1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License, Version 1.0 only 6 * (the "License"). You may not use this file except in compliance 7 * with the License. 8 * 9 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 10 * or http://www.opensolaris.org/os/licensing. 11 * See the License for the specific language governing permissions 12 * and limitations under the License. 13 * 14 * When distributing Covered Code, include this CDDL HEADER in each 15 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 16 * If applicable, add the following below this CDDL HEADER, with the 17 * fields enclosed by brackets "[]" replaced with your own identifying 18 * information: Portions Copyright [yyyy] [name of copyright owner] 19 * 20 * CDDL HEADER END 21 */ 22 /* 23 * Copyright 2005 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 /* Copyright (c) 1990 Mentat Inc. */ 27 28 #pragma ident "%Z%%M% %I% %E% SMI" 29 30 /* 31 * This file contains the interface control functions for IP. 32 */ 33 34 #include <sys/types.h> 35 #include <sys/stream.h> 36 #include <sys/dlpi.h> 37 #include <sys/stropts.h> 38 #include <sys/strsun.h> 39 #include <sys/sysmacros.h> 40 #include <sys/strlog.h> 41 #include <sys/ddi.h> 42 #include <sys/sunddi.h> 43 #include <sys/cmn_err.h> 44 #include <sys/kstat.h> 45 #include <sys/debug.h> 46 #include <sys/zone.h> 47 48 #include <sys/kmem.h> 49 #include <sys/systm.h> 50 #include <sys/param.h> 51 #include <sys/socket.h> 52 #define _SUN_TPI_VERSION 2 53 #include <sys/tihdr.h> 54 #include <sys/isa_defs.h> 55 #include <net/if.h> 56 #include <net/if_arp.h> 57 #include <net/if_types.h> 58 #include <net/if_dl.h> 59 #include <net/route.h> 60 #include <sys/sockio.h> 61 #include <netinet/in.h> 62 #include <netinet/ip6.h> 63 #include <netinet/icmp6.h> 64 #include <netinet/igmp_var.h> 65 #include <sys/strsun.h> 66 #include <sys/policy.h> 67 #include <sys/ethernet.h> 68 69 #include <inet/common.h> /* for various inet/mi.h and inet/nd.h needs */ 70 #include <inet/mi.h> 71 #include <inet/nd.h> 72 #include <inet/arp.h> 73 #include <inet/mib2.h> 74 #include <inet/ip.h> 75 #include <inet/ip6.h> 76 #include <inet/ip6_asp.h> 77 #include <inet/tcp.h> 78 #include <inet/ip_multi.h> 79 #include <inet/ip_ire.h> 80 #include <inet/ip_rts.h> 81 #include <inet/ip_ndp.h> 82 #include <inet/ip_if.h> 83 #include <inet/tun.h> 84 #include <inet/sctp_ip.h> 85 86 #include <net/pfkeyv2.h> 87 #include <inet/ipsec_info.h> 88 #include <inet/sadb.h> 89 #include <inet/ipsec_impl.h> 90 #include <sys/iphada.h> 91 92 93 #include <netinet/igmp.h> 94 #include <inet/ip_listutils.h> 95 #include <netinet/ip_mroute.h> 96 #include <inet/ipclassifier.h> 97 #include <sys/mac.h> 98 99 #include <sys/systeminfo.h> 100 #include <sys/bootconf.h> 101 102 /* The character which tells where the ill_name ends */ 103 #define IPIF_SEPARATOR_CHAR ':' 104 105 /* IP ioctl function table entry */ 106 typedef struct ipft_s { 107 int ipft_cmd; 108 pfi_t ipft_pfi; 109 int ipft_min_size; 110 int ipft_flags; 111 } ipft_t; 112 #define IPFT_F_NO_REPLY 0x1 /* IP ioctl does not expect any reply */ 113 #define IPFT_F_SELF_REPLY 0x2 /* ioctl callee does the ioctl reply */ 114 115 typedef struct ip_sock_ar_s { 116 union { 117 area_t ip_sock_area; 118 ared_t ip_sock_ared; 119 areq_t ip_sock_areq; 120 } ip_sock_ar_u; 121 queue_t *ip_sock_ar_q; 122 } ip_sock_ar_t; 123 124 static int nd_ill_forward_get(queue_t *, mblk_t *, caddr_t, cred_t *); 125 static int nd_ill_forward_set(queue_t *q, mblk_t *mp, 126 char *value, caddr_t cp, cred_t *ioc_cr); 127 128 static boolean_t ip_addr_ok_v4(ipaddr_t addr, ipaddr_t subnet_mask); 129 static ip_m_t *ip_m_lookup(t_uscalar_t mac_type); 130 static int ip_sioctl_addr_tail(ipif_t *ipif, sin_t *sin, queue_t *q, 131 mblk_t *mp, boolean_t need_up); 132 static int ip_sioctl_dstaddr_tail(ipif_t *ipif, sin_t *sin, queue_t *q, 133 mblk_t *mp, boolean_t need_up); 134 static int ip_sioctl_slifzone_tail(ipif_t *ipif, zoneid_t zoneid, 135 queue_t *q, mblk_t *mp, boolean_t need_up); 136 static int ip_sioctl_flags_tail(ipif_t *ipif, uint64_t flags, queue_t *q, 137 mblk_t *mp, boolean_t need_up); 138 static int ip_sioctl_netmask_tail(ipif_t *ipif, sin_t *sin, queue_t *q, 139 mblk_t *mp); 140 static int ip_sioctl_subnet_tail(ipif_t *ipif, in6_addr_t, in6_addr_t, 141 queue_t *q, mblk_t *mp, boolean_t need_up); 142 static int ip_sioctl_arp_common(ill_t *ill, queue_t *q, mblk_t *mp, 143 sin_t *sin, boolean_t x_arp_ioctl, boolean_t if_arp_ioctl); 144 static ipaddr_t ip_subnet_mask(ipaddr_t addr, ipif_t **); 145 static void ip_wput_ioctl(queue_t *q, mblk_t *mp); 146 static void ipsq_flush(ill_t *ill); 147 static void ipsq_clean_all(ill_t *ill); 148 static void ipsq_clean_ring(ill_t *ill, ill_rx_ring_t *rx_ring); 149 static int ip_sioctl_token_tail(ipif_t *ipif, sin6_t *sin6, int addrlen, 150 queue_t *q, mblk_t *mp, boolean_t need_up); 151 static void ipsq_delete(ipsq_t *); 152 153 static ipif_t *ipif_allocate(ill_t *ill, int id, uint_t ire_type, 154 boolean_t initialize); 155 static void ipif_check_bcast_ires(ipif_t *test_ipif); 156 static void ipif_down_delete_ire(ire_t *ire, char *ipif); 157 static void ipif_delete_cache_ire(ire_t *, char *); 158 static int ipif_logical_down(ipif_t *ipif, queue_t *q, mblk_t *mp); 159 static void ipif_down_tail(ipif_t *ipif); 160 static void ipif_free(ipif_t *ipif); 161 static void ipif_free_tail(ipif_t *ipif); 162 static void ipif_mask_reply(ipif_t *); 163 static void ipif_mtu_change(ire_t *ire, char *ipif_arg); 164 static void ipif_multicast_down(ipif_t *ipif); 165 static void ipif_recreate_interface_routes(ipif_t *old_ipif, ipif_t *ipif); 166 static void ipif_set_default(ipif_t *ipif); 167 static int ipif_set_values(queue_t *q, mblk_t *mp, 168 char *interf_name, uint_t *ppa); 169 static int ipif_set_values_tail(ill_t *ill, ipif_t *ipif, mblk_t *mp, 170 queue_t *q); 171 static ipif_t *ipif_lookup_on_name(char *name, size_t namelen, 172 boolean_t do_alloc, boolean_t *exists, boolean_t isv6, zoneid_t zoneid, 173 queue_t *q, mblk_t *mp, ipsq_func_t func, int *error); 174 static int ipif_up(ipif_t *ipif, queue_t *q, mblk_t *mp); 175 static void ipif_update_other_ipifs(ipif_t *old_ipif, ill_group_t *illgrp); 176 177 static int ill_alloc_ppa(ill_if_t *, ill_t *); 178 static int ill_arp_off(ill_t *ill); 179 static int ill_arp_on(ill_t *ill); 180 static void ill_delete_interface_type(ill_if_t *); 181 static int ill_dl_up(ill_t *ill, ipif_t *ipif, mblk_t *mp, queue_t *q); 182 static void ill_down(ill_t *ill); 183 static void ill_downi(ire_t *ire, char *ill_arg); 184 static void ill_downi_mrtun_srcif(ire_t *ire, char *ill_arg); 185 static void ill_down_tail(ill_t *ill); 186 static void ill_free_mib(ill_t *ill); 187 static void ill_glist_delete(ill_t *); 188 static boolean_t ill_has_usable_ipif(ill_t *); 189 static int ill_lock_ipsq_ills(ipsq_t *sq, ill_t **list, int); 190 static void ill_nominate_bcast_rcv(ill_group_t *illgrp); 191 static void ill_phyint_free(ill_t *ill); 192 static void ill_phyint_reinit(ill_t *ill); 193 static void ill_set_nce_router_flags(ill_t *, boolean_t); 194 static void ill_signal_ipsq_ills(ipsq_t *, boolean_t); 195 static boolean_t ill_split_ipsq(ipsq_t *cur_sq); 196 static void ill_stq_cache_delete(ire_t *, char *); 197 198 static boolean_t ip_ether_v6intfid(uint_t, uint8_t *, in6_addr_t *); 199 static boolean_t ip_nodef_v6intfid(uint_t, uint8_t *, in6_addr_t *); 200 static boolean_t ip_ether_v6mapinfo(uint_t, uint8_t *, uint8_t *, uint32_t *, 201 in6_addr_t *); 202 static boolean_t ip_ether_v4mapinfo(uint_t, uint8_t *, uint8_t *, uint32_t *, 203 ipaddr_t *); 204 static boolean_t ip_ib_v6intfid(uint_t, uint8_t *, in6_addr_t *); 205 static boolean_t ip_ib_v6mapinfo(uint_t, uint8_t *, uint8_t *, uint32_t *, 206 in6_addr_t *); 207 static boolean_t ip_ib_v4mapinfo(uint_t, uint8_t *, uint8_t *, uint32_t *, 208 ipaddr_t *); 209 210 static void ipif_save_ire(ipif_t *, ire_t *); 211 static void ipif_remove_ire(ipif_t *, ire_t *); 212 static void ip_cgtp_bcast_add(ire_t *, ire_t *); 213 static void ip_cgtp_bcast_delete(ire_t *); 214 215 /* 216 * Per-ill IPsec capabilities management. 217 */ 218 static ill_ipsec_capab_t *ill_ipsec_capab_alloc(void); 219 static void ill_ipsec_capab_free(ill_ipsec_capab_t *); 220 static void ill_ipsec_capab_add(ill_t *, uint_t, boolean_t); 221 static void ill_ipsec_capab_delete(ill_t *, uint_t); 222 static boolean_t ill_ipsec_capab_resize_algparm(ill_ipsec_capab_t *, int); 223 static void ill_capability_proto(ill_t *, int, mblk_t *); 224 static void ill_capability_dispatch(ill_t *, mblk_t *, dl_capability_sub_t *, 225 boolean_t); 226 static void ill_capability_id_ack(ill_t *, mblk_t *, dl_capability_sub_t *); 227 static void ill_capability_mdt_ack(ill_t *, mblk_t *, dl_capability_sub_t *); 228 static void ill_capability_mdt_reset(ill_t *, mblk_t **); 229 static void ill_capability_ipsec_ack(ill_t *, mblk_t *, dl_capability_sub_t *); 230 static void ill_capability_ipsec_reset(ill_t *, mblk_t **); 231 static void ill_capability_hcksum_ack(ill_t *, mblk_t *, dl_capability_sub_t *); 232 static void ill_capability_hcksum_reset(ill_t *, mblk_t **); 233 static void ill_capability_zerocopy_ack(ill_t *, mblk_t *, 234 dl_capability_sub_t *); 235 static void ill_capability_zerocopy_reset(ill_t *, mblk_t **); 236 237 static void ill_capability_poll_ack(ill_t *, mblk_t *, dl_capability_sub_t *); 238 static mac_resource_handle_t ill_ring_add(void *, mac_resource_t *); 239 static void ill_capability_poll_reset(ill_t *, mblk_t **); 240 241 static void illgrp_cache_delete(ire_t *, char *); 242 static void illgrp_delete(ill_t *ill); 243 static void illgrp_reset_schednext(ill_t *ill); 244 245 static ill_t *ill_prev_usesrc(ill_t *); 246 static int ill_relink_usesrc_ills(ill_t *, ill_t *, uint_t); 247 static void ill_disband_usesrc_group(ill_t *); 248 249 static void conn_cleanup_stale_ire(conn_t *, caddr_t); 250 251 /* 252 * if we go over the memory footprint limit more than once in this msec 253 * interval, we'll start pruning aggressively. 254 */ 255 int ip_min_frag_prune_time = 0; 256 257 /* 258 * max # of IPsec algorithms supported. Limited to 1 byte by PF_KEY 259 * and the IPsec DOI 260 */ 261 #define MAX_IPSEC_ALGS 256 262 263 #define BITSPERBYTE 8 264 #define BITS(type) (BITSPERBYTE * (long)sizeof (type)) 265 266 #define IPSEC_ALG_ENABLE(algs, algid) \ 267 ((algs)[(algid) / BITS(ipsec_capab_elem_t)] |= \ 268 (1 << ((algid) % BITS(ipsec_capab_elem_t)))) 269 270 #define IPSEC_ALG_IS_ENABLED(algid, algs) \ 271 ((algs)[(algid) / BITS(ipsec_capab_elem_t)] & \ 272 (1 << ((algid) % BITS(ipsec_capab_elem_t)))) 273 274 typedef uint8_t ipsec_capab_elem_t; 275 276 /* 277 * Per-algorithm parameters. Note that at present, only encryption 278 * algorithms have variable keysize (IKE does not provide a way to negotiate 279 * auth algorithm keysize). 280 * 281 * All sizes here are in bits. 282 */ 283 typedef struct 284 { 285 uint16_t minkeylen; 286 uint16_t maxkeylen; 287 } ipsec_capab_algparm_t; 288 289 /* 290 * Per-ill capabilities. 291 */ 292 struct ill_ipsec_capab_s { 293 ipsec_capab_elem_t *encr_hw_algs; 294 ipsec_capab_elem_t *auth_hw_algs; 295 uint32_t algs_size; /* size of _hw_algs in bytes */ 296 /* algorithm key lengths */ 297 ipsec_capab_algparm_t *encr_algparm; 298 uint32_t encr_algparm_size; 299 uint32_t encr_algparm_end; 300 }; 301 302 /* 303 * List of AH and ESP IPsec acceleration capable ills 304 */ 305 typedef struct ipsec_capab_ill_s { 306 uint_t ill_index; 307 boolean_t ill_isv6; 308 struct ipsec_capab_ill_s *next; 309 } ipsec_capab_ill_t; 310 311 static ipsec_capab_ill_t *ipsec_capab_ills_ah; 312 static ipsec_capab_ill_t *ipsec_capab_ills_esp; 313 krwlock_t ipsec_capab_ills_lock; 314 315 /* 316 * The field values are larger than strictly necessary for simple 317 * AR_ENTRY_ADDs but the padding lets us accomodate the socket ioctls. 318 */ 319 static area_t ip_area_template = { 320 AR_ENTRY_ADD, /* area_cmd */ 321 sizeof (ip_sock_ar_t) + (IP_ADDR_LEN*2) + sizeof (struct sockaddr_dl), 322 /* area_name_offset */ 323 /* area_name_length temporarily holds this structure length */ 324 sizeof (area_t), /* area_name_length */ 325 IP_ARP_PROTO_TYPE, /* area_proto */ 326 sizeof (ip_sock_ar_t), /* area_proto_addr_offset */ 327 IP_ADDR_LEN, /* area_proto_addr_length */ 328 sizeof (ip_sock_ar_t) + IP_ADDR_LEN, 329 /* area_proto_mask_offset */ 330 0, /* area_flags */ 331 sizeof (ip_sock_ar_t) + IP_ADDR_LEN + IP_ADDR_LEN, 332 /* area_hw_addr_offset */ 333 /* Zero length hw_addr_length means 'use your idea of the address' */ 334 0 /* area_hw_addr_length */ 335 }; 336 337 /* 338 * AR_ENTRY_ADD/DELETE templates have been added for IPv6 external resolver 339 * support 340 */ 341 static area_t ip6_area_template = { 342 AR_ENTRY_ADD, /* area_cmd */ 343 sizeof (ip_sock_ar_t) + (IPV6_ADDR_LEN*2) + sizeof (sin6_t), 344 /* area_name_offset */ 345 /* area_name_length temporarily holds this structure length */ 346 sizeof (area_t), /* area_name_length */ 347 IP_ARP_PROTO_TYPE, /* area_proto */ 348 sizeof (ip_sock_ar_t), /* area_proto_addr_offset */ 349 IPV6_ADDR_LEN, /* area_proto_addr_length */ 350 sizeof (ip_sock_ar_t) + IPV6_ADDR_LEN, 351 /* area_proto_mask_offset */ 352 0, /* area_flags */ 353 sizeof (ip_sock_ar_t) + IPV6_ADDR_LEN + IPV6_ADDR_LEN, 354 /* area_hw_addr_offset */ 355 /* Zero length hw_addr_length means 'use your idea of the address' */ 356 0 /* area_hw_addr_length */ 357 }; 358 359 static ared_t ip_ared_template = { 360 AR_ENTRY_DELETE, 361 sizeof (ared_t) + IP_ADDR_LEN, 362 sizeof (ared_t), 363 IP_ARP_PROTO_TYPE, 364 sizeof (ared_t), 365 IP_ADDR_LEN 366 }; 367 368 static ared_t ip6_ared_template = { 369 AR_ENTRY_DELETE, 370 sizeof (ared_t) + IPV6_ADDR_LEN, 371 sizeof (ared_t), 372 IP_ARP_PROTO_TYPE, 373 sizeof (ared_t), 374 IPV6_ADDR_LEN 375 }; 376 377 /* 378 * A template for an IPv6 AR_ENTRY_QUERY template has not been created, as 379 * as the areq doesn't include an IP address in ill_dl_up() (the only place a 380 * areq is used). 381 */ 382 static areq_t ip_areq_template = { 383 AR_ENTRY_QUERY, /* cmd */ 384 sizeof (areq_t)+(2*IP_ADDR_LEN), /* name offset */ 385 sizeof (areq_t), /* name len (filled by ill_arp_alloc) */ 386 IP_ARP_PROTO_TYPE, /* protocol, from arps perspective */ 387 sizeof (areq_t), /* target addr offset */ 388 IP_ADDR_LEN, /* target addr_length */ 389 0, /* flags */ 390 sizeof (areq_t) + IP_ADDR_LEN, /* sender addr offset */ 391 IP_ADDR_LEN, /* sender addr length */ 392 6, /* xmit_count */ 393 1000, /* (re)xmit_interval in milliseconds */ 394 4 /* max # of requests to buffer */ 395 /* anything else filled in by the code */ 396 }; 397 398 static arc_t ip_aru_template = { 399 AR_INTERFACE_UP, 400 sizeof (arc_t), /* Name offset */ 401 sizeof (arc_t) /* Name length (set by ill_arp_alloc) */ 402 }; 403 404 static arc_t ip_ard_template = { 405 AR_INTERFACE_DOWN, 406 sizeof (arc_t), /* Name offset */ 407 sizeof (arc_t) /* Name length (set by ill_arp_alloc) */ 408 }; 409 410 static arc_t ip_aron_template = { 411 AR_INTERFACE_ON, 412 sizeof (arc_t), /* Name offset */ 413 sizeof (arc_t) /* Name length (set by ill_arp_alloc) */ 414 }; 415 416 static arc_t ip_aroff_template = { 417 AR_INTERFACE_OFF, 418 sizeof (arc_t), /* Name offset */ 419 sizeof (arc_t) /* Name length (set by ill_arp_alloc) */ 420 }; 421 422 423 static arma_t ip_arma_multi_template = { 424 AR_MAPPING_ADD, 425 sizeof (arma_t) + 3*IP_ADDR_LEN + IP_MAX_HW_LEN, 426 /* Name offset */ 427 sizeof (arma_t), /* Name length (set by ill_arp_alloc) */ 428 IP_ARP_PROTO_TYPE, 429 sizeof (arma_t), /* proto_addr_offset */ 430 IP_ADDR_LEN, /* proto_addr_length */ 431 sizeof (arma_t) + IP_ADDR_LEN, /* proto_mask_offset */ 432 sizeof (arma_t) + 2*IP_ADDR_LEN, /* proto_extract_mask_offset */ 433 ACE_F_PERMANENT | ACE_F_MAPPING, /* flags */ 434 sizeof (arma_t) + 3*IP_ADDR_LEN, /* hw_addr_offset */ 435 IP_MAX_HW_LEN, /* hw_addr_length */ 436 0, /* hw_mapping_start */ 437 }; 438 439 static ipft_t ip_ioctl_ftbl[] = { 440 { IP_IOC_IRE_DELETE, ip_ire_delete, sizeof (ipid_t), 0 }, 441 { IP_IOC_IRE_DELETE_NO_REPLY, ip_ire_delete, sizeof (ipid_t), 442 IPFT_F_NO_REPLY }, 443 { IP_IOC_IRE_ADVISE_NO_REPLY, ip_ire_advise, sizeof (ipic_t), 444 IPFT_F_NO_REPLY }, 445 { IP_IOC_RTS_REQUEST, ip_rts_request, 0, IPFT_F_SELF_REPLY }, 446 { 0 } 447 }; 448 449 /* Simple ICMP IP Header Template */ 450 static ipha_t icmp_ipha = { 451 IP_SIMPLE_HDR_VERSION, 0, 0, 0, 0, 0, IPPROTO_ICMP 452 }; 453 454 /* Flag descriptors for ip_ipif_report */ 455 static nv_t ipif_nv_tbl[] = { 456 { IPIF_UP, "UP" }, 457 { IPIF_BROADCAST, "BROADCAST" }, 458 { ILLF_DEBUG, "DEBUG" }, 459 { PHYI_LOOPBACK, "LOOPBACK" }, 460 { IPIF_POINTOPOINT, "POINTOPOINT" }, 461 { ILLF_NOTRAILERS, "NOTRAILERS" }, 462 { PHYI_RUNNING, "RUNNING" }, 463 { ILLF_NOARP, "NOARP" }, 464 { PHYI_PROMISC, "PROMISC" }, 465 { PHYI_ALLMULTI, "ALLMULTI" }, 466 { PHYI_INTELLIGENT, "INTELLIGENT" }, 467 { ILLF_MULTICAST, "MULTICAST" }, 468 { PHYI_MULTI_BCAST, "MULTI_BCAST" }, 469 { IPIF_UNNUMBERED, "UNNUMBERED" }, 470 { IPIF_DHCPRUNNING, "DHCP" }, 471 { IPIF_PRIVATE, "PRIVATE" }, 472 { IPIF_NOXMIT, "NOXMIT" }, 473 { IPIF_NOLOCAL, "NOLOCAL" }, 474 { IPIF_DEPRECATED, "DEPRECATED" }, 475 { IPIF_PREFERRED, "PREFERRED" }, 476 { IPIF_TEMPORARY, "TEMPORARY" }, 477 { IPIF_ADDRCONF, "ADDRCONF" }, 478 { PHYI_VIRTUAL, "VIRTUAL" }, 479 { ILLF_ROUTER, "ROUTER" }, 480 { ILLF_NONUD, "NONUD" }, 481 { IPIF_ANYCAST, "ANYCAST" }, 482 { ILLF_NORTEXCH, "NORTEXCH" }, 483 { ILLF_IPV4, "IPV4" }, 484 { ILLF_IPV6, "IPV6" }, 485 { IPIF_MIPRUNNING, "MIP" }, 486 { IPIF_NOFAILOVER, "NOFAILOVER" }, 487 { PHYI_FAILED, "FAILED" }, 488 { PHYI_STANDBY, "STANDBY" }, 489 { PHYI_INACTIVE, "INACTIVE" }, 490 { PHYI_OFFLINE, "OFFLINE" }, 491 }; 492 493 static uchar_t ip_six_byte_all_ones[] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF }; 494 495 static ip_m_t ip_m_tbl[] = { 496 { DL_ETHER, IFT_ETHER, ip_ether_v4mapinfo, ip_ether_v6mapinfo, 497 ip_ether_v6intfid }, 498 { DL_CSMACD, IFT_ISO88023, ip_ether_v4mapinfo, ip_ether_v6mapinfo, 499 ip_nodef_v6intfid }, 500 { DL_TPB, IFT_ISO88024, ip_ether_v4mapinfo, ip_ether_v6mapinfo, 501 ip_nodef_v6intfid }, 502 { DL_TPR, IFT_ISO88025, ip_ether_v4mapinfo, ip_ether_v6mapinfo, 503 ip_nodef_v6intfid }, 504 { DL_FDDI, IFT_FDDI, ip_ether_v4mapinfo, ip_ether_v6mapinfo, 505 ip_ether_v6intfid }, 506 { DL_IB, IFT_IB, ip_ib_v4mapinfo, ip_ib_v6mapinfo, 507 ip_ib_v6intfid }, 508 { SUNW_DL_VNI, IFT_OTHER, NULL, NULL, NULL}, 509 { DL_OTHER, IFT_OTHER, ip_ether_v4mapinfo, ip_ether_v6mapinfo, 510 ip_nodef_v6intfid } 511 }; 512 513 static ill_t ill_null; /* Empty ILL for init. */ 514 char ipif_loopback_name[] = "lo0"; 515 static char *ipv4_forward_suffix = ":ip_forwarding"; 516 static char *ipv6_forward_suffix = ":ip6_forwarding"; 517 static kstat_t *loopback_ksp = NULL; 518 static sin6_t sin6_null; /* Zero address for quick clears */ 519 static sin_t sin_null; /* Zero address for quick clears */ 520 static uint_t ill_index = 1; /* Used to assign interface indicies */ 521 /* When set search for unused index */ 522 static boolean_t ill_index_wrap = B_FALSE; 523 /* When set search for unused ipif_seqid */ 524 static ipif_t ipif_zero; 525 uint_t ipif_src_random; 526 527 /* 528 * For details on the protection offered by these locks please refer 529 * to the notes under the Synchronization section at the start of ip.c 530 */ 531 krwlock_t ill_g_lock; /* The global ill_g_lock */ 532 kmutex_t ip_addr_avail_lock; /* Address availability check lock */ 533 ipsq_t *ipsq_g_head; /* List of all ipsq's on the system */ 534 535 krwlock_t ill_g_usesrc_lock; /* Protects usesrc related fields */ 536 537 /* 538 * illgrp_head/ifgrp_head is protected by IP's perimeter. 539 */ 540 static ill_group_t *illgrp_head_v4; /* Head of IPv4 ill groups */ 541 ill_group_t *illgrp_head_v6; /* Head of IPv6 ill groups */ 542 543 ill_g_head_t ill_g_heads[MAX_G_HEADS]; /* ILL List Head */ 544 545 /* 546 * ppa arena is created after these many 547 * interfaces have been plumbed. 548 */ 549 uint_t ill_no_arena = 12; 550 551 #pragma align CACHE_ALIGN_SIZE(phyint_g_list) 552 static phyint_list_t phyint_g_list; /* start of phyint list */ 553 554 /* 555 * Reflects value of FAILBACK variable in IPMP config file 556 * /etc/default/mpathd. Default value is B_TRUE. 557 * Set to B_FALSE if user disabled failback by configuring "FAILBACK=no" 558 * in.mpathd uses SIOCSIPMPFAILBACK ioctl to pass this information to kernel. 559 */ 560 static boolean_t ipmp_enable_failback = B_TRUE; 561 562 static uint_t 563 ipif_rand(void) 564 { 565 ipif_src_random = ipif_src_random * 1103515245 + 12345; 566 return ((ipif_src_random >> 16) & 0x7fff); 567 } 568 569 /* 570 * Allocate per-interface mibs. Only used for ipv6. 571 * Returns true if ok. False otherwise. 572 * ipsq may not yet be allocated (loopback case ). 573 */ 574 static boolean_t 575 ill_allocate_mibs(ill_t *ill) 576 { 577 ASSERT(ill->ill_isv6); 578 579 /* Already allocated? */ 580 if (ill->ill_ip6_mib != NULL) { 581 ASSERT(ill->ill_icmp6_mib != NULL); 582 return (B_TRUE); 583 } 584 585 ill->ill_ip6_mib = kmem_zalloc(sizeof (*ill->ill_ip6_mib), 586 KM_NOSLEEP); 587 if (ill->ill_ip6_mib == NULL) { 588 return (B_FALSE); 589 } 590 ill->ill_icmp6_mib = kmem_zalloc(sizeof (*ill->ill_icmp6_mib), 591 KM_NOSLEEP); 592 if (ill->ill_icmp6_mib == NULL) { 593 kmem_free(ill->ill_ip6_mib, sizeof (*ill->ill_ip6_mib)); 594 ill->ill_ip6_mib = NULL; 595 return (B_FALSE); 596 } 597 /* 598 * The ipv6Ifindex and ipv6IfIcmpIndex will be assigned later 599 * after the phyint merge occurs in ipif_set_values -> ill_glist_insert 600 * -> ill_phyint_reinit 601 */ 602 return (B_TRUE); 603 } 604 605 /* 606 * Common code for preparation of ARP commands. Two points to remember: 607 * 1) The ill_name is tacked on at the end of the allocated space so 608 * the templates name_offset field must contain the total space 609 * to allocate less the name length. 610 * 611 * 2) The templates name_length field should contain the *template* 612 * length. We use it as a parameter to bcopy() and then write 613 * the real ill_name_length into the name_length field of the copy. 614 * (Always called as writer.) 615 */ 616 mblk_t * 617 ill_arp_alloc(ill_t *ill, uchar_t *template, caddr_t addr) 618 { 619 arc_t *arc = (arc_t *)template; 620 char *cp; 621 int len; 622 mblk_t *mp; 623 uint_t name_length = ill->ill_name_length; 624 uint_t template_len = arc->arc_name_length; 625 626 len = arc->arc_name_offset + name_length; 627 mp = allocb(len, BPRI_HI); 628 if (mp == NULL) 629 return (NULL); 630 cp = (char *)mp->b_rptr; 631 mp->b_wptr = (uchar_t *)&cp[len]; 632 if (template_len) 633 bcopy(template, cp, template_len); 634 if (len > template_len) 635 bzero(&cp[template_len], len - template_len); 636 mp->b_datap->db_type = M_PROTO; 637 638 arc = (arc_t *)cp; 639 arc->arc_name_length = name_length; 640 cp = (char *)arc + arc->arc_name_offset; 641 bcopy(ill->ill_name, cp, name_length); 642 643 if (addr) { 644 area_t *area = (area_t *)mp->b_rptr; 645 646 cp = (char *)area + area->area_proto_addr_offset; 647 bcopy(addr, cp, area->area_proto_addr_length); 648 if (area->area_cmd == AR_ENTRY_ADD) { 649 cp = (char *)area; 650 len = area->area_proto_addr_length; 651 if (area->area_proto_mask_offset) 652 cp += area->area_proto_mask_offset; 653 else 654 cp += area->area_proto_addr_offset + len; 655 while (len-- > 0) 656 *cp++ = (char)~0; 657 } 658 } 659 return (mp); 660 } 661 662 /* 663 * Completely vaporize a lower level tap and all associated interfaces. 664 * ill_delete is called only out of ip_close when the device control 665 * stream is being closed. 666 */ 667 void 668 ill_delete(ill_t *ill) 669 { 670 ipif_t *ipif; 671 ill_t *prev_ill; 672 673 /* 674 * ill_delete may be forcibly entering the ipsq. The previous 675 * ioctl may not have completed and may need to be aborted. 676 * ipsq_flush takes care of it. If we don't need to enter the 677 * the ipsq forcibly, the 2nd invocation of ipsq_flush in 678 * ill_delete_tail is sufficient. 679 */ 680 ipsq_flush(ill); 681 682 /* 683 * Nuke all interfaces. ipif_free will take down the interface, 684 * remove it from the list, and free the data structure. 685 * Walk down the ipif list and remove the logical interfaces 686 * first before removing the main ipif. We can't unplumb 687 * zeroth interface first in the case of IPv6 as reset_conn_ill 688 * -> ip_ll_delmulti_v6 de-references ill_ipif for checking 689 * POINTOPOINT. 690 * 691 * If ill_ipif was not properly initialized (i.e low on memory), 692 * then no interfaces to clean up. In this case just clean up the 693 * ill. 694 */ 695 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) 696 ipif_free(ipif); 697 698 /* 699 * Used only by ill_arp_on and ill_arp_off, which are writers. 700 * So nobody can be using this mp now. Free the mp allocated for 701 * honoring ILLF_NOARP 702 */ 703 freemsg(ill->ill_arp_on_mp); 704 ill->ill_arp_on_mp = NULL; 705 706 /* Clean up msgs on pending upcalls for mrouted */ 707 reset_mrt_ill(ill); 708 709 /* 710 * ipif_free -> reset_conn_ipif will remove all multicast 711 * references for IPv4. For IPv6, we need to do it here as 712 * it points only at ills. 713 */ 714 reset_conn_ill(ill); 715 716 /* 717 * ill_down will arrange to blow off any IRE's dependent on this 718 * ILL, and shut down fragmentation reassembly. 719 */ 720 ill_down(ill); 721 722 /* Let SCTP know, so that it can remove this from its list. */ 723 sctp_update_ill(ill, SCTP_ILL_REMOVE); 724 725 /* 726 * If an address on this ILL is being used as a source address then 727 * clear out the pointers in other ILLs that point to this ILL. 728 */ 729 rw_enter(&ill_g_usesrc_lock, RW_WRITER); 730 if (ill->ill_usesrc_grp_next != NULL) { 731 if (ill->ill_usesrc_ifindex == 0) { /* usesrc ILL ? */ 732 ill_disband_usesrc_group(ill); 733 } else { /* consumer of the usesrc ILL */ 734 prev_ill = ill_prev_usesrc(ill); 735 prev_ill->ill_usesrc_grp_next = 736 ill->ill_usesrc_grp_next; 737 } 738 } 739 rw_exit(&ill_g_usesrc_lock); 740 } 741 742 /* 743 * ill_delete_tail is called from ip_modclose after all references 744 * to the closing ill are gone. The wait is done in ip_modclose 745 */ 746 void 747 ill_delete_tail(ill_t *ill) 748 { 749 mblk_t **mpp; 750 ipif_t *ipif; 751 752 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) 753 ipif_down_tail(ipif); 754 755 /* 756 * Send the detach if there's one to send (i.e., if we're above a 757 * style 2 DLPI driver). 758 */ 759 if (ill->ill_detach_mp != NULL) { 760 ill_dlpi_send(ill, ill->ill_detach_mp); 761 ill->ill_detach_mp = NULL; 762 } 763 764 /* 765 * If polling capability is enabled (which signifies direct 766 * upcall into IP and driver has ill saved as a handle), 767 * we need to make sure that unbind has completed before we 768 * let the ill disappear and driver no longer has any reference 769 * to this ill. 770 */ 771 mutex_enter(&ill->ill_lock); 772 if (ill->ill_capabilities & ILL_CAPAB_POLL) { 773 while (!(ill->ill_state_flags & ILL_DL_UNBIND_DONE)) 774 cv_wait(&ill->ill_cv, &ill->ill_lock); 775 } 776 mutex_exit(&ill->ill_lock); 777 778 if (ill->ill_net_type != IRE_LOOPBACK) 779 qprocsoff(ill->ill_rq); 780 781 /* 782 * We do an ipsq_flush once again now. New messages could have 783 * landed up from below (M_ERROR or M_HANGUP). Similarly ioctls 784 * could also have landed up if an ioctl thread had looked up 785 * the ill before we set the ILL_CONDEMNED flag, but not yet 786 * enqueued the ioctl when we did the ipsq_flush last time. 787 */ 788 ipsq_flush(ill); 789 790 /* 791 * Free capabilities. 792 */ 793 if (ill->ill_ipsec_capab_ah != NULL) { 794 ill_ipsec_capab_delete(ill, DL_CAPAB_IPSEC_AH); 795 ill_ipsec_capab_free(ill->ill_ipsec_capab_ah); 796 ill->ill_ipsec_capab_ah = NULL; 797 } 798 799 if (ill->ill_ipsec_capab_esp != NULL) { 800 ill_ipsec_capab_delete(ill, DL_CAPAB_IPSEC_ESP); 801 ill_ipsec_capab_free(ill->ill_ipsec_capab_esp); 802 ill->ill_ipsec_capab_esp = NULL; 803 } 804 805 if (ill->ill_mdt_capab != NULL) { 806 kmem_free(ill->ill_mdt_capab, sizeof (ill_mdt_capab_t)); 807 ill->ill_mdt_capab = NULL; 808 } 809 810 if (ill->ill_hcksum_capab != NULL) { 811 kmem_free(ill->ill_hcksum_capab, sizeof (ill_hcksum_capab_t)); 812 ill->ill_hcksum_capab = NULL; 813 } 814 815 if (ill->ill_zerocopy_capab != NULL) { 816 kmem_free(ill->ill_zerocopy_capab, 817 sizeof (ill_zerocopy_capab_t)); 818 ill->ill_zerocopy_capab = NULL; 819 } 820 821 /* 822 * Clean up polling capabilities 823 */ 824 if (ill->ill_capabilities & ILL_CAPAB_POLL) 825 ipsq_clean_all(ill); 826 827 if (ill->ill_poll_capab != NULL) { 828 CONN_DEC_REF(ill->ill_poll_capab->ill_unbind_conn); 829 ill->ill_poll_capab->ill_unbind_conn = NULL; 830 kmem_free(ill->ill_poll_capab, 831 sizeof (ill_poll_capab_t) + 832 (sizeof (ill_rx_ring_t) * ILL_MAX_RINGS)); 833 ill->ill_poll_capab = NULL; 834 } 835 836 ASSERT(!(ill->ill_capabilities & ILL_CAPAB_POLL)); 837 838 while (ill->ill_ipif != NULL) 839 ipif_free_tail(ill->ill_ipif); 840 841 ill_down_tail(ill); 842 843 /* 844 * We have removed all references to ilm from conn and the ones joined 845 * within the kernel. 846 * 847 * We don't walk conns, mrts and ires because 848 * 849 * 1) reset_conn_ill and reset_mrt_ill cleans up conns and mrts. 850 * 2) ill_down ->ill_downi walks all the ires and cleans up 851 * ill references. 852 */ 853 ASSERT(ilm_walk_ill(ill) == 0); 854 /* 855 * Take us out of the list of ILLs. ill_glist_delete -> ill_phyint_free 856 * could free the phyint. No more reference to the phyint after this 857 * point. 858 */ 859 (void) ill_glist_delete(ill); 860 861 rw_enter(&ip_g_nd_lock, RW_WRITER); 862 if (ill->ill_ndd_name != NULL) 863 nd_unload(&ip_g_nd, ill->ill_ndd_name); 864 rw_exit(&ip_g_nd_lock); 865 866 867 if (ill->ill_frag_ptr != NULL) { 868 uint_t count; 869 870 for (count = 0; count < ILL_FRAG_HASH_TBL_COUNT; count++) { 871 mutex_destroy(&ill->ill_frag_hash_tbl[count].ipfb_lock); 872 } 873 mi_free(ill->ill_frag_ptr); 874 ill->ill_frag_ptr = NULL; 875 ill->ill_frag_hash_tbl = NULL; 876 } 877 if (ill->ill_nd_lla_mp != NULL) 878 freemsg(ill->ill_nd_lla_mp); 879 /* Free all retained control messages. */ 880 mpp = &ill->ill_first_mp_to_free; 881 do { 882 while (mpp[0]) { 883 mblk_t *mp; 884 mblk_t *mp1; 885 886 mp = mpp[0]; 887 mpp[0] = mp->b_next; 888 for (mp1 = mp; mp1 != NULL; mp1 = mp1->b_cont) { 889 mp1->b_next = NULL; 890 mp1->b_prev = NULL; 891 } 892 freemsg(mp); 893 } 894 } while (mpp++ != &ill->ill_last_mp_to_free); 895 896 ill_free_mib(ill); 897 ILL_TRACE_CLEANUP(ill); 898 } 899 900 static void 901 ill_free_mib(ill_t *ill) 902 { 903 if (ill->ill_ip6_mib != NULL) { 904 kmem_free(ill->ill_ip6_mib, sizeof (*ill->ill_ip6_mib)); 905 ill->ill_ip6_mib = NULL; 906 } 907 if (ill->ill_icmp6_mib != NULL) { 908 kmem_free(ill->ill_icmp6_mib, sizeof (*ill->ill_icmp6_mib)); 909 ill->ill_icmp6_mib = NULL; 910 } 911 } 912 913 /* 914 * Concatenate together a physical address and a sap. 915 * 916 * Sap_lengths are interpreted as follows: 917 * sap_length == 0 ==> no sap 918 * sap_length > 0 ==> sap is at the head of the dlpi address 919 * sap_length < 0 ==> sap is at the tail of the dlpi address 920 */ 921 static void 922 ill_dlur_copy_address(uchar_t *phys_src, uint_t phys_length, 923 t_scalar_t sap_src, t_scalar_t sap_length, uchar_t *dst) 924 { 925 uint16_t sap_addr = (uint16_t)sap_src; 926 927 if (sap_length == 0) { 928 if (phys_src == NULL) 929 bzero(dst, phys_length); 930 else 931 bcopy(phys_src, dst, phys_length); 932 } else if (sap_length < 0) { 933 if (phys_src == NULL) 934 bzero(dst, phys_length); 935 else 936 bcopy(phys_src, dst, phys_length); 937 bcopy(&sap_addr, (char *)dst + phys_length, sizeof (sap_addr)); 938 } else { 939 bcopy(&sap_addr, dst, sizeof (sap_addr)); 940 if (phys_src == NULL) 941 bzero((char *)dst + sap_length, phys_length); 942 else 943 bcopy(phys_src, (char *)dst + sap_length, phys_length); 944 } 945 } 946 947 /* 948 * Generate a dl_unitdata_req mblk for the device and address given. 949 * addr_length is the length of the physical portion of the address. 950 * If addr is NULL include an all zero address of the specified length. 951 * TRUE? In any case, addr_length is taken to be the entire length of the 952 * dlpi address, including the absolute value of sap_length. 953 */ 954 mblk_t * 955 ill_dlur_gen(uchar_t *addr, uint_t addr_length, t_uscalar_t sap, 956 t_scalar_t sap_length) 957 { 958 dl_unitdata_req_t *dlur; 959 mblk_t *mp; 960 t_scalar_t abs_sap_length; /* absolute value */ 961 962 abs_sap_length = ABS(sap_length); 963 mp = ip_dlpi_alloc(sizeof (*dlur) + addr_length + abs_sap_length, 964 DL_UNITDATA_REQ); 965 if (mp == NULL) 966 return (NULL); 967 dlur = (dl_unitdata_req_t *)mp->b_rptr; 968 /* HACK: accomodate incompatible DLPI drivers */ 969 if (addr_length == 8) 970 addr_length = 6; 971 dlur->dl_dest_addr_length = addr_length + abs_sap_length; 972 dlur->dl_dest_addr_offset = sizeof (*dlur); 973 dlur->dl_priority.dl_min = 0; 974 dlur->dl_priority.dl_max = 0; 975 ill_dlur_copy_address(addr, addr_length, sap, sap_length, 976 (uchar_t *)&dlur[1]); 977 return (mp); 978 } 979 980 /* 981 * Add the 'mp' to the list of pending mp's headed by ill_pending_mp 982 * Return an error if we already have 1 or more ioctls in progress. 983 * This is used only for non-exclusive ioctls. Currently this is used 984 * for SIOC*ARP and SIOCGTUNPARAM ioctls. Most set ioctls are exclusive 985 * and thus need to use ipsq_pending_mp_add. 986 */ 987 boolean_t 988 ill_pending_mp_add(ill_t *ill, conn_t *connp, mblk_t *add_mp) 989 { 990 ASSERT(MUTEX_HELD(&ill->ill_lock)); 991 ASSERT((add_mp->b_next == NULL) && (add_mp->b_prev == NULL)); 992 /* 993 * M_IOCDATA from ioctls, M_IOCTL from tunnel ioctls. 994 */ 995 ASSERT((add_mp->b_datap->db_type == M_IOCDATA) || 996 (add_mp->b_datap->db_type == M_IOCTL)); 997 998 ASSERT(MUTEX_HELD(&connp->conn_lock)); 999 /* 1000 * Return error if the conn has started closing. The conn 1001 * could have finished cleaning up the pending mp list, 1002 * If so we should not add another mp to the list negating 1003 * the cleanup. 1004 */ 1005 if (connp->conn_state_flags & CONN_CLOSING) 1006 return (B_FALSE); 1007 /* 1008 * Add the pending mp to the head of the list, chained by b_next. 1009 * Note down the conn on which the ioctl request came, in b_prev. 1010 * This will be used to later get the conn, when we get a response 1011 * on the ill queue, from some other module (typically arp) 1012 */ 1013 add_mp->b_next = (void *)ill->ill_pending_mp; 1014 add_mp->b_queue = CONNP_TO_WQ(connp); 1015 ill->ill_pending_mp = add_mp; 1016 if (connp != NULL) 1017 connp->conn_oper_pending_ill = ill; 1018 return (B_TRUE); 1019 } 1020 1021 /* 1022 * Retrieve the ill_pending_mp and return it. We have to walk the list 1023 * of mblks starting at ill_pending_mp, and match based on the ioc_id. 1024 */ 1025 mblk_t * 1026 ill_pending_mp_get(ill_t *ill, conn_t **connpp, uint_t ioc_id) 1027 { 1028 mblk_t *prev = NULL; 1029 mblk_t *curr = NULL; 1030 uint_t id; 1031 conn_t *connp; 1032 1033 /* 1034 * When the conn closes, conn_ioctl_cleanup needs to clean 1035 * up the pending mp, but it does not know the ioc_id and 1036 * passes in a zero for it. 1037 */ 1038 mutex_enter(&ill->ill_lock); 1039 if (ioc_id != 0) 1040 *connpp = NULL; 1041 1042 /* Search the list for the appropriate ioctl based on ioc_id */ 1043 for (prev = NULL, curr = ill->ill_pending_mp; curr != NULL; 1044 prev = curr, curr = curr->b_next) { 1045 id = ((struct iocblk *)curr->b_rptr)->ioc_id; 1046 connp = Q_TO_CONN(curr->b_queue); 1047 /* Match based on the ioc_id or based on the conn */ 1048 if ((id == ioc_id) || (ioc_id == 0 && connp == *connpp)) 1049 break; 1050 } 1051 1052 if (curr != NULL) { 1053 /* Unlink the mblk from the pending mp list */ 1054 if (prev != NULL) { 1055 prev->b_next = curr->b_next; 1056 } else { 1057 ASSERT(ill->ill_pending_mp == curr); 1058 ill->ill_pending_mp = curr->b_next; 1059 } 1060 1061 /* 1062 * conn refcnt must have been bumped up at the start of 1063 * the ioctl. So we can safely access the conn. 1064 */ 1065 ASSERT(CONN_Q(curr->b_queue)); 1066 *connpp = Q_TO_CONN(curr->b_queue); 1067 curr->b_next = NULL; 1068 curr->b_queue = NULL; 1069 } 1070 1071 mutex_exit(&ill->ill_lock); 1072 1073 return (curr); 1074 } 1075 1076 /* 1077 * Add the pending mp to the list. There can be only 1 pending mp 1078 * in the list. Any exclusive ioctl that needs to wait for a response 1079 * from another module or driver needs to use this function to set 1080 * the ipsq_pending_mp to the ioctl mblk and wait for the response from 1081 * the other module/driver. This is also used while waiting for the 1082 * ipif/ill/ire refcnts to drop to zero in bringing down an ipif. 1083 */ 1084 boolean_t 1085 ipsq_pending_mp_add(conn_t *connp, ipif_t *ipif, queue_t *q, mblk_t *add_mp, 1086 int waitfor) 1087 { 1088 ipsq_t *ipsq; 1089 1090 ASSERT(IAM_WRITER_IPIF(ipif)); 1091 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 1092 ASSERT((add_mp->b_next == NULL) && (add_mp->b_prev == NULL)); 1093 /* 1094 * M_IOCDATA from ioctls, M_IOCTL from tunnel ioctls, 1095 * M_ERROR/M_HANGUP from driver 1096 */ 1097 ASSERT((DB_TYPE(add_mp) == M_IOCDATA) || (DB_TYPE(add_mp) == M_IOCTL) || 1098 (DB_TYPE(add_mp) == M_ERROR) || (DB_TYPE(add_mp) == M_HANGUP)); 1099 1100 ipsq = ipif->ipif_ill->ill_phyint->phyint_ipsq; 1101 if (connp != NULL) { 1102 ASSERT(MUTEX_HELD(&connp->conn_lock)); 1103 /* 1104 * Return error if the conn has started closing. The conn 1105 * could have finished cleaning up the pending mp list, 1106 * If so we should not add another mp to the list negating 1107 * the cleanup. 1108 */ 1109 if (connp->conn_state_flags & CONN_CLOSING) 1110 return (B_FALSE); 1111 } 1112 mutex_enter(&ipsq->ipsq_lock); 1113 ipsq->ipsq_pending_ipif = ipif; 1114 /* 1115 * Note down the queue in b_queue. This will be returned by 1116 * ipsq_pending_mp_get. Caller will then use these values to restart 1117 * the processing 1118 */ 1119 add_mp->b_next = NULL; 1120 add_mp->b_queue = q; 1121 ipsq->ipsq_pending_mp = add_mp; 1122 ipsq->ipsq_waitfor = waitfor; 1123 /* 1124 * ipsq_current_ipif is needed to restart the operation from 1125 * ipif_ill_refrele_tail when the last reference to the ipi/ill 1126 * is gone. Since this is not an ioctl ipsq_current_ipif has not 1127 * been set until now. 1128 */ 1129 if (DB_TYPE(add_mp) == M_ERROR || DB_TYPE(add_mp) == M_HANGUP) { 1130 ASSERT(ipsq->ipsq_current_ipif == NULL); 1131 ipsq->ipsq_current_ipif = ipif; 1132 ipsq->ipsq_last_cmd = DB_TYPE(add_mp); 1133 } 1134 if (connp != NULL) 1135 connp->conn_oper_pending_ill = ipif->ipif_ill; 1136 mutex_exit(&ipsq->ipsq_lock); 1137 return (B_TRUE); 1138 } 1139 1140 /* 1141 * Retrieve the ipsq_pending_mp and return it. There can be only 1 mp 1142 * queued in the list. 1143 */ 1144 mblk_t * 1145 ipsq_pending_mp_get(ipsq_t *ipsq, conn_t **connpp) 1146 { 1147 mblk_t *curr = NULL; 1148 1149 mutex_enter(&ipsq->ipsq_lock); 1150 *connpp = NULL; 1151 if (ipsq->ipsq_pending_mp == NULL) { 1152 mutex_exit(&ipsq->ipsq_lock); 1153 return (NULL); 1154 } 1155 1156 /* There can be only 1 such excl message */ 1157 curr = ipsq->ipsq_pending_mp; 1158 ASSERT(curr != NULL && curr->b_next == NULL); 1159 ipsq->ipsq_pending_ipif = NULL; 1160 ipsq->ipsq_pending_mp = NULL; 1161 ipsq->ipsq_waitfor = 0; 1162 mutex_exit(&ipsq->ipsq_lock); 1163 1164 if (CONN_Q(curr->b_queue)) { 1165 /* 1166 * This mp did a refhold on the conn, at the start of the ioctl. 1167 * So we can safely return a pointer to the conn to the caller. 1168 */ 1169 *connpp = Q_TO_CONN(curr->b_queue); 1170 } else { 1171 *connpp = NULL; 1172 } 1173 curr->b_next = NULL; 1174 curr->b_prev = NULL; 1175 return (curr); 1176 } 1177 1178 /* 1179 * Cleanup the ioctl mp queued in ipsq_pending_mp 1180 * - Called in the ill_delete path 1181 * - Called in the M_ERROR or M_HANGUP path on the ill. 1182 * - Called in the conn close path. 1183 */ 1184 boolean_t 1185 ipsq_pending_mp_cleanup(ill_t *ill, conn_t *connp) 1186 { 1187 mblk_t *mp; 1188 ipsq_t *ipsq; 1189 queue_t *q; 1190 ipif_t *ipif; 1191 1192 ASSERT(IAM_WRITER_ILL(ill)); 1193 ipsq = ill->ill_phyint->phyint_ipsq; 1194 mutex_enter(&ipsq->ipsq_lock); 1195 /* 1196 * If connp is null, unconditionally clean up the ipsq_pending_mp. 1197 * This happens in M_ERROR/M_HANGUP. We need to abort the current ioctl 1198 * even if it is meant for another ill, since we have to enqueue 1199 * a new mp now in ipsq_pending_mp to complete the ipif_down. 1200 * If connp is non-null we are called from the conn close path. 1201 */ 1202 mp = ipsq->ipsq_pending_mp; 1203 if (mp == NULL || (connp != NULL && 1204 mp->b_queue != CONNP_TO_WQ(connp))) { 1205 mutex_exit(&ipsq->ipsq_lock); 1206 return (B_FALSE); 1207 } 1208 /* Now remove from the ipsq_pending_mp */ 1209 ipsq->ipsq_pending_mp = NULL; 1210 q = mp->b_queue; 1211 mp->b_next = NULL; 1212 mp->b_prev = NULL; 1213 mp->b_queue = NULL; 1214 1215 /* If MOVE was in progress, clear the move_in_progress fields also. */ 1216 ill = ipsq->ipsq_pending_ipif->ipif_ill; 1217 if (ill->ill_move_in_progress) { 1218 ILL_CLEAR_MOVE(ill); 1219 } else if (ill->ill_up_ipifs) { 1220 ill_group_cleanup(ill); 1221 } 1222 1223 ipif = ipsq->ipsq_pending_ipif; 1224 ipsq->ipsq_pending_ipif = NULL; 1225 ipsq->ipsq_waitfor = 0; 1226 ipsq->ipsq_current_ipif = NULL; 1227 mutex_exit(&ipsq->ipsq_lock); 1228 1229 if (DB_TYPE(mp) == M_IOCTL || DB_TYPE(mp) == M_IOCDATA) { 1230 ip_ioctl_finish(q, mp, ENXIO, connp != NULL ? CONN_CLOSE : 1231 NO_COPYOUT, connp != NULL ? ipif : NULL, NULL); 1232 } else { 1233 /* 1234 * IP-MT XXX In the case of TLI/XTI bind / optmgmt this can't 1235 * be just ip_ioctl_freemsg. we have to restart it 1236 * otherwise the thread will be stuck. 1237 */ 1238 ip_ioctl_freemsg(mp); 1239 } 1240 return (B_TRUE); 1241 } 1242 1243 /* 1244 * The ill is closing. Cleanup all the pending mps. Called exclusively 1245 * towards the end of ill_delete. The refcount has gone to 0. So nobody 1246 * knows this ill, and hence nobody can add an mp to this list 1247 */ 1248 static void 1249 ill_pending_mp_cleanup(ill_t *ill) 1250 { 1251 mblk_t *mp; 1252 queue_t *q; 1253 1254 ASSERT(IAM_WRITER_ILL(ill)); 1255 1256 mutex_enter(&ill->ill_lock); 1257 /* 1258 * Every mp on the pending mp list originating from an ioctl 1259 * added 1 to the conn refcnt, at the start of the ioctl. 1260 * So bump it down now. See comments in ip_wput_nondata() 1261 */ 1262 while (ill->ill_pending_mp != NULL) { 1263 mp = ill->ill_pending_mp; 1264 ill->ill_pending_mp = mp->b_next; 1265 mutex_exit(&ill->ill_lock); 1266 1267 q = mp->b_queue; 1268 ASSERT(CONN_Q(q)); 1269 mp->b_next = NULL; 1270 mp->b_prev = NULL; 1271 mp->b_queue = NULL; 1272 ip_ioctl_finish(q, mp, ENXIO, NO_COPYOUT, NULL, NULL); 1273 mutex_enter(&ill->ill_lock); 1274 } 1275 ill->ill_pending_ipif = NULL; 1276 1277 mutex_exit(&ill->ill_lock); 1278 } 1279 1280 /* 1281 * Called in the conn close path and ill delete path 1282 */ 1283 static void 1284 ipsq_xopq_mp_cleanup(ill_t *ill, conn_t *connp) 1285 { 1286 ipsq_t *ipsq; 1287 mblk_t *prev; 1288 mblk_t *curr; 1289 mblk_t *next; 1290 queue_t *q; 1291 mblk_t *tmp_list = NULL; 1292 1293 ASSERT(IAM_WRITER_ILL(ill)); 1294 if (connp != NULL) 1295 q = CONNP_TO_WQ(connp); 1296 else 1297 q = ill->ill_wq; 1298 1299 ipsq = ill->ill_phyint->phyint_ipsq; 1300 /* 1301 * Cleanup the ioctl mp's queued in ipsq_xopq_pending_mp if any. 1302 * In the case of ioctl from a conn, there can be only 1 mp 1303 * queued on the ipsq. If an ill is being unplumbed, only messages 1304 * related to this ill are flushed, like M_ERROR or M_HANGUP message. 1305 * ioctls meant for this ill form conn's are not flushed. They will 1306 * be processed during ipsq_exit and will not find the ill and will 1307 * return error. 1308 */ 1309 mutex_enter(&ipsq->ipsq_lock); 1310 for (prev = NULL, curr = ipsq->ipsq_xopq_mphead; curr != NULL; 1311 curr = next) { 1312 next = curr->b_next; 1313 if (curr->b_queue == q || curr->b_queue == RD(q)) { 1314 /* Unlink the mblk from the pending mp list */ 1315 if (prev != NULL) { 1316 prev->b_next = curr->b_next; 1317 } else { 1318 ASSERT(ipsq->ipsq_xopq_mphead == curr); 1319 ipsq->ipsq_xopq_mphead = curr->b_next; 1320 } 1321 if (ipsq->ipsq_xopq_mptail == curr) 1322 ipsq->ipsq_xopq_mptail = prev; 1323 /* 1324 * Create a temporary list and release the ipsq lock 1325 * New elements are added to the head of the tmp_list 1326 */ 1327 curr->b_next = tmp_list; 1328 tmp_list = curr; 1329 } else { 1330 prev = curr; 1331 } 1332 } 1333 mutex_exit(&ipsq->ipsq_lock); 1334 1335 while (tmp_list != NULL) { 1336 curr = tmp_list; 1337 tmp_list = curr->b_next; 1338 curr->b_next = NULL; 1339 curr->b_prev = NULL; 1340 curr->b_queue = NULL; 1341 if (DB_TYPE(curr) == M_IOCTL || DB_TYPE(curr) == M_IOCDATA) { 1342 ip_ioctl_finish(q, curr, ENXIO, connp != NULL ? 1343 CONN_CLOSE : NO_COPYOUT, NULL, NULL); 1344 } else { 1345 /* 1346 * IP-MT XXX In the case of TLI/XTI bind / optmgmt 1347 * this can't be just ip_ioctl_freemsg. we have to 1348 * restart it otherwise the thread will be stuck. 1349 */ 1350 ip_ioctl_freemsg(curr); 1351 } 1352 } 1353 } 1354 1355 /* 1356 * This conn has started closing. Cleanup any pending ioctl from this conn. 1357 * STREAMS ensures that there can be at most 1 ioctl pending on a stream. 1358 */ 1359 void 1360 conn_ioctl_cleanup(conn_t *connp) 1361 { 1362 mblk_t *curr; 1363 ipsq_t *ipsq; 1364 ill_t *ill; 1365 boolean_t refheld; 1366 1367 /* 1368 * Is any exclusive ioctl pending ? If so clean it up. If the 1369 * ioctl has not yet started, the mp is pending in the list headed by 1370 * ipsq_xopq_head. If the ioctl has started the mp could be present in 1371 * ipsq_pending_mp. If the ioctl timed out in the streamhead but 1372 * is currently executing now the mp is not queued anywhere but 1373 * conn_oper_pending_ill is null. The conn close will wait 1374 * till the conn_ref drops to zero. 1375 */ 1376 mutex_enter(&connp->conn_lock); 1377 ill = connp->conn_oper_pending_ill; 1378 if (ill == NULL) { 1379 mutex_exit(&connp->conn_lock); 1380 return; 1381 } 1382 1383 curr = ill_pending_mp_get(ill, &connp, 0); 1384 if (curr != NULL) { 1385 mutex_exit(&connp->conn_lock); 1386 CONN_DEC_REF(connp); 1387 ip_ioctl_freemsg(curr); 1388 return; 1389 } 1390 /* 1391 * We may not be able to refhold the ill if the ill/ipif 1392 * is changing. But we need to make sure that the ill will 1393 * not vanish. So we just bump up the ill_waiter count. 1394 */ 1395 refheld = ill_waiter_inc(ill); 1396 mutex_exit(&connp->conn_lock); 1397 if (refheld) { 1398 if (ipsq_enter(ill, B_TRUE)) { 1399 ill_waiter_dcr(ill); 1400 /* 1401 * Check whether this ioctl has started and is 1402 * pending now in ipsq_pending_mp. If it is not 1403 * found there then check whether this ioctl has 1404 * not even started and is in the ipsq_xopq list. 1405 */ 1406 if (!ipsq_pending_mp_cleanup(ill, connp)) 1407 ipsq_xopq_mp_cleanup(ill, connp); 1408 ipsq = ill->ill_phyint->phyint_ipsq; 1409 ipsq_exit(ipsq, B_TRUE, B_TRUE); 1410 return; 1411 } 1412 } 1413 1414 /* 1415 * The ill is also closing and we could not bump up the 1416 * ill_waiter_count or we could not enter the ipsq. Leave 1417 * the cleanup to ill_delete 1418 */ 1419 mutex_enter(&connp->conn_lock); 1420 while (connp->conn_oper_pending_ill != NULL) 1421 cv_wait(&connp->conn_refcv, &connp->conn_lock); 1422 mutex_exit(&connp->conn_lock); 1423 if (refheld) 1424 ill_waiter_dcr(ill); 1425 } 1426 1427 /* 1428 * ipcl_walk function for cleaning up conn_*_ill fields. 1429 */ 1430 static void 1431 conn_cleanup_ill(conn_t *connp, caddr_t arg) 1432 { 1433 ill_t *ill = (ill_t *)arg; 1434 ire_t *ire; 1435 1436 mutex_enter(&connp->conn_lock); 1437 if (connp->conn_multicast_ill == ill) { 1438 /* Revert to late binding */ 1439 connp->conn_multicast_ill = NULL; 1440 connp->conn_orig_multicast_ifindex = 0; 1441 } 1442 if (connp->conn_incoming_ill == ill) 1443 connp->conn_incoming_ill = NULL; 1444 if (connp->conn_outgoing_ill == ill) 1445 connp->conn_outgoing_ill = NULL; 1446 if (connp->conn_outgoing_pill == ill) 1447 connp->conn_outgoing_pill = NULL; 1448 if (connp->conn_nofailover_ill == ill) 1449 connp->conn_nofailover_ill = NULL; 1450 if (connp->conn_xmit_if_ill == ill) 1451 connp->conn_xmit_if_ill = NULL; 1452 if (connp->conn_ire_cache != NULL) { 1453 ire = connp->conn_ire_cache; 1454 /* 1455 * ip_newroute creates IRE_CACHE with ire_stq coming from 1456 * interface X and ipif coming from interface Y, if interface 1457 * X and Y are part of the same IPMPgroup. Thus whenever 1458 * interface X goes down, remove all references to it by 1459 * checking both on ire_ipif and ire_stq. 1460 */ 1461 if ((ire->ire_ipif != NULL && ire->ire_ipif->ipif_ill == ill) || 1462 (ire->ire_type == IRE_CACHE && 1463 ire->ire_stq == ill->ill_wq)) { 1464 connp->conn_ire_cache = NULL; 1465 mutex_exit(&connp->conn_lock); 1466 ire_refrele_notr(ire); 1467 return; 1468 } 1469 } 1470 mutex_exit(&connp->conn_lock); 1471 1472 } 1473 1474 /* ARGSUSED */ 1475 void 1476 ipif_all_down_tail(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 1477 { 1478 ill_t *ill = q->q_ptr; 1479 ipif_t *ipif; 1480 1481 ASSERT(IAM_WRITER_IPSQ(ipsq)); 1482 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) 1483 ipif_down_tail(ipif); 1484 ill_down_tail(ill); 1485 freemsg(mp); 1486 ipsq->ipsq_current_ipif = NULL; 1487 } 1488 1489 /* 1490 * ill_down_start is called when we want to down this ill and bring it up again 1491 * It is called when we receive an M_ERROR / M_HANGUP. In this case we shut down 1492 * all interfaces, but don't tear down any plumbing. 1493 */ 1494 boolean_t 1495 ill_down_start(queue_t *q, mblk_t *mp) 1496 { 1497 ill_t *ill; 1498 ipif_t *ipif; 1499 1500 ill = q->q_ptr; 1501 1502 ASSERT(IAM_WRITER_ILL(ill)); 1503 1504 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) 1505 (void) ipif_down(ipif, NULL, NULL); 1506 1507 ill_down(ill); 1508 1509 (void) ipsq_pending_mp_cleanup(ill, NULL); 1510 mutex_enter(&ill->ill_lock); 1511 /* 1512 * Atomically test and add the pending mp if references are 1513 * still active. 1514 */ 1515 if (!ill_is_quiescent(ill)) { 1516 /* 1517 * Get rid of any pending mps and cleanup. Call will 1518 * not fail since we are passing a null connp. 1519 */ 1520 (void) ipsq_pending_mp_add(NULL, ill->ill_ipif, ill->ill_rq, 1521 mp, ILL_DOWN); 1522 mutex_exit(&ill->ill_lock); 1523 return (B_FALSE); 1524 } 1525 mutex_exit(&ill->ill_lock); 1526 return (B_TRUE); 1527 } 1528 1529 static void 1530 ill_down(ill_t *ill) 1531 { 1532 /* Blow off any IREs dependent on this ILL. */ 1533 ire_walk(ill_downi, (char *)ill); 1534 1535 mutex_enter(&ire_mrtun_lock); 1536 if (ire_mrtun_count != 0) { 1537 mutex_exit(&ire_mrtun_lock); 1538 ire_walk_ill_mrtun(0, 0, ill_downi_mrtun_srcif, 1539 (char *)ill, NULL); 1540 } else { 1541 mutex_exit(&ire_mrtun_lock); 1542 } 1543 1544 /* 1545 * If any interface based forwarding table exists 1546 * Blow off the ires there dependent on this ill 1547 */ 1548 mutex_enter(&ire_srcif_table_lock); 1549 if (ire_srcif_table_count > 0) { 1550 mutex_exit(&ire_srcif_table_lock); 1551 ire_walk_srcif_table_v4(ill_downi_mrtun_srcif, (char *)ill); 1552 } else { 1553 mutex_exit(&ire_srcif_table_lock); 1554 } 1555 1556 /* Remove any conn_*_ill depending on this ill */ 1557 ipcl_walk(conn_cleanup_ill, (caddr_t)ill); 1558 1559 if (ill->ill_group != NULL) { 1560 illgrp_delete(ill); 1561 } 1562 1563 } 1564 1565 static void 1566 ill_down_tail(ill_t *ill) 1567 { 1568 int i; 1569 1570 /* Destroy ill_srcif_table if it exists */ 1571 /* Lock not reqd really because nobody should be able to access */ 1572 mutex_enter(&ill->ill_lock); 1573 if (ill->ill_srcif_table != NULL) { 1574 ill->ill_srcif_refcnt = 0; 1575 for (i = 0; i < IP_SRCIF_TABLE_SIZE; i++) { 1576 rw_destroy(&ill->ill_srcif_table[i].irb_lock); 1577 } 1578 kmem_free(ill->ill_srcif_table, 1579 IP_SRCIF_TABLE_SIZE * sizeof (irb_t)); 1580 ill->ill_srcif_table = NULL; 1581 ill->ill_srcif_refcnt = 0; 1582 ill->ill_mrtun_refcnt = 0; 1583 } 1584 mutex_exit(&ill->ill_lock); 1585 } 1586 1587 /* 1588 * ire_walk routine used to delete every IRE that depends on queues 1589 * associated with 'ill'. (Always called as writer.) 1590 */ 1591 static void 1592 ill_downi(ire_t *ire, char *ill_arg) 1593 { 1594 ill_t *ill = (ill_t *)ill_arg; 1595 1596 /* 1597 * ip_newroute creates IRE_CACHE with ire_stq coming from 1598 * interface X and ipif coming from interface Y, if interface 1599 * X and Y are part of the same IPMP group. Thus whenever interface 1600 * X goes down, remove all references to it by checking both 1601 * on ire_ipif and ire_stq. 1602 */ 1603 if ((ire->ire_ipif != NULL && ire->ire_ipif->ipif_ill == ill) || 1604 (ire->ire_type == IRE_CACHE && ire->ire_stq == ill->ill_wq)) { 1605 ire_delete(ire); 1606 } 1607 } 1608 1609 /* 1610 * A seperate routine for deleting revtun and srcif based routes 1611 * are needed because the ires only deleted when the interface 1612 * is unplumbed. Also these ires have ire_in_ill non-null as well. 1613 * we want to keep mobile IP specific code separate. 1614 */ 1615 static void 1616 ill_downi_mrtun_srcif(ire_t *ire, char *ill_arg) 1617 { 1618 ill_t *ill = (ill_t *)ill_arg; 1619 1620 ASSERT(ire->ire_in_ill != NULL); 1621 1622 if ((ire->ire_in_ill != NULL && ire->ire_in_ill == ill) || 1623 (ire->ire_stq == ill->ill_wq) || (ire->ire_stq == ill->ill_rq)) { 1624 ire_delete(ire); 1625 } 1626 } 1627 1628 /* 1629 * Remove ire/nce from the fastpath list. 1630 */ 1631 void 1632 ill_fastpath_nack(ill_t *ill) 1633 { 1634 if (ill->ill_isv6) { 1635 nce_fastpath_list_dispatch(ill, NULL, NULL); 1636 } else { 1637 ire_fastpath_list_dispatch(ill, NULL, NULL); 1638 } 1639 } 1640 1641 /* Consume an M_IOCACK of the fastpath probe. */ 1642 void 1643 ill_fastpath_ack(ill_t *ill, mblk_t *mp) 1644 { 1645 mblk_t *mp1 = mp; 1646 1647 /* 1648 * If this was the first attempt turn on the fastpath probing. 1649 */ 1650 mutex_enter(&ill->ill_lock); 1651 if (ill->ill_dlpi_fastpath_state == IDMS_INPROGRESS) 1652 ill->ill_dlpi_fastpath_state = IDMS_OK; 1653 mutex_exit(&ill->ill_lock); 1654 1655 /* Free the M_IOCACK mblk, hold on to the data */ 1656 mp = mp->b_cont; 1657 freeb(mp1); 1658 if (mp == NULL) 1659 return; 1660 if (mp->b_cont != NULL) { 1661 /* 1662 * Update all IRE's or NCE's that are waiting for 1663 * fastpath update. 1664 */ 1665 if (ill->ill_isv6) { 1666 /* 1667 * update nce's in the fastpath list. 1668 */ 1669 nce_fastpath_list_dispatch(ill, 1670 ndp_fastpath_update, mp); 1671 } else { 1672 1673 /* 1674 * update ire's in the fastpath list. 1675 */ 1676 ire_fastpath_list_dispatch(ill, 1677 ire_fastpath_update, mp); 1678 /* 1679 * Check if we need to traverse reverse tunnel table. 1680 * Since there is only single ire_type (IRE_MIPRTUN) 1681 * in the table, we don't need to match on ire_type. 1682 * We have to check ire_mrtun_count and not the 1683 * ill_mrtun_refcnt since ill_mrtun_refcnt is set 1684 * on the incoming ill and here we are dealing with 1685 * outgoing ill. 1686 */ 1687 mutex_enter(&ire_mrtun_lock); 1688 if (ire_mrtun_count != 0) { 1689 mutex_exit(&ire_mrtun_lock); 1690 ire_walk_ill_mrtun(MATCH_IRE_WQ, IRE_MIPRTUN, 1691 (void (*)(ire_t *, void *)) 1692 ire_fastpath_update, mp, ill); 1693 } else { 1694 mutex_exit(&ire_mrtun_lock); 1695 } 1696 } 1697 mp1 = mp->b_cont; 1698 freeb(mp); 1699 mp = mp1; 1700 } else { 1701 ip0dbg(("ill_fastpath_ack: no b_cont\n")); 1702 } 1703 1704 freeb(mp); 1705 } 1706 1707 /* 1708 * Throw an M_IOCTL message downstream asking "do you know fastpath?" 1709 * The data portion of the request is a dl_unitdata_req_t template for 1710 * what we would send downstream in the absence of a fastpath confirmation. 1711 */ 1712 int 1713 ill_fastpath_probe(ill_t *ill, mblk_t *dlur_mp) 1714 { 1715 struct iocblk *ioc; 1716 mblk_t *mp; 1717 1718 if (dlur_mp == NULL) 1719 return (EINVAL); 1720 1721 mutex_enter(&ill->ill_lock); 1722 switch (ill->ill_dlpi_fastpath_state) { 1723 case IDMS_FAILED: 1724 /* 1725 * Driver NAKed the first fastpath ioctl - assume it doesn't 1726 * support it. 1727 */ 1728 mutex_exit(&ill->ill_lock); 1729 return (ENOTSUP); 1730 case IDMS_UNKNOWN: 1731 /* This is the first probe */ 1732 ill->ill_dlpi_fastpath_state = IDMS_INPROGRESS; 1733 break; 1734 default: 1735 break; 1736 } 1737 mutex_exit(&ill->ill_lock); 1738 1739 if ((mp = mkiocb(DL_IOC_HDR_INFO)) == NULL) 1740 return (EAGAIN); 1741 1742 mp->b_cont = copyb(dlur_mp); 1743 if (mp->b_cont == NULL) { 1744 freeb(mp); 1745 return (EAGAIN); 1746 } 1747 1748 ioc = (struct iocblk *)mp->b_rptr; 1749 ioc->ioc_count = msgdsize(mp->b_cont); 1750 1751 putnext(ill->ill_wq, mp); 1752 return (0); 1753 } 1754 1755 void 1756 ill_capability_probe(ill_t *ill) 1757 { 1758 /* 1759 * Do so only if negotiation is enabled, capabilities are unknown, 1760 * and a capability negotiation is not already in progress. 1761 */ 1762 if (ill->ill_capab_state != IDMS_UNKNOWN && 1763 ill->ill_capab_state != IDMS_RENEG) 1764 return; 1765 1766 ill->ill_capab_state = IDMS_INPROGRESS; 1767 ip1dbg(("ill_capability_probe: starting capability negotiation\n")); 1768 ill_capability_proto(ill, DL_CAPABILITY_REQ, NULL); 1769 } 1770 1771 void 1772 ill_capability_reset(ill_t *ill) 1773 { 1774 mblk_t *sc_mp = NULL; 1775 mblk_t *tmp; 1776 1777 /* 1778 * Note here that we reset the state to UNKNOWN, and later send 1779 * down the DL_CAPABILITY_REQ without first setting the state to 1780 * INPROGRESS. We do this in order to distinguish the 1781 * DL_CAPABILITY_ACK response which may come back in response to 1782 * a "reset" apart from the "probe" DL_CAPABILITY_REQ. This would 1783 * also handle the case where the driver doesn't send us back 1784 * a DL_CAPABILITY_ACK in response, since the "probe" routine 1785 * requires the state to be in UNKNOWN anyway. In any case, all 1786 * features are turned off until the state reaches IDMS_OK. 1787 */ 1788 ill->ill_capab_state = IDMS_UNKNOWN; 1789 1790 /* 1791 * Disable sub-capabilities and request a list of sub-capability 1792 * messages which will be sent down to the driver. Each handler 1793 * allocates the corresponding dl_capability_sub_t inside an 1794 * mblk, and links it to the existing sc_mp mblk, or return it 1795 * as sc_mp if it's the first sub-capability (the passed in 1796 * sc_mp is NULL). Upon returning from all capability handlers, 1797 * sc_mp will be pulled-up, before passing it downstream. 1798 */ 1799 ill_capability_mdt_reset(ill, &sc_mp); 1800 ill_capability_hcksum_reset(ill, &sc_mp); 1801 ill_capability_zerocopy_reset(ill, &sc_mp); 1802 ill_capability_ipsec_reset(ill, &sc_mp); 1803 ill_capability_poll_reset(ill, &sc_mp); 1804 1805 /* Nothing to send down in order to disable the capabilities? */ 1806 if (sc_mp == NULL) 1807 return; 1808 1809 tmp = msgpullup(sc_mp, -1); 1810 freemsg(sc_mp); 1811 if ((sc_mp = tmp) == NULL) { 1812 cmn_err(CE_WARN, "ill_capability_reset: unable to send down " 1813 "DL_CAPABILITY_REQ (ENOMEM)\n"); 1814 return; 1815 } 1816 1817 ip1dbg(("ill_capability_reset: resetting negotiated capabilities\n")); 1818 ill_capability_proto(ill, DL_CAPABILITY_REQ, sc_mp); 1819 } 1820 1821 /* 1822 * Request or set new-style hardware capabilities supported by DLS provider. 1823 */ 1824 static void 1825 ill_capability_proto(ill_t *ill, int type, mblk_t *reqp) 1826 { 1827 mblk_t *mp; 1828 dl_capability_req_t *capb; 1829 size_t size = 0; 1830 uint8_t *ptr; 1831 1832 if (reqp != NULL) 1833 size = MBLKL(reqp); 1834 1835 mp = ip_dlpi_alloc(sizeof (dl_capability_req_t) + size, type); 1836 if (mp == NULL) { 1837 freemsg(reqp); 1838 return; 1839 } 1840 ptr = mp->b_rptr; 1841 1842 capb = (dl_capability_req_t *)ptr; 1843 ptr += sizeof (dl_capability_req_t); 1844 1845 if (reqp != NULL) { 1846 capb->dl_sub_offset = sizeof (dl_capability_req_t); 1847 capb->dl_sub_length = size; 1848 bcopy(reqp->b_rptr, ptr, size); 1849 ptr += size; 1850 mp->b_cont = reqp->b_cont; 1851 freeb(reqp); 1852 } 1853 ASSERT(ptr == mp->b_wptr); 1854 1855 ill_dlpi_send(ill, mp); 1856 } 1857 1858 static void 1859 ill_capability_id_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *outers) 1860 { 1861 dl_capab_id_t *id_ic; 1862 uint_t sub_dl_cap = outers->dl_cap; 1863 dl_capability_sub_t *inners; 1864 uint8_t *capend; 1865 1866 ASSERT(sub_dl_cap == DL_CAPAB_ID_WRAPPER); 1867 1868 /* 1869 * Note: range checks here are not absolutely sufficient to 1870 * make us robust against malformed messages sent by drivers; 1871 * this is in keeping with the rest of IP's dlpi handling. 1872 * (Remember, it's coming from something else in the kernel 1873 * address space) 1874 */ 1875 1876 capend = (uint8_t *)(outers + 1) + outers->dl_length; 1877 if (capend > mp->b_wptr) { 1878 cmn_err(CE_WARN, "ill_capability_id_ack: " 1879 "malformed sub-capability too long for mblk"); 1880 return; 1881 } 1882 1883 id_ic = (dl_capab_id_t *)(outers + 1); 1884 1885 if (outers->dl_length < sizeof (*id_ic) || 1886 (inners = &id_ic->id_subcap, 1887 inners->dl_length > (outers->dl_length - sizeof (*inners)))) { 1888 cmn_err(CE_WARN, "ill_capability_id_ack: malformed " 1889 "encapsulated capab type %d too long for mblk", 1890 inners->dl_cap); 1891 return; 1892 } 1893 1894 if (!dlcapabcheckqid(&id_ic->id_mid, ill->ill_lmod_rq)) { 1895 ip1dbg(("ill_capability_id_ack: mid token for capab type %d " 1896 "isn't as expected; pass-thru module(s) detected, " 1897 "discarding capability\n", inners->dl_cap)); 1898 return; 1899 } 1900 1901 /* Process the encapsulated sub-capability */ 1902 ill_capability_dispatch(ill, mp, inners, B_TRUE); 1903 } 1904 1905 /* 1906 * Process Multidata Transmit capability negotiation ack received from a 1907 * DLS Provider. isub must point to the sub-capability (DL_CAPAB_MDT) of a 1908 * DL_CAPABILITY_ACK message. 1909 */ 1910 static void 1911 ill_capability_mdt_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub) 1912 { 1913 mblk_t *nmp = NULL; 1914 dl_capability_req_t *oc; 1915 dl_capab_mdt_t *mdt_ic, *mdt_oc; 1916 ill_mdt_capab_t **ill_mdt_capab; 1917 uint_t sub_dl_cap = isub->dl_cap; 1918 uint8_t *capend; 1919 1920 ASSERT(sub_dl_cap == DL_CAPAB_MDT); 1921 1922 ill_mdt_capab = (ill_mdt_capab_t **)&ill->ill_mdt_capab; 1923 1924 /* 1925 * Note: range checks here are not absolutely sufficient to 1926 * make us robust against malformed messages sent by drivers; 1927 * this is in keeping with the rest of IP's dlpi handling. 1928 * (Remember, it's coming from something else in the kernel 1929 * address space) 1930 */ 1931 1932 capend = (uint8_t *)(isub + 1) + isub->dl_length; 1933 if (capend > mp->b_wptr) { 1934 cmn_err(CE_WARN, "ill_capability_mdt_ack: " 1935 "malformed sub-capability too long for mblk"); 1936 return; 1937 } 1938 1939 mdt_ic = (dl_capab_mdt_t *)(isub + 1); 1940 1941 if (mdt_ic->mdt_version != MDT_VERSION_2) { 1942 cmn_err(CE_CONT, "ill_capability_mdt_ack: " 1943 "unsupported MDT sub-capability (version %d, expected %d)", 1944 mdt_ic->mdt_version, MDT_VERSION_2); 1945 return; 1946 } 1947 1948 if (!dlcapabcheckqid(&mdt_ic->mdt_mid, ill->ill_lmod_rq)) { 1949 ip1dbg(("ill_capability_mdt_ack: mid token for MDT " 1950 "capability isn't as expected; pass-thru module(s) " 1951 "detected, discarding capability\n")); 1952 return; 1953 } 1954 1955 if (mdt_ic->mdt_flags & DL_CAPAB_MDT_ENABLE) { 1956 1957 if (*ill_mdt_capab == NULL) { 1958 *ill_mdt_capab = kmem_zalloc(sizeof (ill_mdt_capab_t), 1959 KM_NOSLEEP); 1960 1961 if (*ill_mdt_capab == NULL) { 1962 cmn_err(CE_WARN, "ill_capability_mdt_ack: " 1963 "could not enable MDT version %d " 1964 "for %s (ENOMEM)\n", MDT_VERSION_2, 1965 ill->ill_name); 1966 return; 1967 } 1968 } 1969 1970 ip1dbg(("ill_capability_mdt_ack: interface %s supports " 1971 "MDT version %d (%d bytes leading, %d bytes trailing " 1972 "header spaces, %d max pld bufs, %d span limit)\n", 1973 ill->ill_name, MDT_VERSION_2, 1974 mdt_ic->mdt_hdr_head, mdt_ic->mdt_hdr_tail, 1975 mdt_ic->mdt_max_pld, mdt_ic->mdt_span_limit)); 1976 1977 (*ill_mdt_capab)->ill_mdt_version = MDT_VERSION_2; 1978 (*ill_mdt_capab)->ill_mdt_on = 1; 1979 /* 1980 * Round the following values to the nearest 32-bit; ULP 1981 * may further adjust them to accomodate for additional 1982 * protocol headers. We pass these values to ULP during 1983 * bind time. 1984 */ 1985 (*ill_mdt_capab)->ill_mdt_hdr_head = 1986 roundup(mdt_ic->mdt_hdr_head, 4); 1987 (*ill_mdt_capab)->ill_mdt_hdr_tail = 1988 roundup(mdt_ic->mdt_hdr_tail, 4); 1989 (*ill_mdt_capab)->ill_mdt_max_pld = mdt_ic->mdt_max_pld; 1990 (*ill_mdt_capab)->ill_mdt_span_limit = mdt_ic->mdt_span_limit; 1991 1992 ill->ill_capabilities |= ILL_CAPAB_MDT; 1993 } else { 1994 uint_t size; 1995 uchar_t *rptr; 1996 1997 size = sizeof (dl_capability_req_t) + 1998 sizeof (dl_capability_sub_t) + sizeof (dl_capab_mdt_t); 1999 2000 if ((nmp = ip_dlpi_alloc(size, DL_CAPABILITY_REQ)) == NULL) { 2001 cmn_err(CE_WARN, "ill_capability_mdt_ack: " 2002 "could not enable MDT for %s (ENOMEM)\n", 2003 ill->ill_name); 2004 return; 2005 } 2006 2007 rptr = nmp->b_rptr; 2008 /* initialize dl_capability_req_t */ 2009 oc = (dl_capability_req_t *)nmp->b_rptr; 2010 oc->dl_sub_offset = sizeof (dl_capability_req_t); 2011 oc->dl_sub_length = sizeof (dl_capability_sub_t) + 2012 sizeof (dl_capab_mdt_t); 2013 nmp->b_rptr += sizeof (dl_capability_req_t); 2014 2015 /* initialize dl_capability_sub_t */ 2016 bcopy(isub, nmp->b_rptr, sizeof (*isub)); 2017 nmp->b_rptr += sizeof (*isub); 2018 2019 /* initialize dl_capab_mdt_t */ 2020 mdt_oc = (dl_capab_mdt_t *)nmp->b_rptr; 2021 bcopy(mdt_ic, mdt_oc, sizeof (*mdt_ic)); 2022 2023 nmp->b_rptr = rptr; 2024 2025 ip1dbg(("ill_capability_mdt_ack: asking interface %s " 2026 "to enable MDT version %d\n", ill->ill_name, 2027 MDT_VERSION_2)); 2028 2029 /* set ENABLE flag */ 2030 mdt_oc->mdt_flags |= DL_CAPAB_MDT_ENABLE; 2031 2032 /* nmp points to a DL_CAPABILITY_REQ message to enable MDT */ 2033 ill_dlpi_send(ill, nmp); 2034 } 2035 } 2036 2037 static void 2038 ill_capability_mdt_reset(ill_t *ill, mblk_t **sc_mp) 2039 { 2040 mblk_t *mp; 2041 dl_capab_mdt_t *mdt_subcap; 2042 dl_capability_sub_t *dl_subcap; 2043 int size; 2044 2045 if (!(ill->ill_capabilities & ILL_CAPAB_MDT)) 2046 return; 2047 2048 ASSERT(ill->ill_mdt_capab != NULL); 2049 /* 2050 * Clear the capability flag for MDT but retain the ill_mdt_capab 2051 * structure since it's possible that another thread is still 2052 * referring to it. The structure only gets deallocated when 2053 * we destroy the ill. 2054 */ 2055 ill->ill_capabilities &= ~ILL_CAPAB_MDT; 2056 2057 size = sizeof (*dl_subcap) + sizeof (*mdt_subcap); 2058 2059 mp = allocb(size, BPRI_HI); 2060 if (mp == NULL) { 2061 ip1dbg(("ill_capability_mdt_reset: unable to allocate " 2062 "request to disable MDT\n")); 2063 return; 2064 } 2065 2066 mp->b_wptr = mp->b_rptr + size; 2067 2068 dl_subcap = (dl_capability_sub_t *)mp->b_rptr; 2069 dl_subcap->dl_cap = DL_CAPAB_MDT; 2070 dl_subcap->dl_length = sizeof (*mdt_subcap); 2071 2072 mdt_subcap = (dl_capab_mdt_t *)(dl_subcap + 1); 2073 mdt_subcap->mdt_version = ill->ill_mdt_capab->ill_mdt_version; 2074 mdt_subcap->mdt_flags = 0; 2075 mdt_subcap->mdt_hdr_head = 0; 2076 mdt_subcap->mdt_hdr_tail = 0; 2077 2078 if (*sc_mp != NULL) 2079 linkb(*sc_mp, mp); 2080 else 2081 *sc_mp = mp; 2082 } 2083 2084 /* 2085 * Send a DL_NOTIFY_REQ to the specified ill to enable 2086 * DL_NOTE_PROMISC_ON/OFF_PHYS notifications. 2087 * Invoked by ill_capability_ipsec_ack() before enabling IPsec hardware 2088 * acceleration. 2089 * Returns B_TRUE on success, B_FALSE if the message could not be sent. 2090 */ 2091 static boolean_t 2092 ill_enable_promisc_notify(ill_t *ill) 2093 { 2094 mblk_t *mp; 2095 dl_notify_req_t *req; 2096 2097 IPSECHW_DEBUG(IPSECHW_PKT, ("ill_enable_promisc_notify:\n")); 2098 2099 mp = ip_dlpi_alloc(sizeof (dl_notify_req_t), DL_NOTIFY_REQ); 2100 if (mp == NULL) 2101 return (B_FALSE); 2102 2103 req = (dl_notify_req_t *)mp->b_rptr; 2104 req->dl_notifications = DL_NOTE_PROMISC_ON_PHYS | 2105 DL_NOTE_PROMISC_OFF_PHYS; 2106 2107 ill_dlpi_send(ill, mp); 2108 2109 return (B_TRUE); 2110 } 2111 2112 2113 /* 2114 * Allocate an IPsec capability request which will be filled by our 2115 * caller to turn on support for one or more algorithms. 2116 */ 2117 static mblk_t * 2118 ill_alloc_ipsec_cap_req(ill_t *ill, dl_capability_sub_t *isub) 2119 { 2120 mblk_t *nmp; 2121 dl_capability_req_t *ocap; 2122 dl_capab_ipsec_t *ocip; 2123 dl_capab_ipsec_t *icip; 2124 uint8_t *ptr; 2125 icip = (dl_capab_ipsec_t *)(isub + 1); 2126 2127 /* 2128 * The first time around, we send a DL_NOTIFY_REQ to enable 2129 * PROMISC_ON/OFF notification from the provider. We need to 2130 * do this before enabling the algorithms to avoid leakage of 2131 * cleartext packets. 2132 */ 2133 2134 if (!ill_enable_promisc_notify(ill)) 2135 return (NULL); 2136 2137 /* 2138 * Allocate new mblk which will contain a new capability 2139 * request to enable the capabilities. 2140 */ 2141 2142 nmp = ip_dlpi_alloc(sizeof (dl_capability_req_t) + 2143 sizeof (dl_capability_sub_t) + isub->dl_length, DL_CAPABILITY_REQ); 2144 if (nmp == NULL) 2145 return (NULL); 2146 2147 ptr = nmp->b_rptr; 2148 2149 /* initialize dl_capability_req_t */ 2150 ocap = (dl_capability_req_t *)ptr; 2151 ocap->dl_sub_offset = sizeof (dl_capability_req_t); 2152 ocap->dl_sub_length = sizeof (dl_capability_sub_t) + isub->dl_length; 2153 ptr += sizeof (dl_capability_req_t); 2154 2155 /* initialize dl_capability_sub_t */ 2156 bcopy(isub, ptr, sizeof (*isub)); 2157 ptr += sizeof (*isub); 2158 2159 /* initialize dl_capab_ipsec_t */ 2160 ocip = (dl_capab_ipsec_t *)ptr; 2161 bcopy(icip, ocip, sizeof (*icip)); 2162 2163 nmp->b_wptr = (uchar_t *)(&ocip->cip_data[0]); 2164 return (nmp); 2165 } 2166 2167 /* 2168 * Process an IPsec capability negotiation ack received from a DLS Provider. 2169 * isub must point to the sub-capability (DL_CAPAB_IPSEC_AH or 2170 * DL_CAPAB_IPSEC_ESP) of a DL_CAPABILITY_ACK message. 2171 */ 2172 static void 2173 ill_capability_ipsec_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub) 2174 { 2175 dl_capab_ipsec_t *icip; 2176 dl_capab_ipsec_alg_t *ialg; /* ptr to input alg spec. */ 2177 dl_capab_ipsec_alg_t *oalg; /* ptr to output alg spec. */ 2178 uint_t cipher, nciphers; 2179 mblk_t *nmp; 2180 uint_t alg_len; 2181 boolean_t need_sadb_dump; 2182 uint_t sub_dl_cap = isub->dl_cap; 2183 ill_ipsec_capab_t **ill_capab; 2184 uint64_t ill_capab_flag; 2185 uint8_t *capend, *ciphend; 2186 boolean_t sadb_resync; 2187 2188 ASSERT(sub_dl_cap == DL_CAPAB_IPSEC_AH || 2189 sub_dl_cap == DL_CAPAB_IPSEC_ESP); 2190 2191 if (sub_dl_cap == DL_CAPAB_IPSEC_AH) { 2192 ill_capab = (ill_ipsec_capab_t **)&ill->ill_ipsec_capab_ah; 2193 ill_capab_flag = ILL_CAPAB_AH; 2194 } else { 2195 ill_capab = (ill_ipsec_capab_t **)&ill->ill_ipsec_capab_esp; 2196 ill_capab_flag = ILL_CAPAB_ESP; 2197 } 2198 2199 /* 2200 * If the ill capability structure exists, then this incoming 2201 * DL_CAPABILITY_ACK is a response to a "renegotiation" cycle. 2202 * If this is so, then we'd need to resynchronize the SADB 2203 * after re-enabling the offloaded ciphers. 2204 */ 2205 sadb_resync = (*ill_capab != NULL); 2206 2207 /* 2208 * Note: range checks here are not absolutely sufficient to 2209 * make us robust against malformed messages sent by drivers; 2210 * this is in keeping with the rest of IP's dlpi handling. 2211 * (Remember, it's coming from something else in the kernel 2212 * address space) 2213 */ 2214 2215 capend = (uint8_t *)(isub + 1) + isub->dl_length; 2216 if (capend > mp->b_wptr) { 2217 cmn_err(CE_WARN, "ill_capability_ipsec_ack: " 2218 "malformed sub-capability too long for mblk"); 2219 return; 2220 } 2221 2222 /* 2223 * There are two types of acks we process here: 2224 * 1. acks in reply to a (first form) generic capability req 2225 * (no ENABLE flag set) 2226 * 2. acks in reply to a ENABLE capability req. 2227 * (ENABLE flag set) 2228 * 2229 * We process the subcapability passed as argument as follows: 2230 * 1 do initializations 2231 * 1.1 initialize nmp = NULL 2232 * 1.2 set need_sadb_dump to B_FALSE 2233 * 2 for each cipher in subcapability: 2234 * 2.1 if ENABLE flag is set: 2235 * 2.1.1 update per-ill ipsec capabilities info 2236 * 2.1.2 set need_sadb_dump to B_TRUE 2237 * 2.2 if ENABLE flag is not set: 2238 * 2.2.1 if nmp is NULL: 2239 * 2.2.1.1 allocate and initialize nmp 2240 * 2.2.1.2 init current pos in nmp 2241 * 2.2.2 copy current cipher to current pos in nmp 2242 * 2.2.3 set ENABLE flag in nmp 2243 * 2.2.4 update current pos 2244 * 3 if nmp is not equal to NULL, send enable request 2245 * 3.1 send capability request 2246 * 4 if need_sadb_dump is B_TRUE 2247 * 4.1 enable promiscuous on/off notifications 2248 * 4.2 call ill_dlpi_send(isub->dlcap) to send all 2249 * AH or ESP SA's to interface. 2250 */ 2251 2252 nmp = NULL; 2253 oalg = NULL; 2254 need_sadb_dump = B_FALSE; 2255 icip = (dl_capab_ipsec_t *)(isub + 1); 2256 ialg = (dl_capab_ipsec_alg_t *)(&icip->cip_data[0]); 2257 2258 nciphers = icip->cip_nciphers; 2259 ciphend = (uint8_t *)(ialg + icip->cip_nciphers); 2260 2261 if (ciphend > capend) { 2262 cmn_err(CE_WARN, "ill_capability_ipsec_ack: " 2263 "too many ciphers for sub-capability len"); 2264 return; 2265 } 2266 2267 for (cipher = 0; cipher < nciphers; cipher++) { 2268 alg_len = sizeof (dl_capab_ipsec_alg_t); 2269 2270 if (ialg->alg_flag & DL_CAPAB_ALG_ENABLE) { 2271 /* 2272 * TBD: when we provide a way to disable capabilities 2273 * from above, need to manage the request-pending state 2274 * and fail if we were not expecting this ACK. 2275 */ 2276 IPSECHW_DEBUG(IPSECHW_CAPAB, 2277 ("ill_capability_ipsec_ack: got ENABLE ACK\n")); 2278 2279 /* 2280 * Update IPsec capabilities for this ill 2281 */ 2282 2283 if (*ill_capab == NULL) { 2284 IPSECHW_DEBUG(IPSECHW_CAPAB, 2285 ("ill_capability_ipsec_ack: " 2286 "allocating ipsec_capab for ill\n")); 2287 *ill_capab = ill_ipsec_capab_alloc(); 2288 2289 if (*ill_capab == NULL) { 2290 cmn_err(CE_WARN, 2291 "ill_capability_ipsec_ack: " 2292 "could not enable IPsec Hardware " 2293 "acceleration for %s (ENOMEM)\n", 2294 ill->ill_name); 2295 return; 2296 } 2297 } 2298 2299 ASSERT(ialg->alg_type == DL_CAPAB_IPSEC_ALG_AUTH || 2300 ialg->alg_type == DL_CAPAB_IPSEC_ALG_ENCR); 2301 2302 if (ialg->alg_prim >= MAX_IPSEC_ALGS) { 2303 cmn_err(CE_WARN, 2304 "ill_capability_ipsec_ack: " 2305 "malformed IPsec algorithm id %d", 2306 ialg->alg_prim); 2307 continue; 2308 } 2309 2310 if (ialg->alg_type == DL_CAPAB_IPSEC_ALG_AUTH) { 2311 IPSEC_ALG_ENABLE((*ill_capab)->auth_hw_algs, 2312 ialg->alg_prim); 2313 } else { 2314 ipsec_capab_algparm_t *alp; 2315 2316 IPSEC_ALG_ENABLE((*ill_capab)->encr_hw_algs, 2317 ialg->alg_prim); 2318 if (!ill_ipsec_capab_resize_algparm(*ill_capab, 2319 ialg->alg_prim)) { 2320 cmn_err(CE_WARN, 2321 "ill_capability_ipsec_ack: " 2322 "no space for IPsec alg id %d", 2323 ialg->alg_prim); 2324 continue; 2325 } 2326 alp = &((*ill_capab)->encr_algparm[ 2327 ialg->alg_prim]); 2328 alp->minkeylen = ialg->alg_minbits; 2329 alp->maxkeylen = ialg->alg_maxbits; 2330 } 2331 ill->ill_capabilities |= ill_capab_flag; 2332 /* 2333 * indicate that a capability was enabled, which 2334 * will be used below to kick off a SADB dump 2335 * to the ill. 2336 */ 2337 need_sadb_dump = B_TRUE; 2338 } else { 2339 IPSECHW_DEBUG(IPSECHW_CAPAB, 2340 ("ill_capability_ipsec_ack: enabling alg 0x%x\n", 2341 ialg->alg_prim)); 2342 2343 if (nmp == NULL) { 2344 nmp = ill_alloc_ipsec_cap_req(ill, isub); 2345 if (nmp == NULL) { 2346 /* 2347 * Sending the PROMISC_ON/OFF 2348 * notification request failed. 2349 * We cannot enable the algorithms 2350 * since the Provider will not 2351 * notify IP of promiscous mode 2352 * changes, which could lead 2353 * to leakage of packets. 2354 */ 2355 cmn_err(CE_WARN, 2356 "ill_capability_ipsec_ack: " 2357 "could not enable IPsec Hardware " 2358 "acceleration for %s (ENOMEM)\n", 2359 ill->ill_name); 2360 return; 2361 } 2362 /* ptr to current output alg specifier */ 2363 oalg = (dl_capab_ipsec_alg_t *)nmp->b_wptr; 2364 } 2365 2366 /* 2367 * Copy current alg specifier, set ENABLE 2368 * flag, and advance to next output alg. 2369 * For now we enable all IPsec capabilities. 2370 */ 2371 ASSERT(oalg != NULL); 2372 bcopy(ialg, oalg, alg_len); 2373 oalg->alg_flag |= DL_CAPAB_ALG_ENABLE; 2374 nmp->b_wptr += alg_len; 2375 oalg = (dl_capab_ipsec_alg_t *)nmp->b_wptr; 2376 } 2377 2378 /* move to next input algorithm specifier */ 2379 ialg = (dl_capab_ipsec_alg_t *) 2380 ((char *)ialg + alg_len); 2381 } 2382 2383 if (nmp != NULL) 2384 /* 2385 * nmp points to a DL_CAPABILITY_REQ message to enable 2386 * IPsec hardware acceleration. 2387 */ 2388 ill_dlpi_send(ill, nmp); 2389 2390 if (need_sadb_dump) 2391 /* 2392 * An acknowledgement corresponding to a request to 2393 * enable acceleration was received, notify SADB. 2394 */ 2395 ill_ipsec_capab_add(ill, sub_dl_cap, sadb_resync); 2396 } 2397 2398 /* 2399 * Given an mblk with enough space in it, create sub-capability entries for 2400 * DL_CAPAB_IPSEC_{AH,ESP} types which consist of previously-advertised 2401 * offloaded ciphers (both AUTH and ENCR) with their enable flags cleared, 2402 * in preparation for the reset the DL_CAPABILITY_REQ message. 2403 */ 2404 static void 2405 ill_fill_ipsec_reset(uint_t nciphers, int stype, uint_t slen, 2406 ill_ipsec_capab_t *ill_cap, mblk_t *mp) 2407 { 2408 dl_capab_ipsec_t *oipsec; 2409 dl_capab_ipsec_alg_t *oalg; 2410 dl_capability_sub_t *dl_subcap; 2411 int i, k; 2412 2413 ASSERT(nciphers > 0); 2414 ASSERT(ill_cap != NULL); 2415 ASSERT(mp != NULL); 2416 ASSERT(MBLKTAIL(mp) >= sizeof (*dl_subcap) + sizeof (*oipsec) + slen); 2417 2418 /* dl_capability_sub_t for "stype" */ 2419 dl_subcap = (dl_capability_sub_t *)mp->b_wptr; 2420 dl_subcap->dl_cap = stype; 2421 dl_subcap->dl_length = sizeof (dl_capab_ipsec_t) + slen; 2422 mp->b_wptr += sizeof (dl_capability_sub_t); 2423 2424 /* dl_capab_ipsec_t for "stype" */ 2425 oipsec = (dl_capab_ipsec_t *)mp->b_wptr; 2426 oipsec->cip_version = 1; 2427 oipsec->cip_nciphers = nciphers; 2428 mp->b_wptr = (uchar_t *)&oipsec->cip_data[0]; 2429 2430 /* create entries for "stype" AUTH ciphers */ 2431 for (i = 0; i < ill_cap->algs_size; i++) { 2432 for (k = 0; k < BITSPERBYTE; k++) { 2433 if ((ill_cap->auth_hw_algs[i] & (1 << k)) == 0) 2434 continue; 2435 2436 oalg = (dl_capab_ipsec_alg_t *)mp->b_wptr; 2437 bzero((void *)oalg, sizeof (*oalg)); 2438 oalg->alg_type = DL_CAPAB_IPSEC_ALG_AUTH; 2439 oalg->alg_prim = k + (BITSPERBYTE * i); 2440 mp->b_wptr += sizeof (dl_capab_ipsec_alg_t); 2441 } 2442 } 2443 /* create entries for "stype" ENCR ciphers */ 2444 for (i = 0; i < ill_cap->algs_size; i++) { 2445 for (k = 0; k < BITSPERBYTE; k++) { 2446 if ((ill_cap->encr_hw_algs[i] & (1 << k)) == 0) 2447 continue; 2448 2449 oalg = (dl_capab_ipsec_alg_t *)mp->b_wptr; 2450 bzero((void *)oalg, sizeof (*oalg)); 2451 oalg->alg_type = DL_CAPAB_IPSEC_ALG_ENCR; 2452 oalg->alg_prim = k + (BITSPERBYTE * i); 2453 mp->b_wptr += sizeof (dl_capab_ipsec_alg_t); 2454 } 2455 } 2456 } 2457 2458 /* 2459 * Macro to count number of 1s in a byte (8-bit word). The total count is 2460 * accumulated into the passed-in argument (sum). We could use SPARCv9's 2461 * POPC instruction, but our macro is more flexible for an arbitrary length 2462 * of bytes, such as {auth,encr}_hw_algs. These variables are currently 2463 * 256-bits long (MAX_IPSEC_ALGS), so if we know for sure that the length 2464 * stays that way, we can reduce the number of iterations required. 2465 */ 2466 #define COUNT_1S(val, sum) { \ 2467 uint8_t x = val & 0xff; \ 2468 x = (x & 0x55) + ((x >> 1) & 0x55); \ 2469 x = (x & 0x33) + ((x >> 2) & 0x33); \ 2470 sum += (x & 0xf) + ((x >> 4) & 0xf); \ 2471 } 2472 2473 /* ARGSUSED */ 2474 static void 2475 ill_capability_ipsec_reset(ill_t *ill, mblk_t **sc_mp) 2476 { 2477 mblk_t *mp; 2478 ill_ipsec_capab_t *cap_ah = ill->ill_ipsec_capab_ah; 2479 ill_ipsec_capab_t *cap_esp = ill->ill_ipsec_capab_esp; 2480 uint64_t ill_capabilities = ill->ill_capabilities; 2481 int ah_cnt = 0, esp_cnt = 0; 2482 int ah_len = 0, esp_len = 0; 2483 int i, size = 0; 2484 2485 if (!(ill_capabilities & (ILL_CAPAB_AH | ILL_CAPAB_ESP))) 2486 return; 2487 2488 ASSERT(cap_ah != NULL || !(ill_capabilities & ILL_CAPAB_AH)); 2489 ASSERT(cap_esp != NULL || !(ill_capabilities & ILL_CAPAB_ESP)); 2490 2491 /* Find out the number of ciphers for AH */ 2492 if (cap_ah != NULL) { 2493 for (i = 0; i < cap_ah->algs_size; i++) { 2494 COUNT_1S(cap_ah->auth_hw_algs[i], ah_cnt); 2495 COUNT_1S(cap_ah->encr_hw_algs[i], ah_cnt); 2496 } 2497 if (ah_cnt > 0) { 2498 size += sizeof (dl_capability_sub_t) + 2499 sizeof (dl_capab_ipsec_t); 2500 /* dl_capab_ipsec_t contains one dl_capab_ipsec_alg_t */ 2501 ah_len = (ah_cnt - 1) * sizeof (dl_capab_ipsec_alg_t); 2502 size += ah_len; 2503 } 2504 } 2505 2506 /* Find out the number of ciphers for ESP */ 2507 if (cap_esp != NULL) { 2508 for (i = 0; i < cap_esp->algs_size; i++) { 2509 COUNT_1S(cap_esp->auth_hw_algs[i], esp_cnt); 2510 COUNT_1S(cap_esp->encr_hw_algs[i], esp_cnt); 2511 } 2512 if (esp_cnt > 0) { 2513 size += sizeof (dl_capability_sub_t) + 2514 sizeof (dl_capab_ipsec_t); 2515 /* dl_capab_ipsec_t contains one dl_capab_ipsec_alg_t */ 2516 esp_len = (esp_cnt - 1) * sizeof (dl_capab_ipsec_alg_t); 2517 size += esp_len; 2518 } 2519 } 2520 2521 if (size == 0) { 2522 ip1dbg(("ill_capability_ipsec_reset: capabilities exist but " 2523 "there's nothing to reset\n")); 2524 return; 2525 } 2526 2527 mp = allocb(size, BPRI_HI); 2528 if (mp == NULL) { 2529 ip1dbg(("ill_capability_ipsec_reset: unable to allocate " 2530 "request to disable IPSEC Hardware Acceleration\n")); 2531 return; 2532 } 2533 2534 /* 2535 * Clear the capability flags for IPSec HA but retain the ill 2536 * capability structures since it's possible that another thread 2537 * is still referring to them. The structures only get deallocated 2538 * when we destroy the ill. 2539 * 2540 * Various places check the flags to see if the ill is capable of 2541 * hardware acceleration, and by clearing them we ensure that new 2542 * outbound IPSec packets are sent down encrypted. 2543 */ 2544 ill->ill_capabilities &= ~(ILL_CAPAB_AH | ILL_CAPAB_ESP); 2545 2546 /* Fill in DL_CAPAB_IPSEC_AH sub-capability entries */ 2547 if (ah_cnt > 0) { 2548 ill_fill_ipsec_reset(ah_cnt, DL_CAPAB_IPSEC_AH, ah_len, 2549 cap_ah, mp); 2550 ASSERT(mp->b_rptr + size >= mp->b_wptr); 2551 } 2552 2553 /* Fill in DL_CAPAB_IPSEC_ESP sub-capability entries */ 2554 if (esp_cnt > 0) { 2555 ill_fill_ipsec_reset(esp_cnt, DL_CAPAB_IPSEC_ESP, esp_len, 2556 cap_esp, mp); 2557 ASSERT(mp->b_rptr + size >= mp->b_wptr); 2558 } 2559 2560 /* 2561 * At this point we've composed a bunch of sub-capabilities to be 2562 * encapsulated in a DL_CAPABILITY_REQ and later sent downstream 2563 * by the caller. Upon receiving this reset message, the driver 2564 * must stop inbound decryption (by destroying all inbound SAs) 2565 * and let the corresponding packets come in encrypted. 2566 */ 2567 2568 if (*sc_mp != NULL) 2569 linkb(*sc_mp, mp); 2570 else 2571 *sc_mp = mp; 2572 } 2573 2574 static void 2575 ill_capability_dispatch(ill_t *ill, mblk_t *mp, dl_capability_sub_t *subp, 2576 boolean_t encapsulated) 2577 { 2578 boolean_t legacy = B_FALSE; 2579 2580 /* 2581 * If this DL_CAPABILITY_ACK came in as a response to our "reset" 2582 * DL_CAPABILITY_REQ, ignore it during this cycle. We've just 2583 * instructed the driver to disable its advertised capabilities, 2584 * so there's no point in accepting any response at this moment. 2585 */ 2586 if (ill->ill_capab_state == IDMS_UNKNOWN) 2587 return; 2588 2589 /* 2590 * Note that only the following two sub-capabilities may be 2591 * considered as "legacy", since their original definitions 2592 * do not incorporate the dl_mid_t module ID token, and hence 2593 * may require the use of the wrapper sub-capability. 2594 */ 2595 switch (subp->dl_cap) { 2596 case DL_CAPAB_IPSEC_AH: 2597 case DL_CAPAB_IPSEC_ESP: 2598 legacy = B_TRUE; 2599 break; 2600 } 2601 2602 /* 2603 * For legacy sub-capabilities which don't incorporate a queue_t 2604 * pointer in their structures, discard them if we detect that 2605 * there are intermediate modules in between IP and the driver. 2606 */ 2607 if (!encapsulated && legacy && ill->ill_lmod_cnt > 1) { 2608 ip1dbg(("ill_capability_dispatch: unencapsulated capab type " 2609 "%d discarded; %d module(s) present below IP\n", 2610 subp->dl_cap, ill->ill_lmod_cnt)); 2611 return; 2612 } 2613 2614 switch (subp->dl_cap) { 2615 case DL_CAPAB_IPSEC_AH: 2616 case DL_CAPAB_IPSEC_ESP: 2617 ill_capability_ipsec_ack(ill, mp, subp); 2618 break; 2619 case DL_CAPAB_MDT: 2620 ill_capability_mdt_ack(ill, mp, subp); 2621 break; 2622 case DL_CAPAB_HCKSUM: 2623 ill_capability_hcksum_ack(ill, mp, subp); 2624 break; 2625 case DL_CAPAB_ZEROCOPY: 2626 ill_capability_zerocopy_ack(ill, mp, subp); 2627 break; 2628 case DL_CAPAB_POLL: 2629 ill_capability_poll_ack(ill, mp, subp); 2630 break; 2631 default: 2632 ip1dbg(("ill_capability_dispatch: unknown capab type %d\n", 2633 subp->dl_cap)); 2634 } 2635 } 2636 2637 /* 2638 * As part of negotiating polling capability, the driver tells us 2639 * the default (or normal) blanking interval and packet threshold 2640 * (the receive timer fires if blanking interval is reached or 2641 * the packet threshold is reached). 2642 * 2643 * As part of manipulating the polling interval, we always use our 2644 * estimated interval (avg service time * number of packets queued 2645 * on the squeue) but we try to blank for a minimum of 2646 * rr_normal_blank_time * rr_max_blank_ratio. We disable the 2647 * packet threshold during this time. When we are not in polling mode 2648 * we set the blank interval typically lower, rr_normal_pkt_cnt * 2649 * rr_min_blank_ratio but up the packet cnt by a ratio of 2650 * rr_min_pkt_cnt_ratio so that we are still getting chains if 2651 * possible although for a shorter interval. 2652 */ 2653 #define RR_MAX_BLANK_RATIO 20 2654 #define RR_MIN_BLANK_RATIO 10 2655 #define RR_MAX_PKT_CNT_RATIO 3 2656 #define RR_MIN_PKT_CNT_RATIO 3 2657 2658 /* 2659 * These can be tuned via /etc/system. 2660 */ 2661 int rr_max_blank_ratio = RR_MAX_BLANK_RATIO; 2662 int rr_min_blank_ratio = RR_MIN_BLANK_RATIO; 2663 int rr_max_pkt_cnt_ratio = RR_MAX_PKT_CNT_RATIO; 2664 int rr_min_pkt_cnt_ratio = RR_MIN_PKT_CNT_RATIO; 2665 2666 static mac_resource_handle_t 2667 ill_ring_add(void *arg, mac_resource_t *mrp) 2668 { 2669 ill_t *ill = (ill_t *)arg; 2670 mac_rx_fifo_t *mrfp = (mac_rx_fifo_t *)mrp; 2671 ill_rx_ring_t *rx_ring; 2672 int ip_rx_index; 2673 2674 if (mrp->mr_type != MAC_RX_FIFO) { 2675 return (NULL); 2676 } 2677 ASSERT(ill != NULL); 2678 ASSERT(ill->ill_poll_capab != NULL); 2679 ASSERT(mrp != NULL); 2680 2681 mutex_enter(&ill->ill_lock); 2682 for (ip_rx_index = 0; ip_rx_index < ILL_MAX_RINGS; ip_rx_index++) { 2683 rx_ring = &ill->ill_poll_capab->ill_ring_tbl[ip_rx_index]; 2684 ASSERT(rx_ring != NULL); 2685 2686 if (rx_ring->rr_ring_state == ILL_RING_FREE) { 2687 time_t normal_blank_time = 2688 mrfp->mrf_normal_blank_time; 2689 uint_t normal_pkt_cnt = 2690 mrfp->mrf_normal_pkt_count; 2691 2692 bzero(rx_ring, sizeof (ill_rx_ring_t)); 2693 2694 rx_ring->rr_blank = mrfp->mrf_blank; 2695 rx_ring->rr_handle = mrfp->mrf_arg; 2696 rx_ring->rr_ill = ill; 2697 rx_ring->rr_normal_blank_time = normal_blank_time; 2698 rx_ring->rr_normal_pkt_cnt = normal_pkt_cnt; 2699 2700 rx_ring->rr_max_blank_time = 2701 normal_blank_time * rr_max_blank_ratio; 2702 rx_ring->rr_min_blank_time = 2703 normal_blank_time * rr_min_blank_ratio; 2704 rx_ring->rr_max_pkt_cnt = 2705 normal_pkt_cnt * rr_max_pkt_cnt_ratio; 2706 rx_ring->rr_min_pkt_cnt = 2707 normal_pkt_cnt * rr_min_pkt_cnt_ratio; 2708 2709 rx_ring->rr_ring_state = ILL_RING_INUSE; 2710 mutex_exit(&ill->ill_lock); 2711 2712 DTRACE_PROBE2(ill__ring__add, (void *), ill, 2713 (int), ip_rx_index); 2714 return ((mac_resource_handle_t)rx_ring); 2715 } 2716 } 2717 2718 /* 2719 * We ran out of ILL_MAX_RINGS worth rx_ring structures. If 2720 * we have devices which can overwhelm this limit, ILL_MAX_RING 2721 * should be made configurable. Meanwhile it cause no panic because 2722 * driver will pass ip_input a NULL handle which will make 2723 * IP allocate the default squeue and Polling mode will not 2724 * be used for this ring. 2725 */ 2726 cmn_err(CE_NOTE, "Reached maximum number of receiving rings (%d) " 2727 "for %s\n", ILL_MAX_RINGS, ill->ill_name); 2728 2729 mutex_exit(&ill->ill_lock); 2730 return (NULL); 2731 } 2732 2733 static boolean_t 2734 ill_capability_poll_init(ill_t *ill) 2735 { 2736 ill_poll_capab_t *ill_poll = ill->ill_poll_capab; 2737 conn_t *connp; 2738 size_t sz; 2739 2740 if (ill->ill_capabilities & ILL_CAPAB_POLL) { 2741 if (ill_poll == NULL) { 2742 cmn_err(CE_PANIC, "ill_capability_poll_init: " 2743 "polling enabled for ill=%s (%p) but data " 2744 "structs uninitialized\n", ill->ill_name, 2745 (void *)ill); 2746 } 2747 return (B_TRUE); 2748 } 2749 2750 if (ill_poll != NULL) { 2751 ill_rx_ring_t *rx_ring = ill_poll->ill_ring_tbl; 2752 /* Polling is being re-enabled */ 2753 2754 connp = ill_poll->ill_unbind_conn; 2755 ASSERT(rx_ring != NULL); 2756 bzero((void *)ill_poll, sizeof (ill_poll_capab_t)); 2757 bzero((void *)rx_ring, 2758 sizeof (ill_rx_ring_t) * ILL_MAX_RINGS); 2759 ill_poll->ill_ring_tbl = rx_ring; 2760 ill_poll->ill_unbind_conn = connp; 2761 return (B_TRUE); 2762 } 2763 2764 if ((connp = ipcl_conn_create(IPCL_TCPCONN, KM_NOSLEEP)) == NULL) 2765 return (B_FALSE); 2766 2767 sz = sizeof (ill_poll_capab_t); 2768 sz += sizeof (ill_rx_ring_t) * ILL_MAX_RINGS; 2769 2770 ill_poll = kmem_zalloc(sz, KM_NOSLEEP); 2771 if (ill_poll == NULL) { 2772 cmn_err(CE_WARN, "ill_capability_poll_init: could not " 2773 "allocate poll_capab for %s (%p)\n", ill->ill_name, 2774 (void *)ill); 2775 CONN_DEC_REF(connp); 2776 return (B_FALSE); 2777 } 2778 2779 /* Allocate space to hold ring table */ 2780 ill_poll->ill_ring_tbl = (ill_rx_ring_t *)&ill_poll[1]; 2781 ill->ill_poll_capab = ill_poll; 2782 ill_poll->ill_unbind_conn = connp; 2783 return (B_TRUE); 2784 } 2785 2786 /* 2787 * ill_capability_poll_disable: disable polling capability. Since 2788 * any of the rings might already be in use, need to call ipsq_clean_all() 2789 * which gets behind the squeue to disable direct calls if necessary. 2790 * Clean up the direct tx function pointers as well. 2791 */ 2792 static void 2793 ill_capability_poll_disable(ill_t *ill) 2794 { 2795 ill_poll_capab_t *ill_poll = ill->ill_poll_capab; 2796 2797 if (ill->ill_capabilities & ILL_CAPAB_POLL) { 2798 ipsq_clean_all(ill); 2799 ill_poll->ill_tx = NULL; 2800 ill_poll->ill_tx_handle = NULL; 2801 } 2802 2803 ASSERT(!