1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2007 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 /* Copyright (c) 1990 Mentat Inc. */ 26 27 #pragma ident "%Z%%M% %I% %E% SMI" 28 29 /* 30 * This file contains the interface control functions for IP. 31 */ 32 33 #include <sys/types.h> 34 #include <sys/stream.h> 35 #include <sys/dlpi.h> 36 #include <sys/stropts.h> 37 #include <sys/strsun.h> 38 #include <sys/sysmacros.h> 39 #include <sys/strlog.h> 40 #include <sys/ddi.h> 41 #include <sys/sunddi.h> 42 #include <sys/cmn_err.h> 43 #include <sys/kstat.h> 44 #include <sys/debug.h> 45 #include <sys/zone.h> 46 #include <sys/sunldi.h> 47 #include <sys/file.h> 48 #include <sys/bitmap.h> 49 50 #include <sys/kmem.h> 51 #include <sys/systm.h> 52 #include <sys/param.h> 53 #include <sys/socket.h> 54 #include <sys/isa_defs.h> 55 #include <net/if.h> 56 #include <net/if_arp.h> 57 #include <net/if_types.h> 58 #include <net/if_dl.h> 59 #include <net/route.h> 60 #include <sys/sockio.h> 61 #include <netinet/in.h> 62 #include <netinet/ip6.h> 63 #include <netinet/icmp6.h> 64 #include <netinet/igmp_var.h> 65 #include <sys/strsun.h> 66 #include <sys/policy.h> 67 #include <sys/ethernet.h> 68 69 #include <inet/common.h> /* for various inet/mi.h and inet/nd.h needs */ 70 #include <inet/mi.h> 71 #include <inet/nd.h> 72 #include <inet/arp.h> 73 #include <inet/mib2.h> 74 #include <inet/ip.h> 75 #include <inet/ip6.h> 76 #include <inet/ip6_asp.h> 77 #include <inet/tcp.h> 78 #include <inet/ip_multi.h> 79 #include <inet/ip_ire.h> 80 #include <inet/ip_ftable.h> 81 #include <inet/ip_rts.h> 82 #include <inet/ip_ndp.h> 83 #include <inet/ip_if.h> 84 #include <inet/ip_impl.h> 85 #include <inet/tun.h> 86 #include <inet/sctp_ip.h> 87 #include <inet/ip_netinfo.h> 88 #include <inet/mib2.h> 89 90 #include <net/pfkeyv2.h> 91 #include <inet/ipsec_info.h> 92 #include <inet/sadb.h> 93 #include <inet/ipsec_impl.h> 94 #include <sys/iphada.h> 95 96 97 #include <netinet/igmp.h> 98 #include <inet/ip_listutils.h> 99 #include <inet/ipclassifier.h> 100 #include <sys/mac.h> 101 102 #include <sys/systeminfo.h> 103 #include <sys/bootconf.h> 104 105 #include <sys/tsol/tndb.h> 106 #include <sys/tsol/tnet.h> 107 108 /* The character which tells where the ill_name ends */ 109 #define IPIF_SEPARATOR_CHAR ':' 110 111 /* IP ioctl function table entry */ 112 typedef struct ipft_s { 113 int ipft_cmd; 114 pfi_t ipft_pfi; 115 int ipft_min_size; 116 int ipft_flags; 117 } ipft_t; 118 #define IPFT_F_NO_REPLY 0x1 /* IP ioctl does not expect any reply */ 119 #define IPFT_F_SELF_REPLY 0x2 /* ioctl callee does the ioctl reply */ 120 121 typedef struct ip_sock_ar_s { 122 union { 123 area_t ip_sock_area; 124 ared_t ip_sock_ared; 125 areq_t ip_sock_areq; 126 } ip_sock_ar_u; 127 queue_t *ip_sock_ar_q; 128 } ip_sock_ar_t; 129 130 static int nd_ill_forward_get(queue_t *, mblk_t *, caddr_t, cred_t *); 131 static int nd_ill_forward_set(queue_t *q, mblk_t *mp, 132 char *value, caddr_t cp, cred_t *ioc_cr); 133 134 static boolean_t ip_addr_ok_v4(ipaddr_t addr, ipaddr_t subnet_mask); 135 static ip_m_t *ip_m_lookup(t_uscalar_t mac_type); 136 static int ip_sioctl_addr_tail(ipif_t *ipif, sin_t *sin, queue_t *q, 137 mblk_t *mp, boolean_t need_up); 138 static int ip_sioctl_dstaddr_tail(ipif_t *ipif, sin_t *sin, queue_t *q, 139 mblk_t *mp, boolean_t need_up); 140 static int ip_sioctl_slifzone_tail(ipif_t *ipif, zoneid_t zoneid, 141 queue_t *q, mblk_t *mp, boolean_t need_up); 142 static int ip_sioctl_flags_tail(ipif_t *ipif, uint64_t flags, queue_t *q, 143 mblk_t *mp, boolean_t need_up); 144 static int ip_sioctl_netmask_tail(ipif_t *ipif, sin_t *sin, queue_t *q, 145 mblk_t *mp); 146 static int ip_sioctl_subnet_tail(ipif_t *ipif, in6_addr_t, in6_addr_t, 147 queue_t *q, mblk_t *mp, boolean_t need_up); 148 static int ip_sioctl_plink_ipmod(ipsq_t *ipsq, queue_t *q, mblk_t *mp, 149 int ioccmd, struct linkblk *li, boolean_t doconsist); 150 static ipaddr_t ip_subnet_mask(ipaddr_t addr, ipif_t **, ip_stack_t *); 151 static void ip_wput_ioctl(queue_t *q, mblk_t *mp); 152 static void ipsq_flush(ill_t *ill); 153 154 static int ip_sioctl_token_tail(ipif_t *ipif, sin6_t *sin6, int addrlen, 155 queue_t *q, mblk_t *mp, boolean_t need_up); 156 static void ipsq_delete(ipsq_t *); 157 158 static ipif_t *ipif_allocate(ill_t *ill, int id, uint_t ire_type, 159 boolean_t initialize); 160 static void ipif_check_bcast_ires(ipif_t *test_ipif); 161 static ire_t **ipif_create_bcast_ires(ipif_t *ipif, ire_t **irep); 162 static boolean_t ipif_comp_multi(ipif_t *old_ipif, ipif_t *new_ipif, 163 boolean_t isv6); 164 static void ipif_down_delete_ire(ire_t *ire, char *ipif); 165 static void ipif_delete_cache_ire(ire_t *, char *); 166 static int ipif_logical_down(ipif_t *ipif, queue_t *q, mblk_t *mp); 167 static void ipif_free(ipif_t *ipif); 168 static void ipif_free_tail(ipif_t *ipif); 169 static void ipif_mtu_change(ire_t *ire, char *ipif_arg); 170 static void ipif_multicast_down(ipif_t *ipif); 171 static void ipif_recreate_interface_routes(ipif_t *old_ipif, ipif_t *ipif); 172 static void ipif_set_default(ipif_t *ipif); 173 static int ipif_set_values(queue_t *q, mblk_t *mp, 174 char *interf_name, uint_t *ppa); 175 static int ipif_set_values_tail(ill_t *ill, ipif_t *ipif, mblk_t *mp, 176 queue_t *q); 177 static ipif_t *ipif_lookup_on_name(char *name, size_t namelen, 178 boolean_t do_alloc, boolean_t *exists, boolean_t isv6, zoneid_t zoneid, 179 queue_t *q, mblk_t *mp, ipsq_func_t func, int *error, ip_stack_t *); 180 static int ipif_up(ipif_t *ipif, queue_t *q, mblk_t *mp); 181 static void ipif_update_other_ipifs(ipif_t *old_ipif, ill_group_t *illgrp); 182 183 static int ill_alloc_ppa(ill_if_t *, ill_t *); 184 static int ill_arp_off(ill_t *ill); 185 static int ill_arp_on(ill_t *ill); 186 static void ill_delete_interface_type(ill_if_t *); 187 static int ill_dl_up(ill_t *ill, ipif_t *ipif, mblk_t *mp, queue_t *q); 188 static void ill_dl_down(ill_t *ill); 189 static void ill_down(ill_t *ill); 190 static void ill_downi(ire_t *ire, char *ill_arg); 191 static void ill_free_mib(ill_t *ill); 192 static void ill_glist_delete(ill_t *); 193 static boolean_t ill_has_usable_ipif(ill_t *); 194 static int ill_lock_ipsq_ills(ipsq_t *sq, ill_t **list, int); 195 static void ill_nominate_bcast_rcv(ill_group_t *illgrp); 196 static void ill_phyint_free(ill_t *ill); 197 static void ill_phyint_reinit(ill_t *ill); 198 static void ill_set_nce_router_flags(ill_t *, boolean_t); 199 static void ill_set_phys_addr_tail(ipsq_t *, queue_t *, mblk_t *, void *); 200 static void ill_signal_ipsq_ills(ipsq_t *, boolean_t); 201 static boolean_t ill_split_ipsq(ipsq_t *cur_sq); 202 static void ill_stq_cache_delete(ire_t *, char *); 203 204 static boolean_t ip_ether_v6intfid(uint_t, uint8_t *, in6_addr_t *); 205 static boolean_t ip_nodef_v6intfid(uint_t, uint8_t *, in6_addr_t *); 206 static boolean_t ip_ether_v6mapinfo(uint_t, uint8_t *, uint8_t *, uint32_t *, 207 in6_addr_t *); 208 static boolean_t ip_ether_v4mapinfo(uint_t, uint8_t *, uint8_t *, uint32_t *, 209 ipaddr_t *); 210 static boolean_t ip_ib_v6intfid(uint_t, uint8_t *, in6_addr_t *); 211 static boolean_t ip_ib_v6mapinfo(uint_t, uint8_t *, uint8_t *, uint32_t *, 212 in6_addr_t *); 213 static boolean_t ip_ib_v4mapinfo(uint_t, uint8_t *, uint8_t *, uint32_t *, 214 ipaddr_t *); 215 216 static void ipif_save_ire(ipif_t *, ire_t *); 217 static void ipif_remove_ire(ipif_t *, ire_t *); 218 static void ip_cgtp_bcast_add(ire_t *, ire_t *, ip_stack_t *); 219 static void ip_cgtp_bcast_delete(ire_t *, ip_stack_t *); 220 221 /* 222 * Per-ill IPsec capabilities management. 223 */ 224 static ill_ipsec_capab_t *ill_ipsec_capab_alloc(void); 225 static void ill_ipsec_capab_free(ill_ipsec_capab_t *); 226 static void ill_ipsec_capab_add(ill_t *, uint_t, boolean_t); 227 static void ill_ipsec_capab_delete(ill_t *, uint_t); 228 static boolean_t ill_ipsec_capab_resize_algparm(ill_ipsec_capab_t *, int); 229 static void ill_capability_proto(ill_t *, int, mblk_t *); 230 static void ill_capability_dispatch(ill_t *, mblk_t *, dl_capability_sub_t *, 231 boolean_t); 232 static void ill_capability_id_ack(ill_t *, mblk_t *, dl_capability_sub_t *); 233 static void ill_capability_mdt_ack(ill_t *, mblk_t *, dl_capability_sub_t *); 234 static void ill_capability_mdt_reset(ill_t *, mblk_t **); 235 static void ill_capability_ipsec_ack(ill_t *, mblk_t *, dl_capability_sub_t *); 236 static void ill_capability_ipsec_reset(ill_t *, mblk_t **); 237 static void ill_capability_hcksum_ack(ill_t *, mblk_t *, dl_capability_sub_t *); 238 static void ill_capability_hcksum_reset(ill_t *, mblk_t **); 239 static void ill_capability_zerocopy_ack(ill_t *, mblk_t *, 240 dl_capability_sub_t *); 241 static void ill_capability_zerocopy_reset(ill_t *, mblk_t **); 242 static void ill_capability_lso_ack(ill_t *, mblk_t *, dl_capability_sub_t *); 243 static void ill_capability_lso_reset(ill_t *, mblk_t **); 244 static void ill_capability_dls_ack(ill_t *, mblk_t *, dl_capability_sub_t *); 245 static mac_resource_handle_t ill_ring_add(void *, mac_resource_t *); 246 static void ill_capability_dls_reset(ill_t *, mblk_t **); 247 static void ill_capability_dls_disable(ill_t *); 248 249 static void illgrp_cache_delete(ire_t *, char *); 250 static void illgrp_delete(ill_t *ill); 251 static void illgrp_reset_schednext(ill_t *ill); 252 253 static ill_t *ill_prev_usesrc(ill_t *); 254 static int ill_relink_usesrc_ills(ill_t *, ill_t *, uint_t); 255 static void ill_disband_usesrc_group(ill_t *); 256 257 static void conn_cleanup_stale_ire(conn_t *, caddr_t); 258 259 #ifdef DEBUG 260 static void ill_trace_cleanup(const ill_t *); 261 static void ipif_trace_cleanup(const ipif_t *); 262 #endif 263 264 /* 265 * if we go over the memory footprint limit more than once in this msec 266 * interval, we'll start pruning aggressively. 267 */ 268 int ip_min_frag_prune_time = 0; 269 270 /* 271 * max # of IPsec algorithms supported. Limited to 1 byte by PF_KEY 272 * and the IPsec DOI 273 */ 274 #define MAX_IPSEC_ALGS 256 275 276 #define BITSPERBYTE 8 277 #define BITS(type) (BITSPERBYTE * (long)sizeof (type)) 278 279 #define IPSEC_ALG_ENABLE(algs, algid) \ 280 ((algs)[(algid) / BITS(ipsec_capab_elem_t)] |= \ 281 (1 << ((algid) % BITS(ipsec_capab_elem_t)))) 282 283 #define IPSEC_ALG_IS_ENABLED(algid, algs) \ 284 ((algs)[(algid) / BITS(ipsec_capab_elem_t)] & \ 285 (1 << ((algid) % BITS(ipsec_capab_elem_t)))) 286 287 typedef uint8_t ipsec_capab_elem_t; 288 289 /* 290 * Per-algorithm parameters. Note that at present, only encryption 291 * algorithms have variable keysize (IKE does not provide a way to negotiate 292 * auth algorithm keysize). 293 * 294 * All sizes here are in bits. 295 */ 296 typedef struct 297 { 298 uint16_t minkeylen; 299 uint16_t maxkeylen; 300 } ipsec_capab_algparm_t; 301 302 /* 303 * Per-ill capabilities. 304 */ 305 struct ill_ipsec_capab_s { 306 ipsec_capab_elem_t *encr_hw_algs; 307 ipsec_capab_elem_t *auth_hw_algs; 308 uint32_t algs_size; /* size of _hw_algs in bytes */ 309 /* algorithm key lengths */ 310 ipsec_capab_algparm_t *encr_algparm; 311 uint32_t encr_algparm_size; 312 uint32_t encr_algparm_end; 313 }; 314 315 /* 316 * The field values are larger than strictly necessary for simple 317 * AR_ENTRY_ADDs but the padding lets us accomodate the socket ioctls. 318 */ 319 static area_t ip_area_template = { 320 AR_ENTRY_ADD, /* area_cmd */ 321 sizeof (ip_sock_ar_t) + (IP_ADDR_LEN*2) + sizeof (struct sockaddr_dl), 322 /* area_name_offset */ 323 /* area_name_length temporarily holds this structure length */ 324 sizeof (area_t), /* area_name_length */ 325 IP_ARP_PROTO_TYPE, /* area_proto */ 326 sizeof (ip_sock_ar_t), /* area_proto_addr_offset */ 327 IP_ADDR_LEN, /* area_proto_addr_length */ 328 sizeof (ip_sock_ar_t) + IP_ADDR_LEN, 329 /* area_proto_mask_offset */ 330 0, /* area_flags */ 331 sizeof (ip_sock_ar_t) + IP_ADDR_LEN + IP_ADDR_LEN, 332 /* area_hw_addr_offset */ 333 /* Zero length hw_addr_length means 'use your idea of the address' */ 334 0 /* area_hw_addr_length */ 335 }; 336 337 /* 338 * AR_ENTRY_ADD/DELETE templates have been added for IPv6 external resolver 339 * support 340 */ 341 static area_t ip6_area_template = { 342 AR_ENTRY_ADD, /* area_cmd */ 343 sizeof (ip_sock_ar_t) + (IPV6_ADDR_LEN*2) + sizeof (sin6_t), 344 /* area_name_offset */ 345 /* area_name_length temporarily holds this structure length */ 346 sizeof (area_t), /* area_name_length */ 347 IP_ARP_PROTO_TYPE, /* area_proto */ 348 sizeof (ip_sock_ar_t), /* area_proto_addr_offset */ 349 IPV6_ADDR_LEN, /* area_proto_addr_length */ 350 sizeof (ip_sock_ar_t) + IPV6_ADDR_LEN, 351 /* area_proto_mask_offset */ 352 0, /* area_flags */ 353 sizeof (ip_sock_ar_t) + IPV6_ADDR_LEN + IPV6_ADDR_LEN, 354 /* area_hw_addr_offset */ 355 /* Zero length hw_addr_length means 'use your idea of the address' */ 356 0 /* area_hw_addr_length */ 357 }; 358 359 static ared_t ip_ared_template = { 360 AR_ENTRY_DELETE, 361 sizeof (ared_t) + IP_ADDR_LEN, 362 sizeof (ared_t), 363 IP_ARP_PROTO_TYPE, 364 sizeof (ared_t), 365 IP_ADDR_LEN 366 }; 367 368 static ared_t ip6_ared_template = { 369 AR_ENTRY_DELETE, 370 sizeof (ared_t) + IPV6_ADDR_LEN, 371 sizeof (ared_t), 372 IP_ARP_PROTO_TYPE, 373 sizeof (ared_t), 374 IPV6_ADDR_LEN 375 }; 376 377 /* 378 * A template for an IPv6 AR_ENTRY_QUERY template has not been created, as 379 * as the areq doesn't include an IP address in ill_dl_up() (the only place a 380 * areq is used). 381 */ 382 static areq_t ip_areq_template = { 383 AR_ENTRY_QUERY, /* cmd */ 384 sizeof (areq_t)+(2*IP_ADDR_LEN), /* name offset */ 385 sizeof (areq_t), /* name len (filled by ill_arp_alloc) */ 386 IP_ARP_PROTO_TYPE, /* protocol, from arps perspective */ 387 sizeof (areq_t), /* target addr offset */ 388 IP_ADDR_LEN, /* target addr_length */ 389 0, /* flags */ 390 sizeof (areq_t) + IP_ADDR_LEN, /* sender addr offset */ 391 IP_ADDR_LEN, /* sender addr length */ 392 AR_EQ_DEFAULT_XMIT_COUNT, /* xmit_count */ 393 AR_EQ_DEFAULT_XMIT_INTERVAL, /* (re)xmit_interval in milliseconds */ 394 AR_EQ_DEFAULT_MAX_BUFFERED /* max # of requests to buffer */ 395 /* anything else filled in by the code */ 396 }; 397 398 static arc_t ip_aru_template = { 399 AR_INTERFACE_UP, 400 sizeof (arc_t), /* Name offset */ 401 sizeof (arc_t) /* Name length (set by ill_arp_alloc) */ 402 }; 403 404 static arc_t ip_ard_template = { 405 AR_INTERFACE_DOWN, 406 sizeof (arc_t), /* Name offset */ 407 sizeof (arc_t) /* Name length (set by ill_arp_alloc) */ 408 }; 409 410 static arc_t ip_aron_template = { 411 AR_INTERFACE_ON, 412 sizeof (arc_t), /* Name offset */ 413 sizeof (arc_t) /* Name length (set by ill_arp_alloc) */ 414 }; 415 416 static arc_t ip_aroff_template = { 417 AR_INTERFACE_OFF, 418 sizeof (arc_t), /* Name offset */ 419 sizeof (arc_t) /* Name length (set by ill_arp_alloc) */ 420 }; 421 422 423 static arma_t ip_arma_multi_template = { 424 AR_MAPPING_ADD, 425 sizeof (arma_t) + 3*IP_ADDR_LEN + IP_MAX_HW_LEN, 426 /* Name offset */ 427 sizeof (arma_t), /* Name length (set by ill_arp_alloc) */ 428 IP_ARP_PROTO_TYPE, 429 sizeof (arma_t), /* proto_addr_offset */ 430 IP_ADDR_LEN, /* proto_addr_length */ 431 sizeof (arma_t) + IP_ADDR_LEN, /* proto_mask_offset */ 432 sizeof (arma_t) + 2*IP_ADDR_LEN, /* proto_extract_mask_offset */ 433 ACE_F_PERMANENT | ACE_F_MAPPING, /* flags */ 434 sizeof (arma_t) + 3*IP_ADDR_LEN, /* hw_addr_offset */ 435 IP_MAX_HW_LEN, /* hw_addr_length */ 436 0, /* hw_mapping_start */ 437 }; 438 439 static ipft_t ip_ioctl_ftbl[] = { 440 { IP_IOC_IRE_DELETE, ip_ire_delete, sizeof (ipid_t), 0 }, 441 { IP_IOC_IRE_DELETE_NO_REPLY, ip_ire_delete, sizeof (ipid_t), 442 IPFT_F_NO_REPLY }, 443 { IP_IOC_IRE_ADVISE_NO_REPLY, ip_ire_advise, sizeof (ipic_t), 444 IPFT_F_NO_REPLY }, 445 { IP_IOC_RTS_REQUEST, ip_rts_request, 0, IPFT_F_SELF_REPLY }, 446 { 0 } 447 }; 448 449 /* Simple ICMP IP Header Template */ 450 static ipha_t icmp_ipha = { 451 IP_SIMPLE_HDR_VERSION, 0, 0, 0, 0, 0, IPPROTO_ICMP 452 }; 453 454 /* Flag descriptors for ip_ipif_report */ 455 static nv_t ipif_nv_tbl[] = { 456 { IPIF_UP, "UP" }, 457 { IPIF_BROADCAST, "BROADCAST" }, 458 { ILLF_DEBUG, "DEBUG" }, 459 { PHYI_LOOPBACK, "LOOPBACK" }, 460 { IPIF_POINTOPOINT, "POINTOPOINT" }, 461 { ILLF_NOTRAILERS, "NOTRAILERS" }, 462 { PHYI_RUNNING, "RUNNING" }, 463 { ILLF_NOARP, "NOARP" }, 464 { PHYI_PROMISC, "PROMISC" }, 465 { PHYI_ALLMULTI, "ALLMULTI" }, 466 { PHYI_INTELLIGENT, "INTELLIGENT" }, 467 { ILLF_MULTICAST, "MULTICAST" }, 468 { PHYI_MULTI_BCAST, "MULTI_BCAST" }, 469 { IPIF_UNNUMBERED, "UNNUMBERED" }, 470 { IPIF_DHCPRUNNING, "DHCP" }, 471 { IPIF_PRIVATE, "PRIVATE" }, 472 { IPIF_NOXMIT, "NOXMIT" }, 473 { IPIF_NOLOCAL, "NOLOCAL" }, 474 { IPIF_DEPRECATED, "DEPRECATED" }, 475 { IPIF_PREFERRED, "PREFERRED" }, 476 { IPIF_TEMPORARY, "TEMPORARY" }, 477 { IPIF_ADDRCONF, "ADDRCONF" }, 478 { PHYI_VIRTUAL, "VIRTUAL" }, 479 { ILLF_ROUTER, "ROUTER" }, 480 { ILLF_NONUD, "NONUD" }, 481 { IPIF_ANYCAST, "ANYCAST" }, 482 { ILLF_NORTEXCH, "NORTEXCH" }, 483 { ILLF_IPV4, "IPV4" }, 484 { ILLF_IPV6, "IPV6" }, 485 { IPIF_NOFAILOVER, "NOFAILOVER" }, 486 { PHYI_FAILED, "FAILED" }, 487 { PHYI_STANDBY, "STANDBY" }, 488 { PHYI_INACTIVE, "INACTIVE" }, 489 { PHYI_OFFLINE, "OFFLINE" }, 490 }; 491 492 static uchar_t ip_six_byte_all_ones[] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF }; 493 494 static ip_m_t ip_m_tbl[] = { 495 { DL_ETHER, IFT_ETHER, ip_ether_v4mapinfo, ip_ether_v6mapinfo, 496 ip_ether_v6intfid }, 497 { DL_CSMACD, IFT_ISO88023, ip_ether_v4mapinfo, ip_ether_v6mapinfo, 498 ip_nodef_v6intfid }, 499 { DL_TPB, IFT_ISO88024, ip_ether_v4mapinfo, ip_ether_v6mapinfo, 500 ip_nodef_v6intfid }, 501 { DL_TPR, IFT_ISO88025, ip_ether_v4mapinfo, ip_ether_v6mapinfo, 502 ip_nodef_v6intfid }, 503 { DL_FDDI, IFT_FDDI, ip_ether_v4mapinfo, ip_ether_v6mapinfo, 504 ip_ether_v6intfid }, 505 { DL_IB, IFT_IB, ip_ib_v4mapinfo, ip_ib_v6mapinfo, 506 ip_ib_v6intfid }, 507 { SUNW_DL_VNI, IFT_OTHER, NULL, NULL, NULL}, 508 { DL_OTHER, IFT_OTHER, ip_ether_v4mapinfo, ip_ether_v6mapinfo, 509 ip_nodef_v6intfid } 510 }; 511 512 static ill_t ill_null; /* Empty ILL for init. */ 513 char ipif_loopback_name[] = "lo0"; 514 static char *ipv4_forward_suffix = ":ip_forwarding"; 515 static char *ipv6_forward_suffix = ":ip6_forwarding"; 516 static sin6_t sin6_null; /* Zero address for quick clears */ 517 static sin_t sin_null; /* Zero address for quick clears */ 518 519 /* When set search for unused ipif_seqid */ 520 static ipif_t ipif_zero; 521 522 /* 523 * ppa arena is created after these many 524 * interfaces have been plumbed. 525 */ 526 uint_t ill_no_arena = 12; /* Setable in /etc/system */ 527 528 /* 529 * Enable soft rings if ip_squeue_soft_ring or ip_squeue_fanout 530 * is set and ip_soft_rings_cnt > 0. ip_squeue_soft_ring is 531 * set through platform specific code (Niagara/Ontario). 532 */ 533 #define SOFT_RINGS_ENABLED() (ip_soft_rings_cnt ? \ 534 (ip_squeue_soft_ring || ip_squeue_fanout) : B_FALSE) 535 536 #define ILL_CAPAB_DLS (ILL_CAPAB_SOFT_RING | ILL_CAPAB_POLL) 537 538 static uint_t 539 ipif_rand(ip_stack_t *ipst) 540 { 541 ipst->ips_ipif_src_random = ipst->ips_ipif_src_random * 1103515245 + 542 12345; 543 return ((ipst->ips_ipif_src_random >> 16) & 0x7fff); 544 } 545 546 /* 547 * Allocate per-interface mibs. 548 * Returns true if ok. False otherwise. 549 * ipsq may not yet be allocated (loopback case ). 550 */ 551 static boolean_t 552 ill_allocate_mibs(ill_t *ill) 553 { 554 /* Already allocated? */ 555 if (ill->ill_ip_mib != NULL) { 556 if (ill->ill_isv6) 557 ASSERT(ill->ill_icmp6_mib != NULL); 558 return (B_TRUE); 559 } 560 561 ill->ill_ip_mib = kmem_zalloc(sizeof (*ill->ill_ip_mib), 562 KM_NOSLEEP); 563 if (ill->ill_ip_mib == NULL) { 564 return (B_FALSE); 565 } 566 567 /* Setup static information */ 568 SET_MIB(ill->ill_ip_mib->ipIfStatsEntrySize, 569 sizeof (mib2_ipIfStatsEntry_t)); 570 if (ill->ill_isv6) { 571 ill->ill_ip_mib->ipIfStatsIPVersion = MIB2_INETADDRESSTYPE_ipv6; 572 SET_MIB(ill->ill_ip_mib->ipIfStatsAddrEntrySize, 573 sizeof (mib2_ipv6AddrEntry_t)); 574 SET_MIB(ill->ill_ip_mib->ipIfStatsRouteEntrySize, 575 sizeof (mib2_ipv6RouteEntry_t)); 576 SET_MIB(ill->ill_ip_mib->ipIfStatsNetToMediaEntrySize, 577 sizeof (mib2_ipv6NetToMediaEntry_t)); 578 SET_MIB(ill->ill_ip_mib->ipIfStatsMemberEntrySize, 579 sizeof (ipv6_member_t)); 580 SET_MIB(ill->ill_ip_mib->ipIfStatsGroupSourceEntrySize, 581 sizeof (ipv6_grpsrc_t)); 582 } else { 583 ill->ill_ip_mib->ipIfStatsIPVersion = MIB2_INETADDRESSTYPE_ipv4; 584 SET_MIB(ill->ill_ip_mib->ipIfStatsAddrEntrySize, 585 sizeof (mib2_ipAddrEntry_t)); 586 SET_MIB(ill->ill_ip_mib->ipIfStatsRouteEntrySize, 587 sizeof (mib2_ipRouteEntry_t)); 588 SET_MIB(ill->ill_ip_mib->ipIfStatsNetToMediaEntrySize, 589 sizeof (mib2_ipNetToMediaEntry_t)); 590 SET_MIB(ill->ill_ip_mib->ipIfStatsMemberEntrySize, 591 sizeof (ip_member_t)); 592 SET_MIB(ill->ill_ip_mib->ipIfStatsGroupSourceEntrySize, 593 sizeof (ip_grpsrc_t)); 594 595 /* 596 * For a v4 ill, we are done at this point, because per ill 597 * icmp mibs are only used for v6. 598 */ 599 return (B_TRUE); 600 } 601 602 ill->ill_icmp6_mib = kmem_zalloc(sizeof (*ill->ill_icmp6_mib), 603 KM_NOSLEEP); 604 if (ill->ill_icmp6_mib == NULL) { 605 kmem_free(ill->ill_ip_mib, sizeof (*ill->ill_ip_mib)); 606 ill->ill_ip_mib = NULL; 607 return (B_FALSE); 608 } 609 /* static icmp info */ 610 ill->ill_icmp6_mib->ipv6IfIcmpEntrySize = 611 sizeof (mib2_ipv6IfIcmpEntry_t); 612 /* 613 * The ipIfStatsIfindex and ipv6IfIcmpIndex will be assigned later 614 * after the phyint merge occurs in ipif_set_values -> ill_glist_insert 615 * -> ill_phyint_reinit 616 */ 617 return (B_TRUE); 618 } 619 620 /* 621 * Common code for preparation of ARP commands. Two points to remember: 622 * 1) The ill_name is tacked on at the end of the allocated space so 623 * the templates name_offset field must contain the total space 624 * to allocate less the name length. 625 * 626 * 2) The templates name_length field should contain the *template* 627 * length. We use it as a parameter to bcopy() and then write 628 * the real ill_name_length into the name_length field of the copy. 629 * (Always called as writer.) 630 */ 631 mblk_t * 632 ill_arp_alloc(ill_t *ill, uchar_t *template, caddr_t addr) 633 { 634 arc_t *arc = (arc_t *)template; 635 char *cp; 636 int len; 637 mblk_t *mp; 638 uint_t name_length = ill->ill_name_length; 639 uint_t template_len = arc->arc_name_length; 640 641 len = arc->arc_name_offset + name_length; 642 mp = allocb(len, BPRI_HI); 643 if (mp == NULL) 644 return (NULL); 645 cp = (char *)mp->b_rptr; 646 mp->b_wptr = (uchar_t *)&cp[len]; 647 if (template_len) 648 bcopy(template, cp, template_len); 649 if (len > template_len) 650 bzero(&cp[template_len], len - template_len); 651 mp->b_datap->db_type = M_PROTO; 652 653 arc = (arc_t *)cp; 654 arc->arc_name_length = name_length; 655 cp = (char *)arc + arc->arc_name_offset; 656 bcopy(ill->ill_name, cp, name_length); 657 658 if (addr) { 659 area_t *area = (area_t *)mp->b_rptr; 660 661 cp = (char *)area + area->area_proto_addr_offset; 662 bcopy(addr, cp, area->area_proto_addr_length); 663 if (area->area_cmd == AR_ENTRY_ADD) { 664 cp = (char *)area; 665 len = area->area_proto_addr_length; 666 if (area->area_proto_mask_offset) 667 cp += area->area_proto_mask_offset; 668 else 669 cp += area->area_proto_addr_offset + len; 670 while (len-- > 0) 671 *cp++ = (char)~0; 672 } 673 } 674 return (mp); 675 } 676 677 mblk_t * 678 ipif_area_alloc(ipif_t *ipif) 679 { 680 return (ill_arp_alloc(ipif->ipif_ill, (uchar_t *)&ip_area_template, 681 (char *)&ipif->ipif_lcl_addr)); 682 } 683 684 mblk_t * 685 ipif_ared_alloc(ipif_t *ipif) 686 { 687 return (ill_arp_alloc(ipif->ipif_ill, (uchar_t *)&ip_ared_template, 688 (char *)&ipif->ipif_lcl_addr)); 689 } 690 691 mblk_t * 692 ill_ared_alloc(ill_t *ill, ipaddr_t addr) 693 { 694 return (ill_arp_alloc(ill, (uchar_t *)&ip_ared_template, 695 (char *)&addr)); 696 } 697 698 /* 699 * Completely vaporize a lower level tap and all associated interfaces. 700 * ill_delete is called only out of ip_close when the device control 701 * stream is being closed. 702 */ 703 void 704 ill_delete(ill_t *ill) 705 { 706 ipif_t *ipif; 707 ill_t *prev_ill; 708 ip_stack_t *ipst = ill->ill_ipst; 709 710 /* 711 * ill_delete may be forcibly entering the ipsq. The previous 712 * ioctl may not have completed and may need to be aborted. 713 * ipsq_flush takes care of it. If we don't need to enter the 714 * the ipsq forcibly, the 2nd invocation of ipsq_flush in 715 * ill_delete_tail is sufficient. 716 */ 717 ipsq_flush(ill); 718 719 /* 720 * Nuke all interfaces. ipif_free will take down the interface, 721 * remove it from the list, and free the data structure. 722 * Walk down the ipif list and remove the logical interfaces 723 * first before removing the main ipif. We can't unplumb 724 * zeroth interface first in the case of IPv6 as reset_conn_ill 725 * -> ip_ll_delmulti_v6 de-references ill_ipif for checking 726 * POINTOPOINT. 727 * 728 * If ill_ipif was not properly initialized (i.e low on memory), 729 * then no interfaces to clean up. In this case just clean up the 730 * ill. 731 */ 732 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) 733 ipif_free(ipif); 734 735 /* 736 * Used only by ill_arp_on and ill_arp_off, which are writers. 737 * So nobody can be using this mp now. Free the mp allocated for 738 * honoring ILLF_NOARP 739 */ 740 freemsg(ill->ill_arp_on_mp); 741 ill->ill_arp_on_mp = NULL; 742 743 /* Clean up msgs on pending upcalls for mrouted */ 744 reset_mrt_ill(ill); 745 746 /* 747 * ipif_free -> reset_conn_ipif will remove all multicast 748 * references for IPv4. For IPv6, we need to do it here as 749 * it points only at ills. 750 */ 751 reset_conn_ill(ill); 752 753 /* 754 * ill_down will arrange to blow off any IRE's dependent on this 755 * ILL, and shut down fragmentation reassembly. 756 */ 757 ill_down(ill); 758 759 /* Let SCTP know, so that it can remove this from its list. */ 760 sctp_update_ill(ill, SCTP_ILL_REMOVE); 761 762 /* 763 * If an address on this ILL is being used as a source address then 764 * clear out the pointers in other ILLs that point to this ILL. 765 */ 766 rw_enter(&ipst->ips_ill_g_usesrc_lock, RW_WRITER); 767 if (ill->ill_usesrc_grp_next != NULL) { 768 if (ill->ill_usesrc_ifindex == 0) { /* usesrc ILL ? */ 769 ill_disband_usesrc_group(ill); 770 } else { /* consumer of the usesrc ILL */ 771 prev_ill = ill_prev_usesrc(ill); 772 prev_ill->ill_usesrc_grp_next = 773 ill->ill_usesrc_grp_next; 774 } 775 } 776 rw_exit(&ipst->ips_ill_g_usesrc_lock); 777 } 778 779 static void 780 ipif_non_duplicate(ipif_t *ipif) 781 { 782 ill_t *ill = ipif->ipif_ill; 783 mutex_enter(&ill->ill_lock); 784 if (ipif->ipif_flags & IPIF_DUPLICATE) { 785 ipif->ipif_flags &= ~IPIF_DUPLICATE; 786 ASSERT(ill->ill_ipif_dup_count > 0); 787 ill->ill_ipif_dup_count--; 788 } 789 mutex_exit(&ill->ill_lock); 790 } 791 792 /* 793 * ill_delete_tail is called from ip_modclose after all references 794 * to the closing ill are gone. The wait is done in ip_modclose 795 */ 796 void 797 ill_delete_tail(ill_t *ill) 798 { 799 mblk_t **mpp; 800 ipif_t *ipif; 801 ip_stack_t *ipst = ill->ill_ipst; 802 803 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 804 ipif_non_duplicate(ipif); 805 ipif_down_tail(ipif); 806 } 807 808 ASSERT(ill->ill_ipif_dup_count == 0 && 809 ill->ill_arp_down_mp == NULL && 810 ill->ill_arp_del_mapping_mp == NULL); 811 812 /* 813 * If polling capability is enabled (which signifies direct 814 * upcall into IP and driver has ill saved as a handle), 815 * we need to make sure that unbind has completed before we 816 * let the ill disappear and driver no longer has any reference 817 * to this ill. 818 */ 819 mutex_enter(&ill->ill_lock); 820 while (ill->ill_state_flags & ILL_DL_UNBIND_IN_PROGRESS) 821 cv_wait(&ill->ill_cv, &ill->ill_lock); 822 mutex_exit(&ill->ill_lock); 823 824 /* 825 * Clean up polling and soft ring capabilities 826 */ 827 if (ill->ill_capabilities & (ILL_CAPAB_POLL|ILL_CAPAB_SOFT_RING)) 828 ill_capability_dls_disable(ill); 829 830 if (ill->ill_net_type != IRE_LOOPBACK) 831 qprocsoff(ill->ill_rq); 832 833 /* 834 * We do an ipsq_flush once again now. New messages could have 835 * landed up from below (M_ERROR or M_HANGUP). Similarly ioctls 836 * could also have landed up if an ioctl thread had looked up 837 * the ill before we set the ILL_CONDEMNED flag, but not yet 838 * enqueued the ioctl when we did the ipsq_flush last time. 839 */ 840 ipsq_flush(ill); 841 842 /* 843 * Free capabilities. 844 */ 845 if (ill->ill_ipsec_capab_ah != NULL) { 846 ill_ipsec_capab_delete(ill, DL_CAPAB_IPSEC_AH); 847 ill_ipsec_capab_free(ill->ill_ipsec_capab_ah); 848 ill->ill_ipsec_capab_ah = NULL; 849 } 850 851 if (ill->ill_ipsec_capab_esp != NULL) { 852 ill_ipsec_capab_delete(ill, DL_CAPAB_IPSEC_ESP); 853 ill_ipsec_capab_free(ill->ill_ipsec_capab_esp); 854 ill->ill_ipsec_capab_esp = NULL; 855 } 856 857 if (ill->ill_mdt_capab != NULL) { 858 kmem_free(ill->ill_mdt_capab, sizeof (ill_mdt_capab_t)); 859 ill->ill_mdt_capab = NULL; 860 } 861 862 if (ill->ill_hcksum_capab != NULL) { 863 kmem_free(ill->ill_hcksum_capab, sizeof (ill_hcksum_capab_t)); 864 ill->ill_hcksum_capab = NULL; 865 } 866 867 if (ill->ill_zerocopy_capab != NULL) { 868 kmem_free(ill->ill_zerocopy_capab, 869 sizeof (ill_zerocopy_capab_t)); 870 ill->ill_zerocopy_capab = NULL; 871 } 872 873 if (ill->ill_lso_capab != NULL) { 874 kmem_free(ill->ill_lso_capab, sizeof (ill_lso_capab_t)); 875 ill->ill_lso_capab = NULL; 876 } 877 878 if (ill->ill_dls_capab != NULL) { 879 CONN_DEC_REF(ill->ill_dls_capab->ill_unbind_conn); 880 ill->ill_dls_capab->ill_unbind_conn = NULL; 881 kmem_free(ill->ill_dls_capab, 882 sizeof (ill_dls_capab_t) + 883 (sizeof (ill_rx_ring_t) * ILL_MAX_RINGS)); 884 ill->ill_dls_capab = NULL; 885 } 886 887 ASSERT(!(ill->ill_capabilities & ILL_CAPAB_POLL)); 888 889 while (ill->ill_ipif != NULL) 890 ipif_free_tail(ill->ill_ipif); 891 892 /* 893 * We have removed all references to ilm from conn and the ones joined 894 * within the kernel. 895 * 896 * We don't walk conns, mrts and ires because 897 * 898 * 1) reset_conn_ill and reset_mrt_ill cleans up conns and mrts. 899 * 2) ill_down ->ill_downi walks all the ires and cleans up 900 * ill references. 901 */ 902 ASSERT(ilm_walk_ill(ill) == 0); 903 /* 904 * Take us out of the list of ILLs. ill_glist_delete -> ill_phyint_free 905 * could free the phyint. No more reference to the phyint after this 906 * point. 907 */ 908 (void) ill_glist_delete(ill); 909 910 rw_enter(&ipst->ips_ip_g_nd_lock, RW_WRITER); 911 if (ill->ill_ndd_name != NULL) 912 nd_unload(&ipst->ips_ip_g_nd, ill->ill_ndd_name); 913 rw_exit(&ipst->ips_ip_g_nd_lock); 914 915 916 if (ill->ill_frag_ptr != NULL) { 917 uint_t count; 918 919 for (count = 0; count < ILL_FRAG_HASH_TBL_COUNT; count++) { 920 mutex_destroy(&ill->ill_frag_hash_tbl[count].ipfb_lock); 921 } 922 mi_free(ill->ill_frag_ptr); 923 ill->ill_frag_ptr = NULL; 924 ill->ill_frag_hash_tbl = NULL; 925 } 926 927 freemsg(ill->ill_nd_lla_mp); 928 /* Free all retained control messages. */ 929 mpp = &ill->ill_first_mp_to_free; 930 do { 931 while (mpp[0]) { 932 mblk_t *mp; 933 mblk_t *mp1; 934 935 mp = mpp[0]; 936 mpp[0] = mp->b_next; 937 for (mp1 = mp; mp1 != NULL; mp1 = mp1->b_cont) { 938 mp1->b_next = NULL; 939 mp1->b_prev = NULL; 940 } 941 freemsg(mp); 942 } 943 } while (mpp++ != &ill->ill_last_mp_to_free); 944 945 ill_free_mib(ill); 946 947 #ifdef DEBUG 948 ill_trace_cleanup(ill); 949 #endif 950 951 /* Drop refcnt here */ 952 netstack_rele(ill->ill_ipst->ips_netstack); 953 ill->ill_ipst = NULL; 954 } 955 956 static void 957 ill_free_mib(ill_t *ill) 958 { 959 ip_stack_t *ipst = ill->ill_ipst; 960 961 /* 962 * MIB statistics must not be lost, so when an interface 963 * goes away the counter values will be added to the global 964 * MIBs. 965 */ 966 if (ill->ill_ip_mib != NULL) { 967 if (ill->ill_isv6) { 968 ip_mib2_add_ip_stats(&ipst->ips_ip6_mib, 969 ill->ill_ip_mib); 970 } else { 971 ip_mib2_add_ip_stats(&ipst->ips_ip_mib, 972 ill->ill_ip_mib); 973 } 974 975 kmem_free(ill->ill_ip_mib, sizeof (*ill->ill_ip_mib)); 976 ill->ill_ip_mib = NULL; 977 } 978 if (ill->ill_icmp6_mib != NULL) { 979 ip_mib2_add_icmp6_stats(&ipst->ips_icmp6_mib, 980 ill->ill_icmp6_mib); 981 kmem_free(ill->ill_icmp6_mib, sizeof (*ill->ill_icmp6_mib)); 982 ill->ill_icmp6_mib = NULL; 983 } 984 } 985 986 /* 987 * Concatenate together a physical address and a sap. 988 * 989 * Sap_lengths are interpreted as follows: 990 * sap_length == 0 ==> no sap 991 * sap_length > 0 ==> sap is at the head of the dlpi address 992 * sap_length < 0 ==> sap is at the tail of the dlpi address 993 */ 994 static void 995 ill_dlur_copy_address(uchar_t *phys_src, uint_t phys_length, 996 t_scalar_t sap_src, t_scalar_t sap_length, uchar_t *dst) 997 { 998 uint16_t sap_addr = (uint16_t)sap_src; 999 1000 if (sap_length == 0) { 1001 if (phys_src == NULL) 1002 bzero(dst, phys_length); 1003 else 1004 bcopy(phys_src, dst, phys_length); 1005 } else if (sap_length < 0) { 1006 if (phys_src == NULL) 1007 bzero(dst, phys_length); 1008 else 1009 bcopy(phys_src, dst, phys_length); 1010 bcopy(&sap_addr, (char *)dst + phys_length, sizeof (sap_addr)); 1011 } else { 1012 bcopy(&sap_addr, dst, sizeof (sap_addr)); 1013 if (phys_src == NULL) 1014 bzero((char *)dst + sap_length, phys_length); 1015 else 1016 bcopy(phys_src, (char *)dst + sap_length, phys_length); 1017 } 1018 } 1019 1020 /* 1021 * Generate a dl_unitdata_req mblk for the device and address given. 1022 * addr_length is the length of the physical portion of the address. 1023 * If addr is NULL include an all zero address of the specified length. 1024 * TRUE? In any case, addr_length is taken to be the entire length of the 1025 * dlpi address, including the absolute value of sap_length. 1026 */ 1027 mblk_t * 1028 ill_dlur_gen(uchar_t *addr, uint_t addr_length, t_uscalar_t sap, 1029 t_scalar_t sap_length) 1030 { 1031 dl_unitdata_req_t *dlur; 1032 mblk_t *mp; 1033 t_scalar_t abs_sap_length; /* absolute value */ 1034 1035 abs_sap_length = ABS(sap_length); 1036 mp = ip_dlpi_alloc(sizeof (*dlur) + addr_length + abs_sap_length, 1037 DL_UNITDATA_REQ); 1038 if (mp == NULL) 1039 return (NULL); 1040 dlur = (dl_unitdata_req_t *)mp->b_rptr; 1041 /* HACK: accomodate incompatible DLPI drivers */ 1042 if (addr_length == 8) 1043 addr_length = 6; 1044 dlur->dl_dest_addr_length = addr_length + abs_sap_length; 1045 dlur->dl_dest_addr_offset = sizeof (*dlur); 1046 dlur->dl_priority.dl_min = 0; 1047 dlur->dl_priority.dl_max = 0; 1048 ill_dlur_copy_address(addr, addr_length, sap, sap_length, 1049 (uchar_t *)&dlur[1]); 1050 return (mp); 1051 } 1052 1053 /* 1054 * Add the 'mp' to the list of pending mp's headed by ill_pending_mp 1055 * Return an error if we already have 1 or more ioctls in progress. 1056 * This is used only for non-exclusive ioctls. Currently this is used 1057 * for SIOC*ARP and SIOCGTUNPARAM ioctls. Most set ioctls are exclusive 1058 * and thus need to use ipsq_pending_mp_add. 1059 */ 1060 boolean_t 1061 ill_pending_mp_add(ill_t *ill, conn_t *connp, mblk_t *add_mp) 1062 { 1063 ASSERT(MUTEX_HELD(&ill->ill_lock)); 1064 ASSERT((add_mp->b_next == NULL) && (add_mp->b_prev == NULL)); 1065 /* 1066 * M_IOCDATA from ioctls, M_IOCTL from tunnel ioctls. 1067 */ 1068 ASSERT((add_mp->b_datap->db_type == M_IOCDATA) || 1069 (add_mp->b_datap->db_type == M_IOCTL)); 1070 1071 ASSERT(MUTEX_HELD(&connp->conn_lock)); 1072 /* 1073 * Return error if the conn has started closing. The conn 1074 * could have finished cleaning up the pending mp list, 1075 * If so we should not add another mp to the list negating 1076 * the cleanup. 1077 */ 1078 if (connp->conn_state_flags & CONN_CLOSING) 1079 return (B_FALSE); 1080 /* 1081 * Add the pending mp to the head of the list, chained by b_next. 1082 * Note down the conn on which the ioctl request came, in b_prev. 1083 * This will be used to later get the conn, when we get a response 1084 * on the ill queue, from some other module (typically arp) 1085 */ 1086 add_mp->b_next = (void *)ill->ill_pending_mp; 1087 add_mp->b_queue = CONNP_TO_WQ(connp); 1088 ill->ill_pending_mp = add_mp; 1089 if (connp != NULL) 1090 connp->conn_oper_pending_ill = ill; 1091 return (B_TRUE); 1092 } 1093 1094 /* 1095 * Retrieve the ill_pending_mp and return it. We have to walk the list 1096 * of mblks starting at ill_pending_mp, and match based on the ioc_id. 1097 */ 1098 mblk_t * 1099 ill_pending_mp_get(ill_t *ill, conn_t **connpp, uint_t ioc_id) 1100 { 1101 mblk_t *prev = NULL; 1102 mblk_t *curr = NULL; 1103 uint_t id; 1104 conn_t *connp; 1105 1106 /* 1107 * When the conn closes, conn_ioctl_cleanup needs to clean 1108 * up the pending mp, but it does not know the ioc_id and 1109 * passes in a zero for it. 1110 */ 1111 mutex_enter(&ill->ill_lock); 1112 if (ioc_id != 0) 1113 *connpp = NULL; 1114 1115 /* Search the list for the appropriate ioctl based on ioc_id */ 1116 for (prev = NULL, curr = ill->ill_pending_mp; curr != NULL; 1117 prev = curr, curr = curr->b_next) { 1118 id = ((struct iocblk *)curr->b_rptr)->ioc_id; 1119 connp = Q_TO_CONN(curr->b_queue); 1120 /* Match based on the ioc_id or based on the conn */ 1121 if ((id == ioc_id) || (ioc_id == 0 && connp == *connpp)) 1122 break; 1123 } 1124 1125 if (curr != NULL) { 1126 /* Unlink the mblk from the pending mp list */ 1127 if (prev != NULL) { 1128 prev->b_next = curr->b_next; 1129 } else { 1130 ASSERT(ill->ill_pending_mp == curr); 1131 ill->ill_pending_mp = curr->b_next; 1132 } 1133 1134 /* 1135 * conn refcnt must have been bumped up at the start of 1136 * the ioctl. So we can safely access the conn. 1137 */ 1138 ASSERT(CONN_Q(curr->b_queue)); 1139 *connpp = Q_TO_CONN(curr->b_queue); 1140 curr->b_next = NULL; 1141 curr->b_queue = NULL; 1142 } 1143 1144 mutex_exit(&ill->ill_lock); 1145 1146 return (curr); 1147 } 1148 1149 /* 1150 * Add the pending mp to the list. There can be only 1 pending mp 1151 * in the list. Any exclusive ioctl that needs to wait for a response 1152 * from another module or driver needs to use this function to set 1153 * the ipsq_pending_mp to the ioctl mblk and wait for the response from 1154 * the other module/driver. This is also used while waiting for the 1155 * ipif/ill/ire refcnts to drop to zero in bringing down an ipif. 1156 */ 1157 boolean_t 1158 ipsq_pending_mp_add(conn_t *connp, ipif_t *ipif, queue_t *q, mblk_t *add_mp, 1159 int waitfor) 1160 { 1161 ipsq_t *ipsq = ipif->ipif_ill->ill_phyint->phyint_ipsq; 1162 1163 ASSERT(IAM_WRITER_IPIF(ipif)); 1164 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 1165 ASSERT((add_mp->b_next == NULL) && (add_mp->b_prev == NULL)); 1166 ASSERT(ipsq->ipsq_pending_mp == NULL); 1167 /* 1168 * The caller may be using a different ipif than the one passed into 1169 * ipsq_current_start() (e.g., suppose an ioctl that came in on the V4 1170 * ill needs to wait for the V6 ill to quiesce). So we can't ASSERT 1171 * that `ipsq_current_ipif == ipif'. 1172 */ 1173 ASSERT(ipsq->ipsq_current_ipif != NULL); 1174 1175 /* 1176 * M_IOCDATA from ioctls, M_IOCTL from tunnel ioctls, 1177 * M_ERROR/M_HANGUP/M_PROTO/M_PCPROTO from the driver. 1178 */ 1179 ASSERT((DB_TYPE(add_mp) == M_IOCDATA) || (DB_TYPE(add_mp) == M_IOCTL) || 1180 (DB_TYPE(add_mp) == M_ERROR) || (DB_TYPE(add_mp) == M_HANGUP) || 1181 (DB_TYPE(add_mp) == M_PROTO) || (DB_TYPE(add_mp) == M_PCPROTO)); 1182 1183 if (connp != NULL) { 1184 ASSERT(MUTEX_HELD(&connp->conn_lock)); 1185 /* 1186 * Return error if the conn has started closing. The conn 1187 * could have finished cleaning up the pending mp list, 1188 * If so we should not add another mp to the list negating 1189 * the cleanup. 1190 */ 1191 if (connp->conn_state_flags & CONN_CLOSING) 1192 return (B_FALSE); 1193 } 1194 mutex_enter(&ipsq->ipsq_lock); 1195 ipsq->ipsq_pending_ipif = ipif; 1196 /* 1197 * Note down the queue in b_queue. This will be returned by 1198 * ipsq_pending_mp_get. Caller will then use these values to restart 1199 * the processing 1200 */ 1201 add_mp->b_next = NULL; 1202 add_mp->b_queue = q; 1203 ipsq->ipsq_pending_mp = add_mp; 1204 ipsq->ipsq_waitfor = waitfor; 1205 1206 if (connp != NULL) 1207 connp->conn_oper_pending_ill = ipif->ipif_ill; 1208 mutex_exit(&ipsq->ipsq_lock); 1209 return (B_TRUE); 1210 } 1211 1212 /* 1213 * Retrieve the ipsq_pending_mp and return it. There can be only 1 mp 1214 * queued in the list. 1215 */ 1216 mblk_t * 1217 ipsq_pending_mp_get(ipsq_t *ipsq, conn_t **connpp) 1218 { 1219 mblk_t *curr = NULL; 1220 1221 mutex_enter(&ipsq->ipsq_lock); 1222 *connpp = NULL; 1223 if (ipsq->ipsq_pending_mp == NULL) { 1224 mutex_exit(&ipsq->ipsq_lock); 1225 return (NULL); 1226 } 1227 1228 /* There can be only 1 such excl message */ 1229 curr = ipsq->ipsq_pending_mp; 1230 ASSERT(curr != NULL && curr->b_next == NULL); 1231 ipsq->ipsq_pending_ipif = NULL; 1232 ipsq->ipsq_pending_mp = NULL; 1233 ipsq->ipsq_waitfor = 0; 1234 mutex_exit(&ipsq->ipsq_lock); 1235 1236 if (CONN_Q(curr->b_queue)) { 1237 /* 1238 * This mp did a refhold on the conn, at the start of the ioctl. 1239 * So we can safely return a pointer to the conn to the caller. 1240 */ 1241 *connpp = Q_TO_CONN(curr->b_queue); 1242 } else { 1243 *connpp = NULL; 1244 } 1245 curr->b_next = NULL; 1246 curr->b_prev = NULL; 1247 return (curr); 1248 } 1249 1250 /* 1251 * Cleanup the ioctl mp queued in ipsq_pending_mp 1252 * - Called in the ill_delete path 1253 * - Called in the M_ERROR or M_HANGUP path on the ill. 1254 * - Called in the conn close path. 1255 */ 1256 boolean_t 1257 ipsq_pending_mp_cleanup(ill_t *ill, conn_t *connp) 1258 { 1259 mblk_t *mp; 1260 ipsq_t *ipsq; 1261 queue_t *q; 1262 ipif_t *ipif; 1263 1264 ASSERT(IAM_WRITER_ILL(ill)); 1265 ipsq = ill->ill_phyint->phyint_ipsq; 1266 mutex_enter(&ipsq->ipsq_lock); 1267 /* 1268 * If connp is null, unconditionally clean up the ipsq_pending_mp. 1269 * This happens in M_ERROR/M_HANGUP. We need to abort the current ioctl 1270 * even if it is meant for another ill, since we have to enqueue 1271 * a new mp now in ipsq_pending_mp to complete the ipif_down. 1272 * If connp is non-null we are called from the conn close path. 1273 */ 1274 mp = ipsq->ipsq_pending_mp; 1275 if (mp == NULL || (connp != NULL && 1276 mp->b_queue != CONNP_TO_WQ(connp))) { 1277 mutex_exit(&ipsq->ipsq_lock); 1278 return (B_FALSE); 1279 } 1280 /* Now remove from the ipsq_pending_mp */ 1281 ipsq->ipsq_pending_mp = NULL; 1282 q = mp->b_queue; 1283 mp->b_next = NULL; 1284 mp->b_prev = NULL; 1285 mp->b_queue = NULL; 1286 1287 /* If MOVE was in progress, clear the move_in_progress fields also. */ 1288 ill = ipsq->ipsq_pending_ipif->ipif_ill; 1289 if (ill->ill_move_in_progress) { 1290 ILL_CLEAR_MOVE(ill); 1291 } else if (ill->ill_up_ipifs) { 1292 ill_group_cleanup(ill); 1293 } 1294 1295 ipif = ipsq->ipsq_pending_ipif; 1296 ipsq->ipsq_pending_ipif = NULL; 1297 ipsq->ipsq_waitfor = 0; 1298 ipsq->ipsq_current_ipif = NULL; 1299 ipsq->ipsq_current_ioctl = 0; 1300 mutex_exit(&ipsq->ipsq_lock); 1301 1302 if (DB_TYPE(mp) == M_IOCTL || DB_TYPE(mp) == M_IOCDATA) { 1303 if (connp == NULL) { 1304 ip_ioctl_finish(q, mp, ENXIO, NO_COPYOUT, NULL); 1305 } else { 1306 ip_ioctl_finish(q, mp, ENXIO, CONN_CLOSE, NULL); 1307 mutex_enter(&ipif->ipif_ill->ill_lock); 1308 ipif->ipif_state_flags &= ~IPIF_CHANGING; 1309 mutex_exit(&ipif->ipif_ill->ill_lock); 1310 } 1311 } else { 1312 /* 1313 * IP-MT XXX In the case of TLI/XTI bind / optmgmt this can't 1314 * be just inet_freemsg. we have to restart it 1315 * otherwise the thread will be stuck. 1316 */ 1317 inet_freemsg(mp); 1318 } 1319 return (B_TRUE); 1320 } 1321 1322 /* 1323 * The ill is closing. Cleanup all the pending mps. Called exclusively 1324 * towards the end of ill_delete. The refcount has gone to 0. So nobody 1325 * knows this ill, and hence nobody can add an mp to this list 1326 */ 1327 static void 1328 ill_pending_mp_cleanup(ill_t *ill) 1329 { 1330 mblk_t *mp; 1331 queue_t *q; 1332 1333 ASSERT(IAM_WRITER_ILL(ill)); 1334 1335 mutex_enter(&ill->ill_lock); 1336 /* 1337 * Every mp on the pending mp list originating from an ioctl 1338 * added 1 to the conn refcnt, at the start of the ioctl. 1339 * So bump it down now. See comments in ip_wput_nondata() 1340 */ 1341 while (ill->ill_pending_mp != NULL) { 1342 mp = ill->ill_pending_mp; 1343 ill->ill_pending_mp = mp->b_next; 1344 mutex_exit(&ill->ill_lock); 1345 1346 q = mp->b_queue; 1347 ASSERT(CONN_Q(q)); 1348 mp->b_next = NULL; 1349 mp->b_prev = NULL; 1350 mp->b_queue = NULL; 1351 ip_ioctl_finish(q, mp, ENXIO, NO_COPYOUT, NULL); 1352 mutex_enter(&ill->ill_lock); 1353 } 1354 ill->ill_pending_ipif = NULL; 1355 1356 mutex_exit(&ill->ill_lock); 1357 } 1358 1359 /* 1360 * Called in the conn close path and ill delete path 1361 */ 1362 static void 1363 ipsq_xopq_mp_cleanup(ill_t *ill, conn_t *connp) 1364 { 1365 ipsq_t *ipsq; 1366 mblk_t *prev; 1367 mblk_t *curr; 1368 mblk_t *next; 1369 queue_t *q; 1370 mblk_t *tmp_list = NULL; 1371 1372 ASSERT(IAM_WRITER_ILL(ill)); 1373 if (connp != NULL) 1374 q = CONNP_TO_WQ(connp); 1375 else 1376 q = ill->ill_wq; 1377 1378 ipsq = ill->ill_phyint->phyint_ipsq; 1379 /* 1380 * Cleanup the ioctl mp's queued in ipsq_xopq_pending_mp if any. 1381 * In the case of ioctl from a conn, there can be only 1 mp 1382 * queued on the ipsq. If an ill is being unplumbed, only messages 1383 * related to this ill are flushed, like M_ERROR or M_HANGUP message. 1384 * ioctls meant for this ill form conn's are not flushed. They will 1385 * be processed during ipsq_exit and will not find the ill and will 1386 * return error. 1387 */ 1388 mutex_enter(&ipsq->ipsq_lock); 1389 for (prev = NULL, curr = ipsq->ipsq_xopq_mphead; curr != NULL; 1390 curr = next) { 1391 next = curr->b_next; 1392 if (curr->b_queue == q || curr->b_queue == RD(q)) { 1393 /* Unlink the mblk from the pending mp list */ 1394 if (prev != NULL) { 1395 prev->b_next = curr->b_next; 1396 } else { 1397 ASSERT(ipsq->ipsq_xopq_mphead == curr); 1398 ipsq->ipsq_xopq_mphead = curr->b_next; 1399 } 1400 if (ipsq->ipsq_xopq_mptail == curr) 1401 ipsq->ipsq_xopq_mptail = prev; 1402 /* 1403 * Create a temporary list and release the ipsq lock 1404 * New elements are added to the head of the tmp_list 1405 */ 1406 curr->b_next = tmp_list; 1407 tmp_list = curr; 1408 } else { 1409 prev = curr; 1410 } 1411 } 1412 mutex_exit(&ipsq->ipsq_lock); 1413 1414 while (tmp_list != NULL) { 1415 curr = tmp_list; 1416 tmp_list = curr->b_next; 1417 curr->b_next = NULL; 1418 curr->b_prev = NULL; 1419 curr->b_queue = NULL; 1420 if (DB_TYPE(curr) == M_IOCTL || DB_TYPE(curr) == M_IOCDATA) { 1421 ip_ioctl_finish(q, curr, ENXIO, connp != NULL ? 1422 CONN_CLOSE : NO_COPYOUT, NULL); 1423 } else { 1424 /* 1425 * IP-MT XXX In the case of TLI/XTI bind / optmgmt 1426 * this can't be just inet_freemsg. we have to 1427 * restart it otherwise the thread will be stuck. 1428 */ 1429 inet_freemsg(curr); 1430 } 1431 } 1432 } 1433 1434 /* 1435 * This conn has started closing. Cleanup any pending ioctl from this conn. 1436 * STREAMS ensures that there can be at most 1 ioctl pending on a stream. 1437 */ 1438 void 1439 conn_ioctl_cleanup(conn_t *connp) 1440 { 1441 mblk_t *curr; 1442 ipsq_t *ipsq; 1443 ill_t *ill; 1444 boolean_t refheld; 1445 1446 /* 1447 * Is any exclusive ioctl pending ? If so clean it up. If the 1448 * ioctl has not yet started, the mp is pending in the list headed by 1449 * ipsq_xopq_head. If the ioctl has started the mp could be present in 1450 * ipsq_pending_mp. If the ioctl timed out in the streamhead but 1451 * is currently executing now the mp is not queued anywhere but 1452 * conn_oper_pending_ill is null. The conn close will wait 1453 * till the conn_ref drops to zero. 1454 */ 1455 mutex_enter(&connp->conn_lock); 1456 ill = connp->conn_oper_pending_ill; 1457 if (ill == NULL) { 1458 mutex_exit(&connp->conn_lock); 1459 return; 1460 } 1461 1462 curr = ill_pending_mp_get(ill, &connp, 0); 1463 if (curr != NULL) { 1464 mutex_exit(&connp->conn_lock); 1465 CONN_DEC_REF(connp); 1466 inet_freemsg(curr); 1467 return; 1468 } 1469 /* 1470 * We may not be able to refhold the ill if the ill/ipif 1471 * is changing. But we need to make sure that the ill will 1472 * not vanish. So we just bump up the ill_waiter count. 1473 */ 1474 refheld = ill_waiter_inc(ill); 1475 mutex_exit(&connp->conn_lock); 1476 if (refheld) { 1477 if (ipsq_enter(ill, B_TRUE)) { 1478 ill_waiter_dcr(ill); 1479 /* 1480 * Check whether this ioctl has started and is 1481 * pending now in ipsq_pending_mp. If it is not 1482 * found there then check whether this ioctl has 1483 * not even started and is in the ipsq_xopq list. 1484 */ 1485 if (!ipsq_pending_mp_cleanup(ill, connp)) 1486 ipsq_xopq_mp_cleanup(ill, connp); 1487 ipsq = ill->ill_phyint->phyint_ipsq; 1488 ipsq_exit(ipsq, B_TRUE, B_TRUE); 1489 return; 1490 } 1491 } 1492 1493 /* 1494 * The ill is also closing and we could not bump up the 1495 * ill_waiter_count or we could not enter the ipsq. Leave 1496 * the cleanup to ill_delete 1497 */ 1498 mutex_enter(&connp->conn_lock); 1499 while (connp->conn_oper_pending_ill != NULL) 1500 cv_wait(&connp->conn_refcv, &connp->conn_lock); 1501 mutex_exit(&connp->conn_lock); 1502 if (refheld) 1503 ill_waiter_dcr(ill); 1504 } 1505 1506 /* 1507 * ipcl_walk function for cleaning up conn_*_ill fields. 1508 */ 1509 static void 1510 conn_cleanup_ill(conn_t *connp, caddr_t arg) 1511 { 1512 ill_t *ill = (ill_t *)arg; 1513 ire_t *ire; 1514 1515 mutex_enter(&connp->conn_lock); 1516 if (connp->conn_multicast_ill == ill) { 1517 /* Revert to late binding */ 1518 connp->conn_multicast_ill = NULL; 1519 connp->conn_orig_multicast_ifindex = 0; 1520 } 1521 if (connp->conn_incoming_ill == ill) 1522 connp->conn_incoming_ill = NULL; 1523 if (connp->conn_outgoing_ill == ill) 1524 connp->conn_outgoing_ill = NULL; 1525 if (connp->conn_outgoing_pill == ill) 1526 connp->conn_outgoing_pill = NULL; 1527 if (connp->conn_nofailover_ill == ill) 1528 connp->conn_nofailover_ill = NULL; 1529 if (connp->conn_xmit_if_ill == ill) 1530 connp->conn_xmit_if_ill = NULL; 1531 if (connp->conn_ire_cache != NULL) { 1532 ire = connp->conn_ire_cache; 1533 /* 1534 * ip_newroute creates IRE_CACHE with ire_stq coming from 1535 * interface X and ipif coming from interface Y, if interface 1536 * X and Y are part of the same IPMPgroup. Thus whenever 1537 * interface X goes down, remove all references to it by 1538 * checking both on ire_ipif and ire_stq. 1539 */ 1540 if ((ire->ire_ipif != NULL && ire->ire_ipif->ipif_ill == ill) || 1541 (ire->ire_type == IRE_CACHE && 1542 ire->ire_stq == ill->ill_wq)) { 1543 connp->conn_ire_cache = NULL; 1544 mutex_exit(&connp->conn_lock); 1545 ire_refrele_notr(ire); 1546 return; 1547 } 1548 } 1549 mutex_exit(&connp->conn_lock); 1550 1551 } 1552 1553 /* ARGSUSED */ 1554 void 1555 ipif_all_down_tail(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 1556 { 1557 ill_t *ill = q->q_ptr; 1558 ipif_t *ipif; 1559 1560 ASSERT(IAM_WRITER_IPSQ(ipsq)); 1561 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 1562 ipif_non_duplicate(ipif); 1563 ipif_down_tail(ipif); 1564 } 1565 freemsg(mp); 1566 ipsq_current_finish(ipsq); 1567 } 1568 1569 /* 1570 * ill_down_start is called when we want to down this ill and bring it up again 1571 * It is called when we receive an M_ERROR / M_HANGUP. In this case we shut down 1572 * all interfaces, but don't tear down any plumbing. 1573 */ 1574 boolean_t 1575 ill_down_start(queue_t *q, mblk_t *mp) 1576 { 1577 ill_t *ill = q->q_ptr; 1578 ipif_t *ipif; 1579 1580 ASSERT(IAM_WRITER_ILL(ill)); 1581 1582 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) 1583 (void) ipif_down(ipif, NULL, NULL); 1584 1585 ill_down(ill); 1586 1587 (void) ipsq_pending_mp_cleanup(ill, NULL); 1588 1589 ipsq_current_start(ill->ill_phyint->phyint_ipsq, ill->ill_ipif, 0); 1590 1591 /* 1592 * Atomically test and add the pending mp if references are active. 1593 */ 1594 mutex_enter(&ill->ill_lock); 1595 if (!ill_is_quiescent(ill)) { 1596 /* call cannot fail since `conn_t *' argument is NULL */ 1597 (void) ipsq_pending_mp_add(NULL, ill->ill_ipif, ill->ill_rq, 1598 mp, ILL_DOWN); 1599 mutex_exit(&ill->ill_lock); 1600 return (B_FALSE); 1601 } 1602 mutex_exit(&ill->ill_lock); 1603 return (B_TRUE); 1604 } 1605 1606 static void 1607 ill_down(ill_t *ill) 1608 { 1609 ip_stack_t *ipst = ill->ill_ipst; 1610 1611 /* Blow off any IREs dependent on this ILL. */ 1612 ire_walk(ill_downi, (char *)ill, ipst); 1613 1614 /* Remove any conn_*_ill depending on this ill */ 1615 ipcl_walk(conn_cleanup_ill, (caddr_t)ill, ipst); 1616 1617 if (ill->ill_group != NULL) { 1618 illgrp_delete(ill); 1619 } 1620 } 1621 1622 /* 1623 * ire_walk routine used to delete every IRE that depends on queues 1624 * associated with 'ill'. (Always called as writer.) 1625 */ 1626 static void 1627 ill_downi(ire_t *ire, char *ill_arg) 1628 { 1629 ill_t *ill = (ill_t *)ill_arg; 1630 1631 /* 1632 * ip_newroute creates IRE_CACHE with ire_stq coming from 1633 * interface X and ipif coming from interface Y, if interface 1634 * X and Y are part of the same IPMP group. Thus whenever interface 1635 * X goes down, remove all references to it by checking both 1636 * on ire_ipif and ire_stq. 1637 */ 1638 if ((ire->ire_ipif != NULL && ire->ire_ipif->ipif_ill == ill) || 1639 (ire->ire_type == IRE_CACHE && ire->ire_stq == ill->ill_wq)) { 1640 ire_delete(ire); 1641 } 1642 } 1643 1644 /* 1645 * Remove ire/nce from the fastpath list. 1646 */ 1647 void 1648 ill_fastpath_nack(ill_t *ill) 1649 { 1650 nce_fastpath_list_dispatch(ill, NULL, NULL); 1651 } 1652 1653 /* Consume an M_IOCACK of the fastpath probe. */ 1654 void 1655 ill_fastpath_ack(ill_t *ill, mblk_t *mp) 1656 { 1657 mblk_t *mp1 = mp; 1658 1659 /* 1660 * If this was the first attempt turn on the fastpath probing. 1661 */ 1662 mutex_enter(&ill->ill_lock); 1663 if (ill->ill_dlpi_fastpath_state == IDS_INPROGRESS) 1664 ill->ill_dlpi_fastpath_state = IDS_OK; 1665 mutex_exit(&ill->ill_lock); 1666 1667 /* Free the M_IOCACK mblk, hold on to the data */ 1668 mp = mp->b_cont; 1669 freeb(mp1); 1670 if (mp == NULL) 1671 return; 1672 if (mp->b_cont != NULL) { 1673 /* 1674 * Update all IRE's or NCE's that are waiting for 1675 * fastpath update. 1676 */ 1677 nce_fastpath_list_dispatch(ill, ndp_fastpath_update, mp); 1678 mp1 = mp->b_cont; 1679 freeb(mp); 1680 mp = mp1; 1681 } else { 1682 ip0dbg(("ill_fastpath_ack: no b_cont\n")); 1683 } 1684 1685 freeb(mp); 1686 } 1687 1688 /* 1689 * Throw an M_IOCTL message downstream asking "do you know fastpath?" 1690 * The data portion of the request is a dl_unitdata_req_t template for 1691 * what we would send downstream in the absence of a fastpath confirmation. 1692 */ 1693 int 1694 ill_fastpath_probe(ill_t *ill, mblk_t *dlur_mp) 1695 { 1696 struct iocblk *ioc; 1697 mblk_t *mp; 1698 1699 if (dlur_mp == NULL) 1700 return (EINVAL); 1701 1702 mutex_enter(&ill->ill_lock); 1703 switch (ill->ill_dlpi_fastpath_state) { 1704 case IDS_FAILED: 1705 /* 1706 * Driver NAKed the first fastpath ioctl - assume it doesn't 1707 * support it. 1708 */ 1709 mutex_exit(&ill->ill_lock); 1710 return (ENOTSUP); 1711 case IDS_UNKNOWN: 1712 /* This is the first probe */ 1713 ill->ill_dlpi_fastpath_state = IDS_INPROGRESS; 1714 break; 1715 default: 1716 break; 1717 } 1718 mutex_exit(&ill->ill_lock); 1719 1720 if ((mp = mkiocb(DL_IOC_HDR_INFO)) == NULL) 1721 return (EAGAIN); 1722 1723 mp->b_cont = copyb(dlur_mp); 1724 if (mp->b_cont == NULL) { 1725 freeb(mp); 1726 return (EAGAIN); 1727 } 1728 1729 ioc = (struct iocblk *)mp->b_rptr; 1730 ioc->ioc_count = msgdsize(mp->b_cont); 1731 1732 putnext(ill->ill_wq, mp); 1733 return (0); 1734 } 1735 1736 void 1737 ill_capability_probe(ill_t *ill) 1738 { 1739 /* 1740 * Do so only if negotiation is enabled, capabilities are unknown, 1741 * and a capability negotiation is not already in progress. 1742 */ 1743 if (ill->ill_dlpi_capab_state != IDS_UNKNOWN && 1744 ill->ill_dlpi_capab_state != IDS_RENEG) 1745 return; 1746 1747 ill->ill_dlpi_capab_state = IDS_INPROGRESS; 1748 ip1dbg(("ill_capability_probe: starting capability negotiation\n")); 1749 ill_capability_proto(ill, DL_CAPABILITY_REQ, NULL); 1750 } 1751 1752 void 1753 ill_capability_reset(ill_t *ill) 1754 { 1755 mblk_t *sc_mp = NULL; 1756 mblk_t *tmp; 1757 1758 /* 1759 * Note here that we reset the state to UNKNOWN, and later send 1760 * down the DL_CAPABILITY_REQ without first setting the state to 1761 * INPROGRESS. We do this in order to distinguish the 1762 * DL_CAPABILITY_ACK response which may come back in response to 1763 * a "reset" apart from the "probe" DL_CAPABILITY_REQ. This would 1764 * also handle the case where the driver doesn't send us back 1765 * a DL_CAPABILITY_ACK in response, since the "probe" routine 1766 * requires the state to be in UNKNOWN anyway. In any case, all 1767 * features are turned off until the state reaches IDS_OK. 1768 */ 1769 ill->ill_dlpi_capab_state = IDS_UNKNOWN; 1770 1771 /* 1772 * Disable sub-capabilities and request a list of sub-capability 1773 * messages which will be sent down to the driver. Each handler 1774 * allocates the corresponding dl_capability_sub_t inside an 1775 * mblk, and links it to the existing sc_mp mblk, or return it 1776 * as sc_mp if it's the first sub-capability (the passed in 1777 * sc_mp is NULL). Upon returning from all capability handlers, 1778 * sc_mp will be pulled-up, before passing it downstream. 1779 */ 1780 ill_capability_mdt_reset(ill, &sc_mp); 1781 ill_capability_hcksum_reset(ill, &sc_mp); 1782 ill_capability_zerocopy_reset(ill, &sc_mp); 1783 ill_capability_ipsec_reset(ill, &sc_mp); 1784 ill_capability_dls_reset(ill, &sc_mp); 1785 ill_capability_lso_reset(ill, &sc_mp); 1786 1787 /* Nothing to send down in order to disable the capabilities? */ 1788 if (sc_mp == NULL) 1789 return; 1790 1791 tmp = msgpullup(sc_mp, -1); 1792 freemsg(sc_mp); 1793 if ((sc_mp = tmp) == NULL) { 1794 cmn_err(CE_WARN, "ill_capability_reset: unable to send down " 1795 "DL_CAPABILITY_REQ (ENOMEM)\n"); 1796 return; 1797 } 1798 1799 ip1dbg(("ill_capability_reset: resetting negotiated capabilities\n")); 1800 ill_capability_proto(ill, DL_CAPABILITY_REQ, sc_mp); 1801 } 1802 1803 /* 1804 * Request or set new-style hardware capabilities supported by DLS provider. 1805 */ 1806 static void 1807 ill_capability_proto(ill_t *ill, int type, mblk_t *reqp) 1808 { 1809 mblk_t *mp; 1810 dl_capability_req_t *capb; 1811 size_t size = 0; 1812 uint8_t *ptr; 1813 1814 if (reqp != NULL) 1815 size = MBLKL(reqp); 1816 1817 mp = ip_dlpi_alloc(sizeof (dl_capability_req_t) + size, type); 1818 if (mp == NULL) { 1819 freemsg(reqp); 1820 return; 1821 } 1822 ptr = mp->b_rptr; 1823 1824 capb = (dl_capability_req_t *)ptr; 1825 ptr += sizeof (dl_capability_req_t); 1826 1827 if (reqp != NULL) { 1828 capb->dl_sub_offset = sizeof (dl_capability_req_t); 1829 capb->dl_sub_length = size; 1830 bcopy(reqp->b_rptr, ptr, size); 1831 ptr += size; 1832 mp->b_cont = reqp->b_cont; 1833 freeb(reqp); 1834 } 1835 ASSERT(ptr == mp->b_wptr); 1836 1837 ill_dlpi_send(ill, mp); 1838 } 1839 1840 static void 1841 ill_capability_id_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *outers) 1842 { 1843 dl_capab_id_t *id_ic; 1844 uint_t sub_dl_cap = outers->dl_cap; 1845 dl_capability_sub_t *inners; 1846 uint8_t *capend; 1847 1848 ASSERT(sub_dl_cap == DL_CAPAB_ID_WRAPPER); 1849 1850 /* 1851 * Note: range checks here are not absolutely sufficient to 1852 * make us robust against malformed messages sent by drivers; 1853 * this is in keeping with the rest of IP's dlpi handling. 1854 * (Remember, it's coming from something else in the kernel 1855 * address space) 1856 */ 1857 1858 capend = (uint8_t *)(outers + 1) + outers->dl_length; 1859 if (capend > mp->b_wptr) { 1860 cmn_err(CE_WARN, "ill_capability_id_ack: " 1861 "malformed sub-capability too long for mblk"); 1862 return; 1863 } 1864 1865 id_ic = (dl_capab_id_t *)(outers + 1); 1866 1867 if (outers->dl_length < sizeof (*id_ic) || 1868 (inners = &id_ic->id_subcap, 1869 inners->dl_length > (outers->dl_length - sizeof (*inners)))) { 1870 cmn_err(CE_WARN, "ill_capability_id_ack: malformed " 1871 "encapsulated capab type %d too long for mblk", 1872 inners->dl_cap); 1873 return; 1874 } 1875 1876 if (!dlcapabcheckqid(&id_ic->id_mid, ill->ill_lmod_rq)) { 1877 ip1dbg(("ill_capability_id_ack: mid token for capab type %d " 1878 "isn't as expected; pass-thru module(s) detected, " 1879 "discarding capability\n", inners->dl_cap)); 1880 return; 1881 } 1882 1883 /* Process the encapsulated sub-capability */ 1884 ill_capability_dispatch(ill, mp, inners, B_TRUE); 1885 } 1886 1887 /* 1888 * Process Multidata Transmit capability negotiation ack received from a 1889 * DLS Provider. isub must point to the sub-capability (DL_CAPAB_MDT) of a 1890 * DL_CAPABILITY_ACK message. 1891 */ 1892 static void 1893 ill_capability_mdt_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub) 1894 { 1895 mblk_t *nmp = NULL; 1896 dl_capability_req_t *oc; 1897 dl_capab_mdt_t *mdt_ic, *mdt_oc; 1898 ill_mdt_capab_t **ill_mdt_capab; 1899 uint_t sub_dl_cap = isub->dl_cap; 1900 uint8_t *capend; 1901 1902 ASSERT(sub_dl_cap == DL_CAPAB_MDT); 1903 1904 ill_mdt_capab = (ill_mdt_capab_t **)&ill->ill_mdt_capab; 1905 1906 /* 1907 * Note: range checks here are not absolutely sufficient to 1908 * make us robust against malformed messages sent by drivers; 1909 * this is in keeping with the rest of IP's dlpi handling. 1910 * (Remember, it's coming from something else in the kernel 1911 * address space) 1912 */ 1913 1914 capend = (uint8_t *)(isub + 1) + isub->dl_length; 1915 if (capend > mp->b_wptr) { 1916 cmn_err(CE_WARN, "ill_capability_mdt_ack: " 1917 "malformed sub-capability too long for mblk"); 1918 return; 1919 } 1920 1921 mdt_ic = (dl_capab_mdt_t *)(isub + 1); 1922 1923 if (mdt_ic->mdt_version != MDT_VERSION_2) { 1924 cmn_err(CE_CONT, "ill_capability_mdt_ack: " 1925 "unsupported MDT sub-capability (version %d, expected %d)", 1926 mdt_ic->mdt_version, MDT_VERSION_2); 1927 return; 1928 } 1929 1930 if (!dlcapabcheckqid(&mdt_ic->mdt_mid, ill->ill_lmod_rq)) { 1931 ip1dbg(("ill_capability_mdt_ack: mid token for MDT " 1932 "capability isn't as expected; pass-thru module(s) " 1933 "detected, discarding capability\n")); 1934 return; 1935 } 1936 1937 if (mdt_ic->mdt_flags & DL_CAPAB_MDT_ENABLE) { 1938 1939 if (*ill_mdt_capab == NULL) { 1940 *ill_mdt_capab = kmem_zalloc(sizeof (ill_mdt_capab_t), 1941 KM_NOSLEEP); 1942 1943 if (*ill_mdt_capab == NULL) { 1944 cmn_err(CE_WARN, "ill_capability_mdt_ack: " 1945 "could not enable MDT version %d " 1946 "for %s (ENOMEM)\n", MDT_VERSION_2, 1947 ill->ill_name); 1948 return; 1949 } 1950 } 1951 1952 ip1dbg(("ill_capability_mdt_ack: interface %s supports " 1953 "MDT version %d (%d bytes leading, %d bytes trailing " 1954 "header spaces, %d max pld bufs, %d span limit)\n", 1955 ill->ill_name, MDT_VERSION_2, 1956 mdt_ic->mdt_hdr_head, mdt_ic->mdt_hdr_tail, 1957 mdt_ic->mdt_max_pld, mdt_ic->mdt_span_limit)); 1958 1959 (*ill_mdt_capab)->ill_mdt_version = MDT_VERSION_2; 1960 (*ill_mdt_capab)->ill_mdt_on = 1; 1961 /* 1962 * Round the following values to the nearest 32-bit; ULP 1963 * may further adjust them to accomodate for additional 1964 * protocol headers. We pass these values to ULP during 1965 * bind time. 1966 */ 1967 (*ill_mdt_capab)->ill_mdt_hdr_head = 1968 roundup(mdt_ic->mdt_hdr_head, 4); 1969 (*ill_mdt_capab)->ill_mdt_hdr_tail = 1970 roundup(mdt_ic->mdt_hdr_tail, 4); 1971 (*ill_mdt_capab)->ill_mdt_max_pld = mdt_ic->mdt_max_pld; 1972 (*ill_mdt_capab)->ill_mdt_span_limit = mdt_ic->mdt_span_limit; 1973 1974 ill->ill_capabilities |= ILL_CAPAB_MDT; 1975 } else { 1976 uint_t size; 1977 uchar_t *rptr; 1978 1979 size = sizeof (dl_capability_req_t) + 1980 sizeof (dl_capability_sub_t) + sizeof (dl_capab_mdt_t); 1981 1982 if ((nmp = ip_dlpi_alloc(size, DL_CAPABILITY_REQ)) == NULL) { 1983 cmn_err(CE_WARN, "ill_capability_mdt_ack: " 1984 "could not enable MDT for %s (ENOMEM)\n", 1985 ill->ill_name); 1986 return; 1987 } 1988 1989 rptr = nmp->b_rptr; 1990 /* initialize dl_capability_req_t */ 1991 oc = (dl_capability_req_t *)nmp->b_rptr; 1992 oc->dl_sub_offset = sizeof (dl_capability_req_t); 1993 oc->dl_sub_length = sizeof (dl_capability_sub_t) + 1994 sizeof (dl_capab_mdt_t); 1995 nmp->b_rptr += sizeof (dl_capability_req_t); 1996 1997 /* initialize dl_capability_sub_t */ 1998 bcopy(isub, nmp->b_rptr, sizeof (*isub)); 1999 nmp->b_rptr += sizeof (*isub); 2000 2001 /* initialize dl_capab_mdt_t */ 2002 mdt_oc = (dl_capab_mdt_t *)nmp->b_rptr; 2003 bcopy(mdt_ic, mdt_oc, sizeof (*mdt_ic)); 2004 2005 nmp->b_rptr = rptr; 2006 2007 ip1dbg(("ill_capability_mdt_ack: asking interface %s " 2008 "to enable MDT version %d\n", ill->ill_name, 2009 MDT_VERSION_2)); 2010 2011 /* set ENABLE flag */ 2012 mdt_oc->mdt_flags |= DL_CAPAB_MDT_ENABLE; 2013 2014 /* nmp points to a DL_CAPABILITY_REQ message to enable MDT */ 2015 ill_dlpi_send(ill, nmp); 2016 } 2017 } 2018 2019 static void 2020 ill_capability_mdt_reset(ill_t *ill, mblk_t **sc_mp) 2021 { 2022 mblk_t *mp; 2023 dl_capab_mdt_t *mdt_subcap; 2024 dl_capability_sub_t *dl_subcap; 2025 int size; 2026 2027 if (!ILL_MDT_CAPABLE(ill)) 2028 return; 2029 2030 ASSERT(ill->ill_mdt_capab != NULL); 2031 /* 2032 * Clear the capability flag for MDT but retain the ill_mdt_capab 2033 * structure since it's possible that another thread is still 2034 * referring to it. The structure only gets deallocated when 2035 * we destroy the ill. 2036 */ 2037 ill->ill_capabilities &= ~ILL_CAPAB_MDT; 2038 2039 size = sizeof (*dl_subcap) + sizeof (*mdt_subcap); 2040 2041 mp = allocb(size, BPRI_HI); 2042 if (mp == NULL) { 2043 ip1dbg(("ill_capability_mdt_reset: unable to allocate " 2044 "request to disable MDT\n")); 2045 return; 2046 } 2047 2048 mp->b_wptr = mp->b_rptr + size; 2049 2050 dl_subcap = (dl_capability_sub_t *)mp->b_rptr; 2051 dl_subcap->dl_cap = DL_CAPAB_MDT; 2052 dl_subcap->dl_length = sizeof (*mdt_subcap); 2053 2054 mdt_subcap = (dl_capab_mdt_t *)(dl_subcap + 1); 2055 mdt_subcap->mdt_version = ill->ill_mdt_capab->ill_mdt_version; 2056 mdt_subcap->mdt_flags = 0; 2057 mdt_subcap->mdt_hdr_head = 0; 2058 mdt_subcap->mdt_hdr_tail = 0; 2059 2060 if (*sc_mp != NULL) 2061 linkb(*sc_mp, mp); 2062 else 2063 *sc_mp = mp; 2064 } 2065 2066 /* 2067 * Send a DL_NOTIFY_REQ to the specified ill to enable 2068 * DL_NOTE_PROMISC_ON/OFF_PHYS notifications. 2069 * Invoked by ill_capability_ipsec_ack() before enabling IPsec hardware 2070 * acceleration. 2071 * Returns B_TRUE on success, B_FALSE if the message could not be sent. 2072 */ 2073 static boolean_t 2074 ill_enable_promisc_notify(ill_t *ill) 2075 { 2076 mblk_t *mp; 2077 dl_notify_req_t *req; 2078 2079 IPSECHW_DEBUG(IPSECHW_PKT, ("ill_enable_promisc_notify:\n")); 2080 2081 mp = ip_dlpi_alloc(sizeof (dl_notify_req_t), DL_NOTIFY_REQ); 2082 if (mp == NULL) 2083 return (B_FALSE); 2084 2085 req = (dl_notify_req_t *)mp->b_rptr; 2086 req->dl_notifications = DL_NOTE_PROMISC_ON_PHYS | 2087 DL_NOTE_PROMISC_OFF_PHYS; 2088 2089 ill_dlpi_send(ill, mp); 2090 2091 return (B_TRUE); 2092 } 2093 2094 2095 /* 2096 * Allocate an IPsec capability request which will be filled by our 2097 * caller to turn on support for one or more algorithms. 2098 */ 2099 static mblk_t * 2100 ill_alloc_ipsec_cap_req(ill_t *ill, dl_capability_sub_t *isub) 2101 { 2102 mblk_t *nmp; 2103 dl_capability_req_t *ocap; 2104 dl_capab_ipsec_t *ocip; 2105 dl_capab_ipsec_t *icip; 2106 uint8_t *ptr; 2107 icip = (dl_capab_ipsec_t *)(isub + 1); 2108 2109 /* 2110 * The first time around, we send a DL_NOTIFY_REQ to enable 2111 * PROMISC_ON/OFF notification from the provider. We need to 2112 * do this before enabling the algorithms to avoid leakage of 2113 * cleartext packets. 2114 */ 2115 2116 if (!ill_enable_promisc_notify(ill)) 2117 return (NULL); 2118 2119 /* 2120 * Allocate new mblk which will contain a new capability 2121 * request to enable the capabilities. 2122 */ 2123 2124 nmp = ip_dlpi_alloc(sizeof (dl_capability_req_t) + 2125 sizeof (dl_capability_sub_t) + isub->dl_length, DL_CAPABILITY_REQ); 2126 if (nmp == NULL) 2127 return (NULL); 2128 2129 ptr = nmp->b_rptr; 2130 2131 /* initialize dl_capability_req_t */ 2132 ocap = (dl_capability_req_t *)ptr; 2133 ocap->dl_sub_offset = sizeof (dl_capability_req_t); 2134 ocap->dl_sub_length = sizeof (dl_capability_sub_t) + isub->dl_length; 2135 ptr += sizeof (dl_capability_req_t); 2136 2137 /* initialize dl_capability_sub_t */ 2138 bcopy(isub, ptr, sizeof (*isub)); 2139 ptr += sizeof (*isub); 2140 2141 /* initialize dl_capab_ipsec_t */ 2142 ocip = (dl_capab_ipsec_t *)ptr; 2143 bcopy(icip, ocip, sizeof (*icip)); 2144 2145 nmp->b_wptr = (uchar_t *)(&ocip->cip_data[0]); 2146 return (nmp); 2147 } 2148 2149 /* 2150 * Process an IPsec capability negotiation ack received from a DLS Provider. 2151 * isub must point to the sub-capability (DL_CAPAB_IPSEC_AH or 2152 * DL_CAPAB_IPSEC_ESP) of a DL_CAPABILITY_ACK message. 2153 */ 2154 static void 2155 ill_capability_ipsec_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub) 2156 { 2157 dl_capab_ipsec_t *icip; 2158 dl_capab_ipsec_alg_t *ialg; /* ptr to input alg spec. */ 2159 dl_capab_ipsec_alg_t *oalg; /* ptr to output alg spec. */ 2160 uint_t cipher, nciphers; 2161 mblk_t *nmp; 2162 uint_t alg_len; 2163 boolean_t need_sadb_dump; 2164 uint_t sub_dl_cap = isub->dl_cap; 2165 ill_ipsec_capab_t **ill_capab; 2166 uint64_t ill_capab_flag; 2167 uint8_t *capend, *ciphend; 2168 boolean_t sadb_resync; 2169 2170 ASSERT(sub_dl_cap == DL_CAPAB_IPSEC_AH || 2171 sub_dl_cap == DL_CAPAB_IPSEC_ESP); 2172 2173 if (sub_dl_cap == DL_CAPAB_IPSEC_AH) { 2174 ill_capab = (ill_ipsec_capab_t **)&ill->ill_ipsec_capab_ah; 2175 ill_capab_flag = ILL_CAPAB_AH; 2176 } else { 2177 ill_capab = (ill_ipsec_capab_t **)&ill->ill_ipsec_capab_esp; 2178 ill_capab_flag = ILL_CAPAB_ESP; 2179 } 2180 2181 /* 2182 * If the ill capability structure exists, then this incoming 2183 * DL_CAPABILITY_ACK is a response to a "renegotiation" cycle. 2184 * If this is so, then we'd need to resynchronize the SADB 2185 * after re-enabling the offloaded ciphers. 2186 */ 2187 sadb_resync = (*ill_capab != NULL); 2188 2189 /* 2190 * Note: range checks here are not absolutely sufficient to 2191 * make us robust against malformed messages sent by drivers; 2192 * this is in keeping with the rest of IP's dlpi handling. 2193 * (Remember, it's coming from something else in the kernel 2194 * address space) 2195 */ 2196 2197 capend = (uint8_t *)(isub + 1) + isub->dl_length; 2198 if (capend > mp->b_wptr) { 2199 cmn_err(CE_WARN, "ill_capability_ipsec_ack: " 2200 "malformed sub-capability too long for mblk"); 2201 return; 2202 } 2203 2204 /* 2205 * There are two types of acks we process here: 2206 * 1. acks in reply to a (first form) generic capability req 2207 * (no ENABLE flag set) 2208 * 2. acks in reply to a ENABLE capability req. 2209 * (ENABLE flag set) 2210 * 2211 * We process the subcapability passed as argument as follows: 2212 * 1 do initializations 2213 * 1.1 initialize nmp = NULL 2214 * 1.2 set need_sadb_dump to B_FALSE 2215 * 2 for each cipher in subcapability: 2216 * 2.1 if ENABLE flag is set: 2217 * 2.1.1 update per-ill ipsec capabilities info 2218 * 2.1.2 set need_sadb_dump to B_TRUE 2219 * 2.2 if ENABLE flag is not set: 2220 * 2.2.1 if nmp is NULL: 2221 * 2.2.1.1 allocate and initialize nmp 2222 * 2.2.1.2 init current pos in nmp 2223 * 2.2.2 copy current cipher to current pos in nmp 2224 * 2.2.3 set ENABLE flag in nmp 2225 * 2.2.4 update current pos 2226 * 3 if nmp is not equal to NULL, send enable request 2227 * 3.1 send capability request 2228 * 4 if need_sadb_dump is B_TRUE 2229 * 4.1 enable promiscuous on/off notifications 2230 * 4.2 call ill_dlpi_send(isub->dlcap) to send all 2231 * AH or ESP SA's to interface. 2232 */ 2233 2234 nmp = NULL; 2235 oalg = NULL; 2236 need_sadb_dump = B_FALSE; 2237 icip = (dl_capab_ipsec_t *)(isub + 1); 2238 ialg = (dl_capab_ipsec_alg_t *)(&icip->cip_data[0]); 2239 2240 nciphers = icip->cip_nciphers; 2241 ciphend = (uint8_t *)(ialg + icip->cip_nciphers); 2242 2243 if (ciphend > capend) { 2244 cmn_err(CE_WARN, "ill_capability_ipsec_ack: " 2245 "too many ciphers for sub-capability len"); 2246 return; 2247 } 2248 2249 for (cipher = 0; cipher < nciphers; cipher++) { 2250 alg_len = sizeof (dl_capab_ipsec_alg_t); 2251 2252 if (ialg->alg_flag & DL_CAPAB_ALG_ENABLE) { 2253 /* 2254 * TBD: when we provide a way to disable capabilities 2255 * from above, need to manage the request-pending state 2256 * and fail if we were not expecting this ACK. 2257 */ 2258 IPSECHW_DEBUG(IPSECHW_CAPAB, 2259 ("ill_capability_ipsec_ack: got ENABLE ACK\n")); 2260 2261 /* 2262 * Update IPsec capabilities for this ill 2263 */ 2264 2265 if (*ill_capab == NULL) { 2266 IPSECHW_DEBUG(IPSECHW_CAPAB, 2267 ("ill_capability_ipsec_ack: " 2268 "allocating ipsec_capab for ill\n")); 2269 *ill_capab = ill_ipsec_capab_alloc(); 2270 2271 if (*ill_capab == NULL) { 2272 cmn_err(CE_WARN, 2273 "ill_capability_ipsec_ack: " 2274 "could not enable IPsec Hardware " 2275 "acceleration for %s (ENOMEM)\n", 2276 ill->ill_name); 2277 return; 2278 } 2279 } 2280 2281 ASSERT(ialg->alg_type == DL_CAPAB_IPSEC_ALG_AUTH || 2282 ialg->alg_type == DL_CAPAB_IPSEC_ALG_ENCR); 2283 2284 if (ialg->alg_prim >= MAX_IPSEC_ALGS) { 2285 cmn_err(CE_WARN, 2286 "ill_capability_ipsec_ack: " 2287 "malformed IPsec algorithm id %d", 2288 ialg->alg_prim); 2289 continue; 2290 } 2291 2292 if (ialg->alg_type == DL_CAPAB_IPSEC_ALG_AUTH) { 2293 IPSEC_ALG_ENABLE((*ill_capab)->auth_hw_algs, 2294 ialg->alg_prim); 2295 } else { 2296 ipsec_capab_algparm_t *alp; 2297 2298 IPSEC_ALG_ENABLE((*ill_capab)->encr_hw_algs, 2299 ialg->alg_prim); 2300 if (!ill_ipsec_capab_resize_algparm(*ill_capab, 2301 ialg->alg_prim)) { 2302 cmn_err(CE_WARN, 2303 "ill_capability_ipsec_ack: " 2304 "no space for IPsec alg id %d", 2305 ialg->alg_prim); 2306 continue; 2307 } 2308 alp = &((*ill_capab)->encr_algparm[ 2309 ialg->alg_prim]); 2310 alp->minkeylen = ialg->alg_minbits; 2311 alp->maxkeylen = ialg->alg_maxbits; 2312 } 2313 ill->ill_capabilities |= ill_capab_flag; 2314 /* 2315 * indicate that a capability was enabled, which 2316 * will be used below to kick off a SADB dump 2317 * to the ill. 2318 */ 2319 need_sadb_dump = B_TRUE; 2320 } else { 2321 IPSECHW_DEBUG(IPSECHW_CAPAB, 2322 ("ill_capability_ipsec_ack: enabling alg 0x%x\n", 2323 ialg->alg_prim)); 2324 2325 if (nmp == NULL) { 2326 nmp = ill_alloc_ipsec_cap_req(ill, isub); 2327 if (nmp == NULL) { 2328 /* 2329 * Sending the PROMISC_ON/OFF 2330 * notification request failed. 2331 * We cannot enable the algorithms 2332 * since the Provider will not 2333 * notify IP of promiscous mode 2334 * changes, which could lead 2335 * to leakage of packets. 2336 */ 2337 cmn_err(CE_WARN, 2338 "ill_capability_ipsec_ack: " 2339 "could not enable IPsec Hardware " 2340 "acceleration for %s (ENOMEM)\n", 2341 ill->ill_name); 2342 return; 2343 } 2344 /* ptr to current output alg specifier */ 2345 oalg = (dl_capab_ipsec_alg_t *)nmp->b_wptr; 2346 } 2347 2348 /* 2349 * Copy current alg specifier, set ENABLE 2350 * flag, and advance to next output alg. 2351 * For now we enable all IPsec capabilities. 2352 */ 2353 ASSERT(oalg != NULL); 2354 bcopy(ialg, oalg, alg_len); 2355 oalg->alg_flag |= DL_CAPAB_ALG_ENABLE; 2356 nmp->b_wptr += alg_len; 2357 oalg = (dl_capab_ipsec_alg_t *)nmp->b_wptr; 2358 } 2359 2360 /* move to next input algorithm specifier */ 2361 ialg = (dl_capab_ipsec_alg_t *) 2362 ((char *)ialg + alg_len); 2363 } 2364 2365 if (nmp != NULL) 2366 /* 2367 * nmp points to a DL_CAPABILITY_REQ message to enable 2368 * IPsec hardware acceleration. 2369 */ 2370 ill_dlpi_send(ill, nmp); 2371 2372 if (need_sadb_dump) 2373 /* 2374 * An acknowledgement corresponding to a request to 2375 * enable acceleration was received, notify SADB. 2376 */ 2377 ill_ipsec_capab_add(ill, sub_dl_cap, sadb_resync); 2378 } 2379 2380 /* 2381 * Given an mblk with enough space in it, create sub-capability entries for 2382 * DL_CAPAB_IPSEC_{AH,ESP} types which consist of previously-advertised 2383 * offloaded ciphers (both AUTH and ENCR) with their enable flags cleared, 2384 * in preparation for the reset the DL_CAPABILITY_REQ message. 2385 */ 2386 static void 2387 ill_fill_ipsec_reset(uint_t nciphers, int stype, uint_t slen, 2388 ill_ipsec_capab_t *ill_cap, mblk_t *mp) 2389 { 2390 dl_capab_ipsec_t *oipsec; 2391 dl_capab_ipsec_alg_t *oalg; 2392 dl_capability_sub_t *dl_subcap; 2393 int i, k; 2394 2395 ASSERT(nciphers > 0); 2396 ASSERT(ill_cap != NULL); 2397 ASSERT(mp != NULL); 2398 ASSERT(MBLKTAIL(mp) >= sizeof (*dl_subcap) + sizeof (*oipsec) + slen); 2399 2400 /* dl_capability_sub_t for "stype" */ 2401 dl_subcap = (dl_capability_sub_t *)mp->b_wptr; 2402 dl_subcap->dl_cap = stype; 2403 dl_subcap->dl_length = sizeof (dl_capab_ipsec_t) + slen; 2404 mp->b_wptr += sizeof (dl_capability_sub_t); 2405 2406 /* dl_capab_ipsec_t for "stype" */ 2407 oipsec = (dl_capab_ipsec_t *)mp->b_wptr; 2408 oipsec->cip_version = 1; 2409 oipsec->cip_nciphers = nciphers; 2410 mp->b_wptr = (uchar_t *)&oipsec->cip_data[0]; 2411 2412 /* create entries for "stype" AUTH ciphers */ 2413 for (i = 0; i < ill_cap->algs_size; i++) { 2414 for (k = 0; k < BITSPERBYTE; k++) { 2415 if ((ill_cap->auth_hw_algs[i] & (1 << k)) == 0) 2416 continue; 2417 2418 oalg = (dl_capab_ipsec_alg_t *)mp->b_wptr; 2419 bzero((void *)oalg, sizeof (*oalg)); 2420 oalg->alg_type = DL_CAPAB_IPSEC_ALG_AUTH; 2421 oalg->alg_prim = k + (BITSPERBYTE * i); 2422 mp->b_wptr += sizeof (dl_capab_ipsec_alg_t); 2423 } 2424 } 2425 /* create entries for "stype" ENCR ciphers */ 2426 for (i = 0; i < ill_cap->algs_size; i++) { 2427 for (k = 0; k < BITSPERBYTE; k++) { 2428 if ((ill_cap->encr_hw_algs[i] & (1 << k)) == 0) 2429 continue; 2430 2431 oalg = (dl_capab_ipsec_alg_t *)mp->b_wptr; 2432 bzero((void *)oalg, sizeof (*oalg)); 2433 oalg->alg_type = DL_CAPAB_IPSEC_ALG_ENCR; 2434 oalg->alg_prim = k + (BITSPERBYTE * i); 2435 mp->b_wptr += sizeof (dl_capab_ipsec_alg_t); 2436 } 2437 } 2438 } 2439 2440 /* 2441 * Macro to count number of 1s in a byte (8-bit word). The total count is 2442 * accumulated into the passed-in argument (sum). We could use SPARCv9's 2443 * POPC instruction, but our macro is more flexible for an arbitrary length 2444 * of bytes, such as {auth,encr}_hw_algs. These variables are currently 2445 * 256-bits long (MAX_IPSEC_ALGS), so if we know for sure that the length 2446 * stays that way, we can reduce the number of iterations required. 2447 */ 2448 #define COUNT_1S(val, sum) { \ 2449 uint8_t x = val & 0xff; \ 2450 x = (x & 0x55) + ((x >> 1) & 0x55); \ 2451 x = (x & 0x33) + ((x >> 2) & 0x33); \ 2452 sum += (x & 0xf) + ((x >> 4) & 0xf); \ 2453 } 2454 2455 /* ARGSUSED */ 2456 static void 2457 ill_capability_ipsec_reset(ill_t *ill, mblk_t **sc_mp) 2458 { 2459 mblk_t *mp; 2460 ill_ipsec_capab_t *cap_ah = ill->ill_ipsec_capab_ah; 2461 ill_ipsec_capab_t *cap_esp = ill->ill_ipsec_capab_esp; 2462 uint64_t ill_capabilities = ill->ill_capabilities; 2463 int ah_cnt = 0, esp_cnt = 0; 2464 int ah_len = 0, esp_len = 0; 2465 int i, size = 0; 2466 2467 if (!(ill_capabilities & (ILL_CAPAB_AH | ILL_CAPAB_ESP))) 2468 return; 2469 2470 ASSERT(cap_ah != NULL || !(ill_capabilities & ILL_CAPAB_AH)); 2471 ASSERT(cap_esp != NULL || !(ill_capabilities & ILL_CAPAB_ESP)); 2472 2473 /* Find out the number of ciphers for AH */ 2474 if (cap_ah != NULL) { 2475 for (i = 0; i < cap_ah->algs_size; i++) { 2476 COUNT_1S(cap_ah->auth_hw_algs[i], ah_cnt); 2477 COUNT_1S(cap_ah->encr_hw_algs[i], ah_cnt); 2478 } 2479 if (ah_cnt > 0) { 2480 size += sizeof (dl_capability_sub_t) + 2481 sizeof (dl_capab_ipsec_t); 2482 /* dl_capab_ipsec_t contains one dl_capab_ipsec_alg_t */ 2483 ah_len = (ah_cnt - 1) * sizeof (dl_capab_ipsec_alg_t); 2484 size += ah_len; 2485 } 2486 } 2487 2488 /* Find out the number of ciphers for ESP */ 2489 if (cap_esp != NULL) { 2490 for (i = 0; i < cap_esp->algs_size; i++) { 2491 COUNT_1S(cap_esp->auth_hw_algs[i], esp_cnt); 2492 COUNT_1S(cap_esp->encr_hw_algs[i], esp_cnt); 2493 } 2494 if (esp_cnt > 0) { 2495 size += sizeof (dl_capability_sub_t) + 2496 sizeof (dl_capab_ipsec_t); 2497 /* dl_capab_ipsec_t contains one dl_capab_ipsec_alg_t */ 2498 esp_len = (esp_cnt - 1) * sizeof (dl_capab_ipsec_alg_t); 2499 size += esp_len; 2500 } 2501 } 2502 2503 if (size == 0) { 2504 ip1dbg(("ill_capability_ipsec_reset: capabilities exist but " 2505 "there's nothing to reset\n")); 2506 return; 2507 } 2508 2509 mp = allocb(size, BPRI_HI); 2510 if (mp == NULL) { 2511 ip1dbg(("ill_capability_ipsec_reset: unable to allocate " 2512 "request to disable IPSEC Hardware Acceleration\n")); 2513 return; 2514 } 2515 2516 /* 2517 * Clear the capability flags for IPsec HA but retain the ill 2518 * capability structures since it's possible that another thread 2519 * is still referring to them. The structures only get deallocated 2520 * when we destroy the ill. 2521 * 2522 * Various places check the flags to see if the ill is capable of 2523 * hardware acceleration, and by clearing them we ensure that new 2524 * outbound IPsec packets are sent down encrypted. 2525 */ 2526 ill->ill_capabilities &= ~(ILL_CAPAB_AH | ILL_CAPAB_ESP); 2527 2528 /* Fill in DL_CAPAB_IPSEC_AH sub-capability entries */ 2529 if (ah_cnt > 0) { 2530 ill_fill_ipsec_reset(ah_cnt, DL_CAPAB_IPSEC_AH, ah_len, 2531 cap_ah, mp); 2532 ASSERT(mp->b_rptr + size >= mp->b_wptr); 2533 } 2534 2535 /* Fill in DL_CAPAB_IPSEC_ESP sub-capability entries */ 2536 if (esp_cnt > 0) { 2537 ill_fill_ipsec_reset(esp_cnt, DL_CAPAB_IPSEC_ESP, esp_len, 2538 cap_esp, mp); 2539 ASSERT(mp->b_rptr + size >= mp->b_wptr); 2540 } 2541 2542 /* 2543 * At this point we've composed a bunch of sub-capabilities to be 2544 * encapsulated in a DL_CAPABILITY_REQ and later sent downstream 2545 * by the caller. Upon receiving this reset message, the driver 2546 * must stop inbound decryption (by destroying all inbound SAs) 2547 * and let the corresponding packets come in encrypted. 2548 */ 2549 2550 if (*sc_mp != NULL) 2551 linkb(*sc_mp, mp); 2552 else 2553 *sc_mp = mp; 2554 } 2555 2556 static void 2557 ill_capability_dispatch(ill_t *ill, mblk_t *mp, dl_capability_sub_t *subp, 2558 boolean_t encapsulated) 2559 { 2560 boolean_t legacy = B_FALSE; 2561 2562 /* 2563 * If this DL_CAPABILITY_ACK came in as a response to our "reset" 2564 * DL_CAPABILITY_REQ, ignore it during this cycle. We've just 2565 * instructed the driver to disable its advertised capabilities, 2566 * so there's no point in accepting any response at this moment. 2567 */ 2568 if (ill->ill_dlpi_capab_state == IDS_UNKNOWN) 2569 return; 2570 2571 /* 2572 * Note that only the following two sub-capabilities may be 2573 * considered as "legacy", since their original definitions 2574 * do not incorporate the dl_mid_t module ID token, and hence 2575 * may require the use of the wrapper sub-capability. 2576 */ 2577 switch (subp->dl_cap) { 2578 case DL_CAPAB_IPSEC_AH: 2579 case DL_CAPAB_IPSEC_ESP: 2580 legacy = B_TRUE; 2581 break; 2582 } 2583 2584 /* 2585 * For legacy sub-capabilities which don't incorporate a queue_t 2586 * pointer in their structures, discard them if we detect that 2587 * there are intermediate modules in between IP and the driver. 2588 */ 2589 if (!encapsulated && legacy && ill->ill_lmod_cnt > 1) { 2590 ip1dbg(("ill_capability_dispatch: unencapsulated capab type " 2591 "%d discarded; %d module(s) present below IP\n", 2592 subp->dl_cap, ill->ill_lmod_cnt)); 2593 return; 2594 } 2595 2596 switch (subp->dl_cap) { 2597 case DL_CAPAB_IPSEC_AH: 2598 case DL_CAPAB_IPSEC_ESP: 2599 ill_capability_ipsec_ack(ill, mp, subp); 2600 break; 2601 case DL_CAPAB_MDT: 2602 ill_capability_mdt_ack(ill, mp, subp); 2603 break; 2604 case DL_CAPAB_HCKSUM: 2605 ill_capability_hcksum_ack(ill, mp, subp); 2606 break; 2607 case DL_CAPAB_ZEROCOPY: 2608 ill_capability_zerocopy_ack(ill, mp, subp); 2609 break; 2610 case DL_CAPAB_POLL: 2611 if (!SOFT_RINGS_ENABLED()) 2612 ill_capability_dls_ack(ill, mp, subp); 2613 break; 2614 case DL_CAPAB_SOFT_RING: 2615 if (SOFT_RINGS_ENABLED()) 2616 ill_capability_dls_ack(ill, mp, subp); 2617 break; 2618 case DL_CAPAB_LSO: 2619 ill_capability_lso_ack(ill, mp, subp); 2620 break; 2621 default: 2622 ip1dbg(("ill_capability_dispatch: unknown capab type %d\n", 2623 subp->dl_cap)); 2624 } 2625 } 2626 2627 /* 2628 * As part of negotiating polling capability, the driver tells us 2629 * the default (or normal) blanking interval and packet threshold 2630 * (the receive timer fires if blanking interval is reached or 2631 * the packet threshold is reached). 2632 * 2633 * As part of manipulating the polling interval, we always use our 2634 * estimated interval (avg service time * number of packets queued 2635 * on the squeue) but we try to blank for a minimum of 2636 * rr_normal_blank_time * rr_max_blank_ratio. We disable the 2637 * packet threshold during this time. When we are not in polling mode 2638 * we set the blank interval typically lower, rr_normal_pkt_cnt * 2639 * rr_min_blank_ratio but up the packet cnt by a ratio of 2640 * rr_min_pkt_cnt_ratio so that we are still getting chains if 2641 * possible although for a shorter interval. 2642 */ 2643 #define RR_MAX_BLANK_RATIO 20 2644 #define RR_MIN_BLANK_RATIO 10 2645 #define RR_MAX_PKT_CNT_RATIO 3 2646 #define RR_MIN_PKT_CNT_RATIO 3 2647 2648 /* 2649 * These can be tuned via /etc/system. 2650 */ 2651 int rr_max_blank_ratio = RR_MAX_BLANK_RATIO; 2652 int rr_min_blank_ratio = RR_MIN_BLANK_RATIO; 2653 int rr_max_pkt_cnt_ratio = RR_MAX_PKT_CNT_RATIO; 2654 int rr_min_pkt_cnt_ratio = RR_MIN_PKT_CNT_RATIO; 2655 2656 static mac_resource_handle_t 2657 ill_ring_add(void *arg, mac_resource_t *mrp) 2658 { 2659 ill_t *ill = (ill_t *)arg; 2660 mac_rx_fifo_t *mrfp = (mac_rx_fifo_t *)mrp; 2661 ill_rx_ring_t *rx_ring; 2662 int ip_rx_index; 2663 2664 ASSERT(mrp != NULL); 2665 if (mrp->mr_type != MAC_RX_FIFO) { 2666 return (NULL); 2667 } 2668 ASSERT(ill != NULL); 2669 ASSERT(ill->ill_dls_capab != NULL); 2670 2671 mutex_enter(&ill->ill_lock); 2672 for (ip_rx_index = 0; ip_rx_index < ILL_MAX_RINGS; ip_rx_index++) { 2673 rx_ring = &ill->ill_dls_capab->ill_ring_tbl[ip_rx_index]; 2674 ASSERT(rx_ring != NULL); 2675 2676 if (rx_ring->rr_ring_state == ILL_RING_FREE) { 2677 time_t normal_blank_time = 2678 mrfp->mrf_normal_blank_time; 2679 uint_t normal_pkt_cnt = 2680 mrfp->mrf_normal_pkt_count; 2681 2682 bzero(rx_ring, sizeof (ill_rx_ring_t)); 2683 2684 rx_ring->rr_blank = mrfp->mrf_blank; 2685 rx_ring->rr_handle = mrfp->mrf_arg; 2686 rx_ring->rr_ill = ill; 2687 rx_ring->rr_normal_blank_time = normal_blank_time; 2688 rx_ring->rr_normal_pkt_cnt = normal_pkt_cnt; 2689 2690 rx_ring->rr_max_blank_time = 2691 normal_blank_time * rr_max_blank_ratio; 2692 rx_ring->rr_min_blank_time = 2693 normal_blank_time * rr_min_blank_ratio; 2694 rx_ring->rr_max_pkt_cnt = 2695 normal_pkt_cnt * rr_max_pkt_cnt_ratio; 2696 rx_ring->rr_min_pkt_cnt = 2697 normal_pkt_cnt * rr_min_pkt_cnt_ratio; 2698 2699 rx_ring->rr_ring_state = ILL_RING_INUSE; 2700 mutex_exit(&ill->ill_lock); 2701 2702 DTRACE_PROBE2(ill__ring__add, (void *), ill, 2703 (int), ip_rx_index); 2704 return ((mac_resource_handle_t)rx_ring); 2705 } 2706 } 2707 2708 /* 2709 * We ran out of ILL_MAX_RINGS worth rx_ring structures. If 2710 * we have devices which can overwhelm this limit, ILL_MAX_RING 2711 * should be made configurable. Meanwhile it cause no panic because 2712 * driver will pass ip_input a NULL handle which will make 2713 * IP allocate the default squeue and Polling mode will not 2714 * be used for this ring. 2715 */ 2716 cmn_err(CE_NOTE, "Reached maximum number of receiving rings (%d) " 2717 "for %s\n", ILL_MAX_RINGS, ill->ill_name); 2718 2719 mutex_exit(&ill->ill_lock); 2720 return (NULL); 2721 } 2722 2723 static boolean_t 2724 ill_capability_dls_init(ill_t *ill) 2725 { 2726 ill_dls_capab_t *ill_dls = ill->ill_dls_capab; 2727 conn_t *connp; 2728 size_t sz; 2729 ip_stack_t *ipst = ill->ill_ipst; 2730 2731 if (ill->ill_capabilities & ILL_CAPAB_SOFT_RING) { 2732 if (ill_dls == NULL) { 2733 cmn_err(CE_PANIC, "ill_capability_dls_init: " 2734 "soft_ring enabled for ill=%s (%p) but data " 2735 "structs uninitialized\n", ill->ill_name, 2736 (void *)ill); 2737 } 2738 return (B_TRUE); 2739 } else if (ill->ill_capabilities & ILL_CAPAB_POLL) { 2740 if (ill_dls == NULL) { 2741 cmn_err(CE_PANIC, "ill_capability_dls_init: " 2742 "polling enabled for ill=%s (%p) but data " 2743 "structs uninitialized\n", ill->ill_name, 2744 (void *)ill); 2745 } 2746 return (B_TRUE); 2747 } 2748 2749 if (ill_dls != NULL) { 2750 ill_rx_ring_t *rx_ring = ill_dls->ill_ring_tbl; 2751 /* Soft_Ring or polling is being re-enabled */ 2752 2753 connp = ill_dls->ill_unbind_conn; 2754 ASSERT(rx_ring != NULL); 2755 bzero((void *)ill_dls, sizeof (ill_dls_capab_t)); 2756 bzero((void *)rx_ring, 2757 sizeof (ill_rx_ring_t) * ILL_MAX_RINGS); 2758 ill_dls->ill_ring_tbl = rx_ring; 2759 ill_dls->ill_unbind_conn = connp; 2760 return (B_TRUE); 2761 } 2762 2763 if ((connp = ipcl_conn_create(IPCL_TCPCONN, KM_NOSLEEP, 2764 ipst->ips_netstack)) == NULL) 2765 return (B_FALSE); 2766 2767 sz = sizeof (ill_dls_capab_t); 2768 sz += sizeof (ill_rx_ring_t) * ILL_MAX_RINGS; 2769 2770 ill_dls = kmem_zalloc(sz, KM_NOSLEEP); 2771 if (ill_dls == NULL) { 2772 cmn_err(CE_WARN, "ill_capability_dls_init: could not " 2773 "allocate dls_capab for %s (%p)\n", ill->ill_name, 2774 (void *)ill); 2775 CONN_DEC_REF(connp); 2776 return (B_FALSE); 2777 } 2778 2779 /* Allocate space to hold ring table */ 2780 ill_dls->ill_ring_tbl = (ill_rx_ring_t *)&ill_dls[1]; 2781 ill->ill_dls_capab = ill_dls; 2782 ill_dls->ill_unbind_conn = connp; 2783 return (B_TRUE); 2784 } 2785 2786 /* 2787 * ill_capability_dls_disable: disable soft_ring and/or polling 2788 * capability. Since any of the rings might already be in use, need 2789 * to call ip_squeue_clean_all() which gets behind the squeue to disable 2790 * direct calls if necessary. 2791 */ 2792 static void 2793 ill_capability_dls_disable(ill_t *ill) 2794 { 2795 ill_dls_capab_t *ill_dls = ill->ill_dls_capab; 2796 2797 if (ill->ill_capabilities & ILL_CAPAB_DLS) { 2798 ip_squeue_clean_all(ill); 2799 ill_dls->ill_tx = NULL; 2800 ill_dls->ill_tx_handle = NULL; 2801 ill_dls->ill_dls_change_status = NULL; 2802 ill_dls->ill_dls_bind = NULL; 2803 ill_dls->ill_dls_unbind = NULL; 2804 } 2805 2806 ASSERT(!(ill->ill_capabilities & ILL_CAPAB_DLS)); 2807 } 2808 2809 static void 2810 ill_capability_dls_capable(ill_t *ill, dl_capab_dls_t *idls, 2811 dl_capability_sub_t *isub) 2812 { 2813 uint_t size; 2814 uchar_t *rptr; 2815 dl_capab_dls_t dls, *odls; 2816 ill_dls_capab_t *ill_dls; 2817 mblk_t *nmp = NULL; 2818 dl_capability_req_t *ocap; 2819 uint_t sub_dl_cap = isub->dl_cap; 2820 2821 if (!ill_capability_dls_init(ill)) 2822 return; 2823 ill_dls = ill->ill_dls_capab; 2824 2825 /* Copy locally to get the members aligned */ 2826 bcopy((void *)idls, (void *)&dls, 2827 sizeof (dl_capab_dls_t)); 2828 2829 /* Get the tx function and handle from dld */ 2830 ill_dls->ill_tx = (ip_dld_tx_t)dls.dls_tx; 2831 ill_dls->ill_tx_handle = (void *)dls.dls_tx_handle; 2832 2833 if (sub_dl_cap == DL_CAPAB_SOFT_RING) { 2834 ill_dls->ill_dls_change_status = 2835 (ip_dls_chg_soft_ring_t)dls.dls_ring_change_status; 2836 ill_dls->ill_dls_bind = (ip_dls_bind_t)dls.dls_ring_bind; 2837 ill_dls->ill_dls_unbind = 2838 (ip_dls_unbind_t)dls.dls_ring_unbind; 2839 ill_dls->ill_dls_soft_ring_cnt = ip_soft_rings_cnt; 2840 } 2841 2842 size = sizeof (dl_capability_req_t) + sizeof (dl_capability_sub_t) + 2843 isub->dl_length; 2844 2845 if ((nmp = ip_dlpi_alloc(size, DL_CAPABILITY_REQ)) == NULL) { 2846 cmn_err(CE_WARN, "ill_capability_dls_capable: could " 2847 "not allocate memory for CAPAB_REQ for %s (%p)\n", 2848 ill->ill_name, (void *)ill); 2849 return; 2850 } 2851 2852 /* initialize dl_capability_req_t */ 2853 rptr = nmp->b_rptr; 2854 ocap = (dl_capability_req_t *)rptr; 2855 ocap->dl_sub_offset = sizeof (dl_capability_req_t); 2856 ocap->dl_sub_length = sizeof (dl_capability_sub_t) + isub->dl_length; 2857 rptr += sizeof (dl_capability_req_t); 2858 2859 /* initialize dl_capability_sub_t */ 2860 bcopy(isub, rptr, sizeof (*isub)); 2861 rptr += sizeof (*isub); 2862 2863 odls = (dl_capab_dls_t *)rptr; 2864 rptr += sizeof (dl_capab_dls_t); 2865 2866 /* initialize dl_capab_dls_t to be sent down */ 2867 dls.dls_rx_handle = (uintptr_t)ill; 2868 dls.dls_rx = (uintptr_t)ip_input; 2869 dls.dls_ring_add = (uintptr_t)ill_ring_add; 2870 2871 if (sub_dl_cap == DL_CAPAB_SOFT_RING) { 2872 dls.dls_ring_cnt = ip_soft_rings_cnt; 2873 dls.dls_ring_assign = (uintptr_t)ip_soft_ring_assignment; 2874 dls.dls_flags = SOFT_RING_ENABLE; 2875 } else { 2876 dls.dls_flags = POLL_ENABLE; 2877 ip1dbg(("ill_capability_dls_capable: asking interface %s " 2878 "to enable polling\n", ill->ill_name)); 2879 } 2880 bcopy((void *)&dls, (void *)odls, 2881 sizeof (dl_capab_dls_t)); 2882 ASSERT(nmp->b_wptr == (nmp->b_rptr + size)); 2883 /* 2884 * nmp points to a DL_CAPABILITY_REQ message to 2885 * enable either soft_ring or polling 2886 */ 2887 ill_dlpi_send(ill, nmp); 2888 } 2889 2890 static void 2891 ill_capability_dls_reset(ill_t *ill, mblk_t **sc_mp) 2892 { 2893 mblk_t *mp; 2894 dl_capab_dls_t *idls; 2895 dl_capability_sub_t *dl_subcap; 2896 int size; 2897 2898 if (!(ill->ill_capabilities & ILL_CAPAB_DLS)) 2899 return; 2900 2901 ASSERT(ill->ill_dls_capab != NULL); 2902 2903 size = sizeof (*dl_subcap) + sizeof (*idls); 2904 2905 mp = allocb(size, BPRI_HI); 2906 if (mp == NULL) { 2907 ip1dbg(("ill_capability_dls_reset: unable to allocate " 2908 "request to disable soft_ring\n")); 2909 return; 2910 } 2911 2912 mp->b_wptr = mp->b_rptr + size; 2913 2914 dl_subcap = (dl_capability_sub_t *)mp->b_rptr; 2915 dl_subcap->dl_length = sizeof (*idls); 2916 if (ill->ill_capabilities & ILL_CAPAB_SOFT_RING) 2917 dl_subcap->dl_cap = DL_CAPAB_SOFT_RING; 2918 else 2919 dl_subcap->dl_cap = DL_CAPAB_POLL; 2920 2921 idls = (dl_capab_dls_t *)(dl_subcap + 1); 2922 if (ill->ill_capabilities & ILL_CAPAB_SOFT_RING) 2923 idls->dls_flags = SOFT_RING_DISABLE; 2924 else 2925 idls->dls_flags = POLL_DISABLE; 2926 2927 if (*sc_mp != NULL) 2928 linkb(*sc_mp, mp); 2929 else 2930 *sc_mp = mp; 2931 } 2932 2933 /* 2934 * Process a soft_ring/poll capability negotiation ack received 2935 * from a DLS Provider.isub must point to the sub-capability 2936 * (DL_CAPAB_SOFT_RING/DL_CAPAB_POLL) of a DL_CAPABILITY_ACK message. 2937 */ 2938 static void 2939 ill_capability_dls_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub) 2940 { 2941 dl_capab_dls_t *idls; 2942 uint_t sub_dl_cap = isub->dl_cap; 2943 uint8_t *capend; 2944 2945 ASSERT(sub_dl_cap == DL_CAPAB_SOFT_RING || 2946 sub_dl_cap == DL_CAPAB_POLL); 2947 2948 if (ill->ill_isv6) 2949 return; 2950 2951 /* 2952 * Note: range checks here are not absolutely sufficient to 2953 * make us robust against malformed messages sent by drivers; 2954 * this is in keeping with the rest of IP's dlpi handling. 2955 * (Remember, it's coming from something else in the kernel 2956 * address space) 2957 */ 2958 capend = (uint8_t *)(isub + 1) + isub->dl_length; 2959 if (capend > mp->b_wptr) { 2960 cmn_err(CE_WARN, "ill_capability_dls_ack: " 2961 "malformed sub-capability too long for mblk"); 2962 return; 2963 } 2964 2965 /* 2966 * There are two types of acks we process here: 2967 * 1. acks in reply to a (first form) generic capability req 2968 * (dls_flag will be set to SOFT_RING_CAPABLE or POLL_CAPABLE) 2969 * 2. acks in reply to a SOFT_RING_ENABLE or POLL_ENABLE 2970 * capability req. 2971 */ 2972 idls = (dl_capab_dls_t *)(isub + 1); 2973 2974 if (!dlcapabcheckqid(&idls->dls_mid, ill->ill_lmod_rq)) { 2975 ip1dbg(("ill_capability_dls_ack: mid token for dls " 2976 "capability isn't as expected; pass-thru " 2977 "module(s) detected, discarding capability\n")); 2978 if (ill->ill_capabilities & ILL_CAPAB_DLS) { 2979 /* 2980 * This is a capability renegotitation case. 2981 * The interface better be unusable at this 2982 * point other wise bad things will happen 2983 * if we disable direct calls on a running 2984 * and up interface. 2985 */ 2986 ill_capability_dls_disable(ill); 2987 } 2988 return; 2989 } 2990 2991 switch (idls->dls_flags) { 2992 default: 2993 /* Disable if unknown flag */ 2994 case SOFT_RING_DISABLE: 2995 case POLL_DISABLE: 2996 ill_capability_dls_disable(ill); 2997 break; 2998 case SOFT_RING_CAPABLE: 2999 case POLL_CAPABLE: 3000 /* 3001 * If the capability was already enabled, its safe 3002 * to disable it first to get rid of stale information 3003 * and then start enabling it again. 3004 */ 3005 ill_capability_dls_disable(ill); 3006 ill_capability_dls_capable(ill, idls, isub); 3007 break; 3008 case SOFT_RING_ENABLE: 3009 case POLL_ENABLE: 3010 mutex_enter(&ill->ill_lock); 3011 if (sub_dl_cap == DL_CAPAB_SOFT_RING && 3012 !(ill->ill_capabilities & ILL_CAPAB_SOFT_RING)) { 3013 ASSERT(ill->ill_dls_capab != NULL); 3014 ill->ill_capabilities |= ILL_CAPAB_SOFT_RING; 3015 } 3016 if (sub_dl_cap == DL_CAPAB_POLL && 3017 !(ill->ill_capabilities & ILL_CAPAB_POLL)) { 3018 ASSERT(ill->ill_dls_capab != NULL); 3019 ill->ill_capabilities |= ILL_CAPAB_POLL; 3020 ip1dbg(("ill_capability_dls_ack: interface %s " 3021 "has enabled polling\n", ill->ill_name)); 3022 } 3023 mutex_exit(&ill->ill_lock); 3024 break; 3025 } 3026 } 3027 3028 /* 3029 * Process a hardware checksum offload capability negotiation ack received 3030 * from a DLS Provider.isub must point to the sub-capability (DL_CAPAB_HCKSUM) 3031 * of a DL_CAPABILITY_ACK message. 