1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2009 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 /* Copyright (c) 1990 Mentat Inc. */ 26 27 /* 28 * This file contains the interface control functions for IP. 29 */ 30 31 #include <sys/types.h> 32 #include <sys/stream.h> 33 #include <sys/dlpi.h> 34 #include <sys/stropts.h> 35 #include <sys/strsun.h> 36 #include <sys/sysmacros.h> 37 #include <sys/strsubr.h> 38 #include <sys/strlog.h> 39 #include <sys/ddi.h> 40 #include <sys/sunddi.h> 41 #include <sys/cmn_err.h> 42 #include <sys/kstat.h> 43 #include <sys/debug.h> 44 #include <sys/zone.h> 45 #include <sys/sunldi.h> 46 #include <sys/file.h> 47 #include <sys/bitmap.h> 48 #include <sys/cpuvar.h> 49 #include <sys/time.h> 50 #include <sys/ctype.h> 51 #include <sys/kmem.h> 52 #include <sys/systm.h> 53 #include <sys/param.h> 54 #include <sys/socket.h> 55 #include <sys/isa_defs.h> 56 #include <net/if.h> 57 #include <net/if_arp.h> 58 #include <net/if_types.h> 59 #include <net/if_dl.h> 60 #include <net/route.h> 61 #include <sys/sockio.h> 62 #include <netinet/in.h> 63 #include <netinet/ip6.h> 64 #include <netinet/icmp6.h> 65 #include <netinet/igmp_var.h> 66 #include <sys/policy.h> 67 #include <sys/ethernet.h> 68 #include <sys/callb.h> 69 #include <sys/md5.h> 70 71 #include <inet/common.h> /* for various inet/mi.h and inet/nd.h needs */ 72 #include <inet/mi.h> 73 #include <inet/nd.h> 74 #include <inet/arp.h> 75 #include <inet/ip_arp.h> 76 #include <inet/mib2.h> 77 #include <inet/ip.h> 78 #include <inet/ip6.h> 79 #include <inet/ip6_asp.h> 80 #include <inet/tcp.h> 81 #include <inet/ip_multi.h> 82 #include <inet/ip_ire.h> 83 #include <inet/ip_ftable.h> 84 #include <inet/ip_rts.h> 85 #include <inet/ip_ndp.h> 86 #include <inet/ip_if.h> 87 #include <inet/ip_impl.h> 88 #include <inet/sctp_ip.h> 89 #include <inet/ip_netinfo.h> 90 #include <inet/ilb_ip.h> 91 92 #include <netinet/igmp.h> 93 #include <inet/ip_listutils.h> 94 #include <inet/ipclassifier.h> 95 #include <sys/mac_client.h> 96 #include <sys/dld.h> 97 98 #include <sys/systeminfo.h> 99 #include <sys/bootconf.h> 100 101 #include <sys/tsol/tndb.h> 102 #include <sys/tsol/tnet.h> 103 104 /* The character which tells where the ill_name ends */ 105 #define IPIF_SEPARATOR_CHAR ':' 106 107 /* IP ioctl function table entry */ 108 typedef struct ipft_s { 109 int ipft_cmd; 110 pfi_t ipft_pfi; 111 int ipft_min_size; 112 int ipft_flags; 113 } ipft_t; 114 #define IPFT_F_NO_REPLY 0x1 /* IP ioctl does not expect any reply */ 115 #define IPFT_F_SELF_REPLY 0x2 /* ioctl callee does the ioctl reply */ 116 117 static int nd_ill_forward_get(queue_t *, mblk_t *, caddr_t, cred_t *); 118 static int nd_ill_forward_set(queue_t *q, mblk_t *mp, 119 char *value, caddr_t cp, cred_t *ioc_cr); 120 121 static boolean_t ill_is_quiescent(ill_t *); 122 static boolean_t ip_addr_ok_v4(ipaddr_t addr, ipaddr_t subnet_mask); 123 static ip_m_t *ip_m_lookup(t_uscalar_t mac_type); 124 static int ip_sioctl_addr_tail(ipif_t *ipif, sin_t *sin, queue_t *q, 125 mblk_t *mp, boolean_t need_up); 126 static int ip_sioctl_dstaddr_tail(ipif_t *ipif, sin_t *sin, queue_t *q, 127 mblk_t *mp, boolean_t need_up); 128 static int ip_sioctl_slifzone_tail(ipif_t *ipif, zoneid_t zoneid, 129 queue_t *q, mblk_t *mp, boolean_t need_up); 130 static int ip_sioctl_flags_tail(ipif_t *ipif, uint64_t flags, queue_t *q, 131 mblk_t *mp); 132 static int ip_sioctl_netmask_tail(ipif_t *ipif, sin_t *sin, queue_t *q, 133 mblk_t *mp); 134 static int ip_sioctl_subnet_tail(ipif_t *ipif, in6_addr_t, in6_addr_t, 135 queue_t *q, mblk_t *mp, boolean_t need_up); 136 static int ip_sioctl_plink_ipmod(ipsq_t *ipsq, queue_t *q, mblk_t *mp, 137 int ioccmd, struct linkblk *li); 138 static ipaddr_t ip_subnet_mask(ipaddr_t addr, ipif_t **, ip_stack_t *); 139 static void ip_wput_ioctl(queue_t *q, mblk_t *mp); 140 static void ipsq_flush(ill_t *ill); 141 142 static int ip_sioctl_token_tail(ipif_t *ipif, sin6_t *sin6, int addrlen, 143 queue_t *q, mblk_t *mp, boolean_t need_up); 144 static void ipsq_delete(ipsq_t *); 145 146 static ipif_t *ipif_allocate(ill_t *ill, int id, uint_t ire_type, 147 boolean_t initialize, boolean_t insert); 148 static ire_t **ipif_create_bcast_ires(ipif_t *ipif, ire_t **irep); 149 static void ipif_delete_bcast_ires(ipif_t *ipif); 150 static int ipif_add_ires_v4(ipif_t *, boolean_t); 151 static boolean_t ipif_comp_multi(ipif_t *old_ipif, ipif_t *new_ipif, 152 boolean_t isv6); 153 static int ipif_logical_down(ipif_t *ipif, queue_t *q, mblk_t *mp); 154 static void ipif_free(ipif_t *ipif); 155 static void ipif_free_tail(ipif_t *ipif); 156 static void ipif_set_default(ipif_t *ipif); 157 static int ipif_set_values(queue_t *q, mblk_t *mp, 158 char *interf_name, uint_t *ppa); 159 static int ipif_set_values_tail(ill_t *ill, ipif_t *ipif, mblk_t *mp, 160 queue_t *q); 161 static ipif_t *ipif_lookup_on_name(char *name, size_t namelen, 162 boolean_t do_alloc, boolean_t *exists, boolean_t isv6, zoneid_t zoneid, 163 ip_stack_t *); 164 165 static int ill_alloc_ppa(ill_if_t *, ill_t *); 166 static void ill_delete_interface_type(ill_if_t *); 167 static int ill_dl_up(ill_t *ill, ipif_t *ipif, mblk_t *mp, queue_t *q); 168 static void ill_dl_down(ill_t *ill); 169 static void ill_down(ill_t *ill); 170 static void ill_down_ipifs(ill_t *, boolean_t); 171 static void ill_free_mib(ill_t *ill); 172 static void ill_glist_delete(ill_t *); 173 static void ill_phyint_reinit(ill_t *ill); 174 static void ill_set_nce_router_flags(ill_t *, boolean_t); 175 static void ill_set_phys_addr_tail(ipsq_t *, queue_t *, mblk_t *, void *); 176 static void ill_replumb_tail(ipsq_t *, queue_t *, mblk_t *, void *); 177 178 static ip_v6intfid_func_t ip_ether_v6intfid, ip_ib_v6intfid; 179 static ip_v6intfid_func_t ip_ipv4_v6intfid, ip_ipv6_v6intfid; 180 static ip_v6intfid_func_t ip_ipmp_v6intfid, ip_nodef_v6intfid; 181 static ip_v6intfid_func_t ip_ipv4_v6destintfid, ip_ipv6_v6destintfid; 182 static ip_v4mapinfo_func_t ip_ether_v4_mapping; 183 static ip_v6mapinfo_func_t ip_ether_v6_mapping; 184 static ip_v4mapinfo_func_t ip_ib_v4_mapping; 185 static ip_v6mapinfo_func_t ip_ib_v6_mapping; 186 static ip_v4mapinfo_func_t ip_mbcast_mapping; 187 static void ip_cgtp_bcast_add(ire_t *, ip_stack_t *); 188 static void ip_cgtp_bcast_delete(ire_t *, ip_stack_t *); 189 static void phyint_free(phyint_t *); 190 191 static void ill_capability_dispatch(ill_t *, mblk_t *, dl_capability_sub_t *); 192 static void ill_capability_id_ack(ill_t *, mblk_t *, dl_capability_sub_t *); 193 static void ill_capability_vrrp_ack(ill_t *, mblk_t *, dl_capability_sub_t *); 194 static void ill_capability_hcksum_ack(ill_t *, mblk_t *, dl_capability_sub_t *); 195 static void ill_capability_hcksum_reset_fill(ill_t *, mblk_t *); 196 static void ill_capability_zerocopy_ack(ill_t *, mblk_t *, 197 dl_capability_sub_t *); 198 static void ill_capability_zerocopy_reset_fill(ill_t *, mblk_t *); 199 static void ill_capability_dld_reset_fill(ill_t *, mblk_t *); 200 static void ill_capability_dld_ack(ill_t *, mblk_t *, 201 dl_capability_sub_t *); 202 static void ill_capability_dld_enable(ill_t *); 203 static void ill_capability_ack_thr(void *); 204 static void ill_capability_lso_enable(ill_t *); 205 206 static ill_t *ill_prev_usesrc(ill_t *); 207 static int ill_relink_usesrc_ills(ill_t *, ill_t *, uint_t); 208 static void ill_disband_usesrc_group(ill_t *); 209 static void ip_sioctl_garp_reply(mblk_t *, ill_t *, void *, int); 210 211 #ifdef DEBUG 212 static void ill_trace_cleanup(const ill_t *); 213 static void ipif_trace_cleanup(const ipif_t *); 214 #endif 215 216 /* 217 * if we go over the memory footprint limit more than once in this msec 218 * interval, we'll start pruning aggressively. 219 */ 220 int ip_min_frag_prune_time = 0; 221 222 static ipft_t ip_ioctl_ftbl[] = { 223 { IP_IOC_IRE_DELETE, ip_ire_delete, sizeof (ipid_t), 0 }, 224 { IP_IOC_IRE_DELETE_NO_REPLY, ip_ire_delete, sizeof (ipid_t), 225 IPFT_F_NO_REPLY }, 226 { IP_IOC_RTS_REQUEST, ip_rts_request, 0, IPFT_F_SELF_REPLY }, 227 { 0 } 228 }; 229 230 /* Simple ICMP IP Header Template */ 231 static ipha_t icmp_ipha = { 232 IP_SIMPLE_HDR_VERSION, 0, 0, 0, 0, 0, IPPROTO_ICMP 233 }; 234 235 static uchar_t ip_six_byte_all_ones[] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF }; 236 237 static ip_m_t ip_m_tbl[] = { 238 { DL_ETHER, IFT_ETHER, ETHERTYPE_IP, ETHERTYPE_IPV6, 239 ip_ether_v4_mapping, ip_ether_v6_mapping, ip_ether_v6intfid, 240 ip_nodef_v6intfid }, 241 { DL_CSMACD, IFT_ISO88023, ETHERTYPE_IP, ETHERTYPE_IPV6, 242 ip_ether_v4_mapping, ip_ether_v6_mapping, ip_nodef_v6intfid, 243 ip_nodef_v6intfid }, 244 { DL_TPB, IFT_ISO88024, ETHERTYPE_IP, ETHERTYPE_IPV6, 245 ip_ether_v4_mapping, ip_ether_v6_mapping, ip_nodef_v6intfid, 246 ip_nodef_v6intfid }, 247 { DL_TPR, IFT_ISO88025, ETHERTYPE_IP, ETHERTYPE_IPV6, 248 ip_ether_v4_mapping, ip_ether_v6_mapping, ip_nodef_v6intfid, 249 ip_nodef_v6intfid }, 250 { DL_FDDI, IFT_FDDI, ETHERTYPE_IP, ETHERTYPE_IPV6, 251 ip_ether_v4_mapping, ip_ether_v6_mapping, ip_ether_v6intfid, 252 ip_nodef_v6intfid }, 253 { DL_IB, IFT_IB, ETHERTYPE_IP, ETHERTYPE_IPV6, 254 ip_ib_v4_mapping, ip_ib_v6_mapping, ip_ib_v6intfid, 255 ip_nodef_v6intfid }, 256 { DL_IPV4, IFT_IPV4, IPPROTO_ENCAP, IPPROTO_IPV6, 257 ip_mbcast_mapping, ip_mbcast_mapping, ip_ipv4_v6intfid, 258 ip_ipv4_v6destintfid }, 259 { DL_IPV6, IFT_IPV6, IPPROTO_ENCAP, IPPROTO_IPV6, 260 ip_mbcast_mapping, ip_mbcast_mapping, ip_ipv6_v6intfid, 261 ip_ipv6_v6destintfid }, 262 { DL_6TO4, IFT_6TO4, IPPROTO_ENCAP, IPPROTO_IPV6, 263 ip_mbcast_mapping, ip_mbcast_mapping, ip_ipv4_v6intfid, 264 ip_nodef_v6intfid }, 265 { SUNW_DL_VNI, IFT_OTHER, ETHERTYPE_IP, ETHERTYPE_IPV6, 266 NULL, NULL, ip_nodef_v6intfid, ip_nodef_v6intfid }, 267 { SUNW_DL_IPMP, IFT_OTHER, ETHERTYPE_IP, ETHERTYPE_IPV6, 268 NULL, NULL, ip_ipmp_v6intfid, ip_nodef_v6intfid }, 269 { DL_OTHER, IFT_OTHER, ETHERTYPE_IP, ETHERTYPE_IPV6, 270 ip_ether_v4_mapping, ip_ether_v6_mapping, ip_nodef_v6intfid, 271 ip_nodef_v6intfid } 272 }; 273 274 static ill_t ill_null; /* Empty ILL for init. */ 275 char ipif_loopback_name[] = "lo0"; 276 static char *ipv4_forward_suffix = ":ip_forwarding"; 277 static char *ipv6_forward_suffix = ":ip6_forwarding"; 278 static sin6_t sin6_null; /* Zero address for quick clears */ 279 static sin_t sin_null; /* Zero address for quick clears */ 280 281 /* When set search for unused ipif_seqid */ 282 static ipif_t ipif_zero; 283 284 /* 285 * ppa arena is created after these many 286 * interfaces have been plumbed. 287 */ 288 uint_t ill_no_arena = 12; /* Setable in /etc/system */ 289 290 /* 291 * Allocate per-interface mibs. 292 * Returns true if ok. False otherwise. 293 * ipsq may not yet be allocated (loopback case ). 294 */ 295 static boolean_t 296 ill_allocate_mibs(ill_t *ill) 297 { 298 /* Already allocated? */ 299 if (ill->ill_ip_mib != NULL) { 300 if (ill->ill_isv6) 301 ASSERT(ill->ill_icmp6_mib != NULL); 302 return (B_TRUE); 303 } 304 305 ill->ill_ip_mib = kmem_zalloc(sizeof (*ill->ill_ip_mib), 306 KM_NOSLEEP); 307 if (ill->ill_ip_mib == NULL) { 308 return (B_FALSE); 309 } 310 311 /* Setup static information */ 312 SET_MIB(ill->ill_ip_mib->ipIfStatsEntrySize, 313 sizeof (mib2_ipIfStatsEntry_t)); 314 if (ill->ill_isv6) { 315 ill->ill_ip_mib->ipIfStatsIPVersion = MIB2_INETADDRESSTYPE_ipv6; 316 SET_MIB(ill->ill_ip_mib->ipIfStatsAddrEntrySize, 317 sizeof (mib2_ipv6AddrEntry_t)); 318 SET_MIB(ill->ill_ip_mib->ipIfStatsRouteEntrySize, 319 sizeof (mib2_ipv6RouteEntry_t)); 320 SET_MIB(ill->ill_ip_mib->ipIfStatsNetToMediaEntrySize, 321 sizeof (mib2_ipv6NetToMediaEntry_t)); 322 SET_MIB(ill->ill_ip_mib->ipIfStatsMemberEntrySize, 323 sizeof (ipv6_member_t)); 324 SET_MIB(ill->ill_ip_mib->ipIfStatsGroupSourceEntrySize, 325 sizeof (ipv6_grpsrc_t)); 326 } else { 327 ill->ill_ip_mib->ipIfStatsIPVersion = MIB2_INETADDRESSTYPE_ipv4; 328 SET_MIB(ill->ill_ip_mib->ipIfStatsAddrEntrySize, 329 sizeof (mib2_ipAddrEntry_t)); 330 SET_MIB(ill->ill_ip_mib->ipIfStatsRouteEntrySize, 331 sizeof (mib2_ipRouteEntry_t)); 332 SET_MIB(ill->ill_ip_mib->ipIfStatsNetToMediaEntrySize, 333 sizeof (mib2_ipNetToMediaEntry_t)); 334 SET_MIB(ill->ill_ip_mib->ipIfStatsMemberEntrySize, 335 sizeof (ip_member_t)); 336 SET_MIB(ill->ill_ip_mib->ipIfStatsGroupSourceEntrySize, 337 sizeof (ip_grpsrc_t)); 338 339 /* 340 * For a v4 ill, we are done at this point, because per ill 341 * icmp mibs are only used for v6. 342 */ 343 return (B_TRUE); 344 } 345 346 ill->ill_icmp6_mib = kmem_zalloc(sizeof (*ill->ill_icmp6_mib), 347 KM_NOSLEEP); 348 if (ill->ill_icmp6_mib == NULL) { 349 kmem_free(ill->ill_ip_mib, sizeof (*ill->ill_ip_mib)); 350 ill->ill_ip_mib = NULL; 351 return (B_FALSE); 352 } 353 /* static icmp info */ 354 ill->ill_icmp6_mib->ipv6IfIcmpEntrySize = 355 sizeof (mib2_ipv6IfIcmpEntry_t); 356 /* 357 * The ipIfStatsIfindex and ipv6IfIcmpIndex will be assigned later 358 * after the phyint merge occurs in ipif_set_values -> ill_glist_insert 359 * -> ill_phyint_reinit 360 */ 361 return (B_TRUE); 362 } 363 364 /* 365 * Completely vaporize a lower level tap and all associated interfaces. 366 * ill_delete is called only out of ip_close when the device control 367 * stream is being closed. 368 */ 369 void 370 ill_delete(ill_t *ill) 371 { 372 ipif_t *ipif; 373 ill_t *prev_ill; 374 ip_stack_t *ipst = ill->ill_ipst; 375 376 /* 377 * ill_delete may be forcibly entering the ipsq. The previous 378 * ioctl may not have completed and may need to be aborted. 379 * ipsq_flush takes care of it. If we don't need to enter the 380 * the ipsq forcibly, the 2nd invocation of ipsq_flush in 381 * ill_delete_tail is sufficient. 382 */ 383 ipsq_flush(ill); 384 385 /* 386 * Nuke all interfaces. ipif_free will take down the interface, 387 * remove it from the list, and free the data structure. 388 * Walk down the ipif list and remove the logical interfaces 389 * first before removing the main ipif. We can't unplumb 390 * zeroth interface first in the case of IPv6 as update_conn_ill 391 * -> ip_ll_multireq de-references ill_ipif for checking 392 * POINTOPOINT. 393 * 394 * If ill_ipif was not properly initialized (i.e low on memory), 395 * then no interfaces to clean up. In this case just clean up the 396 * ill. 397 */ 398 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) 399 ipif_free(ipif); 400 401 /* 402 * clean out all the nce_t entries that depend on this 403 * ill for the ill_phys_addr. 404 */ 405 nce_flush(ill, B_TRUE); 406 407 /* Clean up msgs on pending upcalls for mrouted */ 408 reset_mrt_ill(ill); 409 410 update_conn_ill(ill, ipst); 411 412 /* 413 * Remove multicast references added as a result of calls to 414 * ip_join_allmulti(). 415 */ 416 ip_purge_allmulti(ill); 417 418 /* 419 * If the ill being deleted is under IPMP, boot it out of the illgrp. 420 */ 421 if (IS_UNDER_IPMP(ill)) 422 ipmp_ill_leave_illgrp(ill); 423 424 /* 425 * ill_down will arrange to blow off any IRE's dependent on this 426 * ILL, and shut down fragmentation reassembly. 427 */ 428 ill_down(ill); 429 430 /* Let SCTP know, so that it can remove this from its list. */ 431 sctp_update_ill(ill, SCTP_ILL_REMOVE); 432 433 /* 434 * Walk all CONNs that can have a reference on an ire or nce for this 435 * ill (we actually walk all that now have stale references). 436 */ 437 ipcl_walk(conn_ixa_cleanup, (void *)B_TRUE, ipst); 438 439 /* With IPv6 we have dce_ifindex. Cleanup for neatness */ 440 if (ill->ill_isv6) 441 dce_cleanup(ill->ill_phyint->phyint_ifindex, ipst); 442 443 /* 444 * If an address on this ILL is being used as a source address then 445 * clear out the pointers in other ILLs that point to this ILL. 446 */ 447 rw_enter(&ipst->ips_ill_g_usesrc_lock, RW_WRITER); 448 if (ill->ill_usesrc_grp_next != NULL) { 449 if (ill->ill_usesrc_ifindex == 0) { /* usesrc ILL ? */ 450 ill_disband_usesrc_group(ill); 451 } else { /* consumer of the usesrc ILL */ 452 prev_ill = ill_prev_usesrc(ill); 453 prev_ill->ill_usesrc_grp_next = 454 ill->ill_usesrc_grp_next; 455 } 456 } 457 rw_exit(&ipst->ips_ill_g_usesrc_lock); 458 } 459 460 static void 461 ipif_non_duplicate(ipif_t *ipif) 462 { 463 ill_t *ill = ipif->ipif_ill; 464 mutex_enter(&ill->ill_lock); 465 if (ipif->ipif_flags & IPIF_DUPLICATE) { 466 ipif->ipif_flags &= ~IPIF_DUPLICATE; 467 ASSERT(ill->ill_ipif_dup_count > 0); 468 ill->ill_ipif_dup_count--; 469 } 470 mutex_exit(&ill->ill_lock); 471 } 472 473 /* 474 * ill_delete_tail is called from ip_modclose after all references 475 * to the closing ill are gone. The wait is done in ip_modclose 476 */ 477 void 478 ill_delete_tail(ill_t *ill) 479 { 480 mblk_t **mpp; 481 ipif_t *ipif; 482 ip_stack_t *ipst = ill->ill_ipst; 483 484 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 485 ipif_non_duplicate(ipif); 486 (void) ipif_down_tail(ipif); 487 } 488 489 ASSERT(ill->ill_ipif_dup_count == 0); 490 491 /* 492 * If polling capability is enabled (which signifies direct 493 * upcall into IP and driver has ill saved as a handle), 494 * we need to make sure that unbind has completed before we 495 * let the ill disappear and driver no longer has any reference 496 * to this ill. 497 */ 498 mutex_enter(&ill->ill_lock); 499 while (ill->ill_state_flags & ILL_DL_UNBIND_IN_PROGRESS) 500 cv_wait(&ill->ill_cv, &ill->ill_lock); 501 mutex_exit(&ill->ill_lock); 502 ASSERT(!(ill->ill_capabilities & 503 (ILL_CAPAB_DLD | ILL_CAPAB_DLD_POLL | ILL_CAPAB_DLD_DIRECT))); 504 505 if (ill->ill_net_type != IRE_LOOPBACK) 506 qprocsoff(ill->ill_rq); 507 508 /* 509 * We do an ipsq_flush once again now. New messages could have 510 * landed up from below (M_ERROR or M_HANGUP). Similarly ioctls 511 * could also have landed up if an ioctl thread had looked up 512 * the ill before we set the ILL_CONDEMNED flag, but not yet 513 * enqueued the ioctl when we did the ipsq_flush last time. 514 */ 515 ipsq_flush(ill); 516 517 /* 518 * Free capabilities. 519 */ 520 if (ill->ill_hcksum_capab != NULL) { 521 kmem_free(ill->ill_hcksum_capab, sizeof (ill_hcksum_capab_t)); 522 ill->ill_hcksum_capab = NULL; 523 } 524 525 if (ill->ill_zerocopy_capab != NULL) { 526 kmem_free(ill->ill_zerocopy_capab, 527 sizeof (ill_zerocopy_capab_t)); 528 ill->ill_zerocopy_capab = NULL; 529 } 530 531 if (ill->ill_lso_capab != NULL) { 532 kmem_free(ill->ill_lso_capab, sizeof (ill_lso_capab_t)); 533 ill->ill_lso_capab = NULL; 534 } 535 536 if (ill->ill_dld_capab != NULL) { 537 kmem_free(ill->ill_dld_capab, sizeof (ill_dld_capab_t)); 538 ill->ill_dld_capab = NULL; 539 } 540 541 while (ill->ill_ipif != NULL) 542 ipif_free_tail(ill->ill_ipif); 543 544 /* 545 * We have removed all references to ilm from conn and the ones joined 546 * within the kernel. 547 * 548 * We don't walk conns, mrts and ires because 549 * 550 * 1) update_conn_ill and reset_mrt_ill cleans up conns and mrts. 551 * 2) ill_down ->ill_downi walks all the ires and cleans up 552 * ill references. 553 */ 554 555 /* 556 * If this ill is an IPMP meta-interface, blow away the illgrp. This 557 * is safe to do because the illgrp has already been unlinked from the 558 * group by I_PUNLINK, and thus SIOCSLIFGROUPNAME cannot find it. 559 */ 560 if (IS_IPMP(ill)) { 561 ipmp_illgrp_destroy(ill->ill_grp); 562 ill->ill_grp = NULL; 563 } 564 565 /* 566 * Take us out of the list of ILLs. ill_glist_delete -> phyint_free 567 * could free the phyint. No more reference to the phyint after this 568 * point. 569 */ 570 (void) ill_glist_delete(ill); 571 572 rw_enter(&ipst->ips_ip_g_nd_lock, RW_WRITER); 573 if (ill->ill_ndd_name != NULL) 574 nd_unload(&ipst->ips_ip_g_nd, ill->ill_ndd_name); 575 rw_exit(&ipst->ips_ip_g_nd_lock); 576 577 if (ill->ill_frag_ptr != NULL) { 578 uint_t count; 579 580 for (count = 0; count < ILL_FRAG_HASH_TBL_COUNT; count++) { 581 mutex_destroy(&ill->ill_frag_hash_tbl[count].ipfb_lock); 582 } 583 mi_free(ill->ill_frag_ptr); 584 ill->ill_frag_ptr = NULL; 585 ill->ill_frag_hash_tbl = NULL; 586 } 587 588 freemsg(ill->ill_nd_lla_mp); 589 /* Free all retained control messages. */ 590 mpp = &ill->ill_first_mp_to_free; 591 do { 592 while (mpp[0]) { 593 mblk_t *mp; 594 mblk_t *mp1; 595 596 mp = mpp[0]; 597 mpp[0] = mp->b_next; 598 for (mp1 = mp; mp1 != NULL; mp1 = mp1->b_cont) { 599 mp1->b_next = NULL; 600 mp1->b_prev = NULL; 601 } 602 freemsg(mp); 603 } 604 } while (mpp++ != &ill->ill_last_mp_to_free); 605 606 ill_free_mib(ill); 607 608 #ifdef DEBUG 609 ill_trace_cleanup(ill); 610 #endif 611 612 /* The default multicast interface might have changed */ 613 ire_increment_multicast_generation(ipst, ill->ill_isv6); 614 615 /* Drop refcnt here */ 616 netstack_rele(ill->ill_ipst->ips_netstack); 617 ill->ill_ipst = NULL; 618 } 619 620 static void 621 ill_free_mib(ill_t *ill) 622 { 623 ip_stack_t *ipst = ill->ill_ipst; 624 625 /* 626 * MIB statistics must not be lost, so when an interface 627 * goes away the counter values will be added to the global 628 * MIBs. 629 */ 630 if (ill->ill_ip_mib != NULL) { 631 if (ill->ill_isv6) { 632 ip_mib2_add_ip_stats(&ipst->ips_ip6_mib, 633 ill->ill_ip_mib); 634 } else { 635 ip_mib2_add_ip_stats(&ipst->ips_ip_mib, 636 ill->ill_ip_mib); 637 } 638 639 kmem_free(ill->ill_ip_mib, sizeof (*ill->ill_ip_mib)); 640 ill->ill_ip_mib = NULL; 641 } 642 if (ill->ill_icmp6_mib != NULL) { 643 ip_mib2_add_icmp6_stats(&ipst->ips_icmp6_mib, 644 ill->ill_icmp6_mib); 645 kmem_free(ill->ill_icmp6_mib, sizeof (*ill->ill_icmp6_mib)); 646 ill->ill_icmp6_mib = NULL; 647 } 648 } 649 650 /* 651 * Concatenate together a physical address and a sap. 652 * 653 * Sap_lengths are interpreted as follows: 654 * sap_length == 0 ==> no sap 655 * sap_length > 0 ==> sap is at the head of the dlpi address 656 * sap_length < 0 ==> sap is at the tail of the dlpi address 657 */ 658 static void 659 ill_dlur_copy_address(uchar_t *phys_src, uint_t phys_length, 660 t_scalar_t sap_src, t_scalar_t sap_length, uchar_t *dst) 661 { 662 uint16_t sap_addr = (uint16_t)sap_src; 663 664 if (sap_length == 0) { 665 if (phys_src == NULL) 666 bzero(dst, phys_length); 667 else 668 bcopy(phys_src, dst, phys_length); 669 } else if (sap_length < 0) { 670 if (phys_src == NULL) 671 bzero(dst, phys_length); 672 else 673 bcopy(phys_src, dst, phys_length); 674 bcopy(&sap_addr, (char *)dst + phys_length, sizeof (sap_addr)); 675 } else { 676 bcopy(&sap_addr, dst, sizeof (sap_addr)); 677 if (phys_src == NULL) 678 bzero((char *)dst + sap_length, phys_length); 679 else 680 bcopy(phys_src, (char *)dst + sap_length, phys_length); 681 } 682 } 683 684 /* 685 * Generate a dl_unitdata_req mblk for the device and address given. 686 * addr_length is the length of the physical portion of the address. 687 * If addr is NULL include an all zero address of the specified length. 688 * TRUE? In any case, addr_length is taken to be the entire length of the 689 * dlpi address, including the absolute value of sap_length. 690 */ 691 mblk_t * 692 ill_dlur_gen(uchar_t *addr, uint_t addr_length, t_uscalar_t sap, 693 t_scalar_t sap_length) 694 { 695 dl_unitdata_req_t *dlur; 696 mblk_t *mp; 697 t_scalar_t abs_sap_length; /* absolute value */ 698 699 abs_sap_length = ABS(sap_length); 700 mp = ip_dlpi_alloc(sizeof (*dlur) + addr_length + abs_sap_length, 701 DL_UNITDATA_REQ); 702 if (mp == NULL) 703 return (NULL); 704 dlur = (dl_unitdata_req_t *)mp->b_rptr; 705 /* HACK: accomodate incompatible DLPI drivers */ 706 if (addr_length == 8) 707 addr_length = 6; 708 dlur->dl_dest_addr_length = addr_length + abs_sap_length; 709 dlur->dl_dest_addr_offset = sizeof (*dlur); 710 dlur->dl_priority.dl_min = 0; 711 dlur->dl_priority.dl_max = 0; 712 ill_dlur_copy_address(addr, addr_length, sap, sap_length, 713 (uchar_t *)&dlur[1]); 714 return (mp); 715 } 716 717 /* 718 * Add the pending mp to the list. There can be only 1 pending mp 719 * in the list. Any exclusive ioctl that needs to wait for a response 720 * from another module or driver needs to use this function to set 721 * the ipx_pending_mp to the ioctl mblk and wait for the response from 722 * the other module/driver. This is also used while waiting for the 723 * ipif/ill/ire refcnts to drop to zero in bringing down an ipif. 724 */ 725 boolean_t 726 ipsq_pending_mp_add(conn_t *connp, ipif_t *ipif, queue_t *q, mblk_t *add_mp, 727 int waitfor) 728 { 729 ipxop_t *ipx = ipif->ipif_ill->ill_phyint->phyint_ipsq->ipsq_xop; 730 731 ASSERT(IAM_WRITER_IPIF(ipif)); 732 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 733 ASSERT((add_mp->b_next == NULL) && (add_mp->b_prev == NULL)); 734 ASSERT(ipx->ipx_pending_mp == NULL); 735 /* 736 * The caller may be using a different ipif than the one passed into 737 * ipsq_current_start() (e.g., suppose an ioctl that came in on the V4 738 * ill needs to wait for the V6 ill to quiesce). So we can't ASSERT 739 * that `ipx_current_ipif == ipif'. 740 */ 741 ASSERT(ipx->ipx_current_ipif != NULL); 742 743 /* 744 * M_IOCDATA from ioctls, M_ERROR/M_HANGUP/M_PROTO/M_PCPROTO from the 745 * driver. 746 */ 747 ASSERT((DB_TYPE(add_mp) == M_IOCDATA) || (DB_TYPE(add_mp) == M_ERROR) || 748 (DB_TYPE(add_mp) == M_HANGUP) || (DB_TYPE(add_mp) == M_PROTO) || 749 (DB_TYPE(add_mp) == M_PCPROTO)); 750 751 if (connp != NULL) { 752 ASSERT(MUTEX_HELD(&connp->conn_lock)); 753 /* 754 * Return error if the conn has started closing. The conn 755 * could have finished cleaning up the pending mp list, 756 * If so we should not add another mp to the list negating 757 * the cleanup. 758 */ 759 if (connp->conn_state_flags & CONN_CLOSING) 760 return (B_FALSE); 761 } 762 mutex_enter(&ipx->ipx_lock); 763 ipx->ipx_pending_ipif = ipif; 764 /* 765 * Note down the queue in b_queue. This will be returned by 766 * ipsq_pending_mp_get. Caller will then use these values to restart 767 * the processing 768 */ 769 add_mp->b_next = NULL; 770 add_mp->b_queue = q; 771 ipx->ipx_pending_mp = add_mp; 772 ipx->ipx_waitfor = waitfor; 773 mutex_exit(&ipx->ipx_lock); 774 775 if (connp != NULL) 776 connp->conn_oper_pending_ill = ipif->ipif_ill; 777 778 return (B_TRUE); 779 } 780 781 /* 782 * Retrieve the ipx_pending_mp and return it. There can be only 1 mp 783 * queued in the list. 784 */ 785 mblk_t * 786 ipsq_pending_mp_get(ipsq_t *ipsq, conn_t **connpp) 787 { 788 mblk_t *curr = NULL; 789 ipxop_t *ipx = ipsq->ipsq_xop; 790 791 *connpp = NULL; 792 mutex_enter(&ipx->ipx_lock); 793 if (ipx->ipx_pending_mp == NULL) { 794 mutex_exit(&ipx->ipx_lock); 795 return (NULL); 796 } 797 798 /* There can be only 1 such excl message */ 799 curr = ipx->ipx_pending_mp; 800 ASSERT(curr->b_next == NULL); 801 ipx->ipx_pending_ipif = NULL; 802 ipx->ipx_pending_mp = NULL; 803 ipx->ipx_waitfor = 0; 804 mutex_exit(&ipx->ipx_lock); 805 806 if (CONN_Q(curr->b_queue)) { 807 /* 808 * This mp did a refhold on the conn, at the start of the ioctl. 809 * So we can safely return a pointer to the conn to the caller. 810 */ 811 *connpp = Q_TO_CONN(curr->b_queue); 812 } else { 813 *connpp = NULL; 814 } 815 curr->b_next = NULL; 816 curr->b_prev = NULL; 817 return (curr); 818 } 819 820 /* 821 * Cleanup the ioctl mp queued in ipx_pending_mp 822 * - Called in the ill_delete path 823 * - Called in the M_ERROR or M_HANGUP path on the ill. 824 * - Called in the conn close path. 825 */ 826 boolean_t 827 ipsq_pending_mp_cleanup(ill_t *ill, conn_t *connp) 828 { 829 mblk_t *mp; 830 ipxop_t *ipx; 831 queue_t *q; 832 ipif_t *ipif; 833 int cmd; 834 835 ASSERT(IAM_WRITER_ILL(ill)); 836 ipx = ill->ill_phyint->phyint_ipsq->ipsq_xop; 837 838 /* 839 * If connp is null, unconditionally clean up the ipx_pending_mp. 840 * This happens in M_ERROR/M_HANGUP. We need to abort the current ioctl 841 * even if it is meant for another ill, since we have to enqueue 842 * a new mp now in ipx_pending_mp to complete the ipif_down. 843 * If connp is non-null we are called from the conn close path. 844 */ 845 mutex_enter(&ipx->ipx_lock); 846 mp = ipx->ipx_pending_mp; 847 if (mp == NULL || (connp != NULL && 848 mp->b_queue != CONNP_TO_WQ(connp))) { 849 mutex_exit(&ipx->ipx_lock); 850 return (B_FALSE); 851 } 852 /* Now remove from the ipx_pending_mp */ 853 ipx->ipx_pending_mp = NULL; 854 q = mp->b_queue; 855 mp->b_next = NULL; 856 mp->b_prev = NULL; 857 mp->b_queue = NULL; 858 859 ipif = ipx->ipx_pending_ipif; 860 ipx->ipx_pending_ipif = NULL; 861 ipx->ipx_waitfor = 0; 862 ipx->ipx_current_ipif = NULL; 863 cmd = ipx->ipx_current_ioctl; 864 ipx->ipx_current_ioctl = 0; 865 ipx->ipx_current_done = B_TRUE; 866 mutex_exit(&ipx->ipx_lock); 867 868 if (DB_TYPE(mp) == M_IOCTL || DB_TYPE(mp) == M_IOCDATA) { 869 DTRACE_PROBE4(ipif__ioctl, 870 char *, "ipsq_pending_mp_cleanup", 871 int, cmd, ill_t *, ipif == NULL ? NULL : ipif->ipif_ill, 872 ipif_t *, ipif); 873 if (connp == NULL) { 874 ip_ioctl_finish(q, mp, ENXIO, NO_COPYOUT, NULL); 875 } else { 876 ip_ioctl_finish(q, mp, ENXIO, CONN_CLOSE, NULL); 877 mutex_enter(&ipif->ipif_ill->ill_lock); 878 ipif->ipif_state_flags &= ~IPIF_CHANGING; 879 mutex_exit(&ipif->ipif_ill->ill_lock); 880 } 881 } else { 882 /* 883 * IP-MT XXX In the case of TLI/XTI bind / optmgmt this can't 884 * be just inet_freemsg. we have to restart it 885 * otherwise the thread will be stuck. 886 */ 887 inet_freemsg(mp); 888 } 889 return (B_TRUE); 890 } 891 892 /* 893 * Called in the conn close path and ill delete path 894 */ 895 static void 896 ipsq_xopq_mp_cleanup(ill_t *ill, conn_t *connp) 897 { 898 ipsq_t *ipsq; 899 mblk_t *prev; 900 mblk_t *curr; 901 mblk_t *next; 902 queue_t *q; 903 mblk_t *tmp_list = NULL; 904 905 ASSERT(IAM_WRITER_ILL(ill)); 906 if (connp != NULL) 907 q = CONNP_TO_WQ(connp); 908 else 909 q = ill->ill_wq; 910 911 ipsq = ill->ill_phyint->phyint_ipsq; 912 /* 913 * Cleanup the ioctl mp's queued in ipsq_xopq_pending_mp if any. 914 * In the case of ioctl from a conn, there can be only 1 mp 915 * queued on the ipsq. If an ill is being unplumbed, only messages 916 * related to this ill are flushed, like M_ERROR or M_HANGUP message. 917 * ioctls meant for this ill form conn's are not flushed. They will 918 * be processed during ipsq_exit and will not find the ill and will 919 * return error. 920 */ 921 mutex_enter(&ipsq->ipsq_lock); 922 for (prev = NULL, curr = ipsq->ipsq_xopq_mphead; curr != NULL; 923 curr = next) { 924 next = curr->b_next; 925 if (curr->b_queue == q || curr->b_queue == RD(q)) { 926 /* Unlink the mblk from the pending mp list */ 927 if (prev != NULL) { 928 prev->b_next = curr->b_next; 929 } else { 930 ASSERT(ipsq->ipsq_xopq_mphead == curr); 931 ipsq->ipsq_xopq_mphead = curr->b_next; 932 } 933 if (ipsq->ipsq_xopq_mptail == curr) 934 ipsq->ipsq_xopq_mptail = prev; 935 /* 936 * Create a temporary list and release the ipsq lock 937 * New elements are added to the head of the tmp_list 938 */ 939 curr->b_next = tmp_list; 940 tmp_list = curr; 941 } else { 942 prev = curr; 943 } 944 } 945 mutex_exit(&ipsq->ipsq_lock); 946 947 while (tmp_list != NULL) { 948 curr = tmp_list; 949 tmp_list = curr->b_next; 950 curr->b_next = NULL; 951 curr->b_prev = NULL; 952 curr->b_queue = NULL; 953 if (DB_TYPE(curr) == M_IOCTL || DB_TYPE(curr) == M_IOCDATA) { 954 DTRACE_PROBE4(ipif__ioctl, 955 char *, "ipsq_xopq_mp_cleanup", 956 int, 0, ill_t *, NULL, ipif_t *, NULL); 957 ip_ioctl_finish(q, curr, ENXIO, connp != NULL ? 958 CONN_CLOSE : NO_COPYOUT, NULL); 959 } else { 960 /* 961 * IP-MT XXX In the case of TLI/XTI bind / optmgmt 962 * this can't be just inet_freemsg. we have to 963 * restart it otherwise the thread will be stuck. 964 */ 965 inet_freemsg(curr); 966 } 967 } 968 } 969 970 /* 971 * This conn has started closing. Cleanup any pending ioctl from this conn. 972 * STREAMS ensures that there can be at most 1 ioctl pending on a stream. 973 */ 974 void 975 conn_ioctl_cleanup(conn_t *connp) 976 { 977 ipsq_t *ipsq; 978 ill_t *ill; 979 boolean_t refheld; 980 981 /* 982 * Is any exclusive ioctl pending ? If so clean it up. If the 983 * ioctl has not yet started, the mp is pending in the list headed by 984 * ipsq_xopq_head. If the ioctl has started the mp could be present in 985 * ipx_pending_mp. If the ioctl timed out in the streamhead but 986 * is currently executing now the mp is not queued anywhere but 987 * conn_oper_pending_ill is null. The conn close will wait 988 * till the conn_ref drops to zero. 989 */ 990 mutex_enter(&connp->conn_lock); 991 ill = connp->conn_oper_pending_ill; 992 if (ill == NULL) { 993 mutex_exit(&connp->conn_lock); 994 return; 995 } 996 997 /* 998 * We may not be able to refhold the ill if the ill/ipif 999 * is changing. But we need to make sure that the ill will 1000 * not vanish. So we just bump up the ill_waiter count. 1001 */ 1002 refheld = ill_waiter_inc(ill); 1003 mutex_exit(&connp->conn_lock); 1004 if (refheld) { 1005 if (ipsq_enter(ill, B_TRUE, NEW_OP)) { 1006 ill_waiter_dcr(ill); 1007 /* 1008 * Check whether this ioctl has started and is 1009 * pending. If it is not found there then check 1010 * whether this ioctl has not even started and is in 1011 * the ipsq_xopq list. 1012 */ 1013 if (!ipsq_pending_mp_cleanup(ill, connp)) 1014 ipsq_xopq_mp_cleanup(ill, connp); 1015 ipsq = ill->ill_phyint->phyint_ipsq; 1016 ipsq_exit(ipsq); 1017 return; 1018 } 1019 } 1020 1021 /* 1022 * The ill is also closing and we could not bump up the 1023 * ill_waiter_count or we could not enter the ipsq. Leave 1024 * the cleanup to ill_delete 1025 */ 1026 mutex_enter(&connp->conn_lock); 1027 while (connp->conn_oper_pending_ill != NULL) 1028 cv_wait(&connp->conn_refcv, &connp->conn_lock); 1029 mutex_exit(&connp->conn_lock); 1030 if (refheld) 1031 ill_waiter_dcr(ill); 1032 } 1033 1034 /* 1035 * ipcl_walk function for cleaning up conn_*_ill fields. 1036 * Note that we leave ixa_multicast_ifindex, conn_incoming_ifindex, and 1037 * conn_bound_if in place. We prefer dropping 1038 * packets instead of sending them out the wrong interface, or accepting 1039 * packets from the wrong ifindex. 1040 */ 1041 static void 1042 conn_cleanup_ill(conn_t *connp, caddr_t arg) 1043 { 1044 ill_t *ill = (ill_t *)arg; 1045 1046 mutex_enter(&connp->conn_lock); 1047 if (connp->conn_dhcpinit_ill == ill) { 1048 connp->conn_dhcpinit_ill = NULL; 1049 ASSERT(ill->ill_dhcpinit != 0); 1050 atomic_dec_32(&ill->ill_dhcpinit); 1051 ill_set_inputfn(ill); 1052 } 1053 mutex_exit(&connp->conn_lock); 1054 } 1055 1056 static int 1057 ill_down_ipifs_tail(ill_t *ill) 1058 { 1059 ipif_t *ipif; 1060 int err; 1061 1062 ASSERT(IAM_WRITER_ILL(ill)); 1063 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 1064 ipif_non_duplicate(ipif); 1065 /* 1066 * ipif_down_tail will call arp_ll_down on the last ipif 1067 * and typically return EINPROGRESS when the DL_UNBIND is sent. 1068 */ 1069 if ((err = ipif_down_tail(ipif)) != 0) 1070 return (err); 1071 } 1072 return (0); 1073 } 1074 1075 /* ARGSUSED */ 1076 void 1077 ipif_all_down_tail(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 1078 { 1079 ASSERT(IAM_WRITER_IPSQ(ipsq)); 1080 (void) ill_down_ipifs_tail(q->q_ptr); 1081 freemsg(mp); 1082 ipsq_current_finish(ipsq); 1083 } 1084 1085 /* 1086 * ill_down_start is called when we want to down this ill and bring it up again 1087 * It is called when we receive an M_ERROR / M_HANGUP. In this case we shut down 1088 * all interfaces, but don't tear down any plumbing. 1089 */ 1090 boolean_t 1091 ill_down_start(queue_t *q, mblk_t *mp) 1092 { 1093 ill_t *ill = q->q_ptr; 1094 ipif_t *ipif; 1095 1096 ASSERT(IAM_WRITER_ILL(ill)); 1097 mutex_enter(&ill->ill_lock); 1098 ill->ill_state_flags |= ILL_DOWN_IN_PROGRESS; 1099 /* no more nce addition allowed */ 1100 mutex_exit(&ill->ill_lock); 1101 1102 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) 1103 (void) ipif_down(ipif, NULL, NULL); 1104 1105 ill_down(ill); 1106 1107 /* 1108 * Walk all CONNs that can have a reference on an ire or nce for this 1109 * ill (we actually walk all that now have stale references). 1110 */ 1111 ipcl_walk(conn_ixa_cleanup, (void *)B_TRUE, ill->ill_ipst); 1112 1113 /* With IPv6 we have dce_ifindex. Cleanup for neatness */ 1114 if (ill->ill_isv6) 1115 dce_cleanup(ill->ill_phyint->phyint_ifindex, ill->ill_ipst); 1116 1117 1118 (void) ipsq_pending_mp_cleanup(ill, NULL); 1119 1120 ipsq_current_start(ill->ill_phyint->phyint_ipsq, ill->ill_ipif, 0); 1121 1122 /* 1123 * Atomically test and add the pending mp if references are active. 1124 */ 1125 mutex_enter(&ill->ill_lock); 1126 if (!ill_is_quiescent(ill)) { 1127 /* call cannot fail since `conn_t *' argument is NULL */ 1128 (void) ipsq_pending_mp_add(NULL, ill->ill_ipif, ill->ill_rq, 1129 mp, ILL_DOWN); 1130 mutex_exit(&ill->ill_lock); 1131 return (B_FALSE); 1132 } 1133 mutex_exit(&ill->ill_lock); 1134 return (B_TRUE); 1135 } 1136 1137 static void 1138 ill_down(ill_t *ill) 1139 { 1140 mblk_t *mp; 1141 ip_stack_t *ipst = ill->ill_ipst; 1142 1143 /* 1144 * Blow off any IREs dependent on this ILL. 1145 * The caller needs to handle conn_ixa_cleanup 1146 */ 1147 ill_delete_ires(ill); 1148 1149 ire_walk_ill(0, 0, ill_downi, ill, ill); 1150 1151 /* Remove any conn_*_ill depending on this ill */ 1152 ipcl_walk(conn_cleanup_ill, (caddr_t)ill, ipst); 1153 1154 /* 1155 * Free state for additional IREs. 1156 */ 1157 mutex_enter(&ill->ill_saved_ire_lock); 1158 mp = ill->ill_saved_ire_mp; 1159 ill->ill_saved_ire_mp = NULL; 1160 ill->ill_saved_ire_cnt = 0; 1161 mutex_exit(&ill->ill_saved_ire_lock); 1162 freemsg(mp); 1163 } 1164 1165 /* 1166 * ire_walk routine used to delete every IRE that depends on 1167 * 'ill'. (Always called as writer.) 1168 * 1169 * Note: since the routes added by the kernel are deleted separately, 1170 * this will only be 1) IRE_IF_CLONE and 2) manually added IRE_INTERFACE. 1171 * 1172 * We also remove references on ire_nce_cache entries that refer to the ill. 1173 */ 1174 void 1175 ill_downi(ire_t *ire, char *ill_arg) 1176 { 1177 ill_t *ill = (ill_t *)ill_arg; 1178 nce_t *nce; 1179 1180 mutex_enter(&ire->ire_lock); 1181 nce = ire->ire_nce_cache; 1182 if (nce != NULL && nce->nce_ill == ill) 1183 ire->ire_nce_cache = NULL; 1184 else 1185 nce = NULL; 1186 mutex_exit(&ire->ire_lock); 1187 if (nce != NULL) 1188 nce_refrele(nce); 1189 if (ire->ire_ill == ill) 1190 ire_delete(ire); 1191 } 1192 1193 /* Remove IRE_IF_CLONE on this ill */ 1194 void 1195 ill_downi_if_clone(ire_t *ire, char *ill_arg) 1196 { 1197 ill_t *ill = (ill_t *)ill_arg; 1198 1199 ASSERT(ire->ire_type & IRE_IF_CLONE); 1200 if (ire->ire_ill == ill) 1201 ire_delete(ire); 1202 } 1203 1204 /* Consume an M_IOCACK of the fastpath probe. */ 1205 void 1206 ill_fastpath_ack(ill_t *ill, mblk_t *mp) 1207 { 1208 mblk_t *mp1 = mp; 1209 1210 /* 1211 * If this was the first attempt turn on the fastpath probing. 1212 */ 1213 mutex_enter(&ill->ill_lock); 1214 if (ill->ill_dlpi_fastpath_state == IDS_INPROGRESS) 1215 ill->ill_dlpi_fastpath_state = IDS_OK; 1216 mutex_exit(&ill->ill_lock); 1217 1218 /* Free the M_IOCACK mblk, hold on to the data */ 1219 mp = mp->b_cont; 1220 freeb(mp1); 1221 if (mp == NULL) 1222 return; 1223 if (mp->b_cont != NULL) 1224 nce_fastpath_update(ill, mp); 1225 else 1226 ip0dbg(("ill_fastpath_ack: no b_cont\n")); 1227 freemsg(mp); 1228 } 1229 1230 /* 1231 * Throw an M_IOCTL message downstream asking "do you know fastpath?" 1232 * The data portion of the request is a dl_unitdata_req_t template for 1233 * what we would send downstream in the absence of a fastpath confirmation. 1234 */ 1235 int 1236 ill_fastpath_probe(ill_t *ill, mblk_t *dlur_mp) 1237 { 1238 struct iocblk *ioc; 1239 mblk_t *mp; 1240 1241 if (dlur_mp == NULL) 1242 return (EINVAL); 1243 1244 mutex_enter(&ill->ill_lock); 1245 switch (ill->ill_dlpi_fastpath_state) { 1246 case IDS_FAILED: 1247 /* 1248 * Driver NAKed the first fastpath ioctl - assume it doesn't 1249 * support it. 1250 */ 1251 mutex_exit(&ill->ill_lock); 1252 return (ENOTSUP); 1253 case IDS_UNKNOWN: 1254 /* This is the first probe */ 1255 ill->ill_dlpi_fastpath_state = IDS_INPROGRESS; 1256 break; 1257 default: 1258 break; 1259 } 1260 mutex_exit(&ill->ill_lock); 1261 1262 if ((mp = mkiocb(DL_IOC_HDR_INFO)) == NULL) 1263 return (EAGAIN); 1264 1265 mp->b_cont = copyb(dlur_mp); 1266 if (mp->b_cont == NULL) { 1267 freeb(mp); 1268 return (EAGAIN); 1269 } 1270 1271 ioc = (struct iocblk *)mp->b_rptr; 1272 ioc->ioc_count = msgdsize(mp->b_cont); 1273 1274 DTRACE_PROBE3(ill__dlpi, char *, "ill_fastpath_probe", 1275 char *, "DL_IOC_HDR_INFO", ill_t *, ill); 1276 putnext(ill->ill_wq, mp); 1277 return (0); 1278 } 1279 1280 void 1281 ill_capability_probe(ill_t *ill) 1282 { 1283 mblk_t *mp; 1284 1285 ASSERT(IAM_WRITER_ILL(ill)); 1286 1287 if (ill->ill_dlpi_capab_state != IDCS_UNKNOWN && 1288 ill->ill_dlpi_capab_state != IDCS_FAILED) 1289 return; 1290 1291 /* 1292 * We are starting a new cycle of capability negotiation. 1293 * Free up the capab reset messages of any previous incarnation. 1294 * We will do a fresh allocation when we get the response to our probe 1295 */ 1296 if (ill->ill_capab_reset_mp != NULL) { 1297 freemsg(ill->ill_capab_reset_mp); 1298 ill->ill_capab_reset_mp = NULL; 1299 } 1300 1301 ip1dbg(("ill_capability_probe: starting capability negotiation\n")); 1302 1303 mp = ip_dlpi_alloc(sizeof (dl_capability_req_t), DL_CAPABILITY_REQ); 1304 if (mp == NULL) 1305 return; 1306 1307 ill_capability_send(ill, mp); 1308 ill->ill_dlpi_capab_state = IDCS_PROBE_SENT; 1309 } 1310 1311 void 1312 ill_capability_reset(ill_t *ill, boolean_t reneg) 1313 { 1314 ASSERT(IAM_WRITER_ILL(ill)); 1315 1316 if (ill->ill_dlpi_capab_state != IDCS_OK) 1317 return; 1318 1319 ill->ill_dlpi_capab_state = reneg ? IDCS_RENEG : IDCS_RESET_SENT; 1320 1321 ill_capability_send(ill, ill->ill_capab_reset_mp); 1322 ill->ill_capab_reset_mp = NULL; 1323 /* 1324 * We turn off all capabilities except those pertaining to 1325 * direct function call capabilities viz. ILL_CAPAB_DLD* 1326 * which will be turned off by the corresponding reset functions. 1327 */ 1328 ill->ill_capabilities &= ~(ILL_CAPAB_HCKSUM | ILL_CAPAB_ZEROCOPY); 1329 } 1330 1331 static void 1332 ill_capability_reset_alloc(ill_t *ill) 1333 { 1334 mblk_t *mp; 1335 size_t size = 0; 1336 int err; 1337 dl_capability_req_t *capb; 1338 1339 ASSERT(IAM_WRITER_ILL(ill)); 1340 ASSERT(ill->ill_capab_reset_mp == NULL); 1341 1342 if (ILL_HCKSUM_CAPABLE(ill)) { 1343 size += sizeof (dl_capability_sub_t) + 1344 sizeof (dl_capab_hcksum_t); 1345 } 1346 1347 if (ill->ill_capabilities & ILL_CAPAB_ZEROCOPY) { 1348 size += sizeof (dl_capability_sub_t) + 1349 sizeof (dl_capab_zerocopy_t); 1350 } 1351 1352 if (ill->ill_capabilities & ILL_CAPAB_DLD) { 1353 size += sizeof (dl_capability_sub_t) + 1354 sizeof (dl_capab_dld_t); 1355 } 1356 1357 mp = allocb_wait(size + sizeof (dl_capability_req_t), BPRI_MED, 1358 STR_NOSIG, &err); 1359 1360 mp->b_datap->db_type = M_PROTO; 1361 bzero(mp->b_rptr, size + sizeof (dl_capability_req_t)); 1362 1363 capb = (dl_capability_req_t *)mp->b_rptr; 1364 capb->dl_primitive = DL_CAPABILITY_REQ; 1365 capb->dl_sub_offset = sizeof (dl_capability_req_t); 1366 capb->dl_sub_length = size; 1367 1368 mp->b_wptr += sizeof (dl_capability_req_t); 1369 1370 /* 1371 * Each handler fills in the corresponding dl_capability_sub_t 1372 * inside the mblk, 1373 */ 1374 ill_capability_hcksum_reset_fill(ill, mp); 1375 ill_capability_zerocopy_reset_fill(ill, mp); 1376 ill_capability_dld_reset_fill(ill, mp); 1377 1378 ill->ill_capab_reset_mp = mp; 1379 } 1380 1381 static void 1382 ill_capability_id_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *outers) 1383 { 1384 dl_capab_id_t *id_ic; 1385 uint_t sub_dl_cap = outers->dl_cap; 1386 dl_capability_sub_t *inners; 1387 uint8_t *capend; 1388 1389 ASSERT(sub_dl_cap == DL_CAPAB_ID_WRAPPER); 1390 1391 /* 1392 * Note: range checks here are not absolutely sufficient to 1393 * make us robust against malformed messages sent by drivers; 1394 * this is in keeping with the rest of IP's dlpi handling. 1395 * (Remember, it's coming from something else in the kernel 1396 * address space) 1397 */ 1398 1399 capend = (uint8_t *)(outers + 1) + outers->dl_length; 1400 if (capend > mp->b_wptr) { 1401 cmn_err(CE_WARN, "ill_capability_id_ack: " 1402 "malformed sub-capability too long for mblk"); 1403 return; 1404 } 1405 1406 id_ic = (dl_capab_id_t *)(outers + 1); 1407 1408 if (outers->dl_length < sizeof (*id_ic) || 1409 (inners = &id_ic->id_subcap, 1410 inners->dl_length > (outers->dl_length - sizeof (*inners)))) { 1411 cmn_err(CE_WARN, "ill_capability_id_ack: malformed " 1412 "encapsulated capab type %d too long for mblk", 1413 inners->dl_cap); 1414 return; 1415 } 1416 1417 if (!dlcapabcheckqid(&id_ic->id_mid, ill->ill_lmod_rq)) { 1418 ip1dbg(("ill_capability_id_ack: mid token for capab type %d " 1419 "isn't as expected; pass-thru module(s) detected, " 1420 "discarding capability\n", inners->dl_cap)); 1421 return; 1422 } 1423 1424 /* Process the encapsulated sub-capability */ 1425 ill_capability_dispatch(ill, mp, inners); 1426 } 1427 1428 static void 1429 ill_capability_dld_reset_fill(ill_t *ill, mblk_t *mp) 1430 { 1431 dl_capability_sub_t *dl_subcap; 1432 1433 if (!(ill->ill_capabilities & ILL_CAPAB_DLD)) 1434 return; 1435 1436 /* 1437 * The dl_capab_dld_t that follows the dl_capability_sub_t is not 1438 * initialized below since it is not used by DLD. 1439 */ 1440 dl_subcap = (dl_capability_sub_t *)mp->b_wptr; 1441 dl_subcap->dl_cap = DL_CAPAB_DLD; 1442 dl_subcap->dl_length = sizeof (dl_capab_dld_t); 1443 1444 mp->b_wptr += sizeof (dl_capability_sub_t) + sizeof (dl_capab_dld_t); 1445 } 1446 1447 static void 1448 ill_capability_dispatch(ill_t *ill, mblk_t *mp, dl_capability_sub_t *subp) 1449 { 1450 /* 1451 * If no ipif was brought up over this ill, this DL_CAPABILITY_REQ/ACK 1452 * is only to get the VRRP capability. 1453 */ 1454 if (ill->ill_ipif_up_count == 0) { 1455 if (subp->dl_cap == DL_CAPAB_VRRP) 1456 ill_capability_vrrp_ack(ill, mp, subp); 1457 return; 1458 } 1459 1460 switch (subp->dl_cap) { 1461 case DL_CAPAB_HCKSUM: 1462 ill_capability_hcksum_ack(ill, mp, subp); 1463 break; 1464 case DL_CAPAB_ZEROCOPY: 1465 ill_capability_zerocopy_ack(ill, mp, subp); 1466 break; 1467 case DL_CAPAB_DLD: 1468 ill_capability_dld_ack(ill, mp, subp); 1469 break; 1470 case DL_CAPAB_VRRP: 1471 break; 1472 default: 1473 ip1dbg(("ill_capability_dispatch: unknown capab type %d\n", 1474 subp->dl_cap)); 1475 } 1476 } 1477 1478 /* 1479 * Process the vrrp capability received from a DLS Provider. isub must point 1480 * to the sub-capability (DL_CAPAB_VRRP) of a DL_CAPABILITY_ACK message. 1481 */ 1482 static void 1483 ill_capability_vrrp_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub) 1484 { 1485 dl_capab_vrrp_t *vrrp; 1486 uint_t sub_dl_cap = isub->dl_cap; 1487 uint8_t *capend; 1488 1489 ASSERT(IAM_WRITER_ILL(ill)); 1490 ASSERT(sub_dl_cap == DL_CAPAB_VRRP); 1491 1492 /* 1493 * Note: range checks here are not absolutely sufficient to 1494 * make us robust against malformed messages sent by drivers; 1495 * this is in keeping with the rest of IP's dlpi handling. 1496 * (Remember, it's coming from something else in the kernel 1497 * address space) 1498 */ 1499 capend = (uint8_t *)(isub + 1) + isub->dl_length; 1500 if (capend > mp->b_wptr) { 1501 cmn_err(CE_WARN, "ill_capability_vrrp_ack: " 1502 "malformed sub-capability too long for mblk"); 1503 return; 1504 } 1505 vrrp = (dl_capab_vrrp_t *)(isub + 1); 1506 1507 /* 1508 * Compare the IP address family and set ILLF_VRRP for the right ill. 1509 */ 1510 if ((vrrp->vrrp_af == AF_INET6 && ill->ill_isv6) || 1511 (vrrp->vrrp_af == AF_INET && !ill->ill_isv6)) { 1512 ill->ill_flags |= ILLF_VRRP; 1513 } 1514 } 1515 1516 /* 1517 * Process a hardware checksum offload capability negotiation ack received 1518 * from a DLS Provider.isub must point to the sub-capability (DL_CAPAB_HCKSUM) 1519 * of a DL_CAPABILITY_ACK message. 1520 */ 1521 static void 1522 ill_capability_hcksum_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub) 1523 { 1524 dl_capability_req_t *ocap; 1525 dl_capab_hcksum_t *ihck, *ohck; 1526 ill_hcksum_capab_t **ill_hcksum; 1527 mblk_t *nmp = NULL; 1528 uint_t sub_dl_cap = isub->dl_cap; 1529 uint8_t *capend; 1530 1531 ASSERT(sub_dl_cap == DL_CAPAB_HCKSUM); 1532 1533 ill_hcksum = (ill_hcksum_capab_t **)&ill->ill_hcksum_capab; 1534 1535 /* 1536 * Note: range checks here are not absolutely sufficient to 1537 * make us robust against malformed messages sent by drivers; 1538 * this is in keeping with the rest of IP's dlpi handling. 1539 * (Remember, it's coming from something else in the kernel 1540 * address space) 1541 */ 1542 capend = (uint8_t *)(isub + 1) + isub->dl_length; 1543 if (capend > mp->b_wptr) { 1544 cmn_err(CE_WARN, "ill_capability_hcksum_ack: " 1545 "malformed sub-capability too long for mblk"); 1546 return; 1547 } 1548 1549 /* 1550 * There are two types of acks we process here: 1551 * 1. acks in reply to a (first form) generic capability req 1552 * (no ENABLE flag set) 1553 * 2. acks in reply to a ENABLE capability req. 1554 * (ENABLE flag set) 1555 */ 1556 ihck = (dl_capab_hcksum_t *)(isub + 1); 1557 1558 if (ihck->hcksum_version != HCKSUM_VERSION_1) { 1559 cmn_err(CE_CONT, "ill_capability_hcksum_ack: " 1560 "unsupported hardware checksum " 1561 "sub-capability (version %d, expected %d)", 1562 ihck->hcksum_version, HCKSUM_VERSION_1); 1563 return; 1564 } 1565 1566 if (!dlcapabcheckqid(&ihck->hcksum_mid, ill->ill_lmod_rq)) { 1567 ip1dbg(("ill_capability_hcksum_ack: mid token for hardware " 1568 "checksum capability isn't as expected; pass-thru " 1569 "module(s) detected, discarding capability\n")); 1570 return; 1571 } 1572 1573 #define CURR_HCKSUM_CAPAB \ 1574 (HCKSUM_INET_PARTIAL | HCKSUM_INET_FULL_V4 | \ 1575 HCKSUM_INET_FULL_V6 | HCKSUM_IPHDRCKSUM) 1576 1577 if ((ihck->hcksum_txflags & HCKSUM_ENABLE) && 1578 (ihck->hcksum_txflags & CURR_HCKSUM_CAPAB)) { 1579 /* do ENABLE processing */ 1580 if (*ill_hcksum == NULL) { 1581 *ill_hcksum = kmem_zalloc(sizeof (ill_hcksum_capab_t), 1582 KM_NOSLEEP); 1583 1584 if (*ill_hcksum == NULL) { 1585 cmn_err(CE_WARN, "ill_capability_hcksum_ack: " 1586 "could not enable hcksum version %d " 1587 "for %s (ENOMEM)\n", HCKSUM_CURRENT_VERSION, 1588 ill->ill_name); 1589 return; 1590 } 1591 } 1592 1593 (*ill_hcksum)->ill_hcksum_version = ihck->hcksum_version; 1594 (*ill_hcksum)->ill_hcksum_txflags = ihck->hcksum_txflags; 1595 ill->ill_capabilities |= ILL_CAPAB_HCKSUM; 1596 ip1dbg(("ill_capability_hcksum_ack: interface %s " 1597 "has enabled hardware checksumming\n ", 1598 ill->ill_name)); 1599 } else if (ihck->hcksum_txflags & CURR_HCKSUM_CAPAB) { 1600 /* 1601 * Enabling hardware checksum offload 1602 * Currently IP supports {TCP,UDP}/IPv4 1603 * partial and full cksum offload and 1604 * IPv4 header checksum offload. 1605 * Allocate new mblk which will 1606 * contain a new capability request 1607 * to enable hardware checksum offload. 1608 */ 1609 uint_t size; 1610 uchar_t *rptr; 1611 1612 size = sizeof (dl_capability_req_t) + 1613 sizeof (dl_capability_sub_t) + isub->dl_length; 1614 1615 if ((nmp = ip_dlpi_alloc(size, DL_CAPABILITY_REQ)) == NULL) { 1616 cmn_err(CE_WARN, "ill_capability_hcksum_ack: " 1617 "could not enable hardware cksum for %s (ENOMEM)\n", 1618 ill->ill_name); 1619 return; 1620 } 1621 1622 rptr = nmp->b_rptr; 1623 /* initialize dl_capability_req_t */ 1624 ocap = (dl_capability_req_t *)nmp->b_rptr; 1625 ocap->dl_sub_offset = 1626 sizeof (dl_capability_req_t); 1627 ocap->dl_sub_length = 1628 sizeof (dl_capability_sub_t) + 1629 isub->dl_length; 1630 nmp->b_rptr += sizeof (dl_capability_req_t); 1631 1632 /* initialize dl_capability_sub_t */ 1633 bcopy(isub, nmp->b_rptr, sizeof (*isub)); 1634 nmp->b_rptr += sizeof (*isub); 1635 1636 /* initialize dl_capab_hcksum_t */ 1637 ohck = (dl_capab_hcksum_t *)nmp->b_rptr; 1638 bcopy(ihck, ohck, sizeof (*ihck)); 1639 1640 nmp->b_rptr = rptr; 1641 ASSERT(nmp->b_wptr == (nmp->b_rptr + size)); 1642 1643 /* Set ENABLE flag */ 1644 ohck->hcksum_txflags &= CURR_HCKSUM_CAPAB; 1645 ohck->hcksum_txflags |= HCKSUM_ENABLE; 1646 1647 /* 1648 * nmp points to a DL_CAPABILITY_REQ message to enable 1649 * hardware checksum acceleration. 1650 */ 1651 ill_capability_send(ill, nmp); 1652 } else { 1653 ip1dbg(("ill_capability_hcksum_ack: interface %s has " 1654 "advertised %x hardware checksum capability flags\n", 1655 ill->ill_name, ihck->hcksum_txflags)); 1656 } 1657 } 1658 1659 static void 1660 ill_capability_hcksum_reset_fill(ill_t *ill, mblk_t *mp) 1661 { 1662 dl_capab_hcksum_t *hck_subcap; 1663 dl_capability_sub_t *dl_subcap; 1664 1665 if (!ILL_HCKSUM_CAPABLE(ill)) 1666 return; 1667 1668 ASSERT(ill->ill_hcksum_capab != NULL); 1669 1670 dl_subcap = (dl_capability_sub_t *)mp->b_wptr; 1671 dl_subcap->dl_cap = DL_CAPAB_HCKSUM; 1672 dl_subcap->dl_length = sizeof (*hck_subcap); 1673 1674 hck_subcap = (dl_capab_hcksum_t *)(dl_subcap + 1); 1675 hck_subcap->hcksum_version = ill->ill_hcksum_capab->ill_hcksum_version; 1676 hck_subcap->hcksum_txflags = 0; 1677 1678 mp->b_wptr += sizeof (*dl_subcap) + sizeof (*hck_subcap); 1679 } 1680 1681 static void 1682 ill_capability_zerocopy_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub) 1683 { 1684 mblk_t *nmp = NULL; 1685 dl_capability_req_t *oc; 1686 dl_capab_zerocopy_t *zc_ic, *zc_oc; 1687 ill_zerocopy_capab_t **ill_zerocopy_capab; 1688 uint_t sub_dl_cap = isub->dl_cap; 1689 uint8_t *capend; 1690 1691 ASSERT(sub_dl_cap == DL_CAPAB_ZEROCOPY); 1692 1693 ill_zerocopy_capab = (ill_zerocopy_capab_t **)&ill->ill_zerocopy_capab; 1694 1695 /* 1696 * Note: range checks here are not absolutely sufficient to 1697 * make us robust against malformed messages sent by drivers; 1698 * this is in keeping with the rest of IP's dlpi handling. 1699 * (Remember, it's coming from something else in the kernel 1700 * address space) 1701 */ 1702 capend = (uint8_t *)(isub + 1) + isub->dl_length; 1703 if (capend > mp->b_wptr) { 1704 cmn_err(CE_WARN, "ill_capability_zerocopy_ack: " 1705 "malformed sub-capability too long for mblk"); 1706 return; 1707 } 1708 1709 zc_ic = (dl_capab_zerocopy_t *)(isub + 1); 1710 if (zc_ic->zerocopy_version != ZEROCOPY_VERSION_1) { 1711 cmn_err(CE_CONT, "ill_capability_zerocopy_ack: " 1712 "unsupported ZEROCOPY sub-capability (version %d, " 1713 "expected %d)", zc_ic->zerocopy_version, 1714 ZEROCOPY_VERSION_1); 1715 return; 1716 } 1717 1718 if (!dlcapabcheckqid(&zc_ic->zerocopy_mid, ill->ill_lmod_rq)) { 1719 ip1dbg(("ill_capability_zerocopy_ack: mid token for zerocopy " 1720 "capability isn't as expected; pass-thru module(s) " 1721 "detected, discarding capability\n")); 1722 return; 1723 } 1724 1725 if ((zc_ic->zerocopy_flags & DL_CAPAB_VMSAFE_MEM) != 0) { 1726 if (*ill_zerocopy_capab == NULL) { 1727 *ill_zerocopy_capab = 1728 kmem_zalloc(sizeof (ill_zerocopy_capab_t), 1729 KM_NOSLEEP); 1730 1731 if (*ill_zerocopy_capab == NULL) { 1732 cmn_err(CE_WARN, "ill_capability_zerocopy_ack: " 1733 "could not enable Zero-copy version %d " 1734 "for %s (ENOMEM)\n", ZEROCOPY_VERSION_1, 1735 ill->ill_name); 1736 return; 1737 } 1738 } 1739 1740 ip1dbg(("ill_capability_zerocopy_ack: interface %s " 1741 "supports Zero-copy version %d\n", ill->ill_name, 1742 ZEROCOPY_VERSION_1)); 1743 1744 (*ill_zerocopy_capab)->ill_zerocopy_version = 1745 zc_ic->zerocopy_version; 1746 (*ill_zerocopy_capab)->ill_zerocopy_flags = 1747 zc_ic->zerocopy_flags; 1748 1749 ill->ill_capabilities |= ILL_CAPAB_ZEROCOPY; 1750 } else { 1751 uint_t size; 1752 uchar_t *rptr; 1753 1754 size = sizeof (dl_capability_req_t) + 1755 sizeof (dl_capability_sub_t) + 1756 sizeof (dl_capab_zerocopy_t); 1757 1758 if ((nmp = ip_dlpi_alloc(size, DL_CAPABILITY_REQ)) == NULL) { 1759 cmn_err(CE_WARN, "ill_capability_zerocopy_ack: " 1760 "could not enable zerocopy for %s (ENOMEM)\n", 1761 ill->ill_name); 1762 return; 1763 } 1764 1765 rptr = nmp->b_rptr; 1766 /* initialize dl_capability_req_t */ 1767 oc = (dl_capability_req_t *)rptr; 1768 oc->dl_sub_offset = sizeof (dl_capability_req_t); 1769 oc->dl_sub_length = sizeof (dl_capability_sub_t) + 1770 sizeof (dl_capab_zerocopy_t); 1771 rptr += sizeof (dl_capability_req_t); 1772 1773 /* initialize dl_capability_sub_t */ 1774 bcopy(isub, rptr, sizeof (*isub)); 1775 rptr += sizeof (*isub); 1776 1777 /* initialize dl_capab_zerocopy_t */ 1778 zc_oc = (dl_capab_zerocopy_t *)rptr; 1779 *zc_oc = *zc_ic; 1780 1781 ip1dbg(("ill_capability_zerocopy_ack: asking interface %s " 1782 "to enable zero-copy version %d\n", ill->ill_name, 1783 ZEROCOPY_VERSION_1)); 1784 1785 /* set VMSAFE_MEM flag */ 1786 zc_oc->zerocopy_flags |= DL_CAPAB_VMSAFE_MEM; 1787 1788 /* nmp points to a DL_CAPABILITY_REQ message to enable zcopy */ 1789 ill_capability_send(ill, nmp); 1790 } 1791 } 1792 1793 static void 1794 ill_capability_zerocopy_reset_fill(ill_t *ill, mblk_t *mp) 1795 { 1796 dl_capab_zerocopy_t *zerocopy_subcap; 1797 dl_capability_sub_t *dl_subcap; 1798 1799 if (!(ill->ill_capabilities & ILL_CAPAB_ZEROCOPY)) 1800 return; 1801 1802 ASSERT(ill->ill_zerocopy_capab != NULL); 1803 1804 dl_subcap = (dl_capability_sub_t *)mp->b_wptr; 1805 dl_subcap->dl_cap = DL_CAPAB_ZEROCOPY; 1806 dl_subcap->dl_length = sizeof (*zerocopy_subcap); 1807 1808 zerocopy_subcap = (dl_capab_zerocopy_t *)(dl_subcap + 1); 1809 zerocopy_subcap->zerocopy_version = 1810 ill->ill_zerocopy_capab->ill_zerocopy_version; 1811 zerocopy_subcap->zerocopy_flags = 0; 1812 1813 mp->b_wptr += sizeof (*dl_subcap) + sizeof (*zerocopy_subcap); 1814 } 1815 1816 /* 1817 * DLD capability 1818 * Refer to dld.h for more information regarding the purpose and usage 1819 * of this capability. 1820 */ 1821 static void 1822 ill_capability_dld_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub) 1823 { 1824 dl_capab_dld_t *dld_ic, dld; 1825 uint_t sub_dl_cap = isub->dl_cap; 1826 uint8_t *capend; 1827 ill_dld_capab_t *idc; 1828 1829 ASSERT(IAM_WRITER_ILL(ill)); 1830 ASSERT(sub_dl_cap == DL_CAPAB_DLD); 1831 1832 /* 1833 * Note: range checks here are not absolutely sufficient to 1834 * make us robust against malformed messages sent by drivers; 1835 * this is in keeping with the rest of IP's dlpi handling. 1836 * (Remember, it's coming from something else in the kernel 1837 * address space) 1838 */ 1839 capend = (uint8_t *)(isub + 1) + isub->dl_length; 1840 if (capend > mp->b_wptr) { 1841 cmn_err(CE_WARN, "ill_capability_dld_ack: " 1842 "malformed sub-capability too long for mblk"); 1843 return; 1844 } 1845 dld_ic = (dl_capab_dld_t *)(isub + 1); 1846 if (dld_ic->dld_version != DLD_CURRENT_VERSION) { 1847 cmn_err(CE_CONT, "ill_capability_dld_ack: " 1848 "unsupported DLD sub-capability (version %d, " 1849 "expected %d)", dld_ic->dld_version, 1850 DLD_CURRENT_VERSION); 1851 return; 1852 } 1853 if (!dlcapabcheckqid(&dld_ic->dld_mid, ill->ill_lmod_rq)) { 1854 ip1dbg(("ill_capability_dld_ack: mid token for dld " 1855 "capability isn't as expected; pass-thru module(s) " 1856 "detected, discarding capability\n")); 1857 return; 1858 } 1859 1860 /* 1861 * Copy locally to ensure alignment. 1862 */ 1863 bcopy(dld_ic, &dld, sizeof (dl_capab_dld_t)); 1864 1865 if ((idc = ill->ill_dld_capab) == NULL) { 1866 idc = kmem_zalloc(sizeof (ill_dld_capab_t), KM_NOSLEEP); 1867 if (idc == NULL) { 1868 cmn_err(CE_WARN, "ill_capability_dld_ack: " 1869 "could not enable DLD version %d " 1870 "for %s (ENOMEM)\n", DLD_CURRENT_VERSION, 1871 ill->ill_name); 1872 return; 1873 } 1874 ill->ill_dld_capab = idc; 1875 } 1876 idc->idc_capab_df = (ip_capab_func_t)dld.dld_capab; 1877 idc->idc_capab_dh = (void *)dld.dld_capab_handle; 1878 ip1dbg(("ill_capability_dld_ack: interface %s " 1879 "supports DLD version %d\n", ill->ill_name, DLD_CURRENT_VERSION)); 1880 1881 ill_capability_dld_enable(ill); 1882 } 1883 1884 /* 1885 * Typically capability negotiation between IP and the driver happens via 1886 * DLPI message exchange. However GLD also offers a direct function call 1887 * mechanism to exchange the DLD_DIRECT_CAPAB and DLD_POLL_CAPAB capabilities, 1888 * But arbitrary function calls into IP or GLD are not permitted, since both 1889 * of them are protected by their own perimeter mechanism. The perimeter can 1890 * be viewed as a coarse lock or serialization mechanism. The hierarchy of 1891 * these perimeters is IP -> MAC. Thus for example to enable the squeue 1892 * polling, IP needs to enter its perimeter, then call ill_mac_perim_enter 1893 * to enter the mac perimeter and then do the direct function calls into 1894 * GLD to enable squeue polling. The ring related callbacks from the mac into 1895 * the stack to add, bind, quiesce, restart or cleanup a ring are all 1896 * protected by the mac perimeter. 1897 */ 1898 static void 1899 ill_mac_perim_enter(ill_t *ill, mac_perim_handle_t *mphp) 1900 { 1901 ill_dld_capab_t *idc = ill->ill_dld_capab; 1902 int err; 1903 1904 err = idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_PERIM, mphp, 1905 DLD_ENABLE); 1906 ASSERT(err == 0); 1907 } 1908 1909 static void 1910 ill_mac_perim_exit(ill_t *ill, mac_perim_handle_t mph) 1911 { 1912 ill_dld_capab_t *idc = ill->ill_dld_capab; 1913 int err; 1914 1915 err = idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_PERIM, mph, 1916 DLD_DISABLE); 1917 ASSERT(err == 0); 1918 } 1919 1920 boolean_t 1921 ill_mac_perim_held(ill_t *ill) 1922 { 1923 ill_dld_capab_t *idc = ill->ill_dld_capab; 1924 1925 return (idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_PERIM, NULL, 1926 DLD_QUERY)); 1927 } 1928 1929 static void 1930 ill_capability_direct_enable(ill_t *ill) 1931 { 1932 ill_dld_capab_t *idc = ill->ill_dld_capab; 1933 ill_dld_direct_t *idd = &idc->idc_direct; 1934 dld_capab_direct_t direct; 1935 int rc; 1936 1937 ASSERT(!ill->ill_isv6 && IAM_WRITER_ILL(ill)); 1938 1939 bzero(&direct, sizeof (direct)); 1940 direct.di_rx_cf = (uintptr_t)ip_input; 1941 direct.di_rx_ch = ill; 1942 1943 rc = idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_DIRECT, &direct, 1944 DLD_ENABLE); 1945 if (rc == 0) { 1946 idd->idd_tx_df = (ip_dld_tx_t)direct.di_tx_df; 1947 idd->idd_tx_dh = direct.di_tx_dh; 1948 idd->idd_tx_cb_df = (ip_dld_callb_t)direct.di_tx_cb_df; 1949 idd->idd_tx_cb_dh = direct.di_tx_cb_dh; 1950 idd->idd_tx_fctl_df = (ip_dld_fctl_t)direct.di_tx_fctl_df; 1951 idd->idd_tx_fctl_dh = direct.di_tx_fctl_dh; 1952 ASSERT(idd->idd_tx_cb_df != NULL); 1953 ASSERT(idd->idd_tx_fctl_df != NULL); 1954 ASSERT(idd->idd_tx_df != NULL); 1955 /* 1956 * One time registration of flow enable callback function 1957 */ 1958 ill->ill_flownotify_mh = idd->idd_tx_cb_df(idd->idd_tx_cb_dh, 1959 ill_flow_enable, ill); 1960 ill->ill_capabilities |= ILL_CAPAB_DLD_DIRECT; 1961 DTRACE_PROBE1(direct_on, (ill_t *), ill); 1962 } else { 1963 cmn_err(CE_WARN, "warning: could not enable DIRECT " 1964 "capability, rc = %d\n", rc); 1965 DTRACE_PROBE2(direct_off, (ill_t *), ill, (int), rc); 1966 } 1967 } 1968 1969 static void 1970 ill_capability_poll_enable(ill_t *ill) 1971 { 1972 ill_dld_capab_t *idc = ill->ill_dld_capab; 1973 dld_capab_poll_t poll; 1974 int rc; 1975 1976 ASSERT(!ill->ill_isv6 && IAM_WRITER_ILL(ill)); 1977 1978 bzero(&poll, sizeof (poll)); 1979 poll.poll_ring_add_cf = (uintptr_t)ip_squeue_add_ring; 1980 poll.poll_ring_remove_cf = (uintptr_t)ip_squeue_clean_ring; 1981 poll.poll_ring_quiesce_cf = (uintptr_t)ip_squeue_quiesce_ring; 1982 poll.poll_ring_restart_cf = (uintptr_t)ip_squeue_restart_ring; 1983 poll.poll_ring_bind_cf = (uintptr_t)ip_squeue_bind_ring; 1984 poll.poll_ring_ch = ill; 1985 rc = idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_POLL, &poll, 1986 DLD_ENABLE); 1987 if (rc == 0) { 1988 ill->ill_capabilities |= ILL_CAPAB_DLD_POLL; 1989 DTRACE_PROBE1(poll_on, (ill_t *), ill); 1990 } else { 1991 ip1dbg(("warning: could not enable POLL " 1992 "capability, rc = %d\n", rc)); 1993 DTRACE_PROBE2(poll_off, (ill_t *), ill, (int), rc); 1994 } 1995 } 1996 1997 /* 1998 * Enable the LSO capability. 1999 */ 2000 static void 2001 ill_capability_lso_enable(ill_t *ill) 2002 { 2003 ill_dld_capab_t *idc = ill->ill_dld_capab; 2004 dld_capab_lso_t lso; 2005 int rc; 2006 2007 ASSERT(!ill->ill_isv6 && IAM_WRITER_ILL(ill)); 2008 2009 if (ill->ill_lso_capab == NULL) { 2010 ill->ill_lso_capab = kmem_zalloc(sizeof (ill_lso_capab_t), 2011 KM_NOSLEEP); 2012 if (ill->ill_lso_capab == NULL) { 2013 cmn_err(CE_WARN, "ill_capability_lso_enable: " 2014 "could not enable LSO for %s (ENOMEM)\n", 2015 ill->ill_name); 2016 return; 2017 } 2018 } 2019 2020 bzero(&lso, sizeof (lso)); 2021 if ((rc = idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_LSO, &lso, 2022 DLD_ENABLE)) == 0) { 2023 ill->ill_lso_capab->ill_lso_flags = lso.lso_flags; 2024 ill->ill_lso_capab->ill_lso_max = lso.lso_max; 2025 ill->ill_capabilities |= ILL_CAPAB_LSO; 2026 ip1dbg(("ill_capability_lso_enable: interface %s " 2027 "has enabled LSO\n ", ill->ill_name)); 2028 } else { 2029 kmem_free(ill->ill_lso_capab, sizeof (ill_lso_capab_t)); 2030 ill->ill_lso_capab = NULL; 2031 DTRACE_PROBE2(lso_off, (ill_t *), ill, (int), rc); 2032 } 2033 } 2034 2035 static void 2036 ill_capability_dld_enable(ill_t *ill) 2037 { 2038 mac_perim_handle_t mph; 2039 2040 ASSERT(IAM_WRITER_ILL(ill)); 2041 2042 if (ill->ill_isv6) 2043 return; 2044 2045 ill_mac_perim_enter(ill, &mph); 2046 if (!ill->ill_isv6) { 2047 ill_capability_direct_enable(ill); 2048 ill_capability_poll_enable(ill); 2049 ill_capability_lso_enable(ill); 2050 } 2051 ill->ill_capabilities |= ILL_CAPAB_DLD; 2052 ill_mac_perim_exit(ill, mph); 2053 } 2054 2055 static void 2056 ill_capability_dld_disable(ill_t *ill) 2057 { 2058 ill_dld_capab_t *idc; 2059 ill_dld_direct_t *idd; 2060 mac_perim_handle_t mph; 2061 2062 ASSERT(IAM_WRITER_ILL(ill)); 2063 2064 if (!(ill->ill_capabilities & ILL_CAPAB_DLD)) 2065 return; 2066 2067 ill_mac_perim_enter(ill, &mph); 2068 2069 idc = ill->ill_dld_capab; 2070 if ((ill->ill_capabilities & ILL_CAPAB_DLD_DIRECT) != 0) { 2071 /* 2072 * For performance we avoid locks in the transmit data path 2073 * and don't maintain a count of the number of threads using 2074 * direct calls. Thus some threads could be using direct 2075 * transmit calls to GLD, even after the capability mechanism 2076 * turns it off. This is still safe since the handles used in 2077 * the direct calls continue to be valid until the unplumb is 2078 * completed. Remove the callback that was added (1-time) at 2079 * capab enable time. 2080 */ 2081 mutex_enter(&ill->ill_lock); 2082 ill->ill_capabilities &= ~ILL_CAPAB_DLD_DIRECT; 2083 mutex_exit(&ill->ill_lock); 2084 if (ill->ill_flownotify_mh != NULL) { 2085 idd = &idc->idc_direct; 2086 idd->idd_tx_cb_df(idd->idd_tx_cb_dh, NULL, 2087 ill->ill_flownotify_mh); 2088 ill->ill_flownotify_mh = NULL; 2089 } 2090 (void) idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_DIRECT, 2091 NULL, DLD_DISABLE); 2092 } 2093 2094 if ((ill->ill_capabilities & ILL_CAPAB_DLD_POLL) != 0) { 2095 ill->ill_capabilities &= ~ILL_CAPAB_DLD_POLL; 2096 ip_squeue_clean_all(ill); 2097 (void) idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_POLL, 2098 NULL, DLD_DISABLE); 2099 } 2100 2101 if ((ill->ill_capabilities & ILL_CAPAB_LSO) != 0) { 2102 ASSERT(ill->ill_lso_capab != NULL); 2103 /* 2104 * Clear the capability flag for LSO but retain the 2105 * ill_lso_capab structure since it's possible that another 2106 * thread is still referring to it. The structure only gets 2107 * deallocated when we destroy the ill. 2108 */ 2109 2110 ill->ill_capabilities &= ~ILL_CAPAB_LSO; 2111 (void) idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_LSO, 2112 NULL, DLD_DISABLE); 2113 } 2114 2115 ill->ill_capabilities &= ~ILL_CAPAB_DLD; 2116 ill_mac_perim_exit(ill, mph); 2117 } 2118 2119 /* 2120 * Capability Negotiation protocol 2121 * 2122 * We don't wait for DLPI capability operations to finish during interface 2123 * bringup or teardown. Doing so would introduce more asynchrony and the 2124 * interface up/down operations will need multiple return and restarts. 2125 * Instead the 'ipsq_current_ipif' of the ipsq is not cleared as long as 2126 * the 'ill_dlpi_deferred' chain is non-empty. This ensures that the next 2127 * exclusive operation won't start until the DLPI operations of the previous 2128 * exclusive operation complete. 2129 * 2130 * The capability state machine is shown below. 2131 * 2132 * state next state event, action 2133 * 2134 * IDCS_UNKNOWN IDCS_PROBE_SENT ill_capability_probe 2135 * IDCS_PROBE_SENT IDCS_OK ill_capability_ack 2136 * IDCS_PROBE_SENT IDCS_FAILED ip_rput_dlpi_writer (nack) 2137 * IDCS_OK IDCS_RENEG Receipt of DL_NOTE_CAPAB_RENEG 2138 * IDCS_OK IDCS_RESET_SENT ill_capability_reset 2139 * IDCS_RESET_SENT IDCS_UNKNOWN ill_capability_ack_thr 2140 * IDCS_RENEG IDCS_PROBE_SENT ill_capability_ack_thr -> 2141 * ill_capability_probe. 2142 */ 2143 2144 /* 2145 * Dedicated thread started from ip_stack_init that handles capability 2146 * disable. This thread ensures the taskq dispatch does not fail by waiting 2147 * for resources using TQ_SLEEP. The taskq mechanism is used to ensure 2148 * that direct calls to DLD are done in a cv_waitable context. 2149 */ 2150 void 2151 ill_taskq_dispatch(ip_stack_t *ipst) 2152 { 2153 callb_cpr_t cprinfo; 2154 char name[64]; 2155 mblk_t *mp; 2156 2157 (void) snprintf(name, sizeof (name), "ill_taskq_dispatch_%d", 2158 ipst->ips_netstack->netstack_stackid); 2159 CALLB_CPR_INIT(&cprinfo, &ipst->ips_capab_taskq_lock, callb_generic_cpr, 2160 name); 2161 mutex_enter(&ipst->ips_capab_taskq_lock); 2162 2163 for (;;) { 2164 mp = ipst->ips_capab_taskq_head; 2165 while (mp != NULL) { 2166 ipst->ips_capab_taskq_head = mp->b_next; 2167 if (ipst->ips_capab_taskq_head == NULL) 2168 ipst->ips_capab_taskq_tail = NULL; 2169 mutex_exit(&ipst->ips_capab_taskq_lock); 2170 mp->b_next = NULL; 2171 2172 VERIFY(taskq_dispatch(system_taskq, 2173 ill_capability_ack_thr, mp, TQ_SLEEP) != 0); 2174 mutex_enter(&ipst->ips_capab_taskq_lock); 2175 mp = ipst->ips_capab_taskq_head; 2176 } 2177 2178 if (ipst->ips_capab_taskq_quit) 2179 break; 2180 CALLB_CPR_SAFE_BEGIN(&cprinfo); 2181 cv_wait(&ipst->ips_capab_taskq_cv, &ipst->ips_capab_taskq_lock); 2182 CALLB_CPR_SAFE_END(&cprinfo, &ipst->ips_capab_taskq_lock); 2183 } 2184 VERIFY(ipst->ips_capab_taskq_head == NULL); 2185 VERIFY(ipst->ips_capab_taskq_tail == NULL); 2186 CALLB_CPR_EXIT(&cprinfo); 2187 thread_exit(); 2188 } 2189 2190 /* 2191 * Consume a new-style hardware capabilities negotiation ack. 2192 * Called via taskq on receipt of DL_CAPABILITY_ACK. 2193 */ 2194 static void 2195 ill_capability_ack_thr(void *arg) 2196 { 2197 mblk_t *mp = arg; 2198 dl_capability_ack_t *capp; 2199 dl_capability_sub_t *subp, *endp; 2200 ill_t *ill; 2201 boolean_t reneg; 2202 2203 ill = (ill_t *)mp->b_prev; 2204 mp->b_prev = NULL; 2205 2206 VERIFY(ipsq_enter(ill, B_FALSE, CUR_OP) == B_TRUE); 2207 2208 if (ill->ill_dlpi_capab_state == IDCS_RESET_SENT || 2209 ill->ill_dlpi_capab_state == IDCS_RENEG) { 2210 /* 2211 * We have received the ack for our DL_CAPAB reset request. 2212 * There isnt' anything in the message that needs processing. 2213 * All message based capabilities have been disabled, now 2214 * do the function call based capability disable. 2215 */ 2216 reneg = ill->ill_dlpi_capab_state == IDCS_RENEG; 2217 ill_capability_dld_disable(ill); 2218 ill->ill_dlpi_capab_state = IDCS_UNKNOWN; 2219 if (reneg) 2220 ill_capability_probe(ill); 2221 goto done; 2222 } 2223 2224 if (ill->ill_dlpi_capab_state == IDCS_PROBE_SENT) 2225 ill->ill_dlpi_capab_state = IDCS_OK; 2226 2227 capp = (dl_capability_ack_t *)mp->b_rptr; 2228 2229 if (capp->dl_sub_length == 0) { 2230 /* no new-style capabilities */ 2231 goto done; 2232 } 2233 2234 /* make sure the driver supplied correct dl_sub_length */ 2235 if ((sizeof (*capp) + capp->dl_sub_length) > MBLKL(mp)) { 2236 ip0dbg(("ill_capability_ack: bad DL_CAPABILITY_ACK, " 2237 "invalid dl_sub_length (%d)\n", capp->dl_sub_length)); 2238 goto done; 2239 } 2240 2241 #define SC(base, offset) (dl_capability_sub_t *)(((uchar_t *)(base))+(offset)) 2242 /* 2243 * There are sub-capabilities. Process the ones we know about. 2244 * Loop until we don't have room for another sub-cap header.. 2245 */ 2246 for (subp = SC(capp, capp->dl_sub_offset), 2247 endp = SC(subp, capp->dl_sub_length - sizeof (*subp)); 2248 subp <= endp; 2249 subp = SC(subp, sizeof (dl_capability_sub_t) + subp->dl_length)) { 2250 2251 switch (subp->dl_cap) { 2252 case DL_CAPAB_ID_WRAPPER: 2253 ill_capability_id_ack(ill, mp, subp); 2254 break; 2255 default: 2256 ill_capability_dispatch(ill, mp, subp); 2257 break; 2258 } 2259 } 2260 #undef SC 2261 done: 2262 inet_freemsg(mp); 2263 ill_capability_done(ill); 2264 ipsq_exit(ill->ill_phyint->phyint_ipsq); 2265 } 2266 2267 /* 2268 * This needs to be started in a taskq thread to provide a cv_waitable 2269 * context. 