xref: /titanic_44/usr/src/uts/common/inet/ip/ip_if.c (revision 2dd2efa5a06a9befe46075cf41e16f57533c9f98)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2008 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 /* Copyright (c) 1990 Mentat Inc. */
26 
27 #pragma ident	"%Z%%M%	%I%	%E% SMI"
28 
29 /*
30  * This file contains the interface control functions for IP.
31  */
32 
33 #include <sys/types.h>
34 #include <sys/stream.h>
35 #include <sys/dlpi.h>
36 #include <sys/stropts.h>
37 #include <sys/strsun.h>
38 #include <sys/sysmacros.h>
39 #include <sys/strlog.h>
40 #include <sys/ddi.h>
41 #include <sys/sunddi.h>
42 #include <sys/cmn_err.h>
43 #include <sys/kstat.h>
44 #include <sys/debug.h>
45 #include <sys/zone.h>
46 #include <sys/sunldi.h>
47 #include <sys/file.h>
48 #include <sys/bitmap.h>
49 
50 #include <sys/kmem.h>
51 #include <sys/systm.h>
52 #include <sys/param.h>
53 #include <sys/socket.h>
54 #include <sys/isa_defs.h>
55 #include <net/if.h>
56 #include <net/if_arp.h>
57 #include <net/if_types.h>
58 #include <net/if_dl.h>
59 #include <net/route.h>
60 #include <sys/sockio.h>
61 #include <netinet/in.h>
62 #include <netinet/ip6.h>
63 #include <netinet/icmp6.h>
64 #include <netinet/igmp_var.h>
65 #include <sys/strsun.h>
66 #include <sys/policy.h>
67 #include <sys/ethernet.h>
68 
69 #include <inet/common.h>   /* for various inet/mi.h and inet/nd.h needs */
70 #include <inet/mi.h>
71 #include <inet/nd.h>
72 #include <inet/arp.h>
73 #include <inet/mib2.h>
74 #include <inet/ip.h>
75 #include <inet/ip6.h>
76 #include <inet/ip6_asp.h>
77 #include <inet/tcp.h>
78 #include <inet/ip_multi.h>
79 #include <inet/ip_ire.h>
80 #include <inet/ip_ftable.h>
81 #include <inet/ip_rts.h>
82 #include <inet/ip_ndp.h>
83 #include <inet/ip_if.h>
84 #include <inet/ip_impl.h>
85 #include <inet/tun.h>
86 #include <inet/sctp_ip.h>
87 #include <inet/ip_netinfo.h>
88 #include <inet/mib2.h>
89 
90 #include <net/pfkeyv2.h>
91 #include <inet/ipsec_info.h>
92 #include <inet/sadb.h>
93 #include <inet/ipsec_impl.h>
94 #include <sys/iphada.h>
95 
96 
97 #include <netinet/igmp.h>
98 #include <inet/ip_listutils.h>
99 #include <inet/ipclassifier.h>
100 #include <sys/mac.h>
101 
102 #include <sys/systeminfo.h>
103 #include <sys/bootconf.h>
104 
105 #include <sys/tsol/tndb.h>
106 #include <sys/tsol/tnet.h>
107 
108 /* The character which tells where the ill_name ends */
109 #define	IPIF_SEPARATOR_CHAR	':'
110 
111 /* IP ioctl function table entry */
112 typedef struct ipft_s {
113 	int	ipft_cmd;
114 	pfi_t	ipft_pfi;
115 	int	ipft_min_size;
116 	int	ipft_flags;
117 } ipft_t;
118 #define	IPFT_F_NO_REPLY		0x1	/* IP ioctl does not expect any reply */
119 #define	IPFT_F_SELF_REPLY	0x2	/* ioctl callee does the ioctl reply */
120 
121 typedef struct ip_sock_ar_s {
122 	union {
123 		area_t	ip_sock_area;
124 		ared_t	ip_sock_ared;
125 		areq_t	ip_sock_areq;
126 	} ip_sock_ar_u;
127 	queue_t	*ip_sock_ar_q;
128 } ip_sock_ar_t;
129 
130 static int	nd_ill_forward_get(queue_t *, mblk_t *, caddr_t, cred_t *);
131 static int	nd_ill_forward_set(queue_t *q, mblk_t *mp,
132 		    char *value, caddr_t cp, cred_t *ioc_cr);
133 
134 static boolean_t ip_addr_ok_v4(ipaddr_t addr, ipaddr_t subnet_mask);
135 static ip_m_t	*ip_m_lookup(t_uscalar_t mac_type);
136 static int	ip_sioctl_addr_tail(ipif_t *ipif, sin_t *sin, queue_t *q,
137     mblk_t *mp, boolean_t need_up);
138 static int	ip_sioctl_dstaddr_tail(ipif_t *ipif, sin_t *sin, queue_t *q,
139     mblk_t *mp, boolean_t need_up);
140 static int	ip_sioctl_slifzone_tail(ipif_t *ipif, zoneid_t zoneid,
141     queue_t *q, mblk_t *mp, boolean_t need_up);
142 static int	ip_sioctl_flags_tail(ipif_t *ipif, uint64_t flags, queue_t *q,
143     mblk_t *mp, boolean_t need_up);
144 static int	ip_sioctl_netmask_tail(ipif_t *ipif, sin_t *sin, queue_t *q,
145     mblk_t *mp);
146 static int	ip_sioctl_subnet_tail(ipif_t *ipif, in6_addr_t, in6_addr_t,
147     queue_t *q, mblk_t *mp, boolean_t need_up);
148 static int	ip_sioctl_plink_ipmod(ipsq_t *ipsq, queue_t *q, mblk_t *mp,
149     int ioccmd, struct linkblk *li, boolean_t doconsist);
150 static ipaddr_t	ip_subnet_mask(ipaddr_t addr, ipif_t **, ip_stack_t *);
151 static void	ip_wput_ioctl(queue_t *q, mblk_t *mp);
152 static void	ipsq_flush(ill_t *ill);
153 
154 static	int	ip_sioctl_token_tail(ipif_t *ipif, sin6_t *sin6, int addrlen,
155     queue_t *q, mblk_t *mp, boolean_t need_up);
156 static void	ipsq_delete(ipsq_t *);
157 
158 static ipif_t	*ipif_allocate(ill_t *ill, int id, uint_t ire_type,
159 		    boolean_t initialize);
160 static void	ipif_check_bcast_ires(ipif_t *test_ipif);
161 static ire_t	**ipif_create_bcast_ires(ipif_t *ipif, ire_t **irep);
162 static boolean_t ipif_comp_multi(ipif_t *old_ipif, ipif_t *new_ipif,
163 		    boolean_t isv6);
164 static void	ipif_down_delete_ire(ire_t *ire, char *ipif);
165 static void	ipif_delete_cache_ire(ire_t *, char *);
166 static int	ipif_logical_down(ipif_t *ipif, queue_t *q, mblk_t *mp);
167 static void	ipif_free(ipif_t *ipif);
168 static void	ipif_free_tail(ipif_t *ipif);
169 static void	ipif_mtu_change(ire_t *ire, char *ipif_arg);
170 static void	ipif_multicast_down(ipif_t *ipif);
171 static void	ipif_recreate_interface_routes(ipif_t *old_ipif, ipif_t *ipif);
172 static void	ipif_set_default(ipif_t *ipif);
173 static int	ipif_set_values(queue_t *q, mblk_t *mp,
174     char *interf_name, uint_t *ppa);
175 static int	ipif_set_values_tail(ill_t *ill, ipif_t *ipif, mblk_t *mp,
176     queue_t *q);
177 static ipif_t	*ipif_lookup_on_name(char *name, size_t namelen,
178     boolean_t do_alloc, boolean_t *exists, boolean_t isv6, zoneid_t zoneid,
179     queue_t *q, mblk_t *mp, ipsq_func_t func, int *error, ip_stack_t *);
180 static int	ipif_up(ipif_t *ipif, queue_t *q, mblk_t *mp);
181 static void	ipif_update_other_ipifs(ipif_t *old_ipif, ill_group_t *illgrp);
182 
183 static int	ill_alloc_ppa(ill_if_t *, ill_t *);
184 static int	ill_arp_off(ill_t *ill);
185 static int	ill_arp_on(ill_t *ill);
186 static void	ill_delete_interface_type(ill_if_t *);
187 static int	ill_dl_up(ill_t *ill, ipif_t *ipif, mblk_t *mp, queue_t *q);
188 static void	ill_dl_down(ill_t *ill);
189 static void	ill_down(ill_t *ill);
190 static void	ill_downi(ire_t *ire, char *ill_arg);
191 static void	ill_free_mib(ill_t *ill);
192 static void	ill_glist_delete(ill_t *);
193 static boolean_t ill_has_usable_ipif(ill_t *);
194 static int	ill_lock_ipsq_ills(ipsq_t *sq, ill_t **list, int);
195 static void	ill_nominate_bcast_rcv(ill_group_t *illgrp);
196 static void	ill_phyint_free(ill_t *ill);
197 static void	ill_phyint_reinit(ill_t *ill);
198 static void	ill_set_nce_router_flags(ill_t *, boolean_t);
199 static void	ill_set_phys_addr_tail(ipsq_t *, queue_t *, mblk_t *, void *);
200 static void	ill_signal_ipsq_ills(ipsq_t *, boolean_t);
201 static boolean_t ill_split_ipsq(ipsq_t *cur_sq);
202 static void	ill_stq_cache_delete(ire_t *, char *);
203 
204 static boolean_t ip_ether_v6intfid(uint_t, uint8_t *, in6_addr_t *);
205 static boolean_t ip_nodef_v6intfid(uint_t, uint8_t *, in6_addr_t *);
206 static boolean_t ip_ether_v6mapinfo(uint_t, uint8_t *, uint8_t *, uint32_t *,
207     in6_addr_t *);
208 static boolean_t ip_ether_v4mapinfo(uint_t, uint8_t *, uint8_t *, uint32_t *,
209     ipaddr_t *);
210 static boolean_t ip_ib_v6intfid(uint_t, uint8_t *, in6_addr_t *);
211 static boolean_t ip_ib_v6mapinfo(uint_t, uint8_t *, uint8_t *, uint32_t *,
212     in6_addr_t *);
213 static boolean_t ip_ib_v4mapinfo(uint_t, uint8_t *, uint8_t *, uint32_t *,
214     ipaddr_t *);
215 
216 static void	ipif_save_ire(ipif_t *, ire_t *);
217 static void	ipif_remove_ire(ipif_t *, ire_t *);
218 static void 	ip_cgtp_bcast_add(ire_t *, ire_t *, ip_stack_t *);
219 static void 	ip_cgtp_bcast_delete(ire_t *, ip_stack_t *);
220 
221 /*
222  * Per-ill IPsec capabilities management.
223  */
224 static ill_ipsec_capab_t *ill_ipsec_capab_alloc(void);
225 static void	ill_ipsec_capab_free(ill_ipsec_capab_t *);
226 static void	ill_ipsec_capab_add(ill_t *, uint_t, boolean_t);
227 static void	ill_ipsec_capab_delete(ill_t *, uint_t);
228 static boolean_t ill_ipsec_capab_resize_algparm(ill_ipsec_capab_t *, int);
229 static void ill_capability_proto(ill_t *, int, mblk_t *);
230 static void ill_capability_dispatch(ill_t *, mblk_t *, dl_capability_sub_t *,
231     boolean_t);
232 static void ill_capability_id_ack(ill_t *, mblk_t *, dl_capability_sub_t *);
233 static void ill_capability_mdt_ack(ill_t *, mblk_t *, dl_capability_sub_t *);
234 static void ill_capability_mdt_reset(ill_t *, mblk_t **);
235 static void ill_capability_ipsec_ack(ill_t *, mblk_t *, dl_capability_sub_t *);
236 static void ill_capability_ipsec_reset(ill_t *, mblk_t **);
237 static void ill_capability_hcksum_ack(ill_t *, mblk_t *, dl_capability_sub_t *);
238 static void ill_capability_hcksum_reset(ill_t *, mblk_t **);
239 static void ill_capability_zerocopy_ack(ill_t *, mblk_t *,
240     dl_capability_sub_t *);
241 static void ill_capability_zerocopy_reset(ill_t *, mblk_t **);
242 static void ill_capability_lso_ack(ill_t *, mblk_t *, dl_capability_sub_t *);
243 static void ill_capability_lso_reset(ill_t *, mblk_t **);
244 static void ill_capability_dls_ack(ill_t *, mblk_t *, dl_capability_sub_t *);
245 static mac_resource_handle_t ill_ring_add(void *, mac_resource_t *);
246 static void	ill_capability_dls_reset(ill_t *, mblk_t **);
247 static void	ill_capability_dls_disable(ill_t *);
248 
249 static void	illgrp_cache_delete(ire_t *, char *);
250 static void	illgrp_delete(ill_t *ill);
251 static void	illgrp_reset_schednext(ill_t *ill);
252 
253 static ill_t	*ill_prev_usesrc(ill_t *);
254 static int	ill_relink_usesrc_ills(ill_t *, ill_t *, uint_t);
255 static void	ill_disband_usesrc_group(ill_t *);
256 
257 static void	conn_cleanup_stale_ire(conn_t *, caddr_t);
258 
259 #ifdef DEBUG
260 static	void	ill_trace_cleanup(const ill_t *);
261 static	void	ipif_trace_cleanup(const ipif_t *);
262 #endif
263 
264 /*
265  * if we go over the memory footprint limit more than once in this msec
266  * interval, we'll start pruning aggressively.
267  */
268 int ip_min_frag_prune_time = 0;
269 
270 /*
271  * max # of IPsec algorithms supported.  Limited to 1 byte by PF_KEY
272  * and the IPsec DOI
273  */
274 #define	MAX_IPSEC_ALGS	256
275 
276 #define	BITSPERBYTE	8
277 #define	BITS(type)	(BITSPERBYTE * (long)sizeof (type))
278 
279 #define	IPSEC_ALG_ENABLE(algs, algid) \
280 		((algs)[(algid) / BITS(ipsec_capab_elem_t)] |= \
281 		(1 << ((algid) % BITS(ipsec_capab_elem_t))))
282 
283 #define	IPSEC_ALG_IS_ENABLED(algid, algs) \
284 		((algs)[(algid) / BITS(ipsec_capab_elem_t)] & \
285 		(1 << ((algid) % BITS(ipsec_capab_elem_t))))
286 
287 typedef uint8_t ipsec_capab_elem_t;
288 
289 /*
290  * Per-algorithm parameters.  Note that at present, only encryption
291  * algorithms have variable keysize (IKE does not provide a way to negotiate
292  * auth algorithm keysize).
293  *
294  * All sizes here are in bits.
295  */
296 typedef struct
297 {
298 	uint16_t	minkeylen;
299 	uint16_t	maxkeylen;
300 } ipsec_capab_algparm_t;
301 
302 /*
303  * Per-ill capabilities.
304  */
305 struct ill_ipsec_capab_s {
306 	ipsec_capab_elem_t *encr_hw_algs;
307 	ipsec_capab_elem_t *auth_hw_algs;
308 	uint32_t algs_size;	/* size of _hw_algs in bytes */
309 	/* algorithm key lengths */
310 	ipsec_capab_algparm_t *encr_algparm;
311 	uint32_t encr_algparm_size;
312 	uint32_t encr_algparm_end;
313 };
314 
315 /*
316  * The field values are larger than strictly necessary for simple
317  * AR_ENTRY_ADDs but the padding lets us accomodate the socket ioctls.
318  */
319 static area_t	ip_area_template = {
320 	AR_ENTRY_ADD,			/* area_cmd */
321 	sizeof (ip_sock_ar_t) + (IP_ADDR_LEN*2) + sizeof (struct sockaddr_dl),
322 					/* area_name_offset */
323 	/* area_name_length temporarily holds this structure length */
324 	sizeof (area_t),			/* area_name_length */
325 	IP_ARP_PROTO_TYPE,		/* area_proto */
326 	sizeof (ip_sock_ar_t),		/* area_proto_addr_offset */
327 	IP_ADDR_LEN,			/* area_proto_addr_length */
328 	sizeof (ip_sock_ar_t) + IP_ADDR_LEN,
329 					/* area_proto_mask_offset */
330 	0,				/* area_flags */
331 	sizeof (ip_sock_ar_t) + IP_ADDR_LEN + IP_ADDR_LEN,
332 					/* area_hw_addr_offset */
333 	/* Zero length hw_addr_length means 'use your idea of the address' */
334 	0				/* area_hw_addr_length */
335 };
336 
337 /*
338  * AR_ENTRY_ADD/DELETE templates have been added for IPv6 external resolver
339  * support
340  */
341 static area_t	ip6_area_template = {
342 	AR_ENTRY_ADD,			/* area_cmd */
343 	sizeof (ip_sock_ar_t) + (IPV6_ADDR_LEN*2) + sizeof (sin6_t),
344 					/* area_name_offset */
345 	/* area_name_length temporarily holds this structure length */
346 	sizeof (area_t),			/* area_name_length */
347 	IP_ARP_PROTO_TYPE,		/* area_proto */
348 	sizeof (ip_sock_ar_t),		/* area_proto_addr_offset */
349 	IPV6_ADDR_LEN,			/* area_proto_addr_length */
350 	sizeof (ip_sock_ar_t) + IPV6_ADDR_LEN,
351 					/* area_proto_mask_offset */
352 	0,				/* area_flags */
353 	sizeof (ip_sock_ar_t) + IPV6_ADDR_LEN + IPV6_ADDR_LEN,
354 					/* area_hw_addr_offset */
355 	/* Zero length hw_addr_length means 'use your idea of the address' */
356 	0				/* area_hw_addr_length */
357 };
358 
359 static ared_t	ip_ared_template = {
360 	AR_ENTRY_DELETE,
361 	sizeof (ared_t) + IP_ADDR_LEN,
362 	sizeof (ared_t),
363 	IP_ARP_PROTO_TYPE,
364 	sizeof (ared_t),
365 	IP_ADDR_LEN
366 };
367 
368 static ared_t	ip6_ared_template = {
369 	AR_ENTRY_DELETE,
370 	sizeof (ared_t) + IPV6_ADDR_LEN,
371 	sizeof (ared_t),
372 	IP_ARP_PROTO_TYPE,
373 	sizeof (ared_t),
374 	IPV6_ADDR_LEN
375 };
376 
377 /*
378  * A template for an IPv6 AR_ENTRY_QUERY template has not been created, as
379  * as the areq doesn't include an IP address in ill_dl_up() (the only place a
380  * areq is used).
381  */
382 static areq_t	ip_areq_template = {
383 	AR_ENTRY_QUERY,			/* cmd */
384 	sizeof (areq_t)+(2*IP_ADDR_LEN),	/* name offset */
385 	sizeof (areq_t),	/* name len (filled by ill_arp_alloc) */
386 	IP_ARP_PROTO_TYPE,		/* protocol, from arps perspective */
387 	sizeof (areq_t),			/* target addr offset */
388 	IP_ADDR_LEN,			/* target addr_length */
389 	0,				/* flags */
390 	sizeof (areq_t) + IP_ADDR_LEN,	/* sender addr offset */
391 	IP_ADDR_LEN,			/* sender addr length */
392 	AR_EQ_DEFAULT_XMIT_COUNT,	/* xmit_count */
393 	AR_EQ_DEFAULT_XMIT_INTERVAL,	/* (re)xmit_interval in milliseconds */
394 	AR_EQ_DEFAULT_MAX_BUFFERED	/* max # of requests to buffer */
395 	/* anything else filled in by the code */
396 };
397 
398 static arc_t	ip_aru_template = {
399 	AR_INTERFACE_UP,
400 	sizeof (arc_t),		/* Name offset */
401 	sizeof (arc_t)		/* Name length (set by ill_arp_alloc) */
402 };
403 
404 static arc_t	ip_ard_template = {
405 	AR_INTERFACE_DOWN,
406 	sizeof (arc_t),		/* Name offset */
407 	sizeof (arc_t)		/* Name length (set by ill_arp_alloc) */
408 };
409 
410 static arc_t	ip_aron_template = {
411 	AR_INTERFACE_ON,
412 	sizeof (arc_t),		/* Name offset */
413 	sizeof (arc_t)		/* Name length (set by ill_arp_alloc) */
414 };
415 
416 static arc_t	ip_aroff_template = {
417 	AR_INTERFACE_OFF,
418 	sizeof (arc_t),		/* Name offset */
419 	sizeof (arc_t)		/* Name length (set by ill_arp_alloc) */
420 };
421 
422 
423 static arma_t	ip_arma_multi_template = {
424 	AR_MAPPING_ADD,
425 	sizeof (arma_t) + 3*IP_ADDR_LEN + IP_MAX_HW_LEN,
426 				/* Name offset */
427 	sizeof (arma_t),	/* Name length (set by ill_arp_alloc) */
428 	IP_ARP_PROTO_TYPE,
429 	sizeof (arma_t),			/* proto_addr_offset */
430 	IP_ADDR_LEN,				/* proto_addr_length */
431 	sizeof (arma_t) + IP_ADDR_LEN,		/* proto_mask_offset */
432 	sizeof (arma_t) + 2*IP_ADDR_LEN,	/* proto_extract_mask_offset */
433 	ACE_F_PERMANENT | ACE_F_MAPPING,	/* flags */
434 	sizeof (arma_t) + 3*IP_ADDR_LEN,	/* hw_addr_offset */
435 	IP_MAX_HW_LEN,				/* hw_addr_length */
436 	0,					/* hw_mapping_start */
437 };
438 
439 static ipft_t	ip_ioctl_ftbl[] = {
440 	{ IP_IOC_IRE_DELETE, ip_ire_delete, sizeof (ipid_t), 0 },
441 	{ IP_IOC_IRE_DELETE_NO_REPLY, ip_ire_delete, sizeof (ipid_t),
442 		IPFT_F_NO_REPLY },
443 	{ IP_IOC_IRE_ADVISE_NO_REPLY, ip_ire_advise, sizeof (ipic_t),
444 		IPFT_F_NO_REPLY },
445 	{ IP_IOC_RTS_REQUEST, ip_rts_request, 0, IPFT_F_SELF_REPLY },
446 	{ 0 }
447 };
448 
449 /* Simple ICMP IP Header Template */
450 static ipha_t icmp_ipha = {
451 	IP_SIMPLE_HDR_VERSION, 0, 0, 0, 0, 0, IPPROTO_ICMP
452 };
453 
454 /* Flag descriptors for ip_ipif_report */
455 static nv_t	ipif_nv_tbl[] = {
456 	{ IPIF_UP,		"UP" },
457 	{ IPIF_BROADCAST,	"BROADCAST" },
458 	{ ILLF_DEBUG,		"DEBUG" },
459 	{ PHYI_LOOPBACK,	"LOOPBACK" },
460 	{ IPIF_POINTOPOINT,	"POINTOPOINT" },
461 	{ ILLF_NOTRAILERS,	"NOTRAILERS" },
462 	{ PHYI_RUNNING,		"RUNNING" },
463 	{ ILLF_NOARP,		"NOARP" },
464 	{ PHYI_PROMISC,		"PROMISC" },
465 	{ PHYI_ALLMULTI,	"ALLMULTI" },
466 	{ PHYI_INTELLIGENT,	"INTELLIGENT" },
467 	{ ILLF_MULTICAST,	"MULTICAST" },
468 	{ PHYI_MULTI_BCAST,	"MULTI_BCAST" },
469 	{ IPIF_UNNUMBERED,	"UNNUMBERED" },
470 	{ IPIF_DHCPRUNNING,	"DHCP" },
471 	{ IPIF_PRIVATE,		"PRIVATE" },
472 	{ IPIF_NOXMIT,		"NOXMIT" },
473 	{ IPIF_NOLOCAL,		"NOLOCAL" },
474 	{ IPIF_DEPRECATED,	"DEPRECATED" },
475 	{ IPIF_PREFERRED,	"PREFERRED" },
476 	{ IPIF_TEMPORARY,	"TEMPORARY" },
477 	{ IPIF_ADDRCONF,	"ADDRCONF" },
478 	{ PHYI_VIRTUAL,		"VIRTUAL" },
479 	{ ILLF_ROUTER,		"ROUTER" },
480 	{ ILLF_NONUD,		"NONUD" },
481 	{ IPIF_ANYCAST,		"ANYCAST" },
482 	{ ILLF_NORTEXCH,	"NORTEXCH" },
483 	{ ILLF_IPV4,		"IPV4" },
484 	{ ILLF_IPV6,		"IPV6" },
485 	{ IPIF_NOFAILOVER,	"NOFAILOVER" },
486 	{ PHYI_FAILED,		"FAILED" },
487 	{ PHYI_STANDBY,		"STANDBY" },
488 	{ PHYI_INACTIVE,	"INACTIVE" },
489 	{ PHYI_OFFLINE,		"OFFLINE" },
490 };
491 
492 static uchar_t	ip_six_byte_all_ones[] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF };
493 
494 static ip_m_t	ip_m_tbl[] = {
495 	{ DL_ETHER, IFT_ETHER, ip_ether_v4mapinfo, ip_ether_v6mapinfo,
496 	    ip_ether_v6intfid },
497 	{ DL_CSMACD, IFT_ISO88023, ip_ether_v4mapinfo, ip_ether_v6mapinfo,
498 	    ip_nodef_v6intfid },
499 	{ DL_TPB, IFT_ISO88024, ip_ether_v4mapinfo, ip_ether_v6mapinfo,
500 	    ip_nodef_v6intfid },
501 	{ DL_TPR, IFT_ISO88025, ip_ether_v4mapinfo, ip_ether_v6mapinfo,
502 	    ip_nodef_v6intfid },
503 	{ DL_FDDI, IFT_FDDI, ip_ether_v4mapinfo, ip_ether_v6mapinfo,
504 	    ip_ether_v6intfid },
505 	{ DL_IB, IFT_IB, ip_ib_v4mapinfo, ip_ib_v6mapinfo,
506 	    ip_ib_v6intfid },
507 	{ SUNW_DL_VNI, IFT_OTHER, NULL, NULL, NULL},
508 	{ DL_OTHER, IFT_OTHER, ip_ether_v4mapinfo, ip_ether_v6mapinfo,
509 	    ip_nodef_v6intfid }
510 };
511 
512 static ill_t	ill_null;		/* Empty ILL for init. */
513 char	ipif_loopback_name[] = "lo0";
514 static char *ipv4_forward_suffix = ":ip_forwarding";
515 static char *ipv6_forward_suffix = ":ip6_forwarding";
516 static	sin6_t	sin6_null;	/* Zero address for quick clears */
517 static	sin_t	sin_null;	/* Zero address for quick clears */
518 
519 /* When set search for unused ipif_seqid */
520 static ipif_t	ipif_zero;
521 
522 /*
523  * ppa arena is created after these many
524  * interfaces have been plumbed.