3032 */ 3033 static void 3034 ill_capability_hcksum_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub) 3035 { 3036 dl_capability_req_t *ocap; 3037 dl_capab_hcksum_t *ihck, *ohck; 3038 ill_hcksum_capab_t **ill_hcksum; 3039 mblk_t *nmp = NULL; 3040 uint_t sub_dl_cap = isub->dl_cap; 3041 uint8_t *capend; 3042 3043 ASSERT(sub_dl_cap == DL_CAPAB_HCKSUM); 3044 3045 ill_hcksum = (ill_hcksum_capab_t **)&ill->ill_hcksum_capab; 3046 3047 /* 3048 * Note: range checks here are not absolutely sufficient to 3049 * make us robust against malformed messages sent by drivers; 3050 * this is in keeping with the rest of IP's dlpi handling. 3051 * (Remember, it's coming from something else in the kernel 3052 * address space) 3053 */ 3054 capend = (uint8_t *)(isub + 1) + isub->dl_length; 3055 if (capend > mp->b_wptr) { 3056 cmn_err(CE_WARN, "ill_capability_hcksum_ack: " 3057 "malformed sub-capability too long for mblk"); 3058 return; 3059 } 3060 3061 /* 3062 * There are two types of acks we process here: 3063 * 1. acks in reply to a (first form) generic capability req 3064 * (no ENABLE flag set) 3065 * 2. acks in reply to a ENABLE capability req. 3066 * (ENABLE flag set) 3067 */ 3068 ihck = (dl_capab_hcksum_t *)(isub + 1); 3069 3070 if (ihck->hcksum_version != HCKSUM_VERSION_1) { 3071 cmn_err(CE_CONT, "ill_capability_hcksum_ack: " 3072 "unsupported hardware checksum " 3073 "sub-capability (version %d, expected %d)", 3074 ihck->hcksum_version, HCKSUM_VERSION_1); 3075 return; 3076 } 3077 3078 if (!dlcapabcheckqid(&ihck->hcksum_mid, ill->ill_lmod_rq)) { 3079 ip1dbg(("ill_capability_hcksum_ack: mid token for hardware " 3080 "checksum capability isn't as expected; pass-thru " 3081 "module(s) detected, discarding capability\n")); 3082 return; 3083 } 3084 3085 #define CURR_HCKSUM_CAPAB \ 3086 (HCKSUM_INET_PARTIAL | HCKSUM_INET_FULL_V4 | \ 3087 HCKSUM_INET_FULL_V6 | HCKSUM_IPHDRCKSUM) 3088 3089 if ((ihck->hcksum_txflags & HCKSUM_ENABLE) && 3090 (ihck->hcksum_txflags & CURR_HCKSUM_CAPAB)) { 3091 /* do ENABLE processing */ 3092 if (*ill_hcksum == NULL) { 3093 *ill_hcksum = kmem_zalloc(sizeof (ill_hcksum_capab_t), 3094 KM_NOSLEEP); 3095 3096 if (*ill_hcksum == NULL) { 3097 cmn_err(CE_WARN, "ill_capability_hcksum_ack: " 3098 "could not enable hcksum version %d " 3099 "for %s (ENOMEM)\n", HCKSUM_CURRENT_VERSION, 3100 ill->ill_name); 3101 return; 3102 } 3103 } 3104 3105 (*ill_hcksum)->ill_hcksum_version = ihck->hcksum_version; 3106 (*ill_hcksum)->ill_hcksum_txflags = ihck->hcksum_txflags; 3107 ill->ill_capabilities |= ILL_CAPAB_HCKSUM; 3108 ip1dbg(("ill_capability_hcksum_ack: interface %s " 3109 "has enabled hardware checksumming\n ", 3110 ill->ill_name)); 3111 } else if (ihck->hcksum_txflags & CURR_HCKSUM_CAPAB) { 3112 /* 3113 * Enabling hardware checksum offload 3114 * Currently IP supports {TCP,UDP}/IPv4 3115 * partial and full cksum offload and 3116 * IPv4 header checksum offload. 3117 * Allocate new mblk which will 3118 * contain a new capability request 3119 * to enable hardware checksum offload. 3120 */ 3121 uint_t size; 3122 uchar_t *rptr; 3123 3124 size = sizeof (dl_capability_req_t) + 3125 sizeof (dl_capability_sub_t) + isub->dl_length; 3126 3127 if ((nmp = ip_dlpi_alloc(size, DL_CAPABILITY_REQ)) == NULL) { 3128 cmn_err(CE_WARN, "ill_capability_hcksum_ack: " 3129 "could not enable hardware cksum for %s (ENOMEM)\n", 3130 ill->ill_name); 3131 return; 3132 } 3133 3134 rptr = nmp->b_rptr; 3135 /* initialize dl_capability_req_t */ 3136 ocap = (dl_capability_req_t *)nmp->b_rptr; 3137 ocap->dl_sub_offset = 3138 sizeof (dl_capability_req_t); 3139 ocap->dl_sub_length = 3140 sizeof (dl_capability_sub_t) + 3141 isub->dl_length; 3142 nmp->b_rptr += sizeof (dl_capability_req_t); 3143 3144 /* initialize dl_capability_sub_t */ 3145 bcopy(isub, nmp->b_rptr, sizeof (*isub)); 3146 nmp->b_rptr += sizeof (*isub); 3147 3148 /* initialize dl_capab_hcksum_t */ 3149 ohck = (dl_capab_hcksum_t *)nmp->b_rptr; 3150 bcopy(ihck, ohck, sizeof (*ihck)); 3151 3152 nmp->b_rptr = rptr; 3153 ASSERT(nmp->b_wptr == (nmp->b_rptr + size)); 3154 3155 /* Set ENABLE flag */ 3156 ohck->hcksum_txflags &= CURR_HCKSUM_CAPAB; 3157 ohck->hcksum_txflags |= HCKSUM_ENABLE; 3158 3159 /* 3160 * nmp points to a DL_CAPABILITY_REQ message to enable 3161 * hardware checksum acceleration. 3162 */ 3163 ill_dlpi_send(ill, nmp); 3164 } else { 3165 ip1dbg(("ill_capability_hcksum_ack: interface %s has " 3166 "advertised %x hardware checksum capability flags\n", 3167 ill->ill_name, ihck->hcksum_txflags)); 3168 } 3169 } 3170 3171 static void 3172 ill_capability_hcksum_reset(ill_t *ill, mblk_t **sc_mp) 3173 { 3174 mblk_t *mp; 3175 dl_capab_hcksum_t *hck_subcap; 3176 dl_capability_sub_t *dl_subcap; 3177 int size; 3178 3179 if (!ILL_HCKSUM_CAPABLE(ill)) 3180 return; 3181 3182 ASSERT(ill->ill_hcksum_capab != NULL); 3183 /* 3184 * Clear the capability flag for hardware checksum offload but 3185 * retain the ill_hcksum_capab structure since it's possible that 3186 * another thread is still referring to it. The structure only 3187 * gets deallocated when we destroy the ill. 3188 */ 3189 ill->ill_capabilities &= ~ILL_CAPAB_HCKSUM; 3190 3191 size = sizeof (*dl_subcap) + sizeof (*hck_subcap); 3192 3193 mp = allocb(size, BPRI_HI); 3194 if (mp == NULL) { 3195 ip1dbg(("ill_capability_hcksum_reset: unable to allocate " 3196 "request to disable hardware checksum offload\n")); 3197 return; 3198 } 3199 3200 mp->b_wptr = mp->b_rptr + size; 3201 3202 dl_subcap = (dl_capability_sub_t *)mp->b_rptr; 3203 dl_subcap->dl_cap = DL_CAPAB_HCKSUM; 3204 dl_subcap->dl_length = sizeof (*hck_subcap); 3205 3206 hck_subcap = (dl_capab_hcksum_t *)(dl_subcap + 1); 3207 hck_subcap->hcksum_version = ill->ill_hcksum_capab->ill_hcksum_version; 3208 hck_subcap->hcksum_txflags = 0; 3209 3210 if (*sc_mp != NULL) 3211 linkb(*sc_mp, mp); 3212 else 3213 *sc_mp = mp; 3214 } 3215 3216 static void 3217 ill_capability_zerocopy_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub) 3218 { 3219 mblk_t *nmp = NULL; 3220 dl_capability_req_t *oc; 3221 dl_capab_zerocopy_t *zc_ic, *zc_oc; 3222 ill_zerocopy_capab_t **ill_zerocopy_capab; 3223 uint_t sub_dl_cap = isub->dl_cap; 3224 uint8_t *capend; 3225 3226 ASSERT(sub_dl_cap == DL_CAPAB_ZEROCOPY); 3227 3228 ill_zerocopy_capab = (ill_zerocopy_capab_t **)&ill->ill_zerocopy_capab; 3229 3230 /* 3231 * Note: range checks here are not absolutely sufficient to 3232 * make us robust against malformed messages sent by drivers; 3233 * this is in keeping with the rest of IP's dlpi handling. 3234 * (Remember, it's coming from something else in the kernel 3235 * address space) 3236 */ 3237 capend = (uint8_t *)(isub + 1) + isub->dl_length; 3238 if (capend > mp->b_wptr) { 3239 cmn_err(CE_WARN, "ill_capability_zerocopy_ack: " 3240 "malformed sub-capability too long for mblk"); 3241 return; 3242 } 3243 3244 zc_ic = (dl_capab_zerocopy_t *)(isub + 1); 3245 if (zc_ic->zerocopy_version != ZEROCOPY_VERSION_1) { 3246 cmn_err(CE_CONT, "ill_capability_zerocopy_ack: " 3247 "unsupported ZEROCOPY sub-capability (version %d, " 3248 "expected %d)", zc_ic->zerocopy_version, 3249 ZEROCOPY_VERSION_1); 3250 return; 3251 } 3252 3253 if (!dlcapabcheckqid(&zc_ic->zerocopy_mid, ill->ill_lmod_rq)) { 3254 ip1dbg(("ill_capability_zerocopy_ack: mid token for zerocopy " 3255 "capability isn't as expected; pass-thru module(s) " 3256 "detected, discarding capability\n")); 3257 return; 3258 } 3259 3260 if ((zc_ic->zerocopy_flags & DL_CAPAB_VMSAFE_MEM) != 0) { 3261 if (*ill_zerocopy_capab == NULL) { 3262 *ill_zerocopy_capab = 3263 kmem_zalloc(sizeof (ill_zerocopy_capab_t), 3264 KM_NOSLEEP); 3265 3266 if (*ill_zerocopy_capab == NULL) { 3267 cmn_err(CE_WARN, "ill_capability_zerocopy_ack: " 3268 "could not enable Zero-copy version %d " 3269 "for %s (ENOMEM)\n", ZEROCOPY_VERSION_1, 3270 ill->ill_name); 3271 return; 3272 } 3273 } 3274 3275 ip1dbg(("ill_capability_zerocopy_ack: interface %s " 3276 "supports Zero-copy version %d\n", ill->ill_name, 3277 ZEROCOPY_VERSION_1)); 3278 3279 (*ill_zerocopy_capab)->ill_zerocopy_version = 3280 zc_ic->zerocopy_version; 3281 (*ill_zerocopy_capab)->ill_zerocopy_flags = 3282 zc_ic->zerocopy_flags; 3283 3284 ill->ill_capabilities |= ILL_CAPAB_ZEROCOPY; 3285 } else { 3286 uint_t size; 3287 uchar_t *rptr; 3288 3289 size = sizeof (dl_capability_req_t) + 3290 sizeof (dl_capability_sub_t) + 3291 sizeof (dl_capab_zerocopy_t); 3292 3293 if ((nmp = ip_dlpi_alloc(size, DL_CAPABILITY_REQ)) == NULL) { 3294 cmn_err(CE_WARN, "ill_capability_zerocopy_ack: " 3295 "could not enable zerocopy for %s (ENOMEM)\n", 3296 ill->ill_name); 3297 return; 3298 } 3299 3300 rptr = nmp->b_rptr; 3301 /* initialize dl_capability_req_t */ 3302 oc = (dl_capability_req_t *)rptr; 3303 oc->dl_sub_offset = sizeof (dl_capability_req_t); 3304 oc->dl_sub_length = sizeof (dl_capability_sub_t) + 3305 sizeof (dl_capab_zerocopy_t); 3306 rptr += sizeof (dl_capability_req_t); 3307 3308 /* initialize dl_capability_sub_t */ 3309 bcopy(isub, rptr, sizeof (*isub)); 3310 rptr += sizeof (*isub); 3311 3312 /* initialize dl_capab_zerocopy_t */ 3313 zc_oc = (dl_capab_zerocopy_t *)rptr; 3314 *zc_oc = *zc_ic; 3315 3316 ip1dbg(("ill_capability_zerocopy_ack: asking interface %s " 3317 "to enable zero-copy version %d\n", ill->ill_name, 3318 ZEROCOPY_VERSION_1)); 3319 3320 /* set VMSAFE_MEM flag */ 3321 zc_oc->zerocopy_flags |= DL_CAPAB_VMSAFE_MEM; 3322 3323 /* nmp points to a DL_CAPABILITY_REQ message to enable zcopy */ 3324 ill_dlpi_send(ill, nmp); 3325 } 3326 } 3327 3328 static void 3329 ill_capability_zerocopy_reset(ill_t *ill, mblk_t **sc_mp) 3330 { 3331 mblk_t *mp; 3332 dl_capab_zerocopy_t *zerocopy_subcap; 3333 dl_capability_sub_t *dl_subcap; 3334 int size; 3335 3336 if (!(ill->ill_capabilities & ILL_CAPAB_ZEROCOPY)) 3337 return; 3338 3339 ASSERT(ill->ill_zerocopy_capab != NULL); 3340 /* 3341 * Clear the capability flag for Zero-copy but retain the 3342 * ill_zerocopy_capab structure since it's possible that another 3343 * thread is still referring to it. The structure only gets 3344 * deallocated when we destroy the ill. 3345 */ 3346 ill->ill_capabilities &= ~ILL_CAPAB_ZEROCOPY; 3347 3348 size = sizeof (*dl_subcap) + sizeof (*zerocopy_subcap); 3349 3350 mp = allocb(size, BPRI_HI); 3351 if (mp == NULL) { 3352 ip1dbg(("ill_capability_zerocopy_reset: unable to allocate " 3353 "request to disable Zero-copy\n")); 3354 return; 3355 } 3356 3357 mp->b_wptr = mp->b_rptr + size; 3358 3359 dl_subcap = (dl_capability_sub_t *)mp->b_rptr; 3360 dl_subcap->dl_cap = DL_CAPAB_ZEROCOPY; 3361 dl_subcap->dl_length = sizeof (*zerocopy_subcap); 3362 3363 zerocopy_subcap = (dl_capab_zerocopy_t *)(dl_subcap + 1); 3364 zerocopy_subcap->zerocopy_version = 3365 ill->ill_zerocopy_capab->ill_zerocopy_version; 3366 zerocopy_subcap->zerocopy_flags = 0; 3367 3368 if (*sc_mp != NULL) 3369 linkb(*sc_mp, mp); 3370 else 3371 *sc_mp = mp; 3372 } 3373 3374 /* 3375 * Process Large Segment Offload capability negotiation ack received from a 3376 * DLS Provider. isub must point to the sub-capability (DL_CAPAB_LSO) of a 3377 * DL_CAPABILITY_ACK message. 3378 */ 3379 static void 3380 ill_capability_lso_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub) 3381 { 3382 mblk_t *nmp = NULL; 3383 dl_capability_req_t *oc; 3384 dl_capab_lso_t *lso_ic, *lso_oc; 3385 ill_lso_capab_t **ill_lso_capab; 3386 uint_t sub_dl_cap = isub->dl_cap; 3387 uint8_t *capend; 3388 3389 ASSERT(sub_dl_cap == DL_CAPAB_LSO); 3390 3391 ill_lso_capab = (ill_lso_capab_t **)&ill->ill_lso_capab; 3392 3393 /* 3394 * Note: range checks here are not absolutely sufficient to 3395 * make us robust against malformed messages sent by drivers; 3396 * this is in keeping with the rest of IP's dlpi handling. 3397 * (Remember, it's coming from something else in the kernel 3398 * address space) 3399 */ 3400 capend = (uint8_t *)(isub + 1) + isub->dl_length; 3401 if (capend > mp->b_wptr) { 3402 cmn_err(CE_WARN, "ill_capability_lso_ack: " 3403 "malformed sub-capability too long for mblk"); 3404 return; 3405 } 3406 3407 lso_ic = (dl_capab_lso_t *)(isub + 1); 3408 3409 if (lso_ic->lso_version != LSO_VERSION_1) { 3410 cmn_err(CE_CONT, "ill_capability_lso_ack: " 3411 "unsupported LSO sub-capability (version %d, expected %d)", 3412 lso_ic->lso_version, LSO_VERSION_1); 3413 return; 3414 } 3415 3416 if (!dlcapabcheckqid(&lso_ic->lso_mid, ill->ill_lmod_rq)) { 3417 ip1dbg(("ill_capability_lso_ack: mid token for LSO " 3418 "capability isn't as expected; pass-thru module(s) " 3419 "detected, discarding capability\n")); 3420 return; 3421 } 3422 3423 if ((lso_ic->lso_flags & LSO_TX_ENABLE) && 3424 (lso_ic->lso_flags & LSO_TX_BASIC_TCP_IPV4)) { 3425 if (*ill_lso_capab == NULL) { 3426 *ill_lso_capab = kmem_zalloc(sizeof (ill_lso_capab_t), 3427 KM_NOSLEEP); 3428 3429 if (*ill_lso_capab == NULL) { 3430 cmn_err(CE_WARN, "ill_capability_lso_ack: " 3431 "could not enable LSO version %d " 3432 "for %s (ENOMEM)\n", LSO_VERSION_1, 3433 ill->ill_name); 3434 return; 3435 } 3436 } 3437 3438 (*ill_lso_capab)->ill_lso_version = lso_ic->lso_version; 3439 (*ill_lso_capab)->ill_lso_flags = lso_ic->lso_flags; 3440 (*ill_lso_capab)->ill_lso_max = lso_ic->lso_max; 3441 ill->ill_capabilities |= ILL_CAPAB_LSO; 3442 3443 ip1dbg(("ill_capability_lso_ack: interface %s " 3444 "has enabled LSO\n ", ill->ill_name)); 3445 } else if (lso_ic->lso_flags & LSO_TX_BASIC_TCP_IPV4) { 3446 uint_t size; 3447 uchar_t *rptr; 3448 3449 size = sizeof (dl_capability_req_t) + 3450 sizeof (dl_capability_sub_t) + sizeof (dl_capab_lso_t); 3451 3452 if ((nmp = ip_dlpi_alloc(size, DL_CAPABILITY_REQ)) == NULL) { 3453 cmn_err(CE_WARN, "ill_capability_lso_ack: " 3454 "could not enable LSO for %s (ENOMEM)\n", 3455 ill->ill_name); 3456 return; 3457 } 3458 3459 rptr = nmp->b_rptr; 3460 /* initialize dl_capability_req_t */ 3461 oc = (dl_capability_req_t *)nmp->b_rptr; 3462 oc->dl_sub_offset = sizeof (dl_capability_req_t); 3463 oc->dl_sub_length = sizeof (dl_capability_sub_t) + 3464 sizeof (dl_capab_lso_t); 3465 nmp->b_rptr += sizeof (dl_capability_req_t); 3466 3467 /* initialize dl_capability_sub_t */ 3468 bcopy(isub, nmp->b_rptr, sizeof (*isub)); 3469 nmp->b_rptr += sizeof (*isub); 3470 3471 /* initialize dl_capab_lso_t */ 3472 lso_oc = (dl_capab_lso_t *)nmp->b_rptr; 3473 bcopy(lso_ic, lso_oc, sizeof (*lso_ic)); 3474 3475 nmp->b_rptr = rptr; 3476 ASSERT(nmp->b_wptr == (nmp->b_rptr + size)); 3477 3478 /* set ENABLE flag */ 3479 lso_oc->lso_flags |= LSO_TX_ENABLE; 3480 3481 /* nmp points to a DL_CAPABILITY_REQ message to enable LSO */ 3482 ill_dlpi_send(ill, nmp); 3483 } else { 3484 ip1dbg(("ill_capability_lso_ack: interface %s has " 3485 "advertised %x LSO capability flags\n", 3486 ill->ill_name, lso_ic->lso_flags)); 3487 } 3488 } 3489 3490 3491 static void 3492 ill_capability_lso_reset(ill_t *ill, mblk_t **sc_mp) 3493 { 3494 mblk_t *mp; 3495 dl_capab_lso_t *lso_subcap; 3496 dl_capability_sub_t *dl_subcap; 3497 int size; 3498 3499 if (!(ill->ill_capabilities & ILL_CAPAB_LSO)) 3500 return; 3501 3502 ASSERT(ill->ill_lso_capab != NULL); 3503 /* 3504 * Clear the capability flag for LSO but retain the 3505 * ill_lso_capab structure since it's possible that another 3506 * thread is still referring to it. The structure only gets 3507 * deallocated when we destroy the ill. 3508 */ 3509 ill->ill_capabilities &= ~ILL_CAPAB_LSO; 3510 3511 size = sizeof (*dl_subcap) + sizeof (*lso_subcap); 3512 3513 mp = allocb(size, BPRI_HI); 3514 if (mp == NULL) { 3515 ip1dbg(("ill_capability_lso_reset: unable to allocate " 3516 "request to disable LSO\n")); 3517 return; 3518 } 3519 3520 mp->b_wptr = mp->b_rptr + size; 3521 3522 dl_subcap = (dl_capability_sub_t *)mp->b_rptr; 3523 dl_subcap->dl_cap = DL_CAPAB_LSO; 3524 dl_subcap->dl_length = sizeof (*lso_subcap); 3525 3526 lso_subcap = (dl_capab_lso_t *)(dl_subcap + 1); 3527 lso_subcap->lso_version = ill->ill_lso_capab->ill_lso_version; 3528 lso_subcap->lso_flags = 0; 3529 3530 if (*sc_mp != NULL) 3531 linkb(*sc_mp, mp); 3532 else 3533 *sc_mp = mp; 3534 } 3535 3536 /* 3537 * Consume a new-style hardware capabilities negotiation ack. 3538 * Called from ip_rput_dlpi_writer(). 3539 */ 3540 void 3541 ill_capability_ack(ill_t *ill, mblk_t *mp) 3542 { 3543 dl_capability_ack_t *capp; 3544 dl_capability_sub_t *subp, *endp; 3545 3546 if (ill->ill_dlpi_capab_state == IDS_INPROGRESS) 3547 ill->ill_dlpi_capab_state = IDS_OK; 3548 3549 capp = (dl_capability_ack_t *)mp->b_rptr; 3550 3551 if (capp->dl_sub_length == 0) 3552 /* no new-style capabilities */ 3553 return; 3554 3555 /* make sure the driver supplied correct dl_sub_length */ 3556 if ((sizeof (*capp) + capp->dl_sub_length) > MBLKL(mp)) { 3557 ip0dbg(("ill_capability_ack: bad DL_CAPABILITY_ACK, " 3558 "invalid dl_sub_length (%d)\n", capp->dl_sub_length)); 3559 return; 3560 } 3561 3562 #define SC(base, offset) (dl_capability_sub_t *)(((uchar_t *)(base))+(offset)) 3563 /* 3564 * There are sub-capabilities. Process the ones we know about. 3565 * Loop until we don't have room for another sub-cap header.. 3566 */ 3567 for (subp = SC(capp, capp->dl_sub_offset), 3568 endp = SC(subp, capp->dl_sub_length - sizeof (*subp)); 3569 subp <= endp; 3570 subp = SC(subp, sizeof (dl_capability_sub_t) + subp->dl_length)) { 3571 3572 switch (subp->dl_cap) { 3573 case DL_CAPAB_ID_WRAPPER: 3574 ill_capability_id_ack(ill, mp, subp); 3575 break; 3576 default: 3577 ill_capability_dispatch(ill, mp, subp, B_FALSE); 3578 break; 3579 } 3580 } 3581 #undef SC 3582 } 3583 3584 /* 3585 * This routine is called to scan the fragmentation reassembly table for 3586 * the specified ILL for any packets that are starting to smell. 3587 * dead_interval is the maximum time in seconds that will be tolerated. It 3588 * will either be the value specified in ip_g_frag_timeout, or zero if the 3589 * ILL is shutting down and it is time to blow everything off. 3590 * 3591 * It returns the number of seconds (as a time_t) that the next frag timer 3592 * should be scheduled for, 0 meaning that the timer doesn't need to be 3593 * re-started. Note that the method of calculating next_timeout isn't 3594 * entirely accurate since time will flow between the time we grab 3595 * current_time and the time we schedule the next timeout. This isn't a 3596 * big problem since this is the timer for sending an ICMP reassembly time 3597 * exceeded messages, and it doesn't have to be exactly accurate. 3598 * 3599 * This function is 3600 * sometimes called as writer, although this is not required. 3601 */ 3602 time_t 3603 ill_frag_timeout(ill_t *ill, time_t dead_interval) 3604 { 3605 ipfb_t *ipfb; 3606 ipfb_t *endp; 3607 ipf_t *ipf; 3608 ipf_t *ipfnext; 3609 mblk_t *mp; 3610 time_t current_time = gethrestime_sec(); 3611 time_t next_timeout = 0; 3612 uint32_t hdr_length; 3613 mblk_t *send_icmp_head; 3614 mblk_t *send_icmp_head_v6; 3615 zoneid_t zoneid; 3616 ip_stack_t *ipst = ill->ill_ipst; 3617 3618 ipfb = ill->ill_frag_hash_tbl; 3619 if (ipfb == NULL) 3620 return (B_FALSE); 3621 endp = &ipfb[ILL_FRAG_HASH_TBL_COUNT]; 3622 /* Walk the frag hash table. */ 3623 for (; ipfb < endp; ipfb++) { 3624 send_icmp_head = NULL; 3625 send_icmp_head_v6 = NULL; 3626 mutex_enter(&ipfb->ipfb_lock); 3627 while ((ipf = ipfb->ipfb_ipf) != 0) { 3628 time_t frag_time = current_time - ipf->ipf_timestamp; 3629 time_t frag_timeout; 3630 3631 if (frag_time < dead_interval) { 3632 /* 3633 * There are some outstanding fragments 3634 * that will timeout later. Make note of 3635 * the time so that we can reschedule the 3636 * next timeout appropriately. 3637 */ 3638 frag_timeout = dead_interval - frag_time; 3639 if (next_timeout == 0 || 3640 frag_timeout < next_timeout) { 3641 next_timeout = frag_timeout; 3642 } 3643 break; 3644 } 3645 /* Time's up. Get it out of here. */ 3646 hdr_length = ipf->ipf_nf_hdr_len; 3647 ipfnext = ipf->ipf_hash_next; 3648 if (ipfnext) 3649 ipfnext->ipf_ptphn = ipf->ipf_ptphn; 3650 *ipf->ipf_ptphn = ipfnext; 3651 mp = ipf->ipf_mp->b_cont; 3652 for (; mp; mp = mp->b_cont) { 3653 /* Extra points for neatness. */ 3654 IP_REASS_SET_START(mp, 0); 3655 IP_REASS_SET_END(mp, 0); 3656 } 3657 mp = ipf->ipf_mp->b_cont; 3658 ill->ill_frag_count -= ipf->ipf_count; 3659 ASSERT(ipfb->ipfb_count >= ipf->ipf_count); 3660 ipfb->ipfb_count -= ipf->ipf_count; 3661 ASSERT(ipfb->ipfb_frag_pkts > 0); 3662 ipfb->ipfb_frag_pkts--; 3663 /* 3664 * We do not send any icmp message from here because 3665 * we currently are holding the ipfb_lock for this 3666 * hash chain. If we try and send any icmp messages 3667 * from here we may end up via a put back into ip 3668 * trying to get the same lock, causing a recursive 3669 * mutex panic. Instead we build a list and send all 3670 * the icmp messages after we have dropped the lock. 3671 */ 3672 if (ill->ill_isv6) { 3673 if (hdr_length != 0) { 3674 mp->b_next = send_icmp_head_v6; 3675 send_icmp_head_v6 = mp; 3676 } else { 3677 freemsg(mp); 3678 } 3679 } else { 3680 if (hdr_length != 0) { 3681 mp->b_next = send_icmp_head; 3682 send_icmp_head = mp; 3683 } else { 3684 freemsg(mp); 3685 } 3686 } 3687 BUMP_MIB(ill->ill_ip_mib, ipIfStatsReasmFails); 3688 freeb(ipf->ipf_mp); 3689 } 3690 mutex_exit(&ipfb->ipfb_lock); 3691 /* 3692 * Now need to send any icmp messages that we delayed from 3693 * above. 3694 */ 3695 while (send_icmp_head_v6 != NULL) { 3696 ip6_t *ip6h; 3697 3698 mp = send_icmp_head_v6; 3699 send_icmp_head_v6 = send_icmp_head_v6->b_next; 3700 mp->b_next = NULL; 3701 if (mp->b_datap->db_type == M_CTL) 3702 ip6h = (ip6_t *)mp->b_cont->b_rptr; 3703 else 3704 ip6h = (ip6_t *)mp->b_rptr; 3705 zoneid = ipif_lookup_addr_zoneid_v6(&ip6h->ip6_dst, 3706 ill, ipst); 3707 if (zoneid == ALL_ZONES) { 3708 freemsg(mp); 3709 } else { 3710 icmp_time_exceeded_v6(ill->ill_wq, mp, 3711 ICMP_REASSEMBLY_TIME_EXCEEDED, B_FALSE, 3712 B_FALSE, zoneid, ipst); 3713 } 3714 } 3715 while (send_icmp_head != NULL) { 3716 ipaddr_t dst; 3717 3718 mp = send_icmp_head; 3719 send_icmp_head = send_icmp_head->b_next; 3720 mp->b_next = NULL; 3721 3722 if (mp->b_datap->db_type == M_CTL) 3723 dst = ((ipha_t *)mp->b_cont->b_rptr)->ipha_dst; 3724 else 3725 dst = ((ipha_t *)mp->b_rptr)->ipha_dst; 3726 3727 zoneid = ipif_lookup_addr_zoneid(dst, ill, ipst); 3728 if (zoneid == ALL_ZONES) { 3729 freemsg(mp); 3730 } else { 3731 icmp_time_exceeded(ill->ill_wq, mp, 3732 ICMP_REASSEMBLY_TIME_EXCEEDED, zoneid, 3733 ipst); 3734 } 3735 } 3736 } 3737 /* 3738 * A non-dying ILL will use the return value to decide whether to 3739 * restart the frag timer, and for how long. 3740 */ 3741 return (next_timeout); 3742 } 3743 3744 /* 3745 * This routine is called when the approximate count of mblk memory used 3746 * for the specified ILL has exceeded max_count. 3747 */ 3748 void 3749 ill_frag_prune(ill_t *ill, uint_t max_count) 3750 { 3751 ipfb_t *ipfb; 3752 ipf_t *ipf; 3753 size_t count; 3754 3755 /* 3756 * If we are here within ip_min_frag_prune_time msecs remove 3757 * ill_frag_free_num_pkts oldest packets from each bucket and increment 3758 * ill_frag_free_num_pkts. 3759 */ 3760 mutex_enter(&ill->ill_lock); 3761 if (TICK_TO_MSEC(lbolt - ill->ill_last_frag_clean_time) <= 3762 (ip_min_frag_prune_time != 0 ? 3763 ip_min_frag_prune_time : msec_per_tick)) { 3764 3765 ill->ill_frag_free_num_pkts++; 3766 3767 } else { 3768 ill->ill_frag_free_num_pkts = 0; 3769 } 3770 ill->ill_last_frag_clean_time = lbolt; 3771 mutex_exit(&ill->ill_lock); 3772 3773 /* 3774 * free ill_frag_free_num_pkts oldest packets from each bucket. 3775 */ 3776 if (ill->ill_frag_free_num_pkts != 0) { 3777 int ix; 3778 3779 for (ix = 0; ix < ILL_FRAG_HASH_TBL_COUNT; ix++) { 3780 ipfb = &ill->ill_frag_hash_tbl[ix]; 3781 mutex_enter(&ipfb->ipfb_lock); 3782 if (ipfb->ipfb_ipf != NULL) { 3783 ill_frag_free_pkts(ill, ipfb, ipfb->ipfb_ipf, 3784 ill->ill_frag_free_num_pkts); 3785 } 3786 mutex_exit(&ipfb->ipfb_lock); 3787 } 3788 } 3789 /* 3790 * While the reassembly list for this ILL is too big, prune a fragment 3791 * queue by age, oldest first. Note that the per ILL count is 3792 * approximate, while the per frag hash bucket counts are accurate. 3793 */ 3794 while (ill->ill_frag_count > max_count) { 3795 int ix; 3796 ipfb_t *oipfb = NULL; 3797 uint_t oldest = UINT_MAX; 3798 3799 count = 0; 3800 for (ix = 0; ix < ILL_FRAG_HASH_TBL_COUNT; ix++) { 3801 ipfb = &ill->ill_frag_hash_tbl[ix]; 3802 mutex_enter(&ipfb->ipfb_lock); 3803 ipf = ipfb->ipfb_ipf; 3804 if (ipf != NULL && ipf->ipf_gen < oldest) { 3805 oldest = ipf->ipf_gen; 3806 oipfb = ipfb; 3807 } 3808 count += ipfb->ipfb_count; 3809 mutex_exit(&ipfb->ipfb_lock); 3810 } 3811 /* Refresh the per ILL count */ 3812 ill->ill_frag_count = count; 3813 if (oipfb == NULL) { 3814 ill->ill_frag_count = 0; 3815 break; 3816 } 3817 if (count <= max_count) 3818 return; /* Somebody beat us to it, nothing to do */ 3819 mutex_enter(&oipfb->ipfb_lock); 3820 ipf = oipfb->ipfb_ipf; 3821 if (ipf != NULL) { 3822 ill_frag_free_pkts(ill, oipfb, ipf, 1); 3823 } 3824 mutex_exit(&oipfb->ipfb_lock); 3825 } 3826 } 3827 3828 /* 3829 * free 'free_cnt' fragmented packets starting at ipf. 3830 */ 3831 void 3832 ill_frag_free_pkts(ill_t *ill, ipfb_t *ipfb, ipf_t *ipf, int free_cnt) 3833 { 3834 size_t count; 3835 mblk_t *mp; 3836 mblk_t *tmp; 3837 ipf_t **ipfp = ipf->ipf_ptphn; 3838 3839 ASSERT(MUTEX_HELD(&ipfb->ipfb_lock)); 3840 ASSERT(ipfp != NULL); 3841 ASSERT(ipf != NULL); 3842 3843 while (ipf != NULL && free_cnt-- > 0) { 3844 count = ipf->ipf_count; 3845 mp = ipf->ipf_mp; 3846 ipf = ipf->ipf_hash_next; 3847 for (tmp = mp; tmp; tmp = tmp->b_cont) { 3848 IP_REASS_SET_START(tmp, 0); 3849 IP_REASS_SET_END(tmp, 0); 3850 } 3851 ill->ill_frag_count -= count; 3852 ASSERT(ipfb->ipfb_count >= count); 3853 ipfb->ipfb_count -= count; 3854 ASSERT(ipfb->ipfb_frag_pkts > 0); 3855 ipfb->ipfb_frag_pkts--; 3856 freemsg(mp); 3857 BUMP_MIB(ill->ill_ip_mib, ipIfStatsReasmFails); 3858 } 3859 3860 if (ipf) 3861 ipf->ipf_ptphn = ipfp; 3862 ipfp[0] = ipf; 3863 } 3864 3865 #define ND_FORWARD_WARNING "The <if>:ip*_forwarding ndd variables are " \ 3866 "obsolete and may be removed in a future release of Solaris. Use " \ 3867 "ifconfig(1M) to manipulate the forwarding status of an interface." 3868 3869 /* 3870 * For obsolete per-interface forwarding configuration; 3871 * called in response to ND_GET. 3872 */ 3873 /* ARGSUSED */ 3874 static int 3875 nd_ill_forward_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *ioc_cr) 3876 { 3877 ill_t *ill = (ill_t *)cp; 3878 3879 cmn_err(CE_WARN, ND_FORWARD_WARNING); 3880 3881 (void) mi_mpprintf(mp, "%d", (ill->ill_flags & ILLF_ROUTER) != 0); 3882 return (0); 3883 } 3884 3885 /* 3886 * For obsolete per-interface forwarding configuration; 3887 * called in response to ND_SET. 3888 */ 3889 /* ARGSUSED */ 3890 static int 3891 nd_ill_forward_set(queue_t *q, mblk_t *mp, char *valuestr, caddr_t cp, 3892 cred_t *ioc_cr) 3893 { 3894 long value; 3895 int retval; 3896 ip_stack_t *ipst = CONNQ_TO_IPST(q); 3897 3898 cmn_err(CE_WARN, ND_FORWARD_WARNING); 3899 3900 if (ddi_strtol(valuestr, NULL, 10, &value) != 0 || 3901 value < 0 || value > 1) { 3902 return (EINVAL); 3903 } 3904 3905 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 3906 retval = ill_forward_set((ill_t *)cp, (value != 0)); 3907 rw_exit(&ipst->ips_ill_g_lock); 3908 return (retval); 3909 } 3910 3911 /* 3912 * Set an ill's ILLF_ROUTER flag appropriately. If the ill is part of an 3913 * IPMP group, make sure all ill's in the group adopt the new policy. Send 3914 * up RTS_IFINFO routing socket messages for each interface whose flags we 3915 * change. 3916 */ 3917 int 3918 ill_forward_set(ill_t *ill, boolean_t enable) 3919 { 3920 ill_group_t *illgrp; 3921 ip_stack_t *ipst = ill->ill_ipst; 3922 3923 ASSERT(IAM_WRITER_ILL(ill) || RW_READ_HELD(&ipst->ips_ill_g_lock)); 3924 3925 if ((enable && (ill->ill_flags & ILLF_ROUTER)) || 3926 (!enable && !(ill->ill_flags & ILLF_ROUTER))) 3927 return (0); 3928 3929 if (IS_LOOPBACK(ill)) 3930 return (EINVAL); 3931 3932 /* 3933 * If the ill is in an IPMP group, set the forwarding policy on all 3934 * members of the group to the same value. 3935 */ 3936 illgrp = ill->ill_group; 3937 if (illgrp != NULL) { 3938 ill_t *tmp_ill; 3939 3940 for (tmp_ill = illgrp->illgrp_ill; tmp_ill != NULL; 3941 tmp_ill = tmp_ill->ill_group_next) { 3942 ip1dbg(("ill_forward_set: %s %s forwarding on %s", 3943 (enable ? "Enabling" : "Disabling"), 3944 (tmp_ill->ill_isv6 ? "IPv6" : "IPv4"), 3945 tmp_ill->ill_name)); 3946 mutex_enter(&tmp_ill->ill_lock); 3947 if (enable) 3948 tmp_ill->ill_flags |= ILLF_ROUTER; 3949 else 3950 tmp_ill->ill_flags &= ~ILLF_ROUTER; 3951 mutex_exit(&tmp_ill->ill_lock); 3952 if (tmp_ill->ill_isv6) 3953 ill_set_nce_router_flags(tmp_ill, enable); 3954 /* Notify routing socket listeners of this change. */ 3955 ip_rts_ifmsg(tmp_ill->ill_ipif); 3956 } 3957 } else { 3958 ip1dbg(("ill_forward_set: %s %s forwarding on %s", 3959 (enable ? "Enabling" : "Disabling"), 3960 (ill->ill_isv6 ? "IPv6" : "IPv4"), ill->ill_name)); 3961 mutex_enter(&ill->ill_lock); 3962 if (enable) 3963 ill->ill_flags |= ILLF_ROUTER; 3964 else 3965 ill->ill_flags &= ~ILLF_ROUTER; 3966 mutex_exit(&ill->ill_lock); 3967 if (ill->ill_isv6) 3968 ill_set_nce_router_flags(ill, enable); 3969 /* Notify routing socket listeners of this change. */ 3970 ip_rts_ifmsg(ill->ill_ipif); 3971 } 3972 3973 return (0); 3974 } 3975 3976 /* 3977 * Based on the ILLF_ROUTER flag of an ill, make sure all local nce's for 3978 * addresses assigned to the ill have the NCE_F_ISROUTER flag appropriately 3979 * set or clear. 3980 */ 3981 static void 3982 ill_set_nce_router_flags(ill_t *ill, boolean_t enable) 3983 { 3984 ipif_t *ipif; 3985 nce_t *nce; 3986 3987 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 3988 nce = ndp_lookup_v6(ill, &ipif->ipif_v6lcl_addr, B_FALSE); 3989 if (nce != NULL) { 3990 mutex_enter(&nce->nce_lock); 3991 if (enable) 3992 nce->nce_flags |= NCE_F_ISROUTER; 3993 else 3994 nce->nce_flags &= ~NCE_F_ISROUTER; 3995 mutex_exit(&nce->nce_lock); 3996 NCE_REFRELE(nce); 3997 } 3998 } 3999 } 4000 4001 /* 4002 * Given an ill with a _valid_ name, add the ip_forwarding ndd variable 4003 * for this ill. Make sure the v6/v4 question has been answered about this 4004 * ill. The creation of this ndd variable is only for backwards compatibility. 4005 * The preferred way to control per-interface IP forwarding is through the 4006 * ILLF_ROUTER interface flag. 4007 */ 4008 static int 4009 ill_set_ndd_name(ill_t *ill) 4010 { 4011 char *suffix; 4012 ip_stack_t *ipst = ill->ill_ipst; 4013 4014 ASSERT(IAM_WRITER_ILL(ill)); 4015 4016 if (ill->ill_isv6) 4017 suffix = ipv6_forward_suffix; 4018 else 4019 suffix = ipv4_forward_suffix; 4020 4021 ill->ill_ndd_name = ill->ill_name + ill->ill_name_length; 4022 bcopy(ill->ill_name, ill->ill_ndd_name, ill->ill_name_length - 1); 4023 /* 4024 * Copies over the '\0'. 4025 * Note that strlen(suffix) is always bounded. 4026 */ 4027 bcopy(suffix, ill->ill_ndd_name + ill->ill_name_length - 1, 4028 strlen(suffix) + 1); 4029 4030 /* 4031 * Use of the nd table requires holding the reader lock. 4032 * Modifying the nd table thru nd_load/nd_unload requires 4033 * the writer lock. 4034 */ 4035 rw_enter(&ipst->ips_ip_g_nd_lock, RW_WRITER); 4036 if (!nd_load(&ipst->ips_ip_g_nd, ill->ill_ndd_name, nd_ill_forward_get, 4037 nd_ill_forward_set, (caddr_t)ill)) { 4038 /* 4039 * If the nd_load failed, it only meant that it could not 4040 * allocate a new bunch of room for further NDD expansion. 4041 * Because of that, the ill_ndd_name will be set to 0, and 4042 * this interface is at the mercy of the global ip_forwarding 4043 * variable. 4044 */ 4045 rw_exit(&ipst->ips_ip_g_nd_lock); 4046 ill->ill_ndd_name = NULL; 4047 return (ENOMEM); 4048 } 4049 rw_exit(&ipst->ips_ip_g_nd_lock); 4050 return (0); 4051 } 4052 4053 /* 4054 * Intializes the context structure and returns the first ill in the list 4055 * cuurently start_list and end_list can have values: 4056 * MAX_G_HEADS Traverse both IPV4 and IPV6 lists. 4057 * IP_V4_G_HEAD Traverse IPV4 list only. 4058 * IP_V6_G_HEAD Traverse IPV6 list only. 4059 */ 4060 4061 /* 4062 * We don't check for CONDEMNED ills here. Caller must do that if 4063 * necessary under the ill lock. 4064 */ 4065 ill_t * 4066 ill_first(int start_list, int end_list, ill_walk_context_t *ctx, 4067 ip_stack_t *ipst) 4068 { 4069 ill_if_t *ifp; 4070 ill_t *ill; 4071 avl_tree_t *avl_tree; 4072 4073 ASSERT(RW_LOCK_HELD(&ipst->ips_ill_g_lock)); 4074 ASSERT(end_list <= MAX_G_HEADS && start_list >= 0); 4075 4076 /* 4077 * setup the lists to search 4078 */ 4079 if (end_list != MAX_G_HEADS) { 4080 ctx->ctx_current_list = start_list; 4081 ctx->ctx_last_list = end_list; 4082 } else { 4083 ctx->ctx_last_list = MAX_G_HEADS - 1; 4084 ctx->ctx_current_list = 0; 4085 } 4086 4087 while (ctx->ctx_current_list <= ctx->ctx_last_list) { 4088 ifp = IP_VX_ILL_G_LIST(ctx->ctx_current_list, ipst); 4089 if (ifp != (ill_if_t *) 4090 &IP_VX_ILL_G_LIST(ctx->ctx_current_list, ipst)) { 4091 avl_tree = &ifp->illif_avl_by_ppa; 4092 ill = avl_first(avl_tree); 4093 /* 4094 * ill is guaranteed to be non NULL or ifp should have 4095 * not existed. 4096 */ 4097 ASSERT(ill != NULL); 4098 return (ill); 4099 } 4100 ctx->ctx_current_list++; 4101 } 4102 4103 return (NULL); 4104 } 4105 4106 /* 4107 * returns the next ill in the list. ill_first() must have been called 4108 * before calling ill_next() or bad things will happen. 4109 */ 4110 4111 /* 4112 * We don't check for CONDEMNED ills here. Caller must do that if 4113 * necessary under the ill lock. 4114 */ 4115 ill_t * 4116 ill_next(ill_walk_context_t *ctx, ill_t *lastill) 4117 { 4118 ill_if_t *ifp; 4119 ill_t *ill; 4120 ip_stack_t *ipst = lastill->ill_ipst; 4121 4122 ASSERT(lastill->ill_ifptr != (ill_if_t *) 4123 &IP_VX_ILL_G_LIST(ctx->ctx_current_list, ipst)); 4124 if ((ill = avl_walk(&lastill->ill_ifptr->illif_avl_by_ppa, lastill, 4125 AVL_AFTER)) != NULL) { 4126 return (ill); 4127 } 4128 4129 /* goto next ill_ifp in the list. */ 4130 ifp = lastill->ill_ifptr->illif_next; 4131 4132 /* make sure not at end of circular list */ 4133 while (ifp == 4134 (ill_if_t *)&IP_VX_ILL_G_LIST(ctx->ctx_current_list, ipst)) { 4135 if (++ctx->ctx_current_list > ctx->ctx_last_list) 4136 return (NULL); 4137 ifp = IP_VX_ILL_G_LIST(ctx->ctx_current_list, ipst); 4138 } 4139 4140 return (avl_first(&ifp->illif_avl_by_ppa)); 4141 } 4142 4143 /* 4144 * Check interface name for correct format which is name+ppa. 4145 * name can contain characters and digits, the right most digits 4146 * make up the ppa number. use of octal is not allowed, name must contain 4147 * a ppa, return pointer to the start of ppa. 4148 * In case of error return NULL. 4149 */ 4150 static char * 4151 ill_get_ppa_ptr(char *name) 4152 { 4153 int namelen = mi_strlen(name); 4154 4155 int len = namelen; 4156 4157 name += len; 4158 while (len > 0) { 4159 name--; 4160 if (*name < '0' || *name > '9') 4161 break; 4162 len--; 4163 } 4164 4165 /* empty string, all digits, or no trailing digits */ 4166 if (len == 0 || len == (int)namelen) 4167 return (NULL); 4168 4169 name++; 4170 /* check for attempted use of octal */ 4171 if (*name == '0' && len != (int)namelen - 1) 4172 return (NULL); 4173 return (name); 4174 } 4175 4176 /* 4177 * use avl tree to locate the ill. 4178 */ 4179 static ill_t * 4180 ill_find_by_name(char *name, boolean_t isv6, queue_t *q, mblk_t *mp, 4181 ipsq_func_t func, int *error, ip_stack_t *ipst) 4182 { 4183 char *ppa_ptr = NULL; 4184 int len; 4185 uint_t ppa; 4186 ill_t *ill = NULL; 4187 ill_if_t *ifp; 4188 int list; 4189 ipsq_t *ipsq; 4190 4191 if (error != NULL) 4192 *error = 0; 4193 4194 /* 4195 * get ppa ptr 4196 */ 4197 if (isv6) 4198 list = IP_V6_G_HEAD; 4199 else 4200 list = IP_V4_G_HEAD; 4201 4202 if ((ppa_ptr = ill_get_ppa_ptr(name)) == NULL) { 4203 if (error != NULL) 4204 *error = ENXIO; 4205 return (NULL); 4206 } 4207 4208 len = ppa_ptr - name + 1; 4209 4210 ppa = stoi(&ppa_ptr); 4211 4212 ifp = IP_VX_ILL_G_LIST(list, ipst); 4213 4214 while (ifp != (ill_if_t *)&IP_VX_ILL_G_LIST(list, ipst)) { 4215 /* 4216 * match is done on len - 1 as the name is not null 4217 * terminated it contains ppa in addition to the interface 4218 * name. 4219 */ 4220 if ((ifp->illif_name_len == len) && 4221 bcmp(ifp->illif_name, name, len - 1) == 0) { 4222 break; 4223 } else { 4224 ifp = ifp->illif_next; 4225 } 4226 } 4227 4228 4229 if (ifp == (ill_if_t *)&IP_VX_ILL_G_LIST(list, ipst)) { 4230 /* 4231 * Even the interface type does not exist. 4232 */ 4233 if (error != NULL) 4234 *error = ENXIO; 4235 return (NULL); 4236 } 4237 4238 ill = avl_find(&ifp->illif_avl_by_ppa, (void *) &ppa, NULL); 4239 if (ill != NULL) { 4240 /* 4241 * The block comment at the start of ipif_down 4242 * explains the use of the macros used below 4243 */ 4244 GRAB_CONN_LOCK(q); 4245 mutex_enter(&ill->ill_lock); 4246 if (ILL_CAN_LOOKUP(ill)) { 4247 ill_refhold_locked(ill); 4248 mutex_exit(&ill->ill_lock); 4249 RELEASE_CONN_LOCK(q); 4250 return (ill); 4251 } else if (ILL_CAN_WAIT(ill, q)) { 4252 ipsq = ill->ill_phyint->phyint_ipsq; 4253 mutex_enter(&ipsq->ipsq_lock); 4254 mutex_exit(&ill->ill_lock); 4255 ipsq_enq(ipsq, q, mp, func, NEW_OP, ill); 4256 mutex_exit(&ipsq->ipsq_lock); 4257 RELEASE_CONN_LOCK(q); 4258 *error = EINPROGRESS; 4259 return (NULL); 4260 } 4261 mutex_exit(&ill->ill_lock); 4262 RELEASE_CONN_LOCK(q); 4263 } 4264 if (error != NULL) 4265 *error = ENXIO; 4266 return (NULL); 4267 } 4268 4269 /* 4270 * comparison function for use with avl. 4271 */ 4272 static int 4273 ill_compare_ppa(const void *ppa_ptr, const void *ill_ptr) 4274 { 4275 uint_t ppa; 4276 uint_t ill_ppa; 4277 4278 ASSERT(ppa_ptr != NULL && ill_ptr != NULL); 4279 4280 ppa = *((uint_t *)ppa_ptr); 4281 ill_ppa = ((const ill_t *)ill_ptr)->ill_ppa; 4282 /* 4283 * We want the ill with the lowest ppa to be on the 4284 * top. 4285 */ 4286 if (ill_ppa < ppa) 4287 return (1); 4288 if (ill_ppa > ppa) 4289 return (-1); 4290 return (0); 4291 } 4292 4293 /* 4294 * remove an interface type from the global list. 4295 */ 4296 static void 4297 ill_delete_interface_type(ill_if_t *interface) 4298 { 4299 ASSERT(interface != NULL); 4300 ASSERT(avl_numnodes(&interface->illif_avl_by_ppa) == 0); 4301 4302 avl_destroy(&interface->illif_avl_by_ppa); 4303 if (interface->illif_ppa_arena != NULL) 4304 vmem_destroy(interface->illif_ppa_arena); 4305 4306 remque(interface); 4307 4308 mi_free(interface); 4309 } 4310 4311 /* Defined in ip_netinfo.c */ 4312 extern ddi_taskq_t *eventq_queue_nic; 4313 4314 /* 4315 * remove ill from the global list. 4316 */ 4317 static void 4318 ill_glist_delete(ill_t *ill) 4319 { 4320 char *nicname; 4321 size_t nicnamelen; 4322 hook_nic_event_t *info; 4323 ip_stack_t *ipst; 4324 4325 if (ill == NULL) 4326 return; 4327 ipst = ill->ill_ipst; 4328 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 4329 4330 if (ill->ill_name != NULL) { 4331 nicname = kmem_alloc(ill->ill_name_length, KM_NOSLEEP); 4332 if (nicname != NULL) { 4333 bcopy(ill->ill_name, nicname, ill->ill_name_length); 4334 nicnamelen = ill->ill_name_length; 4335 } 4336 } else { 4337 nicname = NULL; 4338 nicnamelen = 0; 4339 } 4340 4341 /* 4342 * If the ill was never inserted into the AVL tree 4343 * we skip the if branch. 4344 */ 4345 if (ill->ill_ifptr != NULL) { 4346 /* 4347 * remove from AVL tree and free ppa number 4348 */ 4349 avl_remove(&ill->ill_ifptr->illif_avl_by_ppa, ill); 4350 4351 if (ill->ill_ifptr->illif_ppa_arena != NULL) { 4352 vmem_free(ill->ill_ifptr->illif_ppa_arena, 4353 (void *)(uintptr_t)(ill->ill_ppa+1), 1); 4354 } 4355 if (avl_numnodes(&ill->ill_ifptr->illif_avl_by_ppa) == 0) { 4356 ill_delete_interface_type(ill->ill_ifptr); 4357 } 4358 4359 /* 4360 * Indicate ill is no longer in the list. 4361 */ 4362 ill->ill_ifptr = NULL; 4363 ill->ill_name_length = 0; 4364 ill->ill_name[0] = '\0'; 4365 ill->ill_ppa = UINT_MAX; 4366 } 4367 4368 /* 4369 * Run the unplumb hook after the NIC has disappeared from being 4370 * visible so that attempts to revalidate its existance will fail. 4371 * 4372 * This needs to be run inside the ill_g_lock perimeter to ensure 4373 * that the ordering of delivered events to listeners matches the 4374 * order of them in the kernel. 4375 */ 4376 if ((info = ill->ill_nic_event_info) != NULL) { 4377 if (info->hne_event != NE_DOWN) { 4378 ip2dbg(("ill_glist_delete: unexpected nic event %d " 4379 "attached for %s\n", info->hne_event, 4380 ill->ill_name)); 4381 if (info->hne_data != NULL) 4382 kmem_free(info->hne_data, info->hne_datalen); 4383 kmem_free(info, sizeof (hook_nic_event_t)); 4384 } else { 4385 if (ddi_taskq_dispatch(eventq_queue_nic, 4386 ip_ne_queue_func, (void *)info, DDI_SLEEP) 4387 == DDI_FAILURE) { 4388 ip2dbg(("ill_glist_delete: ddi_taskq_dispatch " 4389 "failed\n")); 4390 if (info->hne_data != NULL) 4391 kmem_free(info->hne_data, 4392 info->hne_datalen); 4393 kmem_free(info, sizeof (hook_nic_event_t)); 4394 } 4395 } 4396 } 4397 4398 /* Generate NE_UNPLUMB event for ill_name. */ 4399 info = kmem_alloc(sizeof (hook_nic_event_t), KM_NOSLEEP); 4400 if (info != NULL) { 4401 info->hne_nic = ill->ill_phyint->phyint_ifindex; 4402 info->hne_lif = 0; 4403 info->hne_event = NE_UNPLUMB; 4404 info->hne_data = nicname; 4405 info->hne_datalen = nicnamelen; 4406 info->hne_family = ill->ill_isv6 ? 4407 ipst->ips_ipv6_net_data : ipst->ips_ipv4_net_data; 4408 } else { 4409 ip2dbg(("ill_glist_delete: could not attach UNPLUMB nic event " 4410 "information for %s (ENOMEM)\n", ill->ill_name)); 4411 if (nicname != NULL) 4412 kmem_free(nicname, nicnamelen); 4413 } 4414 4415 ill->ill_nic_event_info = info; 4416 4417 ill_phyint_free(ill); 4418 rw_exit(&ipst->ips_ill_g_lock); 4419 } 4420 4421 /* 4422 * allocate a ppa, if the number of plumbed interfaces of this type are 4423 * less than ill_no_arena do a linear search to find a unused ppa. 4424 * When the number goes beyond ill_no_arena switch to using an arena. 4425 * Note: ppa value of zero cannot be allocated from vmem_arena as it 4426 * is the return value for an error condition, so allocation starts at one 4427 * and is decremented by one. 4428 */ 4429 static int 4430 ill_alloc_ppa(ill_if_t *ifp, ill_t *ill) 4431 { 4432 ill_t *tmp_ill; 4433 uint_t start, end; 4434 int ppa; 4435 4436 if (ifp->illif_ppa_arena == NULL && 4437 (avl_numnodes(&ifp->illif_avl_by_ppa) + 1 > ill_no_arena)) { 4438 /* 4439 * Create an arena. 4440 */ 4441 ifp->illif_ppa_arena = vmem_create(ifp->illif_name, 4442 (void *)1, UINT_MAX - 1, 1, NULL, NULL, 4443 NULL, 0, VM_SLEEP | VMC_IDENTIFIER); 4444 /* allocate what has already been assigned */ 4445 for (tmp_ill = avl_first(&ifp->illif_avl_by_ppa); 4446 tmp_ill != NULL; tmp_ill = avl_walk(&ifp->illif_avl_by_ppa, 4447 tmp_ill, AVL_AFTER)) { 4448 ppa = (int)(uintptr_t)vmem_xalloc(ifp->illif_ppa_arena, 4449 1, /* size */ 4450 1, /* align/quantum */ 4451 0, /* phase */ 4452 0, /* nocross */ 4453 /* minaddr */ 4454 (void *)((uintptr_t)tmp_ill->ill_ppa + 1), 4455 /* maxaddr */ 4456 (void *)((uintptr_t)tmp_ill->ill_ppa + 2), 4457 VM_NOSLEEP|VM_FIRSTFIT); 4458 if (ppa == 0) { 4459 ip1dbg(("ill_alloc_ppa: ppa allocation" 4460 " failed while switching")); 4461 vmem_destroy(ifp->illif_ppa_arena); 4462 ifp->illif_ppa_arena = NULL; 4463 break; 4464 } 4465 } 4466 } 4467 4468 if (ifp->illif_ppa_arena != NULL) { 4469 if (ill->ill_ppa == UINT_MAX) { 4470 ppa = (int)(uintptr_t)vmem_alloc(ifp->illif_ppa_arena, 4471 1, VM_NOSLEEP|VM_FIRSTFIT); 4472 if (ppa == 0) 4473 return (EAGAIN); 4474 ill->ill_ppa = --ppa; 4475 } else { 4476 ppa = (int)(uintptr_t)vmem_xalloc(ifp->illif_ppa_arena, 4477 1, /* size */ 4478 1, /* align/quantum */ 4479 0, /* phase */ 4480 0, /* nocross */ 4481 (void *)(uintptr_t)(ill->ill_ppa + 1), /* minaddr */ 4482 (void *)(uintptr_t)(ill->ill_ppa + 2), /* maxaddr */ 4483 VM_NOSLEEP|VM_FIRSTFIT); 4484 /* 4485 * Most likely the allocation failed because 4486 * the requested ppa was in use. 4487 */ 4488 if (ppa == 0) 4489 return (EEXIST); 4490 } 4491 return (0); 4492 } 4493 4494 /* 4495 * No arena is in use and not enough (>ill_no_arena) interfaces have 4496 * been plumbed to create one. Do a linear search to get a unused ppa. 4497 */ 4498 if (ill->ill_ppa == UINT_MAX) { 4499 end = UINT_MAX - 1; 4500 start = 0; 4501 } else { 4502 end = start = ill->ill_ppa; 4503 } 4504 4505 tmp_ill = avl_find(&ifp->illif_avl_by_ppa, (void *)&start, NULL); 4506 while (tmp_ill != NULL && tmp_ill->ill_ppa == start) { 4507 if (start++ >= end) { 4508 if (ill->ill_ppa == UINT_MAX) 4509 return (EAGAIN); 4510 else 4511 return (EEXIST); 4512 } 4513 tmp_ill = avl_walk(&ifp->illif_avl_by_ppa, tmp_ill, AVL_AFTER); 4514 } 4515 ill->ill_ppa = start; 4516 return (0); 4517 } 4518 4519 /* 4520 * Insert ill into the list of configured ill's. Once this function completes, 4521 * the ill is globally visible and is available through lookups. More precisely 4522 * this happens after the caller drops the ill_g_lock. 4523 */ 4524 static int 4525 ill_glist_insert(ill_t *ill, char *name, boolean_t isv6) 4526 { 4527 ill_if_t *ill_interface; 4528 avl_index_t where = 0; 4529 int error; 4530 int name_length; 4531 int index; 4532 boolean_t check_length = B_FALSE; 4533 ip_stack_t *ipst = ill->ill_ipst; 4534 4535 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); 4536 4537 name_length = mi_strlen(name) + 1; 4538 4539 if (isv6) 4540 index = IP_V6_G_HEAD; 4541 else 4542 index = IP_V4_G_HEAD; 4543 4544 ill_interface = IP_VX_ILL_G_LIST(index, ipst); 4545 /* 4546 * Search for interface type based on name 4547 */ 4548 while (ill_interface != (ill_if_t *)&IP_VX_ILL_G_LIST(index, ipst)) { 4549 if ((ill_interface->illif_name_len == name_length) && 4550 (strcmp(ill_interface->illif_name, name) == 0)) { 4551 break; 4552 } 4553 ill_interface = ill_interface->illif_next; 4554 } 4555 4556 /* 4557 * Interface type not found, create one. 4558 */ 4559 if (ill_interface == (ill_if_t *)&IP_VX_ILL_G_LIST(index, ipst)) { 4560 4561 ill_g_head_t ghead; 4562 4563 /* 4564 * allocate ill_if_t structure 4565 */ 4566 4567 ill_interface = (ill_if_t *)mi_zalloc(sizeof (ill_if_t)); 4568 if (ill_interface == NULL) { 4569 return (ENOMEM); 4570 } 4571 4572 4573 4574 (void) strcpy(ill_interface->illif_name, name); 4575 ill_interface->illif_name_len = name_length; 4576 4577 avl_create(&ill_interface->illif_avl_by_ppa, 4578 ill_compare_ppa, sizeof (ill_t), 4579 offsetof(struct ill_s, ill_avl_byppa)); 4580 4581 /* 4582 * link the structure in the back to maintain order 4583 * of configuration for ifconfig output. 4584 */ 4585 ghead = ipst->ips_ill_g_heads[index]; 4586 insque(ill_interface, ghead.ill_g_list_tail); 4587 4588 } 4589 4590 if (ill->ill_ppa == UINT_MAX) 4591 check_length = B_TRUE; 4592 4593 error = ill_alloc_ppa(ill_interface, ill); 4594 if (error != 0) { 4595 if (avl_numnodes(&ill_interface->illif_avl_by_ppa) == 0) 4596 ill_delete_interface_type(ill->ill_ifptr); 4597 return (error); 4598 } 4599 4600 /* 4601 * When the ppa is choosen by the system, check that there is 4602 * enough space to insert ppa. if a specific ppa was passed in this 4603 * check is not required as the interface name passed in will have 4604 * the right ppa in it. 4605 */ 4606 if (check_length) { 4607 /* 4608 * UINT_MAX - 1 should fit in 10 chars, alloc 12 chars. 4609 */ 4610 char buf[sizeof (uint_t) * 3]; 4611 4612 /* 4613 * convert ppa to string to calculate the amount of space 4614 * required for it in the name. 4615 */ 4616 numtos(ill->ill_ppa, buf); 4617 4618 /* Do we have enough space to insert ppa ? */ 4619 4620 if ((mi_strlen(name) + mi_strlen(buf) + 1) > LIFNAMSIZ) { 4621 /* Free ppa and interface type struct */ 4622 if (ill_interface->illif_ppa_arena != NULL) { 4623 vmem_free(ill_interface->illif_ppa_arena, 4624 (void *)(uintptr_t)(ill->ill_ppa+1), 1); 4625 } 4626 if (avl_numnodes(&ill_interface->illif_avl_by_ppa) == 4627 0) { 4628 ill_delete_interface_type(ill->ill_ifptr); 4629 } 4630 4631 return (EINVAL); 4632 } 4633 } 4634 4635 (void) sprintf(ill->ill_name, "%s%u", name, ill->ill_ppa); 4636 ill->ill_name_length = mi_strlen(ill->ill_name) + 1; 4637 4638 (void) avl_find(&ill_interface->illif_avl_by_ppa, &ill->ill_ppa, 4639 &where); 4640 ill->ill_ifptr = ill_interface; 4641 avl_insert(&ill_interface->illif_avl_by_ppa, ill, where); 4642 4643 ill_phyint_reinit(ill); 4644 return (0); 4645 } 4646 4647 /* Initialize the per phyint (per IPMP group) ipsq used for serialization */ 4648 static boolean_t 4649 ipsq_init(ill_t *ill) 4650 { 4651 ipsq_t *ipsq; 4652 4653 /* Init the ipsq and impicitly enter as writer */ 4654 ill->ill_phyint->phyint_ipsq = 4655 kmem_zalloc(sizeof (ipsq_t), KM_NOSLEEP); 4656 if (ill->ill_phyint->phyint_ipsq == NULL) 4657 return (B_FALSE); 4658 ipsq = ill->ill_phyint->phyint_ipsq; 4659 ipsq->ipsq_phyint_list = ill->ill_phyint; 4660 ill->ill_phyint->phyint_ipsq_next = NULL; 4661 mutex_init(&ipsq->ipsq_lock, NULL, MUTEX_DEFAULT, 0); 4662 ipsq->ipsq_refs = 1; 4663 ipsq->ipsq_writer = curthread; 4664 ipsq->ipsq_reentry_cnt = 1; 4665 ipsq->ipsq_ipst = ill->ill_ipst; /* No netstack_hold */ 4666 #ifdef DEBUG 4667 ipsq->ipsq_depth = getpcstack((pc_t *)ipsq->ipsq_stack, 4668 IPSQ_STACK_DEPTH); 4669 #endif 4670 (void) strcpy(ipsq->ipsq_name, ill->ill_name); 4671 return (B_TRUE); 4672 } 4673 4674 /* 4675 * ill_init is called by ip_open when a device control stream is opened. 4676 * It does a few initializations, and shoots a DL_INFO_REQ message down 4677 * to the driver. The response is later picked up in ip_rput_dlpi and 4678 * used to set up default mechanisms for talking to the driver. (Always 4679 * called as writer.) 4680 * 4681 * If this function returns error, ip_open will call ip_close which in 4682 * turn will call ill_delete to clean up any memory allocated here that 4683 * is not yet freed. 4684 */ 4685 int 4686 ill_init(queue_t *q, ill_t *ill) 4687 { 4688 int count; 4689 dl_info_req_t *dlir; 4690 mblk_t *info_mp; 4691 uchar_t *frag_ptr; 4692 4693 /* 4694 * The ill is initialized to zero by mi_alloc*(). In addition 4695 * some fields already contain valid values, initialized in 4696 * ip_open(), before we reach here. 4697 */ 4698 mutex_init(&ill->ill_lock, NULL, MUTEX_DEFAULT, 0); 4699 4700 ill->ill_rq = q; 4701 ill->ill_wq = WR(q); 4702 4703 info_mp = allocb(MAX(sizeof (dl_info_req_t), sizeof (dl_info_ack_t)), 4704 BPRI_HI); 4705 if (info_mp == NULL) 4706 return (ENOMEM); 4707 4708 /* 4709 * Allocate sufficient space to contain our fragment hash table and 4710 * the device name. 4711 */ 4712 frag_ptr = (uchar_t *)mi_zalloc(ILL_FRAG_HASH_TBL_SIZE + 4713 2 * LIFNAMSIZ + 5 + strlen(ipv6_forward_suffix)); 4714 if (frag_ptr == NULL) { 4715 freemsg(info_mp); 4716 return (ENOMEM); 4717 } 4718 ill->ill_frag_ptr = frag_ptr; 4719 ill->ill_frag_free_num_pkts = 0; 4720 ill->ill_last_frag_clean_time = 0; 4721 ill->ill_frag_hash_tbl = (ipfb_t *)frag_ptr; 4722 ill->ill_name = (char *)(frag_ptr + ILL_FRAG_HASH_TBL_SIZE); 4723 for (count = 0; count < ILL_FRAG_HASH_TBL_COUNT; count++) { 4724 mutex_init(&ill->ill_frag_hash_tbl[count].ipfb_lock, 4725 NULL, MUTEX_DEFAULT, NULL); 4726 } 4727 4728 ill->ill_phyint = (phyint_t *)mi_zalloc(sizeof (phyint_t)); 4729 if (ill->ill_phyint == NULL) { 4730 freemsg(info_mp); 4731 mi_free(frag_ptr); 4732 return (ENOMEM); 4733 } 4734 4735 mutex_init(&ill->ill_phyint->phyint_lock, NULL, MUTEX_DEFAULT, 0); 4736 /* 4737 * For now pretend this is a v4 ill. We need to set phyint_ill* 4738 * at this point because of the following reason. If we can't 4739 * enter the ipsq at some point and cv_wait, the writer that 4740 * wakes us up tries to locate us using the list of all phyints 4741 * in an ipsq and the ills from the phyint thru the phyint_ill*. 4742 * If we don't set it now, we risk a missed wakeup. 4743 */ 4744 ill->ill_phyint->phyint_illv4 = ill; 4745 ill->ill_ppa = UINT_MAX; 4746 ill->ill_fastpath_list = &ill->ill_fastpath_list; 4747 4748 if (!ipsq_init(ill)) { 4749 freemsg(info_mp); 4750 mi_free(frag_ptr); 4751 mi_free(ill->ill_phyint); 4752 return (ENOMEM); 4753 } 4754 4755 ill->ill_state_flags |= ILL_LL_SUBNET_PENDING; 4756 4757 4758 /* Frag queue limit stuff */ 4759 ill->ill_frag_count = 0; 4760 ill->ill_ipf_gen = 0; 4761 4762 ill->ill_global_timer = INFINITY; 4763 ill->ill_mcast_v1_time = ill->ill_mcast_v2_time = 0; 4764 ill->ill_mcast_v1_tset = ill->ill_mcast_v2_tset = 0; 4765 ill->ill_mcast_rv = MCAST_DEF_ROBUSTNESS; 4766 ill->ill_mcast_qi = MCAST_DEF_QUERY_INTERVAL; 4767 4768 /* 4769 * Initialize IPv6 configuration variables. The IP module is always 4770 * opened as an IPv4 module. Instead tracking down the cases where 4771 * it switches to do ipv6, we'll just initialize the IPv6 configuration 4772 * here for convenience, this has no effect until the ill is set to do 4773 * IPv6. 4774 */ 4775 ill->ill_reachable_time = ND_REACHABLE_TIME; 4776 ill->ill_reachable_retrans_time = ND_RETRANS_TIMER; 4777 ill->ill_xmit_count = ND_MAX_MULTICAST_SOLICIT; 4778 ill->ill_max_buf = ND_MAX_Q; 4779 ill->ill_refcnt = 0; 4780 4781 /* Send down the Info Request to the driver. */ 4782 info_mp->b_datap->db_type = M_PCPROTO; 4783 dlir = (dl_info_req_t *)info_mp->b_rptr; 4784 info_mp->b_wptr = (uchar_t *)&dlir[1]; 4785 dlir->dl_primitive = DL_INFO_REQ; 4786 4787 ill->ill_dlpi_pending = DL_PRIM_INVAL; 4788 4789 qprocson(q); 4790 ill_dlpi_send(ill, info_mp); 4791 4792 return (0); 4793 } 4794 4795 /* 4796 * ill_dls_info 4797 * creates datalink socket info from the device. 4798 */ 4799 int 4800 ill_dls_info(struct sockaddr_dl *sdl, const ipif_t *ipif) 4801 { 4802 size_t len; 4803 ill_t *ill = ipif->ipif_ill; 4804 4805 sdl->sdl_family = AF_LINK; 4806 sdl->sdl_index = ill->ill_phyint->phyint_ifindex; 4807 sdl->sdl_type = ill->ill_type; 4808 ipif_get_name(ipif, sdl->sdl_data, sizeof (sdl->sdl_data)); 4809 len = strlen(sdl->sdl_data); 4810 ASSERT(len < 256); 4811 sdl->sdl_nlen = (uchar_t)len; 4812 sdl->sdl_alen = ill->ill_phys_addr_length; 4813 sdl->sdl_slen = 0; 4814 if (ill->ill_phys_addr_length != 0 && ill->ill_phys_addr != NULL) 4815 bcopy(ill->ill_phys_addr, &sdl->sdl_data[len], sdl->sdl_alen); 4816 4817 return (sizeof (struct sockaddr_dl)); 4818 } 4819 4820 /* 4821 * ill_xarp_info 4822 * creates xarp info from the device. 4823 */ 4824 static int 4825 ill_xarp_info(struct sockaddr_dl *sdl, ill_t *ill) 4826 { 4827 sdl->sdl_family = AF_LINK; 4828 sdl->sdl_index = ill->ill_phyint->phyint_ifindex; 4829 sdl->sdl_type = ill->ill_type; 4830 ipif_get_name(ill->ill_ipif, sdl->sdl_data, sizeof (sdl->sdl_data)); 4831 sdl->sdl_nlen = (uchar_t)mi_strlen(sdl->sdl_data); 4832 sdl->sdl_alen = ill->ill_phys_addr_length; 4833 sdl->sdl_slen = 0; 4834 return (sdl->sdl_nlen); 4835 } 4836 4837 static int 4838 loopback_kstat_update(kstat_t *ksp, int rw) 4839 { 4840 kstat_named_t *kn; 4841 netstackid_t stackid; 4842 netstack_t *ns; 4843 ip_stack_t *ipst; 4844 4845 if (ksp == NULL || ksp->ks_data == NULL) 4846 return (EIO); 4847 4848 if (rw == KSTAT_WRITE) 4849 return (EACCES); 4850 4851 kn = KSTAT_NAMED_PTR(ksp); 4852 stackid = (zoneid_t)(uintptr_t)ksp->ks_private; 4853 4854 ns = netstack_find_by_stackid(stackid); 4855 if (ns == NULL) 4856 return (-1); 4857 4858 ipst = ns->netstack_ip; 4859 if (ipst == NULL) { 4860 netstack_rele(ns); 4861 return (-1); 4862 } 4863 kn[0].value.ui32 = ipst->ips_loopback_packets; 4864 kn[1].value.ui32 = ipst->ips_loopback_packets; 4865 netstack_rele(ns); 4866 return (0); 4867 } 4868 4869 4870 /* 4871 * Has ifindex been plumbed already. 4872 * Compares both phyint_ifindex and phyint_group_ifindex. 4873 */ 4874 static boolean_t 4875 phyint_exists(uint_t index, ip_stack_t *ipst) 4876 { 4877 phyint_t *phyi; 4878 4879 ASSERT(index != 0); 4880 ASSERT(RW_LOCK_HELD(&ipst->ips_ill_g_lock)); 4881 /* 4882 * Indexes are stored in the phyint - a common structure 4883 * to both IPv4 and IPv6. 4884 */ 4885 phyi = avl_first(&ipst->ips_phyint_g_list->phyint_list_avl_by_index); 4886 for (; phyi != NULL; 4887 phyi = avl_walk(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 4888 phyi, AVL_AFTER)) { 4889 if (phyi->phyint_ifindex == index || 4890 phyi->phyint_group_ifindex == index) 4891 return (B_TRUE); 4892 } 4893 return (B_FALSE); 4894 } 4895 4896 /* Pick a unique ifindex */ 4897 boolean_t 4898 ip_assign_ifindex(uint_t *indexp, ip_stack_t *ipst) 4899 { 4900 uint_t starting_index; 4901 4902 if (!ipst->ips_ill_index_wrap) { 4903 *indexp = ipst->ips_ill_index++; 4904 if (ipst->ips_ill_index == 0) { 4905 /* Reached the uint_t limit Next time wrap */ 4906 ipst->ips_ill_index_wrap = B_TRUE; 4907 } 4908 return (B_TRUE); 4909 } 4910 4911 /* 4912 * Start reusing unused indexes. Note that we hold the ill_g_lock 4913 * at this point and don't want to call any function that attempts 4914 * to get the lock again. 4915 */ 4916 starting_index = ipst->ips_ill_index++; 4917 for (; ipst->ips_ill_index != starting_index; ipst->ips_ill_index++) { 4918 if (ipst->ips_ill_index != 0 && 4919 !phyint_exists(ipst->ips_ill_index, ipst)) { 4920 /* found unused index - use it */ 4921 *indexp = ipst->ips_ill_index; 4922 return (B_TRUE); 4923 } 4924 } 4925 4926 /* 4927 * all interface indicies are inuse. 4928 */ 4929 return (B_FALSE); 4930 } 4931 4932 /* 4933 * Assign a unique interface index for the phyint. 4934 */ 4935 static boolean_t 4936 phyint_assign_ifindex(phyint_t *phyi, ip_stack_t *ipst) 4937 { 4938 ASSERT(phyi->phyint_ifindex == 0); 4939 return (ip_assign_ifindex(&phyi->phyint_ifindex, ipst)); 4940 } 4941 4942 /* 4943 * Return a pointer to the ill which matches the supplied name. Note that 4944 * the ill name length includes the null termination character. (May be 4945 * called as writer.) 4946 * If do_alloc and the interface is "lo0" it will be automatically created. 4947 * Cannot bump up reference on condemned ills. So dup detect can't be done 4948 * using this func. 4949 */ 4950 ill_t * 4951 ill_lookup_on_name(char *name, boolean_t do_alloc, boolean_t isv6, 4952 queue_t *q, mblk_t *mp, ipsq_func_t func, int *error, boolean_t *did_alloc, 4953 ip_stack_t *ipst) 4954 { 4955 ill_t *ill; 4956 ipif_t *ipif; 4957 kstat_named_t *kn; 4958 boolean_t isloopback; 4959 ipsq_t *old_ipsq; 4960 in6_addr_t ov6addr; 4961 4962 isloopback = mi_strcmp(name, ipif_loopback_name) == 0; 4963 4964 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 4965 ill = ill_find_by_name(name, isv6, q, mp, func, error, ipst); 4966 rw_exit(&ipst->ips_ill_g_lock); 4967 if (ill != NULL || (error != NULL && *error == EINPROGRESS)) 4968 return (ill); 4969 4970 /* 4971 * Couldn't find it. Does this happen to be a lookup for the 4972 * loopback device and are we allowed to allocate it? 4973 */ 4974 if (!isloopback || !do_alloc) 4975 return (NULL); 4976 4977 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 4978 4979 ill = ill_find_by_name(name, isv6, q, mp, func, error, ipst); 4980 if (ill != NULL || (error != NULL && *error == EINPROGRESS)) { 4981 rw_exit(&ipst->ips_ill_g_lock); 4982 return (ill); 4983 } 4984 4985 /* Create the loopback device on demand */ 4986 ill = (ill_t *)(mi_alloc(sizeof (ill_t) + 4987 sizeof (ipif_loopback_name), BPRI_MED)); 4988 if (ill == NULL) 4989 goto done; 4990 4991 *ill = ill_null; 4992 mutex_init(&ill->ill_lock, NULL, MUTEX_DEFAULT, NULL); 4993 ill->ill_ipst = ipst; 4994 netstack_hold(ipst->ips_netstack); 4995 /* 4996 * For exclusive stacks we set the zoneid to zero 4997 * to make IP operate as if in the global zone. 4998 */ 4999 ill->ill_zoneid = GLOBAL_ZONEID; 5000 5001 ill->ill_phyint = (phyint_t *)mi_zalloc(sizeof (phyint_t)); 5002 if (ill->ill_phyint == NULL) 5003 goto done; 5004 5005 if (isv6) 5006 ill->ill_phyint->phyint_illv6 = ill; 5007 else 5008 ill->ill_phyint->phyint_illv4 = ill; 5009 mutex_init(&ill->ill_phyint->phyint_lock, NULL, MUTEX_DEFAULT, 0); 5010 ill->ill_max_frag = IP_LOOPBACK_MTU; 5011 /* Add room for tcp+ip headers */ 5012 if (isv6) { 5013 ill->ill_isv6 = B_TRUE; 5014 ill->ill_max_frag += IPV6_HDR_LEN + 20; /* for TCP */ 5015 } else { 5016 ill->ill_max_frag += IP_SIMPLE_HDR_LENGTH + 20; 5017 } 5018 if (!ill_allocate_mibs(ill)) 5019 goto done; 5020 ill->ill_max_mtu = ill->ill_max_frag; 5021 /* 5022 * ipif_loopback_name can't be pointed at directly because its used 5023 * by both the ipv4 and ipv6 interfaces. When the ill is removed 5024 * from the glist, ill_glist_delete() sets the first character of 5025 * ill_name to '\0'. 5026 */ 5027 ill->ill_name = (char *)ill + sizeof (*ill); 5028 (void) strcpy(ill->ill_name, ipif_loopback_name); 5029 ill->ill_name_length = sizeof (ipif_loopback_name); 5030 /* Set ill_name_set for ill_phyint_reinit to work properly */ 5031 5032 ill->ill_global_timer = INFINITY; 5033 ill->ill_mcast_v1_time = ill->ill_mcast_v2_time = 0; 5034 ill->ill_mcast_v1_tset = ill->ill_mcast_v2_tset = 0; 5035 ill->ill_mcast_rv = MCAST_DEF_ROBUSTNESS; 5036 ill->ill_mcast_qi = MCAST_DEF_QUERY_INTERVAL; 5037 5038 /* No resolver here. */ 5039 ill->ill_net_type = IRE_LOOPBACK; 5040 5041 /* Initialize the ipsq */ 5042 if (!ipsq_init(ill)) 5043 goto done; 5044 5045 ill->ill_phyint->phyint_ipsq->ipsq_writer = NULL; 5046 ill->ill_phyint->phyint_ipsq->ipsq_reentry_cnt--; 5047 ASSERT(ill->ill_phyint->phyint_ipsq->ipsq_reentry_cnt == 0); 5048 #ifdef DEBUG 5049 ill->ill_phyint->phyint_ipsq->ipsq_depth = 0; 5050 #endif 5051 ipif = ipif_allocate(ill, 0L, IRE_LOOPBACK, B_TRUE); 5052 if (ipif == NULL) 5053 goto done; 5054 5055 ill->ill_flags = ILLF_MULTICAST; 5056 5057 ov6addr = ipif->ipif_v6lcl_addr; 5058 /* Set up default loopback address and mask. */ 5059 if (!isv6) { 5060 ipaddr_t inaddr_loopback = htonl(INADDR_LOOPBACK); 5061 5062 IN6_IPADDR_TO_V4MAPPED(inaddr_loopback, &ipif->ipif_v6lcl_addr); 5063 ipif->ipif_v6src_addr = ipif->ipif_v6lcl_addr; 5064 V4MASK_TO_V6(htonl(IN_CLASSA_NET), ipif->ipif_v6net_mask); 5065 V6_MASK_COPY(ipif->ipif_v6lcl_addr, ipif->ipif_v6net_mask, 5066 ipif->ipif_v6subnet); 5067 ill->ill_flags |= ILLF_IPV4; 5068 } else { 5069 ipif->ipif_v6lcl_addr = ipv6_loopback; 5070 ipif->ipif_v6src_addr = ipif->ipif_v6lcl_addr; 5071 ipif->ipif_v6net_mask = ipv6_all_ones; 5072 V6_MASK_COPY(ipif->ipif_v6lcl_addr, ipif->ipif_v6net_mask, 5073 ipif->ipif_v6subnet); 5074 ill->ill_flags |= ILLF_IPV6; 5075 } 5076 5077 /* 5078 * Chain us in at the end of the ill list. hold the ill 5079 * before we make it globally visible. 1 for the lookup. 5080 */ 5081 ill->ill_refcnt = 0; 5082 ill_refhold(ill); 5083 5084 ill->ill_frag_count = 0; 5085 ill->ill_frag_free_num_pkts = 0; 5086 ill->ill_last_frag_clean_time = 0; 5087 5088 old_ipsq = ill->ill_phyint->phyint_ipsq; 5089 5090 if (ill_glist_insert(ill, "lo", isv6) != 0) 5091 cmn_err(CE_PANIC, "cannot insert loopback interface"); 5092 5093 /* Let SCTP know so that it can add this to its list */ 5094 sctp_update_ill(ill, SCTP_ILL_INSERT); 5095 5096 /* 5097 * We have already assigned ipif_v6lcl_addr above, but we need to 5098 * call sctp_update_ipif_addr() after SCTP_ILL_INSERT, which 5099 * requires to be after ill_glist_insert() since we need the 5100 * ill_index set. Pass on ipv6_loopback as the old address. 5101 */ 5102 sctp_update_ipif_addr(ipif, ov6addr); 5103 5104 /* 5105 * If the ipsq was changed in ill_phyint_reinit free the old ipsq. 5106 */ 5107 if (old_ipsq != ill->ill_phyint->phyint_ipsq) { 5108 /* Loopback ills aren't in any IPMP group */ 5109 ASSERT(!(old_ipsq->ipsq_flags & IPSQ_GROUP)); 5110 ipsq_delete(old_ipsq); 5111 } 5112 5113 /* 5114 * Delay this till the ipif is allocated as ipif_allocate 5115 * de-references ill_phyint for getting the ifindex. We 5116 * can't do this before ipif_allocate because ill_phyint_reinit 5117 * -> phyint_assign_ifindex expects ipif to be present. 5118 */ 5119 mutex_enter(&ill->ill_phyint->phyint_lock); 5120 ill->ill_phyint->phyint_flags |= PHYI_LOOPBACK | PHYI_VIRTUAL; 5121 mutex_exit(&ill->ill_phyint->phyint_lock); 5122 5123 if (ipst->ips_loopback_ksp == NULL) { 5124 /* Export loopback interface statistics */ 5125 ipst->ips_loopback_ksp = kstat_create_netstack("lo", 0, 5126 ipif_loopback_name, "net", 5127 KSTAT_TYPE_NAMED, 2, 0, 5128 ipst->ips_netstack->netstack_stackid); 5129 if (ipst->ips_loopback_ksp != NULL) { 5130 ipst->ips_loopback_ksp->ks_update = 5131 loopback_kstat_update; 5132 kn = KSTAT_NAMED_PTR(ipst->ips_loopback_ksp); 5133 kstat_named_init(&kn[0], "ipackets", KSTAT_DATA_UINT32); 5134 kstat_named_init(&kn[1], "opackets", KSTAT_DATA_UINT32); 5135 ipst->ips_loopback_ksp->ks_private = 5136 (void *)(uintptr_t)ipst->ips_netstack-> 5137 netstack_stackid; 5138 kstat_install(ipst->ips_loopback_ksp); 5139 } 5140 } 5141 5142 if (error != NULL) 5143 *error = 0; 5144 *did_alloc = B_TRUE; 5145 rw_exit(&ipst->ips_ill_g_lock); 5146 return (ill); 5147 done: 5148 if (ill != NULL) { 5149 if (ill->ill_phyint != NULL) { 5150 ipsq_t *ipsq; 5151 5152 ipsq = ill->ill_phyint->phyint_ipsq; 5153 if (ipsq != NULL) { 5154 ipsq->ipsq_ipst = NULL; 5155 kmem_free(ipsq, sizeof (ipsq_t)); 5156 } 5157 mi_free(ill->ill_phyint); 5158 } 5159 ill_free_mib(ill); 5160 if (ill->ill_ipst != NULL) 5161 netstack_rele(ill->ill_ipst->ips_netstack); 5162 mi_free(ill); 5163 } 5164 rw_exit(&ipst->ips_ill_g_lock); 5165 if (error != NULL) 5166 *error = ENOMEM; 5167 return (NULL); 5168 } 5169 5170 /* 5171 * For IPP calls - use the ip_stack_t for global stack. 5172 */ 5173 ill_t * 5174 ill_lookup_on_ifindex_global_instance(uint_t index, boolean_t isv6, 5175 queue_t *q, mblk_t *mp, ipsq_func_t func, int *err) 5176 { 5177 ip_stack_t *ipst; 5178 ill_t *ill; 5179 5180 ipst = netstack_find_by_stackid(GLOBAL_NETSTACKID)->netstack_ip; 5181 if (ipst == NULL) { 5182 cmn_err(CE_WARN, "No ip_stack_t for zoneid zero!\n"); 5183 return (NULL); 5184 } 5185 5186 ill = ill_lookup_on_ifindex(index, isv6, q, mp, func, err, ipst); 5187 netstack_rele(ipst->ips_netstack); 5188 return (ill); 5189 } 5190 5191 /* 5192 * Return a pointer to the ill which matches the index and IP version type. 5193 */ 5194 ill_t * 5195 ill_lookup_on_ifindex(uint_t index, boolean_t isv6, queue_t *q, mblk_t *mp, 5196 ipsq_func_t func, int *err, ip_stack_t *ipst) 5197 { 5198 ill_t *ill; 5199 ipsq_t *ipsq; 5200 phyint_t *phyi; 5201 5202 ASSERT((q == NULL && mp == NULL && func == NULL && err == NULL) || 5203 (q != NULL && mp != NULL && func != NULL && err != NULL)); 5204 5205 if (err != NULL) 5206 *err = 0; 5207 5208 /* 5209 * Indexes are stored in the phyint - a common structure 5210 * to both IPv4 and IPv6. 5211 */ 5212 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 5213 phyi = avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 5214 (void *) &index, NULL); 5215 if (phyi != NULL) { 5216 ill = isv6 ? phyi->phyint_illv6: phyi->phyint_illv4; 5217 if (ill != NULL) { 5218 /* 5219 * The block comment at the start of ipif_down 5220 * explains the use of the macros used below 5221 */ 5222 GRAB_CONN_LOCK(q); 5223 mutex_enter(&ill->ill_lock); 5224 if (ILL_CAN_LOOKUP(ill)) { 5225 ill_refhold_locked(ill); 5226 mutex_exit(&ill->ill_lock); 5227 RELEASE_CONN_LOCK(q); 5228 rw_exit(&ipst->ips_ill_g_lock); 5229 return (ill); 5230 } else if (ILL_CAN_WAIT(ill, q)) { 5231 ipsq = ill->ill_phyint->phyint_ipsq; 5232 mutex_enter(&ipsq->ipsq_lock); 5233 rw_exit(&ipst->ips_ill_g_lock); 5234 mutex_exit(&ill->ill_lock); 5235 ipsq_enq(ipsq, q, mp, func, NEW_OP, ill); 5236 mutex_exit(&ipsq->ipsq_lock); 5237 RELEASE_CONN_LOCK(q); 5238 *err = EINPROGRESS; 5239 return (NULL); 5240 } 5241 RELEASE_CONN_LOCK(q); 5242 mutex_exit(&ill->ill_lock); 5243 } 5244 } 5245 rw_exit(&ipst->ips_ill_g_lock); 5246 if (err != NULL) 5247 *err = ENXIO; 5248 return (NULL); 5249 } 5250 5251 /* 5252 * Return the ifindex next in sequence after the passed in ifindex. 5253 * If there is no next ifindex for the given protocol, return 0. 5254 */ 5255 uint_t 5256 ill_get_next_ifindex(uint_t index, boolean_t isv6, ip_stack_t *ipst) 5257 { 5258 phyint_t *phyi; 5259 phyint_t *phyi_initial; 5260 uint_t ifindex; 5261 5262 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 5263 5264 if (index == 0) { 5265 phyi = avl_first( 5266 &ipst->ips_phyint_g_list->phyint_list_avl_by_index); 5267 } else { 5268 phyi = phyi_initial = avl_find( 5269 &ipst->ips_phyint_g_list->phyint_list_avl_by_index, 5270 (void *) &index, NULL); 5271 } 5272 5273 for (; phyi != NULL; 5274 phyi = avl_walk(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 5275 phyi, AVL_AFTER)) { 5276 /* 5277 * If we're not returning the first interface in the tree 5278 * and we still haven't moved past the phyint_t that 5279 * corresponds to index, avl_walk needs to be called again 5280 */ 5281 if (!((index != 0) && (phyi == phyi_initial))) { 5282 if (isv6) { 5283 if ((phyi->phyint_illv6) && 5284 ILL_CAN_LOOKUP(phyi->phyint_illv6) && 5285 (phyi->phyint_illv6->ill_isv6 == 1)) 5286 break; 5287 } else { 5288 if ((phyi->phyint_illv4) && 5289 ILL_CAN_LOOKUP(phyi->phyint_illv4) && 5290 (phyi->phyint_illv4->ill_isv6 == 0)) 5291 break; 5292 } 5293 } 5294 } 5295 5296 rw_exit(&ipst->ips_ill_g_lock); 5297 5298 if (phyi != NULL) 5299 ifindex = phyi->phyint_ifindex; 5300 else 5301 ifindex = 0; 5302 5303 return (ifindex); 5304 } 5305 5306 5307 /* 5308 * Return the ifindex for the named interface. 5309 * If there is no next ifindex for the interface, return 0. 5310 */ 5311 uint_t 5312 ill_get_ifindex_by_name(char *name, ip_stack_t *ipst) 5313 { 5314 phyint_t *phyi; 5315 avl_index_t where = 0; 5316 uint_t ifindex; 5317 5318 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 5319 5320 if ((phyi = avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_name, 5321 name, &where)) == NULL) { 5322 rw_exit(&ipst->ips_ill_g_lock); 5323 return (0); 5324 } 5325 5326 ifindex = phyi->phyint_ifindex; 5327 5328 rw_exit(&ipst->ips_ill_g_lock); 5329 5330 return (ifindex); 5331 } 5332 5333 5334 /* 5335 * Obtain a reference to the ill. The ill_refcnt is a dynamic refcnt 5336 * that gives a running thread a reference to the ill. This reference must be 5337 * released by the thread when it is done accessing the ill and related 5338 * objects. ill_refcnt can not be used to account for static references 5339 * such as other structures pointing to an ill. Callers must generally 5340 * check whether an ill can be refheld by using ILL_CAN_LOOKUP macros 5341 * or be sure that the ill is not being deleted or changing state before 5342 * calling the refhold functions. A non-zero ill_refcnt ensures that the 5343 * ill won't change any of its critical state such as address, netmask etc. 5344 */ 5345 void 5346 ill_refhold(ill_t *ill) 5347 { 5348 mutex_enter(&ill->ill_lock); 5349 ill->ill_refcnt++; 5350 ILL_TRACE_REF(ill); 5351 mutex_exit(&ill->ill_lock); 5352 } 5353 5354 void 5355 ill_refhold_locked(ill_t *ill) 5356 { 5357 ASSERT(MUTEX_HELD(&ill->ill_lock)); 5358 ill->ill_refcnt++; 5359 ILL_TRACE_REF(ill); 5360 } 5361 5362 int 5363 ill_check_and_refhold(ill_t *ill) 5364 { 5365 mutex_enter(&ill->ill_lock); 5366 if (ILL_CAN_LOOKUP(ill)) { 5367 ill_refhold_locked(ill); 5368 mutex_exit(&ill->ill_lock); 5369 return (0); 5370 } 5371 mutex_exit(&ill->ill_lock); 5372 return (ILL_LOOKUP_FAILED); 5373 } 5374 5375 /* 5376 * Must not be called while holding any locks. Otherwise if this is 5377 * the last reference to be released, there is a chance of recursive mutex 5378 * panic due to ill_refrele -> ipif_ill_refrele_tail -> qwriter_ip trying 5379 * to restart an ioctl. 5380 */ 5381 void 5382 ill_refrele(ill_t *ill) 5383 { 5384 mutex_enter(&ill->ill_lock); 5385 ASSERT(ill->ill_refcnt != 0); 5386 ill->ill_refcnt--; 5387 ILL_UNTRACE_REF(ill); 5388 if (ill->ill_refcnt != 0) { 5389 /* Every ire pointing to the ill adds 1 to ill_refcnt */ 5390 mutex_exit(&ill->ill_lock); 5391 return; 5392 } 5393 5394 /* Drops the ill_lock */ 5395 ipif_ill_refrele_tail(ill); 5396 } 5397 5398 /* 5399 * Obtain a weak reference count on the ill. This reference ensures the 5400 * ill won't be freed, but the ill may change any of its critical state 5401 * such as netmask, address etc. Returns an error if the ill has started 5402 * closing. 5403 */ 5404 boolean_t 5405 ill_waiter_inc(ill_t *ill) 5406 { 5407 mutex_enter(&ill->ill_lock); 5408 if (ill->ill_state_flags & ILL_CONDEMNED) { 5409 mutex_exit(&ill->ill_lock); 5410 return (B_FALSE); 5411 } 5412 ill->ill_waiters++; 5413 mutex_exit(&ill->ill_lock); 5414 return (B_TRUE); 5415 } 5416 5417 void 5418 ill_waiter_dcr(ill_t *ill) 5419 { 5420 mutex_enter(&ill->ill_lock); 5421 ill->ill_waiters--; 5422 if (ill->ill_waiters == 0) 5423 cv_broadcast(&ill->ill_cv); 5424 mutex_exit(&ill->ill_lock); 5425 } 5426 5427 /* 5428 * Named Dispatch routine to produce a formatted report on all ILLs. 5429 * This report is accessed by using the ndd utility to "get" ND variable 5430 * "ip_ill_status". 5431 */ 5432 /* ARGSUSED */ 5433 int 5434 ip_ill_report(queue_t *q, mblk_t *mp, caddr_t arg, cred_t *ioc_cr) 5435 { 5436 ill_t *ill; 5437 ill_walk_context_t ctx; 5438 ip_stack_t *ipst; 5439 5440 ipst = CONNQ_TO_IPST(q); 5441 5442 (void) mi_mpprintf(mp, 5443 "ILL " MI_COL_HDRPAD_STR 5444 /* 01234567[89ABCDEF] */ 5445 "rq " MI_COL_HDRPAD_STR 5446 /* 01234567[89ABCDEF] */ 5447 "wq " MI_COL_HDRPAD_STR 5448 /* 01234567[89ABCDEF] */ 5449 "upcnt mxfrg err name"); 5450 /* 12345 12345 123 xxxxxxxx */ 5451 5452 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 5453 ill = ILL_START_WALK_ALL(&ctx, ipst); 5454 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 5455 (void) mi_mpprintf(mp, 5456 MI_COL_PTRFMT_STR MI_COL_PTRFMT_STR MI_COL_PTRFMT_STR 5457 "%05u %05u %03d %s", 5458 (void *)ill, (void *)ill->ill_rq, (void *)ill->ill_wq, 5459 ill->ill_ipif_up_count, 5460 ill->ill_max_frag, ill->ill_error, ill->ill_name); 5461 } 5462 rw_exit(&ipst->ips_ill_g_lock); 5463 5464 return (0); 5465 } 5466 5467 /* 5468 * Named Dispatch routine to produce a formatted report on all IPIFs. 5469 * This report is accessed by using the ndd utility to "get" ND variable 5470 * "ip_ipif_status". 5471 */ 5472 /* ARGSUSED */ 5473 int 5474 ip_ipif_report(queue_t *q, mblk_t *mp, caddr_t arg, cred_t *ioc_cr) 5475 { 5476 char buf1[INET6_ADDRSTRLEN]; 5477 char buf2[INET6_ADDRSTRLEN]; 5478 char buf3[INET6_ADDRSTRLEN]; 5479 char buf4[INET6_ADDRSTRLEN]; 5480 char buf5[INET6_ADDRSTRLEN]; 5481 char buf6[INET6_ADDRSTRLEN]; 5482 char buf[LIFNAMSIZ]; 5483 ill_t *ill; 5484 ipif_t *ipif; 5485 nv_t *nvp; 5486 uint64_t flags; 5487 zoneid_t zoneid; 5488 ill_walk_context_t ctx; 5489 ip_stack_t *ipst = CONNQ_TO_IPST(q); 5490 5491 (void) mi_mpprintf(mp, 5492 "IPIF metric mtu in/out/forward name zone flags...\n" 5493 "\tlocal address\n" 5494 "\tsrc address\n" 5495 "\tsubnet\n" 5496 "\tmask\n" 5497 "\tbroadcast\n" 5498 "\tp-p-dst"); 5499 5500 ASSERT(q->q_next == NULL); 5501 zoneid = Q_TO_CONN(q)->conn_zoneid; /* IP is a driver */ 5502 5503 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 5504 ill = ILL_START_WALK_ALL(&ctx, ipst); 5505 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 5506 for (ipif = ill->ill_ipif; ipif != NULL; 5507 ipif = ipif->ipif_next) { 5508 if (zoneid != GLOBAL_ZONEID && 5509 zoneid != ipif->ipif_zoneid && 5510 ipif->ipif_zoneid != ALL_ZONES) 5511 continue; 5512 5513 ipif_get_name(ipif, buf, sizeof (buf)); 5514 (void) mi_mpprintf(mp, 5515 MI_COL_PTRFMT_STR 5516 "%04u %05u %u/%u/%u %s %d", 5517 (void *)ipif, 5518 ipif->ipif_metric, ipif->ipif_mtu, 5519 ipif->ipif_ib_pkt_count, 5520 ipif->ipif_ob_pkt_count, 5521 ipif->ipif_fo_pkt_count, 5522 buf, 5523 ipif->ipif_zoneid); 5524 5525 flags = ipif->ipif_flags | ipif->ipif_ill->ill_flags | 5526 ipif->ipif_ill->ill_phyint->phyint_flags; 5527 5528 /* Tack on text strings for any flags. */ 5529 nvp = ipif_nv_tbl; 5530 for (; nvp < A_END(ipif_nv_tbl); nvp++) { 5531 if (nvp->nv_value & flags) 5532 (void) mi_mpprintf_nr(mp, " %s", 5533 nvp->nv_name); 5534 } 5535 (void) mi_mpprintf(mp, 5536 "\t%s\n\t%s\n\t%s\n\t%s\n\t%s\n\t%s", 5537 inet_ntop(AF_INET6, 5538 &ipif->ipif_v6lcl_addr, buf1, sizeof (buf1)), 5539 inet_ntop(AF_INET6, 5540 &ipif->ipif_v6src_addr, buf2, sizeof (buf2)), 5541 inet_ntop(AF_INET6, 5542 &ipif->ipif_v6subnet, buf3, sizeof (buf3)), 5543 inet_ntop(AF_INET6, 5544 &ipif->ipif_v6net_mask, buf4, sizeof (buf4)), 5545 inet_ntop(AF_INET6, 5546 &ipif->ipif_v6brd_addr, buf5, sizeof (buf5)), 5547 inet_ntop(AF_INET6, 5548 &ipif->ipif_v6pp_dst_addr, buf6, sizeof (buf6))); 5549 } 5550 } 5551 rw_exit(&ipst->ips_ill_g_lock); 5552 return (0); 5553 } 5554 5555 /* 5556 * ip_ll_subnet_defaults is called when we get the DL_INFO_ACK back from the 5557 * driver. We construct best guess defaults for lower level information that 5558 * we need. If an interface is brought up without injection of any overriding 5559 * information from outside, we have to be ready to go with these defaults. 5560 * When we get the first DL_INFO_ACK (from ip_open() sending a DL_INFO_REQ) 5561 * we primarely want the dl_provider_style. 5562 * The subsequent DL_INFO_ACK is received after doing a DL_ATTACH and DL_BIND 5563 * at which point we assume the other part of the information is valid. 5564 */ 5565 void 5566 ip_ll_subnet_defaults(ill_t *ill, mblk_t *mp) 5567 { 5568 uchar_t *brdcst_addr; 5569 uint_t brdcst_addr_length, phys_addr_length; 5570 t_scalar_t sap_length; 5571 dl_info_ack_t *dlia; 5572 ip_m_t *ipm; 5573 dl_qos_cl_sel1_t *sel1; 5574 5575 ASSERT(IAM_WRITER_ILL(ill)); 5576 5577 /* 5578 * Till the ill is fully up ILL_CHANGING will be set and 5579 * the ill is not globally visible. So no need for a lock. 5580 */ 5581 dlia = (dl_info_ack_t *)mp->b_rptr; 5582 ill->ill_mactype = dlia->dl_mac_type; 5583 5584 ipm = ip_m_lookup(dlia->dl_mac_type); 5585 if (ipm == NULL) { 5586 ipm = ip_m_lookup(DL_OTHER); 5587 ASSERT(ipm != NULL); 5588 } 5589 ill->ill_media = ipm; 5590 5591 /* 5592 * When the new DLPI stuff is ready we'll pull lengths 5593 * from dlia. 5594 */ 5595 if (dlia->dl_version == DL_VERSION_2) { 5596 brdcst_addr_length = dlia->dl_brdcst_addr_length; 5597 brdcst_addr = mi_offset_param(mp, dlia->dl_brdcst_addr_offset, 5598 brdcst_addr_length); 5599 if (brdcst_addr == NULL) { 5600 brdcst_addr_length = 0; 5601 } 5602 sap_length = dlia->dl_sap_length; 5603 phys_addr_length = dlia->dl_addr_length - ABS(sap_length); 5604 ip1dbg(("ip: bcast_len %d, sap_len %d, phys_len %d\n", 5605 brdcst_addr_length, sap_length, phys_addr_length)); 5606 } else { 5607 brdcst_addr_length = 6; 5608 brdcst_addr = ip_six_byte_all_ones; 5609 sap_length = -2; 5610 phys_addr_length = brdcst_addr_length; 5611 } 5612 5613 ill->ill_bcast_addr_length = brdcst_addr_length; 5614 ill->ill_phys_addr_length = phys_addr_length; 5615 ill->ill_sap_length = sap_length; 5616 ill->ill_max_frag = dlia->dl_max_sdu; 5617 ill->ill_max_mtu = ill->ill_max_frag; 5618 5619 ill->ill_type = ipm->ip_m_type; 5620 5621 if (!ill->ill_dlpi_style_set) { 5622 if (dlia->dl_provider_style == DL_STYLE2) 5623 ill->ill_needs_attach = 1; 5624 5625 /* 5626 * Allocate the first ipif on this ill. We don't delay it 5627 * further as ioctl handling assumes atleast one ipif to 5628 * be present. 5629 * 5630 * At this point we don't know whether the ill is v4 or v6. 5631 * We will know this whan the SIOCSLIFNAME happens and 5632 * the correct value for ill_isv6 will be assigned in 5633 * ipif_set_values(). We need to hold the ill lock and 5634 * clear the ILL_LL_SUBNET_PENDING flag and atomically do 5635 * the wakeup. 5636 */ 5637 (void) ipif_allocate(ill, 0, IRE_LOCAL, 5638 dlia->dl_provider_style == DL_STYLE2 ? B_FALSE : B_TRUE); 5639 mutex_enter(&ill->ill_lock); 5640 ASSERT(ill->ill_dlpi_style_set == 0); 5641 ill->ill_dlpi_style_set = 1; 5642 ill->ill_state_flags &= ~ILL_LL_SUBNET_PENDING; 5643 cv_broadcast(&ill->ill_cv); 5644 mutex_exit(&ill->ill_lock); 5645 freemsg(mp); 5646 return; 5647 } 5648 ASSERT(ill->ill_ipif != NULL); 5649 /* 5650 * We know whether it is IPv4 or IPv6 now, as this is the 5651 * second DL_INFO_ACK we are recieving in response to the 5652 * DL_INFO_REQ sent in ipif_set_values. 5653 */ 5654 if (ill->ill_isv6) 5655 ill->ill_sap = IP6_DL_SAP; 5656 else 5657 ill->ill_sap = IP_DL_SAP; 5658 /* 5659 * Set ipif_mtu which is used to set the IRE's 5660 * ire_max_frag value. The driver could have sent 5661 * a different mtu from what it sent last time. No 5662 * need to call ipif_mtu_change because IREs have 5663 * not yet been created. 5664 */ 5665 ill->ill_ipif->ipif_mtu = ill->ill_max_mtu; 5666 /* 5667 * Clear all the flags that were set based on ill_bcast_addr_length 5668 * and ill_phys_addr_length (in ipif_set_values) as these could have 5669 * changed now and we need to re-evaluate. 5670 */ 5671 ill->ill_flags &= ~(ILLF_MULTICAST | ILLF_NONUD | ILLF_NOARP); 5672 ill->ill_ipif->ipif_flags &= ~(IPIF_BROADCAST | IPIF_POINTOPOINT); 5673 5674 /* 5675 * Free ill_resolver_mp and ill_bcast_mp as things could have 5676 * changed now. 5677 */ 5678 if (ill->ill_bcast_addr_length == 0) { 5679 if (ill->ill_resolver_mp != NULL) 5680 freemsg(ill->ill_resolver_mp); 5681 if (ill->ill_bcast_mp != NULL) 5682 freemsg(ill->ill_bcast_mp); 5683 if (ill->ill_flags & ILLF_XRESOLV) 5684 ill->ill_net_type = IRE_IF_RESOLVER; 5685 else 5686 ill->ill_net_type = IRE_IF_NORESOLVER; 5687 ill->ill_resolver_mp = ill_dlur_gen(NULL, 5688 ill->ill_phys_addr_length, 5689 ill->ill_sap, 5690 ill->ill_sap_length); 5691 ill->ill_bcast_mp = copymsg(ill->ill_resolver_mp); 5692 5693 if (ill->ill_isv6) 5694 /* 5695 * Note: xresolv interfaces will eventually need NOARP 5696 * set here as well, but that will require those 5697 * external resolvers to have some knowledge of 5698 * that flag and act appropriately. Not to be changed 5699 * at present. 5700 */ 5701 ill->ill_flags |= ILLF_NONUD; 5702 else 5703 ill->ill_flags |= ILLF_NOARP; 5704 5705 if (ill->ill_phys_addr_length == 0) { 5706 if (ill->ill_media->ip_m_mac_type == SUNW_DL_VNI) { 5707 ill->ill_ipif->ipif_flags |= IPIF_NOXMIT; 5708 ill->ill_phyint->phyint_flags |= PHYI_VIRTUAL; 5709 } else { 5710 /* pt-pt supports multicast. */ 5711 ill->ill_flags |= ILLF_MULTICAST; 5712 ill->ill_ipif->ipif_flags |= IPIF_POINTOPOINT; 5713 } 5714 } 5715 } else { 5716 ill->ill_net_type = IRE_IF_RESOLVER; 5717 if (ill->ill_bcast_mp != NULL) 5718 freemsg(ill->ill_bcast_mp); 5719 ill->ill_bcast_mp = ill_dlur_gen(brdcst_addr, 5720 ill->ill_bcast_addr_length, ill->ill_sap, 5721 ill->ill_sap_length); 5722 /* 5723 * Later detect lack of DLPI driver multicast 5724 * capability by catching DL_ENABMULTI errors in 5725 * ip_rput_dlpi. 5726 */ 5727 ill->ill_flags |= ILLF_MULTICAST; 5728 if (!ill->ill_isv6) 5729 ill->ill_ipif->ipif_flags |= IPIF_BROADCAST; 5730 } 5731 /* By default an interface does not support any CoS marking */ 5732 ill->ill_flags &= ~ILLF_COS_ENABLED; 5733 5734 /* 5735 * If we get QoS information in DL_INFO_ACK, the device supports 5736 * some form of CoS marking, set ILLF_COS_ENABLED. 5737 */ 5738 sel1 = (dl_qos_cl_sel1_t *)mi_offset_param(mp, dlia->dl_qos_offset, 5739 dlia->dl_qos_length); 5740 if ((sel1 != NULL) && (sel1->dl_qos_type == DL_QOS_CL_SEL1)) { 5741 ill->ill_flags |= ILLF_COS_ENABLED; 5742 } 5743 5744 /* Clear any previous error indication. */ 5745 ill->ill_error = 0; 5746 freemsg(mp); 5747 } 5748 5749 /* 5750 * Perform various checks to verify that an address would make sense as a 5751 * local, remote, or subnet interface address. 5752 */ 5753 static boolean_t 5754 ip_addr_ok_v4(ipaddr_t addr, ipaddr_t subnet_mask) 5755 { 5756 ipaddr_t net_mask; 5757 5758 /* 5759 * Don't allow all zeroes, all ones or experimental address, but allow 5760 * all ones netmask. 5761 */ 5762 if ((net_mask = ip_net_mask(addr)) == 0) 5763 return (B_FALSE); 5764 /* A given netmask overrides the "guess" netmask */ 5765 if (subnet_mask != 0) 5766 net_mask = subnet_mask; 5767 if ((net_mask != ~(ipaddr_t)0) && ((addr == (addr & net_mask)) || 5768 (addr == (addr | ~net_mask)))) { 5769 return (B_FALSE); 5770 } 5771 if (CLASSD(addr)) 5772 return (B_FALSE); 5773 5774 return (B_TRUE); 5775 } 5776 5777 #define V6_IPIF_LINKLOCAL(p) \ 5778 IN6_IS_ADDR_LINKLOCAL(&(p)->ipif_v6lcl_addr) 5779 5780 /* 5781 * Compare two given ipifs and check if the second one is better than 5782 * the first one using the order of preference (not taking deprecated 5783 * into acount) specified in ipif_lookup_multicast(). 5784 */ 5785 static boolean_t 5786 ipif_comp_multi(ipif_t *old_ipif, ipif_t *new_ipif, boolean_t isv6) 5787 { 5788 /* Check the least preferred first. */ 5789 if (IS_LOOPBACK(old_ipif->ipif_ill)) { 5790 /* If both ipifs are the same, use the first one. */ 5791 if (IS_LOOPBACK(new_ipif->ipif_ill)) 5792 return (B_FALSE); 5793 else 5794 return (B_TRUE); 5795 } 5796 5797 /* For IPv6, check for link local address. */ 5798 if (isv6 && V6_IPIF_LINKLOCAL(old_ipif)) { 5799 if (IS_LOOPBACK(new_ipif->ipif_ill) || 5800 V6_IPIF_LINKLOCAL(new_ipif)) { 5801 /* The second one is equal or less preferred. */ 5802 return (B_FALSE); 5803 } else { 5804 return (B_TRUE); 5805 } 5806 } 5807 5808 /* Then check for point to point interface. */ 5809 if (old_ipif->ipif_flags & IPIF_POINTOPOINT) { 5810 if (IS_LOOPBACK(new_ipif->ipif_ill) || 5811 (isv6 && V6_IPIF_LINKLOCAL(new_ipif)) || 5812 (new_ipif->ipif_flags & IPIF_POINTOPOINT)) { 5813 return (B_FALSE); 5814 } else { 5815 return (B_TRUE); 5816 } 5817 } 5818 5819 /* old_ipif is a normal interface, so no need to use the new one. */ 5820 return (B_FALSE); 5821 } 5822 5823 /* 5824 * Find any non-virtual, not condemned, and up multicast capable interface 5825 * given an IP instance and zoneid. Order of preference is: 5826 * 5827 * 1. normal 5828 * 1.1 normal, but deprecated 5829 * 2. point to point 5830 * 2.1 point to point, but deprecated 5831 * 3. link local 5832 * 3.1 link local, but deprecated 5833 * 4. loopback. 5834 */ 5835 ipif_t * 5836 ipif_lookup_multicast(ip_stack_t *ipst, zoneid_t zoneid, boolean_t isv6) 5837 { 5838 ill_t *ill; 5839 ill_walk_context_t ctx; 5840 ipif_t *ipif; 5841 ipif_t *saved_ipif = NULL; 5842 ipif_t *dep_ipif = NULL; 5843 5844 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 5845 if (isv6) 5846 ill = ILL_START_WALK_V6(&ctx, ipst); 5847 else 5848 ill = ILL_START_WALK_V4(&ctx, ipst); 5849 5850 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 5851 mutex_enter(&ill->ill_lock); 5852 if (IS_VNI(ill) || !ILL_CAN_LOOKUP(ill) || 5853 !(ill->ill_flags & ILLF_MULTICAST)) { 5854 mutex_exit(&ill->ill_lock); 5855 continue; 5856 } 5857 for (ipif = ill->ill_ipif; ipif != NULL; 5858 ipif = ipif->ipif_next) { 5859 if (zoneid != ipif->ipif_zoneid && 5860 zoneid != ALL_ZONES && 5861 ipif->ipif_zoneid != ALL_ZONES) { 5862 continue; 5863 } 5864 if (!(ipif->ipif_flags & IPIF_UP) || 5865 !IPIF_CAN_LOOKUP(ipif)) { 5866 continue; 5867 } 5868 5869 /* 5870 * Found one candidate. If it is deprecated, 5871 * remember it in dep_ipif. If it is not deprecated, 5872 * remember it in saved_ipif. 5873 */ 5874 if (ipif->ipif_flags & IPIF_DEPRECATED) { 5875 if (dep_ipif == NULL) { 5876 dep_ipif = ipif; 5877 } else if (ipif_comp_multi(dep_ipif, ipif, 5878 isv6)) { 5879 /* 5880 * If the previous dep_ipif does not 5881 * belong to the same ill, we've done 5882 * a ipif_refhold() on it. So we need 5883 * to release it. 5884 */ 5885 if (dep_ipif->ipif_ill != ill) 5886 ipif_refrele(dep_ipif); 5887 dep_ipif = ipif; 5888 } 5889 continue; 5890 } 5891 if (saved_ipif == NULL) { 5892 saved_ipif = ipif; 5893 } else { 5894 if (ipif_comp_multi(saved_ipif, ipif, isv6)) { 5895 if (saved_ipif->ipif_ill != ill) 5896 ipif_refrele(saved_ipif); 5897 saved_ipif = ipif; 5898 } 5899 } 5900 } 5901 /* 5902 * Before going to the next ill, do a ipif_refhold() on the 5903 * saved ones. 5904 */ 5905 if (saved_ipif != NULL && saved_ipif->ipif_ill == ill) 5906 ipif_refhold_locked(saved_ipif); 5907 if (dep_ipif != NULL && dep_ipif->ipif_ill == ill) 5908 ipif_refhold_locked(dep_ipif); 5909 mutex_exit(&ill->ill_lock); 5910 } 5911 rw_exit(&ipst->ips_ill_g_lock); 5912 5913 /* 5914 * If we have only the saved_ipif, return it. But if we have both 5915 * saved_ipif and dep_ipif, check to see which one is better. 5916 */ 5917 if (saved_ipif != NULL) { 5918 if (dep_ipif != NULL) { 5919 if (ipif_comp_multi(saved_ipif, dep_ipif, isv6)) { 5920 ipif_refrele(saved_ipif); 5921 return (dep_ipif); 5922 } else { 5923 ipif_refrele(dep_ipif); 5924 return (saved_ipif); 5925 } 5926 } 5927 return (saved_ipif); 5928 } else { 5929 return (dep_ipif); 5930 } 5931 } 5932 5933 /* 5934 * This function is called when an application does not specify an interface 5935 * to be used for multicast traffic (joining a group/sending data). It 5936 * calls ire_lookup_multi() to look for an interface route for the 5937 * specified multicast group. Doing this allows the administrator to add 5938 * prefix routes for multicast to indicate which interface to be used for 5939 * multicast traffic in the above scenario. The route could be for all 5940 * multicast (224.0/4), for a single multicast group (a /32 route) or 5941 * anything in between. If there is no such multicast route, we just find 5942 * any multicast capable interface and return it. The returned ipif 5943 * is refhold'ed. 5944 */ 5945 ipif_t * 5946 ipif_lookup_group(ipaddr_t group, zoneid_t zoneid, ip_stack_t *ipst) 5947 { 5948 ire_t *ire; 5949 ipif_t *ipif; 5950 5951 ire = ire_lookup_multi(group, zoneid, ipst); 5952 if (ire != NULL) { 5953 ipif = ire->ire_ipif; 5954 ipif_refhold(ipif); 5955 ire_refrele(ire); 5956 return (ipif); 5957 } 5958 5959 return (ipif_lookup_multicast(ipst, zoneid, B_FALSE)); 5960 } 5961 5962 /* 5963 * Look for an ipif with the specified interface address and destination. 5964 * The destination address is used only for matching point-to-point interfaces. 5965 */ 5966 ipif_t * 5967 ipif_lookup_interface(ipaddr_t if_addr, ipaddr_t dst, queue_t *q, mblk_t *mp, 5968 ipsq_func_t func, int *error, ip_stack_t *ipst) 5969 { 5970 ipif_t *ipif; 5971 ill_t *ill; 5972 ill_walk_context_t ctx; 5973 ipsq_t *ipsq; 5974 5975 if (error != NULL) 5976 *error = 0; 5977 5978 /* 5979 * First match all the point-to-point interfaces 5980 * before looking at non-point-to-point interfaces. 5981 * This is done to avoid returning non-point-to-point 5982 * ipif instead of unnumbered point-to-point ipif. 5983 */ 5984 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 5985 ill = ILL_START_WALK_V4(&ctx, ipst); 5986 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 5987 GRAB_CONN_LOCK(q); 5988 mutex_enter(&ill->ill_lock); 5989 for (ipif = ill->ill_ipif; ipif != NULL; 5990 ipif = ipif->ipif_next) { 5991 /* Allow the ipif to be down */ 5992 if ((ipif->ipif_flags & IPIF_POINTOPOINT) && 5993 (ipif->ipif_lcl_addr == if_addr) && 5994 (ipif->ipif_pp_dst_addr == dst)) { 5995 /* 5996 * The block comment at the start of ipif_down 5997 * explains the use of the macros used below 5998 */ 5999 if (IPIF_CAN_LOOKUP(ipif)) { 6000 ipif_refhold_locked(ipif); 6001 mutex_exit(&ill->ill_lock); 6002 RELEASE_CONN_LOCK(q); 6003 rw_exit(&ipst->ips_ill_g_lock); 6004 return (ipif); 6005 } else if (IPIF_CAN_WAIT(ipif, q)) { 6006 ipsq = ill->ill_phyint->phyint_ipsq; 6007 mutex_enter(&ipsq->ipsq_lock); 6008 mutex_exit(&ill->ill_lock); 6009 rw_exit(&ipst->ips_ill_g_lock); 6010 ipsq_enq(ipsq, q, mp, func, NEW_OP, 6011 ill); 6012 mutex_exit(&ipsq->ipsq_lock); 6013 RELEASE_CONN_LOCK(q); 6014 *error = EINPROGRESS; 6015 return (NULL); 6016 } 6017 } 6018 } 6019 mutex_exit(&ill->ill_lock); 6020 RELEASE_CONN_LOCK(q); 6021 } 6022 rw_exit(&ipst->ips_ill_g_lock); 6023 6024 /* lookup the ipif based on interface address */ 6025 ipif = ipif_lookup_addr(if_addr, NULL, ALL_ZONES, q, mp, func, error, 6026 ipst); 6027 ASSERT(ipif == NULL || !ipif->ipif_isv6); 6028 return (ipif); 6029 } 6030 6031 /* 6032 * Look for an ipif with the specified address. For point-point links 6033 * we look for matches on either the destination address and the local 6034 * address, but we ignore the check on the local address if IPIF_UNNUMBERED 6035 * is set. 6036 * Matches on a specific ill if match_ill is set. 6037 */ 6038 ipif_t * 6039 ipif_lookup_addr(ipaddr_t addr, ill_t *match_ill, zoneid_t zoneid, queue_t *q, 6040 mblk_t *mp, ipsq_func_t func, int *error, ip_stack_t *ipst) 6041 { 6042 ipif_t *ipif; 6043 ill_t *ill; 6044 boolean_t ptp = B_FALSE; 6045 ipsq_t *ipsq; 6046 ill_walk_context_t ctx; 6047 6048 if (error != NULL) 6049 *error = 0; 6050 6051 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 6052 /* 6053 * Repeat twice, first based on local addresses and 6054 * next time for pointopoint. 6055 */ 6056 repeat: 6057 ill = ILL_START_WALK_V4(&ctx, ipst); 6058 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 6059 if (match_ill != NULL && ill != match_ill) { 6060 continue; 6061 } 6062 GRAB_CONN_LOCK(q); 6063 mutex_enter(&ill->ill_lock); 6064 for (ipif = ill->ill_ipif; ipif != NULL; 6065 ipif = ipif->ipif_next) { 6066 if (zoneid != ALL_ZONES && 6067 zoneid != ipif->ipif_zoneid && 6068 ipif->ipif_zoneid != ALL_ZONES) 6069 continue; 6070 /* Allow the ipif to be down */ 6071 if ((!ptp && (ipif->ipif_lcl_addr == addr) && 6072 ((ipif->ipif_flags & IPIF_UNNUMBERED) == 0)) || 6073 (ptp && (ipif->ipif_flags & IPIF_POINTOPOINT) && 6074 (ipif->ipif_pp_dst_addr == addr))) { 6075 /* 6076 * The block comment at the start of ipif_down 6077 * explains the use of the macros used below 6078 */ 6079 if (IPIF_CAN_LOOKUP(ipif)) { 6080 ipif_refhold_locked(ipif); 6081 mutex_exit(&ill->ill_lock); 6082 RELEASE_CONN_LOCK(q); 6083 rw_exit(&ipst->ips_ill_g_lock); 6084 return (ipif); 6085 } else if (IPIF_CAN_WAIT(ipif, q)) { 6086 ipsq = ill->ill_phyint->phyint_ipsq; 6087 mutex_enter(&ipsq->ipsq_lock); 6088 mutex_exit(&ill->ill_lock); 6089 rw_exit(&ipst->ips_ill_g_lock); 6090 ipsq_enq(ipsq, q, mp, func, NEW_OP, 6091 ill); 6092 mutex_exit(&ipsq->ipsq_lock); 6093 RELEASE_CONN_LOCK(q); 6094 *error = EINPROGRESS; 6095 return (NULL); 6096 } 6097 } 6098 } 6099 mutex_exit(&ill->ill_lock); 6100 RELEASE_CONN_LOCK(q); 6101 } 6102 6103 /* If we already did the ptp case, then we are done */ 6104 if (ptp) { 6105 rw_exit(&ipst->ips_ill_g_lock); 6106 if (error != NULL) 6107 *error = ENXIO; 6108 return (NULL); 6109 } 6110 ptp = B_TRUE; 6111 goto repeat; 6112 } 6113 6114 /* 6115 * Look for an ipif with the specified address. For point-point links 6116 * we look for matches on either the destination address and the local 6117 * address, but we ignore the check on the local address if IPIF_UNNUMBERED 6118 * is set. 6119 * Matches on a specific ill if match_ill is set. 6120 * Return the zoneid for the ipif which matches. ALL_ZONES if no match. 6121 */ 6122 zoneid_t 6123 ipif_lookup_addr_zoneid(ipaddr_t addr, ill_t *match_ill, ip_stack_t *ipst) 6124 { 6125 zoneid_t zoneid; 6126 ipif_t *ipif; 6127 ill_t *ill; 6128 boolean_t ptp = B_FALSE; 6129 ill_walk_context_t ctx; 6130 6131 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 6132 /* 6133 * Repeat twice, first based on local addresses and 6134 * next time for pointopoint. 6135 */ 6136 repeat: 6137 ill = ILL_START_WALK_V4(&ctx, ipst); 6138 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 6139 if (match_ill != NULL && ill != match_ill) { 6140 continue; 6141 } 6142 mutex_enter(&ill->ill_lock); 6143 for (ipif = ill->ill_ipif; ipif != NULL; 6144 ipif = ipif->ipif_next) { 6145 /* Allow the ipif to be down */ 6146 if ((!ptp && (ipif->ipif_lcl_addr == addr) && 6147 ((ipif->ipif_flags & IPIF_UNNUMBERED) == 0)) || 6148 (ptp && (ipif->ipif_flags & IPIF_POINTOPOINT) && 6149 (ipif->ipif_pp_dst_addr == addr)) && 6150 !(ipif->ipif_state_flags & IPIF_CONDEMNED)) { 6151 zoneid = ipif->ipif_zoneid; 6152 mutex_exit(&ill->ill_lock); 6153 rw_exit(&ipst->ips_ill_g_lock); 6154 /* 6155 * If ipif_zoneid was ALL_ZONES then we have 6156 * a trusted extensions shared IP address. 6157 * In that case GLOBAL_ZONEID works to send. 6158 */ 6159 if (zoneid == ALL_ZONES) 6160 zoneid = GLOBAL_ZONEID; 6161 return (zoneid); 6162 } 6163 } 6164 mutex_exit(&ill->ill_lock); 6165 } 6166 6167 /* If we already did the ptp case, then we are done */ 6168 if (ptp) { 6169 rw_exit(&ipst->ips_ill_g_lock); 6170 return (ALL_ZONES); 6171 } 6172 ptp = B_TRUE; 6173 goto repeat; 6174 } 6175 6176 /* 6177 * Look for an ipif that matches the specified remote address i.e. the 6178 * ipif that would receive the specified packet. 6179 * First look for directly connected interfaces and then do a recursive 6180 * IRE lookup and pick the first ipif corresponding to the source address in the 6181 * ire. 6182 * Returns: held ipif 6183 */ 6184 ipif_t * 6185 ipif_lookup_remote(ill_t *ill, ipaddr_t addr, zoneid_t zoneid) 6186 { 6187 ipif_t *ipif; 6188 ire_t *ire; 6189 ip_stack_t *ipst = ill->ill_ipst; 6190 6191 ASSERT(!ill->ill_isv6); 6192 6193 /* 6194 * Someone could be changing this ipif currently or change it 6195 * after we return this. Thus a few packets could use the old 6196 * old values. However structure updates/creates (ire, ilg, ilm etc) 6197 * will atomically be updated or cleaned up with the new value 6198 * Thus we don't need a lock to check the flags or other attrs below. 6199 */ 6200 mutex_enter(&ill->ill_lock); 6201 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 6202 if (!IPIF_CAN_LOOKUP(ipif)) 6203 continue; 6204 if (zoneid != ALL_ZONES && zoneid != ipif->ipif_zoneid && 6205 ipif->ipif_zoneid != ALL_ZONES) 6206 continue; 6207 /* Allow the ipif to be down */ 6208 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 6209 if ((ipif->ipif_pp_dst_addr == addr) || 6210 (!