2270 */ 2271 void 2272 ill_capability_ack(ill_t *ill, mblk_t *mp) 2273 { 2274 ip_stack_t *ipst = ill->ill_ipst; 2275 2276 mp->b_prev = (mblk_t *)ill; 2277 ASSERT(mp->b_next == NULL); 2278 2279 if (taskq_dispatch(system_taskq, ill_capability_ack_thr, mp, 2280 TQ_NOSLEEP) != 0) 2281 return; 2282 2283 /* 2284 * The taskq dispatch failed. Signal the ill_taskq_dispatch thread 2285 * which will do the dispatch using TQ_SLEEP to guarantee success. 2286 */ 2287 mutex_enter(&ipst->ips_capab_taskq_lock); 2288 if (ipst->ips_capab_taskq_head == NULL) { 2289 ASSERT(ipst->ips_capab_taskq_tail == NULL); 2290 ipst->ips_capab_taskq_head = mp; 2291 } else { 2292 ipst->ips_capab_taskq_tail->b_next = mp; 2293 } 2294 ipst->ips_capab_taskq_tail = mp; 2295 2296 cv_signal(&ipst->ips_capab_taskq_cv); 2297 mutex_exit(&ipst->ips_capab_taskq_lock); 2298 } 2299 2300 /* 2301 * This routine is called to scan the fragmentation reassembly table for 2302 * the specified ILL for any packets that are starting to smell. 2303 * dead_interval is the maximum time in seconds that will be tolerated. It 2304 * will either be the value specified in ip_g_frag_timeout, or zero if the 2305 * ILL is shutting down and it is time to blow everything off. 2306 * 2307 * It returns the number of seconds (as a time_t) that the next frag timer 2308 * should be scheduled for, 0 meaning that the timer doesn't need to be 2309 * re-started. Note that the method of calculating next_timeout isn't 2310 * entirely accurate since time will flow between the time we grab 2311 * current_time and the time we schedule the next timeout. This isn't a 2312 * big problem since this is the timer for sending an ICMP reassembly time 2313 * exceeded messages, and it doesn't have to be exactly accurate. 2314 * 2315 * This function is 2316 * sometimes called as writer, although this is not required. 2317 */ 2318 time_t 2319 ill_frag_timeout(ill_t *ill, time_t dead_interval) 2320 { 2321 ipfb_t *ipfb; 2322 ipfb_t *endp; 2323 ipf_t *ipf; 2324 ipf_t *ipfnext; 2325 mblk_t *mp; 2326 time_t current_time = gethrestime_sec(); 2327 time_t next_timeout = 0; 2328 uint32_t hdr_length; 2329 mblk_t *send_icmp_head; 2330 mblk_t *send_icmp_head_v6; 2331 ip_stack_t *ipst = ill->ill_ipst; 2332 ip_recv_attr_t iras; 2333 2334 bzero(&iras, sizeof (iras)); 2335 iras.ira_flags = 0; 2336 iras.ira_ill = iras.ira_rill = ill; 2337 iras.ira_ruifindex = ill->ill_phyint->phyint_ifindex; 2338 iras.ira_rifindex = iras.ira_ruifindex; 2339 2340 ipfb = ill->ill_frag_hash_tbl; 2341 if (ipfb == NULL) 2342 return (B_FALSE); 2343 endp = &ipfb[ILL_FRAG_HASH_TBL_COUNT]; 2344 /* Walk the frag hash table. */ 2345 for (; ipfb < endp; ipfb++) { 2346 send_icmp_head = NULL; 2347 send_icmp_head_v6 = NULL; 2348 mutex_enter(&ipfb->ipfb_lock); 2349 while ((ipf = ipfb->ipfb_ipf) != 0) { 2350 time_t frag_time = current_time - ipf->ipf_timestamp; 2351 time_t frag_timeout; 2352 2353 if (frag_time < dead_interval) { 2354 /* 2355 * There are some outstanding fragments 2356 * that will timeout later. Make note of 2357 * the time so that we can reschedule the 2358 * next timeout appropriately. 2359 */ 2360 frag_timeout = dead_interval - frag_time; 2361 if (next_timeout == 0 || 2362 frag_timeout < next_timeout) { 2363 next_timeout = frag_timeout; 2364 } 2365 break; 2366 } 2367 /* Time's up. Get it out of here. */ 2368 hdr_length = ipf->ipf_nf_hdr_len; 2369 ipfnext = ipf->ipf_hash_next; 2370 if (ipfnext) 2371 ipfnext->ipf_ptphn = ipf->ipf_ptphn; 2372 *ipf->ipf_ptphn = ipfnext; 2373 mp = ipf->ipf_mp->b_cont; 2374 for (; mp; mp = mp->b_cont) { 2375 /* Extra points for neatness. */ 2376 IP_REASS_SET_START(mp, 0); 2377 IP_REASS_SET_END(mp, 0); 2378 } 2379 mp = ipf->ipf_mp->b_cont; 2380 atomic_add_32(&ill->ill_frag_count, -ipf->ipf_count); 2381 ASSERT(ipfb->ipfb_count >= ipf->ipf_count); 2382 ipfb->ipfb_count -= ipf->ipf_count; 2383 ASSERT(ipfb->ipfb_frag_pkts > 0); 2384 ipfb->ipfb_frag_pkts--; 2385 /* 2386 * We do not send any icmp message from here because 2387 * we currently are holding the ipfb_lock for this 2388 * hash chain. If we try and send any icmp messages 2389 * from here we may end up via a put back into ip 2390 * trying to get the same lock, causing a recursive 2391 * mutex panic. Instead we build a list and send all 2392 * the icmp messages after we have dropped the lock. 2393 */ 2394 if (ill->ill_isv6) { 2395 if (hdr_length != 0) { 2396 mp->b_next = send_icmp_head_v6; 2397 send_icmp_head_v6 = mp; 2398 } else { 2399 freemsg(mp); 2400 } 2401 } else { 2402 if (hdr_length != 0) { 2403 mp->b_next = send_icmp_head; 2404 send_icmp_head = mp; 2405 } else { 2406 freemsg(mp); 2407 } 2408 } 2409 BUMP_MIB(ill->ill_ip_mib, ipIfStatsReasmFails); 2410 ip_drop_input("ipIfStatsReasmFails", ipf->ipf_mp, ill); 2411 freeb(ipf->ipf_mp); 2412 } 2413 mutex_exit(&ipfb->ipfb_lock); 2414 /* 2415 * Now need to send any icmp messages that we delayed from 2416 * above. 2417 */ 2418 while (send_icmp_head_v6 != NULL) { 2419 ip6_t *ip6h; 2420 2421 mp = send_icmp_head_v6; 2422 send_icmp_head_v6 = send_icmp_head_v6->b_next; 2423 mp->b_next = NULL; 2424 ip6h = (ip6_t *)mp->b_rptr; 2425 iras.ira_flags = 0; 2426 /* 2427 * This will result in an incorrect ALL_ZONES zoneid 2428 * for multicast packets, but we 2429 * don't send ICMP errors for those in any case. 2430 */ 2431 iras.ira_zoneid = 2432 ipif_lookup_addr_zoneid_v6(&ip6h->ip6_dst, 2433 ill, ipst); 2434 ip_drop_input("ICMP_TIME_EXCEEDED reass", mp, ill); 2435 icmp_time_exceeded_v6(mp, 2436 ICMP_REASSEMBLY_TIME_EXCEEDED, B_FALSE, 2437 &iras); 2438 ASSERT(!(iras.ira_flags & IRAF_IPSEC_SECURE)); 2439 } 2440 while (send_icmp_head != NULL) { 2441 ipaddr_t dst; 2442 2443 mp = send_icmp_head; 2444 send_icmp_head = send_icmp_head->b_next; 2445 mp->b_next = NULL; 2446 2447 dst = ((ipha_t *)mp->b_rptr)->ipha_dst; 2448 2449 iras.ira_flags = IRAF_IS_IPV4; 2450 /* 2451 * This will result in an incorrect ALL_ZONES zoneid 2452 * for broadcast and multicast packets, but we 2453 * don't send ICMP errors for those in any case. 2454 */ 2455 iras.ira_zoneid = ipif_lookup_addr_zoneid(dst, 2456 ill, ipst); 2457 ip_drop_input("ICMP_TIME_EXCEEDED reass", mp, ill); 2458 icmp_time_exceeded(mp, 2459 ICMP_REASSEMBLY_TIME_EXCEEDED, &iras); 2460 ASSERT(!(iras.ira_flags & IRAF_IPSEC_SECURE)); 2461 } 2462 } 2463 /* 2464 * A non-dying ILL will use the return value to decide whether to 2465 * restart the frag timer, and for how long. 2466 */ 2467 return (next_timeout); 2468 } 2469 2470 /* 2471 * This routine is called when the approximate count of mblk memory used 2472 * for the specified ILL has exceeded max_count. 2473 */ 2474 void 2475 ill_frag_prune(ill_t *ill, uint_t max_count) 2476 { 2477 ipfb_t *ipfb; 2478 ipf_t *ipf; 2479 size_t count; 2480 clock_t now; 2481 2482 /* 2483 * If we are here within ip_min_frag_prune_time msecs remove 2484 * ill_frag_free_num_pkts oldest packets from each bucket and increment 2485 * ill_frag_free_num_pkts. 2486 */ 2487 mutex_enter(&ill->ill_lock); 2488 now = ddi_get_lbolt(); 2489 if (TICK_TO_MSEC(now - ill->ill_last_frag_clean_time) <= 2490 (ip_min_frag_prune_time != 0 ? 2491 ip_min_frag_prune_time : msec_per_tick)) { 2492 2493 ill->ill_frag_free_num_pkts++; 2494 2495 } else { 2496 ill->ill_frag_free_num_pkts = 0; 2497 } 2498 ill->ill_last_frag_clean_time = now; 2499 mutex_exit(&ill->ill_lock); 2500 2501 /* 2502 * free ill_frag_free_num_pkts oldest packets from each bucket. 2503 */ 2504 if (ill->ill_frag_free_num_pkts != 0) { 2505 int ix; 2506 2507 for (ix = 0; ix < ILL_FRAG_HASH_TBL_COUNT; ix++) { 2508 ipfb = &ill->ill_frag_hash_tbl[ix]; 2509 mutex_enter(&ipfb->ipfb_lock); 2510 if (ipfb->ipfb_ipf != NULL) { 2511 ill_frag_free_pkts(ill, ipfb, ipfb->ipfb_ipf, 2512 ill->ill_frag_free_num_pkts); 2513 } 2514 mutex_exit(&ipfb->ipfb_lock); 2515 } 2516 } 2517 /* 2518 * While the reassembly list for this ILL is too big, prune a fragment 2519 * queue by age, oldest first. 2520 */ 2521 while (ill->ill_frag_count > max_count) { 2522 int ix; 2523 ipfb_t *oipfb = NULL; 2524 uint_t oldest = UINT_MAX; 2525 2526 count = 0; 2527 for (ix = 0; ix < ILL_FRAG_HASH_TBL_COUNT; ix++) { 2528 ipfb = &ill->ill_frag_hash_tbl[ix]; 2529 mutex_enter(&ipfb->ipfb_lock); 2530 ipf = ipfb->ipfb_ipf; 2531 if (ipf != NULL && ipf->ipf_gen < oldest) { 2532 oldest = ipf->ipf_gen; 2533 oipfb = ipfb; 2534 } 2535 count += ipfb->ipfb_count; 2536 mutex_exit(&ipfb->ipfb_lock); 2537 } 2538 if (oipfb == NULL) 2539 break; 2540 2541 if (count <= max_count) 2542 return; /* Somebody beat us to it, nothing to do */ 2543 mutex_enter(&oipfb->ipfb_lock); 2544 ipf = oipfb->ipfb_ipf; 2545 if (ipf != NULL) { 2546 ill_frag_free_pkts(ill, oipfb, ipf, 1); 2547 } 2548 mutex_exit(&oipfb->ipfb_lock); 2549 } 2550 } 2551 2552 /* 2553 * free 'free_cnt' fragmented packets starting at ipf. 2554 */ 2555 void 2556 ill_frag_free_pkts(ill_t *ill, ipfb_t *ipfb, ipf_t *ipf, int free_cnt) 2557 { 2558 size_t count; 2559 mblk_t *mp; 2560 mblk_t *tmp; 2561 ipf_t **ipfp = ipf->ipf_ptphn; 2562 2563 ASSERT(MUTEX_HELD(&ipfb->ipfb_lock)); 2564 ASSERT(ipfp != NULL); 2565 ASSERT(ipf != NULL); 2566 2567 while (ipf != NULL && free_cnt-- > 0) { 2568 count = ipf->ipf_count; 2569 mp = ipf->ipf_mp; 2570 ipf = ipf->ipf_hash_next; 2571 for (tmp = mp; tmp; tmp = tmp->b_cont) { 2572 IP_REASS_SET_START(tmp, 0); 2573 IP_REASS_SET_END(tmp, 0); 2574 } 2575 atomic_add_32(&ill->ill_frag_count, -count); 2576 ASSERT(ipfb->ipfb_count >= count); 2577 ipfb->ipfb_count -= count; 2578 ASSERT(ipfb->ipfb_frag_pkts > 0); 2579 ipfb->ipfb_frag_pkts--; 2580 BUMP_MIB(ill->ill_ip_mib, ipIfStatsReasmFails); 2581 ip_drop_input("ipIfStatsReasmFails", mp, ill); 2582 freemsg(mp); 2583 } 2584 2585 if (ipf) 2586 ipf->ipf_ptphn = ipfp; 2587 ipfp[0] = ipf; 2588 } 2589 2590 #define ND_FORWARD_WARNING "The <if>:ip*_forwarding ndd variables are " \ 2591 "obsolete and may be removed in a future release of Solaris. Use " \ 2592 "ifconfig(1M) to manipulate the forwarding status of an interface." 2593 2594 /* 2595 * For obsolete per-interface forwarding configuration; 2596 * called in response to ND_GET. 2597 */ 2598 /* ARGSUSED */ 2599 static int 2600 nd_ill_forward_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *ioc_cr) 2601 { 2602 ill_t *ill = (ill_t *)cp; 2603 2604 cmn_err(CE_WARN, ND_FORWARD_WARNING); 2605 2606 (void) mi_mpprintf(mp, "%d", (ill->ill_flags & ILLF_ROUTER) != 0); 2607 return (0); 2608 } 2609 2610 /* 2611 * For obsolete per-interface forwarding configuration; 2612 * called in response to ND_SET. 2613 */ 2614 /* ARGSUSED */ 2615 static int 2616 nd_ill_forward_set(queue_t *q, mblk_t *mp, char *valuestr, caddr_t cp, 2617 cred_t *ioc_cr) 2618 { 2619 long value; 2620 int retval; 2621 ip_stack_t *ipst = CONNQ_TO_IPST(q); 2622 2623 cmn_err(CE_WARN, ND_FORWARD_WARNING); 2624 2625 if (ddi_strtol(valuestr, NULL, 10, &value) != 0 || 2626 value < 0 || value > 1) { 2627 return (EINVAL); 2628 } 2629 2630 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 2631 retval = ill_forward_set((ill_t *)cp, (value != 0)); 2632 rw_exit(&ipst->ips_ill_g_lock); 2633 return (retval); 2634 } 2635 2636 /* 2637 * Helper function for ill_forward_set(). 2638 */ 2639 static void 2640 ill_forward_set_on_ill(ill_t *ill, boolean_t enable) 2641 { 2642 ip_stack_t *ipst = ill->ill_ipst; 2643 2644 ASSERT(IAM_WRITER_ILL(ill) || RW_READ_HELD(&ipst->ips_ill_g_lock)); 2645 2646 ip1dbg(("ill_forward_set: %s %s forwarding on %s", 2647 (enable ? "Enabling" : "Disabling"), 2648 (ill->ill_isv6 ? "IPv6" : "IPv4"), ill->ill_name)); 2649 mutex_enter(&ill->ill_lock); 2650 if (enable) 2651 ill->ill_flags |= ILLF_ROUTER; 2652 else 2653 ill->ill_flags &= ~ILLF_ROUTER; 2654 mutex_exit(&ill->ill_lock); 2655 if (ill->ill_isv6) 2656 ill_set_nce_router_flags(ill, enable); 2657 /* Notify routing socket listeners of this change. */ 2658 if (ill->ill_ipif != NULL) 2659 ip_rts_ifmsg(ill->ill_ipif, RTSQ_DEFAULT); 2660 } 2661 2662 /* 2663 * Set an ill's ILLF_ROUTER flag appropriately. Send up RTS_IFINFO routing 2664 * socket messages for each interface whose flags we change. 2665 */ 2666 int 2667 ill_forward_set(ill_t *ill, boolean_t enable) 2668 { 2669 ipmp_illgrp_t *illg; 2670 ip_stack_t *ipst = ill->ill_ipst; 2671 2672 ASSERT(IAM_WRITER_ILL(ill) || RW_READ_HELD(&ipst->ips_ill_g_lock)); 2673 2674 if ((enable && (ill->ill_flags & ILLF_ROUTER)) || 2675 (!enable && !(ill->ill_flags & ILLF_ROUTER))) 2676 return (0); 2677 2678 if (IS_LOOPBACK(ill)) 2679 return (EINVAL); 2680 2681 if (IS_IPMP(ill) || IS_UNDER_IPMP(ill)) { 2682 /* 2683 * Update all of the interfaces in the group. 2684 */ 2685 illg = ill->ill_grp; 2686 ill = list_head(&illg->ig_if); 2687 for (; ill != NULL; ill = list_next(&illg->ig_if, ill)) 2688 ill_forward_set_on_ill(ill, enable); 2689 2690 /* 2691 * Update the IPMP meta-interface. 2692 */ 2693 ill_forward_set_on_ill(ipmp_illgrp_ipmp_ill(illg), enable); 2694 return (0); 2695 } 2696 2697 ill_forward_set_on_ill(ill, enable); 2698 return (0); 2699 } 2700 2701 /* 2702 * Based on the ILLF_ROUTER flag of an ill, make sure all local nce's for 2703 * addresses assigned to the ill have the NCE_F_ISROUTER flag appropriately 2704 * set or clear. 2705 */ 2706 static void 2707 ill_set_nce_router_flags(ill_t *ill, boolean_t enable) 2708 { 2709 ipif_t *ipif; 2710 ncec_t *ncec; 2711 nce_t *nce; 2712 2713 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 2714 /* 2715 * NOTE: we match across the illgrp because nce's for 2716 * addresses on IPMP interfaces have an nce_ill that points to 2717 * the bound underlying ill. 2718 */ 2719 nce = nce_lookup_v6(ill, &ipif->ipif_v6lcl_addr); 2720 if (nce != NULL) { 2721 ncec = nce->nce_common; 2722 mutex_enter(&ncec->ncec_lock); 2723 if (enable) 2724 ncec->ncec_flags |= NCE_F_ISROUTER; 2725 else 2726 ncec->ncec_flags &= ~NCE_F_ISROUTER; 2727 mutex_exit(&ncec->ncec_lock); 2728 nce_refrele(nce); 2729 } 2730 } 2731 } 2732 2733 /* 2734 * Given an ill with a _valid_ name, add the ip_forwarding ndd variable 2735 * for this ill. Make sure the v6/v4 question has been answered about this 2736 * ill. The creation of this ndd variable is only for backwards compatibility. 2737 * The preferred way to control per-interface IP forwarding is through the 2738 * ILLF_ROUTER interface flag. 2739 */ 2740 static int 2741 ill_set_ndd_name(ill_t *ill) 2742 { 2743 char *suffix; 2744 ip_stack_t *ipst = ill->ill_ipst; 2745 2746 ASSERT(IAM_WRITER_ILL(ill)); 2747 2748 if (ill->ill_isv6) 2749 suffix = ipv6_forward_suffix; 2750 else 2751 suffix = ipv4_forward_suffix; 2752 2753 ill->ill_ndd_name = ill->ill_name + ill->ill_name_length; 2754 bcopy(ill->ill_name, ill->ill_ndd_name, ill->ill_name_length - 1); 2755 /* 2756 * Copies over the '\0'. 2757 * Note that strlen(suffix) is always bounded. 2758 */ 2759 bcopy(suffix, ill->ill_ndd_name + ill->ill_name_length - 1, 2760 strlen(suffix) + 1); 2761 2762 /* 2763 * Use of the nd table requires holding the reader lock. 2764 * Modifying the nd table thru nd_load/nd_unload requires 2765 * the writer lock. 2766 */ 2767 rw_enter(&ipst->ips_ip_g_nd_lock, RW_WRITER); 2768 if (!nd_load(&ipst->ips_ip_g_nd, ill->ill_ndd_name, nd_ill_forward_get, 2769 nd_ill_forward_set, (caddr_t)ill)) { 2770 /* 2771 * If the nd_load failed, it only meant that it could not 2772 * allocate a new bunch of room for further NDD expansion. 2773 * Because of that, the ill_ndd_name will be set to 0, and 2774 * this interface is at the mercy of the global ip_forwarding 2775 * variable. 2776 */ 2777 rw_exit(&ipst->ips_ip_g_nd_lock); 2778 ill->ill_ndd_name = NULL; 2779 return (ENOMEM); 2780 } 2781 rw_exit(&ipst->ips_ip_g_nd_lock); 2782 return (0); 2783 } 2784 2785 /* 2786 * Intializes the context structure and returns the first ill in the list 2787 * cuurently start_list and end_list can have values: 2788 * MAX_G_HEADS Traverse both IPV4 and IPV6 lists. 2789 * IP_V4_G_HEAD Traverse IPV4 list only. 2790 * IP_V6_G_HEAD Traverse IPV6 list only. 2791 */ 2792 2793 /* 2794 * We don't check for CONDEMNED ills here. Caller must do that if 2795 * necessary under the ill lock. 2796 */ 2797 ill_t * 2798 ill_first(int start_list, int end_list, ill_walk_context_t *ctx, 2799 ip_stack_t *ipst) 2800 { 2801 ill_if_t *ifp; 2802 ill_t *ill; 2803 avl_tree_t *avl_tree; 2804 2805 ASSERT(RW_LOCK_HELD(&ipst->ips_ill_g_lock)); 2806 ASSERT(end_list <= MAX_G_HEADS && start_list >= 0); 2807 2808 /* 2809 * setup the lists to search 2810 */ 2811 if (end_list != MAX_G_HEADS) { 2812 ctx->ctx_current_list = start_list; 2813 ctx->ctx_last_list = end_list; 2814 } else { 2815 ctx->ctx_last_list = MAX_G_HEADS - 1; 2816 ctx->ctx_current_list = 0; 2817 } 2818 2819 while (ctx->ctx_current_list <= ctx->ctx_last_list) { 2820 ifp = IP_VX_ILL_G_LIST(ctx->ctx_current_list, ipst); 2821 if (ifp != (ill_if_t *) 2822 &IP_VX_ILL_G_LIST(ctx->ctx_current_list, ipst)) { 2823 avl_tree = &ifp->illif_avl_by_ppa; 2824 ill = avl_first(avl_tree); 2825 /* 2826 * ill is guaranteed to be non NULL or ifp should have 2827 * not existed. 2828 */ 2829 ASSERT(ill != NULL); 2830 return (ill); 2831 } 2832 ctx->ctx_current_list++; 2833 } 2834 2835 return (NULL); 2836 } 2837 2838 /* 2839 * returns the next ill in the list. ill_first() must have been called 2840 * before calling ill_next() or bad things will happen. 2841 */ 2842 2843 /* 2844 * We don't check for CONDEMNED ills here. Caller must do that if 2845 * necessary under the ill lock. 2846 */ 2847 ill_t * 2848 ill_next(ill_walk_context_t *ctx, ill_t *lastill) 2849 { 2850 ill_if_t *ifp; 2851 ill_t *ill; 2852 ip_stack_t *ipst = lastill->ill_ipst; 2853 2854 ASSERT(lastill->ill_ifptr != (ill_if_t *) 2855 &IP_VX_ILL_G_LIST(ctx->ctx_current_list, ipst)); 2856 if ((ill = avl_walk(&lastill->ill_ifptr->illif_avl_by_ppa, lastill, 2857 AVL_AFTER)) != NULL) { 2858 return (ill); 2859 } 2860 2861 /* goto next ill_ifp in the list. */ 2862 ifp = lastill->ill_ifptr->illif_next; 2863 2864 /* make sure not at end of circular list */ 2865 while (ifp == 2866 (ill_if_t *)&IP_VX_ILL_G_LIST(ctx->ctx_current_list, ipst)) { 2867 if (++ctx->ctx_current_list > ctx->ctx_last_list) 2868 return (NULL); 2869 ifp = IP_VX_ILL_G_LIST(ctx->ctx_current_list, ipst); 2870 } 2871 2872 return (avl_first(&ifp->illif_avl_by_ppa)); 2873 } 2874 2875 /* 2876 * Check interface name for correct format: [a-zA-Z]+[a-zA-Z0-9._]*[0-9]+ 2877 * The final number (PPA) must not have any leading zeros. Upon success, a 2878 * pointer to the start of the PPA is returned; otherwise NULL is returned. 2879 */ 2880 static char * 2881 ill_get_ppa_ptr(char *name) 2882 { 2883 int namelen = strlen(name); 2884 int end_ndx = namelen - 1; 2885 int ppa_ndx, i; 2886 2887 /* 2888 * Check that the first character is [a-zA-Z], and that the last 2889 * character is [0-9]. 2890 */ 2891 if (namelen == 0 || !isalpha(name[0]) || !isdigit(name[end_ndx])) 2892 return (NULL); 2893 2894 /* 2895 * Set `ppa_ndx' to the PPA start, and check for leading zeroes. 2896 */ 2897 for (ppa_ndx = end_ndx; ppa_ndx > 0; ppa_ndx--) 2898 if (!isdigit(name[ppa_ndx - 1])) 2899 break; 2900 2901 if (name[ppa_ndx] == '0' && ppa_ndx < end_ndx) 2902 return (NULL); 2903 2904 /* 2905 * Check that the intermediate characters are [a-z0-9.] 2906 */ 2907 for (i = 1; i < ppa_ndx; i++) { 2908 if (!isalpha(name[i]) && !isdigit(name[i]) && 2909 name[i] != '.' && name[i] != '_') { 2910 return (NULL); 2911 } 2912 } 2913 2914 return (name + ppa_ndx); 2915 } 2916 2917 /* 2918 * use avl tree to locate the ill. 2919 */ 2920 static ill_t * 2921 ill_find_by_name(char *name, boolean_t isv6, ip_stack_t *ipst) 2922 { 2923 char *ppa_ptr = NULL; 2924 int len; 2925 uint_t ppa; 2926 ill_t *ill = NULL; 2927 ill_if_t *ifp; 2928 int list; 2929 2930 /* 2931 * get ppa ptr 2932 */ 2933 if (isv6) 2934 list = IP_V6_G_HEAD; 2935 else 2936 list = IP_V4_G_HEAD; 2937 2938 if ((ppa_ptr = ill_get_ppa_ptr(name)) == NULL) { 2939 return (NULL); 2940 } 2941 2942 len = ppa_ptr - name + 1; 2943 2944 ppa = stoi(&ppa_ptr); 2945 2946 ifp = IP_VX_ILL_G_LIST(list, ipst); 2947 2948 while (ifp != (ill_if_t *)&IP_VX_ILL_G_LIST(list, ipst)) { 2949 /* 2950 * match is done on len - 1 as the name is not null 2951 * terminated it contains ppa in addition to the interface 2952 * name. 2953 */ 2954 if ((ifp->illif_name_len == len) && 2955 bcmp(ifp->illif_name, name, len - 1) == 0) { 2956 break; 2957 } else { 2958 ifp = ifp->illif_next; 2959 } 2960 } 2961 2962 if (ifp == (ill_if_t *)&IP_VX_ILL_G_LIST(list, ipst)) { 2963 /* 2964 * Even the interface type does not exist. 2965 */ 2966 return (NULL); 2967 } 2968 2969 ill = avl_find(&ifp->illif_avl_by_ppa, (void *) &ppa, NULL); 2970 if (ill != NULL) { 2971 mutex_enter(&ill->ill_lock); 2972 if (ILL_CAN_LOOKUP(ill)) { 2973 ill_refhold_locked(ill); 2974 mutex_exit(&ill->ill_lock); 2975 return (ill); 2976 } 2977 mutex_exit(&ill->ill_lock); 2978 } 2979 return (NULL); 2980 } 2981 2982 /* 2983 * comparison function for use with avl. 2984 */ 2985 static int 2986 ill_compare_ppa(const void *ppa_ptr, const void *ill_ptr) 2987 { 2988 uint_t ppa; 2989 uint_t ill_ppa; 2990 2991 ASSERT(ppa_ptr != NULL && ill_ptr != NULL); 2992 2993 ppa = *((uint_t *)ppa_ptr); 2994 ill_ppa = ((const ill_t *)ill_ptr)->ill_ppa; 2995 /* 2996 * We want the ill with the lowest ppa to be on the 2997 * top. 2998 */ 2999 if (ill_ppa < ppa) 3000 return (1); 3001 if (ill_ppa > ppa) 3002 return (-1); 3003 return (0); 3004 } 3005 3006 /* 3007 * remove an interface type from the global list. 3008 */ 3009 static void 3010 ill_delete_interface_type(ill_if_t *interface) 3011 { 3012 ASSERT(interface != NULL); 3013 ASSERT(avl_numnodes(&interface->illif_avl_by_ppa) == 0); 3014 3015 avl_destroy(&interface->illif_avl_by_ppa); 3016 if (interface->illif_ppa_arena != NULL) 3017 vmem_destroy(interface->illif_ppa_arena); 3018 3019 remque(interface); 3020 3021 mi_free(interface); 3022 } 3023 3024 /* 3025 * remove ill from the global list. 3026 */ 3027 static void 3028 ill_glist_delete(ill_t *ill) 3029 { 3030 ip_stack_t *ipst; 3031 phyint_t *phyi; 3032 3033 if (ill == NULL) 3034 return; 3035 ipst = ill->ill_ipst; 3036 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 3037 3038 /* 3039 * If the ill was never inserted into the AVL tree 3040 * we skip the if branch. 3041 */ 3042 if (ill->ill_ifptr != NULL) { 3043 /* 3044 * remove from AVL tree and free ppa number 3045 */ 3046 avl_remove(&ill->ill_ifptr->illif_avl_by_ppa, ill); 3047 3048 if (ill->ill_ifptr->illif_ppa_arena != NULL) { 3049 vmem_free(ill->ill_ifptr->illif_ppa_arena, 3050 (void *)(uintptr_t)(ill->ill_ppa+1), 1); 3051 } 3052 if (avl_numnodes(&ill->ill_ifptr->illif_avl_by_ppa) == 0) { 3053 ill_delete_interface_type(ill->ill_ifptr); 3054 } 3055 3056 /* 3057 * Indicate ill is no longer in the list. 3058 */ 3059 ill->ill_ifptr = NULL; 3060 ill->ill_name_length = 0; 3061 ill->ill_name[0] = '\0'; 3062 ill->ill_ppa = UINT_MAX; 3063 } 3064 3065 /* Generate one last event for this ill. */ 3066 ill_nic_event_dispatch(ill, 0, NE_UNPLUMB, ill->ill_name, 3067 ill->ill_name_length); 3068 3069 ASSERT(ill->ill_phyint != NULL); 3070 phyi = ill->ill_phyint; 3071 ill->ill_phyint = NULL; 3072 3073 /* 3074 * ill_init allocates a phyint always to store the copy 3075 * of flags relevant to phyint. At that point in time, we could 3076 * not assign the name and hence phyint_illv4/v6 could not be 3077 * initialized. Later in ipif_set_values, we assign the name to 3078 * the ill, at which point in time we assign phyint_illv4/v6. 3079 * Thus we don't rely on phyint_illv6 to be initialized always. 3080 */ 3081 if (ill->ill_flags & ILLF_IPV6) 3082 phyi->phyint_illv6 = NULL; 3083 else 3084 phyi->phyint_illv4 = NULL; 3085 3086 if (phyi->phyint_illv4 != NULL || phyi->phyint_illv6 != NULL) { 3087 rw_exit(&ipst->ips_ill_g_lock); 3088 return; 3089 } 3090 3091 /* 3092 * There are no ills left on this phyint; pull it out of the phyint 3093 * avl trees, and free it. 3094 */ 3095 if (phyi->phyint_ifindex > 0) { 3096 avl_remove(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 3097 phyi); 3098 avl_remove(&ipst->ips_phyint_g_list->phyint_list_avl_by_name, 3099 phyi); 3100 } 3101 rw_exit(&ipst->ips_ill_g_lock); 3102 3103 phyint_free(phyi); 3104 } 3105 3106 /* 3107 * allocate a ppa, if the number of plumbed interfaces of this type are 3108 * less than ill_no_arena do a linear search to find a unused ppa. 3109 * When the number goes beyond ill_no_arena switch to using an arena. 3110 * Note: ppa value of zero cannot be allocated from vmem_arena as it 3111 * is the return value for an error condition, so allocation starts at one 3112 * and is decremented by one. 3113 */ 3114 static int 3115 ill_alloc_ppa(ill_if_t *ifp, ill_t *ill) 3116 { 3117 ill_t *tmp_ill; 3118 uint_t start, end; 3119 int ppa; 3120 3121 if (ifp->illif_ppa_arena == NULL && 3122 (avl_numnodes(&ifp->illif_avl_by_ppa) + 1 > ill_no_arena)) { 3123 /* 3124 * Create an arena. 3125 */ 3126 ifp->illif_ppa_arena = vmem_create(ifp->illif_name, 3127 (void *)1, UINT_MAX - 1, 1, NULL, NULL, 3128 NULL, 0, VM_SLEEP | VMC_IDENTIFIER); 3129 /* allocate what has already been assigned */ 3130 for (tmp_ill = avl_first(&ifp->illif_avl_by_ppa); 3131 tmp_ill != NULL; tmp_ill = avl_walk(&ifp->illif_avl_by_ppa, 3132 tmp_ill, AVL_AFTER)) { 3133 ppa = (int)(uintptr_t)vmem_xalloc(ifp->illif_ppa_arena, 3134 1, /* size */ 3135 1, /* align/quantum */ 3136 0, /* phase */ 3137 0, /* nocross */ 3138 /* minaddr */ 3139 (void *)((uintptr_t)tmp_ill->ill_ppa + 1), 3140 /* maxaddr */ 3141 (void *)((uintptr_t)tmp_ill->ill_ppa + 2), 3142 VM_NOSLEEP|VM_FIRSTFIT); 3143 if (ppa == 0) { 3144 ip1dbg(("ill_alloc_ppa: ppa allocation" 3145 " failed while switching")); 3146 vmem_destroy(ifp->illif_ppa_arena); 3147 ifp->illif_ppa_arena = NULL; 3148 break; 3149 } 3150 } 3151 } 3152 3153 if (ifp->illif_ppa_arena != NULL) { 3154 if (ill->ill_ppa == UINT_MAX) { 3155 ppa = (int)(uintptr_t)vmem_alloc(ifp->illif_ppa_arena, 3156 1, VM_NOSLEEP|VM_FIRSTFIT); 3157 if (ppa == 0) 3158 return (EAGAIN); 3159 ill->ill_ppa = --ppa; 3160 } else { 3161 ppa = (int)(uintptr_t)vmem_xalloc(ifp->illif_ppa_arena, 3162 1, /* size */ 3163 1, /* align/quantum */ 3164 0, /* phase */ 3165 0, /* nocross */ 3166 (void *)(uintptr_t)(ill->ill_ppa + 1), /* minaddr */ 3167 (void *)(uintptr_t)(ill->ill_ppa + 2), /* maxaddr */ 3168 VM_NOSLEEP|VM_FIRSTFIT); 3169 /* 3170 * Most likely the allocation failed because 3171 * the requested ppa was in use. 3172 */ 3173 if (ppa == 0) 3174 return (EEXIST); 3175 } 3176 return (0); 3177 } 3178 3179 /* 3180 * No arena is in use and not enough (>ill_no_arena) interfaces have 3181 * been plumbed to create one. Do a linear search to get a unused ppa. 3182 */ 3183 if (ill->ill_ppa == UINT_MAX) { 3184 end = UINT_MAX - 1; 3185 start = 0; 3186 } else { 3187 end = start = ill->ill_ppa; 3188 } 3189 3190 tmp_ill = avl_find(&ifp->illif_avl_by_ppa, (void *)&start, NULL); 3191 while (tmp_ill != NULL && tmp_ill->ill_ppa == start) { 3192 if (start++ >= end) { 3193 if (ill->ill_ppa == UINT_MAX) 3194 return (EAGAIN); 3195 else 3196 return (EEXIST); 3197 } 3198 tmp_ill = avl_walk(&ifp->illif_avl_by_ppa, tmp_ill, AVL_AFTER); 3199 } 3200 ill->ill_ppa = start; 3201 return (0); 3202 } 3203 3204 /* 3205 * Insert ill into the list of configured ill's. Once this function completes, 3206 * the ill is globally visible and is available through lookups. More precisely 3207 * this happens after the caller drops the ill_g_lock. 3208 */ 3209 static int 3210 ill_glist_insert(ill_t *ill, char *name, boolean_t isv6) 3211 { 3212 ill_if_t *ill_interface; 3213 avl_index_t where = 0; 3214 int error; 3215 int name_length; 3216 int index; 3217 boolean_t check_length = B_FALSE; 3218 ip_stack_t *ipst = ill->ill_ipst; 3219 3220 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); 3221 3222 name_length = mi_strlen(name) + 1; 3223 3224 if (isv6) 3225 index = IP_V6_G_HEAD; 3226 else 3227 index = IP_V4_G_HEAD; 3228 3229 ill_interface = IP_VX_ILL_G_LIST(index, ipst); 3230 /* 3231 * Search for interface type based on name 3232 */ 3233 while (ill_interface != (ill_if_t *)&IP_VX_ILL_G_LIST(index, ipst)) { 3234 if ((ill_interface->illif_name_len == name_length) && 3235 (strcmp(ill_interface->illif_name, name) == 0)) { 3236 break; 3237 } 3238 ill_interface = ill_interface->illif_next; 3239 } 3240 3241 /* 3242 * Interface type not found, create one. 3243 */ 3244 if (ill_interface == (ill_if_t *)&IP_VX_ILL_G_LIST(index, ipst)) { 3245 ill_g_head_t ghead; 3246 3247 /* 3248 * allocate ill_if_t structure 3249 */ 3250 ill_interface = (ill_if_t *)mi_zalloc(sizeof (ill_if_t)); 3251 if (ill_interface == NULL) { 3252 return (ENOMEM); 3253 } 3254 3255 (void) strcpy(ill_interface->illif_name, name); 3256 ill_interface->illif_name_len = name_length; 3257 3258 avl_create(&ill_interface->illif_avl_by_ppa, 3259 ill_compare_ppa, sizeof (ill_t), 3260 offsetof(struct ill_s, ill_avl_byppa)); 3261 3262 /* 3263 * link the structure in the back to maintain order 3264 * of configuration for ifconfig output. 3265 */ 3266 ghead = ipst->ips_ill_g_heads[index]; 3267 insque(ill_interface, ghead.ill_g_list_tail); 3268 } 3269 3270 if (ill->ill_ppa == UINT_MAX) 3271 check_length = B_TRUE; 3272 3273 error = ill_alloc_ppa(ill_interface, ill); 3274 if (error != 0) { 3275 if (avl_numnodes(&ill_interface->illif_avl_by_ppa) == 0) 3276 ill_delete_interface_type(ill->ill_ifptr); 3277 return (error); 3278 } 3279 3280 /* 3281 * When the ppa is choosen by the system, check that there is 3282 * enough space to insert ppa. if a specific ppa was passed in this 3283 * check is not required as the interface name passed in will have 3284 * the right ppa in it. 3285 */ 3286 if (check_length) { 3287 /* 3288 * UINT_MAX - 1 should fit in 10 chars, alloc 12 chars. 3289 */ 3290 char buf[sizeof (uint_t) * 3]; 3291 3292 /* 3293 * convert ppa to string to calculate the amount of space 3294 * required for it in the name. 3295 */ 3296 numtos(ill->ill_ppa, buf); 3297 3298 /* Do we have enough space to insert ppa ? */ 3299 3300 if ((mi_strlen(name) + mi_strlen(buf) + 1) > LIFNAMSIZ) { 3301 /* Free ppa and interface type struct */ 3302 if (ill_interface->illif_ppa_arena != NULL) { 3303 vmem_free(ill_interface->illif_ppa_arena, 3304 (void *)(uintptr_t)(ill->ill_ppa+1), 1); 3305 } 3306 if (avl_numnodes(&ill_interface->illif_avl_by_ppa) == 0) 3307 ill_delete_interface_type(ill->ill_ifptr); 3308 3309 return (EINVAL); 3310 } 3311 } 3312 3313 (void) sprintf(ill->ill_name, "%s%u", name, ill->ill_ppa); 3314 ill->ill_name_length = mi_strlen(ill->ill_name) + 1; 3315 3316 (void) avl_find(&ill_interface->illif_avl_by_ppa, &ill->ill_ppa, 3317 &where); 3318 ill->ill_ifptr = ill_interface; 3319 avl_insert(&ill_interface->illif_avl_by_ppa, ill, where); 3320 3321 ill_phyint_reinit(ill); 3322 return (0); 3323 } 3324 3325 /* Initialize the per phyint ipsq used for serialization */ 3326 static boolean_t 3327 ipsq_init(ill_t *ill, boolean_t enter) 3328 { 3329 ipsq_t *ipsq; 3330 ipxop_t *ipx; 3331 3332 if ((ipsq = kmem_zalloc(sizeof (ipsq_t), KM_NOSLEEP)) == NULL) 3333 return (B_FALSE); 3334 3335 ill->ill_phyint->phyint_ipsq = ipsq; 3336 ipx = ipsq->ipsq_xop = &ipsq->ipsq_ownxop; 3337 ipx->ipx_ipsq = ipsq; 3338 ipsq->ipsq_next = ipsq; 3339 ipsq->ipsq_phyint = ill->ill_phyint; 3340 mutex_init(&ipsq->ipsq_lock, NULL, MUTEX_DEFAULT, 0); 3341 mutex_init(&ipx->ipx_lock, NULL, MUTEX_DEFAULT, 0); 3342 ipsq->ipsq_ipst = ill->ill_ipst; /* No netstack_hold */ 3343 if (enter) { 3344 ipx->ipx_writer = curthread; 3345 ipx->ipx_forced = B_FALSE; 3346 ipx->ipx_reentry_cnt = 1; 3347 #ifdef DEBUG 3348 ipx->ipx_depth = getpcstack(ipx->ipx_stack, IPX_STACK_DEPTH); 3349 #endif 3350 } 3351 return (B_TRUE); 3352 } 3353 3354 /* 3355 * ill_init is called by ip_open when a device control stream is opened. 3356 * It does a few initializations, and shoots a DL_INFO_REQ message down 3357 * to the driver. The response is later picked up in ip_rput_dlpi and 3358 * used to set up default mechanisms for talking to the driver. (Always 3359 * called as writer.) 3360 * 3361 * If this function returns error, ip_open will call ip_close which in 3362 * turn will call ill_delete to clean up any memory allocated here that 3363 * is not yet freed. 3364 */ 3365 int 3366 ill_init(queue_t *q, ill_t *ill) 3367 { 3368 int count; 3369 dl_info_req_t *dlir; 3370 mblk_t *info_mp; 3371 uchar_t *frag_ptr; 3372 3373 /* 3374 * The ill is initialized to zero by mi_alloc*(). In addition 3375 * some fields already contain valid values, initialized in 3376 * ip_open(), before we reach here. 3377 */ 3378 mutex_init(&ill->ill_lock, NULL, MUTEX_DEFAULT, 0); 3379 mutex_init(&ill->ill_saved_ire_lock, NULL, MUTEX_DEFAULT, NULL); 3380 ill->ill_saved_ire_cnt = 0; 3381 3382 ill->ill_rq = q; 3383 ill->ill_wq = WR(q); 3384 3385 info_mp = allocb(MAX(sizeof (dl_info_req_t), sizeof (dl_info_ack_t)), 3386 BPRI_HI); 3387 if (info_mp == NULL) 3388 return (ENOMEM); 3389 3390 /* 3391 * Allocate sufficient space to contain our fragment hash table and 3392 * the device name. 3393 */ 3394 frag_ptr = (uchar_t *)mi_zalloc(ILL_FRAG_HASH_TBL_SIZE + 3395 2 * LIFNAMSIZ + 5 + strlen(ipv6_forward_suffix)); 3396 if (frag_ptr == NULL) { 3397 freemsg(info_mp); 3398 return (ENOMEM); 3399 } 3400 ill->ill_frag_ptr = frag_ptr; 3401 ill->ill_frag_free_num_pkts = 0; 3402 ill->ill_last_frag_clean_time = 0; 3403 ill->ill_frag_hash_tbl = (ipfb_t *)frag_ptr; 3404 ill->ill_name = (char *)(frag_ptr + ILL_FRAG_HASH_TBL_SIZE); 3405 for (count = 0; count < ILL_FRAG_HASH_TBL_COUNT; count++) { 3406 mutex_init(&ill->ill_frag_hash_tbl[count].ipfb_lock, 3407 NULL, MUTEX_DEFAULT, NULL); 3408 } 3409 3410 ill->ill_phyint = (phyint_t *)mi_zalloc(sizeof (phyint_t)); 3411 if (ill->ill_phyint == NULL) { 3412 freemsg(info_mp); 3413 mi_free(frag_ptr); 3414 return (ENOMEM); 3415 } 3416 3417 mutex_init(&ill->ill_phyint->phyint_lock, NULL, MUTEX_DEFAULT, 0); 3418 /* 3419 * For now pretend this is a v4 ill. We need to set phyint_ill* 3420 * at this point because of the following reason. If we can't 3421 * enter the ipsq at some point and cv_wait, the writer that 3422 * wakes us up tries to locate us using the list of all phyints 3423 * in an ipsq and the ills from the phyint thru the phyint_ill*. 3424 * If we don't set it now, we risk a missed wakeup. 3425 */ 3426 ill->ill_phyint->phyint_illv4 = ill; 3427 ill->ill_ppa = UINT_MAX; 3428 list_create(&ill->ill_nce, sizeof (nce_t), offsetof(nce_t, nce_node)); 3429 3430 ill_set_inputfn(ill); 3431 3432 if (!ipsq_init(ill, B_TRUE)) { 3433 freemsg(info_mp); 3434 mi_free(frag_ptr); 3435 mi_free(ill->ill_phyint); 3436 return (ENOMEM); 3437 } 3438 3439 ill->ill_state_flags |= ILL_LL_SUBNET_PENDING; 3440 3441 /* Frag queue limit stuff */ 3442 ill->ill_frag_count = 0; 3443 ill->ill_ipf_gen = 0; 3444 3445 rw_init(&ill->ill_mcast_lock, NULL, RW_DEFAULT, NULL); 3446 mutex_init(&ill->ill_mcast_serializer, NULL, MUTEX_DEFAULT, NULL); 3447 ill->ill_global_timer = INFINITY; 3448 ill->ill_mcast_v1_time = ill->ill_mcast_v2_time = 0; 3449 ill->ill_mcast_v1_tset = ill->ill_mcast_v2_tset = 0; 3450 ill->ill_mcast_rv = MCAST_DEF_ROBUSTNESS; 3451 ill->ill_mcast_qi = MCAST_DEF_QUERY_INTERVAL; 3452 3453 /* 3454 * Initialize IPv6 configuration variables. The IP module is always 3455 * opened as an IPv4 module. Instead tracking down the cases where 3456 * it switches to do ipv6, we'll just initialize the IPv6 configuration 3457 * here for convenience, this has no effect until the ill is set to do 3458 * IPv6. 3459 */ 3460 ill->ill_reachable_time = ND_REACHABLE_TIME; 3461 ill->ill_xmit_count = ND_MAX_MULTICAST_SOLICIT; 3462 ill->ill_max_buf = ND_MAX_Q; 3463 ill->ill_refcnt = 0; 3464 3465 /* Send down the Info Request to the driver. */ 3466 info_mp->b_datap->db_type = M_PCPROTO; 3467 dlir = (dl_info_req_t *)info_mp->b_rptr; 3468 info_mp->b_wptr = (uchar_t *)&dlir[1]; 3469 dlir->dl_primitive = DL_INFO_REQ; 3470 3471 ill->ill_dlpi_pending = DL_PRIM_INVAL; 3472 3473 qprocson(q); 3474 ill_dlpi_send(ill, info_mp); 3475 3476 return (0); 3477 } 3478 3479 /* 3480 * ill_dls_info 3481 * creates datalink socket info from the device. 3482 */ 3483 int 3484 ill_dls_info(struct sockaddr_dl *sdl, const ill_t *ill) 3485 { 3486 size_t len; 3487 3488 sdl->sdl_family = AF_LINK; 3489 sdl->sdl_index = ill_get_upper_ifindex(ill); 3490 sdl->sdl_type = ill->ill_type; 3491 ill_get_name(ill, sdl->sdl_data, sizeof (sdl->sdl_data)); 3492 len = strlen(sdl->sdl_data); 3493 ASSERT(len < 256); 3494 sdl->sdl_nlen = (uchar_t)len; 3495 sdl->sdl_alen = ill->ill_phys_addr_length; 3496 sdl->sdl_slen = 0; 3497 if (ill->ill_phys_addr_length != 0 && ill->ill_phys_addr != NULL) 3498 bcopy(ill->ill_phys_addr, &sdl->sdl_data[len], sdl->sdl_alen); 3499 3500 return (sizeof (struct sockaddr_dl)); 3501 } 3502 3503 /* 3504 * ill_xarp_info 3505 * creates xarp info from the device. 3506 */ 3507 static int 3508 ill_xarp_info(struct sockaddr_dl *sdl, ill_t *ill) 3509 { 3510 sdl->sdl_family = AF_LINK; 3511 sdl->sdl_index = ill->ill_phyint->phyint_ifindex; 3512 sdl->sdl_type = ill->ill_type; 3513 ill_get_name(ill, sdl->sdl_data, sizeof (sdl->sdl_data)); 3514 sdl->sdl_nlen = (uchar_t)mi_strlen(sdl->sdl_data); 3515 sdl->sdl_alen = ill->ill_phys_addr_length; 3516 sdl->sdl_slen = 0; 3517 return (sdl->sdl_nlen); 3518 } 3519 3520 static int 3521 loopback_kstat_update(kstat_t *ksp, int rw) 3522 { 3523 kstat_named_t *kn; 3524 netstackid_t stackid; 3525 netstack_t *ns; 3526 ip_stack_t *ipst; 3527 3528 if (ksp == NULL || ksp->ks_data == NULL) 3529 return (EIO); 3530 3531 if (rw == KSTAT_WRITE) 3532 return (EACCES); 3533 3534 kn = KSTAT_NAMED_PTR(ksp); 3535 stackid = (zoneid_t)(uintptr_t)ksp->ks_private; 3536 3537 ns = netstack_find_by_stackid(stackid); 3538 if (ns == NULL) 3539 return (-1); 3540 3541 ipst = ns->netstack_ip; 3542 if (ipst == NULL) { 3543 netstack_rele(ns); 3544 return (-1); 3545 } 3546 kn[0].value.ui32 = ipst->ips_loopback_packets; 3547 kn[1].value.ui32 = ipst->ips_loopback_packets; 3548 netstack_rele(ns); 3549 return (0); 3550 } 3551 3552 /* 3553 * Has ifindex been plumbed already? 3554 */ 3555 static boolean_t 3556 phyint_exists(uint_t index, ip_stack_t *ipst) 3557 { 3558 ASSERT(index != 0); 3559 ASSERT(RW_LOCK_HELD(&ipst->ips_ill_g_lock)); 3560 3561 return (avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 3562 &index, NULL) != NULL); 3563 } 3564 3565 /* Pick a unique ifindex */ 3566 boolean_t 3567 ip_assign_ifindex(uint_t *indexp, ip_stack_t *ipst) 3568 { 3569 uint_t starting_index; 3570 3571 if (!ipst->ips_ill_index_wrap) { 3572 *indexp = ipst->ips_ill_index++; 3573 if (ipst->ips_ill_index == 0) { 3574 /* Reached the uint_t limit Next time wrap */ 3575 ipst->ips_ill_index_wrap = B_TRUE; 3576 } 3577 return (B_TRUE); 3578 } 3579 3580 /* 3581 * Start reusing unused indexes. Note that we hold the ill_g_lock 3582 * at this point and don't want to call any function that attempts 3583 * to get the lock again. 3584 */ 3585 starting_index = ipst->ips_ill_index++; 3586 for (; ipst->ips_ill_index != starting_index; ipst->ips_ill_index++) { 3587 if (ipst->ips_ill_index != 0 && 3588 !phyint_exists(ipst->ips_ill_index, ipst)) { 3589 /* found unused index - use it */ 3590 *indexp = ipst->ips_ill_index; 3591 return (B_TRUE); 3592 } 3593 } 3594 3595 /* 3596 * all interface indicies are inuse. 3597 */ 3598 return (B_FALSE); 3599 } 3600 3601 /* 3602 * Assign a unique interface index for the phyint. 3603 */ 3604 static boolean_t 3605 phyint_assign_ifindex(phyint_t *phyi, ip_stack_t *ipst) 3606 { 3607 ASSERT(phyi->phyint_ifindex == 0); 3608 return (ip_assign_ifindex(&phyi->phyint_ifindex, ipst)); 3609 } 3610 3611 /* 3612 * Initialize the flags on `phyi' as per the provided mactype. 3613 */ 3614 static void 3615 phyint_flags_init(phyint_t *phyi, t_uscalar_t mactype) 3616 { 3617 uint64_t flags = 0; 3618 3619 /* 3620 * Initialize PHYI_RUNNING and PHYI_FAILED. For non-IPMP interfaces, 3621 * we always presume the underlying hardware is working and set 3622 * PHYI_RUNNING (if it's not, the driver will subsequently send a 3623 * DL_NOTE_LINK_DOWN message). For IPMP interfaces, at initialization 3624 * there are no active interfaces in the group so we set PHYI_FAILED. 3625 */ 3626 if (mactype == SUNW_DL_IPMP) 3627 flags |= PHYI_FAILED; 3628 else 3629 flags |= PHYI_RUNNING; 3630 3631 switch (mactype) { 3632 case SUNW_DL_VNI: 3633 flags |= PHYI_VIRTUAL; 3634 break; 3635 case SUNW_DL_IPMP: 3636 flags |= PHYI_IPMP; 3637 break; 3638 case DL_LOOP: 3639 flags |= (PHYI_LOOPBACK | PHYI_VIRTUAL); 3640 break; 3641 } 3642 3643 mutex_enter(&phyi->phyint_lock); 3644 phyi->phyint_flags |= flags; 3645 mutex_exit(&phyi->phyint_lock); 3646 } 3647 3648 /* 3649 * Return a pointer to the ill which matches the supplied name. Note that 3650 * the ill name length includes the null termination character. (May be 3651 * called as writer.) 3652 * If do_alloc and the interface is "lo0" it will be automatically created. 3653 * Cannot bump up reference on condemned ills. So dup detect can't be done 3654 * using this func. 3655 */ 3656 ill_t * 3657 ill_lookup_on_name(char *name, boolean_t do_alloc, boolean_t isv6, 3658 boolean_t *did_alloc, ip_stack_t *ipst) 3659 { 3660 ill_t *ill; 3661 ipif_t *ipif; 3662 ipsq_t *ipsq; 3663 kstat_named_t *kn; 3664 boolean_t isloopback; 3665 in6_addr_t ov6addr; 3666 3667 isloopback = mi_strcmp(name, ipif_loopback_name) == 0; 3668 3669 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 3670 ill = ill_find_by_name(name, isv6, ipst); 3671 rw_exit(&ipst->ips_ill_g_lock); 3672 if (ill != NULL) 3673 return (ill); 3674 3675 /* 3676 * Couldn't find it. Does this happen to be a lookup for the 3677 * loopback device and are we allowed to allocate it? 3678 */ 3679 if (!isloopback || !do_alloc) 3680 return (NULL); 3681 3682 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 3683 ill = ill_find_by_name(name, isv6, ipst); 3684 if (ill != NULL) { 3685 rw_exit(&ipst->ips_ill_g_lock); 3686 return (ill); 3687 } 3688 3689 /* Create the loopback device on demand */ 3690 ill = (ill_t *)(mi_alloc(sizeof (ill_t) + 3691 sizeof (ipif_loopback_name), BPRI_MED)); 3692 if (ill == NULL) 3693 goto done; 3694 3695 *ill = ill_null; 3696 mutex_init(&ill->ill_lock, NULL, MUTEX_DEFAULT, NULL); 3697 ill->ill_ipst = ipst; 3698 list_create(&ill->ill_nce, sizeof (nce_t), offsetof(nce_t, nce_node)); 3699 netstack_hold(ipst->ips_netstack); 3700 /* 3701 * For exclusive stacks we set the zoneid to zero 3702 * to make IP operate as if in the global zone. 3703 */ 3704 ill->ill_zoneid = GLOBAL_ZONEID; 3705 3706 ill->ill_phyint = (phyint_t *)mi_zalloc(sizeof (phyint_t)); 3707 if (ill->ill_phyint == NULL) 3708 goto done; 3709 3710 if (isv6) 3711 ill->ill_phyint->phyint_illv6 = ill; 3712 else 3713 ill->ill_phyint->phyint_illv4 = ill; 3714 mutex_init(&ill->ill_phyint->phyint_lock, NULL, MUTEX_DEFAULT, 0); 3715 phyint_flags_init(ill->ill_phyint, DL_LOOP); 3716 3717 if (isv6) { 3718 ill->ill_isv6 = B_TRUE; 3719 ill->ill_max_frag = ip_loopback_mtu_v6plus; 3720 } else { 3721 ill->ill_max_frag = ip_loopback_mtuplus; 3722 } 3723 if (!ill_allocate_mibs(ill)) 3724 goto done; 3725 ill->ill_current_frag = ill->ill_max_frag; 3726 ill->ill_mtu = ill->ill_max_frag; /* Initial value */ 3727 /* 3728 * ipif_loopback_name can't be pointed at directly because its used 3729 * by both the ipv4 and ipv6 interfaces. When the ill is removed 3730 * from the glist, ill_glist_delete() sets the first character of 3731 * ill_name to '\0'. 3732 */ 3733 ill->ill_name = (char *)ill + sizeof (*ill); 3734 (void) strcpy(ill->ill_name, ipif_loopback_name); 3735 ill->ill_name_length = sizeof (ipif_loopback_name); 3736 /* Set ill_dlpi_pending for ipsq_current_finish() to work properly */ 3737 ill->ill_dlpi_pending = DL_PRIM_INVAL; 3738 3739 rw_init(&ill->ill_mcast_lock, NULL, RW_DEFAULT, NULL); 3740 mutex_init(&ill->ill_mcast_serializer, NULL, MUTEX_DEFAULT, NULL); 3741 ill->ill_global_timer = INFINITY; 3742 ill->ill_mcast_v1_time = ill->ill_mcast_v2_time = 0; 3743 ill->ill_mcast_v1_tset = ill->ill_mcast_v2_tset = 0; 3744 ill->ill_mcast_rv = MCAST_DEF_ROBUSTNESS; 3745 ill->ill_mcast_qi = MCAST_DEF_QUERY_INTERVAL; 3746 3747 /* No resolver here. */ 3748 ill->ill_net_type = IRE_LOOPBACK; 3749 3750 /* Initialize the ipsq */ 3751 if (!ipsq_init(ill, B_FALSE)) 3752 goto done; 3753 3754 ipif = ipif_allocate(ill, 0L, IRE_LOOPBACK, B_TRUE, B_TRUE); 3755 if (ipif == NULL) 3756 goto done; 3757 3758 ill->ill_flags = ILLF_MULTICAST; 3759 3760 ov6addr = ipif->ipif_v6lcl_addr; 3761 /* Set up default loopback address and mask. */ 3762 if (!isv6) { 3763 ipaddr_t inaddr_loopback = htonl(INADDR_LOOPBACK); 3764 3765 IN6_IPADDR_TO_V4MAPPED(inaddr_loopback, &ipif->ipif_v6lcl_addr); 3766 V4MASK_TO_V6(htonl(IN_CLASSA_NET), ipif->ipif_v6net_mask); 3767 V6_MASK_COPY(ipif->ipif_v6lcl_addr, ipif->ipif_v6net_mask, 3768 ipif->ipif_v6subnet); 3769 ill->ill_flags |= ILLF_IPV4; 3770 } else { 3771 ipif->ipif_v6lcl_addr = ipv6_loopback; 3772 ipif->ipif_v6net_mask = ipv6_all_ones; 3773 V6_MASK_COPY(ipif->ipif_v6lcl_addr, ipif->ipif_v6net_mask, 3774 ipif->ipif_v6subnet); 3775 ill->ill_flags |= ILLF_IPV6; 3776 } 3777 3778 /* 3779 * Chain us in at the end of the ill list. hold the ill 3780 * before we make it globally visible. 1 for the lookup. 3781 */ 3782 ill->ill_refcnt = 0; 3783 ill_refhold(ill); 3784 3785 ill->ill_frag_count = 0; 3786 ill->ill_frag_free_num_pkts = 0; 3787 ill->ill_last_frag_clean_time = 0; 3788 3789 ipsq = ill->ill_phyint->phyint_ipsq; 3790 3791 ill_set_inputfn(ill); 3792 3793 if (ill_glist_insert(ill, "lo", isv6) != 0) 3794 cmn_err(CE_PANIC, "cannot insert loopback interface"); 3795 3796 /* Let SCTP know so that it can add this to its list */ 3797 sctp_update_ill(ill, SCTP_ILL_INSERT); 3798 3799 /* 3800 * We have already assigned ipif_v6lcl_addr above, but we need to 3801 * call sctp_update_ipif_addr() after SCTP_ILL_INSERT, which 3802 * requires to be after ill_glist_insert() since we need the 3803 * ill_index set. Pass on ipv6_loopback as the old address. 3804 */ 3805 sctp_update_ipif_addr(ipif, ov6addr); 3806 3807 ip_rts_newaddrmsg(RTM_CHGADDR, 0, ipif, RTSQ_DEFAULT); 3808 3809 /* 3810 * ill_glist_insert() -> ill_phyint_reinit() may have merged IPSQs. 3811 * If so, free our original one. 3812 */ 3813 if (ipsq != ill->ill_phyint->phyint_ipsq) 3814 ipsq_delete(ipsq); 3815 3816 if (ipst->ips_loopback_ksp == NULL) { 3817 /* Export loopback interface statistics */ 3818 ipst->ips_loopback_ksp = kstat_create_netstack("lo", 0, 3819 ipif_loopback_name, "net", 3820 KSTAT_TYPE_NAMED, 2, 0, 3821 ipst->ips_netstack->netstack_stackid); 3822 if (ipst->ips_loopback_ksp != NULL) { 3823 ipst->ips_loopback_ksp->ks_update = 3824 loopback_kstat_update; 3825 kn = KSTAT_NAMED_PTR(ipst->ips_loopback_ksp); 3826 kstat_named_init(&kn[0], "ipackets", KSTAT_DATA_UINT32); 3827 kstat_named_init(&kn[1], "opackets", KSTAT_DATA_UINT32); 3828 ipst->ips_loopback_ksp->ks_private = 3829 (void *)(uintptr_t)ipst->ips_netstack-> 3830 netstack_stackid; 3831 kstat_install(ipst->ips_loopback_ksp); 3832 } 3833 } 3834 3835 *did_alloc = B_TRUE; 3836 rw_exit(&ipst->ips_ill_g_lock); 3837 ill_nic_event_dispatch(ill, MAP_IPIF_ID(ill->ill_ipif->ipif_id), 3838 NE_PLUMB, ill->ill_name, ill->ill_name_length); 3839 return (ill); 3840 done: 3841 if (ill != NULL) { 3842 if (ill->ill_phyint != NULL) { 3843 ipsq = ill->ill_phyint->phyint_ipsq; 3844 if (ipsq != NULL) { 3845 ipsq->ipsq_phyint = NULL; 3846 ipsq_delete(ipsq); 3847 } 3848 mi_free(ill->ill_phyint); 3849 } 3850 ill_free_mib(ill); 3851 if (ill->ill_ipst != NULL) 3852 netstack_rele(ill->ill_ipst->ips_netstack); 3853 mi_free(ill); 3854 } 3855 rw_exit(&ipst->ips_ill_g_lock); 3856 return (NULL); 3857 } 3858 3859 /* 3860 * For IPP calls - use the ip_stack_t for global stack. 3861 */ 3862 ill_t * 3863 ill_lookup_on_ifindex_global_instance(uint_t index, boolean_t isv6) 3864 { 3865 ip_stack_t *ipst; 3866 ill_t *ill; 3867 3868 ipst = netstack_find_by_stackid(GLOBAL_NETSTACKID)->netstack_ip; 3869 if (ipst == NULL) { 3870 cmn_err(CE_WARN, "No ip_stack_t for zoneid zero!\n"); 3871 return (NULL); 3872 } 3873 3874 ill = ill_lookup_on_ifindex(index, isv6, ipst); 3875 netstack_rele(ipst->ips_netstack); 3876 return (ill); 3877 } 3878 3879 /* 3880 * Return a pointer to the ill which matches the index and IP version type. 3881 */ 3882 ill_t * 3883 ill_lookup_on_ifindex(uint_t index, boolean_t isv6, ip_stack_t *ipst) 3884 { 3885 ill_t *ill; 3886 phyint_t *phyi; 3887 3888 /* 3889 * Indexes are stored in the phyint - a common structure 3890 * to both IPv4 and IPv6. 3891 */ 3892 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 3893 phyi = avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 3894 (void *) &index, NULL); 3895 if (phyi != NULL) { 3896 ill = isv6 ? phyi->phyint_illv6: phyi->phyint_illv4; 3897 if (ill != NULL) { 3898 mutex_enter(&ill->ill_lock); 3899 if (!ILL_IS_CONDEMNED(ill)) { 3900 ill_refhold_locked(ill); 3901 mutex_exit(&ill->ill_lock); 3902 rw_exit(&ipst->ips_ill_g_lock); 3903 return (ill); 3904 } 3905 mutex_exit(&ill->ill_lock); 3906 } 3907 } 3908 rw_exit(&ipst->ips_ill_g_lock); 3909 return (NULL); 3910 } 3911 3912 /* 3913 * Verify whether or not an interface index is valid. 3914 * It can be zero (meaning "reset") or an interface index assigned 3915 * to a non-VNI interface. (We don't use VNI interface to send packets.) 3916 */ 3917 boolean_t 3918 ip_ifindex_valid(uint_t ifindex, boolean_t isv6, ip_stack_t *ipst) 3919 { 3920 ill_t *ill; 3921 3922 if (ifindex == 0) 3923 return (B_TRUE); 3924 3925 ill = ill_lookup_on_ifindex(ifindex, isv6, ipst); 3926 if (ill == NULL) 3927 return (B_FALSE); 3928 if (IS_VNI(ill)) { 3929 ill_refrele(ill); 3930 return (B_FALSE); 3931 } 3932 ill_refrele(ill); 3933 return (B_TRUE); 3934 } 3935 3936 /* 3937 * Return the ifindex next in sequence after the passed in ifindex. 3938 * If there is no next ifindex for the given protocol, return 0. 3939 */ 3940 uint_t 3941 ill_get_next_ifindex(uint_t index, boolean_t isv6, ip_stack_t *ipst) 3942 { 3943 phyint_t *phyi; 3944 phyint_t *phyi_initial; 3945 uint_t ifindex; 3946 3947 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 3948 3949 if (index == 0) { 3950 phyi = avl_first( 3951 &ipst->ips_phyint_g_list->phyint_list_avl_by_index); 3952 } else { 3953 phyi = phyi_initial = avl_find( 3954 &ipst->ips_phyint_g_list->phyint_list_avl_by_index, 3955 (void *) &index, NULL); 3956 } 3957 3958 for (; phyi != NULL; 3959 phyi = avl_walk(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 3960 phyi, AVL_AFTER)) { 3961 /* 3962 * If we're not returning the first interface in the tree 3963 * and we still haven't moved past the phyint_t that 3964 * corresponds to index, avl_walk needs to be called again 3965 */ 3966 if (!((index != 0) && (phyi == phyi_initial))) { 3967 if (isv6) { 3968 if ((phyi->phyint_illv6) && 3969 ILL_CAN_LOOKUP(phyi->phyint_illv6) && 3970 (phyi->phyint_illv6->ill_isv6 == 1)) 3971 break; 3972 } else { 3973 if ((phyi->phyint_illv4) && 3974 ILL_CAN_LOOKUP(phyi->phyint_illv4) && 3975 (phyi->phyint_illv4->ill_isv6 == 0)) 3976 break; 3977 } 3978 } 3979 } 3980 3981 rw_exit(&ipst->ips_ill_g_lock); 3982 3983 if (phyi != NULL) 3984 ifindex = phyi->phyint_ifindex; 3985 else 3986 ifindex = 0; 3987 3988 return (ifindex); 3989 } 3990 3991 /* 3992 * Return the ifindex for the named interface. 3993 * If there is no next ifindex for the interface, return 0. 3994 */ 3995 uint_t 3996 ill_get_ifindex_by_name(char *name, ip_stack_t *ipst) 3997 { 3998 phyint_t *phyi; 3999 avl_index_t where = 0; 4000 uint_t ifindex; 4001 4002 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 4003 4004 if ((phyi = avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_name, 4005 name, &where)) == NULL) { 4006 rw_exit(&ipst->ips_ill_g_lock); 4007 return (0); 4008 } 4009 4010 ifindex = phyi->phyint_ifindex; 4011 4012 rw_exit(&ipst->ips_ill_g_lock); 4013 4014 return (ifindex); 4015 } 4016 4017 /* 4018 * Return the ifindex to be used by upper layer protocols for instance 4019 * for IPV6_RECVPKTINFO. If IPMP this is the one for the upper ill. 4020 */ 4021 uint_t 4022 ill_get_upper_ifindex(const ill_t *ill) 4023 { 4024 if (IS_UNDER_IPMP(ill)) 4025 return (ipmp_ill_get_ipmp_ifindex(ill)); 4026 else 4027 return (ill->ill_phyint->phyint_ifindex); 4028 } 4029 4030 4031 /* 4032 * Obtain a reference to the ill. The ill_refcnt is a dynamic refcnt 4033 * that gives a running thread a reference to the ill. This reference must be 4034 * released by the thread when it is done accessing the ill and related 4035 * objects. ill_refcnt can not be used to account for static references 4036 * such as other structures pointing to an ill. Callers must generally 4037 * check whether an ill can be refheld by using ILL_CAN_LOOKUP macros 4038 * or be sure that the ill is not being deleted or changing state before 4039 * calling the refhold functions. A non-zero ill_refcnt ensures that the 4040 * ill won't change any of its critical state such as address, netmask etc. 4041 */ 4042 void 4043 ill_refhold(ill_t *ill) 4044 { 4045 mutex_enter(&ill->ill_lock); 4046 ill->ill_refcnt++; 4047 ILL_TRACE_REF(ill); 4048 mutex_exit(&ill->ill_lock); 4049 } 4050 4051 void 4052 ill_refhold_locked(ill_t *ill) 4053 { 4054 ASSERT(MUTEX_HELD(&ill->ill_lock)); 4055 ill->ill_refcnt++; 4056 ILL_TRACE_REF(ill); 4057 } 4058 4059 /* Returns true if we managed to get a refhold */ 4060 boolean_t 4061 ill_check_and_refhold(ill_t *ill) 4062 { 4063 mutex_enter(&ill->ill_lock); 4064 if (!ILL_IS_CONDEMNED(ill)) { 4065 ill_refhold_locked(ill); 4066 mutex_exit(&ill->ill_lock); 4067 return (B_TRUE); 4068 } 4069 mutex_exit(&ill->ill_lock); 4070 return (B_FALSE); 4071 } 4072 4073 /* 4074 * Must not be called while holding any locks. Otherwise if this is 4075 * the last reference to be released, there is a chance of recursive mutex 4076 * panic due to ill_refrele -> ipif_ill_refrele_tail -> qwriter_ip trying 4077 * to restart an ioctl. 4078 */ 4079 void 4080 ill_refrele(ill_t *ill) 4081 { 4082 mutex_enter(&ill->ill_lock); 4083 ASSERT(ill->ill_refcnt != 0); 4084 ill->ill_refcnt--; 4085 ILL_UNTRACE_REF(ill); 4086 if (ill->ill_refcnt != 0) { 4087 /* Every ire pointing to the ill adds 1 to ill_refcnt */ 4088 mutex_exit(&ill->ill_lock); 4089 return; 4090 } 4091 4092 /* Drops the ill_lock */ 4093 ipif_ill_refrele_tail(ill); 4094 } 4095 4096 /* 4097 * Obtain a weak reference count on the ill. This reference ensures the 4098 * ill won't be freed, but the ill may change any of its critical state 4099 * such as netmask, address etc. Returns an error if the ill has started 4100 * closing. 4101 */ 4102 boolean_t 4103 ill_waiter_inc(ill_t *ill) 4104 { 4105 mutex_enter(&ill->ill_lock); 4106 if (ill->ill_state_flags & ILL_CONDEMNED) { 4107 mutex_exit(&ill->ill_lock); 4108 return (B_FALSE); 4109 } 4110 ill->ill_waiters++; 4111 mutex_exit(&ill->ill_lock); 4112 return (B_TRUE); 4113 } 4114 4115 void 4116 ill_waiter_dcr(ill_t *ill) 4117 { 4118 mutex_enter(&ill->ill_lock); 4119 ill->ill_waiters--; 4120 if (ill->ill_waiters == 0) 4121 cv_broadcast(&ill->ill_cv); 4122 mutex_exit(&ill->ill_lock); 4123 } 4124 4125 /* 4126 * ip_ll_subnet_defaults is called when we get the DL_INFO_ACK back from the 4127 * driver. We construct best guess defaults for lower level information that 4128 * we need. If an interface is brought up without injection of any overriding 4129 * information from outside, we have to be ready to go with these defaults. 4130 * When we get the first DL_INFO_ACK (from ip_open() sending a DL_INFO_REQ) 4131 * we primarely want the dl_provider_style. 4132 * The subsequent DL_INFO_ACK is received after doing a DL_ATTACH and DL_BIND 4133 * at which point we assume the other part of the information is valid. 4134 */ 4135 void 4136 ip_ll_subnet_defaults(ill_t *ill, mblk_t *mp) 4137 { 4138 uchar_t *brdcst_addr; 4139 uint_t brdcst_addr_length, phys_addr_length; 4140 t_scalar_t sap_length; 4141 dl_info_ack_t *dlia; 4142 ip_m_t *ipm; 4143 dl_qos_cl_sel1_t *sel1; 4144 int min_mtu; 4145 4146 ASSERT(IAM_WRITER_ILL(ill)); 4147 4148 /* 4149 * Till the ill is fully up the ill is not globally visible. 4150 * So no need for a lock. 4151 */ 4152 dlia = (dl_info_ack_t *)mp->b_rptr; 4153 ill->ill_mactype = dlia->dl_mac_type; 4154 4155 ipm = ip_m_lookup(dlia->dl_mac_type); 4156 if (ipm == NULL) { 4157 ipm = ip_m_lookup(DL_OTHER); 4158 ASSERT(ipm != NULL); 4159 } 4160 ill->ill_media = ipm; 4161 4162 /* 4163 * When the new DLPI stuff is ready we'll pull lengths 4164 * from dlia. 4165 */ 4166 if (dlia->dl_version == DL_VERSION_2) { 4167 brdcst_addr_length = dlia->dl_brdcst_addr_length; 4168 brdcst_addr = mi_offset_param(mp, dlia->dl_brdcst_addr_offset, 4169 brdcst_addr_length); 4170 if (brdcst_addr == NULL) { 4171 brdcst_addr_length = 0; 4172 } 4173 sap_length = dlia->dl_sap_length; 4174 phys_addr_length = dlia->dl_addr_length - ABS(sap_length); 4175 ip1dbg(("ip: bcast_len %d, sap_len %d, phys_len %d\n", 4176 brdcst_addr_length, sap_length, phys_addr_length)); 4177 } else { 4178 brdcst_addr_length = 6; 4179 brdcst_addr = ip_six_byte_all_ones; 4180 sap_length = -2; 4181 phys_addr_length = brdcst_addr_length; 4182 } 4183 4184 ill->ill_bcast_addr_length = brdcst_addr_length; 4185 ill->ill_phys_addr_length = phys_addr_length; 4186 ill->ill_sap_length = sap_length; 4187 4188 /* 4189 * Synthetic DLPI types such as SUNW_DL_IPMP specify a zero SDU, 4190 * but we must ensure a minimum IP MTU is used since other bits of 4191 * IP will fly apart otherwise. 4192 */ 4193 min_mtu = ill->ill_isv6 ? IPV6_MIN_MTU : IP_MIN_MTU; 4194 ill->ill_max_frag = MAX(min_mtu, dlia->dl_max_sdu); 4195 ill->ill_current_frag = ill->ill_max_frag; 4196 ill->ill_mtu = ill->ill_max_frag; 4197 4198 ill->ill_type = ipm->ip_m_type; 4199 4200 if (!ill->ill_dlpi_style_set) { 4201 if (dlia->dl_provider_style == DL_STYLE2) 4202 ill->ill_needs_attach = 1; 4203 4204 phyint_flags_init(ill->ill_phyint, ill->ill_mactype); 4205 4206 /* 4207 * Allocate the first ipif on this ill. We don't delay it 4208 * further as ioctl handling assumes at least one ipif exists. 4209 * 4210 * At this point we don't know whether the ill is v4 or v6. 4211 * We will know this whan the SIOCSLIFNAME happens and 4212 * the correct value for ill_isv6 will be assigned in 4213 * ipif_set_values(). We need to hold the ill lock and 4214 * clear the ILL_LL_SUBNET_PENDING flag and atomically do 4215 * the wakeup. 4216 */ 4217 (void) ipif_allocate(ill, 0, IRE_LOCAL, 4218 dlia->dl_provider_style != DL_STYLE2, B_TRUE); 4219 mutex_enter(&ill->ill_lock); 4220 ASSERT(ill->ill_dlpi_style_set == 0); 4221 ill->ill_dlpi_style_set = 1; 4222 ill->ill_state_flags &= ~ILL_LL_SUBNET_PENDING; 4223 cv_broadcast(&ill->ill_cv); 4224 mutex_exit(&ill->ill_lock); 4225 freemsg(mp); 4226 return; 4227 } 4228 ASSERT(ill->ill_ipif != NULL); 4229 /* 4230 * We know whether it is IPv4 or IPv6 now, as this is the 4231 * second DL_INFO_ACK we are recieving in response to the 4232 * DL_INFO_REQ sent in ipif_set_values. 4233 */ 4234 ill->ill_sap = (ill->ill_isv6) ? ipm->ip_m_ipv6sap : ipm->ip_m_ipv4sap; 4235 /* 4236 * Clear all the flags that were set based on ill_bcast_addr_length 4237 * and ill_phys_addr_length (in ipif_set_values) as these could have 4238 * changed now and we need to re-evaluate. 4239 */ 4240 ill->ill_flags &= ~(ILLF_MULTICAST | ILLF_NONUD | ILLF_NOARP); 4241 ill->ill_ipif->ipif_flags &= ~(IPIF_BROADCAST | IPIF_POINTOPOINT); 4242 4243 /* 4244 * Free ill_bcast_mp as things could have changed now. 4245 * 4246 * NOTE: The IPMP meta-interface is special-cased because it starts 4247 * with no underlying interfaces (and thus an unknown broadcast 4248 * address length), but we enforce that an interface is broadcast- 4249 * capable as part of allowing it to join a group. 4250 */ 4251 if (ill->ill_bcast_addr_length == 0 && !IS_IPMP(ill)) { 4252 if (ill->ill_bcast_mp != NULL) 4253 freemsg(ill->ill_bcast_mp); 4254 ill->ill_net_type = IRE_IF_NORESOLVER; 4255 4256 ill->ill_bcast_mp = ill_dlur_gen(NULL, 4257 ill->ill_phys_addr_length, 4258 ill->ill_sap, 4259 ill->ill_sap_length); 4260 4261 if (ill->ill_isv6) 4262 /* 4263 * Note: xresolv interfaces will eventually need NOARP 4264 * set here as well, but that will require those 4265 * external resolvers to have some knowledge of 4266 * that flag and act appropriately. Not to be changed 4267 * at present. 4268 */ 4269 ill->ill_flags |= ILLF_NONUD; 4270 else 4271 ill->ill_flags |= ILLF_NOARP; 4272 4273 if (ill->ill_mactype == SUNW_DL_VNI) { 4274 ill->ill_ipif->ipif_flags |= IPIF_NOXMIT; 4275 } else if (ill->ill_phys_addr_length == 0 || 4276 ill->ill_mactype == DL_IPV4 || 4277 ill->ill_mactype == DL_IPV6) { 4278 /* 4279 * The underying link is point-to-point, so mark the 4280 * interface as such. We can do IP multicast over 4281 * such a link since it transmits all network-layer 4282 * packets to the remote side the same way. 4283 */ 4284 ill->ill_flags |= ILLF_MULTICAST; 4285 ill->ill_ipif->ipif_flags |= IPIF_POINTOPOINT; 4286 } 4287 } else { 4288 ill->ill_net_type = IRE_IF_RESOLVER; 4289 if (ill->ill_bcast_mp != NULL) 4290 freemsg(ill->ill_bcast_mp); 4291 ill->ill_bcast_mp = ill_dlur_gen(brdcst_addr, 4292 ill->ill_bcast_addr_length, ill->ill_sap, 4293 ill->ill_sap_length); 4294 /* 4295 * Later detect lack of DLPI driver multicast 4296 * capability by catching DL_ENABMULTI errors in 4297 * ip_rput_dlpi. 4298 */ 4299 ill->ill_flags |= ILLF_MULTICAST; 4300 if (!ill->ill_isv6) 4301 ill->ill_ipif->ipif_flags |= IPIF_BROADCAST; 4302 } 4303 4304 /* For IPMP, PHYI_IPMP should already be set by phyint_flags_init() */ 4305 if (ill->ill_mactype == SUNW_DL_IPMP) 4306 ASSERT(ill->ill_phyint->phyint_flags & PHYI_IPMP); 4307 4308 /* By default an interface does not support any CoS marking */ 4309 ill->ill_flags &= ~ILLF_COS_ENABLED; 4310 4311 /* 4312 * If we get QoS information in DL_INFO_ACK, the device supports 4313 * some form of CoS marking, set ILLF_COS_ENABLED. 4314 */ 4315 sel1 = (dl_qos_cl_sel1_t *)mi_offset_param(mp, dlia->dl_qos_offset, 4316 dlia->dl_qos_length); 4317 if ((sel1 != NULL) && (sel1->dl_qos_type == DL_QOS_CL_SEL1)) { 4318 ill->ill_flags |= ILLF_COS_ENABLED; 4319 } 4320 4321 /* Clear any previous error indication. */ 4322 ill->ill_error = 0; 4323 freemsg(mp); 4324 } 4325 4326 /* 4327 * Perform various checks to verify that an address would make sense as a 4328 * local, remote, or subnet interface address. 4329 */ 4330 static boolean_t 4331 ip_addr_ok_v4(ipaddr_t addr, ipaddr_t subnet_mask) 4332 { 4333 ipaddr_t net_mask; 4334 4335 /* 4336 * Don't allow all zeroes, or all ones, but allow 4337 * all ones netmask. 4338 */ 4339 if ((net_mask = ip_net_mask(addr)) == 0) 4340 return (B_FALSE); 4341 /* A given netmask overrides the "guess" netmask */ 4342 if (subnet_mask != 0) 4343 net_mask = subnet_mask; 4344 if ((net_mask != ~(ipaddr_t)0) && ((addr == (addr & net_mask)) || 4345 (addr == (addr | ~net_mask)))) { 4346 return (B_FALSE); 4347 } 4348 4349 /* 4350 * Even if the netmask is all ones, we do not allow address to be 4351 * 255.255.255.255 4352 */ 4353 if (addr == INADDR_BROADCAST) 4354 return (B_FALSE); 4355 4356 if (CLASSD(addr)) 4357 return (B_FALSE); 4358 4359 return (B_TRUE); 4360 } 4361 4362 #define V6_IPIF_LINKLOCAL(p) \ 4363 IN6_IS_ADDR_LINKLOCAL(&(p)->ipif_v6lcl_addr) 4364 4365 /* 4366 * Compare two given ipifs and check if the second one is better than 4367 * the first one using the order of preference (not taking deprecated 4368 * into acount) specified in ipif_lookup_multicast(). 4369 */ 4370 static boolean_t 4371 ipif_comp_multi(ipif_t *old_ipif, ipif_t *new_ipif, boolean_t isv6) 4372 { 4373 /* Check the least preferred first. */ 4374 if (IS_LOOPBACK(old_ipif->ipif_ill)) { 4375 /* If both ipifs are the same, use the first one. */ 4376 if (IS_LOOPBACK(new_ipif->ipif_ill)) 4377 return (B_FALSE); 4378 else 4379 return (B_TRUE); 4380 } 4381 4382 /* For IPv6, check for link local address. */ 4383 if (isv6 && V6_IPIF_LINKLOCAL(old_ipif)) { 4384 if (IS_LOOPBACK(new_ipif->ipif_ill) || 4385 V6_IPIF_LINKLOCAL(new_ipif)) { 4386 /* The second one is equal or less preferred. */ 4387 return (B_FALSE); 4388 } else { 4389 return (B_TRUE); 4390 } 4391 } 4392 4393 /* Then check for point to point interface. */ 4394 if (old_ipif->ipif_flags & IPIF_POINTOPOINT) { 4395 if (IS_LOOPBACK(new_ipif->ipif_ill) || 4396 (isv6 && V6_IPIF_LINKLOCAL(new_ipif)) || 4397 (new_ipif->ipif_flags & IPIF_POINTOPOINT)) { 4398 return (B_FALSE); 4399 } else { 4400 return (B_TRUE); 4401 } 4402 } 4403 4404 /* old_ipif is a normal interface, so no need to use the new one. */ 4405 return (B_FALSE); 4406 } 4407 4408 /* 4409 * Find a mulitcast-capable ipif given an IP instance and zoneid. 4410 * The ipif must be up, and its ill must multicast-capable, not 4411 * condemned, not an underlying interface in an IPMP group, and 4412 * not a VNI interface. Order of preference: 4413 * 4414 * 1a. normal 4415 * 1b. normal, but deprecated 4416 * 2a. point to point 4417 * 2b. point to point, but deprecated 4418 * 3a. link local 4419 * 3b. link local, but deprecated 4420 * 4. loopback. 4421 */ 4422 static ipif_t * 4423 ipif_lookup_multicast(ip_stack_t *ipst, zoneid_t zoneid, boolean_t isv6) 4424 { 4425 ill_t *ill; 4426 ill_walk_context_t ctx; 4427 ipif_t *ipif; 4428 ipif_t *saved_ipif = NULL; 4429 ipif_t *dep_ipif = NULL; 4430 4431 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 4432 if (isv6) 4433 ill = ILL_START_WALK_V6(&ctx, ipst); 4434 else 4435 ill = ILL_START_WALK_V4(&ctx, ipst); 4436 4437 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 4438 mutex_enter(&ill->ill_lock); 4439 if (IS_VNI(ill) || IS_UNDER_IPMP(ill) || 4440 ILL_IS_CONDEMNED(ill) || 4441 !(ill->ill_flags & ILLF_MULTICAST)) { 4442 mutex_exit(&ill->ill_lock); 4443 continue; 4444 } 4445 for (ipif = ill->ill_ipif; ipif != NULL; 4446 ipif = ipif->ipif_next) { 4447 if (zoneid != ipif->ipif_zoneid && 4448 zoneid != ALL_ZONES && 4449 ipif->ipif_zoneid != ALL_ZONES) { 4450 continue; 4451 } 4452 if (!(ipif->ipif_flags & IPIF_UP) || 4453 IPIF_IS_CONDEMNED(ipif)) { 4454 continue; 4455 } 4456 4457 /* 4458 * Found one candidate. If it is deprecated, 4459 * remember it in dep_ipif. If it is not deprecated, 4460 * remember it in saved_ipif. 4461 */ 4462 if (ipif->ipif_flags & IPIF_DEPRECATED) { 4463 if (dep_ipif == NULL) { 4464 dep_ipif = ipif; 4465 } else if (ipif_comp_multi(dep_ipif, ipif, 4466 isv6)) { 4467 /* 4468 * If the previous dep_ipif does not 4469 * belong to the same ill, we've done 4470 * a ipif_refhold() on it. So we need 4471 * to release it. 4472 */ 4473 if (dep_ipif->ipif_ill != ill) 4474 ipif_refrele(dep_ipif); 4475 dep_ipif = ipif; 4476 } 4477 continue; 4478 } 4479 if (saved_ipif == NULL) { 4480 saved_ipif = ipif; 4481 } else { 4482 if (ipif_comp_multi(saved_ipif, ipif, isv6)) { 4483 if (saved_ipif->ipif_ill != ill) 4484 ipif_refrele(saved_ipif); 4485 saved_ipif = ipif; 4486 } 4487 } 4488 } 4489 /* 4490 * Before going to the next ill, do a ipif_refhold() on the 4491 * saved ones. 4492 */ 4493 if (saved_ipif != NULL && saved_ipif->ipif_ill == ill) 4494 ipif_refhold_locked(saved_ipif); 4495 if (dep_ipif != NULL && dep_ipif->ipif_ill == ill) 4496 ipif_refhold_locked(dep_ipif); 4497 mutex_exit(&ill->ill_lock); 4498 } 4499 rw_exit(&ipst->ips_ill_g_lock); 4500 4501 /* 4502 * If we have only the saved_ipif, return it. But if we have both 4503 * saved_ipif and dep_ipif, check to see which one is better. 4504 */ 4505 if (saved_ipif != NULL) { 4506 if (dep_ipif != NULL) { 4507 if (ipif_comp_multi(saved_ipif, dep_ipif, isv6)) { 4508 ipif_refrele(saved_ipif); 4509 return (dep_ipif); 4510 } else { 4511 ipif_refrele(dep_ipif); 4512 return (saved_ipif); 4513 } 4514 } 4515 return (saved_ipif); 4516 } else { 4517 return (dep_ipif); 4518 } 4519 } 4520 4521 ill_t * 4522 ill_lookup_multicast(ip_stack_t *ipst, zoneid_t zoneid, boolean_t isv6) 4523 { 4524 ipif_t *ipif; 4525 ill_t *ill; 4526 4527 ipif = ipif_lookup_multicast(ipst, zoneid, isv6); 4528 if (ipif == NULL) 4529 return (NULL); 4530 4531 ill = ipif->ipif_ill; 4532 ill_refhold(ill); 4533 ipif_refrele(ipif); 4534 return (ill); 4535 } 4536 4537 /* 4538 * This function is called when an application does not specify an interface 4539 * to be used for multicast traffic (joining a group/sending data). It 4540 * calls ire_lookup_multi() to look for an interface route for the 4541 * specified multicast group. Doing this allows the administrator to add 4542 * prefix routes for multicast to indicate which interface to be used for 4543 * multicast traffic in the above scenario. The route could be for all 4544 * multicast (224.0/4), for a single multicast group (a /32 route) or 4545 * anything in between. If there is no such multicast route, we just find 4546 * any multicast capable interface and return it. The returned ipif 4547 * is refhold'ed. 4548 * 4549 * We support MULTIRT and RTF_SETSRC on the multicast routes added to the 4550 * unicast table. This is used by CGTP. 4551 */ 4552 ill_t * 4553 ill_lookup_group_v4(ipaddr_t group, zoneid_t zoneid, ip_stack_t *ipst, 4554 boolean_t *multirtp, ipaddr_t *setsrcp) 4555 { 4556 ill_t *ill; 4557 4558 ill = ire_lookup_multi_ill_v4(group, zoneid, ipst, multirtp, setsrcp); 4559 if (ill != NULL) 4560 return (ill); 4561 4562 return (ill_lookup_multicast(ipst, zoneid, B_FALSE)); 4563 } 4564 4565 /* 4566 * Look for an ipif with the specified interface address and destination. 4567 * The destination address is used only for matching point-to-point interfaces. 4568 */ 4569 ipif_t * 4570 ipif_lookup_interface(ipaddr_t if_addr, ipaddr_t dst, ip_stack_t *ipst) 4571 { 4572 ipif_t *ipif; 4573 ill_t *ill; 4574 ill_walk_context_t ctx; 4575 4576 /* 4577 * First match all the point-to-point interfaces 4578 * before looking at non-point-to-point interfaces. 4579 * This is done to avoid returning non-point-to-point 4580 * ipif instead of unnumbered point-to-point ipif. 4581 */ 4582 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 4583 ill = ILL_START_WALK_V4(&ctx, ipst); 4584 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 4585 mutex_enter(&ill->ill_lock); 4586 for (ipif = ill->ill_ipif; ipif != NULL; 4587 ipif = ipif->ipif_next) { 4588 /* Allow the ipif to be down */ 4589 if ((ipif->ipif_flags & IPIF_POINTOPOINT) && 4590 (ipif->ipif_lcl_addr == if_addr) && 4591 (ipif->ipif_pp_dst_addr == dst)) { 4592 if (!IPIF_IS_CONDEMNED(ipif)) { 4593 ipif_refhold_locked(ipif); 4594 mutex_exit(&ill->ill_lock); 4595 rw_exit(&ipst->ips_ill_g_lock); 4596 return (ipif); 4597 } 4598 } 4599 } 4600 mutex_exit(&ill->ill_lock); 4601 } 4602 rw_exit(&ipst->ips_ill_g_lock); 4603 4604 /* lookup the ipif based on interface address */ 4605 ipif = ipif_lookup_addr(if_addr, NULL, ALL_ZONES, ipst); 4606 ASSERT(ipif == NULL || !ipif->ipif_isv6); 4607 return (ipif); 4608 } 4609 4610 /* 4611 * Common function for ipif_lookup_addr() and ipif_lookup_addr_exact(). 4612 */ 4613 static ipif_t * 4614 ipif_lookup_addr_common(ipaddr_t addr, ill_t *match_ill, uint32_t match_flags, 4615 zoneid_t zoneid, ip_stack_t *ipst) 4616 { 4617 ipif_t *ipif; 4618 ill_t *ill; 4619 boolean_t ptp = B_FALSE; 4620 ill_walk_context_t ctx; 4621 boolean_t match_illgrp = (match_flags & IPIF_MATCH_ILLGRP); 4622 boolean_t no_duplicate = (match_flags & IPIF_MATCH_NONDUP); 4623 4624 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 4625 /* 4626 * Repeat twice, first based on local addresses and 4627 * next time for pointopoint. 4628 */ 4629 repeat: 4630 ill = ILL_START_WALK_V4(&ctx, ipst); 4631 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 4632 if (match_ill != NULL && ill != match_ill && 4633 (!match_illgrp || !IS_IN_SAME_ILLGRP(ill, match_ill))) { 4634 continue; 4635 } 4636 mutex_enter(&ill->ill_lock); 4637 for (ipif = ill->ill_ipif; ipif != NULL; 4638 ipif = ipif->ipif_next) { 4639 if (zoneid != ALL_ZONES && 4640 zoneid != ipif->ipif_zoneid && 4641 ipif->ipif_zoneid != ALL_ZONES) 4642 continue; 4643 4644 if (no_duplicate && !(ipif->ipif_flags & IPIF_UP)) 4645 continue; 4646 4647 /* Allow the ipif to be down */ 4648 if ((!ptp && (ipif->ipif_lcl_addr == addr) && 4649 ((ipif->ipif_flags & IPIF_UNNUMBERED) == 0)) || 4650 (ptp && (ipif->ipif_flags & IPIF_POINTOPOINT) && 4651 (ipif->ipif_pp_dst_addr == addr))) { 4652 if (!IPIF_IS_CONDEMNED(ipif)) { 4653 ipif_refhold_locked(ipif); 4654 mutex_exit(&ill->ill_lock); 4655 rw_exit(&ipst->ips_ill_g_lock); 4656 return (ipif); 4657 } 4658 } 4659 } 4660 mutex_exit(&ill->ill_lock); 4661 } 4662 4663 /* If we already did the ptp case, then we are done */ 4664 if (ptp) { 4665 rw_exit(&ipst->ips_ill_g_lock); 4666 return (NULL); 4667 } 4668 ptp = B_TRUE; 4669 goto repeat; 4670 } 4671 4672 /* 4673 * Lookup an ipif with the specified address. For point-to-point links we 4674 * look for matches on either the destination address or the local address, 4675 * but we skip the local address check if IPIF_UNNUMBERED is set. If the 4676 * `match_ill' argument is non-NULL, the lookup is restricted to that ill 4677 * (or illgrp if `match_ill' is in an IPMP group). 