525  */
526 uint_t	ill_no_arena = 12;	/* Setable in /etc/system */
527 
528 /*
529  * Enable soft rings if ip_squeue_soft_ring or ip_squeue_fanout
530  * is set and ip_soft_rings_cnt > 0. ip_squeue_soft_ring is
531  * set through platform specific code (Niagara/Ontario).
532  */
533 #define	SOFT_RINGS_ENABLED()	(ip_soft_rings_cnt ? \
534 		(ip_squeue_soft_ring || ip_squeue_fanout) : B_FALSE)
535 
536 #define	ILL_CAPAB_DLS	(ILL_CAPAB_SOFT_RING | ILL_CAPAB_POLL)
537 
538 static uint_t
539 ipif_rand(ip_stack_t *ipst)
540 {
541 	ipst->ips_ipif_src_random = ipst->ips_ipif_src_random * 1103515245 +
542 	    12345;
543 	return ((ipst->ips_ipif_src_random >> 16) & 0x7fff);
544 }
545 
546 /*
547  * Allocate per-interface mibs.
548  * Returns true if ok. False otherwise.
549  *  ipsq  may not yet be allocated (loopback case ).
550  */
551 static boolean_t
552 ill_allocate_mibs(ill_t *ill)
553 {
554 	/* Already allocated? */
555 	if (ill->ill_ip_mib != NULL) {
556 		if (ill->ill_isv6)
557 			ASSERT(ill->ill_icmp6_mib != NULL);
558 		return (B_TRUE);
559 	}
560 
561 	ill->ill_ip_mib = kmem_zalloc(sizeof (*ill->ill_ip_mib),
562 	    KM_NOSLEEP);
563 	if (ill->ill_ip_mib == NULL) {
564 		return (B_FALSE);
565 	}
566 
567 	/* Setup static information */
568 	SET_MIB(ill->ill_ip_mib->ipIfStatsEntrySize,
569 	    sizeof (mib2_ipIfStatsEntry_t));
570 	if (ill->ill_isv6) {
571 		ill->ill_ip_mib->ipIfStatsIPVersion = MIB2_INETADDRESSTYPE_ipv6;
572 		SET_MIB(ill->ill_ip_mib->ipIfStatsAddrEntrySize,
573 		    sizeof (mib2_ipv6AddrEntry_t));
574 		SET_MIB(ill->ill_ip_mib->ipIfStatsRouteEntrySize,
575 		    sizeof (mib2_ipv6RouteEntry_t));
576 		SET_MIB(ill->ill_ip_mib->ipIfStatsNetToMediaEntrySize,
577 		    sizeof (mib2_ipv6NetToMediaEntry_t));
578 		SET_MIB(ill->ill_ip_mib->ipIfStatsMemberEntrySize,
579 		    sizeof (ipv6_member_t));
580 		SET_MIB(ill->ill_ip_mib->ipIfStatsGroupSourceEntrySize,
581 		    sizeof (ipv6_grpsrc_t));
582 	} else {
583 		ill->ill_ip_mib->ipIfStatsIPVersion = MIB2_INETADDRESSTYPE_ipv4;
584 		SET_MIB(ill->ill_ip_mib->ipIfStatsAddrEntrySize,
585 		    sizeof (mib2_ipAddrEntry_t));
586 		SET_MIB(ill->ill_ip_mib->ipIfStatsRouteEntrySize,
587 		    sizeof (mib2_ipRouteEntry_t));
588 		SET_MIB(ill->ill_ip_mib->ipIfStatsNetToMediaEntrySize,
589 		    sizeof (mib2_ipNetToMediaEntry_t));
590 		SET_MIB(ill->ill_ip_mib->ipIfStatsMemberEntrySize,
591 		    sizeof (ip_member_t));
592 		SET_MIB(ill->ill_ip_mib->ipIfStatsGroupSourceEntrySize,
593 		    sizeof (ip_grpsrc_t));
594 
595 		/*
596 		 * For a v4 ill, we are done at this point, because per ill
597 		 * icmp mibs are only used for v6.
598 		 */
599 		return (B_TRUE);
600 	}
601 
602 	ill->ill_icmp6_mib = kmem_zalloc(sizeof (*ill->ill_icmp6_mib),
603 	    KM_NOSLEEP);
604 	if (ill->ill_icmp6_mib == NULL) {
605 		kmem_free(ill->ill_ip_mib, sizeof (*ill->ill_ip_mib));
606 		ill->ill_ip_mib = NULL;
607 		return (B_FALSE);
608 	}
609 	/* static icmp info */
610 	ill->ill_icmp6_mib->ipv6IfIcmpEntrySize =
611 	    sizeof (mib2_ipv6IfIcmpEntry_t);
612 	/*
613 	 * The ipIfStatsIfindex and ipv6IfIcmpIndex will be assigned later
614 	 * after the phyint merge occurs in ipif_set_values -> ill_glist_insert
615 	 * -> ill_phyint_reinit
616 	 */
617 	return (B_TRUE);
618 }
619 
620 /*
621  * Common code for preparation of ARP commands.  Two points to remember:
622  * 	1) The ill_name is tacked on at the end of the allocated space so
623  *	   the templates name_offset field must contain the total space
624  *	   to allocate less the name length.
625  *
626  *	2) The templates name_length field should contain the *template*
627  *	   length.  We use it as a parameter to bcopy() and then write
628  *	   the real ill_name_length into the name_length field of the copy.
629  * (Always called as writer.)
630  */
631 mblk_t *
632 ill_arp_alloc(ill_t *ill, uchar_t *template, caddr_t addr)
633 {
634 	arc_t	*arc = (arc_t *)template;
635 	char	*cp;
636 	int	len;
637 	mblk_t	*mp;
638 	uint_t	name_length = ill->ill_name_length;
639 	uint_t	template_len = arc->arc_name_length;
640 
641 	len = arc->arc_name_offset + name_length;
642 	mp = allocb(len, BPRI_HI);
643 	if (mp == NULL)
644 		return (NULL);
645 	cp = (char *)mp->b_rptr;
646 	mp->b_wptr = (uchar_t *)&cp[len];
647 	if (template_len)
648 		bcopy(template, cp, template_len);
649 	if (len > template_len)
650 		bzero(&cp[template_len], len - template_len);
651 	mp->b_datap->db_type = M_PROTO;
652 
653 	arc = (arc_t *)cp;
654 	arc->arc_name_length = name_length;
655 	cp = (char *)arc + arc->arc_name_offset;
656 	bcopy(ill->ill_name, cp, name_length);
657 
658 	if (addr) {
659 		area_t	*area = (area_t *)mp->b_rptr;
660 
661 		cp = (char *)area + area->area_proto_addr_offset;
662 		bcopy(addr, cp, area->area_proto_addr_length);
663 		if (area->area_cmd == AR_ENTRY_ADD) {
664 			cp = (char *)area;
665 			len = area->area_proto_addr_length;
666 			if (area->area_proto_mask_offset)
667 				cp += area->area_proto_mask_offset;
668 			else
669 				cp += area->area_proto_addr_offset + len;
670 			while (len-- > 0)
671 				*cp++ = (char)~0;
672 		}
673 	}
674 	return (mp);
675 }
676 
677 mblk_t *
678 ipif_area_alloc(ipif_t *ipif)
679 {
680 	return (ill_arp_alloc(ipif->ipif_ill, (uchar_t *)&ip_area_template,
681 	    (char *)&ipif->ipif_lcl_addr));
682 }
683 
684 mblk_t *
685 ipif_ared_alloc(ipif_t *ipif)
686 {
687 	return (ill_arp_alloc(ipif->ipif_ill, (uchar_t *)&ip_ared_template,
688 	    (char *)&ipif->ipif_lcl_addr));
689 }
690 
691 mblk_t *
692 ill_ared_alloc(ill_t *ill, ipaddr_t addr)
693 {
694 	return (ill_arp_alloc(ill, (uchar_t *)&ip_ared_template,
695 	    (char *)&addr));
696 }
697 
698 /*
699  * Completely vaporize a lower level tap and all associated interfaces.
700  * ill_delete is called only out of ip_close when the device control
701  * stream is being closed.
702  */
703 void
704 ill_delete(ill_t *ill)
705 {
706 	ipif_t	*ipif;
707 	ill_t	*prev_ill;
708 	ip_stack_t	*ipst = ill->ill_ipst;
709 
710 	/*
711 	 * ill_delete may be forcibly entering the ipsq. The previous
712 	 * ioctl may not have completed and may need to be aborted.
713 	 * ipsq_flush takes care of it. If we don't need to enter the
714 	 * the ipsq forcibly, the 2nd invocation of ipsq_flush in
715 	 * ill_delete_tail is sufficient.
716 	 */
717 	ipsq_flush(ill);
718 
719 	/*
720 	 * Nuke all interfaces.  ipif_free will take down the interface,
721 	 * remove it from the list, and free the data structure.
722 	 * Walk down the ipif list and remove the logical interfaces
723 	 * first before removing the main ipif. We can't unplumb
724 	 * zeroth interface first in the case of IPv6 as reset_conn_ill
725 	 * -> ip_ll_delmulti_v6 de-references ill_ipif for checking
726 	 * POINTOPOINT.
727 	 *
728 	 * If ill_ipif was not properly initialized (i.e low on memory),
729 	 * then no interfaces to clean up. In this case just clean up the
730 	 * ill.
731 	 */
732 	for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next)
733 		ipif_free(ipif);
734 
735 	/*
736 	 * Used only by ill_arp_on and ill_arp_off, which are writers.
737 	 * So nobody can be using this mp now. Free the mp allocated for
738 	 * honoring ILLF_NOARP
739 	 */
740 	freemsg(ill->ill_arp_on_mp);
741 	ill->ill_arp_on_mp = NULL;
742 
743 	/* Clean up msgs on pending upcalls for mrouted */
744 	reset_mrt_ill(ill);
745 
746 	/*
747 	 * ipif_free -> reset_conn_ipif will remove all multicast
748 	 * references for IPv4. For IPv6, we need to do it here as
749 	 * it points only at ills.
750 	 */
751 	reset_conn_ill(ill);
752 
753 	/*
754 	 * ill_down will arrange to blow off any IRE's dependent on this
755 	 * ILL, and shut down fragmentation reassembly.
756 	 */
757 	ill_down(ill);
758 
759 	/* Let SCTP know, so that it can remove this from its list. */
760 	sctp_update_ill(ill, SCTP_ILL_REMOVE);
761 
762 	/*
763 	 * If an address on this ILL is being used as a source address then
764 	 * clear out the pointers in other ILLs that point to this ILL.
765 	 */
766 	rw_enter(&ipst->ips_ill_g_usesrc_lock, RW_WRITER);
767 	if (ill->ill_usesrc_grp_next != NULL) {
768 		if (ill->ill_usesrc_ifindex == 0) { /* usesrc ILL ? */
769 			ill_disband_usesrc_group(ill);
770 		} else {	/* consumer of the usesrc ILL */
771 			prev_ill = ill_prev_usesrc(ill);
772 			prev_ill->ill_usesrc_grp_next =
773 			    ill->ill_usesrc_grp_next;
774 		}
775 	}
776 	rw_exit(&ipst->ips_ill_g_usesrc_lock);
777 }
778 
779 static void
780 ipif_non_duplicate(ipif_t *ipif)
781 {
782 	ill_t *ill = ipif->ipif_ill;
783 	mutex_enter(&ill->ill_lock);
784 	if (ipif->ipif_flags & IPIF_DUPLICATE) {
785 		ipif->ipif_flags &= ~IPIF_DUPLICATE;
786 		ASSERT(ill->ill_ipif_dup_count > 0);
787 		ill->ill_ipif_dup_count--;
788 	}
789 	mutex_exit(&ill->ill_lock);
790 }
791 
792 /*
793  * ill_delete_tail is called from ip_modclose after all references
794  * to the closing ill are gone. The wait is done in ip_modclose
795  */
796 void
797 ill_delete_tail(ill_t *ill)
798 {
799 	mblk_t	**mpp;
800 	ipif_t	*ipif;
801 	ip_stack_t	*ipst = ill->ill_ipst;
802 
803 	for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) {
804 		ipif_non_duplicate(ipif);
805 		ipif_down_tail(ipif);
806 	}
807 
808 	ASSERT(ill->ill_ipif_dup_count == 0 &&
809 	    ill->ill_arp_down_mp == NULL &&
810 	    ill->ill_arp_del_mapping_mp == NULL);
811 
812 	/*
813 	 * If polling capability is enabled (which signifies direct
814 	 * upcall into IP and driver has ill saved as a handle),
815 	 * we need to make sure that unbind has completed before we
816 	 * let the ill disappear and driver no longer has any reference
817 	 * to this ill.
818 	 */
819 	mutex_enter(&ill->ill_lock);
820 	while (ill->ill_state_flags & ILL_DL_UNBIND_IN_PROGRESS)
821 		cv_wait(&ill->ill_cv, &ill->ill_lock);
822 	mutex_exit(&ill->ill_lock);
823 
824 	/*
825 	 * Clean up polling and soft ring capabilities
826 	 */
827 	if (ill->ill_capabilities & (ILL_CAPAB_POLL|ILL_CAPAB_SOFT_RING))
828 		ill_capability_dls_disable(ill);
829 
830 	if (ill->ill_net_type != IRE_LOOPBACK)
831 		qprocsoff(ill->ill_rq);
832 
833 	/*
834 	 * We do an ipsq_flush once again now. New messages could have
835 	 * landed up from below (M_ERROR or M_HANGUP). Similarly ioctls
836 	 * could also have landed up if an ioctl thread had looked up
837 	 * the ill before we set the ILL_CONDEMNED flag, but not yet
838 	 * enqueued the ioctl when we did the ipsq_flush last time.
839 	 */
840 	ipsq_flush(ill);
841 
842 	/*
843 	 * Free capabilities.
844 	 */
845 	if (ill->ill_ipsec_capab_ah != NULL) {
846 		ill_ipsec_capab_delete(ill, DL_CAPAB_IPSEC_AH);
847 		ill_ipsec_capab_free(ill->ill_ipsec_capab_ah);
848 		ill->ill_ipsec_capab_ah = NULL;
849 	}
850 
851 	if (ill->ill_ipsec_capab_esp != NULL) {
852 		ill_ipsec_capab_delete(ill, DL_CAPAB_IPSEC_ESP);
853 		ill_ipsec_capab_free(ill->ill_ipsec_capab_esp);
854 		ill->ill_ipsec_capab_esp = NULL;
855 	}
856 
857 	if (ill->ill_mdt_capab != NULL) {
858 		kmem_free(ill->ill_mdt_capab, sizeof (ill_mdt_capab_t));
859 		ill->ill_mdt_capab = NULL;
860 	}
861 
862 	if (ill->ill_hcksum_capab != NULL) {
863 		kmem_free(ill->ill_hcksum_capab, sizeof (ill_hcksum_capab_t));
864 		ill->ill_hcksum_capab = NULL;
865 	}
866 
867 	if (ill->ill_zerocopy_capab != NULL) {
868 		kmem_free(ill->ill_zerocopy_capab,
869 		    sizeof (ill_zerocopy_capab_t));
870 		ill->ill_zerocopy_capab = NULL;
871 	}
872 
873 	if (ill->ill_lso_capab != NULL) {
874 		kmem_free(ill->ill_lso_capab, sizeof (ill_lso_capab_t));
875 		ill->ill_lso_capab = NULL;
876 	}
877 
878 	if (ill->ill_dls_capab != NULL) {
879 		CONN_DEC_REF(ill->ill_dls_capab->ill_unbind_conn);
880 		ill->ill_dls_capab->ill_unbind_conn = NULL;
881 		kmem_free(ill->ill_dls_capab,
882 		    sizeof (ill_dls_capab_t) +
883 		    (sizeof (ill_rx_ring_t) * ILL_MAX_RINGS));
884 		ill->ill_dls_capab = NULL;
885 	}
886 
887 	ASSERT(!(ill->ill_capabilities & ILL_CAPAB_POLL));
888 
889 	while (ill->ill_ipif != NULL)
890 		ipif_free_tail(ill->ill_ipif);
891 
892 	/*
893 	 * We have removed all references to ilm from conn and the ones joined
894 	 * within the kernel.
895 	 *
896 	 * We don't walk conns, mrts and ires because
897 	 *
898 	 * 1) reset_conn_ill and reset_mrt_ill cleans up conns and mrts.
899 	 * 2) ill_down ->ill_downi walks all the ires and cleans up
900 	 *    ill references.
901 	 */
902 	ASSERT(ilm_walk_ill(ill) == 0);
903 	/*
904 	 * Take us out of the list of ILLs. ill_glist_delete -> ill_phyint_free
905 	 * could free the phyint. No more reference to the phyint after this
906 	 * point.
907 	 */
908 	(void) ill_glist_delete(ill);
909 
910 	rw_enter(&ipst->ips_ip_g_nd_lock, RW_WRITER);
911 	if (ill->ill_ndd_name != NULL)
912 		nd_unload(&ipst->ips_ip_g_nd, ill->ill_ndd_name);
913 	rw_exit(&ipst->ips_ip_g_nd_lock);
914 
915 
916 	if (ill->ill_frag_ptr != NULL) {
917 		uint_t count;
918 
919 		for (count = 0; count < ILL_FRAG_HASH_TBL_COUNT; count++) {
920 			mutex_destroy(&ill->ill_frag_hash_tbl[count].ipfb_lock);
921 		}
922 		mi_free(ill->ill_frag_ptr);
923 		ill->ill_frag_ptr = NULL;
924 		ill->ill_frag_hash_tbl = NULL;
925 	}
926 
927 	freemsg(ill->ill_nd_lla_mp);
928 	/* Free all retained control messages. */
929 	mpp = &ill->ill_first_mp_to_free;
930 	do {
931 		while (mpp[0]) {
932 			mblk_t  *mp;
933 			mblk_t  *mp1;
934 
935 			mp = mpp[0];
936 			mpp[0] = mp->b_next;
937 			for (mp1 = mp; mp1 != NULL; mp1 = mp1->b_cont) {
938 				mp1->b_next = NULL;
939 				mp1->b_prev = NULL;
940 			}
941 			freemsg(mp);
942 		}
943 	} while (mpp++ != &ill->ill_last_mp_to_free);
944 
945 	ill_free_mib(ill);
946 
947 #ifdef DEBUG
948 	ill_trace_cleanup(ill);
949 #endif
950 
951 	/* Drop refcnt here */
952 	netstack_rele(ill->ill_ipst->ips_netstack);
953 	ill->ill_ipst = NULL;
954 }
955 
956 static void
957 ill_free_mib(ill_t *ill)
958 {
959 	ip_stack_t *ipst = ill->ill_ipst;
960 
961 	/*
962 	 * MIB statistics must not be lost, so when an interface
963 	 * goes away the counter values will be added to the global
964 	 * MIBs.