(ipif->ipif_flags & IPIF_UNNUMBERED) && 6211 ipif->ipif_lcl_addr == addr)) { 6212 ipif_refhold_locked(ipif); 6213 mutex_exit(&ill->ill_lock); 6214 return (ipif); 6215 } 6216 } else if (ipif->ipif_subnet == (addr & ipif->ipif_net_mask)) { 6217 ipif_refhold_locked(ipif); 6218 mutex_exit(&ill->ill_lock); 6219 return (ipif); 6220 } 6221 } 6222 mutex_exit(&ill->ill_lock); 6223 ire = ire_route_lookup(addr, 0, 0, 0, NULL, NULL, zoneid, 6224 NULL, MATCH_IRE_RECURSIVE, ipst); 6225 if (ire != NULL) { 6226 /* 6227 * The callers of this function wants to know the 6228 * interface on which they have to send the replies 6229 * back. For IRE_CACHES that have ire_stq and ire_ipif 6230 * derived from different ills, we really don't care 6231 * what we return here. 6232 */ 6233 ipif = ire->ire_ipif; 6234 if (ipif != NULL) { 6235 ipif_refhold(ipif); 6236 ire_refrele(ire); 6237 return (ipif); 6238 } 6239 ire_refrele(ire); 6240 } 6241 /* Pick the first interface */ 6242 ipif = ipif_get_next_ipif(NULL, ill); 6243 return (ipif); 6244 } 6245 6246 /* 6247 * This func does not prevent refcnt from increasing. But if 6248 * the caller has taken steps to that effect, then this func 6249 * can be used to determine whether the ill has become quiescent 6250 */ 6251 boolean_t 6252 ill_is_quiescent(ill_t *ill) 6253 { 6254 ipif_t *ipif; 6255 6256 ASSERT(MUTEX_HELD(&ill->ill_lock)); 6257 6258 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 6259 if (ipif->ipif_refcnt != 0 || ipif->ipif_ire_cnt != 0) { 6260 return (B_FALSE); 6261 } 6262 } 6263 if (ill->ill_ire_cnt != 0 || ill->ill_refcnt != 0 || 6264 ill->ill_nce_cnt != 0) { 6265 return (B_FALSE); 6266 } 6267 return (B_TRUE); 6268 } 6269 6270 /* 6271 * This func does not prevent refcnt from increasing. But if 6272 * the caller has taken steps to that effect, then this func 6273 * can be used to determine whether the ipif has become quiescent 6274 */ 6275 static boolean_t 6276 ipif_is_quiescent(ipif_t *ipif) 6277 { 6278 ill_t *ill; 6279 6280 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 6281 6282 if (ipif->ipif_refcnt != 0 || ipif->ipif_ire_cnt != 0) { 6283 return (B_FALSE); 6284 } 6285 6286 ill = ipif->ipif_ill; 6287 if (ill->ill_ipif_up_count != 0 || ill->ill_ipif_dup_count != 0 || 6288 ill->ill_logical_down) { 6289 return (B_TRUE); 6290 } 6291 6292 /* This is the last ipif going down or being deleted on this ill */ 6293 if (ill->ill_ire_cnt != 0 || ill->ill_refcnt != 0) { 6294 return (B_FALSE); 6295 } 6296 6297 return (B_TRUE); 6298 } 6299 6300 /* 6301 * This func does not prevent refcnt from increasing. But if 6302 * the caller has taken steps to that effect, then this func 6303 * can be used to determine whether the ipifs marked with IPIF_MOVING 6304 * have become quiescent and can be moved in a failover/failback. 6305 */ 6306 static ipif_t * 6307 ill_quiescent_to_move(ill_t *ill) 6308 { 6309 ipif_t *ipif; 6310 6311 ASSERT(MUTEX_HELD(&ill->ill_lock)); 6312 6313 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 6314 if (ipif->ipif_state_flags & IPIF_MOVING) { 6315 if (ipif->ipif_refcnt != 0 || ipif->ipif_ire_cnt != 0) { 6316 return (ipif); 6317 } 6318 } 6319 } 6320 return (NULL); 6321 } 6322 6323 /* 6324 * The ipif/ill/ire has been refreled. Do the tail processing. 6325 * Determine if the ipif or ill in question has become quiescent and if so 6326 * wakeup close and/or restart any queued pending ioctl that is waiting 6327 * for the ipif_down (or ill_down) 6328 */ 6329 void 6330 ipif_ill_refrele_tail(ill_t *ill) 6331 { 6332 mblk_t *mp; 6333 conn_t *connp; 6334 ipsq_t *ipsq; 6335 ipif_t *ipif; 6336 dl_notify_ind_t *dlindp; 6337 6338 ASSERT(MUTEX_HELD(&ill->ill_lock)); 6339 6340 if ((ill->ill_state_flags & ILL_CONDEMNED) && 6341 ill_is_quiescent(ill)) { 6342 /* ill_close may be waiting */ 6343 cv_broadcast(&ill->ill_cv); 6344 } 6345 6346 /* ipsq can't change because ill_lock is held */ 6347 ipsq = ill->ill_phyint->phyint_ipsq; 6348 if (ipsq->ipsq_waitfor == 0) { 6349 /* Not waiting for anything, just return. */ 6350 mutex_exit(&ill->ill_lock); 6351 return; 6352 } 6353 ASSERT(ipsq->ipsq_pending_mp != NULL && 6354 ipsq->ipsq_pending_ipif != NULL); 6355 /* 6356 * ipif->ipif_refcnt must go down to zero for restarting REMOVEIF. 6357 * Last ipif going down needs to down the ill, so ill_ire_cnt must 6358 * be zero for restarting an ioctl that ends up downing the ill. 6359 */ 6360 ipif = ipsq->ipsq_pending_ipif; 6361 if (ipif->ipif_ill != ill) { 6362 /* The ioctl is pending on some other ill. */ 6363 mutex_exit(&ill->ill_lock); 6364 return; 6365 } 6366 6367 switch (ipsq->ipsq_waitfor) { 6368 case IPIF_DOWN: 6369 case IPIF_FREE: 6370 if (!ipif_is_quiescent(ipif)) { 6371 mutex_exit(&ill->ill_lock); 6372 return; 6373 } 6374 break; 6375 6376 case ILL_DOWN: 6377 case ILL_FREE: 6378 /* 6379 * case ILL_FREE arises only for loopback. otherwise ill_delete 6380 * waits synchronously in ip_close, and no message is queued in 6381 * ipsq_pending_mp at all in this case 6382 */ 6383 if (!ill_is_quiescent(ill)) { 6384 mutex_exit(&ill->ill_lock); 6385 return; 6386 } 6387 6388 break; 6389 6390 case ILL_MOVE_OK: 6391 if (ill_quiescent_to_move(ill) != NULL) { 6392 mutex_exit(&ill->ill_lock); 6393 return; 6394 } 6395 6396 break; 6397 default: 6398 cmn_err(CE_PANIC, "ipsq: %p unknown ipsq_waitfor %d\n", 6399 (void *)ipsq, ipsq->ipsq_waitfor); 6400 } 6401 6402 /* 6403 * Incr refcnt for the qwriter_ip call below which 6404 * does a refrele 6405 */ 6406 ill_refhold_locked(ill); 6407 mutex_exit(&ill->ill_lock); 6408 6409 mp = ipsq_pending_mp_get(ipsq, &connp); 6410 ASSERT(mp != NULL); 6411 6412 /* 6413 * NOTE: all of the qwriter_ip() calls below use CUR_OP since 6414 * we can only get here when the current operation decides it 6415 * it needs to quiesce via ipsq_pending_mp_add(). 6416 */ 6417 switch (mp->b_datap->db_type) { 6418 case M_PCPROTO: 6419 case M_PROTO: 6420 /* 6421 * For now, only DL_NOTIFY_IND messages can use this facility. 6422 */ 6423 dlindp = (dl_notify_ind_t *)mp->b_rptr; 6424 ASSERT(dlindp->dl_primitive == DL_NOTIFY_IND); 6425 6426 switch (dlindp->dl_notification) { 6427 case DL_NOTE_PHYS_ADDR: 6428 qwriter_ip(ill, ill->ill_rq, mp, 6429 ill_set_phys_addr_tail, CUR_OP, B_TRUE); 6430 return; 6431 default: 6432 ASSERT(0); 6433 } 6434 break; 6435 6436 case M_ERROR: 6437 case M_HANGUP: 6438 qwriter_ip(ill, ill->ill_rq, mp, ipif_all_down_tail, CUR_OP, 6439 B_TRUE); 6440 return; 6441 6442 case M_IOCTL: 6443 case M_IOCDATA: 6444 qwriter_ip(ill, (connp != NULL ? CONNP_TO_WQ(connp) : 6445 ill->ill_wq), mp, ip_reprocess_ioctl, CUR_OP, B_TRUE); 6446 return; 6447 6448 default: 6449 cmn_err(CE_PANIC, "ipif_ill_refrele_tail mp %p " 6450 "db_type %d\n", (void *)mp, mp->b_datap->db_type); 6451 } 6452 } 6453 6454 #ifdef DEBUG 6455 /* Reuse trace buffer from beginning (if reached the end) and record trace */ 6456 static void 6457 th_trace_rrecord(th_trace_t *th_trace) 6458 { 6459 tr_buf_t *tr_buf; 6460 uint_t lastref; 6461 6462 lastref = th_trace->th_trace_lastref; 6463 lastref++; 6464 if (lastref == TR_BUF_MAX) 6465 lastref = 0; 6466 th_trace->th_trace_lastref = lastref; 6467 tr_buf = &th_trace->th_trbuf[lastref]; 6468 tr_buf->tr_time = lbolt; 6469 tr_buf->tr_depth = getpcstack(tr_buf->tr_stack, TR_STACK_DEPTH); 6470 } 6471 6472 static void 6473 th_trace_free(void *value) 6474 { 6475 th_trace_t *th_trace = value; 6476 6477 ASSERT(th_trace->th_refcnt == 0); 6478 kmem_free(th_trace, sizeof (*th_trace)); 6479 } 6480 6481 /* 6482 * Find or create the per-thread hash table used to track object references. 6483 * The ipst argument is NULL if we shouldn't allocate. 6484 * 6485 * Accesses per-thread data, so there's no need to lock here. 6486 */ 6487 static mod_hash_t * 6488 th_trace_gethash(ip_stack_t *ipst) 6489 { 6490 th_hash_t *thh; 6491 6492 if ((thh = tsd_get(ip_thread_data)) == NULL && ipst != NULL) { 6493 mod_hash_t *mh; 6494 char name[256]; 6495 size_t objsize, rshift; 6496 int retv; 6497 6498 if ((thh = kmem_alloc(sizeof (*thh), KM_NOSLEEP)) == NULL) 6499 return (NULL); 6500 (void) snprintf(name, sizeof (name), "th_trace_%p", curthread); 6501 6502 /* 6503 * We use mod_hash_create_extended here rather than the more 6504 * obvious mod_hash_create_ptrhash because the latter has a 6505 * hard-coded KM_SLEEP, and we'd prefer to fail rather than 6506 * block. 6507 */ 6508 objsize = MAX(MAX(sizeof (ill_t), sizeof (ipif_t)), 6509 MAX(sizeof (ire_t), sizeof (nce_t))); 6510 rshift = highbit(objsize); 6511 mh = mod_hash_create_extended(name, 64, mod_hash_null_keydtor, 6512 th_trace_free, mod_hash_byptr, (void *)rshift, 6513 mod_hash_ptrkey_cmp, KM_NOSLEEP); 6514 if (mh == NULL) { 6515 kmem_free(thh, sizeof (*thh)); 6516 return (NULL); 6517 } 6518 thh->thh_hash = mh; 6519 thh->thh_ipst = ipst; 6520 /* 6521 * We trace ills, ipifs, ires, and nces. All of these are 6522 * per-IP-stack, so the lock on the thread list is as well. 6523 */ 6524 rw_enter(&ip_thread_rwlock, RW_WRITER); 6525 list_insert_tail(&ip_thread_list, thh); 6526 rw_exit(&ip_thread_rwlock); 6527 retv = tsd_set(ip_thread_data, thh); 6528 ASSERT(retv == 0); 6529 } 6530 return (thh != NULL ? thh->thh_hash : NULL); 6531 } 6532 6533 boolean_t 6534 th_trace_ref(const void *obj, ip_stack_t *ipst) 6535 { 6536 th_trace_t *th_trace; 6537 mod_hash_t *mh; 6538 mod_hash_val_t val; 6539 6540 if ((mh = th_trace_gethash(ipst)) == NULL) 6541 return (B_FALSE); 6542 6543 /* 6544 * Attempt to locate the trace buffer for this obj and thread. 6545 * If it does not exist, then allocate a new trace buffer and 6546 * insert into the hash. 6547 */ 6548 if (mod_hash_find(mh, (mod_hash_key_t)obj, &val) == MH_ERR_NOTFOUND) { 6549 th_trace = kmem_zalloc(sizeof (th_trace_t), KM_NOSLEEP); 6550 if (th_trace == NULL) 6551 return (B_FALSE); 6552 6553 th_trace->th_id = curthread; 6554 if (mod_hash_insert(mh, (mod_hash_key_t)obj, 6555 (mod_hash_val_t)th_trace) != 0) { 6556 kmem_free(th_trace, sizeof (th_trace_t)); 6557 return (B_FALSE); 6558 } 6559 } else { 6560 th_trace = (th_trace_t *)val; 6561 } 6562 6563 ASSERT(th_trace->th_refcnt >= 0 && 6564 th_trace->th_refcnt < TR_BUF_MAX - 1); 6565 6566 th_trace->th_refcnt++; 6567 th_trace_rrecord(th_trace); 6568 return (B_TRUE); 6569 } 6570 6571 /* 6572 * For the purpose of tracing a reference release, we assume that global 6573 * tracing is always on and that the same thread initiated the reference hold 6574 * is releasing. 6575 */ 6576 void 6577 th_trace_unref(const void *obj) 6578 { 6579 int retv; 6580 mod_hash_t *mh; 6581 th_trace_t *th_trace; 6582 mod_hash_val_t val; 6583 6584 mh = th_trace_gethash(NULL); 6585 retv = mod_hash_find(mh, (mod_hash_key_t)obj, &val); 6586 ASSERT(retv == 0); 6587 th_trace = (th_trace_t *)val; 6588 6589 ASSERT(th_trace->th_refcnt > 0); 6590 th_trace->th_refcnt--; 6591 th_trace_rrecord(th_trace); 6592 } 6593 6594 /* 6595 * If tracing has been disabled, then we assume that the reference counts are 6596 * now useless, and we clear them out before destroying the entries. 6597 */ 6598 void 6599 th_trace_cleanup(const void *obj, boolean_t trace_disable) 6600 { 6601 th_hash_t *thh; 6602 mod_hash_t *mh; 6603 mod_hash_val_t val; 6604 th_trace_t *th_trace; 6605 int retv; 6606 6607 rw_enter(&ip_thread_rwlock, RW_READER); 6608 for (thh = list_head(&ip_thread_list); thh != NULL; 6609 thh = list_next(&ip_thread_list, thh)) { 6610 if (mod_hash_find(mh = thh->thh_hash, (mod_hash_key_t)obj, 6611 &val) == 0) { 6612 th_trace = (th_trace_t *)val; 6613 if (trace_disable) 6614 th_trace->th_refcnt = 0; 6615 retv = mod_hash_destroy(mh, (mod_hash_key_t)obj); 6616 ASSERT(retv == 0); 6617 } 6618 } 6619 rw_exit(&ip_thread_rwlock); 6620 } 6621 6622 void 6623 ipif_trace_ref(ipif_t *ipif) 6624 { 6625 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 6626 6627 if (ipif->ipif_trace_disable) 6628 return; 6629 6630 if (!th_trace_ref(ipif, ipif->ipif_ill->ill_ipst)) { 6631 ipif->ipif_trace_disable = B_TRUE; 6632 ipif_trace_cleanup(ipif); 6633 } 6634 } 6635 6636 void 6637 ipif_untrace_ref(ipif_t *ipif) 6638 { 6639 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 6640 6641 if (!ipif->ipif_trace_disable) 6642 th_trace_unref(ipif); 6643 } 6644 6645 void 6646 ill_trace_ref(ill_t *ill) 6647 { 6648 ASSERT(MUTEX_HELD(&ill->ill_lock)); 6649 6650 if (ill->ill_trace_disable) 6651 return; 6652 6653 if (!th_trace_ref(ill, ill->ill_ipst)) { 6654 ill->ill_trace_disable = B_TRUE; 6655 ill_trace_cleanup(ill); 6656 } 6657 } 6658 6659 void 6660 ill_untrace_ref(ill_t *ill) 6661 { 6662 ASSERT(MUTEX_HELD(&ill->ill_lock)); 6663 6664 if (!ill->ill_trace_disable) 6665 th_trace_unref(ill); 6666 } 6667 6668 /* 6669 * Called when ipif is unplumbed or when memory alloc fails. Note that on 6670 * failure, ipif_trace_disable is set. 6671 */ 6672 static void 6673 ipif_trace_cleanup(const ipif_t *ipif) 6674 { 6675 th_trace_cleanup(ipif, ipif->ipif_trace_disable); 6676 } 6677 6678 /* 6679 * Called when ill is unplumbed or when memory alloc fails. Note that on 6680 * failure, ill_trace_disable is set. 6681 */ 6682 static void 6683 ill_trace_cleanup(const ill_t *ill) 6684 { 6685 th_trace_cleanup(ill, ill->ill_trace_disable); 6686 } 6687 #endif /* DEBUG */ 6688 6689 void 6690 ipif_refhold_locked(ipif_t *ipif) 6691 { 6692 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 6693 ipif->ipif_refcnt++; 6694 IPIF_TRACE_REF(ipif); 6695 } 6696 6697 void 6698 ipif_refhold(ipif_t *ipif) 6699 { 6700 ill_t *ill; 6701 6702 ill = ipif->ipif_ill; 6703 mutex_enter(&ill->ill_lock); 6704 ipif->ipif_refcnt++; 6705 IPIF_TRACE_REF(ipif); 6706 mutex_exit(&ill->ill_lock); 6707 } 6708 6709 /* 6710 * Must not be called while holding any locks. Otherwise if this is 6711 * the last reference to be released there is a chance of recursive mutex 6712 * panic due to ipif_refrele -> ipif_ill_refrele_tail -> qwriter_ip trying 6713 * to restart an ioctl. 6714 */ 6715 void 6716 ipif_refrele(ipif_t *ipif) 6717 { 6718 ill_t *ill; 6719 6720 ill = ipif->ipif_ill; 6721 6722 mutex_enter(&ill->ill_lock); 6723 ASSERT(ipif->ipif_refcnt != 0); 6724 ipif->ipif_refcnt--; 6725 IPIF_UNTRACE_REF(ipif); 6726 if (ipif->ipif_refcnt != 0) { 6727 mutex_exit(&ill->ill_lock); 6728 return; 6729 } 6730 6731 /* Drops the ill_lock */ 6732 ipif_ill_refrele_tail(ill); 6733 } 6734 6735 ipif_t * 6736 ipif_get_next_ipif(ipif_t *curr, ill_t *ill) 6737 { 6738 ipif_t *ipif; 6739 6740 mutex_enter(&ill->ill_lock); 6741 for (ipif = (curr == NULL ? ill->ill_ipif : curr->ipif_next); 6742 ipif != NULL; ipif = ipif->ipif_next) { 6743 if (!IPIF_CAN_LOOKUP(ipif)) 6744 continue; 6745 ipif_refhold_locked(ipif); 6746 mutex_exit(&ill->ill_lock); 6747 return (ipif); 6748 } 6749 mutex_exit(&ill->ill_lock); 6750 return (NULL); 6751 } 6752 6753 /* 6754 * TODO: make this table extendible at run time 6755 * Return a pointer to the mac type info for 'mac_type' 6756 */ 6757 static ip_m_t * 6758 ip_m_lookup(t_uscalar_t mac_type) 6759 { 6760 ip_m_t *ipm; 6761 6762 for (ipm = ip_m_tbl; ipm < A_END(ip_m_tbl); ipm++) 6763 if (ipm->ip_m_mac_type == mac_type) 6764 return (ipm); 6765 return (NULL); 6766 } 6767 6768 /* 6769 * ip_rt_add is called to add an IPv4 route to the forwarding table. 6770 * ipif_arg is passed in to associate it with the correct interface. 6771 * We may need to restart this operation if the ipif cannot be looked up 6772 * due to an exclusive operation that is currently in progress. The restart 6773 * entry point is specified by 'func' 6774 */ 6775 int 6776 ip_rt_add(ipaddr_t dst_addr, ipaddr_t mask, ipaddr_t gw_addr, 6777 ipaddr_t src_addr, int flags, ipif_t *ipif_arg, ire_t **ire_arg, 6778 boolean_t ioctl_msg, queue_t *q, mblk_t *mp, ipsq_func_t func, 6779 struct rtsa_s *sp, ip_stack_t *ipst) 6780 { 6781 ire_t *ire; 6782 ire_t *gw_ire = NULL; 6783 ipif_t *ipif = NULL; 6784 boolean_t ipif_refheld = B_FALSE; 6785 uint_t type; 6786 int match_flags = MATCH_IRE_TYPE; 6787 int error; 6788 tsol_gc_t *gc = NULL; 6789 tsol_gcgrp_t *gcgrp = NULL; 6790 boolean_t gcgrp_xtraref = B_FALSE; 6791 6792 ip1dbg(("ip_rt_add:")); 6793 6794 if (ire_arg != NULL) 6795 *ire_arg = NULL; 6796 6797 /* 6798 * If this is the case of RTF_HOST being set, then we set the netmask 6799 * to all ones (regardless if one was supplied). 6800 */ 6801 if (flags & RTF_HOST) 6802 mask = IP_HOST_MASK; 6803 6804 /* 6805 * Prevent routes with a zero gateway from being created (since 6806 * interfaces can currently be plumbed and brought up no assigned 6807 * address). 6808 */ 6809 if (gw_addr == 0) 6810 return (ENETUNREACH); 6811 /* 6812 * Get the ipif, if any, corresponding to the gw_addr 6813 */ 6814 ipif = ipif_lookup_interface(gw_addr, dst_addr, q, mp, func, &error, 6815 ipst); 6816 if (ipif != NULL) { 6817 if (IS_VNI(ipif->ipif_ill)) { 6818 ipif_refrele(ipif); 6819 return (EINVAL); 6820 } 6821 ipif_refheld = B_TRUE; 6822 } else if (error == EINPROGRESS) { 6823 ip1dbg(("ip_rt_add: null and EINPROGRESS")); 6824 return (EINPROGRESS); 6825 } else { 6826 error = 0; 6827 } 6828 6829 if (ipif != NULL) { 6830 ip1dbg(("ip_rt_add: ipif_lookup_interface done ipif nonnull")); 6831 ASSERT(!MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 6832 } else { 6833 ip1dbg(("ip_rt_add: ipif_lookup_interface done ipif is null")); 6834 } 6835 6836 /* 6837 * GateD will attempt to create routes with a loopback interface 6838 * address as the gateway and with RTF_GATEWAY set. We allow 6839 * these routes to be added, but create them as interface routes 6840 * since the gateway is an interface address. 6841 */ 6842 if ((ipif != NULL) && (ipif->ipif_ire_type == IRE_LOOPBACK)) { 6843 flags &= ~RTF_GATEWAY; 6844 if (gw_addr == INADDR_LOOPBACK && dst_addr == INADDR_LOOPBACK && 6845 mask == IP_HOST_MASK) { 6846 ire = ire_ctable_lookup(dst_addr, 0, IRE_LOOPBACK, ipif, 6847 ALL_ZONES, NULL, match_flags, ipst); 6848 if (ire != NULL) { 6849 ire_refrele(ire); 6850 if (ipif_refheld) 6851 ipif_refrele(ipif); 6852 return (EEXIST); 6853 } 6854 ip1dbg(("ipif_up_done: 0x%p creating IRE 0x%x" 6855 "for 0x%x\n", (void *)ipif, 6856 ipif->ipif_ire_type, 6857 ntohl(ipif->ipif_lcl_addr))); 6858 ire = ire_create( 6859 (uchar_t *)&dst_addr, /* dest address */ 6860 (uchar_t *)&mask, /* mask */ 6861 (uchar_t *)&ipif->ipif_src_addr, 6862 NULL, /* no gateway */ 6863 &ipif->ipif_mtu, 6864 NULL, 6865 ipif->ipif_rq, /* recv-from queue */ 6866 NULL, /* no send-to queue */ 6867 ipif->ipif_ire_type, /* LOOPBACK */ 6868 ipif, 6869 0, 6870 0, 6871 0, 6872 (ipif->ipif_flags & IPIF_PRIVATE) ? 6873 RTF_PRIVATE : 0, 6874 &ire_uinfo_null, 6875 NULL, 6876 NULL, 6877 ipst); 6878 6879 if (ire == NULL) { 6880 if (ipif_refheld) 6881 ipif_refrele(ipif); 6882 return (ENOMEM); 6883 } 6884 error = ire_add(&ire, q, mp, func, B_FALSE); 6885 if (error == 0) 6886 goto save_ire; 6887 if (ipif_refheld) 6888 ipif_refrele(ipif); 6889 return (error); 6890 6891 } 6892 } 6893 6894 /* 6895 * Traditionally, interface routes are ones where RTF_GATEWAY isn't set 6896 * and the gateway address provided is one of the system's interface 6897 * addresses. By using the routing socket interface and supplying an 6898 * RTA_IFP sockaddr with an interface index, an alternate method of 6899 * specifying an interface route to be created is available which uses 6900 * the interface index that specifies the outgoing interface rather than 6901 * the address of an outgoing interface (which may not be able to 6902 * uniquely identify an interface). When coupled with the RTF_GATEWAY 6903 * flag, routes can be specified which not only specify the next-hop to 6904 * be used when routing to a certain prefix, but also which outgoing 6905 * interface should be used. 6906 * 6907 * Previously, interfaces would have unique addresses assigned to them 6908 * and so the address assigned to a particular interface could be used 6909 * to identify a particular interface. One exception to this was the 6910 * case of an unnumbered interface (where IPIF_UNNUMBERED was set). 6911 * 6912 * With the advent of IPv6 and its link-local addresses, this 6913 * restriction was relaxed and interfaces could share addresses between 6914 * themselves. In fact, typically all of the link-local interfaces on 6915 * an IPv6 node or router will have the same link-local address. In 6916 * order to differentiate between these interfaces, the use of an 6917 * interface index is necessary and this index can be carried inside a 6918 * RTA_IFP sockaddr (which is actually a sockaddr_dl). One restriction 6919 * of using the interface index, however, is that all of the ipif's that 6920 * are part of an ill have the same index and so the RTA_IFP sockaddr 6921 * cannot be used to differentiate between ipif's (or logical 6922 * interfaces) that belong to the same ill (physical interface). 6923 * 6924 * For example, in the following case involving IPv4 interfaces and 6925 * logical interfaces 6926 * 6927 * 192.0.2.32 255.255.255.224 192.0.2.33 U if0 6928 * 192.0.2.32 255.255.255.224 192.0.2.34 U if0:1 6929 * 192.0.2.32 255.255.255.224 192.0.2.35 U if0:2 6930 * 6931 * the ipif's corresponding to each of these interface routes can be 6932 * uniquely identified by the "gateway" (actually interface address). 6933 * 6934 * In this case involving multiple IPv6 default routes to a particular 6935 * link-local gateway, the use of RTA_IFP is necessary to specify which 6936 * default route is of interest: 6937 * 6938 * default fe80::123:4567:89ab:cdef U if0 6939 * default fe80::123:4567:89ab:cdef U if1 6940 */ 6941 6942 /* RTF_GATEWAY not set */ 6943 if (!(flags & RTF_GATEWAY)) { 6944 queue_t *stq; 6945 6946 if (sp != NULL) { 6947 ip2dbg(("ip_rt_add: gateway security attributes " 6948 "cannot be set with interface route\n")); 6949 if (ipif_refheld) 6950 ipif_refrele(ipif); 6951 return (EINVAL); 6952 } 6953 6954 /* 6955 * As the interface index specified with the RTA_IFP sockaddr is 6956 * the same for all ipif's off of an ill, the matching logic 6957 * below uses MATCH_IRE_ILL if such an index was specified. 6958 * This means that routes sharing the same prefix when added 6959 * using a RTA_IFP sockaddr must have distinct interface 6960 * indices (namely, they must be on distinct ill's). 6961 * 6962 * On the other hand, since the gateway address will usually be 6963 * different for each ipif on the system, the matching logic 6964 * uses MATCH_IRE_IPIF in the case of a traditional interface 6965 * route. This means that interface routes for the same prefix 6966 * can be created if they belong to distinct ipif's and if a 6967 * RTA_IFP sockaddr is not present. 6968 */ 6969 if (ipif_arg != NULL) { 6970 if (ipif_refheld) { 6971 ipif_refrele(ipif); 6972 ipif_refheld = B_FALSE; 6973 } 6974 ipif = ipif_arg; 6975 match_flags |= MATCH_IRE_ILL; 6976 } else { 6977 /* 6978 * Check the ipif corresponding to the gw_addr 6979 */ 6980 if (ipif == NULL) 6981 return (ENETUNREACH); 6982 match_flags |= MATCH_IRE_IPIF; 6983 } 6984 ASSERT(ipif != NULL); 6985 6986 /* 6987 * We check for an existing entry at this point. 6988 * 6989 * Since a netmask isn't passed in via the ioctl interface 6990 * (SIOCADDRT), we don't check for a matching netmask in that 6991 * case. 6992 */ 6993 if (!ioctl_msg) 6994 match_flags |= MATCH_IRE_MASK; 6995 ire = ire_ftable_lookup(dst_addr, mask, 0, IRE_INTERFACE, ipif, 6996 NULL, ALL_ZONES, 0, NULL, match_flags, ipst); 6997 if (ire != NULL) { 6998 ire_refrele(ire); 6999 if (ipif_refheld) 7000 ipif_refrele(ipif); 7001 return (EEXIST); 7002 } 7003 7004 stq = (ipif->ipif_net_type == IRE_IF_RESOLVER) 7005 ? ipif->ipif_rq : ipif->ipif_wq; 7006 7007 /* 7008 * Create a copy of the IRE_LOOPBACK, 7009 * IRE_IF_NORESOLVER or IRE_IF_RESOLVER with 7010 * the modified address and netmask. 7011 */ 7012 ire = ire_create( 7013 (uchar_t *)&dst_addr, 7014 (uint8_t *)&mask, 7015 (uint8_t *)&ipif->ipif_src_addr, 7016 NULL, 7017 &ipif->ipif_mtu, 7018 NULL, 7019 NULL, 7020 stq, 7021 ipif->ipif_net_type, 7022 ipif, 7023 0, 7024 0, 7025 0, 7026 flags, 7027 &ire_uinfo_null, 7028 NULL, 7029 NULL, 7030 ipst); 7031 if (ire == NULL) { 7032 if (ipif_refheld) 7033 ipif_refrele(ipif); 7034 return (ENOMEM); 7035 } 7036 7037 /* 7038 * Some software (for example, GateD and Sun Cluster) attempts 7039 * to create (what amount to) IRE_PREFIX routes with the 7040 * loopback address as the gateway. This is primarily done to 7041 * set up prefixes with the RTF_REJECT flag set (for example, 7042 * when generating aggregate routes.) 7043 * 7044 * If the IRE type (as defined by ipif->ipif_net_type) is 7045 * IRE_LOOPBACK, then we map the request into a 7046 * IRE_IF_NORESOLVER. 7047 * 7048 * Needless to say, the real IRE_LOOPBACK is NOT created by this 7049 * routine, but rather using ire_create() directly. 7050 * 7051 */ 7052 if (ipif->ipif_net_type == IRE_LOOPBACK) 7053 ire->ire_type = IRE_IF_NORESOLVER; 7054 7055 error = ire_add(&ire, q, mp, func, B_FALSE); 7056 if (error == 0) 7057 goto save_ire; 7058 7059 /* 7060 * In the result of failure, ire_add() will have already 7061 * deleted the ire in question, so there is no need to 7062 * do that here. 7063 */ 7064 if (ipif_refheld) 7065 ipif_refrele(ipif); 7066 return (error); 7067 } 7068 if (ipif_refheld) { 7069 ipif_refrele(ipif); 7070 ipif_refheld = B_FALSE; 7071 } 7072 7073 /* 7074 * Get an interface IRE for the specified gateway. 7075 * If we don't have an IRE_IF_NORESOLVER or IRE_IF_RESOLVER for the 7076 * gateway, it is currently unreachable and we fail the request 7077 * accordingly. 7078 */ 7079 ipif = ipif_arg; 7080 if (ipif_arg != NULL) 7081 match_flags |= MATCH_IRE_ILL; 7082 gw_ire = ire_ftable_lookup(gw_addr, 0, 0, IRE_INTERFACE, ipif_arg, NULL, 7083 ALL_ZONES, 0, NULL, match_flags, ipst); 7084 if (gw_ire == NULL) 7085 return (ENETUNREACH); 7086 7087 /* 7088 * We create one of three types of IREs as a result of this request 7089 * based on the netmask. A netmask of all ones (which is automatically 7090 * assumed when RTF_HOST is set) results in an IRE_HOST being created. 7091 * An all zeroes netmask implies a default route so an IRE_DEFAULT is 7092 * created. Otherwise, an IRE_PREFIX route is created for the 7093 * destination prefix. 7094 */ 7095 if (mask == IP_HOST_MASK) 7096 type = IRE_HOST; 7097 else if (mask == 0) 7098 type = IRE_DEFAULT; 7099 else 7100 type = IRE_PREFIX; 7101 7102 /* check for a duplicate entry */ 7103 ire = ire_ftable_lookup(dst_addr, mask, gw_addr, type, ipif_arg, 7104 NULL, ALL_ZONES, 0, NULL, 7105 match_flags | MATCH_IRE_MASK | MATCH_IRE_GW, ipst); 7106 if (ire != NULL) { 7107 ire_refrele(gw_ire); 7108 ire_refrele(ire); 7109 return (EEXIST); 7110 } 7111 7112 /* Security attribute exists */ 7113 if (sp != NULL) { 7114 tsol_gcgrp_addr_t ga; 7115 7116 /* find or create the gateway credentials group */ 7117 ga.ga_af = AF_INET; 7118 IN6_IPADDR_TO_V4MAPPED(gw_addr, &ga.ga_addr); 7119 7120 /* we hold reference to it upon success */ 7121 gcgrp = gcgrp_lookup(&ga, B_TRUE); 7122 if (gcgrp == NULL) { 7123 ire_refrele(gw_ire); 7124 return (ENOMEM); 7125 } 7126 7127 /* 7128 * Create and add the security attribute to the group; a 7129 * reference to the group is made upon allocating a new 7130 * entry successfully. If it finds an already-existing 7131 * entry for the security attribute in the group, it simply 7132 * returns it and no new reference is made to the group. 7133 */ 7134 gc = gc_create(sp, gcgrp, &gcgrp_xtraref); 7135 if (gc == NULL) { 7136 /* release reference held by gcgrp_lookup */ 7137 GCGRP_REFRELE(gcgrp); 7138 ire_refrele(gw_ire); 7139 return (ENOMEM); 7140 } 7141 } 7142 7143 /* Create the IRE. */ 7144 ire = ire_create( 7145 (uchar_t *)&dst_addr, /* dest address */ 7146 (uchar_t *)&mask, /* mask */ 7147 /* src address assigned by the caller? */ 7148 (uchar_t *)(((src_addr != INADDR_ANY) && 7149 (flags & RTF_SETSRC)) ? &src_addr : NULL), 7150 (uchar_t *)&gw_addr, /* gateway address */ 7151 &gw_ire->ire_max_frag, 7152 NULL, /* no src nce */ 7153 NULL, /* no recv-from queue */ 7154 NULL, /* no send-to queue */ 7155 (ushort_t)type, /* IRE type */ 7156 ipif_arg, 7157 0, 7158 0, 7159 0, 7160 flags, 7161 &gw_ire->ire_uinfo, /* Inherit ULP info from gw */ 7162 gc, /* security attribute */ 7163 NULL, 7164 ipst); 7165 7166 /* 7167 * The ire holds a reference to the 'gc' and the 'gc' holds a 7168 * reference to the 'gcgrp'. We can now release the extra reference 7169 * the 'gcgrp' acquired in the gcgrp_lookup, if it was not used. 7170 */ 7171 if (gcgrp_xtraref) 7172 GCGRP_REFRELE(gcgrp); 7173 if (ire == NULL) { 7174 if (gc != NULL) 7175 GC_REFRELE(gc); 7176 ire_refrele(gw_ire); 7177 return (ENOMEM); 7178 } 7179 7180 /* 7181 * POLICY: should we allow an RTF_HOST with address INADDR_ANY? 7182 * SUN/OS socket stuff does but do we really want to allow 0.0.0.0? 7183 */ 7184 7185 /* Add the new IRE. */ 7186 error = ire_add(&ire, q, mp, func, B_FALSE); 7187 if (error != 0) { 7188 /* 7189 * In the result of failure, ire_add() will have already 7190 * deleted the ire in question, so there is no need to 7191 * do that here. 7192 */ 7193 ire_refrele(gw_ire); 7194 return (error); 7195 } 7196 7197 if (flags & RTF_MULTIRT) { 7198 /* 7199 * Invoke the CGTP (multirouting) filtering module 7200 * to add the dst address in the filtering database. 7201 * Replicated inbound packets coming from that address 7202 * will be filtered to discard the duplicates. 7203 * It is not necessary to call the CGTP filter hook 7204 * when the dst address is a broadcast or multicast, 7205 * because an IP source address cannot be a broadcast 7206 * or a multicast. 7207 */ 7208 ire_t *ire_dst = ire_ctable_lookup(ire->ire_addr, 0, 7209 IRE_BROADCAST, NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 7210 if (ire_dst != NULL) { 7211 ip_cgtp_bcast_add(ire, ire_dst, ipst); 7212 ire_refrele(ire_dst); 7213 goto save_ire; 7214 } 7215 if (ipst->ips_ip_cgtp_filter_ops != NULL && 7216 !CLASSD(ire->ire_addr)) { 7217 int res = ipst->ips_ip_cgtp_filter_ops->cfo_add_dest_v4( 7218 ipst->ips_netstack->netstack_stackid, 7219 ire->ire_addr, 7220 ire->ire_gateway_addr, 7221 ire->ire_src_addr, 7222 gw_ire->ire_src_addr); 7223 if (res != 0) { 7224 ire_refrele(gw_ire); 7225 ire_delete(ire); 7226 return (res); 7227 } 7228 } 7229 } 7230 7231 /* 7232 * Now that the prefix IRE entry has been created, delete any 7233 * existing gateway IRE cache entries as well as any IRE caches 7234 * using the gateway, and force them to be created through 7235 * ip_newroute. 7236 */ 7237 if (gc != NULL) { 7238 ASSERT(gcgrp != NULL); 7239 ire_clookup_delete_cache_gw(gw_addr, ALL_ZONES, ipst); 7240 } 7241 7242 save_ire: 7243 if (gw_ire != NULL) { 7244 ire_refrele(gw_ire); 7245 } 7246 if (ipif != NULL) { 7247 /* 7248 * Save enough information so that we can recreate the IRE if 7249 * the interface goes down and then up. The metrics associated 7250 * with the route will be saved as well when rts_setmetrics() is 7251 * called after the IRE has been created. In the case where 7252 * memory cannot be allocated, none of this information will be 7253 * saved. 7254 */ 7255 ipif_save_ire(ipif, ire); 7256 } 7257 if (ioctl_msg) 7258 ip_rts_rtmsg(RTM_OLDADD, ire, 0, ipst); 7259 if (ire_arg != NULL) { 7260 /* 7261 * Store the ire that was successfully added into where ire_arg 7262 * points to so that callers don't have to look it up 7263 * themselves (but they are responsible for ire_refrele()ing 7264 * the ire when they are finished with it). 7265 */ 7266 *ire_arg = ire; 7267 } else { 7268 ire_refrele(ire); /* Held in ire_add */ 7269 } 7270 if (ipif_refheld) 7271 ipif_refrele(ipif); 7272 return (0); 7273 } 7274 7275 /* 7276 * ip_rt_delete is called to delete an IPv4 route. 7277 * ipif_arg is passed in to associate it with the correct interface. 7278 * We may need to restart this operation if the ipif cannot be looked up 7279 * due to an exclusive operation that is currently in progress. The restart 7280 * entry point is specified by 'func' 7281 */ 7282 /* ARGSUSED4 */ 7283 int 7284 ip_rt_delete(ipaddr_t dst_addr, ipaddr_t mask, ipaddr_t gw_addr, 7285 uint_t rtm_addrs, int flags, ipif_t *ipif_arg, boolean_t ioctl_msg, 7286 queue_t *q, mblk_t *mp, ipsq_func_t func, ip_stack_t *ipst) 7287 { 7288 ire_t *ire = NULL; 7289 ipif_t *ipif; 7290 boolean_t ipif_refheld = B_FALSE; 7291 uint_t type; 7292 uint_t match_flags = MATCH_IRE_TYPE; 7293 int err = 0; 7294 7295 ip1dbg(("ip_rt_delete:")); 7296 /* 7297 * If this is the case of RTF_HOST being set, then we set the netmask 7298 * to all ones. Otherwise, we use the netmask if one was supplied. 7299 */ 7300 if (flags & RTF_HOST) { 7301 mask = IP_HOST_MASK; 7302 match_flags |= MATCH_IRE_MASK; 7303 } else if (rtm_addrs & RTA_NETMASK) { 7304 match_flags |= MATCH_IRE_MASK; 7305 } 7306 7307 /* 7308 * Note that RTF_GATEWAY is never set on a delete, therefore 7309 * we check if the gateway address is one of our interfaces first, 7310 * and fall back on RTF_GATEWAY routes. 7311 * 7312 * This makes it possible to delete an original 7313 * IRE_IF_NORESOLVER/IRE_IF_RESOLVER - consistent with SunOS 4.1. 7314 * 7315 * As the interface index specified with the RTA_IFP sockaddr is the 7316 * same for all ipif's off of an ill, the matching logic below uses 7317 * MATCH_IRE_ILL if such an index was specified. This means a route 7318 * sharing the same prefix and interface index as the the route 7319 * intended to be deleted might be deleted instead if a RTA_IFP sockaddr 7320 * is specified in the request. 7321 * 7322 * On the other hand, since the gateway address will usually be 7323 * different for each ipif on the system, the matching logic 7324 * uses MATCH_IRE_IPIF in the case of a traditional interface 7325 * route. This means that interface routes for the same prefix can be 7326 * uniquely identified if they belong to distinct ipif's and if a 7327 * RTA_IFP sockaddr is not present. 7328 * 7329 * For more detail on specifying routes by gateway address and by 7330 * interface index, see the comments in ip_rt_add(). 7331 */ 7332 ipif = ipif_lookup_interface(gw_addr, dst_addr, q, mp, func, &err, 7333 ipst); 7334 if (ipif != NULL) 7335 ipif_refheld = B_TRUE; 7336 else if (err == EINPROGRESS) 7337 return (err); 7338 else 7339 err = 0; 7340 if (ipif != NULL) { 7341 if (ipif_arg != NULL) { 7342 if (ipif_refheld) { 7343 ipif_refrele(ipif); 7344 ipif_refheld = B_FALSE; 7345 } 7346 ipif = ipif_arg; 7347 match_flags |= MATCH_IRE_ILL; 7348 } else { 7349 match_flags |= MATCH_IRE_IPIF; 7350 } 7351 if (ipif->ipif_ire_type == IRE_LOOPBACK) { 7352 ire = ire_ctable_lookup(dst_addr, 0, IRE_LOOPBACK, ipif, 7353 ALL_ZONES, NULL, match_flags, ipst); 7354 } 7355 if (ire == NULL) { 7356 ire = ire_ftable_lookup(dst_addr, mask, 0, 7357 IRE_INTERFACE, ipif, NULL, ALL_ZONES, 0, NULL, 7358 match_flags, ipst); 7359 } 7360 } 7361 7362 if (ire == NULL) { 7363 /* 7364 * At this point, the gateway address is not one of our own 7365 * addresses or a matching interface route was not found. We 7366 * set the IRE type to lookup based on whether 7367 * this is a host route, a default route or just a prefix. 7368 * 7369 * If an ipif_arg was passed in, then the lookup is based on an 7370 * interface index so MATCH_IRE_ILL is added to match_flags. 7371 * In any case, MATCH_IRE_IPIF is cleared and MATCH_IRE_GW is 7372 * set as the route being looked up is not a traditional 7373 * interface route. 7374 */ 7375 match_flags &= ~MATCH_IRE_IPIF; 7376 match_flags |= MATCH_IRE_GW; 7377 if (ipif_arg != NULL) 7378 match_flags |= MATCH_IRE_ILL; 7379 if (mask == IP_HOST_MASK) 7380 type = IRE_HOST; 7381 else if (mask == 0) 7382 type = IRE_DEFAULT; 7383 else 7384 type = IRE_PREFIX; 7385 ire = ire_ftable_lookup(dst_addr, mask, gw_addr, type, ipif_arg, 7386 NULL, ALL_ZONES, 0, NULL, match_flags, ipst); 7387 } 7388 7389 if (ipif_refheld) 7390 ipif_refrele(ipif); 7391 7392 /* ipif is not refheld anymore */ 7393 if (ire == NULL) 7394 return (ESRCH); 7395 7396 if (ire->ire_flags & RTF_MULTIRT) { 7397 /* 7398 * Invoke the CGTP (multirouting) filtering module 7399 * to remove the dst address from the filtering database. 7400 * Packets coming from that address will no longer be 7401 * filtered to remove duplicates. 7402 */ 7403 if (ipst->ips_ip_cgtp_filter_ops != NULL) { 7404 err = ipst->ips_ip_cgtp_filter_ops->cfo_del_dest_v4( 7405 ipst->ips_netstack->netstack_stackid, 7406 ire->ire_addr, ire->ire_gateway_addr); 7407 } 7408 ip_cgtp_bcast_delete(ire, ipst); 7409 } 7410 7411 ipif = ire->ire_ipif; 7412 if (ipif != NULL) 7413 ipif_remove_ire(ipif, ire); 7414 if (ioctl_msg) 7415 ip_rts_rtmsg(RTM_OLDDEL, ire, 0, ipst); 7416 ire_delete(ire); 7417 ire_refrele(ire); 7418 return (err); 7419 } 7420 7421 /* 7422 * ip_siocaddrt is called to complete processing of an SIOCADDRT IOCTL. 7423 */ 7424 /* ARGSUSED */ 7425 int 7426 ip_siocaddrt(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 7427 ip_ioctl_cmd_t *ipip, void *dummy_if_req) 7428 { 7429 ipaddr_t dst_addr; 7430 ipaddr_t gw_addr; 7431 ipaddr_t mask; 7432 int error = 0; 7433 mblk_t *mp1; 7434 struct rtentry *rt; 7435 ipif_t *ipif = NULL; 7436 ip_stack_t *ipst; 7437 7438 ASSERT(q->q_next == NULL); 7439 ipst = CONNQ_TO_IPST(q); 7440 7441 ip1dbg(("ip_siocaddrt:")); 7442 /* Existence of mp1 verified in ip_wput_nondata */ 7443 mp1 = mp->b_cont->b_cont; 7444 rt = (struct rtentry *)mp1->b_rptr; 7445 7446 dst_addr = ((sin_t *)&rt->rt_dst)->sin_addr.s_addr; 7447 gw_addr = ((sin_t *)&rt->rt_gateway)->sin_addr.s_addr; 7448 7449 /* 7450 * If the RTF_HOST flag is on, this is a request to assign a gateway 7451 * to a particular host address. In this case, we set the netmask to 7452 * all ones for the particular destination address. Otherwise, 7453 * determine the netmask to be used based on dst_addr and the interfaces 7454 * in use. 7455 */ 7456 if (rt->rt_flags & RTF_HOST) { 7457 mask = IP_HOST_MASK; 7458 } else { 7459 /* 7460 * Note that ip_subnet_mask returns a zero mask in the case of 7461 * default (an all-zeroes address). 7462 */ 7463 mask = ip_subnet_mask(dst_addr, &ipif, ipst); 7464 } 7465 7466 error = ip_rt_add(dst_addr, mask, gw_addr, 0, rt->rt_flags, NULL, NULL, 7467 B_TRUE, q, mp, ip_process_ioctl, NULL, ipst); 7468 if (ipif != NULL) 7469 ipif_refrele(ipif); 7470 return (error); 7471 } 7472 7473 /* 7474 * ip_siocdelrt is called to complete processing of an SIOCDELRT IOCTL. 7475 */ 7476 /* ARGSUSED */ 7477 int 7478 ip_siocdelrt(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 7479 ip_ioctl_cmd_t *ipip, void *dummy_if_req) 7480 { 7481 ipaddr_t dst_addr; 7482 ipaddr_t gw_addr; 7483 ipaddr_t mask; 7484 int error; 7485 mblk_t *mp1; 7486 struct rtentry *rt; 7487 ipif_t *ipif = NULL; 7488 ip_stack_t *ipst; 7489 7490 ASSERT(q->q_next == NULL); 7491 ipst = CONNQ_TO_IPST(q); 7492 7493 ip1dbg(("ip_siocdelrt:")); 7494 /* Existence of mp1 verified in ip_wput_nondata */ 7495 mp1 = mp->b_cont->b_cont; 7496 rt = (struct rtentry *)mp1->b_rptr; 7497 7498 dst_addr = ((sin_t *)&rt->rt_dst)->sin_addr.s_addr; 7499 gw_addr = ((sin_t *)&rt->rt_gateway)->sin_addr.s_addr; 7500 7501 /* 7502 * If the RTF_HOST flag is on, this is a request to delete a gateway 7503 * to a particular host address. In this case, we set the netmask to 7504 * all ones for the particular destination address. Otherwise, 7505 * determine the netmask to be used based on dst_addr and the interfaces 7506 * in use. 7507 */ 7508 if (rt->rt_flags & RTF_HOST) { 7509 mask = IP_HOST_MASK; 7510 } else { 7511 /* 7512 * Note that ip_subnet_mask returns a zero mask in the case of 7513 * default (an all-zeroes address). 7514 */ 7515 mask = ip_subnet_mask(dst_addr, &ipif, ipst); 7516 } 7517 7518 error = ip_rt_delete(dst_addr, mask, gw_addr, 7519 RTA_DST | RTA_GATEWAY | RTA_NETMASK, rt->rt_flags, NULL, B_TRUE, q, 7520 mp, ip_process_ioctl, ipst); 7521 if (ipif != NULL) 7522 ipif_refrele(ipif); 7523 return (error); 7524 } 7525 7526 /* 7527 * Enqueue the mp onto the ipsq, chained by b_next. 7528 * b_prev stores the function to be executed later, and b_queue the queue 7529 * where this mp originated. 7530 */ 7531 void 7532 ipsq_enq(ipsq_t *ipsq, queue_t *q, mblk_t *mp, ipsq_func_t func, int type, 7533 ill_t *pending_ill) 7534 { 7535 conn_t *connp = NULL; 7536 7537 ASSERT(MUTEX_HELD(&ipsq->ipsq_lock)); 7538 ASSERT(func != NULL); 7539 7540 mp->b_queue = q; 7541 mp->b_prev = (void *)func; 7542 mp->b_next = NULL; 7543 7544 switch (type) { 7545 case CUR_OP: 7546 if (ipsq->ipsq_mptail != NULL) { 7547 ASSERT(ipsq->ipsq_mphead != NULL); 7548 ipsq->ipsq_mptail->b_next = mp; 7549 } else { 7550 ASSERT(ipsq->ipsq_mphead == NULL); 7551 ipsq->ipsq_mphead = mp; 7552 } 7553 ipsq->ipsq_mptail = mp; 7554 break; 7555 7556 case NEW_OP: 7557 if (ipsq->ipsq_xopq_mptail != NULL) { 7558 ASSERT(ipsq->ipsq_xopq_mphead != NULL); 7559 ipsq->ipsq_xopq_mptail->b_next = mp; 7560 } else { 7561 ASSERT(ipsq->ipsq_xopq_mphead == NULL); 7562 ipsq->ipsq_xopq_mphead = mp; 7563 } 7564 ipsq->ipsq_xopq_mptail = mp; 7565 break; 7566 default: 7567 cmn_err(CE_PANIC, "ipsq_enq %d type \n", type); 7568 } 7569 7570 if (CONN_Q(q) && pending_ill != NULL) { 7571 connp = Q_TO_CONN(q); 7572 7573 ASSERT(MUTEX_HELD(&connp->conn_lock)); 7574 connp->conn_oper_pending_ill = pending_ill; 7575 } 7576 } 7577 7578 /* 7579 * Return the mp at the head of the ipsq. After emptying the ipsq 7580 * look at the next ioctl, if this ioctl is complete. Otherwise 7581 * return, we will resume when we complete the current ioctl. 7582 * The current ioctl will wait till it gets a response from the 7583 * driver below. 7584 */ 7585 static mblk_t * 7586 ipsq_dq(ipsq_t *ipsq) 7587 { 7588 mblk_t *mp; 7589 7590 ASSERT(MUTEX_HELD(&ipsq->ipsq_lock)); 7591 7592 mp = ipsq->ipsq_mphead; 7593 if (mp != NULL) { 7594 ipsq->ipsq_mphead = mp->b_next; 7595 if (ipsq->ipsq_mphead == NULL) 7596 ipsq->ipsq_mptail = NULL; 7597 mp->b_next = NULL; 7598 return (mp); 7599 } 7600 if (ipsq->ipsq_current_ipif != NULL) 7601 return (NULL); 7602 mp = ipsq->ipsq_xopq_mphead; 7603 if (mp != NULL) { 7604 ipsq->ipsq_xopq_mphead = mp->b_next; 7605 if (ipsq->ipsq_xopq_mphead == NULL) 7606 ipsq->ipsq_xopq_mptail = NULL; 7607 mp->b_next = NULL; 7608 return (mp); 7609 } 7610 return (NULL); 7611 } 7612 7613 /* 7614 * Enter the ipsq corresponding to ill, by waiting synchronously till 7615 * we can enter the ipsq exclusively. Unless 'force' is used, the ipsq 7616 * will have to drain completely before ipsq_enter returns success. 7617 * ipsq_current_ipif will be set if some exclusive ioctl is in progress, 7618 * and the ipsq_exit logic will start the next enqueued ioctl after 7619 * completion of the current ioctl. If 'force' is used, we don't wait 7620 * for the enqueued ioctls. This is needed when a conn_close wants to 7621 * enter the ipsq and abort an ioctl that is somehow stuck. Unplumb 7622 * of an ill can also use this option. But we dont' use it currently. 7623 */ 7624 #define ENTER_SQ_WAIT_TICKS 100 7625 boolean_t 7626 ipsq_enter(ill_t *ill, boolean_t force) 7627 { 7628 ipsq_t *ipsq; 7629 boolean_t waited_enough = B_FALSE; 7630 7631 /* 7632 * Holding the ill_lock prevents <ill-ipsq> assocs from changing. 7633 * Since the <ill-ipsq> assocs could change while we wait for the 7634 * writer, it is easier to wait on a fixed global rather than try to 7635 * cv_wait on a changing ipsq. 7636 */ 7637 mutex_enter(&ill->ill_lock); 7638 for (;;) { 7639 if (ill->ill_state_flags & ILL_CONDEMNED) { 7640 mutex_exit(&ill->ill_lock); 7641 return (B_FALSE); 7642 } 7643 7644 ipsq = ill->ill_phyint->phyint_ipsq; 7645 mutex_enter(&ipsq->ipsq_lock); 7646 if (ipsq->ipsq_writer == NULL && 7647 (ipsq->ipsq_current_ipif == NULL || waited_enough)) { 7648 break; 7649 } else if (ipsq->ipsq_writer != NULL) { 7650 mutex_exit(&ipsq->ipsq_lock); 7651 cv_wait(&ill->ill_cv, &ill->ill_lock); 7652 } else { 7653 mutex_exit(&ipsq->ipsq_lock); 7654 if (force) { 7655 (void) cv_timedwait(&ill->ill_cv, 7656 &ill->ill_lock, 7657 lbolt + ENTER_SQ_WAIT_TICKS); 7658 waited_enough = B_TRUE; 7659 continue; 7660 } else { 7661 cv_wait(&ill->ill_cv, &ill->ill_lock); 7662 } 7663 } 7664 } 7665 7666 ASSERT(ipsq->ipsq_mphead == NULL && ipsq->ipsq_mptail == NULL); 7667 ASSERT(ipsq->ipsq_reentry_cnt == 0); 7668 ipsq->ipsq_writer = curthread; 7669 ipsq->ipsq_reentry_cnt++; 7670 #ifdef DEBUG 7671 ipsq->ipsq_depth = getpcstack(ipsq->ipsq_stack, IPSQ_STACK_DEPTH); 7672 #endif 7673 mutex_exit(&ipsq->ipsq_lock); 7674 mutex_exit(&ill->ill_lock); 7675 return (B_TRUE); 7676 } 7677 7678 /* 7679 * The ipsq_t (ipsq) is the synchronization data structure used to serialize 7680 * certain critical operations like plumbing (i.e. most set ioctls), 7681 * multicast joins, igmp/mld timers, IPMP operations etc. On a non-IPMP 7682 * system there is 1 ipsq per phyint. On an IPMP system there is 1 ipsq per 7683 * IPMP group. The ipsq serializes exclusive ioctls issued by applications 7684 * on a per ipsq basis in ipsq_xopq_mphead. It also protects against multiple 7685 * threads executing in the ipsq. Responses from the driver pertain to the 7686 * current ioctl (say a DL_BIND_ACK in response to a DL_BIND_REQUEST initiated 7687 * as part of bringing up the interface) and are enqueued in ipsq_mphead. 7688 * 7689 * If a thread does not want to reenter the ipsq when it is already writer, 7690 * it must make sure that the specified reentry point to be called later 7691 * when the ipsq is empty, nor any code path starting from the specified reentry 7692 * point must never ever try to enter the ipsq again. Otherwise it can lead 7693 * to an infinite loop. The reentry point ip_rput_dlpi_writer is an example. 7694 * When the thread that is currently exclusive finishes, it (ipsq_exit) 7695 * dequeues the requests waiting to become exclusive in ipsq_mphead and calls 7696 * the reentry point. When the list at ipsq_mphead becomes empty ipsq_exit 7697 * proceeds to dequeue the next ioctl in ipsq_xopq_mphead and start the next 7698 * ioctl if the current ioctl has completed. If the current ioctl is still 7699 * in progress it simply returns. The current ioctl could be waiting for 7700 * a response from another module (arp_ or the driver or could be waiting for 7701 * the ipif/ill/ire refcnts to drop to zero. In such a case the ipsq_pending_mp 7702 * and ipsq_pending_ipif are set. ipsq_current_ipif is set throughout the 7703 * execution of the ioctl and ipsq_exit does not start the next ioctl unless 7704 * ipsq_current_ipif is clear which happens only on ioctl completion. 7705 */ 7706 7707 /* 7708 * Try to enter the ipsq exclusively, corresponding to ipif or ill. (only 1 of 7709 * ipif or ill can be specified). The caller ensures ipif or ill is valid by 7710 * ref-holding it if necessary. If the ipsq cannot be entered, the mp is queued 7711 * completion. 7712 */ 7713 ipsq_t * 7714 ipsq_try_enter(ipif_t *ipif, ill_t *ill, queue_t *q, mblk_t *mp, 7715 ipsq_func_t func, int type, boolean_t reentry_ok) 7716 { 7717 ipsq_t *ipsq; 7718 7719 /* Only 1 of ipif or ill can be specified */ 7720 ASSERT((ipif != NULL) ^ (ill != NULL)); 7721 if (ipif != NULL) 7722 ill = ipif->ipif_ill; 7723 7724 /* 7725 * lock ordering ill_g_lock -> conn_lock -> ill_lock -> ipsq_lock 7726 * ipsq of an ill can't change when ill_lock is held. 7727 */ 7728 GRAB_CONN_LOCK(q); 7729 mutex_enter(&ill->ill_lock); 7730 ipsq = ill->ill_phyint->phyint_ipsq; 7731 mutex_enter(&ipsq->ipsq_lock); 7732 7733 /* 7734 * 1. Enter the ipsq if we are already writer and reentry is ok. 7735 * (Note: If the caller does not specify reentry_ok then neither 7736 * 'func' nor any of its callees must ever attempt to enter the ipsq 7737 * again. Otherwise it can lead to an infinite loop 7738 * 2. Enter the ipsq if there is no current writer and this attempted 7739 * entry is part of the current ioctl or operation 7740 * 3. Enter the ipsq if there is no current writer and this is a new 7741 * ioctl (or operation) and the ioctl (or operation) queue is 7742 * empty and there is no ioctl (or operation) currently in progress 7743 */ 7744 if ((ipsq->ipsq_writer == NULL && ((type == CUR_OP) || 7745 (type == NEW_OP && ipsq->ipsq_xopq_mphead == NULL && 7746 ipsq->ipsq_current_ipif == NULL))) || 7747 (ipsq->ipsq_writer == curthread && reentry_ok)) { 7748 /* Success. */ 7749 ipsq->ipsq_reentry_cnt++; 7750 ipsq->ipsq_writer = curthread; 7751 mutex_exit(&ipsq->ipsq_lock); 7752 mutex_exit(&ill->ill_lock); 7753 RELEASE_CONN_LOCK(q); 7754 #ifdef DEBUG 7755 ipsq->ipsq_depth = getpcstack(ipsq->ipsq_stack, 7756 IPSQ_STACK_DEPTH); 7757 #endif 7758 return (ipsq); 7759 } 7760 7761 ipsq_enq(ipsq, q, mp, func, type, ill); 7762 7763 mutex_exit(&ipsq->ipsq_lock); 7764 mutex_exit(&ill->ill_lock); 7765 RELEASE_CONN_LOCK(q); 7766 return (NULL); 7767 } 7768 7769 /* 7770 * Try to enter the IPSQ corresponding to `ill' as writer. The caller ensures 7771 * ill is valid by refholding it if necessary; we will refrele. If the IPSQ 7772 * cannot be entered, the mp is queued for completion. 7773 */ 7774 void 7775 qwriter_ip(ill_t *ill, queue_t *q, mblk_t *mp, ipsq_func_t func, int type, 7776 boolean_t reentry_ok) 7777 { 7778 ipsq_t *ipsq; 7779 7780 ipsq = ipsq_try_enter(NULL, ill, q, mp, func, type, reentry_ok); 7781 7782 /* 7783 * Drop the caller's refhold on the ill. This is safe since we either 7784 * entered the IPSQ (and thus are exclusive), or failed to enter the 7785 * IPSQ, in which case we return without accessing ill anymore. This 7786 * is needed because func needs to see the correct refcount. 7787 * e.g. removeif can work only then. 7788 */ 7789 ill_refrele(ill); 7790 if (ipsq != NULL) { 7791 (*func)(ipsq, q, mp, NULL); 7792 ipsq_exit(ipsq, B_TRUE, B_TRUE); 7793 } 7794 } 7795 7796 /* 7797 * If there are more than ILL_GRP_CNT ills in a group, 7798 * we use kmem alloc'd buffers, else use the stack 7799 */ 7800 #define ILL_GRP_CNT 14 7801 /* 7802 * Drain the ipsq, if there are messages on it, and then leave the ipsq. 7803 * Called by a thread that is currently exclusive on this ipsq. 7804 */ 7805 void 7806 ipsq_exit(ipsq_t *ipsq, boolean_t start_igmp_timer, boolean_t start_mld_timer) 7807 { 7808 queue_t *q; 7809 mblk_t *mp; 7810 ipsq_func_t func; 7811 int next; 7812 ill_t **ill_list = NULL; 7813 size_t ill_list_size = 0; 7814 int cnt = 0; 7815 boolean_t need_ipsq_free = B_FALSE; 7816 ip_stack_t *ipst = ipsq->ipsq_ipst; 7817 7818 ASSERT(IAM_WRITER_IPSQ(ipsq)); 7819 mutex_enter(&ipsq->ipsq_lock); 7820 ASSERT(ipsq->ipsq_reentry_cnt >= 1); 7821 if (ipsq->ipsq_reentry_cnt != 1) { 7822 ipsq->ipsq_reentry_cnt--; 7823 mutex_exit(&ipsq->ipsq_lock); 7824 return; 7825 } 7826 7827 mp = ipsq_dq(ipsq); 7828 while (mp != NULL) { 7829 again: 7830 mutex_exit(&ipsq->ipsq_lock); 7831 func = (ipsq_func_t)mp->b_prev; 7832 q = (queue_t *)mp->b_queue; 7833 mp->b_prev = NULL; 7834 mp->b_queue = NULL; 7835 7836 /* 7837 * If 'q' is an conn queue, it is valid, since we did a 7838 * a refhold on the connp, at the start of the ioctl. 7839 * If 'q' is an ill queue, it is valid, since close of an 7840 * ill will clean up the 'ipsq'. 7841 */ 7842 (*func)(ipsq, q, mp, NULL); 7843 7844 mutex_enter(&ipsq->ipsq_lock); 7845 mp = ipsq_dq(ipsq); 7846 } 7847 7848 mutex_exit(&ipsq->ipsq_lock); 7849 7850 /* 7851 * Need to grab the locks in the right order. Need to 7852 * atomically check (under ipsq_lock) that there are no 7853 * messages before relinquishing the ipsq. Also need to 7854 * atomically wakeup waiters on ill_cv while holding ill_lock. 7855 * Holding ill_g_lock ensures that ipsq list of ills is stable. 7856 * If we need to call ill_split_ipsq and change <ill-ipsq> we need 7857 * to grab ill_g_lock as writer. 7858 */ 7859 rw_enter(&ipst->ips_ill_g_lock, 7860 ipsq->ipsq_split ? RW_WRITER : RW_READER); 7861 7862 /* ipsq_refs can't change while ill_g_lock is held as reader */ 7863 if (ipsq->ipsq_refs != 0) { 7864 /* At most 2 ills v4/v6 per phyint */ 7865 cnt = ipsq->ipsq_refs << 1; 7866 ill_list_size = cnt * sizeof (ill_t *); 7867 /* 7868 * If memory allocation fails, we will do the split 7869 * the next time ipsq_exit is called for whatever reason. 7870 * As long as the ipsq_split flag is set the need to 7871 * split is remembered. 7872 */ 7873 ill_list = kmem_zalloc(ill_list_size, KM_NOSLEEP); 7874 if (ill_list != NULL) 7875 cnt = ill_lock_ipsq_ills(ipsq, ill_list, cnt); 7876 } 7877 mutex_enter(&ipsq->ipsq_lock); 7878 mp = ipsq_dq(ipsq); 7879 if (mp != NULL) { 7880 /* oops, some message has landed up, we can't get out */ 7881 if (ill_list != NULL) 7882 ill_unlock_ills(ill_list, cnt); 7883 rw_exit(&ipst->ips_ill_g_lock); 7884 if (ill_list != NULL) 7885 kmem_free(ill_list, ill_list_size); 7886 ill_list = NULL; 7887 ill_list_size = 0; 7888 cnt = 0; 7889 goto again; 7890 } 7891 7892 /* 7893 * Split only if no ioctl is pending and if memory alloc succeeded 7894 * above. 7895 */ 7896 if (ipsq->ipsq_split && ipsq->ipsq_current_ipif == NULL && 7897 ill_list != NULL) { 7898 /* 7899 * No new ill can join this ipsq since we are holding the 7900 * ill_g_lock. Hence ill_split_ipsq can safely traverse the 7901 * ipsq. ill_split_ipsq may fail due to memory shortage. 7902 * If so we will retry on the next ipsq_exit. 7903 */ 7904 ipsq->ipsq_split = ill_split_ipsq(ipsq); 7905 } 7906 7907 /* 7908 * We are holding the ipsq lock, hence no new messages can 7909 * land up on the ipsq, and there are no messages currently. 7910 * Now safe to get out. Wake up waiters and relinquish ipsq 7911 * atomically while holding ill locks. 7912 */ 7913 ipsq->ipsq_writer = NULL; 7914 ipsq->ipsq_reentry_cnt--; 7915 ASSERT(ipsq->ipsq_reentry_cnt == 0); 7916 #ifdef DEBUG 7917 ipsq->ipsq_depth = 0; 7918 #endif 7919 mutex_exit(&ipsq->ipsq_lock); 7920 /* 7921 * For IPMP this should wake up all ills in this ipsq. 7922 * We need to hold the ill_lock while waking up waiters to 7923 * avoid missed wakeups. But there is no need to acquire all 7924 * the ill locks and then wakeup. If we have not acquired all 7925 * the locks (due to memory failure above) ill_signal_ipsq_ills 7926 * wakes up ills one at a time after getting the right ill_lock 7927 */ 7928 ill_signal_ipsq_ills(ipsq, ill_list != NULL); 7929 if (ill_list != NULL) 7930 ill_unlock_ills(ill_list, cnt); 7931 if (ipsq->ipsq_refs == 0) 7932 need_ipsq_free = B_TRUE; 7933 rw_exit(&ipst->ips_ill_g_lock); 7934 if (ill_list != 0) 7935 kmem_free(ill_list, ill_list_size); 7936 7937 if (need_ipsq_free) { 7938 /* 7939 * Free the ipsq. ipsq_refs can't increase because ipsq can't be 7940 * looked up. ipsq can be looked up only thru ill or phyint 7941 * and there are no ills/phyint on this ipsq. 7942 */ 7943 ipsq_delete(ipsq); 7944 } 7945 /* 7946 * Now start any igmp or mld timers that could not be started 7947 * while inside the ipsq. The timers can't be started while inside 7948 * the ipsq, since igmp_start_timers may need to call untimeout() 7949 * which can't be done while holding a lock i.e. the ipsq. Otherwise 7950 * there could be a deadlock since the timeout handlers 7951 * mld_timeout_handler / igmp_timeout_handler also synchronously 7952 * wait in ipsq_enter() trying to get the ipsq. 7953 * 7954 * However there is one exception to the above. If this thread is 7955 * itself the igmp/mld timeout handler thread, then we don't want 7956 * to start any new timer until the current handler is done. The 7957 * handler thread passes in B_FALSE for start_igmp/mld_timers, while 7958 * all others pass B_TRUE. 7959 */ 7960 if (start_igmp_timer) { 7961 mutex_enter(&ipst->ips_igmp_timer_lock); 7962 next = ipst->ips_igmp_deferred_next; 7963 ipst->ips_igmp_deferred_next = INFINITY; 7964 mutex_exit(&ipst->ips_igmp_timer_lock); 7965 7966 if (next != INFINITY) 7967 igmp_start_timers(next, ipst); 7968 } 7969 7970 if (start_mld_timer) { 7971 mutex_enter(&ipst->ips_mld_timer_lock); 7972 next = ipst->ips_mld_deferred_next; 7973 ipst->ips_mld_deferred_next = INFINITY; 7974 mutex_exit(&ipst->ips_mld_timer_lock); 7975 7976 if (next != INFINITY) 7977 mld_start_timers(next, ipst); 7978 } 7979 } 7980 7981 /* 7982 * Start the current exclusive operation on `ipsq'; associate it with `ipif' 7983 * and `ioccmd'. 7984 */ 7985 void 7986 ipsq_current_start(ipsq_t *ipsq, ipif_t *ipif, int ioccmd) 7987 { 7988 ASSERT(IAM_WRITER_IPSQ(ipsq)); 7989 7990 mutex_enter(&ipsq->ipsq_lock); 7991 ASSERT(ipsq->ipsq_current_ipif == NULL); 7992 ASSERT(ipsq->ipsq_current_ioctl == 0); 7993 ipsq->ipsq_current_ipif = ipif; 7994 ipsq->ipsq_current_ioctl = ioccmd; 7995 mutex_exit(&ipsq->ipsq_lock); 7996 } 7997 7998 /* 7999 * Finish the current exclusive operation on `ipsq'. Note that other 8000 * operations will not be able to proceed until an ipsq_exit() is done. 8001 */ 8002 void 8003 ipsq_current_finish(ipsq_t *ipsq) 8004 { 8005 ipif_t *ipif = ipsq->ipsq_current_ipif; 8006 8007 ASSERT(IAM_WRITER_IPSQ(ipsq)); 8008 8009 /* 8010 * For SIOCSLIFREMOVEIF, the ipif has been already been blown away 8011 * (but we're careful to never set IPIF_CHANGING in that case). 8012 */ 8013 if (ipsq->ipsq_current_ioctl != SIOCLIFREMOVEIF) { 8014 mutex_enter(&ipif->ipif_ill->ill_lock); 8015 ipif->ipif_state_flags &= ~IPIF_CHANGING; 8016 8017 /* Send any queued event */ 8018 ill_nic_info_dispatch(ipif->ipif_ill); 8019 mutex_exit(&ipif->ipif_ill->ill_lock); 8020 } 8021 8022 mutex_enter(&ipsq->ipsq_lock); 8023 ASSERT(ipsq->ipsq_current_ipif != NULL); 8024 ipsq->ipsq_current_ipif = NULL; 8025 ipsq->ipsq_current_ioctl = 0; 8026 mutex_exit(&ipsq->ipsq_lock); 8027 } 8028 8029 /* 8030 * The ill is closing. Flush all messages on the ipsq that originated 8031 * from this ill. Usually there wont' be any messages on the ipsq_xopq_mphead 8032 * for this ill since ipsq_enter could not have entered until then. 8033 * New messages can't be queued since the CONDEMNED flag is set. 8034 */ 8035 static void 8036 ipsq_flush(ill_t *ill) 8037 { 8038 queue_t *q; 8039 mblk_t *prev; 8040 mblk_t *mp; 8041 mblk_t *mp_next; 8042 ipsq_t *ipsq; 8043 8044 ASSERT(IAM_WRITER_ILL(ill)); 8045 ipsq = ill->ill_phyint->phyint_ipsq; 8046 /* 8047 * Flush any messages sent up by the driver. 8048 */ 8049 mutex_enter(&ipsq->ipsq_lock); 8050 for (prev = NULL, mp = ipsq->ipsq_mphead; mp != NULL; mp = mp_next) { 8051 mp_next = mp->b_next; 8052 q = mp->b_queue; 8053 if (q == ill->ill_rq || q == ill->ill_wq) { 8054 /* Remove the mp from the ipsq */ 8055 if (prev == NULL) 8056 ipsq->ipsq_mphead = mp->b_next; 8057 else 8058 prev->b_next = mp->b_next; 8059 if (ipsq->ipsq_mptail == mp) { 8060 ASSERT(mp_next == NULL); 8061 ipsq->ipsq_mptail = prev; 8062 } 8063 inet_freemsg(mp); 8064 } else { 8065 prev = mp; 8066 } 8067 } 8068 mutex_exit(&ipsq->ipsq_lock); 8069 (void) ipsq_pending_mp_cleanup(ill, NULL); 8070 ipsq_xopq_mp_cleanup(ill, NULL); 8071 ill_pending_mp_cleanup(ill); 8072 } 8073 8074 /* ARGSUSED */ 8075 int 8076 ip_sioctl_slifoindex(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 8077 ip_ioctl_cmd_t *ipip, void *ifreq) 8078 { 8079 ill_t *ill; 8080 struct lifreq *lifr = (struct lifreq *)ifreq; 8081 boolean_t isv6; 8082 conn_t *connp; 8083 ip_stack_t *ipst; 8084 8085 connp = Q_TO_CONN(q); 8086 ipst = connp->conn_netstack->netstack_ip; 8087 isv6 = connp->conn_af_isv6; 8088 /* 8089 * Set original index. 8090 * Failover and failback move logical interfaces 8091 * from one physical interface to another. The 8092 * original index indicates the parent of a logical 8093 * interface, in other words, the physical interface 8094 * the logical interface will be moved back to on 8095 * failback. 8096 */ 8097 8098 /* 8099 * Don't allow the original index to be changed 8100 * for non-failover addresses, autoconfigured 8101 * addresses, or IPv6 link local addresses. 8102 */ 8103 if (((ipif->ipif_flags & (IPIF_NOFAILOVER | IPIF_ADDRCONF)) != NULL) || 8104 (isv6 && IN6_IS_ADDR_LINKLOCAL(&ipif->ipif_v6lcl_addr))) { 8105 return (EINVAL); 8106 } 8107 /* 8108 * The new original index must be in use by some 8109 * physical interface. 8110 */ 8111 ill = ill_lookup_on_ifindex(lifr->lifr_index, isv6, NULL, NULL, 8112 NULL, NULL, ipst); 8113 if (ill == NULL) 8114 return (ENXIO); 8115 ill_refrele(ill); 8116 8117 ipif->ipif_orig_ifindex = lifr->lifr_index; 8118 /* 8119 * When this ipif gets failed back, don't 8120 * preserve the original id, as it is no 8121 * longer applicable. 8122 */ 8123 ipif->ipif_orig_ipifid = 0; 8124 /* 8125 * For IPv4, change the original index of any 8126 * multicast addresses associated with the 8127 * ipif to the new value. 8128 */ 8129 if (!isv6) { 8130 ilm_t *ilm; 8131 8132 mutex_enter(&ipif->ipif_ill->ill_lock); 8133 for (ilm = ipif->ipif_ill->ill_ilm; ilm != NULL; 8134 ilm = ilm->ilm_next) { 8135 if (ilm->ilm_ipif == ipif) { 8136 ilm->ilm_orig_ifindex = lifr->lifr_index; 8137 } 8138 } 8139 mutex_exit(&ipif->ipif_ill->ill_lock); 8140 } 8141 return (0); 8142 } 8143 8144 /* ARGSUSED */ 8145 int 8146 ip_sioctl_get_oindex(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 8147 ip_ioctl_cmd_t *ipip, void *ifreq) 8148 { 8149 struct lifreq *lifr = (struct lifreq *)ifreq; 8150 8151 /* 8152 * Get the original interface index i.e the one 8153 * before FAILOVER if it ever happened. 8154 */ 8155 lifr->lifr_index = ipif->ipif_orig_ifindex; 8156 return (0); 8157 } 8158 8159 /* 8160 * Parse an iftun_req structure coming down SIOC[GS]TUNPARAM ioctls, 8161 * refhold and return the associated ipif 8162 */ 8163 /* ARGSUSED */ 8164 int 8165 ip_extract_tunreq(queue_t *q, mblk_t *mp, const ip_ioctl_cmd_t *ipip, 8166 cmd_info_t *ci, ipsq_func_t func) 8167 { 8168 boolean_t exists; 8169 struct iftun_req *ta; 8170 ipif_t *ipif; 8171 ill_t *ill; 8172 boolean_t isv6; 8173 mblk_t *mp1; 8174 int error; 8175 conn_t *connp; 8176 ip_stack_t *ipst; 8177 8178 /* Existence verified in ip_wput_nondata */ 8179 mp1 = mp->b_cont->b_cont; 8180 ta = (struct iftun_req *)mp1->b_rptr; 8181 /* 8182 * Null terminate the string to protect against buffer 8183 * overrun. String was generated by user code and may not 8184 * be trusted. 8185 */ 8186 ta->ifta_lifr_name[LIFNAMSIZ - 1] = '\0'; 8187 8188 connp = Q_TO_CONN(q); 8189 isv6 = connp->conn_af_isv6; 8190 ipst = connp->conn_netstack->netstack_ip; 8191 8192 /* Disallows implicit create */ 8193 ipif = ipif_lookup_on_name(ta->ifta_lifr_name, 8194 mi_strlen(ta->ifta_lifr_name), B_FALSE, &exists, isv6, 8195 connp->conn_zoneid, CONNP_TO_WQ(connp), mp, func, &error, ipst); 8196 if (ipif == NULL) 8197 return (error); 8198 8199 if (ipif->ipif_id != 0) { 8200 /* 8201 * We really don't want to set/get tunnel parameters 8202 * on virtual tunnel interfaces. Only allow the 8203 * base tunnel to do these. 8204 */ 8205 ipif_refrele(ipif); 8206 return (EINVAL); 8207 } 8208 8209 /* 8210 * Send down to tunnel mod for ioctl processing. 8211 * Will finish ioctl in ip_rput_other(). 8212 */ 8213 ill = ipif->ipif_ill; 8214 if (ill->ill_net_type == IRE_LOOPBACK) { 8215 ipif_refrele(ipif); 8216 return (EOPNOTSUPP); 8217 } 8218 8219 if (ill->ill_wq == NULL) { 8220 ipif_refrele(ipif); 8221 return (ENXIO); 8222 } 8223 /* 8224 * Mark the ioctl as coming from an IPv6 interface for 8225 * tun's convenience. 8226 */ 8227 if (ill->ill_isv6) 8228 ta->ifta_flags |= 0x80000000; 8229 ci->ci_ipif = ipif; 8230 return (0); 8231 } 8232 8233 /* 8234 * Parse an ifreq or lifreq struct coming down ioctls and refhold 8235 * and return the associated ipif. 8236 * Return value: 8237 * Non zero: An error has occurred. ci may not be filled out. 8238 * zero : ci is filled out with the ioctl cmd in ci.ci_name, and 8239 * a held ipif in ci.ci_ipif. 8240 */ 8241 int 8242 ip_extract_lifreq(queue_t *q, mblk_t *mp, const ip_ioctl_cmd_t *ipip, 8243 cmd_info_t *ci, ipsq_func_t func) 8244 { 8245 sin_t *sin; 8246 sin6_t *sin6; 8247 char *name; 8248 struct ifreq *ifr; 8249 struct lifreq *lifr; 8250 ipif_t *ipif = NULL; 8251 ill_t *ill; 8252 conn_t *connp; 8253 boolean_t isv6; 8254 boolean_t exists; 8255 int err; 8256 mblk_t *mp1; 8257 zoneid_t zoneid; 8258 ip_stack_t *ipst; 8259 8260 if (q->q_next != NULL) { 8261 ill = (ill_t *)q->q_ptr; 8262 isv6 = ill->ill_isv6; 8263 connp = NULL; 8264 zoneid = ALL_ZONES; 8265 ipst = ill->ill_ipst; 8266 } else { 8267 ill = NULL; 8268 connp = Q_TO_CONN(q); 8269 isv6 = connp->conn_af_isv6; 8270 zoneid = connp->conn_zoneid; 8271 if (zoneid == GLOBAL_ZONEID) { 8272 /* global zone can access ipifs in all zones */ 8273 zoneid = ALL_ZONES; 8274 } 8275 ipst = connp->conn_netstack->netstack_ip; 8276 } 8277 8278 /* Has been checked in ip_wput_nondata */ 8279 mp1 = mp->b_cont->b_cont; 8280 8281 if (ipip->ipi_cmd_type == IF_CMD) { 8282 /* This a old style SIOC[GS]IF* command */ 8283 ifr = (struct ifreq *)mp1->b_rptr; 8284 /* 8285 * Null terminate the string to protect against buffer 8286 * overrun. String was generated by user code and may not 8287 * be trusted. 8288 */ 8289 ifr->ifr_name[IFNAMSIZ - 1] = '\0'; 8290 sin = (sin_t *)&ifr->ifr_addr; 8291 name = ifr->ifr_name; 8292 ci->ci_sin = sin; 8293 ci->ci_sin6 = NULL; 8294 ci->ci_lifr = (struct lifreq *)ifr; 8295 } else { 8296 /* This a new style SIOC[GS]LIF* command */ 8297 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 8298 lifr = (struct lifreq *)mp1->b_rptr; 8299 /* 8300 * Null terminate the string to protect against buffer 8301 * overrun. String was generated by user code and may not 8302 * be trusted. 8303 */ 8304 lifr->lifr_name[LIFNAMSIZ - 1] = '\0'; 8305 name = lifr->lifr_name; 8306 sin = (sin_t *)&lifr->lifr_addr; 8307 sin6 = (sin6_t *)&lifr->lifr_addr; 8308 if (ipip->ipi_cmd == SIOCSLIFGROUPNAME) { 8309 (void) strncpy(ci->ci_groupname, lifr->lifr_groupname, 8310 LIFNAMSIZ); 8311 } 8312 ci->ci_sin = sin; 8313 ci->ci_sin6 = sin6; 8314 ci->ci_lifr = lifr; 8315 } 8316 8317 if (ipip->ipi_cmd == SIOCSLIFNAME) { 8318 /* 8319 * The ioctl will be failed if the ioctl comes down 8320 * an conn stream 8321 */ 8322 if (ill == NULL) { 8323 /* 8324 * Not an ill queue, return EINVAL same as the 8325 * old error code. 8326 */ 8327 return (ENXIO); 8328 } 8329 ipif = ill->ill_ipif; 8330 ipif_refhold(ipif); 8331 } else { 8332 ipif = ipif_lookup_on_name(name, mi_strlen(name), B_FALSE, 8333 &exists, isv6, zoneid, 8334 (connp == NULL) ? q : CONNP_TO_WQ(connp), mp, func, &err, 8335 ipst); 8336 if (ipif == NULL) { 8337 if (err == EINPROGRESS) 8338 return (err); 8339 if (ipip->ipi_cmd == SIOCLIFFAILOVER || 8340 ipip->ipi_cmd == SIOCLIFFAILBACK) { 8341 /* 8342 * Need to try both v4 and v6 since this 8343 * ioctl can come down either v4 or v6 8344 * socket. The lifreq.lifr_family passed 8345 * down by this ioctl is AF_UNSPEC. 8346 */ 8347 ipif = ipif_lookup_on_name(name, 8348 mi_strlen(name), B_FALSE, &exists, !isv6, 8349 zoneid, (connp == NULL) ? q : 8350 CONNP_TO_WQ(connp), mp, func, &err, ipst); 8351 if (err == EINPROGRESS) 8352 return (err); 8353 } 8354 err = 0; /* Ensure we don't use it below */ 8355 } 8356 } 8357 8358 /* 8359 * Old style [GS]IFCMD does not admit IPv6 ipif 8360 */ 8361 if (ipif != NULL && ipif->ipif_isv6 && ipip->ipi_cmd_type == IF_CMD) { 8362 ipif_refrele(ipif); 8363 return (ENXIO); 8364 } 8365 8366 if (ipif == NULL && ill != NULL && ill->ill_ipif != NULL && 8367 name[0] == '\0') { 8368 /* 8369 * Handle a or a SIOC?IF* with a null name 8370 * during plumb (on the ill queue before the I_PLINK). 8371 */ 8372 ipif = ill->ill_ipif; 8373 ipif_refhold(ipif); 8374 } 8375 8376 if (ipif == NULL) 8377 return (ENXIO); 8378 8379 /* 8380 * Allow only GET operations if this ipif has been created 8381 * temporarily due to a MOVE operation. 8382 */ 8383 if (ipif->ipif_replace_zero && !(ipip->ipi_flags & IPI_REPL)) { 8384 ipif_refrele(ipif); 8385 return (EINVAL); 8386 } 8387 8388 ci->ci_ipif = ipif; 8389 return (0); 8390 } 8391 8392 /* 8393 * Return the total number of ipifs. 8394 */ 8395 static uint_t 8396 ip_get_numifs(zoneid_t zoneid, ip_stack_t *ipst) 8397 { 8398 uint_t numifs = 0; 8399 ill_t *ill; 8400 ill_walk_context_t ctx; 8401 ipif_t *ipif; 8402 8403 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 8404 ill = ILL_START_WALK_V4(&ctx, ipst); 8405 8406 while (ill != NULL) { 8407 for (ipif = ill->ill_ipif; ipif != NULL; 8408 ipif = ipif->ipif_next) { 8409 if (ipif->ipif_zoneid == zoneid || 8410 ipif->ipif_zoneid == ALL_ZONES) 8411 numifs++; 8412 } 8413 ill = ill_next(&ctx, ill); 8414 } 8415 rw_exit(&ipst->ips_ill_g_lock); 8416 return (numifs); 8417 } 8418 8419 /* 8420 * Return the total number of ipifs. 8421 */ 8422 static uint_t 8423 ip_get_numlifs(int family, int lifn_flags, zoneid_t zoneid, ip_stack_t *ipst) 8424 { 8425 uint_t numifs = 0; 8426 ill_t *ill; 8427 ipif_t *ipif; 8428 ill_walk_context_t ctx; 8429 8430 ip1dbg(("ip_get_numlifs(%d %u %d)\n", family, lifn_flags, (int)zoneid)); 8431 8432 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 8433 if (family == AF_INET) 8434 ill = ILL_START_WALK_V4(&ctx, ipst); 8435 else if (family == AF_INET6) 8436 ill = ILL_START_WALK_V6(&ctx, ipst); 8437 else 8438 ill = ILL_START_WALK_ALL(&ctx, ipst); 8439 8440 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 8441 for (ipif = ill->ill_ipif; ipif != NULL; 8442 ipif = ipif->ipif_next) { 8443 if ((ipif->ipif_flags & IPIF_NOXMIT) && 8444 !(lifn_flags & LIFC_NOXMIT)) 8445 continue; 8446 if ((ipif->ipif_flags & IPIF_TEMPORARY) && 8447 !(lifn_flags & LIFC_TEMPORARY)) 8448 continue; 8449 if (((ipif->ipif_flags & 8450 (IPIF_NOXMIT|IPIF_NOLOCAL| 8451 IPIF_DEPRECATED)) || 8452 IS_LOOPBACK(ill) || 8453 !(ipif->ipif_flags & IPIF_UP)) && 8454 (lifn_flags & LIFC_EXTERNAL_SOURCE)) 8455 continue; 8456 8457 if (zoneid != ipif->ipif_zoneid && 8458 ipif->ipif_zoneid != ALL_ZONES && 8459 (zoneid != GLOBAL_ZONEID || 8460 !(lifn_flags & LIFC_ALLZONES))) 8461 continue; 8462 8463 numifs++; 8464 } 8465 } 8466 rw_exit(&ipst->ips_ill_g_lock); 8467 return (numifs); 8468 } 8469 8470 uint_t 8471 ip_get_lifsrcofnum(ill_t *ill) 8472 { 8473 uint_t numifs = 0; 8474 ill_t *ill_head = ill; 8475 ip_stack_t *ipst = ill->ill_ipst; 8476 8477 /* 8478 * ill_g_usesrc_lock protects ill_usesrc_grp_next, for example, some 8479 * other thread may be trying to relink the ILLs in this usesrc group 8480 * and adjusting the ill_usesrc_grp_next pointers 8481 */ 8482 rw_enter(&ipst->ips_ill_g_usesrc_lock, RW_READER); 8483 if ((ill->ill_usesrc_ifindex == 0) && 8484 (ill->ill_usesrc_grp_next != NULL)) { 8485 for (; (ill != NULL) && (ill->ill_usesrc_grp_next != ill_head); 8486 ill = ill->ill_usesrc_grp_next) 8487 numifs++; 8488 } 8489 rw_exit(&ipst->ips_ill_g_usesrc_lock); 8490 8491 return (numifs); 8492 } 8493 8494 /* Null values are passed in for ipif, sin, and ifreq */ 8495 /* ARGSUSED */ 8496 int 8497 ip_sioctl_get_ifnum(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, 8498 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) 8499 { 8500 int *nump; 8501 conn_t *connp = Q_TO_CONN(q); 8502 8503 ASSERT(q->q_next == NULL); /* not a valid ioctl for ip as a module */ 8504 8505 /* Existence of b_cont->b_cont checked in ip_wput_nondata */ 8506 nump = (int *)mp->b_cont->b_cont->b_rptr; 8507 8508 *nump = ip_get_numifs(connp->conn_zoneid, 8509 connp->conn_netstack->netstack_ip); 8510 ip1dbg(("ip_sioctl_get_ifnum numifs %d", *nump)); 8511 return (0); 8512 } 8513 8514 /* Null values are passed in for ipif, sin, and ifreq */ 8515 /* ARGSUSED */ 8516 int 8517 ip_sioctl_get_lifnum(ipif_t *dummy_ipif, sin_t *dummy_sin, 8518 queue_t *q, mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) 8519 { 8520 struct lifnum *lifn; 8521 mblk_t *mp1; 8522 conn_t *connp = Q_TO_CONN(q); 8523 8524 ASSERT(q->q_next == NULL); /* not a valid ioctl for ip as a module */ 8525 8526 /* Existence checked in ip_wput_nondata */ 8527 mp1 = mp->b_cont->b_cont; 8528 8529 lifn = (struct lifnum *)mp1->b_rptr; 8530 switch (lifn->lifn_family) { 8531 case AF_UNSPEC: 8532 case AF_INET: 8533 case AF_INET6: 8534 break; 8535 default: 8536 return (EAFNOSUPPORT); 8537 } 8538 8539 lifn->lifn_count = ip_get_numlifs(lifn->lifn_family, lifn->lifn_flags, 8540 connp->conn_zoneid, connp->conn_netstack->netstack_ip); 8541 ip1dbg(("ip_sioctl_get_lifnum numifs %d", lifn->lifn_count)); 8542 return (0); 8543 } 8544 8545 /* ARGSUSED */ 8546 int 8547 ip_sioctl_get_ifconf(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, 8548 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) 8549 { 8550 STRUCT_HANDLE(ifconf, ifc); 8551 mblk_t *mp1; 8552 struct iocblk *iocp; 8553 struct ifreq *ifr; 8554 ill_walk_context_t ctx; 8555 ill_t *ill; 8556 ipif_t *ipif; 8557 struct sockaddr_in *sin; 8558 int32_t ifclen; 8559 zoneid_t zoneid; 8560 ip_stack_t *ipst = CONNQ_TO_IPST(q); 8561 8562 ASSERT(q->q_next == NULL); /* not valid ioctls for ip as a module */ 8563 8564 ip1dbg(("ip_sioctl_get_ifconf")); 8565 /* Existence verified in ip_wput_nondata */ 8566 mp1 = mp->b_cont->b_cont; 8567 iocp = (struct iocblk *)mp->b_rptr; 8568 zoneid = Q_TO_CONN(q)->conn_zoneid; 8569 8570 /* 8571 * The original SIOCGIFCONF passed in a struct ifconf which specified 8572 * the user buffer address and length into which the list of struct 8573 * ifreqs was to be copied. Since AT&T Streams does not seem to 8574 * allow M_COPYOUT to be used in conjunction with I_STR IOCTLS, 8575 * the SIOCGIFCONF operation was redefined to simply provide 8576 * a large output buffer into which we are supposed to jam the ifreq 8577 * array. The same ioctl command code was used, despite the fact that 8578 * both the applications and the kernel code had to change, thus making 8579 * it impossible to support both interfaces. 8580 * 8581 * For reasons not good enough to try to explain, the following 8582 * algorithm is used for deciding what to do with one of these: 8583 * If the IOCTL comes in as an I_STR, it is assumed to be of the new 8584 * form with the output buffer coming down as the continuation message. 8585 * If it arrives as a TRANSPARENT IOCTL, it is assumed to be old style, 8586 * and we have to copy in the ifconf structure to find out how big the 8587 * output buffer is and where to copy out to. Sure no problem... 8588 * 8589 */ 8590 STRUCT_SET_HANDLE(ifc, iocp->ioc_flag, NULL); 8591 if ((mp1->b_wptr - mp1->b_rptr) == STRUCT_SIZE(ifc)) { 8592 int numifs = 0; 8593 size_t ifc_bufsize; 8594 8595 /* 8596 * Must be (better be!) continuation of a TRANSPARENT 8597 * IOCTL. We just copied in the ifconf structure. 8598 */ 8599 STRUCT_SET_HANDLE(ifc, iocp->ioc_flag, 8600 (struct ifconf *)mp1->b_rptr); 8601 8602 /* 8603 * Allocate a buffer to hold requested information. 8604 * 8605 * If ifc_len is larger than what is needed, we only 8606 * allocate what we will use. 8607 * 8608 * If ifc_len is smaller than what is needed, return 8609 * EINVAL. 8610 * 8611 * XXX: the ill_t structure can hava 2 counters, for 8612 * v4 and v6 (not just ill_ipif_up_count) to store the 8613 * number of interfaces for a device, so we don't need 8614 * to count them here... 8615 */ 8616 numifs = ip_get_numifs(zoneid, ipst); 8617 8618 ifclen = STRUCT_FGET(ifc, ifc_len); 8619 ifc_bufsize = numifs * sizeof (struct ifreq); 8620 if (ifc_bufsize > ifclen) { 8621 if (iocp->ioc_cmd == O_SIOCGIFCONF) { 8622 /* old behaviour */ 8623 return (EINVAL); 8624 } else { 8625 ifc_bufsize = ifclen; 8626 } 8627 } 8628 8629 mp1 = mi_copyout_alloc(q, mp, 8630 STRUCT_FGETP(ifc, ifc_buf), ifc_bufsize, B_FALSE); 8631 if (mp1 == NULL) 8632 return (ENOMEM); 8633 8634 mp1->b_wptr = mp1->b_rptr + ifc_bufsize; 8635 } 8636 bzero(mp1->b_rptr, mp1->b_wptr - mp1->b_rptr); 8637 /* 8638 * the SIOCGIFCONF ioctl only knows about 8639 * IPv4 addresses, so don't try to tell 8640 * it about interfaces with IPv6-only 8641 * addresses. (Last parm 'isv6' is B_FALSE) 8642 */ 8643 8644 ifr = (struct ifreq *)mp1->b_rptr; 8645 8646 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 8647 ill = ILL_START_WALK_V4(&ctx, ipst); 8648 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 8649 for (ipif = ill->ill_ipif; ipif != NULL; 8650 ipif = ipif->ipif_next) { 8651 if (zoneid != ipif->ipif_zoneid && 8652 ipif->ipif_zoneid != ALL_ZONES) 8653 continue; 8654 if ((uchar_t *)&ifr[1] > mp1->b_wptr) { 8655 if (iocp->ioc_cmd == O_SIOCGIFCONF) { 8656 /* old behaviour */ 8657 rw_exit(&ipst->ips_ill_g_lock); 8658 return (EINVAL); 8659 } else { 8660 goto if_copydone; 8661 } 8662 } 8663 ipif_get_name(ipif, ifr->ifr_name, 8664 sizeof (ifr->ifr_name)); 8665 sin = (sin_t *)&ifr->ifr_addr; 8666 *sin = sin_null; 8667 sin->sin_family = AF_INET; 8668 sin->sin_addr.s_addr = ipif->ipif_lcl_addr; 8669 ifr++; 8670 } 8671 } 8672 if_copydone: 8673 rw_exit(&ipst->ips_ill_g_lock); 8674 mp1->b_wptr = (uchar_t *)ifr; 8675 8676 if (STRUCT_BUF(ifc) != NULL) { 8677 STRUCT_FSET(ifc, ifc_len, 8678 (int)((uchar_t *)ifr - mp1->b_rptr)); 8679 } 8680 return (0); 8681 } 8682 8683 /* 8684 * Get the interfaces using the address hosted on the interface passed in, 8685 * as a source adddress 8686 */ 8687 /* ARGSUSED */ 8688 int 8689 ip_sioctl_get_lifsrcof(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, 8690 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) 8691 { 8692 mblk_t *mp1; 8693 ill_t *ill, *ill_head; 8694 ipif_t *ipif, *orig_ipif; 8695 int numlifs = 0; 8696 size_t lifs_bufsize, lifsmaxlen; 8697 struct lifreq *lifr; 8698 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 8699 uint_t ifindex; 8700 zoneid_t zoneid; 8701 int err = 0; 8702 boolean_t isv6 = B_FALSE; 8703 struct sockaddr_in *sin; 8704 struct sockaddr_in6 *sin6; 8705 STRUCT_HANDLE(lifsrcof, lifs); 8706 ip_stack_t *ipst; 8707 8708 ipst = CONNQ_TO_IPST(q); 8709 8710 ASSERT(q->q_next == NULL); 8711 8712 zoneid = Q_TO_CONN(q)->conn_zoneid; 8713 8714 /* Existence verified in ip_wput_nondata */ 8715 mp1 = mp->b_cont->b_cont; 8716 8717 /* 8718 * Must be (better be!) continuation of a TRANSPARENT 8719 * IOCTL. We just copied in the lifsrcof structure. 8720 */ 8721 STRUCT_SET_HANDLE(lifs, iocp->ioc_flag, 8722 (struct lifsrcof *)mp1->b_rptr); 8723 8724 if (MBLKL(mp1) != STRUCT_SIZE(lifs)) 8725 return (EINVAL); 8726 8727 ifindex = STRUCT_FGET(lifs, lifs_ifindex); 8728 isv6 = (Q_TO_CONN(q))->conn_af_isv6; 8729 ipif = ipif_lookup_on_ifindex(ifindex, isv6, zoneid, q, mp, 8730 ip_process_ioctl, &err, ipst); 8731 if (ipif == NULL) { 8732 ip1dbg(("ip_sioctl_get_lifsrcof: no ipif for ifindex %d\n", 8733 ifindex)); 8734 return (err); 8735 } 8736 8737 8738 /* Allocate a buffer to hold requested information */ 8739 numlifs = ip_get_lifsrcofnum(ipif->ipif_ill); 8740 lifs_bufsize = numlifs * sizeof (struct lifreq); 8741 lifsmaxlen = STRUCT_FGET(lifs, lifs_maxlen); 8742 /* The actual size needed is always returned in lifs_len */ 8743 STRUCT_FSET(lifs, lifs_len, lifs_bufsize); 8744 8745 /* If the amount we need is more than what is passed in, abort */ 8746 if (lifs_bufsize > lifsmaxlen || lifs_bufsize == 0) { 8747 ipif_refrele(ipif); 8748 return (0); 8749 } 8750 8751 mp1 = mi_copyout_alloc(q, mp, 8752 STRUCT_FGETP(lifs, lifs_buf), lifs_bufsize, B_FALSE); 8753 if (mp1 == NULL) { 8754 ipif_refrele(ipif); 8755 return (ENOMEM); 8756 } 8757 8758 mp1->b_wptr = mp1->b_rptr + lifs_bufsize; 8759 bzero(mp1->b_rptr, lifs_bufsize); 8760 8761 lifr = (struct lifreq *)mp1->b_rptr; 8762 8763 ill = ill_head = ipif->ipif_ill; 8764 orig_ipif = ipif; 8765 8766 /* ill_g_usesrc_lock protects ill_usesrc_grp_next */ 8767 rw_enter(&ipst->ips_ill_g_usesrc_lock, RW_READER); 8768 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 8769 8770 ill = ill->ill_usesrc_grp_next; /* start from next ill */ 8771 for (; (ill != NULL) && (ill != ill_head); 8772 ill = ill->ill_usesrc_grp_next) { 8773 8774 if ((uchar_t *)&lifr[1] > mp1->b_wptr) 8775 break; 8776 8777 ipif = ill->ill_ipif; 8778 ipif_get_name(ipif, lifr->lifr_name, sizeof (lifr->lifr_name)); 8779 if (ipif->ipif_isv6) { 8780 sin6 = (sin6_t *)&lifr->lifr_addr; 8781 *sin6 = sin6_null; 8782 sin6->sin6_family = AF_INET6; 8783 sin6->sin6_addr = ipif->ipif_v6lcl_addr; 8784 lifr->lifr_addrlen = ip_mask_to_plen_v6( 8785 &ipif->ipif_v6net_mask); 8786 } else { 8787 sin = (sin_t *)&lifr->lifr_addr; 8788 *sin = sin_null; 8789 sin->sin_family = AF_INET; 8790 sin->sin_addr.s_addr = ipif->ipif_lcl_addr; 8791 lifr->lifr_addrlen = ip_mask_to_plen( 8792 ipif->ipif_net_mask); 8793 } 8794 lifr++; 8795 } 8796 rw_exit(&ipst->ips_ill_g_usesrc_lock); 8797 rw_exit(&ipst->ips_ill_g_lock); 8798 ipif_refrele(orig_ipif); 8799 mp1->b_wptr = (uchar_t *)lifr; 8800 STRUCT_FSET(lifs, lifs_len, (int)((uchar_t *)lifr - mp1->b_rptr)); 8801 8802 return (0); 8803 } 8804 8805 /* ARGSUSED */ 8806 int 8807 ip_sioctl_get_lifconf(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, 8808 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) 8809 { 8810 mblk_t *mp1; 8811 int list; 8812 ill_t *ill; 8813 ipif_t *ipif; 8814 int flags; 8815 int numlifs = 0; 8816 size_t lifc_bufsize; 8817 struct lifreq *lifr; 8818 sa_family_t family; 8819 struct sockaddr_in *sin; 8820 struct sockaddr_in6 *sin6; 8821 ill_walk_context_t ctx; 8822 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 8823 int32_t lifclen; 8824 zoneid_t zoneid; 8825 STRUCT_HANDLE(lifconf, lifc); 8826 ip_stack_t *ipst = CONNQ_TO_IPST(q); 8827 8828 ip1dbg(("ip_sioctl_get_lifconf")); 8829 8830 ASSERT(q->q_next == NULL); 8831 8832 zoneid = Q_TO_CONN(q)->conn_zoneid; 8833 8834 /* Existence verified in ip_wput_nondata */ 8835 mp1 = mp->b_cont->b_cont; 8836 8837 /* 8838 * An extended version of SIOCGIFCONF that takes an 8839 * additional address family and flags field. 8840 * AF_UNSPEC retrieve both IPv4 and IPv6. 8841 * Unless LIFC_NOXMIT is specified the IPIF_NOXMIT 8842 * interfaces are omitted. 8843 * Similarly, IPIF_TEMPORARY interfaces are omitted 8844 * unless LIFC_TEMPORARY is specified. 8845 * If LIFC_EXTERNAL_SOURCE is specified, IPIF_NOXMIT, 8846 * IPIF_NOLOCAL, PHYI_LOOPBACK, IPIF_DEPRECATED and 8847 * not IPIF_UP interfaces are omitted. LIFC_EXTERNAL_SOURCE 8848 * has priority over LIFC_NOXMIT. 8849 */ 8850 STRUCT_SET_HANDLE(lifc, iocp->ioc_flag, NULL); 8851 8852 if ((mp1->b_wptr - mp1->b_rptr) != STRUCT_SIZE(lifc)) 8853 return (EINVAL); 8854 8855 /* 8856 * Must be (better be!) continuation of a TRANSPARENT 8857 * IOCTL. We just copied in the lifconf structure. 8858 */ 8859 STRUCT_SET_HANDLE(lifc, iocp->ioc_flag, (struct lifconf *)mp1->b_rptr); 8860 8861 family = STRUCT_FGET(lifc, lifc_family); 8862 flags = STRUCT_FGET(lifc, lifc_flags); 8863 8864 switch (family) { 8865 case AF_UNSPEC: 8866 /* 8867 * walk all ILL's. 8868 */ 8869 list = MAX_G_HEADS; 8870 break; 8871 case AF_INET: 8872 /* 8873 * walk only IPV4 ILL's. 8874 */ 8875 list = IP_V4_G_HEAD; 8876 break; 8877 case AF_INET6: 8878 /* 8879 * walk only IPV6 ILL's. 8880 */ 8881 list = IP_V6_G_HEAD; 8882 break; 8883 default: 8884 return (EAFNOSUPPORT); 8885 } 8886 8887 /* 8888 * Allocate a buffer to hold requested information. 8889 * 8890 * If lifc_len is larger than what is needed, we only 8891 * allocate what we will use. 8892 * 8893 * If lifc_len is smaller than what is needed, return 8894 * EINVAL. 8895 */ 8896 numlifs = ip_get_numlifs(family, flags, zoneid, ipst); 8897 lifc_bufsize = numlifs * sizeof (struct lifreq); 8898 lifclen = STRUCT_FGET(lifc, lifc_len); 8899 if (lifc_bufsize > lifclen) { 8900 if (iocp->ioc_cmd == O_SIOCGLIFCONF) 8901 return (EINVAL); 8902 else 8903 lifc_bufsize = lifclen; 8904 } 8905 8906 mp1 = mi_copyout_alloc(q, mp, 8907 STRUCT_FGETP(lifc, lifc_buf), lifc_bufsize, B_FALSE); 8908 if (mp1 == NULL) 8909 return (ENOMEM); 8910 8911 mp1->b_wptr = mp1->b_rptr + lifc_bufsize; 8912 bzero(mp1->b_rptr, mp1->b_wptr - mp1->b_rptr); 8913 8914 lifr = (struct lifreq *)mp1->b_rptr; 8915 8916 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 8917 ill = ill_first(list, list, &ctx, ipst); 8918 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 8919 for (ipif = ill->ill_ipif; ipif != NULL; 8920 ipif = ipif->ipif_next) { 8921 if ((ipif->ipif_flags & IPIF_NOXMIT) && 8922 !(flags & LIFC_NOXMIT)) 8923 continue; 8924 8925 if ((ipif->ipif_flags & IPIF_TEMPORARY) && 8926 !(flags & LIFC_TEMPORARY)) 8927 continue; 8928 8929 if (((ipif->ipif_flags & 8930 (IPIF_NOXMIT|IPIF_NOLOCAL| 8931 IPIF_DEPRECATED)) || 8932 IS_LOOPBACK(ill) || 8933 !(ipif->ipif_flags & IPIF_UP)) && 8934 (flags & LIFC_EXTERNAL_SOURCE)) 8935 continue; 8936 8937 if (zoneid != ipif->ipif_zoneid && 8938 ipif->ipif_zoneid != ALL_ZONES && 8939 (zoneid != GLOBAL_ZONEID || 8940 !(flags & LIFC_ALLZONES))) 8941 continue; 8942 8943 if ((uchar_t *)&lifr[1] > mp1->b_wptr) { 8944 if (iocp->ioc_cmd == O_SIOCGLIFCONF) { 8945 rw_exit(&ipst->ips_ill_g_lock); 8946 return (EINVAL); 8947 } else { 8948 goto lif_copydone; 8949 } 8950 } 8951 8952 ipif_get_name(ipif, lifr->lifr_name, 8953 sizeof (lifr->lifr_name)); 8954 if (ipif->ipif_isv6) { 8955 sin6 = (sin6_t *)&lifr->lifr_addr; 8956 *sin6 = sin6_null; 8957 sin6->sin6_family = AF_INET6; 8958 sin6->sin6_addr = 8959 ipif->ipif_v6lcl_addr; 8960 lifr->lifr_addrlen = 8961 ip_mask_to_plen_v6( 8962 &ipif->ipif_v6net_mask); 8963 } else { 8964 sin = (sin_t *)&lifr->lifr_addr; 8965 *sin = sin_null; 8966 sin->sin_family = AF_INET; 8967 sin->sin_addr.s_addr = 8968 ipif->ipif_lcl_addr; 8969 lifr->lifr_addrlen = 8970 ip_mask_to_plen( 8971 ipif->ipif_net_mask); 8972 } 8973 lifr++; 8974 } 8975 } 8976 lif_copydone: 8977 rw_exit(&ipst->ips_ill_g_lock); 8978 8979 mp1->b_wptr = (uchar_t *)lifr; 8980 if (STRUCT_BUF(lifc) != NULL) { 8981 STRUCT_FSET(lifc, lifc_len, 8982 (int)((uchar_t *)lifr - mp1->b_rptr)); 8983 } 8984 return (0); 8985 } 8986 8987 /* ARGSUSED */ 8988 int 8989 ip_sioctl_set_ipmpfailback(ipif_t *dummy_ipif, sin_t *dummy_sin, 8990 queue_t *q, mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) 8991 { 8992 ip_stack_t *ipst; 8993 8994 if (q->q_next == NULL) 8995 ipst = CONNQ_TO_IPST(q); 8996 else 8997 ipst = ILLQ_TO_IPST(q); 8998 8999 /* Existence of b_cont->b_cont checked in ip_wput_nondata */ 9000 ipst->ips_ipmp_enable_failback = *(int *)mp->b_cont->b_cont->b_rptr; 9001 return (0); 9002 } 9003 9004 static void 9005 ip_sioctl_ip6addrpolicy(queue_t *q, mblk_t *mp) 9006 { 9007 ip6_asp_t *table; 9008 size_t table_size; 9009 mblk_t *data_mp; 9010 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 9011 ip_stack_t *ipst; 9012 9013 if (q->q_next == NULL) 9014 ipst = CONNQ_TO_IPST(q); 9015 else 9016 ipst = ILLQ_TO_IPST(q); 9017 9018 /* These two ioctls are I_STR only */ 9019 if (iocp->ioc_count == TRANSPARENT) { 9020 miocnak(q, mp, 0, EINVAL); 9021 return; 9022 } 9023 9024 data_mp = mp->b_cont; 9025 if (data_mp == NULL) { 9026 /* The user passed us a NULL argument */ 9027 table = NULL; 9028 table_size = iocp->ioc_count; 9029 } else { 9030 /* 9031 * The user provided a table. The stream head 9032 * may have copied in the user data in chunks, 9033 * so make sure everything is pulled up 9034 * properly. 9035 */ 9036 if (MBLKL(data_mp) < iocp->ioc_count) { 9037 mblk_t *new_data_mp; 9038 if ((new_data_mp = msgpullup(data_mp, -1)) == 9039 NULL) { 9040 miocnak(q, mp, 0, ENOMEM); 9041 return; 9042 } 9043 freemsg(data_mp); 9044 data_mp = new_data_mp; 9045 mp->b_cont = data_mp; 9046 } 9047 table = (ip6_asp_t *)data_mp->b_rptr; 9048 table_size = iocp->ioc_count; 9049 } 9050 9051 switch (iocp->ioc_cmd) { 9052 case SIOCGIP6ADDRPOLICY: 9053 iocp->ioc_rval = ip6_asp_get(table, table_size, ipst); 9054 if (iocp->ioc_rval == -1) 9055 iocp->ioc_error = EINVAL; 9056 #if defined(_SYSCALL32_IMPL) && _LONG_LONG_ALIGNMENT_32 == 4 9057 else if (table != NULL && 9058 (iocp->ioc_flag & IOC_MODELS) == IOC_ILP32) { 9059 ip6_asp_t *src = table; 9060 ip6_asp32_t *dst = (void *)table; 9061 int count = table_size / sizeof (ip6_asp_t); 9062 int i; 9063 9064 /* 9065 * We need to do an in-place shrink of the array 9066 * to match the alignment attributes of the 9067 * 32-bit ABI looking at it. 9068 */ 9069 /* LINTED: logical expression always true: op "||" */ 9070 ASSERT(sizeof (*src) > sizeof (*dst)); 9071 for (i = 1; i < count; i++) 9072 bcopy(src + i, dst + i, sizeof (*dst)); 9073 } 9074 #endif 9075 break; 9076 9077 case SIOCSIP6ADDRPOLICY: 9078 ASSERT(mp->b_prev == NULL); 9079 mp->b_prev = (void *)q; 9080 #if defined(_SYSCALL32_IMPL) && _LONG_LONG_ALIGNMENT_32 == 4 9081 /* 9082 * We pass in the datamodel here so that the ip6_asp_replace() 9083 * routine can handle converting from 32-bit to native formats 9084 * where necessary. 9085 * 9086 * A better way to handle this might be to convert the inbound 9087 * data structure here, and hang it off a new 'mp'; thus the 9088 * ip6_asp_replace() logic would always be dealing with native 9089 * format data structures.. 9090 * 9091 * (An even simpler way to handle these ioctls is to just 9092 * add a 32-bit trailing 'pad' field to the ip6_asp_t structure 9093 * and just recompile everything that depends on it.) 9094 */ 9095 #endif 9096 ip6_asp_replace(mp, table, table_size, B_FALSE, ipst, 9097 iocp->ioc_flag & IOC_MODELS); 9098 return; 9099 } 9100 9101 DB_TYPE(mp) = (iocp->ioc_error == 0) ? M_IOCACK : M_IOCNAK; 9102 qreply(q, mp); 9103 } 9104 9105 static void 9106 ip_sioctl_dstinfo(queue_t *q, mblk_t *mp) 9107 { 9108 mblk_t *data_mp; 9109 struct dstinforeq *dir; 9110 uint8_t *end, *cur; 9111 in6_addr_t *daddr, *saddr; 9112 ipaddr_t v4daddr; 9113 ire_t *ire; 9114 char *slabel, *dlabel; 9115 boolean_t isipv4; 9116 int match_ire; 9117 ill_t *dst_ill; 9118 ipif_t *src_ipif, *ire_ipif; 9119 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 9120 zoneid_t zoneid; 9121 ip_stack_t *ipst = CONNQ_TO_IPST(q); 9122 9123 ASSERT(q->q_next == NULL); /* this ioctl not allowed if ip is module */ 9124 zoneid = Q_TO_CONN(q)->conn_zoneid; 9125 9126 /* 9127 * This ioctl is I_STR only, and must have a 9128 * data mblk following the M_IOCTL mblk. 9129 */ 9130 data_mp = mp->b_cont; 9131 if (iocp->ioc_count == TRANSPARENT || data_mp == NULL) { 9132 miocnak(q, mp, 0, EINVAL); 9133 return; 9134 } 9135 9136 if (MBLKL(data_mp) < iocp->ioc_count) { 9137 mblk_t *new_data_mp; 9138 9139 if ((new_data_mp = msgpullup(data_mp, -1)) == NULL) { 9140 miocnak(q, mp, 0, ENOMEM); 9141 return; 9142 } 9143 freemsg(data_mp); 9144 data_mp = new_data_mp; 9145 mp->b_cont = data_mp; 9146 } 9147 match_ire = MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT | MATCH_IRE_PARENT; 9148 9149 for (cur = data_mp->b_rptr, end = data_mp->b_wptr; 9150 end - cur >= sizeof (struct dstinforeq); 9151 cur += sizeof (struct dstinforeq)) { 9152 dir = (struct dstinforeq *)cur; 9153 daddr = &dir->dir_daddr; 9154 saddr = &dir->dir_saddr; 9155 9156 /* 9157 * ip_addr_scope_v6() and ip6_asp_lookup() handle 9158 * v4 mapped addresses; ire_ftable_lookup[_v6]() 9159 * and ipif_select_source[_v6]() do not. 9160 */ 9161 dir->dir_dscope = ip_addr_scope_v6(daddr); 9162 dlabel = ip6_asp_lookup(daddr, &dir->dir_precedence, ipst); 9163 9164 isipv4 = IN6_IS_ADDR_V4MAPPED(daddr); 9165 if (isipv4) { 9166 IN6_V4MAPPED_TO_IPADDR(daddr, v4daddr); 9167 ire = ire_ftable_lookup(v4daddr, NULL, NULL, 9168 0, NULL, NULL, zoneid, 0, NULL, match_ire, ipst); 9169 } else { 9170 ire = ire_ftable_lookup_v6(daddr, NULL, NULL, 9171 0, NULL, NULL, zoneid, 0, NULL, match_ire, ipst); 9172 } 9173 if (ire == NULL) { 9174 dir->dir_dreachable = 0; 9175 9176 /* move on to next dst addr */ 9177 continue; 9178 } 9179 dir->dir_dreachable = 1; 9180 9181 ire_ipif = ire->ire_ipif; 9182 if (ire_ipif == NULL) 9183 goto next_dst; 9184 9185 /* 9186 * We expect to get back an interface ire or a 9187 * gateway ire cache entry. For both types, the 9188 * output interface is ire_ipif->ipif_ill. 9189 */ 9190 dst_ill = ire_ipif->ipif_ill; 9191 dir->dir_dmactype = dst_ill->ill_mactype; 9192 9193 if (isipv4) { 9194 src_ipif = ipif_select_source(dst_ill, v4daddr, zoneid); 9195 } else { 9196 src_ipif = ipif_select_source_v6(dst_ill, 9197 daddr, RESTRICT_TO_NONE, IPV6_PREFER_SRC_DEFAULT, 9198 zoneid); 9199 } 9200 if (src_ipif == NULL) 9201 goto next_dst; 9202 9203 *saddr = src_ipif->ipif_v6lcl_addr; 9204 dir->dir_sscope = ip_addr_scope_v6(saddr); 9205 slabel = ip6_asp_lookup(saddr, NULL, ipst); 9206 dir->dir_labelmatch = ip6_asp_labelcmp(dlabel, slabel); 9207 dir->dir_sdeprecated = 9208 (src_ipif->ipif_flags & IPIF_DEPRECATED) ? 1 : 0; 9209 ipif_refrele(src_ipif); 9210 next_dst: 9211 ire_refrele(ire); 9212 } 9213 miocack(q, mp, iocp->ioc_count, 0); 9214 } 9215 9216 9217 /* 9218 * Check if this is an address assigned to this machine. 9219 * Skips interfaces that are down by using ire checks. 9220 * Translates mapped addresses to v4 addresses and then 9221 * treats them as such, returning true if the v4 address 9222 * associated with this mapped address is configured. 9223 * Note: Applications will have to be careful what they do 9224 * with the response; use of mapped addresses limits 9225 * what can be done with the socket, especially with 9226 * respect to socket options and ioctls - neither IPv4 9227 * options nor IPv6 sticky options/ancillary data options 9228 * may be used. 9229 */ 9230 /* ARGSUSED */ 9231 int 9232 ip_sioctl_tmyaddr(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 9233 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 9234 { 9235 struct sioc_addrreq *sia; 9236 sin_t *sin; 9237 ire_t *ire; 9238 mblk_t *mp1; 9239 zoneid_t zoneid; 9240 ip_stack_t *ipst; 9241 9242 ip1dbg(("ip_sioctl_tmyaddr")); 9243 9244 ASSERT(q->q_next == NULL); /* this ioctl not allowed if ip is module */ 9245 zoneid = Q_TO_CONN(q)->conn_zoneid; 9246 ipst = CONNQ_TO_IPST(q); 9247 9248 /* Existence verified in ip_wput_nondata */ 9249 mp1 = mp->b_cont->b_cont; 9250 sia = (struct sioc_addrreq *)mp1->b_rptr; 9251 sin = (sin_t *)&sia->sa_addr; 9252 switch (sin->sin_family) { 9253 case AF_INET6: { 9254 sin6_t *sin6 = (sin6_t *)sin; 9255 9256 if (IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) { 9257 ipaddr_t v4_addr; 9258 9259 IN6_V4MAPPED_TO_IPADDR(&sin6->sin6_addr, 9260 v4_addr); 9261 ire = ire_ctable_lookup(v4_addr, 0, 9262 IRE_LOCAL|IRE_LOOPBACK, NULL, zoneid, 9263 NULL, MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY, ipst); 9264 } else { 9265 in6_addr_t v6addr; 9266 9267 v6addr = sin6->sin6_addr; 9268 ire = ire_ctable_lookup_v6(&v6addr, 0, 9269 IRE_LOCAL|IRE_LOOPBACK, NULL, zoneid, 9270 NULL, MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY, ipst); 9271 } 9272 break; 9273 } 9274 case AF_INET: { 9275 ipaddr_t v4addr; 9276 9277 v4addr = sin->sin_addr.s_addr; 9278 ire = ire_ctable_lookup(v4addr, 0, 9279 IRE_LOCAL|IRE_LOOPBACK, NULL, zoneid, 9280 NULL, MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY, ipst); 9281 break; 9282 } 9283 default: 9284 return (EAFNOSUPPORT); 9285 } 9286 if (ire != NULL) { 9287 sia->sa_res = 1; 9288 ire_refrele(ire); 9289 } else { 9290 sia->sa_res = 0; 9291 } 9292 return (0); 9293 } 9294 9295 /* 9296 * Check if this is an address assigned on-link i.e. neighbor, 9297 * and makes sure it's reachable from the current zone. 9298 * Returns true for my addresses as well. 9299 * Translates mapped addresses to v4 addresses and then 9300 * treats them as such, returning true if the v4 address 9301 * associated with this mapped address is configured. 9302 * Note: Applications will have to be careful what they do 9303 * with the response; use of mapped addresses limits 9304 * what can be done with the socket, especially with 9305 * respect to socket options and ioctls - neither IPv4 9306 * options nor IPv6 sticky options/ancillary data options 9307 * may be used. 9308 */ 9309 /* ARGSUSED */ 9310 int 9311 ip_sioctl_tonlink(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 9312 ip_ioctl_cmd_t *ipip, void *duymmy_ifreq) 9313 { 9314 struct sioc_addrreq *sia; 9315 sin_t *sin; 9316 mblk_t *mp1; 9317 ire_t *ire = NULL; 9318 zoneid_t zoneid; 9319 ip_stack_t *ipst; 9320 9321 ip1dbg(("ip_sioctl_tonlink")); 9322 9323 ASSERT(q->q_next == NULL); /* this ioctl not allowed if ip is module */ 9324 zoneid = Q_TO_CONN(q)->conn_zoneid; 9325 ipst = CONNQ_TO_IPST(q); 9326 9327 /* Existence verified in ip_wput_nondata */ 9328 mp1 = mp->b_cont->b_cont; 9329 sia = (struct sioc_addrreq *)mp1->b_rptr; 9330 sin = (sin_t *)&sia->sa_addr; 9331 9332 /* 9333 * Match addresses with a zero gateway field to avoid 9334 * routes going through a router. 9335 * Exclude broadcast and multicast addresses. 9336 */ 9337 switch (sin->sin_family) { 9338 case AF_INET6: { 9339 sin6_t *sin6 = (sin6_t *)sin; 9340 9341 if (IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) { 9342 ipaddr_t v4_addr; 9343 9344 IN6_V4MAPPED_TO_IPADDR(&sin6->sin6_addr, 9345 v4_addr); 9346 if (!CLASSD(v4_addr)) { 9347 ire = ire_route_lookup(v4_addr, 0, 0, 0, 9348 NULL, NULL, zoneid, NULL, 9349 MATCH_IRE_GW, ipst); 9350 } 9351 } else { 9352 in6_addr_t v6addr; 9353 in6_addr_t v6gw; 9354 9355 v6addr = sin6->sin6_addr; 9356 v6gw = ipv6_all_zeros; 9357 if (!IN6_IS_ADDR_MULTICAST(&v6addr)) { 9358 ire = ire_route_lookup_v6(&v6addr, 0, 9359 &v6gw, 0, NULL, NULL, zoneid, 9360 NULL, MATCH_IRE_GW, ipst); 9361 } 9362 } 9363 break; 9364 } 9365 case AF_INET: { 9366 ipaddr_t v4addr; 9367 9368 v4addr = sin->sin_addr.s_addr; 9369 if (!CLASSD(v4addr)) { 9370 ire = ire_route_lookup(v4addr, 0, 0, 0, 9371 NULL, NULL, zoneid, NULL, 9372 MATCH_IRE_GW, ipst); 9373 } 9374 break; 9375 } 9376 default: 9377 return (EAFNOSUPPORT); 9378 } 9379 sia->sa_res = 0; 9380 if (ire != NULL) { 9381 if (ire->ire_type & (IRE_INTERFACE|IRE_CACHE| 9382 IRE_LOCAL|IRE_LOOPBACK)) { 9383 sia->sa_res = 1; 9384 } 9385 ire_refrele(ire); 9386 } 9387 return (0); 9388 } 9389 9390 /* 9391 * TBD: implement when kernel maintaines a list of site prefixes. 