add the new ire 'nire' and 13868 * we don't want the new ire to have a dangling reference 13869 * to 'ire'. The ire_max_frag of a broadcast ire must 13870 * be in sync with the ipif_mtu of the associate ipif. 13871 * For eg. this happens as a result of SIOCSLIFNAME, 13872 * SIOCSLIFLNKINFO or a DL_NOTE_SDU_SIZE inititated by 13873 * the driver. A change in ire_max_frag triggered as 13874 * as a result of path mtu discovery, or due to an 13875 * IP_IOC_IRE_ADVISE_NOREPLY from the transport or due a 13876 * route change -mtu command does not apply to broadcast ires. 13877 * 13878 * XXX We need a recovery strategy here if ire_init fails 13879 */ 13880 if (ire_init(nire, 13881 (uchar_t *)&ire->ire_addr, 13882 (uchar_t *)&ire->ire_mask, 13883 (uchar_t *)&ire->ire_src_addr, 13884 (uchar_t *)&ire->ire_gateway_addr, 13885 (uchar_t *)&ire->ire_in_src_addr, 13886 ire->ire_stq == NULL ? &ip_loopback_mtu : 13887 &ire->ire_ipif->ipif_mtu, 13888 ire->ire_fp_mp, 13889 ire->ire_rfq, 13890 ire->ire_stq, 13891 ire->ire_type, 13892 ire->ire_dlureq_mp, 13893 ire->ire_ipif, 13894 ire->ire_in_ill, 13895 ire->ire_cmask, 13896 ire->ire_phandle, 13897 ire->ire_ihandle, 13898 ire->ire_flags, 13899 &ire->ire_uinfo) == NULL) { 13900 cmn_err(CE_PANIC, "ire_init() failed"); 13901 } 13902 ire_delete(ire); 13903 ire_refrele(ire); 13904 13905 /* 13906 * The newly created IREs are inserted at the tail of the list 13907 * starting with ire_head. As we've just allocated them no one 13908 * knows about them so it's safe. 13909 */ 13910 *ire_ptpn = nire; 13911 ire_ptpn = &nire->ire_next; 13912 } 13913 13914 for (nire = ire_head; nire != NULL; nire = nire_next) { 13915 int error; 13916 ire_t *oire; 13917 /* unlink the IRE from our list before calling ire_add() */ 13918 nire_next = nire->ire_next; 13919 nire->ire_next = NULL; 13920 13921 /* ire_add adds the ire at the right place in the list */ 13922 oire = nire; 13923 error = ire_add(&nire, NULL, NULL, NULL); 13924 ASSERT(error == 0); 13925 ASSERT(oire == nire); 13926 ire_refrele(nire); /* Held in ire_add */ 13927 } 13928 } 13929 13930 /* 13931 * This function is usually called when an ill is inserted in 13932 * a group and all the ipifs are already UP. As all the ipifs 13933 * are already UP, the broadcast ires have already been created 13934 * and been inserted. But, ire_add_v4 would not have grouped properly. 13935 * We need to re-group for the benefit of ip_wput_ire which 13936 * expects BROADCAST ires to be grouped properly to avoid sending 13937 * more than one copy of the broadcast packet per group. 13938 * 13939 * NOTE : We don't check for ill_ipif_up_count to be non-zero here 13940 * because when ipif_up_done ends up calling this, ires have 13941 * already been added before illgrp_insert i.e before ill_group 13942 * has been initialized. 13943 */ 13944 static void 13945 ill_group_bcast_for_xmit(ill_t *ill) 13946 { 13947 ill_group_t *illgrp; 13948 ipif_t *ipif; 13949 ipaddr_t addr; 13950 ipaddr_t net_mask; 13951 ipaddr_t subnet_netmask; 13952 13953 illgrp = ill->ill_group; 13954 13955 /* 13956 * This function is called even when an ill is deleted from 13957 * the group. Hence, illgrp could be null. 13958 */ 13959 if (illgrp != NULL && illgrp->illgrp_ill_count == 1) 13960 return; 13961 13962 /* 13963 * Delete all the BROADCAST ires matching this ill and add 13964 * them back. This time, ire_add_v4 should take care of 13965 * grouping them with others because ill is part of the 13966 * group. 13967 */ 13968 ill_bcast_delete_and_add(ill, 0); 13969 ill_bcast_delete_and_add(ill, INADDR_BROADCAST); 13970 13971 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 13972 13973 if ((ipif->ipif_lcl_addr != INADDR_ANY) && 13974 !(ipif->ipif_flags & IPIF_NOLOCAL)) { 13975 net_mask = ip_net_mask(ipif->ipif_lcl_addr); 13976 } else { 13977 net_mask = htonl(IN_CLASSA_NET); 13978 } 13979 addr = net_mask & ipif->ipif_subnet; 13980 ill_bcast_delete_and_add(ill, addr); 13981 ill_bcast_delete_and_add(ill, ~net_mask | addr); 13982 13983 subnet_netmask = ipif->ipif_net_mask; 13984 addr = ipif->ipif_subnet; 13985 ill_bcast_delete_and_add(ill, addr); 13986 ill_bcast_delete_and_add(ill, ~subnet_netmask | addr); 13987 } 13988 } 13989 13990 /* 13991 * This function is called from illgrp_delete when ill is being deleted 13992 * from the group. 13993 * 13994 * As ill is not there in the group anymore, any address belonging 13995 * to this ill should be cleared of IRE_MARK_NORECV. 13996 */ 13997 static void 13998 ill_clear_bcast_mark(ill_t *ill, ipaddr_t addr) 13999 { 14000 ire_t *ire; 14001 irb_t *irb; 14002 14003 ASSERT(ill->ill_group == NULL); 14004 14005 ire = ire_ctable_lookup(addr, 0, IRE_BROADCAST, ill->ill_ipif, 14006 ALL_ZONES, MATCH_IRE_TYPE | MATCH_IRE_ILL); 14007 14008 if (ire != NULL) { 14009 /* 14010 * IPMP and plumbing operations are serialized on the ipsq, so 14011 * no one will insert or delete a broadcast ire under our feet. 14012 */ 14013 irb = ire->ire_bucket; 14014 rw_enter(&irb->irb_lock, RW_READER); 14015 ire_refrele(ire); 14016 14017 for (; ire != NULL; ire = ire->ire_next) { 14018 if (ire->ire_addr != addr) 14019 break; 14020 if (ire_to_ill(ire) != ill) 14021 continue; 14022 14023 ASSERT(!(ire->ire_marks & IRE_MARK_CONDEMNED)); 14024 ire->ire_marks &= ~IRE_MARK_NORECV; 14025 } 14026 rw_exit(&irb->irb_lock); 14027 } 14028 } 14029 14030 /* 14031 * This function must be called only after the broadcast ires 14032 * have been grouped together. For a given address addr, nominate 14033 * only one of the ires whose interface is not FAILED or OFFLINE. 14034 * 14035 * This is also called when an ipif goes down, so that we can nominate 14036 * a different ire with the same address for receiving. 14037 */ 14038 static void 14039 ill_mark_bcast(ill_group_t *illgrp, ipaddr_t addr) 14040 { 14041 irb_t *irb; 14042 ire_t *ire; 14043 ire_t *ire1; 14044 ire_t *save_ire; 14045 ire_t **irep = NULL; 14046 boolean_t first = B_TRUE; 14047 ire_t *clear_ire = NULL; 14048 ire_t *start_ire = NULL; 14049 ire_t *new_lb_ire; 14050 ire_t *new_nlb_ire; 14051 boolean_t new_lb_ire_used = B_FALSE; 14052 boolean_t new_nlb_ire_used = B_FALSE; 14053 uint64_t match_flags; 14054 uint64_t phyi_flags; 14055 boolean_t fallback = B_FALSE; 14056 14057 ire = ire_ctable_lookup(addr, 0, IRE_BROADCAST, NULL, ALL_ZONES, 14058 MATCH_IRE_TYPE); 14059 /* 14060 * We may not be able to find some ires if a previous 14061 * ire_create failed. This happens when an ipif goes 14062 * down and we are unable to create BROADCAST ires due 14063 * to memory failure. Thus, we have to check for NULL 14064 * below. This should handle the case for LOOPBACK, 14065 * POINTOPOINT and interfaces with some POINTOPOINT 14066 * logicals for which there are no BROADCAST ires. 14067 */ 14068 if (ire == NULL) 14069 return; 14070 /* 14071 * Currently IRE_BROADCASTS are deleted when an ipif 14072 * goes down which runs exclusively. Thus, setting 14073 * IRE_MARK_RCVD should not race with ire_delete marking 14074 * IRE_MARK_CONDEMNED. We grab the lock below just to 14075 * be consistent with other parts of the code that walks 14076 * a given bucket. 14077 */ 14078 save_ire = ire; 14079 irb = ire->ire_bucket; 14080 new_lb_ire = kmem_cache_alloc(ire_cache, KM_NOSLEEP); 14081 if (new_lb_ire == NULL) { 14082 ire_refrele(ire); 14083 return; 14084 } 14085 new_nlb_ire = kmem_cache_alloc(ire_cache, KM_NOSLEEP); 14086 if (new_nlb_ire == NULL) { 14087 ire_refrele(ire); 14088 kmem_cache_free(ire_cache, new_lb_ire); 14089 return; 14090 } 14091 IRB_REFHOLD(irb); 14092 rw_enter(&irb->irb_lock, RW_WRITER); 14093 /* 14094 * Get to the first ire matching the address and the 14095 * group. If the address does not match we are done 14096 * as we could not find the IRE. If the address matches 14097 * we should get to the first one matching the group. 14098 */ 14099 while (ire != NULL) { 14100 if (ire->ire_addr != addr || 14101 ire->ire_ipif->ipif_ill->ill_group == illgrp) { 14102 break; 14103 } 14104 ire = ire->ire_next; 14105 } 14106 match_flags = PHYI_FAILED | PHYI_INACTIVE; 14107 start_ire = ire; 14108 redo: 14109 while (ire != NULL && ire->ire_addr == addr && 14110 ire->ire_ipif->ipif_ill->ill_group == illgrp) { 14111 /* 14112 * The first ire for any address within a group 14113 * should always be the one with IRE_MARK_NORECV cleared 14114 * so that ip_wput_ire can avoid searching for one. 14115 * Note down the insertion point which will be used 14116 * later. 14117 */ 14118 if (first && (irep == NULL)) 14119 irep = ire->ire_ptpn; 14120 /* 14121 * PHYI_FAILED is set when the interface fails. 14122 * This interface might have become good, but the 14123 * daemon has not yet detected. We should still 14124 * not receive on this. PHYI_OFFLINE should never 14125 * be picked as this has been offlined and soon 14126 * be removed. 14127 */ 14128 phyi_flags = ire->ire_ipif->ipif_ill->ill_phyint->phyint_flags; 14129 if (phyi_flags & PHYI_OFFLINE) { 14130 ire->ire_marks |= IRE_MARK_NORECV; 14131 ire = ire->ire_next; 14132 continue; 14133 } 14134 if (phyi_flags & match_flags) { 14135 ire->ire_marks |= IRE_MARK_NORECV; 14136 ire = ire->ire_next; 14137 if ((phyi_flags & (PHYI_FAILED | PHYI_INACTIVE)) == 14138 PHYI_INACTIVE) { 14139 fallback = B_TRUE; 14140 } 14141 continue; 14142 } 14143 if (first) { 14144 /* 14145 * We will move this to the front of the list later 14146 * on. 14147 */ 14148 clear_ire = ire; 14149 ire->ire_marks &= ~IRE_MARK_NORECV; 14150 } else { 14151 ire->ire_marks |= IRE_MARK_NORECV; 14152 } 14153 first = B_FALSE; 14154 ire = ire->ire_next; 14155 } 14156 /* 14157 * If we never nominated anybody, try nominating at least 14158 * an INACTIVE, if we found one. Do it only once though. 14159 */ 14160 if (first && (match_flags == (PHYI_FAILED | PHYI_INACTIVE)) && 14161 fallback) { 14162 match_flags = PHYI_FAILED; 14163 ire = start_ire; 14164 irep = NULL; 14165 goto redo; 14166 } 14167 ire_refrele(save_ire); 14168 14169 /* 14170 * irep non-NULL indicates that we entered the while loop 14171 * above. If clear_ire is at the insertion point, we don't 14172 * have to do anything. clear_ire will be NULL if all the 14173 * interfaces are failed. 14174 * 14175 * We cannot unlink and reinsert the ire at the right place 14176 * in the list since there can be other walkers of this bucket. 14177 * Instead we delete and recreate the ire 14178 */ 14179 if (clear_ire != NULL && irep != NULL && *irep != clear_ire) { 14180 ire_t *clear_ire_stq = NULL; 14181 bzero(new_lb_ire, sizeof (ire_t)); 14182 /* XXX We need a recovery strategy here. */ 14183 if (ire_init(new_lb_ire, 14184 (uchar_t *)&clear_ire->ire_addr, 14185 (uchar_t *)&clear_ire->ire_mask, 14186 (uchar_t *)&clear_ire->ire_src_addr, 14187 (uchar_t *)&clear_ire->ire_gateway_addr, 14188 (uchar_t *)&clear_ire->ire_in_src_addr, 14189 &clear_ire->ire_max_frag, 14190 clear_ire->ire_fp_mp, 14191 clear_ire->ire_rfq, 14192 clear_ire->ire_stq, 14193 clear_ire->ire_type, 14194 clear_ire->ire_dlureq_mp, 14195 clear_ire->ire_ipif, 14196 clear_ire->ire_in_ill, 14197 clear_ire->ire_cmask, 14198 clear_ire->ire_phandle, 14199 clear_ire->ire_ihandle, 14200 clear_ire->ire_flags, 14201 &clear_ire->ire_uinfo) == NULL) 14202 cmn_err(CE_PANIC, "ire_init() failed"); 14203 if (clear_ire->ire_stq == NULL) { 14204 ire_t *ire_next = clear_ire->ire_next; 14205 if (ire_next != NULL && 14206 ire_next->ire_stq != NULL && 14207 ire_next->ire_addr == clear_ire->ire_addr && 14208 ire_next->ire_ipif->ipif_ill == 14209 clear_ire->ire_ipif->ipif_ill) { 14210 clear_ire_stq = ire_next; 14211 14212 bzero(new_nlb_ire, sizeof (ire_t)); 14213 /* XXX We need a recovery strategy here. */ 14214 if (ire_init(new_nlb_ire, 14215 (uchar_t *)&clear_ire_stq->ire_addr, 14216 (uchar_t *)&clear_ire_stq->ire_mask, 14217 (uchar_t *)&clear_ire_stq->ire_src_addr, 14218 (uchar_t *)&clear_ire_stq->ire_gateway_addr, 14219 (uchar_t *)&clear_ire_stq->ire_in_src_addr, 14220 &clear_ire_stq->ire_max_frag, 14221 clear_ire_stq->ire_fp_mp, 14222 clear_ire_stq->ire_rfq, 14223 clear_ire_stq->ire_stq, 14224 clear_ire_stq->ire_type, 14225 clear_ire_stq->ire_dlureq_mp, 14226 clear_ire_stq->ire_ipif, 14227 clear_ire_stq->ire_in_ill, 14228 clear_ire_stq->ire_cmask, 14229 clear_ire_stq->ire_phandle, 14230 clear_ire_stq->ire_ihandle, 14231 clear_ire_stq->ire_flags, 14232 &clear_ire_stq->ire_uinfo) == NULL) 14233 cmn_err(CE_PANIC, "ire_init() failed"); 14234 } 14235 } 14236 14237 /* 14238 * Delete the ire. We can't call ire_delete() since 14239 * we are holding the bucket lock. We can't release the 14240 * bucket lock since we can't allow irep to change. So just 14241 * mark it CONDEMNED. The IRB_REFRELE will delete the 14242 * ire from the list and do the refrele. 14243 */ 14244 clear_ire->ire_marks |= IRE_MARK_CONDEMNED; 14245 irb->irb_marks |= IRE_MARK_CONDEMNED; 14246 14247 if (clear_ire_stq != NULL) { 14248 ire_fastpath_list_delete( 14249 (ill_t *)clear_ire_stq->ire_stq->q_ptr, 14250 clear_ire_stq); 14251 clear_ire_stq->ire_marks |= IRE_MARK_CONDEMNED; 14252 } 14253 14254 /* 14255 * Also take care of otherfields like ib/ob pkt count 14256 * etc. Need to dup them. ditto in ill_bcast_delete_and_add 14257 */ 14258 14259 /* Add the new ire's. Insert at *irep */ 14260 new_lb_ire->ire_bucket = clear_ire->ire_bucket; 14261 ire1 = *irep; 14262 if (ire1 != NULL) 14263 ire1->ire_ptpn = &new_lb_ire->ire_next; 14264 new_lb_ire->ire_next = ire1; 14265 /* Link the new one in. */ 14266 new_lb_ire->ire_ptpn = irep; 14267 membar_producer(); 14268 *irep = new_lb_ire; 14269 new_lb_ire_used = B_TRUE; 14270 BUMP_IRE_STATS(ire_stats_v4, ire_stats_inserted); 14271 new_lb_ire->ire_bucket->irb_ire_cnt++; 14272 new_lb_ire->ire_ipif->ipif_ire_cnt++; 14273 14274 if (clear_ire_stq != NULL) { 14275 new_nlb_ire->ire_bucket = clear_ire->ire_bucket; 14276 irep = &new_lb_ire->ire_next; 14277 /* Add the new ire. Insert at *irep */ 14278 ire1 = *irep; 14279 if (ire1 != NULL) 14280 ire1->ire_ptpn = &new_nlb_ire->ire_next; 14281 new_nlb_ire->ire_next = ire1; 14282 /* Link the new one in. */ 14283 new_nlb_ire->ire_ptpn = irep; 14284 membar_producer(); 14285 *irep = new_nlb_ire; 14286 new_nlb_ire_used = B_TRUE; 14287 BUMP_IRE_STATS(ire_stats_v4, ire_stats_inserted); 14288 new_nlb_ire->ire_bucket->irb_ire_cnt++; 14289 new_nlb_ire->ire_ipif->ipif_ire_cnt++; 14290 ((ill_t *)new_nlb_ire->ire_stq->q_ptr)->ill_ire_cnt++; 14291 } 14292 } 14293 rw_exit(&irb->irb_lock); 14294 if (!new_lb_ire_used) 14295 kmem_cache_free(ire_cache, new_lb_ire); 14296 if (!new_nlb_ire_used) 14297 kmem_cache_free(ire_cache, new_nlb_ire); 14298 IRB_REFRELE(irb); 14299 } 14300 14301 /* 14302 * Whenever an ipif goes down we have to renominate a different 14303 * broadcast ire to receive. Whenever an ipif comes up, we need 14304 * to make sure that we have only one nominated to receive. 14305 */ 14306 static void 14307 ipif_renominate_bcast(ipif_t *ipif) 14308 { 14309 ill_t *ill = ipif->ipif_ill; 14310 ipaddr_t subnet_addr; 14311 ipaddr_t net_addr; 14312 ipaddr_t net_mask = 0; 14313 ipaddr_t subnet_netmask; 14314 ipaddr_t addr; 14315 ill_group_t *illgrp; 14316 14317 illgrp = ill->ill_group; 14318 /* 14319 * If this is the last ipif going down, it might take 14320 * the ill out of the group. In that case ipif_down -> 14321 * illgrp_delete takes care of doing the nomination. 14322 * ipif_down does not call for this case. 14323 */ 14324 ASSERT(illgrp != NULL); 14325 14326 /* There could not have been any ires associated with this */ 14327 if (ipif->ipif_subnet == 0) 14328 return; 14329 14330 ill_mark_bcast(illgrp, 0); 14331 ill_mark_bcast(illgrp, INADDR_BROADCAST); 14332 14333 if ((ipif->ipif_lcl_addr != INADDR_ANY) && 14334 !(ipif->ipif_flags & IPIF_NOLOCAL)) { 14335 net_mask = ip_net_mask(ipif->ipif_lcl_addr); 14336 } else { 14337 net_mask = htonl(IN_CLASSA_NET); 14338 } 14339 addr = net_mask & ipif->ipif_subnet; 14340 ill_mark_bcast(illgrp, addr); 14341 14342 net_addr = ~net_mask | addr; 14343 ill_mark_bcast(illgrp, net_addr); 14344 14345 subnet_netmask = ipif->ipif_net_mask; 14346 addr = ipif->ipif_subnet; 14347 ill_mark_bcast(illgrp, addr); 14348 14349 subnet_addr = ~subnet_netmask | addr; 14350 ill_mark_bcast(illgrp, subnet_addr); 14351 } 14352 14353 /* 14354 * Whenever we form or delete ill groups, we need to nominate one set of 14355 * BROADCAST ires for receiving in the group. 14356 * 14357 * 1) When ipif_up_done -> ilgrp_insert calls this function, BROADCAST ires 14358 * have been added, but ill_ipif_up_count is 0. Thus, we don't assert 14359 * for ill_ipif_up_count to be non-zero. This is the only case where 14360 * ill_ipif_up_count is zero and we would still find the ires. 14361 * 14362 * 2) ip_sioctl_group_name/ifgrp_insert calls this function, at least one 14363 * ipif is UP and we just have to do the nomination. 14364 * 14365 * 3) When ill_handoff_responsibility calls us, some ill has been removed 14366 * from the group. So, we have to do the nomination. 14367 * 14368 * Because of (3), there could be just one ill in the group. But we have 14369 * to nominate still as IRE_MARK_NORCV may have been marked on this. 14370 * Thus, this function does not optimize when there is only one ill as 14371 * it is not correct for (3). 14372 */ 14373 static void 14374 ill_nominate_bcast_rcv(ill_group_t *illgrp) 14375 { 14376 ill_t *ill; 14377 ipif_t *ipif; 14378 ipaddr_t subnet_addr; 14379 ipaddr_t prev_subnet_addr = 0; 14380 ipaddr_t net_addr; 14381 ipaddr_t prev_net_addr = 0; 14382 ipaddr_t net_mask = 0; 14383 ipaddr_t subnet_netmask; 14384 ipaddr_t addr; 14385 14386 /* 14387 * When the last memeber is leaving, there is nothing to 14388 * nominate. 14389 */ 14390 if (illgrp->illgrp_ill_count == 0) { 14391 ASSERT(illgrp->illgrp_ill == NULL); 14392 return; 14393 } 14394 14395 ill = illgrp->illgrp_ill; 14396 ASSERT(!ill->ill_isv6); 14397 /* 14398 * We assume that ires with same address and belonging to the 14399 * same group, has been grouped together. Nominating a *single* 14400 * ill in the group for sending and receiving broadcast is done 14401 * by making sure that the first BROADCAST ire (which will be 14402 * the one returned by ire_ctable_lookup for ip_rput and the 14403 * one that will be used in ip_wput_ire) will be the one that 14404 * will not have IRE_MARK_NORECV set. 14405 * 14406 * 1) ip_rput checks and discards packets received on ires marked 14407 * with IRE_MARK_NORECV. Thus, we don't send up duplicate 14408 * broadcast packets. We need to clear IRE_MARK_NORECV on the 14409 * first ire in the group for every broadcast address in the group. 14410 * ip_rput will accept packets only on the first ire i.e only 14411 * one copy of the ill. 14412 * 14413 * 2) ip_wput_ire needs to send out just one copy of the broadcast 14414 * packet for the whole group. It needs to send out on the ill 14415 * whose ire has not been marked with IRE_MARK_NORECV. If it sends 14416 * on the one marked with IRE_MARK_NORECV, ip_rput will accept 14417 * the copy echoed back on other port where the ire is not marked 14418 * with IRE_MARK_NORECV. 14419 * 14420 * Note that we just need to have the first IRE either loopback or 14421 * non-loopback (either of them may not exist if ire_create failed 14422 * during ipif_down) with IRE_MARK_NORECV not set. ip_rput will 14423 * always hit the first one and hence will always accept one copy. 14424 * 14425 * We have a broadcast ire per ill for all the unique prefixes 14426 * hosted on that ill. As we don't have a way of knowing the 14427 * unique prefixes on a given ill and hence in the whole group, 14428 * we just call ill_mark_bcast on all the prefixes that exist 14429 * in the group. For the common case of one prefix, the code 14430 * below optimizes by remebering the last address used for 14431 * markng. In the case of multiple prefixes, this will still 14432 * optimize depending the order of prefixes. 14433 * 14434 * The only unique address across the whole group is 0.0.0.0 and 14435 * 255.255.255.255 and thus we call only once. ill_mark_bcast enables 14436 * the first ire in the bucket for receiving and disables the 14437 * others. 14438 */ 14439 ill_mark_bcast(illgrp, 0); 14440 ill_mark_bcast(illgrp, INADDR_BROADCAST); 14441 for (; ill != NULL; ill = ill->ill_group_next) { 14442 14443 for (ipif = ill->ill_ipif; ipif != NULL; 14444 ipif = ipif->ipif_next) { 14445 14446 if (!(ipif->ipif_flags & IPIF_UP) || 14447 ipif->ipif_subnet == 0) { 14448 continue; 14449 } 14450 if ((ipif->ipif_lcl_addr != INADDR_ANY) && 14451 !(ipif->ipif_flags & IPIF_NOLOCAL)) { 14452 net_mask = ip_net_mask(ipif->ipif_lcl_addr); 14453 } else { 14454 net_mask = htonl(IN_CLASSA_NET); 14455 } 14456 addr = net_mask & ipif->ipif_subnet; 14457 if (prev_net_addr == 0 || prev_net_addr != addr) { 14458 ill_mark_bcast(illgrp, addr); 14459 net_addr = ~net_mask | addr; 14460 ill_mark_bcast(illgrp, net_addr); 14461 } 14462 prev_net_addr = addr; 14463 14464 subnet_netmask = ipif->ipif_net_mask; 14465 addr = ipif->ipif_subnet; 14466 if (prev_subnet_addr == 0 || 14467 prev_subnet_addr != addr) { 14468 ill_mark_bcast(illgrp, addr); 14469 subnet_addr = ~subnet_netmask | addr; 14470 ill_mark_bcast(illgrp, subnet_addr); 14471 } 14472 prev_subnet_addr = addr; 14473 } 14474 } 14475 } 14476 14477 /* 14478 * This function is called while forming ill groups. 14479 * 14480 * Currently, we handle only allmulti groups. We want to join 14481 * allmulti on only one of the ills in the groups. In future, 14482 * when we have link aggregation, we may have to join normal 14483 * multicast groups on multiple ills as switch does inbound load 14484 * balancing. Following are the functions that calls this 14485 * function : 14486 * 14487 * 1) ill_recover_multicast : Interface is coming back UP. 14488 * When the first ipif comes back UP, ipif_up_done/ipif_up_done_v6 14489 * will call ill_recover_multicast to recover all the multicast 14490 * groups. We need to make sure that only one member is joined 14491 * in the ill group. 14492 * 14493 * 2) ip_addmulti/ip_addmulti_v6 : ill groups has already been formed. 14494 * Somebody is joining allmulti. We need to make sure that only one 14495 * member is joined in the group. 14496 * 14497 * 3) illgrp_insert : If allmulti has already joined, we need to make 14498 * sure that only one member is joined in the group. 14499 * 14500 * 4) ip_delmulti/ip_delmulti_v6 : Somebody in the group is leaving 14501 * allmulti who we have nominated. We need to pick someother ill. 14502 * 14503 * 5) illgrp_delete : The ill we nominated is leaving the group, 14504 * we need to pick a new ill to join the group. 14505 * 14506 * For (1), (2), (5) - we just have to check whether there is 14507 * a good ill joined in the group. If we could not find any ills 14508 * joined the group, we should join. 14509 * 14510 * For (4), the one that was nominated to receive, left the group. 14511 * There could be nobody joined in the group when this function is 14512 * called. 14513 * 14514 * For (3) - we need to explicitly check whether there are multiple 14515 * ills joined in the group. 14516 * 14517 * For simplicity, we don't differentiate any of the above cases. We 14518 * just leave the group if it is joined on any of them and join on 14519 * the first good ill. 14520 */ 14521 int 14522 ill_nominate_mcast_rcv(ill_group_t *illgrp) 14523 { 14524 ilm_t *ilm; 14525 ill_t *ill; 14526 ill_t *fallback_stand_ill = NULL; 14527 ill_t *fallback_failed_ill = NULL; 14528 int ret = 0; 14529 14530 /* 14531 * Leave the allmulti on all the ills and start fresh. 14532 */ 14533 for (ill = illgrp->illgrp_ill; ill != NULL; 14534 ill = ill->ill_group_next) { 14535 if (ill->ill_join_allmulti) 14536 (void) ip_leave_allmulti(ill->ill_ipif); 14537 } 14538 14539 /* 14540 * Choose a good ill. Fallback to standby or failed if 14541 * none available. We need to fallback to FAILED in the 14542 * case where we have 2 interfaces in a group - where 14543 * one of them is failed and another is a good one and 14544 * the good one (not marked standby) is leaving the group. 14545 */ 14546 ret = 0; 14547 for (ill = illgrp->illgrp_ill; ill != NULL; 14548 ill = ill->ill_group_next) { 14549 /* Never pick an offline interface */ 14550 if (ill->ill_phyint->phyint_flags & PHYI_OFFLINE) 14551 continue; 14552 14553 if (ill->ill_phyint->phyint_flags & PHYI_FAILED) { 14554 fallback_failed_ill = ill; 14555 continue; 14556 } 14557 if (ill->ill_phyint->phyint_flags & PHYI_INACTIVE) { 14558 fallback_stand_ill = ill; 14559 continue; 14560 } 14561 for (ilm = ill->ill_ilm; ilm != NULL; ilm = ilm->ilm_next) { 14562 if (IN6_IS_ADDR_UNSPECIFIED(&ilm->ilm_v6addr)) { 14563 ret = ip_join_allmulti(ill->ill_ipif); 14564 /* 14565 * ip_join_allmulti can fail because of memory 14566 * failures. So, make sure we join at least 14567 * on one ill. 14568 */ 14569 if (ill->ill_join_allmulti) 14570 return (0); 14571 } 14572 } 14573 } 14574 if (ret != 0) { 14575 /* 14576 * If we tried nominating above and failed to do so, 14577 * return error. We might have tried multiple times. 14578 * But, return the latest error. 14579 */ 14580 return (ret); 14581 } 14582 if ((ill = fallback_stand_ill) != NULL) { 14583 for (ilm = ill->ill_ilm; ilm != NULL; ilm = ilm->ilm_next) { 14584 if (IN6_IS_ADDR_UNSPECIFIED(&ilm->ilm_v6addr)) { 14585 ret = ip_join_allmulti(ill->ill_ipif); 14586 return (ret); 14587 } 14588 } 14589 } else if ((ill = fallback_failed_ill) != NULL) { 14590 for (ilm = ill->ill_ilm; ilm != NULL; ilm = ilm->ilm_next) { 14591 if (IN6_IS_ADDR_UNSPECIFIED(&ilm->ilm_v6addr)) { 14592 ret = ip_join_allmulti(ill->ill_ipif); 14593 return (ret); 14594 } 14595 } 14596 } 14597 return (0); 14598 } 14599 14600 /* 14601 * This function is called from illgrp_delete after it is 14602 * deleted from the group to reschedule responsibilities 14603 * to a different ill. 14604 */ 14605 static void 14606 ill_handoff_responsibility(ill_t *ill, ill_group_t *illgrp) 14607 { 14608 ilm_t *ilm; 14609 ipif_t *ipif; 14610 ipaddr_t subnet_addr; 14611 ipaddr_t net_addr; 14612 ipaddr_t net_mask = 0; 14613 ipaddr_t subnet_netmask; 14614 ipaddr_t addr; 14615 14616 ASSERT(ill->ill_group == NULL); 14617 /* 14618 * Broadcast Responsibility: 14619 * 14620 * 1. If this ill has been nominated for receiving broadcast 14621 * packets, we need to find a new one. Before we find a new 14622 * one, we need to re-group the ires that are part of this new 14623 * group (assumed by ill_nominate_bcast_rcv). We do this by 14624 * calling ill_group_bcast_for_xmit(ill) which will do the right 14625 * thing for us. 14626 * 14627 * 2. If this ill was not nominated for receiving broadcast 14628 * packets, we need to clear the IRE_MARK_NORECV flag 14629 * so that we continue to send up broadcast packets. 14630 */ 14631 if (!ill->ill_isv6) { 14632 /* 14633 * Case 1 above : No optimization here. Just redo the 14634 * nomination. 14635 */ 14636 ill_group_bcast_for_xmit(ill); 14637 ill_nominate_bcast_rcv(illgrp); 14638 14639 /* 14640 * Case 2 above : Lookup and clear IRE_MARK_NORECV. 14641 */ 14642 ill_clear_bcast_mark(ill, 0); 14643 ill_clear_bcast_mark(ill, INADDR_BROADCAST); 14644 14645 for (ipif = ill->ill_ipif; ipif != NULL; 14646 ipif = ipif->ipif_next) { 14647 14648 if (!(ipif->ipif_flags & IPIF_UP) || 14649 ipif->ipif_subnet == 0) { 14650 continue; 14651 } 14652 if ((ipif->ipif_lcl_addr != INADDR_ANY) && 14653 !(ipif->ipif_flags & IPIF_NOLOCAL)) { 14654 net_mask = ip_net_mask(ipif->ipif_lcl_addr); 14655 } else { 14656 net_mask = htonl(IN_CLASSA_NET); 14657 } 14658 addr = net_mask & ipif->ipif_subnet; 14659 ill_clear_bcast_mark(ill, addr); 14660 14661 net_addr = ~net_mask | addr; 14662 ill_clear_bcast_mark(ill, net_addr); 14663 14664 subnet_netmask = ipif->ipif_net_mask; 14665 addr = ipif->ipif_subnet; 14666 ill_clear_bcast_mark(ill, addr); 14667 14668 subnet_addr = ~subnet_netmask | addr; 14669 ill_clear_bcast_mark(ill, subnet_addr); 14670 } 14671 } 14672 14673 /* 14674 * Multicast Responsibility. 14675 * 14676 * If we have joined allmulti on this one, find a new member 14677 * in the group to join allmulti. As this ill is already part 14678 * of allmulti, we don't have to join on this one. 14679 * 14680 * If we have not joined allmulti on this one, there is no 14681 * responsibility to handoff. But we need to take new 14682 * responsibility i.e, join allmulti on this one if we need 14683 * to. 14684 */ 14685 if (ill->ill_join_allmulti) { 14686 (void) ill_nominate_mcast_rcv(illgrp); 14687 } else { 14688 for (ilm = ill->ill_ilm; ilm != NULL; ilm = ilm->ilm_next) { 14689 if (IN6_IS_ADDR_UNSPECIFIED(&ilm->ilm_v6addr)) { 14690 (void) ip_join_allmulti(ill->ill_ipif); 14691 break; 14692 } 14693 } 14694 } 14695 14696 /* 14697 * We intentionally do the flushing of IRE_CACHES only matching 14698 * on the ill and not on groups. Note that we are already deleted 14699 * from the group. 14700 * 14701 * This will make sure that all IRE_CACHES whose stq is pointing 14702 * at ill_wq or ire_ipif->ipif_ill pointing at this ill will get 14703 * deleted and IRE_CACHES that are not pointing at this ill will 14704 * be left alone. 14705 */ 14706 if (ill->ill_isv6) { 14707 ire_walk_ill_v6(MATCH_IRE_ILL | MATCH_IRE_TYPE, 14708 IRE_CACHE, illgrp_cache_delete, (char *)ill, ill); 14709 } else { 14710 ire_walk_ill_v4(MATCH_IRE_ILL | MATCH_IRE_TYPE, 14711 IRE_CACHE, illgrp_cache_delete, (char *)ill, ill); 14712 } 14713 14714 /* 14715 * Some conn may have cached one of the IREs deleted above. By removing 14716 * the ire reference, we clean up the extra reference to the ill held in 14717 * ire->ire_stq. 14718 */ 14719 ipcl_walk(conn_cleanup_stale_ire, NULL); 14720 14721 /* 14722 * Re-do source address selection for all the members in the 14723 * group, if they borrowed source address from one of the ipifs 14724 * in this ill. 14725 */ 14726 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 14727 if (ill->ill_isv6) { 14728 ipif_update_other_ipifs_v6(ipif, illgrp); 14729 } else { 14730 ipif_update_other_ipifs(ipif, illgrp); 14731 } 14732 } 14733 } 14734 14735 /* 14736 * Delete the ill from the group. The caller makes sure that it is 14737 * in a group and it okay to delete from the group. So, we always 14738 * delete here. 14739 */ 14740 static void 14741 illgrp_delete(ill_t *ill) 14742 { 14743 ill_group_t *illgrp; 14744 ill_group_t *tmpg; 14745 ill_t *tmp_ill; 14746 14747 /* 14748 * Reset illgrp_ill_schednext if it was pointing at us. 14749 * We need to do this before we set ill_group to NULL. 14750 */ 14751 rw_enter(&ill_g_lock, RW_WRITER); 14752 mutex_enter(&ill->ill_lock); 14753 14754 illgrp_reset_schednext(ill); 14755 14756 illgrp = ill->ill_group; 14757 14758 /* Delete the ill from illgrp. */ 14759 if (illgrp->illgrp_ill == ill) { 14760 illgrp->illgrp_ill = ill->ill_group_next; 14761 } else { 14762 tmp_ill = illgrp->illgrp_ill; 14763 while (tmp_ill->ill_group_next != ill) { 14764 tmp_ill = tmp_ill->ill_group_next; 14765 ASSERT(tmp_ill != NULL); 14766 } 14767 tmp_ill->ill_group_next = ill->ill_group_next; 14768 } 14769 ill->ill_group = NULL; 14770 ill->ill_group_next = NULL; 14771 14772 illgrp->illgrp_ill_count--; 14773 mutex_exit(&ill->ill_lock); 14774 rw_exit(&ill_g_lock); 14775 14776 /* 14777 * As this ill is leaving the group, we need to hand off 14778 * the responsibilities to the other ills in the group, if 14779 * this ill had some responsibilities. 14780 */ 14781 14782 ill_handoff_responsibility(ill, illgrp); 14783 14784 rw_enter(&ill_g_lock, RW_WRITER); 14785 14786 if (illgrp->illgrp_ill_count == 0) { 14787 14788 ASSERT(illgrp->illgrp_ill == NULL); 14789 if (ill->ill_isv6) { 14790 if (illgrp == illgrp_head_v6) { 14791 illgrp_head_v6 = illgrp->illgrp_next; 14792 } else { 14793 tmpg = illgrp_head_v6; 14794 while (tmpg->illgrp_next != illgrp) { 14795 tmpg = tmpg->illgrp_next; 14796 ASSERT(tmpg != NULL); 14797 } 14798 tmpg->illgrp_next = illgrp->illgrp_next; 14799 } 14800 } else { 14801 if (illgrp == illgrp_head_v4) { 14802 illgrp_head_v4 = illgrp->illgrp_next; 14803 } else { 14804 tmpg = illgrp_head_v4; 14805 while (tmpg->illgrp_next != illgrp) { 14806 tmpg = tmpg->illgrp_next; 14807 ASSERT(tmpg != NULL); 14808 } 14809 tmpg->illgrp_next = illgrp->illgrp_next; 14810 } 14811 } 14812 mutex_destroy(&illgrp->illgrp_lock); 14813 mi_free(illgrp); 14814 } 14815 rw_exit(&ill_g_lock); 14816 14817 /* 14818 * Even though the ill is out of the group its not necessary 14819 * to set ipsq_split as TRUE as the ipifs could be down temporarily 14820 * We will split the ipsq when phyint_groupname is set to NULL. 14821 */ 14822 14823 /* 14824 * Send a routing sockets message if we are deleting from 14825 * groups with names. 14826 */ 14827 if (ill->ill_phyint->phyint_groupname_len != 0) 14828 ip_rts_ifmsg(ill->ill_ipif); 14829 } 14830 14831 /* 14832 * Re-do source address selection. This is normally called when 14833 * an ill joins the group or when a non-NOLOCAL/DEPRECATED/ANYCAST 14834 * ipif comes up. 14835 */ 14836 void 14837 ill_update_source_selection(ill_t *ill) 14838 { 14839 ipif_t *ipif; 14840 14841 ASSERT(IAM_WRITER_ILL(ill)); 14842 14843 if (ill->ill_group != NULL) 14844 ill = ill->ill_group->illgrp_ill; 14845 14846 for (; ill != NULL; ill = ill->ill_group_next) { 14847 for (ipif = ill->ill_ipif; ipif != NULL; 14848 ipif = ipif->ipif_next) { 14849 if (ill->ill_isv6) 14850 ipif_recreate_interface_routes_v6(NULL, ipif); 14851 else 14852 ipif_recreate_interface_routes(NULL, ipif); 14853 } 14854 } 14855 } 14856 14857 /* 14858 * Insert ill in a group headed by illgrp_head. The caller can either 14859 * pass a groupname in which case we search for a group with the 14860 * same name to insert in or pass a group to insert in. This function 14861 * would only search groups with names. 14862 * 14863 * NOTE : The caller should make sure that there is at least one ipif 14864 * UP on this ill so that illgrp_scheduler can pick this ill 14865 * for outbound packets. If ill_ipif_up_count is zero, we have 14866 * already sent a DL_UNBIND to the driver and we don't want to 14867 * send anymore packets. We don't assert for ipif_up_count 14868 * to be greater than zero, because ipif_up_done wants to call 14869 * this function before bumping up the ipif_up_count. See 14870 * ipif_up_done() for details. 14871 */ 14872 int 14873 illgrp_insert(ill_group_t **illgrp_head, ill_t *ill, char *groupname, 14874 ill_group_t *grp_to_insert, boolean_t ipif_is_coming_up) 14875 { 14876 ill_group_t *illgrp; 14877 ill_t *prev_ill; 14878 phyint_t *phyi; 14879 14880 ASSERT(ill->ill_group == NULL); 14881 14882 rw_enter(&ill_g_lock, RW_WRITER); 14883 mutex_enter(&ill->ill_lock); 14884 14885 if (groupname != NULL) { 14886 /* 14887 * Look for a group with a matching groupname to insert. 14888 */ 14889 for (illgrp = *illgrp_head; illgrp != NULL; 14890 illgrp = illgrp->illgrp_next) { 14891 14892 ill_t *tmp_ill; 14893 14894 tmp_ill = illgrp->illgrp_ill; 14895 ASSERT(tmp_ill != NULL && tmp_ill->ill_phyint != NULL); 14896 phyi = tmp_ill->ill_phyint; 14897 /* 14898 * Look at groups which has names only. 14899 */ 14900 if (phyi->phyint_groupname_len == 0) 14901 continue; 14902 /* 14903 * Names are stored in the phyint common to both 14904 * IPv4 and IPv6. 14905 */ 14906 if (mi_strcmp(phyi->phyint_groupname, 14907 groupname) == 0) { 14908 break; 14909 } 14910 } 14911 } else { 14912 /* 14913 * If the caller passes in a NULL "grp_to_insert", we 14914 * allocate one below and insert this singleton. 14915 */ 14916 illgrp = grp_to_insert; 14917 } 14918 14919 ill->ill_group_next = NULL; 14920 14921 if (illgrp == NULL) { 14922 illgrp = (ill_group_t *)mi_zalloc(sizeof (ill_group_t)); 14923 if (illgrp == NULL) { 14924 return (ENOMEM); 14925 } 14926 illgrp->illgrp_next = *illgrp_head; 14927 *illgrp_head = illgrp; 14928 illgrp->illgrp_ill = ill; 14929 illgrp->illgrp_ill_count = 1; 14930 ill->ill_group = illgrp; 14931 /* 14932 * Used in illgrp_scheduler to protect multiple threads 14933 * from traversing the list. 14934 */ 14935 mutex_init(&illgrp->illgrp_lock, NULL, MUTEX_DEFAULT, 0); 14936 } else { 14937 ASSERT(ill->ill_net_type == 14938 illgrp->illgrp_ill->ill_net_type); 14939 ASSERT(ill->ill_type == illgrp->illgrp_ill->ill_type); 14940 14941 /* Insert ill at tail of this group */ 14942 prev_ill = illgrp->illgrp_ill; 14943 while (prev_ill->ill_group_next != NULL) 14944 prev_ill = prev_ill->ill_group_next; 14945 prev_ill->ill_group_next = ill; 14946 ill->ill_group = illgrp; 14947 illgrp->illgrp_ill_count++; 14948 /* 14949 * Inherit group properties. Currently only forwarding 14950 * is the property we try to keep the same with all the 14951 * ills. When there are more, we will abstract this into 14952 * a function. 