965 	 */
966 	if (ill->ill_ip_mib != NULL) {
967 		if (ill->ill_isv6) {
968 			ip_mib2_add_ip_stats(&ipst->ips_ip6_mib,
969 			    ill->ill_ip_mib);
970 		} else {
971 			ip_mib2_add_ip_stats(&ipst->ips_ip_mib,
972 			    ill->ill_ip_mib);
973 		}
974 
975 		kmem_free(ill->ill_ip_mib, sizeof (*ill->ill_ip_mib));
976 		ill->ill_ip_mib = NULL;
977 	}
978 	if (ill->ill_icmp6_mib != NULL) {
979 		ip_mib2_add_icmp6_stats(&ipst->ips_icmp6_mib,
980 		    ill->ill_icmp6_mib);
981 		kmem_free(ill->ill_icmp6_mib, sizeof (*ill->ill_icmp6_mib));
982 		ill->ill_icmp6_mib = NULL;
983 	}
984 }
985 
986 /*
987  * Concatenate together a physical address and a sap.
988  *
989  * Sap_lengths are interpreted as follows:
990  *   sap_length == 0	==>	no sap
991  *   sap_length > 0	==>	sap is at the head of the dlpi address
992  *   sap_length < 0	==>	sap is at the tail of the dlpi address
993  */
994 static void
995 ill_dlur_copy_address(uchar_t *phys_src, uint_t phys_length,
996     t_scalar_t sap_src, t_scalar_t sap_length, uchar_t *dst)
997 {
998 	uint16_t sap_addr = (uint16_t)sap_src;
999 
1000 	if (sap_length == 0) {
1001 		if (phys_src == NULL)
1002 			bzero(dst, phys_length);
1003 		else
1004 			bcopy(phys_src, dst, phys_length);
1005 	} else if (sap_length < 0) {
1006 		if (phys_src == NULL)
1007 			bzero(dst, phys_length);
1008 		else
1009 			bcopy(phys_src, dst, phys_length);
1010 		bcopy(&sap_addr, (char *)dst + phys_length, sizeof (sap_addr));
1011 	} else {
1012 		bcopy(&sap_addr, dst, sizeof (sap_addr));
1013 		if (phys_src == NULL)
1014 			bzero((char *)dst + sap_length, phys_length);
1015 		else
1016 			bcopy(phys_src, (char *)dst + sap_length, phys_length);
1017 	}
1018 }
1019 
1020 /*
1021  * Generate a dl_unitdata_req mblk for the device and address given.
1022  * addr_length is the length of the physical portion of the address.
1023  * If addr is NULL include an all zero address of the specified length.
1024  * TRUE? In any case, addr_length is taken to be the entire length of the
1025  * dlpi address, including the absolute value of sap_length.
1026  */
1027 mblk_t *
1028 ill_dlur_gen(uchar_t *addr, uint_t addr_length, t_uscalar_t sap,
1029 		t_scalar_t sap_length)
1030 {
1031 	dl_unitdata_req_t *dlur;
1032 	mblk_t	*mp;
1033 	t_scalar_t	abs_sap_length;		/* absolute value */
1034 
1035 	abs_sap_length = ABS(sap_length);
1036 	mp = ip_dlpi_alloc(sizeof (*dlur) + addr_length + abs_sap_length,
1037 	    DL_UNITDATA_REQ);
1038 	if (mp == NULL)
1039 		return (NULL);
1040 	dlur = (dl_unitdata_req_t *)mp->b_rptr;
1041 	/* HACK: accomodate incompatible DLPI drivers */
1042 	if (addr_length == 8)
1043 		addr_length = 6;
1044 	dlur->dl_dest_addr_length = addr_length + abs_sap_length;
1045 	dlur->dl_dest_addr_offset = sizeof (*dlur);
1046 	dlur->dl_priority.dl_min = 0;
1047 	dlur->dl_priority.dl_max = 0;
1048 	ill_dlur_copy_address(addr, addr_length, sap, sap_length,
1049 	    (uchar_t *)&dlur[1]);
1050 	return (mp);
1051 }
1052 
1053 /*
1054  * Add the 'mp' to the list of pending mp's headed by ill_pending_mp
1055  * Return an error if we already have 1 or more ioctls in progress.
1056  * This is used only for non-exclusive ioctls. Currently this is used
1057  * for SIOC*ARP and SIOCGTUNPARAM ioctls. Most set ioctls are exclusive
1058  * and thus need to use ipsq_pending_mp_add.
1059  */
1060 boolean_t
1061 ill_pending_mp_add(ill_t *ill, conn_t *connp, mblk_t *add_mp)
1062 {
1063 	ASSERT(MUTEX_HELD(&ill->ill_lock));
1064 	ASSERT((add_mp->b_next == NULL) && (add_mp->b_prev == NULL));
1065 	/*
1066 	 * M_IOCDATA from ioctls, M_IOCTL from tunnel ioctls.
1067 	 */
1068 	ASSERT((add_mp->b_datap->db_type == M_IOCDATA) ||
1069 	    (add_mp->b_datap->db_type == M_IOCTL));
1070 
1071 	ASSERT(MUTEX_HELD(&connp->conn_lock));
1072 	/*
1073 	 * Return error if the conn has started closing. The conn
1074 	 * could have finished cleaning up the pending mp list,
1075 	 * If so we should not add another mp to the list negating
1076 	 * the cleanup.
1077 	 */
1078 	if (connp->conn_state_flags & CONN_CLOSING)
1079 		return (B_FALSE);
1080 	/*
1081 	 * Add the pending mp to the head of the list, chained by b_next.
1082 	 * Note down the conn on which the ioctl request came, in b_prev.
1083 	 * This will be used to later get the conn, when we get a response
1084 	 * on the ill queue, from some other module (typically arp)
1085 	 */
1086 	add_mp->b_next = (void *)ill->ill_pending_mp;
1087 	add_mp->b_queue = CONNP_TO_WQ(connp);
1088 	ill->ill_pending_mp = add_mp;
1089 	if (connp != NULL)
1090 		connp->conn_oper_pending_ill = ill;
1091 	return (B_TRUE);
1092 }
1093 
1094 /*
1095  * Retrieve the ill_pending_mp and return it. We have to walk the list
1096  * of mblks starting at ill_pending_mp, and match based on the ioc_id.
1097  */
1098 mblk_t *
1099 ill_pending_mp_get(ill_t *ill, conn_t **connpp, uint_t ioc_id)
1100 {
1101 	mblk_t	*prev = NULL;
1102 	mblk_t	*curr = NULL;
1103 	uint_t	id;
1104 	conn_t	*connp;
1105 
1106 	/*
1107 	 * When the conn closes, conn_ioctl_cleanup needs to clean
1108 	 * up the pending mp, but it does not know the ioc_id and
1109 	 * passes in a zero for it.
1110 	 */
1111 	mutex_enter(&ill->ill_lock);
1112 	if (ioc_id != 0)
1113 		*connpp = NULL;
1114 
1115 	/* Search the list for the appropriate ioctl based on ioc_id */
1116 	for (prev = NULL, curr = ill->ill_pending_mp; curr != NULL;
1117 	    prev = curr, curr = curr->b_next) {
1118 		id = ((struct iocblk *)curr->b_rptr)->ioc_id;
1119 		connp = Q_TO_CONN(curr->b_queue);
1120 		/* Match based on the ioc_id or based on the conn */
1121 		if ((id == ioc_id) || (ioc_id == 0 && connp == *connpp))
1122 			break;
1123 	}
1124 
1125 	if (curr != NULL) {
1126 		/* Unlink the mblk from the pending mp list */
1127 		if (prev != NULL) {
1128 			prev->b_next = curr->b_next;
1129 		} else {
1130 			ASSERT(ill->ill_pending_mp == curr);
1131 			ill->ill_pending_mp = curr->b_next;
1132 		}
1133 
1134 		/*
1135 		 * conn refcnt must have been bumped up at the start of
1136 		 * the ioctl. So we can safely access the conn.
1137 		 */
1138 		ASSERT(CONN_Q(curr->b_queue));
1139 		*connpp = Q_TO_CONN(curr->b_queue);
1140 		curr->b_next = NULL;
1141 		curr->b_queue = NULL;
1142 	}
1143 
1144 	mutex_exit(&ill->ill_lock);
1145 
1146 	return (curr);
1147 }
1148 
1149 /*
1150  * Add the pending mp to the list. There can be only 1 pending mp
1151  * in the list. Any exclusive ioctl that needs to wait for a response
1152  * from another module or driver needs to use this function to set
1153  * the ipsq_pending_mp to the ioctl mblk and wait for the response from
1154  * the other module/driver. This is also used while waiting for the
1155  * ipif/ill/ire refcnts to drop to zero in bringing down an ipif.
1156  */
1157 boolean_t
1158 ipsq_pending_mp_add(conn_t *connp, ipif_t *ipif, queue_t *q, mblk_t *add_mp,
1159     int waitfor)
1160 {
1161 	ipsq_t	*ipsq = ipif->ipif_ill->ill_phyint->phyint_ipsq;
1162 
1163 	ASSERT(IAM_WRITER_IPIF(ipif));
1164 	ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock));
1165 	ASSERT((add_mp->b_next == NULL) && (add_mp->b_prev == NULL));
1166 	ASSERT(ipsq->ipsq_pending_mp == NULL);
1167 	/*
1168 	 * The caller may be using a different ipif than the one passed into
1169 	 * ipsq_current_start() (e.g., suppose an ioctl that came in on the V4
1170 	 * ill needs to wait for the V6 ill to quiesce).  So we can't ASSERT
1171 	 * that `ipsq_current_ipif == ipif'.
1172 	 */
1173 	ASSERT(ipsq->ipsq_current_ipif != NULL);
1174 
1175 	/*
1176 	 * M_IOCDATA from ioctls, M_IOCTL from tunnel ioctls,
1177 	 * M_ERROR/M_HANGUP/M_PROTO/M_PCPROTO from the driver.
1178 	 */
1179 	ASSERT((DB_TYPE(add_mp) == M_IOCDATA) || (DB_TYPE(add_mp) == M_IOCTL) ||
1180 	    (DB_TYPE(add_mp) == M_ERROR) || (DB_TYPE(add_mp) == M_HANGUP) ||
1181 	    (DB_TYPE(add_mp) == M_PROTO) || (DB_TYPE(add_mp) == M_PCPROTO));
1182 
1183 	if (connp != NULL) {
1184 		ASSERT(MUTEX_HELD(&connp->conn_lock));
1185 		/*
1186 		 * Return error if the conn has started closing. The conn
1187 		 * could have finished cleaning up the pending mp list,
1188 		 * If so we should not add another mp to the list negating
1189 		 * the cleanup.
1190 		 */
1191 		if (connp->conn_state_flags & CONN_CLOSING)
1192 			return (B_FALSE);
1193 	}
1194 	mutex_enter(&ipsq->ipsq_lock);
1195 	ipsq->ipsq_pending_ipif = ipif;
1196 	/*
1197 	 * Note down the queue in b_queue. This will be returned by
1198 	 * ipsq_pending_mp_get. Caller will then use these values to restart
1199 	 * the processing
1200 	 */
1201 	add_mp->b_next = NULL;
1202 	add_mp->b_queue = q;
1203 	ipsq->ipsq_pending_mp = add_mp;
1204 	ipsq->ipsq_waitfor = waitfor;
1205 
1206 	if (connp != NULL)
1207 		connp->conn_oper_pending_ill = ipif->ipif_ill;
1208 	mutex_exit(&ipsq->ipsq_lock);
1209 	return (B_TRUE);
1210 }
1211 
1212 /*
1213  * Retrieve the ipsq_pending_mp and return it. There can be only 1 mp
1214  * queued in the list.
1215  */
1216 mblk_t *
1217 ipsq_pending_mp_get(ipsq_t *ipsq, conn_t **connpp)
1218 {
1219 	mblk_t	*curr = NULL;
1220 
1221 	mutex_enter(&ipsq->ipsq_lock);
1222 	*connpp = NULL;
1223 	if (ipsq->ipsq_pending_mp == NULL) {
1224 		mutex_exit(&ipsq->ipsq_lock);
1225 		return (NULL);
1226 	}
1227 
1228 	/* There can be only 1 such excl message */
1229 	curr = ipsq->ipsq_pending_mp;
1230 	ASSERT(curr != NULL && curr->b_next == NULL);
1231 	ipsq->ipsq_pending_ipif = NULL;
1232 	ipsq->ipsq_pending_mp = NULL;
1233 	ipsq->ipsq_waitfor = 0;
1234 	mutex_exit(&ipsq->ipsq_lock);
1235 
1236 	if (CONN_Q(curr->b_queue)) {
1237 		/*
1238 		 * This mp did a refhold on the conn, at the start of the ioctl.
1239 		 * So we can safely return a pointer to the conn to the caller.
1240 		 */
1241 		*connpp = Q_TO_CONN(curr->b_queue);
1242 	} else {
1243 		*connpp = NULL;
1244 	}
1245 	curr->b_next = NULL;
1246 	curr->b_prev = NULL;
1247 	return (curr);
1248 }
1249 
1250 /*
1251  * Cleanup the ioctl mp queued in ipsq_pending_mp
1252  * - Called in the ill_delete path
1253  * - Called in the M_ERROR or M_HANGUP path on the ill.
1254  * - Called in the conn close path.
1255  */
1256 boolean_t
1257 ipsq_pending_mp_cleanup(ill_t *ill, conn_t *connp)
1258 {
1259 	mblk_t	*mp;
1260 	ipsq_t	*ipsq;
1261 	queue_t	*q;
1262 	ipif_t	*ipif;
1263 
1264 	ASSERT(IAM_WRITER_ILL(ill));
1265 	ipsq = ill->ill_phyint->phyint_ipsq;
1266 	mutex_enter(&ipsq->ipsq_lock);
1267 	/*
1268 	 * If connp is null, unconditionally clean up the ipsq_pending_mp.
1269 	 * This happens in M_ERROR/M_HANGUP. We need to abort the current ioctl
1270 	 * even if it is meant for another ill, since we have to enqueue
1271 	 * a new mp now in ipsq_pending_mp to complete the ipif_down.
1272 	 * If connp is non-null we are called from the conn close path.
1273 	 */
1274 	mp = ipsq->ipsq_pending_mp;
1275 	if (mp == NULL || (connp != NULL &&
1276 	    mp->b_queue != CONNP_TO_WQ(connp))) {
1277 		mutex_exit(&ipsq->ipsq_lock);
1278 		return (B_FALSE);
1279 	}
1280 	/* Now remove from the ipsq_pending_mp */
1281 	ipsq->ipsq_pending_mp = NULL;
1282 	q = mp->b_queue;
1283 	mp->b_next = NULL;
1284 	mp->b_prev = NULL;
1285 	mp->b_queue = NULL;
1286 
1287 	/* If MOVE was in progress, clear the move_in_progress fields also. */
1288 	ill = ipsq->ipsq_pending_ipif->ipif_ill;
1289 	if (ill->ill_move_in_progress) {
1290 		ILL_CLEAR_MOVE(ill);
1291 	} else if (ill->ill_up_ipifs) {
1292 		ill_group_cleanup(ill);
1293 	}
1294 
1295 	ipif = ipsq->ipsq_pending_ipif;
1296 	ipsq->ipsq_pending_ipif = NULL;
1297 	ipsq->ipsq_waitfor = 0;
1298 	ipsq->ipsq_current_ipif = NULL;
1299 	ipsq->ipsq_current_ioctl = 0;
1300 	mutex_exit(&ipsq->ipsq_lock);
1301 
1302 	if (DB_TYPE(mp) == M_IOCTL || DB_TYPE(mp) == M_IOCDATA) {
1303 		if (connp == NULL) {
1304 			ip_ioctl_finish(q, mp, ENXIO, NO_COPYOUT, NULL);
1305 		} else {
1306 			ip_ioctl_finish(q, mp, ENXIO, CONN_CLOSE, NULL);
1307 			mutex_enter(&ipif->ipif_ill->ill_lock);
1308 			ipif->ipif_state_flags &= ~IPIF_CHANGING;
1309 			mutex_exit(&ipif->ipif_ill->ill_lock);
1310 		}
1311 	} else {
1312 		/*
1313 		 * IP-MT XXX In the case of TLI/XTI bind / optmgmt this can't
1314 		 * be just inet_freemsg. we have to restart it
1315 		 * otherwise the thread will be stuck.
1316 		 */
1317 		inet_freemsg(mp);
1318 	}
1319 	return (B_TRUE);
1320 }
1321 
1322 /*
1323  * The ill is closing. Cleanup all the pending mps. Called exclusively
1324  * towards the end of ill_delete. The refcount has gone to 0. So nobody
1325  * knows this ill, and hence nobody can add an mp to this list
1326  */
1327 static void
1328 ill_pending_mp_cleanup(ill_t *ill)
1329 {
1330 	mblk_t	*mp;
1331 	queue_t	*q;
1332 
1333 	ASSERT(IAM_WRITER_ILL(ill));
1334 
1335 	mutex_enter(&ill->ill_lock);
1336 	/*
1337 	 * Every mp on the pending mp list originating from an ioctl
1338 	 * added 1 to the conn refcnt, at the start of the ioctl.
1339 	 * So bump it down now.  See comments in ip_wput_nondata()
1340 	 */
1341 	while (ill->ill_pending_mp != NULL) {
1342 		mp = ill->ill_pending_mp;
1343 		ill->ill_pending_mp = mp->b_next;
1344 		mutex_exit(&ill->ill_lock);
1345 
1346 		q = mp->b_queue;
1347 		ASSERT(CONN_Q(q));
1348 		mp->b_next = NULL;
1349 		mp->b_prev = NULL;
1350 		mp->b_queue = NULL;
1351 		ip_ioctl_finish(q, mp, ENXIO, NO_COPYOUT, NULL);
1352 		mutex_enter(&ill->ill_lock);
1353 	}
1354 	ill->ill_pending_ipif = NULL;
1355 
1356 	mutex_exit(&ill->ill_lock);
1357 }
1358 
1359 /*
1360  * Called in the conn close path and ill delete path
1361  */
1362 static void
1363 ipsq_xopq_mp_cleanup(ill_t *ill, conn_t *connp)
1364 {
1365 	ipsq_t	*ipsq;
1366 	mblk_t	*prev;
1367 	mblk_t	*curr;
1368 	mblk_t	*next;
1369 	queue_t	*q;
1370 	mblk_t	*tmp_list = NULL;
1371 
1372 	ASSERT(IAM_WRITER_ILL(ill));
1373 	if (connp != NULL)
1374 		q = CONNP_TO_WQ(connp);
1375 	else
1376 		q = ill->ill_wq;
1377 
1378 	ipsq = ill->ill_phyint->phyint_ipsq;
1379 	/*
1380 	 * Cleanup the ioctl mp's queued in ipsq_xopq_pending_mp if any.
1381 	 * In the case of ioctl from a conn, there can be only 1 mp
1382 	 * queued on the ipsq. If an ill is being unplumbed, only messages
1383 	 * related to this ill are flushed, like M_ERROR or M_HANGUP message.
1384 	 * ioctls meant for this ill form conn's are not flushed. They will
1385 	 * be processed during ipsq_exit and will not find the ill and will
1386 	 * return error.
1387 	 */
1388 	mutex_enter(&ipsq->ipsq_lock);
1389 	for (prev = NULL, curr = ipsq->ipsq_xopq_mphead; curr != NULL;
1390 	    curr = next) {
1391 		next = curr->b_next;
1392 		if (curr->b_queue == q || curr->b_queue == RD(q)) {
1393 			/* Unlink the mblk from the pending mp list */
1394 			if (prev != NULL) {
1395 				prev->b_next = curr->b_next;
1396 			} else {
1397 				ASSERT(ipsq->ipsq_xopq_mphead == curr);
1398 				ipsq->ipsq_xopq_mphead = curr->b_next;
1399 			}
1400 			if (ipsq->ipsq_xopq_mptail == curr)
1401 				ipsq->ipsq_xopq_mptail = prev;
1402 			/*
1403 			 * Create a temporary list and release the ipsq lock
1404 			 * New elements are added to the head of the tmp_list
1405 			 */
1406 			curr->b_next = tmp_list;
1407 			tmp_list = curr;
1408 		} else {
1409 			prev = curr;
1410 		}
1411 	}
1412 	mutex_exit(&ipsq->ipsq_lock);
1413 
1414 	while (tmp_list != NULL) {
1415 		curr = tmp_list;
1416 		tmp_list = curr->b_next;
1417 		curr->b_next = NULL;
1418 		curr->b_prev = NULL;
1419 		curr->b_queue = NULL;
1420 		if (DB_TYPE(curr) == M_IOCTL || DB_TYPE(curr) == M_IOCDATA) {
1421 			ip_ioctl_finish(q, curr, ENXIO, connp != NULL ?
1422 			    CONN_CLOSE : NO_COPYOUT, NULL);
1423 		} else {
1424 			/*
1425 			 * IP-MT XXX In the case of TLI/XTI bind / optmgmt
1426 			 * this can't be just inet_freemsg. we have to
1427 			 * restart it otherwise the thread will be stuck.
1428 			 */
1429 			inet_freemsg(curr);
1430 		}
1431 	}
1432 }
1433 
1434 /*
1435  * This conn has started closing. Cleanup any pending ioctl from this conn.
1436  * STREAMS ensures that there can be at most 1 ioctl pending on a stream.
1437  */
1438 void
1439 conn_ioctl_cleanup(conn_t *connp)
1440 {
1441 	mblk_t *curr;
1442 	ipsq_t	*ipsq;
1443 	ill_t	*ill;
1444 	boolean_t refheld;
1445 
1446 	/*
1447 	 * Is any exclusive ioctl pending ? If so clean it up. If the
1448 	 * ioctl has not yet started, the mp is pending in the list headed by
1449 	 * ipsq_xopq_head. If the ioctl has started the mp could be present in
1450 	 * ipsq_pending_mp. If the ioctl timed out in the streamhead but
1451 	 * is currently executing now the mp is not queued anywhere but
1452 	 * conn_oper_pending_ill is null. The conn close will wait
1453 	 * till the conn_ref drops to zero.
1454 	 */
1455 	mutex_enter(&connp->conn_lock);
1456 	ill = connp->conn_oper_pending_ill;
1457 	if (ill == NULL) {
1458 		mutex_exit(&connp->conn_lock);
1459 		return;
1460 	}
1461 
1462 	curr = ill_pending_mp_get(ill, &connp, 0);
1463 	if (curr != NULL) {
1464 		mutex_exit(&connp->conn_lock);
1465 		CONN_DEC_REF(connp);
1466 		inet_freemsg(curr);
1467 		return;
1468 	}
1469 	/*
1470 	 * We may not be able to refhold the ill if the ill/ipif
1471 	 * is changing. But we need to make sure that the ill will
1472 	 * not vanish. So we just bump up the ill_waiter count.
1473 	 */
1474 	refheld = ill_waiter_inc(ill);
1475 	mutex_exit(&connp->conn_lock);
1476 	if (refheld) {
1477 		if (ipsq_enter(ill, B_TRUE)) {
1478 			ill_waiter_dcr(ill);
1479 			/*
1480 			 * Check whether this ioctl has started and is
1481 			 * pending now in ipsq_pending_mp. If it is not
1482 			 * found there then check whether this ioctl has
1483 			 * not even started and is in the ipsq_xopq list.