9392 */ 9393 /* ARGSUSED */ 9394 int 9395 ip_sioctl_tmysite(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 9396 ip_ioctl_cmd_t *ipip, void *ifreq) 9397 { 9398 return (ENXIO); 9399 } 9400 9401 /* ARGSUSED */ 9402 int 9403 ip_sioctl_tunparam(ipif_t *ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 9404 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 9405 { 9406 ill_t *ill; 9407 mblk_t *mp1; 9408 conn_t *connp; 9409 boolean_t success; 9410 9411 ip1dbg(("ip_sioctl_tunparam(%s:%u %p)\n", 9412 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 9413 /* ioctl comes down on an conn */ 9414 ASSERT(!(q->q_flag & QREADR) && q->q_next == NULL); 9415 connp = Q_TO_CONN(q); 9416 9417 mp->b_datap->db_type = M_IOCTL; 9418 9419 /* 9420 * Send down a copy. (copymsg does not copy b_next/b_prev). 9421 * The original mp contains contaminated b_next values due to 'mi', 9422 * which is needed to do the mi_copy_done. Unfortunately if we 9423 * send down the original mblk itself and if we are popped due to an 9424 * an unplumb before the response comes back from tunnel, 9425 * the streamhead (which does a freemsg) will see this contaminated 9426 * message and the assertion in freemsg about non-null b_next/b_prev 9427 * will panic a DEBUG kernel. 9428 */ 9429 mp1 = copymsg(mp); 9430 if (mp1 == NULL) 9431 return (ENOMEM); 9432 9433 ill = ipif->ipif_ill; 9434 mutex_enter(&connp->conn_lock); 9435 mutex_enter(&ill->ill_lock); 9436 if (ipip->ipi_cmd == SIOCSTUNPARAM || ipip->ipi_cmd == OSIOCSTUNPARAM) { 9437 success = ipsq_pending_mp_add(connp, ipif, CONNP_TO_WQ(connp), 9438 mp, 0); 9439 } else { 9440 success = ill_pending_mp_add(ill, connp, mp); 9441 } 9442 mutex_exit(&ill->ill_lock); 9443 mutex_exit(&connp->conn_lock); 9444 9445 if (success) { 9446 ip1dbg(("sending down tunparam request ")); 9447 putnext(ill->ill_wq, mp1); 9448 return (EINPROGRESS); 9449 } else { 9450 /* The conn has started closing */ 9451 freemsg(mp1); 9452 return (EINTR); 9453 } 9454 } 9455 9456 /* 9457 * ARP IOCTLs. 9458 * How does IP get in the business of fronting ARP configuration/queries? 9459 * Well it's like this, the Berkeley ARP IOCTLs (SIOCGARP, SIOCDARP, SIOCSARP) 9460 * are by tradition passed in through a datagram socket. That lands in IP. 9461 * As it happens, this is just as well since the interface is quite crude in 9462 * that it passes in no information about protocol or hardware types, or 9463 * interface association. After making the protocol assumption, IP is in 9464 * the position to look up the name of the ILL, which ARP will need, and 9465 * format a request that can be handled by ARP. The request is passed up 9466 * stream to ARP, and the original IOCTL is completed by IP when ARP passes 9467 * back a response. ARP supports its own set of more general IOCTLs, in 9468 * case anyone is interested. 9469 */ 9470 /* ARGSUSED */ 9471 int 9472 ip_sioctl_arp(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 9473 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 9474 { 9475 mblk_t *mp1; 9476 mblk_t *mp2; 9477 mblk_t *pending_mp; 9478 ipaddr_t ipaddr; 9479 area_t *area; 9480 struct iocblk *iocp; 9481 conn_t *connp; 9482 struct arpreq *ar; 9483 struct xarpreq *xar; 9484 int flags, alength; 9485 char *lladdr; 9486 ip_stack_t *ipst; 9487 ill_t *ill = ipif->ipif_ill; 9488 boolean_t if_arp_ioctl = B_FALSE; 9489 9490 ASSERT(!(q->q_flag & QREADR) && q->q_next == NULL); 9491 connp = Q_TO_CONN(q); 9492 ipst = connp->conn_netstack->netstack_ip; 9493 9494 if (ipip->ipi_cmd_type == XARP_CMD) { 9495 /* We have a chain - M_IOCTL-->MI_COPY_MBLK-->XARPREQ_MBLK */ 9496 xar = (struct xarpreq *)mp->b_cont->b_cont->b_rptr; 9497 ar = NULL; 9498 9499 flags = xar->xarp_flags; 9500 lladdr = LLADDR(&xar->xarp_ha); 9501 if_arp_ioctl = (xar->xarp_ha.sdl_nlen != 0); 9502 /* 9503 * Validate against user's link layer address length 9504 * input and name and addr length limits. 9505 */ 9506 alength = ill->ill_phys_addr_length; 9507 if (ipip->ipi_cmd == SIOCSXARP) { 9508 if (alength != xar->xarp_ha.sdl_alen || 9509 (alength + xar->xarp_ha.sdl_nlen > 9510 sizeof (xar->xarp_ha.sdl_data))) 9511 return (EINVAL); 9512 } 9513 } else { 9514 /* We have a chain - M_IOCTL-->MI_COPY_MBLK-->ARPREQ_MBLK */ 9515 ar = (struct arpreq *)mp->b_cont->b_cont->b_rptr; 9516 xar = NULL; 9517 9518 flags = ar->arp_flags; 9519 lladdr = ar->arp_ha.sa_data; 9520 /* 9521 * Theoretically, the sa_family could tell us what link 9522 * layer type this operation is trying to deal with. By 9523 * common usage AF_UNSPEC means ethernet. We'll assume 9524 * any attempt to use the SIOC?ARP ioctls is for ethernet, 9525 * for now. Our new SIOC*XARP ioctls can be used more 9526 * generally. 9527 * 9528 * If the underlying media happens to have a non 6 byte 9529 * address, arp module will fail set/get, but the del 9530 * operation will succeed. 9531 */ 9532 alength = 6; 9533 if ((ipip->ipi_cmd != SIOCDARP) && 9534 (alength != ill->ill_phys_addr_length)) { 9535 return (EINVAL); 9536 } 9537 } 9538 9539 /* 9540 * We are going to pass up to ARP a packet chain that looks 9541 * like: 9542 * 9543 * M_IOCTL-->ARP_op_MBLK-->ORIG_M_IOCTL-->MI_COPY_MBLK-->[X]ARPREQ_MBLK 9544 * 9545 * Get a copy of the original IOCTL mblk to head the chain, 9546 * to be sent up (in mp1). Also get another copy to store 9547 * in the ill_pending_mp list, for matching the response 9548 * when it comes back from ARP. 9549 */ 9550 mp1 = copyb(mp); 9551 pending_mp = copymsg(mp); 9552 if (mp1 == NULL || pending_mp == NULL) { 9553 if (mp1 != NULL) 9554 freeb(mp1); 9555 if (pending_mp != NULL) 9556 inet_freemsg(pending_mp); 9557 return (ENOMEM); 9558 } 9559 9560 ipaddr = sin->sin_addr.s_addr; 9561 9562 mp2 = ill_arp_alloc(ill, (uchar_t *)&ip_area_template, 9563 (caddr_t)&ipaddr); 9564 if (mp2 == NULL) { 9565 freeb(mp1); 9566 inet_freemsg(pending_mp); 9567 return (ENOMEM); 9568 } 9569 /* Put together the chain. */ 9570 mp1->b_cont = mp2; 9571 mp1->b_datap->db_type = M_IOCTL; 9572 mp2->b_cont = mp; 9573 mp2->b_datap->db_type = M_DATA; 9574 9575 iocp = (struct iocblk *)mp1->b_rptr; 9576 9577 /* 9578 * An M_IOCDATA's payload (struct copyresp) is mostly the same as an 9579 * M_IOCTL's payload (struct iocblk), but 'struct copyresp' has a 9580 * cp_private field (or cp_rval on 32-bit systems) in place of the 9581 * ioc_count field; set ioc_count to be correct. 9582 */ 9583 iocp->ioc_count = MBLKL(mp1->b_cont); 9584 9585 /* 9586 * Set the proper command in the ARP message. 9587 * Convert the SIOC{G|S|D}ARP calls into our 9588 * AR_ENTRY_xxx calls. 9589 */ 9590 area = (area_t *)mp2->b_rptr; 9591 switch (iocp->ioc_cmd) { 9592 case SIOCDARP: 9593 case SIOCDXARP: 9594 /* 9595 * We defer deleting the corresponding IRE until 9596 * we return from arp. 9597 */ 9598 area->area_cmd = AR_ENTRY_DELETE; 9599 area->area_proto_mask_offset = 0; 9600 break; 9601 case SIOCGARP: 9602 case SIOCGXARP: 9603 area->area_cmd = AR_ENTRY_SQUERY; 9604 area->area_proto_mask_offset = 0; 9605 break; 9606 case SIOCSARP: 9607 case SIOCSXARP: 9608 /* 9609 * Delete the corresponding ire to make sure IP will 9610 * pick up any change from arp. 9611 */ 9612 if (!if_arp_ioctl) { 9613 (void) ip_ire_clookup_and_delete(ipaddr, NULL, ipst); 9614 } else { 9615 ipif_t *ipif = ipif_get_next_ipif(NULL, ill); 9616 if (ipif != NULL) { 9617 (void) ip_ire_clookup_and_delete(ipaddr, ipif, 9618 ipst); 9619 ipif_refrele(ipif); 9620 } 9621 } 9622 break; 9623 } 9624 iocp->ioc_cmd = area->area_cmd; 9625 9626 /* 9627 * Fill in the rest of the ARP operation fields. 9628 */ 9629 area->area_hw_addr_length = alength; 9630 bcopy(lladdr, (char *)area + area->area_hw_addr_offset, alength); 9631 9632 /* Translate the flags. */ 9633 if (flags & ATF_PERM) 9634 area->area_flags |= ACE_F_PERMANENT; 9635 if (flags & ATF_PUBL) 9636 area->area_flags |= ACE_F_PUBLISH; 9637 if (flags & ATF_AUTHORITY) 9638 area->area_flags |= ACE_F_AUTHORITY; 9639 9640 /* 9641 * Before sending 'mp' to ARP, we have to clear the b_next 9642 * and b_prev. Otherwise if STREAMS encounters such a message 9643 * in freemsg(), (because ARP can close any time) it can cause 9644 * a panic. But mi code needs the b_next and b_prev values of 9645 * mp->b_cont, to complete the ioctl. So we store it here 9646 * in pending_mp->bcont, and restore it in ip_sioctl_iocack() 9647 * when the response comes down from ARP. 9648 */ 9649 pending_mp->b_cont->b_next = mp->b_cont->b_next; 9650 pending_mp->b_cont->b_prev = mp->b_cont->b_prev; 9651 mp->b_cont->b_next = NULL; 9652 mp->b_cont->b_prev = NULL; 9653 9654 mutex_enter(&connp->conn_lock); 9655 mutex_enter(&ill->ill_lock); 9656 /* conn has not yet started closing, hence this can't fail */ 9657 VERIFY(ill_pending_mp_add(ill, connp, pending_mp) != 0); 9658 mutex_exit(&ill->ill_lock); 9659 mutex_exit(&connp->conn_lock); 9660 9661 /* 9662 * Up to ARP it goes. The response will come back in ip_wput() as an 9663 * M_IOCACK, and will be handed to ip_sioctl_iocack() for completion. 9664 */ 9665 putnext(ill->ill_rq, mp1); 9666 return (EINPROGRESS); 9667 } 9668 9669 /* 9670 * Parse an [x]arpreq structure coming down SIOC[GSD][X]ARP ioctls, identify 9671 * the associated sin and refhold and return the associated ipif via `ci'. 9672 */ 9673 int 9674 ip_extract_arpreq(queue_t *q, mblk_t *mp, const ip_ioctl_cmd_t *ipip, 9675 cmd_info_t *ci, ipsq_func_t func) 9676 { 9677 mblk_t *mp1; 9678 int err; 9679 sin_t *sin; 9680 conn_t *connp; 9681 ipif_t *ipif; 9682 ire_t *ire = NULL; 9683 ill_t *ill = NULL; 9684 boolean_t exists; 9685 ip_stack_t *ipst; 9686 struct arpreq *ar; 9687 struct xarpreq *xar; 9688 struct sockaddr_dl *sdl; 9689 9690 /* ioctl comes down on a conn */ 9691 ASSERT(!(q->q_flag & QREADR) && q->q_next == NULL); 9692 connp = Q_TO_CONN(q); 9693 if (connp->conn_af_isv6) 9694 return (ENXIO); 9695 9696 ipst = connp->conn_netstack->netstack_ip; 9697 9698 /* Verified in ip_wput_nondata */ 9699 mp1 = mp->b_cont->b_cont; 9700 9701 if (ipip->ipi_cmd_type == XARP_CMD) { 9702 ASSERT(MBLKL(mp1) >= sizeof (struct xarpreq)); 9703 xar = (struct xarpreq *)mp1->b_rptr; 9704 sin = (sin_t *)&xar->xarp_pa; 9705 sdl = &xar->xarp_ha; 9706 9707 if (sdl->sdl_family != AF_LINK || sin->sin_family != AF_INET) 9708 return (ENXIO); 9709 if (sdl->sdl_nlen >= LIFNAMSIZ) 9710 return (EINVAL); 9711 } else { 9712 ASSERT(ipip->ipi_cmd_type == ARP_CMD); 9713 ASSERT(MBLKL(mp1) >= sizeof (struct arpreq)); 9714 ar = (struct arpreq *)mp1->b_rptr; 9715 sin = (sin_t *)&ar->arp_pa; 9716 } 9717 9718 if (ipip->ipi_cmd_type == XARP_CMD && sdl->sdl_nlen != 0) { 9719 ipif = ipif_lookup_on_name(sdl->sdl_data, sdl->sdl_nlen, 9720 B_FALSE, &exists, B_FALSE, ALL_ZONES, CONNP_TO_WQ(connp), 9721 mp, func, &err, ipst); 9722 if (ipif == NULL) 9723 return (err); 9724 if (ipif->ipif_id != 0 || 9725 ipif->ipif_net_type != IRE_IF_RESOLVER) { 9726 ipif_refrele(ipif); 9727 return (ENXIO); 9728 } 9729 } else { 9730 /* 9731 * Either an SIOC[DGS]ARP or an SIOC[DGS]XARP with sdl_nlen == 9732 * 0: use the IP address to figure out the ill. In the IPMP 9733 * case, a simple forwarding table lookup will return the 9734 * IRE_IF_RESOLVER for the first interface in the group, which 9735 * might not be the interface on which the requested IP 9736 * address was resolved due to the ill selection algorithm 9737 * (see ip_newroute_get_dst_ill()). So we do a cache table 9738 * lookup first: if the IRE cache entry for the IP address is 9739 * still there, it will contain the ill pointer for the right 9740 * interface, so we use that. If the cache entry has been 9741 * flushed, we fall back to the forwarding table lookup. This 9742 * should be rare enough since IRE cache entries have a longer 9743 * life expectancy than ARP cache entries. 9744 */ 9745 ire = ire_cache_lookup(sin->sin_addr.s_addr, ALL_ZONES, NULL, 9746 ipst); 9747 if ((ire == NULL) || (ire->ire_type == IRE_LOOPBACK) || 9748 ((ill = ire_to_ill(ire)) == NULL) || 9749 (ill->ill_net_type != IRE_IF_RESOLVER)) { 9750 if (ire != NULL) 9751 ire_refrele(ire); 9752 ire = ire_ftable_lookup(sin->sin_addr.s_addr, 9753 0, 0, IRE_IF_RESOLVER, NULL, NULL, ALL_ZONES, 0, 9754 NULL, MATCH_IRE_TYPE, ipst); 9755 if (ire == NULL || ((ill = ire_to_ill(ire)) == NULL)) { 9756 9757 if (ire != NULL) 9758 ire_refrele(ire); 9759 return (ENXIO); 9760 } 9761 } 9762 ASSERT(ire != NULL && ill != NULL); 9763 ipif = ill->ill_ipif; 9764 ipif_refhold(ipif); 9765 ire_refrele(ire); 9766 } 9767 ci->ci_sin = sin; 9768 ci->ci_ipif = ipif; 9769 return (0); 9770 } 9771 9772 /* 9773 * Do I_PLINK/I_LINK or I_PUNLINK/I_UNLINK with consistency checks and also 9774 * atomically set/clear the muxids. Also complete the ioctl by acking or 9775 * naking it. Note that the code is structured such that the link type, 9776 * whether it's persistent or not, is treated equally. ifconfig(1M) and 9777 * its clones use the persistent link, while pppd(1M) and perhaps many 9778 * other daemons may use non-persistent link. When combined with some 9779 * ill_t states, linking and unlinking lower streams may be used as 9780 * indicators of dynamic re-plumbing events [see PSARC/1999/348]. 9781 */ 9782 /* ARGSUSED */ 9783 void 9784 ip_sioctl_plink(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 9785 { 9786 mblk_t *mp1, *mp2; 9787 struct linkblk *li; 9788 struct ipmx_s *ipmxp; 9789 ill_t *ill; 9790 int ioccmd = ((struct iocblk *)mp->b_rptr)->ioc_cmd; 9791 int err = 0; 9792 boolean_t entered_ipsq = B_FALSE; 9793 boolean_t islink; 9794 ip_stack_t *ipst; 9795 9796 if (CONN_Q(q)) 9797 ipst = CONNQ_TO_IPST(q); 9798 else 9799 ipst = ILLQ_TO_IPST(q); 9800 9801 ASSERT(ioccmd == I_PLINK || ioccmd == I_PUNLINK || 9802 ioccmd == I_LINK || ioccmd == I_UNLINK); 9803 9804 islink = (ioccmd == I_PLINK || ioccmd == I_LINK); 9805 9806 mp1 = mp->b_cont; /* This is the linkblk info */ 9807 li = (struct linkblk *)mp1->b_rptr; 9808 9809 /* 9810 * ARP has added this special mblk, and the utility is asking us 9811 * to perform consistency checks, and also atomically set the 9812 * muxid. Ifconfig is an example. It achieves this by using 9813 * /dev/arp as the mux to plink the arp stream, and pushes arp on 9814 * to /dev/udp[6] stream for use as the mux when plinking the IP 9815 * stream. SIOCSLIFMUXID is not required. See ifconfig.c, arp.c 9816 * and other comments in this routine for more details. 9817 */ 9818 mp2 = mp1->b_cont; /* This is added by ARP */ 9819 9820 /* 9821 * If I_{P}LINK/I_{P}UNLINK is issued by a utility other than 9822 * ifconfig which didn't push ARP on top of the dummy mux, we won't 9823 * get the special mblk above. For backward compatibility, we 9824 * request ip_sioctl_plink_ipmod() to skip the consistency checks. 9825 * The utility will use SIOCSLIFMUXID to store the muxids. This is 9826 * not atomic, and can leave the streams unplumbable if the utility 9827 * is interrupted before it does the SIOCSLIFMUXID. 9828 */ 9829 if (mp2 == NULL) { 9830 err = ip_sioctl_plink_ipmod(ipsq, q, mp, ioccmd, li, B_FALSE); 9831 if (err == EINPROGRESS) 9832 return; 9833 goto done; 9834 } 9835 9836 /* 9837 * This is an I_{P}LINK sent down by ifconfig through the ARP module; 9838 * ARP has appended this last mblk to tell us whether the lower stream 9839 * is an arp-dev stream or an IP module stream. 9840 */ 9841 ipmxp = (struct ipmx_s *)mp2->b_rptr; 9842 if (ipmxp->ipmx_arpdev_stream) { 9843 /* 9844 * The lower stream is the arp-dev stream. 9845 */ 9846 ill = ill_lookup_on_name(ipmxp->ipmx_name, B_FALSE, B_FALSE, 9847 q, mp, ip_sioctl_plink, &err, NULL, ipst); 9848 if (ill == NULL) { 9849 if (err == EINPROGRESS) 9850 return; 9851 err = EINVAL; 9852 goto done; 9853 } 9854 9855 if (ipsq == NULL) { 9856 ipsq = ipsq_try_enter(NULL, ill, q, mp, ip_sioctl_plink, 9857 NEW_OP, B_TRUE); 9858 if (ipsq == NULL) { 9859 ill_refrele(ill); 9860 return; 9861 } 9862 entered_ipsq = B_TRUE; 9863 } 9864 ASSERT(IAM_WRITER_ILL(ill)); 9865 ill_refrele(ill); 9866 9867 /* 9868 * To ensure consistency between IP and ARP, the following 9869 * LIFO scheme is used in plink/punlink. (IP first, ARP last). 9870 * This is because the muxid's are stored in the IP stream on 9871 * the ill. 9872 * 9873 * I_{P}LINK: ifconfig plinks the IP stream before plinking 9874 * the ARP stream. On an arp-dev stream, IP checks that it is 9875 * not yet plinked, and it also checks that the corresponding 9876 * IP stream is already plinked. 9877 * 9878 * I_{P}UNLINK: ifconfig punlinks the ARP stream before 9879 * punlinking the IP stream. IP does not allow punlink of the 9880 * IP stream unless the arp stream has been punlinked. 9881 */ 9882 if ((islink && 9883 (ill->ill_arp_muxid != 0 || ill->ill_ip_muxid == 0)) || 9884 (!islink && ill->ill_arp_muxid != li->l_index)) { 9885 err = EINVAL; 9886 goto done; 9887 } 9888 ill->ill_arp_muxid = islink ? li->l_index : 0; 9889 } else { 9890 /* 9891 * The lower stream is probably an IP module stream. Do 9892 * consistency checking. 9893 */ 9894 err = ip_sioctl_plink_ipmod(ipsq, q, mp, ioccmd, li, B_TRUE); 9895 if (err == EINPROGRESS) 9896 return; 9897 } 9898 done: 9899 if (err == 0) 9900 miocack(q, mp, 0, 0); 9901 else 9902 miocnak(q, mp, 0, err); 9903 9904 /* Conn was refheld in ip_sioctl_copyin_setup */ 9905 if (CONN_Q(q)) 9906 CONN_OPER_PENDING_DONE(Q_TO_CONN(q)); 9907 if (entered_ipsq) 9908 ipsq_exit(ipsq, B_TRUE, B_TRUE); 9909 } 9910 9911 /* 9912 * Process I_{P}LINK and I_{P}UNLINK requests named by `ioccmd' and pointed to 9913 * by `mp' and `li' for the IP module stream (if li->q_bot is in fact an IP 9914 * module stream). If `doconsist' is set, then do the extended consistency 9915 * checks requested by ifconfig(1M) and (atomically) set ill_ip_muxid here. 9916 * Returns zero on success, EINPROGRESS if the operation is still pending, or 9917 * an error code on failure. 9918 */ 9919 static int 9920 ip_sioctl_plink_ipmod(ipsq_t *ipsq, queue_t *q, mblk_t *mp, int ioccmd, 9921 struct linkblk *li, boolean_t doconsist) 9922 { 9923 ill_t *ill; 9924 queue_t *ipwq, *dwq; 9925 const char *name; 9926 struct qinit *qinfo; 9927 boolean_t islink = (ioccmd == I_PLINK || ioccmd == I_LINK); 9928 boolean_t entered_ipsq = B_FALSE; 9929 9930 /* 9931 * Walk the lower stream to verify it's the IP module stream. 9932 * The IP module is identified by its name, wput function, 9933 * and non-NULL q_next. STREAMS ensures that the lower stream 9934 * (li->l_qbot) will not vanish until this ioctl completes. 9935 */ 9936 for (ipwq = li->l_qbot; ipwq != NULL; ipwq = ipwq->q_next) { 9937 qinfo = ipwq->q_qinfo; 9938 name = qinfo->qi_minfo->mi_idname; 9939 if (name != NULL && strcmp(name, ip_mod_info.mi_idname) == 0 && 9940 qinfo->qi_putp != (pfi_t)ip_lwput && ipwq->q_next != NULL) { 9941 break; 9942 } 9943 } 9944 9945 /* 9946 * If this isn't an IP module stream, bail. 9947 */ 9948 if (ipwq == NULL) 9949 return (0); 9950 9951 ill = ipwq->q_ptr; 9952 ASSERT(ill != NULL); 9953 9954 if (ipsq == NULL) { 9955 ipsq = ipsq_try_enter(NULL, ill, q, mp, ip_sioctl_plink, 9956 NEW_OP, B_TRUE); 9957 if (ipsq == NULL) 9958 return (EINPROGRESS); 9959 entered_ipsq = B_TRUE; 9960 } 9961 ASSERT(IAM_WRITER_ILL(ill)); 9962 9963 if (doconsist) { 9964 /* 9965 * Consistency checking requires that I_{P}LINK occurs 9966 * prior to setting ill_ip_muxid, and that I_{P}UNLINK 9967 * occurs prior to clearing ill_arp_muxid. 9968 */ 9969 if ((islink && ill->ill_ip_muxid != 0) || 9970 (!islink && ill->ill_arp_muxid != 0)) { 9971 if (entered_ipsq) 9972 ipsq_exit(ipsq, B_TRUE, B_TRUE); 9973 return (EINVAL); 9974 } 9975 } 9976 9977 /* 9978 * As part of I_{P}LINKing, stash the number of downstream modules and 9979 * the read queue of the module immediately below IP in the ill. 9980 * These are used during the capability negotiation below. 9981 */ 9982 ill->ill_lmod_rq = NULL; 9983 ill->ill_lmod_cnt = 0; 9984 if (islink && ((dwq = ipwq->q_next) != NULL)) { 9985 ill->ill_lmod_rq = RD(dwq); 9986 for (; dwq != NULL; dwq = dwq->q_next) 9987 ill->ill_lmod_cnt++; 9988 } 9989 9990 if (doconsist) 9991 ill->ill_ip_muxid = islink ? li->l_index : 0; 9992 9993 /* 9994 * If there's at least one up ipif on this ill, then we're bound to 9995 * the underlying driver via DLPI. In that case, renegotiate 9996 * capabilities to account for any possible change in modules 9997 * interposed between IP and the driver. 9998 */ 9999 if (ill->ill_ipif_up_count > 0) { 10000 if (islink) 10001 ill_capability_probe(ill); 10002 else 10003 ill_capability_reset(ill); 10004 } 10005 10006 if (entered_ipsq) 10007 ipsq_exit(ipsq, B_TRUE, B_TRUE); 10008 10009 return (0); 10010 } 10011 10012 /* 10013 * Search the ioctl command in the ioctl tables and return a pointer 10014 * to the ioctl command information. The ioctl command tables are 10015 * static and fully populated at compile time. 10016 */ 10017 ip_ioctl_cmd_t * 10018 ip_sioctl_lookup(int ioc_cmd) 10019 { 10020 int index; 10021 ip_ioctl_cmd_t *ipip; 10022 ip_ioctl_cmd_t *ipip_end; 10023 10024 if (ioc_cmd == IPI_DONTCARE) 10025 return (NULL); 10026 10027 /* 10028 * Do a 2 step search. First search the indexed table 10029 * based on the least significant byte of the ioctl cmd. 10030 * If we don't find a match, then search the misc table 10031 * serially. 10032 */ 10033 index = ioc_cmd & 0xFF; 10034 if (index < ip_ndx_ioctl_count) { 10035 ipip = &ip_ndx_ioctl_table[index]; 10036 if (ipip->ipi_cmd == ioc_cmd) { 10037 /* Found a match in the ndx table */ 10038 return (ipip); 10039 } 10040 } 10041 10042 /* Search the misc table */ 10043 ipip_end = &ip_misc_ioctl_table[ip_misc_ioctl_count]; 10044 for (ipip = ip_misc_ioctl_table; ipip < ipip_end; ipip++) { 10045 if (ipip->ipi_cmd == ioc_cmd) 10046 /* Found a match in the misc table */ 10047 return (ipip); 10048 } 10049 10050 return (NULL); 10051 } 10052 10053 /* 10054 * Wrapper function for resuming deferred ioctl processing 10055 * Used for SIOCGDSTINFO, SIOCGIP6ADDRPOLICY, SIOCGMSFILTER, 10056 * SIOCSMSFILTER, SIOCGIPMSFILTER, and SIOCSIPMSFILTER currently. 10057 */ 10058 /* ARGSUSED */ 10059 void 10060 ip_sioctl_copyin_resume(ipsq_t *dummy_ipsq, queue_t *q, mblk_t *mp, 10061 void *dummy_arg) 10062 { 10063 ip_sioctl_copyin_setup(q, mp); 10064 } 10065 10066 /* 10067 * ip_sioctl_copyin_setup is called by ip_wput with any M_IOCTL message 10068 * that arrives. Most of the IOCTLs are "socket" IOCTLs which we handle 10069 * in either I_STR or TRANSPARENT form, using the mi_copy facility. 10070 * We establish here the size of the block to be copied in. mi_copyin 10071 * arranges for this to happen, an processing continues in ip_wput with 10072 * an M_IOCDATA message. 10073 */ 10074 void 10075 ip_sioctl_copyin_setup(queue_t *q, mblk_t *mp) 10076 { 10077 int copyin_size; 10078 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 10079 ip_ioctl_cmd_t *ipip; 10080 cred_t *cr; 10081 ip_stack_t *ipst; 10082 10083 if (CONN_Q(q)) 10084 ipst = CONNQ_TO_IPST(q); 10085 else 10086 ipst = ILLQ_TO_IPST(q); 10087 10088 ipip = ip_sioctl_lookup(iocp->ioc_cmd); 10089 if (ipip == NULL) { 10090 /* 10091 * The ioctl is not one we understand or own. 10092 * Pass it along to be processed down stream, 10093 * if this is a module instance of IP, else nak 10094 * the ioctl. 10095 */ 10096 if (q->q_next == NULL) { 10097 goto nak; 10098 } else { 10099 putnext(q, mp); 10100 return; 10101 } 10102 } 10103 10104 /* 10105 * If this is deferred, then we will do all the checks when we 10106 * come back. 10107 */ 10108 if ((iocp->ioc_cmd == SIOCGDSTINFO || 10109 iocp->ioc_cmd == SIOCGIP6ADDRPOLICY) && !ip6_asp_can_lookup(ipst)) { 10110 ip6_asp_pending_op(q, mp, ip_sioctl_copyin_resume); 10111 return; 10112 } 10113 10114 /* 10115 * Only allow a very small subset of IP ioctls on this stream if 10116 * IP is a module and not a driver. Allowing ioctls to be processed 10117 * in this case may cause assert failures or data corruption. 10118 * Typically G[L]IFFLAGS, SLIFNAME/IF_UNITSEL are the only few 10119 * ioctls allowed on an IP module stream, after which this stream 10120 * normally becomes a multiplexor (at which time the stream head 10121 * will fail all ioctls). 10122 */ 10123 if ((q->q_next != NULL) && !(ipip->ipi_flags & IPI_MODOK)) { 10124 if (ipip->ipi_flags & IPI_PASS_DOWN) { 10125 /* 10126 * Pass common Streams ioctls which the IP 10127 * module does not own or consume along to 10128 * be processed down stream. 10129 */ 10130 putnext(q, mp); 10131 return; 10132 } else { 10133 goto nak; 10134 } 10135 } 10136 10137 /* Make sure we have ioctl data to process. */ 10138 if (mp->b_cont == NULL && !(ipip->ipi_flags & IPI_NULL_BCONT)) 10139 goto nak; 10140 10141 /* 10142 * Prefer dblk credential over ioctl credential; some synthesized 10143 * ioctls have kcred set because there's no way to crhold() 10144 * a credential in some contexts. (ioc_cr is not crfree() by 10145 * the framework; the caller of ioctl needs to hold the reference 10146 * for the duration of the call). 10147 */ 10148 cr = DB_CREDDEF(mp, iocp->ioc_cr); 10149 10150 /* Make sure normal users don't send down privileged ioctls */ 10151 if ((ipip->ipi_flags & IPI_PRIV) && 10152 (cr != NULL) && secpolicy_ip_config(cr, B_TRUE) != 0) { 10153 /* We checked the privilege earlier but log it here */ 10154 miocnak(q, mp, 0, secpolicy_ip_config(cr, B_FALSE)); 10155 return; 10156 } 10157 10158 /* 10159 * The ioctl command tables can only encode fixed length 10160 * ioctl data. If the length is variable, the table will 10161 * encode the length as zero. Such special cases are handled 10162 * below in the switch. 10163 */ 10164 if (ipip->ipi_copyin_size != 0) { 10165 mi_copyin(q, mp, NULL, ipip->ipi_copyin_size); 10166 return; 10167 } 10168 10169 switch (iocp->ioc_cmd) { 10170 case O_SIOCGIFCONF: 10171 case SIOCGIFCONF: 10172 /* 10173 * This IOCTL is hilarious. See comments in 10174 * ip_sioctl_get_ifconf for the story. 10175 */ 10176 if (iocp->ioc_count == TRANSPARENT) 10177 copyin_size = SIZEOF_STRUCT(ifconf, 10178 iocp->ioc_flag); 10179 else 10180 copyin_size = iocp->ioc_count; 10181 mi_copyin(q, mp, NULL, copyin_size); 10182 return; 10183 10184 case O_SIOCGLIFCONF: 10185 case SIOCGLIFCONF: 10186 copyin_size = SIZEOF_STRUCT(lifconf, iocp->ioc_flag); 10187 mi_copyin(q, mp, NULL, copyin_size); 10188 return; 10189 10190 case SIOCGLIFSRCOF: 10191 copyin_size = SIZEOF_STRUCT(lifsrcof, iocp->ioc_flag); 10192 mi_copyin(q, mp, NULL, copyin_size); 10193 return; 10194 case SIOCGIP6ADDRPOLICY: 10195 ip_sioctl_ip6addrpolicy(q, mp); 10196 ip6_asp_table_refrele(ipst); 10197 return; 10198 10199 case SIOCSIP6ADDRPOLICY: 10200 ip_sioctl_ip6addrpolicy(q, mp); 10201 return; 10202 10203 case SIOCGDSTINFO: 10204 ip_sioctl_dstinfo(q, mp); 10205 ip6_asp_table_refrele(ipst); 10206 return; 10207 10208 case I_PLINK: 10209 case I_PUNLINK: 10210 case I_LINK: 10211 case I_UNLINK: 10212 /* 10213 * We treat non-persistent link similarly as the persistent 10214 * link case, in terms of plumbing/unplumbing, as well as 10215 * dynamic re-plumbing events indicator. See comments 10216 * in ip_sioctl_plink() for more. 10217 * 10218 * Request can be enqueued in the 'ipsq' while waiting 10219 * to become exclusive. So bump up the conn ref. 10220 */ 10221 if (CONN_Q(q)) 10222 CONN_INC_REF(Q_TO_CONN(q)); 10223 ip_sioctl_plink(NULL, q, mp, NULL); 10224 return; 10225 10226 case ND_GET: 10227 case ND_SET: 10228 /* 10229 * Use of the nd table requires holding the reader lock. 10230 * Modifying the nd table thru nd_load/nd_unload requires 10231 * the writer lock. 10232 */ 10233 rw_enter(&ipst->ips_ip_g_nd_lock, RW_READER); 10234 if (nd_getset(q, ipst->ips_ip_g_nd, mp)) { 10235 rw_exit(&ipst->ips_ip_g_nd_lock); 10236 10237 if (iocp->ioc_error) 10238 iocp->ioc_count = 0; 10239 mp->b_datap->db_type = M_IOCACK; 10240 qreply(q, mp); 10241 return; 10242 } 10243 rw_exit(&ipst->ips_ip_g_nd_lock); 10244 /* 10245 * We don't understand this subioctl of ND_GET / ND_SET. 10246 * Maybe intended for some driver / module below us 10247 */ 10248 if (q->q_next) { 10249 putnext(q, mp); 10250 } else { 10251 iocp->ioc_error = ENOENT; 10252 mp->b_datap->db_type = M_IOCNAK; 10253 iocp->ioc_count = 0; 10254 qreply(q, mp); 10255 } 10256 return; 10257 10258 case IP_IOCTL: 10259 ip_wput_ioctl(q, mp); 10260 return; 10261 default: 10262 cmn_err(CE_PANIC, "should not happen "); 10263 } 10264 nak: 10265 if (mp->b_cont != NULL) { 10266 freemsg(mp->b_cont); 10267 mp->b_cont = NULL; 10268 } 10269 iocp->ioc_error = EINVAL; 10270 mp->b_datap->db_type = M_IOCNAK; 10271 iocp->ioc_count = 0; 10272 qreply(q, mp); 10273 } 10274 10275 /* ip_wput hands off ARP IOCTL responses to us */ 10276 void 10277 ip_sioctl_iocack(queue_t *q, mblk_t *mp) 10278 { 10279 struct arpreq *ar; 10280 struct xarpreq *xar; 10281 area_t *area; 10282 mblk_t *area_mp; 10283 struct iocblk *iocp; 10284 mblk_t *orig_ioc_mp, *tmp; 10285 struct iocblk *orig_iocp; 10286 ill_t *ill; 10287 conn_t *connp = NULL; 10288 uint_t ioc_id; 10289 mblk_t *pending_mp; 10290 int x_arp_ioctl = B_FALSE, ifx_arp_ioctl = B_FALSE; 10291 int *flagsp; 10292 char *storage = NULL; 10293 sin_t *sin; 10294 ipaddr_t addr; 10295 int err; 10296 ip_stack_t *ipst; 10297 10298 ill = q->q_ptr; 10299 ASSERT(ill != NULL); 10300 ipst = ill->ill_ipst; 10301 10302 /* 10303 * We should get back from ARP a packet chain that looks like: 10304 * M_IOCACK-->ARP_op_MBLK-->ORIG_M_IOCTL-->MI_COPY_MBLK-->[X]ARPREQ_MBLK 10305 */ 10306 if (!(area_mp = mp->b_cont) || 10307 (area_mp->b_wptr - area_mp->b_rptr) < sizeof (ip_sock_ar_t) || 10308 !(orig_ioc_mp = area_mp->b_cont) || 10309 !orig_ioc_mp->b_cont || !orig_ioc_mp->b_cont->b_cont) { 10310 freemsg(mp); 10311 return; 10312 } 10313 10314 orig_iocp = (struct iocblk *)orig_ioc_mp->b_rptr; 10315 10316 tmp = (orig_ioc_mp->b_cont)->b_cont; 10317 if ((orig_iocp->ioc_cmd == SIOCGXARP) || 10318 (orig_iocp->ioc_cmd == SIOCSXARP) || 10319 (orig_iocp->ioc_cmd == SIOCDXARP)) { 10320 x_arp_ioctl = B_TRUE; 10321 xar = (struct xarpreq *)tmp->b_rptr; 10322 sin = (sin_t *)&xar->xarp_pa; 10323 flagsp = &xar->xarp_flags; 10324 storage = xar->xarp_ha.sdl_data; 10325 if (xar->xarp_ha.sdl_nlen != 0) 10326 ifx_arp_ioctl = B_TRUE; 10327 } else { 10328 ar = (struct arpreq *)tmp->b_rptr; 10329 sin = (sin_t *)&ar->arp_pa; 10330 flagsp = &ar->arp_flags; 10331 storage = ar->arp_ha.sa_data; 10332 } 10333 10334 iocp = (struct iocblk *)mp->b_rptr; 10335 10336 /* 10337 * Pick out the originating queue based on the ioc_id. 10338 */ 10339 ioc_id = iocp->ioc_id; 10340 pending_mp = ill_pending_mp_get(ill, &connp, ioc_id); 10341 if (pending_mp == NULL) { 10342 ASSERT(connp == NULL); 10343 inet_freemsg(mp); 10344 return; 10345 } 10346 ASSERT(connp != NULL); 10347 q = CONNP_TO_WQ(connp); 10348 10349 /* Uncouple the internally generated IOCTL from the original one */ 10350 area = (area_t *)area_mp->b_rptr; 10351 area_mp->b_cont = NULL; 10352 10353 /* 10354 * Restore the b_next and b_prev used by mi code. This is needed 10355 * to complete the ioctl using mi* functions. We stored them in 10356 * the pending mp prior to sending the request to ARP. 10357 */ 10358 orig_ioc_mp->b_cont->b_next = pending_mp->b_cont->b_next; 10359 orig_ioc_mp->b_cont->b_prev = pending_mp->b_cont->b_prev; 10360 inet_freemsg(pending_mp); 10361 10362 /* 10363 * We're done if there was an error or if this is not an SIOCG{X}ARP 10364 * Catch the case where there is an IRE_CACHE by no entry in the 10365 * arp table. 10366 */ 10367 addr = sin->sin_addr.s_addr; 10368 if (iocp->ioc_error && iocp->ioc_cmd == AR_ENTRY_SQUERY) { 10369 ire_t *ire; 10370 dl_unitdata_req_t *dlup; 10371 mblk_t *llmp; 10372 int addr_len; 10373 ill_t *ipsqill = NULL; 10374 10375 if (ifx_arp_ioctl) { 10376 /* 10377 * There's no need to lookup the ill, since 10378 * we've already done that when we started 10379 * processing the ioctl and sent the message 10380 * to ARP on that ill. So use the ill that 10381 * is stored in q->q_ptr. 10382 */ 10383 ipsqill = ill; 10384 ire = ire_ctable_lookup(addr, 0, IRE_CACHE, 10385 ipsqill->ill_ipif, ALL_ZONES, 10386 NULL, MATCH_IRE_TYPE | MATCH_IRE_ILL, ipst); 10387 } else { 10388 ire = ire_ctable_lookup(addr, 0, IRE_CACHE, 10389 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 10390 if (ire != NULL) 10391 ipsqill = ire_to_ill(ire); 10392 } 10393 10394 if ((x_arp_ioctl) && (ipsqill != NULL)) 10395 storage += ill_xarp_info(&xar->xarp_ha, ipsqill); 10396 10397 if (ire != NULL) { 10398 /* 10399 * Since the ire obtained from cachetable is used for 10400 * mac addr copying below, treat an incomplete ire as if 10401 * as if we never found it. 10402 */ 10403 if (ire->ire_nce != NULL && 10404 ire->ire_nce->nce_state != ND_REACHABLE) { 10405 ire_refrele(ire); 10406 ire = NULL; 10407 ipsqill = NULL; 10408 goto errack; 10409 } 10410 *flagsp = ATF_INUSE; 10411 llmp = (ire->ire_nce != NULL ? 10412 ire->ire_nce->nce_res_mp : NULL); 10413 if (llmp != NULL && ipsqill != NULL) { 10414 uchar_t *macaddr; 10415 10416 addr_len = ipsqill->ill_phys_addr_length; 10417 if (x_arp_ioctl && ((addr_len + 10418 ipsqill->ill_name_length) > 10419 sizeof (xar->xarp_ha.sdl_data))) { 10420 ire_refrele(ire); 10421 freemsg(mp); 10422 ip_ioctl_finish(q, orig_ioc_mp, 10423 EINVAL, NO_COPYOUT, NULL); 10424 return; 10425 } 10426 *flagsp |= ATF_COM; 10427 dlup = (dl_unitdata_req_t *)llmp->b_rptr; 10428 if (ipsqill->ill_sap_length < 0) 10429 macaddr = llmp->b_rptr + 10430 dlup->dl_dest_addr_offset; 10431 else 10432 macaddr = llmp->b_rptr + 10433 dlup->dl_dest_addr_offset + 10434 ipsqill->ill_sap_length; 10435 /* 10436 * For SIOCGARP, MAC address length 10437 * validation has already been done 10438 * before the ioctl was issued to ARP to 10439 * allow it to progress only on 6 byte 10440 * addressable (ethernet like) media. Thus 10441 * the mac address copying can not overwrite 10442 * the sa_data area below. 10443 */ 10444 bcopy(macaddr, storage, addr_len); 10445 } 10446 /* Ditch the internal IOCTL. */ 10447 freemsg(mp); 10448 ire_refrele(ire); 10449 ip_ioctl_finish(q, orig_ioc_mp, 0, COPYOUT, NULL); 10450 return; 10451 } 10452 } 10453 10454 /* 10455 * Delete the coresponding IRE_CACHE if any. 10456 * Reset the error if there was one (in case there was no entry 10457 * in arp.) 10458 */ 10459 if (iocp->ioc_cmd == AR_ENTRY_DELETE) { 10460 ipif_t *ipintf = NULL; 10461 10462 if (ifx_arp_ioctl) { 10463 /* 10464 * There's no need to lookup the ill, since 10465 * we've already done that when we started 10466 * processing the ioctl and sent the message 10467 * to ARP on that ill. So use the ill that 10468 * is stored in q->q_ptr. 10469 */ 10470 ipintf = ill->ill_ipif; 10471 } 10472 if (ip_ire_clookup_and_delete(addr, ipintf, ipst)) { 10473 /* 10474 * The address in "addr" may be an entry for a 10475 * router. If that's true, then any off-net 10476 * IRE_CACHE entries that go through the router 10477 * with address "addr" must be clobbered. Use 10478 * ire_walk to achieve this goal. 10479 */ 10480 if (ifx_arp_ioctl) 10481 ire_walk_ill_v4(MATCH_IRE_ILL, 0, 10482 ire_delete_cache_gw, (char *)&addr, ill); 10483 else 10484 ire_walk_v4(ire_delete_cache_gw, (char *)&addr, 10485 ALL_ZONES, ipst); 10486 iocp->ioc_error = 0; 10487 } 10488 } 10489 errack: 10490 if (iocp->ioc_error || iocp->ioc_cmd != AR_ENTRY_SQUERY) { 10491 err = iocp->ioc_error; 10492 freemsg(mp); 10493 ip_ioctl_finish(q, orig_ioc_mp, err, NO_COPYOUT, NULL); 10494 return; 10495 } 10496 10497 /* 10498 * Completion of an SIOCG{X}ARP. Translate the information from 10499 * the area_t into the struct {x}arpreq. 10500 */ 10501 if (x_arp_ioctl) { 10502 storage += ill_xarp_info(&xar->xarp_ha, ill); 10503 if ((ill->ill_phys_addr_length + ill->ill_name_length) > 10504 sizeof (xar->xarp_ha.sdl_data)) { 10505 freemsg(mp); 10506 ip_ioctl_finish(q, orig_ioc_mp, EINVAL, NO_COPYOUT, 10507 NULL); 10508 return; 10509 } 10510 } 10511 *flagsp = ATF_INUSE; 10512 if (area->area_flags & ACE_F_PERMANENT) 10513 *flagsp |= ATF_PERM; 10514 if (area->area_flags & ACE_F_PUBLISH) 10515 *flagsp |= ATF_PUBL; 10516 if (area->area_flags & ACE_F_AUTHORITY) 10517 *flagsp |= ATF_AUTHORITY; 10518 if (area->area_hw_addr_length != 0) { 10519 *flagsp |= ATF_COM; 10520 /* 10521 * For SIOCGARP, MAC address length validation has 10522 * already been done before the ioctl was issued to ARP 10523 * to allow it to progress only on 6 byte addressable 10524 * (ethernet like) media. Thus the mac address copying 10525 * can not overwrite the sa_data area below. 10526 */ 10527 bcopy((char *)area + area->area_hw_addr_offset, 10528 storage, area->area_hw_addr_length); 10529 } 10530 10531 /* Ditch the internal IOCTL. */ 10532 freemsg(mp); 10533 /* Complete the original. */ 10534 ip_ioctl_finish(q, orig_ioc_mp, 0, COPYOUT, NULL); 10535 } 10536 10537 /* 10538 * Create a new logical interface. If ipif_id is zero (i.e. not a logical 10539 * interface) create the next available logical interface for this 10540 * physical interface. 10541 * If ipif is NULL (i.e. the lookup didn't find one) attempt to create an 10542 * ipif with the specified name. 10543 * 10544 * If the address family is not AF_UNSPEC then set the address as well. 10545 * 10546 * If ip_sioctl_addr returns EINPROGRESS then the ioctl (the copyout) 10547 * is completed when the DL_BIND_ACK arrive in ip_rput_dlpi_writer. 10548 * 10549 * Executed as a writer on the ill or ill group. 10550 * So no lock is needed to traverse the ipif chain, or examine the 10551 * phyint flags. 10552 */ 10553 /* ARGSUSED */ 10554 int 10555 ip_sioctl_addif(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 10556 ip_ioctl_cmd_t *dummy_ipip, void *dummy_ifreq) 10557 { 10558 mblk_t *mp1; 10559 struct lifreq *lifr; 10560 boolean_t isv6; 10561 boolean_t exists; 10562 char *name; 10563 char *endp; 10564 char *cp; 10565 int namelen; 10566 ipif_t *ipif; 10567 long id; 10568 ipsq_t *ipsq; 10569 ill_t *ill; 10570 sin_t *sin; 10571 int err = 0; 10572 boolean_t found_sep = B_FALSE; 10573 conn_t *connp; 10574 zoneid_t zoneid; 10575 int orig_ifindex = 0; 10576 ip_stack_t *ipst = CONNQ_TO_IPST(q); 10577 10578 ASSERT(q->q_next == NULL); 10579 ip1dbg(("ip_sioctl_addif\n")); 10580 /* Existence of mp1 has been checked in ip_wput_nondata */ 10581 mp1 = mp->b_cont->b_cont; 10582 /* 10583 * Null terminate the string to protect against buffer 10584 * overrun. String was generated by user code and may not 10585 * be trusted. 10586 */ 10587 lifr = (struct lifreq *)mp1->b_rptr; 10588 lifr->lifr_name[LIFNAMSIZ - 1] = '\0'; 10589 name = lifr->lifr_name; 10590 ASSERT(CONN_Q(q)); 10591 connp = Q_TO_CONN(q); 10592 isv6 = connp->conn_af_isv6; 10593 zoneid = connp->conn_zoneid; 10594 namelen = mi_strlen(name); 10595 if (namelen == 0) 10596 return (EINVAL); 10597 10598 exists = B_FALSE; 10599 if ((namelen + 1 == sizeof (ipif_loopback_name)) && 10600 (mi_strcmp(name, ipif_loopback_name) == 0)) { 10601 /* 10602 * Allow creating lo0 using SIOCLIFADDIF. 10603 * can't be any other writer thread. So can pass null below 10604 * for the last 4 args to ipif_lookup_name. 10605 */ 10606 ipif = ipif_lookup_on_name(lifr->lifr_name, namelen, B_TRUE, 10607 &exists, isv6, zoneid, NULL, NULL, NULL, NULL, ipst); 10608 /* Prevent any further action */ 10609 if (ipif == NULL) { 10610 return (ENOBUFS); 10611 } else if (!exists) { 10612 /* We created the ipif now and as writer */ 10613 ipif_refrele(ipif); 10614 return (0); 10615 } else { 10616 ill = ipif->ipif_ill; 10617 ill_refhold(ill); 10618 ipif_refrele(ipif); 10619 } 10620 } else { 10621 /* Look for a colon in the name. */ 10622 endp = &name[namelen]; 10623 for (cp = endp; --cp > name; ) { 10624 if (*cp == IPIF_SEPARATOR_CHAR) { 10625 found_sep = B_TRUE; 10626 /* 10627 * Reject any non-decimal aliases for plumbing 10628 * of logical interfaces. Aliases with leading 10629 * zeroes are also rejected as they introduce 10630 * ambiguity in the naming of the interfaces. 10631 * Comparing with "0" takes care of all such 10632 * cases. 10633 */ 10634 if ((strncmp("0", cp+1, 1)) == 0) 10635 return (EINVAL); 10636 10637 if (ddi_strtol(cp+1, &endp, 10, &id) != 0 || 10638 id <= 0 || *endp != '\0') { 10639 return (EINVAL); 10640 } 10641 *cp = '\0'; 10642 break; 10643 } 10644 } 10645 ill = ill_lookup_on_name(name, B_FALSE, isv6, 10646 CONNP_TO_WQ(connp), mp, ip_process_ioctl, &err, NULL, ipst); 10647 if (found_sep) 10648 *cp = IPIF_SEPARATOR_CHAR; 10649 if (ill == NULL) 10650 return (err); 10651 } 10652 10653 ipsq = ipsq_try_enter(NULL, ill, q, mp, ip_process_ioctl, NEW_OP, 10654 B_TRUE); 10655 10656 /* 10657 * Release the refhold due to the lookup, now that we are excl 10658 * or we are just returning 10659 */ 10660 ill_refrele(ill); 10661 10662 if (ipsq == NULL) 10663 return (EINPROGRESS); 10664 10665 /* 10666 * If the interface is failed, inactive or offlined, look for a working 10667 * interface in the ill group and create the ipif there. If we can't 10668 * find a good interface, create the ipif anyway so that in.mpathd can 10669 * move it to the first repaired interface. 10670 */ 10671 if ((ill->ill_phyint->phyint_flags & 10672 (PHYI_FAILED|PHYI_INACTIVE|PHYI_OFFLINE)) && 10673 ill->ill_phyint->phyint_groupname_len != 0) { 10674 phyint_t *phyi; 10675 char *groupname = ill->ill_phyint->phyint_groupname; 10676 10677 /* 10678 * We're looking for a working interface, but it doesn't matter 10679 * if it's up or down; so instead of following the group lists, 10680 * we look at each physical interface and compare the groupname. 10681 * We're only interested in interfaces with IPv4 (resp. IPv6) 10682 * plumbed when we're adding an IPv4 (resp. IPv6) ipif. 10683 * Otherwise we create the ipif on the failed interface. 10684 */ 10685 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 10686 phyi = avl_first(&ipst->ips_phyint_g_list-> 10687 phyint_list_avl_by_index); 10688 for (; phyi != NULL; 10689 phyi = avl_walk(&ipst->ips_phyint_g_list-> 10690 phyint_list_avl_by_index, 10691 phyi, AVL_AFTER)) { 10692 if (phyi->phyint_groupname_len == 0) 10693 continue; 10694 ASSERT(phyi->phyint_groupname != NULL); 10695 if (mi_strcmp(groupname, phyi->phyint_groupname) == 0 && 10696 !(phyi->phyint_flags & 10697 (PHYI_FAILED|PHYI_INACTIVE|PHYI_OFFLINE)) && 10698 (ill->ill_isv6 ? (phyi->phyint_illv6 != NULL) : 10699 (phyi->phyint_illv4 != NULL))) { 10700 break; 10701 } 10702 } 10703 rw_exit(&ipst->ips_ill_g_lock); 10704 10705 if (phyi != NULL) { 10706 orig_ifindex = ill->ill_phyint->phyint_ifindex; 10707 ill = (ill->ill_isv6 ? phyi->phyint_illv6 : 10708 phyi->phyint_illv4); 10709 } 10710 } 10711 10712 /* 10713 * We are now exclusive on the ipsq, so an ill move will be serialized 10714 * before or after us. 10715 */ 10716 ASSERT(IAM_WRITER_ILL(ill)); 10717 ASSERT(ill->ill_move_in_progress == B_FALSE); 10718 10719 if (found_sep && orig_ifindex == 0) { 10720 /* Now see if there is an IPIF with this unit number. */ 10721 for (ipif = ill->ill_ipif; ipif != NULL; 10722 ipif = ipif->ipif_next) { 10723 if (ipif->ipif_id == id) { 10724 err = EEXIST; 10725 goto done; 10726 } 10727 } 10728 } 10729 10730 /* 10731 * We use IRE_LOCAL for lo0:1 etc. for "receive only" use 10732 * of lo0. We never come here when we plumb lo0:0. It 10733 * happens in ipif_lookup_on_name. 10734 * The specified unit number is ignored when we create the ipif on a 10735 * different interface. However, we save it in ipif_orig_ipifid below so 10736 * that the ipif fails back to the right position. 10737 */ 10738 if ((ipif = ipif_allocate(ill, (found_sep && orig_ifindex == 0) ? 10739 id : -1, IRE_LOCAL, B_TRUE)) == NULL) { 10740 err = ENOBUFS; 10741 goto done; 10742 } 10743 10744 /* Return created name with ioctl */ 10745 (void) sprintf(lifr->lifr_name, "%s%c%d", ill->ill_name, 10746 IPIF_SEPARATOR_CHAR, ipif->ipif_id); 10747 ip1dbg(("created %s\n", lifr->lifr_name)); 10748 10749 /* Set address */ 10750 sin = (sin_t *)&lifr->lifr_addr; 10751 if (sin->sin_family != AF_UNSPEC) { 10752 err = ip_sioctl_addr(ipif, sin, q, mp, 10753 &ip_ndx_ioctl_table[SIOCLIFADDR_NDX], lifr); 10754 } 10755 10756 /* Set ifindex and unit number for failback */ 10757 if (err == 0 && orig_ifindex != 0) { 10758 ipif->ipif_orig_ifindex = orig_ifindex; 10759 if (found_sep) { 10760 ipif->ipif_orig_ipifid = id; 10761 } 10762 } 10763 10764 done: 10765 ipsq_exit(ipsq, B_TRUE, B_TRUE); 10766 return (err); 10767 } 10768 10769 /* 10770 * Remove an existing logical interface. If ipif_id is zero (i.e. not a logical 10771 * interface) delete it based on the IP address (on this physical interface). 10772 * Otherwise delete it based on the ipif_id. 10773 * Also, special handling to allow a removeif of lo0. 10774 */ 10775 /* ARGSUSED */ 10776 int 10777 ip_sioctl_removeif(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10778 ip_ioctl_cmd_t *ipip, void *dummy_if_req) 10779 { 10780 conn_t *connp; 10781 ill_t *ill = ipif->ipif_ill; 10782 boolean_t success; 10783 ip_stack_t *ipst; 10784 10785 ipst = CONNQ_TO_IPST(q); 10786 10787 ASSERT(q->q_next == NULL); 10788 ip1dbg(("ip_sioctl_remove_if(%s:%u %p)\n", 10789 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 10790 ASSERT(IAM_WRITER_IPIF(ipif)); 10791 10792 connp = Q_TO_CONN(q); 10793 /* 10794 * Special case for unplumbing lo0 (the loopback physical interface). 10795 * If unplumbing lo0, the incoming address structure has been 10796 * initialized to all zeros. When unplumbing lo0, all its logical 10797 * interfaces must be removed too. 10798 * 10799 * Note that this interface may be called to remove a specific 10800 * loopback logical interface (eg, lo0:1). But in that case 10801 * ipif->ipif_id != 0 so that the code path for that case is the 10802 * same as any other interface (meaning it skips the code directly 10803 * below). 10804 */ 10805 if (ipif->ipif_id == 0 && ipif->ipif_net_type == IRE_LOOPBACK) { 10806 if (sin->sin_family == AF_UNSPEC && 10807 (IN6_IS_ADDR_UNSPECIFIED(&((sin6_t *)sin)->sin6_addr))) { 10808 /* 10809 * Mark it condemned. No new ref. will be made to ill. 10810 */ 10811 mutex_enter(&ill->ill_lock); 10812 ill->ill_state_flags |= ILL_CONDEMNED; 10813 for (ipif = ill->ill_ipif; ipif != NULL; 10814 ipif = ipif->ipif_next) { 10815 ipif->ipif_state_flags |= IPIF_CONDEMNED; 10816 } 10817 mutex_exit(&ill->ill_lock); 10818 10819 ipif = ill->ill_ipif; 10820 /* unplumb the loopback interface */ 10821 ill_delete(ill); 10822 mutex_enter(&connp->conn_lock); 10823 mutex_enter(&ill->ill_lock); 10824 ASSERT(ill->ill_group == NULL); 10825 10826 /* Are any references to this ill active */ 10827 if (ill_is_quiescent(ill)) { 10828 mutex_exit(&ill->ill_lock); 10829 mutex_exit(&connp->conn_lock); 10830 ill_delete_tail(ill); 10831 mi_free(ill); 10832 return (0); 10833 } 10834 success = ipsq_pending_mp_add(connp, ipif, 10835 CONNP_TO_WQ(connp), mp, ILL_FREE); 10836 mutex_exit(&connp->conn_lock); 10837 mutex_exit(&ill->ill_lock); 10838 if (success) 10839 return (EINPROGRESS); 10840 else 10841 return (EINTR); 10842 } 10843 } 10844 10845 /* 10846 * We are exclusive on the ipsq, so an ill move will be serialized 10847 * before or after us. 10848 */ 10849 ASSERT(ill->ill_move_in_progress == B_FALSE); 10850 10851 if (ipif->ipif_id == 0) { 10852 /* Find based on address */ 10853 if (ipif->ipif_isv6) { 10854 sin6_t *sin6; 10855 10856 if (sin->sin_family != AF_INET6) 10857 return (EAFNOSUPPORT); 10858 10859 sin6 = (sin6_t *)sin; 10860 /* We are a writer, so we should be able to lookup */ 10861 ipif = ipif_lookup_addr_v6(&sin6->sin6_addr, 10862 ill, ALL_ZONES, NULL, NULL, NULL, NULL, ipst); 10863 if (ipif == NULL) { 10864 /* 10865 * Maybe the address in on another interface in 10866 * the same IPMP group? We check this below. 10867 */ 10868 ipif = ipif_lookup_addr_v6(&sin6->sin6_addr, 10869 NULL, ALL_ZONES, NULL, NULL, NULL, NULL, 10870 ipst); 10871 } 10872 } else { 10873 ipaddr_t addr; 10874 10875 if (sin->sin_family != AF_INET) 10876 return (EAFNOSUPPORT); 10877 10878 addr = sin->sin_addr.s_addr; 10879 /* We are a writer, so we should be able to lookup */ 10880 ipif = ipif_lookup_addr(addr, ill, ALL_ZONES, NULL, 10881 NULL, NULL, NULL, ipst); 10882 if (ipif == NULL) { 10883 /* 10884 * Maybe the address in on another interface in 10885 * the same IPMP group? We check this below. 10886 */ 10887 ipif = ipif_lookup_addr(addr, NULL, ALL_ZONES, 10888 NULL, NULL, NULL, NULL, ipst); 10889 } 10890 } 10891 if (ipif == NULL) { 10892 return (EADDRNOTAVAIL); 10893 } 10894 /* 10895 * When the address to be removed is hosted on a different 10896 * interface, we check if the interface is in the same IPMP 10897 * group as the specified one; if so we proceed with the 10898 * removal. 10899 * ill->ill_group is NULL when the ill is down, so we have to 10900 * compare the group names instead. 10901 */ 10902 if (ipif->ipif_ill != ill && 10903 (ipif->ipif_ill->ill_phyint->phyint_groupname_len == 0 || 10904 ill->ill_phyint->phyint_groupname_len == 0 || 10905 mi_strcmp(ipif->ipif_ill->ill_phyint->phyint_groupname, 10906 ill->ill_phyint->phyint_groupname) != 0)) { 10907 ipif_refrele(ipif); 10908 return (EADDRNOTAVAIL); 10909 } 10910 10911 /* This is a writer */ 10912 ipif_refrele(ipif); 10913 } 10914 10915 /* 10916 * Can not delete instance zero since it is tied to the ill. 10917 */ 10918 if (ipif->ipif_id == 0) 10919 return (EBUSY); 10920 10921 mutex_enter(&ill->ill_lock); 10922 ipif->ipif_state_flags |= IPIF_CONDEMNED; 10923 mutex_exit(&ill->ill_lock); 10924 10925 ipif_free(ipif); 10926 10927 mutex_enter(&connp->conn_lock); 10928 mutex_enter(&ill->ill_lock); 10929 10930 /* Are any references to this ipif active */ 10931 if (ipif->ipif_refcnt == 0 && ipif->ipif_ire_cnt == 0) { 10932 mutex_exit(&ill->ill_lock); 10933 mutex_exit(&connp->conn_lock); 10934 ipif_non_duplicate(ipif); 10935 ipif_down_tail(ipif); 10936 ipif_free_tail(ipif); 10937 return (0); 10938 } 10939 success = ipsq_pending_mp_add(connp, ipif, CONNP_TO_WQ(connp), mp, 10940 IPIF_FREE); 10941 mutex_exit(&ill->ill_lock); 10942 mutex_exit(&connp->conn_lock); 10943 if (success) 10944 return (EINPROGRESS); 10945 else 10946 return (EINTR); 10947 } 10948 10949 /* 10950 * Restart the removeif ioctl. The refcnt has gone down to 0. 10951 * The ipif is already condemned. So can't find it thru lookups. 10952 */ 10953 /* ARGSUSED */ 10954 int 10955 ip_sioctl_removeif_restart(ipif_t *ipif, sin_t *dummy_sin, queue_t *q, 10956 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *dummy_if_req) 10957 { 10958 ill_t *ill; 10959 10960 ip1dbg(("ip_sioctl_removeif_restart(%s:%u %p)\n", 10961 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 10962 if (ipif->ipif_id == 0 && ipif->ipif_net_type == IRE_LOOPBACK) { 10963 ill = ipif->ipif_ill; 10964 ASSERT(IAM_WRITER_ILL(ill)); 10965 ASSERT((ipif->ipif_state_flags & IPIF_CONDEMNED) && 10966 (ill->ill_state_flags & IPIF_CONDEMNED)); 10967 ill_delete_tail(ill); 10968 mi_free(ill); 10969 return (0); 10970 } 10971 10972 ill = ipif->ipif_ill; 10973 ASSERT(IAM_WRITER_IPIF(ipif)); 10974 ASSERT(ipif->ipif_state_flags & IPIF_CONDEMNED); 10975 10976 ipif_non_duplicate(ipif); 10977 ipif_down_tail(ipif); 10978 ipif_free_tail(ipif); 10979 10980 ILL_UNMARK_CHANGING(ill); 10981 return (0); 10982 } 10983 10984 /* 10985 * Set the local interface address. 10986 * Allow an address of all zero when the interface is down. 10987 */ 10988 /* ARGSUSED */ 10989 int 10990 ip_sioctl_addr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10991 ip_ioctl_cmd_t *dummy_ipip, void *dummy_ifreq) 10992 { 10993 int err = 0; 10994 in6_addr_t v6addr; 10995 boolean_t need_up = B_FALSE; 10996 10997 ip1dbg(("ip_sioctl_addr(%s:%u %p)\n", 10998 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 10999 11000 ASSERT(IAM_WRITER_IPIF(ipif)); 11001 11002 if (ipif->ipif_isv6) { 11003 sin6_t *sin6; 11004 ill_t *ill; 11005 phyint_t *phyi; 11006 11007 if (sin->sin_family != AF_INET6) 11008 return (EAFNOSUPPORT); 11009 11010 sin6 = (sin6_t *)sin; 11011 v6addr = sin6->sin6_addr; 11012 ill = ipif->ipif_ill; 11013 phyi = ill->ill_phyint; 11014 11015 /* 11016 * Enforce that true multicast interfaces have a link-local 11017 * address for logical unit 0. 11018 */ 11019 if (ipif->ipif_id == 0 && 11020 (ill->ill_flags & ILLF_MULTICAST) && 11021 !(ipif->ipif_flags & (IPIF_POINTOPOINT)) && 11022 !(phyi->phyint_flags & (PHYI_LOOPBACK)) && 11023 !IN6_IS_ADDR_LINKLOCAL(&v6addr)) { 11024 return (EADDRNOTAVAIL); 11025 } 11026 11027 /* 11028 * up interfaces shouldn't have the unspecified address 11029 * unless they also have the IPIF_NOLOCAL flags set and 11030 * have a subnet assigned. 11031 */ 11032 if ((ipif->ipif_flags & IPIF_UP) && 11033 IN6_IS_ADDR_UNSPECIFIED(&v6addr) && 11034 (!(ipif->ipif_flags & IPIF_NOLOCAL) || 11035 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6subnet))) { 11036 return (EADDRNOTAVAIL); 11037 } 11038 11039 if (!ip_local_addr_ok_v6(&v6addr, &ipif->ipif_v6net_mask)) 11040 return (EADDRNOTAVAIL); 11041 } else { 11042 ipaddr_t addr; 11043 11044 if (sin->sin_family != AF_INET) 11045 return (EAFNOSUPPORT); 11046 11047 addr = sin->sin_addr.s_addr; 11048 11049 /* Allow 0 as the local address. */ 11050 if (addr != 0 && !ip_addr_ok_v4(addr, ipif->ipif_net_mask)) 11051 return (EADDRNOTAVAIL); 11052 11053 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 11054 } 11055 11056 11057 /* 11058 * Even if there is no change we redo things just to rerun 11059 * ipif_set_default. 11060 */ 11061 if (ipif->ipif_flags & IPIF_UP) { 11062 /* 11063 * Setting a new local address, make sure 11064 * we have net and subnet bcast ire's for 11065 * the old address if we need them. 11066 */ 11067 if (!ipif->ipif_isv6) 11068 ipif_check_bcast_ires(ipif); 11069 /* 11070 * If the interface is already marked up, 11071 * we call ipif_down which will take care 11072 * of ditching any IREs that have been set 11073 * up based on the old interface address. 11074 */ 11075 err = ipif_logical_down(ipif, q, mp); 11076 if (err == EINPROGRESS) 11077 return (err); 11078 ipif_down_tail(ipif); 11079 need_up = 1; 11080 } 11081 11082 err = ip_sioctl_addr_tail(ipif, sin, q, mp, need_up); 11083 return (err); 11084 } 11085 11086 int 11087 ip_sioctl_addr_tail(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11088 boolean_t need_up) 11089 { 11090 in6_addr_t v6addr; 11091 in6_addr_t ov6addr; 11092 ipaddr_t addr; 11093 sin6_t *sin6; 11094 int sinlen; 11095 int err = 0; 11096 ill_t *ill = ipif->ipif_ill; 11097 boolean_t need_dl_down; 11098 boolean_t need_arp_down; 11099 struct iocblk *iocp; 11100 11101 iocp = (mp != NULL) ? (struct iocblk *)mp->b_rptr : NULL; 11102 11103 ip1dbg(("ip_sioctl_addr_tail(%s:%u %p)\n", 11104 ill->ill_name, ipif->ipif_id, (void *)ipif)); 11105 ASSERT(IAM_WRITER_IPIF(ipif)); 11106 11107 /* Must cancel any pending timer before taking the ill_lock */ 11108 if (ipif->ipif_recovery_id != 0) 11109 (void) untimeout(ipif->ipif_recovery_id); 11110 ipif->ipif_recovery_id = 0; 11111 11112 if (ipif->ipif_isv6) { 11113 sin6 = (sin6_t *)sin; 11114 v6addr = sin6->sin6_addr; 11115 sinlen = sizeof (struct sockaddr_in6); 11116 } else { 11117 addr = sin->sin_addr.s_addr; 11118 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 11119 sinlen = sizeof (struct sockaddr_in); 11120 } 11121 mutex_enter(&ill->ill_lock); 11122 ov6addr = ipif->ipif_v6lcl_addr; 11123 ipif->ipif_v6lcl_addr = v6addr; 11124 sctp_update_ipif_addr(ipif, ov6addr); 11125 if (ipif->ipif_flags & (IPIF_ANYCAST | IPIF_NOLOCAL)) { 11126 ipif->ipif_v6src_addr = ipv6_all_zeros; 11127 } else { 11128 ipif->ipif_v6src_addr = v6addr; 11129 } 11130 ipif->ipif_addr_ready = 0; 11131 11132 /* 11133 * If the interface was previously marked as a duplicate, then since 11134 * we've now got a "new" address, it should no longer be considered a 11135 * duplicate -- even if the "new" address is the same as the old one. 11136 * Note that if all ipifs are down, we may have a pending ARP down 11137 * event to handle. This is because we want to recover from duplicates 11138 * and thus delay tearing down ARP until the duplicates have been 11139 * removed or disabled. 11140 */ 11141 need_dl_down = need_arp_down = B_FALSE; 11142 if (ipif->ipif_flags & IPIF_DUPLICATE) { 11143 need_arp_down = !need_up; 11144 ipif->ipif_flags &= ~IPIF_DUPLICATE; 11145 if (--ill->ill_ipif_dup_count == 0 && !need_up && 11146 ill->ill_ipif_up_count == 0 && ill->ill_dl_up) { 11147 need_dl_down = B_TRUE; 11148 } 11149 } 11150 11151 if (ipif->ipif_isv6 && IN6_IS_ADDR_6TO4(&v6addr) && 11152 !ill->ill_is_6to4tun) { 11153 queue_t *wqp = ill->ill_wq; 11154 11155 /* 11156 * The local address of this interface is a 6to4 address, 11157 * check if this interface is in fact a 6to4 tunnel or just 11158 * an interface configured with a 6to4 address. We are only 11159 * interested in the former. 11160 */ 11161 if (wqp != NULL) { 11162 while ((wqp->q_next != NULL) && 11163 (wqp->q_next->q_qinfo != NULL) && 11164 (wqp->q_next->q_qinfo->qi_minfo != NULL)) { 11165 11166 if (wqp->q_next->q_qinfo->qi_minfo->mi_idnum 11167 == TUN6TO4_MODID) { 11168 /* set for use in IP */ 11169 ill->ill_is_6to4tun = 1; 11170 break; 11171 } 11172 wqp = wqp->q_next; 11173 } 11174 } 11175 } 11176 11177 ipif_set_default(ipif); 11178 11179 /* 11180 * When publishing an interface address change event, we only notify 11181 * the event listeners of the new address. It is assumed that if they 11182 * actively care about the addresses assigned that they will have 11183 * already discovered the previous address assigned (if there was one.) 11184 * 11185 * Don't attach nic event message for SIOCLIFADDIF ioctl. 11186 */ 11187 if (iocp != NULL && iocp->ioc_cmd != SIOCLIFADDIF) { 11188 hook_nic_event_t *info; 11189 if ((info = ipif->ipif_ill->ill_nic_event_info) != NULL) { 11190 ip2dbg(("ip_sioctl_addr_tail: unexpected nic event %d " 11191 "attached for %s\n", info->hne_event, 11192 ill->ill_name)); 11193 if (info->hne_data != NULL) 11194 kmem_free(info->hne_data, info->hne_datalen); 11195 kmem_free(info, sizeof (hook_nic_event_t)); 11196 } 11197 11198 info = kmem_alloc(sizeof (hook_nic_event_t), KM_NOSLEEP); 11199 if (info != NULL) { 11200 ip_stack_t *ipst = ill->ill_ipst; 11201 11202 info->hne_nic = 11203 ipif->ipif_ill->ill_phyint->phyint_hook_ifindex; 11204 info->hne_lif = MAP_IPIF_ID(ipif->ipif_id); 11205 info->hne_event = NE_ADDRESS_CHANGE; 11206 info->hne_family = ipif->ipif_isv6 ? 11207 ipst->ips_ipv6_net_data : ipst->ips_ipv4_net_data; 11208 info->hne_data = kmem_alloc(sinlen, KM_NOSLEEP); 11209 if (info->hne_data != NULL) { 11210 info->hne_datalen = sinlen; 11211 bcopy(sin, info->hne_data, sinlen); 11212 } else { 11213 ip2dbg(("ip_sioctl_addr_tail: could not attach " 11214 "address information for ADDRESS_CHANGE nic" 11215 " event of %s (ENOMEM)\n", 11216 ipif->ipif_ill->ill_name)); 11217 kmem_free(info, sizeof (hook_nic_event_t)); 11218 } 11219 } else 11220 ip2dbg(("ip_sioctl_addr_tail: could not attach " 11221 "ADDRESS_CHANGE nic event information for %s " 11222 "(ENOMEM)\n", ipif->ipif_ill->ill_name)); 11223 11224 ipif->ipif_ill->ill_nic_event_info = info; 11225 } 11226 11227 mutex_exit(&ill->ill_lock); 11228 11229 if (need_up) { 11230 /* 11231 * Now bring the interface back up. If this 11232 * is the only IPIF for the ILL, ipif_up 11233 * will have to re-bind to the device, so 11234 * we may get back EINPROGRESS, in which 11235 * case, this IOCTL will get completed in 11236 * ip_rput_dlpi when we see the DL_BIND_ACK. 11237 */ 11238 err = ipif_up(ipif, q, mp); 11239 } 11240 11241 if (need_dl_down) 11242 ill_dl_down(ill); 11243 if (need_arp_down) 11244 ipif_arp_down(ipif); 11245 11246 return (err); 11247 } 11248 11249 11250 /* 11251 * Restart entry point to restart the address set operation after the 11252 * refcounts have dropped to zero. 11253 */ 11254 /* ARGSUSED */ 11255 int 11256 ip_sioctl_addr_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11257 ip_ioctl_cmd_t *ipip, void *ifreq) 11258 { 11259 ip1dbg(("ip_sioctl_addr_restart(%s:%u %p)\n", 11260 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11261 ASSERT(IAM_WRITER_IPIF(ipif)); 11262 ipif_down_tail(ipif); 11263 return (ip_sioctl_addr_tail(ipif, sin, q, mp, B_TRUE)); 11264 } 11265 11266 /* ARGSUSED */ 11267 int 11268 ip_sioctl_get_addr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11269 ip_ioctl_cmd_t *ipip, void *if_req) 11270 { 11271 sin6_t *sin6 = (struct sockaddr_in6 *)sin; 11272 struct lifreq *lifr = (struct lifreq *)if_req; 11273 11274 ip1dbg(("ip_sioctl_get_addr(%s:%u %p)\n", 11275 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11276 /* 11277 * The net mask and address can't change since we have a 11278 * reference to the ipif. So no lock is necessary. 11279 */ 11280 if (ipif->ipif_isv6) { 11281 *sin6 = sin6_null; 11282 sin6->sin6_family = AF_INET6; 11283 sin6->sin6_addr = ipif->ipif_v6lcl_addr; 11284 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 11285 lifr->lifr_addrlen = 11286 ip_mask_to_plen_v6(&ipif->ipif_v6net_mask); 11287 } else { 11288 *sin = sin_null; 11289 sin->sin_family = AF_INET; 11290 sin->sin_addr.s_addr = ipif->ipif_lcl_addr; 11291 if (ipip->ipi_cmd_type == LIF_CMD) { 11292 lifr->lifr_addrlen = 11293 ip_mask_to_plen(ipif->ipif_net_mask); 11294 } 11295 } 11296 return (0); 11297 } 11298 11299 /* 11300 * Set the destination address for a pt-pt interface. 11301 */ 11302 /* ARGSUSED */ 11303 int 11304 ip_sioctl_dstaddr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11305 ip_ioctl_cmd_t *ipip, void *if_req) 11306 { 11307 int err = 0; 11308 in6_addr_t v6addr; 11309 boolean_t need_up = B_FALSE; 11310 11311 ip1dbg(("ip_sioctl_dstaddr(%s:%u %p)\n", 11312 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11313 ASSERT(IAM_WRITER_IPIF(ipif)); 11314 11315 if (ipif->ipif_isv6) { 11316 sin6_t *sin6; 11317 11318 if (sin->sin_family != AF_INET6) 11319 return (EAFNOSUPPORT); 11320 11321 sin6 = (sin6_t *)sin; 11322 v6addr = sin6->sin6_addr; 11323 11324 if (!ip_remote_addr_ok_v6(&v6addr, &ipif->ipif_v6net_mask)) 11325 return (EADDRNOTAVAIL); 11326 } else { 11327 ipaddr_t addr; 11328 11329 if (sin->sin_family != AF_INET) 11330 return (EAFNOSUPPORT); 11331 11332 addr = sin->sin_addr.s_addr; 11333 if (!ip_addr_ok_v4(addr, ipif->ipif_net_mask)) 11334 return (EADDRNOTAVAIL); 11335 11336 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 11337 } 11338 11339 if (IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6pp_dst_addr, &v6addr)) 11340 return (0); /* No change */ 11341 11342 if (ipif->ipif_flags & IPIF_UP) { 11343 /* 11344 * If the interface is already marked up, 11345 * we call ipif_down which will take care 11346 * of ditching any IREs that have been set 11347 * up based on the old pp dst address. 11348 */ 11349 err = ipif_logical_down(ipif, q, mp); 11350 if (err == EINPROGRESS) 11351 return (err); 11352 ipif_down_tail(ipif); 11353 need_up = B_TRUE; 11354 } 11355 /* 11356 * could return EINPROGRESS. If so ioctl will complete in 11357 * ip_rput_dlpi_writer 11358 */ 11359 err = ip_sioctl_dstaddr_tail(ipif, sin, q, mp, need_up); 11360 return (err); 11361 } 11362 11363 static int 11364 ip_sioctl_dstaddr_tail(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11365 boolean_t need_up) 11366 { 11367 in6_addr_t v6addr; 11368 ill_t *ill = ipif->ipif_ill; 11369 int err = 0; 11370 boolean_t need_dl_down; 11371 boolean_t need_arp_down; 11372 11373 ip1dbg(("ip_sioctl_dstaddr_tail(%s:%u %p)\n", ill->ill_name, 11374 ipif->ipif_id, (void *)ipif)); 11375 11376 /* Must cancel any pending timer before taking the ill_lock */ 11377 if (ipif->ipif_recovery_id != 0) 11378 (void) untimeout(ipif->ipif_recovery_id); 11379 ipif->ipif_recovery_id = 0; 11380 11381 if (ipif->ipif_isv6) { 11382 sin6_t *sin6; 11383 11384 sin6 = (sin6_t *)sin; 11385 v6addr = sin6->sin6_addr; 11386 } else { 11387 ipaddr_t addr; 11388 11389 addr = sin->sin_addr.s_addr; 11390 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 11391 } 11392 mutex_enter(&ill->ill_lock); 11393 /* Set point to point destination address. */ 11394 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) { 11395 /* 11396 * Allow this as a means of creating logical 11397 * pt-pt interfaces on top of e.g. an Ethernet. 11398 * XXX Undocumented HACK for testing. 11399 * pt-pt interfaces are created with NUD disabled. 11400 */ 11401 ipif->ipif_flags |= IPIF_POINTOPOINT; 11402 ipif->ipif_flags &= ~IPIF_BROADCAST; 11403 if (ipif->ipif_isv6) 11404 ill->ill_flags |= ILLF_NONUD; 11405 } 11406 11407 /* 11408 * If the interface was previously marked as a duplicate, then since 11409 * we've now got a "new" address, it should no longer be considered a 11410 * duplicate -- even if the "new" address is the same as the old one. 11411 * Note that if all ipifs are down, we may have a pending ARP down 11412 * event to handle. 11413 */ 11414 need_dl_down = need_arp_down = B_FALSE; 11415 if (ipif->ipif_flags & IPIF_DUPLICATE) { 11416 need_arp_down = !need_up; 11417 ipif->ipif_flags &= ~IPIF_DUPLICATE; 11418 if (--ill->ill_ipif_dup_count == 0 && !need_up && 11419 ill->ill_ipif_up_count == 0 && ill->ill_dl_up) { 11420 need_dl_down = B_TRUE; 11421 } 11422 } 11423 11424 /* Set the new address. */ 11425 ipif->ipif_v6pp_dst_addr = v6addr; 11426 /* Make sure subnet tracks pp_dst */ 11427 ipif->ipif_v6subnet = ipif->ipif_v6pp_dst_addr; 11428 mutex_exit(&ill->ill_lock); 11429 11430 if (need_up) { 11431 /* 11432 * Now bring the interface back up. If this 11433 * is the only IPIF for the ILL, ipif_up 11434 * will have to re-bind to the device, so 11435 * we may get back EINPROGRESS, in which 11436 * case, this IOCTL will get completed in 11437 * ip_rput_dlpi when we see the DL_BIND_ACK. 11438 */ 11439 err = ipif_up(ipif, q, mp); 11440 } 11441 11442 if (need_dl_down) 11443 ill_dl_down(ill); 11444 11445 if (need_arp_down) 11446 ipif_arp_down(ipif); 11447 return (err); 11448 } 11449 11450 /* 11451 * Restart entry point to restart the dstaddress set operation after the 11452 * refcounts have dropped to zero. 11453 */ 11454 /* ARGSUSED */ 11455 int 11456 ip_sioctl_dstaddr_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11457 ip_ioctl_cmd_t *ipip, void *ifreq) 11458 { 11459 ip1dbg(("ip_sioctl_dstaddr_restart(%s:%u %p)\n", 11460 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11461 ipif_down_tail(ipif); 11462 return (ip_sioctl_dstaddr_tail(ipif, sin, q, mp, B_TRUE)); 11463 } 11464 11465 /* ARGSUSED */ 11466 int 11467 ip_sioctl_get_dstaddr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11468 ip_ioctl_cmd_t *ipip, void *if_req) 11469 { 11470 sin6_t *sin6 = (struct sockaddr_in6 *)sin; 11471 11472 ip1dbg(("ip_sioctl_get_dstaddr(%s:%u %p)\n", 11473 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11474 /* 11475 * Get point to point destination address. The addresses can't 11476 * change since we hold a reference to the ipif. 11477 */ 11478 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) 11479 return (EADDRNOTAVAIL); 11480 11481 if (ipif->ipif_isv6) { 11482 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 11483 *sin6 = sin6_null; 11484 sin6->sin6_family = AF_INET6; 11485 sin6->sin6_addr = ipif->ipif_v6pp_dst_addr; 11486 } else { 11487 *sin = sin_null; 11488 sin->sin_family = AF_INET; 11489 sin->sin_addr.s_addr = ipif->ipif_pp_dst_addr; 11490 } 11491 return (0); 11492 } 11493 11494 /* 11495 * part of ipmp, make this func return the active/inactive state and 11496 * caller can set once atomically instead of multiple mutex_enter/mutex_exit 11497 */ 11498 /* 11499 * This function either sets or clears the IFF_INACTIVE flag. 11500 * 11501 * As long as there are some addresses or multicast memberships on the 11502 * IPv4 or IPv6 interface of the "phyi" that does not belong in here, we 11503 * will consider it to be ACTIVE (clear IFF_INACTIVE) i.e the interface 11504 * will be used for outbound packets. 11505 * 11506 * Caller needs to verify the validity of setting IFF_INACTIVE. 11507 */ 11508 static void 11509 phyint_inactive(phyint_t *phyi) 11510 { 11511 ill_t *ill_v4; 11512 ill_t *ill_v6; 11513 ipif_t *ipif; 11514 ilm_t *ilm; 11515 11516 ill_v4 = phyi->phyint_illv4; 11517 ill_v6 = phyi->phyint_illv6; 11518 11519 /* 11520 * No need for a lock while traversing the list since iam 11521 * a writer 11522 */ 11523 if (ill_v4 != NULL) { 11524 ASSERT(IAM_WRITER_ILL(ill_v4)); 11525 for (ipif = ill_v4->ill_ipif; ipif != NULL; 11526 ipif = ipif->ipif_next) { 11527 if (ipif->ipif_orig_ifindex != phyi->phyint_ifindex) { 11528 mutex_enter(&phyi->phyint_lock); 11529 phyi->phyint_flags &= ~PHYI_INACTIVE; 11530 mutex_exit(&phyi->phyint_lock); 11531 return; 11532 } 11533 } 11534 for (ilm = ill_v4->ill_ilm; ilm != NULL; 11535 ilm = ilm->ilm_next) { 11536 if (ilm->ilm_orig_ifindex != phyi->phyint_ifindex) { 11537 mutex_enter(&phyi->phyint_lock); 11538 phyi->phyint_flags &= ~PHYI_INACTIVE; 11539 mutex_exit(&phyi->phyint_lock); 11540 return; 11541 } 11542 } 11543 } 11544 if (ill_v6 != NULL) { 11545 ill_v6 = phyi->phyint_illv6; 11546 for (ipif = ill_v6->ill_ipif; ipif != NULL; 11547 ipif = ipif->ipif_next) { 11548 if (ipif->ipif_orig_ifindex != phyi->phyint_ifindex) { 11549 mutex_enter(&phyi->phyint_lock); 11550 phyi->phyint_flags &= ~PHYI_INACTIVE; 11551 mutex_exit(&phyi->phyint_lock); 11552 return; 11553 } 11554 } 11555 for (ilm = ill_v6->ill_ilm; ilm != NULL; 11556 ilm = ilm->ilm_next) { 11557 if (ilm->ilm_orig_ifindex != phyi->phyint_ifindex) { 11558 mutex_enter(&phyi->phyint_lock); 11559 phyi->phyint_flags &= ~PHYI_INACTIVE; 11560 mutex_exit(&phyi->phyint_lock); 11561 return; 11562 } 11563 } 11564 } 11565 mutex_enter(&phyi->phyint_lock); 11566 phyi->phyint_flags |= PHYI_INACTIVE; 11567 mutex_exit(&phyi->phyint_lock); 11568 } 11569 11570 /* 11571 * This function is called only when the phyint flags change. Currently 11572 * called from ip_sioctl_flags. We re-do the broadcast nomination so 11573 * that we can select a good ill. 11574 */ 11575 static void 11576 ip_redo_nomination(phyint_t *phyi) 11577 { 11578 ill_t *ill_v4; 11579 11580 ill_v4 = phyi->phyint_illv4; 11581 11582 if (ill_v4 != NULL && ill_v4->ill_group != NULL) { 11583 ASSERT(IAM_WRITER_ILL(ill_v4)); 11584 if (ill_v4->ill_group->illgrp_ill_count > 1) 11585 ill_nominate_bcast_rcv(ill_v4->ill_group); 11586 } 11587 } 11588 11589 /* 11590 * Heuristic to check if ill is INACTIVE. 11591 * Checks if ill has an ipif with an usable ip address. 11592 * 11593 * Return values: 11594 * B_TRUE - ill is INACTIVE; has no usable ipif 11595 * B_FALSE - ill is not INACTIVE; ill has at least one usable ipif 11596 */ 11597 static boolean_t 11598 ill_is_inactive(ill_t *ill) 11599 { 11600 ipif_t *ipif; 11601 11602 /* Check whether it is in an IPMP group */ 11603 if (ill->ill_phyint->phyint_groupname == NULL) 11604 return (B_FALSE); 11605 11606 if (ill->ill_ipif_up_count == 0) 11607 return (B_TRUE); 11608 11609 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 11610 uint64_t flags = ipif->ipif_flags; 11611 11612 /* 11613 * This ipif is usable if it is IPIF_UP and not a 11614 * dedicated test address. A dedicated test address 11615 * is marked IPIF_NOFAILOVER *and* IPIF_DEPRECATED 11616 * (note in particular that V6 test addresses are 11617 * link-local data addresses and thus are marked 11618 * IPIF_NOFAILOVER but not IPIF_DEPRECATED). 11619 */ 11620 if ((flags & IPIF_UP) && 11621 ((flags & (IPIF_DEPRECATED|IPIF_NOFAILOVER)) != 11622 (IPIF_DEPRECATED|IPIF_NOFAILOVER))) 11623 return (B_FALSE); 11624 } 11625 return (B_TRUE); 11626 } 11627 11628 /* 11629 * Set interface flags. 11630 * Need to do special action for IPIF_UP, IPIF_DEPRECATED, IPIF_NOXMIT, 11631 * IPIF_NOLOCAL, ILLF_NONUD, ILLF_NOARP, IPIF_PRIVATE, IPIF_ANYCAST, 11632 * IPIF_PREFERRED, PHYI_STANDBY, PHYI_FAILED and PHYI_OFFLINE. 11633 * 11634 * NOTE : We really don't enforce that ipif_id zero should be used 11635 * for setting any flags other than IFF_LOGINT_FLAGS. This 11636 * is because applications generally does SICGLIFFLAGS and 11637 * ORs in the new flags (that affects the logical) and does a 11638 * SIOCSLIFFLAGS. Thus, "flags" below could contain bits other 11639 * than IFF_LOGINT_FLAGS. One could check whether "turn_on" - the 11640 * flags that will be turned on is correct with respect to 11641 * ipif_id 0. For backward compatibility reasons, it is not done. 11642 */ 11643 /* ARGSUSED */ 11644 int 11645 ip_sioctl_flags(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11646 ip_ioctl_cmd_t *ipip, void *if_req) 11647 { 11648 uint64_t turn_on; 11649 uint64_t turn_off; 11650 int err; 11651 boolean_t need_up = B_FALSE; 11652 phyint_t *phyi; 11653 ill_t *ill; 11654 uint64_t intf_flags; 11655 boolean_t phyint_flags_modified = B_FALSE; 11656 uint64_t flags; 11657 struct ifreq *ifr; 11658 struct lifreq *lifr; 11659 boolean_t set_linklocal = B_FALSE; 11660 boolean_t zero_source = B_FALSE; 11661 ip_stack_t *ipst; 11662 11663 ip1dbg(("ip_sioctl_flags(%s:%u %p)\n", 11664 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11665 11666 ASSERT(IAM_WRITER_IPIF(ipif)); 11667 11668 ill = ipif->ipif_ill; 11669 phyi = ill->ill_phyint; 11670 ipst = ill->ill_ipst; 11671 11672 if (ipip->ipi_cmd_type == IF_CMD) { 11673 ifr = (struct ifreq *)if_req; 11674 flags = (uint64_t)(ifr->ifr_flags & 0x0000ffff); 11675 } else { 11676 lifr = (struct lifreq *)if_req; 11677 flags = lifr->lifr_flags; 11678 } 11679 11680 intf_flags = ipif->ipif_flags | ill->ill_flags | phyi->phyint_flags; 11681 11682 /* 11683 * Has the flags been set correctly till now ? 11684 */ 11685 ASSERT((phyi->phyint_flags & ~(IFF_PHYINT_FLAGS)) == 0); 11686 ASSERT((ill->ill_flags & ~(IFF_PHYINTINST_FLAGS)) == 0); 11687 ASSERT((ipif->ipif_flags & ~(IFF_LOGINT_FLAGS)) == 0); 11688 /* 11689 * Compare the new flags to the old, and partition 11690 * into those coming on and those going off. 11691 * For the 16 bit command keep the bits above bit 16 unchanged. 11692 */ 11693 if (ipip->ipi_cmd == SIOCSIFFLAGS) 11694 flags |= intf_flags & ~0xFFFF; 11695 11696 /* 11697 * First check which bits will change and then which will 11698 * go on and off 11699 */ 11700 turn_on = (flags ^ intf_flags) & ~IFF_CANTCHANGE; 11701 if (!turn_on) 11702 return (0); /* No change */ 11703 11704 turn_off = intf_flags & turn_on; 11705 turn_on ^= turn_off; 11706 err = 0; 11707 11708 /* 11709 * Don't allow any bits belonging to the logical interface 11710 * to be set or cleared on the replacement ipif that was 11711 * created temporarily during a MOVE. 11712 */ 11713 if (ipif->ipif_replace_zero && 11714 ((turn_on|turn_off) & IFF_LOGINT_FLAGS) != 0) { 11715 return (EINVAL); 11716 } 11717 11718 /* 11719 * Only allow the IFF_XRESOLV and IFF_TEMPORARY flags to be set on 11720 * IPv6 interfaces. 11721 */ 11722 if ((turn_on & (IFF_XRESOLV|IFF_TEMPORARY)) && !(ipif->ipif_isv6)) 11723 return (EINVAL); 11724 11725 /* 11726 * cannot turn off IFF_NOXMIT on VNI interfaces. 11727 */ 11728 if ((turn_off & IFF_NOXMIT) && IS_VNI(ipif->ipif_ill)) 11729 return (EINVAL); 11730 11731 /* 11732 * Don't allow the IFF_ROUTER flag to be turned on on loopback 11733 * interfaces. It makes no sense in that context. 11734 */ 11735 if ((turn_on & IFF_ROUTER) && (phyi->phyint_flags & PHYI_LOOPBACK)) 11736 return (EINVAL); 11737 11738 if (flags & (IFF_NOLOCAL|IFF_ANYCAST)) 11739 zero_source = B_TRUE; 11740 11741 /* 11742 * For IPv6 ipif_id 0, don't allow the interface to be up without 11743 * a link local address if IFF_NOLOCAL or IFF_ANYCAST are not set. 11744 * If the link local address isn't set, and can be set, it will get 11745 * set later on in this function. 11746 */ 11747 if (ipif->ipif_id == 0 && ipif->ipif_isv6 && 11748 (flags & IFF_UP) && !zero_source && 11749 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr)) { 11750 if (ipif_cant_setlinklocal(ipif)) 11751 return (EINVAL); 11752 set_linklocal = B_TRUE; 11753 } 11754 11755 /* 11756 * ILL cannot be part of a usesrc group and and IPMP group at the 11757 * same time. No need to grab ill_g_usesrc_lock here, see 11758 * synchronization notes in ip.c 11759 */ 11760 if (turn_on & PHYI_STANDBY && 11761 ipif->ipif_ill->ill_usesrc_grp_next != NULL) { 11762 return (EINVAL); 11763 } 11764 11765 /* 11766 * If we modify physical interface flags, we'll potentially need to 11767 * send up two routing socket messages for the changes (one for the 11768 * IPv4 ill, and another for the IPv6 ill). Note that here. 11769 */ 11770 if ((turn_on|turn_off) & IFF_PHYINT_FLAGS) 11771 phyint_flags_modified = B_TRUE; 11772 11773 /* 11774 * If we are setting or clearing FAILED or STANDBY or OFFLINE, 11775 * we need to flush the IRE_CACHES belonging to this ill. 11776 * We handle this case here without doing the DOWN/UP dance 11777 * like it is done for other flags. If some other flags are 11778 * being turned on/off with FAILED/STANDBY/OFFLINE, the code 11779 * below will handle it by bringing it down and then 11780 * bringing it UP. 11781 */ 11782 if ((turn_on|turn_off) & (PHYI_FAILED|PHYI_STANDBY|PHYI_OFFLINE)) { 11783 ill_t *ill_v4, *ill_v6; 11784 11785 ill_v4 = phyi->phyint_illv4; 11786 ill_v6 = phyi->phyint_illv6; 11787 11788 /* 11789 * First set the INACTIVE flag if needed. Then delete the ires. 11790 * ire_add will atomically prevent creating new IRE_CACHEs 11791 * unless hidden flag is set. 11792 * PHYI_FAILED and PHYI_INACTIVE are exclusive 11793 */ 11794 if ((turn_on & PHYI_FAILED) && 11795 ((intf_flags & PHYI_STANDBY) || 11796 !ipst->ips_ipmp_enable_failback)) { 11797 /* Reset PHYI_INACTIVE when PHYI_FAILED is being set */ 11798 phyi->phyint_flags &= ~PHYI_INACTIVE; 11799 } 11800 if ((turn_off & PHYI_FAILED) && 11801 ((intf_flags & PHYI_STANDBY) || 11802 (!ipst->ips_ipmp_enable_failback && 11803 ill_is_inactive(ill)))) { 11804 phyint_inactive(phyi); 11805 } 11806 11807 if (turn_on & PHYI_STANDBY) { 11808 /* 11809 * We implicitly set INACTIVE only when STANDBY is set. 11810 * INACTIVE is also set on non-STANDBY phyint when user 11811 * disables FAILBACK using configuration file. 11812 * Do not allow STANDBY to be set on such INACTIVE 11813 * phyint 11814 */ 11815 if (phyi->phyint_flags & PHYI_INACTIVE) 11816 return (EINVAL); 11817 if (!(phyi->phyint_flags & PHYI_FAILED)) 11818 phyint_inactive(phyi); 11819 } 11820 if (turn_off & PHYI_STANDBY) { 11821 if (ipst->ips_ipmp_enable_failback) { 11822 /* 11823 * Reset PHYI_INACTIVE. 11824 */ 11825 phyi->phyint_flags &= ~PHYI_INACTIVE; 11826 } else if (ill_is_inactive(ill) && 11827 !(phyi->phyint_flags & PHYI_FAILED)) { 11828 /* 11829 * Need to set INACTIVE, when user sets 11830 * STANDBY on a non-STANDBY phyint and 11831 * later resets STANDBY 11832 */ 11833 phyint_inactive(phyi); 11834 } 11835 } 11836 /* 11837 * We should always send up a message so that the 11838 * daemons come to know of it. Note that the zeroth 11839 * interface can be down and the check below for IPIF_UP 11840 * will not make sense as we are actually setting 11841 * a phyint flag here. We assume that the ipif used 11842 * is always the zeroth ipif. (ip_rts_ifmsg does not 11843 * send up any message for non-zero ipifs). 11844 */ 11845 phyint_flags_modified = B_TRUE; 11846 11847 if (ill_v4 != NULL) { 11848 ire_walk_ill_v4(MATCH_IRE_ILL | MATCH_IRE_TYPE, 11849 IRE_CACHE, ill_stq_cache_delete, 11850 (char *)ill_v4, ill_v4); 11851 illgrp_reset_schednext(ill_v4); 11852 } 11853 if (ill_v6 != NULL) { 11854 ire_walk_ill_v6(MATCH_IRE_ILL | MATCH_IRE_TYPE, 11855 IRE_CACHE, ill_stq_cache_delete, 11856 (char *)ill_v6, ill_v6); 11857 illgrp_reset_schednext(ill_v6); 11858 } 11859 } 11860 11861 /* 11862 * If ILLF_ROUTER changes, we need to change the ip forwarding 11863 * status of the interface and, if the interface is part of an IPMP 11864 * group, all other interfaces that are part of the same IPMP 11865 * group. 11866 */ 11867 if ((turn_on | turn_off) & ILLF_ROUTER) 11868 (void) ill_forward_set(ill, ((turn_on & ILLF_ROUTER) != 0)); 11869 11870 /* 11871 * If the interface is not UP and we are not going to 11872 * bring it UP, record the flags and return. When the 11873 * interface comes UP later, the right actions will be 11874 * taken. 11875 */ 11876 if (!(ipif->ipif_flags & IPIF_UP) && 11877 !(turn_on & IPIF_UP)) { 11878 /* Record new flags in their respective places. */ 11879 mutex_enter(&ill->ill_lock); 11880 mutex_enter(&ill->ill_phyint->phyint_lock); 11881 ipif->ipif_flags |= (turn_on & IFF_LOGINT_FLAGS); 11882 ipif->ipif_flags &= (~turn_off & IFF_LOGINT_FLAGS); 11883 ill->ill_flags |= (turn_on & IFF_PHYINTINST_FLAGS); 11884 ill->ill_flags &= (~turn_off & IFF_PHYINTINST_FLAGS); 11885 phyi->phyint_flags |= (turn_on & IFF_PHYINT_FLAGS); 11886 phyi->phyint_flags &= (~turn_off & IFF_PHYINT_FLAGS); 11887 mutex_exit(&ill->ill_lock); 11888 mutex_exit(&ill->ill_phyint->phyint_lock); 11889 11890 /* 11891 * We do the broadcast and nomination here rather 11892 * than waiting for a FAILOVER/FAILBACK to happen. In 11893 * the case of FAILBACK from INACTIVE standby to the 11894 * interface that has been repaired, PHYI_FAILED has not 11895 * been cleared yet. If there are only two interfaces in 11896 * that group, all we have is a FAILED and INACTIVE 11897 * interface. If we do the nomination soon after a failback, 11898 * the broadcast nomination code would select the 11899 * INACTIVE interface for receiving broadcasts as FAILED is 11900 * not yet cleared. As we don't want STANDBY/INACTIVE to 11901 * receive broadcast packets, we need to redo nomination 11902 * when the FAILED is cleared here. Thus, in general we 11903 * always do the nomination here for FAILED, STANDBY 11904 * and OFFLINE. 11905 */ 11906 if (((turn_on | turn_off) & 11907 (PHYI_FAILED|PHYI_STANDBY|PHYI_OFFLINE))) { 11908 ip_redo_nomination(phyi); 11909 } 11910 if (phyint_flags_modified) { 11911 if (phyi->phyint_illv4 != NULL) { 11912 ip_rts_ifmsg(phyi->phyint_illv4-> 11913 ill_ipif); 11914 } 11915 if (phyi->phyint_illv6 != NULL) { 11916 ip_rts_ifmsg(phyi->phyint_illv6-> 11917 ill_ipif); 11918 } 11919 } 11920 return (0); 11921 } else if (set_linklocal || zero_source) { 11922 mutex_enter(&ill->ill_lock); 11923 if (set_linklocal) 11924 ipif->ipif_state_flags |= IPIF_SET_LINKLOCAL; 11925 if (zero_source) 11926 ipif->ipif_state_flags |= IPIF_ZERO_SOURCE; 11927 mutex_exit(&ill->ill_lock); 11928 } 11929 11930 /* 11931 * Disallow IPv6 interfaces coming up that have the unspecified address, 11932 * or point-to-point interfaces with an unspecified destination. We do 11933 * allow the address to be unspecified for IPIF_NOLOCAL interfaces that 11934 * have a subnet assigned, which is how in.ndpd currently manages its 11935 * onlink prefix list when no addresses are configured with those 11936 * prefixes. 11937 */ 11938 if (ipif->ipif_isv6 && 11939 ((IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr) && 11940 (!(ipif->ipif_flags & IPIF_NOLOCAL) && !(turn_on & IPIF_NOLOCAL) || 11941 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6subnet))) || 11942 ((ipif->ipif_flags & IPIF_POINTOPOINT) && 11943 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6pp_dst_addr)))) { 11944 return (EINVAL); 11945 } 11946 11947 /* 11948 * Prevent IPv4 point-to-point interfaces with a 0.0.0.0 destination 11949 * from being brought up. 11950 */ 11951 if (!ipif->ipif_isv6 && 11952 ((ipif->ipif_flags & IPIF_POINTOPOINT) && 11953 ipif->ipif_pp_dst_addr == INADDR_ANY)) { 11954 return (EINVAL); 11955 } 11956 11957 /* 11958 * The only flag changes that we currently take specific action on 11959 * is IPIF_UP, IPIF_DEPRECATED, IPIF_NOXMIT, IPIF_NOLOCAL, 11960 * ILLF_NOARP, ILLF_NONUD, IPIF_PRIVATE, IPIF_ANYCAST, and 11961 * IPIF_PREFERRED. This is done by bring the ipif down, changing 11962 * the flags and bringing it back up again. 11963 */ 11964 if ((turn_on|turn_off) & 11965 (IPIF_UP|IPIF_DEPRECATED|IPIF_NOXMIT|IPIF_NOLOCAL|ILLF_NOARP| 11966 ILLF_NONUD|IPIF_PRIVATE|IPIF_ANYCAST|IPIF_PREFERRED)) { 11967 /* 11968 * Taking this ipif down, make sure we have 11969 * valid net and subnet bcast ire's for other 11970 * logical interfaces, if we need them. 11971 */ 11972 if (!ipif->ipif_isv6) 11973 ipif_check_bcast_ires(ipif); 11974 11975 if (((ipif->ipif_flags | turn_on) & IPIF_UP) && 11976 !(turn_off & IPIF_UP)) { 11977 need_up = B_TRUE; 11978 if (ipif->ipif_flags & IPIF_UP) 11979 ill->ill_logical_down = 1; 11980 turn_on &= ~IPIF_UP; 11981 } 11982 err = ipif_down(ipif, q, mp); 11983 ip1dbg(("ipif_down returns %d err ", err)); 11984 if (err == EINPROGRESS) 11985 return (err); 11986 ipif_down_tail(ipif); 11987 } 11988 return (ip_sioctl_flags_tail(ipif, flags, q, mp, need_up)); 11989 } 11990 11991 static int 11992 ip_sioctl_flags_tail(ipif_t *ipif, uint64_t flags, queue_t *q, mblk_t *mp, 11993 boolean_t need_up) 11994 { 11995 ill_t *ill; 11996 phyint_t *phyi; 11997 uint64_t turn_on; 11998 uint64_t turn_off; 11999 uint64_t intf_flags; 12000 boolean_t phyint_flags_modified = B_FALSE; 12001 int err = 0; 12002 boolean_t set_linklocal = B_FALSE; 12003 boolean_t zero_source = B_FALSE; 12004 12005 ip1dbg(("ip_sioctl_flags_tail(%s:%u)\n", 12006 ipif->ipif_ill->ill_name, ipif->ipif_id)); 12007 12008 ASSERT(IAM_WRITER_IPIF(ipif)); 12009 12010 ill = ipif->ipif_ill; 12011 phyi = ill->ill_phyint; 12012 12013 intf_flags = ipif->ipif_flags | ill->ill_flags | phyi->phyint_flags; 12014 turn_on = (flags ^ intf_flags) & ~(IFF_CANTCHANGE | IFF_UP); 12015 12016 turn_off = intf_flags & turn_on; 12017 turn_on ^= turn_off; 12018 12019 if ((turn_on|turn_off) & (PHYI_FAILED|PHYI_STANDBY|PHYI_OFFLINE)) 12020 phyint_flags_modified = B_TRUE; 12021 12022 /* 12023 * Now we change the flags. Track current value of 12024 * other flags in their respective places. 12025 */ 12026 mutex_enter(&ill->ill_lock); 12027 mutex_enter(&phyi->phyint_lock); 12028 ipif->ipif_flags |= (turn_on & IFF_LOGINT_FLAGS); 12029 ipif->ipif_flags &= (~turn_off & IFF_LOGINT_FLAGS); 12030 ill->ill_flags |= (turn_on & IFF_PHYINTINST_FLAGS); 12031 ill->ill_flags &= (~turn_off & IFF_PHYINTINST_FLAGS); 12032 phyi->phyint_flags |= (turn_on & IFF_PHYINT_FLAGS); 12033 phyi->phyint_flags &= (~turn_off & IFF_PHYINT_FLAGS); 12034 if (ipif->ipif_state_flags & IPIF_SET_LINKLOCAL) { 12035 set_linklocal = B_TRUE; 12036 ipif->ipif_state_flags &= ~IPIF_SET_LINKLOCAL; 12037 } 12038 if (ipif->ipif_state_flags & IPIF_ZERO_SOURCE) { 12039 zero_source = B_TRUE; 12040 ipif->ipif_state_flags &= ~IPIF_ZERO_SOURCE; 12041 } 12042 mutex_exit(&ill->ill_lock); 12043 mutex_exit(&phyi->phyint_lock); 12044 12045 if (((turn_on | turn_off) & (PHYI_FAILED|PHYI_STANDBY|PHYI_OFFLINE))) 12046 ip_redo_nomination(phyi); 12047 12048 if (set_linklocal) 12049 (void) ipif_setlinklocal(ipif); 12050 12051 if (zero_source) 12052 ipif->ipif_v6src_addr = ipv6_all_zeros; 12053 else 12054 ipif->ipif_v6src_addr = ipif->ipif_v6lcl_addr; 12055 12056 if (need_up) { 12057 /* 12058 * XXX ipif_up really does not know whether a phyint flags 12059 * was modified or not. So, it sends up information on 12060 * only one routing sockets message. As we don't bring up 12061 * the interface and also set STANDBY/FAILED simultaneously 12062 * it should be okay. 12063 */ 12064 err = ipif_up(ipif, q, mp); 12065 } else { 12066 /* 12067 * Make sure routing socket sees all changes to the flags. 12068 * ipif_up_done* handles this when we use ipif_up. 12069 */ 12070 if (phyint_flags_modified) { 12071 if (phyi->phyint_illv4 != NULL) { 12072 ip_rts_ifmsg(phyi->phyint_illv4-> 12073 ill_ipif); 12074 } 12075 if (phyi->phyint_illv6 != NULL) { 12076 ip_rts_ifmsg(phyi->phyint_illv6-> 12077 ill_ipif); 12078 } 12079 } else { 12080 ip_rts_ifmsg(ipif); 12081 } 12082 /* 12083 * Update the flags in SCTP's IPIF list, ipif_up() will do 12084 * this in need_up case. 12085 */ 12086 sctp_update_ipif(ipif, SCTP_IPIF_UPDATE); 12087 } 12088 return (err); 12089 } 12090 12091 /* 12092 * Restart entry point to restart the flags restart operation after the 12093 * refcounts have dropped to zero. 12094 */ 12095 /* ARGSUSED */ 12096 int 12097 ip_sioctl_flags_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12098 ip_ioctl_cmd_t *ipip, void *if_req) 12099 { 12100 int err; 12101 struct ifreq *ifr = (struct ifreq *)if_req; 12102 struct lifreq *lifr = (struct lifreq *)if_req; 12103 12104 ip1dbg(("ip_sioctl_flags_restart(%s:%u %p)\n", 12105 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12106 12107 ipif_down_tail(ipif); 12108 if (ipip->ipi_cmd_type == IF_CMD) { 12109 /* 12110 * Since ip_sioctl_flags expects an int and ifr_flags 12111 * is a short we need to cast ifr_flags into an int 12112 * to avoid having sign extension cause bits to get 12113 * set that should not be. 12114 */ 12115 err = ip_sioctl_flags_tail(ipif, 12116 (uint64_t)(ifr->ifr_flags & 0x0000ffff), 12117 q, mp, B_TRUE); 12118 } else { 12119 err = ip_sioctl_flags_tail(ipif, lifr->lifr_flags, 12120 q, mp, B_TRUE); 12121 } 12122 return (err); 12123 } 12124 12125 /* 12126 * Can operate on either a module or a driver queue. 12127 */ 12128 /* ARGSUSED */ 12129 int 12130 ip_sioctl_get_flags(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12131 ip_ioctl_cmd_t *ipip, void *if_req) 12132 { 12133 /* 12134 * Has the flags been set correctly till now ? 12135 */ 12136 ill_t *ill = ipif->ipif_ill; 12137 phyint_t *phyi = ill->ill_phyint; 12138 12139 ip1dbg(("ip_sioctl_get_flags(%s:%u %p)\n", 12140 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12141 ASSERT((phyi->phyint_flags & ~(IFF_PHYINT_FLAGS)) == 0); 12142 ASSERT((ill->ill_flags & ~(IFF_PHYINTINST_FLAGS)) == 0); 12143 ASSERT((ipif->ipif_flags & ~(IFF_LOGINT_FLAGS)) == 0); 12144 12145 /* 12146 * Need a lock since some flags can be set even when there are 12147 * references to the ipif. 12148 */ 12149 mutex_enter(&ill->ill_lock); 12150 if (ipip->ipi_cmd_type == IF_CMD) { 12151 struct ifreq *ifr = (struct ifreq *)if_req; 12152 12153 /* Get interface flags (low 16 only). */ 12154 ifr->ifr_flags = ((ipif->ipif_flags | 12155 ill->ill_flags | phyi->phyint_flags) & 0xffff); 12156 } else { 12157 struct lifreq *lifr = (struct lifreq *)if_req; 12158 12159 /* Get interface flags. */ 12160 lifr->lifr_flags = ipif->ipif_flags | 12161 ill->ill_flags | phyi->phyint_flags; 12162 } 12163 mutex_exit(&ill->ill_lock); 12164 return (0); 12165 } 12166 12167 /* ARGSUSED */ 12168 int 12169 ip_sioctl_mtu(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12170 ip_ioctl_cmd_t *ipip, void *if_req) 12171 { 12172 int mtu; 12173 int ip_min_mtu; 12174 struct ifreq *ifr; 12175 struct lifreq *lifr; 12176 ire_t *ire; 12177 ip_stack_t *ipst; 12178 12179 ip1dbg(("ip_sioctl_mtu(%s:%u %p)\n", ipif->ipif_ill->ill_name, 12180 ipif->ipif_id, (void *)ipif)); 12181 if (ipip->ipi_cmd_type == IF_CMD) { 12182 ifr = (struct ifreq *)if_req; 12183 mtu = ifr->ifr_metric; 12184 } else { 12185 lifr = (struct lifreq *)if_req; 12186 mtu = lifr->lifr_mtu; 12187 } 12188 12189 if (ipif->ipif_isv6) 12190 ip_min_mtu = IPV6_MIN_MTU; 12191 else 12192 ip_min_mtu = IP_MIN_MTU; 12193 12194 if (mtu > ipif->ipif_ill->ill_max_frag || mtu < ip_min_mtu) 12195 return (EINVAL); 12196 12197 /* 12198 * Change the MTU size in all relevant ire's. 12199 * Mtu change Vs. new ire creation - protocol below. 12200 * First change ipif_mtu and the ire_max_frag of the 12201 * interface ire. Then do an ire walk and change the 12202 * ire_max_frag of all affected ires. During ire_add 12203 * under the bucket lock, set the ire_max_frag of the 12204 * new ire being created from the ipif/ire from which 12205 * it is being derived. If an mtu change happens after 12206 * the ire is added, the new ire will be cleaned up. 12207 * Conversely if the mtu change happens before the ire 12208 * is added, ire_add will see the new value of the mtu. 12209 */ 12210 ipif->ipif_mtu = mtu; 12211 ipif->ipif_flags |= IPIF_FIXEDMTU; 12212 12213 if (ipif->ipif_isv6) 12214 ire = ipif_to_ire_v6(ipif); 12215 else 12216 ire = ipif_to_ire(ipif); 12217 if (ire != NULL) { 12218 ire->ire_max_frag = ipif->ipif_mtu; 12219 ire_refrele(ire); 12220 } 12221 ipst = ipif->ipif_ill->ill_ipst; 12222 if (ipif->ipif_flags & IPIF_UP) { 12223 if (ipif->ipif_isv6) 12224 ire_walk_v6(ipif_mtu_change, (char *)ipif, ALL_ZONES, 12225 ipst); 12226 else 12227 ire_walk_v4(ipif_mtu_change, (char *)ipif, ALL_ZONES, 12228 ipst); 12229 } 12230 /* Update the MTU in SCTP's list */ 12231 sctp_update_ipif(ipif, SCTP_IPIF_UPDATE); 12232 return (0); 12233 } 12234 12235 /* Get interface MTU. */ 12236 /* ARGSUSED */ 12237 int 12238 ip_sioctl_get_mtu(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12239 ip_ioctl_cmd_t *ipip, void *if_req) 12240 { 12241 struct ifreq *ifr; 12242 struct lifreq *lifr; 12243 12244 ip1dbg(("ip_sioctl_get_mtu(%s:%u %p)\n", 12245 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12246 if (ipip->ipi_cmd_type == IF_CMD) { 12247 ifr = (struct ifreq *)if_req; 12248 ifr->ifr_metric = ipif->ipif_mtu; 12249 } else { 12250 lifr = (struct lifreq *)if_req; 12251 lifr->lifr_mtu = ipif->ipif_mtu; 12252 } 12253 return (0); 12254 } 12255 12256 /* Set interface broadcast address. */ 12257 /* ARGSUSED2 */ 12258 int 12259 ip_sioctl_brdaddr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12260 ip_ioctl_cmd_t *ipip, void *if_req) 12261 { 12262 ipaddr_t addr; 12263 ire_t *ire; 12264 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 12265 12266 ip1dbg(("ip_sioctl_brdaddr(%s:%u)\n", ipif->ipif_ill->ill_name, 12267 ipif->ipif_id)); 12268 12269 ASSERT(IAM_WRITER_IPIF(ipif)); 12270 if (!(ipif->ipif_flags & IPIF_BROADCAST)) 12271 return (EADDRNOTAVAIL); 12272 12273 ASSERT(!(ipif->ipif_isv6)); /* No IPv6 broadcast */ 12274 12275 if (sin->sin_family != AF_INET) 12276 return (EAFNOSUPPORT); 12277 12278 addr = sin->sin_addr.s_addr; 12279 if (ipif->ipif_flags & IPIF_UP) { 12280 /* 12281 * If we are already up, make sure the new 12282 * broadcast address makes sense. If it does, 12283 * there should be an IRE for it already. 12284 * Don't match on ipif, only on the ill 12285 * since we are sharing these now. Don't use 12286 * MATCH_IRE_ILL_GROUP as we are looking for 12287 * the broadcast ire on this ill and each ill 12288 * in the group has its own broadcast ire. 12289 */ 12290 ire = ire_ctable_lookup(addr, 0, IRE_BROADCAST, 12291 ipif, ALL_ZONES, NULL, 12292 (MATCH_IRE_ILL | MATCH_IRE_TYPE), ipst); 12293 if (ire == NULL) { 12294 return (EINVAL); 12295 } else { 12296 ire_refrele(ire); 12297 } 12298 } 12299 /* 12300 * Changing the broadcast addr for this ipif. 12301 * Make sure we have valid net and subnet bcast 12302 * ire's for other logical interfaces, if needed. 12303 */ 12304 if (addr != ipif->ipif_brd_addr) 12305 ipif_check_bcast_ires(ipif); 12306 IN6_IPADDR_TO_V4MAPPED(addr, &ipif->ipif_v6brd_addr); 12307 return (0); 12308 } 12309 12310 /* Get interface broadcast address. */ 12311 /* ARGSUSED */ 12312 int 12313 ip_sioctl_get_brdaddr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12314 ip_ioctl_cmd_t *ipip, void *if_req) 12315 { 12316 ip1dbg(("ip_sioctl_get_brdaddr(%s:%u %p)\n", 12317 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12318 if (!(ipif->ipif_flags & IPIF_BROADCAST)) 12319 return (EADDRNOTAVAIL); 12320 12321 /* IPIF_BROADCAST not possible with IPv6 */ 12322 ASSERT(!ipif->ipif_isv6); 12323 *sin = sin_null; 12324 sin->sin_family = AF_INET; 12325 sin->sin_addr.s_addr = ipif->ipif_brd_addr; 12326 return (0); 12327 } 12328 12329 /* 12330 * This routine is called to handle the SIOCS*IFNETMASK IOCTL. 12331 */ 12332 /* ARGSUSED */ 12333 int 12334 ip_sioctl_netmask(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12335 ip_ioctl_cmd_t *ipip, void *if_req) 12336 { 12337 int err = 0; 12338 in6_addr_t v6mask; 12339 12340 ip1dbg(("ip_sioctl_netmask(%s:%u %p)\n", 12341 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12342 12343 ASSERT(IAM_WRITER_IPIF(ipif)); 12344 12345 if (ipif->ipif_isv6) { 12346 sin6_t *sin6; 12347 12348 if (sin->sin_family != AF_INET6) 12349 return (EAFNOSUPPORT); 12350 12351 sin6 = (sin6_t *)sin; 12352 v6mask = sin6->sin6_addr; 12353 } else { 12354 ipaddr_t mask; 12355 12356 if (sin->sin_family != AF_INET) 12357 return (EAFNOSUPPORT); 12358 12359 mask = sin->sin_addr.s_addr; 12360 V4MASK_TO_V6(mask, v6mask); 12361 } 12362 12363 /* 12364 * No big deal if the interface isn't already up, or the mask 12365 * isn't really changing, or this is pt-pt. 12366 */ 12367 if (!(ipif->ipif_flags & IPIF_UP) || 12368 IN6_ARE_ADDR_EQUAL(&v6mask, &ipif->ipif_v6net_mask) || 12369 (ipif->ipif_flags & IPIF_POINTOPOINT)) { 12370 ipif->ipif_v6net_mask = v6mask; 12371 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) { 12372 V6_MASK_COPY(ipif->ipif_v6lcl_addr, 12373 ipif->ipif_v6net_mask, 12374 ipif->ipif_v6subnet); 12375 } 12376 return (0); 12377 } 12378 /* 12379 * Make sure we have valid net and subnet broadcast ire's 12380 * for the old netmask, if needed by other logical interfaces. 12381 */ 12382 if (!ipif->ipif_isv6) 12383 ipif_check_bcast_ires(ipif); 12384 12385 err = ipif_logical_down(ipif, q, mp); 12386 if (err == EINPROGRESS) 12387 return (err); 12388 ipif_down_tail(ipif); 12389 err = ip_sioctl_netmask_tail(ipif, sin, q, mp); 12390 return (err); 12391 } 12392 12393 static int 12394 ip_sioctl_netmask_tail(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp) 12395 { 12396 in6_addr_t v6mask; 12397 int err = 0; 12398 12399 ip1dbg(("ip_sioctl_netmask_tail(%s:%u %p)\n", 12400 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12401 12402 if (ipif->ipif_isv6) { 12403 sin6_t *sin6; 12404 12405 sin6 = (sin6_t *)sin; 12406 v6mask = sin6->sin6_addr; 12407 } else { 12408 ipaddr_t mask; 12409 12410 mask = sin->sin_addr.s_addr; 12411 V4MASK_TO_V6(mask, v6mask); 12412 } 12413 12414 ipif->ipif_v6net_mask = v6mask; 12415 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) { 12416 V6_MASK_COPY(ipif->ipif_v6lcl_addr, ipif->ipif_v6net_mask, 12417 ipif->ipif_v6subnet); 12418 } 12419 err = ipif_up(ipif, q, mp); 12420 12421 if (err == 0 || err == EINPROGRESS) { 12422 /* 12423 * The interface must be DL_BOUND if this packet has to 12424 * go out on the wire. Since we only go through a logical 12425 * down and are bound with the driver during an internal 12426 * down/up that is satisfied. 