4678 */ 4679 ipif_t * 4680 ipif_lookup_addr(ipaddr_t addr, ill_t *match_ill, zoneid_t zoneid, 4681 ip_stack_t *ipst) 4682 { 4683 return (ipif_lookup_addr_common(addr, match_ill, IPIF_MATCH_ILLGRP, 4684 zoneid, ipst)); 4685 } 4686 4687 /* 4688 * Lookup an ipif with the specified address. Similar to ipif_lookup_addr, 4689 * except that we will only return an address if it is not marked as 4690 * IPIF_DUPLICATE 4691 */ 4692 ipif_t * 4693 ipif_lookup_addr_nondup(ipaddr_t addr, ill_t *match_ill, zoneid_t zoneid, 4694 ip_stack_t *ipst) 4695 { 4696 return (ipif_lookup_addr_common(addr, match_ill, 4697 (IPIF_MATCH_ILLGRP | IPIF_MATCH_NONDUP), 4698 zoneid, ipst)); 4699 } 4700 4701 /* 4702 * Special abbreviated version of ipif_lookup_addr() that doesn't match 4703 * `match_ill' across the IPMP group. This function is only needed in some 4704 * corner-cases; almost everything should use ipif_lookup_addr(). 4705 */ 4706 ipif_t * 4707 ipif_lookup_addr_exact(ipaddr_t addr, ill_t *match_ill, ip_stack_t *ipst) 4708 { 4709 ASSERT(match_ill != NULL); 4710 return (ipif_lookup_addr_common(addr, match_ill, 0, ALL_ZONES, 4711 ipst)); 4712 } 4713 4714 /* 4715 * Look for an ipif with the specified address. For point-point links 4716 * we look for matches on either the destination address and the local 4717 * address, but we ignore the check on the local address if IPIF_UNNUMBERED 4718 * is set. 4719 * If the `match_ill' argument is non-NULL, the lookup is restricted to that 4720 * ill (or illgrp if `match_ill' is in an IPMP group). 4721 * Return the zoneid for the ipif which matches. ALL_ZONES if no match. 4722 */ 4723 zoneid_t 4724 ipif_lookup_addr_zoneid(ipaddr_t addr, ill_t *match_ill, ip_stack_t *ipst) 4725 { 4726 zoneid_t zoneid; 4727 ipif_t *ipif; 4728 ill_t *ill; 4729 boolean_t ptp = B_FALSE; 4730 ill_walk_context_t ctx; 4731 4732 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 4733 /* 4734 * Repeat twice, first based on local addresses and 4735 * next time for pointopoint. 4736 */ 4737 repeat: 4738 ill = ILL_START_WALK_V4(&ctx, ipst); 4739 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 4740 if (match_ill != NULL && ill != match_ill && 4741 !IS_IN_SAME_ILLGRP(ill, match_ill)) { 4742 continue; 4743 } 4744 mutex_enter(&ill->ill_lock); 4745 for (ipif = ill->ill_ipif; ipif != NULL; 4746 ipif = ipif->ipif_next) { 4747 /* Allow the ipif to be down */ 4748 if ((!ptp && (ipif->ipif_lcl_addr == addr) && 4749 ((ipif->ipif_flags & IPIF_UNNUMBERED) == 0)) || 4750 (ptp && (ipif->ipif_flags & IPIF_POINTOPOINT) && 4751 (ipif->ipif_pp_dst_addr == addr)) && 4752 !(ipif->ipif_state_flags & IPIF_CONDEMNED)) { 4753 zoneid = ipif->ipif_zoneid; 4754 mutex_exit(&ill->ill_lock); 4755 rw_exit(&ipst->ips_ill_g_lock); 4756 /* 4757 * If ipif_zoneid was ALL_ZONES then we have 4758 * a trusted extensions shared IP address. 4759 * In that case GLOBAL_ZONEID works to send. 4760 */ 4761 if (zoneid == ALL_ZONES) 4762 zoneid = GLOBAL_ZONEID; 4763 return (zoneid); 4764 } 4765 } 4766 mutex_exit(&ill->ill_lock); 4767 } 4768 4769 /* If we already did the ptp case, then we are done */ 4770 if (ptp) { 4771 rw_exit(&ipst->ips_ill_g_lock); 4772 return (ALL_ZONES); 4773 } 4774 ptp = B_TRUE; 4775 goto repeat; 4776 } 4777 4778 /* 4779 * Look for an ipif that matches the specified remote address i.e. the 4780 * ipif that would receive the specified packet. 4781 * First look for directly connected interfaces and then do a recursive 4782 * IRE lookup and pick the first ipif corresponding to the source address in the 4783 * ire. 4784 * Returns: held ipif 4785 * 4786 * This is only used for ICMP_ADDRESS_MASK_REQUESTs 4787 */ 4788 ipif_t * 4789 ipif_lookup_remote(ill_t *ill, ipaddr_t addr, zoneid_t zoneid) 4790 { 4791 ipif_t *ipif; 4792 4793 ASSERT(!ill->ill_isv6); 4794 4795 /* 4796 * Someone could be changing this ipif currently or change it 4797 * after we return this. Thus a few packets could use the old 4798 * old values. However structure updates/creates (ire, ilg, ilm etc) 4799 * will atomically be updated or cleaned up with the new value 4800 * Thus we don't need a lock to check the flags or other attrs below. 4801 */ 4802 mutex_enter(&ill->ill_lock); 4803 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 4804 if (IPIF_IS_CONDEMNED(ipif)) 4805 continue; 4806 if (zoneid != ALL_ZONES && zoneid != ipif->ipif_zoneid && 4807 ipif->ipif_zoneid != ALL_ZONES) 4808 continue; 4809 /* Allow the ipif to be down */ 4810 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 4811 if ((ipif->ipif_pp_dst_addr == addr) || 4812 (!(ipif->ipif_flags & IPIF_UNNUMBERED) && 4813 ipif->ipif_lcl_addr == addr)) { 4814 ipif_refhold_locked(ipif); 4815 mutex_exit(&ill->ill_lock); 4816 return (ipif); 4817 } 4818 } else if (ipif->ipif_subnet == (addr & ipif->ipif_net_mask)) { 4819 ipif_refhold_locked(ipif); 4820 mutex_exit(&ill->ill_lock); 4821 return (ipif); 4822 } 4823 } 4824 mutex_exit(&ill->ill_lock); 4825 /* 4826 * For a remote destination it isn't possible to nail down a particular 4827 * ipif. 4828 */ 4829 4830 /* Pick the first interface */ 4831 ipif = ipif_get_next_ipif(NULL, ill); 4832 return (ipif); 4833 } 4834 4835 /* 4836 * This func does not prevent refcnt from increasing. But if 4837 * the caller has taken steps to that effect, then this func 4838 * can be used to determine whether the ill has become quiescent 4839 */ 4840 static boolean_t 4841 ill_is_quiescent(ill_t *ill) 4842 { 4843 ipif_t *ipif; 4844 4845 ASSERT(MUTEX_HELD(&ill->ill_lock)); 4846 4847 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 4848 if (ipif->ipif_refcnt != 0) 4849 return (B_FALSE); 4850 } 4851 if (!ILL_DOWN_OK(ill) || ill->ill_refcnt != 0) { 4852 return (B_FALSE); 4853 } 4854 return (B_TRUE); 4855 } 4856 4857 boolean_t 4858 ill_is_freeable(ill_t *ill) 4859 { 4860 ipif_t *ipif; 4861 4862 ASSERT(MUTEX_HELD(&ill->ill_lock)); 4863 4864 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 4865 if (ipif->ipif_refcnt != 0) { 4866 return (B_FALSE); 4867 } 4868 } 4869 if (!ILL_FREE_OK(ill) || ill->ill_refcnt != 0) { 4870 return (B_FALSE); 4871 } 4872 return (B_TRUE); 4873 } 4874 4875 /* 4876 * This func does not prevent refcnt from increasing. But if 4877 * the caller has taken steps to that effect, then this func 4878 * can be used to determine whether the ipif has become quiescent 4879 */ 4880 static boolean_t 4881 ipif_is_quiescent(ipif_t *ipif) 4882 { 4883 ill_t *ill; 4884 4885 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 4886 4887 if (ipif->ipif_refcnt != 0) 4888 return (B_FALSE); 4889 4890 ill = ipif->ipif_ill; 4891 if (ill->ill_ipif_up_count != 0 || ill->ill_ipif_dup_count != 0 || 4892 ill->ill_logical_down) { 4893 return (B_TRUE); 4894 } 4895 4896 /* This is the last ipif going down or being deleted on this ill */ 4897 if (ill->ill_ire_cnt != 0 || ill->ill_refcnt != 0) { 4898 return (B_FALSE); 4899 } 4900 4901 return (B_TRUE); 4902 } 4903 4904 /* 4905 * return true if the ipif can be destroyed: the ipif has to be quiescent 4906 * with zero references from ire/ilm to it. 4907 */ 4908 static boolean_t 4909 ipif_is_freeable(ipif_t *ipif) 4910 { 4911 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 4912 ASSERT(ipif->ipif_id != 0); 4913 return (ipif->ipif_refcnt == 0); 4914 } 4915 4916 /* 4917 * The ipif/ill/ire has been refreled. Do the tail processing. 4918 * Determine if the ipif or ill in question has become quiescent and if so 4919 * wakeup close and/or restart any queued pending ioctl that is waiting 4920 * for the ipif_down (or ill_down) 4921 */ 4922 void 4923 ipif_ill_refrele_tail(ill_t *ill) 4924 { 4925 mblk_t *mp; 4926 conn_t *connp; 4927 ipsq_t *ipsq; 4928 ipxop_t *ipx; 4929 ipif_t *ipif; 4930 dl_notify_ind_t *dlindp; 4931 4932 ASSERT(MUTEX_HELD(&ill->ill_lock)); 4933 4934 if ((ill->ill_state_flags & ILL_CONDEMNED) && ill_is_freeable(ill)) { 4935 /* ip_modclose() may be waiting */ 4936 cv_broadcast(&ill->ill_cv); 4937 } 4938 4939 ipsq = ill->ill_phyint->phyint_ipsq; 4940 mutex_enter(&ipsq->ipsq_lock); 4941 ipx = ipsq->ipsq_xop; 4942 mutex_enter(&ipx->ipx_lock); 4943 if (ipx->ipx_waitfor == 0) /* no one's waiting; bail */ 4944 goto unlock; 4945 4946 ASSERT(ipx->ipx_pending_mp != NULL && ipx->ipx_pending_ipif != NULL); 4947 4948 ipif = ipx->ipx_pending_ipif; 4949 if (ipif->ipif_ill != ill) /* wait is for another ill; bail */ 4950 goto unlock; 4951 4952 switch (ipx->ipx_waitfor) { 4953 case IPIF_DOWN: 4954 if (!ipif_is_quiescent(ipif)) 4955 goto unlock; 4956 break; 4957 case IPIF_FREE: 4958 if (!ipif_is_freeable(ipif)) 4959 goto unlock; 4960 break; 4961 case ILL_DOWN: 4962 if (!ill_is_quiescent(ill)) 4963 goto unlock; 4964 break; 4965 case ILL_FREE: 4966 /* 4967 * ILL_FREE is only for loopback; normal ill teardown waits 4968 * synchronously in ip_modclose() without using ipx_waitfor, 4969 * handled by the cv_broadcast() at the top of this function. 4970 */ 4971 if (!ill_is_freeable(ill)) 4972 goto unlock; 4973 break; 4974 default: 4975 cmn_err(CE_PANIC, "ipsq: %p unknown ipx_waitfor %d\n", 4976 (void *)ipsq, ipx->ipx_waitfor); 4977 } 4978 4979 ill_refhold_locked(ill); /* for qwriter_ip() call below */ 4980 mutex_exit(&ipx->ipx_lock); 4981 mp = ipsq_pending_mp_get(ipsq, &connp); 4982 mutex_exit(&ipsq->ipsq_lock); 4983 mutex_exit(&ill->ill_lock); 4984 4985 ASSERT(mp != NULL); 4986 /* 4987 * NOTE: all of the qwriter_ip() calls below use CUR_OP since 4988 * we can only get here when the current operation decides it 4989 * it needs to quiesce via ipsq_pending_mp_add(). 4990 */ 4991 switch (mp->b_datap->db_type) { 4992 case M_PCPROTO: 4993 case M_PROTO: 4994 /* 4995 * For now, only DL_NOTIFY_IND messages can use this facility. 4996 */ 4997 dlindp = (dl_notify_ind_t *)mp->b_rptr; 4998 ASSERT(dlindp->dl_primitive == DL_NOTIFY_IND); 4999 5000 switch (dlindp->dl_notification) { 5001 case DL_NOTE_PHYS_ADDR: 5002 qwriter_ip(ill, ill->ill_rq, mp, 5003 ill_set_phys_addr_tail, CUR_OP, B_TRUE); 5004 return; 5005 case DL_NOTE_REPLUMB: 5006 qwriter_ip(ill, ill->ill_rq, mp, 5007 ill_replumb_tail, CUR_OP, B_TRUE); 5008 return; 5009 default: 5010 ASSERT(0); 5011 ill_refrele(ill); 5012 } 5013 break; 5014 5015 case M_ERROR: 5016 case M_HANGUP: 5017 qwriter_ip(ill, ill->ill_rq, mp, ipif_all_down_tail, CUR_OP, 5018 B_TRUE); 5019 return; 5020 5021 case M_IOCTL: 5022 case M_IOCDATA: 5023 qwriter_ip(ill, (connp != NULL ? CONNP_TO_WQ(connp) : 5024 ill->ill_wq), mp, ip_reprocess_ioctl, CUR_OP, B_TRUE); 5025 return; 5026 5027 default: 5028 cmn_err(CE_PANIC, "ipif_ill_refrele_tail mp %p " 5029 "db_type %d\n", (void *)mp, mp->b_datap->db_type); 5030 } 5031 return; 5032 unlock: 5033 mutex_exit(&ipsq->ipsq_lock); 5034 mutex_exit(&ipx->ipx_lock); 5035 mutex_exit(&ill->ill_lock); 5036 } 5037 5038 #ifdef DEBUG 5039 /* Reuse trace buffer from beginning (if reached the end) and record trace */ 5040 static void 5041 th_trace_rrecord(th_trace_t *th_trace) 5042 { 5043 tr_buf_t *tr_buf; 5044 uint_t lastref; 5045 5046 lastref = th_trace->th_trace_lastref; 5047 lastref++; 5048 if (lastref == TR_BUF_MAX) 5049 lastref = 0; 5050 th_trace->th_trace_lastref = lastref; 5051 tr_buf = &th_trace->th_trbuf[lastref]; 5052 tr_buf->tr_time = ddi_get_lbolt(); 5053 tr_buf->tr_depth = getpcstack(tr_buf->tr_stack, TR_STACK_DEPTH); 5054 } 5055 5056 static void 5057 th_trace_free(void *value) 5058 { 5059 th_trace_t *th_trace = value; 5060 5061 ASSERT(th_trace->th_refcnt == 0); 5062 kmem_free(th_trace, sizeof (*th_trace)); 5063 } 5064 5065 /* 5066 * Find or create the per-thread hash table used to track object references. 5067 * The ipst argument is NULL if we shouldn't allocate. 5068 * 5069 * Accesses per-thread data, so there's no need to lock here. 5070 */ 5071 static mod_hash_t * 5072 th_trace_gethash(ip_stack_t *ipst) 5073 { 5074 th_hash_t *thh; 5075 5076 if ((thh = tsd_get(ip_thread_data)) == NULL && ipst != NULL) { 5077 mod_hash_t *mh; 5078 char name[256]; 5079 size_t objsize, rshift; 5080 int retv; 5081 5082 if ((thh = kmem_alloc(sizeof (*thh), KM_NOSLEEP)) == NULL) 5083 return (NULL); 5084 (void) snprintf(name, sizeof (name), "th_trace_%p", 5085 (void *)curthread); 5086 5087 /* 5088 * We use mod_hash_create_extended here rather than the more 5089 * obvious mod_hash_create_ptrhash because the latter has a 5090 * hard-coded KM_SLEEP, and we'd prefer to fail rather than 5091 * block. 5092 */ 5093 objsize = MAX(MAX(sizeof (ill_t), sizeof (ipif_t)), 5094 MAX(sizeof (ire_t), sizeof (ncec_t))); 5095 rshift = highbit(objsize); 5096 mh = mod_hash_create_extended(name, 64, mod_hash_null_keydtor, 5097 th_trace_free, mod_hash_byptr, (void *)rshift, 5098 mod_hash_ptrkey_cmp, KM_NOSLEEP); 5099 if (mh == NULL) { 5100 kmem_free(thh, sizeof (*thh)); 5101 return (NULL); 5102 } 5103 thh->thh_hash = mh; 5104 thh->thh_ipst = ipst; 5105 /* 5106 * We trace ills, ipifs, ires, and nces. All of these are 5107 * per-IP-stack, so the lock on the thread list is as well. 5108 */ 5109 rw_enter(&ip_thread_rwlock, RW_WRITER); 5110 list_insert_tail(&ip_thread_list, thh); 5111 rw_exit(&ip_thread_rwlock); 5112 retv = tsd_set(ip_thread_data, thh); 5113 ASSERT(retv == 0); 5114 } 5115 return (thh != NULL ? thh->thh_hash : NULL); 5116 } 5117 5118 boolean_t 5119 th_trace_ref(const void *obj, ip_stack_t *ipst) 5120 { 5121 th_trace_t *th_trace; 5122 mod_hash_t *mh; 5123 mod_hash_val_t val; 5124 5125 if ((mh = th_trace_gethash(ipst)) == NULL) 5126 return (B_FALSE); 5127 5128 /* 5129 * Attempt to locate the trace buffer for this obj and thread. 5130 * If it does not exist, then allocate a new trace buffer and 5131 * insert into the hash. 5132 */ 5133 if (mod_hash_find(mh, (mod_hash_key_t)obj, &val) == MH_ERR_NOTFOUND) { 5134 th_trace = kmem_zalloc(sizeof (th_trace_t), KM_NOSLEEP); 5135 if (th_trace == NULL) 5136 return (B_FALSE); 5137 5138 th_trace->th_id = curthread; 5139 if (mod_hash_insert(mh, (mod_hash_key_t)obj, 5140 (mod_hash_val_t)th_trace) != 0) { 5141 kmem_free(th_trace, sizeof (th_trace_t)); 5142 return (B_FALSE); 5143 } 5144 } else { 5145 th_trace = (th_trace_t *)val; 5146 } 5147 5148 ASSERT(th_trace->th_refcnt >= 0 && 5149 th_trace->th_refcnt < TR_BUF_MAX - 1); 5150 5151 th_trace->th_refcnt++; 5152 th_trace_rrecord(th_trace); 5153 return (B_TRUE); 5154 } 5155 5156 /* 5157 * For the purpose of tracing a reference release, we assume that global 5158 * tracing is always on and that the same thread initiated the reference hold 5159 * is releasing. 5160 */ 5161 void 5162 th_trace_unref(const void *obj) 5163 { 5164 int retv; 5165 mod_hash_t *mh; 5166 th_trace_t *th_trace; 5167 mod_hash_val_t val; 5168 5169 mh = th_trace_gethash(NULL); 5170 retv = mod_hash_find(mh, (mod_hash_key_t)obj, &val); 5171 ASSERT(retv == 0); 5172 th_trace = (th_trace_t *)val; 5173 5174 ASSERT(th_trace->th_refcnt > 0); 5175 th_trace->th_refcnt--; 5176 th_trace_rrecord(th_trace); 5177 } 5178 5179 /* 5180 * If tracing has been disabled, then we assume that the reference counts are 5181 * now useless, and we clear them out before destroying the entries. 5182 */ 5183 void 5184 th_trace_cleanup(const void *obj, boolean_t trace_disable) 5185 { 5186 th_hash_t *thh; 5187 mod_hash_t *mh; 5188 mod_hash_val_t val; 5189 th_trace_t *th_trace; 5190 int retv; 5191 5192 rw_enter(&ip_thread_rwlock, RW_READER); 5193 for (thh = list_head(&ip_thread_list); thh != NULL; 5194 thh = list_next(&ip_thread_list, thh)) { 5195 if (mod_hash_find(mh = thh->thh_hash, (mod_hash_key_t)obj, 5196 &val) == 0) { 5197 th_trace = (th_trace_t *)val; 5198 if (trace_disable) 5199 th_trace->th_refcnt = 0; 5200 retv = mod_hash_destroy(mh, (mod_hash_key_t)obj); 5201 ASSERT(retv == 0); 5202 } 5203 } 5204 rw_exit(&ip_thread_rwlock); 5205 } 5206 5207 void 5208 ipif_trace_ref(ipif_t *ipif) 5209 { 5210 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 5211 5212 if (ipif->ipif_trace_disable) 5213 return; 5214 5215 if (!th_trace_ref(ipif, ipif->ipif_ill->ill_ipst)) { 5216 ipif->ipif_trace_disable = B_TRUE; 5217 ipif_trace_cleanup(ipif); 5218 } 5219 } 5220 5221 void 5222 ipif_untrace_ref(ipif_t *ipif) 5223 { 5224 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 5225 5226 if (!ipif->ipif_trace_disable) 5227 th_trace_unref(ipif); 5228 } 5229 5230 void 5231 ill_trace_ref(ill_t *ill) 5232 { 5233 ASSERT(MUTEX_HELD(&ill->ill_lock)); 5234 5235 if (ill->ill_trace_disable) 5236 return; 5237 5238 if (!th_trace_ref(ill, ill->ill_ipst)) { 5239 ill->ill_trace_disable = B_TRUE; 5240 ill_trace_cleanup(ill); 5241 } 5242 } 5243 5244 void 5245 ill_untrace_ref(ill_t *ill) 5246 { 5247 ASSERT(MUTEX_HELD(&ill->ill_lock)); 5248 5249 if (!ill->ill_trace_disable) 5250 th_trace_unref(ill); 5251 } 5252 5253 /* 5254 * Called when ipif is unplumbed or when memory alloc fails. Note that on 5255 * failure, ipif_trace_disable is set. 5256 */ 5257 static void 5258 ipif_trace_cleanup(const ipif_t *ipif) 5259 { 5260 th_trace_cleanup(ipif, ipif->ipif_trace_disable); 5261 } 5262 5263 /* 5264 * Called when ill is unplumbed or when memory alloc fails. Note that on 5265 * failure, ill_trace_disable is set. 5266 */ 5267 static void 5268 ill_trace_cleanup(const ill_t *ill) 5269 { 5270 th_trace_cleanup(ill, ill->ill_trace_disable); 5271 } 5272 #endif /* DEBUG */ 5273 5274 void 5275 ipif_refhold_locked(ipif_t *ipif) 5276 { 5277 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 5278 ipif->ipif_refcnt++; 5279 IPIF_TRACE_REF(ipif); 5280 } 5281 5282 void 5283 ipif_refhold(ipif_t *ipif) 5284 { 5285 ill_t *ill; 5286 5287 ill = ipif->ipif_ill; 5288 mutex_enter(&ill->ill_lock); 5289 ipif->ipif_refcnt++; 5290 IPIF_TRACE_REF(ipif); 5291 mutex_exit(&ill->ill_lock); 5292 } 5293 5294 /* 5295 * Must not be called while holding any locks. Otherwise if this is 5296 * the last reference to be released there is a chance of recursive mutex 5297 * panic due to ipif_refrele -> ipif_ill_refrele_tail -> qwriter_ip trying 5298 * to restart an ioctl. 5299 */ 5300 void 5301 ipif_refrele(ipif_t *ipif) 5302 { 5303 ill_t *ill; 5304 5305 ill = ipif->ipif_ill; 5306 5307 mutex_enter(&ill->ill_lock); 5308 ASSERT(ipif->ipif_refcnt != 0); 5309 ipif->ipif_refcnt--; 5310 IPIF_UNTRACE_REF(ipif); 5311 if (ipif->ipif_refcnt != 0) { 5312 mutex_exit(&ill->ill_lock); 5313 return; 5314 } 5315 5316 /* Drops the ill_lock */ 5317 ipif_ill_refrele_tail(ill); 5318 } 5319 5320 ipif_t * 5321 ipif_get_next_ipif(ipif_t *curr, ill_t *ill) 5322 { 5323 ipif_t *ipif; 5324 5325 mutex_enter(&ill->ill_lock); 5326 for (ipif = (curr == NULL ? ill->ill_ipif : curr->ipif_next); 5327 ipif != NULL; ipif = ipif->ipif_next) { 5328 if (IPIF_IS_CONDEMNED(ipif)) 5329 continue; 5330 ipif_refhold_locked(ipif); 5331 mutex_exit(&ill->ill_lock); 5332 return (ipif); 5333 } 5334 mutex_exit(&ill->ill_lock); 5335 return (NULL); 5336 } 5337 5338 /* 5339 * TODO: make this table extendible at run time 5340 * Return a pointer to the mac type info for 'mac_type' 5341 */ 5342 static ip_m_t * 5343 ip_m_lookup(t_uscalar_t mac_type) 5344 { 5345 ip_m_t *ipm; 5346 5347 for (ipm = ip_m_tbl; ipm < A_END(ip_m_tbl); ipm++) 5348 if (ipm->ip_m_mac_type == mac_type) 5349 return (ipm); 5350 return (NULL); 5351 } 5352 5353 /* 5354 * Make a link layer address from the multicast IP address *addr. 5355 * To form the link layer address, invoke the ip_m_v*mapping function 5356 * associated with the link-layer type. 5357 */ 5358 void 5359 ip_mcast_mapping(ill_t *ill, uchar_t *addr, uchar_t *hwaddr) 5360 { 5361 ip_m_t *ipm; 5362 5363 if (ill->ill_net_type == IRE_IF_NORESOLVER) 5364 return; 5365 5366 ASSERT(addr != NULL); 5367 5368 ipm = ip_m_lookup(ill->ill_mactype); 5369 if (ipm == NULL || 5370 (ill->ill_isv6 && ipm->ip_m_v6mapping == NULL) || 5371 (!ill->ill_isv6 && ipm->ip_m_v4mapping == NULL)) { 5372 ip0dbg(("no mapping for ill %s mactype 0x%x\n", 5373 ill->ill_name, ill->ill_mactype)); 5374 return; 5375 } 5376 if (ill->ill_isv6) 5377 (*ipm->ip_m_v6mapping)(ill, addr, hwaddr); 5378 else 5379 (*ipm->ip_m_v4mapping)(ill, addr, hwaddr); 5380 } 5381 5382 /* 5383 * ip_rt_add is called to add an IPv4 route to the forwarding table. 5384 * ill is passed in to associate it with the correct interface. 5385 * If ire_arg is set, then we return the held IRE in that location. 5386 */ 5387 int 5388 ip_rt_add(ipaddr_t dst_addr, ipaddr_t mask, ipaddr_t gw_addr, 5389 ipaddr_t src_addr, int flags, ill_t *ill, ire_t **ire_arg, 5390 boolean_t ioctl_msg, struct rtsa_s *sp, ip_stack_t *ipst, zoneid_t zoneid) 5391 { 5392 ire_t *ire, *nire; 5393 ire_t *gw_ire = NULL; 5394 ipif_t *ipif = NULL; 5395 uint_t type; 5396 int match_flags = MATCH_IRE_TYPE; 5397 tsol_gc_t *gc = NULL; 5398 tsol_gcgrp_t *gcgrp = NULL; 5399 boolean_t gcgrp_xtraref = B_FALSE; 5400 boolean_t cgtp_broadcast; 5401 5402 ip1dbg(("ip_rt_add:")); 5403 5404 if (ire_arg != NULL) 5405 *ire_arg = NULL; 5406 5407 /* 5408 * If this is the case of RTF_HOST being set, then we set the netmask 5409 * to all ones (regardless if one was supplied). 5410 */ 5411 if (flags & RTF_HOST) 5412 mask = IP_HOST_MASK; 5413 5414 /* 5415 * Prevent routes with a zero gateway from being created (since 5416 * interfaces can currently be plumbed and brought up no assigned 5417 * address). 5418 */ 5419 if (gw_addr == 0) 5420 return (ENETUNREACH); 5421 /* 5422 * Get the ipif, if any, corresponding to the gw_addr 5423 * If -ifp was specified we restrict ourselves to the ill, otherwise 5424 * we match on the gatway and destination to handle unnumbered pt-pt 5425 * interfaces. 5426 */ 5427 if (ill != NULL) 5428 ipif = ipif_lookup_addr(gw_addr, ill, ALL_ZONES, ipst); 5429 else 5430 ipif = ipif_lookup_interface(gw_addr, dst_addr, ipst); 5431 if (ipif != NULL) { 5432 if (IS_VNI(ipif->ipif_ill)) { 5433 ipif_refrele(ipif); 5434 return (EINVAL); 5435 } 5436 } 5437 5438 /* 5439 * GateD will attempt to create routes with a loopback interface 5440 * address as the gateway and with RTF_GATEWAY set. We allow 5441 * these routes to be added, but create them as interface routes 5442 * since the gateway is an interface address. 5443 */ 5444 if ((ipif != NULL) && (ipif->ipif_ire_type == IRE_LOOPBACK)) { 5445 flags &= ~RTF_GATEWAY; 5446 if (gw_addr == INADDR_LOOPBACK && dst_addr == INADDR_LOOPBACK && 5447 mask == IP_HOST_MASK) { 5448 ire = ire_ftable_lookup_v4(dst_addr, 0, 0, IRE_LOOPBACK, 5449 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, 0, ipst, 5450 NULL); 5451 if (ire != NULL) { 5452 ire_refrele(ire); 5453 ipif_refrele(ipif); 5454 return (EEXIST); 5455 } 5456 ip1dbg(("ip_rt_add: 0x%p creating IRE 0x%x" 5457 "for 0x%x\n", (void *)ipif, 5458 ipif->ipif_ire_type, 5459 ntohl(ipif->ipif_lcl_addr))); 5460 ire = ire_create( 5461 (uchar_t *)&dst_addr, /* dest address */ 5462 (uchar_t *)&mask, /* mask */ 5463 NULL, /* no gateway */ 5464 ipif->ipif_ire_type, /* LOOPBACK */ 5465 ipif->ipif_ill, 5466 zoneid, 5467 (ipif->ipif_flags & IPIF_PRIVATE) ? RTF_PRIVATE : 0, 5468 NULL, 5469 ipst); 5470 5471 if (ire == NULL) { 5472 ipif_refrele(ipif); 5473 return (ENOMEM); 5474 } 5475 /* src address assigned by the caller? */ 5476 if ((src_addr != INADDR_ANY) && (flags & RTF_SETSRC)) 5477 ire->ire_setsrc_addr = src_addr; 5478 5479 nire = ire_add(ire); 5480 if (nire == NULL) { 5481 /* 5482 * In the result of failure, ire_add() will have 5483 * already deleted the ire in question, so there 5484 * is no need to do that here. 5485 */ 5486 ipif_refrele(ipif); 5487 return (ENOMEM); 5488 } 5489 /* 5490 * Check if it was a duplicate entry. This handles 5491 * the case of two racing route adds for the same route 5492 */ 5493 if (nire != ire) { 5494 ASSERT(nire->ire_identical_ref > 1); 5495 ire_delete(nire); 5496 ire_refrele(nire); 5497 ipif_refrele(ipif); 5498 return (EEXIST); 5499 } 5500 ire = nire; 5501 goto save_ire; 5502 } 5503 } 5504 5505 /* 5506 * The routes for multicast with CGTP are quite special in that 5507 * the gateway is the local interface address, yet RTF_GATEWAY 5508 * is set. We turn off RTF_GATEWAY to provide compatibility with 5509 * this undocumented and unusual use of multicast routes. 5510 */ 5511 if ((flags & RTF_MULTIRT) && ipif != NULL) 5512 flags &= ~RTF_GATEWAY; 5513 5514 /* 5515 * Traditionally, interface routes are ones where RTF_GATEWAY isn't set 5516 * and the gateway address provided is one of the system's interface 5517 * addresses. By using the routing socket interface and supplying an 5518 * RTA_IFP sockaddr with an interface index, an alternate method of 5519 * specifying an interface route to be created is available which uses 5520 * the interface index that specifies the outgoing interface rather than 5521 * the address of an outgoing interface (which may not be able to 5522 * uniquely identify an interface). When coupled with the RTF_GATEWAY 5523 * flag, routes can be specified which not only specify the next-hop to 5524 * be used when routing to a certain prefix, but also which outgoing 5525 * interface should be used. 5526 * 5527 * Previously, interfaces would have unique addresses assigned to them 5528 * and so the address assigned to a particular interface could be used 5529 * to identify a particular interface. One exception to this was the 5530 * case of an unnumbered interface (where IPIF_UNNUMBERED was set). 5531 * 5532 * With the advent of IPv6 and its link-local addresses, this 5533 * restriction was relaxed and interfaces could share addresses between 5534 * themselves. In fact, typically all of the link-local interfaces on 5535 * an IPv6 node or router will have the same link-local address. In 5536 * order to differentiate between these interfaces, the use of an 5537 * interface index is necessary and this index can be carried inside a 5538 * RTA_IFP sockaddr (which is actually a sockaddr_dl). One restriction 5539 * of using the interface index, however, is that all of the ipif's that 5540 * are part of an ill have the same index and so the RTA_IFP sockaddr 5541 * cannot be used to differentiate between ipif's (or logical 5542 * interfaces) that belong to the same ill (physical interface). 5543 * 5544 * For example, in the following case involving IPv4 interfaces and 5545 * logical interfaces 5546 * 5547 * 192.0.2.32 255.255.255.224 192.0.2.33 U if0 5548 * 192.0.2.32 255.255.255.224 192.0.2.34 U if0 5549 * 192.0.2.32 255.255.255.224 192.0.2.35 U if0 5550 * 5551 * the ipif's corresponding to each of these interface routes can be 5552 * uniquely identified by the "gateway" (actually interface address). 5553 * 5554 * In this case involving multiple IPv6 default routes to a particular 5555 * link-local gateway, the use of RTA_IFP is necessary to specify which 5556 * default route is of interest: 5557 * 5558 * default fe80::123:4567:89ab:cdef U if0 5559 * default fe80::123:4567:89ab:cdef U if1 5560 */ 5561 5562 /* RTF_GATEWAY not set */ 5563 if (!(flags & RTF_GATEWAY)) { 5564 if (sp != NULL) { 5565 ip2dbg(("ip_rt_add: gateway security attributes " 5566 "cannot be set with interface route\n")); 5567 if (ipif != NULL) 5568 ipif_refrele(ipif); 5569 return (EINVAL); 5570 } 5571 5572 /* 5573 * Whether or not ill (RTA_IFP) is set, we require that 5574 * the gateway is one of our local addresses. 5575 */ 5576 if (ipif == NULL) 5577 return (ENETUNREACH); 5578 5579 /* 5580 * We use MATCH_IRE_ILL here. If the caller specified an 5581 * interface (from the RTA_IFP sockaddr) we use it, otherwise 5582 * we use the ill derived from the gateway address. 5583 * We can always match the gateway address since we record it 5584 * in ire_gateway_addr. 5585 * We don't allow RTA_IFP to specify a different ill than the 5586 * one matching the ipif to make sure we can delete the route. 5587 */ 5588 match_flags |= MATCH_IRE_GW | MATCH_IRE_ILL; 5589 if (ill == NULL) { 5590 ill = ipif->ipif_ill; 5591 } else if (ill != ipif->ipif_ill) { 5592 ipif_refrele(ipif); 5593 return (EINVAL); 5594 } 5595 5596 /* 5597 * We check for an existing entry at this point. 5598 * 5599 * Since a netmask isn't passed in via the ioctl interface 5600 * (SIOCADDRT), we don't check for a matching netmask in that 5601 * case. 5602 */ 5603 if (!ioctl_msg) 5604 match_flags |= MATCH_IRE_MASK; 5605 ire = ire_ftable_lookup_v4(dst_addr, mask, gw_addr, 5606 IRE_INTERFACE, ill, ALL_ZONES, NULL, match_flags, 0, ipst, 5607 NULL); 5608 if (ire != NULL) { 5609 ire_refrele(ire); 5610 ipif_refrele(ipif); 5611 return (EEXIST); 5612 } 5613 5614 /* 5615 * Create a copy of the IRE_LOOPBACK, IRE_IF_NORESOLVER or 5616 * IRE_IF_RESOLVER with the modified address, netmask, and 5617 * gateway. 5618 */ 5619 ire = ire_create( 5620 (uchar_t *)&dst_addr, 5621 (uint8_t *)&mask, 5622 (uint8_t *)&gw_addr, 5623 ill->ill_net_type, 5624 ill, 5625 zoneid, 5626 flags, 5627 NULL, 5628 ipst); 5629 if (ire == NULL) { 5630 ipif_refrele(ipif); 5631 return (ENOMEM); 5632 } 5633 5634 /* 5635 * Some software (for example, GateD and Sun Cluster) attempts 5636 * to create (what amount to) IRE_PREFIX routes with the 5637 * loopback address as the gateway. This is primarily done to 5638 * set up prefixes with the RTF_REJECT flag set (for example, 5639 * when generating aggregate routes.) 5640 * 5641 * If the IRE type (as defined by ill->ill_net_type) is 5642 * IRE_LOOPBACK, then we map the request into a 5643 * IRE_IF_NORESOLVER. We also OR in the RTF_BLACKHOLE flag as 5644 * these interface routes, by definition, can only be that. 5645 * 5646 * Needless to say, the real IRE_LOOPBACK is NOT created by this 5647 * routine, but rather using ire_create() directly. 5648 * 5649 */ 5650 if (ill->ill_net_type == IRE_LOOPBACK) { 5651 ire->ire_type = IRE_IF_NORESOLVER; 5652 ire->ire_flags |= RTF_BLACKHOLE; 5653 } 5654 5655 /* src address assigned by the caller? */ 5656 if ((src_addr != INADDR_ANY) && (flags & RTF_SETSRC)) 5657 ire->ire_setsrc_addr = src_addr; 5658 5659 nire = ire_add(ire); 5660 if (nire == NULL) { 5661 /* 5662 * In the result of failure, ire_add() will have 5663 * already deleted the ire in question, so there 5664 * is no need to do that here. 5665 */ 5666 ipif_refrele(ipif); 5667 return (ENOMEM); 5668 } 5669 /* 5670 * Check if it was a duplicate entry. This handles 5671 * the case of two racing route adds for the same route 5672 */ 5673 if (nire != ire) { 5674 ire_delete(nire); 5675 ire_refrele(nire); 5676 ipif_refrele(ipif); 5677 return (EEXIST); 5678 } 5679 ire = nire; 5680 goto save_ire; 5681 } 5682 5683 /* 5684 * Get an interface IRE for the specified gateway. 5685 * If we don't have an IRE_IF_NORESOLVER or IRE_IF_RESOLVER for the 5686 * gateway, it is currently unreachable and we fail the request 5687 * accordingly. 5688 * If RTA_IFP was specified we look on that particular ill. 5689 */ 5690 if (ill != NULL) 5691 match_flags |= MATCH_IRE_ILL; 5692 5693 /* Check whether the gateway is reachable. */ 5694 again: 5695 type = IRE_INTERFACE; 5696 if (flags & RTF_INDIRECT) 5697 type |= IRE_OFFLINK; 5698 5699 gw_ire = ire_ftable_lookup_v4(gw_addr, 0, 0, type, ill, 5700 ALL_ZONES, NULL, match_flags, 0, ipst, NULL); 5701 if (gw_ire == NULL) { 5702 /* 5703 * With IPMP, we allow host routes to influence in.mpathd's 5704 * target selection. However, if the test addresses are on 5705 * their own network, the above lookup will fail since the 5706 * underlying IRE_INTERFACEs are marked hidden. So allow 5707 * hidden test IREs to be found and try again. 5708 */ 5709 if (!(match_flags & MATCH_IRE_TESTHIDDEN)) { 5710 match_flags |= MATCH_IRE_TESTHIDDEN; 5711 goto again; 5712 } 5713 5714 if (ipif != NULL) 5715 ipif_refrele(ipif); 5716 return (ENETUNREACH); 5717 } 5718 5719 /* 5720 * We create one of three types of IREs as a result of this request 5721 * based on the netmask. A netmask of all ones (which is automatically 5722 * assumed when RTF_HOST is set) results in an IRE_HOST being created. 5723 * An all zeroes netmask implies a default route so an IRE_DEFAULT is 5724 * created. Otherwise, an IRE_PREFIX route is created for the 5725 * destination prefix. 5726 */ 5727 if (mask == IP_HOST_MASK) 5728 type = IRE_HOST; 5729 else if (mask == 0) 5730 type = IRE_DEFAULT; 5731 else 5732 type = IRE_PREFIX; 5733 5734 /* check for a duplicate entry */ 5735 ire = ire_ftable_lookup_v4(dst_addr, mask, gw_addr, type, ill, 5736 ALL_ZONES, NULL, match_flags | MATCH_IRE_MASK | MATCH_IRE_GW, 5737 0, ipst, NULL); 5738 if (ire != NULL) { 5739 if (ipif != NULL) 5740 ipif_refrele(ipif); 5741 ire_refrele(gw_ire); 5742 ire_refrele(ire); 5743 return (EEXIST); 5744 } 5745 5746 /* Security attribute exists */ 5747 if (sp != NULL) { 5748 tsol_gcgrp_addr_t ga; 5749 5750 /* find or create the gateway credentials group */ 5751 ga.ga_af = AF_INET; 5752 IN6_IPADDR_TO_V4MAPPED(gw_addr, &ga.ga_addr); 5753 5754 /* we hold reference to it upon success */ 5755 gcgrp = gcgrp_lookup(&ga, B_TRUE); 5756 if (gcgrp == NULL) { 5757 if (ipif != NULL) 5758 ipif_refrele(ipif); 5759 ire_refrele(gw_ire); 5760 return (ENOMEM); 5761 } 5762 5763 /* 5764 * Create and add the security attribute to the group; a 5765 * reference to the group is made upon allocating a new 5766 * entry successfully. If it finds an already-existing 5767 * entry for the security attribute in the group, it simply 5768 * returns it and no new reference is made to the group. 5769 */ 5770 gc = gc_create(sp, gcgrp, &gcgrp_xtraref); 5771 if (gc == NULL) { 5772 if (ipif != NULL) 5773 ipif_refrele(ipif); 5774 /* release reference held by gcgrp_lookup */ 5775 GCGRP_REFRELE(gcgrp); 5776 ire_refrele(gw_ire); 5777 return (ENOMEM); 5778 } 5779 } 5780 5781 /* Create the IRE. */ 5782 ire = ire_create( 5783 (uchar_t *)&dst_addr, /* dest address */ 5784 (uchar_t *)&mask, /* mask */ 5785 (uchar_t *)&gw_addr, /* gateway address */ 5786 (ushort_t)type, /* IRE type */ 5787 ill, 5788 zoneid, 5789 flags, 5790 gc, /* security attribute */ 5791 ipst); 5792 5793 /* 5794 * The ire holds a reference to the 'gc' and the 'gc' holds a 5795 * reference to the 'gcgrp'. We can now release the extra reference 5796 * the 'gcgrp' acquired in the gcgrp_lookup, if it was not used. 5797 */ 5798 if (gcgrp_xtraref) 5799 GCGRP_REFRELE(gcgrp); 5800 if (ire == NULL) { 5801 if (gc != NULL) 5802 GC_REFRELE(gc); 5803 if (ipif != NULL) 5804 ipif_refrele(ipif); 5805 ire_refrele(gw_ire); 5806 return (ENOMEM); 5807 } 5808 5809 /* Before we add, check if an extra CGTP broadcast is needed */ 5810 cgtp_broadcast = ((flags & RTF_MULTIRT) && 5811 ip_type_v4(ire->ire_addr, ipst) == IRE_BROADCAST); 5812 5813 /* src address assigned by the caller? */ 5814 if ((src_addr != INADDR_ANY) && (flags & RTF_SETSRC)) 5815 ire->ire_setsrc_addr = src_addr; 5816 5817 /* 5818 * POLICY: should we allow an RTF_HOST with address INADDR_ANY? 5819 * SUN/OS socket stuff does but do we really want to allow 0.0.0.0? 5820 */ 5821 5822 /* Add the new IRE. */ 5823 nire = ire_add(ire); 5824 if (nire == NULL) { 5825 /* 5826 * In the result of failure, ire_add() will have 5827 * already deleted the ire in question, so there 5828 * is no need to do that here. 5829 */ 5830 if (ipif != NULL) 5831 ipif_refrele(ipif); 5832 ire_refrele(gw_ire); 5833 return (ENOMEM); 5834 } 5835 /* 5836 * Check if it was a duplicate entry. This handles 5837 * the case of two racing route adds for the same route 5838 */ 5839 if (nire != ire) { 5840 ire_delete(nire); 5841 ire_refrele(nire); 5842 if (ipif != NULL) 5843 ipif_refrele(ipif); 5844 ire_refrele(gw_ire); 5845 return (EEXIST); 5846 } 5847 ire = nire; 5848 5849 if (flags & RTF_MULTIRT) { 5850 /* 5851 * Invoke the CGTP (multirouting) filtering module 5852 * to add the dst address in the filtering database. 5853 * Replicated inbound packets coming from that address 5854 * will be filtered to discard the duplicates. 5855 * It is not necessary to call the CGTP filter hook 5856 * when the dst address is a broadcast or multicast, 5857 * because an IP source address cannot be a broadcast 5858 * or a multicast. 5859 */ 5860 if (cgtp_broadcast) { 5861 ip_cgtp_bcast_add(ire, ipst); 5862 goto save_ire; 5863 } 5864 if (ipst->ips_ip_cgtp_filter_ops != NULL && 5865 !CLASSD(ire->ire_addr)) { 5866 int res; 5867 ipif_t *src_ipif; 5868 5869 /* Find the source address corresponding to gw_ire */ 5870 src_ipif = ipif_lookup_addr(gw_ire->ire_gateway_addr, 5871 NULL, zoneid, ipst); 5872 if (src_ipif != NULL) { 5873 res = ipst->ips_ip_cgtp_filter_ops-> 5874 cfo_add_dest_v4( 5875 ipst->ips_netstack->netstack_stackid, 5876 ire->ire_addr, 5877 ire->ire_gateway_addr, 5878 ire->ire_setsrc_addr, 5879 src_ipif->ipif_lcl_addr); 5880 ipif_refrele(src_ipif); 5881 } else { 5882 res = EADDRNOTAVAIL; 5883 } 5884 if (res != 0) { 5885 if (ipif != NULL) 5886 ipif_refrele(ipif); 5887 ire_refrele(gw_ire); 5888 ire_delete(ire); 5889 ire_refrele(ire); /* Held in ire_add */ 5890 return (res); 5891 } 5892 } 5893 } 5894 5895 save_ire: 5896 if (gw_ire != NULL) { 5897 ire_refrele(gw_ire); 5898 gw_ire = NULL; 5899 } 5900 if (ill != NULL) { 5901 /* 5902 * Save enough information so that we can recreate the IRE if 5903 * the interface goes down and then up. The metrics associated 5904 * with the route will be saved as well when rts_setmetrics() is 5905 * called after the IRE has been created. In the case where 5906 * memory cannot be allocated, none of this information will be 5907 * saved. 5908 */ 5909 ill_save_ire(ill, ire); 5910 } 5911 if (ioctl_msg) 5912 ip_rts_rtmsg(RTM_OLDADD, ire, 0, ipst); 5913 if (ire_arg != NULL) { 5914 /* 5915 * Store the ire that was successfully added into where ire_arg 5916 * points to so that callers don't have to look it up 5917 * themselves (but they are responsible for ire_refrele()ing 5918 * the ire when they are finished with it). 5919 */ 5920 *ire_arg = ire; 5921 } else { 5922 ire_refrele(ire); /* Held in ire_add */ 5923 } 5924 if (ipif != NULL) 5925 ipif_refrele(ipif); 5926 return (0); 5927 } 5928 5929 /* 5930 * ip_rt_delete is called to delete an IPv4 route. 5931 * ill is passed in to associate it with the correct interface. 5932 */ 5933 /* ARGSUSED4 */ 5934 int 5935 ip_rt_delete(ipaddr_t dst_addr, ipaddr_t mask, ipaddr_t gw_addr, 5936 uint_t rtm_addrs, int flags, ill_t *ill, boolean_t ioctl_msg, 5937 ip_stack_t *ipst, zoneid_t zoneid) 5938 { 5939 ire_t *ire = NULL; 5940 ipif_t *ipif; 5941 uint_t type; 5942 uint_t match_flags = MATCH_IRE_TYPE; 5943 int err = 0; 5944 5945 ip1dbg(("ip_rt_delete:")); 5946 /* 5947 * If this is the case of RTF_HOST being set, then we set the netmask 5948 * to all ones. Otherwise, we use the netmask if one was supplied. 5949 */ 5950 if (flags & RTF_HOST) { 5951 mask = IP_HOST_MASK; 5952 match_flags |= MATCH_IRE_MASK; 5953 } else if (rtm_addrs & RTA_NETMASK) { 5954 match_flags |= MATCH_IRE_MASK; 5955 } 5956 5957 /* 5958 * Note that RTF_GATEWAY is never set on a delete, therefore 5959 * we check if the gateway address is one of our interfaces first, 5960 * and fall back on RTF_GATEWAY routes. 5961 * 5962 * This makes it possible to delete an original 5963 * IRE_IF_NORESOLVER/IRE_IF_RESOLVER - consistent with SunOS 4.1. 5964 * However, we have RTF_KERNEL set on the ones created by ipif_up 5965 * and those can not be deleted here. 5966 * 5967 * We use MATCH_IRE_ILL if we know the interface. If the caller 5968 * specified an interface (from the RTA_IFP sockaddr) we use it, 5969 * otherwise we use the ill derived from the gateway address. 5970 * We can always match the gateway address since we record it 5971 * in ire_gateway_addr. 5972 * 5973 * For more detail on specifying routes by gateway address and by 5974 * interface index, see the comments in ip_rt_add(). 5975 */ 5976 ipif = ipif_lookup_interface(gw_addr, dst_addr, ipst); 5977 if (ipif != NULL) { 5978 ill_t *ill_match; 5979 5980 if (ill != NULL) 5981 ill_match = ill; 5982 else 5983 ill_match = ipif->ipif_ill; 5984 5985 match_flags |= MATCH_IRE_ILL; 5986 if (ipif->ipif_ire_type == IRE_LOOPBACK) { 5987 ire = ire_ftable_lookup_v4(dst_addr, 0, 0, IRE_LOOPBACK, 5988 ill_match, ALL_ZONES, NULL, match_flags, 0, ipst, 5989 NULL); 5990 } 5991 if (ire == NULL) { 5992 match_flags |= MATCH_IRE_GW; 5993 ire = ire_ftable_lookup_v4(dst_addr, mask, gw_addr, 5994 IRE_INTERFACE, ill_match, ALL_ZONES, NULL, 5995 match_flags, 0, ipst, NULL); 5996 } 5997 /* Avoid deleting routes created by kernel from an ipif */ 5998 if (ire != NULL && (ire->ire_flags & RTF_KERNEL)) { 5999 ire_refrele(ire); 6000 ire = NULL; 6001 } 6002 6003 /* Restore in case we didn't find a match */ 6004 match_flags &= ~(MATCH_IRE_GW|MATCH_IRE_ILL); 6005 } 6006 6007 if (ire == NULL) { 6008 /* 6009 * At this point, the gateway address is not one of our own 6010 * addresses or a matching interface route was not found. We 6011 * set the IRE type to lookup based on whether 6012 * this is a host route, a default route or just a prefix. 6013 * 6014 * If an ill was passed in, then the lookup is based on an 6015 * interface index so MATCH_IRE_ILL is added to match_flags. 6016 */ 6017 match_flags |= MATCH_IRE_GW; 6018 if (ill != NULL) 6019 match_flags |= MATCH_IRE_ILL; 6020 if (mask == IP_HOST_MASK) 6021 type = IRE_HOST; 6022 else if (mask == 0) 6023 type = IRE_DEFAULT; 6024 else 6025 type = IRE_PREFIX; 6026 ire = ire_ftable_lookup_v4(dst_addr, mask, gw_addr, type, ill, 6027 ALL_ZONES, NULL, match_flags, 0, ipst, NULL); 6028 } 6029 6030 if (ipif != NULL) { 6031 ipif_refrele(ipif); 6032 ipif = NULL; 6033 } 6034 6035 if (ire == NULL) 6036 return (ESRCH); 6037 6038 if (ire->ire_flags & RTF_MULTIRT) { 6039 /* 6040 * Invoke the CGTP (multirouting) filtering module 6041 * to remove the dst address from the filtering database. 6042 * Packets coming from that address will no longer be 6043 * filtered to remove duplicates. 6044 */ 6045 if (ipst->ips_ip_cgtp_filter_ops != NULL) { 6046 err = ipst->ips_ip_cgtp_filter_ops->cfo_del_dest_v4( 6047 ipst->ips_netstack->netstack_stackid, 6048 ire->ire_addr, ire->ire_gateway_addr); 6049 } 6050 ip_cgtp_bcast_delete(ire, ipst); 6051 } 6052 6053 ill = ire->ire_ill; 6054 if (ill != NULL) 6055 ill_remove_saved_ire(ill, ire); 6056 if (ioctl_msg) 6057 ip_rts_rtmsg(RTM_OLDDEL, ire, 0, ipst); 6058 ire_delete(ire); 6059 ire_refrele(ire); 6060 return (err); 6061 } 6062 6063 /* 6064 * ip_siocaddrt is called to complete processing of an SIOCADDRT IOCTL. 6065 */ 6066 /* ARGSUSED */ 6067 int 6068 ip_siocaddrt(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 6069 ip_ioctl_cmd_t *ipip, void *dummy_if_req) 6070 { 6071 ipaddr_t dst_addr; 6072 ipaddr_t gw_addr; 6073 ipaddr_t mask; 6074 int error = 0; 6075 mblk_t *mp1; 6076 struct rtentry *rt; 6077 ipif_t *ipif = NULL; 6078 ip_stack_t *ipst; 6079 6080 ASSERT(q->q_next == NULL); 6081 ipst = CONNQ_TO_IPST(q); 6082 6083 ip1dbg(("ip_siocaddrt:")); 6084 /* Existence of mp1 verified in ip_wput_nondata */ 6085 mp1 = mp->b_cont->b_cont; 6086 rt = (struct rtentry *)mp1->b_rptr; 6087 6088 dst_addr = ((sin_t *)&rt->rt_dst)->sin_addr.s_addr; 6089 gw_addr = ((sin_t *)&rt->rt_gateway)->sin_addr.s_addr; 6090 6091 /* 6092 * If the RTF_HOST flag is on, this is a request to assign a gateway 6093 * to a particular host address. In this case, we set the netmask to 6094 * all ones for the particular destination address. Otherwise, 6095 * determine the netmask to be used based on dst_addr and the interfaces 6096 * in use. 6097 */ 6098 if (rt->rt_flags & RTF_HOST) { 6099 mask = IP_HOST_MASK; 6100 } else { 6101 /* 6102 * Note that ip_subnet_mask returns a zero mask in the case of 6103 * default (an all-zeroes address). 6104 */ 6105 mask = ip_subnet_mask(dst_addr, &ipif, ipst); 6106 } 6107 6108 error = ip_rt_add(dst_addr, mask, gw_addr, 0, rt->rt_flags, NULL, NULL, 6109 B_TRUE, NULL, ipst, ALL_ZONES); 6110 if (ipif != NULL) 6111 ipif_refrele(ipif); 6112 return (error); 6113 } 6114 6115 /* 6116 * ip_siocdelrt is called to complete processing of an SIOCDELRT IOCTL. 6117 */ 6118 /* ARGSUSED */ 6119 int 6120 ip_siocdelrt(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 6121 ip_ioctl_cmd_t *ipip, void *dummy_if_req) 6122 { 6123 ipaddr_t dst_addr; 6124 ipaddr_t gw_addr; 6125 ipaddr_t mask; 6126 int error; 6127 mblk_t *mp1; 6128 struct rtentry *rt; 6129 ipif_t *ipif = NULL; 6130 ip_stack_t *ipst; 6131 6132 ASSERT(q->q_next == NULL); 6133 ipst = CONNQ_TO_IPST(q); 6134 6135 ip1dbg(("ip_siocdelrt:")); 6136 /* Existence of mp1 verified in ip_wput_nondata */ 6137 mp1 = mp->b_cont->b_cont; 6138 rt = (struct rtentry *)mp1->b_rptr; 6139 6140 dst_addr = ((sin_t *)&rt->rt_dst)->sin_addr.s_addr; 6141 gw_addr = ((sin_t *)&rt->rt_gateway)->sin_addr.s_addr; 6142 6143 /* 6144 * If the RTF_HOST flag is on, this is a request to delete a gateway 6145 * to a particular host address. In this case, we set the netmask to 6146 * all ones for the particular destination address. Otherwise, 6147 * determine the netmask to be used based on dst_addr and the interfaces 6148 * in use. 6149 */ 6150 if (rt->rt_flags & RTF_HOST) { 6151 mask = IP_HOST_MASK; 6152 } else { 6153 /* 6154 * Note that ip_subnet_mask returns a zero mask in the case of 6155 * default (an all-zeroes address). 6156 */ 6157 mask = ip_subnet_mask(dst_addr, &ipif, ipst); 6158 } 6159 6160 error = ip_rt_delete(dst_addr, mask, gw_addr, 6161 RTA_DST | RTA_GATEWAY | RTA_NETMASK, rt->rt_flags, NULL, B_TRUE, 6162 ipst, ALL_ZONES); 6163 if (ipif != NULL) 6164 ipif_refrele(ipif); 6165 return (error); 6166 } 6167 6168 /* 6169 * Enqueue the mp onto the ipsq, chained by b_next. 6170 * b_prev stores the function to be executed later, and b_queue the queue 6171 * where this mp originated. 6172 */ 6173 void 6174 ipsq_enq(ipsq_t *ipsq, queue_t *q, mblk_t *mp, ipsq_func_t func, int type, 6175 ill_t *pending_ill) 6176 { 6177 conn_t *connp; 6178 ipxop_t *ipx = ipsq->ipsq_xop; 6179 6180 ASSERT(MUTEX_HELD(&ipsq->ipsq_lock)); 6181 ASSERT(MUTEX_HELD(&ipx->ipx_lock)); 6182 ASSERT(func != NULL); 6183 6184 mp->b_queue = q; 6185 mp->b_prev = (void *)func; 6186 mp->b_next = NULL; 6187 6188 switch (type) { 6189 case CUR_OP: 6190 if (ipx->ipx_mptail != NULL) { 6191 ASSERT(ipx->ipx_mphead != NULL); 6192 ipx->ipx_mptail->b_next = mp; 6193 } else { 6194 ASSERT(ipx->ipx_mphead == NULL); 6195 ipx->ipx_mphead = mp; 6196 } 6197 ipx->ipx_mptail = mp; 6198 break; 6199 6200 case NEW_OP: 6201 if (ipsq->ipsq_xopq_mptail != NULL) { 6202 ASSERT(ipsq->ipsq_xopq_mphead != NULL); 6203 ipsq->ipsq_xopq_mptail->b_next = mp; 6204 } else { 6205 ASSERT(ipsq->ipsq_xopq_mphead == NULL); 6206 ipsq->ipsq_xopq_mphead = mp; 6207 } 6208 ipsq->ipsq_xopq_mptail = mp; 6209 ipx->ipx_ipsq_queued = B_TRUE; 6210 break; 6211 6212 case SWITCH_OP: 6213 ASSERT(ipsq->ipsq_swxop != NULL); 6214 /* only one switch operation is currently allowed */ 6215 ASSERT(ipsq->ipsq_switch_mp == NULL); 6216 ipsq->ipsq_switch_mp = mp; 6217 ipx->ipx_ipsq_queued = B_TRUE; 6218 break; 6219 default: 6220 cmn_err(CE_PANIC, "ipsq_enq %d type \n", type); 6221 } 6222 6223 if (CONN_Q(q) && pending_ill != NULL) { 6224 connp = Q_TO_CONN(q); 6225 ASSERT(MUTEX_HELD(&connp->conn_lock)); 6226 connp->conn_oper_pending_ill = pending_ill; 6227 } 6228 } 6229 6230 /* 6231 * Dequeue the next message that requested exclusive access to this IPSQ's 6232 * xop. Specifically: 6233 * 6234 * 1. If we're still processing the current operation on `ipsq', then 6235 * dequeue the next message for the operation (from ipx_mphead), or 6236 * return NULL if there are no queued messages for the operation. 6237 * These messages are queued via CUR_OP to qwriter_ip() and friends. 6238 * 6239 * 2. If the current operation on `ipsq' has completed (ipx_current_ipif is 6240 * not set) see if the ipsq has requested an xop switch. If so, switch 6241 * `ipsq' to a different xop. Xop switches only happen when joining or 6242 * leaving IPMP groups and require a careful dance -- see the comments 6243 * in-line below for details. If we're leaving a group xop or if we're 6244 * joining a group xop and become writer on it, then we proceed to (3). 6245 * Otherwise, we return NULL and exit the xop. 6246 * 6247 * 3. For each IPSQ in the xop, return any switch operation stored on 6248 * ipsq_switch_mp (set via SWITCH_OP); these must be processed before 6249 * any other messages queued on the IPSQ. Otherwise, dequeue the next 6250 * exclusive operation (queued via NEW_OP) stored on ipsq_xopq_mphead. 6251 * Note that if the phyint tied to `ipsq' is not using IPMP there will 6252 * only be one IPSQ in the xop. Otherwise, there will be one IPSQ for 6253 * each phyint in the group, including the IPMP meta-interface phyint. 6254 */ 6255 static mblk_t * 6256 ipsq_dq(ipsq_t *ipsq) 6257 { 6258 ill_t *illv4, *illv6; 6259 mblk_t *mp; 6260 ipsq_t *xopipsq; 6261 ipsq_t *leftipsq = NULL; 6262 ipxop_t *ipx; 6263 phyint_t *phyi = ipsq->ipsq_phyint; 6264 ip_stack_t *ipst = ipsq->ipsq_ipst; 6265 boolean_t emptied = B_FALSE; 6266 6267 /* 6268 * Grab all the locks we need in the defined order (ill_g_lock -> 6269 * ipsq_lock -> ipx_lock); ill_g_lock is needed to use ipsq_next. 6270 */ 6271 rw_enter(&ipst->ips_ill_g_lock, 6272 ipsq->ipsq_swxop != NULL ? RW_WRITER : RW_READER); 6273 mutex_enter(&ipsq->ipsq_lock); 6274 ipx = ipsq->ipsq_xop; 6275 mutex_enter(&ipx->ipx_lock); 6276 6277 /* 6278 * Dequeue the next message associated with the current exclusive 6279 * operation, if any. 6280 */ 6281 if ((mp = ipx->ipx_mphead) != NULL) { 6282 ipx->ipx_mphead = mp->b_next; 6283 if (ipx->ipx_mphead == NULL) 6284 ipx->ipx_mptail = NULL; 6285 mp->b_next = (void *)ipsq; 6286 goto out; 6287 } 6288 6289 if (ipx->ipx_current_ipif != NULL) 6290 goto empty; 6291 6292 if (ipsq->ipsq_swxop != NULL) { 6293 /* 6294 * The exclusive operation that is now being completed has 6295 * requested a switch to a different xop. This happens 6296 * when an interface joins or leaves an IPMP group. Joins 6297 * happen through SIOCSLIFGROUPNAME (ip_sioctl_groupname()). 6298 * Leaves happen via SIOCSLIFGROUPNAME, interface unplumb 6299 * (phyint_free()), or interface plumb for an ill type 6300 * not in the IPMP group (ip_rput_dlpi_writer()). 6301 * 6302 * Xop switches are not allowed on the IPMP meta-interface. 6303 */ 6304 ASSERT(phyi == NULL || !(phyi->phyint_flags & PHYI_IPMP)); 6305 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); 6306 DTRACE_PROBE1(ipsq__switch, (ipsq_t *), ipsq); 6307 6308 if (ipsq->ipsq_swxop == &ipsq->ipsq_ownxop) { 6309 /* 6310 * We're switching back to our own xop, so we have two 6311 * xop's to drain/exit: our own, and the group xop 6312 * that we are leaving. 6313 * 6314 * First, pull ourselves out of the group ipsq list. 6315 * This is safe since we're writer on ill_g_lock. 6316 */ 6317 ASSERT(ipsq->ipsq_xop != &ipsq->ipsq_ownxop); 6318 6319 xopipsq = ipx->ipx_ipsq; 6320 while (xopipsq->ipsq_next != ipsq) 6321 xopipsq = xopipsq->ipsq_next; 6322 6323 xopipsq->ipsq_next = ipsq->ipsq_next; 6324 ipsq->ipsq_next = ipsq; 6325 ipsq->ipsq_xop = ipsq->ipsq_swxop; 6326 ipsq->ipsq_swxop = NULL; 6327 6328 /* 6329 * Second, prepare to exit the group xop. The actual 6330 * ipsq_exit() is done at the end of this function 6331 * since we cannot hold any locks across ipsq_exit(). 6332 * Note that although we drop the group's ipx_lock, no 6333 * threads can proceed since we're still ipx_writer. 6334 */ 6335 leftipsq = xopipsq; 6336 mutex_exit(&ipx->ipx_lock); 6337 6338 /* 6339 * Third, set ipx to point to our own xop (which was 6340 * inactive and therefore can be entered). 6341 */ 6342 ipx = ipsq->ipsq_xop; 6343 mutex_enter(&ipx->ipx_lock); 6344 ASSERT(ipx->ipx_writer == NULL); 6345 ASSERT(ipx->ipx_current_ipif == NULL); 6346 } else { 6347 /* 6348 * We're switching from our own xop to a group xop. 6349 * The requestor of the switch must ensure that the 6350 * group xop cannot go away (e.g. by ensuring the 6351 * phyint associated with the xop cannot go away). 6352 * 6353 * If we can become writer on our new xop, then we'll 6354 * do the drain. Otherwise, the current writer of our 6355 * new xop will do the drain when it exits. 6356 * 6357 * First, splice ourselves into the group IPSQ list. 6358 * This is safe since we're writer on ill_g_lock. 6359 */ 6360 ASSERT(ipsq->ipsq_xop == &ipsq->ipsq_ownxop); 6361 6362 xopipsq = ipsq->ipsq_swxop->ipx_ipsq; 6363 while (xopipsq->ipsq_next != ipsq->ipsq_swxop->ipx_ipsq) 6364 xopipsq = xopipsq->ipsq_next; 6365 6366 xopipsq->ipsq_next = ipsq; 6367 ipsq->ipsq_next = ipsq->ipsq_swxop->ipx_ipsq; 6368 ipsq->ipsq_xop = ipsq->ipsq_swxop; 6369 ipsq->ipsq_swxop = NULL; 6370 6371 /* 6372 * Second, exit our own xop, since it's now unused. 6373 * This is safe since we've got the only reference. 6374 */ 6375 ASSERT(ipx->ipx_writer == curthread); 6376 ipx->ipx_writer = NULL; 6377 VERIFY(--ipx->ipx_reentry_cnt == 0); 6378 ipx->ipx_ipsq_queued = B_FALSE; 6379 mutex_exit(&ipx->ipx_lock); 6380 6381 /* 6382 * Third, set ipx to point to our new xop, and check 6383 * if we can become writer on it. If we cannot, then 6384 * the current writer will drain the IPSQ group when 6385 * it exits. Our ipsq_xop is guaranteed to be stable 6386 * because we're still holding ipsq_lock. 6387 */ 6388 ipx = ipsq->ipsq_xop; 6389 mutex_enter(&ipx->ipx_lock); 6390 if (ipx->ipx_writer != NULL || 6391 ipx->ipx_current_ipif != NULL) { 6392 goto out; 6393 } 6394 } 6395 6396 /* 6397 * Fourth, become writer on our new ipx before we continue 6398 * with the drain. Note that we never dropped ipsq_lock 6399 * above, so no other thread could've raced with us to 6400 * become writer first. Also, we're holding ipx_lock, so 6401 * no other thread can examine the ipx right now. 6402 */ 6403 ASSERT(ipx->ipx_current_ipif == NULL); 6404 ASSERT(ipx->ipx_mphead == NULL && ipx->ipx_mptail == NULL); 6405 VERIFY(ipx->ipx_reentry_cnt++ == 0); 6406 ipx->ipx_writer = curthread; 6407 ipx->ipx_forced = B_FALSE; 6408 #ifdef DEBUG 6409 ipx->ipx_depth = getpcstack(ipx->ipx_stack, IPX_STACK_DEPTH); 6410 #endif 6411 } 6412 6413 xopipsq = ipsq; 6414 do { 6415 /* 6416 * So that other operations operate on a consistent and 6417 * complete phyint, a switch message on an IPSQ must be 6418 * handled prior to any other operations on that IPSQ. 6419 */ 6420 if ((mp = xopipsq->ipsq_switch_mp) != NULL) { 6421 xopipsq->ipsq_switch_mp = NULL; 6422 ASSERT(mp->b_next == NULL); 6423 mp->b_next = (void *)xopipsq; 6424 goto out; 6425 } 6426 6427 if ((mp = xopipsq->ipsq_xopq_mphead) != NULL) { 6428 xopipsq->ipsq_xopq_mphead = mp->b_next; 6429 if (xopipsq->ipsq_xopq_mphead == NULL) 6430 xopipsq->ipsq_xopq_mptail = NULL; 6431 mp->b_next = (void *)xopipsq; 6432 goto out; 6433 } 6434 } while ((xopipsq = xopipsq->ipsq_next) != ipsq); 6435 empty: 6436 /* 6437 * There are no messages. Further, we are holding ipx_lock, hence no 6438 * new messages can end up on any IPSQ in the xop. 6439 */ 6440 ipx->ipx_writer = NULL; 6441 ipx->ipx_forced = B_FALSE; 6442 VERIFY(--ipx->ipx_reentry_cnt == 0); 6443 ipx->ipx_ipsq_queued = B_FALSE; 6444 emptied = B_TRUE; 6445 #ifdef DEBUG 6446 ipx->ipx_depth = 0; 6447 #endif 6448 out: 6449 mutex_exit(&ipx->ipx_lock); 6450 mutex_exit(&ipsq->ipsq_lock); 6451 6452 /* 6453 * If we completely emptied the xop, then wake up any threads waiting 6454 * to enter any of the IPSQ's associated with it. 6455 */ 6456 if (emptied) { 6457 xopipsq = ipsq; 6458 do { 6459 if ((phyi = xopipsq->ipsq_phyint) == NULL) 6460 continue; 6461 6462 illv4 = phyi->phyint_illv4; 6463 illv6 = phyi->phyint_illv6; 6464 6465 GRAB_ILL_LOCKS(illv4, illv6); 6466 if (illv4 != NULL) 6467 cv_broadcast(&illv4->ill_cv); 6468 if (illv6 != NULL) 6469 cv_broadcast(&illv6->ill_cv); 6470 RELEASE_ILL_LOCKS(illv4, illv6); 6471 } while ((xopipsq = xopipsq->ipsq_next) != ipsq); 6472 } 6473 rw_exit(&ipst->ips_ill_g_lock); 6474 6475 /* 6476 * Now that all locks are dropped, exit the IPSQ we left. 6477 */ 6478 if (leftipsq != NULL) 6479 ipsq_exit(leftipsq); 6480 6481 return (mp); 6482 } 6483 6484 /* 6485 * Return completion status of previously initiated DLPI operations on 6486 * ills in the purview of an ipsq. 6487 */ 6488 static boolean_t 6489 ipsq_dlpi_done(ipsq_t *ipsq) 6490 { 6491 ipsq_t *ipsq_start; 6492 phyint_t *phyi; 6493 ill_t *ill; 6494 6495 ASSERT(RW_LOCK_HELD(&ipsq->ipsq_ipst->ips_ill_g_lock)); 6496 ipsq_start = ipsq; 6497 6498 do { 6499 /* 6500 * The only current users of this function are ipsq_try_enter 6501 * and ipsq_enter which have made sure that ipsq_writer is 6502 * NULL before we reach here. ill_dlpi_pending is modified 6503 * only by an ipsq writer 6504 */ 6505 ASSERT(ipsq->ipsq_xop->ipx_writer == NULL); 6506 phyi = ipsq->ipsq_phyint; 6507 /* 6508 * phyi could be NULL if a phyint that is part of an 6509 * IPMP group is being unplumbed. A more detailed 6510 * comment is in ipmp_grp_update_kstats() 6511 */ 6512 if (phyi != NULL) { 6513 ill = phyi->phyint_illv4; 6514 if (ill != NULL && 6515 (ill->ill_dlpi_pending != DL_PRIM_INVAL || 6516 ill->ill_arl_dlpi_pending)) 6517 return (B_FALSE); 6518 6519 ill = phyi->phyint_illv6; 6520 if (ill != NULL && 6521 ill->ill_dlpi_pending != DL_PRIM_INVAL) 6522 return (B_FALSE); 6523 } 6524 6525 } while ((ipsq = ipsq->ipsq_next) != ipsq_start); 6526 6527 return (B_TRUE); 6528 } 6529 6530 /* 6531 * Enter the ipsq corresponding to ill, by waiting synchronously till 6532 * we can enter the ipsq exclusively. Unless 'force' is used, the ipsq 6533 * will have to drain completely before ipsq_enter returns success. 6534 * ipx_current_ipif will be set if some exclusive op is in progress, 6535 * and the ipsq_exit logic will start the next enqueued op after 6536 * completion of the current op. If 'force' is used, we don't wait 6537 * for the enqueued ops. This is needed when a conn_close wants to 6538 * enter the ipsq and abort an ioctl that is somehow stuck. Unplumb 6539 * of an ill can also use this option. But we dont' use it currently. 6540 */ 6541 #define ENTER_SQ_WAIT_TICKS 100 6542 boolean_t 6543 ipsq_enter(ill_t *ill, boolean_t force, int type) 6544 { 6545 ipsq_t *ipsq; 6546 ipxop_t *ipx; 6547 boolean_t waited_enough = B_FALSE; 6548 ip_stack_t *ipst = ill->ill_ipst; 6549 6550 /* 6551 * Note that the relationship between ill and ipsq is fixed as long as 6552 * the ill is not ILL_CONDEMNED. Holding ipsq_lock ensures the 6553 * relationship between the IPSQ and xop cannot change. However, 6554 * since we cannot hold ipsq_lock across the cv_wait(), it may change 6555 * while we're waiting. We wait on ill_cv and rely on ipsq_exit() 6556 * waking up all ills in the xop when it becomes available. 6557 */ 6558 for (;;) { 6559 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 6560 mutex_enter(&ill->ill_lock); 6561 if (ill->ill_state_flags & ILL_CONDEMNED) { 6562 mutex_exit(&ill->ill_lock); 6563 rw_exit(&ipst->ips_ill_g_lock); 6564 return (B_FALSE); 6565 } 6566 6567 ipsq = ill->ill_phyint->phyint_ipsq; 6568 mutex_enter(&ipsq->ipsq_lock); 6569 ipx = ipsq->ipsq_xop; 6570 mutex_enter(&ipx->ipx_lock); 6571 6572 if (ipx->ipx_writer == NULL && (type == CUR_OP || 6573 (ipx->ipx_current_ipif == NULL && ipsq_dlpi_done(ipsq)) || 6574 waited_enough)) 6575 break; 6576 6577 rw_exit(&ipst->ips_ill_g_lock); 6578 6579 if (!force || ipx->ipx_writer != NULL) { 6580 mutex_exit(&ipx->ipx_lock); 6581 mutex_exit(&ipsq->ipsq_lock); 6582 cv_wait(&ill->ill_cv, &ill->ill_lock); 6583 } else { 6584 mutex_exit(&ipx->ipx_lock); 6585 mutex_exit(&ipsq->ipsq_lock); 6586 (void) cv_reltimedwait(&ill->ill_cv, 6587 &ill->ill_lock, ENTER_SQ_WAIT_TICKS, TR_CLOCK_TICK); 6588 waited_enough = B_TRUE; 6589 } 6590 mutex_exit(&ill->ill_lock); 6591 } 6592 6593 ASSERT(ipx->ipx_mphead == NULL && ipx->ipx_mptail == NULL); 6594 ASSERT(ipx->ipx_reentry_cnt == 0); 6595 ipx->ipx_writer = curthread; 6596 ipx->ipx_forced = (ipx->ipx_current_ipif != NULL); 6597 ipx->ipx_reentry_cnt++; 6598 #ifdef DEBUG 6599 ipx->ipx_depth = getpcstack(ipx->ipx_stack, IPX_STACK_DEPTH); 6600 #endif 6601 mutex_exit(&ipx->ipx_lock); 6602 mutex_exit(&ipsq->ipsq_lock); 6603 mutex_exit(&ill->ill_lock); 6604 rw_exit(&ipst->ips_ill_g_lock); 6605 6606 return (B_TRUE); 6607 } 6608 6609 /* 6610 * ipif_set_values() has a constraint that it cannot drop the ips_ill_g_lock 6611 * across the call to the core interface ipsq_try_enter() and hence calls this 6612 * function directly. This is explained more fully in ipif_set_values(). 6613 * In order to support the above constraint, ipsq_try_enter is implemented as 6614 * a wrapper that grabs the ips_ill_g_lock and calls this function subsequently 6615 */ 6616 static ipsq_t * 6617 ipsq_try_enter_internal(ill_t *ill, queue_t *q, mblk_t *mp, ipsq_func_t func, 6618 int type, boolean_t reentry_ok) 6619 { 6620 ipsq_t *ipsq; 6621 ipxop_t *ipx; 6622 ip_stack_t *ipst = ill->ill_ipst; 6623 6624 /* 6625 * lock ordering: 6626 * ill_g_lock -> conn_lock -> ill_lock -> ipsq_lock -> ipx_lock. 6627 * 6628 * ipx of an ipsq can't change when ipsq_lock is held. 6629 */ 6630 ASSERT(RW_LOCK_HELD(&ipst->ips_ill_g_lock)); 6631 GRAB_CONN_LOCK(q); 6632 mutex_enter(&ill->ill_lock); 6633 ipsq = ill->ill_phyint->phyint_ipsq; 6634 mutex_enter(&ipsq->ipsq_lock); 6635 ipx = ipsq->ipsq_xop; 6636 mutex_enter(&ipx->ipx_lock); 6637 6638 /* 6639 * 1. Enter the ipsq if we are already writer and reentry is ok. 6640 * (Note: If the caller does not specify reentry_ok then neither 6641 * 'func' nor any of its callees must ever attempt to enter the ipsq 6642 * again. Otherwise it can lead to an infinite loop 6643 * 2. Enter the ipsq if there is no current writer and this attempted 6644 * entry is part of the current operation 6645 * 3. Enter the ipsq if there is no current writer and this is a new 6646 * operation and the operation queue is empty and there is no 6647 * operation currently in progress and if all previously initiated 6648 * DLPI operations have completed. 6649 */ 6650 if ((ipx->ipx_writer == curthread && reentry_ok) || 6651 (ipx->ipx_writer == NULL && (type == CUR_OP || (type == NEW_OP && 6652 !ipx->ipx_ipsq_queued && ipx->ipx_current_ipif == NULL && 6653 ipsq_dlpi_done(ipsq))))) { 6654 /* Success. */ 6655 ipx->ipx_reentry_cnt++; 6656 ipx->ipx_writer = curthread; 6657 ipx->ipx_forced = B_FALSE; 6658 mutex_exit(&ipx->ipx_lock); 6659 mutex_exit(&ipsq->ipsq_lock); 6660 mutex_exit(&ill->ill_lock); 6661 RELEASE_CONN_LOCK(q); 6662 #ifdef DEBUG 6663 ipx->ipx_depth = getpcstack(ipx->ipx_stack, IPX_STACK_DEPTH); 6664 #endif 6665 return (ipsq); 6666 } 6667 6668 if (func != NULL) 6669 ipsq_enq(ipsq, q, mp, func, type, ill); 6670 6671 mutex_exit(&ipx->ipx_lock); 6672 mutex_exit(&ipsq->ipsq_lock); 6673 mutex_exit(&ill->ill_lock); 6674 RELEASE_CONN_LOCK(q); 6675 return (NULL); 6676 } 6677 6678 /* 6679 * The ipsq_t (ipsq) is the synchronization data structure used to serialize 6680 * certain critical operations like plumbing (i.e. most set ioctls), etc. 6681 * There is one ipsq per phyint. The ipsq 6682 * serializes exclusive ioctls issued by applications on a per ipsq basis in 6683 * ipsq_xopq_mphead. It also protects against multiple threads executing in 6684 * the ipsq. Responses from the driver pertain to the current ioctl (say a 6685 * DL_BIND_ACK in response to a DL_BIND_REQ initiated as part of bringing 6686 * up the interface) and are enqueued in ipx_mphead. 6687 * 6688 * If a thread does not want to reenter the ipsq when it is already writer, 6689 * it must make sure that the specified reentry point to be called later 6690 * when the ipsq is empty, nor any code path starting from the specified reentry 6691 * point must never ever try to enter the ipsq again. Otherwise it can lead 6692 * to an infinite loop. The reentry point ip_rput_dlpi_writer is an example. 6693 * When the thread that is currently exclusive finishes, it (ipsq_exit) 6694 * dequeues the requests waiting to become exclusive in ipx_mphead and calls 6695 * the reentry point. When the list at ipx_mphead becomes empty ipsq_exit 6696 * proceeds to dequeue the next ioctl in ipsq_xopq_mphead and start the next 6697 * ioctl if the current ioctl has completed. If the current ioctl is still 6698 * in progress it simply returns. The current ioctl could be waiting for 6699 * a response from another module (the driver or could be waiting for 6700 * the ipif/ill/ire refcnts to drop to zero. In such a case the ipx_pending_mp 6701 * and ipx_pending_ipif are set. ipx_current_ipif is set throughout the 6702 * execution of the ioctl and ipsq_exit does not start the next ioctl unless 6703 * ipx_current_ipif is NULL which happens only once the ioctl is complete and 6704 * all associated DLPI operations have completed. 6705 */ 6706 6707 /* 6708 * Try to enter the IPSQ corresponding to `ipif' or `ill' exclusively (`ipif' 6709 * and `ill' cannot both be specified). Returns a pointer to the entered IPSQ 6710 * on success, or NULL on failure. The caller ensures ipif/ill is valid by 6711 * refholding it as necessary. If the IPSQ cannot be entered and `func' is 6712 * non-NULL, then `func' will be called back with `q' and `mp' once the IPSQ 6713 * can be entered. If `func' is NULL, then `q' and `mp' are ignored. 6714 */ 6715 ipsq_t * 6716 ipsq_try_enter(ipif_t *ipif, ill_t *ill, queue_t *q, mblk_t *mp, 6717 ipsq_func_t func, int type, boolean_t reentry_ok) 6718 { 6719 ip_stack_t *ipst; 6720 ipsq_t *ipsq; 6721 6722 /* Only 1 of ipif or ill can be specified */ 6723 ASSERT((ipif != NULL) ^ (ill != NULL)); 6724 6725 if (ipif != NULL) 6726 ill = ipif->ipif_ill; 6727 ipst = ill->ill_ipst; 6728 6729 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 6730 ipsq = ipsq_try_enter_internal(ill, q, mp, func, type, reentry_ok); 6731 rw_exit(&ipst->ips_ill_g_lock); 6732 6733 return (ipsq); 6734 } 6735 6736 /* 6737 * Try to enter the IPSQ corresponding to `ill' as writer. The caller ensures 6738 * ill is valid by refholding it if necessary; we will refrele. If the IPSQ 6739 * cannot be entered, the mp is queued for completion. 6740 */ 6741 void 6742 qwriter_ip(ill_t *ill, queue_t *q, mblk_t *mp, ipsq_func_t func, int type, 6743 boolean_t reentry_ok) 6744 { 6745 ipsq_t *ipsq; 6746 6747 ipsq = ipsq_try_enter(NULL, ill, q, mp, func, type, reentry_ok); 6748 6749 /* 6750 * Drop the caller's refhold on the ill. This is safe since we either 6751 * entered the IPSQ (and thus are exclusive), or failed to enter the 6752 * IPSQ, in which case we return without accessing ill anymore. This 6753 * is needed because func needs to see the correct refcount. 6754 * e.g. removeif can work only then. 6755 */ 6756 ill_refrele(ill); 6757 if (ipsq != NULL) { 6758 (*func)(ipsq, q, mp, NULL); 6759 ipsq_exit(ipsq); 6760 } 6761 } 6762 6763 /* 6764 * Exit the specified IPSQ. If this is the final exit on it then drain it 6765 * prior to exiting. Caller must be writer on the specified IPSQ. 6766 */ 6767 void 6768 ipsq_exit(ipsq_t *ipsq) 6769 { 6770 mblk_t *mp; 6771 ipsq_t *mp_ipsq; 6772 queue_t *q; 6773 phyint_t *phyi; 6774 ipsq_func_t func; 6775 6776 ASSERT(IAM_WRITER_IPSQ(ipsq)); 6777 6778 ASSERT(ipsq->ipsq_xop->ipx_reentry_cnt >= 1); 6779 if (ipsq->ipsq_xop->ipx_reentry_cnt != 1) { 6780 ipsq->ipsq_xop->ipx_reentry_cnt--; 6781 return; 6782 } 6783 6784 for (;;) { 6785 phyi = ipsq->ipsq_phyint; 6786 mp = ipsq_dq(ipsq); 6787 mp_ipsq = (mp == NULL) ? NULL : (ipsq_t *)mp->b_next; 6788 6789 /* 6790 * If we've changed to a new IPSQ, and the phyint associated 6791 * with the old one has gone away, free the old IPSQ. Note 6792 * that this cannot happen while the IPSQ is in a group. 6793 */ 6794 if (mp_ipsq != ipsq && phyi == NULL) { 6795 ASSERT(ipsq->ipsq_next == ipsq); 6796 ASSERT(ipsq->ipsq_xop == &ipsq->ipsq_ownxop); 6797 ipsq_delete(ipsq); 6798 } 6799 6800 if (mp == NULL) 6801 break; 6802 6803 q = mp->b_queue; 6804 func = (ipsq_func_t)mp->b_prev; 6805 ipsq = mp_ipsq; 6806 mp->b_next = mp->b_prev = NULL; 6807 mp->b_queue = NULL; 6808 6809 /* 6810 * If 'q' is an conn queue, it is valid, since we did a 6811 * a refhold on the conn at the start of the ioctl. 6812 * If 'q' is an ill queue, it is valid, since close of an 6813 * ill will clean up its IPSQ. 6814 */ 6815 (*func)(ipsq, q, mp, NULL); 6816 } 6817 } 6818 6819 /* 6820 * Used to start any igmp or mld timers that could not be started 6821 * while holding ill_mcast_lock. The timers can't be started while holding 6822 * the lock, since mld/igmp_start_timers may need to call untimeout() 6823 * which can't be done while holding the lock which the timeout handler 6824 * acquires. Otherwise 6825 * there could be a deadlock since the timeout handlers 6826 * mld_timeout_handler_per_ill/igmp_timeout_handler_per_ill also acquire 6827 * ill_mcast_lock. 6828 */ 6829 void 6830 ill_mcast_timer_start(ip_stack_t *ipst) 6831 { 6832 int next; 6833 6834 mutex_enter(&ipst->ips_igmp_timer_lock); 6835 next = ipst->ips_igmp_deferred_next; 6836 ipst->ips_igmp_deferred_next = INFINITY; 6837 mutex_exit(&ipst->ips_igmp_timer_lock); 6838 6839 if (next != INFINITY) 6840 igmp_start_timers(next, ipst); 6841 6842 mutex_enter(&ipst->ips_mld_timer_lock); 6843 next = ipst->ips_mld_deferred_next; 6844 ipst->ips_mld_deferred_next = INFINITY; 6845 mutex_exit(&ipst->ips_mld_timer_lock); 6846 6847 if (next != INFINITY) 6848 mld_start_timers(next, ipst); 6849 } 6850 6851 /* 6852 * Start the current exclusive operation on `ipsq'; associate it with `ipif' 6853 * and `ioccmd'. 6854 */ 6855 void 6856 ipsq_current_start(ipsq_t *ipsq, ipif_t *ipif, int ioccmd) 6857 { 6858 ill_t *ill = ipif->ipif_ill; 6859 ipxop_t *ipx = ipsq->ipsq_xop; 6860 6861 ASSERT(IAM_WRITER_IPSQ(ipsq)); 6862 ASSERT(ipx->ipx_current_ipif == NULL); 6863 ASSERT(ipx->ipx_current_ioctl == 0); 6864 6865 ipx->ipx_current_done = B_FALSE; 6866 ipx->ipx_current_ioctl = ioccmd; 6867 mutex_enter(&ipx->ipx_lock); 6868 ipx->ipx_current_ipif = ipif; 6869 mutex_exit(&ipx->ipx_lock); 6870 6871 /* 6872 * Set IPIF_CHANGING on one or more ipifs associated with the 6873 * current exclusive operation. IPIF_CHANGING prevents any new 6874 * references to the ipif (so that the references will eventually 6875 * drop to zero) and also prevents any "get" operations (e.g., 6876 * SIOCGLIFFLAGS) from being able to access the ipif until the 6877 * operation has completed and the ipif is again in a stable state. 6878 * 6879 * For ioctls, IPIF_CHANGING is set on the ipif associated with the 6880 * ioctl. For internal operations (where ioccmd is zero), all ipifs 6881 * on the ill are marked with IPIF_CHANGING since it's unclear which 6882 * ipifs will be affected. 6883 * 6884 * Note that SIOCLIFREMOVEIF is a special case as it sets 6885 * IPIF_CONDEMNED internally after identifying the right ipif to 6886 * operate on. 6887 */ 6888 switch (ioccmd) { 6889 case SIOCLIFREMOVEIF: 6890 break; 6891 case 0: 6892 mutex_enter(&ill->ill_lock); 6893 ipif = ipif->ipif_ill->ill_ipif; 6894 for (; ipif != NULL; ipif = ipif->ipif_next) 6895 ipif->ipif_state_flags |= IPIF_CHANGING; 6896 mutex_exit(&ill->ill_lock); 6897 break; 6898 default: 6899 mutex_enter(&ill->ill_lock); 6900 ipif->ipif_state_flags |= IPIF_CHANGING; 6901 mutex_exit(&ill->ill_lock); 6902 } 6903 } 6904 6905 /* 6906 * Finish the current exclusive operation on `ipsq'. Usually, this will allow 6907 * the next exclusive operation to begin once we ipsq_exit(). However, if 6908 * pending DLPI operations remain, then we will wait for the queue to drain 6909 * before allowing the next exclusive operation to begin. This ensures that 6910 * DLPI operations from one exclusive operation are never improperly processed 6911 * as part of a subsequent exclusive operation. 6912 */ 6913 void 6914 ipsq_current_finish(ipsq_t *ipsq) 6915 { 6916 ipxop_t *ipx = ipsq->ipsq_xop; 6917 t_uscalar_t dlpi_pending = DL_PRIM_INVAL; 6918 ipif_t *ipif = ipx->ipx_current_ipif; 6919 6920 ASSERT(IAM_WRITER_IPSQ(ipsq)); 6921 6922 /* 6923 * For SIOCLIFREMOVEIF, the ipif has been already been blown away 6924 * (but in that case, IPIF_CHANGING will already be clear and no 6925 * pending DLPI messages can remain). 