14953 */ 14954 ill->ill_flags &= ~ILLF_ROUTER; 14955 ill->ill_flags |= (illgrp->illgrp_ill->ill_flags & ILLF_ROUTER); 14956 } 14957 mutex_exit(&ill->ill_lock); 14958 rw_exit(&ill_g_lock); 14959 14960 /* 14961 * 1) When ipif_up_done() calls this function, ipif_up_count 14962 * may be zero as it has not yet been bumped. But the ires 14963 * have already been added. So, we do the nomination here 14964 * itself. But, when ip_sioctl_groupname calls this, it checks 14965 * for ill_ipif_up_count != 0. Thus we don't check for 14966 * ill_ipif_up_count here while nominating broadcast ires for 14967 * receive. 14968 * 14969 * 2) Similarly, we need to call ill_group_bcast_for_xmit here 14970 * to group them properly as ire_add() has already happened 14971 * in the ipif_up_done() case. For ip_sioctl_groupname/ifgrp_insert 14972 * case, we need to do it here anyway. 14973 */ 14974 if (!ill->ill_isv6) { 14975 ill_group_bcast_for_xmit(ill); 14976 ill_nominate_bcast_rcv(illgrp); 14977 } 14978 14979 if (!ipif_is_coming_up) { 14980 /* 14981 * When ipif_up_done() calls this function, the multicast 14982 * groups have not been joined yet. So, there is no point in 14983 * nomination. ip_join_allmulti will handle groups when 14984 * ill_recover_multicast is called from ipif_up_done() later. 14985 */ 14986 (void) ill_nominate_mcast_rcv(illgrp); 14987 /* 14988 * ipif_up_done calls ill_update_source_selection 14989 * anyway. Moreover, we don't want to re-create 14990 * interface routes while ipif_up_done() still has reference 14991 * to them. Refer to ipif_up_done() for more details. 14992 */ 14993 ill_update_source_selection(ill); 14994 } 14995 14996 /* 14997 * Send a routing sockets message if we are inserting into 14998 * groups with names. 14999 */ 15000 if (groupname != NULL) 15001 ip_rts_ifmsg(ill->ill_ipif); 15002 return (0); 15003 } 15004 15005 /* 15006 * Return the first phyint matching the groupname. There could 15007 * be more than one when there are ill groups. 15008 * 15009 * Needs work: called only from ip_sioctl_groupname 15010 */ 15011 static phyint_t * 15012 phyint_lookup_group(char *groupname) 15013 { 15014 phyint_t *phyi; 15015 15016 ASSERT(RW_LOCK_HELD(&ill_g_lock)); 15017 /* 15018 * Group names are stored in the phyint - a common structure 15019 * to both IPv4 and IPv6. 15020 */ 15021 phyi = avl_first(&phyint_g_list.phyint_list_avl_by_index); 15022 for (; phyi != NULL; 15023 phyi = avl_walk(&phyint_g_list.phyint_list_avl_by_index, 15024 phyi, AVL_AFTER)) { 15025 if (phyi->phyint_groupname_len == 0) 15026 continue; 15027 ASSERT(phyi->phyint_groupname != NULL); 15028 if (mi_strcmp(groupname, phyi->phyint_groupname) == 0) 15029 return (phyi); 15030 } 15031 return (NULL); 15032 } 15033 15034 15035 15036 /* 15037 * MT notes on creation and deletion of IPMP groups 15038 * 15039 * Creation and deletion of IPMP groups introduce the need to merge or 15040 * split the associated serialization objects i.e the ipsq's. Normally all 15041 * the ills in an IPMP group would map to a single ipsq. If IPMP is not enabled 15042 * an ill-pair(v4, v6) i.e. phyint would map to a single ipsq. However during 15043 * the execution of the SIOCSLIFGROUPNAME command the picture changes. There 15044 * is a need to change the <ill-ipsq> association and we have to operate on both 15045 * the source and destination IPMP groups. For eg. attempting to set the 15046 * groupname of hme0 to mpk17-85 when it already belongs to mpk17-84 has to 15047 * handle 2 IPMP groups and 2 ipsqs. All the ills belonging to either of the 15048 * source or destination IPMP group are mapped to a single ipsq for executing 15049 * the SIOCSLIFGROUPNAME command. This is termed as a merge of the ipsq's. 15050 * The <ill-ipsq> mapping is restored back to normal at a later point. This is 15051 * termed as a split of the ipsq. The converse of the merge i.e. a split of the 15052 * ipsq happens while unwinding from ipsq_exit. If at least 1 set groupname 15053 * occurred on the ipsq, then the ipsq_split flag is set. This indicates the 15054 * ipsq has to be examined for redoing the <ill-ipsq> associations. 15055 * 15056 * In the above example the ioctl handling code locates the current ipsq of hme0 15057 * which is ipsq(mpk17-84). It then enters the above ipsq immediately or 15058 * eventually (after queueing the ioctl in ipsq(mpk17-84)). Then it locates 15059 * the destination ipsq which is ipsq(mpk17-85) and merges the source ipsq into 15060 * the destination ipsq. If the destination ipsq is not busy, it also enters 15061 * the destination ipsq exclusively. Now the actual groupname setting operation 15062 * can proceed. If the destination ipsq is busy, the operation is enqueued 15063 * on the destination (merged) ipsq and will be handled in the unwind from 15064 * ipsq_exit. 15065 * 15066 * To prevent other threads accessing the ill while the group name change is 15067 * in progres, we bring down the ipifs which also removes the ill from the 15068 * group. The group is changed in phyint and when the first ipif on the ill 15069 * is brought up, the ill is inserted into the right IPMP group by 15070 * illgrp_insert. 15071 */ 15072 /* ARGSUSED */ 15073 int 15074 ip_sioctl_groupname(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 15075 ip_ioctl_cmd_t *ipip, void *ifreq) 15076 { 15077 int i; 15078 char *tmp; 15079 int namelen; 15080 ill_t *ill = ipif->ipif_ill; 15081 ill_t *ill_v4, *ill_v6; 15082 int err = 0; 15083 phyint_t *phyi; 15084 phyint_t *phyi_tmp; 15085 struct lifreq *lifr; 15086 mblk_t *mp1; 15087 char *groupname; 15088 ipsq_t *ipsq; 15089 15090 ASSERT(IAM_WRITER_IPIF(ipif)); 15091 15092 /* Existance verified in ip_wput_nondata */ 15093 mp1 = mp->b_cont->b_cont; 15094 lifr = (struct lifreq *)mp1->b_rptr; 15095 groupname = lifr->lifr_groupname; 15096 15097 if (ipif->ipif_id != 0) 15098 return (EINVAL); 15099 15100 phyi = ill->ill_phyint; 15101 ASSERT(phyi != NULL); 15102 15103 if (phyi->phyint_flags & PHYI_VIRTUAL) 15104 return (EINVAL); 15105 15106 tmp = groupname; 15107 for (i = 0; i < LIFNAMSIZ && *tmp != '\0'; tmp++, i++) 15108 ; 15109 15110 if (i == LIFNAMSIZ) { 15111 /* no null termination */ 15112 return (EINVAL); 15113 } 15114 15115 /* 15116 * Calculate the namelen exclusive of the null 15117 * termination character. 15118 */ 15119 namelen = tmp - groupname; 15120 15121 ill_v4 = phyi->phyint_illv4; 15122 ill_v6 = phyi->phyint_illv6; 15123 15124 /* 15125 * ILL cannot be part of a usesrc group and and IPMP group at the 15126 * same time. No need to grab the ill_g_usesrc_lock here, see 15127 * synchronization notes in ip.c 15128 */ 15129 if (ipif->ipif_ill->ill_usesrc_grp_next != NULL) { 15130 return (EINVAL); 15131 } 15132 15133 /* 15134 * mark the ill as changing. 15135 * this should queue all new requests on the syncq. 15136 */ 15137 GRAB_ILL_LOCKS(ill_v4, ill_v6); 15138 15139 if (ill_v4 != NULL) 15140 ill_v4->ill_state_flags |= ILL_CHANGING; 15141 if (ill_v6 != NULL) 15142 ill_v6->ill_state_flags |= ILL_CHANGING; 15143 RELEASE_ILL_LOCKS(ill_v4, ill_v6); 15144 15145 if (namelen == 0) { 15146 /* 15147 * Null string means remove this interface from the 15148 * existing group. 15149 */ 15150 if (phyi->phyint_groupname_len == 0) { 15151 /* 15152 * Never was in a group. 15153 */ 15154 err = 0; 15155 goto done; 15156 } 15157 15158 /* 15159 * IPv4 or IPv6 may be temporarily out of the group when all 15160 * the ipifs are down. Thus, we need to check for ill_group to 15161 * be non-NULL. 15162 */ 15163 if (ill_v4 != NULL && ill_v4->ill_group != NULL) { 15164 ill_down_ipifs(ill_v4, mp, 0, B_FALSE); 15165 mutex_enter(&ill_v4->ill_lock); 15166 if (!ill_is_quiescent(ill_v4)) { 15167 /* 15168 * ipsq_pending_mp_add will not fail since 15169 * connp is NULL 15170 */ 15171 (void) ipsq_pending_mp_add(NULL, 15172 ill_v4->ill_ipif, q, mp, ILL_DOWN); 15173 mutex_exit(&ill_v4->ill_lock); 15174 err = EINPROGRESS; 15175 goto done; 15176 } 15177 mutex_exit(&ill_v4->ill_lock); 15178 } 15179 15180 if (ill_v6 != NULL && ill_v6->ill_group != NULL) { 15181 ill_down_ipifs(ill_v6, mp, 0, B_FALSE); 15182 mutex_enter(&ill_v6->ill_lock); 15183 if (!ill_is_quiescent(ill_v6)) { 15184 (void) ipsq_pending_mp_add(NULL, 15185 ill_v6->ill_ipif, q, mp, ILL_DOWN); 15186 mutex_exit(&ill_v6->ill_lock); 15187 err = EINPROGRESS; 15188 goto done; 15189 } 15190 mutex_exit(&ill_v6->ill_lock); 15191 } 15192 15193 rw_enter(&ill_g_lock, RW_WRITER); 15194 GRAB_ILL_LOCKS(ill_v4, ill_v6); 15195 mutex_enter(&phyi->phyint_lock); 15196 ASSERT(phyi->phyint_groupname != NULL); 15197 mi_free(phyi->phyint_groupname); 15198 phyi->phyint_groupname = NULL; 15199 phyi->phyint_groupname_len = 0; 15200 mutex_exit(&phyi->phyint_lock); 15201 RELEASE_ILL_LOCKS(ill_v4, ill_v6); 15202 rw_exit(&ill_g_lock); 15203 err = ill_up_ipifs(ill, q, mp); 15204 15205 /* 15206 * set the split flag so that the ipsq can be split 15207 */ 15208 mutex_enter(&phyi->phyint_ipsq->ipsq_lock); 15209 phyi->phyint_ipsq->ipsq_split = B_TRUE; 15210 mutex_exit(&phyi->phyint_ipsq->ipsq_lock); 15211 15212 } else { 15213 if (phyi->phyint_groupname_len != 0) { 15214 ASSERT(phyi->phyint_groupname != NULL); 15215 /* Are we inserting in the same group ? */ 15216 if (mi_strcmp(groupname, 15217 phyi->phyint_groupname) == 0) { 15218 err = 0; 15219 goto done; 15220 } 15221 } 15222 15223 rw_enter(&ill_g_lock, RW_READER); 15224 /* 15225 * Merge ipsq for the group's. 15226 * This check is here as multiple groups/ills might be 15227 * sharing the same ipsq. 15228 * If we have to merege than the operation is restarted 15229 * on the new ipsq. 15230 */ 15231 ipsq = ip_ipsq_lookup(groupname, B_FALSE, NULL); 15232 if (phyi->phyint_ipsq != ipsq) { 15233 rw_exit(&ill_g_lock); 15234 err = ill_merge_groups(ill, NULL, groupname, mp, q); 15235 goto done; 15236 } 15237 /* 15238 * Running exclusive on new ipsq. 15239 */ 15240 15241 ASSERT(ipsq != NULL); 15242 ASSERT(ipsq->ipsq_writer == curthread); 15243 15244 /* 15245 * Check whether the ill_type and ill_net_type matches before 15246 * we allocate any memory so that the cleanup is easier. 15247 * 15248 * We can't group dissimilar ones as we can't load spread 15249 * packets across the group because of potential link-level 15250 * header differences. 15251 */ 15252 phyi_tmp = phyint_lookup_group(groupname); 15253 if (phyi_tmp != NULL) { 15254 if ((ill_v4 != NULL && 15255 phyi_tmp->phyint_illv4 != NULL) && 15256 ((ill_v4->ill_net_type != 15257 phyi_tmp->phyint_illv4->ill_net_type) || 15258 (ill_v4->ill_type != 15259 phyi_tmp->phyint_illv4->ill_type))) { 15260 mutex_enter(&phyi->phyint_ipsq->ipsq_lock); 15261 phyi->phyint_ipsq->ipsq_split = B_TRUE; 15262 mutex_exit(&phyi->phyint_ipsq->ipsq_lock); 15263 rw_exit(&ill_g_lock); 15264 return (EINVAL); 15265 } 15266 if ((ill_v6 != NULL && 15267 phyi_tmp->phyint_illv6 != NULL) && 15268 ((ill_v6->ill_net_type != 15269 phyi_tmp->phyint_illv6->ill_net_type) || 15270 (ill_v6->ill_type != 15271 phyi_tmp->phyint_illv6->ill_type))) { 15272 mutex_enter(&phyi->phyint_ipsq->ipsq_lock); 15273 phyi->phyint_ipsq->ipsq_split = B_TRUE; 15274 mutex_exit(&phyi->phyint_ipsq->ipsq_lock); 15275 rw_exit(&ill_g_lock); 15276 return (EINVAL); 15277 } 15278 } 15279 15280 rw_exit(&ill_g_lock); 15281 15282 /* 15283 * bring down all v4 ipifs. 15284 */ 15285 if (ill_v4 != NULL) { 15286 ill_down_ipifs(ill_v4, mp, 0, B_FALSE); 15287 } 15288 15289 /* 15290 * bring down all v6 ipifs. 15291 */ 15292 if (ill_v6 != NULL) { 15293 ill_down_ipifs(ill_v6, mp, 0, B_FALSE); 15294 } 15295 15296 /* 15297 * make sure all ipifs are down and there are no active 15298 * references. Call to ipsq_pending_mp_add will not fail 15299 * since connp is NULL. 15300 */ 15301 if (ill_v4 != NULL) { 15302 mutex_enter(&ill_v4->ill_lock); 15303 if (!ill_is_quiescent(ill_v4)) { 15304 (void) ipsq_pending_mp_add(NULL, 15305 ill_v4->ill_ipif, q, mp, ILL_DOWN); 15306 mutex_exit(&ill_v4->ill_lock); 15307 err = EINPROGRESS; 15308 goto done; 15309 } 15310 mutex_exit(&ill_v4->ill_lock); 15311 } 15312 15313 if (ill_v6 != NULL) { 15314 mutex_enter(&ill_v6->ill_lock); 15315 if (!ill_is_quiescent(ill_v6)) { 15316 (void) ipsq_pending_mp_add(NULL, 15317 ill_v6->ill_ipif, q, mp, ILL_DOWN); 15318 mutex_exit(&ill_v6->ill_lock); 15319 err = EINPROGRESS; 15320 goto done; 15321 } 15322 mutex_exit(&ill_v6->ill_lock); 15323 } 15324 15325 /* 15326 * allocate including space for null terminator 15327 * before we insert. 15328 */ 15329 tmp = (char *)mi_alloc(namelen + 1, BPRI_MED); 15330 if (tmp == NULL) 15331 return (ENOMEM); 15332 15333 rw_enter(&ill_g_lock, RW_WRITER); 15334 GRAB_ILL_LOCKS(ill_v4, ill_v6); 15335 mutex_enter(&phyi->phyint_lock); 15336 if (phyi->phyint_groupname_len != 0) { 15337 ASSERT(phyi->phyint_groupname != NULL); 15338 mi_free(phyi->phyint_groupname); 15339 } 15340 15341 /* 15342 * setup the new group name. 15343 */ 15344 phyi->phyint_groupname = tmp; 15345 bcopy(groupname, phyi->phyint_groupname, namelen + 1); 15346 phyi->phyint_groupname_len = namelen + 1; 15347 mutex_exit(&phyi->phyint_lock); 15348 RELEASE_ILL_LOCKS(ill_v4, ill_v6); 15349 rw_exit(&ill_g_lock); 15350 15351 err = ill_up_ipifs(ill, q, mp); 15352 } 15353 15354 done: 15355 /* 15356 * normally ILL_CHANGING is cleared in ill_up_ipifs. 15357 */ 15358 if (err != EINPROGRESS) { 15359 GRAB_ILL_LOCKS(ill_v4, ill_v6); 15360 if (ill_v4 != NULL) 15361 ill_v4->ill_state_flags &= ~ILL_CHANGING; 15362 if (ill_v6 != NULL) 15363 ill_v6->ill_state_flags &= ~ILL_CHANGING; 15364 RELEASE_ILL_LOCKS(ill_v4, ill_v6); 15365 } 15366 return (err); 15367 } 15368 15369 /* ARGSUSED */ 15370 int 15371 ip_sioctl_get_groupname(ipif_t *ipif, sin_t *dummy_sin, queue_t *q, 15372 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 15373 { 15374 ill_t *ill; 15375 phyint_t *phyi; 15376 struct lifreq *lifr; 15377 mblk_t *mp1; 15378 15379 /* Existence verified in ip_wput_nondata */ 15380 mp1 = mp->b_cont->b_cont; 15381 lifr = (struct lifreq *)mp1->b_rptr; 15382 ill = ipif->ipif_ill; 15383 phyi = ill->ill_phyint; 15384 15385 lifr->lifr_groupname[0] = '\0'; 15386 /* 15387 * ill_group may be null if all the interfaces 15388 * are down. But still, the phyint should always 15389 * hold the name. 15390 */ 15391 if (phyi->phyint_groupname_len != 0) { 15392 bcopy(phyi->phyint_groupname, lifr->lifr_groupname, 15393 phyi->phyint_groupname_len); 15394 } 15395 15396 return (0); 15397 } 15398 15399 15400 typedef struct conn_move_s { 15401 ill_t *cm_from_ill; 15402 ill_t *cm_to_ill; 15403 int cm_ifindex; 15404 } conn_move_t; 15405 15406 /* 15407 * ipcl_walk function for moving conn_multicast_ill for a given ill. 15408 */ 15409 static void 15410 conn_move(conn_t *connp, caddr_t arg) 15411 { 15412 conn_move_t *connm; 15413 int ifindex; 15414 int i; 15415 ill_t *from_ill; 15416 ill_t *to_ill; 15417 ilg_t *ilg; 15418 ilm_t *ret_ilm; 15419 15420 connm = (conn_move_t *)arg; 15421 ifindex = connm->cm_ifindex; 15422 from_ill = connm->cm_from_ill; 15423 to_ill = connm->cm_to_ill; 15424 15425 /* Change IP_BOUND_IF/IPV6_BOUND_IF associations. */ 15426 15427 /* All multicast fields protected by conn_lock */ 15428 mutex_enter(&connp->conn_lock); 15429 ASSERT(connp->conn_outgoing_ill == connp->conn_incoming_ill); 15430 if ((connp->conn_outgoing_ill == from_ill) && 15431 (ifindex == 0 || connp->conn_orig_bound_ifindex == ifindex)) { 15432 connp->conn_outgoing_ill = to_ill; 15433 connp->conn_incoming_ill = to_ill; 15434 } 15435 15436 /* Change IP_MULTICAST_IF/IPV6_MULTICAST_IF associations */ 15437 15438 if ((connp->conn_multicast_ill == from_ill) && 15439 (ifindex == 0 || connp->conn_orig_multicast_ifindex == ifindex)) { 15440 connp->conn_multicast_ill = connm->cm_to_ill; 15441 } 15442 15443 /* Change IP_XMIT_IF associations */ 15444 if ((connp->conn_xmit_if_ill == from_ill) && 15445 (ifindex == 0 || connp->conn_orig_xmit_ifindex == ifindex)) { 15446 connp->conn_xmit_if_ill = to_ill; 15447 } 15448 /* 15449 * Change the ilg_ill to point to the new one. This assumes 15450 * ilm_move_v6 has moved the ilms to new_ill and the driver 15451 * has been told to receive packets on this interface. 15452 * ilm_move_v6 FAILBACKS all the ilms successfully always. 15453 * But when doing a FAILOVER, it might fail with ENOMEM and so 15454 * some ilms may not have moved. We check to see whether 15455 * the ilms have moved to to_ill. We can't check on from_ill 15456 * as in the process of moving, we could have split an ilm 15457 * in to two - which has the same orig_ifindex and v6group. 15458 * 15459 * For IPv4, ilg_ipif moves implicitly. The code below really 15460 * does not do anything for IPv4 as ilg_ill is NULL for IPv4. 15461 */ 15462 for (i = connp->conn_ilg_inuse - 1; i >= 0; i--) { 15463 ilg = &connp->conn_ilg[i]; 15464 if ((ilg->ilg_ill == from_ill) && 15465 (ifindex == 0 || ilg->ilg_orig_ifindex == ifindex)) { 15466 /* ifindex != 0 indicates failback */ 15467 if (ifindex != 0) { 15468 connp->conn_ilg[i].ilg_ill = to_ill; 15469 continue; 15470 } 15471 15472 ret_ilm = ilm_lookup_ill_index_v6(to_ill, 15473 &ilg->ilg_v6group, ilg->ilg_orig_ifindex, 15474 connp->conn_zoneid); 15475 15476 if (ret_ilm != NULL) 15477 connp->conn_ilg[i].ilg_ill = to_ill; 15478 } 15479 } 15480 mutex_exit(&connp->conn_lock); 15481 } 15482 15483 static void 15484 conn_move_ill(ill_t *from_ill, ill_t *to_ill, int ifindex) 15485 { 15486 conn_move_t connm; 15487 15488 connm.cm_from_ill = from_ill; 15489 connm.cm_to_ill = to_ill; 15490 connm.cm_ifindex = ifindex; 15491 15492 ipcl_walk(conn_move, (caddr_t)&connm); 15493 } 15494 15495 /* 15496 * ilm has been moved from from_ill to to_ill. 15497 * Send DL_DISABMULTI_REQ to ill and DL_ENABMULTI_REQ on to_ill. 15498 * appropriately. 15499 * 15500 * NOTE : We can't reuse the code in ip_ll_addmulti/delmulti because 15501 * the code there de-references ipif_ill to get the ill to 15502 * send multicast requests. It does not work as ipif is on its 15503 * move and already moved when this function is called. 15504 * Thus, we need to use from_ill and to_ill send down multicast 15505 * requests. 15506 */ 15507 static void 15508 ilm_send_multicast_reqs(ill_t *from_ill, ill_t *to_ill) 15509 { 15510 ipif_t *ipif; 15511 ilm_t *ilm; 15512 15513 /* 15514 * See whether we need to send down DL_ENABMULTI_REQ on 15515 * to_ill as ilm has just been added. 15516 */ 15517 ASSERT(IAM_WRITER_ILL(to_ill)); 15518 ASSERT(IAM_WRITER_ILL(from_ill)); 15519 15520 ILM_WALKER_HOLD(to_ill); 15521 for (ilm = to_ill->ill_ilm; ilm != NULL && ilm->ilm_is_new && 15522 !(ilm->ilm_flags & ILM_DELETED); ilm = ilm->ilm_next) { 15523 15524 /* 15525 * no locks held, ill/ipif cannot dissappear as long 15526 * as we are writer. 15527 */ 15528 ipif = to_ill->ill_ipif; 15529 /* 15530 * No need to hold any lock as we are the writer and this 15531 * can only be changed by a writer. 15532 */ 15533 ilm->ilm_is_new = B_FALSE; 15534 15535 if (to_ill->ill_net_type != IRE_IF_RESOLVER || 15536 ipif->ipif_flags & IPIF_POINTOPOINT) { 15537 ip1dbg(("ilm_send_multicast_reqs: to_ill not " 15538 "resolver\n")); 15539 continue; /* Must be IRE_IF_NORESOLVER */ 15540 } 15541 15542 15543 if (to_ill->ill_phyint->phyint_flags & PHYI_MULTI_BCAST) { 15544 ip1dbg(("ilm_send_multicast_reqs: " 15545 "to_ill MULTI_BCAST\n")); 15546 ilm->ilm_join_mld = B_FALSE; 15547 goto from; 15548 } 15549 15550 if (ilm->ilm_join_mld) { 15551 ASSERT(to_ill->ill_isv6); 15552 mld_joingroup(ilm); 15553 } 15554 15555 ilm->ilm_join_mld = B_FALSE; 15556 15557 if (to_ill->ill_ipif_up_count == 0) { 15558 /* 15559 * Nobody there. All multicast addresses will be 15560 * re-joined when we get the DL_BIND_ACK bringing the 15561 * interface up. 15562 */ 15563 ilm->ilm_notify_driver = B_FALSE; 15564 ip1dbg(("ilm_send_multicast_reqs: to_ill nobody up\n")); 15565 goto from; 15566 } 15567 15568 /* 15569 * For allmulti address, we want to join on only one interface. 15570 * Checking for ilm_numentries_v6 is not correct as you may 15571 * find an ilm with zero address on to_ill, but we may not 15572 * have nominated to_ill for receiving. Thus, if we have 15573 * nominated from_ill (ill_join_allmulti is set), nominate 15574 * only if to_ill is not already nominated (to_ill normally 15575 * should not have been nominated if "from_ill" has already 15576 * been nominated. As we don't prevent failovers from happening 15577 * across groups, we don't assert). 15578 */ 15579 if (IN6_IS_ADDR_UNSPECIFIED(&ilm->ilm_v6addr)) { 15580 /* 15581 * There is no need to hold ill locks as we are 15582 * writer on both ills and when ill_join_allmulti 15583 * is changed the thread is always a writer. 15584 */ 15585 if (from_ill->ill_join_allmulti && 15586 !to_ill->ill_join_allmulti) { 15587 (void) ip_join_allmulti(to_ill->ill_ipif); 15588 } 15589 } else if (ilm->ilm_notify_driver) { 15590 15591 /* 15592 * This is a newly moved ilm so we need to tell the 15593 * driver about the new group. There can be more than 15594 * one ilm's for the same group in the list each with a 15595 * different orig_ifindex. We have to inform the driver 15596 * once. In ilm_move_v[4,6] we only set the flag 15597 * ilm_notify_driver for the first ilm. 15598 */ 15599 15600 (void) ip_ll_send_enabmulti_req(to_ill, 15601 &ilm->ilm_v6addr); 15602 } 15603 15604 ilm->ilm_notify_driver = B_FALSE; 15605 15606 /* 15607 * See whether we need to send down DL_DISABMULTI_REQ on 15608 * from_ill as ilm has just been removed. 15609 */ 15610 from: 15611 ipif = from_ill->ill_ipif; 15612 if (from_ill->ill_net_type != IRE_IF_RESOLVER || 15613 ipif->ipif_flags & IPIF_POINTOPOINT) { 15614 ip1dbg(("ilm_send_multicast_reqs: " 15615 "from_ill not resolver\n")); 15616 continue; /* Must be IRE_IF_NORESOLVER */ 15617 } 15618 15619 if (from_ill->ill_phyint->phyint_flags & PHYI_MULTI_BCAST) { 15620 ip1dbg(("ilm_send_multicast_reqs: " 15621 "from_ill MULTI_BCAST\n")); 15622 continue; 15623 } 15624 15625 if (IN6_IS_ADDR_UNSPECIFIED(&ilm->ilm_v6addr)) { 15626 if (from_ill->ill_join_allmulti) 15627 (void) ip_leave_allmulti(from_ill->ill_ipif); 15628 } else if (ilm_numentries_v6(from_ill, &ilm->ilm_v6addr) == 0) { 15629 (void) ip_ll_send_disabmulti_req(from_ill, 15630 &ilm->ilm_v6addr); 15631 } 15632 } 15633 ILM_WALKER_RELE(to_ill); 15634 } 15635 15636 /* 15637 * This function is called when all multicast memberships needs 15638 * to be moved from "from_ill" to "to_ill" for IPv6. This function is 15639 * called only once unlike the IPv4 counterpart where it is called after 15640 * every logical interface is moved. The reason is due to multicast 15641 * memberships are joined using an interface address in IPv4 while in 15642 * IPv6, interface index is used. 15643 */ 15644 static void 15645 ilm_move_v6(ill_t *from_ill, ill_t *to_ill, int ifindex) 15646 { 15647 ilm_t *ilm; 15648 ilm_t *ilm_next; 15649 ilm_t *new_ilm; 15650 ilm_t **ilmp; 15651 int count; 15652 char buf[INET6_ADDRSTRLEN]; 15653 in6_addr_t ipv6_snm = ipv6_solicited_node_mcast; 15654 15655 ASSERT(MUTEX_HELD(&to_ill->ill_lock)); 15656 ASSERT(MUTEX_HELD(&from_ill->ill_lock)); 15657 ASSERT(RW_WRITE_HELD(&ill_g_lock)); 15658 15659 if (ifindex == 0) { 15660 /* 15661 * Form the solicited node mcast address which is used later. 15662 */ 15663 ipif_t *ipif; 15664 15665 ipif = from_ill->ill_ipif; 15666 ASSERT(ipif->ipif_id == 0); 15667 15668 ipv6_snm.s6_addr32[3] |= ipif->ipif_v6lcl_addr.s6_addr32[3]; 15669 } 15670 15671 ilmp = &from_ill->ill_ilm; 15672 for (ilm = from_ill->ill_ilm; ilm != NULL && 15673 !(ilm->ilm_flags & ILM_DELETED); ilm = ilm_next) { 15674 ilm_next = ilm->ilm_next; 15675 new_ilm = ilm_lookup_ill_index_v6(to_ill, &ilm->ilm_v6addr, 15676 ilm->ilm_orig_ifindex, ilm->ilm_zoneid); 15677 ASSERT(ilm->ilm_orig_ifindex != 0); 15678 if (ilm->ilm_orig_ifindex == ifindex) { 15679 /* 15680 * We are failing back multicast memberships. 15681 * If the same ilm exists in to_ill, it means somebody 15682 * has joined the same group there e.g. ff02::1 15683 * is joined within the kernel when the interfaces 15684 * came UP. 15685 */ 15686 ASSERT(ilm->ilm_ipif == NULL); 15687 if (new_ilm != NULL) { 15688 new_ilm->ilm_refcnt += ilm->ilm_refcnt; 15689 if (new_ilm->ilm_fmode != MODE_IS_EXCLUDE || 15690 !SLIST_IS_EMPTY(new_ilm->ilm_filter)) { 15691 new_ilm->ilm_join_mld = B_TRUE; 15692 } 15693 } else { 15694 /* 15695 * check if we can just move the ilm 15696 */ 15697 if (from_ill->ill_ilm_walker_cnt != 0) { 15698 /* 15699 * We have walkers we cannot move 15700 * the ilm, so allocate a new ilm, 15701 * this (old) ilm will be marked 15702 * ILM_DELETED at the end of the loop 15703 * and will be freed when the 15704 * last walker exits. 15705 */ 15706 new_ilm = (ilm_t *)mi_zalloc 15707 (sizeof (ilm_t)); 15708 if (new_ilm == NULL) { 15709 ip0dbg(("ilm_move_v6: " 15710 "FAILBACK of IPv6" 15711 " multicast address %s : " 15712 "from %s to" 15713 " %s failed : ENOMEM \n", 15714 inet_ntop(AF_INET6, 15715 &ilm->ilm_v6addr, buf, 15716 sizeof (buf)), 15717 from_ill->ill_name, 15718 to_ill->ill_name)); 15719 15720 ilmp = &ilm->ilm_next; 15721 continue; 15722 } 15723 *new_ilm = *ilm; 15724 /* 15725 * we don't want new_ilm linked to 15726 * ilm's filter list. 15727 */ 15728 new_ilm->ilm_filter = NULL; 15729 } else { 15730 /* 15731 * No walkers we can move the ilm. 15732 * lets take it out of the list. 15733 */ 15734 *ilmp = ilm->ilm_next; 15735 ilm->ilm_next = NULL; 15736 new_ilm = ilm; 15737 } 15738 15739 new_ilm->ilm_ill = to_ill; 15740 /* Add to the to_ill's list */ 15741 new_ilm->ilm_next = to_ill->ill_ilm; 15742 to_ill->ill_ilm = new_ilm; 15743 /* 15744 * set the flag so that mld_joingroup is 15745 * called in ilm_send_multicast_reqs(). 15746 */ 15747 new_ilm->ilm_join_mld = B_TRUE; 15748 /* 15749 * if this is the first ilm for the group 15750 * set ilm_notify_driver so that we notify the 15751 * driver in ilm_send_multicast_reqs. 15752 */ 15753 if (ilm_lookup_ill_v6(to_ill, 15754 &new_ilm->ilm_v6addr, ALL_ZONES) == NULL) 15755 new_ilm->ilm_notify_driver = B_TRUE; 15756 } 15757 goto bottom; 15758 } else if (ifindex != 0) { 15759 /* 15760 * If this is FAILBACK (ifindex != 0) and the ifindex 15761 * has not matched above, look at the next ilm. 15762 */ 15763 ilmp = &ilm->ilm_next; 15764 continue; 15765 } 15766 /* 15767 * If we are here, it means ifindex is 0. Failover 15768 * everything. 15769 * 15770 * We need to handle solicited node mcast address 15771 * and all_nodes mcast address differently as they 15772 * are joined witin the kenrel (ipif_multicast_up) 15773 * and potentially from the userland. We are called 15774 * after the ipifs of from_ill has been moved. 15775 * If we still find ilms on ill with solicited node 15776 * mcast address or all_nodes mcast address, it must 15777 * belong to the UP interface that has not moved e.g. 15778 * ipif_id 0 with the link local prefix does not move. 15779 * We join this on the new ill accounting for all the 15780 * userland memberships so that applications don't 15781 * see any failure. 15782 * 15783 * We need to make sure that we account only for the 15784 * solicited node and all node multicast addresses 15785 * that was brought UP on these. In the case of 15786 * a failover from A to B, we might have ilms belonging 15787 * to A (ilm_orig_ifindex pointing at A) on B accounting 15788 * for the membership from the userland. If we are failing 15789 * over from B to C now, we will find the ones belonging 15790 * to A on B. These don't account for the ill_ipif_up_count. 15791 * They just move from B to C. The check below on 15792 * ilm_orig_ifindex ensures that. 15793 */ 15794 if ((ilm->ilm_orig_ifindex == 15795 from_ill->ill_phyint->phyint_ifindex) && 15796 (IN6_ARE_ADDR_EQUAL(&ipv6_snm, &ilm->ilm_v6addr) || 15797 IN6_ARE_ADDR_EQUAL(&ipv6_all_hosts_mcast, 15798 &ilm->ilm_v6addr))) { 15799 ASSERT(ilm->ilm_refcnt > 0); 15800 count = ilm->ilm_refcnt - from_ill->ill_ipif_up_count; 15801 /* 15802 * For indentation reasons, we are not using a 15803 * "else" here. 15804 */ 15805 if (count == 0) { 15806 ilmp = &ilm->ilm_next; 15807 continue; 15808 } 15809 ilm->ilm_refcnt -= count; 15810 if (new_ilm != NULL) { 15811 /* 15812 * Can find one with the same 15813 * ilm_orig_ifindex, if we are failing 15814 * over to a STANDBY. This happens 15815 * when somebody wants to join a group 15816 * on a STANDBY interface and we 15817 * internally join on a different one. 15818 * If we had joined on from_ill then, a 15819 * failover now will find a new ilm 15820 * with this index. 15821 */ 15822 ip1dbg(("ilm_move_v6: FAILOVER, found" 15823 " new ilm on %s, group address %s\n", 15824 to_ill->ill_name, 15825 inet_ntop(AF_INET6, 15826 &ilm->ilm_v6addr, buf, 15827 sizeof (buf)))); 15828 new_ilm->ilm_refcnt += count; 15829 if (new_ilm->ilm_fmode != MODE_IS_EXCLUDE || 15830 !SLIST_IS_EMPTY(new_ilm->ilm_filter)) { 15831 new_ilm->ilm_join_mld = B_TRUE; 15832 } 15833 } else { 15834 new_ilm = (ilm_t *)mi_zalloc(sizeof (ilm_t)); 15835 if (new_ilm == NULL) { 15836 ip0dbg(("ilm_move_v6: FAILOVER of IPv6" 15837 " multicast address %s : from %s to" 15838 " %s failed : ENOMEM \n", 15839 inet_ntop(AF_INET6, 15840 &ilm->ilm_v6addr, buf, 15841 sizeof (buf)), from_ill->ill_name, 15842 to_ill->ill_name)); 15843 ilmp = &ilm->ilm_next; 15844 continue; 15845 } 15846 *new_ilm = *ilm; 15847 new_ilm->ilm_filter = NULL; 15848 new_ilm->ilm_refcnt = count; 15849 new_ilm->ilm_ill = to_ill; 15850 new_ilm->ilm_timer = INFINITY; 15851 new_ilm->ilm_rtx.rtx_timer = INFINITY; 15852 new_ilm->ilm_join_mld = B_TRUE; 15853 /* Add to the to_ill's list */ 15854 new_ilm->ilm_next = to_ill->ill_ilm; 15855 to_ill->ill_ilm = new_ilm; 15856 /* 15857 * If the to_ill has not joined this 15858 * group we need to tell the driver in 15859 * ill_send_multicast_reqs. 15860 */ 15861 if (ilm_lookup_ill_v6(to_ill, 15862 &new_ilm->ilm_v6addr, ALL_ZONES) == NULL) 15863 new_ilm->ilm_notify_driver = B_TRUE; 15864 ASSERT(new_ilm->ilm_ipif == NULL); 15865 } 15866 if (ilm->ilm_refcnt == 0) { 15867 goto bottom; 15868 } else { 15869 new_ilm->ilm_is_new = B_TRUE; 15870 new_ilm->ilm_fmode = MODE_IS_EXCLUDE; 15871 CLEAR_SLIST(new_ilm->ilm_filter); 15872 ilmp = &ilm->ilm_next; 15873 } 15874 continue; 15875 } else { 15876 /* 15877 * ifindex = 0 means, move everything pointing at 15878 * from_ill. We are doing this becuase ill has 15879 * either FAILED or became INACTIVE. 15880 * 15881 * As we would like to move things later back to 15882 * from_ill, we want to retain the identity of this 15883 * ilm. Thus, we don't blindly increment the reference 15884 * count on the ilms matching the address alone. We 15885 * need to match on the ilm_orig_index also. new_ilm 15886 * was obtained by matching ilm_orig_index also. 15887 */ 15888 if (new_ilm != NULL) { 15889 /* 15890 * This is possible only if a previous restore 15891 * was incomplete i.e restore to 15892 * ilm_orig_ifindex left some ilms because 15893 * of some failures. Thus when we are failing 15894 * again, we might find our old friends there. 15895 */ 15896 ip1dbg(("ilm_move_v6: FAILOVER, found new ilm" 15897 " on %s, group address %s\n", 15898 to_ill->ill_name, 15899 inet_ntop(AF_INET6, 15900 &ilm->ilm_v6addr, buf, 15901 sizeof (buf)))); 15902 new_ilm->ilm_refcnt += ilm->ilm_refcnt; 15903 if (new_ilm->ilm_fmode != MODE_IS_EXCLUDE || 15904 !SLIST_IS_EMPTY(new_ilm->ilm_filter)) { 15905 new_ilm->ilm_join_mld = B_TRUE; 15906 } 15907 } else { 15908 if (from_ill->ill_ilm_walker_cnt != 0) { 15909 new_ilm = (ilm_t *) 15910 mi_zalloc(sizeof (ilm_t)); 15911 if (new_ilm == NULL) { 15912 ip0dbg(("ilm_move_v6: " 15913 "FAILOVER of IPv6" 15914 " multicast address %s : " 15915 "from %s to" 15916 " %s failed : ENOMEM \n", 15917 inet_ntop(AF_INET6, 15918 &ilm->ilm_v6addr, buf, 15919 sizeof (buf)), 15920 from_ill->ill_name, 15921 to_ill->ill_name)); 15922 15923 ilmp = &ilm->ilm_next; 15924 continue; 15925 } 15926 *new_ilm = *ilm; 15927 new_ilm->ilm_filter = NULL; 15928 } else { 15929 *ilmp = ilm->ilm_next; 15930 new_ilm = ilm; 15931 } 15932 /* Add to the to_ill's list */ 15933 new_ilm->ilm_next = to_ill->ill_ilm; 15934 to_ill->ill_ilm = new_ilm; 15935 ASSERT(ilm->ilm_ipif == NULL); 15936 new_ilm->ilm_ill = to_ill; 15937 new_ilm->ilm_join_mld = B_TRUE; 15938 /* 15939 * If the to_ill has not joined this 15940 * group we need to tell the driver in 15941 * ill_send_multicast_reqs. 15942 */ 15943 if (ilm_lookup_ill_v6(to_ill, 15944 &new_ilm->ilm_v6addr, ALL_ZONES) == NULL) 15945 new_ilm->ilm_notify_driver = B_TRUE; 15946 } 15947 15948 } 15949 15950 bottom: 15951 /* 15952 * set ilm_send_multicast_reqs so that we inform the 15953 * driver about the multicast group. 15954 */ 15955 new_ilm->ilm_is_new = B_TRUE; 15956 /* 15957 * Revert multicast filter state to (EXCLUDE, NULL). 15958 * new_ilm->ilm_join_mld should already be set if needed. 15959 */ 15960 new_ilm->ilm_fmode = MODE_IS_EXCLUDE; 15961 CLEAR_SLIST(new_ilm->ilm_filter); 15962 /* 15963 * We allocated/got a new ilm, free the old one. 15964 */ 15965 if (new_ilm != ilm) { 15966 if (from_ill->ill_ilm_walker_cnt == 0) { 15967 *ilmp = ilm->ilm_next; 15968 ilm->ilm_next = NULL; 15969 FREE_SLIST(ilm->ilm_filter); 15970 FREE_SLIST(ilm->ilm_pendsrcs); 15971 FREE_SLIST(ilm->ilm_rtx.rtx_allow); 15972 FREE_SLIST(ilm->ilm_rtx.rtx_block); 15973 mi_free((char *)ilm); 15974 } else { 15975 ilm->ilm_flags |= ILM_DELETED; 15976 from_ill->ill_ilm_cleanup_reqd = 1; 15977 ilmp = &ilm->ilm_next; 15978 } 15979 } 15980 } 15981 } 15982 15983 /* 15984 * Move all the multicast memberships to to_ill. Called when 15985 * an ipif moves from "from_ill" to "to_ill". This function is slightly 15986 * different from IPv6 counterpart as multicast memberships are associated 15987 * with ills in IPv6. This function is called after every ipif is moved 15988 * unlike IPv6, where it is moved only once. 15989 */ 15990 static void 15991 ilm_move_v4(ill_t *from_ill, ill_t *to_ill, ipif_t *ipif) 15992 { 15993 ilm_t *ilm; 15994 ilm_t *ilm_next; 15995 ilm_t *new_ilm; 15996 ilm_t **ilmp; 15997 15998 ASSERT(MUTEX_HELD(&to_ill->ill_lock)); 15999 ASSERT(MUTEX_HELD(&from_ill->ill_lock)); 16000 ASSERT(RW_WRITE_HELD(&ill_g_lock)); 16001 16002 ilmp = &from_ill->ill_ilm; 16003 for (ilm = from_ill->ill_ilm; ilm != NULL && 16004 !(ilm->ilm_flags & ILM_DELETED); ilm = ilm_next) { 16005 ilm_next = ilm->ilm_next; 16006 ASSERT(ilm->ilm_ipif != NULL); 16007 16008 if (ilm->ilm_ipif != ipif) { 16009 ilmp = &ilm->ilm_next; 16010 continue; 16011 } 16012 16013 if (V4_PART_OF_V6(ilm->ilm_v6addr) == 16014 htonl(INADDR_ALLHOSTS_GROUP)) { 16015 /* 16016 * We joined this in ipif_multicast_up 16017 * and we never did an ipif_multicast_down 16018 * for IPv4. If nobody else from the userland 16019 * has reference, we free the ilm, and later 16020 * when this ipif comes up on the new ill, 16021 * we will join this again. 16022 */ 16023 if (--ilm->ilm_refcnt == 0) 16024 goto delete_ilm; 16025 16026 new_ilm = ilm_lookup_ipif(ipif, 16027 V4_PART_OF_V6(ilm->ilm_v6addr)); 16028 if (new_ilm != NULL) { 16029 new_ilm->ilm_refcnt += ilm->ilm_refcnt; 16030 /* 16031 * We still need to deal with the from_ill. 16032 */ 16033 new_ilm->ilm_is_new = B_TRUE; 16034 new_ilm->ilm_fmode = MODE_IS_EXCLUDE; 16035 CLEAR_SLIST(new_ilm->ilm_filter); 16036 goto delete_ilm; 16037 } 16038 /* 16039 * If we could not find one e.g. ipif is 16040 * still down on to_ill, we add this ilm 16041 * on ill_new to preserve the reference 16042 * count. 16043 */ 16044 } 16045 /* 16046 * When ipifs move, ilms always move with it 16047 * to the NEW ill. Thus we should never be 16048 * able to find ilm till we really move it here. 16049 */ 16050 ASSERT(ilm_lookup_ipif(ipif, 16051 V4_PART_OF_V6(ilm->ilm_v6addr)) == NULL); 16052 16053 if (from_ill->ill_ilm_walker_cnt != 0) { 16054 new_ilm = (ilm_t *)mi_zalloc(sizeof (ilm_t)); 16055 if (new_ilm == NULL) { 16056 char buf[INET6_ADDRSTRLEN]; 16057 ip0dbg(("ilm_move_v4: FAILBACK of IPv4" 16058 " multicast address %s : " 16059 "from %s to" 16060 " %s failed : ENOMEM \n", 16061 inet_ntop(AF_INET, 16062 &ilm->ilm_v6addr, buf, 16063 sizeof (buf)), 16064 from_ill->ill_name, 16065 to_ill->ill_name)); 16066 16067 ilmp = &ilm->ilm_next; 16068 continue; 16069 } 16070 *new_ilm = *ilm; 16071 /* We don't want new_ilm linked to ilm's filter list */ 16072 new_ilm->ilm_filter = NULL; 16073 } else { 16074 /* Remove from the list */ 16075 *ilmp = ilm->ilm_next; 16076 new_ilm = ilm; 16077 } 16078 16079 /* 16080 * If we have never joined this group on the to_ill 16081 * make sure we tell the driver. 