1484 			 */
1485 			if (!ipsq_pending_mp_cleanup(ill, connp))
1486 				ipsq_xopq_mp_cleanup(ill, connp);
1487 			ipsq = ill->ill_phyint->phyint_ipsq;
1488 			ipsq_exit(ipsq, B_TRUE, B_TRUE);
1489 			return;
1490 		}
1491 	}
1492 
1493 	/*
1494 	 * The ill is also closing and we could not bump up the
1495 	 * ill_waiter_count or we could not enter the ipsq. Leave
1496 	 * the cleanup to ill_delete
1497 	 */
1498 	mutex_enter(&connp->conn_lock);
1499 	while (connp->conn_oper_pending_ill != NULL)
1500 		cv_wait(&connp->conn_refcv, &connp->conn_lock);
1501 	mutex_exit(&connp->conn_lock);
1502 	if (refheld)
1503 		ill_waiter_dcr(ill);
1504 }
1505 
1506 /*
1507  * ipcl_walk function for cleaning up conn_*_ill fields.
1508  */
1509 static void
1510 conn_cleanup_ill(conn_t *connp, caddr_t arg)
1511 {
1512 	ill_t	*ill = (ill_t *)arg;
1513 	ire_t	*ire;
1514 
1515 	mutex_enter(&connp->conn_lock);
1516 	if (connp->conn_multicast_ill == ill) {
1517 		/* Revert to late binding */
1518 		connp->conn_multicast_ill = NULL;
1519 		connp->conn_orig_multicast_ifindex = 0;
1520 	}
1521 	if (connp->conn_incoming_ill == ill)
1522 		connp->conn_incoming_ill = NULL;
1523 	if (connp->conn_outgoing_ill == ill)
1524 		connp->conn_outgoing_ill = NULL;
1525 	if (connp->conn_outgoing_pill == ill)
1526 		connp->conn_outgoing_pill = NULL;
1527 	if (connp->conn_nofailover_ill == ill)
1528 		connp->conn_nofailover_ill = NULL;
1529 	if (connp->conn_dhcpinit_ill == ill) {
1530 		connp->conn_dhcpinit_ill = NULL;
1531 		ASSERT(ill->ill_dhcpinit != 0);
1532 		atomic_dec_32(&ill->ill_dhcpinit);
1533 	}
1534 	if (connp->conn_ire_cache != NULL) {
1535 		ire = connp->conn_ire_cache;
1536 		/*
1537 		 * ip_newroute creates IRE_CACHE with ire_stq coming from
1538 		 * interface X and ipif coming from interface Y, if interface
1539 		 * X and Y are part of the same IPMPgroup. Thus whenever
1540 		 * interface X goes down, remove all references to it by
1541 		 * checking both on ire_ipif and ire_stq.
1542 		 */
1543 		if ((ire->ire_ipif != NULL && ire->ire_ipif->ipif_ill == ill) ||
1544 		    (ire->ire_type == IRE_CACHE &&
1545 		    ire->ire_stq == ill->ill_wq)) {
1546 			connp->conn_ire_cache = NULL;
1547 			mutex_exit(&connp->conn_lock);
1548 			ire_refrele_notr(ire);
1549 			return;
1550 		}
1551 	}
1552 	mutex_exit(&connp->conn_lock);
1553 
1554 }
1555 
1556 /* ARGSUSED */
1557 void
1558 ipif_all_down_tail(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg)
1559 {
1560 	ill_t	*ill = q->q_ptr;
1561 	ipif_t	*ipif;
1562 
1563 	ASSERT(IAM_WRITER_IPSQ(ipsq));
1564 	for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) {
1565 		ipif_non_duplicate(ipif);
1566 		ipif_down_tail(ipif);
1567 	}
1568 	freemsg(mp);
1569 	ipsq_current_finish(ipsq);
1570 }
1571 
1572 /*
1573  * ill_down_start is called when we want to down this ill and bring it up again
1574  * It is called when we receive an M_ERROR / M_HANGUP. In this case we shut down
1575  * all interfaces, but don't tear down any plumbing.
1576  */
1577 boolean_t
1578 ill_down_start(queue_t *q, mblk_t *mp)
1579 {
1580 	ill_t	*ill = q->q_ptr;
1581 	ipif_t	*ipif;
1582 
1583 	ASSERT(IAM_WRITER_ILL(ill));
1584 
1585 	for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next)
1586 		(void) ipif_down(ipif, NULL, NULL);
1587 
1588 	ill_down(ill);
1589 
1590 	(void) ipsq_pending_mp_cleanup(ill, NULL);
1591 
1592 	ipsq_current_start(ill->ill_phyint->phyint_ipsq, ill->ill_ipif, 0);
1593 
1594 	/*
1595 	 * Atomically test and add the pending mp if references are active.
1596 	 */
1597 	mutex_enter(&ill->ill_lock);
1598 	if (!ill_is_quiescent(ill)) {
1599 		/* call cannot fail since `conn_t *' argument is NULL */
1600 		(void) ipsq_pending_mp_add(NULL, ill->ill_ipif, ill->ill_rq,
1601 		    mp, ILL_DOWN);
1602 		mutex_exit(&ill->ill_lock);
1603 		return (B_FALSE);
1604 	}
1605 	mutex_exit(&ill->ill_lock);
1606 	return (B_TRUE);
1607 }
1608 
1609 static void
1610 ill_down(ill_t *ill)
1611 {
1612 	ip_stack_t	*ipst = ill->ill_ipst;
1613 
1614 	/* Blow off any IREs dependent on this ILL. */
1615 	ire_walk(ill_downi, (char *)ill, ipst);
1616 
1617 	/* Remove any conn_*_ill depending on this ill */
1618 	ipcl_walk(conn_cleanup_ill, (caddr_t)ill, ipst);
1619 
1620 	if (ill->ill_group != NULL) {
1621 		illgrp_delete(ill);
1622 	}
1623 }
1624 
1625 /*
1626  * ire_walk routine used to delete every IRE that depends on queues
1627  * associated with 'ill'.  (Always called as writer.)
1628  */
1629 static void
1630 ill_downi(ire_t *ire, char *ill_arg)
1631 {
1632 	ill_t	*ill = (ill_t *)ill_arg;
1633 
1634 	/*
1635 	 * ip_newroute creates IRE_CACHE with ire_stq coming from
1636 	 * interface X and ipif coming from interface Y, if interface
1637 	 * X and Y are part of the same IPMP group. Thus whenever interface
1638 	 * X goes down, remove all references to it by checking both
1639 	 * on ire_ipif and ire_stq.
1640 	 */
1641 	if ((ire->ire_ipif != NULL && ire->ire_ipif->ipif_ill == ill) ||
1642 	    (ire->ire_type == IRE_CACHE && ire->ire_stq == ill->ill_wq)) {
1643 		ire_delete(ire);
1644 	}
1645 }
1646 
1647 /*
1648  * Remove ire/nce from the fastpath list.
1649  */
1650 void
1651 ill_fastpath_nack(ill_t *ill)
1652 {
1653 	nce_fastpath_list_dispatch(ill, NULL, NULL);
1654 }
1655 
1656 /* Consume an M_IOCACK of the fastpath probe. */
1657 void
1658 ill_fastpath_ack(ill_t *ill, mblk_t *mp)
1659 {
1660 	mblk_t	*mp1 = mp;
1661 
1662 	/*
1663 	 * If this was the first attempt turn on the fastpath probing.
1664 	 */
1665 	mutex_enter(&ill->ill_lock);
1666 	if (ill->ill_dlpi_fastpath_state == IDS_INPROGRESS)
1667 		ill->ill_dlpi_fastpath_state = IDS_OK;
1668 	mutex_exit(&ill->ill_lock);
1669 
1670 	/* Free the M_IOCACK mblk, hold on to the data */
1671 	mp = mp->b_cont;
1672 	freeb(mp1);
1673 	if (mp == NULL)
1674 		return;
1675 	if (mp->b_cont != NULL) {
1676 		/*
1677 		 * Update all IRE's or NCE's that are waiting for
1678 		 * fastpath update.
1679 		 */
1680 		nce_fastpath_list_dispatch(ill, ndp_fastpath_update, mp);
1681 		mp1 = mp->b_cont;
1682 		freeb(mp);
1683 		mp = mp1;
1684 	} else {
1685 		ip0dbg(("ill_fastpath_ack:  no b_cont\n"));
1686 	}
1687 
1688 	freeb(mp);
1689 }
1690 
1691 /*
1692  * Throw an M_IOCTL message downstream asking "do you know fastpath?"
1693  * The data portion of the request is a dl_unitdata_req_t template for
1694  * what we would send downstream in the absence of a fastpath confirmation.
1695  */
1696 int
1697 ill_fastpath_probe(ill_t *ill, mblk_t *dlur_mp)
1698 {
1699 	struct iocblk	*ioc;
1700 	mblk_t	*mp;
1701 
1702 	if (dlur_mp == NULL)
1703 		return (EINVAL);
1704 
1705 	mutex_enter(&ill->ill_lock);
1706 	switch (ill->ill_dlpi_fastpath_state) {
1707 	case IDS_FAILED:
1708 		/*
1709 		 * Driver NAKed the first fastpath ioctl - assume it doesn't
1710 		 * support it.
1711 		 */
1712 		mutex_exit(&ill->ill_lock);
1713 		return (ENOTSUP);
1714 	case IDS_UNKNOWN:
1715 		/* This is the first probe */
1716 		ill->ill_dlpi_fastpath_state = IDS_INPROGRESS;
1717 		break;
1718 	default:
1719 		break;
1720 	}
1721 	mutex_exit(&ill->ill_lock);
1722 
1723 	if ((mp = mkiocb(DL_IOC_HDR_INFO)) == NULL)
1724 		return (EAGAIN);
1725 
1726 	mp->b_cont = copyb(dlur_mp);
1727 	if (mp->b_cont == NULL) {
1728 		freeb(mp);
1729 		return (EAGAIN);
1730 	}
1731 
1732 	ioc = (struct iocblk *)mp->b_rptr;
1733 	ioc->ioc_count = msgdsize(mp->b_cont);
1734 
1735 	putnext(ill->ill_wq, mp);
1736 	return (0);
1737 }
1738 
1739 void
1740 ill_capability_probe(ill_t *ill)
1741 {
1742 	/*
1743 	 * Do so only if capabilities are still unknown.
1744 	 */
1745 	if (ill->ill_dlpi_capab_state != IDS_UNKNOWN)
1746 		return;
1747 
1748 	ill->ill_dlpi_capab_state = IDS_INPROGRESS;
1749 	ip1dbg(("ill_capability_probe: starting capability negotiation\n"));
1750 	ill_capability_proto(ill, DL_CAPABILITY_REQ, NULL);
1751 }
1752 
1753 void
1754 ill_capability_reset(ill_t *ill)
1755 {
1756 	mblk_t *sc_mp = NULL;
1757 	mblk_t *tmp;
1758 
1759 	/*
1760 	 * Note here that we reset the state to UNKNOWN, and later send
1761 	 * down the DL_CAPABILITY_REQ without first setting the state to
1762 	 * INPROGRESS.  We do this in order to distinguish the
1763 	 * DL_CAPABILITY_ACK response which may come back in response to
1764 	 * a "reset" apart from the "probe" DL_CAPABILITY_REQ.  This would
1765 	 * also handle the case where the driver doesn't send us back
1766 	 * a DL_CAPABILITY_ACK in response, since the "probe" routine
1767 	 * requires the state to be in UNKNOWN anyway.  In any case, all
1768 	 * features are turned off until the state reaches IDS_OK.
1769 	 */
1770 	ill->ill_dlpi_capab_state = IDS_UNKNOWN;
1771 	ill->ill_capab_reneg = B_FALSE;
1772 
1773 	/*
1774 	 * Disable sub-capabilities and request a list of sub-capability
1775 	 * messages which will be sent down to the driver.  Each handler
1776 	 * allocates the corresponding dl_capability_sub_t inside an
1777 	 * mblk, and links it to the existing sc_mp mblk, or return it
1778 	 * as sc_mp if it's the first sub-capability (the passed in
1779 	 * sc_mp is NULL).  Upon returning from all capability handlers,
1780 	 * sc_mp will be pulled-up, before passing it downstream.
1781 	 */
1782 	ill_capability_mdt_reset(ill, &sc_mp);
1783 	ill_capability_hcksum_reset(ill, &sc_mp);
1784 	ill_capability_zerocopy_reset(ill, &sc_mp);
1785 	ill_capability_ipsec_reset(ill, &sc_mp);
1786 	ill_capability_dls_reset(ill, &sc_mp);
1787 	ill_capability_lso_reset(ill, &sc_mp);
1788 
1789 	/* Nothing to send down in order to disable the capabilities? */
1790 	if (sc_mp == NULL)
1791 		return;
1792 
1793 	tmp = msgpullup(sc_mp, -1);
1794 	freemsg(sc_mp);
1795 	if ((sc_mp = tmp) == NULL) {
1796 		cmn_err(CE_WARN, "ill_capability_reset: unable to send down "
1797 		    "DL_CAPABILITY_REQ (ENOMEM)\n");
1798 		return;
1799 	}
1800 
1801 	ip1dbg(("ill_capability_reset: resetting negotiated capabilities\n"));
1802 	ill_capability_proto(ill, DL_CAPABILITY_REQ, sc_mp);
1803 }
1804 
1805 /*
1806  * Request or set new-style hardware capabilities supported by DLS provider.
1807  */
1808 static void
1809 ill_capability_proto(ill_t *ill, int type, mblk_t *reqp)
1810 {
1811 	mblk_t *mp;
1812 	dl_capability_req_t *capb;
1813 	size_t size = 0;
1814 	uint8_t *ptr;
1815 
1816 	if (reqp != NULL)
1817 		size = MBLKL(reqp);
1818 
1819 	mp = ip_dlpi_alloc(sizeof (dl_capability_req_t) + size, type);
1820 	if (mp == NULL) {
1821 		freemsg(reqp);
1822 		return;
1823 	}
1824 	ptr = mp->b_rptr;
1825 
1826 	capb = (dl_capability_req_t *)ptr;
1827 	ptr += sizeof (dl_capability_req_t);
1828 
1829 	if (reqp != NULL) {
1830 		capb->dl_sub_offset = sizeof (dl_capability_req_t);
1831 		capb->dl_sub_length = size;
1832 		bcopy(reqp->b_rptr, ptr, size);
1833 		ptr += size;
1834 		mp->b_cont = reqp->b_cont;
1835 		freeb(reqp);
1836 	}
1837 	ASSERT(ptr == mp->b_wptr);
1838 
1839 	ill_dlpi_send(ill, mp);
1840 }
1841 
1842 static void
1843 ill_capability_id_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *outers)
1844 {
1845 	dl_capab_id_t *id_ic;
1846 	uint_t sub_dl_cap = outers->dl_cap;
1847 	dl_capability_sub_t *inners;
1848 	uint8_t *capend;
1849 
1850 	ASSERT(sub_dl_cap == DL_CAPAB_ID_WRAPPER);
1851 
1852 	/*
1853 	 * Note: range checks here are not absolutely sufficient to
1854 	 * make us robust against malformed messages sent by drivers;
1855 	 * this is in keeping with the rest of IP's dlpi handling.
1856 	 * (Remember, it's coming from something else in the kernel
1857 	 * address space)
1858 	 */
1859 
1860 	capend = (uint8_t *)(outers + 1) + outers->dl_length;
1861 	if (capend > mp->b_wptr) {
1862 		cmn_err(CE_WARN, "ill_capability_id_ack: "
1863 		    "malformed sub-capability too long for mblk");
1864 		return;
1865 	}
1866 
1867 	id_ic = (dl_capab_id_t *)(outers + 1);
1868 
1869 	if (outers->dl_length < sizeof (*id_ic) ||
1870 	    (inners = &id_ic->id_subcap,
1871 	    inners->dl_length > (outers->dl_length - sizeof (*inners)))) {
1872 		cmn_err(CE_WARN, "ill_capability_id_ack: malformed "
1873 		    "encapsulated capab type %d too long for mblk",
1874 		    inners->dl_cap);
1875 		return;
1876 	}
1877 
1878 	if (!dlcapabcheckqid(&id_ic->id_mid, ill->ill_lmod_rq)) {
1879 		ip1dbg(("ill_capability_id_ack: mid token for capab type %d "
1880 		    "isn't as expected; pass-thru module(s) detected, "
1881 		    "discarding capability\n", inners->dl_cap));
1882 		return;
1883 	}
1884 
1885 	/* Process the encapsulated sub-capability */
1886 	ill_capability_dispatch(ill, mp, inners, B_TRUE);
1887 }
1888 
1889 /*
1890  * Process Multidata Transmit capability negotiation ack received from a
1891  * DLS Provider.  isub must point to the sub-capability (DL_CAPAB_MDT) of a
1892  * DL_CAPABILITY_ACK message.
1893  */
1894 static void
1895 ill_capability_mdt_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub)
1896 {
1897 	mblk_t *nmp = NULL;
1898 	dl_capability_req_t *oc;
1899 	dl_capab_mdt_t *mdt_ic, *mdt_oc;
1900 	ill_mdt_capab_t **ill_mdt_capab;
1901 	uint_t sub_dl_cap = isub->dl_cap;
1902 	uint8_t *capend;
1903 
1904 	ASSERT(sub_dl_cap == DL_CAPAB_MDT);
1905 
1906 	ill_mdt_capab = (ill_mdt_capab_t **)&ill->ill_mdt_capab;
1907 
1908 	/*
1909 	 * Note: range checks here are not absolutely sufficient to
1910 	 * make us robust against malformed messages sent by drivers;
1911 	 * this is in keeping with the rest of IP's dlpi handling.
1912 	 * (Remember, it's coming from something else in the kernel
1913 	 * address space)
1914 	 */
1915 
1916 	capend = (uint8_t *)(isub + 1) + isub->dl_length;
1917 	if (capend > mp->b_wptr) {
1918 		cmn_err(CE_WARN, "ill_capability_mdt_ack: "
1919 		    "malformed sub-capability too long for mblk");
1920 		return;
1921 	}
1922 
1923 	mdt_ic = (dl_capab_mdt_t *)(isub + 1);
1924 
1925 	if (mdt_ic->mdt_version != MDT_VERSION_2) {
1926 		cmn_err(CE_CONT, "ill_capability_mdt_ack: "
1927 		    "unsupported MDT sub-capability (version %d, expected %d)",
1928 		    mdt_ic->mdt_version, MDT_VERSION_2);
1929 		return;
1930 	}
1931 
1932 	if (!dlcapabcheckqid(&mdt_ic->mdt_mid, ill->ill_lmod_rq)) {
1933 		ip1dbg(("ill_capability_mdt_ack: mid token for MDT "
1934 		    "capability isn't as expected; pass-thru module(s) "
1935 		    "detected, discarding capability\n"));
1936 		return;
1937 	}
1938 
1939 	if (mdt_ic->mdt_flags & DL_CAPAB_MDT_ENABLE) {
1940 
1941 		if (*ill_mdt_capab == NULL) {
1942 			*ill_mdt_capab = kmem_zalloc(sizeof (ill_mdt_capab_t),
1943 			    KM_NOSLEEP);
1944 
1945 			if (*ill_mdt_capab == NULL) {
1946 				cmn_err(CE_WARN, "ill_capability_mdt_ack: "
1947 				    "could not enable MDT version %d "
1948 				    "for %s (ENOMEM)\n", MDT_VERSION_2,
1949 				    ill->ill_name);
1950 				return;
1951 			}
1952 		}
1953 
1954 		ip1dbg(("ill_capability_mdt_ack: interface %s supports "
1955 		    "MDT version %d (%d bytes leading, %d bytes trailing "
1956 		    "header spaces, %d max pld bufs, %d span limit)\n",
1957 		    ill->ill_name, MDT_VERSION_2,
1958 		    mdt_ic->mdt_hdr_head, mdt_ic->mdt_hdr_tail,
1959 		    mdt_ic->mdt_max_pld, mdt_ic->mdt_span_limit));
1960 
1961 		(*ill_mdt_capab)->ill_mdt_version = MDT_VERSION_2;
1962 		(*ill_mdt_capab)->ill_mdt_on = 1;
1963 		/*
1964 		 * Round the following values to the nearest 32-bit; ULP
1965 		 * may further adjust them to accomodate for additional
1966 		 * protocol headers.  We pass these values to ULP during
1967 		 * bind time.
1968 		 */
1969 		(*ill_mdt_capab)->ill_mdt_hdr_head =
1970 		    roundup(mdt_ic->mdt_hdr_head, 4);
1971 		(*ill_mdt_capab)->ill_mdt_hdr_tail =
1972 		    roundup(mdt_ic->mdt_hdr_tail, 4);
1973 		(*ill_mdt_capab)->ill_mdt_max_pld = mdt_ic->mdt_max_pld;
1974 		(*ill_mdt_capab)->ill_mdt_span_limit = mdt_ic->mdt_span_limit;
1975 
1976 		ill->ill_capabilities |= ILL_CAPAB_MDT;
1977 	} else {
1978 		uint_t size;
1979 		uchar_t *rptr;
1980 
1981 		size = sizeof (dl_capability_req_t) +
1982 		    sizeof (dl_capability_sub_t) + sizeof (dl_capab_mdt_t);
1983 
1984 		if ((nmp = ip_dlpi_alloc(size, DL_CAPABILITY_REQ)) == NULL) {
1985 			cmn_err(CE_WARN, "ill_capability_mdt_ack: "
1986 			    "could not enable MDT for %s (ENOMEM)\n",
1987 			    ill->ill_name);
1988 			return;
1989 		}
1990 
1991 		rptr = nmp->b_rptr;
1992 		/* initialize dl_capability_req_t */
1993 		oc = (dl_capability_req_t *)nmp->b_rptr;
1994 		oc->dl_sub_offset = sizeof (dl_capability_req_t);
1995 		oc->dl_sub_length = sizeof (dl_capability_sub_t) +
1996 		    sizeof (dl_capab_mdt_t);
1997 		nmp->b_rptr += sizeof (dl_capability_req_t);
1998 
1999 		/* initialize dl_capability_sub_t */
2000 		bcopy(isub, nmp->b_rptr, sizeof (*isub));
2001 		nmp->b_rptr += sizeof (*isub);
2002 
2003 		/* initialize dl_capab_mdt_t */
2004 		mdt_oc = (dl_capab_mdt_t *)nmp->b_rptr;
2005 		bcopy(mdt_ic, mdt_oc, sizeof (*mdt_ic));
2006 
2007 		nmp->b_rptr = rptr;
2008 
2009 		ip1dbg(("ill_capability_mdt_ack: asking interface %s "
2010 		    "to enable MDT version %d\n", ill->ill_name,
2011 		    MDT_VERSION_2));
2012 
2013 		/* set ENABLE flag */
2014 		mdt_oc->mdt_flags |= DL_CAPAB_MDT_ENABLE;
2015 
2016 		/* nmp points to a DL_CAPABILITY_REQ message to enable MDT */
2017 		ill_dlpi_send(ill, nmp);
2018 	}
2019 }
2020 
2021 static void
2022 ill_capability_mdt_reset(ill_t *ill, mblk_t **sc_mp)
2023 {
2024 	mblk_t *mp;
2025 	dl_capab_mdt_t *mdt_subcap;
2026 	dl_capability_sub_t *dl_subcap;
2027 	int size;
2028 
2029 	if (!ILL_MDT_CAPABLE(ill))
2030 		return;
2031 
2032 	ASSERT(ill->ill_mdt_capab != NULL);
2033 	/*
2034 	 * Clear the capability flag for MDT but retain the ill_mdt_capab
2035 	 * structure since it's possible that another thread is still
2036 	 * referring to it.  The structure only gets deallocated when
2037 	 * we destroy the ill.