6926 */ 6927 if (ipx->ipx_current_ioctl != SIOCLIFREMOVEIF) { 6928 ill_t *ill = ipif->ipif_ill; 6929 6930 mutex_enter(&ill->ill_lock); 6931 dlpi_pending = ill->ill_dlpi_pending; 6932 if (ipx->ipx_current_ioctl == 0) { 6933 ipif = ill->ill_ipif; 6934 for (; ipif != NULL; ipif = ipif->ipif_next) 6935 ipif->ipif_state_flags &= ~IPIF_CHANGING; 6936 } else { 6937 ipif->ipif_state_flags &= ~IPIF_CHANGING; 6938 } 6939 mutex_exit(&ill->ill_lock); 6940 } 6941 6942 ASSERT(!ipx->ipx_current_done); 6943 ipx->ipx_current_done = B_TRUE; 6944 ipx->ipx_current_ioctl = 0; 6945 if (dlpi_pending == DL_PRIM_INVAL) { 6946 mutex_enter(&ipx->ipx_lock); 6947 ipx->ipx_current_ipif = NULL; 6948 mutex_exit(&ipx->ipx_lock); 6949 } 6950 } 6951 6952 /* 6953 * The ill is closing. Flush all messages on the ipsq that originated 6954 * from this ill. Usually there wont' be any messages on the ipsq_xopq_mphead 6955 * for this ill since ipsq_enter could not have entered until then. 6956 * New messages can't be queued since the CONDEMNED flag is set. 6957 */ 6958 static void 6959 ipsq_flush(ill_t *ill) 6960 { 6961 queue_t *q; 6962 mblk_t *prev; 6963 mblk_t *mp; 6964 mblk_t *mp_next; 6965 ipxop_t *ipx = ill->ill_phyint->phyint_ipsq->ipsq_xop; 6966 6967 ASSERT(IAM_WRITER_ILL(ill)); 6968 6969 /* 6970 * Flush any messages sent up by the driver. 6971 */ 6972 mutex_enter(&ipx->ipx_lock); 6973 for (prev = NULL, mp = ipx->ipx_mphead; mp != NULL; mp = mp_next) { 6974 mp_next = mp->b_next; 6975 q = mp->b_queue; 6976 if (q == ill->ill_rq || q == ill->ill_wq) { 6977 /* dequeue mp */ 6978 if (prev == NULL) 6979 ipx->ipx_mphead = mp->b_next; 6980 else 6981 prev->b_next = mp->b_next; 6982 if (ipx->ipx_mptail == mp) { 6983 ASSERT(mp_next == NULL); 6984 ipx->ipx_mptail = prev; 6985 } 6986 inet_freemsg(mp); 6987 } else { 6988 prev = mp; 6989 } 6990 } 6991 mutex_exit(&ipx->ipx_lock); 6992 (void) ipsq_pending_mp_cleanup(ill, NULL); 6993 ipsq_xopq_mp_cleanup(ill, NULL); 6994 } 6995 6996 /* 6997 * Parse an ifreq or lifreq struct coming down ioctls and refhold 6998 * and return the associated ipif. 6999 * Return value: 7000 * Non zero: An error has occurred. ci may not be filled out. 7001 * zero : ci is filled out with the ioctl cmd in ci.ci_name, and 7002 * a held ipif in ci.ci_ipif. 7003 */ 7004 int 7005 ip_extract_lifreq(queue_t *q, mblk_t *mp, const ip_ioctl_cmd_t *ipip, 7006 cmd_info_t *ci) 7007 { 7008 char *name; 7009 struct ifreq *ifr; 7010 struct lifreq *lifr; 7011 ipif_t *ipif = NULL; 7012 ill_t *ill; 7013 conn_t *connp; 7014 boolean_t isv6; 7015 boolean_t exists; 7016 mblk_t *mp1; 7017 zoneid_t zoneid; 7018 ip_stack_t *ipst; 7019 7020 if (q->q_next != NULL) { 7021 ill = (ill_t *)q->q_ptr; 7022 isv6 = ill->ill_isv6; 7023 connp = NULL; 7024 zoneid = ALL_ZONES; 7025 ipst = ill->ill_ipst; 7026 } else { 7027 ill = NULL; 7028 connp = Q_TO_CONN(q); 7029 isv6 = (connp->conn_family == AF_INET6); 7030 zoneid = connp->conn_zoneid; 7031 if (zoneid == GLOBAL_ZONEID) { 7032 /* global zone can access ipifs in all zones */ 7033 zoneid = ALL_ZONES; 7034 } 7035 ipst = connp->conn_netstack->netstack_ip; 7036 } 7037 7038 /* Has been checked in ip_wput_nondata */ 7039 mp1 = mp->b_cont->b_cont; 7040 7041 if (ipip->ipi_cmd_type == IF_CMD) { 7042 /* This a old style SIOC[GS]IF* command */ 7043 ifr = (struct ifreq *)mp1->b_rptr; 7044 /* 7045 * Null terminate the string to protect against buffer 7046 * overrun. String was generated by user code and may not 7047 * be trusted. 7048 */ 7049 ifr->ifr_name[IFNAMSIZ - 1] = '\0'; 7050 name = ifr->ifr_name; 7051 ci->ci_sin = (sin_t *)&ifr->ifr_addr; 7052 ci->ci_sin6 = NULL; 7053 ci->ci_lifr = (struct lifreq *)ifr; 7054 } else { 7055 /* This a new style SIOC[GS]LIF* command */ 7056 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 7057 lifr = (struct lifreq *)mp1->b_rptr; 7058 /* 7059 * Null terminate the string to protect against buffer 7060 * overrun. String was generated by user code and may not 7061 * be trusted. 7062 */ 7063 lifr->lifr_name[LIFNAMSIZ - 1] = '\0'; 7064 name = lifr->lifr_name; 7065 ci->ci_sin = (sin_t *)&lifr->lifr_addr; 7066 ci->ci_sin6 = (sin6_t *)&lifr->lifr_addr; 7067 ci->ci_lifr = lifr; 7068 } 7069 7070 if (ipip->ipi_cmd == SIOCSLIFNAME) { 7071 /* 7072 * The ioctl will be failed if the ioctl comes down 7073 * an conn stream 7074 */ 7075 if (ill == NULL) { 7076 /* 7077 * Not an ill queue, return EINVAL same as the 7078 * old error code. 7079 */ 7080 return (ENXIO); 7081 } 7082 ipif = ill->ill_ipif; 7083 ipif_refhold(ipif); 7084 } else { 7085 ipif = ipif_lookup_on_name(name, mi_strlen(name), B_FALSE, 7086 &exists, isv6, zoneid, ipst); 7087 7088 /* 7089 * Ensure that get ioctls don't see any internal state changes 7090 * caused by set ioctls by deferring them if IPIF_CHANGING is 7091 * set. 7092 */ 7093 if (ipif != NULL && !(ipip->ipi_flags & IPI_WR) && 7094 !IAM_WRITER_IPIF(ipif)) { 7095 ipsq_t *ipsq; 7096 7097 if (connp != NULL) 7098 mutex_enter(&connp->conn_lock); 7099 mutex_enter(&ipif->ipif_ill->ill_lock); 7100 if (IPIF_IS_CHANGING(ipif) && 7101 !IPIF_IS_CONDEMNED(ipif)) { 7102 ipsq = ipif->ipif_ill->ill_phyint->phyint_ipsq; 7103 mutex_enter(&ipsq->ipsq_lock); 7104 mutex_enter(&ipsq->ipsq_xop->ipx_lock); 7105 mutex_exit(&ipif->ipif_ill->ill_lock); 7106 ipsq_enq(ipsq, q, mp, ip_process_ioctl, 7107 NEW_OP, ipif->ipif_ill); 7108 mutex_exit(&ipsq->ipsq_xop->ipx_lock); 7109 mutex_exit(&ipsq->ipsq_lock); 7110 if (connp != NULL) 7111 mutex_exit(&connp->conn_lock); 7112 ipif_refrele(ipif); 7113 return (EINPROGRESS); 7114 } 7115 mutex_exit(&ipif->ipif_ill->ill_lock); 7116 if (connp != NULL) 7117 mutex_exit(&connp->conn_lock); 7118 } 7119 } 7120 7121 /* 7122 * Old style [GS]IFCMD does not admit IPv6 ipif 7123 */ 7124 if (ipif != NULL && ipif->ipif_isv6 && ipip->ipi_cmd_type == IF_CMD) { 7125 ipif_refrele(ipif); 7126 return (ENXIO); 7127 } 7128 7129 if (ipif == NULL && ill != NULL && ill->ill_ipif != NULL && 7130 name[0] == '\0') { 7131 /* 7132 * Handle a or a SIOC?IF* with a null name 7133 * during plumb (on the ill queue before the I_PLINK). 7134 */ 7135 ipif = ill->ill_ipif; 7136 ipif_refhold(ipif); 7137 } 7138 7139 if (ipif == NULL) 7140 return (ENXIO); 7141 7142 DTRACE_PROBE4(ipif__ioctl, char *, "ip_extract_lifreq", 7143 int, ipip->ipi_cmd, ill_t *, ipif->ipif_ill, ipif_t *, ipif); 7144 7145 ci->ci_ipif = ipif; 7146 return (0); 7147 } 7148 7149 /* 7150 * Return the total number of ipifs. 7151 */ 7152 static uint_t 7153 ip_get_numifs(zoneid_t zoneid, ip_stack_t *ipst) 7154 { 7155 uint_t numifs = 0; 7156 ill_t *ill; 7157 ill_walk_context_t ctx; 7158 ipif_t *ipif; 7159 7160 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 7161 ill = ILL_START_WALK_V4(&ctx, ipst); 7162 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 7163 if (IS_UNDER_IPMP(ill)) 7164 continue; 7165 for (ipif = ill->ill_ipif; ipif != NULL; 7166 ipif = ipif->ipif_next) { 7167 if (ipif->ipif_zoneid == zoneid || 7168 ipif->ipif_zoneid == ALL_ZONES) 7169 numifs++; 7170 } 7171 } 7172 rw_exit(&ipst->ips_ill_g_lock); 7173 return (numifs); 7174 } 7175 7176 /* 7177 * Return the total number of ipifs. 7178 */ 7179 static uint_t 7180 ip_get_numlifs(int family, int lifn_flags, zoneid_t zoneid, ip_stack_t *ipst) 7181 { 7182 uint_t numifs = 0; 7183 ill_t *ill; 7184 ipif_t *ipif; 7185 ill_walk_context_t ctx; 7186 7187 ip1dbg(("ip_get_numlifs(%d %u %d)\n", family, lifn_flags, (int)zoneid)); 7188 7189 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 7190 if (family == AF_INET) 7191 ill = ILL_START_WALK_V4(&ctx, ipst); 7192 else if (family == AF_INET6) 7193 ill = ILL_START_WALK_V6(&ctx, ipst); 7194 else 7195 ill = ILL_START_WALK_ALL(&ctx, ipst); 7196 7197 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 7198 if (IS_UNDER_IPMP(ill) && !(lifn_flags & LIFC_UNDER_IPMP)) 7199 continue; 7200 7201 for (ipif = ill->ill_ipif; ipif != NULL; 7202 ipif = ipif->ipif_next) { 7203 if ((ipif->ipif_flags & IPIF_NOXMIT) && 7204 !(lifn_flags & LIFC_NOXMIT)) 7205 continue; 7206 if ((ipif->ipif_flags & IPIF_TEMPORARY) && 7207 !(lifn_flags & LIFC_TEMPORARY)) 7208 continue; 7209 if (((ipif->ipif_flags & 7210 (IPIF_NOXMIT|IPIF_NOLOCAL| 7211 IPIF_DEPRECATED)) || 7212 IS_LOOPBACK(ill) || 7213 !(ipif->ipif_flags & IPIF_UP)) && 7214 (lifn_flags & LIFC_EXTERNAL_SOURCE)) 7215 continue; 7216 7217 if (zoneid != ipif->ipif_zoneid && 7218 ipif->ipif_zoneid != ALL_ZONES && 7219 (zoneid != GLOBAL_ZONEID || 7220 !(lifn_flags & LIFC_ALLZONES))) 7221 continue; 7222 7223 numifs++; 7224 } 7225 } 7226 rw_exit(&ipst->ips_ill_g_lock); 7227 return (numifs); 7228 } 7229 7230 uint_t 7231 ip_get_lifsrcofnum(ill_t *ill) 7232 { 7233 uint_t numifs = 0; 7234 ill_t *ill_head = ill; 7235 ip_stack_t *ipst = ill->ill_ipst; 7236 7237 /* 7238 * ill_g_usesrc_lock protects ill_usesrc_grp_next, for example, some 7239 * other thread may be trying to relink the ILLs in this usesrc group 7240 * and adjusting the ill_usesrc_grp_next pointers 7241 */ 7242 rw_enter(&ipst->ips_ill_g_usesrc_lock, RW_READER); 7243 if ((ill->ill_usesrc_ifindex == 0) && 7244 (ill->ill_usesrc_grp_next != NULL)) { 7245 for (; (ill != NULL) && (ill->ill_usesrc_grp_next != ill_head); 7246 ill = ill->ill_usesrc_grp_next) 7247 numifs++; 7248 } 7249 rw_exit(&ipst->ips_ill_g_usesrc_lock); 7250 7251 return (numifs); 7252 } 7253 7254 /* Null values are passed in for ipif, sin, and ifreq */ 7255 /* ARGSUSED */ 7256 int 7257 ip_sioctl_get_ifnum(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, 7258 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) 7259 { 7260 int *nump; 7261 conn_t *connp = Q_TO_CONN(q); 7262 7263 ASSERT(q->q_next == NULL); /* not a valid ioctl for ip as a module */ 7264 7265 /* Existence of b_cont->b_cont checked in ip_wput_nondata */ 7266 nump = (int *)mp->b_cont->b_cont->b_rptr; 7267 7268 *nump = ip_get_numifs(connp->conn_zoneid, 7269 connp->conn_netstack->netstack_ip); 7270 ip1dbg(("ip_sioctl_get_ifnum numifs %d", *nump)); 7271 return (0); 7272 } 7273 7274 /* Null values are passed in for ipif, sin, and ifreq */ 7275 /* ARGSUSED */ 7276 int 7277 ip_sioctl_get_lifnum(ipif_t *dummy_ipif, sin_t *dummy_sin, 7278 queue_t *q, mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) 7279 { 7280 struct lifnum *lifn; 7281 mblk_t *mp1; 7282 conn_t *connp = Q_TO_CONN(q); 7283 7284 ASSERT(q->q_next == NULL); /* not a valid ioctl for ip as a module */ 7285 7286 /* Existence checked in ip_wput_nondata */ 7287 mp1 = mp->b_cont->b_cont; 7288 7289 lifn = (struct lifnum *)mp1->b_rptr; 7290 switch (lifn->lifn_family) { 7291 case AF_UNSPEC: 7292 case AF_INET: 7293 case AF_INET6: 7294 break; 7295 default: 7296 return (EAFNOSUPPORT); 7297 } 7298 7299 lifn->lifn_count = ip_get_numlifs(lifn->lifn_family, lifn->lifn_flags, 7300 connp->conn_zoneid, connp->conn_netstack->netstack_ip); 7301 ip1dbg(("ip_sioctl_get_lifnum numifs %d", lifn->lifn_count)); 7302 return (0); 7303 } 7304 7305 /* ARGSUSED */ 7306 int 7307 ip_sioctl_get_ifconf(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, 7308 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) 7309 { 7310 STRUCT_HANDLE(ifconf, ifc); 7311 mblk_t *mp1; 7312 struct iocblk *iocp; 7313 struct ifreq *ifr; 7314 ill_walk_context_t ctx; 7315 ill_t *ill; 7316 ipif_t *ipif; 7317 struct sockaddr_in *sin; 7318 int32_t ifclen; 7319 zoneid_t zoneid; 7320 ip_stack_t *ipst = CONNQ_TO_IPST(q); 7321 7322 ASSERT(q->q_next == NULL); /* not valid ioctls for ip as a module */ 7323 7324 ip1dbg(("ip_sioctl_get_ifconf")); 7325 /* Existence verified in ip_wput_nondata */ 7326 mp1 = mp->b_cont->b_cont; 7327 iocp = (struct iocblk *)mp->b_rptr; 7328 zoneid = Q_TO_CONN(q)->conn_zoneid; 7329 7330 /* 7331 * The original SIOCGIFCONF passed in a struct ifconf which specified 7332 * the user buffer address and length into which the list of struct 7333 * ifreqs was to be copied. Since AT&T Streams does not seem to 7334 * allow M_COPYOUT to be used in conjunction with I_STR IOCTLS, 7335 * the SIOCGIFCONF operation was redefined to simply provide 7336 * a large output buffer into which we are supposed to jam the ifreq 7337 * array. The same ioctl command code was used, despite the fact that 7338 * both the applications and the kernel code had to change, thus making 7339 * it impossible to support both interfaces. 7340 * 7341 * For reasons not good enough to try to explain, the following 7342 * algorithm is used for deciding what to do with one of these: 7343 * If the IOCTL comes in as an I_STR, it is assumed to be of the new 7344 * form with the output buffer coming down as the continuation message. 7345 * If it arrives as a TRANSPARENT IOCTL, it is assumed to be old style, 7346 * and we have to copy in the ifconf structure to find out how big the 7347 * output buffer is and where to copy out to. Sure no problem... 7348 * 7349 */ 7350 STRUCT_SET_HANDLE(ifc, iocp->ioc_flag, NULL); 7351 if ((mp1->b_wptr - mp1->b_rptr) == STRUCT_SIZE(ifc)) { 7352 int numifs = 0; 7353 size_t ifc_bufsize; 7354 7355 /* 7356 * Must be (better be!) continuation of a TRANSPARENT 7357 * IOCTL. We just copied in the ifconf structure. 7358 */ 7359 STRUCT_SET_HANDLE(ifc, iocp->ioc_flag, 7360 (struct ifconf *)mp1->b_rptr); 7361 7362 /* 7363 * Allocate a buffer to hold requested information. 7364 * 7365 * If ifc_len is larger than what is needed, we only 7366 * allocate what we will use. 7367 * 7368 * If ifc_len is smaller than what is needed, return 7369 * EINVAL. 7370 * 7371 * XXX: the ill_t structure can hava 2 counters, for 7372 * v4 and v6 (not just ill_ipif_up_count) to store the 7373 * number of interfaces for a device, so we don't need 7374 * to count them here... 7375 */ 7376 numifs = ip_get_numifs(zoneid, ipst); 7377 7378 ifclen = STRUCT_FGET(ifc, ifc_len); 7379 ifc_bufsize = numifs * sizeof (struct ifreq); 7380 if (ifc_bufsize > ifclen) { 7381 if (iocp->ioc_cmd == O_SIOCGIFCONF) { 7382 /* old behaviour */ 7383 return (EINVAL); 7384 } else { 7385 ifc_bufsize = ifclen; 7386 } 7387 } 7388 7389 mp1 = mi_copyout_alloc(q, mp, 7390 STRUCT_FGETP(ifc, ifc_buf), ifc_bufsize, B_FALSE); 7391 if (mp1 == NULL) 7392 return (ENOMEM); 7393 7394 mp1->b_wptr = mp1->b_rptr + ifc_bufsize; 7395 } 7396 bzero(mp1->b_rptr, mp1->b_wptr - mp1->b_rptr); 7397 /* 7398 * the SIOCGIFCONF ioctl only knows about 7399 * IPv4 addresses, so don't try to tell 7400 * it about interfaces with IPv6-only 7401 * addresses. (Last parm 'isv6' is B_FALSE) 7402 */ 7403 7404 ifr = (struct ifreq *)mp1->b_rptr; 7405 7406 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 7407 ill = ILL_START_WALK_V4(&ctx, ipst); 7408 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 7409 if (IS_UNDER_IPMP(ill)) 7410 continue; 7411 for (ipif = ill->ill_ipif; ipif != NULL; 7412 ipif = ipif->ipif_next) { 7413 if (zoneid != ipif->ipif_zoneid && 7414 ipif->ipif_zoneid != ALL_ZONES) 7415 continue; 7416 if ((uchar_t *)&ifr[1] > mp1->b_wptr) { 7417 if (iocp->ioc_cmd == O_SIOCGIFCONF) { 7418 /* old behaviour */ 7419 rw_exit(&ipst->ips_ill_g_lock); 7420 return (EINVAL); 7421 } else { 7422 goto if_copydone; 7423 } 7424 } 7425 ipif_get_name(ipif, ifr->ifr_name, 7426 sizeof (ifr->ifr_name)); 7427 sin = (sin_t *)&ifr->ifr_addr; 7428 *sin = sin_null; 7429 sin->sin_family = AF_INET; 7430 sin->sin_addr.s_addr = ipif->ipif_lcl_addr; 7431 ifr++; 7432 } 7433 } 7434 if_copydone: 7435 rw_exit(&ipst->ips_ill_g_lock); 7436 mp1->b_wptr = (uchar_t *)ifr; 7437 7438 if (STRUCT_BUF(ifc) != NULL) { 7439 STRUCT_FSET(ifc, ifc_len, 7440 (int)((uchar_t *)ifr - mp1->b_rptr)); 7441 } 7442 return (0); 7443 } 7444 7445 /* 7446 * Get the interfaces using the address hosted on the interface passed in, 7447 * as a source adddress 7448 */ 7449 /* ARGSUSED */ 7450 int 7451 ip_sioctl_get_lifsrcof(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, 7452 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) 7453 { 7454 mblk_t *mp1; 7455 ill_t *ill, *ill_head; 7456 ipif_t *ipif, *orig_ipif; 7457 int numlifs = 0; 7458 size_t lifs_bufsize, lifsmaxlen; 7459 struct lifreq *lifr; 7460 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 7461 uint_t ifindex; 7462 zoneid_t zoneid; 7463 boolean_t isv6 = B_FALSE; 7464 struct sockaddr_in *sin; 7465 struct sockaddr_in6 *sin6; 7466 STRUCT_HANDLE(lifsrcof, lifs); 7467 ip_stack_t *ipst; 7468 7469 ipst = CONNQ_TO_IPST(q); 7470 7471 ASSERT(q->q_next == NULL); 7472 7473 zoneid = Q_TO_CONN(q)->conn_zoneid; 7474 7475 /* Existence verified in ip_wput_nondata */ 7476 mp1 = mp->b_cont->b_cont; 7477 7478 /* 7479 * Must be (better be!) continuation of a TRANSPARENT 7480 * IOCTL. We just copied in the lifsrcof structure. 7481 */ 7482 STRUCT_SET_HANDLE(lifs, iocp->ioc_flag, 7483 (struct lifsrcof *)mp1->b_rptr); 7484 7485 if (MBLKL(mp1) != STRUCT_SIZE(lifs)) 7486 return (EINVAL); 7487 7488 ifindex = STRUCT_FGET(lifs, lifs_ifindex); 7489 isv6 = (Q_TO_CONN(q))->conn_family == AF_INET6; 7490 ipif = ipif_lookup_on_ifindex(ifindex, isv6, zoneid, ipst); 7491 if (ipif == NULL) { 7492 ip1dbg(("ip_sioctl_get_lifsrcof: no ipif for ifindex %d\n", 7493 ifindex)); 7494 return (ENXIO); 7495 } 7496 7497 /* Allocate a buffer to hold requested information */ 7498 numlifs = ip_get_lifsrcofnum(ipif->ipif_ill); 7499 lifs_bufsize = numlifs * sizeof (struct lifreq); 7500 lifsmaxlen = STRUCT_FGET(lifs, lifs_maxlen); 7501 /* The actual size needed is always returned in lifs_len */ 7502 STRUCT_FSET(lifs, lifs_len, lifs_bufsize); 7503 7504 /* If the amount we need is more than what is passed in, abort */ 7505 if (lifs_bufsize > lifsmaxlen || lifs_bufsize == 0) { 7506 ipif_refrele(ipif); 7507 return (0); 7508 } 7509 7510 mp1 = mi_copyout_alloc(q, mp, 7511 STRUCT_FGETP(lifs, lifs_buf), lifs_bufsize, B_FALSE); 7512 if (mp1 == NULL) { 7513 ipif_refrele(ipif); 7514 return (ENOMEM); 7515 } 7516 7517 mp1->b_wptr = mp1->b_rptr + lifs_bufsize; 7518 bzero(mp1->b_rptr, lifs_bufsize); 7519 7520 lifr = (struct lifreq *)mp1->b_rptr; 7521 7522 ill = ill_head = ipif->ipif_ill; 7523 orig_ipif = ipif; 7524 7525 /* ill_g_usesrc_lock protects ill_usesrc_grp_next */ 7526 rw_enter(&ipst->ips_ill_g_usesrc_lock, RW_READER); 7527 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 7528 7529 ill = ill->ill_usesrc_grp_next; /* start from next ill */ 7530 for (; (ill != NULL) && (ill != ill_head); 7531 ill = ill->ill_usesrc_grp_next) { 7532 7533 if ((uchar_t *)&lifr[1] > mp1->b_wptr) 7534 break; 7535 7536 ipif = ill->ill_ipif; 7537 ipif_get_name(ipif, lifr->lifr_name, sizeof (lifr->lifr_name)); 7538 if (ipif->ipif_isv6) { 7539 sin6 = (sin6_t *)&lifr->lifr_addr; 7540 *sin6 = sin6_null; 7541 sin6->sin6_family = AF_INET6; 7542 sin6->sin6_addr = ipif->ipif_v6lcl_addr; 7543 lifr->lifr_addrlen = ip_mask_to_plen_v6( 7544 &ipif->ipif_v6net_mask); 7545 } else { 7546 sin = (sin_t *)&lifr->lifr_addr; 7547 *sin = sin_null; 7548 sin->sin_family = AF_INET; 7549 sin->sin_addr.s_addr = ipif->ipif_lcl_addr; 7550 lifr->lifr_addrlen = ip_mask_to_plen( 7551 ipif->ipif_net_mask); 7552 } 7553 lifr++; 7554 } 7555 rw_exit(&ipst->ips_ill_g_usesrc_lock); 7556 rw_exit(&ipst->ips_ill_g_lock); 7557 ipif_refrele(orig_ipif); 7558 mp1->b_wptr = (uchar_t *)lifr; 7559 STRUCT_FSET(lifs, lifs_len, (int)((uchar_t *)lifr - mp1->b_rptr)); 7560 7561 return (0); 7562 } 7563 7564 /* ARGSUSED */ 7565 int 7566 ip_sioctl_get_lifconf(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, 7567 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) 7568 { 7569 mblk_t *mp1; 7570 int list; 7571 ill_t *ill; 7572 ipif_t *ipif; 7573 int flags; 7574 int numlifs = 0; 7575 size_t lifc_bufsize; 7576 struct lifreq *lifr; 7577 sa_family_t family; 7578 struct sockaddr_in *sin; 7579 struct sockaddr_in6 *sin6; 7580 ill_walk_context_t ctx; 7581 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 7582 int32_t lifclen; 7583 zoneid_t zoneid; 7584 STRUCT_HANDLE(lifconf, lifc); 7585 ip_stack_t *ipst = CONNQ_TO_IPST(q); 7586 7587 ip1dbg(("ip_sioctl_get_lifconf")); 7588 7589 ASSERT(q->q_next == NULL); 7590 7591 zoneid = Q_TO_CONN(q)->conn_zoneid; 7592 7593 /* Existence verified in ip_wput_nondata */ 7594 mp1 = mp->b_cont->b_cont; 7595 7596 /* 7597 * An extended version of SIOCGIFCONF that takes an 7598 * additional address family and flags field. 7599 * AF_UNSPEC retrieve both IPv4 and IPv6. 7600 * Unless LIFC_NOXMIT is specified the IPIF_NOXMIT 7601 * interfaces are omitted. 7602 * Similarly, IPIF_TEMPORARY interfaces are omitted 7603 * unless LIFC_TEMPORARY is specified. 7604 * If LIFC_EXTERNAL_SOURCE is specified, IPIF_NOXMIT, 7605 * IPIF_NOLOCAL, PHYI_LOOPBACK, IPIF_DEPRECATED and 7606 * not IPIF_UP interfaces are omitted. LIFC_EXTERNAL_SOURCE 7607 * has priority over LIFC_NOXMIT. 7608 */ 7609 STRUCT_SET_HANDLE(lifc, iocp->ioc_flag, NULL); 7610 7611 if ((mp1->b_wptr - mp1->b_rptr) != STRUCT_SIZE(lifc)) 7612 return (EINVAL); 7613 7614 /* 7615 * Must be (better be!) continuation of a TRANSPARENT 7616 * IOCTL. We just copied in the lifconf structure. 7617 */ 7618 STRUCT_SET_HANDLE(lifc, iocp->ioc_flag, (struct lifconf *)mp1->b_rptr); 7619 7620 family = STRUCT_FGET(lifc, lifc_family); 7621 flags = STRUCT_FGET(lifc, lifc_flags); 7622 7623 switch (family) { 7624 case AF_UNSPEC: 7625 /* 7626 * walk all ILL's. 7627 */ 7628 list = MAX_G_HEADS; 7629 break; 7630 case AF_INET: 7631 /* 7632 * walk only IPV4 ILL's. 7633 */ 7634 list = IP_V4_G_HEAD; 7635 break; 7636 case AF_INET6: 7637 /* 7638 * walk only IPV6 ILL's. 7639 */ 7640 list = IP_V6_G_HEAD; 7641 break; 7642 default: 7643 return (EAFNOSUPPORT); 7644 } 7645 7646 /* 7647 * Allocate a buffer to hold requested information. 7648 * 7649 * If lifc_len is larger than what is needed, we only 7650 * allocate what we will use. 7651 * 7652 * If lifc_len is smaller than what is needed, return 7653 * EINVAL. 7654 */ 7655 numlifs = ip_get_numlifs(family, flags, zoneid, ipst); 7656 lifc_bufsize = numlifs * sizeof (struct lifreq); 7657 lifclen = STRUCT_FGET(lifc, lifc_len); 7658 if (lifc_bufsize > lifclen) { 7659 if (iocp->ioc_cmd == O_SIOCGLIFCONF) 7660 return (EINVAL); 7661 else 7662 lifc_bufsize = lifclen; 7663 } 7664 7665 mp1 = mi_copyout_alloc(q, mp, 7666 STRUCT_FGETP(lifc, lifc_buf), lifc_bufsize, B_FALSE); 7667 if (mp1 == NULL) 7668 return (ENOMEM); 7669 7670 mp1->b_wptr = mp1->b_rptr + lifc_bufsize; 7671 bzero(mp1->b_rptr, mp1->b_wptr - mp1->b_rptr); 7672 7673 lifr = (struct lifreq *)mp1->b_rptr; 7674 7675 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 7676 ill = ill_first(list, list, &ctx, ipst); 7677 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 7678 if (IS_UNDER_IPMP(ill) && !(flags & LIFC_UNDER_IPMP)) 7679 continue; 7680 7681 for (ipif = ill->ill_ipif; ipif != NULL; 7682 ipif = ipif->ipif_next) { 7683 if ((ipif->ipif_flags & IPIF_NOXMIT) && 7684 !(flags & LIFC_NOXMIT)) 7685 continue; 7686 7687 if ((ipif->ipif_flags & IPIF_TEMPORARY) && 7688 !(flags & LIFC_TEMPORARY)) 7689 continue; 7690 7691 if (((ipif->ipif_flags & 7692 (IPIF_NOXMIT|IPIF_NOLOCAL| 7693 IPIF_DEPRECATED)) || 7694 IS_LOOPBACK(ill) || 7695 !(ipif->ipif_flags & IPIF_UP)) && 7696 (flags & LIFC_EXTERNAL_SOURCE)) 7697 continue; 7698 7699 if (zoneid != ipif->ipif_zoneid && 7700 ipif->ipif_zoneid != ALL_ZONES && 7701 (zoneid != GLOBAL_ZONEID || 7702 !(flags & LIFC_ALLZONES))) 7703 continue; 7704 7705 if ((uchar_t *)&lifr[1] > mp1->b_wptr) { 7706 if (iocp->ioc_cmd == O_SIOCGLIFCONF) { 7707 rw_exit(&ipst->ips_ill_g_lock); 7708 return (EINVAL); 7709 } else { 7710 goto lif_copydone; 7711 } 7712 } 7713 7714 ipif_get_name(ipif, lifr->lifr_name, 7715 sizeof (lifr->lifr_name)); 7716 lifr->lifr_type = ill->ill_type; 7717 if (ipif->ipif_isv6) { 7718 sin6 = (sin6_t *)&lifr->lifr_addr; 7719 *sin6 = sin6_null; 7720 sin6->sin6_family = AF_INET6; 7721 sin6->sin6_addr = 7722 ipif->ipif_v6lcl_addr; 7723 lifr->lifr_addrlen = 7724 ip_mask_to_plen_v6( 7725 &ipif->ipif_v6net_mask); 7726 } else { 7727 sin = (sin_t *)&lifr->lifr_addr; 7728 *sin = sin_null; 7729 sin->sin_family = AF_INET; 7730 sin->sin_addr.s_addr = 7731 ipif->ipif_lcl_addr; 7732 lifr->lifr_addrlen = 7733 ip_mask_to_plen( 7734 ipif->ipif_net_mask); 7735 } 7736 lifr++; 7737 } 7738 } 7739 lif_copydone: 7740 rw_exit(&ipst->ips_ill_g_lock); 7741 7742 mp1->b_wptr = (uchar_t *)lifr; 7743 if (STRUCT_BUF(lifc) != NULL) { 7744 STRUCT_FSET(lifc, lifc_len, 7745 (int)((uchar_t *)lifr - mp1->b_rptr)); 7746 } 7747 return (0); 7748 } 7749 7750 static void 7751 ip_sioctl_ip6addrpolicy(queue_t *q, mblk_t *mp) 7752 { 7753 ip6_asp_t *table; 7754 size_t table_size; 7755 mblk_t *data_mp; 7756 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 7757 ip_stack_t *ipst; 7758 7759 if (q->q_next == NULL) 7760 ipst = CONNQ_TO_IPST(q); 7761 else 7762 ipst = ILLQ_TO_IPST(q); 7763 7764 /* These two ioctls are I_STR only */ 7765 if (iocp->ioc_count == TRANSPARENT) { 7766 miocnak(q, mp, 0, EINVAL); 7767 return; 7768 } 7769 7770 data_mp = mp->b_cont; 7771 if (data_mp == NULL) { 7772 /* The user passed us a NULL argument */ 7773 table = NULL; 7774 table_size = iocp->ioc_count; 7775 } else { 7776 /* 7777 * The user provided a table. The stream head 7778 * may have copied in the user data in chunks, 7779 * so make sure everything is pulled up 7780 * properly. 7781 */ 7782 if (MBLKL(data_mp) < iocp->ioc_count) { 7783 mblk_t *new_data_mp; 7784 if ((new_data_mp = msgpullup(data_mp, -1)) == 7785 NULL) { 7786 miocnak(q, mp, 0, ENOMEM); 7787 return; 7788 } 7789 freemsg(data_mp); 7790 data_mp = new_data_mp; 7791 mp->b_cont = data_mp; 7792 } 7793 table = (ip6_asp_t *)data_mp->b_rptr; 7794 table_size = iocp->ioc_count; 7795 } 7796 7797 switch (iocp->ioc_cmd) { 7798 case SIOCGIP6ADDRPOLICY: 7799 iocp->ioc_rval = ip6_asp_get(table, table_size, ipst); 7800 if (iocp->ioc_rval == -1) 7801 iocp->ioc_error = EINVAL; 7802 #if defined(_SYSCALL32_IMPL) && _LONG_LONG_ALIGNMENT_32 == 4 7803 else if (table != NULL && 7804 (iocp->ioc_flag & IOC_MODELS) == IOC_ILP32) { 7805 ip6_asp_t *src = table; 7806 ip6_asp32_t *dst = (void *)table; 7807 int count = table_size / sizeof (ip6_asp_t); 7808 int i; 7809 7810 /* 7811 * We need to do an in-place shrink of the array 7812 * to match the alignment attributes of the 7813 * 32-bit ABI looking at it. 7814 */ 7815 /* LINTED: logical expression always true: op "||" */ 7816 ASSERT(sizeof (*src) > sizeof (*dst)); 7817 for (i = 1; i < count; i++) 7818 bcopy(src + i, dst + i, sizeof (*dst)); 7819 } 7820 #endif 7821 break; 7822 7823 case SIOCSIP6ADDRPOLICY: 7824 ASSERT(mp->b_prev == NULL); 7825 mp->b_prev = (void *)q; 7826 #if defined(_SYSCALL32_IMPL) && _LONG_LONG_ALIGNMENT_32 == 4 7827 /* 7828 * We pass in the datamodel here so that the ip6_asp_replace() 7829 * routine can handle converting from 32-bit to native formats 7830 * where necessary. 7831 * 7832 * A better way to handle this might be to convert the inbound 7833 * data structure here, and hang it off a new 'mp'; thus the 7834 * ip6_asp_replace() logic would always be dealing with native 7835 * format data structures.. 7836 * 7837 * (An even simpler way to handle these ioctls is to just 7838 * add a 32-bit trailing 'pad' field to the ip6_asp_t structure 7839 * and just recompile everything that depends on it.) 7840 */ 7841 #endif 7842 ip6_asp_replace(mp, table, table_size, B_FALSE, ipst, 7843 iocp->ioc_flag & IOC_MODELS); 7844 return; 7845 } 7846 7847 DB_TYPE(mp) = (iocp->ioc_error == 0) ? M_IOCACK : M_IOCNAK; 7848 qreply(q, mp); 7849 } 7850 7851 static void 7852 ip_sioctl_dstinfo(queue_t *q, mblk_t *mp) 7853 { 7854 mblk_t *data_mp; 7855 struct dstinforeq *dir; 7856 uint8_t *end, *cur; 7857 in6_addr_t *daddr, *saddr; 7858 ipaddr_t v4daddr; 7859 ire_t *ire; 7860 ipaddr_t v4setsrc; 7861 in6_addr_t v6setsrc; 7862 char *slabel, *dlabel; 7863 boolean_t isipv4; 7864 int match_ire; 7865 ill_t *dst_ill; 7866 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 7867 conn_t *connp = Q_TO_CONN(q); 7868 zoneid_t zoneid = IPCL_ZONEID(connp); 7869 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 7870 uint64_t ipif_flags; 7871 7872 ASSERT(q->q_next == NULL); /* this ioctl not allowed if ip is module */ 7873 7874 /* 7875 * This ioctl is I_STR only, and must have a 7876 * data mblk following the M_IOCTL mblk. 7877 */ 7878 data_mp = mp->b_cont; 7879 if (iocp->ioc_count == TRANSPARENT || data_mp == NULL) { 7880 miocnak(q, mp, 0, EINVAL); 7881 return; 7882 } 7883 7884 if (MBLKL(data_mp) < iocp->ioc_count) { 7885 mblk_t *new_data_mp; 7886 7887 if ((new_data_mp = msgpullup(data_mp, -1)) == NULL) { 7888 miocnak(q, mp, 0, ENOMEM); 7889 return; 7890 } 7891 freemsg(data_mp); 7892 data_mp = new_data_mp; 7893 mp->b_cont = data_mp; 7894 } 7895 match_ire = MATCH_IRE_DSTONLY; 7896 7897 for (cur = data_mp->b_rptr, end = data_mp->b_wptr; 7898 end - cur >= sizeof (struct dstinforeq); 7899 cur += sizeof (struct dstinforeq)) { 7900 dir = (struct dstinforeq *)cur; 7901 daddr = &dir->dir_daddr; 7902 saddr = &dir->dir_saddr; 7903 7904 /* 7905 * ip_addr_scope_v6() and ip6_asp_lookup() handle 7906 * v4 mapped addresses; ire_ftable_lookup_v6() 7907 * and ip_select_source_v6() do not. 7908 */ 7909 dir->dir_dscope = ip_addr_scope_v6(daddr); 7910 dlabel = ip6_asp_lookup(daddr, &dir->dir_precedence, ipst); 7911 7912 isipv4 = IN6_IS_ADDR_V4MAPPED(daddr); 7913 if (isipv4) { 7914 IN6_V4MAPPED_TO_IPADDR(daddr, v4daddr); 7915 v4setsrc = INADDR_ANY; 7916 ire = ire_route_recursive_v4(v4daddr, 0, NULL, zoneid, 7917 NULL, match_ire, B_TRUE, 0, ipst, &v4setsrc, NULL, 7918 NULL); 7919 } else { 7920 v6setsrc = ipv6_all_zeros; 7921 ire = ire_route_recursive_v6(daddr, 0, NULL, zoneid, 7922 NULL, match_ire, B_TRUE, 0, ipst, &v6setsrc, NULL, 7923 NULL); 7924 } 7925 ASSERT(ire != NULL); 7926 if (ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) { 7927 ire_refrele(ire); 7928 dir->dir_dreachable = 0; 7929 7930 /* move on to next dst addr */ 7931 continue; 7932 } 7933 dir->dir_dreachable = 1; 7934 7935 dst_ill = ire_nexthop_ill(ire); 7936 if (dst_ill == NULL) { 7937 ire_refrele(ire); 7938 continue; 7939 } 7940 7941 /* With ipmp we most likely look at the ipmp ill here */ 7942 dir->dir_dmactype = dst_ill->ill_mactype; 7943 7944 if (isipv4) { 7945 ipaddr_t v4saddr; 7946 7947 if (ip_select_source_v4(dst_ill, v4setsrc, v4daddr, 7948 connp->conn_ixa->ixa_multicast_ifaddr, zoneid, ipst, 7949 &v4saddr, NULL, &ipif_flags) != 0) { 7950 v4saddr = INADDR_ANY; 7951 ipif_flags = 0; 7952 } 7953 IN6_IPADDR_TO_V4MAPPED(v4saddr, saddr); 7954 } else { 7955 if (ip_select_source_v6(dst_ill, &v6setsrc, daddr, 7956 zoneid, ipst, B_FALSE, IPV6_PREFER_SRC_DEFAULT, 7957 saddr, NULL, &ipif_flags) != 0) { 7958 *saddr = ipv6_all_zeros; 7959 ipif_flags = 0; 7960 } 7961 } 7962 7963 dir->dir_sscope = ip_addr_scope_v6(saddr); 7964 slabel = ip6_asp_lookup(saddr, NULL, ipst); 7965 dir->dir_labelmatch = ip6_asp_labelcmp(dlabel, slabel); 7966 dir->dir_sdeprecated = (ipif_flags & IPIF_DEPRECATED) ? 1 : 0; 7967 ire_refrele(ire); 7968 ill_refrele(dst_ill); 7969 } 7970 miocack(q, mp, iocp->ioc_count, 0); 7971 } 7972 7973 /* 7974 * Check if this is an address assigned to this machine. 7975 * Skips interfaces that are down by using ire checks. 7976 * Translates mapped addresses to v4 addresses and then 7977 * treats them as such, returning true if the v4 address 7978 * associated with this mapped address is configured. 7979 * Note: Applications will have to be careful what they do 7980 * with the response; use of mapped addresses limits 7981 * what can be done with the socket, especially with 7982 * respect to socket options and ioctls - neither IPv4 7983 * options nor IPv6 sticky options/ancillary data options 7984 * may be used. 7985 */ 7986 /* ARGSUSED */ 7987 int 7988 ip_sioctl_tmyaddr(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 7989 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 7990 { 7991 struct sioc_addrreq *sia; 7992 sin_t *sin; 7993 ire_t *ire; 7994 mblk_t *mp1; 7995 zoneid_t zoneid; 7996 ip_stack_t *ipst; 7997 7998 ip1dbg(("ip_sioctl_tmyaddr")); 7999 8000 ASSERT(q->q_next == NULL); /* this ioctl not allowed if ip is module */ 8001 zoneid = Q_TO_CONN(q)->conn_zoneid; 8002 ipst = CONNQ_TO_IPST(q); 8003 8004 /* Existence verified in ip_wput_nondata */ 8005 mp1 = mp->b_cont->b_cont; 8006 sia = (struct sioc_addrreq *)mp1->b_rptr; 8007 sin = (sin_t *)&sia->sa_addr; 8008 switch (sin->sin_family) { 8009 case AF_INET6: { 8010 sin6_t *sin6 = (sin6_t *)sin; 8011 8012 if (IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) { 8013 ipaddr_t v4_addr; 8014 8015 IN6_V4MAPPED_TO_IPADDR(&sin6->sin6_addr, 8016 v4_addr); 8017 ire = ire_ftable_lookup_v4(v4_addr, 0, 0, 8018 IRE_LOCAL|IRE_LOOPBACK, NULL, zoneid, NULL, 8019 MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY, 0, ipst, NULL); 8020 } else { 8021 in6_addr_t v6addr; 8022 8023 v6addr = sin6->sin6_addr; 8024 ire = ire_ftable_lookup_v6(&v6addr, 0, 0, 8025 IRE_LOCAL|IRE_LOOPBACK, NULL, zoneid, NULL, 8026 MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY, 0, ipst, NULL); 8027 } 8028 break; 8029 } 8030 case AF_INET: { 8031 ipaddr_t v4addr; 8032 8033 v4addr = sin->sin_addr.s_addr; 8034 ire = ire_ftable_lookup_v4(v4addr, 0, 0, 8035 IRE_LOCAL|IRE_LOOPBACK, NULL, zoneid, 8036 NULL, MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY, 0, ipst, NULL); 8037 break; 8038 } 8039 default: 8040 return (EAFNOSUPPORT); 8041 } 8042 if (ire != NULL) { 8043 sia->sa_res = 1; 8044 ire_refrele(ire); 8045 } else { 8046 sia->sa_res = 0; 8047 } 8048 return (0); 8049 } 8050 8051 /* 8052 * Check if this is an address assigned on-link i.e. neighbor, 8053 * and makes sure it's reachable from the current zone. 8054 * Returns true for my addresses as well. 8055 * Translates mapped addresses to v4 addresses and then 8056 * treats them as such, returning true if the v4 address 8057 * associated with this mapped address is configured. 8058 * Note: Applications will have to be careful what they do 8059 * with the response; use of mapped addresses limits 8060 * what can be done with the socket, especially with 8061 * respect to socket options and ioctls - neither IPv4 8062 * options nor IPv6 sticky options/ancillary data options 8063 * may be used. 8064 */ 8065 /* ARGSUSED */ 8066 int 8067 ip_sioctl_tonlink(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 8068 ip_ioctl_cmd_t *ipip, void *duymmy_ifreq) 8069 { 8070 struct sioc_addrreq *sia; 8071 sin_t *sin; 8072 mblk_t *mp1; 8073 ire_t *ire = NULL; 8074 zoneid_t zoneid; 8075 ip_stack_t *ipst; 8076 8077 ip1dbg(("ip_sioctl_tonlink")); 8078 8079 ASSERT(q->q_next == NULL); /* this ioctl not allowed if ip is module */ 8080 zoneid = Q_TO_CONN(q)->conn_zoneid; 8081 ipst = CONNQ_TO_IPST(q); 8082 8083 /* Existence verified in ip_wput_nondata */ 8084 mp1 = mp->b_cont->b_cont; 8085 sia = (struct sioc_addrreq *)mp1->b_rptr; 8086 sin = (sin_t *)&sia->sa_addr; 8087 8088 /* 8089 * We check for IRE_ONLINK and exclude IRE_BROADCAST|IRE_MULTICAST 8090 * to make sure we only look at on-link unicast address. 8091 */ 8092 switch (sin->sin_family) { 8093 case AF_INET6: { 8094 sin6_t *sin6 = (sin6_t *)sin; 8095 8096 if (IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) { 8097 ipaddr_t v4_addr; 8098 8099 IN6_V4MAPPED_TO_IPADDR(&sin6->sin6_addr, 8100 v4_addr); 8101 if (!CLASSD(v4_addr)) { 8102 ire = ire_ftable_lookup_v4(v4_addr, 0, 0, 0, 8103 NULL, zoneid, NULL, MATCH_IRE_DSTONLY, 8104 0, ipst, NULL); 8105 } 8106 } else { 8107 in6_addr_t v6addr; 8108 8109 v6addr = sin6->sin6_addr; 8110 if (!IN6_IS_ADDR_MULTICAST(&v6addr)) { 8111 ire = ire_ftable_lookup_v6(&v6addr, 0, 0, 0, 8112 NULL, zoneid, NULL, MATCH_IRE_DSTONLY, 0, 8113 ipst, NULL); 8114 } 8115 } 8116 break; 8117 } 8118 case AF_INET: { 8119 ipaddr_t v4addr; 8120 8121 v4addr = sin->sin_addr.s_addr; 8122 if (!CLASSD(v4addr)) { 8123 ire = ire_ftable_lookup_v4(v4addr, 0, 0, 0, NULL, 8124 zoneid, NULL, MATCH_IRE_DSTONLY, 0, ipst, NULL); 8125 } 8126 break; 8127 } 8128 default: 8129 return (EAFNOSUPPORT); 8130 } 8131 sia->sa_res = 0; 8132 if (ire != NULL) { 8133 ASSERT(!(ire->ire_type & IRE_MULTICAST)); 8134 8135 if ((ire->ire_type & IRE_ONLINK) && 8136 !(ire->ire_type & IRE_BROADCAST)) 8137 sia->sa_res = 1; 8138 ire_refrele(ire); 8139 } 8140 return (0); 8141 } 8142 8143 /* 8144 * TBD: implement when kernel maintaines a list of site prefixes. 8145 */ 8146 /* ARGSUSED */ 8147 int 8148 ip_sioctl_tmysite(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 8149 ip_ioctl_cmd_t *ipip, void *ifreq) 8150 { 8151 return (ENXIO); 8152 } 8153 8154 /* ARP IOCTLs. */ 8155 /* ARGSUSED */ 8156 int 8157 ip_sioctl_arp(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 8158 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 8159 { 8160 int err; 8161 ipaddr_t ipaddr; 8162 struct iocblk *iocp; 8163 conn_t *connp; 8164 struct arpreq *ar; 8165 struct xarpreq *xar; 8166 int arp_flags, flags, alength; 8167 uchar_t *lladdr; 8168 ip_stack_t *ipst; 8169 ill_t *ill = ipif->ipif_ill; 8170 ill_t *proxy_ill = NULL; 8171 ipmp_arpent_t *entp = NULL; 8172 boolean_t proxyarp = B_FALSE; 8173 boolean_t if_arp_ioctl = B_FALSE; 8174 ncec_t *ncec = NULL; 8175 nce_t *nce; 8176 8177 ASSERT(!(q->q_flag & QREADR) && q->q_next == NULL); 8178 connp = Q_TO_CONN(q); 8179 ipst = connp->conn_netstack->netstack_ip; 8180 iocp = (struct iocblk *)mp->b_rptr; 8181 8182 if (ipip->ipi_cmd_type == XARP_CMD) { 8183 /* We have a chain - M_IOCTL-->MI_COPY_MBLK-->XARPREQ_MBLK */ 8184 xar = (struct xarpreq *)mp->b_cont->b_cont->b_rptr; 8185 ar = NULL; 8186 8187 arp_flags = xar->xarp_flags; 8188 lladdr = (uchar_t *)LLADDR(&xar->xarp_ha); 8189 if_arp_ioctl = (xar->xarp_ha.sdl_nlen != 0); 8190 /* 8191 * Validate against user's link layer address length 8192 * input and name and addr length limits. 8193 */ 8194 alength = ill->ill_phys_addr_length; 8195 if (ipip->ipi_cmd == SIOCSXARP) { 8196 if (alength != xar->xarp_ha.sdl_alen || 8197 (alength + xar->xarp_ha.sdl_nlen > 8198 sizeof (xar->xarp_ha.sdl_data))) 8199 return (EINVAL); 8200 } 8201 } else { 8202 /* We have a chain - M_IOCTL-->MI_COPY_MBLK-->ARPREQ_MBLK */ 8203 ar = (struct arpreq *)mp->b_cont->b_cont->b_rptr; 8204 xar = NULL; 8205 8206 arp_flags = ar->arp_flags; 8207 lladdr = (uchar_t *)ar->arp_ha.sa_data; 8208 /* 8209 * Theoretically, the sa_family could tell us what link 8210 * layer type this operation is trying to deal with. By 8211 * common usage AF_UNSPEC means ethernet. We'll assume 8212 * any attempt to use the SIOC?ARP ioctls is for ethernet, 8213 * for now. Our new SIOC*XARP ioctls can be used more 8214 * generally. 8215 * 8216 * If the underlying media happens to have a non 6 byte 8217 * address, arp module will fail set/get, but the del 8218 * operation will succeed. 8219 */ 8220 alength = 6; 8221 if ((ipip->ipi_cmd != SIOCDARP) && 8222 (alength != ill->ill_phys_addr_length)) { 8223 return (EINVAL); 8224 } 8225 } 8226 8227 /* Translate ATF* flags to NCE* flags */ 8228 flags = 0; 8229 if (arp_flags & ATF_AUTHORITY) 8230 flags |= NCE_F_AUTHORITY; 8231 if (arp_flags & ATF_PERM) 8232 flags |= NCE_F_NONUD; /* not subject to aging */ 8233 if (arp_flags & ATF_PUBL) 8234 flags |= NCE_F_PUBLISH; 8235 8236 /* 8237 * IPMP ARP special handling: 8238 * 8239 * 1. Since ARP mappings must appear consistent across the group, 8240 * prohibit changing ARP mappings on the underlying interfaces. 8241 * 8242 * 2. Since ARP mappings for IPMP data addresses are maintained by 8243 * IP itself, prohibit changing them. 8244 * 8245 * 3. For proxy ARP, use a functioning hardware address in the group, 8246 * provided one exists. If one doesn't, just add the entry as-is; 8247 * ipmp_illgrp_refresh_arpent() will refresh it if things change. 8248 */ 8249 if (IS_UNDER_IPMP(ill)) { 8250 if (ipip->ipi_cmd != SIOCGARP && ipip->ipi_cmd != SIOCGXARP) 8251 return (EPERM); 8252 } 8253 if (IS_IPMP(ill)) { 8254 ipmp_illgrp_t *illg = ill->ill_grp; 8255 8256 switch (ipip->ipi_cmd) { 8257 case SIOCSARP: 8258 case SIOCSXARP: 8259 proxy_ill = ipmp_illgrp_find_ill(illg, lladdr, alength); 8260 if (proxy_ill != NULL) { 8261 proxyarp = B_TRUE; 8262 if (!ipmp_ill_is_active(proxy_ill)) 8263 proxy_ill = ipmp_illgrp_next_ill(illg); 8264 if (proxy_ill != NULL) 8265 lladdr = proxy_ill->ill_phys_addr; 8266 } 8267 /* FALLTHRU */ 8268 } 8269 } 8270 8271 ipaddr = sin->sin_addr.s_addr; 8272 /* 8273 * don't match across illgrp per case (1) and (2). 8274 * XXX use IS_IPMP(ill) like ndp_sioc_update? 8275 */ 8276 nce = nce_lookup_v4(ill, &ipaddr); 8277 if (nce != NULL) 8278 ncec = nce->nce_common; 8279 8280 switch (iocp->ioc_cmd) { 8281 case SIOCDARP: 8282 case SIOCDXARP: { 8283 /* 8284 * Delete the NCE if any. 8285 */ 8286 if (ncec == NULL) { 8287 iocp->ioc_error = ENXIO; 8288 break; 8289 } 8290 /* Don't allow changes to arp mappings of local addresses. */ 8291 if (NCE_MYADDR(ncec)) { 8292 nce_refrele(nce); 8293 return (ENOTSUP); 8294 } 8295 iocp->ioc_error = 0; 8296 8297 /* 8298 * Delete the nce_common which has ncec_ill set to ipmp_ill. 8299 * This will delete all the nce entries on the under_ills. 8300 */ 8301 ncec_delete(ncec); 8302 /* 8303 * Once the NCE has been deleted, then the ire_dep* consistency 8304 * mechanism will find any IRE which depended on the now 8305 * condemned NCE (as part of sending packets). 8306 * That mechanism handles redirects by deleting redirects 8307 * that refer to UNREACHABLE nces. 8308 */ 8309 break; 8310 } 8311 case SIOCGARP: 8312 case SIOCGXARP: 8313 if (ncec != NULL) { 8314 lladdr = ncec->ncec_lladdr; 8315 flags = ncec->ncec_flags; 8316 iocp->ioc_error = 0; 8317 ip_sioctl_garp_reply(mp, ncec->ncec_ill, lladdr, flags); 8318 } else { 8319 iocp->ioc_error = ENXIO; 8320 } 8321 break; 8322 case SIOCSARP: 8323 case SIOCSXARP: 8324 /* Don't allow changes to arp mappings of local addresses. */ 8325 if (ncec != NULL && NCE_MYADDR(ncec)) { 8326 nce_refrele(nce); 8327 return (ENOTSUP); 8328 } 8329 8330 /* static arp entries will undergo NUD if ATF_PERM is not set */ 8331 flags |= NCE_F_STATIC; 8332 if (!if_arp_ioctl) { 8333 ip_nce_lookup_and_update(&ipaddr, NULL, ipst, 8334 lladdr, alength, flags); 8335 } else { 8336 ipif_t *ipif = ipif_get_next_ipif(NULL, ill); 8337 if (ipif != NULL) { 8338 ip_nce_lookup_and_update(&ipaddr, ipif, ipst, 8339 lladdr, alength, flags); 8340 ipif_refrele(ipif); 8341 } 8342 } 8343 if (nce != NULL) { 8344 nce_refrele(nce); 8345 nce = NULL; 8346 } 8347 /* 8348 * NCE_F_STATIC entries will be added in state ND_REACHABLE 8349 * by nce_add_common() 8350 */ 8351 err = nce_lookup_then_add_v4(ill, lladdr, 8352 ill->ill_phys_addr_length, &ipaddr, flags, ND_UNCHANGED, 8353 &nce); 8354 if (err == EEXIST) { 8355 ncec = nce->nce_common; 8356 mutex_enter(&ncec->ncec_lock); 8357 ncec->ncec_state = ND_REACHABLE; 8358 ncec->ncec_flags = flags; 8359 nce_update(ncec, ND_UNCHANGED, lladdr); 8360 mutex_exit(&ncec->ncec_lock); 8361 err = 0; 8362 } 8363 if (nce != NULL) { 8364 nce_refrele(nce); 8365 nce = NULL; 8366 } 8367 if (IS_IPMP(ill) && err == 0) { 8368 entp = ipmp_illgrp_create_arpent(ill->ill_grp, 8369 proxyarp, ipaddr, lladdr, ill->ill_phys_addr_length, 8370 flags); 8371 if (entp == NULL || (proxyarp && proxy_ill == NULL)) { 8372 iocp->ioc_error = (entp == NULL ? ENOMEM : 0); 8373 break; 8374 } 8375 } 8376 iocp->ioc_error = err; 8377 } 8378 8379 if (nce != NULL) { 8380 nce_refrele(nce); 8381 } 8382 8383 /* 8384 * If we created an IPMP ARP entry, mark that we've notified ARP. 8385 */ 8386 if (entp != NULL) 8387 ipmp_illgrp_mark_arpent(ill->ill_grp, entp); 8388 8389 return (iocp->ioc_error); 8390 } 8391 8392 /* 8393 * Parse an [x]arpreq structure coming down SIOC[GSD][X]ARP ioctls, identify 8394 * the associated sin and refhold and return the associated ipif via `ci'. 8395 */ 8396 int 8397 ip_extract_arpreq(queue_t *q, mblk_t *mp, const ip_ioctl_cmd_t *ipip, 8398 cmd_info_t *ci) 8399 { 8400 mblk_t *mp1; 8401 sin_t *sin; 8402 conn_t *connp; 8403 ipif_t *ipif; 8404 ire_t *ire = NULL; 8405 ill_t *ill = NULL; 8406 boolean_t exists; 8407 ip_stack_t *ipst; 8408 struct arpreq *ar; 8409 struct xarpreq *xar; 8410 struct sockaddr_dl *sdl; 8411 8412 /* ioctl comes down on a conn */ 8413 ASSERT(!(q->q_flag & QREADR) && q->q_next == NULL); 8414 connp = Q_TO_CONN(q); 8415 if (connp->conn_family == AF_INET6) 8416 return (ENXIO); 8417 8418 ipst = connp->conn_netstack->netstack_ip; 8419 8420 /* Verified in ip_wput_nondata */ 8421 mp1 = mp->b_cont->b_cont; 8422 8423 if (ipip->ipi_cmd_type == XARP_CMD) { 8424 ASSERT(MBLKL(mp1) >= sizeof (struct xarpreq)); 8425 xar = (struct xarpreq *)mp1->b_rptr; 8426 sin = (sin_t *)&xar->xarp_pa; 8427 sdl = &xar->xarp_ha; 8428 8429 if (sdl->sdl_family != AF_LINK || sin->sin_family != AF_INET) 8430 return (ENXIO); 8431 if (sdl->sdl_nlen >= LIFNAMSIZ) 8432 return (EINVAL); 8433 } else { 8434 ASSERT(ipip->ipi_cmd_type == ARP_CMD); 8435 ASSERT(MBLKL(mp1) >= sizeof (struct arpreq)); 8436 ar = (struct arpreq *)mp1->b_rptr; 8437 sin = (sin_t *)&ar->arp_pa; 8438 } 8439 8440 if (ipip->ipi_cmd_type == XARP_CMD && sdl->sdl_nlen != 0) { 8441 ipif = ipif_lookup_on_name(sdl->sdl_data, sdl->sdl_nlen, 8442 B_FALSE, &exists, B_FALSE, ALL_ZONES, ipst); 8443 if (ipif == NULL) 8444 return (ENXIO); 8445 if (ipif->ipif_id != 0) { 8446 ipif_refrele(ipif); 8447 return (ENXIO); 8448 } 8449 } else { 8450 /* 8451 * Either an SIOC[DGS]ARP or an SIOC[DGS]XARP with an sdl_nlen 8452 * of 0: use the IP address to find the ipif. If the IP 8453 * address is an IPMP test address, ire_ftable_lookup() will 8454 * find the wrong ill, so we first do an ipif_lookup_addr(). 8455 */ 8456 ipif = ipif_lookup_addr(sin->sin_addr.s_addr, NULL, ALL_ZONES, 8457 ipst); 8458 if (ipif == NULL) { 8459 ire = ire_ftable_lookup_v4(sin->sin_addr.s_addr, 8460 0, 0, IRE_IF_RESOLVER, NULL, ALL_ZONES, 8461 NULL, MATCH_IRE_TYPE, 0, ipst, NULL); 8462 if (ire == NULL || ((ill = ire->ire_ill) == NULL)) { 8463 if (ire != NULL) 8464 ire_refrele(ire); 8465 return (ENXIO); 8466 } 8467 ASSERT(ire != NULL && ill != NULL); 8468 ipif = ill->ill_ipif; 8469 ipif_refhold(ipif); 8470 ire_refrele(ire); 8471 } 8472 } 8473 8474 if (ipif->ipif_ill->ill_net_type != IRE_IF_RESOLVER) { 8475 ipif_refrele(ipif); 8476 return (ENXIO); 8477 } 8478 8479 ci->ci_sin = sin; 8480 ci->ci_ipif = ipif; 8481 return (0); 8482 } 8483 8484 /* 8485 * Link or unlink the illgrp on IPMP meta-interface `ill' depending on the 8486 * value of `ioccmd'. While an illgrp is linked to an ipmp_grp_t, it is 8487 * accessible from that ipmp_grp_t, which means SIOCSLIFGROUPNAME can look it 8488 * up and thus an ill can join that illgrp. 8489 * 8490 * We use I_PLINK/I_PUNLINK to do the link/unlink operations rather than 8491 * open()/close() primarily because close() is not allowed to fail or block 8492 * forever. On the other hand, I_PUNLINK *can* fail, and there's no reason 8493 * why anyone should ever need to I_PUNLINK an in-use IPMP stream. To ensure 8494 * symmetric behavior (e.g., doing an I_PLINK after and I_PUNLINK undoes the 8495 * I_PUNLINK) we defer linking to I_PLINK. Separately, we also fail attempts 8496 * to I_LINK since I_UNLINK is optional and we'd end up in an inconsistent 8497 * state if I_UNLINK didn't occur. 8498 * 8499 * Note that for each plumb/unplumb operation, we may end up here more than 8500 * once because of the way ifconfig works. However, it's OK to link the same 8501 * illgrp more than once, or unlink an illgrp that's already unlinked. 8502 */ 8503 static int 8504 ip_sioctl_plink_ipmp(ill_t *ill, int ioccmd) 8505 { 8506 int err; 8507 ip_stack_t *ipst = ill->ill_ipst; 8508 8509 ASSERT(IS_IPMP(ill)); 8510 ASSERT(IAM_WRITER_ILL(ill)); 8511 8512 switch (ioccmd) { 8513 case I_LINK: 8514 return (ENOTSUP); 8515 8516 case I_PLINK: 8517 rw_enter(&ipst->ips_ipmp_lock, RW_WRITER); 8518 ipmp_illgrp_link_grp(ill->ill_grp, ill->ill_phyint->phyint_grp); 8519 rw_exit(&ipst->ips_ipmp_lock); 8520 break; 8521 8522 case I_PUNLINK: 8523 /* 8524 * Require all UP ipifs be brought down prior to unlinking the 8525 * illgrp so any associated IREs (and other state) is torched. 8526 */ 8527 if (ill->ill_ipif_up_count + ill->ill_ipif_dup_count > 0) 8528 return (EBUSY); 8529 8530 /* 8531 * NOTE: We hold ipmp_lock across the unlink to prevent a race 8532 * with an SIOCSLIFGROUPNAME request from an ill trying to 8533 * join this group. Specifically: ills trying to join grab 8534 * ipmp_lock and bump a "pending join" counter checked by 8535 * ipmp_illgrp_unlink_grp(). During the unlink no new pending 8536 * joins can occur (since we have ipmp_lock). Once we drop 8537 * ipmp_lock, subsequent SIOCSLIFGROUPNAME requests will not 8538 * find the illgrp (since we unlinked it) and will return 8539 * EAFNOSUPPORT. This will then take them back through the 8540 * IPMP meta-interface plumbing logic in ifconfig, and thus 8541 * back through I_PLINK above. 8542 */ 8543 rw_enter(&ipst->ips_ipmp_lock, RW_WRITER); 8544 err = ipmp_illgrp_unlink_grp(ill->ill_grp); 8545 rw_exit(&ipst->ips_ipmp_lock); 8546 return (err); 8547 default: 8548 break; 8549 } 8550 return (0); 8551 } 8552 8553 /* 8554 * Do I_PLINK/I_LINK or I_PUNLINK/I_UNLINK with consistency checks and also 8555 * atomically set/clear the muxids. Also complete the ioctl by acking or 8556 * naking it. Note that the code is structured such that the link type, 8557 * whether it's persistent or not, is treated equally. ifconfig(1M) and 8558 * its clones use the persistent link, while pppd(1M) and perhaps many 8559 * other daemons may use non-persistent link. When combined with some 8560 * ill_t states, linking and unlinking lower streams may be used as 8561 * indicators of dynamic re-plumbing events [see PSARC/1999/348]. 8562 */ 8563 /* ARGSUSED */ 8564 void 8565 ip_sioctl_plink(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 8566 { 8567 mblk_t *mp1; 8568 struct linkblk *li; 8569 int ioccmd = ((struct iocblk *)mp->b_rptr)->ioc_cmd; 8570 int err = 0; 8571 8572 ASSERT(ioccmd == I_PLINK || ioccmd == I_PUNLINK || 8573 ioccmd == I_LINK || ioccmd == I_UNLINK); 8574 8575 mp1 = mp->b_cont; /* This is the linkblk info */ 8576 li = (struct linkblk *)mp1->b_rptr; 8577 8578 err = ip_sioctl_plink_ipmod(ipsq, q, mp, ioccmd, li); 8579 if (err == EINPROGRESS) 8580 return; 8581 done: 8582 if (err == 0) 8583 miocack(q, mp, 0, 0); 8584 else 8585 miocnak(q, mp, 0, err); 8586 8587 /* Conn was refheld in ip_sioctl_copyin_setup */ 8588 if (CONN_Q(q)) 8589 CONN_OPER_PENDING_DONE(Q_TO_CONN(q)); 8590 } 8591 8592 /* 8593 * Process I_{P}LINK and I_{P}UNLINK requests named by `ioccmd' and pointed to 8594 * by `mp' and `li' for the IP module stream (if li->q_bot is in fact an IP 8595 * module stream). If `doconsist' is set, then do the extended consistency 8596 * checks requested by ifconfig(1M) and (atomically) set ill_muxid here. 8597 * Returns zero on success, EINPROGRESS if the operation is still pending, or 8598 * an error code on failure. 8599 */ 8600 static int 8601 ip_sioctl_plink_ipmod(ipsq_t *ipsq, queue_t *q, mblk_t *mp, int ioccmd, 8602 struct linkblk *li) 8603 { 8604 int err = 0; 8605 ill_t *ill; 8606 queue_t *ipwq, *dwq; 8607 const char *name; 8608 struct qinit *qinfo; 8609 boolean_t islink = (ioccmd == I_PLINK || ioccmd == I_LINK); 8610 boolean_t entered_ipsq = B_FALSE; 8611 boolean_t is_ip = B_FALSE; 8612 arl_t *arl; 8613 8614 /* 8615 * Walk the lower stream to verify it's the IP module stream. 8616 * The IP module is identified by its name, wput function, 8617 * and non-NULL q_next. STREAMS ensures that the lower stream 8618 * (li->l_qbot) will not vanish until this ioctl completes. 8619 */ 8620 for (ipwq = li->l_qbot; ipwq != NULL; ipwq = ipwq->q_next) { 8621 qinfo = ipwq->q_qinfo; 8622 name = qinfo->qi_minfo->mi_idname; 8623 if (name != NULL && strcmp(name, ip_mod_info.mi_idname) == 0 && 8624 qinfo->qi_putp != (pfi_t)ip_lwput && ipwq->q_next != NULL) { 8625 is_ip = B_TRUE; 8626 break; 8627 } 8628 if (name != NULL && strcmp(name, arp_mod_info.mi_idname) == 0 && 8629 qinfo->qi_putp != (pfi_t)ip_lwput && ipwq->q_next != NULL) { 8630 break; 8631 } 8632 } 8633 8634 /* 8635 * If this isn't an IP module stream, bail. 8636 */ 8637 if (ipwq == NULL) 8638 return (0); 8639 8640 if (!is_ip) { 8641 arl = (arl_t *)ipwq->q_ptr; 8642 ill = arl_to_ill(arl); 8643 if (ill == NULL) 8644 return (0); 8645 } else { 8646 ill = ipwq->q_ptr; 8647 } 8648 ASSERT(ill != NULL); 8649 8650 if (ipsq == NULL) { 8651 ipsq = ipsq_try_enter(NULL, ill, q, mp, ip_sioctl_plink, 8652 NEW_OP, B_FALSE); 8653 if (ipsq == NULL) { 8654 if (!is_ip) 8655 ill_refrele(ill); 8656 return (EINPROGRESS); 8657 } 8658 entered_ipsq = B_TRUE; 8659 } 8660 ASSERT(IAM_WRITER_ILL(ill)); 8661 mutex_enter(&ill->ill_lock); 8662 if (!is_ip) { 8663 if (islink && ill->ill_muxid == 0) { 8664 /* 8665 * Plumbing has to be done with IP plumbed first, arp 8666 * second, but here we have arp being plumbed first. 8667 */ 8668 mutex_exit(&ill->ill_lock); 8669 ipsq_exit(ipsq); 8670 ill_refrele(ill); 8671 return (EINVAL); 8672 } 8673 } 8674 mutex_exit(&ill->ill_lock); 8675 if (!is_ip) { 8676 arl->arl_muxid = islink ? li->l_index : 0; 8677 ill_refrele(ill); 8678 goto done; 8679 } 8680 8681 if (IS_IPMP(ill) && (err = ip_sioctl_plink_ipmp(ill, ioccmd)) != 0) 8682 goto done; 8683 8684 /* 8685 * As part of I_{P}LINKing, stash the number of downstream modules and 8686 * the read queue of the module immediately below IP in the ill. 8687 * These are used during the capability negotiation below. 8688 */ 8689 ill->ill_lmod_rq = NULL; 8690 ill->ill_lmod_cnt = 0; 8691 if (islink && ((dwq = ipwq->q_next) != NULL)) { 8692 ill->ill_lmod_rq = RD(dwq); 8693 for (; dwq != NULL; dwq = dwq->q_next) 8694 ill->ill_lmod_cnt++; 8695 } 8696 8697 ill->ill_muxid = islink ? li->l_index : 0; 8698 8699 /* 8700 * Mark the ipsq busy until the capability operations initiated below 8701 * complete. The PLINK/UNLINK ioctl itself completes when our caller 8702 * returns, but the capability operation may complete asynchronously 8703 * much later. 8704 */ 8705 ipsq_current_start(ipsq, ill->ill_ipif, ioccmd); 8706 /* 8707 * If there's at least one up ipif on this ill, then we're bound to 8708 * the underlying driver via DLPI. In that case, renegotiate 8709 * capabilities to account for any possible change in modules 8710 * interposed between IP and the driver. 8711 */ 8712 if (ill->ill_ipif_up_count > 0) { 8713 if (islink) 8714 ill_capability_probe(ill); 8715 else 8716 ill_capability_reset(ill, B_FALSE); 8717 } 8718 ipsq_current_finish(ipsq); 8719 done: 8720 if (entered_ipsq) 8721 ipsq_exit(ipsq); 8722 8723 return (err); 8724 } 8725 8726 /* 8727 * Search the ioctl command in the ioctl tables and return a pointer 8728 * to the ioctl command information. The ioctl command tables are 8729 * static and fully populated at compile time. 8730 */ 8731 ip_ioctl_cmd_t * 8732 ip_sioctl_lookup(int ioc_cmd) 8733 { 8734 int index; 8735 ip_ioctl_cmd_t *ipip; 8736 ip_ioctl_cmd_t *ipip_end; 8737 8738 if (ioc_cmd == IPI_DONTCARE) 8739 return (NULL); 8740 8741 /* 8742 * Do a 2 step search. First search the indexed table 8743 * based on the least significant byte of the ioctl cmd. 8744 * If we don't find a match, then search the misc table 8745 * serially. 8746 */ 8747 index = ioc_cmd & 0xFF; 8748 if (index < ip_ndx_ioctl_count) { 8749 ipip = &ip_ndx_ioctl_table[index]; 8750 if (ipip->ipi_cmd == ioc_cmd) { 8751 /* Found a match in the ndx table */ 8752 return (ipip); 8753 } 8754 } 8755 8756 /* Search the misc table */ 8757 ipip_end = &ip_misc_ioctl_table[ip_misc_ioctl_count]; 8758 for (ipip = ip_misc_ioctl_table; ipip < ipip_end; ipip++) { 8759 if (ipip->ipi_cmd == ioc_cmd) 8760 /* Found a match in the misc table */ 8761 return (ipip); 8762 } 8763 8764 return (NULL); 8765 } 8766 8767 /* 8768 * Wrapper function for resuming deferred ioctl processing 8769 * Used for SIOCGDSTINFO, SIOCGIP6ADDRPOLICY, SIOCGMSFILTER, 8770 * SIOCSMSFILTER, SIOCGIPMSFILTER, and SIOCSIPMSFILTER currently. 8771 */ 8772 /* ARGSUSED */ 8773 void 8774 ip_sioctl_copyin_resume(ipsq_t *dummy_ipsq, queue_t *q, mblk_t *mp, 8775 void *dummy_arg) 8776 { 8777 ip_sioctl_copyin_setup(q, mp); 8778 } 8779 8780 /* 8781 * ip_sioctl_copyin_setup is called by ip_wput_nondata with any M_IOCTL message 8782 * that arrives. Most of the IOCTLs are "socket" IOCTLs which we handle 8783 * in either I_STR or TRANSPARENT form, using the mi_copy facility. 8784 * We establish here the size of the block to be copied in. mi_copyin 8785 * arranges for this to happen, an processing continues in ip_wput_nondata with 8786 * an M_IOCDATA message. 8787 */ 8788 void 8789 ip_sioctl_copyin_setup(queue_t *q, mblk_t *mp) 8790 { 8791 int copyin_size; 8792 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 8793 ip_ioctl_cmd_t *ipip; 8794 cred_t *cr; 8795 ip_stack_t *ipst; 8796 8797 if (CONN_Q(q)) 8798 ipst = CONNQ_TO_IPST(q); 8799 else 8800 ipst = ILLQ_TO_IPST(q); 8801 8802 ipip = ip_sioctl_lookup(iocp->ioc_cmd); 8803 if (ipip == NULL) { 8804 /* 8805 * The ioctl is not one we understand or own. 8806 * Pass it along to be processed down stream, 8807 * if this is a module instance of IP, else nak 8808 * the ioctl. 8809 */ 8810 if (q->q_next == NULL) { 8811 goto nak; 8812 } else { 8813 putnext(q, mp); 8814 return; 8815 } 8816 } 8817 8818 /* 8819 * If this is deferred, then we will do all the checks when we 8820 * come back. 8821 */ 8822 if ((iocp->ioc_cmd == SIOCGDSTINFO || 8823 iocp->ioc_cmd == SIOCGIP6ADDRPOLICY) && !ip6_asp_can_lookup(ipst)) { 8824 ip6_asp_pending_op(q, mp, ip_sioctl_copyin_resume); 8825 return; 8826 } 8827 8828 /* 8829 * Only allow a very small subset of IP ioctls on this stream if 8830 * IP is a module and not a driver. Allowing ioctls to be processed 8831 * in this case may cause assert failures or data corruption. 8832 * Typically G[L]IFFLAGS, SLIFNAME/IF_UNITSEL are the only few 8833 * ioctls allowed on an IP module stream, after which this stream 8834 * normally becomes a multiplexor (at which time the stream head 8835 * will fail all ioctls). 8836 */ 8837 if ((q->q_next != NULL) && !(ipip->ipi_flags & IPI_MODOK)) { 8838 goto nak; 8839 } 8840 8841 /* Make sure we have ioctl data to process. */ 8842 if (mp->b_cont == NULL && !(ipip->ipi_flags & IPI_NULL_BCONT)) 8843 goto nak; 8844 8845 /* 8846 * Prefer dblk credential over ioctl credential; some synthesized 8847 * ioctls have kcred set because there's no way to crhold() 8848 * a credential in some contexts. (ioc_cr is not crfree() by 8849 * the framework; the caller of ioctl needs to hold the reference 8850 * for the duration of the call). 8851 */ 8852 cr = msg_getcred(mp, NULL); 8853 if (cr == NULL) 8854 cr = iocp->ioc_cr; 8855 8856 /* Make sure normal users don't send down privileged ioctls */ 8857 if ((ipip->ipi_flags & IPI_PRIV) && 8858 (cr != NULL) && secpolicy_ip_config(cr, B_TRUE) != 0) { 8859 /* We checked the privilege earlier but log it here */ 8860 miocnak(q, mp, 0, secpolicy_ip_config(cr, B_FALSE)); 8861 return; 8862 } 8863 8864 /* 8865 * The ioctl command tables can only encode fixed length 8866 * ioctl data. If the length is variable, the table will 8867 * encode the length as zero. Such special cases are handled 8868 * below in the switch. 8869 */ 8870 if (ipip->ipi_copyin_size != 0) { 8871 mi_copyin(q, mp, NULL, ipip->ipi_copyin_size); 8872 return; 8873 } 8874 8875 switch (iocp->ioc_cmd) { 8876 case O_SIOCGIFCONF: 8877 case SIOCGIFCONF: 8878 /* 8879 * This IOCTL is hilarious. See comments in 8880 * ip_sioctl_get_ifconf for the story. 8881 */ 8882 if (iocp->ioc_count == TRANSPARENT) 8883 copyin_size = SIZEOF_STRUCT(ifconf, 8884 iocp->ioc_flag); 8885 else 8886 copyin_size = iocp->ioc_count; 8887 mi_copyin(q, mp, NULL, copyin_size); 8888 return; 8889 8890 case O_SIOCGLIFCONF: 8891 case SIOCGLIFCONF: 8892 copyin_size = SIZEOF_STRUCT(lifconf, iocp->ioc_flag); 8893 mi_copyin(q, mp, NULL, copyin_size); 8894 return; 8895 8896 case SIOCGLIFSRCOF: 8897 copyin_size = SIZEOF_STRUCT(lifsrcof, iocp->ioc_flag); 8898 mi_copyin(q, mp, NULL, copyin_size); 8899 return; 8900 case SIOCGIP6ADDRPOLICY: 8901 ip_sioctl_ip6addrpolicy(q, mp); 8902 ip6_asp_table_refrele(ipst); 8903 return; 8904 8905 case SIOCSIP6ADDRPOLICY: 8906 ip_sioctl_ip6addrpolicy(q, mp); 8907 return; 8908 8909 case SIOCGDSTINFO: 8910 ip_sioctl_dstinfo(q, mp); 8911 ip6_asp_table_refrele(ipst); 8912 return; 8913 8914 case I_PLINK: 8915 case I_PUNLINK: 8916 case I_LINK: 8917 case I_UNLINK: 8918 /* 8919 * We treat non-persistent link similarly as the persistent 8920 * link case, in terms of plumbing/unplumbing, as well as 8921 * dynamic re-plumbing events indicator. See comments 8922 * in ip_sioctl_plink() for more. 8923 * 8924 * Request can be enqueued in the 'ipsq' while waiting 8925 * to become exclusive. So bump up the conn ref. 8926 */ 8927 if (CONN_Q(q)) 8928 CONN_INC_REF(Q_TO_CONN(q)); 8929 ip_sioctl_plink(NULL, q, mp, NULL); 8930 return; 8931 8932 case ND_GET: 8933 case ND_SET: 8934 /* 8935 * Use of the nd table requires holding the reader lock. 8936 * Modifying the nd table thru nd_load/nd_unload requires 8937 * the writer lock. 8938 */ 8939 rw_enter(&ipst->ips_ip_g_nd_lock, RW_READER); 8940 if (nd_getset(q, ipst->ips_ip_g_nd, mp)) { 8941 rw_exit(&ipst->ips_ip_g_nd_lock); 8942 8943 if (iocp->ioc_error) 8944 iocp->ioc_count = 0; 8945 mp->b_datap->db_type = M_IOCACK; 8946 qreply(q, mp); 8947 return; 8948 } 8949 rw_exit(&ipst->ips_ip_g_nd_lock); 8950 /* 8951 * We don't understand this subioctl of ND_GET / ND_SET. 8952 * Maybe intended for some driver / module below us 8953 */ 8954 if (q->q_next) { 8955 putnext(q, mp); 8956 } else { 8957 iocp->ioc_error = ENOENT; 8958 mp->b_datap->db_type = M_IOCNAK; 8959 iocp->ioc_count = 0; 8960 qreply(q, mp); 8961 } 8962 return; 8963 8964 case IP_IOCTL: 8965 ip_wput_ioctl(q, mp); 8966 return; 8967 8968 case SIOCILB: 8969 /* The ioctl length varies depending on the ILB command. */ 8970 copyin_size = iocp->ioc_count; 8971 if (copyin_size < sizeof (ilb_cmd_t)) 8972 goto nak; 8973 mi_copyin(q, mp, NULL, copyin_size); 8974 return; 8975 8976 default: 8977 cmn_err(CE_PANIC, "should not happen "); 8978 } 8979 nak: 8980 if (mp->b_cont != NULL) { 8981 freemsg(mp->b_cont); 8982 mp->b_cont = NULL; 8983 } 8984 iocp->ioc_error = EINVAL; 8985 mp->b_datap->db_type = M_IOCNAK; 8986 iocp->ioc_count = 0; 8987 qreply(q, mp); 8988 } 8989 8990 static void 8991 ip_sioctl_garp_reply(mblk_t *mp, ill_t *ill, void *hwaddr, int flags) 8992 { 8993 struct arpreq *ar; 8994 struct xarpreq *xar; 8995 mblk_t *tmp; 8996 struct iocblk *iocp; 8997 int x_arp_ioctl = B_FALSE; 8998 int *flagsp; 8999 char *storage = NULL; 9000 9001 ASSERT(ill != NULL); 9002 9003 iocp = (struct iocblk *)mp->b_rptr; 9004 ASSERT(iocp->ioc_cmd == SIOCGXARP || iocp->ioc_cmd == SIOCGARP); 9005 9006 tmp = (mp->b_cont)->b_cont; /* xarpreq/arpreq */ 9007 if ((iocp->ioc_cmd == SIOCGXARP) || 9008 (iocp->ioc_cmd == SIOCSXARP)) { 9009 x_arp_ioctl = B_TRUE; 9010 xar = (struct xarpreq *)tmp->b_rptr; 9011 flagsp = &xar->xarp_flags; 9012 storage = xar->xarp_ha.sdl_data; 9013 } else { 9014 ar = (struct arpreq *)tmp->b_rptr; 9015 flagsp = &ar->arp_flags; 9016 storage = ar->arp_ha.sa_data; 9017 } 9018 9019 /* 9020 * We're done if this is not an SIOCG{X}ARP 9021 */ 9022 if (x_arp_ioctl) { 9023 storage += ill_xarp_info(&xar->xarp_ha, ill); 9024 if ((ill->ill_phys_addr_length + ill->ill_name_length) > 9025 sizeof (xar->xarp_ha.sdl_data)) { 9026 iocp->ioc_error = EINVAL; 9027 return; 9028 } 9029 } 9030 *flagsp = ATF_INUSE; 9031 /* 9032 * If /sbin/arp told us we are the authority using the "permanent" 9033 * flag, or if this is one of my addresses print "permanent" 9034 * in the /sbin/arp output. 9035 */ 9036 if ((flags & NCE_F_MYADDR) || (flags & NCE_F_AUTHORITY)) 9037 *flagsp |= ATF_AUTHORITY; 9038 if (flags & NCE_F_NONUD) 9039 *flagsp |= ATF_PERM; /* not subject to aging */ 9040 if (flags & NCE_F_PUBLISH) 9041 *flagsp |= ATF_PUBL; 9042 if (hwaddr != NULL) { 9043 *flagsp |= ATF_COM; 9044 bcopy((char *)hwaddr, storage, ill->ill_phys_addr_length); 9045 } 9046 } 9047 9048 /* 9049 * Create a new logical interface. If ipif_id is zero (i.e. not a logical 9050 * interface) create the next available logical interface for this 9051 * physical interface. 9052 * If ipif is NULL (i.e. the lookup didn't find one) attempt to create an 9053 * ipif with the specified name. 9054 * 9055 * If the address family is not AF_UNSPEC then set the address as well. 9056 * 9057 * If ip_sioctl_addr returns EINPROGRESS then the ioctl (the copyout) 9058 * is completed when the DL_BIND_ACK arrive in ip_rput_dlpi_writer. 9059 * 9060 * Executed as a writer on the ill. 9061 * So no lock is needed to traverse the ipif chain, or examine the 9062 * phyint flags. 9063 */ 9064 /* ARGSUSED */ 9065 int 9066 ip_sioctl_addif(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 9067 ip_ioctl_cmd_t *dummy_ipip, void *dummy_ifreq) 9068 { 9069 mblk_t *mp1; 9070 struct lifreq *lifr; 9071 boolean_t isv6; 9072 boolean_t exists; 9073 char *name; 9074 char *endp; 9075 char *cp; 9076 int namelen; 9077 ipif_t *ipif; 9078 long id; 9079 ipsq_t *ipsq; 9080 ill_t *ill; 9081 sin_t *sin; 9082 int err = 0; 9083 boolean_t found_sep = B_FALSE; 9084 conn_t *connp; 9085 zoneid_t zoneid; 9086 ip_stack_t *ipst = CONNQ_TO_IPST(q); 9087 9088 ASSERT(q->q_next == NULL); 9089 ip1dbg(("ip_sioctl_addif\n")); 9090 /* Existence of mp1 has been checked in ip_wput_nondata */ 9091 mp1 = mp->b_cont->b_cont; 9092 /* 9093 * Null terminate the string to protect against buffer 9094 * overrun. String was generated by user code and may not 9095 * be trusted. 9096 */ 9097 lifr = (struct lifreq *)mp1->b_rptr; 9098 lifr->lifr_name[LIFNAMSIZ - 1] = '\0'; 9099 name = lifr->lifr_name; 9100 ASSERT(CONN_Q(q)); 9101 connp = Q_TO_CONN(q); 9102 isv6 = (connp->conn_family == AF_INET6); 9103 zoneid = connp->conn_zoneid; 9104 namelen = mi_strlen(name); 9105 if (namelen == 0) 9106 return (EINVAL); 9107 9108 exists = B_FALSE; 9109 if ((namelen + 1 == sizeof (ipif_loopback_name)) && 9110 (mi_strcmp(name, ipif_loopback_name) == 0)) { 9111 /* 9112 * Allow creating lo0 using SIOCLIFADDIF. 9113 * can't be any other writer thread. So can pass null below 9114 * for the last 4 args to ipif_lookup_name. 9115 */ 9116 ipif = ipif_lookup_on_name(lifr->lifr_name, namelen, B_TRUE, 9117 &exists, isv6, zoneid, ipst); 9118 /* Prevent any further action */ 9119 if (ipif == NULL) { 9120 return (ENOBUFS); 9121 } else if (!exists) { 9122 /* We created the ipif now and as writer */ 9123 ipif_refrele(ipif); 9124 return (0); 9125 } else { 9126 ill = ipif->ipif_ill; 9127 ill_refhold(ill); 9128 ipif_refrele(ipif); 9129 } 9130 } else { 9131 /* Look for a colon in the name. */ 9132 endp = &name[namelen]; 9133 for (cp = endp; --cp > name; ) { 9134 if (*cp == IPIF_SEPARATOR_CHAR) { 9135 found_sep = B_TRUE; 9136 /* 9137 * Reject any non-decimal aliases for plumbing 9138 * of logical interfaces. Aliases with leading 9139 * zeroes are also rejected as they introduce 9140 * ambiguity in the naming of the interfaces. 9141 * Comparing with "0" takes care of all such 9142 * cases. 9143 */ 9144 if ((strncmp("0", cp+1, 1)) == 0) 9145 return (EINVAL); 9146 9147 if (ddi_strtol(cp+1, &endp, 10, &id) != 0 || 9148 id <= 0 || *endp != '\0') { 9149 return (EINVAL); 9150 } 9151 *cp = '\0'; 9152 break; 9153 } 9154 } 9155 ill = ill_lookup_on_name(name, B_FALSE, isv6, NULL, ipst); 9156 if (found_sep) 9157 *cp = IPIF_SEPARATOR_CHAR; 9158 if (ill == NULL) 9159 return (ENXIO); 9160 } 9161 9162 ipsq = ipsq_try_enter(NULL, ill, q, mp, ip_process_ioctl, NEW_OP, 9163 B_TRUE); 9164 9165 /* 9166 * Release the refhold due to the lookup, now that we are excl 9167 * or we are just returning 9168 */ 9169 ill_refrele(ill); 9170 9171 if (ipsq == NULL) 9172 return (EINPROGRESS); 9173 9174 /* We are now exclusive on the IPSQ */ 9175 ASSERT(IAM_WRITER_ILL(ill)); 9176 9177 if (found_sep) { 9178 /* Now see if there is an IPIF with this unit number. */ 9179 for (ipif = ill->ill_ipif; ipif != NULL; 9180 ipif = ipif->ipif_next) { 9181 if (ipif->ipif_id == id) { 9182 err = EEXIST; 9183 goto done; 9184 } 9185 } 9186 } 9187 9188 /* 9189 * We use IRE_LOCAL for lo0:1 etc. for "receive only" use 9190 * of lo0. Plumbing for lo0:0 happens in ipif_lookup_on_name() 9191 * instead. 9192 */ 9193 if ((ipif = ipif_allocate(ill, found_sep ? id : -1, IRE_LOCAL, 9194 B_TRUE, B_TRUE)) == NULL) { 9195 err = ENOBUFS; 9196 goto done; 9197 } 9198 9199 /* Return created name with ioctl */ 9200 (void) sprintf(lifr->lifr_name, "%s%c%d", ill->ill_name, 9201 IPIF_SEPARATOR_CHAR, ipif->ipif_id); 9202 ip1dbg(("created %s\n", lifr->lifr_name)); 9203 9204 /* Set address */ 9205 sin = (sin_t *)&lifr->lifr_addr; 9206 if (sin->sin_family != AF_UNSPEC) { 9207 err = ip_sioctl_addr(ipif, sin, q, mp, 9208 &ip_ndx_ioctl_table[SIOCLIFADDR_NDX], lifr); 9209 } 9210 9211 done: 9212 ipsq_exit(ipsq); 9213 return (err); 9214 } 9215 9216 /* 9217 * Remove an existing logical interface. If ipif_id is zero (i.e. not a logical 9218 * interface) delete it based on the IP address (on this physical interface). 9219 * Otherwise delete it based on the ipif_id. 9220 * Also, special handling to allow a removeif of lo0. 9221 */ 9222 /* ARGSUSED */ 9223 int 9224 ip_sioctl_removeif(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 9225 ip_ioctl_cmd_t *ipip, void *dummy_if_req) 9226 { 9227 conn_t *connp; 9228 ill_t *ill = ipif->ipif_ill; 9229 boolean_t success; 9230 ip_stack_t *ipst; 9231 9232 ipst = CONNQ_TO_IPST(q); 9233 9234 ASSERT(q->q_next == NULL); 9235 ip1dbg(("ip_sioctl_remove_if(%s:%u %p)\n", 9236 ill->ill_name, ipif->ipif_id, (void *)ipif)); 9237 ASSERT(IAM_WRITER_IPIF(ipif)); 9238 9239 connp = Q_TO_CONN(q); 9240 /* 9241 * Special case for unplumbing lo0 (the loopback physical interface). 9242 * If unplumbing lo0, the incoming address structure has been 9243 * initialized to all zeros. When unplumbing lo0, all its logical 9244 * interfaces must be removed too. 9245 * 9246 * Note that this interface may be called to remove a specific 9247 * loopback logical interface (eg, lo0:1). But in that case 9248 * ipif->ipif_id != 0 so that the code path for that case is the 9249 * same as any other interface (meaning it skips the code directly 9250 * below). 9251 */ 9252 if (ipif->ipif_id == 0 && ill->ill_net_type == IRE_LOOPBACK) { 9253 if (sin->sin_family == AF_UNSPEC && 9254 (IN6_IS_ADDR_UNSPECIFIED(&((sin6_t *)sin)->sin6_addr))) { 9255 /* 9256 * Mark it condemned. No new ref. will be made to ill. 9257 */ 9258 mutex_enter(&ill->ill_lock); 9259 ill->ill_state_flags |= ILL_CONDEMNED; 9260 for (ipif = ill->ill_ipif; ipif != NULL; 9261 ipif = ipif->ipif_next) { 9262 ipif->ipif_state_flags |= IPIF_CONDEMNED; 9263 } 9264 mutex_exit(&ill->ill_lock); 9265 9266 ipif = ill->ill_ipif; 9267 /* unplumb the loopback interface */ 9268 ill_delete(ill); 9269 mutex_enter(&connp->conn_lock); 9270 mutex_enter(&ill->ill_lock); 9271 9272 /* Are any references to this ill active */ 9273 if (ill_is_freeable(ill)) { 9274 mutex_exit(&ill->ill_lock); 9275 mutex_exit(&connp->conn_lock); 9276 ill_delete_tail(ill); 9277 mi_free(ill); 9278 return (0); 9279 } 9280 success = ipsq_pending_mp_add(connp, ipif, 9281 CONNP_TO_WQ(connp), mp, ILL_FREE); 9282 mutex_exit(&connp->conn_lock); 9283 mutex_exit(&ill->ill_lock); 9284 if (success) 9285 return (EINPROGRESS); 9286 else 9287 return (EINTR); 9288 } 9289 } 9290 9291 if (ipif->ipif_id == 0) { 9292 ipsq_t *ipsq; 9293 9294 /* Find based on address */ 9295 if (ipif->ipif_isv6) { 9296 sin6_t *sin6; 9297 9298 if (sin->sin_family != AF_INET6) 9299 return (EAFNOSUPPORT); 9300 9301 sin6 = (sin6_t *)sin; 9302 /* We are a writer, so we should be able to lookup */ 9303 ipif = ipif_lookup_addr_exact_v6(&sin6->sin6_addr, ill, 9304 ipst); 9305 } else { 9306 if (sin->sin_family != AF_INET) 9307 return (EAFNOSUPPORT); 9308 9309 /* We are a writer, so we should be able to lookup */ 9310 ipif = ipif_lookup_addr_exact(sin->sin_addr.s_addr, ill, 9311 ipst); 9312 } 9313 if (ipif == NULL) { 9314 return (EADDRNOTAVAIL); 9315 } 9316 9317 /* 9318 * It is possible for a user to send an SIOCLIFREMOVEIF with 9319 * lifr_name of the physical interface but with an ip address 9320 * lifr_addr of a logical interface plumbed over it. 9321 * So update ipx_current_ipif now that ipif points to the 9322 * correct one. 9323 */ 9324 ipsq = ipif->ipif_ill->ill_phyint->phyint_ipsq; 9325 ipsq->ipsq_xop->ipx_current_ipif = ipif; 9326 9327 /* This is a writer */ 9328 ipif_refrele(ipif); 9329 } 9330 9331 /* 9332 * Can not delete instance zero since it is tied to the ill. 9333 */ 9334 if (ipif->ipif_id == 0) 9335 return (EBUSY); 9336 9337 mutex_enter(&ill->ill_lock); 9338 ipif->ipif_state_flags |= IPIF_CONDEMNED; 9339 mutex_exit(&ill->ill_lock); 9340 9341 ipif_free(ipif); 9342 9343 mutex_enter(&connp->conn_lock); 9344 mutex_enter(&ill->ill_lock); 9345 9346 /* Are any references to this ipif active */ 9347 if (ipif_is_freeable(ipif)) { 9348 mutex_exit(&ill->ill_lock); 9349 mutex_exit(&connp->conn_lock); 9350 ipif_non_duplicate(ipif); 9351 (void) ipif_down_tail(ipif); 9352 ipif_free_tail(ipif); /* frees ipif */ 9353 return (0); 9354 } 9355 success = ipsq_pending_mp_add(connp, ipif, CONNP_TO_WQ(connp), mp, 9356 IPIF_FREE); 9357 mutex_exit(&ill->ill_lock); 9358 mutex_exit(&connp->conn_lock); 9359 if (success) 9360 return (EINPROGRESS); 9361 else 9362 return (EINTR); 9363 } 9364 9365 /* 9366 * Restart the removeif ioctl. The refcnt has gone down to 0. 