16082 */ 16083 if (ilm_lookup_ill_v6(to_ill, &new_ilm->ilm_v6addr, 16084 ALL_ZONES) == NULL) 16085 new_ilm->ilm_notify_driver = B_TRUE; 16086 16087 /* Add to the to_ill's list */ 16088 new_ilm->ilm_next = to_ill->ill_ilm; 16089 to_ill->ill_ilm = new_ilm; 16090 new_ilm->ilm_is_new = B_TRUE; 16091 16092 /* 16093 * Revert multicast filter state to (EXCLUDE, NULL) 16094 */ 16095 new_ilm->ilm_fmode = MODE_IS_EXCLUDE; 16096 CLEAR_SLIST(new_ilm->ilm_filter); 16097 16098 /* 16099 * Delete only if we have allocated a new ilm. 16100 */ 16101 if (new_ilm != ilm) { 16102 delete_ilm: 16103 if (from_ill->ill_ilm_walker_cnt == 0) { 16104 /* Remove from the list */ 16105 *ilmp = ilm->ilm_next; 16106 ilm->ilm_next = NULL; 16107 FREE_SLIST(ilm->ilm_filter); 16108 FREE_SLIST(ilm->ilm_pendsrcs); 16109 FREE_SLIST(ilm->ilm_rtx.rtx_allow); 16110 FREE_SLIST(ilm->ilm_rtx.rtx_block); 16111 mi_free((char *)ilm); 16112 } else { 16113 ilm->ilm_flags |= ILM_DELETED; 16114 from_ill->ill_ilm_cleanup_reqd = 1; 16115 ilmp = &ilm->ilm_next; 16116 } 16117 } 16118 } 16119 } 16120 16121 static uint_t 16122 ipif_get_id(ill_t *ill, uint_t id) 16123 { 16124 uint_t unit; 16125 ipif_t *tipif; 16126 boolean_t found = B_FALSE; 16127 16128 /* 16129 * During failback, we want to go back to the same id 16130 * instead of the smallest id so that the original 16131 * configuration is maintained. id is non-zero in that 16132 * case. 16133 */ 16134 if (id != 0) { 16135 /* 16136 * While failing back, if we still have an ipif with 16137 * MAX_ADDRS_PER_IF, it means this will be replaced 16138 * as soon as we return from this function. It was 16139 * to set to MAX_ADDRS_PER_IF by the caller so that 16140 * we can choose the smallest id. Thus we return zero 16141 * in that case ignoring the hint. 16142 */ 16143 if (ill->ill_ipif->ipif_id == MAX_ADDRS_PER_IF) 16144 return (0); 16145 for (tipif = ill->ill_ipif; tipif != NULL; 16146 tipif = tipif->ipif_next) { 16147 if (tipif->ipif_id == id) { 16148 found = B_TRUE; 16149 break; 16150 } 16151 } 16152 /* 16153 * If somebody already plumbed another logical 16154 * with the same id, we won't be able to find it. 16155 */ 16156 if (!found) 16157 return (id); 16158 } 16159 for (unit = 0; unit <= ip_addrs_per_if; unit++) { 16160 found = B_FALSE; 16161 for (tipif = ill->ill_ipif; tipif != NULL; 16162 tipif = tipif->ipif_next) { 16163 if (tipif->ipif_id == unit) { 16164 found = B_TRUE; 16165 break; 16166 } 16167 } 16168 if (!found) 16169 break; 16170 } 16171 return (unit); 16172 } 16173 16174 /* ARGSUSED */ 16175 static int 16176 ipif_move(ipif_t *ipif, ill_t *to_ill, queue_t *q, mblk_t *mp, 16177 ipif_t **rep_ipif_ptr) 16178 { 16179 ill_t *from_ill; 16180 ipif_t *rep_ipif; 16181 ipif_t **ipifp; 16182 uint_t unit; 16183 int err = 0; 16184 ipif_t *to_ipif; 16185 struct iocblk *iocp; 16186 boolean_t failback_cmd; 16187 boolean_t remove_ipif; 16188 int rc; 16189 16190 ASSERT(IAM_WRITER_ILL(to_ill)); 16191 ASSERT(IAM_WRITER_IPIF(ipif)); 16192 16193 iocp = (struct iocblk *)mp->b_rptr; 16194 failback_cmd = (iocp->ioc_cmd == SIOCLIFFAILBACK); 16195 remove_ipif = B_FALSE; 16196 16197 from_ill = ipif->ipif_ill; 16198 16199 ASSERT(MUTEX_HELD(&to_ill->ill_lock)); 16200 ASSERT(MUTEX_HELD(&from_ill->ill_lock)); 16201 ASSERT(RW_WRITE_HELD(&ill_g_lock)); 16202 16203 /* 16204 * Don't move LINK LOCAL addresses as they are tied to 16205 * physical interface. 16206 */ 16207 if (from_ill->ill_isv6 && 16208 IN6_IS_ADDR_LINKLOCAL(&ipif->ipif_v6lcl_addr)) { 16209 ipif->ipif_was_up = B_FALSE; 16210 IPIF_UNMARK_MOVING(ipif); 16211 return (0); 16212 } 16213 16214 /* 16215 * We set the ipif_id to maximum so that the search for 16216 * ipif_id will pick the lowest number i.e 0 in the 16217 * following 2 cases : 16218 * 16219 * 1) We have a replacement ipif at the head of to_ill. 16220 * We can't remove it yet as we can exceed ip_addrs_per_if 16221 * on to_ill and hence the MOVE might fail. We want to 16222 * remove it only if we could move the ipif. Thus, by 16223 * setting it to the MAX value, we make the search in 16224 * ipif_get_id return the zeroth id. 16225 * 16226 * 2) When DR pulls out the NIC and re-plumbs the interface, 16227 * we might just have a zero address plumbed on the ipif 16228 * with zero id in the case of IPv4. We remove that while 16229 * doing the failback. We want to remove it only if we 16230 * could move the ipif. Thus, by setting it to the MAX 16231 * value, we make the search in ipif_get_id return the 16232 * zeroth id. 16233 * 16234 * Both (1) and (2) are done only when when we are moving 16235 * an ipif (either due to failover/failback) which originally 16236 * belonged to this interface i.e the ipif_orig_ifindex is 16237 * the same as to_ill's ifindex. This is needed so that 16238 * FAILOVER from A -> B ( A failed) followed by FAILOVER 16239 * from B -> A (B is being removed from the group) and 16240 * FAILBACK from A -> B restores the original configuration. 16241 * Without the check for orig_ifindex, the second FAILOVER 16242 * could make the ipif belonging to B replace the A's zeroth 16243 * ipif and the subsequent failback re-creating the replacement 16244 * ipif again. 16245 * 16246 * NOTE : We created the replacement ipif when we did a 16247 * FAILOVER (See below). We could check for FAILBACK and 16248 * then look for replacement ipif to be removed. But we don't 16249 * want to do that because we wan't to allow the possibility 16250 * of a FAILOVER from A -> B (which creates the replacement ipif), 16251 * followed by a *FAILOVER* from B -> A instead of a FAILBACK 16252 * from B -> A. 16253 */ 16254 to_ipif = to_ill->ill_ipif; 16255 if ((to_ill->ill_phyint->phyint_ifindex == 16256 ipif->ipif_orig_ifindex) && 16257 IPIF_REPL_CHECK(to_ipif, failback_cmd)) { 16258 ASSERT(to_ipif->ipif_id == 0); 16259 remove_ipif = B_TRUE; 16260 to_ipif->ipif_id = MAX_ADDRS_PER_IF; 16261 } 16262 /* 16263 * Find the lowest logical unit number on the to_ill. 16264 * If we are failing back, try to get the original id 16265 * rather than the lowest one so that the original 16266 * configuration is maintained. 16267 * 16268 * XXX need a better scheme for this. 16269 */ 16270 if (failback_cmd) { 16271 unit = ipif_get_id(to_ill, ipif->ipif_orig_ipifid); 16272 } else { 16273 unit = ipif_get_id(to_ill, 0); 16274 } 16275 16276 /* Reset back to zero in case we fail below */ 16277 if (to_ipif->ipif_id == MAX_ADDRS_PER_IF) 16278 to_ipif->ipif_id = 0; 16279 16280 if (unit == ip_addrs_per_if) { 16281 ipif->ipif_was_up = B_FALSE; 16282 IPIF_UNMARK_MOVING(ipif); 16283 return (EINVAL); 16284 } 16285 16286 /* 16287 * ipif is ready to move from "from_ill" to "to_ill". 16288 * 16289 * 1) If we are moving ipif with id zero, create a 16290 * replacement ipif for this ipif on from_ill. If this fails 16291 * fail the MOVE operation. 16292 * 16293 * 2) Remove the replacement ipif on to_ill if any. 16294 * We could remove the replacement ipif when we are moving 16295 * the ipif with id zero. But what if somebody already 16296 * unplumbed it ? Thus we always remove it if it is present. 16297 * We want to do it only if we are sure we are going to 16298 * move the ipif to to_ill which is why there are no 16299 * returns due to error till ipif is linked to to_ill. 16300 * Note that the first ipif that we failback will always 16301 * be zero if it is present. 16302 */ 16303 if (ipif->ipif_id == 0) { 16304 ipaddr_t inaddr_any = INADDR_ANY; 16305 16306 rep_ipif = (ipif_t *)mi_alloc(sizeof (ipif_t), BPRI_MED); 16307 if (rep_ipif == NULL) { 16308 ipif->ipif_was_up = B_FALSE; 16309 IPIF_UNMARK_MOVING(ipif); 16310 return (ENOMEM); 16311 } 16312 *rep_ipif = ipif_zero; 16313 /* 16314 * Before we put the ipif on the list, store the addresses 16315 * as mapped addresses as some of the ioctls e.g SIOCGIFADDR 16316 * assumes so. This logic is not any different from what 16317 * ipif_allocate does. 16318 */ 16319 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 16320 &rep_ipif->ipif_v6lcl_addr); 16321 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 16322 &rep_ipif->ipif_v6src_addr); 16323 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 16324 &rep_ipif->ipif_v6subnet); 16325 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 16326 &rep_ipif->ipif_v6net_mask); 16327 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 16328 &rep_ipif->ipif_v6brd_addr); 16329 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 16330 &rep_ipif->ipif_v6pp_dst_addr); 16331 /* 16332 * We mark IPIF_NOFAILOVER so that this can never 16333 * move. 16334 */ 16335 rep_ipif->ipif_flags = ipif->ipif_flags | IPIF_NOFAILOVER; 16336 rep_ipif->ipif_flags &= ~IPIF_UP; 16337 rep_ipif->ipif_replace_zero = B_TRUE; 16338 mutex_init(&rep_ipif->ipif_saved_ire_lock, NULL, 16339 MUTEX_DEFAULT, NULL); 16340 rep_ipif->ipif_id = 0; 16341 rep_ipif->ipif_ire_type = ipif->ipif_ire_type; 16342 rep_ipif->ipif_ill = from_ill; 16343 rep_ipif->ipif_orig_ifindex = 16344 from_ill->ill_phyint->phyint_ifindex; 16345 /* Insert at head */ 16346 rep_ipif->ipif_next = from_ill->ill_ipif; 16347 from_ill->ill_ipif = rep_ipif; 16348 /* 16349 * We don't really care to let apps know about 16350 * this interface. 16351 */ 16352 } 16353 16354 if (remove_ipif) { 16355 /* 16356 * We set to a max value above for this case to get 16357 * id zero. ASSERT that we did get one. 16358 */ 16359 ASSERT((to_ipif->ipif_id == 0) && (unit == 0)); 16360 rep_ipif = to_ipif; 16361 to_ill->ill_ipif = rep_ipif->ipif_next; 16362 rep_ipif->ipif_next = NULL; 16363 /* 16364 * If some apps scanned and find this interface, 16365 * it is time to let them know, so that they can 16366 * delete it. 16367 */ 16368 16369 *rep_ipif_ptr = rep_ipif; 16370 } 16371 16372 /* Get it out of the ILL interface list. */ 16373 ipifp = &ipif->ipif_ill->ill_ipif; 16374 for (; *ipifp != NULL; ipifp = &ipifp[0]->ipif_next) { 16375 if (*ipifp == ipif) { 16376 *ipifp = ipif->ipif_next; 16377 break; 16378 } 16379 } 16380 16381 /* Assign the new ill */ 16382 ipif->ipif_ill = to_ill; 16383 ipif->ipif_id = unit; 16384 /* id has already been checked */ 16385 rc = ipif_insert(ipif, B_FALSE, B_FALSE); 16386 ASSERT(rc == 0); 16387 /* Let SCTP update its list */ 16388 sctp_move_ipif(ipif, from_ill, to_ill); 16389 /* 16390 * Handle the failover and failback of ipif_t between 16391 * ill_t that have differing maximum mtu values. 16392 */ 16393 if (ipif->ipif_mtu > to_ill->ill_max_mtu) { 16394 if (ipif->ipif_saved_mtu == 0) { 16395 /* 16396 * As this ipif_t is moving to an ill_t 16397 * that has a lower ill_max_mtu, its 16398 * ipif_mtu needs to be saved so it can 16399 * be restored during failback or during 16400 * failover to an ill_t which has a 16401 * higher ill_max_mtu. 16402 */ 16403 ipif->ipif_saved_mtu = ipif->ipif_mtu; 16404 ipif->ipif_mtu = to_ill->ill_max_mtu; 16405 } else { 16406 /* 16407 * The ipif_t is, once again, moving to 16408 * an ill_t that has a lower maximum mtu 16409 * value. 16410 */ 16411 ipif->ipif_mtu = to_ill->ill_max_mtu; 16412 } 16413 } else if (ipif->ipif_mtu < to_ill->ill_max_mtu && 16414 ipif->ipif_saved_mtu != 0) { 16415 /* 16416 * The mtu of this ipif_t had to be reduced 16417 * during an earlier failover; this is an 16418 * opportunity for it to be increased (either as 16419 * part of another failover or a failback). 16420 */ 16421 if (ipif->ipif_saved_mtu <= to_ill->ill_max_mtu) { 16422 ipif->ipif_mtu = ipif->ipif_saved_mtu; 16423 ipif->ipif_saved_mtu = 0; 16424 } else { 16425 ipif->ipif_mtu = to_ill->ill_max_mtu; 16426 } 16427 } 16428 16429 /* 16430 * We preserve all the other fields of the ipif including 16431 * ipif_saved_ire_mp. The routes that are saved here will 16432 * be recreated on the new interface and back on the old 16433 * interface when we move back. 16434 */ 16435 ASSERT(ipif->ipif_arp_del_mp == NULL); 16436 16437 return (err); 16438 } 16439 16440 static int 16441 ipif_move_all(ill_t *from_ill, ill_t *to_ill, queue_t *q, mblk_t *mp, 16442 int ifindex, ipif_t **rep_ipif_ptr) 16443 { 16444 ipif_t *mipif; 16445 ipif_t *ipif_next; 16446 int err; 16447 16448 /* 16449 * We don't really try to MOVE back things if some of the 16450 * operations fail. The daemon will take care of moving again 16451 * later on. 16452 */ 16453 for (mipif = from_ill->ill_ipif; mipif != NULL; mipif = ipif_next) { 16454 ipif_next = mipif->ipif_next; 16455 if (!(mipif->ipif_flags & IPIF_NOFAILOVER) && 16456 (ifindex == 0 || ifindex == mipif->ipif_orig_ifindex)) { 16457 16458 err = ipif_move(mipif, to_ill, q, mp, rep_ipif_ptr); 16459 16460 /* 16461 * When the MOVE fails, it is the job of the 16462 * application to take care of this properly 16463 * i.e try again if it is ENOMEM. 16464 */ 16465 if (mipif->ipif_ill != from_ill) { 16466 /* 16467 * ipif has moved. 16468 * 16469 * Move the multicast memberships associated 16470 * with this ipif to the new ill. For IPv6, we 16471 * do it once after all the ipifs are moved 16472 * (in ill_move) as they are not associated 16473 * with ipifs. 16474 * 16475 * We need to move the ilms as the ipif has 16476 * already been moved to a new ill even 16477 * in the case of errors. Neither 16478 * ilm_free(ipif) will find the ilm 16479 * when somebody unplumbs this ipif nor 16480 * ilm_delete(ilm) will be able to find the 16481 * ilm, if we don't move now. 16482 */ 16483 if (!from_ill->ill_isv6) 16484 ilm_move_v4(from_ill, to_ill, mipif); 16485 } 16486 16487 if (err != 0) 16488 return (err); 16489 } 16490 } 16491 return (0); 16492 } 16493 16494 static int 16495 ill_move(ill_t *from_ill, ill_t *to_ill, queue_t *q, mblk_t *mp) 16496 { 16497 int ifindex; 16498 int err; 16499 struct iocblk *iocp; 16500 ipif_t *ipif; 16501 ipif_t *rep_ipif_ptr = NULL; 16502 ipif_t *from_ipif = NULL; 16503 boolean_t check_rep_if = B_FALSE; 16504 16505 iocp = (struct iocblk *)mp->b_rptr; 16506 if (iocp->ioc_cmd == SIOCLIFFAILOVER) { 16507 /* 16508 * Move everything pointing at from_ill to to_ill. 16509 * We acheive this by passing in 0 as ifindex. 16510 */ 16511 ifindex = 0; 16512 } else { 16513 /* 16514 * Move everything pointing at from_ill whose original 16515 * ifindex of connp, ipif, ilm points at to_ill->ill_index. 16516 * We acheive this by passing in ifindex rather than 0. 16517 * Multicast vifs, ilgs move implicitly because ipifs move. 16518 */ 16519 ASSERT(iocp->ioc_cmd == SIOCLIFFAILBACK); 16520 ifindex = to_ill->ill_phyint->phyint_ifindex; 16521 } 16522 16523 /* 16524 * Determine if there is at least one ipif that would move from 16525 * 'from_ill' to 'to_ill'. If so, it is possible that the replacement 16526 * ipif (if it exists) on the to_ill would be consumed as a result of 16527 * the move, in which case we need to quiesce the replacement ipif also. 16528 */ 16529 for (from_ipif = from_ill->ill_ipif; from_ipif != NULL; 16530 from_ipif = from_ipif->ipif_next) { 16531 if (((ifindex == 0) || 16532 (ifindex == from_ipif->ipif_orig_ifindex)) && 16533 !(from_ipif->ipif_flags & IPIF_NOFAILOVER)) { 16534 check_rep_if = B_TRUE; 16535 break; 16536 } 16537 } 16538 16539 16540 ill_down_ipifs(from_ill, mp, ifindex, B_TRUE); 16541 16542 GRAB_ILL_LOCKS(from_ill, to_ill); 16543 if ((ipif = ill_quiescent_to_move(from_ill)) != NULL) { 16544 (void) ipsq_pending_mp_add(NULL, ipif, q, 16545 mp, ILL_MOVE_OK); 16546 RELEASE_ILL_LOCKS(from_ill, to_ill); 16547 return (EINPROGRESS); 16548 } 16549 16550 /* Check if the replacement ipif is quiescent to delete */ 16551 if (check_rep_if && IPIF_REPL_CHECK(to_ill->ill_ipif, 16552 (iocp->ioc_cmd == SIOCLIFFAILBACK))) { 16553 to_ill->ill_ipif->ipif_state_flags |= 16554 IPIF_MOVING | IPIF_CHANGING; 16555 if ((ipif = ill_quiescent_to_move(to_ill)) != NULL) { 16556 (void) ipsq_pending_mp_add(NULL, ipif, q, 16557 mp, ILL_MOVE_OK); 16558 RELEASE_ILL_LOCKS(from_ill, to_ill); 16559 return (EINPROGRESS); 16560 } 16561 } 16562 RELEASE_ILL_LOCKS(from_ill, to_ill); 16563 16564 ASSERT(!MUTEX_HELD(&to_ill->ill_lock)); 16565 rw_enter(&ill_g_lock, RW_WRITER); 16566 GRAB_ILL_LOCKS(from_ill, to_ill); 16567 err = ipif_move_all(from_ill, to_ill, q, mp, ifindex, &rep_ipif_ptr); 16568 16569 /* ilm_move is done inside ipif_move for IPv4 */ 16570 if (err == 0 && from_ill->ill_isv6) 16571 ilm_move_v6(from_ill, to_ill, ifindex); 16572 16573 RELEASE_ILL_LOCKS(from_ill, to_ill); 16574 rw_exit(&ill_g_lock); 16575 16576 /* 16577 * send rts messages and multicast messages. 16578 */ 16579 if (rep_ipif_ptr != NULL) { 16580 ip_rts_ifmsg(rep_ipif_ptr); 16581 ip_rts_newaddrmsg(RTM_DELETE, 0, rep_ipif_ptr); 16582 IPIF_TRACE_CLEANUP(rep_ipif_ptr); 16583 mi_free(rep_ipif_ptr); 16584 } 16585 16586 ilm_send_multicast_reqs(from_ill, to_ill); 16587 16588 conn_move_ill(from_ill, to_ill, ifindex); 16589 16590 return (err); 16591 } 16592 16593 /* 16594 * Used to extract arguments for FAILOVER/FAILBACK ioctls. 16595 * Also checks for the validity of the arguments. 16596 * Note: We are already exclusive inside the from group. 16597 * It is upto the caller to release refcnt on the to_ill's. 16598 */ 16599 static int 16600 ip_extract_move_args(queue_t *q, mblk_t *mp, ill_t **ill_from_v4, 16601 ill_t **ill_from_v6, ill_t **ill_to_v4, ill_t **ill_to_v6) 16602 { 16603 int dst_index; 16604 ipif_t *ipif_v4, *ipif_v6; 16605 struct lifreq *lifr; 16606 mblk_t *mp1; 16607 boolean_t exists; 16608 sin_t *sin; 16609 int err = 0; 16610 16611 if ((mp1 = mp->b_cont) == NULL) 16612 return (EPROTO); 16613 16614 if ((mp1 = mp1->b_cont) == NULL) 16615 return (EPROTO); 16616 16617 lifr = (struct lifreq *)mp1->b_rptr; 16618 sin = (sin_t *)&lifr->lifr_addr; 16619 16620 /* 16621 * We operate on both IPv4 and IPv6. Thus, we don't allow IPv4/IPv6 16622 * specific operations. 16623 */ 16624 if (sin->sin_family != AF_UNSPEC) 16625 return (EINVAL); 16626 16627 /* 16628 * Get ipif with id 0. We are writer on the from ill. So we can pass 16629 * NULLs for the last 4 args and we know the lookup won't fail 16630 * with EINPROGRESS. 16631 */ 16632 ipif_v4 = ipif_lookup_on_name(lifr->lifr_name, 16633 mi_strlen(lifr->lifr_name), B_FALSE, &exists, B_FALSE, 16634 ALL_ZONES, NULL, NULL, NULL, NULL); 16635 ipif_v6 = ipif_lookup_on_name(lifr->lifr_name, 16636 mi_strlen(lifr->lifr_name), B_FALSE, &exists, B_TRUE, 16637 ALL_ZONES, NULL, NULL, NULL, NULL); 16638 16639 if (ipif_v4 == NULL && ipif_v6 == NULL) 16640 return (ENXIO); 16641 16642 if (ipif_v4 != NULL) { 16643 ASSERT(ipif_v4->ipif_refcnt != 0); 16644 if (ipif_v4->ipif_id != 0) { 16645 err = EINVAL; 16646 goto done; 16647 } 16648 16649 ASSERT(IAM_WRITER_IPIF(ipif_v4)); 16650 *ill_from_v4 = ipif_v4->ipif_ill; 16651 } 16652 16653 if (ipif_v6 != NULL) { 16654 ASSERT(ipif_v6->ipif_refcnt != 0); 16655 if (ipif_v6->ipif_id != 0) { 16656 err = EINVAL; 16657 goto done; 16658 } 16659 16660 ASSERT(IAM_WRITER_IPIF(ipif_v6)); 16661 *ill_from_v6 = ipif_v6->ipif_ill; 16662 } 16663 16664 err = 0; 16665 dst_index = lifr->lifr_movetoindex; 16666 *ill_to_v4 = ill_lookup_on_ifindex(dst_index, B_FALSE, 16667 q, mp, ip_process_ioctl, &err); 16668 if (err != 0) { 16669 /* 16670 * There could be only v6. 16671 */ 16672 if (err != ENXIO) 16673 goto done; 16674 err = 0; 16675 } 16676 16677 *ill_to_v6 = ill_lookup_on_ifindex(dst_index, B_TRUE, 16678 q, mp, ip_process_ioctl, &err); 16679 if (err != 0) { 16680 if (err != ENXIO) 16681 goto done; 16682 if (*ill_to_v4 == NULL) { 16683 err = ENXIO; 16684 goto done; 16685 } 16686 err = 0; 16687 } 16688 16689 /* 16690 * If we have something to MOVE i.e "from" not NULL, 16691 * "to" should be non-NULL. 16692 */ 16693 if ((*ill_from_v4 != NULL && *ill_to_v4 == NULL) || 16694 (*ill_from_v6 != NULL && *ill_to_v6 == NULL)) { 16695 err = EINVAL; 16696 } 16697 16698 done: 16699 if (ipif_v4 != NULL) 16700 ipif_refrele(ipif_v4); 16701 if (ipif_v6 != NULL) 16702 ipif_refrele(ipif_v6); 16703 return (err); 16704 } 16705 16706 /* 16707 * FAILOVER and FAILBACK are modelled as MOVE operations. 16708 * 16709 * We don't check whether the MOVE is within the same group or 16710 * not, because this ioctl can be used as a generic mechanism 16711 * to failover from interface A to B, though things will function 16712 * only if they are really part of the same group. Moreover, 16713 * all ipifs may be down and hence temporarily out of the group. 16714 * 16715 * ipif's that need to be moved are first brought down; V4 ipifs are brought 16716 * down first and then V6. For each we wait for the ipif's to become quiescent. 16717 * Bringing down the ipifs ensures that all ires pointing to these ipifs's 16718 * have been deleted and there are no active references. Once quiescent the 16719 * ipif's are moved and brought up on the new ill. 16720 * 16721 * Normally the source ill and destination ill belong to the same IPMP group 16722 * and hence the same ipsq_t. In the event they don't belong to the same 16723 * same group the two ipsq's are first merged into one ipsq - that of the 16724 * to_ill. The multicast memberships on the source and destination ill cannot 16725 * change during the move operation since multicast joins/leaves also have to 16726 * execute on the same ipsq and are hence serialized. 16727 */ 16728 /* ARGSUSED */ 16729 int 16730 ip_sioctl_move(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 16731 ip_ioctl_cmd_t *ipip, void *ifreq) 16732 { 16733 ill_t *ill_to_v4 = NULL; 16734 ill_t *ill_to_v6 = NULL; 16735 ill_t *ill_from_v4 = NULL; 16736 ill_t *ill_from_v6 = NULL; 16737 int err = 0; 16738 16739 /* 16740 * setup from and to ill's, we can get EINPROGRESS only for 16741 * to_ill's. 16742 */ 16743 err = ip_extract_move_args(q, mp, &ill_from_v4, &ill_from_v6, 16744 &ill_to_v4, &ill_to_v6); 16745 16746 if (err != 0) { 16747 ip0dbg(("ip_sioctl_move: extract args failed\n")); 16748 goto done; 16749 } 16750 16751 /* 16752 * nothing to do. 16753 */ 16754 if ((ill_from_v4 != NULL) && (ill_from_v4 == ill_to_v4)) { 16755 goto done; 16756 } 16757 16758 /* 16759 * nothing to do. 16760 */ 16761 if ((ill_from_v6 != NULL) && (ill_from_v6 == ill_to_v6)) { 16762 goto done; 16763 } 16764 16765 /* 16766 * Mark the ill as changing. 16767 * ILL_CHANGING flag is cleared when the ipif's are brought up 16768 * in ill_up_ipifs in case of error they are cleared below. 16769 */ 16770 16771 GRAB_ILL_LOCKS(ill_from_v4, ill_from_v6); 16772 if (ill_from_v4 != NULL) 16773 ill_from_v4->ill_state_flags |= ILL_CHANGING; 16774 if (ill_from_v6 != NULL) 16775 ill_from_v6->ill_state_flags |= ILL_CHANGING; 16776 RELEASE_ILL_LOCKS(ill_from_v4, ill_from_v6); 16777 16778 /* 16779 * Make sure that both src and dst are 16780 * in the same syncq group. If not make it happen. 16781 * We are not holding any locks because we are the writer 16782 * on the from_ipsq and we will hold locks in ill_merge_groups 16783 * to protect to_ipsq against changing. 16784 */ 16785 if (ill_from_v4 != NULL) { 16786 if (ill_from_v4->ill_phyint->phyint_ipsq != 16787 ill_to_v4->ill_phyint->phyint_ipsq) { 16788 err = ill_merge_groups(ill_from_v4, ill_to_v4, 16789 NULL, mp, q); 16790 goto err_ret; 16791 16792 } 16793 ASSERT(!MUTEX_HELD(&ill_to_v4->ill_lock)); 16794 } else { 16795 16796 if (ill_from_v6->ill_phyint->phyint_ipsq != 16797 ill_to_v6->ill_phyint->phyint_ipsq) { 16798 err = ill_merge_groups(ill_from_v6, ill_to_v6, 16799 NULL, mp, q); 16800 goto err_ret; 16801 16802 } 16803 ASSERT(!MUTEX_HELD(&ill_to_v6->ill_lock)); 16804 } 16805 16806 /* 16807 * Now that the ipsq's have been merged and we are the writer 16808 * lets mark to_ill as changing as well. 16809 */ 16810 16811 GRAB_ILL_LOCKS(ill_to_v4, ill_to_v6); 16812 if (ill_to_v4 != NULL) 16813 ill_to_v4->ill_state_flags |= ILL_CHANGING; 16814 if (ill_to_v6 != NULL) 16815 ill_to_v6->ill_state_flags |= ILL_CHANGING; 16816 RELEASE_ILL_LOCKS(ill_to_v4, ill_to_v6); 16817 16818 /* 16819 * Its ok for us to proceed with the move even if 16820 * ill_pending_mp is non null on one of the from ill's as the reply 16821 * should not be looking at the ipif, it should only care about the 16822 * ill itself. 16823 */ 16824 16825 /* 16826 * lets move ipv4 first. 16827 */ 16828 if (ill_from_v4 != NULL) { 16829 ASSERT(IAM_WRITER_ILL(ill_to_v4)); 16830 ill_from_v4->ill_move_in_progress = B_TRUE; 16831 ill_to_v4->ill_move_in_progress = B_TRUE; 16832 ill_to_v4->ill_move_peer = ill_from_v4; 16833 ill_from_v4->ill_move_peer = ill_to_v4; 16834 err = ill_move(ill_from_v4, ill_to_v4, q, mp); 16835 } 16836 16837 /* 16838 * Now lets move ipv6. 16839 */ 16840 if (err == 0 && ill_from_v6 != NULL) { 16841 ASSERT(IAM_WRITER_ILL(ill_to_v6)); 16842 ill_from_v6->ill_move_in_progress = B_TRUE; 16843 ill_to_v6->ill_move_in_progress = B_TRUE; 16844 ill_to_v6->ill_move_peer = ill_from_v6; 16845 ill_from_v6->ill_move_peer = ill_to_v6; 16846 err = ill_move(ill_from_v6, ill_to_v6, q, mp); 16847 } 16848 16849 err_ret: 16850 if (err == 0) 16851 goto no_err; 16852 /* 16853 * EINPROGRESS means we are waiting for the ipif's that need to be 16854 * moved to become quiescent. 16855 */ 16856 if (err == EINPROGRESS) { 16857 goto done; 16858 } 16859 16860 /* 16861 * if err is set ill_up_ipifs will not be called 16862 * lets clear the flags. 16863 */ 16864 16865 GRAB_ILL_LOCKS(ill_to_v4, ill_to_v6); 16866 GRAB_ILL_LOCKS(ill_from_v4, ill_from_v6); 16867 /* 16868 * Some of the clearing may be redundant. But it is simple 16869 * not making any extra checks. 16870 */ 16871 if (ill_from_v6 != NULL) { 16872 ill_from_v6->ill_move_in_progress = B_FALSE; 16873 ill_from_v6->ill_move_peer = NULL; 16874 ill_from_v6->ill_state_flags &= ~ILL_CHANGING; 16875 } 16876 if (ill_from_v4 != NULL) { 16877 ill_from_v4->ill_move_in_progress = B_FALSE; 16878 ill_from_v4->ill_move_peer = NULL; 16879 ill_from_v4->ill_state_flags &= ~ILL_CHANGING; 16880 } 16881 if (ill_to_v6 != NULL) { 16882 ill_to_v6->ill_move_in_progress = B_FALSE; 16883 ill_to_v6->ill_move_peer = NULL; 16884 ill_to_v6->ill_state_flags &= ~ILL_CHANGING; 16885 } 16886 if (ill_to_v4 != NULL) { 16887 ill_to_v4->ill_move_in_progress = B_FALSE; 16888 ill_to_v4->ill_move_peer = NULL; 16889 ill_to_v4->ill_state_flags &= ~ILL_CHANGING; 16890 } 16891 /* 16892 * Check for setting INACTIVE, if STANDBY is set. Do this always 16893 * to maintain proper state i.e even in the case of errors. 16894 * As phyint_standby_inactive looks at both v4 and v6 interfaces, 16895 * we need not call on both v4 and v6 interfaces. 16896 */ 16897 if (ill_from_v4 != NULL) { 16898 if (ill_from_v4->ill_phyint->phyint_flags & PHYI_STANDBY) { 16899 phyint_standby_inactive(ill_from_v4->ill_phyint); 16900 } 16901 } else if (ill_from_v6 != NULL) { 16902 if (ill_from_v6->ill_phyint->phyint_flags & PHYI_STANDBY) { 16903 phyint_standby_inactive(ill_from_v6->ill_phyint); 16904 } 16905 } 16906 16907 if (ill_to_v4 != NULL) { 16908 if (ill_to_v4->ill_phyint->phyint_flags & PHYI_STANDBY) { 16909 phyint_standby_inactive(ill_to_v4->ill_phyint); 16910 } 16911 16912 } else if (ill_to_v6 != NULL) { 16913 if (ill_to_v6->ill_phyint->phyint_flags & PHYI_STANDBY) { 16914 phyint_standby_inactive(ill_to_v6->ill_phyint); 16915 } 16916 } 16917 16918 RELEASE_ILL_LOCKS(ill_to_v4, ill_to_v6); 16919 RELEASE_ILL_LOCKS(ill_from_v4, ill_from_v6); 16920 16921 no_err: 16922 /* 16923 * lets bring the interfaces up on the to_ill. 16924 */ 16925 if (err == 0) { 16926 err = ill_up_ipifs(ill_to_v4 == NULL ? ill_to_v6:ill_to_v4, 16927 q, mp); 16928 } 16929 done: 16930 16931 if (ill_to_v4 != NULL) { 16932 ill_refrele(ill_to_v4); 16933 } 16934 if (ill_to_v6 != NULL) { 16935 ill_refrele(ill_to_v6); 16936 } 16937 16938 return (err); 16939 } 16940 16941 static void 16942 ill_dl_down(ill_t *ill) 16943 { 16944 /* 16945 * The ill is down; unbind but stay attached since we're still 16946 * associated with a PPA. 16947 */ 16948 mblk_t *mp = ill->ill_unbind_mp; 16949 16950 ill->ill_unbind_mp = NULL; 16951 ip1dbg(("ill_dl_down(%s)\n", ill->ill_name)); 16952 if (mp != NULL) { 16953 ip1dbg(("ill_dl_down: %s (%u) for %s\n", 16954 dlpi_prim_str(*(int *)mp->b_rptr), *(int *)mp->b_rptr, 16955 ill->ill_name)); 16956 ill_dlpi_send(ill, mp); 16957 } 16958 16959 /* 16960 * Toss all of our multicast memberships. We could keep them, but 16961 * then we'd have to do bookkeeping of any joins and leaves performed 16962 * by the application while the the interface is down (we can't just 16963 * issue them because arp cannot currently process AR_ENTRY_SQUERY's 16964 * on a downed interface). 16965 */ 16966 ill_leave_multicast(ill); 16967 16968 mutex_enter(&ill->ill_lock); 16969 ill->ill_dl_up = 0; 16970 mutex_exit(&ill->ill_lock); 16971 } 16972 16973 void 16974 ill_dlpi_dispatch(ill_t *ill, mblk_t *mp) 16975 { 16976 union DL_primitives *dlp; 16977 t_uscalar_t prim; 16978 16979 ASSERT(DB_TYPE(mp) == M_PROTO || DB_TYPE(mp) == M_PCPROTO); 16980 16981 dlp = (union DL_primitives *)mp->b_rptr; 16982 prim = dlp->dl_primitive; 16983 16984 ip1dbg(("ill_dlpi_dispatch: sending %s (%u) to %s\n", 16985 dlpi_prim_str(prim), prim, ill->ill_name)); 16986 16987 switch (prim) { 16988 case DL_PHYS_ADDR_REQ: 16989 { 16990 dl_phys_addr_req_t *dlpap = (dl_phys_addr_req_t *)mp->b_rptr; 16991 ill->ill_phys_addr_pend = dlpap->dl_addr_type; 16992 break; 16993 } 16994 case DL_BIND_REQ: 16995 mutex_enter(&ill->ill_lock); 16996 ill->ill_state_flags &= ~ILL_DL_UNBIND_DONE; 16997 mutex_exit(&ill->ill_lock); 16998 break; 16999 } 17000 17001 ill->ill_dlpi_pending = prim; 17002 17003 /* 17004 * Some drivers send M_FLUSH up to IP as part of unbind 17005 * request. When this M_FLUSH is sent back to the driver, 17006 * this can go after we send the detach request if the 17007 * M_FLUSH ends up in IP's syncq. To avoid that, we reply 17008 * to the M_FLUSH in ip_rput and locally generate another 17009 * M_FLUSH for the correctness. This will get freed in 17010 * ip_wput_nondata. 17011 */ 17012 if (prim == DL_UNBIND_REQ) 17013 (void) putnextctl1(ill->ill_rq, M_FLUSH, FLUSHRW); 17014 17015 putnext(ill->ill_wq, mp); 17016 } 17017 17018 /* 17019 * Send a DLPI control message to the driver but make sure there 17020 * is only one outstanding message. Uses ill_dlpi_pending to tell 17021 * when it must queue. ip_rput_dlpi_writer calls ill_dlpi_done() 17022 * when an ACK or a NAK is received to process the next queued message. 17023 * 17024 * We don't protect ill_dlpi_pending with any lock. This is okay as 17025 * every place where its accessed, ip is exclusive while accessing 17026 * ill_dlpi_pending except when this function is called from ill_init() 17027 */ 17028 void 17029 ill_dlpi_send(ill_t *ill, mblk_t *mp) 17030 { 17031 mblk_t **mpp; 17032 17033 ASSERT(IAM_WRITER_ILL(ill)); 17034 ASSERT(DB_TYPE(mp) == M_PROTO || DB_TYPE(mp) == M_PCPROTO); 17035 17036 if (ill->ill_dlpi_pending != DL_PRIM_INVAL) { 17037 /* Must queue message. Tail insertion */ 17038 mpp = &ill->ill_dlpi_deferred; 17039 while (*mpp != NULL) 17040 mpp = &((*mpp)->b_next); 17041 17042 ip1dbg(("ill_dlpi_send: deferring request for %s\n", 17043 ill->ill_name)); 17044 17045 *mpp = mp; 17046 return; 17047 } 17048 17049 ill_dlpi_dispatch(ill, mp); 17050 } 17051 17052 /* 17053 * Called when an DLPI control message has been acked or nacked to 17054 * send down the next queued message (if any). 17055 */ 17056 void 17057 ill_dlpi_done(ill_t *ill, t_uscalar_t prim) 17058 { 17059 mblk_t *mp; 17060 17061 ASSERT(IAM_WRITER_ILL(ill)); 17062 17063 ASSERT(prim != DL_PRIM_INVAL); 17064 if (ill->ill_dlpi_pending != prim) { 17065 if (ill->ill_dlpi_pending == DL_PRIM_INVAL) { 17066 (void) mi_strlog(ill->ill_rq, 1, 17067 SL_CONSOLE|SL_ERROR|SL_TRACE, 17068 "ill_dlpi_done: unsolicited ack for %s from %s\n", 17069 dlpi_prim_str(prim), ill->ill_name); 17070 } else { 17071 (void) mi_strlog(ill->ill_rq, 1, 17072 SL_CONSOLE|SL_ERROR|SL_TRACE, 17073 "ill_dlpi_done: unexpected ack for %s from %s " 17074 "(expecting ack for %s)\n", 17075 dlpi_prim_str(prim), ill->ill_name, 17076 dlpi_prim_str(ill->ill_dlpi_pending)); 17077 } 17078 return; 17079 } 17080 17081 ip1dbg(("ill_dlpi_done: %s has completed %s (%u)\n", ill->ill_name, 17082 dlpi_prim_str(ill->ill_dlpi_pending), ill->ill_dlpi_pending)); 17083 17084 if ((mp = ill->ill_dlpi_deferred) == NULL) { 17085 ill->ill_dlpi_pending = DL_PRIM_INVAL; 17086 return; 17087 } 17088 17089 ill->ill_dlpi_deferred = mp->b_next; 17090 mp->b_next = NULL; 17091 17092 ill_dlpi_dispatch(ill, mp); 17093 } 17094 17095 void 17096 conn_delete_ire(conn_t *connp, caddr_t arg) 17097 { 17098 ipif_t *ipif = (ipif_t *)arg; 17099 ire_t *ire; 17100 17101 /* 17102 * Look at the cached ires on conns which has pointers to ipifs. 17103 * We just call ire_refrele which clears up the reference 17104 * to ire. Called when a conn closes. Also called from ipif_free 17105 * to cleanup indirect references to the stale ipif via the cached ire. 17106 */ 17107 mutex_enter(&connp->conn_lock); 17108 ire = connp->conn_ire_cache; 17109 if (ire != NULL && (ipif == NULL || ire->ire_ipif == ipif)) { 17110 connp->conn_ire_cache = NULL; 17111 mutex_exit(&connp->conn_lock); 17112 IRE_REFRELE_NOTR(ire); 17113 return; 17114 } 17115 mutex_exit(&connp->conn_lock); 17116 17117 } 17118 17119 /* 17120 * Some operations (illgrp_delete(), ipif_down()) conditionally delete a number 17121 * of IREs. Those IREs may have been previously cached in the conn structure. 17122 * This ipcl_walk() walker function releases all references to such IREs based 17123 * on the condemned flag. 17124 */ 17125 /* ARGSUSED */ 17126 void 17127 conn_cleanup_stale_ire(conn_t *connp, caddr_t arg) 17128 { 17129 ire_t *ire; 17130 17131 mutex_enter(&connp->conn_lock); 17132 ire = connp->conn_ire_cache; 17133 if (ire != NULL && (ire->ire_marks & IRE_MARK_CONDEMNED)) { 17134 connp->conn_ire_cache = NULL; 17135 mutex_exit(&connp->conn_lock); 17136 IRE_REFRELE_NOTR(ire); 17137 return; 17138 } 17139 mutex_exit(&connp->conn_lock); 17140 } 17141 17142 /* 17143 * Take down a specific interface, but don't lose any information about it. 17144 * Also delete interface from its interface group (ifgrp). 17145 * (Always called as writer.) 17146 * This function goes through the down sequence even if the interface is 17147 * already down. There are 2 reasons. 17148 * a. Currently we permit interface routes that depend on down interfaces 17149 * to be added. This behaviour itself is questionable. However it appears 17150 * that both Solaris and 4.3 BSD have exhibited this behaviour for a long 17151 * time. We go thru the cleanup in order to remove these routes. 17152 * b. The bringup of the interface could fail in ill_dl_up i.e. we get 17153 * DL_ERROR_ACK in response to the the DL_BIND request. The interface is 17154 * down, but we need to cleanup i.e. do ill_dl_down and 17155 * ip_rput_dlpi_writer (DL_ERROR_ACK) -> ipif_down. 17156 * 17157 * IP-MT notes: 17158 * 17159 * Model of reference to interfaces. 17160 * 17161 * The following members in ipif_t track references to the ipif. 17162 * int ipif_refcnt; Active reference count 17163 * uint_t ipif_ire_cnt; Number of ire's referencing this ipif 17164 * The following members in ill_t track references to the ill. 17165 * int ill_refcnt; active refcnt 17166 * uint_t ill_ire_cnt; Number of ires referencing ill 17167 * uint_t ill_nce_cnt; Number of nces referencing ill 17168 * 17169 * Reference to an ipif or ill can be obtained in any of the following ways. 17170 * 17171 * Through the lookup functions ipif_lookup_* / ill_lookup_* functions 17172 * Pointers to ipif / ill from other data structures viz ire and conn. 17173 * Implicit reference to the ipif / ill by holding a reference to the ire. 17174 * 17175 * The ipif/ill lookup functions return a reference held ipif / ill. 17176 * ipif_refcnt and ill_refcnt track the reference counts respectively. 17177 * This is a purely dynamic reference count associated with threads holding 17178 * references to the ipif / ill. Pointers from other structures do not 17179 * count towards this reference count. 17180 * 17181 * ipif_ire_cnt/ill_ire_cnt is the number of ire's associated with the 17182 * ipif/ill. This is incremented whenever a new ire is created referencing the 17183 * ipif/ill. This is done atomically inside ire_add_v[46] where the ire is 17184 * actually added to the ire hash table. The count is decremented in 17185 * ire_inactive where the ire is destroyed. 17186 * 17187 * nce's reference ill's thru nce_ill and the count of nce's associated with 17188 * an ill is recorded in ill_nce_cnt. This is incremented atomically in 17189 * ndp_add() where the nce is actually added to the table. Similarly it is 17190 * decremented in ndp_inactive where the nce is destroyed. 