2038 	 */
2039 	ill->ill_capabilities &= ~ILL_CAPAB_MDT;
2040 
2041 	size = sizeof (*dl_subcap) + sizeof (*mdt_subcap);
2042 
2043 	mp = allocb(size, BPRI_HI);
2044 	if (mp == NULL) {
2045 		ip1dbg(("ill_capability_mdt_reset: unable to allocate "
2046 		    "request to disable MDT\n"));
2047 		return;
2048 	}
2049 
2050 	mp->b_wptr = mp->b_rptr + size;
2051 
2052 	dl_subcap = (dl_capability_sub_t *)mp->b_rptr;
2053 	dl_subcap->dl_cap = DL_CAPAB_MDT;
2054 	dl_subcap->dl_length = sizeof (*mdt_subcap);
2055 
2056 	mdt_subcap = (dl_capab_mdt_t *)(dl_subcap + 1);
2057 	mdt_subcap->mdt_version = ill->ill_mdt_capab->ill_mdt_version;
2058 	mdt_subcap->mdt_flags = 0;
2059 	mdt_subcap->mdt_hdr_head = 0;
2060 	mdt_subcap->mdt_hdr_tail = 0;
2061 
2062 	if (*sc_mp != NULL)
2063 		linkb(*sc_mp, mp);
2064 	else
2065 		*sc_mp = mp;
2066 }
2067 
2068 /*
2069  * Send a DL_NOTIFY_REQ to the specified ill to enable
2070  * DL_NOTE_PROMISC_ON/OFF_PHYS notifications.
2071  * Invoked by ill_capability_ipsec_ack() before enabling IPsec hardware
2072  * acceleration.
2073  * Returns B_TRUE on success, B_FALSE if the message could not be sent.
2074  */
2075 static boolean_t
2076 ill_enable_promisc_notify(ill_t *ill)
2077 {
2078 	mblk_t *mp;
2079 	dl_notify_req_t *req;
2080 
2081 	IPSECHW_DEBUG(IPSECHW_PKT, ("ill_enable_promisc_notify:\n"));
2082 
2083 	mp = ip_dlpi_alloc(sizeof (dl_notify_req_t), DL_NOTIFY_REQ);
2084 	if (mp == NULL)
2085 		return (B_FALSE);
2086 
2087 	req = (dl_notify_req_t *)mp->b_rptr;
2088 	req->dl_notifications = DL_NOTE_PROMISC_ON_PHYS |
2089 	    DL_NOTE_PROMISC_OFF_PHYS;
2090 
2091 	ill_dlpi_send(ill, mp);
2092 
2093 	return (B_TRUE);
2094 }
2095 
2096 
2097 /*
2098  * Allocate an IPsec capability request which will be filled by our
2099  * caller to turn on support for one or more algorithms.
2100  */
2101 static mblk_t *
2102 ill_alloc_ipsec_cap_req(ill_t *ill, dl_capability_sub_t *isub)
2103 {
2104 	mblk_t *nmp;
2105 	dl_capability_req_t	*ocap;
2106 	dl_capab_ipsec_t	*ocip;
2107 	dl_capab_ipsec_t	*icip;
2108 	uint8_t			*ptr;
2109 	icip = (dl_capab_ipsec_t *)(isub + 1);
2110 
2111 	/*
2112 	 * The first time around, we send a DL_NOTIFY_REQ to enable
2113 	 * PROMISC_ON/OFF notification from the provider. We need to
2114 	 * do this before enabling the algorithms to avoid leakage of
2115 	 * cleartext packets.
2116 	 */
2117 
2118 	if (!ill_enable_promisc_notify(ill))
2119 		return (NULL);
2120 
2121 	/*
2122 	 * Allocate new mblk which will contain a new capability
2123 	 * request to enable the capabilities.
2124 	 */
2125 
2126 	nmp = ip_dlpi_alloc(sizeof (dl_capability_req_t) +
2127 	    sizeof (dl_capability_sub_t) + isub->dl_length, DL_CAPABILITY_REQ);
2128 	if (nmp == NULL)
2129 		return (NULL);
2130 
2131 	ptr = nmp->b_rptr;
2132 
2133 	/* initialize dl_capability_req_t */
2134 	ocap = (dl_capability_req_t *)ptr;
2135 	ocap->dl_sub_offset = sizeof (dl_capability_req_t);
2136 	ocap->dl_sub_length = sizeof (dl_capability_sub_t) + isub->dl_length;
2137 	ptr += sizeof (dl_capability_req_t);
2138 
2139 	/* initialize dl_capability_sub_t */
2140 	bcopy(isub, ptr, sizeof (*isub));
2141 	ptr += sizeof (*isub);
2142 
2143 	/* initialize dl_capab_ipsec_t */
2144 	ocip = (dl_capab_ipsec_t *)ptr;
2145 	bcopy(icip, ocip, sizeof (*icip));
2146 
2147 	nmp->b_wptr = (uchar_t *)(&ocip->cip_data[0]);
2148 	return (nmp);
2149 }
2150 
2151 /*
2152  * Process an IPsec capability negotiation ack received from a DLS Provider.
2153  * isub must point to the sub-capability (DL_CAPAB_IPSEC_AH or
2154  * DL_CAPAB_IPSEC_ESP) of a DL_CAPABILITY_ACK message.
2155  */
2156 static void
2157 ill_capability_ipsec_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub)
2158 {
2159 	dl_capab_ipsec_t	*icip;
2160 	dl_capab_ipsec_alg_t	*ialg;	/* ptr to input alg spec. */
2161 	dl_capab_ipsec_alg_t	*oalg;	/* ptr to output alg spec. */
2162 	uint_t cipher, nciphers;
2163 	mblk_t *nmp;
2164 	uint_t alg_len;
2165 	boolean_t need_sadb_dump;
2166 	uint_t sub_dl_cap = isub->dl_cap;
2167 	ill_ipsec_capab_t **ill_capab;
2168 	uint64_t ill_capab_flag;
2169 	uint8_t *capend, *ciphend;
2170 	boolean_t sadb_resync;
2171 
2172 	ASSERT(sub_dl_cap == DL_CAPAB_IPSEC_AH ||
2173 	    sub_dl_cap == DL_CAPAB_IPSEC_ESP);
2174 
2175 	if (sub_dl_cap == DL_CAPAB_IPSEC_AH) {
2176 		ill_capab = (ill_ipsec_capab_t **)&ill->ill_ipsec_capab_ah;
2177 		ill_capab_flag = ILL_CAPAB_AH;
2178 	} else {
2179 		ill_capab = (ill_ipsec_capab_t **)&ill->ill_ipsec_capab_esp;
2180 		ill_capab_flag = ILL_CAPAB_ESP;
2181 	}
2182 
2183 	/*
2184 	 * If the ill capability structure exists, then this incoming
2185 	 * DL_CAPABILITY_ACK is a response to a "renegotiation" cycle.
2186 	 * If this is so, then we'd need to resynchronize the SADB
2187 	 * after re-enabling the offloaded ciphers.
2188 	 */
2189 	sadb_resync = (*ill_capab != NULL);
2190 
2191 	/*
2192 	 * Note: range checks here are not absolutely sufficient to
2193 	 * make us robust against malformed messages sent by drivers;
2194 	 * this is in keeping with the rest of IP's dlpi handling.
2195 	 * (Remember, it's coming from something else in the kernel
2196 	 * address space)
2197 	 */
2198 
2199 	capend = (uint8_t *)(isub + 1) + isub->dl_length;
2200 	if (capend > mp->b_wptr) {
2201 		cmn_err(CE_WARN, "ill_capability_ipsec_ack: "
2202 		    "malformed sub-capability too long for mblk");
2203 		return;
2204 	}
2205 
2206 	/*
2207 	 * There are two types of acks we process here:
2208 	 * 1. acks in reply to a (first form) generic capability req
2209 	 *    (no ENABLE flag set)
2210 	 * 2. acks in reply to a ENABLE capability req.
2211 	 *    (ENABLE flag set)
2212 	 *
2213 	 * We process the subcapability passed as argument as follows:
2214 	 * 1 do initializations
2215 	 *   1.1 initialize nmp = NULL
2216 	 *   1.2 set need_sadb_dump to B_FALSE
2217 	 * 2 for each cipher in subcapability:
2218 	 *   2.1 if ENABLE flag is set:
2219 	 *	2.1.1 update per-ill ipsec capabilities info
2220 	 *	2.1.2 set need_sadb_dump to B_TRUE
2221 	 *   2.2 if ENABLE flag is not set:
2222 	 *	2.2.1 if nmp is NULL:
2223 	 *		2.2.1.1 allocate and initialize nmp
2224 	 *		2.2.1.2 init current pos in nmp
2225 	 *	2.2.2 copy current cipher to current pos in nmp
2226 	 *	2.2.3 set ENABLE flag in nmp
2227 	 *	2.2.4 update current pos
2228 	 * 3 if nmp is not equal to NULL, send enable request
2229 	 *   3.1 send capability request
2230 	 * 4 if need_sadb_dump is B_TRUE
2231 	 *   4.1 enable promiscuous on/off notifications
2232 	 *   4.2 call ill_dlpi_send(isub->dlcap) to send all
2233 	 *	AH or ESP SA's to interface.
2234 	 */
2235 
2236 	nmp = NULL;
2237 	oalg = NULL;
2238 	need_sadb_dump = B_FALSE;
2239 	icip = (dl_capab_ipsec_t *)(isub + 1);
2240 	ialg = (dl_capab_ipsec_alg_t *)(&icip->cip_data[0]);
2241 
2242 	nciphers = icip->cip_nciphers;
2243 	ciphend = (uint8_t *)(ialg + icip->cip_nciphers);
2244 
2245 	if (ciphend > capend) {
2246 		cmn_err(CE_WARN, "ill_capability_ipsec_ack: "
2247 		    "too many ciphers for sub-capability len");
2248 		return;
2249 	}
2250 
2251 	for (cipher = 0; cipher < nciphers; cipher++) {
2252 		alg_len = sizeof (dl_capab_ipsec_alg_t);
2253 
2254 		if (ialg->alg_flag & DL_CAPAB_ALG_ENABLE) {
2255 			/*
2256 			 * TBD: when we provide a way to disable capabilities
2257 			 * from above, need to manage the request-pending state
2258 			 * and fail if we were not expecting this ACK.
2259 			 */
2260 			IPSECHW_DEBUG(IPSECHW_CAPAB,
2261 			    ("ill_capability_ipsec_ack: got ENABLE ACK\n"));
2262 
2263 			/*
2264 			 * Update IPsec capabilities for this ill
2265 			 */
2266 
2267 			if (*ill_capab == NULL) {
2268 				IPSECHW_DEBUG(IPSECHW_CAPAB,
2269 				    ("ill_capability_ipsec_ack: "
2270 				    "allocating ipsec_capab for ill\n"));
2271 				*ill_capab = ill_ipsec_capab_alloc();
2272 
2273 				if (*ill_capab == NULL) {
2274 					cmn_err(CE_WARN,
2275 					    "ill_capability_ipsec_ack: "
2276 					    "could not enable IPsec Hardware "
2277 					    "acceleration for %s (ENOMEM)\n",
2278 					    ill->ill_name);
2279 					return;
2280 				}
2281 			}
2282 
2283 			ASSERT(ialg->alg_type == DL_CAPAB_IPSEC_ALG_AUTH ||
2284 			    ialg->alg_type == DL_CAPAB_IPSEC_ALG_ENCR);
2285 
2286 			if (ialg->alg_prim >= MAX_IPSEC_ALGS) {
2287 				cmn_err(CE_WARN,
2288 				    "ill_capability_ipsec_ack: "
2289 				    "malformed IPsec algorithm id %d",
2290 				    ialg->alg_prim);
2291 				continue;
2292 			}
2293 
2294 			if (ialg->alg_type == DL_CAPAB_IPSEC_ALG_AUTH) {
2295 				IPSEC_ALG_ENABLE((*ill_capab)->auth_hw_algs,
2296 				    ialg->alg_prim);
2297 			} else {
2298 				ipsec_capab_algparm_t *alp;
2299 
2300 				IPSEC_ALG_ENABLE((*ill_capab)->encr_hw_algs,
2301 				    ialg->alg_prim);
2302 				if (!ill_ipsec_capab_resize_algparm(*ill_capab,
2303 				    ialg->alg_prim)) {
2304 					cmn_err(CE_WARN,
2305 					    "ill_capability_ipsec_ack: "
2306 					    "no space for IPsec alg id %d",
2307 					    ialg->alg_prim);
2308 					continue;
2309 				}
2310 				alp = &((*ill_capab)->encr_algparm[
2311 				    ialg->alg_prim]);
2312 				alp->minkeylen = ialg->alg_minbits;
2313 				alp->maxkeylen = ialg->alg_maxbits;
2314 			}
2315 			ill->ill_capabilities |= ill_capab_flag;
2316 			/*
2317 			 * indicate that a capability was enabled, which
2318 			 * will be used below to kick off a SADB dump
2319 			 * to the ill.
2320 			 */
2321 			need_sadb_dump = B_TRUE;
2322 		} else {
2323 			IPSECHW_DEBUG(IPSECHW_CAPAB,
2324 			    ("ill_capability_ipsec_ack: enabling alg 0x%x\n",
2325 			    ialg->alg_prim));
2326 
2327 			if (nmp == NULL) {
2328 				nmp = ill_alloc_ipsec_cap_req(ill, isub);
2329 				if (nmp == NULL) {
2330 					/*
2331 					 * Sending the PROMISC_ON/OFF
2332 					 * notification request failed.
2333 					 * We cannot enable the algorithms
2334 					 * since the Provider will not
2335 					 * notify IP of promiscous mode
2336 					 * changes, which could lead
2337 					 * to leakage of packets.
2338 					 */
2339 					cmn_err(CE_WARN,
2340 					    "ill_capability_ipsec_ack: "
2341 					    "could not enable IPsec Hardware "
2342 					    "acceleration for %s (ENOMEM)\n",
2343 					    ill->ill_name);
2344 					return;
2345 				}
2346 				/* ptr to current output alg specifier */
2347 				oalg = (dl_capab_ipsec_alg_t *)nmp->b_wptr;
2348 			}
2349 
2350 			/*
2351 			 * Copy current alg specifier, set ENABLE
2352 			 * flag, and advance to next output alg.
2353 			 * For now we enable all IPsec capabilities.
2354 			 */
2355 			ASSERT(oalg != NULL);
2356 			bcopy(ialg, oalg, alg_len);
2357 			oalg->alg_flag |= DL_CAPAB_ALG_ENABLE;
2358 			nmp->b_wptr += alg_len;
2359 			oalg = (dl_capab_ipsec_alg_t *)nmp->b_wptr;
2360 		}
2361 
2362 		/* move to next input algorithm specifier */
2363 		ialg = (dl_capab_ipsec_alg_t *)
2364 		    ((char *)ialg + alg_len);
2365 	}
2366 
2367 	if (nmp != NULL)
2368 		/*
2369 		 * nmp points to a DL_CAPABILITY_REQ message to enable
2370 		 * IPsec hardware acceleration.
2371 		 */
2372 		ill_dlpi_send(ill, nmp);
2373 
2374 	if (need_sadb_dump)
2375 		/*
2376 		 * An acknowledgement corresponding to a request to
2377 		 * enable acceleration was received, notify SADB.
2378 		 */
2379 		ill_ipsec_capab_add(ill, sub_dl_cap, sadb_resync);
2380 }
2381 
2382 /*
2383  * Given an mblk with enough space in it, create sub-capability entries for
2384  * DL_CAPAB_IPSEC_{AH,ESP} types which consist of previously-advertised
2385  * offloaded ciphers (both AUTH and ENCR) with their enable flags cleared,
2386  * in preparation for the reset the DL_CAPABILITY_REQ message.
2387  */
2388 static void
2389 ill_fill_ipsec_reset(uint_t nciphers, int stype, uint_t slen,
2390     ill_ipsec_capab_t *ill_cap, mblk_t *mp)
2391 {
2392 	dl_capab_ipsec_t *oipsec;
2393 	dl_capab_ipsec_alg_t *oalg;
2394 	dl_capability_sub_t *dl_subcap;
2395 	int i, k;
2396 
2397 	ASSERT(nciphers > 0);
2398 	ASSERT(ill_cap != NULL);
2399 	ASSERT(mp != NULL);
2400 	ASSERT(MBLKTAIL(mp) >= sizeof (*dl_subcap) + sizeof (*oipsec) + slen);
2401 
2402 	/* dl_capability_sub_t for "stype" */
2403 	dl_subcap = (dl_capability_sub_t *)mp->b_wptr;
2404 	dl_subcap->dl_cap = stype;
2405 	dl_subcap->dl_length = sizeof (dl_capab_ipsec_t) + slen;
2406 	mp->b_wptr += sizeof (dl_capability_sub_t);
2407 
2408 	/* dl_capab_ipsec_t for "stype" */
2409 	oipsec = (dl_capab_ipsec_t *)mp->b_wptr;
2410 	oipsec->cip_version = 1;
2411 	oipsec->cip_nciphers = nciphers;
2412 	mp->b_wptr = (uchar_t *)&oipsec->cip_data[0];
2413 
2414 	/* create entries for "stype" AUTH ciphers */
2415 	for (i = 0; i < ill_cap->algs_size; i++) {
2416 		for (k = 0; k < BITSPERBYTE; k++) {
2417 			if ((ill_cap->auth_hw_algs[i] & (1 << k)) == 0)
2418 				continue;
2419 
2420 			oalg = (dl_capab_ipsec_alg_t *)mp->b_wptr;
2421 			bzero((void *)oalg, sizeof (*oalg));
2422 			oalg->alg_type = DL_CAPAB_IPSEC_ALG_AUTH;
2423 			oalg->alg_prim = k + (BITSPERBYTE * i);
2424 			mp->b_wptr += sizeof (dl_capab_ipsec_alg_t);
2425 		}
2426 	}
2427 	/* create entries for "stype" ENCR ciphers */
2428 	for (i = 0; i < ill_cap->algs_size; i++) {
2429 		for (k = 0; k < BITSPERBYTE; k++) {
2430 			if ((ill_cap->encr_hw_algs[i] & (1 << k)) == 0)
2431 				continue;
2432 
2433 			oalg = (dl_capab_ipsec_alg_t *)mp->b_wptr;
2434 			bzero((void *)oalg, sizeof (*oalg));
2435 			oalg->alg_type = DL_CAPAB_IPSEC_ALG_ENCR;
2436 			oalg->alg_prim = k + (BITSPERBYTE * i);
2437 			mp->b_wptr += sizeof (dl_capab_ipsec_alg_t);
2438 		}
2439 	}
2440 }
2441 
2442 /*
2443  * Macro to count number of 1s in a byte (8-bit word).  The total count is
2444  * accumulated into the passed-in argument (sum).  We could use SPARCv9's
2445  * POPC instruction, but our macro is more flexible for an arbitrary length
2446  * of bytes, such as {auth,encr}_hw_algs.  These variables are currently
2447  * 256-bits long (MAX_IPSEC_ALGS), so if we know for sure that the length
2448  * stays that way, we can reduce the number of iterations required.
2449  */
2450 #define	COUNT_1S(val, sum) {					\
2451 	uint8_t x = val & 0xff;					\
2452 	x = (x & 0x55) + ((x >> 1) & 0x55);			\
2453 	x = (x & 0x33) + ((x >> 2) & 0x33);			\
2454 	sum += (x & 0xf) + ((x >> 4) & 0xf);			\
2455 }
2456 
2457 /* ARGSUSED */
2458 static void
2459 ill_capability_ipsec_reset(ill_t *ill, mblk_t **sc_mp)
2460 {
2461 	mblk_t *mp;
2462 	ill_ipsec_capab_t *cap_ah = ill->ill_ipsec_capab_ah;
2463 	ill_ipsec_capab_t *cap_esp = ill->ill_ipsec_capab_esp;
2464 	uint64_t ill_capabilities = ill->ill_capabilities;
2465 	int ah_cnt = 0, esp_cnt = 0;
2466 	int ah_len = 0, esp_len = 0;
2467 	int i, size = 0;
2468 
2469 	if (!(ill_capabilities & (ILL_CAPAB_AH | ILL_CAPAB_ESP)))
2470 		return;
2471 
2472 	ASSERT(cap_ah != NULL || !(ill_capabilities & ILL_CAPAB_AH));
2473 	ASSERT(cap_esp != NULL || !(ill_capabilities & ILL_CAPAB_ESP));
2474 
2475 	/* Find out the number of ciphers for AH */
2476 	if (cap_ah != NULL) {
2477 		for (i = 0; i < cap_ah->algs_size; i++) {
2478 			COUNT_1S(cap_ah->auth_hw_algs[i], ah_cnt);
2479 			COUNT_1S(cap_ah->encr_hw_algs[i], ah_cnt);
2480 		}
2481 		if (ah_cnt > 0) {
2482 			size += sizeof (dl_capability_sub_t) +
2483 			    sizeof (dl_capab_ipsec_t);
2484 			/* dl_capab_ipsec_t contains one dl_capab_ipsec_alg_t */
2485 			ah_len = (ah_cnt - 1) * sizeof (dl_capab_ipsec_alg_t);
2486 			size += ah_len;
2487 		}
2488 	}
2489 
2490 	/* Find out the number of ciphers for ESP */
2491 	if (cap_esp != NULL) {
2492 		for (i = 0; i < cap_esp->algs_size; i++) {
2493 			COUNT_1S(cap_esp->auth_hw_algs[i], esp_cnt);
2494 			COUNT_1S(cap_esp->encr_hw_algs[i], esp_cnt);
2495 		}
2496 		if (esp_cnt > 0) {
2497 			size += sizeof (dl_capability_sub_t) +
2498 			    sizeof (dl_capab_ipsec_t);
2499 			/* dl_capab_ipsec_t contains one dl_capab_ipsec_alg_t */
2500 			esp_len = (esp_cnt - 1) * sizeof (dl_capab_ipsec_alg_t);
2501 			size += esp_len;
2502 		}
2503 	}
2504 
2505 	if (size == 0) {
2506 		ip1dbg(("ill_capability_ipsec_reset: capabilities exist but "
2507 		    "there's nothing to reset\n"));
2508 		return;
2509 	}
2510 
2511 	mp = allocb(size, BPRI_HI);
2512 	if (mp == NULL) {
2513 		ip1dbg(("ill_capability_ipsec_reset: unable to allocate "
2514 		    "request to disable IPSEC Hardware Acceleration\n"));
2515 		return;
2516 	}
2517 
2518 	/*
2519 	 * Clear the capability flags for IPsec HA but retain the ill
2520 	 * capability structures since it's possible that another thread
2521 	 * is still referring to them.  The structures only get deallocated
2522 	 * when we destroy the ill.