9367 * The ipif is already condemned. So can't find it thru lookups. 9368 */ 9369 /* ARGSUSED */ 9370 int 9371 ip_sioctl_removeif_restart(ipif_t *ipif, sin_t *dummy_sin, queue_t *q, 9372 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *dummy_if_req) 9373 { 9374 ill_t *ill = ipif->ipif_ill; 9375 9376 ASSERT(IAM_WRITER_IPIF(ipif)); 9377 ASSERT(ipif->ipif_state_flags & IPIF_CONDEMNED); 9378 9379 ip1dbg(("ip_sioctl_removeif_restart(%s:%u %p)\n", 9380 ill->ill_name, ipif->ipif_id, (void *)ipif)); 9381 9382 if (ipif->ipif_id == 0 && ill->ill_net_type == IRE_LOOPBACK) { 9383 ASSERT(ill->ill_state_flags & ILL_CONDEMNED); 9384 ill_delete_tail(ill); 9385 mi_free(ill); 9386 return (0); 9387 } 9388 9389 ipif_non_duplicate(ipif); 9390 (void) ipif_down_tail(ipif); 9391 ipif_free_tail(ipif); 9392 9393 return (0); 9394 } 9395 9396 /* 9397 * Set the local interface address. 9398 * Allow an address of all zero when the interface is down. 9399 */ 9400 /* ARGSUSED */ 9401 int 9402 ip_sioctl_addr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 9403 ip_ioctl_cmd_t *dummy_ipip, void *dummy_ifreq) 9404 { 9405 int err = 0; 9406 in6_addr_t v6addr; 9407 boolean_t need_up = B_FALSE; 9408 9409 ip1dbg(("ip_sioctl_addr(%s:%u %p)\n", 9410 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 9411 9412 ASSERT(IAM_WRITER_IPIF(ipif)); 9413 9414 if (ipif->ipif_isv6) { 9415 sin6_t *sin6; 9416 ill_t *ill; 9417 phyint_t *phyi; 9418 9419 if (sin->sin_family != AF_INET6) 9420 return (EAFNOSUPPORT); 9421 9422 sin6 = (sin6_t *)sin; 9423 v6addr = sin6->sin6_addr; 9424 ill = ipif->ipif_ill; 9425 phyi = ill->ill_phyint; 9426 9427 /* 9428 * Enforce that true multicast interfaces have a link-local 9429 * address for logical unit 0. 9430 */ 9431 if (ipif->ipif_id == 0 && 9432 (ill->ill_flags & ILLF_MULTICAST) && 9433 !(ipif->ipif_flags & (IPIF_POINTOPOINT)) && 9434 !(phyi->phyint_flags & (PHYI_LOOPBACK)) && 9435 !IN6_IS_ADDR_LINKLOCAL(&v6addr)) { 9436 return (EADDRNOTAVAIL); 9437 } 9438 9439 /* 9440 * up interfaces shouldn't have the unspecified address 9441 * unless they also have the IPIF_NOLOCAL flags set and 9442 * have a subnet assigned. 9443 */ 9444 if ((ipif->ipif_flags & IPIF_UP) && 9445 IN6_IS_ADDR_UNSPECIFIED(&v6addr) && 9446 (!(ipif->ipif_flags & IPIF_NOLOCAL) || 9447 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6subnet))) { 9448 return (EADDRNOTAVAIL); 9449 } 9450 9451 if (!ip_local_addr_ok_v6(&v6addr, &ipif->ipif_v6net_mask)) 9452 return (EADDRNOTAVAIL); 9453 } else { 9454 ipaddr_t addr; 9455 9456 if (sin->sin_family != AF_INET) 9457 return (EAFNOSUPPORT); 9458 9459 addr = sin->sin_addr.s_addr; 9460 9461 /* Allow 0 as the local address. */ 9462 if (addr != 0 && !ip_addr_ok_v4(addr, ipif->ipif_net_mask)) 9463 return (EADDRNOTAVAIL); 9464 9465 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 9466 } 9467 9468 /* 9469 * Even if there is no change we redo things just to rerun 9470 * ipif_set_default. 9471 */ 9472 if (ipif->ipif_flags & IPIF_UP) { 9473 /* 9474 * Setting a new local address, make sure 9475 * we have net and subnet bcast ire's for 9476 * the old address if we need them. 9477 */ 9478 /* 9479 * If the interface is already marked up, 9480 * we call ipif_down which will take care 9481 * of ditching any IREs that have been set 9482 * up based on the old interface address. 9483 */ 9484 err = ipif_logical_down(ipif, q, mp); 9485 if (err == EINPROGRESS) 9486 return (err); 9487 (void) ipif_down_tail(ipif); 9488 need_up = 1; 9489 } 9490 9491 err = ip_sioctl_addr_tail(ipif, sin, q, mp, need_up); 9492 return (err); 9493 } 9494 9495 int 9496 ip_sioctl_addr_tail(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 9497 boolean_t need_up) 9498 { 9499 in6_addr_t v6addr; 9500 in6_addr_t ov6addr; 9501 ipaddr_t addr; 9502 sin6_t *sin6; 9503 int sinlen; 9504 int err = 0; 9505 ill_t *ill = ipif->ipif_ill; 9506 boolean_t need_dl_down; 9507 boolean_t need_arp_down; 9508 struct iocblk *iocp; 9509 9510 iocp = (mp != NULL) ? (struct iocblk *)mp->b_rptr : NULL; 9511 9512 ip1dbg(("ip_sioctl_addr_tail(%s:%u %p)\n", 9513 ill->ill_name, ipif->ipif_id, (void *)ipif)); 9514 ASSERT(IAM_WRITER_IPIF(ipif)); 9515 9516 /* Must cancel any pending timer before taking the ill_lock */ 9517 if (ipif->ipif_recovery_id != 0) 9518 (void) untimeout(ipif->ipif_recovery_id); 9519 ipif->ipif_recovery_id = 0; 9520 9521 if (ipif->ipif_isv6) { 9522 sin6 = (sin6_t *)sin; 9523 v6addr = sin6->sin6_addr; 9524 sinlen = sizeof (struct sockaddr_in6); 9525 } else { 9526 addr = sin->sin_addr.s_addr; 9527 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 9528 sinlen = sizeof (struct sockaddr_in); 9529 } 9530 mutex_enter(&ill->ill_lock); 9531 ov6addr = ipif->ipif_v6lcl_addr; 9532 ipif->ipif_v6lcl_addr = v6addr; 9533 sctp_update_ipif_addr(ipif, ov6addr); 9534 ipif->ipif_addr_ready = 0; 9535 9536 ip_rts_newaddrmsg(RTM_CHGADDR, 0, ipif, RTSQ_DEFAULT); 9537 9538 /* 9539 * If the interface was previously marked as a duplicate, then since 9540 * we've now got a "new" address, it should no longer be considered a 9541 * duplicate -- even if the "new" address is the same as the old one. 9542 * Note that if all ipifs are down, we may have a pending ARP down 9543 * event to handle. This is because we want to recover from duplicates 9544 * and thus delay tearing down ARP until the duplicates have been 9545 * removed or disabled. 9546 */ 9547 need_dl_down = need_arp_down = B_FALSE; 9548 if (ipif->ipif_flags & IPIF_DUPLICATE) { 9549 need_arp_down = !need_up; 9550 ipif->ipif_flags &= ~IPIF_DUPLICATE; 9551 if (--ill->ill_ipif_dup_count == 0 && !need_up && 9552 ill->ill_ipif_up_count == 0 && ill->ill_dl_up) { 9553 need_dl_down = B_TRUE; 9554 } 9555 } 9556 9557 ipif_set_default(ipif); 9558 9559 /* 9560 * If we've just manually set the IPv6 link-local address (0th ipif), 9561 * tag the ill so that future updates to the interface ID don't result 9562 * in this address getting automatically reconfigured from under the 9563 * administrator. 9564 */ 9565 if (ipif->ipif_isv6 && ipif->ipif_id == 0) 9566 ill->ill_manual_linklocal = 1; 9567 9568 /* 9569 * When publishing an interface address change event, we only notify 9570 * the event listeners of the new address. It is assumed that if they 9571 * actively care about the addresses assigned that they will have 9572 * already discovered the previous address assigned (if there was one.) 9573 * 9574 * Don't attach nic event message for SIOCLIFADDIF ioctl. 9575 */ 9576 if (iocp != NULL && iocp->ioc_cmd != SIOCLIFADDIF) { 9577 ill_nic_event_dispatch(ill, MAP_IPIF_ID(ipif->ipif_id), 9578 NE_ADDRESS_CHANGE, sin, sinlen); 9579 } 9580 9581 mutex_exit(&ill->ill_lock); 9582 9583 if (need_up) { 9584 /* 9585 * Now bring the interface back up. If this 9586 * is the only IPIF for the ILL, ipif_up 9587 * will have to re-bind to the device, so 9588 * we may get back EINPROGRESS, in which 9589 * case, this IOCTL will get completed in 9590 * ip_rput_dlpi when we see the DL_BIND_ACK. 9591 */ 9592 err = ipif_up(ipif, q, mp); 9593 } else { 9594 /* Perhaps ilgs should use this ill */ 9595 update_conn_ill(NULL, ill->ill_ipst); 9596 } 9597 9598 if (need_dl_down) 9599 ill_dl_down(ill); 9600 9601 if (need_arp_down && !ill->ill_isv6) 9602 (void) ipif_arp_down(ipif); 9603 9604 /* 9605 * The default multicast interface might have changed (for 9606 * instance if the IPv6 scope of the address changed) 9607 */ 9608 ire_increment_multicast_generation(ill->ill_ipst, ill->ill_isv6); 9609 9610 return (err); 9611 } 9612 9613 /* 9614 * Restart entry point to restart the address set operation after the 9615 * refcounts have dropped to zero. 9616 */ 9617 /* ARGSUSED */ 9618 int 9619 ip_sioctl_addr_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 9620 ip_ioctl_cmd_t *ipip, void *ifreq) 9621 { 9622 ip1dbg(("ip_sioctl_addr_restart(%s:%u %p)\n", 9623 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 9624 ASSERT(IAM_WRITER_IPIF(ipif)); 9625 (void) ipif_down_tail(ipif); 9626 return (ip_sioctl_addr_tail(ipif, sin, q, mp, B_TRUE)); 9627 } 9628 9629 /* ARGSUSED */ 9630 int 9631 ip_sioctl_get_addr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 9632 ip_ioctl_cmd_t *ipip, void *if_req) 9633 { 9634 sin6_t *sin6 = (struct sockaddr_in6 *)sin; 9635 struct lifreq *lifr = (struct lifreq *)if_req; 9636 9637 ip1dbg(("ip_sioctl_get_addr(%s:%u %p)\n", 9638 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 9639 /* 9640 * The net mask and address can't change since we have a 9641 * reference to the ipif. So no lock is necessary. 9642 */ 9643 if (ipif->ipif_isv6) { 9644 *sin6 = sin6_null; 9645 sin6->sin6_family = AF_INET6; 9646 sin6->sin6_addr = ipif->ipif_v6lcl_addr; 9647 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 9648 lifr->lifr_addrlen = 9649 ip_mask_to_plen_v6(&ipif->ipif_v6net_mask); 9650 } else { 9651 *sin = sin_null; 9652 sin->sin_family = AF_INET; 9653 sin->sin_addr.s_addr = ipif->ipif_lcl_addr; 9654 if (ipip->ipi_cmd_type == LIF_CMD) { 9655 lifr->lifr_addrlen = 9656 ip_mask_to_plen(ipif->ipif_net_mask); 9657 } 9658 } 9659 return (0); 9660 } 9661 9662 /* 9663 * Set the destination address for a pt-pt interface. 9664 */ 9665 /* ARGSUSED */ 9666 int 9667 ip_sioctl_dstaddr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 9668 ip_ioctl_cmd_t *ipip, void *if_req) 9669 { 9670 int err = 0; 9671 in6_addr_t v6addr; 9672 boolean_t need_up = B_FALSE; 9673 9674 ip1dbg(("ip_sioctl_dstaddr(%s:%u %p)\n", 9675 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 9676 ASSERT(IAM_WRITER_IPIF(ipif)); 9677 9678 if (ipif->ipif_isv6) { 9679 sin6_t *sin6; 9680 9681 if (sin->sin_family != AF_INET6) 9682 return (EAFNOSUPPORT); 9683 9684 sin6 = (sin6_t *)sin; 9685 v6addr = sin6->sin6_addr; 9686 9687 if (!ip_remote_addr_ok_v6(&v6addr, &ipif->ipif_v6net_mask)) 9688 return (EADDRNOTAVAIL); 9689 } else { 9690 ipaddr_t addr; 9691 9692 if (sin->sin_family != AF_INET) 9693 return (EAFNOSUPPORT); 9694 9695 addr = sin->sin_addr.s_addr; 9696 if (!ip_addr_ok_v4(addr, ipif->ipif_net_mask)) 9697 return (EADDRNOTAVAIL); 9698 9699 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 9700 } 9701 9702 if (IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6pp_dst_addr, &v6addr)) 9703 return (0); /* No change */ 9704 9705 if (ipif->ipif_flags & IPIF_UP) { 9706 /* 9707 * If the interface is already marked up, 9708 * we call ipif_down which will take care 9709 * of ditching any IREs that have been set 9710 * up based on the old pp dst address. 9711 */ 9712 err = ipif_logical_down(ipif, q, mp); 9713 if (err == EINPROGRESS) 9714 return (err); 9715 (void) ipif_down_tail(ipif); 9716 need_up = B_TRUE; 9717 } 9718 /* 9719 * could return EINPROGRESS. If so ioctl will complete in 9720 * ip_rput_dlpi_writer 9721 */ 9722 err = ip_sioctl_dstaddr_tail(ipif, sin, q, mp, need_up); 9723 return (err); 9724 } 9725 9726 static int 9727 ip_sioctl_dstaddr_tail(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 9728 boolean_t need_up) 9729 { 9730 in6_addr_t v6addr; 9731 ill_t *ill = ipif->ipif_ill; 9732 int err = 0; 9733 boolean_t need_dl_down; 9734 boolean_t need_arp_down; 9735 9736 ip1dbg(("ip_sioctl_dstaddr_tail(%s:%u %p)\n", ill->ill_name, 9737 ipif->ipif_id, (void *)ipif)); 9738 9739 /* Must cancel any pending timer before taking the ill_lock */ 9740 if (ipif->ipif_recovery_id != 0) 9741 (void) untimeout(ipif->ipif_recovery_id); 9742 ipif->ipif_recovery_id = 0; 9743 9744 if (ipif->ipif_isv6) { 9745 sin6_t *sin6; 9746 9747 sin6 = (sin6_t *)sin; 9748 v6addr = sin6->sin6_addr; 9749 } else { 9750 ipaddr_t addr; 9751 9752 addr = sin->sin_addr.s_addr; 9753 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 9754 } 9755 mutex_enter(&ill->ill_lock); 9756 /* Set point to point destination address. */ 9757 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) { 9758 /* 9759 * Allow this as a means of creating logical 9760 * pt-pt interfaces on top of e.g. an Ethernet. 9761 * XXX Undocumented HACK for testing. 9762 * pt-pt interfaces are created with NUD disabled. 9763 */ 9764 ipif->ipif_flags |= IPIF_POINTOPOINT; 9765 ipif->ipif_flags &= ~IPIF_BROADCAST; 9766 if (ipif->ipif_isv6) 9767 ill->ill_flags |= ILLF_NONUD; 9768 } 9769 9770 /* 9771 * If the interface was previously marked as a duplicate, then since 9772 * we've now got a "new" address, it should no longer be considered a 9773 * duplicate -- even if the "new" address is the same as the old one. 9774 * Note that if all ipifs are down, we may have a pending ARP down 9775 * event to handle. 9776 */ 9777 need_dl_down = need_arp_down = B_FALSE; 9778 if (ipif->ipif_flags & IPIF_DUPLICATE) { 9779 need_arp_down = !need_up; 9780 ipif->ipif_flags &= ~IPIF_DUPLICATE; 9781 if (--ill->ill_ipif_dup_count == 0 && !need_up && 9782 ill->ill_ipif_up_count == 0 && ill->ill_dl_up) { 9783 need_dl_down = B_TRUE; 9784 } 9785 } 9786 9787 /* Set the new address. */ 9788 ipif->ipif_v6pp_dst_addr = v6addr; 9789 /* Make sure subnet tracks pp_dst */ 9790 ipif->ipif_v6subnet = ipif->ipif_v6pp_dst_addr; 9791 mutex_exit(&ill->ill_lock); 9792 9793 if (need_up) { 9794 /* 9795 * Now bring the interface back up. If this 9796 * is the only IPIF for the ILL, ipif_up 9797 * will have to re-bind to the device, so 9798 * we may get back EINPROGRESS, in which 9799 * case, this IOCTL will get completed in 9800 * ip_rput_dlpi when we see the DL_BIND_ACK. 9801 */ 9802 err = ipif_up(ipif, q, mp); 9803 } 9804 9805 if (need_dl_down) 9806 ill_dl_down(ill); 9807 if (need_arp_down && !ipif->ipif_isv6) 9808 (void) ipif_arp_down(ipif); 9809 9810 return (err); 9811 } 9812 9813 /* 9814 * Restart entry point to restart the dstaddress set operation after the 9815 * refcounts have dropped to zero. 9816 */ 9817 /* ARGSUSED */ 9818 int 9819 ip_sioctl_dstaddr_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 9820 ip_ioctl_cmd_t *ipip, void *ifreq) 9821 { 9822 ip1dbg(("ip_sioctl_dstaddr_restart(%s:%u %p)\n", 9823 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 9824 (void) ipif_down_tail(ipif); 9825 return (ip_sioctl_dstaddr_tail(ipif, sin, q, mp, B_TRUE)); 9826 } 9827 9828 /* ARGSUSED */ 9829 int 9830 ip_sioctl_get_dstaddr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 9831 ip_ioctl_cmd_t *ipip, void *if_req) 9832 { 9833 sin6_t *sin6 = (struct sockaddr_in6 *)sin; 9834 9835 ip1dbg(("ip_sioctl_get_dstaddr(%s:%u %p)\n", 9836 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 9837 /* 9838 * Get point to point destination address. The addresses can't 9839 * change since we hold a reference to the ipif. 9840 */ 9841 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) 9842 return (EADDRNOTAVAIL); 9843 9844 if (ipif->ipif_isv6) { 9845 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 9846 *sin6 = sin6_null; 9847 sin6->sin6_family = AF_INET6; 9848 sin6->sin6_addr = ipif->ipif_v6pp_dst_addr; 9849 } else { 9850 *sin = sin_null; 9851 sin->sin_family = AF_INET; 9852 sin->sin_addr.s_addr = ipif->ipif_pp_dst_addr; 9853 } 9854 return (0); 9855 } 9856 9857 /* 9858 * Check which flags will change by the given flags being set 9859 * silently ignore flags which userland is not allowed to control. 9860 * (Because these flags may change between SIOCGLIFFLAGS and 9861 * SIOCSLIFFLAGS, and that's outside of userland's control, 9862 * we need to silently ignore them rather than fail.) 9863 */ 9864 static void 9865 ip_sioctl_flags_onoff(ipif_t *ipif, uint64_t flags, uint64_t *onp, 9866 uint64_t *offp) 9867 { 9868 ill_t *ill = ipif->ipif_ill; 9869 phyint_t *phyi = ill->ill_phyint; 9870 uint64_t cantchange_flags, intf_flags; 9871 uint64_t turn_on, turn_off; 9872 9873 intf_flags = ipif->ipif_flags | ill->ill_flags | phyi->phyint_flags; 9874 cantchange_flags = IFF_CANTCHANGE; 9875 if (IS_IPMP(ill)) 9876 cantchange_flags |= IFF_IPMP_CANTCHANGE; 9877 turn_on = (flags ^ intf_flags) & ~cantchange_flags; 9878 turn_off = intf_flags & turn_on; 9879 turn_on ^= turn_off; 9880 *onp = turn_on; 9881 *offp = turn_off; 9882 } 9883 9884 /* 9885 * Set interface flags. Many flags require special handling (e.g., 9886 * bringing the interface down); see below for details. 9887 * 9888 * NOTE : We really don't enforce that ipif_id zero should be used 9889 * for setting any flags other than IFF_LOGINT_FLAGS. This 9890 * is because applications generally does SICGLIFFLAGS and 9891 * ORs in the new flags (that affects the logical) and does a 9892 * SIOCSLIFFLAGS. Thus, "flags" below could contain bits other 9893 * than IFF_LOGINT_FLAGS. One could check whether "turn_on" - the 9894 * flags that will be turned on is correct with respect to 9895 * ipif_id 0. For backward compatibility reasons, it is not done. 9896 */ 9897 /* ARGSUSED */ 9898 int 9899 ip_sioctl_flags(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 9900 ip_ioctl_cmd_t *ipip, void *if_req) 9901 { 9902 uint64_t turn_on; 9903 uint64_t turn_off; 9904 int err = 0; 9905 phyint_t *phyi; 9906 ill_t *ill; 9907 conn_t *connp; 9908 uint64_t intf_flags; 9909 boolean_t phyint_flags_modified = B_FALSE; 9910 uint64_t flags; 9911 struct ifreq *ifr; 9912 struct lifreq *lifr; 9913 boolean_t set_linklocal = B_FALSE; 9914 9915 ip1dbg(("ip_sioctl_flags(%s:%u %p)\n", 9916 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 9917 9918 ASSERT(IAM_WRITER_IPIF(ipif)); 9919 9920 ill = ipif->ipif_ill; 9921 phyi = ill->ill_phyint; 9922 9923 if (ipip->ipi_cmd_type == IF_CMD) { 9924 ifr = (struct ifreq *)if_req; 9925 flags = (uint64_t)(ifr->ifr_flags & 0x0000ffff); 9926 } else { 9927 lifr = (struct lifreq *)if_req; 9928 flags = lifr->lifr_flags; 9929 } 9930 9931 intf_flags = ipif->ipif_flags | ill->ill_flags | phyi->phyint_flags; 9932 9933 /* 9934 * Have the flags been set correctly until now? 9935 */ 9936 ASSERT((phyi->phyint_flags & ~(IFF_PHYINT_FLAGS)) == 0); 9937 ASSERT((ill->ill_flags & ~(IFF_PHYINTINST_FLAGS)) == 0); 9938 ASSERT((ipif->ipif_flags & ~(IFF_LOGINT_FLAGS)) == 0); 9939 /* 9940 * Compare the new flags to the old, and partition 9941 * into those coming on and those going off. 9942 * For the 16 bit command keep the bits above bit 16 unchanged. 9943 */ 9944 if (ipip->ipi_cmd == SIOCSIFFLAGS) 9945 flags |= intf_flags & ~0xFFFF; 9946 9947 /* 9948 * Explicitly fail attempts to change flags that are always invalid on 9949 * an IPMP meta-interface. 9950 */ 9951 if (IS_IPMP(ill) && ((flags ^ intf_flags) & IFF_IPMP_INVALID)) 9952 return (EINVAL); 9953 9954 ip_sioctl_flags_onoff(ipif, flags, &turn_on, &turn_off); 9955 if ((turn_on|turn_off) == 0) 9956 return (0); /* No change */ 9957 9958 /* 9959 * All test addresses must be IFF_DEPRECATED (to ensure source address 9960 * selection avoids them) -- so force IFF_DEPRECATED on, and do not 9961 * allow it to be turned off. 9962 */ 9963 if ((turn_off & (IFF_DEPRECATED|IFF_NOFAILOVER)) == IFF_DEPRECATED && 9964 (turn_on|intf_flags) & IFF_NOFAILOVER) 9965 return (EINVAL); 9966 9967 if ((connp = Q_TO_CONN(q)) == NULL) 9968 return (EINVAL); 9969 9970 /* 9971 * Only vrrp control socket is allowed to change IFF_UP and 9972 * IFF_NOACCEPT flags when IFF_VRRP is set. 9973 */ 9974 if ((intf_flags & IFF_VRRP) && ((turn_off | turn_on) & IFF_UP)) { 9975 if (!connp->conn_isvrrp) 9976 return (EINVAL); 9977 } 9978 9979 /* 9980 * The IFF_NOACCEPT flag can only be set on an IFF_VRRP IP address by 9981 * VRRP control socket. 9982 */ 9983 if ((turn_off | turn_on) & IFF_NOACCEPT) { 9984 if (!connp->conn_isvrrp || !(intf_flags & IFF_VRRP)) 9985 return (EINVAL); 9986 } 9987 9988 if (turn_on & IFF_NOFAILOVER) { 9989 turn_on |= IFF_DEPRECATED; 9990 flags |= IFF_DEPRECATED; 9991 } 9992 9993 /* 9994 * On underlying interfaces, only allow applications to manage test 9995 * addresses -- otherwise, they may get confused when the address 9996 * moves as part of being brought up. Likewise, prevent an 9997 * application-managed test address from being converted to a data 9998 * address. To prevent migration of administratively up addresses in 9999 * the kernel, we don't allow them to be converted either. 10000 */ 10001 if (IS_UNDER_IPMP(ill)) { 10002 const uint64_t appflags = IFF_DHCPRUNNING | IFF_ADDRCONF; 10003 10004 if ((turn_on & appflags) && !(flags & IFF_NOFAILOVER)) 10005 return (EINVAL); 10006 10007 if ((turn_off & IFF_NOFAILOVER) && 10008 (flags & (appflags | IFF_UP | IFF_DUPLICATE))) 10009 return (EINVAL); 10010 } 10011 10012 /* 10013 * Only allow IFF_TEMPORARY flag to be set on 10014 * IPv6 interfaces. 10015 */ 10016 if ((turn_on & IFF_TEMPORARY) && !(ipif->ipif_isv6)) 10017 return (EINVAL); 10018 10019 /* 10020 * cannot turn off IFF_NOXMIT on VNI interfaces. 10021 */ 10022 if ((turn_off & IFF_NOXMIT) && IS_VNI(ipif->ipif_ill)) 10023 return (EINVAL); 10024 10025 /* 10026 * Don't allow the IFF_ROUTER flag to be turned on on loopback 10027 * interfaces. It makes no sense in that context. 10028 */ 10029 if ((turn_on & IFF_ROUTER) && (phyi->phyint_flags & PHYI_LOOPBACK)) 10030 return (EINVAL); 10031 10032 /* 10033 * For IPv6 ipif_id 0, don't allow the interface to be up without 10034 * a link local address if IFF_NOLOCAL or IFF_ANYCAST are not set. 10035 * If the link local address isn't set, and can be set, it will get 10036 * set later on in this function. 10037 */ 10038 if (ipif->ipif_id == 0 && ipif->ipif_isv6 && 10039 (flags & IFF_UP) && !(flags & (IFF_NOLOCAL|IFF_ANYCAST)) && 10040 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr)) { 10041 if (ipif_cant_setlinklocal(ipif)) 10042 return (EINVAL); 10043 set_linklocal = B_TRUE; 10044 } 10045 10046 /* 10047 * If we modify physical interface flags, we'll potentially need to 10048 * send up two routing socket messages for the changes (one for the 10049 * IPv4 ill, and another for the IPv6 ill). Note that here. 10050 */ 10051 if ((turn_on|turn_off) & IFF_PHYINT_FLAGS) 10052 phyint_flags_modified = B_TRUE; 10053 10054 /* 10055 * All functioning PHYI_STANDBY interfaces start life PHYI_INACTIVE 10056 * (otherwise, we'd immediately use them, defeating standby). Also, 10057 * since PHYI_INACTIVE has a separate meaning when PHYI_STANDBY is not 10058 * set, don't allow PHYI_STANDBY to be set if PHYI_INACTIVE is already 10059 * set, and clear PHYI_INACTIVE if PHYI_STANDBY is being cleared. We 10060 * also don't allow PHYI_STANDBY if VNI is enabled since its semantics 10061 * will not be honored. 10062 */ 10063 if (turn_on & PHYI_STANDBY) { 10064 /* 10065 * No need to grab ill_g_usesrc_lock here; see the 10066 * synchronization notes in ip.c. 10067 */ 10068 if (ill->ill_usesrc_grp_next != NULL || 10069 intf_flags & PHYI_INACTIVE) 10070 return (EINVAL); 10071 if (!(flags & PHYI_FAILED)) { 10072 flags |= PHYI_INACTIVE; 10073 turn_on |= PHYI_INACTIVE; 10074 } 10075 } 10076 10077 if (turn_off & PHYI_STANDBY) { 10078 flags &= ~PHYI_INACTIVE; 10079 turn_off |= PHYI_INACTIVE; 10080 } 10081 10082 /* 10083 * PHYI_FAILED and PHYI_INACTIVE are mutually exclusive; fail if both 10084 * would end up on. 10085 */ 10086 if ((flags & (PHYI_FAILED | PHYI_INACTIVE)) == 10087 (PHYI_FAILED | PHYI_INACTIVE)) 10088 return (EINVAL); 10089 10090 /* 10091 * If ILLF_ROUTER changes, we need to change the ip forwarding 10092 * status of the interface. 10093 */ 10094 if ((turn_on | turn_off) & ILLF_ROUTER) 10095 (void) ill_forward_set(ill, ((turn_on & ILLF_ROUTER) != 0)); 10096 10097 /* 10098 * If the interface is not UP and we are not going to 10099 * bring it UP, record the flags and return. When the 10100 * interface comes UP later, the right actions will be 10101 * taken. 10102 */ 10103 if (!(ipif->ipif_flags & IPIF_UP) && 10104 !(turn_on & IPIF_UP)) { 10105 /* Record new flags in their respective places. */ 10106 mutex_enter(&ill->ill_lock); 10107 mutex_enter(&ill->ill_phyint->phyint_lock); 10108 ipif->ipif_flags |= (turn_on & IFF_LOGINT_FLAGS); 10109 ipif->ipif_flags &= (~turn_off & IFF_LOGINT_FLAGS); 10110 ill->ill_flags |= (turn_on & IFF_PHYINTINST_FLAGS); 10111 ill->ill_flags &= (~turn_off & IFF_PHYINTINST_FLAGS); 10112 phyi->phyint_flags |= (turn_on & IFF_PHYINT_FLAGS); 10113 phyi->phyint_flags &= (~turn_off & IFF_PHYINT_FLAGS); 10114 mutex_exit(&ill->ill_lock); 10115 mutex_exit(&ill->ill_phyint->phyint_lock); 10116 10117 /* 10118 * PHYI_FAILED, PHYI_INACTIVE, and PHYI_OFFLINE are all the 10119 * same to the kernel: if any of them has been set by 10120 * userland, the interface cannot be used for data traffic. 10121 */ 10122 if ((turn_on|turn_off) & 10123 (PHYI_FAILED | PHYI_INACTIVE | PHYI_OFFLINE)) { 10124 ASSERT(!IS_IPMP(ill)); 10125 /* 10126 * It's possible the ill is part of an "anonymous" 10127 * IPMP group rather than a real group. In that case, 10128 * there are no other interfaces in the group and thus 10129 * no need to call ipmp_phyint_refresh_active(). 10130 */ 10131 if (IS_UNDER_IPMP(ill)) 10132 ipmp_phyint_refresh_active(phyi); 10133 } 10134 10135 if (phyint_flags_modified) { 10136 if (phyi->phyint_illv4 != NULL) { 10137 ip_rts_ifmsg(phyi->phyint_illv4-> 10138 ill_ipif, RTSQ_DEFAULT); 10139 } 10140 if (phyi->phyint_illv6 != NULL) { 10141 ip_rts_ifmsg(phyi->phyint_illv6-> 10142 ill_ipif, RTSQ_DEFAULT); 10143 } 10144 } 10145 /* The default multicast interface might have changed */ 10146 ire_increment_multicast_generation(ill->ill_ipst, 10147 ill->ill_isv6); 10148 10149 return (0); 10150 } else if (set_linklocal) { 10151 mutex_enter(&ill->ill_lock); 10152 if (set_linklocal) 10153 ipif->ipif_state_flags |= IPIF_SET_LINKLOCAL; 10154 mutex_exit(&ill->ill_lock); 10155 } 10156 10157 /* 10158 * Disallow IPv6 interfaces coming up that have the unspecified address, 10159 * or point-to-point interfaces with an unspecified destination. We do 10160 * allow the address to be unspecified for IPIF_NOLOCAL interfaces that 10161 * have a subnet assigned, which is how in.ndpd currently manages its 10162 * onlink prefix list when no addresses are configured with those 10163 * prefixes. 10164 */ 10165 if (ipif->ipif_isv6 && 10166 ((IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr) && 10167 (!(ipif->ipif_flags & IPIF_NOLOCAL) && !(turn_on & IPIF_NOLOCAL) || 10168 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6subnet))) || 10169 ((ipif->ipif_flags & IPIF_POINTOPOINT) && 10170 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6pp_dst_addr)))) { 10171 return (EINVAL); 10172 } 10173 10174 /* 10175 * Prevent IPv4 point-to-point interfaces with a 0.0.0.0 destination 10176 * from being brought up. 10177 */ 10178 if (!ipif->ipif_isv6 && 10179 ((ipif->ipif_flags & IPIF_POINTOPOINT) && 10180 ipif->ipif_pp_dst_addr == INADDR_ANY)) { 10181 return (EINVAL); 10182 } 10183 10184 /* 10185 * If we are going to change one or more of the flags that are 10186 * IPIF_UP, IPIF_DEPRECATED, IPIF_NOXMIT, IPIF_NOLOCAL, ILLF_NOARP, 10187 * ILLF_NONUD, IPIF_PRIVATE, IPIF_ANYCAST, IPIF_PREFERRED, and 10188 * IPIF_NOFAILOVER, we will take special action. This is 10189 * done by bring the ipif down, changing the flags and bringing 10190 * it back up again. For IPIF_NOFAILOVER, the act of bringing it 10191 * back up will trigger the address to be moved. 10192 * 10193 * If we are going to change IFF_NOACCEPT, we need to bring 10194 * all the ipifs down then bring them up again. The act of 10195 * bringing all the ipifs back up will trigger the local 10196 * ires being recreated with "no_accept" set/cleared. 10197 * 10198 * Note that ILLF_NOACCEPT is always set separately from the 10199 * other flags. 10200 */ 10201 if ((turn_on|turn_off) & 10202 (IPIF_UP|IPIF_DEPRECATED|IPIF_NOXMIT|IPIF_NOLOCAL|ILLF_NOARP| 10203 ILLF_NONUD|IPIF_PRIVATE|IPIF_ANYCAST|IPIF_PREFERRED| 10204 IPIF_NOFAILOVER)) { 10205 /* 10206 * ipif_down() will ire_delete bcast ire's for the subnet, 10207 * while the ire_identical_ref tracks the case of IRE_BROADCAST 10208 * entries shared between multiple ipifs on the same subnet. 10209 */ 10210 if (((ipif->ipif_flags | turn_on) & IPIF_UP) && 10211 !(turn_off & IPIF_UP)) { 10212 if (ipif->ipif_flags & IPIF_UP) 10213 ill->ill_logical_down = 1; 10214 turn_on &= ~IPIF_UP; 10215 } 10216 err = ipif_down(ipif, q, mp); 10217 ip1dbg(("ipif_down returns %d err ", err)); 10218 if (err == EINPROGRESS) 10219 return (err); 10220 (void) ipif_down_tail(ipif); 10221 } else if ((turn_on|turn_off) & ILLF_NOACCEPT) { 10222 /* 10223 * If we can quiesce the ill, then continue. If not, then 10224 * ip_sioctl_flags_tail() will be called from 10225 * ipif_ill_refrele_tail(). 10226 */ 10227 ill_down_ipifs(ill, B_TRUE); 10228 10229 mutex_enter(&connp->conn_lock); 10230 mutex_enter(&ill->ill_lock); 10231 if (!ill_is_quiescent(ill)) { 10232 boolean_t success; 10233 10234 success = ipsq_pending_mp_add(connp, ill->ill_ipif, 10235 q, mp, ILL_DOWN); 10236 mutex_exit(&ill->ill_lock); 10237 mutex_exit(&connp->conn_lock); 10238 return (success ? EINPROGRESS : EINTR); 10239 } 10240 mutex_exit(&ill->ill_lock); 10241 mutex_exit(&connp->conn_lock); 10242 } 10243 return (ip_sioctl_flags_tail(ipif, flags, q, mp)); 10244 } 10245 10246 static int 10247 ip_sioctl_flags_tail(ipif_t *ipif, uint64_t flags, queue_t *q, mblk_t *mp) 10248 { 10249 ill_t *ill; 10250 phyint_t *phyi; 10251 uint64_t turn_on, turn_off; 10252 boolean_t phyint_flags_modified = B_FALSE; 10253 int err = 0; 10254 boolean_t set_linklocal = B_FALSE; 10255 10256 ip1dbg(("ip_sioctl_flags_tail(%s:%u)\n", 10257 ipif->ipif_ill->ill_name, ipif->ipif_id)); 10258 10259 ASSERT(IAM_WRITER_IPIF(ipif)); 10260 10261 ill = ipif->ipif_ill; 10262 phyi = ill->ill_phyint; 10263 10264 ip_sioctl_flags_onoff(ipif, flags, &turn_on, &turn_off); 10265 10266 /* 10267 * IFF_UP is handled separately. 10268 */ 10269 turn_on &= ~IFF_UP; 10270 turn_off &= ~IFF_UP; 10271 10272 if ((turn_on|turn_off) & IFF_PHYINT_FLAGS) 10273 phyint_flags_modified = B_TRUE; 10274 10275 /* 10276 * Now we change the flags. Track current value of 10277 * other flags in their respective places. 10278 */ 10279 mutex_enter(&ill->ill_lock); 10280 mutex_enter(&phyi->phyint_lock); 10281 ipif->ipif_flags |= (turn_on & IFF_LOGINT_FLAGS); 10282 ipif->ipif_flags &= (~turn_off & IFF_LOGINT_FLAGS); 10283 ill->ill_flags |= (turn_on & IFF_PHYINTINST_FLAGS); 10284 ill->ill_flags &= (~turn_off & IFF_PHYINTINST_FLAGS); 10285 phyi->phyint_flags |= (turn_on & IFF_PHYINT_FLAGS); 10286 phyi->phyint_flags &= (~turn_off & IFF_PHYINT_FLAGS); 10287 if (ipif->ipif_state_flags & IPIF_SET_LINKLOCAL) { 10288 set_linklocal = B_TRUE; 10289 ipif->ipif_state_flags &= ~IPIF_SET_LINKLOCAL; 10290 } 10291 10292 mutex_exit(&ill->ill_lock); 10293 mutex_exit(&phyi->phyint_lock); 10294 10295 if (set_linklocal) 10296 (void) ipif_setlinklocal(ipif); 10297 10298 /* 10299 * PHYI_FAILED, PHYI_INACTIVE, and PHYI_OFFLINE are all the same to 10300 * the kernel: if any of them has been set by userland, the interface 10301 * cannot be used for data traffic. 10302 */ 10303 if ((turn_on|turn_off) & (PHYI_FAILED | PHYI_INACTIVE | PHYI_OFFLINE)) { 10304 ASSERT(!IS_IPMP(ill)); 10305 /* 10306 * It's possible the ill is part of an "anonymous" IPMP group 10307 * rather than a real group. In that case, there are no other 10308 * interfaces in the group and thus no need for us to call 10309 * ipmp_phyint_refresh_active(). 10310 */ 10311 if (IS_UNDER_IPMP(ill)) 10312 ipmp_phyint_refresh_active(phyi); 10313 } 10314 10315 if ((turn_on|turn_off) & ILLF_NOACCEPT) { 10316 /* 10317 * If the ILLF_NOACCEPT flag is changed, bring up all the 10318 * ipifs that were brought down. 10319 * 10320 * The routing sockets messages are sent as the result 10321 * of ill_up_ipifs(), further, SCTP's IPIF list was updated 10322 * as well. 10323 */ 10324 err = ill_up_ipifs(ill, q, mp); 10325 } else if ((flags & IFF_UP) && !(ipif->ipif_flags & IPIF_UP)) { 10326 /* 10327 * XXX ipif_up really does not know whether a phyint flags 10328 * was modified or not. So, it sends up information on 10329 * only one routing sockets message. As we don't bring up 10330 * the interface and also set PHYI_ flags simultaneously 10331 * it should be okay. 10332 */ 10333 err = ipif_up(ipif, q, mp); 10334 } else { 10335 /* 10336 * Make sure routing socket sees all changes to the flags. 10337 * ipif_up_done* handles this when we use ipif_up. 10338 */ 10339 if (phyint_flags_modified) { 10340 if (phyi->phyint_illv4 != NULL) { 10341 ip_rts_ifmsg(phyi->phyint_illv4-> 10342 ill_ipif, RTSQ_DEFAULT); 10343 } 10344 if (phyi->phyint_illv6 != NULL) { 10345 ip_rts_ifmsg(phyi->phyint_illv6-> 10346 ill_ipif, RTSQ_DEFAULT); 10347 } 10348 } else { 10349 ip_rts_ifmsg(ipif, RTSQ_DEFAULT); 10350 } 10351 /* 10352 * Update the flags in SCTP's IPIF list, ipif_up() will do 10353 * this in need_up case. 10354 */ 10355 sctp_update_ipif(ipif, SCTP_IPIF_UPDATE); 10356 } 10357 10358 /* The default multicast interface might have changed */ 10359 ire_increment_multicast_generation(ill->ill_ipst, ill->ill_isv6); 10360 return (err); 10361 } 10362 10363 /* 10364 * Restart the flags operation now that the refcounts have dropped to zero. 10365 */ 10366 /* ARGSUSED */ 10367 int 10368 ip_sioctl_flags_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10369 ip_ioctl_cmd_t *ipip, void *if_req) 10370 { 10371 uint64_t flags; 10372 struct ifreq *ifr = if_req; 10373 struct lifreq *lifr = if_req; 10374 uint64_t turn_on, turn_off; 10375 10376 ip1dbg(("ip_sioctl_flags_restart(%s:%u %p)\n", 10377 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 10378 10379 if (ipip->ipi_cmd_type == IF_CMD) { 10380 /* cast to uint16_t prevents unwanted sign extension */ 10381 flags = (uint16_t)ifr->ifr_flags; 10382 } else { 10383 flags = lifr->lifr_flags; 10384 } 10385 10386 /* 10387 * If this function call is a result of the ILLF_NOACCEPT flag 10388 * change, do not call ipif_down_tail(). See ip_sioctl_flags(). 10389 */ 10390 ip_sioctl_flags_onoff(ipif, flags, &turn_on, &turn_off); 10391 if (!((turn_on|turn_off) & ILLF_NOACCEPT)) 10392 (void) ipif_down_tail(ipif); 10393 10394 return (ip_sioctl_flags_tail(ipif, flags, q, mp)); 10395 } 10396 10397 /* 10398 * Can operate on either a module or a driver queue. 10399 */ 10400 /* ARGSUSED */ 10401 int 10402 ip_sioctl_get_flags(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10403 ip_ioctl_cmd_t *ipip, void *if_req) 10404 { 10405 /* 10406 * Has the flags been set correctly till now ? 10407 */ 10408 ill_t *ill = ipif->ipif_ill; 10409 phyint_t *phyi = ill->ill_phyint; 10410 10411 ip1dbg(("ip_sioctl_get_flags(%s:%u %p)\n", 10412 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 10413 ASSERT((phyi->phyint_flags & ~(IFF_PHYINT_FLAGS)) == 0); 10414 ASSERT((ill->ill_flags & ~(IFF_PHYINTINST_FLAGS)) == 0); 10415 ASSERT((ipif->ipif_flags & ~(IFF_LOGINT_FLAGS)) == 0); 10416 10417 /* 10418 * Need a lock since some flags can be set even when there are 10419 * references to the ipif. 10420 */ 10421 mutex_enter(&ill->ill_lock); 10422 if (ipip->ipi_cmd_type == IF_CMD) { 10423 struct ifreq *ifr = (struct ifreq *)if_req; 10424 10425 /* Get interface flags (low 16 only). */ 10426 ifr->ifr_flags = ((ipif->ipif_flags | 10427 ill->ill_flags | phyi->phyint_flags) & 0xffff); 10428 } else { 10429 struct lifreq *lifr = (struct lifreq *)if_req; 10430 10431 /* Get interface flags. */ 10432 lifr->lifr_flags = ipif->ipif_flags | 10433 ill->ill_flags | phyi->phyint_flags; 10434 } 10435 mutex_exit(&ill->ill_lock); 10436 return (0); 10437 } 10438 10439 /* 10440 * We allow the MTU to be set on an ILL, but not have it be different 10441 * for different IPIFs since we don't actually send packets on IPIFs. 10442 */ 10443 /* ARGSUSED */ 10444 int 10445 ip_sioctl_mtu(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10446 ip_ioctl_cmd_t *ipip, void *if_req) 10447 { 10448 int mtu; 10449 int ip_min_mtu; 10450 struct ifreq *ifr; 10451 struct lifreq *lifr; 10452 ill_t *ill; 10453 10454 ip1dbg(("ip_sioctl_mtu(%s:%u %p)\n", ipif->ipif_ill->ill_name, 10455 ipif->ipif_id, (void *)ipif)); 10456 if (ipip->ipi_cmd_type == IF_CMD) { 10457 ifr = (struct ifreq *)if_req; 10458 mtu = ifr->ifr_metric; 10459 } else { 10460 lifr = (struct lifreq *)if_req; 10461 mtu = lifr->lifr_mtu; 10462 } 10463 /* Only allow for logical unit zero i.e. not on "bge0:17" */ 10464 if (ipif->ipif_id != 0) 10465 return (EINVAL); 10466 10467 ill = ipif->ipif_ill; 10468 if (ipif->ipif_isv6) 10469 ip_min_mtu = IPV6_MIN_MTU; 10470 else 10471 ip_min_mtu = IP_MIN_MTU; 10472 10473 mutex_enter(&ill->ill_lock); 10474 if (mtu > ill->ill_max_frag || mtu < ip_min_mtu) { 10475 mutex_exit(&ill->ill_lock); 10476 return (EINVAL); 10477 } 10478 /* 10479 * The dce and fragmentation code can handle changes to ill_mtu 10480 * concurrent with sending/fragmenting packets. 10481 */ 10482 ill->ill_mtu = mtu; 10483 ill->ill_flags |= ILLF_FIXEDMTU; 10484 mutex_exit(&ill->ill_lock); 10485 10486 /* 10487 * Make sure all dce_generation checks find out 10488 * that ill_mtu has changed. 10489 */ 10490 dce_increment_all_generations(ill->ill_isv6, ill->ill_ipst); 10491 10492 /* Update the MTU in SCTP's list */ 10493 sctp_update_ipif(ipif, SCTP_IPIF_UPDATE); 10494 return (0); 10495 } 10496 10497 /* Get interface MTU. */ 10498 /* ARGSUSED */ 10499 int 10500 ip_sioctl_get_mtu(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10501 ip_ioctl_cmd_t *ipip, void *if_req) 10502 { 10503 struct ifreq *ifr; 10504 struct lifreq *lifr; 10505 10506 ip1dbg(("ip_sioctl_get_mtu(%s:%u %p)\n", 10507 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 10508 10509 /* 10510 * We allow a get on any logical interface even though the set 10511 * can only be done on logical unit 0. 10512 */ 10513 if (ipip->ipi_cmd_type == IF_CMD) { 10514 ifr = (struct ifreq *)if_req; 10515 ifr->ifr_metric = ipif->ipif_ill->ill_mtu; 10516 } else { 10517 lifr = (struct lifreq *)if_req; 10518 lifr->lifr_mtu = ipif->ipif_ill->ill_mtu; 10519 } 10520 return (0); 10521 } 10522 10523 /* Set interface broadcast address. */ 10524 /* ARGSUSED2 */ 10525 int 10526 ip_sioctl_brdaddr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10527 ip_ioctl_cmd_t *ipip, void *if_req) 10528 { 10529 ipaddr_t addr; 10530 ire_t *ire; 10531 ill_t *ill = ipif->ipif_ill; 10532 ip_stack_t *ipst = ill->ill_ipst; 10533 10534 ip1dbg(("ip_sioctl_brdaddr(%s:%u)\n", ill->ill_name, 10535 ipif->ipif_id)); 10536 10537 ASSERT(IAM_WRITER_IPIF(ipif)); 10538 if (!(ipif->ipif_flags & IPIF_BROADCAST)) 10539 return (EADDRNOTAVAIL); 10540 10541 ASSERT(!(ipif->ipif_isv6)); /* No IPv6 broadcast */ 10542 10543 if (sin->sin_family != AF_INET) 10544 return (EAFNOSUPPORT); 10545 10546 addr = sin->sin_addr.s_addr; 10547 if (ipif->ipif_flags & IPIF_UP) { 10548 /* 10549 * If we are already up, make sure the new 10550 * broadcast address makes sense. If it does, 10551 * there should be an IRE for it already. 10552 */ 10553 ire = ire_ftable_lookup_v4(addr, 0, 0, IRE_BROADCAST, 10554 ill, ipif->ipif_zoneid, NULL, 10555 (MATCH_IRE_ILL | MATCH_IRE_TYPE), 0, ipst, NULL); 10556 if (ire == NULL) { 10557 return (EINVAL); 10558 } else { 10559 ire_refrele(ire); 10560 } 10561 } 10562 /* 10563 * Changing the broadcast addr for this ipif. Since the IRE_BROADCAST 10564 * needs to already exist we never need to change the set of 10565 * IRE_BROADCASTs when we are UP. 10566 */ 10567 if (addr != ipif->ipif_brd_addr) 10568 IN6_IPADDR_TO_V4MAPPED(addr, &ipif->ipif_v6brd_addr); 10569 10570 return (0); 10571 } 10572 10573 /* Get interface broadcast address. */ 10574 /* ARGSUSED */ 10575 int 10576 ip_sioctl_get_brdaddr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10577 ip_ioctl_cmd_t *ipip, void *if_req) 10578 { 10579 ip1dbg(("ip_sioctl_get_brdaddr(%s:%u %p)\n", 10580 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 10581 if (!(ipif->ipif_flags & IPIF_BROADCAST)) 10582 return (EADDRNOTAVAIL); 10583 10584 /* IPIF_BROADCAST not possible with IPv6 */ 10585 ASSERT(!ipif->ipif_isv6); 10586 *sin = sin_null; 10587 sin->sin_family = AF_INET; 10588 sin->sin_addr.s_addr = ipif->ipif_brd_addr; 10589 return (0); 10590 } 10591 10592 /* 10593 * This routine is called to handle the SIOCS*IFNETMASK IOCTL. 10594 */ 10595 /* ARGSUSED */ 10596 int 10597 ip_sioctl_netmask(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10598 ip_ioctl_cmd_t *ipip, void *if_req) 10599 { 10600 int err = 0; 10601 in6_addr_t v6mask; 10602 10603 ip1dbg(("ip_sioctl_netmask(%s:%u %p)\n", 10604 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 10605 10606 ASSERT(IAM_WRITER_IPIF(ipif)); 10607 10608 if (ipif->ipif_isv6) { 10609 sin6_t *sin6; 10610 10611 if (sin->sin_family != AF_INET6) 10612 return (EAFNOSUPPORT); 10613 10614 sin6 = (sin6_t *)sin; 10615 v6mask = sin6->sin6_addr; 10616 } else { 10617 ipaddr_t mask; 10618 10619 if (sin->sin_family != AF_INET) 10620 return (EAFNOSUPPORT); 10621 10622 mask = sin->sin_addr.s_addr; 10623 V4MASK_TO_V6(mask, v6mask); 10624 } 10625 10626 /* 10627 * No big deal if the interface isn't already up, or the mask 10628 * isn't really changing, or this is pt-pt. 10629 */ 10630 if (!(ipif->ipif_flags & IPIF_UP) || 10631 IN6_ARE_ADDR_EQUAL(&v6mask, &ipif->ipif_v6net_mask) || 10632 (ipif->ipif_flags & IPIF_POINTOPOINT)) { 10633 ipif->ipif_v6net_mask = v6mask; 10634 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) { 10635 V6_MASK_COPY(ipif->ipif_v6lcl_addr, 10636 ipif->ipif_v6net_mask, 10637 ipif->ipif_v6subnet); 10638 } 10639 return (0); 10640 } 10641 /* 10642 * Make sure we have valid net and subnet broadcast ire's 10643 * for the old netmask, if needed by other logical interfaces. 10644 */ 10645 err = ipif_logical_down(ipif, q, mp); 10646 if (err == EINPROGRESS) 10647 return (err); 10648 (void) ipif_down_tail(ipif); 10649 err = ip_sioctl_netmask_tail(ipif, sin, q, mp); 10650 return (err); 10651 } 10652 10653 static int 10654 ip_sioctl_netmask_tail(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp) 10655 { 10656 in6_addr_t v6mask; 10657 int err = 0; 10658 10659 ip1dbg(("ip_sioctl_netmask_tail(%s:%u %p)\n", 10660 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 10661 10662 if (ipif->ipif_isv6) { 10663 sin6_t *sin6; 10664 10665 sin6 = (sin6_t *)sin; 10666 v6mask = sin6->sin6_addr; 10667 } else { 10668 ipaddr_t mask; 10669 10670 mask = sin->sin_addr.s_addr; 10671 V4MASK_TO_V6(mask, v6mask); 10672 } 10673 10674 ipif->ipif_v6net_mask = v6mask; 10675 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) { 10676 V6_MASK_COPY(ipif->ipif_v6lcl_addr, ipif->ipif_v6net_mask, 10677 ipif->ipif_v6subnet); 10678 } 10679 err = ipif_up(ipif, q, mp); 10680 10681 if (err == 0 || err == EINPROGRESS) { 10682 /* 10683 * The interface must be DL_BOUND if this packet has to 10684 * go out on the wire. Since we only go through a logical 10685 * down and are bound with the driver during an internal 10686 * down/up that is satisfied. 10687 */ 10688 if (!ipif->ipif_isv6 && ipif->ipif_ill->ill_wq != NULL) { 10689 /* Potentially broadcast an address mask reply. */ 10690 ipif_mask_reply(ipif); 10691 } 10692 } 10693 return (err); 10694 } 10695 10696 /* ARGSUSED */ 10697 int 10698 ip_sioctl_netmask_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10699 ip_ioctl_cmd_t *ipip, void *if_req) 10700 { 10701 ip1dbg(("ip_sioctl_netmask_restart(%s:%u %p)\n", 10702 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 10703 (void) ipif_down_tail(ipif); 10704 return (ip_sioctl_netmask_tail(ipif, sin, q, mp)); 10705 } 10706 10707 /* Get interface net mask. */ 10708 /* ARGSUSED */ 10709 int 10710 ip_sioctl_get_netmask(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10711 ip_ioctl_cmd_t *ipip, void *if_req) 10712 { 10713 struct lifreq *lifr = (struct lifreq *)if_req; 10714 struct sockaddr_in6 *sin6 = (sin6_t *)sin; 10715 10716 ip1dbg(("ip_sioctl_get_netmask(%s:%u %p)\n", 10717 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 10718 10719 /* 10720 * net mask can't change since we have a reference to the ipif. 10721 */ 10722 if (ipif->ipif_isv6) { 10723 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 10724 *sin6 = sin6_null; 10725 sin6->sin6_family = AF_INET6; 10726 sin6->sin6_addr = ipif->ipif_v6net_mask; 10727 lifr->lifr_addrlen = 10728 ip_mask_to_plen_v6(&ipif->ipif_v6net_mask); 10729 } else { 10730 *sin = sin_null; 10731 sin->sin_family = AF_INET; 10732 sin->sin_addr.s_addr = ipif->ipif_net_mask; 10733 if (ipip->ipi_cmd_type == LIF_CMD) { 10734 lifr->lifr_addrlen = 10735 ip_mask_to_plen(ipif->ipif_net_mask); 10736 } 10737 } 10738 return (0); 10739 } 10740 10741 /* ARGSUSED */ 10742 int 10743 ip_sioctl_metric(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10744 ip_ioctl_cmd_t *ipip, void *if_req) 10745 { 10746 ip1dbg(("ip_sioctl_metric(%s:%u %p)\n", 10747 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 10748 10749 /* 10750 * Since no applications should ever be setting metrics on underlying 10751 * interfaces, we explicitly fail to smoke 'em out. 10752 */ 10753 if (IS_UNDER_IPMP(ipif->ipif_ill)) 10754 return (EINVAL); 10755 10756 /* 10757 * Set interface metric. We don't use this for 10758 * anything but we keep track of it in case it is 10759 * important to routing applications or such. 10760 */ 10761 if (ipip->ipi_cmd_type == IF_CMD) { 10762 struct ifreq *ifr; 10763 10764 ifr = (struct ifreq *)if_req; 10765 ipif->ipif_metric = ifr->ifr_metric; 10766 } else { 10767 struct lifreq *lifr; 10768 10769 lifr = (struct lifreq *)if_req; 10770 ipif->ipif_metric = lifr->lifr_metric; 10771 } 10772 return (0); 10773 } 10774 10775 /* ARGSUSED */ 10776 int 10777 ip_sioctl_get_metric(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10778 ip_ioctl_cmd_t *ipip, void *if_req) 10779 { 10780 /* Get interface metric. */ 10781 ip1dbg(("ip_sioctl_get_metric(%s:%u %p)\n", 10782 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 10783 10784 if (ipip->ipi_cmd_type == IF_CMD) { 10785 struct ifreq *ifr; 10786 10787 ifr = (struct ifreq *)if_req; 10788 ifr->ifr_metric = ipif->ipif_metric; 10789 } else { 10790 struct lifreq *lifr; 10791 10792 lifr = (struct lifreq *)if_req; 10793 lifr->lifr_metric = ipif->ipif_metric; 10794 } 10795 10796 return (0); 10797 } 10798 10799 /* ARGSUSED */ 10800 int 10801 ip_sioctl_muxid(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10802 ip_ioctl_cmd_t *ipip, void *if_req) 10803 { 10804 int arp_muxid; 10805 10806 ip1dbg(("ip_sioctl_muxid(%s:%u %p)\n", 10807 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 10808 /* 10809 * Set the muxid returned from I_PLINK. 10810 */ 10811 if (ipip->ipi_cmd_type == IF_CMD) { 10812 struct ifreq *ifr = (struct ifreq *)if_req; 10813 10814 ipif->ipif_ill->ill_muxid = ifr->ifr_ip_muxid; 10815 arp_muxid = ifr->ifr_arp_muxid; 10816 } else { 10817 struct lifreq *lifr = (struct lifreq *)if_req; 10818 10819 ipif->ipif_ill->ill_muxid = lifr->lifr_ip_muxid; 10820 arp_muxid = lifr->lifr_arp_muxid; 10821 } 10822 arl_set_muxid(ipif->ipif_ill, arp_muxid); 10823 return (0); 10824 } 10825 10826 /* ARGSUSED */ 10827 int 10828 ip_sioctl_get_muxid(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10829 ip_ioctl_cmd_t *ipip, void *if_req) 10830 { 10831 int arp_muxid = 0; 10832 10833 ip1dbg(("ip_sioctl_get_muxid(%s:%u %p)\n", 10834 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 10835 /* 10836 * Get the muxid saved in ill for I_PUNLINK. 10837 */ 10838 arp_muxid = arl_get_muxid(ipif->ipif_ill); 10839 if (ipip->ipi_cmd_type == IF_CMD) { 10840 struct ifreq *ifr = (struct ifreq *)if_req; 10841 10842 ifr->ifr_ip_muxid = ipif->ipif_ill->ill_muxid; 10843 ifr->ifr_arp_muxid = arp_muxid; 10844 } else { 10845 struct lifreq *lifr = (struct lifreq *)if_req; 10846 10847 lifr->lifr_ip_muxid = ipif->ipif_ill->ill_muxid; 10848 lifr->lifr_arp_muxid = arp_muxid; 10849 } 10850 return (0); 10851 } 10852 10853 /* 10854 * Set the subnet prefix. Does not modify the broadcast address. 10855 */ 10856 /* ARGSUSED */ 10857 int 10858 ip_sioctl_subnet(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10859 ip_ioctl_cmd_t *ipip, void *if_req) 10860 { 10861 int err = 0; 10862 in6_addr_t v6addr; 10863 in6_addr_t v6mask; 10864 boolean_t need_up = B_FALSE; 10865 int addrlen; 10866 10867 ip1dbg(("ip_sioctl_subnet(%s:%u %p)\n", 10868 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 10869 10870 ASSERT(IAM_WRITER_IPIF(ipif)); 10871 addrlen = ((struct lifreq *)if_req)->lifr_addrlen; 10872 10873 if (ipif->ipif_isv6) { 10874 sin6_t *sin6; 10875 10876 if (sin->sin_family != AF_INET6) 10877 return (EAFNOSUPPORT); 10878 10879 sin6 = (sin6_t *)sin; 10880 v6addr = sin6->sin6_addr; 10881 if (!ip_remote_addr_ok_v6(&v6addr, &ipv6_all_ones)) 10882 return (EADDRNOTAVAIL); 10883 } else { 10884 ipaddr_t addr; 10885 10886 if (sin->sin_family != AF_INET) 10887 return (EAFNOSUPPORT); 10888 10889 addr = sin->sin_addr.s_addr; 10890 if (!ip_addr_ok_v4(addr, 0xFFFFFFFF)) 10891 return (EADDRNOTAVAIL); 10892 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 10893 /* Add 96 bits */ 10894 addrlen += IPV6_ABITS - IP_ABITS; 10895 } 10896 10897 if (ip_plen_to_mask_v6(addrlen, &v6mask) == NULL) 10898 return (EINVAL); 10899 10900 /* Check if bits in the address is set past the mask */ 10901 if (!V6_MASK_EQ(v6addr, v6mask, v6addr)) 10902 return (EINVAL); 10903 10904 if (IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6subnet, &v6addr) && 10905 IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6net_mask, &v6mask)) 10906 return (0); /* No change */ 10907 10908 if (ipif->ipif_flags & IPIF_UP) { 10909 /* 10910 * If the interface is already marked up, 10911 * we call ipif_down which will take care 10912 * of ditching any IREs that have been set 10913 * up based on the old interface address. 10914 */ 10915 err = ipif_logical_down(ipif, q, mp); 10916 if (err == EINPROGRESS) 10917 return (err); 10918 (void) ipif_down_tail(ipif); 10919 need_up = B_TRUE; 10920 } 10921 10922 err = ip_sioctl_subnet_tail(ipif, v6addr, v6mask, q, mp, need_up); 10923 return (err); 10924 } 10925 10926 static int 10927 ip_sioctl_subnet_tail(ipif_t *ipif, in6_addr_t v6addr, in6_addr_t v6mask, 10928 queue_t *q, mblk_t *mp, boolean_t need_up) 10929 { 10930 ill_t *ill = ipif->ipif_ill; 10931 int err = 0; 10932 10933 ip1dbg(("ip_sioctl_subnet_tail(%s:%u %p)\n", 10934 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 10935 10936 /* Set the new address. */ 10937 mutex_enter(&ill->ill_lock); 10938 ipif->ipif_v6net_mask = v6mask; 10939 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) { 10940 V6_MASK_COPY(v6addr, ipif->ipif_v6net_mask, 10941 ipif->ipif_v6subnet); 10942 } 10943 mutex_exit(&ill->ill_lock); 10944 10945 if (need_up) { 10946 /* 10947 * Now bring the interface back up. If this 10948 * is the only IPIF for the ILL, ipif_up 10949 * will have to re-bind to the device, so 10950 * we may get back EINPROGRESS, in which 10951 * case, this IOCTL will get completed in 10952 * ip_rput_dlpi when we see the DL_BIND_ACK. 10953 */ 10954 err = ipif_up(ipif, q, mp); 10955 if (err == EINPROGRESS) 10956 return (err); 10957 } 10958 return (err); 10959 } 10960 10961 /* ARGSUSED */ 10962 int 10963 ip_sioctl_subnet_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10964 ip_ioctl_cmd_t *ipip, void *if_req) 10965 { 10966 int addrlen; 10967 in6_addr_t v6addr; 10968 in6_addr_t v6mask; 10969 struct lifreq *lifr = (struct lifreq *)if_req; 10970 10971 ip1dbg(("ip_sioctl_subnet_restart(%s:%u %p)\n", 10972 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 10973 (void) ipif_down_tail(ipif); 10974 10975 addrlen = lifr->lifr_addrlen; 10976 if (ipif->ipif_isv6) { 10977 sin6_t *sin6; 10978 10979 sin6 = (sin6_t *)sin; 10980 v6addr = sin6->sin6_addr; 10981 } else { 10982 ipaddr_t addr; 10983 10984 addr = sin->sin_addr.s_addr; 10985 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 10986 addrlen += IPV6_ABITS - IP_ABITS; 10987 } 10988 (void) ip_plen_to_mask_v6(addrlen, &v6mask); 10989 10990 return (ip_sioctl_subnet_tail(ipif, v6addr, v6mask, q, mp, B_TRUE)); 10991 } 10992 10993 /* ARGSUSED */ 10994 int 10995 ip_sioctl_get_subnet(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10996 ip_ioctl_cmd_t *ipip, void *if_req) 10997 { 10998 struct lifreq *lifr = (struct lifreq *)if_req; 10999 struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)sin; 11000 11001 ip1dbg(("ip_sioctl_get_subnet(%s:%u %p)\n", 11002 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11003 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 11004 11005 if (ipif->ipif_isv6) { 11006 *sin6 = sin6_null; 11007 sin6->sin6_family = AF_INET6; 11008 sin6->sin6_addr = ipif->ipif_v6subnet; 11009 lifr->lifr_addrlen = 11010 ip_mask_to_plen_v6(&ipif->ipif_v6net_mask); 11011 } else { 11012 *sin = sin_null; 11013 sin->sin_family = AF_INET; 11014 sin->sin_addr.s_addr = ipif->ipif_subnet; 11015 lifr->lifr_addrlen = ip_mask_to_plen(ipif->ipif_net_mask); 11016 } 11017 return (0); 11018 } 11019 11020 /* 11021 * Set the IPv6 address token. 11022 */ 11023 /* ARGSUSED */ 11024 int 11025 ip_sioctl_token(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11026 ip_ioctl_cmd_t *ipi, void *if_req) 11027 { 11028 ill_t *ill = ipif->ipif_ill; 11029 int err; 11030 in6_addr_t v6addr; 11031 in6_addr_t v6mask; 11032 boolean_t need_up = B_FALSE; 11033 int i; 11034 sin6_t *sin6 = (sin6_t *)sin; 11035 struct lifreq *lifr = (struct lifreq *)if_req; 11036 int addrlen; 11037 11038 ip1dbg(("ip_sioctl_token(%s:%u %p)\n", 11039 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11040 ASSERT(IAM_WRITER_IPIF(ipif)); 11041 11042 addrlen = lifr->lifr_addrlen; 11043 /* Only allow for logical unit zero i.e. not on "le0:17" */ 11044 if (ipif->ipif_id != 0) 11045 return (EINVAL); 11046 11047 if (!ipif->ipif_isv6) 11048 return (EINVAL); 11049 11050 if (addrlen > IPV6_ABITS) 11051 return (EINVAL); 11052 11053 v6addr = sin6->sin6_addr; 11054 11055 /* 11056 * The length of the token is the length from the end. To get 11057 * the proper mask for this, compute the mask of the bits not 11058 * in the token; ie. the prefix, and then xor to get the mask. 11059 */ 11060 if (ip_plen_to_mask_v6(IPV6_ABITS - addrlen, &v6mask) == NULL) 11061 return (EINVAL); 11062 for (i = 0; i < 4; i++) { 11063 v6mask.s6_addr32[i] ^= (uint32_t)0xffffffff; 11064 } 11065 11066 if (V6_MASK_EQ(v6addr, v6mask, ill->ill_token) && 11067 ill->ill_token_length == addrlen) 11068 return (0); /* No change */ 11069 11070 if (ipif->ipif_flags & IPIF_UP) { 11071 err = ipif_logical_down(ipif, q, mp); 11072 if (err == EINPROGRESS) 11073 return (err); 11074 (void) ipif_down_tail(ipif); 11075 need_up = B_TRUE; 11076 } 11077 err = ip_sioctl_token_tail(ipif, sin6, addrlen, q, mp, need_up); 11078 return (err); 11079 } 11080 11081 static int 11082 ip_sioctl_token_tail(ipif_t *ipif, sin6_t *sin6, int addrlen, queue_t *q, 11083 mblk_t *mp, boolean_t need_up) 11084 { 11085 in6_addr_t v6addr; 11086 in6_addr_t v6mask; 11087 ill_t *ill = ipif->ipif_ill; 11088 int i; 11089 int err = 0; 11090 11091 ip1dbg(("ip_sioctl_token_tail(%s:%u %p)\n", 11092 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11093 v6addr = sin6->sin6_addr; 11094 /* 11095 * The length of the token is the length from the end. To get 11096 * the proper mask for this, compute the mask of the bits not 11097 * in the token; ie. the prefix, and then xor to get the mask. 11098 */ 11099 (void) ip_plen_to_mask_v6(IPV6_ABITS - addrlen, &v6mask); 11100 for (i = 0; i < 4; i++) 11101 v6mask.s6_addr32[i] ^= (uint32_t)0xffffffff; 11102 11103 mutex_enter(&ill->ill_lock); 11104 V6_MASK_COPY(v6addr, v6mask, ill->ill_token); 11105 ill->ill_token_length = addrlen; 11106 ill->ill_manual_token = 1; 11107 11108 /* Reconfigure the link-local address based on this new token */ 11109 ipif_setlinklocal(ill->ill_ipif); 11110 11111 mutex_exit(&ill->ill_lock); 11112 11113 if (need_up) { 11114 /* 11115 * Now bring the interface back up. If this 11116 * is the only IPIF for the ILL, ipif_up 11117 * will have to re-bind to the device, so 11118 * we may get back EINPROGRESS, in which 11119 * case, this IOCTL will get completed in 11120 * ip_rput_dlpi when we see the DL_BIND_ACK. 11121 */ 11122 err = ipif_up(ipif, q, mp); 11123 if (err == EINPROGRESS) 11124 return (err); 11125 } 11126 return (err); 11127 } 11128 11129 /* ARGSUSED */ 11130 int 11131 ip_sioctl_get_token(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11132 ip_ioctl_cmd_t *ipi, void *if_req) 11133 { 11134 ill_t *ill; 11135 sin6_t *sin6 = (sin6_t *)sin; 11136 struct lifreq *lifr = (struct lifreq *)if_req; 11137 11138 ip1dbg(("ip_sioctl_get_token(%s:%u %p)\n", 11139 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11140 if (ipif->ipif_id != 0) 11141 return (EINVAL); 11142 11143 ill = ipif->ipif_ill; 11144 if (!ill->ill_isv6) 11145 return (ENXIO); 11146 11147 *sin6 = sin6_null; 11148 sin6->sin6_family = AF_INET6; 11149 ASSERT(!IN6_IS_ADDR_V4MAPPED(&ill->ill_token)); 11150 sin6->sin6_addr = ill->ill_token; 11151 lifr->lifr_addrlen = ill->ill_token_length; 11152 return (0); 11153 } 11154 11155 /* 11156 * Set (hardware) link specific information that might override 11157 * what was acquired through the DL_INFO_ACK. 11158 */ 11159 /* ARGSUSED */ 11160 int 11161 ip_sioctl_lnkinfo(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11162 ip_ioctl_cmd_t *ipi, void *if_req) 11163 { 11164 ill_t *ill = ipif->ipif_ill; 11165 int ip_min_mtu; 11166 struct lifreq *lifr = (struct lifreq *)if_req; 11167 lif_ifinfo_req_t *lir; 11168 11169 ip1dbg(("ip_sioctl_lnkinfo(%s:%u %p)\n", 11170 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11171 lir = &lifr->lifr_ifinfo; 11172 ASSERT(IAM_WRITER_IPIF(ipif)); 11173 11174 /* Only allow for logical unit zero i.e. not on "bge0:17" */ 11175 if (ipif->ipif_id != 0) 11176 return (EINVAL); 11177 11178 /* Set interface MTU. */ 11179 if (ipif->ipif_isv6) 11180 ip_min_mtu = IPV6_MIN_MTU; 11181 else 11182 ip_min_mtu = IP_MIN_MTU; 11183 11184 /* 11185 * Verify values before we set anything. Allow zero to 11186 * mean unspecified. 11187 * 11188 * XXX We should be able to set the user-defined lir_mtu to some value 11189 * that is greater than ill_current_frag but less than ill_max_frag- the 11190 * ill_max_frag value tells us the max MTU that can be handled by the 11191 * datalink, whereas the ill_current_frag is dynamically computed for 11192 * some link-types like tunnels, based on the tunnel PMTU. However, 11193 * since there is currently no way of distinguishing between 11194 * administratively fixed link mtu values (e.g., those set via 11195 * /sbin/dladm) and dynamically discovered MTUs (e.g., those discovered 11196 * for tunnels) we conservatively choose the ill_current_frag as the 11197 * upper-bound. 11198 */ 11199 if (lir->lir_maxmtu != 0 && 11200 (lir->lir_maxmtu > ill->ill_current_frag || 11201 lir->lir_maxmtu < ip_min_mtu)) 11202 return (EINVAL); 11203 if (lir->lir_reachtime != 0 && 11204 lir->lir_reachtime > ND_MAX_REACHTIME) 11205 return (EINVAL); 11206 if (lir->lir_reachretrans != 0 && 11207 lir->lir_reachretrans > ND_MAX_REACHRETRANSTIME) 11208 return (EINVAL); 11209 11210 mutex_enter(&ill->ill_lock); 11211 /* 11212 * The dce and fragmentation code can handle changes to ill_mtu 11213 * concurrent with sending/fragmenting packets. 11214 */ 11215 if (lir->lir_maxmtu != 0) 11216 ill->ill_user_mtu = lir->lir_maxmtu; 11217 11218 if (lir->lir_reachtime != 0) 11219 ill->ill_reachable_time = lir->lir_reachtime; 11220 11221 if (lir->lir_reachretrans != 0) 11222 ill->ill_reachable_retrans_time = lir->lir_reachretrans; 11223 11224 ill->ill_max_hops = lir->lir_maxhops; 11225 ill->ill_max_buf = ND_MAX_Q; 11226 if (!(ill->ill_flags & ILLF_FIXEDMTU) && ill->ill_user_mtu != 0) { 11227 /* 11228 * ill_mtu is the actual interface MTU, obtained as the min 11229 * of user-configured mtu and the value announced by the 11230 * driver (via DL_NOTE_SDU_SIZE/DL_INFO_ACK). Note that since 11231 * we have already made the choice of requiring 11232 * ill_user_mtu < ill_current_frag by the time we get here, 11233 * the ill_mtu effectively gets assigned to the ill_user_mtu 11234 * here. 11235 */ 11236 ill->ill_mtu = MIN(ill->ill_current_frag, ill->ill_user_mtu); 11237 } 11238 mutex_exit(&ill->ill_lock); 11239 11240 /* 11241 * Make sure all dce_generation checks find out 11242 * that ill_mtu has changed. 11243 */ 11244 if (!(ill->ill_flags & ILLF_FIXEDMTU) && (lir->lir_maxmtu != 0)) 11245 dce_increment_all_generations(ill->ill_isv6, ill->ill_ipst); 11246 11247 /* 11248 * Refresh IPMP meta-interface MTU if necessary. 11249 */ 11250 if (IS_UNDER_IPMP(ill)) 11251 ipmp_illgrp_refresh_mtu(ill->ill_grp); 11252 11253 return (0); 11254 } 11255 11256 /* ARGSUSED */ 11257 int 11258 ip_sioctl_get_lnkinfo(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11259 ip_ioctl_cmd_t *ipi, void *if_req) 11260 { 11261 struct lif_ifinfo_req *lir; 11262 ill_t *ill = ipif->ipif_ill; 11263 11264 ip1dbg(("ip_sioctl_get_lnkinfo(%s:%u %p)\n", 11265 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11266 if (ipif->ipif_id != 0) 11267 return (EINVAL); 11268 11269 lir = &((struct lifreq *)if_req)->lifr_ifinfo; 11270 lir->lir_maxhops = ill->ill_max_hops; 11271 lir->lir_reachtime = ill->ill_reachable_time; 11272 lir->lir_reachretrans = ill->ill_reachable_retrans_time; 11273 lir->lir_maxmtu = ill->ill_mtu; 11274 11275 return (0); 11276 } 11277 11278 /* 11279 * Return best guess as to the subnet mask for the specified address. 11280 * Based on the subnet masks for all the configured interfaces. 11281 * 11282 * We end up returning a zero mask in the case of default, multicast or 11283 * experimental. 11284 */ 11285 static ipaddr_t 11286 ip_subnet_mask(ipaddr_t addr, ipif_t **ipifp, ip_stack_t *ipst) 11287 { 11288 ipaddr_t net_mask; 11289 ill_t *ill; 11290 ipif_t *ipif; 11291 ill_walk_context_t ctx; 11292 ipif_t *fallback_ipif = NULL; 11293 11294 net_mask = ip_net_mask(addr); 11295 if (net_mask == 0) { 11296 *ipifp = NULL; 11297 return (0); 11298 } 11299 11300 /* Let's check to see if this is maybe a local subnet route. */ 11301 /* this function only applies to IPv4 interfaces */ 11302 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 11303 ill = ILL_START_WALK_V4(&ctx, ipst); 11304 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 11305 mutex_enter(&ill->ill_lock); 11306 for (ipif = ill->ill_ipif; ipif != NULL; 11307 ipif = ipif->ipif_next) { 11308 if (IPIF_IS_CONDEMNED(ipif)) 11309 continue; 11310 if (!(ipif->ipif_flags & IPIF_UP)) 11311 continue; 11312 if ((ipif->ipif_subnet & net_mask) == 11313 (addr & net_mask)) { 11314 /* 11315 * Don't trust pt-pt interfaces if there are 11316 * other interfaces. 11317 */ 11318 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 11319 if (fallback_ipif == NULL) { 11320 ipif_refhold_locked(ipif); 11321 fallback_ipif = ipif; 11322 } 11323 continue; 11324 } 11325 11326 /* 11327 * Fine. Just assume the same net mask as the 11328 * directly attached subnet interface is using. 11329 */ 11330 ipif_refhold_locked(ipif); 11331 mutex_exit(&ill->ill_lock); 11332 rw_exit(&ipst->ips_ill_g_lock); 11333 if (fallback_ipif != NULL) 11334 ipif_refrele(fallback_ipif); 11335 *ipifp = ipif; 11336 return (ipif->ipif_net_mask); 11337 } 11338 } 11339 mutex_exit(&ill->ill_lock); 11340 } 11341 rw_exit(&ipst->ips_ill_g_lock); 11342 11343 *ipifp = fallback_ipif; 11344 return ((fallback_ipif != NULL) ? 11345 fallback_ipif->ipif_net_mask : net_mask); 11346 } 11347 11348 /* 11349 * ip_sioctl_copyin_setup calls ip_wput_ioctl to process the IP_IOCTL ioctl. 11350 */ 11351 static void 11352 ip_wput_ioctl(queue_t *q, mblk_t *mp) 11353 { 11354 IOCP iocp; 11355 ipft_t *ipft; 11356 ipllc_t *ipllc; 11357 mblk_t *mp1; 11358 cred_t *cr; 11359 int error = 0; 11360 conn_t *connp; 11361 11362 ip1dbg(("ip_wput_ioctl")); 11363 iocp = (IOCP)mp->b_rptr; 11364 mp1 = mp->b_cont; 11365 if (mp1 == NULL) { 11366 iocp->ioc_error = EINVAL; 11367 mp->b_datap->db_type = M_IOCNAK; 11368 iocp->ioc_count = 0; 11369 qreply(q, mp); 11370 return; 11371 } 11372 11373 /* 11374 * These IOCTLs provide various control capabilities to 11375 * upstream agents such as ULPs and processes. There 11376 * are currently two such IOCTLs implemented. They 11377 * are used by TCP to provide update information for 11378 * existing IREs and to forcibly delete an IRE for a 11379 * host that is not responding, thereby forcing an 11380 * attempt at a new route. 11381 */ 11382 iocp->ioc_error = EINVAL; 11383 if (!pullupmsg(mp1, sizeof (ipllc->ipllc_cmd))) 11384 goto done; 11385 11386 ipllc = (ipllc_t *)mp1->b_rptr; 11387 for (ipft = ip_ioctl_ftbl; ipft->ipft_pfi; ipft++) { 11388 if (ipllc->ipllc_cmd == ipft->ipft_cmd) 11389 break; 11390 } 11391 /* 11392 * prefer credential from mblk over ioctl; 11393 * see ip_sioctl_copyin_setup 11394 */ 11395 cr = msg_getcred(mp, NULL); 11396 if (cr == NULL) 11397 cr = iocp->ioc_cr; 11398 11399 /* 11400 * Refhold the conn in case the request gets queued up in some lookup 11401 */ 11402 ASSERT(CONN_Q(q)); 11403 connp = Q_TO_CONN(q); 11404 CONN_INC_REF(connp); 11405 if (ipft->ipft_pfi && 11406 ((mp1->b_wptr - mp1->b_rptr) >= ipft->ipft_min_size || 11407 pullupmsg(mp1, ipft->ipft_min_size))) { 11408 error = (*ipft->ipft_pfi)(q, 11409 (ipft->ipft_flags & IPFT_F_SELF_REPLY) ? mp : mp1, cr); 11410 } 11411 if (ipft->ipft_flags & IPFT_F_SELF_REPLY) { 11412 /* 11413 * CONN_OPER_PENDING_DONE happens in the function called 11414 * through ipft_pfi above. 11415 */ 11416 return; 11417 } 11418 11419 CONN_OPER_PENDING_DONE(connp); 11420 if (ipft->ipft_flags & IPFT_F_NO_REPLY) { 11421 freemsg(mp); 11422 return; 11423 } 11424 iocp->ioc_error = error; 11425 11426 done: 11427 mp->b_datap->db_type = M_IOCACK; 11428 if (iocp->ioc_error) 11429 iocp->ioc_count = 0; 11430 qreply(q, mp); 11431 } 11432 11433 /* 11434 * Assign a unique id for the ipif. This is used by sctp_addr.c 11435 * Note: remove if sctp_addr.c is redone to not shadow ill/ipif data structures. 11436 */ 11437 static void 11438 ipif_assign_seqid(ipif_t *ipif) 11439 { 11440 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 11441 11442 ipif->ipif_seqid = atomic_add_64_nv(&ipst->ips_ipif_g_seqid, 1); 11443 } 11444 11445 /* 11446 * Clone the contents of `sipif' to `dipif'. Requires that both ipifs are 11447 * administratively down (i.e., no DAD), of the same type, and locked. Note 11448 * that the clone is complete -- including the seqid -- and the expectation is 11449 * that the caller will either free or overwrite `sipif' before it's unlocked. 11450 */ 11451 static void 11452 ipif_clone(const ipif_t *sipif, ipif_t *dipif) 11453 { 11454 ASSERT(MUTEX_HELD(&sipif->ipif_ill->ill_lock)); 11455 ASSERT(MUTEX_HELD(&dipif->ipif_ill->ill_lock)); 11456 ASSERT(!(sipif->ipif_flags & (IPIF_UP|IPIF_DUPLICATE))); 11457 ASSERT(!(dipif->ipif_flags & (IPIF_UP|IPIF_DUPLICATE))); 11458 ASSERT(sipif->ipif_ire_type == dipif->ipif_ire_type); 11459 11460 dipif->ipif_flags = sipif->ipif_flags; 11461 dipif->ipif_metric = sipif->ipif_metric; 11462 dipif->ipif_zoneid = sipif->ipif_zoneid; 11463 dipif->ipif_v6subnet = sipif->ipif_v6subnet; 11464 dipif->ipif_v6lcl_addr = sipif->ipif_v6lcl_addr; 11465 dipif->ipif_v6net_mask = sipif->ipif_v6net_mask; 11466 dipif->ipif_v6brd_addr = sipif->ipif_v6brd_addr; 11467 dipif->ipif_v6pp_dst_addr = sipif->ipif_v6pp_dst_addr; 11468 11469 /* 11470 * As per the comment atop the function, we assume that these sipif 11471 * fields will be changed before sipif is unlocked. 11472 */ 11473 dipif->ipif_seqid = sipif->ipif_seqid; 11474 dipif->ipif_state_flags = sipif->ipif_state_flags; 11475 } 11476 11477 /* 11478 * Transfer the contents of `sipif' to `dipif', and then free (if `virgipif' 11479 * is NULL) or overwrite `sipif' with `virgipif', which must be a virgin 11480 * (unreferenced) ipif. Also, if `sipif' is used by the current xop, then 11481 * transfer the xop to `dipif'. Requires that all ipifs are administratively 11482 * down (i.e., no DAD), of the same type, and unlocked. 11483 */ 11484 static void 11485 ipif_transfer(ipif_t *sipif, ipif_t *dipif, ipif_t *virgipif) 11486 { 11487 ipsq_t *ipsq = sipif->ipif_ill->ill_phyint->phyint_ipsq; 11488 ipxop_t *ipx = ipsq->ipsq_xop; 11489 11490 ASSERT(sipif != dipif); 11491 ASSERT(sipif != virgipif); 11492 11493 /* 11494 * Grab all of the locks that protect the ipif in a defined order. 11495 */ 11496 GRAB_ILL_LOCKS(sipif->ipif_ill, dipif->ipif_ill); 11497 11498 ipif_clone(sipif, dipif); 11499 if (virgipif != NULL) { 11500 ipif_clone(virgipif, sipif); 11501 mi_free(virgipif); 11502 } 11503 11504 RELEASE_ILL_LOCKS(sipif->ipif_ill, dipif->ipif_ill); 11505 11506 /* 11507 * Transfer ownership of the current xop, if necessary. 11508 */ 11509 if (ipx->ipx_current_ipif == sipif) { 11510 ASSERT(ipx->ipx_pending_ipif == NULL); 11511 mutex_enter(&ipx->ipx_lock); 11512 ipx->ipx_current_ipif = dipif; 11513 mutex_exit(&ipx->ipx_lock); 11514 } 11515 11516 if (virgipif == NULL) 11517 mi_free(sipif); 11518 } 11519 11520 /* 11521 * Insert the ipif, so that the list of ipifs on the ill will be sorted 11522 * with respect to ipif_id. Note that an ipif with an ipif_id of -1 will 11523 * be inserted into the first space available in the list. The value of 11524 * ipif_id will then be set to the appropriate value for its position. 11525 */ 11526 static int 11527 ipif_insert(ipif_t *ipif, boolean_t acquire_g_lock) 11528 { 11529 ill_t *ill; 11530 ipif_t *tipif; 11531 ipif_t **tipifp; 11532 int id; 11533 ip_stack_t *ipst; 11534 11535 ASSERT(ipif->ipif_ill->ill_net_type == IRE_LOOPBACK || 11536 IAM_WRITER_IPIF(ipif)); 11537 11538 ill = ipif->ipif_ill; 11539 ASSERT(ill != NULL); 11540 ipst = ill->ill_ipst; 11541 11542 /* 11543 * In the case of lo0:0 we already hold the ill_g_lock. 11544 * ill_lookup_on_name (acquires ill_g_lock) -> ipif_allocate -> 11545 * ipif_insert. 11546 */ 11547 if (acquire_g_lock) 11548 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 11549 mutex_enter(&ill->ill_lock); 11550 id = ipif->ipif_id; 11551 tipifp = &(ill->ill_ipif); 11552 if (id == -1) { /* need to find a real id */ 11553 id = 0; 11554 while ((tipif = *tipifp) != NULL) { 11555 ASSERT(tipif->ipif_id >= id); 11556 if (tipif->ipif_id != id) 11557 break; /* non-consecutive id */ 11558 id++; 11559 tipifp = &(tipif->ipif_next); 11560 } 11561 /* limit number of logical interfaces */ 11562 if (id >= ipst->ips_ip_addrs_per_if) { 11563 mutex_exit(&ill->ill_lock); 11564 if (acquire_g_lock) 11565 rw_exit(&ipst->ips_ill_g_lock); 11566 return (-1); 11567 } 11568 ipif->ipif_id = id; /* assign new id */ 11569 } else if (id < ipst->ips_ip_addrs_per_if) { 11570 /* we have a real id; insert ipif in the right place */ 11571 while ((tipif = *tipifp) != NULL) { 11572 ASSERT(tipif->ipif_id != id); 11573 if (tipif->ipif_id > id) 11574 break; /* found correct location */ 11575 tipifp = &(tipif->ipif_next); 11576 } 11577 } else { 11578 mutex_exit(&ill->ill_lock); 11579 if (acquire_g_lock) 11580 rw_exit(&ipst->ips_ill_g_lock); 11581 return (-1); 11582 } 11583 11584 ASSERT(tipifp != &(ill->ill_ipif) || id == 0); 11585 11586 ipif->ipif_next = tipif; 11587 *tipifp = ipif; 11588 mutex_exit(&ill->ill_lock); 11589 if (acquire_g_lock) 11590 rw_exit(&ipst->ips_ill_g_lock); 11591 11592 return (0); 11593 } 11594 11595 static void 11596 ipif_remove(ipif_t *ipif) 11597 { 11598 ipif_t **ipifp; 11599 ill_t *ill = ipif->ipif_ill; 11600 11601 ASSERT(RW_WRITE_HELD(&ill->ill_ipst->ips_ill_g_lock)); 11602 11603 mutex_enter(&ill->ill_lock); 11604 ipifp = &ill->ill_ipif; 11605 for (; *ipifp != NULL; ipifp = &ipifp[0]->ipif_next) { 11606 if (*ipifp == ipif) { 11607 *ipifp = ipif->ipif_next; 11608 break; 11609 } 11610 } 11611 mutex_exit(&ill->ill_lock); 11612 } 11613 11614 /* 11615 * Allocate and initialize a new interface control structure. (Always 11616 * called as writer.) 11617 * When ipif_allocate() is called from ip_ll_subnet_defaults, the ill 11618 * is not part of the global linked list of ills. ipif_seqid is unique 11619 * in the system and to preserve the uniqueness, it is assigned only 11620 * when ill becomes part of the global list. At that point ill will 11621 * have a name. If it doesn't get assigned here, it will get assigned 11622 * in ipif_set_values() as part of SIOCSLIFNAME processing. 11623 * Aditionally, if we come here from ip_ll_subnet_defaults, we don't set 11624 * the interface flags or any other information from the DL_INFO_ACK for 11625 * DL_STYLE2 drivers (initialize == B_FALSE), since we won't have them at 11626 * this point. The flags etc. will be set in ip_ll_subnet_defaults when the 11627 * second DL_INFO_ACK comes in from the driver. 