(ill->ill_capabilities & ILL_CAPAB_POLL)); 2804 } 2805 2806 static void 2807 ill_capability_poll_capable(ill_t *ill, dl_capab_poll_t *ipoll, 2808 dl_capability_sub_t *isub) 2809 { 2810 uint_t size; 2811 uchar_t *rptr; 2812 dl_capab_poll_t poll, *opoll; 2813 ill_poll_capab_t *ill_poll; 2814 mblk_t *nmp = NULL; 2815 dl_capability_req_t *ocap; 2816 2817 if (!ill_capability_poll_init(ill)) 2818 return; 2819 ill_poll = ill->ill_poll_capab; 2820 2821 /* Copy locally to get the members aligned */ 2822 bcopy((void *)ipoll, (void *)&poll, sizeof (dl_capab_poll_t)); 2823 2824 /* Get the tx function and handle from dld */ 2825 ill_poll->ill_tx = (ip_dld_tx_t)poll.poll_tx; 2826 ill_poll->ill_tx_handle = (void *)poll.poll_tx_handle; 2827 2828 size = sizeof (dl_capability_req_t) + sizeof (dl_capability_sub_t) + 2829 isub->dl_length; 2830 2831 if ((nmp = ip_dlpi_alloc(size, DL_CAPABILITY_REQ)) == NULL) { 2832 cmn_err(CE_WARN, "ill_capability_poll_ack: could not allocate " 2833 "memory for CAPAB_REQ for %s (%p)\n", ill->ill_name, 2834 (void *)ill); 2835 return; 2836 } 2837 2838 /* initialize dl_capability_req_t */ 2839 rptr = nmp->b_rptr; 2840 ocap = (dl_capability_req_t *)rptr; 2841 ocap->dl_sub_offset = sizeof (dl_capability_req_t); 2842 ocap->dl_sub_length = sizeof (dl_capability_sub_t) + isub->dl_length; 2843 rptr += sizeof (dl_capability_req_t); 2844 2845 /* initialize dl_capability_sub_t */ 2846 bcopy(isub, rptr, sizeof (*isub)); 2847 rptr += sizeof (*isub); 2848 2849 opoll = (dl_capab_poll_t *)rptr; 2850 rptr += sizeof (dl_capab_poll_t); 2851 2852 /* initialize dl_capab_poll_t to be sent down */ 2853 poll.poll_rx_handle = (uintptr_t)ill; 2854 poll.poll_rx = (uintptr_t)ip_input; 2855 poll.poll_ring_add = (uintptr_t)ill_ring_add; 2856 poll.poll_flags = POLL_ENABLE; 2857 bcopy((void *)&poll, (void *)opoll, sizeof (dl_capab_poll_t)); 2858 ASSERT(nmp->b_wptr == (nmp->b_rptr + size)); 2859 2860 /* nmp points to a DL_CAPABILITY_REQ message to enable polling */ 2861 ill_dlpi_send(ill, nmp); 2862 } 2863 2864 2865 /* 2866 * Process a polling capability negotiation ack received 2867 * from a DLS Provider.isub must point to the sub-capability (DL_CAPAB_POLL) 2868 * of a DL_CAPABILITY_ACK message. 2869 */ 2870 static void 2871 ill_capability_poll_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub) 2872 { 2873 dl_capab_poll_t *ipoll; 2874 uint_t sub_dl_cap = isub->dl_cap; 2875 uint8_t *capend; 2876 2877 2878 ASSERT(sub_dl_cap == DL_CAPAB_POLL); 2879 2880 /* 2881 * Don't enable polling for ipv6 ill's 2882 */ 2883 if (ill->ill_isv6) { 2884 return; 2885 } 2886 2887 /* 2888 * Note: range checks here are not absolutely sufficient to 2889 * make us robust against malformed messages sent by drivers; 2890 * this is in keeping with the rest of IP's dlpi handling. 2891 * (Remember, it's coming from something else in the kernel 2892 * address space) 2893 */ 2894 capend = (uint8_t *)(isub + 1) + isub->dl_length; 2895 if (capend > mp->b_wptr) { 2896 cmn_err(CE_WARN, "ill_capability_poll_ack: " 2897 "malformed sub-capability too long for mblk"); 2898 return; 2899 } 2900 2901 /* 2902 * There are two types of acks we process here: 2903 * 1. acks in reply to a (first form) generic capability req 2904 * (poll_flag will be set to POLL_CAPABLE) 2905 * 2. acks in reply to a POLL_ENABLE capability req. 2906 * (POLL_ENABLE flag set) 2907 */ 2908 ipoll = (dl_capab_poll_t *)(isub + 1); 2909 2910 if (!dlcapabcheckqid(&ipoll->poll_mid, ill->ill_lmod_rq)) { 2911 ip1dbg(("ill_capability_poll_ack: mid token for polling " 2912 "capability isn't as expected; pass-thru " 2913 "module(s) detected, discarding capability\n")); 2914 if (ill->ill_capabilities & ILL_CAPAB_POLL) { 2915 /* 2916 * This is a capability renegotitation case. 2917 * The interface better be unusable at this 2918 * point other wise bad things will happen 2919 * if we disable direct calls on a running 2920 * and up interface. 2921 */ 2922 ill_capability_poll_disable(ill); 2923 } 2924 return; 2925 } 2926 2927 switch (ipoll->poll_flags) { 2928 default: 2929 /* Disable if unknown flag */ 2930 case POLL_DISABLE: 2931 ill_capability_poll_disable(ill); 2932 break; 2933 case POLL_CAPABLE: 2934 /* 2935 * If the capability was already enabled, its safe 2936 * to disable it first to get rid of stale information 2937 * and then start enabling it again. 2938 */ 2939 ill_capability_poll_disable(ill); 2940 ill_capability_poll_capable(ill, ipoll, isub); 2941 break; 2942 case POLL_ENABLE: 2943 if (!(ill->ill_capabilities & ILL_CAPAB_POLL)) { 2944 ASSERT(ill->ill_poll_capab != NULL); 2945 ill->ill_capabilities |= ILL_CAPAB_POLL; 2946 } 2947 break; 2948 } 2949 } 2950 2951 static void 2952 ill_capability_poll_reset(ill_t *ill, mblk_t **sc_mp) 2953 { 2954 mblk_t *mp; 2955 dl_capab_poll_t *ipoll; 2956 dl_capability_sub_t *dl_subcap; 2957 int size; 2958 2959 if (!(ill->ill_capabilities & ILL_CAPAB_POLL)) 2960 return; 2961 2962 ASSERT(ill->ill_poll_capab != NULL); 2963 2964 /* 2965 * Disable polling capability 2966 */ 2967 ill_capability_poll_disable(ill); 2968 2969 size = sizeof (*dl_subcap) + sizeof (*ipoll); 2970 2971 mp = allocb(size, BPRI_HI); 2972 if (mp == NULL) { 2973 ip1dbg(("ill_capability_poll_reset: unable to allocate " 2974 "request to disable polling\n")); 2975 return; 2976 } 2977 2978 mp->b_wptr = mp->b_rptr + size; 2979 2980 dl_subcap = (dl_capability_sub_t *)mp->b_rptr; 2981 dl_subcap->dl_cap = DL_CAPAB_POLL; 2982 dl_subcap->dl_length = sizeof (*ipoll); 2983 2984 ipoll = (dl_capab_poll_t *)(dl_subcap + 1); 2985 ipoll->poll_flags = POLL_DISABLE; 2986 2987 if (*sc_mp != NULL) 2988 linkb(*sc_mp, mp); 2989 else 2990 *sc_mp = mp; 2991 } 2992 2993 2994 /* 2995 * Process a hardware checksum offload capability negotiation ack received 2996 * from a DLS Provider.isub must point to the sub-capability (DL_CAPAB_HCKSUM) 2997 * of a DL_CAPABILITY_ACK message. 2998 */ 2999 static void 3000 ill_capability_hcksum_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub) 3001 { 3002 dl_capability_req_t *ocap; 3003 dl_capab_hcksum_t *ihck, *ohck; 3004 ill_hcksum_capab_t **ill_hcksum; 3005 mblk_t *nmp = NULL; 3006 uint_t sub_dl_cap = isub->dl_cap; 3007 uint8_t *capend; 3008 3009 ASSERT(sub_dl_cap == DL_CAPAB_HCKSUM); 3010 3011 ill_hcksum = (ill_hcksum_capab_t **)&ill->ill_hcksum_capab; 3012 3013 /* 3014 * Note: range checks here are not absolutely sufficient to 3015 * make us robust against malformed messages sent by drivers; 3016 * this is in keeping with the rest of IP's dlpi handling. 3017 * (Remember, it's coming from something else in the kernel 3018 * address space) 3019 */ 3020 capend = (uint8_t *)(isub + 1) + isub->dl_length; 3021 if (capend > mp->b_wptr) { 3022 cmn_err(CE_WARN, "ill_capability_hcksum_ack: " 3023 "malformed sub-capability too long for mblk"); 3024 return; 3025 } 3026 3027 /* 3028 * There are two types of acks we process here: 3029 * 1. acks in reply to a (first form) generic capability req 3030 * (no ENABLE flag set) 3031 * 2. acks in reply to a ENABLE capability req. 3032 * (ENABLE flag set) 3033 */ 3034 ihck = (dl_capab_hcksum_t *)(isub + 1); 3035 3036 if (ihck->hcksum_version != HCKSUM_VERSION_1) { 3037 cmn_err(CE_CONT, "ill_capability_hcksum_ack: " 3038 "unsupported hardware checksum " 3039 "sub-capability (version %d, expected %d)", 3040 ihck->hcksum_version, HCKSUM_VERSION_1); 3041 return; 3042 } 3043 3044 if (!dlcapabcheckqid(&ihck->hcksum_mid, ill->ill_lmod_rq)) { 3045 ip1dbg(("ill_capability_hcksum_ack: mid token for hardware " 3046 "checksum capability isn't as expected; pass-thru " 3047 "module(s) detected, discarding capability\n")); 3048 return; 3049 } 3050 3051 #define CURR_HCKSUM_CAPAB \ 3052 (HCKSUM_INET_PARTIAL | HCKSUM_INET_FULL_V4 | HCKSUM_IPHDRCKSUM) 3053 3054 if ((ihck->hcksum_txflags & HCKSUM_ENABLE) && 3055 (ihck->hcksum_txflags & CURR_HCKSUM_CAPAB)) { 3056 /* do ENABLE processing */ 3057 if (*ill_hcksum == NULL) { 3058 *ill_hcksum = kmem_zalloc(sizeof (ill_hcksum_capab_t), 3059 KM_NOSLEEP); 3060 3061 if (*ill_hcksum == NULL) { 3062 cmn_err(CE_WARN, "ill_capability_hcksum_ack: " 3063 "could not enable hcksum version %d " 3064 "for %s (ENOMEM)\n", HCKSUM_CURRENT_VERSION, 3065 ill->ill_name); 3066 return; 3067 } 3068 } 3069 3070 (*ill_hcksum)->ill_hcksum_version = ihck->hcksum_version; 3071 (*ill_hcksum)->ill_hcksum_txflags = ihck->hcksum_txflags; 3072 ill->ill_capabilities |= ILL_CAPAB_HCKSUM; 3073 ip1dbg(("ill_capability_hcksum_ack: interface %s " 3074 "has enabled hardware checksumming\n ", 3075 ill->ill_name)); 3076 } else if (ihck->hcksum_txflags & CURR_HCKSUM_CAPAB) { 3077 /* 3078 * Enabling hardware checksum offload 3079 * Currently IP supports {TCP,UDP}/IPv4 3080 * partial and full cksum offload and 3081 * IPv4 header checksum offload. 3082 * Allocate new mblk which will 3083 * contain a new capability request 3084 * to enable hardware checksum offload. 3085 */ 3086 uint_t size; 3087 uchar_t *rptr; 3088 3089 size = sizeof (dl_capability_req_t) + 3090 sizeof (dl_capability_sub_t) + isub->dl_length; 3091 3092 if ((nmp = ip_dlpi_alloc(size, DL_CAPABILITY_REQ)) == NULL) { 3093 cmn_err(CE_WARN, "ill_capability_hcksum_ack: " 3094 "could not enable hardware cksum for %s (ENOMEM)\n", 3095 ill->ill_name); 3096 return; 3097 } 3098 3099 rptr = nmp->b_rptr; 3100 /* initialize dl_capability_req_t */ 3101 ocap = (dl_capability_req_t *)nmp->b_rptr; 3102 ocap->dl_sub_offset = 3103 sizeof (dl_capability_req_t); 3104 ocap->dl_sub_length = 3105 sizeof (dl_capability_sub_t) + 3106 isub->dl_length; 3107 nmp->b_rptr += sizeof (dl_capability_req_t); 3108 3109 /* initialize dl_capability_sub_t */ 3110 bcopy(isub, nmp->b_rptr, sizeof (*isub)); 3111 nmp->b_rptr += sizeof (*isub); 3112 3113 /* initialize dl_capab_hcksum_t */ 3114 ohck = (dl_capab_hcksum_t *)nmp->b_rptr; 3115 bcopy(ihck, ohck, sizeof (*ihck)); 3116 3117 nmp->b_rptr = rptr; 3118 ASSERT(nmp->b_wptr == (nmp->b_rptr + size)); 3119 3120 /* Set ENABLE flag */ 3121 ohck->hcksum_txflags &= CURR_HCKSUM_CAPAB; 3122 ohck->hcksum_txflags |= HCKSUM_ENABLE; 3123 3124 /* 3125 * nmp points to a DL_CAPABILITY_REQ message to enable 3126 * hardware checksum acceleration. 3127 */ 3128 ill_dlpi_send(ill, nmp); 3129 } else 3130 ip1dbg(("ill_capability_hcksum_ack: interface %s has " 3131 "advertised %x hardware checksum capability flags\n", 3132 ill->ill_name, ihck->hcksum_txflags)); 3133 } 3134 3135 static void 3136 ill_capability_hcksum_reset(ill_t *ill, mblk_t **sc_mp) 3137 { 3138 mblk_t *mp; 3139 dl_capab_hcksum_t *hck_subcap; 3140 dl_capability_sub_t *dl_subcap; 3141 int size; 3142 3143 if (!(ill->ill_capabilities & ILL_CAPAB_HCKSUM)) 3144 return; 3145 3146 ASSERT(ill->ill_hcksum_capab != NULL); 3147 /* 3148 * Clear the capability flag for hardware checksum offload but 3149 * retain the ill_hcksum_capab structure since it's possible that 3150 * another thread is still referring to it. The structure only 3151 * gets deallocated when we destroy the ill. 3152 */ 3153 ill->ill_capabilities &= ~ILL_CAPAB_HCKSUM; 3154 3155 size = sizeof (*dl_subcap) + sizeof (*hck_subcap); 3156 3157 mp = allocb(size, BPRI_HI); 3158 if (mp == NULL) { 3159 ip1dbg(("ill_capability_hcksum_reset: unable to allocate " 3160 "request to disable hardware checksum offload\n")); 3161 return; 3162 } 3163 3164 mp->b_wptr = mp->b_rptr + size; 3165 3166 dl_subcap = (dl_capability_sub_t *)mp->b_rptr; 3167 dl_subcap->dl_cap = DL_CAPAB_HCKSUM; 3168 dl_subcap->dl_length = sizeof (*hck_subcap); 3169 3170 hck_subcap = (dl_capab_hcksum_t *)(dl_subcap + 1); 3171 hck_subcap->hcksum_version = ill->ill_hcksum_capab->ill_hcksum_version; 3172 hck_subcap->hcksum_txflags = 0; 3173 3174 if (*sc_mp != NULL) 3175 linkb(*sc_mp, mp); 3176 else 3177 *sc_mp = mp; 3178 } 3179 3180 static void 3181 ill_capability_zerocopy_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub) 3182 { 3183 mblk_t *nmp = NULL; 3184 dl_capability_req_t *oc; 3185 dl_capab_zerocopy_t *zc_ic, *zc_oc; 3186 ill_zerocopy_capab_t **ill_zerocopy_capab; 3187 uint_t sub_dl_cap = isub->dl_cap; 3188 uint8_t *capend; 3189 3190 ASSERT(sub_dl_cap == DL_CAPAB_ZEROCOPY); 3191 3192 ill_zerocopy_capab = (ill_zerocopy_capab_t **)&ill->ill_zerocopy_capab; 3193 3194 /* 3195 * Note: range checks here are not absolutely sufficient to 3196 * make us robust against malformed messages sent by drivers; 3197 * this is in keeping with the rest of IP's dlpi handling. 3198 * (Remember, it's coming from something else in the kernel 3199 * address space) 3200 */ 3201 capend = (uint8_t *)(isub + 1) + isub->dl_length; 3202 if (capend > mp->b_wptr) { 3203 cmn_err(CE_WARN, "ill_capability_zerocopy_ack: " 3204 "malformed sub-capability too long for mblk"); 3205 return; 3206 } 3207 3208 zc_ic = (dl_capab_zerocopy_t *)(isub + 1); 3209 if (zc_ic->zerocopy_version != ZEROCOPY_VERSION_1) { 3210 cmn_err(CE_CONT, "ill_capability_zerocopy_ack: " 3211 "unsupported ZEROCOPY sub-capability (version %d, " 3212 "expected %d)", zc_ic->zerocopy_version, 3213 ZEROCOPY_VERSION_1); 3214 return; 3215 } 3216 3217 if (!dlcapabcheckqid(&zc_ic->zerocopy_mid, ill->ill_lmod_rq)) { 3218 ip1dbg(("ill_capability_zerocopy_ack: mid token for zerocopy " 3219 "capability isn't as expected; pass-thru module(s) " 3220 "detected, discarding capability\n")); 3221 return; 3222 } 3223 3224 if ((zc_ic->zerocopy_flags & DL_CAPAB_VMSAFE_MEM) != 0) { 3225 if (*ill_zerocopy_capab == NULL) { 3226 *ill_zerocopy_capab = 3227 kmem_zalloc(sizeof (ill_zerocopy_capab_t), 3228 KM_NOSLEEP); 3229 3230 if (*ill_zerocopy_capab == NULL) { 3231 cmn_err(CE_WARN, "ill_capability_zerocopy_ack: " 3232 "could not enable Zero-copy version %d " 3233 "for %s (ENOMEM)\n", ZEROCOPY_VERSION_1, 3234 ill->ill_name); 3235 return; 3236 } 3237 } 3238 3239 ip1dbg(("ill_capability_zerocopy_ack: interface %s " 3240 "supports Zero-copy version %d\n", ill->ill_name, 3241 ZEROCOPY_VERSION_1)); 3242 3243 (*ill_zerocopy_capab)->ill_zerocopy_version = 3244 zc_ic->zerocopy_version; 3245 (*ill_zerocopy_capab)->ill_zerocopy_flags = 3246 zc_ic->zerocopy_flags; 3247 3248 ill->ill_capabilities |= ILL_CAPAB_ZEROCOPY; 3249 } else { 3250 uint_t size; 3251 uchar_t *rptr; 3252 3253 size = sizeof (dl_capability_req_t) + 3254 sizeof (dl_capability_sub_t) + 3255 sizeof (dl_capab_zerocopy_t); 3256 3257 if ((nmp = ip_dlpi_alloc(size, DL_CAPABILITY_REQ)) == NULL) { 3258 cmn_err(CE_WARN, "ill_capability_zerocopy_ack: " 3259 "could not enable zerocopy for %s (ENOMEM)\n", 3260 ill->ill_name); 3261 return; 3262 } 3263 3264 rptr = nmp->b_rptr; 3265 /* initialize dl_capability_req_t */ 3266 oc = (dl_capability_req_t *)rptr; 3267 oc->dl_sub_offset = sizeof (dl_capability_req_t); 3268 oc->dl_sub_length = sizeof (dl_capability_sub_t) + 3269 sizeof (dl_capab_zerocopy_t); 3270 rptr += sizeof (dl_capability_req_t); 3271 3272 /* initialize dl_capability_sub_t */ 3273 bcopy(isub, rptr, sizeof (*isub)); 3274 rptr += sizeof (*isub); 3275 3276 /* initialize dl_capab_zerocopy_t */ 3277 zc_oc = (dl_capab_zerocopy_t *)rptr; 3278 *zc_oc = *zc_ic; 3279 3280 ip1dbg(("ill_capability_zerocopy_ack: asking interface %s " 3281 "to enable zero-copy version %d\n", ill->ill_name, 3282 ZEROCOPY_VERSION_1)); 3283 3284 /* set VMSAFE_MEM flag */ 3285 zc_oc->zerocopy_flags |= DL_CAPAB_VMSAFE_MEM; 3286 3287 /* nmp points to a DL_CAPABILITY_REQ message to enable zcopy */ 3288 ill_dlpi_send(ill, nmp); 3289 } 3290 } 3291 3292 static void 3293 ill_capability_zerocopy_reset(ill_t *ill, mblk_t **sc_mp) 3294 { 3295 mblk_t *mp; 3296 dl_capab_zerocopy_t *zerocopy_subcap; 3297 dl_capability_sub_t *dl_subcap; 3298 int size; 3299 3300 if (!(ill->ill_capabilities & ILL_CAPAB_ZEROCOPY)) 3301 return; 3302 3303 ASSERT(ill->ill_zerocopy_capab != NULL); 3304 /* 3305 * Clear the capability flag for Zero-copy but retain the 3306 * ill_zerocopy_capab structure since it's possible that another 3307 * thread is still referring to it. The structure only gets 3308 * deallocated when we destroy the ill. 3309 */ 3310 ill->ill_capabilities &= ~ILL_CAPAB_ZEROCOPY; 3311 3312 size = sizeof (*dl_subcap) + sizeof (*zerocopy_subcap); 3313 3314 mp = allocb(size, BPRI_HI); 3315 if (mp == NULL) { 3316 ip1dbg(("ill_capability_zerocopy_reset: unable to allocate " 3317 "request to disable Zero-copy\n")); 3318 return; 3319 } 3320 3321 mp->b_wptr = mp->b_rptr + size; 3322 3323 dl_subcap = (dl_capability_sub_t *)mp->b_rptr; 3324 dl_subcap->dl_cap = DL_CAPAB_ZEROCOPY; 3325 dl_subcap->dl_length = sizeof (*zerocopy_subcap); 3326 3327 zerocopy_subcap = (dl_capab_zerocopy_t *)(dl_subcap + 1); 3328 zerocopy_subcap->zerocopy_version = 3329 ill->ill_zerocopy_capab->ill_zerocopy_version; 3330 zerocopy_subcap->zerocopy_flags = 0; 3331 3332 if (*sc_mp != NULL) 3333 linkb(*sc_mp, mp); 3334 else 3335 *sc_mp = mp; 3336 } 3337 3338 /* 3339 * Consume a new-style hardware capabilities negotiation ack. 3340 * Called from ip_rput_dlpi_writer(). 3341 */ 3342 void 3343 ill_capability_ack(ill_t *ill, mblk_t *mp) 3344 { 3345 dl_capability_ack_t *capp; 3346 dl_capability_sub_t *subp, *endp; 3347 3348 if (ill->ill_capab_state == IDMS_INPROGRESS) 3349 ill->ill_capab_state = IDMS_OK; 3350 3351 capp = (dl_capability_ack_t *)mp->b_rptr; 3352 3353 if (capp->dl_sub_length == 0) 3354 /* no new-style capabilities */ 3355 return; 3356 3357 /* make sure the driver supplied correct dl_sub_length */ 3358 if ((sizeof (*capp) + capp->dl_sub_length) > MBLKL(mp)) { 3359 ip0dbg(("ill_capability_ack: bad DL_CAPABILITY_ACK, " 3360 "invalid dl_sub_length (%d)\n", capp->dl_sub_length)); 3361 return; 3362 } 3363 3364 #define SC(base, offset) (dl_capability_sub_t *)(((uchar_t *)(base))+(offset)) 3365 /* 3366 * There are sub-capabilities. Process the ones we know about. 3367 * Loop until we don't have room for another sub-cap header.. 3368 */ 3369 for (subp = SC(capp, capp->dl_sub_offset), 3370 endp = SC(subp, capp->dl_sub_length - sizeof (*subp)); 3371 subp <= endp; 3372 subp = SC(subp, sizeof (dl_capability_sub_t) + subp->dl_length)) { 3373 3374 switch (subp->dl_cap) { 3375 case DL_CAPAB_ID_WRAPPER: 3376 ill_capability_id_ack(ill, mp, subp); 3377 break; 3378 default: 3379 ill_capability_dispatch(ill, mp, subp, B_FALSE); 3380 break; 3381 } 3382 } 3383 #undef SC 3384 } 3385 3386 /* 3387 * This routine is called to scan the fragmentation reassembly table for 3388 * the specified ILL for any packets that are starting to smell. 3389 * dead_interval is the maximum time in seconds that will be tolerated. It 3390 * will either be the value specified in ip_g_frag_timeout, or zero if the 3391 * ILL is shutting down and it is time to blow everything off. 3392 * 3393 * It returns the number of seconds (as a time_t) that the next frag timer 3394 * should be scheduled for, 0 meaning that the timer doesn't need to be 3395 * re-started. Note that the method of calculating next_timeout isn't 3396 * entirely accurate since time will flow between the time we grab 3397 * current_time and the time we schedule the next timeout. This isn't a 3398 * big problem since this is the timer for sending an ICMP reassembly time 3399 * exceeded messages, and it doesn't have to be exactly accurate. 3400 * 3401 * This function is 3402 * sometimes called as writer, although this is not required. 3403 */ 3404 time_t 3405 ill_frag_timeout(ill_t *ill, time_t dead_interval) 3406 { 3407 ipfb_t *ipfb; 3408 ipfb_t *endp; 3409 ipf_t *ipf; 3410 ipf_t *ipfnext; 3411 mblk_t *mp; 3412 time_t current_time = gethrestime_sec(); 3413 time_t next_timeout = 0; 3414 uint32_t hdr_length; 3415 mblk_t *send_icmp_head; 3416 mblk_t *send_icmp_head_v6; 3417 3418 ipfb = ill->ill_frag_hash_tbl; 3419 if (ipfb == NULL) 3420 return (B_FALSE); 3421 endp = &ipfb[ILL_FRAG_HASH_TBL_COUNT]; 3422 /* Walk the frag hash table. */ 3423 for (; ipfb < endp; ipfb++) { 3424 send_icmp_head = NULL; 3425 send_icmp_head_v6 = NULL; 3426 mutex_enter(&ipfb->ipfb_lock); 3427 while ((ipf = ipfb->ipfb_ipf) != 0) { 3428 time_t frag_time = current_time - ipf->ipf_timestamp; 3429 time_t frag_timeout; 3430 3431 if (frag_time < dead_interval) { 3432 /* 3433 * There are some outstanding fragments 3434 * that will timeout later. Make note of 3435 * the time so that we can reschedule the 3436 * next timeout appropriately. 3437 */ 3438 frag_timeout = dead_interval - frag_time; 3439 if (next_timeout == 0 || 3440 frag_timeout < next_timeout) { 3441 next_timeout = frag_timeout; 3442 } 3443 break; 3444 } 3445 /* Time's up. Get it out of here. */ 3446 hdr_length = ipf->ipf_nf_hdr_len; 3447 ipfnext = ipf->ipf_hash_next; 3448 if (ipfnext) 3449 ipfnext->ipf_ptphn = ipf->ipf_ptphn; 3450 *ipf->ipf_ptphn = ipfnext; 3451 mp = ipf->ipf_mp->b_cont; 3452 for (; mp; mp = mp->b_cont) { 3453 /* Extra points for neatness. */ 3454 IP_REASS_SET_START(mp, 0); 3455 IP_REASS_SET_END(mp, 0); 3456 } 3457 mp = ipf->ipf_mp->b_cont; 3458 ill->ill_frag_count -= ipf->ipf_count; 3459 ASSERT(ipfb->ipfb_count >= ipf->ipf_count); 3460 ipfb->ipfb_count -= ipf->ipf_count; 3461 ASSERT(ipfb->ipfb_frag_pkts > 0); 3462 ipfb->ipfb_frag_pkts--; 3463 /* 3464 * We do not send any icmp message from here because 3465 * we currently are holding the ipfb_lock for this 3466 * hash chain. If we try and send any icmp messages 3467 * from here we may end up via a put back into ip 3468 * trying to get the same lock, causing a recursive 3469 * mutex panic. Instead we build a list and send all 3470 * the icmp messages after we have dropped the lock. 3471 */ 3472 if (ill->ill_isv6) { 3473 BUMP_MIB(ill->ill_ip6_mib, ipv6ReasmFails); 3474 if (hdr_length != 0) { 3475 mp->b_next = send_icmp_head_v6; 3476 send_icmp_head_v6 = mp; 3477 } else { 3478 freemsg(mp); 3479 } 3480 } else { 3481 BUMP_MIB(&ip_mib, ipReasmFails); 3482 if (hdr_length != 0) { 3483 mp->b_next = send_icmp_head; 3484 send_icmp_head = mp; 3485 } else { 3486 freemsg(mp); 3487 } 3488 } 3489 freeb(ipf->ipf_mp); 3490 } 3491 mutex_exit(&ipfb->ipfb_lock); 3492 /* 3493 * Now need to send any icmp messages that we delayed from 3494 * above. 3495 */ 3496 while (send_icmp_head_v6 != NULL) { 3497 mp = send_icmp_head_v6; 3498 send_icmp_head_v6 = send_icmp_head_v6->b_next; 3499 mp->b_next = NULL; 3500 icmp_time_exceeded_v6(ill->ill_wq, mp, 3501 ICMP_REASSEMBLY_TIME_EXCEEDED, B_FALSE, B_FALSE); 3502 } 3503 while (send_icmp_head != NULL) { 3504 mp = send_icmp_head; 3505 send_icmp_head = send_icmp_head->b_next; 3506 mp->b_next = NULL; 3507 icmp_time_exceeded(ill->ill_wq, mp, 3508 ICMP_REASSEMBLY_TIME_EXCEEDED); 3509 } 3510 } 3511 /* 3512 * A non-dying ILL will use the return value to decide whether to 3513 * restart the frag timer, and for how long. 3514 */ 3515 return (next_timeout); 3516 } 3517 3518 /* 3519 * This routine is called when the approximate count of mblk memory used 3520 * for the specified ILL has exceeded max_count. 3521 */ 3522 void 3523 ill_frag_prune(ill_t *ill, uint_t max_count) 3524 { 3525 ipfb_t *ipfb; 3526 ipf_t *ipf; 3527 size_t count; 3528 3529 /* 3530 * If we are here within ip_min_frag_prune_time msecs remove 3531 * ill_frag_free_num_pkts oldest packets from each bucket and increment 3532 * ill_frag_free_num_pkts. 3533 */ 3534 mutex_enter(&ill->ill_lock); 3535 if (TICK_TO_MSEC(lbolt - ill->ill_last_frag_clean_time) <= 3536 (ip_min_frag_prune_time != 0 ? 3537 ip_min_frag_prune_time : msec_per_tick)) { 3538 3539 ill->ill_frag_free_num_pkts++; 3540 3541 } else { 3542 ill->ill_frag_free_num_pkts = 0; 3543 } 3544 ill->ill_last_frag_clean_time = lbolt; 3545 mutex_exit(&ill->ill_lock); 3546 3547 /* 3548 * free ill_frag_free_num_pkts oldest packets from each bucket. 3549 */ 3550 if (ill->ill_frag_free_num_pkts != 0) { 3551 int ix; 3552 3553 for (ix = 0; ix < ILL_FRAG_HASH_TBL_COUNT; ix++) { 3554 ipfb = &ill->ill_frag_hash_tbl[ix]; 3555 mutex_enter(&ipfb->ipfb_lock); 3556 if (ipfb->ipfb_ipf != NULL) { 3557 ill_frag_free_pkts(ill, ipfb, ipfb->ipfb_ipf, 3558 ill->ill_frag_free_num_pkts); 3559 } 3560 mutex_exit(&ipfb->ipfb_lock); 3561 } 3562 } 3563 /* 3564 * While the reassembly list for this ILL is too big, prune a fragment 3565 * queue by age, oldest first. Note that the per ILL count is 3566 * approximate, while the per frag hash bucket counts are accurate. 3567 */ 3568 while (ill->ill_frag_count > max_count) { 3569 int ix; 3570 ipfb_t *oipfb = NULL; 3571 uint_t oldest = UINT_MAX; 3572 3573 count = 0; 3574 for (ix = 0; ix < ILL_FRAG_HASH_TBL_COUNT; ix++) { 3575 ipfb = &ill->ill_frag_hash_tbl[ix]; 3576 mutex_enter(&ipfb->ipfb_lock); 3577 ipf = ipfb->ipfb_ipf; 3578 if (ipf != NULL && ipf->ipf_gen < oldest) { 3579 oldest = ipf->ipf_gen; 3580 oipfb = ipfb; 3581 } 3582 count += ipfb->ipfb_count; 3583 mutex_exit(&ipfb->ipfb_lock); 3584 } 3585 /* Refresh the per ILL count */ 3586 ill->ill_frag_count = count; 3587 if (oipfb == NULL) { 3588 ill->ill_frag_count = 0; 3589 break; 3590 } 3591 if (count <= max_count) 3592 return; /* Somebody beat us to it, nothing to do */ 3593 mutex_enter(&oipfb->ipfb_lock); 3594 ipf = oipfb->ipfb_ipf; 3595 if (ipf != NULL) { 3596 ill_frag_free_pkts(ill, oipfb, ipf, 1); 3597 } 3598 mutex_exit(&oipfb->ipfb_lock); 3599 } 3600 } 3601 3602 /* 3603 * free 'free_cnt' fragmented packets starting at ipf. 3604 */ 3605 void 3606 ill_frag_free_pkts(ill_t *ill, ipfb_t *ipfb, ipf_t *ipf, int free_cnt) 3607 { 3608 size_t count; 3609 mblk_t *mp; 3610 mblk_t *tmp; 3611 ipf_t **ipfp = ipf->ipf_ptphn; 3612 3613 ASSERT(MUTEX_HELD(&ipfb->ipfb_lock)); 3614 ASSERT(ipfp != NULL); 3615 ASSERT(ipf != NULL); 3616 3617 while (ipf != NULL && free_cnt-- > 0) { 3618 count = ipf->ipf_count; 3619 mp = ipf->ipf_mp; 3620 ipf = ipf->ipf_hash_next; 3621 for (tmp = mp; tmp; tmp = tmp->b_cont) { 3622 IP_REASS_SET_START(tmp, 0); 3623 IP_REASS_SET_END(tmp, 0); 3624 } 3625 ill->ill_frag_count -= count; 3626 ASSERT(ipfb->ipfb_count >= count); 3627 ipfb->ipfb_count -= count; 3628 ASSERT(ipfb->ipfb_frag_pkts > 0); 3629 ipfb->ipfb_frag_pkts--; 3630 freemsg(mp); 3631 BUMP_MIB(&ip_mib, ipReasmFails); 3632 } 3633 3634 if (ipf) 3635 ipf->ipf_ptphn = ipfp; 3636 ipfp[0] = ipf; 3637 } 3638 3639 #define ND_FORWARD_WARNING "The <if>:ip*_forwarding ndd variables are " \ 3640 "obsolete and may be removed in a future release of Solaris. Use " \ 3641 "ifconfig(1M) to manipulate the forwarding status of an interface." 3642 3643 /* 3644 * For obsolete per-interface forwarding configuration; 3645 * called in response to ND_GET. 3646 */ 3647 /* ARGSUSED */ 3648 static int 3649 nd_ill_forward_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *ioc_cr) 3650 { 3651 ill_t *ill = (ill_t *)cp; 3652 3653 cmn_err(CE_WARN, ND_FORWARD_WARNING); 3654 3655 (void) mi_mpprintf(mp, "%d", (ill->ill_flags & ILLF_ROUTER) != 0); 3656 return (0); 3657 } 3658 3659 /* 3660 * For obsolete per-interface forwarding configuration; 3661 * called in response to ND_SET. 3662 */ 3663 /* ARGSUSED */ 3664 static int 3665 nd_ill_forward_set(queue_t *q, mblk_t *mp, char *valuestr, caddr_t cp, 3666 cred_t *ioc_cr) 3667 { 3668 long value; 3669 int retval; 3670 3671 cmn_err(CE_WARN, ND_FORWARD_WARNING); 3672 3673 if (ddi_strtol(valuestr, NULL, 10, &value) != 0 || 3674 value < 0 || value > 1) { 3675 return (EINVAL); 3676 } 3677 3678 rw_enter(&ill_g_lock, RW_READER); 3679 retval = ill_forward_set(q, mp, (value != 0), cp); 3680 rw_exit(&ill_g_lock); 3681 return (retval); 3682 } 3683 3684 /* 3685 * Set an ill's ILLF_ROUTER flag appropriately. If the ill is part of an 3686 * IPMP group, make sure all ill's in the group adopt the new policy. Send 3687 * up RTS_IFINFO routing socket messages for each interface whose flags we 3688 * change. 3689 */ 3690 /* ARGSUSED */ 3691 int 3692 ill_forward_set(queue_t *q, mblk_t *mp, boolean_t enable, caddr_t cp) 3693 { 3694 ill_t *ill = (ill_t *)cp; 3695 ill_group_t *illgrp; 3696 3697 ASSERT(IAM_WRITER_ILL(ill) || RW_READ_HELD(&ill_g_lock)); 3698 3699 if ((enable && (ill->ill_flags & ILLF_ROUTER)) || 3700 (!enable && !(ill->ill_flags & ILLF_ROUTER)) || 3701 (ill->ill_phyint->phyint_flags & PHYI_LOOPBACK)) 3702 return (EINVAL); 3703 3704 /* 3705 * If the ill is in an IPMP group, set the forwarding policy on all 3706 * members of the group to the same value. 3707 */ 3708 illgrp = ill->ill_group; 3709 if (illgrp != NULL) { 3710 ill_t *tmp_ill; 3711 3712 for (tmp_ill = illgrp->illgrp_ill; tmp_ill != NULL; 3713 tmp_ill = tmp_ill->ill_group_next) { 3714 ip1dbg(("ill_forward_set: %s %s forwarding on %s", 3715 (enable ? "Enabling" : "Disabling"), 3716 (tmp_ill->ill_isv6 ? "IPv6" : "IPv4"), 3717 tmp_ill->ill_name)); 3718 mutex_enter(&tmp_ill->ill_lock); 3719 if (enable) 3720 tmp_ill->ill_flags |= ILLF_ROUTER; 3721 else 3722 tmp_ill->ill_flags &= ~ILLF_ROUTER; 3723 mutex_exit(&tmp_ill->ill_lock); 3724 if (tmp_ill->ill_isv6) 3725 ill_set_nce_router_flags(tmp_ill, enable); 3726 /* Notify routing socket listeners of this change. */ 3727 ip_rts_ifmsg(tmp_ill->ill_ipif); 3728 } 3729 } else { 3730 ip1dbg(("ill_forward_set: %s %s forwarding on %s", 3731 (enable ? "Enabling" : "Disabling"), 3732 (ill->ill_isv6 ? "IPv6" : "IPv4"), ill->ill_name)); 3733 mutex_enter(&ill->ill_lock); 3734 if (enable) 3735 ill->ill_flags |= ILLF_ROUTER; 3736 else 3737 ill->ill_flags &= ~ILLF_ROUTER; 3738 mutex_exit(&ill->ill_lock); 3739 if (ill->ill_isv6) 3740 ill_set_nce_router_flags(ill, enable); 3741 /* Notify routing socket listeners of this change. */ 3742 ip_rts_ifmsg(ill->ill_ipif); 3743 } 3744 3745 return (0); 3746 } 3747 3748 /* 3749 * Based on the ILLF_ROUTER flag of an ill, make sure all local nce's for 3750 * addresses assigned to the ill have the NCE_F_ISROUTER flag appropriately 3751 * set or clear. 3752 */ 3753 static void 3754 ill_set_nce_router_flags(ill_t *ill, boolean_t enable) 3755 { 3756 ipif_t *ipif; 3757 nce_t *nce; 3758 3759 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 3760 nce = ndp_lookup(ill, &ipif->ipif_v6lcl_addr, B_FALSE); 3761 if (nce != NULL) { 3762 mutex_enter(&nce->nce_lock); 3763 if (enable) 3764 nce->nce_flags |= NCE_F_ISROUTER; 3765 else 3766 nce->nce_flags &= ~NCE_F_ISROUTER; 3767 mutex_exit(&nce->nce_lock); 3768 NCE_REFRELE(nce); 3769 } 3770 } 3771 } 3772 3773 /* 3774 * Given an ill with a _valid_ name, add the ip_forwarding ndd variable 3775 * for this ill. Make sure the v6/v4 question has been answered about this 3776 * ill. The creation of this ndd variable is only for backwards compatibility. 3777 * The preferred way to control per-interface IP forwarding is through the 3778 * ILLF_ROUTER interface flag. 3779 */ 3780 static int 3781 ill_set_ndd_name(ill_t *ill) 3782 { 3783 char *suffix; 3784 3785 ASSERT(IAM_WRITER_ILL(ill)); 3786 3787 if (ill->ill_isv6) 3788 suffix = ipv6_forward_suffix; 3789 else 3790 suffix = ipv4_forward_suffix; 3791 3792 ill->ill_ndd_name = ill->ill_name + ill->ill_name_length; 3793 bcopy(ill->ill_name, ill->ill_ndd_name, ill->ill_name_length - 1); 3794 /* 3795 * Copies over the '\0'. 3796 * Note that strlen(suffix) is always bounded. 3797 */ 3798 bcopy(suffix, ill->ill_ndd_name + ill->ill_name_length - 1, 3799 strlen(suffix) + 1); 3800 3801 /* 3802 * Use of the nd table requires holding the reader lock. 3803 * Modifying the nd table thru nd_load/nd_unload requires 3804 * the writer lock. 3805 */ 3806 rw_enter(&ip_g_nd_lock, RW_WRITER); 3807 if (!nd_load(&ip_g_nd, ill->ill_ndd_name, nd_ill_forward_get, 3808 nd_ill_forward_set, (caddr_t)ill)) { 3809 /* 3810 * If the nd_load failed, it only meant that it could not 3811 * allocate a new bunch of room for further NDD expansion. 3812 * Because of that, the ill_ndd_name will be set to 0, and 3813 * this interface is at the mercy of the global ip_forwarding 3814 * variable. 3815 */ 3816 rw_exit(&ip_g_nd_lock); 3817 ill->ill_ndd_name = NULL; 3818 return (ENOMEM); 3819 } 3820 rw_exit(&ip_g_nd_lock); 3821 return (0); 3822 } 3823 3824 /* 3825 * Intializes the context structure and returns the first ill in the list 3826 * cuurently start_list and end_list can have values: 3827 * MAX_G_HEADS Traverse both IPV4 and IPV6 lists. 3828 * IP_V4_G_HEAD Traverse IPV4 list only. 3829 * IP_V6_G_HEAD Traverse IPV6 list only. 3830 */ 3831 3832 /* 3833 * We don't check for CONDEMNED ills here. Caller must do that if 3834 * necessary under the ill lock. 3835 */ 3836 ill_t * 3837 ill_first(int start_list, int end_list, ill_walk_context_t *ctx) 3838 { 3839 ill_if_t *ifp; 3840 ill_t *ill; 3841 avl_tree_t *avl_tree; 3842 3843 ASSERT(RW_LOCK_HELD(&ill_g_lock)); 3844 ASSERT(end_list <= MAX_G_HEADS && start_list >= 0); 3845 3846 /* 3847 * setup the lists to search 3848 */ 3849 if (end_list != MAX_G_HEADS) { 3850 ctx->ctx_current_list = start_list; 3851 ctx->ctx_last_list = end_list; 3852 } else { 3853 ctx->ctx_last_list = MAX_G_HEADS - 1; 3854 ctx->ctx_current_list = 0; 3855 } 3856 3857 while (ctx->ctx_current_list <= ctx->ctx_last_list) { 3858 ifp = IP_VX_ILL_G_LIST(ctx->ctx_current_list); 3859 if (ifp != (ill_if_t *) 3860 &IP_VX_ILL_G_LIST(ctx->ctx_current_list)) { 3861 avl_tree = &ifp->illif_avl_by_ppa; 3862 ill = avl_first(avl_tree); 3863 /* 3864 * ill is guaranteed to be non NULL or ifp should have 3865 * not existed. 3866 */ 3867 ASSERT(ill != NULL); 3868 return (ill); 3869 } 3870 ctx->ctx_current_list++; 3871 } 3872 3873 return (NULL); 3874 } 3875 3876 /* 3877 * returns the next ill in the list. ill_first() must have been called 3878 * before calling ill_next() or bad things will happen. 3879 */ 3880 3881 /* 3882 * We don't check for CONDEMNED ills here. Caller must do that if 3883 * necessary under the ill lock. 3884 */ 3885 ill_t * 3886 ill_next(ill_walk_context_t *ctx, ill_t *lastill) 3887 { 3888 ill_if_t *ifp; 3889 ill_t *ill; 3890 3891 3892 ASSERT(RW_LOCK_HELD(&ill_g_lock)); 3893 ASSERT(lastill->ill_ifptr != (ill_if_t *) 3894 &IP_VX_ILL_G_LIST(ctx->ctx_current_list)); 3895 if ((ill = avl_walk(&lastill->ill_ifptr->illif_avl_by_ppa, lastill, 3896 AVL_AFTER)) != NULL) { 3897 return (ill); 3898 } 3899 3900 /* goto next ill_ifp in the list. */ 3901 ifp = lastill->ill_ifptr->illif_next; 3902 3903 /* make sure not at end of circular list */ 3904 while (ifp == (ill_if_t *)&IP_VX_ILL_G_LIST(ctx->ctx_current_list)) { 3905 if (++ctx->ctx_current_list > ctx->ctx_last_list) 3906 return (NULL); 3907 ifp = IP_VX_ILL_G_LIST(ctx->ctx_current_list); 3908 } 3909 3910 return (avl_first(&ifp->illif_avl_by_ppa)); 3911 } 3912 3913 /* 3914 * Check interface name for correct format which is name+ppa. 3915 * name can contain characters and digits, the right most digits 3916 * make up the ppa number. use of octal is not allowed, name must contain 3917 * a ppa, return pointer to the start of ppa. 3918 * In case of error return NULL. 3919 */ 3920 static char * 3921 ill_get_ppa_ptr(char *name) 3922 { 3923 int namelen = mi_strlen(name); 3924 3925 int len = namelen; 3926 3927 name += len; 3928 while (len > 0) { 3929 name--; 3930 if (*name < '0' || *name > '9') 3931 break; 3932 len--; 3933 } 3934 3935 /* empty string, all digits, or no trailing digits */ 3936 if (len == 0 || len == (int)namelen) 3937 return (NULL); 3938 3939 name++; 3940 /* check for attempted use of octal */ 3941 if (*name == '0' && len != (int)namelen - 1) 3942 return (NULL); 3943 return (name); 3944 } 3945 3946 /* 3947 * use avl tree to locate the ill. 3948 */ 3949 static ill_t * 3950 ill_find_by_name(char *name, boolean_t isv6, queue_t *q, mblk_t *mp, 3951 ipsq_func_t func, int *error) 3952 { 3953 char *ppa_ptr = NULL; 3954 int len; 3955 uint_t ppa; 3956 ill_t *ill = NULL; 3957 ill_if_t *ifp; 3958 int list; 3959 ipsq_t *ipsq; 3960 3961 if (error != NULL) 3962 *error = 0; 3963 3964 /* 3965 * get ppa ptr 3966 */ 3967 if (isv6) 3968 list = IP_V6_G_HEAD; 3969 else 3970 list = IP_V4_G_HEAD; 3971 3972 if ((ppa_ptr = ill_get_ppa_ptr(name)) == NULL) { 3973 if (error != NULL) 3974 *error = ENXIO; 3975 return (NULL); 3976 } 3977 3978 len = ppa_ptr - name + 1; 3979 3980 ppa = stoi(&ppa_ptr); 3981 3982 ifp = IP_VX_ILL_G_LIST(list); 3983 3984 while (ifp != (ill_if_t *)&IP_VX_ILL_G_LIST(list)) { 3985 /* 3986 * match is done on len - 1 as the name is not null 3987 * terminated it contains ppa in addition to the interface 3988 * name. 3989 */ 3990 if ((ifp->illif_name_len == len) && 3991 bcmp(ifp->illif_name, name, len - 1) == 0) { 3992 break; 3993 } else { 3994 ifp = ifp->illif_next; 3995 } 3996 } 3997 3998 3999 if (ifp == (ill_if_t *)&IP_VX_ILL_G_LIST(list)) { 4000 /* 4001 * Even the interface type does not exist. 4002 */ 4003 if (error != NULL) 4004 *error = ENXIO; 4005 return (NULL); 4006 } 4007 4008 ill = avl_find(&ifp->illif_avl_by_ppa, (void *) &ppa, NULL); 4009 if (ill != NULL) { 4010 /* 4011 * The block comment at the start of ipif_down 4012 * explains the use of the macros used below 4013 */ 4014 GRAB_CONN_LOCK(q); 4015 mutex_enter(&ill->ill_lock); 4016 if (ILL_CAN_LOOKUP(ill)) { 4017 ill_refhold_locked(ill); 4018 mutex_exit(&ill->ill_lock); 4019 RELEASE_CONN_LOCK(q); 4020 return (ill); 4021 } else if (ILL_CAN_WAIT(ill, q)) { 4022 ipsq = ill->ill_phyint->phyint_ipsq; 4023 mutex_enter(&ipsq->ipsq_lock); 4024 mutex_exit(&ill->ill_lock); 4025 ipsq_enq(ipsq, q, mp, func, NEW_OP, ill); 4026 mutex_exit(&ipsq->ipsq_lock); 4027 RELEASE_CONN_LOCK(q); 4028 *error = EINPROGRESS; 4029 return (NULL); 4030 } 4031 mutex_exit(&ill->ill_lock); 4032 RELEASE_CONN_LOCK(q); 4033 } 4034 if (error != NULL) 4035 *error = ENXIO; 4036 return (NULL); 4037 } 4038 4039 /* 4040 * comparison function for use with avl. 4041 */ 4042 static int 4043 ill_compare_ppa(const void *ppa_ptr, const void *ill_ptr) 4044 { 4045 uint_t ppa; 4046 uint_t ill_ppa; 4047 4048 ASSERT(ppa_ptr != NULL && ill_ptr != NULL); 4049 4050 ppa = *((uint_t *)ppa_ptr); 4051 ill_ppa = ((const ill_t *)ill_ptr)->ill_ppa; 4052 /* 4053 * We want the ill with the lowest ppa to be on the 4054 * top. 4055 */ 4056 if (ill_ppa < ppa) 4057 return (1); 4058 if (ill_ppa > ppa) 4059 return (-1); 4060 return (0); 4061 } 4062 4063 /* 4064 * remove an interface type from the global list. 4065 */ 4066 static void 4067 ill_delete_interface_type(ill_if_t *interface) 4068 { 4069 ASSERT(RW_WRITE_HELD(&ill_g_lock)); 4070 4071 ASSERT(interface != NULL); 4072 ASSERT(avl_numnodes(&interface->illif_avl_by_ppa) == 0); 4073 4074 avl_destroy(&interface->illif_avl_by_ppa); 4075 if (interface->illif_ppa_arena != NULL) 4076 vmem_destroy(interface->illif_ppa_arena); 4077 4078 remque(interface); 4079 4080 mi_free(interface); 4081 } 4082 4083 /* 4084 * remove ill from the global list. 4085 */ 4086 static void 4087 ill_glist_delete(ill_t *ill) 4088 { 4089 if (ill == NULL) 4090 return; 4091 4092 rw_enter(&ill_g_lock, RW_WRITER); 4093 /* 4094 * If the ill was never inserted into the AVL tree 4095 * we skip the if branch. 4096 */ 4097 if (ill->ill_ifptr != NULL) { 4098 /* 4099 * remove from AVL tree and free ppa number 4100 */ 4101 avl_remove(&ill->ill_ifptr->illif_avl_by_ppa, ill); 4102 4103 if (ill->ill_ifptr->illif_ppa_arena != NULL) { 4104 vmem_free(ill->ill_ifptr->illif_ppa_arena, 4105 (void *)(uintptr_t)(ill->ill_ppa+1), 1); 4106 } 4107 if (avl_numnodes(&ill->ill_ifptr->illif_avl_by_ppa) == 0) { 4108 ill_delete_interface_type(ill->ill_ifptr); 4109 } 4110 4111 /* 4112 * Indicate ill is no longer in the list. 4113 */ 4114 ill->ill_ifptr = NULL; 4115 ill->ill_name_length = 0; 4116 ill->ill_name[0] = '\0'; 4117 ill->ill_ppa = UINT_MAX; 4118 } 4119 ill_phyint_free(ill); 4120 rw_exit(&ill_g_lock); 4121 } 4122 4123 /* 4124 * allocate a ppa, if the number of plumbed interfaces of this type are 4125 * less than ill_no_arena do a linear search to find a unused ppa. 4126 * When the number goes beyond ill_no_arena switch to using an arena. 4127 * Note: ppa value of zero cannot be allocated from vmem_arena as it 4128 * is the return value for an error condition, so allocation starts at one 4129 * and is decremented by one. 4130 */ 4131 static int 4132 ill_alloc_ppa(ill_if_t *ifp, ill_t *ill) 4133 { 4134 ill_t *tmp_ill; 4135 uint_t start, end; 4136 int ppa; 4137 4138 if (ifp->illif_ppa_arena == NULL && 4139 (avl_numnodes(&ifp->illif_avl_by_ppa) + 1 > ill_no_arena)) { 4140 /* 4141 * Create an arena. 4142 */ 4143 ifp->illif_ppa_arena = vmem_create(ifp->illif_name, 4144 (void *)1, UINT_MAX - 1, 1, NULL, NULL, 4145 NULL, 0, VM_SLEEP | VMC_IDENTIFIER); 4146 /* allocate what has already been assigned */ 4147 for (tmp_ill = avl_first(&ifp->illif_avl_by_ppa); 4148 tmp_ill != NULL; tmp_ill = avl_walk(&ifp->illif_avl_by_ppa, 4149 tmp_ill, AVL_AFTER)) { 4150 ppa = (int)(uintptr_t)vmem_xalloc(ifp->illif_ppa_arena, 4151 1, /* size */ 4152 1, /* align/quantum */ 4153 0, /* phase */ 4154 0, /* nocross */ 4155 (void *)((uintptr_t)tmp_ill->ill_ppa + 1), /* minaddr */ 4156 (void *)((uintptr_t)tmp_ill->ill_ppa + 2), /* maxaddr */ 4157 VM_NOSLEEP|VM_FIRSTFIT); 4158 if (ppa == 0) { 4159 ip1dbg(("ill_alloc_ppa: ppa allocation" 4160 " failed while switching")); 4161 vmem_destroy(ifp->illif_ppa_arena); 4162 ifp->illif_ppa_arena = NULL; 4163 break; 4164 } 4165 } 4166 } 4167 4168 if (ifp->illif_ppa_arena != NULL) { 4169 if (ill->ill_ppa == UINT_MAX) { 4170 ppa = (int)(uintptr_t)vmem_alloc(ifp->illif_ppa_arena, 4171 1, VM_NOSLEEP|VM_FIRSTFIT); 4172 if (ppa == 0) 4173 return (EAGAIN); 4174 ill->ill_ppa = --ppa; 4175 } else { 4176 ppa = (int)(uintptr_t)vmem_xalloc(ifp->illif_ppa_arena, 4177 1, /* size */ 4178 1, /* align/quantum */ 4179 0, /* phase */ 4180 0, /* nocross */ 4181 (void *)(uintptr_t)(ill->ill_ppa + 1), /* minaddr */ 4182 (void *)(uintptr_t)(ill->ill_ppa + 2), /* maxaddr */ 4183 VM_NOSLEEP|VM_FIRSTFIT); 4184 /* 4185 * Most likely the allocation failed because 4186 * the requested ppa was in use. 4187 */ 4188 if (ppa == 0) 4189 return (EEXIST); 4190 } 4191 return (0); 4192 } 4193 4194 /* 4195 * No arena is in use and not enough (>ill_no_arena) interfaces have 4196 * been plumbed to create one. Do a linear search to get a unused ppa. 4197 */ 4198 if (ill->ill_ppa == UINT_MAX) { 4199 end = UINT_MAX - 1; 4200 start = 0; 4201 } else { 4202 end = start = ill->ill_ppa; 4203 } 4204 4205 tmp_ill = avl_find(&ifp->illif_avl_by_ppa, (void *)&start, NULL); 4206 while (tmp_ill != NULL && tmp_ill->ill_ppa == start) { 4207 if (start++ >= end) { 4208 if (ill->ill_ppa == UINT_MAX) 4209 return (EAGAIN); 4210 else 4211 return (EEXIST); 4212 } 4213 tmp_ill = avl_walk(&ifp->illif_avl_by_ppa, tmp_ill, AVL_AFTER); 4214 } 4215 ill->ill_ppa = start; 4216 return (0); 4217 } 4218 4219 /* 4220 * Insert ill into the list of configured ill's. Once this function completes, 4221 * the ill is globally visible and is available through lookups. More precisely 4222 * this happens after the caller drops the ill_g_lock. 4223 */ 4224 static int 4225 ill_glist_insert(ill_t *ill, char *name, boolean_t isv6) 4226 { 4227 ill_if_t *ill_interface; 4228 avl_index_t where = 0; 4229 int error; 4230 int name_length; 4231 int index; 4232 boolean_t check_length = B_FALSE; 4233 4234 ASSERT(RW_WRITE_HELD(&ill_g_lock)); 4235 4236 name_length = mi_strlen(name) + 1; 4237 4238 if (isv6) 4239 index = IP_V6_G_HEAD; 4240 else 4241 index = IP_V4_G_HEAD; 4242 4243 ill_interface = IP_VX_ILL_G_LIST(index); 4244 /* 4245 * Search for interface type based on name 4246 */ 4247 while (ill_interface != (ill_if_t *)&IP_VX_ILL_G_LIST(index)) { 4248 if ((ill_interface->illif_name_len == name_length) && 4249 (strcmp(ill_interface->illif_name, name) == 0)) { 4250 break; 4251 } 4252 ill_interface = ill_interface->illif_next; 4253 } 4254 4255 /* 4256 * Interface type not found, create one. 4257 */ 4258 if (ill_interface == (ill_if_t *)&IP_VX_ILL_G_LIST(index)) { 4259 4260 ill_g_head_t ghead; 4261 4262 /* 4263 * allocate ill_if_t structure 4264 */ 4265 4266 ill_interface = (ill_if_t *)mi_zalloc(sizeof (ill_if_t)); 4267 if (ill_interface == NULL) { 4268 return (ENOMEM); 4269 } 4270 4271 4272 4273 (void) strcpy(ill_interface->illif_name, name); 4274 ill_interface->illif_name_len = name_length; 4275 4276 avl_create(&ill_interface->illif_avl_by_ppa, 4277 ill_compare_ppa, sizeof (ill_t), 4278 offsetof(struct ill_s, ill_avl_byppa)); 4279 4280 /* 4281 * link the structure in the back to maintain order 4282 * of configuration for ifconfig output. 4283 */ 4284 ghead = ill_g_heads[index]; 4285 insque(ill_interface, ghead.ill_g_list_tail); 4286 4287 } 4288 4289 if (ill->ill_ppa == UINT_MAX) 4290 check_length = B_TRUE; 4291 4292 error = ill_alloc_ppa(ill_interface, ill); 4293 if (error != 0) { 4294 if (avl_numnodes(&ill_interface->illif_avl_by_ppa) == 0) 4295 ill_delete_interface_type(ill->ill_ifptr); 4296 return (error); 4297 } 4298 4299 /* 4300 * When the ppa is choosen by the system, check that there is 4301 * enough space to insert ppa. if a specific ppa was passed in this 4302 * check is not required as the interface name passed in will have 4303 * the right ppa in it. 4304 */ 4305 if (check_length) { 4306 /* 4307 * UINT_MAX - 1 should fit in 10 chars, alloc 12 chars. 4308 */ 4309 char buf[sizeof (uint_t) * 3]; 4310 4311 /* 4312 * convert ppa to string to calculate the amount of space 4313 * required for it in the name. 4314 */ 4315 numtos(ill->ill_ppa, buf); 4316 4317 /* Do we have enough space to insert ppa ? */ 4318 4319 if ((mi_strlen(name) + mi_strlen(buf) + 1) > LIFNAMSIZ) { 4320 /* Free ppa and interface type struct */ 4321 if (ill_interface->illif_ppa_arena != NULL) { 4322 vmem_free(ill_interface->illif_ppa_arena, 4323 (void *)(uintptr_t)(ill->ill_ppa+1), 1); 4324 } 4325 if (avl_numnodes(&ill_interface->illif_avl_by_ppa) == 4326 0) { 4327 ill_delete_interface_type(ill->ill_ifptr); 4328 } 4329 4330 return (EINVAL); 4331 } 4332 } 4333 4334 (void) sprintf(ill->ill_name, "%s%u", name, ill->ill_ppa); 4335 ill->ill_name_length = mi_strlen(ill->ill_name) + 1; 4336 4337 (void) avl_find(&ill_interface->illif_avl_by_ppa, &ill->ill_ppa, 4338 &where); 4339 ill->ill_ifptr = ill_interface; 4340 avl_insert(&ill_interface->illif_avl_by_ppa, ill, where); 4341 4342 ill_phyint_reinit(ill); 4343 return (0); 4344 } 4345 4346 /* Initialize the per phyint (per IPMP group) ipsq used for serialization */ 4347 static boolean_t 4348 ipsq_init(ill_t *ill) 4349 { 4350 ipsq_t *ipsq; 4351 4352 /* Init the ipsq and impicitly enter as writer */ 4353 ill->ill_phyint->phyint_ipsq = 4354 kmem_zalloc(sizeof (ipsq_t), KM_NOSLEEP); 4355 if (ill->ill_phyint->phyint_ipsq == NULL) 4356 return (B_FALSE); 4357 ipsq = ill->ill_phyint->phyint_ipsq; 4358 ipsq->ipsq_phyint_list = ill->ill_phyint; 4359 ill->ill_phyint->phyint_ipsq_next = NULL; 4360 mutex_init(&ipsq->ipsq_lock, NULL, MUTEX_DEFAULT, 0); 4361 ipsq->ipsq_refs = 1; 4362 ipsq->ipsq_writer = curthread; 4363 ipsq->ipsq_reentry_cnt = 1; 4364 #ifdef ILL_DEBUG 4365 ipsq->ipsq_depth = getpcstack((pc_t *)ipsq->ipsq_stack, IP_STACK_DEPTH); 4366 #endif 4367 (void) strcpy(ipsq->ipsq_name, ill->ill_name); 4368 return (B_TRUE); 4369 } 4370 4371 /* 4372 * ill_init is called by ip_open when a device control stream is opened. 4373 * It does a few initializations, and shoots a DL_INFO_REQ message down 4374 * to the driver. The response is later picked up in ip_rput_dlpi and 4375 * used to set up default mechanisms for talking to the driver. (Always 4376 * called as writer.) 4377 * 4378 * If this function returns error, ip_open will call ip_close which in 4379 * turn will call ill_delete to clean up any memory allocated here that 4380 * is not yet freed. 4381 */ 4382 int 4383 ill_init(queue_t *q, ill_t *ill) 4384 { 4385 int count; 4386 dl_info_req_t *dlir; 4387 mblk_t *info_mp; 4388 uchar_t *frag_ptr; 4389 4390 /* 4391 * The ill is initialized to zero by mi_alloc*(). In addition 4392 * some fields already contain valid values, initialized in 4393 * ip_open(), before we reach here. 4394 */ 4395 mutex_init(&ill->ill_lock, NULL, MUTEX_DEFAULT, 0); 4396 4397 ill->ill_rq = q; 4398 ill->ill_wq = WR(q); 4399 4400 info_mp = allocb(MAX(sizeof (dl_info_req_t), sizeof (dl_info_ack_t)), 4401 BPRI_HI); 4402 if (info_mp == NULL) 4403 return (ENOMEM); 4404 4405 /* 4406 * Allocate sufficient space to contain our fragment hash table and 4407 * the device name. 4408 */ 4409 frag_ptr = (uchar_t *)mi_zalloc(ILL_FRAG_HASH_TBL_SIZE + 4410 2 * LIFNAMSIZ + 5 + strlen(ipv6_forward_suffix)); 4411 if (frag_ptr == NULL) { 4412 freemsg(info_mp); 4413 return (ENOMEM); 4414 } 4415 ill->ill_frag_ptr = frag_ptr; 4416 ill->ill_frag_free_num_pkts = 0; 4417 ill->ill_last_frag_clean_time = 0; 4418 ill->ill_frag_hash_tbl = (ipfb_t *)frag_ptr; 4419 ill->ill_name = (char *)(frag_ptr + ILL_FRAG_HASH_TBL_SIZE); 4420 for (count = 0; count < ILL_FRAG_HASH_TBL_COUNT; count++) { 4421 mutex_init(&ill->ill_frag_hash_tbl[count].ipfb_lock, 4422 NULL, MUTEX_DEFAULT, NULL); 4423 } 4424 4425 ill->ill_phyint = (phyint_t *)mi_zalloc(sizeof (phyint_t)); 4426 if (ill->ill_phyint == NULL) { 4427 freemsg(info_mp); 4428 mi_free(frag_ptr); 4429 return (ENOMEM); 4430 } 4431 4432 mutex_init(&ill->ill_phyint->phyint_lock, NULL, MUTEX_DEFAULT, 0); 4433 /* 4434 * For now pretend this is a v4 ill. We need to set phyint_ill* 4435 * at this point because of the following reason. If we can't 4436 * enter the ipsq at some point and cv_wait, the writer that 4437 * wakes us up tries to locate us using the list of all phyints 4438 * in an ipsq and the ills from the phyint thru the phyint_ill*. 4439 * If we don't set it now, we risk a missed wakeup. 4440 */ 4441 ill->ill_phyint->phyint_illv4 = ill; 4442 ill->ill_ppa = UINT_MAX; 4443 ill->ill_fastpath_list = &ill->ill_fastpath_list; 4444 4445 if (!ipsq_init(ill)) { 4446 freemsg(info_mp); 4447 mi_free(frag_ptr); 4448 mi_free(ill->ill_phyint); 4449 return (ENOMEM); 4450 } 4451 4452 ill->ill_state_flags |= ILL_LL_SUBNET_PENDING; 4453 4454 4455 /* Frag queue limit stuff */ 4456 ill->ill_frag_count = 0; 4457 ill->ill_ipf_gen = 0; 4458 4459 ill->ill_global_timer = INFINITY; 4460 ill->ill_mcast_type = IGMP_V3_ROUTER; /* == MLD_V2_ROUTER */ 4461 ill->ill_mcast_v1_time = ill->ill_mcast_v2_time = 0; 4462 ill->ill_mcast_v1_tset = ill->ill_mcast_v2_tset = 0; 4463 ill->ill_mcast_rv = MCAST_DEF_ROBUSTNESS; 4464 ill->ill_mcast_qi = MCAST_DEF_QUERY_INTERVAL; 4465 4466 /* 4467 * Initialize IPv6 configuration variables. The IP module is always 4468 * opened as an IPv4 module. Instead tracking down the cases where 4469 * it switches to do ipv6, we'll just initialize the IPv6 configuration 4470 * here for convenience, this has no effect until the ill is set to do 4471 * IPv6. 4472 */ 4473 ill->ill_reachable_time = ND_REACHABLE_TIME; 4474 ill->ill_reachable_retrans_time = ND_RETRANS_TIMER; 4475 ill->ill_xmit_count = ND_MAX_MULTICAST_SOLICIT; 4476 ill->ill_max_buf = ND_MAX_Q; 4477 ill->ill_refcnt = 0; 4478 4479 /* Send down the Info Request to the driver. */ 4480 info_mp->b_datap->db_type = M_PCPROTO; 4481 dlir = (dl_info_req_t *)info_mp->b_rptr; 4482 info_mp->b_wptr = (uchar_t *)&dlir[1]; 4483 dlir->dl_primitive = DL_INFO_REQ; 4484 4485 ill->ill_dlpi_pending = DL_PRIM_INVAL; 4486 4487 qprocson(q); 4488 ill_dlpi_send(ill, info_mp); 4489 4490 return (0); 4491 } 4492 4493 /* 4494 * ill_dls_info 4495 * creates datalink socket info from the device. 4496 */ 4497 int 4498 ill_dls_info(struct sockaddr_dl *sdl, ipif_t *ipif) 4499 { 4500 size_t length; 4501 ill_t *ill = ipif->ipif_ill; 4502 4503 sdl->sdl_family = AF_LINK; 4504 sdl->sdl_index = ill->ill_phyint->phyint_ifindex; 4505 sdl->sdl_type = ipif->ipif_type; 4506 (void) ipif_get_name(ipif, sdl->sdl_data, sizeof (sdl->sdl_data)); 4507 length = mi_strlen(sdl->sdl_data); 4508 ASSERT(length < 256); 4509 sdl->sdl_nlen = (uchar_t)length; 4510 sdl->sdl_alen = ill->ill_phys_addr_length; 4511 mutex_enter(&ill->ill_lock); 4512 if (ill->ill_phys_addr_length != 0 && ill->ill_phys_addr != NULL) { 4513 bcopy(ill->ill_phys_addr, &sdl->sdl_data[length], 4514 ill->ill_phys_addr_length); 4515 } 4516 mutex_exit(&ill->ill_lock); 4517 sdl->sdl_slen = 0; 4518 return (sizeof (struct sockaddr_dl)); 4519 } 4520 4521 /* 4522 * ill_xarp_info 4523 * creates xarp info from the device. 4524 */ 4525 static int 4526 ill_xarp_info(struct sockaddr_dl *sdl, ill_t *ill) 4527 { 4528 sdl->sdl_family = AF_LINK; 4529 sdl->sdl_index = ill->ill_phyint->phyint_ifindex; 4530 sdl->sdl_type = ill->ill_type; 4531 (void) ipif_get_name(ill->ill_ipif, sdl->sdl_data, 4532 sizeof (sdl->sdl_data)); 4533 sdl->sdl_nlen = (uchar_t)mi_strlen(sdl->sdl_data); 4534 sdl->sdl_alen = ill->ill_phys_addr_length; 4535 sdl->sdl_slen = 0; 4536 return (sdl->sdl_nlen); 4537 } 4538 4539 static int 4540 loopback_kstat_update(kstat_t *ksp, int rw) 4541 { 4542 kstat_named_t *kn = KSTAT_NAMED_PTR(ksp); 4543 4544 if (rw == KSTAT_WRITE) 4545 return (EACCES); 4546 kn[0].value.ui32 = loopback_packets; 4547 kn[1].value.ui32 = loopback_packets; 4548 return (0); 4549 } 4550 4551 4552 /* 4553 * Has ifindex been plumbed already. 4554 */ 4555 static boolean_t 4556 phyint_exists(uint_t index) 4557 { 4558 phyint_t *phyi; 4559 4560 ASSERT(RW_LOCK_HELD(&ill_g_lock)); 4561 /* 4562 * Indexes are stored in the phyint - a common structure 4563 * to both IPv4 and IPv6. 4564 */ 4565 phyi = avl_find(&phyint_g_list.phyint_list_avl_by_index, 4566 (void *) &index, NULL); 4567 return (phyi != NULL); 4568 } 4569 4570 /* 4571 * Assign a unique interface index for the phyint. 4572 */ 4573 static boolean_t 4574 phyint_assign_ifindex(phyint_t *phyi) 4575 { 4576 uint_t starting_index; 4577 4578 ASSERT(phyi->phyint_ifindex == 0); 4579 if (!ill_index_wrap) { 4580 phyi->phyint_ifindex = ill_index++; 4581 if (ill_index == 0) { 4582 /* Reached the uint_t limit Next time wrap */ 4583 ill_index_wrap = B_TRUE; 4584 } 4585 return (B_TRUE); 4586 } 4587 4588 /* 4589 * Start reusing unused indexes. Note that we hold the ill_g_lock 4590 * at this point and don't want to call any function that attempts 4591 * to get the lock again. 4592 */ 4593 starting_index = ill_index++; 4594 for (; ill_index != starting_index; ill_index++) { 4595 if (ill_index != 0 && !phyint_exists(ill_index)) { 4596 /* found unused index - use it */ 4597 phyi->phyint_ifindex = ill_index; 4598 return (B_TRUE); 4599 } 4600 } 4601 4602 /* 4603 * all interface indicies are inuse. 4604 */ 4605 return (B_FALSE); 4606 } 4607 4608 /* 4609 * Return a pointer to the ill which matches the supplied name. Note that 4610 * the ill name length includes the null termination character. (May be 4611 * called as writer.) 4612 * If do_alloc and the interface is "lo0" it will be automatically created. 4613 * Cannot bump up reference on condemned ills. So dup detect can't be done 4614 * using this func. 4615 */ 4616 ill_t * 4617 ill_lookup_on_name(char *name, boolean_t do_alloc, boolean_t isv6, 4618 queue_t *q, mblk_t *mp, ipsq_func_t func, int *error, boolean_t *did_alloc) 4619 { 4620 ill_t *ill; 4621 ipif_t *ipif; 4622 kstat_named_t *kn; 4623 boolean_t isloopback; 4624 ipsq_t *old_ipsq; 4625 4626 isloopback = mi_strcmp(name, ipif_loopback_name) == 0; 4627 4628 rw_enter(&ill_g_lock, RW_READER); 4629 ill = ill_find_by_name(name, isv6, q, mp, func, error); 4630 rw_exit(&ill_g_lock); 4631 if (ill != NULL || (error != NULL && *error == EINPROGRESS)) 4632 return (ill); 4633 4634 /* 4635 * Couldn't find it. Does this happen to be a lookup for the 4636 * loopback device and are we allowed to allocate it? 4637 */ 4638 if (!isloopback || !do_alloc) 4639 return (NULL); 4640 4641 rw_enter(&ill_g_lock, RW_WRITER); 4642 4643 ill = ill_find_by_name(name, isv6, q, mp, func, error); 4644 if (ill != NULL || (error != NULL && *error == EINPROGRESS)) { 4645 rw_exit(&ill_g_lock); 4646 return (ill); 4647 } 4648 4649 /* Create the loopback device on demand */ 4650 ill = (ill_t *)(mi_alloc(sizeof (ill_t) + 4651 sizeof (ipif_loopback_name), BPRI_MED)); 4652 if (ill == NULL) 4653 goto done; 4654 4655 *ill = ill_null; 4656 mutex_init(&ill->ill_lock, NULL, MUTEX_DEFAULT, NULL); 4657 ill->ill_phyint = (phyint_t *)mi_zalloc(sizeof (phyint_t)); 4658 if (ill->ill_phyint == NULL) 4659 goto done; 4660 4661 if (isv6) 4662 ill->ill_phyint->phyint_illv6 = ill; 4663 else 4664 ill->ill_phyint->phyint_illv4 = ill; 4665 mutex_init(&ill->ill_phyint->phyint_lock, NULL, MUTEX_DEFAULT, 0); 4666 ill->ill_max_frag = IP_LOOPBACK_MTU; 4667 /* Add room for tcp+ip headers */ 4668 if (isv6) { 4669 ill->ill_isv6 = B_TRUE; 4670 ill->ill_max_frag += IPV6_HDR_LEN + 20; /* for TCP */ 4671 if (!ill_allocate_mibs(ill)) 4672 goto done; 4673 } else { 4674 ill->ill_max_frag += IP_SIMPLE_HDR_LENGTH + 20; 4675 } 4676 ill->ill_max_mtu = ill->ill_max_frag; 4677 /* 4678 * ipif_loopback_name can't be pointed at directly because its used 4679 * by both the ipv4 and ipv6 interfaces. When the ill is removed 4680 * from the glist, ill_glist_delete() sets the first character of 4681 * ill_name to '\0'. 4682 */ 4683 ill->ill_name = (char *)ill + sizeof (*ill); 4684 (void) strcpy(ill->ill_name, ipif_loopback_name); 4685 ill->ill_name_length = sizeof (ipif_loopback_name); 4686 /* Set ill_name_set for ill_phyint_reinit to work properly */ 4687 4688 ill->ill_global_timer = INFINITY; 4689 ill->ill_mcast_type = IGMP_V3_ROUTER; /* == MLD_V2_ROUTER */ 4690 ill->ill_mcast_v1_time = ill->ill_mcast_v2_time = 0; 4691 ill->ill_mcast_v1_tset = ill->ill_mcast_v2_tset = 0; 4692 ill->ill_mcast_rv = MCAST_DEF_ROBUSTNESS; 4693 ill->ill_mcast_qi = MCAST_DEF_QUERY_INTERVAL; 4694 4695 /* No resolver here. */ 4696 ill->ill_net_type = IRE_LOOPBACK; 4697 4698 /* Initialize the ipsq */ 4699 if (!ipsq_init(ill)) 4700 goto done; 4701 4702 ill->ill_phyint->phyint_ipsq->ipsq_writer = NULL; 4703 ill->ill_phyint->phyint_ipsq->ipsq_reentry_cnt--; 4704 ASSERT(ill->ill_phyint->phyint_ipsq->ipsq_reentry_cnt == 0); 4705 #ifdef ILL_DEBUG 4706 ill->ill_phyint->phyint_ipsq->ipsq_depth = 0; 4707 #endif 4708 ipif = ipif_allocate(ill, 0L, IRE_LOOPBACK, B_TRUE); 4709 if (ipif == NULL) 4710 goto done; 4711 4712 ill->ill_flags = ILLF_MULTICAST; 4713 4714 /* Set up default loopback address and mask. */ 4715 if (!isv6) { 4716 ipaddr_t inaddr_loopback = htonl(INADDR_LOOPBACK); 4717 4718 IN6_IPADDR_TO_V4MAPPED(inaddr_loopback, &ipif->ipif_v6lcl_addr); 4719 ipif->ipif_v6src_addr = ipif->ipif_v6lcl_addr; 4720 V4MASK_TO_V6(htonl(IN_CLASSA_NET), ipif->ipif_v6net_mask); 4721 V6_MASK_COPY(ipif->ipif_v6lcl_addr, ipif->ipif_v6net_mask, 4722 ipif->ipif_v6subnet); 4723 ill->ill_flags |= ILLF_IPV4; 4724 } else { 4725 ipif->ipif_v6lcl_addr = ipv6_loopback; 4726 ipif->ipif_v6src_addr = ipif->ipif_v6lcl_addr; 4727 ipif->ipif_v6net_mask = ipv6_all_ones; 4728 V6_MASK_COPY(ipif->ipif_v6lcl_addr, ipif->ipif_v6net_mask, 4729 ipif->ipif_v6subnet); 4730 ill->ill_flags |= ILLF_IPV6; 4731 } 4732 4733 /* 4734 * Chain us in at the end of the ill list. hold the ill 4735 * before we make it globally visible. 1 for the lookup. 4736 */ 4737 ill->ill_refcnt = 0; 4738 ill_refhold(ill); 4739 4740 ill->ill_frag_count = 0; 4741 ill->ill_frag_free_num_pkts = 0; 4742 ill->ill_last_frag_clean_time = 0; 4743 4744 old_ipsq = ill->ill_phyint->phyint_ipsq; 4745 4746 if (ill_glist_insert(ill, "lo", isv6) != 0) 4747 cmn_err(CE_PANIC, "cannot insert loopback interface"); 4748 4749 /* Let SCTP know so that it can add this to its list */ 4750 sctp_update_ill(ill, SCTP_ILL_INSERT); 4751 4752 /* Let SCTP know about this IPIF, so that it can add it to its list */ 4753 sctp_update_ipif(ipif, SCTP_IPIF_INSERT); 4754 4755 /* 4756 * If the ipsq was changed in ill_phyint_reinit free the old ipsq. 4757 */ 4758 if (old_ipsq != ill->ill_phyint->phyint_ipsq) { 4759 /* Loopback ills aren't in any IPMP group */ 4760 ASSERT(!(old_ipsq->ipsq_flags & IPSQ_GROUP)); 4761 ipsq_delete(old_ipsq); 4762 } 4763 4764 /* 4765 * Delay this till the ipif is allocated as ipif_allocate 4766 * de-references ill_phyint for getting the ifindex. We 4767 * can't do this before ipif_allocate because ill_phyint_reinit 4768 * -> phyint_assign_ifindex expects ipif to be present. 4769 */ 4770 mutex_enter(&ill->ill_phyint->phyint_lock); 4771 ill->ill_phyint->phyint_flags |= PHYI_LOOPBACK | PHYI_VIRTUAL; 4772 mutex_exit(&ill->ill_phyint->phyint_lock); 4773 4774 if (loopback_ksp == NULL) { 4775 /* Export loopback interface statistics */ 4776 loopback_ksp = kstat_create("lo", 0, ipif_loopback_name, "net", 4777 KSTAT_TYPE_NAMED, 2, 0); 4778 if (loopback_ksp != NULL) { 4779 loopback_ksp->ks_update = loopback_kstat_update; 4780 kn = KSTAT_NAMED_PTR(loopback_ksp); 4781 kstat_named_init(&kn[0], "ipackets", KSTAT_DATA_UINT32); 4782 kstat_named_init(&kn[1], "opackets", KSTAT_DATA_UINT32); 4783 kstat_install(loopback_ksp); 4784 } 4785 } 4786 4787 if (error != NULL) 4788 *error = 0; 4789 *did_alloc = B_TRUE; 4790 rw_exit(&ill_g_lock); 4791 return (ill); 4792 done: 4793 if (ill != NULL) { 4794 if (ill->ill_phyint != NULL) { 4795 ipsq_t *ipsq; 4796 4797 ipsq = ill->ill_phyint->phyint_ipsq; 4798 if (ipsq != NULL) 4799 kmem_free(ipsq, sizeof (ipsq_t)); 4800 mi_free(ill->ill_phyint); 4801 } 4802 ill_free_mib(ill); 4803 mi_free(ill); 4804 } 4805 rw_exit(&ill_g_lock); 4806 if (error != NULL) 4807 *error = ENOMEM; 4808 return (NULL); 4809 } 4810 4811 /* 4812 * Return a pointer to the ill which matches the index and IP version type. 4813 */ 4814 ill_t * 4815 ill_lookup_on_ifindex(uint_t index, boolean_t isv6, queue_t *q, mblk_t *mp, 4816 ipsq_func_t func, int *err) 4817 { 4818 ill_t *ill; 4819 ipsq_t *ipsq; 4820 phyint_t *phyi; 4821 4822 ASSERT((q == NULL && mp == NULL && func == NULL && err == NULL) || 4823 (q != NULL && mp != NULL && func != NULL && err != NULL)); 4824 4825 if (err != NULL) 4826 *err = 0; 4827 4828 /* 4829 * Indexes are stored in the phyint - a common structure 4830 * to both IPv4 and IPv6. 4831 */ 4832 rw_enter(&ill_g_lock, RW_READER); 4833 phyi = avl_find(&phyint_g_list.phyint_list_avl_by_index, 4834 (void *) &index, NULL); 4835 if (phyi != NULL) { 4836 ill = isv6 ? phyi->phyint_illv6: phyi->phyint_illv4; 4837 if (ill != NULL) { 4838 /* 4839 * The block comment at the start of ipif_down 4840 * explains the use of the macros used below 4841 */ 4842 GRAB_CONN_LOCK(q); 4843 mutex_enter(&ill->ill_lock); 4844 if (ILL_CAN_LOOKUP(ill)) { 4845 ill_refhold_locked(ill); 4846 mutex_exit(&ill->ill_lock); 4847 RELEASE_CONN_LOCK(q); 4848 rw_exit(&ill_g_lock); 4849 return (ill); 4850 } else if (ILL_CAN_WAIT(ill, q)) { 4851 ipsq = ill->ill_phyint->phyint_ipsq; 4852 mutex_enter(&ipsq->ipsq_lock); 4853 rw_exit(&ill_g_lock); 4854 mutex_exit(&ill->ill_lock); 4855 ipsq_enq(ipsq, q, mp, func, NEW_OP, ill); 4856 mutex_exit(&ipsq->ipsq_lock); 4857 RELEASE_CONN_LOCK(q); 4858 *err = EINPROGRESS; 4859 return (NULL); 4860 } 4861 RELEASE_CONN_LOCK(q); 4862 mutex_exit(&ill->ill_lock); 4863 } 4864 } 4865 rw_exit(&ill_g_lock); 4866 if (err != NULL) 4867 *err = ENXIO; 4868 return (NULL); 4869 } 4870 4871 /* 4872 * Obtain a reference to the ill. The ill_refcnt is a dynamic refcnt 4873 * that gives a running thread a reference to the ill. This reference must be 4874 * released by the thread when it is done accessing the ill and related 4875 * objects. ill_refcnt can not be used to account for static references 4876 * such as other structures pointing to an ill. Callers must generally 4877 * check whether an ill can be refheld by using ILL_CAN_LOOKUP macros 4878 * or be sure that the ill is not being deleted or changing state before 4879 * calling the refhold functions. A non-zero ill_refcnt ensures that the 4880 * ill won't change any of its critical state such as address, netmask etc. 4881 */ 4882 void 4883 ill_refhold(ill_t *ill) 4884 { 4885 mutex_enter(&ill->ill_lock); 4886 ill->ill_refcnt++; 4887 ILL_TRACE_REF(ill); 4888 mutex_exit(&ill->ill_lock); 4889 } 4890 4891 void 4892 ill_refhold_locked(ill_t *ill) 4893 { 4894 ASSERT(MUTEX_HELD(&ill->ill_lock)); 4895 ill->ill_refcnt++; 4896 ILL_TRACE_REF(ill); 4897 } 4898 4899 int 4900 ill_check_and_refhold(ill_t *ill) 4901 { 4902 mutex_enter(&ill->ill_lock); 4903 if (ILL_CAN_LOOKUP(ill)) { 4904 ill_refhold_locked(ill); 4905 mutex_exit(&ill->ill_lock); 4906 return (0); 4907 } 4908 mutex_exit(&ill->ill_lock); 4909 return (ILL_LOOKUP_FAILED); 4910 } 4911 4912 /* 4913 * Must not be called while holding any locks. Otherwise if this is 4914 * the last reference to be released, there is a chance of recursive mutex 4915 * panic due to ill_refrele -> ipif_ill_refrele_tail -> qwriter_ip trying 4916 * to restart an ioctl. 4917 */ 4918 void 4919 ill_refrele(ill_t *ill) 4920 { 4921 mutex_enter(&ill->ill_lock); 4922 ASSERT(ill->ill_refcnt != 0); 4923 ill->ill_refcnt--; 4924 ILL_UNTRACE_REF(ill); 4925 if (ill->ill_refcnt != 0) { 4926 /* Every ire pointing to the ill adds 1 to ill_refcnt */ 4927 mutex_exit(&ill->ill_lock); 4928 return; 4929 } 4930 4931 /* Drops the ill_lock */ 4932 ipif_ill_refrele_tail(ill); 4933 } 4934 4935 /* 4936 * Obtain a weak reference count on the ill. This reference ensures the 4937 * ill won't be freed, but the ill may change any of its critical state 4938 * such as netmask, address etc. Returns an error if the ill has started 4939 * closing. 4940 */ 4941 boolean_t 4942 ill_waiter_inc(ill_t *ill) 4943 { 4944 mutex_enter(&ill->ill_lock); 4945 if (ill->ill_state_flags & ILL_CONDEMNED) { 4946 mutex_exit(&ill->ill_lock); 4947 return (B_FALSE); 4948 } 4949 ill->ill_waiters++; 4950 mutex_exit(&ill->ill_lock); 4951 return (B_TRUE); 4952 } 4953 4954 void 4955 ill_waiter_dcr(ill_t *ill) 4956 { 4957 mutex_enter(&ill->ill_lock); 4958 ill->ill_waiters--; 4959 if (ill->ill_waiters == 0) 4960 cv_broadcast(&ill->ill_cv); 4961 mutex_exit(&ill->ill_lock); 4962 } 4963 4964 /* 4965 * Named Dispatch routine to produce a formatted report on all ILLs. 4966 * This report is accessed by using the ndd utility to "get" ND variable 4967 * "ip_ill_status". 4968 */ 4969 /* ARGSUSED */ 4970 int 4971 ip_ill_report(queue_t *q, mblk_t *mp, caddr_t arg, cred_t *ioc_cr) 4972 { 4973 ill_t *ill; 4974 ill_walk_context_t ctx; 4975 4976 (void) mi_mpprintf(mp, 4977 "ILL " MI_COL_HDRPAD_STR 4978 /* 01234567[89ABCDEF] */ 4979 "rq " MI_COL_HDRPAD_STR 4980 /* 01234567[89ABCDEF] */ 4981 "wq " MI_COL_HDRPAD_STR 4982 /* 01234567[89ABCDEF] */ 4983 "upcnt mxfrg err name"); 4984 /* 12345 12345 123 xxxxxxxx */ 4985 4986 rw_enter(&ill_g_lock, RW_READER); 4987 ill = ILL_START_WALK_ALL(&ctx); 4988 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 4989 (void) mi_mpprintf(mp, 4990 MI_COL_PTRFMT_STR MI_COL_PTRFMT_STR MI_COL_PTRFMT_STR 4991 "%05u %05u %03d %s", 4992 (void *)ill, (void *)ill->ill_rq, (void *)ill->ill_wq, 4993 ill->ill_ipif_up_count, 4994 ill->ill_max_frag, ill->ill_error, ill->ill_name); 4995 } 4996 rw_exit(&ill_g_lock); 4997 4998 return (0); 4999 } 5000 5001 /* 5002 * Named Dispatch routine to produce a formatted report on all IPIFs. 5003 * This report is accessed by using the ndd utility to "get" ND variable 5004 * "ip_ipif_status". 5005 */ 5006 /* ARGSUSED */ 5007 int 5008 ip_ipif_report(queue_t *q, mblk_t *mp, caddr_t arg, cred_t *ioc_cr) 5009 { 5010 char buf1[INET6_ADDRSTRLEN]; 5011 char buf2[INET6_ADDRSTRLEN]; 5012 char buf3[INET6_ADDRSTRLEN]; 5013 char buf4[INET6_ADDRSTRLEN]; 5014 char buf5[INET6_ADDRSTRLEN]; 5015 char buf6[INET6_ADDRSTRLEN]; 5016 char buf[LIFNAMSIZ]; 5017 ill_t *ill; 5018 ipif_t *ipif; 5019 nv_t *nvp; 5020 uint64_t flags; 5021 zoneid_t zoneid; 5022 ill_walk_context_t ctx; 5023 5024 (void) mi_mpprintf(mp, 5025 "IPIF metric mtu in/out/forward name zone flags...\n" 5026 "\tlocal address\n" 5027 "\tsrc address\n" 5028 "\tsubnet\n" 5029 "\tmask\n" 5030 "\tbroadcast\n" 5031 "\tp-p-dst"); 5032 5033 ASSERT(q->q_next == NULL); 5034 zoneid = Q_TO_CONN(q)->conn_zoneid; /* IP is a driver */ 5035 5036 rw_enter(&ill_g_lock, RW_READER); 5037 ill = ILL_START_WALK_ALL(&ctx); 5038 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 5039 for (ipif = ill->ill_ipif; ipif; ipif = ipif->ipif_next) { 5040 if (zoneid != GLOBAL_ZONEID && 5041 zoneid != ipif->ipif_zoneid) 5042 continue; 5043 (void) mi_mpprintf(mp, 5044 MI_COL_PTRFMT_STR 5045 "%04u %05u %u/%u/%u %s %d", 5046 (void *)ipif, 5047 ipif->ipif_metric, ipif->ipif_mtu, 5048 ipif->ipif_ib_pkt_count, 5049 ipif->ipif_ob_pkt_count, 5050 ipif->ipif_fo_pkt_count, 5051 ipif_get_name(ipif, buf, sizeof (buf)), 5052 ipif->ipif_zoneid); 5053 5054 flags = ipif->ipif_flags | ipif->ipif_ill->ill_flags | 5055 ipif->ipif_ill->ill_phyint->phyint_flags; 5056 5057 /* Tack on text strings for any flags. */ 5058 nvp = ipif_nv_tbl; 5059 for (; nvp < A_END(ipif_nv_tbl); nvp++) { 5060 if (nvp->nv_value & flags) 5061 (void) mi_mpprintf_nr(mp, " %s", 5062 nvp->nv_name); 5063 } 5064 (void) mi_mpprintf(mp, 5065 "\t%s\n\t%s\n\t%s\n\t%s\n\t%s\n\t%s", 5066 inet_ntop(AF_INET6, 5067 &ipif->ipif_v6lcl_addr, buf1, sizeof (buf1)), 5068 inet_ntop(AF_INET6, 5069 &ipif->ipif_v6src_addr, buf2, sizeof (buf2)), 5070 inet_ntop(AF_INET6, 5071 &ipif->ipif_v6subnet, buf3, sizeof (buf3)), 5072 inet_ntop(AF_INET6, 5073 &ipif->ipif_v6net_mask, buf4, sizeof (buf4)), 5074 inet_ntop(AF_INET6, 5075 &ipif->ipif_v6brd_addr, buf5, sizeof (buf5)), 5076 inet_ntop(AF_INET6, 5077 &ipif->ipif_v6pp_dst_addr, 5078 buf6, sizeof (buf6))); 5079 } 5080 } 5081 rw_exit(&ill_g_lock); 5082 return (0); 5083 } 5084 5085 /* 5086 * ip_ll_subnet_defaults is called when we get the DL_INFO_ACK back from the 5087 * driver. We construct best guess defaults for lower level information that 5088 * we need. If an interface is brought up without injection of any overriding 5089 * information from outside, we have to be ready to go with these defaults. 5090 * When we get the first DL_INFO_ACK (from ip_open() sending a DL_INFO_REQ) 5091 * we primarely want the dl_provider_style. 5092 * The subsequent DL_INFO_ACK is received after doing a DL_ATTACH and DL_BIND 5093 * at which point we assume the other part of the information is valid. 5094 */ 5095 void 5096 ip_ll_subnet_defaults(ill_t *ill, mblk_t *mp) 5097 { 5098 uchar_t *brdcst_addr; 5099 uint_t brdcst_addr_length, phys_addr_length; 5100 t_scalar_t sap_length; 5101 dl_info_ack_t *dlia; 5102 ip_m_t *ipm; 5103 dl_qos_cl_sel1_t *sel1; 5104 5105 ASSERT(IAM_WRITER_ILL(ill)); 5106 5107 /* 5108 * Till the ill is fully up ILL_CHANGING will be set and 5109 * the ill is not globally visible. So no need for a lock. 5110 */ 5111 dlia = (dl_info_ack_t *)mp->b_rptr; 5112 ill->ill_mactype = dlia->dl_mac_type; 5113 5114 ipm = ip_m_lookup(dlia->dl_mac_type); 5115 if (ipm == NULL) { 5116 ipm = ip_m_lookup(DL_OTHER); 5117 ASSERT(ipm != NULL); 5118 } 5119 ill->ill_media = ipm; 5120 5121 /* 5122 * When the new DLPI stuff is ready we'll pull lengths 5123 * from dlia. 5124 */ 5125 if (dlia->dl_version == DL_VERSION_2) { 5126 brdcst_addr_length = dlia->dl_brdcst_addr_length; 5127 brdcst_addr = mi_offset_param(mp, dlia->dl_brdcst_addr_offset, 5128 brdcst_addr_length); 5129 if (brdcst_addr == NULL) { 5130 brdcst_addr_length = 0; 5131 } 5132 sap_length = dlia->dl_sap_length; 5133 phys_addr_length = dlia->dl_addr_length - ABS(sap_length); 5134 ip1dbg(("ip: bcast_len %d, sap_len %d, phys_len %d\n", 5135 brdcst_addr_length, sap_length, phys_addr_length)); 5136 } else { 5137 brdcst_addr_length = 6; 5138 brdcst_addr = ip_six_byte_all_ones; 5139 sap_length = -2; 5140 phys_addr_length = brdcst_addr_length; 5141 } 5142 5143 ill->ill_bcast_addr_length = brdcst_addr_length; 5144 ill->ill_phys_addr_length = phys_addr_length; 5145 ill->ill_sap_length = sap_length; 5146 ill->ill_max_frag = dlia->dl_max_sdu; 5147 ill->ill_max_mtu = ill->ill_max_frag; 5148 5149 ill->ill_type = ipm->ip_m_type; 5150 5151 if (!ill->ill_dlpi_style_set) { 5152 if (dlia->dl_provider_style == DL_STYLE2) 5153 ill->ill_needs_attach = 1; 5154 5155 /* 5156 * Allocate the first ipif on this ill. We don't delay it 5157 * further as ioctl handling assumes atleast one ipif to 5158 * be present. 5159 * 5160 * At this point we don't know whether the ill is v4 or v6. 5161 * We will know this whan the SIOCSLIFNAME happens and 5162 * the correct value for ill_isv6 will be assigned in 5163 * ipif_set_values(). We need to hold the ill lock and 5164 * clear the ILL_LL_SUBNET_PENDING flag and atomically do 5165 * the wakeup. 5166 */ 5167 (void) ipif_allocate(ill, 0, IRE_LOCAL, 5168 dlia->dl_provider_style == DL_STYLE2 ? B_FALSE : B_TRUE); 5169 mutex_enter(&ill->ill_lock); 5170 ASSERT(ill->ill_dlpi_style_set == 0); 5171 ill->ill_dlpi_style_set = 1; 5172 ill->ill_state_flags &= ~ILL_LL_SUBNET_PENDING; 5173 cv_broadcast(&ill->ill_cv); 5174 mutex_exit(&ill->ill_lock); 5175 freemsg(mp); 5176 return; 5177 } 5178 ASSERT(ill->ill_ipif != NULL); 5179 /* 5180 * We know whether it is IPv4 or IPv6 now, as this is the 5181 * second DL_INFO_ACK we are recieving in response to the 5182 * DL_INFO_REQ sent in ipif_set_values. 5183 */ 5184 if (ill->ill_isv6) 5185 ill->ill_sap = IP6_DL_SAP; 5186 else 5187 ill->ill_sap = IP_DL_SAP; 5188 /* 5189 * Set ipif_mtu which is used to set the IRE's 5190 * ire_max_frag value. The driver could have sent 5191 * a different mtu from what it sent last time. No 5192 * need to call ipif_mtu_change because IREs have 5193 * not yet been created. 5194 */ 5195 ill->ill_ipif->ipif_mtu = ill->ill_max_mtu; 5196 /* 5197 * Clear all the flags that were set based on ill_bcast_addr_length 5198 * and ill_phys_addr_length (in ipif_set_values) as these could have 5199 * changed now and we need to re-evaluate. 5200 */ 5201 ill->ill_flags &= ~(ILLF_MULTICAST | ILLF_NONUD | ILLF_NOARP); 5202 ill->ill_ipif->ipif_flags &= ~(IPIF_BROADCAST | IPIF_POINTOPOINT); 5203 5204 /* 5205 * Free ill_resolver_mp and ill_bcast_mp as things could have 5206 * changed now. 5207 */ 5208 if (ill->ill_bcast_addr_length == 0) { 5209 if (ill->ill_resolver_mp != NULL) 5210 freemsg(ill->ill_resolver_mp); 5211 if (ill->ill_bcast_mp != NULL) 5212 freemsg(ill->ill_bcast_mp); 5213 if (ill->ill_flags & ILLF_XRESOLV) 5214 ill->ill_net_type = IRE_IF_RESOLVER; 5215 else 5216 ill->ill_net_type = IRE_IF_NORESOLVER; 5217 ill->ill_resolver_mp = ill_dlur_gen(NULL, 5218 ill->ill_phys_addr_length, 5219 ill->ill_sap, 5220 ill->ill_sap_length); 5221 ill->ill_bcast_mp = copymsg(ill->ill_resolver_mp); 5222 5223 if (ill->ill_isv6) 5224 /* 5225 * Note: xresolv interfaces will eventually need NOARP 5226 * set here as well, but that will require those 5227 * external resolvers to have some knowledge of 5228 * that flag and act appropriately. Not to be changed 5229 * at present. 5230 */ 5231 ill->ill_flags |= ILLF_NONUD; 5232 else 5233 ill->ill_flags |= ILLF_NOARP; 5234 5235 if (ill->ill_phys_addr_length == 0) { 5236 if (ill->ill_media->ip_m_mac_type == SUNW_DL_VNI) { 5237 ill->ill_ipif->ipif_flags |= IPIF_NOXMIT; 5238 ill->ill_phyint->phyint_flags |= PHYI_VIRTUAL; 5239 } else { 5240 /* pt-pt supports multicast. */ 5241 ill->ill_flags |= ILLF_MULTICAST; 5242 ill->ill_ipif->ipif_flags |= IPIF_POINTOPOINT; 5243 } 5244 } 5245 } else { 5246 ill->ill_net_type = IRE_IF_RESOLVER; 5247 if (ill->ill_bcast_mp != NULL) 5248 freemsg(ill->ill_bcast_mp); 5249 ill->ill_bcast_mp = ill_dlur_gen(brdcst_addr, 5250 ill->ill_bcast_addr_length, ill->ill_sap, 5251 ill->ill_sap_length); 5252 /* 5253 * Later detect lack of DLPI driver multicast 5254 * capability by catching DL_ENABMULTI errors in 5255 * ip_rput_dlpi. 5256 */ 5257 ill->ill_flags |= ILLF_MULTICAST; 5258 if (!ill->ill_isv6) 5259 ill->ill_ipif->ipif_flags |= IPIF_BROADCAST; 5260 } 5261 /* By default an interface does not support any CoS marking */ 5262 ill->ill_flags &= ~ILLF_COS_ENABLED; 5263 5264 /* 5265 * If we get QoS information in DL_INFO_ACK, the device supports 5266 * some form of CoS marking, set ILLF_COS_ENABLED. 5267 */ 5268 sel1 = (dl_qos_cl_sel1_t *)mi_offset_param(mp, dlia->dl_qos_offset, 5269 dlia->dl_qos_length); 5270 if ((sel1 != NULL) && (sel1->dl_qos_type == DL_QOS_CL_SEL1)) { 5271 ill->ill_flags |= ILLF_COS_ENABLED; 5272 } 5273 5274 /* Clear any previous error indication. */ 5275 ill->ill_error = 0; 5276 freemsg(mp); 5277 } 5278 5279 /* 5280 * Perform various checks to verify that an address would make sense as a 5281 * local, remote, or subnet interface address. 5282 */ 5283 static boolean_t 5284 ip_addr_ok_v4(ipaddr_t addr, ipaddr_t subnet_mask) 5285 { 5286 ipaddr_t net_mask; 5287 5288 /* 5289 * Don't allow all zeroes, all ones or experimental address, but allow 5290 * all ones netmask. 5291 */ 5292 if ((net_mask = ip_net_mask(addr)) == 0) 5293 return (B_FALSE); 5294 /* A given netmask overrides the "guess" netmask */ 5295 if (subnet_mask != 0) 5296 net_mask = subnet_mask; 5297 if ((net_mask != ~(ipaddr_t)0) && ((addr == (addr & net_mask)) || 5298 (addr == (addr | ~net_mask)))) { 5299 return (B_FALSE); 5300 } 5301 if (CLASSD(addr)) 5302 return (B_FALSE); 5303 5304 return (B_TRUE); 5305 } 5306 5307 /* 5308 * ipif_lookup_group 5309 * Returns held ipif 5310 */ 5311 ipif_t * 5312 ipif_lookup_group(ipaddr_t group, zoneid_t zoneid) 5313 { 5314 ire_t *ire; 5315 ipif_t *ipif; 5316 5317 ire = ire_lookup_multi(group, zoneid); 5318 if (ire == NULL) 5319 return (NULL); 5320 ipif = ire->ire_ipif; 5321 ipif_refhold(ipif); 5322 ire_refrele(ire); 5323 return (ipif); 5324 } 5325 5326 /* 5327 * Look for an ipif with the specified interface address and destination. 5328 * The destination address is used only for matching point-to-point interfaces. 5329 */ 5330 ipif_t * 5331 ipif_lookup_interface(ipaddr_t if_addr, ipaddr_t dst, queue_t *q, mblk_t *mp, 5332 ipsq_func_t func, int *error) 5333 { 5334 ipif_t *ipif; 5335 ill_t *ill; 5336 ill_walk_context_t ctx; 5337 ipsq_t *ipsq; 5338 5339 if (error != NULL) 5340 *error = 0; 5341 5342 /* 5343 * First match all the point-to-point interfaces 5344 * before looking at non-point-to-point interfaces. 5345 * This is done to avoid returning non-point-to-point 5346 * ipif instead of unnumbered point-to-point ipif. 5347 */ 5348 rw_enter(&ill_g_lock, RW_READER); 5349 ill = ILL_START_WALK_V4(&ctx); 5350 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 5351 GRAB_CONN_LOCK(q); 5352 mutex_enter(&ill->ill_lock); 5353 for (ipif = ill->ill_ipif; ipif != NULL; 5354 ipif = ipif->ipif_next) { 5355 /* Allow the ipif to be down */ 5356 if ((ipif->ipif_flags & IPIF_POINTOPOINT) && 5357 (ipif->ipif_lcl_addr == if_addr) && 5358 (ipif->ipif_pp_dst_addr == dst)) { 5359 /* 5360 * The block comment at the start of ipif_down 5361 * explains the use of the macros used below 5362 */ 5363 if (IPIF_CAN_LOOKUP(ipif)) { 5364 ipif_refhold_locked(ipif); 5365 mutex_exit(&ill->ill_lock); 5366 RELEASE_CONN_LOCK(q); 5367 rw_exit(&ill_g_lock); 5368 return (ipif); 5369 } else if (IPIF_CAN_WAIT(ipif, q)) { 5370 ipsq = ill->ill_phyint->phyint_ipsq; 5371 mutex_enter(&ipsq->ipsq_lock); 5372 mutex_exit(&ill->ill_lock); 5373 rw_exit(&ill_g_lock); 5374 ipsq_enq(ipsq, q, mp, func, NEW_OP, 5375 ill); 5376 mutex_exit(&ipsq->ipsq_lock); 5377 RELEASE_CONN_LOCK(q); 5378 *error = EINPROGRESS; 5379 return (NULL); 5380 } 5381 } 5382 } 5383 mutex_exit(&ill->ill_lock); 5384 RELEASE_CONN_LOCK(q); 5385 } 5386 rw_exit(&ill_g_lock); 5387 5388 /* lookup the ipif based on interface address */ 5389 ipif = ipif_lookup_addr(if_addr, NULL, ALL_ZONES, q, mp, func, error); 5390 ASSERT(ipif == NULL || !ipif->ipif_isv6); 5391 return (ipif); 5392 } 5393 5394 /* 5395 * Look for an ipif with the specified address. For point-point links 5396 * we look for matches on either the destination address and the local 5397 * address, but we ignore the check on the local address if IPIF_UNNUMBERED 5398 * is set. 5399 * Matches on a specific ill if match_ill is set. 5400 */ 5401 ipif_t * 5402 ipif_lookup_addr(ipaddr_t addr, ill_t *match_ill, zoneid_t zoneid, queue_t *q, 5403 mblk_t *mp, ipsq_func_t func, int *error) 5404 { 5405 ipif_t *ipif; 5406 ill_t *ill; 5407 boolean_t ptp = B_FALSE; 5408 ipsq_t *ipsq; 5409 ill_walk_context_t ctx; 5410 5411 if (error != NULL) 5412 *error = 0; 5413 5414 rw_enter(&ill_g_lock, RW_READER); 5415 /* 5416 * Repeat twice, first based on local addresses and 5417 * next time for pointopoint. 5418 */ 5419 repeat: 5420 ill = ILL_START_WALK_V4(&ctx); 5421 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 5422 if (match_ill != NULL && ill != match_ill) { 5423 continue; 5424 } 5425 GRAB_CONN_LOCK(q); 5426 mutex_enter(&ill->ill_lock); 5427 for (ipif = ill->ill_ipif; ipif != NULL; 5428 ipif = ipif->ipif_next) { 5429 if (zoneid != ALL_ZONES && zoneid != ipif->ipif_zoneid) 5430 continue; 5431 /* Allow the ipif to be down */ 5432 if ((!ptp && (ipif->ipif_lcl_addr == addr) && 5433 ((ipif->ipif_flags & IPIF_UNNUMBERED) == 0)) || 5434 (ptp && (ipif->ipif_flags & IPIF_POINTOPOINT) && 5435 (ipif->ipif_pp_dst_addr == addr))) { 5436 /* 5437 * The block comment at the start of ipif_down 5438 * explains the use of the macros used below 5439 */ 5440 if (IPIF_CAN_LOOKUP(ipif)) { 5441 ipif_refhold_locked(ipif); 5442 mutex_exit(&ill->ill_lock); 5443 RELEASE_CONN_LOCK(q); 5444 rw_exit(&ill_g_lock); 5445 return (ipif); 5446 } else if (IPIF_CAN_WAIT(ipif, q)) { 5447 ipsq = ill->ill_phyint->phyint_ipsq; 5448 mutex_enter(&ipsq->ipsq_lock); 5449 mutex_exit(&ill->ill_lock); 5450 rw_exit(&ill_g_lock); 5451 ipsq_enq(ipsq, q, mp, func, NEW_OP, 5452 ill); 5453 mutex_exit(&ipsq->ipsq_lock); 5454 RELEASE_CONN_LOCK(q); 5455 *error = EINPROGRESS; 5456 return (NULL); 5457 } 5458 } 5459 } 5460 mutex_exit(&ill->ill_lock); 5461 RELEASE_CONN_LOCK(q); 5462 } 5463 5464 /* Now try the ptp case */ 5465 if (ptp) { 5466 rw_exit(&ill_g_lock); 5467 if (error != NULL) 5468 *error = ENXIO; 5469 return (NULL); 5470 } 5471 ptp = B_TRUE; 5472 goto repeat; 5473 } 5474 5475 /* 5476 * Look for an ipif that matches the specified remote address i.e. the 5477 * ipif that would receive the specified packet. 5478 * First look for directly connected interfaces and then do a recursive 5479 * IRE lookup and pick the first ipif corresponding to the source address in the 5480 * ire. 5481 * Returns: held ipif 5482 */ 5483 ipif_t * 5484 ipif_lookup_remote(ill_t *ill, ipaddr_t addr, zoneid_t zoneid) 5485 { 5486 ipif_t *ipif; 5487 ire_t *ire; 5488 5489 ASSERT(!ill->ill_isv6); 5490 5491 /* 5492 * Someone could be changing this ipif currently or change it 5493 * after we return this. Thus a few packets could use the old 5494 * old values. However structure updates/creates (ire, ilg, ilm etc) 5495 * will atomically be updated or cleaned up with the new value 5496 * Thus we don't need a lock to check the flags or other attrs below. 5497 */ 5498 mutex_enter(&ill->ill_lock); 5499 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 5500 if (!IPIF_CAN_LOOKUP(ipif)) 5501 continue; 5502 if (zoneid != ALL_ZONES && zoneid != ipif->ipif_zoneid) 5503 continue; 5504 /* Allow the ipif to be down */ 5505 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 5506 if ((ipif->ipif_pp_dst_addr == addr) || 5507 (!(ipif->ipif_flags & IPIF_UNNUMBERED) && 5508 ipif->ipif_lcl_addr == addr)) { 5509 ipif_refhold_locked(ipif); 5510 mutex_exit(&ill->ill_lock); 5511 return (ipif); 5512 } 5513 } else if (ipif->ipif_subnet == (addr & ipif->ipif_net_mask)) { 5514 ipif_refhold_locked(ipif); 5515 mutex_exit(&ill->ill_lock); 5516 return (ipif); 5517 } 5518 } 5519 mutex_exit(&ill->ill_lock); 5520 ire = ire_route_lookup(addr, 0, 0, 0, NULL, NULL, zoneid, 5521 MATCH_IRE_RECURSIVE); 5522 if (ire != NULL) { 5523 /* 5524 * The callers of this function wants to know the 5525 * interface on which they have to send the replies 5526 * back. For IRE_CACHES that have ire_stq and ire_ipif 5527 * derived from different ills, we really don't care 5528 * what we return here. 5529 */ 5530 ipif = ire->ire_ipif; 5531 if (ipif != NULL) { 5532 ipif_refhold(ipif); 5533 ire_refrele(ire); 5534 return (ipif); 5535 } 5536 ire_refrele(ire); 5537 } 5538 /* Pick the first interface */ 5539 ipif = ipif_get_next_ipif(NULL, ill); 5540 return (ipif); 5541 } 5542 5543 /* 5544 * This func does not prevent refcnt from increasing. But if 5545 * the caller has taken steps to that effect, then this func 5546 * can be used to determine whether the ill has become quiescent 5547 */ 5548 boolean_t 5549 ill_is_quiescent(ill_t *ill) 5550 { 5551 ipif_t *ipif; 5552 5553 ASSERT(MUTEX_HELD(&ill->ill_lock)); 5554 5555 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 5556 if (ipif->ipif_refcnt != 0 || ipif->ipif_ire_cnt != 0) 5557 return (B_FALSE); 5558 } 5559 if (ill->ill_ire_cnt != 0 || ill->ill_refcnt != 0 || 5560 ill->ill_nce_cnt != 0 || ill->ill_srcif_refcnt != 0 || 5561 ill->ill_mrtun_refcnt != 0) 5562 return (B_FALSE); 5563 return (B_TRUE); 5564 } 5565 5566 /* 5567 * This func does not prevent refcnt from increasing. But if 5568 * the caller has taken steps to that effect, then this func 5569 * can be used to determine whether the ipif has become quiescent 5570 */ 5571 static boolean_t 5572 ipif_is_quiescent(ipif_t *ipif) 5573 { 5574 ill_t *ill; 5575 5576 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 5577 5578 if (ipif->ipif_refcnt != 0 || ipif->ipif_ire_cnt != 0) 5579 return (B_FALSE); 5580 5581 ill = ipif->ipif_ill; 5582 if (ill->ill_ipif_up_count != 0 || ill->ill_logical_down) 5583 return (B_TRUE); 5584 5585 /* This is the last ipif going down or being deleted on this ill */ 5586 if (ill->ill_ire_cnt != 0 || ill->ill_refcnt != 0) 5587 return (B_FALSE); 5588 5589 return (B_TRUE); 5590 } 5591 5592 /* 5593 * This func does not prevent refcnt from increasing. But if 5594 * the caller has taken steps to that effect, then this func 5595 * can be used to determine whether the ipifs marked with IPIF_MOVING 5596 * have become quiescent and can be moved in a failover/failback. 5597 */ 5598 static ipif_t * 5599 ill_quiescent_to_move(ill_t *ill) 5600 { 5601 ipif_t *ipif; 5602 5603 ASSERT(MUTEX_HELD(&ill->ill_lock)); 5604 5605 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 5606 if (ipif->ipif_state_flags & IPIF_MOVING) { 5607 if (ipif->ipif_refcnt != 0 || ipif->ipif_ire_cnt != 0) { 5608 return (ipif); 5609 } 5610 } 5611 } 5612 return (NULL); 5613 } 5614 5615 /* 5616 * The ipif/ill/ire has been refreled. Do the tail processing. 5617 * Determine if the ipif or ill in question has become quiescent and if so 5618 * wakeup close and/or restart any queued pending ioctl that is waiting 5619 * for the ipif_down (or ill_down) 5620 */ 5621 void 5622 ipif_ill_refrele_tail(ill_t *ill) 5623 { 5624 mblk_t *mp; 5625 conn_t *connp; 5626 ipsq_t *ipsq; 5627 ipif_t *ipif; 5628 5629 ASSERT(MUTEX_HELD(&ill->ill_lock)); 5630 5631 if ((ill->ill_state_flags & ILL_CONDEMNED) && 5632 ill_is_quiescent(ill)) { 5633 /* ill_close may be waiting */ 5634 cv_broadcast(&ill->ill_cv); 5635 } 5636 5637 /* ipsq can't change because ill_lock is held */ 5638 ipsq = ill->ill_phyint->phyint_ipsq; 5639 if (ipsq->ipsq_waitfor == 0) { 5640 /* Not waiting for anything, just return. */ 5641 mutex_exit(&ill->ill_lock); 5642 return; 5643 } 5644 ASSERT(ipsq->ipsq_pending_mp != NULL && 5645 ipsq->ipsq_pending_ipif != NULL); 5646 /* 5647 * ipif->ipif_refcnt must go down to zero for restarting REMOVEIF. 5648 * Last ipif going down needs to down the ill, so ill_ire_cnt must 5649 * be zero for restarting an ioctl that ends up downing the ill. 5650 */ 5651 ipif = ipsq->ipsq_pending_ipif; 5652 if (ipif->ipif_ill != ill) { 5653 /* The ioctl is pending on some other ill. */ 5654 mutex_exit(&ill->ill_lock); 5655 return; 5656 } 5657 5658 switch (ipsq->ipsq_waitfor) { 5659 case IPIF_DOWN: 5660 case IPIF_FREE: 5661 if (!ipif_is_quiescent(ipif)) { 5662 mutex_exit(&ill->ill_lock); 5663 return; 5664 } 5665 break; 5666 5667 case ILL_DOWN: 5668 case ILL_FREE: 5669 /* 5670 * case ILL_FREE arises only for loopback. otherwise ill_delete 5671 * waits synchronously in ip_close, and no message is queued in 5672 * ipsq_pending_mp at all in this case 5673 */ 5674 if (!ill_is_quiescent(ill)) { 5675 mutex_exit(&ill->ill_lock); 5676 return; 5677 } 5678 5679 break; 5680 5681 case ILL_MOVE_OK: 5682 if (ill_quiescent_to_move(ill) != NULL) { 5683 mutex_exit(&ill->ill_lock); 5684 return; 5685 } 5686 5687 break; 5688 default: 5689 cmn_err(CE_PANIC, "ipsq: %p unknown ipsq_waitfor %d\n", 5690 (void *)ipsq, ipsq->ipsq_waitfor); 5691 } 5692 5693 /* 5694 * Incr refcnt for the qwriter_ip call below which 5695 * does a refrele 5696 */ 5697 ill_refhold_locked(ill); 5698 mutex_exit(&ill->ill_lock); 5699 5700 mp = ipsq_pending_mp_get(ipsq, &connp); 5701 ASSERT(mp != NULL); 5702 5703 switch (mp->b_datap->db_type) { 5704 case M_ERROR: 5705 case M_HANGUP: 5706 (void) qwriter_ip(NULL, ill, ill->ill_rq, mp, 5707 ipif_all_down_tail, CUR_OP, B_TRUE); 5708 return; 5709 5710 case M_IOCTL: 5711 case M_IOCDATA: 5712 (void) qwriter_ip(NULL, ill, 5713 (connp != NULL ? CONNP_TO_WQ(connp) : ill->ill_wq), mp, 5714 ip_reprocess_ioctl, CUR_OP, B_TRUE); 5715 return; 5716 5717 default: 5718 cmn_err(CE_PANIC, "ipif_ill_refrele_tail mp %p " 5719 "db_type %d\n", (void *)mp, mp->b_datap->db_type); 5720 } 5721 } 5722 5723 #ifdef ILL_DEBUG 5724 /* Reuse trace buffer from beginning (if reached the end) and record trace */ 5725 void 5726 th_trace_rrecord(th_trace_t *th_trace) 5727 { 5728 tr_buf_t *tr_buf; 5729 uint_t lastref; 5730 5731 lastref = th_trace->th_trace_lastref; 5732 lastref++; 5733 if (lastref == TR_BUF_MAX) 5734 lastref = 0; 5735 th_trace->th_trace_lastref = lastref; 5736 tr_buf = &th_trace->th_trbuf[lastref]; 5737 tr_buf->tr_depth = getpcstack(tr_buf->tr_stack, IP_STACK_DEPTH); 5738 } 5739 5740 th_trace_t * 5741 th_trace_ipif_lookup(ipif_t *ipif) 5742 { 5743 int bucket_id; 5744 th_trace_t *th_trace; 5745 5746 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 5747 5748 bucket_id = IP_TR_HASH(curthread); 5749 ASSERT(bucket_id < IP_TR_HASH_MAX); 5750 5751 for (th_trace = ipif->ipif_trace[bucket_id]; th_trace != NULL; 5752 th_trace = th_trace->th_next) { 5753 if (th_trace->th_id == curthread) 5754 return (th_trace); 5755 } 5756 return (NULL); 5757 } 5758 5759 void 5760 ipif_trace_ref(ipif_t *ipif) 5761 { 5762 int bucket_id; 5763 th_trace_t *th_trace; 5764 5765 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 5766 5767 if (ipif->ipif_trace_disable) 5768 return; 5769 5770 /* 5771 * Attempt to locate the trace buffer for the curthread. 5772 * If it does not exist, then allocate a new trace buffer 5773 * and link it in list of trace bufs for this ipif, at the head 5774 */ 5775 th_trace = th_trace_ipif_lookup(ipif); 5776 if (th_trace == NULL) { 5777 bucket_id = IP_TR_HASH(curthread); 5778 th_trace = (th_trace_t *)kmem_zalloc(sizeof (th_trace_t), 5779 KM_NOSLEEP); 5780 if (th_trace == NULL) { 5781 ipif->ipif_trace_disable = B_TRUE; 5782 ipif_trace_cleanup(ipif); 5783 return; 5784 } 5785 th_trace->th_id = curthread; 5786 th_trace->th_next = ipif->ipif_trace[bucket_id]; 5787 th_trace->th_prev = &ipif->ipif_trace[bucket_id]; 5788 if (th_trace->th_next != NULL) 5789 th_trace->th_next->th_prev = &th_trace->th_next; 5790 ipif->ipif_trace[bucket_id] = th_trace; 5791 } 5792 ASSERT(th_trace->th_refcnt >= 0 && 5793 th_trace->th_refcnt < TR_BUF_MAX -1); 5794 th_trace->th_refcnt++; 5795 th_trace_rrecord(th_trace); 5796 } 5797 5798 void 5799 ipif_untrace_ref(ipif_t *ipif) 5800 { 5801 th_trace_t *th_trace; 5802 5803 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 5804 5805 if (ipif->ipif_trace_disable) 5806 return; 5807 th_trace = th_trace_ipif_lookup(ipif); 5808 ASSERT(th_trace != NULL); 5809 ASSERT(th_trace->th_refcnt > 0); 5810 5811 th_trace->th_refcnt--; 5812 th_trace_rrecord(th_trace); 5813 } 5814 5815 th_trace_t * 5816 th_trace_ill_lookup(ill_t *ill) 5817 { 5818 th_trace_t *th_trace; 5819 int bucket_id; 5820 5821 ASSERT(MUTEX_HELD(&ill->ill_lock)); 5822 5823 bucket_id = IP_TR_HASH(curthread); 5824 ASSERT(bucket_id < IP_TR_HASH_MAX); 5825 5826 for (th_trace = ill->ill_trace[bucket_id]; th_trace != NULL; 5827 th_trace = th_trace->th_next) { 5828 if (th_trace->th_id == curthread) 5829 return (th_trace); 5830 } 5831 return (NULL); 5832 } 5833 5834 void 5835 ill_trace_ref(ill_t *ill) 5836 { 5837 int bucket_id; 5838 th_trace_t *th_trace; 5839 5840 ASSERT(MUTEX_HELD(&ill->ill_lock)); 5841 if (ill->ill_trace_disable) 5842 return; 5843 /* 5844 * Attempt to locate the trace buffer for the curthread. 