12427 */ 12428 if (!ipif->ipif_isv6 && ipif->ipif_ill->ill_wq != NULL) { 12429 /* Potentially broadcast an address mask reply. */ 12430 ipif_mask_reply(ipif); 12431 } 12432 } 12433 return (err); 12434 } 12435 12436 /* ARGSUSED */ 12437 int 12438 ip_sioctl_netmask_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12439 ip_ioctl_cmd_t *ipip, void *if_req) 12440 { 12441 ip1dbg(("ip_sioctl_netmask_restart(%s:%u %p)\n", 12442 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12443 ipif_down_tail(ipif); 12444 return (ip_sioctl_netmask_tail(ipif, sin, q, mp)); 12445 } 12446 12447 /* Get interface net mask. */ 12448 /* ARGSUSED */ 12449 int 12450 ip_sioctl_get_netmask(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12451 ip_ioctl_cmd_t *ipip, void *if_req) 12452 { 12453 struct lifreq *lifr = (struct lifreq *)if_req; 12454 struct sockaddr_in6 *sin6 = (sin6_t *)sin; 12455 12456 ip1dbg(("ip_sioctl_get_netmask(%s:%u %p)\n", 12457 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12458 12459 /* 12460 * net mask can't change since we have a reference to the ipif. 12461 */ 12462 if (ipif->ipif_isv6) { 12463 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 12464 *sin6 = sin6_null; 12465 sin6->sin6_family = AF_INET6; 12466 sin6->sin6_addr = ipif->ipif_v6net_mask; 12467 lifr->lifr_addrlen = 12468 ip_mask_to_plen_v6(&ipif->ipif_v6net_mask); 12469 } else { 12470 *sin = sin_null; 12471 sin->sin_family = AF_INET; 12472 sin->sin_addr.s_addr = ipif->ipif_net_mask; 12473 if (ipip->ipi_cmd_type == LIF_CMD) { 12474 lifr->lifr_addrlen = 12475 ip_mask_to_plen(ipif->ipif_net_mask); 12476 } 12477 } 12478 return (0); 12479 } 12480 12481 /* ARGSUSED */ 12482 int 12483 ip_sioctl_metric(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12484 ip_ioctl_cmd_t *ipip, void *if_req) 12485 { 12486 12487 ip1dbg(("ip_sioctl_metric(%s:%u %p)\n", 12488 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12489 /* 12490 * Set interface metric. We don't use this for 12491 * anything but we keep track of it in case it is 12492 * important to routing applications or such. 12493 */ 12494 if (ipip->ipi_cmd_type == IF_CMD) { 12495 struct ifreq *ifr; 12496 12497 ifr = (struct ifreq *)if_req; 12498 ipif->ipif_metric = ifr->ifr_metric; 12499 } else { 12500 struct lifreq *lifr; 12501 12502 lifr = (struct lifreq *)if_req; 12503 ipif->ipif_metric = lifr->lifr_metric; 12504 } 12505 return (0); 12506 } 12507 12508 12509 /* ARGSUSED */ 12510 int 12511 ip_sioctl_get_metric(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12512 ip_ioctl_cmd_t *ipip, void *if_req) 12513 { 12514 12515 /* Get interface metric. */ 12516 ip1dbg(("ip_sioctl_get_metric(%s:%u %p)\n", 12517 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12518 if (ipip->ipi_cmd_type == IF_CMD) { 12519 struct ifreq *ifr; 12520 12521 ifr = (struct ifreq *)if_req; 12522 ifr->ifr_metric = ipif->ipif_metric; 12523 } else { 12524 struct lifreq *lifr; 12525 12526 lifr = (struct lifreq *)if_req; 12527 lifr->lifr_metric = ipif->ipif_metric; 12528 } 12529 12530 return (0); 12531 } 12532 12533 /* ARGSUSED */ 12534 int 12535 ip_sioctl_muxid(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12536 ip_ioctl_cmd_t *ipip, void *if_req) 12537 { 12538 12539 ip1dbg(("ip_sioctl_muxid(%s:%u %p)\n", 12540 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12541 /* 12542 * Set the muxid returned from I_PLINK. 12543 */ 12544 if (ipip->ipi_cmd_type == IF_CMD) { 12545 struct ifreq *ifr = (struct ifreq *)if_req; 12546 12547 ipif->ipif_ill->ill_ip_muxid = ifr->ifr_ip_muxid; 12548 ipif->ipif_ill->ill_arp_muxid = ifr->ifr_arp_muxid; 12549 } else { 12550 struct lifreq *lifr = (struct lifreq *)if_req; 12551 12552 ipif->ipif_ill->ill_ip_muxid = lifr->lifr_ip_muxid; 12553 ipif->ipif_ill->ill_arp_muxid = lifr->lifr_arp_muxid; 12554 } 12555 return (0); 12556 } 12557 12558 /* ARGSUSED */ 12559 int 12560 ip_sioctl_get_muxid(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12561 ip_ioctl_cmd_t *ipip, void *if_req) 12562 { 12563 12564 ip1dbg(("ip_sioctl_get_muxid(%s:%u %p)\n", 12565 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12566 /* 12567 * Get the muxid saved in ill for I_PUNLINK. 12568 */ 12569 if (ipip->ipi_cmd_type == IF_CMD) { 12570 struct ifreq *ifr = (struct ifreq *)if_req; 12571 12572 ifr->ifr_ip_muxid = ipif->ipif_ill->ill_ip_muxid; 12573 ifr->ifr_arp_muxid = ipif->ipif_ill->ill_arp_muxid; 12574 } else { 12575 struct lifreq *lifr = (struct lifreq *)if_req; 12576 12577 lifr->lifr_ip_muxid = ipif->ipif_ill->ill_ip_muxid; 12578 lifr->lifr_arp_muxid = ipif->ipif_ill->ill_arp_muxid; 12579 } 12580 return (0); 12581 } 12582 12583 /* 12584 * Set the subnet prefix. Does not modify the broadcast address. 12585 */ 12586 /* ARGSUSED */ 12587 int 12588 ip_sioctl_subnet(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12589 ip_ioctl_cmd_t *ipip, void *if_req) 12590 { 12591 int err = 0; 12592 in6_addr_t v6addr; 12593 in6_addr_t v6mask; 12594 boolean_t need_up = B_FALSE; 12595 int addrlen; 12596 12597 ip1dbg(("ip_sioctl_subnet(%s:%u %p)\n", 12598 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12599 12600 ASSERT(IAM_WRITER_IPIF(ipif)); 12601 addrlen = ((struct lifreq *)if_req)->lifr_addrlen; 12602 12603 if (ipif->ipif_isv6) { 12604 sin6_t *sin6; 12605 12606 if (sin->sin_family != AF_INET6) 12607 return (EAFNOSUPPORT); 12608 12609 sin6 = (sin6_t *)sin; 12610 v6addr = sin6->sin6_addr; 12611 if (!ip_remote_addr_ok_v6(&v6addr, &ipv6_all_ones)) 12612 return (EADDRNOTAVAIL); 12613 } else { 12614 ipaddr_t addr; 12615 12616 if (sin->sin_family != AF_INET) 12617 return (EAFNOSUPPORT); 12618 12619 addr = sin->sin_addr.s_addr; 12620 if (!ip_addr_ok_v4(addr, 0xFFFFFFFF)) 12621 return (EADDRNOTAVAIL); 12622 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 12623 /* Add 96 bits */ 12624 addrlen += IPV6_ABITS - IP_ABITS; 12625 } 12626 12627 if (ip_plen_to_mask_v6(addrlen, &v6mask) == NULL) 12628 return (EINVAL); 12629 12630 /* Check if bits in the address is set past the mask */ 12631 if (!V6_MASK_EQ(v6addr, v6mask, v6addr)) 12632 return (EINVAL); 12633 12634 if (IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6subnet, &v6addr) && 12635 IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6net_mask, &v6mask)) 12636 return (0); /* No change */ 12637 12638 if (ipif->ipif_flags & IPIF_UP) { 12639 /* 12640 * If the interface is already marked up, 12641 * we call ipif_down which will take care 12642 * of ditching any IREs that have been set 12643 * up based on the old interface address. 12644 */ 12645 err = ipif_logical_down(ipif, q, mp); 12646 if (err == EINPROGRESS) 12647 return (err); 12648 ipif_down_tail(ipif); 12649 need_up = B_TRUE; 12650 } 12651 12652 err = ip_sioctl_subnet_tail(ipif, v6addr, v6mask, q, mp, need_up); 12653 return (err); 12654 } 12655 12656 static int 12657 ip_sioctl_subnet_tail(ipif_t *ipif, in6_addr_t v6addr, in6_addr_t v6mask, 12658 queue_t *q, mblk_t *mp, boolean_t need_up) 12659 { 12660 ill_t *ill = ipif->ipif_ill; 12661 int err = 0; 12662 12663 ip1dbg(("ip_sioctl_subnet_tail(%s:%u %p)\n", 12664 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12665 12666 /* Set the new address. */ 12667 mutex_enter(&ill->ill_lock); 12668 ipif->ipif_v6net_mask = v6mask; 12669 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) { 12670 V6_MASK_COPY(v6addr, ipif->ipif_v6net_mask, 12671 ipif->ipif_v6subnet); 12672 } 12673 mutex_exit(&ill->ill_lock); 12674 12675 if (need_up) { 12676 /* 12677 * Now bring the interface back up. If this 12678 * is the only IPIF for the ILL, ipif_up 12679 * will have to re-bind to the device, so 12680 * we may get back EINPROGRESS, in which 12681 * case, this IOCTL will get completed in 12682 * ip_rput_dlpi when we see the DL_BIND_ACK. 12683 */ 12684 err = ipif_up(ipif, q, mp); 12685 if (err == EINPROGRESS) 12686 return (err); 12687 } 12688 return (err); 12689 } 12690 12691 /* ARGSUSED */ 12692 int 12693 ip_sioctl_subnet_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12694 ip_ioctl_cmd_t *ipip, void *if_req) 12695 { 12696 int addrlen; 12697 in6_addr_t v6addr; 12698 in6_addr_t v6mask; 12699 struct lifreq *lifr = (struct lifreq *)if_req; 12700 12701 ip1dbg(("ip_sioctl_subnet_restart(%s:%u %p)\n", 12702 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12703 ipif_down_tail(ipif); 12704 12705 addrlen = lifr->lifr_addrlen; 12706 if (ipif->ipif_isv6) { 12707 sin6_t *sin6; 12708 12709 sin6 = (sin6_t *)sin; 12710 v6addr = sin6->sin6_addr; 12711 } else { 12712 ipaddr_t addr; 12713 12714 addr = sin->sin_addr.s_addr; 12715 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 12716 addrlen += IPV6_ABITS - IP_ABITS; 12717 } 12718 (void) ip_plen_to_mask_v6(addrlen, &v6mask); 12719 12720 return (ip_sioctl_subnet_tail(ipif, v6addr, v6mask, q, mp, B_TRUE)); 12721 } 12722 12723 /* ARGSUSED */ 12724 int 12725 ip_sioctl_get_subnet(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12726 ip_ioctl_cmd_t *ipip, void *if_req) 12727 { 12728 struct lifreq *lifr = (struct lifreq *)if_req; 12729 struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)sin; 12730 12731 ip1dbg(("ip_sioctl_get_subnet(%s:%u %p)\n", 12732 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12733 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 12734 12735 if (ipif->ipif_isv6) { 12736 *sin6 = sin6_null; 12737 sin6->sin6_family = AF_INET6; 12738 sin6->sin6_addr = ipif->ipif_v6subnet; 12739 lifr->lifr_addrlen = 12740 ip_mask_to_plen_v6(&ipif->ipif_v6net_mask); 12741 } else { 12742 *sin = sin_null; 12743 sin->sin_family = AF_INET; 12744 sin->sin_addr.s_addr = ipif->ipif_subnet; 12745 lifr->lifr_addrlen = ip_mask_to_plen(ipif->ipif_net_mask); 12746 } 12747 return (0); 12748 } 12749 12750 /* 12751 * Set the IPv6 address token. 12752 */ 12753 /* ARGSUSED */ 12754 int 12755 ip_sioctl_token(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12756 ip_ioctl_cmd_t *ipi, void *if_req) 12757 { 12758 ill_t *ill = ipif->ipif_ill; 12759 int err; 12760 in6_addr_t v6addr; 12761 in6_addr_t v6mask; 12762 boolean_t need_up = B_FALSE; 12763 int i; 12764 sin6_t *sin6 = (sin6_t *)sin; 12765 struct lifreq *lifr = (struct lifreq *)if_req; 12766 int addrlen; 12767 12768 ip1dbg(("ip_sioctl_token(%s:%u %p)\n", 12769 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12770 ASSERT(IAM_WRITER_IPIF(ipif)); 12771 12772 addrlen = lifr->lifr_addrlen; 12773 /* Only allow for logical unit zero i.e. not on "le0:17" */ 12774 if (ipif->ipif_id != 0) 12775 return (EINVAL); 12776 12777 if (!ipif->ipif_isv6) 12778 return (EINVAL); 12779 12780 if (addrlen > IPV6_ABITS) 12781 return (EINVAL); 12782 12783 v6addr = sin6->sin6_addr; 12784 12785 /* 12786 * The length of the token is the length from the end. To get 12787 * the proper mask for this, compute the mask of the bits not 12788 * in the token; ie. the prefix, and then xor to get the mask. 12789 */ 12790 if (ip_plen_to_mask_v6(IPV6_ABITS - addrlen, &v6mask) == NULL) 12791 return (EINVAL); 12792 for (i = 0; i < 4; i++) { 12793 v6mask.s6_addr32[i] ^= (uint32_t)0xffffffff; 12794 } 12795 12796 if (V6_MASK_EQ(v6addr, v6mask, ill->ill_token) && 12797 ill->ill_token_length == addrlen) 12798 return (0); /* No change */ 12799 12800 if (ipif->ipif_flags & IPIF_UP) { 12801 err = ipif_logical_down(ipif, q, mp); 12802 if (err == EINPROGRESS) 12803 return (err); 12804 ipif_down_tail(ipif); 12805 need_up = B_TRUE; 12806 } 12807 err = ip_sioctl_token_tail(ipif, sin6, addrlen, q, mp, need_up); 12808 return (err); 12809 } 12810 12811 static int 12812 ip_sioctl_token_tail(ipif_t *ipif, sin6_t *sin6, int addrlen, queue_t *q, 12813 mblk_t *mp, boolean_t need_up) 12814 { 12815 in6_addr_t v6addr; 12816 in6_addr_t v6mask; 12817 ill_t *ill = ipif->ipif_ill; 12818 int i; 12819 int err = 0; 12820 12821 ip1dbg(("ip_sioctl_token_tail(%s:%u %p)\n", 12822 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12823 v6addr = sin6->sin6_addr; 12824 /* 12825 * The length of the token is the length from the end. To get 12826 * the proper mask for this, compute the mask of the bits not 12827 * in the token; ie. the prefix, and then xor to get the mask. 12828 */ 12829 (void) ip_plen_to_mask_v6(IPV6_ABITS - addrlen, &v6mask); 12830 for (i = 0; i < 4; i++) 12831 v6mask.s6_addr32[i] ^= (uint32_t)0xffffffff; 12832 12833 mutex_enter(&ill->ill_lock); 12834 V6_MASK_COPY(v6addr, v6mask, ill->ill_token); 12835 ill->ill_token_length = addrlen; 12836 mutex_exit(&ill->ill_lock); 12837 12838 if (need_up) { 12839 /* 12840 * Now bring the interface back up. If this 12841 * is the only IPIF for the ILL, ipif_up 12842 * will have to re-bind to the device, so 12843 * we may get back EINPROGRESS, in which 12844 * case, this IOCTL will get completed in 12845 * ip_rput_dlpi when we see the DL_BIND_ACK. 12846 */ 12847 err = ipif_up(ipif, q, mp); 12848 if (err == EINPROGRESS) 12849 return (err); 12850 } 12851 return (err); 12852 } 12853 12854 /* ARGSUSED */ 12855 int 12856 ip_sioctl_get_token(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12857 ip_ioctl_cmd_t *ipi, void *if_req) 12858 { 12859 ill_t *ill; 12860 sin6_t *sin6 = (sin6_t *)sin; 12861 struct lifreq *lifr = (struct lifreq *)if_req; 12862 12863 ip1dbg(("ip_sioctl_get_token(%s:%u %p)\n", 12864 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12865 if (ipif->ipif_id != 0) 12866 return (EINVAL); 12867 12868 ill = ipif->ipif_ill; 12869 if (!ill->ill_isv6) 12870 return (ENXIO); 12871 12872 *sin6 = sin6_null; 12873 sin6->sin6_family = AF_INET6; 12874 ASSERT(!IN6_IS_ADDR_V4MAPPED(&ill->ill_token)); 12875 sin6->sin6_addr = ill->ill_token; 12876 lifr->lifr_addrlen = ill->ill_token_length; 12877 return (0); 12878 } 12879 12880 /* 12881 * Set (hardware) link specific information that might override 12882 * what was acquired through the DL_INFO_ACK. 12883 * The logic is as follows. 12884 * 12885 * become exclusive 12886 * set CHANGING flag 12887 * change mtu on affected IREs 12888 * clear CHANGING flag 12889 * 12890 * An ire add that occurs before the CHANGING flag is set will have its mtu 12891 * changed by the ip_sioctl_lnkinfo. 12892 * 12893 * During the time the CHANGING flag is set, no new ires will be added to the 12894 * bucket, and ire add will fail (due the CHANGING flag). 12895 * 12896 * An ire add that occurs after the CHANGING flag is set will have the right mtu 12897 * before it is added to the bucket. 12898 * 12899 * Obviously only 1 thread can set the CHANGING flag and we need to become 12900 * exclusive to set the flag. 12901 */ 12902 /* ARGSUSED */ 12903 int 12904 ip_sioctl_lnkinfo(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12905 ip_ioctl_cmd_t *ipi, void *if_req) 12906 { 12907 ill_t *ill = ipif->ipif_ill; 12908 ipif_t *nipif; 12909 int ip_min_mtu; 12910 boolean_t mtu_walk = B_FALSE; 12911 struct lifreq *lifr = (struct lifreq *)if_req; 12912 lif_ifinfo_req_t *lir; 12913 ire_t *ire; 12914 12915 ip1dbg(("ip_sioctl_lnkinfo(%s:%u %p)\n", 12916 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12917 lir = &lifr->lifr_ifinfo; 12918 ASSERT(IAM_WRITER_IPIF(ipif)); 12919 12920 /* Only allow for logical unit zero i.e. not on "le0:17" */ 12921 if (ipif->ipif_id != 0) 12922 return (EINVAL); 12923 12924 /* Set interface MTU. */ 12925 if (ipif->ipif_isv6) 12926 ip_min_mtu = IPV6_MIN_MTU; 12927 else 12928 ip_min_mtu = IP_MIN_MTU; 12929 12930 /* 12931 * Verify values before we set anything. Allow zero to 12932 * mean unspecified. 12933 */ 12934 if (lir->lir_maxmtu != 0 && 12935 (lir->lir_maxmtu > ill->ill_max_frag || 12936 lir->lir_maxmtu < ip_min_mtu)) 12937 return (EINVAL); 12938 if (lir->lir_reachtime != 0 && 12939 lir->lir_reachtime > ND_MAX_REACHTIME) 12940 return (EINVAL); 12941 if (lir->lir_reachretrans != 0 && 12942 lir->lir_reachretrans > ND_MAX_REACHRETRANSTIME) 12943 return (EINVAL); 12944 12945 mutex_enter(&ill->ill_lock); 12946 ill->ill_state_flags |= ILL_CHANGING; 12947 for (nipif = ill->ill_ipif; nipif != NULL; 12948 nipif = nipif->ipif_next) { 12949 nipif->ipif_state_flags |= IPIF_CHANGING; 12950 } 12951 12952 mutex_exit(&ill->ill_lock); 12953 12954 if (lir->lir_maxmtu != 0) { 12955 ill->ill_max_mtu = lir->lir_maxmtu; 12956 ill->ill_mtu_userspecified = 1; 12957 mtu_walk = B_TRUE; 12958 } 12959 12960 if (lir->lir_reachtime != 0) 12961 ill->ill_reachable_time = lir->lir_reachtime; 12962 12963 if (lir->lir_reachretrans != 0) 12964 ill->ill_reachable_retrans_time = lir->lir_reachretrans; 12965 12966 ill->ill_max_hops = lir->lir_maxhops; 12967 12968 ill->ill_max_buf = ND_MAX_Q; 12969 12970 if (mtu_walk) { 12971 /* 12972 * Set the MTU on all ipifs associated with this ill except 12973 * for those whose MTU was fixed via SIOCSLIFMTU. 12974 */ 12975 for (nipif = ill->ill_ipif; nipif != NULL; 12976 nipif = nipif->ipif_next) { 12977 if (nipif->ipif_flags & IPIF_FIXEDMTU) 12978 continue; 12979 12980 nipif->ipif_mtu = ill->ill_max_mtu; 12981 12982 if (!(nipif->ipif_flags & IPIF_UP)) 12983 continue; 12984 12985 if (nipif->ipif_isv6) 12986 ire = ipif_to_ire_v6(nipif); 12987 else 12988 ire = ipif_to_ire(nipif); 12989 if (ire != NULL) { 12990 ire->ire_max_frag = ipif->ipif_mtu; 12991 ire_refrele(ire); 12992 } 12993 if (ill->ill_isv6) { 12994 ire_walk_ill_v6(MATCH_IRE_ILL, 0, 12995 ipif_mtu_change, (char *)nipif, 12996 ill); 12997 } else { 12998 ire_walk_ill_v4(MATCH_IRE_ILL, 0, 12999 ipif_mtu_change, (char *)nipif, 13000 ill); 13001 } 13002 } 13003 } 13004 13005 mutex_enter(&ill->ill_lock); 13006 for (nipif = ill->ill_ipif; nipif != NULL; 13007 nipif = nipif->ipif_next) { 13008 nipif->ipif_state_flags &= ~IPIF_CHANGING; 13009 } 13010 ILL_UNMARK_CHANGING(ill); 13011 mutex_exit(&ill->ill_lock); 13012 13013 return (0); 13014 } 13015 13016 /* ARGSUSED */ 13017 int 13018 ip_sioctl_get_lnkinfo(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 13019 ip_ioctl_cmd_t *ipi, void *if_req) 13020 { 13021 struct lif_ifinfo_req *lir; 13022 ill_t *ill = ipif->ipif_ill; 13023 13024 ip1dbg(("ip_sioctl_get_lnkinfo(%s:%u %p)\n", 13025 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 13026 if (ipif->ipif_id != 0) 13027 return (EINVAL); 13028 13029 lir = &((struct lifreq *)if_req)->lifr_ifinfo; 13030 lir->lir_maxhops = ill->ill_max_hops; 13031 lir->lir_reachtime = ill->ill_reachable_time; 13032 lir->lir_reachretrans = ill->ill_reachable_retrans_time; 13033 lir->lir_maxmtu = ill->ill_max_mtu; 13034 13035 return (0); 13036 } 13037 13038 /* 13039 * Return best guess as to the subnet mask for the specified address. 13040 * Based on the subnet masks for all the configured interfaces. 13041 * 13042 * We end up returning a zero mask in the case of default, multicast or 13043 * experimental. 13044 */ 13045 static ipaddr_t 13046 ip_subnet_mask(ipaddr_t addr, ipif_t **ipifp, ip_stack_t *ipst) 13047 { 13048 ipaddr_t net_mask; 13049 ill_t *ill; 13050 ipif_t *ipif; 13051 ill_walk_context_t ctx; 13052 ipif_t *fallback_ipif = NULL; 13053 13054 net_mask = ip_net_mask(addr); 13055 if (net_mask == 0) { 13056 *ipifp = NULL; 13057 return (0); 13058 } 13059 13060 /* Let's check to see if this is maybe a local subnet route. */ 13061 /* this function only applies to IPv4 interfaces */ 13062 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 13063 ill = ILL_START_WALK_V4(&ctx, ipst); 13064 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 13065 mutex_enter(&ill->ill_lock); 13066 for (ipif = ill->ill_ipif; ipif != NULL; 13067 ipif = ipif->ipif_next) { 13068 if (!IPIF_CAN_LOOKUP(ipif)) 13069 continue; 13070 if (!(ipif->ipif_flags & IPIF_UP)) 13071 continue; 13072 if ((ipif->ipif_subnet & net_mask) == 13073 (addr & net_mask)) { 13074 /* 13075 * Don't trust pt-pt interfaces if there are 13076 * other interfaces. 13077 */ 13078 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 13079 if (fallback_ipif == NULL) { 13080 ipif_refhold_locked(ipif); 13081 fallback_ipif = ipif; 13082 } 13083 continue; 13084 } 13085 13086 /* 13087 * Fine. Just assume the same net mask as the 13088 * directly attached subnet interface is using. 13089 */ 13090 ipif_refhold_locked(ipif); 13091 mutex_exit(&ill->ill_lock); 13092 rw_exit(&ipst->ips_ill_g_lock); 13093 if (fallback_ipif != NULL) 13094 ipif_refrele(fallback_ipif); 13095 *ipifp = ipif; 13096 return (ipif->ipif_net_mask); 13097 } 13098 } 13099 mutex_exit(&ill->ill_lock); 13100 } 13101 rw_exit(&ipst->ips_ill_g_lock); 13102 13103 *ipifp = fallback_ipif; 13104 return ((fallback_ipif != NULL) ? 13105 fallback_ipif->ipif_net_mask : net_mask); 13106 } 13107 13108 /* 13109 * ip_sioctl_copyin_setup calls ip_wput_ioctl to process the IP_IOCTL ioctl. 13110 */ 13111 static void 13112 ip_wput_ioctl(queue_t *q, mblk_t *mp) 13113 { 13114 IOCP iocp; 13115 ipft_t *ipft; 13116 ipllc_t *ipllc; 13117 mblk_t *mp1; 13118 cred_t *cr; 13119 int error = 0; 13120 conn_t *connp; 13121 13122 ip1dbg(("ip_wput_ioctl")); 13123 iocp = (IOCP)mp->b_rptr; 13124 mp1 = mp->b_cont; 13125 if (mp1 == NULL) { 13126 iocp->ioc_error = EINVAL; 13127 mp->b_datap->db_type = M_IOCNAK; 13128 iocp->ioc_count = 0; 13129 qreply(q, mp); 13130 return; 13131 } 13132 13133 /* 13134 * These IOCTLs provide various control capabilities to 13135 * upstream agents such as ULPs and processes. There 13136 * are currently two such IOCTLs implemented. They 13137 * are used by TCP to provide update information for 13138 * existing IREs and to forcibly delete an IRE for a 13139 * host that is not responding, thereby forcing an 13140 * attempt at a new route. 13141 */ 13142 iocp->ioc_error = EINVAL; 13143 if (!pullupmsg(mp1, sizeof (ipllc->ipllc_cmd))) 13144 goto done; 13145 13146 ipllc = (ipllc_t *)mp1->b_rptr; 13147 for (ipft = ip_ioctl_ftbl; ipft->ipft_pfi; ipft++) { 13148 if (ipllc->ipllc_cmd == ipft->ipft_cmd) 13149 break; 13150 } 13151 /* 13152 * prefer credential from mblk over ioctl; 13153 * see ip_sioctl_copyin_setup 13154 */ 13155 cr = DB_CREDDEF(mp, iocp->ioc_cr); 13156 13157 /* 13158 * Refhold the conn in case the request gets queued up in some lookup 13159 */ 13160 ASSERT(CONN_Q(q)); 13161 connp = Q_TO_CONN(q); 13162 CONN_INC_REF(connp); 13163 if (ipft->ipft_pfi && 13164 ((mp1->b_wptr - mp1->b_rptr) >= ipft->ipft_min_size || 13165 pullupmsg(mp1, ipft->ipft_min_size))) { 13166 error = (*ipft->ipft_pfi)(q, 13167 (ipft->ipft_flags & IPFT_F_SELF_REPLY) ? mp : mp1, cr); 13168 } 13169 if (ipft->ipft_flags & IPFT_F_SELF_REPLY) { 13170 /* 13171 * CONN_OPER_PENDING_DONE happens in the function called 13172 * through ipft_pfi above. 13173 */ 13174 return; 13175 } 13176 13177 CONN_OPER_PENDING_DONE(connp); 13178 if (ipft->ipft_flags & IPFT_F_NO_REPLY) { 13179 freemsg(mp); 13180 return; 13181 } 13182 iocp->ioc_error = error; 13183 13184 done: 13185 mp->b_datap->db_type = M_IOCACK; 13186 if (iocp->ioc_error) 13187 iocp->ioc_count = 0; 13188 qreply(q, mp); 13189 } 13190 13191 /* 13192 * Lookup an ipif using the sequence id (ipif_seqid) 13193 */ 13194 ipif_t * 13195 ipif_lookup_seqid(ill_t *ill, uint_t seqid) 13196 { 13197 ipif_t *ipif; 13198 13199 ASSERT(MUTEX_HELD(&ill->ill_lock)); 13200 13201 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 13202 if (ipif->ipif_seqid == seqid && IPIF_CAN_LOOKUP(ipif)) 13203 return (ipif); 13204 } 13205 return (NULL); 13206 } 13207 13208 /* 13209 * Assign a unique id for the ipif. This is used later when we send 13210 * IRES to ARP for resolution where we initialize ire_ipif_seqid 13211 * to the value pointed by ire_ipif->ipif_seqid. Later when the 13212 * IRE is added, we verify that ipif has not disappeared. 13213 */ 13214 13215 static void 13216 ipif_assign_seqid(ipif_t *ipif) 13217 { 13218 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 13219 13220 ipif->ipif_seqid = atomic_add_64_nv(&ipst->ips_ipif_g_seqid, 1); 13221 } 13222 13223 /* 13224 * Insert the ipif, so that the list of ipifs on the ill will be sorted 13225 * with respect to ipif_id. Note that an ipif with an ipif_id of -1 will 13226 * be inserted into the first space available in the list. The value of 13227 * ipif_id will then be set to the appropriate value for its position. 13228 */ 13229 static int 13230 ipif_insert(ipif_t *ipif, boolean_t acquire_g_lock, boolean_t acquire_ill_lock) 13231 { 13232 ill_t *ill; 13233 ipif_t *tipif; 13234 ipif_t **tipifp; 13235 int id; 13236 ip_stack_t *ipst; 13237 13238 ASSERT(ipif->ipif_ill->ill_net_type == IRE_LOOPBACK || 13239 IAM_WRITER_IPIF(ipif)); 13240 13241 ill = ipif->ipif_ill; 13242 ASSERT(ill != NULL); 13243 ipst = ill->ill_ipst; 13244 13245 /* 13246 * In the case of lo0:0 we already hold the ill_g_lock. 13247 * ill_lookup_on_name (acquires ill_g_lock) -> ipif_allocate -> 13248 * ipif_insert. Another such caller is ipif_move. 13249 */ 13250 if (acquire_g_lock) 13251 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 13252 if (acquire_ill_lock) 13253 mutex_enter(&ill->ill_lock); 13254 id = ipif->ipif_id; 13255 tipifp = &(ill->ill_ipif); 13256 if (id == -1) { /* need to find a real id */ 13257 id = 0; 13258 while ((tipif = *tipifp) != NULL) { 13259 ASSERT(tipif->ipif_id >= id); 13260 if (tipif->ipif_id != id) 13261 break; /* non-consecutive id */ 13262 id++; 13263 tipifp = &(tipif->ipif_next); 13264 } 13265 /* limit number of logical interfaces */ 13266 if (id >= ipst->ips_ip_addrs_per_if) { 13267 if (acquire_ill_lock) 13268 mutex_exit(&ill->ill_lock); 13269 if (acquire_g_lock) 13270 rw_exit(&ipst->ips_ill_g_lock); 13271 return (-1); 13272 } 13273 ipif->ipif_id = id; /* assign new id */ 13274 } else if (id < ipst->ips_ip_addrs_per_if) { 13275 /* we have a real id; insert ipif in the right place */ 13276 while ((tipif = *tipifp) != NULL) { 13277 ASSERT(tipif->ipif_id != id); 13278 if (tipif->ipif_id > id) 13279 break; /* found correct location */ 13280 tipifp = &(tipif->ipif_next); 13281 } 13282 } else { 13283 if (acquire_ill_lock) 13284 mutex_exit(&ill->ill_lock); 13285 if (acquire_g_lock) 13286 rw_exit(&ipst->ips_ill_g_lock); 13287 return (-1); 13288 } 13289 13290 ASSERT(tipifp != &(ill->ill_ipif) || id == 0); 13291 13292 ipif->ipif_next = tipif; 13293 *tipifp = ipif; 13294 if (acquire_ill_lock) 13295 mutex_exit(&ill->ill_lock); 13296 if (acquire_g_lock) 13297 rw_exit(&ipst->ips_ill_g_lock); 13298 return (0); 13299 } 13300 13301 static void 13302 ipif_remove(ipif_t *ipif, boolean_t acquire_ill_lock) 13303 { 13304 ipif_t **ipifp; 13305 ill_t *ill = ipif->ipif_ill; 13306 13307 ASSERT(RW_WRITE_HELD(&ill->ill_ipst->ips_ill_g_lock)); 13308 if (acquire_ill_lock) 13309 mutex_enter(&ill->ill_lock); 13310 else 13311 ASSERT(MUTEX_HELD(&ill->ill_lock)); 13312 13313 ipifp = &ill->ill_ipif; 13314 for (; *ipifp != NULL; ipifp = &ipifp[0]->ipif_next) { 13315 if (*ipifp == ipif) { 13316 *ipifp = ipif->ipif_next; 13317 break; 13318 } 13319 } 13320 13321 if (acquire_ill_lock) 13322 mutex_exit(&ill->ill_lock); 13323 } 13324 13325 /* 13326 * Allocate and initialize a new interface control structure. (Always 13327 * called as writer.) 13328 * When ipif_allocate() is called from ip_ll_subnet_defaults, the ill 13329 * is not part of the global linked list of ills. ipif_seqid is unique 13330 * in the system and to preserve the uniqueness, it is assigned only 13331 * when ill becomes part of the global list. At that point ill will 13332 * have a name. If it doesn't get assigned here, it will get assigned 13333 * in ipif_set_values() as part of SIOCSLIFNAME processing. 13334 * Aditionally, if we come here from ip_ll_subnet_defaults, we don't set 13335 * the interface flags or any other information from the DL_INFO_ACK for 13336 * DL_STYLE2 drivers (initialize == B_FALSE), since we won't have them at 13337 * this point. The flags etc. will be set in ip_ll_subnet_defaults when the 13338 * second DL_INFO_ACK comes in from the driver. 13339 */ 13340 static ipif_t * 13341 ipif_allocate(ill_t *ill, int id, uint_t ire_type, boolean_t initialize) 13342 { 13343 ipif_t *ipif; 13344 phyint_t *phyi; 13345 13346 ip1dbg(("ipif_allocate(%s:%d ill %p)\n", 13347 ill->ill_name, id, (void *)ill)); 13348 ASSERT(ire_type == IRE_LOOPBACK || IAM_WRITER_ILL(ill)); 13349 13350 if ((ipif = (ipif_t *)mi_alloc(sizeof (ipif_t), BPRI_MED)) == NULL) 13351 return (NULL); 13352 *ipif = ipif_zero; /* start clean */ 13353 13354 ipif->ipif_ill = ill; 13355 ipif->ipif_id = id; /* could be -1 */ 13356 /* 13357 * Inherit the zoneid from the ill; for the shared stack instance 13358 * this is always the global zone 13359 */ 13360 ipif->ipif_zoneid = ill->ill_zoneid; 13361 13362 mutex_init(&ipif->ipif_saved_ire_lock, NULL, MUTEX_DEFAULT, NULL); 13363 13364 ipif->ipif_refcnt = 0; 13365 ipif->ipif_saved_ire_cnt = 0; 13366 13367 if (ipif_insert(ipif, ire_type != IRE_LOOPBACK, B_TRUE)) { 13368 mi_free(ipif); 13369 return (NULL); 13370 } 13371 /* -1 id should have been replaced by real id */ 13372 id = ipif->ipif_id; 13373 ASSERT(id >= 0); 13374 13375 if (ill->ill_name[0] != '\0') 13376 ipif_assign_seqid(ipif); 13377 13378 /* 13379 * Keep a copy of original id in ipif_orig_ipifid. Failback 13380 * will attempt to restore the original id. The SIOCSLIFOINDEX 13381 * ioctl sets ipif_orig_ipifid to zero. 13382 */ 13383 ipif->ipif_orig_ipifid = id; 13384 13385 /* 13386 * We grab the ill_lock and phyint_lock to protect the flag changes. 13387 * The ipif is still not up and can't be looked up until the 13388 * ioctl completes and the IPIF_CHANGING flag is cleared. 13389 */ 13390 mutex_enter(&ill->ill_lock); 13391 mutex_enter(&ill->ill_phyint->phyint_lock); 13392 /* 13393 * Set the running flag when logical interface zero is created. 13394 * For subsequent logical interfaces, a DLPI link down 13395 * notification message may have cleared the running flag to 13396 * indicate the link is down, so we shouldn't just blindly set it. 13397 */ 13398 if (id == 0) 13399 ill->ill_phyint->phyint_flags |= PHYI_RUNNING; 13400 ipif->ipif_ire_type = ire_type; 13401 phyi = ill->ill_phyint; 13402 ipif->ipif_orig_ifindex = phyi->phyint_ifindex; 13403 13404 if (ipif->ipif_isv6) { 13405 ill->ill_flags |= ILLF_IPV6; 13406 } else { 13407 ipaddr_t inaddr_any = INADDR_ANY; 13408 13409 ill->ill_flags |= ILLF_IPV4; 13410 13411 /* Keep the IN6_IS_ADDR_V4MAPPED assertions happy */ 13412 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 13413 &ipif->ipif_v6lcl_addr); 13414 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 13415 &ipif->ipif_v6src_addr); 13416 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 13417 &ipif->ipif_v6subnet); 13418 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 13419 &ipif->ipif_v6net_mask); 13420 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 13421 &ipif->ipif_v6brd_addr); 13422 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 13423 &ipif->ipif_v6pp_dst_addr); 13424 } 13425 13426 /* 13427 * Don't set the interface flags etc. now, will do it in 13428 * ip_ll_subnet_defaults. 13429 */ 13430 if (!initialize) { 13431 mutex_exit(&ill->ill_lock); 13432 mutex_exit(&ill->ill_phyint->phyint_lock); 13433 return (ipif); 13434 } 13435 ipif->ipif_mtu = ill->ill_max_mtu; 13436 13437 if (ill->ill_bcast_addr_length != 0) { 13438 /* 13439 * Later detect lack of DLPI driver multicast 13440 * capability by catching DL_ENABMULTI errors in 13441 * ip_rput_dlpi. 13442 */ 13443 ill->ill_flags |= ILLF_MULTICAST; 13444 if (!ipif->ipif_isv6) 13445 ipif->ipif_flags |= IPIF_BROADCAST; 13446 } else { 13447 if (ill->ill_net_type != IRE_LOOPBACK) { 13448 if (ipif->ipif_isv6) 13449 /* 13450 * Note: xresolv interfaces will eventually need 13451 * NOARP set here as well, but that will require 13452 * those external resolvers to have some 13453 * knowledge of that flag and act appropriately. 13454 * Not to be changed at present. 13455 */ 13456 ill->ill_flags |= ILLF_NONUD; 13457 else 13458 ill->ill_flags |= ILLF_NOARP; 13459 } 13460 if (ill->ill_phys_addr_length == 0) { 13461 if (ill->ill_media && 13462 ill->ill_media->ip_m_mac_type == SUNW_DL_VNI) { 13463 ipif->ipif_flags |= IPIF_NOXMIT; 13464 phyi->phyint_flags |= PHYI_VIRTUAL; 13465 } else { 13466 /* pt-pt supports multicast. */ 13467 ill->ill_flags |= ILLF_MULTICAST; 13468 if (ill->ill_net_type == IRE_LOOPBACK) { 13469 phyi->phyint_flags |= 13470 (PHYI_LOOPBACK | PHYI_VIRTUAL); 13471 } else { 13472 ipif->ipif_flags |= IPIF_POINTOPOINT; 13473 } 13474 } 13475 } 13476 } 13477 mutex_exit(&ill->ill_lock); 13478 mutex_exit(&ill->ill_phyint->phyint_lock); 13479 return (ipif); 13480 } 13481 13482 /* 13483 * If appropriate, send a message up to the resolver delete the entry 13484 * for the address of this interface which is going out of business. 13485 * (Always called as writer). 13486 * 13487 * NOTE : We need to check for NULL mps as some of the fields are 13488 * initialized only for some interface types. See ipif_resolver_up() 13489 * for details. 13490 */ 13491 void 13492 ipif_arp_down(ipif_t *ipif) 13493 { 13494 mblk_t *mp; 13495 ill_t *ill = ipif->ipif_ill; 13496 13497 ip1dbg(("ipif_arp_down(%s:%u)\n", ill->ill_name, ipif->ipif_id)); 13498 ASSERT(IAM_WRITER_IPIF(ipif)); 13499 13500 /* Delete the mapping for the local address */ 13501 mp = ipif->ipif_arp_del_mp; 13502 if (mp != NULL) { 13503 ip1dbg(("ipif_arp_down: arp cmd %x for %s:%u\n", 13504 *(unsigned *)mp->b_rptr, ill->ill_name, ipif->ipif_id)); 13505 putnext(ill->ill_rq, mp); 13506 ipif->ipif_arp_del_mp = NULL; 13507 } 13508 13509 /* 13510 * If this is the last ipif that is going down and there are no 13511 * duplicate addresses we may yet attempt to re-probe, then we need to 13512 * clean up ARP completely. 13513 */ 13514 if (ill->ill_ipif_up_count == 0 && ill->ill_ipif_dup_count == 0) { 13515 13516 /* Send up AR_INTERFACE_DOWN message */ 13517 mp = ill->ill_arp_down_mp; 13518 if (mp != NULL) { 13519 ip1dbg(("ipif_arp_down: arp cmd %x for %s:%u\n", 13520 *(unsigned *)mp->b_rptr, ill->ill_name, 13521 ipif->ipif_id)); 13522 putnext(ill->ill_rq, mp); 13523 ill->ill_arp_down_mp = NULL; 13524 } 13525 13526 /* Tell ARP to delete the multicast mappings */ 13527 mp = ill->ill_arp_del_mapping_mp; 13528 if (mp != NULL) { 13529 ip1dbg(("ipif_arp_down: arp cmd %x for %s:%u\n", 13530 *(unsigned *)mp->b_rptr, ill->ill_name, 13531 ipif->ipif_id)); 13532 putnext(ill->ill_rq, mp); 13533 ill->ill_arp_del_mapping_mp = NULL; 13534 } 13535 } 13536 } 13537 13538 /* 13539 * This function sets up the multicast mappings in ARP. When ipif_resolver_up 13540 * calls this function, it passes a non-NULL arp_add_mapping_mp indicating 13541 * that it wants the add_mp allocated in this function to be returned 13542 * wihtout sending it to arp. When ip_rput_dlpi_writer calls this to 13543 * just re-do the multicast, it wants us to send the add_mp to ARP also. 13544 * ipif_resolver_up does not want us to do the "add" i.e sending to ARP, 13545 * as it does a ipif_arp_down after calling this function - which will 13546 * remove what we add here. 13547 * 13548 * Returns -1 on failures and 0 on success. 13549 */ 13550 int 13551 ipif_arp_setup_multicast(ipif_t *ipif, mblk_t **arp_add_mapping_mp) 13552 { 13553 mblk_t *del_mp = NULL; 13554 mblk_t *add_mp = NULL; 13555 mblk_t *mp; 13556 ill_t *ill = ipif->ipif_ill; 13557 phyint_t *phyi = ill->ill_phyint; 13558 ipaddr_t addr, mask, extract_mask = 0; 13559 arma_t *arma; 13560 uint8_t *maddr, *bphys_addr; 13561 uint32_t hw_start; 13562 dl_unitdata_req_t *dlur; 13563 13564 ASSERT(IAM_WRITER_IPIF(ipif)); 13565 if (ipif->ipif_flags & IPIF_POINTOPOINT) 13566 return (0); 13567 13568 /* 13569 * Delete the existing mapping from ARP. Normally ipif_down 13570 * -> ipif_arp_down should send this up to ARP. The only 13571 * reason we would find this when we are switching from 13572 * Multicast to Broadcast where we did not do a down. 13573 */ 13574 mp = ill->ill_arp_del_mapping_mp; 13575 if (mp != NULL) { 13576 ip1dbg(("ipif_arp_down: arp cmd %x for %s:%u\n", 13577 *(unsigned *)mp->b_rptr, ill->ill_name, ipif->ipif_id)); 13578 putnext(ill->ill_rq, mp); 13579 ill->ill_arp_del_mapping_mp = NULL; 13580 } 13581 13582 if (arp_add_mapping_mp != NULL) 13583 *arp_add_mapping_mp = NULL; 13584 13585 /* 13586 * Check that the address is not to long for the constant 13587 * length reserved in the template arma_t. 13588 */ 13589 if (ill->ill_phys_addr_length > IP_MAX_HW_LEN) 13590 return (-1); 13591 13592 /* Add mapping mblk */ 13593 addr = (ipaddr_t)htonl(INADDR_UNSPEC_GROUP); 13594 mask = (ipaddr_t)htonl(IN_CLASSD_NET); 13595 add_mp = ill_arp_alloc(ill, (uchar_t *)&ip_arma_multi_template, 13596 (caddr_t)&addr); 13597 if (add_mp == NULL) 13598 return (-1); 13599 arma = (arma_t *)add_mp->b_rptr; 13600 maddr = (uint8_t *)arma + arma->arma_hw_addr_offset; 13601 bcopy(&mask, (char *)arma + arma->arma_proto_mask_offset, IP_ADDR_LEN); 13602 arma->arma_hw_addr_length = ill->ill_phys_addr_length; 13603 13604 /* 13605 * Determine the broadcast address. 13606 */ 13607 dlur = (dl_unitdata_req_t *)ill->ill_bcast_mp->b_rptr; 13608 if (ill->ill_sap_length < 0) 13609 bphys_addr = (uchar_t *)dlur + dlur->dl_dest_addr_offset; 13610 else 13611 bphys_addr = (uchar_t *)dlur + 13612 dlur->dl_dest_addr_offset + ill->ill_sap_length; 13613 /* 13614 * Check PHYI_MULTI_BCAST and length of physical 13615 * address to determine if we use the mapping or the 13616 * broadcast address. 13617 */ 13618 if (!(phyi->phyint_flags & PHYI_MULTI_BCAST)) 13619 if (!MEDIA_V4MINFO(ill->ill_media, ill->ill_phys_addr_length, 13620 bphys_addr, maddr, &hw_start, &extract_mask)) 13621 phyi->phyint_flags |= PHYI_MULTI_BCAST; 13622 13623 if ((phyi->phyint_flags & PHYI_MULTI_BCAST) || 13624 (ill->ill_flags & ILLF_MULTICAST)) { 13625 /* Make sure this will not match the "exact" entry. */ 13626 addr = (ipaddr_t)htonl(INADDR_ALLHOSTS_GROUP); 13627 del_mp = ill_arp_alloc(ill, (uchar_t *)&ip_ared_template, 13628 (caddr_t)&addr); 13629 if (del_mp == NULL) { 13630 freemsg(add_mp); 13631 return (-1); 13632 } 13633 bcopy(&extract_mask, (char *)arma + 13634 arma->arma_proto_extract_mask_offset, IP_ADDR_LEN); 13635 if (phyi->phyint_flags & PHYI_MULTI_BCAST) { 13636 /* Use link-layer broadcast address for MULTI_BCAST */ 13637 bcopy(bphys_addr, maddr, ill->ill_phys_addr_length); 13638 ip2dbg(("ipif_arp_setup_multicast: adding" 13639 " MULTI_BCAST ARP setup for %s\n", ill->ill_name)); 13640 } else { 13641 arma->arma_hw_mapping_start = hw_start; 13642 ip2dbg(("ipif_arp_setup_multicast: adding multicast" 13643 " ARP setup for %s\n", ill->ill_name)); 13644 } 13645 } else { 13646 freemsg(add_mp); 13647 ASSERT(del_mp == NULL); 13648 /* It is neither MULTICAST nor MULTI_BCAST */ 13649 return (0); 13650 } 13651 ASSERT(add_mp != NULL && del_mp != NULL); 13652 ASSERT(ill->ill_arp_del_mapping_mp == NULL); 13653 ill->ill_arp_del_mapping_mp = del_mp; 13654 if (arp_add_mapping_mp != NULL) { 13655 /* The caller just wants the mblks allocated */ 13656 *arp_add_mapping_mp = add_mp; 13657 } else { 13658 /* The caller wants us to send it to arp */ 13659 putnext(ill->ill_rq, add_mp); 13660 } 13661 return (0); 13662 } 13663 13664 /* 13665 * Get the resolver set up for a new interface address. 13666 * (Always called as writer.) 13667 * Called both for IPv4 and IPv6 interfaces, 13668 * though it only sets up the resolver for v6 13669 * if it's an xresolv interface (one using an external resolver). 13670 * Honors ILLF_NOARP. 13671 * The enumerated value res_act is used to tune the behavior. 13672 * If set to Res_act_initial, then we set up all the resolver 13673 * structures for a new interface. If set to Res_act_move, then 13674 * we just send an AR_ENTRY_ADD message up to ARP for IPv4 13675 * interfaces; this is called by ip_rput_dlpi_writer() to handle 13676 * asynchronous hardware address change notification. If set to 13677 * Res_act_defend, then we tell ARP that it needs to send a single 13678 * gratuitous message in defense of the address. 13679 * Returns error on failure. 13680 */ 13681 int 13682 ipif_resolver_up(ipif_t *ipif, enum ip_resolver_action res_act) 13683 { 13684 caddr_t addr; 13685 mblk_t *arp_up_mp = NULL; 13686 mblk_t *arp_down_mp = NULL; 13687 mblk_t *arp_add_mp = NULL; 13688 mblk_t *arp_del_mp = NULL; 13689 mblk_t *arp_add_mapping_mp = NULL; 13690 mblk_t *arp_del_mapping_mp = NULL; 13691 ill_t *ill = ipif->ipif_ill; 13692 uchar_t *area_p = NULL; 13693 uchar_t *ared_p = NULL; 13694 int err = ENOMEM; 13695 boolean_t was_dup; 13696 13697 ip1dbg(("ipif_resolver_up(%s:%u) flags 0x%x\n", 13698 ill->ill_name, ipif->ipif_id, (uint_t)ipif->ipif_flags)); 13699 ASSERT(IAM_WRITER_IPIF(ipif)); 13700 13701 was_dup = B_FALSE; 13702 if (res_act == Res_act_initial) { 13703 ipif->ipif_addr_ready = 0; 13704 /* 13705 * We're bringing an interface up here. There's no way that we 13706 * should need to shut down ARP now. 13707 */ 13708 mutex_enter(&ill->ill_lock); 13709 if (ipif->ipif_flags & IPIF_DUPLICATE) { 13710 ipif->ipif_flags &= ~IPIF_DUPLICATE; 13711 ill->ill_ipif_dup_count--; 13712 was_dup = B_TRUE; 13713 } 13714 mutex_exit(&ill->ill_lock); 13715 } 13716 if (ipif->ipif_recovery_id != 0) 13717 (void) untimeout(ipif->ipif_recovery_id); 13718 ipif->ipif_recovery_id = 0; 13719 if (ill->ill_net_type != IRE_IF_RESOLVER) { 13720 ipif->ipif_addr_ready = 1; 13721 return (0); 13722 } 13723 /* NDP will set the ipif_addr_ready flag when it's ready */ 13724 if (ill->ill_isv6 && !(ill->ill_flags & ILLF_XRESOLV)) 13725 return (0); 13726 13727 if (ill->ill_isv6) { 13728 /* 13729 * External resolver for IPv6 13730 */ 13731 ASSERT(res_act == Res_act_initial); 13732 if (!IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr)) { 13733 addr = (caddr_t)&ipif->ipif_v6lcl_addr; 13734 area_p = (uchar_t *)&ip6_area_template; 13735 ared_p = (uchar_t *)&ip6_ared_template; 13736 } 13737 } else { 13738 /* 13739 * IPv4 arp case. If the ARP stream has already started 13740 * closing, fail this request for ARP bringup. Else 13741 * record the fact that an ARP bringup is pending. 13742 */ 13743 mutex_enter(&ill->ill_lock); 13744 if (ill->ill_arp_closing) { 13745 mutex_exit(&ill->ill_lock); 13746 err = EINVAL; 13747 goto failed; 13748 } else { 13749 if (ill->ill_ipif_up_count == 0 && 13750 ill->ill_ipif_dup_count == 0 && !was_dup) 13751 ill->ill_arp_bringup_pending = 1; 13752 mutex_exit(&ill->ill_lock); 13753 } 13754 if (ipif->ipif_lcl_addr != INADDR_ANY) { 13755 addr = (caddr_t)&ipif->ipif_lcl_addr; 13756 area_p = (uchar_t *)&ip_area_template; 13757 ared_p = (uchar_t *)&ip_ared_template; 13758 } 13759 } 13760 13761 /* 13762 * Add an entry for the local address in ARP only if it 13763 * is not UNNUMBERED and the address is not INADDR_ANY. 13764 */ 13765 if (!(ipif->ipif_flags & IPIF_UNNUMBERED) && area_p != NULL) { 13766 area_t *area; 13767 13768 /* Now ask ARP to publish our address. */ 13769 arp_add_mp = ill_arp_alloc(ill, area_p, addr); 13770 if (arp_add_mp == NULL) 13771 goto failed; 13772 area = (area_t *)arp_add_mp->b_rptr; 13773 if (res_act != Res_act_initial) { 13774 /* 13775 * Copy the new hardware address and length into 13776 * arp_add_mp to be sent to ARP. 13777 */ 13778 area->area_hw_addr_length = ill->ill_phys_addr_length; 13779 bcopy(ill->ill_phys_addr, 13780 ((char *)area + area->area_hw_addr_offset), 13781 area->area_hw_addr_length); 13782 } 13783 13784 area->area_flags = ACE_F_PERMANENT | ACE_F_PUBLISH | 13785 ACE_F_MYADDR; 13786 13787 if (res_act == Res_act_defend) { 13788 area->area_flags |= ACE_F_DEFEND; 13789 /* 13790 * If we're just defending our address now, then 13791 * there's no need to set up ARP multicast mappings. 13792 * The publish command is enough. 13793 */ 13794 goto done; 13795 } 13796 13797 if (res_act != Res_act_initial) 13798 goto arp_setup_multicast; 13799 13800 /* 13801 * Allocate an ARP deletion message so we know we can tell ARP 13802 * when the interface goes down. 13803 */ 13804 arp_del_mp = ill_arp_alloc(ill, ared_p, addr); 13805 if (arp_del_mp == NULL) 13806 goto failed; 13807 13808 } else { 13809 if (res_act != Res_act_initial) 13810 goto done; 13811 } 13812 /* 13813 * Need to bring up ARP or setup multicast mapping only 13814 * when the first interface is coming UP. 13815 */ 13816 if (ill->ill_ipif_up_count != 0 || ill->ill_ipif_dup_count != 0 || 13817 was_dup) { 13818 goto done; 13819 } 13820 13821 /* 13822 * Allocate an ARP down message (to be saved) and an ARP up 13823 * message. 13824 */ 13825 arp_down_mp = ill_arp_alloc(ill, (uchar_t *)&ip_ard_template, 0); 13826 if (arp_down_mp == NULL) 13827 goto failed; 13828 13829 arp_up_mp = ill_arp_alloc(ill, (uchar_t *)&ip_aru_template, 0); 13830 if (arp_up_mp == NULL) 13831 goto failed; 13832 13833 if (ipif->ipif_flags & IPIF_POINTOPOINT) 13834 goto done; 13835 13836 arp_setup_multicast: 13837 /* 13838 * Setup the multicast mappings. This function initializes 13839 * ill_arp_del_mapping_mp also. This does not need to be done for 13840 * IPv6. 13841 */ 13842 if (!ill->ill_isv6) { 13843 err = ipif_arp_setup_multicast(ipif, &arp_add_mapping_mp); 13844 if (err != 0) 13845 goto failed; 13846 ASSERT(ill->ill_arp_del_mapping_mp != NULL); 13847 ASSERT(arp_add_mapping_mp != NULL); 13848 } 13849 13850 done: 13851 if (arp_del_mp != NULL) { 13852 ASSERT(ipif->ipif_arp_del_mp == NULL); 13853 ipif->ipif_arp_del_mp = arp_del_mp; 13854 } 13855 if (arp_down_mp != NULL) { 13856 ASSERT(ill->ill_arp_down_mp == NULL); 13857 ill->ill_arp_down_mp = arp_down_mp; 13858 } 13859 if (arp_del_mapping_mp != NULL) { 13860 ASSERT(ill->ill_arp_del_mapping_mp == NULL); 13861 ill->ill_arp_del_mapping_mp = arp_del_mapping_mp; 13862 } 13863 if (arp_up_mp != NULL) { 13864 ip1dbg(("ipif_resolver_up: ARP_UP for %s:%u\n", 13865 ill->ill_name, ipif->ipif_id)); 13866 putnext(ill->ill_rq, arp_up_mp); 13867 } 13868 if (arp_add_mp != NULL) { 13869 ip1dbg(("ipif_resolver_up: ARP_ADD for %s:%u\n", 13870 ill->ill_name, ipif->ipif_id)); 13871 /* 13872 * If it's an extended ARP implementation, then we'll wait to 13873 * hear that DAD has finished before using the interface. 13874 */ 13875 if (!ill->ill_arp_extend) 13876 ipif->ipif_addr_ready = 1; 13877 putnext(ill->ill_rq, arp_add_mp); 13878 } else { 13879 ipif->ipif_addr_ready = 1; 13880 } 13881 if (arp_add_mapping_mp != NULL) { 13882 ip1dbg(("ipif_resolver_up: MAPPING_ADD for %s:%u\n", 13883 ill->ill_name, ipif->ipif_id)); 13884 putnext(ill->ill_rq, arp_add_mapping_mp); 13885 } 13886 if (res_act != Res_act_initial) 13887 return (0); 13888 13889 if (ill->ill_flags & ILLF_NOARP) 13890 err = ill_arp_off(ill); 13891 else 13892 err = ill_arp_on(ill); 13893 if (err != 0) { 13894 ip0dbg(("ipif_resolver_up: arp_on/off failed %d\n", err)); 13895 freemsg(ipif->ipif_arp_del_mp); 13896 freemsg(ill->ill_arp_down_mp); 13897 freemsg(ill->ill_arp_del_mapping_mp); 13898 ipif->ipif_arp_del_mp = NULL; 13899 ill->ill_arp_down_mp = NULL; 13900 ill->ill_arp_del_mapping_mp = NULL; 13901 return (err); 13902 } 13903 return ((ill->ill_ipif_up_count != 0 || was_dup || 13904 ill->ill_ipif_dup_count != 0) ? 0 : EINPROGRESS); 13905 13906 failed: 13907 ip1dbg(("ipif_resolver_up: FAILED\n")); 13908 freemsg(arp_add_mp); 13909 freemsg(arp_del_mp); 13910 freemsg(arp_add_mapping_mp); 13911 freemsg(arp_up_mp); 13912 freemsg(arp_down_mp); 13913 ill->ill_arp_bringup_pending = 0; 13914 return (err); 13915 } 13916 13917 /* 13918 * This routine restarts IPv4 duplicate address detection (DAD) when a link has 13919 * just gone back up. 13920 */ 13921 static void 13922 ipif_arp_start_dad(ipif_t *ipif) 13923 { 13924 ill_t *ill = ipif->ipif_ill; 13925 mblk_t *arp_add_mp; 13926 area_t *area; 13927 13928 if (ill->ill_net_type != IRE_IF_RESOLVER || ill->ill_arp_closing || 13929 (ipif->ipif_flags & IPIF_UNNUMBERED) || 13930 ipif->ipif_lcl_addr == INADDR_ANY || 13931 (arp_add_mp = ill_arp_alloc(ill, (uchar_t *)&ip_area_template, 13932 (char *)&ipif->ipif_lcl_addr)) == NULL) { 13933 /* 13934 * If we can't contact ARP for some reason, that's not really a 13935 * problem. Just send out the routing socket notification that 13936 * DAD completion would have done, and continue. 13937 */ 13938 ipif_mask_reply(ipif); 13939 ip_rts_ifmsg(ipif); 13940 ip_rts_newaddrmsg(RTM_ADD, 0, ipif); 13941 sctp_update_ipif(ipif, SCTP_IPIF_UP); 13942 ipif->ipif_addr_ready = 1; 13943 return; 13944 } 13945 13946 /* Setting the 'unverified' flag restarts DAD */ 13947 area = (area_t *)arp_add_mp->b_rptr; 13948 area->area_flags = ACE_F_PERMANENT | ACE_F_PUBLISH | ACE_F_MYADDR | 13949 ACE_F_UNVERIFIED; 13950 putnext(ill->ill_rq, arp_add_mp); 13951 } 13952 13953 static void 13954 ipif_ndp_start_dad(ipif_t *ipif) 13955 { 13956 nce_t *nce; 13957 13958 nce = ndp_lookup_v6(ipif->ipif_ill, &ipif->ipif_v6lcl_addr, B_FALSE); 13959 if (nce == NULL) 13960 return; 13961 13962 if (!ndp_restart_dad(nce)) { 13963 /* 13964 * If we can't restart DAD for some reason, that's not really a 13965 * problem. Just send out the routing socket notification that 13966 * DAD completion would have done, and continue. 13967 */ 13968 ip_rts_ifmsg(ipif); 13969 ip_rts_newaddrmsg(RTM_ADD, 0, ipif); 13970 sctp_update_ipif(ipif, SCTP_IPIF_UP); 13971 ipif->ipif_addr_ready = 1; 13972 } 13973 NCE_REFRELE(nce); 13974 } 13975 13976 /* 13977 * Restart duplicate address detection on all interfaces on the given ill. 13978 * 13979 * This is called when an interface transitions from down to up 13980 * (DL_NOTE_LINK_UP) or up to down (DL_NOTE_LINK_DOWN). 13981 * 13982 * Note that since the underlying physical link has transitioned, we must cause 13983 * at least one routing socket message to be sent here, either via DAD 13984 * completion or just by default on the first ipif. (If we don't do this, then 13985 * in.mpathd will see long delays when doing link-based failure recovery.) 13986 */ 13987 void 13988 ill_restart_dad(ill_t *ill, boolean_t went_up) 13989 { 13990 ipif_t *ipif; 13991 13992 if (ill == NULL) 13993 return; 13994 13995 /* 13996 * If layer two doesn't support duplicate address detection, then just 13997 * send the routing socket message now and be done with it. 13998 */ 13999 if ((ill->ill_isv6 && (ill->ill_flags & ILLF_XRESOLV)) || 14000 (!ill->ill_isv6 && !ill->ill_arp_extend)) { 14001 ip_rts_ifmsg(ill->ill_ipif); 14002 return; 14003 } 14004 14005 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 14006 if (went_up) { 14007 if (ipif->ipif_flags & IPIF_UP) { 14008 if (ill->ill_isv6) 14009 ipif_ndp_start_dad(ipif); 14010 else 14011 ipif_arp_start_dad(ipif); 14012 } else if (ill->ill_isv6 && 14013 (ipif->ipif_flags & IPIF_DUPLICATE)) { 14014 /* 14015 * For IPv4, the ARP module itself will 14016 * automatically start the DAD process when it 14017 * sees DL_NOTE_LINK_UP. We respond to the 14018 * AR_CN_READY at the completion of that task. 14019 * For IPv6, we must kick off the bring-up 14020 * process now. 14021 */ 14022 ndp_do_recovery(ipif); 14023 } else { 14024 /* 14025 * Unfortunately, the first ipif is "special" 14026 * and represents the underlying ill in the 14027 * routing socket messages. Thus, when this 14028 * one ipif is down, we must still notify so 14029 * that the user knows the IFF_RUNNING status 14030 * change. (If the first ipif is up, then 14031 * we'll handle eventual routing socket 14032 * notification via DAD completion.) 14033 */ 14034 if (ipif == ill->ill_ipif) 14035 ip_rts_ifmsg(ill->ill_ipif); 14036 } 14037 } else { 14038 /* 14039 * After link down, we'll need to send a new routing 14040 * message when the link comes back, so clear 14041 * ipif_addr_ready. 14042 */ 14043 ipif->ipif_addr_ready = 0; 14044 } 14045 } 14046 14047 /* 14048 * If we've torn down links, then notify the user right away. 14049 */ 14050 if (!went_up) 14051 ip_rts_ifmsg(ill->ill_ipif); 14052 } 14053 14054 /* 14055 * Wakeup all threads waiting to enter the ipsq, and sleeping 14056 * on any of the ills in this ipsq. The ill_lock of the ill 14057 * must be held so that waiters don't miss wakeups 14058 */ 14059 static void 14060 ill_signal_ipsq_ills(ipsq_t *ipsq, boolean_t caller_holds_lock) 14061 { 14062 phyint_t *phyint; 14063 14064 phyint = ipsq->ipsq_phyint_list; 14065 while (phyint != NULL) { 14066 if (phyint->phyint_illv4) { 14067 if (!caller_holds_lock) 14068 mutex_enter(&phyint->phyint_illv4->ill_lock); 14069 ASSERT(MUTEX_HELD(&phyint->phyint_illv4->ill_lock)); 14070 cv_broadcast(&phyint->phyint_illv4->ill_cv); 14071 if (!caller_holds_lock) 14072 mutex_exit(&phyint->phyint_illv4->ill_lock); 14073 } 14074 if (phyint->phyint_illv6) { 14075 if (!caller_holds_lock) 14076 mutex_enter(&phyint->phyint_illv6->ill_lock); 14077 ASSERT(MUTEX_HELD(&phyint->phyint_illv6->ill_lock)); 14078 cv_broadcast(&phyint->phyint_illv6->ill_cv); 14079 if (!caller_holds_lock) 14080 mutex_exit(&phyint->phyint_illv6->ill_lock); 14081 } 14082 phyint = phyint->phyint_ipsq_next; 14083 } 14084 } 14085 14086 static ipsq_t * 14087 ipsq_create(char *groupname, ip_stack_t *ipst) 14088 { 14089 ipsq_t *ipsq; 14090 14091 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); 14092 ipsq = kmem_zalloc(sizeof (ipsq_t), KM_NOSLEEP); 14093 if (ipsq == NULL) { 14094 return (NULL); 14095 } 14096 14097 if (groupname != NULL) 14098 (void) strcpy(ipsq->ipsq_name, groupname); 14099 else 14100 ipsq->ipsq_name[0] = '\0'; 14101 14102 mutex_init(&ipsq->ipsq_lock, NULL, MUTEX_DEFAULT, NULL); 14103 ipsq->ipsq_flags |= IPSQ_GROUP; 14104 ipsq->ipsq_next = ipst->ips_ipsq_g_head; 14105 ipst->ips_ipsq_g_head = ipsq; 14106 ipsq->ipsq_ipst = ipst; /* No netstack_hold */ 14107 return (ipsq); 14108 } 14109 14110 /* 14111 * Return an ipsq correspoding to the groupname. If 'create' is true 14112 * allocate a new ipsq if one does not exist. Usually an ipsq is associated 14113 * uniquely with an IPMP group. However during IPMP groupname operations, 14114 * multiple IPMP groups may be associated with a single ipsq. But no 14115 * IPMP group can be associated with more than 1 ipsq at any time. 14116 * For example 14117 * Interfaces IPMP grpname ipsq ipsq_name ipsq_refs 14118 * hme1, hme2 mpk17-84 ipsq1 mpk17-84 2 14119 * hme3, hme4 mpk17-85 ipsq2 mpk17-85 2 14120 * 14121 * Now the command ifconfig hme3 group mpk17-84 results in the temporary 14122 * status shown below during the execution of the above command. 14123 * hme1, hme2, hme3, hme4 mpk17-84, mpk17-85 ipsq1 mpk17-84 4 14124 * 14125 * After the completion of the above groupname command we return to the stable 14126 * state shown below. 14127 * hme1, hme2, hme3 mpk17-84 ipsq1 mpk17-84 3 14128 * hme4 mpk17-85 ipsq2 mpk17-85 1 14129 * 14130 * Because of the above, we don't search based on the ipsq_name since that 14131 * would miss the correct ipsq during certain windows as shown above. 14132 * The ipsq_name is only used during split of an ipsq to return the ipsq to its 14133 * natural state. 14134 */ 14135 static ipsq_t * 14136 ip_ipsq_lookup(char *groupname, boolean_t create, ipsq_t *exclude_ipsq, 14137 ip_stack_t *ipst) 14138 { 14139 ipsq_t *ipsq; 14140 int group_len; 14141 phyint_t *phyint; 14142 14143 ASSERT(RW_LOCK_HELD(&ipst->ips_ill_g_lock)); 14144 14145 group_len = strlen(groupname); 14146 ASSERT(group_len != 0); 14147 group_len++; 14148 14149 for (ipsq = ipst->ips_ipsq_g_head; 14150 ipsq != NULL; 14151 ipsq = ipsq->ipsq_next) { 14152 /* 14153 * When an ipsq is being split, and ill_split_ipsq 14154 * calls this function, we exclude it from being considered. 14155 */ 14156 if (ipsq == exclude_ipsq) 14157 continue; 14158 14159 /* 14160 * Compare against the ipsq_name. The groupname change happens 14161 * in 2 phases. The 1st phase merges the from group into 14162 * the to group's ipsq, by calling ill_merge_groups and restarts 14163 * the ioctl. The 2nd phase then locates the ipsq again thru 14164 * ipsq_name. At this point the phyint_groupname has not been 14165 * updated. 14166 */ 14167 if ((group_len == strlen(ipsq->ipsq_name) + 1) && 14168 (bcmp(ipsq->ipsq_name, groupname, group_len) == 0)) { 14169 /* 14170 * Verify that an ipmp groupname is exactly 14171 * part of 1 ipsq and is not found in any other 14172 * ipsq. 14173 */ 14174 ASSERT(ip_ipsq_lookup(groupname, B_FALSE, ipsq, ipst) == 14175 NULL); 14176 return (ipsq); 14177 } 14178 14179 /* 14180 * Comparison against ipsq_name alone is not sufficient. 14181 * In the case when groups are currently being 14182 * merged, the ipsq could hold other IPMP groups temporarily. 14183 * so we walk the phyint list and compare against the 14184 * phyint_groupname as well. 14185 */ 14186 phyint = ipsq->ipsq_phyint_list; 14187 while (phyint != NULL) { 14188 if ((group_len == phyint->phyint_groupname_len) && 14189 (bcmp(phyint->phyint_groupname, groupname, 14190 group_len) == 0)) { 14191 /* 14192 * Verify that an ipmp groupname is exactly 14193 * part of 1 ipsq and is not found in any other 14194 * ipsq. 14195 */ 14196 ASSERT(ip_ipsq_lookup(groupname, B_FALSE, ipsq, 14197 ipst) == NULL); 14198 return (ipsq); 14199 } 14200 phyint = phyint->phyint_ipsq_next; 14201 } 14202 } 14203 if (create) 14204 ipsq = ipsq_create(groupname, ipst); 14205 return (ipsq); 14206 } 14207 14208 static void 14209 ipsq_delete(ipsq_t *ipsq) 14210 { 14211 ipsq_t *nipsq; 14212 ipsq_t *pipsq = NULL; 14213 ip_stack_t *ipst = ipsq->ipsq_ipst; 14214 14215 /* 14216 * We don't hold the ipsq lock, but we are sure no new 14217 * messages can land up, since the ipsq_refs is zero. 14218 * i.e. this ipsq is unnamed and no phyint or phyint group 14219 * is associated with this ipsq. (Lookups are based on ill_name 14220 * or phyint_groupname) 14221 */ 14222 ASSERT(ipsq->ipsq_refs == 0); 14223 ASSERT(ipsq->ipsq_xopq_mphead == NULL && ipsq->ipsq_mphead == NULL); 14224 ASSERT(ipsq->ipsq_pending_mp == NULL); 14225 if (!(ipsq->ipsq_flags & IPSQ_GROUP)) { 14226 /* 14227 * This is not the ipsq of an IPMP group. 14228 */ 14229 ipsq->ipsq_ipst = NULL; 14230 kmem_free(ipsq, sizeof (ipsq_t)); 14231 return; 14232 } 14233 14234 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 14235 14236 /* 14237 * Locate the ipsq before we can remove it from 14238 * the singly linked list of ipsq's. 14239 */ 14240 for (nipsq = ipst->ips_ipsq_g_head; nipsq != NULL; 14241 nipsq = nipsq->ipsq_next) { 14242 if (nipsq == ipsq) { 14243 break; 14244 } 14245 pipsq = nipsq; 14246 } 14247 14248 ASSERT(nipsq == ipsq); 14249 14250 /* unlink ipsq from the list */ 14251 if (pipsq != NULL) 14252 pipsq->ipsq_next = ipsq->ipsq_next; 14253 else 14254 ipst->ips_ipsq_g_head = ipsq->ipsq_next; 14255 ipsq->ipsq_ipst = NULL; 14256 kmem_free(ipsq, sizeof (ipsq_t)); 14257 rw_exit(&ipst->ips_ill_g_lock); 14258 } 14259 14260 static void 14261 ill_move_to_new_ipsq(ipsq_t *old_ipsq, ipsq_t *new_ipsq, mblk_t *current_mp, 14262 queue_t *q) 14263 { 14264 ASSERT(MUTEX_HELD(&new_ipsq->ipsq_lock)); 14265 ASSERT(old_ipsq->ipsq_mphead == NULL && old_ipsq->ipsq_mptail == NULL); 14266 ASSERT(old_ipsq->ipsq_pending_ipif == NULL); 14267 ASSERT(old_ipsq->ipsq_pending_mp == NULL); 14268 ASSERT(current_mp != NULL); 14269 14270 ipsq_enq(new_ipsq, q, current_mp, (ipsq_func_t)ip_process_ioctl, 14271 NEW_OP, NULL); 14272 14273 ASSERT(new_ipsq->ipsq_xopq_mptail != NULL && 14274 new_ipsq->ipsq_xopq_mphead != NULL); 14275 14276 /* 14277 * move from old ipsq to the new ipsq. 14278 */ 14279 new_ipsq->ipsq_xopq_mptail->b_next = old_ipsq->ipsq_xopq_mphead; 14280 if (old_ipsq->ipsq_xopq_mphead != NULL) 14281 new_ipsq->ipsq_xopq_mptail = old_ipsq->ipsq_xopq_mptail; 14282 14283 old_ipsq->ipsq_xopq_mphead = old_ipsq->ipsq_xopq_mptail = NULL; 14284 } 14285 14286 void 14287 ill_group_cleanup(ill_t *ill) 14288 { 14289 ill_t *ill_v4; 14290 ill_t *ill_v6; 14291 ipif_t *ipif; 14292 14293 ill_v4 = ill->ill_phyint->phyint_illv4; 14294 ill_v6 = ill->ill_phyint->phyint_illv6; 14295 14296 if (ill_v4 != NULL) { 14297 mutex_enter(&ill_v4->ill_lock); 14298 for (ipif = ill_v4->ill_ipif; ipif != NULL; 14299 ipif = ipif->ipif_next) { 14300 IPIF_UNMARK_MOVING(ipif); 14301 } 14302 ill_v4->ill_up_ipifs = B_FALSE; 14303 mutex_exit(&ill_v4->ill_lock); 14304 } 14305 14306 if (ill_v6 != NULL) { 14307 mutex_enter(&ill_v6->ill_lock); 14308 for (ipif = ill_v6->ill_ipif; ipif != NULL; 14309 ipif = ipif->ipif_next) { 14310 IPIF_UNMARK_MOVING(ipif); 14311 } 14312 ill_v6->ill_up_ipifs = B_FALSE; 14313 mutex_exit(&ill_v6->ill_lock); 14314 } 14315 } 14316 /* 14317 * This function is called when an ill has had a change in its group status 14318 * to bring up all the ipifs that were up before the change. 14319 */ 14320 int 14321 ill_up_ipifs(ill_t *ill, queue_t *q, mblk_t *mp) 14322 { 14323 ipif_t *ipif; 14324 ill_t *ill_v4; 14325 ill_t *ill_v6; 14326 ill_t *from_ill; 14327 int err = 0; 14328 14329 14330 ASSERT(IAM_WRITER_ILL(ill)); 14331 14332 /* 14333 * Except for ipif_state_flags and ill_state_flags the other 14334 * fields of the ipif/ill that are modified below are protected 14335 * implicitly since we are a writer. We would have tried to down 14336 * even an ipif that was already down, in ill_down_ipifs. So we 14337 * just blindly clear the IPIF_CHANGING flag here on all ipifs. 14338 */ 14339 ill_v4 = ill->ill_phyint->phyint_illv4; 14340 ill_v6 = ill->ill_phyint->phyint_illv6; 14341 if (ill_v4 != NULL) { 14342 ill_v4->ill_up_ipifs = B_TRUE; 14343 for (ipif = ill_v4->ill_ipif; ipif != NULL; 14344 ipif = ipif->ipif_next) { 14345 mutex_enter(&ill_v4->ill_lock); 14346 ipif->ipif_state_flags &= ~IPIF_CHANGING; 14347 IPIF_UNMARK_MOVING(ipif); 14348 mutex_exit(&ill_v4->ill_lock); 14349 if (ipif->ipif_was_up) { 14350 if (!(ipif->ipif_flags & IPIF_UP)) 14351 err = ipif_up(ipif, q, mp); 14352 ipif->ipif_was_up = B_FALSE; 14353 if (err != 0) { 14354 /* 14355 * Can there be any other error ? 14356 */ 14357 ASSERT(err == EINPROGRESS); 14358 return (err); 14359 } 14360 } 14361 } 14362 mutex_enter(&ill_v4->ill_lock); 14363 ill_v4->ill_state_flags &= ~ILL_CHANGING; 14364 mutex_exit(&ill_v4->ill_lock); 14365 ill_v4->ill_up_ipifs = B_FALSE; 14366 if (ill_v4->ill_move_in_progress) { 14367 ASSERT(ill_v4->ill_move_peer != NULL); 14368 ill_v4->ill_move_in_progress = B_FALSE; 14369 from_ill = ill_v4->ill_move_peer; 14370 from_ill->ill_move_in_progress = B_FALSE; 14371 from_ill->ill_move_peer = NULL; 14372 mutex_enter(&from_ill->ill_lock); 14373 from_ill->ill_state_flags &= ~ILL_CHANGING; 14374 mutex_exit(&from_ill->ill_lock); 14375 if (ill_v6 == NULL) { 14376 if (from_ill->ill_phyint->phyint_flags & 14377 PHYI_STANDBY) { 14378 phyint_inactive(from_ill->ill_phyint); 14379 } 14380 if (ill_v4->ill_phyint->phyint_flags & 14381 PHYI_STANDBY) { 14382 phyint_inactive(ill_v4->ill_phyint); 14383 } 14384 } 14385 ill_v4->ill_move_peer = NULL; 14386 } 14387 } 14388 14389 if (ill_v6 != NULL) { 14390 ill_v6->ill_up_ipifs = B_TRUE; 14391 for (ipif = ill_v6->ill_ipif; ipif != NULL; 14392 ipif = ipif->ipif_next) { 14393 mutex_enter(&ill_v6->ill_lock); 14394 ipif->ipif_state_flags &= ~IPIF_CHANGING; 14395 IPIF_UNMARK_MOVING(ipif); 14396 mutex_exit(&ill_v6->ill_lock); 14397 if (ipif->ipif_was_up) { 14398 if (!(ipif->ipif_flags & IPIF_UP)) 14399 err = ipif_up(ipif, q, mp); 14400 ipif->ipif_was_up = B_FALSE; 14401 if (err != 0) { 14402 /* 14403 * Can there be any other error ? 14404 */ 14405 ASSERT(err == EINPROGRESS); 14406 return (err); 14407 } 14408 } 14409 } 14410 mutex_enter(&ill_v6->ill_lock); 14411 ill_v6->ill_state_flags &= ~ILL_CHANGING; 14412 mutex_exit(&ill_v6->ill_lock); 14413 ill_v6->ill_up_ipifs = B_FALSE; 14414 if (ill_v6->ill_move_in_progress) { 14415 ASSERT(ill_v6->ill_move_peer != NULL); 14416 ill_v6->ill_move_in_progress = B_FALSE; 14417 from_ill = ill_v6->ill_move_peer; 14418 from_ill->ill_move_in_progress = B_FALSE; 14419 from_ill->ill_move_peer = NULL; 14420 mutex_enter(&from_ill->ill_lock); 14421 from_ill->ill_state_flags &= ~ILL_CHANGING; 14422 mutex_exit(&from_ill->ill_lock); 14423 if (from_ill->ill_phyint->phyint_flags & PHYI_STANDBY) { 14424 phyint_inactive(from_ill->ill_phyint); 14425 } 14426 if (ill_v6->ill_phyint->phyint_flags & PHYI_STANDBY) { 14427 phyint_inactive(ill_v6->ill_phyint); 14428 } 14429 ill_v6->ill_move_peer = NULL; 14430 } 14431 } 14432 return (0); 14433 } 14434 14435 /* 14436 * bring down all the approriate ipifs. 14437 */ 14438 /* ARGSUSED */ 14439 static void 14440 ill_down_ipifs(ill_t *ill, mblk_t *mp, int index, boolean_t chk_nofailover) 14441 { 14442 ipif_t *ipif; 14443 14444 ASSERT(IAM_WRITER_ILL(ill)); 14445 14446 /* 14447 * Except for ipif_state_flags the other fields of the ipif/ill that 14448 * are modified below are protected implicitly since we are a writer 14449 */ 14450 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 14451 if (chk_nofailover && (ipif->ipif_flags & IPIF_NOFAILOVER)) 14452 continue; 14453 if (index == 0 || index == ipif->ipif_orig_ifindex) { 14454 /* 14455 * We go through the ipif_down logic even if the ipif 14456 * is already down, since routes can be added based 14457 * on down ipifs. Going through ipif_down once again 14458 * will delete any IREs created based on these routes. 14459 */ 14460 if (ipif->ipif_flags & IPIF_UP) 14461 ipif->ipif_was_up = B_TRUE; 14462 /* 14463 * If called with chk_nofailover true ipif is moving. 14464 */ 14465 mutex_enter(&ill->ill_lock); 14466 if (chk_nofailover) { 14467 ipif->ipif_state_flags |= 14468 IPIF_MOVING | IPIF_CHANGING; 14469 } else { 14470 ipif->ipif_state_flags |= IPIF_CHANGING; 14471 } 14472 mutex_exit(&ill->ill_lock); 14473 /* 14474 * Need to re-create net/subnet bcast ires if 14475 * they are dependent on ipif. 14476 */ 14477 if (!ipif->ipif_isv6) 14478 ipif_check_bcast_ires(ipif); 14479 (void) ipif_logical_down(ipif, NULL, NULL); 14480 ipif_non_duplicate(ipif); 14481 ipif_down_tail(ipif); 14482 } 14483 } 14484 } 14485 14486 #define IPSQ_INC_REF(ipsq, ipst) { \ 14487 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); \ 14488 (ipsq)->ipsq_refs++; \ 14489 } 14490 14491 #define IPSQ_DEC_REF(ipsq, ipst) { \ 14492 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); \ 14493 (ipsq)->ipsq_refs--; \ 14494 if ((ipsq)->ipsq_refs == 0) \ 14495 (ipsq)->ipsq_name[0] = '\0'; \ 14496 } 14497 14498 /* 14499 * Change the ipsq of all the ill's whose current ipsq is 'cur_ipsq' to 14500 * new_ipsq. 14501 */ 14502 static void 14503 ill_merge_ipsq(ipsq_t *cur_ipsq, ipsq_t *new_ipsq, ip_stack_t *ipst) 14504 { 14505 phyint_t *phyint; 14506 phyint_t *next_phyint; 14507 14508 /* 14509 * To change the ipsq of an ill, we need to hold the ill_g_lock as 14510 * writer and the ill_lock of the ill in question. Also the dest 14511 * ipsq can't vanish while we hold the ill_g_lock as writer. 14512 */ 14513 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); 14514 14515 phyint = cur_ipsq->ipsq_phyint_list; 14516 cur_ipsq->ipsq_phyint_list = NULL; 14517 while (phyint != NULL) { 14518 next_phyint = phyint->phyint_ipsq_next; 14519 IPSQ_DEC_REF(cur_ipsq, ipst); 14520 phyint->phyint_ipsq_next = new_ipsq->ipsq_phyint_list; 14521 new_ipsq->ipsq_phyint_list = phyint; 14522 IPSQ_INC_REF(new_ipsq, ipst); 14523 phyint->phyint_ipsq = new_ipsq; 14524 phyint = next_phyint; 14525 } 14526 } 14527 14528 #define SPLIT_SUCCESS 0 14529 #define SPLIT_NOT_NEEDED 1 14530 #define SPLIT_FAILED 2 14531 14532 int 14533 ill_split_to_grp_ipsq(phyint_t *phyint, ipsq_t *cur_ipsq, boolean_t need_retry, 14534 ip_stack_t *ipst) 14535 { 14536 ipsq_t *newipsq = NULL; 14537 14538 /* 14539 * Assertions denote pre-requisites for changing the ipsq of 14540 * a phyint 14541 */ 14542 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); 14543 /* 14544 * <ill-phyint> assocs can't change while ill_g_lock 14545 * is held as writer. See ill_phyint_reinit() 14546 */ 14547 ASSERT(phyint->phyint_illv4 == NULL || 14548 MUTEX_HELD(&phyint->phyint_illv4->ill_lock)); 14549 ASSERT(phyint->phyint_illv6 == NULL || 14550 MUTEX_HELD(&phyint->phyint_illv6->ill_lock)); 14551 14552 if ((phyint->phyint_groupname_len != 14553 (strlen(cur_ipsq->ipsq_name) + 1) || 14554 bcmp(phyint->phyint_groupname, cur_ipsq->ipsq_name, 14555 phyint->phyint_groupname_len) != 0)) { 14556 /* 14557 * Once we fail in creating a new ipsq due to memory shortage, 14558 * don't attempt to create new ipsq again, based on another 14559 * phyint, since we want all phyints belonging to an IPMP group 14560 * to be in the same ipsq even in the event of mem alloc fails. 14561 */ 14562 newipsq = ip_ipsq_lookup(phyint->phyint_groupname, !need_retry, 14563 cur_ipsq, ipst); 14564 if (newipsq == NULL) { 14565 /* Memory allocation failure */ 14566 return (SPLIT_FAILED); 14567 } else { 14568 /* ipsq_refs protected by ill_g_lock (writer) */ 14569 IPSQ_DEC_REF(cur_ipsq, ipst); 14570 phyint->phyint_ipsq = newipsq; 14571 phyint->phyint_ipsq_next = newipsq->ipsq_phyint_list; 14572 newipsq->ipsq_phyint_list = phyint; 14573 IPSQ_INC_REF(newipsq, ipst); 14574 return (SPLIT_SUCCESS); 14575 } 14576 } 14577 return (SPLIT_NOT_NEEDED); 14578 } 14579 14580 /* 14581 * The ill locks of the phyint and the ill_g_lock (writer) must be held 14582 * to do this split 14583 */ 14584 static int 14585 ill_split_to_own_ipsq(phyint_t *phyint, ipsq_t *cur_ipsq, ip_stack_t *ipst) 14586 { 14587 ipsq_t *newipsq; 14588 14589 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); 14590 /* 14591 * <ill-phyint> assocs can't change while ill_g_lock 14592 * is held as writer. See ill_phyint_reinit() 14593 */ 14594 14595 ASSERT(phyint->phyint_illv4 == NULL || 14596 MUTEX_HELD(&phyint->phyint_illv4->ill_lock)); 14597 ASSERT(phyint->phyint_illv6 == NULL || 14598 MUTEX_HELD(&phyint->phyint_illv6->ill_lock)); 14599 14600 if (!ipsq_init((phyint->phyint_illv4 != NULL) ? 14601 phyint->phyint_illv4: phyint->phyint_illv6)) { 14602 /* 14603 * ipsq_init failed due to no memory 14604 * caller will use the same ipsq 14605 */ 14606 return (SPLIT_FAILED); 14607 } 14608 14609 /* ipsq_ref is protected by ill_g_lock (writer) */ 14610 IPSQ_DEC_REF(cur_ipsq, ipst); 14611 14612 /* 14613 * This is a new ipsq that is unknown to the world. 14614 * So we don't need to hold ipsq_lock, 14615 */ 14616 newipsq = phyint->phyint_ipsq; 14617 newipsq->ipsq_writer = NULL; 14618 newipsq->ipsq_reentry_cnt--; 14619 ASSERT(newipsq->ipsq_reentry_cnt == 0); 14620 #ifdef DEBUG 14621 newipsq->ipsq_depth = 0; 14622 #endif 14623 14624 return (SPLIT_SUCCESS); 14625 } 14626 14627 /* 14628 * Change the ipsq of all the ill's whose current ipsq is 'cur_ipsq' to 14629 * ipsq's representing their individual groups or themselves. Return 14630 * whether split needs to be retried again later. 14631 */ 14632 static boolean_t 14633 ill_split_ipsq(ipsq_t *cur_ipsq) 14634 { 14635 phyint_t *phyint; 14636 phyint_t *next_phyint; 14637 int error; 14638 boolean_t need_retry = B_FALSE; 14639 ip_stack_t *ipst = cur_ipsq->ipsq_ipst; 14640 14641 phyint = cur_ipsq->ipsq_phyint_list; 14642 cur_ipsq->ipsq_phyint_list = NULL; 14643 while (phyint != NULL) { 14644 next_phyint = phyint->phyint_ipsq_next; 14645 /* 14646 * 'created' will tell us whether the callee actually 14647 * created an ipsq. Lack of memory may force the callee 14648 * to return without creating an ipsq. 14649 */ 14650 if (phyint->phyint_groupname == NULL) { 14651 error = ill_split_to_own_ipsq(phyint, cur_ipsq, ipst); 14652 } else { 14653 error = ill_split_to_grp_ipsq(phyint, cur_ipsq, 14654 need_retry, ipst); 14655 } 14656 14657 switch (error) { 14658 case SPLIT_FAILED: 14659 need_retry = B_TRUE; 14660 /* FALLTHRU */ 14661 case SPLIT_NOT_NEEDED: 14662 /* 14663 * Keep it on the list. 14664 */ 14665 phyint->phyint_ipsq_next = cur_ipsq->ipsq_phyint_list; 14666 cur_ipsq->ipsq_phyint_list = phyint; 14667 break; 14668 case SPLIT_SUCCESS: 14669 break; 14670 default: 14671 ASSERT(0); 14672 } 14673 14674 phyint = next_phyint; 14675 } 14676 return (need_retry); 14677 } 14678 14679 /* 14680 * given an ipsq 'ipsq' lock all ills associated with this ipsq. 14681 * and return the ills in the list. This list will be 14682 * needed to unlock all the ills later on by the caller. 14683 * The <ill-ipsq> associations could change between the 14684 * lock and unlock. Hence the unlock can't traverse the 14685 * ipsq to get the list of ills. 14686 */ 14687 static int 14688 ill_lock_ipsq_ills(ipsq_t *ipsq, ill_t **list, int list_max) 14689 { 14690 int cnt = 0; 14691 phyint_t *phyint; 14692 ip_stack_t *ipst = ipsq->ipsq_ipst; 14693 14694 /* 14695 * The caller holds ill_g_lock to ensure that the ill memberships 14696 * of the ipsq don't change 14697 */ 14698 ASSERT(RW_LOCK_HELD(&ipst->ips_ill_g_lock)); 14699 14700 phyint = ipsq->ipsq_phyint_list; 14701 while (phyint != NULL) { 14702 if (phyint->phyint_illv4 != NULL) { 14703 ASSERT(cnt < list_max); 14704 list[cnt++] = phyint->phyint_illv4; 14705 } 14706 if (phyint->phyint_illv6 != NULL) { 14707 ASSERT(cnt < list_max); 14708 list[cnt++] = phyint->phyint_illv6; 14709 } 14710 phyint = phyint->phyint_ipsq_next; 14711 } 14712 ill_lock_ills(list, cnt); 14713 return (cnt); 14714 } 14715 14716 void 14717 ill_lock_ills(ill_t **list, int cnt) 14718 { 14719 int i; 14720 14721 if (cnt > 1) { 14722 boolean_t try_again; 14723 do { 14724 try_again = B_FALSE; 14725 for (i = 0; i < cnt - 1; i++) { 14726 if (list[i] < list[i + 1]) { 14727 ill_t *tmp; 14728 14729 /* swap the elements */ 14730 tmp = list[i]; 14731 list[i] = list[i + 1]; 14732 list[i + 1] = tmp; 14733 try_again = B_TRUE; 14734 } 14735 } 14736 } while (try_again); 14737 } 14738 14739 for (i = 0; i < cnt; i++) { 14740 if (i == 0) { 14741 if (list[i] != NULL) 14742 mutex_enter(&list[i]->ill_lock); 14743 else 14744 return; 14745 } else if ((list[i-1] != list[i]) && (list[i] != NULL)) { 14746 mutex_enter(&list[i]->ill_lock); 14747 } 14748 } 14749 } 14750 14751 void 14752 ill_unlock_ills(ill_t **list, int cnt) 14753 { 14754 int i; 14755 14756 for (i = 0; i < cnt; i++) { 14757 if ((i == 0) && (list[i] != NULL)) { 14758 mutex_exit(&list[i]->ill_lock); 14759 } else if ((list[i-1] != list[i]) && (list[i] != NULL)) { 14760 mutex_exit(&list[i]->ill_lock); 14761 } 14762 } 14763 } 14764 14765 /* 14766 * Merge all the ills from 1 ipsq group into another ipsq group. 14767 * The source ipsq group is specified by the ipsq associated with 14768 * 'from_ill'. The destination ipsq group is specified by the ipsq 14769 * associated with 'to_ill' or 'groupname' respectively. 14770 * Note that ipsq itself does not have a reference count mechanism 14771 * and functions don't look up an ipsq and pass it around. Instead 14772 * functions pass around an ill or groupname, and the ipsq is looked 14773 * up from the ill or groupname and the required operation performed 14774 * atomically with the lookup on the ipsq. 14775 */ 14776 static int 14777 ill_merge_groups(ill_t *from_ill, ill_t *to_ill, char *groupname, mblk_t *mp, 14778 queue_t *q) 14779 { 14780 ipsq_t *old_ipsq; 14781 ipsq_t *new_ipsq; 14782 ill_t **ill_list; 14783 int cnt; 14784 size_t ill_list_size; 14785 boolean_t became_writer_on_new_sq = B_FALSE; 14786 ip_stack_t *ipst = from_ill->ill_ipst; 14787 14788 ASSERT(to_ill == NULL || ipst == to_ill->ill_ipst); 14789 /* Exactly 1 of 'to_ill' and groupname can be specified. */ 14790 ASSERT((to_ill != NULL) ^ (groupname != NULL)); 14791 14792 /* 14793 * Need to hold ill_g_lock as writer and also the ill_lock to 14794 * change the <ill-ipsq> assoc of an ill. Need to hold the 14795 * ipsq_lock to prevent new messages from landing on an ipsq. 14796 */ 14797 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 14798 14799 old_ipsq = from_ill->ill_phyint->phyint_ipsq; 14800 if (groupname != NULL) 14801 new_ipsq = ip_ipsq_lookup(groupname, B_TRUE, NULL, ipst); 14802 else { 14803 new_ipsq = to_ill->ill_phyint->phyint_ipsq; 14804 } 14805 14806 ASSERT(old_ipsq != NULL && new_ipsq != NULL); 14807 14808 /* 14809 * both groups are on the same ipsq. 14810 */ 14811 if (old_ipsq == new_ipsq) { 14812 rw_exit(&ipst->ips_ill_g_lock); 14813 return (0); 14814 } 14815 14816 cnt = old_ipsq->ipsq_refs << 1; 14817 ill_list_size = cnt * sizeof (ill_t *); 14818 ill_list = kmem_zalloc(ill_list_size, KM_NOSLEEP); 14819 if (ill_list == NULL) { 14820 rw_exit(&ipst->ips_ill_g_lock); 14821 return (ENOMEM); 14822 } 14823 cnt = ill_lock_ipsq_ills(old_ipsq, ill_list, cnt); 14824 14825 /* Need ipsq lock to enque messages on new ipsq or to become writer */ 14826 mutex_enter(&new_ipsq->ipsq_lock); 14827 if ((new_ipsq->ipsq_writer == NULL && 14828 new_ipsq->ipsq_current_ipif == NULL) || 14829 (new_ipsq->ipsq_writer == curthread)) { 14830 new_ipsq->ipsq_writer = curthread; 14831 new_ipsq->ipsq_reentry_cnt++; 14832 became_writer_on_new_sq = B_TRUE; 14833 } 14834 14835 /* 14836 * We are holding ill_g_lock as writer and all the ill locks of 14837 * the old ipsq. So the old_ipsq can't be looked up, and hence no new 14838 * message can land up on the old ipsq even though we don't hold the 14839 * ipsq_lock of the old_ipsq. Now move all messages to the newipsq. 14840 */ 14841 ill_move_to_new_ipsq(old_ipsq, new_ipsq, mp, q); 14842 14843 /* 14844 * now change the ipsq of all ills in the 'old_ipsq' to 'new_ipsq'. 14845 * 'new_ipsq' has been looked up, and it can't change its <ill-ipsq> 14846 * assocs. till we release the ill_g_lock, and hence it can't vanish. 14847 */ 14848 ill_merge_ipsq(old_ipsq, new_ipsq, ipst); 14849 14850 /* 14851 * Mark the new ipsq as needing a split since it is currently 14852 * being shared by more than 1 IPMP group. The split will 14853 * occur at the end of ipsq_exit 14854 */ 14855 new_ipsq->ipsq_split = B_TRUE; 14856 14857 /* Now release all the locks */ 14858 mutex_exit(&new_ipsq->ipsq_lock); 14859 ill_unlock_ills(ill_list, cnt); 14860 rw_exit(&ipst->ips_ill_g_lock); 14861 14862 kmem_free(ill_list, ill_list_size); 14863 14864 /* 14865 * If we succeeded in becoming writer on the new ipsq, then 14866 * drain the new ipsq and start processing all enqueued messages 14867 * including the current ioctl we are processing which is either 14868 * a set groupname or failover/failback. 14869 */ 14870 if (became_writer_on_new_sq) 14871 ipsq_exit(new_ipsq, B_TRUE, B_TRUE); 14872 14873 /* 14874 * syncq has been changed and all the messages have been moved. 14875 */ 14876 mutex_enter(&old_ipsq->ipsq_lock); 14877 old_ipsq->ipsq_current_ipif = NULL; 14878 old_ipsq->ipsq_current_ioctl = 0; 14879 mutex_exit(&old_ipsq->ipsq_lock); 14880 return (EINPROGRESS); 14881 } 14882 14883 /* 14884 * Delete and add the loopback copy and non-loopback copy of 14885 * the BROADCAST ire corresponding to ill and addr. Used to 14886 * group broadcast ires together when ill becomes part of 14887 * a group. 14888 * 14889 * This function is also called when ill is leaving the group 14890 * so that the ires belonging to the group gets re-grouped. 14891 */ 14892 static void 14893 ill_bcast_delete_and_add(ill_t *ill, ipaddr_t addr) 14894 { 14895 ire_t *ire, *nire, *nire_next, *ire_head = NULL; 14896 ire_t **ire_ptpn = &ire_head; 14897 ip_stack_t *ipst = ill->ill_ipst; 14898 14899 /* 14900 * The loopback and non-loopback IREs are inserted in the order in which 14901 * they're found, on the basis that they are correctly ordered (loopback 14902 * first). 14903 */ 14904 for (;;) { 14905 ire = ire_ctable_lookup(addr, 0, IRE_BROADCAST, ill->ill_ipif, 14906 ALL_ZONES, NULL, MATCH_IRE_TYPE | MATCH_IRE_ILL, ipst); 14907 if (ire == NULL) 14908 break; 14909 14910 /* 14911 * we are passing in KM_SLEEP because it is not easy to 14912 * go back to a sane state in case of memory failure. 14913 */ 14914 nire = kmem_cache_alloc(ire_cache, KM_SLEEP); 14915 ASSERT(nire != NULL); 14916 bzero(nire, sizeof (ire_t)); 14917 /* 14918 * Don't use ire_max_frag directly since we don't 14919 * hold on to 'ire' until we add the new ire 'nire' and 14920 * we don't want the new ire to have a dangling reference 14921 * to 'ire'. The ire_max_frag of a broadcast ire must 14922 * be in sync with the ipif_mtu of the associate ipif. 14923 * For eg. this happens as a result of SIOCSLIFNAME, 14924 * SIOCSLIFLNKINFO or a DL_NOTE_SDU_SIZE inititated by 14925 * the driver. A change in ire_max_frag triggered as 14926 * as a result of path mtu discovery, or due to an 14927 * IP_IOC_IRE_ADVISE_NOREPLY from the transport or due a 14928 * route change -mtu command does not apply to broadcast ires. 14929 * 14930 * XXX We need a recovery strategy here if ire_init fails 14931 */ 14932 if (ire_init(nire, 14933 (uchar_t *)&ire->ire_addr, 14934 (uchar_t *)&ire->ire_mask, 14935 (uchar_t *)&ire->ire_src_addr, 14936 (uchar_t *)&ire->ire_gateway_addr, 14937 ire->ire_stq == NULL ? &ip_loopback_mtu : 14938 &ire->ire_ipif->ipif_mtu, 14939 ire->ire_nce, 14940 ire->ire_rfq, 14941 ire->ire_stq, 14942 ire->ire_type, 14943 ire->ire_ipif, 14944 ire->ire_cmask, 14945 ire->ire_phandle, 14946 ire->ire_ihandle, 14947 ire->ire_flags, 14948 &ire->ire_uinfo, 14949 NULL, 14950 NULL, 14951 ipst) == NULL) { 14952 cmn_err(CE_PANIC, "ire_init() failed"); 14953 } 14954 ire_delete(ire); 14955 ire_refrele(ire); 14956 14957 /* 14958 * The newly created IREs are inserted at the tail of the list 14959 * starting with ire_head. As we've just allocated them no one 14960 * knows about them so it's safe. 14961 */ 14962 *ire_ptpn = nire; 14963 ire_ptpn = &nire->ire_next; 14964 } 14965 14966 for (nire = ire_head; nire != NULL; nire = nire_next) { 14967 int error; 14968 ire_t *oire; 14969 /* unlink the IRE from our list before calling ire_add() */ 14970 nire_next = nire->ire_next; 14971 nire->ire_next = NULL; 14972 14973 /* ire_add adds the ire at the right place in the list */ 14974 oire = nire; 14975 error = ire_add(&nire, NULL, NULL, NULL, B_FALSE); 14976 ASSERT(error == 0); 14977 ASSERT(oire == nire); 14978 ire_refrele(nire); /* Held in ire_add */ 14979 } 14980 } 14981 14982 /* 14983 * This function is usually called when an ill is inserted in 14984 * a group and all the ipifs are already UP. As all the ipifs 14985 * are already UP, the broadcast ires have already been created 14986 * and been inserted. But, ire_add_v4 would not have grouped properly. 14987 * We need to re-group for the benefit of ip_wput_ire which 14988 * expects BROADCAST ires to be grouped properly to avoid sending 14989 * more than one copy of the broadcast packet per group. 14990 * 14991 * NOTE : We don't check for ill_ipif_up_count to be non-zero here 14992 * because when ipif_up_done ends up calling this, ires have 14993 * already been added before illgrp_insert i.e before ill_group 14994 * has been initialized. 14995 */ 14996 static void 14997 ill_group_bcast_for_xmit(ill_t *ill) 14998 { 14999 ill_group_t *illgrp; 15000 ipif_t *ipif; 15001 ipaddr_t addr; 15002 ipaddr_t net_mask; 15003 ipaddr_t subnet_netmask; 15004 15005 illgrp = ill->ill_group; 15006 15007 /* 15008 * This function is called even when an ill is deleted from 15009 * the group. Hence, illgrp could be null. 15010 */ 15011 if (illgrp != NULL && illgrp->illgrp_ill_count == 1) 15012 return; 15013 15014 /* 15015 * Delete all the BROADCAST ires matching this ill and add 15016 * them back. This time, ire_add_v4 should take care of 15017 * grouping them with others because ill is part of the 15018 * group. 15019 */ 15020 ill_bcast_delete_and_add(ill, 0); 15021 ill_bcast_delete_and_add(ill, INADDR_BROADCAST); 15022 15023 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 15024 15025 if ((ipif->ipif_lcl_addr != INADDR_ANY) && 15026 !(ipif->ipif_flags & IPIF_NOLOCAL)) { 15027 net_mask = ip_net_mask(ipif->ipif_lcl_addr); 15028 } else { 15029 net_mask = htonl(IN_CLASSA_NET); 15030 } 15031 addr = net_mask & ipif->ipif_subnet; 15032 ill_bcast_delete_and_add(ill, addr); 15033 ill_bcast_delete_and_add(ill, ~net_mask | addr); 15034 15035 subnet_netmask = ipif->ipif_net_mask; 15036 addr = ipif->ipif_subnet; 15037 ill_bcast_delete_and_add(ill, addr); 15038 ill_bcast_delete_and_add(ill, ~subnet_netmask | addr); 15039 } 15040 } 15041 15042 /* 15043 * This function is called from illgrp_delete when ill is being deleted 15044 * from the group. 15045 * 15046 * As ill is not there in the group anymore, any address belonging 15047 * to this ill should be cleared of IRE_MARK_NORECV. 15048 */ 15049 static void 15050 ill_clear_bcast_mark(ill_t *ill, ipaddr_t addr) 15051 { 15052 ire_t *ire; 15053 irb_t *irb; 15054 ip_stack_t *ipst = ill->ill_ipst; 15055 15056 ASSERT(ill->ill_group == NULL); 15057 15058 ire = ire_ctable_lookup(addr, 0, IRE_BROADCAST, ill->ill_ipif, 15059 ALL_ZONES, NULL, MATCH_IRE_TYPE | MATCH_IRE_ILL, ipst); 15060 15061 if (ire != NULL) { 15062 /* 15063 * IPMP and plumbing operations are serialized on the ipsq, so 15064 * no one will insert or delete a broadcast ire under our feet. 15065 */ 15066 irb = ire->ire_bucket; 15067 rw_enter(&irb->irb_lock, RW_READER); 15068 ire_refrele(ire); 15069 15070 for (; ire != NULL; ire = ire->ire_next) { 15071 if (ire->ire_addr != addr) 15072 break; 15073 if (ire_to_ill(ire) != ill) 15074 continue; 15075 15076 ASSERT(!(ire->ire_marks & IRE_MARK_CONDEMNED)); 15077 ire->ire_marks &= ~IRE_MARK_NORECV; 15078 } 15079 rw_exit(&irb->irb_lock); 15080 } 15081 } 15082 15083 /* 15084 * This function must be called only after the broadcast ires 15085 * have been grouped together. For a given address addr, nominate 15086 * only one of the ires whose interface is not FAILED or OFFLINE. 15087 * 15088 * This is also called when an ipif goes down, so that we can nominate 15089 * a different ire with the same address for receiving. 15090 */ 15091 static void 15092 ill_mark_bcast(ill_group_t *illgrp, ipaddr_t addr, ip_stack_t *ipst) 15093 { 15094 irb_t *irb; 15095 ire_t *ire; 15096 ire_t *ire1; 15097 ire_t *save_ire; 15098 ire_t **irep = NULL; 15099 boolean_t first = B_TRUE; 15100 ire_t *clear_ire = NULL; 15101 ire_t *start_ire = NULL; 15102 ire_t *new_lb_ire; 15103 ire_t *new_nlb_ire; 15104 boolean_t new_lb_ire_used = B_FALSE; 15105 boolean_t new_nlb_ire_used = B_FALSE; 15106 uint64_t match_flags; 15107 uint64_t phyi_flags; 15108 boolean_t fallback = B_FALSE; 15109 uint_t max_frag; 15110 15111 ire = ire_ctable_lookup(addr, 0, IRE_BROADCAST, NULL, ALL_ZONES, 15112 NULL, MATCH_IRE_TYPE, ipst); 15113 /* 15114 * We may not be able to find some ires if a previous 15115 * ire_create failed. This happens when an ipif goes 15116 * down and we are unable to create BROADCAST ires due 15117 * to memory failure. Thus, we have to check for NULL 15118 * below. This should handle the case for LOOPBACK, 15119 * POINTOPOINT and interfaces with some POINTOPOINT 15120 * logicals for which there are no BROADCAST ires. 15121 */ 15122 if (ire == NULL) 15123 return; 15124 /* 15125 * Currently IRE_BROADCASTS are deleted when an ipif 15126 * goes down which runs exclusively. Thus, setting 15127 * IRE_MARK_RCVD should not race with ire_delete marking 15128 * IRE_MARK_CONDEMNED. We grab the lock below just to 15129 * be consistent with other parts of the code that walks 15130 * a given bucket. 15131 */ 15132 save_ire = ire; 15133 irb = ire->ire_bucket; 15134 new_lb_ire = kmem_cache_alloc(ire_cache, KM_NOSLEEP); 15135 if (new_lb_ire == NULL) { 15136 ire_refrele(ire); 15137 return; 15138 } 15139 new_nlb_ire = kmem_cache_alloc(ire_cache, KM_NOSLEEP); 15140 if (new_nlb_ire == NULL) { 15141 ire_refrele(ire); 15142 kmem_cache_free(ire_cache, new_lb_ire); 15143 return; 15144 } 15145 IRB_REFHOLD(irb); 15146 rw_enter(&irb->irb_lock, RW_WRITER); 15147 /* 15148 * Get to the first ire matching the address and the 15149 * group. If the address does not match we are done 15150 * as we could not find the IRE. If the address matches 15151 * we should get to the first one matching the group. 15152 */ 15153 while (ire != NULL) { 15154 if (ire->ire_addr != addr || 15155 ire->ire_ipif->ipif_ill->ill_group == illgrp) { 15156 break; 15157 } 15158 ire = ire->ire_next; 15159 } 15160 match_flags = PHYI_FAILED | PHYI_INACTIVE; 15161 start_ire = ire; 15162 redo: 15163 while (ire != NULL && ire->ire_addr == addr && 15164 ire->ire_ipif->ipif_ill->ill_group == illgrp) { 15165 /* 15166 * The first ire for any address within a group 15167 * should always be the one with IRE_MARK_NORECV cleared 15168 * so that ip_wput_ire can avoid searching for one. 15169 * Note down the insertion point which will be used 15170 * later. 15171 */ 15172 if (first && (irep == NULL)) 15173 irep = ire->ire_ptpn; 15174 /* 15175 * PHYI_FAILED is set when the interface fails. 15176 * This interface might have become good, but the 15177 * daemon has not yet detected. We should still 15178 * not receive on this. PHYI_OFFLINE should never 15179 * be picked as this has been offlined and soon 15180 * be removed. 15181 */ 15182 phyi_flags = ire->ire_ipif->ipif_ill->ill_phyint->phyint_flags; 15183 if (phyi_flags & PHYI_OFFLINE) { 15184 ire->ire_marks |= IRE_MARK_NORECV; 15185 ire = ire->ire_next; 15186 continue; 15187 } 15188 if (phyi_flags & match_flags) { 15189 ire->ire_marks |= IRE_MARK_NORECV; 15190 ire = ire->ire_next; 15191 if ((phyi_flags & (PHYI_FAILED | PHYI_INACTIVE)) == 15192 PHYI_INACTIVE) { 15193 fallback = B_TRUE; 15194 } 15195 continue; 15196 } 15197 if (first) { 15198 /* 15199 * We will move this to the front of the list later 15200 * on. 15201 */ 15202 clear_ire = ire; 15203 ire->ire_marks &= ~IRE_MARK_NORECV; 15204 } else { 15205 ire->ire_marks |= IRE_MARK_NORECV; 15206 } 15207 first = B_FALSE; 15208 ire = ire->ire_next; 15209 } 15210 /* 15211 * If we never nominated anybody, try nominating at least 15212 * an INACTIVE, if we found one. Do it only once though. 15213 */ 15214 if (first && (match_flags == (PHYI_FAILED | PHYI_INACTIVE)) && 15215 fallback) { 15216 match_flags = PHYI_FAILED; 15217 ire = start_ire; 15218 irep = NULL; 15219 goto redo; 15220 } 15221 ire_refrele(save_ire); 15222 15223 /* 15224 * irep non-NULL indicates that we entered the while loop 15225 * above. If clear_ire is at the insertion point, we don't 15226 * have to do anything. clear_ire will be NULL if all the 15227 * interfaces are failed. 15228 * 15229 * We cannot unlink and reinsert the ire at the right place 15230 * in the list since there can be other walkers of this bucket. 15231 * Instead we delete and recreate the ire 15232 */ 15233 if (clear_ire != NULL && irep != NULL && *irep != clear_ire) { 15234 ire_t *clear_ire_stq = NULL; 15235 15236 bzero(new_lb_ire, sizeof (ire_t)); 15237 /* XXX We need a recovery strategy here. */ 15238 if (ire_init(new_lb_ire, 15239 (uchar_t *)&clear_ire->ire_addr, 15240 (uchar_t *)&clear_ire->ire_mask, 15241 (uchar_t *)&clear_ire->ire_src_addr, 15242 (uchar_t *)&clear_ire->ire_gateway_addr, 15243 &clear_ire->ire_max_frag, 15244 NULL, /* let ire_nce_init derive the resolver info */ 15245 clear_ire->ire_rfq, 15246 clear_ire->ire_stq, 15247 clear_ire->ire_type, 15248 clear_ire->ire_ipif, 15249 clear_ire->ire_cmask, 15250 clear_ire->ire_phandle, 15251 clear_ire->ire_ihandle, 15252 clear_ire->ire_flags, 15253 &clear_ire->ire_uinfo, 15254 NULL, 15255 NULL, 15256 ipst) == NULL) 15257 cmn_err(CE_PANIC, "ire_init() failed"); 15258 if (clear_ire->ire_stq == NULL) { 15259 ire_t *ire_next = clear_ire->ire_next; 15260 if (ire_next != NULL && 15261 ire_next->ire_stq != NULL && 15262 ire_next->ire_addr == clear_ire->ire_addr && 15263 ire_next->ire_ipif->ipif_ill == 15264 clear_ire->ire_ipif->ipif_ill) { 15265 clear_ire_stq = ire_next; 15266 15267 bzero(new_nlb_ire, sizeof (ire_t)); 15268 /* XXX We need a recovery strategy here. */ 15269 if (ire_init(new_nlb_ire, 15270 (uchar_t *)&clear_ire_stq->ire_addr, 15271 (uchar_t *)&clear_ire_stq->ire_mask, 15272 (uchar_t *)&clear_ire_stq->ire_src_addr, 15273 (uchar_t *)&clear_ire_stq->ire_gateway_addr, 15274 &clear_ire_stq->ire_max_frag, 15275 NULL, 15276 clear_ire_stq->ire_rfq, 15277 clear_ire_stq->ire_stq, 15278 clear_ire_stq->ire_type, 15279 clear_ire_stq->ire_ipif, 15280 clear_ire_stq->ire_cmask, 15281 clear_ire_stq->ire_phandle, 15282 clear_ire_stq->ire_ihandle, 15283 clear_ire_stq->ire_flags, 15284 &clear_ire_stq->ire_uinfo, 15285 NULL, 15286 NULL, 15287 ipst) == NULL) 15288 cmn_err(CE_PANIC, "ire_init() failed"); 15289 } 15290 } 15291 15292 /* 15293 * Delete the ire. We can't call ire_delete() since 15294 * we are holding the bucket lock. We can't release the 15295 * bucket lock since we can't allow irep to change. So just 15296 * mark it CONDEMNED. The IRB_REFRELE will delete the 15297 * ire from the list and do the refrele. 15298 */ 15299 clear_ire->ire_marks |= IRE_MARK_CONDEMNED; 15300 irb->irb_marks |= IRB_MARK_CONDEMNED; 15301 15302 if (clear_ire_stq != NULL && clear_ire_stq->ire_nce != NULL) { 15303 nce_fastpath_list_delete(clear_ire_stq->ire_nce); 15304 clear_ire_stq->ire_marks |= IRE_MARK_CONDEMNED; 15305 } 15306 15307 /* 15308 * Also take care of otherfields like ib/ob pkt count 15309 * etc. Need to dup them. ditto in ill_bcast_delete_and_add 15310 */ 15311 15312 /* Set the max_frag before adding the ire */ 15313 max_frag = *new_lb_ire->ire_max_fragp; 15314 new_lb_ire->ire_max_fragp = NULL; 15315 new_lb_ire->ire_max_frag = max_frag; 15316 15317 /* Add the new ire's. Insert at *irep */ 15318 new_lb_ire->ire_bucket = clear_ire->ire_bucket; 15319 ire1 = *irep; 15320 if (ire1 != NULL) 15321 ire1->ire_ptpn = &new_lb_ire->ire_next; 15322 new_lb_ire->ire_next = ire1; 15323 /* Link the new one in. */ 15324 new_lb_ire->ire_ptpn = irep; 15325 membar_producer(); 15326 *irep = new_lb_ire; 15327 new_lb_ire_used = B_TRUE; 15328 BUMP_IRE_STATS(ipst->ips_ire_stats_v4, ire_stats_inserted); 15329 new_lb_ire->ire_bucket->irb_ire_cnt++; 15330 new_lb_ire->ire_ipif->ipif_ire_cnt++; 15331 15332 if (clear_ire_stq != NULL) { 15333 /* Set the max_frag before adding the ire */ 15334 max_frag = *new_nlb_ire->ire_max_fragp; 15335 new_nlb_ire->ire_max_fragp = NULL; 15336 new_nlb_ire->ire_max_frag = max_frag; 15337 15338 new_nlb_ire->ire_bucket = clear_ire->ire_bucket; 15339 irep = &new_lb_ire->ire_next; 15340 /* Add the new ire. Insert at *irep */ 15341 ire1 = *irep; 15342 if (ire1 != NULL) 15343 ire1->ire_ptpn = &new_nlb_ire->ire_next; 15344 new_nlb_ire->ire_next = ire1; 15345 /* Link the new one in. */ 15346 new_nlb_ire->ire_ptpn = irep; 15347 membar_producer(); 15348 *irep = new_nlb_ire; 15349 new_nlb_ire_used = B_TRUE; 15350 BUMP_IRE_STATS(ipst->ips_ire_stats_v4, 15351 ire_stats_inserted); 15352 new_nlb_ire->ire_bucket->irb_ire_cnt++; 15353 new_nlb_ire->ire_ipif->ipif_ire_cnt++; 15354 ((ill_t *)new_nlb_ire->ire_stq->q_ptr)->ill_ire_cnt++; 15355 } 15356 } 15357 rw_exit(&irb->irb_lock); 15358 if (!new_lb_ire_used) 15359 kmem_cache_free(ire_cache, new_lb_ire); 15360 if (!new_nlb_ire_used) 15361 kmem_cache_free(ire_cache, new_nlb_ire); 15362 IRB_REFRELE(irb); 15363 } 15364 15365 /* 15366 * Whenever an ipif goes down we have to renominate a different 15367 * broadcast ire to receive. Whenever an ipif comes up, we need 15368 * to make sure that we have only one nominated to receive. 15369 */ 15370 static void 15371 ipif_renominate_bcast(ipif_t *ipif) 15372 { 15373 ill_t *ill = ipif->ipif_ill; 15374 ipaddr_t subnet_addr; 15375 ipaddr_t net_addr; 15376 ipaddr_t net_mask = 0; 15377 ipaddr_t subnet_netmask; 15378 ipaddr_t addr; 15379 ill_group_t *illgrp; 15380 ip_stack_t *ipst = ill->ill_ipst; 15381 15382 illgrp = ill->ill_group; 15383 /* 15384 * If this is the last ipif going down, it might take 15385 * the ill out of the group. In that case ipif_down -> 15386 * illgrp_delete takes care of doing the nomination. 15387 * ipif_down does not call for this case. 15388 */ 15389 ASSERT(illgrp != NULL); 15390 15391 /* There could not have been any ires associated with this */ 15392 if (ipif->ipif_subnet == 0) 15393 return; 15394 15395 ill_mark_bcast(illgrp, 0, ipst); 15396 ill_mark_bcast(illgrp, INADDR_BROADCAST, ipst); 15397 15398 if ((ipif->ipif_lcl_addr != INADDR_ANY) && 15399 !(ipif->ipif_flags & IPIF_NOLOCAL)) { 15400 net_mask = ip_net_mask(ipif->ipif_lcl_addr); 15401 } else { 15402 net_mask = htonl(IN_CLASSA_NET); 15403 } 15404 addr = net_mask & ipif->ipif_subnet; 15405 ill_mark_bcast(illgrp, addr, ipst); 15406 15407 net_addr = ~net_mask | addr; 15408 ill_mark_bcast(illgrp, net_addr, ipst); 15409 15410 subnet_netmask = ipif->ipif_net_mask; 15411 addr = ipif->ipif_subnet; 15412 ill_mark_bcast(illgrp, addr, ipst); 15413 15414 subnet_addr = ~subnet_netmask | addr; 15415 ill_mark_bcast(illgrp, subnet_addr, ipst); 15416 } 15417 15418 /* 15419 * Whenever we form or delete ill groups, we need to nominate one set of 15420 * BROADCAST ires for receiving in the group. 15421 * 15422 * 1) When ipif_up_done -> ilgrp_insert calls this function, BROADCAST ires 15423 * have been added, but ill_ipif_up_count is 0. Thus, we don't assert 15424 * for ill_ipif_up_count to be non-zero. This is the only case where 15425 * ill_ipif_up_count is zero and we would still find the ires. 15426 * 15427 * 2) ip_sioctl_group_name/ifgrp_insert calls this function, at least one 15428 * ipif is UP and we just have to do the nomination. 15429 * 15430 * 3) When ill_handoff_responsibility calls us, some ill has been removed 15431 * from the group. So, we have to do the nomination. 15432 * 15433 * Because of (3), there could be just one ill in the group. But we have 15434 * to nominate still as IRE_MARK_NORCV may have been marked on this. 15435 * Thus, this function does not optimize when there is only one ill as 15436 * it is not correct for (3). 15437 */ 15438 static void 15439 ill_nominate_bcast_rcv(ill_group_t *illgrp) 15440 { 15441 ill_t *ill; 15442 ipif_t *ipif; 15443 ipaddr_t subnet_addr; 15444 ipaddr_t prev_subnet_addr = 0; 15445 ipaddr_t net_addr; 15446 ipaddr_t prev_net_addr = 0; 15447 ipaddr_t net_mask = 0; 15448 ipaddr_t subnet_netmask; 15449 ipaddr_t addr; 15450 ip_stack_t *ipst; 15451 15452 /* 15453 * When the last memeber is leaving, there is nothing to 15454 * nominate. 