17191 * 17192 * Flow of ioctls involving interface down/up 17193 * 17194 * The following is the sequence of an attempt to set some critical flags on an 17195 * up interface. 17196 * ip_sioctl_flags 17197 * ipif_down 17198 * wait for ipif to be quiescent 17199 * ipif_down_tail 17200 * ip_sioctl_flags_tail 17201 * 17202 * All set ioctls that involve down/up sequence would have a skeleton similar 17203 * to the above. All the *tail functions are called after the refcounts have 17204 * dropped to the appropriate values. 17205 * 17206 * The mechanism to quiesce an ipif is as follows. 17207 * 17208 * Mark the ipif as IPIF_CHANGING. No more lookups will be allowed 17209 * on the ipif. Callers either pass a flag requesting wait or the lookup 17210 * functions will return NULL. 17211 * 17212 * Delete all ires referencing this ipif 17213 * 17214 * Any thread attempting to do an ipif_refhold on an ipif that has been 17215 * obtained thru a cached pointer will first make sure that 17216 * the ipif can be refheld using the macro IPIF_CAN_LOOKUP and only then 17217 * increment the refcount. 17218 * 17219 * The above guarantees that the ipif refcount will eventually come down to 17220 * zero and the ipif will quiesce, once all threads that currently hold a 17221 * reference to the ipif refrelease the ipif. The ipif is quiescent after the 17222 * ipif_refcount has dropped to zero and all ire's associated with this ipif 17223 * have also been ire_inactive'd. i.e. when ipif_ire_cnt and ipif_refcnt both 17224 * drop to zero. 17225 * 17226 * Lookups during the IPIF_CHANGING/ILL_CHANGING interval. 17227 * 17228 * Threads trying to lookup an ipif or ill can pass a flag requesting 17229 * wait and restart if the ipif / ill cannot be looked up currently. 17230 * For eg. bind, and route operations (Eg. route add / delete) cannot return 17231 * failure if the ipif is currently undergoing an exclusive operation, and 17232 * hence pass the flag. The mblk is then enqueued in the ipsq and the operation 17233 * is restarted by ipsq_exit() when the currently exclusive ioctl completes. 17234 * The lookup and enqueue is atomic using the ill_lock and ipsq_lock. The 17235 * lookup is done holding the ill_lock. Hence the ill/ipif state flags can't 17236 * change while the ill_lock is held. Before dropping the ill_lock we acquire 17237 * the ipsq_lock and call ipsq_enq. This ensures that ipsq_exit can't finish 17238 * until we release the ipsq_lock, even though the the ill/ipif state flags 17239 * can change after we drop the ill_lock. 17240 * 17241 * An attempt to send out a packet using an ipif that is currently 17242 * IPIF_CHANGING will fail. No attempt is made in this case to enqueue this 17243 * operation and restart it later when the exclusive condition on the ipif ends. 17244 * This is an example of not passing the wait flag to the lookup functions. For 17245 * example an attempt to refhold and use conn->conn_multicast_ipif and send 17246 * out a multicast packet on that ipif will fail while the ipif is 17247 * IPIF_CHANGING. An attempt to create an IRE_CACHE using an ipif that is 17248 * currently IPIF_CHANGING will also fail. 17249 */ 17250 int 17251 ipif_down(ipif_t *ipif, queue_t *q, mblk_t *mp) 17252 { 17253 ill_t *ill = ipif->ipif_ill; 17254 phyint_t *phyi; 17255 conn_t *connp; 17256 boolean_t success; 17257 boolean_t ipif_was_up = B_FALSE; 17258 17259 ASSERT(IAM_WRITER_IPIF(ipif)); 17260 17261 ip1dbg(("ipif_down(%s:%u)\n", ill->ill_name, ipif->ipif_id)); 17262 17263 if (ipif->ipif_flags & IPIF_UP) { 17264 mutex_enter(&ill->ill_lock); 17265 ipif->ipif_flags &= ~IPIF_UP; 17266 ASSERT(ill->ill_ipif_up_count > 0); 17267 --ill->ill_ipif_up_count; 17268 mutex_exit(&ill->ill_lock); 17269 ipif_was_up = B_TRUE; 17270 /* Update status in SCTP's list */ 17271 sctp_update_ipif(ipif, SCTP_IPIF_DOWN); 17272 } 17273 17274 /* 17275 * Blow away v6 memberships we established in ipif_multicast_up(); the 17276 * v4 ones are left alone (as is the ipif_multicast_up flag, so we 17277 * know not to rejoin when the interface is brought back up). 17278 */ 17279 if (ipif->ipif_isv6) 17280 ipif_multicast_down(ipif); 17281 /* 17282 * Remove from the mapping for __sin6_src_id. We insert only 17283 * when the address is not INADDR_ANY. As IPv4 addresses are 17284 * stored as mapped addresses, we need to check for mapped 17285 * INADDR_ANY also. 17286 */ 17287 if (ipif_was_up && !IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr) && 17288 !IN6_IS_ADDR_V4MAPPED_ANY(&ipif->ipif_v6lcl_addr) && 17289 !(ipif->ipif_flags & IPIF_NOLOCAL)) { 17290 int err; 17291 17292 err = ip_srcid_remove(&ipif->ipif_v6lcl_addr, 17293 ipif->ipif_zoneid); 17294 if (err != 0) { 17295 ip0dbg(("ipif_down: srcid_remove %d\n", err)); 17296 } 17297 } 17298 17299 /* 17300 * Before we delete the ill from the group (if any), we need 17301 * to make sure that we delete all the routes dependent on 17302 * this and also any ipifs dependent on this ipif for 17303 * source address. We need to do before we delete from 17304 * the group because 17305 * 17306 * 1) ipif_down_delete_ire de-references ill->ill_group. 17307 * 17308 * 2) ipif_update_other_ipifs needs to walk the whole group 17309 * for re-doing source address selection. Note that 17310 * ipif_select_source[_v6] called from 17311 * ipif_update_other_ipifs[_v6] will not pick this ipif 17312 * because we have already marked down here i.e cleared 17313 * IPIF_UP. 17314 */ 17315 if (ipif->ipif_isv6) 17316 ire_walk_v6(ipif_down_delete_ire, (char *)ipif, ALL_ZONES); 17317 else 17318 ire_walk_v4(ipif_down_delete_ire, (char *)ipif, ALL_ZONES); 17319 17320 /* 17321 * Need to add these also to be saved and restored when the 17322 * ipif is brought down and up 17323 */ 17324 mutex_enter(&ire_mrtun_lock); 17325 if (ire_mrtun_count != 0) { 17326 mutex_exit(&ire_mrtun_lock); 17327 ire_walk_ill_mrtun(0, 0, ipif_down_delete_ire, 17328 (char *)ipif, NULL); 17329 } else { 17330 mutex_exit(&ire_mrtun_lock); 17331 } 17332 17333 mutex_enter(&ire_srcif_table_lock); 17334 if (ire_srcif_table_count > 0) { 17335 mutex_exit(&ire_srcif_table_lock); 17336 ire_walk_srcif_table_v4(ipif_down_delete_ire, (char *)ipif); 17337 } else { 17338 mutex_exit(&ire_srcif_table_lock); 17339 } 17340 17341 /* 17342 * Cleaning up the conn_ire_cache or conns must be done only after the 17343 * ires have been deleted above. Otherwise a thread could end up 17344 * caching an ire in a conn after we have finished the cleanup of the 17345 * conn. The caching is done after making sure that the ire is not yet 17346 * condemned. Also documented in the block comment above ip_output 17347 */ 17348 ipcl_walk(conn_cleanup_stale_ire, NULL); 17349 /* Also, delete the ires cached in SCTP */ 17350 sctp_ire_cache_flush(ipif); 17351 17352 /* Resolve any IPsec/IKE NAT-T instances that depend on this ipif. */ 17353 nattymod_clean_ipif(ipif); 17354 17355 /* 17356 * Update any other ipifs which have used "our" local address as 17357 * a source address. This entails removing and recreating IRE_INTERFACE 17358 * entries for such ipifs. 17359 */ 17360 if (ipif->ipif_isv6) 17361 ipif_update_other_ipifs_v6(ipif, ill->ill_group); 17362 else 17363 ipif_update_other_ipifs(ipif, ill->ill_group); 17364 17365 if (ipif_was_up) { 17366 /* 17367 * Check whether it is last ipif to leave this group. 17368 * If this is the last ipif to leave, we should remove 17369 * this ill from the group as ipif_select_source will not 17370 * be able to find any useful ipifs if this ill is selected 17371 * for load balancing. 17372 * 17373 * For nameless groups, we should call ifgrp_delete if this 17374 * belongs to some group. As this ipif is going down, we may 17375 * need to reconstruct groups. 17376 */ 17377 phyi = ill->ill_phyint; 17378 /* 17379 * If the phyint_groupname_len is 0, it may or may not 17380 * be in the nameless group. If the phyint_groupname_len is 17381 * not 0, then this ill should be part of some group. 17382 * As we always insert this ill in the group if 17383 * phyint_groupname_len is not zero when the first ipif 17384 * comes up (in ipif_up_done), it should be in a group 17385 * when the namelen is not 0. 17386 * 17387 * NOTE : When we delete the ill from the group,it will 17388 * blow away all the IRE_CACHES pointing either at this ipif or 17389 * ill_wq (illgrp_cache_delete does this). Thus, no IRES 17390 * should be pointing at this ill. 17391 */ 17392 ASSERT(phyi->phyint_groupname_len == 0 || 17393 (phyi->phyint_groupname != NULL && ill->ill_group != NULL)); 17394 17395 if (phyi->phyint_groupname_len != 0) { 17396 if (ill->ill_ipif_up_count == 0) 17397 illgrp_delete(ill); 17398 } 17399 17400 /* 17401 * If we have deleted some of the broadcast ires associated 17402 * with this ipif, we need to re-nominate somebody else if 17403 * the ires that we deleted were the nominated ones. 17404 */ 17405 if (ill->ill_group != NULL && !ill->ill_isv6) 17406 ipif_renominate_bcast(ipif); 17407 } 17408 17409 if (ipif->ipif_isv6) 17410 ipif_ndp_down(ipif); 17411 17412 /* 17413 * If mp is NULL the caller will wait for the appropriate refcnt. 17414 * Eg. ip_sioctl_removeif -> ipif_free -> ipif_down 17415 * and ill_delete -> ipif_free -> ipif_down 17416 */ 17417 if (mp == NULL) { 17418 ASSERT(q == NULL); 17419 return (0); 17420 } 17421 17422 if (CONN_Q(q)) { 17423 connp = Q_TO_CONN(q); 17424 mutex_enter(&connp->conn_lock); 17425 } else { 17426 connp = NULL; 17427 } 17428 mutex_enter(&ill->ill_lock); 17429 /* 17430 * Are there any ire's pointing to this ipif that are still active ? 17431 * If this is the last ipif going down, are there any ire's pointing 17432 * to this ill that are still active ? 17433 */ 17434 if (ipif_is_quiescent(ipif)) { 17435 mutex_exit(&ill->ill_lock); 17436 if (connp != NULL) 17437 mutex_exit(&connp->conn_lock); 17438 return (0); 17439 } 17440 17441 ip1dbg(("ipif_down: need to wait, adding pending mp %s ill %p", 17442 ill->ill_name, (void *)ill)); 17443 /* 17444 * Enqueue the mp atomically in ipsq_pending_mp. When the refcount 17445 * drops down, the operation will be restarted by ipif_ill_refrele_tail 17446 * which in turn is called by the last refrele on the ipif/ill/ire. 17447 */ 17448 success = ipsq_pending_mp_add(connp, ipif, q, mp, IPIF_DOWN); 17449 if (!success) { 17450 /* The conn is closing. So just return */ 17451 ASSERT(connp != NULL); 17452 mutex_exit(&ill->ill_lock); 17453 mutex_exit(&connp->conn_lock); 17454 return (EINTR); 17455 } 17456 17457 mutex_exit(&ill->ill_lock); 17458 if (connp != NULL) 17459 mutex_exit(&connp->conn_lock); 17460 return (EINPROGRESS); 17461 } 17462 17463 static void 17464 ipif_down_tail(ipif_t *ipif) 17465 { 17466 ill_t *ill = ipif->ipif_ill; 17467 17468 /* 17469 * Skip any loopback interface (null wq). 17470 * If this is the last logical interface on the ill 17471 * have ill_dl_down tell the driver we are gone (unbind) 17472 * Note that lun 0 can ipif_down even though 17473 * there are other logical units that are up. 17474 * This occurs e.g. when we change a "significant" IFF_ flag. 17475 */ 17476 if (ipif->ipif_ill->ill_wq != NULL) { 17477 if (!ill->ill_logical_down && (ill->ill_ipif_up_count == 0) && 17478 ill->ill_dl_up) { 17479 ill_dl_down(ill); 17480 } 17481 } 17482 ill->ill_logical_down = 0; 17483 17484 /* 17485 * Have to be after removing the routes in ipif_down_delete_ire. 17486 */ 17487 if (ipif->ipif_isv6) { 17488 if (ipif->ipif_ill->ill_flags & ILLF_XRESOLV) 17489 ipif_arp_down(ipif); 17490 } else { 17491 ipif_arp_down(ipif); 17492 } 17493 17494 ip_rts_ifmsg(ipif); 17495 ip_rts_newaddrmsg(RTM_DELETE, 0, ipif); 17496 } 17497 17498 /* 17499 * Bring interface logically down without bringing the physical interface 17500 * down e.g. when the netmask is changed. This avoids long lasting link 17501 * negotiations between an ethernet interface and a certain switches. 17502 */ 17503 static int 17504 ipif_logical_down(ipif_t *ipif, queue_t *q, mblk_t *mp) 17505 { 17506 /* 17507 * The ill_logical_down flag is a transient flag. It is set here 17508 * and is cleared once the down has completed in ipif_down_tail. 17509 * This flag does not indicate whether the ill stream is in the 17510 * DL_BOUND state with the driver. Instead this flag is used by 17511 * ipif_down_tail to determine whether to DL_UNBIND the stream with 17512 * the driver. The state of the ill stream i.e. whether it is 17513 * DL_BOUND with the driver or not is indicated by the ill_dl_up flag. 17514 */ 17515 ipif->ipif_ill->ill_logical_down = 1; 17516 return (ipif_down(ipif, q, mp)); 17517 } 17518 17519 /* 17520 * This is called when the SIOCSLIFUSESRC ioctl is processed in IP. 17521 * If the usesrc client ILL is already part of a usesrc group or not, 17522 * in either case a ire_stq with the matching usesrc client ILL will 17523 * locate the IRE's that need to be deleted. We want IREs to be created 17524 * with the new source address. 17525 */ 17526 static void 17527 ipif_delete_cache_ire(ire_t *ire, char *ill_arg) 17528 { 17529 ill_t *ucill = (ill_t *)ill_arg; 17530 17531 ASSERT(IAM_WRITER_ILL(ucill)); 17532 17533 if (ire->ire_stq == NULL) 17534 return; 17535 17536 if ((ire->ire_type == IRE_CACHE) && 17537 ((ill_t *)ire->ire_stq->q_ptr == ucill)) 17538 ire_delete(ire); 17539 } 17540 17541 /* 17542 * ire_walk routine to delete every IRE dependent on the interface 17543 * address that is going down. (Always called as writer.) 17544 * Works for both v4 and v6. 17545 * In addition for checking for ire_ipif matches it also checks for 17546 * IRE_CACHE entries which have the same source address as the 17547 * disappearing ipif since ipif_select_source might have picked 17548 * that source. Note that ipif_down/ipif_update_other_ipifs takes 17549 * care of any IRE_INTERFACE with the disappearing source address. 17550 */ 17551 static void 17552 ipif_down_delete_ire(ire_t *ire, char *ipif_arg) 17553 { 17554 ipif_t *ipif = (ipif_t *)ipif_arg; 17555 ill_t *ire_ill; 17556 ill_t *ipif_ill; 17557 17558 ASSERT(IAM_WRITER_IPIF(ipif)); 17559 if (ire->ire_ipif == NULL) 17560 return; 17561 17562 /* 17563 * For IPv4, we derive source addresses for an IRE from ipif's 17564 * belonging to the same IPMP group as the IRE's outgoing 17565 * interface. If an IRE's outgoing interface isn't in the 17566 * same IPMP group as a particular ipif, then that ipif 17567 * couldn't have been used as a source address for this IRE. 17568 * 17569 * For IPv6, source addresses are only restricted to the IPMP group 17570 * if the IRE is for a link-local address or a multicast address. 17571 * Otherwise, source addresses for an IRE can be chosen from 17572 * interfaces other than the the outgoing interface for that IRE. 17573 * 17574 * For source address selection details, see ipif_select_source() 17575 * and ipif_select_source_v6(). 17576 */ 17577 if (ire->ire_ipversion == IPV4_VERSION || 17578 IN6_IS_ADDR_LINKLOCAL(&ire->ire_addr_v6) || 17579 IN6_IS_ADDR_MULTICAST(&ire->ire_addr_v6)) { 17580 ire_ill = ire->ire_ipif->ipif_ill; 17581 ipif_ill = ipif->ipif_ill; 17582 17583 if (ire_ill->ill_group != ipif_ill->ill_group) { 17584 return; 17585 } 17586 } 17587 17588 17589 if (ire->ire_ipif != ipif) { 17590 /* 17591 * Look for a matching source address. 17592 */ 17593 if (ire->ire_type != IRE_CACHE) 17594 return; 17595 if (ipif->ipif_flags & IPIF_NOLOCAL) 17596 return; 17597 17598 if (ire->ire_ipversion == IPV4_VERSION) { 17599 if (ire->ire_src_addr != ipif->ipif_src_addr) 17600 return; 17601 } else { 17602 if (!IN6_ARE_ADDR_EQUAL(&ire->ire_src_addr_v6, 17603 &ipif->ipif_v6lcl_addr)) 17604 return; 17605 } 17606 ire_delete(ire); 17607 return; 17608 } 17609 /* 17610 * ire_delete() will do an ire_flush_cache which will delete 17611 * all ire_ipif matches 17612 */ 17613 ire_delete(ire); 17614 } 17615 17616 /* 17617 * ire_walk_ill function for deleting all IRE_CACHE entries for an ill when 17618 * 1) an ipif (on that ill) changes the IPIF_DEPRECATED flags, or 17619 * 2) when an interface is brought up or down (on that ill). 17620 * This ensures that the IRE_CACHE entries don't retain stale source 17621 * address selection results. 17622 */ 17623 void 17624 ill_ipif_cache_delete(ire_t *ire, char *ill_arg) 17625 { 17626 ill_t *ill = (ill_t *)ill_arg; 17627 ill_t *ipif_ill; 17628 17629 ASSERT(IAM_WRITER_ILL(ill)); 17630 /* 17631 * We use MATCH_IRE_TYPE/IRE_CACHE while calling ire_walk_ill_v4. 17632 * Hence this should be IRE_CACHE. 17633 */ 17634 ASSERT(ire->ire_type == IRE_CACHE); 17635 17636 /* 17637 * We are called for IRE_CACHES whose ire_ipif matches ill. 17638 * We are only interested in IRE_CACHES that has borrowed 17639 * the source address from ill_arg e.g. ipif_up_done[_v6] 17640 * for which we need to look at ire_ipif->ipif_ill match 17641 * with ill. 17642 */ 17643 ASSERT(ire->ire_ipif != NULL); 17644 ipif_ill = ire->ire_ipif->ipif_ill; 17645 if (ipif_ill == ill || (ill->ill_group != NULL && 17646 ipif_ill->ill_group == ill->ill_group)) { 17647 ire_delete(ire); 17648 } 17649 } 17650 17651 /* 17652 * Delete all the ire whose stq references ill_arg. 17653 */ 17654 static void 17655 ill_stq_cache_delete(ire_t *ire, char *ill_arg) 17656 { 17657 ill_t *ill = (ill_t *)ill_arg; 17658 ill_t *ire_ill; 17659 17660 ASSERT(IAM_WRITER_ILL(ill)); 17661 /* 17662 * We use MATCH_IRE_TYPE/IRE_CACHE while calling ire_walk_ill_v4. 17663 * Hence this should be IRE_CACHE. 17664 */ 17665 ASSERT(ire->ire_type == IRE_CACHE); 17666 17667 /* 17668 * We are called for IRE_CACHES whose ire_stq and ire_ipif 17669 * matches ill. We are only interested in IRE_CACHES that 17670 * has ire_stq->q_ptr pointing at ill_arg. Thus we do the 17671 * filtering here. 17672 */ 17673 ire_ill = (ill_t *)ire->ire_stq->q_ptr; 17674 17675 if (ire_ill == ill) 17676 ire_delete(ire); 17677 } 17678 17679 /* 17680 * This is called when an ill leaves the group. We want to delete 17681 * all IRE_CACHES whose stq is pointing at ill_wq or ire_ipif is 17682 * pointing at ill. 17683 */ 17684 static void 17685 illgrp_cache_delete(ire_t *ire, char *ill_arg) 17686 { 17687 ill_t *ill = (ill_t *)ill_arg; 17688 17689 ASSERT(IAM_WRITER_ILL(ill)); 17690 ASSERT(ill->ill_group == NULL); 17691 /* 17692 * We use MATCH_IRE_TYPE/IRE_CACHE while calling ire_walk_ill_v4. 17693 * Hence this should be IRE_CACHE. 17694 */ 17695 ASSERT(ire->ire_type == IRE_CACHE); 17696 /* 17697 * We are called for IRE_CACHES whose ire_stq and ire_ipif 17698 * matches ill. We are interested in both. 17699 */ 17700 ASSERT((ill == (ill_t *)ire->ire_stq->q_ptr) || 17701 (ire->ire_ipif->ipif_ill == ill)); 17702 17703 ire_delete(ire); 17704 } 17705 17706 /* 17707 * Initiate deallocate of an IPIF. Always called as writer. Called by 17708 * ill_delete or ip_sioctl_removeif. 17709 */ 17710 static void 17711 ipif_free(ipif_t *ipif) 17712 { 17713 ASSERT(IAM_WRITER_IPIF(ipif)); 17714 17715 /* Remove conn references */ 17716 reset_conn_ipif(ipif); 17717 17718 /* 17719 * Make sure we have valid net and subnet broadcast ire's for the 17720 * other ipif's which share them with this ipif. 17721 */ 17722 if (!ipif->ipif_isv6) 17723 ipif_check_bcast_ires(ipif); 17724 17725 /* 17726 * Take down the interface. We can be called either from ill_delete 17727 * or from ip_sioctl_removeif. 17728 */ 17729 (void) ipif_down(ipif, NULL, NULL); 17730 17731 rw_enter(&ill_g_lock, RW_WRITER); 17732 /* Remove pointers to this ill in the multicast routing tables */ 17733 reset_mrt_vif_ipif(ipif); 17734 rw_exit(&ill_g_lock); 17735 } 17736 17737 static void 17738 ipif_free_tail(ipif_t *ipif) 17739 { 17740 mblk_t *mp; 17741 ipif_t **ipifp; 17742 17743 /* 17744 * Free state for addition IRE_IF_[NO]RESOLVER ire's. 17745 */ 17746 mutex_enter(&ipif->ipif_saved_ire_lock); 17747 mp = ipif->ipif_saved_ire_mp; 17748 ipif->ipif_saved_ire_mp = NULL; 17749 mutex_exit(&ipif->ipif_saved_ire_lock); 17750 freemsg(mp); 17751 17752 /* 17753 * Need to hold both ill_g_lock and ill_lock while 17754 * inserting or removing an ipif from the linked list 17755 * of ipifs hanging off the ill. 17756 */ 17757 rw_enter(&ill_g_lock, RW_WRITER); 17758 /* 17759 * Remove all multicast memberships on the interface now. 17760 * This removes IPv4 multicast memberships joined within 17761 * the kernel as ipif_down does not do ipif_multicast_down 17762 * for IPv4. IPv6 is not handled here as the multicast memberships 17763 * are based on ill and not on ipif. 17764 */ 17765 ilm_free(ipif); 17766 17767 /* 17768 * Since we held the ill_g_lock while doing the ilm_free above, 17769 * we can assert the ilms were really deleted and not just marked 17770 * ILM_DELETED. 17771 */ 17772 ASSERT(ilm_walk_ipif(ipif) == 0); 17773 17774 17775 IPIF_TRACE_CLEANUP(ipif); 17776 17777 /* Ask SCTP to take it out of it list */ 17778 sctp_update_ipif(ipif, SCTP_IPIF_REMOVE); 17779 17780 mutex_enter(&ipif->ipif_ill->ill_lock); 17781 /* Get it out of the ILL interface list. */ 17782 ipifp = &ipif->ipif_ill->ill_ipif; 17783 for (; *ipifp != NULL; ipifp = &ipifp[0]->ipif_next) { 17784 if (*ipifp == ipif) { 17785 *ipifp = ipif->ipif_next; 17786 break; 17787 } 17788 } 17789 17790 mutex_exit(&ipif->ipif_ill->ill_lock); 17791 rw_exit(&ill_g_lock); 17792 17793 mutex_destroy(&ipif->ipif_saved_ire_lock); 17794 /* Free the memory. */ 17795 mi_free((char *)ipif); 17796 } 17797 17798 /* 17799 * Returns an ipif name in the form "ill_name/unit" if ipif_id is not zero, 17800 * "ill_name" otherwise. 17801 */ 17802 char * 17803 ipif_get_name(ipif_t *ipif, char *buf, int len) 17804 { 17805 char lbuf[32]; 17806 char *name; 17807 size_t name_len; 17808 17809 buf[0] = '\0'; 17810 if (!ipif) 17811 return (buf); 17812 name = ipif->ipif_ill->ill_name; 17813 name_len = ipif->ipif_ill->ill_name_length; 17814 if (ipif->ipif_id != 0) { 17815 (void) sprintf(lbuf, "%s%c%d", name, IPIF_SEPARATOR_CHAR, 17816 ipif->ipif_id); 17817 name = lbuf; 17818 name_len = mi_strlen(name) + 1; 17819 } 17820 len -= 1; 17821 buf[len] = '\0'; 17822 len = MIN(len, name_len); 17823 bcopy(name, buf, len); 17824 return (buf); 17825 } 17826 17827 /* 17828 * Find an IPIF based on the name passed in. Names can be of the 17829 * form <phys> (e.g., le0), <phys>:<#> (e.g., le0:1), 17830 * The <phys> string can have forms like <dev><#> (e.g., le0), 17831 * <dev><#>.<module> (e.g. le0.foo), or <dev>.<module><#> (e.g. ip.tun3). 17832 * When there is no colon, the implied unit id is zero. <phys> must 17833 * correspond to the name of an ILL. (May be called as writer.) 17834 */ 17835 static ipif_t * 17836 ipif_lookup_on_name(char *name, size_t namelen, boolean_t do_alloc, 17837 boolean_t *exists, boolean_t isv6, zoneid_t zoneid, queue_t *q, 17838 mblk_t *mp, ipsq_func_t func, int *error) 17839 { 17840 char *cp; 17841 char *endp; 17842 long id; 17843 ill_t *ill; 17844 ipif_t *ipif; 17845 uint_t ire_type; 17846 boolean_t did_alloc = B_FALSE; 17847 ipsq_t *ipsq; 17848 17849 if (error != NULL) 17850 *error = 0; 17851 17852 /* 17853 * If the caller wants to us to create the ipif, make sure we have a 17854 * valid zoneid 17855 */ 17856 ASSERT(!do_alloc || zoneid != ALL_ZONES); 17857 17858 if (namelen == 0) { 17859 if (error != NULL) 17860 *error = ENXIO; 17861 return (NULL); 17862 } 17863 17864 *exists = B_FALSE; 17865 /* Look for a colon in the name. */ 17866 endp = &name[namelen]; 17867 for (cp = endp; --cp > name; ) { 17868 if (*cp == IPIF_SEPARATOR_CHAR) 17869 break; 17870 } 17871 17872 if (*cp == IPIF_SEPARATOR_CHAR) { 17873 /* 17874 * Reject any non-decimal aliases for logical 17875 * interfaces. Aliases with leading zeroes 17876 * are also rejected as they introduce ambiguity 17877 * in the naming of the interfaces. 17878 * In order to confirm with existing semantics, 17879 * and to not break any programs/script relying 17880 * on that behaviour, if<0>:0 is considered to be 17881 * a valid interface. 17882 * 17883 * If alias has two or more digits and the first 17884 * is zero, fail. 17885 */ 17886 if (&cp[2] < endp && cp[1] == '0') 17887 return (NULL); 17888 } 17889 17890 if (cp <= name) { 17891 cp = endp; 17892 } else { 17893 *cp = '\0'; 17894 } 17895 17896 /* 17897 * Look up the ILL, based on the portion of the name 17898 * before the slash. ill_lookup_on_name returns a held ill. 17899 * Temporary to check whether ill exists already. If so 17900 * ill_lookup_on_name will clear it. 17901 */ 17902 ill = ill_lookup_on_name(name, do_alloc, isv6, 17903 q, mp, func, error, &did_alloc); 17904 if (cp != endp) 17905 *cp = IPIF_SEPARATOR_CHAR; 17906 if (ill == NULL) 17907 return (NULL); 17908 17909 /* Establish the unit number in the name. */ 17910 id = 0; 17911 if (cp < endp && *endp == '\0') { 17912 /* If there was a colon, the unit number follows. */ 17913 cp++; 17914 if (ddi_strtol(cp, NULL, 0, &id) != 0) { 17915 ill_refrele(ill); 17916 if (error != NULL) 17917 *error = ENXIO; 17918 return (NULL); 17919 } 17920 } 17921 17922 GRAB_CONN_LOCK(q); 17923 mutex_enter(&ill->ill_lock); 17924 /* Now see if there is an IPIF with this unit number. */ 17925 for (ipif = ill->ill_ipif; ipif; ipif = ipif->ipif_next) { 17926 if (ipif->ipif_id == id) { 17927 if (zoneid != ALL_ZONES && 17928 zoneid != ipif->ipif_zoneid) { 17929 mutex_exit(&ill->ill_lock); 17930 RELEASE_CONN_LOCK(q); 17931 ill_refrele(ill); 17932 if (error != NULL) 17933 *error = ENXIO; 17934 return (NULL); 17935 } 17936 /* 17937 * The block comment at the start of ipif_down 17938 * explains the use of the macros used below 17939 */ 17940 if (IPIF_CAN_LOOKUP(ipif)) { 17941 ipif_refhold_locked(ipif); 17942 mutex_exit(&ill->ill_lock); 17943 if (!did_alloc) 17944 *exists = B_TRUE; 17945 /* 17946 * Drop locks before calling ill_refrele 17947 * since it can potentially call into 17948 * ipif_ill_refrele_tail which can end up 17949 * in trying to acquire any lock. 17950 */ 17951 RELEASE_CONN_LOCK(q); 17952 ill_refrele(ill); 17953 return (ipif); 17954 } else if (IPIF_CAN_WAIT(ipif, q)) { 17955 ipsq = ill->ill_phyint->phyint_ipsq; 17956 mutex_enter(&ipsq->ipsq_lock); 17957 mutex_exit(&ill->ill_lock); 17958 ipsq_enq(ipsq, q, mp, func, NEW_OP, ill); 17959 mutex_exit(&ipsq->ipsq_lock); 17960 RELEASE_CONN_LOCK(q); 17961 ill_refrele(ill); 17962 *error = EINPROGRESS; 17963 return (NULL); 17964 } 17965 } 17966 } 17967 RELEASE_CONN_LOCK(q); 17968 17969 if (!do_alloc) { 17970 mutex_exit(&ill->ill_lock); 17971 ill_refrele(ill); 17972 if (error != NULL) 17973 *error = ENXIO; 17974 return (NULL); 17975 } 17976 17977 /* 17978 * If none found, atomically allocate and return a new one. 17979 * Historically, we used IRE_LOOPBACK only for lun 0, and IRE_LOCAL 17980 * to support "receive only" use of lo0:1 etc. as is still done 17981 * below as an initial guess. 17982 * However, this is now likely to be overriden later in ipif_up_done() 17983 * when we know for sure what address has been configured on the 17984 * interface, since we might have more than one loopback interface 17985 * with a loopback address, e.g. in the case of zones, and all the 17986 * interfaces with loopback addresses need to be marked IRE_LOOPBACK. 17987 */ 17988 if (ill->ill_net_type == IRE_LOOPBACK && id == 0) 17989 ire_type = IRE_LOOPBACK; 17990 else 17991 ire_type = IRE_LOCAL; 17992 ipif = ipif_allocate(ill, id, ire_type, B_TRUE); 17993 if (ipif != NULL) 17994 ipif_refhold_locked(ipif); 17995 else if (error != NULL) 17996 *error = ENOMEM; 17997 mutex_exit(&ill->ill_lock); 17998 ill_refrele(ill); 17999 return (ipif); 18000 } 18001 18002 /* 18003 * This routine is called whenever a new address comes up on an ipif. If 18004 * we are configured to respond to address mask requests, then we are supposed 18005 * to broadcast an address mask reply at this time. This routine is also 18006 * called if we are already up, but a netmask change is made. This is legal 18007 * but might not make the system manager very popular. (May be called 18008 * as writer.) 18009 */ 18010 static void 18011 ipif_mask_reply(ipif_t *ipif) 18012 { 18013 icmph_t *icmph; 18014 ipha_t *ipha; 18015 mblk_t *mp; 18016 18017 #define REPLY_LEN (sizeof (icmp_ipha) + sizeof (icmph_t) + IP_ADDR_LEN) 18018 18019 if (!ip_respond_to_address_mask_broadcast) 18020 return; 18021 18022 /* ICMP mask reply is IPv4 only */ 18023 ASSERT(!ipif->ipif_isv6); 18024 /* ICMP mask reply is not for a loopback interface */ 18025 ASSERT(ipif->ipif_ill->ill_wq != NULL); 18026 18027 mp = allocb(REPLY_LEN, BPRI_HI); 18028 if (mp == NULL) 18029 return; 18030 mp->b_wptr = mp->b_rptr + REPLY_LEN; 18031 18032 ipha = (ipha_t *)mp->b_rptr; 18033 bzero(ipha, REPLY_LEN); 18034 *ipha = icmp_ipha; 18035 ipha->ipha_ttl = ip_broadcast_ttl; 18036 ipha->ipha_src = ipif->ipif_src_addr; 18037 ipha->ipha_dst = ipif->ipif_brd_addr; 18038 ipha->ipha_length = htons(REPLY_LEN); 18039 ipha->ipha_ident = 0; 18040 18041 icmph = (icmph_t *)&ipha[1]; 18042 icmph->icmph_type = ICMP_ADDRESS_MASK_REPLY; 18043 bcopy(&ipif->ipif_net_mask, &icmph[1], IP_ADDR_LEN); 18044 icmph->icmph_checksum = IP_CSUM(mp, sizeof (ipha_t), 0); 18045 18046 put(ipif->ipif_wq, mp); 18047 18048 #undef REPLY_LEN 18049 } 18050 18051 /* 18052 * When the mtu in the ipif changes, we call this routine through ire_walk 18053 * to update all the relevant IREs. 18054 * Skip IRE_LOCAL and "loopback" IRE_BROADCAST by checking ire_stq. 18055 */ 18056 static void 18057 ipif_mtu_change(ire_t *ire, char *ipif_arg) 18058 { 18059 ipif_t *ipif = (ipif_t *)ipif_arg; 18060 18061 if (ire->ire_stq == NULL || ire->ire_ipif != ipif) 18062 return; 18063 ire->ire_max_frag = MIN(ipif->ipif_mtu, IP_MAXPACKET); 18064 } 18065 18066 /* 18067 * When the mtu in the ill changes, we call this routine through ire_walk 18068 * to update all the relevant IREs. 18069 * Skip IRE_LOCAL and "loopback" IRE_BROADCAST by checking ire_stq. 18070 */ 18071 void 18072 ill_mtu_change(ire_t *ire, char *ill_arg) 18073 { 18074 ill_t *ill = (ill_t *)ill_arg; 18075 18076 if (ire->ire_stq == NULL || ire->ire_ipif->ipif_ill != ill) 18077 return; 18078 ire->ire_max_frag = ire->ire_ipif->ipif_mtu; 18079 } 18080 18081 /* 18082 * Join the ipif specific multicast groups. 18083 * Must be called after a mapping has been set up in the resolver. (Always 18084 * called as writer.) 18085 */ 18086 void 18087 ipif_multicast_up(ipif_t *ipif) 18088 { 18089 int err, index; 18090 ill_t *ill; 18091 18092 ASSERT(IAM_WRITER_IPIF(ipif)); 18093 18094 ill = ipif->ipif_ill; 18095 index = ill->ill_phyint->phyint_ifindex; 18096 18097 ip1dbg(("ipif_multicast_up\n")); 18098 if (!(ill->ill_flags & ILLF_MULTICAST) || ipif->ipif_multicast_up) 18099 return; 18100 18101 if (ipif->ipif_isv6) { 18102 if (IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr)) 18103 return; 18104 18105 /* Join the all hosts multicast address */ 18106 ip1dbg(("ipif_multicast_up - addmulti\n")); 18107 /* 18108 * Passing B_TRUE means we have to join the multicast 18109 * membership on this interface even though this is 18110 * FAILED. If we join on a different one in the group, 18111 * we will not be able to delete the membership later 18112 * as we currently don't track where we join when we 18113 * join within the kernel unlike applications where 18114 * we have ilg/ilg_orig_index. See ip_addmulti_v6 18115 * for more on this. 18116 */ 18117 err = ip_addmulti_v6(&ipv6_all_hosts_mcast, ill, index, 18118 ipif->ipif_zoneid, ILGSTAT_NONE, MODE_IS_EXCLUDE, NULL); 18119 if (err != 0) { 18120 ip0dbg(("ipif_multicast_up: " 18121 "all_hosts_mcast failed %d\n", 18122 err)); 18123 return; 18124 } 18125 /* 18126 * Enable multicast for the solicited node multicast address 18127 */ 18128 if (!(ipif->ipif_flags & IPIF_NOLOCAL)) { 18129 in6_addr_t ipv6_multi = ipv6_solicited_node_mcast; 18130 18131 ipv6_multi.s6_addr32[3] |= 18132 ipif->ipif_v6lcl_addr.s6_addr32[3]; 18133 18134 err = ip_addmulti_v6(&ipv6_multi, ill, index, 18135 ipif->ipif_zoneid, ILGSTAT_NONE, MODE_IS_EXCLUDE, 18136 NULL); 18137 if (err != 0) { 18138 ip0dbg(("ipif_multicast_up: solicited MC" 18139 " failed %d\n", err)); 18140 (void) ip_delmulti_v6(&ipv6_all_hosts_mcast, 18141 ill, ill->ill_phyint->phyint_ifindex, 18142 ipif->ipif_zoneid, B_TRUE, B_TRUE); 18143 return; 18144 } 18145 } 18146 } else { 18147 if (ipif->ipif_lcl_addr == INADDR_ANY) 18148 return; 18149 18150 /* Join the all hosts multicast address */ 18151 ip1dbg(("ipif_multicast_up - addmulti\n")); 18152 err = ip_addmulti(htonl(INADDR_ALLHOSTS_GROUP), ipif, 18153 ILGSTAT_NONE, MODE_IS_EXCLUDE, NULL); 18154 if (err) { 18155 ip0dbg(("ipif_multicast_up: failed %d\n", err)); 18156 return; 18157 } 18158 } 18159 ipif->ipif_multicast_up = 1; 18160 } 18161 18162 /* 18163 * Blow away any IPv6 multicast groups that we joined in ipif_multicast_up(); 18164 * any explicit memberships are blown away in ill_leave_multicast() when the 18165 * ill is brought down. 18166 */ 18167 static void 18168 ipif_multicast_down(ipif_t *ipif) 18169 { 18170 int err; 18171 18172 ASSERT(IAM_WRITER_IPIF(ipif)); 18173 18174 ip1dbg(("ipif_multicast_down\n")); 18175 if (!ipif->ipif_multicast_up) 18176 return; 18177 18178 ASSERT(ipif->ipif_isv6); 18179 18180 ip1dbg(("ipif_multicast_down - delmulti\n")); 18181 18182 /* 18183 * Leave the all hosts multicast address. Similar to ip_addmulti_v6, 18184 * we should look for ilms on this ill rather than the ones that have 18185 * been failed over here. They are here temporarily. As 18186 * ipif_multicast_up has joined on this ill, we should delete only 18187 * from this ill. 18188 */ 18189 err = ip_delmulti_v6(&ipv6_all_hosts_mcast, ipif->ipif_ill, 18190 ipif->ipif_ill->ill_phyint->phyint_ifindex, ipif->ipif_zoneid, 18191 B_TRUE, B_TRUE); 18192 if (err != 0) { 18193 ip0dbg(("ipif_multicast_down: all_hosts_mcast failed %d\n", 18194 err)); 18195 } 18196 /* 18197 * Disable multicast for the solicited node multicast address 18198 */ 18199 if (!(ipif->ipif_flags & IPIF_NOLOCAL)) { 18200 in6_addr_t ipv6_multi = ipv6_solicited_node_mcast; 18201 18202 ipv6_multi.s6_addr32[3] |= 18203 ipif->ipif_v6lcl_addr.s6_addr32[3]; 18204 18205 err = ip_delmulti_v6(&ipv6_multi, ipif->ipif_ill, 18206 ipif->ipif_ill->ill_phyint->phyint_ifindex, 18207 ipif->ipif_zoneid, B_TRUE, B_TRUE); 18208 18209 if (err != 0) { 18210 ip0dbg(("ipif_multicast_down: sol MC failed %d\n", 18211 err)); 18212 } 18213 } 18214 18215 ipif->ipif_multicast_up = 0; 18216 } 18217 18218 /* 18219 * Used when an interface comes up to recreate any extra routes on this 18220 * interface. 18221 */ 18222 static ire_t ** 18223 ipif_recover_ire(ipif_t *ipif) 18224 { 18225 mblk_t *mp; 18226 ire_t **ipif_saved_irep; 18227 ire_t **irep; 18228 18229 ip1dbg(("ipif_recover_ire(%s:%u)", ipif->ipif_ill->ill_name, 18230 ipif->ipif_id)); 18231 18232 mutex_enter(&ipif->ipif_saved_ire_lock); 18233 ipif_saved_irep = (ire_t **)kmem_zalloc(sizeof (ire_t *) * 18234 ipif->ipif_saved_ire_cnt, KM_NOSLEEP); 18235 if (ipif_saved_irep == NULL) { 18236 mutex_exit(&ipif->ipif_saved_ire_lock); 18237 return (NULL); 18238 } 18239 18240 irep = ipif_saved_irep; 18241 for (mp = ipif->ipif_saved_ire_mp; mp != NULL; mp = mp->b_cont) { 18242 ire_t *ire; 18243 queue_t *rfq; 18244 queue_t *stq; 18245 ifrt_t *ifrt; 18246 uchar_t *src_addr; 18247 uchar_t *gateway_addr; 18248 mblk_t *resolver_mp; 18249 ushort_t type; 18250 18251 /* 18252 * When the ire was initially created and then added in 18253 * ip_rt_add(), it was created either using ipif->ipif_net_type 18254 * in the case of a traditional interface route, or as one of 18255 * the IRE_OFFSUBNET types (with the exception of 18256 * IRE_HOST_REDIRECT which is created by icmp_redirect() and 18257 * which we don't need to save or recover). In the case where 18258 * ipif->ipif_net_type was IRE_LOOPBACK, ip_rt_add() will update 18259 * the ire_type to IRE_IF_NORESOLVER before calling ire_add() 18260 * to satisfy software like GateD and Sun Cluster which creates 18261 * routes using the the loopback interface's address as a 18262 * gateway. 18263 * 18264 * As ifrt->ifrt_type reflects the already updated ire_type and 18265 * since ire_create() expects that IRE_IF_NORESOLVER will have 18266 * a valid ire_dlureq_mp field (which doesn't make sense for a 18267 * IRE_LOOPBACK), ire_create() will be called in the same way 18268 * here as in ip_rt_add(), namely using ipif->ipif_net_type when 18269 * the route looks like a traditional interface route (where 18270 * ifrt->ifrt_type & IRE_INTERFACE is true) and otherwise using 18271 * the saved ifrt->ifrt_type. This means that in the case where 18272 * ipif->ipif_net_type is IRE_LOOPBACK, the ire created by 18273 * ire_create() will be an IRE_LOOPBACK, it will then be turned 18274 * into an IRE_IF_NORESOLVER and then added by ire_add(). 