5845 * If it does not exist, then allocate a new trace buffer 5846 * and link it in list of trace bufs for this ill, at the head 5847 */ 5848 th_trace = th_trace_ill_lookup(ill); 5849 if (th_trace == NULL) { 5850 bucket_id = IP_TR_HASH(curthread); 5851 th_trace = (th_trace_t *)kmem_zalloc(sizeof (th_trace_t), 5852 KM_NOSLEEP); 5853 if (th_trace == NULL) { 5854 ill->ill_trace_disable = B_TRUE; 5855 ill_trace_cleanup(ill); 5856 return; 5857 } 5858 th_trace->th_id = curthread; 5859 th_trace->th_next = ill->ill_trace[bucket_id]; 5860 th_trace->th_prev = &ill->ill_trace[bucket_id]; 5861 if (th_trace->th_next != NULL) 5862 th_trace->th_next->th_prev = &th_trace->th_next; 5863 ill->ill_trace[bucket_id] = th_trace; 5864 } 5865 ASSERT(th_trace->th_refcnt >= 0 && 5866 th_trace->th_refcnt < TR_BUF_MAX - 1); 5867 5868 th_trace->th_refcnt++; 5869 th_trace_rrecord(th_trace); 5870 } 5871 5872 void 5873 ill_untrace_ref(ill_t *ill) 5874 { 5875 th_trace_t *th_trace; 5876 5877 ASSERT(MUTEX_HELD(&ill->ill_lock)); 5878 5879 if (ill->ill_trace_disable) 5880 return; 5881 th_trace = th_trace_ill_lookup(ill); 5882 ASSERT(th_trace != NULL); 5883 ASSERT(th_trace->th_refcnt > 0); 5884 5885 th_trace->th_refcnt--; 5886 th_trace_rrecord(th_trace); 5887 } 5888 5889 /* 5890 * Verify that this thread has no refs to the ipif and free 5891 * the trace buffers 5892 */ 5893 /* ARGSUSED */ 5894 void 5895 ipif_thread_exit(ipif_t *ipif, void *dummy) 5896 { 5897 th_trace_t *th_trace; 5898 5899 mutex_enter(&ipif->ipif_ill->ill_lock); 5900 5901 th_trace = th_trace_ipif_lookup(ipif); 5902 if (th_trace == NULL) { 5903 mutex_exit(&ipif->ipif_ill->ill_lock); 5904 return; 5905 } 5906 ASSERT(th_trace->th_refcnt == 0); 5907 /* unlink th_trace and free it */ 5908 *th_trace->th_prev = th_trace->th_next; 5909 if (th_trace->th_next != NULL) 5910 th_trace->th_next->th_prev = th_trace->th_prev; 5911 th_trace->th_next = NULL; 5912 th_trace->th_prev = NULL; 5913 kmem_free(th_trace, sizeof (th_trace_t)); 5914 5915 mutex_exit(&ipif->ipif_ill->ill_lock); 5916 } 5917 5918 /* 5919 * Verify that this thread has no refs to the ill and free 5920 * the trace buffers 5921 */ 5922 /* ARGSUSED */ 5923 void 5924 ill_thread_exit(ill_t *ill, void *dummy) 5925 { 5926 th_trace_t *th_trace; 5927 5928 mutex_enter(&ill->ill_lock); 5929 5930 th_trace = th_trace_ill_lookup(ill); 5931 if (th_trace == NULL) { 5932 mutex_exit(&ill->ill_lock); 5933 return; 5934 } 5935 ASSERT(th_trace->th_refcnt == 0); 5936 /* unlink th_trace and free it */ 5937 *th_trace->th_prev = th_trace->th_next; 5938 if (th_trace->th_next != NULL) 5939 th_trace->th_next->th_prev = th_trace->th_prev; 5940 th_trace->th_next = NULL; 5941 th_trace->th_prev = NULL; 5942 kmem_free(th_trace, sizeof (th_trace_t)); 5943 5944 mutex_exit(&ill->ill_lock); 5945 } 5946 #endif 5947 5948 #ifdef ILL_DEBUG 5949 void 5950 ip_thread_exit(void) 5951 { 5952 ill_t *ill; 5953 ipif_t *ipif; 5954 ill_walk_context_t ctx; 5955 5956 rw_enter(&ill_g_lock, RW_READER); 5957 ill = ILL_START_WALK_ALL(&ctx); 5958 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 5959 for (ipif = ill->ill_ipif; ipif != NULL; 5960 ipif = ipif->ipif_next) { 5961 ipif_thread_exit(ipif, NULL); 5962 } 5963 ill_thread_exit(ill, NULL); 5964 } 5965 rw_exit(&ill_g_lock); 5966 5967 ire_walk(ire_thread_exit, NULL); 5968 ndp_walk_impl(NULL, nce_thread_exit, NULL, B_FALSE); 5969 } 5970 5971 /* 5972 * Called when ipif is unplumbed or when memory alloc fails 5973 */ 5974 void 5975 ipif_trace_cleanup(ipif_t *ipif) 5976 { 5977 int i; 5978 th_trace_t *th_trace; 5979 th_trace_t *th_trace_next; 5980 5981 for (i = 0; i < IP_TR_HASH_MAX; i++) { 5982 for (th_trace = ipif->ipif_trace[i]; th_trace != NULL; 5983 th_trace = th_trace_next) { 5984 th_trace_next = th_trace->th_next; 5985 kmem_free(th_trace, sizeof (th_trace_t)); 5986 } 5987 ipif->ipif_trace[i] = NULL; 5988 } 5989 } 5990 5991 /* 5992 * Called when ill is unplumbed or when memory alloc fails 5993 */ 5994 void 5995 ill_trace_cleanup(ill_t *ill) 5996 { 5997 int i; 5998 th_trace_t *th_trace; 5999 th_trace_t *th_trace_next; 6000 6001 for (i = 0; i < IP_TR_HASH_MAX; i++) { 6002 for (th_trace = ill->ill_trace[i]; th_trace != NULL; 6003 th_trace = th_trace_next) { 6004 th_trace_next = th_trace->th_next; 6005 kmem_free(th_trace, sizeof (th_trace_t)); 6006 } 6007 ill->ill_trace[i] = NULL; 6008 } 6009 } 6010 6011 #else 6012 void ip_thread_exit(void) {} 6013 #endif 6014 6015 void 6016 ipif_refhold_locked(ipif_t *ipif) 6017 { 6018 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 6019 ipif->ipif_refcnt++; 6020 IPIF_TRACE_REF(ipif); 6021 } 6022 6023 void 6024 ipif_refhold(ipif_t *ipif) 6025 { 6026 ill_t *ill; 6027 6028 ill = ipif->ipif_ill; 6029 mutex_enter(&ill->ill_lock); 6030 ipif->ipif_refcnt++; 6031 IPIF_TRACE_REF(ipif); 6032 mutex_exit(&ill->ill_lock); 6033 } 6034 6035 /* 6036 * Must not be called while holding any locks. Otherwise if this is 6037 * the last reference to be released there is a chance of recursive mutex 6038 * panic due to ipif_refrele -> ipif_ill_refrele_tail -> qwriter_ip trying 6039 * to restart an ioctl. 6040 */ 6041 void 6042 ipif_refrele(ipif_t *ipif) 6043 { 6044 ill_t *ill; 6045 6046 ill = ipif->ipif_ill; 6047 6048 mutex_enter(&ill->ill_lock); 6049 ASSERT(ipif->ipif_refcnt != 0); 6050 ipif->ipif_refcnt--; 6051 IPIF_UNTRACE_REF(ipif); 6052 if (ipif->ipif_refcnt != 0) { 6053 mutex_exit(&ill->ill_lock); 6054 return; 6055 } 6056 6057 /* Drops the ill_lock */ 6058 ipif_ill_refrele_tail(ill); 6059 } 6060 6061 ipif_t * 6062 ipif_get_next_ipif(ipif_t *curr, ill_t *ill) 6063 { 6064 ipif_t *ipif; 6065 6066 mutex_enter(&ill->ill_lock); 6067 for (ipif = (curr == NULL ? ill->ill_ipif : curr->ipif_next); 6068 ipif != NULL; ipif = ipif->ipif_next) { 6069 if (!IPIF_CAN_LOOKUP(ipif)) 6070 continue; 6071 ipif_refhold_locked(ipif); 6072 mutex_exit(&ill->ill_lock); 6073 return (ipif); 6074 } 6075 mutex_exit(&ill->ill_lock); 6076 return (NULL); 6077 } 6078 6079 /* 6080 * TODO: make this table extendible at run time 6081 * Return a pointer to the mac type info for 'mac_type' 6082 */ 6083 static ip_m_t * 6084 ip_m_lookup(t_uscalar_t mac_type) 6085 { 6086 ip_m_t *ipm; 6087 6088 for (ipm = ip_m_tbl; ipm < A_END(ip_m_tbl); ipm++) 6089 if (ipm->ip_m_mac_type == mac_type) 6090 return (ipm); 6091 return (NULL); 6092 } 6093 6094 /* 6095 * ip_rt_add is called to add an IPv4 route to the forwarding table. 6096 * ipif_arg is passed in to associate it with the correct interface. 6097 * We may need to restart this operation if the ipif cannot be looked up 6098 * due to an exclusive operation that is currently in progress. The restart 6099 * entry point is specified by 'func' 6100 */ 6101 int 6102 ip_rt_add(ipaddr_t dst_addr, ipaddr_t mask, ipaddr_t gw_addr, 6103 ipaddr_t src_addr, int flags, ipif_t *ipif_arg, ipif_t *src_ipif, 6104 ire_t **ire_arg, boolean_t ioctl_msg, queue_t *q, mblk_t *mp, 6105 ipsq_func_t func) 6106 { 6107 ire_t *ire; 6108 ire_t *gw_ire = NULL; 6109 ipif_t *ipif = NULL; 6110 boolean_t ipif_refheld = B_FALSE; 6111 uint_t type; 6112 int match_flags = MATCH_IRE_TYPE; 6113 int error; 6114 6115 ip1dbg(("ip_rt_add:")); 6116 6117 if (ire_arg != NULL) 6118 *ire_arg = NULL; 6119 6120 /* 6121 * If this is the case of RTF_HOST being set, then we set the netmask 6122 * to all ones (regardless if one was supplied). 6123 */ 6124 if (flags & RTF_HOST) 6125 mask = IP_HOST_MASK; 6126 6127 /* 6128 * Prevent routes with a zero gateway from being created (since 6129 * interfaces can currently be plumbed and brought up no assigned 6130 * address). 6131 * For routes with RTA_SRCIFP, the gateway address can be 0.0.0.0. 6132 */ 6133 if (gw_addr == 0 && src_ipif == NULL) 6134 return (ENETUNREACH); 6135 /* 6136 * Get the ipif, if any, corresponding to the gw_addr 6137 */ 6138 if (gw_addr != 0) { 6139 ipif = ipif_lookup_interface(gw_addr, dst_addr, q, mp, func, 6140 &error); 6141 if (ipif != NULL) { 6142 if (IS_VNI(ipif->ipif_ill)) { 6143 ipif_refrele(ipif); 6144 return (EINVAL); 6145 } 6146 ipif_refheld = B_TRUE; 6147 } else if (error == EINPROGRESS) { 6148 ip1dbg(("ip_rt_add: null and EINPROGRESS")); 6149 return (EINPROGRESS); 6150 } else { 6151 error = 0; 6152 } 6153 } 6154 6155 if (ipif != NULL) { 6156 ip1dbg(("ip_rt_add: ipif_lookup_interface done ipif nonnull")); 6157 ASSERT(!MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 6158 } else { 6159 ip1dbg(("ip_rt_add: ipif_lookup_interface done ipif is null")); 6160 } 6161 6162 /* 6163 * GateD will attempt to create routes with a loopback interface 6164 * address as the gateway and with RTF_GATEWAY set. We allow 6165 * these routes to be added, but create them as interface routes 6166 * since the gateway is an interface address. 6167 */ 6168 if ((ipif != NULL) && (ipif->ipif_ire_type == IRE_LOOPBACK)) 6169 flags &= ~RTF_GATEWAY; 6170 6171 /* 6172 * Traditionally, interface routes are ones where RTF_GATEWAY isn't set 6173 * and the gateway address provided is one of the system's interface 6174 * addresses. By using the routing socket interface and supplying an 6175 * RTA_IFP sockaddr with an interface index, an alternate method of 6176 * specifying an interface route to be created is available which uses 6177 * the interface index that specifies the outgoing interface rather than 6178 * the address of an outgoing interface (which may not be able to 6179 * uniquely identify an interface). When coupled with the RTF_GATEWAY 6180 * flag, routes can be specified which not only specify the next-hop to 6181 * be used when routing to a certain prefix, but also which outgoing 6182 * interface should be used. 6183 * 6184 * Previously, interfaces would have unique addresses assigned to them 6185 * and so the address assigned to a particular interface could be used 6186 * to identify a particular interface. One exception to this was the 6187 * case of an unnumbered interface (where IPIF_UNNUMBERED was set). 6188 * 6189 * With the advent of IPv6 and its link-local addresses, this 6190 * restriction was relaxed and interfaces could share addresses between 6191 * themselves. In fact, typically all of the link-local interfaces on 6192 * an IPv6 node or router will have the same link-local address. In 6193 * order to differentiate between these interfaces, the use of an 6194 * interface index is necessary and this index can be carried inside a 6195 * RTA_IFP sockaddr (which is actually a sockaddr_dl). One restriction 6196 * of using the interface index, however, is that all of the ipif's that 6197 * are part of an ill have the same index and so the RTA_IFP sockaddr 6198 * cannot be used to differentiate between ipif's (or logical 6199 * interfaces) that belong to the same ill (physical interface). 6200 * 6201 * For example, in the following case involving IPv4 interfaces and 6202 * logical interfaces 6203 * 6204 * 192.0.2.32 255.255.255.224 192.0.2.33 U if0 6205 * 192.0.2.32 255.255.255.224 192.0.2.34 U if0:1 6206 * 192.0.2.32 255.255.255.224 192.0.2.35 U if0:2 6207 * 6208 * the ipif's corresponding to each of these interface routes can be 6209 * uniquely identified by the "gateway" (actually interface address). 6210 * 6211 * In this case involving multiple IPv6 default routes to a particular 6212 * link-local gateway, the use of RTA_IFP is necessary to specify which 6213 * default route is of interest: 6214 * 6215 * default fe80::123:4567:89ab:cdef U if0 6216 * default fe80::123:4567:89ab:cdef U if1 6217 */ 6218 6219 /* RTF_GATEWAY not set */ 6220 if (!(flags & RTF_GATEWAY)) { 6221 queue_t *stq; 6222 queue_t *rfq = NULL; 6223 ill_t *in_ill = NULL; 6224 6225 /* 6226 * As the interface index specified with the RTA_IFP sockaddr is 6227 * the same for all ipif's off of an ill, the matching logic 6228 * below uses MATCH_IRE_ILL if such an index was specified. 6229 * This means that routes sharing the same prefix when added 6230 * using a RTA_IFP sockaddr must have distinct interface 6231 * indices (namely, they must be on distinct ill's). 6232 * 6233 * On the other hand, since the gateway address will usually be 6234 * different for each ipif on the system, the matching logic 6235 * uses MATCH_IRE_IPIF in the case of a traditional interface 6236 * route. This means that interface routes for the same prefix 6237 * can be created if they belong to distinct ipif's and if a 6238 * RTA_IFP sockaddr is not present. 6239 */ 6240 if (ipif_arg != NULL) { 6241 if (ipif_refheld) { 6242 ipif_refrele(ipif); 6243 ipif_refheld = B_FALSE; 6244 } 6245 ipif = ipif_arg; 6246 match_flags |= MATCH_IRE_ILL; 6247 } else { 6248 /* 6249 * Check the ipif corresponding to the gw_addr 6250 */ 6251 if (ipif == NULL) 6252 return (ENETUNREACH); 6253 match_flags |= MATCH_IRE_IPIF; 6254 } 6255 ASSERT(ipif != NULL); 6256 /* 6257 * If src_ipif is not NULL, we have to create 6258 * an ire with non-null ire_in_ill value 6259 */ 6260 if (src_ipif != NULL) { 6261 in_ill = src_ipif->ipif_ill; 6262 } 6263 6264 /* 6265 * We check for an existing entry at this point. 6266 * 6267 * Since a netmask isn't passed in via the ioctl interface 6268 * (SIOCADDRT), we don't check for a matching netmask in that 6269 * case. 6270 */ 6271 if (!ioctl_msg) 6272 match_flags |= MATCH_IRE_MASK; 6273 if (src_ipif != NULL) { 6274 /* Look up in the special table */ 6275 ire = ire_srcif_table_lookup(dst_addr, IRE_INTERFACE, 6276 ipif, src_ipif->ipif_ill, match_flags); 6277 } else { 6278 ire = ire_ftable_lookup(dst_addr, mask, 0, 6279 IRE_INTERFACE, ipif, NULL, ALL_ZONES, 0, 6280 match_flags); 6281 } 6282 if (ire != NULL) { 6283 ire_refrele(ire); 6284 if (ipif_refheld) 6285 ipif_refrele(ipif); 6286 return (EEXIST); 6287 } 6288 6289 if (src_ipif != NULL) { 6290 /* 6291 * Create the special ire for the IRE table 6292 * which hangs out of ire_in_ill. This ire 6293 * is in-between IRE_CACHE and IRE_INTERFACE. 6294 * Thus rfq is non-NULL. 6295 */ 6296 rfq = ipif->ipif_rq; 6297 } 6298 /* Create the usual interface ires */ 6299 6300 stq = (ipif->ipif_net_type == IRE_IF_RESOLVER) 6301 ? ipif->ipif_rq : ipif->ipif_wq; 6302 6303 /* 6304 * Create a copy of the IRE_LOOPBACK, 6305 * IRE_IF_NORESOLVER or IRE_IF_RESOLVER with 6306 * the modified address and netmask. 6307 */ 6308 ire = ire_create( 6309 (uchar_t *)&dst_addr, 6310 (uint8_t *)&mask, 6311 (uint8_t *)&ipif->ipif_src_addr, 6312 NULL, 6313 NULL, 6314 &ipif->ipif_mtu, 6315 NULL, 6316 rfq, 6317 stq, 6318 ipif->ipif_net_type, 6319 ipif->ipif_resolver_mp, 6320 ipif, 6321 in_ill, 6322 0, 6323 0, 6324 0, 6325 flags, 6326 &ire_uinfo_null); 6327 if (ire == NULL) { 6328 if (ipif_refheld) 6329 ipif_refrele(ipif); 6330 return (ENOMEM); 6331 } 6332 6333 /* 6334 * Some software (for example, GateD and Sun Cluster) attempts 6335 * to create (what amount to) IRE_PREFIX routes with the 6336 * loopback address as the gateway. This is primarily done to 6337 * set up prefixes with the RTF_REJECT flag set (for example, 6338 * when generating aggregate routes.) 6339 * 6340 * If the IRE type (as defined by ipif->ipif_net_type) is 6341 * IRE_LOOPBACK, then we map the request into a 6342 * IRE_IF_NORESOLVER. 6343 * 6344 * Needless to say, the real IRE_LOOPBACK is NOT created by this 6345 * routine, but rather using ire_create() directly. 6346 */ 6347 if (ipif->ipif_net_type == IRE_LOOPBACK) 6348 ire->ire_type = IRE_IF_NORESOLVER; 6349 error = ire_add(&ire, q, mp, func); 6350 if (error == 0) 6351 goto save_ire; 6352 6353 /* 6354 * In the result of failure, ire_add() will have already 6355 * deleted the ire in question, so there is no need to 6356 * do that here. 6357 */ 6358 if (ipif_refheld) 6359 ipif_refrele(ipif); 6360 return (error); 6361 } 6362 if (ipif_refheld) { 6363 ipif_refrele(ipif); 6364 ipif_refheld = B_FALSE; 6365 } 6366 6367 if (src_ipif != NULL) { 6368 /* RTA_SRCIFP is not supported on RTF_GATEWAY */ 6369 ip2dbg(("ip_rt_add: SRCIF cannot be set with gateway route\n")); 6370 return (EINVAL); 6371 } 6372 /* 6373 * Get an interface IRE for the specified gateway. 6374 * If we don't have an IRE_IF_NORESOLVER or IRE_IF_RESOLVER for the 6375 * gateway, it is currently unreachable and we fail the request 6376 * accordingly. 6377 */ 6378 ipif = ipif_arg; 6379 if (ipif_arg != NULL) 6380 match_flags |= MATCH_IRE_ILL; 6381 gw_ire = ire_ftable_lookup(gw_addr, 0, 0, IRE_INTERFACE, ipif_arg, NULL, 6382 ALL_ZONES, 0, match_flags); 6383 if (gw_ire == NULL) 6384 return (ENETUNREACH); 6385 6386 /* 6387 * We create one of three types of IREs as a result of this request 6388 * based on the netmask. A netmask of all ones (which is automatically 6389 * assumed when RTF_HOST is set) results in an IRE_HOST being created. 6390 * An all zeroes netmask implies a default route so an IRE_DEFAULT is 6391 * created. Otherwise, an IRE_PREFIX route is created for the 6392 * destination prefix. 6393 */ 6394 if (mask == IP_HOST_MASK) 6395 type = IRE_HOST; 6396 else if (mask == 0) 6397 type = IRE_DEFAULT; 6398 else 6399 type = IRE_PREFIX; 6400 6401 /* check for a duplicate entry */ 6402 ire = ire_ftable_lookup(dst_addr, mask, gw_addr, type, ipif_arg, 6403 NULL, ALL_ZONES, 0, match_flags | MATCH_IRE_MASK | MATCH_IRE_GW); 6404 if (ire != NULL) { 6405 ire_refrele(gw_ire); 6406 ire_refrele(ire); 6407 return (EEXIST); 6408 } 6409 6410 /* Create the IRE. */ 6411 ire = ire_create( 6412 (uchar_t *)&dst_addr, /* dest address */ 6413 (uchar_t *)&mask, /* mask */ 6414 /* src address assigned by the caller? */ 6415 (uchar_t *)(((src_addr != INADDR_ANY) && 6416 (flags & RTF_SETSRC)) ? &src_addr : NULL), 6417 (uchar_t *)&gw_addr, /* gateway address */ 6418 NULL, /* no in-srcaddress */ 6419 &gw_ire->ire_max_frag, 6420 NULL, /* no Fast Path header */ 6421 NULL, /* no recv-from queue */ 6422 NULL, /* no send-to queue */ 6423 (ushort_t)type, /* IRE type */ 6424 NULL, 6425 ipif_arg, 6426 NULL, 6427 0, 6428 0, 6429 0, 6430 flags, 6431 &gw_ire->ire_uinfo); /* Inherit ULP info from gw */ 6432 if (ire == NULL) { 6433 ire_refrele(gw_ire); 6434 return (ENOMEM); 6435 } 6436 6437 /* 6438 * POLICY: should we allow an RTF_HOST with address INADDR_ANY? 6439 * SUN/OS socket stuff does but do we really want to allow 0.0.0.0? 6440 */ 6441 6442 /* Add the new IRE. */ 6443 error = ire_add(&ire, q, mp, func); 6444 if (error != 0) { 6445 /* 6446 * In the result of failure, ire_add() will have already 6447 * deleted the ire in question, so there is no need to 6448 * do that here. 6449 */ 6450 ire_refrele(gw_ire); 6451 return (error); 6452 } 6453 6454 if (flags & RTF_MULTIRT) { 6455 /* 6456 * Invoke the CGTP (multirouting) filtering module 6457 * to add the dst address in the filtering database. 6458 * Replicated inbound packets coming from that address 6459 * will be filtered to discard the duplicates. 6460 * It is not necessary to call the CGTP filter hook 6461 * when the dst address is a broadcast or multicast, 6462 * because an IP source address cannot be a broadcast 6463 * or a multicast. 6464 */ 6465 ire_t *ire_dst = ire_ctable_lookup(ire->ire_addr, 0, 6466 IRE_BROADCAST, NULL, NULL, MATCH_IRE_TYPE); 6467 if (ire_dst != NULL) { 6468 ip_cgtp_bcast_add(ire, ire_dst); 6469 ire_refrele(ire_dst); 6470 goto save_ire; 6471 } 6472 if ((ip_cgtp_filter_ops != NULL) && !CLASSD(ire->ire_addr)) { 6473 int res = ip_cgtp_filter_ops->cfo_add_dest_v4( 6474 ire->ire_addr, 6475 ire->ire_gateway_addr, 6476 ire->ire_src_addr, 6477 gw_ire->ire_src_addr); 6478 if (res != 0) { 6479 ire_refrele(gw_ire); 6480 ire_delete(ire); 6481 return (res); 6482 } 6483 } 6484 } 6485 6486 save_ire: 6487 if (gw_ire != NULL) { 6488 ire_refrele(gw_ire); 6489 } 6490 /* 6491 * We do not do save_ire for the routes added with RTA_SRCIFP 6492 * flag. This route is only added and deleted by mipagent. 6493 * So, for simplicity of design, we refrain from saving 6494 * ires that are created with srcif value. This may change 6495 * in future if we find more usage of srcifp feature. 6496 */ 6497 if (ipif != NULL && src_ipif == NULL) { 6498 /* 6499 * Save enough information so that we can recreate the IRE if 6500 * the interface goes down and then up. The metrics associated 6501 * with the route will be saved as well when rts_setmetrics() is 6502 * called after the IRE has been created. In the case where 6503 * memory cannot be allocated, none of this information will be 6504 * saved. 6505 */ 6506 ipif_save_ire(ipif, ire); 6507 } 6508 if (ioctl_msg) 6509 ip_rts_rtmsg(RTM_OLDADD, ire, 0); 6510 if (ire_arg != NULL) { 6511 /* 6512 * Store the ire that was successfully added into where ire_arg 6513 * points to so that callers don't have to look it up 6514 * themselves (but they are responsible for ire_refrele()ing 6515 * the ire when they are finished with it). 6516 */ 6517 *ire_arg = ire; 6518 } else { 6519 ire_refrele(ire); /* Held in ire_add */ 6520 } 6521 if (ipif_refheld) 6522 ipif_refrele(ipif); 6523 return (0); 6524 } 6525 6526 /* 6527 * ip_rt_delete is called to delete an IPv4 route. 6528 * ipif_arg is passed in to associate it with the correct interface. 6529 * src_ipif is passed to associate the incoming interface of the packet. 6530 * We may need to restart this operation if the ipif cannot be looked up 6531 * due to an exclusive operation that is currently in progress. The restart 6532 * entry point is specified by 'func' 6533 */ 6534 /* ARGSUSED4 */ 6535 int 6536 ip_rt_delete(ipaddr_t dst_addr, ipaddr_t mask, ipaddr_t gw_addr, 6537 uint_t rtm_addrs, int flags, ipif_t *ipif_arg, ipif_t *src_ipif, 6538 boolean_t ioctl_msg, queue_t *q, mblk_t *mp, ipsq_func_t func) 6539 { 6540 ire_t *ire = NULL; 6541 ipif_t *ipif; 6542 boolean_t ipif_refheld = B_FALSE; 6543 uint_t type; 6544 uint_t match_flags = MATCH_IRE_TYPE; 6545 int err = 0; 6546 6547 ip1dbg(("ip_rt_delete:")); 6548 /* 6549 * If this is the case of RTF_HOST being set, then we set the netmask 6550 * to all ones. Otherwise, we use the netmask if one was supplied. 6551 */ 6552 if (flags & RTF_HOST) { 6553 mask = IP_HOST_MASK; 6554 match_flags |= MATCH_IRE_MASK; 6555 } else if (rtm_addrs & RTA_NETMASK) { 6556 match_flags |= MATCH_IRE_MASK; 6557 } 6558 6559 /* 6560 * Note that RTF_GATEWAY is never set on a delete, therefore 6561 * we check if the gateway address is one of our interfaces first, 6562 * and fall back on RTF_GATEWAY routes. 6563 * 6564 * This makes it possible to delete an original 6565 * IRE_IF_NORESOLVER/IRE_IF_RESOLVER - consistent with SunOS 4.1. 6566 * 6567 * As the interface index specified with the RTA_IFP sockaddr is the 6568 * same for all ipif's off of an ill, the matching logic below uses 6569 * MATCH_IRE_ILL if such an index was specified. This means a route 6570 * sharing the same prefix and interface index as the the route 6571 * intended to be deleted might be deleted instead if a RTA_IFP sockaddr 6572 * is specified in the request. 6573 * 6574 * On the other hand, since the gateway address will usually be 6575 * different for each ipif on the system, the matching logic 6576 * uses MATCH_IRE_IPIF in the case of a traditional interface 6577 * route. This means that interface routes for the same prefix can be 6578 * uniquely identified if they belong to distinct ipif's and if a 6579 * RTA_IFP sockaddr is not present. 6580 * 6581 * For more detail on specifying routes by gateway address and by 6582 * interface index, see the comments in ip_rt_add(). 6583 * gw_addr could be zero in some cases when both RTA_SRCIFP and 6584 * RTA_IFP are specified. If RTA_SRCIFP is specified and both 6585 * RTA_IFP and gateway_addr are NULL/zero, then delete will not 6586 * succeed. 6587 */ 6588 if (src_ipif != NULL) { 6589 if (ipif_arg == NULL && gw_addr != 0) { 6590 ipif_arg = ipif_lookup_interface(gw_addr, dst_addr, 6591 q, mp, func, &err); 6592 if (ipif_arg != NULL) 6593 ipif_refheld = B_TRUE; 6594 } 6595 if (ipif_arg == NULL) { 6596 err = (err == EINPROGRESS) ? err : ESRCH; 6597 return (err); 6598 } 6599 ipif = ipif_arg; 6600 } else { 6601 ipif = ipif_lookup_interface(gw_addr, dst_addr, 6602 q, mp, func, &err); 6603 if (ipif != NULL) 6604 ipif_refheld = B_TRUE; 6605 else if (err == EINPROGRESS) 6606 return (err); 6607 else 6608 err = 0; 6609 } 6610 if (ipif != NULL) { 6611 if (ipif_arg != NULL) { 6612 if (ipif_refheld) { 6613 ipif_refrele(ipif); 6614 ipif_refheld = B_FALSE; 6615 } 6616 ipif = ipif_arg; 6617 match_flags |= MATCH_IRE_ILL; 6618 } else { 6619 match_flags |= MATCH_IRE_IPIF; 6620 } 6621 if (src_ipif != NULL) { 6622 ire = ire_srcif_table_lookup(dst_addr, IRE_INTERFACE, 6623 ipif, src_ipif->ipif_ill, match_flags); 6624 } else { 6625 if (ipif->ipif_ire_type == IRE_LOOPBACK) { 6626 ire = ire_ctable_lookup(dst_addr, 0, 6627 IRE_LOOPBACK, ipif, ALL_ZONES, match_flags); 6628 } 6629 if (ire == NULL) { 6630 ire = ire_ftable_lookup(dst_addr, mask, 0, 6631 IRE_INTERFACE, ipif, NULL, ALL_ZONES, 0, 6632 match_flags); 6633 } 6634 } 6635 } 6636 6637 if (ire == NULL) { 6638 /* 6639 * At this point, the gateway address is not one of our own 6640 * addresses or a matching interface route was not found. We 6641 * set the IRE type to lookup based on whether 6642 * this is a host route, a default route or just a prefix. 6643 * 6644 * If an ipif_arg was passed in, then the lookup is based on an 6645 * interface index so MATCH_IRE_ILL is added to match_flags. 6646 * In any case, MATCH_IRE_IPIF is cleared and MATCH_IRE_GW is 6647 * set as the route being looked up is not a traditional 6648 * interface route. 6649 * Since we do not add gateway route with srcipif, we don't 6650 * expect to find it either. 6651 */ 6652 if (src_ipif != NULL) { 6653 if (ipif_refheld) 6654 ipif_refrele(ipif); 6655 return (ESRCH); 6656 } else { 6657 match_flags &= ~MATCH_IRE_IPIF; 6658 match_flags |= MATCH_IRE_GW; 6659 if (ipif_arg != NULL) 6660 match_flags |= MATCH_IRE_ILL; 6661 if (mask == IP_HOST_MASK) 6662 type = IRE_HOST; 6663 else if (mask == 0) 6664 type = IRE_DEFAULT; 6665 else 6666 type = IRE_PREFIX; 6667 ire = ire_ftable_lookup(dst_addr, mask, gw_addr, type, 6668 ipif_arg, NULL, ALL_ZONES, 0, match_flags); 6669 if (ire == NULL && type == IRE_HOST) { 6670 ire = ire_ftable_lookup(dst_addr, mask, gw_addr, 6671 IRE_HOST_REDIRECT, ipif_arg, NULL, 6672 ALL_ZONES, 0, match_flags); 6673 } 6674 } 6675 } 6676 6677 if (ipif_refheld) 6678 ipif_refrele(ipif); 6679 6680 /* ipif is not refheld anymore */ 6681 if (ire == NULL) 6682 return (ESRCH); 6683 6684 if (ire->ire_flags & RTF_MULTIRT) { 6685 /* 6686 * Invoke the CGTP (multirouting) filtering module 6687 * to remove the dst address from the filtering database. 6688 * Packets coming from that address will no longer be 6689 * filtered to remove duplicates. 6690 */ 6691 if (ip_cgtp_filter_ops != NULL) { 6692 err = ip_cgtp_filter_ops->cfo_del_dest_v4(ire->ire_addr, 6693 ire->ire_gateway_addr); 6694 } 6695 ip_cgtp_bcast_delete(ire); 6696 } 6697 6698 ipif = ire->ire_ipif; 6699 /* 6700 * Removing from ipif_saved_ire_mp is not necessary 6701 * when src_ipif being non-NULL. ip_rt_add does not 6702 * save the ires which src_ipif being non-NULL. 6703 */ 6704 if (ipif != NULL && src_ipif == NULL) { 6705 ipif_remove_ire(ipif, ire); 6706 } 6707 if (ioctl_msg) 6708 ip_rts_rtmsg(RTM_OLDDEL, ire, 0); 6709 ire_delete(ire); 6710 ire_refrele(ire); 6711 return (err); 6712 } 6713 6714 /* 6715 * ip_siocaddrt is called to complete processing of an SIOCADDRT IOCTL. 6716 */ 6717 /* ARGSUSED */ 6718 int 6719 ip_siocaddrt(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 6720 ip_ioctl_cmd_t *ipip, void *dummy_if_req) 6721 { 6722 ipaddr_t dst_addr; 6723 ipaddr_t gw_addr; 6724 ipaddr_t mask; 6725 int error = 0; 6726 mblk_t *mp1; 6727 struct rtentry *rt; 6728 ipif_t *ipif = NULL; 6729 6730 ip1dbg(("ip_siocaddrt:")); 6731 /* Existence of mp1 verified in ip_wput_nondata */ 6732 mp1 = mp->b_cont->b_cont; 6733 rt = (struct rtentry *)mp1->b_rptr; 6734 6735 dst_addr = ((sin_t *)&rt->rt_dst)->sin_addr.s_addr; 6736 gw_addr = ((sin_t *)&rt->rt_gateway)->sin_addr.s_addr; 6737 6738 /* 6739 * If the RTF_HOST flag is on, this is a request to assign a gateway 6740 * to a particular host address. In this case, we set the netmask to 6741 * all ones for the particular destination address. Otherwise, 6742 * determine the netmask to be used based on dst_addr and the interfaces 6743 * in use. 6744 */ 6745 if (rt->rt_flags & RTF_HOST) { 6746 mask = IP_HOST_MASK; 6747 } else { 6748 /* 6749 * Note that ip_subnet_mask returns a zero mask in the case of 6750 * default (an all-zeroes address). 6751 */ 6752 mask = ip_subnet_mask(dst_addr, &ipif); 6753 } 6754 6755 error = ip_rt_add(dst_addr, mask, gw_addr, 0, rt->rt_flags, 6756 NULL, NULL, NULL, B_TRUE, q, mp, ip_process_ioctl); 6757 if (ipif != NULL) 6758 ipif_refrele(ipif); 6759 return (error); 6760 } 6761 6762 /* 6763 * ip_siocdelrt is called to complete processing of an SIOCDELRT IOCTL. 6764 */ 6765 /* ARGSUSED */ 6766 int 6767 ip_siocdelrt(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 6768 ip_ioctl_cmd_t *ipip, void *dummy_if_req) 6769 { 6770 ipaddr_t dst_addr; 6771 ipaddr_t gw_addr; 6772 ipaddr_t mask; 6773 int error; 6774 mblk_t *mp1; 6775 struct rtentry *rt; 6776 ipif_t *ipif = NULL; 6777 6778 ip1dbg(("ip_siocdelrt:")); 6779 /* Existence of mp1 verified in ip_wput_nondata */ 6780 mp1 = mp->b_cont->b_cont; 6781 rt = (struct rtentry *)mp1->b_rptr; 6782 6783 dst_addr = ((sin_t *)&rt->rt_dst)->sin_addr.s_addr; 6784 gw_addr = ((sin_t *)&rt->rt_gateway)->sin_addr.s_addr; 6785 6786 /* 6787 * If the RTF_HOST flag is on, this is a request to delete a gateway 6788 * to a particular host address. In this case, we set the netmask to 6789 * all ones for the particular destination address. Otherwise, 6790 * determine the netmask to be used based on dst_addr and the interfaces 6791 * in use. 6792 */ 6793 if (rt->rt_flags & RTF_HOST) { 6794 mask = IP_HOST_MASK; 6795 } else { 6796 /* 6797 * Note that ip_subnet_mask returns a zero mask in the case of 6798 * default (an all-zeroes address). 6799 */ 6800 mask = ip_subnet_mask(dst_addr, &ipif); 6801 } 6802 6803 error = ip_rt_delete(dst_addr, mask, gw_addr, 6804 RTA_DST | RTA_GATEWAY | RTA_NETMASK, rt->rt_flags, NULL, NULL, 6805 B_TRUE, q, mp, ip_process_ioctl); 6806 if (ipif != NULL) 6807 ipif_refrele(ipif); 6808 return (error); 6809 } 6810 6811 /* 6812 * Enqueue the mp onto the ipsq, chained by b_next. 6813 * b_prev stores the function to be executed later, and b_queue the queue 6814 * where this mp originated. 6815 */ 6816 void 6817 ipsq_enq(ipsq_t *ipsq, queue_t *q, mblk_t *mp, ipsq_func_t func, int type, 6818 ill_t *pending_ill) 6819 { 6820 conn_t *connp = NULL; 6821 6822 ASSERT(MUTEX_HELD(&ipsq->ipsq_lock)); 6823 ASSERT(func != NULL); 6824 6825 mp->b_queue = q; 6826 mp->b_prev = (void *)func; 6827 mp->b_next = NULL; 6828 6829 switch (type) { 6830 case CUR_OP: 6831 if (ipsq->ipsq_mptail != NULL) { 6832 ASSERT(ipsq->ipsq_mphead != NULL); 6833 ipsq->ipsq_mptail->b_next = mp; 6834 } else { 6835 ASSERT(ipsq->ipsq_mphead == NULL); 6836 ipsq->ipsq_mphead = mp; 6837 } 6838 ipsq->ipsq_mptail = mp; 6839 break; 6840 6841 case NEW_OP: 6842 if (ipsq->ipsq_xopq_mptail != NULL) { 6843 ASSERT(ipsq->ipsq_xopq_mphead != NULL); 6844 ipsq->ipsq_xopq_mptail->b_next = mp; 6845 } else { 6846 ASSERT(ipsq->ipsq_xopq_mphead == NULL); 6847 ipsq->ipsq_xopq_mphead = mp; 6848 } 6849 ipsq->ipsq_xopq_mptail = mp; 6850 break; 6851 default: 6852 cmn_err(CE_PANIC, "ipsq_enq %d type \n", type); 6853 } 6854 6855 if (CONN_Q(q) && pending_ill != NULL) { 6856 connp = Q_TO_CONN(q); 6857 6858 ASSERT(MUTEX_HELD(&connp->conn_lock)); 6859 connp->conn_oper_pending_ill = pending_ill; 6860 } 6861 } 6862 6863 /* 6864 * Return the mp at the head of the ipsq. After emptying the ipsq 6865 * look at the next ioctl, if this ioctl is complete. Otherwise 6866 * return, we will resume when we complete the current ioctl. 6867 * The current ioctl will wait till it gets a response from the 6868 * driver below. 6869 */ 6870 static mblk_t * 6871 ipsq_dq(ipsq_t *ipsq) 6872 { 6873 mblk_t *mp; 6874 6875 ASSERT(MUTEX_HELD(&ipsq->ipsq_lock)); 6876 6877 mp = ipsq->ipsq_mphead; 6878 if (mp != NULL) { 6879 ipsq->ipsq_mphead = mp->b_next; 6880 if (ipsq->ipsq_mphead == NULL) 6881 ipsq->ipsq_mptail = NULL; 6882 mp->b_next = NULL; 6883 return (mp); 6884 } 6885 if (ipsq->ipsq_current_ipif != NULL) 6886 return (NULL); 6887 mp = ipsq->ipsq_xopq_mphead; 6888 if (mp != NULL) { 6889 ipsq->ipsq_xopq_mphead = mp->b_next; 6890 if (ipsq->ipsq_xopq_mphead == NULL) 6891 ipsq->ipsq_xopq_mptail = NULL; 6892 mp->b_next = NULL; 6893 return (mp); 6894 } 6895 return (NULL); 6896 } 6897 6898 /* 6899 * Enter the ipsq corresponding to ill, by waiting synchronously till 6900 * we can enter the ipsq exclusively. Unless 'force' is used, the ipsq 6901 * will have to drain completely before ipsq_enter returns success. 6902 * ipsq_current_ipif will be set if some exclusive ioctl is in progress, 6903 * and the ipsq_exit logic will start the next enqueued ioctl after 6904 * completion of the current ioctl. If 'force' is used, we don't wait 6905 * for the enqueued ioctls. This is needed when a conn_close wants to 6906 * enter the ipsq and abort an ioctl that is somehow stuck. Unplumb 6907 * of an ill can also use this option. But we dont' use it currently. 6908 */ 6909 #define ENTER_SQ_WAIT_TICKS 100 6910 boolean_t 6911 ipsq_enter(ill_t *ill, boolean_t force) 6912 { 6913 ipsq_t *ipsq; 6914 boolean_t waited_enough = B_FALSE; 6915 6916 /* 6917 * Holding the ill_lock prevents <ill-ipsq> assocs from changing. 6918 * Since the <ill-ipsq> assocs could change while we wait for the 6919 * writer, it is easier to wait on a fixed global rather than try to 6920 * cv_wait on a changing ipsq. 6921 */ 6922 mutex_enter(&ill->ill_lock); 6923 for (;;) { 6924 if (ill->ill_state_flags & ILL_CONDEMNED) { 6925 mutex_exit(&ill->ill_lock); 6926 return (B_FALSE); 6927 } 6928 6929 ipsq = ill->ill_phyint->phyint_ipsq; 6930 mutex_enter(&ipsq->ipsq_lock); 6931 if (ipsq->ipsq_writer == NULL && 6932 (ipsq->ipsq_current_ipif == NULL || waited_enough)) { 6933 break; 6934 } else if (ipsq->ipsq_writer != NULL) { 6935 mutex_exit(&ipsq->ipsq_lock); 6936 cv_wait(&ill->ill_cv, &ill->ill_lock); 6937 } else { 6938 mutex_exit(&ipsq->ipsq_lock); 6939 if (force) { 6940 (void) cv_timedwait(&ill->ill_cv, 6941 &ill->ill_lock, 6942 lbolt + ENTER_SQ_WAIT_TICKS); 6943 waited_enough = B_TRUE; 6944 continue; 6945 } else { 6946 cv_wait(&ill->ill_cv, &ill->ill_lock); 6947 } 6948 } 6949 } 6950 6951 ASSERT(ipsq->ipsq_mphead == NULL && ipsq->ipsq_mptail == NULL); 6952 ASSERT(ipsq->ipsq_reentry_cnt == 0); 6953 ipsq->ipsq_writer = curthread; 6954 ipsq->ipsq_reentry_cnt++; 6955 #ifdef ILL_DEBUG 6956 ipsq->ipsq_depth = getpcstack(ipsq->ipsq_stack, IP_STACK_DEPTH); 6957 #endif 6958 mutex_exit(&ipsq->ipsq_lock); 6959 mutex_exit(&ill->ill_lock); 6960 return (B_TRUE); 6961 } 6962 6963 /* 6964 * The ipsq_t (ipsq) is the synchronization data structure used to serialize 6965 * certain critical operations like plumbing (i.e. most set ioctls), 6966 * multicast joins, igmp/mld timers, IPMP operations etc. On a non-IPMP 6967 * system there is 1 ipsq per phyint. On an IPMP system there is 1 ipsq per 6968 * IPMP group. The ipsq serializes exclusive ioctls issued by applications 6969 * on a per ipsq basis in ipsq_xopq_mphead. It also protects against multiple 6970 * threads executing in the ipsq. Responses from the driver pertain to the 6971 * current ioctl (say a DL_BIND_ACK in response to a DL_BIND_REQUEST initiated 6972 * as part of bringing up the interface) and are enqueued in ipsq_mphead. 6973 * 6974 * If a thread does not want to reenter the ipsq when it is already writer, 6975 * it must make sure that the specified reentry point to be called later 6976 * when the ipsq is empty, nor any code path starting from the specified reentry 6977 * point must never ever try to enter the ipsq again. Otherwise it can lead 6978 * to an infinite loop. The reentry point ip_rput_dlpi_writer is an example. 6979 * When the thread that is currently exclusive finishes, it (ipsq_exit) 6980 * dequeues the requests waiting to become exclusive in ipsq_mphead and calls 6981 * the reentry point. When the list at ipsq_mphead becomes empty ipsq_exit 6982 * proceeds to dequeue the next ioctl in ipsq_xopq_mphead and start the next 6983 * ioctl if the current ioctl has completed. If the current ioctl is still 6984 * in progress it simply returns. The current ioctl could be waiting for 6985 * a response from another module (arp_ or the driver or could be waiting for 6986 * the ipif/ill/ire refcnts to drop to zero. In such a case the ipsq_pending_mp 6987 * and ipsq_pending_ipif are set. ipsq_current_ipif is set throughout the 6988 * execution of the ioctl and ipsq_exit does not start the next ioctl unless 6989 * ipsq_current_ipif is clear which happens only on ioctl completion. 6990 */ 6991 6992 /* 6993 * Try to enter the ipsq exclusively, corresponding to ipif or ill. (only 1 of 6994 * ipif or ill can be specified). The caller ensures ipif or ill is valid by 6995 * ref-holding it if necessary. If the ipsq cannot be entered, the mp is queued 6996 * completion. 6997 */ 6998 ipsq_t * 6999 ipsq_try_enter(ipif_t *ipif, ill_t *ill, queue_t *q, mblk_t *mp, 7000 ipsq_func_t func, int type, boolean_t reentry_ok) 7001 { 7002 ipsq_t *ipsq; 7003 7004 /* Only 1 of ipif or ill can be specified */ 7005 ASSERT((ipif != NULL) ^ (ill != NULL)); 7006 if (ipif != NULL) 7007 ill = ipif->ipif_ill; 7008 7009 /* 7010 * lock ordering ill_g_lock -> conn_lock -> ill_lock -> ipsq_lock 7011 * ipsq of an ill can't change when ill_lock is held. 7012 */ 7013 GRAB_CONN_LOCK(q); 7014 mutex_enter(&ill->ill_lock); 7015 ipsq = ill->ill_phyint->phyint_ipsq; 7016 mutex_enter(&ipsq->ipsq_lock); 7017 7018 /* 7019 * 1. Enter the ipsq if we are already writer and reentry is ok. 7020 * (Note: If the caller does not specify reentry_ok then neither 7021 * 'func' nor any of its callees must ever attempt to enter the ipsq 7022 * again. Otherwise it can lead to an infinite loop 7023 * 2. Enter the ipsq if there is no current writer and this attempted 7024 * entry is part of the current ioctl or operation 7025 * 3. Enter the ipsq if there is no current writer and this is a new 7026 * ioctl (or operation) and the ioctl (or operation) queue is 7027 * empty and there is no ioctl (or operation) currently in progress 7028 */ 7029 if ((ipsq->ipsq_writer == NULL && ((type == CUR_OP) || 7030 (type == NEW_OP && ipsq->ipsq_xopq_mphead == NULL && 7031 ipsq->ipsq_current_ipif == NULL))) || 7032 (ipsq->ipsq_writer == curthread && reentry_ok)) { 7033 /* Success. */ 7034 ipsq->ipsq_reentry_cnt++; 7035 ipsq->ipsq_writer = curthread; 7036 mutex_exit(&ipsq->ipsq_lock); 7037 mutex_exit(&ill->ill_lock); 7038 RELEASE_CONN_LOCK(q); 7039 #ifdef ILL_DEBUG 7040 ipsq->ipsq_depth = getpcstack(ipsq->ipsq_stack, IP_STACK_DEPTH); 7041 #endif 7042 return (ipsq); 7043 } 7044 7045 ipsq_enq(ipsq, q, mp, func, type, ill); 7046 7047 mutex_exit(&ipsq->ipsq_lock); 7048 mutex_exit(&ill->ill_lock); 7049 RELEASE_CONN_LOCK(q); 7050 return (NULL); 7051 } 7052 7053 /* 7054 * Try to enter the ipsq exclusively, corresponding to ipif or ill. (only 1 of 7055 * ipif or ill can be specified). The caller ensures ipif or ill is valid by 7056 * ref-holding it if necessary. If the ipsq cannot be entered, the mp is queued 7057 * completion. 7058 * 7059 * This function does a refrele on the ipif/ill. 7060 */ 7061 void 7062 qwriter_ip(ipif_t *ipif, ill_t *ill, queue_t *q, mblk_t *mp, 7063 ipsq_func_t func, int type, boolean_t reentry_ok) 7064 { 7065 ipsq_t *ipsq; 7066 7067 ipsq = ipsq_try_enter(ipif, ill, q, mp, func, type, reentry_ok); 7068 /* 7069 * Caller must have done a refhold on the ipif. ipif_refrele 7070 * happens on the passed ipif. We can do this since we are 7071 * already exclusive, or we won't access ipif henceforth, Both 7072 * this func and caller will just return if we ipsq_try_enter 7073 * fails above. This is needed because func needs to 7074 * see the correct refcount. Eg. removeif can work only then. 7075 */ 7076 if (ipif != NULL) 7077 ipif_refrele(ipif); 7078 else 7079 ill_refrele(ill); 7080 if (ipsq != NULL) { 7081 (*func)(ipsq, q, mp, NULL); 7082 ipsq_exit(ipsq, B_TRUE, B_TRUE); 7083 } 7084 } 7085 7086 /* 7087 * If there are more than ILL_GRP_CNT ills in a group, 7088 * we use kmem alloc'd buffers, else use the stack 7089 */ 7090 #define ILL_GRP_CNT 14 7091 /* 7092 * Drain the ipsq, if there are messages on it, and then leave the ipsq. 7093 * Called by a thread that is currently exclusive on this ipsq. 7094 */ 7095 void 7096 ipsq_exit(ipsq_t *ipsq, boolean_t start_igmp_timer, boolean_t start_mld_timer) 7097 { 7098 queue_t *q; 7099 mblk_t *mp; 7100 ipsq_func_t func; 7101 int next; 7102 ill_t **ill_list = NULL; 7103 size_t ill_list_size = 0; 7104 int cnt = 0; 7105 boolean_t need_ipsq_free = B_FALSE; 7106 7107 ASSERT(IAM_WRITER_IPSQ(ipsq)); 7108 mutex_enter(&ipsq->ipsq_lock); 7109 ASSERT(ipsq->ipsq_reentry_cnt >= 1); 7110 if (ipsq->ipsq_reentry_cnt != 1) { 7111 ipsq->ipsq_reentry_cnt--; 7112 mutex_exit(&ipsq->ipsq_lock); 7113 return; 7114 } 7115 7116 mp = ipsq_dq(ipsq); 7117 while (mp != NULL) { 7118 again: 7119 mutex_exit(&ipsq->ipsq_lock); 7120 func = (ipsq_func_t)mp->b_prev; 7121 q = (queue_t *)mp->b_queue; 7122 mp->b_prev = NULL; 7123 mp->b_queue = NULL; 7124 7125 /* 7126 * If 'q' is an conn queue, it is valid, since we did a 7127 * a refhold on the connp, at the start of the ioctl. 7128 * If 'q' is an ill queue, it is valid, since close of an 7129 * ill will clean up the 'ipsq'. 7130 */ 7131 (*func)(ipsq, q, mp, NULL); 7132 7133 mutex_enter(&ipsq->ipsq_lock); 7134 mp = ipsq_dq(ipsq); 7135 } 7136 7137 mutex_exit(&ipsq->ipsq_lock); 7138 7139 /* 7140 * Need to grab the locks in the right order. Need to 7141 * atomically check (under ipsq_lock) that there are no 7142 * messages before relinquishing the ipsq. Also need to 7143 * atomically wakeup waiters on ill_cv while holding ill_lock. 7144 * Holding ill_g_lock ensures that ipsq list of ills is stable. 7145 * If we need to call ill_split_ipsq and change <ill-ipsq> we need 7146 * to grab ill_g_lock as writer. 7147 */ 7148 rw_enter(&ill_g_lock, ipsq->ipsq_split ? RW_WRITER : RW_READER); 7149 7150 /* ipsq_refs can't change while ill_g_lock is held as reader */ 7151 if (ipsq->ipsq_refs != 0) { 7152 /* At most 2 ills v4/v6 per phyint */ 7153 cnt = ipsq->ipsq_refs << 1; 7154 ill_list_size = cnt * sizeof (ill_t *); 7155 /* 7156 * If memory allocation fails, we will do the split 7157 * the next time ipsq_exit is called for whatever reason. 7158 * As long as the ipsq_split flag is set the need to 7159 * split is remembered. 7160 */ 7161 ill_list = kmem_zalloc(ill_list_size, KM_NOSLEEP); 7162 if (ill_list != NULL) 7163 cnt = ill_lock_ipsq_ills(ipsq, ill_list, cnt); 7164 } 7165 mutex_enter(&ipsq->ipsq_lock); 7166 mp = ipsq_dq(ipsq); 7167 if (mp != NULL) { 7168 /* oops, some message has landed up, we can't get out */ 7169 if (ill_list != NULL) 7170 ill_unlock_ills(ill_list, cnt); 7171 rw_exit(&ill_g_lock); 7172 if (ill_list != NULL) 7173 kmem_free(ill_list, ill_list_size); 7174 ill_list = NULL; 7175 ill_list_size = 0; 7176 cnt = 0; 7177 goto again; 7178 } 7179 7180 /* 7181 * Split only if no ioctl is pending and if memory alloc succeeded 7182 * above. 7183 */ 7184 if (ipsq->ipsq_split && ipsq->ipsq_current_ipif == NULL && 7185 ill_list != NULL) { 7186 /* 7187 * No new ill can join this ipsq since we are holding the 7188 * ill_g_lock. Hence ill_split_ipsq can safely traverse the 7189 * ipsq. ill_split_ipsq may fail due to memory shortage. 7190 * If so we will retry on the next ipsq_exit. 7191 */ 7192 ipsq->ipsq_split = ill_split_ipsq(ipsq); 7193 } 7194 7195 /* 7196 * We are holding the ipsq lock, hence no new messages can 7197 * land up on the ipsq, and there are no messages currently. 7198 * Now safe to get out. Wake up waiters and relinquish ipsq 7199 * atomically while holding ill locks. 7200 */ 7201 ipsq->ipsq_writer = NULL; 7202 ipsq->ipsq_reentry_cnt--; 7203 ASSERT(ipsq->ipsq_reentry_cnt == 0); 7204 #ifdef ILL_DEBUG 7205 ipsq->ipsq_depth = 0; 7206 #endif 7207 mutex_exit(&ipsq->ipsq_lock); 7208 /* 7209 * For IPMP this should wake up all ills in this ipsq. 7210 * We need to hold the ill_lock while waking up waiters to 7211 * avoid missed wakeups. But there is no need to acquire all 7212 * the ill locks and then wakeup. If we have not acquired all 7213 * the locks (due to memory failure above) ill_signal_ipsq_ills 7214 * wakes up ills one at a time after getting the right ill_lock 7215 */ 7216 ill_signal_ipsq_ills(ipsq, ill_list != NULL); 7217 if (ill_list != NULL) 7218 ill_unlock_ills(ill_list, cnt); 7219 if (ipsq->ipsq_refs == 0) 7220 need_ipsq_free = B_TRUE; 7221 rw_exit(&ill_g_lock); 7222 if (ill_list != 0) 7223 kmem_free(ill_list, ill_list_size); 7224 7225 if (need_ipsq_free) { 7226 /* 7227 * Free the ipsq. ipsq_refs can't increase because ipsq can't be 7228 * looked up. ipsq can be looked up only thru ill or phyint 7229 * and there are no ills/phyint on this ipsq. 7230 */ 7231 ipsq_delete(ipsq); 7232 } 7233 /* 7234 * Now start any igmp or mld timers that could not be started 7235 * while inside the ipsq. The timers can't be started while inside 7236 * the ipsq, since igmp_start_timers may need to call untimeout() 7237 * which can't be done while holding a lock i.e. the ipsq. Otherwise 7238 * there could be a deadlock since the timeout handlers 7239 * mld_timeout_handler / igmp_timeout_handler also synchronously 7240 * wait in ipsq_enter() trying to get the ipsq. 7241 * 7242 * However there is one exception to the above. If this thread is 7243 * itself the igmp/mld timeout handler thread, then we don't want 7244 * to start any new timer until the current handler is done. The 7245 * handler thread passes in B_FALSE for start_igmp/mld_timers, while 7246 * all others pass B_TRUE. 7247 */ 7248 if (start_igmp_timer) { 7249 mutex_enter(&igmp_timer_lock); 7250 next = igmp_deferred_next; 7251 igmp_deferred_next = INFINITY; 7252 mutex_exit(&igmp_timer_lock); 7253 7254 if (next != INFINITY) 7255 igmp_start_timers(next); 7256 } 7257 7258 if (start_mld_timer) { 7259 mutex_enter(&mld_timer_lock); 7260 next = mld_deferred_next; 7261 mld_deferred_next = INFINITY; 7262 mutex_exit(&mld_timer_lock); 7263 7264 if (next != INFINITY) 7265 mld_start_timers(next); 7266 } 7267 } 7268 7269 /* 7270 * The ill is closing. Flush all messages on the ipsq that originated 7271 * from this ill. Usually there wont' be any messages on the ipsq_xopq_mphead 7272 * for this ill since ipsq_enter could not have entered until then. 7273 * New messages can't be queued since the CONDEMNED flag is set. 7274 */ 7275 static void 7276 ipsq_flush(ill_t *ill) 7277 { 7278 queue_t *q; 7279 mblk_t *prev; 7280 mblk_t *mp; 7281 mblk_t *mp_next; 7282 ipsq_t *ipsq; 7283 7284 ASSERT(IAM_WRITER_ILL(ill)); 7285 ipsq = ill->ill_phyint->phyint_ipsq; 7286 /* 7287 * Flush any messages sent up by the driver. 7288 */ 7289 mutex_enter(&ipsq->ipsq_lock); 7290 for (prev = NULL, mp = ipsq->ipsq_mphead; mp != NULL; mp = mp_next) { 7291 mp_next = mp->b_next; 7292 q = mp->b_queue; 7293 if (q == ill->ill_rq || q == ill->ill_wq) { 7294 /* Remove the mp from the ipsq */ 7295 if (prev == NULL) 7296 ipsq->ipsq_mphead = mp->b_next; 7297 else 7298 prev->b_next = mp->b_next; 7299 if (ipsq->ipsq_mptail == mp) { 7300 ASSERT(mp_next == NULL); 7301 ipsq->ipsq_mptail = prev; 7302 } 7303 ip_ioctl_freemsg(mp); 7304 } else { 7305 prev = mp; 7306 } 7307 } 7308 mutex_exit(&ipsq->ipsq_lock); 7309 (void) ipsq_pending_mp_cleanup(ill, NULL); 7310 ipsq_xopq_mp_cleanup(ill, NULL); 7311 ill_pending_mp_cleanup(ill); 7312 } 7313 7314 /* 7315 * Clean up one squeue element. ill_inuse_ref is protected by ill_lock. 7316 * The real cleanup happens behind the squeue via ip_squeue_clean function but 7317 * we need to protect ourselfs from 2 threads trying to cleanup at the same 7318 * time (possible with one port going down for aggr and someone tearing down the 7319 * entire aggr simultaneously. So we use ill_inuse_ref protected by ill_lock 7320 * to indicate when the cleanup has started (1 ref) and when the cleanup 7321 * is done (0 ref). When a new ring gets assigned to squeue, we start by 7322 * putting 2 ref on ill_inuse_ref. 7323 */ 7324 static void 7325 ipsq_clean_ring(ill_t *ill, ill_rx_ring_t *rx_ring) 7326 { 7327 conn_t *connp; 7328 squeue_t *sqp; 7329 mblk_t *mp; 7330 7331 ASSERT(rx_ring != NULL); 7332 7333 /* Just clean one squeue */ 7334 mutex_enter(&ill->ill_lock); 7335 while (rx_ring->rr_ring_state == ILL_RING_INPROC) 7336 /* Some operations pending on the ring. Wait */ 7337 cv_wait(&ill->ill_cv, &ill->ill_lock); 7338 7339 if (rx_ring->rr_ring_state != ILL_RING_INUSE) { 7340 /* 7341 * Someone already trying to clean 7342 * this squeue or its already been cleaned. 7343 */ 7344 mutex_exit(&ill->ill_lock); 7345 return; 7346 } 7347 sqp = rx_ring->rr_sqp; 7348 7349 if (sqp == NULL) { 7350 /* 7351 * The rx_ring never had a squeue assigned to it. 7352 * We are under ill_lock so we can clean it up 7353 * here itself since no one can get to it. 7354 */ 7355 rx_ring->rr_blank = NULL; 7356 rx_ring->rr_handle = NULL; 7357 rx_ring->rr_sqp = NULL; 7358 rx_ring->rr_ring_state = ILL_RING_FREE; 7359 mutex_exit(&ill->ill_lock); 7360 return; 7361 } 7362 7363 /* Set the state that its being cleaned */ 7364 rx_ring->rr_ring_state = ILL_RING_BEING_FREED; 7365 ASSERT(sqp != NULL); 7366 mutex_exit(&ill->ill_lock); 7367 7368 /* 7369 * Use the preallocated ill_unbind_conn for this purpose 7370 */ 7371 connp = ill->ill_poll_capab->ill_unbind_conn; 7372 mp = &connp->conn_tcp->tcp_closemp; 7373 CONN_INC_REF(connp); 7374 squeue_enter(sqp, mp, ip_squeue_clean, connp, NULL); 7375 7376 mutex_enter(&ill->ill_lock); 7377 while (rx_ring->rr_ring_state != ILL_RING_FREE) 7378 cv_wait(&ill->ill_cv, &ill->ill_lock); 7379 7380 mutex_exit(&ill->ill_lock); 7381 } 7382 7383 static void 7384 ipsq_clean_all(ill_t *ill) 7385 { 7386 int idx; 7387 7388 /* 7389 * No need to clean if poll_capab isn't set for this ill 7390 */ 7391 if (!(ill->ill_capabilities & ILL_CAPAB_POLL)) 7392 return; 7393 7394 ill->ill_capabilities &= ~ILL_CAPAB_POLL; 7395 7396 for (idx = 0; idx < ILL_MAX_RINGS; idx++) { 7397 ill_rx_ring_t *ipr = &ill->ill_poll_capab->ill_ring_tbl[idx]; 7398 ipsq_clean_ring(ill, ipr); 7399 } 7400 } 7401 7402 /* ARGSUSED */ 7403 int 7404 ip_sioctl_slifoindex(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 7405 ip_ioctl_cmd_t *ipip, void *ifreq) 7406 { 7407 ill_t *ill; 7408 struct lifreq *lifr = (struct lifreq *)ifreq; 7409 boolean_t isv6; 7410 conn_t *connp; 7411 7412 connp = Q_TO_CONN(q); 7413 isv6 = connp->conn_af_isv6; 7414 /* 7415 * Set original index. 7416 * Failover and failback move logical interfaces 7417 * from one physical interface to another. The 7418 * original index indicates the parent of a logical 7419 * interface, in other words, the physical interface 7420 * the logical interface will be moved back to on 7421 * failback. 7422 */ 7423 7424 /* 7425 * Don't allow the original index to be changed 7426 * for non-failover addresses, autoconfigured 7427 * addresses, or IPv6 link local addresses. 7428 */ 7429 if (((ipif->ipif_flags & (IPIF_NOFAILOVER | IPIF_ADDRCONF)) != NULL) || 7430 (isv6 && IN6_IS_ADDR_LINKLOCAL(&ipif->ipif_v6lcl_addr))) { 7431 return (EINVAL); 7432 } 7433 /* 7434 * The new original index must be in use by some 7435 * physical interface. 7436 */ 7437 ill = ill_lookup_on_ifindex(lifr->lifr_index, isv6, NULL, NULL, 7438 NULL, NULL); 7439 if (ill == NULL) 7440 return (ENXIO); 7441 ill_refrele(ill); 7442 7443 ipif->ipif_orig_ifindex = lifr->lifr_index; 7444 /* 7445 * When this ipif gets failed back, don't 7446 * preserve the original id, as it is no 7447 * longer applicable. 7448 */ 7449 ipif->ipif_orig_ipifid = 0; 7450 /* 7451 * For IPv4, change the original index of any 7452 * multicast addresses associated with the 7453 * ipif to the new value. 7454 */ 7455 if (!isv6) { 7456 ilm_t *ilm; 7457 7458 mutex_enter(&ipif->ipif_ill->ill_lock); 7459 for (ilm = ipif->ipif_ill->ill_ilm; ilm != NULL; 7460 ilm = ilm->ilm_next) { 7461 if (ilm->ilm_ipif == ipif) { 7462 ilm->ilm_orig_ifindex = lifr->lifr_index; 7463 } 7464 } 7465 mutex_exit(&ipif->ipif_ill->ill_lock); 7466 } 7467 return (0); 7468 } 7469 7470 /* ARGSUSED */ 7471 int 7472 ip_sioctl_get_oindex(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 7473 ip_ioctl_cmd_t *ipip, void *ifreq) 7474 { 7475 struct lifreq *lifr = (struct lifreq *)ifreq; 7476 7477 /* 7478 * Get the original interface index i.e the one 7479 * before FAILOVER if it ever happened. 7480 */ 7481 lifr->lifr_index = ipif->ipif_orig_ifindex; 7482 return (0); 7483 } 7484 7485 /* 7486 * Parse an iftun_req structure coming down SIOC[GS]TUNPARAM ioctls, 7487 * refhold and return the associated ipif 7488 */ 7489 int 7490 ip_extract_tunreq(queue_t *q, mblk_t *mp, ipif_t **ipifp, ipsq_func_t func) 7491 { 7492 boolean_t exists; 7493 struct iftun_req *ta; 7494 ipif_t *ipif; 7495 ill_t *ill; 7496 boolean_t isv6; 7497 mblk_t *mp1; 7498 int error; 7499 conn_t *connp; 7500 7501 /* Existence verified in ip_wput_nondata */ 7502 mp1 = mp->b_cont->b_cont; 7503 ta = (struct iftun_req *)mp1->b_rptr; 7504 /* 7505 * Null terminate the string to protect against buffer 7506 * overrun. String was generated by user code and may not 7507 * be trusted. 7508 */ 7509 ta->ifta_lifr_name[LIFNAMSIZ - 1] = '\0'; 7510 7511 connp = Q_TO_CONN(q); 7512 isv6 = connp->conn_af_isv6; 7513 7514 /* Disallows implicit create */ 7515 ipif = ipif_lookup_on_name(ta->ifta_lifr_name, 7516 mi_strlen(ta->ifta_lifr_name), B_FALSE, &exists, isv6, 7517 connp->conn_zoneid, CONNP_TO_WQ(connp), mp, func, &error); 7518 if (ipif == NULL) 7519 return (error); 7520 7521 if (ipif->ipif_id != 0) { 7522 /* 7523 * We really don't want to set/get tunnel parameters 7524 * on virtual tunnel interfaces. Only allow the 7525 * base tunnel to do these. 7526 */ 7527 ipif_refrele(ipif); 7528 return (EINVAL); 7529 } 7530 7531 /* 7532 * Send down to tunnel mod for ioctl processing. 7533 * Will finish ioctl in ip_rput_other(). 7534 */ 7535 ill = ipif->ipif_ill; 7536 if (ill->ill_net_type == IRE_LOOPBACK) { 7537 ipif_refrele(ipif); 7538 return (EOPNOTSUPP); 7539 } 7540 7541 if (ill->ill_wq == NULL) { 7542 ipif_refrele(ipif); 7543 return (ENXIO); 7544 } 7545 /* 7546 * Mark the ioctl as coming from an IPv6 interface for 7547 * tun's convenience. 7548 */ 7549 if (ill->ill_isv6) 7550 ta->ifta_flags |= 0x80000000; 7551 *ipifp = ipif; 7552 return (0); 7553 } 7554 7555 /* 7556 * Parse an ifreq or lifreq struct coming down ioctls and refhold 7557 * and return the associated ipif. 7558 * Return value: 7559 * Non zero: An error has occurred. ci may not be filled out. 7560 * zero : ci is filled out with the ioctl cmd in ci.ci_name, and 7561 * a held ipif in ci.ci_ipif. 7562 */ 7563 int 7564 ip_extract_lifreq_cmn(queue_t *q, mblk_t *mp, int cmd_type, int flags, 7565 cmd_info_t *ci, ipsq_func_t func) 7566 { 7567 sin_t *sin; 7568 sin6_t *sin6; 7569 char *name; 7570 struct ifreq *ifr; 7571 struct lifreq *lifr; 7572 ipif_t *ipif = NULL; 7573 ill_t *ill; 7574 conn_t *connp; 7575 boolean_t isv6; 7576 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 7577 boolean_t exists; 7578 int err; 7579 mblk_t *mp1; 7580 zoneid_t zoneid; 7581 7582 if (q->q_next != NULL) { 7583 ill = (ill_t *)q->q_ptr; 7584 isv6 = ill->ill_isv6; 7585 connp = NULL; 7586 zoneid = ALL_ZONES; 7587 } else { 7588 ill = NULL; 7589 connp = Q_TO_CONN(q); 7590 isv6 = connp->conn_af_isv6; 7591 zoneid = connp->conn_zoneid; 7592 if (zoneid == GLOBAL_ZONEID) { 7593 /* global zone can access ipifs in all zones */ 7594 zoneid = ALL_ZONES; 7595 } 7596 } 7597 7598 /* Has been checked in ip_wput_nondata */ 7599 mp1 = mp->b_cont->b_cont; 7600 7601 7602 if (cmd_type == IF_CMD) { 7603 /* This a old style SIOC[GS]IF* command */ 7604 ifr = (struct ifreq *)mp1->b_rptr; 7605 /* 7606 * Null terminate the string to protect against buffer 7607 * overrun. String was generated by user code and may not 7608 * be trusted. 7609 */ 7610 ifr->ifr_name[IFNAMSIZ - 1] = '\0'; 7611 sin = (sin_t *)&ifr->ifr_addr; 7612 name = ifr->ifr_name; 7613 ci->ci_sin = sin; 7614 ci->ci_sin6 = NULL; 7615 ci->ci_lifr = (struct lifreq *)ifr; 7616 } else { 7617 /* This a new style SIOC[GS]LIF* command */ 7618 ASSERT(cmd_type == LIF_CMD); 7619 lifr = (struct lifreq *)mp1->b_rptr; 7620 /* 7621 * Null terminate the string to protect against buffer 7622 * overrun. String was generated by user code and may not 7623 * be trusted. 7624 */ 7625 lifr->lifr_name[LIFNAMSIZ - 1] = '\0'; 7626 name = lifr->lifr_name; 7627 sin = (sin_t *)&lifr->lifr_addr; 7628 sin6 = (sin6_t *)&lifr->lifr_addr; 7629 if (iocp->ioc_cmd == SIOCSLIFGROUPNAME) { 7630 (void) strncpy(ci->ci_groupname, lifr->lifr_groupname, 7631 LIFNAMSIZ); 7632 } 7633 ci->ci_sin = sin; 7634 ci->ci_sin6 = sin6; 7635 ci->ci_lifr = lifr; 7636 } 7637 7638 7639 if (iocp->ioc_cmd == SIOCSLIFNAME) { 7640 /* 7641 * The ioctl will be failed if the ioctl comes down 7642 * an conn stream 7643 */ 7644 if (ill == NULL) { 7645 /* 7646 * Not an ill queue, return EINVAL same as the 7647 * old error code. 7648 */ 7649 return (ENXIO); 7650 } 7651 ipif = ill->ill_ipif; 7652 ipif_refhold(ipif); 7653 } else { 7654 ipif = ipif_lookup_on_name(name, mi_strlen(name), B_FALSE, 7655 &exists, isv6, zoneid, 7656 (connp == NULL) ? q : CONNP_TO_WQ(connp), mp, func, &err); 7657 if (ipif == NULL) { 7658 if (err == EINPROGRESS) 7659 return (err); 7660 if (iocp->ioc_cmd == SIOCLIFFAILOVER || 7661 iocp->ioc_cmd == SIOCLIFFAILBACK) { 7662 /* 7663 * Need to try both v4 and v6 since this 7664 * ioctl can come down either v4 or v6 7665 * socket. The lifreq.lifr_family passed 7666 * down by this ioctl is AF_UNSPEC. 7667 */ 7668 ipif = ipif_lookup_on_name(name, 7669 mi_strlen(name), B_FALSE, &exists, !isv6, 7670 zoneid, (connp == NULL) ? q : 7671 CONNP_TO_WQ(connp), mp, func, &err); 7672 if (err == EINPROGRESS) 7673 return (err); 7674 } 7675 err = 0; /* Ensure we don't use it below */ 7676 } 7677 } 7678 7679 /* 7680 * Old style [GS]IFCMD does not admit IPv6 ipif 7681 */ 7682 if (ipif != NULL && ipif->ipif_isv6 && cmd_type == IF_CMD) { 7683 ipif_refrele(ipif); 7684 return (ENXIO); 7685 } 7686 7687 if (ipif == NULL && ill != NULL && ill->ill_ipif != NULL && 7688 name[0] == '\0') { 7689 /* 7690 * Handle a or a SIOC?IF* with a null name 7691 * during plumb (on the ill queue before the I_PLINK). 7692 */ 7693 ipif = ill->ill_ipif; 7694 ipif_refhold(ipif); 7695 } 7696 7697 if (ipif == NULL) 7698 return (ENXIO); 7699 7700 /* 7701 * Allow only GET operations if this ipif has been created 7702 * temporarily due to a MOVE operation. 7703 */ 7704 if (ipif->ipif_replace_zero && !(flags & IPI_REPL)) { 7705 ipif_refrele(ipif); 7706 return (EINVAL); 7707 } 7708 7709 ci->ci_ipif = ipif; 7710 return (0); 7711 } 7712 7713 /* 7714 * Return the total number of ipifs. 7715 */ 7716 static uint_t 7717 ip_get_numifs(zoneid_t zoneid) 7718 { 7719 uint_t numifs = 0; 7720 ill_t *ill; 7721 ill_walk_context_t ctx; 7722 ipif_t *ipif; 7723 7724 rw_enter(&ill_g_lock, RW_READER); 7725 ill = ILL_START_WALK_V4(&ctx); 7726 7727 while (ill != NULL) { 7728 for (ipif = ill->ill_ipif; ipif != NULL; 7729 ipif = ipif->ipif_next) { 7730 if (ipif->ipif_zoneid == zoneid) 7731 numifs++; 7732 } 7733 ill = ill_next(&ctx, ill); 7734 } 7735 rw_exit(&ill_g_lock); 7736 return (numifs); 7737 } 7738 7739 /* 7740 * Return the total number of ipifs. 7741 */ 7742 static uint_t 7743 ip_get_numlifs(int family, int lifn_flags, zoneid_t zoneid) 7744 { 7745 uint_t numifs = 0; 7746 ill_t *ill; 7747 ipif_t *ipif; 7748 ill_walk_context_t ctx; 7749 7750 ip1dbg(("ip_get_numlifs(%d %u %d)\n", family, lifn_flags, (int)zoneid)); 7751 7752 rw_enter(&ill_g_lock, RW_READER); 7753 if (family == AF_INET) 7754 ill = ILL_START_WALK_V4(&ctx); 7755 else if (family == AF_INET6) 7756 ill = ILL_START_WALK_V6(&ctx); 7757 else 7758 ill = ILL_START_WALK_ALL(&ctx); 7759 7760 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 7761 for (ipif = ill->ill_ipif; ipif != NULL; 7762 ipif = ipif->ipif_next) { 7763 if ((ipif->ipif_flags & IPIF_NOXMIT) && 7764 !(lifn_flags & LIFC_NOXMIT)) 7765 continue; 7766 if ((ipif->ipif_flags & IPIF_TEMPORARY) && 7767 !(lifn_flags & LIFC_TEMPORARY)) 7768 continue; 7769 if (((ipif->ipif_flags & 7770 (IPIF_NOXMIT|IPIF_NOLOCAL| 7771 IPIF_DEPRECATED)) || 7772 (ill->ill_phyint->phyint_flags & 7773 PHYI_LOOPBACK) || 7774 !(ipif->ipif_flags & IPIF_UP)) && 7775 (lifn_flags & LIFC_EXTERNAL_SOURCE)) 7776 continue; 7777 7778 if (zoneid != ipif->ipif_zoneid && 7779 (zoneid != GLOBAL_ZONEID || 7780 !(lifn_flags & LIFC_ALLZONES))) 7781 continue; 7782 7783 numifs++; 7784 } 7785 } 7786 rw_exit(&ill_g_lock); 7787 return (numifs); 7788 } 7789 7790 uint_t 7791 ip_get_lifsrcofnum(ill_t *ill) 7792 { 7793 uint_t numifs = 0; 7794 ill_t *ill_head = ill; 7795 7796 /* 7797 * ill_g_usesrc_lock protects ill_usesrc_grp_next, for example, some 7798 * other thread may be trying to relink the ILLs in this usesrc group 7799 * and adjusting the ill_usesrc_grp_next pointers 7800 */ 7801 rw_enter(&ill_g_usesrc_lock, RW_READER); 7802 if ((ill->ill_usesrc_ifindex == 0) && 7803 (ill->ill_usesrc_grp_next != NULL)) { 7804 for (; (ill != NULL) && (ill->ill_usesrc_grp_next != ill_head); 7805 ill = ill->ill_usesrc_grp_next) 7806 numifs++; 7807 } 7808 rw_exit(&ill_g_usesrc_lock); 7809 7810 return (numifs); 7811 } 7812 7813 /* Null values are passed in for ipif, sin, and ifreq */ 7814 /* ARGSUSED */ 7815 int 7816 ip_sioctl_get_ifnum(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, 7817 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) 7818 { 7819 int *nump; 7820 7821 ASSERT(q->q_next == NULL); /* not a valid ioctl for ip as a module */ 7822 7823 /* Existence of b_cont->b_cont checked in ip_wput_nondata */ 7824 nump = (int *)mp->b_cont->b_cont->b_rptr; 7825 7826 *nump = ip_get_numifs(Q_TO_CONN(q)->conn_zoneid); 7827 ip1dbg(("ip_sioctl_get_ifnum numifs %d", *nump)); 7828 return (0); 7829 } 7830 7831 /* Null values are passed in for ipif, sin, and ifreq */ 7832 /* ARGSUSED */ 7833 int 7834 ip_sioctl_get_lifnum(ipif_t *dummy_ipif, sin_t *dummy_sin, 7835 queue_t *q, mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) 7836 { 7837 struct lifnum *lifn; 7838 mblk_t *mp1; 7839 7840 ASSERT(q->q_next == NULL); /* not a valid ioctl for ip as a module */ 7841 7842 /* Existence checked in ip_wput_nondata */ 7843 mp1 = mp->b_cont->b_cont; 7844 7845 lifn = (struct lifnum *)mp1->b_rptr; 7846 switch (lifn->lifn_family) { 7847 case AF_UNSPEC: 7848 case AF_INET: 7849 case AF_INET6: 7850 break; 7851 default: 7852 return (EAFNOSUPPORT); 7853 } 7854 7855 lifn->lifn_count = ip_get_numlifs(lifn->lifn_family, lifn->lifn_flags, 7856 Q_TO_CONN(q)->conn_zoneid); 7857 ip1dbg(("ip_sioctl_get_lifnum numifs %d", lifn->lifn_count)); 7858 return (0); 7859 } 7860 7861 /* ARGSUSED */ 7862 int 7863 ip_sioctl_get_ifconf(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, 7864 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) 7865 { 7866 STRUCT_HANDLE(ifconf, ifc); 7867 mblk_t *mp1; 7868 struct iocblk *iocp; 7869 struct ifreq *ifr; 7870 ill_walk_context_t ctx; 7871 ill_t *ill; 7872 ipif_t *ipif; 7873 struct sockaddr_in *sin; 7874 int32_t ifclen; 7875 zoneid_t zoneid; 7876 7877 ASSERT(q->q_next == NULL); /* not valid ioctls for ip as a module */ 7878 7879 ip1dbg(("ip_sioctl_get_ifconf")); 7880 /* Existence verified in ip_wput_nondata */ 7881 mp1 = mp->b_cont->b_cont; 7882 iocp = (struct iocblk *)mp->b_rptr; 7883 zoneid = Q_TO_CONN(q)->conn_zoneid; 7884 7885 /* 7886 * The original SIOCGIFCONF passed in a struct ifconf which specified 7887 * the user buffer address and length into which the list of struct 7888 * ifreqs was to be copied. Since AT&T Streams does not seem to 7889 * allow M_COPYOUT to be used in conjunction with I_STR IOCTLS, 7890 * the SIOCGIFCONF operation was redefined to simply provide 7891 * a large output buffer into which we are supposed to jam the ifreq 7892 * array. The same ioctl command code was used, despite the fact that 7893 * both the applications and the kernel code had to change, thus making 7894 * it impossible to support both interfaces. 7895 * 7896 * For reasons not good enough to try to explain, the following 7897 * algorithm is used for deciding what to do with one of these: 7898 * If the IOCTL comes in as an I_STR, it is assumed to be of the new 7899 * form with the output buffer coming down as the continuation message. 7900 * If it arrives as a TRANSPARENT IOCTL, it is assumed to be old style, 7901 * and we have to copy in the ifconf structure to find out how big the 7902 * output buffer is and where to copy out to. Sure no problem... 7903 * 7904 */ 7905 STRUCT_SET_HANDLE(ifc, iocp->ioc_flag, NULL); 7906 if ((mp1->b_wptr - mp1->b_rptr) == STRUCT_SIZE(ifc)) { 7907 int numifs = 0; 7908 size_t ifc_bufsize; 7909 7910 /* 7911 * Must be (better be!) continuation of a TRANSPARENT 7912 * IOCTL. We just copied in the ifconf structure. 7913 */ 7914 STRUCT_SET_HANDLE(ifc, iocp->ioc_flag, 7915 (struct ifconf *)mp1->b_rptr); 7916 7917 /* 7918 * Allocate a buffer to hold requested information. 7919 * 7920 * If ifc_len is larger than what is needed, we only 7921 * allocate what we will use. 7922 * 7923 * If ifc_len is smaller than what is needed, return 7924 * EINVAL. 7925 * 7926 * XXX: the ill_t structure can hava 2 counters, for 7927 * v4 and v6 (not just ill_ipif_up_count) to store the 7928 * number of interfaces for a device, so we don't need 7929 * to count them here... 7930 */ 7931 numifs = ip_get_numifs(zoneid); 7932 7933 ifclen = STRUCT_FGET(ifc, ifc_len); 7934 ifc_bufsize = numifs * sizeof (struct ifreq); 7935 if (ifc_bufsize > ifclen) { 7936 if (iocp->ioc_cmd == O_SIOCGIFCONF) { 7937 /* old behaviour */ 7938 return (EINVAL); 7939 } else { 7940 ifc_bufsize = ifclen; 7941 } 7942 } 7943 7944 mp1 = mi_copyout_alloc(q, mp, 7945 STRUCT_FGETP(ifc, ifc_buf), ifc_bufsize, B_FALSE); 7946 if (mp1 == NULL) 7947 return (ENOMEM); 7948 7949 mp1->b_wptr = mp1->b_rptr + ifc_bufsize; 7950 } 7951 bzero(mp1->b_rptr, mp1->b_wptr - mp1->b_rptr); 7952 /* 7953 * the SIOCGIFCONF ioctl only knows about 7954 * IPv4 addresses, so don't try to tell 7955 * it about interfaces with IPv6-only 7956 * addresses. (Last parm 'isv6' is B_FALSE) 7957 */ 7958 7959 ifr = (struct ifreq *)mp1->b_rptr; 7960 7961 rw_enter(&ill_g_lock, RW_READER); 7962 ill = ILL_START_WALK_V4(&ctx); 7963 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 7964 for (ipif = ill->ill_ipif; ipif; 7965 ipif = ipif->ipif_next) { 7966 if (zoneid != ipif->ipif_zoneid) 7967 continue; 7968 if ((uchar_t *)&ifr[1] > mp1->b_wptr) { 7969 if (iocp->ioc_cmd == O_SIOCGIFCONF) { 7970 /* old behaviour */ 7971 rw_exit(&ill_g_lock); 7972 return (EINVAL); 7973 } else { 7974 goto if_copydone; 7975 } 7976 } 7977 (void) ipif_get_name(ipif, 7978 ifr->ifr_name, 7979 sizeof (ifr->ifr_name)); 7980 sin = (sin_t *)&ifr->ifr_addr; 7981 *sin = sin_null; 7982 sin->sin_family = AF_INET; 7983 sin->sin_addr.s_addr = ipif->ipif_lcl_addr; 7984 ifr++; 7985 } 7986 } 7987 if_copydone: 7988 rw_exit(&ill_g_lock); 7989 mp1->b_wptr = (uchar_t *)ifr; 7990 7991 if (STRUCT_BUF(ifc) != NULL) { 7992 STRUCT_FSET(ifc, ifc_len, 7993 (int)((uchar_t *)ifr - mp1->b_rptr)); 7994 } 7995 return (0); 7996 } 7997 7998 /* 7999 * Get the interfaces using the address hosted on the interface passed in, 8000 * as a source adddress 8001 */ 8002 /* ARGSUSED */ 8003 int 8004 ip_sioctl_get_lifsrcof(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, 8005 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) 8006 { 8007 mblk_t *mp1; 8008 ill_t *ill, *ill_head; 8009 ipif_t *ipif, *orig_ipif; 8010 int numlifs = 0; 8011 size_t lifs_bufsize, lifsmaxlen; 8012 struct lifreq *lifr; 8013 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 8014 uint_t ifindex; 8015 zoneid_t zoneid; 8016 int err = 0; 8017 boolean_t isv6 = B_FALSE; 8018 struct sockaddr_in *sin; 8019 struct sockaddr_in6 *sin6; 8020 8021 STRUCT_HANDLE(lifsrcof, lifs); 8022 8023 ASSERT(q->q_next == NULL); 8024 8025 zoneid = Q_TO_CONN(q)->conn_zoneid; 8026 8027 /* Existence verified in ip_wput_nondata */ 8028 mp1 = mp->b_cont->b_cont; 8029 8030 /* 8031 * Must be (better be!) continuation of a TRANSPARENT 8032 * IOCTL. We just copied in the lifsrcof structure. 8033 */ 8034 STRUCT_SET_HANDLE(lifs, iocp->ioc_flag, 8035 (struct lifsrcof *)mp1->b_rptr); 8036 8037 if (MBLKL(mp1) != STRUCT_SIZE(lifs)) 8038 return (EINVAL); 8039 8040 ifindex = STRUCT_FGET(lifs, lifs_ifindex); 8041 isv6 = (Q_TO_CONN(q))->conn_af_isv6; 8042 ipif = ipif_lookup_on_ifindex(ifindex, isv6, zoneid, q, mp, 8043 ip_process_ioctl, &err); 8044 if (ipif == NULL) { 8045 ip1dbg(("ip_sioctl_get_lifsrcof: no ipif for ifindex %d\n", 8046 ifindex)); 8047 return (err); 8048 } 8049 8050 8051 /* Allocate a buffer to hold requested information */ 8052 numlifs = ip_get_lifsrcofnum(ipif->ipif_ill); 8053 lifs_bufsize = numlifs * sizeof (struct lifreq); 8054 lifsmaxlen = STRUCT_FGET(lifs, lifs_maxlen); 8055 /* The actual size needed is always returned in lifs_len */ 8056 STRUCT_FSET(lifs, lifs_len, lifs_bufsize); 8057 8058 /* If the amount we need is more than what is passed in, abort */ 8059 if (lifs_bufsize > lifsmaxlen || lifs_bufsize == 0) { 8060 ipif_refrele(ipif); 8061 return (0); 8062 } 8063 8064 mp1 = mi_copyout_alloc(q, mp, 8065 STRUCT_FGETP(lifs, lifs_buf), lifs_bufsize, B_FALSE); 8066 if (mp1 == NULL) { 8067 ipif_refrele(ipif); 8068 return (ENOMEM); 8069 } 8070 8071 mp1->b_wptr = mp1->b_rptr + lifs_bufsize; 8072 bzero(mp1->b_rptr, lifs_bufsize); 8073 8074 lifr = (struct lifreq *)mp1->b_rptr; 8075 8076 ill = ill_head = ipif->ipif_ill; 8077 orig_ipif = ipif; 8078 8079 /* ill_g_usesrc_lock protects ill_usesrc_grp_next */ 8080 rw_enter(&ill_g_usesrc_lock, RW_READER); 8081 rw_enter(&ill_g_lock, RW_READER); 8082 8083 ill = ill->ill_usesrc_grp_next; /* start from next ill */ 8084 for (; (ill != NULL) && (ill != ill_head); 8085 ill = ill->ill_usesrc_grp_next) { 8086 8087 if ((uchar_t *)&lifr[1] > mp1->b_wptr) 8088 break; 8089 8090 ipif = ill->ill_ipif; 8091 (void) ipif_get_name(ipif, 8092 lifr->lifr_name, sizeof (lifr->lifr_name)); 8093 if (ipif->ipif_isv6) { 8094 sin6 = (sin6_t *)&lifr->lifr_addr; 8095 *sin6 = sin6_null; 8096 sin6->sin6_family = AF_INET6; 8097 sin6->sin6_addr = ipif->ipif_v6lcl_addr; 8098 lifr->lifr_addrlen = ip_mask_to_plen_v6( 8099 &ipif->ipif_v6net_mask); 8100 } else { 8101 sin = (sin_t *)&lifr->lifr_addr; 8102 *sin = sin_null; 8103 sin->sin_family = AF_INET; 8104 sin->sin_addr.s_addr = ipif->ipif_lcl_addr; 8105 lifr->lifr_addrlen = ip_mask_to_plen( 8106 ipif->ipif_net_mask); 8107 } 8108 lifr++; 8109 } 8110 rw_exit(&ill_g_usesrc_lock); 8111 rw_exit(&ill_g_lock); 8112 ipif_refrele(orig_ipif); 8113 mp1->b_wptr = (uchar_t *)lifr; 8114 STRUCT_FSET(lifs, lifs_len, (int)((uchar_t *)lifr - mp1->b_rptr)); 8115 8116 return (0); 8117 } 8118 8119 /* ARGSUSED */ 8120 int 8121 ip_sioctl_get_lifconf(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, 8122 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) 8123 { 8124 mblk_t *mp1; 8125 int list; 8126 ill_t *ill; 8127 ipif_t *ipif; 8128 int flags; 8129 int numlifs = 0; 8130 size_t lifc_bufsize; 8131 struct lifreq *lifr; 8132 sa_family_t family; 8133 struct sockaddr_in *sin; 8134 struct sockaddr_in6 *sin6; 8135 ill_walk_context_t ctx; 8136 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 8137 int32_t lifclen; 8138 zoneid_t zoneid; 8139 STRUCT_HANDLE(lifconf, lifc); 8140 8141 ip1dbg(("ip_sioctl_get_lifconf")); 8142 8143 ASSERT(q->q_next == NULL); 8144 8145 zoneid = Q_TO_CONN(q)->conn_zoneid; 8146 8147 /* Existence verified in ip_wput_nondata */ 8148 mp1 = mp->b_cont->b_cont; 8149 8150 /* 8151 * An extended version of SIOCGIFCONF that takes an 8152 * additional address family and flags field. 8153 * AF_UNSPEC retrieve both IPv4 and IPv6. 8154 * Unless LIFC_NOXMIT is specified the IPIF_NOXMIT 8155 * interfaces are omitted. 8156 * Similarly, IPIF_TEMPORARY interfaces are omitted 8157 * unless LIFC_TEMPORARY is specified. 8158 * If LIFC_EXTERNAL_SOURCE is specified, IPIF_NOXMIT, 8159 * IPIF_NOLOCAL, PHYI_LOOPBACK, IPIF_DEPRECATED and 8160 * not IPIF_UP interfaces are omitted. LIFC_EXTERNAL_SOURCE 8161 * has priority over LIFC_NOXMIT. 8162 */ 8163 STRUCT_SET_HANDLE(lifc, iocp->ioc_flag, NULL); 8164 8165 if ((mp1->b_wptr - mp1->b_rptr) != STRUCT_SIZE(lifc)) 8166 return (EINVAL); 8167 8168 /* 8169 * Must be (better be!) continuation of a TRANSPARENT 8170 * IOCTL. We just copied in the lifconf structure. 8171 */ 8172 STRUCT_SET_HANDLE(lifc, iocp->ioc_flag, (struct lifconf *)mp1->b_rptr); 8173 8174 family = STRUCT_FGET(lifc, lifc_family); 8175 flags = STRUCT_FGET(lifc, lifc_flags); 8176 8177 switch (family) { 8178 case AF_UNSPEC: 8179 /* 8180 * walk all ILL's. 8181 */ 8182 list = MAX_G_HEADS; 8183 break; 8184 case AF_INET: 8185 /* 8186 * walk only IPV4 ILL's. 8187 */ 8188 list = IP_V4_G_HEAD; 8189 break; 8190 case AF_INET6: 8191 /* 8192 * walk only IPV6 ILL's. 8193 */ 8194 list = IP_V6_G_HEAD; 8195 break; 8196 default: 8197 return (EAFNOSUPPORT); 8198 } 8199 8200 /* 8201 * Allocate a buffer to hold requested information. 8202 * 8203 * If lifc_len is larger than what is needed, we only 8204 * allocate what we will use. 8205 * 8206 * If lifc_len is smaller than what is needed, return 8207 * EINVAL. 8208 */ 8209 numlifs = ip_get_numlifs(family, flags, zoneid); 8210 lifc_bufsize = numlifs * sizeof (struct lifreq); 8211 lifclen = STRUCT_FGET(lifc, lifc_len); 8212 if (lifc_bufsize > lifclen) { 8213 if (iocp->ioc_cmd == O_SIOCGLIFCONF) 8214 return (EINVAL); 8215 else 8216 lifc_bufsize = lifclen; 8217 } 8218 8219 mp1 = mi_copyout_alloc(q, mp, 8220 STRUCT_FGETP(lifc, lifc_buf), lifc_bufsize, B_FALSE); 8221 if (mp1 == NULL) 8222 return (ENOMEM); 8223 8224 mp1->b_wptr = mp1->b_rptr + lifc_bufsize; 8225 bzero(mp1->b_rptr, mp1->b_wptr - mp1->b_rptr); 8226 8227 lifr = (struct lifreq *)mp1->b_rptr; 8228 8229 rw_enter(&ill_g_lock, RW_READER); 8230 ill = ill_first(list, list, &ctx); 8231 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 8232 for (ipif = ill->ill_ipif; ipif != NULL; 8233 ipif = ipif->ipif_next) { 8234 if ((ipif->ipif_flags & IPIF_NOXMIT) && 8235 !(flags & LIFC_NOXMIT)) 8236 continue; 8237 8238 if ((ipif->ipif_flags & IPIF_TEMPORARY) && 8239 !(flags & LIFC_TEMPORARY)) 8240 continue; 8241 8242 if (((ipif->ipif_flags & 8243 (IPIF_NOXMIT|IPIF_NOLOCAL| 8244 IPIF_DEPRECATED)) || 8245 (ill->ill_phyint->phyint_flags & 8246 PHYI_LOOPBACK) || 8247 !(ipif->ipif_flags & IPIF_UP)) && 8248 (flags & LIFC_EXTERNAL_SOURCE)) 8249 continue; 8250 8251 if (zoneid != ipif->ipif_zoneid && 8252 (zoneid != GLOBAL_ZONEID || 8253 !(flags & LIFC_ALLZONES))) 8254 continue; 8255 8256 if ((uchar_t *)&lifr[1] > mp1->b_wptr) { 8257 if (iocp->ioc_cmd == O_SIOCGLIFCONF) { 8258 rw_exit(&ill_g_lock); 8259 return (EINVAL); 8260 } else { 8261 goto lif_copydone; 8262 } 8263 } 8264 8265 (void) ipif_get_name(ipif, 8266 lifr->lifr_name, 8267 sizeof (lifr->lifr_name)); 8268 if (ipif->ipif_isv6) { 8269 sin6 = (sin6_t *)&lifr->lifr_addr; 8270 *sin6 = sin6_null; 8271 sin6->sin6_family = AF_INET6; 8272 sin6->sin6_addr = 8273 ipif->ipif_v6lcl_addr; 8274 lifr->lifr_addrlen = 8275 ip_mask_to_plen_v6( 8276 &ipif->ipif_v6net_mask); 8277 } else { 8278 sin = (sin_t *)&lifr->lifr_addr; 8279 *sin = sin_null; 8280 sin->sin_family = AF_INET; 8281 sin->sin_addr.s_addr = 8282 ipif->ipif_lcl_addr; 8283 lifr->lifr_addrlen = 8284 ip_mask_to_plen( 8285 ipif->ipif_net_mask); 8286 } 8287 lifr++; 8288 } 8289 } 8290 lif_copydone: 8291 rw_exit(&ill_g_lock); 8292 8293 mp1->b_wptr = (uchar_t *)lifr; 8294 if (STRUCT_BUF(lifc) != NULL) { 8295 STRUCT_FSET(lifc, lifc_len, 8296 (int)((uchar_t *)lifr - mp1->b_rptr)); 8297 } 8298 return (0); 8299 } 8300 8301 /* ARGSUSED */ 8302 int 8303 ip_sioctl_set_ipmpfailback(ipif_t *dummy_ipif, sin_t *dummy_sin, 8304 queue_t *q, mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) 8305 { 8306 /* Existence of b_cont->b_cont checked in ip_wput_nondata */ 8307 ipmp_enable_failback = *(int *)mp->b_cont->b_cont->b_rptr; 8308 return (0); 8309 } 8310 8311 static void 8312 ip_sioctl_ip6addrpolicy(queue_t *q, mblk_t *mp) 8313 { 8314 ip6_asp_t *table; 8315 size_t table_size; 8316 mblk_t *data_mp; 8317 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 8318 8319 /* These two ioctls are I_STR only */ 8320 if (iocp->ioc_count == TRANSPARENT) { 8321 miocnak(q, mp, 0, EINVAL); 8322 return; 8323 } 8324 8325 data_mp = mp->b_cont; 8326 if (data_mp == NULL) { 8327 /* The user passed us a NULL argument */ 8328 table = NULL; 8329 table_size = iocp->ioc_count; 8330 } else { 8331 /* 8332 * The user provided a table. The stream head 8333 * may have copied in the user data in chunks, 8334 * so make sure everything is pulled up 8335 * properly. 8336 */ 8337 if (MBLKL(data_mp) < iocp->ioc_count) { 8338 mblk_t *new_data_mp; 8339 if ((new_data_mp = msgpullup(data_mp, -1)) == 8340 NULL) { 8341 miocnak(q, mp, 0, ENOMEM); 8342 return; 8343 } 8344 freemsg(data_mp); 8345 data_mp = new_data_mp; 8346 mp->b_cont = data_mp; 8347 } 8348 table = (ip6_asp_t *)data_mp->b_rptr; 8349 table_size = iocp->ioc_count; 8350 } 8351 8352 switch (iocp->ioc_cmd) { 8353 case SIOCGIP6ADDRPOLICY: 8354 iocp->ioc_rval = ip6_asp_get(table, table_size); 8355 if (iocp->ioc_rval == -1) 8356 iocp->ioc_error = EINVAL; 8357 #if defined(_SYSCALL32_IMPL) && _LONG_LONG_ALIGNMENT_32 == 4 8358 else if (table != NULL && 8359 (iocp->ioc_flag & IOC_MODELS) == IOC_ILP32) { 8360 ip6_asp_t *src = table; 8361 ip6_asp32_t *dst = (void *)table; 8362 int count = table_size / sizeof (ip6_asp_t); 8363 int i; 8364 8365 /* 8366 * We need to do an in-place shrink of the array 8367 * to match the alignment attributes of the 8368 * 32-bit ABI looking at it. 8369 */ 8370 /* LINTED: logical expression always true: op "||" */ 8371 ASSERT(sizeof (*src) > sizeof (*dst)); 8372 for (i = 1; i < count; i++) 8373 bcopy(src + i, dst + i, sizeof (*dst)); 8374 } 8375 #endif 8376 break; 8377 8378 case SIOCSIP6ADDRPOLICY: 8379 ASSERT(mp->b_prev == NULL); 8380 mp->b_prev = (void *)q; 8381 #if defined(_SYSCALL32_IMPL) && _LONG_LONG_ALIGNMENT_32 == 4 8382 /* 8383 * We pass in the datamodel here so that the ip6_asp_replace() 8384 * routine can handle converting from 32-bit to native formats 8385 * where necessary. 8386 * 8387 * A better way to handle this might be to convert the inbound 8388 * data structure here, and hang it off a new 'mp'; thus the 8389 * ip6_asp_replace() logic would always be dealing with native 8390 * format data structures.. 8391 * 8392 * (An even simpler way to handle these ioctls is to just 8393 * add a 32-bit trailing 'pad' field to the ip6_asp_t structure 8394 * and just recompile everything that depends on it.) 8395 */ 8396 #endif 8397 ip6_asp_replace(mp, table, table_size, B_FALSE, 8398 iocp->ioc_flag & IOC_MODELS); 8399 return; 8400 } 8401 8402 DB_TYPE(mp) = (iocp->ioc_error == 0) ? M_IOCACK : M_IOCNAK; 8403 qreply(q, mp); 8404 } 8405 8406 static void 8407 ip_sioctl_dstinfo(queue_t *q, mblk_t *mp) 8408 { 8409 mblk_t *data_mp; 8410 struct dstinforeq *dir; 8411 uint8_t *end, *cur; 8412 in6_addr_t *daddr, *saddr; 8413 ipaddr_t v4daddr; 8414 ire_t *ire; 8415 char *slabel, *dlabel; 8416 boolean_t isipv4; 8417 int match_ire; 8418 ill_t *dst_ill; 8419 ipif_t *src_ipif, *ire_ipif; 8420 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 8421 zoneid_t zoneid; 8422 8423 ASSERT(q->q_next == NULL); /* this ioctl not allowed if ip is module */ 8424 zoneid = Q_TO_CONN(q)->conn_zoneid; 8425 8426 /* 8427 * This ioctl is I_STR only, and must have a 8428 * data mblk following the M_IOCTL mblk. 8429 */ 8430 data_mp = mp->b_cont; 8431 if (iocp->ioc_count == TRANSPARENT || data_mp == NULL) { 8432 miocnak(q, mp, 0, EINVAL); 8433 return; 8434 } 8435 8436 if (MBLKL(data_mp) < iocp->ioc_count) { 8437 mblk_t *new_data_mp; 8438 8439 if ((new_data_mp = msgpullup(data_mp, -1)) == NULL) { 8440 miocnak(q, mp, 0, ENOMEM); 8441 return; 8442 } 8443 freemsg(data_mp); 8444 data_mp = new_data_mp; 8445 mp->b_cont = data_mp; 8446 } 8447 match_ire = MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT | MATCH_IRE_PARENT; 8448 8449 for (cur = data_mp->b_rptr, end = data_mp->b_wptr; 8450 end - cur >= sizeof (struct dstinforeq); 8451 cur += sizeof (struct dstinforeq)) { 8452 dir = (struct dstinforeq *)cur; 8453 daddr = &dir->dir_daddr; 8454 saddr = &dir->dir_saddr; 8455 8456 /* 8457 * ip_addr_scope_v6() and ip6_asp_lookup() handle 8458 * v4 mapped addresses; ire_ftable_lookup[_v6]() 8459 * and ipif_select_source[_v6]() do not. 8460 */ 8461 dir->dir_dscope = ip_addr_scope_v6(daddr); 8462 dlabel = ip6_asp_lookup(daddr, &dir->dir_precedence); 8463 8464 isipv4 = IN6_IS_ADDR_V4MAPPED(daddr); 8465 if (isipv4) { 8466 IN6_V4MAPPED_TO_IPADDR(daddr, v4daddr); 8467 ire = ire_ftable_lookup(v4daddr, NULL, NULL, 8468 0, NULL, NULL, zoneid, 0, match_ire); 8469 } else { 8470 ire = ire_ftable_lookup_v6(daddr, NULL, NULL, 8471 0, NULL, NULL, zoneid, 0, match_ire); 8472 } 8473 if (ire == NULL) { 8474 dir->dir_dreachable = 0; 8475 8476 /* move on to next dst addr */ 8477 continue; 8478 } 8479 dir->dir_dreachable = 1; 8480 8481 ire_ipif = ire->ire_ipif; 8482 if (ire_ipif == NULL) 8483 goto next_dst; 8484 8485 /* 8486 * We expect to get back an interface ire or a 8487 * gateway ire cache entry. For both types, the 8488 * output interface is ire_ipif->ipif_ill. 8489 */ 8490 dst_ill = ire_ipif->ipif_ill; 8491 dir->dir_dmactype = dst_ill->ill_mactype; 8492 8493 if (isipv4) { 8494 src_ipif = ipif_select_source(dst_ill, v4daddr, zoneid); 8495 } else { 8496 src_ipif = ipif_select_source_v6(dst_ill, 8497 daddr, B_FALSE, IPV6_PREFER_SRC_DEFAULT, 8498 zoneid); 8499 } 8500 if (src_ipif == NULL) 8501 goto next_dst; 8502 8503 *saddr = src_ipif->ipif_v6lcl_addr; 8504 dir->dir_sscope = ip_addr_scope_v6(saddr); 8505 slabel = ip6_asp_lookup(saddr, NULL); 8506 dir->dir_labelmatch = ip6_asp_labelcmp(dlabel, slabel); 8507 dir->dir_sdeprecated = 8508 (src_ipif->ipif_flags & IPIF_DEPRECATED) ? 1 : 0; 8509 ipif_refrele(src_ipif); 8510 next_dst: 8511 ire_refrele(ire); 8512 } 8513 miocack(q, mp, iocp->ioc_count, 0); 8514 } 8515 8516 8517 /* 8518 * Check if this is an address assigned to this machine. 8519 * Skips interfaces that are down by using ire checks. 8520 * Translates mapped addresses to v4 addresses and then 8521 * treats them as such, returning true if the v4 address 8522 * associated with this mapped address is configured. 8523 * Note: Applications will have to be careful what they do 8524 * with the response; use of mapped addresses limits 8525 * what can be done with the socket, especially with 8526 * respect to socket options and ioctls - neither IPv4 8527 * options nor IPv6 sticky options/ancillary data options 8528 * may be used. 8529 */ 8530 /* ARGSUSED */ 8531 int 8532 ip_sioctl_tmyaddr(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 8533 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 8534 { 8535 struct sioc_addrreq *sia; 8536 sin_t *sin; 8537 ire_t *ire; 8538 mblk_t *mp1; 8539 zoneid_t zoneid; 8540 8541 ip1dbg(("ip_sioctl_tmyaddr")); 8542 8543 ASSERT(q->q_next == NULL); /* this ioctl not allowed if ip is module */ 8544 zoneid = Q_TO_CONN(q)->conn_zoneid; 8545 8546 /* Existence verified in ip_wput_nondata */ 8547 mp1 = mp->b_cont->b_cont; 8548 sia = (struct sioc_addrreq *)mp1->b_rptr; 8549 sin = (sin_t *)&sia->sa_addr; 8550 switch (sin->sin_family) { 8551 case AF_INET6: { 8552 sin6_t *sin6 = (sin6_t *)sin; 8553 8554 if (IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) { 8555 ipaddr_t v4_addr; 8556 8557 IN6_V4MAPPED_TO_IPADDR(&sin6->sin6_addr, 8558 v4_addr); 8559 ire = ire_ctable_lookup(v4_addr, 0, 8560 IRE_LOCAL|IRE_LOOPBACK, NULL, zoneid, 8561 MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY); 8562 } else { 8563 in6_addr_t v6addr; 8564 8565 v6addr = sin6->sin6_addr; 8566 ire = ire_ctable_lookup_v6(&v6addr, 0, 8567 IRE_LOCAL|IRE_LOOPBACK, NULL, zoneid, 8568 MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY); 8569 } 8570 break; 8571 } 8572 case AF_INET: { 8573 ipaddr_t v4addr; 8574 8575 v4addr = sin->sin_addr.s_addr; 8576 ire = ire_ctable_lookup(v4addr, 0, 8577 IRE_LOCAL|IRE_LOOPBACK, NULL, zoneid, 8578 MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY); 8579 break; 8580 } 8581 default: 8582 return (EAFNOSUPPORT); 8583 } 8584 if (ire != NULL) { 8585 sia->sa_res = 1; 8586 ire_refrele(ire); 8587 } else { 8588 sia->sa_res = 0; 8589 } 8590 return (0); 8591 } 8592 8593 /* 8594 * Check if this is an address assigned on-link i.e. neighbor, 8595 * and makes sure it's reachable from the current zone. 8596 * Returns true for my addresses as well. 8597 * Translates mapped addresses to v4 addresses and then 8598 * treats them as such, returning true if the v4 address 8599 * associated with this mapped address is configured. 8600 * Note: Applications will have to be careful what they do 8601 * with the response; use of mapped addresses limits 8602 * what can be done with the socket, especially with 8603 * respect to socket options and ioctls - neither IPv4 8604 * options nor IPv6 sticky options/ancillary data options 8605 * may be used. 8606 */ 8607 /* ARGSUSED */ 8608 int 8609 ip_sioctl_tonlink(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 8610 ip_ioctl_cmd_t *ipip, void *duymmy_ifreq) 8611 { 8612 struct sioc_addrreq *sia; 8613 sin_t *sin; 8614 mblk_t *mp1; 8615 ire_t *ire = NULL; 8616 zoneid_t zoneid; 8617 8618 ip1dbg(("ip_sioctl_tonlink")); 8619 8620 ASSERT(q->q_next == NULL); /* this ioctl not allowed if ip is module */ 8621 zoneid = Q_TO_CONN(q)->conn_zoneid; 8622 8623 /* Existence verified in ip_wput_nondata */ 8624 mp1 = mp->b_cont->b_cont; 8625 sia = (struct sioc_addrreq *)mp1->b_rptr; 8626 sin = (sin_t *)&sia->sa_addr; 8627 8628 /* 8629 * Match addresses with a zero gateway field to avoid 8630 * routes going through a router. 8631 * Exclude broadcast and multicast addresses. 8632 */ 8633 switch (sin->sin_family) { 8634 case AF_INET6: { 8635 sin6_t *sin6 = (sin6_t *)sin; 8636 8637 if (IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) { 8638 ipaddr_t v4_addr; 8639 8640 IN6_V4MAPPED_TO_IPADDR(&sin6->sin6_addr, 8641 v4_addr); 8642 if (!CLASSD(v4_addr)) { 8643 ire = ire_route_lookup(v4_addr, 0, 0, 0, 8644 NULL, NULL, zoneid, MATCH_IRE_GW); 8645 } 8646 } else { 8647 in6_addr_t v6addr; 8648 in6_addr_t v6gw; 8649 8650 v6addr = sin6->sin6_addr; 8651 v6gw = ipv6_all_zeros; 8652 if (!IN6_IS_ADDR_MULTICAST(&v6addr)) { 8653 ire = ire_route_lookup_v6(&v6addr, 0, 8654 &v6gw, 0, NULL, NULL, zoneid, 8655 MATCH_IRE_GW); 8656 } 8657 } 8658 break; 8659 } 8660 case AF_INET: { 8661 ipaddr_t v4addr; 8662 8663 v4addr = sin->sin_addr.s_addr; 8664 if (!CLASSD(v4addr)) { 8665 ire = ire_route_lookup(v4addr, 0, 0, 0, 8666 NULL, NULL, zoneid, MATCH_IRE_GW); 8667 } 8668 break; 8669 } 8670 default: 8671 return (EAFNOSUPPORT); 8672 } 8673 sia->sa_res = 0; 8674 if (ire != NULL) { 8675 if (ire->ire_type & (IRE_INTERFACE|IRE_CACHE| 8676 IRE_LOCAL|IRE_LOOPBACK)) { 8677 sia->sa_res = 1; 8678 } 8679 ire_refrele(ire); 8680 } 8681 return (0); 8682 } 8683 8684 /* 8685 * TBD: implement when kernel maintaines a list of site prefixes. 8686 */ 8687 /* ARGSUSED */ 8688 int 8689 ip_sioctl_tmysite(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 8690 ip_ioctl_cmd_t *ipip, void *ifreq) 8691 { 8692 return (ENXIO); 8693 } 8694 8695 /* ARGSUSED */ 8696 int 8697 ip_sioctl_tunparam(ipif_t *ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 8698 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 8699 { 8700 ill_t *ill; 8701 mblk_t *mp1; 8702 conn_t *connp; 8703 boolean_t success; 8704 8705 ip1dbg(("ip_sioctl_tunparam(%s:%u %p)\n", 8706 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 8707 /* ioctl comes down on an conn */ 8708 ASSERT(!(q->q_flag & QREADR) && q->q_next == NULL); 8709 connp = Q_TO_CONN(q); 8710 8711 mp->b_datap->db_type = M_IOCTL; 8712 8713 /* 8714 * Send down a copy. (copymsg does not copy b_next/b_prev). 8715 * The original mp contains contaminated b_next values due to 'mi', 8716 * which is needed to do the mi_copy_done. Unfortunately if we 8717 * send down the original mblk itself and if we are popped due to an 8718 * an unplumb before the response comes back from tunnel, 8719 * the streamhead (which does a freemsg) will see this contaminated 8720 * message and the assertion in freemsg about non-null b_next/b_prev 8721 * will panic a DEBUG kernel. 8722 */ 8723 mp1 = copymsg(mp); 8724 if (mp1 == NULL) 8725 return (ENOMEM); 8726 8727 ill = ipif->ipif_ill; 8728 mutex_enter(&connp->conn_lock); 8729 mutex_enter(&ill->ill_lock); 8730 if (ipip->ipi_cmd == SIOCSTUNPARAM || ipip->ipi_cmd == OSIOCSTUNPARAM) { 8731 success = ipsq_pending_mp_add(connp, ipif, CONNP_TO_WQ(connp), 8732 mp, 0); 8733 } else { 8734 success = ill_pending_mp_add(ill, connp, mp); 8735 } 8736 mutex_exit(&ill->ill_lock); 8737 mutex_exit(&connp->conn_lock); 8738 8739 if (success) { 8740 ip1dbg(("sending down tunparam request ")); 8741 putnext(ill->ill_wq, mp1); 8742 return (EINPROGRESS); 8743 } else { 8744 /* The conn has started closing */ 8745 freemsg(mp1); 8746 return (EINTR); 8747 } 8748 } 8749 8750 static int 8751 ip_sioctl_arp_common(ill_t *ill, queue_t *q, mblk_t *mp, sin_t *sin, 8752 boolean_t x_arp_ioctl, boolean_t if_arp_ioctl) 8753 { 8754 mblk_t *mp1; 8755 mblk_t *mp2; 8756 mblk_t *pending_mp; 8757 ipaddr_t ipaddr; 8758 area_t *area; 8759 struct iocblk *iocp; 8760 conn_t *connp; 8761 struct arpreq *ar; 8762 struct xarpreq *xar; 8763 boolean_t success; 8764 int flags, alength; 8765 char *lladdr; 8766 8767 ASSERT(!(q->q_flag & QREADR) && q->q_next == NULL); 8768 connp = Q_TO_CONN(q); 8769 8770 iocp = (struct iocblk *)mp->b_rptr; 8771 /* 8772 * ill has already been set depending on whether 8773 * bsd style or interface style ioctl. 