15455 */ 15456 if (illgrp->illgrp_ill_count == 0) { 15457 ASSERT(illgrp->illgrp_ill == NULL); 15458 return; 15459 } 15460 15461 ill = illgrp->illgrp_ill; 15462 ASSERT(!ill->ill_isv6); 15463 ipst = ill->ill_ipst; 15464 /* 15465 * We assume that ires with same address and belonging to the 15466 * same group, has been grouped together. Nominating a *single* 15467 * ill in the group for sending and receiving broadcast is done 15468 * by making sure that the first BROADCAST ire (which will be 15469 * the one returned by ire_ctable_lookup for ip_rput and the 15470 * one that will be used in ip_wput_ire) will be the one that 15471 * will not have IRE_MARK_NORECV set. 15472 * 15473 * 1) ip_rput checks and discards packets received on ires marked 15474 * with IRE_MARK_NORECV. Thus, we don't send up duplicate 15475 * broadcast packets. We need to clear IRE_MARK_NORECV on the 15476 * first ire in the group for every broadcast address in the group. 15477 * ip_rput will accept packets only on the first ire i.e only 15478 * one copy of the ill. 15479 * 15480 * 2) ip_wput_ire needs to send out just one copy of the broadcast 15481 * packet for the whole group. It needs to send out on the ill 15482 * whose ire has not been marked with IRE_MARK_NORECV. If it sends 15483 * on the one marked with IRE_MARK_NORECV, ip_rput will accept 15484 * the copy echoed back on other port where the ire is not marked 15485 * with IRE_MARK_NORECV. 15486 * 15487 * Note that we just need to have the first IRE either loopback or 15488 * non-loopback (either of them may not exist if ire_create failed 15489 * during ipif_down) with IRE_MARK_NORECV not set. ip_rput will 15490 * always hit the first one and hence will always accept one copy. 15491 * 15492 * We have a broadcast ire per ill for all the unique prefixes 15493 * hosted on that ill. As we don't have a way of knowing the 15494 * unique prefixes on a given ill and hence in the whole group, 15495 * we just call ill_mark_bcast on all the prefixes that exist 15496 * in the group. For the common case of one prefix, the code 15497 * below optimizes by remebering the last address used for 15498 * markng. In the case of multiple prefixes, this will still 15499 * optimize depending the order of prefixes. 15500 * 15501 * The only unique address across the whole group is 0.0.0.0 and 15502 * 255.255.255.255 and thus we call only once. ill_mark_bcast enables 15503 * the first ire in the bucket for receiving and disables the 15504 * others. 15505 */ 15506 ill_mark_bcast(illgrp, 0, ipst); 15507 ill_mark_bcast(illgrp, INADDR_BROADCAST, ipst); 15508 for (; ill != NULL; ill = ill->ill_group_next) { 15509 15510 for (ipif = ill->ill_ipif; ipif != NULL; 15511 ipif = ipif->ipif_next) { 15512 15513 if (!(ipif->ipif_flags & IPIF_UP) || 15514 ipif->ipif_subnet == 0) { 15515 continue; 15516 } 15517 if ((ipif->ipif_lcl_addr != INADDR_ANY) && 15518 !(ipif->ipif_flags & IPIF_NOLOCAL)) { 15519 net_mask = ip_net_mask(ipif->ipif_lcl_addr); 15520 } else { 15521 net_mask = htonl(IN_CLASSA_NET); 15522 } 15523 addr = net_mask & ipif->ipif_subnet; 15524 if (prev_net_addr == 0 || prev_net_addr != addr) { 15525 ill_mark_bcast(illgrp, addr, ipst); 15526 net_addr = ~net_mask | addr; 15527 ill_mark_bcast(illgrp, net_addr, ipst); 15528 } 15529 prev_net_addr = addr; 15530 15531 subnet_netmask = ipif->ipif_net_mask; 15532 addr = ipif->ipif_subnet; 15533 if (prev_subnet_addr == 0 || 15534 prev_subnet_addr != addr) { 15535 ill_mark_bcast(illgrp, addr, ipst); 15536 subnet_addr = ~subnet_netmask | addr; 15537 ill_mark_bcast(illgrp, subnet_addr, ipst); 15538 } 15539 prev_subnet_addr = addr; 15540 } 15541 } 15542 } 15543 15544 /* 15545 * This function is called while forming ill groups. 15546 * 15547 * Currently, we handle only allmulti groups. We want to join 15548 * allmulti on only one of the ills in the groups. In future, 15549 * when we have link aggregation, we may have to join normal 15550 * multicast groups on multiple ills as switch does inbound load 15551 * balancing. Following are the functions that calls this 15552 * function : 15553 * 15554 * 1) ill_recover_multicast : Interface is coming back UP. 15555 * When the first ipif comes back UP, ipif_up_done/ipif_up_done_v6 15556 * will call ill_recover_multicast to recover all the multicast 15557 * groups. We need to make sure that only one member is joined 15558 * in the ill group. 15559 * 15560 * 2) ip_addmulti/ip_addmulti_v6 : ill groups has already been formed. 15561 * Somebody is joining allmulti. We need to make sure that only one 15562 * member is joined in the group. 15563 * 15564 * 3) illgrp_insert : If allmulti has already joined, we need to make 15565 * sure that only one member is joined in the group. 15566 * 15567 * 4) ip_delmulti/ip_delmulti_v6 : Somebody in the group is leaving 15568 * allmulti who we have nominated. We need to pick someother ill. 15569 * 15570 * 5) illgrp_delete : The ill we nominated is leaving the group, 15571 * we need to pick a new ill to join the group. 15572 * 15573 * For (1), (2), (5) - we just have to check whether there is 15574 * a good ill joined in the group. If we could not find any ills 15575 * joined the group, we should join. 15576 * 15577 * For (4), the one that was nominated to receive, left the group. 15578 * There could be nobody joined in the group when this function is 15579 * called. 15580 * 15581 * For (3) - we need to explicitly check whether there are multiple 15582 * ills joined in the group. 15583 * 15584 * For simplicity, we don't differentiate any of the above cases. We 15585 * just leave the group if it is joined on any of them and join on 15586 * the first good ill. 15587 */ 15588 int 15589 ill_nominate_mcast_rcv(ill_group_t *illgrp) 15590 { 15591 ilm_t *ilm; 15592 ill_t *ill; 15593 ill_t *fallback_inactive_ill = NULL; 15594 ill_t *fallback_failed_ill = NULL; 15595 int ret = 0; 15596 15597 /* 15598 * Leave the allmulti on all the ills and start fresh. 15599 */ 15600 for (ill = illgrp->illgrp_ill; ill != NULL; 15601 ill = ill->ill_group_next) { 15602 if (ill->ill_join_allmulti) 15603 (void) ip_leave_allmulti(ill->ill_ipif); 15604 } 15605 15606 /* 15607 * Choose a good ill. Fallback to inactive or failed if 15608 * none available. We need to fallback to FAILED in the 15609 * case where we have 2 interfaces in a group - where 15610 * one of them is failed and another is a good one and 15611 * the good one (not marked inactive) is leaving the group. 15612 */ 15613 ret = 0; 15614 for (ill = illgrp->illgrp_ill; ill != NULL; 15615 ill = ill->ill_group_next) { 15616 /* Never pick an offline interface */ 15617 if (ill->ill_phyint->phyint_flags & PHYI_OFFLINE) 15618 continue; 15619 15620 if (ill->ill_phyint->phyint_flags & PHYI_FAILED) { 15621 fallback_failed_ill = ill; 15622 continue; 15623 } 15624 if (ill->ill_phyint->phyint_flags & PHYI_INACTIVE) { 15625 fallback_inactive_ill = ill; 15626 continue; 15627 } 15628 for (ilm = ill->ill_ilm; ilm != NULL; ilm = ilm->ilm_next) { 15629 if (IN6_IS_ADDR_UNSPECIFIED(&ilm->ilm_v6addr)) { 15630 ret = ip_join_allmulti(ill->ill_ipif); 15631 /* 15632 * ip_join_allmulti can fail because of memory 15633 * failures. So, make sure we join at least 15634 * on one ill. 15635 */ 15636 if (ill->ill_join_allmulti) 15637 return (0); 15638 } 15639 } 15640 } 15641 if (ret != 0) { 15642 /* 15643 * If we tried nominating above and failed to do so, 15644 * return error. We might have tried multiple times. 15645 * But, return the latest error. 15646 */ 15647 return (ret); 15648 } 15649 if ((ill = fallback_inactive_ill) != NULL) { 15650 for (ilm = ill->ill_ilm; ilm != NULL; ilm = ilm->ilm_next) { 15651 if (IN6_IS_ADDR_UNSPECIFIED(&ilm->ilm_v6addr)) { 15652 ret = ip_join_allmulti(ill->ill_ipif); 15653 return (ret); 15654 } 15655 } 15656 } else if ((ill = fallback_failed_ill) != NULL) { 15657 for (ilm = ill->ill_ilm; ilm != NULL; ilm = ilm->ilm_next) { 15658 if (IN6_IS_ADDR_UNSPECIFIED(&ilm->ilm_v6addr)) { 15659 ret = ip_join_allmulti(ill->ill_ipif); 15660 return (ret); 15661 } 15662 } 15663 } 15664 return (0); 15665 } 15666 15667 /* 15668 * This function is called from illgrp_delete after it is 15669 * deleted from the group to reschedule responsibilities 15670 * to a different ill. 15671 */ 15672 static void 15673 ill_handoff_responsibility(ill_t *ill, ill_group_t *illgrp) 15674 { 15675 ilm_t *ilm; 15676 ipif_t *ipif; 15677 ipaddr_t subnet_addr; 15678 ipaddr_t net_addr; 15679 ipaddr_t net_mask = 0; 15680 ipaddr_t subnet_netmask; 15681 ipaddr_t addr; 15682 ip_stack_t *ipst = ill->ill_ipst; 15683 15684 ASSERT(ill->ill_group == NULL); 15685 /* 15686 * Broadcast Responsibility: 15687 * 15688 * 1. If this ill has been nominated for receiving broadcast 15689 * packets, we need to find a new one. Before we find a new 15690 * one, we need to re-group the ires that are part of this new 15691 * group (assumed by ill_nominate_bcast_rcv). We do this by 15692 * calling ill_group_bcast_for_xmit(ill) which will do the right 15693 * thing for us. 15694 * 15695 * 2. If this ill was not nominated for receiving broadcast 15696 * packets, we need to clear the IRE_MARK_NORECV flag 15697 * so that we continue to send up broadcast packets. 15698 */ 15699 if (!ill->ill_isv6) { 15700 /* 15701 * Case 1 above : No optimization here. Just redo the 15702 * nomination. 15703 */ 15704 ill_group_bcast_for_xmit(ill); 15705 ill_nominate_bcast_rcv(illgrp); 15706 15707 /* 15708 * Case 2 above : Lookup and clear IRE_MARK_NORECV. 15709 */ 15710 ill_clear_bcast_mark(ill, 0); 15711 ill_clear_bcast_mark(ill, INADDR_BROADCAST); 15712 15713 for (ipif = ill->ill_ipif; ipif != NULL; 15714 ipif = ipif->ipif_next) { 15715 15716 if (!(ipif->ipif_flags & IPIF_UP) || 15717 ipif->ipif_subnet == 0) { 15718 continue; 15719 } 15720 if ((ipif->ipif_lcl_addr != INADDR_ANY) && 15721 !(ipif->ipif_flags & IPIF_NOLOCAL)) { 15722 net_mask = ip_net_mask(ipif->ipif_lcl_addr); 15723 } else { 15724 net_mask = htonl(IN_CLASSA_NET); 15725 } 15726 addr = net_mask & ipif->ipif_subnet; 15727 ill_clear_bcast_mark(ill, addr); 15728 15729 net_addr = ~net_mask | addr; 15730 ill_clear_bcast_mark(ill, net_addr); 15731 15732 subnet_netmask = ipif->ipif_net_mask; 15733 addr = ipif->ipif_subnet; 15734 ill_clear_bcast_mark(ill, addr); 15735 15736 subnet_addr = ~subnet_netmask | addr; 15737 ill_clear_bcast_mark(ill, subnet_addr); 15738 } 15739 } 15740 15741 /* 15742 * Multicast Responsibility. 15743 * 15744 * If we have joined allmulti on this one, find a new member 15745 * in the group to join allmulti. As this ill is already part 15746 * of allmulti, we don't have to join on this one. 15747 * 15748 * If we have not joined allmulti on this one, there is no 15749 * responsibility to handoff. But we need to take new 15750 * responsibility i.e, join allmulti on this one if we need 15751 * to. 15752 */ 15753 if (ill->ill_join_allmulti) { 15754 (void) ill_nominate_mcast_rcv(illgrp); 15755 } else { 15756 for (ilm = ill->ill_ilm; ilm != NULL; ilm = ilm->ilm_next) { 15757 if (IN6_IS_ADDR_UNSPECIFIED(&ilm->ilm_v6addr)) { 15758 (void) ip_join_allmulti(ill->ill_ipif); 15759 break; 15760 } 15761 } 15762 } 15763 15764 /* 15765 * We intentionally do the flushing of IRE_CACHES only matching 15766 * on the ill and not on groups. Note that we are already deleted 15767 * from the group. 15768 * 15769 * This will make sure that all IRE_CACHES whose stq is pointing 15770 * at ill_wq or ire_ipif->ipif_ill pointing at this ill will get 15771 * deleted and IRE_CACHES that are not pointing at this ill will 15772 * be left alone. 15773 */ 15774 if (ill->ill_isv6) { 15775 ire_walk_ill_v6(MATCH_IRE_ILL | MATCH_IRE_TYPE, 15776 IRE_CACHE, illgrp_cache_delete, (char *)ill, ill); 15777 } else { 15778 ire_walk_ill_v4(MATCH_IRE_ILL | MATCH_IRE_TYPE, 15779 IRE_CACHE, illgrp_cache_delete, (char *)ill, ill); 15780 } 15781 15782 /* 15783 * Some conn may have cached one of the IREs deleted above. By removing 15784 * the ire reference, we clean up the extra reference to the ill held in 15785 * ire->ire_stq. 15786 */ 15787 ipcl_walk(conn_cleanup_stale_ire, NULL, ipst); 15788 15789 /* 15790 * Re-do source address selection for all the members in the 15791 * group, if they borrowed source address from one of the ipifs 15792 * in this ill. 15793 */ 15794 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 15795 if (ill->ill_isv6) { 15796 ipif_update_other_ipifs_v6(ipif, illgrp); 15797 } else { 15798 ipif_update_other_ipifs(ipif, illgrp); 15799 } 15800 } 15801 } 15802 15803 /* 15804 * Delete the ill from the group. The caller makes sure that it is 15805 * in a group and it okay to delete from the group. So, we always 15806 * delete here. 15807 */ 15808 static void 15809 illgrp_delete(ill_t *ill) 15810 { 15811 ill_group_t *illgrp; 15812 ill_group_t *tmpg; 15813 ill_t *tmp_ill; 15814 ip_stack_t *ipst = ill->ill_ipst; 15815 15816 /* 15817 * Reset illgrp_ill_schednext if it was pointing at us. 15818 * We need to do this before we set ill_group to NULL. 15819 */ 15820 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 15821 mutex_enter(&ill->ill_lock); 15822 15823 illgrp_reset_schednext(ill); 15824 15825 illgrp = ill->ill_group; 15826 15827 /* Delete the ill from illgrp. */ 15828 if (illgrp->illgrp_ill == ill) { 15829 illgrp->illgrp_ill = ill->ill_group_next; 15830 } else { 15831 tmp_ill = illgrp->illgrp_ill; 15832 while (tmp_ill->ill_group_next != ill) { 15833 tmp_ill = tmp_ill->ill_group_next; 15834 ASSERT(tmp_ill != NULL); 15835 } 15836 tmp_ill->ill_group_next = ill->ill_group_next; 15837 } 15838 ill->ill_group = NULL; 15839 ill->ill_group_next = NULL; 15840 15841 illgrp->illgrp_ill_count--; 15842 mutex_exit(&ill->ill_lock); 15843 rw_exit(&ipst->ips_ill_g_lock); 15844 15845 /* 15846 * As this ill is leaving the group, we need to hand off 15847 * the responsibilities to the other ills in the group, if 15848 * this ill had some responsibilities. 15849 */ 15850 15851 ill_handoff_responsibility(ill, illgrp); 15852 15853 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 15854 15855 if (illgrp->illgrp_ill_count == 0) { 15856 15857 ASSERT(illgrp->illgrp_ill == NULL); 15858 if (ill->ill_isv6) { 15859 if (illgrp == ipst->ips_illgrp_head_v6) { 15860 ipst->ips_illgrp_head_v6 = illgrp->illgrp_next; 15861 } else { 15862 tmpg = ipst->ips_illgrp_head_v6; 15863 while (tmpg->illgrp_next != illgrp) { 15864 tmpg = tmpg->illgrp_next; 15865 ASSERT(tmpg != NULL); 15866 } 15867 tmpg->illgrp_next = illgrp->illgrp_next; 15868 } 15869 } else { 15870 if (illgrp == ipst->ips_illgrp_head_v4) { 15871 ipst->ips_illgrp_head_v4 = illgrp->illgrp_next; 15872 } else { 15873 tmpg = ipst->ips_illgrp_head_v4; 15874 while (tmpg->illgrp_next != illgrp) { 15875 tmpg = tmpg->illgrp_next; 15876 ASSERT(tmpg != NULL); 15877 } 15878 tmpg->illgrp_next = illgrp->illgrp_next; 15879 } 15880 } 15881 mutex_destroy(&illgrp->illgrp_lock); 15882 mi_free(illgrp); 15883 } 15884 rw_exit(&ipst->ips_ill_g_lock); 15885 15886 /* 15887 * Even though the ill is out of the group its not necessary 15888 * to set ipsq_split as TRUE as the ipifs could be down temporarily 15889 * We will split the ipsq when phyint_groupname is set to NULL. 15890 */ 15891 15892 /* 15893 * Send a routing sockets message if we are deleting from 15894 * groups with names. 15895 */ 15896 if (ill->ill_phyint->phyint_groupname_len != 0) 15897 ip_rts_ifmsg(ill->ill_ipif); 15898 } 15899 15900 /* 15901 * Re-do source address selection. This is normally called when 15902 * an ill joins the group or when a non-NOLOCAL/DEPRECATED/ANYCAST 15903 * ipif comes up. 15904 */ 15905 void 15906 ill_update_source_selection(ill_t *ill) 15907 { 15908 ipif_t *ipif; 15909 15910 ASSERT(IAM_WRITER_ILL(ill)); 15911 15912 if (ill->ill_group != NULL) 15913 ill = ill->ill_group->illgrp_ill; 15914 15915 for (; ill != NULL; ill = ill->ill_group_next) { 15916 for (ipif = ill->ill_ipif; ipif != NULL; 15917 ipif = ipif->ipif_next) { 15918 if (ill->ill_isv6) 15919 ipif_recreate_interface_routes_v6(NULL, ipif); 15920 else 15921 ipif_recreate_interface_routes(NULL, ipif); 15922 } 15923 } 15924 } 15925 15926 /* 15927 * Insert ill in a group headed by illgrp_head. The caller can either 15928 * pass a groupname in which case we search for a group with the 15929 * same name to insert in or pass a group to insert in. This function 15930 * would only search groups with names. 15931 * 15932 * NOTE : The caller should make sure that there is at least one ipif 15933 * UP on this ill so that illgrp_scheduler can pick this ill 15934 * for outbound packets. If ill_ipif_up_count is zero, we have 15935 * already sent a DL_UNBIND to the driver and we don't want to 15936 * send anymore packets. We don't assert for ipif_up_count 15937 * to be greater than zero, because ipif_up_done wants to call 15938 * this function before bumping up the ipif_up_count. See 15939 * ipif_up_done() for details. 15940 */ 15941 int 15942 illgrp_insert(ill_group_t **illgrp_head, ill_t *ill, char *groupname, 15943 ill_group_t *grp_to_insert, boolean_t ipif_is_coming_up) 15944 { 15945 ill_group_t *illgrp; 15946 ill_t *prev_ill; 15947 phyint_t *phyi; 15948 ip_stack_t *ipst = ill->ill_ipst; 15949 15950 ASSERT(ill->ill_group == NULL); 15951 15952 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 15953 mutex_enter(&ill->ill_lock); 15954 15955 if (groupname != NULL) { 15956 /* 15957 * Look for a group with a matching groupname to insert. 15958 */ 15959 for (illgrp = *illgrp_head; illgrp != NULL; 15960 illgrp = illgrp->illgrp_next) { 15961 15962 ill_t *tmp_ill; 15963 15964 /* 15965 * If we have an ill_group_t in the list which has 15966 * no ill_t assigned then we must be in the process of 15967 * removing this group. We skip this as illgrp_delete() 15968 * will remove it from the list. 15969 */ 15970 if ((tmp_ill = illgrp->illgrp_ill) == NULL) { 15971 ASSERT(illgrp->illgrp_ill_count == 0); 15972 continue; 15973 } 15974 15975 ASSERT(tmp_ill->ill_phyint != NULL); 15976 phyi = tmp_ill->ill_phyint; 15977 /* 15978 * Look at groups which has names only. 15979 */ 15980 if (phyi->phyint_groupname_len == 0) 15981 continue; 15982 /* 15983 * Names are stored in the phyint common to both 15984 * IPv4 and IPv6. 15985 */ 15986 if (mi_strcmp(phyi->phyint_groupname, 15987 groupname) == 0) { 15988 break; 15989 } 15990 } 15991 } else { 15992 /* 15993 * If the caller passes in a NULL "grp_to_insert", we 15994 * allocate one below and insert this singleton. 15995 */ 15996 illgrp = grp_to_insert; 15997 } 15998 15999 ill->ill_group_next = NULL; 16000 16001 if (illgrp == NULL) { 16002 illgrp = (ill_group_t *)mi_zalloc(sizeof (ill_group_t)); 16003 if (illgrp == NULL) { 16004 return (ENOMEM); 16005 } 16006 illgrp->illgrp_next = *illgrp_head; 16007 *illgrp_head = illgrp; 16008 illgrp->illgrp_ill = ill; 16009 illgrp->illgrp_ill_count = 1; 16010 ill->ill_group = illgrp; 16011 /* 16012 * Used in illgrp_scheduler to protect multiple threads 16013 * from traversing the list. 16014 */ 16015 mutex_init(&illgrp->illgrp_lock, NULL, MUTEX_DEFAULT, 0); 16016 } else { 16017 ASSERT(ill->ill_net_type == 16018 illgrp->illgrp_ill->ill_net_type); 16019 ASSERT(ill->ill_type == illgrp->illgrp_ill->ill_type); 16020 16021 /* Insert ill at tail of this group */ 16022 prev_ill = illgrp->illgrp_ill; 16023 while (prev_ill->ill_group_next != NULL) 16024 prev_ill = prev_ill->ill_group_next; 16025 prev_ill->ill_group_next = ill; 16026 ill->ill_group = illgrp; 16027 illgrp->illgrp_ill_count++; 16028 /* 16029 * Inherit group properties. Currently only forwarding 16030 * is the property we try to keep the same with all the 16031 * ills. When there are more, we will abstract this into 16032 * a function. 16033 */ 16034 ill->ill_flags &= ~ILLF_ROUTER; 16035 ill->ill_flags |= (illgrp->illgrp_ill->ill_flags & ILLF_ROUTER); 16036 } 16037 mutex_exit(&ill->ill_lock); 16038 rw_exit(&ipst->ips_ill_g_lock); 16039 16040 /* 16041 * 1) When ipif_up_done() calls this function, ipif_up_count 16042 * may be zero as it has not yet been bumped. But the ires 16043 * have already been added. So, we do the nomination here 16044 * itself. But, when ip_sioctl_groupname calls this, it checks 16045 * for ill_ipif_up_count != 0. Thus we don't check for 16046 * ill_ipif_up_count here while nominating broadcast ires for 16047 * receive. 16048 * 16049 * 2) Similarly, we need to call ill_group_bcast_for_xmit here 16050 * to group them properly as ire_add() has already happened 16051 * in the ipif_up_done() case. For ip_sioctl_groupname/ifgrp_insert 16052 * case, we need to do it here anyway. 16053 */ 16054 if (!ill->ill_isv6) { 16055 ill_group_bcast_for_xmit(ill); 16056 ill_nominate_bcast_rcv(illgrp); 16057 } 16058 16059 if (!ipif_is_coming_up) { 16060 /* 16061 * When ipif_up_done() calls this function, the multicast 16062 * groups have not been joined yet. So, there is no point in 16063 * nomination. ip_join_allmulti will handle groups when 16064 * ill_recover_multicast is called from ipif_up_done() later. 16065 */ 16066 (void) ill_nominate_mcast_rcv(illgrp); 16067 /* 16068 * ipif_up_done calls ill_update_source_selection 16069 * anyway. Moreover, we don't want to re-create 16070 * interface routes while ipif_up_done() still has reference 16071 * to them. Refer to ipif_up_done() for more details. 16072 */ 16073 ill_update_source_selection(ill); 16074 } 16075 16076 /* 16077 * Send a routing sockets message if we are inserting into 16078 * groups with names. 16079 */ 16080 if (groupname != NULL) 16081 ip_rts_ifmsg(ill->ill_ipif); 16082 return (0); 16083 } 16084 16085 /* 16086 * Return the first phyint matching the groupname. There could 16087 * be more than one when there are ill groups. 16088 * 16089 * If 'usable' is set, then we exclude ones that are marked with any of 16090 * (PHYI_FAILED|PHYI_OFFLINE|PHYI_INACTIVE). 16091 * Needs work: called only from ip_sioctl_groupname and from the ipmp/netinfo 16092 * emulation of ipmp. 16093 */ 16094 phyint_t * 16095 phyint_lookup_group(char *groupname, boolean_t usable, ip_stack_t *ipst) 16096 { 16097 phyint_t *phyi; 16098 16099 ASSERT(RW_LOCK_HELD(&ipst->ips_ill_g_lock)); 16100 /* 16101 * Group names are stored in the phyint - a common structure 16102 * to both IPv4 and IPv6. 16103 */ 16104 phyi = avl_first(&ipst->ips_phyint_g_list->phyint_list_avl_by_index); 16105 for (; phyi != NULL; 16106 phyi = avl_walk(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 16107 phyi, AVL_AFTER)) { 16108 if (phyi->phyint_groupname_len == 0) 16109 continue; 16110 /* 16111 * Skip the ones that should not be used since the callers 16112 * sometime use this for sending packets. 16113 */ 16114 if (usable && (phyi->phyint_flags & 16115 (PHYI_FAILED|PHYI_OFFLINE|PHYI_INACTIVE))) 16116 continue; 16117 16118 ASSERT(phyi->phyint_groupname != NULL); 16119 if (mi_strcmp(groupname, phyi->phyint_groupname) == 0) 16120 return (phyi); 16121 } 16122 return (NULL); 16123 } 16124 16125 16126 /* 16127 * Return the first usable phyint matching the group index. By 'usable' 16128 * we exclude ones that are marked ununsable with any of 16129 * (PHYI_FAILED|PHYI_OFFLINE|PHYI_INACTIVE). 16130 * 16131 * Used only for the ipmp/netinfo emulation of ipmp. 16132 */ 16133 phyint_t * 16134 phyint_lookup_group_ifindex(uint_t group_ifindex, ip_stack_t *ipst) 16135 { 16136 phyint_t *phyi; 16137 16138 ASSERT(RW_LOCK_HELD(&ipst->ips_ill_g_lock)); 16139 16140 if (!ipst->ips_ipmp_hook_emulation) 16141 return (NULL); 16142 16143 /* 16144 * Group indicies are stored in the phyint - a common structure 16145 * to both IPv4 and IPv6. 16146 */ 16147 phyi = avl_first(&ipst->ips_phyint_g_list->phyint_list_avl_by_index); 16148 for (; phyi != NULL; 16149 phyi = avl_walk(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 16150 phyi, AVL_AFTER)) { 16151 /* Ignore the ones that do not have a group */ 16152 if (phyi->phyint_groupname_len == 0) 16153 continue; 16154 16155 ASSERT(phyi->phyint_group_ifindex != 0); 16156 /* 16157 * Skip the ones that should not be used since the callers 16158 * sometime use this for sending packets. 16159 */ 16160 if (phyi->phyint_flags & 16161 (PHYI_FAILED|PHYI_OFFLINE|PHYI_INACTIVE)) 16162 continue; 16163 if (phyi->phyint_group_ifindex == group_ifindex) 16164 return (phyi); 16165 } 16166 return (NULL); 16167 } 16168 16169 16170 /* 16171 * MT notes on creation and deletion of IPMP groups 16172 * 16173 * Creation and deletion of IPMP groups introduce the need to merge or 16174 * split the associated serialization objects i.e the ipsq's. Normally all 16175 * the ills in an IPMP group would map to a single ipsq. If IPMP is not enabled 16176 * an ill-pair(v4, v6) i.e. phyint would map to a single ipsq. However during 16177 * the execution of the SIOCSLIFGROUPNAME command the picture changes. There 16178 * is a need to change the <ill-ipsq> association and we have to operate on both 16179 * the source and destination IPMP groups. For eg. attempting to set the 16180 * groupname of hme0 to mpk17-85 when it already belongs to mpk17-84 has to 16181 * handle 2 IPMP groups and 2 ipsqs. All the ills belonging to either of the 16182 * source or destination IPMP group are mapped to a single ipsq for executing 16183 * the SIOCSLIFGROUPNAME command. This is termed as a merge of the ipsq's. 16184 * The <ill-ipsq> mapping is restored back to normal at a later point. This is 16185 * termed as a split of the ipsq. The converse of the merge i.e. a split of the 16186 * ipsq happens while unwinding from ipsq_exit. If at least 1 set groupname 16187 * occurred on the ipsq, then the ipsq_split flag is set. This indicates the 16188 * ipsq has to be examined for redoing the <ill-ipsq> associations. 16189 * 16190 * In the above example the ioctl handling code locates the current ipsq of hme0 16191 * which is ipsq(mpk17-84). It then enters the above ipsq immediately or 16192 * eventually (after queueing the ioctl in ipsq(mpk17-84)). Then it locates 16193 * the destination ipsq which is ipsq(mpk17-85) and merges the source ipsq into 16194 * the destination ipsq. If the destination ipsq is not busy, it also enters 16195 * the destination ipsq exclusively. Now the actual groupname setting operation 16196 * can proceed. If the destination ipsq is busy, the operation is enqueued 16197 * on the destination (merged) ipsq and will be handled in the unwind from 16198 * ipsq_exit. 16199 * 16200 * To prevent other threads accessing the ill while the group name change is 16201 * in progres, we bring down the ipifs which also removes the ill from the 16202 * group. The group is changed in phyint and when the first ipif on the ill 16203 * is brought up, the ill is inserted into the right IPMP group by 16204 * illgrp_insert. 16205 */ 16206 /* ARGSUSED */ 16207 int 16208 ip_sioctl_groupname(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 16209 ip_ioctl_cmd_t *ipip, void *ifreq) 16210 { 16211 int i; 16212 char *tmp; 16213 int namelen; 16214 ill_t *ill = ipif->ipif_ill; 16215 ill_t *ill_v4, *ill_v6; 16216 int err = 0; 16217 phyint_t *phyi; 16218 phyint_t *phyi_tmp; 16219 struct lifreq *lifr; 16220 mblk_t *mp1; 16221 char *groupname; 16222 ipsq_t *ipsq; 16223 ip_stack_t *ipst = ill->ill_ipst; 16224 16225 ASSERT(IAM_WRITER_IPIF(ipif)); 16226 16227 /* Existance verified in ip_wput_nondata */ 16228 mp1 = mp->b_cont->b_cont; 16229 lifr = (struct lifreq *)mp1->b_rptr; 16230 groupname = lifr->lifr_groupname; 16231 16232 if (ipif->ipif_id != 0) 16233 return (EINVAL); 16234 16235 phyi = ill->ill_phyint; 16236 ASSERT(phyi != NULL); 16237 16238 if (phyi->phyint_flags & PHYI_VIRTUAL) 16239 return (EINVAL); 16240 16241 tmp = groupname; 16242 for (i = 0; i < LIFNAMSIZ && *tmp != '\0'; tmp++, i++) 16243 ; 16244 16245 if (i == LIFNAMSIZ) { 16246 /* no null termination */ 16247 return (EINVAL); 16248 } 16249 16250 /* 16251 * Calculate the namelen exclusive of the null 16252 * termination character. 16253 */ 16254 namelen = tmp - groupname; 16255 16256 ill_v4 = phyi->phyint_illv4; 16257 ill_v6 = phyi->phyint_illv6; 16258 16259 /* 16260 * ILL cannot be part of a usesrc group and and IPMP group at the 16261 * same time. No need to grab the ill_g_usesrc_lock here, see 16262 * synchronization notes in ip.c 16263 */ 16264 if (ipif->ipif_ill->ill_usesrc_grp_next != NULL) { 16265 return (EINVAL); 16266 } 16267 16268 /* 16269 * mark the ill as changing. 16270 * this should queue all new requests on the syncq. 16271 */ 16272 GRAB_ILL_LOCKS(ill_v4, ill_v6); 16273 16274 if (ill_v4 != NULL) 16275 ill_v4->ill_state_flags |= ILL_CHANGING; 16276 if (ill_v6 != NULL) 16277 ill_v6->ill_state_flags |= ILL_CHANGING; 16278 RELEASE_ILL_LOCKS(ill_v4, ill_v6); 16279 16280 if (namelen == 0) { 16281 /* 16282 * Null string means remove this interface from the 16283 * existing group. 16284 */ 16285 if (phyi->phyint_groupname_len == 0) { 16286 /* 16287 * Never was in a group. 16288 */ 16289 err = 0; 16290 goto done; 16291 } 16292 16293 /* 16294 * IPv4 or IPv6 may be temporarily out of the group when all 16295 * the ipifs are down. Thus, we need to check for ill_group to 16296 * be non-NULL. 16297 */ 16298 if (ill_v4 != NULL && ill_v4->ill_group != NULL) { 16299 ill_down_ipifs(ill_v4, mp, 0, B_FALSE); 16300 mutex_enter(&ill_v4->ill_lock); 16301 if (!ill_is_quiescent(ill_v4)) { 16302 /* 16303 * ipsq_pending_mp_add will not fail since 16304 * connp is NULL 16305 */ 16306 (void) ipsq_pending_mp_add(NULL, 16307 ill_v4->ill_ipif, q, mp, ILL_DOWN); 16308 mutex_exit(&ill_v4->ill_lock); 16309 err = EINPROGRESS; 16310 goto done; 16311 } 16312 mutex_exit(&ill_v4->ill_lock); 16313 } 16314 16315 if (ill_v6 != NULL && ill_v6->ill_group != NULL) { 16316 ill_down_ipifs(ill_v6, mp, 0, B_FALSE); 16317 mutex_enter(&ill_v6->ill_lock); 16318 if (!ill_is_quiescent(ill_v6)) { 16319 (void) ipsq_pending_mp_add(NULL, 16320 ill_v6->ill_ipif, q, mp, ILL_DOWN); 16321 mutex_exit(&ill_v6->ill_lock); 16322 err = EINPROGRESS; 16323 goto done; 16324 } 16325 mutex_exit(&ill_v6->ill_lock); 16326 } 16327 16328 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 16329 GRAB_ILL_LOCKS(ill_v4, ill_v6); 16330 mutex_enter(&phyi->phyint_lock); 16331 ASSERT(phyi->phyint_groupname != NULL); 16332 mi_free(phyi->phyint_groupname); 16333 phyi->phyint_groupname = NULL; 16334 phyi->phyint_groupname_len = 0; 16335 16336 /* Restore the ifindex used to be the per interface one */ 16337 phyi->phyint_group_ifindex = 0; 16338 phyi->phyint_hook_ifindex = phyi->phyint_ifindex; 16339 mutex_exit(&phyi->phyint_lock); 16340 RELEASE_ILL_LOCKS(ill_v4, ill_v6); 16341 rw_exit(&ipst->ips_ill_g_lock); 16342 err = ill_up_ipifs(ill, q, mp); 16343 16344 /* 16345 * set the split flag so that the ipsq can be split 16346 */ 16347 mutex_enter(&phyi->phyint_ipsq->ipsq_lock); 16348 phyi->phyint_ipsq->ipsq_split = B_TRUE; 16349 mutex_exit(&phyi->phyint_ipsq->ipsq_lock); 16350 16351 } else { 16352 if (phyi->phyint_groupname_len != 0) { 16353 ASSERT(phyi->phyint_groupname != NULL); 16354 /* Are we inserting in the same group ? */ 16355 if (mi_strcmp(groupname, 16356 phyi->phyint_groupname) == 0) { 16357 err = 0; 16358 goto done; 16359 } 16360 } 16361 16362 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 16363 /* 16364 * Merge ipsq for the group's. 16365 * This check is here as multiple groups/ills might be 16366 * sharing the same ipsq. 16367 * If we have to merege than the operation is restarted 16368 * on the new ipsq. 16369 */ 16370 ipsq = ip_ipsq_lookup(groupname, B_FALSE, NULL, ipst); 16371 if (phyi->phyint_ipsq != ipsq) { 16372 rw_exit(&ipst->ips_ill_g_lock); 16373 err = ill_merge_groups(ill, NULL, groupname, mp, q); 16374 goto done; 16375 } 16376 /* 16377 * Running exclusive on new ipsq. 16378 */ 16379 16380 ASSERT(ipsq != NULL); 16381 ASSERT(ipsq->ipsq_writer == curthread); 16382 16383 /* 16384 * Check whether the ill_type and ill_net_type matches before 16385 * we allocate any memory so that the cleanup is easier. 16386 * 16387 * We can't group dissimilar ones as we can't load spread 16388 * packets across the group because of potential link-level 16389 * header differences. 16390 */ 16391 phyi_tmp = phyint_lookup_group(groupname, B_FALSE, ipst); 16392 if (phyi_tmp != NULL) { 16393 if ((ill_v4 != NULL && 16394 phyi_tmp->phyint_illv4 != NULL) && 16395 ((ill_v4->ill_net_type != 16396 phyi_tmp->phyint_illv4->ill_net_type) || 16397 (ill_v4->ill_type != 16398 phyi_tmp->phyint_illv4->ill_type))) { 16399 mutex_enter(&phyi->phyint_ipsq->ipsq_lock); 16400 phyi->phyint_ipsq->ipsq_split = B_TRUE; 16401 mutex_exit(&phyi->phyint_ipsq->ipsq_lock); 16402 rw_exit(&ipst->ips_ill_g_lock); 16403 return (EINVAL); 16404 } 16405 if ((ill_v6 != NULL && 16406 phyi_tmp->phyint_illv6 != NULL) && 16407 ((ill_v6->ill_net_type != 16408 phyi_tmp->phyint_illv6->ill_net_type) || 16409 (ill_v6->ill_type != 16410 phyi_tmp->phyint_illv6->ill_type))) { 16411 mutex_enter(&phyi->phyint_ipsq->ipsq_lock); 16412 phyi->phyint_ipsq->ipsq_split = B_TRUE; 16413 mutex_exit(&phyi->phyint_ipsq->ipsq_lock); 16414 rw_exit(&ipst->ips_ill_g_lock); 16415 return (EINVAL); 16416 } 16417 } 16418 16419 rw_exit(&ipst->ips_ill_g_lock); 16420 16421 /* 16422 * bring down all v4 ipifs. 16423 */ 16424 if (ill_v4 != NULL) { 16425 ill_down_ipifs(ill_v4, mp, 0, B_FALSE); 16426 } 16427 16428 /* 16429 * bring down all v6 ipifs. 16430 */ 16431 if (ill_v6 != NULL) { 16432 ill_down_ipifs(ill_v6, mp, 0, B_FALSE); 16433 } 16434 16435 /* 16436 * make sure all ipifs are down and there are no active 16437 * references. Call to ipsq_pending_mp_add will not fail 16438 * since connp is NULL. 16439 */ 16440 if (ill_v4 != NULL) { 16441 mutex_enter(&ill_v4->ill_lock); 16442 if (!ill_is_quiescent(ill_v4)) { 16443 (void) ipsq_pending_mp_add(NULL, 16444 ill_v4->ill_ipif, q, mp, ILL_DOWN); 16445 mutex_exit(&ill_v4->ill_lock); 16446 err = EINPROGRESS; 16447 goto done; 16448 } 16449 mutex_exit(&ill_v4->ill_lock); 16450 } 16451 16452 if (ill_v6 != NULL) { 16453 mutex_enter(&ill_v6->ill_lock); 16454 if (!ill_is_quiescent(ill_v6)) { 16455 (void) ipsq_pending_mp_add(NULL, 16456 ill_v6->ill_ipif, q, mp, ILL_DOWN); 16457 mutex_exit(&ill_v6->ill_lock); 16458 err = EINPROGRESS; 16459 goto done; 16460 } 16461 mutex_exit(&ill_v6->ill_lock); 16462 } 16463 16464 /* 16465 * allocate including space for null terminator 16466 * before we insert. 16467 */ 16468 tmp = (char *)mi_alloc(namelen + 1, BPRI_MED); 16469 if (tmp == NULL) 16470 return (ENOMEM); 16471 16472 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 16473 GRAB_ILL_LOCKS(ill_v4, ill_v6); 16474 mutex_enter(&phyi->phyint_lock); 16475 if (phyi->phyint_groupname_len != 0) { 16476 ASSERT(phyi->phyint_groupname != NULL); 16477 mi_free(phyi->phyint_groupname); 16478 } 16479 16480 /* 16481 * setup the new group name. 16482 */ 16483 phyi->phyint_groupname = tmp; 16484 bcopy(groupname, phyi->phyint_groupname, namelen + 1); 16485 phyi->phyint_groupname_len = namelen + 1; 16486 16487 if (ipst->ips_ipmp_hook_emulation) { 16488 /* 16489 * If the group already exists we use the existing 16490 * group_ifindex, otherwise we pick a new index here. 16491 */ 16492 if (phyi_tmp != NULL) { 16493 phyi->phyint_group_ifindex = 16494 phyi_tmp->phyint_group_ifindex; 16495 } else { 16496 /* XXX We need a recovery strategy here. */ 16497 if (!ip_assign_ifindex( 16498 &phyi->phyint_group_ifindex, ipst)) 16499 cmn_err(CE_PANIC, 16500 "ip_assign_ifindex() failed"); 16501 } 16502 } 16503 /* 16504 * Select whether the netinfo and hook use the per-interface 16505 * or per-group ifindex. 16506 */ 16507 if (ipst->ips_ipmp_hook_emulation) 16508 phyi->phyint_hook_ifindex = phyi->phyint_group_ifindex; 16509 else 16510 phyi->phyint_hook_ifindex = phyi->phyint_ifindex; 16511 16512 if (ipst->ips_ipmp_hook_emulation && 16513 phyi_tmp != NULL) { 16514 /* First phyint in group - group PLUMB event */ 16515 ill_nic_info_plumb(ill, B_TRUE); 16516 } 16517 mutex_exit(&phyi->phyint_lock); 16518 RELEASE_ILL_LOCKS(ill_v4, ill_v6); 16519 rw_exit(&ipst->ips_ill_g_lock); 16520 16521 err = ill_up_ipifs(ill, q, mp); 16522 } 16523 16524 done: 16525 /* 16526 * normally ILL_CHANGING is cleared in ill_up_ipifs. 16527 */ 16528 if (err != EINPROGRESS) { 16529 GRAB_ILL_LOCKS(ill_v4, ill_v6); 16530 if (ill_v4 != NULL) 16531 ill_v4->ill_state_flags &= ~ILL_CHANGING; 16532 if (ill_v6 != NULL) 16533 ill_v6->ill_state_flags &= ~ILL_CHANGING; 16534 RELEASE_ILL_LOCKS(ill_v4, ill_v6); 16535 } 16536 return (err); 16537 } 16538 16539 /* ARGSUSED */ 16540 int 16541 ip_sioctl_get_groupname(ipif_t *ipif, sin_t *dummy_sin, queue_t *q, 16542 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 16543 { 16544 ill_t *ill; 16545 phyint_t *phyi; 16546 struct lifreq *lifr; 16547 mblk_t *mp1; 16548 16549 /* Existence verified in ip_wput_nondata */ 16550 mp1 = mp->b_cont->b_cont; 16551 lifr = (struct lifreq *)mp1->b_rptr; 16552 ill = ipif->ipif_ill; 16553 phyi = ill->ill_phyint; 16554 16555 lifr->lifr_groupname[0] = '\0'; 16556 /* 16557 * ill_group may be null if all the interfaces 16558 * are down. But still, the phyint should always 16559 * hold the name. 16560 */ 16561 if (phyi->phyint_groupname_len != 0) { 16562 bcopy(phyi->phyint_groupname, lifr->lifr_groupname, 16563 phyi->phyint_groupname_len); 16564 } 16565 16566 return (0); 16567 } 16568 16569 16570 typedef struct conn_move_s { 16571 ill_t *cm_from_ill; 16572 ill_t *cm_to_ill; 16573 int cm_ifindex; 16574 } conn_move_t; 16575 16576 /* 16577 * ipcl_walk function for moving conn_multicast_ill for a given ill. 16578 */ 16579 static void 16580 conn_move(conn_t *connp, caddr_t arg) 16581 { 16582 conn_move_t *connm; 16583 int ifindex; 16584 int i; 16585 ill_t *from_ill; 16586 ill_t *to_ill; 16587 ilg_t *ilg; 16588 ilm_t *ret_ilm; 16589 16590 connm = (conn_move_t *)arg; 16591 ifindex = connm->cm_ifindex; 16592 from_ill = connm->cm_from_ill; 16593 to_ill = connm->cm_to_ill; 16594 16595 /* Change IP_BOUND_IF/IPV6_BOUND_IF associations. */ 16596 16597 /* All multicast fields protected by conn_lock */ 16598 mutex_enter(&connp->conn_lock); 16599 ASSERT(connp->conn_outgoing_ill == connp->conn_incoming_ill); 16600 if ((connp->conn_outgoing_ill == from_ill) && 16601 (ifindex == 0 || connp->conn_orig_bound_ifindex == ifindex)) { 16602 connp->conn_outgoing_ill = to_ill; 16603 connp->conn_incoming_ill = to_ill; 16604 } 16605 16606 /* Change IP_MULTICAST_IF/IPV6_MULTICAST_IF associations */ 16607 16608 if ((connp->conn_multicast_ill == from_ill) && 16609 (ifindex == 0 || connp->conn_orig_multicast_ifindex == ifindex)) { 16610 connp->conn_multicast_ill = connm->cm_to_ill; 16611 } 16612 16613 /* Change IP_XMIT_IF associations */ 16614 if ((connp->conn_xmit_if_ill == from_ill) && 16615 (ifindex == 0 || connp->conn_orig_xmit_ifindex == ifindex)) { 16616 connp->conn_xmit_if_ill = to_ill; 16617 } 16618 /* 16619 * Change the ilg_ill to point to the new one. This assumes 16620 * ilm_move_v6 has moved the ilms to new_ill and the driver 16621 * has been told to receive packets on this interface. 16622 * ilm_move_v6 FAILBACKS all the ilms successfully always. 16623 * But when doing a FAILOVER, it might fail with ENOMEM and so 16624 * some ilms may not have moved. We check to see whether 16625 * the ilms have moved to to_ill. We can't check on from_ill 16626 * as in the process of moving, we could have split an ilm 16627 * in to two - which has the same orig_ifindex and v6group. 16628 * 16629 * For IPv4, ilg_ipif moves implicitly. The code below really 16630 * does not do anything for IPv4 as ilg_ill is NULL for IPv4. 16631 */ 16632 for (i = connp->conn_ilg_inuse - 1; i >= 0; i--) { 16633 ilg = &connp->conn_ilg[i]; 16634 if ((ilg->ilg_ill == from_ill) && 16635 (ifindex == 0 || ilg->ilg_orig_ifindex == ifindex)) { 16636 /* ifindex != 0 indicates failback */ 16637 if (ifindex != 0) { 16638 connp->conn_ilg[i].ilg_ill = to_ill; 16639 continue; 16640 } 16641 16642 ret_ilm = ilm_lookup_ill_index_v6(to_ill, 16643 &ilg->ilg_v6group, ilg->ilg_orig_ifindex, 16644 connp->conn_zoneid); 16645 16646 if (ret_ilm != NULL) 16647 connp->conn_ilg[i].ilg_ill = to_ill; 16648 } 16649 } 16650 mutex_exit(&connp->conn_lock); 16651 } 16652 16653 static void 16654 conn_move_ill(ill_t *from_ill, ill_t *to_ill, int ifindex) 16655 { 16656 conn_move_t connm; 16657 ip_stack_t *ipst = from_ill->ill_ipst; 16658 16659 connm.cm_from_ill = from_ill; 16660 connm.cm_to_ill = to_ill; 16661 connm.cm_ifindex = ifindex; 16662 16663 ipcl_walk(conn_move, (caddr_t)&connm, ipst); 16664 } 16665 16666 /* 16667 * ilm has been moved from from_ill to to_ill. 16668 * Send DL_DISABMULTI_REQ to ill and DL_ENABMULTI_REQ on to_ill. 16669 * appropriately. 16670 * 16671 * NOTE : We can't reuse the code in ip_ll_addmulti/delmulti because 16672 * the code there de-references ipif_ill to get the ill to 16673 * send multicast requests. It does not work as ipif is on its 16674 * move and already moved when this function is called. 16675 * Thus, we need to use from_ill and to_ill send down multicast 16676 * requests. 16677 */ 16678 static void 16679 ilm_send_multicast_reqs(ill_t *from_ill, ill_t *to_ill) 16680 { 16681 ipif_t *ipif; 16682 ilm_t *ilm; 16683 16684 /* 16685 * See whether we need to send down DL_ENABMULTI_REQ on 16686 * to_ill as ilm has just been added. 16687 */ 16688 ASSERT(IAM_WRITER_ILL(to_ill)); 16689 ASSERT(IAM_WRITER_ILL(from_ill)); 16690 16691 ILM_WALKER_HOLD(to_ill); 16692 for (ilm = to_ill->ill_ilm; ilm != NULL; ilm = ilm->ilm_next) { 16693 16694 if (!ilm->ilm_is_new || (ilm->ilm_flags & ILM_DELETED)) 16695 continue; 16696 /* 16697 * no locks held, ill/ipif cannot dissappear as long 16698 * as we are writer. 16699 */ 16700 ipif = to_ill->ill_ipif; 16701 /* 16702 * No need to hold any lock as we are the writer and this 16703 * can only be changed by a writer. 16704 */ 16705 ilm->ilm_is_new = B_FALSE; 16706 16707 if (to_ill->ill_net_type != IRE_IF_RESOLVER || 16708 ipif->ipif_flags & IPIF_POINTOPOINT) { 16709 ip1dbg(("ilm_send_multicast_reqs: to_ill not " 16710 "resolver\n")); 16711 continue; /* Must be IRE_IF_NORESOLVER */ 16712 } 16713 16714 16715 if (to_ill->ill_phyint->phyint_flags & PHYI_MULTI_BCAST) { 16716 ip1dbg(("ilm_send_multicast_reqs: " 16717 "to_ill MULTI_BCAST\n")); 16718 goto from; 16719 } 16720 16721 if (to_ill->ill_isv6) 16722 mld_joingroup(ilm); 16723 else 16724 igmp_joingroup(ilm); 16725 16726 if (to_ill->ill_ipif_up_count == 0) { 16727 /* 16728 * Nobody there. All multicast addresses will be 16729 * re-joined when we get the DL_BIND_ACK bringing the 16730 * interface up. 16731 */ 16732 ilm->ilm_notify_driver = B_FALSE; 16733 ip1dbg(("ilm_send_multicast_reqs: to_ill nobody up\n")); 16734 goto from; 16735 } 16736 16737 /* 16738 * For allmulti address, we want to join on only one interface. 16739 * Checking for ilm_numentries_v6 is not correct as you may 16740 * find an ilm with zero address on to_ill, but we may not 16741 * have nominated to_ill for receiving. Thus, if we have 16742 * nominated from_ill (ill_join_allmulti is set), nominate 16743 * only if to_ill is not already nominated (to_ill normally 16744 * should not have been nominated if "from_ill" has already 16745 * been nominated. As we don't prevent failovers from happening 16746 * across groups, we don't assert). 16747 */ 16748 if (IN6_IS_ADDR_UNSPECIFIED(&ilm->ilm_v6addr)) { 16749 /* 16750 * There is no need to hold ill locks as we are 16751 * writer on both ills and when ill_join_allmulti 16752 * is changed the thread is always a writer. 16753 */ 16754 if (from_ill->ill_join_allmulti && 16755 !to_ill->ill_join_allmulti) { 16756 (void) ip_join_allmulti(to_ill->ill_ipif); 16757 } 16758 } else if (ilm->ilm_notify_driver) { 16759 16760 /* 16761 * This is a newly moved ilm so we need to tell the 16762 * driver about the new group. There can be more than 16763 * one ilm's for the same group in the list each with a 16764 * different orig_ifindex. We have to inform the driver 16765 * once. In ilm_move_v[4,6] we only set the flag 16766 * ilm_notify_driver for the first ilm. 16767 */ 16768 16769 (void) ip_ll_send_enabmulti_req(to_ill, 16770 &ilm->ilm_v6addr); 16771 } 16772 16773 ilm->ilm_notify_driver = B_FALSE; 16774 16775 /* 16776 * See whether we need to send down DL_DISABMULTI_REQ on 16777 * from_ill as ilm has just been removed. 16778 */ 16779 from: 16780 ipif = from_ill->ill_ipif; 16781 if (from_ill->ill_net_type != IRE_IF_RESOLVER || 16782 ipif->ipif_flags & IPIF_POINTOPOINT) { 16783 ip1dbg(("ilm_send_multicast_reqs: " 16784 "from_ill not resolver\n")); 16785 continue; /* Must be IRE_IF_NORESOLVER */ 16786 } 16787 16788 if (from_ill->ill_phyint->phyint_flags & PHYI_MULTI_BCAST) { 16789 ip1dbg(("ilm_send_multicast_reqs: " 16790 "from_ill MULTI_BCAST\n")); 16791 continue; 16792 } 16793 16794 if (IN6_IS_ADDR_UNSPECIFIED(&ilm->ilm_v6addr)) { 16795 if (from_ill->ill_join_allmulti) 16796 (void) ip_leave_allmulti(from_ill->ill_ipif); 16797 } else if (ilm_numentries_v6(from_ill, &ilm->ilm_v6addr) == 0) { 16798 (void) ip_ll_send_disabmulti_req(from_ill, 16799 &ilm->ilm_v6addr); 16800 } 16801 } 16802 ILM_WALKER_RELE(to_ill); 16803 } 16804 16805 /* 16806 * This function is called when all multicast memberships needs 16807 * to be moved from "from_ill" to "to_ill" for IPv6. This function is 16808 * called only once unlike the IPv4 counterpart where it is called after 16809 * every logical interface is moved. The reason is due to multicast 16810 * memberships are joined using an interface address in IPv4 while in 16811 * IPv6, interface index is used. 16812 */ 16813 static void 16814 ilm_move_v6(ill_t *from_ill, ill_t *to_ill, int ifindex) 16815 { 16816 ilm_t *ilm; 16817 ilm_t *ilm_next; 16818 ilm_t *new_ilm; 16819 ilm_t **ilmp; 16820 int count; 16821 char buf[INET6_ADDRSTRLEN]; 16822 in6_addr_t ipv6_snm = ipv6_solicited_node_mcast; 16823 ip_stack_t *ipst = from_ill->ill_ipst; 16824 16825 ASSERT(MUTEX_HELD(&to_ill->ill_lock)); 16826 ASSERT(MUTEX_HELD(&from_ill->ill_lock)); 16827 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); 16828 16829 if (ifindex == 0) { 16830 /* 16831 * Form the solicited node mcast address which is used later. 16832 */ 16833 ipif_t *ipif; 16834 16835 ipif = from_ill->ill_ipif; 16836 ASSERT(ipif->ipif_id == 0); 16837 16838 ipv6_snm.s6_addr32[3] |= ipif->ipif_v6lcl_addr.s6_addr32[3]; 16839 } 16840 16841 ilmp = &from_ill->ill_ilm; 16842 for (ilm = from_ill->ill_ilm; ilm != NULL; ilm = ilm_next) { 16843 ilm_next = ilm->ilm_next; 16844 16845 if (ilm->ilm_flags & ILM_DELETED) { 16846 ilmp = &ilm->ilm_next; 16847 continue; 16848 } 16849 16850 new_ilm = ilm_lookup_ill_index_v6(to_ill, &ilm->ilm_v6addr, 16851 ilm->ilm_orig_ifindex, ilm->ilm_zoneid); 16852 ASSERT(ilm->ilm_orig_ifindex != 0); 16853 if (ilm->ilm_orig_ifindex == ifindex) { 16854 /* 16855 * We are failing back multicast memberships. 16856 * If the same ilm exists in to_ill, it means somebody 16857 * has joined the same group there e.g. ff02::1 16858 * is joined within the kernel when the interfaces 16859 * came UP. 16860 */ 16861 ASSERT(ilm->ilm_ipif == NULL); 16862 if (new_ilm != NULL) { 16863 new_ilm->ilm_refcnt += ilm->ilm_refcnt; 16864 if (new_ilm->ilm_fmode != MODE_IS_EXCLUDE || 16865 !SLIST_IS_EMPTY(new_ilm->ilm_filter)) { 16866 new_ilm->ilm_is_new = B_TRUE; 16867 } 16868 } else { 16869 /* 16870 * check if we can just move the ilm 16871 */ 16872 if (from_ill->ill_ilm_walker_cnt != 0) { 16873 /* 16874 * We have walkers we cannot move 16875 * the ilm, so allocate a new ilm, 16876 * this (old) ilm will be marked 16877 * ILM_DELETED at the end of the loop 16878 * and will be freed when the 16879 * last walker exits. 16880 */ 16881 new_ilm = (ilm_t *)mi_zalloc 16882 (sizeof (ilm_t)); 16883 if (new_ilm == NULL) { 16884 ip0dbg(("ilm_move_v6: " 16885 "FAILBACK of IPv6" 16886 " multicast address %s : " 16887 "from %s to" 16888 " %s failed : ENOMEM \n", 16889 inet_ntop(AF_INET6, 16890 &ilm->ilm_v6addr, buf, 16891 sizeof (buf)), 16892 from_ill->ill_name, 16893 to_ill->ill_name)); 16894 16895 ilmp = &ilm->ilm_next; 16896 continue; 16897 } 16898 *new_ilm = *ilm; 16899 /* 16900 * we don't want new_ilm linked to 16901 * ilm's filter list. 16902 */ 16903 new_ilm->ilm_filter = NULL; 16904 } else { 16905 /* 16906 * No walkers we can move the ilm. 16907 * lets take it out of the list. 16908 */ 16909 *ilmp = ilm->ilm_next; 16910 ilm->ilm_next = NULL; 16911 new_ilm = ilm; 16912 } 16913 16914 /* 16915 * if this is the first ilm for the group 16916 * set ilm_notify_driver so that we notify the 16917 * driver in ilm_send_multicast_reqs. 16918 */ 16919 if (ilm_lookup_ill_v6(to_ill, 16920 &new_ilm->ilm_v6addr, ALL_ZONES) == NULL) 16921 new_ilm->ilm_notify_driver = B_TRUE; 16922 16923 new_ilm->ilm_ill = to_ill; 16924 /* Add to the to_ill's list */ 16925 new_ilm->ilm_next = to_ill->ill_ilm; 16926 to_ill->ill_ilm = new_ilm; 16927 /* 16928 * set the flag so that mld_joingroup is 16929 * called in ilm_send_multicast_reqs(). 16930 */ 16931 new_ilm->ilm_is_new = B_TRUE; 16932 } 16933 goto bottom; 16934 } else if (ifindex != 0) { 16935 /* 16936 * If this is FAILBACK (ifindex != 0) and the ifindex 16937 * has not matched above, look at the next ilm. 16938 */ 16939 ilmp = &ilm->ilm_next; 16940 continue; 16941 } 16942 /* 16943 * If we are here, it means ifindex is 0. Failover 16944 * everything. 16945 * 16946 * We need to handle solicited node mcast address 16947 * and all_nodes mcast address differently as they 16948 * are joined witin the kenrel (ipif_multicast_up) 16949 * and potentially from the userland. We are called 16950 * after the ipifs of from_ill has been moved. 16951 * If we still find ilms on ill with solicited node 16952 * mcast address or all_nodes mcast address, it must 16953 * belong to the UP interface that has not moved e.g. 16954 * ipif_id 0 with the link local prefix does not move. 16955 * We join this on the new ill accounting for all the 16956 * userland memberships so that applications don't 16957 * see any failure. 16958 * 16959 * We need to make sure that we account only for the 16960 * solicited node and all node multicast addresses 16961 * that was brought UP on these. In the case of 16962 * a failover from A to B, we might have ilms belonging 16963 * to A (ilm_orig_ifindex pointing at A) on B accounting 16964 * for the membership from the userland. If we are failing 16965 * over from B to C now, we will find the ones belonging 16966 * to A on B. These don't account for the ill_ipif_up_count. 16967 * They just move from B to C. The check below on 16968 * ilm_orig_ifindex ensures that. 16969 */ 16970 if ((ilm->ilm_orig_ifindex == 16971 from_ill->ill_phyint->phyint_ifindex) && 16972 (IN6_ARE_ADDR_EQUAL(&ipv6_snm, &ilm->ilm_v6addr) || 16973 IN6_ARE_ADDR_EQUAL(&ipv6_all_hosts_mcast, 16974 &ilm->ilm_v6addr))) { 16975 ASSERT(ilm->ilm_refcnt > 0); 16976 count = ilm->ilm_refcnt - from_ill->ill_ipif_up_count; 16977 /* 16978 * For indentation reasons, we are not using a 16979 * "else" here. 16980 */ 16981 if (count == 0) { 16982 ilmp = &ilm->ilm_next; 16983 continue; 16984 } 16985 ilm->ilm_refcnt -= count; 16986 if (new_ilm != NULL) { 16987 /* 16988 * Can find one with the same 16989 * ilm_orig_ifindex, if we are failing 16990 * over to a STANDBY. This happens 16991 * when somebody wants to join a group 16992 * on a STANDBY interface and we 16993 * internally join on a different one. 16994 * If we had joined on from_ill then, a 16995 * failover now will find a new ilm 16996 * with this index. 16997 */ 16998 ip1dbg(("ilm_move_v6: FAILOVER, found" 16999 " new ilm on %s, group address %s\n", 17000 to_ill->ill_name, 17001 inet_ntop(AF_INET6, 17002 &ilm->ilm_v6addr, buf, 17003 sizeof (buf)))); 17004 new_ilm->ilm_refcnt += count; 17005 if (new_ilm->ilm_fmode != MODE_IS_EXCLUDE || 17006 !SLIST_IS_EMPTY(new_ilm->ilm_filter)) { 17007 new_ilm->ilm_is_new = B_TRUE; 17008 } 17009 } else { 17010 new_ilm = (ilm_t *)mi_zalloc(sizeof (ilm_t)); 17011 if (new_ilm == NULL) { 17012 ip0dbg(("ilm_move_v6: FAILOVER of IPv6" 17013 " multicast address %s : from %s to" 17014 " %s failed : ENOMEM \n", 17015 inet_ntop(AF_INET6, 17016 &ilm->ilm_v6addr, buf, 17017 sizeof (buf)), from_ill->ill_name, 17018 to_ill->ill_name)); 17019 ilmp = &ilm->ilm_next; 17020 continue; 17021 } 17022 *new_ilm = *ilm; 17023 new_ilm->ilm_filter = NULL; 17024 new_ilm->ilm_refcnt = count; 17025 new_ilm->ilm_timer = INFINITY; 17026 new_ilm->ilm_rtx.rtx_timer = INFINITY; 17027 new_ilm->ilm_is_new = B_TRUE; 17028 /* 17029 * If the to_ill has not joined this 17030 * group we need to tell the driver in 17031 * ill_send_multicast_reqs. 17032 */ 17033 if (ilm_lookup_ill_v6(to_ill, 17034 &new_ilm->ilm_v6addr, ALL_ZONES) == NULL) 17035 new_ilm->ilm_notify_driver = B_TRUE; 17036 17037 new_ilm->ilm_ill = to_ill; 17038 /* Add to the to_ill's list */ 17039 new_ilm->ilm_next = to_ill->ill_ilm; 17040 to_ill->ill_ilm = new_ilm; 17041 ASSERT(new_ilm->ilm_ipif == NULL); 17042 } 17043 if (ilm->ilm_refcnt == 0) { 17044 goto bottom; 17045 } else { 17046 new_ilm->ilm_fmode = MODE_IS_EXCLUDE; 17047 CLEAR_SLIST(new_ilm->ilm_filter); 17048 ilmp = &ilm->ilm_next; 17049 } 17050 continue; 17051 } else { 17052 /* 17053 * ifindex = 0 means, move everything pointing at 17054 * from_ill. We are doing this becuase ill has 17055 * either FAILED or became INACTIVE. 17056 * 17057 * As we would like to move things later back to 17058 * from_ill, we want to retain the identity of this 17059 * ilm. Thus, we don't blindly increment the reference 17060 * count on the ilms matching the address alone. We 17061 * need to match on the ilm_orig_index also. new_ilm 17062 * was obtained by matching ilm_orig_index also. 17063 */ 17064 if (new_ilm != NULL) { 17065 /* 17066 * This is possible only if a previous restore 17067 * was incomplete i.e restore to 17068 * ilm_orig_ifindex left some ilms because 17069 * of some failures. Thus when we are failing 17070 * again, we might find our old friends there. 17071 */ 17072 ip1dbg(("ilm_move_v6: FAILOVER, found new ilm" 17073 " on %s, group address %s\n", 17074 to_ill->ill_name, 17075 inet_ntop(AF_INET6, 17076 &ilm->ilm_v6addr, buf, 17077 sizeof (buf)))); 17078 new_ilm->ilm_refcnt += ilm->ilm_refcnt; 17079 if (new_ilm->ilm_fmode != MODE_IS_EXCLUDE || 17080 !SLIST_IS_EMPTY(new_ilm->ilm_filter)) { 17081 new_ilm->ilm_is_new = B_TRUE; 17082 } 17083 } else { 17084 if (from_ill->ill_ilm_walker_cnt != 0) { 17085 new_ilm = (ilm_t *) 17086 mi_zalloc(sizeof (ilm_t)); 17087 if (new_ilm == NULL) { 17088 ip0dbg(("ilm_move_v6: " 17089 "FAILOVER of IPv6" 17090 " multicast address %s : " 17091 "from %s to" 17092 " %s failed : ENOMEM \n", 17093 inet_ntop(AF_INET6, 17094 &ilm->ilm_v6addr, buf, 17095 sizeof (buf)), 17096 from_ill->ill_name, 17097 to_ill->ill_name)); 17098 17099 ilmp = &ilm->ilm_next; 17100 continue; 17101 } 17102 *new_ilm = *ilm; 17103 new_ilm->ilm_filter = NULL; 17104 } else { 17105 *ilmp = ilm->ilm_next; 17106 new_ilm = ilm; 17107 } 17108 /* 17109 * If the to_ill has not joined this 17110 * group we need to tell the driver in 17111 * ill_send_multicast_reqs. 17112 */ 17113 if (ilm_lookup_ill_v6(to_ill, 17114 &new_ilm->ilm_v6addr, ALL_ZONES) == NULL) 17115 new_ilm->ilm_notify_driver = B_TRUE; 17116 17117 /* Add to the to_ill's list */ 17118 new_ilm->ilm_next = to_ill->ill_ilm; 17119 to_ill->ill_ilm = new_ilm; 17120 ASSERT(ilm->ilm_ipif == NULL); 17121 new_ilm->ilm_ill = to_ill; 17122 new_ilm->ilm_is_new = B_TRUE; 17123 } 17124 17125 } 17126 17127 bottom: 17128 /* 17129 * Revert multicast filter state to (EXCLUDE, NULL). 17130 * new_ilm->ilm_is_new should already be set if needed. 17131 */ 17132 new_ilm->ilm_fmode = MODE_IS_EXCLUDE; 17133 CLEAR_SLIST(new_ilm->ilm_filter); 17134 /* 17135 * We allocated/got a new ilm, free the old one. 17136 */ 17137 if (new_ilm != ilm) { 17138 if (from_ill->ill_ilm_walker_cnt == 0) { 17139 *ilmp = ilm->ilm_next; 17140 ilm->ilm_next = NULL; 17141 FREE_SLIST(ilm->ilm_filter); 17142 FREE_SLIST(ilm->ilm_pendsrcs); 17143 FREE_SLIST(ilm->ilm_rtx.rtx_allow); 17144 FREE_SLIST(ilm->ilm_rtx.rtx_block); 17145 mi_free((char *)ilm); 17146 } else { 17147 ilm->ilm_flags |= ILM_DELETED; 17148 from_ill->ill_ilm_cleanup_reqd = 1; 17149 ilmp = &ilm->ilm_next; 17150 } 17151 } 17152 } 17153 } 17154 17155 /* 17156 * Move all the multicast memberships to to_ill. Called when 17157 * an ipif moves from "from_ill" to "to_ill". This function is slightly 17158 * different from IPv6 counterpart as multicast memberships are associated 17159 * with ills in IPv6. This function is called after every ipif is moved 17160 * unlike IPv6, where it is moved only once. 17161 */ 17162 static void 17163 ilm_move_v4(ill_t *from_ill, ill_t *to_ill, ipif_t *ipif) 17164 { 17165 ilm_t *ilm; 17166 ilm_t *ilm_next; 17167 ilm_t *new_ilm; 17168 ilm_t **ilmp; 17169 ip_stack_t *ipst = from_ill->ill_ipst; 17170 17171 ASSERT(MUTEX_HELD(&to_ill->ill_lock)); 17172 ASSERT(MUTEX_HELD(&from_ill->ill_lock)); 17173 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); 17174 17175 ilmp = &from_ill->ill_ilm; 17176 for (ilm = from_ill->ill_ilm; ilm != NULL; ilm = ilm_next) { 17177 ilm_next = ilm->ilm_next; 17178 17179 if (ilm->ilm_flags & ILM_DELETED) { 17180 ilmp = &ilm->ilm_next; 17181 continue; 17182 } 17183 17184 ASSERT(ilm->ilm_ipif != NULL); 17185 17186 if (ilm->ilm_ipif != ipif) { 17187 ilmp = &ilm->ilm_next; 17188 continue; 17189 } 17190 17191 if (V4_PART_OF_V6(ilm->ilm_v6addr) == 17192 htonl(INADDR_ALLHOSTS_GROUP)) { 17193 new_ilm = ilm_lookup_ipif(ipif, 17194 V4_PART_OF_V6(ilm->ilm_v6addr)); 17195 if (new_ilm != NULL) { 17196 new_ilm->ilm_refcnt += ilm->ilm_refcnt; 17197 /* 17198 * We still need to deal with the from_ill. 17199 */ 17200 new_ilm->ilm_is_new = B_TRUE; 17201 new_ilm->ilm_fmode = MODE_IS_EXCLUDE; 17202 CLEAR_SLIST(new_ilm->ilm_filter); 17203 goto delete_ilm; 17204 } 17205 /* 17206 * If we could not find one e.g. ipif is 17207 * still down on to_ill, we add this ilm 17208 * on ill_new to preserve the reference 17209 * count. 17210 */ 17211 } 17212 /* 17213 * When ipifs move, ilms always move with it 17214 * to the NEW ill. Thus we should never be 17215 * able to find ilm till we really move it here. 17216 */ 17217 ASSERT(ilm_lookup_ipif(ipif, 17218 V4_PART_OF_V6(ilm->ilm_v6addr)) == NULL); 17219 17220 if (from_ill->ill_ilm_walker_cnt != 0) { 17221 new_ilm = (ilm_t *)mi_zalloc(sizeof (ilm_t)); 17222 if (new_ilm == NULL) { 17223 char buf[INET6_ADDRSTRLEN]; 17224 ip0dbg(("ilm_move_v4: FAILBACK of IPv4" 17225 " multicast address %s : " 17226 "from %s to" 17227 " %s failed : ENOMEM \n", 17228 inet_ntop(AF_INET, 17229 &ilm->ilm_v6addr, buf, 17230 sizeof (buf)), 17231 from_ill->ill_name, 17232 to_ill->ill_name)); 17233 17234 ilmp = &ilm->ilm_next; 17235 continue; 17236 } 17237 *new_ilm = *ilm; 17238 /* We don't want new_ilm linked to ilm's filter list */ 17239 new_ilm->ilm_filter = NULL; 17240 } else { 17241 /* Remove from the list */ 17242 *ilmp = ilm->ilm_next; 17243 new_ilm = ilm; 17244 } 17245 17246 /* 17247 * If we have never joined this group on the to_ill 17248 * make sure we tell the driver. 17249 */ 17250 if (ilm_lookup_ill_v6(to_ill, &new_ilm->ilm_v6addr, 17251 ALL_ZONES) == NULL) 17252 new_ilm->ilm_notify_driver = B_TRUE; 17253 17254 /* Add to the to_ill's list */ 17255 new_ilm->ilm_next = to_ill->ill_ilm; 17256 to_ill->ill_ilm = new_ilm; 17257 new_ilm->ilm_is_new = B_TRUE; 17258 17259 /* 17260 * Revert multicast filter state to (EXCLUDE, NULL) 17261 */ 17262 new_ilm->ilm_fmode = MODE_IS_EXCLUDE; 17263 CLEAR_SLIST(new_ilm->ilm_filter); 17264 17265 /* 17266 * Delete only if we have allocated a new ilm. 17267 */ 17268 if (new_ilm != ilm) { 17269 delete_ilm: 17270 if (from_ill->ill_ilm_walker_cnt == 0) { 17271 /* Remove from the list */ 17272 *ilmp = ilm->ilm_next; 17273 ilm->ilm_next = NULL; 17274 FREE_SLIST(ilm->ilm_filter); 17275 FREE_SLIST(ilm->ilm_pendsrcs); 17276 FREE_SLIST(ilm->ilm_rtx.rtx_allow); 17277 FREE_SLIST(ilm->ilm_rtx.rtx_block); 17278 mi_free((char *)ilm); 17279 } else { 17280 ilm->ilm_flags |= ILM_DELETED; 17281 from_ill->ill_ilm_cleanup_reqd = 1; 17282 ilmp = &ilm->ilm_next; 17283 } 17284 } 17285 } 17286 } 17287 17288 static uint_t 17289 ipif_get_id(ill_t *ill, uint_t id) 17290 { 17291 uint_t unit; 17292 ipif_t *tipif; 17293 boolean_t found = B_FALSE; 17294 ip_stack_t *ipst = ill->ill_ipst; 17295 17296 /* 17297 * During failback, we want to go back to the same id 17298 * instead of the smallest id so that the original 17299 * configuration is maintained. id is non-zero in that 17300 * case. 17301 */ 17302 if (id != 0) { 17303 /* 17304 * While failing back, if we still have an ipif with 17305 * MAX_ADDRS_PER_IF, it means this will be replaced 17306 * as soon as we return from this function. It was 17307 * to set to MAX_ADDRS_PER_IF by the caller so that 17308 * we can choose the smallest id. Thus we return zero 17309 * in that case ignoring the hint. 17310 */ 17311 if (ill->ill_ipif->ipif_id == MAX_ADDRS_PER_IF) 17312 return (0); 17313 for (tipif = ill->ill_ipif; tipif != NULL; 17314 tipif = tipif->ipif_next) { 17315 if (tipif->ipif_id == id) { 17316 found = B_TRUE; 17317 break; 17318 } 17319 } 17320 /* 17321 * If somebody already plumbed another logical 17322 * with the same id, we won't be able to find it. 17323 */ 17324 if (!found) 17325 return (id); 17326 } 17327 for (unit = 0; unit <= ipst->ips_ip_addrs_per_if; unit++) { 17328 found = B_FALSE; 17329 for (tipif = ill->ill_ipif; tipif != NULL; 17330 tipif = tipif->ipif_next) { 17331 if (tipif->ipif_id == unit) { 17332 found = B_TRUE; 17333 break; 17334 } 17335 } 17336 if (!found) 17337 break; 17338 } 17339 return (unit); 17340 } 17341 17342 /* ARGSUSED */ 17343 static int 17344 ipif_move(ipif_t *ipif, ill_t *to_ill, queue_t *q, mblk_t *mp, 17345 ipif_t **rep_ipif_ptr) 17346 { 17347 ill_t *from_ill; 17348 ipif_t *rep_ipif; 17349 uint_t unit; 17350 int err = 0; 17351 ipif_t *to_ipif; 17352 struct iocblk *iocp; 17353 boolean_t failback_cmd; 17354 boolean_t remove_ipif; 17355 int rc; 17356 ip_stack_t *ipst; 17357 17358 ASSERT(IAM_WRITER_ILL(to_ill)); 17359 ASSERT(IAM_WRITER_IPIF(ipif)); 17360 17361 iocp = (struct iocblk *)mp->b_rptr; 17362 failback_cmd = (iocp->ioc_cmd == SIOCLIFFAILBACK); 17363 remove_ipif = B_FALSE; 17364 17365 from_ill = ipif->ipif_ill; 17366 ipst = from_ill->ill_ipst; 17367 17368 ASSERT(MUTEX_HELD(&to_ill->ill_lock)); 17369 ASSERT(MUTEX_HELD(&from_ill->ill_lock)); 17370 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); 17371 17372 /* 17373 * Don't move LINK LOCAL addresses as they are tied to 17374 * physical interface. 17375 */ 17376 if (from_ill->ill_isv6 && 17377 IN6_IS_ADDR_LINKLOCAL(&ipif->ipif_v6lcl_addr)) { 17378 ipif->ipif_was_up = B_FALSE; 17379 IPIF_UNMARK_MOVING(ipif); 17380 return (0); 17381 } 17382 17383 /* 17384 * We set the ipif_id to maximum so that the search for 17385 * ipif_id will pick the lowest number i.e 0 in the 17386 * following 2 cases : 17387 * 17388 * 1) We have a replacement ipif at the head of to_ill. 17389 * We can't remove it yet as we can exceed ip_addrs_per_if 17390 * on to_ill and hence the MOVE might fail. We want to 17391 * remove it only if we could move the ipif. Thus, by 17392 * setting it to the MAX value, we make the search in 17393 * ipif_get_id return the zeroth id. 17394 * 17395 * 2) When DR pulls out the NIC and re-plumbs the interface, 17396 * we might just have a zero address plumbed on the ipif 17397 * with zero id in the case of IPv4. We remove that while 17398 * doing the failback. We want to remove it only if we 17399 * could move the ipif. Thus, by setting it to the MAX 17400 * value, we make the search in ipif_get_id return the 17401 * zeroth id. 17402 * 17403 * Both (1) and (2) are done only when when we are moving 17404 * an ipif (either due to failover/failback) which originally 17405 * belonged to this interface i.e the ipif_orig_ifindex is 17406 * the same as to_ill's ifindex. This is needed so that 17407 * FAILOVER from A -> B ( A failed) followed by FAILOVER 17408 * from B -> A (B is being removed from the group) and 17409 * FAILBACK from A -> B restores the original configuration. 17410 * Without the check for orig_ifindex, the second FAILOVER 17411 * could make the ipif belonging to B replace the A's zeroth 17412 * ipif and the subsequent failback re-creating the replacement 17413 * ipif again. 17414 * 17415 * NOTE : We created the replacement ipif when we did a 17416 * FAILOVER (See below). We could check for FAILBACK and 17417 * then look for replacement ipif to be removed. But we don't 17418 * want to do that because we wan't to allow the possibility 17419 * of a FAILOVER from A -> B (which creates the replacement ipif), 17420 * followed by a *FAILOVER* from B -> A instead of a FAILBACK 17421 * from B -> A. 17422 */ 17423 to_ipif = to_ill->ill_ipif; 17424 if ((to_ill->ill_phyint->phyint_ifindex == 17425 ipif->ipif_orig_ifindex) && 17426 IPIF_REPL_CHECK(to_ipif, failback_cmd)) { 17427 ASSERT(to_ipif->ipif_id == 0); 17428 remove_ipif = B_TRUE; 17429 to_ipif->ipif_id = MAX_ADDRS_PER_IF; 17430 } 17431 /* 17432 * Find the lowest logical unit number on the to_ill. 17433 * If we are failing back, try to get the original id 17434 * rather than the lowest one so that the original 17435 * configuration is maintained. 17436 * 17437 * XXX need a better scheme for this. 17438 */ 17439 if (failback_cmd) { 17440 unit = ipif_get_id(to_ill, ipif->ipif_orig_ipifid); 17441 } else { 17442 unit = ipif_get_id(to_ill, 0); 17443 } 17444 17445 /* Reset back to zero in case we fail below */ 17446 if (to_ipif->ipif_id == MAX_ADDRS_PER_IF) 17447 to_ipif->ipif_id = 0; 17448 17449 if (unit == ipst->ips_ip_addrs_per_if) { 17450 ipif->ipif_was_up = B_FALSE; 17451 IPIF_UNMARK_MOVING(ipif); 17452 return (EINVAL); 17453 } 17454 17455 /* 17456 * ipif is ready to move from "from_ill" to "to_ill". 17457 * 17458 * 1) If we are moving ipif with id zero, create a 17459 * replacement ipif for this ipif on from_ill. If this fails 17460 * fail the MOVE operation. 17461 * 17462 * 2) Remove the replacement ipif on to_ill if any. 17463 * We could remove the replacement ipif when we are moving 17464 * the ipif with id zero. But what if somebody already 17465 * unplumbed it ? Thus we always remove it if it is present. 17466 * We want to do it only if we are sure we are going to 17467 * move the ipif to to_ill which is why there are no 17468 * returns due to error till ipif is linked to to_ill. 17469 * Note that the first ipif that we failback will always 17470 * be zero if it is present. 17471 */ 17472 if (ipif->ipif_id == 0) { 17473 ipaddr_t inaddr_any = INADDR_ANY; 17474 17475 rep_ipif = (ipif_t *)mi_alloc(sizeof (ipif_t), BPRI_MED); 17476 if (rep_ipif == NULL) { 17477 ipif->ipif_was_up = B_FALSE; 17478 IPIF_UNMARK_MOVING(ipif); 17479 return (ENOMEM); 17480 } 17481 *rep_ipif = ipif_zero; 17482 /* 17483 * Before we put the ipif on the list, store the addresses 17484 * as mapped addresses as some of the ioctls e.g SIOCGIFADDR 17485 * assumes so. This logic is not any different from what 17486 * ipif_allocate does. 17487 */ 17488 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 17489 &rep_ipif->ipif_v6lcl_addr); 17490 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 17491 &rep_ipif->ipif_v6src_addr); 17492 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 17493 &rep_ipif->ipif_v6subnet); 17494 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 17495 &rep_ipif->ipif_v6net_mask); 17496 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 17497 &rep_ipif->ipif_v6brd_addr); 17498 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 17499 &rep_ipif->ipif_v6pp_dst_addr); 17500 /* 17501 * We mark IPIF_NOFAILOVER so that this can never 17502 * move. 17503 */ 17504 rep_ipif->ipif_flags = ipif->ipif_flags | IPIF_NOFAILOVER; 17505 rep_ipif->ipif_flags &= ~IPIF_UP & ~IPIF_DUPLICATE; 17506 rep_ipif->ipif_replace_zero = B_TRUE; 17507 mutex_init(&rep_ipif->ipif_saved_ire_lock, NULL, 17508 MUTEX_DEFAULT, NULL); 17509 rep_ipif->ipif_id = 0; 17510 rep_ipif->ipif_ire_type = ipif->ipif_ire_type; 17511 rep_ipif->ipif_ill = from_ill; 17512 rep_ipif->ipif_orig_ifindex = 17513 from_ill->ill_phyint->phyint_ifindex; 17514 /* Insert at head */ 17515 rep_ipif->ipif_next = from_ill->ill_ipif; 17516 from_ill->ill_ipif = rep_ipif; 17517 /* 17518 * We don't really care to let apps know about 17519 * this interface. 17520 */ 17521 } 17522 17523 if (remove_ipif) { 17524 /* 17525 * We set to a max value above for this case to get 17526 * id zero. ASSERT that we did get one. 17527 */ 17528 ASSERT((to_ipif->ipif_id == 0) && (unit == 0)); 17529 rep_ipif = to_ipif; 17530 to_ill->ill_ipif = rep_ipif->ipif_next; 17531 rep_ipif->ipif_next = NULL; 17532 /* 17533 * If some apps scanned and find this interface, 17534 * it is time to let them know, so that they can 17535 * delete it. 17536 */ 17537 17538 *rep_ipif_ptr = rep_ipif; 17539 } 17540 17541 /* Get it out of the ILL interface list. */ 17542 ipif_remove(ipif, B_FALSE); 17543 17544 /* Assign the new ill */ 17545 ipif->ipif_ill = to_ill; 17546 ipif->ipif_id = unit; 17547 /* id has already been checked */ 17548 rc = ipif_insert(ipif, B_FALSE, B_FALSE); 17549 ASSERT(rc == 0); 17550 /* Let SCTP update its list */ 17551 sctp_move_ipif(ipif, from_ill, to_ill); 17552 /* 17553 * Handle the failover and failback of ipif_t between 17554 * ill_t that have differing maximum mtu values. 17555 */ 17556 if (ipif->ipif_mtu > to_ill->ill_max_mtu) { 17557 if (ipif->ipif_saved_mtu == 0) { 17558 /* 17559 * As this ipif_t is moving to an ill_t 17560 * that has a lower ill_max_mtu, its 17561 * ipif_mtu needs to be saved so it can 17562 * be restored during failback or during 17563 * failover to an ill_t which has a 17564 * higher ill_max_mtu. 17565 */ 17566 ipif->ipif_saved_mtu = ipif->ipif_mtu; 17567 ipif->ipif_mtu = to_ill->ill_max_mtu; 17568 } else { 17569 /* 17570 * The ipif_t is, once again, moving to 17571 * an ill_t that has a lower maximum mtu 17572 * value. 17573 */ 17574 ipif->ipif_mtu = to_ill->ill_max_mtu; 17575 } 17576 } else if (ipif->ipif_mtu < to_ill->ill_max_mtu && 17577 ipif->ipif_saved_mtu != 0) { 17578 /* 17579 * The mtu of this ipif_t had to be reduced 17580 * during an earlier failover; this is an 17581 * opportunity for it to be increased (either as 17582 * part of another failover or a failback). 17583 */ 17584 if (ipif->ipif_saved_mtu <= to_ill->ill_max_mtu) { 17585 ipif->ipif_mtu = ipif->ipif_saved_mtu; 17586 ipif->ipif_saved_mtu = 0; 17587 } else { 17588 ipif->ipif_mtu = to_ill->ill_max_mtu; 17589 } 17590 } 17591 17592 /* 17593 * We preserve all the other fields of the ipif including 17594 * ipif_saved_ire_mp. The routes that are saved here will 17595 * be recreated on the new interface and back on the old 17596 * interface when we move back. 17597 */ 17598 ASSERT(ipif->ipif_arp_del_mp == NULL); 17599 17600 return (err); 17601 } 17602 17603 static int 17604 ipif_move_all(ill_t *from_ill, ill_t *to_ill, queue_t *q, mblk_t *mp, 17605 int ifindex, ipif_t **rep_ipif_ptr) 17606 { 17607 ipif_t *mipif; 17608 ipif_t *ipif_next; 17609 int err; 17610 17611 /* 17612 * We don't really try to MOVE back things if some of the 17613 * operations fail. The daemon will take care of moving again 17614 * later on. 17615 */ 17616 for (mipif = from_ill->ill_ipif; mipif != NULL; mipif = ipif_next) { 17617 ipif_next = mipif->ipif_next; 17618 if (!(mipif->ipif_flags & IPIF_NOFAILOVER) && 17619 (ifindex == 0 || ifindex == mipif->ipif_orig_ifindex)) { 17620 17621 err = ipif_move(mipif, to_ill, q, mp, rep_ipif_ptr); 17622 17623 /* 17624 * When the MOVE fails, it is the job of the 17625 * application to take care of this properly 17626 * i.e try again if it is ENOMEM. 17627 */ 17628 if (mipif->ipif_ill != from_ill) { 17629 /* 17630 * ipif has moved. 17631 * 17632 * Move the multicast memberships associated 17633 * with this ipif to the new ill. For IPv6, we 17634 * do it once after all the ipifs are moved 17635 * (in ill_move) as they are not associated 17636 * with ipifs. 17637 * 17638 * We need to move the ilms as the ipif has 17639 * already been moved to a new ill even 17640 * in the case of errors. Neither 17641 * ilm_free(ipif) will find the ilm 17642 * when somebody unplumbs this ipif nor 17643 * ilm_delete(ilm) will be able to find the 17644 * ilm, if we don't move now. 17645 */ 17646 if (!from_ill->ill_isv6) 17647 ilm_move_v4(from_ill, to_ill, mipif); 17648 } 17649 17650 if (err != 0) 17651 return (err); 17652 } 17653 } 17654 return (0); 17655 } 17656 17657 static int 17658 ill_move(ill_t *from_ill, ill_t *to_ill, queue_t *q, mblk_t *mp) 17659 { 17660 int ifindex; 17661 int err; 17662 struct iocblk *iocp; 17663 ipif_t *ipif; 17664 ipif_t *rep_ipif_ptr = NULL; 17665 ipif_t *from_ipif = NULL; 17666 boolean_t check_rep_if = B_FALSE; 17667 ip_stack_t *ipst = from_ill->ill_ipst; 17668 17669 iocp = (struct iocblk *)mp->b_rptr; 17670 if (iocp->ioc_cmd == SIOCLIFFAILOVER) { 17671 /* 17672 * Move everything pointing at from_ill to to_ill. 17673 * We acheive this by passing in 0 as ifindex. 17674 */ 17675 ifindex = 0; 17676 } else { 17677 /* 17678 * Move everything pointing at from_ill whose original 17679 * ifindex of connp, ipif, ilm points at to_ill->ill_index. 17680 * We acheive this by passing in ifindex rather than 0. 17681 * Multicast vifs, ilgs move implicitly because ipifs move. 17682 */ 17683 ASSERT(iocp->ioc_cmd == SIOCLIFFAILBACK); 17684 ifindex = to_ill->ill_phyint->phyint_ifindex; 17685 } 17686 17687 /* 17688 * Determine if there is at least one ipif that would move from 17689 * 'from_ill' to 'to_ill'. If so, it is possible that the replacement 17690 * ipif (if it exists) on the to_ill would be consumed as a result of 17691 * the move, in which case we need to quiesce the replacement ipif also. 17692 */ 17693 for (from_ipif = from_ill->ill_ipif; from_ipif != NULL; 17694 from_ipif = from_ipif->ipif_next) { 17695 if (((ifindex == 0) || 17696 (ifindex == from_ipif->ipif_orig_ifindex)) && 17697 !(from_ipif->ipif_flags & IPIF_NOFAILOVER)) { 17698 check_rep_if = B_TRUE; 17699 break; 17700 } 17701 } 17702 17703 17704 ill_down_ipifs(from_ill, mp, ifindex, B_TRUE); 17705 17706 GRAB_ILL_LOCKS(from_ill, to_ill); 17707 if ((ipif = ill_quiescent_to_move(from_ill)) != NULL) { 17708 (void) ipsq_pending_mp_add(NULL, ipif, q, 17709 mp, ILL_MOVE_OK); 17710 RELEASE_ILL_LOCKS(from_ill, to_ill); 17711 return (EINPROGRESS); 17712 } 17713 17714 /* Check if the replacement ipif is quiescent to delete */ 17715 if (check_rep_if && IPIF_REPL_CHECK(to_ill->ill_ipif, 17716 (iocp->ioc_cmd == SIOCLIFFAILBACK))) { 17717 to_ill->ill_ipif->ipif_state_flags |= 17718 IPIF_MOVING | IPIF_CHANGING; 17719 if ((ipif = ill_quiescent_to_move(to_ill)) != NULL) { 17720 (void) ipsq_pending_mp_add(NULL, ipif, q, 17721 mp, ILL_MOVE_OK); 17722 RELEASE_ILL_LOCKS(from_ill, to_ill); 17723 return (EINPROGRESS); 17724 } 17725 } 17726 RELEASE_ILL_LOCKS(from_ill, to_ill); 17727 17728 ASSERT(!MUTEX_HELD(&to_ill->ill_lock)); 17729 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 17730 GRAB_ILL_LOCKS(from_ill, to_ill); 17731 err = ipif_move_all(from_ill, to_ill, q, mp, ifindex, &rep_ipif_ptr); 17732 17733 /* ilm_move is done inside ipif_move for IPv4 */ 17734 if (err == 0 && from_ill->ill_isv6) 17735 ilm_move_v6(from_ill, to_ill, ifindex); 17736 17737 RELEASE_ILL_LOCKS(from_ill, to_ill); 17738 rw_exit(&ipst->ips_ill_g_lock); 17739 17740 /* 17741 * send rts messages and multicast messages. 17742 */ 17743 if (rep_ipif_ptr != NULL) { 17744 if (rep_ipif_ptr->ipif_recovery_id != 0) { 17745 (void) untimeout(rep_ipif_ptr->ipif_recovery_id); 17746 rep_ipif_ptr->ipif_recovery_id = 0; 17747 } 17748 ip_rts_ifmsg(rep_ipif_ptr); 17749 ip_rts_newaddrmsg(RTM_DELETE, 0, rep_ipif_ptr); 17750 #ifdef DEBUG 17751 ipif_trace_cleanup(rep_ipif_ptr); 17752 #endif 17753 mi_free(rep_ipif_ptr); 17754 } 17755 17756 conn_move_ill(from_ill, to_ill, ifindex); 17757 17758 return (err); 17759 } 17760 17761 /* 17762 * Used to extract arguments for FAILOVER/FAILBACK ioctls. 17763 * Also checks for the validity of the arguments. 17764 * Note: We are already exclusive inside the from group. 17765 * It is upto the caller to release refcnt on the to_ill's. 17766 */ 17767 static int 17768 ip_extract_move_args(queue_t *q, mblk_t *mp, ill_t **ill_from_v4, 17769 ill_t **ill_from_v6, ill_t **ill_to_v4, ill_t **ill_to_v6) 17770 { 17771 int dst_index; 17772 ipif_t *ipif_v4, *ipif_v6; 17773 struct lifreq *lifr; 17774 mblk_t *mp1; 17775 boolean_t exists; 17776 sin_t *sin; 17777 int err = 0; 17778 ip_stack_t *ipst; 17779 17780 if (CONN_Q(q)) 17781 ipst = CONNQ_TO_IPST(q); 17782 else 17783 ipst = ILLQ_TO_IPST(q); 17784 17785 17786 if ((mp1 = mp->b_cont) == NULL) 17787 return (EPROTO); 17788 17789 if ((mp1 = mp1->b_cont) == NULL) 17790 return (EPROTO); 17791 17792 lifr = (struct lifreq *)mp1->b_rptr; 17793 sin = (sin_t *)&lifr->lifr_addr; 17794 17795 /* 17796 * We operate on both IPv4 and IPv6. Thus, we don't allow IPv4/IPv6 17797 * specific operations. 17798 */ 17799 if (sin->sin_family != AF_UNSPEC) 17800 return (EINVAL); 17801 17802 /* 17803 * Get ipif with id 0. We are writer on the from ill. So we can pass 17804 * NULLs for the last 4 args and we know the lookup won't fail 17805 * with EINPROGRESS. 17806 */ 17807 ipif_v4 = ipif_lookup_on_name(lifr->lifr_name, 17808 mi_strlen(lifr->lifr_name), B_FALSE, &exists, B_FALSE, 17809 ALL_ZONES, NULL, NULL, NULL, NULL, ipst); 17810 ipif_v6 = ipif_lookup_on_name(lifr->lifr_name, 17811 mi_strlen(lifr->lifr_name), B_FALSE, &exists, B_TRUE, 17812 ALL_ZONES, NULL, NULL, NULL, NULL, ipst); 17813 17814 if (ipif_v4 == NULL && ipif_v6 == NULL) 17815 return (ENXIO); 17816 17817 if (ipif_v4 != NULL) { 17818 ASSERT(ipif_v4->ipif_refcnt != 0); 17819 if (ipif_v4->ipif_id != 0) { 17820 err = EINVAL; 17821 goto done; 17822 } 17823 17824 ASSERT(IAM_WRITER_IPIF(ipif_v4)); 17825 *ill_from_v4 = ipif_v4->ipif_ill; 17826 } 17827 17828 if (ipif_v6 != NULL) { 17829 ASSERT(ipif_v6->ipif_refcnt != 0); 17830 if (ipif_v6->ipif_id != 0) { 17831 err = EINVAL; 17832 goto done; 17833 } 17834 17835 ASSERT(IAM_WRITER_IPIF(ipif_v6)); 17836 *ill_from_v6 = ipif_v6->ipif_ill; 17837 } 17838 17839 err = 0; 17840 dst_index = lifr->lifr_movetoindex; 17841 *ill_to_v4 = ill_lookup_on_ifindex(dst_index, B_FALSE, 17842 q, mp, ip_process_ioctl, &err, ipst); 17843 if (err != 0) { 17844 /* 17845 * There could be only v6. 17846 */ 17847 if (err != ENXIO) 17848 goto done; 17849 err = 0; 17850 } 17851 17852 *ill_to_v6 = ill_lookup_on_ifindex(dst_index, B_TRUE, 17853 q, mp, ip_process_ioctl, &err, ipst); 17854 if (err != 0) { 17855 if (err != ENXIO) 17856 goto done; 17857 if (*ill_to_v4 == NULL) { 17858 err = ENXIO; 17859 goto done; 17860 } 17861 err = 0; 17862 } 17863 17864 /* 17865 * If we have something to MOVE i.e "from" not NULL, 17866 * "to" should be non-NULL. 17867 */ 17868 if ((*ill_from_v4 != NULL && *ill_to_v4 == NULL) || 17869 (*ill_from_v6 != NULL && *ill_to_v6 == NULL)) { 17870 err = EINVAL; 17871 } 17872 17873 done: 17874 if (ipif_v4 != NULL) 17875 ipif_refrele(ipif_v4); 17876 if (ipif_v6 != NULL) 17877 ipif_refrele(ipif_v6); 17878 return (err); 17879 } 17880 17881 /* 17882 * FAILOVER and FAILBACK are modelled as MOVE operations. 17883 * 17884 * We don't check whether the MOVE is within the same group or 17885 * not, because this ioctl can be used as a generic mechanism 17886 * to failover from interface A to B, though things will function 17887 * only if they are really part of the same group. Moreover, 17888 * all ipifs may be down and hence temporarily out of the group. 17889 * 17890 * ipif's that need to be moved are first brought down; V4 ipifs are brought 17891 * down first and then V6. For each we wait for the ipif's to become quiescent. 17892 * Bringing down the ipifs ensures that all ires pointing to these ipifs's 17893 * have been deleted and there are no active references. Once quiescent the 17894 * ipif's are moved and brought up on the new ill. 17895 * 17896 * Normally the source ill and destination ill belong to the same IPMP group 17897 * and hence the same ipsq_t. In the event they don't belong to the same 17898 * same group the two ipsq's are first merged into one ipsq - that of the 17899 * to_ill. The multicast memberships on the source and destination ill cannot 17900 * change during the move operation since multicast joins/leaves also have to 17901 * execute on the same ipsq and are hence serialized. 17902 */ 17903 /* ARGSUSED */ 17904 int 17905 ip_sioctl_move(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 17906 ip_ioctl_cmd_t *ipip, void *ifreq) 17907 { 17908 ill_t *ill_to_v4 = NULL; 17909 ill_t *ill_to_v6 = NULL; 17910 ill_t *ill_from_v4 = NULL; 17911 ill_t *ill_from_v6 = NULL; 17912 int err = 0; 17913 17914 /* 17915 * setup from and to ill's, we can get EINPROGRESS only for 17916 * to_ill's. 17917 */ 17918 err = ip_extract_move_args(q, mp, &ill_from_v4, &ill_from_v6, 17919 &ill_to_v4, &ill_to_v6); 17920 17921 if (err != 0) { 17922 ip0dbg(("ip_sioctl_move: extract args failed\n")); 17923 goto done; 17924 } 17925 17926 /* 17927 * nothing to do. 17928 */ 17929 if ((ill_from_v4 != NULL) && (ill_from_v4 == ill_to_v4)) { 17930 goto done; 17931 } 17932 17933 /* 17934 * nothing to do. 17935 */ 17936 if ((ill_from_v6 != NULL) && (ill_from_v6 == ill_to_v6)) { 17937 goto done; 17938 } 17939 17940 /* 17941 * Mark the ill as changing. 17942 * ILL_CHANGING flag is cleared when the ipif's are brought up 17943 * in ill_up_ipifs in case of error they are cleared below. 17944 */ 17945 17946 GRAB_ILL_LOCKS(ill_from_v4, ill_from_v6); 17947 if (ill_from_v4 != NULL) 17948 ill_from_v4->ill_state_flags |= ILL_CHANGING; 17949 if (ill_from_v6 != NULL) 17950 ill_from_v6->ill_state_flags |= ILL_CHANGING; 17951 RELEASE_ILL_LOCKS(ill_from_v4, ill_from_v6); 17952 17953 /* 17954 * Make sure that both src and dst are 17955 * in the same syncq group. If not make it happen. 17956 * We are not holding any locks because we are the writer 17957 * on the from_ipsq and we will hold locks in ill_merge_groups 17958 * to protect to_ipsq against changing. 17959 */ 17960 if (ill_from_v4 != NULL) { 17961 if (ill_from_v4->ill_phyint->phyint_ipsq != 17962 ill_to_v4->ill_phyint->phyint_ipsq) { 17963 err = ill_merge_groups(ill_from_v4, ill_to_v4, 17964 NULL, mp, q); 17965 goto err_ret; 17966 17967 } 17968 ASSERT(!MUTEX_HELD(&ill_to_v4->ill_lock)); 17969 } else { 17970 17971 if (ill_from_v6->ill_phyint->phyint_ipsq != 17972 ill_to_v6->ill_phyint->phyint_ipsq) { 17973 err = ill_merge_groups(ill_from_v6, ill_to_v6, 17974 NULL, mp, q); 17975 goto err_ret; 17976 17977 } 17978 ASSERT(!MUTEX_HELD(&ill_to_v6->ill_lock)); 17979 } 17980 17981 /* 17982 * Now that the ipsq's have been merged and we are the writer 17983 * lets mark to_ill as changing as well. 17984 */ 17985 17986 GRAB_ILL_LOCKS(ill_to_v4, ill_to_v6); 17987 if (ill_to_v4 != NULL) 17988 ill_to_v4->ill_state_flags |= ILL_CHANGING; 17989 if (ill_to_v6 != NULL) 17990 ill_to_v6->ill_state_flags |= ILL_CHANGING; 17991 RELEASE_ILL_LOCKS(ill_to_v4, ill_to_v6); 17992 17993 /* 17994 * Its ok for us to proceed with the move even if 17995 * ill_pending_mp is non null on one of the from ill's as the reply 17996 * should not be looking at the ipif, it should only care about the 17997 * ill itself. 17998 */ 17999 18000 /* 18001 * lets move ipv4 first. 18002 */ 18003 if (ill_from_v4 != NULL) { 18004 ASSERT(IAM_WRITER_ILL(ill_to_v4)); 18005 ill_from_v4->ill_move_in_progress = B_TRUE; 18006 ill_to_v4->ill_move_in_progress = B_TRUE; 18007 ill_to_v4->ill_move_peer = ill_from_v4; 18008 ill_from_v4->ill_move_peer = ill_to_v4; 18009 err = ill_move(ill_from_v4, ill_to_v4, q, mp); 18010 } 18011 18012 /* 18013 * Now lets move ipv6. 18014 */ 18015 if (err == 0 && ill_from_v6 != NULL) { 18016 ASSERT(IAM_WRITER_ILL(ill_to_v6)); 18017 ill_from_v6->ill_move_in_progress = B_TRUE; 18018 ill_to_v6->ill_move_in_progress = B_TRUE; 18019 ill_to_v6->ill_move_peer = ill_from_v6; 18020 ill_from_v6->ill_move_peer = ill_to_v6; 18021 err = ill_move(ill_from_v6, ill_to_v6, q, mp); 18022 } 18023 18024 err_ret: 18025 /* 18026 * EINPROGRESS means we are waiting for the ipif's that need to be 18027 * moved to become quiescent. 18028 */ 18029 if (err == EINPROGRESS) { 18030 goto done; 18031 } 18032 18033 /* 18034 * if err is set ill_up_ipifs will not be called 18035 * lets clear the flags. 18036 */ 18037 18038 GRAB_ILL_LOCKS(ill_to_v4, ill_to_v6); 18039 GRAB_ILL_LOCKS(ill_from_v4, ill_from_v6); 18040 /* 18041 * Some of the clearing may be redundant. But it is simple 18042 * not making any extra checks. 18043 */ 18044 if (ill_from_v6 != NULL) { 18045 ill_from_v6->ill_move_in_progress = B_FALSE; 18046 ill_from_v6->ill_move_peer = NULL; 18047 ill_from_v6->ill_state_flags &= ~ILL_CHANGING; 18048 } 18049 if (ill_from_v4 != NULL) { 18050 ill_from_v4->ill_move_in_progress = B_FALSE; 18051 ill_from_v4->ill_move_peer = NULL; 18052 ill_from_v4->ill_state_flags &= ~ILL_CHANGING; 18053 } 18054 if (ill_to_v6 != NULL) { 18055 ill_to_v6->ill_move_in_progress = B_FALSE; 18056 ill_to_v6->ill_move_peer = NULL; 18057 ill_to_v6->ill_state_flags &= ~ILL_CHANGING; 18058 } 18059 if (ill_to_v4 != NULL) { 18060 ill_to_v4->ill_move_in_progress = B_FALSE; 18061 ill_to_v4->ill_move_peer = NULL; 18062 ill_to_v4->ill_state_flags &= ~ILL_CHANGING; 18063 } 18064 18065 /* 18066 * Check for setting INACTIVE, if STANDBY is set and FAILED is not set. 18067 * Do this always to maintain proper state i.e even in case of errors. 18068 * As phyint_inactive looks at both v4 and v6 interfaces, 18069 * we need not call on both v4 and v6 interfaces. 18070 */ 18071 if (ill_from_v4 != NULL) { 18072 if ((ill_from_v4->ill_phyint->phyint_flags & 18073 (PHYI_STANDBY | PHYI_FAILED)) == PHYI_STANDBY) { 18074 phyint_inactive(ill_from_v4->ill_phyint); 18075 } 18076 } else if (ill_from_v6 != NULL) { 18077 if ((ill_from_v6->ill_phyint->phyint_flags & 18078 (PHYI_STANDBY | PHYI_FAILED)) == PHYI_STANDBY) { 18079 phyint_inactive(ill_from_v6->ill_phyint); 18080 } 18081 } 18082 18083 if (ill_to_v4 != NULL) { 18084 if (ill_to_v4->ill_phyint->phyint_flags & PHYI_INACTIVE) { 18085 ill_to_v4->ill_phyint->phyint_flags &= ~PHYI_INACTIVE; 18086 } 18087 } else if (ill_to_v6 != NULL) { 18088 if (ill_to_v6->ill_phyint->phyint_flags & PHYI_INACTIVE) { 18089 ill_to_v6->ill_phyint->phyint_flags &= ~PHYI_INACTIVE; 18090 } 18091 } 18092 18093 RELEASE_ILL_LOCKS(ill_to_v4, ill_to_v6); 18094 RELEASE_ILL_LOCKS(ill_from_v4, ill_from_v6); 18095 18096 no_err: 18097 /* 18098 * lets bring the interfaces up on the to_ill. 18099 */ 18100 if (err == 0) { 18101 err = ill_up_ipifs(ill_to_v4 == NULL ? ill_to_v6:ill_to_v4, 18102 q, mp); 18103 } 18104 18105 if (err == 0) { 18106 if (ill_from_v4 != NULL && ill_to_v4 != NULL) 18107 ilm_send_multicast_reqs(ill_from_v4, ill_to_v4); 18108 18109 if (ill_from_v6 != NULL && ill_to_v6 != NULL) 18110 ilm_send_multicast_reqs(ill_from_v6, ill_to_v6); 18111 } 18112 done: 18113 18114 if (ill_to_v4 != NULL) { 18115 ill_refrele(ill_to_v4); 18116 } 18117 if (ill_to_v6 != NULL) { 18118 ill_refrele(ill_to_v6); 18119 } 18120 18121 return (err); 18122 } 18123 18124 static void 18125 ill_dl_down(ill_t *ill) 18126 { 18127 /* 18128 * The ill is down; unbind but stay attached since we're still 18129 * associated with a PPA. If we have negotiated DLPI capabilites 18130 * with the data link service provider (IDS_OK) then reset them. 18131 * The interval between unbinding and rebinding is potentially 18132 * unbounded hence we cannot assume things will be the same. 18133 * The DLPI capabilities will be probed again when the data link 18134 * is brought up. 18135 */ 18136 mblk_t *mp = ill->ill_unbind_mp; 18137 hook_nic_event_t *info; 18138 18139 ip1dbg(("ill_dl_down(%s)\n", ill->ill_name)); 18140 18141 ill->ill_unbind_mp = NULL; 18142 if (mp != NULL) { 18143 ip1dbg(("ill_dl_down: %s (%u) for %s\n", 18144 dlpi_prim_str(*(int *)mp->b_rptr), *(int *)mp->b_rptr, 18145 ill->ill_name)); 18146 mutex_enter(&ill->ill_lock); 18147 ill->ill_state_flags |= ILL_DL_UNBIND_IN_PROGRESS; 18148 mutex_exit(&ill->ill_lock); 18149 if (ill->ill_dlpi_capab_state == IDS_OK) 18150 ill_capability_reset(ill); 18151 ill_dlpi_send(ill, mp); 18152 } 18153 18154 /* 18155 * Toss all of our multicast memberships. We could keep them, but 18156 * then we'd have to do bookkeeping of any joins and leaves performed 18157 * by the application while the the interface is down (we can't just 18158 * issue them because arp cannot currently process AR_ENTRY_SQUERY's 18159 * on a downed interface). 18160 */ 18161 ill_leave_multicast(ill); 18162 18163 mutex_enter(&ill->ill_lock); 18164 18165 ill->ill_dl_up = 0; 18166 18167 if ((info = ill->ill_nic_event_info) != NULL) { 18168 ip2dbg(("ill_dl_down:unexpected nic event %d attached for %s\n", 18169 info->hne_event, ill->ill_name)); 18170 if (info->hne_data != NULL) 18171 kmem_free(info->hne_data, info->hne_datalen); 18172 kmem_free(info, sizeof (hook_nic_event_t)); 18173 } 18174 18175 info = kmem_alloc(sizeof (hook_nic_event_t), KM_NOSLEEP); 18176 if (info != NULL) { 18177 ip_stack_t *ipst = ill->ill_ipst; 18178 18179 info->hne_nic = ill->ill_phyint->phyint_hook_ifindex; 18180 info->hne_lif = 0; 18181 info->hne_event = NE_DOWN; 18182 info->hne_data = NULL; 18183 info->hne_datalen = 0; 18184 info->hne_family = ill->ill_isv6 ? 18185 ipst->ips_ipv6_net_data : ipst->ips_ipv4_net_data; 18186 } else 18187 ip2dbg(("ill_dl_down: could not attach DOWN nic event " 18188 "information for %s (ENOMEM)\n", ill->ill_name)); 18189 18190 ill->ill_nic_event_info = info; 18191 18192 mutex_exit(&ill->ill_lock); 18193 } 18194 18195 static void 18196 ill_dlpi_dispatch(ill_t *ill, mblk_t *mp) 18197 { 18198 union DL_primitives *dlp; 18199 t_uscalar_t prim; 18200 18201 ASSERT(DB_TYPE(mp) == M_PROTO || DB_TYPE(mp) == M_PCPROTO); 18202 18203 dlp = (union DL_primitives *)mp->b_rptr; 18204 prim = dlp->dl_primitive; 18205 18206 ip1dbg(("ill_dlpi_dispatch: sending %s (%u) to %s\n", 18207 dlpi_prim_str(prim), prim, ill->ill_name)); 18208 18209 switch (prim) { 18210 case DL_PHYS_ADDR_REQ: 18211 { 18212 dl_phys_addr_req_t *dlpap = (dl_phys_addr_req_t *)mp->b_rptr; 18213 ill->ill_phys_addr_pend = dlpap->dl_addr_type; 18214 break; 18215 } 18216 case DL_BIND_REQ: 18217 mutex_enter(&ill->ill_lock); 18218 ill->ill_state_flags &= ~ILL_DL_UNBIND_IN_PROGRESS; 18219 mutex_exit(&ill->ill_lock); 18220 break; 18221 } 18222 18223 /* 18224 * Except for the ACKs for the M_PCPROTO messages, all other ACKs 18225 * are dropped by ip_rput() if ILL_CONDEMNED is set. Therefore 18226 * we only wait for the ACK of the DL_UNBIND_REQ. 18227 */ 18228 mutex_enter(&ill->ill_lock); 18229 if (!(ill->ill_state_flags & ILL_CONDEMNED) || 18230 (prim == DL_UNBIND_REQ)) { 18231 ill->ill_dlpi_pending = prim; 18232 } 18233 mutex_exit(&ill->ill_lock); 18234 18235 putnext(ill->ill_wq, mp); 18236 } 18237 18238 /* 18239 * Helper function for ill_dlpi_send(). 18240 */ 18241 /* ARGSUSED */ 18242 static void 18243 ill_dlpi_send_writer(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *arg) 18244 { 18245 ill_dlpi_send((ill_t *)q->q_ptr, mp); 18246 } 18247 18248 /* 18249 * Send a DLPI control message to the driver but make sure there 18250 * is only one outstanding message. Uses ill_dlpi_pending to tell 18251 * when it must queue. ip_rput_dlpi_writer calls ill_dlpi_done() 18252 * when an ACK or a NAK is received to process the next queued message. 18253 */ 18254 void 18255 ill_dlpi_send(ill_t *ill, mblk_t *mp) 18256 { 18257 mblk_t **mpp; 18258 18259 ASSERT(DB_TYPE(mp) == M_PROTO || DB_TYPE(mp) == M_PCPROTO); 18260 18261 /* 18262 * To ensure that any DLPI requests for current exclusive operation 18263 * are always completely sent before any DLPI messages for other 18264 * operations, require writer access before enqueuing. 18265 */ 18266 if (!IAM_WRITER_ILL(ill)) { 18267 ill_refhold(ill); 18268 /* qwriter_ip() does the ill_refrele() */ 18269 qwriter_ip(ill, ill->ill_wq, mp, ill_dlpi_send_writer, 18270 NEW_OP, B_TRUE); 18271 return; 18272 } 18273 18274 mutex_enter(&ill->ill_lock); 18275 if (ill->ill_dlpi_pending != DL_PRIM_INVAL) { 18276 /* Must queue message. Tail insertion */ 18277 mpp = &ill->ill_dlpi_deferred; 18278 while (*mpp != NULL) 18279 mpp = &((*mpp)->b_next); 18280 18281 ip1dbg(("ill_dlpi_send: deferring request for %s\n", 18282 ill->ill_name)); 18283 18284 *mpp = mp; 18285 mutex_exit(&ill->ill_lock); 18286 return; 18287 } 18288 mutex_exit(&ill->ill_lock); 18289 ill_dlpi_dispatch(ill, mp); 18290 } 18291 18292 /* 18293 * Send all deferred DLPI messages without waiting for their ACKs. 18294 */ 18295 void 18296 ill_dlpi_send_deferred(ill_t *ill) 18297 { 18298 mblk_t *mp, *nextmp; 18299 18300 /* 18301 * Clear ill_dlpi_pending so that the message is not queued in 18302 * ill_dlpi_send(). 18303 */ 18304 mutex_enter(&ill->ill_lock); 18305 ill->ill_dlpi_pending = DL_PRIM_INVAL; 18306 mp = ill->ill_dlpi_deferred; 18307 ill->ill_dlpi_deferred = NULL; 18308 mutex_exit(&ill->ill_lock); 18309 18310 for (; mp != NULL; mp = nextmp) { 18311 nextmp = mp->b_next; 18312 mp->b_next = NULL; 18313 ill_dlpi_send(ill, mp); 18314 } 18315 } 18316 18317 /* 18318 * Check if the DLPI primitive `prim' is pending; print a warning if not. 18319 */ 18320 boolean_t 18321 ill_dlpi_pending(ill_t *ill, t_uscalar_t prim) 18322 { 18323 t_uscalar_t prim_pending; 18324 18325 mutex_enter(&ill->ill_lock); 18326 prim_pending = ill->ill_dlpi_pending; 18327 mutex_exit(&ill->ill_lock); 18328 18329 /* 18330 * During teardown, ill_dlpi_send_deferred() will send requests 18331 * without waiting; don't bother printing any warnings in that case. 18332 */ 18333 if (!(ill->ill_flags & ILL_CONDEMNED) && prim_pending != prim) { 18334 if (prim_pending == DL_PRIM_INVAL) { 18335 (void) mi_strlog(ill->ill_rq, 1, 18336 SL_CONSOLE|SL_ERROR|SL_TRACE, "ip: received " 18337 "unsolicited ack for %s on %s\n", 18338 dlpi_prim_str(prim), ill->ill_name); 18339 } else { 18340 (void) mi_strlog(ill->ill_rq, 1, 18341 SL_CONSOLE|SL_ERROR|SL_TRACE, "ip: received " 18342 "unexpected ack for %s on %s (expecting %s)\n", 18343 dlpi_prim_str(prim), ill->ill_name, 18344 dlpi_prim_str(prim_pending)); 18345 } 18346 } 18347 return (prim_pending == prim); 18348 } 18349 18350 /* 18351 * Called when an DLPI control message has been acked or nacked to 18352 * send down the next queued message (if any). 18353 */ 18354 void 18355 ill_dlpi_done(ill_t *ill, t_uscalar_t prim) 18356 { 18357 mblk_t *mp; 18358 18359 ASSERT(IAM_WRITER_ILL(ill)); 18360 mutex_enter(&ill->ill_lock); 18361 18362 ASSERT(prim != DL_PRIM_INVAL); 18363 ASSERT(ill->ill_dlpi_pending == prim); 18364 18365 ip1dbg(("ill_dlpi_done: %s has completed %s (%u)\n", ill->ill_name, 18366 dlpi_prim_str(ill->ill_dlpi_pending), ill->ill_dlpi_pending)); 18367 18368 if ((mp = ill->ill_dlpi_deferred) == NULL) { 18369 ill->ill_dlpi_pending = DL_PRIM_INVAL; 18370 cv_signal(&ill->ill_cv); 18371 mutex_exit(&ill->ill_lock); 18372 return; 18373 } 18374 18375 ill->ill_dlpi_deferred = mp->b_next; 18376 mp->b_next = NULL; 18377 mutex_exit(&ill->ill_lock); 18378 18379 ill_dlpi_dispatch(ill, mp); 18380 } 18381 18382 void 18383 conn_delete_ire(conn_t *connp, caddr_t arg) 18384 { 18385 ipif_t *ipif = (ipif_t *)arg; 18386 ire_t *ire; 18387 18388 /* 18389 * Look at the cached ires on conns which has pointers to ipifs. 18390 * We just call ire_refrele which clears up the reference 18391 * to ire. Called when a conn closes. Also called from ipif_free 18392 * to cleanup indirect references to the stale ipif via the cached ire. 18393 */ 18394 mutex_enter(&connp->conn_lock); 18395 ire = connp->conn_ire_cache; 18396 if (ire != NULL && (ipif == NULL || ire->ire_ipif == ipif)) { 18397 connp->conn_ire_cache = NULL; 18398 mutex_exit(&connp->conn_lock); 18399 IRE_REFRELE_NOTR(ire); 18400 return; 18401 } 18402 mutex_exit(&connp->conn_lock); 18403 18404 } 18405 18406 /* 18407 * Some operations (illgrp_delete(), ipif_down()) conditionally delete a number 18408 * of IREs. Those IREs may have been previously cached in the conn structure. 18409 * This ipcl_walk() walker function releases all references to such IREs based 18410 * on the condemned flag. 18411 */ 18412 /* ARGSUSED */ 18413 void 18414 conn_cleanup_stale_ire(conn_t *connp, caddr_t arg) 18415 { 18416 ire_t *ire; 18417 18418 mutex_enter(&connp->conn_lock); 18419 ire = connp->conn_ire_cache; 18420 if (ire != NULL && (ire->ire_marks & IRE_MARK_CONDEMNED)) { 18421 connp->conn_ire_cache = NULL; 18422 mutex_exit(&connp->conn_lock); 18423 IRE_REFRELE_NOTR(ire); 18424 return; 18425 } 18426 mutex_exit(&connp->conn_lock); 18427 } 18428 18429 /* 18430 * Take down a specific interface, but don't lose any information about it. 18431 * Also delete interface from its interface group (ifgrp). 18432 * (Always called as writer.) 18433 * This function goes through the down sequence even if the interface is 18434 * already down. There are 2 reasons. 18435 * a. Currently we permit interface routes that depend on down interfaces 18436 * to be added. This behaviour itself is questionable. However it appears 18437 * that both Solaris and 4.3 BSD have exhibited this behaviour for a long 18438 * time. We go thru the cleanup in order to remove these routes. 