18275 */ 18276 ifrt = (ifrt_t *)mp->b_rptr; 18277 if (ifrt->ifrt_type & IRE_INTERFACE) { 18278 rfq = NULL; 18279 stq = (ipif->ipif_net_type == IRE_IF_RESOLVER) 18280 ? ipif->ipif_rq : ipif->ipif_wq; 18281 src_addr = (ifrt->ifrt_flags & RTF_SETSRC) 18282 ? (uint8_t *)&ifrt->ifrt_src_addr 18283 : (uint8_t *)&ipif->ipif_src_addr; 18284 gateway_addr = NULL; 18285 resolver_mp = ipif->ipif_resolver_mp; 18286 type = ipif->ipif_net_type; 18287 } else if (ifrt->ifrt_type & IRE_BROADCAST) { 18288 /* Recover multiroute broadcast IRE. */ 18289 rfq = ipif->ipif_rq; 18290 stq = ipif->ipif_wq; 18291 src_addr = (ifrt->ifrt_flags & RTF_SETSRC) 18292 ? (uint8_t *)&ifrt->ifrt_src_addr 18293 : (uint8_t *)&ipif->ipif_src_addr; 18294 gateway_addr = (uint8_t *)&ifrt->ifrt_gateway_addr; 18295 resolver_mp = ipif->ipif_bcast_mp; 18296 type = ifrt->ifrt_type; 18297 } else { 18298 rfq = NULL; 18299 stq = NULL; 18300 src_addr = (ifrt->ifrt_flags & RTF_SETSRC) 18301 ? (uint8_t *)&ifrt->ifrt_src_addr : NULL; 18302 gateway_addr = (uint8_t *)&ifrt->ifrt_gateway_addr; 18303 resolver_mp = NULL; 18304 type = ifrt->ifrt_type; 18305 } 18306 18307 /* 18308 * Create a copy of the IRE with the saved address and netmask. 18309 */ 18310 ip1dbg(("ipif_recover_ire: creating IRE %s (%d) for " 18311 "0x%x/0x%x\n", 18312 ip_nv_lookup(ire_nv_tbl, ifrt->ifrt_type), ifrt->ifrt_type, 18313 ntohl(ifrt->ifrt_addr), 18314 ntohl(ifrt->ifrt_mask))); 18315 ire = ire_create( 18316 (uint8_t *)&ifrt->ifrt_addr, 18317 (uint8_t *)&ifrt->ifrt_mask, 18318 src_addr, 18319 gateway_addr, 18320 NULL, 18321 &ifrt->ifrt_max_frag, 18322 NULL, 18323 rfq, 18324 stq, 18325 type, 18326 resolver_mp, 18327 ipif, 18328 NULL, 18329 0, 18330 0, 18331 0, 18332 ifrt->ifrt_flags, 18333 &ifrt->ifrt_iulp_info); 18334 18335 if (ire == NULL) { 18336 mutex_exit(&ipif->ipif_saved_ire_lock); 18337 kmem_free(ipif_saved_irep, 18338 ipif->ipif_saved_ire_cnt * sizeof (ire_t *)); 18339 return (NULL); 18340 } 18341 18342 /* 18343 * Some software (for example, GateD and Sun Cluster) attempts 18344 * to create (what amount to) IRE_PREFIX routes with the 18345 * loopback address as the gateway. This is primarily done to 18346 * set up prefixes with the RTF_REJECT flag set (for example, 18347 * when generating aggregate routes.) 18348 * 18349 * If the IRE type (as defined by ipif->ipif_net_type) is 18350 * IRE_LOOPBACK, then we map the request into a 18351 * IRE_IF_NORESOLVER. 18352 */ 18353 if (ipif->ipif_net_type == IRE_LOOPBACK) 18354 ire->ire_type = IRE_IF_NORESOLVER; 18355 /* 18356 * ire held by ire_add, will be refreled' towards the 18357 * the end of ipif_up_done 18358 */ 18359 (void) ire_add(&ire, NULL, NULL, NULL); 18360 *irep = ire; 18361 irep++; 18362 ip1dbg(("ipif_recover_ire: added ire %p\n", (void *)ire)); 18363 } 18364 mutex_exit(&ipif->ipif_saved_ire_lock); 18365 return (ipif_saved_irep); 18366 } 18367 18368 /* 18369 * Used to set the netmask and broadcast address to default values when the 18370 * interface is brought up. (Always called as writer.) 18371 */ 18372 static void 18373 ipif_set_default(ipif_t *ipif) 18374 { 18375 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 18376 18377 if (!ipif->ipif_isv6) { 18378 /* 18379 * Interface holds an IPv4 address. Default 18380 * mask is the natural netmask. 18381 */ 18382 if (!ipif->ipif_net_mask) { 18383 ipaddr_t v4mask; 18384 18385 v4mask = ip_net_mask(ipif->ipif_lcl_addr); 18386 V4MASK_TO_V6(v4mask, ipif->ipif_v6net_mask); 18387 } 18388 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 18389 /* ipif_subnet is ipif_pp_dst_addr for pt-pt */ 18390 ipif->ipif_v6subnet = ipif->ipif_v6pp_dst_addr; 18391 } else { 18392 V6_MASK_COPY(ipif->ipif_v6lcl_addr, 18393 ipif->ipif_v6net_mask, ipif->ipif_v6subnet); 18394 } 18395 /* 18396 * NOTE: SunOS 4.X does this even if the broadcast address 18397 * has been already set thus we do the same here. 18398 */ 18399 if (ipif->ipif_flags & IPIF_BROADCAST) { 18400 ipaddr_t v4addr; 18401 18402 v4addr = ipif->ipif_subnet | ~ipif->ipif_net_mask; 18403 IN6_IPADDR_TO_V4MAPPED(v4addr, &ipif->ipif_v6brd_addr); 18404 } 18405 } else { 18406 /* 18407 * Interface holds an IPv6-only address. Default 18408 * mask is all-ones. 18409 */ 18410 if (IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6net_mask)) 18411 ipif->ipif_v6net_mask = ipv6_all_ones; 18412 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 18413 /* ipif_subnet is ipif_pp_dst_addr for pt-pt */ 18414 ipif->ipif_v6subnet = ipif->ipif_v6pp_dst_addr; 18415 } else { 18416 V6_MASK_COPY(ipif->ipif_v6lcl_addr, 18417 ipif->ipif_v6net_mask, ipif->ipif_v6subnet); 18418 } 18419 } 18420 } 18421 18422 /* 18423 * Return 0 if this address can be used as local address without causing 18424 * duplicate address problems. Otherwise, return EADDRNOTAVAIL if the address 18425 * is already up on a different ill, and EADDRINUSE if it's up on the same ill. 18426 * Special checks are needed to allow the same IPv6 link-local address 18427 * on different ills. 18428 * TODO: allowing the same site-local address on different ill's. 18429 */ 18430 int 18431 ip_addr_availability_check(ipif_t *new_ipif) 18432 { 18433 in6_addr_t our_v6addr; 18434 ill_t *ill; 18435 ipif_t *ipif; 18436 ill_walk_context_t ctx; 18437 18438 ASSERT(IAM_WRITER_IPIF(new_ipif)); 18439 ASSERT(MUTEX_HELD(&ip_addr_avail_lock)); 18440 ASSERT(RW_READ_HELD(&ill_g_lock)); 18441 18442 new_ipif->ipif_flags &= ~IPIF_UNNUMBERED; 18443 if (IN6_IS_ADDR_UNSPECIFIED(&new_ipif->ipif_v6lcl_addr) || 18444 IN6_IS_ADDR_V4MAPPED_ANY(&new_ipif->ipif_v6lcl_addr)) 18445 return (0); 18446 18447 our_v6addr = new_ipif->ipif_v6lcl_addr; 18448 18449 if (new_ipif->ipif_isv6) 18450 ill = ILL_START_WALK_V6(&ctx); 18451 else 18452 ill = ILL_START_WALK_V4(&ctx); 18453 18454 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 18455 for (ipif = ill->ill_ipif; ipif != NULL; 18456 ipif = ipif->ipif_next) { 18457 if ((ipif == new_ipif) || 18458 !(ipif->ipif_flags & IPIF_UP) || 18459 (ipif->ipif_flags & IPIF_UNNUMBERED)) 18460 continue; 18461 if (IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6lcl_addr, 18462 &our_v6addr)) { 18463 if (new_ipif->ipif_flags & IPIF_POINTOPOINT) 18464 new_ipif->ipif_flags |= IPIF_UNNUMBERED; 18465 else if (ipif->ipif_flags & IPIF_POINTOPOINT) 18466 ipif->ipif_flags |= IPIF_UNNUMBERED; 18467 else if (IN6_IS_ADDR_LINKLOCAL(&our_v6addr) && 18468 new_ipif->ipif_ill != ill) 18469 continue; 18470 else if (IN6_IS_ADDR_SITELOCAL(&our_v6addr) && 18471 new_ipif->ipif_ill != ill) 18472 continue; 18473 else if (new_ipif->ipif_zoneid != 18474 ipif->ipif_zoneid && 18475 (ill->ill_phyint->phyint_flags & 18476 PHYI_LOOPBACK)) 18477 continue; 18478 else if (new_ipif->ipif_ill == ill) 18479 return (EADDRINUSE); 18480 else 18481 return (EADDRNOTAVAIL); 18482 } 18483 } 18484 } 18485 18486 return (0); 18487 } 18488 18489 /* 18490 * Bring up an ipif: bring up arp/ndp, bring up the DLPI stream, and add 18491 * IREs for the ipif. 18492 * When the routine returns EINPROGRESS then mp has been consumed and 18493 * the ioctl will be acked from ip_rput_dlpi. 18494 */ 18495 static int 18496 ipif_up(ipif_t *ipif, queue_t *q, mblk_t *mp) 18497 { 18498 ill_t *ill = ipif->ipif_ill; 18499 boolean_t isv6 = ipif->ipif_isv6; 18500 int err = 0; 18501 boolean_t success; 18502 18503 ASSERT(IAM_WRITER_IPIF(ipif)); 18504 18505 ip1dbg(("ipif_up(%s:%u)\n", ill->ill_name, ipif->ipif_id)); 18506 18507 /* Shouldn't get here if it is already up. */ 18508 if (ipif->ipif_flags & IPIF_UP) 18509 return (EALREADY); 18510 18511 /* Skip arp/ndp for any loopback interface. */ 18512 if (ill->ill_wq != NULL) { 18513 conn_t *connp = Q_TO_CONN(q); 18514 ipsq_t *ipsq = ill->ill_phyint->phyint_ipsq; 18515 18516 if (!ill->ill_dl_up) { 18517 /* 18518 * ill_dl_up is not yet set. i.e. we are yet to 18519 * DL_BIND with the driver and this is the first 18520 * logical interface on the ill to become "up". 18521 * Tell the driver to get going (via DL_BIND_REQ). 18522 * Note that changing "significant" IFF_ flags 18523 * address/netmask etc cause a down/up dance, but 18524 * does not cause an unbind (DL_UNBIND) with the driver 18525 */ 18526 return (ill_dl_up(ill, ipif, mp, q)); 18527 } 18528 18529 /* 18530 * ipif_resolver_up may end up sending an 18531 * AR_INTERFACE_UP message to ARP, which would, in 18532 * turn send a DLPI message to the driver. ioctls are 18533 * serialized and so we cannot send more than one 18534 * interface up message at a time. If ipif_resolver_up 18535 * does send an interface up message to ARP, we get 18536 * EINPROGRESS and we will complete in ip_arp_done. 18537 */ 18538 18539 ASSERT(connp != NULL); 18540 ASSERT(ipsq->ipsq_pending_mp == NULL); 18541 mutex_enter(&connp->conn_lock); 18542 mutex_enter(&ill->ill_lock); 18543 success = ipsq_pending_mp_add(connp, ipif, q, mp, 0); 18544 mutex_exit(&ill->ill_lock); 18545 mutex_exit(&connp->conn_lock); 18546 if (!success) 18547 return (EINTR); 18548 18549 /* 18550 * Crank up IPv6 neighbor discovery 18551 * Unlike ARP, this should complete when 18552 * ipif_ndp_up returns. However, for 18553 * ILLF_XRESOLV interfaces we also send a 18554 * AR_INTERFACE_UP to the external resolver. 18555 * That ioctl will complete in ip_rput. 18556 */ 18557 if (isv6) { 18558 err = ipif_ndp_up(ipif, &ipif->ipif_v6lcl_addr, 18559 B_FALSE); 18560 if (err != 0) { 18561 mp = ipsq_pending_mp_get(ipsq, &connp); 18562 return (err); 18563 } 18564 } 18565 /* Now, ARP */ 18566 if ((err = ipif_resolver_up(ipif, B_FALSE)) == 18567 EINPROGRESS) { 18568 /* We will complete it in ip_arp_done */ 18569 return (err); 18570 } 18571 mp = ipsq_pending_mp_get(ipsq, &connp); 18572 ASSERT(mp != NULL); 18573 if (err != 0) 18574 return (err); 18575 } 18576 return (isv6 ? ipif_up_done_v6(ipif) : ipif_up_done(ipif)); 18577 } 18578 18579 /* 18580 * Perform a bind for the physical device. 18581 * When the routine returns EINPROGRESS then mp has been consumed and 18582 * the ioctl will be acked from ip_rput_dlpi. 18583 * Allocate an unbind message and save it until ipif_down. 18584 */ 18585 static int 18586 ill_dl_up(ill_t *ill, ipif_t *ipif, mblk_t *mp, queue_t *q) 18587 { 18588 mblk_t *areq_mp = NULL; 18589 mblk_t *bind_mp = NULL; 18590 mblk_t *unbind_mp = NULL; 18591 conn_t *connp; 18592 boolean_t success; 18593 18594 ip1dbg(("ill_dl_up(%s)\n", ill->ill_name)); 18595 ASSERT(IAM_WRITER_ILL(ill)); 18596 18597 ASSERT(mp != NULL); 18598 18599 /* Create a resolver cookie for ARP */ 18600 if (!ill->ill_isv6 && ill->ill_net_type == IRE_IF_RESOLVER) { 18601 areq_t *areq; 18602 uint16_t sap_addr; 18603 18604 areq_mp = ill_arp_alloc(ill, 18605 (uchar_t *)&ip_areq_template, 0); 18606 if (areq_mp == NULL) { 18607 return (ENOMEM); 18608 } 18609 freemsg(ill->ill_resolver_mp); 18610 ill->ill_resolver_mp = areq_mp; 18611 areq = (areq_t *)areq_mp->b_rptr; 18612 sap_addr = ill->ill_sap; 18613 bcopy(&sap_addr, areq->areq_sap, sizeof (sap_addr)); 18614 /* 18615 * Wait till we call ill_pending_mp_add to determine 18616 * the success before we free the ill_resolver_mp and 18617 * attach areq_mp in it's place. 18618 */ 18619 } 18620 bind_mp = ip_dlpi_alloc(sizeof (dl_bind_req_t) + sizeof (long), 18621 DL_BIND_REQ); 18622 if (bind_mp == NULL) 18623 goto bad; 18624 ((dl_bind_req_t *)bind_mp->b_rptr)->dl_sap = ill->ill_sap; 18625 ((dl_bind_req_t *)bind_mp->b_rptr)->dl_service_mode = DL_CLDLS; 18626 18627 unbind_mp = ip_dlpi_alloc(sizeof (dl_unbind_req_t), DL_UNBIND_REQ); 18628 if (unbind_mp == NULL) 18629 goto bad; 18630 18631 /* 18632 * Record state needed to complete this operation when the 18633 * DL_BIND_ACK shows up. Also remember the pre-allocated mblks. 18634 */ 18635 if (WR(q)->q_next == NULL) { 18636 connp = Q_TO_CONN(q); 18637 mutex_enter(&connp->conn_lock); 18638 } else { 18639 connp = NULL; 18640 } 18641 mutex_enter(&ipif->ipif_ill->ill_lock); 18642 success = ipsq_pending_mp_add(connp, ipif, q, mp, 0); 18643 mutex_exit(&ipif->ipif_ill->ill_lock); 18644 if (connp != NULL) 18645 mutex_exit(&connp->conn_lock); 18646 if (!success) 18647 goto bad; 18648 18649 /* 18650 * Save the unbind message for ill_dl_down(); it will be consumed when 18651 * the interface goes down. 18652 */ 18653 ASSERT(ill->ill_unbind_mp == NULL); 18654 ill->ill_unbind_mp = unbind_mp; 18655 18656 ill_dlpi_send(ill, bind_mp); 18657 /* Send down link-layer capabilities probe if not already done. */ 18658 ill_capability_probe(ill); 18659 18660 /* 18661 * Sysid used to rely on the fact that netboots set domainname 18662 * and the like. Now that miniroot boots aren't strictly netboots 18663 * and miniroot network configuration is driven from userland 18664 * these things still need to be set. This situation can be detected 18665 * by comparing the interface being configured here to the one 18666 * dhcack was set to reference by the boot loader. Once sysid is 18667 * converted to use dhcp_ipc_getinfo() this call can go away. 18668 */ 18669 if ((ipif->ipif_flags & IPIF_DHCPRUNNING) && (dhcack != NULL) && 18670 (strcmp(ill->ill_name, dhcack) == 0) && 18671 (strlen(srpc_domain) == 0)) { 18672 if (dhcpinit() != 0) 18673 cmn_err(CE_WARN, "no cached dhcp response"); 18674 } 18675 18676 /* 18677 * This operation will complete in ip_rput_dlpi with either 18678 * a DL_BIND_ACK or DL_ERROR_ACK. 18679 */ 18680 return (EINPROGRESS); 18681 bad: 18682 ip1dbg(("ill_dl_up(%s) FAILED\n", ill->ill_name)); 18683 /* 18684 * We don't have to check for possible removal from illgrp 18685 * as we have not yet inserted in illgrp. For groups 18686 * without names, this ipif is still not UP and hence 18687 * this could not have possibly had any influence in forming 18688 * groups. 18689 */ 18690 18691 if (bind_mp != NULL) 18692 freemsg(bind_mp); 18693 if (unbind_mp != NULL) 18694 freemsg(unbind_mp); 18695 return (ENOMEM); 18696 } 18697 18698 uint_t ip_loopback_mtuplus = IP_LOOPBACK_MTU + IP_SIMPLE_HDR_LENGTH + 20; 18699 18700 /* 18701 * DLPI and ARP is up. 18702 * Create all the IREs associated with an interface bring up multicast. 18703 * Set the interface flag and finish other initialization 18704 * that potentially had to be differed to after DL_BIND_ACK. 18705 */ 18706 int 18707 ipif_up_done(ipif_t *ipif) 18708 { 18709 ire_t *ire_array[20]; 18710 ire_t **irep = ire_array; 18711 ire_t **irep1; 18712 ipaddr_t net_mask = 0; 18713 ipaddr_t subnet_mask, route_mask; 18714 ill_t *ill = ipif->ipif_ill; 18715 queue_t *stq; 18716 ipif_t *src_ipif; 18717 ipif_t *tmp_ipif; 18718 boolean_t flush_ire_cache = B_TRUE; 18719 int err = 0; 18720 phyint_t *phyi; 18721 ire_t **ipif_saved_irep = NULL; 18722 int ipif_saved_ire_cnt; 18723 int cnt; 18724 boolean_t src_ipif_held = B_FALSE; 18725 boolean_t ire_added = B_FALSE; 18726 boolean_t loopback = B_FALSE; 18727 18728 ip1dbg(("ipif_up_done(%s:%u)\n", 18729 ipif->ipif_ill->ill_name, ipif->ipif_id)); 18730 /* Check if this is a loopback interface */ 18731 if (ipif->ipif_ill->ill_wq == NULL) 18732 loopback = B_TRUE; 18733 18734 ASSERT(!MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 18735 /* 18736 * If all other interfaces for this ill are down or DEPRECATED, 18737 * or otherwise unsuitable for source address selection, remove 18738 * any IRE_CACHE entries for this ill to make sure source 18739 * address selection gets to take this new ipif into account. 18740 * No need to hold ill_lock while traversing the ipif list since 18741 * we are writer 18742 */ 18743 for (tmp_ipif = ill->ill_ipif; tmp_ipif; 18744 tmp_ipif = tmp_ipif->ipif_next) { 18745 if (((tmp_ipif->ipif_flags & 18746 (IPIF_NOXMIT|IPIF_ANYCAST|IPIF_NOLOCAL|IPIF_DEPRECATED)) || 18747 !(tmp_ipif->ipif_flags & IPIF_UP)) || 18748 (tmp_ipif == ipif)) 18749 continue; 18750 /* first useable pre-existing interface */ 18751 flush_ire_cache = B_FALSE; 18752 break; 18753 } 18754 if (flush_ire_cache) 18755 ire_walk_ill_v4(MATCH_IRE_ILL_GROUP | MATCH_IRE_TYPE, 18756 IRE_CACHE, ill_ipif_cache_delete, (char *)ill, ill); 18757 18758 /* 18759 * Figure out which way the send-to queue should go. Only 18760 * IRE_IF_RESOLVER or IRE_IF_NORESOLVER or IRE_LOOPBACK 18761 * should show up here. 18762 */ 18763 switch (ill->ill_net_type) { 18764 case IRE_IF_RESOLVER: 18765 stq = ill->ill_rq; 18766 break; 18767 case IRE_IF_NORESOLVER: 18768 case IRE_LOOPBACK: 18769 stq = ill->ill_wq; 18770 break; 18771 default: 18772 return (EINVAL); 18773 } 18774 18775 if (ill->ill_phyint->phyint_flags & PHYI_LOOPBACK) { 18776 /* 18777 * lo0:1 and subsequent ipifs were marked IRE_LOCAL in 18778 * ipif_lookup_on_name(), but in the case of zones we can have 18779 * several loopback addresses on lo0. So all the interfaces with 18780 * loopback addresses need to be marked IRE_LOOPBACK. 18781 */ 18782 if (V4_PART_OF_V6(ipif->ipif_v6lcl_addr) == 18783 htonl(INADDR_LOOPBACK)) 18784 ipif->ipif_ire_type = IRE_LOOPBACK; 18785 else 18786 ipif->ipif_ire_type = IRE_LOCAL; 18787 } 18788 18789 if (ipif->ipif_flags & (IPIF_NOLOCAL|IPIF_ANYCAST|IPIF_DEPRECATED)) { 18790 /* 18791 * Can't use our source address. Select a different 18792 * source address for the IRE_INTERFACE and IRE_LOCAL 18793 */ 18794 src_ipif = ipif_select_source(ipif->ipif_ill, 18795 ipif->ipif_subnet, ipif->ipif_zoneid); 18796 if (src_ipif == NULL) 18797 src_ipif = ipif; /* Last resort */ 18798 else 18799 src_ipif_held = B_TRUE; 18800 } else { 18801 src_ipif = ipif; 18802 } 18803 18804 /* Create all the IREs associated with this interface */ 18805 if ((ipif->ipif_lcl_addr != INADDR_ANY) && 18806 !(ipif->ipif_flags & IPIF_NOLOCAL)) { 18807 /* Register the source address for __sin6_src_id */ 18808 err = ip_srcid_insert(&ipif->ipif_v6lcl_addr, 18809 ipif->ipif_zoneid); 18810 if (err != 0) { 18811 ip0dbg(("ipif_up_done: srcid_insert %d\n", err)); 18812 return (err); 18813 } 18814 /* If the interface address is set, create the local IRE. */ 18815 ip1dbg(("ipif_up_done: 0x%p creating IRE 0x%x for 0x%x\n", 18816 (void *)ipif, 18817 ipif->ipif_ire_type, 18818 ntohl(ipif->ipif_lcl_addr))); 18819 *irep++ = ire_create( 18820 (uchar_t *)&ipif->ipif_lcl_addr, /* dest address */ 18821 (uchar_t *)&ip_g_all_ones, /* mask */ 18822 (uchar_t *)&src_ipif->ipif_src_addr, /* source address */ 18823 NULL, /* no gateway */ 18824 NULL, 18825 &ip_loopback_mtuplus, /* max frag size */ 18826 NULL, 18827 ipif->ipif_rq, /* recv-from queue */ 18828 NULL, /* no send-to queue */ 18829 ipif->ipif_ire_type, /* LOCAL or LOOPBACK */ 18830 NULL, 18831 ipif, 18832 NULL, 18833 0, 18834 0, 18835 0, 18836 (ipif->ipif_flags & IPIF_PRIVATE) ? 18837 RTF_PRIVATE : 0, 18838 &ire_uinfo_null); 18839 } else { 18840 ip1dbg(( 18841 "ipif_up_done: not creating IRE %d for 0x%x: flags 0x%x\n", 18842 ipif->ipif_ire_type, 18843 ntohl(ipif->ipif_lcl_addr), 18844 (uint_t)ipif->ipif_flags)); 18845 } 18846 if ((ipif->ipif_lcl_addr != INADDR_ANY) && 18847 !(ipif->ipif_flags & IPIF_NOLOCAL)) { 18848 net_mask = ip_net_mask(ipif->ipif_lcl_addr); 18849 } else { 18850 net_mask = htonl(IN_CLASSA_NET); /* fallback */ 18851 } 18852 18853 subnet_mask = ipif->ipif_net_mask; 18854 18855 /* 18856 * If mask was not specified, use natural netmask of 18857 * interface address. Also, store this mask back into the 18858 * ipif struct. 18859 */ 18860 if (subnet_mask == 0) { 18861 subnet_mask = net_mask; 18862 V4MASK_TO_V6(subnet_mask, ipif->ipif_v6net_mask); 18863 V6_MASK_COPY(ipif->ipif_v6lcl_addr, ipif->ipif_v6net_mask, 18864 ipif->ipif_v6subnet); 18865 } 18866 18867 /* Set up the IRE_IF_RESOLVER or IRE_IF_NORESOLVER, as appropriate. */ 18868 if (stq != NULL && !(ipif->ipif_flags & IPIF_NOXMIT) && 18869 ipif->ipif_subnet != INADDR_ANY) { 18870 /* ipif_subnet is ipif_pp_dst_addr for pt-pt */ 18871 18872 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 18873 route_mask = IP_HOST_MASK; 18874 } else { 18875 route_mask = subnet_mask; 18876 } 18877 18878 ip1dbg(("ipif_up_done: ipif 0x%p ill 0x%p " 18879 "creating if IRE ill_net_type 0x%x for 0x%x\n", 18880 (void *)ipif, (void *)ill, 18881 ill->ill_net_type, 18882 ntohl(ipif->ipif_subnet))); 18883 *irep++ = ire_create( 18884 (uchar_t *)&ipif->ipif_subnet, /* dest address */ 18885 (uchar_t *)&route_mask, /* mask */ 18886 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 18887 NULL, /* no gateway */ 18888 NULL, 18889 &ipif->ipif_mtu, /* max frag */ 18890 NULL, 18891 NULL, /* no recv queue */ 18892 stq, /* send-to queue */ 18893 ill->ill_net_type, /* IF_[NO]RESOLVER */ 18894 ill->ill_resolver_mp, /* xmit header */ 18895 ipif, 18896 NULL, 18897 0, 18898 0, 18899 0, 18900 (ipif->ipif_flags & IPIF_PRIVATE) ? RTF_PRIVATE: 0, 18901 &ire_uinfo_null); 18902 } 18903 18904 /* 18905 * If the interface address is set, create the broadcast IREs. 18906 * 18907 * ire_create_bcast checks if the proposed new IRE matches 18908 * any existing IRE's with the same physical interface (ILL). 18909 * This should get rid of duplicates. 18910 * ire_create_bcast also check IPIF_NOXMIT and does not create 18911 * any broadcast ires. 18912 */ 18913 if ((ipif->ipif_subnet != INADDR_ANY) && 18914 (ipif->ipif_flags & IPIF_BROADCAST)) { 18915 ipaddr_t addr; 18916 18917 ip1dbg(("ipif_up_done: creating broadcast IRE\n")); 18918 irep = ire_check_and_create_bcast(ipif, 0, irep, 18919 (MATCH_IRE_TYPE | MATCH_IRE_ILL)); 18920 irep = ire_check_and_create_bcast(ipif, INADDR_BROADCAST, irep, 18921 (MATCH_IRE_TYPE | MATCH_IRE_ILL)); 18922 18923 /* 18924 * For backward compatibility, we need to create net 18925 * broadcast ire's based on the old "IP address class 18926 * system." The reason is that some old machines only 18927 * respond to these class derived net broadcast. 18928 * 18929 * But we should not create these net broadcast ire's if 18930 * the subnet_mask is shorter than the IP address class based 18931 * derived netmask. Otherwise, we may create a net 18932 * broadcast address which is the same as an IP address 18933 * on the subnet. Then TCP will refuse to talk to that 18934 * address. 18935 * 18936 * Nor do we need IRE_BROADCAST ire's for the interface 18937 * with the netmask as 0xFFFFFFFF, as IRE_LOCAL for that 18938 * interface is already created. Creating these broadcast 18939 * ire's will only create confusion as the "addr" is going 18940 * to be same as that of the IP address of the interface. 18941 */ 18942 if (net_mask < subnet_mask) { 18943 addr = net_mask & ipif->ipif_subnet; 18944 irep = ire_check_and_create_bcast(ipif, addr, irep, 18945 (MATCH_IRE_TYPE | MATCH_IRE_ILL)); 18946 irep = ire_check_and_create_bcast(ipif, 18947 ~net_mask | addr, irep, 18948 (MATCH_IRE_TYPE | MATCH_IRE_ILL)); 18949 } 18950 18951 if (subnet_mask != 0xFFFFFFFF) { 18952 addr = ipif->ipif_subnet; 18953 irep = ire_check_and_create_bcast(ipif, addr, irep, 18954 (MATCH_IRE_TYPE | MATCH_IRE_ILL)); 18955 irep = ire_check_and_create_bcast(ipif, 18956 ~subnet_mask|addr, irep, 18957 (MATCH_IRE_TYPE | MATCH_IRE_ILL)); 18958 } 18959 } 18960 18961 ASSERT(!MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 18962 18963 /* If an earlier ire_create failed, get out now */ 18964 for (irep1 = irep; irep1 > ire_array; ) { 18965 irep1--; 18966 if (*irep1 == NULL) { 18967 ip1dbg(("ipif_up_done: NULL ire found in ire_array\n")); 18968 err = ENOMEM; 18969 goto bad; 18970 } 18971 } 18972 18973 /* 18974 * Need to atomically check for ip_addr_availablity_check 18975 * under ip_addr_avail_lock, and if it fails got bad, and remove 18976 * from group also.The ill_g_lock is grabbed as reader 18977 * just to make sure no new ills or new ipifs are being added 18978 * to the system while we are checking the uniqueness of addresses. 18979 */ 18980 rw_enter(&ill_g_lock, RW_READER); 18981 mutex_enter(&ip_addr_avail_lock); 18982 /* Mark it up, and increment counters. */ 18983 ill->ill_ipif_up_count++; 18984 ipif->ipif_flags |= IPIF_UP; 18985 err = ip_addr_availability_check(ipif); 18986 mutex_exit(&ip_addr_avail_lock); 18987 rw_exit(&ill_g_lock); 18988 18989 if (err != 0) { 18990 /* 18991 * Our address may already be up on the same ill. In this case, 18992 * the ARP entry for our ipif replaced the one for the other 18993 * ipif. So we don't want to delete it (otherwise the other ipif 18994 * would be unable to send packets). 18995 * ip_addr_availability_check() identifies this case for us and 18996 * returns EADDRINUSE; we need to turn it into EADDRNOTAVAIL 18997 * which is the expected error code. 18998 */ 18999 if (err == EADDRINUSE) { 19000 freemsg(ipif->ipif_arp_del_mp); 19001 ipif->ipif_arp_del_mp = NULL; 19002 err = EADDRNOTAVAIL; 19003 } 19004 ill->ill_ipif_up_count--; 19005 ipif->ipif_flags &= ~IPIF_UP; 19006 goto bad; 19007 } 19008 19009 /* 19010 * Add in all newly created IREs. ire_create_bcast() has 19011 * already checked for duplicates of the IRE_BROADCAST type. 19012 * We want to add before we call ifgrp_insert which wants 19013 * to know whether IRE_IF_RESOLVER exists or not. 19014 * 19015 * NOTE : We refrele the ire though we may branch to "bad" 19016 * later on where we do ire_delete. This is okay 19017 * because nobody can delete it as we are running 19018 * exclusively. 19019 */ 19020 for (irep1 = irep; irep1 > ire_array; ) { 19021 irep1--; 19022 ASSERT(!MUTEX_HELD(&((*irep1)->ire_ipif->ipif_ill->ill_lock))); 19023 /* 19024 * refheld by ire_add. refele towards the end of the func 19025 */ 19026 (void) ire_add(irep1, NULL, NULL, NULL); 19027 } 19028 ire_added = B_TRUE; 19029 /* 19030 * Form groups if possible. 19031 * 19032 * If we are supposed to be in a ill_group with a name, insert it 19033 * now as we know that at least one ipif is UP. Otherwise form 19034 * nameless groups. 19035 * 19036 * If ip_enable_group_ifs is set and ipif address is not 0, insert 19037 * this ipif into the appropriate interface group, or create a 19038 * new one. If this is already in a nameless group, we try to form 19039 * a bigger group looking at other ills potentially sharing this 19040 * ipif's prefix. 19041 */ 19042 phyi = ill->ill_phyint; 19043 if (phyi->phyint_groupname_len != 0) { 19044 ASSERT(phyi->phyint_groupname != NULL); 19045 if (ill->ill_ipif_up_count == 1) { 19046 ASSERT(ill->ill_group == NULL); 19047 err = illgrp_insert(&illgrp_head_v4, ill, 19048 phyi->phyint_groupname, NULL, B_TRUE); 19049 if (err != 0) { 19050 ip1dbg(("ipif_up_done: illgrp allocation " 19051 "failed, error %d\n", err)); 19052 goto bad; 19053 } 19054 } 19055 ASSERT(ill->ill_group != NULL); 19056 } 19057 19058 /* 19059 * When this is part of group, we need to make sure that 19060 * any broadcast ires created because of this ipif coming 19061 * UP gets marked/cleared with IRE_MARK_NORECV appropriately 19062 * so that we don't receive duplicate broadcast packets. 19063 */ 19064 if (ill->ill_group != NULL && ill->ill_ipif_up_count != 0) 19065 ipif_renominate_bcast(ipif); 19066 19067 /* Recover any additional IRE_IF_[NO]RESOLVER entries for this ipif */ 19068 ipif_saved_ire_cnt = ipif->ipif_saved_ire_cnt; 19069 ipif_saved_irep = ipif_recover_ire(ipif); 19070 19071 if (!loopback) { 19072 /* 19073 * If the broadcast address has been set, make sure it makes 19074 * sense based on the interface address. 19075 * Only match on ill since we are sharing broadcast addresses. 19076 */ 19077 if ((ipif->ipif_brd_addr != INADDR_ANY) && 19078 (ipif->ipif_flags & IPIF_BROADCAST)) { 19079 ire_t *ire; 19080 19081 ire = ire_ctable_lookup(ipif->ipif_brd_addr, 0, 19082 IRE_BROADCAST, ipif, ALL_ZONES, 19083 (MATCH_IRE_TYPE | MATCH_IRE_ILL)); 19084 19085 if (ire == NULL) { 19086 /* 19087 * If there isn't a matching broadcast IRE, 19088 * revert to the default for this netmask. 19089 */ 19090 ipif->ipif_v6brd_addr = ipv6_all_zeros; 19091 mutex_enter(&ipif->ipif_ill->ill_lock); 19092 ipif_set_default(ipif); 19093 mutex_exit(&ipif->ipif_ill->ill_lock); 19094 } else { 19095 ire_refrele(ire); 19096 } 19097 } 19098 19099 } 19100 19101 19102 /* This is the first interface on this ill */ 19103 if (ipif->ipif_ipif_up_count == 1 && !loopback) { 19104 /* 19105 * Need to recover all multicast memberships in the driver. 19106 * This had to be deferred until we had attached. 19107 */ 19108 ill_recover_multicast(ill); 19109 } 19110 /* Join the allhosts multicast address */ 19111 ipif_multicast_up(ipif); 19112 19113 if (!loopback) { 19114 /* 19115 * See whether anybody else would benefit from the 19116 * new ipif that we added. We call this always rather 19117 * than while adding a non-IPIF_NOLOCAL/DEPRECATED/ANYCAST 19118 * ipif is for the benefit of illgrp_insert (done above) 19119 * which does not do source address selection as it does 19120 * not want to re-create interface routes that we are 19121 * having reference to it here. 19122 */ 19123 ill_update_source_selection(ill); 19124 } 19125 19126 for (irep1 = irep; irep1 > ire_array; ) { 19127 irep1--; 19128 if (*irep1 != NULL) { 19129 /* was held in ire_add */ 19130 ire_refrele(*irep1); 19131 } 19132 } 19133 19134 cnt = ipif_saved_ire_cnt; 19135 for (irep1 = ipif_saved_irep; cnt > 0; irep1++, cnt--) { 19136 if (*irep1 != NULL) { 19137 /* was held in ire_add */ 19138 ire_refrele(*irep1); 19139 } 19140 } 19141 19142 /* 19143 * This had to be deferred until we had bound. 19144 * tell routing sockets that this interface is up 19145 */ 19146 ip_rts_ifmsg(ipif); 19147 ip_rts_newaddrmsg(RTM_ADD, 0, ipif); 19148 19149 if (!loopback) { 19150 /* Broadcast an address mask reply. */ 19151 ipif_mask_reply(ipif); 19152 } 19153 if (ipif_saved_irep != NULL) { 19154 kmem_free(ipif_saved_irep, 19155 ipif_saved_ire_cnt * sizeof (ire_t *)); 19156 } 19157 if (src_ipif_held) 19158 ipif_refrele(src_ipif); 19159 /* Let SCTP update the status for this ipif */ 19160 sctp_update_ipif(ipif, SCTP_IPIF_UP); 19161 return (0); 19162 19163 bad: 19164 ip1dbg(("ipif_up_done: FAILED \n")); 19165 /* 19166 * We don't have to bother removing from ill groups because 19167 * 19168 * 1) For groups with names, we insert only when the first ipif 19169 * comes up. In that case if it fails, it will not be in any 19170 * group. So, we need not try to remove for that case. 19171 * 19172 * 2) For groups without names, either we tried to insert ipif_ill 19173 * in a group as singleton or found some other group to become 19174 * a bigger group. For the former, if it fails we don't have 19175 * anything to do as ipif_ill is not in the group and for the 19176 * latter, there are no failures in illgrp_insert/illgrp_delete 19177 * (ENOMEM can't occur for this. Check ifgrp_insert). 19178 */ 19179 while (irep > ire_array) { 19180 irep--; 19181 if (*irep != NULL) { 19182 ire_delete(*irep); 19183 if (ire_added) 19184 ire_refrele(*irep); 19185 } 19186 } 19187 (void) ip_srcid_remove(&ipif->ipif_v6lcl_addr, ipif->ipif_zoneid); 19188 19189 if (ipif_saved_irep != NULL) { 19190 kmem_free(ipif_saved_irep, 19191 ipif_saved_ire_cnt * sizeof (ire_t *)); 19192 } 19193 if (src_ipif_held) 19194 ipif_refrele(src_ipif); 19195 19196 ipif_arp_down(ipif); 19197 return (err); 19198 } 19199 19200 /* 19201 * Turn off the ARP with the ILLF_NOARP flag. 19202 */ 19203 static int 19204 ill_arp_off(ill_t *ill) 19205 { 19206 mblk_t *arp_off_mp = NULL; 19207 mblk_t *arp_on_mp = NULL; 19208 19209 ip1dbg(("ill_arp_off(%s)\n", ill->ill_name)); 19210 19211 ASSERT(IAM_WRITER_ILL(ill)); 19212 ASSERT(ill->ill_net_type == IRE_IF_RESOLVER); 19213 19214 /* 19215 * If the on message is still around we've already done 19216 * an arp_off without doing an arp_on thus there is no 19217 * work needed. 19218 */ 19219 if (ill->ill_arp_on_mp != NULL) 19220 return (0); 19221 19222 /* 19223 * Allocate an ARP on message (to be saved) and an ARP off message 19224 */ 19225 arp_off_mp = ill_arp_alloc(ill, (uchar_t *)&ip_aroff_template, 0); 19226 if (!arp_off_mp) 19227 return (ENOMEM); 19228 19229 arp_on_mp = ill_arp_alloc(ill, (uchar_t *)&ip_aron_template, 0); 19230 if (!arp_on_mp) 19231 goto failed; 19232 19233 ASSERT(ill->ill_arp_on_mp == NULL); 19234 ill->ill_arp_on_mp = arp_on_mp; 19235 19236 /* Send an AR_INTERFACE_OFF request */ 19237 putnext(ill->ill_rq, arp_off_mp); 19238 return (0); 19239 failed: 19240 19241 if (arp_off_mp) 19242 freemsg(arp_off_mp); 19243 return (ENOMEM); 19244 } 19245 19246 /* 19247 * Turn on ARP by turning off the ILLF_NOARP flag. 19248 */ 19249 static int 19250 ill_arp_on(ill_t *ill) 19251 { 19252 mblk_t *mp; 19253 19254 ip1dbg(("ipif_arp_on(%s)\n", ill->ill_name)); 19255 19256 ASSERT(ill->ill_net_type == IRE_IF_RESOLVER); 19257 19258 ASSERT(IAM_WRITER_ILL(ill)); 19259 /* 19260 * Send an AR_INTERFACE_ON request if we have already done 19261 * an arp_off (which allocated the message). 19262 */ 19263 if (ill->ill_arp_on_mp != NULL) { 19264 mp = ill->ill_arp_on_mp; 19265 ill->ill_arp_on_mp = NULL; 19266 putnext(ill->ill_rq, mp); 19267 } 19268 return (0); 19269 } 19270 19271 /* 19272 * Called after either deleting ill from the group or when setting 19273 * FAILED or STANDBY on the interface. 19274 */ 19275 static void 19276 illgrp_reset_schednext(ill_t *ill) 19277 { 19278 ill_group_t *illgrp; 19279 ill_t *save_ill; 19280 19281 ASSERT(IAM_WRITER_ILL(ill)); 19282 /* 19283 * When called from illgrp_delete, ill_group will be non-NULL. 19284 * But when called from ip_sioctl_flags, it could be NULL if 19285 * somebody is setting FAILED/INACTIVE on some interface which 19286 * is not part of a group. 19287 */ 19288 illgrp = ill->ill_group; 19289 if (illgrp == NULL) 19290 return; 19291 if (illgrp->illgrp_ill_schednext != ill) 19292 return; 19293 19294 illgrp->illgrp_ill_schednext = NULL; 19295 save_ill = ill; 19296 /* 19297 * Choose a good ill to be the next one for 19298 * outbound traffic. As the flags FAILED/STANDBY is 19299 * not yet marked when called from ip_sioctl_flags, 19300 * we check for ill separately. 19301 */ 19302 for (ill = illgrp->illgrp_ill; ill != NULL; 19303 ill = ill->ill_group_next) { 19304 if ((ill != save_ill) && 19305 !(ill->ill_phyint->phyint_flags & 19306 (PHYI_FAILED|PHYI_INACTIVE|PHYI_OFFLINE))) { 19307 illgrp->illgrp_ill_schednext = ill; 19308 return; 19309 } 19310 } 19311 } 19312 19313 /* 19314 * Given an ill, find the next ill in the group to be scheduled. 19315 * (This should be called by ip_newroute() before ire_create().) 19316 * The passed in ill may be pulled out of the group, after we have picked 19317 * up a different outgoing ill from the same group. However ire add will 19318 * atomically check this. 19319 */ 19320 ill_t * 19321 illgrp_scheduler(ill_t *ill) 19322 { 19323 ill_t *retill; 19324 ill_group_t *illgrp; 19325 int illcnt; 19326 int i; 19327 uint64_t flags; 19328 19329 /* 19330 * We don't use a lock to check for the ill_group. If this ill 19331 * is currently being inserted we may end up just returning this 19332 * ill itself. That is ok. 19333 */ 19334 if (ill->ill_group == NULL) { 19335 ill_refhold(ill); 19336 return (ill); 19337 } 19338 19339 /* 19340 * Grab the ill_g_lock as reader to make sure we are dealing with 19341 * a set of stable ills. No ill can be added or deleted or change 19342 * group while we hold the reader lock. 19343 */ 19344 rw_enter(&ill_g_lock, RW_READER); 19345 if ((illgrp = ill->ill_group) == NULL) { 19346 rw_exit(&ill_g_lock); 19347 ill_refhold(ill); 19348 return (ill); 19349 } 19350 19351 illcnt = illgrp->illgrp_ill_count; 19352 mutex_enter(&illgrp->illgrp_lock); 19353 retill = illgrp->illgrp_ill_schednext; 19354 19355 if (retill == NULL) 19356 retill = illgrp->illgrp_ill; 19357 19358 /* 19359 * We do a circular search beginning at illgrp_ill_schednext 19360 * or illgrp_ill. We don't check the flags against the ill lock 19361 * since it can change anytime. The ire creation will be atomic 19362 * and will fail if the ill is FAILED or OFFLINE. 19363 */ 19364 for (i = 0; i < illcnt; i++) { 19365 flags = retill->ill_phyint->phyint_flags; 19366 19367 if (!(flags & (PHYI_FAILED|PHYI_INACTIVE|PHYI_OFFLINE)) && 19368 ILL_CAN_LOOKUP(retill)) { 19369 illgrp->illgrp_ill_schednext = retill->ill_group_next; 19370 ill_refhold(retill); 19371 break; 19372 } 19373 retill = retill->ill_group_next; 19374 if (retill == NULL) 19375 retill = illgrp->illgrp_ill; 19376 } 19377 mutex_exit(&illgrp->illgrp_lock); 19378 rw_exit(&ill_g_lock); 19379 19380 return (i == illcnt ? NULL : retill); 19381 } 19382 19383 /* 19384 * Checks for availbility of a usable source address (if there is one) when the 19385 * destination ILL has the ill_usesrc_ifindex pointing to another ILL. Note 19386 * this selection is done regardless of the destination. 