8774 */ 8775 ASSERT(ill != NULL); 8776 8777 /* 8778 * Is this one of the new SIOC*XARP ioctls? 8779 */ 8780 if (x_arp_ioctl) { 8781 /* We have a chain - M_IOCTL-->MI_COPY_MBLK-->XARPREQ_MBLK */ 8782 xar = (struct xarpreq *)mp->b_cont->b_cont->b_rptr; 8783 ar = NULL; 8784 8785 flags = xar->xarp_flags; 8786 lladdr = LLADDR(&xar->xarp_ha); 8787 /* 8788 * Validate against user's link layer address length 8789 * input and name and addr length limits. 8790 */ 8791 alength = ill->ill_phys_addr_length; 8792 if (iocp->ioc_cmd == SIOCSXARP) { 8793 if (alength != xar->xarp_ha.sdl_alen || 8794 (alength + xar->xarp_ha.sdl_nlen > 8795 sizeof (xar->xarp_ha.sdl_data))) 8796 return (EINVAL); 8797 } 8798 } else { 8799 /* We have a chain - M_IOCTL-->MI_COPY_MBLK-->ARPREQ_MBLK */ 8800 ar = (struct arpreq *)mp->b_cont->b_cont->b_rptr; 8801 xar = NULL; 8802 8803 flags = ar->arp_flags; 8804 lladdr = ar->arp_ha.sa_data; 8805 /* 8806 * Theoretically, the sa_family could tell us what link 8807 * layer type this operation is trying to deal with. By 8808 * common usage AF_UNSPEC means ethernet. We'll assume 8809 * any attempt to use the SIOC?ARP ioctls is for ethernet, 8810 * for now. Our new SIOC*XARP ioctls can be used more 8811 * generally. 8812 * 8813 * If the underlying media happens to have a non 6 byte 8814 * address, arp module will fail set/get, but the del 8815 * operation will succeed. 8816 */ 8817 alength = 6; 8818 if ((iocp->ioc_cmd != SIOCDARP) && 8819 (alength != ill->ill_phys_addr_length)) { 8820 return (EINVAL); 8821 } 8822 } 8823 8824 /* 8825 * We are going to pass up to ARP a packet chain that looks 8826 * like: 8827 * 8828 * M_IOCTL-->ARP_op_MBLK-->ORIG_M_IOCTL-->MI_COPY_MBLK-->[X]ARPREQ_MBLK 8829 * 8830 * Get a copy of the original IOCTL mblk to head the chain, 8831 * to be sent up (in mp1). Also get another copy to store 8832 * in the ill_pending_mp list, for matching the response 8833 * when it comes back from ARP. 8834 */ 8835 mp1 = copyb(mp); 8836 pending_mp = copymsg(mp); 8837 if (mp1 == NULL || pending_mp == NULL) { 8838 if (mp1 != NULL) 8839 freeb(mp1); 8840 if (pending_mp != NULL) 8841 ip_ioctl_freemsg(pending_mp); 8842 return (ENOMEM); 8843 } 8844 8845 ipaddr = sin->sin_addr.s_addr; 8846 8847 mp2 = ill_arp_alloc(ill, (uchar_t *)&ip_area_template, 8848 (caddr_t)&ipaddr); 8849 if (mp2 == NULL) { 8850 freeb(mp1); 8851 ip_ioctl_freemsg(pending_mp); 8852 return (ENOMEM); 8853 } 8854 /* Put together the chain. */ 8855 mp1->b_cont = mp2; 8856 mp1->b_datap->db_type = M_IOCTL; 8857 mp2->b_cont = mp; 8858 mp2->b_datap->db_type = M_DATA; 8859 8860 iocp = (struct iocblk *)mp1->b_rptr; 8861 8862 /* 8863 * An M_IOCDATA's payload (struct copyresp) is mostly the same as an 8864 * M_IOCTL's payload (struct iocblk), but 'struct copyresp' has a 8865 * cp_private field (or cp_rval on 32-bit systems) in place of the 8866 * ioc_count field; set ioc_count to be correct. 8867 */ 8868 iocp->ioc_count = MBLKL(mp1->b_cont); 8869 8870 /* 8871 * Set the proper command in the ARP message. 8872 * Convert the SIOC{G|S|D}ARP calls into our 8873 * AR_ENTRY_xxx calls. 8874 */ 8875 area = (area_t *)mp2->b_rptr; 8876 switch (iocp->ioc_cmd) { 8877 case SIOCDARP: 8878 case SIOCDXARP: 8879 /* 8880 * We defer deleting the corresponding IRE until 8881 * we return from arp. 8882 */ 8883 area->area_cmd = AR_ENTRY_DELETE; 8884 area->area_proto_mask_offset = 0; 8885 break; 8886 case SIOCGARP: 8887 case SIOCGXARP: 8888 area->area_cmd = AR_ENTRY_SQUERY; 8889 area->area_proto_mask_offset = 0; 8890 break; 8891 case SIOCSARP: 8892 case SIOCSXARP: { 8893 /* 8894 * Delete the corresponding ire to make sure IP will 8895 * pick up any change from arp. 8896 */ 8897 if (!if_arp_ioctl) { 8898 (void) ip_ire_clookup_and_delete(ipaddr, NULL); 8899 break; 8900 } else { 8901 ipif_t *ipif = ipif_get_next_ipif(NULL, ill); 8902 if (ipif != NULL) { 8903 (void) ip_ire_clookup_and_delete(ipaddr, ipif); 8904 ipif_refrele(ipif); 8905 } 8906 break; 8907 } 8908 } 8909 } 8910 iocp->ioc_cmd = area->area_cmd; 8911 8912 /* 8913 * Before sending 'mp' to ARP, we have to clear the b_next 8914 * and b_prev. Otherwise if STREAMS encounters such a message 8915 * in freemsg(), (because ARP can close any time) it can cause 8916 * a panic. But mi code needs the b_next and b_prev values of 8917 * mp->b_cont, to complete the ioctl. So we store it here 8918 * in pending_mp->bcont, and restore it in ip_sioctl_iocack() 8919 * when the response comes down from ARP. 8920 */ 8921 pending_mp->b_cont->b_next = mp->b_cont->b_next; 8922 pending_mp->b_cont->b_prev = mp->b_cont->b_prev; 8923 mp->b_cont->b_next = NULL; 8924 mp->b_cont->b_prev = NULL; 8925 8926 mutex_enter(&connp->conn_lock); 8927 mutex_enter(&ill->ill_lock); 8928 /* conn has not yet started closing, hence this can't fail */ 8929 success = ill_pending_mp_add(ill, connp, pending_mp); 8930 ASSERT(success); 8931 mutex_exit(&ill->ill_lock); 8932 mutex_exit(&connp->conn_lock); 8933 8934 /* 8935 * Fill in the rest of the ARP operation fields. 8936 */ 8937 area->area_hw_addr_length = alength; 8938 bcopy(lladdr, 8939 (char *)area + area->area_hw_addr_offset, 8940 area->area_hw_addr_length); 8941 /* Translate the flags. */ 8942 if (flags & ATF_PERM) 8943 area->area_flags |= ACE_F_PERMANENT; 8944 if (flags & ATF_PUBL) 8945 area->area_flags |= ACE_F_PUBLISH; 8946 8947 /* 8948 * Up to ARP it goes. The response will come 8949 * back in ip_wput as an M_IOCACK message, and 8950 * will be handed to ip_sioctl_iocack for 8951 * completion. 8952 */ 8953 putnext(ill->ill_rq, mp1); 8954 return (EINPROGRESS); 8955 } 8956 8957 /* ARGSUSED */ 8958 int 8959 ip_sioctl_xarp(ipif_t *ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 8960 ip_ioctl_cmd_t *ipip, void *ifreq) 8961 { 8962 struct xarpreq *xar; 8963 boolean_t isv6; 8964 mblk_t *mp1; 8965 int err; 8966 conn_t *connp; 8967 int ifnamelen; 8968 ire_t *ire = NULL; 8969 ill_t *ill = NULL; 8970 struct sockaddr_in *sin; 8971 boolean_t if_arp_ioctl = B_FALSE; 8972 8973 /* ioctl comes down on an conn */ 8974 ASSERT(!(q->q_flag & QREADR) && q->q_next == NULL); 8975 connp = Q_TO_CONN(q); 8976 isv6 = connp->conn_af_isv6; 8977 8978 /* Existance verified in ip_wput_nondata */ 8979 mp1 = mp->b_cont->b_cont; 8980 8981 ASSERT(MBLKL(mp1) >= sizeof (*xar)); 8982 xar = (struct xarpreq *)mp1->b_rptr; 8983 sin = (sin_t *)&xar->xarp_pa; 8984 8985 if (isv6 || (xar->xarp_ha.sdl_family != AF_LINK) || 8986 (xar->xarp_pa.ss_family != AF_INET)) 8987 return (ENXIO); 8988 8989 ifnamelen = xar->xarp_ha.sdl_nlen; 8990 if (ifnamelen != 0) { 8991 char *cptr, cval; 8992 8993 if (ifnamelen >= LIFNAMSIZ) 8994 return (EINVAL); 8995 8996 /* 8997 * Instead of bcopying a bunch of bytes, 8998 * null-terminate the string in-situ. 8999 */ 9000 cptr = xar->xarp_ha.sdl_data + ifnamelen; 9001 cval = *cptr; 9002 *cptr = '\0'; 9003 ill = ill_lookup_on_name(xar->xarp_ha.sdl_data, 9004 B_FALSE, isv6, CONNP_TO_WQ(connp), mp, ip_process_ioctl, 9005 &err, NULL); 9006 *cptr = cval; 9007 if (ill == NULL) 9008 return (err); 9009 if (ill->ill_net_type != IRE_IF_RESOLVER) { 9010 ill_refrele(ill); 9011 return (ENXIO); 9012 } 9013 9014 if_arp_ioctl = B_TRUE; 9015 } else { 9016 /* 9017 * PSARC 2003/088 states that if sdl_nlen == 0, it behaves 9018 * as an extended BSD ioctl. The kernel uses the IP address 9019 * to figure out the network interface. 9020 */ 9021 ire = ire_cache_lookup(sin->sin_addr.s_addr, ALL_ZONES); 9022 if ((ire == NULL) || (ire->ire_type == IRE_LOOPBACK) || 9023 ((ill = ire_to_ill(ire)) == NULL)) { 9024 if (ire != NULL) 9025 ire_refrele(ire); 9026 ire = ire_ftable_lookup(sin->sin_addr.s_addr, 9027 0, 0, IRE_IF_RESOLVER, NULL, NULL, ALL_ZONES, 0, 9028 MATCH_IRE_TYPE); 9029 if ((ire == NULL) || 9030 ((ill = ire_to_ill(ire)) == NULL)) { 9031 if (ire != NULL) 9032 ire_refrele(ire); 9033 return (ENXIO); 9034 } 9035 } 9036 ASSERT(ire != NULL && ill != NULL); 9037 } 9038 9039 err = ip_sioctl_arp_common(ill, q, mp, sin, B_TRUE, if_arp_ioctl); 9040 if (if_arp_ioctl) 9041 ill_refrele(ill); 9042 if (ire != NULL) 9043 ire_refrele(ire); 9044 9045 return (err); 9046 } 9047 9048 /* 9049 * ARP IOCTLs. 9050 * How does IP get in the business of fronting ARP configuration/queries? 9051 * Well its like this, the Berkeley ARP IOCTLs (SIOCGARP, SIOCDARP, SIOCSARP) 9052 * are by tradition passed in through a datagram socket. That lands in IP. 9053 * As it happens, this is just as well since the interface is quite crude in 9054 * that it passes in no information about protocol or hardware types, or 9055 * interface association. After making the protocol assumption, IP is in 9056 * the position to look up the name of the ILL, which ARP will need, and 9057 * format a request that can be handled by ARP. The request is passed up 9058 * stream to ARP, and the original IOCTL is completed by IP when ARP passes 9059 * back a response. ARP supports its own set of more general IOCTLs, in 9060 * case anyone is interested. 9061 */ 9062 /* ARGSUSED */ 9063 int 9064 ip_sioctl_arp(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 9065 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 9066 { 9067 struct arpreq *ar; 9068 struct sockaddr_in *sin; 9069 ire_t *ire; 9070 boolean_t isv6; 9071 mblk_t *mp1; 9072 int err; 9073 conn_t *connp; 9074 ill_t *ill; 9075 9076 /* ioctl comes down on an conn */ 9077 ASSERT(!(q->q_flag & QREADR) && q->q_next == NULL); 9078 connp = Q_TO_CONN(q); 9079 isv6 = connp->conn_af_isv6; 9080 if (isv6) 9081 return (ENXIO); 9082 9083 /* Existance verified in ip_wput_nondata */ 9084 mp1 = mp->b_cont->b_cont; 9085 9086 ar = (struct arpreq *)mp1->b_rptr; 9087 sin = (sin_t *)&ar->arp_pa; 9088 9089 /* 9090 * We need to let ARP know on which interface the IP 9091 * address has an ARP mapping. In the IPMP case, a 9092 * simple forwarding table lookup will return the 9093 * IRE_IF_RESOLVER for the first interface in the group, 9094 * which might not be the interface on which the 9095 * requested IP address was resolved due to the ill 9096 * selection algorithm (see ip_newroute_get_dst_ill()). 9097 * So we do a cache table lookup first: if the IRE cache 9098 * entry for the IP address is still there, it will 9099 * contain the ill pointer for the right interface, so 9100 * we use that. If the cache entry has been flushed, we 9101 * fall back to the forwarding table lookup. This should 9102 * be rare enough since IRE cache entries have a longer 9103 * life expectancy than ARP cache entries. 9104 */ 9105 ire = ire_cache_lookup(sin->sin_addr.s_addr, ALL_ZONES); 9106 if ((ire == NULL) || (ire->ire_type == IRE_LOOPBACK) || 9107 ((ill = ire_to_ill(ire)) == NULL)) { 9108 if (ire != NULL) 9109 ire_refrele(ire); 9110 ire = ire_ftable_lookup(sin->sin_addr.s_addr, 9111 0, 0, IRE_IF_RESOLVER, NULL, NULL, ALL_ZONES, 0, 9112 MATCH_IRE_TYPE); 9113 if ((ire == NULL) || ((ill = ire_to_ill(ire)) == NULL)) { 9114 if (ire != NULL) 9115 ire_refrele(ire); 9116 return (ENXIO); 9117 } 9118 } 9119 ASSERT(ire != NULL && ill != NULL); 9120 9121 err = ip_sioctl_arp_common(ill, q, mp, sin, B_FALSE, B_FALSE); 9122 ire_refrele(ire); 9123 return (err); 9124 } 9125 9126 /* 9127 * Do I_PLINK/I_LINK or I_PUNLINK/I_UNLINK with consistency checks and also 9128 * atomically set/clear the muxids. Also complete the ioctl by acking or 9129 * naking it. Note that the code is structured such that the link type, 9130 * whether it's persistent or not, is treated equally. ifconfig(1M) and 9131 * its clones use the persistent link, while pppd(1M) and perhaps many 9132 * other daemons may use non-persistent link. When combined with some 9133 * ill_t states, linking and unlinking lower streams may be used as 9134 * indicators of dynamic re-plumbing events [see PSARC/1999/348]. 9135 */ 9136 /* ARGSUSED */ 9137 void 9138 ip_sioctl_plink(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 9139 { 9140 mblk_t *mp1; 9141 mblk_t *mp2; 9142 struct linkblk *li; 9143 queue_t *ipwq; 9144 char *name; 9145 struct qinit *qinfo; 9146 struct ipmx_s *ipmxp; 9147 ill_t *ill = NULL; 9148 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 9149 int err = 0; 9150 boolean_t entered_ipsq = B_FALSE; 9151 boolean_t islink; 9152 queue_t *dwq = NULL; 9153 9154 ASSERT(iocp->ioc_cmd == I_PLINK || iocp->ioc_cmd == I_PUNLINK || 9155 iocp->ioc_cmd == I_LINK || iocp->ioc_cmd == I_UNLINK); 9156 9157 islink = (iocp->ioc_cmd == I_PLINK || iocp->ioc_cmd == I_LINK) ? 9158 B_TRUE : B_FALSE; 9159 9160 mp1 = mp->b_cont; /* This is the linkblk info */ 9161 li = (struct linkblk *)mp1->b_rptr; 9162 9163 /* 9164 * ARP has added this special mblk, and the utility is asking us 9165 * to perform consistency checks, and also atomically set the 9166 * muxid. Ifconfig is an example. It achieves this by using 9167 * /dev/arp as the mux to plink the arp stream, and pushes arp on 9168 * to /dev/udp[6] stream for use as the mux when plinking the IP 9169 * stream. SIOCSLIFMUXID is not required. See ifconfig.c, arp.c 9170 * and other comments in this routine for more details. 9171 */ 9172 mp2 = mp1->b_cont; /* This is added by ARP */ 9173 9174 /* 9175 * If I_{P}LINK/I_{P}UNLINK is issued by a utility other than 9176 * ifconfig which didn't push ARP on top of the dummy mux, we won't 9177 * get the special mblk above. For backward compatibility, we just 9178 * return success. The utility will use SIOCSLIFMUXID to store 9179 * the muxids. This is not atomic, and can leave the streams 9180 * unplumbable if the utility is interrrupted, before it does the 9181 * SIOCSLIFMUXID. 9182 */ 9183 if (mp2 == NULL) { 9184 /* 9185 * At this point we don't know whether or not this is the 9186 * IP module stream or the ARP device stream. We need to 9187 * walk the lower stream in order to find this out, since 9188 * the capability negotiation is done only on the IP module 9189 * stream. IP module instance is identified by the module 9190 * name IP, non-null q_next, and it's wput not being ip_lwput. 9191 * STREAMS ensures that the lower stream (l_qbot) will not 9192 * vanish until this ioctl completes. So we can safely walk 9193 * the stream or refer to the q_ptr. 9194 */ 9195 ipwq = li->l_qbot; 9196 while (ipwq != NULL) { 9197 qinfo = ipwq->q_qinfo; 9198 name = qinfo->qi_minfo->mi_idname; 9199 if (name != NULL && name[0] != NULL && 9200 (strcmp(name, ip_mod_info.mi_idname) == 0) && 9201 ((void *)(qinfo->qi_putp) != (void *)ip_lwput) && 9202 (ipwq->q_next != NULL)) { 9203 break; 9204 } 9205 ipwq = ipwq->q_next; 9206 } 9207 /* 9208 * This looks like an IP module stream, so trigger 9209 * the capability reset or re-negotiation if necessary. 9210 */ 9211 if (ipwq != NULL) { 9212 ill = ipwq->q_ptr; 9213 ASSERT(ill != NULL); 9214 9215 if (ipsq == NULL) { 9216 ipsq = ipsq_try_enter(NULL, ill, q, mp, 9217 ip_sioctl_plink, NEW_OP, B_TRUE); 9218 if (ipsq == NULL) 9219 return; 9220 entered_ipsq = B_TRUE; 9221 } 9222 ASSERT(IAM_WRITER_ILL(ill)); 9223 /* 9224 * Store the upper read queue of the module 9225 * immediately below IP, and count the total 9226 * number of lower modules. Do this only 9227 * for I_PLINK or I_LINK event. 9228 */ 9229 ill->ill_lmod_rq = NULL; 9230 ill->ill_lmod_cnt = 0; 9231 if (islink && (dwq = ipwq->q_next) != NULL) { 9232 ill->ill_lmod_rq = RD(dwq); 9233 9234 while (dwq != NULL) { 9235 ill->ill_lmod_cnt++; 9236 dwq = dwq->q_next; 9237 } 9238 } 9239 /* 9240 * There's no point in resetting or re-negotiating if 9241 * we are not bound to the driver, so only do this if 9242 * the DLPI state is idle (up); we assume such state 9243 * since ill_ipif_up_count gets incremented in 9244 * ipif_up_done(), which is after we are bound to the 9245 * driver. Note that in the case of logical 9246 * interfaces, IP won't rebind to the driver unless 9247 * the ill_ipif_up_count is 0, meaning that all other 9248 * IP interfaces (including the main ipif) are in the 9249 * down state. Because of this, we use such counter 9250 * as an indicator, instead of relying on the IPIF_UP 9251 * flag, which is per ipif instance. 9252 */ 9253 if (ill->ill_ipif_up_count > 0) { 9254 if (islink) 9255 ill_capability_probe(ill); 9256 else 9257 ill_capability_reset(ill); 9258 } 9259 } 9260 goto done; 9261 } 9262 9263 /* 9264 * This is an I_{P}LINK sent down by ifconfig on 9265 * /dev/arp. ARP has appended this last (3rd) mblk, 9266 * giving more info. STREAMS ensures that the lower 9267 * stream (l_qbot) will not vanish until this ioctl 9268 * completes. So we can safely walk the stream or refer 9269 * to the q_ptr. 9270 */ 9271 ipmxp = (struct ipmx_s *)mp2->b_rptr; 9272 if (ipmxp->ipmx_arpdev_stream) { 9273 /* 9274 * The operation is occuring on the arp-device 9275 * stream. 9276 */ 9277 ill = ill_lookup_on_name(ipmxp->ipmx_name, B_FALSE, B_FALSE, 9278 q, mp, ip_sioctl_plink, &err, NULL); 9279 if (ill == NULL) { 9280 if (err == EINPROGRESS) { 9281 return; 9282 } else { 9283 err = EINVAL; 9284 goto done; 9285 } 9286 } 9287 9288 if (ipsq == NULL) { 9289 ipsq = ipsq_try_enter(NULL, ill, q, mp, ip_sioctl_plink, 9290 NEW_OP, B_TRUE); 9291 if (ipsq == NULL) { 9292 ill_refrele(ill); 9293 return; 9294 } 9295 entered_ipsq = B_TRUE; 9296 } 9297 ASSERT(IAM_WRITER_ILL(ill)); 9298 ill_refrele(ill); 9299 /* 9300 * To ensure consistency between IP and ARP, 9301 * the following LIFO scheme is used in 9302 * plink/punlink. (IP first, ARP last). 9303 * This is because the muxid's are stored 9304 * in the IP stream on the ill. 9305 * 9306 * I_{P}LINK: ifconfig plinks the IP stream before 9307 * plinking the ARP stream. On an arp-dev 9308 * stream, IP checks that it is not yet 9309 * plinked, and it also checks that the 9310 * corresponding IP stream is already plinked. 9311 * 9312 * I_{P}UNLINK: ifconfig punlinks the ARP stream 9313 * before punlinking the IP stream. IP does 9314 * not allow punlink of the IP stream unless 9315 * the arp stream has been punlinked. 9316 * 9317 */ 9318 if ((islink && 9319 (ill->ill_arp_muxid != 0 || ill->ill_ip_muxid == 0)) || 9320 (!islink && 9321 ill->ill_arp_muxid != li->l_index)) { 9322 err = EINVAL; 9323 goto done; 9324 } 9325 if (islink) { 9326 ill->ill_arp_muxid = li->l_index; 9327 } else { 9328 ill->ill_arp_muxid = 0; 9329 } 9330 } else { 9331 /* 9332 * This must be the IP module stream with or 9333 * without arp. Walk the stream and locate the 9334 * IP module. An IP module instance is 9335 * identified by the module name IP, non-null 9336 * q_next, and it's wput not being ip_lwput. 9337 */ 9338 ipwq = li->l_qbot; 9339 while (ipwq != NULL) { 9340 qinfo = ipwq->q_qinfo; 9341 name = qinfo->qi_minfo->mi_idname; 9342 if (name != NULL && name[0] != NULL && 9343 (strcmp(name, ip_mod_info.mi_idname) == 0) && 9344 ((void *)(qinfo->qi_putp) != (void *)ip_lwput) && 9345 (ipwq->q_next != NULL)) { 9346 break; 9347 } 9348 ipwq = ipwq->q_next; 9349 } 9350 if (ipwq != NULL) { 9351 ill = ipwq->q_ptr; 9352 ASSERT(ill != NULL); 9353 9354 if (ipsq == NULL) { 9355 ipsq = ipsq_try_enter(NULL, ill, q, mp, 9356 ip_sioctl_plink, NEW_OP, B_TRUE); 9357 if (ipsq == NULL) 9358 return; 9359 entered_ipsq = B_TRUE; 9360 } 9361 ASSERT(IAM_WRITER_ILL(ill)); 9362 /* 9363 * Return error if the ip_mux_id is 9364 * non-zero and command is I_{P}LINK. 9365 * If command is I_{P}UNLINK, return 9366 * error if the arp-devstr is not 9367 * yet punlinked. 9368 */ 9369 if ((islink && ill->ill_ip_muxid != 0) || 9370 (!islink && ill->ill_arp_muxid != 0)) { 9371 err = EINVAL; 9372 goto done; 9373 } 9374 ill->ill_lmod_rq = NULL; 9375 ill->ill_lmod_cnt = 0; 9376 if (islink) { 9377 /* 9378 * Store the upper read queue of the module 9379 * immediately below IP, and count the total 9380 * number of lower modules. 9381 */ 9382 if ((dwq = ipwq->q_next) != NULL) { 9383 ill->ill_lmod_rq = RD(dwq); 9384 9385 while (dwq != NULL) { 9386 ill->ill_lmod_cnt++; 9387 dwq = dwq->q_next; 9388 } 9389 } 9390 ill->ill_ip_muxid = li->l_index; 9391 } else { 9392 ill->ill_ip_muxid = 0; 9393 } 9394 9395 /* 9396 * See comments above about resetting/re- 9397 * negotiating driver sub-capabilities. 9398 */ 9399 if (ill->ill_ipif_up_count > 0) { 9400 if (islink) 9401 ill_capability_probe(ill); 9402 else 9403 ill_capability_reset(ill); 9404 } 9405 } 9406 } 9407 done: 9408 iocp->ioc_count = 0; 9409 iocp->ioc_error = err; 9410 if (err == 0) 9411 mp->b_datap->db_type = M_IOCACK; 9412 else 9413 mp->b_datap->db_type = M_IOCNAK; 9414 qreply(q, mp); 9415 9416 /* Conn was refheld in ip_sioctl_copyin_setup */ 9417 if (CONN_Q(q)) 9418 CONN_OPER_PENDING_DONE(Q_TO_CONN(q)); 9419 if (entered_ipsq) 9420 ipsq_exit(ipsq, B_TRUE, B_TRUE); 9421 } 9422 9423 /* 9424 * Search the ioctl command in the ioctl tables and return a pointer 9425 * to the ioctl command information. The ioctl command tables are 9426 * static and fully populated at compile time. 9427 */ 9428 ip_ioctl_cmd_t * 9429 ip_sioctl_lookup(int ioc_cmd) 9430 { 9431 int index; 9432 ip_ioctl_cmd_t *ipip; 9433 ip_ioctl_cmd_t *ipip_end; 9434 9435 if (ioc_cmd == IPI_DONTCARE) 9436 return (NULL); 9437 9438 /* 9439 * Do a 2 step search. First search the indexed table 9440 * based on the least significant byte of the ioctl cmd. 9441 * If we don't find a match, then search the misc table 9442 * serially. 9443 */ 9444 index = ioc_cmd & 0xFF; 9445 if (index < ip_ndx_ioctl_count) { 9446 ipip = &ip_ndx_ioctl_table[index]; 9447 if (ipip->ipi_cmd == ioc_cmd) { 9448 /* Found a match in the ndx table */ 9449 return (ipip); 9450 } 9451 } 9452 9453 /* Search the misc table */ 9454 ipip_end = &ip_misc_ioctl_table[ip_misc_ioctl_count]; 9455 for (ipip = ip_misc_ioctl_table; ipip < ipip_end; ipip++) { 9456 if (ipip->ipi_cmd == ioc_cmd) 9457 /* Found a match in the misc table */ 9458 return (ipip); 9459 } 9460 9461 return (NULL); 9462 } 9463 9464 /* 9465 * Wrapper function for resuming deferred ioctl processing 9466 * Used for SIOCGDSTINFO, SIOCGIP6ADDRPOLICY, SIOCGMSFILTER, 9467 * SIOCSMSFILTER, SIOCGIPMSFILTER, and SIOCSIPMSFILTER currently. 9468 */ 9469 /* ARGSUSED */ 9470 void 9471 ip_sioctl_copyin_resume(ipsq_t *dummy_ipsq, queue_t *q, mblk_t *mp, 9472 void *dummy_arg) 9473 { 9474 ip_sioctl_copyin_setup(q, mp); 9475 } 9476 9477 /* 9478 * ip_sioctl_copyin_setup is called by ip_wput with any M_IOCTL message 9479 * that arrives. Most of the IOCTLs are "socket" IOCTLs which we handle 9480 * in either I_STR or TRANSPARENT form, using the mi_copy facility. 9481 * We establish here the size of the block to be copied in. mi_copyin 9482 * arranges for this to happen, an processing continues in ip_wput with 9483 * an M_IOCDATA message. 9484 */ 9485 void 9486 ip_sioctl_copyin_setup(queue_t *q, mblk_t *mp) 9487 { 9488 int copyin_size; 9489 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 9490 ip_ioctl_cmd_t *ipip; 9491 cred_t *cr; 9492 9493 ipip = ip_sioctl_lookup(iocp->ioc_cmd); 9494 if (ipip == NULL) { 9495 /* 9496 * The ioctl is not one we understand or own. 9497 * Pass it along to be processed down stream, 9498 * if this is a module instance of IP, else nak 9499 * the ioctl. 9500 */ 9501 if (q->q_next == NULL) { 9502 goto nak; 9503 } else { 9504 putnext(q, mp); 9505 return; 9506 } 9507 } 9508 9509 /* 9510 * If this is deferred, then we will do all the checks when we 9511 * come back. 9512 */ 9513 if ((iocp->ioc_cmd == SIOCGDSTINFO || 9514 iocp->ioc_cmd == SIOCGIP6ADDRPOLICY) && !ip6_asp_can_lookup()) { 9515 ip6_asp_pending_op(q, mp, ip_sioctl_copyin_resume); 9516 return; 9517 } 9518 9519 /* 9520 * Only allow a very small subset of IP ioctls on this stream if 9521 * IP is a module and not a driver. Allowing ioctls to be processed 9522 * in this case may cause assert failures or data corruption. 9523 * Typically G[L]IFFLAGS, SLIFNAME/IF_UNITSEL are the only few 9524 * ioctls allowed on an IP module stream, after which this stream 9525 * normally becomes a multiplexor (at which time the stream head 9526 * will fail all ioctls). 9527 */ 9528 if ((q->q_next != NULL) && !(ipip->ipi_flags & IPI_MODOK)) { 9529 if (ipip->ipi_flags & IPI_PASS_DOWN) { 9530 /* 9531 * Pass common Streams ioctls which the IP 9532 * module does not own or consume along to 9533 * be processed down stream. 9534 */ 9535 putnext(q, mp); 9536 return; 9537 } else { 9538 goto nak; 9539 } 9540 } 9541 9542 /* Make sure we have ioctl data to process. */ 9543 if (mp->b_cont == NULL && !(ipip->ipi_flags & IPI_NULL_BCONT)) 9544 goto nak; 9545 9546 /* 9547 * Prefer dblk credential over ioctl credential; some synthesized 9548 * ioctls have kcred set because there's no way to crhold() 9549 * a credential in some contexts. (ioc_cr is not crfree() by 9550 * the framework; the caller of ioctl needs to hold the reference 9551 * for the duration of the call). 9552 */ 9553 cr = DB_CREDDEF(mp, iocp->ioc_cr); 9554 9555 /* Make sure normal users don't send down privileged ioctls */ 9556 if ((ipip->ipi_flags & IPI_PRIV) && 9557 (cr != NULL) && secpolicy_net_config(cr, B_TRUE) != 0) { 9558 /* We checked the privilege earlier but log it here */ 9559 miocnak(q, mp, 0, secpolicy_net_config(cr, B_FALSE)); 9560 return; 9561 } 9562 9563 /* 9564 * The ioctl command tables can only encode fixed length 9565 * ioctl data. If the length is variable, the table will 9566 * encode the length as zero. Such special cases are handled 9567 * below in the switch. 9568 */ 9569 if (ipip->ipi_copyin_size != 0) { 9570 mi_copyin(q, mp, NULL, ipip->ipi_copyin_size); 9571 return; 9572 } 9573 9574 switch (iocp->ioc_cmd) { 9575 case O_SIOCGIFCONF: 9576 case SIOCGIFCONF: 9577 /* 9578 * This IOCTL is hilarious. See comments in 9579 * ip_sioctl_get_ifconf for the story. 9580 */ 9581 if (iocp->ioc_count == TRANSPARENT) 9582 copyin_size = SIZEOF_STRUCT(ifconf, 9583 iocp->ioc_flag); 9584 else 9585 copyin_size = iocp->ioc_count; 9586 mi_copyin(q, mp, NULL, copyin_size); 9587 return; 9588 9589 case O_SIOCGLIFCONF: 9590 case SIOCGLIFCONF: 9591 copyin_size = SIZEOF_STRUCT(lifconf, iocp->ioc_flag); 9592 mi_copyin(q, mp, NULL, copyin_size); 9593 return; 9594 9595 case SIOCGLIFSRCOF: 9596 copyin_size = SIZEOF_STRUCT(lifsrcof, iocp->ioc_flag); 9597 mi_copyin(q, mp, NULL, copyin_size); 9598 return; 9599 case SIOCGIP6ADDRPOLICY: 9600 ip_sioctl_ip6addrpolicy(q, mp); 9601 ip6_asp_table_refrele(); 9602 return; 9603 9604 case SIOCSIP6ADDRPOLICY: 9605 ip_sioctl_ip6addrpolicy(q, mp); 9606 return; 9607 9608 case SIOCGDSTINFO: 9609 ip_sioctl_dstinfo(q, mp); 9610 ip6_asp_table_refrele(); 9611 return; 9612 9613 case I_PLINK: 9614 case I_PUNLINK: 9615 case I_LINK: 9616 case I_UNLINK: 9617 /* 9618 * We treat non-persistent link similarly as the persistent 9619 * link case, in terms of plumbing/unplumbing, as well as 9620 * dynamic re-plumbing events indicator. See comments 9621 * in ip_sioctl_plink() for more. 9622 * 9623 * Request can be enqueued in the 'ipsq' while waiting 9624 * to become exclusive. So bump up the conn ref. 9625 */ 9626 if (CONN_Q(q)) 9627 CONN_INC_REF(Q_TO_CONN(q)); 9628 ip_sioctl_plink(NULL, q, mp, NULL); 9629 return; 9630 9631 case ND_GET: 9632 case ND_SET: 9633 /* 9634 * Use of the nd table requires holding the reader lock. 9635 * Modifying the nd table thru nd_load/nd_unload requires 9636 * the writer lock. 9637 */ 9638 rw_enter(&ip_g_nd_lock, RW_READER); 9639 if (nd_getset(q, ip_g_nd, mp)) { 9640 rw_exit(&ip_g_nd_lock); 9641 9642 if (iocp->ioc_error) 9643 iocp->ioc_count = 0; 9644 mp->b_datap->db_type = M_IOCACK; 9645 qreply(q, mp); 9646 return; 9647 } 9648 rw_exit(&ip_g_nd_lock); 9649 /* 9650 * We don't understand this subioctl of ND_GET / ND_SET. 9651 * Maybe intended for some driver / module below us 9652 */ 9653 if (q->q_next) { 9654 putnext(q, mp); 9655 } else { 9656 iocp->ioc_error = ENOENT; 9657 mp->b_datap->db_type = M_IOCNAK; 9658 iocp->ioc_count = 0; 9659 qreply(q, mp); 9660 } 9661 return; 9662 9663 case IP_IOCTL: 9664 ip_wput_ioctl(q, mp); 9665 return; 9666 default: 9667 cmn_err(CE_PANIC, "should not happen "); 9668 } 9669 nak: 9670 if (mp->b_cont != NULL) { 9671 freemsg(mp->b_cont); 9672 mp->b_cont = NULL; 9673 } 9674 iocp->ioc_error = EINVAL; 9675 mp->b_datap->db_type = M_IOCNAK; 9676 iocp->ioc_count = 0; 9677 qreply(q, mp); 9678 } 9679 9680 /* ip_wput hands off ARP IOCTL responses to us */ 9681 void 9682 ip_sioctl_iocack(queue_t *q, mblk_t *mp) 9683 { 9684 struct arpreq *ar; 9685 struct xarpreq *xar; 9686 area_t *area; 9687 mblk_t *area_mp; 9688 struct iocblk *iocp; 9689 mblk_t *orig_ioc_mp, *tmp; 9690 struct iocblk *orig_iocp; 9691 ill_t *ill; 9692 conn_t *connp = NULL; 9693 uint_t ioc_id; 9694 mblk_t *pending_mp; 9695 int x_arp_ioctl = B_FALSE, ifx_arp_ioctl = B_FALSE; 9696 int *flagsp; 9697 char *storage = NULL; 9698 sin_t *sin; 9699 ipaddr_t addr; 9700 int err; 9701 9702 ill = q->q_ptr; 9703 ASSERT(ill != NULL); 9704 9705 /* 9706 * We should get back from ARP a packet chain that looks like: 9707 * M_IOCACK-->ARP_op_MBLK-->ORIG_M_IOCTL-->MI_COPY_MBLK-->[X]ARPREQ_MBLK 9708 */ 9709 if (!(area_mp = mp->b_cont) || 9710 (area_mp->b_wptr - area_mp->b_rptr) < sizeof (ip_sock_ar_t) || 9711 !(orig_ioc_mp = area_mp->b_cont) || 9712 !orig_ioc_mp->b_cont || !orig_ioc_mp->b_cont->b_cont) { 9713 freemsg(mp); 9714 return; 9715 } 9716 9717 orig_iocp = (struct iocblk *)orig_ioc_mp->b_rptr; 9718 9719 tmp = (orig_ioc_mp->b_cont)->b_cont; 9720 if ((orig_iocp->ioc_cmd == SIOCGXARP) || 9721 (orig_iocp->ioc_cmd == SIOCSXARP) || 9722 (orig_iocp->ioc_cmd == SIOCDXARP)) { 9723 x_arp_ioctl = B_TRUE; 9724 xar = (struct xarpreq *)tmp->b_rptr; 9725 sin = (sin_t *)&xar->xarp_pa; 9726 flagsp = &xar->xarp_flags; 9727 storage = xar->xarp_ha.sdl_data; 9728 if (xar->xarp_ha.sdl_nlen != 0) 9729 ifx_arp_ioctl = B_TRUE; 9730 } else { 9731 ar = (struct arpreq *)tmp->b_rptr; 9732 sin = (sin_t *)&ar->arp_pa; 9733 flagsp = &ar->arp_flags; 9734 storage = ar->arp_ha.sa_data; 9735 } 9736 9737 iocp = (struct iocblk *)mp->b_rptr; 9738 9739 /* 9740 * Pick out the originating queue based on the ioc_id. 9741 */ 9742 ioc_id = iocp->ioc_id; 9743 pending_mp = ill_pending_mp_get(ill, &connp, ioc_id); 9744 if (pending_mp == NULL) { 9745 ASSERT(connp == NULL); 9746 ip_ioctl_freemsg(mp); 9747 return; 9748 } 9749 ASSERT(connp != NULL); 9750 q = CONNP_TO_WQ(connp); 9751 9752 /* Uncouple the internally generated IOCTL from the original one */ 9753 area = (area_t *)area_mp->b_rptr; 9754 area_mp->b_cont = NULL; 9755 9756 /* 9757 * Restore the b_next and b_prev used by mi code. This is needed 9758 * to complete the ioctl using mi* functions. We stored them in 9759 * the pending mp prior to sending the request to ARP. 9760 */ 9761 orig_ioc_mp->b_cont->b_next = pending_mp->b_cont->b_next; 9762 orig_ioc_mp->b_cont->b_prev = pending_mp->b_cont->b_prev; 9763 ip_ioctl_freemsg(pending_mp); 9764 9765 /* 9766 * We're done if there was an error or if this is not an SIOCG{X}ARP 9767 * Catch the case where there is an IRE_CACHE by no entry in the 9768 * arp table. 9769 */ 9770 addr = sin->sin_addr.s_addr; 9771 if (iocp->ioc_error && iocp->ioc_cmd == AR_ENTRY_SQUERY) { 9772 ire_t *ire; 9773 dl_unitdata_req_t *dlup; 9774 mblk_t *llmp; 9775 int addr_len; 9776 ill_t *ipsqill = NULL; 9777 9778 if (ifx_arp_ioctl) { 9779 /* 9780 * There's no need to lookup the ill, since 9781 * we've already done that when we started 9782 * processing the ioctl and sent the message 9783 * to ARP on that ill. So use the ill that 9784 * is stored in q->q_ptr. 9785 */ 9786 ipsqill = ill; 9787 ire = ire_ctable_lookup(addr, 0, IRE_CACHE, 9788 ipsqill->ill_ipif, ALL_ZONES, 9789 MATCH_IRE_TYPE | MATCH_IRE_ILL); 9790 } else { 9791 ire = ire_ctable_lookup(addr, 0, IRE_CACHE, 9792 NULL, ALL_ZONES, MATCH_IRE_TYPE); 9793 if (ire != NULL) 9794 ipsqill = ire_to_ill(ire); 9795 } 9796 9797 if ((x_arp_ioctl) && (ipsqill != NULL)) 9798 storage += ill_xarp_info(&xar->xarp_ha, ipsqill); 9799 9800 if (ire != NULL) { 9801 *flagsp = ATF_INUSE; 9802 llmp = ire->ire_dlureq_mp; 9803 if (llmp != NULL && ipsqill != NULL) { 9804 uchar_t *macaddr; 9805 9806 addr_len = ipsqill->ill_phys_addr_length; 9807 if (x_arp_ioctl && ((addr_len + 9808 ipsqill->ill_name_length) > 9809 sizeof (xar->xarp_ha.sdl_data))) { 9810 ire_refrele(ire); 9811 freemsg(mp); 9812 ip_ioctl_finish(q, orig_ioc_mp, 9813 EINVAL, NO_COPYOUT, NULL, NULL); 9814 return; 9815 } 9816 *flagsp |= ATF_COM; 9817 dlup = (dl_unitdata_req_t *)llmp->b_rptr; 9818 if (ipsqill->ill_sap_length < 0) 9819 macaddr = llmp->b_rptr + 9820 dlup->dl_dest_addr_offset; 9821 else 9822 macaddr = llmp->b_rptr + 9823 dlup->dl_dest_addr_offset + 9824 ipsqill->ill_sap_length; 9825 /* 9826 * For SIOCGARP, MAC address length 9827 * validation has already been done 9828 * before the ioctl was issued to ARP to 9829 * allow it to progress only on 6 byte 9830 * addressable (ethernet like) media. Thus 9831 * the mac address copying can not overwrite 9832 * the sa_data area below. 9833 */ 9834 bcopy(macaddr, storage, addr_len); 9835 } 9836 /* Ditch the internal IOCTL. */ 9837 freemsg(mp); 9838 ire_refrele(ire); 9839 ip_ioctl_finish(q, orig_ioc_mp, 0, COPYOUT, NULL, NULL); 9840 return; 9841 } 9842 } 9843 9844 /* 9845 * Delete the coresponding IRE_CACHE if any. 9846 * Reset the error if there was one (in case there was no entry 9847 * in arp.) 9848 */ 9849 if (iocp->ioc_cmd == AR_ENTRY_DELETE) { 9850 ipif_t *ipintf = NULL; 9851 9852 if (ifx_arp_ioctl) { 9853 /* 9854 * There's no need to lookup the ill, since 9855 * we've already done that when we started 9856 * processing the ioctl and sent the message 9857 * to ARP on that ill. So use the ill that 9858 * is stored in q->q_ptr. 9859 */ 9860 ipintf = ill->ill_ipif; 9861 } 9862 if (ip_ire_clookup_and_delete(addr, ipintf)) { 9863 /* 9864 * The address in "addr" may be an entry for a 9865 * router. If that's true, then any off-net 9866 * IRE_CACHE entries that go through the router 9867 * with address "addr" must be clobbered. Use 9868 * ire_walk to achieve this goal. 9869 */ 9870 if (ifx_arp_ioctl) 9871 ire_walk_ill_v4(MATCH_IRE_ILL, 0, 9872 ire_delete_cache_gw, (char *)&addr, ill); 9873 else 9874 ire_walk_v4(ire_delete_cache_gw, (char *)&addr, 9875 ALL_ZONES); 9876 iocp->ioc_error = 0; 9877 } 9878 } 9879 9880 if (iocp->ioc_error || iocp->ioc_cmd != AR_ENTRY_SQUERY) { 9881 err = iocp->ioc_error; 9882 freemsg(mp); 9883 ip_ioctl_finish(q, orig_ioc_mp, err, NO_COPYOUT, NULL, NULL); 9884 return; 9885 } 9886 9887 /* 9888 * Completion of an SIOCG{X}ARP. Translate the information from 9889 * the area_t into the struct {x}arpreq. 9890 */ 9891 if (x_arp_ioctl) { 9892 storage += ill_xarp_info(&xar->xarp_ha, ill); 9893 if ((ill->ill_phys_addr_length + ill->ill_name_length) > 9894 sizeof (xar->xarp_ha.sdl_data)) { 9895 freemsg(mp); 9896 ip_ioctl_finish(q, orig_ioc_mp, EINVAL, 9897 NO_COPYOUT, NULL, NULL); 9898 return; 9899 } 9900 } 9901 *flagsp = ATF_INUSE; 9902 if (area->area_flags & ACE_F_PERMANENT) 9903 *flagsp |= ATF_PERM; 9904 if (area->area_flags & ACE_F_PUBLISH) 9905 *flagsp |= ATF_PUBL; 9906 if (area->area_hw_addr_length != 0) { 9907 *flagsp |= ATF_COM; 9908 /* 9909 * For SIOCGARP, MAC address length validation has 9910 * already been done before the ioctl was issued to ARP 9911 * to allow it to progress only on 6 byte addressable 9912 * (ethernet like) media. Thus the mac address copying 9913 * can not overwrite the sa_data area below. 9914 */ 9915 bcopy((char *)area + area->area_hw_addr_offset, 9916 storage, area->area_hw_addr_length); 9917 } 9918 9919 /* Ditch the internal IOCTL. */ 9920 freemsg(mp); 9921 /* Complete the original. */ 9922 ip_ioctl_finish(q, orig_ioc_mp, 0, COPYOUT, NULL, NULL); 9923 } 9924 9925 /* 9926 * Create a new logical interface. If ipif_id is zero (i.e. not a logical 9927 * interface) create the next available logical interface for this 9928 * physical interface. 9929 * If ipif is NULL (i.e. the lookup didn't find one) attempt to create an 9930 * ipif with the specified name. 9931 * 9932 * If the address family is not AF_UNSPEC then set the address as well. 9933 * 9934 * If ip_sioctl_addr returns EINPROGRESS then the ioctl (the copyout) 9935 * is completed when the DL_BIND_ACK arrive in ip_rput_dlpi_writer. 9936 * 9937 * Executed as a writer on the ill or ill group. 9938 * So no lock is needed to traverse the ipif chain, or examine the 9939 * phyint flags. 9940 */ 9941 /* ARGSUSED */ 9942 int 9943 ip_sioctl_addif(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 9944 ip_ioctl_cmd_t *dummy_ipip, void *dummy_ifreq) 9945 { 9946 mblk_t *mp1; 9947 struct lifreq *lifr; 9948 boolean_t isv6; 9949 boolean_t exists; 9950 char *name; 9951 char *endp; 9952 char *cp; 9953 int namelen; 9954 ipif_t *ipif; 9955 long id; 9956 ipsq_t *ipsq; 9957 ill_t *ill; 9958 sin_t *sin; 9959 int err = 0; 9960 boolean_t found_sep = B_FALSE; 9961 conn_t *connp; 9962 zoneid_t zoneid; 9963 int orig_ifindex = 0; 9964 9965 ip1dbg(("ip_sioctl_addif\n")); 9966 /* Existence of mp1 has been checked in ip_wput_nondata */ 9967 mp1 = mp->b_cont->b_cont; 9968 /* 9969 * Null terminate the string to protect against buffer 9970 * overrun. String was generated by user code and may not 9971 * be trusted. 9972 */ 9973 lifr = (struct lifreq *)mp1->b_rptr; 9974 lifr->lifr_name[LIFNAMSIZ - 1] = '\0'; 9975 name = lifr->lifr_name; 9976 ASSERT(CONN_Q(q)); 9977 connp = Q_TO_CONN(q); 9978 isv6 = connp->conn_af_isv6; 9979 zoneid = connp->conn_zoneid; 9980 namelen = mi_strlen(name); 9981 if (namelen == 0) 9982 return (EINVAL); 9983 9984 exists = B_FALSE; 9985 if ((namelen + 1 == sizeof (ipif_loopback_name)) && 9986 (mi_strcmp(name, ipif_loopback_name) == 0)) { 9987 /* 9988 * Allow creating lo0 using SIOCLIFADDIF. 9989 * can't be any other writer thread. So can pass null below 9990 * for the last 4 args to ipif_lookup_name. 9991 */ 9992 ipif = ipif_lookup_on_name(lifr->lifr_name, namelen, 9993 B_TRUE, &exists, isv6, zoneid, NULL, NULL, NULL, NULL); 9994 /* Prevent any further action */ 9995 if (ipif == NULL) { 9996 return (ENOBUFS); 9997 } else if (!exists) { 9998 /* We created the ipif now and as writer */ 9999 ipif_refrele(ipif); 10000 return (0); 10001 } else { 10002 ill = ipif->ipif_ill; 10003 ill_refhold(ill); 10004 ipif_refrele(ipif); 10005 } 10006 } else { 10007 /* Look for a colon in the name. */ 10008 endp = &name[namelen]; 10009 for (cp = endp; --cp > name; ) { 10010 if (*cp == IPIF_SEPARATOR_CHAR) { 10011 found_sep = B_TRUE; 10012 /* 10013 * Reject any non-decimal aliases for plumbing 10014 * of logical interfaces. Aliases with leading 10015 * zeroes are also rejected as they introduce 10016 * ambiguity in the naming of the interfaces. 10017 * Comparing with "0" takes care of all such 10018 * cases. 10019 */ 10020 if ((strncmp("0", cp+1, 1)) == 0) 10021 return (EINVAL); 10022 10023 if (ddi_strtol(cp+1, &endp, 10, &id) != 0 || 10024 id <= 0 || *endp != '\0') { 10025 return (EINVAL); 10026 } 10027 *cp = '\0'; 10028 break; 10029 } 10030 } 10031 ill = ill_lookup_on_name(name, B_FALSE, isv6, 10032 CONNP_TO_WQ(connp), mp, ip_process_ioctl, &err, NULL); 10033 if (found_sep) 10034 *cp = IPIF_SEPARATOR_CHAR; 10035 if (ill == NULL) 10036 return (err); 10037 } 10038 10039 ipsq = ipsq_try_enter(NULL, ill, q, mp, ip_process_ioctl, NEW_OP, 10040 B_TRUE); 10041 10042 /* 10043 * Release the refhold due to the lookup, now that we are excl 10044 * or we are just returning 10045 */ 10046 ill_refrele(ill); 10047 10048 if (ipsq == NULL) 10049 return (EINPROGRESS); 10050 10051 /* 10052 * If the interface is failed, inactive or offlined, look for a working 10053 * interface in the ill group and create the ipif there. If we can't 10054 * find a good interface, create the ipif anyway so that in.mpathd can 10055 * move it to the first repaired interface. 10056 */ 10057 if ((ill->ill_phyint->phyint_flags & 10058 (PHYI_FAILED|PHYI_INACTIVE|PHYI_OFFLINE)) && 10059 ill->ill_phyint->phyint_groupname_len != 0) { 10060 phyint_t *phyi; 10061 char *groupname = ill->ill_phyint->phyint_groupname; 10062 10063 /* 10064 * We're looking for a working interface, but it doesn't matter 10065 * if it's up or down; so instead of following the group lists, 10066 * we look at each physical interface and compare the groupname. 10067 * We're only interested in interfaces with IPv4 (resp. IPv6) 10068 * plumbed when we're adding an IPv4 (resp. IPv6) ipif. 10069 * Otherwise we create the ipif on the failed interface. 10070 */ 10071 rw_enter(&ill_g_lock, RW_READER); 10072 phyi = avl_first(&phyint_g_list.phyint_list_avl_by_index); 10073 for (; phyi != NULL; 10074 phyi = avl_walk(&phyint_g_list.phyint_list_avl_by_index, 10075 phyi, AVL_AFTER)) { 10076 if (phyi->phyint_groupname_len == 0) 10077 continue; 10078 ASSERT(phyi->phyint_groupname != NULL); 10079 if (mi_strcmp(groupname, phyi->phyint_groupname) == 0 && 10080 !(phyi->phyint_flags & 10081 (PHYI_FAILED|PHYI_INACTIVE|PHYI_OFFLINE)) && 10082 (ill->ill_isv6 ? (phyi->phyint_illv6 != NULL) : 10083 (phyi->phyint_illv4 != NULL))) { 10084 break; 10085 } 10086 } 10087 rw_exit(&ill_g_lock); 10088 10089 if (phyi != NULL) { 10090 orig_ifindex = ill->ill_phyint->phyint_ifindex; 10091 ill = (ill->ill_isv6 ? phyi->phyint_illv6 : 10092 phyi->phyint_illv4); 10093 } 10094 } 10095 10096 /* 10097 * We are now exclusive on the ipsq, so an ill move will be serialized 10098 * before or after us. 10099 */ 10100 ASSERT(IAM_WRITER_ILL(ill)); 10101 ASSERT(ill->ill_move_in_progress == B_FALSE); 10102 10103 if (found_sep && orig_ifindex == 0) { 10104 /* Now see if there is an IPIF with this unit number. */ 10105 for (ipif = ill->ill_ipif; ipif; ipif = ipif->ipif_next) { 10106 if (ipif->ipif_id == id) { 10107 err = EEXIST; 10108 goto done; 10109 } 10110 } 10111 } 10112 10113 /* 10114 * We use IRE_LOCAL for lo0:1 etc. for "receive only" use 10115 * of lo0. We never come here when we plumb lo0:0. It 10116 * happens in ipif_lookup_on_name. 10117 * The specified unit number is ignored when we create the ipif on a 10118 * different interface. However, we save it in ipif_orig_ipifid below so 10119 * that the ipif fails back to the right position. 10120 */ 10121 if ((ipif = ipif_allocate(ill, (found_sep && orig_ifindex == 0) ? 10122 id : -1, IRE_LOCAL, B_TRUE)) == NULL) { 10123 err = ENOBUFS; 10124 goto done; 10125 } 10126 10127 /* Return created name with ioctl */ 10128 (void) sprintf(lifr->lifr_name, "%s%c%d", ill->ill_name, 10129 IPIF_SEPARATOR_CHAR, ipif->ipif_id); 10130 ip1dbg(("created %s\n", lifr->lifr_name)); 10131 10132 /* Set address */ 10133 sin = (sin_t *)&lifr->lifr_addr; 10134 if (sin->sin_family != AF_UNSPEC) { 10135 err = ip_sioctl_addr(ipif, sin, q, mp, 10136 &ip_ndx_ioctl_table[SIOCLIFADDR_NDX], lifr); 10137 } 10138 10139 /* Set ifindex and unit number for failback */ 10140 if (err == 0 && orig_ifindex != 0) { 10141 ipif->ipif_orig_ifindex = orig_ifindex; 10142 if (found_sep) { 10143 ipif->ipif_orig_ipifid = id; 10144 } 10145 } 10146 10147 done: 10148 ipsq_exit(ipsq, B_TRUE, B_TRUE); 10149 return (err); 10150 } 10151 10152 /* 10153 * Remove an existing logical interface. If ipif_id is zero (i.e. not a logical 10154 * interface) delete it based on the IP address (on this physical interface). 10155 * Otherwise delete it based on the ipif_id. 10156 * Also, special handling to allow a removeif of lo0. 10157 */ 10158 /* ARGSUSED */ 10159 int 10160 ip_sioctl_removeif(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10161 ip_ioctl_cmd_t *ipip, void *dummy_if_req) 10162 { 10163 conn_t *connp; 10164 ill_t *ill = ipif->ipif_ill; 10165 boolean_t success; 10166 10167 ip1dbg(("ip_sioctl_remove_if(%s:%u %p)\n", 10168 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 10169 ASSERT(IAM_WRITER_IPIF(ipif)); 10170 10171 connp = Q_TO_CONN(q); 10172 /* 10173 * Special case for unplumbing lo0 (the loopback physical interface). 10174 * If unplumbing lo0, the incoming address structure has been 10175 * initialized to all zeros. When unplumbing lo0, all its logical 10176 * interfaces must be removed too. 10177 * 10178 * Note that this interface may be called to remove a specific 10179 * loopback logical interface (eg, lo0:1). But in that case 10180 * ipif->ipif_id != 0 so that the code path for that case is the 10181 * same as any other interface (meaning it skips the code directly 10182 * below). 10183 */ 10184 if (ipif->ipif_id == 0 && ipif->ipif_net_type == IRE_LOOPBACK) { 10185 if (sin->sin_family == AF_UNSPEC && 10186 (IN6_IS_ADDR_UNSPECIFIED(&((sin6_t *)sin)->sin6_addr))) { 10187 /* 10188 * Mark it condemned. No new ref. will be made to ill. 10189 */ 10190 mutex_enter(&ill->ill_lock); 10191 ill->ill_state_flags |= ILL_CONDEMNED; 10192 for (ipif = ill->ill_ipif; ipif != NULL; 10193 ipif = ipif->ipif_next) { 10194 ipif->ipif_state_flags |= IPIF_CONDEMNED; 10195 } 10196 mutex_exit(&ill->ill_lock); 10197 10198 ipif = ill->ill_ipif; 10199 /* unplumb the loopback interface */ 10200 ill_delete(ill); 10201 mutex_enter(&connp->conn_lock); 10202 mutex_enter(&ill->ill_lock); 10203 ASSERT(ill->ill_group == NULL); 10204 10205 /* Are any references to this ill active */ 10206 if (ill_is_quiescent(ill)) { 10207 mutex_exit(&ill->ill_lock); 10208 mutex_exit(&connp->conn_lock); 10209 ill_delete_tail(ill); 10210 return (0); 10211 } 10212 success = ipsq_pending_mp_add(connp, ipif, 10213 CONNP_TO_WQ(connp), mp, ILL_FREE); 10214 mutex_exit(&connp->conn_lock); 10215 mutex_exit(&ill->ill_lock); 10216 if (success) 10217 return (EINPROGRESS); 10218 else 10219 return (EINTR); 10220 } 10221 } 10222 10223 /* 10224 * We are exclusive on the ipsq, so an ill move will be serialized 10225 * before or after us. 10226 */ 10227 ASSERT(ill->ill_move_in_progress == B_FALSE); 10228 10229 if (ipif->ipif_id == 0) { 10230 /* Find based on address */ 10231 if (ipif->ipif_isv6) { 10232 sin6_t *sin6; 10233 10234 if (sin->sin_family != AF_INET6) 10235 return (EAFNOSUPPORT); 10236 10237 sin6 = (sin6_t *)sin; 10238 /* We are a writer, so we should be able to lookup */ 10239 ipif = ipif_lookup_addr_v6(&sin6->sin6_addr, 10240 ill, ALL_ZONES, NULL, NULL, NULL, NULL); 10241 if (ipif == NULL) { 10242 /* 10243 * Maybe the address in on another interface in 10244 * the same IPMP group? We check this below. 10245 */ 10246 ipif = ipif_lookup_addr_v6(&sin6->sin6_addr, 10247 NULL, ALL_ZONES, NULL, NULL, NULL, NULL); 10248 } 10249 } else { 10250 ipaddr_t addr; 10251 10252 if (sin->sin_family != AF_INET) 10253 return (EAFNOSUPPORT); 10254 10255 addr = sin->sin_addr.s_addr; 10256 /* We are a writer, so we should be able to lookup */ 10257 ipif = ipif_lookup_addr(addr, ill, ALL_ZONES, NULL, 10258 NULL, NULL, NULL); 10259 if (ipif == NULL) { 10260 /* 10261 * Maybe the address in on another interface in 10262 * the same IPMP group? We check this below. 10263 */ 10264 ipif = ipif_lookup_addr(addr, NULL, ALL_ZONES, 10265 NULL, NULL, NULL, NULL); 10266 } 10267 } 10268 if (ipif == NULL) { 10269 return (EADDRNOTAVAIL); 10270 } 10271 /* 10272 * When the address to be removed is hosted on a different 10273 * interface, we check if the interface is in the same IPMP 10274 * group as the specified one; if so we proceed with the 10275 * removal. 10276 * ill->ill_group is NULL when the ill is down, so we have to 10277 * compare the group names instead. 10278 */ 10279 if (ipif->ipif_ill != ill && 10280 (ipif->ipif_ill->ill_phyint->phyint_groupname_len == 0 || 10281 ill->ill_phyint->phyint_groupname_len == 0 || 10282 mi_strcmp(ipif->ipif_ill->ill_phyint->phyint_groupname, 10283 ill->ill_phyint->phyint_groupname) != 0)) { 10284 ipif_refrele(ipif); 10285 return (EADDRNOTAVAIL); 10286 } 10287 10288 /* This is a writer */ 10289 ipif_refrele(ipif); 10290 } 10291 10292 /* 10293 * Can not delete instance zero since it is tied to the ill. 10294 */ 10295 if (ipif->ipif_id == 0) 10296 return (EBUSY); 10297 10298 mutex_enter(&ill->ill_lock); 10299 ipif->ipif_state_flags |= IPIF_CONDEMNED; 10300 mutex_exit(&ill->ill_lock); 10301 10302 ipif_free(ipif); 10303 10304 mutex_enter(&connp->conn_lock); 10305 mutex_enter(&ill->ill_lock); 10306 10307 /* Are any references to this ipif active */ 10308 if (ipif->ipif_refcnt == 0 && ipif->ipif_ire_cnt == 0) { 10309 mutex_exit(&ill->ill_lock); 10310 mutex_exit(&connp->conn_lock); 10311 ipif_down_tail(ipif); 10312 ipif_free_tail(ipif); 10313 return (0); 10314 } 10315 success = ipsq_pending_mp_add(connp, ipif, CONNP_TO_WQ(connp), mp, 10316 IPIF_FREE); 10317 mutex_exit(&ill->ill_lock); 10318 mutex_exit(&connp->conn_lock); 10319 if (success) 10320 return (EINPROGRESS); 10321 else 10322 return (EINTR); 10323 } 10324 10325 /* 10326 * Restart the removeif ioctl. The refcnt has gone down to 0. 10327 * The ipif is already condemned. So can't find it thru lookups. 10328 */ 10329 /* ARGSUSED */ 10330 int 10331 ip_sioctl_removeif_restart(ipif_t *ipif, sin_t *dummy_sin, queue_t *q, 10332 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *dummy_if_req) 10333 { 10334 ill_t *ill; 10335 10336 ip1dbg(("ip_sioctl_removeif_restart(%s:%u %p)\n", 10337 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 10338 if (ipif->ipif_id == 0 && ipif->ipif_net_type == IRE_LOOPBACK) { 10339 ill = ipif->ipif_ill; 10340 ASSERT(IAM_WRITER_ILL(ill)); 10341 ASSERT((ipif->ipif_state_flags & IPIF_CONDEMNED) && 10342 (ill->ill_state_flags & IPIF_CONDEMNED)); 10343 ill_delete_tail(ill); 10344 return (0); 10345 } 10346 10347 ill = ipif->ipif_ill; 10348 ASSERT(IAM_WRITER_IPIF(ipif)); 10349 ASSERT(ipif->ipif_state_flags & IPIF_CONDEMNED); 10350 10351 ipif_down_tail(ipif); 10352 ipif_free_tail(ipif); 10353 10354 ILL_UNMARK_CHANGING(ill); 10355 return (0); 10356 } 10357 10358 /* 10359 * Set the local interface address. 10360 * Allow an address of all zero when the interface is down. 10361 */ 10362 /* ARGSUSED */ 10363 int 10364 ip_sioctl_addr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10365 ip_ioctl_cmd_t *dummy_ipip, void *dummy_ifreq) 10366 { 10367 int err = 0; 10368 in6_addr_t v6addr; 10369 boolean_t need_up = B_FALSE; 10370 10371 ip1dbg(("ip_sioctl_addr(%s:%u %p)\n", 10372 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 10373 10374 ASSERT(IAM_WRITER_IPIF(ipif)); 10375 10376 if (ipif->ipif_isv6) { 10377 sin6_t *sin6; 10378 ill_t *ill; 10379 phyint_t *phyi; 10380 10381 if (sin->sin_family != AF_INET6) 10382 return (EAFNOSUPPORT); 10383 10384 sin6 = (sin6_t *)sin; 10385 v6addr = sin6->sin6_addr; 10386 ill = ipif->ipif_ill; 10387 phyi = ill->ill_phyint; 10388 10389 /* 10390 * Enforce that true multicast interfaces have a link-local 10391 * address for logical unit 0. 10392 */ 10393 if (ipif->ipif_id == 0 && 10394 (ill->ill_flags & ILLF_MULTICAST) && 10395 !(ipif->ipif_flags & (IPIF_POINTOPOINT)) && 10396 !(phyi->phyint_flags & (PHYI_LOOPBACK)) && 10397 !IN6_IS_ADDR_LINKLOCAL(&v6addr)) { 10398 return (EADDRNOTAVAIL); 10399 } 10400 10401 /* 10402 * up interfaces shouldn't have the unspecified address 10403 * unless they also have the IPIF_NOLOCAL flags set and 10404 * have a subnet assigned. 10405 */ 10406 if ((ipif->ipif_flags & IPIF_UP) && 10407 IN6_IS_ADDR_UNSPECIFIED(&v6addr) && 10408 (!(ipif->ipif_flags & IPIF_NOLOCAL) || 10409 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6subnet))) { 10410 return (EADDRNOTAVAIL); 10411 } 10412 10413 if (!ip_local_addr_ok_v6(&v6addr, &ipif->ipif_v6net_mask)) 10414 return (EADDRNOTAVAIL); 10415 } else { 10416 ipaddr_t addr; 10417 10418 if (sin->sin_family != AF_INET) 10419 return (EAFNOSUPPORT); 10420 10421 addr = sin->sin_addr.s_addr; 10422 10423 /* Allow 0 as the local address. */ 10424 if (addr != 0 && !ip_addr_ok_v4(addr, ipif->ipif_net_mask)) 10425 return (EADDRNOTAVAIL); 10426 10427 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 10428 } 10429 10430 10431 /* 10432 * Even if there is no change we redo things just to rerun 10433 * ipif_set_default. 10434 */ 10435 if (ipif->ipif_flags & IPIF_UP) { 10436 /* 10437 * Setting a new local address, make sure 10438 * we have net and subnet bcast ire's for 10439 * the old address if we need them. 10440 */ 10441 if (!ipif->ipif_isv6) 10442 ipif_check_bcast_ires(ipif); 10443 /* 10444 * If the interface is already marked up, 10445 * we call ipif_down which will take care 10446 * of ditching any IREs that have been set 10447 * up based on the old interface address. 10448 */ 10449 err = ipif_logical_down(ipif, q, mp); 10450 if (err == EINPROGRESS) 10451 return (err); 10452 ipif_down_tail(ipif); 10453 need_up = 1; 10454 } 10455 10456 err = ip_sioctl_addr_tail(ipif, sin, q, mp, need_up); 10457 return (err); 10458 } 10459 10460 int 10461 ip_sioctl_addr_tail(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10462 boolean_t need_up) 10463 { 10464 in6_addr_t v6addr; 10465 ipaddr_t addr; 10466 sin6_t *sin6; 10467 int err = 0; 10468 10469 ip1dbg(("ip_sioctl_addr_tail(%s:%u %p)\n", 10470 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 10471 ASSERT(IAM_WRITER_IPIF(ipif)); 10472 if (ipif->ipif_isv6) { 10473 sin6 = (sin6_t *)sin; 10474 v6addr = sin6->sin6_addr; 10475 } else { 10476 addr = sin->sin_addr.s_addr; 10477 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 10478 } 10479 mutex_enter(&ipif->ipif_ill->ill_lock); 10480 ipif->ipif_v6lcl_addr = v6addr; 10481 if (ipif->ipif_flags & (IPIF_ANYCAST | IPIF_NOLOCAL)) { 10482 ipif->ipif_v6src_addr = ipv6_all_zeros; 10483 } else { 10484 ipif->ipif_v6src_addr = v6addr; 10485 } 10486 10487 if ((ipif->ipif_isv6) && IN6_IS_ADDR_6TO4(&v6addr) && 10488 (!ipif->ipif_ill->ill_is_6to4tun)) { 10489 queue_t *wqp = ipif->ipif_ill->ill_wq; 10490 10491 /* 10492 * The local address of this interface is a 6to4 address, 10493 * check if this interface is in fact a 6to4 tunnel or just 10494 * an interface configured with a 6to4 address. We are only 10495 * interested in the former. 10496 */ 10497 if (wqp != NULL) { 10498 while ((wqp->q_next != NULL) && 10499 (wqp->q_next->q_qinfo != NULL) && 10500 (wqp->q_next->q_qinfo->qi_minfo != NULL)) { 10501 10502 if (wqp->q_next->q_qinfo->qi_minfo->mi_idnum 10503 == TUN6TO4_MODID) { 10504 /* set for use in IP */ 10505 ipif->ipif_ill->ill_is_6to4tun = 1; 10506 break; 10507 } 10508 wqp = wqp->q_next; 10509 } 10510 } 10511 } 10512 10513 ipif_set_default(ipif); 10514 mutex_exit(&ipif->ipif_ill->ill_lock); 10515 10516 if (need_up) { 10517 /* 10518 * Now bring the interface back up. If this 10519 * is the only IPIF for the ILL, ipif_up 10520 * will have to re-bind to the device, so 10521 * we may get back EINPROGRESS, in which 10522 * case, this IOCTL will get completed in 10523 * ip_rput_dlpi when we see the DL_BIND_ACK. 10524 */ 10525 err = ipif_up(ipif, q, mp); 10526 } else { 10527 /* 10528 * Update the IPIF list in SCTP, ipif_up_done() will do it 10529 * if need_up is true. 10530 */ 10531 sctp_update_ipif(ipif, SCTP_IPIF_UPDATE); 10532 } 10533 10534 return (err); 10535 } 10536 10537 10538 /* 10539 * Restart entry point to restart the address set operation after the 10540 * refcounts have dropped to zero. 10541 */ 10542 /* ARGSUSED */ 10543 int 10544 ip_sioctl_addr_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10545 ip_ioctl_cmd_t *ipip, void *ifreq) 10546 { 10547 ip1dbg(("ip_sioctl_addr_restart(%s:%u %p)\n", 10548 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 10549 ASSERT(IAM_WRITER_IPIF(ipif)); 10550 ipif_down_tail(ipif); 10551 return (ip_sioctl_addr_tail(ipif, sin, q, mp, B_TRUE)); 10552 } 10553 10554 /* ARGSUSED */ 10555 int 10556 ip_sioctl_get_addr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10557 ip_ioctl_cmd_t *ipip, void *if_req) 10558 { 10559 sin6_t *sin6 = (struct sockaddr_in6 *)sin; 10560 struct lifreq *lifr = (struct lifreq *)if_req; 10561 10562 ip1dbg(("ip_sioctl_get_addr(%s:%u %p)\n", 10563 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 10564 /* 10565 * The net mask and address can't change since we have a 10566 * reference to the ipif. So no lock is necessary. 10567 */ 10568 if (ipif->ipif_isv6) { 10569 *sin6 = sin6_null; 10570 sin6->sin6_family = AF_INET6; 10571 sin6->sin6_addr = ipif->ipif_v6lcl_addr; 10572 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 10573 lifr->lifr_addrlen = 10574 ip_mask_to_plen_v6(&ipif->ipif_v6net_mask); 10575 } else { 10576 *sin = sin_null; 10577 sin->sin_family = AF_INET; 10578 sin->sin_addr.s_addr = ipif->ipif_lcl_addr; 10579 if (ipip->ipi_cmd_type == LIF_CMD) { 10580 lifr->lifr_addrlen = 10581 ip_mask_to_plen(ipif->ipif_net_mask); 10582 } 10583 } 10584 return (0); 10585 } 10586 10587 /* 10588 * Set the destination address for a pt-pt interface. 10589 */ 10590 /* ARGSUSED */ 10591 int 10592 ip_sioctl_dstaddr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10593 ip_ioctl_cmd_t *ipip, void *if_req) 10594 { 10595 int err = 0; 10596 in6_addr_t v6addr; 10597 boolean_t need_up = B_FALSE; 10598 10599 ip1dbg(("ip_sioctl_dstaddr(%s:%u %p)\n", 10600 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 10601 ASSERT(IAM_WRITER_IPIF(ipif)); 10602 10603 if (ipif->ipif_isv6) { 10604 sin6_t *sin6; 10605 10606 if (sin->sin_family != AF_INET6) 10607 return (EAFNOSUPPORT); 10608 10609 sin6 = (sin6_t *)sin; 10610 v6addr = sin6->sin6_addr; 10611 10612 if (!ip_remote_addr_ok_v6(&v6addr, &ipif->ipif_v6net_mask)) 10613 return (EADDRNOTAVAIL); 10614 } else { 10615 ipaddr_t addr; 10616 10617 if (sin->sin_family != AF_INET) 10618 return (EAFNOSUPPORT); 10619 10620 addr = sin->sin_addr.s_addr; 10621 if (!ip_addr_ok_v4(addr, ipif->ipif_net_mask)) 10622 return (EADDRNOTAVAIL); 10623 10624 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 10625 } 10626 10627 if (IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6pp_dst_addr, &v6addr)) 10628 return (0); /* No change */ 10629 10630 if (ipif->ipif_flags & IPIF_UP) { 10631 /* 10632 * If the interface is already marked up, 10633 * we call ipif_down which will take care 10634 * of ditching any IREs that have been set 10635 * up based on the old pp dst address. 10636 */ 10637 err = ipif_logical_down(ipif, q, mp); 10638 if (err == EINPROGRESS) 10639 return (err); 10640 ipif_down_tail(ipif); 10641 need_up = B_TRUE; 10642 } 10643 /* 10644 * could return EINPROGRESS. If so ioctl will complete in 10645 * ip_rput_dlpi_writer 10646 */ 10647 err = ip_sioctl_dstaddr_tail(ipif, sin, q, mp, need_up); 10648 return (err); 10649 } 10650 10651 static int 10652 ip_sioctl_dstaddr_tail(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10653 boolean_t need_up) 10654 { 10655 in6_addr_t v6addr; 10656 ill_t *ill = ipif->ipif_ill; 10657 int err = 0; 10658 10659 ip1dbg(("ip_sioctl_dstaddr_tail(%s:%u %p)\n", 10660 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 10661 if (ipif->ipif_isv6) { 10662 sin6_t *sin6; 10663 10664 sin6 = (sin6_t *)sin; 10665 v6addr = sin6->sin6_addr; 10666 } else { 10667 ipaddr_t addr; 10668 10669 addr = sin->sin_addr.s_addr; 10670 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 10671 } 10672 mutex_enter(&ill->ill_lock); 10673 /* Set point to point destination address. */ 10674 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) { 10675 /* 10676 * Allow this as a means of creating logical 10677 * pt-pt interfaces on top of e.g. an Ethernet. 10678 * XXX Undocumented HACK for testing. 10679 * pt-pt interfaces are created with NUD disabled. 10680 */ 10681 ipif->ipif_flags |= IPIF_POINTOPOINT; 10682 ipif->ipif_flags &= ~IPIF_BROADCAST; 10683 if (ipif->ipif_isv6) 10684 ipif->ipif_ill->ill_flags |= ILLF_NONUD; 10685 } 10686 10687 /* Set the new address. */ 10688 ipif->ipif_v6pp_dst_addr = v6addr; 10689 /* Make sure subnet tracks pp_dst */ 10690 ipif->ipif_v6subnet = ipif->ipif_v6pp_dst_addr; 10691 mutex_exit(&ill->ill_lock); 10692 10693 if (need_up) { 10694 /* 10695 * Now bring the interface back up. If this 10696 * is the only IPIF for the ILL, ipif_up 10697 * will have to re-bind to the device, so 10698 * we may get back EINPROGRESS, in which 10699 * case, this IOCTL will get completed in 10700 * ip_rput_dlpi when we see the DL_BIND_ACK. 10701 */ 10702 err = ipif_up(ipif, q, mp); 10703 } 10704 return (err); 10705 } 10706 10707 /* 10708 * Restart entry point to restart the dstaddress set operation after the 10709 * refcounts have dropped to zero. 10710 */ 10711 /* ARGSUSED */ 10712 int 10713 ip_sioctl_dstaddr_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10714 ip_ioctl_cmd_t *ipip, void *ifreq) 10715 { 10716 ip1dbg(("ip_sioctl_dstaddr_restart(%s:%u %p)\n", 10717 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 10718 ipif_down_tail(ipif); 10719 return (ip_sioctl_dstaddr_tail(ipif, sin, q, mp, B_TRUE)); 10720 } 10721 10722 /* ARGSUSED */ 10723 int 10724 ip_sioctl_get_dstaddr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10725 ip_ioctl_cmd_t *ipip, void *if_req) 10726 { 10727 sin6_t *sin6 = (struct sockaddr_in6 *)sin; 10728 10729 ip1dbg(("ip_sioctl_get_dstaddr(%s:%u %p)\n", 10730 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 10731 /* 10732 * Get point to point destination address. The addresses can't 10733 * change since we hold a reference to the ipif. 10734 */ 10735 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) 10736 return (EADDRNOTAVAIL); 10737 10738 if (ipif->ipif_isv6) { 10739 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 10740 *sin6 = sin6_null; 10741 sin6->sin6_family = AF_INET6; 10742 sin6->sin6_addr = ipif->ipif_v6pp_dst_addr; 10743 } else { 10744 *sin = sin_null; 10745 sin->sin_family = AF_INET; 10746 sin->sin_addr.s_addr = ipif->ipif_pp_dst_addr; 10747 } 10748 return (0); 10749 } 10750 10751 /* 10752 * part of ipmp, make this func return the active/inactive state and 10753 * caller can set once atomically instead of multiple mutex_enter/mutex_exit 10754 */ 10755 /* 10756 * This function either sets or clears the IFF_INACTIVE flag. 10757 * 10758 * As long as there are some addresses or multicast memberships on the 10759 * IPv4 or IPv6 interface of the "phyi" that does not belong in here, we 10760 * will consider it to be ACTIVE (clear IFF_INACTIVE) i.e the interface 10761 * will be used for outbound packets. 10762 * 10763 * Caller needs to verify the validity of setting IFF_INACTIVE. 10764 */ 10765 static void 10766 phyint_inactive(phyint_t *phyi) 10767 { 10768 ill_t *ill_v4; 10769 ill_t *ill_v6; 10770 ipif_t *ipif; 10771 ilm_t *ilm; 10772 10773 ill_v4 = phyi->phyint_illv4; 10774 ill_v6 = phyi->phyint_illv6; 10775 10776 /* 10777 * No need for a lock while traversing the list since iam 10778 * a writer 10779 */ 10780 if (ill_v4 != NULL) { 10781 ASSERT(IAM_WRITER_ILL(ill_v4)); 10782 for (ipif = ill_v4->ill_ipif; ipif != NULL; 10783 ipif = ipif->ipif_next) { 10784 if (ipif->ipif_orig_ifindex != phyi->phyint_ifindex) { 10785 mutex_enter(&phyi->phyint_lock); 10786 phyi->phyint_flags &= ~PHYI_INACTIVE; 10787 mutex_exit(&phyi->phyint_lock); 10788 return; 10789 } 10790 } 10791 for (ilm = ill_v4->ill_ilm; ilm != NULL; 10792 ilm = ilm->ilm_next) { 10793 if (ilm->ilm_orig_ifindex != phyi->phyint_ifindex) { 10794 mutex_enter(&phyi->phyint_lock); 10795 phyi->phyint_flags &= ~PHYI_INACTIVE; 10796 mutex_exit(&phyi->phyint_lock); 10797 return; 10798 } 10799 } 10800 } 10801 if (ill_v6 != NULL) { 10802 ill_v6 = phyi->phyint_illv6; 10803 for (ipif = ill_v6->ill_ipif; ipif != NULL; 10804 ipif = ipif->ipif_next) { 10805 if (ipif->ipif_orig_ifindex != phyi->phyint_ifindex) { 10806 mutex_enter(&phyi->phyint_lock); 10807 phyi->phyint_flags &= ~PHYI_INACTIVE; 10808 mutex_exit(&phyi->phyint_lock); 10809 return; 10810 } 10811 } 10812 for (ilm = ill_v6->ill_ilm; ilm != NULL; 10813 ilm = ilm->ilm_next) { 10814 if (ilm->ilm_orig_ifindex != phyi->phyint_ifindex) { 10815 mutex_enter(&phyi->phyint_lock); 10816 phyi->phyint_flags &= ~PHYI_INACTIVE; 10817 mutex_exit(&phyi->phyint_lock); 10818 return; 10819 } 10820 } 10821 } 10822 mutex_enter(&phyi->phyint_lock); 10823 phyi->phyint_flags |= PHYI_INACTIVE; 10824 mutex_exit(&phyi->phyint_lock); 10825 } 10826 10827 /* 10828 * This function is called only when the phyint flags change. Currently 10829 * called from ip_sioctl_flags. We re-do the broadcast nomination so 10830 * that we can select a good ill. 10831 */ 10832 static void 10833 ip_redo_nomination(phyint_t *phyi) 10834 { 10835 ill_t *ill_v4; 10836 10837 ill_v4 = phyi->phyint_illv4; 10838 10839 if (ill_v4 != NULL && ill_v4->ill_group != NULL) { 10840 ASSERT(IAM_WRITER_ILL(ill_v4)); 10841 if (ill_v4->ill_group->illgrp_ill_count > 1) 10842 ill_nominate_bcast_rcv(ill_v4->ill_group); 10843 } 10844 } 10845 10846 /* 10847 * Heuristic to check if ill is INACTIVE. 10848 * Checks if ill has an ipif with an usable ip address. 10849 * 10850 * Return values: 10851 * B_TRUE - ill is INACTIVE; has no usable ipif 10852 * B_FALSE - ill is not INACTIVE; ill has at least one usable ipif 10853 */ 10854 static boolean_t 10855 ill_is_inactive(ill_t *ill) 10856 { 10857 ipif_t *ipif; 10858 10859 /* Check whether it is in an IPMP group */ 10860 if (ill->ill_phyint->phyint_groupname == NULL) 10861 return (B_FALSE); 10862 10863 if (ill->ill_ipif_up_count == 0) 10864 return (B_TRUE); 10865 10866 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 10867 uint64_t flags = ipif->ipif_flags; 10868 10869 /* 10870 * This ipif is usable if it is IPIF_UP and not a 10871 * dedicated test address. A dedicated test address 10872 * is marked IPIF_NOFAILOVER *and* IPIF_DEPRECATED 10873 * (note in particular that V6 test addresses are 10874 * link-local data addresses and thus are marked 10875 * IPIF_NOFAILOVER but not IPIF_DEPRECATED). 10876 */ 10877 if ((flags & IPIF_UP) && 10878 ((flags & (IPIF_DEPRECATED|IPIF_NOFAILOVER)) != 10879 (IPIF_DEPRECATED|IPIF_NOFAILOVER))) 10880 return (B_FALSE); 10881 } 10882 return (B_TRUE); 10883 } 10884 10885 /* 10886 * Set interface flags. 10887 * Need to do special action for IPIF_UP, IPIF_DEPRECATED, IPIF_NOXMIT, 10888 * IPIF_NOLOCAL, ILLF_NONUD, ILLF_NOARP, IPIF_PRIVATE, IPIF_ANYCAST, 10889 * IPIF_PREFERRED, PHYI_STANDBY, PHYI_FAILED and PHYI_OFFLINE. 10890 * 10891 * NOTE : We really don't enforce that ipif_id zero should be used 10892 * for setting any flags other than IFF_LOGINT_FLAGS. This 10893 * is because applications generally does SICGLIFFLAGS and 10894 * ORs in the new flags (that affects the logical) and does a 10895 * SIOCSLIFFLAGS. Thus, "flags" below could contain bits other 10896 * than IFF_LOGINT_FLAGS. One could check whether "turn_on" - the 10897 * flags that will be turned on is correct with respect to 10898 * ipif_id 0. For backward compatibility reasons, it is not done. 10899 */ 10900 /* ARGSUSED */ 10901 int 10902 ip_sioctl_flags(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10903 ip_ioctl_cmd_t *ipip, void *if_req) 10904 { 10905 uint64_t turn_on; 10906 uint64_t turn_off; 10907 int err; 10908 boolean_t need_up = B_FALSE; 10909 phyint_t *phyi; 10910 ill_t *ill; 10911 uint64_t intf_flags; 10912 boolean_t phyint_flags_modified = B_FALSE; 10913 uint64_t flags; 10914 struct ifreq *ifr; 10915 struct lifreq *lifr; 10916 boolean_t set_linklocal = B_FALSE; 10917 boolean_t zero_source = B_FALSE; 10918 10919 ip1dbg(("ip_sioctl_flags(%s:%u %p)\n", 10920 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 10921 10922 ASSERT(IAM_WRITER_IPIF(ipif)); 10923 10924 ill = ipif->ipif_ill; 10925 phyi = ill->ill_phyint; 10926 10927 if (ipip->ipi_cmd_type == IF_CMD) { 10928 ifr = (struct ifreq *)if_req; 10929 flags = (uint64_t)(ifr->ifr_flags & 0x0000ffff); 10930 } else { 10931 lifr = (struct lifreq *)if_req; 10932 flags = lifr->lifr_flags; 10933 } 10934 10935 intf_flags = ipif->ipif_flags | ill->ill_flags | phyi->phyint_flags; 10936 10937 /* 10938 * Has the flags been set correctly till now ? 10939 */ 10940 ASSERT((phyi->phyint_flags & ~(IFF_PHYINT_FLAGS)) == 0); 10941 ASSERT((ill->ill_flags & ~(IFF_PHYINTINST_FLAGS)) == 0); 10942 ASSERT((ipif->ipif_flags & ~(IFF_LOGINT_FLAGS)) == 0); 10943 /* 10944 * Compare the new flags to the old, and partition 10945 * into those coming on and those going off. 10946 * For the 16 bit command keep the bits above bit 16 unchanged. 10947 */ 10948 if (ipip->ipi_cmd == SIOCSIFFLAGS) 10949 flags |= intf_flags & ~0xFFFF; 10950 10951 /* 10952 * First check which bits will change and then which will 10953 * go on and off 10954 */ 10955 turn_on = (flags ^ intf_flags) & ~IFF_CANTCHANGE; 10956 if (!turn_on) 10957 return (0); /* No change */ 10958 10959 turn_off = intf_flags & turn_on; 10960 turn_on ^= turn_off; 10961 err = 0; 10962 10963 /* 10964 * Don't allow any bits belonging to the logical interface 10965 * to be set or cleared on the replacement ipif that was 10966 * created temporarily during a MOVE. 10967 */ 10968 if (ipif->ipif_replace_zero && 10969 ((turn_on|turn_off) & IFF_LOGINT_FLAGS) != 0) { 10970 return (EINVAL); 10971 } 10972 10973 /* 10974 * Only allow the IFF_XRESOLV and IFF_TEMPORARY flags to be set on 10975 * IPv6 interfaces. 10976 */ 10977 if ((turn_on & (IFF_XRESOLV|IFF_TEMPORARY)) && !(ipif->ipif_isv6)) 10978 return (EINVAL); 10979 10980 /* 10981 * Don't allow the IFF_ROUTER flag to be turned on on loopback 10982 * interfaces. It makes no sense in that context. 10983 */ 10984 if ((turn_on & IFF_ROUTER) && (phyi->phyint_flags & PHYI_LOOPBACK)) 10985 return (EINVAL); 10986 10987 if (flags & (IFF_NOLOCAL|IFF_ANYCAST)) 10988 zero_source = B_TRUE; 10989 10990 /* 10991 * For IPv6 ipif_id 0, don't allow the interface to be up without 10992 * a link local address if IFF_NOLOCAL or IFF_ANYCAST are not set. 10993 * If the link local address isn't set, and can be set, it will get 10994 * set later on in this function. 10995 */ 10996 if (ipif->ipif_id == 0 && ipif->ipif_isv6 && 10997 (flags & IFF_UP) && !zero_source && 10998 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr)) { 10999 if (ipif_cant_setlinklocal(ipif)) 11000 return (EINVAL); 11001 set_linklocal = B_TRUE; 11002 } 11003 11004 /* 11005 * ILL cannot be part of a usesrc group and and IPMP group at the 11006 * same time. No need to grab ill_g_usesrc_lock here, see 11007 * synchronization notes in ip.c 11008 */ 11009 if (turn_on & PHYI_STANDBY && 11010 ipif->ipif_ill->ill_usesrc_grp_next != NULL) { 11011 return (EINVAL); 11012 } 11013 11014 /* 11015 * If we modify physical interface flags, we'll potentially need to 11016 * send up two routing socket messages for the changes (one for the 11017 * IPv4 ill, and another for the IPv6 ill). Note that here. 11018 */ 11019 if ((turn_on|turn_off) & IFF_PHYINT_FLAGS) 11020 phyint_flags_modified = B_TRUE; 11021 11022 /* 11023 * If we are setting or clearing FAILED or STANDBY or OFFLINE, 11024 * we need to flush the IRE_CACHES belonging to this ill. 11025 * We handle this case here without doing the DOWN/UP dance 11026 * like it is done for other flags. If some other flags are 11027 * being turned on/off with FAILED/STANDBY/OFFLINE, the code 11028 * below will handle it by bringing it down and then 11029 * bringing it UP. 11030 */ 11031 if ((turn_on|turn_off) & (PHYI_FAILED|PHYI_STANDBY|PHYI_OFFLINE)) { 11032 ill_t *ill_v4, *ill_v6; 11033 11034 ill_v4 = phyi->phyint_illv4; 11035 ill_v6 = phyi->phyint_illv6; 11036 11037 /* 11038 * First set the INACTIVE flag if needed. Then delete the ires. 11039 * ire_add will atomically prevent creating new IRE_CACHEs 11040 * unless hidden flag is set. 11041 * PHYI_FAILED and PHYI_INACTIVE are exclusive 11042 */ 11043 if ((turn_on & PHYI_FAILED) && 11044 ((intf_flags & PHYI_STANDBY) || !ipmp_enable_failback)) { 11045 /* Reset PHYI_INACTIVE when PHYI_FAILED is being set */ 11046 phyi->phyint_flags &= ~PHYI_INACTIVE; 11047 } 11048 if ((turn_off & PHYI_FAILED) && 11049 ((intf_flags & PHYI_STANDBY) || 11050 (!ipmp_enable_failback && ill_is_inactive(ill)))) { 11051 phyint_inactive(phyi); 11052 } 11053 11054 if (turn_on & PHYI_STANDBY) { 11055 /* 11056 * We implicitly set INACTIVE only when STANDBY is set. 11057 * INACTIVE is also set on non-STANDBY phyint when user 11058 * disables FAILBACK using configuration file. 11059 * Do not allow STANDBY to be set on such INACTIVE 11060 * phyint 11061 */ 11062 if (phyi->phyint_flags & PHYI_INACTIVE) 11063 return (EINVAL); 11064 if (!(phyi->phyint_flags & PHYI_FAILED)) 11065 phyint_inactive(phyi); 11066 } 11067 if (turn_off & PHYI_STANDBY) { 11068 if (ipmp_enable_failback) { 11069 /* 11070 * Reset PHYI_INACTIVE. 11071 */ 11072 phyi->phyint_flags &= ~PHYI_INACTIVE; 11073 } else if (ill_is_inactive(ill) && 11074 !(phyi->phyint_flags & PHYI_FAILED)) { 11075 /* 11076 * Need to set INACTIVE, when user sets 11077 * STANDBY on a non-STANDBY phyint and 11078 * later resets STANDBY 11079 */ 11080 phyint_inactive(phyi); 11081 } 11082 } 11083 /* 11084 * We should always send up a message so that the 11085 * daemons come to know of it. Note that the zeroth 11086 * interface can be down and the check below for IPIF_UP 11087 * will not make sense as we are actually setting 11088 * a phyint flag here. We assume that the ipif used 11089 * is always the zeroth ipif. (ip_rts_ifmsg does not 11090 * send up any message for non-zero ipifs). 11091 */ 11092 phyint_flags_modified = B_TRUE; 11093 11094 if (ill_v4 != NULL) { 11095 ire_walk_ill_v4(MATCH_IRE_ILL | MATCH_IRE_TYPE, 11096 IRE_CACHE, ill_stq_cache_delete, 11097 (char *)ill_v4, ill_v4); 11098 illgrp_reset_schednext(ill_v4); 11099 } 11100 if (ill_v6 != NULL) { 11101 ire_walk_ill_v6(MATCH_IRE_ILL | MATCH_IRE_TYPE, 11102 IRE_CACHE, ill_stq_cache_delete, 11103 (char *)ill_v6, ill_v6); 11104 illgrp_reset_schednext(ill_v6); 11105 } 11106 } 11107 11108 /* 11109 * If ILLF_ROUTER changes, we need to change the ip forwarding 11110 * status of the interface and, if the interface is part of an IPMP 11111 * group, all other interfaces that are part of the same IPMP 11112 * group. 11113 */ 11114 if ((turn_on | turn_off) & ILLF_ROUTER) { 11115 (void) ill_forward_set(q, mp, ((turn_on & ILLF_ROUTER) != 0), 11116 (caddr_t)ill); 11117 } 11118 11119 /* 11120 * If the interface is not UP and we are not going to 11121 * bring it UP, record the flags and return. When the 11122 * interface comes UP later, the right actions will be 11123 * taken. 11124 */ 11125 if (!(ipif->ipif_flags & IPIF_UP) && 11126 !(turn_on & IPIF_UP)) { 11127 /* Record new flags in their respective places. */ 11128 mutex_enter(&ill->ill_lock); 11129 mutex_enter(&ill->ill_phyint->phyint_lock); 11130 ipif->ipif_flags |= (turn_on & IFF_LOGINT_FLAGS); 11131 ipif->ipif_flags &= (~turn_off & IFF_LOGINT_FLAGS); 11132 ill->ill_flags |= (turn_on & IFF_PHYINTINST_FLAGS); 11133 ill->ill_flags &= (~turn_off & IFF_PHYINTINST_FLAGS); 11134 phyi->phyint_flags |= (turn_on & IFF_PHYINT_FLAGS); 11135 phyi->phyint_flags &= (~turn_off & IFF_PHYINT_FLAGS); 11136 mutex_exit(&ill->ill_lock); 11137 mutex_exit(&ill->ill_phyint->phyint_lock); 11138 11139 /* 11140 * We do the broadcast and nomination here rather 11141 * than waiting for a FAILOVER/FAILBACK to happen. In 11142 * the case of FAILBACK from INACTIVE standby to the 11143 * interface that has been repaired, PHYI_FAILED has not 11144 * been cleared yet. If there are only two interfaces in 11145 * that group, all we have is a FAILED and INACTIVE 11146 * interface. If we do the nomination soon after a failback, 11147 * the broadcast nomination code would select the 11148 * INACTIVE interface for receiving broadcasts as FAILED is 11149 * not yet cleared. As we don't want STANDBY/INACTIVE to 11150 * receive broadcast packets, we need to redo nomination 11151 * when the FAILED is cleared here. Thus, in general we 11152 * always do the nomination here for FAILED, STANDBY 11153 * and OFFLINE. 11154 */ 11155 if (((turn_on | turn_off) & 11156 (PHYI_FAILED|PHYI_STANDBY|PHYI_OFFLINE))) { 11157 ip_redo_nomination(phyi); 11158 } 11159 if (phyint_flags_modified) { 11160 if (phyi->phyint_illv4 != NULL) { 11161 ip_rts_ifmsg(phyi->phyint_illv4-> 11162 ill_ipif); 11163 } 11164 if (phyi->phyint_illv6 != NULL) { 11165 ip_rts_ifmsg(phyi->phyint_illv6-> 11166 ill_ipif); 11167 } 11168 } 11169 return (0); 11170 } else if (set_linklocal || zero_source) { 11171 mutex_enter(&ill->ill_lock); 11172 if (set_linklocal) 11173 ipif->ipif_state_flags |= IPIF_SET_LINKLOCAL; 11174 if (zero_source) 11175 ipif->ipif_state_flags |= IPIF_ZERO_SOURCE; 11176 mutex_exit(&ill->ill_lock); 11177 } 11178 11179 /* 11180 * Disallow IPv6 interfaces coming up that have the unspecified address, 11181 * or point-to-point interfaces with an unspecified destination. We do 11182 * allow the address to be unspecified for IPIF_NOLOCAL interfaces that 11183 * have a subnet assigned, which is how in.ndpd currently manages its 11184 * onlink prefix list when no addresses are configured with those 11185 * prefixes. 11186 */ 11187 if (ipif->ipif_isv6 && 11188 ((IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr) && 11189 (!(ipif->ipif_flags & IPIF_NOLOCAL) && !(turn_on & IPIF_NOLOCAL) || 11190 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6subnet))) || 11191 ((ipif->ipif_flags & IPIF_POINTOPOINT) && 11192 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6pp_dst_addr)))) { 11193 return (EINVAL); 11194 } 11195 11196 /* 11197 * Prevent IPv4 point-to-point interfaces with a 0.0.0.0 destination 11198 * from being brought up. 11199 */ 11200 if (!ipif->ipif_isv6 && 11201 ((ipif->ipif_flags & IPIF_POINTOPOINT) && 11202 ipif->ipif_pp_dst_addr == INADDR_ANY)) { 11203 return (EINVAL); 11204 } 11205 11206 /* 11207 * The only flag changes that we currently take specific action on 11208 * is IPIF_UP, IPIF_DEPRECATED, IPIF_NOXMIT, IPIF_NOLOCAL, 11209 * ILLF_NOARP, ILLF_NONUD, IPIF_PRIVATE, IPIF_ANYCAST, and 11210 * IPIF_PREFERRED. This is done by bring the ipif down, changing 11211 * the flags and bringing it back up again. 11212 */ 11213 if ((turn_on|turn_off) & 11214 (IPIF_UP|IPIF_DEPRECATED|IPIF_NOXMIT|IPIF_NOLOCAL|ILLF_NOARP| 11215 ILLF_NONUD|IPIF_PRIVATE|IPIF_ANYCAST|IPIF_PREFERRED)) { 11216 /* 11217 * Taking this ipif down, make sure we have 11218 * valid net and subnet bcast ire's for other 11219 * logical interfaces, if we need them. 11220 */ 11221 if (!ipif->ipif_isv6) 11222 ipif_check_bcast_ires(ipif); 11223 11224 if (((ipif->ipif_flags | turn_on) & IPIF_UP) && 11225 !(turn_off & IPIF_UP)) { 11226 need_up = B_TRUE; 11227 if (ipif->ipif_flags & IPIF_UP) 11228 ill->ill_logical_down = 1; 11229 turn_on &= ~IPIF_UP; 11230 } 11231 err = ipif_down(ipif, q, mp); 11232 ip1dbg(("ipif_down returns %d err ", err)); 11233 if (err == EINPROGRESS) 11234 return (err); 11235 ipif_down_tail(ipif); 11236 } 11237 return (ip_sioctl_flags_tail(ipif, flags, q, mp, need_up)); 11238 } 11239 11240 static int 11241 ip_sioctl_flags_tail(ipif_t *ipif, uint64_t flags, queue_t *q, mblk_t *mp, 11242 boolean_t need_up) 11243 { 11244 ill_t *ill; 11245 phyint_t *phyi; 11246 uint64_t turn_on; 11247 uint64_t turn_off; 11248 uint64_t intf_flags; 11249 boolean_t phyint_flags_modified = B_FALSE; 11250 int err = 0; 11251 boolean_t set_linklocal = B_FALSE; 11252 boolean_t zero_source = B_FALSE; 11253 11254 ip1dbg(("ip_sioctl_flags_tail(%s:%u)\n", 11255 ipif->ipif_ill->ill_name, ipif->ipif_id)); 11256 11257 ASSERT(IAM_WRITER_IPIF(ipif)); 11258 11259 ill = ipif->ipif_ill; 11260 phyi = ill->ill_phyint; 11261 11262 intf_flags = ipif->ipif_flags | ill->ill_flags | phyi->phyint_flags; 11263 turn_on = (flags ^ intf_flags) & ~(IFF_CANTCHANGE | IFF_UP); 11264 11265 turn_off = intf_flags & turn_on; 11266 turn_on ^= turn_off; 11267 11268 if ((turn_on|turn_off) & (PHYI_FAILED|PHYI_STANDBY|PHYI_OFFLINE)) 11269 phyint_flags_modified = B_TRUE; 11270 11271 /* 11272 * Now we change the flags. Track current value of 11273 * other flags in their respective places. 11274 */ 11275 mutex_enter(&ill->ill_lock); 11276 mutex_enter(&phyi->phyint_lock); 11277 ipif->ipif_flags |= (turn_on & IFF_LOGINT_FLAGS); 11278 ipif->ipif_flags &= (~turn_off & IFF_LOGINT_FLAGS); 11279 ill->ill_flags |= (turn_on & IFF_PHYINTINST_FLAGS); 11280 ill->ill_flags &= (~turn_off & IFF_PHYINTINST_FLAGS); 11281 phyi->phyint_flags |= (turn_on & IFF_PHYINT_FLAGS); 11282 phyi->phyint_flags &= (~turn_off & IFF_PHYINT_FLAGS); 11283 if (ipif->ipif_state_flags & IPIF_SET_LINKLOCAL) { 11284 set_linklocal = B_TRUE; 11285 ipif->ipif_state_flags &= ~IPIF_SET_LINKLOCAL; 11286 } 11287 if (ipif->ipif_state_flags & IPIF_ZERO_SOURCE) { 11288 zero_source = B_TRUE; 11289 ipif->ipif_state_flags &= ~IPIF_ZERO_SOURCE; 11290 } 11291 mutex_exit(&ill->ill_lock); 11292 mutex_exit(&phyi->phyint_lock); 11293 11294 if (((turn_on | turn_off) & (PHYI_FAILED|PHYI_STANDBY|PHYI_OFFLINE))) 11295 ip_redo_nomination(phyi); 11296 11297 if (set_linklocal) 11298 (void) ipif_setlinklocal(ipif); 11299 11300 if (zero_source) 11301 ipif->ipif_v6src_addr = ipv6_all_zeros; 11302 else 11303 ipif->ipif_v6src_addr = ipif->ipif_v6lcl_addr; 11304 11305 if (need_up) { 11306 /* 11307 * XXX ipif_up really does not know whether a phyint flags 11308 * was modified or not. So, it sends up information on 11309 * only one routing sockets message. As we don't bring up 11310 * the interface and also set STANDBY/FAILED simultaneously 11311 * it should be okay. 11312 */ 11313 err = ipif_up(ipif, q, mp); 11314 } else { 11315 /* 11316 * Make sure routing socket sees all changes to the flags. 11317 * ipif_up_done* handles this when we use ipif_up. 11318 */ 11319 if (phyint_flags_modified) { 11320 if (phyi->phyint_illv4 != NULL) { 11321 ip_rts_ifmsg(phyi->phyint_illv4-> 11322 ill_ipif); 11323 } 11324 if (phyi->phyint_illv6 != NULL) { 11325 ip_rts_ifmsg(phyi->phyint_illv6-> 11326 ill_ipif); 11327 } 11328 } else { 11329 ip_rts_ifmsg(ipif); 11330 } 11331 } 11332 return (err); 11333 } 11334 11335 /* 11336 * Restart entry point to restart the flags restart operation after the 11337 * refcounts have dropped to zero. 11338 */ 11339 /* ARGSUSED */ 11340 int 11341 ip_sioctl_flags_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11342 ip_ioctl_cmd_t *ipip, void *if_req) 11343 { 11344 int err; 11345 struct ifreq *ifr = (struct ifreq *)if_req; 11346 struct lifreq *lifr = (struct lifreq *)if_req; 11347 11348 ip1dbg(("ip_sioctl_flags_restart(%s:%u %p)\n", 11349 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11350 11351 ipif_down_tail(ipif); 11352 if (ipip->ipi_cmd_type == IF_CMD) { 11353 /* 11354 * Since ip_sioctl_flags expects an int and ifr_flags 11355 * is a short we need to cast ifr_flags into an int 11356 * to avoid having sign extension cause bits to get 11357 * set that should not be. 11358 */ 11359 err = ip_sioctl_flags_tail(ipif, 11360 (uint64_t)(ifr->ifr_flags & 0x0000ffff), 11361 q, mp, B_TRUE); 11362 } else { 11363 err = ip_sioctl_flags_tail(ipif, lifr->lifr_flags, 11364 q, mp, B_TRUE); 11365 } 11366 return (err); 11367 } 11368 11369 /* ARGSUSED */ 11370 int 11371 ip_sioctl_get_flags(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11372 ip_ioctl_cmd_t *ipip, void *if_req) 11373 { 11374 /* 11375 * Has the flags been set correctly till now ? 11376 */ 11377 ill_t *ill = ipif->ipif_ill; 11378 phyint_t *phyi = ill->ill_phyint; 11379 11380 ip1dbg(("ip_sioctl_get_flags(%s:%u %p)\n", 11381 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11382 ASSERT((phyi->phyint_flags & ~(IFF_PHYINT_FLAGS)) == 0); 11383 ASSERT((ill->ill_flags & ~(IFF_PHYINTINST_FLAGS)) == 0); 11384 ASSERT((ipif->ipif_flags & ~(IFF_LOGINT_FLAGS)) == 0); 11385 11386 /* 11387 * Need a lock since some flags can be set even when there are 11388 * references to the ipif. 11389 */ 11390 mutex_enter(&ill->ill_lock); 11391 if (ipip->ipi_cmd_type == IF_CMD) { 11392 struct ifreq *ifr = (struct ifreq *)if_req; 11393 11394 /* Get interface flags (low 16 only). */ 11395 ifr->ifr_flags = ((ipif->ipif_flags | 11396 ill->ill_flags | phyi->phyint_flags) & 0xffff); 11397 } else { 11398 struct lifreq *lifr = (struct lifreq *)if_req; 11399 11400 /* Get interface flags. */ 11401 lifr->lifr_flags = ipif->ipif_flags | 11402 ill->ill_flags | phyi->phyint_flags; 11403 } 11404 mutex_exit(&ill->ill_lock); 11405 return (0); 11406 } 11407 11408 /* ARGSUSED */ 11409 int 11410 ip_sioctl_mtu(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11411 ip_ioctl_cmd_t *ipip, void *if_req) 11412 { 11413 int mtu; 11414 int ip_min_mtu; 11415 struct ifreq *ifr; 11416 struct lifreq *lifr; 11417 ire_t *ire; 11418 11419 ip1dbg(("ip_sioctl_mtu(%s:%u %p)\n", ipif->ipif_ill->ill_name, 11420 ipif->ipif_id, (void *)ipif)); 11421 if (ipip->ipi_cmd_type == IF_CMD) { 11422 ifr = (struct ifreq *)if_req; 11423 mtu = ifr->ifr_metric; 11424 } else { 11425 lifr = (struct lifreq *)if_req; 11426 mtu = lifr->lifr_mtu; 11427 } 11428 11429 if (ipif->ipif_isv6) 11430 ip_min_mtu = IPV6_MIN_MTU; 11431 else 11432 ip_min_mtu = IP_MIN_MTU; 11433 11434 if (mtu > ipif->ipif_ill->ill_max_frag || mtu < ip_min_mtu) 11435 return (EINVAL); 11436 11437 /* 11438 * Change the MTU size in all relevant ire's. 11439 * Mtu change Vs. new ire creation - protocol below. 11440 * First change ipif_mtu and the ire_max_frag of the 11441 * interface ire. Then do an ire walk and change the 11442 * ire_max_frag of all affected ires. During ire_add 11443 * under the bucket lock, set the ire_max_frag of the 11444 * new ire being created from the ipif/ire from which 11445 * it is being derived. If an mtu change happens after 11446 * the ire is added, the new ire will be cleaned up. 11447 * Conversely if the mtu change happens before the ire 11448 * is added, ire_add will see the new value of the mtu. 11449 */ 11450 ipif->ipif_mtu = mtu; 11451 ipif->ipif_flags |= IPIF_FIXEDMTU; 11452 11453 if (ipif->ipif_isv6) 11454 ire = ipif_to_ire_v6(ipif); 11455 else 11456 ire = ipif_to_ire(ipif); 11457 if (ire != NULL) { 11458 ire->ire_max_frag = ipif->ipif_mtu; 11459 ire_refrele(ire); 11460 } 11461 if (ipif->ipif_flags & IPIF_UP) { 11462 if (ipif->ipif_isv6) 11463 ire_walk_v6(ipif_mtu_change, (char *)ipif, ALL_ZONES); 11464 else 11465 ire_walk_v4(ipif_mtu_change, (char *)ipif, ALL_ZONES); 11466 } 11467 /* Update the MTU in SCTP's list */ 11468 sctp_update_ipif(ipif, SCTP_IPIF_UPDATE); 11469 return (0); 11470 } 11471 11472 /* Get interface MTU. */ 11473 /* ARGSUSED */ 11474 int 11475 ip_sioctl_get_mtu(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11476 ip_ioctl_cmd_t *ipip, void *if_req) 11477 { 11478 struct ifreq *ifr; 11479 struct lifreq *lifr; 11480 11481 ip1dbg(("ip_sioctl_get_mtu(%s:%u %p)\n", 11482 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11483 if (ipip->ipi_cmd_type == IF_CMD) { 11484 ifr = (struct ifreq *)if_req; 11485 ifr->ifr_metric = ipif->ipif_mtu; 11486 } else { 11487 lifr = (struct lifreq *)if_req; 11488 lifr->lifr_mtu = ipif->ipif_mtu; 11489 } 11490 return (0); 11491 } 11492 11493 /* Set interface broadcast address. */ 11494 /* ARGSUSED2 */ 11495 int 11496 ip_sioctl_brdaddr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11497 ip_ioctl_cmd_t *ipip, void *if_req) 11498 { 11499 ipaddr_t addr; 11500 ire_t *ire; 11501 11502 ip1dbg(("ip_sioctl_brdaddr(%s:%u)\n", ipif->ipif_ill->ill_name, 11503 ipif->ipif_id)); 11504 11505 ASSERT(IAM_WRITER_IPIF(ipif)); 11506 if (!(ipif->ipif_flags & IPIF_BROADCAST)) 11507 return (EADDRNOTAVAIL); 11508 11509 ASSERT(!(ipif->ipif_isv6)); /* No IPv6 broadcast */ 11510 11511 if (sin->sin_family != AF_INET) 11512 return (EAFNOSUPPORT); 11513 11514 addr = sin->sin_addr.s_addr; 11515 if (ipif->ipif_flags & IPIF_UP) { 11516 /* 11517 * If we are already up, make sure the new 11518 * broadcast address makes sense. If it does, 11519 * there should be an IRE for it already. 11520 * Don't match on ipif, only on the ill 11521 * since we are sharing these now. Don't use 11522 * MATCH_IRE_ILL_GROUP as we are looking for 11523 * the broadcast ire on this ill and each ill 11524 * in the group has its own broadcast ire. 11525 */ 11526 ire = ire_ctable_lookup(addr, 0, IRE_BROADCAST, 11527 ipif, ALL_ZONES, (MATCH_IRE_ILL | MATCH_IRE_TYPE)); 11528 if (ire == NULL) { 11529 return (EINVAL); 11530 } else { 11531 ire_refrele(ire); 11532 } 11533 } 11534 /* 11535 * Changing the broadcast addr for this ipif. 11536 * Make sure we have valid net and subnet bcast 11537 * ire's for other logical interfaces, if needed. 11538 */ 11539 if (addr != ipif->ipif_brd_addr) 11540 ipif_check_bcast_ires(ipif); 11541 IN6_IPADDR_TO_V4MAPPED(addr, &ipif->ipif_v6brd_addr); 11542 return (0); 11543 } 11544 11545 /* Get interface broadcast address. */ 11546 /* ARGSUSED */ 11547 int 11548 ip_sioctl_get_brdaddr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11549 ip_ioctl_cmd_t *ipip, void *if_req) 11550 { 11551 ip1dbg(("ip_sioctl_get_brdaddr(%s:%u %p)\n", 11552 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11553 if (!(ipif->ipif_flags & IPIF_BROADCAST)) 11554 return (EADDRNOTAVAIL); 11555 11556 /* IPIF_BROADCAST not possible with IPv6 */ 11557 ASSERT(!ipif->ipif_isv6); 11558 *sin = sin_null; 11559 sin->sin_family = AF_INET; 11560 sin->sin_addr.s_addr = ipif->ipif_brd_addr; 11561 return (0); 11562 } 11563 11564 /* 11565 * This routine is called to handle the SIOCS*IFNETMASK IOCTL. 11566 */ 11567 /* ARGSUSED */ 11568 int 11569 ip_sioctl_netmask(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11570 ip_ioctl_cmd_t *ipip, void *if_req) 11571 { 11572 int err = 0; 11573 in6_addr_t v6mask; 11574 11575 ip1dbg(("ip_sioctl_netmask(%s:%u %p)\n", 11576 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11577 11578 ASSERT(IAM_WRITER_IPIF(ipif)); 11579 11580 if (ipif->ipif_isv6) { 11581 sin6_t *sin6; 11582 11583 if (sin->sin_family != AF_INET6) 11584 return (EAFNOSUPPORT); 11585 11586 sin6 = (sin6_t *)sin; 11587 v6mask = sin6->sin6_addr; 11588 } else { 11589 ipaddr_t mask; 11590 11591 if (sin->sin_family != AF_INET) 11592 return (EAFNOSUPPORT); 11593 11594 mask = sin->sin_addr.s_addr; 11595 V4MASK_TO_V6(mask, v6mask); 11596 } 11597 11598 /* 11599 * No big deal if the interface isn't already up, or the mask 11600 * isn't really changing, or this is pt-pt. 11601 */ 11602 if (!(ipif->ipif_flags & IPIF_UP) || 11603 IN6_ARE_ADDR_EQUAL(&v6mask, &ipif->ipif_v6net_mask) || 11604 (ipif->ipif_flags & IPIF_POINTOPOINT)) { 11605 ipif->ipif_v6net_mask = v6mask; 11606 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) { 11607 V6_MASK_COPY(ipif->ipif_v6lcl_addr, 11608 ipif->ipif_v6net_mask, 11609 ipif->ipif_v6subnet); 11610 } 11611 return (0); 11612 } 11613 /* 11614 * Make sure we have valid net and subnet broadcast ire's 11615 * for the old netmask, if needed by other logical interfaces. 11616 */ 11617 if (!ipif->ipif_isv6) 11618 ipif_check_bcast_ires(ipif); 11619 11620 err = ipif_logical_down(ipif, q, mp); 11621 if (err == EINPROGRESS) 11622 return (err); 11623 ipif_down_tail(ipif); 11624 err = ip_sioctl_netmask_tail(ipif, sin, q, mp); 11625 return (err); 11626 } 11627 11628 static int 11629 ip_sioctl_netmask_tail(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp) 11630 { 11631 in6_addr_t v6mask; 11632 int err = 0; 11633 11634 ip1dbg(("ip_sioctl_netmask_tail(%s:%u %p)\n", 11635 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11636 11637 if (ipif->ipif_isv6) { 11638 sin6_t *sin6; 11639 11640 sin6 = (sin6_t *)sin; 11641 v6mask = sin6->sin6_addr; 11642 } else { 11643 ipaddr_t mask; 11644 11645 mask = sin->sin_addr.s_addr; 11646 V4MASK_TO_V6(mask, v6mask); 11647 } 11648 11649 ipif->ipif_v6net_mask = v6mask; 11650 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) { 11651 V6_MASK_COPY(ipif->ipif_v6lcl_addr, ipif->ipif_v6net_mask, 11652 ipif->ipif_v6subnet); 11653 } 11654 err = ipif_up(ipif, q, mp); 11655 11656 if (err == 0 || err == EINPROGRESS) { 11657 /* 11658 * The interface must be DL_BOUND if this packet has to 11659 * go out on the wire. Since we only go through a logical 11660 * down and are bound with the driver during an internal 11661 * down/up that is satisfied. 