2523 	 *
2524 	 * Various places check the flags to see if the ill is capable of
2525 	 * hardware acceleration, and by clearing them we ensure that new
2526 	 * outbound IPsec packets are sent down encrypted.
2527 	 */
2528 	ill->ill_capabilities &= ~(ILL_CAPAB_AH | ILL_CAPAB_ESP);
2529 
2530 	/* Fill in DL_CAPAB_IPSEC_AH sub-capability entries */
2531 	if (ah_cnt > 0) {
2532 		ill_fill_ipsec_reset(ah_cnt, DL_CAPAB_IPSEC_AH, ah_len,
2533 		    cap_ah, mp);
2534 		ASSERT(mp->b_rptr + size >= mp->b_wptr);
2535 	}
2536 
2537 	/* Fill in DL_CAPAB_IPSEC_ESP sub-capability entries */
2538 	if (esp_cnt > 0) {
2539 		ill_fill_ipsec_reset(esp_cnt, DL_CAPAB_IPSEC_ESP, esp_len,
2540 		    cap_esp, mp);
2541 		ASSERT(mp->b_rptr + size >= mp->b_wptr);
2542 	}
2543 
2544 	/*
2545 	 * At this point we've composed a bunch of sub-capabilities to be
2546 	 * encapsulated in a DL_CAPABILITY_REQ and later sent downstream
2547 	 * by the caller.  Upon receiving this reset message, the driver
2548 	 * must stop inbound decryption (by destroying all inbound SAs)
2549 	 * and let the corresponding packets come in encrypted.
2550 	 */
2551 
2552 	if (*sc_mp != NULL)
2553 		linkb(*sc_mp, mp);
2554 	else
2555 		*sc_mp = mp;
2556 }
2557 
2558 static void
2559 ill_capability_dispatch(ill_t *ill, mblk_t *mp, dl_capability_sub_t *subp,
2560     boolean_t encapsulated)
2561 {
2562 	boolean_t legacy = B_FALSE;
2563 
2564 	/*
2565 	 * If this DL_CAPABILITY_ACK came in as a response to our "reset"
2566 	 * DL_CAPABILITY_REQ, ignore it during this cycle.  We've just
2567 	 * instructed the driver to disable its advertised capabilities,
2568 	 * so there's no point in accepting any response at this moment.
2569 	 */
2570 	if (ill->ill_dlpi_capab_state == IDS_UNKNOWN)
2571 		return;
2572 
2573 	/*
2574 	 * Note that only the following two sub-capabilities may be
2575 	 * considered as "legacy", since their original definitions
2576 	 * do not incorporate the dl_mid_t module ID token, and hence
2577 	 * may require the use of the wrapper sub-capability.
2578 	 */
2579 	switch (subp->dl_cap) {
2580 	case DL_CAPAB_IPSEC_AH:
2581 	case DL_CAPAB_IPSEC_ESP:
2582 		legacy = B_TRUE;
2583 		break;
2584 	}
2585 
2586 	/*
2587 	 * For legacy sub-capabilities which don't incorporate a queue_t
2588 	 * pointer in their structures, discard them if we detect that
2589 	 * there are intermediate modules in between IP and the driver.
2590 	 */
2591 	if (!encapsulated && legacy && ill->ill_lmod_cnt > 1) {
2592 		ip1dbg(("ill_capability_dispatch: unencapsulated capab type "
2593 		    "%d discarded; %d module(s) present below IP\n",
2594 		    subp->dl_cap, ill->ill_lmod_cnt));
2595 		return;
2596 	}
2597 
2598 	switch (subp->dl_cap) {
2599 	case DL_CAPAB_IPSEC_AH:
2600 	case DL_CAPAB_IPSEC_ESP:
2601 		ill_capability_ipsec_ack(ill, mp, subp);
2602 		break;
2603 	case DL_CAPAB_MDT:
2604 		ill_capability_mdt_ack(ill, mp, subp);
2605 		break;
2606 	case DL_CAPAB_HCKSUM:
2607 		ill_capability_hcksum_ack(ill, mp, subp);
2608 		break;
2609 	case DL_CAPAB_ZEROCOPY:
2610 		ill_capability_zerocopy_ack(ill, mp, subp);
2611 		break;
2612 	case DL_CAPAB_POLL:
2613 		if (!SOFT_RINGS_ENABLED())
2614 			ill_capability_dls_ack(ill, mp, subp);
2615 		break;
2616 	case DL_CAPAB_SOFT_RING:
2617 		if (SOFT_RINGS_ENABLED())
2618 			ill_capability_dls_ack(ill, mp, subp);
2619 		break;
2620 	case DL_CAPAB_LSO:
2621 		ill_capability_lso_ack(ill, mp, subp);
2622 		break;
2623 	default:
2624 		ip1dbg(("ill_capability_dispatch: unknown capab type %d\n",
2625 		    subp->dl_cap));
2626 	}
2627 }
2628 
2629 /*
2630  * As part of negotiating polling capability, the driver tells us
2631  * the default (or normal) blanking interval and packet threshold
2632  * (the receive timer fires if blanking interval is reached or
2633  * the packet threshold is reached).
2634  *
2635  * As part of manipulating the polling interval, we always use our
2636  * estimated interval (avg service time * number of packets queued
2637  * on the squeue) but we try to blank for a minimum of
2638  * rr_normal_blank_time * rr_max_blank_ratio. We disable the
2639  * packet threshold during this time. When we are not in polling mode
2640  * we set the blank interval typically lower, rr_normal_pkt_cnt *
2641  * rr_min_blank_ratio but up the packet cnt by a ratio of
2642  * rr_min_pkt_cnt_ratio so that we are still getting chains if
2643  * possible although for a shorter interval.
2644  */
2645 #define	RR_MAX_BLANK_RATIO	20
2646 #define	RR_MIN_BLANK_RATIO	10
2647 #define	RR_MAX_PKT_CNT_RATIO	3
2648 #define	RR_MIN_PKT_CNT_RATIO	3
2649 
2650 /*
2651  * These can be tuned via /etc/system.
2652  */
2653 int rr_max_blank_ratio = RR_MAX_BLANK_RATIO;
2654 int rr_min_blank_ratio = RR_MIN_BLANK_RATIO;
2655 int rr_max_pkt_cnt_ratio = RR_MAX_PKT_CNT_RATIO;
2656 int rr_min_pkt_cnt_ratio = RR_MIN_PKT_CNT_RATIO;
2657 
2658 static mac_resource_handle_t
2659 ill_ring_add(void *arg, mac_resource_t *mrp)
2660 {
2661 	ill_t			*ill = (ill_t *)arg;
2662 	mac_rx_fifo_t		*mrfp = (mac_rx_fifo_t *)mrp;
2663 	ill_rx_ring_t		*rx_ring;
2664 	int			ip_rx_index;
2665 
2666 	ASSERT(mrp != NULL);
2667 	if (mrp->mr_type != MAC_RX_FIFO) {
2668 		return (NULL);
2669 	}
2670 	ASSERT(ill != NULL);
2671 	ASSERT(ill->ill_dls_capab != NULL);
2672 
2673 	mutex_enter(&ill->ill_lock);
2674 	for (ip_rx_index = 0; ip_rx_index < ILL_MAX_RINGS; ip_rx_index++) {
2675 		rx_ring = &ill->ill_dls_capab->ill_ring_tbl[ip_rx_index];
2676 		ASSERT(rx_ring != NULL);
2677 
2678 		if (rx_ring->rr_ring_state == ILL_RING_FREE) {
2679 			time_t normal_blank_time =
2680 			    mrfp->mrf_normal_blank_time;
2681 			uint_t normal_pkt_cnt =
2682 			    mrfp->mrf_normal_pkt_count;
2683 
2684 	bzero(rx_ring, sizeof (ill_rx_ring_t));
2685 
2686 	rx_ring->rr_blank = mrfp->mrf_blank;
2687 	rx_ring->rr_handle = mrfp->mrf_arg;
2688 	rx_ring->rr_ill = ill;
2689 	rx_ring->rr_normal_blank_time = normal_blank_time;
2690 	rx_ring->rr_normal_pkt_cnt = normal_pkt_cnt;
2691 
2692 			rx_ring->rr_max_blank_time =
2693 			    normal_blank_time * rr_max_blank_ratio;
2694 			rx_ring->rr_min_blank_time =
2695 			    normal_blank_time * rr_min_blank_ratio;
2696 			rx_ring->rr_max_pkt_cnt =
2697 			    normal_pkt_cnt * rr_max_pkt_cnt_ratio;
2698 			rx_ring->rr_min_pkt_cnt =
2699 			    normal_pkt_cnt * rr_min_pkt_cnt_ratio;
2700 
2701 			rx_ring->rr_ring_state = ILL_RING_INUSE;
2702 			mutex_exit(&ill->ill_lock);
2703 
2704 			DTRACE_PROBE2(ill__ring__add, (void *), ill,
2705 			    (int), ip_rx_index);
2706 			return ((mac_resource_handle_t)rx_ring);
2707 		}
2708 	}
2709 
2710 	/*
2711 	 * We ran out of ILL_MAX_RINGS worth rx_ring structures. If
2712 	 * we have devices which can overwhelm this limit, ILL_MAX_RING
2713 	 * should be made configurable. Meanwhile it cause no panic because
2714 	 * driver will pass ip_input a NULL handle which will make
2715 	 * IP allocate the default squeue and Polling mode will not
2716 	 * be used for this ring.
2717 	 */
2718 	cmn_err(CE_NOTE, "Reached maximum number of receiving rings (%d) "
2719 	    "for %s\n", ILL_MAX_RINGS, ill->ill_name);
2720 
2721 	mutex_exit(&ill->ill_lock);
2722 	return (NULL);
2723 }
2724 
2725 static boolean_t
2726 ill_capability_dls_init(ill_t *ill)
2727 {
2728 	ill_dls_capab_t	*ill_dls = ill->ill_dls_capab;
2729 	conn_t 			*connp;
2730 	size_t			sz;
2731 	ip_stack_t *ipst = ill->ill_ipst;
2732 
2733 	if (ill->ill_capabilities & ILL_CAPAB_SOFT_RING) {
2734 		if (ill_dls == NULL) {
2735 			cmn_err(CE_PANIC, "ill_capability_dls_init: "
2736 			    "soft_ring enabled for ill=%s (%p) but data "
2737 			    "structs uninitialized\n", ill->ill_name,
2738 			    (void *)ill);
2739 		}
2740 		return (B_TRUE);
2741 	} else if (ill->ill_capabilities & ILL_CAPAB_POLL) {
2742 		if (ill_dls == NULL) {
2743 			cmn_err(CE_PANIC, "ill_capability_dls_init: "
2744 			    "polling enabled for ill=%s (%p) but data "
2745 			    "structs uninitialized\n", ill->ill_name,
2746 			    (void *)ill);
2747 		}
2748 		return (B_TRUE);
2749 	}
2750 
2751 	if (ill_dls != NULL) {
2752 		ill_rx_ring_t 	*rx_ring = ill_dls->ill_ring_tbl;
2753 		/* Soft_Ring or polling is being re-enabled */
2754 
2755 		connp = ill_dls->ill_unbind_conn;
2756 		ASSERT(rx_ring != NULL);
2757 		bzero((void *)ill_dls, sizeof (ill_dls_capab_t));
2758 		bzero((void *)rx_ring,
2759 		    sizeof (ill_rx_ring_t) * ILL_MAX_RINGS);
2760 		ill_dls->ill_ring_tbl = rx_ring;
2761 		ill_dls->ill_unbind_conn = connp;
2762 		return (B_TRUE);
2763 	}
2764 
2765 	if ((connp = ipcl_conn_create(IPCL_TCPCONN, KM_NOSLEEP,
2766 	    ipst->ips_netstack)) == NULL)
2767 		return (B_FALSE);
2768 
2769 	sz = sizeof (ill_dls_capab_t);
2770 	sz += sizeof (ill_rx_ring_t) * ILL_MAX_RINGS;
2771 
2772 	ill_dls = kmem_zalloc(sz, KM_NOSLEEP);
2773 	if (ill_dls == NULL) {
2774 		cmn_err(CE_WARN, "ill_capability_dls_init: could not "
2775 		    "allocate dls_capab for %s (%p)\n", ill->ill_name,
2776 		    (void *)ill);
2777 		CONN_DEC_REF(connp);
2778 		return (B_FALSE);
2779 	}
2780 
2781 	/* Allocate space to hold ring table */
2782 	ill_dls->ill_ring_tbl = (ill_rx_ring_t *)&ill_dls[1];
2783 	ill->ill_dls_capab = ill_dls;
2784 	ill_dls->ill_unbind_conn = connp;
2785 	return (B_TRUE);
2786 }
2787 
2788 /*
2789  * ill_capability_dls_disable: disable soft_ring and/or polling
2790  * capability. Since any of the rings might already be in use, need
2791  * to call ip_squeue_clean_all() which gets behind the squeue to disable
2792  * direct calls if necessary.
2793  */
2794 static void
2795 ill_capability_dls_disable(ill_t *ill)
2796 {
2797 	ill_dls_capab_t	*ill_dls = ill->ill_dls_capab;
2798 
2799 	if (ill->ill_capabilities & ILL_CAPAB_DLS) {
2800 		ip_squeue_clean_all(ill);
2801 		ill_dls->ill_tx = NULL;
2802 		ill_dls->ill_tx_handle = NULL;
2803 		ill_dls->ill_dls_change_status = NULL;
2804 		ill_dls->ill_dls_bind = NULL;
2805 		ill_dls->ill_dls_unbind = NULL;
2806 	}
2807 
2808 	ASSERT(!(ill->ill_capabilities & ILL_CAPAB_DLS));
2809 }
2810 
2811 static void
2812 ill_capability_dls_capable(ill_t *ill, dl_capab_dls_t *idls,
2813     dl_capability_sub_t *isub)
2814 {
2815 	uint_t			size;
2816 	uchar_t			*rptr;
2817 	dl_capab_dls_t	dls, *odls;
2818 	ill_dls_capab_t	*ill_dls;
2819 	mblk_t			*nmp = NULL;
2820 	dl_capability_req_t	*ocap;
2821 	uint_t			sub_dl_cap = isub->dl_cap;
2822 
2823 	if (!ill_capability_dls_init(ill))
2824 		return;
2825 	ill_dls = ill->ill_dls_capab;
2826 
2827 	/* Copy locally to get the members aligned */
2828 	bcopy((void *)idls, (void *)&dls,
2829 	    sizeof (dl_capab_dls_t));
2830 
2831 	/* Get the tx function and handle from dld */
2832 	ill_dls->ill_tx = (ip_dld_tx_t)dls.dls_tx;
2833 	ill_dls->ill_tx_handle = (void *)dls.dls_tx_handle;
2834 
2835 	if (sub_dl_cap == DL_CAPAB_SOFT_RING) {
2836 		ill_dls->ill_dls_change_status =
2837 		    (ip_dls_chg_soft_ring_t)dls.dls_ring_change_status;
2838 		ill_dls->ill_dls_bind = (ip_dls_bind_t)dls.dls_ring_bind;
2839 		ill_dls->ill_dls_unbind =
2840 		    (ip_dls_unbind_t)dls.dls_ring_unbind;
2841 		ill_dls->ill_dls_soft_ring_cnt = ip_soft_rings_cnt;
2842 	}
2843 
2844 	size = sizeof (dl_capability_req_t) + sizeof (dl_capability_sub_t) +
2845 	    isub->dl_length;
2846 
2847 	if ((nmp = ip_dlpi_alloc(size, DL_CAPABILITY_REQ)) == NULL) {
2848 		cmn_err(CE_WARN, "ill_capability_dls_capable: could "
2849 		    "not allocate memory for CAPAB_REQ for %s (%p)\n",
2850 		    ill->ill_name, (void *)ill);
2851 		return;
2852 	}
2853 
2854 	/* initialize dl_capability_req_t */
2855 	rptr = nmp->b_rptr;
2856 	ocap = (dl_capability_req_t *)rptr;
2857 	ocap->dl_sub_offset = sizeof (dl_capability_req_t);
2858 	ocap->dl_sub_length = sizeof (dl_capability_sub_t) + isub->dl_length;
2859 	rptr += sizeof (dl_capability_req_t);
2860 
2861 	/* initialize dl_capability_sub_t */
2862 	bcopy(isub, rptr, sizeof (*isub));
2863 	rptr += sizeof (*isub);
2864 
2865 	odls = (dl_capab_dls_t *)rptr;
2866 	rptr += sizeof (dl_capab_dls_t);
2867 
2868 	/* initialize dl_capab_dls_t to be sent down */
2869 	dls.dls_rx_handle = (uintptr_t)ill;
2870 	dls.dls_rx = (uintptr_t)ip_input;
2871 	dls.dls_ring_add = (uintptr_t)ill_ring_add;
2872 
2873 	if (sub_dl_cap == DL_CAPAB_SOFT_RING) {
2874 		dls.dls_ring_cnt = ip_soft_rings_cnt;
2875 		dls.dls_ring_assign = (uintptr_t)ip_soft_ring_assignment;
2876 		dls.dls_flags = SOFT_RING_ENABLE;
2877 	} else {
2878 		dls.dls_flags = POLL_ENABLE;
2879 		ip1dbg(("ill_capability_dls_capable: asking interface %s "
2880 		    "to enable polling\n", ill->ill_name));
2881 	}
2882 	bcopy((void *)&dls, (void *)odls,
2883 	    sizeof (dl_capab_dls_t));
2884 	ASSERT(nmp->b_wptr == (nmp->b_rptr + size));
2885 	/*
2886 	 * nmp points to a DL_CAPABILITY_REQ message to
2887 	 * enable either soft_ring or polling
2888 	 */
2889 	ill_dlpi_send(ill, nmp);
2890 }
2891 
2892 static void
2893 ill_capability_dls_reset(ill_t *ill, mblk_t **sc_mp)
2894 {
2895 	mblk_t *mp;
2896 	dl_capab_dls_t *idls;
2897 	dl_capability_sub_t *dl_subcap;
2898 	int size;
2899 
2900 	if (!(ill->ill_capabilities & ILL_CAPAB_DLS))
2901 		return;
2902 
2903 	ASSERT(ill->ill_dls_capab != NULL);
2904 
2905 	size = sizeof (*dl_subcap) + sizeof (*idls);
2906 
2907 	mp = allocb(size, BPRI_HI);
2908 	if (mp == NULL) {
2909 		ip1dbg(("ill_capability_dls_reset: unable to allocate "
2910 		    "request to disable soft_ring\n"));
2911 		return;
2912 	}
2913 
2914 	mp->b_wptr = mp->b_rptr + size;
2915 
2916 	dl_subcap = (dl_capability_sub_t *)mp->b_rptr;
2917 	dl_subcap->dl_length = sizeof (*idls);
2918 	if (ill->ill_capabilities & ILL_CAPAB_SOFT_RING)
2919 		dl_subcap->dl_cap = DL_CAPAB_SOFT_RING;
2920 	else
2921 		dl_subcap->dl_cap = DL_CAPAB_POLL;
2922 
2923 	idls = (dl_capab_dls_t *)(dl_subcap + 1);
2924 	if (ill->ill_capabilities & ILL_CAPAB_SOFT_RING)
2925 		idls->dls_flags = SOFT_RING_DISABLE;
2926 	else
2927 		idls->dls_flags = POLL_DISABLE;
2928 
2929 	if (*sc_mp != NULL)
2930 		linkb(*sc_mp, mp);
2931 	else
2932 		*sc_mp = mp;
2933 }
2934 
2935 /*
2936  * Process a soft_ring/poll capability negotiation ack received
2937  * from a DLS Provider.isub must point to the sub-capability
2938  * (DL_CAPAB_SOFT_RING/DL_CAPAB_POLL) of a DL_CAPABILITY_ACK message.
2939  */
2940 static void
2941 ill_capability_dls_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub)
2942 {
2943 	dl_capab_dls_t		*idls;
2944 	uint_t			sub_dl_cap = isub->dl_cap;
2945 	uint8_t			*capend;
2946 
2947 	ASSERT(sub_dl_cap == DL_CAPAB_SOFT_RING ||
2948 	    sub_dl_cap == DL_CAPAB_POLL);
2949 
2950 	if (ill->ill_isv6)
2951 		return;
2952 
2953 	/*
2954 	 * Note: range checks here are not absolutely sufficient to
2955 	 * make us robust against malformed messages sent by drivers;
2956 	 * this is in keeping with the rest of IP's dlpi handling.
2957 	 * (Remember, it's coming from something else in the kernel
2958 	 * address space)
2959 	 */
2960 	capend = (uint8_t *)(isub + 1) + isub->dl_length;
2961 	if (capend > mp->b_wptr) {
2962 		cmn_err(CE_WARN, "ill_capability_dls_ack: "
2963 		    "malformed sub-capability too long for mblk");
2964 		return;
2965 	}
2966 
2967 	/*
2968 	 * There are two types of acks we process here:
2969 	 * 1. acks in reply to a (first form) generic capability req
2970 	 *    (dls_flag will be set to SOFT_RING_CAPABLE or POLL_CAPABLE)
2971 	 * 2. acks in reply to a SOFT_RING_ENABLE or POLL_ENABLE
2972 	 *    capability req.
2973 	 */
2974 	idls = (dl_capab_dls_t *)(isub + 1);
2975 
2976 	if (!dlcapabcheckqid(&idls->dls_mid, ill->ill_lmod_rq)) {
2977 		ip1dbg(("ill_capability_dls_ack: mid token for dls "
2978 		    "capability isn't as expected; pass-thru "
2979 		    "module(s) detected, discarding capability\n"));
2980 		if (ill->ill_capabilities & ILL_CAPAB_DLS) {
2981 			/*
2982 			 * This is a capability renegotitation case.
2983 			 * The interface better be unusable at this
2984 			 * point other wise bad things will happen
2985 			 * if we disable direct calls on a running
2986 			 * and up interface.
2987 			 */
2988 			ill_capability_dls_disable(ill);
2989 		}
2990 		return;
2991 	}
2992 
2993 	switch (idls->dls_flags) {
2994 	default:
2995 		/* Disable if unknown flag */
2996 	case SOFT_RING_DISABLE:
2997 	case POLL_DISABLE:
2998 		ill_capability_dls_disable(ill);
2999 		break;
3000 	case SOFT_RING_CAPABLE:
3001 	case POLL_CAPABLE:
3002 		/*
3003 		 * If the capability was already enabled, its safe
3004 		 * to disable it first to get rid of stale information
3005 		 * and then start enabling it again.