11628 */ 11629 static ipif_t * 11630 ipif_allocate(ill_t *ill, int id, uint_t ire_type, boolean_t initialize, 11631 boolean_t insert) 11632 { 11633 ipif_t *ipif; 11634 ip_stack_t *ipst = ill->ill_ipst; 11635 11636 ip1dbg(("ipif_allocate(%s:%d ill %p)\n", 11637 ill->ill_name, id, (void *)ill)); 11638 ASSERT(ire_type == IRE_LOOPBACK || IAM_WRITER_ILL(ill)); 11639 11640 if ((ipif = (ipif_t *)mi_alloc(sizeof (ipif_t), BPRI_MED)) == NULL) 11641 return (NULL); 11642 *ipif = ipif_zero; /* start clean */ 11643 11644 ipif->ipif_ill = ill; 11645 ipif->ipif_id = id; /* could be -1 */ 11646 /* 11647 * Inherit the zoneid from the ill; for the shared stack instance 11648 * this is always the global zone 11649 */ 11650 ipif->ipif_zoneid = ill->ill_zoneid; 11651 11652 ipif->ipif_refcnt = 0; 11653 11654 if (insert) { 11655 if (ipif_insert(ipif, ire_type != IRE_LOOPBACK) != 0) { 11656 mi_free(ipif); 11657 return (NULL); 11658 } 11659 /* -1 id should have been replaced by real id */ 11660 id = ipif->ipif_id; 11661 ASSERT(id >= 0); 11662 } 11663 11664 if (ill->ill_name[0] != '\0') 11665 ipif_assign_seqid(ipif); 11666 11667 /* 11668 * If this is the zeroth ipif on the IPMP ill, create the illgrp 11669 * (which must not exist yet because the zeroth ipif is created once 11670 * per ill). However, do not not link it to the ipmp_grp_t until 11671 * I_PLINK is called; see ip_sioctl_plink_ipmp() for details. 11672 */ 11673 if (id == 0 && IS_IPMP(ill)) { 11674 if (ipmp_illgrp_create(ill) == NULL) { 11675 if (insert) { 11676 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 11677 ipif_remove(ipif); 11678 rw_exit(&ipst->ips_ill_g_lock); 11679 } 11680 mi_free(ipif); 11681 return (NULL); 11682 } 11683 } 11684 11685 /* 11686 * We grab ill_lock to protect the flag changes. The ipif is still 11687 * not up and can't be looked up until the ioctl completes and the 11688 * IPIF_CHANGING flag is cleared. 11689 */ 11690 mutex_enter(&ill->ill_lock); 11691 11692 ipif->ipif_ire_type = ire_type; 11693 11694 if (ipif->ipif_isv6) { 11695 ill->ill_flags |= ILLF_IPV6; 11696 } else { 11697 ipaddr_t inaddr_any = INADDR_ANY; 11698 11699 ill->ill_flags |= ILLF_IPV4; 11700 11701 /* Keep the IN6_IS_ADDR_V4MAPPED assertions happy */ 11702 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 11703 &ipif->ipif_v6lcl_addr); 11704 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 11705 &ipif->ipif_v6subnet); 11706 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 11707 &ipif->ipif_v6net_mask); 11708 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 11709 &ipif->ipif_v6brd_addr); 11710 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 11711 &ipif->ipif_v6pp_dst_addr); 11712 } 11713 11714 /* 11715 * Don't set the interface flags etc. now, will do it in 11716 * ip_ll_subnet_defaults. 11717 */ 11718 if (!initialize) 11719 goto out; 11720 11721 /* 11722 * NOTE: The IPMP meta-interface is special-cased because it starts 11723 * with no underlying interfaces (and thus an unknown broadcast 11724 * address length), but all interfaces that can be placed into an IPMP 11725 * group are required to be broadcast-capable. 11726 */ 11727 if (ill->ill_bcast_addr_length != 0 || IS_IPMP(ill)) { 11728 /* 11729 * Later detect lack of DLPI driver multicast capability by 11730 * catching DL_ENABMULTI_REQ errors in ip_rput_dlpi(). 11731 */ 11732 ill->ill_flags |= ILLF_MULTICAST; 11733 if (!ipif->ipif_isv6) 11734 ipif->ipif_flags |= IPIF_BROADCAST; 11735 } else { 11736 if (ill->ill_net_type != IRE_LOOPBACK) { 11737 if (ipif->ipif_isv6) 11738 /* 11739 * Note: xresolv interfaces will eventually need 11740 * NOARP set here as well, but that will require 11741 * those external resolvers to have some 11742 * knowledge of that flag and act appropriately. 11743 * Not to be changed at present. 11744 */ 11745 ill->ill_flags |= ILLF_NONUD; 11746 else 11747 ill->ill_flags |= ILLF_NOARP; 11748 } 11749 if (ill->ill_phys_addr_length == 0) { 11750 if (IS_VNI(ill)) { 11751 ipif->ipif_flags |= IPIF_NOXMIT; 11752 } else { 11753 /* pt-pt supports multicast. */ 11754 ill->ill_flags |= ILLF_MULTICAST; 11755 if (ill->ill_net_type != IRE_LOOPBACK) 11756 ipif->ipif_flags |= IPIF_POINTOPOINT; 11757 } 11758 } 11759 } 11760 out: 11761 mutex_exit(&ill->ill_lock); 11762 return (ipif); 11763 } 11764 11765 /* 11766 * Remove the neighbor cache entries associated with this logical 11767 * interface. 11768 */ 11769 int 11770 ipif_arp_down(ipif_t *ipif) 11771 { 11772 ill_t *ill = ipif->ipif_ill; 11773 int err = 0; 11774 11775 ip1dbg(("ipif_arp_down(%s:%u)\n", ill->ill_name, ipif->ipif_id)); 11776 ASSERT(IAM_WRITER_IPIF(ipif)); 11777 11778 DTRACE_PROBE3(ipif__downup, char *, "ipif_arp_down", 11779 ill_t *, ill, ipif_t *, ipif); 11780 ipif_nce_down(ipif); 11781 11782 /* 11783 * If this is the last ipif that is going down and there are no 11784 * duplicate addresses we may yet attempt to re-probe, then we need to 11785 * clean up ARP completely. 11786 */ 11787 if (ill->ill_ipif_up_count == 0 && ill->ill_ipif_dup_count == 0 && 11788 !ill->ill_logical_down && ill->ill_net_type == IRE_IF_RESOLVER) { 11789 /* 11790 * If this was the last ipif on an IPMP interface, purge any 11791 * static ARP entries associated with it. 11792 */ 11793 if (IS_IPMP(ill)) 11794 ipmp_illgrp_refresh_arpent(ill->ill_grp); 11795 11796 /* UNBIND, DETACH */ 11797 err = arp_ll_down(ill); 11798 } 11799 11800 return (err); 11801 } 11802 11803 /* 11804 * Get the resolver set up for a new IP address. (Always called as writer.) 11805 * Called both for IPv4 and IPv6 interfaces, though it only does some 11806 * basic DAD related initialization for IPv6. Honors ILLF_NOARP. 11807 * 11808 * The enumerated value res_act tunes the behavior: 11809 * * Res_act_initial: set up all the resolver structures for a new 11810 * IP address. 11811 * * Res_act_defend: tell ARP that it needs to send a single gratuitous 11812 * ARP message in defense of the address. 11813 * * Res_act_rebind: tell ARP to change the hardware address for an IP 11814 * address (and issue gratuitous ARPs). Used by ipmp_ill_bind_ipif(). 11815 * 11816 * Returns zero on success, or an errno upon failure. 11817 */ 11818 int 11819 ipif_resolver_up(ipif_t *ipif, enum ip_resolver_action res_act) 11820 { 11821 ill_t *ill = ipif->ipif_ill; 11822 int err; 11823 boolean_t was_dup; 11824 11825 ip1dbg(("ipif_resolver_up(%s:%u) flags 0x%x\n", 11826 ill->ill_name, ipif->ipif_id, (uint_t)ipif->ipif_flags)); 11827 ASSERT(IAM_WRITER_IPIF(ipif)); 11828 11829 was_dup = B_FALSE; 11830 if (res_act == Res_act_initial) { 11831 ipif->ipif_addr_ready = 0; 11832 /* 11833 * We're bringing an interface up here. There's no way that we 11834 * should need to shut down ARP now. 11835 */ 11836 mutex_enter(&ill->ill_lock); 11837 if (ipif->ipif_flags & IPIF_DUPLICATE) { 11838 ipif->ipif_flags &= ~IPIF_DUPLICATE; 11839 ill->ill_ipif_dup_count--; 11840 was_dup = B_TRUE; 11841 } 11842 mutex_exit(&ill->ill_lock); 11843 } 11844 if (ipif->ipif_recovery_id != 0) 11845 (void) untimeout(ipif->ipif_recovery_id); 11846 ipif->ipif_recovery_id = 0; 11847 if (ill->ill_net_type != IRE_IF_RESOLVER) { 11848 ipif->ipif_addr_ready = 1; 11849 return (0); 11850 } 11851 /* NDP will set the ipif_addr_ready flag when it's ready */ 11852 if (ill->ill_isv6) 11853 return (0); 11854 11855 err = ipif_arp_up(ipif, res_act, was_dup); 11856 return (err); 11857 } 11858 11859 /* 11860 * This routine restarts IPv4/IPv6 duplicate address detection (DAD) 11861 * when a link has just gone back up. 11862 */ 11863 static void 11864 ipif_nce_start_dad(ipif_t *ipif) 11865 { 11866 ncec_t *ncec; 11867 ill_t *ill = ipif->ipif_ill; 11868 boolean_t isv6 = ill->ill_isv6; 11869 11870 if (isv6) { 11871 ncec = ncec_lookup_illgrp_v6(ipif->ipif_ill, 11872 &ipif->ipif_v6lcl_addr); 11873 } else { 11874 ipaddr_t v4addr; 11875 11876 if (ill->ill_net_type != IRE_IF_RESOLVER || 11877 (ipif->ipif_flags & IPIF_UNNUMBERED) || 11878 ipif->ipif_lcl_addr == INADDR_ANY) { 11879 /* 11880 * If we can't contact ARP for some reason, 11881 * that's not really a problem. Just send 11882 * out the routing socket notification that 11883 * DAD completion would have done, and continue. 11884 */ 11885 ipif_mask_reply(ipif); 11886 ipif_up_notify(ipif); 11887 ipif->ipif_addr_ready = 1; 11888 return; 11889 } 11890 11891 IN6_V4MAPPED_TO_IPADDR(&ipif->ipif_v6lcl_addr, v4addr); 11892 ncec = ncec_lookup_illgrp_v4(ipif->ipif_ill, &v4addr); 11893 } 11894 11895 if (ncec == NULL) { 11896 ip1dbg(("couldn't find ncec for ipif %p leaving !ready\n", 11897 (void *)ipif)); 11898 return; 11899 } 11900 if (!nce_restart_dad(ncec)) { 11901 /* 11902 * If we can't restart DAD for some reason, that's not really a 11903 * problem. Just send out the routing socket notification that 11904 * DAD completion would have done, and continue. 11905 */ 11906 ipif_up_notify(ipif); 11907 ipif->ipif_addr_ready = 1; 11908 } 11909 ncec_refrele(ncec); 11910 } 11911 11912 /* 11913 * Restart duplicate address detection on all interfaces on the given ill. 11914 * 11915 * This is called when an interface transitions from down to up 11916 * (DL_NOTE_LINK_UP) or up to down (DL_NOTE_LINK_DOWN). 11917 * 11918 * Note that since the underlying physical link has transitioned, we must cause 11919 * at least one routing socket message to be sent here, either via DAD 11920 * completion or just by default on the first ipif. (If we don't do this, then 11921 * in.mpathd will see long delays when doing link-based failure recovery.) 11922 */ 11923 void 11924 ill_restart_dad(ill_t *ill, boolean_t went_up) 11925 { 11926 ipif_t *ipif; 11927 11928 if (ill == NULL) 11929 return; 11930 11931 /* 11932 * If layer two doesn't support duplicate address detection, then just 11933 * send the routing socket message now and be done with it. 11934 */ 11935 if (!ill->ill_isv6 && arp_no_defense) { 11936 ip_rts_ifmsg(ill->ill_ipif, RTSQ_DEFAULT); 11937 return; 11938 } 11939 11940 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 11941 if (went_up) { 11942 11943 if (ipif->ipif_flags & IPIF_UP) { 11944 ipif_nce_start_dad(ipif); 11945 } else if (ipif->ipif_flags & IPIF_DUPLICATE) { 11946 /* 11947 * kick off the bring-up process now. 11948 */ 11949 ipif_do_recovery(ipif); 11950 } else { 11951 /* 11952 * Unfortunately, the first ipif is "special" 11953 * and represents the underlying ill in the 11954 * routing socket messages. Thus, when this 11955 * one ipif is down, we must still notify so 11956 * that the user knows the IFF_RUNNING status 11957 * change. (If the first ipif is up, then 11958 * we'll handle eventual routing socket 11959 * notification via DAD completion.) 11960 */ 11961 if (ipif == ill->ill_ipif) { 11962 ip_rts_ifmsg(ill->ill_ipif, 11963 RTSQ_DEFAULT); 11964 } 11965 } 11966 } else { 11967 /* 11968 * After link down, we'll need to send a new routing 11969 * message when the link comes back, so clear 11970 * ipif_addr_ready. 11971 */ 11972 ipif->ipif_addr_ready = 0; 11973 } 11974 } 11975 11976 /* 11977 * If we've torn down links, then notify the user right away. 11978 */ 11979 if (!went_up) 11980 ip_rts_ifmsg(ill->ill_ipif, RTSQ_DEFAULT); 11981 } 11982 11983 static void 11984 ipsq_delete(ipsq_t *ipsq) 11985 { 11986 ipxop_t *ipx = ipsq->ipsq_xop; 11987 11988 ipsq->ipsq_ipst = NULL; 11989 ASSERT(ipsq->ipsq_phyint == NULL); 11990 ASSERT(ipsq->ipsq_xop != NULL); 11991 ASSERT(ipsq->ipsq_xopq_mphead == NULL && ipx->ipx_mphead == NULL); 11992 ASSERT(ipx->ipx_pending_mp == NULL); 11993 kmem_free(ipsq, sizeof (ipsq_t)); 11994 } 11995 11996 static int 11997 ill_up_ipifs_on_ill(ill_t *ill, queue_t *q, mblk_t *mp) 11998 { 11999 int err = 0; 12000 ipif_t *ipif; 12001 12002 if (ill == NULL) 12003 return (0); 12004 12005 ASSERT(IAM_WRITER_ILL(ill)); 12006 ill->ill_up_ipifs = B_TRUE; 12007 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 12008 if (ipif->ipif_was_up) { 12009 if (!(ipif->ipif_flags & IPIF_UP)) 12010 err = ipif_up(ipif, q, mp); 12011 ipif->ipif_was_up = B_FALSE; 12012 if (err != 0) { 12013 ASSERT(err == EINPROGRESS); 12014 return (err); 12015 } 12016 } 12017 } 12018 ill->ill_up_ipifs = B_FALSE; 12019 return (0); 12020 } 12021 12022 /* 12023 * This function is called to bring up all the ipifs that were up before 12024 * bringing the ill down via ill_down_ipifs(). 12025 */ 12026 int 12027 ill_up_ipifs(ill_t *ill, queue_t *q, mblk_t *mp) 12028 { 12029 int err; 12030 12031 ASSERT(IAM_WRITER_ILL(ill)); 12032 12033 if (ill->ill_replumbing) { 12034 ill->ill_replumbing = 0; 12035 /* 12036 * Send down REPLUMB_DONE notification followed by the 12037 * BIND_REQ on the arp stream. 12038 */ 12039 if (!ill->ill_isv6) 12040 arp_send_replumb_conf(ill); 12041 } 12042 err = ill_up_ipifs_on_ill(ill->ill_phyint->phyint_illv4, q, mp); 12043 if (err != 0) 12044 return (err); 12045 12046 return (ill_up_ipifs_on_ill(ill->ill_phyint->phyint_illv6, q, mp)); 12047 } 12048 12049 /* 12050 * Bring down any IPIF_UP ipifs on ill. If "logical" is B_TRUE, we bring 12051 * down the ipifs without sending DL_UNBIND_REQ to the driver. 12052 */ 12053 static void 12054 ill_down_ipifs(ill_t *ill, boolean_t logical) 12055 { 12056 ipif_t *ipif; 12057 12058 ASSERT(IAM_WRITER_ILL(ill)); 12059 12060 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 12061 /* 12062 * We go through the ipif_down logic even if the ipif 12063 * is already down, since routes can be added based 12064 * on down ipifs. Going through ipif_down once again 12065 * will delete any IREs created based on these routes. 12066 */ 12067 if (ipif->ipif_flags & IPIF_UP) 12068 ipif->ipif_was_up = B_TRUE; 12069 12070 if (logical) { 12071 (void) ipif_logical_down(ipif, NULL, NULL); 12072 ipif_non_duplicate(ipif); 12073 (void) ipif_down_tail(ipif); 12074 } else { 12075 (void) ipif_down(ipif, NULL, NULL); 12076 } 12077 } 12078 } 12079 12080 /* 12081 * Redo source address selection. This makes IXAF_VERIFY_SOURCE take 12082 * a look again at valid source addresses. 12083 * This should be called each time after the set of source addresses has been 12084 * changed. 12085 */ 12086 void 12087 ip_update_source_selection(ip_stack_t *ipst) 12088 { 12089 /* We skip past SRC_GENERATION_VERIFY */ 12090 if (atomic_add_32_nv(&ipst->ips_src_generation, 1) == 12091 SRC_GENERATION_VERIFY) 12092 atomic_add_32(&ipst->ips_src_generation, 1); 12093 } 12094 12095 /* 12096 * Finish the group join started in ip_sioctl_groupname(). 12097 */ 12098 /* ARGSUSED */ 12099 static void 12100 ip_join_illgrps(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy) 12101 { 12102 ill_t *ill = q->q_ptr; 12103 phyint_t *phyi = ill->ill_phyint; 12104 ipmp_grp_t *grp = phyi->phyint_grp; 12105 ip_stack_t *ipst = ill->ill_ipst; 12106 12107 /* IS_UNDER_IPMP() won't work until ipmp_ill_join_illgrp() is called */ 12108 ASSERT(!IS_IPMP(ill) && grp != NULL); 12109 ASSERT(IAM_WRITER_IPSQ(ipsq)); 12110 12111 if (phyi->phyint_illv4 != NULL) { 12112 rw_enter(&ipst->ips_ipmp_lock, RW_WRITER); 12113 VERIFY(grp->gr_pendv4-- > 0); 12114 rw_exit(&ipst->ips_ipmp_lock); 12115 ipmp_ill_join_illgrp(phyi->phyint_illv4, grp->gr_v4); 12116 } 12117 if (phyi->phyint_illv6 != NULL) { 12118 rw_enter(&ipst->ips_ipmp_lock, RW_WRITER); 12119 VERIFY(grp->gr_pendv6-- > 0); 12120 rw_exit(&ipst->ips_ipmp_lock); 12121 ipmp_ill_join_illgrp(phyi->phyint_illv6, grp->gr_v6); 12122 } 12123 freemsg(mp); 12124 } 12125 12126 /* 12127 * Process an SIOCSLIFGROUPNAME request. 12128 */ 12129 /* ARGSUSED */ 12130 int 12131 ip_sioctl_groupname(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12132 ip_ioctl_cmd_t *ipip, void *ifreq) 12133 { 12134 struct lifreq *lifr = ifreq; 12135 ill_t *ill = ipif->ipif_ill; 12136 ip_stack_t *ipst = ill->ill_ipst; 12137 phyint_t *phyi = ill->ill_phyint; 12138 ipmp_grp_t *grp = phyi->phyint_grp; 12139 mblk_t *ipsq_mp; 12140 int err = 0; 12141 12142 /* 12143 * Note that phyint_grp can only change here, where we're exclusive. 12144 */ 12145 ASSERT(IAM_WRITER_ILL(ill)); 12146 12147 if (ipif->ipif_id != 0 || ill->ill_usesrc_grp_next != NULL || 12148 (phyi->phyint_flags & PHYI_VIRTUAL)) 12149 return (EINVAL); 12150 12151 lifr->lifr_groupname[LIFGRNAMSIZ - 1] = '\0'; 12152 12153 rw_enter(&ipst->ips_ipmp_lock, RW_WRITER); 12154 12155 /* 12156 * If the name hasn't changed, there's nothing to do. 12157 */ 12158 if (grp != NULL && strcmp(grp->gr_name, lifr->lifr_groupname) == 0) 12159 goto unlock; 12160 12161 /* 12162 * Handle requests to rename an IPMP meta-interface. 12163 * 12164 * Note that creation of the IPMP meta-interface is handled in 12165 * userland through the standard plumbing sequence. As part of the 12166 * plumbing the IPMP meta-interface, its initial groupname is set to 12167 * the name of the interface (see ipif_set_values_tail()). 12168 */ 12169 if (IS_IPMP(ill)) { 12170 err = ipmp_grp_rename(grp, lifr->lifr_groupname); 12171 goto unlock; 12172 } 12173 12174 /* 12175 * Handle requests to add or remove an IP interface from a group. 12176 */ 12177 if (lifr->lifr_groupname[0] != '\0') { /* add */ 12178 /* 12179 * Moves are handled by first removing the interface from 12180 * its existing group, and then adding it to another group. 12181 * So, fail if it's already in a group. 12182 */ 12183 if (IS_UNDER_IPMP(ill)) { 12184 err = EALREADY; 12185 goto unlock; 12186 } 12187 12188 grp = ipmp_grp_lookup(lifr->lifr_groupname, ipst); 12189 if (grp == NULL) { 12190 err = ENOENT; 12191 goto unlock; 12192 } 12193 12194 /* 12195 * Check if the phyint and its ills are suitable for 12196 * inclusion into the group. 12197 */ 12198 if ((err = ipmp_grp_vet_phyint(grp, phyi)) != 0) 12199 goto unlock; 12200 12201 /* 12202 * Checks pass; join the group, and enqueue the remaining 12203 * illgrp joins for when we've become part of the group xop 12204 * and are exclusive across its IPSQs. Since qwriter_ip() 12205 * requires an mblk_t to scribble on, and since `mp' will be 12206 * freed as part of completing the ioctl, allocate another. 12207 */ 12208 if ((ipsq_mp = allocb(0, BPRI_MED)) == NULL) { 12209 err = ENOMEM; 12210 goto unlock; 12211 } 12212 12213 /* 12214 * Before we drop ipmp_lock, bump gr_pend* to ensure that the 12215 * IPMP meta-interface ills needed by `phyi' cannot go away 12216 * before ip_join_illgrps() is called back. See the comments 12217 * in ip_sioctl_plink_ipmp() for more. 12218 */ 12219 if (phyi->phyint_illv4 != NULL) 12220 grp->gr_pendv4++; 12221 if (phyi->phyint_illv6 != NULL) 12222 grp->gr_pendv6++; 12223 12224 rw_exit(&ipst->ips_ipmp_lock); 12225 12226 ipmp_phyint_join_grp(phyi, grp); 12227 ill_refhold(ill); 12228 qwriter_ip(ill, ill->ill_rq, ipsq_mp, ip_join_illgrps, 12229 SWITCH_OP, B_FALSE); 12230 return (0); 12231 } else { 12232 /* 12233 * Request to remove the interface from a group. If the 12234 * interface is not in a group, this trivially succeeds. 12235 */ 12236 rw_exit(&ipst->ips_ipmp_lock); 12237 if (IS_UNDER_IPMP(ill)) 12238 ipmp_phyint_leave_grp(phyi); 12239 return (0); 12240 } 12241 unlock: 12242 rw_exit(&ipst->ips_ipmp_lock); 12243 return (err); 12244 } 12245 12246 /* 12247 * Process an SIOCGLIFBINDING request. 12248 */ 12249 /* ARGSUSED */ 12250 int 12251 ip_sioctl_get_binding(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12252 ip_ioctl_cmd_t *ipip, void *ifreq) 12253 { 12254 ill_t *ill; 12255 struct lifreq *lifr = ifreq; 12256 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 12257 12258 if (!IS_IPMP(ipif->ipif_ill)) 12259 return (EINVAL); 12260 12261 rw_enter(&ipst->ips_ipmp_lock, RW_READER); 12262 if ((ill = ipif->ipif_bound_ill) == NULL) 12263 lifr->lifr_binding[0] = '\0'; 12264 else 12265 (void) strlcpy(lifr->lifr_binding, ill->ill_name, LIFNAMSIZ); 12266 rw_exit(&ipst->ips_ipmp_lock); 12267 return (0); 12268 } 12269 12270 /* 12271 * Process an SIOCGLIFGROUPNAME request. 12272 */ 12273 /* ARGSUSED */ 12274 int 12275 ip_sioctl_get_groupname(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12276 ip_ioctl_cmd_t *ipip, void *ifreq) 12277 { 12278 ipmp_grp_t *grp; 12279 struct lifreq *lifr = ifreq; 12280 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 12281 12282 rw_enter(&ipst->ips_ipmp_lock, RW_READER); 12283 if ((grp = ipif->ipif_ill->ill_phyint->phyint_grp) == NULL) 12284 lifr->lifr_groupname[0] = '\0'; 12285 else 12286 (void) strlcpy(lifr->lifr_groupname, grp->gr_name, LIFGRNAMSIZ); 12287 rw_exit(&ipst->ips_ipmp_lock); 12288 return (0); 12289 } 12290 12291 /* 12292 * Process an SIOCGLIFGROUPINFO request. 12293 */ 12294 /* ARGSUSED */ 12295 int 12296 ip_sioctl_groupinfo(ipif_t *dummy_ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12297 ip_ioctl_cmd_t *ipip, void *dummy) 12298 { 12299 ipmp_grp_t *grp; 12300 lifgroupinfo_t *lifgr; 12301 ip_stack_t *ipst = CONNQ_TO_IPST(q); 12302 12303 /* ip_wput_nondata() verified mp->b_cont->b_cont */ 12304 lifgr = (lifgroupinfo_t *)mp->b_cont->b_cont->b_rptr; 12305 lifgr->gi_grname[LIFGRNAMSIZ - 1] = '\0'; 12306 12307 rw_enter(&ipst->ips_ipmp_lock, RW_READER); 12308 if ((grp = ipmp_grp_lookup(lifgr->gi_grname, ipst)) == NULL) { 12309 rw_exit(&ipst->ips_ipmp_lock); 12310 return (ENOENT); 12311 } 12312 ipmp_grp_info(grp, lifgr); 12313 rw_exit(&ipst->ips_ipmp_lock); 12314 return (0); 12315 } 12316 12317 static void 12318 ill_dl_down(ill_t *ill) 12319 { 12320 DTRACE_PROBE2(ill__downup, char *, "ill_dl_down", ill_t *, ill); 12321 12322 /* 12323 * The ill is down; unbind but stay attached since we're still 12324 * associated with a PPA. If we have negotiated DLPI capabilites 12325 * with the data link service provider (IDS_OK) then reset them. 12326 * The interval between unbinding and rebinding is potentially 12327 * unbounded hence we cannot assume things will be the same. 12328 * The DLPI capabilities will be probed again when the data link 12329 * is brought up. 12330 */ 12331 mblk_t *mp = ill->ill_unbind_mp; 12332 12333 ip1dbg(("ill_dl_down(%s)\n", ill->ill_name)); 12334 12335 if (!ill->ill_replumbing) { 12336 /* Free all ilms for this ill */ 12337 update_conn_ill(ill, ill->ill_ipst); 12338 } else { 12339 ill_leave_multicast(ill); 12340 } 12341 12342 ill->ill_unbind_mp = NULL; 12343 if (mp != NULL) { 12344 ip1dbg(("ill_dl_down: %s (%u) for %s\n", 12345 dl_primstr(*(int *)mp->b_rptr), *(int *)mp->b_rptr, 12346 ill->ill_name)); 12347 mutex_enter(&ill->ill_lock); 12348 ill->ill_state_flags |= ILL_DL_UNBIND_IN_PROGRESS; 12349 mutex_exit(&ill->ill_lock); 12350 /* 12351 * ip_rput does not pass up normal (M_PROTO) DLPI messages 12352 * after ILL_CONDEMNED is set. So in the unplumb case, we call 12353 * ill_capability_dld_disable disable rightaway. If this is not 12354 * an unplumb operation then the disable happens on receipt of 12355 * the capab ack via ip_rput_dlpi_writer -> 12356 * ill_capability_ack_thr. In both cases the order of 12357 * the operations seen by DLD is capability disable followed 12358 * by DL_UNBIND. Also the DLD capability disable needs a 12359 * cv_wait'able context. 12360 */ 12361 if (ill->ill_state_flags & ILL_CONDEMNED) 12362 ill_capability_dld_disable(ill); 12363 ill_capability_reset(ill, B_FALSE); 12364 ill_dlpi_send(ill, mp); 12365 } 12366 mutex_enter(&ill->ill_lock); 12367 ill->ill_dl_up = 0; 12368 ill_nic_event_dispatch(ill, 0, NE_DOWN, NULL, 0); 12369 mutex_exit(&ill->ill_lock); 12370 } 12371 12372 void 12373 ill_dlpi_dispatch(ill_t *ill, mblk_t *mp) 12374 { 12375 union DL_primitives *dlp; 12376 t_uscalar_t prim; 12377 boolean_t waitack = B_FALSE; 12378 12379 ASSERT(DB_TYPE(mp) == M_PROTO || DB_TYPE(mp) == M_PCPROTO); 12380 12381 dlp = (union DL_primitives *)mp->b_rptr; 12382 prim = dlp->dl_primitive; 12383 12384 ip1dbg(("ill_dlpi_dispatch: sending %s (%u) to %s\n", 12385 dl_primstr(prim), prim, ill->ill_name)); 12386 12387 switch (prim) { 12388 case DL_PHYS_ADDR_REQ: 12389 { 12390 dl_phys_addr_req_t *dlpap = (dl_phys_addr_req_t *)mp->b_rptr; 12391 ill->ill_phys_addr_pend = dlpap->dl_addr_type; 12392 break; 12393 } 12394 case DL_BIND_REQ: 12395 mutex_enter(&ill->ill_lock); 12396 ill->ill_state_flags &= ~ILL_DL_UNBIND_IN_PROGRESS; 12397 mutex_exit(&ill->ill_lock); 12398 break; 12399 } 12400 12401 /* 12402 * Except for the ACKs for the M_PCPROTO messages, all other ACKs 12403 * are dropped by ip_rput() if ILL_CONDEMNED is set. Therefore 12404 * we only wait for the ACK of the DL_UNBIND_REQ. 12405 */ 12406 mutex_enter(&ill->ill_lock); 12407 if (!(ill->ill_state_flags & ILL_CONDEMNED) || 12408 (prim == DL_UNBIND_REQ)) { 12409 ill->ill_dlpi_pending = prim; 12410 waitack = B_TRUE; 12411 } 12412 12413 mutex_exit(&ill->ill_lock); 12414 DTRACE_PROBE3(ill__dlpi, char *, "ill_dlpi_dispatch", 12415 char *, dl_primstr(prim), ill_t *, ill); 12416 putnext(ill->ill_wq, mp); 12417 12418 /* 12419 * There is no ack for DL_NOTIFY_CONF messages 12420 */ 12421 if (waitack && prim == DL_NOTIFY_CONF) 12422 ill_dlpi_done(ill, prim); 12423 } 12424 12425 /* 12426 * Helper function for ill_dlpi_send(). 12427 */ 12428 /* ARGSUSED */ 12429 static void 12430 ill_dlpi_send_writer(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *arg) 12431 { 12432 ill_dlpi_send(q->q_ptr, mp); 12433 } 12434 12435 /* 12436 * Send a DLPI control message to the driver but make sure there 12437 * is only one outstanding message. Uses ill_dlpi_pending to tell 12438 * when it must queue. ip_rput_dlpi_writer calls ill_dlpi_done() 12439 * when an ACK or a NAK is received to process the next queued message. 12440 */ 12441 void 12442 ill_dlpi_send(ill_t *ill, mblk_t *mp) 12443 { 12444 mblk_t **mpp; 12445 12446 ASSERT(DB_TYPE(mp) == M_PROTO || DB_TYPE(mp) == M_PCPROTO); 12447 12448 /* 12449 * To ensure that any DLPI requests for current exclusive operation 12450 * are always completely sent before any DLPI messages for other 12451 * operations, require writer access before enqueuing. 12452 */ 12453 if (!IAM_WRITER_ILL(ill)) { 12454 ill_refhold(ill); 12455 /* qwriter_ip() does the ill_refrele() */ 12456 qwriter_ip(ill, ill->ill_wq, mp, ill_dlpi_send_writer, 12457 NEW_OP, B_TRUE); 12458 return; 12459 } 12460 12461 mutex_enter(&ill->ill_lock); 12462 if (ill->ill_dlpi_pending != DL_PRIM_INVAL) { 12463 /* Must queue message. Tail insertion */ 12464 mpp = &ill->ill_dlpi_deferred; 12465 while (*mpp != NULL) 12466 mpp = &((*mpp)->b_next); 12467 12468 ip1dbg(("ill_dlpi_send: deferring request for %s " 12469 "while %s pending\n", ill->ill_name, 12470 dl_primstr(ill->ill_dlpi_pending))); 12471 12472 *mpp = mp; 12473 mutex_exit(&ill->ill_lock); 12474 return; 12475 } 12476 mutex_exit(&ill->ill_lock); 12477 ill_dlpi_dispatch(ill, mp); 12478 } 12479 12480 void 12481 ill_capability_send(ill_t *ill, mblk_t *mp) 12482 { 12483 ill->ill_capab_pending_cnt++; 12484 ill_dlpi_send(ill, mp); 12485 } 12486 12487 void 12488 ill_capability_done(ill_t *ill) 12489 { 12490 ASSERT(ill->ill_capab_pending_cnt != 0); 12491 12492 ill_dlpi_done(ill, DL_CAPABILITY_REQ); 12493 12494 ill->ill_capab_pending_cnt--; 12495 if (ill->ill_capab_pending_cnt == 0 && 12496 ill->ill_dlpi_capab_state == IDCS_OK) 12497 ill_capability_reset_alloc(ill); 12498 } 12499 12500 /* 12501 * Send all deferred DLPI messages without waiting for their ACKs. 12502 */ 12503 void 12504 ill_dlpi_send_deferred(ill_t *ill) 12505 { 12506 mblk_t *mp, *nextmp; 12507 12508 /* 12509 * Clear ill_dlpi_pending so that the message is not queued in 12510 * ill_dlpi_send(). 12511 */ 12512 mutex_enter(&ill->ill_lock); 12513 ill->ill_dlpi_pending = DL_PRIM_INVAL; 12514 mp = ill->ill_dlpi_deferred; 12515 ill->ill_dlpi_deferred = NULL; 12516 mutex_exit(&ill->ill_lock); 12517 12518 for (; mp != NULL; mp = nextmp) { 12519 nextmp = mp->b_next; 12520 mp->b_next = NULL; 12521 ill_dlpi_send(ill, mp); 12522 } 12523 } 12524 12525 /* 12526 * Check if the DLPI primitive `prim' is pending; print a warning if not. 12527 */ 12528 boolean_t 12529 ill_dlpi_pending(ill_t *ill, t_uscalar_t prim) 12530 { 12531 t_uscalar_t pending; 12532 12533 mutex_enter(&ill->ill_lock); 12534 if (ill->ill_dlpi_pending == prim) { 12535 mutex_exit(&ill->ill_lock); 12536 return (B_TRUE); 12537 } 12538 12539 /* 12540 * During teardown, ill_dlpi_dispatch() will send DLPI requests 12541 * without waiting, so don't print any warnings in that case. 12542 */ 12543 if (ill->ill_state_flags & ILL_CONDEMNED) { 12544 mutex_exit(&ill->ill_lock); 12545 return (B_FALSE); 12546 } 12547 pending = ill->ill_dlpi_pending; 12548 mutex_exit(&ill->ill_lock); 12549 12550 if (pending == DL_PRIM_INVAL) { 12551 (void) mi_strlog(ill->ill_rq, 1, SL_CONSOLE|SL_ERROR|SL_TRACE, 12552 "received unsolicited ack for %s on %s\n", 12553 dl_primstr(prim), ill->ill_name); 12554 } else { 12555 (void) mi_strlog(ill->ill_rq, 1, SL_CONSOLE|SL_ERROR|SL_TRACE, 12556 "received unexpected ack for %s on %s (expecting %s)\n", 12557 dl_primstr(prim), ill->ill_name, dl_primstr(pending)); 12558 } 12559 return (B_FALSE); 12560 } 12561 12562 /* 12563 * Complete the current DLPI operation associated with `prim' on `ill' and 12564 * start the next queued DLPI operation (if any). If there are no queued DLPI 12565 * operations and the ill's current exclusive IPSQ operation has finished 12566 * (i.e., ipsq_current_finish() was called), then clear ipsq_current_ipif to 12567 * allow the next exclusive IPSQ operation to begin upon ipsq_exit(). See 12568 * the comments above ipsq_current_finish() for details. 12569 */ 12570 void 12571 ill_dlpi_done(ill_t *ill, t_uscalar_t prim) 12572 { 12573 mblk_t *mp; 12574 ipsq_t *ipsq = ill->ill_phyint->phyint_ipsq; 12575 ipxop_t *ipx = ipsq->ipsq_xop; 12576 12577 ASSERT(IAM_WRITER_IPSQ(ipsq)); 12578 mutex_enter(&ill->ill_lock); 12579 12580 ASSERT(prim != DL_PRIM_INVAL); 12581 ASSERT(ill->ill_dlpi_pending == prim); 12582 12583 ip1dbg(("ill_dlpi_done: %s has completed %s (%u)\n", ill->ill_name, 12584 dl_primstr(ill->ill_dlpi_pending), ill->ill_dlpi_pending)); 12585 12586 if ((mp = ill->ill_dlpi_deferred) == NULL) { 12587 ill->ill_dlpi_pending = DL_PRIM_INVAL; 12588 if (ipx->ipx_current_done) { 12589 mutex_enter(&ipx->ipx_lock); 12590 ipx->ipx_current_ipif = NULL; 12591 mutex_exit(&ipx->ipx_lock); 12592 } 12593 cv_signal(&ill->ill_cv); 12594 mutex_exit(&ill->ill_lock); 12595 return; 12596 } 12597 12598 ill->ill_dlpi_deferred = mp->b_next; 12599 mp->b_next = NULL; 12600 mutex_exit(&ill->ill_lock); 12601 12602 ill_dlpi_dispatch(ill, mp); 12603 } 12604 12605 /* 12606 * Queue a (multicast) DLPI control message to be sent to the driver by 12607 * later calling ill_dlpi_send_queued. 12608 * We queue them while holding a lock (ill_mcast_lock) to ensure that they 12609 * are sent in order i.e., prevent a DL_DISABMULTI_REQ and DL_ENABMULTI_REQ 12610 * for the same group to race. 12611 * We send DLPI control messages in order using ill_lock. 12612 * For IPMP we should be called on the cast_ill. 12613 */ 12614 void 12615 ill_dlpi_queue(ill_t *ill, mblk_t *mp) 12616 { 12617 mblk_t **mpp; 12618 12619 ASSERT(DB_TYPE(mp) == M_PROTO || DB_TYPE(mp) == M_PCPROTO); 12620 12621 mutex_enter(&ill->ill_lock); 12622 /* Must queue message. Tail insertion */ 12623 mpp = &ill->ill_dlpi_deferred; 12624 while (*mpp != NULL) 12625 mpp = &((*mpp)->b_next); 12626 12627 *mpp = mp; 12628 mutex_exit(&ill->ill_lock); 12629 } 12630 12631 /* 12632 * Send the messages that were queued. Make sure there is only 12633 * one outstanding message. ip_rput_dlpi_writer calls ill_dlpi_done() 12634 * when an ACK or a NAK is received to process the next queued message. 12635 * For IPMP we are called on the upper ill, but when send what is queued 12636 * on the cast_ill. 12637 */ 12638 void 12639 ill_dlpi_send_queued(ill_t *ill) 12640 { 12641 mblk_t *mp; 12642 union DL_primitives *dlp; 12643 t_uscalar_t prim; 12644 ill_t *release_ill = NULL; 12645 12646 if (IS_IPMP(ill)) { 12647 /* On the upper IPMP ill. */ 12648 release_ill = ipmp_illgrp_hold_cast_ill(ill->ill_grp); 12649 if (release_ill == NULL) { 12650 /* Avoid ever sending anything down to the ipmpstub */ 12651 return; 12652 } 12653 ill = release_ill; 12654 } 12655 mutex_enter(&ill->ill_lock); 12656 while ((mp = ill->ill_dlpi_deferred) != NULL) { 12657 if (ill->ill_dlpi_pending != DL_PRIM_INVAL) { 12658 /* Can't send. Somebody else will send it */ 12659 mutex_exit(&ill->ill_lock); 12660 goto done; 12661 } 12662 ill->ill_dlpi_deferred = mp->b_next; 12663 mp->b_next = NULL; 12664 if (!ill->ill_dl_up) { 12665 /* 12666 * Nobody there. All multicast addresses will be 12667 * re-joined when we get the DL_BIND_ACK bringing the 12668 * interface up. 12669 */ 12670 freemsg(mp); 12671 continue; 12672 } 12673 dlp = (union DL_primitives *)mp->b_rptr; 12674 prim = dlp->dl_primitive; 12675 12676 if (!(ill->ill_state_flags & ILL_CONDEMNED) || 12677 (prim == DL_UNBIND_REQ)) { 12678 ill->ill_dlpi_pending = prim; 12679 } 12680 mutex_exit(&ill->ill_lock); 12681 12682 DTRACE_PROBE3(ill__dlpi, char *, "ill_dlpi_send_queued", 12683 char *, dl_primstr(prim), ill_t *, ill); 12684 putnext(ill->ill_wq, mp); 12685 mutex_enter(&ill->ill_lock); 12686 } 12687 mutex_exit(&ill->ill_lock); 12688 done: 12689 if (release_ill != NULL) 12690 ill_refrele(release_ill); 12691 } 12692 12693 /* 12694 * Queue an IP (IGMP/MLD) message to be sent by IP from 12695 * ill_mcast_send_queued 12696 * We queue them while holding a lock (ill_mcast_lock) to ensure that they 12697 * are sent in order i.e., prevent a IGMP leave and IGMP join for the same 12698 * group to race. 12699 * We send them in order using ill_lock. 12700 * For IPMP we are called on the upper ill, but we queue on the cast_ill. 12701 */ 12702 void 12703 ill_mcast_queue(ill_t *ill, mblk_t *mp) 12704 { 12705 mblk_t **mpp; 12706 ill_t *release_ill = NULL; 12707 12708 ASSERT(RW_LOCK_HELD(&ill->ill_mcast_lock)); 12709 12710 if (IS_IPMP(ill)) { 12711 /* On the upper IPMP ill. */ 12712 release_ill = ipmp_illgrp_hold_cast_ill(ill->ill_grp); 12713 if (release_ill == NULL) { 12714 /* Discard instead of queuing for the ipmp interface */ 12715 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 12716 ip_drop_output("ipIfStatsOutDiscards - no cast_ill", 12717 mp, ill); 12718 freemsg(mp); 12719 return; 12720 } 12721 ill = release_ill; 12722 } 12723 12724 mutex_enter(&ill->ill_lock); 12725 /* Must queue message. Tail insertion */ 12726 mpp = &ill->ill_mcast_deferred; 12727 while (*mpp != NULL) 12728 mpp = &((*mpp)->b_next); 12729 12730 *mpp = mp; 12731 mutex_exit(&ill->ill_lock); 12732 if (release_ill != NULL) 12733 ill_refrele(release_ill); 12734 } 12735 12736 /* 12737 * Send the IP packets that were queued by ill_mcast_queue. 12738 * These are IGMP/MLD packets. 12739 * 12740 * For IPMP we are called on the upper ill, but when send what is queued 12741 * on the cast_ill. 12742 * 12743 * Request loopback of the report if we are acting as a multicast 12744 * router, so that the process-level routing demon can hear it. 12745 * This will run multiple times for the same group if there are members 12746 * on the same group for multiple ipif's on the same ill. The 12747 * igmp_input/mld_input code will suppress this due to the loopback thus we 12748 * always loopback membership report. 12749 * 12750 * We also need to make sure that this does not get load balanced 12751 * by IPMP. We do this by passing an ill to ip_output_simple. 12752 */ 12753 void 12754 ill_mcast_send_queued(ill_t *ill) 12755 { 12756 mblk_t *mp; 12757 ip_xmit_attr_t ixas; 12758 ill_t *release_ill = NULL; 12759 12760 if (IS_IPMP(ill)) { 12761 /* On the upper IPMP ill. */ 12762 release_ill = ipmp_illgrp_hold_cast_ill(ill->ill_grp); 12763 if (release_ill == NULL) { 12764 /* 12765 * We should have no messages on the ipmp interface 12766 * but no point in trying to send them. 12767 */ 12768 return; 12769 } 12770 ill = release_ill; 12771 } 12772 bzero(&ixas, sizeof (ixas)); 12773 ixas.ixa_zoneid = ALL_ZONES; 12774 ixas.ixa_cred = kcred; 12775 ixas.ixa_cpid = NOPID; 12776 ixas.ixa_tsl = NULL; 12777 /* 12778 * Here we set ixa_ifindex. If IPMP it will be the lower ill which 12779 * makes ip_select_route pick the IRE_MULTICAST for the cast_ill. 12780 * That is necessary to handle IGMP/MLD snooping switches. 12781 */ 12782 ixas.ixa_ifindex = ill->ill_phyint->phyint_ifindex; 12783 ixas.ixa_ipst = ill->ill_ipst; 12784 12785 mutex_enter(&ill->ill_lock); 12786 while ((mp = ill->ill_mcast_deferred) != NULL) { 12787 ill->ill_mcast_deferred = mp->b_next; 12788 mp->b_next = NULL; 12789 if (!ill->ill_dl_up) { 12790 /* 12791 * Nobody there. Just drop the ip packets. 12792 * IGMP/MLD will resend later, if this is a replumb. 12793 */ 12794 freemsg(mp); 12795 continue; 12796 } 12797 mutex_enter(&ill->ill_phyint->phyint_lock); 12798 if (IS_UNDER_IPMP(ill) && !ipmp_ill_is_active(ill)) { 12799 /* 12800 * When the ill is getting deactivated, we only want to 12801 * send the DLPI messages, so drop IGMP/MLD packets. 12802 * DLPI messages are handled by ill_dlpi_send_queued() 12803 */ 12804 mutex_exit(&ill->ill_phyint->phyint_lock); 12805 freemsg(mp); 12806 continue; 12807 } 12808 mutex_exit(&ill->ill_phyint->phyint_lock); 12809 mutex_exit(&ill->ill_lock); 12810 12811 /* Check whether we are sending IPv4 or IPv6. */ 12812 if (ill->ill_isv6) { 12813 ip6_t *ip6h = (ip6_t *)mp->b_rptr; 12814 12815 ixas.ixa_multicast_ttl = ip6h->ip6_hops; 12816 ixas.ixa_flags = IXAF_BASIC_SIMPLE_V6; 12817 } else { 12818 ipha_t *ipha = (ipha_t *)mp->b_rptr; 12819 12820 ixas.ixa_multicast_ttl = ipha->ipha_ttl; 12821 ixas.ixa_flags = IXAF_BASIC_SIMPLE_V4; 12822 ixas.ixa_flags &= ~IXAF_SET_ULP_CKSUM; 12823 } 12824 12825 ixas.ixa_flags |= IXAF_MULTICAST_LOOP | IXAF_SET_SOURCE; 12826 (void) ip_output_simple(mp, &ixas); 12827 ixa_cleanup(&ixas); 12828 12829 mutex_enter(&ill->ill_lock); 12830 } 12831 mutex_exit(&ill->ill_lock); 12832 12833 done: 12834 if (release_ill != NULL) 12835 ill_refrele(release_ill); 12836 } 12837 12838 /* 12839 * Take down a specific interface, but don't lose any information about it. 12840 * (Always called as writer.) 12841 * This function goes through the down sequence even if the interface is 12842 * already down. There are 2 reasons. 12843 * a. Currently we permit interface routes that depend on down interfaces 12844 * to be added. This behaviour itself is questionable. However it appears 12845 * that both Solaris and 4.3 BSD have exhibited this behaviour for a long 12846 * time. We go thru the cleanup in order to remove these routes. 12847 * b. The bringup of the interface could fail in ill_dl_up i.e. we get 12848 * DL_ERROR_ACK in response to the DL_BIND request. The interface is 12849 * down, but we need to cleanup i.e. do ill_dl_down and 12850 * ip_rput_dlpi_writer (DL_ERROR_ACK) -> ipif_down. 12851 * 12852 * IP-MT notes: 12853 * 12854 * Model of reference to interfaces. 12855 * 12856 * The following members in ipif_t track references to the ipif. 12857 * int ipif_refcnt; Active reference count 12858 * 12859 * The following members in ill_t track references to the ill. 12860 * int ill_refcnt; active refcnt 12861 * uint_t ill_ire_cnt; Number of ires referencing ill 12862 * uint_t ill_ncec_cnt; Number of ncecs referencing ill 12863 * uint_t ill_nce_cnt; Number of nces referencing ill 12864 * uint_t ill_ilm_cnt; Number of ilms referencing ill 12865 * 12866 * Reference to an ipif or ill can be obtained in any of the following ways. 12867 * 12868 * Through the lookup functions ipif_lookup_* / ill_lookup_* functions 12869 * Pointers to ipif / ill from other data structures viz ire and conn. 12870 * Implicit reference to the ipif / ill by holding a reference to the ire. 12871 * 12872 * The ipif/ill lookup functions return a reference held ipif / ill. 12873 * ipif_refcnt and ill_refcnt track the reference counts respectively. 12874 * This is a purely dynamic reference count associated with threads holding 12875 * references to the ipif / ill. Pointers from other structures do not 12876 * count towards this reference count. 12877 * 12878 * ill_ire_cnt is the number of ire's associated with the 12879 * ill. This is incremented whenever a new ire is created referencing the 12880 * ill. This is done atomically inside ire_add_v[46] where the ire is 12881 * actually added to the ire hash table. The count is decremented in 12882 * ire_inactive where the ire is destroyed. 12883 * 12884 * ill_ncec_cnt is the number of ncec's referencing the ill thru ncec_ill. 12885 * This is incremented atomically in 12886 * ndp_add_v4()/ndp_add_v6() where the nce is actually added to the 12887 * table. Similarly it is decremented in ncec_inactive() where the ncec 12888 * is destroyed. 12889 * 12890 * ill_nce_cnt is the number of nce's referencing the ill thru nce_ill. This is 12891 * incremented atomically in nce_add() where the nce is actually added to the 12892 * ill_nce. Similarly it is decremented in nce_inactive() where the nce 12893 * is destroyed. 12894 * 12895 * ill_ilm_cnt is the ilm's reference to the ill. It is incremented in 12896 * ilm_add() and decremented before the ilm is freed in ilm_delete(). 12897 * 12898 * Flow of ioctls involving interface down/up 12899 * 12900 * The following is the sequence of an attempt to set some critical flags on an 12901 * up interface. 12902 * ip_sioctl_flags 12903 * ipif_down 12904 * wait for ipif to be quiescent 12905 * ipif_down_tail 12906 * ip_sioctl_flags_tail 12907 * 12908 * All set ioctls that involve down/up sequence would have a skeleton similar 12909 * to the above. All the *tail functions are called after the refcounts have 12910 * dropped to the appropriate values. 12911 * 12912 * SIOC ioctls during the IPIF_CHANGING interval. 12913 * 12914 * Threads handling SIOC set ioctls serialize on the squeue, but this 12915 * is not done for SIOC get ioctls. Since a set ioctl can cause several 12916 * steps of internal changes to the state, some of which are visible in 12917 * ipif_flags (such as IFF_UP being cleared and later set), and we want 12918 * the set ioctl to be atomic related to the get ioctls, the SIOC get code 12919 * will wait and restart ioctls if IPIF_CHANGING is set. The mblk is then 12920 * enqueued in the ipsq and the operation is restarted by ipsq_exit() when 12921 * the current exclusive operation completes. The IPIF_CHANGING check 12922 * and enqueue is atomic using the ill_lock and ipsq_lock. The 12923 * lookup is done holding the ill_lock. Hence the ill/ipif state flags can't 12924 * change while the ill_lock is held. Before dropping the ill_lock we acquire 12925 * the ipsq_lock and call ipsq_enq. This ensures that ipsq_exit can't finish 12926 * until we release the ipsq_lock, even though the ill/ipif state flags 12927 * can change after we drop the ill_lock. 12928 */ 12929 int 12930 ipif_down(ipif_t *ipif, queue_t *q, mblk_t *mp) 12931 { 12932 ill_t *ill = ipif->ipif_ill; 12933 conn_t *connp; 12934 boolean_t success; 12935 boolean_t ipif_was_up = B_FALSE; 12936 ip_stack_t *ipst = ill->ill_ipst; 12937 12938 ASSERT(IAM_WRITER_IPIF(ipif)); 12939 12940 ip1dbg(("ipif_down(%s:%u)\n", ill->ill_name, ipif->ipif_id)); 12941 12942 DTRACE_PROBE3(ipif__downup, char *, "ipif_down", 12943 ill_t *, ill, ipif_t *, ipif); 12944 12945 if (ipif->ipif_flags & IPIF_UP) { 12946 mutex_enter(&ill->ill_lock); 12947 ipif->ipif_flags &= ~IPIF_UP; 12948 ASSERT(ill->ill_ipif_up_count > 0); 12949 --ill->ill_ipif_up_count; 12950 mutex_exit(&ill->ill_lock); 12951 ipif_was_up = B_TRUE; 12952 /* Update status in SCTP's list */ 12953 sctp_update_ipif(ipif, SCTP_IPIF_DOWN); 12954 ill_nic_event_dispatch(ipif->ipif_ill, 12955 MAP_IPIF_ID(ipif->ipif_id), NE_LIF_DOWN, NULL, 0); 12956 } 12957 12958 /* 12959 * Blow away memberships we established in ipif_multicast_up(). 12960 */ 12961 ipif_multicast_down(ipif); 12962 12963 /* 12964 * Remove from the mapping for __sin6_src_id. We insert only 12965 * when the address is not INADDR_ANY. As IPv4 addresses are 12966 * stored as mapped addresses, we need to check for mapped 12967 * INADDR_ANY also. 12968 */ 12969 if (ipif_was_up && !IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr) && 12970 !IN6_IS_ADDR_V4MAPPED_ANY(&ipif->ipif_v6lcl_addr) && 12971 !(ipif->ipif_flags & IPIF_NOLOCAL)) { 12972 int err; 12973 12974 err = ip_srcid_remove(&ipif->ipif_v6lcl_addr, 12975 ipif->ipif_zoneid, ipst); 12976 if (err != 0) { 12977 ip0dbg(("ipif_down: srcid_remove %d\n", err)); 12978 } 12979 } 12980 12981 if (ipif_was_up) { 12982 /* only delete if we'd added ire's before */ 12983 if (ipif->ipif_isv6) 12984 ipif_delete_ires_v6(ipif); 12985 else 12986 ipif_delete_ires_v4(ipif); 12987 } 12988 12989 if (ipif_was_up && ill->ill_ipif_up_count == 0) { 12990 /* 12991 * Since the interface is now down, it may have just become 12992 * inactive. Note that this needs to be done even for a 12993 * lll_logical_down(), or ARP entries will not get correctly 12994 * restored when the interface comes back up. 12995 */ 12996 if (IS_UNDER_IPMP(ill)) 12997 ipmp_ill_refresh_active(ill); 12998 } 12999 13000 /* 13001 * neighbor-discovery or arp entries for this interface. The ipif 13002 * has to be quiesced, so we walk all the nce's and delete those 13003 * that point at the ipif->ipif_ill. At the same time, we also 13004 * update IPMP so that ipifs for data addresses are unbound. We dont 13005 * call ipif_arp_down to DL_UNBIND the arp stream itself here, but defer 13006 * that for ipif_down_tail() 13007 */ 13008 ipif_nce_down(ipif); 13009 13010 /* 13011 * If this is the last ipif on the ill, we also need to remove 13012 * any IREs with ire_ill set. Otherwise ipif_is_quiescent() will 13013 * never succeed. 13014 */ 13015 if (ill->ill_ipif_up_count == 0 && ill->ill_ipif_dup_count == 0) 13016 ire_walk_ill(0, 0, ill_downi, ill, ill); 13017 13018 /* 13019 * Walk all CONNs that can have a reference on an ire for this 13020 * ipif (we actually walk all that now have stale references). 13021 */ 13022 ipcl_walk(conn_ixa_cleanup, (void *)B_TRUE, ipst); 13023 13024 /* 13025 * If mp is NULL the caller will wait for the appropriate refcnt. 13026 * Eg. ip_sioctl_removeif -> ipif_free -> ipif_down 13027 * and ill_delete -> ipif_free -> ipif_down 13028 */ 13029 if (mp == NULL) { 13030 ASSERT(q == NULL); 13031 return (0); 13032 } 13033 13034 if (CONN_Q(q)) { 13035 connp = Q_TO_CONN(q); 13036 mutex_enter(&connp->conn_lock); 13037 } else { 13038 connp = NULL; 13039 } 13040 mutex_enter(&ill->ill_lock); 13041 /* 13042 * Are there any ire's pointing to this ipif that are still active ? 13043 * If this is the last ipif going down, are there any ire's pointing 13044 * to this ill that are still active ? 13045 */ 13046 if (ipif_is_quiescent(ipif)) { 13047 mutex_exit(&ill->ill_lock); 13048 if (connp != NULL) 13049 mutex_exit(&connp->conn_lock); 13050 return (0); 13051 } 13052 13053 ip1dbg(("ipif_down: need to wait, adding pending mp %s ill %p", 13054 ill->ill_name, (void *)ill)); 13055 /* 13056 * Enqueue the mp atomically in ipsq_pending_mp. When the refcount 13057 * drops down, the operation will be restarted by ipif_ill_refrele_tail 13058 * which in turn is called by the last refrele on the ipif/ill/ire. 13059 */ 13060 success = ipsq_pending_mp_add(connp, ipif, q, mp, IPIF_DOWN); 13061 if (!success) { 13062 /* The conn is closing. So just return */ 13063 ASSERT(connp != NULL); 13064 mutex_exit(&ill->ill_lock); 13065 mutex_exit(&connp->conn_lock); 13066 return (EINTR); 13067 } 13068 13069 mutex_exit(&ill->ill_lock); 13070 if (connp != NULL) 13071 mutex_exit(&connp->conn_lock); 13072 return (EINPROGRESS); 13073 } 13074 13075 int 13076 ipif_down_tail(ipif_t *ipif) 13077 { 13078 ill_t *ill = ipif->ipif_ill; 13079 int err = 0; 13080 13081 DTRACE_PROBE3(ipif__downup, char *, "ipif_down_tail", 13082 ill_t *, ill, ipif_t *, ipif); 13083 13084 /* 13085 * Skip any loopback interface (null wq). 13086 * If this is the last logical interface on the ill 13087 * have ill_dl_down tell the driver we are gone (unbind) 13088 * Note that lun 0 can ipif_down even though 13089 * there are other logical units that are up. 13090 * This occurs e.g. when we change a "significant" IFF_ flag. 13091 */ 13092 if (ill->ill_wq != NULL && !ill->ill_logical_down && 13093 ill->ill_ipif_up_count == 0 && ill->ill_ipif_dup_count == 0 && 13094 ill->ill_dl_up) { 13095 ill_dl_down(ill); 13096 } 13097 if (!ipif->ipif_isv6) 13098 err = ipif_arp_down(ipif); 13099 13100 ill->ill_logical_down = 0; 13101 13102 ip_rts_ifmsg(ipif, RTSQ_DEFAULT); 13103 ip_rts_newaddrmsg(RTM_DELETE, 0, ipif, RTSQ_DEFAULT); 13104 return (err); 13105 } 13106 13107 /* 13108 * Bring interface logically down without bringing the physical interface 13109 * down e.g. when the netmask is changed. This avoids long lasting link 13110 * negotiations between an ethernet interface and a certain switches. 13111 */ 13112 static int 13113 ipif_logical_down(ipif_t *ipif, queue_t *q, mblk_t *mp) 13114 { 13115 DTRACE_PROBE3(ipif__downup, char *, "ipif_logical_down", 13116 ill_t *, ipif->ipif_ill, ipif_t *, ipif); 13117 13118 /* 13119 * The ill_logical_down flag is a transient flag. It is set here 13120 * and is cleared once the down has completed in ipif_down_tail. 13121 * This flag does not indicate whether the ill stream is in the 13122 * DL_BOUND state with the driver. Instead this flag is used by 13123 * ipif_down_tail to determine whether to DL_UNBIND the stream with 13124 * the driver. The state of the ill stream i.e. whether it is 13125 * DL_BOUND with the driver or not is indicated by the ill_dl_up flag. 13126 */ 13127 ipif->ipif_ill->ill_logical_down = 1; 13128 return (ipif_down(ipif, q, mp)); 13129 } 13130 13131 /* 13132 * Initiate deallocate of an IPIF. Always called as writer. Called by 13133 * ill_delete or ip_sioctl_removeif. 13134 */ 13135 static void 13136 ipif_free(ipif_t *ipif) 13137 { 13138 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 13139 13140 ASSERT(IAM_WRITER_IPIF(ipif)); 13141 13142 if (ipif->ipif_recovery_id != 0) 13143 (void) untimeout(ipif->ipif_recovery_id); 13144 ipif->ipif_recovery_id = 0; 13145 13146 /* 13147 * Take down the interface. We can be called either from ill_delete 13148 * or from ip_sioctl_removeif. 13149 */ 13150 (void) ipif_down(ipif, NULL, NULL); 13151 13152 /* 13153 * Now that the interface is down, there's no chance it can still 13154 * become a duplicate. Cancel any timer that may have been set while 13155 * tearing down. 13156 */ 13157 if (ipif->ipif_recovery_id != 0) 13158 (void) untimeout(ipif->ipif_recovery_id); 13159 ipif->ipif_recovery_id = 0; 13160 13161 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 13162 /* Remove pointers to this ill in the multicast routing tables */ 13163 reset_mrt_vif_ipif(ipif); 13164 /* If necessary, clear the cached source ipif rotor. */ 13165 if (ipif->ipif_ill->ill_src_ipif == ipif) 13166 ipif->ipif_ill->ill_src_ipif = NULL; 13167 rw_exit(&ipst->ips_ill_g_lock); 13168 } 13169 13170 static void 13171 ipif_free_tail(ipif_t *ipif) 13172 { 13173 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 13174 13175 /* 13176 * Need to hold both ill_g_lock and ill_lock while 13177 * inserting or removing an ipif from the linked list 13178 * of ipifs hanging off the ill. 13179 */ 13180 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 13181 13182 #ifdef DEBUG 13183 ipif_trace_cleanup(ipif); 13184 #endif 13185 13186 /* Ask SCTP to take it out of it list */ 13187 sctp_update_ipif(ipif, SCTP_IPIF_REMOVE); 13188 ip_rts_newaddrmsg(RTM_FREEADDR, 0, ipif, RTSQ_DEFAULT); 13189 13190 /* Get it out of the ILL interface list. */ 13191 ipif_remove(ipif); 13192 rw_exit(&ipst->ips_ill_g_lock); 13193 13194 ASSERT(!(ipif->ipif_flags & (IPIF_UP | IPIF_DUPLICATE))); 13195 ASSERT(ipif->ipif_recovery_id == 0); 13196 ASSERT(ipif->ipif_ire_local == NULL); 13197 ASSERT(ipif->ipif_ire_if == NULL); 13198 13199 /* Free the memory. */ 13200 mi_free(ipif); 13201 } 13202 13203 /* 13204 * Sets `buf' to an ipif name of the form "ill_name:id", or "ill_name" if "id" 13205 * is zero. 13206 */ 13207 void 13208 ipif_get_name(const ipif_t *ipif, char *buf, int len) 13209 { 13210 char lbuf[LIFNAMSIZ]; 13211 char *name; 13212 size_t name_len; 13213 13214 buf[0] = '\0'; 13215 name = ipif->ipif_ill->ill_name; 13216 name_len = ipif->ipif_ill->ill_name_length; 13217 if (ipif->ipif_id != 0) { 13218 (void) sprintf(lbuf, "%s%c%d", name, IPIF_SEPARATOR_CHAR, 13219 ipif->ipif_id); 13220 name = lbuf; 13221 name_len = mi_strlen(name) + 1; 13222 } 13223 len -= 1; 13224 buf[len] = '\0'; 13225 len = MIN(len, name_len); 13226 bcopy(name, buf, len); 13227 } 13228 13229 /* 13230 * Sets `buf' to an ill name. 13231 */ 13232 void 13233 ill_get_name(const ill_t *ill, char *buf, int len) 13234 { 13235 char *name; 13236 size_t name_len; 13237 13238 name = ill->ill_name; 13239 name_len = ill->ill_name_length; 13240 len -= 1; 13241 buf[len] = '\0'; 13242 len = MIN(len, name_len); 13243 bcopy(name, buf, len); 13244 } 13245 13246 /* 13247 * Find an IPIF based on the name passed in. Names can be of the form <phys> 13248 * (e.g., le0) or <phys>:<#> (e.g., le0:1). When there is no colon, the 13249 * implied unit id is zero. <phys> must correspond to the name of an ILL. 13250 * (May be called as writer.) 13251 */ 13252 static ipif_t * 13253 ipif_lookup_on_name(char *name, size_t namelen, boolean_t do_alloc, 13254 boolean_t *exists, boolean_t isv6, zoneid_t zoneid, ip_stack_t *ipst) 13255 { 13256 char *cp; 13257 char *endp; 13258 long id; 13259 ill_t *ill; 13260 ipif_t *ipif; 13261 uint_t ire_type; 13262 boolean_t did_alloc = B_FALSE; 13263 13264 /* 13265 * If the caller wants to us to create the ipif, make sure we have a 13266 * valid zoneid 13267 */ 13268 ASSERT(!do_alloc || zoneid != ALL_ZONES); 13269 13270 if (namelen == 0) { 13271 return (NULL); 13272 } 13273 13274 *exists = B_FALSE; 13275 /* Look for a colon in the name. */ 13276 endp = &name[namelen]; 13277 for (cp = endp; --cp > name; ) { 13278 if (*cp == IPIF_SEPARATOR_CHAR) 13279 break; 13280 } 13281 13282 if (*cp == IPIF_SEPARATOR_CHAR) { 13283 /* 13284 * Reject any non-decimal aliases for logical 13285 * interfaces. Aliases with leading zeroes 13286 * are also rejected as they introduce ambiguity 13287 * in the naming of the interfaces. 13288 * In order to confirm with existing semantics, 13289 * and to not break any programs/script relying 13290 * on that behaviour, if<0>:0 is considered to be 13291 * a valid interface. 13292 * 13293 * If alias has two or more digits and the first 13294 * is zero, fail. 13295 */ 13296 if (&cp[2] < endp && cp[1] == '0') { 13297 return (NULL); 13298 } 13299 } 13300 13301 if (cp <= name) { 13302 cp = endp; 13303 } else { 13304 *cp = '\0'; 13305 } 13306 13307 /* 13308 * Look up the ILL, based on the portion of the name 13309 * before the slash. ill_lookup_on_name returns a held ill. 13310 * Temporary to check whether ill exists already. If so 13311 * ill_lookup_on_name will clear it. 13312 */ 13313 ill = ill_lookup_on_name(name, do_alloc, isv6, 13314 &did_alloc, ipst); 13315 if (cp != endp) 13316 *cp = IPIF_SEPARATOR_CHAR; 13317 if (ill == NULL) 13318 return (NULL); 13319 13320 /* Establish the unit number in the name. */ 13321 id = 0; 13322 if (cp < endp && *endp == '\0') { 13323 /* If there was a colon, the unit number follows. */ 13324 cp++; 13325 if (ddi_strtol(cp, NULL, 0, &id) != 0) { 13326 ill_refrele(ill); 13327 return (NULL); 13328 } 13329 } 13330 13331 mutex_enter(&ill->ill_lock); 13332 /* Now see if there is an IPIF with this unit number. */ 13333 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 13334 if (ipif->ipif_id == id) { 13335 if (zoneid != ALL_ZONES && 13336 zoneid != ipif->ipif_zoneid && 13337 ipif->ipif_zoneid != ALL_ZONES) { 13338 mutex_exit(&ill->ill_lock); 13339 ill_refrele(ill); 13340 return (NULL); 13341 } 13342 if (IPIF_CAN_LOOKUP(ipif)) { 13343 ipif_refhold_locked(ipif); 13344 mutex_exit(&ill->ill_lock); 13345 if (!did_alloc) 13346 *exists = B_TRUE; 13347 /* 13348 * Drop locks before calling ill_refrele 13349 * since it can potentially call into 13350 * ipif_ill_refrele_tail which can end up 13351 * in trying to acquire any lock. 13352 */ 13353 ill_refrele(ill); 13354 return (ipif); 13355 } 13356 } 13357 } 13358 13359 if (!do_alloc) { 13360 mutex_exit(&ill->ill_lock); 13361 ill_refrele(ill); 13362 return (NULL); 13363 } 13364 13365 /* 13366 * If none found, atomically allocate and return a new one. 13367 * Historically, we used IRE_LOOPBACK only for lun 0, and IRE_LOCAL 13368 * to support "receive only" use of lo0:1 etc. as is still done 13369 * below as an initial guess. 13370 * However, this is now likely to be overriden later in ipif_up_done() 13371 * when we know for sure what address has been configured on the 13372 * interface, since we might have more than one loopback interface 13373 * with a loopback address, e.g. in the case of zones, and all the 13374 * interfaces with loopback addresses need to be marked IRE_LOOPBACK. 13375 */ 13376 if (ill->ill_net_type == IRE_LOOPBACK && id == 0) 13377 ire_type = IRE_LOOPBACK; 13378 else 13379 ire_type = IRE_LOCAL; 13380 ipif = ipif_allocate(ill, id, ire_type, B_TRUE, B_TRUE); 13381 if (ipif != NULL) 13382 ipif_refhold_locked(ipif); 13383 mutex_exit(&ill->ill_lock); 13384 ill_refrele(ill); 13385 return (ipif); 13386 } 13387 13388 /* 13389 * This routine is called whenever a new address comes up on an ipif. If 13390 * we are configured to respond to address mask requests, then we are supposed 13391 * to broadcast an address mask reply at this time. This routine is also 13392 * called if we are already up, but a netmask change is made. This is legal 13393 * but might not make the system manager very popular. (May be called 13394 * as writer.) 13395 */ 13396 void 13397 ipif_mask_reply(ipif_t *ipif) 13398 { 13399 icmph_t *icmph; 13400 ipha_t *ipha; 13401 mblk_t *mp; 13402 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 13403 ip_xmit_attr_t ixas; 13404 13405 #define REPLY_LEN (sizeof (icmp_ipha) + sizeof (icmph_t) + IP_ADDR_LEN) 13406 13407 if (!ipst->ips_ip_respond_to_address_mask_broadcast) 13408 return; 13409 13410 /* ICMP mask reply is IPv4 only */ 13411 ASSERT(!ipif->ipif_isv6); 13412 /* ICMP mask reply is not for a loopback interface */ 13413 ASSERT(ipif->ipif_ill->ill_wq != NULL); 13414 13415 if (ipif->ipif_lcl_addr == INADDR_ANY) 13416 return; 13417 13418 mp = allocb(REPLY_LEN, BPRI_HI); 13419 if (mp == NULL) 13420 return; 13421 mp->b_wptr = mp->b_rptr + REPLY_LEN; 13422 13423 ipha = (ipha_t *)mp->b_rptr; 13424 bzero(ipha, REPLY_LEN); 13425 *ipha = icmp_ipha; 13426 ipha->ipha_ttl = ipst->ips_ip_broadcast_ttl; 13427 ipha->ipha_src = ipif->ipif_lcl_addr; 13428 ipha->ipha_dst = ipif->ipif_brd_addr; 13429 ipha->ipha_length = htons(REPLY_LEN); 13430 ipha->ipha_ident = 0; 13431 13432 icmph = (icmph_t *)&ipha[1]; 13433 icmph->icmph_type = ICMP_ADDRESS_MASK_REPLY; 13434 bcopy(&ipif->ipif_net_mask, &icmph[1], IP_ADDR_LEN); 13435 icmph->icmph_checksum = IP_CSUM(mp, sizeof (ipha_t), 0); 13436 13437 bzero(&ixas, sizeof (ixas)); 13438 ixas.ixa_flags = IXAF_BASIC_SIMPLE_V4; 13439 ixas.ixa_flags |= IXAF_SET_SOURCE; 13440 ixas.ixa_zoneid = ALL_ZONES; 13441 ixas.ixa_ifindex = 0; 13442 ixas.ixa_ipst = ipst; 13443 ixas.ixa_multicast_ttl = IP_DEFAULT_MULTICAST_TTL; 13444 (void) ip_output_simple(mp, &ixas); 13445 ixa_cleanup(&ixas); 13446 #undef REPLY_LEN 13447 } 13448 13449 /* 13450 * Join the ipif specific multicast groups. 13451 * Must be called after a mapping has been set up in the resolver. (Always 13452 * called as writer.) 13453 */ 13454 void 13455 ipif_multicast_up(ipif_t *ipif) 13456 { 13457 int err; 13458 ill_t *ill; 13459 ilm_t *ilm; 13460 13461 ASSERT(IAM_WRITER_IPIF(ipif)); 13462 13463 ill = ipif->ipif_ill; 13464 13465 ip1dbg(("ipif_multicast_up\n")); 13466 if (!(ill->ill_flags & ILLF_MULTICAST) || 13467 ipif->ipif_allhosts_ilm != NULL) 13468 return; 13469 13470 if (ipif->ipif_isv6) { 13471 in6_addr_t v6allmc = ipv6_all_hosts_mcast; 13472 in6_addr_t v6solmc = ipv6_solicited_node_mcast; 13473 13474 v6solmc.s6_addr32[3] |= ipif->ipif_v6lcl_addr.s6_addr32[3]; 13475 13476 if (IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr)) 13477 return; 13478 13479 ip1dbg(("ipif_multicast_up - addmulti\n")); 13480 13481 /* 13482 * Join the all hosts multicast address. We skip this for 13483 * underlying IPMP interfaces since they should be invisible. 13484 */ 13485 if (!IS_UNDER_IPMP(ill)) { 13486 ilm = ip_addmulti(&v6allmc, ill, ipif->ipif_zoneid, 13487 &err); 13488 if (ilm == NULL) { 13489 ASSERT(err != 0); 13490 ip0dbg(("ipif_multicast_up: " 13491 "all_hosts_mcast failed %d\n", err)); 13492 return; 13493 } 13494 ipif->ipif_allhosts_ilm = ilm; 13495 } 13496 13497 /* 13498 * Enable multicast for the solicited node multicast address. 13499 * If IPMP we need to put the membership on the upper ill. 13500 */ 13501 if (!(ipif->ipif_flags & IPIF_NOLOCAL)) { 13502 ill_t *mcast_ill = NULL; 13503 boolean_t need_refrele; 13504 13505 if (IS_UNDER_IPMP(ill) && 13506 (mcast_ill = ipmp_ill_hold_ipmp_ill(ill)) != NULL) { 13507 need_refrele = B_TRUE; 13508 } else { 13509 mcast_ill = ill; 13510 need_refrele = B_FALSE; 13511 } 13512 13513 ilm = ip_addmulti(&v6solmc, mcast_ill, 13514 ipif->ipif_zoneid, &err); 13515 if (need_refrele) 13516 ill_refrele(mcast_ill); 13517 13518 if (ilm == NULL) { 13519 ASSERT(err != 0); 13520 ip0dbg(("ipif_multicast_up: solicited MC" 13521 " failed %d\n", err)); 13522 if ((ilm = ipif->ipif_allhosts_ilm) != NULL) { 13523 ipif->ipif_allhosts_ilm = NULL; 13524 (void) ip_delmulti(ilm); 13525 } 13526 return; 13527 } 13528 ipif->ipif_solmulti_ilm = ilm; 13529 } 13530 } else { 13531 in6_addr_t v6group; 13532 13533 if (ipif->ipif_lcl_addr == INADDR_ANY || IS_UNDER_IPMP(ill)) 13534 return; 13535 13536 /* Join the all hosts multicast address */ 13537 ip1dbg(("ipif_multicast_up - addmulti\n")); 13538 IN6_IPADDR_TO_V4MAPPED(htonl(INADDR_ALLHOSTS_GROUP), &v6group); 13539 13540 ilm = ip_addmulti(&v6group, ill, ipif->ipif_zoneid, &err); 13541 if (ilm == NULL) { 13542 ASSERT(err != 0); 13543 ip0dbg(("ipif_multicast_up: failed %d\n", err)); 13544 return; 13545 } 13546 ipif->ipif_allhosts_ilm = ilm; 13547 } 13548 } 13549 13550 /* 13551 * Blow away any multicast groups that we joined in ipif_multicast_up(). 13552 * (ilms from explicit memberships are handled in conn_update_ill.) 13553 */ 13554 void 13555 ipif_multicast_down(ipif_t *ipif) 13556 { 13557 ASSERT(IAM_WRITER_IPIF(ipif)); 13558 13559 ip1dbg(("ipif_multicast_down\n")); 13560 13561 if (ipif->ipif_allhosts_ilm != NULL) { 13562 (void) ip_delmulti(ipif->ipif_allhosts_ilm); 13563 ipif->ipif_allhosts_ilm = NULL; 13564 } 13565 if (ipif->ipif_solmulti_ilm != NULL) { 13566 (void) ip_delmulti(ipif->ipif_solmulti_ilm); 13567 ipif->ipif_solmulti_ilm = NULL; 13568 } 13569 } 13570 13571 /* 13572 * Used when an interface comes up to recreate any extra routes on this 13573 * interface. 13574 */ 13575 int 13576 ill_recover_saved_ire(ill_t *ill) 13577 { 13578 mblk_t *mp; 13579 ip_stack_t *ipst = ill->ill_ipst; 13580 13581 ip1dbg(("ill_recover_saved_ire(%s)", ill->ill_name)); 13582 13583 mutex_enter(&ill->ill_saved_ire_lock); 13584 for (mp = ill->ill_saved_ire_mp; mp != NULL; mp = mp->b_cont) { 13585 ire_t *ire, *nire; 13586 ifrt_t *ifrt; 13587 13588 ifrt = (ifrt_t *)mp->b_rptr; 13589 /* 13590 * Create a copy of the IRE with the saved address and netmask. 13591 */ 13592 if (ill->ill_isv6) { 13593 ire = ire_create_v6( 13594 &ifrt->ifrt_v6addr, 13595 &ifrt->ifrt_v6mask, 13596 &ifrt->ifrt_v6gateway_addr, 13597 ifrt->ifrt_type, 13598 ill, 13599 ifrt->ifrt_zoneid, 13600 ifrt->ifrt_flags, 13601 NULL, 13602 ipst); 13603 } else { 13604 ire = ire_create( 13605 (uint8_t *)&ifrt->ifrt_addr, 13606 (uint8_t *)&ifrt->ifrt_mask, 13607 (uint8_t *)&ifrt->ifrt_gateway_addr, 13608 ifrt->ifrt_type, 13609 ill, 13610 ifrt->ifrt_zoneid, 13611 ifrt->ifrt_flags, 13612 NULL, 13613 ipst); 13614 } 13615 if (ire == NULL) { 13616 mutex_exit(&ill->ill_saved_ire_lock); 13617 return (ENOMEM); 13618 } 13619 13620 if (ifrt->ifrt_flags & RTF_SETSRC) { 13621 if (ill->ill_isv6) { 13622 ire->ire_setsrc_addr_v6 = 13623 ifrt->ifrt_v6setsrc_addr; 13624 } else { 13625 ire->ire_setsrc_addr = ifrt->ifrt_setsrc_addr; 13626 } 13627 } 13628 13629 /* 13630 * Some software (for example, GateD and Sun Cluster) attempts 13631 * to create (what amount to) IRE_PREFIX routes with the 13632 * loopback address as the gateway. This is primarily done to 13633 * set up prefixes with the RTF_REJECT flag set (for example, 13634 * when generating aggregate routes.) 13635 * 13636 * If the IRE type (as defined by ill->ill_net_type) is 13637 * IRE_LOOPBACK, then we map the request into a 13638 * IRE_IF_NORESOLVER. 13639 */ 13640 if (ill->ill_net_type == IRE_LOOPBACK) 13641 ire->ire_type = IRE_IF_NORESOLVER; 13642 13643 /* 13644 * ire held by ire_add, will be refreled' towards the 13645 * the end of ipif_up_done 13646 */ 13647 nire = ire_add(ire); 13648 /* 13649 * Check if it was a duplicate entry. This handles 13650 * the case of two racing route adds for the same route 13651 */ 13652 if (nire == NULL) { 13653 ip1dbg(("ill_recover_saved_ire: FAILED\n")); 13654 } else if (nire != ire) { 13655 ip1dbg(("ill_recover_saved_ire: duplicate ire %p\n", 13656 (void *)nire)); 13657 ire_delete(nire); 13658 } else { 13659 ip1dbg(("ill_recover_saved_ire: added ire %p\n", 13660 (void *)nire)); 13661 } 13662 if (nire != NULL) 13663 ire_refrele(nire); 13664 } 13665 mutex_exit(&ill->ill_saved_ire_lock); 13666 return (0); 13667 } 13668 13669 /* 13670 * Used to set the netmask and broadcast address to default values when the 13671 * interface is brought up. (Always called as writer.) 13672 */ 13673 static void 13674 ipif_set_default(ipif_t *ipif) 13675 { 13676 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 13677 13678 if (!ipif->ipif_isv6) { 13679 /* 13680 * Interface holds an IPv4 address. Default 13681 * mask is the natural netmask. 13682 */ 13683 if (!ipif->ipif_net_mask) { 13684 ipaddr_t v4mask; 13685 13686 v4mask = ip_net_mask(ipif->ipif_lcl_addr); 13687 V4MASK_TO_V6(v4mask, ipif->ipif_v6net_mask); 13688 } 13689 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 13690 /* ipif_subnet is ipif_pp_dst_addr for pt-pt */ 13691 ipif->ipif_v6subnet = ipif->ipif_v6pp_dst_addr; 13692 } else { 13693 V6_MASK_COPY(ipif->ipif_v6lcl_addr, 13694 ipif->ipif_v6net_mask, ipif->ipif_v6subnet); 13695 } 13696 /* 13697 * NOTE: SunOS 4.X does this even if the broadcast address 13698 * has been already set thus we do the same here. 13699 */ 13700 if (ipif->ipif_flags & IPIF_BROADCAST) { 13701 ipaddr_t v4addr; 13702 13703 v4addr = ipif->ipif_subnet | ~ipif->ipif_net_mask; 13704 IN6_IPADDR_TO_V4MAPPED(v4addr, &ipif->ipif_v6brd_addr); 13705 } 13706 } else { 13707 /* 13708 * Interface holds an IPv6-only address. Default 13709 * mask is all-ones. 13710 */ 13711 if (IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6net_mask)) 13712 ipif->ipif_v6net_mask = ipv6_all_ones; 13713 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 13714 /* ipif_subnet is ipif_pp_dst_addr for pt-pt */ 13715 ipif->ipif_v6subnet = ipif->ipif_v6pp_dst_addr; 13716 } else { 13717 V6_MASK_COPY(ipif->ipif_v6lcl_addr, 13718 ipif->ipif_v6net_mask, ipif->ipif_v6subnet); 13719 } 13720 } 13721 } 13722 13723 /* 13724 * Return 0 if this address can be used as local address without causing 13725 * duplicate address problems. Otherwise, return EADDRNOTAVAIL if the address 13726 * is already up on a different ill, and EADDRINUSE if it's up on the same ill. 13727 * Note that the same IPv6 link-local address is allowed as long as the ills 13728 * are not on the same link. 13729 */ 13730 int 13731 ip_addr_availability_check(ipif_t *new_ipif) 13732 { 13733 in6_addr_t our_v6addr; 13734 ill_t *ill; 13735 ipif_t *ipif; 13736 ill_walk_context_t ctx; 13737 ip_stack_t *ipst = new_ipif->ipif_ill->ill_ipst; 13738 13739 ASSERT(IAM_WRITER_IPIF(new_ipif)); 13740 ASSERT(MUTEX_HELD(&ipst->ips_ip_addr_avail_lock)); 13741 ASSERT(RW_READ_HELD(&ipst->ips_ill_g_lock)); 13742 13743 new_ipif->ipif_flags &= ~IPIF_UNNUMBERED; 13744 if (IN6_IS_ADDR_UNSPECIFIED(&new_ipif->ipif_v6lcl_addr) || 13745 IN6_IS_ADDR_V4MAPPED_ANY(&new_ipif->ipif_v6lcl_addr)) 13746 return (0); 13747 13748 our_v6addr = new_ipif->ipif_v6lcl_addr; 13749 13750 if (new_ipif->ipif_isv6) 13751 ill = ILL_START_WALK_V6(&ctx, ipst); 13752 else 13753 ill = ILL_START_WALK_V4(&ctx, ipst); 13754 13755 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 13756 for (ipif = ill->ill_ipif; ipif != NULL; 13757 ipif = ipif->ipif_next) { 13758 if ((ipif == new_ipif) || 13759 !(ipif->ipif_flags & IPIF_UP) || 13760 (ipif->ipif_flags & IPIF_UNNUMBERED) || 13761 !IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6lcl_addr, 13762 &our_v6addr)) 13763 continue; 13764 13765 if (new_ipif->ipif_flags & IPIF_POINTOPOINT) 13766 new_ipif->ipif_flags |= IPIF_UNNUMBERED; 13767 else if (ipif->ipif_flags & IPIF_POINTOPOINT) 13768 ipif->ipif_flags |= IPIF_UNNUMBERED; 13769 else if ((IN6_IS_ADDR_LINKLOCAL(&our_v6addr) || 13770 IN6_IS_ADDR_SITELOCAL(&our_v6addr)) && 13771 !IS_ON_SAME_LAN(ill, new_ipif->ipif_ill)) 13772 continue; 13773 else if (new_ipif->ipif_zoneid != ipif->ipif_zoneid && 13774 ipif->ipif_zoneid != ALL_ZONES && IS_LOOPBACK(ill)) 13775 continue; 13776 else if (new_ipif->ipif_ill == ill) 13777 return (EADDRINUSE); 13778 else 13779 return (EADDRNOTAVAIL); 13780 } 13781 } 13782 13783 return (0); 13784 } 13785 13786 /* 13787 * Bring up an ipif: bring up arp/ndp, bring up the DLPI stream, and add 13788 * IREs for the ipif. 13789 * When the routine returns EINPROGRESS then mp has been consumed and 13790 * the ioctl will be acked from ip_rput_dlpi. 13791 */ 13792 int 13793 ipif_up(ipif_t *ipif, queue_t *q, mblk_t *mp) 13794 { 13795 ill_t *ill = ipif->ipif_ill; 13796 boolean_t isv6 = ipif->ipif_isv6; 13797 int err = 0; 13798 boolean_t success; 13799 uint_t ipif_orig_id; 13800 ip_stack_t *ipst = ill->ill_ipst; 13801 13802 ASSERT(IAM_WRITER_IPIF(ipif)); 13803 13804 ip1dbg(("ipif_up(%s:%u)\n", ill->ill_name, ipif->ipif_id)); 13805 DTRACE_PROBE3(ipif__downup, char *, "ipif_up", 13806 ill_t *, ill, ipif_t *, ipif); 13807 13808 /* Shouldn't get here if it is already up. */ 13809 if (ipif->ipif_flags & IPIF_UP) 13810 return (EALREADY); 13811 13812 /* 13813 * If this is a request to bring up a data address on an interface 13814 * under IPMP, then move the address to its IPMP meta-interface and 13815 * try to bring it up. One complication is that the zeroth ipif for 13816 * an ill is special, in that every ill always has one, and that code 13817 * throughout IP deferences ill->ill_ipif without holding any locks. 13818 */ 13819 if (IS_UNDER_IPMP(ill) && ipmp_ipif_is_dataaddr(ipif) && 13820 (!ipif->ipif_isv6 || !V6_IPIF_LINKLOCAL(ipif))) { 13821 ipif_t *stubipif = NULL, *moveipif = NULL; 13822 ill_t *ipmp_ill = ipmp_illgrp_ipmp_ill(ill->ill_grp); 13823 13824 /* 13825 * The ipif being brought up should be quiesced. If it's not, 13826 * something has gone amiss and we need to bail out. (If it's 13827 * quiesced, we know it will remain so via IPIF_CONDEMNED.) 13828 */ 13829 mutex_enter(&ill->ill_lock); 13830 if (!ipif_is_quiescent(ipif)) { 13831 mutex_exit(&ill->ill_lock); 13832 return (EINVAL); 13833 } 13834 mutex_exit(&ill->ill_lock); 13835 13836 /* 13837 * If we're going to need to allocate ipifs, do it prior 13838 * to starting the move (and grabbing locks). 13839 */ 13840 if (ipif->ipif_id == 0) { 13841 moveipif = ipif_allocate(ill, 0, IRE_LOCAL, B_TRUE, 13842 B_FALSE); 13843 stubipif = ipif_allocate(ill, 0, IRE_LOCAL, B_TRUE, 13844 B_FALSE); 13845 if (moveipif == NULL || stubipif == NULL) { 13846 mi_free(moveipif); 13847 mi_free(stubipif); 13848 return (ENOMEM); 13849 } 13850 } 13851 13852 /* 13853 * Grab or transfer the ipif to move. During the move, keep 13854 * ill_g_lock held to prevent any ill walker threads from 13855 * seeing things in an inconsistent state. 13856 */ 13857 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 13858 if (ipif->ipif_id != 0) { 13859 ipif_remove(ipif); 13860 } else { 13861 ipif_transfer(ipif, moveipif, stubipif); 13862 ipif = moveipif; 13863 } 13864 13865 /* 13866 * Place the ipif on the IPMP ill. If the zeroth ipif on 13867 * the IPMP ill is a stub (0.0.0.0 down address) then we 13868 * replace that one. Otherwise, pick the next available slot. 13869 */ 13870 ipif->ipif_ill = ipmp_ill; 13871 ipif_orig_id = ipif->ipif_id; 13872 13873 if (ipmp_ipif_is_stubaddr(ipmp_ill->ill_ipif)) { 13874 ipif_transfer(ipif, ipmp_ill->ill_ipif, NULL); 13875 ipif = ipmp_ill->ill_ipif; 13876 } else { 13877 ipif->ipif_id = -1; 13878 if (ipif_insert(ipif, B_FALSE) != 0) { 13879 /* 13880 * No more available ipif_id's -- put it back 13881 * on the original ill and fail the operation. 13882 * Since we're writer on the ill, we can be 13883 * sure our old slot is still available. 