11662 */ 11663 if (!ipif->ipif_isv6 && ipif->ipif_ill->ill_wq != NULL) { 11664 /* Potentially broadcast an address mask reply. */ 11665 ipif_mask_reply(ipif); 11666 } 11667 } 11668 return (err); 11669 } 11670 11671 /* ARGSUSED */ 11672 int 11673 ip_sioctl_netmask_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11674 ip_ioctl_cmd_t *ipip, void *if_req) 11675 { 11676 ip1dbg(("ip_sioctl_netmask_restart(%s:%u %p)\n", 11677 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11678 ipif_down_tail(ipif); 11679 return (ip_sioctl_netmask_tail(ipif, sin, q, mp)); 11680 } 11681 11682 /* Get interface net mask. */ 11683 /* ARGSUSED */ 11684 int 11685 ip_sioctl_get_netmask(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11686 ip_ioctl_cmd_t *ipip, void *if_req) 11687 { 11688 struct lifreq *lifr = (struct lifreq *)if_req; 11689 struct sockaddr_in6 *sin6 = (sin6_t *)sin; 11690 11691 ip1dbg(("ip_sioctl_get_netmask(%s:%u %p)\n", 11692 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11693 11694 /* 11695 * net mask can't change since we have a reference to the ipif. 11696 */ 11697 if (ipif->ipif_isv6) { 11698 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 11699 *sin6 = sin6_null; 11700 sin6->sin6_family = AF_INET6; 11701 sin6->sin6_addr = ipif->ipif_v6net_mask; 11702 lifr->lifr_addrlen = 11703 ip_mask_to_plen_v6(&ipif->ipif_v6net_mask); 11704 } else { 11705 *sin = sin_null; 11706 sin->sin_family = AF_INET; 11707 sin->sin_addr.s_addr = ipif->ipif_net_mask; 11708 if (ipip->ipi_cmd_type == LIF_CMD) { 11709 lifr->lifr_addrlen = 11710 ip_mask_to_plen(ipif->ipif_net_mask); 11711 } 11712 } 11713 return (0); 11714 } 11715 11716 /* ARGSUSED */ 11717 int 11718 ip_sioctl_metric(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11719 ip_ioctl_cmd_t *ipip, void *if_req) 11720 { 11721 11722 ip1dbg(("ip_sioctl_metric(%s:%u %p)\n", 11723 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11724 /* 11725 * Set interface metric. We don't use this for 11726 * anything but we keep track of it in case it is 11727 * important to routing applications or such. 11728 */ 11729 if (ipip->ipi_cmd_type == IF_CMD) { 11730 struct ifreq *ifr; 11731 11732 ifr = (struct ifreq *)if_req; 11733 ipif->ipif_metric = ifr->ifr_metric; 11734 } else { 11735 struct lifreq *lifr; 11736 11737 lifr = (struct lifreq *)if_req; 11738 ipif->ipif_metric = lifr->lifr_metric; 11739 } 11740 return (0); 11741 } 11742 11743 11744 /* ARGSUSED */ 11745 int 11746 ip_sioctl_get_metric(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11747 ip_ioctl_cmd_t *ipip, void *if_req) 11748 { 11749 11750 /* Get interface metric. */ 11751 ip1dbg(("ip_sioctl_get_metric(%s:%u %p)\n", 11752 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11753 if (ipip->ipi_cmd_type == IF_CMD) { 11754 struct ifreq *ifr; 11755 11756 ifr = (struct ifreq *)if_req; 11757 ifr->ifr_metric = ipif->ipif_metric; 11758 } else { 11759 struct lifreq *lifr; 11760 11761 lifr = (struct lifreq *)if_req; 11762 lifr->lifr_metric = ipif->ipif_metric; 11763 } 11764 11765 return (0); 11766 } 11767 11768 /* ARGSUSED */ 11769 int 11770 ip_sioctl_muxid(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11771 ip_ioctl_cmd_t *ipip, void *if_req) 11772 { 11773 11774 ip1dbg(("ip_sioctl_muxid(%s:%u %p)\n", 11775 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11776 /* 11777 * Set the muxid returned from I_PLINK. 11778 */ 11779 if (ipip->ipi_cmd_type == IF_CMD) { 11780 struct ifreq *ifr = (struct ifreq *)if_req; 11781 11782 ipif->ipif_ill->ill_ip_muxid = ifr->ifr_ip_muxid; 11783 ipif->ipif_ill->ill_arp_muxid = ifr->ifr_arp_muxid; 11784 } else { 11785 struct lifreq *lifr = (struct lifreq *)if_req; 11786 11787 ipif->ipif_ill->ill_ip_muxid = lifr->lifr_ip_muxid; 11788 ipif->ipif_ill->ill_arp_muxid = lifr->lifr_arp_muxid; 11789 } 11790 return (0); 11791 } 11792 11793 /* ARGSUSED */ 11794 int 11795 ip_sioctl_get_muxid(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11796 ip_ioctl_cmd_t *ipip, void *if_req) 11797 { 11798 11799 ip1dbg(("ip_sioctl_get_muxid(%s:%u %p)\n", 11800 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11801 /* 11802 * Get the muxid saved in ill for I_PUNLINK. 11803 */ 11804 if (ipip->ipi_cmd_type == IF_CMD) { 11805 struct ifreq *ifr = (struct ifreq *)if_req; 11806 11807 ifr->ifr_ip_muxid = ipif->ipif_ill->ill_ip_muxid; 11808 ifr->ifr_arp_muxid = ipif->ipif_ill->ill_arp_muxid; 11809 } else { 11810 struct lifreq *lifr = (struct lifreq *)if_req; 11811 11812 lifr->lifr_ip_muxid = ipif->ipif_ill->ill_ip_muxid; 11813 lifr->lifr_arp_muxid = ipif->ipif_ill->ill_arp_muxid; 11814 } 11815 return (0); 11816 } 11817 11818 /* 11819 * Set the subnet prefix. Does not modify the broadcast address. 11820 */ 11821 /* ARGSUSED */ 11822 int 11823 ip_sioctl_subnet(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11824 ip_ioctl_cmd_t *ipip, void *if_req) 11825 { 11826 int err = 0; 11827 in6_addr_t v6addr; 11828 in6_addr_t v6mask; 11829 boolean_t need_up = B_FALSE; 11830 int addrlen; 11831 11832 ip1dbg(("ip_sioctl_subnet(%s:%u %p)\n", 11833 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11834 11835 ASSERT(IAM_WRITER_IPIF(ipif)); 11836 addrlen = ((struct lifreq *)if_req)->lifr_addrlen; 11837 11838 if (ipif->ipif_isv6) { 11839 sin6_t *sin6; 11840 11841 if (sin->sin_family != AF_INET6) 11842 return (EAFNOSUPPORT); 11843 11844 sin6 = (sin6_t *)sin; 11845 v6addr = sin6->sin6_addr; 11846 if (!ip_remote_addr_ok_v6(&v6addr, &ipv6_all_ones)) 11847 return (EADDRNOTAVAIL); 11848 } else { 11849 ipaddr_t addr; 11850 11851 if (sin->sin_family != AF_INET) 11852 return (EAFNOSUPPORT); 11853 11854 addr = sin->sin_addr.s_addr; 11855 if (!ip_addr_ok_v4(addr, 0xFFFFFFFF)) 11856 return (EADDRNOTAVAIL); 11857 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 11858 /* Add 96 bits */ 11859 addrlen += IPV6_ABITS - IP_ABITS; 11860 } 11861 11862 if (ip_plen_to_mask_v6(addrlen, &v6mask) == NULL) 11863 return (EINVAL); 11864 11865 /* Check if bits in the address is set past the mask */ 11866 if (!V6_MASK_EQ(v6addr, v6mask, v6addr)) 11867 return (EINVAL); 11868 11869 if (IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6subnet, &v6addr) && 11870 IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6net_mask, &v6mask)) 11871 return (0); /* No change */ 11872 11873 if (ipif->ipif_flags & IPIF_UP) { 11874 /* 11875 * If the interface is already marked up, 11876 * we call ipif_down which will take care 11877 * of ditching any IREs that have been set 11878 * up based on the old interface address. 11879 */ 11880 err = ipif_logical_down(ipif, q, mp); 11881 if (err == EINPROGRESS) 11882 return (err); 11883 ipif_down_tail(ipif); 11884 need_up = B_TRUE; 11885 } 11886 11887 err = ip_sioctl_subnet_tail(ipif, v6addr, v6mask, q, mp, need_up); 11888 return (err); 11889 } 11890 11891 static int 11892 ip_sioctl_subnet_tail(ipif_t *ipif, in6_addr_t v6addr, in6_addr_t v6mask, 11893 queue_t *q, mblk_t *mp, boolean_t need_up) 11894 { 11895 ill_t *ill = ipif->ipif_ill; 11896 int err = 0; 11897 11898 ip1dbg(("ip_sioctl_subnet_tail(%s:%u %p)\n", 11899 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11900 11901 /* Set the new address. */ 11902 mutex_enter(&ill->ill_lock); 11903 ipif->ipif_v6net_mask = v6mask; 11904 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) { 11905 V6_MASK_COPY(v6addr, ipif->ipif_v6net_mask, 11906 ipif->ipif_v6subnet); 11907 } 11908 mutex_exit(&ill->ill_lock); 11909 11910 if (need_up) { 11911 /* 11912 * Now bring the interface back up. If this 11913 * is the only IPIF for the ILL, ipif_up 11914 * will have to re-bind to the device, so 11915 * we may get back EINPROGRESS, in which 11916 * case, this IOCTL will get completed in 11917 * ip_rput_dlpi when we see the DL_BIND_ACK. 11918 */ 11919 err = ipif_up(ipif, q, mp); 11920 if (err == EINPROGRESS) 11921 return (err); 11922 } 11923 return (err); 11924 } 11925 11926 /* ARGSUSED */ 11927 int 11928 ip_sioctl_subnet_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11929 ip_ioctl_cmd_t *ipip, void *if_req) 11930 { 11931 int addrlen; 11932 in6_addr_t v6addr; 11933 in6_addr_t v6mask; 11934 struct lifreq *lifr = (struct lifreq *)if_req; 11935 11936 ip1dbg(("ip_sioctl_subnet_restart(%s:%u %p)\n", 11937 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11938 ipif_down_tail(ipif); 11939 11940 addrlen = lifr->lifr_addrlen; 11941 if (ipif->ipif_isv6) { 11942 sin6_t *sin6; 11943 11944 sin6 = (sin6_t *)sin; 11945 v6addr = sin6->sin6_addr; 11946 } else { 11947 ipaddr_t addr; 11948 11949 addr = sin->sin_addr.s_addr; 11950 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 11951 addrlen += IPV6_ABITS - IP_ABITS; 11952 } 11953 (void) ip_plen_to_mask_v6(addrlen, &v6mask); 11954 11955 return (ip_sioctl_subnet_tail(ipif, v6addr, v6mask, q, mp, B_TRUE)); 11956 } 11957 11958 /* ARGSUSED */ 11959 int 11960 ip_sioctl_get_subnet(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11961 ip_ioctl_cmd_t *ipip, void *if_req) 11962 { 11963 struct lifreq *lifr = (struct lifreq *)if_req; 11964 struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)sin; 11965 11966 ip1dbg(("ip_sioctl_get_subnet(%s:%u %p)\n", 11967 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11968 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 11969 11970 if (ipif->ipif_isv6) { 11971 *sin6 = sin6_null; 11972 sin6->sin6_family = AF_INET6; 11973 sin6->sin6_addr = ipif->ipif_v6subnet; 11974 lifr->lifr_addrlen = 11975 ip_mask_to_plen_v6(&ipif->ipif_v6net_mask); 11976 } else { 11977 *sin = sin_null; 11978 sin->sin_family = AF_INET; 11979 sin->sin_addr.s_addr = ipif->ipif_subnet; 11980 lifr->lifr_addrlen = ip_mask_to_plen(ipif->ipif_net_mask); 11981 } 11982 return (0); 11983 } 11984 11985 /* 11986 * Set the IPv6 address token. 11987 */ 11988 /* ARGSUSED */ 11989 int 11990 ip_sioctl_token(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11991 ip_ioctl_cmd_t *ipi, void *if_req) 11992 { 11993 ill_t *ill = ipif->ipif_ill; 11994 int err; 11995 in6_addr_t v6addr; 11996 in6_addr_t v6mask; 11997 boolean_t need_up = B_FALSE; 11998 int i; 11999 sin6_t *sin6 = (sin6_t *)sin; 12000 struct lifreq *lifr = (struct lifreq *)if_req; 12001 int addrlen; 12002 12003 ip1dbg(("ip_sioctl_token(%s:%u %p)\n", 12004 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12005 ASSERT(IAM_WRITER_IPIF(ipif)); 12006 12007 addrlen = lifr->lifr_addrlen; 12008 /* Only allow for logical unit zero i.e. not on "le0:17" */ 12009 if (ipif->ipif_id != 0) 12010 return (EINVAL); 12011 12012 if (!ipif->ipif_isv6) 12013 return (EINVAL); 12014 12015 if (addrlen > IPV6_ABITS) 12016 return (EINVAL); 12017 12018 v6addr = sin6->sin6_addr; 12019 12020 /* 12021 * The length of the token is the length from the end. To get 12022 * the proper mask for this, compute the mask of the bits not 12023 * in the token; ie. the prefix, and then xor to get the mask. 12024 */ 12025 if (ip_plen_to_mask_v6(IPV6_ABITS - addrlen, &v6mask) == NULL) 12026 return (EINVAL); 12027 for (i = 0; i < 4; i++) { 12028 v6mask.s6_addr32[i] ^= (uint32_t)0xffffffff; 12029 } 12030 12031 if (V6_MASK_EQ(v6addr, v6mask, ill->ill_token) && 12032 ill->ill_token_length == addrlen) 12033 return (0); /* No change */ 12034 12035 if (ipif->ipif_flags & IPIF_UP) { 12036 err = ipif_logical_down(ipif, q, mp); 12037 if (err == EINPROGRESS) 12038 return (err); 12039 ipif_down_tail(ipif); 12040 need_up = B_TRUE; 12041 } 12042 err = ip_sioctl_token_tail(ipif, sin6, addrlen, q, mp, need_up); 12043 return (err); 12044 } 12045 12046 static int 12047 ip_sioctl_token_tail(ipif_t *ipif, sin6_t *sin6, int addrlen, queue_t *q, 12048 mblk_t *mp, boolean_t need_up) 12049 { 12050 in6_addr_t v6addr; 12051 in6_addr_t v6mask; 12052 ill_t *ill = ipif->ipif_ill; 12053 int i; 12054 int err = 0; 12055 12056 ip1dbg(("ip_sioctl_token_tail(%s:%u %p)\n", 12057 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12058 v6addr = sin6->sin6_addr; 12059 /* 12060 * The length of the token is the length from the end. To get 12061 * the proper mask for this, compute the mask of the bits not 12062 * in the token; ie. the prefix, and then xor to get the mask. 12063 */ 12064 (void) ip_plen_to_mask_v6(IPV6_ABITS - addrlen, &v6mask); 12065 for (i = 0; i < 4; i++) 12066 v6mask.s6_addr32[i] ^= (uint32_t)0xffffffff; 12067 12068 mutex_enter(&ill->ill_lock); 12069 V6_MASK_COPY(v6addr, v6mask, ill->ill_token); 12070 ill->ill_token_length = addrlen; 12071 mutex_exit(&ill->ill_lock); 12072 12073 if (need_up) { 12074 /* 12075 * Now bring the interface back up. If this 12076 * is the only IPIF for the ILL, ipif_up 12077 * will have to re-bind to the device, so 12078 * we may get back EINPROGRESS, in which 12079 * case, this IOCTL will get completed in 12080 * ip_rput_dlpi when we see the DL_BIND_ACK. 12081 */ 12082 err = ipif_up(ipif, q, mp); 12083 if (err == EINPROGRESS) 12084 return (err); 12085 } 12086 return (err); 12087 } 12088 12089 /* ARGSUSED */ 12090 int 12091 ip_sioctl_get_token(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12092 ip_ioctl_cmd_t *ipi, void *if_req) 12093 { 12094 ill_t *ill; 12095 sin6_t *sin6 = (sin6_t *)sin; 12096 struct lifreq *lifr = (struct lifreq *)if_req; 12097 12098 ip1dbg(("ip_sioctl_get_token(%s:%u %p)\n", 12099 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12100 if (ipif->ipif_id != 0) 12101 return (EINVAL); 12102 12103 ill = ipif->ipif_ill; 12104 if (!ill->ill_isv6) 12105 return (ENXIO); 12106 12107 *sin6 = sin6_null; 12108 sin6->sin6_family = AF_INET6; 12109 ASSERT(!IN6_IS_ADDR_V4MAPPED(&ill->ill_token)); 12110 sin6->sin6_addr = ill->ill_token; 12111 lifr->lifr_addrlen = ill->ill_token_length; 12112 return (0); 12113 } 12114 12115 /* 12116 * Set (hardware) link specific information that might override 12117 * what was acquired through the DL_INFO_ACK. 12118 * The logic is as follows. 12119 * 12120 * become exclusive 12121 * set CHANGING flag 12122 * change mtu on affected IREs 12123 * clear CHANGING flag 12124 * 12125 * An ire add that occurs before the CHANGING flag is set will have its mtu 12126 * changed by the ip_sioctl_lnkinfo. 12127 * 12128 * During the time the CHANGING flag is set, no new ires will be added to the 12129 * bucket, and ire add will fail (due the CHANGING flag). 12130 * 12131 * An ire add that occurs after the CHANGING flag is set will have the right mtu 12132 * before it is added to the bucket. 12133 * 12134 * Obviously only 1 thread can set the CHANGING flag and we need to become 12135 * exclusive to set the flag. 12136 */ 12137 /* ARGSUSED */ 12138 int 12139 ip_sioctl_lnkinfo(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12140 ip_ioctl_cmd_t *ipi, void *if_req) 12141 { 12142 ill_t *ill = ipif->ipif_ill; 12143 ipif_t *nipif; 12144 int ip_min_mtu; 12145 boolean_t mtu_walk = B_FALSE; 12146 struct lifreq *lifr = (struct lifreq *)if_req; 12147 lif_ifinfo_req_t *lir; 12148 ire_t *ire; 12149 12150 ip1dbg(("ip_sioctl_lnkinfo(%s:%u %p)\n", 12151 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12152 lir = &lifr->lifr_ifinfo; 12153 ASSERT(IAM_WRITER_IPIF(ipif)); 12154 12155 /* Only allow for logical unit zero i.e. not on "le0:17" */ 12156 if (ipif->ipif_id != 0) 12157 return (EINVAL); 12158 12159 /* Set interface MTU. */ 12160 if (ipif->ipif_isv6) 12161 ip_min_mtu = IPV6_MIN_MTU; 12162 else 12163 ip_min_mtu = IP_MIN_MTU; 12164 12165 /* 12166 * Verify values before we set anything. Allow zero to 12167 * mean unspecified. 12168 */ 12169 if (lir->lir_maxmtu != 0 && 12170 (lir->lir_maxmtu > ill->ill_max_frag || 12171 lir->lir_maxmtu < ip_min_mtu)) 12172 return (EINVAL); 12173 if (lir->lir_reachtime != 0 && 12174 lir->lir_reachtime > ND_MAX_REACHTIME) 12175 return (EINVAL); 12176 if (lir->lir_reachretrans != 0 && 12177 lir->lir_reachretrans > ND_MAX_REACHRETRANSTIME) 12178 return (EINVAL); 12179 12180 mutex_enter(&ill->ill_lock); 12181 ill->ill_state_flags |= ILL_CHANGING; 12182 for (nipif = ill->ill_ipif; nipif != NULL; 12183 nipif = nipif->ipif_next) { 12184 nipif->ipif_state_flags |= IPIF_CHANGING; 12185 } 12186 12187 mutex_exit(&ill->ill_lock); 12188 12189 if (lir->lir_maxmtu != 0) { 12190 ill->ill_max_mtu = lir->lir_maxmtu; 12191 ill->ill_mtu_userspecified = 1; 12192 mtu_walk = B_TRUE; 12193 } 12194 12195 if (lir->lir_reachtime != 0) 12196 ill->ill_reachable_time = lir->lir_reachtime; 12197 12198 if (lir->lir_reachretrans != 0) 12199 ill->ill_reachable_retrans_time = lir->lir_reachretrans; 12200 12201 ill->ill_max_hops = lir->lir_maxhops; 12202 12203 ill->ill_max_buf = ND_MAX_Q; 12204 12205 if (mtu_walk) { 12206 /* 12207 * Set the MTU on all ipifs associated with this ill except 12208 * for those whose MTU was fixed via SIOCSLIFMTU. 12209 */ 12210 for (nipif = ill->ill_ipif; nipif != NULL; 12211 nipif = nipif->ipif_next) { 12212 if (nipif->ipif_flags & IPIF_FIXEDMTU) 12213 continue; 12214 12215 nipif->ipif_mtu = ill->ill_max_mtu; 12216 12217 if (!(nipif->ipif_flags & IPIF_UP)) 12218 continue; 12219 12220 if (nipif->ipif_isv6) 12221 ire = ipif_to_ire_v6(nipif); 12222 else 12223 ire = ipif_to_ire(nipif); 12224 if (ire != NULL) { 12225 ire->ire_max_frag = ipif->ipif_mtu; 12226 ire_refrele(ire); 12227 } 12228 if (ill->ill_isv6) { 12229 ire_walk_ill_v6(MATCH_IRE_ILL, 0, 12230 ipif_mtu_change, (char *)nipif, 12231 ill); 12232 } else { 12233 ire_walk_ill_v4(MATCH_IRE_ILL, 0, 12234 ipif_mtu_change, (char *)nipif, 12235 ill); 12236 } 12237 } 12238 } 12239 12240 mutex_enter(&ill->ill_lock); 12241 for (nipif = ill->ill_ipif; nipif != NULL; 12242 nipif = nipif->ipif_next) { 12243 nipif->ipif_state_flags &= ~IPIF_CHANGING; 12244 } 12245 ILL_UNMARK_CHANGING(ill); 12246 mutex_exit(&ill->ill_lock); 12247 12248 return (0); 12249 } 12250 12251 /* ARGSUSED */ 12252 int 12253 ip_sioctl_get_lnkinfo(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12254 ip_ioctl_cmd_t *ipi, void *if_req) 12255 { 12256 struct lif_ifinfo_req *lir; 12257 ill_t *ill = ipif->ipif_ill; 12258 12259 ip1dbg(("ip_sioctl_get_lnkinfo(%s:%u %p)\n", 12260 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12261 if (ipif->ipif_id != 0) 12262 return (EINVAL); 12263 12264 lir = &((struct lifreq *)if_req)->lifr_ifinfo; 12265 lir->lir_maxhops = ill->ill_max_hops; 12266 lir->lir_reachtime = ill->ill_reachable_time; 12267 lir->lir_reachretrans = ill->ill_reachable_retrans_time; 12268 lir->lir_maxmtu = ill->ill_max_mtu; 12269 12270 return (0); 12271 } 12272 12273 /* 12274 * Return best guess as to the subnet mask for the specified address. 12275 * Based on the subnet masks for all the configured interfaces. 12276 * 12277 * We end up returning a zero mask in the case of default, multicast or 12278 * experimental. 12279 */ 12280 static ipaddr_t 12281 ip_subnet_mask(ipaddr_t addr, ipif_t **ipifp) 12282 { 12283 ipaddr_t net_mask; 12284 ill_t *ill; 12285 ipif_t *ipif; 12286 ill_walk_context_t ctx; 12287 ipif_t *fallback_ipif = NULL; 12288 12289 net_mask = ip_net_mask(addr); 12290 if (net_mask == 0) { 12291 *ipifp = NULL; 12292 return (0); 12293 } 12294 12295 /* Let's check to see if this is maybe a local subnet route. */ 12296 /* this function only applies to IPv4 interfaces */ 12297 rw_enter(&ill_g_lock, RW_READER); 12298 ill = ILL_START_WALK_V4(&ctx); 12299 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 12300 mutex_enter(&ill->ill_lock); 12301 for (ipif = ill->ill_ipif; ipif != NULL; 12302 ipif = ipif->ipif_next) { 12303 if (!IPIF_CAN_LOOKUP(ipif)) 12304 continue; 12305 if (!(ipif->ipif_flags & IPIF_UP)) 12306 continue; 12307 if ((ipif->ipif_subnet & net_mask) == 12308 (addr & net_mask)) { 12309 /* 12310 * Don't trust pt-pt interfaces if there are 12311 * other interfaces. 12312 */ 12313 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 12314 if (fallback_ipif == NULL) { 12315 ipif_refhold_locked(ipif); 12316 fallback_ipif = ipif; 12317 } 12318 continue; 12319 } 12320 12321 /* 12322 * Fine. Just assume the same net mask as the 12323 * directly attached subnet interface is using. 12324 */ 12325 ipif_refhold_locked(ipif); 12326 mutex_exit(&ill->ill_lock); 12327 rw_exit(&ill_g_lock); 12328 if (fallback_ipif != NULL) 12329 ipif_refrele(fallback_ipif); 12330 *ipifp = ipif; 12331 return (ipif->ipif_net_mask); 12332 } 12333 } 12334 mutex_exit(&ill->ill_lock); 12335 } 12336 rw_exit(&ill_g_lock); 12337 12338 *ipifp = fallback_ipif; 12339 return ((fallback_ipif != NULL) ? 12340 fallback_ipif->ipif_net_mask : net_mask); 12341 } 12342 12343 /* 12344 * ip_sioctl_copyin_setup calls ip_wput_ioctl to process the IP_IOCTL ioctl. 12345 */ 12346 static void 12347 ip_wput_ioctl(queue_t *q, mblk_t *mp) 12348 { 12349 IOCP iocp; 12350 ipft_t *ipft; 12351 ipllc_t *ipllc; 12352 mblk_t *mp1; 12353 cred_t *cr; 12354 int error = 0; 12355 conn_t *connp; 12356 12357 ip1dbg(("ip_wput_ioctl")); 12358 iocp = (IOCP)mp->b_rptr; 12359 mp1 = mp->b_cont; 12360 if (mp1 == NULL) { 12361 iocp->ioc_error = EINVAL; 12362 mp->b_datap->db_type = M_IOCNAK; 12363 iocp->ioc_count = 0; 12364 qreply(q, mp); 12365 return; 12366 } 12367 12368 /* 12369 * These IOCTLs provide various control capabilities to 12370 * upstream agents such as ULPs and processes. There 12371 * are currently two such IOCTLs implemented. They 12372 * are used by TCP to provide update information for 12373 * existing IREs and to forcibly delete an IRE for a 12374 * host that is not responding, thereby forcing an 12375 * attempt at a new route. 12376 */ 12377 iocp->ioc_error = EINVAL; 12378 if (!pullupmsg(mp1, sizeof (ipllc->ipllc_cmd))) 12379 goto done; 12380 12381 ipllc = (ipllc_t *)mp1->b_rptr; 12382 for (ipft = ip_ioctl_ftbl; ipft->ipft_pfi; ipft++) { 12383 if (ipllc->ipllc_cmd == ipft->ipft_cmd) 12384 break; 12385 } 12386 /* 12387 * prefer credential from mblk over ioctl; 12388 * see ip_sioctl_copyin_setup 12389 */ 12390 cr = DB_CREDDEF(mp, iocp->ioc_cr); 12391 12392 /* 12393 * Refhold the conn in case the request gets queued up in some lookup 12394 */ 12395 ASSERT(CONN_Q(q)); 12396 connp = Q_TO_CONN(q); 12397 CONN_INC_REF(connp); 12398 if (ipft->ipft_pfi && 12399 ((mp1->b_wptr - mp1->b_rptr) >= ipft->ipft_min_size || 12400 pullupmsg(mp1, ipft->ipft_min_size))) { 12401 error = (*ipft->ipft_pfi)(q, 12402 (ipft->ipft_flags & IPFT_F_SELF_REPLY) ? mp : mp1, cr); 12403 } 12404 if (ipft->ipft_flags & IPFT_F_SELF_REPLY) { 12405 /* 12406 * CONN_OPER_PENDING_DONE happens in the function called 12407 * through ipft_pfi above. 12408 */ 12409 return; 12410 } 12411 12412 CONN_OPER_PENDING_DONE(connp); 12413 if (ipft->ipft_flags & IPFT_F_NO_REPLY) { 12414 freemsg(mp); 12415 return; 12416 } 12417 iocp->ioc_error = error; 12418 12419 done: 12420 mp->b_datap->db_type = M_IOCACK; 12421 if (iocp->ioc_error) 12422 iocp->ioc_count = 0; 12423 qreply(q, mp); 12424 } 12425 12426 /* 12427 * Lookup an ipif using the sequence id (ipif_seqid) 12428 */ 12429 ipif_t * 12430 ipif_lookup_seqid(ill_t *ill, uint_t seqid) 12431 { 12432 ipif_t *ipif; 12433 12434 ASSERT(MUTEX_HELD(&ill->ill_lock)); 12435 12436 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 12437 if (ipif->ipif_seqid == seqid && IPIF_CAN_LOOKUP(ipif)) 12438 return (ipif); 12439 } 12440 return (NULL); 12441 } 12442 12443 uint64_t ipif_g_seqid; 12444 12445 /* 12446 * Assign a unique id for the ipif. This is used later when we send 12447 * IRES to ARP for resolution where we initialize ire_ipif_seqid 12448 * to the value pointed by ire_ipif->ipif_seqid. Later when the 12449 * IRE is added, we verify that ipif has not disappeared. 12450 */ 12451 12452 static void 12453 ipif_assign_seqid(ipif_t *ipif) 12454 { 12455 ipif->ipif_seqid = atomic_add_64_nv(&ipif_g_seqid, 1); 12456 } 12457 12458 /* 12459 * Insert the ipif, so that the list of ipifs on the ill will be sorted 12460 * with respect to ipif_id. Note that an ipif with an ipif_id of -1 will 12461 * be inserted into the first space available in the list. The value of 12462 * ipif_id will then be set to the appropriate value for its position. 12463 */ 12464 static int 12465 ipif_insert(ipif_t *ipif, boolean_t acquire_g_lock, boolean_t acquire_ill_lock) 12466 { 12467 ill_t *ill; 12468 ipif_t *tipif; 12469 ipif_t **tipifp; 12470 int id; 12471 12472 ASSERT(ipif->ipif_ill->ill_net_type == IRE_LOOPBACK || 12473 IAM_WRITER_IPIF(ipif)); 12474 12475 ill = ipif->ipif_ill; 12476 ASSERT(ill != NULL); 12477 12478 /* 12479 * In the case of lo0:0 we already hold the ill_g_lock. 12480 * ill_lookup_on_name (acquires ill_g_lock) -> ipif_allocate -> 12481 * ipif_insert. Another such caller is ipif_move. 12482 */ 12483 if (acquire_g_lock) 12484 rw_enter(&ill_g_lock, RW_WRITER); 12485 if (acquire_ill_lock) 12486 mutex_enter(&ill->ill_lock); 12487 id = ipif->ipif_id; 12488 tipifp = &(ill->ill_ipif); 12489 if (id == -1) { /* need to find a real id */ 12490 id = 0; 12491 while ((tipif = *tipifp) != NULL) { 12492 ASSERT(tipif->ipif_id >= id); 12493 if (tipif->ipif_id != id) 12494 break; /* non-consecutive id */ 12495 id++; 12496 tipifp = &(tipif->ipif_next); 12497 } 12498 /* limit number of logical interfaces */ 12499 if (id >= ip_addrs_per_if) { 12500 if (acquire_ill_lock) 12501 mutex_exit(&ill->ill_lock); 12502 if (acquire_g_lock) 12503 rw_exit(&ill_g_lock); 12504 return (-1); 12505 } 12506 ipif->ipif_id = id; /* assign new id */ 12507 } else if (id < ip_addrs_per_if) { 12508 /* we have a real id; insert ipif in the right place */ 12509 while ((tipif = *tipifp) != NULL) { 12510 ASSERT(tipif->ipif_id != id); 12511 if (tipif->ipif_id > id) 12512 break; /* found correct location */ 12513 tipifp = &(tipif->ipif_next); 12514 } 12515 } else { 12516 if (acquire_ill_lock) 12517 mutex_exit(&ill->ill_lock); 12518 if (acquire_g_lock) 12519 rw_exit(&ill_g_lock); 12520 return (-1); 12521 } 12522 12523 ASSERT(tipifp != &(ill->ill_ipif) || id == 0); 12524 12525 ipif->ipif_next = tipif; 12526 *tipifp = ipif; 12527 if (acquire_ill_lock) 12528 mutex_exit(&ill->ill_lock); 12529 if (acquire_g_lock) 12530 rw_exit(&ill_g_lock); 12531 return (0); 12532 } 12533 12534 /* 12535 * Allocate and initialize a new interface control structure. (Always 12536 * called as writer.) 12537 * When ipif_allocate() is called from ip_ll_subnet_defaults, the ill 12538 * is not part of the global linked list of ills. ipif_seqid is unique 12539 * in the system and to preserve the uniqueness, it is assigned only 12540 * when ill becomes part of the global list. At that point ill will 12541 * have a name. If it doesn't get assigned here, it will get assigned 12542 * in ipif_set_values() as part of SIOCSLIFNAME processing. 12543 * Aditionally, if we come here from ip_ll_subnet_defaults, we don't set 12544 * the interface flags or any other information from the DL_INFO_ACK for 12545 * DL_STYLE2 drivers (initialize == B_FALSE), since we won't have them at 12546 * this point. The flags etc. will be set in ip_ll_subnet_defaults when the 12547 * second DL_INFO_ACK comes in from the driver. 12548 */ 12549 static ipif_t * 12550 ipif_allocate(ill_t *ill, int id, uint_t ire_type, boolean_t initialize) 12551 { 12552 ipif_t *ipif; 12553 phyint_t *phyi; 12554 12555 ip1dbg(("ipif_allocate(%s:%d ill %p)\n", 12556 ill->ill_name, id, (void *)ill)); 12557 ASSERT(ire_type == IRE_LOOPBACK || IAM_WRITER_ILL(ill)); 12558 12559 if ((ipif = (ipif_t *)mi_alloc(sizeof (ipif_t), BPRI_MED)) == NULL) 12560 return (NULL); 12561 *ipif = ipif_zero; /* start clean */ 12562 12563 ipif->ipif_ill = ill; 12564 ipif->ipif_id = id; /* could be -1 */ 12565 ipif->ipif_zoneid = GLOBAL_ZONEID; 12566 12567 mutex_init(&ipif->ipif_saved_ire_lock, NULL, MUTEX_DEFAULT, NULL); 12568 12569 ipif->ipif_refcnt = 0; 12570 ipif->ipif_saved_ire_cnt = 0; 12571 12572 if (ipif_insert(ipif, ire_type != IRE_LOOPBACK, B_TRUE)) { 12573 mi_free(ipif); 12574 return (NULL); 12575 } 12576 /* -1 id should have been replaced by real id */ 12577 id = ipif->ipif_id; 12578 ASSERT(id >= 0); 12579 12580 if (ill->ill_name[0] != '\0') { 12581 ipif_assign_seqid(ipif); 12582 if (ill->ill_phyint->phyint_ifindex != 0) 12583 sctp_update_ipif(ipif, SCTP_IPIF_INSERT); 12584 } 12585 /* 12586 * Keep a copy of original id in ipif_orig_ipifid. Failback 12587 * will attempt to restore the original id. The SIOCSLIFOINDEX 12588 * ioctl sets ipif_orig_ipifid to zero. 12589 */ 12590 ipif->ipif_orig_ipifid = id; 12591 12592 /* 12593 * We grab the ill_lock and phyint_lock to protect the flag changes. 12594 * The ipif is still not up and can't be looked up until the 12595 * ioctl completes and the IPIF_CHANGING flag is cleared. 12596 */ 12597 mutex_enter(&ill->ill_lock); 12598 mutex_enter(&ill->ill_phyint->phyint_lock); 12599 /* 12600 * Set the running flag when logical interface zero is created. 12601 * For subsequent logical interfaces, a DLPI link down 12602 * notification message may have cleared the running flag to 12603 * indicate the link is down, so we shouldn't just blindly set it. 12604 */ 12605 if (id == 0) 12606 ill->ill_phyint->phyint_flags |= PHYI_RUNNING; 12607 ipif->ipif_ire_type = ire_type; 12608 phyi = ill->ill_phyint; 12609 ipif->ipif_orig_ifindex = phyi->phyint_ifindex; 12610 12611 if (ipif->ipif_isv6) { 12612 ill->ill_flags |= ILLF_IPV6; 12613 } else { 12614 ipaddr_t inaddr_any = INADDR_ANY; 12615 12616 ill->ill_flags |= ILLF_IPV4; 12617 12618 /* Keep the IN6_IS_ADDR_V4MAPPED assertions happy */ 12619 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 12620 &ipif->ipif_v6lcl_addr); 12621 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 12622 &ipif->ipif_v6src_addr); 12623 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 12624 &ipif->ipif_v6subnet); 12625 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 12626 &ipif->ipif_v6net_mask); 12627 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 12628 &ipif->ipif_v6brd_addr); 12629 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 12630 &ipif->ipif_v6pp_dst_addr); 12631 } 12632 12633 /* 12634 * Don't set the interface flags etc. now, will do it in 12635 * ip_ll_subnet_defaults. 12636 */ 12637 if (!initialize) { 12638 mutex_exit(&ill->ill_lock); 12639 mutex_exit(&ill->ill_phyint->phyint_lock); 12640 return (ipif); 12641 } 12642 ipif->ipif_mtu = ill->ill_max_mtu; 12643 12644 if (ill->ill_bcast_addr_length != 0) { 12645 /* 12646 * Later detect lack of DLPI driver multicast 12647 * capability by catching DL_ENABMULTI errors in 12648 * ip_rput_dlpi. 12649 */ 12650 ill->ill_flags |= ILLF_MULTICAST; 12651 if (!ipif->ipif_isv6) 12652 ipif->ipif_flags |= IPIF_BROADCAST; 12653 } else { 12654 if (ill->ill_net_type != IRE_LOOPBACK) { 12655 if (ipif->ipif_isv6) 12656 /* 12657 * Note: xresolv interfaces will eventually need 12658 * NOARP set here as well, but that will require 12659 * those external resolvers to have some 12660 * knowledge of that flag and act appropriately. 12661 * Not to be changed at present. 12662 */ 12663 ill->ill_flags |= ILLF_NONUD; 12664 else 12665 ill->ill_flags |= ILLF_NOARP; 12666 } 12667 if (ill->ill_phys_addr_length == 0) { 12668 if (ill->ill_media && 12669 ill->ill_media->ip_m_mac_type == SUNW_DL_VNI) { 12670 ipif->ipif_flags |= IPIF_NOXMIT; 12671 phyi->phyint_flags |= PHYI_VIRTUAL; 12672 } else { 12673 /* pt-pt supports multicast. */ 12674 ill->ill_flags |= ILLF_MULTICAST; 12675 if (ill->ill_net_type == IRE_LOOPBACK) { 12676 phyi->phyint_flags |= 12677 (PHYI_LOOPBACK | PHYI_VIRTUAL); 12678 } else { 12679 ipif->ipif_flags |= IPIF_POINTOPOINT; 12680 } 12681 } 12682 } 12683 } 12684 mutex_exit(&ill->ill_lock); 12685 mutex_exit(&ill->ill_phyint->phyint_lock); 12686 return (ipif); 12687 } 12688 12689 /* 12690 * If appropriate, send a message up to the resolver delete the entry 12691 * for the address of this interface which is going out of business. 12692 * (Always called as writer). 12693 * 12694 * NOTE : We need to check for NULL mps as some of the fields are 12695 * initialized only for some interface types. See ipif_resolver_up() 12696 * for details. 12697 */ 12698 void 12699 ipif_arp_down(ipif_t *ipif) 12700 { 12701 mblk_t *mp; 12702 12703 ip1dbg(("ipif_arp_down(%s:%u)\n", 12704 ipif->ipif_ill->ill_name, ipif->ipif_id)); 12705 ASSERT(IAM_WRITER_IPIF(ipif)); 12706 12707 /* Delete the mapping for the local address */ 12708 mp = ipif->ipif_arp_del_mp; 12709 if (mp != NULL) { 12710 ip1dbg(("ipif_arp_down: %s (%u) for %s:%u\n", 12711 dlpi_prim_str(*(int *)mp->b_rptr), *(int *)mp->b_rptr, 12712 ipif->ipif_ill->ill_name, ipif->ipif_id)); 12713 putnext(ipif->ipif_ill->ill_rq, mp); 12714 ipif->ipif_arp_del_mp = NULL; 12715 } 12716 12717 /* 12718 * If this is the last ipif that is going down, we need 12719 * to clean up ARP completely. 12720 */ 12721 if (ipif->ipif_ill->ill_ipif_up_count == 0) { 12722 12723 /* Send up AR_INTERFACE_DOWN message */ 12724 mp = ipif->ipif_ill->ill_arp_down_mp; 12725 if (mp != NULL) { 12726 ip1dbg(("ipif_arp_down: %s (%u) for %s:%u\n", 12727 dlpi_prim_str(*(int *)mp->b_rptr), 12728 *(int *)mp->b_rptr, ipif->ipif_ill->ill_name, 12729 ipif->ipif_id)); 12730 putnext(ipif->ipif_ill->ill_rq, mp); 12731 ipif->ipif_ill->ill_arp_down_mp = NULL; 12732 } 12733 12734 /* Tell ARP to delete the multicast mappings */ 12735 mp = ipif->ipif_ill->ill_arp_del_mapping_mp; 12736 if (mp != NULL) { 12737 ip1dbg(("ipif_arp_down: %s (%u) for %s:%u\n", 12738 dlpi_prim_str(*(int *)mp->b_rptr), 12739 *(int *)mp->b_rptr, ipif->ipif_ill->ill_name, 12740 ipif->ipif_id)); 12741 putnext(ipif->ipif_ill->ill_rq, mp); 12742 ipif->ipif_ill->ill_arp_del_mapping_mp = NULL; 12743 } 12744 } 12745 } 12746 12747 /* 12748 * This function sets up the multicast mappings in ARP. When ipif_resolver_up 12749 * calls this function, it passes a non-NULL arp_add_mapping_mp indicating 12750 * that it wants the add_mp allocated in this function to be returned 12751 * wihtout sending it to arp. When ip_rput_dlpi_writer calls this to 12752 * just re-do the multicast, it wants us to send the add_mp to ARP also. 12753 * ipif_resolver_up does not want us to do the "add" i.e sending to ARP, 12754 * as it does a ipif_arp_down after calling this function - which will 12755 * remove what we add here. 12756 * 12757 * Returns -1 on failures and 0 on success. 12758 */ 12759 int 12760 ipif_arp_setup_multicast(ipif_t *ipif, mblk_t **arp_add_mapping_mp) 12761 { 12762 mblk_t *del_mp = NULL; 12763 mblk_t *add_mp = NULL; 12764 mblk_t *mp; 12765 ill_t *ill = ipif->ipif_ill; 12766 phyint_t *phyi = ill->ill_phyint; 12767 ipaddr_t addr, mask, extract_mask = 0; 12768 arma_t *arma; 12769 uint8_t *maddr, *bphys_addr; 12770 uint32_t hw_start; 12771 dl_unitdata_req_t *dlur; 12772 12773 ASSERT(IAM_WRITER_IPIF(ipif)); 12774 if (ipif->ipif_flags & IPIF_POINTOPOINT) 12775 return (0); 12776 12777 /* 12778 * Delete the existing mapping from ARP. Normally ipif_down 12779 * -> ipif_arp_down should send this up to ARP. The only 12780 * reason we would find this when we are switching from 12781 * Multicast to Broadcast where we did not do a down. 12782 */ 12783 mp = ill->ill_arp_del_mapping_mp; 12784 if (mp != NULL) { 12785 ip1dbg(("ipif_arp_down: %s (%u) for %s:%u\n", 12786 dlpi_prim_str(*(int *)mp->b_rptr), 12787 *(int *)mp->b_rptr, ill->ill_name, ipif->ipif_id)); 12788 putnext(ill->ill_rq, mp); 12789 ill->ill_arp_del_mapping_mp = NULL; 12790 } 12791 12792 if (arp_add_mapping_mp != NULL) 12793 *arp_add_mapping_mp = NULL; 12794 12795 /* 12796 * Check that the address is not to long for the constant 12797 * length reserved in the template arma_t. 12798 */ 12799 if (ill->ill_phys_addr_length > IP_MAX_HW_LEN) 12800 return (-1); 12801 12802 /* Add mapping mblk */ 12803 addr = (ipaddr_t)htonl(INADDR_UNSPEC_GROUP); 12804 mask = (ipaddr_t)htonl(IN_CLASSD_NET); 12805 add_mp = ill_arp_alloc(ill, (uchar_t *)&ip_arma_multi_template, 12806 (caddr_t)&addr); 12807 if (add_mp == NULL) 12808 return (-1); 12809 arma = (arma_t *)add_mp->b_rptr; 12810 maddr = (uint8_t *)arma + arma->arma_hw_addr_offset; 12811 bcopy(&mask, (char *)arma + arma->arma_proto_mask_offset, IP_ADDR_LEN); 12812 arma->arma_hw_addr_length = ill->ill_phys_addr_length; 12813 12814 /* 12815 * Determine the broadcast address. 12816 */ 12817 dlur = (dl_unitdata_req_t *)ill->ill_bcast_mp->b_rptr; 12818 if (ill->ill_sap_length < 0) 12819 bphys_addr = (uchar_t *)dlur + dlur->dl_dest_addr_offset; 12820 else 12821 bphys_addr = (uchar_t *)dlur + 12822 dlur->dl_dest_addr_offset + ill->ill_sap_length; 12823 /* 12824 * Check PHYI_MULTI_BCAST and length of physical 12825 * address to determine if we use the mapping or the 12826 * broadcast address. 12827 */ 12828 if (!(phyi->phyint_flags & PHYI_MULTI_BCAST)) 12829 if (!MEDIA_V4MINFO(ill->ill_media, ill->ill_phys_addr_length, 12830 bphys_addr, maddr, &hw_start, &extract_mask)) 12831 phyi->phyint_flags |= PHYI_MULTI_BCAST; 12832 12833 if ((phyi->phyint_flags & PHYI_MULTI_BCAST) || 12834 (ill->ill_flags & ILLF_MULTICAST)) { 12835 /* Make sure this will not match the "exact" entry. */ 12836 addr = (ipaddr_t)htonl(INADDR_ALLHOSTS_GROUP); 12837 del_mp = ill_arp_alloc(ill, (uchar_t *)&ip_ared_template, 12838 (caddr_t)&addr); 12839 if (del_mp == NULL) { 12840 freemsg(add_mp); 12841 return (-1); 12842 } 12843 bcopy(&extract_mask, (char *)arma + 12844 arma->arma_proto_extract_mask_offset, IP_ADDR_LEN); 12845 if (phyi->phyint_flags & PHYI_MULTI_BCAST) { 12846 /* Use link-layer broadcast address for MULTI_BCAST */ 12847 bcopy(bphys_addr, maddr, ill->ill_phys_addr_length); 12848 ip2dbg(("ipif_arp_setup_multicast: adding" 12849 " MULTI_BCAST ARP setup for %s\n", ill->ill_name)); 12850 } else { 12851 arma->arma_hw_mapping_start = hw_start; 12852 ip2dbg(("ipif_arp_setup_multicast: adding multicast" 12853 " ARP setup for %s\n", ill->ill_name)); 12854 } 12855 } else { 12856 freemsg(add_mp); 12857 ASSERT(del_mp == NULL); 12858 /* It is neither MULTICAST nor MULTI_BCAST */ 12859 return (0); 12860 } 12861 ASSERT(add_mp != NULL && del_mp != NULL); 12862 ill->ill_arp_del_mapping_mp = del_mp; 12863 if (arp_add_mapping_mp != NULL) { 12864 /* The caller just wants the mblks allocated */ 12865 *arp_add_mapping_mp = add_mp; 12866 } else { 12867 /* The caller wants us to send it to arp */ 12868 putnext(ill->ill_rq, add_mp); 12869 } 12870 return (0); 12871 } 12872 12873 /* 12874 * Get the resolver set up for a new interface address. 12875 * (Always called as writer.) 12876 * Called both for IPv4 and IPv6 interfaces, 12877 * though it only sets up the resolver for v6 12878 * if it's an xresolv interface (one using an external resolver). 12879 * Honors ILLF_NOARP. 12880 * The boolean value arp_just_publish, if B_TRUE, indicates that 12881 * it only needs to send an AR_ENTRY_ADD message up to ARP for 12882 * IPv4 interfaces. Currently, B_TRUE is only set when this 12883 * function is called by ip_rput_dlpi_writer() to handle 12884 * asynchronous hardware address change notification. 12885 * Returns error on failure. 12886 */ 12887 int 12888 ipif_resolver_up(ipif_t *ipif, boolean_t arp_just_publish) 12889 { 12890 caddr_t addr; 12891 mblk_t *arp_up_mp = NULL; 12892 mblk_t *arp_down_mp = NULL; 12893 mblk_t *arp_add_mp = NULL; 12894 mblk_t *arp_del_mp = NULL; 12895 mblk_t *arp_add_mapping_mp = NULL; 12896 mblk_t *arp_del_mapping_mp = NULL; 12897 ill_t *ill = ipif->ipif_ill; 12898 uchar_t *area_p = NULL; 12899 uchar_t *ared_p = NULL; 12900 int err = ENOMEM; 12901 12902 ip1dbg(("ipif_resolver_up(%s:%u) flags 0x%x\n", 12903 ipif->ipif_ill->ill_name, ipif->ipif_id, 12904 (uint_t)ipif->ipif_flags)); 12905 ASSERT(IAM_WRITER_IPIF(ipif)); 12906 12907 if ((ill->ill_net_type != IRE_IF_RESOLVER) || 12908 (ill->ill_isv6 && !(ill->ill_flags & ILLF_XRESOLV))) { 12909 return (0); 12910 } 12911 12912 if (ill->ill_isv6) { 12913 /* 12914 * External resolver for IPv6 12915 */ 12916 ASSERT(!arp_just_publish); 12917 if (!IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr)) { 12918 addr = (caddr_t)&ipif->ipif_v6lcl_addr; 12919 area_p = (uchar_t *)&ip6_area_template; 12920 ared_p = (uchar_t *)&ip6_ared_template; 12921 } 12922 } else { 12923 /* 12924 * IPv4 arp case. If the ARP stream has already started 12925 * closing, fail this request for ARP bringup. Else 12926 * record the fact that an ARP bringup is pending. 12927 */ 12928 mutex_enter(&ill->ill_lock); 12929 if (ill->ill_arp_closing) { 12930 mutex_exit(&ill->ill_lock); 12931 err = EINVAL; 12932 goto failed; 12933 } else { 12934 if (ill->ill_ipif_up_count == 0) 12935 ill->ill_arp_bringup_pending = 1; 12936 mutex_exit(&ill->ill_lock); 12937 } 12938 if (ipif->ipif_lcl_addr != INADDR_ANY) { 12939 addr = (caddr_t)&ipif->ipif_lcl_addr; 12940 area_p = (uchar_t *)&ip_area_template; 12941 ared_p = (uchar_t *)&ip_ared_template; 12942 } 12943 } 12944 12945 /* 12946 * Add an entry for the local address in ARP only if it 12947 * is not UNNUMBERED and the address is not INADDR_ANY. 12948 */ 12949 if (((ipif->ipif_flags & IPIF_UNNUMBERED) == 0) && area_p != NULL) { 12950 /* Now ask ARP to publish our address. */ 12951 arp_add_mp = ill_arp_alloc(ill, area_p, addr); 12952 if (arp_add_mp == NULL) 12953 goto failed; 12954 if (arp_just_publish) { 12955 /* 12956 * Copy the new hardware address and length into 12957 * arp_add_mp to be sent to ARP. 12958 */ 12959 area_t *area = (area_t *)arp_add_mp->b_rptr; 12960 area->area_hw_addr_length = 12961 ill->ill_phys_addr_length; 12962 bcopy((char *)ill->ill_phys_addr, 12963 ((char *)area + area->area_hw_addr_offset), 12964 area->area_hw_addr_length); 12965 } 12966 12967 ((area_t *)arp_add_mp->b_rptr)->area_flags = 12968 ACE_F_PERMANENT | ACE_F_PUBLISH | ACE_F_MYADDR; 12969 12970 if (arp_just_publish) 12971 goto arp_setup_multicast; 12972 12973 /* 12974 * Allocate an ARP deletion message so we know we can tell ARP 12975 * when the interface goes down. 12976 */ 12977 arp_del_mp = ill_arp_alloc(ill, ared_p, addr); 12978 if (arp_del_mp == NULL) 12979 goto failed; 12980 12981 } else { 12982 if (arp_just_publish) 12983 goto done; 12984 } 12985 /* 12986 * Need to bring up ARP or setup multicast mapping only 12987 * when the first interface is coming UP. 12988 */ 12989 if (ill->ill_ipif_up_count != 0) 12990 goto done; 12991 12992 /* 12993 * Allocate an ARP down message (to be saved) and an ARP up 12994 * message. 12995 */ 12996 arp_down_mp = ill_arp_alloc(ill, (uchar_t *)&ip_ard_template, 0); 12997 if (arp_down_mp == NULL) 12998 goto failed; 12999 13000 arp_up_mp = ill_arp_alloc(ill, (uchar_t *)&ip_aru_template, 0); 13001 if (arp_up_mp == NULL) 13002 goto failed; 13003 13004 if (ipif->ipif_flags & IPIF_POINTOPOINT) 13005 goto done; 13006 13007 arp_setup_multicast: 13008 /* 13009 * Setup the multicast mappings. This function initializes 13010 * ill_arp_del_mapping_mp also. This does not need to be done for 13011 * IPv6. 13012 */ 13013 if (!ill->ill_isv6) { 13014 err = ipif_arp_setup_multicast(ipif, &arp_add_mapping_mp); 13015 if (err != 0) 13016 goto failed; 13017 ASSERT(ill->ill_arp_del_mapping_mp != NULL); 13018 ASSERT(arp_add_mapping_mp != NULL); 13019 } 13020 13021 done:; 13022 if (arp_del_mp != NULL) { 13023 ASSERT(ipif->ipif_arp_del_mp == NULL); 13024 ipif->ipif_arp_del_mp = arp_del_mp; 13025 } 13026 if (arp_down_mp != NULL) { 13027 ASSERT(ill->ill_arp_down_mp == NULL); 13028 ill->ill_arp_down_mp = arp_down_mp; 13029 } 13030 if (arp_del_mapping_mp != NULL) { 13031 ASSERT(ill->ill_arp_del_mapping_mp == NULL); 13032 ill->ill_arp_del_mapping_mp = arp_del_mapping_mp; 13033 } 13034 if (arp_up_mp != NULL) { 13035 ip1dbg(("ipif_resolver_up: ARP_UP for %s:%u\n", 13036 ipif->ipif_ill->ill_name, ipif->ipif_id)); 13037 putnext(ill->ill_rq, arp_up_mp); 13038 } 13039 if (arp_add_mp != NULL) { 13040 ip1dbg(("ipif_resolver_up: ARP_ADD for %s:%u\n", 13041 ipif->ipif_ill->ill_name, ipif->ipif_id)); 13042 putnext(ill->ill_rq, arp_add_mp); 13043 } 13044 if (arp_add_mapping_mp != NULL) { 13045 ip1dbg(("ipif_resolver_up: MAPPING_ADD for %s:%u\n", 13046 ipif->ipif_ill->ill_name, ipif->ipif_id)); 13047 putnext(ill->ill_rq, arp_add_mapping_mp); 13048 } 13049 if (arp_just_publish) 13050 return (0); 13051 13052 if (ill->ill_flags & ILLF_NOARP) 13053 err = ill_arp_off(ill); 13054 else 13055 err = ill_arp_on(ill); 13056 if (err) { 13057 ip0dbg(("ipif_resolver_up: arp_on/off failed %d\n", err)); 13058 freemsg(ipif->ipif_arp_del_mp); 13059 if (arp_down_mp != NULL) 13060 freemsg(ill->ill_arp_down_mp); 13061 if (ill->ill_arp_del_mapping_mp != NULL) 13062 freemsg(ill->ill_arp_del_mapping_mp); 13063 ipif->ipif_arp_del_mp = NULL; 13064 ill->ill_arp_down_mp = NULL; 13065 ill->ill_arp_del_mapping_mp = NULL; 13066 return (err); 13067 } 13068 return (ill->ill_ipif_up_count != 0 ? 0 : EINPROGRESS); 13069 13070 failed:; 13071 ip1dbg(("ipif_resolver_up: FAILED\n")); 13072 freemsg(arp_add_mp); 13073 freemsg(arp_del_mp); 13074 freemsg(arp_add_mapping_mp); 13075 freemsg(arp_up_mp); 13076 freemsg(arp_down_mp); 13077 ill->ill_arp_bringup_pending = 0; 13078 return (err); 13079 } 13080 13081 /* 13082 * Wakeup all threads waiting to enter the ipsq, and sleeping 13083 * on any of the ills in this ipsq. The ill_lock of the ill 13084 * must be held so that waiters don't miss wakeups 13085 */ 13086 static void 13087 ill_signal_ipsq_ills(ipsq_t *ipsq, boolean_t caller_holds_lock) 13088 { 13089 phyint_t *phyint; 13090 13091 phyint = ipsq->ipsq_phyint_list; 13092 while (phyint != NULL) { 13093 if (phyint->phyint_illv4) { 13094 if (!caller_holds_lock) 13095 mutex_enter(&phyint->phyint_illv4->ill_lock); 13096 ASSERT(MUTEX_HELD(&phyint->phyint_illv4->ill_lock)); 13097 cv_broadcast(&phyint->phyint_illv4->ill_cv); 13098 if (!caller_holds_lock) 13099 mutex_exit(&phyint->phyint_illv4->ill_lock); 13100 } 13101 if (phyint->phyint_illv6) { 13102 if (!caller_holds_lock) 13103 mutex_enter(&phyint->phyint_illv6->ill_lock); 13104 ASSERT(MUTEX_HELD(&phyint->phyint_illv6->ill_lock)); 13105 cv_broadcast(&phyint->phyint_illv6->ill_cv); 13106 if (!caller_holds_lock) 13107 mutex_exit(&phyint->phyint_illv6->ill_lock); 13108 } 13109 phyint = phyint->phyint_ipsq_next; 13110 } 13111 } 13112 13113 static ipsq_t * 13114 ipsq_create(char *groupname) 13115 { 13116 ipsq_t *ipsq; 13117 13118 ASSERT(RW_WRITE_HELD(&ill_g_lock)); 13119 ipsq = kmem_zalloc(sizeof (ipsq_t), KM_NOSLEEP); 13120 if (ipsq == NULL) { 13121 return (NULL); 13122 } 13123 13124 if (groupname != NULL) 13125 (void) strcpy(ipsq->ipsq_name, groupname); 13126 else 13127 ipsq->ipsq_name[0] = '\0'; 13128 13129 mutex_init(&ipsq->ipsq_lock, NULL, MUTEX_DEFAULT, NULL); 13130 ipsq->ipsq_flags |= IPSQ_GROUP; 13131 ipsq->ipsq_next = ipsq_g_head; 13132 ipsq_g_head = ipsq; 13133 return (ipsq); 13134 } 13135 13136 /* 13137 * Return an ipsq correspoding to the groupname. If 'create' is true 13138 * allocate a new ipsq if one does not exist. Usually an ipsq is associated 13139 * uniquely with an IPMP group. However during IPMP groupname operations, 13140 * multiple IPMP groups may be associated with a single ipsq. But no 13141 * IPMP group can be associated with more than 1 ipsq at any time. 13142 * For example 13143 * Interfaces IPMP grpname ipsq ipsq_name ipsq_refs 13144 * hme1, hme2 mpk17-84 ipsq1 mpk17-84 2 13145 * hme3, hme4 mpk17-85 ipsq2 mpk17-85 2 13146 * 13147 * Now the command ifconfig hme3 group mpk17-84 results in the temporary 13148 * status shown below during the execution of the above command. 13149 * hme1, hme2, hme3, hme4 mpk17-84, mpk17-85 ipsq1 mpk17-84 4 13150 * 13151 * After the completion of the above groupname command we return to the stable 13152 * state shown below. 13153 * hme1, hme2, hme3 mpk17-84 ipsq1 mpk17-84 3 13154 * hme4 mpk17-85 ipsq2 mpk17-85 1 13155 * 13156 * Because of the above, we don't search based on the ipsq_name since that 13157 * would miss the correct ipsq during certain windows as shown above. 13158 * The ipsq_name is only used during split of an ipsq to return the ipsq to its 13159 * natural state. 13160 */ 13161 static ipsq_t * 13162 ip_ipsq_lookup(char *groupname, boolean_t create, ipsq_t *exclude_ipsq) 13163 { 13164 ipsq_t *ipsq; 13165 int group_len; 13166 phyint_t *phyint; 13167 13168 ASSERT(RW_LOCK_HELD(&ill_g_lock)); 13169 13170 group_len = strlen(groupname); 13171 ASSERT(group_len != 0); 13172 group_len++; 13173 13174 for (ipsq = ipsq_g_head; ipsq != NULL; ipsq = ipsq->ipsq_next) { 13175 /* 13176 * When an ipsq is being split, and ill_split_ipsq 13177 * calls this function, we exclude it from being considered. 13178 */ 13179 if (ipsq == exclude_ipsq) 13180 continue; 13181 13182 /* 13183 * Compare against the ipsq_name. The groupname change happens 13184 * in 2 phases. The 1st phase merges the from group into 13185 * the to group's ipsq, by calling ill_merge_groups and restarts 13186 * the ioctl. The 2nd phase then locates the ipsq again thru 13187 * ipsq_name. At this point the phyint_groupname has not been 13188 * updated. 13189 */ 13190 if ((group_len == strlen(ipsq->ipsq_name) + 1) && 13191 (bcmp(ipsq->ipsq_name, groupname, group_len) == 0)) { 13192 /* 13193 * Verify that an ipmp groupname is exactly 13194 * part of 1 ipsq and is not found in any other 13195 * ipsq. 13196 */ 13197 ASSERT(ip_ipsq_lookup(groupname, B_FALSE, ipsq) == 13198 NULL); 13199 return (ipsq); 13200 } 13201 13202 /* 13203 * Comparison against ipsq_name alone is not sufficient. 13204 * In the case when groups are currently being 13205 * merged, the ipsq could hold other IPMP groups temporarily. 13206 * so we walk the phyint list and compare against the 13207 * phyint_groupname as well. 13208 */ 13209 phyint = ipsq->ipsq_phyint_list; 13210 while (phyint != NULL) { 13211 if ((group_len == phyint->phyint_groupname_len) && 13212 (bcmp(phyint->phyint_groupname, groupname, 13213 group_len) == 0)) { 13214 /* 13215 * Verify that an ipmp groupname is exactly 13216 * part of 1 ipsq and is not found in any other 13217 * ipsq. 13218 */ 13219 ASSERT(ip_ipsq_lookup(groupname, B_FALSE, ipsq) 13220 == NULL); 13221 return (ipsq); 13222 } 13223 phyint = phyint->phyint_ipsq_next; 13224 } 13225 } 13226 if (create) 13227 ipsq = ipsq_create(groupname); 13228 return (ipsq); 13229 } 13230 13231 static void 13232 ipsq_delete(ipsq_t *ipsq) 13233 { 13234 ipsq_t *nipsq; 13235 ipsq_t *pipsq = NULL; 13236 13237 /* 13238 * We don't hold the ipsq lock, but we are sure no new 13239 * messages can land up, since the ipsq_refs is zero. 13240 * i.e. this ipsq is unnamed and no phyint or phyint group 13241 * is associated with this ipsq. (Lookups are based on ill_name 13242 * or phyint_group_name) 13243 */ 13244 ASSERT(ipsq->ipsq_refs == 0); 13245 ASSERT(ipsq->ipsq_xopq_mphead == NULL && ipsq->ipsq_mphead == NULL); 13246 ASSERT(ipsq->ipsq_pending_mp == NULL); 13247 if (!(ipsq->ipsq_flags & IPSQ_GROUP)) { 13248 /* 13249 * This is not the ipsq of an IPMP group. 13250 */ 13251 kmem_free(ipsq, sizeof (ipsq_t)); 13252 return; 13253 } 13254 13255 rw_enter(&ill_g_lock, RW_WRITER); 13256 13257 /* 13258 * Locate the ipsq before we can remove it from 13259 * the singly linked list of ipsq's. 13260 */ 13261 for (nipsq = ipsq_g_head; nipsq != NULL; nipsq = nipsq->ipsq_next) { 13262 if (nipsq == ipsq) { 13263 break; 13264 } 13265 pipsq = nipsq; 13266 } 13267 13268 ASSERT(nipsq == ipsq); 13269 13270 /* unlink ipsq from the list */ 13271 if (pipsq != NULL) 13272 pipsq->ipsq_next = ipsq->ipsq_next; 13273 else 13274 ipsq_g_head = ipsq->ipsq_next; 13275 kmem_free(ipsq, sizeof (ipsq_t)); 13276 rw_exit(&ill_g_lock); 13277 } 13278 13279 static void 13280 ill_move_to_new_ipsq(ipsq_t *old_ipsq, ipsq_t *new_ipsq, mblk_t *current_mp, 13281 queue_t *q) 13282 13283 { 13284 13285 ASSERT(MUTEX_HELD(&new_ipsq->ipsq_lock)); 13286 ASSERT(old_ipsq->ipsq_mphead == NULL && old_ipsq->ipsq_mptail == NULL); 13287 ASSERT(old_ipsq->ipsq_pending_ipif == NULL); 13288 ASSERT(old_ipsq->ipsq_pending_mp == NULL); 13289 ASSERT(current_mp != NULL); 13290 13291 ipsq_enq(new_ipsq, q, current_mp, (ipsq_func_t)ip_process_ioctl, 13292 NEW_OP, NULL); 13293 13294 ASSERT(new_ipsq->ipsq_xopq_mptail != NULL && 13295 new_ipsq->ipsq_xopq_mphead != NULL); 13296 13297 /* 13298 * move from old ipsq to the new ipsq. 13299 */ 13300 new_ipsq->ipsq_xopq_mptail->b_next = old_ipsq->ipsq_xopq_mphead; 13301 if (old_ipsq->ipsq_xopq_mphead != NULL) 13302 new_ipsq->ipsq_xopq_mptail = old_ipsq->ipsq_xopq_mptail; 13303 13304 old_ipsq->ipsq_xopq_mphead = old_ipsq->ipsq_xopq_mptail = NULL; 13305 } 13306 13307 void 13308 ill_group_cleanup(ill_t *ill) 13309 { 13310 ill_t *ill_v4; 13311 ill_t *ill_v6; 13312 ipif_t *ipif; 13313 13314 ill_v4 = ill->ill_phyint->phyint_illv4; 13315 ill_v6 = ill->ill_phyint->phyint_illv6; 13316 13317 if (ill_v4 != NULL) { 13318 mutex_enter(&ill_v4->ill_lock); 13319 for (ipif = ill_v4->ill_ipif; ipif != NULL; 13320 ipif = ipif->ipif_next) { 13321 IPIF_UNMARK_MOVING(ipif); 13322 } 13323 ill_v4->ill_up_ipifs = B_FALSE; 13324 mutex_exit(&ill_v4->ill_lock); 13325 } 13326 13327 if (ill_v6 != NULL) { 13328 mutex_enter(&ill_v6->ill_lock); 13329 for (ipif = ill_v6->ill_ipif; ipif != NULL; 13330 ipif = ipif->ipif_next) { 13331 IPIF_UNMARK_MOVING(ipif); 13332 } 13333 ill_v6->ill_up_ipifs = B_FALSE; 13334 mutex_exit(&ill_v6->ill_lock); 13335 } 13336 } 13337 /* 13338 * This function is called when an ill has had a change in its group status 13339 * to bring up all the ipifs that were up before the change. 13340 */ 13341 int 13342 ill_up_ipifs(ill_t *ill, queue_t *q, mblk_t *mp) 13343 { 13344 ipif_t *ipif; 13345 ill_t *ill_v4; 13346 ill_t *ill_v6; 13347 ill_t *from_ill; 13348 int err = 0; 13349 13350 13351 ASSERT(IAM_WRITER_ILL(ill)); 13352 13353 /* 13354 * Except for ipif_state_flags and ill_state_flags the other 13355 * fields of the ipif/ill that are modified below are protected 13356 * implicitly since we are a writer. We would have tried to down 13357 * even an ipif that was already down, in ill_down_ipifs. So we 13358 * just blindly clear the IPIF_CHANGING flag here on all ipifs. 13359 */ 13360 ill_v4 = ill->ill_phyint->phyint_illv4; 13361 ill_v6 = ill->ill_phyint->phyint_illv6; 13362 if (ill_v4 != NULL) { 13363 ill_v4->ill_up_ipifs = B_TRUE; 13364 for (ipif = ill_v4->ill_ipif; ipif != NULL; 13365 ipif = ipif->ipif_next) { 13366 mutex_enter(&ill_v4->ill_lock); 13367 ipif->ipif_state_flags &= ~IPIF_CHANGING; 13368 IPIF_UNMARK_MOVING(ipif); 13369 mutex_exit(&ill_v4->ill_lock); 13370 if (ipif->ipif_was_up) { 13371 if (!(ipif->ipif_flags & IPIF_UP)) 13372 err = ipif_up(ipif, q, mp); 13373 ipif->ipif_was_up = B_FALSE; 13374 if (err != 0) { 13375 /* 13376 * Can there be any other error ? 13377 */ 13378 ASSERT(err == EINPROGRESS); 13379 return (err); 13380 } 13381 } 13382 } 13383 mutex_enter(&ill_v4->ill_lock); 13384 ill_v4->ill_state_flags &= ~ILL_CHANGING; 13385 mutex_exit(&ill_v4->ill_lock); 13386 ill_v4->ill_up_ipifs = B_FALSE; 13387 if (ill_v4->ill_move_in_progress) { 13388 ASSERT(ill_v4->ill_move_peer != NULL); 13389 ill_v4->ill_move_in_progress = B_FALSE; 13390 from_ill = ill_v4->ill_move_peer; 13391 from_ill->ill_move_in_progress = B_FALSE; 13392 from_ill->ill_move_peer = NULL; 13393 mutex_enter(&from_ill->ill_lock); 13394 from_ill->ill_state_flags &= ~ILL_CHANGING; 13395 mutex_exit(&from_ill->ill_lock); 13396 if (ill_v6 == NULL) { 13397 if (from_ill->ill_phyint->phyint_flags & 13398 PHYI_STANDBY) { 13399 phyint_inactive(from_ill->ill_phyint); 13400 } 13401 if (ill_v4->ill_phyint->phyint_flags & 13402 PHYI_STANDBY) { 13403 phyint_inactive(ill_v4->ill_phyint); 13404 } 13405 } 13406 ill_v4->ill_move_peer = NULL; 13407 } 13408 } 13409 13410 if (ill_v6 != NULL) { 13411 ill_v6->ill_up_ipifs = B_TRUE; 13412 for (ipif = ill_v6->ill_ipif; ipif != NULL; 13413 ipif = ipif->ipif_next) { 13414 mutex_enter(&ill_v6->ill_lock); 13415 ipif->ipif_state_flags &= ~IPIF_CHANGING; 13416 IPIF_UNMARK_MOVING(ipif); 13417 mutex_exit(&ill_v6->ill_lock); 13418 if (ipif->ipif_was_up) { 13419 if (!(ipif->ipif_flags & IPIF_UP)) 13420 err = ipif_up(ipif, q, mp); 13421 ipif->ipif_was_up = B_FALSE; 13422 if (err != 0) { 13423 /* 13424 * Can there be any other error ? 13425 */ 13426 ASSERT(err == EINPROGRESS); 13427 return (err); 13428 } 13429 } 13430 } 13431 mutex_enter(&ill_v6->ill_lock); 13432 ill_v6->ill_state_flags &= ~ILL_CHANGING; 13433 mutex_exit(&ill_v6->ill_lock); 13434 ill_v6->ill_up_ipifs = B_FALSE; 13435 if (ill_v6->ill_move_in_progress) { 13436 ASSERT(ill_v6->ill_move_peer != NULL); 13437 ill_v6->ill_move_in_progress = B_FALSE; 13438 from_ill = ill_v6->ill_move_peer; 13439 from_ill->ill_move_in_progress = B_FALSE; 13440 from_ill->ill_move_peer = NULL; 13441 mutex_enter(&from_ill->ill_lock); 13442 from_ill->ill_state_flags &= ~ILL_CHANGING; 13443 mutex_exit(&from_ill->ill_lock); 13444 if (from_ill->ill_phyint->phyint_flags & PHYI_STANDBY) { 13445 phyint_inactive(from_ill->ill_phyint); 13446 } 13447 if (ill_v6->ill_phyint->phyint_flags & PHYI_STANDBY) { 13448 phyint_inactive(ill_v6->ill_phyint); 13449 } 13450 ill_v6->ill_move_peer = NULL; 13451 } 13452 } 13453 return (0); 13454 } 13455 13456 /* 13457 * bring down all the approriate ipifs. 13458 */ 13459 /* ARGSUSED */ 13460 static void 13461 ill_down_ipifs(ill_t *ill, mblk_t *mp, int index, boolean_t chk_nofailover) 13462 { 13463 ipif_t *ipif; 13464 13465 ASSERT(IAM_WRITER_ILL(ill)); 13466 13467 /* 13468 * Except for ipif_state_flags the other fields of the ipif/ill that 13469 * are modified below are protected implicitly since we are a writer 13470 */ 13471 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 13472 if (chk_nofailover && (ipif->ipif_flags & IPIF_NOFAILOVER)) 13473 continue; 13474 if (index == 0 || index == ipif->ipif_orig_ifindex) { 13475 /* 13476 * We go through the ipif_down logic even if the ipif 13477 * is already down, since routes can be added based 13478 * on down ipifs. Going through ipif_down once again 13479 * will delete any IREs created based on these routes. 13480 */ 13481 if (ipif->ipif_flags & IPIF_UP) 13482 ipif->ipif_was_up = B_TRUE; 13483 /* 13484 * If called with chk_nofailover true ipif is moving. 13485 */ 13486 mutex_enter(&ill->ill_lock); 13487 if (chk_nofailover) { 13488 ipif->ipif_state_flags |= 13489 IPIF_MOVING | IPIF_CHANGING; 13490 } else { 13491 ipif->ipif_state_flags |= IPIF_CHANGING; 13492 } 13493 mutex_exit(&ill->ill_lock); 13494 /* 13495 * Need to re-create net/subnet bcast ires if 13496 * they are dependent on ipif. 13497 */ 13498 if (!ipif->ipif_isv6) 13499 ipif_check_bcast_ires(ipif); 13500 (void) ipif_logical_down(ipif, NULL, NULL); 13501 ipif_down_tail(ipif); 13502 /* 13503 * We don't do ipif_multicast_down for IPv4 in 13504 * ipif_down. We need to set this so that 13505 * ipif_multicast_up will join the 13506 * ALLHOSTS_GROUP on to_ill. 13507 */ 13508 ipif->ipif_multicast_up = B_FALSE; 13509 } 13510 } 13511 } 13512 13513 #define IPSQ_INC_REF(ipsq) { \ 13514 ASSERT(RW_WRITE_HELD(&ill_g_lock)); \ 13515 (ipsq)->ipsq_refs++; \ 13516 } 13517 13518 #define IPSQ_DEC_REF(ipsq) { \ 13519 ASSERT(RW_WRITE_HELD(&ill_g_lock)); \ 13520 (ipsq)->ipsq_refs--; \ 13521 if ((ipsq)->ipsq_refs == 0) \ 13522 (ipsq)->ipsq_name[0] = '\0'; \ 13523 } 13524 13525 /* 13526 * Change the ipsq of all the ill's whose current ipsq is 'cur_ipsq' to 13527 * new_ipsq. 13528 */ 13529 static void 13530 ill_merge_ipsq(ipsq_t *cur_ipsq, ipsq_t *new_ipsq) 13531 { 13532 phyint_t *phyint; 13533 phyint_t *next_phyint; 13534 13535 /* 13536 * To change the ipsq of an ill, we need to hold the ill_g_lock as 13537 * writer and the ill_lock of the ill in question. Also the dest 13538 * ipsq can't vanish while we hold the ill_g_lock as writer. 13539 */ 13540 ASSERT(RW_WRITE_HELD(&ill_g_lock)); 13541 13542 phyint = cur_ipsq->ipsq_phyint_list; 13543 cur_ipsq->ipsq_phyint_list = NULL; 13544 while (phyint != NULL) { 13545 next_phyint = phyint->phyint_ipsq_next; 13546 IPSQ_DEC_REF(cur_ipsq); 13547 phyint->phyint_ipsq_next = new_ipsq->ipsq_phyint_list; 13548 new_ipsq->ipsq_phyint_list = phyint; 13549 IPSQ_INC_REF(new_ipsq); 13550 phyint->phyint_ipsq = new_ipsq; 13551 phyint = next_phyint; 13552 } 13553 } 13554 13555 #define SPLIT_SUCCESS 0 13556 #define SPLIT_NOT_NEEDED 1 13557 #define SPLIT_FAILED 2 13558 13559 int 13560 ill_split_to_grp_ipsq(phyint_t *phyint, ipsq_t *cur_ipsq, boolean_t need_retry) 13561 { 13562 ipsq_t *newipsq = NULL; 13563 13564 /* 13565 * Assertions denote pre-requisites for changing the ipsq of 13566 * a phyint 13567 */ 13568 ASSERT(RW_WRITE_HELD(&ill_g_lock)); 13569 /* 13570 * <ill-phyint> assocs can't change while ill_g_lock 13571 * is held as writer. See ill_phyint_reinit() 13572 */ 13573 ASSERT(phyint->phyint_illv4 == NULL || 13574 MUTEX_HELD(&phyint->phyint_illv4->ill_lock)); 13575 ASSERT(phyint->phyint_illv6 == NULL || 13576 MUTEX_HELD(&phyint->phyint_illv6->ill_lock)); 13577 13578 if ((phyint->phyint_groupname_len != 13579 (strlen(cur_ipsq->ipsq_name) + 1) || 13580 bcmp(phyint->phyint_groupname, cur_ipsq->ipsq_name, 13581 phyint->phyint_groupname_len) != 0)) { 13582 /* 13583 * Once we fail in creating a new ipsq due to memory shortage, 13584 * don't attempt to create new ipsq again, based on another 13585 * phyint, since we want all phyints belonging to an IPMP group 13586 * to be in the same ipsq even in the event of mem alloc fails. 13587 */ 13588 newipsq = ip_ipsq_lookup(phyint->phyint_groupname, !need_retry, 13589 cur_ipsq); 13590 if (newipsq == NULL) { 13591 /* Memory allocation failure */ 13592 return (SPLIT_FAILED); 13593 } else { 13594 /* ipsq_refs protected by ill_g_lock (writer) */ 13595 IPSQ_DEC_REF(cur_ipsq); 13596 phyint->phyint_ipsq = newipsq; 13597 phyint->phyint_ipsq_next = newipsq->ipsq_phyint_list; 13598 newipsq->ipsq_phyint_list = phyint; 13599 IPSQ_INC_REF(newipsq); 13600 return (SPLIT_SUCCESS); 13601 } 13602 } 13603 return (SPLIT_NOT_NEEDED); 13604 } 13605 13606 /* 13607 * The ill locks of the phyint and the ill_g_lock (writer) must be held 13608 * to do this split 13609 */ 13610 static int 13611 ill_split_to_own_ipsq(phyint_t *phyint, ipsq_t *cur_ipsq) 13612 { 13613 ipsq_t *newipsq; 13614 13615 ASSERT(RW_WRITE_HELD(&ill_g_lock)); 13616 /* 13617 * <ill-phyint> assocs can't change while ill_g_lock 13618 * is held as writer. See ill_phyint_reinit() 13619 */ 13620 13621 ASSERT(phyint->phyint_illv4 == NULL || 13622 MUTEX_HELD(&phyint->phyint_illv4->ill_lock)); 13623 ASSERT(phyint->phyint_illv6 == NULL || 13624 MUTEX_HELD(&phyint->phyint_illv6->ill_lock)); 13625 13626 if (!ipsq_init((phyint->phyint_illv4 != NULL) ? 13627 phyint->phyint_illv4: phyint->phyint_illv6)) { 13628 /* 13629 * ipsq_init failed due to no memory 13630 * caller will use the same ipsq 13631 */ 13632 return (SPLIT_FAILED); 13633 } 13634 13635 /* ipsq_ref is protected by ill_g_lock (writer) */ 13636 IPSQ_DEC_REF(cur_ipsq); 13637 13638 /* 13639 * This is a new ipsq that is unknown to the world. 13640 * So we don't need to hold ipsq_lock, 13641 */ 13642 newipsq = phyint->phyint_ipsq; 13643 newipsq->ipsq_writer = NULL; 13644 newipsq->ipsq_reentry_cnt--; 13645 ASSERT(newipsq->ipsq_reentry_cnt == 0); 13646 #ifdef ILL_DEBUG 13647 newipsq->ipsq_depth = 0; 13648 #endif 13649 13650 return (SPLIT_SUCCESS); 13651 } 13652 13653 /* 13654 * Change the ipsq of all the ill's whose current ipsq is 'cur_ipsq' to 13655 * ipsq's representing their individual groups or themselves. Return 13656 * whether split needs to be retried again later. 13657 */ 13658 static boolean_t 13659 ill_split_ipsq(ipsq_t *cur_ipsq) 13660 { 13661 phyint_t *phyint; 13662 phyint_t *next_phyint; 13663 int error; 13664 boolean_t need_retry = B_FALSE; 13665 13666 phyint = cur_ipsq->ipsq_phyint_list; 13667 cur_ipsq->ipsq_phyint_list = NULL; 13668 while (phyint != NULL) { 13669 next_phyint = phyint->phyint_ipsq_next; 13670 /* 13671 * 'created' will tell us whether the callee actually 13672 * created an ipsq. Lack of memory may force the callee 13673 * to return without creating an ipsq. 13674 */ 13675 if (phyint->phyint_groupname == NULL) { 13676 error = ill_split_to_own_ipsq(phyint, cur_ipsq); 13677 } else { 13678 error = ill_split_to_grp_ipsq(phyint, cur_ipsq, 13679 need_retry); 13680 } 13681 13682 switch (error) { 13683 case SPLIT_FAILED: 13684 need_retry = B_TRUE; 13685 /* FALLTHRU */ 13686 case SPLIT_NOT_NEEDED: 13687 /* 13688 * Keep it on the list. 13689 */ 13690 phyint->phyint_ipsq_next = cur_ipsq->ipsq_phyint_list; 13691 cur_ipsq->ipsq_phyint_list = phyint; 13692 break; 13693 case SPLIT_SUCCESS: 13694 break; 13695 default: 13696 ASSERT(0); 13697 } 13698 13699 phyint = next_phyint; 13700 } 13701 return (need_retry); 13702 } 13703 13704 /* 13705 * given an ipsq 'ipsq' lock all ills associated with this ipsq. 13706 * and return the ills in the list. This list will be 13707 * needed to unlock all the ills later on by the caller. 13708 * The <ill-ipsq> associations could change between the 13709 * lock and unlock. Hence the unlock can't traverse the 13710 * ipsq to get the list of ills. 13711 */ 13712 static int 13713 ill_lock_ipsq_ills(ipsq_t *ipsq, ill_t **list, int list_max) 13714 { 13715 int cnt = 0; 13716 phyint_t *phyint; 13717 13718 /* 13719 * The caller holds ill_g_lock to ensure that the ill memberships 13720 * of the ipsq don't change 13721 */ 13722 ASSERT(RW_LOCK_HELD(&ill_g_lock)); 13723 13724 phyint = ipsq->ipsq_phyint_list; 13725 while (phyint != NULL) { 13726 if (phyint->phyint_illv4 != NULL) { 13727 ASSERT(cnt < list_max); 13728 list[cnt++] = phyint->phyint_illv4; 13729 } 13730 if (phyint->phyint_illv6 != NULL) { 13731 ASSERT(cnt < list_max); 13732 list[cnt++] = phyint->phyint_illv6; 13733 } 13734 phyint = phyint->phyint_ipsq_next; 13735 } 13736 ill_lock_ills(list, cnt); 13737 return (cnt); 13738 } 13739 13740 void 13741 ill_lock_ills(ill_t **list, int cnt) 13742 { 13743 int i; 13744 13745 if (cnt > 1) { 13746 boolean_t try_again; 13747 do { 13748 try_again = B_FALSE; 13749 for (i = 0; i < cnt - 1; i++) { 13750 if (list[i] < list[i + 1]) { 13751 ill_t *tmp; 13752 13753 /* swap the elements */ 13754 tmp = list[i]; 13755 list[i] = list[i + 1]; 13756 list[i + 1] = tmp; 13757 try_again = B_TRUE; 13758 } 13759 } 13760 } while (try_again); 13761 } 13762 13763 for (i = 0; i < cnt; i++) { 13764 if (i == 0) { 13765 if (list[i] != NULL) 13766 mutex_enter(&list[i]->ill_lock); 13767 else 13768 return; 13769 } else if ((list[i-1] != list[i]) && (list[i] != NULL)) { 13770 mutex_enter(&list[i]->ill_lock); 13771 } 13772 } 13773 } 13774 13775 void 13776 ill_unlock_ills(ill_t **list, int cnt) 13777 { 13778 int i; 13779 13780 for (i = 0; i < cnt; i++) { 13781 if ((i == 0) && (list[i] != NULL)) { 13782 mutex_exit(&list[i]->ill_lock); 13783 } else if ((list[i-1] != list[i]) && (list[i] != NULL)) { 13784 mutex_exit(&list[i]->ill_lock); 13785 } 13786 } 13787 } 13788 13789 /* 13790 * Merge all the ills from 1 ipsq group into another ipsq group. 13791 * The source ipsq group is specified by the ipsq associated with 13792 * 'from_ill'. The destination ipsq group is specified by the ipsq 13793 * associated with 'to_ill' or 'groupname' respectively. 13794 * Note that ipsq itself does not have a reference count mechanism 13795 * and functions don't look up an ipsq and pass it around. Instead 13796 * functions pass around an ill or groupname, and the ipsq is looked 13797 * up from the ill or groupname and the required operation performed 13798 * atomically with the lookup on the ipsq. 13799 */ 13800 static int 13801 ill_merge_groups(ill_t *from_ill, ill_t *to_ill, char *groupname, mblk_t *mp, 13802 queue_t *q) 13803 { 13804 ipsq_t *old_ipsq; 13805 ipsq_t *new_ipsq; 13806 ill_t **ill_list; 13807 int cnt; 13808 size_t ill_list_size; 13809 boolean_t became_writer_on_new_sq = B_FALSE; 13810 13811 /* Exactly 1 of 'to_ill' and groupname can be specified. */ 13812 ASSERT((to_ill != NULL) ^ (groupname != NULL)); 13813 13814 /* 13815 * Need to hold ill_g_lock as writer and also the ill_lock to 13816 * change the <ill-ipsq> assoc of an ill. Need to hold the 13817 * ipsq_lock to prevent new messages from landing on an ipsq. 13818 */ 13819 rw_enter(&ill_g_lock, RW_WRITER); 13820 13821 old_ipsq = from_ill->ill_phyint->phyint_ipsq; 13822 if (groupname != NULL) 13823 new_ipsq = ip_ipsq_lookup(groupname, B_TRUE, NULL); 13824 else { 13825 new_ipsq = to_ill->ill_phyint->phyint_ipsq; 13826 } 13827 13828 ASSERT(old_ipsq != NULL && new_ipsq != NULL); 13829 13830 /* 13831 * both groups are on the same ipsq. 13832 */ 13833 if (old_ipsq == new_ipsq) { 13834 rw_exit(&ill_g_lock); 13835 return (0); 13836 } 13837 13838 cnt = old_ipsq->ipsq_refs << 1; 13839 ill_list_size = cnt * sizeof (ill_t *); 13840 ill_list = kmem_zalloc(ill_list_size, KM_NOSLEEP); 13841 if (ill_list == NULL) { 13842 rw_exit(&ill_g_lock); 13843 return (ENOMEM); 13844 } 13845 cnt = ill_lock_ipsq_ills(old_ipsq, ill_list, cnt); 13846 13847 /* Need ipsq lock to enque messages on new ipsq or to become writer */ 13848 mutex_enter(&new_ipsq->ipsq_lock); 13849 if ((new_ipsq->ipsq_writer == NULL && 13850 new_ipsq->ipsq_current_ipif == NULL) || 13851 (new_ipsq->ipsq_writer == curthread)) { 13852 new_ipsq->ipsq_writer = curthread; 13853 new_ipsq->ipsq_reentry_cnt++; 13854 became_writer_on_new_sq = B_TRUE; 13855 } 13856 13857 /* 13858 * We are holding ill_g_lock as writer and all the ill locks of 13859 * the old ipsq. So the old_ipsq can't be looked up, and hence no new 13860 * message can land up on the old ipsq even though we don't hold the 13861 * ipsq_lock of the old_ipsq. Now move all messages to the newipsq. 13862 */ 13863 ill_move_to_new_ipsq(old_ipsq, new_ipsq, mp, q); 13864 13865 /* 13866 * now change the ipsq of all ills in the 'old_ipsq' to 'new_ipsq'. 13867 * 'new_ipsq' has been looked up, and it can't change its <ill-ipsq> 13868 * assocs. till we release the ill_g_lock, and hence it can't vanish. 13869 */ 13870 ill_merge_ipsq(old_ipsq, new_ipsq); 13871 13872 /* 13873 * Mark the new ipsq as needing a split since it is currently 13874 * being shared by more than 1 IPMP group. The split will 13875 * occur at the end of ipsq_exit 13876 */ 13877 new_ipsq->ipsq_split = B_TRUE; 13878 13879 /* Now release all the locks */ 13880 mutex_exit(&new_ipsq->ipsq_lock); 13881 ill_unlock_ills(ill_list, cnt); 13882 rw_exit(&ill_g_lock); 13883 13884 kmem_free(ill_list, ill_list_size); 13885 13886 /* 13887 * If we succeeded in becoming writer on the new ipsq, then 13888 * drain the new ipsq and start processing all enqueued messages 13889 * including the current ioctl we are processing which is either 13890 * a set groupname or failover/failback. 13891 */ 13892 if (became_writer_on_new_sq) 13893 ipsq_exit(new_ipsq, B_TRUE, B_TRUE); 13894 13895 /* 13896 * syncq has been changed and all the messages have been moved. 13897 */ 13898 mutex_enter(&old_ipsq->ipsq_lock); 13899 old_ipsq->ipsq_current_ipif = NULL; 13900 mutex_exit(&old_ipsq->ipsq_lock); 13901 return (EINPROGRESS); 13902 } 13903 13904 /* 13905 * Delete and add the loopback copy and non-loopback copy of 13906 * the BROADCAST ire corresponding to ill and addr. Used to 13907 * group broadcast ires together when ill becomes part of 13908 * a group. 13909 * 13910 * This function is also called when ill is leaving the group 13911 * so that the ires belonging to the group gets re-grouped. 13912 */ 13913 static void 13914 ill_bcast_delete_and_add(ill_t *ill, ipaddr_t addr) 13915 { 13916 ire_t *ire, *nire, *nire_next, *ire_head = NULL; 13917 ire_t **ire_ptpn = &ire_head; 13918 13919 /* 13920 * The loopback and non-loopback IREs are inserted in the order in which 13921 * they're found, on the basis that they are correctly ordered (loopback 13922 * first). 13923 */ 13924 for (;;) { 13925 ire = ire_ctable_lookup(addr, 0, IRE_BROADCAST, ill->ill_ipif, 13926 ALL_ZONES, MATCH_IRE_TYPE | MATCH_IRE_ILL); 13927 if (ire == NULL) 13928 break; 13929 13930 /* 13931 * we are passing in KM_SLEEP because it is not easy to 13932 * go back to a sane state in case of memory failure. 13933 */ 13934 nire = kmem_cache_alloc(ire_cache, KM_SLEEP); 13935 ASSERT(nire != NULL); 13936 bzero(nire, sizeof (ire_t)); 13937 /* 13938 * Don't use ire_max_frag directly since we don't 13939 * hold on to 'ire' until we add the new ire 'nire' and 13940 * we don't want the new ire to have a dangling reference 13941 * to 'ire'. The ire_max_frag of a broadcast ire must 13942 * be in sync with the ipif_mtu of the associate ipif. 13943 * For eg. this happens as a result of SIOCSLIFNAME, 13944 * SIOCSLIFLNKINFO or a DL_NOTE_SDU_SIZE inititated by 13945 * the driver. A change in ire_max_frag triggered as 13946 * as a result of path mtu discovery, or due to an 13947 * IP_IOC_IRE_ADVISE_NOREPLY from the transport or due a 13948 * route change -mtu command does not apply to broadcast ires. 13949 * 13950 * XXX We need a recovery strategy here if ire_init fails 13951 */ 13952 if (ire_init(nire, 13953 (uchar_t *)&ire->ire_addr, 13954 (uchar_t *)&ire->ire_mask, 13955 (uchar_t *)&ire->ire_src_addr, 13956 (uchar_t *)&ire->ire_gateway_addr, 13957 (uchar_t *)&ire->ire_in_src_addr, 13958 ire->ire_stq == NULL ? &ip_loopback_mtu : 13959 &ire->ire_ipif->ipif_mtu, 13960 ire->ire_fp_mp, 13961 ire->ire_rfq, 13962 ire->ire_stq, 13963 ire->ire_type, 13964 ire->ire_dlureq_mp, 13965 ire->ire_ipif, 13966 ire->ire_in_ill, 13967 ire->ire_cmask, 13968 ire->ire_phandle, 13969 ire->ire_ihandle, 13970 ire->ire_flags, 13971 &ire->ire_uinfo) == NULL) { 13972 cmn_err(CE_PANIC, "ire_init() failed"); 13973 } 13974 ire_delete(ire); 13975 ire_refrele(ire); 13976 13977 /* 13978 * The newly created IREs are inserted at the tail of the list 13979 * starting with ire_head. As we've just allocated them no one 13980 * knows about them so it's safe. 13981 */ 13982 *ire_ptpn = nire; 13983 ire_ptpn = &nire->ire_next; 13984 } 13985 13986 for (nire = ire_head; nire != NULL; nire = nire_next) { 13987 int error; 13988 ire_t *oire; 13989 /* unlink the IRE from our list before calling ire_add() */ 13990 nire_next = nire->ire_next; 13991 nire->ire_next = NULL; 13992 13993 /* ire_add adds the ire at the right place in the list */ 13994 oire = nire; 13995 error = ire_add(&nire, NULL, NULL, NULL); 13996 ASSERT(error == 0); 13997 ASSERT(oire == nire); 13998 ire_refrele(nire); /* Held in ire_add */ 13999 } 14000 } 14001 14002 /* 14003 * This function is usually called when an ill is inserted in 14004 * a group and all the ipifs are already UP. As all the ipifs 14005 * are already UP, the broadcast ires have already been created 14006 * and been inserted. But, ire_add_v4 would not have grouped properly. 14007 * We need to re-group for the benefit of ip_wput_ire which 14008 * expects BROADCAST ires to be grouped properly to avoid sending 14009 * more than one copy of the broadcast packet per group. 14010 * 14011 * NOTE : We don't check for ill_ipif_up_count to be non-zero here 14012 * because when ipif_up_done ends up calling this, ires have 14013 * already been added before illgrp_insert i.e before ill_group 14014 * has been initialized. 14015 */ 14016 static void 14017 ill_group_bcast_for_xmit(ill_t *ill) 14018 { 14019 ill_group_t *illgrp; 14020 ipif_t *ipif; 14021 ipaddr_t addr; 14022 ipaddr_t net_mask; 14023 ipaddr_t subnet_netmask; 14024 14025 illgrp = ill->ill_group; 14026 14027 /* 14028 * This function is called even when an ill is deleted from 14029 * the group. Hence, illgrp could be null. 14030 */ 14031 if (illgrp != NULL && illgrp->illgrp_ill_count == 1) 14032 return; 14033 14034 /* 14035 * Delete all the BROADCAST ires matching this ill and add 14036 * them back. This time, ire_add_v4 should take care of 14037 * grouping them with others because ill is part of the 14038 * group. 14039 */ 14040 ill_bcast_delete_and_add(ill, 0); 14041 ill_bcast_delete_and_add(ill, INADDR_BROADCAST); 14042 14043 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 14044 14045 if ((ipif->ipif_lcl_addr != INADDR_ANY) && 14046 !(ipif->ipif_flags & IPIF_NOLOCAL)) { 14047 net_mask = ip_net_mask(ipif->ipif_lcl_addr); 14048 } else { 14049 net_mask = htonl(IN_CLASSA_NET); 14050 } 14051 addr = net_mask & ipif->ipif_subnet; 14052 ill_bcast_delete_and_add(ill, addr); 14053 ill_bcast_delete_and_add(ill, ~net_mask | addr); 14054 14055 subnet_netmask = ipif->ipif_net_mask; 14056 addr = ipif->ipif_subnet; 14057 ill_bcast_delete_and_add(ill, addr); 14058 ill_bcast_delete_and_add(ill, ~subnet_netmask | addr); 14059 } 14060 } 14061 14062 /* 14063 * This function is called from illgrp_delete when ill is being deleted 14064 * from the group. 14065 * 14066 * As ill is not there in the group anymore, any address belonging 14067 * to this ill should be cleared of IRE_MARK_NORECV. 14068 */ 14069 static void 14070 ill_clear_bcast_mark(ill_t *ill, ipaddr_t addr) 14071 { 14072 ire_t *ire; 14073 irb_t *irb; 14074 14075 ASSERT(ill->ill_group == NULL); 14076 14077 ire = ire_ctable_lookup(addr, 0, IRE_BROADCAST, ill->ill_ipif, 14078 ALL_ZONES, MATCH_IRE_TYPE | MATCH_IRE_ILL); 14079 14080 if (ire != NULL) { 14081 /* 14082 * IPMP and plumbing operations are serialized on the ipsq, so 14083 * no one will insert or delete a broadcast ire under our feet. 14084 */ 14085 irb = ire->ire_bucket; 14086 rw_enter(&irb->irb_lock, RW_READER); 14087 ire_refrele(ire); 14088 14089 for (; ire != NULL; ire = ire->ire_next) { 14090 if (ire->ire_addr != addr) 14091 break; 14092 if (ire_to_ill(ire) != ill) 14093 continue; 14094 14095 ASSERT(!(ire->ire_marks & IRE_MARK_CONDEMNED)); 14096 ire->ire_marks &= ~IRE_MARK_NORECV; 14097 } 14098 rw_exit(&irb->irb_lock); 14099 } 14100 } 14101 14102 /* 14103 * This function must be called only after the broadcast ires 14104 * have been grouped together. For a given address addr, nominate 14105 * only one of the ires whose interface is not FAILED or OFFLINE. 14106 * 14107 * This is also called when an ipif goes down, so that we can nominate 14108 * a different ire with the same address for receiving. 14109 */ 14110 static void 14111 ill_mark_bcast(ill_group_t *illgrp, ipaddr_t addr) 14112 { 14113 irb_t *irb; 14114 ire_t *ire; 14115 ire_t *ire1; 14116 ire_t *save_ire; 14117 ire_t **irep = NULL; 14118 boolean_t first = B_TRUE; 14119 ire_t *clear_ire = NULL; 14120 ire_t *start_ire = NULL; 14121 ire_t *new_lb_ire; 14122 ire_t *new_nlb_ire; 14123 boolean_t new_lb_ire_used = B_FALSE; 14124 boolean_t new_nlb_ire_used = B_FALSE; 14125 uint64_t match_flags; 14126 uint64_t phyi_flags; 14127 boolean_t fallback = B_FALSE; 14128 14129 ire = ire_ctable_lookup(addr, 0, IRE_BROADCAST, NULL, ALL_ZONES, 14130 MATCH_IRE_TYPE); 14131 /* 14132 * We may not be able to find some ires if a previous 14133 * ire_create failed. This happens when an ipif goes 14134 * down and we are unable to create BROADCAST ires due 14135 * to memory failure. Thus, we have to check for NULL 14136 * below. This should handle the case for LOOPBACK, 14137 * POINTOPOINT and interfaces with some POINTOPOINT 14138 * logicals for which there are no BROADCAST ires. 14139 */ 14140 if (ire == NULL) 14141 return; 14142 /* 14143 * Currently IRE_BROADCASTS are deleted when an ipif 14144 * goes down which runs exclusively. Thus, setting 14145 * IRE_MARK_RCVD should not race with ire_delete marking 14146 * IRE_MARK_CONDEMNED. We grab the lock below just to 14147 * be consistent with other parts of the code that walks 14148 * a given bucket. 14149 */ 14150 save_ire = ire; 14151 irb = ire->ire_bucket; 14152 new_lb_ire = kmem_cache_alloc(ire_cache, KM_NOSLEEP); 14153 if (new_lb_ire == NULL) { 14154 ire_refrele(ire); 14155 return; 14156 } 14157 new_nlb_ire = kmem_cache_alloc(ire_cache, KM_NOSLEEP); 14158 if (new_nlb_ire == NULL) { 14159 ire_refrele(ire); 14160 kmem_cache_free(ire_cache, new_lb_ire); 14161 return; 14162 } 14163 IRB_REFHOLD(irb); 14164 rw_enter(&irb->irb_lock, RW_WRITER); 14165 /* 14166 * Get to the first ire matching the address and the 14167 * group. If the address does not match we are done 14168 * as we could not find the IRE. If the address matches 14169 * we should get to the first one matching the group. 14170 */ 14171 while (ire != NULL) { 14172 if (ire->ire_addr != addr || 14173 ire->ire_ipif->ipif_ill->ill_group == illgrp) { 14174 break; 14175 } 14176 ire = ire->ire_next; 14177 } 14178 match_flags = PHYI_FAILED | PHYI_INACTIVE; 14179 start_ire = ire; 14180 redo: 14181 while (ire != NULL && ire->ire_addr == addr && 14182 ire->ire_ipif->ipif_ill->ill_group == illgrp) { 14183 /* 14184 * The first ire for any address within a group 14185 * should always be the one with IRE_MARK_NORECV cleared 14186 * so that ip_wput_ire can avoid searching for one. 14187 * Note down the insertion point which will be used 14188 * later. 14189 */ 14190 if (first && (irep == NULL)) 14191 irep = ire->ire_ptpn; 14192 /* 14193 * PHYI_FAILED is set when the interface fails. 14194 * This interface might have become good, but the 14195 * daemon has not yet detected. We should still 14196 * not receive on this. PHYI_OFFLINE should never 14197 * be picked as this has been offlined and soon 14198 * be removed. 14199 */ 14200 phyi_flags = ire->ire_ipif->ipif_ill->ill_phyint->phyint_flags; 14201 if (phyi_flags & PHYI_OFFLINE) { 14202 ire->ire_marks |= IRE_MARK_NORECV; 14203 ire = ire->ire_next; 14204 continue; 14205 } 14206 if (phyi_flags & match_flags) { 14207 ire->ire_marks |= IRE_MARK_NORECV; 14208 ire = ire->ire_next; 14209 if ((phyi_flags & (PHYI_FAILED | PHYI_INACTIVE)) == 14210 PHYI_INACTIVE) { 14211 fallback = B_TRUE; 14212 } 14213 continue; 14214 } 14215 if (first) { 14216 /* 14217 * We will move this to the front of the list later 14218 * on. 14219 */ 14220 clear_ire = ire; 14221 ire->ire_marks &= ~IRE_MARK_NORECV; 14222 } else { 14223 ire->ire_marks |= IRE_MARK_NORECV; 14224 } 14225 first = B_FALSE; 14226 ire = ire->ire_next; 14227 } 14228 /* 14229 * If we never nominated anybody, try nominating at least 14230 * an INACTIVE, if we found one. Do it only once though. 14231 */ 14232 if (first && (match_flags == (PHYI_FAILED | PHYI_INACTIVE)) && 14233 fallback) { 14234 match_flags = PHYI_FAILED; 14235 ire = start_ire; 14236 irep = NULL; 14237 goto redo; 14238 } 14239 ire_refrele(save_ire); 14240 14241 /* 14242 * irep non-NULL indicates that we entered the while loop 14243 * above. If clear_ire is at the insertion point, we don't 14244 * have to do anything. clear_ire will be NULL if all the 14245 * interfaces are failed. 14246 * 14247 * We cannot unlink and reinsert the ire at the right place 14248 * in the list since there can be other walkers of this bucket. 14249 * Instead we delete and recreate the ire 14250 */ 14251 if (clear_ire != NULL && irep != NULL && *irep != clear_ire) { 14252 ire_t *clear_ire_stq = NULL; 14253 bzero(new_lb_ire, sizeof (ire_t)); 14254 /* XXX We need a recovery strategy here. */ 14255 if (ire_init(new_lb_ire, 14256 (uchar_t *)&clear_ire->ire_addr, 14257 (uchar_t *)&clear_ire->ire_mask, 14258 (uchar_t *)&clear_ire->ire_src_addr, 14259 (uchar_t *)&clear_ire->ire_gateway_addr, 14260 (uchar_t *)&clear_ire->ire_in_src_addr, 14261 &clear_ire->ire_max_frag, 14262 clear_ire->ire_fp_mp, 14263 clear_ire->ire_rfq, 14264 clear_ire->ire_stq, 14265 clear_ire->ire_type, 14266 clear_ire->ire_dlureq_mp, 14267 clear_ire->ire_ipif, 14268 clear_ire->ire_in_ill, 14269 clear_ire->ire_cmask, 14270 clear_ire->ire_phandle, 14271 clear_ire->ire_ihandle, 14272 clear_ire->ire_flags, 14273 &clear_ire->ire_uinfo) == NULL) 14274 cmn_err(CE_PANIC, "ire_init() failed"); 14275 if (clear_ire->ire_stq == NULL) { 14276 ire_t *ire_next = clear_ire->ire_next; 14277 if (ire_next != NULL && 14278 ire_next->ire_stq != NULL && 14279 ire_next->ire_addr == clear_ire->ire_addr && 14280 ire_next->ire_ipif->ipif_ill == 14281 clear_ire->ire_ipif->ipif_ill) { 14282 clear_ire_stq = ire_next; 14283 14284 bzero(new_nlb_ire, sizeof (ire_t)); 14285 /* XXX We need a recovery strategy here. */ 14286 if (ire_init(new_nlb_ire, 14287 (uchar_t *)&clear_ire_stq->ire_addr, 14288 (uchar_t *)&clear_ire_stq->ire_mask, 14289 (uchar_t *)&clear_ire_stq->ire_src_addr, 14290 (uchar_t *)&clear_ire_stq->ire_gateway_addr, 14291 (uchar_t *)&clear_ire_stq->ire_in_src_addr, 14292 &clear_ire_stq->ire_max_frag, 14293 clear_ire_stq->ire_fp_mp, 14294 clear_ire_stq->ire_rfq, 14295 clear_ire_stq->ire_stq, 14296 clear_ire_stq->ire_type, 14297 clear_ire_stq->ire_dlureq_mp, 14298 clear_ire_stq->ire_ipif, 14299 clear_ire_stq->ire_in_ill, 14300 clear_ire_stq->ire_cmask, 14301 clear_ire_stq->ire_phandle, 14302 clear_ire_stq->ire_ihandle, 14303 clear_ire_stq->ire_flags, 14304 &clear_ire_stq->ire_uinfo) == NULL) 14305 cmn_err(CE_PANIC, "ire_init() failed"); 14306 } 14307 } 14308 14309 /* 14310 * Delete the ire. We can't call ire_delete() since 14311 * we are holding the bucket lock. We can't release the 14312 * bucket lock since we can't allow irep to change. So just 14313 * mark it CONDEMNED. The IRB_REFRELE will delete the 14314 * ire from the list and do the refrele. 14315 */ 14316 clear_ire->ire_marks |= IRE_MARK_CONDEMNED; 14317 irb->irb_marks |= IRE_MARK_CONDEMNED; 14318 14319 if (clear_ire_stq != NULL) { 14320 ire_fastpath_list_delete( 14321 (ill_t *)clear_ire_stq->ire_stq->q_ptr, 14322 clear_ire_stq); 14323 clear_ire_stq->ire_marks |= IRE_MARK_CONDEMNED; 14324 } 14325 14326 /* 14327 * Also take care of otherfields like ib/ob pkt count 14328 * etc. Need to dup them. ditto in ill_bcast_delete_and_add 14329 */ 14330 14331 /* Add the new ire's. Insert at *irep */ 14332 new_lb_ire->ire_bucket = clear_ire->ire_bucket; 14333 ire1 = *irep; 14334 if (ire1 != NULL) 14335 ire1->ire_ptpn = &new_lb_ire->ire_next; 14336 new_lb_ire->ire_next = ire1; 14337 /* Link the new one in. */ 14338 new_lb_ire->ire_ptpn = irep; 14339 membar_producer(); 14340 *irep = new_lb_ire; 14341 new_lb_ire_used = B_TRUE; 14342 BUMP_IRE_STATS(ire_stats_v4, ire_stats_inserted); 14343 new_lb_ire->ire_bucket->irb_ire_cnt++; 14344 new_lb_ire->ire_ipif->ipif_ire_cnt++; 14345 14346 if (clear_ire_stq != NULL) { 14347 new_nlb_ire->ire_bucket = clear_ire->ire_bucket; 14348 irep = &new_lb_ire->ire_next; 14349 /* Add the new ire. Insert at *irep */ 14350 ire1 = *irep; 14351 if (ire1 != NULL) 14352 ire1->ire_ptpn = &new_nlb_ire->ire_next; 14353 new_nlb_ire->ire_next = ire1; 14354 /* Link the new one in. */ 14355 new_nlb_ire->ire_ptpn = irep; 14356 membar_producer(); 14357 *irep = new_nlb_ire; 14358 new_nlb_ire_used = B_TRUE; 14359 BUMP_IRE_STATS(ire_stats_v4, ire_stats_inserted); 14360 new_nlb_ire->ire_bucket->irb_ire_cnt++; 14361 new_nlb_ire->ire_ipif->ipif_ire_cnt++; 14362 ((ill_t *)new_nlb_ire->ire_stq->q_ptr)->ill_ire_cnt++; 14363 } 14364 } 14365 rw_exit(&irb->irb_lock); 14366 if (!new_lb_ire_used) 14367 kmem_cache_free(ire_cache, new_lb_ire); 14368 if (!new_nlb_ire_used) 14369 kmem_cache_free(ire_cache, new_nlb_ire); 14370 IRB_REFRELE(irb); 14371 } 14372 14373 /* 14374 * Whenever an ipif goes down we have to renominate a different 14375 * broadcast ire to receive. Whenever an ipif comes up, we need 14376 * to make sure that we have only one nominated to receive. 14377 */ 14378 static void 14379 ipif_renominate_bcast(ipif_t *ipif) 14380 { 14381 ill_t *ill = ipif->ipif_ill; 14382 ipaddr_t subnet_addr; 14383 ipaddr_t net_addr; 14384 ipaddr_t net_mask = 0; 14385 ipaddr_t subnet_netmask; 14386 ipaddr_t addr; 14387 ill_group_t *illgrp; 14388 14389 illgrp = ill->ill_group; 14390 /* 14391 * If this is the last ipif going down, it might take 14392 * the ill out of the group. In that case ipif_down -> 14393 * illgrp_delete takes care of doing the nomination. 14394 * ipif_down does not call for this case. 14395 */ 14396 ASSERT(illgrp != NULL); 14397 14398 /* There could not have been any ires associated with this */ 14399 if (ipif->ipif_subnet == 0) 14400 return; 14401 14402 ill_mark_bcast(illgrp, 0); 14403 ill_mark_bcast(illgrp, INADDR_BROADCAST); 14404 14405 if ((ipif->ipif_lcl_addr != INADDR_ANY) && 14406 !(ipif->ipif_flags & IPIF_NOLOCAL)) { 14407 net_mask = ip_net_mask(ipif->ipif_lcl_addr); 14408 } else { 14409 net_mask = htonl(IN_CLASSA_NET); 14410 } 14411 addr = net_mask & ipif->ipif_subnet; 14412 ill_mark_bcast(illgrp, addr); 14413 14414 net_addr = ~net_mask | addr; 14415 ill_mark_bcast(illgrp, net_addr); 14416 14417 subnet_netmask = ipif->ipif_net_mask; 14418 addr = ipif->ipif_subnet; 14419 ill_mark_bcast(illgrp, addr); 14420 14421 subnet_addr = ~subnet_netmask | addr; 14422 ill_mark_bcast(illgrp, subnet_addr); 14423 } 14424 14425 /* 14426 * Whenever we form or delete ill groups, we need to nominate one set of 14427 * BROADCAST ires for receiving in the group. 14428 * 14429 * 1) When ipif_up_done -> ilgrp_insert calls this function, BROADCAST ires 14430 * have been added, but ill_ipif_up_count is 0. Thus, we don't assert 14431 * for ill_ipif_up_count to be non-zero. This is the only case where 14432 * ill_ipif_up_count is zero and we would still find the ires. 14433 * 14434 * 2) ip_sioctl_group_name/ifgrp_insert calls this function, at least one 14435 * ipif is UP and we just have to do the nomination. 14436 * 14437 * 3) When ill_handoff_responsibility calls us, some ill has been removed 14438 * from the group. So, we have to do the nomination. 14439 * 14440 * Because of (3), there could be just one ill in the group. But we have 14441 * to nominate still as IRE_MARK_NORCV may have been marked on this. 14442 * Thus, this function does not optimize when there is only one ill as 14443 * it is not correct for (3). 14444 */ 14445 static void 14446 ill_nominate_bcast_rcv(ill_group_t *illgrp) 14447 { 14448 ill_t *ill; 14449 ipif_t *ipif; 14450 ipaddr_t subnet_addr; 14451 ipaddr_t prev_subnet_addr = 0; 14452 ipaddr_t net_addr; 14453 ipaddr_t prev_net_addr = 0; 14454 ipaddr_t net_mask = 0; 14455 ipaddr_t subnet_netmask; 14456 ipaddr_t addr; 14457 14458 /* 14459 * When the last memeber is leaving, there is nothing to 14460 * nominate. 14461 */ 14462 if (illgrp->illgrp_ill_count == 0) { 14463 ASSERT(illgrp->illgrp_ill == NULL); 14464 return; 14465 } 14466 14467 ill = illgrp->illgrp_ill; 14468 ASSERT(!ill->ill_isv6); 14469 /* 14470 * We assume that ires with same address and belonging to the 14471 * same group, has been grouped together. Nominating a *single* 14472 * ill in the group for sending and receiving broadcast is done 14473 * by making sure that the first BROADCAST ire (which will be 14474 * the one returned by ire_ctable_lookup for ip_rput and the 14475 * one that will be used in ip_wput_ire) will be the one that 14476 * will not have IRE_MARK_NORECV set. 14477 * 14478 * 1) ip_rput checks and discards packets received on ires marked 14479 * with IRE_MARK_NORECV. Thus, we don't send up duplicate 14480 * broadcast packets. We need to clear IRE_MARK_NORECV on the 14481 * first ire in the group for every broadcast address in the group. 