19387 */ 19388 boolean_t 19389 ipif_usesrc_avail(ill_t *ill, zoneid_t zoneid) 19390 { 19391 uint_t ifindex; 19392 ipif_t *ipif = NULL; 19393 ill_t *uill; 19394 boolean_t isv6; 19395 19396 ASSERT(ill != NULL); 19397 19398 isv6 = ill->ill_isv6; 19399 ifindex = ill->ill_usesrc_ifindex; 19400 if (ifindex != 0) { 19401 uill = ill_lookup_on_ifindex(ifindex, isv6, NULL, NULL, NULL, 19402 NULL); 19403 if (uill == NULL) 19404 return (NULL); 19405 mutex_enter(&uill->ill_lock); 19406 for (ipif = uill->ill_ipif; ipif != NULL; 19407 ipif = ipif->ipif_next) { 19408 if (!IPIF_CAN_LOOKUP(ipif)) 19409 continue; 19410 if (ipif->ipif_flags & (IPIF_NOLOCAL|IPIF_ANYCAST)) 19411 continue; 19412 if (!(ipif->ipif_flags & IPIF_UP)) 19413 continue; 19414 if (ipif->ipif_zoneid != zoneid) 19415 continue; 19416 if ((isv6 && 19417 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr)) || 19418 (ipif->ipif_lcl_addr == INADDR_ANY)) 19419 continue; 19420 mutex_exit(&uill->ill_lock); 19421 ill_refrele(uill); 19422 return (B_TRUE); 19423 } 19424 mutex_exit(&uill->ill_lock); 19425 ill_refrele(uill); 19426 } 19427 return (B_FALSE); 19428 } 19429 19430 /* 19431 * Determine the best source address given a destination address and an ill. 19432 * Prefers non-deprecated over deprecated but will return a deprecated 19433 * address if there is no other choice. If there is a usable source address 19434 * on the interface pointed to by ill_usesrc_ifindex then that is given 19435 * first preference. 19436 * 19437 * Returns NULL if there is no suitable source address for the ill. 19438 * This only occurs when there is no valid source address for the ill. 19439 */ 19440 ipif_t * 19441 ipif_select_source(ill_t *ill, ipaddr_t dst, zoneid_t zoneid) 19442 { 19443 ipif_t *ipif; 19444 ipif_t *ipif_dep = NULL; /* Fallback to deprecated */ 19445 ipif_t *ipif_arr[MAX_IPIF_SELECT_SOURCE]; 19446 int index = 0; 19447 boolean_t wrapped = B_FALSE; 19448 boolean_t same_subnet_only = B_FALSE; 19449 boolean_t ipif_same_found, ipif_other_found; 19450 ill_t *till, *usill = NULL; 19451 19452 if (ill->ill_usesrc_ifindex != 0) { 19453 usill = ill_lookup_on_ifindex(ill->ill_usesrc_ifindex, B_FALSE, 19454 NULL, NULL, NULL, NULL); 19455 if (usill != NULL) 19456 ill = usill; /* Select source from usesrc ILL */ 19457 else 19458 return (NULL); 19459 } 19460 19461 /* 19462 * Holds the ill_g_lock as reader. This makes sure that no ipif/ill 19463 * can be deleted. But an ipif/ill can get CONDEMNED any time. 19464 * After selecting the right ipif, under ill_lock make sure ipif is 19465 * not condemned, and increment refcnt. If ipif is CONDEMNED, 19466 * we retry. Inside the loop we still need to check for CONDEMNED, 19467 * but not under a lock. 19468 */ 19469 rw_enter(&ill_g_lock, RW_READER); 19470 19471 retry: 19472 till = ill; 19473 ipif_arr[0] = NULL; 19474 19475 if (till->ill_group != NULL) 19476 till = till->ill_group->illgrp_ill; 19477 19478 /* 19479 * Choose one good source address from each ill across the group. 19480 * If possible choose a source address in the same subnet as 19481 * the destination address. 19482 * 19483 * We don't check for PHYI_FAILED or PHYI_INACTIVE or PHYI_OFFLINE 19484 * This is okay because of the following. 19485 * 19486 * If PHYI_FAILED is set and we still have non-deprecated 19487 * addresses, it means the addresses have not yet been 19488 * failed over to a different interface. We potentially 19489 * select them to create IRE_CACHES, which will be later 19490 * flushed when the addresses move over. 19491 * 19492 * If PHYI_INACTIVE is set and we still have non-deprecated 19493 * addresses, it means either the user has configured them 19494 * or PHYI_INACTIVE has not been cleared after the addresses 19495 * been moved over. For the former, in.mpathd does a failover 19496 * when the interface becomes INACTIVE and hence we should 19497 * not find them. Once INACTIVE is set, we don't allow them 19498 * to create logical interfaces anymore. For the latter, a 19499 * flush will happen when INACTIVE is cleared which will 19500 * flush the IRE_CACHES. 19501 * 19502 * If PHYI_OFFLINE is set, all the addresses will be failed 19503 * over soon. We potentially select them to create IRE_CACHEs, 19504 * which will be later flushed when the addresses move over. 19505 * 19506 * NOTE : As ipif_select_source is called to borrow source address 19507 * for an ipif that is part of a group, source address selection 19508 * will be re-done whenever the group changes i.e either an 19509 * insertion/deletion in the group. 19510 * 19511 * Fill ipif_arr[] with source addresses, using these rules: 19512 * 19513 * 1. At most one source address from a given ill ends up 19514 * in ipif_arr[] -- that is, at most one of the ipif's 19515 * associated with a given ill ends up in ipif_arr[]. 19516 * 19517 * 2. If there is at least one non-deprecated ipif in the 19518 * IPMP group with a source address on the same subnet as 19519 * our destination, then fill ipif_arr[] only with 19520 * source addresses on the same subnet as our destination. 19521 * Note that because of (1), only the first 19522 * non-deprecated ipif found with a source address 19523 * matching the destination ends up in ipif_arr[]. 19524 * 19525 * 3. Otherwise, fill ipif_arr[] with non-deprecated source 19526 * addresses not in the same subnet as our destination. 19527 * Again, because of (1), only the first off-subnet source 19528 * address will be chosen. 19529 * 19530 * 4. If there are no non-deprecated ipifs, then just use 19531 * the source address associated with the last deprecated 19532 * one we find that happens to be on the same subnet, 19533 * otherwise the first one not in the same subnet. 19534 */ 19535 for (; till != NULL; till = till->ill_group_next) { 19536 ipif_same_found = B_FALSE; 19537 ipif_other_found = B_FALSE; 19538 for (ipif = till->ill_ipif; ipif != NULL; 19539 ipif = ipif->ipif_next) { 19540 if (!IPIF_CAN_LOOKUP(ipif)) 19541 continue; 19542 /* Always skip NOLOCAL and ANYCAST interfaces */ 19543 if (ipif->ipif_flags & (IPIF_NOLOCAL|IPIF_ANYCAST)) 19544 continue; 19545 if (!(ipif->ipif_flags & IPIF_UP)) 19546 continue; 19547 if (ipif->ipif_zoneid != zoneid) 19548 continue; 19549 /* 19550 * Interfaces with 0.0.0.0 address are allowed to be UP, 19551 * but are not valid as source addresses. 19552 */ 19553 if (ipif->ipif_lcl_addr == INADDR_ANY) 19554 continue; 19555 if (ipif->ipif_flags & IPIF_DEPRECATED) { 19556 if (ipif_dep == NULL || 19557 (ipif->ipif_net_mask & dst) == 19558 ipif->ipif_subnet) 19559 ipif_dep = ipif; 19560 continue; 19561 } 19562 if ((ipif->ipif_net_mask & dst) == ipif->ipif_subnet) { 19563 /* found a source address in the same subnet */ 19564 if (same_subnet_only == B_FALSE) { 19565 same_subnet_only = B_TRUE; 19566 index = 0; 19567 } 19568 ipif_same_found = B_TRUE; 19569 } else { 19570 if (same_subnet_only == B_TRUE || 19571 ipif_other_found == B_TRUE) 19572 continue; 19573 ipif_other_found = B_TRUE; 19574 } 19575 ipif_arr[index++] = ipif; 19576 if (index == MAX_IPIF_SELECT_SOURCE) { 19577 wrapped = B_TRUE; 19578 index = 0; 19579 } 19580 if (ipif_same_found == B_TRUE) 19581 break; 19582 } 19583 } 19584 19585 if (ipif_arr[0] == NULL) { 19586 ipif = ipif_dep; 19587 } else { 19588 if (wrapped) 19589 index = MAX_IPIF_SELECT_SOURCE; 19590 ipif = ipif_arr[ipif_rand() % index]; 19591 ASSERT(ipif != NULL); 19592 } 19593 19594 if (ipif != NULL) { 19595 mutex_enter(&ipif->ipif_ill->ill_lock); 19596 if (!IPIF_CAN_LOOKUP(ipif)) { 19597 mutex_exit(&ipif->ipif_ill->ill_lock); 19598 goto retry; 19599 } 19600 ipif_refhold_locked(ipif); 19601 mutex_exit(&ipif->ipif_ill->ill_lock); 19602 } 19603 19604 rw_exit(&ill_g_lock); 19605 if (usill != NULL) 19606 ill_refrele(usill); 19607 19608 #ifdef DEBUG 19609 if (ipif == NULL) { 19610 char buf1[INET6_ADDRSTRLEN]; 19611 19612 ip1dbg(("ipif_select_source(%s, %s) -> NULL\n", 19613 ill->ill_name, 19614 inet_ntop(AF_INET, &dst, buf1, sizeof (buf1)))); 19615 } else { 19616 char buf1[INET6_ADDRSTRLEN]; 19617 char buf2[INET6_ADDRSTRLEN]; 19618 19619 ip1dbg(("ipif_select_source(%s, %s) -> %s\n", 19620 ipif->ipif_ill->ill_name, 19621 inet_ntop(AF_INET, &dst, buf1, sizeof (buf1)), 19622 inet_ntop(AF_INET, &ipif->ipif_lcl_addr, 19623 buf2, sizeof (buf2)))); 19624 } 19625 #endif /* DEBUG */ 19626 return (ipif); 19627 } 19628 19629 19630 /* 19631 * If old_ipif is not NULL, see if ipif was derived from old 19632 * ipif and if so, recreate the interface route by re-doing 19633 * source address selection. This happens when ipif_down -> 19634 * ipif_update_other_ipifs calls us. 19635 * 19636 * If old_ipif is NULL, just redo the source address selection 19637 * if needed. This happens when illgrp_insert or ipif_up_done 19638 * calls us. 19639 */ 19640 static void 19641 ipif_recreate_interface_routes(ipif_t *old_ipif, ipif_t *ipif) 19642 { 19643 ire_t *ire; 19644 ire_t *ipif_ire; 19645 queue_t *stq; 19646 ipif_t *nipif; 19647 ill_t *ill; 19648 boolean_t need_rele = B_FALSE; 19649 19650 ASSERT(old_ipif == NULL || IAM_WRITER_IPIF(old_ipif)); 19651 ASSERT(IAM_WRITER_IPIF(ipif)); 19652 19653 ill = ipif->ipif_ill; 19654 if (!(ipif->ipif_flags & 19655 (IPIF_NOLOCAL|IPIF_ANYCAST|IPIF_DEPRECATED))) { 19656 /* 19657 * Can't possibly have borrowed the source 19658 * from old_ipif. 19659 */ 19660 return; 19661 } 19662 19663 /* 19664 * Is there any work to be done? No work if the address 19665 * is INADDR_ANY, loopback or NOLOCAL or ANYCAST ( 19666 * ipif_select_source() does not borrow addresses from 19667 * NOLOCAL and ANYCAST interfaces). 19668 */ 19669 if ((old_ipif != NULL) && 19670 ((old_ipif->ipif_lcl_addr == INADDR_ANY) || 19671 (old_ipif->ipif_ill->ill_wq == NULL) || 19672 (old_ipif->ipif_flags & 19673 (IPIF_NOLOCAL|IPIF_ANYCAST)))) { 19674 return; 19675 } 19676 19677 /* 19678 * Perform the same checks as when creating the 19679 * IRE_INTERFACE in ipif_up_done. 19680 */ 19681 if (!(ipif->ipif_flags & IPIF_UP)) 19682 return; 19683 19684 if ((ipif->ipif_flags & IPIF_NOXMIT) || 19685 (ipif->ipif_subnet == INADDR_ANY)) 19686 return; 19687 19688 ipif_ire = ipif_to_ire(ipif); 19689 if (ipif_ire == NULL) 19690 return; 19691 19692 /* 19693 * We know that ipif uses some other source for its 19694 * IRE_INTERFACE. Is it using the source of this 19695 * old_ipif? 19696 */ 19697 if (old_ipif != NULL && 19698 old_ipif->ipif_lcl_addr != ipif_ire->ire_src_addr) { 19699 ire_refrele(ipif_ire); 19700 return; 19701 } 19702 if (ip_debug > 2) { 19703 /* ip1dbg */ 19704 pr_addr_dbg("ipif_recreate_interface_routes: deleting IRE for" 19705 " src %s\n", AF_INET, &ipif_ire->ire_src_addr); 19706 } 19707 19708 stq = ipif_ire->ire_stq; 19709 19710 /* 19711 * Can't use our source address. Select a different 19712 * source address for the IRE_INTERFACE. 19713 */ 19714 nipif = ipif_select_source(ill, ipif->ipif_subnet, ipif->ipif_zoneid); 19715 if (nipif == NULL) { 19716 /* Last resort - all ipif's have IPIF_NOLOCAL */ 19717 nipif = ipif; 19718 } else { 19719 need_rele = B_TRUE; 19720 } 19721 19722 ire = ire_create( 19723 (uchar_t *)&ipif->ipif_subnet, /* dest pref */ 19724 (uchar_t *)&ipif->ipif_net_mask, /* mask */ 19725 (uchar_t *)&nipif->ipif_src_addr, /* src addr */ 19726 NULL, /* no gateway */ 19727 NULL, 19728 &ipif->ipif_mtu, /* max frag */ 19729 NULL, /* fast path header */ 19730 NULL, /* no recv from queue */ 19731 stq, /* send-to queue */ 19732 ill->ill_net_type, /* IF_[NO]RESOLVER */ 19733 ill->ill_resolver_mp, /* xmit header */ 19734 ipif, 19735 NULL, 19736 0, 19737 0, 19738 0, 19739 0, 19740 &ire_uinfo_null); 19741 19742 if (ire != NULL) { 19743 ire_t *ret_ire; 19744 int error; 19745 19746 /* 19747 * We don't need ipif_ire anymore. We need to delete 19748 * before we add so that ire_add does not detect 19749 * duplicates. 19750 */ 19751 ire_delete(ipif_ire); 19752 ret_ire = ire; 19753 error = ire_add(&ret_ire, NULL, NULL, NULL); 19754 ASSERT(error == 0); 19755 ASSERT(ire == ret_ire); 19756 /* Held in ire_add */ 19757 ire_refrele(ret_ire); 19758 } 19759 /* 19760 * Either we are falling through from above or could not 19761 * allocate a replacement. 19762 */ 19763 ire_refrele(ipif_ire); 19764 if (need_rele) 19765 ipif_refrele(nipif); 19766 } 19767 19768 /* 19769 * This old_ipif is going away. 19770 * 19771 * Determine if any other ipif's is using our address as 19772 * ipif_lcl_addr (due to those being IPIF_NOLOCAL, IPIF_ANYCAST, or 19773 * IPIF_DEPRECATED). 19774 * Find the IRE_INTERFACE for such ipifs and recreate them 19775 * to use an different source address following the rules in 19776 * ipif_up_done. 19777 * 19778 * This function takes an illgrp as an argument so that illgrp_delete 19779 * can call this to update source address even after deleting the 19780 * old_ipif->ipif_ill from the ill group. 19781 */ 19782 static void 19783 ipif_update_other_ipifs(ipif_t *old_ipif, ill_group_t *illgrp) 19784 { 19785 ipif_t *ipif; 19786 ill_t *ill; 19787 char buf[INET6_ADDRSTRLEN]; 19788 19789 ASSERT(IAM_WRITER_IPIF(old_ipif)); 19790 ASSERT(illgrp == NULL || IAM_WRITER_IPIF(old_ipif)); 19791 19792 ill = old_ipif->ipif_ill; 19793 19794 ip1dbg(("ipif_update_other_ipifs(%s, %s)\n", 19795 ill->ill_name, 19796 inet_ntop(AF_INET, &old_ipif->ipif_lcl_addr, 19797 buf, sizeof (buf)))); 19798 /* 19799 * If this part of a group, look at all ills as ipif_select_source 19800 * borrows source address across all the ills in the group. 19801 */ 19802 if (illgrp != NULL) 19803 ill = illgrp->illgrp_ill; 19804 19805 for (; ill != NULL; ill = ill->ill_group_next) { 19806 for (ipif = ill->ill_ipif; ipif != NULL; 19807 ipif = ipif->ipif_next) { 19808 19809 if (ipif == old_ipif) 19810 continue; 19811 19812 ipif_recreate_interface_routes(old_ipif, ipif); 19813 } 19814 } 19815 } 19816 19817 /* ARGSUSED */ 19818 int 19819 if_unitsel_restart(ipif_t *ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 19820 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 19821 { 19822 /* 19823 * ill_phyint_reinit merged the v4 and v6 into a single 19824 * ipsq. Could also have become part of a ipmp group in the 19825 * process, and we might not have been able to complete the 19826 * operation in ipif_set_values, if we could not become 19827 * exclusive. If so restart it here. 19828 */ 19829 return (ipif_set_values_tail(ipif->ipif_ill, ipif, mp, q)); 19830 } 19831 19832 19833 /* ARGSUSED */ 19834 int 19835 if_unitsel(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 19836 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 19837 { 19838 queue_t *q1 = q; 19839 char *cp; 19840 char interf_name[LIFNAMSIZ]; 19841 uint_t ppa = *(uint_t *)mp->b_cont->b_cont->b_rptr; 19842 19843 if (!q->q_next) { 19844 ip1dbg(( 19845 "if_unitsel: IF_UNITSEL: no q_next\n")); 19846 return (EINVAL); 19847 } 19848 19849 if (((ill_t *)(q->q_ptr))->ill_name[0] != '\0') 19850 return (EALREADY); 19851 19852 do { 19853 q1 = q1->q_next; 19854 } while (q1->q_next); 19855 cp = q1->q_qinfo->qi_minfo->mi_idname; 19856 (void) sprintf(interf_name, "%s%d", cp, ppa); 19857 19858 /* 19859 * Here we are not going to delay the ioack until after 19860 * ACKs from DL_ATTACH_REQ/DL_BIND_REQ. So no need to save the 19861 * original ioctl message before sending the requests. 19862 */ 19863 return (ipif_set_values(q, mp, interf_name, &ppa)); 19864 } 19865 19866 /* ARGSUSED */ 19867 int 19868 ip_sioctl_sifname(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 19869 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 19870 { 19871 return (ENXIO); 19872 } 19873 19874 /* 19875 * Net and subnet broadcast ire's are now specific to the particular 19876 * physical interface (ill) and not to any one locigal interface (ipif). 19877 * However, if a particular logical interface is being taken down, it's 19878 * associated ire's will be taken down as well. Hence, when we go to 19879 * take down or change the local address, broadcast address or netmask 19880 * of a specific logical interface, we must check to make sure that we 19881 * have valid net and subnet broadcast ire's for the other logical 19882 * interfaces which may have been shared with the logical interface 19883 * being brought down or changed. 19884 * 19885 * There is one set of 0.0.0.0 and 255.255.255.255 per ill. Usually it 19886 * is tied to the first interface coming UP. If that ipif is going down, 19887 * we need to recreate them on the next valid ipif. 19888 * 19889 * Note: assume that the ipif passed in is still up so that it's IRE 19890 * entries are still valid. 19891 */ 19892 static void 19893 ipif_check_bcast_ires(ipif_t *test_ipif) 19894 { 19895 ipif_t *ipif; 19896 ire_t *test_subnet_ire, *test_net_ire; 19897 ire_t *test_allzero_ire, *test_allone_ire; 19898 ire_t *ire_array[12]; 19899 ire_t **irep = &ire_array[0]; 19900 ire_t **irep1; 19901 19902 ipaddr_t net_addr, subnet_addr, net_mask, subnet_mask; 19903 ipaddr_t test_net_addr, test_subnet_addr; 19904 ipaddr_t test_net_mask, test_subnet_mask; 19905 boolean_t need_net_bcast_ire = B_FALSE; 19906 boolean_t need_subnet_bcast_ire = B_FALSE; 19907 boolean_t allzero_bcast_ire_created = B_FALSE; 19908 boolean_t allone_bcast_ire_created = B_FALSE; 19909 boolean_t net_bcast_ire_created = B_FALSE; 19910 boolean_t subnet_bcast_ire_created = B_FALSE; 19911 19912 ipif_t *backup_ipif_net = (ipif_t *)NULL; 19913 ipif_t *backup_ipif_subnet = (ipif_t *)NULL; 19914 ipif_t *backup_ipif_allzeros = (ipif_t *)NULL; 19915 ipif_t *backup_ipif_allones = (ipif_t *)NULL; 19916 uint64_t check_flags = IPIF_DEPRECATED | IPIF_NOLOCAL | IPIF_ANYCAST; 19917 19918 ASSERT(!test_ipif->ipif_isv6); 19919 ASSERT(IAM_WRITER_IPIF(test_ipif)); 19920 19921 /* 19922 * No broadcast IREs for the LOOPBACK interface 19923 * or others such as point to point and IPIF_NOXMIT. 19924 */ 19925 if (!(test_ipif->ipif_flags & IPIF_BROADCAST) || 19926 (test_ipif->ipif_flags & IPIF_NOXMIT)) 19927 return; 19928 19929 test_allzero_ire = ire_ctable_lookup(0, 0, IRE_BROADCAST, 19930 test_ipif, ALL_ZONES, (MATCH_IRE_TYPE | MATCH_IRE_IPIF)); 19931 19932 test_allone_ire = ire_ctable_lookup(INADDR_BROADCAST, 0, IRE_BROADCAST, 19933 test_ipif, ALL_ZONES, (MATCH_IRE_TYPE | MATCH_IRE_IPIF)); 19934 19935 test_net_mask = ip_net_mask(test_ipif->ipif_subnet); 19936 test_subnet_mask = test_ipif->ipif_net_mask; 19937 19938 /* 19939 * If no net mask set, assume the default based on net class. 19940 */ 19941 if (test_subnet_mask == 0) 19942 test_subnet_mask = test_net_mask; 19943 19944 /* 19945 * Check if there is a network broadcast ire associated with this ipif 19946 */ 19947 test_net_addr = test_net_mask & test_ipif->ipif_subnet; 19948 test_net_ire = ire_ctable_lookup(test_net_addr, 0, IRE_BROADCAST, 19949 test_ipif, ALL_ZONES, (MATCH_IRE_TYPE | MATCH_IRE_IPIF)); 19950 19951 /* 19952 * Check if there is a subnet broadcast IRE associated with this ipif 19953 */ 19954 test_subnet_addr = test_subnet_mask & test_ipif->ipif_subnet; 19955 test_subnet_ire = ire_ctable_lookup(test_subnet_addr, 0, IRE_BROADCAST, 19956 test_ipif, ALL_ZONES, (MATCH_IRE_TYPE | MATCH_IRE_IPIF)); 19957 19958 /* 19959 * No broadcast ire's associated with this ipif. 19960 */ 19961 if ((test_subnet_ire == NULL) && (test_net_ire == NULL) && 19962 (test_allzero_ire == NULL) && (test_allone_ire == NULL)) { 19963 return; 19964 } 19965 19966 /* 19967 * We have established which bcast ires have to be replaced. 19968 * Next we try to locate ipifs that match there ires. 19969 * The rules are simple: If we find an ipif that matches on the subnet 19970 * address it will also match on the net address, the allzeros and 19971 * allones address. Any ipif that matches only on the net address will 19972 * also match the allzeros and allones addresses. 19973 * The other criterion is the ipif_flags. We look for non-deprecated 19974 * (and non-anycast and non-nolocal) ipifs as the best choice. 19975 * ipifs with check_flags matching (deprecated, etc) are used only 19976 * if good ipifs are not available. While looping, we save existing 19977 * deprecated ipifs as backup_ipif. 19978 * We loop through all the ipifs for this ill looking for ipifs 19979 * whose broadcast addr match the ipif passed in, but do not have 19980 * their own broadcast ires. For creating 0.0.0.0 and 19981 * 255.255.255.255 we just need an ipif on this ill to create. 19982 */ 19983 for (ipif = test_ipif->ipif_ill->ill_ipif; ipif != NULL; 19984 ipif = ipif->ipif_next) { 19985 19986 ASSERT(!ipif->ipif_isv6); 19987 /* 19988 * Already checked the ipif passed in. 19989 */ 19990 if (ipif == test_ipif) { 19991 continue; 19992 } 19993 19994 /* 19995 * We only need to recreate broadcast ires if another ipif in 19996 * the same zone uses them. The new ires must be created in the 19997 * same zone. 19998 */ 19999 if (ipif->ipif_zoneid != test_ipif->ipif_zoneid) { 20000 continue; 20001 } 20002 20003 /* 20004 * Only interested in logical interfaces with valid local 20005 * addresses or with the ability to broadcast. 20006 */ 20007 if ((ipif->ipif_subnet == 0) || 20008 !(ipif->ipif_flags & IPIF_BROADCAST) || 20009 (ipif->ipif_flags & IPIF_NOXMIT) || 20010 !(ipif->ipif_flags & IPIF_UP)) { 20011 continue; 20012 } 20013 /* 20014 * Check if there is a net broadcast ire for this 20015 * net address. If it turns out that the ipif we are 20016 * about to take down owns this ire, we must make a 20017 * new one because it is potentially going away. 20018 */ 20019 if (test_net_ire && (!net_bcast_ire_created)) { 20020 net_mask = ip_net_mask(ipif->ipif_subnet); 20021 net_addr = net_mask & ipif->ipif_subnet; 20022 if (net_addr == test_net_addr) { 20023 need_net_bcast_ire = B_TRUE; 20024 /* 20025 * Use DEPRECATED ipif only if no good 20026 * ires are available. subnet_addr is 20027 * a better match than net_addr. 20028 */ 20029 if ((ipif->ipif_flags & check_flags) && 20030 (backup_ipif_net == NULL)) { 20031 backup_ipif_net = ipif; 20032 } 20033 } 20034 } 20035 /* 20036 * Check if there is a subnet broadcast ire for this 20037 * net address. If it turns out that the ipif we are 20038 * about to take down owns this ire, we must make a 20039 * new one because it is potentially going away. 20040 */ 20041 if (test_subnet_ire && (!subnet_bcast_ire_created)) { 20042 subnet_mask = ipif->ipif_net_mask; 20043 subnet_addr = ipif->ipif_subnet; 20044 if (subnet_addr == test_subnet_addr) { 20045 need_subnet_bcast_ire = B_TRUE; 20046 if ((ipif->ipif_flags & check_flags) && 20047 (backup_ipif_subnet == NULL)) { 20048 backup_ipif_subnet = ipif; 20049 } 20050 } 20051 } 20052 20053 20054 /* Short circuit here if this ipif is deprecated */ 20055 if (ipif->ipif_flags & check_flags) { 20056 if ((test_allzero_ire != NULL) && 20057 (!allzero_bcast_ire_created) && 20058 (backup_ipif_allzeros == NULL)) { 20059 backup_ipif_allzeros = ipif; 20060 } 20061 if ((test_allone_ire != NULL) && 20062 (!allone_bcast_ire_created) && 20063 (backup_ipif_allones == NULL)) { 20064 backup_ipif_allones = ipif; 20065 } 20066 continue; 20067 } 20068 20069 /* 20070 * Found an ipif which has the same broadcast ire as the 20071 * ipif passed in and the ipif passed in "owns" the ire. 20072 * Create new broadcast ire's for this broadcast addr. 20073 */ 20074 if (need_net_bcast_ire && !net_bcast_ire_created) { 20075 irep = ire_create_bcast(ipif, net_addr, irep); 20076 irep = ire_create_bcast(ipif, 20077 ~net_mask | net_addr, irep); 20078 net_bcast_ire_created = B_TRUE; 20079 } 20080 if (need_subnet_bcast_ire && !subnet_bcast_ire_created) { 20081 irep = ire_create_bcast(ipif, subnet_addr, irep); 20082 irep = ire_create_bcast(ipif, 20083 ~subnet_mask | subnet_addr, irep); 20084 subnet_bcast_ire_created = B_TRUE; 20085 } 20086 if (test_allzero_ire != NULL && !allzero_bcast_ire_created) { 20087 irep = ire_create_bcast(ipif, 0, irep); 20088 allzero_bcast_ire_created = B_TRUE; 20089 } 20090 if (test_allone_ire != NULL && !allone_bcast_ire_created) { 20091 irep = ire_create_bcast(ipif, INADDR_BROADCAST, irep); 20092 allone_bcast_ire_created = B_TRUE; 20093 } 20094 /* 20095 * Once we have created all the appropriate ires, we 20096 * just break out of this loop to add what we have created. 20097 * This has been indented similar to ire_match_args for 20098 * readability. 20099 */ 20100 if (((test_net_ire == NULL) || 20101 (net_bcast_ire_created)) && 20102 ((test_subnet_ire == NULL) || 20103 (subnet_bcast_ire_created)) && 20104 ((test_allzero_ire == NULL) || 20105 (allzero_bcast_ire_created)) && 20106 ((test_allone_ire == NULL) || 20107 (allone_bcast_ire_created))) { 20108 break; 20109 } 20110 } 20111 20112 /* 20113 * Create bcast ires on deprecated ipifs if no non-deprecated ipifs 20114 * exist. 6 pairs of bcast ires are needed. 20115 * Note - the old ires are deleted in ipif_down. 20116 */ 20117 if (need_net_bcast_ire && !net_bcast_ire_created && backup_ipif_net) { 20118 ipif = backup_ipif_net; 20119 irep = ire_create_bcast(ipif, net_addr, irep); 20120 irep = ire_create_bcast(ipif, ~net_mask | net_addr, irep); 20121 net_bcast_ire_created = B_TRUE; 20122 } 20123 if (need_subnet_bcast_ire && !subnet_bcast_ire_created && 20124 backup_ipif_subnet) { 20125 ipif = backup_ipif_subnet; 20126 irep = ire_create_bcast(ipif, subnet_addr, irep); 20127 irep = ire_create_bcast(ipif, 20128 ~subnet_mask | subnet_addr, irep); 20129 subnet_bcast_ire_created = B_TRUE; 20130 } 20131 if (test_allzero_ire != NULL && !allzero_bcast_ire_created && 20132 backup_ipif_allzeros) { 20133 irep = ire_create_bcast(backup_ipif_allzeros, 0, irep); 20134 allzero_bcast_ire_created = B_TRUE; 20135 } 20136 if (test_allone_ire != NULL && !allone_bcast_ire_created && 20137 backup_ipif_allones) { 20138 irep = ire_create_bcast(backup_ipif_allones, 20139 INADDR_BROADCAST, irep); 20140 allone_bcast_ire_created = B_TRUE; 20141 } 20142 20143 /* 20144 * If we can't create all of them, don't add any of them. 20145 * Code in ip_wput_ire and ire_to_ill assumes that we 20146 * always have a non-loopback copy and loopback copy 20147 * for a given address. 20148 */ 20149 for (irep1 = irep; irep1 > ire_array; ) { 20150 irep1--; 20151 if (*irep1 == NULL) { 20152 ip0dbg(("ipif_check_bcast_ires: can't create " 20153 "IRE_BROADCAST, memory allocation failure\n")); 20154 while (irep > ire_array) { 20155 irep--; 20156 if (*irep != NULL) 20157 ire_delete(*irep); 20158 } 20159 goto bad; 20160 } 20161 } 20162 for (irep1 = irep; irep1 > ire_array; ) { 20163 int error; 20164 20165 irep1--; 20166 error = ire_add(irep1, NULL, NULL, NULL); 20167 if (error == 0) { 20168 ire_refrele(*irep1); /* Held in ire_add */ 20169 } 20170 } 20171 bad: 20172 if (test_allzero_ire != NULL) 20173 ire_refrele(test_allzero_ire); 20174 if (test_allone_ire != NULL) 20175 ire_refrele(test_allone_ire); 20176 if (test_net_ire != NULL) 20177 ire_refrele(test_net_ire); 20178 if (test_subnet_ire != NULL) 20179 ire_refrele(test_subnet_ire); 20180 } 20181 20182 /* 20183 * Extract both the flags (including IFF_CANTCHANGE) such as IFF_IPV* 20184 * from lifr_flags and the name from lifr_name. 20185 * Set IFF_IPV* and ill_isv6 prior to doing the lookup 20186 * since ipif_lookup_on_name uses the _isv6 flags when matching. 20187 * Returns EINPROGRESS when mp has been consumed by queueing it on 20188 * ill_pending_mp and the ioctl will complete in ip_rput. 20189 */ 20190 /* ARGSUSED */ 20191 int 20192 ip_sioctl_slifname(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 20193 ip_ioctl_cmd_t *ipip, void *if_req) 20194 { 20195 int err; 20196 ill_t *ill; 20197 struct lifreq *lifr = (struct lifreq *)if_req; 20198 20199 ASSERT(ipif != NULL); 20200 ip1dbg(("ip_sioctl_slifname %s\n", lifr->lifr_name)); 20201 ASSERT(q->q_next != NULL); 20202 20203 ill = (ill_t *)q->q_ptr; 20204 /* 20205 * If we are not writer on 'q' then this interface exists already 20206 * and previous lookups (ipif_extract_lifreq_cmn) found this ipif. 20207 * So return EALREADY 20208 */ 20209 if (ill != ipif->ipif_ill) 20210 return (EALREADY); 20211 20212 if (ill->ill_name[0] != '\0') 20213 return (EALREADY); 20214 20215 /* 20216 * Set all the flags. Allows all kinds of override. Provide some 20217 * sanity checking by not allowing IFF_BROADCAST and IFF_MULTICAST 20218 * unless there is either multicast/broadcast support in the driver 20219 * or it is a pt-pt link. 20220 */ 20221 if (lifr->lifr_flags & (IFF_PROMISC|IFF_ALLMULTI)) { 20222 /* Meaningless to IP thus don't allow them to be set. */ 20223 ip1dbg(("ip_setname: EINVAL 1\n")); 20224 return (EINVAL); 20225 } 20226 /* 20227 * For a DL_STYLE2 driver (ill_needs_attach), we would not have the 20228 * ill_bcast_addr_length info. 20229 */ 20230 if (!ill->ill_needs_attach && 20231 ((lifr->lifr_flags & IFF_MULTICAST) && 20232 !(lifr->lifr_flags & IFF_POINTOPOINT) && 20233 ill->ill_bcast_addr_length == 0)) { 20234 /* Link not broadcast/pt-pt capable i.e. no multicast */ 20235 ip1dbg(("ip_setname: EINVAL 2\n")); 20236 return (EINVAL); 20237 } 20238 if ((lifr->lifr_flags & IFF_BROADCAST) && 20239 ((lifr->lifr_flags & IFF_IPV6) || 20240 (!ill->ill_needs_attach && ill->ill_bcast_addr_length == 0))) { 20241 /* Link not broadcast capable or IPv6 i.e. no broadcast */ 20242 ip1dbg(("ip_setname: EINVAL 3\n")); 20243 return (EINVAL); 20244 } 20245 if (lifr->lifr_flags & IFF_UP) { 20246 /* Can only be set with SIOCSLIFFLAGS */ 20247 ip1dbg(("ip_setname: EINVAL 4\n")); 20248 return (EINVAL); 20249 } 20250 if ((lifr->lifr_flags & (IFF_IPV6|IFF_IPV4)) != IFF_IPV6 && 20251 (lifr->lifr_flags & (IFF_IPV6|IFF_IPV4)) != IFF_IPV4) { 20252 ip1dbg(("ip_setname: EINVAL 5\n")); 20253 return (EINVAL); 20254 } 20255 /* 20256 * Only allow the IFF_XRESOLV flag to be set on IPv6 interfaces. 20257 */ 20258 if ((lifr->lifr_flags & IFF_XRESOLV) && 20259 !(lifr->lifr_flags & IFF_IPV6) && 20260 !(ipif->ipif_isv6)) { 20261 ip1dbg(("ip_setname: EINVAL 6\n")); 20262 return (EINVAL); 20263 } 20264 20265 /* 20266 * The user has done SIOCGLIFFLAGS prior to this ioctl and hence 20267 * we have all the flags here. So, we assign rather than we OR. 20268 * We can't OR the flags here because we don't want to set 20269 * both IFF_IPV4 and IFF_IPV6. We start off as IFF_IPV4 in 20270 * ipif_allocate and become IFF_IPV4 or IFF_IPV6 here depending 20271 * on lifr_flags value here. 20272 */ 20273 /* 20274 * This ill has not been inserted into the global list. 20275 * So we are still single threaded and don't need any lock 20276 */ 20277 ipif->ipif_flags = lifr->lifr_flags & IFF_LOGINT_FLAGS; 20278 ill->ill_flags = lifr->lifr_flags & IFF_PHYINTINST_FLAGS; 20279 ill->ill_phyint->phyint_flags = lifr->lifr_flags & IFF_PHYINT_FLAGS; 20280 20281 /* We started off as V4. */ 20282 if (ill->ill_flags & ILLF_IPV6) { 20283 ill->ill_phyint->phyint_illv6 = ill; 20284 ill->ill_phyint->phyint_illv4 = NULL; 20285 } 20286 err = ipif_set_values(q, mp, lifr->lifr_name, &lifr->lifr_ppa); 20287 return (err); 20288 } 20289 20290 /* ARGSUSED */ 20291 int 20292 ip_sioctl_slifname_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 20293 ip_ioctl_cmd_t *ipip, void *if_req) 20294 { 20295 /* 20296 * ill_phyint_reinit merged the v4 and v6 into a single 20297 * ipsq. Could also have become part of a ipmp group in the 20298 * process, and we might not have been able to complete the 20299 * slifname in ipif_set_values, if we could not become 20300 * exclusive. If so restart it here 20301 */ 20302 return (ipif_set_values_tail(ipif->ipif_ill, ipif, mp, q)); 20303 } 20304 20305 /* 20306 * Return a pointer to the ipif which matches the index, IP version type and 20307 * zoneid. 20308 */ 20309 ipif_t * 20310 ipif_lookup_on_ifindex(uint_t index, boolean_t isv6, zoneid_t zoneid, 20311 queue_t *q, mblk_t *mp, ipsq_func_t func, int *err) 20312 { 20313 ill_t *ill; 20314 ipsq_t *ipsq; 20315 phyint_t *phyi; 20316 ipif_t *ipif; 20317 20318 ASSERT((q == NULL && mp == NULL && func == NULL && err == NULL) || 20319 (q != NULL && mp != NULL && func != NULL && err != NULL)); 20320 20321 if (err != NULL) 20322 *err = 0; 20323 20324 /* 20325 * Indexes are stored in the phyint - a common structure 20326 * to both IPv4 and IPv6. 20327 */ 20328 20329 rw_enter(&ill_g_lock, RW_READER); 20330 phyi = avl_find(&phyint_g_list.phyint_list_avl_by_index, 20331 (void *) &index, NULL); 20332 if (phyi != NULL) { 20333 ill = isv6 ? phyi->phyint_illv6 : phyi->phyint_illv4; 20334 if (ill == NULL) { 20335 rw_exit(&ill_g_lock); 20336 if (err != NULL) 20337 *err = ENXIO; 20338 return (NULL); 20339 } 20340 GRAB_CONN_LOCK(q); 20341 mutex_enter(&ill->ill_lock); 20342 if (ILL_CAN_LOOKUP(ill)) { 20343 for (ipif = ill->ill_ipif; ipif != NULL; 20344 ipif = ipif->ipif_next) { 20345 if (IPIF_CAN_LOOKUP(ipif) && 20346 (zoneid == ALL_ZONES || 20347 zoneid == ipif->ipif_zoneid)) { 20348 ipif_refhold_locked(ipif); 20349 mutex_exit(&ill->ill_lock); 20350 RELEASE_CONN_LOCK(q); 20351 rw_exit(&ill_g_lock); 20352 return (ipif); 20353 } 20354 } 20355 } else if (ILL_CAN_WAIT(ill, q)) { 20356 ipsq = ill->ill_phyint->phyint_ipsq; 20357 mutex_enter(&ipsq->ipsq_lock); 20358 rw_exit(&ill_g_lock); 20359 mutex_exit(&ill->ill_lock); 20360 ipsq_enq(ipsq, q, mp, func, NEW_OP, ill); 20361 mutex_exit(&ipsq->ipsq_lock); 20362 RELEASE_CONN_LOCK(q); 20363 *err = EINPROGRESS; 20364 return (NULL); 20365 } 20366 mutex_exit(&ill->ill_lock); 20367 RELEASE_CONN_LOCK(q); 20368 } 20369 rw_exit(&ill_g_lock); 20370 if (err != NULL) 20371 *err = ENXIO; 20372 return (NULL); 20373 } 20374 20375 typedef struct conn_change_s { 20376 uint_t cc_old_ifindex; 20377 uint_t cc_new_ifindex; 20378 } conn_change_t; 20379 20380 /* 20381 * ipcl_walk function for changing interface index. 20382 */ 20383 static void 20384 conn_change_ifindex(conn_t *connp, caddr_t arg) 20385 { 20386 conn_change_t *connc; 20387 uint_t old_ifindex; 20388 uint_t new_ifindex; 20389 int i; 20390 ilg_t *ilg; 20391 20392 connc = (conn_change_t *)arg; 20393 old_ifindex = connc->cc_old_ifindex; 20394 new_ifindex = connc->cc_new_ifindex; 20395 20396 if (connp->conn_orig_bound_ifindex == old_ifindex) 20397 connp->conn_orig_bound_ifindex = new_ifindex; 20398 20399 if (connp->conn_orig_multicast_ifindex == old_ifindex) 20400 connp->conn_orig_multicast_ifindex = new_ifindex; 20401 20402 if (connp->conn_orig_xmit_ifindex == old_ifindex) 20403 connp->conn_orig_xmit_ifindex = new_ifindex; 20404 20405 for (i = connp->conn_ilg_inuse - 1; i >= 0; i--) { 20406 ilg = &connp->conn_ilg[i]; 20407 if (ilg->ilg_orig_ifindex == old_ifindex) 20408 ilg->ilg_orig_ifindex = new_ifindex; 20409 } 20410 } 20411 20412 /* 20413 * Walk all the ipifs and ilms on this ill and change the orig_ifindex 20414 * to new_index if it matches the old_index. 20415 * 20416 * Failovers typically happen within a group of ills. But somebody 20417 * can remove an ill from the group after a failover happened. If 20418 * we are setting the ifindex after this, we potentially need to 20419 * look at all the ills rather than just the ones in the group. 20420 * We cut down the work by looking at matching ill_net_types 20421 * and ill_types as we could not possibly grouped them together. 20422 */ 20423 static void 20424 ip_change_ifindex(ill_t *ill_orig, conn_change_t *connc) 20425 { 20426 ill_t *ill; 20427 ipif_t *ipif; 20428 uint_t old_ifindex; 20429 uint_t new_ifindex; 20430 ilm_t *ilm; 20431 ill_walk_context_t ctx; 20432 20433 old_ifindex = connc->cc_old_ifindex; 20434 new_ifindex = connc->cc_new_ifindex; 20435 20436 rw_enter(&ill_g_lock, RW_READER); 20437 ill = ILL_START_WALK_ALL(&ctx); 20438 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 20439 if ((ill_orig->ill_net_type != ill->ill_net_type) || 20440 (ill_orig->ill_type != ill->ill_type)) { 20441 continue; 20442 } 20443 for (ipif = ill->ill_ipif; ipif != NULL; 20444 ipif = ipif->ipif_next) { 20445 if (ipif->ipif_orig_ifindex == old_ifindex) 20446 ipif->ipif_orig_ifindex = new_ifindex; 20447 } 20448 for (ilm = ill->ill_ilm; ilm != NULL; ilm = ilm->ilm_next) { 20449 if (ilm->ilm_orig_ifindex == old_ifindex) 20450 ilm->ilm_orig_ifindex = new_ifindex; 20451 } 20452 } 20453 rw_exit(&ill_g_lock); 20454 } 20455 20456 /* 20457 * We first need to ensure that the new index is unique, and 20458 * then carry the change across both v4 and v6 ill representation 20459 * of the physical interface. 20460 */ 20461 /* ARGSUSED */ 20462 int 20463 ip_sioctl_slifindex(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 20464 ip_ioctl_cmd_t *ipip, void *ifreq) 20465 { 20466 ill_t *ill; 20467 ill_t *ill_other; 20468 phyint_t *phyi; 20469 int old_index; 20470 conn_change_t connc; 20471 struct ifreq *ifr = (struct ifreq *)ifreq; 20472 struct lifreq *lifr = (struct lifreq *)ifreq; 20473 uint_t index; 20474 ill_t *ill_v4; 20475 ill_t *ill_v6; 20476 20477 if (ipip->ipi_cmd_type == IF_CMD) 20478 index = ifr->ifr_index; 20479 else 20480 index = lifr->lifr_index; 20481 20482 /* 20483 * Only allow on physical interface. Also, index zero is illegal. 