13884 */ 13885 ipif->ipif_id = ipif_orig_id; 13886 ipif->ipif_ill = ill; 13887 if (ipif_orig_id == 0) { 13888 ipif_transfer(ipif, ill->ill_ipif, 13889 NULL); 13890 } else { 13891 VERIFY(ipif_insert(ipif, B_FALSE) == 0); 13892 } 13893 rw_exit(&ipst->ips_ill_g_lock); 13894 return (ENOMEM); 13895 } 13896 } 13897 rw_exit(&ipst->ips_ill_g_lock); 13898 13899 /* 13900 * Tell SCTP that the ipif has moved. Note that even if we 13901 * had to allocate a new ipif, the original sequence id was 13902 * preserved and therefore SCTP won't know. 13903 */ 13904 sctp_move_ipif(ipif, ill, ipmp_ill); 13905 13906 /* 13907 * If the ipif being brought up was on slot zero, then we 13908 * first need to bring up the placeholder we stuck there. In 13909 * ip_rput_dlpi_writer(), arp_bringup_done(), or the recursive 13910 * call to ipif_up() itself, if we successfully bring up the 13911 * placeholder, we'll check ill_move_ipif and bring it up too. 13912 */ 13913 if (ipif_orig_id == 0) { 13914 ASSERT(ill->ill_move_ipif == NULL); 13915 ill->ill_move_ipif = ipif; 13916 if ((err = ipif_up(ill->ill_ipif, q, mp)) == 0) 13917 ASSERT(ill->ill_move_ipif == NULL); 13918 if (err != EINPROGRESS) 13919 ill->ill_move_ipif = NULL; 13920 return (err); 13921 } 13922 13923 /* 13924 * Bring it up on the IPMP ill. 13925 */ 13926 return (ipif_up(ipif, q, mp)); 13927 } 13928 13929 /* Skip arp/ndp for any loopback interface. */ 13930 if (ill->ill_wq != NULL) { 13931 conn_t *connp = CONN_Q(q) ? Q_TO_CONN(q) : NULL; 13932 ipsq_t *ipsq = ill->ill_phyint->phyint_ipsq; 13933 13934 if (!ill->ill_dl_up) { 13935 /* 13936 * ill_dl_up is not yet set. i.e. we are yet to 13937 * DL_BIND with the driver and this is the first 13938 * logical interface on the ill to become "up". 13939 * Tell the driver to get going (via DL_BIND_REQ). 13940 * Note that changing "significant" IFF_ flags 13941 * address/netmask etc cause a down/up dance, but 13942 * does not cause an unbind (DL_UNBIND) with the driver 13943 */ 13944 return (ill_dl_up(ill, ipif, mp, q)); 13945 } 13946 13947 /* 13948 * ipif_resolver_up may end up needeing to bind/attach 13949 * the ARP stream, which in turn necessitates a 13950 * DLPI message exchange with the driver. ioctls are 13951 * serialized and so we cannot send more than one 13952 * interface up message at a time. If ipif_resolver_up 13953 * does need to wait for the DLPI handshake for the ARP stream, 13954 * we get EINPROGRESS and we will complete in arp_bringup_done. 13955 */ 13956 13957 ASSERT(connp != NULL || !CONN_Q(q)); 13958 if (connp != NULL) 13959 mutex_enter(&connp->conn_lock); 13960 mutex_enter(&ill->ill_lock); 13961 success = ipsq_pending_mp_add(connp, ipif, q, mp, 0); 13962 mutex_exit(&ill->ill_lock); 13963 if (connp != NULL) 13964 mutex_exit(&connp->conn_lock); 13965 if (!success) 13966 return (EINTR); 13967 13968 /* 13969 * Crank up IPv6 neighbor discovery. Unlike ARP, this should 13970 * complete when ipif_ndp_up returns. 13971 */ 13972 err = ipif_resolver_up(ipif, Res_act_initial); 13973 if (err == EINPROGRESS) { 13974 /* We will complete it in arp_bringup_done() */ 13975 return (err); 13976 } 13977 13978 if (isv6 && err == 0) 13979 err = ipif_ndp_up(ipif, B_TRUE); 13980 13981 ASSERT(err != EINPROGRESS); 13982 mp = ipsq_pending_mp_get(ipsq, &connp); 13983 ASSERT(mp != NULL); 13984 if (err != 0) 13985 return (err); 13986 } else { 13987 /* 13988 * Interfaces without underlying hardware don't do duplicate 13989 * address detection. 13990 */ 13991 ASSERT(!(ipif->ipif_flags & IPIF_DUPLICATE)); 13992 ipif->ipif_addr_ready = 1; 13993 err = ill_add_ires(ill); 13994 /* allocation failure? */ 13995 if (err != 0) 13996 return (err); 13997 } 13998 13999 err = (isv6 ? ipif_up_done_v6(ipif) : ipif_up_done(ipif)); 14000 if (err == 0 && ill->ill_move_ipif != NULL) { 14001 ipif = ill->ill_move_ipif; 14002 ill->ill_move_ipif = NULL; 14003 return (ipif_up(ipif, q, mp)); 14004 } 14005 return (err); 14006 } 14007 14008 /* 14009 * Add any IREs tied to the ill. For now this is just an IRE_MULTICAST. 14010 * The identical set of IREs need to be removed in ill_delete_ires(). 14011 */ 14012 int 14013 ill_add_ires(ill_t *ill) 14014 { 14015 ire_t *ire; 14016 in6_addr_t dummy6 = {(uint32_t)V6_MCAST, 0, 0, 1}; 14017 in_addr_t dummy4 = htonl(INADDR_ALLHOSTS_GROUP); 14018 14019 if (ill->ill_ire_multicast != NULL) 14020 return (0); 14021 14022 /* 14023 * provide some dummy ire_addr for creating the ire. 14024 */ 14025 if (ill->ill_isv6) { 14026 ire = ire_create_v6(&dummy6, 0, 0, IRE_MULTICAST, ill, 14027 ALL_ZONES, RTF_UP, NULL, ill->ill_ipst); 14028 } else { 14029 ire = ire_create((uchar_t *)&dummy4, 0, 0, IRE_MULTICAST, ill, 14030 ALL_ZONES, RTF_UP, NULL, ill->ill_ipst); 14031 } 14032 if (ire == NULL) 14033 return (ENOMEM); 14034 14035 ill->ill_ire_multicast = ire; 14036 return (0); 14037 } 14038 14039 void 14040 ill_delete_ires(ill_t *ill) 14041 { 14042 if (ill->ill_ire_multicast != NULL) { 14043 /* 14044 * BIND/ATTACH completed; Release the ref for ill_ire_multicast 14045 * which was taken without any th_tracing enabled. 14046 * We also mark it as condemned (note that it was never added) 14047 * so that caching conn's can move off of it. 14048 */ 14049 ire_make_condemned(ill->ill_ire_multicast); 14050 ire_refrele_notr(ill->ill_ire_multicast); 14051 ill->ill_ire_multicast = NULL; 14052 } 14053 } 14054 14055 /* 14056 * Perform a bind for the physical device. 14057 * When the routine returns EINPROGRESS then mp has been consumed and 14058 * the ioctl will be acked from ip_rput_dlpi. 14059 * Allocate an unbind message and save it until ipif_down. 14060 */ 14061 static int 14062 ill_dl_up(ill_t *ill, ipif_t *ipif, mblk_t *mp, queue_t *q) 14063 { 14064 mblk_t *bind_mp = NULL; 14065 mblk_t *unbind_mp = NULL; 14066 conn_t *connp; 14067 boolean_t success; 14068 int err; 14069 14070 DTRACE_PROBE2(ill__downup, char *, "ill_dl_up", ill_t *, ill); 14071 14072 ip1dbg(("ill_dl_up(%s)\n", ill->ill_name)); 14073 ASSERT(IAM_WRITER_ILL(ill)); 14074 ASSERT(mp != NULL); 14075 14076 /* 14077 * Make sure we have an IRE_MULTICAST in case we immediately 14078 * start receiving packets. 14079 */ 14080 err = ill_add_ires(ill); 14081 if (err != 0) 14082 goto bad; 14083 14084 bind_mp = ip_dlpi_alloc(sizeof (dl_bind_req_t) + sizeof (long), 14085 DL_BIND_REQ); 14086 if (bind_mp == NULL) 14087 goto bad; 14088 ((dl_bind_req_t *)bind_mp->b_rptr)->dl_sap = ill->ill_sap; 14089 ((dl_bind_req_t *)bind_mp->b_rptr)->dl_service_mode = DL_CLDLS; 14090 14091 unbind_mp = ip_dlpi_alloc(sizeof (dl_unbind_req_t), DL_UNBIND_REQ); 14092 if (unbind_mp == NULL) 14093 goto bad; 14094 14095 /* 14096 * Record state needed to complete this operation when the 14097 * DL_BIND_ACK shows up. Also remember the pre-allocated mblks. 14098 */ 14099 connp = CONN_Q(q) ? Q_TO_CONN(q) : NULL; 14100 ASSERT(connp != NULL || !CONN_Q(q)); 14101 GRAB_CONN_LOCK(q); 14102 mutex_enter(&ipif->ipif_ill->ill_lock); 14103 success = ipsq_pending_mp_add(connp, ipif, q, mp, 0); 14104 mutex_exit(&ipif->ipif_ill->ill_lock); 14105 RELEASE_CONN_LOCK(q); 14106 if (!success) 14107 goto bad; 14108 14109 /* 14110 * Save the unbind message for ill_dl_down(); it will be consumed when 14111 * the interface goes down. 14112 */ 14113 ASSERT(ill->ill_unbind_mp == NULL); 14114 ill->ill_unbind_mp = unbind_mp; 14115 14116 ill_dlpi_send(ill, bind_mp); 14117 /* Send down link-layer capabilities probe if not already done. */ 14118 ill_capability_probe(ill); 14119 14120 /* 14121 * Sysid used to rely on the fact that netboots set domainname 14122 * and the like. Now that miniroot boots aren't strictly netboots 14123 * and miniroot network configuration is driven from userland 14124 * these things still need to be set. This situation can be detected 14125 * by comparing the interface being configured here to the one 14126 * dhcifname was set to reference by the boot loader. Once sysid is 14127 * converted to use dhcp_ipc_getinfo() this call can go away. 14128 */ 14129 if ((ipif->ipif_flags & IPIF_DHCPRUNNING) && 14130 (strcmp(ill->ill_name, dhcifname) == 0) && 14131 (strlen(srpc_domain) == 0)) { 14132 if (dhcpinit() != 0) 14133 cmn_err(CE_WARN, "no cached dhcp response"); 14134 } 14135 14136 /* 14137 * This operation will complete in ip_rput_dlpi with either 14138 * a DL_BIND_ACK or DL_ERROR_ACK. 14139 */ 14140 return (EINPROGRESS); 14141 bad: 14142 ip1dbg(("ill_dl_up(%s) FAILED\n", ill->ill_name)); 14143 14144 freemsg(bind_mp); 14145 freemsg(unbind_mp); 14146 return (ENOMEM); 14147 } 14148 14149 /* Add room for tcp+ip headers */ 14150 uint_t ip_loopback_mtuplus = IP_LOOPBACK_MTU + IP_SIMPLE_HDR_LENGTH + 20; 14151 14152 /* 14153 * DLPI and ARP is up. 14154 * Create all the IREs associated with an interface. Bring up multicast. 14155 * Set the interface flag and finish other initialization 14156 * that potentially had to be deferred to after DL_BIND_ACK. 14157 */ 14158 int 14159 ipif_up_done(ipif_t *ipif) 14160 { 14161 ill_t *ill = ipif->ipif_ill; 14162 int err = 0; 14163 boolean_t loopback = B_FALSE; 14164 boolean_t update_src_selection = B_TRUE; 14165 ipif_t *tmp_ipif; 14166 14167 ip1dbg(("ipif_up_done(%s:%u)\n", 14168 ipif->ipif_ill->ill_name, ipif->ipif_id)); 14169 DTRACE_PROBE3(ipif__downup, char *, "ipif_up_done", 14170 ill_t *, ill, ipif_t *, ipif); 14171 14172 /* Check if this is a loopback interface */ 14173 if (ipif->ipif_ill->ill_wq == NULL) 14174 loopback = B_TRUE; 14175 14176 ASSERT(!MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 14177 14178 /* 14179 * If all other interfaces for this ill are down or DEPRECATED, 14180 * or otherwise unsuitable for source address selection, 14181 * reset the src generation numbers to make sure source 14182 * address selection gets to take this new ipif into account. 14183 * No need to hold ill_lock while traversing the ipif list since 14184 * we are writer 14185 */ 14186 for (tmp_ipif = ill->ill_ipif; tmp_ipif; 14187 tmp_ipif = tmp_ipif->ipif_next) { 14188 if (((tmp_ipif->ipif_flags & 14189 (IPIF_NOXMIT|IPIF_ANYCAST|IPIF_NOLOCAL|IPIF_DEPRECATED)) || 14190 !(tmp_ipif->ipif_flags & IPIF_UP)) || 14191 (tmp_ipif == ipif)) 14192 continue; 14193 /* first useable pre-existing interface */ 14194 update_src_selection = B_FALSE; 14195 break; 14196 } 14197 if (update_src_selection) 14198 ip_update_source_selection(ill->ill_ipst); 14199 14200 if (IS_LOOPBACK(ill) || ill->ill_net_type == IRE_IF_NORESOLVER) { 14201 nce_t *loop_nce = NULL; 14202 uint16_t flags = (NCE_F_MYADDR | NCE_F_AUTHORITY | NCE_F_NONUD); 14203 14204 /* 14205 * lo0:1 and subsequent ipifs were marked IRE_LOCAL in 14206 * ipif_lookup_on_name(), but in the case of zones we can have 14207 * several loopback addresses on lo0. So all the interfaces with 14208 * loopback addresses need to be marked IRE_LOOPBACK. 14209 */ 14210 if (V4_PART_OF_V6(ipif->ipif_v6lcl_addr) == 14211 htonl(INADDR_LOOPBACK)) 14212 ipif->ipif_ire_type = IRE_LOOPBACK; 14213 else 14214 ipif->ipif_ire_type = IRE_LOCAL; 14215 if (ill->ill_net_type != IRE_LOOPBACK) 14216 flags |= NCE_F_PUBLISH; 14217 14218 /* add unicast nce for the local addr */ 14219 err = nce_lookup_then_add_v4(ill, NULL, 14220 ill->ill_phys_addr_length, &ipif->ipif_lcl_addr, flags, 14221 ND_REACHABLE, &loop_nce); 14222 /* A shared-IP zone sees EEXIST for lo0:N */ 14223 if (err == 0 || err == EEXIST) { 14224 ipif->ipif_added_nce = 1; 14225 loop_nce->nce_ipif_cnt++; 14226 nce_refrele(loop_nce); 14227 err = 0; 14228 } else { 14229 ASSERT(loop_nce == NULL); 14230 return (err); 14231 } 14232 } 14233 14234 /* Create all the IREs associated with this interface */ 14235 err = ipif_add_ires_v4(ipif, loopback); 14236 if (err != 0) { 14237 /* 14238 * see comments about return value from 14239 * ip_addr_availability_check() in ipif_add_ires_v4(). 14240 */ 14241 if (err != EADDRINUSE) { 14242 (void) ipif_arp_down(ipif); 14243 } else { 14244 /* 14245 * Make IPMP aware of the deleted ipif so that 14246 * the needed ipmp cleanup (e.g., of ipif_bound_ill) 14247 * can be completed. Note that we do not want to 14248 * destroy the nce that was created on the ipmp_ill 14249 * for the active copy of the duplicate address in 14250 * use. 14251 */ 14252 if (IS_IPMP(ill)) 14253 ipmp_illgrp_del_ipif(ill->ill_grp, ipif); 14254 err = EADDRNOTAVAIL; 14255 } 14256 return (err); 14257 } 14258 14259 if (ill->ill_ipif_up_count == 1 && !loopback) { 14260 /* Recover any additional IREs entries for this ill */ 14261 (void) ill_recover_saved_ire(ill); 14262 } 14263 14264 if (ill->ill_need_recover_multicast) { 14265 /* 14266 * Need to recover all multicast memberships in the driver. 14267 * This had to be deferred until we had attached. The same 14268 * code exists in ipif_up_done_v6() to recover IPv6 14269 * memberships. 14270 * 14271 * Note that it would be preferable to unconditionally do the 14272 * ill_recover_multicast() in ill_dl_up(), but we cannot do 14273 * that since ill_join_allmulti() depends on ill_dl_up being 14274 * set, and it is not set until we receive a DL_BIND_ACK after 14275 * having called ill_dl_up(). 14276 */ 14277 ill_recover_multicast(ill); 14278 } 14279 14280 if (ill->ill_ipif_up_count == 1) { 14281 /* 14282 * Since the interface is now up, it may now be active. 14283 */ 14284 if (IS_UNDER_IPMP(ill)) 14285 ipmp_ill_refresh_active(ill); 14286 14287 /* 14288 * If this is an IPMP interface, we may now be able to 14289 * establish ARP entries. 14290 */ 14291 if (IS_IPMP(ill)) 14292 ipmp_illgrp_refresh_arpent(ill->ill_grp); 14293 } 14294 14295 /* Join the allhosts multicast address */ 14296 ipif_multicast_up(ipif); 14297 14298 if (!loopback && !update_src_selection && 14299 !(ipif->ipif_flags & (IPIF_NOLOCAL|IPIF_ANYCAST|IPIF_DEPRECATED))) 14300 ip_update_source_selection(ill->ill_ipst); 14301 14302 if (!loopback && ipif->ipif_addr_ready) { 14303 /* Broadcast an address mask reply. */ 14304 ipif_mask_reply(ipif); 14305 } 14306 /* Perhaps ilgs should use this ill */ 14307 update_conn_ill(NULL, ill->ill_ipst); 14308 14309 /* 14310 * This had to be deferred until we had bound. Tell routing sockets and 14311 * others that this interface is up if it looks like the address has 14312 * been validated. Otherwise, if it isn't ready yet, wait for 14313 * duplicate address detection to do its thing. 14314 */ 14315 if (ipif->ipif_addr_ready) 14316 ipif_up_notify(ipif); 14317 return (0); 14318 } 14319 14320 /* 14321 * Add the IREs associated with the ipif. 14322 * Those MUST be explicitly removed in ipif_delete_ires_v4. 14323 */ 14324 static int 14325 ipif_add_ires_v4(ipif_t *ipif, boolean_t loopback) 14326 { 14327 ill_t *ill = ipif->ipif_ill; 14328 ip_stack_t *ipst = ill->ill_ipst; 14329 ire_t *ire_array[20]; 14330 ire_t **irep = ire_array; 14331 ire_t **irep1; 14332 ipaddr_t net_mask = 0; 14333 ipaddr_t subnet_mask, route_mask; 14334 int err; 14335 ire_t *ire_local = NULL; /* LOCAL or LOOPBACK */ 14336 ire_t *ire_if = NULL; 14337 14338 if ((ipif->ipif_lcl_addr != INADDR_ANY) && 14339 !(ipif->ipif_flags & IPIF_NOLOCAL)) { 14340 /* 14341 * If we're on a labeled system then make sure that zone- 14342 * private addresses have proper remote host database entries. 14343 */ 14344 if (is_system_labeled() && 14345 ipif->ipif_ire_type != IRE_LOOPBACK && 14346 !tsol_check_interface_address(ipif)) 14347 return (EINVAL); 14348 14349 /* Register the source address for __sin6_src_id */ 14350 err = ip_srcid_insert(&ipif->ipif_v6lcl_addr, 14351 ipif->ipif_zoneid, ipst); 14352 if (err != 0) { 14353 ip0dbg(("ipif_add_ires: srcid_insert %d\n", err)); 14354 return (err); 14355 } 14356 14357 /* If the interface address is set, create the local IRE. */ 14358 ire_local = ire_create( 14359 (uchar_t *)&ipif->ipif_lcl_addr, /* dest address */ 14360 (uchar_t *)&ip_g_all_ones, /* mask */ 14361 NULL, /* no gateway */ 14362 ipif->ipif_ire_type, /* LOCAL or LOOPBACK */ 14363 ipif->ipif_ill, 14364 ipif->ipif_zoneid, 14365 ((ipif->ipif_flags & IPIF_PRIVATE) ? 14366 RTF_PRIVATE : 0) | RTF_KERNEL, 14367 NULL, 14368 ipst); 14369 ip1dbg(("ipif_add_ires: 0x%p creating IRE %p type 0x%x" 14370 " for 0x%x\n", (void *)ipif, (void *)ire_local, 14371 ipif->ipif_ire_type, 14372 ntohl(ipif->ipif_lcl_addr))); 14373 if (ire_local == NULL) { 14374 ip1dbg(("ipif_up_done: NULL ire_local\n")); 14375 err = ENOMEM; 14376 goto bad; 14377 } 14378 } else { 14379 ip1dbg(( 14380 "ipif_add_ires: not creating IRE %d for 0x%x: flags 0x%x\n", 14381 ipif->ipif_ire_type, 14382 ntohl(ipif->ipif_lcl_addr), 14383 (uint_t)ipif->ipif_flags)); 14384 } 14385 if ((ipif->ipif_lcl_addr != INADDR_ANY) && 14386 !(ipif->ipif_flags & IPIF_NOLOCAL)) { 14387 net_mask = ip_net_mask(ipif->ipif_lcl_addr); 14388 } else { 14389 net_mask = htonl(IN_CLASSA_NET); /* fallback */ 14390 } 14391 14392 subnet_mask = ipif->ipif_net_mask; 14393 14394 /* 14395 * If mask was not specified, use natural netmask of 14396 * interface address. Also, store this mask back into the 14397 * ipif struct. 14398 */ 14399 if (subnet_mask == 0) { 14400 subnet_mask = net_mask; 14401 V4MASK_TO_V6(subnet_mask, ipif->ipif_v6net_mask); 14402 V6_MASK_COPY(ipif->ipif_v6lcl_addr, ipif->ipif_v6net_mask, 14403 ipif->ipif_v6subnet); 14404 } 14405 14406 /* Set up the IRE_IF_RESOLVER or IRE_IF_NORESOLVER, as appropriate. */ 14407 if (!loopback && !(ipif->ipif_flags & IPIF_NOXMIT) && 14408 ipif->ipif_subnet != INADDR_ANY) { 14409 /* ipif_subnet is ipif_pp_dst_addr for pt-pt */ 14410 14411 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 14412 route_mask = IP_HOST_MASK; 14413 } else { 14414 route_mask = subnet_mask; 14415 } 14416 14417 ip1dbg(("ipif_add_ires: ipif 0x%p ill 0x%p " 14418 "creating if IRE ill_net_type 0x%x for 0x%x\n", 14419 (void *)ipif, (void *)ill, ill->ill_net_type, 14420 ntohl(ipif->ipif_subnet))); 14421 ire_if = ire_create( 14422 (uchar_t *)&ipif->ipif_subnet, 14423 (uchar_t *)&route_mask, 14424 (uchar_t *)&ipif->ipif_lcl_addr, 14425 ill->ill_net_type, 14426 ill, 14427 ipif->ipif_zoneid, 14428 ((ipif->ipif_flags & IPIF_PRIVATE) ? 14429 RTF_PRIVATE: 0) | RTF_KERNEL, 14430 NULL, 14431 ipst); 14432 if (ire_if == NULL) { 14433 ip1dbg(("ipif_up_done: NULL ire_if\n")); 14434 err = ENOMEM; 14435 goto bad; 14436 } 14437 } 14438 14439 /* 14440 * Create any necessary broadcast IREs. 14441 */ 14442 if ((ipif->ipif_flags & IPIF_BROADCAST) && 14443 !(ipif->ipif_flags & IPIF_NOXMIT)) 14444 irep = ipif_create_bcast_ires(ipif, irep); 14445 14446 /* If an earlier ire_create failed, get out now */ 14447 for (irep1 = irep; irep1 > ire_array; ) { 14448 irep1--; 14449 if (*irep1 == NULL) { 14450 ip1dbg(("ipif_up_done: NULL ire found in ire_array\n")); 14451 err = ENOMEM; 14452 goto bad; 14453 } 14454 } 14455 14456 /* 14457 * Need to atomically check for IP address availability under 14458 * ip_addr_avail_lock. ill_g_lock is held as reader to ensure no new 14459 * ills or new ipifs can be added while we are checking availability. 14460 */ 14461 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 14462 mutex_enter(&ipst->ips_ip_addr_avail_lock); 14463 /* Mark it up, and increment counters. */ 14464 ipif->ipif_flags |= IPIF_UP; 14465 ill->ill_ipif_up_count++; 14466 err = ip_addr_availability_check(ipif); 14467 mutex_exit(&ipst->ips_ip_addr_avail_lock); 14468 rw_exit(&ipst->ips_ill_g_lock); 14469 14470 if (err != 0) { 14471 /* 14472 * Our address may already be up on the same ill. In this case, 14473 * the ARP entry for our ipif replaced the one for the other 14474 * ipif. So we don't want to delete it (otherwise the other ipif 14475 * would be unable to send packets). 14476 * ip_addr_availability_check() identifies this case for us and 14477 * returns EADDRINUSE; Caller should turn it into EADDRNOTAVAIL 14478 * which is the expected error code. 14479 */ 14480 ill->ill_ipif_up_count--; 14481 ipif->ipif_flags &= ~IPIF_UP; 14482 goto bad; 14483 } 14484 14485 /* 14486 * Add in all newly created IREs. ire_create_bcast() has 14487 * already checked for duplicates of the IRE_BROADCAST type. 14488 * We add the IRE_INTERFACE before the IRE_LOCAL to ensure 14489 * that lookups find the IRE_LOCAL even if the IRE_INTERFACE is 14490 * a /32 route. 14491 */ 14492 if (ire_if != NULL) { 14493 ire_if = ire_add(ire_if); 14494 if (ire_if == NULL) { 14495 err = ENOMEM; 14496 goto bad2; 14497 } 14498 #ifdef DEBUG 14499 ire_refhold_notr(ire_if); 14500 ire_refrele(ire_if); 14501 #endif 14502 } 14503 if (ire_local != NULL) { 14504 ire_local = ire_add(ire_local); 14505 if (ire_local == NULL) { 14506 err = ENOMEM; 14507 goto bad2; 14508 } 14509 #ifdef DEBUG 14510 ire_refhold_notr(ire_local); 14511 ire_refrele(ire_local); 14512 #endif 14513 } 14514 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 14515 if (ire_local != NULL) 14516 ipif->ipif_ire_local = ire_local; 14517 if (ire_if != NULL) 14518 ipif->ipif_ire_if = ire_if; 14519 rw_exit(&ipst->ips_ill_g_lock); 14520 ire_local = NULL; 14521 ire_if = NULL; 14522 14523 /* 14524 * We first add all of them, and if that succeeds we refrele the 14525 * bunch. That enables us to delete all of them should any of the 14526 * ire_adds fail. 14527 */ 14528 for (irep1 = irep; irep1 > ire_array; ) { 14529 irep1--; 14530 ASSERT(!MUTEX_HELD(&((*irep1)->ire_ill->ill_lock))); 14531 *irep1 = ire_add(*irep1); 14532 if (*irep1 == NULL) { 14533 err = ENOMEM; 14534 goto bad2; 14535 } 14536 } 14537 14538 for (irep1 = irep; irep1 > ire_array; ) { 14539 irep1--; 14540 /* refheld by ire_add. */ 14541 if (*irep1 != NULL) { 14542 ire_refrele(*irep1); 14543 *irep1 = NULL; 14544 } 14545 } 14546 14547 if (!loopback) { 14548 /* 14549 * If the broadcast address has been set, make sure it makes 14550 * sense based on the interface address. 14551 * Only match on ill since we are sharing broadcast addresses. 14552 */ 14553 if ((ipif->ipif_brd_addr != INADDR_ANY) && 14554 (ipif->ipif_flags & IPIF_BROADCAST)) { 14555 ire_t *ire; 14556 14557 ire = ire_ftable_lookup_v4(ipif->ipif_brd_addr, 0, 0, 14558 IRE_BROADCAST, ipif->ipif_ill, ALL_ZONES, NULL, 14559 (MATCH_IRE_TYPE | MATCH_IRE_ILL), 0, ipst, NULL); 14560 14561 if (ire == NULL) { 14562 /* 14563 * If there isn't a matching broadcast IRE, 14564 * revert to the default for this netmask. 14565 */ 14566 ipif->ipif_v6brd_addr = ipv6_all_zeros; 14567 mutex_enter(&ipif->ipif_ill->ill_lock); 14568 ipif_set_default(ipif); 14569 mutex_exit(&ipif->ipif_ill->ill_lock); 14570 } else { 14571 ire_refrele(ire); 14572 } 14573 } 14574 14575 } 14576 return (0); 14577 14578 bad2: 14579 ill->ill_ipif_up_count--; 14580 ipif->ipif_flags &= ~IPIF_UP; 14581 14582 bad: 14583 ip1dbg(("ipif_add_ires: FAILED \n")); 14584 if (ire_local != NULL) 14585 ire_delete(ire_local); 14586 if (ire_if != NULL) 14587 ire_delete(ire_if); 14588 14589 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 14590 ire_local = ipif->ipif_ire_local; 14591 ipif->ipif_ire_local = NULL; 14592 ire_if = ipif->ipif_ire_if; 14593 ipif->ipif_ire_if = NULL; 14594 rw_exit(&ipst->ips_ill_g_lock); 14595 if (ire_local != NULL) { 14596 ire_delete(ire_local); 14597 ire_refrele_notr(ire_local); 14598 } 14599 if (ire_if != NULL) { 14600 ire_delete(ire_if); 14601 ire_refrele_notr(ire_if); 14602 } 14603 14604 while (irep > ire_array) { 14605 irep--; 14606 if (*irep != NULL) { 14607 ire_delete(*irep); 14608 } 14609 } 14610 (void) ip_srcid_remove(&ipif->ipif_v6lcl_addr, ipif->ipif_zoneid, ipst); 14611 14612 return (err); 14613 } 14614 14615 /* Remove all the IREs created by ipif_add_ires_v4 */ 14616 void 14617 ipif_delete_ires_v4(ipif_t *ipif) 14618 { 14619 ill_t *ill = ipif->ipif_ill; 14620 ip_stack_t *ipst = ill->ill_ipst; 14621 ire_t *ire; 14622 14623 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 14624 ire = ipif->ipif_ire_local; 14625 ipif->ipif_ire_local = NULL; 14626 rw_exit(&ipst->ips_ill_g_lock); 14627 if (ire != NULL) { 14628 /* 14629 * Move count to ipif so we don't loose the count due to 14630 * a down/up dance. 14631 */ 14632 atomic_add_32(&ipif->ipif_ib_pkt_count, ire->ire_ib_pkt_count); 14633 14634 ire_delete(ire); 14635 ire_refrele_notr(ire); 14636 } 14637 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 14638 ire = ipif->ipif_ire_if; 14639 ipif->ipif_ire_if = NULL; 14640 rw_exit(&ipst->ips_ill_g_lock); 14641 if (ire != NULL) { 14642 ire_delete(ire); 14643 ire_refrele_notr(ire); 14644 } 14645 14646 /* 14647 * Delete the broadcast IREs. 14648 */ 14649 if ((ipif->ipif_flags & IPIF_BROADCAST) && 14650 !(ipif->ipif_flags & IPIF_NOXMIT)) 14651 ipif_delete_bcast_ires(ipif); 14652 } 14653 14654 /* 14655 * Checks for availbility of a usable source address (if there is one) when the 14656 * destination ILL has the ill_usesrc_ifindex pointing to another ILL. Note 14657 * this selection is done regardless of the destination. 14658 */ 14659 boolean_t 14660 ipif_zone_avail(uint_t ifindex, boolean_t isv6, zoneid_t zoneid, 14661 ip_stack_t *ipst) 14662 { 14663 ipif_t *ipif = NULL; 14664 ill_t *uill; 14665 14666 ASSERT(ifindex != 0); 14667 14668 uill = ill_lookup_on_ifindex(ifindex, isv6, ipst); 14669 if (uill == NULL) 14670 return (B_FALSE); 14671 14672 mutex_enter(&uill->ill_lock); 14673 for (ipif = uill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 14674 if (IPIF_IS_CONDEMNED(ipif)) 14675 continue; 14676 if (ipif->ipif_flags & (IPIF_NOLOCAL|IPIF_ANYCAST)) 14677 continue; 14678 if (!(ipif->ipif_flags & IPIF_UP)) 14679 continue; 14680 if (ipif->ipif_zoneid != zoneid) 14681 continue; 14682 if (isv6 ? IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr) : 14683 ipif->ipif_lcl_addr == INADDR_ANY) 14684 continue; 14685 mutex_exit(&uill->ill_lock); 14686 ill_refrele(uill); 14687 return (B_TRUE); 14688 } 14689 mutex_exit(&uill->ill_lock); 14690 ill_refrele(uill); 14691 return (B_FALSE); 14692 } 14693 14694 /* 14695 * Find an ipif with a good local address on the ill+zoneid. 14696 */ 14697 ipif_t * 14698 ipif_good_addr(ill_t *ill, zoneid_t zoneid) 14699 { 14700 ipif_t *ipif; 14701 14702 mutex_enter(&ill->ill_lock); 14703 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 14704 if (IPIF_IS_CONDEMNED(ipif)) 14705 continue; 14706 if (ipif->ipif_flags & (IPIF_NOLOCAL|IPIF_ANYCAST)) 14707 continue; 14708 if (!(ipif->ipif_flags & IPIF_UP)) 14709 continue; 14710 if (ipif->ipif_zoneid != zoneid && 14711 ipif->ipif_zoneid != ALL_ZONES && zoneid != ALL_ZONES) 14712 continue; 14713 if (ill->ill_isv6 ? 14714 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr) : 14715 ipif->ipif_lcl_addr == INADDR_ANY) 14716 continue; 14717 ipif_refhold_locked(ipif); 14718 mutex_exit(&ill->ill_lock); 14719 return (ipif); 14720 } 14721 mutex_exit(&ill->ill_lock); 14722 return (NULL); 14723 } 14724 14725 /* 14726 * IP source address type, sorted from worst to best. For a given type, 14727 * always prefer IP addresses on the same subnet. All-zones addresses are 14728 * suboptimal because they pose problems with unlabeled destinations. 14729 */ 14730 typedef enum { 14731 IPIF_NONE, 14732 IPIF_DIFFNET_DEPRECATED, /* deprecated and different subnet */ 14733 IPIF_SAMENET_DEPRECATED, /* deprecated and same subnet */ 14734 IPIF_DIFFNET_ALLZONES, /* allzones and different subnet */ 14735 IPIF_SAMENET_ALLZONES, /* allzones and same subnet */ 14736 IPIF_DIFFNET, /* normal and different subnet */ 14737 IPIF_SAMENET, /* normal and same subnet */ 14738 IPIF_LOCALADDR /* local loopback */ 14739 } ipif_type_t; 14740 14741 /* 14742 * Pick the optimal ipif on `ill' for sending to destination `dst' from zone 14743 * `zoneid'. We rate usable ipifs from low -> high as per the ipif_type_t 14744 * enumeration, and return the highest-rated ipif. If there's a tie, we pick 14745 * the first one, unless IPMP is used in which case we round-robin among them; 14746 * see below for more. 14747 * 14748 * Returns NULL if there is no suitable source address for the ill. 14749 * This only occurs when there is no valid source address for the ill. 14750 */ 14751 ipif_t * 14752 ipif_select_source_v4(ill_t *ill, ipaddr_t dst, zoneid_t zoneid, 14753 boolean_t allow_usesrc, boolean_t *notreadyp) 14754 { 14755 ill_t *usill = NULL; 14756 ill_t *ipmp_ill = NULL; 14757 ipif_t *start_ipif, *next_ipif, *ipif, *best_ipif; 14758 ipif_type_t type, best_type; 14759 tsol_tpc_t *src_rhtp, *dst_rhtp; 14760 ip_stack_t *ipst = ill->ill_ipst; 14761 boolean_t samenet; 14762 14763 if (ill->ill_usesrc_ifindex != 0 && allow_usesrc) { 14764 usill = ill_lookup_on_ifindex(ill->ill_usesrc_ifindex, 14765 B_FALSE, ipst); 14766 if (usill != NULL) 14767 ill = usill; /* Select source from usesrc ILL */ 14768 else 14769 return (NULL); 14770 } 14771 14772 /* 14773 * Test addresses should never be used for source address selection, 14774 * so if we were passed one, switch to the IPMP meta-interface. 14775 */ 14776 if (IS_UNDER_IPMP(ill)) { 14777 if ((ipmp_ill = ipmp_ill_hold_ipmp_ill(ill)) != NULL) 14778 ill = ipmp_ill; /* Select source from IPMP ill */ 14779 else 14780 return (NULL); 14781 } 14782 14783 /* 14784 * If we're dealing with an unlabeled destination on a labeled system, 14785 * make sure that we ignore source addresses that are incompatible with 14786 * the destination's default label. That destination's default label 14787 * must dominate the minimum label on the source address. 14788 */ 14789 dst_rhtp = NULL; 14790 if (is_system_labeled()) { 14791 dst_rhtp = find_tpc(&dst, IPV4_VERSION, B_FALSE); 14792 if (dst_rhtp == NULL) 14793 return (NULL); 14794 if (dst_rhtp->tpc_tp.host_type != UNLABELED) { 14795 TPC_RELE(dst_rhtp); 14796 dst_rhtp = NULL; 14797 } 14798 } 14799 14800 /* 14801 * Hold the ill_g_lock as reader. This makes sure that no ipif/ill 14802 * can be deleted. But an ipif/ill can get CONDEMNED any time. 14803 * After selecting the right ipif, under ill_lock make sure ipif is 14804 * not condemned, and increment refcnt. If ipif is CONDEMNED, 14805 * we retry. Inside the loop we still need to check for CONDEMNED, 14806 * but not under a lock. 14807 */ 14808 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 14809 retry: 14810 /* 14811 * For source address selection, we treat the ipif list as circular 14812 * and continue until we get back to where we started. This allows 14813 * IPMP to vary source address selection (which improves inbound load 14814 * spreading) by caching its last ending point and starting from 14815 * there. NOTE: we don't have to worry about ill_src_ipif changing 14816 * ills since that can't happen on the IPMP ill. 14817 */ 14818 start_ipif = ill->ill_ipif; 14819 if (IS_IPMP(ill) && ill->ill_src_ipif != NULL) 14820 start_ipif = ill->ill_src_ipif; 14821 14822 ipif = start_ipif; 14823 best_ipif = NULL; 14824 best_type = IPIF_NONE; 14825 do { 14826 if ((next_ipif = ipif->ipif_next) == NULL) 14827 next_ipif = ill->ill_ipif; 14828 14829 if (IPIF_IS_CONDEMNED(ipif)) 14830 continue; 14831 /* Always skip NOLOCAL and ANYCAST interfaces */ 14832 if (ipif->ipif_flags & (IPIF_NOLOCAL|IPIF_ANYCAST)) 14833 continue; 14834 /* Always skip NOACCEPT interfaces */ 14835 if (ipif->ipif_ill->ill_flags & ILLF_NOACCEPT) 14836 continue; 14837 if (!(ipif->ipif_flags & IPIF_UP)) 14838 continue; 14839 14840 if (!ipif->ipif_addr_ready) { 14841 if (notreadyp != NULL) 14842 *notreadyp = B_TRUE; 14843 continue; 14844 } 14845 14846 if (zoneid != ALL_ZONES && 14847 ipif->ipif_zoneid != zoneid && 14848 ipif->ipif_zoneid != ALL_ZONES) 14849 continue; 14850 14851 /* 14852 * Interfaces with 0.0.0.0 address are allowed to be UP, but 14853 * are not valid as source addresses. 14854 */ 14855 if (ipif->ipif_lcl_addr == INADDR_ANY) 14856 continue; 14857 14858 /* 14859 * Check compatibility of local address for destination's 14860 * default label if we're on a labeled system. Incompatible 14861 * addresses can't be used at all. 14862 */ 14863 if (dst_rhtp != NULL) { 14864 boolean_t incompat; 14865 14866 src_rhtp = find_tpc(&ipif->ipif_lcl_addr, 14867 IPV4_VERSION, B_FALSE); 14868 if (src_rhtp == NULL) 14869 continue; 14870 incompat = src_rhtp->tpc_tp.host_type != SUN_CIPSO || 14871 src_rhtp->tpc_tp.tp_doi != 14872 dst_rhtp->tpc_tp.tp_doi || 14873 (!_blinrange(&dst_rhtp->tpc_tp.tp_def_label, 14874 &src_rhtp->tpc_tp.tp_sl_range_cipso) && 14875 !blinlset(&dst_rhtp->tpc_tp.tp_def_label, 14876 src_rhtp->tpc_tp.tp_sl_set_cipso)); 14877 TPC_RELE(src_rhtp); 14878 if (incompat) 14879 continue; 14880 } 14881 14882 samenet = ((ipif->ipif_net_mask & dst) == ipif->ipif_subnet); 14883 14884 if (ipif->ipif_lcl_addr == dst) { 14885 type = IPIF_LOCALADDR; 14886 } else if (ipif->ipif_flags & IPIF_DEPRECATED) { 14887 type = samenet ? IPIF_SAMENET_DEPRECATED : 14888 IPIF_DIFFNET_DEPRECATED; 14889 } else if (ipif->ipif_zoneid == ALL_ZONES) { 14890 type = samenet ? IPIF_SAMENET_ALLZONES : 14891 IPIF_DIFFNET_ALLZONES; 14892 } else { 14893 type = samenet ? IPIF_SAMENET : IPIF_DIFFNET; 14894 } 14895 14896 if (type > best_type) { 14897 best_type = type; 14898 best_ipif = ipif; 14899 if (best_type == IPIF_LOCALADDR) 14900 break; /* can't get better */ 14901 } 14902 } while ((ipif = next_ipif) != start_ipif); 14903 14904 if ((ipif = best_ipif) != NULL) { 14905 mutex_enter(&ipif->ipif_ill->ill_lock); 14906 if (IPIF_IS_CONDEMNED(ipif)) { 14907 mutex_exit(&ipif->ipif_ill->ill_lock); 14908 goto retry; 14909 } 14910 ipif_refhold_locked(ipif); 14911 14912 /* 14913 * For IPMP, update the source ipif rotor to the next ipif, 14914 * provided we can look it up. (We must not use it if it's 14915 * IPIF_CONDEMNED since we may have grabbed ill_g_lock after 14916 * ipif_free() checked ill_src_ipif.) 14917 */ 14918 if (IS_IPMP(ill) && ipif != NULL) { 14919 next_ipif = ipif->ipif_next; 14920 if (next_ipif != NULL && !IPIF_IS_CONDEMNED(next_ipif)) 14921 ill->ill_src_ipif = next_ipif; 14922 else 14923 ill->ill_src_ipif = NULL; 14924 } 14925 mutex_exit(&ipif->ipif_ill->ill_lock); 14926 } 14927 14928 rw_exit(&ipst->ips_ill_g_lock); 14929 if (usill != NULL) 14930 ill_refrele(usill); 14931 if (ipmp_ill != NULL) 14932 ill_refrele(ipmp_ill); 14933 if (dst_rhtp != NULL) 14934 TPC_RELE(dst_rhtp); 14935 14936 #ifdef DEBUG 14937 if (ipif == NULL) { 14938 char buf1[INET6_ADDRSTRLEN]; 14939 14940 ip1dbg(("ipif_select_source_v4(%s, %s) -> NULL\n", 14941 ill->ill_name, 14942 inet_ntop(AF_INET, &dst, buf1, sizeof (buf1)))); 14943 } else { 14944 char buf1[INET6_ADDRSTRLEN]; 14945 char buf2[INET6_ADDRSTRLEN]; 14946 14947 ip1dbg(("ipif_select_source_v4(%s, %s) -> %s\n", 14948 ipif->ipif_ill->ill_name, 14949 inet_ntop(AF_INET, &dst, buf1, sizeof (buf1)), 14950 inet_ntop(AF_INET, &ipif->ipif_lcl_addr, 14951 buf2, sizeof (buf2)))); 14952 } 14953 #endif /* DEBUG */ 14954 return (ipif); 14955 } 14956 14957 /* 14958 * Pick a source address based on the destination ill and an optional setsrc 14959 * address. 14960 * The result is stored in srcp. If generation is set, then put the source 14961 * generation number there before we look for the source address (to avoid 14962 * missing changes in the set of source addresses. 14963 * If flagsp is set, then us it to pass back ipif_flags. 14964 * 14965 * If the caller wants to cache the returned source address and detect when 14966 * that might be stale, the caller should pass in a generation argument, 14967 * which the caller can later compare against ips_src_generation 14968 * 14969 * The precedence order for selecting an IPv4 source address is: 14970 * - RTF_SETSRC on the offlink ire always wins. 14971 * - If usrsrc is set, swap the ill to be the usesrc one. 14972 * - If IPMP is used on the ill, select a random address from the most 14973 * preferred ones below: 14974 * 1. If onlink destination, same subnet and not deprecated, not ALL_ZONES 14975 * 2. Not deprecated, not ALL_ZONES 14976 * 3. If onlink destination, same subnet and not deprecated, ALL_ZONES 14977 * 4. Not deprecated, ALL_ZONES 14978 * 5. If onlink destination, same subnet and deprecated 14979 * 6. Deprecated. 14980 * 14981 * We have lower preference for ALL_ZONES IP addresses, 14982 * as they pose problems with unlabeled destinations. 14983 * 14984 * Note that when multiple IP addresses match e.g., #1 we pick 14985 * the first one if IPMP is not in use. With IPMP we randomize. 14986 */ 14987 int 14988 ip_select_source_v4(ill_t *ill, ipaddr_t setsrc, ipaddr_t dst, 14989 ipaddr_t multicast_ifaddr, 14990 zoneid_t zoneid, ip_stack_t *ipst, ipaddr_t *srcp, 14991 uint32_t *generation, uint64_t *flagsp) 14992 { 14993 ipif_t *ipif; 14994 boolean_t notready = B_FALSE; /* Set if !ipif_addr_ready found */ 14995 14996 if (flagsp != NULL) 14997 *flagsp = 0; 14998 14999 /* 15000 * Need to grab the generation number before we check to 15001 * avoid a race with a change to the set of local addresses. 15002 * No lock needed since the thread which updates the set of local 15003 * addresses use ipif/ill locks and exit those (hence a store memory 15004 * barrier) before doing the atomic increase of ips_src_generation. 15005 */ 15006 if (generation != NULL) { 15007 *generation = ipst->ips_src_generation; 15008 } 15009 15010 if (CLASSD(dst) && multicast_ifaddr != INADDR_ANY) { 15011 *srcp = multicast_ifaddr; 15012 return (0); 15013 } 15014 15015 /* Was RTF_SETSRC set on the first IRE in the recursive lookup? */ 15016 if (setsrc != INADDR_ANY) { 15017 *srcp = setsrc; 15018 return (0); 15019 } 15020 ipif = ipif_select_source_v4(ill, dst, zoneid, B_TRUE, ¬ready); 15021 if (ipif == NULL) { 15022 if (notready) 15023 return (ENETDOWN); 15024 else 15025 return (EADDRNOTAVAIL); 15026 } 15027 *srcp = ipif->ipif_lcl_addr; 15028 if (flagsp != NULL) 15029 *flagsp = ipif->ipif_flags; 15030 ipif_refrele(ipif); 15031 return (0); 15032 } 15033 15034 /* ARGSUSED */ 15035 int 15036 if_unitsel_restart(ipif_t *ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 15037 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 15038 { 15039 /* 15040 * ill_phyint_reinit merged the v4 and v6 into a single 15041 * ipsq. We might not have been able to complete the 15042 * operation in ipif_set_values, if we could not become 15043 * exclusive. If so restart it here. 15044 */ 15045 return (ipif_set_values_tail(ipif->ipif_ill, ipif, mp, q)); 15046 } 15047 15048 /* 15049 * Can operate on either a module or a driver queue. 15050 * Returns an error if not a module queue. 15051 */ 15052 /* ARGSUSED */ 15053 int 15054 if_unitsel(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 15055 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 15056 { 15057 queue_t *q1 = q; 15058 char *cp; 15059 char interf_name[LIFNAMSIZ]; 15060 uint_t ppa = *(uint_t *)mp->b_cont->b_cont->b_rptr; 15061 15062 if (q->q_next == NULL) { 15063 ip1dbg(( 15064 "if_unitsel: IF_UNITSEL: no q_next\n")); 15065 return (EINVAL); 15066 } 15067 15068 if (((ill_t *)(q->q_ptr))->ill_name[0] != '\0') 15069 return (EALREADY); 15070 15071 do { 15072 q1 = q1->q_next; 15073 } while (q1->q_next); 15074 cp = q1->q_qinfo->qi_minfo->mi_idname; 15075 (void) sprintf(interf_name, "%s%d", cp, ppa); 15076 15077 /* 15078 * Here we are not going to delay the ioack until after 15079 * ACKs from DL_ATTACH_REQ/DL_BIND_REQ. So no need to save the 15080 * original ioctl message before sending the requests. 15081 */ 15082 return (ipif_set_values(q, mp, interf_name, &ppa)); 15083 } 15084 15085 /* ARGSUSED */ 15086 int 15087 ip_sioctl_sifname(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 15088 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 15089 { 15090 return (ENXIO); 15091 } 15092 15093 /* 15094 * Create any IRE_BROADCAST entries for `ipif', and store those entries in 15095 * `irep'. Returns a pointer to the next free `irep' entry 15096 * A mirror exists in ipif_delete_bcast_ires(). 15097 * 15098 * The management of any "extra" or seemingly duplicate IRE_BROADCASTs is 15099 * done in ire_add. 15100 */ 15101 static ire_t ** 15102 ipif_create_bcast_ires(ipif_t *ipif, ire_t **irep) 15103 { 15104 ipaddr_t addr; 15105 ipaddr_t netmask = ip_net_mask(ipif->ipif_lcl_addr); 15106 ipaddr_t subnetmask = ipif->ipif_net_mask; 15107 ill_t *ill = ipif->ipif_ill; 15108 zoneid_t zoneid = ipif->ipif_zoneid; 15109 15110 ip1dbg(("ipif_create_bcast_ires: creating broadcast IREs\n")); 15111 15112 ASSERT(ipif->ipif_flags & IPIF_BROADCAST); 15113 ASSERT(!(ipif->ipif_flags & IPIF_NOXMIT)); 15114 15115 if (ipif->ipif_lcl_addr == INADDR_ANY || 15116 (ipif->ipif_flags & IPIF_NOLOCAL)) 15117 netmask = htonl(IN_CLASSA_NET); /* fallback */ 15118 15119 irep = ire_create_bcast(ill, 0, zoneid, irep); 15120 irep = ire_create_bcast(ill, INADDR_BROADCAST, zoneid, irep); 15121 15122 /* 15123 * For backward compatibility, we create net broadcast IREs based on 15124 * the old "IP address class system", since some old machines only 15125 * respond to these class derived net broadcast. However, we must not 15126 * create these net broadcast IREs if the subnetmask is shorter than 15127 * the IP address class based derived netmask. Otherwise, we may 15128 * create a net broadcast address which is the same as an IP address 15129 * on the subnet -- and then TCP will refuse to talk to that address. 15130 */ 15131 if (netmask < subnetmask) { 15132 addr = netmask & ipif->ipif_subnet; 15133 irep = ire_create_bcast(ill, addr, zoneid, irep); 15134 irep = ire_create_bcast(ill, ~netmask | addr, zoneid, irep); 15135 } 15136 15137 /* 15138 * Don't create IRE_BROADCAST IREs for the interface if the subnetmask 15139 * is 0xFFFFFFFF, as an IRE_LOCAL for that interface is already 15140 * created. Creating these broadcast IREs will only create confusion 15141 * as `addr' will be the same as the IP address. 15142 */ 15143 if (subnetmask != 0xFFFFFFFF) { 15144 addr = ipif->ipif_subnet; 15145 irep = ire_create_bcast(ill, addr, zoneid, irep); 15146 irep = ire_create_bcast(ill, ~subnetmask | addr, zoneid, irep); 15147 } 15148 15149 return (irep); 15150 } 15151 15152 /* 15153 * Mirror of ipif_create_bcast_ires() 15154 */ 15155 static void 15156 ipif_delete_bcast_ires(ipif_t *ipif) 15157 { 15158 ipaddr_t addr; 15159 ipaddr_t netmask = ip_net_mask(ipif->ipif_lcl_addr); 15160 ipaddr_t subnetmask = ipif->ipif_net_mask; 15161 ill_t *ill = ipif->ipif_ill; 15162 zoneid_t zoneid = ipif->ipif_zoneid; 15163 ire_t *ire; 15164 15165 ASSERT(ipif->ipif_flags & IPIF_BROADCAST); 15166 ASSERT(!(ipif->ipif_flags & IPIF_NOXMIT)); 15167 15168 if (ipif->ipif_lcl_addr == INADDR_ANY || 15169 (ipif->ipif_flags & IPIF_NOLOCAL)) 15170 netmask = htonl(IN_CLASSA_NET); /* fallback */ 15171 15172 ire = ire_lookup_bcast(ill, 0, zoneid); 15173 ASSERT(ire != NULL); 15174 ire_delete(ire); ire_refrele(ire); 15175 ire = ire_lookup_bcast(ill, INADDR_BROADCAST, zoneid); 15176 ASSERT(ire != NULL); 15177 ire_delete(ire); ire_refrele(ire); 15178 15179 /* 15180 * For backward compatibility, we create net broadcast IREs based on 15181 * the old "IP address class system", since some old machines only 15182 * respond to these class derived net broadcast. However, we must not 15183 * create these net broadcast IREs if the subnetmask is shorter than 15184 * the IP address class based derived netmask. Otherwise, we may 15185 * create a net broadcast address which is the same as an IP address 15186 * on the subnet -- and then TCP will refuse to talk to that address. 15187 */ 15188 if (netmask < subnetmask) { 15189 addr = netmask & ipif->ipif_subnet; 15190 ire = ire_lookup_bcast(ill, addr, zoneid); 15191 ASSERT(ire != NULL); 15192 ire_delete(ire); ire_refrele(ire); 15193 ire = ire_lookup_bcast(ill, ~netmask | addr, zoneid); 15194 ASSERT(ire != NULL); 15195 ire_delete(ire); ire_refrele(ire); 15196 } 15197 15198 /* 15199 * Don't create IRE_BROADCAST IREs for the interface if the subnetmask 15200 * is 0xFFFFFFFF, as an IRE_LOCAL for that interface is already 15201 * created. Creating these broadcast IREs will only create confusion 15202 * as `addr' will be the same as the IP address. 15203 */ 15204 if (subnetmask != 0xFFFFFFFF) { 15205 addr = ipif->ipif_subnet; 15206 ire = ire_lookup_bcast(ill, addr, zoneid); 15207 ASSERT(ire != NULL); 15208 ire_delete(ire); ire_refrele(ire); 15209 ire = ire_lookup_bcast(ill, ~subnetmask | addr, zoneid); 15210 ASSERT(ire != NULL); 15211 ire_delete(ire); ire_refrele(ire); 15212 } 15213 } 15214 15215 /* 15216 * Extract both the flags (including IFF_CANTCHANGE) such as IFF_IPV* 15217 * from lifr_flags and the name from lifr_name. 15218 * Set IFF_IPV* and ill_isv6 prior to doing the lookup 15219 * since ipif_lookup_on_name uses the _isv6 flags when matching. 15220 * Returns EINPROGRESS when mp has been consumed by queueing it on 15221 * ipx_pending_mp and the ioctl will complete in ip_rput. 15222 * 15223 * Can operate on either a module or a driver queue. 15224 * Returns an error if not a module queue. 15225 */ 15226 /* ARGSUSED */ 15227 int 15228 ip_sioctl_slifname(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 15229 ip_ioctl_cmd_t *ipip, void *if_req) 15230 { 15231 ill_t *ill = q->q_ptr; 15232 phyint_t *phyi; 15233 ip_stack_t *ipst; 15234 struct lifreq *lifr = if_req; 15235 uint64_t new_flags; 15236 15237 ASSERT(ipif != NULL); 15238 ip1dbg(("ip_sioctl_slifname %s\n", lifr->lifr_name)); 15239 15240 if (q->q_next == NULL) { 15241 ip1dbg(("if_sioctl_slifname: SIOCSLIFNAME: no q_next\n")); 15242 return (EINVAL); 15243 } 15244 15245 /* 15246 * If we are not writer on 'q' then this interface exists already 15247 * and previous lookups (ip_extract_lifreq()) found this ipif -- 15248 * so return EALREADY. 15249 */ 15250 if (ill != ipif->ipif_ill) 15251 return (EALREADY); 15252 15253 if (ill->ill_name[0] != '\0') 15254 return (EALREADY); 15255 15256 /* 15257 * If there's another ill already with the requested name, ensure 15258 * that it's of the same type. Otherwise, ill_phyint_reinit() will 15259 * fuse together two unrelated ills, which will cause chaos. 15260 */ 15261 ipst = ill->ill_ipst; 15262 phyi = avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_name, 15263 lifr->lifr_name, NULL); 15264 if (phyi != NULL) { 15265 ill_t *ill_mate = phyi->phyint_illv4; 15266 15267 if (ill_mate == NULL) 15268 ill_mate = phyi->phyint_illv6; 15269 ASSERT(ill_mate != NULL); 15270 15271 if (ill_mate->ill_media->ip_m_mac_type != 15272 ill->ill_media->ip_m_mac_type) { 15273 ip1dbg(("if_sioctl_slifname: SIOCSLIFNAME: attempt to " 15274 "use the same ill name on differing media\n")); 15275 return (EINVAL); 15276 } 15277 } 15278 15279 /* 15280 * We start off as IFF_IPV4 in ipif_allocate and become 15281 * IFF_IPV4 or IFF_IPV6 here depending on lifr_flags value. 15282 * The only flags that we read from user space are IFF_IPV4, 15283 * IFF_IPV6, and IFF_BROADCAST. 15284 * 15285 * This ill has not been inserted into the global list. 15286 * So we are still single threaded and don't need any lock 15287 * 15288 * Saniy check the flags. 15289 */ 15290 15291 if ((lifr->lifr_flags & IFF_BROADCAST) && 15292 ((lifr->lifr_flags & IFF_IPV6) || 15293 (!ill->ill_needs_attach && ill->ill_bcast_addr_length == 0))) { 15294 ip1dbg(("ip_sioctl_slifname: link not broadcast capable " 15295 "or IPv6 i.e., no broadcast \n")); 15296 return (EINVAL); 15297 } 15298 15299 new_flags = 15300 lifr->lifr_flags & (IFF_IPV6|IFF_IPV4|IFF_BROADCAST); 15301 15302 if ((new_flags ^ (IFF_IPV6|IFF_IPV4)) == 0) { 15303 ip1dbg(("ip_sioctl_slifname: flags must be exactly one of " 15304 "IFF_IPV4 or IFF_IPV6\n")); 15305 return (EINVAL); 15306 } 15307 15308 /* 15309 * We always start off as IPv4, so only need to check for IPv6. 15310 */ 15311 if ((new_flags & IFF_IPV6) != 0) { 15312 ill->ill_flags |= ILLF_IPV6; 15313 ill->ill_flags &= ~ILLF_IPV4; 15314 } 15315 15316 if ((new_flags & IFF_BROADCAST) != 0) 15317 ipif->ipif_flags |= IPIF_BROADCAST; 15318 else 15319 ipif->ipif_flags &= ~IPIF_BROADCAST; 15320 15321 /* We started off as V4. */ 15322 if (ill->ill_flags & ILLF_IPV6) { 15323 ill->ill_phyint->phyint_illv6 = ill; 15324 ill->ill_phyint->phyint_illv4 = NULL; 15325 } 15326 15327 return (ipif_set_values(q, mp, lifr->lifr_name, &lifr->lifr_ppa)); 15328 } 15329 15330 /* ARGSUSED */ 15331 int 15332 ip_sioctl_slifname_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 15333 ip_ioctl_cmd_t *ipip, void *if_req) 15334 { 15335 /* 15336 * ill_phyint_reinit merged the v4 and v6 into a single 15337 * ipsq. We might not have been able to complete the 15338 * slifname in ipif_set_values, if we could not become 15339 * exclusive. If so restart it here 15340 */ 15341 return (ipif_set_values_tail(ipif->ipif_ill, ipif, mp, q)); 15342 } 15343 15344 /* 15345 * Return a pointer to the ipif which matches the index, IP version type and 15346 * zoneid. 15347 */ 15348 ipif_t * 15349 ipif_lookup_on_ifindex(uint_t index, boolean_t isv6, zoneid_t zoneid, 15350 ip_stack_t *ipst) 15351 { 15352 ill_t *ill; 15353 ipif_t *ipif = NULL; 15354 15355 ill = ill_lookup_on_ifindex(index, isv6, ipst); 15356 if (ill != NULL) { 15357 mutex_enter(&ill->ill_lock); 15358 for (ipif = ill->ill_ipif; ipif != NULL; 15359 ipif = ipif->ipif_next) { 15360 if (!IPIF_IS_CONDEMNED(ipif) && (zoneid == ALL_ZONES || 15361 zoneid == ipif->ipif_zoneid || 15362 ipif->ipif_zoneid == ALL_ZONES)) { 15363 ipif_refhold_locked(ipif); 15364 break; 15365 } 15366 } 15367 mutex_exit(&ill->ill_lock); 15368 ill_refrele(ill); 15369 } 15370 return (ipif); 15371 } 15372 15373 /* 15374 * Change an existing physical interface's index. If the new index 15375 * is acceptable we update the index and the phyint_list_avl_by_index tree. 15376 * Finally, we update other systems which may have a dependence on the 15377 * index value. 15378 */ 15379 /* ARGSUSED */ 15380 int 15381 ip_sioctl_slifindex(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 15382 ip_ioctl_cmd_t *ipip, void *ifreq) 15383 { 15384 ill_t *ill; 15385 phyint_t *phyi; 15386 struct ifreq *ifr = (struct ifreq *)ifreq; 15387 struct lifreq *lifr = (struct lifreq *)ifreq; 15388 uint_t old_index, index; 15389 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 15390 avl_index_t where; 15391 15392 if (ipip->ipi_cmd_type == IF_CMD) 15393 index = ifr->ifr_index; 15394 else 15395 index = lifr->lifr_index; 15396 15397 /* 15398 * Only allow on physical interface. Also, index zero is illegal. 15399 */ 15400 ill = ipif->ipif_ill; 15401 phyi = ill->ill_phyint; 15402 if (ipif->ipif_id != 0 || index == 0) { 15403 return (EINVAL); 15404 } 15405 15406 /* If the index is not changing, no work to do */ 15407 if (phyi->phyint_ifindex == index) 15408 return (0); 15409 15410 /* 15411 * Use phyint_exists() to determine if the new interface index 15412 * is already in use. If the index is unused then we need to 15413 * change the phyint's position in the phyint_list_avl_by_index 15414 * tree. If we do not do this, subsequent lookups (using the new 15415 * index value) will not find the phyint. 15416 */ 15417 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 15418 if (phyint_exists(index, ipst)) { 15419 rw_exit(&ipst->ips_ill_g_lock); 15420 return (EEXIST); 15421 } 15422 15423 /* 15424 * The new index is unused. Set it in the phyint. However we must not 15425 * forget to trigger NE_IFINDEX_CHANGE event before the ifindex 15426 * changes. The event must be bound to old ifindex value. 15427 */ 15428 ill_nic_event_dispatch(ill, 0, NE_IFINDEX_CHANGE, 15429 &index, sizeof (index)); 15430 15431 old_index = phyi->phyint_ifindex; 15432 phyi->phyint_ifindex = index; 15433 15434 avl_remove(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, phyi); 15435 (void) avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 15436 &index, &where); 15437 avl_insert(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 15438 phyi, where); 15439 rw_exit(&ipst->ips_ill_g_lock); 15440 15441 /* Update SCTP's ILL list */ 15442 sctp_ill_reindex(ill, old_index); 15443 15444 /* Send the routing sockets message */ 15445 ip_rts_ifmsg(ipif, RTSQ_DEFAULT); 15446 if (ILL_OTHER(ill)) 15447 ip_rts_ifmsg(ILL_OTHER(ill)->ill_ipif, RTSQ_DEFAULT); 15448 15449 /* Perhaps ilgs should use this ill */ 15450 update_conn_ill(NULL, ill->ill_ipst); 15451 return (0); 15452 } 15453 15454 /* ARGSUSED */ 15455 int 15456 ip_sioctl_get_lifindex(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 15457 ip_ioctl_cmd_t *ipip, void *ifreq) 15458 { 15459 struct ifreq *ifr = (struct ifreq *)ifreq; 15460 struct lifreq *lifr = (struct lifreq *)ifreq; 15461 15462 ip1dbg(("ip_sioctl_get_lifindex(%s:%u %p)\n", 15463 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 15464 /* Get the interface index */ 15465 if (ipip->ipi_cmd_type == IF_CMD) { 15466 ifr->ifr_index = ipif->ipif_ill->ill_phyint->phyint_ifindex; 15467 } else { 15468 lifr->lifr_index = ipif->ipif_ill->ill_phyint->phyint_ifindex; 15469 } 15470 return (0); 15471 } 15472 15473 /* ARGSUSED */ 15474 int 15475 ip_sioctl_get_lifzone(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 15476 ip_ioctl_cmd_t *ipip, void *ifreq) 15477 { 15478 struct lifreq *lifr = (struct lifreq *)ifreq; 15479 15480 ip1dbg(("ip_sioctl_get_lifzone(%s:%u %p)\n", 15481 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 15482 /* Get the interface zone */ 15483 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 15484 lifr->lifr_zoneid = ipif->ipif_zoneid; 15485 return (0); 15486 } 15487 15488 /* 15489 * Set the zoneid of an interface. 15490 */ 15491 /* ARGSUSED */ 15492 int 15493 ip_sioctl_slifzone(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 15494 ip_ioctl_cmd_t *ipip, void *ifreq) 15495 { 15496 struct lifreq *lifr = (struct lifreq *)ifreq; 15497 int err = 0; 15498 boolean_t need_up = B_FALSE; 15499 zone_t *zptr; 15500 zone_status_t status; 15501 zoneid_t zoneid; 15502 15503 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 15504 if ((zoneid = lifr->lifr_zoneid) == ALL_ZONES) { 15505 if (!is_system_labeled()) 15506 return (ENOTSUP); 15507 zoneid = GLOBAL_ZONEID; 15508 } 15509 15510 /* cannot assign instance zero to a non-global zone */ 15511 if (ipif->ipif_id == 0 && zoneid != GLOBAL_ZONEID) 15512 return (ENOTSUP); 15513 15514 /* 15515 * Cannot assign to a zone that doesn't exist or is shutting down. In 15516 * the event of a race with the zone shutdown processing, since IP 15517 * serializes this ioctl and SIOCGLIFCONF/SIOCLIFREMOVEIF, we know the 15518 * interface will be cleaned up even if the zone is shut down 15519 * immediately after the status check. If the interface can't be brought 15520 * down right away, and the zone is shut down before the restart 15521 * function is called, we resolve the possible races by rechecking the 15522 * zone status in the restart function. 15523 */ 15524 if ((zptr = zone_find_by_id(zoneid)) == NULL) 15525 return (EINVAL); 15526 status = zone_status_get(zptr); 15527 zone_rele(zptr); 15528 15529 if (status != ZONE_IS_READY && status != ZONE_IS_RUNNING) 15530 return (EINVAL); 15531 15532 if (ipif->ipif_flags & IPIF_UP) { 15533 /* 15534 * If the interface is already marked up, 15535 * we call ipif_down which will take care 15536 * of ditching any IREs that have been set 15537 * up based on the old interface address. 15538 */ 15539 err = ipif_logical_down(ipif, q, mp); 15540 if (err == EINPROGRESS) 15541 return (err); 15542 (void) ipif_down_tail(ipif); 15543 need_up = B_TRUE; 15544 } 15545 15546 err = ip_sioctl_slifzone_tail(ipif, lifr->lifr_zoneid, q, mp, need_up); 15547 return (err); 15548 } 15549 15550 static int 15551 ip_sioctl_slifzone_tail(ipif_t *ipif, zoneid_t zoneid, 15552 queue_t *q, mblk_t *mp, boolean_t need_up) 15553 { 15554 int err = 0; 15555 ip_stack_t *ipst; 15556 15557 ip1dbg(("ip_sioctl_zoneid_tail(%s:%u %p)\n", 15558 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 15559 15560 if (CONN_Q(q)) 15561 ipst = CONNQ_TO_IPST(q); 15562 else 15563 ipst = ILLQ_TO_IPST(q); 15564 15565 /* 15566 * For exclusive stacks we don't allow a different zoneid than 15567 * global. 15568 */ 15569 if (ipst->ips_netstack->netstack_stackid != GLOBAL_NETSTACKID && 15570 zoneid != GLOBAL_ZONEID) 15571 return (EINVAL); 15572 15573 /* Set the new zone id. */ 15574 ipif->ipif_zoneid = zoneid; 15575 15576 /* Update sctp list */ 15577 sctp_update_ipif(ipif, SCTP_IPIF_UPDATE); 15578 15579 /* The default multicast interface might have changed */ 15580 ire_increment_multicast_generation(ipst, ipif->ipif_ill->ill_isv6); 15581 15582 if (need_up) { 15583 /* 15584 * Now bring the interface back up. If this 15585 * is the only IPIF for the ILL, ipif_up 15586 * will have to re-bind to the device, so 15587 * we may get back EINPROGRESS, in which 15588 * case, this IOCTL will get completed in 15589 * ip_rput_dlpi when we see the DL_BIND_ACK. 15590 */ 15591 err = ipif_up(ipif, q, mp); 15592 } 15593 return (err); 15594 } 15595 15596 /* ARGSUSED */ 15597 int 15598 ip_sioctl_slifzone_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 15599 ip_ioctl_cmd_t *ipip, void *if_req) 15600 { 15601 struct lifreq *lifr = (struct lifreq *)if_req; 15602 zoneid_t zoneid; 15603 zone_t *zptr; 15604 zone_status_t status; 15605 15606 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 15607 if ((zoneid = lifr->lifr_zoneid) == ALL_ZONES) 15608 zoneid = GLOBAL_ZONEID; 15609 15610 ip1dbg(("ip_sioctl_slifzone_restart(%s:%u %p)\n", 15611 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 15612 15613 /* 15614 * We recheck the zone status to resolve the following race condition: 15615 * 1) process sends SIOCSLIFZONE to put hme0:1 in zone "myzone"; 15616 * 2) hme0:1 is up and can't be brought down right away; 15617 * ip_sioctl_slifzone() returns EINPROGRESS and the request is queued; 15618 * 3) zone "myzone" is halted; the zone status switches to 15619 * 'shutting_down' and the zones framework sends SIOCGLIFCONF to list 15620 * the interfaces to remove - hme0:1 is not returned because it's not 15621 * yet in "myzone", so it won't be removed; 15622 * 4) the restart function for SIOCSLIFZONE is called; without the 15623 * status check here, we would have hme0:1 in "myzone" after it's been 15624 * destroyed. 15625 * Note that if the status check fails, we need to bring the interface 15626 * back to its state prior to ip_sioctl_slifzone(), hence the call to 15627 * ipif_up_done[_v6](). 15628 */ 15629 status = ZONE_IS_UNINITIALIZED; 15630 if ((zptr = zone_find_by_id(zoneid)) != NULL) { 15631 status = zone_status_get(zptr); 15632 zone_rele(zptr); 15633 } 15634 if (status != ZONE_IS_READY && status != ZONE_IS_RUNNING) { 15635 if (ipif->ipif_isv6) { 15636 (void) ipif_up_done_v6(ipif); 15637 } else { 15638 (void) ipif_up_done(ipif); 15639 } 15640 return (EINVAL); 15641 } 15642 15643 (void) ipif_down_tail(ipif); 15644 15645 return (ip_sioctl_slifzone_tail(ipif, lifr->lifr_zoneid, q, mp, 15646 B_TRUE)); 15647 } 15648 15649 /* 15650 * Return the number of addresses on `ill' with one or more of the values 15651 * in `set' set and all of the values in `clear' clear. 15652 */ 15653 static uint_t 15654 ill_flagaddr_cnt(const ill_t *ill, uint64_t set, uint64_t clear) 15655 { 15656 ipif_t *ipif; 15657 uint_t cnt = 0; 15658 15659 ASSERT(IAM_WRITER_ILL(ill)); 15660 15661 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) 15662 if ((ipif->ipif_flags & set) && !(ipif->ipif_flags & clear)) 15663 cnt++; 15664 15665 return (cnt); 15666 } 15667 15668 /* 15669 * Return the number of migratable addresses on `ill' that are under 15670 * application control. 15671 */ 15672 uint_t 15673 ill_appaddr_cnt(const ill_t *ill) 15674 { 15675 return (ill_flagaddr_cnt(ill, IPIF_DHCPRUNNING | IPIF_ADDRCONF, 15676 IPIF_NOFAILOVER)); 15677 } 15678 15679 /* 15680 * Return the number of point-to-point addresses on `ill'. 15681 */ 15682 uint_t 15683 ill_ptpaddr_cnt(const ill_t *ill) 15684 { 15685 return (ill_flagaddr_cnt(ill, IPIF_POINTOPOINT, 0)); 15686 } 15687 15688 /* ARGSUSED */ 15689 int 15690 ip_sioctl_get_lifusesrc(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 15691 ip_ioctl_cmd_t *ipip, void *ifreq) 15692 { 15693 struct lifreq *lifr = ifreq; 15694 15695 ASSERT(q->q_next == NULL); 15696 ASSERT(CONN_Q(q)); 15697 15698 ip1dbg(("ip_sioctl_get_lifusesrc(%s:%u %p)\n", 15699 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 15700 lifr->lifr_index = ipif->ipif_ill->ill_usesrc_ifindex; 15701 ip1dbg(("ip_sioctl_get_lifusesrc:lifr_index = %d\n", lifr->lifr_index)); 15702 15703 return (0); 15704 } 15705 15706 /* Find the previous ILL in this usesrc group */ 15707 static ill_t * 15708 ill_prev_usesrc(ill_t *uill) 15709 { 15710 ill_t *ill; 15711 15712 for (ill = uill->ill_usesrc_grp_next; 15713 ASSERT(ill), ill->ill_usesrc_grp_next != uill; 15714 ill = ill->ill_usesrc_grp_next) 15715 /* do nothing */; 15716 return (ill); 15717 } 15718 15719 /* 15720 * Release all members of the usesrc group. This routine is called 15721 * from ill_delete when the interface being unplumbed is the 15722 * group head. 15723 * 15724 * This silently clears the usesrc that ifconfig setup. 15725 * An alternative would be to keep that ifindex, and drop packets on the floor 15726 * since no source address can be selected. 15727 * Even if we keep the current semantics, don't need a lock and a linked list. 15728 * Can walk all the ills checking if they have a ill_usesrc_ifindex matching 15729 * the one that is being removed. Issue is how we return the usesrc users 15730 * (SIOCGLIFSRCOF). We want to be able to find the ills which have an 15731 * ill_usesrc_ifindex matching a target ill. We could also do that with an 15732 * ill walk, but the walker would need to insert in the ioctl response. 15733 */ 15734 static void 15735 ill_disband_usesrc_group(ill_t *uill) 15736 { 15737 ill_t *next_ill, *tmp_ill; 15738 ip_stack_t *ipst = uill->ill_ipst; 15739 15740 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_usesrc_lock)); 15741 next_ill = uill->ill_usesrc_grp_next; 15742 15743 do { 15744 ASSERT(next_ill != NULL); 15745 tmp_ill = next_ill->ill_usesrc_grp_next; 15746 ASSERT(tmp_ill != NULL); 15747 next_ill->ill_usesrc_grp_next = NULL; 15748 next_ill->ill_usesrc_ifindex = 0; 15749 next_ill = tmp_ill; 15750 } while (next_ill->ill_usesrc_ifindex != 0); 15751 uill->ill_usesrc_grp_next = NULL; 15752 } 15753 15754 /* 15755 * Remove the client usesrc ILL from the list and relink to a new list 15756 */ 15757 int 15758 ill_relink_usesrc_ills(ill_t *ucill, ill_t *uill, uint_t ifindex) 15759 { 15760 ill_t *ill, *tmp_ill; 15761 ip_stack_t *ipst = ucill->ill_ipst; 15762 15763 ASSERT((ucill != NULL) && (ucill->ill_usesrc_grp_next != NULL) && 15764 (uill != NULL) && RW_WRITE_HELD(&ipst->ips_ill_g_usesrc_lock)); 15765 15766 /* 15767 * Check if the usesrc client ILL passed in is not already 15768 * in use as a usesrc ILL i.e one whose source address is 15769 * in use OR a usesrc ILL is not already in use as a usesrc 15770 * client ILL 15771 */ 15772 if ((ucill->ill_usesrc_ifindex == 0) || 15773 (uill->ill_usesrc_ifindex != 0)) { 15774 return (-1); 15775 } 15776 15777 ill = ill_prev_usesrc(ucill); 15778 ASSERT(ill->ill_usesrc_grp_next != NULL); 15779 15780 /* Remove from the current list */ 15781 if (ill->ill_usesrc_grp_next->ill_usesrc_grp_next == ill) { 15782 /* Only two elements in the list */ 15783 ASSERT(ill->ill_usesrc_ifindex == 0); 15784 ill->ill_usesrc_grp_next = NULL; 15785 } else { 15786 ill->ill_usesrc_grp_next = ucill->ill_usesrc_grp_next; 15787 } 15788 15789 if (ifindex == 0) { 15790 ucill->ill_usesrc_ifindex = 0; 15791 ucill->ill_usesrc_grp_next = NULL; 15792 return (0); 15793 } 15794 15795 ucill->ill_usesrc_ifindex = ifindex; 15796 tmp_ill = uill->ill_usesrc_grp_next; 15797 uill->ill_usesrc_grp_next = ucill; 15798 ucill->ill_usesrc_grp_next = 15799 (tmp_ill != NULL) ? tmp_ill : uill; 15800 return (0); 15801 } 15802 15803 /* 15804 * Set the ill_usesrc and ill_usesrc_head fields. See synchronization notes in 15805 * ip.c for locking details. 15806 */ 15807 /* ARGSUSED */ 15808 int 15809 ip_sioctl_slifusesrc(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 15810 ip_ioctl_cmd_t *ipip, void *ifreq) 15811 { 15812 struct lifreq *lifr = (struct lifreq *)ifreq; 15813 boolean_t isv6 = B_FALSE, reset_flg = B_FALSE; 15814 ill_t *usesrc_ill, *usesrc_cli_ill = ipif->ipif_ill; 15815 int err = 0, ret; 15816 uint_t ifindex; 15817 ipsq_t *ipsq = NULL; 15818 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 15819 15820 ASSERT(IAM_WRITER_IPIF(ipif)); 15821 ASSERT(q->q_next == NULL); 15822 ASSERT(CONN_Q(q)); 15823 15824 isv6 = (Q_TO_CONN(q))->conn_family == AF_INET6; 15825 15826 ifindex = lifr->lifr_index; 15827 if (ifindex == 0) { 15828 if (usesrc_cli_ill->ill_usesrc_grp_next == NULL) { 15829 /* non usesrc group interface, nothing to reset */ 15830 return (0); 15831 } 15832 ifindex = usesrc_cli_ill->ill_usesrc_ifindex; 15833 /* valid reset request */ 15834 reset_flg = B_TRUE; 15835 } 15836 15837 usesrc_ill = ill_lookup_on_ifindex(ifindex, isv6, ipst); 15838 if (usesrc_ill == NULL) { 15839 return (ENXIO); 15840 } 15841 15842 ipsq = ipsq_try_enter(NULL, usesrc_ill, q, mp, ip_process_ioctl, 15843 NEW_OP, B_TRUE); 15844 if (ipsq == NULL) { 15845 err = EINPROGRESS; 15846 /* Operation enqueued on the ipsq of the usesrc ILL */ 15847 goto done; 15848 } 15849 15850 /* USESRC isn't currently supported with IPMP */ 15851 if (IS_IPMP(usesrc_ill) || IS_UNDER_IPMP(usesrc_ill)) { 15852 err = ENOTSUP; 15853 goto done; 15854 } 15855 15856 /* 15857 * USESRC isn't compatible with the STANDBY flag. (STANDBY is only 15858 * used by IPMP underlying interfaces, but someone might think it's 15859 * more general and try to use it independently with VNI.) 15860 */ 15861 if (usesrc_ill->ill_phyint->phyint_flags & PHYI_STANDBY) { 15862 err = ENOTSUP; 15863 goto done; 15864 } 15865 15866 /* 15867 * If the client is already in use as a usesrc_ill or a usesrc_ill is 15868 * already a client then return EINVAL 15869 */ 15870 if (IS_USESRC_ILL(usesrc_cli_ill) || IS_USESRC_CLI_ILL(usesrc_ill)) { 15871 err = EINVAL; 15872 goto done; 15873 } 15874 15875 /* 15876 * If the ill_usesrc_ifindex field is already set to what it needs to 15877 * be then this is a duplicate operation. 15878 */ 15879 if (!reset_flg && usesrc_cli_ill->ill_usesrc_ifindex == ifindex) { 15880 err = 0; 15881 goto done; 15882 } 15883 15884 ip1dbg(("ip_sioctl_slifusesrc: usesrc_cli_ill %s, usesrc_ill %s," 15885 " v6 = %d", usesrc_cli_ill->ill_name, usesrc_ill->ill_name, 15886 usesrc_ill->ill_isv6)); 15887 15888 /* 15889 * ill_g_usesrc_lock global lock protects the ill_usesrc_grp_next 15890 * and the ill_usesrc_ifindex fields 15891 */ 15892 rw_enter(&ipst->ips_ill_g_usesrc_lock, RW_WRITER); 15893 15894 if (reset_flg) { 15895 ret = ill_relink_usesrc_ills(usesrc_cli_ill, usesrc_ill, 0); 15896 if (ret != 0) { 15897 err = EINVAL; 15898 } 15899 rw_exit(&ipst->ips_ill_g_usesrc_lock); 15900 goto done; 15901 } 15902 15903 /* 15904 * Four possibilities to consider: 15905 * 1. Both usesrc_ill and usesrc_cli_ill are not part of any usesrc grp 15906 * 2. usesrc_ill is part of a group but usesrc_cli_ill isn't 15907 * 3. usesrc_cli_ill is part of a group but usesrc_ill isn't 15908 * 4. Both are part of their respective usesrc groups 15909 */ 15910 if ((usesrc_ill->ill_usesrc_grp_next == NULL) && 15911 (usesrc_cli_ill->ill_usesrc_grp_next == NULL)) { 15912 ASSERT(usesrc_ill->ill_usesrc_ifindex == 0); 15913 usesrc_cli_ill->ill_usesrc_ifindex = ifindex; 15914 usesrc_ill->ill_usesrc_grp_next = usesrc_cli_ill; 15915 usesrc_cli_ill->ill_usesrc_grp_next = usesrc_ill; 15916 } else if ((usesrc_ill->ill_usesrc_grp_next != NULL) && 15917 (usesrc_cli_ill->ill_usesrc_grp_next == NULL)) { 15918 usesrc_cli_ill->ill_usesrc_ifindex = ifindex; 15919 /* Insert at head of list */ 15920 usesrc_cli_ill->ill_usesrc_grp_next = 15921 usesrc_ill->ill_usesrc_grp_next; 15922 usesrc_ill->ill_usesrc_grp_next = usesrc_cli_ill; 15923 } else { 15924 ret = ill_relink_usesrc_ills(usesrc_cli_ill, usesrc_ill, 15925 ifindex); 15926 if (ret != 0) 15927 err = EINVAL; 15928 } 15929 rw_exit(&ipst->ips_ill_g_usesrc_lock); 15930 15931 done: 15932 if (ipsq != NULL) 15933 ipsq_exit(ipsq); 15934 /* The refrele on the lifr_name ipif is done by ip_process_ioctl */ 15935 ill_refrele(usesrc_ill); 15936 15937 /* Let conn_ixa caching know that source address selection changed */ 15938 ip_update_source_selection(ipst); 15939 15940 return (err); 15941 } 15942 15943 /* 15944 * comparison function used by avl. 15945 */ 15946 static int 15947 ill_phyint_compare_index(const void *index_ptr, const void *phyip) 15948 { 15949 15950 uint_t index; 15951 15952 ASSERT(phyip != NULL && index_ptr != NULL); 15953 15954 index = *((uint_t *)index_ptr); 15955 /* 15956 * let the phyint with the lowest index be on top. 15957 */ 15958 if (((phyint_t *)phyip)->phyint_ifindex < index) 15959 return (1); 15960 if (((phyint_t *)phyip)->phyint_ifindex > index) 15961 return (-1); 15962 return (0); 15963 } 15964 15965 /* 15966 * comparison function used by avl. 15967 */ 15968 static int 15969 ill_phyint_compare_name(const void *name_ptr, const void *phyip) 15970 { 15971 ill_t *ill; 15972 int res = 0; 15973 15974 ASSERT(phyip != NULL && name_ptr != NULL); 15975 15976 if (((phyint_t *)phyip)->phyint_illv4) 15977 ill = ((phyint_t *)phyip)->phyint_illv4; 15978 else 15979 ill = ((phyint_t *)phyip)->phyint_illv6; 15980 ASSERT(ill != NULL); 15981 15982 res = strcmp(ill->ill_name, (char *)name_ptr); 15983 if (res > 0) 15984 return (1); 15985 else if (res < 0) 15986 return (-1); 15987 return (0); 15988 } 15989 15990 /* 15991 * This function is called on the unplumb path via ill_glist_delete() when 15992 * there are no ills left on the phyint and thus the phyint can be freed. 15993 */ 15994 static void 15995 phyint_free(phyint_t *phyi) 15996 { 15997 ip_stack_t *ipst = PHYINT_TO_IPST(phyi); 15998 15999 ASSERT(phyi->phyint_illv4 == NULL && phyi->phyint_illv6 == NULL); 16000 16001 /* 16002 * If this phyint was an IPMP meta-interface, blow away the group. 16003 * This is safe to do because all of the illgrps have already been 16004 * removed by I_PUNLINK, and thus SIOCSLIFGROUPNAME cannot find us. 16005 * If we're cleaning up as a result of failed initialization, 16006 * phyint_grp may be NULL. 16007 */ 16008 if ((phyi->phyint_flags & PHYI_IPMP) && (phyi->phyint_grp != NULL)) { 16009 rw_enter(&ipst->ips_ipmp_lock, RW_WRITER); 16010 ipmp_grp_destroy(phyi->phyint_grp); 16011 phyi->phyint_grp = NULL; 16012 rw_exit(&ipst->ips_ipmp_lock); 16013 } 16014 16015 /* 16016 * If this interface was under IPMP, take it out of the group. 16017 */ 16018 if (phyi->phyint_grp != NULL) 16019 ipmp_phyint_leave_grp(phyi); 16020 16021 /* 16022 * Delete the phyint and disassociate its ipsq. The ipsq itself 16023 * will be freed in ipsq_exit(). 16024 */ 16025 phyi->phyint_ipsq->ipsq_phyint = NULL; 16026 phyi->phyint_name[0] = '\0'; 16027 16028 mi_free(phyi); 16029 } 16030 16031 /* 16032 * Attach the ill to the phyint structure which can be shared by both 16033 * IPv4 and IPv6 ill. ill_init allocates a phyint to just hold flags. This 16034 * function is called from ipif_set_values and ill_lookup_on_name (for 16035 * loopback) where we know the name of the ill. We lookup the ill and if 16036 * there is one present already with the name use that phyint. Otherwise 16037 * reuse the one allocated by ill_init. 16038 */ 16039 static void 16040 ill_phyint_reinit(ill_t *ill) 16041 { 16042 boolean_t isv6 = ill->ill_isv6; 16043 phyint_t *phyi_old; 16044 phyint_t *phyi; 16045 avl_index_t where = 0; 16046 ill_t *ill_other = NULL; 16047 ip_stack_t *ipst = ill->ill_ipst; 16048 16049 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); 16050 16051 phyi_old = ill->ill_phyint; 16052 ASSERT(isv6 || (phyi_old->phyint_illv4 == ill && 16053 phyi_old->phyint_illv6 == NULL)); 16054 ASSERT(!isv6 || (phyi_old->phyint_illv6 == ill && 16055 phyi_old->phyint_illv4 == NULL)); 16056 ASSERT(phyi_old->phyint_ifindex == 0); 16057 16058 /* 16059 * Now that our ill has a name, set it in the phyint. 16060 */ 16061 (void) strlcpy(ill->ill_phyint->phyint_name, ill->ill_name, LIFNAMSIZ); 16062 16063 phyi = avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_name, 16064 ill->ill_name, &where); 16065 16066 /* 16067 * 1. We grabbed the ill_g_lock before inserting this ill into 16068 * the global list of ills. So no other thread could have located 16069 * this ill and hence the ipsq of this ill is guaranteed to be empty. 16070 * 2. Now locate the other protocol instance of this ill. 16071 * 3. Now grab both ill locks in the right order, and the phyint lock of 16072 * the new ipsq. Holding ill locks + ill_g_lock ensures that the ipsq 16073 * of neither ill can change. 16074 * 4. Merge the phyint and thus the ipsq as well of this ill onto the 16075 * other ill. 16076 * 5. Release all locks. 16077 */ 16078 16079 /* 16080 * Look for IPv4 if we are initializing IPv6 or look for IPv6 if 16081 * we are initializing IPv4. 