14482 * ip_rput will accept packets only on the first ire i.e only 14483 * one copy of the ill. 14484 * 14485 * 2) ip_wput_ire needs to send out just one copy of the broadcast 14486 * packet for the whole group. It needs to send out on the ill 14487 * whose ire has not been marked with IRE_MARK_NORECV. If it sends 14488 * on the one marked with IRE_MARK_NORECV, ip_rput will accept 14489 * the copy echoed back on other port where the ire is not marked 14490 * with IRE_MARK_NORECV. 14491 * 14492 * Note that we just need to have the first IRE either loopback or 14493 * non-loopback (either of them may not exist if ire_create failed 14494 * during ipif_down) with IRE_MARK_NORECV not set. ip_rput will 14495 * always hit the first one and hence will always accept one copy. 14496 * 14497 * We have a broadcast ire per ill for all the unique prefixes 14498 * hosted on that ill. As we don't have a way of knowing the 14499 * unique prefixes on a given ill and hence in the whole group, 14500 * we just call ill_mark_bcast on all the prefixes that exist 14501 * in the group. For the common case of one prefix, the code 14502 * below optimizes by remebering the last address used for 14503 * markng. In the case of multiple prefixes, this will still 14504 * optimize depending the order of prefixes. 14505 * 14506 * The only unique address across the whole group is 0.0.0.0 and 14507 * 255.255.255.255 and thus we call only once. ill_mark_bcast enables 14508 * the first ire in the bucket for receiving and disables the 14509 * others. 14510 */ 14511 ill_mark_bcast(illgrp, 0); 14512 ill_mark_bcast(illgrp, INADDR_BROADCAST); 14513 for (; ill != NULL; ill = ill->ill_group_next) { 14514 14515 for (ipif = ill->ill_ipif; ipif != NULL; 14516 ipif = ipif->ipif_next) { 14517 14518 if (!(ipif->ipif_flags & IPIF_UP) || 14519 ipif->ipif_subnet == 0) { 14520 continue; 14521 } 14522 if ((ipif->ipif_lcl_addr != INADDR_ANY) && 14523 !(ipif->ipif_flags & IPIF_NOLOCAL)) { 14524 net_mask = ip_net_mask(ipif->ipif_lcl_addr); 14525 } else { 14526 net_mask = htonl(IN_CLASSA_NET); 14527 } 14528 addr = net_mask & ipif->ipif_subnet; 14529 if (prev_net_addr == 0 || prev_net_addr != addr) { 14530 ill_mark_bcast(illgrp, addr); 14531 net_addr = ~net_mask | addr; 14532 ill_mark_bcast(illgrp, net_addr); 14533 } 14534 prev_net_addr = addr; 14535 14536 subnet_netmask = ipif->ipif_net_mask; 14537 addr = ipif->ipif_subnet; 14538 if (prev_subnet_addr == 0 || 14539 prev_subnet_addr != addr) { 14540 ill_mark_bcast(illgrp, addr); 14541 subnet_addr = ~subnet_netmask | addr; 14542 ill_mark_bcast(illgrp, subnet_addr); 14543 } 14544 prev_subnet_addr = addr; 14545 } 14546 } 14547 } 14548 14549 /* 14550 * This function is called while forming ill groups. 14551 * 14552 * Currently, we handle only allmulti groups. We want to join 14553 * allmulti on only one of the ills in the groups. In future, 14554 * when we have link aggregation, we may have to join normal 14555 * multicast groups on multiple ills as switch does inbound load 14556 * balancing. Following are the functions that calls this 14557 * function : 14558 * 14559 * 1) ill_recover_multicast : Interface is coming back UP. 14560 * When the first ipif comes back UP, ipif_up_done/ipif_up_done_v6 14561 * will call ill_recover_multicast to recover all the multicast 14562 * groups. We need to make sure that only one member is joined 14563 * in the ill group. 14564 * 14565 * 2) ip_addmulti/ip_addmulti_v6 : ill groups has already been formed. 14566 * Somebody is joining allmulti. We need to make sure that only one 14567 * member is joined in the group. 14568 * 14569 * 3) illgrp_insert : If allmulti has already joined, we need to make 14570 * sure that only one member is joined in the group. 14571 * 14572 * 4) ip_delmulti/ip_delmulti_v6 : Somebody in the group is leaving 14573 * allmulti who we have nominated. We need to pick someother ill. 14574 * 14575 * 5) illgrp_delete : The ill we nominated is leaving the group, 14576 * we need to pick a new ill to join the group. 14577 * 14578 * For (1), (2), (5) - we just have to check whether there is 14579 * a good ill joined in the group. If we could not find any ills 14580 * joined the group, we should join. 14581 * 14582 * For (4), the one that was nominated to receive, left the group. 14583 * There could be nobody joined in the group when this function is 14584 * called. 14585 * 14586 * For (3) - we need to explicitly check whether there are multiple 14587 * ills joined in the group. 14588 * 14589 * For simplicity, we don't differentiate any of the above cases. We 14590 * just leave the group if it is joined on any of them and join on 14591 * the first good ill. 14592 */ 14593 int 14594 ill_nominate_mcast_rcv(ill_group_t *illgrp) 14595 { 14596 ilm_t *ilm; 14597 ill_t *ill; 14598 ill_t *fallback_inactive_ill = NULL; 14599 ill_t *fallback_failed_ill = NULL; 14600 int ret = 0; 14601 14602 /* 14603 * Leave the allmulti on all the ills and start fresh. 14604 */ 14605 for (ill = illgrp->illgrp_ill; ill != NULL; 14606 ill = ill->ill_group_next) { 14607 if (ill->ill_join_allmulti) 14608 (void) ip_leave_allmulti(ill->ill_ipif); 14609 } 14610 14611 /* 14612 * Choose a good ill. Fallback to inactive or failed if 14613 * none available. We need to fallback to FAILED in the 14614 * case where we have 2 interfaces in a group - where 14615 * one of them is failed and another is a good one and 14616 * the good one (not marked inactive) is leaving the group. 14617 */ 14618 ret = 0; 14619 for (ill = illgrp->illgrp_ill; ill != NULL; 14620 ill = ill->ill_group_next) { 14621 /* Never pick an offline interface */ 14622 if (ill->ill_phyint->phyint_flags & PHYI_OFFLINE) 14623 continue; 14624 14625 if (ill->ill_phyint->phyint_flags & PHYI_FAILED) { 14626 fallback_failed_ill = ill; 14627 continue; 14628 } 14629 if (ill->ill_phyint->phyint_flags & PHYI_INACTIVE) { 14630 fallback_inactive_ill = ill; 14631 continue; 14632 } 14633 for (ilm = ill->ill_ilm; ilm != NULL; ilm = ilm->ilm_next) { 14634 if (IN6_IS_ADDR_UNSPECIFIED(&ilm->ilm_v6addr)) { 14635 ret = ip_join_allmulti(ill->ill_ipif); 14636 /* 14637 * ip_join_allmulti can fail because of memory 14638 * failures. So, make sure we join at least 14639 * on one ill. 14640 */ 14641 if (ill->ill_join_allmulti) 14642 return (0); 14643 } 14644 } 14645 } 14646 if (ret != 0) { 14647 /* 14648 * If we tried nominating above and failed to do so, 14649 * return error. We might have tried multiple times. 14650 * But, return the latest error. 14651 */ 14652 return (ret); 14653 } 14654 if ((ill = fallback_inactive_ill) != NULL) { 14655 for (ilm = ill->ill_ilm; ilm != NULL; ilm = ilm->ilm_next) { 14656 if (IN6_IS_ADDR_UNSPECIFIED(&ilm->ilm_v6addr)) { 14657 ret = ip_join_allmulti(ill->ill_ipif); 14658 return (ret); 14659 } 14660 } 14661 } else if ((ill = fallback_failed_ill) != NULL) { 14662 for (ilm = ill->ill_ilm; ilm != NULL; ilm = ilm->ilm_next) { 14663 if (IN6_IS_ADDR_UNSPECIFIED(&ilm->ilm_v6addr)) { 14664 ret = ip_join_allmulti(ill->ill_ipif); 14665 return (ret); 14666 } 14667 } 14668 } 14669 return (0); 14670 } 14671 14672 /* 14673 * This function is called from illgrp_delete after it is 14674 * deleted from the group to reschedule responsibilities 14675 * to a different ill. 14676 */ 14677 static void 14678 ill_handoff_responsibility(ill_t *ill, ill_group_t *illgrp) 14679 { 14680 ilm_t *ilm; 14681 ipif_t *ipif; 14682 ipaddr_t subnet_addr; 14683 ipaddr_t net_addr; 14684 ipaddr_t net_mask = 0; 14685 ipaddr_t subnet_netmask; 14686 ipaddr_t addr; 14687 14688 ASSERT(ill->ill_group == NULL); 14689 /* 14690 * Broadcast Responsibility: 14691 * 14692 * 1. If this ill has been nominated for receiving broadcast 14693 * packets, we need to find a new one. Before we find a new 14694 * one, we need to re-group the ires that are part of this new 14695 * group (assumed by ill_nominate_bcast_rcv). We do this by 14696 * calling ill_group_bcast_for_xmit(ill) which will do the right 14697 * thing for us. 14698 * 14699 * 2. If this ill was not nominated for receiving broadcast 14700 * packets, we need to clear the IRE_MARK_NORECV flag 14701 * so that we continue to send up broadcast packets. 14702 */ 14703 if (!ill->ill_isv6) { 14704 /* 14705 * Case 1 above : No optimization here. Just redo the 14706 * nomination. 14707 */ 14708 ill_group_bcast_for_xmit(ill); 14709 ill_nominate_bcast_rcv(illgrp); 14710 14711 /* 14712 * Case 2 above : Lookup and clear IRE_MARK_NORECV. 14713 */ 14714 ill_clear_bcast_mark(ill, 0); 14715 ill_clear_bcast_mark(ill, INADDR_BROADCAST); 14716 14717 for (ipif = ill->ill_ipif; ipif != NULL; 14718 ipif = ipif->ipif_next) { 14719 14720 if (!(ipif->ipif_flags & IPIF_UP) || 14721 ipif->ipif_subnet == 0) { 14722 continue; 14723 } 14724 if ((ipif->ipif_lcl_addr != INADDR_ANY) && 14725 !(ipif->ipif_flags & IPIF_NOLOCAL)) { 14726 net_mask = ip_net_mask(ipif->ipif_lcl_addr); 14727 } else { 14728 net_mask = htonl(IN_CLASSA_NET); 14729 } 14730 addr = net_mask & ipif->ipif_subnet; 14731 ill_clear_bcast_mark(ill, addr); 14732 14733 net_addr = ~net_mask | addr; 14734 ill_clear_bcast_mark(ill, net_addr); 14735 14736 subnet_netmask = ipif->ipif_net_mask; 14737 addr = ipif->ipif_subnet; 14738 ill_clear_bcast_mark(ill, addr); 14739 14740 subnet_addr = ~subnet_netmask | addr; 14741 ill_clear_bcast_mark(ill, subnet_addr); 14742 } 14743 } 14744 14745 /* 14746 * Multicast Responsibility. 14747 * 14748 * If we have joined allmulti on this one, find a new member 14749 * in the group to join allmulti. As this ill is already part 14750 * of allmulti, we don't have to join on this one. 14751 * 14752 * If we have not joined allmulti on this one, there is no 14753 * responsibility to handoff. But we need to take new 14754 * responsibility i.e, join allmulti on this one if we need 14755 * to. 14756 */ 14757 if (ill->ill_join_allmulti) { 14758 (void) ill_nominate_mcast_rcv(illgrp); 14759 } else { 14760 for (ilm = ill->ill_ilm; ilm != NULL; ilm = ilm->ilm_next) { 14761 if (IN6_IS_ADDR_UNSPECIFIED(&ilm->ilm_v6addr)) { 14762 (void) ip_join_allmulti(ill->ill_ipif); 14763 break; 14764 } 14765 } 14766 } 14767 14768 /* 14769 * We intentionally do the flushing of IRE_CACHES only matching 14770 * on the ill and not on groups. Note that we are already deleted 14771 * from the group. 14772 * 14773 * This will make sure that all IRE_CACHES whose stq is pointing 14774 * at ill_wq or ire_ipif->ipif_ill pointing at this ill will get 14775 * deleted and IRE_CACHES that are not pointing at this ill will 14776 * be left alone. 14777 */ 14778 if (ill->ill_isv6) { 14779 ire_walk_ill_v6(MATCH_IRE_ILL | MATCH_IRE_TYPE, 14780 IRE_CACHE, illgrp_cache_delete, (char *)ill, ill); 14781 } else { 14782 ire_walk_ill_v4(MATCH_IRE_ILL | MATCH_IRE_TYPE, 14783 IRE_CACHE, illgrp_cache_delete, (char *)ill, ill); 14784 } 14785 14786 /* 14787 * Some conn may have cached one of the IREs deleted above. By removing 14788 * the ire reference, we clean up the extra reference to the ill held in 14789 * ire->ire_stq. 14790 */ 14791 ipcl_walk(conn_cleanup_stale_ire, NULL); 14792 14793 /* 14794 * Re-do source address selection for all the members in the 14795 * group, if they borrowed source address from one of the ipifs 14796 * in this ill. 14797 */ 14798 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 14799 if (ill->ill_isv6) { 14800 ipif_update_other_ipifs_v6(ipif, illgrp); 14801 } else { 14802 ipif_update_other_ipifs(ipif, illgrp); 14803 } 14804 } 14805 } 14806 14807 /* 14808 * Delete the ill from the group. The caller makes sure that it is 14809 * in a group and it okay to delete from the group. So, we always 14810 * delete here. 14811 */ 14812 static void 14813 illgrp_delete(ill_t *ill) 14814 { 14815 ill_group_t *illgrp; 14816 ill_group_t *tmpg; 14817 ill_t *tmp_ill; 14818 14819 /* 14820 * Reset illgrp_ill_schednext if it was pointing at us. 14821 * We need to do this before we set ill_group to NULL. 14822 */ 14823 rw_enter(&ill_g_lock, RW_WRITER); 14824 mutex_enter(&ill->ill_lock); 14825 14826 illgrp_reset_schednext(ill); 14827 14828 illgrp = ill->ill_group; 14829 14830 /* Delete the ill from illgrp. */ 14831 if (illgrp->illgrp_ill == ill) { 14832 illgrp->illgrp_ill = ill->ill_group_next; 14833 } else { 14834 tmp_ill = illgrp->illgrp_ill; 14835 while (tmp_ill->ill_group_next != ill) { 14836 tmp_ill = tmp_ill->ill_group_next; 14837 ASSERT(tmp_ill != NULL); 14838 } 14839 tmp_ill->ill_group_next = ill->ill_group_next; 14840 } 14841 ill->ill_group = NULL; 14842 ill->ill_group_next = NULL; 14843 14844 illgrp->illgrp_ill_count--; 14845 mutex_exit(&ill->ill_lock); 14846 rw_exit(&ill_g_lock); 14847 14848 /* 14849 * As this ill is leaving the group, we need to hand off 14850 * the responsibilities to the other ills in the group, if 14851 * this ill had some responsibilities. 14852 */ 14853 14854 ill_handoff_responsibility(ill, illgrp); 14855 14856 rw_enter(&ill_g_lock, RW_WRITER); 14857 14858 if (illgrp->illgrp_ill_count == 0) { 14859 14860 ASSERT(illgrp->illgrp_ill == NULL); 14861 if (ill->ill_isv6) { 14862 if (illgrp == illgrp_head_v6) { 14863 illgrp_head_v6 = illgrp->illgrp_next; 14864 } else { 14865 tmpg = illgrp_head_v6; 14866 while (tmpg->illgrp_next != illgrp) { 14867 tmpg = tmpg->illgrp_next; 14868 ASSERT(tmpg != NULL); 14869 } 14870 tmpg->illgrp_next = illgrp->illgrp_next; 14871 } 14872 } else { 14873 if (illgrp == illgrp_head_v4) { 14874 illgrp_head_v4 = illgrp->illgrp_next; 14875 } else { 14876 tmpg = illgrp_head_v4; 14877 while (tmpg->illgrp_next != illgrp) { 14878 tmpg = tmpg->illgrp_next; 14879 ASSERT(tmpg != NULL); 14880 } 14881 tmpg->illgrp_next = illgrp->illgrp_next; 14882 } 14883 } 14884 mutex_destroy(&illgrp->illgrp_lock); 14885 mi_free(illgrp); 14886 } 14887 rw_exit(&ill_g_lock); 14888 14889 /* 14890 * Even though the ill is out of the group its not necessary 14891 * to set ipsq_split as TRUE as the ipifs could be down temporarily 14892 * We will split the ipsq when phyint_groupname is set to NULL. 14893 */ 14894 14895 /* 14896 * Send a routing sockets message if we are deleting from 14897 * groups with names. 14898 */ 14899 if (ill->ill_phyint->phyint_groupname_len != 0) 14900 ip_rts_ifmsg(ill->ill_ipif); 14901 } 14902 14903 /* 14904 * Re-do source address selection. This is normally called when 14905 * an ill joins the group or when a non-NOLOCAL/DEPRECATED/ANYCAST 14906 * ipif comes up. 14907 */ 14908 void 14909 ill_update_source_selection(ill_t *ill) 14910 { 14911 ipif_t *ipif; 14912 14913 ASSERT(IAM_WRITER_ILL(ill)); 14914 14915 if (ill->ill_group != NULL) 14916 ill = ill->ill_group->illgrp_ill; 14917 14918 for (; ill != NULL; ill = ill->ill_group_next) { 14919 for (ipif = ill->ill_ipif; ipif != NULL; 14920 ipif = ipif->ipif_next) { 14921 if (ill->ill_isv6) 14922 ipif_recreate_interface_routes_v6(NULL, ipif); 14923 else 14924 ipif_recreate_interface_routes(NULL, ipif); 14925 } 14926 } 14927 } 14928 14929 /* 14930 * Insert ill in a group headed by illgrp_head. The caller can either 14931 * pass a groupname in which case we search for a group with the 14932 * same name to insert in or pass a group to insert in. This function 14933 * would only search groups with names. 14934 * 14935 * NOTE : The caller should make sure that there is at least one ipif 14936 * UP on this ill so that illgrp_scheduler can pick this ill 14937 * for outbound packets. If ill_ipif_up_count is zero, we have 14938 * already sent a DL_UNBIND to the driver and we don't want to 14939 * send anymore packets. We don't assert for ipif_up_count 14940 * to be greater than zero, because ipif_up_done wants to call 14941 * this function before bumping up the ipif_up_count. See 14942 * ipif_up_done() for details. 14943 */ 14944 int 14945 illgrp_insert(ill_group_t **illgrp_head, ill_t *ill, char *groupname, 14946 ill_group_t *grp_to_insert, boolean_t ipif_is_coming_up) 14947 { 14948 ill_group_t *illgrp; 14949 ill_t *prev_ill; 14950 phyint_t *phyi; 14951 14952 ASSERT(ill->ill_group == NULL); 14953 14954 rw_enter(&ill_g_lock, RW_WRITER); 14955 mutex_enter(&ill->ill_lock); 14956 14957 if (groupname != NULL) { 14958 /* 14959 * Look for a group with a matching groupname to insert. 14960 */ 14961 for (illgrp = *illgrp_head; illgrp != NULL; 14962 illgrp = illgrp->illgrp_next) { 14963 14964 ill_t *tmp_ill; 14965 14966 tmp_ill = illgrp->illgrp_ill; 14967 ASSERT(tmp_ill != NULL && tmp_ill->ill_phyint != NULL); 14968 phyi = tmp_ill->ill_phyint; 14969 /* 14970 * Look at groups which has names only. 14971 */ 14972 if (phyi->phyint_groupname_len == 0) 14973 continue; 14974 /* 14975 * Names are stored in the phyint common to both 14976 * IPv4 and IPv6. 14977 */ 14978 if (mi_strcmp(phyi->phyint_groupname, 14979 groupname) == 0) { 14980 break; 14981 } 14982 } 14983 } else { 14984 /* 14985 * If the caller passes in a NULL "grp_to_insert", we 14986 * allocate one below and insert this singleton. 14987 */ 14988 illgrp = grp_to_insert; 14989 } 14990 14991 ill->ill_group_next = NULL; 14992 14993 if (illgrp == NULL) { 14994 illgrp = (ill_group_t *)mi_zalloc(sizeof (ill_group_t)); 14995 if (illgrp == NULL) { 14996 return (ENOMEM); 14997 } 14998 illgrp->illgrp_next = *illgrp_head; 14999 *illgrp_head = illgrp; 15000 illgrp->illgrp_ill = ill; 15001 illgrp->illgrp_ill_count = 1; 15002 ill->ill_group = illgrp; 15003 /* 15004 * Used in illgrp_scheduler to protect multiple threads 15005 * from traversing the list. 15006 */ 15007 mutex_init(&illgrp->illgrp_lock, NULL, MUTEX_DEFAULT, 0); 15008 } else { 15009 ASSERT(ill->ill_net_type == 15010 illgrp->illgrp_ill->ill_net_type); 15011 ASSERT(ill->ill_type == illgrp->illgrp_ill->ill_type); 15012 15013 /* Insert ill at tail of this group */ 15014 prev_ill = illgrp->illgrp_ill; 15015 while (prev_ill->ill_group_next != NULL) 15016 prev_ill = prev_ill->ill_group_next; 15017 prev_ill->ill_group_next = ill; 15018 ill->ill_group = illgrp; 15019 illgrp->illgrp_ill_count++; 15020 /* 15021 * Inherit group properties. Currently only forwarding 15022 * is the property we try to keep the same with all the 15023 * ills. When there are more, we will abstract this into 15024 * a function. 15025 */ 15026 ill->ill_flags &= ~ILLF_ROUTER; 15027 ill->ill_flags |= (illgrp->illgrp_ill->ill_flags & ILLF_ROUTER); 15028 } 15029 mutex_exit(&ill->ill_lock); 15030 rw_exit(&ill_g_lock); 15031 15032 /* 15033 * 1) When ipif_up_done() calls this function, ipif_up_count 15034 * may be zero as it has not yet been bumped. But the ires 15035 * have already been added. So, we do the nomination here 15036 * itself. But, when ip_sioctl_groupname calls this, it checks 15037 * for ill_ipif_up_count != 0. Thus we don't check for 15038 * ill_ipif_up_count here while nominating broadcast ires for 15039 * receive. 15040 * 15041 * 2) Similarly, we need to call ill_group_bcast_for_xmit here 15042 * to group them properly as ire_add() has already happened 15043 * in the ipif_up_done() case. For ip_sioctl_groupname/ifgrp_insert 15044 * case, we need to do it here anyway. 15045 */ 15046 if (!ill->ill_isv6) { 15047 ill_group_bcast_for_xmit(ill); 15048 ill_nominate_bcast_rcv(illgrp); 15049 } 15050 15051 if (!ipif_is_coming_up) { 15052 /* 15053 * When ipif_up_done() calls this function, the multicast 15054 * groups have not been joined yet. So, there is no point in 15055 * nomination. ip_join_allmulti will handle groups when 15056 * ill_recover_multicast is called from ipif_up_done() later. 15057 */ 15058 (void) ill_nominate_mcast_rcv(illgrp); 15059 /* 15060 * ipif_up_done calls ill_update_source_selection 15061 * anyway. Moreover, we don't want to re-create 15062 * interface routes while ipif_up_done() still has reference 15063 * to them. Refer to ipif_up_done() for more details. 15064 */ 15065 ill_update_source_selection(ill); 15066 } 15067 15068 /* 15069 * Send a routing sockets message if we are inserting into 15070 * groups with names. 15071 */ 15072 if (groupname != NULL) 15073 ip_rts_ifmsg(ill->ill_ipif); 15074 return (0); 15075 } 15076 15077 /* 15078 * Return the first phyint matching the groupname. There could 15079 * be more than one when there are ill groups. 15080 * 15081 * Needs work: called only from ip_sioctl_groupname 15082 */ 15083 static phyint_t * 15084 phyint_lookup_group(char *groupname) 15085 { 15086 phyint_t *phyi; 15087 15088 ASSERT(RW_LOCK_HELD(&ill_g_lock)); 15089 /* 15090 * Group names are stored in the phyint - a common structure 15091 * to both IPv4 and IPv6. 15092 */ 15093 phyi = avl_first(&phyint_g_list.phyint_list_avl_by_index); 15094 for (; phyi != NULL; 15095 phyi = avl_walk(&phyint_g_list.phyint_list_avl_by_index, 15096 phyi, AVL_AFTER)) { 15097 if (phyi->phyint_groupname_len == 0) 15098 continue; 15099 ASSERT(phyi->phyint_groupname != NULL); 15100 if (mi_strcmp(groupname, phyi->phyint_groupname) == 0) 15101 return (phyi); 15102 } 15103 return (NULL); 15104 } 15105 15106 15107 15108 /* 15109 * MT notes on creation and deletion of IPMP groups 15110 * 15111 * Creation and deletion of IPMP groups introduce the need to merge or 15112 * split the associated serialization objects i.e the ipsq's. Normally all 15113 * the ills in an IPMP group would map to a single ipsq. If IPMP is not enabled 15114 * an ill-pair(v4, v6) i.e. phyint would map to a single ipsq. However during 15115 * the execution of the SIOCSLIFGROUPNAME command the picture changes. There 15116 * is a need to change the <ill-ipsq> association and we have to operate on both 15117 * the source and destination IPMP groups. For eg. attempting to set the 15118 * groupname of hme0 to mpk17-85 when it already belongs to mpk17-84 has to 15119 * handle 2 IPMP groups and 2 ipsqs. All the ills belonging to either of the 15120 * source or destination IPMP group are mapped to a single ipsq for executing 15121 * the SIOCSLIFGROUPNAME command. This is termed as a merge of the ipsq's. 15122 * The <ill-ipsq> mapping is restored back to normal at a later point. This is 15123 * termed as a split of the ipsq. The converse of the merge i.e. a split of the 15124 * ipsq happens while unwinding from ipsq_exit. If at least 1 set groupname 15125 * occurred on the ipsq, then the ipsq_split flag is set. This indicates the 15126 * ipsq has to be examined for redoing the <ill-ipsq> associations. 15127 * 15128 * In the above example the ioctl handling code locates the current ipsq of hme0 15129 * which is ipsq(mpk17-84). It then enters the above ipsq immediately or 15130 * eventually (after queueing the ioctl in ipsq(mpk17-84)). Then it locates 15131 * the destination ipsq which is ipsq(mpk17-85) and merges the source ipsq into 15132 * the destination ipsq. If the destination ipsq is not busy, it also enters 15133 * the destination ipsq exclusively. Now the actual groupname setting operation 15134 * can proceed. If the destination ipsq is busy, the operation is enqueued 15135 * on the destination (merged) ipsq and will be handled in the unwind from 15136 * ipsq_exit. 15137 * 15138 * To prevent other threads accessing the ill while the group name change is 15139 * in progres, we bring down the ipifs which also removes the ill from the 15140 * group. The group is changed in phyint and when the first ipif on the ill 15141 * is brought up, the ill is inserted into the right IPMP group by 15142 * illgrp_insert. 15143 */ 15144 /* ARGSUSED */ 15145 int 15146 ip_sioctl_groupname(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 15147 ip_ioctl_cmd_t *ipip, void *ifreq) 15148 { 15149 int i; 15150 char *tmp; 15151 int namelen; 15152 ill_t *ill = ipif->ipif_ill; 15153 ill_t *ill_v4, *ill_v6; 15154 int err = 0; 15155 phyint_t *phyi; 15156 phyint_t *phyi_tmp; 15157 struct lifreq *lifr; 15158 mblk_t *mp1; 15159 char *groupname; 15160 ipsq_t *ipsq; 15161 15162 ASSERT(IAM_WRITER_IPIF(ipif)); 15163 15164 /* Existance verified in ip_wput_nondata */ 15165 mp1 = mp->b_cont->b_cont; 15166 lifr = (struct lifreq *)mp1->b_rptr; 15167 groupname = lifr->lifr_groupname; 15168 15169 if (ipif->ipif_id != 0) 15170 return (EINVAL); 15171 15172 phyi = ill->ill_phyint; 15173 ASSERT(phyi != NULL); 15174 15175 if (phyi->phyint_flags & PHYI_VIRTUAL) 15176 return (EINVAL); 15177 15178 tmp = groupname; 15179 for (i = 0; i < LIFNAMSIZ && *tmp != '\0'; tmp++, i++) 15180 ; 15181 15182 if (i == LIFNAMSIZ) { 15183 /* no null termination */ 15184 return (EINVAL); 15185 } 15186 15187 /* 15188 * Calculate the namelen exclusive of the null 15189 * termination character. 15190 */ 15191 namelen = tmp - groupname; 15192 15193 ill_v4 = phyi->phyint_illv4; 15194 ill_v6 = phyi->phyint_illv6; 15195 15196 /* 15197 * ILL cannot be part of a usesrc group and and IPMP group at the 15198 * same time. No need to grab the ill_g_usesrc_lock here, see 15199 * synchronization notes in ip.c 15200 */ 15201 if (ipif->ipif_ill->ill_usesrc_grp_next != NULL) { 15202 return (EINVAL); 15203 } 15204 15205 /* 15206 * mark the ill as changing. 15207 * this should queue all new requests on the syncq. 15208 */ 15209 GRAB_ILL_LOCKS(ill_v4, ill_v6); 15210 15211 if (ill_v4 != NULL) 15212 ill_v4->ill_state_flags |= ILL_CHANGING; 15213 if (ill_v6 != NULL) 15214 ill_v6->ill_state_flags |= ILL_CHANGING; 15215 RELEASE_ILL_LOCKS(ill_v4, ill_v6); 15216 15217 if (namelen == 0) { 15218 /* 15219 * Null string means remove this interface from the 15220 * existing group. 15221 */ 15222 if (phyi->phyint_groupname_len == 0) { 15223 /* 15224 * Never was in a group. 15225 */ 15226 err = 0; 15227 goto done; 15228 } 15229 15230 /* 15231 * IPv4 or IPv6 may be temporarily out of the group when all 15232 * the ipifs are down. Thus, we need to check for ill_group to 15233 * be non-NULL. 15234 */ 15235 if (ill_v4 != NULL && ill_v4->ill_group != NULL) { 15236 ill_down_ipifs(ill_v4, mp, 0, B_FALSE); 15237 mutex_enter(&ill_v4->ill_lock); 15238 if (!ill_is_quiescent(ill_v4)) { 15239 /* 15240 * ipsq_pending_mp_add will not fail since 15241 * connp is NULL 15242 */ 15243 (void) ipsq_pending_mp_add(NULL, 15244 ill_v4->ill_ipif, q, mp, ILL_DOWN); 15245 mutex_exit(&ill_v4->ill_lock); 15246 err = EINPROGRESS; 15247 goto done; 15248 } 15249 mutex_exit(&ill_v4->ill_lock); 15250 } 15251 15252 if (ill_v6 != NULL && ill_v6->ill_group != NULL) { 15253 ill_down_ipifs(ill_v6, mp, 0, B_FALSE); 15254 mutex_enter(&ill_v6->ill_lock); 15255 if (!ill_is_quiescent(ill_v6)) { 15256 (void) ipsq_pending_mp_add(NULL, 15257 ill_v6->ill_ipif, q, mp, ILL_DOWN); 15258 mutex_exit(&ill_v6->ill_lock); 15259 err = EINPROGRESS; 15260 goto done; 15261 } 15262 mutex_exit(&ill_v6->ill_lock); 15263 } 15264 15265 rw_enter(&ill_g_lock, RW_WRITER); 15266 GRAB_ILL_LOCKS(ill_v4, ill_v6); 15267 mutex_enter(&phyi->phyint_lock); 15268 ASSERT(phyi->phyint_groupname != NULL); 15269 mi_free(phyi->phyint_groupname); 15270 phyi->phyint_groupname = NULL; 15271 phyi->phyint_groupname_len = 0; 15272 mutex_exit(&phyi->phyint_lock); 15273 RELEASE_ILL_LOCKS(ill_v4, ill_v6); 15274 rw_exit(&ill_g_lock); 15275 err = ill_up_ipifs(ill, q, mp); 15276 15277 /* 15278 * set the split flag so that the ipsq can be split 15279 */ 15280 mutex_enter(&phyi->phyint_ipsq->ipsq_lock); 15281 phyi->phyint_ipsq->ipsq_split = B_TRUE; 15282 mutex_exit(&phyi->phyint_ipsq->ipsq_lock); 15283 15284 } else { 15285 if (phyi->phyint_groupname_len != 0) { 15286 ASSERT(phyi->phyint_groupname != NULL); 15287 /* Are we inserting in the same group ? */ 15288 if (mi_strcmp(groupname, 15289 phyi->phyint_groupname) == 0) { 15290 err = 0; 15291 goto done; 15292 } 15293 } 15294 15295 rw_enter(&ill_g_lock, RW_READER); 15296 /* 15297 * Merge ipsq for the group's. 15298 * This check is here as multiple groups/ills might be 15299 * sharing the same ipsq. 15300 * If we have to merege than the operation is restarted 15301 * on the new ipsq. 15302 */ 15303 ipsq = ip_ipsq_lookup(groupname, B_FALSE, NULL); 15304 if (phyi->phyint_ipsq != ipsq) { 15305 rw_exit(&ill_g_lock); 15306 err = ill_merge_groups(ill, NULL, groupname, mp, q); 15307 goto done; 15308 } 15309 /* 15310 * Running exclusive on new ipsq. 15311 */ 15312 15313 ASSERT(ipsq != NULL); 15314 ASSERT(ipsq->ipsq_writer == curthread); 15315 15316 /* 15317 * Check whether the ill_type and ill_net_type matches before 15318 * we allocate any memory so that the cleanup is easier. 15319 * 15320 * We can't group dissimilar ones as we can't load spread 15321 * packets across the group because of potential link-level 15322 * header differences. 15323 */ 15324 phyi_tmp = phyint_lookup_group(groupname); 15325 if (phyi_tmp != NULL) { 15326 if ((ill_v4 != NULL && 15327 phyi_tmp->phyint_illv4 != NULL) && 15328 ((ill_v4->ill_net_type != 15329 phyi_tmp->phyint_illv4->ill_net_type) || 15330 (ill_v4->ill_type != 15331 phyi_tmp->phyint_illv4->ill_type))) { 15332 mutex_enter(&phyi->phyint_ipsq->ipsq_lock); 15333 phyi->phyint_ipsq->ipsq_split = B_TRUE; 15334 mutex_exit(&phyi->phyint_ipsq->ipsq_lock); 15335 rw_exit(&ill_g_lock); 15336 return (EINVAL); 15337 } 15338 if ((ill_v6 != NULL && 15339 phyi_tmp->phyint_illv6 != NULL) && 15340 ((ill_v6->ill_net_type != 15341 phyi_tmp->phyint_illv6->ill_net_type) || 15342 (ill_v6->ill_type != 15343 phyi_tmp->phyint_illv6->ill_type))) { 15344 mutex_enter(&phyi->phyint_ipsq->ipsq_lock); 15345 phyi->phyint_ipsq->ipsq_split = B_TRUE; 15346 mutex_exit(&phyi->phyint_ipsq->ipsq_lock); 15347 rw_exit(&ill_g_lock); 15348 return (EINVAL); 15349 } 15350 } 15351 15352 rw_exit(&ill_g_lock); 15353 15354 /* 15355 * bring down all v4 ipifs. 15356 */ 15357 if (ill_v4 != NULL) { 15358 ill_down_ipifs(ill_v4, mp, 0, B_FALSE); 15359 } 15360 15361 /* 15362 * bring down all v6 ipifs. 15363 */ 15364 if (ill_v6 != NULL) { 15365 ill_down_ipifs(ill_v6, mp, 0, B_FALSE); 15366 } 15367 15368 /* 15369 * make sure all ipifs are down and there are no active 15370 * references. Call to ipsq_pending_mp_add will not fail 15371 * since connp is NULL. 15372 */ 15373 if (ill_v4 != NULL) { 15374 mutex_enter(&ill_v4->ill_lock); 15375 if (!ill_is_quiescent(ill_v4)) { 15376 (void) ipsq_pending_mp_add(NULL, 15377 ill_v4->ill_ipif, q, mp, ILL_DOWN); 15378 mutex_exit(&ill_v4->ill_lock); 15379 err = EINPROGRESS; 15380 goto done; 15381 } 15382 mutex_exit(&ill_v4->ill_lock); 15383 } 15384 15385 if (ill_v6 != NULL) { 15386 mutex_enter(&ill_v6->ill_lock); 15387 if (!ill_is_quiescent(ill_v6)) { 15388 (void) ipsq_pending_mp_add(NULL, 15389 ill_v6->ill_ipif, q, mp, ILL_DOWN); 15390 mutex_exit(&ill_v6->ill_lock); 15391 err = EINPROGRESS; 15392 goto done; 15393 } 15394 mutex_exit(&ill_v6->ill_lock); 15395 } 15396 15397 /* 15398 * allocate including space for null terminator 15399 * before we insert. 15400 */ 15401 tmp = (char *)mi_alloc(namelen + 1, BPRI_MED); 15402 if (tmp == NULL) 15403 return (ENOMEM); 15404 15405 rw_enter(&ill_g_lock, RW_WRITER); 15406 GRAB_ILL_LOCKS(ill_v4, ill_v6); 15407 mutex_enter(&phyi->phyint_lock); 15408 if (phyi->phyint_groupname_len != 0) { 15409 ASSERT(phyi->phyint_groupname != NULL); 15410 mi_free(phyi->phyint_groupname); 15411 } 15412 15413 /* 15414 * setup the new group name. 15415 */ 15416 phyi->phyint_groupname = tmp; 15417 bcopy(groupname, phyi->phyint_groupname, namelen + 1); 15418 phyi->phyint_groupname_len = namelen + 1; 15419 mutex_exit(&phyi->phyint_lock); 15420 RELEASE_ILL_LOCKS(ill_v4, ill_v6); 15421 rw_exit(&ill_g_lock); 15422 15423 err = ill_up_ipifs(ill, q, mp); 15424 } 15425 15426 done: 15427 /* 15428 * normally ILL_CHANGING is cleared in ill_up_ipifs. 15429 */ 15430 if (err != EINPROGRESS) { 15431 GRAB_ILL_LOCKS(ill_v4, ill_v6); 15432 if (ill_v4 != NULL) 15433 ill_v4->ill_state_flags &= ~ILL_CHANGING; 15434 if (ill_v6 != NULL) 15435 ill_v6->ill_state_flags &= ~ILL_CHANGING; 15436 RELEASE_ILL_LOCKS(ill_v4, ill_v6); 15437 } 15438 return (err); 15439 } 15440 15441 /* ARGSUSED */ 15442 int 15443 ip_sioctl_get_groupname(ipif_t *ipif, sin_t *dummy_sin, queue_t *q, 15444 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 15445 { 15446 ill_t *ill; 15447 phyint_t *phyi; 15448 struct lifreq *lifr; 15449 mblk_t *mp1; 15450 15451 /* Existence verified in ip_wput_nondata */ 15452 mp1 = mp->b_cont->b_cont; 15453 lifr = (struct lifreq *)mp1->b_rptr; 15454 ill = ipif->ipif_ill; 15455 phyi = ill->ill_phyint; 15456 15457 lifr->lifr_groupname[0] = '\0'; 15458 /* 15459 * ill_group may be null if all the interfaces 15460 * are down. But still, the phyint should always 15461 * hold the name. 15462 */ 15463 if (phyi->phyint_groupname_len != 0) { 15464 bcopy(phyi->phyint_groupname, lifr->lifr_groupname, 15465 phyi->phyint_groupname_len); 15466 } 15467 15468 return (0); 15469 } 15470 15471 15472 typedef struct conn_move_s { 15473 ill_t *cm_from_ill; 15474 ill_t *cm_to_ill; 15475 int cm_ifindex; 15476 } conn_move_t; 15477 15478 /* 15479 * ipcl_walk function for moving conn_multicast_ill for a given ill. 15480 */ 15481 static void 15482 conn_move(conn_t *connp, caddr_t arg) 15483 { 15484 conn_move_t *connm; 15485 int ifindex; 15486 int i; 15487 ill_t *from_ill; 15488 ill_t *to_ill; 15489 ilg_t *ilg; 15490 ilm_t *ret_ilm; 15491 15492 connm = (conn_move_t *)arg; 15493 ifindex = connm->cm_ifindex; 15494 from_ill = connm->cm_from_ill; 15495 to_ill = connm->cm_to_ill; 15496 15497 /* Change IP_BOUND_IF/IPV6_BOUND_IF associations. */ 15498 15499 /* All multicast fields protected by conn_lock */ 15500 mutex_enter(&connp->conn_lock); 15501 ASSERT(connp->conn_outgoing_ill == connp->conn_incoming_ill); 15502 if ((connp->conn_outgoing_ill == from_ill) && 15503 (ifindex == 0 || connp->conn_orig_bound_ifindex == ifindex)) { 15504 connp->conn_outgoing_ill = to_ill; 15505 connp->conn_incoming_ill = to_ill; 15506 } 15507 15508 /* Change IP_MULTICAST_IF/IPV6_MULTICAST_IF associations */ 15509 15510 if ((connp->conn_multicast_ill == from_ill) && 15511 (ifindex == 0 || connp->conn_orig_multicast_ifindex == ifindex)) { 15512 connp->conn_multicast_ill = connm->cm_to_ill; 15513 } 15514 15515 /* Change IP_XMIT_IF associations */ 15516 if ((connp->conn_xmit_if_ill == from_ill) && 15517 (ifindex == 0 || connp->conn_orig_xmit_ifindex == ifindex)) { 15518 connp->conn_xmit_if_ill = to_ill; 15519 } 15520 /* 15521 * Change the ilg_ill to point to the new one. This assumes 15522 * ilm_move_v6 has moved the ilms to new_ill and the driver 15523 * has been told to receive packets on this interface. 15524 * ilm_move_v6 FAILBACKS all the ilms successfully always. 15525 * But when doing a FAILOVER, it might fail with ENOMEM and so 15526 * some ilms may not have moved. We check to see whether 15527 * the ilms have moved to to_ill. We can't check on from_ill 15528 * as in the process of moving, we could have split an ilm 15529 * in to two - which has the same orig_ifindex and v6group. 15530 * 15531 * For IPv4, ilg_ipif moves implicitly. The code below really 15532 * does not do anything for IPv4 as ilg_ill is NULL for IPv4. 15533 */ 15534 for (i = connp->conn_ilg_inuse - 1; i >= 0; i--) { 15535 ilg = &connp->conn_ilg[i]; 15536 if ((ilg->ilg_ill == from_ill) && 15537 (ifindex == 0 || ilg->ilg_orig_ifindex == ifindex)) { 15538 /* ifindex != 0 indicates failback */ 15539 if (ifindex != 0) { 15540 connp->conn_ilg[i].ilg_ill = to_ill; 15541 continue; 15542 } 15543 15544 ret_ilm = ilm_lookup_ill_index_v6(to_ill, 15545 &ilg->ilg_v6group, ilg->ilg_orig_ifindex, 15546 connp->conn_zoneid); 15547 15548 if (ret_ilm != NULL) 15549 connp->conn_ilg[i].ilg_ill = to_ill; 15550 } 15551 } 15552 mutex_exit(&connp->conn_lock); 15553 } 15554 15555 static void 15556 conn_move_ill(ill_t *from_ill, ill_t *to_ill, int ifindex) 15557 { 15558 conn_move_t connm; 15559 15560 connm.cm_from_ill = from_ill; 15561 connm.cm_to_ill = to_ill; 15562 connm.cm_ifindex = ifindex; 15563 15564 ipcl_walk(conn_move, (caddr_t)&connm); 15565 } 15566 15567 /* 15568 * ilm has been moved from from_ill to to_ill. 15569 * Send DL_DISABMULTI_REQ to ill and DL_ENABMULTI_REQ on to_ill. 15570 * appropriately. 15571 * 15572 * NOTE : We can't reuse the code in ip_ll_addmulti/delmulti because 15573 * the code there de-references ipif_ill to get the ill to 15574 * send multicast requests. It does not work as ipif is on its 15575 * move and already moved when this function is called. 15576 * Thus, we need to use from_ill and to_ill send down multicast 15577 * requests. 15578 */ 15579 static void 15580 ilm_send_multicast_reqs(ill_t *from_ill, ill_t *to_ill) 15581 { 15582 ipif_t *ipif; 15583 ilm_t *ilm; 15584 15585 /* 15586 * See whether we need to send down DL_ENABMULTI_REQ on 15587 * to_ill as ilm has just been added. 15588 */ 15589 ASSERT(IAM_WRITER_ILL(to_ill)); 15590 ASSERT(IAM_WRITER_ILL(from_ill)); 15591 15592 ILM_WALKER_HOLD(to_ill); 15593 for (ilm = to_ill->ill_ilm; ilm != NULL && ilm->ilm_is_new && 15594 !(ilm->ilm_flags & ILM_DELETED); ilm = ilm->ilm_next) { 15595 15596 /* 15597 * no locks held, ill/ipif cannot dissappear as long 15598 * as we are writer. 15599 */ 15600 ipif = to_ill->ill_ipif; 15601 /* 15602 * No need to hold any lock as we are the writer and this 15603 * can only be changed by a writer. 15604 */ 15605 ilm->ilm_is_new = B_FALSE; 15606 15607 if (to_ill->ill_net_type != IRE_IF_RESOLVER || 15608 ipif->ipif_flags & IPIF_POINTOPOINT) { 15609 ip1dbg(("ilm_send_multicast_reqs: to_ill not " 15610 "resolver\n")); 15611 continue; /* Must be IRE_IF_NORESOLVER */ 15612 } 15613 15614 15615 if (to_ill->ill_phyint->phyint_flags & PHYI_MULTI_BCAST) { 15616 ip1dbg(("ilm_send_multicast_reqs: " 15617 "to_ill MULTI_BCAST\n")); 15618 ilm->ilm_join_mld = B_FALSE; 15619 goto from; 15620 } 15621 15622 if (ilm->ilm_join_mld) { 15623 ASSERT(to_ill->ill_isv6); 15624 mld_joingroup(ilm); 15625 } 15626 15627 ilm->ilm_join_mld = B_FALSE; 15628 15629 if (to_ill->ill_ipif_up_count == 0) { 15630 /* 15631 * Nobody there. All multicast addresses will be 15632 * re-joined when we get the DL_BIND_ACK bringing the 15633 * interface up. 15634 */ 15635 ilm->ilm_notify_driver = B_FALSE; 15636 ip1dbg(("ilm_send_multicast_reqs: to_ill nobody up\n")); 15637 goto from; 15638 } 15639 15640 /* 15641 * For allmulti address, we want to join on only one interface. 15642 * Checking for ilm_numentries_v6 is not correct as you may 15643 * find an ilm with zero address on to_ill, but we may not 15644 * have nominated to_ill for receiving. Thus, if we have 15645 * nominated from_ill (ill_join_allmulti is set), nominate 15646 * only if to_ill is not already nominated (to_ill normally 15647 * should not have been nominated if "from_ill" has already 15648 * been nominated. As we don't prevent failovers from happening 15649 * across groups, we don't assert). 15650 */ 15651 if (IN6_IS_ADDR_UNSPECIFIED(&ilm->ilm_v6addr)) { 15652 /* 15653 * There is no need to hold ill locks as we are 15654 * writer on both ills and when ill_join_allmulti 15655 * is changed the thread is always a writer. 15656 */ 15657 if (from_ill->ill_join_allmulti && 15658 !to_ill->ill_join_allmulti) { 15659 (void) ip_join_allmulti(to_ill->ill_ipif); 15660 } 15661 } else if (ilm->ilm_notify_driver) { 15662 15663 /* 15664 * This is a newly moved ilm so we need to tell the 15665 * driver about the new group. There can be more than 15666 * one ilm's for the same group in the list each with a 15667 * different orig_ifindex. We have to inform the driver 15668 * once. In ilm_move_v[4,6] we only set the flag 15669 * ilm_notify_driver for the first ilm. 15670 */ 15671 15672 (void) ip_ll_send_enabmulti_req(to_ill, 15673 &ilm->ilm_v6addr); 15674 } 15675 15676 ilm->ilm_notify_driver = B_FALSE; 15677 15678 /* 15679 * See whether we need to send down DL_DISABMULTI_REQ on 15680 * from_ill as ilm has just been removed. 15681 */ 15682 from: 15683 ipif = from_ill->ill_ipif; 15684 if (from_ill->ill_net_type != IRE_IF_RESOLVER || 15685 ipif->ipif_flags & IPIF_POINTOPOINT) { 15686 ip1dbg(("ilm_send_multicast_reqs: " 15687 "from_ill not resolver\n")); 15688 continue; /* Must be IRE_IF_NORESOLVER */ 15689 } 15690 15691 if (from_ill->ill_phyint->phyint_flags & PHYI_MULTI_BCAST) { 15692 ip1dbg(("ilm_send_multicast_reqs: " 15693 "from_ill MULTI_BCAST\n")); 15694 continue; 15695 } 15696 15697 if (IN6_IS_ADDR_UNSPECIFIED(&ilm->ilm_v6addr)) { 15698 if (from_ill->ill_join_allmulti) 15699 (void) ip_leave_allmulti(from_ill->ill_ipif); 15700 } else if (ilm_numentries_v6(from_ill, &ilm->ilm_v6addr) == 0) { 15701 (void) ip_ll_send_disabmulti_req(from_ill, 15702 &ilm->ilm_v6addr); 15703 } 15704 } 15705 ILM_WALKER_RELE(to_ill); 15706 } 15707 15708 /* 15709 * This function is called when all multicast memberships needs 15710 * to be moved from "from_ill" to "to_ill" for IPv6. This function is 15711 * called only once unlike the IPv4 counterpart where it is called after 15712 * every logical interface is moved. The reason is due to multicast 15713 * memberships are joined using an interface address in IPv4 while in 15714 * IPv6, interface index is used. 15715 */ 15716 static void 15717 ilm_move_v6(ill_t *from_ill, ill_t *to_ill, int ifindex) 15718 { 15719 ilm_t *ilm; 15720 ilm_t *ilm_next; 15721 ilm_t *new_ilm; 15722 ilm_t **ilmp; 15723 int count; 15724 char buf[INET6_ADDRSTRLEN]; 15725 in6_addr_t ipv6_snm = ipv6_solicited_node_mcast; 15726 15727 ASSERT(MUTEX_HELD(&to_ill->ill_lock)); 15728 ASSERT(MUTEX_HELD(&from_ill->ill_lock)); 15729 ASSERT(RW_WRITE_HELD(&ill_g_lock)); 15730 15731 if (ifindex == 0) { 15732 /* 15733 * Form the solicited node mcast address which is used later. 15734 */ 15735 ipif_t *ipif; 15736 15737 ipif = from_ill->ill_ipif; 15738 ASSERT(ipif->ipif_id == 0); 15739 15740 ipv6_snm.s6_addr32[3] |= ipif->ipif_v6lcl_addr.s6_addr32[3]; 15741 } 15742 15743 ilmp = &from_ill->ill_ilm; 15744 for (ilm = from_ill->ill_ilm; ilm != NULL && 15745 !(ilm->ilm_flags & ILM_DELETED); ilm = ilm_next) { 15746 ilm_next = ilm->ilm_next; 15747 new_ilm = ilm_lookup_ill_index_v6(to_ill, &ilm->ilm_v6addr, 15748 ilm->ilm_orig_ifindex, ilm->ilm_zoneid); 15749 ASSERT(ilm->ilm_orig_ifindex != 0); 15750 if (ilm->ilm_orig_ifindex == ifindex) { 15751 /* 15752 * We are failing back multicast memberships. 15753 * If the same ilm exists in to_ill, it means somebody 15754 * has joined the same group there e.g. ff02::1 15755 * is joined within the kernel when the interfaces 15756 * came UP. 15757 */ 15758 ASSERT(ilm->ilm_ipif == NULL); 15759 if (new_ilm != NULL) { 15760 new_ilm->ilm_refcnt += ilm->ilm_refcnt; 15761 if (new_ilm->ilm_fmode != MODE_IS_EXCLUDE || 15762 !SLIST_IS_EMPTY(new_ilm->ilm_filter)) { 15763 new_ilm->ilm_join_mld = B_TRUE; 15764 } 15765 } else { 15766 /* 15767 * check if we can just move the ilm 15768 */ 15769 if (from_ill->ill_ilm_walker_cnt != 0) { 15770 /* 15771 * We have walkers we cannot move 15772 * the ilm, so allocate a new ilm, 15773 * this (old) ilm will be marked 15774 * ILM_DELETED at the end of the loop 15775 * and will be freed when the 15776 * last walker exits. 15777 */ 15778 new_ilm = (ilm_t *)mi_zalloc 15779 (sizeof (ilm_t)); 15780 if (new_ilm == NULL) { 15781 ip0dbg(("ilm_move_v6: " 15782 "FAILBACK of IPv6" 15783 " multicast address %s : " 15784 "from %s to" 15785 " %s failed : ENOMEM \n", 15786 inet_ntop(AF_INET6, 15787 &ilm->ilm_v6addr, buf, 15788 sizeof (buf)), 15789 from_ill->ill_name, 15790 to_ill->ill_name)); 15791 15792 ilmp = &ilm->ilm_next; 15793 continue; 15794 } 15795 *new_ilm = *ilm; 15796 /* 15797 * we don't want new_ilm linked to 15798 * ilm's filter list. 15799 */ 15800 new_ilm->ilm_filter = NULL; 15801 } else { 15802 /* 15803 * No walkers we can move the ilm. 15804 * lets take it out of the list. 15805 */ 15806 *ilmp = ilm->ilm_next; 15807 ilm->ilm_next = NULL; 15808 new_ilm = ilm; 15809 } 15810 15811 new_ilm->ilm_ill = to_ill; 15812 /* Add to the to_ill's list */ 15813 new_ilm->ilm_next = to_ill->ill_ilm; 15814 to_ill->ill_ilm = new_ilm; 15815 /* 15816 * set the flag so that mld_joingroup is 15817 * called in ilm_send_multicast_reqs(). 15818 */ 15819 new_ilm->ilm_join_mld = B_TRUE; 15820 /* 15821 * if this is the first ilm for the group 15822 * set ilm_notify_driver so that we notify the 15823 * driver in ilm_send_multicast_reqs. 15824 */ 15825 if (ilm_lookup_ill_v6(to_ill, 15826 &new_ilm->ilm_v6addr, ALL_ZONES) == NULL) 15827 new_ilm->ilm_notify_driver = B_TRUE; 15828 } 15829 goto bottom; 15830 } else if (ifindex != 0) { 15831 /* 15832 * If this is FAILBACK (ifindex != 0) and the ifindex 15833 * has not matched above, look at the next ilm. 15834 */ 15835 ilmp = &ilm->ilm_next; 15836 continue; 15837 } 15838 /* 15839 * If we are here, it means ifindex is 0. Failover 15840 * everything. 15841 * 15842 * We need to handle solicited node mcast address 15843 * and all_nodes mcast address differently as they 15844 * are joined witin the kenrel (ipif_multicast_up) 15845 * and potentially from the userland. We are called 15846 * after the ipifs of from_ill has been moved. 15847 * If we still find ilms on ill with solicited node 15848 * mcast address or all_nodes mcast address, it must 15849 * belong to the UP interface that has not moved e.g. 15850 * ipif_id 0 with the link local prefix does not move. 15851 * We join this on the new ill accounting for all the 15852 * userland memberships so that applications don't 15853 * see any failure. 15854 * 15855 * We need to make sure that we account only for the 15856 * solicited node and all node multicast addresses 15857 * that was brought UP on these. In the case of 15858 * a failover from A to B, we might have ilms belonging 15859 * to A (ilm_orig_ifindex pointing at A) on B accounting 15860 * for the membership from the userland. If we are failing 15861 * over from B to C now, we will find the ones belonging 15862 * to A on B. These don't account for the ill_ipif_up_count. 15863 * They just move from B to C. The check below on 15864 * ilm_orig_ifindex ensures that. 15865 */ 15866 if ((ilm->ilm_orig_ifindex == 15867 from_ill->ill_phyint->phyint_ifindex) && 15868 (IN6_ARE_ADDR_EQUAL(&ipv6_snm, &ilm->ilm_v6addr) || 15869 IN6_ARE_ADDR_EQUAL(&ipv6_all_hosts_mcast, 15870 &ilm->ilm_v6addr))) { 15871 ASSERT(ilm->ilm_refcnt > 0); 15872 count = ilm->ilm_refcnt - from_ill->ill_ipif_up_count; 15873 /* 15874 * For indentation reasons, we are not using a 15875 * "else" here. 15876 */ 15877 if (count == 0) { 15878 ilmp = &ilm->ilm_next; 15879 continue; 15880 } 15881 ilm->ilm_refcnt -= count; 15882 if (new_ilm != NULL) { 15883 /* 15884 * Can find one with the same 15885 * ilm_orig_ifindex, if we are failing 15886 * over to a STANDBY. This happens 15887 * when somebody wants to join a group 15888 * on a STANDBY interface and we 15889 * internally join on a different one. 15890 * If we had joined on from_ill then, a 15891 * failover now will find a new ilm 15892 * with this index. 15893 */ 15894 ip1dbg(("ilm_move_v6: FAILOVER, found" 15895 " new ilm on %s, group address %s\n", 15896 to_ill->ill_name, 15897 inet_ntop(AF_INET6, 15898 &ilm->ilm_v6addr, buf, 15899 sizeof (buf)))); 15900 new_ilm->ilm_refcnt += count; 15901 if (new_ilm->ilm_fmode != MODE_IS_EXCLUDE || 15902 !SLIST_IS_EMPTY(new_ilm->ilm_filter)) { 15903 new_ilm->ilm_join_mld = B_TRUE; 15904 } 15905 } else { 15906 new_ilm = (ilm_t *)mi_zalloc(sizeof (ilm_t)); 15907 if (new_ilm == NULL) { 15908 ip0dbg(("ilm_move_v6: FAILOVER of IPv6" 15909 " multicast address %s : from %s to" 15910 " %s failed : ENOMEM \n", 15911 inet_ntop(AF_INET6, 15912 &ilm->ilm_v6addr, buf, 15913 sizeof (buf)), from_ill->ill_name, 15914 to_ill->ill_name)); 15915 ilmp = &ilm->ilm_next; 15916 continue; 15917 } 15918 *new_ilm = *ilm; 15919 new_ilm->ilm_filter = NULL; 15920 new_ilm->ilm_refcnt = count; 15921 new_ilm->ilm_ill = to_ill; 15922 new_ilm->ilm_timer = INFINITY; 15923 new_ilm->ilm_rtx.rtx_timer = INFINITY; 15924 new_ilm->ilm_join_mld = B_TRUE; 15925 /* Add to the to_ill's list */ 15926 new_ilm->ilm_next = to_ill->ill_ilm; 15927 to_ill->ill_ilm = new_ilm; 15928 /* 15929 * If the to_ill has not joined this 15930 * group we need to tell the driver in 15931 * ill_send_multicast_reqs. 15932 */ 15933 if (ilm_lookup_ill_v6(to_ill, 15934 &new_ilm->ilm_v6addr, ALL_ZONES) == NULL) 15935 new_ilm->ilm_notify_driver = B_TRUE; 15936 ASSERT(new_ilm->ilm_ipif == NULL); 15937 } 15938 if (ilm->ilm_refcnt == 0) { 15939 goto bottom; 15940 } else { 15941 new_ilm->ilm_is_new = B_TRUE; 15942 new_ilm->ilm_fmode = MODE_IS_EXCLUDE; 15943 CLEAR_SLIST(new_ilm->ilm_filter); 15944 ilmp = &ilm->ilm_next; 15945 } 15946 continue; 15947 } else { 15948 /* 15949 * ifindex = 0 means, move everything pointing at 15950 * from_ill. We are doing this becuase ill has 15951 * either FAILED or became INACTIVE. 15952 * 15953 * As we would like to move things later back to 15954 * from_ill, we want to retain the identity of this 15955 * ilm. Thus, we don't blindly increment the reference 15956 * count on the ilms matching the address alone. We 15957 * need to match on the ilm_orig_index also. new_ilm 15958 * was obtained by matching ilm_orig_index also. 15959 */ 15960 if (new_ilm != NULL) { 15961 /* 15962 * This is possible only if a previous restore 15963 * was incomplete i.e restore to 15964 * ilm_orig_ifindex left some ilms because 15965 * of some failures. Thus when we are failing 15966 * again, we might find our old friends there. 15967 */ 15968 ip1dbg(("ilm_move_v6: FAILOVER, found new ilm" 15969 " on %s, group address %s\n", 15970 to_ill->ill_name, 15971 inet_ntop(AF_INET6, 15972 &ilm->ilm_v6addr, buf, 15973 sizeof (buf)))); 15974 new_ilm->ilm_refcnt += ilm->ilm_refcnt; 15975 if (new_ilm->ilm_fmode != MODE_IS_EXCLUDE || 15976 !SLIST_IS_EMPTY(new_ilm->ilm_filter)) { 15977 new_ilm->ilm_join_mld = B_TRUE; 15978 } 15979 } else { 15980 if (from_ill->ill_ilm_walker_cnt != 0) { 15981 new_ilm = (ilm_t *) 15982 mi_zalloc(sizeof (ilm_t)); 15983 if (new_ilm == NULL) { 15984 ip0dbg(("ilm_move_v6: " 15985 "FAILOVER of IPv6" 15986 " multicast address %s : " 15987 "from %s to" 15988 " %s failed : ENOMEM \n", 15989 inet_ntop(AF_INET6, 15990 &ilm->ilm_v6addr, buf, 15991 sizeof (buf)), 15992 from_ill->ill_name, 15993 to_ill->ill_name)); 15994 15995 ilmp = &ilm->ilm_next; 15996 continue; 15997 } 15998 *new_ilm = *ilm; 15999 new_ilm->ilm_filter = NULL; 16000 } else { 16001 *ilmp = ilm->ilm_next; 16002 new_ilm = ilm; 16003 } 16004 /* Add to the to_ill's list */ 16005 new_ilm->ilm_next = to_ill->ill_ilm; 16006 to_ill->ill_ilm = new_ilm; 16007 ASSERT(ilm->ilm_ipif == NULL); 16008 new_ilm->ilm_ill = to_ill; 16009 new_ilm->ilm_join_mld = B_TRUE; 16010 /* 16011 * If the to_ill has not joined this 16012 * group we need to tell the driver in 16013 * ill_send_multicast_reqs. 16014 */ 16015 if (ilm_lookup_ill_v6(to_ill, 16016 &new_ilm->ilm_v6addr, ALL_ZONES) == NULL) 16017 new_ilm->ilm_notify_driver = B_TRUE; 16018 } 16019 16020 } 16021 16022 bottom: 16023 /* 16024 * set ilm_send_multicast_reqs so that we inform the 16025 * driver about the multicast group. 16026 */ 16027 new_ilm->ilm_is_new = B_TRUE; 16028 /* 16029 * Revert multicast filter state to (EXCLUDE, NULL). 16030 * new_ilm->ilm_join_mld should already be set if needed. 16031 */ 16032 new_ilm->ilm_fmode = MODE_IS_EXCLUDE; 16033 CLEAR_SLIST(new_ilm->ilm_filter); 16034 /* 16035 * We allocated/got a new ilm, free the old one. 16036 */ 16037 if (new_ilm != ilm) { 16038 if (from_ill->ill_ilm_walker_cnt == 0) { 16039 *ilmp = ilm->ilm_next; 16040 ilm->ilm_next = NULL; 16041 FREE_SLIST(ilm->ilm_filter); 16042 FREE_SLIST(ilm->ilm_pendsrcs); 16043 FREE_SLIST(ilm->ilm_rtx.rtx_allow); 16044 FREE_SLIST(ilm->ilm_rtx.rtx_block); 16045 mi_free((char *)ilm); 16046 } else { 16047 ilm->ilm_flags |= ILM_DELETED; 16048 from_ill->ill_ilm_cleanup_reqd = 1; 16049 ilmp = &ilm->ilm_next; 16050 } 16051 } 16052 } 16053 } 16054 16055 /* 16056 * Move all the multicast memberships to to_ill. Called when 16057 * an ipif moves from "from_ill" to "to_ill". This function is slightly 16058 * different from IPv6 counterpart as multicast memberships are associated 16059 * with ills in IPv6. This function is called after every ipif is moved 16060 * unlike IPv6, where it is moved only once. 16061 */ 16062 static void 16063 ilm_move_v4(ill_t *from_ill, ill_t *to_ill, ipif_t *ipif) 16064 { 16065 ilm_t *ilm; 16066 ilm_t *ilm_next; 16067 ilm_t *new_ilm; 16068 ilm_t **ilmp; 16069 16070 ASSERT(MUTEX_HELD(&to_ill->ill_lock)); 16071 ASSERT(MUTEX_HELD(&from_ill->ill_lock)); 16072 ASSERT(RW_WRITE_HELD(&ill_g_lock)); 16073 16074 ilmp = &from_ill->ill_ilm; 16075 for (ilm = from_ill->ill_ilm; ilm != NULL && 16076 !(ilm->ilm_flags & ILM_DELETED); ilm = ilm_next) { 16077 ilm_next = ilm->ilm_next; 16078 ASSERT(ilm->ilm_ipif != NULL); 16079 16080 if (ilm->ilm_ipif != ipif) { 16081 ilmp = &ilm->ilm_next; 16082 continue; 16083 } 16084 16085 if (V4_PART_OF_V6(ilm->ilm_v6addr) == 16086 htonl(INADDR_ALLHOSTS_GROUP)) { 16087 /* 16088 * We joined this in ipif_multicast_up 16089 * and we never did an ipif_multicast_down 16090 * for IPv4. If nobody else from the userland 16091 * has reference, we free the ilm, and later 16092 * when this ipif comes up on the new ill, 16093 * we will join this again. 16094 */ 16095 if (--ilm->ilm_refcnt == 0) 16096 goto delete_ilm; 16097 16098 new_ilm = ilm_lookup_ipif(ipif, 16099 V4_PART_OF_V6(ilm->ilm_v6addr)); 16100 if (new_ilm != NULL) { 16101 new_ilm->ilm_refcnt += ilm->ilm_refcnt; 16102 /* 16103 * We still need to deal with the from_ill. 16104 */ 16105 new_ilm->ilm_is_new = B_TRUE; 16106 new_ilm->ilm_fmode = MODE_IS_EXCLUDE; 16107 CLEAR_SLIST(new_ilm->ilm_filter); 16108 goto delete_ilm; 16109 } 16110 /* 16111 * If we could not find one e.g. ipif is 16112 * still down on to_ill, we add this ilm 16113 * on ill_new to preserve the reference 16114 * count. 16115 */ 16116 } 16117 /* 16118 * When ipifs move, ilms always move with it 16119 * to the NEW ill. Thus we should never be 16120 * able to find ilm till we really move it here. 16121 */ 16122 ASSERT(ilm_lookup_ipif(ipif, 16123 V4_PART_OF_V6(ilm->ilm_v6addr)) == NULL); 16124 16125 if (from_ill->ill_ilm_walker_cnt != 0) { 16126 new_ilm = (ilm_t *)mi_zalloc(sizeof (ilm_t)); 16127 if (new_ilm == NULL) { 16128 char buf[INET6_ADDRSTRLEN]; 16129 ip0dbg(("ilm_move_v4: FAILBACK of IPv4" 16130 " multicast address %s : " 16131 "from %s to" 16132 " %s failed : ENOMEM \n", 16133 inet_ntop(AF_INET, 16134 &ilm->ilm_v6addr, buf, 16135 sizeof (buf)), 16136 from_ill->ill_name, 16137 to_ill->ill_name)); 16138 16139 ilmp = &ilm->ilm_next; 16140 continue; 16141 } 16142 *new_ilm = *ilm; 16143 /* We don't want new_ilm linked to ilm's filter list */ 16144 new_ilm->ilm_filter = NULL; 16145 } else { 16146 /* Remove from the list */ 16147 *ilmp = ilm->ilm_next; 16148 new_ilm = ilm; 16149 } 16150 16151 /* 16152 * If we have never joined this group on the to_ill 16153 * make sure we tell the driver. 16154 */ 16155 if (ilm_lookup_ill_v6(to_ill, &new_ilm->ilm_v6addr, 16156 ALL_ZONES) == NULL) 16157 new_ilm->ilm_notify_driver = B_TRUE; 16158 16159 /* Add to the to_ill's list */ 16160 new_ilm->ilm_next = to_ill->ill_ilm; 16161 to_ill->ill_ilm = new_ilm; 16162 new_ilm->ilm_is_new = B_TRUE; 16163 16164 /* 16165 * Revert multicast filter state to (EXCLUDE, NULL) 16166 */ 16167 new_ilm->ilm_fmode = MODE_IS_EXCLUDE; 16168 CLEAR_SLIST(new_ilm->ilm_filter); 16169 16170 /* 16171 * Delete only if we have allocated a new ilm. 16172 */ 16173 if (new_ilm != ilm) { 16174 delete_ilm: 16175 if (from_ill->ill_ilm_walker_cnt == 0) { 16176 /* Remove from the list */ 16177 *ilmp = ilm->ilm_next; 16178 ilm->ilm_next = NULL; 16179 FREE_SLIST(ilm->ilm_filter); 16180 FREE_SLIST(ilm->ilm_pendsrcs); 16181 FREE_SLIST(ilm->ilm_rtx.rtx_allow); 16182 FREE_SLIST(ilm->ilm_rtx.rtx_block); 16183 mi_free((char *)ilm); 16184 } else { 16185 ilm->ilm_flags |= ILM_DELETED; 16186 from_ill->ill_ilm_cleanup_reqd = 1; 16187 ilmp = &ilm->ilm_next; 16188 } 16189 } 16190 } 16191 } 16192 16193 static uint_t 16194 ipif_get_id(ill_t *ill, uint_t id) 16195 { 16196 uint_t unit; 16197 ipif_t *tipif; 16198 boolean_t found = B_FALSE; 16199 16200 /* 16201 * During failback, we want to go back to the same id 16202 * instead of the smallest id so that the original 16203 * configuration is maintained. id is non-zero in that 16204 * case. 16205 */ 16206 if (id != 0) { 16207 /* 16208 * While failing back, if we still have an ipif with 16209 * MAX_ADDRS_PER_IF, it means this will be replaced 16210 * as soon as we return from this function. It was 16211 * to set to MAX_ADDRS_PER_IF by the caller so that 16212 * we can choose the smallest id. Thus we return zero 16213 * in that case ignoring the hint. 16214 */ 16215 if (ill->ill_ipif->ipif_id == MAX_ADDRS_PER_IF) 16216 return (0); 16217 for (tipif = ill->ill_ipif; tipif != NULL; 16218 tipif = tipif->ipif_next) { 16219 if (tipif->ipif_id == id) { 16220 found = B_TRUE; 16221 break; 16222 } 16223 } 16224 /* 16225 * If somebody already plumbed another logical 16226 * with the same id, we won't be able to find it. 16227 */ 16228 if (!found) 16229 return (id); 16230 } 16231 for (unit = 0; unit <= ip_addrs_per_if; unit++) { 16232 found = B_FALSE; 16233 for (tipif = ill->ill_ipif; tipif != NULL; 16234 tipif = tipif->ipif_next) { 16235 if (tipif->ipif_id == unit) { 16236 found = B_TRUE; 16237 break; 16238 } 16239 } 16240 if (!found) 16241 break; 16242 } 16243 return (unit); 16244 } 16245 16246 /* ARGSUSED */ 16247 static int 16248 ipif_move(ipif_t *ipif, ill_t *to_ill, queue_t *q, mblk_t *mp, 16249 ipif_t **rep_ipif_ptr) 16250 { 16251 ill_t *from_ill; 16252 ipif_t *rep_ipif; 16253 ipif_t **ipifp; 16254 uint_t unit; 16255 int err = 0; 16256 ipif_t *to_ipif; 16257 struct iocblk *iocp; 16258 boolean_t failback_cmd; 16259 boolean_t remove_ipif; 16260 int rc; 16261 16262 ASSERT(IAM_WRITER_ILL(to_ill)); 16263 ASSERT(IAM_WRITER_IPIF(ipif)); 16264 16265 iocp = (struct iocblk *)mp->b_rptr; 16266 failback_cmd = (iocp->ioc_cmd == SIOCLIFFAILBACK); 16267 remove_ipif = B_FALSE; 16268 16269 from_ill = ipif->ipif_ill; 16270 16271 ASSERT(MUTEX_HELD(&to_ill->ill_lock)); 16272 ASSERT(MUTEX_HELD(&from_ill->ill_lock)); 16273 ASSERT(RW_WRITE_HELD(&ill_g_lock)); 16274 16275 /* 16276 * Don't move LINK LOCAL addresses as they are tied to 16277 * physical interface. 16278 */ 16279 if (from_ill->ill_isv6 && 16280 IN6_IS_ADDR_LINKLOCAL(&ipif->ipif_v6lcl_addr)) { 16281 ipif->ipif_was_up = B_FALSE; 16282 IPIF_UNMARK_MOVING(ipif); 16283 return (0); 16284 } 16285 16286 /* 16287 * We set the ipif_id to maximum so that the search for 16288 * ipif_id will pick the lowest number i.e 0 in the 16289 * following 2 cases : 16290 * 16291 * 1) We have a replacement ipif at the head of to_ill. 16292 * We can't remove it yet as we can exceed ip_addrs_per_if 16293 * on to_ill and hence the MOVE might fail. We want to 16294 * remove it only if we could move the ipif. Thus, by 16295 * setting it to the MAX value, we make the search in 16296 * ipif_get_id return the zeroth id. 16297 * 16298 * 2) When DR pulls out the NIC and re-plumbs the interface, 16299 * we might just have a zero address plumbed on the ipif 16300 * with zero id in the case of IPv4. We remove that while 16301 * doing the failback. We want to remove it only if we 16302 * could move the ipif. Thus, by setting it to the MAX 16303 * value, we make the search in ipif_get_id return the 16304 * zeroth id. 16305 * 16306 * Both (1) and (2) are done only when when we are moving 16307 * an ipif (either due to failover/failback) which originally 16308 * belonged to this interface i.e the ipif_orig_ifindex is 16309 * the same as to_ill's ifindex. This is needed so that 16310 * FAILOVER from A -> B ( A failed) followed by FAILOVER 16311 * from B -> A (B is being removed from the group) and 16312 * FAILBACK from A -> B restores the original configuration. 16313 * Without the check for orig_ifindex, the second FAILOVER 16314 * could make the ipif belonging to B replace the A's zeroth 16315 * ipif and the subsequent failback re-creating the replacement 16316 * ipif again. 16317 * 16318 * NOTE : We created the replacement ipif when we did a 16319 * FAILOVER (See below). We could check for FAILBACK and 16320 * then look for replacement ipif to be removed. But we don't 16321 * want to do that because we wan't to allow the possibility 16322 * of a FAILOVER from A -> B (which creates the replacement ipif), 16323 * followed by a *FAILOVER* from B -> A instead of a FAILBACK 16324 * from B -> A. 16325 */ 16326 to_ipif = to_ill->ill_ipif; 16327 if ((to_ill->ill_phyint->phyint_ifindex == 16328 ipif->ipif_orig_ifindex) && 16329 IPIF_REPL_CHECK(to_ipif, failback_cmd)) { 16330 ASSERT(to_ipif->ipif_id == 0); 16331 remove_ipif = B_TRUE; 16332 to_ipif->ipif_id = MAX_ADDRS_PER_IF; 16333 } 16334 /* 16335 * Find the lowest logical unit number on the to_ill. 16336 * If we are failing back, try to get the original id 16337 * rather than the lowest one so that the original 16338 * configuration is maintained. 16339 * 16340 * XXX need a better scheme for this. 16341 */ 16342 if (failback_cmd) { 16343 unit = ipif_get_id(to_ill, ipif->ipif_orig_ipifid); 16344 } else { 16345 unit = ipif_get_id(to_ill, 0); 16346 } 16347 16348 /* Reset back to zero in case we fail below */ 16349 if (to_ipif->ipif_id == MAX_ADDRS_PER_IF) 16350 to_ipif->ipif_id = 0; 16351 16352 if (unit == ip_addrs_per_if) { 16353 ipif->ipif_was_up = B_FALSE; 16354 IPIF_UNMARK_MOVING(ipif); 16355 return (EINVAL); 16356 } 16357 16358 /* 16359 * ipif is ready to move from "from_ill" to "to_ill". 16360 * 16361 * 1) If we are moving ipif with id zero, create a 16362 * replacement ipif for this ipif on from_ill. If this fails 16363 * fail the MOVE operation. 16364 * 16365 * 2) Remove the replacement ipif on to_ill if any. 16366 * We could remove the replacement ipif when we are moving 16367 * the ipif with id zero. But what if somebody already 16368 * unplumbed it ? Thus we always remove it if it is present. 16369 * We want to do it only if we are sure we are going to 16370 * move the ipif to to_ill which is why there are no 16371 * returns due to error till ipif is linked to to_ill. 16372 * Note that the first ipif that we failback will always 16373 * be zero if it is present. 16374 */ 16375 if (ipif->ipif_id == 0) { 16376 ipaddr_t inaddr_any = INADDR_ANY; 16377 16378 rep_ipif = (ipif_t *)mi_alloc(sizeof (ipif_t), BPRI_MED); 16379 if (rep_ipif == NULL) { 16380 ipif->ipif_was_up = B_FALSE; 16381 IPIF_UNMARK_MOVING(ipif); 16382 return (ENOMEM); 16383 } 16384 *rep_ipif = ipif_zero; 16385 /* 16386 * Before we put the ipif on the list, store the addresses 16387 * as mapped addresses as some of the ioctls e.g SIOCGIFADDR 16388 * assumes so. This logic is not any different from what 16389 * ipif_allocate does. 16390 */ 16391 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 16392 &rep_ipif->ipif_v6lcl_addr); 16393 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 16394 &rep_ipif->ipif_v6src_addr); 16395 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 16396 &rep_ipif->ipif_v6subnet); 16397 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 16398 &rep_ipif->ipif_v6net_mask); 16399 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 16400 &rep_ipif->ipif_v6brd_addr); 16401 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 16402 &rep_ipif->ipif_v6pp_dst_addr); 16403 /* 16404 * We mark IPIF_NOFAILOVER so that this can never 16405 * move. 16406 */ 16407 rep_ipif->ipif_flags = ipif->ipif_flags | IPIF_NOFAILOVER; 16408 rep_ipif->ipif_flags &= ~IPIF_UP; 16409 rep_ipif->ipif_replace_zero = B_TRUE; 16410 mutex_init(&rep_ipif->ipif_saved_ire_lock, NULL, 16411 MUTEX_DEFAULT, NULL); 16412 rep_ipif->ipif_id = 0; 16413 rep_ipif->ipif_ire_type = ipif->ipif_ire_type; 16414 rep_ipif->ipif_ill = from_ill; 16415 rep_ipif->ipif_orig_ifindex = 16416 from_ill->ill_phyint->phyint_ifindex; 16417 /* Insert at head */ 16418 rep_ipif->ipif_next = from_ill->ill_ipif; 16419 from_ill->ill_ipif = rep_ipif; 16420 /* 16421 * We don't really care to let apps know about 16422 * this interface. 16423 */ 16424 } 16425 16426 if (remove_ipif) { 16427 /* 16428 * We set to a max value above for this case to get 16429 * id zero. ASSERT that we did get one. 16430 */ 16431 ASSERT((to_ipif->ipif_id == 0) && (unit == 0)); 16432 rep_ipif = to_ipif; 16433 to_ill->ill_ipif = rep_ipif->ipif_next; 16434 rep_ipif->ipif_next = NULL; 16435 /* 16436 * If some apps scanned and find this interface, 16437 * it is time to let them know, so that they can 16438 * delete it. 16439 */ 16440 16441 *rep_ipif_ptr = rep_ipif; 16442 } 16443 16444 /* Get it out of the ILL interface list. */ 16445 ipifp = &ipif->ipif_ill->ill_ipif; 16446 for (; *ipifp != NULL; ipifp = &ipifp[0]->ipif_next) { 16447 if (*ipifp == ipif) { 16448 *ipifp = ipif->ipif_next; 16449 break; 16450 } 16451 } 16452 16453 /* Assign the new ill */ 16454 ipif->ipif_ill = to_ill; 16455 ipif->ipif_id = unit; 16456 /* id has already been checked */ 16457 rc = ipif_insert(ipif, B_FALSE, B_FALSE); 16458 ASSERT(rc == 0); 16459 /* Let SCTP update its list */ 16460 sctp_move_ipif(ipif, from_ill, to_ill); 16461 /* 16462 * Handle the failover and failback of ipif_t between 16463 * ill_t that have differing maximum mtu values. 16464 */ 16465 if (ipif->ipif_mtu > to_ill->ill_max_mtu) { 16466 if (ipif->ipif_saved_mtu == 0) { 16467 /* 16468 * As this ipif_t is moving to an ill_t 16469 * that has a lower ill_max_mtu, its 16470 * ipif_mtu needs to be saved so it can 16471 * be restored during failback or during 16472 * failover to an ill_t which has a 16473 * higher ill_max_mtu. 16474 */ 16475 ipif->ipif_saved_mtu = ipif->ipif_mtu; 16476 ipif->ipif_mtu = to_ill->ill_max_mtu; 16477 } else { 16478 /* 16479 * The ipif_t is, once again, moving to 16480 * an ill_t that has a lower maximum mtu 16481 * value. 16482 */ 16483 ipif->ipif_mtu = to_ill->ill_max_mtu; 16484 } 16485 } else if (ipif->ipif_mtu < to_ill->ill_max_mtu && 16486 ipif->ipif_saved_mtu != 0) { 16487 /* 16488 * The mtu of this ipif_t had to be reduced 16489 * during an earlier failover; this is an 16490 * opportunity for it to be increased (either as 16491 * part of another failover or a failback). 16492 */ 16493 if (ipif->ipif_saved_mtu <= to_ill->ill_max_mtu) { 16494 ipif->ipif_mtu = ipif->ipif_saved_mtu; 16495 ipif->ipif_saved_mtu = 0; 16496 } else { 16497 ipif->ipif_mtu = to_ill->ill_max_mtu; 16498 } 16499 } 16500 16501 /* 16502 * We preserve all the other fields of the ipif including 16503 * ipif_saved_ire_mp. The routes that are saved here will 16504 * be recreated on the new interface and back on the old 16505 * interface when we move back. 16506 */ 16507 ASSERT(ipif->ipif_arp_del_mp == NULL); 16508 16509 return (err); 16510 } 16511 16512 static int 16513 ipif_move_all(ill_t *from_ill, ill_t *to_ill, queue_t *q, mblk_t *mp, 16514 int ifindex, ipif_t **rep_ipif_ptr) 16515 { 16516 ipif_t *mipif; 16517 ipif_t *ipif_next; 16518 int err; 16519 16520 /* 16521 * We don't really try to MOVE back things if some of the 16522 * operations fail. The daemon will take care of moving again 16523 * later on. 16524 */ 16525 for (mipif = from_ill->ill_ipif; mipif != NULL; mipif = ipif_next) { 16526 ipif_next = mipif->ipif_next; 16527 if (!(mipif->ipif_flags & IPIF_NOFAILOVER) && 16528 (ifindex == 0 || ifindex == mipif->ipif_orig_ifindex)) { 16529 16530 err = ipif_move(mipif, to_ill, q, mp, rep_ipif_ptr); 16531 16532 /* 16533 * When the MOVE fails, it is the job of the 16534 * application to take care of this properly 16535 * i.e try again if it is ENOMEM. 16536 */ 16537 if (mipif->ipif_ill != from_ill) { 16538 /* 16539 * ipif has moved. 16540 * 16541 * Move the multicast memberships associated 16542 * with this ipif to the new ill. For IPv6, we 16543 * do it once after all the ipifs are moved 16544 * (in ill_move) as they are not associated 16545 * with ipifs. 16546 * 16547 * We need to move the ilms as the ipif has 16548 * already been moved to a new ill even 16549 * in the case of errors. Neither 16550 * ilm_free(ipif) will find the ilm 16551 * when somebody unplumbs this ipif nor 16552 * ilm_delete(ilm) will be able to find the 16553 * ilm, if we don't move now. 16554 */ 16555 if (!from_ill->ill_isv6) 16556 ilm_move_v4(from_ill, to_ill, mipif); 16557 } 16558 16559 if (err != 0) 16560 return (err); 16561 } 16562 } 16563 return (0); 16564 } 16565 16566 static int 16567 ill_move(ill_t *from_ill, ill_t *to_ill, queue_t *q, mblk_t *mp) 16568 { 16569 int ifindex; 16570 int err; 16571 struct iocblk *iocp; 16572 ipif_t *ipif; 16573 ipif_t *rep_ipif_ptr = NULL; 16574 ipif_t *from_ipif = NULL; 16575 boolean_t check_rep_if = B_FALSE; 16576 16577 iocp = (struct iocblk *)mp->b_rptr; 16578 if (iocp->ioc_cmd == SIOCLIFFAILOVER) { 16579 /* 16580 * Move everything pointing at from_ill to to_ill. 16581 * We acheive this by passing in 0 as ifindex. 16582 */ 16583 ifindex = 0; 16584 } else { 16585 /* 16586 * Move everything pointing at from_ill whose original 16587 * ifindex of connp, ipif, ilm points at to_ill->ill_index. 16588 * We acheive this by passing in ifindex rather than 0. 16589 * Multicast vifs, ilgs move implicitly because ipifs move. 16590 */ 16591 ASSERT(iocp->ioc_cmd == SIOCLIFFAILBACK); 16592 ifindex = to_ill->ill_phyint->phyint_ifindex; 16593 } 16594 16595 /* 16596 * Determine if there is at least one ipif that would move from 16597 * 'from_ill' to 'to_ill'. If so, it is possible that the replacement 16598 * ipif (if it exists) on the to_ill would be consumed as a result of 16599 * the move, in which case we need to quiesce the replacement ipif also. 16600 */ 16601 for (from_ipif = from_ill->ill_ipif; from_ipif != NULL; 16602 from_ipif = from_ipif->ipif_next) { 16603 if (((ifindex == 0) || 16604 (ifindex == from_ipif->ipif_orig_ifindex)) && 16605 !(from_ipif->ipif_flags & IPIF_NOFAILOVER)) { 16606 check_rep_if = B_TRUE; 16607 break; 16608 } 16609 } 16610 16611 16612 ill_down_ipifs(from_ill, mp, ifindex, B_TRUE); 16613 16614 GRAB_ILL_LOCKS(from_ill, to_ill); 16615 if ((ipif = ill_quiescent_to_move(from_ill)) != NULL) { 16616 (void) ipsq_pending_mp_add(NULL, ipif, q, 16617 mp, ILL_MOVE_OK); 16618 RELEASE_ILL_LOCKS(from_ill, to_ill); 16619 return (EINPROGRESS); 16620 } 16621 16622 /* Check if the replacement ipif is quiescent to delete */ 16623 if (check_rep_if && IPIF_REPL_CHECK(to_ill->ill_ipif, 16624 (iocp->ioc_cmd == SIOCLIFFAILBACK))) { 16625 to_ill->ill_ipif->ipif_state_flags |= 16626 IPIF_MOVING | IPIF_CHANGING; 16627 if ((ipif = ill_quiescent_to_move(to_ill)) != NULL) { 16628 (void) ipsq_pending_mp_add(NULL, ipif, q, 16629 mp, ILL_MOVE_OK); 16630 RELEASE_ILL_LOCKS(from_ill, to_ill); 16631 return (EINPROGRESS); 16632 } 16633 } 16634 RELEASE_ILL_LOCKS(from_ill, to_ill); 16635 16636 ASSERT(!MUTEX_HELD(&to_ill->ill_lock)); 16637 rw_enter(&ill_g_lock, RW_WRITER); 16638 GRAB_ILL_LOCKS(from_ill, to_ill); 16639 err = ipif_move_all(from_ill, to_ill, q, mp, ifindex, &rep_ipif_ptr); 16640 16641 /* ilm_move is done inside ipif_move for IPv4 */ 16642 if (err == 0 && from_ill->ill_isv6) 16643 ilm_move_v6(from_ill, to_ill, ifindex); 16644 16645 RELEASE_ILL_LOCKS(from_ill, to_ill); 16646 rw_exit(&ill_g_lock); 16647 16648 /* 16649 * send rts messages and multicast messages. 16650 */ 16651 if (rep_ipif_ptr != NULL) { 16652 ip_rts_ifmsg(rep_ipif_ptr); 16653 ip_rts_newaddrmsg(RTM_DELETE, 0, rep_ipif_ptr); 16654 IPIF_TRACE_CLEANUP(rep_ipif_ptr); 16655 mi_free(rep_ipif_ptr); 16656 } 16657 16658 ilm_send_multicast_reqs(from_ill, to_ill); 16659 16660 conn_move_ill(from_ill, to_ill, ifindex); 16661 16662 return (err); 16663 } 16664 16665 /* 16666 * Used to extract arguments for FAILOVER/FAILBACK ioctls. 16667 * Also checks for the validity of the arguments. 16668 * Note: We are already exclusive inside the from group. 16669 * It is upto the caller to release refcnt on the to_ill's. 16670 */ 16671 static int 16672 ip_extract_move_args(queue_t *q, mblk_t *mp, ill_t **ill_from_v4, 16673 ill_t **ill_from_v6, ill_t **ill_to_v4, ill_t **ill_to_v6) 16674 { 16675 int dst_index; 16676 ipif_t *ipif_v4, *ipif_v6; 16677 struct lifreq *lifr; 16678 mblk_t *mp1; 16679 boolean_t exists; 16680 sin_t *sin; 16681 int err = 0; 16682 16683 if ((mp1 = mp->b_cont) == NULL) 16684 return (EPROTO); 16685 16686 if ((mp1 = mp1->b_cont) == NULL) 16687 return (EPROTO); 16688 16689 lifr = (struct lifreq *)mp1->b_rptr; 16690 sin = (sin_t *)&lifr->lifr_addr; 16691 16692 /* 16693 * We operate on both IPv4 and IPv6. Thus, we don't allow IPv4/IPv6 16694 * specific operations. 16695 */ 16696 if (sin->sin_family != AF_UNSPEC) 16697 return (EINVAL); 16698 16699 /* 16700 * Get ipif with id 0. We are writer on the from ill. So we can pass 16701 * NULLs for the last 4 args and we know the lookup won't fail 16702 * with EINPROGRESS. 16703 */ 16704 ipif_v4 = ipif_lookup_on_name(lifr->lifr_name, 16705 mi_strlen(lifr->lifr_name), B_FALSE, &exists, B_FALSE, 16706 ALL_ZONES, NULL, NULL, NULL, NULL); 16707 ipif_v6 = ipif_lookup_on_name(lifr->lifr_name, 16708 mi_strlen(lifr->lifr_name), B_FALSE, &exists, B_TRUE, 16709 ALL_ZONES, NULL, NULL, NULL, NULL); 16710 16711 if (ipif_v4 == NULL && ipif_v6 == NULL) 16712 return (ENXIO); 16713 16714 if (ipif_v4 != NULL) { 16715 ASSERT(ipif_v4->ipif_refcnt != 0); 16716 if (ipif_v4->ipif_id != 0) { 16717 err = EINVAL; 16718 goto done; 16719 } 16720 16721 ASSERT(IAM_WRITER_IPIF(ipif_v4)); 16722 *ill_from_v4 = ipif_v4->ipif_ill; 16723 } 16724 16725 if (ipif_v6 != NULL) { 16726 ASSERT(ipif_v6->ipif_refcnt != 0); 16727 if (ipif_v6->ipif_id != 0) { 16728 err = EINVAL; 16729 goto done; 16730 } 16731 16732 ASSERT(IAM_WRITER_IPIF(ipif_v6)); 16733 *ill_from_v6 = ipif_v6->ipif_ill; 16734 } 16735 16736 err = 0; 16737 dst_index = lifr->lifr_movetoindex; 16738 *ill_to_v4 = ill_lookup_on_ifindex(dst_index, B_FALSE, 16739 q, mp, ip_process_ioctl, &err); 16740 if (err != 0) { 16741 /* 16742 * There could be only v6. 16743 */ 16744 if (err != ENXIO) 16745 goto done; 16746 err = 0; 16747 } 16748 16749 *ill_to_v6 = ill_lookup_on_ifindex(dst_index, B_TRUE, 16750 q, mp, ip_process_ioctl, &err); 16751 if (err != 0) { 16752 if (err != ENXIO) 16753 goto done; 16754 if (*ill_to_v4 == NULL) { 16755 err = ENXIO; 16756 goto done; 16757 } 16758 err = 0; 16759 } 16760 16761 /* 16762 * If we have something to MOVE i.e "from" not NULL, 16763 * "to" should be non-NULL. 16764 */ 16765 if ((*ill_from_v4 != NULL && *ill_to_v4 == NULL) || 16766 (*ill_from_v6 != NULL && *ill_to_v6 == NULL)) { 16767 err = EINVAL; 16768 } 16769 16770 done: 16771 if (ipif_v4 != NULL) 16772 ipif_refrele(ipif_v4); 16773 if (ipif_v6 != NULL) 16774 ipif_refrele(ipif_v6); 16775 return (err); 16776 } 16777 16778 /* 16779 * FAILOVER and FAILBACK are modelled as MOVE operations. 16780 * 16781 * We don't check whether the MOVE is within the same group or 16782 * not, because this ioctl can be used as a generic mechanism 16783 * to failover from interface A to B, though things will function 16784 * only if they are really part of the same group. Moreover, 16785 * all ipifs may be down and hence temporarily out of the group. 16786 * 16787 * ipif's that need to be moved are first brought down; V4 ipifs are brought 16788 * down first and then V6. For each we wait for the ipif's to become quiescent. 16789 * Bringing down the ipifs ensures that all ires pointing to these ipifs's 16790 * have been deleted and there are no active references. Once quiescent the 16791 * ipif's are moved and brought up on the new ill. 16792 * 16793 * Normally the source ill and destination ill belong to the same IPMP group 16794 * and hence the same ipsq_t. In the event they don't belong to the same 16795 * same group the two ipsq's are first merged into one ipsq - that of the 16796 * to_ill. The multicast memberships on the source and destination ill cannot 16797 * change during the move operation since multicast joins/leaves also have to 16798 * execute on the same ipsq and are hence serialized. 16799 */ 16800 /* ARGSUSED */ 16801 int 16802 ip_sioctl_move(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 16803 ip_ioctl_cmd_t *ipip, void *ifreq) 16804 { 16805 ill_t *ill_to_v4 = NULL; 16806 ill_t *ill_to_v6 = NULL; 16807 ill_t *ill_from_v4 = NULL; 16808 ill_t *ill_from_v6 = NULL; 16809 int err = 0; 16810 16811 /* 16812 * setup from and to ill's, we can get EINPROGRESS only for 16813 * to_ill's. 16814 */ 16815 err = ip_extract_move_args(q, mp, &ill_from_v4, &ill_from_v6, 16816 &ill_to_v4, &ill_to_v6); 16817 16818 if (err != 0) { 16819 ip0dbg(("ip_sioctl_move: extract args failed\n")); 16820 goto done; 16821 } 16822 16823 /* 16824 * nothing to do. 16825 */ 16826 if ((ill_from_v4 != NULL) && (ill_from_v4 == ill_to_v4)) { 16827 goto done; 16828 } 16829 16830 /* 16831 * nothing to do. 16832 */ 16833 if ((ill_from_v6 != NULL) && (ill_from_v6 == ill_to_v6)) { 16834 goto done; 16835 } 16836 16837 /* 16838 * Mark the ill as changing. 16839 * ILL_CHANGING flag is cleared when the ipif's are brought up 16840 * in ill_up_ipifs in case of error they are cleared below. 16841 */ 16842 16843 GRAB_ILL_LOCKS(ill_from_v4, ill_from_v6); 16844 if (ill_from_v4 != NULL) 16845 ill_from_v4->ill_state_flags |= ILL_CHANGING; 16846 if (ill_from_v6 != NULL) 16847 ill_from_v6->ill_state_flags |= ILL_CHANGING; 16848 RELEASE_ILL_LOCKS(ill_from_v4, ill_from_v6); 16849 16850 /* 16851 * Make sure that both src and dst are 16852 * in the same syncq group. If not make it happen. 16853 * We are not holding any locks because we are the writer 16854 * on the from_ipsq and we will hold locks in ill_merge_groups 16855 * to protect to_ipsq against changing. 16856 */ 16857 if (ill_from_v4 != NULL) { 16858 if (ill_from_v4->ill_phyint->phyint_ipsq != 16859 ill_to_v4->ill_phyint->phyint_ipsq) { 16860 err = ill_merge_groups(ill_from_v4, ill_to_v4, 16861 NULL, mp, q); 16862 goto err_ret; 16863 16864 } 16865 ASSERT(!MUTEX_HELD(&ill_to_v4->ill_lock)); 16866 } else { 16867 16868 if (ill_from_v6->ill_phyint->phyint_ipsq != 16869 ill_to_v6->ill_phyint->phyint_ipsq) { 16870 err = ill_merge_groups(ill_from_v6, ill_to_v6, 16871 NULL, mp, q); 16872 goto err_ret; 16873 16874 } 16875 ASSERT(!MUTEX_HELD(&ill_to_v6->ill_lock)); 16876 } 16877 16878 /* 16879 * Now that the ipsq's have been merged and we are the writer 16880 * lets mark to_ill as changing as well. 16881 */ 16882 16883 GRAB_ILL_LOCKS(ill_to_v4, ill_to_v6); 16884 if (ill_to_v4 != NULL) 16885 ill_to_v4->ill_state_flags |= ILL_CHANGING; 16886 if (ill_to_v6 != NULL) 16887 ill_to_v6->ill_state_flags |= ILL_CHANGING; 16888 RELEASE_ILL_LOCKS(ill_to_v4, ill_to_v6); 16889 16890 /* 16891 * Its ok for us to proceed with the move even if 16892 * ill_pending_mp is non null on one of the from ill's as the reply 16893 * should not be looking at the ipif, it should only care about the 16894 * ill itself. 16895 */ 16896 16897 /* 16898 * lets move ipv4 first. 16899 */ 16900 if (ill_from_v4 != NULL) { 16901 ASSERT(IAM_WRITER_ILL(ill_to_v4)); 16902 ill_from_v4->ill_move_in_progress = B_TRUE; 16903 ill_to_v4->ill_move_in_progress = B_TRUE; 16904 ill_to_v4->ill_move_peer = ill_from_v4; 16905 ill_from_v4->ill_move_peer = ill_to_v4; 16906 err = ill_move(ill_from_v4, ill_to_v4, q, mp); 16907 } 16908 16909 /* 16910 * Now lets move ipv6. 16911 */ 16912 if (err == 0 && ill_from_v6 != NULL) { 16913 ASSERT(IAM_WRITER_ILL(ill_to_v6)); 16914 ill_from_v6->ill_move_in_progress = B_TRUE; 16915 ill_to_v6->ill_move_in_progress = B_TRUE; 16916 ill_to_v6->ill_move_peer = ill_from_v6; 16917 ill_from_v6->ill_move_peer = ill_to_v6; 16918 err = ill_move(ill_from_v6, ill_to_v6, q, mp); 16919 } 16920 16921 err_ret: 16922 /* 16923 * EINPROGRESS means we are waiting for the ipif's that need to be 16924 * moved to become quiescent. 16925 */ 16926 if (err == EINPROGRESS) { 16927 goto done; 16928 } 16929 16930 /* 16931 * if err is set ill_up_ipifs will not be called 16932 * lets clear the flags. 16933 */ 16934 16935 GRAB_ILL_LOCKS(ill_to_v4, ill_to_v6); 16936 GRAB_ILL_LOCKS(ill_from_v4, ill_from_v6); 16937 /* 16938 * Some of the clearing may be redundant. But it is simple 16939 * not making any extra checks. 16940 */ 16941 if (ill_from_v6 != NULL) { 16942 ill_from_v6->ill_move_in_progress = B_FALSE; 16943 ill_from_v6->ill_move_peer = NULL; 16944 ill_from_v6->ill_state_flags &= ~ILL_CHANGING; 16945 } 16946 if (ill_from_v4 != NULL) { 16947 ill_from_v4->ill_move_in_progress = B_FALSE; 16948 ill_from_v4->ill_move_peer = NULL; 16949 ill_from_v4->ill_state_flags &= ~ILL_CHANGING; 16950 } 16951 if (ill_to_v6 != NULL) { 16952 ill_to_v6->ill_move_in_progress = B_FALSE; 16953 ill_to_v6->ill_move_peer = NULL; 16954 ill_to_v6->ill_state_flags &= ~ILL_CHANGING; 16955 } 16956 if (ill_to_v4 != NULL) { 16957 ill_to_v4->ill_move_in_progress = B_FALSE; 16958 ill_to_v4->ill_move_peer = NULL; 16959 ill_to_v4->ill_state_flags &= ~ILL_CHANGING; 16960 } 16961 16962 /* 16963 * Check for setting INACTIVE, if STANDBY is set and FAILED is not set. 16964 * Do this always to maintain proper state i.e even in case of errors. 16965 * As phyint_inactive looks at both v4 and v6 interfaces, 16966 * we need not call on both v4 and v6 interfaces. 16967 */ 16968 if (ill_from_v4 != NULL) { 16969 if ((ill_from_v4->ill_phyint->phyint_flags & 16970 (PHYI_STANDBY | PHYI_FAILED)) == PHYI_STANDBY) { 16971 phyint_inactive(ill_from_v4->ill_phyint); 16972 } 16973 } else if (ill_from_v6 != NULL) { 16974 if ((ill_from_v6->ill_phyint->phyint_flags & 16975 (PHYI_STANDBY | PHYI_FAILED)) == PHYI_STANDBY) { 16976 phyint_inactive(ill_from_v6->ill_phyint); 16977 } 16978 } 16979 16980 if (ill_to_v4 != NULL) { 16981 if (ill_to_v4->ill_phyint->phyint_flags & PHYI_INACTIVE) { 16982 ill_to_v4->ill_phyint->phyint_flags &= ~PHYI_INACTIVE; 16983 } 16984 } else if (ill_to_v6 != NULL) { 16985 if (ill_to_v6->ill_phyint->phyint_flags & PHYI_INACTIVE) { 16986 ill_to_v6->ill_phyint->phyint_flags &= ~PHYI_INACTIVE; 16987 } 16988 } 16989 16990 RELEASE_ILL_LOCKS(ill_to_v4, ill_to_v6); 16991 RELEASE_ILL_LOCKS(ill_from_v4, ill_from_v6); 16992 16993 no_err: 16994 /* 16995 * lets bring the interfaces up on the to_ill. 16996 */ 16997 if (err == 0) { 16998 err = ill_up_ipifs(ill_to_v4 == NULL ? ill_to_v6:ill_to_v4, 16999 q, mp); 17000 } 17001 done: 17002 17003 if (ill_to_v4 != NULL) { 17004 ill_refrele(ill_to_v4); 17005 } 17006 if (ill_to_v6 != NULL) { 17007 ill_refrele(ill_to_v6); 17008 } 17009 17010 return (err); 17011 } 17012 17013 static void 17014 ill_dl_down(ill_t *ill) 17015 { 17016 /* 17017 * The ill is down; unbind but stay attached since we're still 17018 * associated with a PPA. 17019 */ 17020 mblk_t *mp = ill->ill_unbind_mp; 17021 17022 ill->ill_unbind_mp = NULL; 17023 ip1dbg(("ill_dl_down(%s)\n", ill->ill_name)); 17024 if (mp != NULL) { 17025 ip1dbg(("ill_dl_down: %s (%u) for %s\n", 17026 dlpi_prim_str(*(int *)mp->b_rptr), *(int *)mp->b_rptr, 17027 ill->ill_name)); 17028 ill_dlpi_send(ill, mp); 17029 } 17030 17031 /* 17032 * Toss all of our multicast memberships. We could keep them, but 17033 * then we'd have to do bookkeeping of any joins and leaves performed 17034 * by the application while the the interface is down (we can't just 17035 * issue them because arp cannot currently process AR_ENTRY_SQUERY's 17036 * on a downed interface). 17037 */ 17038 ill_leave_multicast(ill); 17039 17040 mutex_enter(&ill->ill_lock); 17041 ill->ill_dl_up = 0; 17042 mutex_exit(&ill->ill_lock); 17043 } 17044 17045 void 17046 ill_dlpi_dispatch(ill_t *ill, mblk_t *mp) 17047 { 17048 union DL_primitives *dlp; 17049 t_uscalar_t prim; 17050 17051 ASSERT(DB_TYPE(mp) == M_PROTO || DB_TYPE(mp) == M_PCPROTO); 17052 17053 dlp = (union DL_primitives *)mp->b_rptr; 17054 prim = dlp->dl_primitive; 17055 17056 ip1dbg(("ill_dlpi_dispatch: sending %s (%u) to %s\n", 17057 dlpi_prim_str(prim), prim, ill->ill_name)); 17058 17059 switch (prim) { 17060 case DL_PHYS_ADDR_REQ: 17061 { 17062 dl_phys_addr_req_t *dlpap = (dl_phys_addr_req_t *)mp->b_rptr; 17063 ill->ill_phys_addr_pend = dlpap->dl_addr_type; 17064 break; 17065 } 17066 case DL_BIND_REQ: 17067 mutex_enter(&ill->ill_lock); 17068 ill->ill_state_flags &= ~ILL_DL_UNBIND_DONE; 17069 mutex_exit(&ill->ill_lock); 17070 break; 17071 } 17072 17073 ill->ill_dlpi_pending = prim; 17074 17075 /* 17076 * Some drivers send M_FLUSH up to IP as part of unbind 17077 * request. When this M_FLUSH is sent back to the driver, 17078 * this can go after we send the detach request if the 17079 * M_FLUSH ends up in IP's syncq. To avoid that, we reply 17080 * to the M_FLUSH in ip_rput and locally generate another 17081 * M_FLUSH for the correctness. This will get freed in 17082 * ip_wput_nondata. 17083 */ 17084 if (prim == DL_UNBIND_REQ) 17085 (void) putnextctl1(ill->ill_rq, M_FLUSH, FLUSHRW); 17086 17087 putnext(ill->ill_wq, mp); 17088 } 17089 17090 /* 17091 * Send a DLPI control message to the driver but make sure there 17092 * is only one outstanding message. Uses ill_dlpi_pending to tell 17093 * when it must queue. ip_rput_dlpi_writer calls ill_dlpi_done() 17094 * when an ACK or a NAK is received to process the next queued message. 17095 * 17096 * We don't protect ill_dlpi_pending with any lock. This is okay as 17097 * every place where its accessed, ip is exclusive while accessing 17098 * ill_dlpi_pending except when this function is called from ill_init() 17099 */ 17100 void 17101 ill_dlpi_send(ill_t *ill, mblk_t *mp) 17102 { 17103 mblk_t **mpp; 17104 17105 ASSERT(IAM_WRITER_ILL(ill)); 17106 ASSERT(DB_TYPE(mp) == M_PROTO || DB_TYPE(mp) == M_PCPROTO); 17107 17108 if (ill->ill_dlpi_pending != DL_PRIM_INVAL) { 17109 /* Must queue message. Tail insertion */ 17110 mpp = &ill->ill_dlpi_deferred; 17111 while (*mpp != NULL) 17112 mpp = &((*mpp)->b_next); 17113 17114 ip1dbg(("ill_dlpi_send: deferring request for %s\n", 17115 ill->ill_name)); 17116 17117 *mpp = mp; 17118 return; 17119 } 17120 17121 ill_dlpi_dispatch(ill, mp); 17122 } 17123 17124 /* 17125 * Called when an DLPI control message has been acked or nacked to 17126 * send down the next queued message (if any). 17127 */ 17128 void 17129 ill_dlpi_done(ill_t *ill, t_uscalar_t prim) 17130 { 17131 mblk_t *mp; 17132 17133 ASSERT(IAM_WRITER_ILL(ill)); 17134 17135 ASSERT(prim != DL_PRIM_INVAL); 17136 if (ill->ill_dlpi_pending != prim) { 17137 if (ill->ill_dlpi_pending == DL_PRIM_INVAL) { 17138 (void) mi_strlog(ill->ill_rq, 1, 17139 SL_CONSOLE|SL_ERROR|SL_TRACE, 17140 "ill_dlpi_done: unsolicited ack for %s from %s\n", 17141 dlpi_prim_str(prim), ill->ill_name); 17142 } else { 17143 (void) mi_strlog(ill->ill_rq, 1, 17144 SL_CONSOLE|SL_ERROR|SL_TRACE, 17145 "ill_dlpi_done: unexpected ack for %s from %s " 17146 "(expecting ack for %s)\n", 17147 dlpi_prim_str(prim), ill->ill_name, 17148 dlpi_prim_str(ill->ill_dlpi_pending)); 17149 } 17150 return; 17151 } 17152 17153 ip1dbg(("ill_dlpi_done: %s has completed %s (%u)\n", ill->ill_name, 17154 dlpi_prim_str(ill->ill_dlpi_pending), ill->ill_dlpi_pending)); 17155 17156 if ((mp = ill->ill_dlpi_deferred) == NULL) { 17157 ill->ill_dlpi_pending = DL_PRIM_INVAL; 17158 return; 17159 } 17160 17161 ill->ill_dlpi_deferred = mp->b_next; 17162 mp->b_next = NULL; 17163 17164 ill_dlpi_dispatch(ill, mp); 17165 } 17166 17167 void 17168 conn_delete_ire(conn_t *connp, caddr_t arg) 17169 { 17170 ipif_t *ipif = (ipif_t *)arg; 17171 ire_t *ire; 17172 17173 /* 17174 * Look at the cached ires on conns which has pointers to ipifs. 17175 * We just call ire_refrele which clears up the reference 17176 * to ire. Called when a conn closes. Also called from ipif_free 17177 * to cleanup indirect references to the stale ipif via the cached ire. 17178 */ 17179 mutex_enter(&connp->conn_lock); 17180 ire = connp->conn_ire_cache; 17181 if (ire != NULL && (ipif == NULL || ire->ire_ipif == ipif)) { 17182 connp->conn_ire_cache = NULL; 17183 mutex_exit(&connp->conn_lock); 17184 IRE_REFRELE_NOTR(ire); 17185 return; 17186 } 17187 mutex_exit(&connp->conn_lock); 17188 17189 } 17190 17191 /* 17192 * Some operations (illgrp_delete(), ipif_down()) conditionally delete a number 17193 * of IREs. Those IREs may have been previously cached in the conn structure. 17194 * This ipcl_walk() walker function releases all references to such IREs based 17195 * on the condemned flag. 17196 */ 17197 /* ARGSUSED */ 17198 void 17199 conn_cleanup_stale_ire(conn_t *connp, caddr_t arg) 17200 { 17201 ire_t *ire; 17202 17203 mutex_enter(&connp->conn_lock); 17204 ire = connp->conn_ire_cache; 17205 if (ire != NULL && (ire->ire_marks & IRE_MARK_CONDEMNED)) { 17206 connp->conn_ire_cache = NULL; 17207 mutex_exit(&connp->conn_lock); 17208 IRE_REFRELE_NOTR(ire); 17209 return; 17210 } 17211 mutex_exit(&connp->conn_lock); 17212 } 17213 17214 /* 17215 * Take down a specific interface, but don't lose any information about it. 17216 * Also delete interface from its interface group (ifgrp). 17217 * (Always called as writer.) 17218 * This function goes through the down sequence even if the interface is 17219 * already down. There are 2 reasons. 17220 * a. Currently we permit interface routes that depend on down interfaces 17221 * to be added. This behaviour itself is questionable. However it appears 17222 * that both Solaris and 4.3 BSD have exhibited this behaviour for a long 17223 * time. We go thru the cleanup in order to remove these routes. 17224 * b. The bringup of the interface could fail in ill_dl_up i.e. we get 17225 * DL_ERROR_ACK in response to the the DL_BIND request. The interface is 17226 * down, but we need to cleanup i.e. do ill_dl_down and 17227 * ip_rput_dlpi_writer (DL_ERROR_ACK) -> ipif_down. 17228 * 17229 * IP-MT notes: 17230 * 17231 * Model of reference to interfaces. 17232 * 17233 * The following members in ipif_t track references to the ipif. 17234 * int ipif_refcnt; Active reference count 17235 * uint_t ipif_ire_cnt; Number of ire's referencing this ipif 17236 * The following members in ill_t track references to the ill. 17237 * int ill_refcnt; active refcnt 17238 * uint_t ill_ire_cnt; Number of ires referencing ill 17239 * uint_t ill_nce_cnt; Number of nces referencing ill 17240 * 17241 * Reference to an ipif or ill can be obtained in any of the following ways. 17242 * 17243 * Through the lookup functions ipif_lookup_* / ill_lookup_* functions 17244 * Pointers to ipif / ill from other data structures viz ire and conn. 17245 * Implicit reference to the ipif / ill by holding a reference to the ire. 17246 * 17247 * The ipif/ill lookup functions return a reference held ipif / ill. 17248 * ipif_refcnt and ill_refcnt track the reference counts respectively. 17249 * This is a purely dynamic reference count associated with threads holding 17250 * references to the ipif / ill. Pointers from other structures do not 17251 * count towards this reference count. 17252 * 17253 * ipif_ire_cnt/ill_ire_cnt is the number of ire's associated with the 17254 * ipif/ill. This is incremented whenever a new ire is created referencing the 17255 * ipif/ill. This is done atomically inside ire_add_v[46] where the ire is 17256 * actually added to the ire hash table. The count is decremented in 17257 * ire_inactive where the ire is destroyed. 