18439 * b. The bringup of the interface could fail in ill_dl_up i.e. we get 18440 * DL_ERROR_ACK in response to the the DL_BIND request. The interface is 18441 * down, but we need to cleanup i.e. do ill_dl_down and 18442 * ip_rput_dlpi_writer (DL_ERROR_ACK) -> ipif_down. 18443 * 18444 * IP-MT notes: 18445 * 18446 * Model of reference to interfaces. 18447 * 18448 * The following members in ipif_t track references to the ipif. 18449 * int ipif_refcnt; Active reference count 18450 * uint_t ipif_ire_cnt; Number of ire's referencing this ipif 18451 * The following members in ill_t track references to the ill. 18452 * int ill_refcnt; active refcnt 18453 * uint_t ill_ire_cnt; Number of ires referencing ill 18454 * uint_t ill_nce_cnt; Number of nces referencing ill 18455 * 18456 * Reference to an ipif or ill can be obtained in any of the following ways. 18457 * 18458 * Through the lookup functions ipif_lookup_* / ill_lookup_* functions 18459 * Pointers to ipif / ill from other data structures viz ire and conn. 18460 * Implicit reference to the ipif / ill by holding a reference to the ire. 18461 * 18462 * The ipif/ill lookup functions return a reference held ipif / ill. 18463 * ipif_refcnt and ill_refcnt track the reference counts respectively. 18464 * This is a purely dynamic reference count associated with threads holding 18465 * references to the ipif / ill. Pointers from other structures do not 18466 * count towards this reference count. 18467 * 18468 * ipif_ire_cnt/ill_ire_cnt is the number of ire's associated with the 18469 * ipif/ill. This is incremented whenever a new ire is created referencing the 18470 * ipif/ill. This is done atomically inside ire_add_v[46] where the ire is 18471 * actually added to the ire hash table. The count is decremented in 18472 * ire_inactive where the ire is destroyed. 18473 * 18474 * nce's reference ill's thru nce_ill and the count of nce's associated with 18475 * an ill is recorded in ill_nce_cnt. This is incremented atomically in 18476 * ndp_add_v4()/ndp_add_v6() where the nce is actually added to the 18477 * table. Similarly it is decremented in ndp_inactive() where the nce 18478 * is destroyed. 18479 * 18480 * Flow of ioctls involving interface down/up 18481 * 18482 * The following is the sequence of an attempt to set some critical flags on an 18483 * up interface. 18484 * ip_sioctl_flags 18485 * ipif_down 18486 * wait for ipif to be quiescent 18487 * ipif_down_tail 18488 * ip_sioctl_flags_tail 18489 * 18490 * All set ioctls that involve down/up sequence would have a skeleton similar 18491 * to the above. All the *tail functions are called after the refcounts have 18492 * dropped to the appropriate values. 18493 * 18494 * The mechanism to quiesce an ipif is as follows. 18495 * 18496 * Mark the ipif as IPIF_CHANGING. No more lookups will be allowed 18497 * on the ipif. Callers either pass a flag requesting wait or the lookup 18498 * functions will return NULL. 18499 * 18500 * Delete all ires referencing this ipif 18501 * 18502 * Any thread attempting to do an ipif_refhold on an ipif that has been 18503 * obtained thru a cached pointer will first make sure that 18504 * the ipif can be refheld using the macro IPIF_CAN_LOOKUP and only then 18505 * increment the refcount. 18506 * 18507 * The above guarantees that the ipif refcount will eventually come down to 18508 * zero and the ipif will quiesce, once all threads that currently hold a 18509 * reference to the ipif refrelease the ipif. The ipif is quiescent after the 18510 * ipif_refcount has dropped to zero and all ire's associated with this ipif 18511 * have also been ire_inactive'd. i.e. when ipif_ire_cnt and ipif_refcnt both 18512 * drop to zero. 18513 * 18514 * Lookups during the IPIF_CHANGING/ILL_CHANGING interval. 18515 * 18516 * Threads trying to lookup an ipif or ill can pass a flag requesting 18517 * wait and restart if the ipif / ill cannot be looked up currently. 18518 * For eg. bind, and route operations (Eg. route add / delete) cannot return 18519 * failure if the ipif is currently undergoing an exclusive operation, and 18520 * hence pass the flag. The mblk is then enqueued in the ipsq and the operation 18521 * is restarted by ipsq_exit() when the currently exclusive ioctl completes. 18522 * The lookup and enqueue is atomic using the ill_lock and ipsq_lock. The 18523 * lookup is done holding the ill_lock. Hence the ill/ipif state flags can't 18524 * change while the ill_lock is held. Before dropping the ill_lock we acquire 18525 * the ipsq_lock and call ipsq_enq. This ensures that ipsq_exit can't finish 18526 * until we release the ipsq_lock, even though the the ill/ipif state flags 18527 * can change after we drop the ill_lock. 18528 * 18529 * An attempt to send out a packet using an ipif that is currently 18530 * IPIF_CHANGING will fail. No attempt is made in this case to enqueue this 18531 * operation and restart it later when the exclusive condition on the ipif ends. 18532 * This is an example of not passing the wait flag to the lookup functions. For 18533 * example an attempt to refhold and use conn->conn_multicast_ipif and send 18534 * out a multicast packet on that ipif will fail while the ipif is 18535 * IPIF_CHANGING. An attempt to create an IRE_CACHE using an ipif that is 18536 * currently IPIF_CHANGING will also fail. 18537 */ 18538 int 18539 ipif_down(ipif_t *ipif, queue_t *q, mblk_t *mp) 18540 { 18541 ill_t *ill = ipif->ipif_ill; 18542 phyint_t *phyi; 18543 conn_t *connp; 18544 boolean_t success; 18545 boolean_t ipif_was_up = B_FALSE; 18546 ip_stack_t *ipst = ill->ill_ipst; 18547 18548 ASSERT(IAM_WRITER_IPIF(ipif)); 18549 18550 ip1dbg(("ipif_down(%s:%u)\n", ill->ill_name, ipif->ipif_id)); 18551 18552 if (ipif->ipif_flags & IPIF_UP) { 18553 mutex_enter(&ill->ill_lock); 18554 ipif->ipif_flags &= ~IPIF_UP; 18555 ASSERT(ill->ill_ipif_up_count > 0); 18556 --ill->ill_ipif_up_count; 18557 mutex_exit(&ill->ill_lock); 18558 ipif_was_up = B_TRUE; 18559 /* Update status in SCTP's list */ 18560 sctp_update_ipif(ipif, SCTP_IPIF_DOWN); 18561 } 18562 18563 /* 18564 * Blow away memberships we established in ipif_multicast_up(). 18565 */ 18566 ipif_multicast_down(ipif); 18567 18568 /* 18569 * Remove from the mapping for __sin6_src_id. We insert only 18570 * when the address is not INADDR_ANY. As IPv4 addresses are 18571 * stored as mapped addresses, we need to check for mapped 18572 * INADDR_ANY also. 18573 */ 18574 if (ipif_was_up && !IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr) && 18575 !IN6_IS_ADDR_V4MAPPED_ANY(&ipif->ipif_v6lcl_addr) && 18576 !(ipif->ipif_flags & IPIF_NOLOCAL)) { 18577 int err; 18578 18579 err = ip_srcid_remove(&ipif->ipif_v6lcl_addr, 18580 ipif->ipif_zoneid, ipst); 18581 if (err != 0) { 18582 ip0dbg(("ipif_down: srcid_remove %d\n", err)); 18583 } 18584 } 18585 18586 /* 18587 * Before we delete the ill from the group (if any), we need 18588 * to make sure that we delete all the routes dependent on 18589 * this and also any ipifs dependent on this ipif for 18590 * source address. We need to do before we delete from 18591 * the group because 18592 * 18593 * 1) ipif_down_delete_ire de-references ill->ill_group. 18594 * 18595 * 2) ipif_update_other_ipifs needs to walk the whole group 18596 * for re-doing source address selection. Note that 18597 * ipif_select_source[_v6] called from 18598 * ipif_update_other_ipifs[_v6] will not pick this ipif 18599 * because we have already marked down here i.e cleared 18600 * IPIF_UP. 18601 */ 18602 if (ipif->ipif_isv6) { 18603 ire_walk_v6(ipif_down_delete_ire, (char *)ipif, ALL_ZONES, 18604 ipst); 18605 } else { 18606 ire_walk_v4(ipif_down_delete_ire, (char *)ipif, ALL_ZONES, 18607 ipst); 18608 } 18609 18610 /* 18611 * Cleaning up the conn_ire_cache or conns must be done only after the 18612 * ires have been deleted above. Otherwise a thread could end up 18613 * caching an ire in a conn after we have finished the cleanup of the 18614 * conn. The caching is done after making sure that the ire is not yet 18615 * condemned. Also documented in the block comment above ip_output 18616 */ 18617 ipcl_walk(conn_cleanup_stale_ire, NULL, ipst); 18618 /* Also, delete the ires cached in SCTP */ 18619 sctp_ire_cache_flush(ipif); 18620 18621 /* 18622 * Update any other ipifs which have used "our" local address as 18623 * a source address. This entails removing and recreating IRE_INTERFACE 18624 * entries for such ipifs. 18625 */ 18626 if (ipif->ipif_isv6) 18627 ipif_update_other_ipifs_v6(ipif, ill->ill_group); 18628 else 18629 ipif_update_other_ipifs(ipif, ill->ill_group); 18630 18631 if (ipif_was_up) { 18632 /* 18633 * Check whether it is last ipif to leave this group. 18634 * If this is the last ipif to leave, we should remove 18635 * this ill from the group as ipif_select_source will not 18636 * be able to find any useful ipifs if this ill is selected 18637 * for load balancing. 18638 * 18639 * For nameless groups, we should call ifgrp_delete if this 18640 * belongs to some group. As this ipif is going down, we may 18641 * need to reconstruct groups. 18642 */ 18643 phyi = ill->ill_phyint; 18644 /* 18645 * If the phyint_groupname_len is 0, it may or may not 18646 * be in the nameless group. If the phyint_groupname_len is 18647 * not 0, then this ill should be part of some group. 18648 * As we always insert this ill in the group if 18649 * phyint_groupname_len is not zero when the first ipif 18650 * comes up (in ipif_up_done), it should be in a group 18651 * when the namelen is not 0. 18652 * 18653 * NOTE : When we delete the ill from the group,it will 18654 * blow away all the IRE_CACHES pointing either at this ipif or 18655 * ill_wq (illgrp_cache_delete does this). Thus, no IRES 18656 * should be pointing at this ill. 18657 */ 18658 ASSERT(phyi->phyint_groupname_len == 0 || 18659 (phyi->phyint_groupname != NULL && ill->ill_group != NULL)); 18660 18661 if (phyi->phyint_groupname_len != 0) { 18662 if (ill->ill_ipif_up_count == 0) 18663 illgrp_delete(ill); 18664 } 18665 18666 /* 18667 * If we have deleted some of the broadcast ires associated 18668 * with this ipif, we need to re-nominate somebody else if 18669 * the ires that we deleted were the nominated ones. 18670 */ 18671 if (ill->ill_group != NULL && !ill->ill_isv6) 18672 ipif_renominate_bcast(ipif); 18673 } 18674 18675 /* 18676 * neighbor-discovery or arp entries for this interface. 18677 */ 18678 ipif_ndp_down(ipif); 18679 18680 /* 18681 * If mp is NULL the caller will wait for the appropriate refcnt. 18682 * Eg. ip_sioctl_removeif -> ipif_free -> ipif_down 18683 * and ill_delete -> ipif_free -> ipif_down 18684 */ 18685 if (mp == NULL) { 18686 ASSERT(q == NULL); 18687 return (0); 18688 } 18689 18690 if (CONN_Q(q)) { 18691 connp = Q_TO_CONN(q); 18692 mutex_enter(&connp->conn_lock); 18693 } else { 18694 connp = NULL; 18695 } 18696 mutex_enter(&ill->ill_lock); 18697 /* 18698 * Are there any ire's pointing to this ipif that are still active ? 18699 * If this is the last ipif going down, are there any ire's pointing 18700 * to this ill that are still active ? 18701 */ 18702 if (ipif_is_quiescent(ipif)) { 18703 mutex_exit(&ill->ill_lock); 18704 if (connp != NULL) 18705 mutex_exit(&connp->conn_lock); 18706 return (0); 18707 } 18708 18709 ip1dbg(("ipif_down: need to wait, adding pending mp %s ill %p", 18710 ill->ill_name, (void *)ill)); 18711 /* 18712 * Enqueue the mp atomically in ipsq_pending_mp. When the refcount 18713 * drops down, the operation will be restarted by ipif_ill_refrele_tail 18714 * which in turn is called by the last refrele on the ipif/ill/ire. 18715 */ 18716 success = ipsq_pending_mp_add(connp, ipif, q, mp, IPIF_DOWN); 18717 if (!success) { 18718 /* The conn is closing. So just return */ 18719 ASSERT(connp != NULL); 18720 mutex_exit(&ill->ill_lock); 18721 mutex_exit(&connp->conn_lock); 18722 return (EINTR); 18723 } 18724 18725 mutex_exit(&ill->ill_lock); 18726 if (connp != NULL) 18727 mutex_exit(&connp->conn_lock); 18728 return (EINPROGRESS); 18729 } 18730 18731 void 18732 ipif_down_tail(ipif_t *ipif) 18733 { 18734 ill_t *ill = ipif->ipif_ill; 18735 18736 /* 18737 * Skip any loopback interface (null wq). 18738 * If this is the last logical interface on the ill 18739 * have ill_dl_down tell the driver we are gone (unbind) 18740 * Note that lun 0 can ipif_down even though 18741 * there are other logical units that are up. 18742 * This occurs e.g. when we change a "significant" IFF_ flag. 18743 */ 18744 if (ill->ill_wq != NULL && !ill->ill_logical_down && 18745 ill->ill_ipif_up_count == 0 && ill->ill_ipif_dup_count == 0 && 18746 ill->ill_dl_up) { 18747 ill_dl_down(ill); 18748 } 18749 ill->ill_logical_down = 0; 18750 18751 /* 18752 * Have to be after removing the routes in ipif_down_delete_ire. 18753 */ 18754 if (ipif->ipif_isv6) { 18755 if (ill->ill_flags & ILLF_XRESOLV) 18756 ipif_arp_down(ipif); 18757 } else { 18758 ipif_arp_down(ipif); 18759 } 18760 18761 ip_rts_ifmsg(ipif); 18762 ip_rts_newaddrmsg(RTM_DELETE, 0, ipif); 18763 } 18764 18765 /* 18766 * Bring interface logically down without bringing the physical interface 18767 * down e.g. when the netmask is changed. This avoids long lasting link 18768 * negotiations between an ethernet interface and a certain switches. 18769 */ 18770 static int 18771 ipif_logical_down(ipif_t *ipif, queue_t *q, mblk_t *mp) 18772 { 18773 /* 18774 * The ill_logical_down flag is a transient flag. It is set here 18775 * and is cleared once the down has completed in ipif_down_tail. 18776 * This flag does not indicate whether the ill stream is in the 18777 * DL_BOUND state with the driver. Instead this flag is used by 18778 * ipif_down_tail to determine whether to DL_UNBIND the stream with 18779 * the driver. The state of the ill stream i.e. whether it is 18780 * DL_BOUND with the driver or not is indicated by the ill_dl_up flag. 18781 */ 18782 ipif->ipif_ill->ill_logical_down = 1; 18783 return (ipif_down(ipif, q, mp)); 18784 } 18785 18786 /* 18787 * This is called when the SIOCSLIFUSESRC ioctl is processed in IP. 18788 * If the usesrc client ILL is already part of a usesrc group or not, 18789 * in either case a ire_stq with the matching usesrc client ILL will 18790 * locate the IRE's that need to be deleted. We want IREs to be created 18791 * with the new source address. 18792 */ 18793 static void 18794 ipif_delete_cache_ire(ire_t *ire, char *ill_arg) 18795 { 18796 ill_t *ucill = (ill_t *)ill_arg; 18797 18798 ASSERT(IAM_WRITER_ILL(ucill)); 18799 18800 if (ire->ire_stq == NULL) 18801 return; 18802 18803 if ((ire->ire_type == IRE_CACHE) && 18804 ((ill_t *)ire->ire_stq->q_ptr == ucill)) 18805 ire_delete(ire); 18806 } 18807 18808 /* 18809 * ire_walk routine to delete every IRE dependent on the interface 18810 * address that is going down. (Always called as writer.) 18811 * Works for both v4 and v6. 18812 * In addition for checking for ire_ipif matches it also checks for 18813 * IRE_CACHE entries which have the same source address as the 18814 * disappearing ipif since ipif_select_source might have picked 18815 * that source. Note that ipif_down/ipif_update_other_ipifs takes 18816 * care of any IRE_INTERFACE with the disappearing source address. 18817 */ 18818 static void 18819 ipif_down_delete_ire(ire_t *ire, char *ipif_arg) 18820 { 18821 ipif_t *ipif = (ipif_t *)ipif_arg; 18822 ill_t *ire_ill; 18823 ill_t *ipif_ill; 18824 18825 ASSERT(IAM_WRITER_IPIF(ipif)); 18826 if (ire->ire_ipif == NULL) 18827 return; 18828 18829 /* 18830 * For IPv4, we derive source addresses for an IRE from ipif's 18831 * belonging to the same IPMP group as the IRE's outgoing 18832 * interface. If an IRE's outgoing interface isn't in the 18833 * same IPMP group as a particular ipif, then that ipif 18834 * couldn't have been used as a source address for this IRE. 18835 * 18836 * For IPv6, source addresses are only restricted to the IPMP group 18837 * if the IRE is for a link-local address or a multicast address. 18838 * Otherwise, source addresses for an IRE can be chosen from 18839 * interfaces other than the the outgoing interface for that IRE. 18840 * 18841 * For source address selection details, see ipif_select_source() 18842 * and ipif_select_source_v6(). 18843 */ 18844 if (ire->ire_ipversion == IPV4_VERSION || 18845 IN6_IS_ADDR_LINKLOCAL(&ire->ire_addr_v6) || 18846 IN6_IS_ADDR_MULTICAST(&ire->ire_addr_v6)) { 18847 ire_ill = ire->ire_ipif->ipif_ill; 18848 ipif_ill = ipif->ipif_ill; 18849 18850 if (ire_ill->ill_group != ipif_ill->ill_group) { 18851 return; 18852 } 18853 } 18854 18855 18856 if (ire->ire_ipif != ipif) { 18857 /* 18858 * Look for a matching source address. 18859 */ 18860 if (ire->ire_type != IRE_CACHE) 18861 return; 18862 if (ipif->ipif_flags & IPIF_NOLOCAL) 18863 return; 18864 18865 if (ire->ire_ipversion == IPV4_VERSION) { 18866 if (ire->ire_src_addr != ipif->ipif_src_addr) 18867 return; 18868 } else { 18869 if (!IN6_ARE_ADDR_EQUAL(&ire->ire_src_addr_v6, 18870 &ipif->ipif_v6lcl_addr)) 18871 return; 18872 } 18873 ire_delete(ire); 18874 return; 18875 } 18876 /* 18877 * ire_delete() will do an ire_flush_cache which will delete 18878 * all ire_ipif matches 18879 */ 18880 ire_delete(ire); 18881 } 18882 18883 /* 18884 * ire_walk_ill function for deleting all IRE_CACHE entries for an ill when 18885 * 1) an ipif (on that ill) changes the IPIF_DEPRECATED flags, or 18886 * 2) when an interface is brought up or down (on that ill). 18887 * This ensures that the IRE_CACHE entries don't retain stale source 18888 * address selection results. 18889 */ 18890 void 18891 ill_ipif_cache_delete(ire_t *ire, char *ill_arg) 18892 { 18893 ill_t *ill = (ill_t *)ill_arg; 18894 ill_t *ipif_ill; 18895 18896 ASSERT(IAM_WRITER_ILL(ill)); 18897 /* 18898 * We use MATCH_IRE_TYPE/IRE_CACHE while calling ire_walk_ill_v4. 18899 * Hence this should be IRE_CACHE. 18900 */ 18901 ASSERT(ire->ire_type == IRE_CACHE); 18902 18903 /* 18904 * We are called for IRE_CACHES whose ire_ipif matches ill. 18905 * We are only interested in IRE_CACHES that has borrowed 18906 * the source address from ill_arg e.g. ipif_up_done[_v6] 18907 * for which we need to look at ire_ipif->ipif_ill match 18908 * with ill. 18909 */ 18910 ASSERT(ire->ire_ipif != NULL); 18911 ipif_ill = ire->ire_ipif->ipif_ill; 18912 if (ipif_ill == ill || (ill->ill_group != NULL && 18913 ipif_ill->ill_group == ill->ill_group)) { 18914 ire_delete(ire); 18915 } 18916 } 18917 18918 /* 18919 * Delete all the ire whose stq references ill_arg. 18920 */ 18921 static void 18922 ill_stq_cache_delete(ire_t *ire, char *ill_arg) 18923 { 18924 ill_t *ill = (ill_t *)ill_arg; 18925 ill_t *ire_ill; 18926 18927 ASSERT(IAM_WRITER_ILL(ill)); 18928 /* 18929 * We use MATCH_IRE_TYPE/IRE_CACHE while calling ire_walk_ill_v4. 18930 * Hence this should be IRE_CACHE. 18931 */ 18932 ASSERT(ire->ire_type == IRE_CACHE); 18933 18934 /* 18935 * We are called for IRE_CACHES whose ire_stq and ire_ipif 18936 * matches ill. We are only interested in IRE_CACHES that 18937 * has ire_stq->q_ptr pointing at ill_arg. Thus we do the 18938 * filtering here. 18939 */ 18940 ire_ill = (ill_t *)ire->ire_stq->q_ptr; 18941 18942 if (ire_ill == ill) 18943 ire_delete(ire); 18944 } 18945 18946 /* 18947 * This is called when an ill leaves the group. We want to delete 18948 * all IRE_CACHES whose stq is pointing at ill_wq or ire_ipif is 18949 * pointing at ill. 18950 */ 18951 static void 18952 illgrp_cache_delete(ire_t *ire, char *ill_arg) 18953 { 18954 ill_t *ill = (ill_t *)ill_arg; 18955 18956 ASSERT(IAM_WRITER_ILL(ill)); 18957 ASSERT(ill->ill_group == NULL); 18958 /* 18959 * We use MATCH_IRE_TYPE/IRE_CACHE while calling ire_walk_ill_v4. 18960 * Hence this should be IRE_CACHE. 18961 */ 18962 ASSERT(ire->ire_type == IRE_CACHE); 18963 /* 18964 * We are called for IRE_CACHES whose ire_stq and ire_ipif 18965 * matches ill. We are interested in both. 18966 */ 18967 ASSERT((ill == (ill_t *)ire->ire_stq->q_ptr) || 18968 (ire->ire_ipif->ipif_ill == ill)); 18969 18970 ire_delete(ire); 18971 } 18972 18973 /* 18974 * Initiate deallocate of an IPIF. Always called as writer. Called by 18975 * ill_delete or ip_sioctl_removeif. 18976 */ 18977 static void 18978 ipif_free(ipif_t *ipif) 18979 { 18980 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 18981 18982 ASSERT(IAM_WRITER_IPIF(ipif)); 18983 18984 if (ipif->ipif_recovery_id != 0) 18985 (void) untimeout(ipif->ipif_recovery_id); 18986 ipif->ipif_recovery_id = 0; 18987 18988 /* Remove conn references */ 18989 reset_conn_ipif(ipif); 18990 18991 /* 18992 * Make sure we have valid net and subnet broadcast ire's for the 18993 * other ipif's which share them with this ipif. 18994 */ 18995 if (!ipif->ipif_isv6) 18996 ipif_check_bcast_ires(ipif); 18997 18998 /* 18999 * Take down the interface. We can be called either from ill_delete 19000 * or from ip_sioctl_removeif. 19001 */ 19002 (void) ipif_down(ipif, NULL, NULL); 19003 19004 /* 19005 * Now that the interface is down, there's no chance it can still 19006 * become a duplicate. Cancel any timer that may have been set while 19007 * tearing down. 19008 */ 19009 if (ipif->ipif_recovery_id != 0) 19010 (void) untimeout(ipif->ipif_recovery_id); 19011 ipif->ipif_recovery_id = 0; 19012 19013 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 19014 /* Remove pointers to this ill in the multicast routing tables */ 19015 reset_mrt_vif_ipif(ipif); 19016 rw_exit(&ipst->ips_ill_g_lock); 19017 } 19018 19019 /* 19020 * Warning: this is not the only function that calls mi_free on an ipif_t. See 19021 * also ill_move(). 19022 */ 19023 static void 19024 ipif_free_tail(ipif_t *ipif) 19025 { 19026 mblk_t *mp; 19027 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 19028 19029 /* 19030 * Free state for addition IRE_IF_[NO]RESOLVER ire's. 19031 */ 19032 mutex_enter(&ipif->ipif_saved_ire_lock); 19033 mp = ipif->ipif_saved_ire_mp; 19034 ipif->ipif_saved_ire_mp = NULL; 19035 mutex_exit(&ipif->ipif_saved_ire_lock); 19036 freemsg(mp); 19037 19038 /* 19039 * Need to hold both ill_g_lock and ill_lock while 19040 * inserting or removing an ipif from the linked list 19041 * of ipifs hanging off the ill. 19042 */ 19043 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 19044 /* 19045 * Remove all IPv4 multicast memberships on the interface now. 19046 * IPv6 is not handled here as the multicast memberships are 19047 * tied to the ill rather than the ipif. 19048 */ 19049 ilm_free(ipif); 19050 19051 /* 19052 * Since we held the ill_g_lock while doing the ilm_free above, 19053 * we can assert the ilms were really deleted and not just marked 19054 * ILM_DELETED. 19055 */ 19056 ASSERT(ilm_walk_ipif(ipif) == 0); 19057 19058 #ifdef DEBUG 19059 ipif_trace_cleanup(ipif); 19060 #endif 19061 19062 /* Ask SCTP to take it out of it list */ 19063 sctp_update_ipif(ipif, SCTP_IPIF_REMOVE); 19064 19065 /* Get it out of the ILL interface list. */ 19066 ipif_remove(ipif, B_TRUE); 19067 rw_exit(&ipst->ips_ill_g_lock); 19068 19069 mutex_destroy(&ipif->ipif_saved_ire_lock); 19070 19071 ASSERT(!(ipif->ipif_flags & (IPIF_UP | IPIF_DUPLICATE))); 19072 ASSERT(ipif->ipif_recovery_id == 0); 19073 19074 /* Free the memory. */ 19075 mi_free(ipif); 19076 } 19077 19078 /* 19079 * Sets `buf' to an ipif name of the form "ill_name:id", or "ill_name" if "id" 19080 * is zero. 19081 */ 19082 void 19083 ipif_get_name(const ipif_t *ipif, char *buf, int len) 19084 { 19085 char lbuf[LIFNAMSIZ]; 19086 char *name; 19087 size_t name_len; 19088 19089 buf[0] = '\0'; 19090 name = ipif->ipif_ill->ill_name; 19091 name_len = ipif->ipif_ill->ill_name_length; 19092 if (ipif->ipif_id != 0) { 19093 (void) sprintf(lbuf, "%s%c%d", name, IPIF_SEPARATOR_CHAR, 19094 ipif->ipif_id); 19095 name = lbuf; 19096 name_len = mi_strlen(name) + 1; 19097 } 19098 len -= 1; 19099 buf[len] = '\0'; 19100 len = MIN(len, name_len); 19101 bcopy(name, buf, len); 19102 } 19103 19104 /* 19105 * Find an IPIF based on the name passed in. Names can be of the 19106 * form <phys> (e.g., le0), <phys>:<#> (e.g., le0:1), 19107 * The <phys> string can have forms like <dev><#> (e.g., le0), 19108 * <dev><#>.<module> (e.g. le0.foo), or <dev>.<module><#> (e.g. ip.tun3). 19109 * When there is no colon, the implied unit id is zero. <phys> must 19110 * correspond to the name of an ILL. (May be called as writer.) 19111 */ 19112 static ipif_t * 19113 ipif_lookup_on_name(char *name, size_t namelen, boolean_t do_alloc, 19114 boolean_t *exists, boolean_t isv6, zoneid_t zoneid, queue_t *q, 19115 mblk_t *mp, ipsq_func_t func, int *error, ip_stack_t *ipst) 19116 { 19117 char *cp; 19118 char *endp; 19119 long id; 19120 ill_t *ill; 19121 ipif_t *ipif; 19122 uint_t ire_type; 19123 boolean_t did_alloc = B_FALSE; 19124 ipsq_t *ipsq; 19125 19126 if (error != NULL) 19127 *error = 0; 19128 19129 /* 19130 * If the caller wants to us to create the ipif, make sure we have a 19131 * valid zoneid 19132 */ 19133 ASSERT(!do_alloc || zoneid != ALL_ZONES); 19134 19135 if (namelen == 0) { 19136 if (error != NULL) 19137 *error = ENXIO; 19138 return (NULL); 19139 } 19140 19141 *exists = B_FALSE; 19142 /* Look for a colon in the name. */ 19143 endp = &name[namelen]; 19144 for (cp = endp; --cp > name; ) { 19145 if (*cp == IPIF_SEPARATOR_CHAR) 19146 break; 19147 } 19148 19149 if (*cp == IPIF_SEPARATOR_CHAR) { 19150 /* 19151 * Reject any non-decimal aliases for logical 19152 * interfaces. Aliases with leading zeroes 19153 * are also rejected as they introduce ambiguity 19154 * in the naming of the interfaces. 19155 * In order to confirm with existing semantics, 19156 * and to not break any programs/script relying 19157 * on that behaviour, if<0>:0 is considered to be 19158 * a valid interface. 19159 * 19160 * If alias has two or more digits and the first 19161 * is zero, fail. 19162 */ 19163 if (&cp[2] < endp && cp[1] == '0') 19164 return (NULL); 19165 } 19166 19167 if (cp <= name) { 19168 cp = endp; 19169 } else { 19170 *cp = '\0'; 19171 } 19172 19173 /* 19174 * Look up the ILL, based on the portion of the name 19175 * before the slash. ill_lookup_on_name returns a held ill. 19176 * Temporary to check whether ill exists already. If so 19177 * ill_lookup_on_name will clear it. 19178 */ 19179 ill = ill_lookup_on_name(name, do_alloc, isv6, 19180 q, mp, func, error, &did_alloc, ipst); 19181 if (cp != endp) 19182 *cp = IPIF_SEPARATOR_CHAR; 19183 if (ill == NULL) 19184 return (NULL); 19185 19186 /* Establish the unit number in the name. */ 19187 id = 0; 19188 if (cp < endp && *endp == '\0') { 19189 /* If there was a colon, the unit number follows. */ 19190 cp++; 19191 if (ddi_strtol(cp, NULL, 0, &id) != 0) { 19192 ill_refrele(ill); 19193 if (error != NULL) 19194 *error = ENXIO; 19195 return (NULL); 19196 } 19197 } 19198 19199 GRAB_CONN_LOCK(q); 19200 mutex_enter(&ill->ill_lock); 19201 /* Now see if there is an IPIF with this unit number. */ 19202 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 19203 if (ipif->ipif_id == id) { 19204 if (zoneid != ALL_ZONES && 19205 zoneid != ipif->ipif_zoneid && 19206 ipif->ipif_zoneid != ALL_ZONES) { 19207 mutex_exit(&ill->ill_lock); 19208 RELEASE_CONN_LOCK(q); 19209 ill_refrele(ill); 19210 if (error != NULL) 19211 *error = ENXIO; 19212 return (NULL); 19213 } 19214 /* 19215 * The block comment at the start of ipif_down 19216 * explains the use of the macros used below 19217 */ 19218 if (IPIF_CAN_LOOKUP(ipif)) { 19219 ipif_refhold_locked(ipif); 19220 mutex_exit(&ill->ill_lock); 19221 if (!did_alloc) 19222 *exists = B_TRUE; 19223 /* 19224 * Drop locks before calling ill_refrele 19225 * since it can potentially call into 19226 * ipif_ill_refrele_tail which can end up 19227 * in trying to acquire any lock. 19228 */ 19229 RELEASE_CONN_LOCK(q); 19230 ill_refrele(ill); 19231 return (ipif); 19232 } else if (IPIF_CAN_WAIT(ipif, q)) { 19233 ipsq = ill->ill_phyint->phyint_ipsq; 19234 mutex_enter(&ipsq->ipsq_lock); 19235 mutex_exit(&ill->ill_lock); 19236 ipsq_enq(ipsq, q, mp, func, NEW_OP, ill); 19237 mutex_exit(&ipsq->ipsq_lock); 19238 RELEASE_CONN_LOCK(q); 19239 ill_refrele(ill); 19240 *error = EINPROGRESS; 19241 return (NULL); 19242 } 19243 } 19244 } 19245 RELEASE_CONN_LOCK(q); 19246 19247 if (!do_alloc) { 19248 mutex_exit(&ill->ill_lock); 19249 ill_refrele(ill); 19250 if (error != NULL) 19251 *error = ENXIO; 19252 return (NULL); 19253 } 19254 19255 /* 19256 * If none found, atomically allocate and return a new one. 19257 * Historically, we used IRE_LOOPBACK only for lun 0, and IRE_LOCAL 19258 * to support "receive only" use of lo0:1 etc. as is still done 19259 * below as an initial guess. 19260 * However, this is now likely to be overriden later in ipif_up_done() 19261 * when we know for sure what address has been configured on the 19262 * interface, since we might have more than one loopback interface 19263 * with a loopback address, e.g. in the case of zones, and all the 19264 * interfaces with loopback addresses need to be marked IRE_LOOPBACK. 19265 */ 19266 if (ill->ill_net_type == IRE_LOOPBACK && id == 0) 19267 ire_type = IRE_LOOPBACK; 19268 else 19269 ire_type = IRE_LOCAL; 19270 ipif = ipif_allocate(ill, id, ire_type, B_TRUE); 19271 if (ipif != NULL) 19272 ipif_refhold_locked(ipif); 19273 else if (error != NULL) 19274 *error = ENOMEM; 19275 mutex_exit(&ill->ill_lock); 19276 ill_refrele(ill); 19277 return (ipif); 19278 } 19279 19280 /* 19281 * This routine is called whenever a new address comes up on an ipif. If 19282 * we are configured to respond to address mask requests, then we are supposed 19283 * to broadcast an address mask reply at this time. This routine is also 19284 * called if we are already up, but a netmask change is made. This is legal 19285 * but might not make the system manager very popular. (May be called 19286 * as writer.) 19287 */ 19288 void 19289 ipif_mask_reply(ipif_t *ipif) 19290 { 19291 icmph_t *icmph; 19292 ipha_t *ipha; 19293 mblk_t *mp; 19294 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 19295 19296 #define REPLY_LEN (sizeof (icmp_ipha) + sizeof (icmph_t) + IP_ADDR_LEN) 19297 19298 if (!ipst->ips_ip_respond_to_address_mask_broadcast) 19299 return; 19300 19301 /* ICMP mask reply is IPv4 only */ 19302 ASSERT(!ipif->ipif_isv6); 19303 /* ICMP mask reply is not for a loopback interface */ 19304 ASSERT(ipif->ipif_ill->ill_wq != NULL); 19305 19306 mp = allocb(REPLY_LEN, BPRI_HI); 19307 if (mp == NULL) 19308 return; 19309 mp->b_wptr = mp->b_rptr + REPLY_LEN; 19310 19311 ipha = (ipha_t *)mp->b_rptr; 19312 bzero(ipha, REPLY_LEN); 19313 *ipha = icmp_ipha; 19314 ipha->ipha_ttl = ipst->ips_ip_broadcast_ttl; 19315 ipha->ipha_src = ipif->ipif_src_addr; 19316 ipha->ipha_dst = ipif->ipif_brd_addr; 19317 ipha->ipha_length = htons(REPLY_LEN); 19318 ipha->ipha_ident = 0; 19319 19320 icmph = (icmph_t *)&ipha[1]; 19321 icmph->icmph_type = ICMP_ADDRESS_MASK_REPLY; 19322 bcopy(&ipif->ipif_net_mask, &icmph[1], IP_ADDR_LEN); 19323 icmph->icmph_checksum = IP_CSUM(mp, sizeof (ipha_t), 0); 19324 19325 put(ipif->ipif_wq, mp); 19326 19327 #undef REPLY_LEN 19328 } 19329 19330 /* 19331 * When the mtu in the ipif changes, we call this routine through ire_walk 19332 * to update all the relevant IREs. 19333 * Skip IRE_LOCAL and "loopback" IRE_BROADCAST by checking ire_stq. 19334 */ 19335 static void 19336 ipif_mtu_change(ire_t *ire, char *ipif_arg) 19337 { 19338 ipif_t *ipif = (ipif_t *)ipif_arg; 19339 19340 if (ire->ire_stq == NULL || ire->ire_ipif != ipif) 19341 return; 19342 ire->ire_max_frag = MIN(ipif->ipif_mtu, IP_MAXPACKET); 19343 } 19344 19345 /* 19346 * When the mtu in the ill changes, we call this routine through ire_walk 19347 * to update all the relevant IREs. 19348 * Skip IRE_LOCAL and "loopback" IRE_BROADCAST by checking ire_stq. 19349 */ 19350 void 19351 ill_mtu_change(ire_t *ire, char *ill_arg) 19352 { 19353 ill_t *ill = (ill_t *)ill_arg; 19354 19355 if (ire->ire_stq == NULL || ire->ire_ipif->ipif_ill != ill) 19356 return; 19357 ire->ire_max_frag = ire->ire_ipif->ipif_mtu; 19358 } 19359 19360 /* 19361 * Join the ipif specific multicast groups. 19362 * Must be called after a mapping has been set up in the resolver. (Always 19363 * called as writer.) 19364 */ 19365 void 19366 ipif_multicast_up(ipif_t *ipif) 19367 { 19368 int err, index; 19369 ill_t *ill; 19370 19371 ASSERT(IAM_WRITER_IPIF(ipif)); 19372 19373 ill = ipif->ipif_ill; 19374 index = ill->ill_phyint->phyint_ifindex; 19375 19376 ip1dbg(("ipif_multicast_up\n")); 19377 if (!(ill->ill_flags & ILLF_MULTICAST) || ipif->ipif_multicast_up) 19378 return; 19379 19380 if (ipif->ipif_isv6) { 19381 if (IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr)) 19382 return; 19383 19384 /* Join the all hosts multicast address */ 19385 ip1dbg(("ipif_multicast_up - addmulti\n")); 19386 /* 19387 * Passing B_TRUE means we have to join the multicast 19388 * membership on this interface even though this is 19389 * FAILED. If we join on a different one in the group, 19390 * we will not be able to delete the membership later 19391 * as we currently don't track where we join when we 19392 * join within the kernel unlike applications where 19393 * we have ilg/ilg_orig_index. See ip_addmulti_v6 19394 * for more on this. 19395 */ 19396 err = ip_addmulti_v6(&ipv6_all_hosts_mcast, ill, index, 19397 ipif->ipif_zoneid, ILGSTAT_NONE, MODE_IS_EXCLUDE, NULL); 19398 if (err != 0) { 19399 ip0dbg(("ipif_multicast_up: " 19400 "all_hosts_mcast failed %d\n", 19401 err)); 19402 return; 19403 } 19404 /* 19405 * Enable multicast for the solicited node multicast address 19406 */ 19407 if (!(ipif->ipif_flags & IPIF_NOLOCAL)) { 19408 in6_addr_t ipv6_multi = ipv6_solicited_node_mcast; 19409 19410 ipv6_multi.s6_addr32[3] |= 19411 ipif->ipif_v6lcl_addr.s6_addr32[3]; 19412 19413 err = ip_addmulti_v6(&ipv6_multi, ill, index, 19414 ipif->ipif_zoneid, ILGSTAT_NONE, MODE_IS_EXCLUDE, 19415 NULL); 19416 if (err != 0) { 19417 ip0dbg(("ipif_multicast_up: solicited MC" 19418 " failed %d\n", err)); 19419 (void) ip_delmulti_v6(&ipv6_all_hosts_mcast, 19420 ill, ill->ill_phyint->phyint_ifindex, 19421 ipif->ipif_zoneid, B_TRUE, B_TRUE); 19422 return; 19423 } 19424 } 19425 } else { 19426 if (ipif->ipif_lcl_addr == INADDR_ANY) 19427 return; 19428 19429 /* Join the all hosts multicast address */ 19430 ip1dbg(("ipif_multicast_up - addmulti\n")); 19431 err = ip_addmulti(htonl(INADDR_ALLHOSTS_GROUP), ipif, 19432 ILGSTAT_NONE, MODE_IS_EXCLUDE, NULL); 19433 if (err) { 19434 ip0dbg(("ipif_multicast_up: failed %d\n", err)); 19435 return; 19436 } 19437 } 19438 ipif->ipif_multicast_up = 1; 19439 } 19440 19441 /* 19442 * Blow away any multicast groups that we joined in ipif_multicast_up(). 19443 * (Explicit memberships are blown away in ill_leave_multicast() when the 19444 * ill is brought down.) 19445 */ 19446 static void 19447 ipif_multicast_down(ipif_t *ipif) 19448 { 19449 int err; 19450 19451 ASSERT(IAM_WRITER_IPIF(ipif)); 19452 19453 ip1dbg(("ipif_multicast_down\n")); 19454 if (!ipif->ipif_multicast_up) 19455 return; 19456 19457 ip1dbg(("ipif_multicast_down - delmulti\n")); 19458 19459 if (!ipif->ipif_isv6) { 19460 err = ip_delmulti(htonl(INADDR_ALLHOSTS_GROUP), ipif, B_TRUE, 19461 B_TRUE); 19462 if (err != 0) 19463 ip0dbg(("ipif_multicast_down: failed %d\n", err)); 19464 19465 ipif->ipif_multicast_up = 0; 19466 return; 19467 } 19468 19469 /* 19470 * Leave the all hosts multicast address. Similar to ip_addmulti_v6, 19471 * we should look for ilms on this ill rather than the ones that have 19472 * been failed over here. They are here temporarily. As 19473 * ipif_multicast_up has joined on this ill, we should delete only 19474 * from this ill. 19475 */ 19476 err = ip_delmulti_v6(&ipv6_all_hosts_mcast, ipif->ipif_ill, 19477 ipif->ipif_ill->ill_phyint->phyint_ifindex, ipif->ipif_zoneid, 19478 B_TRUE, B_TRUE); 19479 if (err != 0) { 19480 ip0dbg(("ipif_multicast_down: all_hosts_mcast failed %d\n", 19481 err)); 19482 } 19483 /* 19484 * Disable multicast for the solicited node multicast address 19485 */ 19486 if (!(ipif->ipif_flags & IPIF_NOLOCAL)) { 19487 in6_addr_t ipv6_multi = ipv6_solicited_node_mcast; 19488 19489 ipv6_multi.s6_addr32[3] |= 19490 ipif->ipif_v6lcl_addr.s6_addr32[3]; 19491 19492 err = ip_delmulti_v6(&ipv6_multi, ipif->ipif_ill, 19493 ipif->ipif_ill->ill_phyint->phyint_ifindex, 19494 ipif->ipif_zoneid, B_TRUE, B_TRUE); 19495 19496 if (err != 0) { 19497 ip0dbg(("ipif_multicast_down: sol MC failed %d\n", 19498 err)); 19499 } 19500 } 19501 19502 ipif->ipif_multicast_up = 0; 19503 } 19504 19505 /* 19506 * Used when an interface comes up to recreate any extra routes on this 19507 * interface. 19508 */ 19509 static ire_t ** 19510 ipif_recover_ire(ipif_t *ipif) 19511 { 19512 mblk_t *mp; 19513 ire_t **ipif_saved_irep; 19514 ire_t **irep; 19515 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 19516 19517 ip1dbg(("ipif_recover_ire(%s:%u)", ipif->ipif_ill->ill_name, 19518 ipif->ipif_id)); 19519 19520 mutex_enter(&ipif->ipif_saved_ire_lock); 19521 ipif_saved_irep = (ire_t **)kmem_zalloc(sizeof (ire_t *) * 19522 ipif->ipif_saved_ire_cnt, KM_NOSLEEP); 19523 if (ipif_saved_irep == NULL) { 19524 mutex_exit(&ipif->ipif_saved_ire_lock); 19525 return (NULL); 19526 } 19527 19528 irep = ipif_saved_irep; 19529 for (mp = ipif->ipif_saved_ire_mp; mp != NULL; mp = mp->b_cont) { 19530 ire_t *ire; 19531 queue_t *rfq; 19532 queue_t *stq; 19533 ifrt_t *ifrt; 19534 uchar_t *src_addr; 19535 uchar_t *gateway_addr; 19536 ushort_t type; 19537 19538 /* 19539 * When the ire was initially created and then added in 19540 * ip_rt_add(), it was created either using ipif->ipif_net_type 19541 * in the case of a traditional interface route, or as one of 19542 * the IRE_OFFSUBNET types (with the exception of 19543 * IRE_HOST types ire which is created by icmp_redirect() and 19544 * which we don't need to save or recover). In the case where 19545 * ipif->ipif_net_type was IRE_LOOPBACK, ip_rt_add() will update 19546 * the ire_type to IRE_IF_NORESOLVER before calling ire_add() 19547 * to satisfy software like GateD and Sun Cluster which creates 19548 * routes using the the loopback interface's address as a 19549 * gateway. 19550 * 19551 * As ifrt->ifrt_type reflects the already updated ire_type, 19552 * ire_create() will be called in the same way here as 19553 * in ip_rt_add(), namely using ipif->ipif_net_type when 19554 * the route looks like a traditional interface route (where 19555 * ifrt->ifrt_type & IRE_INTERFACE is true) and otherwise using 19556 * the saved ifrt->ifrt_type. This means that in the case where 19557 * ipif->ipif_net_type is IRE_LOOPBACK, the ire created by 19558 * ire_create() will be an IRE_LOOPBACK, it will then be turned 19559 * into an IRE_IF_NORESOLVER and then added by ire_add(). 19560 */ 19561 ifrt = (ifrt_t *)mp->b_rptr; 19562 ASSERT(ifrt->ifrt_type != IRE_CACHE); 19563 if (ifrt->ifrt_type & IRE_INTERFACE) { 19564 rfq = NULL; 19565 stq = (ipif->ipif_net_type == IRE_IF_RESOLVER) 19566 ? ipif->ipif_rq : ipif->ipif_wq; 19567 src_addr = (ifrt->ifrt_flags & RTF_SETSRC) 19568 ? (uint8_t *)&ifrt->ifrt_src_addr 19569 : (uint8_t *)&ipif->ipif_src_addr; 19570 gateway_addr = NULL; 19571 type = ipif->ipif_net_type; 19572 } else if (ifrt->ifrt_type & IRE_BROADCAST) { 19573 /* Recover multiroute broadcast IRE. */ 19574 rfq = ipif->ipif_rq; 19575 stq = ipif->ipif_wq; 19576 src_addr = (ifrt->ifrt_flags & RTF_SETSRC) 19577 ? (uint8_t *)&ifrt->ifrt_src_addr 19578 : (uint8_t *)&ipif->ipif_src_addr; 19579 gateway_addr = (uint8_t *)&ifrt->ifrt_gateway_addr; 19580 type = ifrt->ifrt_type; 19581 } else { 19582 rfq = NULL; 19583 stq = NULL; 19584 src_addr = (ifrt->ifrt_flags & RTF_SETSRC) 19585 ? (uint8_t *)&ifrt->ifrt_src_addr : NULL; 19586 gateway_addr = (uint8_t *)&ifrt->ifrt_gateway_addr; 19587 type = ifrt->ifrt_type; 19588 } 19589 19590 /* 19591 * Create a copy of the IRE with the saved address and netmask. 19592 */ 19593 ip1dbg(("ipif_recover_ire: creating IRE %s (%d) for " 19594 "0x%x/0x%x\n", 19595 ip_nv_lookup(ire_nv_tbl, ifrt->ifrt_type), ifrt->ifrt_type, 19596 ntohl(ifrt->ifrt_addr), 19597 ntohl(ifrt->ifrt_mask))); 19598 ire = ire_create( 19599 (uint8_t *)&ifrt->ifrt_addr, 19600 (uint8_t *)&ifrt->ifrt_mask, 19601 src_addr, 19602 gateway_addr, 19603 &ifrt->ifrt_max_frag, 19604 NULL, 19605 rfq, 19606 stq, 19607 type, 19608 ipif, 19609 0, 19610 0, 19611 0, 19612 ifrt->ifrt_flags, 19613 &ifrt->ifrt_iulp_info, 19614 NULL, 19615 NULL, 19616 ipst); 19617 19618 if (ire == NULL) { 19619 mutex_exit(&ipif->ipif_saved_ire_lock); 19620 kmem_free(ipif_saved_irep, 19621 ipif->ipif_saved_ire_cnt * sizeof (ire_t *)); 19622 return (NULL); 19623 } 19624 19625 /* 19626 * Some software (for example, GateD and Sun Cluster) attempts 19627 * to create (what amount to) IRE_PREFIX routes with the 19628 * loopback address as the gateway. This is primarily done to 19629 * set up prefixes with the RTF_REJECT flag set (for example, 19630 * when generating aggregate routes.) 19631 * 19632 * If the IRE type (as defined by ipif->ipif_net_type) is 19633 * IRE_LOOPBACK, then we map the request into a 19634 * IRE_IF_NORESOLVER. 19635 */ 19636 if (ipif->ipif_net_type == IRE_LOOPBACK) 19637 ire->ire_type = IRE_IF_NORESOLVER; 19638 /* 19639 * ire held by ire_add, will be refreled' towards the 19640 * the end of ipif_up_done 19641 */ 19642 (void) ire_add(&ire, NULL, NULL, NULL, B_FALSE); 19643 *irep = ire; 19644 irep++; 19645 ip1dbg(("ipif_recover_ire: added ire %p\n", (void *)ire)); 19646 } 19647 mutex_exit(&ipif->ipif_saved_ire_lock); 19648 return (ipif_saved_irep); 19649 } 19650 19651 /* 19652 * Used to set the netmask and broadcast address to default values when the 19653 * interface is brought up. (Always called as writer.) 19654 */ 19655 static void 19656 ipif_set_default(ipif_t *ipif) 19657 { 19658 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 19659 19660 if (!ipif->ipif_isv6) { 19661 /* 19662 * Interface holds an IPv4 address. Default 19663 * mask is the natural netmask. 19664 */ 19665 if (!ipif->ipif_net_mask) { 19666 ipaddr_t v4mask; 19667 19668 v4mask = ip_net_mask(ipif->ipif_lcl_addr); 19669 V4MASK_TO_V6(v4mask, ipif->ipif_v6net_mask); 19670 } 19671 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 19672 /* ipif_subnet is ipif_pp_dst_addr for pt-pt */ 19673 ipif->ipif_v6subnet = ipif->ipif_v6pp_dst_addr; 19674 } else { 19675 V6_MASK_COPY(ipif->ipif_v6lcl_addr, 19676 ipif->ipif_v6net_mask, ipif->ipif_v6subnet); 19677 } 19678 /* 19679 * NOTE: SunOS 4.X does this even if the broadcast address 19680 * has been already set thus we do the same here. 19681 */ 19682 if (ipif->ipif_flags & IPIF_BROADCAST) { 19683 ipaddr_t v4addr; 19684 19685 v4addr = ipif->ipif_subnet | ~ipif->ipif_net_mask; 19686 IN6_IPADDR_TO_V4MAPPED(v4addr, &ipif->ipif_v6brd_addr); 19687 } 19688 } else { 19689 /* 19690 * Interface holds an IPv6-only address. Default 19691 * mask is all-ones. 19692 */ 19693 if (IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6net_mask)) 19694 ipif->ipif_v6net_mask = ipv6_all_ones; 19695 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 19696 /* ipif_subnet is ipif_pp_dst_addr for pt-pt */ 19697 ipif->ipif_v6subnet = ipif->ipif_v6pp_dst_addr; 19698 } else { 19699 V6_MASK_COPY(ipif->ipif_v6lcl_addr, 19700 ipif->ipif_v6net_mask, ipif->ipif_v6subnet); 19701 } 19702 } 19703 } 19704 19705 /* 19706 * Return 0 if this address can be used as local address without causing 19707 * duplicate address problems. Otherwise, return EADDRNOTAVAIL if the address 19708 * is already up on a different ill, and EADDRINUSE if it's up on the same ill. 19709 * Special checks are needed to allow the same IPv6 link-local address 19710 * on different ills. 19711 * TODO: allowing the same site-local address on different ill's. 19712 */ 19713 int 19714 ip_addr_availability_check(ipif_t *new_ipif) 19715 { 19716 in6_addr_t our_v6addr; 19717 ill_t *ill; 19718 ipif_t *ipif; 19719 ill_walk_context_t ctx; 19720 ip_stack_t *ipst = new_ipif->ipif_ill->ill_ipst; 19721 19722 ASSERT(IAM_WRITER_IPIF(new_ipif)); 19723 ASSERT(MUTEX_HELD(&ipst->ips_ip_addr_avail_lock)); 19724 ASSERT(RW_READ_HELD(&ipst->ips_ill_g_lock)); 19725 19726 new_ipif->ipif_flags &= ~IPIF_UNNUMBERED; 19727 if (IN6_IS_ADDR_UNSPECIFIED(&new_ipif->ipif_v6lcl_addr) || 19728 IN6_IS_ADDR_V4MAPPED_ANY(&new_ipif->ipif_v6lcl_addr)) 19729 return (0); 19730 19731 our_v6addr = new_ipif->ipif_v6lcl_addr; 19732 19733 if (new_ipif->ipif_isv6) 19734 ill = ILL_START_WALK_V6(&ctx, ipst); 19735 else 19736 ill = ILL_START_WALK_V4(&ctx, ipst); 19737 19738 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 19739 for (ipif = ill->ill_ipif; ipif != NULL; 19740 ipif = ipif->ipif_next) { 19741 if ((ipif == new_ipif) || 19742 !(ipif->ipif_flags & IPIF_UP) || 19743 (ipif->ipif_flags & IPIF_UNNUMBERED)) 19744 continue; 19745 if (IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6lcl_addr, 19746 &our_v6addr)) { 19747 if (new_ipif->ipif_flags & IPIF_POINTOPOINT) 19748 new_ipif->ipif_flags |= IPIF_UNNUMBERED; 19749 else if (ipif->ipif_flags & IPIF_POINTOPOINT) 19750 ipif->ipif_flags |= IPIF_UNNUMBERED; 19751 else if (IN6_IS_ADDR_LINKLOCAL(&our_v6addr) && 19752 new_ipif->ipif_ill != ill) 19753 continue; 19754 else if (IN6_IS_ADDR_SITELOCAL(&our_v6addr) && 19755 new_ipif->ipif_ill != ill) 19756 continue; 19757 else if (new_ipif->ipif_zoneid != 19758 ipif->ipif_zoneid && 19759 ipif->ipif_zoneid != ALL_ZONES && 19760 IS_LOOPBACK(ill)) 19761 continue; 19762 else if (new_ipif->ipif_ill == ill) 19763 return (EADDRINUSE); 19764 else 19765 return (EADDRNOTAVAIL); 19766 } 19767 } 19768 } 19769 19770 return (0); 19771 } 19772 19773 /* 19774 * Bring up an ipif: bring up arp/ndp, bring up the DLPI stream, and add 19775 * IREs for the ipif. 19776 * When the routine returns EINPROGRESS then mp has been consumed and 19777 * the ioctl will be acked from ip_rput_dlpi. 19778 */ 19779 static int 19780 ipif_up(ipif_t *ipif, queue_t *q, mblk_t *mp) 19781 { 19782 ill_t *ill = ipif->ipif_ill; 19783 boolean_t isv6 = ipif->ipif_isv6; 19784 int err = 0; 19785 boolean_t success; 19786 19787 ASSERT(IAM_WRITER_IPIF(ipif)); 19788 19789 ip1dbg(("ipif_up(%s:%u)\n", ill->ill_name, ipif->ipif_id)); 19790 19791 /* Shouldn't get here if it is already up. */ 19792 if (ipif->ipif_flags & IPIF_UP) 19793 return (EALREADY); 19794 19795 /* Skip arp/ndp for any loopback interface. */ 19796 if (ill->ill_wq != NULL) { 19797 conn_t *connp = CONN_Q(q) ? Q_TO_CONN(q) : NULL; 19798 ipsq_t *ipsq = ill->ill_phyint->phyint_ipsq; 19799 19800 if (!ill->ill_dl_up) { 19801 /* 19802 * ill_dl_up is not yet set. i.e. we are yet to 19803 * DL_BIND with the driver and this is the first 19804 * logical interface on the ill to become "up". 19805 * Tell the driver to get going (via DL_BIND_REQ). 19806 * Note that changing "significant" IFF_ flags 19807 * address/netmask etc cause a down/up dance, but 19808 * does not cause an unbind (DL_UNBIND) with the driver 19809 */ 19810 return (ill_dl_up(ill, ipif, mp, q)); 19811 } 19812 19813 /* 19814 * ipif_resolver_up may end up sending an 19815 * AR_INTERFACE_UP message to ARP, which would, in 19816 * turn send a DLPI message to the driver. ioctls are 19817 * serialized and so we cannot send more than one 19818 * interface up message at a time. If ipif_resolver_up 19819 * does send an interface up message to ARP, we get 19820 * EINPROGRESS and we will complete in ip_arp_done. 19821 */ 19822 19823 ASSERT(connp != NULL || !CONN_Q(q)); 19824 ASSERT(ipsq->ipsq_pending_mp == NULL); 19825 if (connp != NULL) 19826 mutex_enter(&connp->conn_lock); 19827 mutex_enter(&ill->ill_lock); 19828 success = ipsq_pending_mp_add(connp, ipif, q, mp, 0); 19829 mutex_exit(&ill->ill_lock); 19830 if (connp != NULL) 19831 mutex_exit(&connp->conn_lock); 19832 if (!success) 19833 return (EINTR); 19834 19835 /* 19836 * Crank up IPv6 neighbor discovery 19837 * Unlike ARP, this should complete when 19838 * ipif_ndp_up returns. However, for 19839 * ILLF_XRESOLV interfaces we also send a 19840 * AR_INTERFACE_UP to the external resolver. 19841 * That ioctl will complete in ip_rput. 19842 */ 19843 if (isv6) { 19844 err = ipif_ndp_up(ipif); 19845 if (err != 0) { 19846 if (err != EINPROGRESS) 19847 mp = ipsq_pending_mp_get(ipsq, &connp); 19848 return (err); 19849 } 19850 } 19851 /* Now, ARP */ 19852 err = ipif_resolver_up(ipif, Res_act_initial); 19853 if (err == EINPROGRESS) { 19854 /* We will complete it in ip_arp_done */ 19855 return (err); 19856 } 19857 mp = ipsq_pending_mp_get(ipsq, &connp); 19858 ASSERT(mp != NULL); 19859 if (err != 0) 19860 return (err); 19861 } else { 19862 /* 19863 * Interfaces without underlying hardware don't do duplicate 19864 * address detection. 19865 */ 19866 ASSERT(!(ipif->ipif_flags & IPIF_DUPLICATE)); 19867 ipif->ipif_addr_ready = 1; 19868 } 19869 return (isv6 ? ipif_up_done_v6(ipif) : ipif_up_done(ipif)); 19870 } 19871 19872 /* 19873 * Perform a bind for the physical device. 19874 * When the routine returns EINPROGRESS then mp has been consumed and 19875 * the ioctl will be acked from ip_rput_dlpi. 19876 * Allocate an unbind message and save it until ipif_down. 19877 */ 19878 static int 19879 ill_dl_up(ill_t *ill, ipif_t *ipif, mblk_t *mp, queue_t *q) 19880 { 19881 areq_t *areq; 19882 mblk_t *areq_mp = NULL; 19883 mblk_t *bind_mp = NULL; 19884 mblk_t *unbind_mp = NULL; 19885 conn_t *connp; 19886 boolean_t success; 19887 uint16_t sap_addr; 19888 19889 ip1dbg(("ill_dl_up(%s)\n", ill->ill_name)); 19890 ASSERT(IAM_WRITER_ILL(ill)); 19891 ASSERT(mp != NULL); 19892 19893 /* Create a resolver cookie for ARP */ 19894 if (!ill->ill_isv6 && ill->ill_net_type == IRE_IF_RESOLVER) { 19895 areq_mp = ill_arp_alloc(ill, (uchar_t *)&ip_areq_template, 0); 19896 if (areq_mp == NULL) 19897 return (ENOMEM); 19898 19899 freemsg(ill->ill_resolver_mp); 19900 ill->ill_resolver_mp = areq_mp; 19901 areq = (areq_t *)areq_mp->b_rptr; 19902 sap_addr = ill->ill_sap; 19903 bcopy(&sap_addr, areq->areq_sap, sizeof (sap_addr)); 19904 } 19905 bind_mp = ip_dlpi_alloc(sizeof (dl_bind_req_t) + sizeof (long), 19906 DL_BIND_REQ); 19907 if (bind_mp == NULL) 19908 goto bad; 19909 ((dl_bind_req_t *)bind_mp->b_rptr)->dl_sap = ill->ill_sap; 19910 ((dl_bind_req_t *)bind_mp->b_rptr)->dl_service_mode = DL_CLDLS; 19911 19912 unbind_mp = ip_dlpi_alloc(sizeof (dl_unbind_req_t), DL_UNBIND_REQ); 19913 if (unbind_mp == NULL) 19914 goto bad; 19915 19916 /* 19917 * Record state needed to complete this operation when the 19918 * DL_BIND_ACK shows up. Also remember the pre-allocated mblks. 19919 */ 19920 ASSERT(WR(q)->q_next == NULL); 19921 connp = Q_TO_CONN(q); 19922 19923 mutex_enter(&connp->conn_lock); 19924 mutex_enter(&ipif->ipif_ill->ill_lock); 19925 success = ipsq_pending_mp_add(connp, ipif, q, mp, 0); 19926 mutex_exit(&ipif->ipif_ill->ill_lock); 19927 mutex_exit(&connp->conn_lock); 19928 if (!success) 19929 goto bad; 19930 19931 /* 19932 * Save the unbind message for ill_dl_down(); it will be consumed when 19933 * the interface goes down. 19934 */ 19935 ASSERT(ill->ill_unbind_mp == NULL); 19936 ill->ill_unbind_mp = unbind_mp; 19937 19938 ill_dlpi_send(ill, bind_mp); 19939 /* Send down link-layer capabilities probe if not already done. */ 19940 ill_capability_probe(ill); 19941 19942 /* 19943 * Sysid used to rely on the fact that netboots set domainname 19944 * and the like. Now that miniroot boots aren't strictly netboots 19945 * and miniroot network configuration is driven from userland 19946 * these things still need to be set. This situation can be detected 19947 * by comparing the interface being configured here to the one 19948 * dhcack was set to reference by the boot loader. Once sysid is 19949 * converted to use dhcp_ipc_getinfo() this call can go away. 19950 */ 19951 if ((ipif->ipif_flags & IPIF_DHCPRUNNING) && (dhcack != NULL) && 19952 (strcmp(ill->ill_name, dhcack) == 0) && 19953 (strlen(srpc_domain) == 0)) { 19954 if (dhcpinit() != 0) 19955 cmn_err(CE_WARN, "no cached dhcp response"); 19956 } 19957 19958 /* 19959 * This operation will complete in ip_rput_dlpi with either 19960 * a DL_BIND_ACK or DL_ERROR_ACK. 19961 */ 19962 return (EINPROGRESS); 19963 bad: 19964 ip1dbg(("ill_dl_up(%s) FAILED\n", ill->ill_name)); 19965 /* 19966 * We don't have to check for possible removal from illgrp 19967 * as we have not yet inserted in illgrp. For groups 19968 * without names, this ipif is still not UP and hence 19969 * this could not have possibly had any influence in forming 19970 * groups. 19971 */ 19972 19973 freemsg(bind_mp); 19974 freemsg(unbind_mp); 19975 return (ENOMEM); 19976 } 19977 19978 uint_t ip_loopback_mtuplus = IP_LOOPBACK_MTU + IP_SIMPLE_HDR_LENGTH + 20; 19979 19980 /* 19981 * DLPI and ARP is up. 19982 * Create all the IREs associated with an interface bring up multicast. 19983 * Set the interface flag and finish other initialization 19984 * that potentially had to be differed to after DL_BIND_ACK. 19985 */ 19986 int 19987 ipif_up_done(ipif_t *ipif) 19988 { 19989 ire_t *ire_array[20]; 19990 ire_t **irep = ire_array; 19991 ire_t **irep1; 19992 ipaddr_t net_mask = 0; 19993 ipaddr_t subnet_mask, route_mask; 19994 ill_t *ill = ipif->ipif_ill; 19995 queue_t *stq; 19996 ipif_t *src_ipif; 19997 ipif_t *tmp_ipif; 19998 boolean_t flush_ire_cache = B_TRUE; 19999 int err = 0; 20000 phyint_t *phyi; 20001 ire_t **ipif_saved_irep = NULL; 20002 int ipif_saved_ire_cnt; 20003 int cnt; 20004 boolean_t src_ipif_held = B_FALSE; 20005 boolean_t ire_added = B_FALSE; 20006 boolean_t loopback = B_FALSE; 20007 ip_stack_t *ipst = ill->ill_ipst; 20008 20009 ip1dbg(("ipif_up_done(%s:%u)\n", 20010 ipif->ipif_ill->ill_name, ipif->ipif_id)); 20011 /* Check if this is a loopback interface */ 20012 if (ipif->ipif_ill->ill_wq == NULL) 20013 loopback = B_TRUE; 20014 20015 ASSERT(!MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 20016 /* 20017 * If all other interfaces for this ill are down or DEPRECATED, 20018 * or otherwise unsuitable for source address selection, remove 20019 * any IRE_CACHE entries for this ill to make sure source 20020 * address selection gets to take this new ipif into account. 20021 * No need to hold ill_lock while traversing the ipif list since 20022 * we are writer 20023 */ 20024 for (tmp_ipif = ill->ill_ipif; tmp_ipif; 20025 tmp_ipif = tmp_ipif->ipif_next) { 20026 if (((tmp_ipif->ipif_flags & 20027 (IPIF_NOXMIT|IPIF_ANYCAST|IPIF_NOLOCAL|IPIF_DEPRECATED)) || 20028 !(tmp_ipif->ipif_flags & IPIF_UP)) || 20029 (tmp_ipif == ipif)) 20030 continue; 20031 /* first useable pre-existing interface */ 20032 flush_ire_cache = B_FALSE; 20033 break; 20034 } 20035 if (flush_ire_cache) 20036 ire_walk_ill_v4(MATCH_IRE_ILL_GROUP | MATCH_IRE_TYPE, 20037 IRE_CACHE, ill_ipif_cache_delete, (char *)ill, ill); 20038 20039 /* 20040 * Figure out which way the send-to queue should go. Only 20041 * IRE_IF_RESOLVER or IRE_IF_NORESOLVER or IRE_LOOPBACK 20042 * should show up here. 20043 */ 20044 switch (ill->ill_net_type) { 20045 case IRE_IF_RESOLVER: 20046 stq = ill->ill_rq; 20047 break; 20048 case IRE_IF_NORESOLVER: 20049 case IRE_LOOPBACK: 20050 stq = ill->ill_wq; 20051 break; 20052 default: 20053 return (EINVAL); 20054 } 20055 20056 if (IS_LOOPBACK(ill)) { 20057 /* 20058 * lo0:1 and subsequent ipifs were marked IRE_LOCAL in 20059 * ipif_lookup_on_name(), but in the case of zones we can have 20060 * several loopback addresses on lo0. So all the interfaces with 20061 * loopback addresses need to be marked IRE_LOOPBACK. 20062 */ 20063 if (V4_PART_OF_V6(ipif->ipif_v6lcl_addr) == 20064 htonl(INADDR_LOOPBACK)) 20065 ipif->ipif_ire_type = IRE_LOOPBACK; 20066 else 20067 ipif->ipif_ire_type = IRE_LOCAL; 20068 } 20069 20070 if (ipif->ipif_flags & (IPIF_NOLOCAL|IPIF_ANYCAST|IPIF_DEPRECATED)) { 20071 /* 20072 * Can't use our source address. Select a different 20073 * source address for the IRE_INTERFACE and IRE_LOCAL 20074 */ 20075 src_ipif = ipif_select_source(ipif->ipif_ill, 20076 ipif->ipif_subnet, ipif->ipif_zoneid); 20077 if (src_ipif == NULL) 20078 src_ipif = ipif; /* Last resort */ 20079 else 20080 src_ipif_held = B_TRUE; 20081 } else { 20082 src_ipif = ipif; 20083 } 20084 20085 /* Create all the IREs associated with this interface */ 20086 if ((ipif->ipif_lcl_addr != INADDR_ANY) && 20087 !(ipif->ipif_flags & IPIF_NOLOCAL)) { 20088 20089 /* 20090 * If we're on a labeled system then make sure that zone- 20091 * private addresses have proper remote host database entries. 20092 */ 20093 if (is_system_labeled() && 20094 ipif->ipif_ire_type != IRE_LOOPBACK && 20095 !tsol_check_interface_address(ipif)) 20096 return (EINVAL); 20097 20098 /* Register the source address for __sin6_src_id */ 20099 err = ip_srcid_insert(&ipif->ipif_v6lcl_addr, 20100 ipif->ipif_zoneid, ipst); 20101 if (err != 0) { 20102 ip0dbg(("ipif_up_done: srcid_insert %d\n", err)); 20103 return (err); 20104 } 20105 20106 /* If the interface address is set, create the local IRE. */ 20107 ip1dbg(("ipif_up_done: 0x%p creating IRE 0x%x for 0x%x\n", 20108 (void *)ipif, 20109 ipif->ipif_ire_type, 20110 ntohl(ipif->ipif_lcl_addr))); 20111 *irep++ = ire_create( 20112 (uchar_t *)&ipif->ipif_lcl_addr, /* dest address */ 20113 (uchar_t *)&ip_g_all_ones, /* mask */ 20114 (uchar_t *)&src_ipif->ipif_src_addr, /* source address */ 20115 NULL, /* no gateway */ 20116 &ip_loopback_mtuplus, /* max frag size */ 20117 NULL, 20118 ipif->ipif_rq, /* recv-from queue */ 20119 NULL, /* no send-to queue */ 20120 ipif->ipif_ire_type, /* LOCAL or LOOPBACK */ 20121 ipif, 20122 0, 20123 0, 20124 0, 20125 (ipif->ipif_flags & IPIF_PRIVATE) ? 20126 RTF_PRIVATE : 0, 20127 &ire_uinfo_null, 20128 NULL, 20129 NULL, 20130 ipst); 20131 } else { 20132 ip1dbg(( 20133 "ipif_up_done: not creating IRE %d for 0x%x: flags 0x%x\n", 20134 ipif->ipif_ire_type, 20135 ntohl(ipif->ipif_lcl_addr), 20136 (uint_t)ipif->ipif_flags)); 20137 } 20138 if ((ipif->ipif_lcl_addr != INADDR_ANY) && 20139 !(ipif->ipif_flags & IPIF_NOLOCAL)) { 20140 net_mask = ip_net_mask(ipif->ipif_lcl_addr); 20141 } else { 20142 net_mask = htonl(IN_CLASSA_NET); /* fallback */ 20143 } 20144 20145 subnet_mask = ipif->ipif_net_mask; 20146 20147 /* 20148 * If mask was not specified, use natural netmask of 20149 * interface address. Also, store this mask back into the 20150 * ipif struct. 20151 */ 20152 if (subnet_mask == 0) { 20153 subnet_mask = net_mask; 20154 V4MASK_TO_V6(subnet_mask, ipif->ipif_v6net_mask); 20155 V6_MASK_COPY(ipif->ipif_v6lcl_addr, ipif->ipif_v6net_mask, 20156 ipif->ipif_v6subnet); 20157 } 20158 20159 /* Set up the IRE_IF_RESOLVER or IRE_IF_NORESOLVER, as appropriate. */ 20160 if (stq != NULL && !(ipif->ipif_flags & IPIF_NOXMIT) && 20161 ipif->ipif_subnet != INADDR_ANY) { 20162 /* ipif_subnet is ipif_pp_dst_addr for pt-pt */ 20163 20164 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 20165 route_mask = IP_HOST_MASK; 20166 } else { 20167 route_mask = subnet_mask; 20168 } 20169 20170 ip1dbg(("ipif_up_done: ipif 0x%p ill 0x%p " 20171 "creating if IRE ill_net_type 0x%x for 0x%x\n", 20172 (void *)ipif, (void *)ill, 20173 ill->ill_net_type, 20174 ntohl(ipif->ipif_subnet))); 20175 *irep++ = ire_create( 20176 (uchar_t *)&ipif->ipif_subnet, /* dest address */ 20177 (uchar_t *)&route_mask, /* mask */ 20178 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 20179 NULL, /* no gateway */ 20180 &ipif->ipif_mtu, /* max frag */ 20181 NULL, 20182 NULL, /* no recv queue */ 20183 stq, /* send-to queue */ 20184 ill->ill_net_type, /* IF_[NO]RESOLVER */ 20185 ipif, 20186 0, 20187 0, 20188 0, 20189 (ipif->ipif_flags & IPIF_PRIVATE) ? RTF_PRIVATE: 0, 20190 &ire_uinfo_null, 20191 NULL, 20192 NULL, 20193 ipst); 20194 } 20195 20196 /* 20197 * Create any necessary broadcast IREs. 20198 */ 20199 if ((ipif->ipif_subnet != INADDR_ANY) && 20200 (ipif->ipif_flags & IPIF_BROADCAST)) 20201 irep = ipif_create_bcast_ires(ipif, irep); 20202 20203 ASSERT(!MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 20204 20205 /* If an earlier ire_create failed, get out now */ 20206 for (irep1 = irep; irep1 > ire_array; ) { 20207 irep1--; 20208 if (*irep1 == NULL) { 20209 ip1dbg(("ipif_up_done: NULL ire found in ire_array\n")); 20210 err = ENOMEM; 20211 goto bad; 20212 } 20213 } 20214 20215 /* 20216 * Need to atomically check for ip_addr_availablity_check 20217 * under ip_addr_avail_lock, and if it fails got bad, and remove 20218 * from group also.The ill_g_lock is grabbed as reader 20219 * just to make sure no new ills or new ipifs are being added 20220 * to the system while we are checking the uniqueness of addresses. 20221 */ 20222 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 20223 mutex_enter(&ipst->ips_ip_addr_avail_lock); 20224 /* Mark it up, and increment counters. */ 20225 ipif->ipif_flags |= IPIF_UP; 20226 ill->ill_ipif_up_count++; 20227 err = ip_addr_availability_check(ipif); 20228 mutex_exit(&ipst->ips_ip_addr_avail_lock); 20229 rw_exit(&ipst->ips_ill_g_lock); 20230 20231 if (err != 0) { 20232 /* 20233 * Our address may already be up on the same ill. In this case, 20234 * the ARP entry for our ipif replaced the one for the other 20235 * ipif. So we don't want to delete it (otherwise the other ipif 20236 * would be unable to send packets). 20237 * ip_addr_availability_check() identifies this case for us and 20238 * returns EADDRINUSE; we need to turn it into EADDRNOTAVAIL 20239 * which is the expected error code. 20240 */ 20241 if (err == EADDRINUSE) { 20242 freemsg(ipif->ipif_arp_del_mp); 20243 ipif->ipif_arp_del_mp = NULL; 20244 err = EADDRNOTAVAIL; 20245 } 20246 ill->ill_ipif_up_count--; 20247 ipif->ipif_flags &= ~IPIF_UP; 20248 goto bad; 20249 } 20250 20251 /* 20252 * Add in all newly created IREs. ire_create_bcast() has 20253 * already checked for duplicates of the IRE_BROADCAST type. 20254 * We want to add before we call ifgrp_insert which wants 20255 * to know whether IRE_IF_RESOLVER exists or not. 20256 * 20257 * NOTE : We refrele the ire though we may branch to "bad" 20258 * later on where we do ire_delete. This is okay 20259 * because nobody can delete it as we are running 20260 * exclusively. 20261 */ 20262 for (irep1 = irep; irep1 > ire_array; ) { 20263 irep1--; 20264 ASSERT(!MUTEX_HELD(&((*irep1)->ire_ipif->ipif_ill->ill_lock))); 20265 /* 20266 * refheld by ire_add. refele towards the end of the func 20267 */ 20268 (void) ire_add(irep1, NULL, NULL, NULL, B_FALSE); 20269 } 20270 ire_added = B_TRUE; 20271 /* 20272 * Form groups if possible. 20273 * 20274 * If we are supposed to be in a ill_group with a name, insert it 20275 * now as we know that at least one ipif is UP. Otherwise form 20276 * nameless groups. 20277 * 20278 * If ip_enable_group_ifs is set and ipif address is not 0, insert 20279 * this ipif into the appropriate interface group, or create a 20280 * new one. If this is already in a nameless group, we try to form 20281 * a bigger group looking at other ills potentially sharing this 20282 * ipif's prefix. 20283 */ 20284 phyi = ill->ill_phyint; 20285 if (phyi->phyint_groupname_len != 0) { 20286 ASSERT(phyi->phyint_groupname != NULL); 20287 if (ill->ill_ipif_up_count == 1) { 20288 ASSERT(ill->ill_group == NULL); 20289 err = illgrp_insert(&ipst->ips_illgrp_head_v4, ill, 20290 phyi->phyint_groupname, NULL, B_TRUE); 20291 if (err != 0) { 20292 ip1dbg(("ipif_up_done: illgrp allocation " 20293 "failed, error %d\n", err)); 20294 goto bad; 20295 } 20296 } 20297 ASSERT(ill->ill_group != NULL); 20298 } 20299 20300 /* 20301 * When this is part of group, we need to make sure that 20302 * any broadcast ires created because of this ipif coming 20303 * UP gets marked/cleared with IRE_MARK_NORECV appropriately 20304 * so that we don't receive duplicate broadcast packets. 20305 */ 20306 if (ill->ill_group != NULL && ill->ill_ipif_up_count != 0) 20307 ipif_renominate_bcast(ipif); 20308 20309 /* Recover any additional IRE_IF_[NO]RESOLVER entries for this ipif */ 20310 ipif_saved_ire_cnt = ipif->ipif_saved_ire_cnt; 20311 ipif_saved_irep = ipif_recover_ire(ipif); 20312 20313 if (!loopback) { 20314 /* 20315 * If the broadcast address has been set, make sure it makes 20316 * sense based on the interface address. 20317 * Only match on ill since we are sharing broadcast addresses. 20318 */ 20319 if ((ipif->ipif_brd_addr != INADDR_ANY) && 20320 (ipif->ipif_flags & IPIF_BROADCAST)) { 20321 ire_t *ire; 20322 20323 ire = ire_ctable_lookup(ipif->ipif_brd_addr, 0, 20324 IRE_BROADCAST, ipif, ALL_ZONES, 20325 NULL, (MATCH_IRE_TYPE | MATCH_IRE_ILL), ipst); 20326 20327 if (ire == NULL) { 20328 /* 20329 * If there isn't a matching broadcast IRE, 20330 * revert to the default for this netmask. 20331 */ 20332 ipif->ipif_v6brd_addr = ipv6_all_zeros; 20333 mutex_enter(&ipif->ipif_ill->ill_lock); 20334 ipif_set_default(ipif); 20335 mutex_exit(&ipif->ipif_ill->ill_lock); 20336 } else { 20337 ire_refrele(ire); 20338 } 20339 } 20340 20341 } 20342 20343 /* This is the first interface on this ill */ 20344 if (ipif->ipif_ipif_up_count == 1 && !loopback) { 20345 /* 20346 * Need to recover all multicast memberships in the driver. 20347 * This had to be deferred until we had attached. 20348 */ 20349 ill_recover_multicast(ill); 20350 } 20351 /* Join the allhosts multicast address */ 20352 ipif_multicast_up(ipif); 20353 20354 if (!loopback) { 20355 /* 20356 * See whether anybody else would benefit from the 20357 * new ipif that we added. We call this always rather 20358 * than while adding a non-IPIF_NOLOCAL/DEPRECATED/ANYCAST 20359 * ipif is for the benefit of illgrp_insert (done above) 20360 * which does not do source address selection as it does 20361 * not want to re-create interface routes that we are 20362 * having reference to it here. 20363 */ 20364 ill_update_source_selection(ill); 20365 } 20366 20367 for (irep1 = irep; irep1 > ire_array; ) { 20368 irep1--; 20369 if (*irep1 != NULL) { 20370 /* was held in ire_add */ 20371 ire_refrele(*irep1); 20372 } 20373 } 20374 20375 cnt = ipif_saved_ire_cnt; 20376 for (irep1 = ipif_saved_irep; cnt > 0; irep1++, cnt--) { 20377 if (*irep1 != NULL) { 20378 /* was held in ire_add */ 20379 ire_refrele(*irep1); 20380 } 20381 } 20382 20383 if (!loopback && ipif->ipif_addr_ready) { 20384 /* Broadcast an address mask reply. */ 20385 ipif_mask_reply(ipif); 20386 } 20387 if (ipif_saved_irep != NULL) { 20388 kmem_free(ipif_saved_irep, 20389 ipif_saved_ire_cnt * sizeof (ire_t *)); 20390 } 20391 if (src_ipif_held) 20392 ipif_refrele(src_ipif); 20393 20394 /* 20395 * This had to be deferred until we had bound. Tell routing sockets and 20396 * others that this interface is up if it looks like the address has 20397 * been validated. Otherwise, if it isn't ready yet, wait for 20398 * duplicate address detection to do its thing. 20399 */ 20400 if (ipif->ipif_addr_ready) { 20401 ip_rts_ifmsg(ipif); 20402 ip_rts_newaddrmsg(RTM_ADD, 0, ipif); 20403 /* Let SCTP update the status for this ipif */ 20404 sctp_update_ipif(ipif, SCTP_IPIF_UP); 20405 } 20406 return (0); 20407 20408 bad: 20409 ip1dbg(("ipif_up_done: FAILED \n")); 20410 /* 20411 * We don't have to bother removing from ill groups because 20412 * 20413 * 1) For groups with names, we insert only when the first ipif 20414 * comes up. In that case if it fails, it will not be in any 20415 * group. So, we need not try to remove for that case. 20416 * 20417 * 2) For groups without names, either we tried to insert ipif_ill 20418 * in a group as singleton or found some other group to become 20419 * a bigger group. For the former, if it fails we don't have 20420 * anything to do as ipif_ill is not in the group and for the 20421 * latter, there are no failures in illgrp_insert/illgrp_delete 20422 * (ENOMEM can't occur for this. Check ifgrp_insert). 20423 */ 20424 while (irep > ire_array) { 20425 irep--; 20426 if (*irep != NULL) { 20427 ire_delete(*irep); 20428 if (ire_added) 20429 ire_refrele(*irep); 20430 } 20431 } 20432 (void) ip_srcid_remove(&ipif->ipif_v6lcl_addr, ipif->ipif_zoneid, ipst); 20433 20434 if (ipif_saved_irep != NULL) { 20435 kmem_free(ipif_saved_irep, 20436 ipif_saved_ire_cnt * sizeof (ire_t *)); 20437 } 20438 if (src_ipif_held) 20439 ipif_refrele(src_ipif); 20440 20441 ipif_arp_down(ipif); 20442 return (err); 20443 } 20444 20445 /* 20446 * Turn off the ARP with the ILLF_NOARP flag. 20447 */ 20448 static int 20449 ill_arp_off(ill_t *ill) 20450 { 20451 mblk_t *arp_off_mp = NULL; 20452 mblk_t *arp_on_mp = NULL; 20453 20454 ip1dbg(("ill_arp_off(%s)\n", ill->ill_name)); 20455 20456 ASSERT(IAM_WRITER_ILL(ill)); 20457 ASSERT(ill->ill_net_type == IRE_IF_RESOLVER); 20458 20459 /* 20460 * If the on message is still around we've already done 20461 * an arp_off without doing an arp_on thus there is no 20462 * work needed. 20463 */ 20464 if (ill->ill_arp_on_mp != NULL) 20465 return (0); 20466 20467 /* 20468 * Allocate an ARP on message (to be saved) and an ARP off message 20469 */ 20470 arp_off_mp = ill_arp_alloc(ill, (uchar_t *)&ip_aroff_template, 0); 20471 if (!arp_off_mp) 20472 return (ENOMEM); 20473 20474 arp_on_mp = ill_arp_alloc(ill, (uchar_t *)&ip_aron_template, 0); 20475 if (!arp_on_mp) 20476 goto failed; 20477 20478 ASSERT(ill->ill_arp_on_mp == NULL); 20479 ill->ill_arp_on_mp = arp_on_mp; 20480 20481 /* Send an AR_INTERFACE_OFF request */ 20482 putnext(ill->ill_rq, arp_off_mp); 20483 return (0); 20484 failed: 20485 20486 if (arp_off_mp) 20487 freemsg(arp_off_mp); 20488 return (ENOMEM); 20489 } 20490 20491 /* 20492 * Turn on ARP by turning off the ILLF_NOARP flag. 20493 */ 20494 static int 20495 ill_arp_on(ill_t *ill) 20496 { 20497 mblk_t *mp; 20498 20499 ip1dbg(("ipif_arp_on(%s)\n", ill->ill_name)); 20500 20501 ASSERT(ill->ill_net_type == IRE_IF_RESOLVER); 20502 20503 ASSERT(IAM_WRITER_ILL(ill)); 20504 /* 20505 * Send an AR_INTERFACE_ON request if we have already done 20506 * an arp_off (which allocated the message). 20507 */ 20508 if (ill->ill_arp_on_mp != NULL) { 20509 mp = ill->ill_arp_on_mp; 20510 ill->ill_arp_on_mp = NULL; 20511 putnext(ill->ill_rq, mp); 20512 } 20513 return (0); 20514 } 20515 20516 /* 20517 * Called after either deleting ill from the group or when setting 20518 * FAILED or STANDBY on the interface. 20519 */ 20520 static void 20521 illgrp_reset_schednext(ill_t *ill) 20522 { 20523 ill_group_t *illgrp; 20524 ill_t *save_ill; 20525 20526 ASSERT(IAM_WRITER_ILL(ill)); 20527 /* 20528 * When called from illgrp_delete, ill_group will be non-NULL. 20529 * But when called from ip_sioctl_flags, it could be NULL if 20530 * somebody is setting FAILED/INACTIVE on some interface which 20531 * is not part of a group. 20532 */ 20533 illgrp = ill->ill_group; 20534 if (illgrp == NULL) 20535 return; 20536 if (illgrp->illgrp_ill_schednext != ill) 20537 return; 20538 20539 illgrp->illgrp_ill_schednext = NULL; 20540 save_ill = ill; 20541 /* 20542 * Choose a good ill to be the next one for 20543 * outbound traffic. As the flags FAILED/STANDBY is 20544 * not yet marked when called from ip_sioctl_flags, 20545 * we check for ill separately. 20546 */ 20547 for (ill = illgrp->illgrp_ill; ill != NULL; 20548 ill = ill->ill_group_next) { 20549 if ((ill != save_ill) && 20550 !(ill->ill_phyint->phyint_flags & 20551 (PHYI_FAILED|PHYI_INACTIVE|PHYI_OFFLINE))) { 20552 illgrp->illgrp_ill_schednext = ill; 20553 return; 20554 } 20555 } 20556 } 20557 20558 /* 20559 * Given an ill, find the next ill in the group to be scheduled. 20560 * (This should be called by ip_newroute() before ire_create().) 20561 * The passed in ill may be pulled out of the group, after we have picked 20562 * up a different outgoing ill from the same group. However ire add will 20563 * atomically check this. 20564 */ 20565 ill_t * 20566 illgrp_scheduler(ill_t *ill) 20567 { 20568 ill_t *retill; 20569 ill_group_t *illgrp; 20570 int illcnt; 20571 int i; 20572 uint64_t flags; 20573 ip_stack_t *ipst = ill->ill_ipst; 20574 20575 /* 20576 * We don't use a lock to check for the ill_group. If this ill 20577 * is currently being inserted we may end up just returning this 20578 * ill itself. That is ok. 20579 */ 20580 if (ill->ill_group == NULL) { 20581 ill_refhold(ill); 20582 return (ill); 20583 } 20584 20585 /* 20586 * Grab the ill_g_lock as reader to make sure we are dealing with 20587 * a set of stable ills. No ill can be added or deleted or change 20588 * group while we hold the reader lock. 20589 */ 20590 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 20591 if ((illgrp = ill->ill_group) == NULL) { 20592 rw_exit(&ipst->ips_ill_g_lock); 20593 ill_refhold(ill); 20594 return (ill); 20595 } 20596 20597 illcnt = illgrp->illgrp_ill_count; 20598 mutex_enter(&illgrp->illgrp_lock); 20599 retill = illgrp->illgrp_ill_schednext; 20600 20601 if (retill == NULL) 20602 retill = illgrp->illgrp_ill; 20603 20604 /* 20605 * We do a circular search beginning at illgrp_ill_schednext 20606 * or illgrp_ill. We don't check the flags against the ill lock 20607 * since it can change anytime. The ire creation will be atomic 20608 * and will fail if the ill is FAILED or OFFLINE. 20609 */ 20610 for (i = 0; i < illcnt; i++) { 20611 flags = retill->ill_phyint->phyint_flags; 20612 20613 if (!(flags & (PHYI_FAILED|PHYI_INACTIVE|PHYI_OFFLINE)) && 20614 ILL_CAN_LOOKUP(retill)) { 20615 illgrp->illgrp_ill_schednext = retill->ill_group_next; 20616 ill_refhold(retill); 20617 break; 20618 } 20619 retill = retill->ill_group_next; 20620 if (retill == NULL) 20621 retill = illgrp->illgrp_ill; 20622 } 20623 mutex_exit(&illgrp->illgrp_lock); 20624 rw_exit(&ipst->ips_ill_g_lock); 20625 20626 return (i == illcnt ? NULL : retill); 20627 } 20628 20629 /* 20630 * Checks for availbility of a usable source address (if there is one) when the 20631 * destination ILL has the ill_usesrc_ifindex pointing to another ILL. Note 20632 * this selection is done regardless of the destination. 20633 */ 20634 boolean_t 20635 ipif_usesrc_avail(ill_t *ill, zoneid_t zoneid) 20636 { 20637 uint_t ifindex; 20638 ipif_t *ipif = NULL; 20639 ill_t *uill; 20640 boolean_t isv6; 20641 ip_stack_t *ipst = ill->ill_ipst; 20642 20643 ASSERT(ill != NULL); 20644 20645 isv6 = ill->ill_isv6; 20646 ifindex = ill->ill_usesrc_ifindex; 20647 if (ifindex != 0) { 20648 uill = ill_lookup_on_ifindex(ifindex, isv6, NULL, NULL, NULL, 20649 NULL, ipst); 20650 if (uill == NULL) 20651 return (NULL); 20652 mutex_enter(&uill->ill_lock); 20653 for (ipif = uill->ill_ipif; ipif != NULL; 20654 ipif = ipif->ipif_next) { 20655 if (!IPIF_CAN_LOOKUP(ipif)) 20656 continue; 20657 if (ipif->ipif_flags & (IPIF_NOLOCAL|IPIF_ANYCAST)) 20658 continue; 20659 if (!(ipif->ipif_flags & IPIF_UP)) 20660 continue; 20661 if (ipif->ipif_zoneid != zoneid) 20662 continue; 20663 if ((isv6 && 20664 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr)) || 20665 (ipif->ipif_lcl_addr == INADDR_ANY)) 20666 continue; 20667 mutex_exit(&uill->ill_lock); 20668 ill_refrele(uill); 20669 return (B_TRUE); 20670 } 20671 mutex_exit(&uill->ill_lock); 20672 ill_refrele(uill); 20673 } 20674 return (B_FALSE); 20675 } 20676 20677 /* 20678 * Determine the best source address given a destination address and an ill. 20679 * Prefers non-deprecated over deprecated but will return a deprecated 20680 * address if there is no other choice. If there is a usable source address 20681 * on the interface pointed to by ill_usesrc_ifindex then that is given 20682 * first preference. 20683 * 20684 * Returns NULL if there is no suitable source address for the ill. 20685 * This only occurs when there is no valid source address for the ill. 20686 */ 20687 ipif_t * 20688 ipif_select_source(ill_t *ill, ipaddr_t dst, zoneid_t zoneid) 20689 { 20690 ipif_t *ipif; 20691 ipif_t *ipif_dep = NULL; /* Fallback to deprecated */ 20692 ipif_t *ipif_arr[MAX_IPIF_SELECT_SOURCE]; 20693 int index = 0; 20694 boolean_t wrapped = B_FALSE; 20695 boolean_t same_subnet_only = B_FALSE; 20696 boolean_t ipif_same_found, ipif_other_found; 20697 boolean_t specific_found; 20698 ill_t *till, *usill = NULL; 20699 tsol_tpc_t *src_rhtp, *dst_rhtp; 20700 ip_stack_t *ipst = ill->ill_ipst; 20701 20702 if (ill->ill_usesrc_ifindex != 0) { 20703 usill = ill_lookup_on_ifindex(ill->ill_usesrc_ifindex, 20704 B_FALSE, NULL, NULL, NULL, NULL, ipst); 20705 if (usill != NULL) 20706 ill = usill; /* Select source from usesrc ILL */ 20707 else 20708 return (NULL); 20709 } 20710 20711 /* 20712 * If we're dealing with an unlabeled destination on a labeled system, 20713 * make sure that we ignore source addresses that are incompatible with 20714 * the destination's default label. That destination's default label 20715 * must dominate the minimum label on the source address. 20716 */ 20717 dst_rhtp = NULL; 20718 if (is_system_labeled()) { 20719 dst_rhtp = find_tpc(&dst, IPV4_VERSION, B_FALSE); 20720 if (dst_rhtp == NULL) 20721 return (NULL); 20722 if (dst_rhtp->tpc_tp.host_type != UNLABELED) { 20723 TPC_RELE(dst_rhtp); 20724 dst_rhtp = NULL; 20725 } 20726 } 20727 20728 /* 20729 * Holds the ill_g_lock as reader. This makes sure that no ipif/ill 20730 * can be deleted. But an ipif/ill can get CONDEMNED any time. 20731 * After selecting the right ipif, under ill_lock make sure ipif is 20732 * not condemned, and increment refcnt. If ipif is CONDEMNED, 20733 * we retry. Inside the loop we still need to check for CONDEMNED, 20734 * but not under a lock. 20735 */ 20736 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 20737 20738 retry: 20739 till = ill; 20740 ipif_arr[0] = NULL; 20741 20742 if (till->ill_group != NULL) 20743 till = till->ill_group->illgrp_ill; 20744 20745 /* 20746 * Choose one good source address from each ill across the group. 20747 * If possible choose a source address in the same subnet as 20748 * the destination address. 20749 * 20750 * We don't check for PHYI_FAILED or PHYI_INACTIVE or PHYI_OFFLINE 20751 * This is okay because of the following. 20752 * 20753 * If PHYI_FAILED is set and we still have non-deprecated 20754 * addresses, it means the addresses have not yet been 20755 * failed over to a different interface. We potentially 20756 * select them to create IRE_CACHES, which will be later 20757 * flushed when the addresses move over. 20758 * 20759 * If PHYI_INACTIVE is set and we still have non-deprecated 20760 * addresses, it means either the user has configured them 20761 * or PHYI_INACTIVE has not been cleared after the addresses 20762 * been moved over. For the former, in.mpathd does a failover 20763 * when the interface becomes INACTIVE and hence we should 20764 * not find them. Once INACTIVE is set, we don't allow them 20765 * to create logical interfaces anymore. For the latter, a 20766 * flush will happen when INACTIVE is cleared which will 20767 * flush the IRE_CACHES. 20768 * 20769 * If PHYI_OFFLINE is set, all the addresses will be failed 20770 * over soon. We potentially select them to create IRE_CACHEs, 20771 * which will be later flushed when the addresses move over. 20772 * 20773 * NOTE : As ipif_select_source is called to borrow source address 20774 * for an ipif that is part of a group, source address selection 20775 * will be re-done whenever the group changes i.e either an 20776 * insertion/deletion in the group. 20777 * 20778 * Fill ipif_arr[] with source addresses, using these rules: 20779 * 20780 * 1. At most one source address from a given ill ends up 20781 * in ipif_arr[] -- that is, at most one of the ipif's 20782 * associated with a given ill ends up in ipif_arr[]. 20783 * 20784 * 2. If there is at least one non-deprecated ipif in the 20785 * IPMP group with a source address on the same subnet as 20786 * our destination, then fill ipif_arr[] only with 20787 * source addresses on the same subnet as our destination. 20788 * Note that because of (1), only the first 20789 * non-deprecated ipif found with a source address 20790 * matching the destination ends up in ipif_arr[]. 20791 * 20792 * 3. Otherwise, fill ipif_arr[] with non-deprecated source 20793 * addresses not in the same subnet as our destination. 20794 * Again, because of (1), only the first off-subnet source 20795 * address will be chosen. 20796 * 20797 * 4. If there are no non-deprecated ipifs, then just use 20798 * the source address associated with the last deprecated 20799 * one we find that happens to be on the same subnet, 20800 * otherwise the first one not in the same subnet. 20801 */ 20802 specific_found = B_FALSE; 20803 for (; till != NULL; till = till->ill_group_next) { 20804 ipif_same_found = B_FALSE; 20805 ipif_other_found = B_FALSE; 20806 for (ipif = till->ill_ipif; ipif != NULL; 20807 ipif = ipif->ipif_next) { 20808 if (!IPIF_CAN_LOOKUP(ipif)) 20809 continue; 20810 /* Always skip NOLOCAL and ANYCAST interfaces */ 20811 if (ipif->ipif_flags & (IPIF_NOLOCAL|IPIF_ANYCAST)) 20812 continue; 20813 if (!(ipif->ipif_flags & IPIF_UP) || 20814 !ipif->ipif_addr_ready) 20815 continue; 20816 if (ipif->ipif_zoneid != zoneid && 20817 ipif->ipif_zoneid != ALL_ZONES) 20818 continue; 20819 /* 20820 * Interfaces with 0.0.0.0 address are allowed to be UP, 20821 * but are not valid as source addresses. 20822 */ 20823 if (ipif->ipif_lcl_addr == INADDR_ANY) 20824 continue; 20825 20826 /* 20827 * Check compatibility of local address for 20828 * destination's default label if we're on a labeled 20829 * system. Incompatible addresses can't be used at 20830 * all. 20831 */ 20832 if (dst_rhtp != NULL) { 20833 boolean_t incompat; 20834 20835 src_rhtp = find_tpc(&ipif->ipif_lcl_addr, 20836 IPV4_VERSION, B_FALSE); 20837 if (src_rhtp == NULL) 20838 continue; 20839 incompat = 20840 src_rhtp->tpc_tp.host_type != SUN_CIPSO || 20841 src_rhtp->tpc_tp.tp_doi != 20842 dst_rhtp->tpc_tp.tp_doi || 20843 (!_blinrange(&dst_rhtp->tpc_tp.tp_def_label, 20844 &src_rhtp->tpc_tp.tp_sl_range_cipso) && 20845 !blinlset(&dst_rhtp->tpc_tp.tp_def_label, 20846 src_rhtp->tpc_tp.tp_sl_set_cipso)); 20847 TPC_RELE(src_rhtp); 20848 if (incompat) 20849 continue; 20850 } 20851 20852 /* 20853 * We prefer not to use all all-zones addresses, if we 20854 * can avoid it, as they pose problems with unlabeled 20855 * destinations. 20856 */ 20857 if (ipif->ipif_zoneid != ALL_ZONES) { 20858 if (!specific_found && 20859 (!same_subnet_only || 20860 (ipif->ipif_net_mask & dst) == 20861 ipif->ipif_subnet)) { 20862 index = 0; 20863 specific_found = B_TRUE; 20864 ipif_other_found = B_FALSE; 20865 } 20866 } else { 20867 if (specific_found) 20868 continue; 20869 } 20870 if (ipif->ipif_flags & IPIF_DEPRECATED) { 20871 if (ipif_dep == NULL || 20872 (ipif->ipif_net_mask & dst) == 20873 ipif->ipif_subnet) 20874 ipif_dep = ipif; 20875 continue; 20876 } 20877 if ((ipif->ipif_net_mask & dst) == ipif->ipif_subnet) { 20878 /* found a source address in the same subnet */ 20879 if (!same_subnet_only) { 20880 same_subnet_only = B_TRUE; 20881 index = 0; 20882 } 20883 ipif_same_found = B_TRUE; 20884 } else { 20885 if (same_subnet_only || ipif_other_found) 20886 continue; 20887 ipif_other_found = B_TRUE; 20888 } 20889 ipif_arr[index++] = ipif; 20890 if (index == MAX_IPIF_SELECT_SOURCE) { 20891 wrapped = B_TRUE; 20892 index = 0; 20893 } 20894 if (ipif_same_found) 20895 break; 20896 } 20897 } 20898 20899 if (ipif_arr[0] == NULL) { 20900 ipif = ipif_dep; 20901 } else { 20902 if (wrapped) 20903 index = MAX_IPIF_SELECT_SOURCE; 20904 ipif = ipif_arr[ipif_rand(ipst) % index]; 20905 ASSERT(ipif != NULL); 20906 } 20907 20908 if (ipif != NULL) { 20909 mutex_enter(&ipif->ipif_ill->ill_lock); 20910 if (!IPIF_CAN_LOOKUP(ipif)) { 20911 mutex_exit(&ipif->ipif_ill->ill_lock); 20912 goto retry; 20913 } 20914 ipif_refhold_locked(ipif); 20915 mutex_exit(&ipif->ipif_ill->ill_lock); 20916 } 20917 20918 rw_exit(&ipst->ips_ill_g_lock); 20919 if (usill != NULL) 20920 ill_refrele(usill); 20921 if (dst_rhtp != NULL) 20922 TPC_RELE(dst_rhtp); 20923 20924 #ifdef DEBUG 20925 if (ipif == NULL) { 20926 char buf1[INET6_ADDRSTRLEN]; 20927 20928 ip1dbg(("ipif_select_source(%s, %s) -> NULL\n", 20929 ill->ill_name, 20930 inet_ntop(AF_INET, &dst, buf1, sizeof (buf1)))); 20931 } else { 20932 char buf1[INET6_ADDRSTRLEN]; 20933 char buf2[INET6_ADDRSTRLEN]; 20934 20935 ip1dbg(("ipif_select_source(%s, %s) -> %s\n", 20936 ipif->ipif_ill->ill_name, 20937 inet_ntop(AF_INET, &dst, buf1, sizeof (buf1)), 20938 inet_ntop(AF_INET, &ipif->ipif_lcl_addr, 20939 buf2, sizeof (buf2)))); 20940 } 20941 #endif /* DEBUG */ 20942 return (ipif); 20943 } 20944 20945 20946 /* 20947 * If old_ipif is not NULL, see if ipif was derived from old 20948 * ipif and if so, recreate the interface route by re-doing 20949 * source address selection. This happens when ipif_down -> 20950 * ipif_update_other_ipifs calls us. 20951 * 20952 * If old_ipif is NULL, just redo the source address selection 20953 * if needed. This happens when illgrp_insert or ipif_up_done 20954 * calls us. 20955 */ 20956 static void 20957 ipif_recreate_interface_routes(ipif_t *old_ipif, ipif_t *ipif) 20958 { 20959 ire_t *ire; 20960 ire_t *ipif_ire; 20961 queue_t *stq; 20962 ipif_t *nipif; 20963 ill_t *ill; 20964 boolean_t need_rele = B_FALSE; 20965 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 20966 20967 ASSERT(old_ipif == NULL || IAM_WRITER_IPIF(old_ipif)); 20968 ASSERT(IAM_WRITER_IPIF(ipif)); 20969 20970 ill = ipif->ipif_ill; 20971 if (!(ipif->ipif_flags & 20972 (IPIF_NOLOCAL|IPIF_ANYCAST|IPIF_DEPRECATED))) { 20973 /* 20974 * Can't possibly have borrowed the source 20975 * from old_ipif. 20976 */ 20977 return; 20978 } 20979 20980 /* 20981 * Is there any work to be done? No work if the address 20982 * is INADDR_ANY, loopback or NOLOCAL or ANYCAST ( 20983 * ipif_select_source() does not borrow addresses from 20984 * NOLOCAL and ANYCAST interfaces). 20985 */ 20986 if ((old_ipif != NULL) && 20987 ((old_ipif->ipif_lcl_addr == INADDR_ANY) || 20988 (old_ipif->ipif_ill->ill_wq == NULL) || 20989 (old_ipif->ipif_flags & 20990 (IPIF_NOLOCAL|IPIF_ANYCAST)))) { 20991 return; 20992 } 20993 20994 /* 20995 * Perform the same checks as when creating the 20996 * IRE_INTERFACE in ipif_up_done. 20997 */ 20998 if (!(ipif->ipif_flags & IPIF_UP)) 20999 return; 21000 21001 if ((ipif->ipif_flags & IPIF_NOXMIT) || 21002 (ipif->ipif_subnet == INADDR_ANY)) 21003 return; 21004 21005 ipif_ire = ipif_to_ire(ipif); 21006 if (ipif_ire == NULL) 21007 return; 21008 21009 /* 21010 * We know that ipif uses some other source for its 21011 * IRE_INTERFACE. Is it using the source of this 21012 * old_ipif? 21013 */ 21014 if (old_ipif != NULL && 21015 old_ipif->ipif_lcl_addr != ipif_ire->ire_src_addr) { 21016 ire_refrele(ipif_ire); 21017 return; 21018 } 21019 if (ip_debug > 2) { 21020 /* ip1dbg */ 21021 pr_addr_dbg("ipif_recreate_interface_routes: deleting IRE for" 21022 " src %s\n", AF_INET, &ipif_ire->ire_src_addr); 21023 } 21024 21025 stq = ipif_ire->ire_stq; 21026 21027 /* 21028 * Can't use our source address. Select a different 21029 * source address for the IRE_INTERFACE. 21030 */ 21031 nipif = ipif_select_source(ill, ipif->ipif_subnet, ipif->ipif_zoneid); 21032 if (nipif == NULL) { 21033 /* Last resort - all ipif's have IPIF_NOLOCAL */ 21034 nipif = ipif; 21035 } else { 21036 need_rele = B_TRUE; 21037 } 21038 21039 ire = ire_create( 21040 (uchar_t *)&ipif->ipif_subnet, /* dest pref */ 21041 (uchar_t *)&ipif->ipif_net_mask, /* mask */ 21042 (uchar_t *)&nipif->ipif_src_addr, /* src addr */ 21043 NULL, /* no gateway */ 21044 &ipif->ipif_mtu, /* max frag */ 21045 NULL, /* no src nce */ 21046 NULL, /* no recv from queue */ 21047 stq, /* send-to queue */ 21048 ill->ill_net_type, /* IF_[NO]RESOLVER */ 21049 ipif, 21050 0, 21051 0, 21052 0, 21053 0, 21054 &ire_uinfo_null, 21055 NULL, 21056 NULL, 21057 ipst); 21058 21059 if (ire != NULL) { 21060 ire_t *ret_ire; 21061 int error; 21062 21063 /* 21064 * We don't need ipif_ire anymore. We need to delete 21065 * before we add so that ire_add does not detect 21066 * duplicates. 21067 */ 21068 ire_delete(ipif_ire); 21069 ret_ire = ire; 21070 error = ire_add(&ret_ire, NULL, NULL, NULL, B_FALSE); 21071 ASSERT(error == 0); 21072 ASSERT(ire == ret_ire); 21073 /* Held in ire_add */ 21074 ire_refrele(ret_ire); 21075 } 21076 /* 21077 * Either we are falling through from above or could not 21078 * allocate a replacement. 21079 */ 21080 ire_refrele(ipif_ire); 21081 if (need_rele) 21082 ipif_refrele(nipif); 21083 } 21084 21085 /* 21086 * This old_ipif is going away. 21087 * 21088 * Determine if any other ipif's is using our address as 21089 * ipif_lcl_addr (due to those being IPIF_NOLOCAL, IPIF_ANYCAST, or 21090 * IPIF_DEPRECATED). 21091 * Find the IRE_INTERFACE for such ipifs and recreate them 21092 * to use an different source address following the rules in 21093 * ipif_up_done. 21094 * 21095 * This function takes an illgrp as an argument so that illgrp_delete 21096 * can call this to update source address even after deleting the 21097 * old_ipif->ipif_ill from the ill group. 21098 */ 21099 static void 21100 ipif_update_other_ipifs(ipif_t *old_ipif, ill_group_t *illgrp) 21101 { 21102 ipif_t *ipif; 21103 ill_t *ill; 21104 char buf[INET6_ADDRSTRLEN]; 21105 21106 ASSERT(IAM_WRITER_IPIF(old_ipif)); 21107 ASSERT(illgrp == NULL || IAM_WRITER_IPIF(old_ipif)); 21108 21109 ill = old_ipif->ipif_ill; 21110 21111 ip1dbg(("ipif_update_other_ipifs(%s, %s)\n", 21112 ill->ill_name, 21113 inet_ntop(AF_INET, &old_ipif->ipif_lcl_addr, 21114 buf, sizeof (buf)))); 21115 /* 21116 * If this part of a group, look at all ills as ipif_select_source 21117 * borrows source address across all the ills in the group. 21118 */ 21119 if (illgrp != NULL) 21120 ill = illgrp->illgrp_ill; 21121 21122 for (; ill != NULL; ill = ill->ill_group_next) { 21123 for (ipif = ill->ill_ipif; ipif != NULL; 21124 ipif = ipif->ipif_next) { 21125 21126 if (ipif == old_ipif) 21127 continue; 21128 21129 ipif_recreate_interface_routes(old_ipif, ipif); 21130 } 21131 } 21132 } 21133 21134 /* ARGSUSED */ 21135 int 21136 if_unitsel_restart(ipif_t *ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 21137 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 21138 { 21139 /* 21140 * ill_phyint_reinit merged the v4 and v6 into a single 21141 * ipsq. Could also have become part of a ipmp group in the 21142 * process, and we might not have been able to complete the 21143 * operation in ipif_set_values, if we could not become 21144 * exclusive. If so restart it here. 21145 */ 21146 return (ipif_set_values_tail(ipif->ipif_ill, ipif, mp, q)); 21147 } 21148 21149 21150 /* 21151 * Can operate on either a module or a driver queue. 21152 * Returns an error if not a module queue. 21153 */ 21154 /* ARGSUSED */ 21155 int 21156 if_unitsel(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 21157 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 21158 { 21159 queue_t *q1 = q; 21160 char *cp; 21161 char interf_name[LIFNAMSIZ]; 21162 uint_t ppa = *(uint_t *)mp->b_cont->b_cont->b_rptr; 21163 21164 if (q->q_next == NULL) { 21165 ip1dbg(( 21166 "if_unitsel: IF_UNITSEL: no q_next\n")); 21167 return (EINVAL); 21168 } 21169 21170 if (((ill_t *)(q->q_ptr))->ill_name[0] != '\0') 21171 return (EALREADY); 21172 21173 do { 21174 q1 = q1->q_next; 21175 } while (q1->q_next); 21176 cp = q1->q_qinfo->qi_minfo->mi_idname; 21177 (void) sprintf(interf_name, "%s%d", cp, ppa); 21178 21179 /* 21180 * Here we are not going to delay the ioack until after 21181 * ACKs from DL_ATTACH_REQ/DL_BIND_REQ. So no need to save the 21182 * original ioctl message before sending the requests. 21183 */ 21184 return (ipif_set_values(q, mp, interf_name, &ppa)); 21185 } 21186 21187 /* ARGSUSED */ 21188 int 21189 ip_sioctl_sifname(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 21190 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 21191 { 21192 return (ENXIO); 21193 } 21194 21195 /* 21196 * Create any IRE_BROADCAST entries for `ipif', and store those entries in 21197 * `irep'. Returns a pointer to the next free `irep' entry (just like 21198 * ire_check_and_create_bcast()). 21199 */ 21200 static ire_t ** 21201 ipif_create_bcast_ires(ipif_t *ipif, ire_t **irep) 21202 { 21203 ipaddr_t addr; 21204 ipaddr_t netmask = ip_net_mask(ipif->ipif_lcl_addr); 21205 ipaddr_t subnetmask = ipif->ipif_net_mask; 21206 int flags = MATCH_IRE_TYPE | MATCH_IRE_ILL; 21207 21208 ip1dbg(("ipif_create_bcast_ires: creating broadcast IREs\n")); 21209 21210 ASSERT(ipif->ipif_flags & IPIF_BROADCAST); 21211 21212 if (ipif->ipif_lcl_addr == INADDR_ANY || 21213 (ipif->ipif_flags & IPIF_NOLOCAL)) 21214 netmask = htonl(IN_CLASSA_NET); /* fallback */ 21215 21216 irep = ire_check_and_create_bcast(ipif, 0, irep, flags); 21217 irep = ire_check_and_create_bcast(ipif, INADDR_BROADCAST, irep, flags); 21218 21219 /* 21220 * For backward compatibility, we create net broadcast IREs based on 21221 * the old "IP address class system", since some old machines only 21222 * respond to these class derived net broadcast. However, we must not 21223 * create these net broadcast IREs if the subnetmask is shorter than 21224 * the IP address class based derived netmask. Otherwise, we may 21225 * create a net broadcast address which is the same as an IP address 21226 * on the subnet -- and then TCP will refuse to talk to that address. 21227 */ 21228 if (netmask < subnetmask) { 21229 addr = netmask & ipif->ipif_subnet; 21230 irep = ire_check_and_create_bcast(ipif, addr, irep, flags); 21231 irep = ire_check_and_create_bcast(ipif, ~netmask | addr, irep, 21232 flags); 21233 } 21234 21235 /* 21236 * Don't create IRE_BROADCAST IREs for the interface if the subnetmask 21237 * is 0xFFFFFFFF, as an IRE_LOCAL for that interface is already 21238 * created. Creating these broadcast IREs will only create confusion 21239 * as `addr' will be the same as the IP address. 21240 */ 21241 if (subnetmask != 0xFFFFFFFF) { 21242 addr = ipif->ipif_subnet; 21243 irep = ire_check_and_create_bcast(ipif, addr, irep, flags); 21244 irep = ire_check_and_create_bcast(ipif, ~subnetmask | addr, 21245 irep, flags); 21246 } 21247 21248 return (irep); 21249 } 21250 21251 /* 21252 * Broadcast IRE info structure used in the functions below. Since we 21253 * allocate BCAST_COUNT of them on the stack, keep the bit layout compact. 21254 */ 21255 typedef struct bcast_ireinfo { 21256 uchar_t bi_type; /* BCAST_* value from below */ 21257 uchar_t bi_willdie:1, /* will this IRE be going away? */ 21258 bi_needrep:1, /* do we need to replace it? */ 21259 bi_haverep:1, /* have we replaced it? */ 21260 bi_pad:5; 21261 ipaddr_t bi_addr; /* IRE address */ 21262 ipif_t *bi_backup; /* last-ditch ipif to replace it on */ 21263 } bcast_ireinfo_t; 21264 21265 enum { BCAST_ALLONES, BCAST_ALLZEROES, BCAST_NET, BCAST_SUBNET, BCAST_COUNT }; 21266 21267 /* 21268 * Check if `ipif' needs the dying broadcast IRE described by `bireinfop', and 21269 * return B_TRUE if it should immediately be used to recreate the IRE. 21270 */ 21271 static boolean_t 21272 ipif_consider_bcast(ipif_t *ipif, bcast_ireinfo_t *bireinfop) 21273 { 21274 ipaddr_t addr; 21275 21276 ASSERT(!bireinfop->bi_haverep && bireinfop->bi_willdie); 21277 21278 switch (bireinfop->bi_type) { 21279 case BCAST_NET: 21280 addr = ipif->ipif_subnet & ip_net_mask(ipif->ipif_subnet); 21281 if (addr != bireinfop->bi_addr) 21282 return (B_FALSE); 21283 break; 21284 case BCAST_SUBNET: 21285 if (ipif->ipif_subnet != bireinfop->bi_addr) 21286 return (B_FALSE); 21287 break; 21288 } 21289 21290 bireinfop->bi_needrep = 1; 21291 if (ipif->ipif_flags & (IPIF_DEPRECATED|IPIF_NOLOCAL|IPIF_ANYCAST)) { 21292 if (bireinfop->bi_backup == NULL) 21293 bireinfop->bi_backup = ipif; 21294 return (B_FALSE); 21295 } 21296 return (B_TRUE); 21297 } 21298 21299 /* 21300 * Create the broadcast IREs described by `bireinfop' on `ipif', and return 21301 * them ala ire_check_and_create_bcast(). 21302 */ 21303 static ire_t ** 21304 ipif_create_bcast(ipif_t *ipif, bcast_ireinfo_t *bireinfop, ire_t **irep) 21305 { 21306 ipaddr_t mask, addr; 21307 21308 ASSERT(!bireinfop->bi_haverep && bireinfop->bi_needrep); 21309 21310 addr = bireinfop->bi_addr; 21311 irep = ire_create_bcast(ipif, addr, irep); 21312 21313 switch (bireinfop->bi_type) { 21314 case BCAST_NET: 21315 mask = ip_net_mask(ipif->ipif_subnet); 21316 irep = ire_create_bcast(ipif, addr | ~mask, irep); 21317 break; 21318 case BCAST_SUBNET: 21319 mask = ipif->ipif_net_mask; 21320 irep = ire_create_bcast(ipif, addr | ~mask, irep); 21321 break; 21322 } 21323 21324 bireinfop->bi_haverep = 1; 21325 return (irep); 21326 } 21327 21328 /* 21329 * Walk through all of the ipifs on `ill' that will be affected by `test_ipif' 21330 * going away, and determine if any of the broadcast IREs (named by `bireinfop') 21331 * that are going away are still needed. If so, have ipif_create_bcast() 21332 * recreate them (except for the deprecated case, as explained below). 21333 */ 21334 static ire_t ** 21335 ill_create_bcast(ill_t *ill, ipif_t *test_ipif, bcast_ireinfo_t *bireinfo, 21336 ire_t **irep) 21337 { 21338 int i; 21339 ipif_t *ipif; 21340 21341 ASSERT(!ill->ill_isv6); 21342 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 21343 /* 21344 * Skip this ipif if it's (a) the one being taken down, (b) 21345 * not in the same zone, or (c) has no valid local address. 21346 */ 21347 if (ipif == test_ipif || 21348 ipif->ipif_zoneid != test_ipif->ipif_zoneid || 21349 ipif->ipif_subnet == 0 || 21350 (ipif->ipif_flags & (IPIF_UP|IPIF_BROADCAST|IPIF_NOXMIT)) != 21351 (IPIF_UP|IPIF_BROADCAST)) 21352 continue; 21353 21354 /* 21355 * For each dying IRE that hasn't yet been replaced, see if 21356 * `ipif' needs it and whether the IRE should be recreated on 21357 * `ipif'. If `ipif' is deprecated, ipif_consider_bcast() 21358 * will return B_FALSE even if `ipif' needs the IRE on the 21359 * hopes that we'll later find a needy non-deprecated ipif. 21360 * However, the ipif is recorded in bi_backup for possible 21361 * subsequent use by ipif_check_bcast_ires(). 