16082 */ 16083 if (phyi != NULL) { 16084 ill_other = (isv6) ? phyi->phyint_illv4 : phyi->phyint_illv6; 16085 ASSERT(ill_other->ill_phyint != NULL); 16086 ASSERT((isv6 && !ill_other->ill_isv6) || 16087 (!isv6 && ill_other->ill_isv6)); 16088 GRAB_ILL_LOCKS(ill, ill_other); 16089 /* 16090 * We are potentially throwing away phyint_flags which 16091 * could be different from the one that we obtain from 16092 * ill_other->ill_phyint. But it is okay as we are assuming 16093 * that the state maintained within IP is correct. 16094 */ 16095 mutex_enter(&phyi->phyint_lock); 16096 if (isv6) { 16097 ASSERT(phyi->phyint_illv6 == NULL); 16098 phyi->phyint_illv6 = ill; 16099 } else { 16100 ASSERT(phyi->phyint_illv4 == NULL); 16101 phyi->phyint_illv4 = ill; 16102 } 16103 16104 /* 16105 * Delete the old phyint and make its ipsq eligible 16106 * to be freed in ipsq_exit(). 16107 */ 16108 phyi_old->phyint_illv4 = NULL; 16109 phyi_old->phyint_illv6 = NULL; 16110 phyi_old->phyint_ipsq->ipsq_phyint = NULL; 16111 phyi_old->phyint_name[0] = '\0'; 16112 mi_free(phyi_old); 16113 } else { 16114 mutex_enter(&ill->ill_lock); 16115 /* 16116 * We don't need to acquire any lock, since 16117 * the ill is not yet visible globally and we 16118 * have not yet released the ill_g_lock. 16119 */ 16120 phyi = phyi_old; 16121 mutex_enter(&phyi->phyint_lock); 16122 /* XXX We need a recovery strategy here. */ 16123 if (!phyint_assign_ifindex(phyi, ipst)) 16124 cmn_err(CE_PANIC, "phyint_assign_ifindex() failed"); 16125 16126 avl_insert(&ipst->ips_phyint_g_list->phyint_list_avl_by_name, 16127 (void *)phyi, where); 16128 16129 (void) avl_find(&ipst->ips_phyint_g_list-> 16130 phyint_list_avl_by_index, 16131 &phyi->phyint_ifindex, &where); 16132 avl_insert(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 16133 (void *)phyi, where); 16134 } 16135 16136 /* 16137 * Reassigning ill_phyint automatically reassigns the ipsq also. 16138 * pending mp is not affected because that is per ill basis. 16139 */ 16140 ill->ill_phyint = phyi; 16141 16142 /* 16143 * Now that the phyint's ifindex has been assigned, complete the 16144 * remaining 16145 */ 16146 ill->ill_ip_mib->ipIfStatsIfIndex = ill->ill_phyint->phyint_ifindex; 16147 if (ill->ill_isv6) { 16148 ill->ill_icmp6_mib->ipv6IfIcmpIfIndex = 16149 ill->ill_phyint->phyint_ifindex; 16150 ill->ill_mcast_type = ipst->ips_mld_max_version; 16151 } else { 16152 ill->ill_mcast_type = ipst->ips_igmp_max_version; 16153 } 16154 16155 /* 16156 * Generate an event within the hooks framework to indicate that 16157 * a new interface has just been added to IP. For this event to 16158 * be generated, the network interface must, at least, have an 16159 * ifindex assigned to it. (We don't generate the event for 16160 * loopback since ill_lookup_on_name() has its own NE_PLUMB event.) 16161 * 16162 * This needs to be run inside the ill_g_lock perimeter to ensure 16163 * that the ordering of delivered events to listeners matches the 16164 * order of them in the kernel. 16165 */ 16166 if (!IS_LOOPBACK(ill)) { 16167 ill_nic_event_dispatch(ill, 0, NE_PLUMB, ill->ill_name, 16168 ill->ill_name_length); 16169 } 16170 RELEASE_ILL_LOCKS(ill, ill_other); 16171 mutex_exit(&phyi->phyint_lock); 16172 } 16173 16174 /* 16175 * Notify any downstream modules of the name of this interface. 16176 * An M_IOCTL is used even though we don't expect a successful reply. 16177 * Any reply message from the driver (presumably an M_IOCNAK) will 16178 * eventually get discarded somewhere upstream. The message format is 16179 * simply an SIOCSLIFNAME ioctl just as might be sent from ifconfig 16180 * to IP. 16181 */ 16182 static void 16183 ip_ifname_notify(ill_t *ill, queue_t *q) 16184 { 16185 mblk_t *mp1, *mp2; 16186 struct iocblk *iocp; 16187 struct lifreq *lifr; 16188 16189 mp1 = mkiocb(SIOCSLIFNAME); 16190 if (mp1 == NULL) 16191 return; 16192 mp2 = allocb(sizeof (struct lifreq), BPRI_HI); 16193 if (mp2 == NULL) { 16194 freeb(mp1); 16195 return; 16196 } 16197 16198 mp1->b_cont = mp2; 16199 iocp = (struct iocblk *)mp1->b_rptr; 16200 iocp->ioc_count = sizeof (struct lifreq); 16201 16202 lifr = (struct lifreq *)mp2->b_rptr; 16203 mp2->b_wptr += sizeof (struct lifreq); 16204 bzero(lifr, sizeof (struct lifreq)); 16205 16206 (void) strncpy(lifr->lifr_name, ill->ill_name, LIFNAMSIZ); 16207 lifr->lifr_ppa = ill->ill_ppa; 16208 lifr->lifr_flags = (ill->ill_flags & (ILLF_IPV4|ILLF_IPV6)); 16209 16210 DTRACE_PROBE3(ill__dlpi, char *, "ip_ifname_notify", 16211 char *, "SIOCSLIFNAME", ill_t *, ill); 16212 putnext(q, mp1); 16213 } 16214 16215 static int 16216 ipif_set_values_tail(ill_t *ill, ipif_t *ipif, mblk_t *mp, queue_t *q) 16217 { 16218 int err; 16219 ip_stack_t *ipst = ill->ill_ipst; 16220 phyint_t *phyi = ill->ill_phyint; 16221 16222 /* Set the obsolete NDD per-interface forwarding name. */ 16223 err = ill_set_ndd_name(ill); 16224 if (err != 0) { 16225 cmn_err(CE_WARN, "ipif_set_values: ill_set_ndd_name (%d)\n", 16226 err); 16227 } 16228 16229 /* 16230 * Now that ill_name is set, the configuration for the IPMP 16231 * meta-interface can be performed. 16232 */ 16233 if (IS_IPMP(ill)) { 16234 rw_enter(&ipst->ips_ipmp_lock, RW_WRITER); 16235 /* 16236 * If phyi->phyint_grp is NULL, then this is the first IPMP 16237 * meta-interface and we need to create the IPMP group. 16238 */ 16239 if (phyi->phyint_grp == NULL) { 16240 /* 16241 * If someone has renamed another IPMP group to have 16242 * the same name as our interface, bail. 16243 */ 16244 if (ipmp_grp_lookup(ill->ill_name, ipst) != NULL) { 16245 rw_exit(&ipst->ips_ipmp_lock); 16246 return (EEXIST); 16247 } 16248 phyi->phyint_grp = ipmp_grp_create(ill->ill_name, phyi); 16249 if (phyi->phyint_grp == NULL) { 16250 rw_exit(&ipst->ips_ipmp_lock); 16251 return (ENOMEM); 16252 } 16253 } 16254 rw_exit(&ipst->ips_ipmp_lock); 16255 } 16256 16257 /* Tell downstream modules where they are. */ 16258 ip_ifname_notify(ill, q); 16259 16260 /* 16261 * ill_dl_phys returns EINPROGRESS in the usual case. 16262 * Error cases are ENOMEM ... 16263 */ 16264 err = ill_dl_phys(ill, ipif, mp, q); 16265 16266 if (ill->ill_isv6) { 16267 mutex_enter(&ipst->ips_mld_slowtimeout_lock); 16268 if (ipst->ips_mld_slowtimeout_id == 0) { 16269 ipst->ips_mld_slowtimeout_id = timeout(mld_slowtimo, 16270 (void *)ipst, 16271 MSEC_TO_TICK(MCAST_SLOWTIMO_INTERVAL)); 16272 } 16273 mutex_exit(&ipst->ips_mld_slowtimeout_lock); 16274 } else { 16275 mutex_enter(&ipst->ips_igmp_slowtimeout_lock); 16276 if (ipst->ips_igmp_slowtimeout_id == 0) { 16277 ipst->ips_igmp_slowtimeout_id = timeout(igmp_slowtimo, 16278 (void *)ipst, 16279 MSEC_TO_TICK(MCAST_SLOWTIMO_INTERVAL)); 16280 } 16281 mutex_exit(&ipst->ips_igmp_slowtimeout_lock); 16282 } 16283 16284 return (err); 16285 } 16286 16287 /* 16288 * Common routine for ppa and ifname setting. Should be called exclusive. 16289 * 16290 * Returns EINPROGRESS when mp has been consumed by queueing it on 16291 * ipx_pending_mp and the ioctl will complete in ip_rput. 16292 * 16293 * NOTE : If ppa is UNIT_MAX, we assign the next valid ppa and return 16294 * the new name and new ppa in lifr_name and lifr_ppa respectively. 16295 * For SLIFNAME, we pass these values back to the userland. 16296 */ 16297 static int 16298 ipif_set_values(queue_t *q, mblk_t *mp, char *interf_name, uint_t *new_ppa_ptr) 16299 { 16300 ill_t *ill; 16301 ipif_t *ipif; 16302 ipsq_t *ipsq; 16303 char *ppa_ptr; 16304 char *old_ptr; 16305 char old_char; 16306 int error; 16307 ip_stack_t *ipst; 16308 16309 ip1dbg(("ipif_set_values: interface %s\n", interf_name)); 16310 ASSERT(q->q_next != NULL); 16311 ASSERT(interf_name != NULL); 16312 16313 ill = (ill_t *)q->q_ptr; 16314 ipst = ill->ill_ipst; 16315 16316 ASSERT(ill->ill_ipst != NULL); 16317 ASSERT(ill->ill_name[0] == '\0'); 16318 ASSERT(IAM_WRITER_ILL(ill)); 16319 ASSERT((mi_strlen(interf_name) + 1) <= LIFNAMSIZ); 16320 ASSERT(ill->ill_ppa == UINT_MAX); 16321 16322 ill->ill_defend_start = ill->ill_defend_count = 0; 16323 /* The ppa is sent down by ifconfig or is chosen */ 16324 if ((ppa_ptr = ill_get_ppa_ptr(interf_name)) == NULL) { 16325 return (EINVAL); 16326 } 16327 16328 /* 16329 * make sure ppa passed in is same as ppa in the name. 16330 * This check is not made when ppa == UINT_MAX in that case ppa 16331 * in the name could be anything. System will choose a ppa and 16332 * update new_ppa_ptr and inter_name to contain the choosen ppa. 16333 */ 16334 if (*new_ppa_ptr != UINT_MAX) { 16335 /* stoi changes the pointer */ 16336 old_ptr = ppa_ptr; 16337 /* 16338 * ifconfig passed in 0 for the ppa for DLPI 1 style devices 16339 * (they don't have an externally visible ppa). We assign one 16340 * here so that we can manage the interface. Note that in 16341 * the past this value was always 0 for DLPI 1 drivers. 16342 */ 16343 if (*new_ppa_ptr == 0) 16344 *new_ppa_ptr = stoi(&old_ptr); 16345 else if (*new_ppa_ptr != (uint_t)stoi(&old_ptr)) 16346 return (EINVAL); 16347 } 16348 /* 16349 * terminate string before ppa 16350 * save char at that location. 16351 */ 16352 old_char = ppa_ptr[0]; 16353 ppa_ptr[0] = '\0'; 16354 16355 ill->ill_ppa = *new_ppa_ptr; 16356 /* 16357 * Finish as much work now as possible before calling ill_glist_insert 16358 * which makes the ill globally visible and also merges it with the 16359 * other protocol instance of this phyint. The remaining work is 16360 * done after entering the ipsq which may happen sometime later. 16361 * ill_set_ndd_name occurs after the ill has been made globally visible. 16362 */ 16363 ipif = ill->ill_ipif; 16364 16365 /* We didn't do this when we allocated ipif in ip_ll_subnet_defaults */ 16366 ipif_assign_seqid(ipif); 16367 16368 if (!(ill->ill_flags & (ILLF_IPV4|ILLF_IPV6))) 16369 ill->ill_flags |= ILLF_IPV4; 16370 16371 ASSERT(ipif->ipif_next == NULL); /* Only one ipif on ill */ 16372 ASSERT((ipif->ipif_flags & IPIF_UP) == 0); 16373 16374 if (ill->ill_flags & ILLF_IPV6) { 16375 16376 ill->ill_isv6 = B_TRUE; 16377 ill_set_inputfn(ill); 16378 if (ill->ill_rq != NULL) { 16379 ill->ill_rq->q_qinfo = &iprinitv6; 16380 } 16381 16382 /* Keep the !IN6_IS_ADDR_V4MAPPED assertions happy */ 16383 ipif->ipif_v6lcl_addr = ipv6_all_zeros; 16384 ipif->ipif_v6subnet = ipv6_all_zeros; 16385 ipif->ipif_v6net_mask = ipv6_all_zeros; 16386 ipif->ipif_v6brd_addr = ipv6_all_zeros; 16387 ipif->ipif_v6pp_dst_addr = ipv6_all_zeros; 16388 ill->ill_reachable_retrans_time = ND_RETRANS_TIMER; 16389 /* 16390 * point-to-point or Non-mulicast capable 16391 * interfaces won't do NUD unless explicitly 16392 * configured to do so. 16393 */ 16394 if (ipif->ipif_flags & IPIF_POINTOPOINT || 16395 !(ill->ill_flags & ILLF_MULTICAST)) { 16396 ill->ill_flags |= ILLF_NONUD; 16397 } 16398 /* Make sure IPv4 specific flag is not set on IPv6 if */ 16399 if (ill->ill_flags & ILLF_NOARP) { 16400 /* 16401 * Note: xresolv interfaces will eventually need 16402 * NOARP set here as well, but that will require 16403 * those external resolvers to have some 16404 * knowledge of that flag and act appropriately. 16405 * Not to be changed at present. 16406 */ 16407 ill->ill_flags &= ~ILLF_NOARP; 16408 } 16409 /* 16410 * Set the ILLF_ROUTER flag according to the global 16411 * IPv6 forwarding policy. 16412 */ 16413 if (ipst->ips_ipv6_forward != 0) 16414 ill->ill_flags |= ILLF_ROUTER; 16415 } else if (ill->ill_flags & ILLF_IPV4) { 16416 ill->ill_isv6 = B_FALSE; 16417 ill_set_inputfn(ill); 16418 ill->ill_reachable_retrans_time = ARP_RETRANS_TIMER; 16419 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6lcl_addr); 16420 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6subnet); 16421 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6net_mask); 16422 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6brd_addr); 16423 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6pp_dst_addr); 16424 /* 16425 * Set the ILLF_ROUTER flag according to the global 16426 * IPv4 forwarding policy. 16427 */ 16428 if (ipst->ips_ip_g_forward != 0) 16429 ill->ill_flags |= ILLF_ROUTER; 16430 } 16431 16432 ASSERT(ill->ill_phyint != NULL); 16433 16434 /* 16435 * The ipIfStatsIfindex and ipv6IfIcmpIfIndex assignments will 16436 * be completed in ill_glist_insert -> ill_phyint_reinit 16437 */ 16438 if (!ill_allocate_mibs(ill)) 16439 return (ENOMEM); 16440 16441 /* 16442 * Pick a default sap until we get the DL_INFO_ACK back from 16443 * the driver. 16444 */ 16445 ill->ill_sap = (ill->ill_isv6) ? ill->ill_media->ip_m_ipv6sap : 16446 ill->ill_media->ip_m_ipv4sap; 16447 16448 ill->ill_ifname_pending = 1; 16449 ill->ill_ifname_pending_err = 0; 16450 16451 /* 16452 * When the first ipif comes up in ipif_up_done(), multicast groups 16453 * that were joined while this ill was not bound to the DLPI link need 16454 * to be recovered by ill_recover_multicast(). 16455 */ 16456 ill->ill_need_recover_multicast = 1; 16457 16458 ill_refhold(ill); 16459 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 16460 if ((error = ill_glist_insert(ill, interf_name, 16461 (ill->ill_flags & ILLF_IPV6) == ILLF_IPV6)) > 0) { 16462 ill->ill_ppa = UINT_MAX; 16463 ill->ill_name[0] = '\0'; 16464 /* 16465 * undo null termination done above. 16466 */ 16467 ppa_ptr[0] = old_char; 16468 rw_exit(&ipst->ips_ill_g_lock); 16469 ill_refrele(ill); 16470 return (error); 16471 } 16472 16473 ASSERT(ill->ill_name_length <= LIFNAMSIZ); 16474 16475 /* 16476 * When we return the buffer pointed to by interf_name should contain 16477 * the same name as in ill_name. 16478 * If a ppa was choosen by the system (ppa passed in was UINT_MAX) 16479 * the buffer pointed to by new_ppa_ptr would not contain the right ppa 16480 * so copy full name and update the ppa ptr. 16481 * When ppa passed in != UINT_MAX all values are correct just undo 16482 * null termination, this saves a bcopy. 16483 */ 16484 if (*new_ppa_ptr == UINT_MAX) { 16485 bcopy(ill->ill_name, interf_name, ill->ill_name_length); 16486 *new_ppa_ptr = ill->ill_ppa; 16487 } else { 16488 /* 16489 * undo null termination done above. 16490 */ 16491 ppa_ptr[0] = old_char; 16492 } 16493 16494 /* Let SCTP know about this ILL */ 16495 sctp_update_ill(ill, SCTP_ILL_INSERT); 16496 16497 /* 16498 * ill_glist_insert has made the ill visible globally, and 16499 * ill_phyint_reinit could have changed the ipsq. At this point, 16500 * we need to hold the ips_ill_g_lock across the call to enter the 16501 * ipsq to enforce atomicity and prevent reordering. In the event 16502 * the ipsq has changed, and if the new ipsq is currently busy, 16503 * we need to make sure that this half-completed ioctl is ahead of 16504 * any subsequent ioctl. We achieve this by not dropping the 16505 * ips_ill_g_lock which prevents any ill lookup itself thereby 16506 * ensuring that new ioctls can't start. 16507 */ 16508 ipsq = ipsq_try_enter_internal(ill, q, mp, ip_reprocess_ioctl, NEW_OP, 16509 B_TRUE); 16510 16511 rw_exit(&ipst->ips_ill_g_lock); 16512 ill_refrele(ill); 16513 if (ipsq == NULL) 16514 return (EINPROGRESS); 16515 16516 /* 16517 * If ill_phyint_reinit() changed our ipsq, then start on the new ipsq. 16518 */ 16519 if (ipsq->ipsq_xop->ipx_current_ipif == NULL) 16520 ipsq_current_start(ipsq, ipif, SIOCSLIFNAME); 16521 else 16522 ASSERT(ipsq->ipsq_xop->ipx_current_ipif == ipif); 16523 16524 error = ipif_set_values_tail(ill, ipif, mp, q); 16525 ipsq_exit(ipsq); 16526 if (error != 0 && error != EINPROGRESS) { 16527 /* 16528 * restore previous values 16529 */ 16530 ill->ill_isv6 = B_FALSE; 16531 ill_set_inputfn(ill); 16532 } 16533 return (error); 16534 } 16535 16536 void 16537 ipif_init(ip_stack_t *ipst) 16538 { 16539 int i; 16540 16541 for (i = 0; i < MAX_G_HEADS; i++) { 16542 ipst->ips_ill_g_heads[i].ill_g_list_head = 16543 (ill_if_t *)&ipst->ips_ill_g_heads[i]; 16544 ipst->ips_ill_g_heads[i].ill_g_list_tail = 16545 (ill_if_t *)&ipst->ips_ill_g_heads[i]; 16546 } 16547 16548 avl_create(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 16549 ill_phyint_compare_index, 16550 sizeof (phyint_t), 16551 offsetof(struct phyint, phyint_avl_by_index)); 16552 avl_create(&ipst->ips_phyint_g_list->phyint_list_avl_by_name, 16553 ill_phyint_compare_name, 16554 sizeof (phyint_t), 16555 offsetof(struct phyint, phyint_avl_by_name)); 16556 } 16557 16558 /* 16559 * Save enough information so that we can recreate the IRE if 16560 * the interface goes down and then up. 16561 */ 16562 void 16563 ill_save_ire(ill_t *ill, ire_t *ire) 16564 { 16565 mblk_t *save_mp; 16566 16567 save_mp = allocb(sizeof (ifrt_t), BPRI_MED); 16568 if (save_mp != NULL) { 16569 ifrt_t *ifrt; 16570 16571 save_mp->b_wptr += sizeof (ifrt_t); 16572 ifrt = (ifrt_t *)save_mp->b_rptr; 16573 bzero(ifrt, sizeof (ifrt_t)); 16574 ifrt->ifrt_type = ire->ire_type; 16575 if (ire->ire_ipversion == IPV4_VERSION) { 16576 ASSERT(!ill->ill_isv6); 16577 ifrt->ifrt_addr = ire->ire_addr; 16578 ifrt->ifrt_gateway_addr = ire->ire_gateway_addr; 16579 ifrt->ifrt_setsrc_addr = ire->ire_setsrc_addr; 16580 ifrt->ifrt_mask = ire->ire_mask; 16581 } else { 16582 ASSERT(ill->ill_isv6); 16583 ifrt->ifrt_v6addr = ire->ire_addr_v6; 16584 /* ire_gateway_addr_v6 can change due to RTM_CHANGE */ 16585 mutex_enter(&ire->ire_lock); 16586 ifrt->ifrt_v6gateway_addr = ire->ire_gateway_addr_v6; 16587 mutex_exit(&ire->ire_lock); 16588 ifrt->ifrt_v6setsrc_addr = ire->ire_setsrc_addr_v6; 16589 ifrt->ifrt_v6mask = ire->ire_mask_v6; 16590 } 16591 ifrt->ifrt_flags = ire->ire_flags; 16592 ifrt->ifrt_zoneid = ire->ire_zoneid; 16593 mutex_enter(&ill->ill_saved_ire_lock); 16594 save_mp->b_cont = ill->ill_saved_ire_mp; 16595 ill->ill_saved_ire_mp = save_mp; 16596 ill->ill_saved_ire_cnt++; 16597 mutex_exit(&ill->ill_saved_ire_lock); 16598 } 16599 } 16600 16601 /* 16602 * Remove one entry from ill_saved_ire_mp. 16603 */ 16604 void 16605 ill_remove_saved_ire(ill_t *ill, ire_t *ire) 16606 { 16607 mblk_t **mpp; 16608 mblk_t *mp; 16609 ifrt_t *ifrt; 16610 16611 /* Remove from ill_saved_ire_mp list if it is there */ 16612 mutex_enter(&ill->ill_saved_ire_lock); 16613 for (mpp = &ill->ill_saved_ire_mp; *mpp != NULL; 16614 mpp = &(*mpp)->b_cont) { 16615 in6_addr_t gw_addr_v6; 16616 16617 /* 16618 * On a given ill, the tuple of address, gateway, mask, 16619 * ire_type, and zoneid is unique for each saved IRE. 16620 */ 16621 mp = *mpp; 16622 ifrt = (ifrt_t *)mp->b_rptr; 16623 /* ire_gateway_addr_v6 can change - need lock */ 16624 mutex_enter(&ire->ire_lock); 16625 gw_addr_v6 = ire->ire_gateway_addr_v6; 16626 mutex_exit(&ire->ire_lock); 16627 16628 if (ifrt->ifrt_zoneid != ire->ire_zoneid || 16629 ifrt->ifrt_type != ire->ire_type) 16630 continue; 16631 16632 if (ill->ill_isv6 ? 16633 (IN6_ARE_ADDR_EQUAL(&ifrt->ifrt_v6addr, 16634 &ire->ire_addr_v6) && 16635 IN6_ARE_ADDR_EQUAL(&ifrt->ifrt_v6gateway_addr, 16636 &gw_addr_v6) && 16637 IN6_ARE_ADDR_EQUAL(&ifrt->ifrt_v6mask, 16638 &ire->ire_mask_v6)) : 16639 (ifrt->ifrt_addr == ire->ire_addr && 16640 ifrt->ifrt_gateway_addr == ire->ire_gateway_addr && 16641 ifrt->ifrt_mask == ire->ire_mask)) { 16642 *mpp = mp->b_cont; 16643 ill->ill_saved_ire_cnt--; 16644 freeb(mp); 16645 break; 16646 } 16647 } 16648 mutex_exit(&ill->ill_saved_ire_lock); 16649 } 16650 16651 /* 16652 * IP multirouting broadcast routes handling 16653 * Append CGTP broadcast IREs to regular ones created 16654 * at ifconfig time. 16655 * The usage is a route add <cgtp_bc> <nic_bc> -multirt i.e., both 16656 * the destination and the gateway are broadcast addresses. 16657 * The caller has verified that the destination is an IRE_BROADCAST and that 16658 * RTF_MULTIRT was set. Here if the gateway is a broadcast address, then 16659 * we create a MULTIRT IRE_BROADCAST. 16660 * Note that the IRE_HOST created by ire_rt_add doesn't get found by anything 16661 * since the IRE_BROADCAST takes precedence; ire_add_v4 does head insertion. 16662 */ 16663 static void 16664 ip_cgtp_bcast_add(ire_t *ire, ip_stack_t *ipst) 16665 { 16666 ire_t *ire_prim; 16667 16668 ASSERT(ire != NULL); 16669 16670 ire_prim = ire_ftable_lookup_v4(ire->ire_gateway_addr, 0, 0, 16671 IRE_BROADCAST, NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, 0, ipst, 16672 NULL); 16673 if (ire_prim != NULL) { 16674 /* 16675 * We are in the special case of broadcasts for 16676 * CGTP. We add an IRE_BROADCAST that holds 16677 * the RTF_MULTIRT flag, the destination 16678 * address and the low level 16679 * info of ire_prim. In other words, CGTP 16680 * broadcast is added to the redundant ipif. 16681 */ 16682 ill_t *ill_prim; 16683 ire_t *bcast_ire; 16684 16685 ill_prim = ire_prim->ire_ill; 16686 16687 ip2dbg(("ip_cgtp_filter_bcast_add: ire_prim %p, ill_prim %p\n", 16688 (void *)ire_prim, (void *)ill_prim)); 16689 16690 bcast_ire = ire_create( 16691 (uchar_t *)&ire->ire_addr, 16692 (uchar_t *)&ip_g_all_ones, 16693 (uchar_t *)&ire->ire_gateway_addr, 16694 IRE_BROADCAST, 16695 ill_prim, 16696 GLOBAL_ZONEID, /* CGTP is only for the global zone */ 16697 ire->ire_flags | RTF_KERNEL, 16698 NULL, 16699 ipst); 16700 16701 /* 16702 * Here we assume that ire_add does head insertion so that 16703 * the added IRE_BROADCAST comes before the existing IRE_HOST. 16704 */ 16705 if (bcast_ire != NULL) { 16706 if (ire->ire_flags & RTF_SETSRC) { 16707 bcast_ire->ire_setsrc_addr = 16708 ire->ire_setsrc_addr; 16709 } 16710 bcast_ire = ire_add(bcast_ire); 16711 if (bcast_ire != NULL) { 16712 ip2dbg(("ip_cgtp_filter_bcast_add: " 16713 "added bcast_ire %p\n", 16714 (void *)bcast_ire)); 16715 16716 ill_save_ire(ill_prim, bcast_ire); 16717 ire_refrele(bcast_ire); 16718 } 16719 } 16720 ire_refrele(ire_prim); 16721 } 16722 } 16723 16724 /* 16725 * IP multirouting broadcast routes handling 16726 * Remove the broadcast ire. 16727 * The usage is a route delete <cgtp_bc> <nic_bc> -multirt i.e., both 16728 * the destination and the gateway are broadcast addresses. 16729 * The caller has only verified that RTF_MULTIRT was set. We check 16730 * that the destination is broadcast and that the gateway is a broadcast 16731 * address, and if so delete the IRE added by ip_cgtp_bcast_add(). 16732 */ 16733 static void 16734 ip_cgtp_bcast_delete(ire_t *ire, ip_stack_t *ipst) 16735 { 16736 ASSERT(ire != NULL); 16737 16738 if (ip_type_v4(ire->ire_addr, ipst) == IRE_BROADCAST) { 16739 ire_t *ire_prim; 16740 16741 ire_prim = ire_ftable_lookup_v4(ire->ire_gateway_addr, 0, 0, 16742 IRE_BROADCAST, NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, 0, 16743 ipst, NULL); 16744 if (ire_prim != NULL) { 16745 ill_t *ill_prim; 16746 ire_t *bcast_ire; 16747 16748 ill_prim = ire_prim->ire_ill; 16749 16750 ip2dbg(("ip_cgtp_filter_bcast_delete: " 16751 "ire_prim %p, ill_prim %p\n", 16752 (void *)ire_prim, (void *)ill_prim)); 16753 16754 bcast_ire = ire_ftable_lookup_v4(ire->ire_addr, 0, 16755 ire->ire_gateway_addr, IRE_BROADCAST, 16756 ill_prim, ALL_ZONES, NULL, 16757 MATCH_IRE_TYPE | MATCH_IRE_GW | MATCH_IRE_ILL | 16758 MATCH_IRE_MASK, 0, ipst, NULL); 16759 16760 if (bcast_ire != NULL) { 16761 ip2dbg(("ip_cgtp_filter_bcast_delete: " 16762 "looked up bcast_ire %p\n", 16763 (void *)bcast_ire)); 16764 ill_remove_saved_ire(bcast_ire->ire_ill, 16765 bcast_ire); 16766 ire_delete(bcast_ire); 16767 ire_refrele(bcast_ire); 16768 } 16769 ire_refrele(ire_prim); 16770 } 16771 } 16772 } 16773 16774 /* 16775 * Derive an interface id from the link layer address. 16776 * Knows about IEEE 802 and IEEE EUI-64 mappings. 16777 */ 16778 static void 16779 ip_ether_v6intfid(ill_t *ill, in6_addr_t *v6addr) 16780 { 16781 char *addr; 16782 16783 /* 16784 * Note that some IPv6 interfaces get plumbed over links that claim to 16785 * be DL_ETHER, but don't actually have Ethernet MAC addresses (e.g. 16786 * PPP links). The ETHERADDRL check here ensures that we only set the 16787 * interface ID on IPv6 interfaces above links that actually have real 16788 * Ethernet addresses. 16789 */ 16790 if (ill->ill_phys_addr_length == ETHERADDRL) { 16791 /* Form EUI-64 like address */ 16792 addr = (char *)&v6addr->s6_addr32[2]; 16793 bcopy(ill->ill_phys_addr, addr, 3); 16794 addr[0] ^= 0x2; /* Toggle Universal/Local bit */ 16795 addr[3] = (char)0xff; 16796 addr[4] = (char)0xfe; 16797 bcopy(ill->ill_phys_addr + 3, addr + 5, 3); 16798 } 16799 } 16800 16801 /* ARGSUSED */ 16802 static void 16803 ip_nodef_v6intfid(ill_t *ill, in6_addr_t *v6addr) 16804 { 16805 } 16806 16807 typedef struct ipmp_ifcookie { 16808 uint32_t ic_hostid; 16809 char ic_ifname[LIFNAMSIZ]; 16810 char ic_zonename[ZONENAME_MAX]; 16811 } ipmp_ifcookie_t; 16812 16813 /* 16814 * Construct a pseudo-random interface ID for the IPMP interface that's both 16815 * predictable and (almost) guaranteed to be unique. 16816 */ 16817 static void 16818 ip_ipmp_v6intfid(ill_t *ill, in6_addr_t *v6addr) 16819 { 16820 zone_t *zp; 16821 uint8_t *addr; 16822 uchar_t hash[16]; 16823 ulong_t hostid; 16824 MD5_CTX ctx; 16825 ipmp_ifcookie_t ic = { 0 }; 16826 16827 ASSERT(IS_IPMP(ill)); 16828 16829 (void) ddi_strtoul(hw_serial, NULL, 10, &hostid); 16830 ic.ic_hostid = htonl((uint32_t)hostid); 16831 16832 (void) strlcpy(ic.ic_ifname, ill->ill_name, LIFNAMSIZ); 16833 16834 if ((zp = zone_find_by_id(ill->ill_zoneid)) != NULL) { 16835 (void) strlcpy(ic.ic_zonename, zp->zone_name, ZONENAME_MAX); 16836 zone_rele(zp); 16837 } 16838 16839 MD5Init(&ctx); 16840 MD5Update(&ctx, &ic, sizeof (ic)); 16841 MD5Final(hash, &ctx); 16842 16843 /* 16844 * Map the hash to an interface ID per the basic approach in RFC3041. 16845 */ 16846 addr = &v6addr->s6_addr8[8]; 16847 bcopy(hash + 8, addr, sizeof (uint64_t)); 16848 addr[0] &= ~0x2; /* set local bit */ 16849 } 16850 16851 /* 16852 * Map the multicast in6_addr_t in m_ip6addr to the physaddr for ethernet. 16853 */ 16854 static void 16855 ip_ether_v6_mapping(ill_t *ill, uchar_t *m_ip6addr, uchar_t *m_physaddr) 16856 { 16857 phyint_t *phyi = ill->ill_phyint; 16858 16859 /* 16860 * Check PHYI_MULTI_BCAST and length of physical 16861 * address to determine if we use the mapping or the 16862 * broadcast address. 16863 */ 16864 if ((phyi->phyint_flags & PHYI_MULTI_BCAST) != 0 || 16865 ill->ill_phys_addr_length != ETHERADDRL) { 16866 ip_mbcast_mapping(ill, m_ip6addr, m_physaddr); 16867 return; 16868 } 16869 m_physaddr[0] = 0x33; 16870 m_physaddr[1] = 0x33; 16871 m_physaddr[2] = m_ip6addr[12]; 16872 m_physaddr[3] = m_ip6addr[13]; 16873 m_physaddr[4] = m_ip6addr[14]; 16874 m_physaddr[5] = m_ip6addr[15]; 16875 } 16876 16877 /* 16878 * Map the multicast ipaddr_t in m_ipaddr to the physaddr for ethernet. 16879 */ 16880 static void 16881 ip_ether_v4_mapping(ill_t *ill, uchar_t *m_ipaddr, uchar_t *m_physaddr) 16882 { 16883 phyint_t *phyi = ill->ill_phyint; 16884 16885 /* 16886 * Check PHYI_MULTI_BCAST and length of physical 16887 * address to determine if we use the mapping or the 16888 * broadcast address. 16889 */ 16890 if ((phyi->phyint_flags & PHYI_MULTI_BCAST) != 0 || 16891 ill->ill_phys_addr_length != ETHERADDRL) { 16892 ip_mbcast_mapping(ill, m_ipaddr, m_physaddr); 16893 return; 16894 } 16895 m_physaddr[0] = 0x01; 16896 m_physaddr[1] = 0x00; 16897 m_physaddr[2] = 0x5e; 16898 m_physaddr[3] = m_ipaddr[1] & 0x7f; 16899 m_physaddr[4] = m_ipaddr[2]; 16900 m_physaddr[5] = m_ipaddr[3]; 16901 } 16902 16903 /* ARGSUSED */ 16904 static void 16905 ip_mbcast_mapping(ill_t *ill, uchar_t *m_ipaddr, uchar_t *m_physaddr) 16906 { 16907 /* 16908 * for the MULTI_BCAST case and other cases when we want to 16909 * use the link-layer broadcast address for multicast. 16910 */ 16911 uint8_t *bphys_addr; 16912 dl_unitdata_req_t *dlur; 16913 16914 dlur = (dl_unitdata_req_t *)ill->ill_bcast_mp->b_rptr; 16915 if (ill->ill_sap_length < 0) { 16916 bphys_addr = (uchar_t *)dlur + 16917 dlur->dl_dest_addr_offset; 16918 } else { 16919 bphys_addr = (uchar_t *)dlur + 16920 dlur->dl_dest_addr_offset + ill->ill_sap_length; 16921 } 16922 16923 bcopy(bphys_addr, m_physaddr, ill->ill_phys_addr_length); 16924 } 16925 16926 /* 16927 * Derive IPoIB interface id from the link layer address. 16928 */ 16929 static void 16930 ip_ib_v6intfid(ill_t *ill, in6_addr_t *v6addr) 16931 { 16932 char *addr; 16933 16934 ASSERT(ill->ill_phys_addr_length == 20); 16935 addr = (char *)&v6addr->s6_addr32[2]; 16936 bcopy(ill->ill_phys_addr + 12, addr, 8); 16937 /* 16938 * In IBA 1.1 timeframe, some vendors erroneously set the u/l bit 16939 * in the globally assigned EUI-64 GUID to 1, in violation of IEEE 16940 * rules. In these cases, the IBA considers these GUIDs to be in 16941 * "Modified EUI-64" format, and thus toggling the u/l bit is not 16942 * required; vendors are required not to assign global EUI-64's 16943 * that differ only in u/l bit values, thus guaranteeing uniqueness 16944 * of the interface identifier. Whether the GUID is in modified 16945 * or proper EUI-64 format, the ipv6 identifier must have the u/l 16946 * bit set to 1. 16947 */ 16948 addr[0] |= 2; /* Set Universal/Local bit to 1 */ 16949 } 16950 16951 /* 16952 * Map the multicast ipaddr_t in m_ipaddr to the physaddr for InfiniBand. 16953 * Note on mapping from multicast IP addresses to IPoIB multicast link 16954 * addresses. IPoIB multicast link addresses are based on IBA link addresses. 16955 * The format of an IPoIB multicast address is: 16956 * 16957 * 4 byte QPN Scope Sign. Pkey 16958 * +--------------------------------------------+ 16959 * | 00FFFFFF | FF | 1X | X01B | Pkey | GroupID | 16960 * +--------------------------------------------+ 16961 * 16962 * The Scope and Pkey components are properties of the IBA port and 16963 * network interface. They can be ascertained from the broadcast address. 16964 * The Sign. part is the signature, and is 401B for IPv4 and 601B for IPv6. 16965 */ 16966 static void 16967 ip_ib_v4_mapping(ill_t *ill, uchar_t *m_ipaddr, uchar_t *m_physaddr) 16968 { 16969 static uint8_t ipv4_g_phys_ibmulti_addr[] = { 0x00, 0xff, 0xff, 0xff, 16970 0xff, 0x10, 0x40, 0x1b, 0x00, 0x00, 0x00, 0x00, 16971 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }; 16972 uint8_t *bphys_addr; 16973 dl_unitdata_req_t *dlur; 16974 16975 bcopy(ipv4_g_phys_ibmulti_addr, m_physaddr, ill->ill_phys_addr_length); 16976 16977 /* 16978 * RFC 4391: IPv4 MGID is 28-bit long. 16979 */ 16980 m_physaddr[16] = m_ipaddr[0] & 0x0f; 16981 m_physaddr[17] = m_ipaddr[1]; 16982 m_physaddr[18] = m_ipaddr[2]; 16983 m_physaddr[19] = m_ipaddr[3]; 16984 16985 16986 dlur = (dl_unitdata_req_t *)ill->ill_bcast_mp->b_rptr; 16987 if (ill->ill_sap_length < 0) { 16988 bphys_addr = (uchar_t *)dlur + dlur->dl_dest_addr_offset; 16989 } else { 16990 bphys_addr = (uchar_t *)dlur + dlur->dl_dest_addr_offset + 16991 ill->ill_sap_length; 16992 } 16993 /* 16994 * Now fill in the IBA scope/Pkey values from the broadcast address. 16995 */ 16996 m_physaddr[5] = bphys_addr[5]; 16997 m_physaddr[8] = bphys_addr[8]; 16998 m_physaddr[9] = bphys_addr[9]; 16999 } 17000 17001 static void 17002 ip_ib_v6_mapping(ill_t *ill, uchar_t *m_ipaddr, uchar_t *m_physaddr) 17003 { 17004 static uint8_t ipv4_g_phys_ibmulti_addr[] = { 0x00, 0xff, 0xff, 0xff, 17005 0xff, 0x10, 0x60, 0x1b, 0x00, 0x00, 0x00, 0x00, 17006 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }; 17007 uint8_t *bphys_addr; 17008 dl_unitdata_req_t *dlur; 17009 17010 bcopy(ipv4_g_phys_ibmulti_addr, m_physaddr, ill->ill_phys_addr_length); 17011 17012 /* 17013 * RFC 4391: IPv4 MGID is 80-bit long. 17014 */ 17015 bcopy(&m_ipaddr[6], &m_physaddr[10], 10); 17016 17017 dlur = (dl_unitdata_req_t *)ill->ill_bcast_mp->b_rptr; 17018 if (ill->ill_sap_length < 0) { 17019 bphys_addr = (uchar_t *)dlur + dlur->dl_dest_addr_offset; 17020 } else { 17021 bphys_addr = (uchar_t *)dlur + dlur->dl_dest_addr_offset + 17022 ill->ill_sap_length; 17023 } 17024 /* 17025 * Now fill in the IBA scope/Pkey values from the broadcast address. 17026 */ 17027 m_physaddr[5] = bphys_addr[5]; 17028 m_physaddr[8] = bphys_addr[8]; 17029 m_physaddr[9] = bphys_addr[9]; 17030 } 17031 17032 /* 17033 * Derive IPv6 interface id from an IPv4 link-layer address (e.g. from an IPv4 17034 * tunnel). The IPv4 address simply get placed in the lower 4 bytes of the 17035 * IPv6 interface id. This is a suggested mechanism described in section 3.7 17036 * of RFC4213. 17037 */ 17038 static void 17039 ip_ipv4_genv6intfid(ill_t *ill, uint8_t *physaddr, in6_addr_t *v6addr) 17040 { 17041 ASSERT(ill->ill_phys_addr_length == sizeof (ipaddr_t)); 17042 v6addr->s6_addr32[2] = 0; 17043 bcopy(physaddr, &v6addr->s6_addr32[3], sizeof (ipaddr_t)); 17044 } 17045 17046 /* 17047 * Derive IPv6 interface id from an IPv6 link-layer address (e.g. from an IPv6 17048 * tunnel). The lower 8 bytes of the IPv6 address simply become the interface 17049 * id. 17050 */ 17051 static void 17052 ip_ipv6_genv6intfid(ill_t *ill, uint8_t *physaddr, in6_addr_t *v6addr) 17053 { 17054 in6_addr_t *v6lladdr = (in6_addr_t *)physaddr; 17055 17056 ASSERT(ill->ill_phys_addr_length == sizeof (in6_addr_t)); 17057 bcopy(&v6lladdr->s6_addr32[2], &v6addr->s6_addr32[2], 8); 17058 } 17059 17060 static void 17061 ip_ipv6_v6intfid(ill_t *ill, in6_addr_t *v6addr) 17062 { 17063 ip_ipv6_genv6intfid(ill, ill->ill_phys_addr, v6addr); 17064 } 17065 17066 static void 17067 ip_ipv6_v6destintfid(ill_t *ill, in6_addr_t *v6addr) 17068 { 17069 ip_ipv6_genv6intfid(ill, ill->ill_dest_addr, v6addr); 17070 } 17071 17072 static void 17073 ip_ipv4_v6intfid(ill_t *ill, in6_addr_t *v6addr) 17074 { 17075 ip_ipv4_genv6intfid(ill, ill->ill_phys_addr, v6addr); 17076 } 17077 17078 static void 17079 ip_ipv4_v6destintfid(ill_t *ill, in6_addr_t *v6addr) 17080 { 17081 ip_ipv4_genv6intfid(ill, ill->ill_dest_addr, v6addr); 17082 } 17083 17084 /* 17085 * Lookup an ill and verify that the zoneid has an ipif on that ill. 17086 * Returns an held ill, or NULL. 17087 */ 17088 ill_t * 17089 ill_lookup_on_ifindex_zoneid(uint_t index, zoneid_t zoneid, boolean_t isv6, 17090 ip_stack_t *ipst) 17091 { 17092 ill_t *ill; 17093 ipif_t *ipif; 17094 17095 ill = ill_lookup_on_ifindex(index, isv6, ipst); 17096 if (ill == NULL) 17097 return (NULL); 17098 17099 mutex_enter(&ill->ill_lock); 17100 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 17101 if (IPIF_IS_CONDEMNED(ipif)) 17102 continue; 17103 if (zoneid != ALL_ZONES && ipif->ipif_zoneid != zoneid && 17104 ipif->ipif_zoneid != ALL_ZONES) 17105 continue; 17106 17107 mutex_exit(&ill->ill_lock); 17108 return (ill); 17109 } 17110 mutex_exit(&ill->ill_lock); 17111 ill_refrele(ill); 17112 return (NULL); 17113 } 17114 17115 /* 17116 * Return a pointer to an ipif_t given a combination of (ill_idx,ipif_id) 17117 * If a pointer to an ipif_t is returned then the caller will need to do 17118 * an ill_refrele(). 17119 */ 17120 ipif_t * 17121 ipif_getby_indexes(uint_t ifindex, uint_t lifidx, boolean_t isv6, 17122 ip_stack_t *ipst) 17123 { 17124 ipif_t *ipif; 17125 ill_t *ill; 17126 17127 ill = ill_lookup_on_ifindex(ifindex, isv6, ipst); 17128 if (ill == NULL) 17129 return (NULL); 17130 17131 mutex_enter(&ill->ill_lock); 17132 if (ill->ill_state_flags & ILL_CONDEMNED) { 17133 mutex_exit(&ill->ill_lock); 17134 ill_refrele(ill); 17135 return (NULL); 17136 } 17137 17138 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 17139 if (!IPIF_CAN_LOOKUP(ipif)) 17140 continue; 17141 if (lifidx == ipif->ipif_id) { 17142 ipif_refhold_locked(ipif); 17143 break; 17144 } 17145 } 17146 17147 mutex_exit(&ill->ill_lock); 17148 ill_refrele(ill); 17149 return (ipif); 17150 } 17151 17152 /* 17153 * Set ill_inputfn based on the current know state. 17154 * This needs to be called when any of the factors taken into 17155 * account changes. 17156 */ 17157 void 17158 ill_set_inputfn(ill_t *ill) 17159 { 17160 ip_stack_t *ipst = ill->ill_ipst; 17161 17162 if (ill->ill_isv6) { 17163 if (is_system_labeled()) 17164 ill->ill_inputfn = ill_input_full_v6; 17165 else 17166 ill->ill_inputfn = ill_input_short_v6; 17167 } else { 17168 if (is_system_labeled()) 17169 ill->ill_inputfn = ill_input_full_v4; 17170 else if (ill->ill_dhcpinit != 0) 17171 ill->ill_inputfn = ill_input_full_v4; 17172 else if (ipst->ips_ipcl_proto_fanout_v4[IPPROTO_RSVP].connf_head 17173 != NULL) 17174 ill->ill_inputfn = ill_input_full_v4; 17175 else if (ipst->ips_ip_cgtp_filter && 17176 ipst->ips_ip_cgtp_filter_ops != NULL) 17177 ill->ill_inputfn = ill_input_full_v4; 17178 else 17179 ill->ill_inputfn = ill_input_short_v4; 17180 } 17181 } 17182 17183 /* 17184 * Re-evaluate ill_inputfn for all the IPv4 ills. 17185 * Used when RSVP and CGTP comes and goes. 17186 */ 17187 void 17188 ill_set_inputfn_all(ip_stack_t *ipst) 17189 { 17190 ill_walk_context_t ctx; 17191 ill_t *ill; 17192 17193 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 17194 ill = ILL_START_WALK_V4(&ctx, ipst); 17195 for (; ill != NULL; ill = ill_next(&ctx, ill)) 17196 ill_set_inputfn(ill); 17197 17198 rw_exit(&ipst->ips_ill_g_lock); 17199 } 17200 17201 /* 17202 * Set the physical address information for `ill' to the contents of the 17203 * dl_notify_ind_t pointed to by `mp'. Must be called as writer, and will be 17204 * asynchronous if `ill' cannot immediately be quiesced -- in which case 17205 * EINPROGRESS will be returned. 17206 */ 17207 int 17208 ill_set_phys_addr(ill_t *ill, mblk_t *mp) 17209 { 17210 ipsq_t *ipsq = ill->ill_phyint->phyint_ipsq; 17211 dl_notify_ind_t *dlindp = (dl_notify_ind_t *)mp->b_rptr; 17212 17213 ASSERT(IAM_WRITER_IPSQ(ipsq)); 17214 17215 if (dlindp->dl_data != DL_IPV6_LINK_LAYER_ADDR && 17216 dlindp->dl_data != DL_CURR_DEST_ADDR && 17217 dlindp->dl_data != DL_CURR_PHYS_ADDR) { 17218 /* Changing DL_IPV6_TOKEN is not yet supported */ 17219 return (0); 17220 } 17221 17222 /* 17223 * We need to store up to two copies of `mp' in `ill'. Due to the 17224 * design of ipsq_pending_mp_add(), we can't pass them as separate 17225 * arguments to ill_set_phys_addr_tail(). Instead, chain them 17226 * together here, then pull 'em apart in ill_set_phys_addr_tail(). 17227 */ 17228 if ((mp = copyb(mp)) == NULL || (mp->b_cont = copyb(mp)) == NULL) { 17229 freemsg(mp); 17230 return (ENOMEM); 17231 } 17232 17233 ipsq_current_start(ipsq, ill->ill_ipif, 0); 17234 mutex_enter(&ill->ill_lock); 17235 ill->ill_state_flags |= ILL_DOWN_IN_PROGRESS; 17236 /* no more nce addition allowed */ 17237 mutex_exit(&ill->ill_lock); 17238 17239 /* 17240 * If we can quiesce the ill, then set the address. If not, then 17241 * ill_set_phys_addr_tail() will be called from ipif_ill_refrele_tail(). 17242 */ 17243 ill_down_ipifs(ill, B_TRUE); 17244 mutex_enter(&ill->ill_lock); 17245 if (!ill_is_quiescent(ill)) { 17246 /* call cannot fail since `conn_t *' argument is NULL */ 17247 (void) ipsq_pending_mp_add(NULL, ill->ill_ipif, ill->ill_rq, 17248 mp, ILL_DOWN); 17249 mutex_exit(&ill->ill_lock); 17250 return (EINPROGRESS); 17251 } 17252 mutex_exit(&ill->ill_lock); 17253 17254 ill_set_phys_addr_tail(ipsq, ill->ill_rq, mp, NULL); 17255 return (0); 17256 } 17257 17258 /* 17259 * Once the ill associated with `q' has quiesced, set its physical address 17260 * information to the values in `addrmp'. Note that two copies of `addrmp' 17261 * are passed (linked by b_cont), since we sometimes need to save two distinct 17262 * copies in the ill_t, and our context doesn't permit sleeping or allocation 17263 * failure (we'll free the other copy if it's not needed). Since the ill_t 17264 * is quiesced, we know any stale nce's with the old address information have 17265 * already been removed, so we don't need to call nce_flush(). 17266 */ 17267 /* ARGSUSED */ 17268 static void 17269 ill_set_phys_addr_tail(ipsq_t *ipsq, queue_t *q, mblk_t *addrmp, void *dummy) 17270 { 17271 ill_t *ill = q->q_ptr; 17272 mblk_t *addrmp2 = unlinkb(addrmp); 17273 dl_notify_ind_t *dlindp = (dl_notify_ind_t *)addrmp->b_rptr; 17274 uint_t addrlen, addroff; 17275 int status; 17276 17277 ASSERT(IAM_WRITER_IPSQ(ipsq)); 17278 17279 addroff = dlindp->dl_addr_offset; 17280 addrlen = dlindp->dl_addr_length - ABS(ill->ill_sap_length); 17281 17282 switch (dlindp->dl_data) { 17283 case DL_IPV6_LINK_LAYER_ADDR: 17284 ill_set_ndmp(ill, addrmp, addroff, addrlen); 17285 freemsg(addrmp2); 17286 break; 17287 17288 case DL_CURR_DEST_ADDR: 17289 freemsg(ill->ill_dest_addr_mp); 17290 ill->ill_dest_addr = addrmp->b_rptr + addroff; 17291 ill->ill_dest_addr_mp = addrmp; 17292 if (ill->ill_isv6) { 17293 ill_setdesttoken(ill); 17294 ipif_setdestlinklocal(ill->ill_ipif); 17295 } 17296 freemsg(addrmp2); 17297 break; 17298 17299 case DL_CURR_PHYS_ADDR: 17300 freemsg(ill->ill_phys_addr_mp); 17301 ill->ill_phys_addr = addrmp->b_rptr + addroff; 17302 ill->ill_phys_addr_mp = addrmp; 17303 ill->ill_phys_addr_length = addrlen; 17304 if (ill->ill_isv6) 17305 ill_set_ndmp(ill, addrmp2, addroff, addrlen); 17306 else 17307 freemsg(addrmp2); 17308 if (ill->ill_isv6) { 17309 ill_setdefaulttoken(ill); 17310 ipif_setlinklocal(ill->ill_ipif); 17311 } 17312 break; 17313 default: 17314 ASSERT(0); 17315 } 17316 17317 /* 17318 * If there are ipifs to bring up, ill_up_ipifs() will return 17319 * EINPROGRESS, and ipsq_current_finish() will be called by 17320 * ip_rput_dlpi_writer() or arp_bringup_done() when the last ipif is 17321 * brought up. 17322 */ 17323 status = ill_up_ipifs(ill, q, addrmp); 17324 mutex_enter(&ill->ill_lock); 17325 if (ill->ill_dl_up) 17326 ill->ill_state_flags &= ~ILL_DOWN_IN_PROGRESS; 17327 mutex_exit(&ill->ill_lock); 17328 if (status != EINPROGRESS) 17329 ipsq_current_finish(ipsq); 17330 } 17331 17332 /* 17333 * Helper routine for setting the ill_nd_lla fields. 17334 */ 17335 void 17336 ill_set_ndmp(ill_t *ill, mblk_t *ndmp, uint_t addroff, uint_t addrlen) 17337 { 17338 freemsg(ill->ill_nd_lla_mp); 17339 ill->ill_nd_lla = ndmp->b_rptr + addroff; 17340 ill->ill_nd_lla_mp = ndmp; 17341 ill->ill_nd_lla_len = addrlen; 17342 } 17343 17344 /* 17345 * Replumb the ill. 17346 */ 17347 int 17348 ill_replumb(ill_t *ill, mblk_t *mp) 17349 { 17350 ipsq_t *ipsq = ill->ill_phyint->phyint_ipsq; 17351 17352 ASSERT(IAM_WRITER_IPSQ(ipsq)); 17353 17354 ipsq_current_start(ipsq, ill->ill_ipif, 0); 17355 17356 mutex_enter(&ill->ill_lock); 17357 ill->ill_state_flags |= ILL_DOWN_IN_PROGRESS; 17358 /* no more nce addition allowed */ 17359 mutex_exit(&ill->ill_lock); 17360 17361 /* 17362 * If we can quiesce the ill, then continue. If not, then 17363 * ill_replumb_tail() will be called from ipif_ill_refrele_tail(). 17364 */ 17365 ill_down_ipifs(ill, B_FALSE); 17366 17367 mutex_enter(&ill->ill_lock); 17368 if (!ill_is_quiescent(ill)) { 17369 /* call cannot fail since `conn_t *' argument is NULL */ 17370 (void) ipsq_pending_mp_add(NULL, ill->ill_ipif, ill->ill_rq, 17371 mp, ILL_DOWN); 17372 mutex_exit(&ill->ill_lock); 17373 return (EINPROGRESS); 17374 } 17375 mutex_exit(&ill->ill_lock); 17376 17377 ill_replumb_tail(ipsq, ill->ill_rq, mp, NULL); 17378 return (0); 17379 } 17380 17381 /* ARGSUSED */ 17382 static void 17383 ill_replumb_tail(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy) 17384 { 17385 ill_t *ill = q->q_ptr; 17386 int err; 17387 conn_t *connp = NULL; 17388 17389 ASSERT(IAM_WRITER_IPSQ(ipsq)); 17390 freemsg(ill->ill_replumb_mp); 17391 ill->ill_replumb_mp = copyb(mp); 17392 17393 if (ill->ill_replumb_mp == NULL) { 17394 /* out of memory */ 17395 ipsq_current_finish(ipsq); 17396 return; 17397 } 17398 17399 mutex_enter(&ill->ill_lock); 17400 ill->ill_up_ipifs = ipsq_pending_mp_add(NULL, ill->ill_ipif, 17401 ill->ill_rq, ill->ill_replumb_mp, 0); 17402 mutex_exit(&ill->ill_lock); 17403 17404 if (!ill->ill_up_ipifs) { 17405 /* already closing */ 17406 ipsq_current_finish(ipsq); 17407 return; 17408 } 17409 ill->ill_replumbing = 1; 17410 err = ill_down_ipifs_tail(ill); 17411 17412 /* 17413 * Successfully quiesced and brought down the interface, now we send 17414 * the DL_NOTE_REPLUMB_DONE message down to the driver. Reuse the 17415 * DL_NOTE_REPLUMB message. 17416 */ 17417 mp = mexchange(NULL, mp, sizeof (dl_notify_conf_t), M_PROTO, 17418 DL_NOTIFY_CONF); 17419 ASSERT(mp != NULL); 17420 ((dl_notify_conf_t *)mp->b_rptr)->dl_notification = 17421 DL_NOTE_REPLUMB_DONE; 17422 ill_dlpi_send(ill, mp); 17423 17424 /* 17425 * For IPv4, we would usually get EINPROGRESS because the ETHERTYPE_ARP 17426 * streams have to be unbound. When all the DLPI exchanges are done, 17427 * ipsq_current_finish() will be called by arp_bringup_done(). The 17428 * remainder of ipif bringup via ill_up_ipifs() will also be done in 17429 * arp_bringup_done(). 17430 */ 17431 ASSERT(ill->ill_replumb_mp != NULL); 17432 if (err == EINPROGRESS) 17433 return; 17434 else 17435 ill->ill_replumb_mp = ipsq_pending_mp_get(ipsq, &connp); 17436 ASSERT(connp == NULL); 17437 if (err == 0 && ill->ill_replumb_mp != NULL && 17438 ill_up_ipifs(ill, q, ill->ill_replumb_mp) == EINPROGRESS) { 17439 return; 17440 } 17441 ipsq_current_finish(ipsq); 17442 } 17443 17444 /* 17445 * Issue ioctl `cmd' on `lh'; caller provides the initial payload in `buf' 17446 * which is `bufsize' bytes. On success, zero is returned and `buf' updated 17447 * as per the ioctl. On failure, an errno is returned. 17448 */ 17449 static int 17450 ip_ioctl(ldi_handle_t lh, int cmd, void *buf, uint_t bufsize, cred_t *cr) 17451 { 17452 int rval; 17453 struct strioctl iocb; 17454 17455 iocb.ic_cmd = cmd; 17456 iocb.ic_timout = 15; 17457 iocb.ic_len = bufsize; 17458 iocb.ic_dp = buf; 17459 17460 return (ldi_ioctl(lh, I_STR, (intptr_t)&iocb, FKIOCTL, cr, &rval)); 17461 } 17462 17463 /* 17464 * Issue an SIOCGLIFCONF for address family `af' and store the result into a 17465 * dynamically-allocated `lifcp' that will be `bufsizep' bytes on success. 17466 */ 17467 static int 17468 ip_lifconf_ioctl(ldi_handle_t lh, int af, struct lifconf *lifcp, 17469 uint_t *bufsizep, cred_t *cr) 17470 { 17471 int err; 17472 struct lifnum lifn; 17473 17474 bzero(&lifn, sizeof (lifn)); 17475 lifn.lifn_family = af; 17476 lifn.lifn_flags = LIFC_UNDER_IPMP; 17477 17478 if ((err = ip_ioctl(lh, SIOCGLIFNUM, &lifn, sizeof (lifn), cr)) != 0) 17479 return (err); 17480 17481 /* 17482 * Pad the interface count to account for additional interfaces that 17483 * may have been configured between the SIOCGLIFNUM and SIOCGLIFCONF. 17484 */ 17485 lifn.lifn_count += 4; 17486 bzero(lifcp, sizeof (*lifcp)); 17487 lifcp->lifc_flags = LIFC_UNDER_IPMP; 17488 lifcp->lifc_family = af; 17489 lifcp->lifc_len = *bufsizep = lifn.lifn_count * sizeof (struct lifreq); 17490 lifcp->lifc_buf = kmem_zalloc(*bufsizep, KM_SLEEP); 17491 17492 err = ip_ioctl(lh, SIOCGLIFCONF, lifcp, sizeof (*lifcp), cr); 17493 if (err != 0) { 17494 kmem_free(lifcp->lifc_buf, *bufsizep); 17495 return (err); 17496 } 17497 17498 return (0); 17499 } 17500 17501 /* 17502 * Helper for ip_interface_cleanup() that removes the loopback interface. 17503 */ 17504 static void 17505 ip_loopback_removeif(ldi_handle_t lh, boolean_t isv6, cred_t *cr) 17506 { 17507 int err; 17508 struct lifreq lifr; 17509 17510 bzero(&lifr, sizeof (lifr)); 17511 (void) strcpy(lifr.lifr_name, ipif_loopback_name); 17512 17513 err = ip_ioctl(lh, SIOCLIFREMOVEIF, &lifr, sizeof (lifr), cr); 17514 if (err != 0) { 17515 ip0dbg(("ip_loopback_removeif: IP%s SIOCLIFREMOVEIF failed: " 17516 "error %d\n", isv6 ? "v6" : "v4", err)); 17517 } 17518 } 17519 17520 /* 17521 * Helper for ip_interface_cleanup() that ensures no IP interfaces are in IPMP 17522 * groups and that IPMP data addresses are down. These conditions must be met 17523 * so that IPMP interfaces can be I_PUNLINK'd, as per ip_sioctl_plink_ipmp(). 17524 */ 17525 static void 17526 ip_ipmp_cleanup(ldi_handle_t lh, boolean_t isv6, cred_t *cr) 17527 { 17528 int af = isv6 ? AF_INET6 : AF_INET; 17529 int i, nifs; 17530 int err; 17531 uint_t bufsize; 17532 uint_t lifrsize = sizeof (struct lifreq); 17533 struct lifconf lifc; 17534 struct lifreq *lifrp; 17535 17536 if ((err = ip_lifconf_ioctl(lh, af, &lifc, &bufsize, cr)) != 0) { 17537 cmn_err(CE_WARN, "ip_ipmp_cleanup: cannot get interface list " 17538 "(error %d); any IPMP interfaces cannot be shutdown", err); 17539 return; 17540 } 17541 17542 nifs = lifc.lifc_len / lifrsize; 17543 for (lifrp = lifc.lifc_req, i = 0; i < nifs; i++, lifrp++) { 17544 err = ip_ioctl(lh, SIOCGLIFFLAGS, lifrp, lifrsize, cr); 17545 if (err != 0) { 17546 cmn_err(CE_WARN, "ip_ipmp_cleanup: %s: cannot get " 17547 "flags: error %d", lifrp->lifr_name, err); 17548 continue; 17549 } 17550 17551 if (lifrp->lifr_flags & IFF_IPMP) { 17552 if ((lifrp->lifr_flags & (IFF_UP|IFF_DUPLICATE)) == 0) 17553 continue; 17554 17555 lifrp->lifr_flags &= ~IFF_UP; 17556 err = ip_ioctl(lh, SIOCSLIFFLAGS, lifrp, lifrsize, cr); 17557 if (err != 0) { 17558 cmn_err(CE_WARN, "ip_ipmp_cleanup: %s: cannot " 17559 "bring down (error %d); IPMP interface may " 17560 "not be shutdown", lifrp->lifr_name, err); 17561 } 17562 17563 /* 17564 * Check if IFF_DUPLICATE is still set -- and if so, 17565 * reset the address to clear it. 17566 */ 17567 err = ip_ioctl(lh, SIOCGLIFFLAGS, lifrp, lifrsize, cr); 17568 if (err != 0 || !(lifrp->lifr_flags & IFF_DUPLICATE)) 17569 continue; 17570 17571 err = ip_ioctl(lh, SIOCGLIFADDR, lifrp, lifrsize, cr); 17572 if (err != 0 || (err = ip_ioctl(lh, SIOCGLIFADDR, 17573 lifrp, lifrsize, cr)) != 0) { 17574 cmn_err(CE_WARN, "ip_ipmp_cleanup: %s: cannot " 17575 "reset DAD (error %d); IPMP interface may " 17576 "not be shutdown", lifrp->lifr_name, err); 17577 } 17578 continue; 17579 } 17580 17581 lifrp->lifr_groupname[0] = '\0'; 17582 err = ip_ioctl(lh, SIOCSLIFGROUPNAME, lifrp, lifrsize, cr); 17583 if (err != 0) { 17584 cmn_err(CE_WARN, "ip_ipmp_cleanup: %s: cannot leave " 17585 "IPMP group (error %d); associated IPMP interface " 17586 "may not be shutdown", lifrp->lifr_name, err); 17587 continue; 17588 } 17589 } 17590 17591 kmem_free(lifc.lifc_buf, bufsize); 17592 } 17593 17594 #define UDPDEV "/devices/pseudo/udp@0:udp" 17595 #define UDP6DEV "/devices/pseudo/udp6@0:udp6" 17596 17597 /* 17598 * Remove the loopback interfaces and prep the IPMP interfaces to be torn down. 17599 * Non-loopback interfaces are either I_LINK'd or I_PLINK'd; the former go away 17600 * when the user-level processes in the zone are killed and the latter are 17601 * cleaned up by str_stack_shutdown(). 17602 */ 17603 void 17604 ip_interface_cleanup(ip_stack_t *ipst) 17605 { 17606 ldi_handle_t lh; 17607 ldi_ident_t li; 17608 cred_t *cr; 17609 int err; 17610 int i; 17611 char *devs[] = { UDP6DEV, UDPDEV }; 17612 netstackid_t stackid = ipst->ips_netstack->netstack_stackid; 17613 17614 if ((err = ldi_ident_from_major(ddi_name_to_major("ip"), &li)) != 0) { 17615 cmn_err(CE_WARN, "ip_interface_cleanup: cannot get ldi ident:" 17616 " error %d", err); 17617 return; 17618 } 17619 17620 cr = zone_get_kcred(netstackid_to_zoneid(stackid)); 17621 ASSERT(cr != NULL); 17622 17623 /* 17624 * NOTE: loop executes exactly twice and is hardcoded to know that the 17625 * first iteration is IPv6. (Unrolling yields repetitious code, hence 17626 * the loop.) 17627 */ 17628 for (i = 0; i < 2; i++) { 17629 err = ldi_open_by_name(devs[i], FREAD|FWRITE, cr, &lh, li); 17630 if (err != 0) { 17631 cmn_err(CE_WARN, "ip_interface_cleanup: cannot open %s:" 17632 " error %d", devs[i], err); 17633 continue; 17634 } 17635 17636 ip_loopback_removeif(lh, i == 0, cr); 17637 ip_ipmp_cleanup(lh, i == 0, cr); 17638 17639 (void) ldi_close(lh, FREAD|FWRITE, cr); 17640 } 17641 17642 ldi_ident_release(li); 17643 crfree(cr); 17644 } 17645 17646 /* 17647 * This needs to be in-sync with nic_event_t definition 17648 */ 17649 static const char * 17650 ill_hook_event2str(nic_event_t event) 17651 { 17652 switch (event) { 17653 case NE_PLUMB: 17654 return ("PLUMB"); 17655 case NE_UNPLUMB: 17656 return ("UNPLUMB"); 17657 case NE_UP: 17658 return ("UP"); 17659 case NE_DOWN: 17660 return ("DOWN"); 17661 case NE_ADDRESS_CHANGE: 17662 return ("ADDRESS_CHANGE"); 17663 case NE_LIF_UP: 17664 return ("LIF_UP"); 17665 case NE_LIF_DOWN: 17666 return ("LIF_DOWN"); 17667 case NE_IFINDEX_CHANGE: 17668 return ("IFINDEX_CHANGE"); 17669 default: 17670 return ("UNKNOWN"); 17671 } 17672 } 17673 17674 void 17675 ill_nic_event_dispatch(ill_t *ill, lif_if_t lif, nic_event_t event, 17676 nic_event_data_t data, size_t datalen) 17677 { 17678 ip_stack_t *ipst = ill->ill_ipst; 17679 hook_nic_event_int_t *info; 17680 const char *str = NULL; 17681 17682 /* create a new nic event info */ 17683 if ((info = kmem_alloc(sizeof (*info), KM_NOSLEEP)) == NULL) 17684 goto fail; 17685 17686 info->hnei_event.hne_nic = ill->ill_phyint->phyint_ifindex; 17687 info->hnei_event.hne_lif = lif; 17688 info->hnei_event.hne_event = event; 17689 info->hnei_event.hne_protocol = ill->ill_isv6 ? 17690 ipst->ips_ipv6_net_data : ipst->ips_ipv4_net_data; 17691 info->hnei_event.hne_data = NULL; 17692 info->hnei_event.hne_datalen = 0; 17693 info->hnei_stackid = ipst->ips_netstack->netstack_stackid; 17694 17695 if (data != NULL && datalen != 0) { 17696 info->hnei_event.hne_data = kmem_alloc(datalen, KM_NOSLEEP); 17697 if (info->hnei_event.hne_data == NULL) 17698 goto fail; 17699 bcopy(data, info->hnei_event.hne_data, datalen); 17700 info->hnei_event.hne_datalen = datalen; 17701 } 17702 17703 if (ddi_taskq_dispatch(eventq_queue_nic, ip_ne_queue_func, info, 17704 DDI_NOSLEEP) == DDI_SUCCESS) 17705 return; 17706 17707 fail: 17708 if (info != NULL) { 17709 if (info->hnei_event.hne_data != NULL) { 17710 kmem_free(info->hnei_event.hne_data, 17711 info->hnei_event.hne_datalen); 17712 } 17713 kmem_free(info, sizeof (hook_nic_event_t)); 17714 } 17715 str = ill_hook_event2str(event); 17716 ip2dbg(("ill_nic_event_dispatch: could not dispatch %s nic event " 17717 "information for %s (ENOMEM)\n", str, ill->ill_name)); 17718 } 17719 17720 static int 17721 ipif_arp_up_done_tail(ipif_t *ipif, enum ip_resolver_action res_act) 17722 { 17723 int err = 0; 17724 const in_addr_t *addr = NULL; 17725 nce_t *nce = NULL; 17726 ill_t *ill = ipif->ipif_ill; 17727 ill_t *bound_ill; 17728 boolean_t added_ipif = B_FALSE; 17729 uint16_t state; 17730 uint16_t flags; 17731 17732 DTRACE_PROBE3(ipif__downup, char *, "ipif_arp_up_done_tail", 17733 ill_t *, ill, ipif_t *, ipif); 17734 if (ipif->ipif_lcl_addr != INADDR_ANY) { 17735 addr = &ipif->ipif_lcl_addr; 17736 } 17737 17738 if ((ipif->ipif_flags & IPIF_UNNUMBERED) || addr == NULL) { 17739 if (res_act != Res_act_initial) 17740 return (EINVAL); 17741 } 17742 17743 if (addr != NULL) { 17744 ipmp_illgrp_t *illg = ill->ill_grp; 17745 17746 /* add unicast nce for the local addr */ 17747 17748 if (IS_IPMP(ill)) { 17749 /* 17750 * If we're here via ipif_up(), then the ipif 17751 * won't be bound yet -- add it to the group, 17752 * which will bind it if possible. (We would 17753 * add it in ipif_up(), but deleting on failure 17754 * there is gruesome.) If we're here via 17755 * ipmp_ill_bind_ipif(), then the ipif has 17756 * already been added to the group and we 17757 * just need to use the binding. 17758 */ 17759 if ((bound_ill = ipmp_ipif_bound_ill(ipif)) == NULL) { 17760 bound_ill = ipmp_illgrp_add_ipif(illg, ipif); 17761 if (bound_ill == NULL) { 17762 /* 17763 * We couldn't bind the ipif to an ill 17764 * yet, so we have nothing to publish. 17765 * Mark the address as ready and return. 17766 */ 17767 ipif->ipif_addr_ready = 1; 17768 return (0); 17769 } 17770 added_ipif = B_TRUE; 17771 } 17772 } else { 17773 bound_ill = ill; 17774 } 17775 17776 flags = (NCE_F_MYADDR | NCE_F_PUBLISH | NCE_F_AUTHORITY | 17777 NCE_F_NONUD); 17778 /* 17779 * If this is an initial bring-up (or the ipif was never 17780 * completely brought up), do DAD. Otherwise, we're here 17781 * because IPMP has rebound an address to this ill: send 17782 * unsolicited advertisements (ARP announcements) to 17783 * inform others. 17784 */ 17785 if (res_act == Res_act_initial || !ipif->ipif_addr_ready) { 17786 state = ND_UNCHANGED; /* compute in nce_add_common() */ 17787 } else { 17788 state = ND_REACHABLE; 17789 flags |= NCE_F_UNSOL_ADV; 17790 } 17791 17792 retry: 17793 err = nce_lookup_then_add_v4(ill, 17794 bound_ill->ill_phys_addr, bound_ill->ill_phys_addr_length, 17795 addr, flags, state, &nce); 17796 17797 /* 17798 * note that we may encounter EEXIST if we are moving 17799 * the nce as a result of a rebind operation. 17800 */ 17801 switch (err) { 17802 case 0: 17803 ipif->ipif_added_nce = 1; 17804 nce->nce_ipif_cnt++; 17805 break; 17806 case EEXIST: 17807 ip1dbg(("ipif_arp_up: NCE already exists for %s\n", 17808 ill->ill_name)); 17809 if (!NCE_MYADDR(nce->nce_common)) { 17810 /* 17811 * A leftover nce from before this address 17812 * existed 17813 */ 17814 ncec_delete(nce->nce_common); 17815 nce_refrele(nce); 17816 nce = NULL; 17817 goto retry; 17818 } 17819 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) { 17820 nce_refrele(nce); 17821 nce = NULL; 17822 ip1dbg(("ipif_arp_up: NCE already exists " 17823 "for %s:%u\n", ill->ill_name, 17824 ipif->ipif_id)); 17825 goto arp_up_done; 17826 } 17827 /* 17828 * Duplicate local addresses are permissible for 17829 * IPIF_POINTOPOINT interfaces which will get marked 17830 * IPIF_UNNUMBERED later in 17831 * ip_addr_availability_check(). 17832 * 17833 * The nce_ipif_cnt field tracks the number of 17834 * ipifs that have nce_addr as their local address. 17835 */ 17836 ipif->ipif_addr_ready = 1; 17837 ipif->ipif_added_nce = 1; 17838 nce->nce_ipif_cnt++; 17839 err = 0; 17840 break; 17841 default: 17842 ASSERT(nce == NULL); 17843 goto arp_up_done; 17844 } 17845 if (arp_no_defense) { 17846 if ((ipif->ipif_flags & IPIF_UP) && 17847 !ipif->ipif_addr_ready) 17848 ipif_up_notify(ipif); 17849 ipif->ipif_addr_ready = 1; 17850 } 17851 } else { 17852 /* zero address. nothing to publish */ 17853 ipif->ipif_addr_ready = 1; 17854 } 17855 if (nce != NULL) 17856 nce_refrele(nce); 17857 arp_up_done: 17858 if (added_ipif && err != 0) 17859 ipmp_illgrp_del_ipif(ill->ill_grp, ipif); 17860 return (err); 17861 } 17862 17863 int 17864 ipif_arp_up(ipif_t *ipif, enum ip_resolver_action res_act, boolean_t was_dup) 17865 { 17866 int err = 0; 17867 ill_t *ill = ipif->ipif_ill; 17868 boolean_t first_interface, wait_for_dlpi = B_FALSE; 17869 17870 DTRACE_PROBE3(ipif__downup, char *, "ipif_arp_up", 17871 ill_t *, ill, ipif_t *, ipif); 17872 17873 /* 17874 * need to bring up ARP or setup mcast mapping only 17875 * when the first interface is coming UP. 17876 */ 17877 first_interface = (ill->ill_ipif_up_count == 0 && 17878 ill->ill_ipif_dup_count == 0 && !was_dup); 17879 17880 if (res_act == Res_act_initial && first_interface) { 17881 /* 17882 * Send ATTACH + BIND 17883 */ 17884 err = arp_ll_up(ill); 17885 if (err != EINPROGRESS && err != 0) 17886 return (err); 17887 17888 /* 17889 * Add NCE for local address. Start DAD. 17890 * we'll wait to hear that DAD has finished 17891 * before using the interface. 17892 */ 17893 if (err == EINPROGRESS) 17894 wait_for_dlpi = B_TRUE; 17895 } 17896 17897 if (!wait_for_dlpi) 17898 (void) ipif_arp_up_done_tail(ipif, res_act); 17899 17900 return (!wait_for_dlpi ? 0 : EINPROGRESS); 17901 } 17902 17903 /* 17904 * Finish processing of "arp_up" after all the DLPI message 17905 * exchanges have completed between arp and the driver. 17906 */ 17907 void 17908 arp_bringup_done(ill_t *ill, int err) 17909 { 17910 mblk_t *mp1; 17911 ipif_t *ipif; 17912 conn_t *connp = NULL; 17913 ipsq_t *ipsq; 17914 queue_t *q; 17915 17916 ip1dbg(("arp_bringup_done(%s)\n", ill->ill_name)); 17917 17918 ASSERT(IAM_WRITER_ILL(ill)); 17919 17920 ipsq = ill->ill_phyint->phyint_ipsq; 17921 ipif = ipsq->ipsq_xop->ipx_pending_ipif; 17922 mp1 = ipsq_pending_mp_get(ipsq, &connp); 17923 ASSERT(!((mp1 != NULL) ^ (ipif != NULL))); 17924 if (mp1 == NULL) /* bringup was aborted by the user */ 17925 return; 17926 17927 /* 17928 * If an IOCTL is waiting on this (ipsq_current_ioctl != 0), then we 17929 * must have an associated conn_t. Otherwise, we're bringing this 17930 * interface back up as part of handling an asynchronous event (e.g., 17931 * physical address change). 17932 */ 17933 if (ipsq->ipsq_xop->ipx_current_ioctl != 0) { 17934 ASSERT(connp != NULL); 17935 q = CONNP_TO_WQ(connp); 17936 } else { 17937 ASSERT(connp == NULL); 17938 q = ill->ill_rq; 17939 } 17940 if (err == 0) { 17941 if (ipif->ipif_isv6) { 17942 if ((err = ipif_up_done_v6(ipif)) != 0) 17943 ip0dbg(("arp_bringup_done: init failed\n")); 17944 } else { 17945 err = ipif_arp_up_done_tail(ipif, Res_act_initial); 17946 if (err != 0 || 17947 (err = ipif_up_done(ipif)) != 0) { 17948 ip0dbg(("arp_bringup_done: " 17949 "init failed err %x\n", err)); 17950 (void) ipif_arp_down(ipif); 17951 } 17952 17953 } 17954 } else { 17955 ip0dbg(("arp_bringup_done: DL_BIND_REQ failed\n")); 17956 } 17957 17958 if ((err == 0) && (ill->ill_up_ipifs)) { 17959 err = ill_up_ipifs(ill, q, mp1); 17960 if (err == EINPROGRESS) 17961 return; 17962 } 17963 17964 /* 17965 * If we have a moved ipif to bring up, and everything has succeeded 17966 * to this point, bring it up on the IPMP ill. Otherwise, leave it 17967 * down -- the admin can try to bring it up by hand if need be. 17968 */ 17969 if (ill->ill_move_ipif != NULL) { 17970 ipif = ill->ill_move_ipif; 17971 ip1dbg(("bringing up ipif %p on ill %s\n", (void *)ipif, 17972 ipif->ipif_ill->ill_name)); 17973 ill->ill_move_ipif = NULL; 17974 if (err == 0) { 17975 err = ipif_up(ipif, q, mp1); 17976 if (err == EINPROGRESS) 17977 return; 17978 } 17979 } 17980 17981 /* 17982 * The operation must complete without EINPROGRESS since 17983 * ipsq_pending_mp_get() has removed the mblk from ipsq_pending_mp. 17984 * Otherwise, the operation will be stuck forever in the ipsq. 17985 */ 17986 ASSERT(err != EINPROGRESS); 17987 if (ipsq->ipsq_xop->ipx_current_ioctl != 0) { 17988 DTRACE_PROBE4(ipif__ioctl, char *, "arp_bringup_done finish", 17989 int, ipsq->ipsq_xop->ipx_current_ioctl, 17990 ill_t *, ill, ipif_t *, ipif); 17991 ip_ioctl_finish(q, mp1, err, NO_COPYOUT, ipsq); 17992 } else { 17993 ipsq_current_finish(ipsq); 17994 } 17995 } 17996 17997 /* 17998 * Finish processing of arp replumb after all the DLPI message 17999 * exchanges have completed between arp and the driver. 18000 */ 18001 void 18002 arp_replumb_done(ill_t *ill, int err) 18003 { 18004 mblk_t *mp1; 18005 ipif_t *ipif; 18006 conn_t *connp = NULL; 18007 ipsq_t *ipsq; 18008 queue_t *q; 18009 18010 ASSERT(IAM_WRITER_ILL(ill)); 18011 18012 ipsq = ill->ill_phyint->phyint_ipsq; 18013 ipif = ipsq->ipsq_xop->ipx_pending_ipif; 18014 mp1 = ipsq_pending_mp_get(ipsq, &connp); 18015 ASSERT(!((mp1 != NULL) ^ (ipif != NULL))); 18016 if (mp1 == NULL) { 18017 ip0dbg(("arp_replumb_done: bringup aborted ioctl %x\n", 18018 ipsq->ipsq_xop->ipx_current_ioctl)); 18019 /* bringup was aborted by the user */ 18020 return; 18021 } 18022 /* 18023 * If an IOCTL is waiting on this (ipsq_current_ioctl != 0), then we 18024 * must have an associated conn_t. Otherwise, we're bringing this 18025 * interface back up as part of handling an asynchronous event (e.g., 18026 * physical address change). 18027 */ 18028 if (ipsq->ipsq_xop->ipx_current_ioctl != 0) { 18029 ASSERT(connp != NULL); 18030 q = CONNP_TO_WQ(connp); 18031 } else { 18032 ASSERT(connp == NULL); 18033 q = ill->ill_rq; 18034 } 18035 if ((err == 0) && (ill->ill_up_ipifs)) { 18036 err = ill_up_ipifs(ill, q, mp1); 18037 if (err == EINPROGRESS) 18038 return; 18039 } 18040 /* 18041 * The operation must complete without EINPROGRESS since 18042 * ipsq_pending_mp_get() has removed the mblk from ipsq_pending_mp. 18043 * Otherwise, the operation will be stuck forever in the ipsq. 18044 */ 18045 ASSERT(err != EINPROGRESS); 18046 if (ipsq->ipsq_xop->ipx_current_ioctl != 0) { 18047 DTRACE_PROBE4(ipif__ioctl, char *, 18048 "arp_replumb_done finish", 18049 int, ipsq->ipsq_xop->ipx_current_ioctl, 18050 ill_t *, ill, ipif_t *, ipif); 18051 ip_ioctl_finish(q, mp1, err, NO_COPYOUT, ipsq); 18052 } else { 18053 ipsq_current_finish(ipsq); 18054 } 18055 } 18056 18057 void 18058 ipif_up_notify(ipif_t *ipif) 18059 { 18060 ip_rts_ifmsg(ipif, RTSQ_DEFAULT); 18061 ip_rts_newaddrmsg(RTM_ADD, 0, ipif, RTSQ_DEFAULT); 18062 sctp_update_ipif(ipif, SCTP_IPIF_UP); 18063 ill_nic_event_dispatch(ipif->ipif_ill, MAP_IPIF_ID(ipif->ipif_id), 18064 NE_LIF_UP, NULL, 0); 18065 } 18066 18067 /* 18068 * ILB ioctl uses cv_wait (such as deleting a rule or adding a server) and 18069 * this assumes the context is cv_wait'able. Hence it shouldnt' be used on 18070 * TPI end points with STREAMS modules pushed above. This is assured by not 18071 * having the IPI_MODOK flag for the ioctl. And IP ensures the ILB ioctl 18072 * never ends up on an ipsq, otherwise we may end up processing the ioctl 18073 * while unwinding from the ispq and that could be a thread from the bottom. 18074 */ 18075 /* ARGSUSED */ 18076 int 18077 ip_sioctl_ilb_cmd(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 18078 ip_ioctl_cmd_t *ipip, void *arg) 18079 { 18080 mblk_t *cmd_mp = mp->b_cont->b_cont; 18081 ilb_cmd_t command = *((ilb_cmd_t *)cmd_mp->b_rptr); 18082 int ret = 0; 18083 int i; 18084 size_t size; 18085 ip_stack_t *ipst; 18086 zoneid_t zoneid; 18087 ilb_stack_t *ilbs; 18088 18089 ipst = CONNQ_TO_IPST(q); 18090 ilbs = ipst->ips_netstack->netstack_ilb; 18091 zoneid = Q_TO_CONN(q)->conn_zoneid; 18092 18093 switch (command) { 18094 case ILB_CREATE_RULE: { 18095 ilb_rule_cmd_t *cmd = (ilb_rule_cmd_t *)cmd_mp->b_rptr; 18096 18097 if (MBLKL(cmd_mp) != sizeof (ilb_rule_cmd_t)) { 18098 ret = EINVAL; 18099 break; 18100 } 18101 18102 ret = ilb_rule_add(ilbs, zoneid, cmd); 18103 break; 18104 } 18105 case ILB_DESTROY_RULE: 18106 case ILB_ENABLE_RULE: 18107 case ILB_DISABLE_RULE: { 18108 ilb_name_cmd_t *cmd = (ilb_name_cmd_t *)cmd_mp->b_rptr; 18109 18110 if (MBLKL(cmd_mp) != sizeof (ilb_name_cmd_t)) { 18111 ret = EINVAL; 18112 break; 18113 } 18114 18115 if (cmd->flags & ILB_RULE_ALLRULES) { 18116 if (command == ILB_DESTROY_RULE) { 18117 ilb_rule_del_all(ilbs, zoneid); 18118 break; 18119 } else if (command == ILB_ENABLE_RULE) { 18120 ilb_rule_enable_all(ilbs, zoneid); 18121 break; 18122 } else if (command == ILB_DISABLE_RULE) { 18123 ilb_rule_disable_all(ilbs, zoneid); 18124 break; 18125 } 18126 } else { 18127 if (command == ILB_DESTROY_RULE) { 18128 ret = ilb_rule_del(ilbs, zoneid, cmd->name); 18129 } else if (command == ILB_ENABLE_RULE) { 18130 ret = ilb_rule_enable(ilbs, zoneid, cmd->name, 18131 NULL); 18132 } else if (command == ILB_DISABLE_RULE) { 18133 ret = ilb_rule_disable(ilbs, zoneid, cmd->name, 18134 NULL); 18135 } 18136 } 18137 break; 18138 } 18139 case ILB_NUM_RULES: { 18140 ilb_num_rules_cmd_t *cmd; 18141 18142 if (MBLKL(cmd_mp) != sizeof (ilb_num_rules_cmd_t)) { 18143 ret = EINVAL; 18144 break; 18145 } 18146 cmd = (ilb_num_rules_cmd_t *)cmd_mp->b_rptr; 18147 ilb_get_num_rules(ilbs, zoneid, &(cmd->num)); 18148 break; 18149 } 18150 case ILB_RULE_NAMES: { 18151 ilb_rule_names_cmd_t *cmd; 18152 18153 cmd = (ilb_rule_names_cmd_t *)cmd_mp->b_rptr; 18154 if (MBLKL(cmd_mp) < sizeof (ilb_rule_names_cmd_t) || 18155 cmd->num_names == 0) { 18156 ret = EINVAL; 18157 break; 18158 } 18159 size = cmd->num_names * ILB_RULE_NAMESZ; 18160 if (cmd_mp->b_rptr + offsetof(ilb_rule_names_cmd_t, buf) + 18161 size != cmd_mp->b_wptr) { 18162 ret = EINVAL; 18163 break; 18164 } 18165 ilb_get_rulenames(ilbs, zoneid, &cmd->num_names, cmd->buf); 18166 break; 18167 } 18168 case ILB_NUM_SERVERS: { 18169 ilb_num_servers_cmd_t *cmd; 18170 18171 if (MBLKL(cmd_mp) != sizeof (ilb_num_servers_cmd_t)) { 18172 ret = EINVAL; 18173 break; 18174 } 18175 cmd = (ilb_num_servers_cmd_t *)cmd_mp->b_rptr; 18176 ret = ilb_get_num_servers(ilbs, zoneid, cmd->name, 18177 &(cmd->num)); 18178 break; 18179 } 18180 case ILB_LIST_RULE: { 18181 ilb_rule_cmd_t *cmd = (ilb_rule_cmd_t *)cmd_mp->b_rptr; 18182 18183 if (MBLKL(cmd_mp) != sizeof (ilb_rule_cmd_t)) { 18184 ret = EINVAL; 18185 break; 18186 } 18187 ret = ilb_rule_list(ilbs, zoneid, cmd); 18188 break; 18189 } 18190 case ILB_LIST_SERVERS: { 18191 ilb_servers_info_cmd_t *cmd; 18192 18193 cmd = (ilb_servers_info_cmd_t *)cmd_mp->b_rptr; 18194 if (MBLKL(cmd_mp) < sizeof (ilb_servers_info_cmd_t) || 18195 cmd->num_servers == 0) { 18196 ret = EINVAL; 18197 break; 18198 } 18199 size = cmd->num_servers * sizeof (ilb_server_info_t); 18200 if (cmd_mp->b_rptr + offsetof(ilb_servers_info_cmd_t, servers) + 18201 size != cmd_mp->b_wptr) { 18202 ret = EINVAL; 18203 break; 18204 } 18205 18206 ret = ilb_get_servers(ilbs, zoneid, cmd->name, cmd->servers, 18207 &cmd->num_servers); 18208 break; 18209 } 18210 case ILB_ADD_SERVERS: { 18211 ilb_servers_info_cmd_t *cmd; 18212 ilb_rule_t *rule; 18213 18214 cmd = (ilb_servers_info_cmd_t *)cmd_mp->b_rptr; 18215 if (MBLKL(cmd_mp) < sizeof (ilb_servers_info_cmd_t)) { 18216 ret = EINVAL; 18217 break; 18218 } 18219 size = cmd->num_servers * sizeof (ilb_server_info_t); 18220 if (cmd_mp->b_rptr + offsetof(ilb_servers_info_cmd_t, servers) + 18221 size != cmd_mp->b_wptr) { 18222 ret = EINVAL; 18223 break; 18224 } 18225 rule = ilb_find_rule(ilbs, zoneid, cmd->name, &ret); 18226 if (rule == NULL) { 18227 ASSERT(ret != 0); 18228 break; 18229 } 18230 for (i = 0; i < cmd->num_servers; i++) { 18231 ilb_server_info_t *s; 18232 18233 s = &cmd->servers[i]; 18234 s->err = ilb_server_add(ilbs, rule, s); 18235 } 18236 ILB_RULE_REFRELE(rule); 18237 break; 18238 } 18239 case ILB_DEL_SERVERS: 18240 case ILB_ENABLE_SERVERS: 18241 case ILB_DISABLE_SERVERS: { 18242 ilb_servers_cmd_t *cmd; 18243 ilb_rule_t *rule; 18244 int (*f)(); 18245 18246 cmd = (ilb_servers_cmd_t *)cmd_mp->b_rptr; 18247 if (MBLKL(cmd_mp) < sizeof (ilb_servers_cmd_t)) { 18248 ret = EINVAL; 18249 break; 18250 } 18251 size = cmd->num_servers * sizeof (ilb_server_arg_t); 18252 if (cmd_mp->b_rptr + offsetof(ilb_servers_cmd_t, servers) + 18253 size != cmd_mp->b_wptr) { 18254 ret = EINVAL; 18255 break; 18256 } 18257 18258 if (command == ILB_DEL_SERVERS) 18259 f = ilb_server_del; 18260 else if (command == ILB_ENABLE_SERVERS) 18261 f = ilb_server_enable; 18262 else if (command == ILB_DISABLE_SERVERS) 18263 f = ilb_server_disable; 18264 18265 rule = ilb_find_rule(ilbs, zoneid, cmd->name, &ret); 18266 if (rule == NULL) { 18267 ASSERT(ret != 0); 18268 break; 18269 } 18270 18271 for (i = 0; i < cmd->num_servers; i++) { 18272 ilb_server_arg_t *s; 18273 18274 s = &cmd->servers[i]; 18275 s->err = f(ilbs, zoneid, NULL, rule, &s->addr); 18276 } 18277 ILB_RULE_REFRELE(rule); 18278 break; 18279 } 18280 case ILB_LIST_NAT_TABLE: { 18281 ilb_list_nat_cmd_t *cmd; 18282 18283 cmd = (ilb_list_nat_cmd_t *)cmd_mp->b_rptr; 18284 if (MBLKL(cmd_mp) < sizeof (ilb_list_nat_cmd_t)) { 18285 ret = EINVAL; 18286 break; 18287 } 18288 size = cmd->num_nat * sizeof (ilb_nat_entry_t); 18289 if (cmd_mp->b_rptr + offsetof(ilb_list_nat_cmd_t, entries) + 18290 size != cmd_mp->b_wptr) { 18291 ret = EINVAL; 18292 break; 18293 } 18294 18295 ret = ilb_list_nat(ilbs, zoneid, cmd->entries, &cmd->num_nat, 18296 &cmd->flags); 18297 break; 18298 } 18299 case ILB_LIST_STICKY_TABLE: { 18300 ilb_list_sticky_cmd_t *cmd; 18301 18302 cmd = (ilb_list_sticky_cmd_t *)cmd_mp->b_rptr; 18303 if (MBLKL(cmd_mp) < sizeof (ilb_list_sticky_cmd_t)) { 18304 ret = EINVAL; 18305 break; 18306 } 18307 size = cmd->num_sticky * sizeof (ilb_sticky_entry_t); 18308 if (cmd_mp->b_rptr + offsetof(ilb_list_sticky_cmd_t, entries) + 18309 size != cmd_mp->b_wptr) { 18310 ret = EINVAL; 18311 break; 18312 } 18313 18314 ret = ilb_list_sticky(ilbs, zoneid, cmd->entries, 18315 &cmd->num_sticky, &cmd->flags); 18316 break; 18317 } 18318 default: 18319 ret = EINVAL; 18320 break; 18321 } 18322 done: 18323 return (ret); 18324 } 18325 18326 /* Remove all cache entries for this logical interface */ 18327 void 18328 ipif_nce_down(ipif_t *ipif) 18329 { 18330 ill_t *ill = ipif->ipif_ill; 18331 nce_t *nce; 18332 18333 DTRACE_PROBE3(ipif__downup, char *, "ipif_nce_down", 18334 ill_t *, ill, ipif_t *, ipif); 18335 if (ipif->ipif_added_nce) { 18336 if (ipif->ipif_isv6) 18337 nce = nce_lookup_v6(ill, &ipif->ipif_v6lcl_addr); 18338 else 18339 nce = nce_lookup_v4(ill, &ipif->ipif_lcl_addr); 18340 if (nce != NULL) { 18341 if (--nce->nce_ipif_cnt == 0) 18342 ncec_delete(nce->nce_common); 18343 ipif->ipif_added_nce = 0; 18344 nce_refrele(nce); 18345 } else { 18346 /* 18347 * nce may already be NULL because it was already 18348 * flushed, e.g., due to a call to nce_flush 18349 */ 18350 ipif->ipif_added_nce = 0; 18351 } 18352 } 18353 /* 18354 * Make IPMP aware of the deleted data address. 18355 */ 18356 if (IS_IPMP(ill)) 18357 ipmp_illgrp_del_ipif(ill->ill_grp, ipif); 18358 18359 /* 18360 * Remove all other nces dependent on this ill when the last ipif 18361 * is going away. 18362 */ 18363 if (ill->ill_ipif_up_count == 0) { 18364 ncec_walk(ill, (pfi_t)ncec_delete_per_ill, 18365 (uchar_t *)ill, ill->ill_ipst); 18366 if (IS_UNDER_IPMP(ill)) 18367 nce_flush(ill, B_TRUE); 18368 } 18369 } 18370