17258 * 17259 * nce's reference ill's thru nce_ill and the count of nce's associated with 17260 * an ill is recorded in ill_nce_cnt. This is incremented atomically in 17261 * ndp_add() where the nce is actually added to the table. Similarly it is 17262 * decremented in ndp_inactive where the nce is destroyed. 17263 * 17264 * Flow of ioctls involving interface down/up 17265 * 17266 * The following is the sequence of an attempt to set some critical flags on an 17267 * up interface. 17268 * ip_sioctl_flags 17269 * ipif_down 17270 * wait for ipif to be quiescent 17271 * ipif_down_tail 17272 * ip_sioctl_flags_tail 17273 * 17274 * All set ioctls that involve down/up sequence would have a skeleton similar 17275 * to the above. All the *tail functions are called after the refcounts have 17276 * dropped to the appropriate values. 17277 * 17278 * The mechanism to quiesce an ipif is as follows. 17279 * 17280 * Mark the ipif as IPIF_CHANGING. No more lookups will be allowed 17281 * on the ipif. Callers either pass a flag requesting wait or the lookup 17282 * functions will return NULL. 17283 * 17284 * Delete all ires referencing this ipif 17285 * 17286 * Any thread attempting to do an ipif_refhold on an ipif that has been 17287 * obtained thru a cached pointer will first make sure that 17288 * the ipif can be refheld using the macro IPIF_CAN_LOOKUP and only then 17289 * increment the refcount. 17290 * 17291 * The above guarantees that the ipif refcount will eventually come down to 17292 * zero and the ipif will quiesce, once all threads that currently hold a 17293 * reference to the ipif refrelease the ipif. The ipif is quiescent after the 17294 * ipif_refcount has dropped to zero and all ire's associated with this ipif 17295 * have also been ire_inactive'd. i.e. when ipif_ire_cnt and ipif_refcnt both 17296 * drop to zero. 17297 * 17298 * Lookups during the IPIF_CHANGING/ILL_CHANGING interval. 17299 * 17300 * Threads trying to lookup an ipif or ill can pass a flag requesting 17301 * wait and restart if the ipif / ill cannot be looked up currently. 17302 * For eg. bind, and route operations (Eg. route add / delete) cannot return 17303 * failure if the ipif is currently undergoing an exclusive operation, and 17304 * hence pass the flag. The mblk is then enqueued in the ipsq and the operation 17305 * is restarted by ipsq_exit() when the currently exclusive ioctl completes. 17306 * The lookup and enqueue is atomic using the ill_lock and ipsq_lock. The 17307 * lookup is done holding the ill_lock. Hence the ill/ipif state flags can't 17308 * change while the ill_lock is held. Before dropping the ill_lock we acquire 17309 * the ipsq_lock and call ipsq_enq. This ensures that ipsq_exit can't finish 17310 * until we release the ipsq_lock, even though the the ill/ipif state flags 17311 * can change after we drop the ill_lock. 17312 * 17313 * An attempt to send out a packet using an ipif that is currently 17314 * IPIF_CHANGING will fail. No attempt is made in this case to enqueue this 17315 * operation and restart it later when the exclusive condition on the ipif ends. 17316 * This is an example of not passing the wait flag to the lookup functions. For 17317 * example an attempt to refhold and use conn->conn_multicast_ipif and send 17318 * out a multicast packet on that ipif will fail while the ipif is 17319 * IPIF_CHANGING. An attempt to create an IRE_CACHE using an ipif that is 17320 * currently IPIF_CHANGING will also fail. 17321 */ 17322 int 17323 ipif_down(ipif_t *ipif, queue_t *q, mblk_t *mp) 17324 { 17325 ill_t *ill = ipif->ipif_ill; 17326 phyint_t *phyi; 17327 conn_t *connp; 17328 boolean_t success; 17329 boolean_t ipif_was_up = B_FALSE; 17330 17331 ASSERT(IAM_WRITER_IPIF(ipif)); 17332 17333 ip1dbg(("ipif_down(%s:%u)\n", ill->ill_name, ipif->ipif_id)); 17334 17335 if (ipif->ipif_flags & IPIF_UP) { 17336 mutex_enter(&ill->ill_lock); 17337 ipif->ipif_flags &= ~IPIF_UP; 17338 ASSERT(ill->ill_ipif_up_count > 0); 17339 --ill->ill_ipif_up_count; 17340 mutex_exit(&ill->ill_lock); 17341 ipif_was_up = B_TRUE; 17342 /* Update status in SCTP's list */ 17343 sctp_update_ipif(ipif, SCTP_IPIF_DOWN); 17344 } 17345 17346 /* 17347 * Blow away v6 memberships we established in ipif_multicast_up(); the 17348 * v4 ones are left alone (as is the ipif_multicast_up flag, so we 17349 * know not to rejoin when the interface is brought back up). 17350 */ 17351 if (ipif->ipif_isv6) 17352 ipif_multicast_down(ipif); 17353 /* 17354 * Remove from the mapping for __sin6_src_id. We insert only 17355 * when the address is not INADDR_ANY. As IPv4 addresses are 17356 * stored as mapped addresses, we need to check for mapped 17357 * INADDR_ANY also. 17358 */ 17359 if (ipif_was_up && !IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr) && 17360 !IN6_IS_ADDR_V4MAPPED_ANY(&ipif->ipif_v6lcl_addr) && 17361 !(ipif->ipif_flags & IPIF_NOLOCAL)) { 17362 int err; 17363 17364 err = ip_srcid_remove(&ipif->ipif_v6lcl_addr, 17365 ipif->ipif_zoneid); 17366 if (err != 0) { 17367 ip0dbg(("ipif_down: srcid_remove %d\n", err)); 17368 } 17369 } 17370 17371 /* 17372 * Before we delete the ill from the group (if any), we need 17373 * to make sure that we delete all the routes dependent on 17374 * this and also any ipifs dependent on this ipif for 17375 * source address. We need to do before we delete from 17376 * the group because 17377 * 17378 * 1) ipif_down_delete_ire de-references ill->ill_group. 17379 * 17380 * 2) ipif_update_other_ipifs needs to walk the whole group 17381 * for re-doing source address selection. Note that 17382 * ipif_select_source[_v6] called from 17383 * ipif_update_other_ipifs[_v6] will not pick this ipif 17384 * because we have already marked down here i.e cleared 17385 * IPIF_UP. 17386 */ 17387 if (ipif->ipif_isv6) 17388 ire_walk_v6(ipif_down_delete_ire, (char *)ipif, ALL_ZONES); 17389 else 17390 ire_walk_v4(ipif_down_delete_ire, (char *)ipif, ALL_ZONES); 17391 17392 /* 17393 * Need to add these also to be saved and restored when the 17394 * ipif is brought down and up 17395 */ 17396 mutex_enter(&ire_mrtun_lock); 17397 if (ire_mrtun_count != 0) { 17398 mutex_exit(&ire_mrtun_lock); 17399 ire_walk_ill_mrtun(0, 0, ipif_down_delete_ire, 17400 (char *)ipif, NULL); 17401 } else { 17402 mutex_exit(&ire_mrtun_lock); 17403 } 17404 17405 mutex_enter(&ire_srcif_table_lock); 17406 if (ire_srcif_table_count > 0) { 17407 mutex_exit(&ire_srcif_table_lock); 17408 ire_walk_srcif_table_v4(ipif_down_delete_ire, (char *)ipif); 17409 } else { 17410 mutex_exit(&ire_srcif_table_lock); 17411 } 17412 17413 /* 17414 * Cleaning up the conn_ire_cache or conns must be done only after the 17415 * ires have been deleted above. Otherwise a thread could end up 17416 * caching an ire in a conn after we have finished the cleanup of the 17417 * conn. The caching is done after making sure that the ire is not yet 17418 * condemned. Also documented in the block comment above ip_output 17419 */ 17420 ipcl_walk(conn_cleanup_stale_ire, NULL); 17421 /* Also, delete the ires cached in SCTP */ 17422 sctp_ire_cache_flush(ipif); 17423 17424 /* Resolve any IPsec/IKE NAT-T instances that depend on this ipif. */ 17425 nattymod_clean_ipif(ipif); 17426 17427 /* 17428 * Update any other ipifs which have used "our" local address as 17429 * a source address. This entails removing and recreating IRE_INTERFACE 17430 * entries for such ipifs. 17431 */ 17432 if (ipif->ipif_isv6) 17433 ipif_update_other_ipifs_v6(ipif, ill->ill_group); 17434 else 17435 ipif_update_other_ipifs(ipif, ill->ill_group); 17436 17437 if (ipif_was_up) { 17438 /* 17439 * Check whether it is last ipif to leave this group. 17440 * If this is the last ipif to leave, we should remove 17441 * this ill from the group as ipif_select_source will not 17442 * be able to find any useful ipifs if this ill is selected 17443 * for load balancing. 17444 * 17445 * For nameless groups, we should call ifgrp_delete if this 17446 * belongs to some group. As this ipif is going down, we may 17447 * need to reconstruct groups. 17448 */ 17449 phyi = ill->ill_phyint; 17450 /* 17451 * If the phyint_groupname_len is 0, it may or may not 17452 * be in the nameless group. If the phyint_groupname_len is 17453 * not 0, then this ill should be part of some group. 17454 * As we always insert this ill in the group if 17455 * phyint_groupname_len is not zero when the first ipif 17456 * comes up (in ipif_up_done), it should be in a group 17457 * when the namelen is not 0. 17458 * 17459 * NOTE : When we delete the ill from the group,it will 17460 * blow away all the IRE_CACHES pointing either at this ipif or 17461 * ill_wq (illgrp_cache_delete does this). Thus, no IRES 17462 * should be pointing at this ill. 17463 */ 17464 ASSERT(phyi->phyint_groupname_len == 0 || 17465 (phyi->phyint_groupname != NULL && ill->ill_group != NULL)); 17466 17467 if (phyi->phyint_groupname_len != 0) { 17468 if (ill->ill_ipif_up_count == 0) 17469 illgrp_delete(ill); 17470 } 17471 17472 /* 17473 * If we have deleted some of the broadcast ires associated 17474 * with this ipif, we need to re-nominate somebody else if 17475 * the ires that we deleted were the nominated ones. 17476 */ 17477 if (ill->ill_group != NULL && !ill->ill_isv6) 17478 ipif_renominate_bcast(ipif); 17479 } 17480 17481 if (ipif->ipif_isv6) 17482 ipif_ndp_down(ipif); 17483 17484 /* 17485 * If mp is NULL the caller will wait for the appropriate refcnt. 17486 * Eg. ip_sioctl_removeif -> ipif_free -> ipif_down 17487 * and ill_delete -> ipif_free -> ipif_down 17488 */ 17489 if (mp == NULL) { 17490 ASSERT(q == NULL); 17491 return (0); 17492 } 17493 17494 if (CONN_Q(q)) { 17495 connp = Q_TO_CONN(q); 17496 mutex_enter(&connp->conn_lock); 17497 } else { 17498 connp = NULL; 17499 } 17500 mutex_enter(&ill->ill_lock); 17501 /* 17502 * Are there any ire's pointing to this ipif that are still active ? 17503 * If this is the last ipif going down, are there any ire's pointing 17504 * to this ill that are still active ? 17505 */ 17506 if (ipif_is_quiescent(ipif)) { 17507 mutex_exit(&ill->ill_lock); 17508 if (connp != NULL) 17509 mutex_exit(&connp->conn_lock); 17510 return (0); 17511 } 17512 17513 ip1dbg(("ipif_down: need to wait, adding pending mp %s ill %p", 17514 ill->ill_name, (void *)ill)); 17515 /* 17516 * Enqueue the mp atomically in ipsq_pending_mp. When the refcount 17517 * drops down, the operation will be restarted by ipif_ill_refrele_tail 17518 * which in turn is called by the last refrele on the ipif/ill/ire. 17519 */ 17520 success = ipsq_pending_mp_add(connp, ipif, q, mp, IPIF_DOWN); 17521 if (!success) { 17522 /* The conn is closing. So just return */ 17523 ASSERT(connp != NULL); 17524 mutex_exit(&ill->ill_lock); 17525 mutex_exit(&connp->conn_lock); 17526 return (EINTR); 17527 } 17528 17529 mutex_exit(&ill->ill_lock); 17530 if (connp != NULL) 17531 mutex_exit(&connp->conn_lock); 17532 return (EINPROGRESS); 17533 } 17534 17535 static void 17536 ipif_down_tail(ipif_t *ipif) 17537 { 17538 ill_t *ill = ipif->ipif_ill; 17539 17540 /* 17541 * Skip any loopback interface (null wq). 17542 * If this is the last logical interface on the ill 17543 * have ill_dl_down tell the driver we are gone (unbind) 17544 * Note that lun 0 can ipif_down even though 17545 * there are other logical units that are up. 17546 * This occurs e.g. when we change a "significant" IFF_ flag. 17547 */ 17548 if (ipif->ipif_ill->ill_wq != NULL) { 17549 if (!ill->ill_logical_down && (ill->ill_ipif_up_count == 0) && 17550 ill->ill_dl_up) { 17551 ill_dl_down(ill); 17552 } 17553 } 17554 ill->ill_logical_down = 0; 17555 17556 /* 17557 * Have to be after removing the routes in ipif_down_delete_ire. 17558 */ 17559 if (ipif->ipif_isv6) { 17560 if (ipif->ipif_ill->ill_flags & ILLF_XRESOLV) 17561 ipif_arp_down(ipif); 17562 } else { 17563 ipif_arp_down(ipif); 17564 } 17565 17566 ip_rts_ifmsg(ipif); 17567 ip_rts_newaddrmsg(RTM_DELETE, 0, ipif); 17568 } 17569 17570 /* 17571 * Bring interface logically down without bringing the physical interface 17572 * down e.g. when the netmask is changed. This avoids long lasting link 17573 * negotiations between an ethernet interface and a certain switches. 17574 */ 17575 static int 17576 ipif_logical_down(ipif_t *ipif, queue_t *q, mblk_t *mp) 17577 { 17578 /* 17579 * The ill_logical_down flag is a transient flag. It is set here 17580 * and is cleared once the down has completed in ipif_down_tail. 17581 * This flag does not indicate whether the ill stream is in the 17582 * DL_BOUND state with the driver. Instead this flag is used by 17583 * ipif_down_tail to determine whether to DL_UNBIND the stream with 17584 * the driver. The state of the ill stream i.e. whether it is 17585 * DL_BOUND with the driver or not is indicated by the ill_dl_up flag. 17586 */ 17587 ipif->ipif_ill->ill_logical_down = 1; 17588 return (ipif_down(ipif, q, mp)); 17589 } 17590 17591 /* 17592 * This is called when the SIOCSLIFUSESRC ioctl is processed in IP. 17593 * If the usesrc client ILL is already part of a usesrc group or not, 17594 * in either case a ire_stq with the matching usesrc client ILL will 17595 * locate the IRE's that need to be deleted. We want IREs to be created 17596 * with the new source address. 17597 */ 17598 static void 17599 ipif_delete_cache_ire(ire_t *ire, char *ill_arg) 17600 { 17601 ill_t *ucill = (ill_t *)ill_arg; 17602 17603 ASSERT(IAM_WRITER_ILL(ucill)); 17604 17605 if (ire->ire_stq == NULL) 17606 return; 17607 17608 if ((ire->ire_type == IRE_CACHE) && 17609 ((ill_t *)ire->ire_stq->q_ptr == ucill)) 17610 ire_delete(ire); 17611 } 17612 17613 /* 17614 * ire_walk routine to delete every IRE dependent on the interface 17615 * address that is going down. (Always called as writer.) 17616 * Works for both v4 and v6. 17617 * In addition for checking for ire_ipif matches it also checks for 17618 * IRE_CACHE entries which have the same source address as the 17619 * disappearing ipif since ipif_select_source might have picked 17620 * that source. Note that ipif_down/ipif_update_other_ipifs takes 17621 * care of any IRE_INTERFACE with the disappearing source address. 17622 */ 17623 static void 17624 ipif_down_delete_ire(ire_t *ire, char *ipif_arg) 17625 { 17626 ipif_t *ipif = (ipif_t *)ipif_arg; 17627 ill_t *ire_ill; 17628 ill_t *ipif_ill; 17629 17630 ASSERT(IAM_WRITER_IPIF(ipif)); 17631 if (ire->ire_ipif == NULL) 17632 return; 17633 17634 /* 17635 * For IPv4, we derive source addresses for an IRE from ipif's 17636 * belonging to the same IPMP group as the IRE's outgoing 17637 * interface. If an IRE's outgoing interface isn't in the 17638 * same IPMP group as a particular ipif, then that ipif 17639 * couldn't have been used as a source address for this IRE. 17640 * 17641 * For IPv6, source addresses are only restricted to the IPMP group 17642 * if the IRE is for a link-local address or a multicast address. 17643 * Otherwise, source addresses for an IRE can be chosen from 17644 * interfaces other than the the outgoing interface for that IRE. 17645 * 17646 * For source address selection details, see ipif_select_source() 17647 * and ipif_select_source_v6(). 17648 */ 17649 if (ire->ire_ipversion == IPV4_VERSION || 17650 IN6_IS_ADDR_LINKLOCAL(&ire->ire_addr_v6) || 17651 IN6_IS_ADDR_MULTICAST(&ire->ire_addr_v6)) { 17652 ire_ill = ire->ire_ipif->ipif_ill; 17653 ipif_ill = ipif->ipif_ill; 17654 17655 if (ire_ill->ill_group != ipif_ill->ill_group) { 17656 return; 17657 } 17658 } 17659 17660 17661 if (ire->ire_ipif != ipif) { 17662 /* 17663 * Look for a matching source address. 17664 */ 17665 if (ire->ire_type != IRE_CACHE) 17666 return; 17667 if (ipif->ipif_flags & IPIF_NOLOCAL) 17668 return; 17669 17670 if (ire->ire_ipversion == IPV4_VERSION) { 17671 if (ire->ire_src_addr != ipif->ipif_src_addr) 17672 return; 17673 } else { 17674 if (!IN6_ARE_ADDR_EQUAL(&ire->ire_src_addr_v6, 17675 &ipif->ipif_v6lcl_addr)) 17676 return; 17677 } 17678 ire_delete(ire); 17679 return; 17680 } 17681 /* 17682 * ire_delete() will do an ire_flush_cache which will delete 17683 * all ire_ipif matches 17684 */ 17685 ire_delete(ire); 17686 } 17687 17688 /* 17689 * ire_walk_ill function for deleting all IRE_CACHE entries for an ill when 17690 * 1) an ipif (on that ill) changes the IPIF_DEPRECATED flags, or 17691 * 2) when an interface is brought up or down (on that ill). 17692 * This ensures that the IRE_CACHE entries don't retain stale source 17693 * address selection results. 17694 */ 17695 void 17696 ill_ipif_cache_delete(ire_t *ire, char *ill_arg) 17697 { 17698 ill_t *ill = (ill_t *)ill_arg; 17699 ill_t *ipif_ill; 17700 17701 ASSERT(IAM_WRITER_ILL(ill)); 17702 /* 17703 * We use MATCH_IRE_TYPE/IRE_CACHE while calling ire_walk_ill_v4. 17704 * Hence this should be IRE_CACHE. 17705 */ 17706 ASSERT(ire->ire_type == IRE_CACHE); 17707 17708 /* 17709 * We are called for IRE_CACHES whose ire_ipif matches ill. 17710 * We are only interested in IRE_CACHES that has borrowed 17711 * the source address from ill_arg e.g. ipif_up_done[_v6] 17712 * for which we need to look at ire_ipif->ipif_ill match 17713 * with ill. 17714 */ 17715 ASSERT(ire->ire_ipif != NULL); 17716 ipif_ill = ire->ire_ipif->ipif_ill; 17717 if (ipif_ill == ill || (ill->ill_group != NULL && 17718 ipif_ill->ill_group == ill->ill_group)) { 17719 ire_delete(ire); 17720 } 17721 } 17722 17723 /* 17724 * Delete all the ire whose stq references ill_arg. 17725 */ 17726 static void 17727 ill_stq_cache_delete(ire_t *ire, char *ill_arg) 17728 { 17729 ill_t *ill = (ill_t *)ill_arg; 17730 ill_t *ire_ill; 17731 17732 ASSERT(IAM_WRITER_ILL(ill)); 17733 /* 17734 * We use MATCH_IRE_TYPE/IRE_CACHE while calling ire_walk_ill_v4. 17735 * Hence this should be IRE_CACHE. 17736 */ 17737 ASSERT(ire->ire_type == IRE_CACHE); 17738 17739 /* 17740 * We are called for IRE_CACHES whose ire_stq and ire_ipif 17741 * matches ill. We are only interested in IRE_CACHES that 17742 * has ire_stq->q_ptr pointing at ill_arg. Thus we do the 17743 * filtering here. 17744 */ 17745 ire_ill = (ill_t *)ire->ire_stq->q_ptr; 17746 17747 if (ire_ill == ill) 17748 ire_delete(ire); 17749 } 17750 17751 /* 17752 * This is called when an ill leaves the group. We want to delete 17753 * all IRE_CACHES whose stq is pointing at ill_wq or ire_ipif is 17754 * pointing at ill. 17755 */ 17756 static void 17757 illgrp_cache_delete(ire_t *ire, char *ill_arg) 17758 { 17759 ill_t *ill = (ill_t *)ill_arg; 17760 17761 ASSERT(IAM_WRITER_ILL(ill)); 17762 ASSERT(ill->ill_group == NULL); 17763 /* 17764 * We use MATCH_IRE_TYPE/IRE_CACHE while calling ire_walk_ill_v4. 17765 * Hence this should be IRE_CACHE. 17766 */ 17767 ASSERT(ire->ire_type == IRE_CACHE); 17768 /* 17769 * We are called for IRE_CACHES whose ire_stq and ire_ipif 17770 * matches ill. We are interested in both. 17771 */ 17772 ASSERT((ill == (ill_t *)ire->ire_stq->q_ptr) || 17773 (ire->ire_ipif->ipif_ill == ill)); 17774 17775 ire_delete(ire); 17776 } 17777 17778 /* 17779 * Initiate deallocate of an IPIF. Always called as writer. Called by 17780 * ill_delete or ip_sioctl_removeif. 17781 */ 17782 static void 17783 ipif_free(ipif_t *ipif) 17784 { 17785 ASSERT(IAM_WRITER_IPIF(ipif)); 17786 17787 /* Remove conn references */ 17788 reset_conn_ipif(ipif); 17789 17790 /* 17791 * Make sure we have valid net and subnet broadcast ire's for the 17792 * other ipif's which share them with this ipif. 17793 */ 17794 if (!ipif->ipif_isv6) 17795 ipif_check_bcast_ires(ipif); 17796 17797 /* 17798 * Take down the interface. We can be called either from ill_delete 17799 * or from ip_sioctl_removeif. 17800 */ 17801 (void) ipif_down(ipif, NULL, NULL); 17802 17803 rw_enter(&ill_g_lock, RW_WRITER); 17804 /* Remove pointers to this ill in the multicast routing tables */ 17805 reset_mrt_vif_ipif(ipif); 17806 rw_exit(&ill_g_lock); 17807 } 17808 17809 static void 17810 ipif_free_tail(ipif_t *ipif) 17811 { 17812 mblk_t *mp; 17813 ipif_t **ipifp; 17814 17815 /* 17816 * Free state for addition IRE_IF_[NO]RESOLVER ire's. 17817 */ 17818 mutex_enter(&ipif->ipif_saved_ire_lock); 17819 mp = ipif->ipif_saved_ire_mp; 17820 ipif->ipif_saved_ire_mp = NULL; 17821 mutex_exit(&ipif->ipif_saved_ire_lock); 17822 freemsg(mp); 17823 17824 /* 17825 * Need to hold both ill_g_lock and ill_lock while 17826 * inserting or removing an ipif from the linked list 17827 * of ipifs hanging off the ill. 17828 */ 17829 rw_enter(&ill_g_lock, RW_WRITER); 17830 /* 17831 * Remove all multicast memberships on the interface now. 17832 * This removes IPv4 multicast memberships joined within 17833 * the kernel as ipif_down does not do ipif_multicast_down 17834 * for IPv4. IPv6 is not handled here as the multicast memberships 17835 * are based on ill and not on ipif. 17836 */ 17837 ilm_free(ipif); 17838 17839 /* 17840 * Since we held the ill_g_lock while doing the ilm_free above, 17841 * we can assert the ilms were really deleted and not just marked 17842 * ILM_DELETED. 17843 */ 17844 ASSERT(ilm_walk_ipif(ipif) == 0); 17845 17846 17847 IPIF_TRACE_CLEANUP(ipif); 17848 17849 /* Ask SCTP to take it out of it list */ 17850 sctp_update_ipif(ipif, SCTP_IPIF_REMOVE); 17851 17852 mutex_enter(&ipif->ipif_ill->ill_lock); 17853 /* Get it out of the ILL interface list. */ 17854 ipifp = &ipif->ipif_ill->ill_ipif; 17855 for (; *ipifp != NULL; ipifp = &ipifp[0]->ipif_next) { 17856 if (*ipifp == ipif) { 17857 *ipifp = ipif->ipif_next; 17858 break; 17859 } 17860 } 17861 17862 mutex_exit(&ipif->ipif_ill->ill_lock); 17863 rw_exit(&ill_g_lock); 17864 17865 mutex_destroy(&ipif->ipif_saved_ire_lock); 17866 /* Free the memory. */ 17867 mi_free((char *)ipif); 17868 } 17869 17870 /* 17871 * Returns an ipif name in the form "ill_name/unit" if ipif_id is not zero, 17872 * "ill_name" otherwise. 17873 */ 17874 char * 17875 ipif_get_name(ipif_t *ipif, char *buf, int len) 17876 { 17877 char lbuf[32]; 17878 char *name; 17879 size_t name_len; 17880 17881 buf[0] = '\0'; 17882 if (!ipif) 17883 return (buf); 17884 name = ipif->ipif_ill->ill_name; 17885 name_len = ipif->ipif_ill->ill_name_length; 17886 if (ipif->ipif_id != 0) { 17887 (void) sprintf(lbuf, "%s%c%d", name, IPIF_SEPARATOR_CHAR, 17888 ipif->ipif_id); 17889 name = lbuf; 17890 name_len = mi_strlen(name) + 1; 17891 } 17892 len -= 1; 17893 buf[len] = '\0'; 17894 len = MIN(len, name_len); 17895 bcopy(name, buf, len); 17896 return (buf); 17897 } 17898 17899 /* 17900 * Find an IPIF based on the name passed in. Names can be of the 17901 * form <phys> (e.g., le0), <phys>:<#> (e.g., le0:1), 17902 * The <phys> string can have forms like <dev><#> (e.g., le0), 17903 * <dev><#>.<module> (e.g. le0.foo), or <dev>.<module><#> (e.g. ip.tun3). 17904 * When there is no colon, the implied unit id is zero. <phys> must 17905 * correspond to the name of an ILL. (May be called as writer.) 17906 */ 17907 static ipif_t * 17908 ipif_lookup_on_name(char *name, size_t namelen, boolean_t do_alloc, 17909 boolean_t *exists, boolean_t isv6, zoneid_t zoneid, queue_t *q, 17910 mblk_t *mp, ipsq_func_t func, int *error) 17911 { 17912 char *cp; 17913 char *endp; 17914 long id; 17915 ill_t *ill; 17916 ipif_t *ipif; 17917 uint_t ire_type; 17918 boolean_t did_alloc = B_FALSE; 17919 ipsq_t *ipsq; 17920 17921 if (error != NULL) 17922 *error = 0; 17923 17924 /* 17925 * If the caller wants to us to create the ipif, make sure we have a 17926 * valid zoneid 17927 */ 17928 ASSERT(!do_alloc || zoneid != ALL_ZONES); 17929 17930 if (namelen == 0) { 17931 if (error != NULL) 17932 *error = ENXIO; 17933 return (NULL); 17934 } 17935 17936 *exists = B_FALSE; 17937 /* Look for a colon in the name. */ 17938 endp = &name[namelen]; 17939 for (cp = endp; --cp > name; ) { 17940 if (*cp == IPIF_SEPARATOR_CHAR) 17941 break; 17942 } 17943 17944 if (*cp == IPIF_SEPARATOR_CHAR) { 17945 /* 17946 * Reject any non-decimal aliases for logical 17947 * interfaces. Aliases with leading zeroes 17948 * are also rejected as they introduce ambiguity 17949 * in the naming of the interfaces. 17950 * In order to confirm with existing semantics, 17951 * and to not break any programs/script relying 17952 * on that behaviour, if<0>:0 is considered to be 17953 * a valid interface. 17954 * 17955 * If alias has two or more digits and the first 17956 * is zero, fail. 17957 */ 17958 if (&cp[2] < endp && cp[1] == '0') 17959 return (NULL); 17960 } 17961 17962 if (cp <= name) { 17963 cp = endp; 17964 } else { 17965 *cp = '\0'; 17966 } 17967 17968 /* 17969 * Look up the ILL, based on the portion of the name 17970 * before the slash. ill_lookup_on_name returns a held ill. 17971 * Temporary to check whether ill exists already. If so 17972 * ill_lookup_on_name will clear it. 17973 */ 17974 ill = ill_lookup_on_name(name, do_alloc, isv6, 17975 q, mp, func, error, &did_alloc); 17976 if (cp != endp) 17977 *cp = IPIF_SEPARATOR_CHAR; 17978 if (ill == NULL) 17979 return (NULL); 17980 17981 /* Establish the unit number in the name. */ 17982 id = 0; 17983 if (cp < endp && *endp == '\0') { 17984 /* If there was a colon, the unit number follows. */ 17985 cp++; 17986 if (ddi_strtol(cp, NULL, 0, &id) != 0) { 17987 ill_refrele(ill); 17988 if (error != NULL) 17989 *error = ENXIO; 17990 return (NULL); 17991 } 17992 } 17993 17994 GRAB_CONN_LOCK(q); 17995 mutex_enter(&ill->ill_lock); 17996 /* Now see if there is an IPIF with this unit number. */ 17997 for (ipif = ill->ill_ipif; ipif; ipif = ipif->ipif_next) { 17998 if (ipif->ipif_id == id) { 17999 if (zoneid != ALL_ZONES && 18000 zoneid != ipif->ipif_zoneid) { 18001 mutex_exit(&ill->ill_lock); 18002 RELEASE_CONN_LOCK(q); 18003 ill_refrele(ill); 18004 if (error != NULL) 18005 *error = ENXIO; 18006 return (NULL); 18007 } 18008 /* 18009 * The block comment at the start of ipif_down 18010 * explains the use of the macros used below 18011 */ 18012 if (IPIF_CAN_LOOKUP(ipif)) { 18013 ipif_refhold_locked(ipif); 18014 mutex_exit(&ill->ill_lock); 18015 if (!did_alloc) 18016 *exists = B_TRUE; 18017 /* 18018 * Drop locks before calling ill_refrele 18019 * since it can potentially call into 18020 * ipif_ill_refrele_tail which can end up 18021 * in trying to acquire any lock. 18022 */ 18023 RELEASE_CONN_LOCK(q); 18024 ill_refrele(ill); 18025 return (ipif); 18026 } else if (IPIF_CAN_WAIT(ipif, q)) { 18027 ipsq = ill->ill_phyint->phyint_ipsq; 18028 mutex_enter(&ipsq->ipsq_lock); 18029 mutex_exit(&ill->ill_lock); 18030 ipsq_enq(ipsq, q, mp, func, NEW_OP, ill); 18031 mutex_exit(&ipsq->ipsq_lock); 18032 RELEASE_CONN_LOCK(q); 18033 ill_refrele(ill); 18034 *error = EINPROGRESS; 18035 return (NULL); 18036 } 18037 } 18038 } 18039 RELEASE_CONN_LOCK(q); 18040 18041 if (!do_alloc) { 18042 mutex_exit(&ill->ill_lock); 18043 ill_refrele(ill); 18044 if (error != NULL) 18045 *error = ENXIO; 18046 return (NULL); 18047 } 18048 18049 /* 18050 * If none found, atomically allocate and return a new one. 18051 * Historically, we used IRE_LOOPBACK only for lun 0, and IRE_LOCAL 18052 * to support "receive only" use of lo0:1 etc. as is still done 18053 * below as an initial guess. 18054 * However, this is now likely to be overriden later in ipif_up_done() 18055 * when we know for sure what address has been configured on the 18056 * interface, since we might have more than one loopback interface 18057 * with a loopback address, e.g. in the case of zones, and all the 18058 * interfaces with loopback addresses need to be marked IRE_LOOPBACK. 18059 */ 18060 if (ill->ill_net_type == IRE_LOOPBACK && id == 0) 18061 ire_type = IRE_LOOPBACK; 18062 else 18063 ire_type = IRE_LOCAL; 18064 ipif = ipif_allocate(ill, id, ire_type, B_TRUE); 18065 if (ipif != NULL) 18066 ipif_refhold_locked(ipif); 18067 else if (error != NULL) 18068 *error = ENOMEM; 18069 mutex_exit(&ill->ill_lock); 18070 ill_refrele(ill); 18071 return (ipif); 18072 } 18073 18074 /* 18075 * This routine is called whenever a new address comes up on an ipif. If 18076 * we are configured to respond to address mask requests, then we are supposed 18077 * to broadcast an address mask reply at this time. This routine is also 18078 * called if we are already up, but a netmask change is made. This is legal 18079 * but might not make the system manager very popular. (May be called 18080 * as writer.) 18081 */ 18082 static void 18083 ipif_mask_reply(ipif_t *ipif) 18084 { 18085 icmph_t *icmph; 18086 ipha_t *ipha; 18087 mblk_t *mp; 18088 18089 #define REPLY_LEN (sizeof (icmp_ipha) + sizeof (icmph_t) + IP_ADDR_LEN) 18090 18091 if (!ip_respond_to_address_mask_broadcast) 18092 return; 18093 18094 /* ICMP mask reply is IPv4 only */ 18095 ASSERT(!ipif->ipif_isv6); 18096 /* ICMP mask reply is not for a loopback interface */ 18097 ASSERT(ipif->ipif_ill->ill_wq != NULL); 18098 18099 mp = allocb(REPLY_LEN, BPRI_HI); 18100 if (mp == NULL) 18101 return; 18102 mp->b_wptr = mp->b_rptr + REPLY_LEN; 18103 18104 ipha = (ipha_t *)mp->b_rptr; 18105 bzero(ipha, REPLY_LEN); 18106 *ipha = icmp_ipha; 18107 ipha->ipha_ttl = ip_broadcast_ttl; 18108 ipha->ipha_src = ipif->ipif_src_addr; 18109 ipha->ipha_dst = ipif->ipif_brd_addr; 18110 ipha->ipha_length = htons(REPLY_LEN); 18111 ipha->ipha_ident = 0; 18112 18113 icmph = (icmph_t *)&ipha[1]; 18114 icmph->icmph_type = ICMP_ADDRESS_MASK_REPLY; 18115 bcopy(&ipif->ipif_net_mask, &icmph[1], IP_ADDR_LEN); 18116 icmph->icmph_checksum = IP_CSUM(mp, sizeof (ipha_t), 0); 18117 18118 put(ipif->ipif_wq, mp); 18119 18120 #undef REPLY_LEN 18121 } 18122 18123 /* 18124 * When the mtu in the ipif changes, we call this routine through ire_walk 18125 * to update all the relevant IREs. 18126 * Skip IRE_LOCAL and "loopback" IRE_BROADCAST by checking ire_stq. 18127 */ 18128 static void 18129 ipif_mtu_change(ire_t *ire, char *ipif_arg) 18130 { 18131 ipif_t *ipif = (ipif_t *)ipif_arg; 18132 18133 if (ire->ire_stq == NULL || ire->ire_ipif != ipif) 18134 return; 18135 ire->ire_max_frag = MIN(ipif->ipif_mtu, IP_MAXPACKET); 18136 } 18137 18138 /* 18139 * When the mtu in the ill changes, we call this routine through ire_walk 18140 * to update all the relevant IREs. 18141 * Skip IRE_LOCAL and "loopback" IRE_BROADCAST by checking ire_stq. 18142 */ 18143 void 18144 ill_mtu_change(ire_t *ire, char *ill_arg) 18145 { 18146 ill_t *ill = (ill_t *)ill_arg; 18147 18148 if (ire->ire_stq == NULL || ire->ire_ipif->ipif_ill != ill) 18149 return; 18150 ire->ire_max_frag = ire->ire_ipif->ipif_mtu; 18151 } 18152 18153 /* 18154 * Join the ipif specific multicast groups. 18155 * Must be called after a mapping has been set up in the resolver. (Always 18156 * called as writer.) 18157 */ 18158 void 18159 ipif_multicast_up(ipif_t *ipif) 18160 { 18161 int err, index; 18162 ill_t *ill; 18163 18164 ASSERT(IAM_WRITER_IPIF(ipif)); 18165 18166 ill = ipif->ipif_ill; 18167 index = ill->ill_phyint->phyint_ifindex; 18168 18169 ip1dbg(("ipif_multicast_up\n")); 18170 if (!(ill->ill_flags & ILLF_MULTICAST) || ipif->ipif_multicast_up) 18171 return; 18172 18173 if (ipif->ipif_isv6) { 18174 if (IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr)) 18175 return; 18176 18177 /* Join the all hosts multicast address */ 18178 ip1dbg(("ipif_multicast_up - addmulti\n")); 18179 /* 18180 * Passing B_TRUE means we have to join the multicast 18181 * membership on this interface even though this is 18182 * FAILED. If we join on a different one in the group, 18183 * we will not be able to delete the membership later 18184 * as we currently don't track where we join when we 18185 * join within the kernel unlike applications where 18186 * we have ilg/ilg_orig_index. See ip_addmulti_v6 18187 * for more on this. 18188 */ 18189 err = ip_addmulti_v6(&ipv6_all_hosts_mcast, ill, index, 18190 ipif->ipif_zoneid, ILGSTAT_NONE, MODE_IS_EXCLUDE, NULL); 18191 if (err != 0) { 18192 ip0dbg(("ipif_multicast_up: " 18193 "all_hosts_mcast failed %d\n", 18194 err)); 18195 return; 18196 } 18197 /* 18198 * Enable multicast for the solicited node multicast address 18199 */ 18200 if (!(ipif->ipif_flags & IPIF_NOLOCAL)) { 18201 in6_addr_t ipv6_multi = ipv6_solicited_node_mcast; 18202 18203 ipv6_multi.s6_addr32[3] |= 18204 ipif->ipif_v6lcl_addr.s6_addr32[3]; 18205 18206 err = ip_addmulti_v6(&ipv6_multi, ill, index, 18207 ipif->ipif_zoneid, ILGSTAT_NONE, MODE_IS_EXCLUDE, 18208 NULL); 18209 if (err != 0) { 18210 ip0dbg(("ipif_multicast_up: solicited MC" 18211 " failed %d\n", err)); 18212 (void) ip_delmulti_v6(&ipv6_all_hosts_mcast, 18213 ill, ill->ill_phyint->phyint_ifindex, 18214 ipif->ipif_zoneid, B_TRUE, B_TRUE); 18215 return; 18216 } 18217 } 18218 } else { 18219 if (ipif->ipif_lcl_addr == INADDR_ANY) 18220 return; 18221 18222 /* Join the all hosts multicast address */ 18223 ip1dbg(("ipif_multicast_up - addmulti\n")); 18224 err = ip_addmulti(htonl(INADDR_ALLHOSTS_GROUP), ipif, 18225 ILGSTAT_NONE, MODE_IS_EXCLUDE, NULL); 18226 if (err) { 18227 ip0dbg(("ipif_multicast_up: failed %d\n", err)); 18228 return; 18229 } 18230 } 18231 ipif->ipif_multicast_up = 1; 18232 } 18233 18234 /* 18235 * Blow away any IPv6 multicast groups that we joined in ipif_multicast_up(); 18236 * any explicit memberships are blown away in ill_leave_multicast() when the 18237 * ill is brought down. 18238 */ 18239 static void 18240 ipif_multicast_down(ipif_t *ipif) 18241 { 18242 int err; 18243 18244 ASSERT(IAM_WRITER_IPIF(ipif)); 18245 18246 ip1dbg(("ipif_multicast_down\n")); 18247 if (!ipif->ipif_multicast_up) 18248 return; 18249 18250 ASSERT(ipif->ipif_isv6); 18251 18252 ip1dbg(("ipif_multicast_down - delmulti\n")); 18253 18254 /* 18255 * Leave the all hosts multicast address. Similar to ip_addmulti_v6, 18256 * we should look for ilms on this ill rather than the ones that have 18257 * been failed over here. They are here temporarily. As 18258 * ipif_multicast_up has joined on this ill, we should delete only 18259 * from this ill. 18260 */ 18261 err = ip_delmulti_v6(&ipv6_all_hosts_mcast, ipif->ipif_ill, 18262 ipif->ipif_ill->ill_phyint->phyint_ifindex, ipif->ipif_zoneid, 18263 B_TRUE, B_TRUE); 18264 if (err != 0) { 18265 ip0dbg(("ipif_multicast_down: all_hosts_mcast failed %d\n", 18266 err)); 18267 } 18268 /* 18269 * Disable multicast for the solicited node multicast address 18270 */ 18271 if (!(ipif->ipif_flags & IPIF_NOLOCAL)) { 18272 in6_addr_t ipv6_multi = ipv6_solicited_node_mcast; 18273 18274 ipv6_multi.s6_addr32[3] |= 18275 ipif->ipif_v6lcl_addr.s6_addr32[3]; 18276 18277 err = ip_delmulti_v6(&ipv6_multi, ipif->ipif_ill, 18278 ipif->ipif_ill->ill_phyint->phyint_ifindex, 18279 ipif->ipif_zoneid, B_TRUE, B_TRUE); 18280 18281 if (err != 0) { 18282 ip0dbg(("ipif_multicast_down: sol MC failed %d\n", 18283 err)); 18284 } 18285 } 18286 18287 ipif->ipif_multicast_up = 0; 18288 } 18289 18290 /* 18291 * Used when an interface comes up to recreate any extra routes on this 18292 * interface. 18293 */ 18294 static ire_t ** 18295 ipif_recover_ire(ipif_t *ipif) 18296 { 18297 mblk_t *mp; 18298 ire_t **ipif_saved_irep; 18299 ire_t **irep; 18300 18301 ip1dbg(("ipif_recover_ire(%s:%u)", ipif->ipif_ill->ill_name, 18302 ipif->ipif_id)); 18303 18304 mutex_enter(&ipif->ipif_saved_ire_lock); 18305 ipif_saved_irep = (ire_t **)kmem_zalloc(sizeof (ire_t *) * 18306 ipif->ipif_saved_ire_cnt, KM_NOSLEEP); 18307 if (ipif_saved_irep == NULL) { 18308 mutex_exit(&ipif->ipif_saved_ire_lock); 18309 return (NULL); 18310 } 18311 18312 irep = ipif_saved_irep; 18313 for (mp = ipif->ipif_saved_ire_mp; mp != NULL; mp = mp->b_cont) { 18314 ire_t *ire; 18315 queue_t *rfq; 18316 queue_t *stq; 18317 ifrt_t *ifrt; 18318 uchar_t *src_addr; 18319 uchar_t *gateway_addr; 18320 mblk_t *resolver_mp; 18321 ushort_t type; 18322 18323 /* 18324 * When the ire was initially created and then added in 18325 * ip_rt_add(), it was created either using ipif->ipif_net_type 18326 * in the case of a traditional interface route, or as one of 18327 * the IRE_OFFSUBNET types (with the exception of 18328 * IRE_HOST_REDIRECT which is created by icmp_redirect() and 18329 * which we don't need to save or recover). In the case where 18330 * ipif->ipif_net_type was IRE_LOOPBACK, ip_rt_add() will update 18331 * the ire_type to IRE_IF_NORESOLVER before calling ire_add() 18332 * to satisfy software like GateD and Sun Cluster which creates 18333 * routes using the the loopback interface's address as a 18334 * gateway. 18335 * 18336 * As ifrt->ifrt_type reflects the already updated ire_type and 18337 * since ire_create() expects that IRE_IF_NORESOLVER will have 18338 * a valid ire_dlureq_mp field (which doesn't make sense for a 18339 * IRE_LOOPBACK), ire_create() will be called in the same way 18340 * here as in ip_rt_add(), namely using ipif->ipif_net_type when 18341 * the route looks like a traditional interface route (where 18342 * ifrt->ifrt_type & IRE_INTERFACE is true) and otherwise using 18343 * the saved ifrt->ifrt_type. This means that in the case where 18344 * ipif->ipif_net_type is IRE_LOOPBACK, the ire created by 18345 * ire_create() will be an IRE_LOOPBACK, it will then be turned 18346 * into an IRE_IF_NORESOLVER and then added by ire_add(). 18347 */ 18348 ifrt = (ifrt_t *)mp->b_rptr; 18349 if (ifrt->ifrt_type & IRE_INTERFACE) { 18350 rfq = NULL; 18351 stq = (ipif->ipif_net_type == IRE_IF_RESOLVER) 18352 ? ipif->ipif_rq : ipif->ipif_wq; 18353 src_addr = (ifrt->ifrt_flags & RTF_SETSRC) 18354 ? (uint8_t *)&ifrt->ifrt_src_addr 18355 : (uint8_t *)&ipif->ipif_src_addr; 18356 gateway_addr = NULL; 18357 resolver_mp = ipif->ipif_resolver_mp; 18358 type = ipif->ipif_net_type; 18359 } else if (ifrt->ifrt_type & IRE_BROADCAST) { 18360 /* Recover multiroute broadcast IRE. */ 18361 rfq = ipif->ipif_rq; 18362 stq = ipif->ipif_wq; 18363 src_addr = (ifrt->ifrt_flags & RTF_SETSRC) 18364 ? (uint8_t *)&ifrt->ifrt_src_addr 18365 : (uint8_t *)&ipif->ipif_src_addr; 18366 gateway_addr = (uint8_t *)&ifrt->ifrt_gateway_addr; 18367 resolver_mp = ipif->ipif_bcast_mp; 18368 type = ifrt->ifrt_type; 18369 } else { 18370 rfq = NULL; 18371 stq = NULL; 18372 src_addr = (ifrt->ifrt_flags & RTF_SETSRC) 18373 ? (uint8_t *)&ifrt->ifrt_src_addr : NULL; 18374 gateway_addr = (uint8_t *)&ifrt->ifrt_gateway_addr; 18375 resolver_mp = NULL; 18376 type = ifrt->ifrt_type; 18377 } 18378 18379 /* 18380 * Create a copy of the IRE with the saved address and netmask. 18381 */ 18382 ip1dbg(("ipif_recover_ire: creating IRE %s (%d) for " 18383 "0x%x/0x%x\n", 18384 ip_nv_lookup(ire_nv_tbl, ifrt->ifrt_type), ifrt->ifrt_type, 18385 ntohl(ifrt->ifrt_addr), 18386 ntohl(ifrt->ifrt_mask))); 18387 ire = ire_create( 18388 (uint8_t *)&ifrt->ifrt_addr, 18389 (uint8_t *)&ifrt->ifrt_mask, 18390 src_addr, 18391 gateway_addr, 18392 NULL, 18393 &ifrt->ifrt_max_frag, 18394 NULL, 18395 rfq, 18396 stq, 18397 type, 18398 resolver_mp, 18399 ipif, 18400 NULL, 18401 0, 18402 0, 18403 0, 18404 ifrt->ifrt_flags, 18405 &ifrt->ifrt_iulp_info); 18406 18407 if (ire == NULL) { 18408 mutex_exit(&ipif->ipif_saved_ire_lock); 18409 kmem_free(ipif_saved_irep, 18410 ipif->ipif_saved_ire_cnt * sizeof (ire_t *)); 18411 return (NULL); 18412 } 18413 18414 /* 18415 * Some software (for example, GateD and Sun Cluster) attempts 18416 * to create (what amount to) IRE_PREFIX routes with the 18417 * loopback address as the gateway. This is primarily done to 18418 * set up prefixes with the RTF_REJECT flag set (for example, 18419 * when generating aggregate routes.) 18420 * 18421 * If the IRE type (as defined by ipif->ipif_net_type) is 18422 * IRE_LOOPBACK, then we map the request into a 18423 * IRE_IF_NORESOLVER. 18424 */ 18425 if (ipif->ipif_net_type == IRE_LOOPBACK) 18426 ire->ire_type = IRE_IF_NORESOLVER; 18427 /* 18428 * ire held by ire_add, will be refreled' towards the 18429 * the end of ipif_up_done 18430 */ 18431 (void) ire_add(&ire, NULL, NULL, NULL); 18432 *irep = ire; 18433 irep++; 18434 ip1dbg(("ipif_recover_ire: added ire %p\n", (void *)ire)); 18435 } 18436 mutex_exit(&ipif->ipif_saved_ire_lock); 18437 return (ipif_saved_irep); 18438 } 18439 18440 /* 18441 * Used to set the netmask and broadcast address to default values when the 18442 * interface is brought up. (Always called as writer.) 18443 */ 18444 static void 18445 ipif_set_default(ipif_t *ipif) 18446 { 18447 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 18448 18449 if (!ipif->ipif_isv6) { 18450 /* 18451 * Interface holds an IPv4 address. Default 18452 * mask is the natural netmask. 18453 */ 18454 if (!ipif->ipif_net_mask) { 18455 ipaddr_t v4mask; 18456 18457 v4mask = ip_net_mask(ipif->ipif_lcl_addr); 18458 V4MASK_TO_V6(v4mask, ipif->ipif_v6net_mask); 18459 } 18460 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 18461 /* ipif_subnet is ipif_pp_dst_addr for pt-pt */ 18462 ipif->ipif_v6subnet = ipif->ipif_v6pp_dst_addr; 18463 } else { 18464 V6_MASK_COPY(ipif->ipif_v6lcl_addr, 18465 ipif->ipif_v6net_mask, ipif->ipif_v6subnet); 18466 } 18467 /* 18468 * NOTE: SunOS 4.X does this even if the broadcast address 18469 * has been already set thus we do the same here. 18470 */ 18471 if (ipif->ipif_flags & IPIF_BROADCAST) { 18472 ipaddr_t v4addr; 18473 18474 v4addr = ipif->ipif_subnet | ~ipif->ipif_net_mask; 18475 IN6_IPADDR_TO_V4MAPPED(v4addr, &ipif->ipif_v6brd_addr); 18476 } 18477 } else { 18478 /* 18479 * Interface holds an IPv6-only address. Default 18480 * mask is all-ones. 18481 */ 18482 if (IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6net_mask)) 18483 ipif->ipif_v6net_mask = ipv6_all_ones; 18484 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 18485 /* ipif_subnet is ipif_pp_dst_addr for pt-pt */ 18486 ipif->ipif_v6subnet = ipif->ipif_v6pp_dst_addr; 18487 } else { 18488 V6_MASK_COPY(ipif->ipif_v6lcl_addr, 18489 ipif->ipif_v6net_mask, ipif->ipif_v6subnet); 18490 } 18491 } 18492 } 18493 18494 /* 18495 * Return 0 if this address can be used as local address without causing 18496 * duplicate address problems. Otherwise, return EADDRNOTAVAIL if the address 18497 * is already up on a different ill, and EADDRINUSE if it's up on the same ill. 18498 * Special checks are needed to allow the same IPv6 link-local address 18499 * on different ills. 18500 * TODO: allowing the same site-local address on different ill's. 18501 */ 18502 int 18503 ip_addr_availability_check(ipif_t *new_ipif) 18504 { 18505 in6_addr_t our_v6addr; 18506 ill_t *ill; 18507 ipif_t *ipif; 18508 ill_walk_context_t ctx; 18509 18510 ASSERT(IAM_WRITER_IPIF(new_ipif)); 18511 ASSERT(MUTEX_HELD(&ip_addr_avail_lock)); 18512 ASSERT(RW_READ_HELD(&ill_g_lock)); 18513 18514 new_ipif->ipif_flags &= ~IPIF_UNNUMBERED; 18515 if (IN6_IS_ADDR_UNSPECIFIED(&new_ipif->ipif_v6lcl_addr) || 18516 IN6_IS_ADDR_V4MAPPED_ANY(&new_ipif->ipif_v6lcl_addr)) 18517 return (0); 18518 18519 our_v6addr = new_ipif->ipif_v6lcl_addr; 18520 18521 if (new_ipif->ipif_isv6) 18522 ill = ILL_START_WALK_V6(&ctx); 18523 else 18524 ill = ILL_START_WALK_V4(&ctx); 18525 18526 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 18527 for (ipif = ill->ill_ipif; ipif != NULL; 18528 ipif = ipif->ipif_next) { 18529 if ((ipif == new_ipif) || 18530 !(ipif->ipif_flags & IPIF_UP) || 18531 (ipif->ipif_flags & IPIF_UNNUMBERED)) 18532 continue; 18533 if (IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6lcl_addr, 18534 &our_v6addr)) { 18535 if (new_ipif->ipif_flags & IPIF_POINTOPOINT) 18536 new_ipif->ipif_flags |= IPIF_UNNUMBERED; 18537 else if (ipif->ipif_flags & IPIF_POINTOPOINT) 18538 ipif->ipif_flags |= IPIF_UNNUMBERED; 18539 else if (IN6_IS_ADDR_LINKLOCAL(&our_v6addr) && 18540 new_ipif->ipif_ill != ill) 18541 continue; 18542 else if (IN6_IS_ADDR_SITELOCAL(&our_v6addr) && 18543 new_ipif->ipif_ill != ill) 18544 continue; 18545 else if (new_ipif->ipif_zoneid != 18546 ipif->ipif_zoneid && 18547 (ill->ill_phyint->phyint_flags & 18548 PHYI_LOOPBACK)) 18549 continue; 18550 else if (new_ipif->ipif_ill == ill) 18551 return (EADDRINUSE); 18552 else 18553 return (EADDRNOTAVAIL); 18554 } 18555 } 18556 } 18557 18558 return (0); 18559 } 18560 18561 /* 18562 * Bring up an ipif: bring up arp/ndp, bring up the DLPI stream, and add 18563 * IREs for the ipif. 18564 * When the routine returns EINPROGRESS then mp has been consumed and 18565 * the ioctl will be acked from ip_rput_dlpi. 18566 */ 18567 static int 18568 ipif_up(ipif_t *ipif, queue_t *q, mblk_t *mp) 18569 { 18570 ill_t *ill = ipif->ipif_ill; 18571 boolean_t isv6 = ipif->ipif_isv6; 18572 int err = 0; 18573 boolean_t success; 18574 18575 ASSERT(IAM_WRITER_IPIF(ipif)); 18576 18577 ip1dbg(("ipif_up(%s:%u)\n", ill->ill_name, ipif->ipif_id)); 18578 18579 /* Shouldn't get here if it is already up. */ 18580 if (ipif->ipif_flags & IPIF_UP) 18581 return (EALREADY); 18582 18583 /* Skip arp/ndp for any loopback interface. */ 18584 if (ill->ill_wq != NULL) { 18585 conn_t *connp = Q_TO_CONN(q); 18586 ipsq_t *ipsq = ill->ill_phyint->phyint_ipsq; 18587 18588 if (!ill->ill_dl_up) { 18589 /* 18590 * ill_dl_up is not yet set. i.e. we are yet to 18591 * DL_BIND with the driver and this is the first 18592 * logical interface on the ill to become "up". 18593 * Tell the driver to get going (via DL_BIND_REQ). 18594 * Note that changing "significant" IFF_ flags 18595 * address/netmask etc cause a down/up dance, but 18596 * does not cause an unbind (DL_UNBIND) with the driver 18597 */ 18598 return (ill_dl_up(ill, ipif, mp, q)); 18599 } 18600 18601 /* 18602 * ipif_resolver_up may end up sending an 18603 * AR_INTERFACE_UP message to ARP, which would, in 18604 * turn send a DLPI message to the driver. ioctls are 18605 * serialized and so we cannot send more than one 18606 * interface up message at a time. If ipif_resolver_up 18607 * does send an interface up message to ARP, we get 18608 * EINPROGRESS and we will complete in ip_arp_done. 18609 */ 18610 18611 ASSERT(connp != NULL); 18612 ASSERT(ipsq->ipsq_pending_mp == NULL); 18613 mutex_enter(&connp->conn_lock); 18614 mutex_enter(&ill->ill_lock); 18615 success = ipsq_pending_mp_add(connp, ipif, q, mp, 0); 18616 mutex_exit(&ill->ill_lock); 18617 mutex_exit(&connp->conn_lock); 18618 if (!success) 18619 return (EINTR); 18620 18621 /* 18622 * Crank up IPv6 neighbor discovery 18623 * Unlike ARP, this should complete when 18624 * ipif_ndp_up returns. However, for 18625 * ILLF_XRESOLV interfaces we also send a 18626 * AR_INTERFACE_UP to the external resolver. 18627 * That ioctl will complete in ip_rput. 18628 */ 18629 if (isv6) { 18630 err = ipif_ndp_up(ipif, &ipif->ipif_v6lcl_addr, 18631 B_FALSE); 18632 if (err != 0) { 18633 mp = ipsq_pending_mp_get(ipsq, &connp); 18634 return (err); 18635 } 18636 } 18637 /* Now, ARP */ 18638 if ((err = ipif_resolver_up(ipif, B_FALSE)) == 18639 EINPROGRESS) { 18640 /* We will complete it in ip_arp_done */ 18641 return (err); 18642 } 18643 mp = ipsq_pending_mp_get(ipsq, &connp); 18644 ASSERT(mp != NULL); 18645 if (err != 0) 18646 return (err); 18647 } 18648 return (isv6 ? ipif_up_done_v6(ipif) : ipif_up_done(ipif)); 18649 } 18650 18651 /* 18652 * Perform a bind for the physical device. 18653 * When the routine returns EINPROGRESS then mp has been consumed and 18654 * the ioctl will be acked from ip_rput_dlpi. 18655 * Allocate an unbind message and save it until ipif_down. 18656 */ 18657 static int 18658 ill_dl_up(ill_t *ill, ipif_t *ipif, mblk_t *mp, queue_t *q) 18659 { 18660 mblk_t *areq_mp = NULL; 18661 mblk_t *bind_mp = NULL; 18662 mblk_t *unbind_mp = NULL; 18663 conn_t *connp; 18664 boolean_t success; 18665 18666 ip1dbg(("ill_dl_up(%s)\n", ill->ill_name)); 18667 ASSERT(IAM_WRITER_ILL(ill)); 18668 18669 ASSERT(mp != NULL); 18670 18671 /* Create a resolver cookie for ARP */ 18672 if (!ill->ill_isv6 && ill->ill_net_type == IRE_IF_RESOLVER) { 18673 areq_t *areq; 18674 uint16_t sap_addr; 18675 18676 areq_mp = ill_arp_alloc(ill, 18677 (uchar_t *)&ip_areq_template, 0); 18678 if (areq_mp == NULL) { 18679 return (ENOMEM); 18680 } 18681 freemsg(ill->ill_resolver_mp); 18682 ill->ill_resolver_mp = areq_mp; 18683 areq = (areq_t *)areq_mp->b_rptr; 18684 sap_addr = ill->ill_sap; 18685 bcopy(&sap_addr, areq->areq_sap, sizeof (sap_addr)); 18686 /* 18687 * Wait till we call ill_pending_mp_add to determine 18688 * the success before we free the ill_resolver_mp and 18689 * attach areq_mp in it's place. 18690 */ 18691 } 18692 bind_mp = ip_dlpi_alloc(sizeof (dl_bind_req_t) + sizeof (long), 18693 DL_BIND_REQ); 18694 if (bind_mp == NULL) 18695 goto bad; 18696 ((dl_bind_req_t *)bind_mp->b_rptr)->dl_sap = ill->ill_sap; 18697 ((dl_bind_req_t *)bind_mp->b_rptr)->dl_service_mode = DL_CLDLS; 18698 18699 unbind_mp = ip_dlpi_alloc(sizeof (dl_unbind_req_t), DL_UNBIND_REQ); 18700 if (unbind_mp == NULL) 18701 goto bad; 18702 18703 /* 18704 * Record state needed to complete this operation when the 18705 * DL_BIND_ACK shows up. Also remember the pre-allocated mblks. 18706 */ 18707 if (WR(q)->q_next == NULL) { 18708 connp = Q_TO_CONN(q); 18709 mutex_enter(&connp->conn_lock); 18710 } else { 18711 connp = NULL; 18712 } 18713 mutex_enter(&ipif->ipif_ill->ill_lock); 18714 success = ipsq_pending_mp_add(connp, ipif, q, mp, 0); 18715 mutex_exit(&ipif->ipif_ill->ill_lock); 18716 if (connp != NULL) 18717 mutex_exit(&connp->conn_lock); 18718 if (!success) 18719 goto bad; 18720 18721 /* 18722 * Save the unbind message for ill_dl_down(); it will be consumed when 18723 * the interface goes down. 18724 */ 18725 ASSERT(ill->ill_unbind_mp == NULL); 18726 ill->ill_unbind_mp = unbind_mp; 18727 18728 ill_dlpi_send(ill, bind_mp); 18729 /* Send down link-layer capabilities probe if not already done. */ 18730 ill_capability_probe(ill); 18731 18732 /* 18733 * Sysid used to rely on the fact that netboots set domainname 18734 * and the like. Now that miniroot boots aren't strictly netboots 18735 * and miniroot network configuration is driven from userland 18736 * these things still need to be set. This situation can be detected 18737 * by comparing the interface being configured here to the one 18738 * dhcack was set to reference by the boot loader. Once sysid is 18739 * converted to use dhcp_ipc_getinfo() this call can go away. 18740 */ 18741 if ((ipif->ipif_flags & IPIF_DHCPRUNNING) && (dhcack != NULL) && 18742 (strcmp(ill->ill_name, dhcack) == 0) && 18743 (strlen(srpc_domain) == 0)) { 18744 if (dhcpinit() != 0) 18745 cmn_err(CE_WARN, "no cached dhcp response"); 18746 } 18747 18748 /* 18749 * This operation will complete in ip_rput_dlpi with either 18750 * a DL_BIND_ACK or DL_ERROR_ACK. 18751 */ 18752 return (EINPROGRESS); 18753 bad: 18754 ip1dbg(("ill_dl_up(%s) FAILED\n", ill->ill_name)); 18755 /* 18756 * We don't have to check for possible removal from illgrp 18757 * as we have not yet inserted in illgrp. For groups 18758 * without names, this ipif is still not UP and hence 18759 * this could not have possibly had any influence in forming 18760 * groups. 18761 */ 18762 18763 if (bind_mp != NULL) 18764 freemsg(bind_mp); 18765 if (unbind_mp != NULL) 18766 freemsg(unbind_mp); 18767 return (ENOMEM); 18768 } 18769 18770 uint_t ip_loopback_mtuplus = IP_LOOPBACK_MTU + IP_SIMPLE_HDR_LENGTH + 20; 18771 18772 /* 18773 * DLPI and ARP is up. 18774 * Create all the IREs associated with an interface bring up multicast. 18775 * Set the interface flag and finish other initialization 18776 * that potentially had to be differed to after DL_BIND_ACK. 18777 */ 18778 int 18779 ipif_up_done(ipif_t *ipif) 18780 { 18781 ire_t *ire_array[20]; 18782 ire_t **irep = ire_array; 18783 ire_t **irep1; 18784 ipaddr_t net_mask = 0; 18785 ipaddr_t subnet_mask, route_mask; 18786 ill_t *ill = ipif->ipif_ill; 18787 queue_t *stq; 18788 ipif_t *src_ipif; 18789 ipif_t *tmp_ipif; 18790 boolean_t flush_ire_cache = B_TRUE; 18791 int err = 0; 18792 phyint_t *phyi; 18793 ire_t **ipif_saved_irep = NULL; 18794 int ipif_saved_ire_cnt; 18795 int cnt; 18796 boolean_t src_ipif_held = B_FALSE; 18797 boolean_t ire_added = B_FALSE; 18798 boolean_t loopback = B_FALSE; 18799 18800 ip1dbg(("ipif_up_done(%s:%u)\n", 18801 ipif->ipif_ill->ill_name, ipif->ipif_id)); 18802 /* Check if this is a loopback interface */ 18803 if (ipif->ipif_ill->ill_wq == NULL) 18804 loopback = B_TRUE; 18805 18806 ASSERT(!MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 18807 /* 18808 * If all other interfaces for this ill are down or DEPRECATED, 18809 * or otherwise unsuitable for source address selection, remove 18810 * any IRE_CACHE entries for this ill to make sure source 18811 * address selection gets to take this new ipif into account. 18812 * No need to hold ill_lock while traversing the ipif list since 18813 * we are writer 18814 */ 18815 for (tmp_ipif = ill->ill_ipif; tmp_ipif; 18816 tmp_ipif = tmp_ipif->ipif_next) { 18817 if (((tmp_ipif->ipif_flags & 18818 (IPIF_NOXMIT|IPIF_ANYCAST|IPIF_NOLOCAL|IPIF_DEPRECATED)) || 18819 !(tmp_ipif->ipif_flags & IPIF_UP)) || 18820 (tmp_ipif == ipif)) 18821 continue; 18822 /* first useable pre-existing interface */ 18823 flush_ire_cache = B_FALSE; 18824 break; 18825 } 18826 if (flush_ire_cache) 18827 ire_walk_ill_v4(MATCH_IRE_ILL_GROUP | MATCH_IRE_TYPE, 18828 IRE_CACHE, ill_ipif_cache_delete, (char *)ill, ill); 18829 18830 /* 18831 * Figure out which way the send-to queue should go. Only 18832 * IRE_IF_RESOLVER or IRE_IF_NORESOLVER or IRE_LOOPBACK 18833 * should show up here. 18834 */ 18835 switch (ill->ill_net_type) { 18836 case IRE_IF_RESOLVER: 18837 stq = ill->ill_rq; 18838 break; 18839 case IRE_IF_NORESOLVER: 18840 case IRE_LOOPBACK: 18841 stq = ill->ill_wq; 18842 break; 18843 default: 18844 return (EINVAL); 18845 } 18846 18847 if (ill->ill_phyint->phyint_flags & PHYI_LOOPBACK) { 18848 /* 18849 * lo0:1 and subsequent ipifs were marked IRE_LOCAL in 18850 * ipif_lookup_on_name(), but in the case of zones we can have 18851 * several loopback addresses on lo0. So all the interfaces with 18852 * loopback addresses need to be marked IRE_LOOPBACK. 18853 */ 18854 if (V4_PART_OF_V6(ipif->ipif_v6lcl_addr) == 18855 htonl(INADDR_LOOPBACK)) 18856 ipif->ipif_ire_type = IRE_LOOPBACK; 18857 else 18858 ipif->ipif_ire_type = IRE_LOCAL; 18859 } 18860 18861 if (ipif->ipif_flags & (IPIF_NOLOCAL|IPIF_ANYCAST|IPIF_DEPRECATED)) { 18862 /* 18863 * Can't use our source address. Select a different 18864 * source address for the IRE_INTERFACE and IRE_LOCAL 18865 */ 18866 src_ipif = ipif_select_source(ipif->ipif_ill, 18867 ipif->ipif_subnet, ipif->ipif_zoneid); 18868 if (src_ipif == NULL) 18869 src_ipif = ipif; /* Last resort */ 18870 else 18871 src_ipif_held = B_TRUE; 18872 } else { 18873 src_ipif = ipif; 18874 } 18875 18876 /* Create all the IREs associated with this interface */ 18877 if ((ipif->ipif_lcl_addr != INADDR_ANY) && 18878 !(ipif->ipif_flags & IPIF_NOLOCAL)) { 18879 /* Register the source address for __sin6_src_id */ 18880 err = ip_srcid_insert(&ipif->ipif_v6lcl_addr, 18881 ipif->ipif_zoneid); 18882 if (err != 0) { 18883 ip0dbg(("ipif_up_done: srcid_insert %d\n", err)); 18884 return (err); 18885 } 18886 /* If the interface address is set, create the local IRE. */ 18887 ip1dbg(("ipif_up_done: 0x%p creating IRE 0x%x for 0x%x\n", 18888 (void *)ipif, 18889 ipif->ipif_ire_type, 18890 ntohl(ipif->ipif_lcl_addr))); 18891 *irep++ = ire_create( 18892 (uchar_t *)&ipif->ipif_lcl_addr, /* dest address */ 18893 (uchar_t *)&ip_g_all_ones, /* mask */ 18894 (uchar_t *)&src_ipif->ipif_src_addr, /* source address */ 18895 NULL, /* no gateway */ 18896 NULL, 18897 &ip_loopback_mtuplus, /* max frag size */ 18898 NULL, 18899 ipif->ipif_rq, /* recv-from queue */ 18900 NULL, /* no send-to queue */ 18901 ipif->ipif_ire_type, /* LOCAL or LOOPBACK */ 18902 NULL, 18903 ipif, 18904 NULL, 18905 0, 18906 0, 18907 0, 18908 (ipif->ipif_flags & IPIF_PRIVATE) ? 18909 RTF_PRIVATE : 0, 18910 &ire_uinfo_null); 18911 } else { 18912 ip1dbg(( 18913 "ipif_up_done: not creating IRE %d for 0x%x: flags 0x%x\n", 18914 ipif->ipif_ire_type, 18915 ntohl(ipif->ipif_lcl_addr), 18916 (uint_t)ipif->ipif_flags)); 18917 } 18918 if ((ipif->ipif_lcl_addr != INADDR_ANY) && 18919 !(ipif->ipif_flags & IPIF_NOLOCAL)) { 18920 net_mask = ip_net_mask(ipif->ipif_lcl_addr); 18921 } else { 18922 net_mask = htonl(IN_CLASSA_NET); /* fallback */ 18923 } 18924 18925 subnet_mask = ipif->ipif_net_mask; 18926 18927 /* 18928 * If mask was not specified, use natural netmask of 18929 * interface address. Also, store this mask back into the 18930 * ipif struct. 18931 */ 18932 if (subnet_mask == 0) { 18933 subnet_mask = net_mask; 18934 V4MASK_TO_V6(subnet_mask, ipif->ipif_v6net_mask); 18935 V6_MASK_COPY(ipif->ipif_v6lcl_addr, ipif->ipif_v6net_mask, 18936 ipif->ipif_v6subnet); 18937 } 18938 18939 /* Set up the IRE_IF_RESOLVER or IRE_IF_NORESOLVER, as appropriate. */ 18940 if (stq != NULL && !(ipif->ipif_flags & IPIF_NOXMIT) && 18941 ipif->ipif_subnet != INADDR_ANY) { 18942 /* ipif_subnet is ipif_pp_dst_addr for pt-pt */ 18943 18944 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 18945 route_mask = IP_HOST_MASK; 18946 } else { 18947 route_mask = subnet_mask; 18948 } 18949 18950 ip1dbg(("ipif_up_done: ipif 0x%p ill 0x%p " 18951 "creating if IRE ill_net_type 0x%x for 0x%x\n", 18952 (void *)ipif, (void *)ill, 18953 ill->ill_net_type, 18954 ntohl(ipif->ipif_subnet))); 18955 *irep++ = ire_create( 18956 (uchar_t *)&ipif->ipif_subnet, /* dest address */ 18957 (uchar_t *)&route_mask, /* mask */ 18958 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 18959 NULL, /* no gateway */ 18960 NULL, 18961 &ipif->ipif_mtu, /* max frag */ 18962 NULL, 18963 NULL, /* no recv queue */ 18964 stq, /* send-to queue */ 18965 ill->ill_net_type, /* IF_[NO]RESOLVER */ 18966 ill->ill_resolver_mp, /* xmit header */ 18967 ipif, 18968 NULL, 18969 0, 18970 0, 18971 0, 18972 (ipif->ipif_flags & IPIF_PRIVATE) ? RTF_PRIVATE: 0, 18973 &ire_uinfo_null); 18974 } 18975 18976 /* 18977 * If the interface address is set, create the broadcast IREs. 18978 * 18979 * ire_create_bcast checks if the proposed new IRE matches 18980 * any existing IRE's with the same physical interface (ILL). 18981 * This should get rid of duplicates. 18982 * ire_create_bcast also check IPIF_NOXMIT and does not create 18983 * any broadcast ires. 18984 */ 18985 if ((ipif->ipif_subnet != INADDR_ANY) && 18986 (ipif->ipif_flags & IPIF_BROADCAST)) { 18987 ipaddr_t addr; 18988 18989 ip1dbg(("ipif_up_done: creating broadcast IRE\n")); 18990 irep = ire_check_and_create_bcast(ipif, 0, irep, 18991 (MATCH_IRE_TYPE | MATCH_IRE_ILL)); 18992 irep = ire_check_and_create_bcast(ipif, INADDR_BROADCAST, irep, 18993 (MATCH_IRE_TYPE | MATCH_IRE_ILL)); 18994 18995 /* 18996 * For backward compatibility, we need to create net 18997 * broadcast ire's based on the old "IP address class 18998 * system." The reason is that some old machines only 18999 * respond to these class derived net broadcast. 19000 * 19001 * But we should not create these net broadcast ire's if 19002 * the subnet_mask is shorter than the IP address class based 19003 * derived netmask. Otherwise, we may create a net 19004 * broadcast address which is the same as an IP address 19005 * on the subnet. Then TCP will refuse to talk to that 19006 * address. 19007 * 19008 * Nor do we need IRE_BROADCAST ire's for the interface 19009 * with the netmask as 0xFFFFFFFF, as IRE_LOCAL for that 19010 * interface is already created. Creating these broadcast 19011 * ire's will only create confusion as the "addr" is going 19012 * to be same as that of the IP address of the interface. 19013 */ 19014 if (net_mask < subnet_mask) { 19015 addr = net_mask & ipif->ipif_subnet; 19016 irep = ire_check_and_create_bcast(ipif, addr, irep, 19017 (MATCH_IRE_TYPE | MATCH_IRE_ILL)); 19018 irep = ire_check_and_create_bcast(ipif, 19019 ~net_mask | addr, irep, 19020 (MATCH_IRE_TYPE | MATCH_IRE_ILL)); 19021 } 19022 19023 if (subnet_mask != 0xFFFFFFFF) { 19024 addr = ipif->ipif_subnet; 19025 irep = ire_check_and_create_bcast(ipif, addr, irep, 19026 (MATCH_IRE_TYPE | MATCH_IRE_ILL)); 19027 irep = ire_check_and_create_bcast(ipif, 19028 ~subnet_mask|addr, irep, 19029 (MATCH_IRE_TYPE | MATCH_IRE_ILL)); 19030 } 19031 } 19032 19033 ASSERT(!MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 19034 19035 /* If an earlier ire_create failed, get out now */ 19036 for (irep1 = irep; irep1 > ire_array; ) { 19037 irep1--; 19038 if (*irep1 == NULL) { 19039 ip1dbg(("ipif_up_done: NULL ire found in ire_array\n")); 19040 err = ENOMEM; 19041 goto bad; 19042 } 19043 } 19044 19045 /* 19046 * Need to atomically check for ip_addr_availablity_check 19047 * under ip_addr_avail_lock, and if it fails got bad, and remove 19048 * from group also.The ill_g_lock is grabbed as reader 19049 * just to make sure no new ills or new ipifs are being added 19050 * to the system while we are checking the uniqueness of addresses. 19051 */ 19052 rw_enter(&ill_g_lock, RW_READER); 19053 mutex_enter(&ip_addr_avail_lock); 19054 /* Mark it up, and increment counters. */ 19055 ill->ill_ipif_up_count++; 19056 ipif->ipif_flags |= IPIF_UP; 19057 err = ip_addr_availability_check(ipif); 19058 mutex_exit(&ip_addr_avail_lock); 19059 rw_exit(&ill_g_lock); 19060 19061 if (err != 0) { 19062 /* 19063 * Our address may already be up on the same ill. In this case, 19064 * the ARP entry for our ipif replaced the one for the other 19065 * ipif. So we don't want to delete it (otherwise the other ipif 19066 * would be unable to send packets). 19067 * ip_addr_availability_check() identifies this case for us and 19068 * returns EADDRINUSE; we need to turn it into EADDRNOTAVAIL 19069 * which is the expected error code. 19070 */ 19071 if (err == EADDRINUSE) { 19072 freemsg(ipif->ipif_arp_del_mp); 19073 ipif->ipif_arp_del_mp = NULL; 19074 err = EADDRNOTAVAIL; 19075 } 19076 ill->ill_ipif_up_count--; 19077 ipif->ipif_flags &= ~IPIF_UP; 19078 goto bad; 19079 } 19080 19081 /* 19082 * Add in all newly created IREs. ire_create_bcast() has 19083 * already checked for duplicates of the IRE_BROADCAST type. 19084 * We want to add before we call ifgrp_insert which wants 19085 * to know whether IRE_IF_RESOLVER exists or not. 19086 * 19087 * NOTE : We refrele the ire though we may branch to "bad" 19088 * later on where we do ire_delete. This is okay 19089 * because nobody can delete it as we are running 19090 * exclusively. 19091 */ 19092 for (irep1 = irep; irep1 > ire_array; ) { 19093 irep1--; 19094 ASSERT(!MUTEX_HELD(&((*irep1)->ire_ipif->ipif_ill->ill_lock))); 19095 /* 19096 * refheld by ire_add. refele towards the end of the func 19097 */ 19098 (void) ire_add(irep1, NULL, NULL, NULL); 19099 } 19100 ire_added = B_TRUE; 19101 /* 19102 * Form groups if possible. 19103 * 19104 * If we are supposed to be in a ill_group with a name, insert it 19105 * now as we know that at least one ipif is UP. Otherwise form 19106 * nameless groups. 19107 * 19108 * If ip_enable_group_ifs is set and ipif address is not 0, insert 19109 * this ipif into the appropriate interface group, or create a 19110 * new one. If this is already in a nameless group, we try to form 19111 * a bigger group looking at other ills potentially sharing this 19112 * ipif's prefix. 19113 */ 19114 phyi = ill->ill_phyint; 19115 if (phyi->phyint_groupname_len != 0) { 19116 ASSERT(phyi->phyint_groupname != NULL); 19117 if (ill->ill_ipif_up_count == 1) { 19118 ASSERT(ill->ill_group == NULL); 19119 err = illgrp_insert(&illgrp_head_v4, ill, 19120 phyi->phyint_groupname, NULL, B_TRUE); 19121 if (err != 0) { 19122 ip1dbg(("ipif_up_done: illgrp allocation " 19123 "failed, error %d\n", err)); 19124 goto bad; 19125 } 19126 } 19127 ASSERT(ill->ill_group != NULL); 19128 } 19129 19130 /* 19131 * When this is part of group, we need to make sure that 19132 * any broadcast ires created because of this ipif coming 19133 * UP gets marked/cleared with IRE_MARK_NORECV appropriately 19134 * so that we don't receive duplicate broadcast packets. 19135 */ 19136 if (ill->ill_group != NULL && ill->ill_ipif_up_count != 0) 19137 ipif_renominate_bcast(ipif); 19138 19139 /* Recover any additional IRE_IF_[NO]RESOLVER entries for this ipif */ 19140 ipif_saved_ire_cnt = ipif->ipif_saved_ire_cnt; 19141 ipif_saved_irep = ipif_recover_ire(ipif); 19142 19143 if (!loopback) { 19144 /* 19145 * If the broadcast address has been set, make sure it makes 19146 * sense based on the interface address. 19147 * Only match on ill since we are sharing broadcast addresses. 19148 */ 19149 if ((ipif->ipif_brd_addr != INADDR_ANY) && 19150 (ipif->ipif_flags & IPIF_BROADCAST)) { 19151 ire_t *ire; 19152 19153 ire = ire_ctable_lookup(ipif->ipif_brd_addr, 0, 19154 IRE_BROADCAST, ipif, ALL_ZONES, 19155 (MATCH_IRE_TYPE | MATCH_IRE_ILL)); 19156 19157 if (ire == NULL) { 19158 /* 19159 * If there isn't a matching broadcast IRE, 19160 * revert to the default for this netmask. 19161 */ 19162 ipif->ipif_v6brd_addr = ipv6_all_zeros; 19163 mutex_enter(&ipif->ipif_ill->ill_lock); 19164 ipif_set_default(ipif); 19165 mutex_exit(&ipif->ipif_ill->ill_lock); 19166 } else { 19167 ire_refrele(ire); 19168 } 19169 } 19170 19171 } 19172 19173 19174 /* This is the first interface on this ill */ 19175 if (ipif->ipif_ipif_up_count == 1 && !loopback) { 19176 /* 19177 * Need to recover all multicast memberships in the driver. 19178 * This had to be deferred until we had attached. 19179 */ 19180 ill_recover_multicast(ill); 19181 } 19182 /* Join the allhosts multicast address */ 19183 ipif_multicast_up(ipif); 19184 19185 if (!loopback) { 19186 /* 19187 * See whether anybody else would benefit from the 19188 * new ipif that we added. We call this always rather 19189 * than while adding a non-IPIF_NOLOCAL/DEPRECATED/ANYCAST 19190 * ipif is for the benefit of illgrp_insert (done above) 19191 * which does not do source address selection as it does 19192 * not want to re-create interface routes that we are 19193 * having reference to it here. 19194 */ 19195 ill_update_source_selection(ill); 19196 } 19197 19198 for (irep1 = irep; irep1 > ire_array; ) { 19199 irep1--; 19200 if (*irep1 != NULL) { 19201 /* was held in ire_add */ 19202 ire_refrele(*irep1); 19203 } 19204 } 19205 19206 cnt = ipif_saved_ire_cnt; 19207 for (irep1 = ipif_saved_irep; cnt > 0; irep1++, cnt--) { 19208 if (*irep1 != NULL) { 19209 /* was held in ire_add */ 19210 ire_refrele(*irep1); 19211 } 19212 } 19213 19214 /* 19215 * This had to be deferred until we had bound. 19216 * tell routing sockets that this interface is up 19217 */ 19218 ip_rts_ifmsg(ipif); 19219 ip_rts_newaddrmsg(RTM_ADD, 0, ipif); 19220 19221 if (!loopback) { 19222 /* Broadcast an address mask reply. */ 19223 ipif_mask_reply(ipif); 19224 } 19225 if (ipif_saved_irep != NULL) { 19226 kmem_free(ipif_saved_irep, 19227 ipif_saved_ire_cnt * sizeof (ire_t *)); 19228 } 19229 if (src_ipif_held) 19230 ipif_refrele(src_ipif); 19231 /* Let SCTP update the status for this ipif */ 19232 sctp_update_ipif(ipif, SCTP_IPIF_UP); 19233 return (0); 19234 19235 bad: 19236 ip1dbg(("ipif_up_done: FAILED \n")); 19237 /* 19238 * We don't have to bother removing from ill groups because 19239 * 19240 * 1) For groups with names, we insert only when the first ipif 19241 * comes up. In that case if it fails, it will not be in any 19242 * group. So, we need not try to remove for that case. 19243 * 19244 * 2) For groups without names, either we tried to insert ipif_ill 19245 * in a group as singleton or found some other group to become 19246 * a bigger group. For the former, if it fails we don't have 19247 * anything to do as ipif_ill is not in the group and for the 19248 * latter, there are no failures in illgrp_insert/illgrp_delete 19249 * (ENOMEM can't occur for this. Check ifgrp_insert). 19250 */ 19251 while (irep > ire_array) { 19252 irep--; 19253 if (*irep != NULL) { 19254 ire_delete(*irep); 19255 if (ire_added) 19256 ire_refrele(*irep); 19257 } 19258 } 19259 (void) ip_srcid_remove(&ipif->ipif_v6lcl_addr, ipif->ipif_zoneid); 19260 19261 if (ipif_saved_irep != NULL) { 19262 kmem_free(ipif_saved_irep, 19263 ipif_saved_ire_cnt * sizeof (ire_t *)); 19264 } 19265 if (src_ipif_held) 19266 ipif_refrele(src_ipif); 19267 19268 ipif_arp_down(ipif); 19269 return (err); 19270 } 19271 19272 /* 19273 * Turn off the ARP with the ILLF_NOARP flag. 19274 */ 19275 static int 19276 ill_arp_off(ill_t *ill) 19277 { 19278 mblk_t *arp_off_mp = NULL; 19279 mblk_t *arp_on_mp = NULL; 19280 19281 ip1dbg(("ill_arp_off(%s)\n", ill->ill_name)); 19282 19283 ASSERT(IAM_WRITER_ILL(ill)); 19284 ASSERT(ill->ill_net_type == IRE_IF_RESOLVER); 19285 19286 /* 19287 * If the on message is still around we've already done 19288 * an arp_off without doing an arp_on thus there is no 19289 * work needed. 19290 */ 19291 if (ill->ill_arp_on_mp != NULL) 19292 return (0); 19293 19294 /* 19295 * Allocate an ARP on message (to be saved) and an ARP off message 19296 */ 19297 arp_off_mp = ill_arp_alloc(ill, (uchar_t *)&ip_aroff_template, 0); 19298 if (!arp_off_mp) 19299 return (ENOMEM); 19300 19301 arp_on_mp = ill_arp_alloc(ill, (uchar_t *)&ip_aron_template, 0); 19302 if (!arp_on_mp) 19303 goto failed; 19304 19305 ASSERT(ill->ill_arp_on_mp == NULL); 19306 ill->ill_arp_on_mp = arp_on_mp; 19307 19308 /* Send an AR_INTERFACE_OFF request */ 19309 putnext(ill->ill_rq, arp_off_mp); 19310 return (0); 19311 failed: 19312 19313 if (arp_off_mp) 19314 freemsg(arp_off_mp); 19315 return (ENOMEM); 19316 } 19317 19318 /* 19319 * Turn on ARP by turning off the ILLF_NOARP flag. 19320 */ 19321 static int 19322 ill_arp_on(ill_t *ill) 19323 { 19324 mblk_t *mp; 19325 19326 ip1dbg(("ipif_arp_on(%s)\n", ill->ill_name)); 19327 19328 ASSERT(ill->ill_net_type == IRE_IF_RESOLVER); 19329 19330 ASSERT(IAM_WRITER_ILL(ill)); 19331 /* 19332 * Send an AR_INTERFACE_ON request if we have already done 19333 * an arp_off (which allocated the message). 19334 */ 19335 if (ill->ill_arp_on_mp != NULL) { 19336 mp = ill->ill_arp_on_mp; 19337 ill->ill_arp_on_mp = NULL; 19338 putnext(ill->ill_rq, mp); 19339 } 19340 return (0); 19341 } 19342 19343 /* 19344 * Called after either deleting ill from the group or when setting 19345 * FAILED or STANDBY on the interface. 19346 */ 19347 static void 19348 illgrp_reset_schednext(ill_t *ill) 19349 { 19350 ill_group_t *illgrp; 19351 ill_t *save_ill; 19352 19353 ASSERT(IAM_WRITER_ILL(ill)); 19354 /* 19355 * When called from illgrp_delete, ill_group will be non-NULL. 19356 * But when called from ip_sioctl_flags, it could be NULL if 19357 * somebody is setting FAILED/INACTIVE on some interface which 19358 * is not part of a group. 19359 */ 19360 illgrp = ill->ill_group; 19361 if (illgrp == NULL) 19362 return; 19363 if (illgrp->illgrp_ill_schednext != ill) 19364 return; 19365 19366 illgrp->illgrp_ill_schednext = NULL; 19367 save_ill = ill; 19368 /* 19369 * Choose a good ill to be the next one for 19370 * outbound traffic. As the flags FAILED/STANDBY is 19371 * not yet marked when called from ip_sioctl_flags, 19372 * we check for ill separately. 19373 */ 19374 for (ill = illgrp->illgrp_ill; ill != NULL; 19375 ill = ill->ill_group_next) { 19376 if ((ill != save_ill) && 19377 !(ill->ill_phyint->phyint_flags & 19378 (PHYI_FAILED|PHYI_INACTIVE|PHYI_OFFLINE))) { 19379 illgrp->illgrp_ill_schednext = ill; 19380 return; 19381 } 19382 } 19383 } 19384 19385 /* 19386 * Given an ill, find the next ill in the group to be scheduled. 19387 * (This should be called by ip_newroute() before ire_create().) 19388 * The passed in ill may be pulled out of the group, after we have picked 19389 * up a different outgoing ill from the same group. However ire add will 19390 * atomically check this. 19391 */ 19392 ill_t * 19393 illgrp_scheduler(ill_t *ill) 19394 { 19395 ill_t *retill; 19396 ill_group_t *illgrp; 19397 int illcnt; 19398 int i; 19399 uint64_t flags; 19400 19401 /* 19402 * We don't use a lock to check for the ill_group. If this ill 19403 * is currently being inserted we may end up just returning this 19404 * ill itself. That is ok. 19405 */ 19406 if (ill->ill_group == NULL) { 19407 ill_refhold(ill); 19408 return (ill); 19409 } 19410 19411 /* 19412 * Grab the ill_g_lock as reader to make sure we are dealing with 19413 * a set of stable ills. No ill can be added or deleted or change 19414 * group while we hold the reader lock. 19415 */ 19416 rw_enter(&ill_g_lock, RW_READER); 19417 if ((illgrp = ill->ill_group) == NULL) { 19418 rw_exit(&ill_g_lock); 19419 ill_refhold(ill); 19420 return (ill); 19421 } 19422 19423 illcnt = illgrp->illgrp_ill_count; 19424 mutex_enter(&illgrp->illgrp_lock); 19425 retill = illgrp->illgrp_ill_schednext; 19426 19427 if (retill == NULL) 19428 retill = illgrp->illgrp_ill; 19429 19430 /* 19431 * We do a circular search beginning at illgrp_ill_schednext 19432 * or illgrp_ill. We don't check the flags against the ill lock 19433 * since it can change anytime. The ire creation will be atomic 19434 * and will fail if the ill is FAILED or OFFLINE. 19435 */ 19436 for (i = 0; i < illcnt; i++) { 19437 flags = retill->ill_phyint->phyint_flags; 19438 19439 if (!(flags & (PHYI_FAILED|PHYI_INACTIVE|PHYI_OFFLINE)) && 19440 ILL_CAN_LOOKUP(retill)) { 19441 illgrp->illgrp_ill_schednext = retill->ill_group_next; 19442 ill_refhold(retill); 19443 break; 19444 } 19445 retill = retill->ill_group_next; 19446 if (retill == NULL) 19447 retill = illgrp->illgrp_ill; 19448 } 19449 mutex_exit(&illgrp->illgrp_lock); 19450 rw_exit(&ill_g_lock); 19451 19452 return (i == illcnt ? NULL : retill); 19453 } 19454 19455 /* 19456 * Checks for availbility of a usable source address (if there is one) when the 19457 * destination ILL has the ill_usesrc_ifindex pointing to another ILL. Note 19458 * this selection is done regardless of the destination. 19459 */ 19460 boolean_t 19461 ipif_usesrc_avail(ill_t *ill, zoneid_t zoneid) 19462 { 19463 uint_t ifindex; 19464 ipif_t *ipif = NULL; 19465 ill_t *uill; 19466 boolean_t isv6; 19467 19468 ASSERT(ill != NULL); 19469 19470 isv6 = ill->ill_isv6; 19471 ifindex = ill->ill_usesrc_ifindex; 19472 if (ifindex != 0) { 19473 uill = ill_lookup_on_ifindex(ifindex, isv6, NULL, NULL, NULL, 19474 NULL); 19475 if (uill == NULL) 19476 return (NULL); 19477 mutex_enter(&uill->ill_lock); 19478 for (ipif = uill->ill_ipif; ipif != NULL; 19479 ipif = ipif->ipif_next) { 19480 if (!IPIF_CAN_LOOKUP(ipif)) 19481 continue; 19482 if (ipif->ipif_flags & (IPIF_NOLOCAL|IPIF_ANYCAST)) 19483 continue; 19484 if (!(ipif->ipif_flags & IPIF_UP)) 19485 continue; 19486 if (ipif->ipif_zoneid != zoneid) 19487 continue; 19488 if ((isv6 && 19489 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr)) || 19490 (ipif->ipif_lcl_addr == INADDR_ANY)) 19491 continue; 19492 mutex_exit(&uill->ill_lock); 19493 ill_refrele(uill); 19494 return (B_TRUE); 19495 } 19496 mutex_exit(&uill->ill_lock); 19497 ill_refrele(uill); 19498 } 19499 return (B_FALSE); 19500 } 19501 19502 /* 19503 * Determine the best source address given a destination address and an ill. 19504 * Prefers non-deprecated over deprecated but will return a deprecated 19505 * address if there is no other choice. If there is a usable source address 19506 * on the interface pointed to by ill_usesrc_ifindex then that is given 19507 * first preference. 19508 * 19509 * Returns NULL if there is no suitable source address for the ill. 19510 * This only occurs when there is no valid source address for the ill. 19511 */ 19512 ipif_t * 19513 ipif_select_source(ill_t *ill, ipaddr_t dst, zoneid_t zoneid) 19514 { 19515 ipif_t *ipif; 19516 ipif_t *ipif_dep = NULL; /* Fallback to deprecated */ 19517 ipif_t *ipif_arr[MAX_IPIF_SELECT_SOURCE]; 19518 int index = 0; 19519 boolean_t wrapped = B_FALSE; 19520 boolean_t same_subnet_only = B_FALSE; 19521 boolean_t ipif_same_found, ipif_other_found; 19522 ill_t *till, *usill = NULL; 19523 19524 if (ill->ill_usesrc_ifindex != 0) { 19525 usill = ill_lookup_on_ifindex(ill->ill_usesrc_ifindex, B_FALSE, 19526 NULL, NULL, NULL, NULL); 19527 if (usill != NULL) 19528 ill = usill; /* Select source from usesrc ILL */ 19529 else 19530 return (NULL); 19531 } 19532 19533 /* 19534 * Holds the ill_g_lock as reader. This makes sure that no ipif/ill 19535 * can be deleted. But an ipif/ill can get CONDEMNED any time. 19536 * After selecting the right ipif, under ill_lock make sure ipif is 19537 * not condemned, and increment refcnt. If ipif is CONDEMNED, 19538 * we retry. Inside the loop we still need to check for CONDEMNED, 19539 * but not under a lock. 19540 */ 19541 rw_enter(&ill_g_lock, RW_READER); 19542 19543 retry: 19544 till = ill; 19545 ipif_arr[0] = NULL; 19546 19547 if (till->ill_group != NULL) 19548 till = till->ill_group->illgrp_ill; 19549 19550 /* 19551 * Choose one good source address from each ill across the group. 19552 * If possible choose a source address in the same subnet as 19553 * the destination address. 19554 * 19555 * We don't check for PHYI_FAILED or PHYI_INACTIVE or PHYI_OFFLINE 19556 * This is okay because of the following. 19557 * 19558 * If PHYI_FAILED is set and we still have non-deprecated 19559 * addresses, it means the addresses have not yet been 19560 * failed over to a different interface. We potentially 19561 * select them to create IRE_CACHES, which will be later 19562 * flushed when the addresses move over. 19563 * 19564 * If PHYI_INACTIVE is set and we still have non-deprecated 19565 * addresses, it means either the user has configured them 19566 * or PHYI_INACTIVE has not been cleared after the addresses 19567 * been moved over. For the former, in.mpathd does a failover 19568 * when the interface becomes INACTIVE and hence we should 19569 * not find them. Once INACTIVE is set, we don't allow them 19570 * to create logical interfaces anymore. For the latter, a 19571 * flush will happen when INACTIVE is cleared which will 19572 * flush the IRE_CACHES. 19573 * 19574 * If PHYI_OFFLINE is set, all the addresses will be failed 19575 * over soon. We potentially select them to create IRE_CACHEs, 19576 * which will be later flushed when the addresses move over. 19577 * 19578 * NOTE : As ipif_select_source is called to borrow source address 19579 * for an ipif that is part of a group, source address selection 19580 * will be re-done whenever the group changes i.e either an 19581 * insertion/deletion in the group. 19582 * 19583 * Fill ipif_arr[] with source addresses, using these rules: 19584 * 19585 * 1. At most one source address from a given ill ends up 19586 * in ipif_arr[] -- that is, at most one of the ipif's 19587 * associated with a given ill ends up in ipif_arr[]. 19588 * 19589 * 2. If there is at least one non-deprecated ipif in the 19590 * IPMP group with a source address on the same subnet as 19591 * our destination, then fill ipif_arr[] only with 19592 * source addresses on the same subnet as our destination. 19593 * Note that because of (1), only the first 19594 * non-deprecated ipif found with a source address 19595 * matching the destination ends up in ipif_arr[]. 19596 * 19597 * 3. Otherwise, fill ipif_arr[] with non-deprecated source 19598 * addresses not in the same subnet as our destination. 19599 * Again, because of (1), only the first off-subnet source 19600 * address will be chosen. 19601 * 19602 * 4. If there are no non-deprecated ipifs, then just use 19603 * the source address associated with the last deprecated 19604 * one we find that happens to be on the same subnet, 19605 * otherwise the first one not in the same subnet. 19606 */ 19607 for (; till != NULL; till = till->ill_group_next) { 19608 ipif_same_found = B_FALSE; 19609 ipif_other_found = B_FALSE; 19610 for (ipif = till->ill_ipif; ipif != NULL; 19611 ipif = ipif->ipif_next) { 19612 if (!IPIF_CAN_LOOKUP(ipif)) 19613 continue; 19614 /* Always skip NOLOCAL and ANYCAST interfaces */ 19615 if (ipif->ipif_flags & (IPIF_NOLOCAL|IPIF_ANYCAST)) 19616 continue; 19617 if (!(ipif->ipif_flags & IPIF_UP)) 19618 continue; 19619 if (ipif->ipif_zoneid != zoneid) 19620 continue; 19621 /* 19622 * Interfaces with 0.0.0.0 address are allowed to be UP, 19623 * but are not valid as source addresses. 19624 */ 19625 if (ipif->ipif_lcl_addr == INADDR_ANY) 19626 continue; 19627 if (ipif->ipif_flags & IPIF_DEPRECATED) { 19628 if (ipif_dep == NULL || 19629 (ipif->ipif_net_mask & dst) == 19630 ipif->ipif_subnet) 19631 ipif_dep = ipif; 19632 continue; 19633 } 19634 if ((ipif->ipif_net_mask & dst) == ipif->ipif_subnet) { 19635 /* found a source address in the same subnet */ 19636 if (same_subnet_only == B_FALSE) { 19637 same_subnet_only = B_TRUE; 19638 index = 0; 19639 } 19640 ipif_same_found = B_TRUE; 19641 } else { 19642 if (same_subnet_only == B_TRUE || 19643 ipif_other_found == B_TRUE) 19644 continue; 19645 ipif_other_found = B_TRUE; 19646 } 19647 ipif_arr[index++] = ipif; 19648 if (index == MAX_IPIF_SELECT_SOURCE) { 19649 wrapped = B_TRUE; 19650 index = 0; 19651 } 19652 if (ipif_same_found == B_TRUE) 19653 break; 19654 } 19655 } 19656 19657 if (ipif_arr[0] == NULL) { 19658 ipif = ipif_dep; 19659 } else { 19660 if (wrapped) 19661 index = MAX_IPIF_SELECT_SOURCE; 19662 ipif = ipif_arr[ipif_rand() % index]; 19663 ASSERT(ipif != NULL); 19664 } 19665 19666 if (ipif != NULL) { 19667 mutex_enter(&ipif->ipif_ill->ill_lock); 19668 if (!IPIF_CAN_LOOKUP(ipif)) { 19669 mutex_exit(&ipif->ipif_ill->ill_lock); 19670 goto retry; 19671 } 19672 ipif_refhold_locked(ipif); 19673 mutex_exit(&ipif->ipif_ill->ill_lock); 19674 } 19675 19676 rw_exit(&ill_g_lock); 19677 if (usill != NULL) 19678 ill_refrele(usill); 19679 19680 #ifdef DEBUG 19681 if (ipif == NULL) { 19682 char buf1[INET6_ADDRSTRLEN]; 19683 19684 ip1dbg(("ipif_select_source(%s, %s) -> NULL\n", 19685 ill->ill_name, 19686 inet_ntop(AF_INET, &dst, buf1, sizeof (buf1)))); 19687 } else { 19688 char buf1[INET6_ADDRSTRLEN]; 19689 char buf2[INET6_ADDRSTRLEN]; 19690 19691 ip1dbg(("ipif_select_source(%s, %s) -> %s\n", 19692 ipif->ipif_ill->ill_name, 19693 inet_ntop(AF_INET, &dst, buf1, sizeof (buf1)), 19694 inet_ntop(AF_INET, &ipif->ipif_lcl_addr, 19695 buf2, sizeof (buf2)))); 19696 } 19697 #endif /* DEBUG */ 19698 return (ipif); 19699 } 19700 19701 19702 /* 19703 * If old_ipif is not NULL, see if ipif was derived from old 19704 * ipif and if so, recreate the interface route by re-doing 19705 * source address selection. This happens when ipif_down -> 19706 * ipif_update_other_ipifs calls us. 19707 * 19708 * If old_ipif is NULL, just redo the source address selection 19709 * if needed. This happens when illgrp_insert or ipif_up_done 19710 * calls us. 19711 */ 19712 static void 19713 ipif_recreate_interface_routes(ipif_t *old_ipif, ipif_t *ipif) 19714 { 19715 ire_t *ire; 19716 ire_t *ipif_ire; 19717 queue_t *stq; 19718 ipif_t *nipif; 19719 ill_t *ill; 19720 boolean_t need_rele = B_FALSE; 19721 19722 ASSERT(old_ipif == NULL || IAM_WRITER_IPIF(old_ipif)); 19723 ASSERT(IAM_WRITER_IPIF(ipif)); 19724 19725 ill = ipif->ipif_ill; 19726 if (!(ipif->ipif_flags & 19727 (IPIF_NOLOCAL|IPIF_ANYCAST|IPIF_DEPRECATED))) { 19728 /* 19729 * Can't possibly have borrowed the source 19730 * from old_ipif. 19731 */ 19732 return; 19733 } 19734 19735 /* 19736 * Is there any work to be done? No work if the address 19737 * is INADDR_ANY, loopback or NOLOCAL or ANYCAST ( 19738 * ipif_select_source() does not borrow addresses from 19739 * NOLOCAL and ANYCAST interfaces). 19740 */ 19741 if ((old_ipif != NULL) && 19742 ((old_ipif->ipif_lcl_addr == INADDR_ANY) || 19743 (old_ipif->ipif_ill->ill_wq == NULL) || 19744 (old_ipif->ipif_flags & 19745 (IPIF_NOLOCAL|IPIF_ANYCAST)))) { 19746 return; 19747 } 19748 19749 /* 19750 * Perform the same checks as when creating the 19751 * IRE_INTERFACE in ipif_up_done. 19752 */ 19753 if (!(ipif->ipif_flags & IPIF_UP)) 19754 return; 19755 19756 if ((ipif->ipif_flags & IPIF_NOXMIT) || 19757 (ipif->ipif_subnet == INADDR_ANY)) 19758 return; 19759 19760 ipif_ire = ipif_to_ire(ipif); 19761 if (ipif_ire == NULL) 19762 return; 19763 19764 /* 19765 * We know that ipif uses some other source for its 19766 * IRE_INTERFACE. Is it using the source of this 19767 * old_ipif? 19768 */ 19769 if (old_ipif != NULL && 19770 old_ipif->ipif_lcl_addr != ipif_ire->ire_src_addr) { 19771 ire_refrele(ipif_ire); 19772 return; 19773 } 19774 if (ip_debug > 2) { 19775 /* ip1dbg */ 19776 pr_addr_dbg("ipif_recreate_interface_routes: deleting IRE for" 19777 " src %s\n", AF_INET, &ipif_ire->ire_src_addr); 19778 } 19779 19780 stq = ipif_ire->ire_stq; 19781 19782 /* 19783 * Can't use our source address. Select a different 19784 * source address for the IRE_INTERFACE. 19785 */ 19786 nipif = ipif_select_source(ill, ipif->ipif_subnet, ipif->ipif_zoneid); 19787 if (nipif == NULL) { 19788 /* Last resort - all ipif's have IPIF_NOLOCAL */ 19789 nipif = ipif; 19790 } else { 19791 need_rele = B_TRUE; 19792 } 19793 19794 ire = ire_create( 19795 (uchar_t *)&ipif->ipif_subnet, /* dest pref */ 19796 (uchar_t *)&ipif->ipif_net_mask, /* mask */ 19797 (uchar_t *)&nipif->ipif_src_addr, /* src addr */ 19798 NULL, /* no gateway */ 19799 NULL, 19800 &ipif->ipif_mtu, /* max frag */ 19801 NULL, /* fast path header */ 19802 NULL, /* no recv from queue */ 19803 stq, /* send-to queue */ 19804 ill->ill_net_type, /* IF_[NO]RESOLVER */ 19805 ill->ill_resolver_mp, /* xmit header */ 19806 ipif, 19807 NULL, 19808 0, 19809 0, 19810 0, 19811 0, 19812 &ire_uinfo_null); 19813 19814 if (ire != NULL) { 19815 ire_t *ret_ire; 19816 int error; 19817 19818 /* 19819 * We don't need ipif_ire anymore. We need to delete 19820 * before we add so that ire_add does not detect 19821 * duplicates. 19822 */ 19823 ire_delete(ipif_ire); 19824 ret_ire = ire; 19825 error = ire_add(&ret_ire, NULL, NULL, NULL); 19826 ASSERT(error == 0); 19827 ASSERT(ire == ret_ire); 19828 /* Held in ire_add */ 19829 ire_refrele(ret_ire); 19830 } 19831 /* 19832 * Either we are falling through from above or could not 19833 * allocate a replacement. 19834 */ 19835 ire_refrele(ipif_ire); 19836 if (need_rele) 19837 ipif_refrele(nipif); 19838 } 19839 19840 /* 19841 * This old_ipif is going away. 19842 * 19843 * Determine if any other ipif's is using our address as 19844 * ipif_lcl_addr (due to those being IPIF_NOLOCAL, IPIF_ANYCAST, or 19845 * IPIF_DEPRECATED). 19846 * Find the IRE_INTERFACE for such ipifs and recreate them 19847 * to use an different source address following the rules in 19848 * ipif_up_done. 19849 * 19850 * This function takes an illgrp as an argument so that illgrp_delete 19851 * can call this to update source address even after deleting the 19852 * old_ipif->ipif_ill from the ill group. 19853 */ 19854 static void 19855 ipif_update_other_ipifs(ipif_t *old_ipif, ill_group_t *illgrp) 19856 { 19857 ipif_t *ipif; 19858 ill_t *ill; 19859 char buf[INET6_ADDRSTRLEN]; 19860 19861 ASSERT(IAM_WRITER_IPIF(old_ipif)); 19862 ASSERT(illgrp == NULL || IAM_WRITER_IPIF(old_ipif)); 19863 19864 ill = old_ipif->ipif_ill; 19865 19866 ip1dbg(("ipif_update_other_ipifs(%s, %s)\n", 19867 ill->ill_name, 19868 inet_ntop(AF_INET, &old_ipif->ipif_lcl_addr, 19869 buf, sizeof (buf)))); 19870 /* 19871 * If this part of a group, look at all ills as ipif_select_source 19872 * borrows source address across all the ills in the group. 19873 */ 19874 if (illgrp != NULL) 19875 ill = illgrp->illgrp_ill; 19876 19877 for (; ill != NULL; ill = ill->ill_group_next) { 19878 for (ipif = ill->ill_ipif; ipif != NULL; 19879 ipif = ipif->ipif_next) { 19880 19881 if (ipif == old_ipif) 19882 continue; 19883 19884 ipif_recreate_interface_routes(old_ipif, ipif); 19885 } 19886 } 19887 } 19888 19889 /* ARGSUSED */ 19890 int 19891 if_unitsel_restart(ipif_t *ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 19892 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 19893 { 19894 /* 19895 * ill_phyint_reinit merged the v4 and v6 into a single 19896 * ipsq. Could also have become part of a ipmp group in the 19897 * process, and we might not have been able to complete the 19898 * operation in ipif_set_values, if we could not become 19899 * exclusive. If so restart it here. 19900 */ 19901 return (ipif_set_values_tail(ipif->ipif_ill, ipif, mp, q)); 19902 } 19903 19904 19905 /* ARGSUSED */ 19906 int 19907 if_unitsel(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 19908 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 19909 { 19910 queue_t *q1 = q; 19911 char *cp; 19912 char interf_name[LIFNAMSIZ]; 19913 uint_t ppa = *(uint_t *)mp->b_cont->b_cont->b_rptr; 19914 19915 if (!q->q_next) { 19916 ip1dbg(( 19917 "if_unitsel: IF_UNITSEL: no q_next\n")); 19918 return (EINVAL); 19919 } 19920 19921 if (((ill_t *)(q->q_ptr))->ill_name[0] != '\0') 19922 return (EALREADY); 19923 19924 do { 19925 q1 = q1->q_next; 19926 } while (q1->q_next); 19927 cp = q1->q_qinfo->qi_minfo->mi_idname; 19928 (void) sprintf(interf_name, "%s%d", cp, ppa); 19929 19930 /* 19931 * Here we are not going to delay the ioack until after 19932 * ACKs from DL_ATTACH_REQ/DL_BIND_REQ. So no need to save the 19933 * original ioctl message before sending the requests. 19934 */ 19935 return (ipif_set_values(q, mp, interf_name, &ppa)); 19936 } 19937 19938 /* ARGSUSED */ 19939 int 19940 ip_sioctl_sifname(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 19941 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 19942 { 19943 return (ENXIO); 19944 } 19945 19946 /* 19947 * Net and subnet broadcast ire's are now specific to the particular 19948 * physical interface (ill) and not to any one locigal interface (ipif). 19949 * However, if a particular logical interface is being taken down, it's 19950 * associated ire's will be taken down as well. Hence, when we go to 19951 * take down or change the local address, broadcast address or netmask 19952 * of a specific logical interface, we must check to make sure that we 19953 * have valid net and subnet broadcast ire's for the other logical 19954 * interfaces which may have been shared with the logical interface 19955 * being brought down or changed. 19956 * 19957 * There is one set of 0.0.0.0 and 255.255.255.255 per ill. Usually it 19958 * is tied to the first interface coming UP. If that ipif is going down, 19959 * we need to recreate them on the next valid ipif. 19960 * 19961 * Note: assume that the ipif passed in is still up so that it's IRE 19962 * entries are still valid. 19963 */ 19964 static void 19965 ipif_check_bcast_ires(ipif_t *test_ipif) 19966 { 19967 ipif_t *ipif; 19968 ire_t *test_subnet_ire, *test_net_ire; 19969 ire_t *test_allzero_ire, *test_allone_ire; 19970 ire_t *ire_array[12]; 19971 ire_t **irep = &ire_array[0]; 19972 ire_t **irep1; 19973 19974 ipaddr_t net_addr, subnet_addr, net_mask, subnet_mask; 19975 ipaddr_t test_net_addr, test_subnet_addr; 19976 ipaddr_t test_net_mask, test_subnet_mask; 19977 boolean_t need_net_bcast_ire = B_FALSE; 19978 boolean_t need_subnet_bcast_ire = B_FALSE; 19979 boolean_t allzero_bcast_ire_created = B_FALSE; 19980 boolean_t allone_bcast_ire_created = B_FALSE; 19981 boolean_t net_bcast_ire_created = B_FALSE; 19982 boolean_t subnet_bcast_ire_created = B_FALSE; 19983 19984 ipif_t *backup_ipif_net = (ipif_t *)NULL; 19985 ipif_t *backup_ipif_subnet = (ipif_t *)NULL; 19986 ipif_t *backup_ipif_allzeros = (ipif_t *)NULL; 19987 ipif_t *backup_ipif_allones = (ipif_t *)NULL; 19988 uint64_t check_flags = IPIF_DEPRECATED | IPIF_NOLOCAL | IPIF_ANYCAST; 19989 19990 ASSERT(!test_ipif->ipif_isv6); 19991 ASSERT(IAM_WRITER_IPIF(test_ipif)); 19992 19993 /* 19994 * No broadcast IREs for the LOOPBACK interface 19995 * or others such as point to point and IPIF_NOXMIT. 