20484 * 20485 * Need to check for PHYI_FAILED and PHYI_INACTIVE 20486 * 20487 * 1) If PHYI_FAILED is set, a failover could have happened which 20488 * implies a possible failback might have to happen. As failback 20489 * depends on the old index, we should fail setting the index. 20490 * 20491 * 2) If PHYI_INACTIVE is set, in.mpathd does a failover so that 20492 * any addresses or multicast memberships are failed over to 20493 * a non-STANDBY interface. As failback depends on the old 20494 * index, we should fail setting the index for this case also. 20495 * 20496 * 3) If PHYI_OFFLINE is set, a possible failover has happened. 20497 * Be consistent with PHYI_FAILED and fail the ioctl. 20498 */ 20499 ill = ipif->ipif_ill; 20500 phyi = ill->ill_phyint; 20501 if ((phyi->phyint_flags & (PHYI_FAILED|PHYI_INACTIVE|PHYI_OFFLINE)) || 20502 ipif->ipif_id != 0 || index == 0) { 20503 return (EINVAL); 20504 } 20505 old_index = phyi->phyint_ifindex; 20506 20507 /* If the index is not changing, no work to do */ 20508 if (old_index == index) 20509 return (0); 20510 20511 /* 20512 * Use ill_lookup_on_ifindex to determine if the 20513 * new index is unused and if so allow the change. 20514 */ 20515 ill_v6 = ill_lookup_on_ifindex(index, B_TRUE, NULL, NULL, NULL, NULL); 20516 ill_v4 = ill_lookup_on_ifindex(index, B_FALSE, NULL, NULL, NULL, NULL); 20517 if (ill_v6 != NULL || ill_v4 != NULL) { 20518 if (ill_v4 != NULL) 20519 ill_refrele(ill_v4); 20520 if (ill_v6 != NULL) 20521 ill_refrele(ill_v6); 20522 return (EBUSY); 20523 } 20524 20525 /* 20526 * The new index is unused. Set it in the phyint. 20527 * Locate the other ill so that we can send a routing 20528 * sockets message. 20529 */ 20530 if (ill->ill_isv6) { 20531 ill_other = phyi->phyint_illv4; 20532 } else { 20533 ill_other = phyi->phyint_illv6; 20534 } 20535 20536 phyi->phyint_ifindex = index; 20537 20538 connc.cc_old_ifindex = old_index; 20539 connc.cc_new_ifindex = index; 20540 ip_change_ifindex(ill, &connc); 20541 ipcl_walk(conn_change_ifindex, (caddr_t)&connc); 20542 20543 /* Send the routing sockets message */ 20544 ip_rts_ifmsg(ipif); 20545 if (ill_other != NULL) 20546 ip_rts_ifmsg(ill_other->ill_ipif); 20547 20548 return (0); 20549 } 20550 20551 /* ARGSUSED */ 20552 int 20553 ip_sioctl_get_lifindex(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 20554 ip_ioctl_cmd_t *ipip, void *ifreq) 20555 { 20556 struct ifreq *ifr = (struct ifreq *)ifreq; 20557 struct lifreq *lifr = (struct lifreq *)ifreq; 20558 20559 ip1dbg(("ip_sioctl_get_lifindex(%s:%u %p)\n", 20560 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 20561 /* Get the interface index */ 20562 if (ipip->ipi_cmd_type == IF_CMD) { 20563 ifr->ifr_index = ipif->ipif_ill->ill_phyint->phyint_ifindex; 20564 } else { 20565 lifr->lifr_index = ipif->ipif_ill->ill_phyint->phyint_ifindex; 20566 } 20567 return (0); 20568 } 20569 20570 /* ARGSUSED */ 20571 int 20572 ip_sioctl_get_lifzone(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 20573 ip_ioctl_cmd_t *ipip, void *ifreq) 20574 { 20575 struct lifreq *lifr = (struct lifreq *)ifreq; 20576 20577 ip1dbg(("ip_sioctl_get_lifzone(%s:%u %p)\n", 20578 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 20579 /* Get the interface zone */ 20580 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 20581 lifr->lifr_zoneid = ipif->ipif_zoneid; 20582 return (0); 20583 } 20584 20585 /* 20586 * Set the zoneid of an interface. 20587 */ 20588 /* ARGSUSED */ 20589 int 20590 ip_sioctl_slifzone(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 20591 ip_ioctl_cmd_t *ipip, void *ifreq) 20592 { 20593 struct lifreq *lifr = (struct lifreq *)ifreq; 20594 int err = 0; 20595 boolean_t need_up = B_FALSE; 20596 zone_t *zptr; 20597 zone_status_t status; 20598 zoneid_t zoneid; 20599 20600 /* cannot assign instance zero to a non-global zone */ 20601 if (ipif->ipif_id == 0) 20602 return (ENOTSUP); 20603 20604 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 20605 zoneid = lifr->lifr_zoneid; 20606 20607 /* 20608 * Cannot assign to a zone that doesn't exist or is shutting down. In 20609 * the event of a race with the zone shutdown processing, since IP 20610 * serializes this ioctl and SIOCGLIFCONF/SIOCLIFREMOVEIF, we know the 20611 * interface will be cleaned up even if the zone is shut down 20612 * immediately after the status check. If the interface can't be brought 20613 * down right away, and the zone is shut down before the restart 20614 * function is called, we resolve the possible races by rechecking the 20615 * zone status in the restart function. 20616 */ 20617 if ((zptr = zone_find_by_id(zoneid)) == NULL) 20618 return (EINVAL); 20619 status = zone_status_get(zptr); 20620 zone_rele(zptr); 20621 20622 if (status != ZONE_IS_READY && status != ZONE_IS_RUNNING) 20623 return (EINVAL); 20624 20625 if (ipif->ipif_flags & IPIF_UP) { 20626 /* 20627 * If the interface is already marked up, 20628 * we call ipif_down which will take care 20629 * of ditching any IREs that have been set 20630 * up based on the old interface address. 20631 */ 20632 err = ipif_logical_down(ipif, q, mp); 20633 if (err == EINPROGRESS) 20634 return (err); 20635 ipif_down_tail(ipif); 20636 need_up = B_TRUE; 20637 } 20638 20639 err = ip_sioctl_slifzone_tail(ipif, zoneid, q, mp, need_up); 20640 return (err); 20641 } 20642 20643 static int 20644 ip_sioctl_slifzone_tail(ipif_t *ipif, zoneid_t zoneid, 20645 queue_t *q, mblk_t *mp, boolean_t need_up) 20646 { 20647 int err = 0; 20648 20649 ip1dbg(("ip_sioctl_zoneid_tail(%s:%u %p)\n", 20650 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 20651 20652 /* Set the new zone id. */ 20653 ipif->ipif_zoneid = zoneid; 20654 20655 /* Update sctp list */ 20656 sctp_update_ipif(ipif, SCTP_IPIF_UPDATE); 20657 20658 if (need_up) { 20659 /* 20660 * Now bring the interface back up. If this 20661 * is the only IPIF for the ILL, ipif_up 20662 * will have to re-bind to the device, so 20663 * we may get back EINPROGRESS, in which 20664 * case, this IOCTL will get completed in 20665 * ip_rput_dlpi when we see the DL_BIND_ACK. 20666 */ 20667 err = ipif_up(ipif, q, mp); 20668 } 20669 return (err); 20670 } 20671 20672 /* ARGSUSED */ 20673 int 20674 ip_sioctl_slifzone_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 20675 ip_ioctl_cmd_t *ipip, void *if_req) 20676 { 20677 struct lifreq *lifr = (struct lifreq *)if_req; 20678 zoneid_t zoneid; 20679 zone_t *zptr; 20680 zone_status_t status; 20681 20682 ASSERT(ipif->ipif_id != 0); 20683 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 20684 zoneid = lifr->lifr_zoneid; 20685 20686 ip1dbg(("ip_sioctl_slifzone_restart(%s:%u %p)\n", 20687 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 20688 20689 /* 20690 * We recheck the zone status to resolve the following race condition: 20691 * 1) process sends SIOCSLIFZONE to put hme0:1 in zone "myzone"; 20692 * 2) hme0:1 is up and can't be brought down right away; 20693 * ip_sioctl_slifzone() returns EINPROGRESS and the request is queued; 20694 * 3) zone "myzone" is halted; the zone status switches to 20695 * 'shutting_down' and the zones framework sends SIOCGLIFCONF to list 20696 * the interfaces to remove - hme0:1 is not returned because it's not 20697 * yet in "myzone", so it won't be removed; 20698 * 4) the restart function for SIOCSLIFZONE is called; without the 20699 * status check here, we would have hme0:1 in "myzone" after it's been 20700 * destroyed. 20701 * Note that if the status check fails, we need to bring the interface 20702 * back to its state prior to ip_sioctl_slifzone(), hence the call to 20703 * ipif_up_done[_v6](). 20704 */ 20705 status = ZONE_IS_UNINITIALIZED; 20706 if ((zptr = zone_find_by_id(zoneid)) != NULL) { 20707 status = zone_status_get(zptr); 20708 zone_rele(zptr); 20709 } 20710 if (status != ZONE_IS_READY && status != ZONE_IS_RUNNING) { 20711 if (ipif->ipif_isv6) { 20712 (void) ipif_up_done_v6(ipif); 20713 } else { 20714 (void) ipif_up_done(ipif); 20715 } 20716 return (EINVAL); 20717 } 20718 20719 ipif_down_tail(ipif); 20720 20721 return (ip_sioctl_slifzone_tail(ipif, zoneid, q, mp, B_TRUE)); 20722 } 20723 20724 /* ARGSUSED */ 20725 int 20726 ip_sioctl_get_lifusesrc(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 20727 ip_ioctl_cmd_t *ipip, void *ifreq) 20728 { 20729 struct lifreq *lifr = ifreq; 20730 20731 ASSERT(q->q_next == NULL); 20732 ASSERT(CONN_Q(q)); 20733 20734 ip1dbg(("ip_sioctl_get_lifusesrc(%s:%u %p)\n", 20735 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 20736 lifr->lifr_index = ipif->ipif_ill->ill_usesrc_ifindex; 20737 ip1dbg(("ip_sioctl_get_lifusesrc:lifr_index = %d\n", lifr->lifr_index)); 20738 20739 return (0); 20740 } 20741 20742 20743 /* Find the previous ILL in this usesrc group */ 20744 static ill_t * 20745 ill_prev_usesrc(ill_t *uill) 20746 { 20747 ill_t *ill; 20748 20749 for (ill = uill->ill_usesrc_grp_next; 20750 ASSERT(ill), ill->ill_usesrc_grp_next != uill; 20751 ill = ill->ill_usesrc_grp_next) 20752 /* do nothing */; 20753 return (ill); 20754 } 20755 20756 /* 20757 * Release all members of the usesrc group. This routine is called 20758 * from ill_delete when the interface being unplumbed is the 20759 * group head. 20760 */ 20761 static void 20762 ill_disband_usesrc_group(ill_t *uill) 20763 { 20764 ill_t *next_ill, *tmp_ill; 20765 ASSERT(RW_WRITE_HELD(&ill_g_usesrc_lock)); 20766 next_ill = uill->ill_usesrc_grp_next; 20767 20768 do { 20769 ASSERT(next_ill != NULL); 20770 tmp_ill = next_ill->ill_usesrc_grp_next; 20771 ASSERT(tmp_ill != NULL); 20772 next_ill->ill_usesrc_grp_next = NULL; 20773 next_ill->ill_usesrc_ifindex = 0; 20774 next_ill = tmp_ill; 20775 } while (next_ill->ill_usesrc_ifindex != 0); 20776 uill->ill_usesrc_grp_next = NULL; 20777 } 20778 20779 /* 20780 * Remove the client usesrc ILL from the list and relink to a new list 20781 */ 20782 int 20783 ill_relink_usesrc_ills(ill_t *ucill, ill_t *uill, uint_t ifindex) 20784 { 20785 ill_t *ill, *tmp_ill; 20786 20787 ASSERT((ucill != NULL) && (ucill->ill_usesrc_grp_next != NULL) && 20788 (uill != NULL) && RW_WRITE_HELD(&ill_g_usesrc_lock)); 20789 20790 /* 20791 * Check if the usesrc client ILL passed in is not already 20792 * in use as a usesrc ILL i.e one whose source address is 20793 * in use OR a usesrc ILL is not already in use as a usesrc 20794 * client ILL 20795 */ 20796 if ((ucill->ill_usesrc_ifindex == 0) || 20797 (uill->ill_usesrc_ifindex != 0)) { 20798 return (-1); 20799 } 20800 20801 ill = ill_prev_usesrc(ucill); 20802 ASSERT(ill->ill_usesrc_grp_next != NULL); 20803 20804 /* Remove from the current list */ 20805 if (ill->ill_usesrc_grp_next->ill_usesrc_grp_next == ill) { 20806 /* Only two elements in the list */ 20807 ASSERT(ill->ill_usesrc_ifindex == 0); 20808 ill->ill_usesrc_grp_next = NULL; 20809 } else { 20810 ill->ill_usesrc_grp_next = ucill->ill_usesrc_grp_next; 20811 } 20812 20813 if (ifindex == 0) { 20814 ucill->ill_usesrc_ifindex = 0; 20815 ucill->ill_usesrc_grp_next = NULL; 20816 return (0); 20817 } 20818 20819 ucill->ill_usesrc_ifindex = ifindex; 20820 tmp_ill = uill->ill_usesrc_grp_next; 20821 uill->ill_usesrc_grp_next = ucill; 20822 ucill->ill_usesrc_grp_next = 20823 (tmp_ill != NULL) ? tmp_ill : uill; 20824 return (0); 20825 } 20826 20827 /* 20828 * Set the ill_usesrc and ill_usesrc_head fields. See synchronization notes in 20829 * ip.c for locking details. 20830 */ 20831 /* ARGSUSED */ 20832 int 20833 ip_sioctl_slifusesrc(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 20834 ip_ioctl_cmd_t *ipip, void *ifreq) 20835 { 20836 struct lifreq *lifr = (struct lifreq *)ifreq; 20837 boolean_t isv6 = B_FALSE, reset_flg = B_FALSE, 20838 ill_flag_changed = B_FALSE; 20839 ill_t *usesrc_ill, *usesrc_cli_ill = ipif->ipif_ill; 20840 int err = 0, ret; 20841 uint_t ifindex; 20842 phyint_t *us_phyint, *us_cli_phyint; 20843 ipsq_t *ipsq = NULL; 20844 20845 ASSERT(IAM_WRITER_IPIF(ipif)); 20846 ASSERT(q->q_next == NULL); 20847 ASSERT(CONN_Q(q)); 20848 20849 isv6 = (Q_TO_CONN(q))->conn_af_isv6; 20850 us_cli_phyint = usesrc_cli_ill->ill_phyint; 20851 20852 ASSERT(us_cli_phyint != NULL); 20853 20854 /* 20855 * If the client ILL is being used for IPMP, abort. 20856 * Note, this can be done before ipsq_try_enter since we are already 20857 * exclusive on this ILL 20858 */ 20859 if ((us_cli_phyint->phyint_groupname != NULL) || 20860 (us_cli_phyint->phyint_flags & PHYI_STANDBY)) { 20861 return (EINVAL); 20862 } 20863 20864 ifindex = lifr->lifr_index; 20865 if (ifindex == 0) { 20866 if (usesrc_cli_ill->ill_usesrc_grp_next == NULL) { 20867 /* non usesrc group interface, nothing to reset */ 20868 return (0); 20869 } 20870 ifindex = usesrc_cli_ill->ill_usesrc_ifindex; 20871 /* valid reset request */ 20872 reset_flg = B_TRUE; 20873 } 20874 20875 usesrc_ill = ill_lookup_on_ifindex(ifindex, isv6, q, mp, 20876 ip_process_ioctl, &err); 20877 20878 if (usesrc_ill == NULL) { 20879 return (err); 20880 } 20881 20882 /* 20883 * The usesrc_cli_ill or the usesrc_ill cannot be part of an IPMP 20884 * group nor can either of the interfaces be used for standy. So 20885 * to guarantee mutual exclusion with ip_sioctl_flags (which sets 20886 * PHYI_STANDBY) and ip_sioctl_groupname (which sets the groupname) 20887 * we need to be exclusive on the ipsq belonging to the usesrc_ill. 20888 * We are already exlusive on this ipsq i.e ipsq corresponding to 20889 * the usesrc_cli_ill 20890 */ 20891 ipsq = ipsq_try_enter(NULL, usesrc_ill, q, mp, ip_process_ioctl, 20892 NEW_OP, B_TRUE); 20893 if (ipsq == NULL) { 20894 err = EINPROGRESS; 20895 /* Operation enqueued on the ipsq of the usesrc ILL */ 20896 goto done; 20897 } 20898 20899 /* Check if the usesrc_ill is used for IPMP */ 20900 us_phyint = usesrc_ill->ill_phyint; 20901 if ((us_phyint->phyint_groupname != NULL) || 20902 (us_phyint->phyint_flags & PHYI_STANDBY)) { 20903 err = EINVAL; 20904 goto done; 20905 } 20906 20907 /* 20908 * If the client is already in use as a usesrc_ill or a usesrc_ill is 20909 * already a client then return EINVAL 20910 */ 20911 if (IS_USESRC_ILL(usesrc_cli_ill) || IS_USESRC_CLI_ILL(usesrc_ill)) { 20912 err = EINVAL; 20913 goto done; 20914 } 20915 20916 /* 20917 * If the ill_usesrc_ifindex field is already set to what it needs to 20918 * be then this is a duplicate operation. 20919 */ 20920 if (!reset_flg && usesrc_cli_ill->ill_usesrc_ifindex == ifindex) { 20921 err = 0; 20922 goto done; 20923 } 20924 20925 ip1dbg(("ip_sioctl_slifusesrc: usesrc_cli_ill %s, usesrc_ill %s," 20926 " v6 = %d", usesrc_cli_ill->ill_name, usesrc_ill->ill_name, 20927 usesrc_ill->ill_isv6)); 20928 20929 /* 20930 * The next step ensures that no new ires will be created referencing 20931 * the client ill, until the ILL_CHANGING flag is cleared. Then 20932 * we go through an ire walk deleting all ire caches that reference 20933 * the client ill. New ires referencing the client ill that are added 20934 * to the ire table before the ILL_CHANGING flag is set, will be 20935 * cleaned up by the ire walk below. Attempt to add new ires referencing 20936 * the client ill while the ILL_CHANGING flag is set will be failed 20937 * during the ire_add in ire_atomic_start. ire_atomic_start atomically 20938 * checks (under the ill_g_usesrc_lock) that the ire being added 20939 * is not stale, i.e the ire_stq and ire_ipif are consistent and 20940 * belong to the same usesrc group. 20941 */ 20942 mutex_enter(&usesrc_cli_ill->ill_lock); 20943 usesrc_cli_ill->ill_state_flags |= ILL_CHANGING; 20944 mutex_exit(&usesrc_cli_ill->ill_lock); 20945 ill_flag_changed = B_TRUE; 20946 20947 if (ipif->ipif_isv6) 20948 ire_walk_v6(ipif_delete_cache_ire, (char *)usesrc_cli_ill, 20949 ALL_ZONES); 20950 else 20951 ire_walk_v4(ipif_delete_cache_ire, (char *)usesrc_cli_ill, 20952 ALL_ZONES); 20953 20954 /* 20955 * ill_g_usesrc_lock global lock protects the ill_usesrc_grp_next 20956 * and the ill_usesrc_ifindex fields 20957 */ 20958 rw_enter(&ill_g_usesrc_lock, RW_WRITER); 20959 20960 if (reset_flg) { 20961 ret = ill_relink_usesrc_ills(usesrc_cli_ill, usesrc_ill, 0); 20962 if (ret != 0) { 20963 err = EINVAL; 20964 } 20965 rw_exit(&ill_g_usesrc_lock); 20966 goto done; 20967 } 20968 20969 /* 20970 * Four possibilities to consider: 20971 * 1. Both usesrc_ill and usesrc_cli_ill are not part of any usesrc grp 20972 * 2. usesrc_ill is part of a group but usesrc_cli_ill isn't 20973 * 3. usesrc_cli_ill is part of a group but usesrc_ill isn't 20974 * 4. Both are part of their respective usesrc groups 20975 */ 20976 if ((usesrc_ill->ill_usesrc_grp_next == NULL) && 20977 (usesrc_cli_ill->ill_usesrc_grp_next == NULL)) { 20978 ASSERT(usesrc_ill->ill_usesrc_ifindex == 0); 20979 usesrc_cli_ill->ill_usesrc_ifindex = ifindex; 20980 usesrc_ill->ill_usesrc_grp_next = usesrc_cli_ill; 20981 usesrc_cli_ill->ill_usesrc_grp_next = usesrc_ill; 20982 } else if ((usesrc_ill->ill_usesrc_grp_next != NULL) && 20983 (usesrc_cli_ill->ill_usesrc_grp_next == NULL)) { 20984 usesrc_cli_ill->ill_usesrc_ifindex = ifindex; 20985 /* Insert at head of list */ 20986 usesrc_cli_ill->ill_usesrc_grp_next = 20987 usesrc_ill->ill_usesrc_grp_next; 20988 usesrc_ill->ill_usesrc_grp_next = usesrc_cli_ill; 20989 } else { 20990 ret = ill_relink_usesrc_ills(usesrc_cli_ill, usesrc_ill, 20991 ifindex); 20992 if (ret != 0) 20993 err = EINVAL; 20994 } 20995 rw_exit(&ill_g_usesrc_lock); 20996 20997 done: 20998 if (ill_flag_changed) { 20999 mutex_enter(&usesrc_cli_ill->ill_lock); 21000 usesrc_cli_ill->ill_state_flags &= ~ILL_CHANGING; 21001 mutex_exit(&usesrc_cli_ill->ill_lock); 21002 } 21003 if (ipsq != NULL) 21004 ipsq_exit(ipsq, B_TRUE, B_TRUE); 21005 /* The refrele on the lifr_name ipif is done by ip_process_ioctl */ 21006 ill_refrele(usesrc_ill); 21007 return (err); 21008 } 21009 21010 /* 21011 * comparison function used by avl. 21012 */ 21013 static int 21014 ill_phyint_compare_index(const void *index_ptr, const void *phyip) 21015 { 21016 21017 uint_t index; 21018 21019 ASSERT(phyip != NULL && index_ptr != NULL); 21020 21021 index = *((uint_t *)index_ptr); 21022 /* 21023 * let the phyint with the lowest index be on top. 21024 */ 21025 if (((phyint_t *)phyip)->phyint_ifindex < index) 21026 return (1); 21027 if (((phyint_t *)phyip)->phyint_ifindex > index) 21028 return (-1); 21029 return (0); 21030 } 21031 21032 /* 21033 * comparison function used by avl. 21034 */ 21035 static int 21036 ill_phyint_compare_name(const void *name_ptr, const void *phyip) 21037 { 21038 ill_t *ill; 21039 int res = 0; 21040 21041 ASSERT(phyip != NULL && name_ptr != NULL); 21042 21043 if (((phyint_t *)phyip)->phyint_illv4) 21044 ill = ((phyint_t *)phyip)->phyint_illv4; 21045 else 21046 ill = ((phyint_t *)phyip)->phyint_illv6; 21047 ASSERT(ill != NULL); 21048 21049 res = strcmp(ill->ill_name, (char *)name_ptr); 21050 if (res > 0) 21051 return (1); 21052 else if (res < 0) 21053 return (-1); 21054 return (0); 21055 } 21056 /* 21057 * This function is called from ill_delete when the ill is being 21058 * unplumbed. We remove the reference from the phyint and we also 21059 * free the phyint when there are no more references to it. 21060 */ 21061 static void 21062 ill_phyint_free(ill_t *ill) 21063 { 21064 phyint_t *phyi; 21065 phyint_t *next_phyint; 21066 ipsq_t *cur_ipsq; 21067 21068 ASSERT(ill->ill_phyint != NULL); 21069 21070 ASSERT(RW_WRITE_HELD(&ill_g_lock)); 21071 phyi = ill->ill_phyint; 21072 ill->ill_phyint = NULL; 21073 /* 21074 * ill_init allocates a phyint always to store the copy 21075 * of flags relevant to phyint. At that point in time, we could 21076 * not assign the name and hence phyint_illv4/v6 could not be 21077 * initialized. Later in ipif_set_values, we assign the name to 21078 * the ill, at which point in time we assign phyint_illv4/v6. 21079 * Thus we don't rely on phyint_illv6 to be initialized always. 21080 */ 21081 if (ill->ill_flags & ILLF_IPV6) { 21082 phyi->phyint_illv6 = NULL; 21083 } else { 21084 phyi->phyint_illv4 = NULL; 21085 } 21086 /* 21087 * ipif_down removes it from the group when the last ipif goes 21088 * down. 21089 */ 21090 ASSERT(ill->ill_group == NULL); 21091 21092 if (phyi->phyint_illv4 != NULL || phyi->phyint_illv6 != NULL) 21093 return; 21094 21095 /* 21096 * Make sure this phyint was put in the list. 21097 */ 21098 if (phyi->phyint_ifindex > 0) { 21099 avl_remove(&phyint_g_list.phyint_list_avl_by_index, 21100 phyi); 21101 avl_remove(&phyint_g_list.phyint_list_avl_by_name, 21102 phyi); 21103 } 21104 /* 21105 * remove phyint from the ipsq list. 21106 */ 21107 cur_ipsq = phyi->phyint_ipsq; 21108 if (phyi == cur_ipsq->ipsq_phyint_list) { 21109 cur_ipsq->ipsq_phyint_list = phyi->phyint_ipsq_next; 21110 } else { 21111 next_phyint = cur_ipsq->ipsq_phyint_list; 21112 while (next_phyint != NULL) { 21113 if (next_phyint->phyint_ipsq_next == phyi) { 21114 next_phyint->phyint_ipsq_next = 21115 phyi->phyint_ipsq_next; 21116 break; 21117 } 21118 next_phyint = next_phyint->phyint_ipsq_next; 21119 } 21120 ASSERT(next_phyint != NULL); 21121 } 21122 IPSQ_DEC_REF(cur_ipsq); 21123 21124 if (phyi->phyint_groupname_len != 0) { 21125 ASSERT(phyi->phyint_groupname != NULL); 21126 mi_free(phyi->phyint_groupname); 21127 } 21128 mi_free(phyi); 21129 } 21130 21131 /* 21132 * Attach the ill to the phyint structure which can be shared by both 21133 * IPv4 and IPv6 ill. ill_init allocates a phyint to just hold flags. This 21134 * function is called from ipif_set_values and ill_lookup_on_name (for 21135 * loopback) where we know the name of the ill. We lookup the ill and if 21136 * there is one present already with the name use that phyint. Otherwise 21137 * reuse the one allocated by ill_init. 21138 */ 21139 static void 21140 ill_phyint_reinit(ill_t *ill) 21141 { 21142 boolean_t isv6 = ill->ill_isv6; 21143 phyint_t *phyi_old; 21144 phyint_t *phyi; 21145 avl_index_t where = 0; 21146 ill_t *ill_other = NULL; 21147 ipsq_t *ipsq; 21148 21149 ASSERT(RW_WRITE_HELD(&ill_g_lock)); 21150 21151 phyi_old = ill->ill_phyint; 21152 ASSERT(isv6 || (phyi_old->phyint_illv4 == ill && 21153 phyi_old->phyint_illv6 == NULL)); 21154 ASSERT(!isv6 || (phyi_old->phyint_illv6 == ill && 21155 phyi_old->phyint_illv4 == NULL)); 21156 ASSERT(phyi_old->phyint_ifindex == 0); 21157 21158 phyi = avl_find(&phyint_g_list.phyint_list_avl_by_name, 21159 ill->ill_name, &where); 21160 21161 /* 21162 * 1. We grabbed the ill_g_lock before inserting this ill into 21163 * the global list of ills. So no other thread could have located 21164 * this ill and hence the ipsq of this ill is guaranteed to be empty. 21165 * 2. Now locate the other protocol instance of this ill. 21166 * 3. Now grab both ill locks in the right order, and the phyint lock of 21167 * the new ipsq. Holding ill locks + ill_g_lock ensures that the ipsq 21168 * of neither ill can change. 21169 * 4. Merge the phyint and thus the ipsq as well of this ill onto the 21170 * other ill. 21171 * 5. Release all locks. 21172 */ 21173 21174 /* 21175 * Look for IPv4 if we are initializing IPv6 or look for IPv6 if 21176 * we are initializing IPv4. 21177 */ 21178 if (phyi != NULL) { 21179 ill_other = (isv6) ? phyi->phyint_illv4 : 21180 phyi->phyint_illv6; 21181 ASSERT(ill_other->ill_phyint != NULL); 21182 ASSERT((isv6 && !ill_other->ill_isv6) || 21183 (!isv6 && ill_other->ill_isv6)); 21184 GRAB_ILL_LOCKS(ill, ill_other); 21185 /* 21186 * We are potentially throwing away phyint_flags which 21187 * could be different from the one that we obtain from 21188 * ill_other->ill_phyint. But it is okay as we are assuming 21189 * that the state maintained within IP is correct. 21190 */ 21191 mutex_enter(&phyi->phyint_lock); 21192 if (isv6) { 21193 ASSERT(phyi->phyint_illv6 == NULL); 21194 phyi->phyint_illv6 = ill; 21195 } else { 21196 ASSERT(phyi->phyint_illv4 == NULL); 21197 phyi->phyint_illv4 = ill; 21198 } 21199 /* 21200 * This is a new ill, currently undergoing SLIFNAME 21201 * So we could not have joined an IPMP group until now. 21202 */ 21203 ASSERT(phyi_old->phyint_ipsq_next == NULL && 21204 phyi_old->phyint_groupname == NULL); 21205 21206 /* 21207 * This phyi_old is going away. Decref ipsq_refs and 21208 * assert it is zero. The ipsq itself will be freed in 21209 * ipsq_exit 21210 */ 21211 ipsq = phyi_old->phyint_ipsq; 21212 IPSQ_DEC_REF(ipsq); 21213 ASSERT(ipsq->ipsq_refs == 0); 21214 /* Get the singleton phyint out of the ipsq list */ 21215 ASSERT(phyi_old->phyint_ipsq_next == NULL); 21216 ipsq->ipsq_phyint_list = NULL; 21217 phyi_old->phyint_illv4 = NULL; 21218 phyi_old->phyint_illv6 = NULL; 21219 mi_free(phyi_old); 21220 } else { 21221 mutex_enter(&ill->ill_lock); 21222 /* 21223 * We don't need to acquire any lock, since 21224 * the ill is not yet visible globally and we 21225 * have not yet released the ill_g_lock. 21226 */ 21227 phyi = phyi_old; 21228 mutex_enter(&phyi->phyint_lock); 21229 /* XXX We need a recovery strategy here. */ 21230 if (!phyint_assign_ifindex(phyi)) 21231 cmn_err(CE_PANIC, "phyint_assign_ifindex() failed"); 21232 21233 avl_insert(&phyint_g_list.phyint_list_avl_by_name, 21234 (void *)phyi, where); 21235 21236 (void) avl_find(&phyint_g_list.phyint_list_avl_by_index, 21237 &phyi->phyint_ifindex, &where); 21238 avl_insert(&phyint_g_list.phyint_list_avl_by_index, 21239 (void *)phyi, where); 21240 } 21241 21242 /* 21243 * Reassigning ill_phyint automatically reassigns the ipsq also. 21244 * pending mp is not affected because that is per ill basis. 21245 */ 21246 ill->ill_phyint = phyi; 21247 21248 /* 21249 * Keep the index on ipif_orig_index to be used by FAILOVER. 21250 * We do this here as when the first ipif was allocated, 21251 * ipif_allocate does not know the right interface index. 21252 */ 21253 21254 ill->ill_ipif->ipif_orig_ifindex = ill->ill_phyint->phyint_ifindex; 21255 /* 21256 * Now that the phyint's ifindex has been assigned, complete the 21257 * remaining 21258 */ 21259 if (ill->ill_isv6) { 21260 ill->ill_ip6_mib->ipv6IfIndex = 21261 ill->ill_phyint->phyint_ifindex; 21262 ill->ill_icmp6_mib->ipv6IfIcmpIfIndex = 21263 ill->ill_phyint->phyint_ifindex; 21264 } 21265 21266 RELEASE_ILL_LOCKS(ill, ill_other); 21267 mutex_exit(&phyi->phyint_lock); 21268 } 21269 21270 /* 21271 * Notify any downstream modules of the name of this interface. 21272 * An M_IOCTL is used even though we don't expect a successful reply. 21273 * Any reply message from the driver (presumably an M_IOCNAK) will 21274 * eventually get discarded somewhere upstream. The message format is 21275 * simply an SIOCSLIFNAME ioctl just as might be sent from ifconfig 21276 * to IP. 21277 */ 21278 static void 21279 ip_ifname_notify(ill_t *ill, queue_t *q) 21280 { 21281 mblk_t *mp1, *mp2; 21282 struct iocblk *iocp; 21283 struct lifreq *lifr; 21284 21285 mp1 = mkiocb(SIOCSLIFNAME); 21286 if (mp1 == NULL) 21287 return; 21288 mp2 = allocb(sizeof (struct lifreq), BPRI_HI); 21289 if (mp2 == NULL) { 21290 freeb(mp1); 21291 return; 21292 } 21293 21294 mp1->b_cont = mp2; 21295 iocp = (struct iocblk *)mp1->b_rptr; 21296 iocp->ioc_count = sizeof (struct lifreq); 21297 21298 lifr = (struct lifreq *)mp2->b_rptr; 21299 mp2->b_wptr += sizeof (struct lifreq); 21300 bzero(lifr, sizeof (struct lifreq)); 21301 21302 (void) strncpy(lifr->lifr_name, ill->ill_name, LIFNAMSIZ); 21303 lifr->lifr_ppa = ill->ill_ppa; 21304 lifr->lifr_flags = (ill->ill_flags & (ILLF_IPV4|ILLF_IPV6)); 21305 21306 putnext(q, mp1); 21307 } 21308 21309 static boolean_t ip_trash_timer_started = B_FALSE; 21310 21311 static int 21312 ipif_set_values_tail(ill_t *ill, ipif_t *ipif, mblk_t *mp, queue_t *q) 21313 { 21314 int err; 21315 21316 /* Set the obsolete NDD per-interface forwarding name. */ 21317 err = ill_set_ndd_name(ill); 21318 if (err != 0) { 21319 cmn_err(CE_WARN, "ipif_set_values: ill_set_ndd_name (%d)\n", 21320 err); 21321 } 21322 21323 /* Tell downstream modules where they are. */ 21324 ip_ifname_notify(ill, q); 21325 21326 /* 21327 * ill_dl_phys returns EINPROGRESS in the usual case. 21328 * Error cases are ENOMEM ... 21329 */ 21330 err = ill_dl_phys(ill, ipif, mp, q); 21331 21332 /* 21333 * If there is no IRE expiration timer running, get one started. 21334 * igmp and mld timers will be triggered by the first multicast 21335 */ 21336 if (!ip_trash_timer_started) { 21337 /* 21338 * acquire the lock and check again. 21339 */ 21340 mutex_enter(&ip_trash_timer_lock); 21341 if (!ip_trash_timer_started) { 21342 ip_ire_expire_id = timeout(ip_trash_timer_expire, NULL, 21343 MSEC_TO_TICK(ip_timer_interval)); 21344 ip_trash_timer_started = B_TRUE; 21345 } 21346 mutex_exit(&ip_trash_timer_lock); 21347 } 21348 21349 if (ill->ill_isv6) { 21350 mutex_enter(&mld_slowtimeout_lock); 21351 if (mld_slowtimeout_id == 0) { 21352 mld_slowtimeout_id = timeout(mld_slowtimo, NULL, 21353 MSEC_TO_TICK(MCAST_SLOWTIMO_INTERVAL)); 21354 } 21355 mutex_exit(&mld_slowtimeout_lock); 21356 } else { 21357 mutex_enter(&igmp_slowtimeout_lock); 21358 if (igmp_slowtimeout_id == 0) { 21359 igmp_slowtimeout_id = timeout(igmp_slowtimo, NULL, 21360 MSEC_TO_TICK(MCAST_SLOWTIMO_INTERVAL)); 21361 } 21362 mutex_exit(&igmp_slowtimeout_lock); 21363 } 21364 21365 return (err); 21366 } 21367 21368 /* 21369 * Common routine for ppa and ifname setting. Should be called exclusive. 21370 * 21371 * Returns EINPROGRESS when mp has been consumed by queueing it on 21372 * ill_pending_mp and the ioctl will complete in ip_rput. 21373 * 21374 * NOTE : If ppa is UNIT_MAX, we assign the next valid ppa and return 21375 * the new name and new ppa in lifr_name and lifr_ppa respectively. 21376 * For SLIFNAME, we pass these values back to the userland. 21377 */ 21378 static int 21379 ipif_set_values(queue_t *q, mblk_t *mp, char *interf_name, uint_t *new_ppa_ptr) 21380 { 21381 ill_t *ill; 21382 ipif_t *ipif; 21383 ipsq_t *ipsq; 21384 char *ppa_ptr; 21385 char *old_ptr; 21386 char old_char; 21387 int error; 21388 21389 ip1dbg(("ipif_set_values: interface %s\n", interf_name)); 21390 ASSERT(q->q_next != NULL); 21391 ASSERT(interf_name != NULL); 21392 21393 ill = (ill_t *)q->q_ptr; 21394 21395 ASSERT(ill->ill_name[0] == '\0'); 21396 ASSERT(IAM_WRITER_ILL(ill)); 21397 ASSERT((mi_strlen(interf_name) + 1) <= LIFNAMSIZ); 21398 ASSERT(ill->ill_ppa == UINT_MAX); 21399 21400 /* The ppa is sent down by ifconfig or is chosen */ 21401 if ((ppa_ptr = ill_get_ppa_ptr(interf_name)) == NULL) { 21402 return (EINVAL); 21403 } 21404 21405 /* 21406 * make sure ppa passed in is same as ppa in the name. 21407 * This check is not made when ppa == UINT_MAX in that case ppa 21408 * in the name could be anything. System will choose a ppa and 21409 * update new_ppa_ptr and inter_name to contain the choosen ppa. 21410 */ 21411 if (*new_ppa_ptr != UINT_MAX) { 21412 /* stoi changes the pointer */ 21413 old_ptr = ppa_ptr; 21414 /* 21415 * ifconfig passed in 0 for the ppa for DLPI 1 style devices 21416 * (they don't have an externally visible ppa). We assign one 21417 * here so that we can manage the interface. Note that in 21418 * the past this value was always 0 for DLPI 1 drivers. 21419 */ 21420 if (*new_ppa_ptr == 0) 21421 *new_ppa_ptr = stoi(&old_ptr); 21422 else if (*new_ppa_ptr != (uint_t)stoi(&old_ptr)) 21423 return (EINVAL); 21424 } 21425 /* 21426 * terminate string before ppa 21427 * save char at that location. 21428 */ 21429 old_char = ppa_ptr[0]; 21430 ppa_ptr[0] = '\0'; 21431 21432 ill->ill_ppa = *new_ppa_ptr; 21433 /* 21434 * Finish as much work now as possible before calling ill_glist_insert 21435 * which makes the ill globally visible and also merges it with the 21436 * other protocol instance of this phyint. The remaining work is 21437 * done after entering the ipsq which may happen sometime later. 21438 * ill_set_ndd_name occurs after the ill has been made globally visible. 21439 */ 21440 ipif = ill->ill_ipif; 21441 21442 /* We didn't do this when we allocated ipif in ip_ll_subnet_defaults */ 21443 ipif_assign_seqid(ipif); 21444 21445 if (!(ill->ill_flags & (ILLF_IPV4|ILLF_IPV6))) 21446 ill->ill_flags |= ILLF_IPV4; 21447 21448 ASSERT(ipif->ipif_next == NULL); /* Only one ipif on ill */ 21449 ASSERT((ipif->ipif_flags & IPIF_UP) == 0); 21450 21451 if (ill->ill_flags & ILLF_IPV6) { 21452 21453 ill->ill_isv6 = B_TRUE; 21454 if (ill->ill_rq != NULL) { 21455 ill->ill_rq->q_qinfo = &rinit_ipv6; 21456 ill->ill_wq->q_qinfo = &winit_ipv6; 21457 } 21458 21459 /* Keep the !IN6_IS_ADDR_V4MAPPED assertions happy */ 21460 ipif->ipif_v6lcl_addr = ipv6_all_zeros; 21461 ipif->ipif_v6src_addr = ipv6_all_zeros; 21462 ipif->ipif_v6subnet = ipv6_all_zeros; 21463 ipif->ipif_v6net_mask = ipv6_all_zeros; 21464 ipif->ipif_v6brd_addr = ipv6_all_zeros; 21465 ipif->ipif_v6pp_dst_addr = ipv6_all_zeros; 21466 /* 21467 * point-to-point or Non-mulicast capable 21468 * interfaces won't do NUD unless explicitly 21469 * configured to do so. 21470 */ 21471 if (ipif->ipif_flags & IPIF_POINTOPOINT || 21472 !(ill->ill_flags & ILLF_MULTICAST)) { 21473 ill->ill_flags |= ILLF_NONUD; 21474 } 21475 /* Make sure IPv4 specific flag is not set on IPv6 if */ 21476 if (ill->ill_flags & ILLF_NOARP) { 21477 /* 21478 * Note: xresolv interfaces will eventually need 21479 * NOARP set here as well, but that will require 21480 * those external resolvers to have some 21481 * knowledge of that flag and act appropriately. 21482 * Not to be changed at present. 21483 */ 21484 ill->ill_flags &= ~ILLF_NOARP; 21485 } 21486 /* 21487 * Set the ILLF_ROUTER flag according to the global 21488 * IPv6 forwarding policy. 21489 */ 21490 if (ipv6_forward != 0) 21491 ill->ill_flags |= ILLF_ROUTER; 21492 } else if (ill->ill_flags & ILLF_IPV4) { 21493 ill->ill_isv6 = B_FALSE; 21494 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6lcl_addr); 21495 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6src_addr); 21496 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6subnet); 21497 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6net_mask); 21498 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6brd_addr); 21499 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6pp_dst_addr); 21500 /* 21501 * Set the ILLF_ROUTER flag according to the global 21502 * IPv4 forwarding policy. 21503 */ 21504 if (ip_g_forward != 0) 21505 ill->ill_flags |= ILLF_ROUTER; 21506 } 21507 21508 ASSERT(ill->ill_phyint != NULL); 21509 21510 /* 21511 * The ipv6Ifindex and ipv6IfIcmpIfIndex assignments will 21512 * be completed in ill_glist_insert -> ill_phyint_reinit 21513 */ 21514 if (ill->ill_isv6) { 21515 /* allocate v6 mib */ 21516 if (!ill_allocate_mibs(ill)) 21517 return (ENOMEM); 21518 } 21519 21520 /* 21521 * Pick a default sap until we get the DL_INFO_ACK back from 21522 * the driver. 21523 */ 21524 if (ill->ill_sap == 0) { 21525 if (ill->ill_isv6) 21526 ill->ill_sap = IP6_DL_SAP; 21527 else 21528 ill->ill_sap = IP_DL_SAP; 21529 } 21530 21531 ill->ill_ifname_pending = 1; 21532 ill->ill_ifname_pending_err = 0; 21533 21534 ill_refhold(ill); 21535 rw_enter(&ill_g_lock, RW_WRITER); 21536 if ((error = ill_glist_insert(ill, interf_name, 21537 (ill->ill_flags & ILLF_IPV6) == ILLF_IPV6)) > 0) { 21538 ill->ill_ppa = UINT_MAX; 21539 ill->ill_name[0] = '\0'; 21540 /* 21541 * undo null termination done above. 21542 */ 21543 ppa_ptr[0] = old_char; 21544 rw_exit(&ill_g_lock); 21545 ill_refrele(ill); 21546 return (error); 21547 } 21548 21549 ASSERT(ill->ill_name_length <= LIFNAMSIZ); 21550 21551 /* 21552 * When we return the buffer pointed to by interf_name should contain 21553 * the same name as in ill_name. 21554 * If a ppa was choosen by the system (ppa passed in was UINT_MAX) 21555 * the buffer pointed to by new_ppa_ptr would not contain the right ppa 21556 * so copy full name and update the ppa ptr. 21557 * When ppa passed in != UINT_MAX all values are correct just undo 21558 * null termination, this saves a bcopy. 21559 */ 21560 if (*new_ppa_ptr == UINT_MAX) { 21561 bcopy(ill->ill_name, interf_name, ill->ill_name_length); 21562 *new_ppa_ptr = ill->ill_ppa; 21563 } else { 21564 /* 21565 * undo null termination done above. 21566 */ 21567 ppa_ptr[0] = old_char; 21568 } 21569 21570 /* Let SCTP know about this ILL */ 21571 sctp_update_ill(ill, SCTP_ILL_INSERT); 21572 21573 /* and also about the first ipif */ 21574 sctp_update_ipif(ipif, SCTP_IPIF_INSERT); 21575 21576 ipsq = ipsq_try_enter(NULL, ill, q, mp, ip_reprocess_ioctl, NEW_OP, 21577 B_TRUE); 21578 21579 rw_exit(&ill_g_lock); 21580 ill_refrele(ill); 21581 if (ipsq == NULL) 21582 return (EINPROGRESS); 21583 21584 /* 21585 * Need to set the ipsq_current_ipif now, if we have changed ipsq 21586 * due to the phyint merge in ill_phyint_reinit. 