3006 		 */
3007 		ill_capability_dls_disable(ill);
3008 		ill_capability_dls_capable(ill, idls, isub);
3009 		break;
3010 	case SOFT_RING_ENABLE:
3011 	case POLL_ENABLE:
3012 		mutex_enter(&ill->ill_lock);
3013 		if (sub_dl_cap == DL_CAPAB_SOFT_RING &&
3014 		    !(ill->ill_capabilities & ILL_CAPAB_SOFT_RING)) {
3015 			ASSERT(ill->ill_dls_capab != NULL);
3016 			ill->ill_capabilities |= ILL_CAPAB_SOFT_RING;
3017 		}
3018 		if (sub_dl_cap == DL_CAPAB_POLL &&
3019 		    !(ill->ill_capabilities & ILL_CAPAB_POLL)) {
3020 			ASSERT(ill->ill_dls_capab != NULL);
3021 			ill->ill_capabilities |= ILL_CAPAB_POLL;
3022 			ip1dbg(("ill_capability_dls_ack: interface %s "
3023 			    "has enabled polling\n", ill->ill_name));
3024 		}
3025 		mutex_exit(&ill->ill_lock);
3026 		break;
3027 	}
3028 }
3029 
3030 /*
3031  * Process a hardware checksum offload capability negotiation ack received
3032  * from a DLS Provider.isub must point to the sub-capability (DL_CAPAB_HCKSUM)
3033  * of a DL_CAPABILITY_ACK message.
3034  */
3035 static void
3036 ill_capability_hcksum_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub)
3037 {
3038 	dl_capability_req_t	*ocap;
3039 	dl_capab_hcksum_t	*ihck, *ohck;
3040 	ill_hcksum_capab_t	**ill_hcksum;
3041 	mblk_t			*nmp = NULL;
3042 	uint_t			sub_dl_cap = isub->dl_cap;
3043 	uint8_t			*capend;
3044 
3045 	ASSERT(sub_dl_cap == DL_CAPAB_HCKSUM);
3046 
3047 	ill_hcksum = (ill_hcksum_capab_t **)&ill->ill_hcksum_capab;
3048 
3049 	/*
3050 	 * Note: range checks here are not absolutely sufficient to
3051 	 * make us robust against malformed messages sent by drivers;
3052 	 * this is in keeping with the rest of IP's dlpi handling.
3053 	 * (Remember, it's coming from something else in the kernel
3054 	 * address space)
3055 	 */
3056 	capend = (uint8_t *)(isub + 1) + isub->dl_length;
3057 	if (capend > mp->b_wptr) {
3058 		cmn_err(CE_WARN, "ill_capability_hcksum_ack: "
3059 		    "malformed sub-capability too long for mblk");
3060 		return;
3061 	}
3062 
3063 	/*
3064 	 * There are two types of acks we process here:
3065 	 * 1. acks in reply to a (first form) generic capability req
3066 	 *    (no ENABLE flag set)
3067 	 * 2. acks in reply to a ENABLE capability req.
3068 	 *    (ENABLE flag set)
3069 	 */
3070 	ihck = (dl_capab_hcksum_t *)(isub + 1);
3071 
3072 	if (ihck->hcksum_version != HCKSUM_VERSION_1) {
3073 		cmn_err(CE_CONT, "ill_capability_hcksum_ack: "
3074 		    "unsupported hardware checksum "
3075 		    "sub-capability (version %d, expected %d)",
3076 		    ihck->hcksum_version, HCKSUM_VERSION_1);
3077 		return;
3078 	}
3079 
3080 	if (!dlcapabcheckqid(&ihck->hcksum_mid, ill->ill_lmod_rq)) {
3081 		ip1dbg(("ill_capability_hcksum_ack: mid token for hardware "
3082 		    "checksum capability isn't as expected; pass-thru "
3083 		    "module(s) detected, discarding capability\n"));
3084 		return;
3085 	}
3086 
3087 #define	CURR_HCKSUM_CAPAB				\
3088 	(HCKSUM_INET_PARTIAL | HCKSUM_INET_FULL_V4 |	\
3089 	HCKSUM_INET_FULL_V6 | HCKSUM_IPHDRCKSUM)
3090 
3091 	if ((ihck->hcksum_txflags & HCKSUM_ENABLE) &&
3092 	    (ihck->hcksum_txflags & CURR_HCKSUM_CAPAB)) {
3093 		/* do ENABLE processing */
3094 		if (*ill_hcksum == NULL) {
3095 			*ill_hcksum = kmem_zalloc(sizeof (ill_hcksum_capab_t),
3096 			    KM_NOSLEEP);
3097 
3098 			if (*ill_hcksum == NULL) {
3099 				cmn_err(CE_WARN, "ill_capability_hcksum_ack: "
3100 				    "could not enable hcksum version %d "
3101 				    "for %s (ENOMEM)\n", HCKSUM_CURRENT_VERSION,
3102 				    ill->ill_name);
3103 				return;
3104 			}
3105 		}
3106 
3107 		(*ill_hcksum)->ill_hcksum_version = ihck->hcksum_version;
3108 		(*ill_hcksum)->ill_hcksum_txflags = ihck->hcksum_txflags;
3109 		ill->ill_capabilities |= ILL_CAPAB_HCKSUM;
3110 		ip1dbg(("ill_capability_hcksum_ack: interface %s "
3111 		    "has enabled hardware checksumming\n ",
3112 		    ill->ill_name));
3113 	} else if (ihck->hcksum_txflags & CURR_HCKSUM_CAPAB) {
3114 		/*
3115 		 * Enabling hardware checksum offload
3116 		 * Currently IP supports {TCP,UDP}/IPv4
3117 		 * partial and full cksum offload and
3118 		 * IPv4 header checksum offload.
3119 		 * Allocate new mblk which will
3120 		 * contain a new capability request
3121 		 * to enable hardware checksum offload.
3122 		 */
3123 		uint_t	size;
3124 		uchar_t	*rptr;
3125 
3126 		size = sizeof (dl_capability_req_t) +
3127 		    sizeof (dl_capability_sub_t) + isub->dl_length;
3128 
3129 		if ((nmp = ip_dlpi_alloc(size, DL_CAPABILITY_REQ)) == NULL) {
3130 			cmn_err(CE_WARN, "ill_capability_hcksum_ack: "
3131 			    "could not enable hardware cksum for %s (ENOMEM)\n",
3132 			    ill->ill_name);
3133 			return;
3134 		}
3135 
3136 		rptr = nmp->b_rptr;
3137 		/* initialize dl_capability_req_t */
3138 		ocap = (dl_capability_req_t *)nmp->b_rptr;
3139 		ocap->dl_sub_offset =
3140 		    sizeof (dl_capability_req_t);
3141 		ocap->dl_sub_length =
3142 		    sizeof (dl_capability_sub_t) +
3143 		    isub->dl_length;
3144 		nmp->b_rptr += sizeof (dl_capability_req_t);
3145 
3146 		/* initialize dl_capability_sub_t */
3147 		bcopy(isub, nmp->b_rptr, sizeof (*isub));
3148 		nmp->b_rptr += sizeof (*isub);
3149 
3150 		/* initialize dl_capab_hcksum_t */
3151 		ohck = (dl_capab_hcksum_t *)nmp->b_rptr;
3152 		bcopy(ihck, ohck, sizeof (*ihck));
3153 
3154 		nmp->b_rptr = rptr;
3155 		ASSERT(nmp->b_wptr == (nmp->b_rptr + size));
3156 
3157 		/* Set ENABLE flag */
3158 		ohck->hcksum_txflags &= CURR_HCKSUM_CAPAB;
3159 		ohck->hcksum_txflags |= HCKSUM_ENABLE;
3160 
3161 		/*
3162 		 * nmp points to a DL_CAPABILITY_REQ message to enable
3163 		 * hardware checksum acceleration.
3164 		 */
3165 		ill_dlpi_send(ill, nmp);
3166 	} else {
3167 		ip1dbg(("ill_capability_hcksum_ack: interface %s has "
3168 		    "advertised %x hardware checksum capability flags\n",
3169 		    ill->ill_name, ihck->hcksum_txflags));
3170 	}
3171 }
3172 
3173 static void
3174 ill_capability_hcksum_reset(ill_t *ill, mblk_t **sc_mp)
3175 {
3176 	mblk_t *mp;
3177 	dl_capab_hcksum_t *hck_subcap;
3178 	dl_capability_sub_t *dl_subcap;
3179 	int size;
3180 
3181 	if (!ILL_HCKSUM_CAPABLE(ill))
3182 		return;
3183 
3184 	ASSERT(ill->ill_hcksum_capab != NULL);
3185 	/*
3186 	 * Clear the capability flag for hardware checksum offload but
3187 	 * retain the ill_hcksum_capab structure since it's possible that
3188 	 * another thread is still referring to it.  The structure only
3189 	 * gets deallocated when we destroy the ill.
3190 	 */
3191 	ill->ill_capabilities &= ~ILL_CAPAB_HCKSUM;
3192 
3193 	size = sizeof (*dl_subcap) + sizeof (*hck_subcap);
3194 
3195 	mp = allocb(size, BPRI_HI);
3196 	if (mp == NULL) {
3197 		ip1dbg(("ill_capability_hcksum_reset: unable to allocate "
3198 		    "request to disable hardware checksum offload\n"));
3199 		return;
3200 	}
3201 
3202 	mp->b_wptr = mp->b_rptr + size;
3203 
3204 	dl_subcap = (dl_capability_sub_t *)mp->b_rptr;
3205 	dl_subcap->dl_cap = DL_CAPAB_HCKSUM;
3206 	dl_subcap->dl_length = sizeof (*hck_subcap);
3207 
3208 	hck_subcap = (dl_capab_hcksum_t *)(dl_subcap + 1);
3209 	hck_subcap->hcksum_version = ill->ill_hcksum_capab->ill_hcksum_version;
3210 	hck_subcap->hcksum_txflags = 0;
3211 
3212 	if (*sc_mp != NULL)
3213 		linkb(*sc_mp, mp);
3214 	else
3215 		*sc_mp = mp;
3216 }
3217 
3218 static void
3219 ill_capability_zerocopy_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub)
3220 {
3221 	mblk_t *nmp = NULL;
3222 	dl_capability_req_t *oc;
3223 	dl_capab_zerocopy_t *zc_ic, *zc_oc;
3224 	ill_zerocopy_capab_t **ill_zerocopy_capab;
3225 	uint_t sub_dl_cap = isub->dl_cap;
3226 	uint8_t *capend;
3227 
3228 	ASSERT(sub_dl_cap == DL_CAPAB_ZEROCOPY);
3229 
3230 	ill_zerocopy_capab = (ill_zerocopy_capab_t **)&ill->ill_zerocopy_capab;
3231 
3232 	/*
3233 	 * Note: range checks here are not absolutely sufficient to
3234 	 * make us robust against malformed messages sent by drivers;
3235 	 * this is in keeping with the rest of IP's dlpi handling.
3236 	 * (Remember, it's coming from something else in the kernel
3237 	 * address space)
3238 	 */
3239 	capend = (uint8_t *)(isub + 1) + isub->dl_length;
3240 	if (capend > mp->b_wptr) {
3241 		cmn_err(CE_WARN, "ill_capability_zerocopy_ack: "
3242 		    "malformed sub-capability too long for mblk");
3243 		return;
3244 	}
3245 
3246 	zc_ic = (dl_capab_zerocopy_t *)(isub + 1);
3247 	if (zc_ic->zerocopy_version != ZEROCOPY_VERSION_1) {
3248 		cmn_err(CE_CONT, "ill_capability_zerocopy_ack: "
3249 		    "unsupported ZEROCOPY sub-capability (version %d, "
3250 		    "expected %d)", zc_ic->zerocopy_version,
3251 		    ZEROCOPY_VERSION_1);
3252 		return;
3253 	}
3254 
3255 	if (!dlcapabcheckqid(&zc_ic->zerocopy_mid, ill->ill_lmod_rq)) {
3256 		ip1dbg(("ill_capability_zerocopy_ack: mid token for zerocopy "
3257 		    "capability isn't as expected; pass-thru module(s) "
3258 		    "detected, discarding capability\n"));
3259 		return;
3260 	}
3261 
3262 	if ((zc_ic->zerocopy_flags & DL_CAPAB_VMSAFE_MEM) != 0) {
3263 		if (*ill_zerocopy_capab == NULL) {
3264 			*ill_zerocopy_capab =
3265 			    kmem_zalloc(sizeof (ill_zerocopy_capab_t),
3266 			    KM_NOSLEEP);
3267 
3268 			if (*ill_zerocopy_capab == NULL) {
3269 				cmn_err(CE_WARN, "ill_capability_zerocopy_ack: "
3270 				    "could not enable Zero-copy version %d "
3271 				    "for %s (ENOMEM)\n", ZEROCOPY_VERSION_1,
3272 				    ill->ill_name);
3273 				return;
3274 			}
3275 		}
3276 
3277 		ip1dbg(("ill_capability_zerocopy_ack: interface %s "
3278 		    "supports Zero-copy version %d\n", ill->ill_name,
3279 		    ZEROCOPY_VERSION_1));
3280 
3281 		(*ill_zerocopy_capab)->ill_zerocopy_version =
3282 		    zc_ic->zerocopy_version;
3283 		(*ill_zerocopy_capab)->ill_zerocopy_flags =
3284 		    zc_ic->zerocopy_flags;
3285 
3286 		ill->ill_capabilities |= ILL_CAPAB_ZEROCOPY;
3287 	} else {
3288 		uint_t size;
3289 		uchar_t *rptr;
3290 
3291 		size = sizeof (dl_capability_req_t) +
3292 		    sizeof (dl_capability_sub_t) +
3293 		    sizeof (dl_capab_zerocopy_t);
3294 
3295 		if ((nmp = ip_dlpi_alloc(size, DL_CAPABILITY_REQ)) == NULL) {
3296 			cmn_err(CE_WARN, "ill_capability_zerocopy_ack: "
3297 			    "could not enable zerocopy for %s (ENOMEM)\n",
3298 			    ill->ill_name);
3299 			return;
3300 		}
3301 
3302 		rptr = nmp->b_rptr;
3303 		/* initialize dl_capability_req_t */
3304 		oc = (dl_capability_req_t *)rptr;
3305 		oc->dl_sub_offset = sizeof (dl_capability_req_t);
3306 		oc->dl_sub_length = sizeof (dl_capability_sub_t) +
3307 		    sizeof (dl_capab_zerocopy_t);
3308 		rptr += sizeof (dl_capability_req_t);
3309 
3310 		/* initialize dl_capability_sub_t */
3311 		bcopy(isub, rptr, sizeof (*isub));
3312 		rptr += sizeof (*isub);
3313 
3314 		/* initialize dl_capab_zerocopy_t */
3315 		zc_oc = (dl_capab_zerocopy_t *)rptr;
3316 		*zc_oc = *zc_ic;
3317 
3318 		ip1dbg(("ill_capability_zerocopy_ack: asking interface %s "
3319 		    "to enable zero-copy version %d\n", ill->ill_name,
3320 		    ZEROCOPY_VERSION_1));
3321 
3322 		/* set VMSAFE_MEM flag */
3323 		zc_oc->zerocopy_flags |= DL_CAPAB_VMSAFE_MEM;
3324 
3325 		/* nmp points to a DL_CAPABILITY_REQ message to enable zcopy */
3326 		ill_dlpi_send(ill, nmp);
3327 	}
3328 }
3329 
3330 static void
3331 ill_capability_zerocopy_reset(ill_t *ill, mblk_t **sc_mp)
3332 {
3333 	mblk_t *mp;
3334 	dl_capab_zerocopy_t *zerocopy_subcap;
3335 	dl_capability_sub_t *dl_subcap;
3336 	int size;
3337 
3338 	if (!(ill->ill_capabilities & ILL_CAPAB_ZEROCOPY))
3339 		return;
3340 
3341 	ASSERT(ill->ill_zerocopy_capab != NULL);
3342 	/*
3343 	 * Clear the capability flag for Zero-copy but retain the
3344 	 * ill_zerocopy_capab structure since it's possible that another
3345 	 * thread is still referring to it.  The structure only gets
3346 	 * deallocated when we destroy the ill.
3347 	 */
3348 	ill->ill_capabilities &= ~ILL_CAPAB_ZEROCOPY;
3349 
3350 	size = sizeof (*dl_subcap) + sizeof (*zerocopy_subcap);
3351 
3352 	mp = allocb(size, BPRI_HI);
3353 	if (mp == NULL) {
3354 		ip1dbg(("ill_capability_zerocopy_reset: unable to allocate "
3355 		    "request to disable Zero-copy\n"));
3356 		return;
3357 	}
3358 
3359 	mp->b_wptr = mp->b_rptr + size;
3360 
3361 	dl_subcap = (dl_capability_sub_t *)mp->b_rptr;
3362 	dl_subcap->dl_cap = DL_CAPAB_ZEROCOPY;
3363 	dl_subcap->dl_length = sizeof (*zerocopy_subcap);
3364 
3365 	zerocopy_subcap = (dl_capab_zerocopy_t *)(dl_subcap + 1);
3366 	zerocopy_subcap->zerocopy_version =
3367 	    ill->ill_zerocopy_capab->ill_zerocopy_version;
3368 	zerocopy_subcap->zerocopy_flags = 0;
3369 
3370 	if (*sc_mp != NULL)
3371 		linkb(*sc_mp, mp);
3372 	else
3373 		*sc_mp = mp;
3374 }
3375 
3376 /*
3377  * Process Large Segment Offload capability negotiation ack received from a
3378  * DLS Provider.  isub must point to the sub-capability (DL_CAPAB_LSO) of a
3379  * DL_CAPABILITY_ACK message.
3380  */
3381 static void
3382 ill_capability_lso_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub)
3383 {
3384 	mblk_t *nmp = NULL;
3385 	dl_capability_req_t *oc;
3386 	dl_capab_lso_t *lso_ic, *lso_oc;
3387 	ill_lso_capab_t **ill_lso_capab;
3388 	uint_t sub_dl_cap = isub->dl_cap;
3389 	uint8_t *capend;
3390 
3391 	ASSERT(sub_dl_cap == DL_CAPAB_LSO);
3392 
3393 	ill_lso_capab = (ill_lso_capab_t **)&ill->ill_lso_capab;
3394 
3395 	/*
3396 	 * Note: range checks here are not absolutely sufficient to
3397 	 * make us robust against malformed messages sent by drivers;
3398 	 * this is in keeping with the rest of IP's dlpi handling.
3399 	 * (Remember, it's coming from something else in the kernel
3400 	 * address space)
3401 	 */
3402 	capend = (uint8_t *)(isub + 1) + isub->dl_length;
3403 	if (capend > mp->b_wptr) {
3404 		cmn_err(CE_WARN, "ill_capability_lso_ack: "
3405 		    "malformed sub-capability too long for mblk");
3406 		return;
3407 	}
3408 
3409 	lso_ic = (dl_capab_lso_t *)(isub + 1);
3410 
3411 	if (lso_ic->lso_version != LSO_VERSION_1) {
3412 		cmn_err(CE_CONT, "ill_capability_lso_ack: "
3413 		    "unsupported LSO sub-capability (version %d, expected %d)",
3414 		    lso_ic->lso_version, LSO_VERSION_1);
3415 		return;
3416 	}
3417 
3418 	if (!dlcapabcheckqid(&lso_ic->lso_mid, ill->ill_lmod_rq)) {
3419 		ip1dbg(("ill_capability_lso_ack: mid token for LSO "
3420 		    "capability isn't as expected; pass-thru module(s) "
3421 		    "detected, discarding capability\n"));
3422 		return;
3423 	}
3424 
3425 	if ((lso_ic->lso_flags & LSO_TX_ENABLE) &&
3426 	    (lso_ic->lso_flags & LSO_TX_BASIC_TCP_IPV4)) {
3427 		if (*ill_lso_capab == NULL) {
3428 			*ill_lso_capab = kmem_zalloc(sizeof (ill_lso_capab_t),
3429 			    KM_NOSLEEP);
3430 
3431 			if (*ill_lso_capab == NULL) {
3432 				cmn_err(CE_WARN, "ill_capability_lso_ack: "
3433 				    "could not enable LSO version %d "
3434 				    "for %s (ENOMEM)\n", LSO_VERSION_1,
3435 				    ill->ill_name);
3436 				return;
3437 			}
3438 		}
3439 
3440 		(*ill_lso_capab)->ill_lso_version = lso_ic->lso_version;
3441 		(*ill_lso_capab)->ill_lso_flags = lso_ic->lso_flags;
3442 		(*ill_lso_capab)->ill_lso_max = lso_ic->lso_max;
3443 		ill->ill_capabilities |= ILL_CAPAB_LSO;
3444 
3445 		ip1dbg(("ill_capability_lso_ack: interface %s "
3446 		    "has enabled LSO\n ", ill->ill_name));
3447 	} else if (lso_ic->lso_flags & LSO_TX_BASIC_TCP_IPV4) {
3448 		uint_t size;
3449 		uchar_t *rptr;
3450 
3451 		size = sizeof (dl_capability_req_t) +
3452 		    sizeof (dl_capability_sub_t) + sizeof (dl_capab_lso_t);
3453 
3454 		if ((nmp = ip_dlpi_alloc(size, DL_CAPABILITY_REQ)) == NULL) {
3455 			cmn_err(CE_WARN, "ill_capability_lso_ack: "
3456 			    "could not enable LSO for %s (ENOMEM)\n",
3457 			    ill->ill_name);
3458 			return;
3459 		}
3460 
3461 		rptr = nmp->b_rptr;
3462 		/* initialize dl_capability_req_t */
3463 		oc = (dl_capability_req_t *)nmp->b_rptr;
3464 		oc->dl_sub_offset = sizeof (dl_capability_req_t);
3465 		oc->dl_sub_length = sizeof (dl_capability_sub_t) +
3466 		    sizeof (dl_capab_lso_t);
3467 		nmp->b_rptr += sizeof (dl_capability_req_t);
3468 
3469 		/* initialize dl_capability_sub_t */
3470 		bcopy(isub, nmp->b_rptr, sizeof (*isub));
3471 		nmp->b_rptr += sizeof (*isub);
3472 
3473 		/* initialize dl_capab_lso_t */
3474 		lso_oc = (dl_capab_lso_t *)nmp->b_rptr;
3475 		bcopy(lso_ic, lso_oc, sizeof (*lso_ic));
3476 
3477 		nmp->b_rptr = rptr;
3478 		ASSERT(nmp->b_wptr == (nmp->b_rptr + size));
3479 
3480 		/* set ENABLE flag */
3481 		lso_oc->lso_flags |= LSO_TX_ENABLE;
3482 
3483 		/* nmp points to a DL_CAPABILITY_REQ message to enable LSO */
3484 		ill_dlpi_send(ill, nmp);
3485 	} else {
3486 		ip1dbg(("ill_capability_lso_ack: interface %s has "
3487 		    "advertised %x LSO capability flags\n",
3488 		    ill->ill_name, lso_ic->lso_flags));
3489 	}
3490 }
3491 
3492 
3493 static void
3494 ill_capability_lso_reset(ill_t *ill, mblk_t **sc_mp)
3495 {
3496 	mblk_t *mp;
3497 	dl_capab_lso_t *lso_subcap;
3498 	dl_capability_sub_t *dl_subcap;
3499 	int size;
3500 
3501 	if (!(ill->ill_capabilities & ILL_CAPAB_LSO))
3502 		return;
3503 
3504 	ASSERT(ill->ill_lso_capab != NULL);
3505 	/*
3506 	 * Clear the capability flag for LSO but retain the
3507 	 * ill_lso_capab structure since it's possible that another
3508 	 * thread is still referring to it.  The structure only gets
3509 	 * deallocated when we destroy the ill.