19996 */ 19997 if (!(test_ipif->ipif_flags & IPIF_BROADCAST) || 19998 (test_ipif->ipif_flags & IPIF_NOXMIT)) 19999 return; 20000 20001 test_allzero_ire = ire_ctable_lookup(0, 0, IRE_BROADCAST, 20002 test_ipif, ALL_ZONES, (MATCH_IRE_TYPE | MATCH_IRE_IPIF)); 20003 20004 test_allone_ire = ire_ctable_lookup(INADDR_BROADCAST, 0, IRE_BROADCAST, 20005 test_ipif, ALL_ZONES, (MATCH_IRE_TYPE | MATCH_IRE_IPIF)); 20006 20007 test_net_mask = ip_net_mask(test_ipif->ipif_subnet); 20008 test_subnet_mask = test_ipif->ipif_net_mask; 20009 20010 /* 20011 * If no net mask set, assume the default based on net class. 20012 */ 20013 if (test_subnet_mask == 0) 20014 test_subnet_mask = test_net_mask; 20015 20016 /* 20017 * Check if there is a network broadcast ire associated with this ipif 20018 */ 20019 test_net_addr = test_net_mask & test_ipif->ipif_subnet; 20020 test_net_ire = ire_ctable_lookup(test_net_addr, 0, IRE_BROADCAST, 20021 test_ipif, ALL_ZONES, (MATCH_IRE_TYPE | MATCH_IRE_IPIF)); 20022 20023 /* 20024 * Check if there is a subnet broadcast IRE associated with this ipif 20025 */ 20026 test_subnet_addr = test_subnet_mask & test_ipif->ipif_subnet; 20027 test_subnet_ire = ire_ctable_lookup(test_subnet_addr, 0, IRE_BROADCAST, 20028 test_ipif, ALL_ZONES, (MATCH_IRE_TYPE | MATCH_IRE_IPIF)); 20029 20030 /* 20031 * No broadcast ire's associated with this ipif. 20032 */ 20033 if ((test_subnet_ire == NULL) && (test_net_ire == NULL) && 20034 (test_allzero_ire == NULL) && (test_allone_ire == NULL)) { 20035 return; 20036 } 20037 20038 /* 20039 * We have established which bcast ires have to be replaced. 20040 * Next we try to locate ipifs that match there ires. 20041 * The rules are simple: If we find an ipif that matches on the subnet 20042 * address it will also match on the net address, the allzeros and 20043 * allones address. Any ipif that matches only on the net address will 20044 * also match the allzeros and allones addresses. 20045 * The other criterion is the ipif_flags. We look for non-deprecated 20046 * (and non-anycast and non-nolocal) ipifs as the best choice. 20047 * ipifs with check_flags matching (deprecated, etc) are used only 20048 * if good ipifs are not available. While looping, we save existing 20049 * deprecated ipifs as backup_ipif. 20050 * We loop through all the ipifs for this ill looking for ipifs 20051 * whose broadcast addr match the ipif passed in, but do not have 20052 * their own broadcast ires. For creating 0.0.0.0 and 20053 * 255.255.255.255 we just need an ipif on this ill to create. 20054 */ 20055 for (ipif = test_ipif->ipif_ill->ill_ipif; ipif != NULL; 20056 ipif = ipif->ipif_next) { 20057 20058 ASSERT(!ipif->ipif_isv6); 20059 /* 20060 * Already checked the ipif passed in. 20061 */ 20062 if (ipif == test_ipif) { 20063 continue; 20064 } 20065 20066 /* 20067 * We only need to recreate broadcast ires if another ipif in 20068 * the same zone uses them. The new ires must be created in the 20069 * same zone. 20070 */ 20071 if (ipif->ipif_zoneid != test_ipif->ipif_zoneid) { 20072 continue; 20073 } 20074 20075 /* 20076 * Only interested in logical interfaces with valid local 20077 * addresses or with the ability to broadcast. 20078 */ 20079 if ((ipif->ipif_subnet == 0) || 20080 !(ipif->ipif_flags & IPIF_BROADCAST) || 20081 (ipif->ipif_flags & IPIF_NOXMIT) || 20082 !(ipif->ipif_flags & IPIF_UP)) { 20083 continue; 20084 } 20085 /* 20086 * Check if there is a net broadcast ire for this 20087 * net address. If it turns out that the ipif we are 20088 * about to take down owns this ire, we must make a 20089 * new one because it is potentially going away. 20090 */ 20091 if (test_net_ire && (!net_bcast_ire_created)) { 20092 net_mask = ip_net_mask(ipif->ipif_subnet); 20093 net_addr = net_mask & ipif->ipif_subnet; 20094 if (net_addr == test_net_addr) { 20095 need_net_bcast_ire = B_TRUE; 20096 /* 20097 * Use DEPRECATED ipif only if no good 20098 * ires are available. subnet_addr is 20099 * a better match than net_addr. 20100 */ 20101 if ((ipif->ipif_flags & check_flags) && 20102 (backup_ipif_net == NULL)) { 20103 backup_ipif_net = ipif; 20104 } 20105 } 20106 } 20107 /* 20108 * Check if there is a subnet broadcast ire for this 20109 * net address. If it turns out that the ipif we are 20110 * about to take down owns this ire, we must make a 20111 * new one because it is potentially going away. 20112 */ 20113 if (test_subnet_ire && (!subnet_bcast_ire_created)) { 20114 subnet_mask = ipif->ipif_net_mask; 20115 subnet_addr = ipif->ipif_subnet; 20116 if (subnet_addr == test_subnet_addr) { 20117 need_subnet_bcast_ire = B_TRUE; 20118 if ((ipif->ipif_flags & check_flags) && 20119 (backup_ipif_subnet == NULL)) { 20120 backup_ipif_subnet = ipif; 20121 } 20122 } 20123 } 20124 20125 20126 /* Short circuit here if this ipif is deprecated */ 20127 if (ipif->ipif_flags & check_flags) { 20128 if ((test_allzero_ire != NULL) && 20129 (!allzero_bcast_ire_created) && 20130 (backup_ipif_allzeros == NULL)) { 20131 backup_ipif_allzeros = ipif; 20132 } 20133 if ((test_allone_ire != NULL) && 20134 (!allone_bcast_ire_created) && 20135 (backup_ipif_allones == NULL)) { 20136 backup_ipif_allones = ipif; 20137 } 20138 continue; 20139 } 20140 20141 /* 20142 * Found an ipif which has the same broadcast ire as the 20143 * ipif passed in and the ipif passed in "owns" the ire. 20144 * Create new broadcast ire's for this broadcast addr. 20145 */ 20146 if (need_net_bcast_ire && !net_bcast_ire_created) { 20147 irep = ire_create_bcast(ipif, net_addr, irep); 20148 irep = ire_create_bcast(ipif, 20149 ~net_mask | net_addr, irep); 20150 net_bcast_ire_created = B_TRUE; 20151 } 20152 if (need_subnet_bcast_ire && !subnet_bcast_ire_created) { 20153 irep = ire_create_bcast(ipif, subnet_addr, irep); 20154 irep = ire_create_bcast(ipif, 20155 ~subnet_mask | subnet_addr, irep); 20156 subnet_bcast_ire_created = B_TRUE; 20157 } 20158 if (test_allzero_ire != NULL && !allzero_bcast_ire_created) { 20159 irep = ire_create_bcast(ipif, 0, irep); 20160 allzero_bcast_ire_created = B_TRUE; 20161 } 20162 if (test_allone_ire != NULL && !allone_bcast_ire_created) { 20163 irep = ire_create_bcast(ipif, INADDR_BROADCAST, irep); 20164 allone_bcast_ire_created = B_TRUE; 20165 } 20166 /* 20167 * Once we have created all the appropriate ires, we 20168 * just break out of this loop to add what we have created. 20169 * This has been indented similar to ire_match_args for 20170 * readability. 20171 */ 20172 if (((test_net_ire == NULL) || 20173 (net_bcast_ire_created)) && 20174 ((test_subnet_ire == NULL) || 20175 (subnet_bcast_ire_created)) && 20176 ((test_allzero_ire == NULL) || 20177 (allzero_bcast_ire_created)) && 20178 ((test_allone_ire == NULL) || 20179 (allone_bcast_ire_created))) { 20180 break; 20181 } 20182 } 20183 20184 /* 20185 * Create bcast ires on deprecated ipifs if no non-deprecated ipifs 20186 * exist. 6 pairs of bcast ires are needed. 20187 * Note - the old ires are deleted in ipif_down. 20188 */ 20189 if (need_net_bcast_ire && !net_bcast_ire_created && backup_ipif_net) { 20190 ipif = backup_ipif_net; 20191 irep = ire_create_bcast(ipif, net_addr, irep); 20192 irep = ire_create_bcast(ipif, ~net_mask | net_addr, irep); 20193 net_bcast_ire_created = B_TRUE; 20194 } 20195 if (need_subnet_bcast_ire && !subnet_bcast_ire_created && 20196 backup_ipif_subnet) { 20197 ipif = backup_ipif_subnet; 20198 irep = ire_create_bcast(ipif, subnet_addr, irep); 20199 irep = ire_create_bcast(ipif, 20200 ~subnet_mask | subnet_addr, irep); 20201 subnet_bcast_ire_created = B_TRUE; 20202 } 20203 if (test_allzero_ire != NULL && !allzero_bcast_ire_created && 20204 backup_ipif_allzeros) { 20205 irep = ire_create_bcast(backup_ipif_allzeros, 0, irep); 20206 allzero_bcast_ire_created = B_TRUE; 20207 } 20208 if (test_allone_ire != NULL && !allone_bcast_ire_created && 20209 backup_ipif_allones) { 20210 irep = ire_create_bcast(backup_ipif_allones, 20211 INADDR_BROADCAST, irep); 20212 allone_bcast_ire_created = B_TRUE; 20213 } 20214 20215 /* 20216 * If we can't create all of them, don't add any of them. 20217 * Code in ip_wput_ire and ire_to_ill assumes that we 20218 * always have a non-loopback copy and loopback copy 20219 * for a given address. 20220 */ 20221 for (irep1 = irep; irep1 > ire_array; ) { 20222 irep1--; 20223 if (*irep1 == NULL) { 20224 ip0dbg(("ipif_check_bcast_ires: can't create " 20225 "IRE_BROADCAST, memory allocation failure\n")); 20226 while (irep > ire_array) { 20227 irep--; 20228 if (*irep != NULL) 20229 ire_delete(*irep); 20230 } 20231 goto bad; 20232 } 20233 } 20234 for (irep1 = irep; irep1 > ire_array; ) { 20235 int error; 20236 20237 irep1--; 20238 error = ire_add(irep1, NULL, NULL, NULL); 20239 if (error == 0) { 20240 ire_refrele(*irep1); /* Held in ire_add */ 20241 } 20242 } 20243 bad: 20244 if (test_allzero_ire != NULL) 20245 ire_refrele(test_allzero_ire); 20246 if (test_allone_ire != NULL) 20247 ire_refrele(test_allone_ire); 20248 if (test_net_ire != NULL) 20249 ire_refrele(test_net_ire); 20250 if (test_subnet_ire != NULL) 20251 ire_refrele(test_subnet_ire); 20252 } 20253 20254 /* 20255 * Extract both the flags (including IFF_CANTCHANGE) such as IFF_IPV* 20256 * from lifr_flags and the name from lifr_name. 20257 * Set IFF_IPV* and ill_isv6 prior to doing the lookup 20258 * since ipif_lookup_on_name uses the _isv6 flags when matching. 20259 * Returns EINPROGRESS when mp has been consumed by queueing it on 20260 * ill_pending_mp and the ioctl will complete in ip_rput. 20261 */ 20262 /* ARGSUSED */ 20263 int 20264 ip_sioctl_slifname(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 20265 ip_ioctl_cmd_t *ipip, void *if_req) 20266 { 20267 int err; 20268 ill_t *ill; 20269 struct lifreq *lifr = (struct lifreq *)if_req; 20270 20271 ASSERT(ipif != NULL); 20272 ip1dbg(("ip_sioctl_slifname %s\n", lifr->lifr_name)); 20273 ASSERT(q->q_next != NULL); 20274 20275 ill = (ill_t *)q->q_ptr; 20276 /* 20277 * If we are not writer on 'q' then this interface exists already 20278 * and previous lookups (ipif_extract_lifreq_cmn) found this ipif. 20279 * So return EALREADY 20280 */ 20281 if (ill != ipif->ipif_ill) 20282 return (EALREADY); 20283 20284 if (ill->ill_name[0] != '\0') 20285 return (EALREADY); 20286 20287 /* 20288 * Set all the flags. Allows all kinds of override. Provide some 20289 * sanity checking by not allowing IFF_BROADCAST and IFF_MULTICAST 20290 * unless there is either multicast/broadcast support in the driver 20291 * or it is a pt-pt link. 20292 */ 20293 if (lifr->lifr_flags & (IFF_PROMISC|IFF_ALLMULTI)) { 20294 /* Meaningless to IP thus don't allow them to be set. */ 20295 ip1dbg(("ip_setname: EINVAL 1\n")); 20296 return (EINVAL); 20297 } 20298 /* 20299 * For a DL_STYLE2 driver (ill_needs_attach), we would not have the 20300 * ill_bcast_addr_length info. 20301 */ 20302 if (!ill->ill_needs_attach && 20303 ((lifr->lifr_flags & IFF_MULTICAST) && 20304 !(lifr->lifr_flags & IFF_POINTOPOINT) && 20305 ill->ill_bcast_addr_length == 0)) { 20306 /* Link not broadcast/pt-pt capable i.e. no multicast */ 20307 ip1dbg(("ip_setname: EINVAL 2\n")); 20308 return (EINVAL); 20309 } 20310 if ((lifr->lifr_flags & IFF_BROADCAST) && 20311 ((lifr->lifr_flags & IFF_IPV6) || 20312 (!ill->ill_needs_attach && ill->ill_bcast_addr_length == 0))) { 20313 /* Link not broadcast capable or IPv6 i.e. no broadcast */ 20314 ip1dbg(("ip_setname: EINVAL 3\n")); 20315 return (EINVAL); 20316 } 20317 if (lifr->lifr_flags & IFF_UP) { 20318 /* Can only be set with SIOCSLIFFLAGS */ 20319 ip1dbg(("ip_setname: EINVAL 4\n")); 20320 return (EINVAL); 20321 } 20322 if ((lifr->lifr_flags & (IFF_IPV6|IFF_IPV4)) != IFF_IPV6 && 20323 (lifr->lifr_flags & (IFF_IPV6|IFF_IPV4)) != IFF_IPV4) { 20324 ip1dbg(("ip_setname: EINVAL 5\n")); 20325 return (EINVAL); 20326 } 20327 /* 20328 * Only allow the IFF_XRESOLV flag to be set on IPv6 interfaces. 20329 */ 20330 if ((lifr->lifr_flags & IFF_XRESOLV) && 20331 !(lifr->lifr_flags & IFF_IPV6) && 20332 !(ipif->ipif_isv6)) { 20333 ip1dbg(("ip_setname: EINVAL 6\n")); 20334 return (EINVAL); 20335 } 20336 20337 /* 20338 * The user has done SIOCGLIFFLAGS prior to this ioctl and hence 20339 * we have all the flags here. So, we assign rather than we OR. 20340 * We can't OR the flags here because we don't want to set 20341 * both IFF_IPV4 and IFF_IPV6. We start off as IFF_IPV4 in 20342 * ipif_allocate and become IFF_IPV4 or IFF_IPV6 here depending 20343 * on lifr_flags value here. 20344 */ 20345 /* 20346 * This ill has not been inserted into the global list. 20347 * So we are still single threaded and don't need any lock 20348 */ 20349 ipif->ipif_flags = lifr->lifr_flags & IFF_LOGINT_FLAGS; 20350 ill->ill_flags = lifr->lifr_flags & IFF_PHYINTINST_FLAGS; 20351 ill->ill_phyint->phyint_flags = lifr->lifr_flags & IFF_PHYINT_FLAGS; 20352 20353 /* We started off as V4. */ 20354 if (ill->ill_flags & ILLF_IPV6) { 20355 ill->ill_phyint->phyint_illv6 = ill; 20356 ill->ill_phyint->phyint_illv4 = NULL; 20357 } 20358 err = ipif_set_values(q, mp, lifr->lifr_name, &lifr->lifr_ppa); 20359 return (err); 20360 } 20361 20362 /* ARGSUSED */ 20363 int 20364 ip_sioctl_slifname_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 20365 ip_ioctl_cmd_t *ipip, void *if_req) 20366 { 20367 /* 20368 * ill_phyint_reinit merged the v4 and v6 into a single 20369 * ipsq. Could also have become part of a ipmp group in the 20370 * process, and we might not have been able to complete the 20371 * slifname in ipif_set_values, if we could not become 20372 * exclusive. If so restart it here 20373 */ 20374 return (ipif_set_values_tail(ipif->ipif_ill, ipif, mp, q)); 20375 } 20376 20377 /* 20378 * Return a pointer to the ipif which matches the index, IP version type and 20379 * zoneid. 20380 */ 20381 ipif_t * 20382 ipif_lookup_on_ifindex(uint_t index, boolean_t isv6, zoneid_t zoneid, 20383 queue_t *q, mblk_t *mp, ipsq_func_t func, int *err) 20384 { 20385 ill_t *ill; 20386 ipsq_t *ipsq; 20387 phyint_t *phyi; 20388 ipif_t *ipif; 20389 20390 ASSERT((q == NULL && mp == NULL && func == NULL && err == NULL) || 20391 (q != NULL && mp != NULL && func != NULL && err != NULL)); 20392 20393 if (err != NULL) 20394 *err = 0; 20395 20396 /* 20397 * Indexes are stored in the phyint - a common structure 20398 * to both IPv4 and IPv6. 20399 */ 20400 20401 rw_enter(&ill_g_lock, RW_READER); 20402 phyi = avl_find(&phyint_g_list.phyint_list_avl_by_index, 20403 (void *) &index, NULL); 20404 if (phyi != NULL) { 20405 ill = isv6 ? phyi->phyint_illv6 : phyi->phyint_illv4; 20406 if (ill == NULL) { 20407 rw_exit(&ill_g_lock); 20408 if (err != NULL) 20409 *err = ENXIO; 20410 return (NULL); 20411 } 20412 GRAB_CONN_LOCK(q); 20413 mutex_enter(&ill->ill_lock); 20414 if (ILL_CAN_LOOKUP(ill)) { 20415 for (ipif = ill->ill_ipif; ipif != NULL; 20416 ipif = ipif->ipif_next) { 20417 if (IPIF_CAN_LOOKUP(ipif) && 20418 (zoneid == ALL_ZONES || 20419 zoneid == ipif->ipif_zoneid)) { 20420 ipif_refhold_locked(ipif); 20421 mutex_exit(&ill->ill_lock); 20422 RELEASE_CONN_LOCK(q); 20423 rw_exit(&ill_g_lock); 20424 return (ipif); 20425 } 20426 } 20427 } else if (ILL_CAN_WAIT(ill, q)) { 20428 ipsq = ill->ill_phyint->phyint_ipsq; 20429 mutex_enter(&ipsq->ipsq_lock); 20430 rw_exit(&ill_g_lock); 20431 mutex_exit(&ill->ill_lock); 20432 ipsq_enq(ipsq, q, mp, func, NEW_OP, ill); 20433 mutex_exit(&ipsq->ipsq_lock); 20434 RELEASE_CONN_LOCK(q); 20435 *err = EINPROGRESS; 20436 return (NULL); 20437 } 20438 mutex_exit(&ill->ill_lock); 20439 RELEASE_CONN_LOCK(q); 20440 } 20441 rw_exit(&ill_g_lock); 20442 if (err != NULL) 20443 *err = ENXIO; 20444 return (NULL); 20445 } 20446 20447 typedef struct conn_change_s { 20448 uint_t cc_old_ifindex; 20449 uint_t cc_new_ifindex; 20450 } conn_change_t; 20451 20452 /* 20453 * ipcl_walk function for changing interface index. 20454 */ 20455 static void 20456 conn_change_ifindex(conn_t *connp, caddr_t arg) 20457 { 20458 conn_change_t *connc; 20459 uint_t old_ifindex; 20460 uint_t new_ifindex; 20461 int i; 20462 ilg_t *ilg; 20463 20464 connc = (conn_change_t *)arg; 20465 old_ifindex = connc->cc_old_ifindex; 20466 new_ifindex = connc->cc_new_ifindex; 20467 20468 if (connp->conn_orig_bound_ifindex == old_ifindex) 20469 connp->conn_orig_bound_ifindex = new_ifindex; 20470 20471 if (connp->conn_orig_multicast_ifindex == old_ifindex) 20472 connp->conn_orig_multicast_ifindex = new_ifindex; 20473 20474 if (connp->conn_orig_xmit_ifindex == old_ifindex) 20475 connp->conn_orig_xmit_ifindex = new_ifindex; 20476 20477 for (i = connp->conn_ilg_inuse - 1; i >= 0; i--) { 20478 ilg = &connp->conn_ilg[i]; 20479 if (ilg->ilg_orig_ifindex == old_ifindex) 20480 ilg->ilg_orig_ifindex = new_ifindex; 20481 } 20482 } 20483 20484 /* 20485 * Walk all the ipifs and ilms on this ill and change the orig_ifindex 20486 * to new_index if it matches the old_index. 20487 * 20488 * Failovers typically happen within a group of ills. But somebody 20489 * can remove an ill from the group after a failover happened. If 20490 * we are setting the ifindex after this, we potentially need to 20491 * look at all the ills rather than just the ones in the group. 20492 * We cut down the work by looking at matching ill_net_types 20493 * and ill_types as we could not possibly grouped them together. 20494 */ 20495 static void 20496 ip_change_ifindex(ill_t *ill_orig, conn_change_t *connc) 20497 { 20498 ill_t *ill; 20499 ipif_t *ipif; 20500 uint_t old_ifindex; 20501 uint_t new_ifindex; 20502 ilm_t *ilm; 20503 ill_walk_context_t ctx; 20504 20505 old_ifindex = connc->cc_old_ifindex; 20506 new_ifindex = connc->cc_new_ifindex; 20507 20508 rw_enter(&ill_g_lock, RW_READER); 20509 ill = ILL_START_WALK_ALL(&ctx); 20510 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 20511 if ((ill_orig->ill_net_type != ill->ill_net_type) || 20512 (ill_orig->ill_type != ill->ill_type)) { 20513 continue; 20514 } 20515 for (ipif = ill->ill_ipif; ipif != NULL; 20516 ipif = ipif->ipif_next) { 20517 if (ipif->ipif_orig_ifindex == old_ifindex) 20518 ipif->ipif_orig_ifindex = new_ifindex; 20519 } 20520 for (ilm = ill->ill_ilm; ilm != NULL; ilm = ilm->ilm_next) { 20521 if (ilm->ilm_orig_ifindex == old_ifindex) 20522 ilm->ilm_orig_ifindex = new_ifindex; 20523 } 20524 } 20525 rw_exit(&ill_g_lock); 20526 } 20527 20528 /* 20529 * We first need to ensure that the new index is unique, and 20530 * then carry the change across both v4 and v6 ill representation 20531 * of the physical interface. 20532 */ 20533 /* ARGSUSED */ 20534 int 20535 ip_sioctl_slifindex(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 20536 ip_ioctl_cmd_t *ipip, void *ifreq) 20537 { 20538 ill_t *ill; 20539 ill_t *ill_other; 20540 phyint_t *phyi; 20541 int old_index; 20542 conn_change_t connc; 20543 struct ifreq *ifr = (struct ifreq *)ifreq; 20544 struct lifreq *lifr = (struct lifreq *)ifreq; 20545 uint_t index; 20546 ill_t *ill_v4; 20547 ill_t *ill_v6; 20548 20549 if (ipip->ipi_cmd_type == IF_CMD) 20550 index = ifr->ifr_index; 20551 else 20552 index = lifr->lifr_index; 20553 20554 /* 20555 * Only allow on physical interface. Also, index zero is illegal. 20556 * 20557 * Need to check for PHYI_FAILED and PHYI_INACTIVE 20558 * 20559 * 1) If PHYI_FAILED is set, a failover could have happened which 20560 * implies a possible failback might have to happen. As failback 20561 * depends on the old index, we should fail setting the index. 20562 * 20563 * 2) If PHYI_INACTIVE is set, in.mpathd does a failover so that 20564 * any addresses or multicast memberships are failed over to 20565 * a non-STANDBY interface. As failback depends on the old 20566 * index, we should fail setting the index for this case also. 20567 * 20568 * 3) If PHYI_OFFLINE is set, a possible failover has happened. 20569 * Be consistent with PHYI_FAILED and fail the ioctl. 20570 */ 20571 ill = ipif->ipif_ill; 20572 phyi = ill->ill_phyint; 20573 if ((phyi->phyint_flags & (PHYI_FAILED|PHYI_INACTIVE|PHYI_OFFLINE)) || 20574 ipif->ipif_id != 0 || index == 0) { 20575 return (EINVAL); 20576 } 20577 old_index = phyi->phyint_ifindex; 20578 20579 /* If the index is not changing, no work to do */ 20580 if (old_index == index) 20581 return (0); 20582 20583 /* 20584 * Use ill_lookup_on_ifindex to determine if the 20585 * new index is unused and if so allow the change. 20586 */ 20587 ill_v6 = ill_lookup_on_ifindex(index, B_TRUE, NULL, NULL, NULL, NULL); 20588 ill_v4 = ill_lookup_on_ifindex(index, B_FALSE, NULL, NULL, NULL, NULL); 20589 if (ill_v6 != NULL || ill_v4 != NULL) { 20590 if (ill_v4 != NULL) 20591 ill_refrele(ill_v4); 20592 if (ill_v6 != NULL) 20593 ill_refrele(ill_v6); 20594 return (EBUSY); 20595 } 20596 20597 /* 20598 * The new index is unused. Set it in the phyint. 20599 * Locate the other ill so that we can send a routing 20600 * sockets message. 20601 */ 20602 if (ill->ill_isv6) { 20603 ill_other = phyi->phyint_illv4; 20604 } else { 20605 ill_other = phyi->phyint_illv6; 20606 } 20607 20608 phyi->phyint_ifindex = index; 20609 20610 connc.cc_old_ifindex = old_index; 20611 connc.cc_new_ifindex = index; 20612 ip_change_ifindex(ill, &connc); 20613 ipcl_walk(conn_change_ifindex, (caddr_t)&connc); 20614 20615 /* Send the routing sockets message */ 20616 ip_rts_ifmsg(ipif); 20617 if (ill_other != NULL) 20618 ip_rts_ifmsg(ill_other->ill_ipif); 20619 20620 return (0); 20621 } 20622 20623 /* ARGSUSED */ 20624 int 20625 ip_sioctl_get_lifindex(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 20626 ip_ioctl_cmd_t *ipip, void *ifreq) 20627 { 20628 struct ifreq *ifr = (struct ifreq *)ifreq; 20629 struct lifreq *lifr = (struct lifreq *)ifreq; 20630 20631 ip1dbg(("ip_sioctl_get_lifindex(%s:%u %p)\n", 20632 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 20633 /* Get the interface index */ 20634 if (ipip->ipi_cmd_type == IF_CMD) { 20635 ifr->ifr_index = ipif->ipif_ill->ill_phyint->phyint_ifindex; 20636 } else { 20637 lifr->lifr_index = ipif->ipif_ill->ill_phyint->phyint_ifindex; 20638 } 20639 return (0); 20640 } 20641 20642 /* ARGSUSED */ 20643 int 20644 ip_sioctl_get_lifzone(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 20645 ip_ioctl_cmd_t *ipip, void *ifreq) 20646 { 20647 struct lifreq *lifr = (struct lifreq *)ifreq; 20648 20649 ip1dbg(("ip_sioctl_get_lifzone(%s:%u %p)\n", 20650 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 20651 /* Get the interface zone */ 20652 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 20653 lifr->lifr_zoneid = ipif->ipif_zoneid; 20654 return (0); 20655 } 20656 20657 /* 20658 * Set the zoneid of an interface. 20659 */ 20660 /* ARGSUSED */ 20661 int 20662 ip_sioctl_slifzone(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 20663 ip_ioctl_cmd_t *ipip, void *ifreq) 20664 { 20665 struct lifreq *lifr = (struct lifreq *)ifreq; 20666 int err = 0; 20667 boolean_t need_up = B_FALSE; 20668 zone_t *zptr; 20669 zone_status_t status; 20670 zoneid_t zoneid; 20671 20672 /* cannot assign instance zero to a non-global zone */ 20673 if (ipif->ipif_id == 0) 20674 return (ENOTSUP); 20675 20676 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 20677 zoneid = lifr->lifr_zoneid; 20678 20679 /* 20680 * Cannot assign to a zone that doesn't exist or is shutting down. In 20681 * the event of a race with the zone shutdown processing, since IP 20682 * serializes this ioctl and SIOCGLIFCONF/SIOCLIFREMOVEIF, we know the 20683 * interface will be cleaned up even if the zone is shut down 20684 * immediately after the status check. If the interface can't be brought 20685 * down right away, and the zone is shut down before the restart 20686 * function is called, we resolve the possible races by rechecking the 20687 * zone status in the restart function. 20688 */ 20689 if ((zptr = zone_find_by_id(zoneid)) == NULL) 20690 return (EINVAL); 20691 status = zone_status_get(zptr); 20692 zone_rele(zptr); 20693 20694 if (status != ZONE_IS_READY && status != ZONE_IS_RUNNING) 20695 return (EINVAL); 20696 20697 if (ipif->ipif_flags & IPIF_UP) { 20698 /* 20699 * If the interface is already marked up, 20700 * we call ipif_down which will take care 20701 * of ditching any IREs that have been set 20702 * up based on the old interface address. 20703 */ 20704 err = ipif_logical_down(ipif, q, mp); 20705 if (err == EINPROGRESS) 20706 return (err); 20707 ipif_down_tail(ipif); 20708 need_up = B_TRUE; 20709 } 20710 20711 err = ip_sioctl_slifzone_tail(ipif, zoneid, q, mp, need_up); 20712 return (err); 20713 } 20714 20715 static int 20716 ip_sioctl_slifzone_tail(ipif_t *ipif, zoneid_t zoneid, 20717 queue_t *q, mblk_t *mp, boolean_t need_up) 20718 { 20719 int err = 0; 20720 20721 ip1dbg(("ip_sioctl_zoneid_tail(%s:%u %p)\n", 20722 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 20723 20724 /* Set the new zone id. */ 20725 ipif->ipif_zoneid = zoneid; 20726 20727 /* Update sctp list */ 20728 sctp_update_ipif(ipif, SCTP_IPIF_UPDATE); 20729 20730 if (need_up) { 20731 /* 20732 * Now bring the interface back up. If this 20733 * is the only IPIF for the ILL, ipif_up 20734 * will have to re-bind to the device, so 20735 * we may get back EINPROGRESS, in which 20736 * case, this IOCTL will get completed in 20737 * ip_rput_dlpi when we see the DL_BIND_ACK. 20738 */ 20739 err = ipif_up(ipif, q, mp); 20740 } 20741 return (err); 20742 } 20743 20744 /* ARGSUSED */ 20745 int 20746 ip_sioctl_slifzone_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 20747 ip_ioctl_cmd_t *ipip, void *if_req) 20748 { 20749 struct lifreq *lifr = (struct lifreq *)if_req; 20750 zoneid_t zoneid; 20751 zone_t *zptr; 20752 zone_status_t status; 20753 20754 ASSERT(ipif->ipif_id != 0); 20755 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 20756 zoneid = lifr->lifr_zoneid; 20757 20758 ip1dbg(("ip_sioctl_slifzone_restart(%s:%u %p)\n", 20759 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 20760 20761 /* 20762 * We recheck the zone status to resolve the following race condition: 20763 * 1) process sends SIOCSLIFZONE to put hme0:1 in zone "myzone"; 20764 * 2) hme0:1 is up and can't be brought down right away; 20765 * ip_sioctl_slifzone() returns EINPROGRESS and the request is queued; 20766 * 3) zone "myzone" is halted; the zone status switches to 20767 * 'shutting_down' and the zones framework sends SIOCGLIFCONF to list 20768 * the interfaces to remove - hme0:1 is not returned because it's not 20769 * yet in "myzone", so it won't be removed; 20770 * 4) the restart function for SIOCSLIFZONE is called; without the 20771 * status check here, we would have hme0:1 in "myzone" after it's been 20772 * destroyed. 20773 * Note that if the status check fails, we need to bring the interface 20774 * back to its state prior to ip_sioctl_slifzone(), hence the call to 20775 * ipif_up_done[_v6](). 20776 */ 20777 status = ZONE_IS_UNINITIALIZED; 20778 if ((zptr = zone_find_by_id(zoneid)) != NULL) { 20779 status = zone_status_get(zptr); 20780 zone_rele(zptr); 20781 } 20782 if (status != ZONE_IS_READY && status != ZONE_IS_RUNNING) { 20783 if (ipif->ipif_isv6) { 20784 (void) ipif_up_done_v6(ipif); 20785 } else { 20786 (void) ipif_up_done(ipif); 20787 } 20788 return (EINVAL); 20789 } 20790 20791 ipif_down_tail(ipif); 20792 20793 return (ip_sioctl_slifzone_tail(ipif, zoneid, q, mp, B_TRUE)); 20794 } 20795 20796 /* ARGSUSED */ 20797 int 20798 ip_sioctl_get_lifusesrc(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 20799 ip_ioctl_cmd_t *ipip, void *ifreq) 20800 { 20801 struct lifreq *lifr = ifreq; 20802 20803 ASSERT(q->q_next == NULL); 20804 ASSERT(CONN_Q(q)); 20805 20806 ip1dbg(("ip_sioctl_get_lifusesrc(%s:%u %p)\n", 20807 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 20808 lifr->lifr_index = ipif->ipif_ill->ill_usesrc_ifindex; 20809 ip1dbg(("ip_sioctl_get_lifusesrc:lifr_index = %d\n", lifr->lifr_index)); 20810 20811 return (0); 20812 } 20813 20814 20815 /* Find the previous ILL in this usesrc group */ 20816 static ill_t * 20817 ill_prev_usesrc(ill_t *uill) 20818 { 20819 ill_t *ill; 20820 20821 for (ill = uill->ill_usesrc_grp_next; 20822 ASSERT(ill), ill->ill_usesrc_grp_next != uill; 20823 ill = ill->ill_usesrc_grp_next) 20824 /* do nothing */; 20825 return (ill); 20826 } 20827 20828 /* 20829 * Release all members of the usesrc group. This routine is called 20830 * from ill_delete when the interface being unplumbed is the 20831 * group head. 20832 */ 20833 static void 20834 ill_disband_usesrc_group(ill_t *uill) 20835 { 20836 ill_t *next_ill, *tmp_ill; 20837 ASSERT(RW_WRITE_HELD(&ill_g_usesrc_lock)); 20838 next_ill = uill->ill_usesrc_grp_next; 20839 20840 do { 20841 ASSERT(next_ill != NULL); 20842 tmp_ill = next_ill->ill_usesrc_grp_next; 20843 ASSERT(tmp_ill != NULL); 20844 next_ill->ill_usesrc_grp_next = NULL; 20845 next_ill->ill_usesrc_ifindex = 0; 20846 next_ill = tmp_ill; 20847 } while (next_ill->ill_usesrc_ifindex != 0); 20848 uill->ill_usesrc_grp_next = NULL; 20849 } 20850 20851 /* 20852 * Remove the client usesrc ILL from the list and relink to a new list 20853 */ 20854 int 20855 ill_relink_usesrc_ills(ill_t *ucill, ill_t *uill, uint_t ifindex) 20856 { 20857 ill_t *ill, *tmp_ill; 20858 20859 ASSERT((ucill != NULL) && (ucill->ill_usesrc_grp_next != NULL) && 20860 (uill != NULL) && RW_WRITE_HELD(&ill_g_usesrc_lock)); 20861 20862 /* 20863 * Check if the usesrc client ILL passed in is not already 20864 * in use as a usesrc ILL i.e one whose source address is 20865 * in use OR a usesrc ILL is not already in use as a usesrc 20866 * client ILL 20867 */ 20868 if ((ucill->ill_usesrc_ifindex == 0) || 20869 (uill->ill_usesrc_ifindex != 0)) { 20870 return (-1); 20871 } 20872 20873 ill = ill_prev_usesrc(ucill); 20874 ASSERT(ill->ill_usesrc_grp_next != NULL); 20875 20876 /* Remove from the current list */ 20877 if (ill->ill_usesrc_grp_next->ill_usesrc_grp_next == ill) { 20878 /* Only two elements in the list */ 20879 ASSERT(ill->ill_usesrc_ifindex == 0); 20880 ill->ill_usesrc_grp_next = NULL; 20881 } else { 20882 ill->ill_usesrc_grp_next = ucill->ill_usesrc_grp_next; 20883 } 20884 20885 if (ifindex == 0) { 20886 ucill->ill_usesrc_ifindex = 0; 20887 ucill->ill_usesrc_grp_next = NULL; 20888 return (0); 20889 } 20890 20891 ucill->ill_usesrc_ifindex = ifindex; 20892 tmp_ill = uill->ill_usesrc_grp_next; 20893 uill->ill_usesrc_grp_next = ucill; 20894 ucill->ill_usesrc_grp_next = 20895 (tmp_ill != NULL) ? tmp_ill : uill; 20896 return (0); 20897 } 20898 20899 /* 20900 * Set the ill_usesrc and ill_usesrc_head fields. See synchronization notes in 20901 * ip.c for locking details. 20902 */ 20903 /* ARGSUSED */ 20904 int 20905 ip_sioctl_slifusesrc(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 20906 ip_ioctl_cmd_t *ipip, void *ifreq) 20907 { 20908 struct lifreq *lifr = (struct lifreq *)ifreq; 20909 boolean_t isv6 = B_FALSE, reset_flg = B_FALSE, 20910 ill_flag_changed = B_FALSE; 20911 ill_t *usesrc_ill, *usesrc_cli_ill = ipif->ipif_ill; 20912 int err = 0, ret; 20913 uint_t ifindex; 20914 phyint_t *us_phyint, *us_cli_phyint; 20915 ipsq_t *ipsq = NULL; 20916 20917 ASSERT(IAM_WRITER_IPIF(ipif)); 20918 ASSERT(q->q_next == NULL); 20919 ASSERT(CONN_Q(q)); 20920 20921 isv6 = (Q_TO_CONN(q))->conn_af_isv6; 20922 us_cli_phyint = usesrc_cli_ill->ill_phyint; 20923 20924 ASSERT(us_cli_phyint != NULL); 20925 20926 /* 20927 * If the client ILL is being used for IPMP, abort. 20928 * Note, this can be done before ipsq_try_enter since we are already 20929 * exclusive on this ILL 20930 */ 20931 if ((us_cli_phyint->phyint_groupname != NULL) || 20932 (us_cli_phyint->phyint_flags & PHYI_STANDBY)) { 20933 return (EINVAL); 20934 } 20935 20936 ifindex = lifr->lifr_index; 20937 if (ifindex == 0) { 20938 if (usesrc_cli_ill->ill_usesrc_grp_next == NULL) { 20939 /* non usesrc group interface, nothing to reset */ 20940 return (0); 20941 } 20942 ifindex = usesrc_cli_ill->ill_usesrc_ifindex; 20943 /* valid reset request */ 20944 reset_flg = B_TRUE; 20945 } 20946 20947 usesrc_ill = ill_lookup_on_ifindex(ifindex, isv6, q, mp, 20948 ip_process_ioctl, &err); 20949 20950 if (usesrc_ill == NULL) { 20951 return (err); 20952 } 20953 20954 /* 20955 * The usesrc_cli_ill or the usesrc_ill cannot be part of an IPMP 20956 * group nor can either of the interfaces be used for standy. So 20957 * to guarantee mutual exclusion with ip_sioctl_flags (which sets 20958 * PHYI_STANDBY) and ip_sioctl_groupname (which sets the groupname) 20959 * we need to be exclusive on the ipsq belonging to the usesrc_ill. 20960 * We are already exlusive on this ipsq i.e ipsq corresponding to 20961 * the usesrc_cli_ill 20962 */ 20963 ipsq = ipsq_try_enter(NULL, usesrc_ill, q, mp, ip_process_ioctl, 20964 NEW_OP, B_TRUE); 20965 if (ipsq == NULL) { 20966 err = EINPROGRESS; 20967 /* Operation enqueued on the ipsq of the usesrc ILL */ 20968 goto done; 20969 } 20970 20971 /* Check if the usesrc_ill is used for IPMP */ 20972 us_phyint = usesrc_ill->ill_phyint; 20973 if ((us_phyint->phyint_groupname != NULL) || 20974 (us_phyint->phyint_flags & PHYI_STANDBY)) { 20975 err = EINVAL; 20976 goto done; 20977 } 20978 20979 /* 20980 * If the client is already in use as a usesrc_ill or a usesrc_ill is 20981 * already a client then return EINVAL 20982 */ 20983 if (IS_USESRC_ILL(usesrc_cli_ill) || IS_USESRC_CLI_ILL(usesrc_ill)) { 20984 err = EINVAL; 20985 goto done; 20986 } 20987 20988 /* 20989 * If the ill_usesrc_ifindex field is already set to what it needs to 20990 * be then this is a duplicate operation. 20991 */ 20992 if (!reset_flg && usesrc_cli_ill->ill_usesrc_ifindex == ifindex) { 20993 err = 0; 20994 goto done; 20995 } 20996 20997 ip1dbg(("ip_sioctl_slifusesrc: usesrc_cli_ill %s, usesrc_ill %s," 20998 " v6 = %d", usesrc_cli_ill->ill_name, usesrc_ill->ill_name, 20999 usesrc_ill->ill_isv6)); 21000 21001 /* 21002 * The next step ensures that no new ires will be created referencing 21003 * the client ill, until the ILL_CHANGING flag is cleared. Then 21004 * we go through an ire walk deleting all ire caches that reference 21005 * the client ill. New ires referencing the client ill that are added 21006 * to the ire table before the ILL_CHANGING flag is set, will be 21007 * cleaned up by the ire walk below. Attempt to add new ires referencing 21008 * the client ill while the ILL_CHANGING flag is set will be failed 21009 * during the ire_add in ire_atomic_start. ire_atomic_start atomically 21010 * checks (under the ill_g_usesrc_lock) that the ire being added 21011 * is not stale, i.e the ire_stq and ire_ipif are consistent and 21012 * belong to the same usesrc group. 21013 */ 21014 mutex_enter(&usesrc_cli_ill->ill_lock); 21015 usesrc_cli_ill->ill_state_flags |= ILL_CHANGING; 21016 mutex_exit(&usesrc_cli_ill->ill_lock); 21017 ill_flag_changed = B_TRUE; 21018 21019 if (ipif->ipif_isv6) 21020 ire_walk_v6(ipif_delete_cache_ire, (char *)usesrc_cli_ill, 21021 ALL_ZONES); 21022 else 21023 ire_walk_v4(ipif_delete_cache_ire, (char *)usesrc_cli_ill, 21024 ALL_ZONES); 21025 21026 /* 21027 * ill_g_usesrc_lock global lock protects the ill_usesrc_grp_next 21028 * and the ill_usesrc_ifindex fields 21029 */ 21030 rw_enter(&ill_g_usesrc_lock, RW_WRITER); 21031 21032 if (reset_flg) { 21033 ret = ill_relink_usesrc_ills(usesrc_cli_ill, usesrc_ill, 0); 21034 if (ret != 0) { 21035 err = EINVAL; 21036 } 21037 rw_exit(&ill_g_usesrc_lock); 21038 goto done; 21039 } 21040 21041 /* 21042 * Four possibilities to consider: 21043 * 1. Both usesrc_ill and usesrc_cli_ill are not part of any usesrc grp 21044 * 2. usesrc_ill is part of a group but usesrc_cli_ill isn't 21045 * 3. usesrc_cli_ill is part of a group but usesrc_ill isn't 21046 * 4. Both are part of their respective usesrc groups 21047 */ 21048 if ((usesrc_ill->ill_usesrc_grp_next == NULL) && 21049 (usesrc_cli_ill->ill_usesrc_grp_next == NULL)) { 21050 ASSERT(usesrc_ill->ill_usesrc_ifindex == 0); 21051 usesrc_cli_ill->ill_usesrc_ifindex = ifindex; 21052 usesrc_ill->ill_usesrc_grp_next = usesrc_cli_ill; 21053 usesrc_cli_ill->ill_usesrc_grp_next = usesrc_ill; 21054 } else if ((usesrc_ill->ill_usesrc_grp_next != NULL) && 21055 (usesrc_cli_ill->ill_usesrc_grp_next == NULL)) { 21056 usesrc_cli_ill->ill_usesrc_ifindex = ifindex; 21057 /* Insert at head of list */ 21058 usesrc_cli_ill->ill_usesrc_grp_next = 21059 usesrc_ill->ill_usesrc_grp_next; 21060 usesrc_ill->ill_usesrc_grp_next = usesrc_cli_ill; 21061 } else { 21062 ret = ill_relink_usesrc_ills(usesrc_cli_ill, usesrc_ill, 21063 ifindex); 21064 if (ret != 0) 21065 err = EINVAL; 21066 } 21067 rw_exit(&ill_g_usesrc_lock); 21068 21069 done: 21070 if (ill_flag_changed) { 21071 mutex_enter(&usesrc_cli_ill->ill_lock); 21072 usesrc_cli_ill->ill_state_flags &= ~ILL_CHANGING; 21073 mutex_exit(&usesrc_cli_ill->ill_lock); 21074 } 21075 if (ipsq != NULL) 21076 ipsq_exit(ipsq, B_TRUE, B_TRUE); 21077 /* The refrele on the lifr_name ipif is done by ip_process_ioctl */ 21078 ill_refrele(usesrc_ill); 21079 return (err); 21080 } 21081 21082 /* 21083 * comparison function used by avl. 21084 */ 21085 static int 21086 ill_phyint_compare_index(const void *index_ptr, const void *phyip) 21087 { 21088 21089 uint_t index; 21090 21091 ASSERT(phyip != NULL && index_ptr != NULL); 21092 21093 index = *((uint_t *)index_ptr); 21094 /* 21095 * let the phyint with the lowest index be on top. 21096 */ 21097 if (((phyint_t *)phyip)->phyint_ifindex < index) 21098 return (1); 21099 if (((phyint_t *)phyip)->phyint_ifindex > index) 21100 return (-1); 21101 return (0); 21102 } 21103 21104 /* 21105 * comparison function used by avl. 21106 */ 21107 static int 21108 ill_phyint_compare_name(const void *name_ptr, const void *phyip) 21109 { 21110 ill_t *ill; 21111 int res = 0; 21112 21113 ASSERT(phyip != NULL && name_ptr != NULL); 21114 21115 if (((phyint_t *)phyip)->phyint_illv4) 21116 ill = ((phyint_t *)phyip)->phyint_illv4; 21117 else 21118 ill = ((phyint_t *)phyip)->phyint_illv6; 21119 ASSERT(ill != NULL); 21120 21121 res = strcmp(ill->ill_name, (char *)name_ptr); 21122 if (res > 0) 21123 return (1); 21124 else if (res < 0) 21125 return (-1); 21126 return (0); 21127 } 21128 /* 21129 * This function is called from ill_delete when the ill is being 21130 * unplumbed. We remove the reference from the phyint and we also 21131 * free the phyint when there are no more references to it. 21132 */ 21133 static void 21134 ill_phyint_free(ill_t *ill) 21135 { 21136 phyint_t *phyi; 21137 phyint_t *next_phyint; 21138 ipsq_t *cur_ipsq; 21139 21140 ASSERT(ill->ill_phyint != NULL); 21141 21142 ASSERT(RW_WRITE_HELD(&ill_g_lock)); 21143 phyi = ill->ill_phyint; 21144 ill->ill_phyint = NULL; 21145 /* 21146 * ill_init allocates a phyint always to store the copy 21147 * of flags relevant to phyint. At that point in time, we could 21148 * not assign the name and hence phyint_illv4/v6 could not be 21149 * initialized. Later in ipif_set_values, we assign the name to 21150 * the ill, at which point in time we assign phyint_illv4/v6. 21151 * Thus we don't rely on phyint_illv6 to be initialized always. 21152 */ 21153 if (ill->ill_flags & ILLF_IPV6) { 21154 phyi->phyint_illv6 = NULL; 21155 } else { 21156 phyi->phyint_illv4 = NULL; 21157 } 21158 /* 21159 * ipif_down removes it from the group when the last ipif goes 21160 * down. 21161 */ 21162 ASSERT(ill->ill_group == NULL); 21163 21164 if (phyi->phyint_illv4 != NULL || phyi->phyint_illv6 != NULL) 21165 return; 21166 21167 /* 21168 * Make sure this phyint was put in the list. 21169 */ 21170 if (phyi->phyint_ifindex > 0) { 21171 avl_remove(&phyint_g_list.phyint_list_avl_by_index, 21172 phyi); 21173 avl_remove(&phyint_g_list.phyint_list_avl_by_name, 21174 phyi); 21175 } 21176 /* 21177 * remove phyint from the ipsq list. 21178 */ 21179 cur_ipsq = phyi->phyint_ipsq; 21180 if (phyi == cur_ipsq->ipsq_phyint_list) { 21181 cur_ipsq->ipsq_phyint_list = phyi->phyint_ipsq_next; 21182 } else { 21183 next_phyint = cur_ipsq->ipsq_phyint_list; 21184 while (next_phyint != NULL) { 21185 if (next_phyint->phyint_ipsq_next == phyi) { 21186 next_phyint->phyint_ipsq_next = 21187 phyi->phyint_ipsq_next; 21188 break; 21189 } 21190 next_phyint = next_phyint->phyint_ipsq_next; 21191 } 21192 ASSERT(next_phyint != NULL); 21193 } 21194 IPSQ_DEC_REF(cur_ipsq); 21195 21196 if (phyi->phyint_groupname_len != 0) { 21197 ASSERT(phyi->phyint_groupname != NULL); 21198 mi_free(phyi->phyint_groupname); 21199 } 21200 mi_free(phyi); 21201 } 21202 21203 /* 21204 * Attach the ill to the phyint structure which can be shared by both 21205 * IPv4 and IPv6 ill. ill_init allocates a phyint to just hold flags. This 21206 * function is called from ipif_set_values and ill_lookup_on_name (for 21207 * loopback) where we know the name of the ill. We lookup the ill and if 21208 * there is one present already with the name use that phyint. Otherwise 21209 * reuse the one allocated by ill_init. 21210 */ 21211 static void 21212 ill_phyint_reinit(ill_t *ill) 21213 { 21214 boolean_t isv6 = ill->ill_isv6; 21215 phyint_t *phyi_old; 21216 phyint_t *phyi; 21217 avl_index_t where = 0; 21218 ill_t *ill_other = NULL; 21219 ipsq_t *ipsq; 21220 21221 ASSERT(RW_WRITE_HELD(&ill_g_lock)); 21222 21223 phyi_old = ill->ill_phyint; 21224 ASSERT(isv6 || (phyi_old->phyint_illv4 == ill && 21225 phyi_old->phyint_illv6 == NULL)); 21226 ASSERT(!isv6 || (phyi_old->phyint_illv6 == ill && 21227 phyi_old->phyint_illv4 == NULL)); 21228 ASSERT(phyi_old->phyint_ifindex == 0); 21229 21230 phyi = avl_find(&phyint_g_list.phyint_list_avl_by_name, 21231 ill->ill_name, &where); 21232 21233 /* 21234 * 1. We grabbed the ill_g_lock before inserting this ill into 21235 * the global list of ills. So no other thread could have located 21236 * this ill and hence the ipsq of this ill is guaranteed to be empty. 21237 * 2. Now locate the other protocol instance of this ill. 21238 * 3. Now grab both ill locks in the right order, and the phyint lock of 21239 * the new ipsq. Holding ill locks + ill_g_lock ensures that the ipsq 21240 * of neither ill can change. 21241 * 4. Merge the phyint and thus the ipsq as well of this ill onto the 21242 * other ill. 21243 * 5. Release all locks. 21244 */ 21245 21246 /* 21247 * Look for IPv4 if we are initializing IPv6 or look for IPv6 if 21248 * we are initializing IPv4. 21249 */ 21250 if (phyi != NULL) { 21251 ill_other = (isv6) ? phyi->phyint_illv4 : 21252 phyi->phyint_illv6; 21253 ASSERT(ill_other->ill_phyint != NULL); 21254 ASSERT((isv6 && !ill_other->ill_isv6) || 21255 (!isv6 && ill_other->ill_isv6)); 21256 GRAB_ILL_LOCKS(ill, ill_other); 21257 /* 21258 * We are potentially throwing away phyint_flags which 21259 * could be different from the one that we obtain from 21260 * ill_other->ill_phyint. But it is okay as we are assuming 21261 * that the state maintained within IP is correct. 21262 */ 21263 mutex_enter(&phyi->phyint_lock); 21264 if (isv6) { 21265 ASSERT(phyi->phyint_illv6 == NULL); 21266 phyi->phyint_illv6 = ill; 21267 } else { 21268 ASSERT(phyi->phyint_illv4 == NULL); 21269 phyi->phyint_illv4 = ill; 21270 } 21271 /* 21272 * This is a new ill, currently undergoing SLIFNAME 21273 * So we could not have joined an IPMP group until now. 21274 */ 21275 ASSERT(phyi_old->phyint_ipsq_next == NULL && 21276 phyi_old->phyint_groupname == NULL); 21277 21278 /* 21279 * This phyi_old is going away. Decref ipsq_refs and 21280 * assert it is zero. The ipsq itself will be freed in 21281 * ipsq_exit 21282 */ 21283 ipsq = phyi_old->phyint_ipsq; 21284 IPSQ_DEC_REF(ipsq); 21285 ASSERT(ipsq->ipsq_refs == 0); 21286 /* Get the singleton phyint out of the ipsq list */ 21287 ASSERT(phyi_old->phyint_ipsq_next == NULL); 21288 ipsq->ipsq_phyint_list = NULL; 21289 phyi_old->phyint_illv4 = NULL; 21290 phyi_old->phyint_illv6 = NULL; 21291 mi_free(phyi_old); 21292 } else { 21293 mutex_enter(&ill->ill_lock); 21294 /* 21295 * We don't need to acquire any lock, since 21296 * the ill is not yet visible globally and we 21297 * have not yet released the ill_g_lock. 21298 */ 21299 phyi = phyi_old; 21300 mutex_enter(&phyi->phyint_lock); 21301 /* XXX We need a recovery strategy here. */ 21302 if (!phyint_assign_ifindex(phyi)) 21303 cmn_err(CE_PANIC, "phyint_assign_ifindex() failed"); 21304 21305 avl_insert(&phyint_g_list.phyint_list_avl_by_name, 21306 (void *)phyi, where); 21307 21308 (void) avl_find(&phyint_g_list.phyint_list_avl_by_index, 21309 &phyi->phyint_ifindex, &where); 21310 avl_insert(&phyint_g_list.phyint_list_avl_by_index, 21311 (void *)phyi, where); 21312 } 21313 21314 /* 21315 * Reassigning ill_phyint automatically reassigns the ipsq also. 21316 * pending mp is not affected because that is per ill basis. 21317 */ 21318 ill->ill_phyint = phyi; 21319 21320 /* 21321 * Keep the index on ipif_orig_index to be used by FAILOVER. 21322 * We do this here as when the first ipif was allocated, 21323 * ipif_allocate does not know the right interface index. 21324 */ 21325 21326 ill->ill_ipif->ipif_orig_ifindex = ill->ill_phyint->phyint_ifindex; 21327 /* 21328 * Now that the phyint's ifindex has been assigned, complete the 21329 * remaining 21330 */ 21331 if (ill->ill_isv6) { 21332 ill->ill_ip6_mib->ipv6IfIndex = 21333 ill->ill_phyint->phyint_ifindex; 21334 ill->ill_icmp6_mib->ipv6IfIcmpIfIndex = 21335 ill->ill_phyint->phyint_ifindex; 21336 } 21337 21338 RELEASE_ILL_LOCKS(ill, ill_other); 21339 mutex_exit(&phyi->phyint_lock); 21340 } 21341 21342 /* 21343 * Notify any downstream modules of the name of this interface. 21344 * An M_IOCTL is used even though we don't expect a successful reply. 21345 * Any reply message from the driver (presumably an M_IOCNAK) will 21346 * eventually get discarded somewhere upstream. The message format is 21347 * simply an SIOCSLIFNAME ioctl just as might be sent from ifconfig 21348 * to IP. 21349 */ 21350 static void 21351 ip_ifname_notify(ill_t *ill, queue_t *q) 21352 { 21353 mblk_t *mp1, *mp2; 21354 struct iocblk *iocp; 21355 struct lifreq *lifr; 21356 21357 mp1 = mkiocb(SIOCSLIFNAME); 21358 if (mp1 == NULL) 21359 return; 21360 mp2 = allocb(sizeof (struct lifreq), BPRI_HI); 21361 if (mp2 == NULL) { 21362 freeb(mp1); 21363 return; 21364 } 21365 21366 mp1->b_cont = mp2; 21367 iocp = (struct iocblk *)mp1->b_rptr; 21368 iocp->ioc_count = sizeof (struct lifreq); 21369 21370 lifr = (struct lifreq *)mp2->b_rptr; 21371 mp2->b_wptr += sizeof (struct lifreq); 21372 bzero(lifr, sizeof (struct lifreq)); 21373 21374 (void) strncpy(lifr->lifr_name, ill->ill_name, LIFNAMSIZ); 21375 lifr->lifr_ppa = ill->ill_ppa; 21376 lifr->lifr_flags = (ill->ill_flags & (ILLF_IPV4|ILLF_IPV6)); 21377 21378 putnext(q, mp1); 21379 } 21380 21381 static boolean_t ip_trash_timer_started = B_FALSE; 21382 21383 static int 21384 ipif_set_values_tail(ill_t *ill, ipif_t *ipif, mblk_t *mp, queue_t *q) 21385 { 21386 int err; 21387 21388 /* Set the obsolete NDD per-interface forwarding name. */ 21389 err = ill_set_ndd_name(ill); 21390 if (err != 0) { 21391 cmn_err(CE_WARN, "ipif_set_values: ill_set_ndd_name (%d)\n", 21392 err); 21393 } 21394 21395 /* Tell downstream modules where they are. */ 21396 ip_ifname_notify(ill, q); 21397 21398 /* 21399 * ill_dl_phys returns EINPROGRESS in the usual case. 21400 * Error cases are ENOMEM ... 21401 */ 21402 err = ill_dl_phys(ill, ipif, mp, q); 21403 21404 /* 21405 * If there is no IRE expiration timer running, get one started. 21406 * igmp and mld timers will be triggered by the first multicast 21407 */ 21408 if (!ip_trash_timer_started) { 21409 /* 21410 * acquire the lock and check again. 21411 */ 21412 mutex_enter(&ip_trash_timer_lock); 21413 if (!ip_trash_timer_started) { 21414 ip_ire_expire_id = timeout(ip_trash_timer_expire, NULL, 21415 MSEC_TO_TICK(ip_timer_interval)); 21416 ip_trash_timer_started = B_TRUE; 21417 } 21418 mutex_exit(&ip_trash_timer_lock); 21419 } 21420 21421 if (ill->ill_isv6) { 21422 mutex_enter(&mld_slowtimeout_lock); 21423 if (mld_slowtimeout_id == 0) { 21424 mld_slowtimeout_id = timeout(mld_slowtimo, NULL, 21425 MSEC_TO_TICK(MCAST_SLOWTIMO_INTERVAL)); 21426 } 21427 mutex_exit(&mld_slowtimeout_lock); 21428 } else { 21429 mutex_enter(&igmp_slowtimeout_lock); 21430 if (igmp_slowtimeout_id == 0) { 21431 igmp_slowtimeout_id = timeout(igmp_slowtimo, NULL, 21432 MSEC_TO_TICK(MCAST_SLOWTIMO_INTERVAL)); 21433 } 21434 mutex_exit(&igmp_slowtimeout_lock); 21435 } 21436 21437 return (err); 21438 } 21439 21440 /* 21441 * Common routine for ppa and ifname setting. Should be called exclusive. 21442 * 21443 * Returns EINPROGRESS when mp has been consumed by queueing it on 21444 * ill_pending_mp and the ioctl will complete in ip_rput. 21445 * 21446 * NOTE : If ppa is UNIT_MAX, we assign the next valid ppa and return 21447 * the new name and new ppa in lifr_name and lifr_ppa respectively. 21448 * For SLIFNAME, we pass these values back to the userland. 21449 */ 21450 static int 21451 ipif_set_values(queue_t *q, mblk_t *mp, char *interf_name, uint_t *new_ppa_ptr) 21452 { 21453 ill_t *ill; 21454 ipif_t *ipif; 21455 ipsq_t *ipsq; 21456 char *ppa_ptr; 21457 char *old_ptr; 21458 char old_char; 21459 int error; 21460 21461 ip1dbg(("ipif_set_values: interface %s\n", interf_name)); 21462 ASSERT(q->q_next != NULL); 21463 ASSERT(interf_name != NULL); 21464 21465 ill = (ill_t *)q->q_ptr; 21466 21467 ASSERT(ill->ill_name[0] == '\0'); 21468 ASSERT(IAM_WRITER_ILL(ill)); 21469 ASSERT((mi_strlen(interf_name) + 1) <= LIFNAMSIZ); 21470 ASSERT(ill->ill_ppa == UINT_MAX); 21471 21472 /* The ppa is sent down by ifconfig or is chosen */ 21473 if ((ppa_ptr = ill_get_ppa_ptr(interf_name)) == NULL) { 21474 return (EINVAL); 21475 } 21476 21477 /* 21478 * make sure ppa passed in is same as ppa in the name. 21479 * This check is not made when ppa == UINT_MAX in that case ppa 21480 * in the name could be anything. System will choose a ppa and 21481 * update new_ppa_ptr and inter_name to contain the choosen ppa. 21482 */ 21483 if (*new_ppa_ptr != UINT_MAX) { 21484 /* stoi changes the pointer */ 21485 old_ptr = ppa_ptr; 21486 /* 21487 * ifconfig passed in 0 for the ppa for DLPI 1 style devices 21488 * (they don't have an externally visible ppa). We assign one 21489 * here so that we can manage the interface. Note that in 21490 * the past this value was always 0 for DLPI 1 drivers. 21491 */ 21492 if (*new_ppa_ptr == 0) 21493 *new_ppa_ptr = stoi(&old_ptr); 21494 else if (*new_ppa_ptr != (uint_t)stoi(&old_ptr)) 21495 return (EINVAL); 21496 } 21497 /* 21498 * terminate string before ppa 21499 * save char at that location. 21500 */ 21501 old_char = ppa_ptr[0]; 21502 ppa_ptr[0] = '\0'; 21503 21504 ill->ill_ppa = *new_ppa_ptr; 21505 /* 21506 * Finish as much work now as possible before calling ill_glist_insert 21507 * which makes the ill globally visible and also merges it with the 21508 * other protocol instance of this phyint. The remaining work is 21509 * done after entering the ipsq which may happen sometime later. 21510 * ill_set_ndd_name occurs after the ill has been made globally visible. 21511 */ 21512 ipif = ill->ill_ipif; 21513 21514 /* We didn't do this when we allocated ipif in ip_ll_subnet_defaults */ 21515 ipif_assign_seqid(ipif); 21516 21517 if (!(ill->ill_flags & (ILLF_IPV4|ILLF_IPV6))) 21518 ill->ill_flags |= ILLF_IPV4; 21519 21520 ASSERT(ipif->ipif_next == NULL); /* Only one ipif on ill */ 21521 ASSERT((ipif->ipif_flags & IPIF_UP) == 0); 21522 21523 if (ill->ill_flags & ILLF_IPV6) { 21524 21525 ill->ill_isv6 = B_TRUE; 21526 if (ill->ill_rq != NULL) { 21527 ill->ill_rq->q_qinfo = &rinit_ipv6; 21528 ill->ill_wq->q_qinfo = &winit_ipv6; 21529 } 21530 21531 /* Keep the !IN6_IS_ADDR_V4MAPPED assertions happy */ 21532 ipif->ipif_v6lcl_addr = ipv6_all_zeros; 21533 ipif->ipif_v6src_addr = ipv6_all_zeros; 21534 ipif->ipif_v6subnet = ipv6_all_zeros; 21535 ipif->ipif_v6net_mask = ipv6_all_zeros; 21536 ipif->ipif_v6brd_addr = ipv6_all_zeros; 21537 ipif->ipif_v6pp_dst_addr = ipv6_all_zeros; 21538 /* 21539 * point-to-point or Non-mulicast capable 21540 * interfaces won't do NUD unless explicitly 21541 * configured to do so. 21542 */ 21543 if (ipif->ipif_flags & IPIF_POINTOPOINT || 21544 !(ill->ill_flags & ILLF_MULTICAST)) { 21545 ill->ill_flags |= ILLF_NONUD; 21546 } 21547 /* Make sure IPv4 specific flag is not set on IPv6 if */ 21548 if (ill->ill_flags & ILLF_NOARP) { 21549 /* 21550 * Note: xresolv interfaces will eventually need 21551 * NOARP set here as well, but that will require 21552 * those external resolvers to have some 21553 * knowledge of that flag and act appropriately. 21554 * Not to be changed at present. 21555 */ 21556 ill->ill_flags &= ~ILLF_NOARP; 21557 } 21558 /* 21559 * Set the ILLF_ROUTER flag according to the global 21560 * IPv6 forwarding policy. 21561 */ 21562 if (ipv6_forward != 0) 21563 ill->ill_flags |= ILLF_ROUTER; 21564 } else if (ill->ill_flags & ILLF_IPV4) { 21565 ill->ill_isv6 = B_FALSE; 21566 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6lcl_addr); 21567 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6src_addr); 21568 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6subnet); 21569 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6net_mask); 21570 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6brd_addr); 21571 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6pp_dst_addr); 21572 /* 21573 * Set the ILLF_ROUTER flag according to the global 21574 * IPv4 forwarding policy. 21575 */ 21576 if (ip_g_forward != 0) 21577 ill->ill_flags |= ILLF_ROUTER; 21578 } 21579 21580 ASSERT(ill->ill_phyint != NULL); 21581 21582 /* 21583 * The ipv6Ifindex and ipv6IfIcmpIfIndex assignments will 21584 * be completed in ill_glist_insert -> ill_phyint_reinit 21585 */ 21586 if (ill->ill_isv6) { 21587 /* allocate v6 mib */ 21588 if (!ill_allocate_mibs(ill)) 21589 return (ENOMEM); 21590 } 21591 21592 /* 21593 * Pick a default sap until we get the DL_INFO_ACK back from 21594 * the driver. 21595 */ 21596 if (ill->ill_sap == 0) { 21597 if (ill->ill_isv6) 21598 ill->ill_sap = IP6_DL_SAP; 21599 else 21600 ill->ill_sap = IP_DL_SAP; 21601 } 21602 21603 ill->ill_ifname_pending = 1; 21604 ill->ill_ifname_pending_err = 0; 21605 21606 ill_refhold(ill); 21607 rw_enter(&ill_g_lock, RW_WRITER); 21608 if ((error = ill_glist_insert(ill, interf_name, 21609 (ill->ill_flags & ILLF_IPV6) == ILLF_IPV6)) > 0) { 21610 ill->ill_ppa = UINT_MAX; 21611 ill->ill_name[0] = '\0'; 21612 /* 21613 * undo null termination done above. 21614 */ 21615 ppa_ptr[0] = old_char; 21616 rw_exit(&ill_g_lock); 21617 ill_refrele(ill); 21618 return (error); 21619 } 21620 21621 ASSERT(ill->ill_name_length <= LIFNAMSIZ); 21622 21623 /* 21624 * When we return the buffer pointed to by interf_name should contain 21625 * the same name as in ill_name. 21626 * If a ppa was choosen by the system (ppa passed in was UINT_MAX) 21627 * the buffer pointed to by new_ppa_ptr would not contain the right ppa 21628 * so copy full name and update the ppa ptr. 21629 * When ppa passed in != UINT_MAX all values are correct just undo 21630 * null termination, this saves a bcopy. 21631 */ 21632 if (*new_ppa_ptr == UINT_MAX) { 21633 bcopy(ill->ill_name, interf_name, ill->ill_name_length); 21634 *new_ppa_ptr = ill->ill_ppa; 21635 } else { 21636 /* 21637 * undo null termination done above. 21638 */ 21639 ppa_ptr[0] = old_char; 21640 } 21641 21642 /* Let SCTP know about this ILL */ 21643 sctp_update_ill(ill, SCTP_ILL_INSERT); 21644 21645 /* and also about the first ipif */ 21646 sctp_update_ipif(ipif, SCTP_IPIF_INSERT); 21647 21648 ipsq = ipsq_try_enter(NULL, ill, q, mp, ip_reprocess_ioctl, NEW_OP, 21649 B_TRUE); 21650 21651 rw_exit(&ill_g_lock); 21652 ill_refrele(ill); 21653 if (ipsq == NULL) 21654 return (EINPROGRESS); 21655 21656 /* 21657 * Need to set the ipsq_current_ipif now, if we have changed ipsq 21658 * due to the phyint merge in ill_phyint_reinit. 21659 */ 21660 ASSERT(ipsq->ipsq_current_ipif == NULL || 21661 ipsq->ipsq_current_ipif == ipif); 21662 ipsq->ipsq_current_ipif = ipif; 21663 ipsq->ipsq_last_cmd = SIOCSLIFNAME; 21664 error = ipif_set_values_tail(ill, ipif, mp, q); 21665 ipsq_exit(ipsq, B_TRUE, B_TRUE); 21666 if (error != 0 && error != EINPROGRESS) { 21667 /* 21668 * restore previous values 21669 */ 21670 ill->ill_isv6 = B_FALSE; 21671 } 21672 return (error); 21673 } 21674 21675 21676 extern void (*ip_cleanup_func)(void); 21677 21678 void 21679 ipif_init(void) 21680 { 21681 hrtime_t hrt; 21682 int i; 21683 21684 /* 21685 * Can't call drv_getparm here as it is too early in the boot. 21686 * As we use ipif_src_random just for picking a different 21687 * source address everytime, this need not be really random. 21688 */ 21689 hrt = gethrtime(); 21690 ipif_src_random = ((hrt >> 32) & 0xffffffff) * (hrt & 0xffffffff); 21691 21692 for (i = 0; i < MAX_G_HEADS; i++) { 21693 ill_g_heads[i].ill_g_list_head = (ill_if_t *)&ill_g_heads[i]; 21694 ill_g_heads[i].ill_g_list_tail = (ill_if_t *)&ill_g_heads[i]; 21695 } 21696 21697 avl_create(&phyint_g_list.phyint_list_avl_by_index, 21698 ill_phyint_compare_index, 21699 sizeof (phyint_t), 21700 offsetof(struct phyint, phyint_avl_by_index)); 21701 avl_create(&phyint_g_list.phyint_list_avl_by_name, 21702 ill_phyint_compare_name, 21703 sizeof (phyint_t), 21704 offsetof(struct phyint, phyint_avl_by_name)); 21705 21706 ip_cleanup_func = ip_thread_exit; 21707 } 21708 21709 /* 21710 * This is called by ip_rt_add when src_addr value is other than zero. 21711 * src_addr signifies the source address of the incoming packet. For 21712 * reverse tunnel route we need to create a source addr based routing 21713 * table. This routine creates ip_mrtun_table if it's empty and then 21714 * it adds the route entry hashed by source address. It verifies that 21715 * the outgoing interface is always a non-resolver interface (tunnel). 21716 */ 21717 int 21718 ip_mrtun_rt_add(ipaddr_t in_src_addr, int flags, ipif_t *ipif_arg, 21719 ipif_t *src_ipif, ire_t **ire_arg, queue_t *q, mblk_t *mp, ipsq_func_t func) 21720 { 21721 ire_t *ire; 21722 ire_t *save_ire; 21723 ipif_t *ipif; 21724 ill_t *in_ill = NULL; 21725 ill_t *out_ill; 21726 queue_t *stq; 21727 mblk_t *dlureq_mp; 21728 int error; 21729 21730 if (ire_arg != NULL) 21731 *ire_arg = NULL; 21732 ASSERT(in_src_addr != INADDR_ANY); 21733 21734 ipif = ipif_arg; 21735 if (ipif != NULL) { 21736 out_ill = ipif->ipif_ill; 21737 } else { 21738 ip1dbg(("ip_mrtun_rt_add: ipif is NULL\n")); 21739 return (EINVAL); 21740 } 21741 21742 if (src_ipif == NULL) { 21743 ip1dbg(("ip_mrtun_rt_add: src_ipif is NULL\n")); 21744 return (EINVAL); 21745 } 21746 in_ill = src_ipif->ipif_ill; 21747 21748 /* 21749 * Check for duplicates. We don't need to 21750 * match out_ill, because the uniqueness of 21751 * a route is only dependent on src_addr and 21752 * in_ill. 21753 */ 21754 ire = ire_mrtun_lookup(in_src_addr, in_ill); 21755 if (ire != NULL) { 21756 ire_refrele(ire); 21757 return (EEXIST); 21758 } 21759 if (ipif->ipif_net_type != IRE_IF_NORESOLVER) { 21760 ip2dbg(("ip_mrtun_rt_add: outgoing interface is type %d\n", 21761 ipif->ipif_net_type)); 21762 return (EINVAL); 21763 } 21764 21765 stq = ipif->ipif_wq; 21766 ASSERT(stq != NULL); 21767 21768 /* 21769 * The outgoing interface must be non-resolver 21770 * interface. 21771 */ 21772 dlureq_mp = ill_dlur_gen(NULL, 21773 out_ill->ill_phys_addr_length, out_ill->ill_sap, 21774 out_ill->ill_sap_length); 21775 21776 if (dlureq_mp == NULL) { 21777 ip1dbg(("ip_newroute: dlureq_mp NULL\n")); 21778 return (ENOMEM); 21779 } 21780 21781 /* Create the IRE. */ 21782 21783 ire = ire_create( 21784 NULL, /* Zero dst addr */ 21785 NULL, /* Zero mask */ 21786 NULL, /* Zero gateway addr */ 21787 NULL, /* Zero ipif_src addr */ 21788 (uint8_t *)&in_src_addr, /* in_src-addr */ 21789 &ipif->ipif_mtu, 21790 NULL, 21791 NULL, /* rfq */ 21792 stq, 21793 IRE_MIPRTUN, 21794 dlureq_mp, 21795 ipif, 21796 in_ill, 21797 0, 21798 0, 21799 0, 21800 flags, 21801 &ire_uinfo_null); 21802 21803 if (ire == NULL) 21804 return (ENOMEM); 21805 ip2dbg(("ip_mrtun_rt_add: mrtun route is created with type %d\n", 21806 ire->ire_type)); 21807 save_ire = ire; 21808 ASSERT(save_ire != NULL); 21809 error = ire_add_mrtun(&ire, q, mp, func); 21810 /* 21811 * If ire_add_mrtun() failed, the ire passed in was freed 21812 * so there is no need to do so here. 21813 */ 21814 if (error != 0) { 21815 return (error); 21816 } 21817 21818 /* Duplicate check */ 21819 if (ire != save_ire) { 21820 /* route already exists by now */ 21821 ire_refrele(ire); 21822 return (EEXIST); 21823 } 21824 21825 if (ire_arg != NULL) { 21826 /* 21827 * Store the ire that was just added. the caller 21828 * ip_rts_request responsible for doing ire_refrele() 21829 * on it. 21830 */ 21831 *ire_arg = ire; 21832 } else { 21833 ire_refrele(ire); /* held in ire_add_mrtun */ 21834 } 21835 21836 return (0); 21837 } 21838 21839 /* 21840 * It is called by ip_rt_delete() only when mipagent requests to delete 21841 * a reverse tunnel route that was added by ip_mrtun_rt_add() before. 21842 */ 21843 21844 int 21845 ip_mrtun_rt_delete(ipaddr_t in_src_addr, ipif_t *src_ipif) 21846 { 21847 ire_t *ire = NULL; 21848 21849 if (in_src_addr == INADDR_ANY) 21850 return (EINVAL); 21851 if (src_ipif == NULL) 21852 return (EINVAL); 21853 21854 /* search if this route exists in the ip_mrtun_table */ 21855 ire = ire_mrtun_lookup(in_src_addr, src_ipif->ipif_ill); 21856 if (ire == NULL) { 21857 ip2dbg(("ip_mrtun_rt_delete: ire not found\n")); 21858 return (ESRCH); 21859 } 21860 ire_delete(ire); 21861 ire_refrele(ire); 21862 return (0); 21863 } 21864 21865 /* 21866 * Lookup the ipif corresponding to the onlink destination address. For 21867 * point-to-point interfaces, it matches with remote endpoint destination 21868 * address. For point-to-multipoint interfaces it only tries to match the 21869 * destination with the interface's subnet address. The longest, most specific 21870 * match is found to take care of such rare network configurations like - 21871 * le0: 129.146.1.1/16 21872 * le1: 129.146.2.2/24 21873 * It is used only by SO_DONTROUTE at the moment. 21874 */ 21875 ipif_t * 21876 ipif_lookup_onlink_addr(ipaddr_t addr, zoneid_t zoneid) 21877 { 21878 ipif_t *ipif, *best_ipif; 21879 ill_t *ill; 21880 ill_walk_context_t ctx; 21881 21882 ASSERT(zoneid != ALL_ZONES); 21883 best_ipif = NULL; 21884 21885 rw_enter(&ill_g_lock, RW_READER); 21886 ill = ILL_START_WALK_V4(&ctx); 21887 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 21888 mutex_enter(&ill->ill_lock); 21889 for (ipif = ill->ill_ipif; ipif != NULL; 21890 ipif = ipif->ipif_next) { 21891 if (!IPIF_CAN_LOOKUP(ipif)) 21892 continue; 21893 if (ipif->ipif_zoneid != zoneid) 21894 continue; 21895 /* 21896 * Point-to-point case. Look for exact match with 21897 * destination address. 21898 */ 21899 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 21900 if (ipif->ipif_pp_dst_addr == addr) { 21901 ipif_refhold_locked(ipif); 21902 mutex_exit(&ill->ill_lock); 21903 rw_exit(&ill_g_lock); 21904 if (best_ipif != NULL) 21905 ipif_refrele(best_ipif); 21906 return (ipif); 21907 } 21908 } else if (ipif->ipif_subnet == (addr & 21909 ipif->ipif_net_mask)) { 21910 /* 21911 * Point-to-multipoint case. Looping through to 21912 * find the most specific match. If there are 21913 * multiple best match ipif's then prefer ipif's 21914 * that are UP. If there is only one best match 21915 * ipif and it is DOWN we must still return it. 21916 */ 21917 if ((best_ipif == NULL) || 21918 (ipif->ipif_net_mask > 21919 best_ipif->ipif_net_mask) || 21920 ((ipif->ipif_net_mask == 21921 best_ipif->ipif_net_mask) && 21922 ((ipif->ipif_flags & IPIF_UP) && 21923 (!(best_ipif->ipif_flags & IPIF_UP))))) { 21924 ipif_refhold_locked(ipif); 21925 mutex_exit(&ill->ill_lock); 21926 rw_exit(&ill_g_lock); 21927 if (best_ipif != NULL) 21928 ipif_refrele(best_ipif); 21929 best_ipif = ipif; 21930 rw_enter(&ill_g_lock, RW_READER); 21931 mutex_enter(&ill->ill_lock); 21932 } 21933 } 21934 } 21935 mutex_exit(&ill->ill_lock); 21936 } 21937 rw_exit(&ill_g_lock); 21938 return (best_ipif); 21939 } 21940 21941 21942 /* 21943 * Save enough information so that we can recreate the IRE if 21944 * the interface goes down and then up. 21945 */ 21946 static void 21947 ipif_save_ire(ipif_t *ipif, ire_t *ire) 21948 { 21949 mblk_t *save_mp; 21950 21951 save_mp = allocb(sizeof (ifrt_t), BPRI_MED); 21952 if (save_mp != NULL) { 21953 ifrt_t *ifrt; 21954 21955 save_mp->b_wptr += sizeof (ifrt_t); 21956 ifrt = (ifrt_t *)save_mp->b_rptr; 21957 bzero(ifrt, sizeof (ifrt_t)); 21958 ifrt->ifrt_type = ire->ire_type; 21959 ifrt->ifrt_addr = ire->ire_addr; 21960 ifrt->ifrt_gateway_addr = ire->ire_gateway_addr; 21961 ifrt->ifrt_src_addr = ire->ire_src_addr; 21962 ifrt->ifrt_mask = ire->ire_mask; 21963 ifrt->ifrt_flags = ire->ire_flags; 21964 ifrt->ifrt_max_frag = ire->ire_max_frag; 21965 mutex_enter(&ipif->ipif_saved_ire_lock); 21966 save_mp->b_cont = ipif->ipif_saved_ire_mp; 21967 ipif->ipif_saved_ire_mp = save_mp; 21968 ipif->ipif_saved_ire_cnt++; 21969 mutex_exit(&ipif->ipif_saved_ire_lock); 21970 } 21971 } 21972 21973 21974 static void 21975 ipif_remove_ire(ipif_t *ipif, ire_t *ire) 21976 { 21977 mblk_t **mpp; 21978 mblk_t *mp; 21979 ifrt_t *ifrt; 21980 21981 /* Remove from ipif_saved_ire_mp list if it is there */ 21982 mutex_enter(&ipif->ipif_saved_ire_lock); 21983 for (mpp = &ipif->ipif_saved_ire_mp; *mpp != NULL; 21984 mpp = &(*mpp)->b_cont) { 21985 /* 21986 * On a given ipif, the triple of address, gateway and 21987 * mask is unique for each saved IRE (in the case of 21988 * ordinary interface routes, the gateway address is 21989 * all-zeroes). 21990 */ 21991 mp = *mpp; 21992 ifrt = (ifrt_t *)mp->b_rptr; 21993 if (ifrt->ifrt_addr == ire->ire_addr && 21994 ifrt->ifrt_gateway_addr == ire->ire_gateway_addr && 21995 ifrt->ifrt_mask == ire->ire_mask) { 21996 *mpp = mp->b_cont; 21997 ipif->ipif_saved_ire_cnt--; 21998 freeb(mp); 21999 break; 22000 } 22001 } 22002 mutex_exit(&ipif->ipif_saved_ire_lock); 22003 } 22004 22005 22006 /* 22007 * IP multirouting broadcast routes handling 22008 * Append CGTP broadcast IREs to regular ones created 22009 * at ifconfig time. 22010 */ 22011 static void 22012 ip_cgtp_bcast_add(ire_t *ire, ire_t *ire_dst) 22013 { 22014 ire_t *ire_prim; 22015 22016 ASSERT(ire != NULL); 22017 ASSERT(ire_dst != NULL); 22018 22019 ire_prim = ire_ctable_lookup(ire->ire_gateway_addr, 0, 22020 IRE_BROADCAST, NULL, NULL, MATCH_IRE_TYPE); 22021 if (ire_prim != NULL) { 22022 /* 22023 * We are in the special case of broadcasts for 22024 * CGTP. We add an IRE_BROADCAST that holds 22025 * the RTF_MULTIRT flag, the destination 22026 * address of ire_dst and the low level 22027 * info of ire_prim. In other words, CGTP 22028 * broadcast is added to the redundant ipif. 22029 */ 22030 ipif_t *ipif_prim; 22031 ire_t *bcast_ire; 22032 22033 ipif_prim = ire_prim->ire_ipif; 22034 22035 ip2dbg(("ip_cgtp_filter_bcast_add: " 22036 "ire_dst %p, ire_prim %p, ipif_prim %p\n", 22037 (void *)ire_dst, (void *)ire_prim, 22038 (void *)ipif_prim)); 22039 22040 bcast_ire = ire_create( 22041 (uchar_t *)&ire->ire_addr, 22042 (uchar_t *)&ip_g_all_ones, 22043 (uchar_t *)&ire_dst->ire_src_addr, 22044 (uchar_t *)&ire->ire_gateway_addr, 22045 NULL, 22046 &ipif_prim->ipif_mtu, 22047 NULL, 22048 ipif_prim->ipif_rq, 22049 ipif_prim->ipif_wq, 22050 IRE_BROADCAST, 22051 ipif_prim->ipif_bcast_mp, 22052 ipif_prim, 22053 NULL, 22054 0, 22055 0, 22056 0, 22057 ire->ire_flags, 22058 &ire_uinfo_null); 22059 22060 if (bcast_ire != NULL) { 22061 22062 if (ire_add(&bcast_ire, NULL, NULL, NULL) == 0) { 22063 ip2dbg(("ip_cgtp_filter_bcast_add: " 22064 "added bcast_ire %p\n", 22065 (void *)bcast_ire)); 22066 22067 ipif_save_ire(bcast_ire->ire_ipif, 22068 bcast_ire); 22069 ire_refrele(bcast_ire); 22070 } 22071 } 22072 ire_refrele(ire_prim); 22073 } 22074 } 22075 22076 22077 /* 22078 * IP multirouting broadcast routes handling 22079 * Remove the broadcast ire 22080 */ 22081 static void 22082 ip_cgtp_bcast_delete(ire_t *ire) 22083 { 22084 ire_t *ire_dst; 22085 22086 ASSERT(ire != NULL); 22087 ire_dst = ire_ctable_lookup(ire->ire_addr, 0, IRE_BROADCAST, 22088 NULL, NULL, MATCH_IRE_TYPE); 22089 if (ire_dst != NULL) { 22090 ire_t *ire_prim; 22091 22092 ire_prim = ire_ctable_lookup(ire->ire_gateway_addr, 0, 22093 IRE_BROADCAST, NULL, NULL, MATCH_IRE_TYPE); 22094 if (ire_prim != NULL) { 22095 ipif_t *ipif_prim; 22096 ire_t *bcast_ire; 22097 22098 ipif_prim = ire_prim->ire_ipif; 22099 22100 ip2dbg(("ip_cgtp_filter_bcast_delete: " 22101 "ire_dst %p, ire_prim %p, ipif_prim %p\n", 22102 (void *)ire_dst, (void *)ire_prim, 22103 (void *)ipif_prim)); 22104 22105 bcast_ire = ire_ctable_lookup(ire->ire_addr, 22106 ire->ire_gateway_addr, 22107 IRE_BROADCAST, 22108 ipif_prim, 22109 NULL, 22110 MATCH_IRE_TYPE | MATCH_IRE_GW | MATCH_IRE_IPIF | 22111 MATCH_IRE_MASK); 22112 22113 if (bcast_ire != NULL) { 22114 ip2dbg(("ip_cgtp_filter_bcast_delete: " 22115 "looked up bcast_ire %p\n", 22116 (void *)bcast_ire)); 22117 ipif_remove_ire(bcast_ire->ire_ipif, 22118 bcast_ire); 22119 ire_delete(bcast_ire); 22120 } 22121 ire_refrele(ire_prim); 22122 } 22123 ire_refrele(ire_dst); 22124 } 22125 } 22126 22127 /* 22128 * IPsec hardware acceleration capabilities related functions. 22129 */ 22130 22131 /* 22132 * Free a per-ill IPsec capabilities structure. 22133 */ 22134 static void 22135 ill_ipsec_capab_free(ill_ipsec_capab_t *capab) 22136 { 22137 if (capab->auth_hw_algs != NULL) 22138 kmem_free(capab->auth_hw_algs, capab->algs_size); 22139 if (capab->encr_hw_algs != NULL) 22140 kmem_free(capab->encr_hw_algs, capab->algs_size); 22141 if (capab->encr_algparm != NULL) 22142 kmem_free(capab->encr_algparm, capab->encr_algparm_size); 22143 kmem_free(capab, sizeof (ill_ipsec_capab_t)); 22144 } 22145 22146 /* 22147 * Allocate a new per-ill IPsec capabilities structure. This structure 22148 * is specific to an IPsec protocol (AH or ESP). It is implemented as 22149 * an array which specifies, for each algorithm, whether this algorithm 22150 * is supported by the ill or not. 22151 */ 22152 static ill_ipsec_capab_t * 22153 ill_ipsec_capab_alloc(void) 22154 { 22155 ill_ipsec_capab_t *capab; 22156 uint_t nelems; 22157 22158 capab = kmem_zalloc(sizeof (ill_ipsec_capab_t), KM_NOSLEEP); 22159 if (capab == NULL) 22160 return (NULL); 22161 22162 /* we need one bit per algorithm */ 22163 nelems = MAX_IPSEC_ALGS / BITS(ipsec_capab_elem_t); 22164 capab->algs_size = nelems * sizeof (ipsec_capab_elem_t); 22165 22166 /* allocate memory to store algorithm flags */ 22167 capab->encr_hw_algs = kmem_zalloc(capab->algs_size, KM_NOSLEEP); 22168 if (capab->encr_hw_algs == NULL) 22169 goto nomem; 22170 capab->auth_hw_algs = kmem_zalloc(capab->algs_size, KM_NOSLEEP); 22171 if (capab->auth_hw_algs == NULL) 22172 goto nomem; 22173 /* 22174 * Leave encr_algparm NULL for now since we won't need it half 22175 * the time 22176 */ 22177 return (capab); 22178 22179 nomem: 22180 ill_ipsec_capab_free(capab); 22181 return (NULL); 22182 } 22183 22184 /* 22185 * Resize capability array. Since we're exclusive, this is OK. 22186 */ 22187 static boolean_t 22188 ill_ipsec_capab_resize_algparm(ill_ipsec_capab_t *capab, int algid) 22189 { 22190 ipsec_capab_algparm_t *nalp, *oalp; 22191 uint32_t olen, nlen; 22192 22193 oalp = capab->encr_algparm; 22194 olen = capab->encr_algparm_size; 22195 22196 if (oalp != NULL) { 22197 if (algid < capab->encr_algparm_end) 22198 return (B_TRUE); 22199 } 22200 22201 nlen = (algid + 1) * sizeof (*nalp); 22202 nalp = kmem_zalloc(nlen, KM_NOSLEEP); 22203 if (nalp == NULL) 22204 return (B_FALSE); 22205 22206 if (oalp != NULL) { 22207 bcopy(oalp, nalp, olen); 22208 kmem_free(oalp, olen); 22209 } 22210 capab->encr_algparm = nalp; 22211 capab->encr_algparm_size = nlen; 22212 capab->encr_algparm_end = algid + 1; 22213 22214 return (B_TRUE); 22215 } 22216 22217 /* 22218 * Compare the capabilities of the specified ill with the protocol 22219 * and algorithms specified by the SA passed as argument. 22220 * If they match, returns B_TRUE, B_FALSE if they do not match. 22221 * 22222 * The ill can be passed as a pointer to it, or by specifying its index 22223 * and whether it is an IPv6 ill (ill_index and ill_isv6 arguments). 22224 * 22225 * Called by ipsec_out_is_accelerated() do decide whether an outbound 22226 * packet is eligible for hardware acceleration, and by 22227 * ill_ipsec_capab_send_all() to decide whether a SA must be sent down 22228 * to a particular ill. 22229 */ 22230 boolean_t 22231 ipsec_capab_match(ill_t *ill, uint_t ill_index, boolean_t ill_isv6, 22232 ipsa_t *sa) 22233 { 22234 boolean_t sa_isv6; 22235 uint_t algid; 22236 struct ill_ipsec_capab_s *cpp; 22237 boolean_t need_refrele = B_FALSE; 22238 22239 if (ill == NULL) { 22240 ill = ill_lookup_on_ifindex(ill_index, ill_isv6, NULL, 22241 NULL, NULL, NULL); 22242 if (ill == NULL) { 22243 ip0dbg(("ipsec_capab_match: ill doesn't exist\n")); 22244 return (B_FALSE); 22245 } 22246 need_refrele = B_TRUE; 22247 } 22248 22249 /* 22250 * Use the address length specified by the SA to determine 22251 * if it corresponds to a IPv6 address, and fail the matching 22252 * if the isv6 flag passed as argument does not match. 22253 * Note: this check is used for SADB capability checking before 22254 * sending SA information to an ill. 22255 */ 22256 sa_isv6 = (sa->ipsa_addrfam == AF_INET6); 22257 if (sa_isv6 != ill_isv6) 22258 /* protocol mismatch */ 22259 goto done; 22260 22261 /* 22262 * Check if the ill supports the protocol, algorithm(s) and 22263 * key size(s) specified by the SA, and get the pointers to 22264 * the algorithms supported by the ill. 22265 */ 22266 switch (sa->ipsa_type) { 22267 22268 case SADB_SATYPE_ESP: 22269 if (!(ill->ill_capabilities & ILL_CAPAB_ESP)) 22270 /* ill does not support ESP acceleration */ 22271 goto done; 22272 cpp = ill->ill_ipsec_capab_esp; 22273 algid = sa->ipsa_auth_alg; 22274 if (!IPSEC_ALG_IS_ENABLED(algid, cpp->auth_hw_algs)) 22275 goto done; 22276 algid = sa->ipsa_encr_alg; 22277 if (!IPSEC_ALG_IS_ENABLED(algid, cpp->encr_hw_algs)) 22278 goto done; 22279 if (algid < cpp->encr_algparm_end) { 22280 ipsec_capab_algparm_t *alp = &cpp->encr_algparm[algid]; 22281 if (sa->ipsa_encrkeybits < alp->minkeylen) 22282 goto done; 22283 if (sa->ipsa_encrkeybits > alp->maxkeylen) 22284 goto done; 22285 } 22286 break; 22287 22288 case SADB_SATYPE_AH: 22289 if (!(ill->ill_capabilities & ILL_CAPAB_AH)) 22290 /* ill does not support AH acceleration */ 22291 goto done; 22292 if (!IPSEC_ALG_IS_ENABLED(sa->ipsa_auth_alg, 22293 ill->ill_ipsec_capab_ah->auth_hw_algs)) 22294 goto done; 22295 break; 22296 } 22297 22298 if (need_refrele) 22299 ill_refrele(ill); 22300 return (B_TRUE); 22301 done: 22302 if (need_refrele) 22303 ill_refrele(ill); 22304 return (B_FALSE); 22305 } 22306 22307 22308 /* 22309 * Add a new ill to the list of IPsec capable ills. 22310 * Called from ill_capability_ipsec_ack() when an ACK was received 22311 * indicating that IPsec hardware processing was enabled for an ill. 22312 * 22313 * ill must point to the ill for which acceleration was enabled. 22314 * dl_cap must be set to DL_CAPAB_IPSEC_AH or DL_CAPAB_IPSEC_ESP. 22315 */ 22316 static void 22317 ill_ipsec_capab_add(ill_t *ill, uint_t dl_cap, boolean_t sadb_resync) 22318 { 22319 ipsec_capab_ill_t **ills, *cur_ill, *new_ill; 22320 uint_t sa_type; 22321 uint_t ipproto; 22322 22323 ASSERT((dl_cap == DL_CAPAB_IPSEC_AH) || 22324 (dl_cap == DL_CAPAB_IPSEC_ESP)); 22325 22326 switch (dl_cap) { 22327 case DL_CAPAB_IPSEC_AH: 22328 sa_type = SADB_SATYPE_AH; 22329 ills = &ipsec_capab_ills_ah; 22330 ipproto = IPPROTO_AH; 22331 break; 22332 case DL_CAPAB_IPSEC_ESP: 22333 sa_type = SADB_SATYPE_ESP; 22334 ills = &ipsec_capab_ills_esp; 22335 ipproto = IPPROTO_ESP; 22336 break; 22337 } 22338 22339 rw_enter(&ipsec_capab_ills_lock, RW_WRITER); 22340 22341 /* 22342 * Add ill index to list of hardware accelerators. If 22343 * already in list, do nothing. 22344 */ 22345 for (cur_ill = *ills; cur_ill != NULL && 22346 (cur_ill->ill_index != ill->ill_phyint->phyint_ifindex || 22347 cur_ill->ill_isv6 != ill->ill_isv6); cur_ill = cur_ill->next) 22348 ; 22349 22350 if (cur_ill == NULL) { 22351 /* if this is a new entry for this ill */ 22352 new_ill = kmem_zalloc(sizeof (ipsec_capab_ill_t), KM_NOSLEEP); 22353 if (new_ill == NULL) { 22354 rw_exit(&ipsec_capab_ills_lock); 22355 return; 22356 } 22357 22358 new_ill->ill_index = ill->ill_phyint->phyint_ifindex; 22359 new_ill->ill_isv6 = ill->ill_isv6; 22360 new_ill->next = *ills; 22361 *ills = new_ill; 22362 } else if (!sadb_resync) { 22363 /* not resync'ing SADB and an entry exists for this ill */ 22364 rw_exit(&ipsec_capab_ills_lock); 22365 return; 22366 } 22367 22368 rw_exit(&ipsec_capab_ills_lock); 22369 22370 if (ipcl_proto_fanout_v6[ipproto].connf_head != NULL) 22371 /* 22372 * IPsec module for protocol loaded, initiate dump 22373 * of the SADB to this ill. 22374 */ 22375 sadb_ill_download(ill, sa_type); 22376 } 22377 22378 /* 22379 * Remove an ill from the list of IPsec capable ills. 22380 */ 22381 static void 22382 ill_ipsec_capab_delete(ill_t *ill, uint_t dl_cap) 22383 { 22384 ipsec_capab_ill_t **ills, *cur_ill, *prev_ill; 22385 22386 ASSERT(dl_cap == DL_CAPAB_IPSEC_AH || 22387 dl_cap == DL_CAPAB_IPSEC_ESP); 22388 22389 ills = (dl_cap == DL_CAPAB_IPSEC_AH) ? &ipsec_capab_ills_ah : 22390 &ipsec_capab_ills_esp; 22391 22392 rw_enter(&ipsec_capab_ills_lock, RW_WRITER); 22393 22394 prev_ill = NULL; 22395 for (cur_ill = *ills; cur_ill != NULL && (cur_ill->ill_index != 22396 ill->ill_phyint->phyint_ifindex || cur_ill->ill_isv6 != 22397 ill->ill_isv6); prev_ill = cur_ill, cur_ill = cur_ill->next) 22398 ; 22399 if (cur_ill == NULL) { 22400 /* entry not found */ 22401 rw_exit(&ipsec_capab_ills_lock); 22402 return; 22403 } 22404 if (prev_ill == NULL) { 22405 /* entry at front of list */ 22406 *ills = NULL; 22407 } else { 22408 prev_ill->next = cur_ill->next; 22409 } 22410 kmem_free(cur_ill, sizeof (ipsec_capab_ill_t)); 22411 rw_exit(&ipsec_capab_ills_lock); 22412 } 22413 22414 22415 /* 22416 * Handling of DL_CONTROL_REQ messages that must be sent down to 22417 * an ill while having exclusive access. 22418 */ 22419 /* ARGSUSED */ 22420 static void 22421 ill_ipsec_capab_send_writer(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *arg) 22422 { 22423 ill_t *ill = (ill_t *)q->q_ptr; 22424 22425 ill_dlpi_send(ill, mp); 22426 } 22427 22428 22429 /* 22430 * Called by SADB to send a DL_CONTROL_REQ message to every ill 22431 * supporting the specified IPsec protocol acceleration. 22432 * sa_type must be SADB_SATYPE_AH or SADB_SATYPE_ESP. 22433 * We free the mblk and, if sa is non-null, release the held referece. 22434 */ 22435 void 22436 ill_ipsec_capab_send_all(uint_t sa_type, mblk_t *mp, ipsa_t *sa) 22437 { 22438 ipsec_capab_ill_t *ici, *cur_ici; 22439 ill_t *ill; 22440 mblk_t *nmp, *mp_ship_list = NULL, *next_mp; 22441 22442 ici = (sa_type == SADB_SATYPE_AH) ? ipsec_capab_ills_ah : 22443 ipsec_capab_ills_esp; 22444 22445 rw_enter(&ipsec_capab_ills_lock, RW_READER); 22446 22447 for (cur_ici = ici; cur_ici != NULL; cur_ici = cur_ici->next) { 22448 ill = ill_lookup_on_ifindex(cur_ici->ill_index, 22449 cur_ici->ill_isv6, NULL, NULL, NULL, NULL); 22450 22451 /* 22452 * Handle the case where the ill goes away while the SADB is 22453 * attempting to send messages. If it's going away, it's 22454 * nuking its shadow SADB, so we don't care.. 22455 */ 22456 22457 if (ill == NULL) 22458 continue; 22459 22460 if (sa != NULL) { 22461 /* 22462 * Make sure capabilities match before 22463 * sending SA to ill. 22464 */ 22465 if (!ipsec_capab_match(ill, cur_ici->ill_index, 22466 cur_ici->ill_isv6, sa)) { 22467 ill_refrele(ill); 22468 continue; 22469 } 22470 22471 mutex_enter(&sa->ipsa_lock); 22472 sa->ipsa_flags |= IPSA_F_HW; 22473 mutex_exit(&sa->ipsa_lock); 22474 } 22475 22476 /* 22477 * Copy template message, and add it to the front 22478 * of the mblk ship list. We want to avoid holding 22479 * the ipsec_capab_ills_lock while sending the 22480 * message to the ills. 22481 * 22482 * The b_next and b_prev are temporarily used 22483 * to build a list of mblks to be sent down, and to 22484 * save the ill to which they must be sent. 22485 */ 22486 nmp = copymsg(mp); 22487 if (nmp == NULL) { 22488 ill_refrele(ill); 22489 continue; 22490 } 22491 ASSERT(nmp->b_next == NULL && nmp->b_prev == NULL); 22492 nmp->b_next = mp_ship_list; 22493 mp_ship_list = nmp; 22494 nmp->b_prev = (mblk_t *)ill; 22495 } 22496 22497 rw_exit(&ipsec_capab_ills_lock); 22498 22499 nmp = mp_ship_list; 22500 while (nmp != NULL) { 22501 /* restore the mblk to a sane state */ 22502 next_mp = nmp->b_next; 22503 nmp->b_next = NULL; 22504 ill = (ill_t *)nmp->b_prev; 22505 nmp->b_prev = NULL; 22506 22507 /* 22508 * Ship the mblk to the ill, must be exclusive. Keep the 22509 * reference to the ill as qwriter_ip() does a ill_referele(). 22510 */ 22511 (void) qwriter_ip(NULL, ill, ill->ill_wq, nmp, 22512 ill_ipsec_capab_send_writer, NEW_OP, B_TRUE); 22513 22514 nmp = next_mp; 22515 } 22516 22517 if (sa != NULL) 22518 IPSA_REFRELE(sa); 22519 freemsg(mp); 22520 } 22521 22522 22523 /* 22524 * Derive an interface id from the link layer address. 22525 * Knows about IEEE 802 and IEEE EUI-64 mappings. 22526 */ 22527 static boolean_t 22528 ip_ether_v6intfid(uint_t phys_length, uint8_t *phys_addr, in6_addr_t *v6addr) 22529 { 22530 char *addr; 22531 22532 if (phys_length != ETHERADDRL) 22533 return (B_FALSE); 22534 22535 /* Form EUI-64 like address */ 22536 addr = (char *)&v6addr->s6_addr32[2]; 22537 bcopy((char *)phys_addr, addr, 3); 22538 addr[0] ^= 0x2; /* Toggle Universal/Local bit */ 22539 addr[3] = (char)0xff; 22540 addr[4] = (char)0xfe; 22541 bcopy((char *)phys_addr + 3, addr + 5, 3); 22542 return (B_TRUE); 22543 } 22544 22545 /* ARGSUSED */ 22546 static boolean_t 22547 ip_nodef_v6intfid(uint_t phys_length, uint8_t *phys_addr, in6_addr_t *v6addr) 22548 { 22549 return (B_FALSE); 22550 } 22551 22552 /* ARGSUSED */ 22553 static boolean_t 22554 ip_ether_v6mapinfo(uint_t lla_length, uint8_t *bphys_addr, uint8_t *maddr, 22555 uint32_t *hw_start, in6_addr_t *v6_extract_mask) 22556 { 22557 /* 22558 * Multicast address mappings used over Ethernet/802.X. 22559 * This address is used as a base for mappings. 22560 */ 22561 static uint8_t ipv6_g_phys_multi_addr[] = {0x33, 0x33, 0x00, 22562 0x00, 0x00, 0x00}; 22563 22564 /* 22565 * Extract low order 32 bits from IPv6 multicast address. 22566 * Or that into the link layer address, starting from the 22567 * second byte. 22568 */ 22569 *hw_start = 2; 22570 v6_extract_mask->s6_addr32[0] = 0; 22571 v6_extract_mask->s6_addr32[1] = 0; 22572 v6_extract_mask->s6_addr32[2] = 0; 22573 v6_extract_mask->s6_addr32[3] = 0xffffffffU; 22574 bcopy(ipv6_g_phys_multi_addr, maddr, lla_length); 22575 return (B_TRUE); 22576 } 22577 22578 /* 22579 * Indicate by return value whether multicast is supported. If not, 22580 * this code should not touch/change any parameters. 22581 */ 22582 /* ARGSUSED */ 22583 static boolean_t 22584 ip_ether_v4mapinfo(uint_t phys_length, uint8_t *bphys_addr, uint8_t *maddr, 22585 uint32_t *hw_start, ipaddr_t *extract_mask) 22586 { 22587 /* 22588 * Multicast address mappings used over Ethernet/802.X. 22589 * This address is used as a base for mappings. 22590 */ 22591 static uint8_t ip_g_phys_multi_addr[] = { 0x01, 0x00, 0x5e, 22592 0x00, 0x00, 0x00 }; 22593 22594 if (phys_length != ETHERADDRL) 22595 return (B_FALSE); 22596 22597 *extract_mask = htonl(0x007fffff); 22598 *hw_start = 2; 22599 bcopy(ip_g_phys_multi_addr, maddr, ETHERADDRL); 22600 return (B_TRUE); 22601 } 22602 22603 /* 22604 * Derive IPoIB interface id from the link layer address. 22605 */ 22606 static boolean_t 22607 ip_ib_v6intfid(uint_t phys_length, uint8_t *phys_addr, in6_addr_t *v6addr) 22608 { 22609 char *addr; 22610 22611 if (phys_length != 20) 22612 return (B_FALSE); 22613 addr = (char *)&v6addr->s6_addr32[2]; 22614 bcopy(phys_addr + 12, addr, 8); 22615 /* 22616 * In IBA 1.1 timeframe, some vendors erroneously set the u/l bit 22617 * in the globally assigned EUI-64 GUID to 1, in violation of IEEE 22618 * rules. In these cases, the IBA considers these GUIDs to be in 22619 * "Modified EUI-64" format, and thus toggling the u/l bit is not 22620 * required; vendors are required not to assign global EUI-64's 22621 * that differ only in u/l bit values, thus guaranteeing uniqueness 22622 * of the interface identifier. Whether the GUID is in modified 22623 * or proper EUI-64 format, the ipv6 identifier must have the u/l 22624 * bit set to 1. 22625 */ 22626 addr[0] |= 2; /* Set Universal/Local bit to 1 */ 22627 return (B_TRUE); 22628 } 22629 22630 /* 22631 * Note on mapping from multicast IP addresses to IPoIB multicast link 22632 * addresses. IPoIB multicast link addresses are based on IBA link addresses. 22633 * The format of an IPoIB multicast address is: 22634 * 22635 * 4 byte QPN Scope Sign. Pkey 22636 * +--------------------------------------------+ 22637 * | 00FFFFFF | FF | 1X | X01B | Pkey | GroupID | 22638 * +--------------------------------------------+ 22639 * 22640 * The Scope and Pkey components are properties of the IBA port and 22641 * network interface. They can be ascertained from the broadcast address. 22642 * The Sign. part is the signature, and is 401B for IPv4 and 601B for IPv6. 22643 */ 22644 22645 static boolean_t 22646 ip_ib_v6mapinfo(uint_t lla_length, uint8_t *bphys_addr, uint8_t *maddr, 22647 uint32_t *hw_start, in6_addr_t *v6_extract_mask) 22648 { 22649 /* 22650 * Base IPoIB IPv6 multicast address used for mappings. 22651 * Does not contain the IBA scope/Pkey values. 22652 */ 22653 static uint8_t ipv6_g_phys_ibmulti_addr[] = { 0x00, 0xff, 0xff, 0xff, 22654 0xff, 0x10, 0x60, 0x1b, 0x00, 0x00, 0x00, 0x00, 22655 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }; 22656 22657 /* 22658 * Extract low order 80 bits from IPv6 multicast address. 22659 * Or that into the link layer address, starting from the 22660 * sixth byte. 22661 */ 22662 *hw_start = 6; 22663 bcopy(ipv6_g_phys_ibmulti_addr, maddr, lla_length); 22664 22665 /* 22666 * Now fill in the IBA scope/Pkey values from the broadcast address. 22667 */ 22668 *(maddr + 5) = *(bphys_addr + 5); 22669 *(maddr + 8) = *(bphys_addr + 8); 22670 *(maddr + 9) = *(bphys_addr + 9); 22671 22672 v6_extract_mask->s6_addr32[0] = 0; 22673 v6_extract_mask->s6_addr32[1] = htonl(0x0000ffff); 22674 v6_extract_mask->s6_addr32[2] = 0xffffffffU; 22675 v6_extract_mask->s6_addr32[3] = 0xffffffffU; 22676 return (B_TRUE); 22677 } 22678 22679 static boolean_t 22680 ip_ib_v4mapinfo(uint_t phys_length, uint8_t *bphys_addr, uint8_t *maddr, 22681 uint32_t *hw_start, ipaddr_t *extract_mask) 22682 { 22683 /* 22684 * Base IPoIB IPv4 multicast address used for mappings. 22685 * Does not contain the IBA scope/Pkey values. 22686 */ 22687 static uint8_t ipv4_g_phys_ibmulti_addr[] = { 0x00, 0xff, 0xff, 0xff, 22688 0xff, 0x10, 0x40, 0x1b, 0x00, 0x00, 0x00, 0x00, 22689 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }; 22690 22691 if (phys_length != sizeof (ipv4_g_phys_ibmulti_addr)) 22692 return (B_FALSE); 22693 22694 /* 22695 * Extract low order 28 bits from IPv4 multicast address. 22696 * Or that into the link layer address, starting from the 22697 * sixteenth byte. 22698 */ 22699 *extract_mask = htonl(0x0fffffff); 22700 *hw_start = 16; 22701 bcopy(ipv4_g_phys_ibmulti_addr, maddr, phys_length); 22702 22703 /* 22704 * Now fill in the IBA scope/Pkey values from the broadcast address. 22705 */ 22706 *(maddr + 5) = *(bphys_addr + 5); 22707 *(maddr + 8) = *(bphys_addr + 8); 22708 *(maddr + 9) = *(bphys_addr + 9); 22709 return (B_TRUE); 22710 } 22711 22712 /* 22713 * Returns B_TRUE if an ipif is present in the given zone, matching some flags 22714 * (typically IPIF_UP). If ipifp is non-null, the held ipif is returned there. 22715 * This works for both IPv4 and IPv6; if the passed-in ill is v6, the ipif with 22716 * the link-local address is preferred. 22717 */ 22718 boolean_t 22719 ipif_lookup_zoneid(ill_t *ill, zoneid_t zoneid, int flags, ipif_t **ipifp) 22720 { 22721 ipif_t *ipif; 22722 ipif_t *maybe_ipif = NULL; 22723 22724 mutex_enter(&ill->ill_lock); 22725 if (ill->ill_state_flags & ILL_CONDEMNED) { 22726 mutex_exit(&ill->ill_lock); 22727 if (ipifp != NULL) 22728 *ipifp = NULL; 22729 return (B_FALSE); 22730 } 22731 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 22732 if (!IPIF_CAN_LOOKUP(ipif)) 22733 continue; 22734 if (zoneid != ALL_ZONES && ipif->ipif_zoneid != zoneid) 22735 continue; 22736 if ((ipif->ipif_flags & flags) != flags) 22737 continue; 22738 22739 if (ipifp == NULL) { 22740 mutex_exit(&ill->ill_lock); 22741 ASSERT(maybe_ipif == NULL); 22742 return (B_TRUE); 22743 } 22744 if (!ill->ill_isv6 || 22745 IN6_IS_ADDR_LINKLOCAL(&ipif->ipif_v6src_addr)) { 22746 ipif_refhold_locked(ipif); 22747 mutex_exit(&ill->ill_lock); 22748 *ipifp = ipif; 22749 return (B_TRUE); 22750 } 22751 if (maybe_ipif == NULL) 22752 maybe_ipif = ipif; 22753 } 22754 if (ipifp != NULL) { 22755 if (maybe_ipif != NULL) 22756 ipif_refhold_locked(maybe_ipif); 22757 *ipifp = maybe_ipif; 22758 } 22759 mutex_exit(&ill->ill_lock); 22760 return (maybe_ipif != NULL); 22761 } 22762 22763 /* 22764 * Same as ipif_lookup_zoneid() but looks at all the ills in the same group. 22765 */ 22766 boolean_t 22767 ipif_lookup_zoneid_group(ill_t *ill, zoneid_t zoneid, int flags, ipif_t **ipifp) 22768 { 22769 ill_t *illg; 22770 22771 /* 22772 * We look at the passed-in ill first without grabbing ill_g_lock. 22773 */ 22774 if (ipif_lookup_zoneid(ill, zoneid, flags, ipifp)) { 22775 return (B_TRUE); 22776 } 22777 rw_enter(&ill_g_lock, RW_READER); 22778 if (ill->ill_group == NULL) { 22779 /* ill not in a group */ 22780 rw_exit(&ill_g_lock); 22781 return (B_FALSE); 22782 } 22783 22784 /* 22785 * There's no ipif in the zone on ill, however ill is part of an IPMP 22786 * group. We need to look for an ipif in the zone on all the ills in the 22787 * group. 22788 */ 22789 illg = ill->ill_group->illgrp_ill; 22790 do { 22791 /* 22792 * We don't call ipif_lookup_zoneid() on ill as we already know 22793 * that it's not there. 22794 */ 22795 if (illg != ill && 22796 ipif_lookup_zoneid(illg, zoneid, flags, ipifp)) { 22797 break; 22798 } 22799 } while ((illg = illg->ill_group_next) != NULL); 22800 rw_exit(&ill_g_lock); 22801 return (illg != NULL); 22802 } 22803 22804 /* 22805 * Check if this ill is only being used to send ICMP probes for IPMP 22806 */ 22807 boolean_t 22808 ill_is_probeonly(ill_t *ill) 22809 { 22810 /* 22811 * Check if the interface is FAILED, or INACTIVE 22812 */ 22813 if (ill->ill_phyint->phyint_flags & (PHYI_FAILED|PHYI_INACTIVE)) 22814 return (B_TRUE); 22815 22816 return (B_FALSE); 22817 } 22818