21587 */ 21588 ASSERT(ipsq->ipsq_current_ipif == NULL || 21589 ipsq->ipsq_current_ipif == ipif); 21590 ipsq->ipsq_current_ipif = ipif; 21591 ipsq->ipsq_last_cmd = SIOCSLIFNAME; 21592 error = ipif_set_values_tail(ill, ipif, mp, q); 21593 ipsq_exit(ipsq, B_TRUE, B_TRUE); 21594 if (error != 0 && error != EINPROGRESS) { 21595 /* 21596 * restore previous values 21597 */ 21598 ill->ill_isv6 = B_FALSE; 21599 } 21600 return (error); 21601 } 21602 21603 21604 extern void (*ip_cleanup_func)(void); 21605 21606 void 21607 ipif_init(void) 21608 { 21609 hrtime_t hrt; 21610 int i; 21611 21612 /* 21613 * Can't call drv_getparm here as it is too early in the boot. 21614 * As we use ipif_src_random just for picking a different 21615 * source address everytime, this need not be really random. 21616 */ 21617 hrt = gethrtime(); 21618 ipif_src_random = ((hrt >> 32) & 0xffffffff) * (hrt & 0xffffffff); 21619 21620 for (i = 0; i < MAX_G_HEADS; i++) { 21621 ill_g_heads[i].ill_g_list_head = (ill_if_t *)&ill_g_heads[i]; 21622 ill_g_heads[i].ill_g_list_tail = (ill_if_t *)&ill_g_heads[i]; 21623 } 21624 21625 avl_create(&phyint_g_list.phyint_list_avl_by_index, 21626 ill_phyint_compare_index, 21627 sizeof (phyint_t), 21628 offsetof(struct phyint, phyint_avl_by_index)); 21629 avl_create(&phyint_g_list.phyint_list_avl_by_name, 21630 ill_phyint_compare_name, 21631 sizeof (phyint_t), 21632 offsetof(struct phyint, phyint_avl_by_name)); 21633 21634 ip_cleanup_func = ip_thread_exit; 21635 } 21636 21637 /* 21638 * This is called by ip_rt_add when src_addr value is other than zero. 21639 * src_addr signifies the source address of the incoming packet. For 21640 * reverse tunnel route we need to create a source addr based routing 21641 * table. This routine creates ip_mrtun_table if it's empty and then 21642 * it adds the route entry hashed by source address. It verifies that 21643 * the outgoing interface is always a non-resolver interface (tunnel). 21644 */ 21645 int 21646 ip_mrtun_rt_add(ipaddr_t in_src_addr, int flags, ipif_t *ipif_arg, 21647 ipif_t *src_ipif, ire_t **ire_arg, queue_t *q, mblk_t *mp, ipsq_func_t func) 21648 { 21649 ire_t *ire; 21650 ire_t *save_ire; 21651 ipif_t *ipif; 21652 ill_t *in_ill = NULL; 21653 ill_t *out_ill; 21654 queue_t *stq; 21655 mblk_t *dlureq_mp; 21656 int error; 21657 21658 if (ire_arg != NULL) 21659 *ire_arg = NULL; 21660 ASSERT(in_src_addr != INADDR_ANY); 21661 21662 ipif = ipif_arg; 21663 if (ipif != NULL) { 21664 out_ill = ipif->ipif_ill; 21665 } else { 21666 ip1dbg(("ip_mrtun_rt_add: ipif is NULL\n")); 21667 return (EINVAL); 21668 } 21669 21670 if (src_ipif == NULL) { 21671 ip1dbg(("ip_mrtun_rt_add: src_ipif is NULL\n")); 21672 return (EINVAL); 21673 } 21674 in_ill = src_ipif->ipif_ill; 21675 21676 /* 21677 * Check for duplicates. We don't need to 21678 * match out_ill, because the uniqueness of 21679 * a route is only dependent on src_addr and 21680 * in_ill. 21681 */ 21682 ire = ire_mrtun_lookup(in_src_addr, in_ill); 21683 if (ire != NULL) { 21684 ire_refrele(ire); 21685 return (EEXIST); 21686 } 21687 if (ipif->ipif_net_type != IRE_IF_NORESOLVER) { 21688 ip2dbg(("ip_mrtun_rt_add: outgoing interface is type %d\n", 21689 ipif->ipif_net_type)); 21690 return (EINVAL); 21691 } 21692 21693 stq = ipif->ipif_wq; 21694 ASSERT(stq != NULL); 21695 21696 /* 21697 * The outgoing interface must be non-resolver 21698 * interface. 21699 */ 21700 dlureq_mp = ill_dlur_gen(NULL, 21701 out_ill->ill_phys_addr_length, out_ill->ill_sap, 21702 out_ill->ill_sap_length); 21703 21704 if (dlureq_mp == NULL) { 21705 ip1dbg(("ip_newroute: dlureq_mp NULL\n")); 21706 return (ENOMEM); 21707 } 21708 21709 /* Create the IRE. */ 21710 21711 ire = ire_create( 21712 NULL, /* Zero dst addr */ 21713 NULL, /* Zero mask */ 21714 NULL, /* Zero gateway addr */ 21715 NULL, /* Zero ipif_src addr */ 21716 (uint8_t *)&in_src_addr, /* in_src-addr */ 21717 &ipif->ipif_mtu, 21718 NULL, 21719 NULL, /* rfq */ 21720 stq, 21721 IRE_MIPRTUN, 21722 dlureq_mp, 21723 ipif, 21724 in_ill, 21725 0, 21726 0, 21727 0, 21728 flags, 21729 &ire_uinfo_null); 21730 21731 if (ire == NULL) 21732 return (ENOMEM); 21733 ip2dbg(("ip_mrtun_rt_add: mrtun route is created with type %d\n", 21734 ire->ire_type)); 21735 save_ire = ire; 21736 ASSERT(save_ire != NULL); 21737 error = ire_add_mrtun(&ire, q, mp, func); 21738 /* 21739 * If ire_add_mrtun() failed, the ire passed in was freed 21740 * so there is no need to do so here. 21741 */ 21742 if (error != 0) { 21743 return (error); 21744 } 21745 21746 /* Duplicate check */ 21747 if (ire != save_ire) { 21748 /* route already exists by now */ 21749 ire_refrele(ire); 21750 return (EEXIST); 21751 } 21752 21753 if (ire_arg != NULL) { 21754 /* 21755 * Store the ire that was just added. the caller 21756 * ip_rts_request responsible for doing ire_refrele() 21757 * on it. 21758 */ 21759 *ire_arg = ire; 21760 } else { 21761 ire_refrele(ire); /* held in ire_add_mrtun */ 21762 } 21763 21764 return (0); 21765 } 21766 21767 /* 21768 * It is called by ip_rt_delete() only when mipagent requests to delete 21769 * a reverse tunnel route that was added by ip_mrtun_rt_add() before. 21770 */ 21771 21772 int 21773 ip_mrtun_rt_delete(ipaddr_t in_src_addr, ipif_t *src_ipif) 21774 { 21775 ire_t *ire = NULL; 21776 21777 if (in_src_addr == INADDR_ANY) 21778 return (EINVAL); 21779 if (src_ipif == NULL) 21780 return (EINVAL); 21781 21782 /* search if this route exists in the ip_mrtun_table */ 21783 ire = ire_mrtun_lookup(in_src_addr, src_ipif->ipif_ill); 21784 if (ire == NULL) { 21785 ip2dbg(("ip_mrtun_rt_delete: ire not found\n")); 21786 return (ESRCH); 21787 } 21788 ire_delete(ire); 21789 ire_refrele(ire); 21790 return (0); 21791 } 21792 21793 /* 21794 * Lookup the ipif corresponding to the onlink destination address. For 21795 * point-to-point interfaces, it matches with remote endpoint destination 21796 * address. For point-to-multipoint interfaces it only tries to match the 21797 * destination with the interface's subnet address. The longest, most specific 21798 * match is found to take care of such rare network configurations like - 21799 * le0: 129.146.1.1/16 21800 * le1: 129.146.2.2/24 21801 * It is used only by SO_DONTROUTE at the moment. 21802 */ 21803 ipif_t * 21804 ipif_lookup_onlink_addr(ipaddr_t addr, zoneid_t zoneid) 21805 { 21806 ipif_t *ipif, *best_ipif; 21807 ill_t *ill; 21808 ill_walk_context_t ctx; 21809 21810 ASSERT(zoneid != ALL_ZONES); 21811 best_ipif = NULL; 21812 21813 rw_enter(&ill_g_lock, RW_READER); 21814 ill = ILL_START_WALK_V4(&ctx); 21815 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 21816 mutex_enter(&ill->ill_lock); 21817 for (ipif = ill->ill_ipif; ipif != NULL; 21818 ipif = ipif->ipif_next) { 21819 if (!IPIF_CAN_LOOKUP(ipif)) 21820 continue; 21821 if (ipif->ipif_zoneid != zoneid) 21822 continue; 21823 /* 21824 * Point-to-point case. Look for exact match with 21825 * destination address. 21826 */ 21827 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 21828 if (ipif->ipif_pp_dst_addr == addr) { 21829 ipif_refhold_locked(ipif); 21830 mutex_exit(&ill->ill_lock); 21831 rw_exit(&ill_g_lock); 21832 if (best_ipif != NULL) 21833 ipif_refrele(best_ipif); 21834 return (ipif); 21835 } 21836 } else if (ipif->ipif_subnet == (addr & 21837 ipif->ipif_net_mask)) { 21838 /* 21839 * Point-to-multipoint case. Looping through to 21840 * find the most specific match. If there are 21841 * multiple best match ipif's then prefer ipif's 21842 * that are UP. If there is only one best match 21843 * ipif and it is DOWN we must still return it. 21844 */ 21845 if ((best_ipif == NULL) || 21846 (ipif->ipif_net_mask > 21847 best_ipif->ipif_net_mask) || 21848 ((ipif->ipif_net_mask == 21849 best_ipif->ipif_net_mask) && 21850 ((ipif->ipif_flags & IPIF_UP) && 21851 (!(best_ipif->ipif_flags & IPIF_UP))))) { 21852 ipif_refhold_locked(ipif); 21853 mutex_exit(&ill->ill_lock); 21854 rw_exit(&ill_g_lock); 21855 if (best_ipif != NULL) 21856 ipif_refrele(best_ipif); 21857 best_ipif = ipif; 21858 rw_enter(&ill_g_lock, RW_READER); 21859 mutex_enter(&ill->ill_lock); 21860 } 21861 } 21862 } 21863 mutex_exit(&ill->ill_lock); 21864 } 21865 rw_exit(&ill_g_lock); 21866 return (best_ipif); 21867 } 21868 21869 21870 /* 21871 * Save enough information so that we can recreate the IRE if 21872 * the interface goes down and then up. 21873 */ 21874 static void 21875 ipif_save_ire(ipif_t *ipif, ire_t *ire) 21876 { 21877 mblk_t *save_mp; 21878 21879 save_mp = allocb(sizeof (ifrt_t), BPRI_MED); 21880 if (save_mp != NULL) { 21881 ifrt_t *ifrt; 21882 21883 save_mp->b_wptr += sizeof (ifrt_t); 21884 ifrt = (ifrt_t *)save_mp->b_rptr; 21885 bzero(ifrt, sizeof (ifrt_t)); 21886 ifrt->ifrt_type = ire->ire_type; 21887 ifrt->ifrt_addr = ire->ire_addr; 21888 ifrt->ifrt_gateway_addr = ire->ire_gateway_addr; 21889 ifrt->ifrt_src_addr = ire->ire_src_addr; 21890 ifrt->ifrt_mask = ire->ire_mask; 21891 ifrt->ifrt_flags = ire->ire_flags; 21892 ifrt->ifrt_max_frag = ire->ire_max_frag; 21893 mutex_enter(&ipif->ipif_saved_ire_lock); 21894 save_mp->b_cont = ipif->ipif_saved_ire_mp; 21895 ipif->ipif_saved_ire_mp = save_mp; 21896 ipif->ipif_saved_ire_cnt++; 21897 mutex_exit(&ipif->ipif_saved_ire_lock); 21898 } 21899 } 21900 21901 21902 static void 21903 ipif_remove_ire(ipif_t *ipif, ire_t *ire) 21904 { 21905 mblk_t **mpp; 21906 mblk_t *mp; 21907 ifrt_t *ifrt; 21908 21909 /* Remove from ipif_saved_ire_mp list if it is there */ 21910 mutex_enter(&ipif->ipif_saved_ire_lock); 21911 for (mpp = &ipif->ipif_saved_ire_mp; *mpp != NULL; 21912 mpp = &(*mpp)->b_cont) { 21913 /* 21914 * On a given ipif, the triple of address, gateway and 21915 * mask is unique for each saved IRE (in the case of 21916 * ordinary interface routes, the gateway address is 21917 * all-zeroes). 21918 */ 21919 mp = *mpp; 21920 ifrt = (ifrt_t *)mp->b_rptr; 21921 if (ifrt->ifrt_addr == ire->ire_addr && 21922 ifrt->ifrt_gateway_addr == ire->ire_gateway_addr && 21923 ifrt->ifrt_mask == ire->ire_mask) { 21924 *mpp = mp->b_cont; 21925 ipif->ipif_saved_ire_cnt--; 21926 freeb(mp); 21927 break; 21928 } 21929 } 21930 mutex_exit(&ipif->ipif_saved_ire_lock); 21931 } 21932 21933 21934 /* 21935 * IP multirouting broadcast routes handling 21936 * Append CGTP broadcast IREs to regular ones created 21937 * at ifconfig time. 21938 */ 21939 static void 21940 ip_cgtp_bcast_add(ire_t *ire, ire_t *ire_dst) 21941 { 21942 ire_t *ire_prim; 21943 21944 ASSERT(ire != NULL); 21945 ASSERT(ire_dst != NULL); 21946 21947 ire_prim = ire_ctable_lookup(ire->ire_gateway_addr, 0, 21948 IRE_BROADCAST, NULL, NULL, MATCH_IRE_TYPE); 21949 if (ire_prim != NULL) { 21950 /* 21951 * We are in the special case of broadcasts for 21952 * CGTP. We add an IRE_BROADCAST that holds 21953 * the RTF_MULTIRT flag, the destination 21954 * address of ire_dst and the low level 21955 * info of ire_prim. In other words, CGTP 21956 * broadcast is added to the redundant ipif. 21957 */ 21958 ipif_t *ipif_prim; 21959 ire_t *bcast_ire; 21960 21961 ipif_prim = ire_prim->ire_ipif; 21962 21963 ip2dbg(("ip_cgtp_filter_bcast_add: " 21964 "ire_dst %p, ire_prim %p, ipif_prim %p\n", 21965 (void *)ire_dst, (void *)ire_prim, 21966 (void *)ipif_prim)); 21967 21968 bcast_ire = ire_create( 21969 (uchar_t *)&ire->ire_addr, 21970 (uchar_t *)&ip_g_all_ones, 21971 (uchar_t *)&ire_dst->ire_src_addr, 21972 (uchar_t *)&ire->ire_gateway_addr, 21973 NULL, 21974 &ipif_prim->ipif_mtu, 21975 NULL, 21976 ipif_prim->ipif_rq, 21977 ipif_prim->ipif_wq, 21978 IRE_BROADCAST, 21979 ipif_prim->ipif_bcast_mp, 21980 ipif_prim, 21981 NULL, 21982 0, 21983 0, 21984 0, 21985 ire->ire_flags, 21986 &ire_uinfo_null); 21987 21988 if (bcast_ire != NULL) { 21989 21990 if (ire_add(&bcast_ire, NULL, NULL, NULL) == 0) { 21991 ip2dbg(("ip_cgtp_filter_bcast_add: " 21992 "added bcast_ire %p\n", 21993 (void *)bcast_ire)); 21994 21995 ipif_save_ire(bcast_ire->ire_ipif, 21996 bcast_ire); 21997 ire_refrele(bcast_ire); 21998 } 21999 } 22000 ire_refrele(ire_prim); 22001 } 22002 } 22003 22004 22005 /* 22006 * IP multirouting broadcast routes handling 22007 * Remove the broadcast ire 22008 */ 22009 static void 22010 ip_cgtp_bcast_delete(ire_t *ire) 22011 { 22012 ire_t *ire_dst; 22013 22014 ASSERT(ire != NULL); 22015 ire_dst = ire_ctable_lookup(ire->ire_addr, 0, IRE_BROADCAST, 22016 NULL, NULL, MATCH_IRE_TYPE); 22017 if (ire_dst != NULL) { 22018 ire_t *ire_prim; 22019 22020 ire_prim = ire_ctable_lookup(ire->ire_gateway_addr, 0, 22021 IRE_BROADCAST, NULL, NULL, MATCH_IRE_TYPE); 22022 if (ire_prim != NULL) { 22023 ipif_t *ipif_prim; 22024 ire_t *bcast_ire; 22025 22026 ipif_prim = ire_prim->ire_ipif; 22027 22028 ip2dbg(("ip_cgtp_filter_bcast_delete: " 22029 "ire_dst %p, ire_prim %p, ipif_prim %p\n", 22030 (void *)ire_dst, (void *)ire_prim, 22031 (void *)ipif_prim)); 22032 22033 bcast_ire = ire_ctable_lookup(ire->ire_addr, 22034 ire->ire_gateway_addr, 22035 IRE_BROADCAST, 22036 ipif_prim, 22037 NULL, 22038 MATCH_IRE_TYPE | MATCH_IRE_GW | MATCH_IRE_IPIF | 22039 MATCH_IRE_MASK); 22040 22041 if (bcast_ire != NULL) { 22042 ip2dbg(("ip_cgtp_filter_bcast_delete: " 22043 "looked up bcast_ire %p\n", 22044 (void *)bcast_ire)); 22045 ipif_remove_ire(bcast_ire->ire_ipif, 22046 bcast_ire); 22047 ire_delete(bcast_ire); 22048 } 22049 ire_refrele(ire_prim); 22050 } 22051 ire_refrele(ire_dst); 22052 } 22053 } 22054 22055 /* 22056 * IPsec hardware acceleration capabilities related functions. 22057 */ 22058 22059 /* 22060 * Free a per-ill IPsec capabilities structure. 22061 */ 22062 static void 22063 ill_ipsec_capab_free(ill_ipsec_capab_t *capab) 22064 { 22065 if (capab->auth_hw_algs != NULL) 22066 kmem_free(capab->auth_hw_algs, capab->algs_size); 22067 if (capab->encr_hw_algs != NULL) 22068 kmem_free(capab->encr_hw_algs, capab->algs_size); 22069 if (capab->encr_algparm != NULL) 22070 kmem_free(capab->encr_algparm, capab->encr_algparm_size); 22071 kmem_free(capab, sizeof (ill_ipsec_capab_t)); 22072 } 22073 22074 /* 22075 * Allocate a new per-ill IPsec capabilities structure. This structure 22076 * is specific to an IPsec protocol (AH or ESP). It is implemented as 22077 * an array which specifies, for each algorithm, whether this algorithm 22078 * is supported by the ill or not. 22079 */ 22080 static ill_ipsec_capab_t * 22081 ill_ipsec_capab_alloc(void) 22082 { 22083 ill_ipsec_capab_t *capab; 22084 uint_t nelems; 22085 22086 capab = kmem_zalloc(sizeof (ill_ipsec_capab_t), KM_NOSLEEP); 22087 if (capab == NULL) 22088 return (NULL); 22089 22090 /* we need one bit per algorithm */ 22091 nelems = MAX_IPSEC_ALGS / BITS(ipsec_capab_elem_t); 22092 capab->algs_size = nelems * sizeof (ipsec_capab_elem_t); 22093 22094 /* allocate memory to store algorithm flags */ 22095 capab->encr_hw_algs = kmem_zalloc(capab->algs_size, KM_NOSLEEP); 22096 if (capab->encr_hw_algs == NULL) 22097 goto nomem; 22098 capab->auth_hw_algs = kmem_zalloc(capab->algs_size, KM_NOSLEEP); 22099 if (capab->auth_hw_algs == NULL) 22100 goto nomem; 22101 /* 22102 * Leave encr_algparm NULL for now since we won't need it half 22103 * the time 22104 */ 22105 return (capab); 22106 22107 nomem: 22108 ill_ipsec_capab_free(capab); 22109 return (NULL); 22110 } 22111 22112 /* 22113 * Resize capability array. Since we're exclusive, this is OK. 22114 */ 22115 static boolean_t 22116 ill_ipsec_capab_resize_algparm(ill_ipsec_capab_t *capab, int algid) 22117 { 22118 ipsec_capab_algparm_t *nalp, *oalp; 22119 uint32_t olen, nlen; 22120 22121 oalp = capab->encr_algparm; 22122 olen = capab->encr_algparm_size; 22123 22124 if (oalp != NULL) { 22125 if (algid < capab->encr_algparm_end) 22126 return (B_TRUE); 22127 } 22128 22129 nlen = (algid + 1) * sizeof (*nalp); 22130 nalp = kmem_zalloc(nlen, KM_NOSLEEP); 22131 if (nalp == NULL) 22132 return (B_FALSE); 22133 22134 if (oalp != NULL) { 22135 bcopy(oalp, nalp, olen); 22136 kmem_free(oalp, olen); 22137 } 22138 capab->encr_algparm = nalp; 22139 capab->encr_algparm_size = nlen; 22140 capab->encr_algparm_end = algid + 1; 22141 22142 return (B_TRUE); 22143 } 22144 22145 /* 22146 * Compare the capabilities of the specified ill with the protocol 22147 * and algorithms specified by the SA passed as argument. 22148 * If they match, returns B_TRUE, B_FALSE if they do not match. 22149 * 22150 * The ill can be passed as a pointer to it, or by specifying its index 22151 * and whether it is an IPv6 ill (ill_index and ill_isv6 arguments). 22152 * 22153 * Called by ipsec_out_is_accelerated() do decide whether an outbound 22154 * packet is eligible for hardware acceleration, and by 22155 * ill_ipsec_capab_send_all() to decide whether a SA must be sent down 22156 * to a particular ill. 22157 */ 22158 boolean_t 22159 ipsec_capab_match(ill_t *ill, uint_t ill_index, boolean_t ill_isv6, 22160 ipsa_t *sa) 22161 { 22162 boolean_t sa_isv6; 22163 uint_t algid; 22164 struct ill_ipsec_capab_s *cpp; 22165 boolean_t need_refrele = B_FALSE; 22166 22167 if (ill == NULL) { 22168 ill = ill_lookup_on_ifindex(ill_index, ill_isv6, NULL, 22169 NULL, NULL, NULL); 22170 if (ill == NULL) { 22171 ip0dbg(("ipsec_capab_match: ill doesn't exist\n")); 22172 return (B_FALSE); 22173 } 22174 need_refrele = B_TRUE; 22175 } 22176 22177 /* 22178 * Use the address length specified by the SA to determine 22179 * if it corresponds to a IPv6 address, and fail the matching 22180 * if the isv6 flag passed as argument does not match. 22181 * Note: this check is used for SADB capability checking before 22182 * sending SA information to an ill. 22183 */ 22184 sa_isv6 = (sa->ipsa_addrfam == AF_INET6); 22185 if (sa_isv6 != ill_isv6) 22186 /* protocol mismatch */ 22187 goto done; 22188 22189 /* 22190 * Check if the ill supports the protocol, algorithm(s) and 22191 * key size(s) specified by the SA, and get the pointers to 22192 * the algorithms supported by the ill. 22193 */ 22194 switch (sa->ipsa_type) { 22195 22196 case SADB_SATYPE_ESP: 22197 if (!(ill->ill_capabilities & ILL_CAPAB_ESP)) 22198 /* ill does not support ESP acceleration */ 22199 goto done; 22200 cpp = ill->ill_ipsec_capab_esp; 22201 algid = sa->ipsa_auth_alg; 22202 if (!IPSEC_ALG_IS_ENABLED(algid, cpp->auth_hw_algs)) 22203 goto done; 22204 algid = sa->ipsa_encr_alg; 22205 if (!IPSEC_ALG_IS_ENABLED(algid, cpp->encr_hw_algs)) 22206 goto done; 22207 if (algid < cpp->encr_algparm_end) { 22208 ipsec_capab_algparm_t *alp = &cpp->encr_algparm[algid]; 22209 if (sa->ipsa_encrkeybits < alp->minkeylen) 22210 goto done; 22211 if (sa->ipsa_encrkeybits > alp->maxkeylen) 22212 goto done; 22213 } 22214 break; 22215 22216 case SADB_SATYPE_AH: 22217 if (!(ill->ill_capabilities & ILL_CAPAB_AH)) 22218 /* ill does not support AH acceleration */ 22219 goto done; 22220 if (!IPSEC_ALG_IS_ENABLED(sa->ipsa_auth_alg, 22221 ill->ill_ipsec_capab_ah->auth_hw_algs)) 22222 goto done; 22223 break; 22224 } 22225 22226 if (need_refrele) 22227 ill_refrele(ill); 22228 return (B_TRUE); 22229 done: 22230 if (need_refrele) 22231 ill_refrele(ill); 22232 return (B_FALSE); 22233 } 22234 22235 22236 /* 22237 * Add a new ill to the list of IPsec capable ills. 22238 * Called from ill_capability_ipsec_ack() when an ACK was received 22239 * indicating that IPsec hardware processing was enabled for an ill. 22240 * 22241 * ill must point to the ill for which acceleration was enabled. 22242 * dl_cap must be set to DL_CAPAB_IPSEC_AH or DL_CAPAB_IPSEC_ESP. 22243 */ 22244 static void 22245 ill_ipsec_capab_add(ill_t *ill, uint_t dl_cap, boolean_t sadb_resync) 22246 { 22247 ipsec_capab_ill_t **ills, *cur_ill, *new_ill; 22248 uint_t sa_type; 22249 uint_t ipproto; 22250 22251 ASSERT((dl_cap == DL_CAPAB_IPSEC_AH) || 22252 (dl_cap == DL_CAPAB_IPSEC_ESP)); 22253 22254 switch (dl_cap) { 22255 case DL_CAPAB_IPSEC_AH: 22256 sa_type = SADB_SATYPE_AH; 22257 ills = &ipsec_capab_ills_ah; 22258 ipproto = IPPROTO_AH; 22259 break; 22260 case DL_CAPAB_IPSEC_ESP: 22261 sa_type = SADB_SATYPE_ESP; 22262 ills = &ipsec_capab_ills_esp; 22263 ipproto = IPPROTO_ESP; 22264 break; 22265 } 22266 22267 rw_enter(&ipsec_capab_ills_lock, RW_WRITER); 22268 22269 /* 22270 * Add ill index to list of hardware accelerators. If 22271 * already in list, do nothing. 22272 */ 22273 for (cur_ill = *ills; cur_ill != NULL && 22274 (cur_ill->ill_index != ill->ill_phyint->phyint_ifindex || 22275 cur_ill->ill_isv6 != ill->ill_isv6); cur_ill = cur_ill->next) 22276 ; 22277 22278 if (cur_ill == NULL) { 22279 /* if this is a new entry for this ill */ 22280 new_ill = kmem_zalloc(sizeof (ipsec_capab_ill_t), KM_NOSLEEP); 22281 if (new_ill == NULL) { 22282 rw_exit(&ipsec_capab_ills_lock); 22283 return; 22284 } 22285 22286 new_ill->ill_index = ill->ill_phyint->phyint_ifindex; 22287 new_ill->ill_isv6 = ill->ill_isv6; 22288 new_ill->next = *ills; 22289 *ills = new_ill; 22290 } else if (!sadb_resync) { 22291 /* not resync'ing SADB and an entry exists for this ill */ 22292 rw_exit(&ipsec_capab_ills_lock); 22293 return; 22294 } 22295 22296 rw_exit(&ipsec_capab_ills_lock); 22297 22298 if (ipcl_proto_fanout_v6[ipproto].connf_head != NULL) 22299 /* 22300 * IPsec module for protocol loaded, initiate dump 22301 * of the SADB to this ill. 22302 */ 22303 sadb_ill_download(ill, sa_type); 22304 } 22305 22306 /* 22307 * Remove an ill from the list of IPsec capable ills. 22308 */ 22309 static void 22310 ill_ipsec_capab_delete(ill_t *ill, uint_t dl_cap) 22311 { 22312 ipsec_capab_ill_t **ills, *cur_ill, *prev_ill; 22313 22314 ASSERT(dl_cap == DL_CAPAB_IPSEC_AH || 22315 dl_cap == DL_CAPAB_IPSEC_ESP); 22316 22317 ills = (dl_cap == DL_CAPAB_IPSEC_AH) ? &ipsec_capab_ills_ah : 22318 &ipsec_capab_ills_esp; 22319 22320 rw_enter(&ipsec_capab_ills_lock, RW_WRITER); 22321 22322 prev_ill = NULL; 22323 for (cur_ill = *ills; cur_ill != NULL && (cur_ill->ill_index != 22324 ill->ill_phyint->phyint_ifindex || cur_ill->ill_isv6 != 22325 ill->ill_isv6); prev_ill = cur_ill, cur_ill = cur_ill->next) 22326 ; 22327 if (cur_ill == NULL) { 22328 /* entry not found */ 22329 rw_exit(&ipsec_capab_ills_lock); 22330 return; 22331 } 22332 if (prev_ill == NULL) { 22333 /* entry at front of list */ 22334 *ills = NULL; 22335 } else { 22336 prev_ill->next = cur_ill->next; 22337 } 22338 kmem_free(cur_ill, sizeof (ipsec_capab_ill_t)); 22339 rw_exit(&ipsec_capab_ills_lock); 22340 } 22341 22342 22343 /* 22344 * Handling of DL_CONTROL_REQ messages that must be sent down to 22345 * an ill while having exclusive access. 22346 */ 22347 /* ARGSUSED */ 22348 static void 22349 ill_ipsec_capab_send_writer(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *arg) 22350 { 22351 ill_t *ill = (ill_t *)q->q_ptr; 22352 22353 ill_dlpi_send(ill, mp); 22354 } 22355 22356 22357 /* 22358 * Called by SADB to send a DL_CONTROL_REQ message to every ill 22359 * supporting the specified IPsec protocol acceleration. 22360 * sa_type must be SADB_SATYPE_AH or SADB_SATYPE_ESP. 22361 * We free the mblk and, if sa is non-null, release the held referece. 22362 */ 22363 void 22364 ill_ipsec_capab_send_all(uint_t sa_type, mblk_t *mp, ipsa_t *sa) 22365 { 22366 ipsec_capab_ill_t *ici, *cur_ici; 22367 ill_t *ill; 22368 mblk_t *nmp, *mp_ship_list = NULL, *next_mp; 22369 22370 ici = (sa_type == SADB_SATYPE_AH) ? ipsec_capab_ills_ah : 22371 ipsec_capab_ills_esp; 22372 22373 rw_enter(&ipsec_capab_ills_lock, RW_READER); 22374 22375 for (cur_ici = ici; cur_ici != NULL; cur_ici = cur_ici->next) { 22376 ill = ill_lookup_on_ifindex(cur_ici->ill_index, 22377 cur_ici->ill_isv6, NULL, NULL, NULL, NULL); 22378 22379 /* 22380 * Handle the case where the ill goes away while the SADB is 22381 * attempting to send messages. If it's going away, it's 22382 * nuking its shadow SADB, so we don't care.. 22383 */ 22384 22385 if (ill == NULL) 22386 continue; 22387 22388 if (sa != NULL) { 22389 /* 22390 * Make sure capabilities match before 22391 * sending SA to ill. 22392 */ 22393 if (!ipsec_capab_match(ill, cur_ici->ill_index, 22394 cur_ici->ill_isv6, sa)) { 22395 ill_refrele(ill); 22396 continue; 22397 } 22398 22399 mutex_enter(&sa->ipsa_lock); 22400 sa->ipsa_flags |= IPSA_F_HW; 22401 mutex_exit(&sa->ipsa_lock); 22402 } 22403 22404 /* 22405 * Copy template message, and add it to the front 22406 * of the mblk ship list. We want to avoid holding 22407 * the ipsec_capab_ills_lock while sending the 22408 * message to the ills. 22409 * 22410 * The b_next and b_prev are temporarily used 22411 * to build a list of mblks to be sent down, and to 22412 * save the ill to which they must be sent. 22413 */ 22414 nmp = copymsg(mp); 22415 if (nmp == NULL) { 22416 ill_refrele(ill); 22417 continue; 22418 } 22419 ASSERT(nmp->b_next == NULL && nmp->b_prev == NULL); 22420 nmp->b_next = mp_ship_list; 22421 mp_ship_list = nmp; 22422 nmp->b_prev = (mblk_t *)ill; 22423 } 22424 22425 rw_exit(&ipsec_capab_ills_lock); 22426 22427 nmp = mp_ship_list; 22428 while (nmp != NULL) { 22429 /* restore the mblk to a sane state */ 22430 next_mp = nmp->b_next; 22431 nmp->b_next = NULL; 22432 ill = (ill_t *)nmp->b_prev; 22433 nmp->b_prev = NULL; 22434 22435 /* 22436 * Ship the mblk to the ill, must be exclusive. Keep the 22437 * reference to the ill as qwriter_ip() does a ill_referele(). 22438 */ 22439 (void) qwriter_ip(NULL, ill, ill->ill_wq, nmp, 22440 ill_ipsec_capab_send_writer, NEW_OP, B_TRUE); 22441 22442 nmp = next_mp; 22443 } 22444 22445 if (sa != NULL) 22446 IPSA_REFRELE(sa); 22447 freemsg(mp); 22448 } 22449 22450 22451 /* 22452 * Derive an interface id from the link layer address. 22453 * Knows about IEEE 802 and IEEE EUI-64 mappings. 22454 */ 22455 static boolean_t 22456 ip_ether_v6intfid(uint_t phys_length, uint8_t *phys_addr, in6_addr_t *v6addr) 22457 { 22458 char *addr; 22459 22460 if (phys_length != ETHERADDRL) 22461 return (B_FALSE); 22462 22463 /* Form EUI-64 like address */ 22464 addr = (char *)&v6addr->s6_addr32[2]; 22465 bcopy((char *)phys_addr, addr, 3); 22466 addr[0] ^= 0x2; /* Toggle Universal/Local bit */ 22467 addr[3] = (char)0xff; 22468 addr[4] = (char)0xfe; 22469 bcopy((char *)phys_addr + 3, addr + 5, 3); 22470 return (B_TRUE); 22471 } 22472 22473 /* ARGSUSED */ 22474 static boolean_t 22475 ip_nodef_v6intfid(uint_t phys_length, uint8_t *phys_addr, in6_addr_t *v6addr) 22476 { 22477 return (B_FALSE); 22478 } 22479 22480 /* ARGSUSED */ 22481 static boolean_t 22482 ip_ether_v6mapinfo(uint_t lla_length, uint8_t *bphys_addr, uint8_t *maddr, 22483 uint32_t *hw_start, in6_addr_t *v6_extract_mask) 22484 { 22485 /* 22486 * Multicast address mappings used over Ethernet/802.X. 22487 * This address is used as a base for mappings. 22488 */ 22489 static uint8_t ipv6_g_phys_multi_addr[] = {0x33, 0x33, 0x00, 22490 0x00, 0x00, 0x00}; 22491 22492 /* 22493 * Extract low order 32 bits from IPv6 multicast address. 22494 * Or that into the link layer address, starting from the 22495 * second byte. 22496 */ 22497 *hw_start = 2; 22498 v6_extract_mask->s6_addr32[0] = 0; 22499 v6_extract_mask->s6_addr32[1] = 0; 22500 v6_extract_mask->s6_addr32[2] = 0; 22501 v6_extract_mask->s6_addr32[3] = 0xffffffffU; 22502 bcopy(ipv6_g_phys_multi_addr, maddr, lla_length); 22503 return (B_TRUE); 22504 } 22505 22506 /* 22507 * Indicate by return value whether multicast is supported. If not, 22508 * this code should not touch/change any parameters. 22509 */ 22510 /* ARGSUSED */ 22511 static boolean_t 22512 ip_ether_v4mapinfo(uint_t phys_length, uint8_t *bphys_addr, uint8_t *maddr, 22513 uint32_t *hw_start, ipaddr_t *extract_mask) 22514 { 22515 /* 22516 * Multicast address mappings used over Ethernet/802.X. 22517 * This address is used as a base for mappings. 22518 */ 22519 static uint8_t ip_g_phys_multi_addr[] = { 0x01, 0x00, 0x5e, 22520 0x00, 0x00, 0x00 }; 22521 22522 if (phys_length != ETHERADDRL) 22523 return (B_FALSE); 22524 22525 *extract_mask = htonl(0x007fffff); 22526 *hw_start = 2; 22527 bcopy(ip_g_phys_multi_addr, maddr, ETHERADDRL); 22528 return (B_TRUE); 22529 } 22530 22531 /* 22532 * Derive IPoIB interface id from the link layer address. 22533 */ 22534 static boolean_t 22535 ip_ib_v6intfid(uint_t phys_length, uint8_t *phys_addr, in6_addr_t *v6addr) 22536 { 22537 char *addr; 22538 22539 if (phys_length != 20) 22540 return (B_FALSE); 22541 addr = (char *)&v6addr->s6_addr32[2]; 22542 bcopy(phys_addr + 12, addr, 8); 22543 /* 22544 * In IBA 1.1 timeframe, some vendors erroneously set the u/l bit 22545 * in the globally assigned EUI-64 GUID to 1, in violation of IEEE 22546 * rules. In these cases, the IBA considers these GUIDs to be in 22547 * "Modified EUI-64" format, and thus toggling the u/l bit is not 22548 * required; vendors are required not to assign global EUI-64's 22549 * that differ only in u/l bit values, thus guaranteeing uniqueness 22550 * of the interface identifier. Whether the GUID is in modified 22551 * or proper EUI-64 format, the ipv6 identifier must have the u/l 22552 * bit set to 1. 22553 */ 22554 addr[0] |= 2; /* Set Universal/Local bit to 1 */ 22555 return (B_TRUE); 22556 } 22557 22558 /* 22559 * Note on mapping from multicast IP addresses to IPoIB multicast link 22560 * addresses. IPoIB multicast link addresses are based on IBA link addresses. 22561 * The format of an IPoIB multicast address is: 22562 * 22563 * 4 byte QPN Scope Sign. Pkey 22564 * +--------------------------------------------+ 22565 * | 00FFFFFF | FF | 1X | X01B | Pkey | GroupID | 22566 * +--------------------------------------------+ 22567 * 22568 * The Scope and Pkey components are properties of the IBA port and 22569 * network interface. They can be ascertained from the broadcast address. 22570 * The Sign. part is the signature, and is 401B for IPv4 and 601B for IPv6. 22571 */ 22572 22573 static boolean_t 22574 ip_ib_v6mapinfo(uint_t lla_length, uint8_t *bphys_addr, uint8_t *maddr, 22575 uint32_t *hw_start, in6_addr_t *v6_extract_mask) 22576 { 22577 /* 22578 * Base IPoIB IPv6 multicast address used for mappings. 22579 * Does not contain the IBA scope/Pkey values. 22580 */ 22581 static uint8_t ipv6_g_phys_ibmulti_addr[] = { 0x00, 0xff, 0xff, 0xff, 22582 0xff, 0x10, 0x60, 0x1b, 0x00, 0x00, 0x00, 0x00, 22583 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }; 22584 22585 /* 22586 * Extract low order 80 bits from IPv6 multicast address. 22587 * Or that into the link layer address, starting from the 22588 * sixth byte. 22589 */ 22590 *hw_start = 6; 22591 bcopy(ipv6_g_phys_ibmulti_addr, maddr, lla_length); 22592 22593 /* 22594 * Now fill in the IBA scope/Pkey values from the broadcast address. 22595 */ 22596 *(maddr + 5) = *(bphys_addr + 5); 22597 *(maddr + 8) = *(bphys_addr + 8); 22598 *(maddr + 9) = *(bphys_addr + 9); 22599 22600 v6_extract_mask->s6_addr32[0] = 0; 22601 v6_extract_mask->s6_addr32[1] = htonl(0x0000ffff); 22602 v6_extract_mask->s6_addr32[2] = 0xffffffffU; 22603 v6_extract_mask->s6_addr32[3] = 0xffffffffU; 22604 return (B_TRUE); 22605 } 22606 22607 static boolean_t 22608 ip_ib_v4mapinfo(uint_t phys_length, uint8_t *bphys_addr, uint8_t *maddr, 22609 uint32_t *hw_start, ipaddr_t *extract_mask) 22610 { 22611 /* 22612 * Base IPoIB IPv4 multicast address used for mappings. 22613 * Does not contain the IBA scope/Pkey values. 22614 */ 22615 static uint8_t ipv4_g_phys_ibmulti_addr[] = { 0x00, 0xff, 0xff, 0xff, 22616 0xff, 0x10, 0x40, 0x1b, 0x00, 0x00, 0x00, 0x00, 22617 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }; 22618 22619 if (phys_length != sizeof (ipv4_g_phys_ibmulti_addr)) 22620 return (B_FALSE); 22621 22622 /* 22623 * Extract low order 28 bits from IPv4 multicast address. 22624 * Or that into the link layer address, starting from the 22625 * sixteenth byte. 22626 */ 22627 *extract_mask = htonl(0x0fffffff); 22628 *hw_start = 16; 22629 bcopy(ipv4_g_phys_ibmulti_addr, maddr, phys_length); 22630 22631 /* 22632 * Now fill in the IBA scope/Pkey values from the broadcast address. 22633 */ 22634 *(maddr + 5) = *(bphys_addr + 5); 22635 *(maddr + 8) = *(bphys_addr + 8); 22636 *(maddr + 9) = *(bphys_addr + 9); 22637 return (B_TRUE); 22638 } 22639 22640 /* 22641 * Returns B_TRUE if an ipif is present in the given zone, matching some flags 22642 * (typically IPIF_UP). If ipifp is non-null, the held ipif is returned there. 22643 * This works for both IPv4 and IPv6; if the passed-in ill is v6, the ipif with 22644 * the link-local address is preferred. 22645 */ 22646 boolean_t 22647 ipif_lookup_zoneid(ill_t *ill, zoneid_t zoneid, int flags, ipif_t **ipifp) 22648 { 22649 ipif_t *ipif; 22650 ipif_t *maybe_ipif = NULL; 22651 22652 mutex_enter(&ill->ill_lock); 22653 if (ill->ill_state_flags & ILL_CONDEMNED) { 22654 mutex_exit(&ill->ill_lock); 22655 if (ipifp != NULL) 22656 *ipifp = NULL; 22657 return (B_FALSE); 22658 } 22659 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 22660 if (!IPIF_CAN_LOOKUP(ipif)) 22661 continue; 22662 if (zoneid != ALL_ZONES && ipif->ipif_zoneid != zoneid) 22663 continue; 22664 if ((ipif->ipif_flags & flags) != flags) 22665 continue; 22666 22667 if (ipifp == NULL) { 22668 mutex_exit(&ill->ill_lock); 22669 ASSERT(maybe_ipif == NULL); 22670 return (B_TRUE); 22671 } 22672 if (!ill->ill_isv6 || 22673 IN6_IS_ADDR_LINKLOCAL(&ipif->ipif_v6src_addr)) { 22674 ipif_refhold_locked(ipif); 22675 mutex_exit(&ill->ill_lock); 22676 *ipifp = ipif; 22677 return (B_TRUE); 22678 } 22679 if (maybe_ipif == NULL) 22680 maybe_ipif = ipif; 22681 } 22682 if (ipifp != NULL) { 22683 if (maybe_ipif != NULL) 22684 ipif_refhold_locked(maybe_ipif); 22685 *ipifp = maybe_ipif; 22686 } 22687 mutex_exit(&ill->ill_lock); 22688 return (maybe_ipif != NULL); 22689 } 22690 22691 /* 22692 * Same as ipif_lookup_zoneid() but looks at all the ills in the same group. 22693 */ 22694 boolean_t 22695 ipif_lookup_zoneid_group(ill_t *ill, zoneid_t zoneid, int flags, ipif_t **ipifp) 22696 { 22697 ill_t *illg; 22698 22699 /* 22700 * We look at the passed-in ill first without grabbing ill_g_lock. 22701 */ 22702 if (ipif_lookup_zoneid(ill, zoneid, flags, ipifp)) { 22703 return (B_TRUE); 22704 } 22705 rw_enter(&ill_g_lock, RW_READER); 22706 if (ill->ill_group == NULL) { 22707 /* ill not in a group */ 22708 rw_exit(&ill_g_lock); 22709 return (B_FALSE); 22710 } 22711 22712 /* 22713 * There's no ipif in the zone on ill, however ill is part of an IPMP 22714 * group. We need to look for an ipif in the zone on all the ills in the 22715 * group. 22716 */ 22717 illg = ill->ill_group->illgrp_ill; 22718 do { 22719 /* 22720 * We don't call ipif_lookup_zoneid() on ill as we already know 22721 * that it's not there. 22722 */ 22723 if (illg != ill && 22724 ipif_lookup_zoneid(illg, zoneid, flags, ipifp)) { 22725 break; 22726 } 22727 } while ((illg = illg->ill_group_next) != NULL); 22728 rw_exit(&ill_g_lock); 22729 return (illg != NULL); 22730 } 22731 22732 /* 22733 * Heuristic to check if ill has hit the FAILBACK=no case, 22734 * i.e. failover has occured from ill and later interface has recovered, 22735 * but user has configured FAILBACK=no. 22736 * Checks if ill has an usable ipif. 22737 * 22738 * Return values: 22739 * B_FALSE - ill has no usable ipif, hit FAILBACK=no case 22740 * B_TRUE - ill has at least one usable ipif, FAILBACK=no case not hit 22741 */ 22742 static boolean_t 22743 ill_has_usable_ipif(ill_t *ill) 22744 { 22745 ipif_t *ipif; 22746 22747 /* Check whether it is in an IPMP group */ 22748 if (ill->ill_phyint->phyint_groupname == NULL) 22749 return (B_TRUE); 22750 22751 if (ill->ill_ipif_up_count == 0) 22752 return (B_FALSE); 22753 22754 for (ipif = ill->ill_ipif; ipif; ipif = ipif->ipif_next) { 22755 uint64_t flags = ipif->ipif_flags; 22756 22757 /* 22758 * This ipif is usable if it is IPIF_UP and not a 22759 * dedicated test address. A dedicated test address 22760 * is marked IPIF_NOFAILOVER *and* IPIF_DEPRECATED 22761 * (note in particular that V6 test addresses are 22762 * link-local data addresses and thus are marked 22763 * IPIF_NOFAILOVER but not IPIF_DEPRECATED). 22764 */ 22765 if ((flags & IPIF_UP) && 22766 ((flags & (IPIF_DEPRECATED|IPIF_NOFAILOVER)) != 22767 (IPIF_DEPRECATED|IPIF_NOFAILOVER))) 22768 return (B_TRUE); 22769 } 22770 return (B_FALSE); 22771 } 22772 22773 /* 22774 * Check if this ill is only being used to send ICMP probes for IPMP 22775 */ 22776 boolean_t 22777 ill_is_probeonly(ill_t *ill) 22778 { 22779 /* 22780 * Check if the interface is FAILED, or INACTIVE 22781 * or has hit the FAILBACK=no case. 22782 */ 22783 if ((ill->ill_phyint->phyint_flags & (PHYI_FAILED|PHYI_INACTIVE)) || 22784 ill_has_usable_ipif(ill) == B_FALSE) { 22785 return (B_TRUE); 22786 } 22787 22788 return (B_FALSE); 22789 } 22790