21362 */ 21363 for (i = 0; i < BCAST_COUNT; i++) { 21364 if (!bireinfo[i].bi_willdie || bireinfo[i].bi_haverep) 21365 continue; 21366 if (!ipif_consider_bcast(ipif, &bireinfo[i])) 21367 continue; 21368 irep = ipif_create_bcast(ipif, &bireinfo[i], irep); 21369 } 21370 21371 /* 21372 * If we've replaced all of the broadcast IREs that are going 21373 * to be taken down, we know we're done. 21374 */ 21375 for (i = 0; i < BCAST_COUNT; i++) { 21376 if (bireinfo[i].bi_willdie && !bireinfo[i].bi_haverep) 21377 break; 21378 } 21379 if (i == BCAST_COUNT) 21380 break; 21381 } 21382 return (irep); 21383 } 21384 21385 /* 21386 * Check if `test_ipif' (which is going away) is associated with any existing 21387 * broadcast IREs, and whether any other ipifs (e.g., on the same ill) were 21388 * using those broadcast IREs. If so, recreate the broadcast IREs on one or 21389 * more of those other ipifs. (The old IREs will be deleted in ipif_down().) 21390 * 21391 * This is necessary because broadcast IREs are shared. In particular, a 21392 * given ill has one set of all-zeroes and all-ones broadcast IREs (for every 21393 * zone), plus one set of all-subnet-ones, all-subnet-zeroes, all-net-ones, 21394 * and all-net-zeroes for every net/subnet (and every zone) it has IPIF_UP 21395 * ipifs on. Thus, if there are two IPIF_UP ipifs on the same subnet with the 21396 * same zone, they will share the same set of broadcast IREs. 21397 * 21398 * Note: the upper bound of 12 IREs comes from the worst case of replacing all 21399 * six pairs (loopback and non-loopback) of broadcast IREs (all-zeroes, 21400 * all-ones, subnet-zeroes, subnet-ones, net-zeroes, and net-ones). 21401 */ 21402 static void 21403 ipif_check_bcast_ires(ipif_t *test_ipif) 21404 { 21405 ill_t *ill = test_ipif->ipif_ill; 21406 ire_t *ire, *ire_array[12]; /* see note above */ 21407 ire_t **irep1, **irep = &ire_array[0]; 21408 uint_t i, willdie; 21409 ipaddr_t mask = ip_net_mask(test_ipif->ipif_subnet); 21410 bcast_ireinfo_t bireinfo[BCAST_COUNT]; 21411 21412 ASSERT(!test_ipif->ipif_isv6); 21413 ASSERT(IAM_WRITER_IPIF(test_ipif)); 21414 21415 /* 21416 * No broadcast IREs for the LOOPBACK interface 21417 * or others such as point to point and IPIF_NOXMIT. 21418 */ 21419 if (!(test_ipif->ipif_flags & IPIF_BROADCAST) || 21420 (test_ipif->ipif_flags & IPIF_NOXMIT)) 21421 return; 21422 21423 bzero(bireinfo, sizeof (bireinfo)); 21424 bireinfo[0].bi_type = BCAST_ALLZEROES; 21425 bireinfo[0].bi_addr = 0; 21426 21427 bireinfo[1].bi_type = BCAST_ALLONES; 21428 bireinfo[1].bi_addr = INADDR_BROADCAST; 21429 21430 bireinfo[2].bi_type = BCAST_NET; 21431 bireinfo[2].bi_addr = test_ipif->ipif_subnet & mask; 21432 21433 if (test_ipif->ipif_net_mask != 0) 21434 mask = test_ipif->ipif_net_mask; 21435 bireinfo[3].bi_type = BCAST_SUBNET; 21436 bireinfo[3].bi_addr = test_ipif->ipif_subnet & mask; 21437 21438 /* 21439 * Figure out what (if any) broadcast IREs will die as a result of 21440 * `test_ipif' going away. If none will die, we're done. 21441 */ 21442 for (i = 0, willdie = 0; i < BCAST_COUNT; i++) { 21443 ire = ire_ctable_lookup(bireinfo[i].bi_addr, 0, IRE_BROADCAST, 21444 test_ipif, ALL_ZONES, NULL, 21445 (MATCH_IRE_TYPE | MATCH_IRE_IPIF), ill->ill_ipst); 21446 if (ire != NULL) { 21447 willdie++; 21448 bireinfo[i].bi_willdie = 1; 21449 ire_refrele(ire); 21450 } 21451 } 21452 21453 if (willdie == 0) 21454 return; 21455 21456 /* 21457 * Walk through all the ipifs that will be affected by the dying IREs, 21458 * and recreate the IREs as necessary. 21459 */ 21460 irep = ill_create_bcast(ill, test_ipif, bireinfo, irep); 21461 21462 /* 21463 * Scan through the set of broadcast IREs and see if there are any 21464 * that we need to replace that have not yet been replaced. If so, 21465 * replace them using the appropriate backup ipif. 21466 */ 21467 for (i = 0; i < BCAST_COUNT; i++) { 21468 if (bireinfo[i].bi_needrep && !bireinfo[i].bi_haverep) 21469 irep = ipif_create_bcast(bireinfo[i].bi_backup, 21470 &bireinfo[i], irep); 21471 } 21472 21473 /* 21474 * If we can't create all of them, don't add any of them. (Code in 21475 * ip_wput_ire() and ire_to_ill() assumes that we always have a 21476 * non-loopback copy and loopback copy for a given address.) 21477 */ 21478 for (irep1 = irep; irep1 > ire_array; ) { 21479 irep1--; 21480 if (*irep1 == NULL) { 21481 ip0dbg(("ipif_check_bcast_ires: can't create " 21482 "IRE_BROADCAST, memory allocation failure\n")); 21483 while (irep > ire_array) { 21484 irep--; 21485 if (*irep != NULL) 21486 ire_delete(*irep); 21487 } 21488 return; 21489 } 21490 } 21491 21492 for (irep1 = irep; irep1 > ire_array; ) { 21493 irep1--; 21494 if (ire_add(irep1, NULL, NULL, NULL, B_FALSE) == 0) 21495 ire_refrele(*irep1); /* Held in ire_add */ 21496 } 21497 } 21498 21499 /* 21500 * Extract both the flags (including IFF_CANTCHANGE) such as IFF_IPV* 21501 * from lifr_flags and the name from lifr_name. 21502 * Set IFF_IPV* and ill_isv6 prior to doing the lookup 21503 * since ipif_lookup_on_name uses the _isv6 flags when matching. 21504 * Returns EINPROGRESS when mp has been consumed by queueing it on 21505 * ill_pending_mp and the ioctl will complete in ip_rput. 21506 * 21507 * Can operate on either a module or a driver queue. 21508 * Returns an error if not a module queue. 21509 */ 21510 /* ARGSUSED */ 21511 int 21512 ip_sioctl_slifname(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 21513 ip_ioctl_cmd_t *ipip, void *if_req) 21514 { 21515 int err; 21516 ill_t *ill; 21517 struct lifreq *lifr = (struct lifreq *)if_req; 21518 21519 ASSERT(ipif != NULL); 21520 ip1dbg(("ip_sioctl_slifname %s\n", lifr->lifr_name)); 21521 21522 if (q->q_next == NULL) { 21523 ip1dbg(( 21524 "if_sioctl_slifname: SIOCSLIFNAME: no q_next\n")); 21525 return (EINVAL); 21526 } 21527 21528 ill = (ill_t *)q->q_ptr; 21529 /* 21530 * If we are not writer on 'q' then this interface exists already 21531 * and previous lookups (ipif_extract_lifreq()) found this ipif. 21532 * So return EALREADY 21533 */ 21534 if (ill != ipif->ipif_ill) 21535 return (EALREADY); 21536 21537 if (ill->ill_name[0] != '\0') 21538 return (EALREADY); 21539 21540 /* 21541 * Set all the flags. Allows all kinds of override. Provide some 21542 * sanity checking by not allowing IFF_BROADCAST and IFF_MULTICAST 21543 * unless there is either multicast/broadcast support in the driver 21544 * or it is a pt-pt link. 21545 */ 21546 if (lifr->lifr_flags & (IFF_PROMISC|IFF_ALLMULTI)) { 21547 /* Meaningless to IP thus don't allow them to be set. */ 21548 ip1dbg(("ip_setname: EINVAL 1\n")); 21549 return (EINVAL); 21550 } 21551 /* 21552 * For a DL_STYLE2 driver (ill_needs_attach), we would not have the 21553 * ill_bcast_addr_length info. 21554 */ 21555 if (!ill->ill_needs_attach && 21556 ((lifr->lifr_flags & IFF_MULTICAST) && 21557 !(lifr->lifr_flags & IFF_POINTOPOINT) && 21558 ill->ill_bcast_addr_length == 0)) { 21559 /* Link not broadcast/pt-pt capable i.e. no multicast */ 21560 ip1dbg(("ip_setname: EINVAL 2\n")); 21561 return (EINVAL); 21562 } 21563 if ((lifr->lifr_flags & IFF_BROADCAST) && 21564 ((lifr->lifr_flags & IFF_IPV6) || 21565 (!ill->ill_needs_attach && ill->ill_bcast_addr_length == 0))) { 21566 /* Link not broadcast capable or IPv6 i.e. no broadcast */ 21567 ip1dbg(("ip_setname: EINVAL 3\n")); 21568 return (EINVAL); 21569 } 21570 if (lifr->lifr_flags & IFF_UP) { 21571 /* Can only be set with SIOCSLIFFLAGS */ 21572 ip1dbg(("ip_setname: EINVAL 4\n")); 21573 return (EINVAL); 21574 } 21575 if ((lifr->lifr_flags & (IFF_IPV6|IFF_IPV4)) != IFF_IPV6 && 21576 (lifr->lifr_flags & (IFF_IPV6|IFF_IPV4)) != IFF_IPV4) { 21577 ip1dbg(("ip_setname: EINVAL 5\n")); 21578 return (EINVAL); 21579 } 21580 /* 21581 * Only allow the IFF_XRESOLV flag to be set on IPv6 interfaces. 21582 */ 21583 if ((lifr->lifr_flags & IFF_XRESOLV) && 21584 !(lifr->lifr_flags & IFF_IPV6) && 21585 !(ipif->ipif_isv6)) { 21586 ip1dbg(("ip_setname: EINVAL 6\n")); 21587 return (EINVAL); 21588 } 21589 21590 /* 21591 * The user has done SIOCGLIFFLAGS prior to this ioctl and hence 21592 * we have all the flags here. So, we assign rather than we OR. 21593 * We can't OR the flags here because we don't want to set 21594 * both IFF_IPV4 and IFF_IPV6. We start off as IFF_IPV4 in 21595 * ipif_allocate and become IFF_IPV4 or IFF_IPV6 here depending 21596 * on lifr_flags value here. 21597 */ 21598 /* 21599 * This ill has not been inserted into the global list. 21600 * So we are still single threaded and don't need any lock 21601 */ 21602 ipif->ipif_flags = lifr->lifr_flags & IFF_LOGINT_FLAGS & 21603 ~IFF_DUPLICATE; 21604 ill->ill_flags = lifr->lifr_flags & IFF_PHYINTINST_FLAGS; 21605 ill->ill_phyint->phyint_flags = lifr->lifr_flags & IFF_PHYINT_FLAGS; 21606 21607 /* We started off as V4. */ 21608 if (ill->ill_flags & ILLF_IPV6) { 21609 ill->ill_phyint->phyint_illv6 = ill; 21610 ill->ill_phyint->phyint_illv4 = NULL; 21611 } 21612 err = ipif_set_values(q, mp, lifr->lifr_name, &lifr->lifr_ppa); 21613 return (err); 21614 } 21615 21616 /* ARGSUSED */ 21617 int 21618 ip_sioctl_slifname_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 21619 ip_ioctl_cmd_t *ipip, void *if_req) 21620 { 21621 /* 21622 * ill_phyint_reinit merged the v4 and v6 into a single 21623 * ipsq. Could also have become part of a ipmp group in the 21624 * process, and we might not have been able to complete the 21625 * slifname in ipif_set_values, if we could not become 21626 * exclusive. If so restart it here 21627 */ 21628 return (ipif_set_values_tail(ipif->ipif_ill, ipif, mp, q)); 21629 } 21630 21631 /* 21632 * Return a pointer to the ipif which matches the index, IP version type and 21633 * zoneid. 21634 */ 21635 ipif_t * 21636 ipif_lookup_on_ifindex(uint_t index, boolean_t isv6, zoneid_t zoneid, 21637 queue_t *q, mblk_t *mp, ipsq_func_t func, int *err, ip_stack_t *ipst) 21638 { 21639 ill_t *ill; 21640 ipsq_t *ipsq; 21641 phyint_t *phyi; 21642 ipif_t *ipif; 21643 21644 ASSERT((q == NULL && mp == NULL && func == NULL && err == NULL) || 21645 (q != NULL && mp != NULL && func != NULL && err != NULL)); 21646 21647 if (err != NULL) 21648 *err = 0; 21649 21650 /* 21651 * Indexes are stored in the phyint - a common structure 21652 * to both IPv4 and IPv6. 21653 */ 21654 21655 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 21656 phyi = avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 21657 (void *) &index, NULL); 21658 if (phyi != NULL) { 21659 ill = isv6 ? phyi->phyint_illv6 : phyi->phyint_illv4; 21660 if (ill == NULL) { 21661 rw_exit(&ipst->ips_ill_g_lock); 21662 if (err != NULL) 21663 *err = ENXIO; 21664 return (NULL); 21665 } 21666 GRAB_CONN_LOCK(q); 21667 mutex_enter(&ill->ill_lock); 21668 if (ILL_CAN_LOOKUP(ill)) { 21669 for (ipif = ill->ill_ipif; ipif != NULL; 21670 ipif = ipif->ipif_next) { 21671 if (IPIF_CAN_LOOKUP(ipif) && 21672 (zoneid == ALL_ZONES || 21673 zoneid == ipif->ipif_zoneid || 21674 ipif->ipif_zoneid == ALL_ZONES)) { 21675 ipif_refhold_locked(ipif); 21676 mutex_exit(&ill->ill_lock); 21677 RELEASE_CONN_LOCK(q); 21678 rw_exit(&ipst->ips_ill_g_lock); 21679 return (ipif); 21680 } 21681 } 21682 } else if (ILL_CAN_WAIT(ill, q)) { 21683 ipsq = ill->ill_phyint->phyint_ipsq; 21684 mutex_enter(&ipsq->ipsq_lock); 21685 rw_exit(&ipst->ips_ill_g_lock); 21686 mutex_exit(&ill->ill_lock); 21687 ipsq_enq(ipsq, q, mp, func, NEW_OP, ill); 21688 mutex_exit(&ipsq->ipsq_lock); 21689 RELEASE_CONN_LOCK(q); 21690 *err = EINPROGRESS; 21691 return (NULL); 21692 } 21693 mutex_exit(&ill->ill_lock); 21694 RELEASE_CONN_LOCK(q); 21695 } 21696 rw_exit(&ipst->ips_ill_g_lock); 21697 if (err != NULL) 21698 *err = ENXIO; 21699 return (NULL); 21700 } 21701 21702 typedef struct conn_change_s { 21703 uint_t cc_old_ifindex; 21704 uint_t cc_new_ifindex; 21705 } conn_change_t; 21706 21707 /* 21708 * ipcl_walk function for changing interface index. 21709 */ 21710 static void 21711 conn_change_ifindex(conn_t *connp, caddr_t arg) 21712 { 21713 conn_change_t *connc; 21714 uint_t old_ifindex; 21715 uint_t new_ifindex; 21716 int i; 21717 ilg_t *ilg; 21718 21719 connc = (conn_change_t *)arg; 21720 old_ifindex = connc->cc_old_ifindex; 21721 new_ifindex = connc->cc_new_ifindex; 21722 21723 if (connp->conn_orig_bound_ifindex == old_ifindex) 21724 connp->conn_orig_bound_ifindex = new_ifindex; 21725 21726 if (connp->conn_orig_multicast_ifindex == old_ifindex) 21727 connp->conn_orig_multicast_ifindex = new_ifindex; 21728 21729 if (connp->conn_orig_xmit_ifindex == old_ifindex) 21730 connp->conn_orig_xmit_ifindex = new_ifindex; 21731 21732 for (i = connp->conn_ilg_inuse - 1; i >= 0; i--) { 21733 ilg = &connp->conn_ilg[i]; 21734 if (ilg->ilg_orig_ifindex == old_ifindex) 21735 ilg->ilg_orig_ifindex = new_ifindex; 21736 } 21737 } 21738 21739 /* 21740 * Walk all the ipifs and ilms on this ill and change the orig_ifindex 21741 * to new_index if it matches the old_index. 21742 * 21743 * Failovers typically happen within a group of ills. But somebody 21744 * can remove an ill from the group after a failover happened. If 21745 * we are setting the ifindex after this, we potentially need to 21746 * look at all the ills rather than just the ones in the group. 21747 * We cut down the work by looking at matching ill_net_types 21748 * and ill_types as we could not possibly grouped them together. 21749 */ 21750 static void 21751 ip_change_ifindex(ill_t *ill_orig, conn_change_t *connc) 21752 { 21753 ill_t *ill; 21754 ipif_t *ipif; 21755 uint_t old_ifindex; 21756 uint_t new_ifindex; 21757 ilm_t *ilm; 21758 ill_walk_context_t ctx; 21759 ip_stack_t *ipst = ill_orig->ill_ipst; 21760 21761 old_ifindex = connc->cc_old_ifindex; 21762 new_ifindex = connc->cc_new_ifindex; 21763 21764 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 21765 ill = ILL_START_WALK_ALL(&ctx, ipst); 21766 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 21767 if ((ill_orig->ill_net_type != ill->ill_net_type) || 21768 (ill_orig->ill_type != ill->ill_type)) { 21769 continue; 21770 } 21771 for (ipif = ill->ill_ipif; ipif != NULL; 21772 ipif = ipif->ipif_next) { 21773 if (ipif->ipif_orig_ifindex == old_ifindex) 21774 ipif->ipif_orig_ifindex = new_ifindex; 21775 } 21776 for (ilm = ill->ill_ilm; ilm != NULL; ilm = ilm->ilm_next) { 21777 if (ilm->ilm_orig_ifindex == old_ifindex) 21778 ilm->ilm_orig_ifindex = new_ifindex; 21779 } 21780 } 21781 rw_exit(&ipst->ips_ill_g_lock); 21782 } 21783 21784 /* 21785 * We first need to ensure that the new index is unique, and 21786 * then carry the change across both v4 and v6 ill representation 21787 * of the physical interface. 21788 */ 21789 /* ARGSUSED */ 21790 int 21791 ip_sioctl_slifindex(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 21792 ip_ioctl_cmd_t *ipip, void *ifreq) 21793 { 21794 ill_t *ill; 21795 ill_t *ill_other; 21796 phyint_t *phyi; 21797 int old_index; 21798 conn_change_t connc; 21799 struct ifreq *ifr = (struct ifreq *)ifreq; 21800 struct lifreq *lifr = (struct lifreq *)ifreq; 21801 uint_t index; 21802 ill_t *ill_v4; 21803 ill_t *ill_v6; 21804 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 21805 21806 if (ipip->ipi_cmd_type == IF_CMD) 21807 index = ifr->ifr_index; 21808 else 21809 index = lifr->lifr_index; 21810 21811 /* 21812 * Only allow on physical interface. Also, index zero is illegal. 21813 * 21814 * Need to check for PHYI_FAILED and PHYI_INACTIVE 21815 * 21816 * 1) If PHYI_FAILED is set, a failover could have happened which 21817 * implies a possible failback might have to happen. As failback 21818 * depends on the old index, we should fail setting the index. 21819 * 21820 * 2) If PHYI_INACTIVE is set, in.mpathd does a failover so that 21821 * any addresses or multicast memberships are failed over to 21822 * a non-STANDBY interface. As failback depends on the old 21823 * index, we should fail setting the index for this case also. 21824 * 21825 * 3) If PHYI_OFFLINE is set, a possible failover has happened. 21826 * Be consistent with PHYI_FAILED and fail the ioctl. 21827 */ 21828 ill = ipif->ipif_ill; 21829 phyi = ill->ill_phyint; 21830 if ((phyi->phyint_flags & (PHYI_FAILED|PHYI_INACTIVE|PHYI_OFFLINE)) || 21831 ipif->ipif_id != 0 || index == 0) { 21832 return (EINVAL); 21833 } 21834 old_index = phyi->phyint_ifindex; 21835 21836 /* If the index is not changing, no work to do */ 21837 if (old_index == index) 21838 return (0); 21839 21840 /* 21841 * Use ill_lookup_on_ifindex to determine if the 21842 * new index is unused and if so allow the change. 21843 */ 21844 ill_v6 = ill_lookup_on_ifindex(index, B_TRUE, NULL, NULL, NULL, NULL, 21845 ipst); 21846 ill_v4 = ill_lookup_on_ifindex(index, B_FALSE, NULL, NULL, NULL, NULL, 21847 ipst); 21848 if (ill_v6 != NULL || ill_v4 != NULL) { 21849 if (ill_v4 != NULL) 21850 ill_refrele(ill_v4); 21851 if (ill_v6 != NULL) 21852 ill_refrele(ill_v6); 21853 return (EBUSY); 21854 } 21855 21856 /* 21857 * The new index is unused. Set it in the phyint. 21858 * Locate the other ill so that we can send a routing 21859 * sockets message. 21860 */ 21861 if (ill->ill_isv6) { 21862 ill_other = phyi->phyint_illv4; 21863 } else { 21864 ill_other = phyi->phyint_illv6; 21865 } 21866 21867 phyi->phyint_ifindex = index; 21868 21869 /* Update SCTP's ILL list */ 21870 sctp_ill_reindex(ill, old_index); 21871 21872 connc.cc_old_ifindex = old_index; 21873 connc.cc_new_ifindex = index; 21874 ip_change_ifindex(ill, &connc); 21875 ipcl_walk(conn_change_ifindex, (caddr_t)&connc, ipst); 21876 21877 /* Send the routing sockets message */ 21878 ip_rts_ifmsg(ipif); 21879 if (ill_other != NULL) 21880 ip_rts_ifmsg(ill_other->ill_ipif); 21881 21882 return (0); 21883 } 21884 21885 /* ARGSUSED */ 21886 int 21887 ip_sioctl_get_lifindex(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 21888 ip_ioctl_cmd_t *ipip, void *ifreq) 21889 { 21890 struct ifreq *ifr = (struct ifreq *)ifreq; 21891 struct lifreq *lifr = (struct lifreq *)ifreq; 21892 21893 ip1dbg(("ip_sioctl_get_lifindex(%s:%u %p)\n", 21894 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 21895 /* Get the interface index */ 21896 if (ipip->ipi_cmd_type == IF_CMD) { 21897 ifr->ifr_index = ipif->ipif_ill->ill_phyint->phyint_ifindex; 21898 } else { 21899 lifr->lifr_index = ipif->ipif_ill->ill_phyint->phyint_ifindex; 21900 } 21901 return (0); 21902 } 21903 21904 /* ARGSUSED */ 21905 int 21906 ip_sioctl_get_lifzone(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 21907 ip_ioctl_cmd_t *ipip, void *ifreq) 21908 { 21909 struct lifreq *lifr = (struct lifreq *)ifreq; 21910 21911 ip1dbg(("ip_sioctl_get_lifzone(%s:%u %p)\n", 21912 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 21913 /* Get the interface zone */ 21914 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 21915 lifr->lifr_zoneid = ipif->ipif_zoneid; 21916 return (0); 21917 } 21918 21919 /* 21920 * Set the zoneid of an interface. 21921 */ 21922 /* ARGSUSED */ 21923 int 21924 ip_sioctl_slifzone(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 21925 ip_ioctl_cmd_t *ipip, void *ifreq) 21926 { 21927 struct lifreq *lifr = (struct lifreq *)ifreq; 21928 int err = 0; 21929 boolean_t need_up = B_FALSE; 21930 zone_t *zptr; 21931 zone_status_t status; 21932 zoneid_t zoneid; 21933 21934 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 21935 if ((zoneid = lifr->lifr_zoneid) == ALL_ZONES) { 21936 if (!is_system_labeled()) 21937 return (ENOTSUP); 21938 zoneid = GLOBAL_ZONEID; 21939 } 21940 21941 /* cannot assign instance zero to a non-global zone */ 21942 if (ipif->ipif_id == 0 && zoneid != GLOBAL_ZONEID) 21943 return (ENOTSUP); 21944 21945 /* 21946 * Cannot assign to a zone that doesn't exist or is shutting down. In 21947 * the event of a race with the zone shutdown processing, since IP 21948 * serializes this ioctl and SIOCGLIFCONF/SIOCLIFREMOVEIF, we know the 21949 * interface will be cleaned up even if the zone is shut down 21950 * immediately after the status check. If the interface can't be brought 21951 * down right away, and the zone is shut down before the restart 21952 * function is called, we resolve the possible races by rechecking the 21953 * zone status in the restart function. 21954 */ 21955 if ((zptr = zone_find_by_id(zoneid)) == NULL) 21956 return (EINVAL); 21957 status = zone_status_get(zptr); 21958 zone_rele(zptr); 21959 21960 if (status != ZONE_IS_READY && status != ZONE_IS_RUNNING) 21961 return (EINVAL); 21962 21963 if (ipif->ipif_flags & IPIF_UP) { 21964 /* 21965 * If the interface is already marked up, 21966 * we call ipif_down which will take care 21967 * of ditching any IREs that have been set 21968 * up based on the old interface address. 21969 */ 21970 err = ipif_logical_down(ipif, q, mp); 21971 if (err == EINPROGRESS) 21972 return (err); 21973 ipif_down_tail(ipif); 21974 need_up = B_TRUE; 21975 } 21976 21977 err = ip_sioctl_slifzone_tail(ipif, lifr->lifr_zoneid, q, mp, need_up); 21978 return (err); 21979 } 21980 21981 static int 21982 ip_sioctl_slifzone_tail(ipif_t *ipif, zoneid_t zoneid, 21983 queue_t *q, mblk_t *mp, boolean_t need_up) 21984 { 21985 int err = 0; 21986 ip_stack_t *ipst; 21987 21988 ip1dbg(("ip_sioctl_zoneid_tail(%s:%u %p)\n", 21989 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 21990 21991 if (CONN_Q(q)) 21992 ipst = CONNQ_TO_IPST(q); 21993 else 21994 ipst = ILLQ_TO_IPST(q); 21995 21996 /* 21997 * For exclusive stacks we don't allow a different zoneid than 21998 * global. 21999 */ 22000 if (ipst->ips_netstack->netstack_stackid != GLOBAL_NETSTACKID && 22001 zoneid != GLOBAL_ZONEID) 22002 return (EINVAL); 22003 22004 /* Set the new zone id. */ 22005 ipif->ipif_zoneid = zoneid; 22006 22007 /* Update sctp list */ 22008 sctp_update_ipif(ipif, SCTP_IPIF_UPDATE); 22009 22010 if (need_up) { 22011 /* 22012 * Now bring the interface back up. If this 22013 * is the only IPIF for the ILL, ipif_up 22014 * will have to re-bind to the device, so 22015 * we may get back EINPROGRESS, in which 22016 * case, this IOCTL will get completed in 22017 * ip_rput_dlpi when we see the DL_BIND_ACK. 22018 */ 22019 err = ipif_up(ipif, q, mp); 22020 } 22021 return (err); 22022 } 22023 22024 /* ARGSUSED */ 22025 int 22026 ip_sioctl_slifzone_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 22027 ip_ioctl_cmd_t *ipip, void *if_req) 22028 { 22029 struct lifreq *lifr = (struct lifreq *)if_req; 22030 zoneid_t zoneid; 22031 zone_t *zptr; 22032 zone_status_t status; 22033 22034 ASSERT(ipif->ipif_id != 0); 22035 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 22036 if ((zoneid = lifr->lifr_zoneid) == ALL_ZONES) 22037 zoneid = GLOBAL_ZONEID; 22038 22039 ip1dbg(("ip_sioctl_slifzone_restart(%s:%u %p)\n", 22040 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 22041 22042 /* 22043 * We recheck the zone status to resolve the following race condition: 22044 * 1) process sends SIOCSLIFZONE to put hme0:1 in zone "myzone"; 22045 * 2) hme0:1 is up and can't be brought down right away; 22046 * ip_sioctl_slifzone() returns EINPROGRESS and the request is queued; 22047 * 3) zone "myzone" is halted; the zone status switches to 22048 * 'shutting_down' and the zones framework sends SIOCGLIFCONF to list 22049 * the interfaces to remove - hme0:1 is not returned because it's not 22050 * yet in "myzone", so it won't be removed; 22051 * 4) the restart function for SIOCSLIFZONE is called; without the 22052 * status check here, we would have hme0:1 in "myzone" after it's been 22053 * destroyed. 22054 * Note that if the status check fails, we need to bring the interface 22055 * back to its state prior to ip_sioctl_slifzone(), hence the call to 22056 * ipif_up_done[_v6](). 22057 */ 22058 status = ZONE_IS_UNINITIALIZED; 22059 if ((zptr = zone_find_by_id(zoneid)) != NULL) { 22060 status = zone_status_get(zptr); 22061 zone_rele(zptr); 22062 } 22063 if (status != ZONE_IS_READY && status != ZONE_IS_RUNNING) { 22064 if (ipif->ipif_isv6) { 22065 (void) ipif_up_done_v6(ipif); 22066 } else { 22067 (void) ipif_up_done(ipif); 22068 } 22069 return (EINVAL); 22070 } 22071 22072 ipif_down_tail(ipif); 22073 22074 return (ip_sioctl_slifzone_tail(ipif, lifr->lifr_zoneid, q, mp, 22075 B_TRUE)); 22076 } 22077 22078 /* ARGSUSED */ 22079 int 22080 ip_sioctl_get_lifusesrc(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 22081 ip_ioctl_cmd_t *ipip, void *ifreq) 22082 { 22083 struct lifreq *lifr = ifreq; 22084 22085 ASSERT(q->q_next == NULL); 22086 ASSERT(CONN_Q(q)); 22087 22088 ip1dbg(("ip_sioctl_get_lifusesrc(%s:%u %p)\n", 22089 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 22090 lifr->lifr_index = ipif->ipif_ill->ill_usesrc_ifindex; 22091 ip1dbg(("ip_sioctl_get_lifusesrc:lifr_index = %d\n", lifr->lifr_index)); 22092 22093 return (0); 22094 } 22095 22096 22097 /* Find the previous ILL in this usesrc group */ 22098 static ill_t * 22099 ill_prev_usesrc(ill_t *uill) 22100 { 22101 ill_t *ill; 22102 22103 for (ill = uill->ill_usesrc_grp_next; 22104 ASSERT(ill), ill->ill_usesrc_grp_next != uill; 22105 ill = ill->ill_usesrc_grp_next) 22106 /* do nothing */; 22107 return (ill); 22108 } 22109 22110 /* 22111 * Release all members of the usesrc group. This routine is called 22112 * from ill_delete when the interface being unplumbed is the 22113 * group head. 22114 */ 22115 static void 22116 ill_disband_usesrc_group(ill_t *uill) 22117 { 22118 ill_t *next_ill, *tmp_ill; 22119 ip_stack_t *ipst = uill->ill_ipst; 22120 22121 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_usesrc_lock)); 22122 next_ill = uill->ill_usesrc_grp_next; 22123 22124 do { 22125 ASSERT(next_ill != NULL); 22126 tmp_ill = next_ill->ill_usesrc_grp_next; 22127 ASSERT(tmp_ill != NULL); 22128 next_ill->ill_usesrc_grp_next = NULL; 22129 next_ill->ill_usesrc_ifindex = 0; 22130 next_ill = tmp_ill; 22131 } while (next_ill->ill_usesrc_ifindex != 0); 22132 uill->ill_usesrc_grp_next = NULL; 22133 } 22134 22135 /* 22136 * Remove the client usesrc ILL from the list and relink to a new list 22137 */ 22138 int 22139 ill_relink_usesrc_ills(ill_t *ucill, ill_t *uill, uint_t ifindex) 22140 { 22141 ill_t *ill, *tmp_ill; 22142 ip_stack_t *ipst = ucill->ill_ipst; 22143 22144 ASSERT((ucill != NULL) && (ucill->ill_usesrc_grp_next != NULL) && 22145 (uill != NULL) && RW_WRITE_HELD(&ipst->ips_ill_g_usesrc_lock)); 22146 22147 /* 22148 * Check if the usesrc client ILL passed in is not already 22149 * in use as a usesrc ILL i.e one whose source address is 22150 * in use OR a usesrc ILL is not already in use as a usesrc 22151 * client ILL 22152 */ 22153 if ((ucill->ill_usesrc_ifindex == 0) || 22154 (uill->ill_usesrc_ifindex != 0)) { 22155 return (-1); 22156 } 22157 22158 ill = ill_prev_usesrc(ucill); 22159 ASSERT(ill->ill_usesrc_grp_next != NULL); 22160 22161 /* Remove from the current list */ 22162 if (ill->ill_usesrc_grp_next->ill_usesrc_grp_next == ill) { 22163 /* Only two elements in the list */ 22164 ASSERT(ill->ill_usesrc_ifindex == 0); 22165 ill->ill_usesrc_grp_next = NULL; 22166 } else { 22167 ill->ill_usesrc_grp_next = ucill->ill_usesrc_grp_next; 22168 } 22169 22170 if (ifindex == 0) { 22171 ucill->ill_usesrc_ifindex = 0; 22172 ucill->ill_usesrc_grp_next = NULL; 22173 return (0); 22174 } 22175 22176 ucill->ill_usesrc_ifindex = ifindex; 22177 tmp_ill = uill->ill_usesrc_grp_next; 22178 uill->ill_usesrc_grp_next = ucill; 22179 ucill->ill_usesrc_grp_next = 22180 (tmp_ill != NULL) ? tmp_ill : uill; 22181 return (0); 22182 } 22183 22184 /* 22185 * Set the ill_usesrc and ill_usesrc_head fields. See synchronization notes in 22186 * ip.c for locking details. 22187 */ 22188 /* ARGSUSED */ 22189 int 22190 ip_sioctl_slifusesrc(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 22191 ip_ioctl_cmd_t *ipip, void *ifreq) 22192 { 22193 struct lifreq *lifr = (struct lifreq *)ifreq; 22194 boolean_t isv6 = B_FALSE, reset_flg = B_FALSE, 22195 ill_flag_changed = B_FALSE; 22196 ill_t *usesrc_ill, *usesrc_cli_ill = ipif->ipif_ill; 22197 int err = 0, ret; 22198 uint_t ifindex; 22199 phyint_t *us_phyint, *us_cli_phyint; 22200 ipsq_t *ipsq = NULL; 22201 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 22202 22203 ASSERT(IAM_WRITER_IPIF(ipif)); 22204 ASSERT(q->q_next == NULL); 22205 ASSERT(CONN_Q(q)); 22206 22207 isv6 = (Q_TO_CONN(q))->conn_af_isv6; 22208 us_cli_phyint = usesrc_cli_ill->ill_phyint; 22209 22210 ASSERT(us_cli_phyint != NULL); 22211 22212 /* 22213 * If the client ILL is being used for IPMP, abort. 22214 * Note, this can be done before ipsq_try_enter since we are already 22215 * exclusive on this ILL 22216 */ 22217 if ((us_cli_phyint->phyint_groupname != NULL) || 22218 (us_cli_phyint->phyint_flags & PHYI_STANDBY)) { 22219 return (EINVAL); 22220 } 22221 22222 ifindex = lifr->lifr_index; 22223 if (ifindex == 0) { 22224 if (usesrc_cli_ill->ill_usesrc_grp_next == NULL) { 22225 /* non usesrc group interface, nothing to reset */ 22226 return (0); 22227 } 22228 ifindex = usesrc_cli_ill->ill_usesrc_ifindex; 22229 /* valid reset request */ 22230 reset_flg = B_TRUE; 22231 } 22232 22233 usesrc_ill = ill_lookup_on_ifindex(ifindex, isv6, q, mp, 22234 ip_process_ioctl, &err, ipst); 22235 22236 if (usesrc_ill == NULL) { 22237 return (err); 22238 } 22239 22240 /* 22241 * The usesrc_cli_ill or the usesrc_ill cannot be part of an IPMP 22242 * group nor can either of the interfaces be used for standy. So 22243 * to guarantee mutual exclusion with ip_sioctl_flags (which sets 22244 * PHYI_STANDBY) and ip_sioctl_groupname (which sets the groupname) 22245 * we need to be exclusive on the ipsq belonging to the usesrc_ill. 22246 * We are already exlusive on this ipsq i.e ipsq corresponding to 22247 * the usesrc_cli_ill 22248 */ 22249 ipsq = ipsq_try_enter(NULL, usesrc_ill, q, mp, ip_process_ioctl, 22250 NEW_OP, B_TRUE); 22251 if (ipsq == NULL) { 22252 err = EINPROGRESS; 22253 /* Operation enqueued on the ipsq of the usesrc ILL */ 22254 goto done; 22255 } 22256 22257 /* Check if the usesrc_ill is used for IPMP */ 22258 us_phyint = usesrc_ill->ill_phyint; 22259 if ((us_phyint->phyint_groupname != NULL) || 22260 (us_phyint->phyint_flags & PHYI_STANDBY)) { 22261 err = EINVAL; 22262 goto done; 22263 } 22264 22265 /* 22266 * If the client is already in use as a usesrc_ill or a usesrc_ill is 22267 * already a client then return EINVAL 22268 */ 22269 if (IS_USESRC_ILL(usesrc_cli_ill) || IS_USESRC_CLI_ILL(usesrc_ill)) { 22270 err = EINVAL; 22271 goto done; 22272 } 22273 22274 /* 22275 * If the ill_usesrc_ifindex field is already set to what it needs to 22276 * be then this is a duplicate operation. 22277 */ 22278 if (!reset_flg && usesrc_cli_ill->ill_usesrc_ifindex == ifindex) { 22279 err = 0; 22280 goto done; 22281 } 22282 22283 ip1dbg(("ip_sioctl_slifusesrc: usesrc_cli_ill %s, usesrc_ill %s," 22284 " v6 = %d", usesrc_cli_ill->ill_name, usesrc_ill->ill_name, 22285 usesrc_ill->ill_isv6)); 22286 22287 /* 22288 * The next step ensures that no new ires will be created referencing 22289 * the client ill, until the ILL_CHANGING flag is cleared. Then 22290 * we go through an ire walk deleting all ire caches that reference 22291 * the client ill. New ires referencing the client ill that are added 22292 * to the ire table before the ILL_CHANGING flag is set, will be 22293 * cleaned up by the ire walk below. Attempt to add new ires referencing 22294 * the client ill while the ILL_CHANGING flag is set will be failed 22295 * during the ire_add in ire_atomic_start. ire_atomic_start atomically 22296 * checks (under the ill_g_usesrc_lock) that the ire being added 22297 * is not stale, i.e the ire_stq and ire_ipif are consistent and 22298 * belong to the same usesrc group. 22299 */ 22300 mutex_enter(&usesrc_cli_ill->ill_lock); 22301 usesrc_cli_ill->ill_state_flags |= ILL_CHANGING; 22302 mutex_exit(&usesrc_cli_ill->ill_lock); 22303 ill_flag_changed = B_TRUE; 22304 22305 if (ipif->ipif_isv6) 22306 ire_walk_v6(ipif_delete_cache_ire, (char *)usesrc_cli_ill, 22307 ALL_ZONES, ipst); 22308 else 22309 ire_walk_v4(ipif_delete_cache_ire, (char *)usesrc_cli_ill, 22310 ALL_ZONES, ipst); 22311 22312 /* 22313 * ill_g_usesrc_lock global lock protects the ill_usesrc_grp_next 22314 * and the ill_usesrc_ifindex fields 22315 */ 22316 rw_enter(&ipst->ips_ill_g_usesrc_lock, RW_WRITER); 22317 22318 if (reset_flg) { 22319 ret = ill_relink_usesrc_ills(usesrc_cli_ill, usesrc_ill, 0); 22320 if (ret != 0) { 22321 err = EINVAL; 22322 } 22323 rw_exit(&ipst->ips_ill_g_usesrc_lock); 22324 goto done; 22325 } 22326 22327 /* 22328 * Four possibilities to consider: 22329 * 1. Both usesrc_ill and usesrc_cli_ill are not part of any usesrc grp 22330 * 2. usesrc_ill is part of a group but usesrc_cli_ill isn't 22331 * 3. usesrc_cli_ill is part of a group but usesrc_ill isn't 22332 * 4. Both are part of their respective usesrc groups 22333 */ 22334 if ((usesrc_ill->ill_usesrc_grp_next == NULL) && 22335 (usesrc_cli_ill->ill_usesrc_grp_next == NULL)) { 22336 ASSERT(usesrc_ill->ill_usesrc_ifindex == 0); 22337 usesrc_cli_ill->ill_usesrc_ifindex = ifindex; 22338 usesrc_ill->ill_usesrc_grp_next = usesrc_cli_ill; 22339 usesrc_cli_ill->ill_usesrc_grp_next = usesrc_ill; 22340 } else if ((usesrc_ill->ill_usesrc_grp_next != NULL) && 22341 (usesrc_cli_ill->ill_usesrc_grp_next == NULL)) { 22342 usesrc_cli_ill->ill_usesrc_ifindex = ifindex; 22343 /* Insert at head of list */ 22344 usesrc_cli_ill->ill_usesrc_grp_next = 22345 usesrc_ill->ill_usesrc_grp_next; 22346 usesrc_ill->ill_usesrc_grp_next = usesrc_cli_ill; 22347 } else { 22348 ret = ill_relink_usesrc_ills(usesrc_cli_ill, usesrc_ill, 22349 ifindex); 22350 if (ret != 0) 22351 err = EINVAL; 22352 } 22353 rw_exit(&ipst->ips_ill_g_usesrc_lock); 22354 22355 done: 22356 if (ill_flag_changed) { 22357 mutex_enter(&usesrc_cli_ill->ill_lock); 22358 usesrc_cli_ill->ill_state_flags &= ~ILL_CHANGING; 22359 mutex_exit(&usesrc_cli_ill->ill_lock); 22360 } 22361 if (ipsq != NULL) 22362 ipsq_exit(ipsq, B_TRUE, B_TRUE); 22363 /* The refrele on the lifr_name ipif is done by ip_process_ioctl */ 22364 ill_refrele(usesrc_ill); 22365 return (err); 22366 } 22367 22368 /* 22369 * comparison function used by avl. 22370 */ 22371 static int 22372 ill_phyint_compare_index(const void *index_ptr, const void *phyip) 22373 { 22374 22375 uint_t index; 22376 22377 ASSERT(phyip != NULL && index_ptr != NULL); 22378 22379 index = *((uint_t *)index_ptr); 22380 /* 22381 * let the phyint with the lowest index be on top. 22382 */ 22383 if (((phyint_t *)phyip)->phyint_ifindex < index) 22384 return (1); 22385 if (((phyint_t *)phyip)->phyint_ifindex > index) 22386 return (-1); 22387 return (0); 22388 } 22389 22390 /* 22391 * comparison function used by avl. 22392 */ 22393 static int 22394 ill_phyint_compare_name(const void *name_ptr, const void *phyip) 22395 { 22396 ill_t *ill; 22397 int res = 0; 22398 22399 ASSERT(phyip != NULL && name_ptr != NULL); 22400 22401 if (((phyint_t *)phyip)->phyint_illv4) 22402 ill = ((phyint_t *)phyip)->phyint_illv4; 22403 else 22404 ill = ((phyint_t *)phyip)->phyint_illv6; 22405 ASSERT(ill != NULL); 22406 22407 res = strcmp(ill->ill_name, (char *)name_ptr); 22408 if (res > 0) 22409 return (1); 22410 else if (res < 0) 22411 return (-1); 22412 return (0); 22413 } 22414 /* 22415 * This function is called from ill_delete when the ill is being 22416 * unplumbed. We remove the reference from the phyint and we also 22417 * free the phyint when there are no more references to it. 22418 */ 22419 static void 22420 ill_phyint_free(ill_t *ill) 22421 { 22422 phyint_t *phyi; 22423 phyint_t *next_phyint; 22424 ipsq_t *cur_ipsq; 22425 ip_stack_t *ipst = ill->ill_ipst; 22426 22427 ASSERT(ill->ill_phyint != NULL); 22428 22429 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); 22430 phyi = ill->ill_phyint; 22431 ill->ill_phyint = NULL; 22432 /* 22433 * ill_init allocates a phyint always to store the copy 22434 * of flags relevant to phyint. At that point in time, we could 22435 * not assign the name and hence phyint_illv4/v6 could not be 22436 * initialized. Later in ipif_set_values, we assign the name to 22437 * the ill, at which point in time we assign phyint_illv4/v6. 22438 * Thus we don't rely on phyint_illv6 to be initialized always. 22439 */ 22440 if (ill->ill_flags & ILLF_IPV6) { 22441 phyi->phyint_illv6 = NULL; 22442 } else { 22443 phyi->phyint_illv4 = NULL; 22444 } 22445 /* 22446 * ipif_down removes it from the group when the last ipif goes 22447 * down. 22448 */ 22449 ASSERT(ill->ill_group == NULL); 22450 22451 if (phyi->phyint_illv4 != NULL || phyi->phyint_illv6 != NULL) 22452 return; 22453 22454 /* 22455 * Make sure this phyint was put in the list. 22456 */ 22457 if (phyi->phyint_ifindex > 0) { 22458 avl_remove(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 22459 phyi); 22460 avl_remove(&ipst->ips_phyint_g_list->phyint_list_avl_by_name, 22461 phyi); 22462 } 22463 /* 22464 * remove phyint from the ipsq list. 22465 */ 22466 cur_ipsq = phyi->phyint_ipsq; 22467 if (phyi == cur_ipsq->ipsq_phyint_list) { 22468 cur_ipsq->ipsq_phyint_list = phyi->phyint_ipsq_next; 22469 } else { 22470 next_phyint = cur_ipsq->ipsq_phyint_list; 22471 while (next_phyint != NULL) { 22472 if (next_phyint->phyint_ipsq_next == phyi) { 22473 next_phyint->phyint_ipsq_next = 22474 phyi->phyint_ipsq_next; 22475 break; 22476 } 22477 next_phyint = next_phyint->phyint_ipsq_next; 22478 } 22479 ASSERT(next_phyint != NULL); 22480 } 22481 IPSQ_DEC_REF(cur_ipsq, ipst); 22482 22483 if (phyi->phyint_groupname_len != 0) { 22484 ASSERT(phyi->phyint_groupname != NULL); 22485 mi_free(phyi->phyint_groupname); 22486 } 22487 mi_free(phyi); 22488 } 22489 22490 /* 22491 * Attach the ill to the phyint structure which can be shared by both 22492 * IPv4 and IPv6 ill. ill_init allocates a phyint to just hold flags. This 22493 * function is called from ipif_set_values and ill_lookup_on_name (for 22494 * loopback) where we know the name of the ill. We lookup the ill and if 22495 * there is one present already with the name use that phyint. Otherwise 22496 * reuse the one allocated by ill_init. 22497 */ 22498 static void 22499 ill_phyint_reinit(ill_t *ill) 22500 { 22501 boolean_t isv6 = ill->ill_isv6; 22502 phyint_t *phyi_old; 22503 phyint_t *phyi; 22504 avl_index_t where = 0; 22505 ill_t *ill_other = NULL; 22506 ipsq_t *ipsq; 22507 ip_stack_t *ipst = ill->ill_ipst; 22508 22509 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); 22510 22511 phyi_old = ill->ill_phyint; 22512 ASSERT(isv6 || (phyi_old->phyint_illv4 == ill && 22513 phyi_old->phyint_illv6 == NULL)); 22514 ASSERT(!isv6 || (phyi_old->phyint_illv6 == ill && 22515 phyi_old->phyint_illv4 == NULL)); 22516 ASSERT(phyi_old->phyint_ifindex == 0); 22517 22518 phyi = avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_name, 22519 ill->ill_name, &where); 22520 22521 /* 22522 * 1. We grabbed the ill_g_lock before inserting this ill into 22523 * the global list of ills. So no other thread could have located 22524 * this ill and hence the ipsq of this ill is guaranteed to be empty. 22525 * 2. Now locate the other protocol instance of this ill. 22526 * 3. Now grab both ill locks in the right order, and the phyint lock of 22527 * the new ipsq. Holding ill locks + ill_g_lock ensures that the ipsq 22528 * of neither ill can change. 22529 * 4. Merge the phyint and thus the ipsq as well of this ill onto the 22530 * other ill. 22531 * 5. Release all locks. 22532 */ 22533 22534 /* 22535 * Look for IPv4 if we are initializing IPv6 or look for IPv6 if 22536 * we are initializing IPv4. 22537 */ 22538 if (phyi != NULL) { 22539 ill_other = (isv6) ? phyi->phyint_illv4 : 22540 phyi->phyint_illv6; 22541 ASSERT(ill_other->ill_phyint != NULL); 22542 ASSERT((isv6 && !ill_other->ill_isv6) || 22543 (!isv6 && ill_other->ill_isv6)); 22544 GRAB_ILL_LOCKS(ill, ill_other); 22545 /* 22546 * We are potentially throwing away phyint_flags which 22547 * could be different from the one that we obtain from 22548 * ill_other->ill_phyint. But it is okay as we are assuming 22549 * that the state maintained within IP is correct. 22550 */ 22551 mutex_enter(&phyi->phyint_lock); 22552 if (isv6) { 22553 ASSERT(phyi->phyint_illv6 == NULL); 22554 phyi->phyint_illv6 = ill; 22555 } else { 22556 ASSERT(phyi->phyint_illv4 == NULL); 22557 phyi->phyint_illv4 = ill; 22558 } 22559 /* 22560 * This is a new ill, currently undergoing SLIFNAME 22561 * So we could not have joined an IPMP group until now. 22562 */ 22563 ASSERT(phyi_old->phyint_ipsq_next == NULL && 22564 phyi_old->phyint_groupname == NULL); 22565 22566 /* 22567 * This phyi_old is going away. Decref ipsq_refs and 22568 * assert it is zero. The ipsq itself will be freed in 22569 * ipsq_exit 22570 */ 22571 ipsq = phyi_old->phyint_ipsq; 22572 IPSQ_DEC_REF(ipsq, ipst); 22573 ASSERT(ipsq->ipsq_refs == 0); 22574 /* Get the singleton phyint out of the ipsq list */ 22575 ASSERT(phyi_old->phyint_ipsq_next == NULL); 22576 ipsq->ipsq_phyint_list = NULL; 22577 phyi_old->phyint_illv4 = NULL; 22578 phyi_old->phyint_illv6 = NULL; 22579 mi_free(phyi_old); 22580 } else { 22581 mutex_enter(&ill->ill_lock); 22582 /* 22583 * We don't need to acquire any lock, since 22584 * the ill is not yet visible globally and we 22585 * have not yet released the ill_g_lock. 22586 */ 22587 phyi = phyi_old; 22588 mutex_enter(&phyi->phyint_lock); 22589 /* XXX We need a recovery strategy here. */ 22590 if (!phyint_assign_ifindex(phyi, ipst)) 22591 cmn_err(CE_PANIC, "phyint_assign_ifindex() failed"); 22592 22593 /* No IPMP group yet, thus the hook uses the ifindex */ 22594 phyi->phyint_hook_ifindex = phyi->phyint_ifindex; 22595 22596 avl_insert(&ipst->ips_phyint_g_list->phyint_list_avl_by_name, 22597 (void *)phyi, where); 22598 22599 (void) avl_find(&ipst->ips_phyint_g_list-> 22600 phyint_list_avl_by_index, 22601 &phyi->phyint_ifindex, &where); 22602 avl_insert(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 22603 (void *)phyi, where); 22604 } 22605 22606 /* 22607 * Reassigning ill_phyint automatically reassigns the ipsq also. 22608 * pending mp is not affected because that is per ill basis. 22609 */ 22610 ill->ill_phyint = phyi; 22611 22612 /* 22613 * Keep the index on ipif_orig_index to be used by FAILOVER. 22614 * We do this here as when the first ipif was allocated, 22615 * ipif_allocate does not know the right interface index. 22616 */ 22617 22618 ill->ill_ipif->ipif_orig_ifindex = ill->ill_phyint->phyint_ifindex; 22619 /* 22620 * Now that the phyint's ifindex has been assigned, complete the 22621 * remaining 22622 */ 22623 22624 ill->ill_ip_mib->ipIfStatsIfIndex = ill->ill_phyint->phyint_ifindex; 22625 if (ill->ill_isv6) { 22626 ill->ill_icmp6_mib->ipv6IfIcmpIfIndex = 22627 ill->ill_phyint->phyint_ifindex; 22628 ill->ill_mcast_type = ipst->ips_mld_max_version; 22629 } else { 22630 ill->ill_mcast_type = ipst->ips_igmp_max_version; 22631 } 22632 22633 /* 22634 * Generate an event within the hooks framework to indicate that 22635 * a new interface has just been added to IP. For this event to 22636 * be generated, the network interface must, at least, have an 22637 * ifindex assigned to it. 22638 * 22639 * This needs to be run inside the ill_g_lock perimeter to ensure 22640 * that the ordering of delivered events to listeners matches the 22641 * order of them in the kernel. 22642 * 22643 * This function could be called from ill_lookup_on_name. In that case 22644 * the interface is loopback "lo", which will not generate a NIC event. 22645 */ 22646 if (ill->ill_name_length <= 2 || 22647 ill->ill_name[0] != 'l' || ill->ill_name[1] != 'o') { 22648 /* 22649 * Generate nic plumb event for ill_name even if 22650 * ipmp_hook_emulation is set. That avoids generating events 22651 * for the ill_names should ipmp_hook_emulation be turned on 22652 * later. 22653 */ 22654 ill_nic_info_plumb(ill, B_FALSE); 22655 } 22656 RELEASE_ILL_LOCKS(ill, ill_other); 22657 mutex_exit(&phyi->phyint_lock); 22658 } 22659 22660 /* 22661 * Allocate a NE_PLUMB nic info event and store in the ill. 22662 * If 'group' is set we do it for the group name, otherwise the ill name. 22663 * It will be sent when we leave the ipsq. 22664 */ 22665 void 22666 ill_nic_info_plumb(ill_t *ill, boolean_t group) 22667 { 22668 phyint_t *phyi = ill->ill_phyint; 22669 ip_stack_t *ipst = ill->ill_ipst; 22670 hook_nic_event_t *info; 22671 char *name; 22672 int namelen; 22673 22674 ASSERT(MUTEX_HELD(&ill->ill_lock)); 22675 22676 if ((info = ill->ill_nic_event_info) != NULL) { 22677 ip2dbg(("ill_nic_info_plumb: unexpected nic event %d " 22678 "attached for %s\n", info->hne_event, 22679 ill->ill_name)); 22680 if (info->hne_data != NULL) 22681 kmem_free(info->hne_data, info->hne_datalen); 22682 kmem_free(info, sizeof (hook_nic_event_t)); 22683 ill->ill_nic_event_info = NULL; 22684 } 22685 22686 info = kmem_alloc(sizeof (hook_nic_event_t), KM_NOSLEEP); 22687 if (info == NULL) { 22688 ip2dbg(("ill_nic_info_plumb: could not attach PLUMB nic " 22689 "event information for %s (ENOMEM)\n", 22690 ill->ill_name)); 22691 return; 22692 } 22693 22694 if (group) { 22695 ASSERT(phyi->phyint_groupname_len != 0); 22696 namelen = phyi->phyint_groupname_len; 22697 name = phyi->phyint_groupname; 22698 } else { 22699 namelen = ill->ill_name_length; 22700 name = ill->ill_name; 22701 } 22702 22703 info->hne_nic = phyi->phyint_hook_ifindex; 22704 info->hne_lif = 0; 22705 info->hne_event = NE_PLUMB; 22706 info->hne_family = ill->ill_isv6 ? 22707 ipst->ips_ipv6_net_data : ipst->ips_ipv4_net_data; 22708 22709 info->hne_data = kmem_alloc(namelen, KM_NOSLEEP); 22710 if (info->hne_data != NULL) { 22711 info->hne_datalen = namelen; 22712 bcopy(name, info->hne_data, info->hne_datalen); 22713 } else { 22714 ip2dbg(("ill_nic_info_plumb: could not attach " 22715 "name information for PLUMB nic event " 22716 "of %s (ENOMEM)\n", name)); 22717 kmem_free(info, sizeof (hook_nic_event_t)); 22718 info = NULL; 22719 } 22720 ill->ill_nic_event_info = info; 22721 } 22722 22723 /* 22724 * Unhook the nic event message from the ill and enqueue it 22725 * into the nic event taskq. 22726 */ 22727 void 22728 ill_nic_info_dispatch(ill_t *ill) 22729 { 22730 hook_nic_event_t *info; 22731 22732 ASSERT(MUTEX_HELD(&ill->ill_lock)); 22733 22734 if ((info = ill->ill_nic_event_info) != NULL) { 22735 if (ddi_taskq_dispatch(eventq_queue_nic, 22736 ip_ne_queue_func, info, DDI_SLEEP) == DDI_FAILURE) { 22737 ip2dbg(("ill_nic_info_dispatch: " 22738 "ddi_taskq_dispatch failed\n")); 22739 if (info->hne_data != NULL) 22740 kmem_free(info->hne_data, info->hne_datalen); 22741 kmem_free(info, sizeof (hook_nic_event_t)); 22742 } 22743 ill->ill_nic_event_info = NULL; 22744 } 22745 } 22746 22747 /* 22748 * Notify any downstream modules of the name of this interface. 22749 * An M_IOCTL is used even though we don't expect a successful reply. 22750 * Any reply message from the driver (presumably an M_IOCNAK) will 22751 * eventually get discarded somewhere upstream. The message format is 22752 * simply an SIOCSLIFNAME ioctl just as might be sent from ifconfig 22753 * to IP. 22754 */ 22755 static void 22756 ip_ifname_notify(ill_t *ill, queue_t *q) 22757 { 22758 mblk_t *mp1, *mp2; 22759 struct iocblk *iocp; 22760 struct lifreq *lifr; 22761 22762 mp1 = mkiocb(SIOCSLIFNAME); 22763 if (mp1 == NULL) 22764 return; 22765 mp2 = allocb(sizeof (struct lifreq), BPRI_HI); 22766 if (mp2 == NULL) { 22767 freeb(mp1); 22768 return; 22769 } 22770 22771 mp1->b_cont = mp2; 22772 iocp = (struct iocblk *)mp1->b_rptr; 22773 iocp->ioc_count = sizeof (struct lifreq); 22774 22775 lifr = (struct lifreq *)mp2->b_rptr; 22776 mp2->b_wptr += sizeof (struct lifreq); 22777 bzero(lifr, sizeof (struct lifreq)); 22778 22779 (void) strncpy(lifr->lifr_name, ill->ill_name, LIFNAMSIZ); 22780 lifr->lifr_ppa = ill->ill_ppa; 22781 lifr->lifr_flags = (ill->ill_flags & (ILLF_IPV4|ILLF_IPV6)); 22782 22783 putnext(q, mp1); 22784 } 22785 22786 static int 22787 ipif_set_values_tail(ill_t *ill, ipif_t *ipif, mblk_t *mp, queue_t *q) 22788 { 22789 int err; 22790 ip_stack_t *ipst = ill->ill_ipst; 22791 22792 /* Set the obsolete NDD per-interface forwarding name. */ 22793 err = ill_set_ndd_name(ill); 22794 if (err != 0) { 22795 cmn_err(CE_WARN, "ipif_set_values: ill_set_ndd_name (%d)\n", 22796 err); 22797 } 22798 22799 /* Tell downstream modules where they are. */ 22800 ip_ifname_notify(ill, q); 22801 22802 /* 22803 * ill_dl_phys returns EINPROGRESS in the usual case. 22804 * Error cases are ENOMEM ... 22805 */ 22806 err = ill_dl_phys(ill, ipif, mp, q); 22807 22808 /* 22809 * If there is no IRE expiration timer running, get one started. 22810 * igmp and mld timers will be triggered by the first multicast 22811 */ 22812 if (ipst->ips_ip_ire_expire_id == 0) { 22813 /* 22814 * acquire the lock and check again. 22815 */ 22816 mutex_enter(&ipst->ips_ip_trash_timer_lock); 22817 if (ipst->ips_ip_ire_expire_id == 0) { 22818 ipst->ips_ip_ire_expire_id = timeout( 22819 ip_trash_timer_expire, ipst, 22820 MSEC_TO_TICK(ipst->ips_ip_timer_interval)); 22821 } 22822 mutex_exit(&ipst->ips_ip_trash_timer_lock); 22823 } 22824 22825 if (ill->ill_isv6) { 22826 mutex_enter(&ipst->ips_mld_slowtimeout_lock); 22827 if (ipst->ips_mld_slowtimeout_id == 0) { 22828 ipst->ips_mld_slowtimeout_id = timeout(mld_slowtimo, 22829 (void *)ipst, 22830 MSEC_TO_TICK(MCAST_SLOWTIMO_INTERVAL)); 22831 } 22832 mutex_exit(&ipst->ips_mld_slowtimeout_lock); 22833 } else { 22834 mutex_enter(&ipst->ips_igmp_slowtimeout_lock); 22835 if (ipst->ips_igmp_slowtimeout_id == 0) { 22836 ipst->ips_igmp_slowtimeout_id = timeout(igmp_slowtimo, 22837 (void *)ipst, 22838 MSEC_TO_TICK(MCAST_SLOWTIMO_INTERVAL)); 22839 } 22840 mutex_exit(&ipst->ips_igmp_slowtimeout_lock); 22841 } 22842 22843 return (err); 22844 } 22845 22846 /* 22847 * Common routine for ppa and ifname setting. Should be called exclusive. 22848 * 22849 * Returns EINPROGRESS when mp has been consumed by queueing it on 22850 * ill_pending_mp and the ioctl will complete in ip_rput. 22851 * 22852 * NOTE : If ppa is UNIT_MAX, we assign the next valid ppa and return 22853 * the new name and new ppa in lifr_name and lifr_ppa respectively. 22854 * For SLIFNAME, we pass these values back to the userland. 22855 */ 22856 static int 22857 ipif_set_values(queue_t *q, mblk_t *mp, char *interf_name, uint_t *new_ppa_ptr) 22858 { 22859 ill_t *ill; 22860 ipif_t *ipif; 22861 ipsq_t *ipsq; 22862 char *ppa_ptr; 22863 char *old_ptr; 22864 char old_char; 22865 int error; 22866 ip_stack_t *ipst; 22867 22868 ip1dbg(("ipif_set_values: interface %s\n", interf_name)); 22869 ASSERT(q->q_next != NULL); 22870 ASSERT(interf_name != NULL); 22871 22872 ill = (ill_t *)q->q_ptr; 22873 ipst = ill->ill_ipst; 22874 22875 ASSERT(ill->ill_ipst != NULL); 22876 ASSERT(ill->ill_name[0] == '\0'); 22877 ASSERT(IAM_WRITER_ILL(ill)); 22878 ASSERT((mi_strlen(interf_name) + 1) <= LIFNAMSIZ); 22879 ASSERT(ill->ill_ppa == UINT_MAX); 22880 22881 /* The ppa is sent down by ifconfig or is chosen */ 22882 if ((ppa_ptr = ill_get_ppa_ptr(interf_name)) == NULL) { 22883 return (EINVAL); 22884 } 22885 22886 /* 22887 * make sure ppa passed in is same as ppa in the name. 22888 * This check is not made when ppa == UINT_MAX in that case ppa 22889 * in the name could be anything. System will choose a ppa and 22890 * update new_ppa_ptr and inter_name to contain the choosen ppa. 22891 */ 22892 if (*new_ppa_ptr != UINT_MAX) { 22893 /* stoi changes the pointer */ 22894 old_ptr = ppa_ptr; 22895 /* 22896 * ifconfig passed in 0 for the ppa for DLPI 1 style devices 22897 * (they don't have an externally visible ppa). We assign one 22898 * here so that we can manage the interface. Note that in 22899 * the past this value was always 0 for DLPI 1 drivers. 22900 */ 22901 if (*new_ppa_ptr == 0) 22902 *new_ppa_ptr = stoi(&old_ptr); 22903 else if (*new_ppa_ptr != (uint_t)stoi(&old_ptr)) 22904 return (EINVAL); 22905 } 22906 /* 22907 * terminate string before ppa 22908 * save char at that location. 22909 */ 22910 old_char = ppa_ptr[0]; 22911 ppa_ptr[0] = '\0'; 22912 22913 ill->ill_ppa = *new_ppa_ptr; 22914 /* 22915 * Finish as much work now as possible before calling ill_glist_insert 22916 * which makes the ill globally visible and also merges it with the 22917 * other protocol instance of this phyint. The remaining work is 22918 * done after entering the ipsq which may happen sometime later. 22919 * ill_set_ndd_name occurs after the ill has been made globally visible. 22920 */ 22921 ipif = ill->ill_ipif; 22922 22923 /* We didn't do this when we allocated ipif in ip_ll_subnet_defaults */ 22924 ipif_assign_seqid(ipif); 22925 22926 if (!(ill->ill_flags & (ILLF_IPV4|ILLF_IPV6))) 22927 ill->ill_flags |= ILLF_IPV4; 22928 22929 ASSERT(ipif->ipif_next == NULL); /* Only one ipif on ill */ 22930 ASSERT((ipif->ipif_flags & IPIF_UP) == 0); 22931 22932 if (ill->ill_flags & ILLF_IPV6) { 22933 22934 ill->ill_isv6 = B_TRUE; 22935 if (ill->ill_rq != NULL) { 22936 ill->ill_rq->q_qinfo = &rinit_ipv6; 22937 ill->ill_wq->q_qinfo = &winit_ipv6; 22938 } 22939 22940 /* Keep the !IN6_IS_ADDR_V4MAPPED assertions happy */ 22941 ipif->ipif_v6lcl_addr = ipv6_all_zeros; 22942 ipif->ipif_v6src_addr = ipv6_all_zeros; 22943 ipif->ipif_v6subnet = ipv6_all_zeros; 22944 ipif->ipif_v6net_mask = ipv6_all_zeros; 22945 ipif->ipif_v6brd_addr = ipv6_all_zeros; 22946 ipif->ipif_v6pp_dst_addr = ipv6_all_zeros; 22947 /* 22948 * point-to-point or Non-mulicast capable 22949 * interfaces won't do NUD unless explicitly 22950 * configured to do so. 22951 */ 22952 if (ipif->ipif_flags & IPIF_POINTOPOINT || 22953 !(ill->ill_flags & ILLF_MULTICAST)) { 22954 ill->ill_flags |= ILLF_NONUD; 22955 } 22956 /* Make sure IPv4 specific flag is not set on IPv6 if */ 22957 if (ill->ill_flags & ILLF_NOARP) { 22958 /* 22959 * Note: xresolv interfaces will eventually need 22960 * NOARP set here as well, but that will require 22961 * those external resolvers to have some 22962 * knowledge of that flag and act appropriately. 22963 * Not to be changed at present. 22964 */ 22965 ill->ill_flags &= ~ILLF_NOARP; 22966 } 22967 /* 22968 * Set the ILLF_ROUTER flag according to the global 22969 * IPv6 forwarding policy. 22970 */ 22971 if (ipst->ips_ipv6_forward != 0) 22972 ill->ill_flags |= ILLF_ROUTER; 22973 } else if (ill->ill_flags & ILLF_IPV4) { 22974 ill->ill_isv6 = B_FALSE; 22975 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6lcl_addr); 22976 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6src_addr); 22977 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6subnet); 22978 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6net_mask); 22979 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6brd_addr); 22980 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6pp_dst_addr); 22981 /* 22982 * Set the ILLF_ROUTER flag according to the global 22983 * IPv4 forwarding policy. 22984 */ 22985 if (ipst->ips_ip_g_forward != 0) 22986 ill->ill_flags |= ILLF_ROUTER; 22987 } 22988 22989 ASSERT(ill->ill_phyint != NULL); 22990 22991 /* 22992 * The ipIfStatsIfindex and ipv6IfIcmpIfIndex assignments will 22993 * be completed in ill_glist_insert -> ill_phyint_reinit 22994 */ 22995 if (!ill_allocate_mibs(ill)) 22996 return (ENOMEM); 22997 22998 /* 22999 * Pick a default sap until we get the DL_INFO_ACK back from 23000 * the driver. 23001 */ 23002 if (ill->ill_sap == 0) { 23003 if (ill->ill_isv6) 23004 ill->ill_sap = IP6_DL_SAP; 23005 else 23006 ill->ill_sap = IP_DL_SAP; 23007 } 23008 23009 ill->ill_ifname_pending = 1; 23010 ill->ill_ifname_pending_err = 0; 23011 23012 ill_refhold(ill); 23013 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 23014 if ((error = ill_glist_insert(ill, interf_name, 23015 (ill->ill_flags & ILLF_IPV6) == ILLF_IPV6)) > 0) { 23016 ill->ill_ppa = UINT_MAX; 23017 ill->ill_name[0] = '\0'; 23018 /* 23019 * undo null termination done above. 23020 */ 23021 ppa_ptr[0] = old_char; 23022 rw_exit(&ipst->ips_ill_g_lock); 23023 ill_refrele(ill); 23024 return (error); 23025 } 23026 23027 ASSERT(ill->ill_name_length <= LIFNAMSIZ); 23028 23029 /* 23030 * When we return the buffer pointed to by interf_name should contain 23031 * the same name as in ill_name. 23032 * If a ppa was choosen by the system (ppa passed in was UINT_MAX) 23033 * the buffer pointed to by new_ppa_ptr would not contain the right ppa 23034 * so copy full name and update the ppa ptr. 23035 * When ppa passed in != UINT_MAX all values are correct just undo 23036 * null termination, this saves a bcopy. 23037 */ 23038 if (*new_ppa_ptr == UINT_MAX) { 23039 bcopy(ill->ill_name, interf_name, ill->ill_name_length); 23040 *new_ppa_ptr = ill->ill_ppa; 23041 } else { 23042 /* 23043 * undo null termination done above. 23044 */ 23045 ppa_ptr[0] = old_char; 23046 } 23047 23048 /* Let SCTP know about this ILL */ 23049 sctp_update_ill(ill, SCTP_ILL_INSERT); 23050 23051 ipsq = ipsq_try_enter(NULL, ill, q, mp, ip_reprocess_ioctl, NEW_OP, 23052 B_TRUE); 23053 23054 rw_exit(&ipst->ips_ill_g_lock); 23055 ill_refrele(ill); 23056 if (ipsq == NULL) 23057 return (EINPROGRESS); 23058 23059 /* 23060 * If ill_phyint_reinit() changed our ipsq, then start on the new ipsq. 23061 */ 23062 if (ipsq->ipsq_current_ipif == NULL) 23063 ipsq_current_start(ipsq, ipif, SIOCSLIFNAME); 23064 else 23065 ASSERT(ipsq->ipsq_current_ipif == ipif); 23066 23067 error = ipif_set_values_tail(ill, ipif, mp, q); 23068 ipsq_exit(ipsq, B_TRUE, B_TRUE); 23069 if (error != 0 && error != EINPROGRESS) { 23070 /* 23071 * restore previous values 23072 */ 23073 ill->ill_isv6 = B_FALSE; 23074 } 23075 return (error); 23076 } 23077 23078 23079 void 23080 ipif_init(ip_stack_t *ipst) 23081 { 23082 hrtime_t hrt; 23083 int i; 23084 23085 /* 23086 * Can't call drv_getparm here as it is too early in the boot. 23087 * As we use ipif_src_random just for picking a different 23088 * source address everytime, this need not be really random. 23089 */ 23090 hrt = gethrtime(); 23091 ipst->ips_ipif_src_random = 23092 ((hrt >> 32) & 0xffffffff) * (hrt & 0xffffffff); 23093 23094 for (i = 0; i < MAX_G_HEADS; i++) { 23095 ipst->ips_ill_g_heads[i].ill_g_list_head = 23096 (ill_if_t *)&ipst->ips_ill_g_heads[i]; 23097 ipst->ips_ill_g_heads[i].ill_g_list_tail = 23098 (ill_if_t *)&ipst->ips_ill_g_heads[i]; 23099 } 23100 23101 avl_create(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 23102 ill_phyint_compare_index, 23103 sizeof (phyint_t), 23104 offsetof(struct phyint, phyint_avl_by_index)); 23105 avl_create(&ipst->ips_phyint_g_list->phyint_list_avl_by_name, 23106 ill_phyint_compare_name, 23107 sizeof (phyint_t), 23108 offsetof(struct phyint, phyint_avl_by_name)); 23109 } 23110 23111 /* 23112 * Lookup the ipif corresponding to the onlink destination address. For 23113 * point-to-point interfaces, it matches with remote endpoint destination 23114 * address. For point-to-multipoint interfaces it only tries to match the 23115 * destination with the interface's subnet address. The longest, most specific 23116 * match is found to take care of such rare network configurations like - 23117 * le0: 129.146.1.1/16 23118 * le1: 129.146.2.2/24 23119 * It is used only by SO_DONTROUTE at the moment. 23120 */ 23121 ipif_t * 23122 ipif_lookup_onlink_addr(ipaddr_t addr, zoneid_t zoneid, ip_stack_t *ipst) 23123 { 23124 ipif_t *ipif, *best_ipif; 23125 ill_t *ill; 23126 ill_walk_context_t ctx; 23127 23128 ASSERT(zoneid != ALL_ZONES); 23129 best_ipif = NULL; 23130 23131 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 23132 ill = ILL_START_WALK_V4(&ctx, ipst); 23133 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 23134 mutex_enter(&ill->ill_lock); 23135 for (ipif = ill->ill_ipif; ipif != NULL; 23136 ipif = ipif->ipif_next) { 23137 if (!IPIF_CAN_LOOKUP(ipif)) 23138 continue; 23139 if (ipif->ipif_zoneid != zoneid && 23140 ipif->ipif_zoneid != ALL_ZONES) 23141 continue; 23142 /* 23143 * Point-to-point case. Look for exact match with 23144 * destination address. 23145 */ 23146 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 23147 if (ipif->ipif_pp_dst_addr == addr) { 23148 ipif_refhold_locked(ipif); 23149 mutex_exit(&ill->ill_lock); 23150 rw_exit(&ipst->ips_ill_g_lock); 23151 if (best_ipif != NULL) 23152 ipif_refrele(best_ipif); 23153 return (ipif); 23154 } 23155 } else if (ipif->ipif_subnet == (addr & 23156 ipif->ipif_net_mask)) { 23157 /* 23158 * Point-to-multipoint case. Looping through to 23159 * find the most specific match. If there are 23160 * multiple best match ipif's then prefer ipif's 23161 * that are UP. If there is only one best match 23162 * ipif and it is DOWN we must still return it. 23163 */ 23164 if ((best_ipif == NULL) || 23165 (ipif->ipif_net_mask > 23166 best_ipif->ipif_net_mask) || 23167 ((ipif->ipif_net_mask == 23168 best_ipif->ipif_net_mask) && 23169 ((ipif->ipif_flags & IPIF_UP) && 23170 (!(best_ipif->ipif_flags & IPIF_UP))))) { 23171 ipif_refhold_locked(ipif); 23172 mutex_exit(&ill->ill_lock); 23173 rw_exit(&ipst->ips_ill_g_lock); 23174 if (best_ipif != NULL) 23175 ipif_refrele(best_ipif); 23176 best_ipif = ipif; 23177 rw_enter(&ipst->ips_ill_g_lock, 23178 RW_READER); 23179 mutex_enter(&ill->ill_lock); 23180 } 23181 } 23182 } 23183 mutex_exit(&ill->ill_lock); 23184 } 23185 rw_exit(&ipst->ips_ill_g_lock); 23186 return (best_ipif); 23187 } 23188 23189 23190 /* 23191 * Save enough information so that we can recreate the IRE if 23192 * the interface goes down and then up. 23193 */ 23194 static void 23195 ipif_save_ire(ipif_t *ipif, ire_t *ire) 23196 { 23197 mblk_t *save_mp; 23198 23199 save_mp = allocb(sizeof (ifrt_t), BPRI_MED); 23200 if (save_mp != NULL) { 23201 ifrt_t *ifrt; 23202 23203 save_mp->b_wptr += sizeof (ifrt_t); 23204 ifrt = (ifrt_t *)save_mp->b_rptr; 23205 bzero(ifrt, sizeof (ifrt_t)); 23206 ifrt->ifrt_type = ire->ire_type; 23207 ifrt->ifrt_addr = ire->ire_addr; 23208 ifrt->ifrt_gateway_addr = ire->ire_gateway_addr; 23209 ifrt->ifrt_src_addr = ire->ire_src_addr; 23210 ifrt->ifrt_mask = ire->ire_mask; 23211 ifrt->ifrt_flags = ire->ire_flags; 23212 ifrt->ifrt_max_frag = ire->ire_max_frag; 23213 mutex_enter(&ipif->ipif_saved_ire_lock); 23214 save_mp->b_cont = ipif->ipif_saved_ire_mp; 23215 ipif->ipif_saved_ire_mp = save_mp; 23216 ipif->ipif_saved_ire_cnt++; 23217 mutex_exit(&ipif->ipif_saved_ire_lock); 23218 } 23219 } 23220 23221 23222 static void 23223 ipif_remove_ire(ipif_t *ipif, ire_t *ire) 23224 { 23225 mblk_t **mpp; 23226 mblk_t *mp; 23227 ifrt_t *ifrt; 23228 23229 /* Remove from ipif_saved_ire_mp list if it is there */ 23230 mutex_enter(&ipif->ipif_saved_ire_lock); 23231 for (mpp = &ipif->ipif_saved_ire_mp; *mpp != NULL; 23232 mpp = &(*mpp)->b_cont) { 23233 /* 23234 * On a given ipif, the triple of address, gateway and 23235 * mask is unique for each saved IRE (in the case of 23236 * ordinary interface routes, the gateway address is 23237 * all-zeroes). 23238 */ 23239 mp = *mpp; 23240 ifrt = (ifrt_t *)mp->b_rptr; 23241 if (ifrt->ifrt_addr == ire->ire_addr && 23242 ifrt->ifrt_gateway_addr == ire->ire_gateway_addr && 23243 ifrt->ifrt_mask == ire->ire_mask) { 23244 *mpp = mp->b_cont; 23245 ipif->ipif_saved_ire_cnt--; 23246 freeb(mp); 23247 break; 23248 } 23249 } 23250 mutex_exit(&ipif->ipif_saved_ire_lock); 23251 } 23252 23253 23254 /* 23255 * IP multirouting broadcast routes handling 23256 * Append CGTP broadcast IREs to regular ones created 23257 * at ifconfig time. 23258 */ 23259 static void 23260 ip_cgtp_bcast_add(ire_t *ire, ire_t *ire_dst, ip_stack_t *ipst) 23261 { 23262 ire_t *ire_prim; 23263 23264 ASSERT(ire != NULL); 23265 ASSERT(ire_dst != NULL); 23266 23267 ire_prim = ire_ctable_lookup(ire->ire_gateway_addr, 0, 23268 IRE_BROADCAST, NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 23269 if (ire_prim != NULL) { 23270 /* 23271 * We are in the special case of broadcasts for 23272 * CGTP. We add an IRE_BROADCAST that holds 23273 * the RTF_MULTIRT flag, the destination 23274 * address of ire_dst and the low level 23275 * info of ire_prim. In other words, CGTP 23276 * broadcast is added to the redundant ipif. 23277 */ 23278 ipif_t *ipif_prim; 23279 ire_t *bcast_ire; 23280 23281 ipif_prim = ire_prim->ire_ipif; 23282 23283 ip2dbg(("ip_cgtp_filter_bcast_add: " 23284 "ire_dst %p, ire_prim %p, ipif_prim %p\n", 23285 (void *)ire_dst, (void *)ire_prim, 23286 (void *)ipif_prim)); 23287 23288 bcast_ire = ire_create( 23289 (uchar_t *)&ire->ire_addr, 23290 (uchar_t *)&ip_g_all_ones, 23291 (uchar_t *)&ire_dst->ire_src_addr, 23292 (uchar_t *)&ire->ire_gateway_addr, 23293 &ipif_prim->ipif_mtu, 23294 NULL, 23295 ipif_prim->ipif_rq, 23296 ipif_prim->ipif_wq, 23297 IRE_BROADCAST, 23298 ipif_prim, 23299 0, 23300 0, 23301 0, 23302 ire->ire_flags, 23303 &ire_uinfo_null, 23304 NULL, 23305 NULL, 23306 ipst); 23307 23308 if (bcast_ire != NULL) { 23309 23310 if (ire_add(&bcast_ire, NULL, NULL, NULL, 23311 B_FALSE) == 0) { 23312 ip2dbg(("ip_cgtp_filter_bcast_add: " 23313 "added bcast_ire %p\n", 23314 (void *)bcast_ire)); 23315 23316 ipif_save_ire(bcast_ire->ire_ipif, 23317 bcast_ire); 23318 ire_refrele(bcast_ire); 23319 } 23320 } 23321 ire_refrele(ire_prim); 23322 } 23323 } 23324 23325 23326 /* 23327 * IP multirouting broadcast routes handling 23328 * Remove the broadcast ire 23329 */ 23330 static void 23331 ip_cgtp_bcast_delete(ire_t *ire, ip_stack_t *ipst) 23332 { 23333 ire_t *ire_dst; 23334 23335 ASSERT(ire != NULL); 23336 ire_dst = ire_ctable_lookup(ire->ire_addr, 0, IRE_BROADCAST, 23337 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 23338 if (ire_dst != NULL) { 23339 ire_t *ire_prim; 23340 23341 ire_prim = ire_ctable_lookup(ire->ire_gateway_addr, 0, 23342 IRE_BROADCAST, NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 23343 if (ire_prim != NULL) { 23344 ipif_t *ipif_prim; 23345 ire_t *bcast_ire; 23346 23347 ipif_prim = ire_prim->ire_ipif; 23348 23349 ip2dbg(("ip_cgtp_filter_bcast_delete: " 23350 "ire_dst %p, ire_prim %p, ipif_prim %p\n", 23351 (void *)ire_dst, (void *)ire_prim, 23352 (void *)ipif_prim)); 23353 23354 bcast_ire = ire_ctable_lookup(ire->ire_addr, 23355 ire->ire_gateway_addr, 23356 IRE_BROADCAST, 23357 ipif_prim, ALL_ZONES, 23358 NULL, 23359 MATCH_IRE_TYPE | MATCH_IRE_GW | MATCH_IRE_IPIF | 23360 MATCH_IRE_MASK, ipst); 23361 23362 if (bcast_ire != NULL) { 23363 ip2dbg(("ip_cgtp_filter_bcast_delete: " 23364 "looked up bcast_ire %p\n", 23365 (void *)bcast_ire)); 23366 ipif_remove_ire(bcast_ire->ire_ipif, 23367 bcast_ire); 23368 ire_delete(bcast_ire); 23369 } 23370 ire_refrele(ire_prim); 23371 } 23372 ire_refrele(ire_dst); 23373 } 23374 } 23375 23376 /* 23377 * IPsec hardware acceleration capabilities related functions. 23378 */ 23379 23380 /* 23381 * Free a per-ill IPsec capabilities structure. 23382 */ 23383 static void 23384 ill_ipsec_capab_free(ill_ipsec_capab_t *capab) 23385 { 23386 if (capab->auth_hw_algs != NULL) 23387 kmem_free(capab->auth_hw_algs, capab->algs_size); 23388 if (capab->encr_hw_algs != NULL) 23389 kmem_free(capab->encr_hw_algs, capab->algs_size); 23390 if (capab->encr_algparm != NULL) 23391 kmem_free(capab->encr_algparm, capab->encr_algparm_size); 23392 kmem_free(capab, sizeof (ill_ipsec_capab_t)); 23393 } 23394 23395 /* 23396 * Allocate a new per-ill IPsec capabilities structure. This structure 23397 * is specific to an IPsec protocol (AH or ESP). It is implemented as 23398 * an array which specifies, for each algorithm, whether this algorithm 23399 * is supported by the ill or not. 23400 */ 23401 static ill_ipsec_capab_t * 23402 ill_ipsec_capab_alloc(void) 23403 { 23404 ill_ipsec_capab_t *capab; 23405 uint_t nelems; 23406 23407 capab = kmem_zalloc(sizeof (ill_ipsec_capab_t), KM_NOSLEEP); 23408 if (capab == NULL) 23409 return (NULL); 23410 23411 /* we need one bit per algorithm */ 23412 nelems = MAX_IPSEC_ALGS / BITS(ipsec_capab_elem_t); 23413 capab->algs_size = nelems * sizeof (ipsec_capab_elem_t); 23414 23415 /* allocate memory to store algorithm flags */ 23416 capab->encr_hw_algs = kmem_zalloc(capab->algs_size, KM_NOSLEEP); 23417 if (capab->encr_hw_algs == NULL) 23418 goto nomem; 23419 capab->auth_hw_algs = kmem_zalloc(capab->algs_size, KM_NOSLEEP); 23420 if (capab->auth_hw_algs == NULL) 23421 goto nomem; 23422 /* 23423 * Leave encr_algparm NULL for now since we won't need it half 23424 * the time 23425 */ 23426 return (capab); 23427 23428 nomem: 23429 ill_ipsec_capab_free(capab); 23430 return (NULL); 23431 } 23432 23433 /* 23434 * Resize capability array. Since we're exclusive, this is OK. 23435 */ 23436 static boolean_t 23437 ill_ipsec_capab_resize_algparm(ill_ipsec_capab_t *capab, int algid) 23438 { 23439 ipsec_capab_algparm_t *nalp, *oalp; 23440 uint32_t olen, nlen; 23441 23442 oalp = capab->encr_algparm; 23443 olen = capab->encr_algparm_size; 23444 23445 if (oalp != NULL) { 23446 if (algid < capab->encr_algparm_end) 23447 return (B_TRUE); 23448 } 23449 23450 nlen = (algid + 1) * sizeof (*nalp); 23451 nalp = kmem_zalloc(nlen, KM_NOSLEEP); 23452 if (nalp == NULL) 23453 return (B_FALSE); 23454 23455 if (oalp != NULL) { 23456 bcopy(oalp, nalp, olen); 23457 kmem_free(oalp, olen); 23458 } 23459 capab->encr_algparm = nalp; 23460 capab->encr_algparm_size = nlen; 23461 capab->encr_algparm_end = algid + 1; 23462 23463 return (B_TRUE); 23464 } 23465 23466 /* 23467 * Compare the capabilities of the specified ill with the protocol 23468 * and algorithms specified by the SA passed as argument. 23469 * If they match, returns B_TRUE, B_FALSE if they do not match. 23470 * 23471 * The ill can be passed as a pointer to it, or by specifying its index 23472 * and whether it is an IPv6 ill (ill_index and ill_isv6 arguments). 23473 * 23474 * Called by ipsec_out_is_accelerated() do decide whether an outbound 23475 * packet is eligible for hardware acceleration, and by 23476 * ill_ipsec_capab_send_all() to decide whether a SA must be sent down 23477 * to a particular ill. 23478 */ 23479 boolean_t 23480 ipsec_capab_match(ill_t *ill, uint_t ill_index, boolean_t ill_isv6, 23481 ipsa_t *sa, netstack_t *ns) 23482 { 23483 boolean_t sa_isv6; 23484 uint_t algid; 23485 struct ill_ipsec_capab_s *cpp; 23486 boolean_t need_refrele = B_FALSE; 23487 ip_stack_t *ipst = ns->netstack_ip; 23488 23489 if (ill == NULL) { 23490 ill = ill_lookup_on_ifindex(ill_index, ill_isv6, NULL, 23491 NULL, NULL, NULL, ipst); 23492 if (ill == NULL) { 23493 ip0dbg(("ipsec_capab_match: ill doesn't exist\n")); 23494 return (B_FALSE); 23495 } 23496 need_refrele = B_TRUE; 23497 } 23498 23499 /* 23500 * Use the address length specified by the SA to determine 23501 * if it corresponds to a IPv6 address, and fail the matching 23502 * if the isv6 flag passed as argument does not match. 23503 * Note: this check is used for SADB capability checking before 23504 * sending SA information to an ill. 23505 */ 23506 sa_isv6 = (sa->ipsa_addrfam == AF_INET6); 23507 if (sa_isv6 != ill_isv6) 23508 /* protocol mismatch */ 23509 goto done; 23510 23511 /* 23512 * Check if the ill supports the protocol, algorithm(s) and 23513 * key size(s) specified by the SA, and get the pointers to 23514 * the algorithms supported by the ill. 23515 */ 23516 switch (sa->ipsa_type) { 23517 23518 case SADB_SATYPE_ESP: 23519 if (!(ill->ill_capabilities & ILL_CAPAB_ESP)) 23520 /* ill does not support ESP acceleration */ 23521 goto done; 23522 cpp = ill->ill_ipsec_capab_esp; 23523 algid = sa->ipsa_auth_alg; 23524 if (!IPSEC_ALG_IS_ENABLED(algid, cpp->auth_hw_algs)) 23525 goto done; 23526 algid = sa->ipsa_encr_alg; 23527 if (!IPSEC_ALG_IS_ENABLED(algid, cpp->encr_hw_algs)) 23528 goto done; 23529 if (algid < cpp->encr_algparm_end) { 23530 ipsec_capab_algparm_t *alp = &cpp->encr_algparm[algid]; 23531 if (sa->ipsa_encrkeybits < alp->minkeylen) 23532 goto done; 23533 if (sa->ipsa_encrkeybits > alp->maxkeylen) 23534 goto done; 23535 } 23536 break; 23537 23538 case SADB_SATYPE_AH: 23539 if (!(ill->ill_capabilities & ILL_CAPAB_AH)) 23540 /* ill does not support AH acceleration */ 23541 goto done; 23542 if (!IPSEC_ALG_IS_ENABLED(sa->ipsa_auth_alg, 23543 ill->ill_ipsec_capab_ah->auth_hw_algs)) 23544 goto done; 23545 break; 23546 } 23547 23548 if (need_refrele) 23549 ill_refrele(ill); 23550 return (B_TRUE); 23551 done: 23552 if (need_refrele) 23553 ill_refrele(ill); 23554 return (B_FALSE); 23555 } 23556 23557 23558 /* 23559 * Add a new ill to the list of IPsec capable ills. 23560 * Called from ill_capability_ipsec_ack() when an ACK was received 23561 * indicating that IPsec hardware processing was enabled for an ill. 23562 * 23563 * ill must point to the ill for which acceleration was enabled. 23564 * dl_cap must be set to DL_CAPAB_IPSEC_AH or DL_CAPAB_IPSEC_ESP. 23565 */ 23566 static void 23567 ill_ipsec_capab_add(ill_t *ill, uint_t dl_cap, boolean_t sadb_resync) 23568 { 23569 ipsec_capab_ill_t **ills, *cur_ill, *new_ill; 23570 uint_t sa_type; 23571 uint_t ipproto; 23572 ip_stack_t *ipst = ill->ill_ipst; 23573 23574 ASSERT((dl_cap == DL_CAPAB_IPSEC_AH) || 23575 (dl_cap == DL_CAPAB_IPSEC_ESP)); 23576 23577 switch (dl_cap) { 23578 case DL_CAPAB_IPSEC_AH: 23579 sa_type = SADB_SATYPE_AH; 23580 ills = &ipst->ips_ipsec_capab_ills_ah; 23581 ipproto = IPPROTO_AH; 23582 break; 23583 case DL_CAPAB_IPSEC_ESP: 23584 sa_type = SADB_SATYPE_ESP; 23585 ills = &ipst->ips_ipsec_capab_ills_esp; 23586 ipproto = IPPROTO_ESP; 23587 break; 23588 } 23589 23590 rw_enter(&ipst->ips_ipsec_capab_ills_lock, RW_WRITER); 23591 23592 /* 23593 * Add ill index to list of hardware accelerators. If 23594 * already in list, do nothing. 23595 */ 23596 for (cur_ill = *ills; cur_ill != NULL && 23597 (cur_ill->ill_index != ill->ill_phyint->phyint_ifindex || 23598 cur_ill->ill_isv6 != ill->ill_isv6); cur_ill = cur_ill->next) 23599 ; 23600 23601 if (cur_ill == NULL) { 23602 /* if this is a new entry for this ill */ 23603 new_ill = kmem_zalloc(sizeof (ipsec_capab_ill_t), KM_NOSLEEP); 23604 if (new_ill == NULL) { 23605 rw_exit(&ipst->ips_ipsec_capab_ills_lock); 23606 return; 23607 } 23608 23609 new_ill->ill_index = ill->ill_phyint->phyint_ifindex; 23610 new_ill->ill_isv6 = ill->ill_isv6; 23611 new_ill->next = *ills; 23612 *ills = new_ill; 23613 } else if (!sadb_resync) { 23614 /* not resync'ing SADB and an entry exists for this ill */ 23615 rw_exit(&ipst->ips_ipsec_capab_ills_lock); 23616 return; 23617 } 23618 23619 rw_exit(&ipst->ips_ipsec_capab_ills_lock); 23620 23621 if (ipst->ips_ipcl_proto_fanout_v6[ipproto].connf_head != NULL) 23622 /* 23623 * IPsec module for protocol loaded, initiate dump 23624 * of the SADB to this ill. 23625 */ 23626 sadb_ill_download(ill, sa_type); 23627 } 23628 23629 /* 23630 * Remove an ill from the list of IPsec capable ills. 23631 */ 23632 static void 23633 ill_ipsec_capab_delete(ill_t *ill, uint_t dl_cap) 23634 { 23635 ipsec_capab_ill_t **ills, *cur_ill, *prev_ill; 23636 ip_stack_t *ipst = ill->ill_ipst; 23637 23638 ASSERT(dl_cap == DL_CAPAB_IPSEC_AH || 23639 dl_cap == DL_CAPAB_IPSEC_ESP); 23640 23641 ills = (dl_cap == DL_CAPAB_IPSEC_AH) ? &ipst->ips_ipsec_capab_ills_ah : 23642 &ipst->ips_ipsec_capab_ills_esp; 23643 23644 rw_enter(&ipst->ips_ipsec_capab_ills_lock, RW_WRITER); 23645 23646 prev_ill = NULL; 23647 for (cur_ill = *ills; cur_ill != NULL && (cur_ill->ill_index != 23648 ill->ill_phyint->phyint_ifindex || cur_ill->ill_isv6 != 23649 ill->ill_isv6); prev_ill = cur_ill, cur_ill = cur_ill->next) 23650 ; 23651 if (cur_ill == NULL) { 23652 /* entry not found */ 23653 rw_exit(&ipst->ips_ipsec_capab_ills_lock); 23654 return; 23655 } 23656 if (prev_ill == NULL) { 23657 /* entry at front of list */ 23658 *ills = NULL; 23659 } else { 23660 prev_ill->next = cur_ill->next; 23661 } 23662 kmem_free(cur_ill, sizeof (ipsec_capab_ill_t)); 23663 rw_exit(&ipst->ips_ipsec_capab_ills_lock); 23664 } 23665 23666 /* 23667 * Called by SADB to send a DL_CONTROL_REQ message to every ill 23668 * supporting the specified IPsec protocol acceleration. 23669 * sa_type must be SADB_SATYPE_AH or SADB_SATYPE_ESP. 23670 * We free the mblk and, if sa is non-null, release the held referece. 23671 */ 23672 void 23673 ill_ipsec_capab_send_all(uint_t sa_type, mblk_t *mp, ipsa_t *sa, 23674 netstack_t *ns) 23675 { 23676 ipsec_capab_ill_t *ici, *cur_ici; 23677 ill_t *ill; 23678 mblk_t *nmp, *mp_ship_list = NULL, *next_mp; 23679 ip_stack_t *ipst = ns->netstack_ip; 23680 23681 ici = (sa_type == SADB_SATYPE_AH) ? ipst->ips_ipsec_capab_ills_ah : 23682 ipst->ips_ipsec_capab_ills_esp; 23683 23684 rw_enter(&ipst->ips_ipsec_capab_ills_lock, RW_READER); 23685 23686 for (cur_ici = ici; cur_ici != NULL; cur_ici = cur_ici->next) { 23687 ill = ill_lookup_on_ifindex(cur_ici->ill_index, 23688 cur_ici->ill_isv6, NULL, NULL, NULL, NULL, ipst); 23689 23690 /* 23691 * Handle the case where the ill goes away while the SADB is 23692 * attempting to send messages. If it's going away, it's 23693 * nuking its shadow SADB, so we don't care.. 23694 */ 23695 23696 if (ill == NULL) 23697 continue; 23698 23699 if (sa != NULL) { 23700 /* 23701 * Make sure capabilities match before 23702 * sending SA to ill. 23703 */ 23704 if (!ipsec_capab_match(ill, cur_ici->ill_index, 23705 cur_ici->ill_isv6, sa, ipst->ips_netstack)) { 23706 ill_refrele(ill); 23707 continue; 23708 } 23709 23710 mutex_enter(&sa->ipsa_lock); 23711 sa->ipsa_flags |= IPSA_F_HW; 23712 mutex_exit(&sa->ipsa_lock); 23713 } 23714 23715 /* 23716 * Copy template message, and add it to the front 23717 * of the mblk ship list. We want to avoid holding 23718 * the ipsec_capab_ills_lock while sending the 23719 * message to the ills. 23720 * 23721 * The b_next and b_prev are temporarily used 23722 * to build a list of mblks to be sent down, and to 23723 * save the ill to which they must be sent. 23724 */ 23725 nmp = copymsg(mp); 23726 if (nmp == NULL) { 23727 ill_refrele(ill); 23728 continue; 23729 } 23730 ASSERT(nmp->b_next == NULL && nmp->b_prev == NULL); 23731 nmp->b_next = mp_ship_list; 23732 mp_ship_list = nmp; 23733 nmp->b_prev = (mblk_t *)ill; 23734 } 23735 23736 rw_exit(&ipst->ips_ipsec_capab_ills_lock); 23737 23738 for (nmp = mp_ship_list; nmp != NULL; nmp = next_mp) { 23739 /* restore the mblk to a sane state */ 23740 next_mp = nmp->b_next; 23741 nmp->b_next = NULL; 23742 ill = (ill_t *)nmp->b_prev; 23743 nmp->b_prev = NULL; 23744 23745 ill_dlpi_send(ill, nmp); 23746 ill_refrele(ill); 23747 } 23748 23749 if (sa != NULL) 23750 IPSA_REFRELE(sa); 23751 freemsg(mp); 23752 } 23753 23754 /* 23755 * Derive an interface id from the link layer address. 23756 * Knows about IEEE 802 and IEEE EUI-64 mappings. 23757 */ 23758 static boolean_t 23759 ip_ether_v6intfid(uint_t phys_length, uint8_t *phys_addr, in6_addr_t *v6addr) 23760 { 23761 char *addr; 23762 23763 if (phys_length != ETHERADDRL) 23764 return (B_FALSE); 23765 23766 /* Form EUI-64 like address */ 23767 addr = (char *)&v6addr->s6_addr32[2]; 23768 bcopy((char *)phys_addr, addr, 3); 23769 addr[0] ^= 0x2; /* Toggle Universal/Local bit */ 23770 addr[3] = (char)0xff; 23771 addr[4] = (char)0xfe; 23772 bcopy((char *)phys_addr + 3, addr + 5, 3); 23773 return (B_TRUE); 23774 } 23775 23776 /* ARGSUSED */ 23777 static boolean_t 23778 ip_nodef_v6intfid(uint_t phys_length, uint8_t *phys_addr, in6_addr_t *v6addr) 23779 { 23780 return (B_FALSE); 23781 } 23782 23783 /* ARGSUSED */ 23784 static boolean_t 23785 ip_ether_v6mapinfo(uint_t lla_length, uint8_t *bphys_addr, uint8_t *maddr, 23786 uint32_t *hw_start, in6_addr_t *v6_extract_mask) 23787 { 23788 /* 23789 * Multicast address mappings used over Ethernet/802.X. 23790 * This address is used as a base for mappings. 23791 */ 23792 static uint8_t ipv6_g_phys_multi_addr[] = {0x33, 0x33, 0x00, 23793 0x00, 0x00, 0x00}; 23794 23795 /* 23796 * Extract low order 32 bits from IPv6 multicast address. 23797 * Or that into the link layer address, starting from the 23798 * second byte. 23799 */ 23800 *hw_start = 2; 23801 v6_extract_mask->s6_addr32[0] = 0; 23802 v6_extract_mask->s6_addr32[1] = 0; 23803 v6_extract_mask->s6_addr32[2] = 0; 23804 v6_extract_mask->s6_addr32[3] = 0xffffffffU; 23805 bcopy(ipv6_g_phys_multi_addr, maddr, lla_length); 23806 return (B_TRUE); 23807 } 23808 23809 /* 23810 * Indicate by return value whether multicast is supported. If not, 23811 * this code should not touch/change any parameters. 23812 */ 23813 /* ARGSUSED */ 23814 static boolean_t 23815 ip_ether_v4mapinfo(uint_t phys_length, uint8_t *bphys_addr, uint8_t *maddr, 23816 uint32_t *hw_start, ipaddr_t *extract_mask) 23817 { 23818 /* 23819 * Multicast address mappings used over Ethernet/802.X. 23820 * This address is used as a base for mappings. 23821 */ 23822 static uint8_t ip_g_phys_multi_addr[] = { 0x01, 0x00, 0x5e, 23823 0x00, 0x00, 0x00 }; 23824 23825 if (phys_length != ETHERADDRL) 23826 return (B_FALSE); 23827 23828 *extract_mask = htonl(0x007fffff); 23829 *hw_start = 2; 23830 bcopy(ip_g_phys_multi_addr, maddr, ETHERADDRL); 23831 return (B_TRUE); 23832 } 23833 23834 /* 23835 * Derive IPoIB interface id from the link layer address. 23836 */ 23837 static boolean_t 23838 ip_ib_v6intfid(uint_t phys_length, uint8_t *phys_addr, in6_addr_t *v6addr) 23839 { 23840 char *addr; 23841 23842 if (phys_length != 20) 23843 return (B_FALSE); 23844 addr = (char *)&v6addr->s6_addr32[2]; 23845 bcopy(phys_addr + 12, addr, 8); 23846 /* 23847 * In IBA 1.1 timeframe, some vendors erroneously set the u/l bit 23848 * in the globally assigned EUI-64 GUID to 1, in violation of IEEE 23849 * rules. In these cases, the IBA considers these GUIDs to be in 23850 * "Modified EUI-64" format, and thus toggling the u/l bit is not 23851 * required; vendors are required not to assign global EUI-64's 23852 * that differ only in u/l bit values, thus guaranteeing uniqueness 23853 * of the interface identifier. Whether the GUID is in modified 23854 * or proper EUI-64 format, the ipv6 identifier must have the u/l 23855 * bit set to 1. 23856 */ 23857 addr[0] |= 2; /* Set Universal/Local bit to 1 */ 23858 return (B_TRUE); 23859 } 23860 23861 /* 23862 * Note on mapping from multicast IP addresses to IPoIB multicast link 23863 * addresses. IPoIB multicast link addresses are based on IBA link addresses. 23864 * The format of an IPoIB multicast address is: 23865 * 23866 * 4 byte QPN Scope Sign. Pkey 23867 * +--------------------------------------------+ 23868 * | 00FFFFFF | FF | 1X | X01B | Pkey | GroupID | 23869 * +--------------------------------------------+ 23870 * 23871 * The Scope and Pkey components are properties of the IBA port and 23872 * network interface. They can be ascertained from the broadcast address. 23873 * The Sign. part is the signature, and is 401B for IPv4 and 601B for IPv6. 23874 */ 23875 23876 static boolean_t 23877 ip_ib_v6mapinfo(uint_t lla_length, uint8_t *bphys_addr, uint8_t *maddr, 23878 uint32_t *hw_start, in6_addr_t *v6_extract_mask) 23879 { 23880 /* 23881 * Base IPoIB IPv6 multicast address used for mappings. 23882 * Does not contain the IBA scope/Pkey values. 23883 */ 23884 static uint8_t ipv6_g_phys_ibmulti_addr[] = { 0x00, 0xff, 0xff, 0xff, 23885 0xff, 0x10, 0x60, 0x1b, 0x00, 0x00, 0x00, 0x00, 23886 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }; 23887 23888 /* 23889 * Extract low order 80 bits from IPv6 multicast address. 23890 * Or that into the link layer address, starting from the 23891 * sixth byte. 23892 */ 23893 *hw_start = 6; 23894 bcopy(ipv6_g_phys_ibmulti_addr, maddr, lla_length); 23895 23896 /* 23897 * Now fill in the IBA scope/Pkey values from the broadcast address. 23898 */ 23899 *(maddr + 5) = *(bphys_addr + 5); 23900 *(maddr + 8) = *(bphys_addr + 8); 23901 *(maddr + 9) = *(bphys_addr + 9); 23902 23903 v6_extract_mask->s6_addr32[0] = 0; 23904 v6_extract_mask->s6_addr32[1] = htonl(0x0000ffff); 23905 v6_extract_mask->s6_addr32[2] = 0xffffffffU; 23906 v6_extract_mask->s6_addr32[3] = 0xffffffffU; 23907 return (B_TRUE); 23908 } 23909 23910 static boolean_t 23911 ip_ib_v4mapinfo(uint_t phys_length, uint8_t *bphys_addr, uint8_t *maddr, 23912 uint32_t *hw_start, ipaddr_t *extract_mask) 23913 { 23914 /* 23915 * Base IPoIB IPv4 multicast address used for mappings. 23916 * Does not contain the IBA scope/Pkey values. 23917 */ 23918 static uint8_t ipv4_g_phys_ibmulti_addr[] = { 0x00, 0xff, 0xff, 0xff, 23919 0xff, 0x10, 0x40, 0x1b, 0x00, 0x00, 0x00, 0x00, 23920 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }; 23921 23922 if (phys_length != sizeof (ipv4_g_phys_ibmulti_addr)) 23923 return (B_FALSE); 23924 23925 /* 23926 * Extract low order 28 bits from IPv4 multicast address. 23927 * Or that into the link layer address, starting from the 23928 * sixteenth byte. 23929 */ 23930 *extract_mask = htonl(0x0fffffff); 23931 *hw_start = 16; 23932 bcopy(ipv4_g_phys_ibmulti_addr, maddr, phys_length); 23933 23934 /* 23935 * Now fill in the IBA scope/Pkey values from the broadcast address. 23936 */ 23937 *(maddr + 5) = *(bphys_addr + 5); 23938 *(maddr + 8) = *(bphys_addr + 8); 23939 *(maddr + 9) = *(bphys_addr + 9); 23940 return (B_TRUE); 23941 } 23942 23943 /* 23944 * Returns B_TRUE if an ipif is present in the given zone, matching some flags 23945 * (typically IPIF_UP). If ipifp is non-null, the held ipif is returned there. 23946 * This works for both IPv4 and IPv6; if the passed-in ill is v6, the ipif with 23947 * the link-local address is preferred. 23948 */ 23949 boolean_t 23950 ipif_lookup_zoneid(ill_t *ill, zoneid_t zoneid, int flags, ipif_t **ipifp) 23951 { 23952 ipif_t *ipif; 23953 ipif_t *maybe_ipif = NULL; 23954 23955 mutex_enter(&ill->ill_lock); 23956 if (ill->ill_state_flags & ILL_CONDEMNED) { 23957 mutex_exit(&ill->ill_lock); 23958 if (ipifp != NULL) 23959 *ipifp = NULL; 23960 return (B_FALSE); 23961 } 23962 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 23963 if (!IPIF_CAN_LOOKUP(ipif)) 23964 continue; 23965 if (zoneid != ALL_ZONES && ipif->ipif_zoneid != zoneid && 23966 ipif->ipif_zoneid != ALL_ZONES) 23967 continue; 23968 if ((ipif->ipif_flags & flags) != flags) 23969 continue; 23970 23971 if (ipifp == NULL) { 23972 mutex_exit(&ill->ill_lock); 23973 ASSERT(maybe_ipif == NULL); 23974 return (B_TRUE); 23975 } 23976 if (!ill->ill_isv6 || 23977 IN6_IS_ADDR_LINKLOCAL(&ipif->ipif_v6src_addr)) { 23978 ipif_refhold_locked(ipif); 23979 mutex_exit(&ill->ill_lock); 23980 *ipifp = ipif; 23981 return (B_TRUE); 23982 } 23983 if (maybe_ipif == NULL) 23984 maybe_ipif = ipif; 23985 } 23986 if (ipifp != NULL) { 23987 if (maybe_ipif != NULL) 23988 ipif_refhold_locked(maybe_ipif); 23989 *ipifp = maybe_ipif; 23990 } 23991 mutex_exit(&ill->ill_lock); 23992 return (maybe_ipif != NULL); 23993 } 23994 23995 /* 23996 * Same as ipif_lookup_zoneid() but looks at all the ills in the same group. 23997 */ 23998 boolean_t 23999 ipif_lookup_zoneid_group(ill_t *ill, zoneid_t zoneid, int flags, ipif_t **ipifp) 24000 { 24001 ill_t *illg; 24002 ip_stack_t *ipst = ill->ill_ipst; 24003 24004 /* 24005 * We look at the passed-in ill first without grabbing ill_g_lock. 24006 */ 24007 if (ipif_lookup_zoneid(ill, zoneid, flags, ipifp)) { 24008 return (B_TRUE); 24009 } 24010 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 24011 if (ill->ill_group == NULL) { 24012 /* ill not in a group */ 24013 rw_exit(&ipst->ips_ill_g_lock); 24014 return (B_FALSE); 24015 } 24016 24017 /* 24018 * There's no ipif in the zone on ill, however ill is part of an IPMP 24019 * group. We need to look for an ipif in the zone on all the ills in the 24020 * group. 24021 */ 24022 illg = ill->ill_group->illgrp_ill; 24023 do { 24024 /* 24025 * We don't call ipif_lookup_zoneid() on ill as we already know 24026 * that it's not there. 24027 */ 24028 if (illg != ill && 24029 ipif_lookup_zoneid(illg, zoneid, flags, ipifp)) { 24030 break; 24031 } 24032 } while ((illg = illg->ill_group_next) != NULL); 24033 rw_exit(&ipst->ips_ill_g_lock); 24034 return (illg != NULL); 24035 } 24036 24037 /* 24038 * Check if this ill is only being used to send ICMP probes for IPMP 24039 */ 24040 boolean_t 24041 ill_is_probeonly(ill_t *ill) 24042 { 24043 /* 24044 * Check if the interface is FAILED, or INACTIVE 24045 */ 24046 if (ill->ill_phyint->phyint_flags & (PHYI_FAILED|PHYI_INACTIVE)) 24047 return (B_TRUE); 24048 24049 return (B_FALSE); 24050 } 24051 24052 /* 24053 * Return a pointer to an ipif_t given a combination of (ill_idx,ipif_id) 24054 * If a pointer to an ipif_t is returned then the caller will need to do 24055 * an ill_refrele(). 24056 * 24057 * If there is no real interface which matches the ifindex, then it looks 24058 * for a group that has a matching index. In the case of a group match the 24059 * lifidx must be zero. We don't need emulate the logical interfaces 24060 * since IP Filter's use of netinfo doesn't use that. 24061 */ 24062 ipif_t * 24063 ipif_getby_indexes(uint_t ifindex, uint_t lifidx, boolean_t isv6, 24064 ip_stack_t *ipst) 24065 { 24066 ipif_t *ipif; 24067 ill_t *ill; 24068 24069 ill = ill_lookup_on_ifindex(ifindex, isv6, NULL, NULL, NULL, NULL, 24070 ipst); 24071 24072 if (ill == NULL) { 24073 /* Fallback to group names only if hook_emulation set */ 24074 if (!ipst->ips_ipmp_hook_emulation) 24075 return (NULL); 24076 24077 if (lifidx != 0) 24078 return (NULL); 24079 ill = ill_group_lookup_on_ifindex(ifindex, isv6, ipst); 24080 if (ill == NULL) 24081 return (NULL); 24082 } 24083 24084 mutex_enter(&ill->ill_lock); 24085 if (ill->ill_state_flags & ILL_CONDEMNED) { 24086 mutex_exit(&ill->ill_lock); 24087 ill_refrele(ill); 24088 return (NULL); 24089 } 24090 24091 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 24092 if (!IPIF_CAN_LOOKUP(ipif)) 24093 continue; 24094 if (lifidx == ipif->ipif_id) { 24095 ipif_refhold_locked(ipif); 24096 break; 24097 } 24098 } 24099 24100 mutex_exit(&ill->ill_lock); 24101 ill_refrele(ill); 24102 return (ipif); 24103 } 24104 24105 /* 24106 * Flush the fastpath by deleting any nce's that are waiting for the fastpath, 24107 * There is one exceptions IRE_BROADCAST are difficult to recreate, 24108 * so instead we just nuke their nce_fp_mp's; see ndp_fastpath_flush() 24109 * for details. 24110 */ 24111 void 24112 ill_fastpath_flush(ill_t *ill) 24113 { 24114 ip_stack_t *ipst = ill->ill_ipst; 24115 24116 nce_fastpath_list_dispatch(ill, NULL, NULL); 24117 ndp_walk_common((ill->ill_isv6 ? ipst->ips_ndp6 : ipst->ips_ndp4), 24118 ill, (pfi_t)ndp_fastpath_flush, NULL, B_TRUE); 24119 } 24120 24121 /* 24122 * Set the physical address information for `ill' to the contents of the 24123 * dl_notify_ind_t pointed to by `mp'. Must be called as writer, and will be 24124 * asynchronous if `ill' cannot immediately be quiesced -- in which case 24125 * EINPROGRESS will be returned. 24126 */ 24127 int 24128 ill_set_phys_addr(ill_t *ill, mblk_t *mp) 24129 { 24130 ipsq_t *ipsq = ill->ill_phyint->phyint_ipsq; 24131 dl_notify_ind_t *dlindp = (dl_notify_ind_t *)mp->b_rptr; 24132 24133 ASSERT(IAM_WRITER_IPSQ(ipsq)); 24134 24135 if (dlindp->dl_data != DL_IPV6_LINK_LAYER_ADDR && 24136 dlindp->dl_data != DL_CURR_PHYS_ADDR) { 24137 /* Changing DL_IPV6_TOKEN is not yet supported */ 24138 return (0); 24139 } 24140 24141 /* 24142 * We need to store up to two copies of `mp' in `ill'. Due to the 24143 * design of ipsq_pending_mp_add(), we can't pass them as separate 24144 * arguments to ill_set_phys_addr_tail(). Instead, chain them 24145 * together here, then pull 'em apart in ill_set_phys_addr_tail(). 24146 */ 24147 if ((mp = copyb(mp)) == NULL || (mp->b_cont = copyb(mp)) == NULL) { 24148 freemsg(mp); 24149 return (ENOMEM); 24150 } 24151 24152 ipsq_current_start(ipsq, ill->ill_ipif, 0); 24153 24154 /* 24155 * If we can quiesce the ill, then set the address. If not, then 24156 * ill_set_phys_addr_tail() will be called from ipif_ill_refrele_tail(). 24157 */ 24158 ill_down_ipifs(ill, NULL, 0, B_FALSE); 24159 mutex_enter(&ill->ill_lock); 24160 if (!ill_is_quiescent(ill)) { 24161 /* call cannot fail since `conn_t *' argument is NULL */ 24162 (void) ipsq_pending_mp_add(NULL, ill->ill_ipif, ill->ill_rq, 24163 mp, ILL_DOWN); 24164 mutex_exit(&ill->ill_lock); 24165 return (EINPROGRESS); 24166 } 24167 mutex_exit(&ill->ill_lock); 24168 24169 ill_set_phys_addr_tail(ipsq, ill->ill_rq, mp, NULL); 24170 return (0); 24171 } 24172 24173 /* 24174 * Once the ill associated with `q' has quiesced, set its physical address 24175 * information to the values in `addrmp'. Note that two copies of `addrmp' 24176 * are passed (linked by b_cont), since we sometimes need to save two distinct 24177 * copies in the ill_t, and our context doesn't permit sleeping or allocation 24178 * failure (we'll free the other copy if it's not needed). Since the ill_t 24179 * is quiesced, we know any stale IREs with the old address information have 24180 * already been removed, so we don't need to call ill_fastpath_flush(). 24181 */ 24182 /* ARGSUSED */ 24183 static void 24184 ill_set_phys_addr_tail(ipsq_t *ipsq, queue_t *q, mblk_t *addrmp, void *dummy) 24185 { 24186 ill_t *ill = q->q_ptr; 24187 mblk_t *addrmp2 = unlinkb(addrmp); 24188 dl_notify_ind_t *dlindp = (dl_notify_ind_t *)addrmp->b_rptr; 24189 uint_t addrlen, addroff; 24190 24191 ASSERT(IAM_WRITER_IPSQ(ipsq)); 24192 24193 addroff = dlindp->dl_addr_offset; 24194 addrlen = dlindp->dl_addr_length - ABS(ill->ill_sap_length); 24195 24196 switch (dlindp->dl_data) { 24197 case DL_IPV6_LINK_LAYER_ADDR: 24198 ill_set_ndmp(ill, addrmp, addroff, addrlen); 24199 freemsg(addrmp2); 24200 break; 24201 24202 case DL_CURR_PHYS_ADDR: 24203 freemsg(ill->ill_phys_addr_mp); 24204 ill->ill_phys_addr = addrmp->b_rptr + addroff; 24205 ill->ill_phys_addr_mp = addrmp; 24206 ill->ill_phys_addr_length = addrlen; 24207 24208 if (ill->ill_isv6 && !(ill->ill_flags & ILLF_XRESOLV)) 24209 ill_set_ndmp(ill, addrmp2, addroff, addrlen); 24210 else 24211 freemsg(addrmp2); 24212 break; 24213 default: 24214 ASSERT(0); 24215 } 24216 24217 /* 24218 * If there are ipifs to bring up, ill_up_ipifs() will return 24219 * EINPROGRESS, and ipsq_current_finish() will be called by 24220 * ip_rput_dlpi_writer() or ip_arp_done() when the last ipif is 24221 * brought up. 24222 */ 24223 if (ill_up_ipifs(ill, q, addrmp) != EINPROGRESS) 24224 ipsq_current_finish(ipsq); 24225 } 24226 24227 /* 24228 * Helper routine for setting the ill_nd_lla fields. 24229 */ 24230 void 24231 ill_set_ndmp(ill_t *ill, mblk_t *ndmp, uint_t addroff, uint_t addrlen) 24232 { 24233 freemsg(ill->ill_nd_lla_mp); 24234 ill->ill_nd_lla = ndmp->b_rptr + addroff; 24235 ill->ill_nd_lla_mp = ndmp; 24236 ill->ill_nd_lla_len = addrlen; 24237 } 24238 24239 major_t IP_MAJ; 24240 #define IP "ip" 24241 24242 #define UDP6DEV "/devices/pseudo/udp6@0:udp6" 24243 #define UDPDEV "/devices/pseudo/udp@0:udp" 24244 24245 /* 24246 * Issue REMOVEIF ioctls to have the loopback interfaces 24247 * go away. Other interfaces are either I_LINKed or I_PLINKed; 24248 * the former going away when the user-level processes in the zone 24249 * are killed * and the latter are cleaned up by the stream head 24250 * str_stack_shutdown callback that undoes all I_PLINKs. 24251 */ 24252 void 24253 ip_loopback_cleanup(ip_stack_t *ipst) 24254 { 24255 int error; 24256 ldi_handle_t lh = NULL; 24257 ldi_ident_t li = NULL; 24258 int rval; 24259 cred_t *cr; 24260 struct strioctl iocb; 24261 struct lifreq lifreq; 24262 24263 IP_MAJ = ddi_name_to_major(IP); 24264 24265 #ifdef NS_DEBUG 24266 (void) printf("ip_loopback_cleanup() stackid %d\n", 24267 ipst->ips_netstack->netstack_stackid); 24268 #endif 24269 24270 bzero(&lifreq, sizeof (lifreq)); 24271 (void) strcpy(lifreq.lifr_name, ipif_loopback_name); 24272 24273 error = ldi_ident_from_major(IP_MAJ, &li); 24274 if (error) { 24275 #ifdef DEBUG 24276 printf("ip_loopback_cleanup: lyr ident get failed error %d\n", 24277 error); 24278 #endif 24279 return; 24280 } 24281 24282 cr = zone_get_kcred(netstackid_to_zoneid( 24283 ipst->ips_netstack->netstack_stackid)); 24284 ASSERT(cr != NULL); 24285 error = ldi_open_by_name(UDP6DEV, FREAD|FWRITE, cr, &lh, li); 24286 if (error) { 24287 #ifdef DEBUG 24288 printf("ip_loopback_cleanup: open of UDP6DEV failed error %d\n", 24289 error); 24290 #endif 24291 goto out; 24292 } 24293 iocb.ic_cmd = SIOCLIFREMOVEIF; 24294 iocb.ic_timout = 15; 24295 iocb.ic_len = sizeof (lifreq); 24296 iocb.ic_dp = (char *)&lifreq; 24297 24298 error = ldi_ioctl(lh, I_STR, (intptr_t)&iocb, FKIOCTL, cr, &rval); 24299 /* LINTED - statement has no consequent */ 24300 if (error) { 24301 #ifdef NS_DEBUG 24302 printf("ip_loopback_cleanup: ioctl SIOCLIFREMOVEIF failed on " 24303 "UDP6 error %d\n", error); 24304 #endif 24305 } 24306 (void) ldi_close(lh, FREAD|FWRITE, cr); 24307 lh = NULL; 24308 24309 error = ldi_open_by_name(UDPDEV, FREAD|FWRITE, cr, &lh, li); 24310 if (error) { 24311 #ifdef NS_DEBUG 24312 printf("ip_loopback_cleanup: open of UDPDEV failed error %d\n", 24313 error); 24314 #endif 24315 goto out; 24316 } 24317 24318 iocb.ic_cmd = SIOCLIFREMOVEIF; 24319 iocb.ic_timout = 15; 24320 iocb.ic_len = sizeof (lifreq); 24321 iocb.ic_dp = (char *)&lifreq; 24322 24323 error = ldi_ioctl(lh, I_STR, (intptr_t)&iocb, FKIOCTL, cr, &rval); 24324 /* LINTED - statement has no consequent */ 24325 if (error) { 24326 #ifdef NS_DEBUG 24327 printf("ip_loopback_cleanup: ioctl SIOCLIFREMOVEIF failed on " 24328 "UDP error %d\n", error); 24329 #endif 24330 } 24331 (void) ldi_close(lh, FREAD|FWRITE, cr); 24332 lh = NULL; 24333 24334 out: 24335 /* Close layered handles */ 24336 if (lh) 24337 (void) ldi_close(lh, FREAD|FWRITE, cr); 24338 if (li) 24339 ldi_ident_release(li); 24340 24341 crfree(cr); 24342 } 24343