3510 	 */
3511 	ill->ill_capabilities &= ~ILL_CAPAB_LSO;
3512 
3513 	size = sizeof (*dl_subcap) + sizeof (*lso_subcap);
3514 
3515 	mp = allocb(size, BPRI_HI);
3516 	if (mp == NULL) {
3517 		ip1dbg(("ill_capability_lso_reset: unable to allocate "
3518 		    "request to disable LSO\n"));
3519 		return;
3520 	}
3521 
3522 	mp->b_wptr = mp->b_rptr + size;
3523 
3524 	dl_subcap = (dl_capability_sub_t *)mp->b_rptr;
3525 	dl_subcap->dl_cap = DL_CAPAB_LSO;
3526 	dl_subcap->dl_length = sizeof (*lso_subcap);
3527 
3528 	lso_subcap = (dl_capab_lso_t *)(dl_subcap + 1);
3529 	lso_subcap->lso_version = ill->ill_lso_capab->ill_lso_version;
3530 	lso_subcap->lso_flags = 0;
3531 
3532 	if (*sc_mp != NULL)
3533 		linkb(*sc_mp, mp);
3534 	else
3535 		*sc_mp = mp;
3536 }
3537 
3538 /*
3539  * Consume a new-style hardware capabilities negotiation ack.
3540  * Called from ip_rput_dlpi_writer().
3541  */
3542 void
3543 ill_capability_ack(ill_t *ill, mblk_t *mp)
3544 {
3545 	dl_capability_ack_t *capp;
3546 	dl_capability_sub_t *subp, *endp;
3547 
3548 	if (ill->ill_dlpi_capab_state == IDS_INPROGRESS)
3549 		ill->ill_dlpi_capab_state = IDS_OK;
3550 
3551 	capp = (dl_capability_ack_t *)mp->b_rptr;
3552 
3553 	if (capp->dl_sub_length == 0)
3554 		/* no new-style capabilities */
3555 		return;
3556 
3557 	/* make sure the driver supplied correct dl_sub_length */
3558 	if ((sizeof (*capp) + capp->dl_sub_length) > MBLKL(mp)) {
3559 		ip0dbg(("ill_capability_ack: bad DL_CAPABILITY_ACK, "
3560 		    "invalid dl_sub_length (%d)\n", capp->dl_sub_length));
3561 		return;
3562 	}
3563 
3564 #define	SC(base, offset) (dl_capability_sub_t *)(((uchar_t *)(base))+(offset))
3565 	/*
3566 	 * There are sub-capabilities. Process the ones we know about.
3567 	 * Loop until we don't have room for another sub-cap header..
3568 	 */
3569 	for (subp = SC(capp, capp->dl_sub_offset),
3570 	    endp = SC(subp, capp->dl_sub_length - sizeof (*subp));
3571 	    subp <= endp;
3572 	    subp = SC(subp, sizeof (dl_capability_sub_t) + subp->dl_length)) {
3573 
3574 		switch (subp->dl_cap) {
3575 		case DL_CAPAB_ID_WRAPPER:
3576 			ill_capability_id_ack(ill, mp, subp);
3577 			break;
3578 		default:
3579 			ill_capability_dispatch(ill, mp, subp, B_FALSE);
3580 			break;
3581 		}
3582 	}
3583 #undef SC
3584 }
3585 
3586 /*
3587  * This routine is called to scan the fragmentation reassembly table for
3588  * the specified ILL for any packets that are starting to smell.
3589  * dead_interval is the maximum time in seconds that will be tolerated.  It
3590  * will either be the value specified in ip_g_frag_timeout, or zero if the
3591  * ILL is shutting down and it is time to blow everything off.
3592  *
3593  * It returns the number of seconds (as a time_t) that the next frag timer
3594  * should be scheduled for, 0 meaning that the timer doesn't need to be
3595  * re-started.  Note that the method of calculating next_timeout isn't
3596  * entirely accurate since time will flow between the time we grab
3597  * current_time and the time we schedule the next timeout.  This isn't a
3598  * big problem since this is the timer for sending an ICMP reassembly time
3599  * exceeded messages, and it doesn't have to be exactly accurate.
3600  *
3601  * This function is
3602  * sometimes called as writer, although this is not required.
3603  */
3604 time_t
3605 ill_frag_timeout(ill_t *ill, time_t dead_interval)
3606 {
3607 	ipfb_t	*ipfb;
3608 	ipfb_t	*endp;
3609 	ipf_t	*ipf;
3610 	ipf_t	*ipfnext;
3611 	mblk_t	*mp;
3612 	time_t	current_time = gethrestime_sec();
3613 	time_t	next_timeout = 0;
3614 	uint32_t	hdr_length;
3615 	mblk_t	*send_icmp_head;
3616 	mblk_t	*send_icmp_head_v6;
3617 	zoneid_t zoneid;
3618 	ip_stack_t *ipst = ill->ill_ipst;
3619 
3620 	ipfb = ill->ill_frag_hash_tbl;
3621 	if (ipfb == NULL)
3622 		return (B_FALSE);
3623 	endp = &ipfb[ILL_FRAG_HASH_TBL_COUNT];
3624 	/* Walk the frag hash table. */
3625 	for (; ipfb < endp; ipfb++) {
3626 		send_icmp_head = NULL;
3627 		send_icmp_head_v6 = NULL;
3628 		mutex_enter(&ipfb->ipfb_lock);
3629 		while ((ipf = ipfb->ipfb_ipf) != 0) {
3630 			time_t frag_time = current_time - ipf->ipf_timestamp;
3631 			time_t frag_timeout;
3632 
3633 			if (frag_time < dead_interval) {
3634 				/*
3635 				 * There are some outstanding fragments
3636 				 * that will timeout later.  Make note of
3637 				 * the time so that we can reschedule the
3638 				 * next timeout appropriately.
3639 				 */
3640 				frag_timeout = dead_interval - frag_time;
3641 				if (next_timeout == 0 ||
3642 				    frag_timeout < next_timeout) {
3643 					next_timeout = frag_timeout;
3644 				}
3645 				break;
3646 			}
3647 			/* Time's up.  Get it out of here. */
3648 			hdr_length = ipf->ipf_nf_hdr_len;
3649 			ipfnext = ipf->ipf_hash_next;
3650 			if (ipfnext)
3651 				ipfnext->ipf_ptphn = ipf->ipf_ptphn;
3652 			*ipf->ipf_ptphn = ipfnext;
3653 			mp = ipf->ipf_mp->b_cont;
3654 			for (; mp; mp = mp->b_cont) {
3655 				/* Extra points for neatness. */
3656 				IP_REASS_SET_START(mp, 0);
3657 				IP_REASS_SET_END(mp, 0);
3658 			}
3659 			mp = ipf->ipf_mp->b_cont;
3660 			ill->ill_frag_count -= ipf->ipf_count;
3661 			ASSERT(ipfb->ipfb_count >= ipf->ipf_count);
3662 			ipfb->ipfb_count -= ipf->ipf_count;
3663 			ASSERT(ipfb->ipfb_frag_pkts > 0);
3664 			ipfb->ipfb_frag_pkts--;
3665 			/*
3666 			 * We do not send any icmp message from here because
3667 			 * we currently are holding the ipfb_lock for this
3668 			 * hash chain. If we try and send any icmp messages
3669 			 * from here we may end up via a put back into ip
3670 			 * trying to get the same lock, causing a recursive
3671 			 * mutex panic. Instead we build a list and send all
3672 			 * the icmp messages after we have dropped the lock.
3673 			 */
3674 			if (ill->ill_isv6) {
3675 				if (hdr_length != 0) {
3676 					mp->b_next = send_icmp_head_v6;
3677 					send_icmp_head_v6 = mp;
3678 				} else {
3679 					freemsg(mp);
3680 				}
3681 			} else {
3682 				if (hdr_length != 0) {
3683 					mp->b_next = send_icmp_head;
3684 					send_icmp_head = mp;
3685 				} else {
3686 					freemsg(mp);
3687 				}
3688 			}
3689 			BUMP_MIB(ill->ill_ip_mib, ipIfStatsReasmFails);
3690 			freeb(ipf->ipf_mp);
3691 		}
3692 		mutex_exit(&ipfb->ipfb_lock);
3693 		/*
3694 		 * Now need to send any icmp messages that we delayed from
3695 		 * above.
3696 		 */
3697 		while (send_icmp_head_v6 != NULL) {
3698 			ip6_t *ip6h;
3699 
3700 			mp = send_icmp_head_v6;
3701 			send_icmp_head_v6 = send_icmp_head_v6->b_next;
3702 			mp->b_next = NULL;
3703 			if (mp->b_datap->db_type == M_CTL)
3704 				ip6h = (ip6_t *)mp->b_cont->b_rptr;
3705 			else
3706 				ip6h = (ip6_t *)mp->b_rptr;
3707 			zoneid = ipif_lookup_addr_zoneid_v6(&ip6h->ip6_dst,
3708 			    ill, ipst);
3709 			if (zoneid == ALL_ZONES) {
3710 				freemsg(mp);
3711 			} else {
3712 				icmp_time_exceeded_v6(ill->ill_wq, mp,
3713 				    ICMP_REASSEMBLY_TIME_EXCEEDED, B_FALSE,
3714 				    B_FALSE, zoneid, ipst);
3715 			}
3716 		}
3717 		while (send_icmp_head != NULL) {
3718 			ipaddr_t dst;
3719 
3720 			mp = send_icmp_head;
3721 			send_icmp_head = send_icmp_head->b_next;
3722 			mp->b_next = NULL;
3723 
3724 			if (mp->b_datap->db_type == M_CTL)
3725 				dst = ((ipha_t *)mp->b_cont->b_rptr)->ipha_dst;
3726 			else
3727 				dst = ((ipha_t *)mp->b_rptr)->ipha_dst;
3728 
3729 			zoneid = ipif_lookup_addr_zoneid(dst, ill, ipst);
3730 			if (zoneid == ALL_ZONES) {
3731 				freemsg(mp);
3732 			} else {
3733 				icmp_time_exceeded(ill->ill_wq, mp,
3734 				    ICMP_REASSEMBLY_TIME_EXCEEDED, zoneid,
3735 				    ipst);
3736 			}
3737 		}
3738 	}
3739 	/*
3740 	 * A non-dying ILL will use the return value to decide whether to
3741 	 * restart the frag timer, and for how long.
3742 	 */
3743 	return (next_timeout);
3744 }
3745 
3746 /*
3747  * This routine is called when the approximate count of mblk memory used
3748  * for the specified ILL has exceeded max_count.
3749  */
3750 void
3751 ill_frag_prune(ill_t *ill, uint_t max_count)
3752 {
3753 	ipfb_t	*ipfb;
3754 	ipf_t	*ipf;
3755 	size_t	count;
3756 
3757 	/*
3758 	 * If we are here within ip_min_frag_prune_time msecs remove
3759 	 * ill_frag_free_num_pkts oldest packets from each bucket and increment
3760 	 * ill_frag_free_num_pkts.
3761 	 */
3762 	mutex_enter(&ill->ill_lock);
3763 	if (TICK_TO_MSEC(lbolt - ill->ill_last_frag_clean_time) <=
3764 	    (ip_min_frag_prune_time != 0 ?
3765 	    ip_min_frag_prune_time : msec_per_tick)) {
3766 
3767 		ill->ill_frag_free_num_pkts++;
3768 
3769 	} else {
3770 		ill->ill_frag_free_num_pkts = 0;
3771 	}
3772 	ill->ill_last_frag_clean_time = lbolt;
3773 	mutex_exit(&ill->ill_lock);
3774 
3775 	/*
3776 	 * free ill_frag_free_num_pkts oldest packets from each bucket.
3777 	 */
3778 	if (ill->ill_frag_free_num_pkts != 0) {
3779 		int ix;
3780 
3781 		for (ix = 0; ix < ILL_FRAG_HASH_TBL_COUNT; ix++) {
3782 			ipfb = &ill->ill_frag_hash_tbl[ix];
3783 			mutex_enter(&ipfb->ipfb_lock);
3784 			if (ipfb->ipfb_ipf != NULL) {
3785 				ill_frag_free_pkts(ill, ipfb, ipfb->ipfb_ipf,
3786 				    ill->ill_frag_free_num_pkts);
3787 			}
3788 			mutex_exit(&ipfb->ipfb_lock);
3789 		}
3790 	}
3791 	/*
3792 	 * While the reassembly list for this ILL is too big, prune a fragment
3793 	 * queue by age, oldest first.  Note that the per ILL count is
3794 	 * approximate, while the per frag hash bucket counts are accurate.
3795 	 */
3796 	while (ill->ill_frag_count > max_count) {
3797 		int	ix;
3798 		ipfb_t	*oipfb = NULL;
3799 		uint_t	oldest = UINT_MAX;
3800 
3801 		count = 0;
3802 		for (ix = 0; ix < ILL_FRAG_HASH_TBL_COUNT; ix++) {
3803 			ipfb = &ill->ill_frag_hash_tbl[ix];
3804 			mutex_enter(&ipfb->ipfb_lock);
3805 			ipf = ipfb->ipfb_ipf;
3806 			if (ipf != NULL && ipf->ipf_gen < oldest) {
3807 				oldest = ipf->ipf_gen;
3808 				oipfb = ipfb;
3809 			}
3810 			count += ipfb->ipfb_count;
3811 			mutex_exit(&ipfb->ipfb_lock);
3812 		}
3813 		/* Refresh the per ILL count */
3814 		ill->ill_frag_count = count;
3815 		if (oipfb == NULL) {
3816 			ill->ill_frag_count = 0;
3817 			break;
3818 		}
3819 		if (count <= max_count)
3820 			return;	/* Somebody beat us to it, nothing to do */
3821 		mutex_enter(&oipfb->ipfb_lock);
3822 		ipf = oipfb->ipfb_ipf;
3823 		if (ipf != NULL) {
3824 			ill_frag_free_pkts(ill, oipfb, ipf, 1);
3825 		}
3826 		mutex_exit(&oipfb->ipfb_lock);
3827 	}
3828 }
3829 
3830 /*
3831  * free 'free_cnt' fragmented packets starting at ipf.
3832  */
3833 void
3834 ill_frag_free_pkts(ill_t *ill, ipfb_t *ipfb, ipf_t *ipf, int free_cnt)
3835 {
3836 	size_t	count;
3837 	mblk_t	*mp;
3838 	mblk_t	*tmp;
3839 	ipf_t **ipfp = ipf->ipf_ptphn;
3840 
3841 	ASSERT(MUTEX_HELD(&ipfb->ipfb_lock));
3842 	ASSERT(ipfp != NULL);
3843 	ASSERT(ipf != NULL);
3844 
3845 	while (ipf != NULL && free_cnt-- > 0) {
3846 		count = ipf->ipf_count;
3847 		mp = ipf->ipf_mp;
3848 		ipf = ipf->ipf_hash_next;
3849 		for (tmp = mp; tmp; tmp = tmp->b_cont) {
3850 			IP_REASS_SET_START(tmp, 0);
3851 			IP_REASS_SET_END(tmp, 0);
3852 		}
3853 		ill->ill_frag_count -= count;
3854 		ASSERT(ipfb->ipfb_count >= count);
3855 		ipfb->ipfb_count -= count;
3856 		ASSERT(ipfb->ipfb_frag_pkts > 0);
3857 		ipfb->ipfb_frag_pkts--;
3858 		freemsg(mp);
3859 		BUMP_MIB(ill->ill_ip_mib, ipIfStatsReasmFails);
3860 	}
3861 
3862 	if (ipf)
3863 		ipf->ipf_ptphn = ipfp;
3864 	ipfp[0] = ipf;
3865 }
3866 
3867 #define	ND_FORWARD_WARNING	"The <if>:ip*_forwarding ndd variables are " \
3868 	"obsolete and may be removed in a future release of Solaris.  Use " \
3869 	"ifconfig(1M) to manipulate the forwarding status of an interface."
3870 
3871 /*
3872  * For obsolete per-interface forwarding configuration;
3873  * called in response to ND_GET.
3874  */
3875 /* ARGSUSED */
3876 static int
3877 nd_ill_forward_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *ioc_cr)
3878 {
3879 	ill_t *ill = (ill_t *)cp;
3880 
3881 	cmn_err(CE_WARN, ND_FORWARD_WARNING);
3882 
3883 	(void) mi_mpprintf(mp, "%d", (ill->ill_flags & ILLF_ROUTER) != 0);
3884 	return (0);
3885 }
3886 
3887 /*
3888  * For obsolete per-interface forwarding configuration;
3889  * called in response to ND_SET.
3890  */
3891 /* ARGSUSED */
3892 static int
3893 nd_ill_forward_set(queue_t *q, mblk_t *mp, char *valuestr, caddr_t cp,
3894     cred_t *ioc_cr)
3895 {
3896 	long value;
3897 	int retval;
3898 	ip_stack_t *ipst = CONNQ_TO_IPST(q);
3899 
3900 	cmn_err(CE_WARN, ND_FORWARD_WARNING);
3901 
3902 	if (ddi_strtol(valuestr, NULL, 10, &value) != 0 ||
3903 	    value < 0 || value > 1) {
3904 		return (EINVAL);
3905 	}
3906 
3907 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
3908 	retval = ill_forward_set((ill_t *)cp, (value != 0));
3909 	rw_exit(&ipst->ips_ill_g_lock);
3910 	return (retval);
3911 }
3912 
3913 /*
3914  * Set an ill's ILLF_ROUTER flag appropriately.  If the ill is part of an
3915  * IPMP group, make sure all ill's in the group adopt the new policy.  Send
3916  * up RTS_IFINFO routing socket messages for each interface whose flags we
3917  * change.
3918  */
3919 int
3920 ill_forward_set(ill_t *ill, boolean_t enable)
3921 {
3922 	ill_group_t *illgrp;
3923 	ip_stack_t	*ipst = ill->ill_ipst;
3924 
3925 	ASSERT(IAM_WRITER_ILL(ill) || RW_READ_HELD(&ipst->ips_ill_g_lock));
3926 
3927 	if ((enable && (ill->ill_flags & ILLF_ROUTER)) ||
3928 	    (!enable && !(ill->ill_flags & ILLF_ROUTER)))
3929 		return (0);
3930 
3931 	if (IS_LOOPBACK(ill))
3932 		return (EINVAL);
3933 
3934 	/*
3935 	 * If the ill is in an IPMP group, set the forwarding policy on all
3936 	 * members of the group to the same value.
3937 	 */
3938 	illgrp = ill->ill_group;
3939 	if (illgrp != NULL) {
3940 		ill_t *tmp_ill;
3941 
3942 		for (tmp_ill = illgrp->illgrp_ill; tmp_ill != NULL;
3943 		    tmp_ill = tmp_ill->ill_group_next) {
3944 			ip1dbg(("ill_forward_set: %s %s forwarding on %s",
3945 			    (enable ? "Enabling" : "Disabling"),
3946 			    (tmp_ill->ill_isv6 ? "IPv6" : "IPv4"),
3947 			    tmp_ill->ill_name));
3948 			mutex_enter(&tmp_ill->ill_lock);
3949 			if (enable)
3950 				tmp_ill->ill_flags |= ILLF_ROUTER;
3951 			else
3952 				tmp_ill->ill_flags &= ~ILLF_ROUTER;
3953 			mutex_exit(&tmp_ill->ill_lock);
3954 			if (tmp_ill->ill_isv6)
3955 				ill_set_nce_router_flags(tmp_ill, enable);
3956 			/* Notify routing socket listeners of this change. */
3957 			ip_rts_ifmsg(tmp_ill->ill_ipif);
3958 		}
3959 	} else {
3960 		ip1dbg(("ill_forward_set: %s %s forwarding on %s",
3961 		    (enable ? "Enabling" : "Disabling"),
3962 		    (ill->ill_isv6 ? "IPv6" : "IPv4"), ill->ill_name));
3963 		mutex_enter(&ill->ill_lock);
3964 		if (enable)
3965 			ill->ill_flags |= ILLF_ROUTER;
3966 		else
3967 			ill->ill_flags &= ~ILLF_ROUTER;
3968 		mutex_exit(&ill->ill_lock);
3969 		if (ill->ill_isv6)
3970 			ill_set_nce_router_flags(ill, enable);
3971 		/* Notify routing socket listeners of this change. */
3972 		ip_rts_ifmsg(ill->ill_ipif);
3973 	}
3974 
3975 	return (0);
3976 }
3977 
3978 /*
3979  * Based on the ILLF_ROUTER flag of an ill, make sure all local nce's for
3980  * addresses assigned to the ill have the NCE_F_ISROUTER flag appropriately
3981  * set or clear.
3982  */
3983 static void
3984 ill_set_nce_router_flags(ill_t *ill, boolean_t enable)
3985 {
3986 	ipif_t *ipif;
3987 	nce_t *nce;
3988 
3989 	for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) {
3990 		nce = ndp_lookup_v6(ill, &ipif->ipif_v6lcl_addr, B_FALSE);
3991 		if (nce != NULL) {
3992 			mutex_enter(&nce->nce_lock);
3993 			if (enable)
3994 				nce->nce_flags |= NCE_F_ISROUTER;
3995 			else
3996 				nce->nce_flags &= ~NCE_F_ISROUTER;
3997 			mutex_exit(&nce->nce_lock);
3998 			NCE_REFRELE(nce);
3999 		}
4000 	}
4001 }
4002 
4003 /*
4004  * Given an ill with a _valid_ name, add the ip_forwarding ndd variable
4005  * for this ill.  Make sure the v6/v4 question has been answered about this
4006  * ill.  The creation of this ndd variable is only for backwards compatibility.
4007  * The preferred way to control per-interface IP forwarding is through the
4008  * ILLF_ROUTER interface flag.
4009  */
4010 static int
4011 ill_set_ndd_name(ill_t *ill)
4012 {
4013 	char *suffix;
4014 	ip_stack_t	*ipst = ill->ill_ipst;
4015 
4016 	ASSERT(IAM_WRITER_ILL(ill));
4017 
4018 	if (ill->ill_isv6)
4019 		suffix = ipv6_forward_suffix;
4020 	else
4021 		suffix = ipv4_forward_suffix;
4022 
4023 	ill->ill_ndd_name = ill->ill_name + ill->ill_name_length;
4024 	bcopy(ill->ill_name, ill->ill_ndd_name, ill->ill_name_length - 1);
4025 	/*
4026 	 * Copies over the '\0'.
4027 	 * Note that strlen(suffix) is always bounded.
4028 	 */
4029 	bcopy(suffix, ill->ill_ndd_name + ill->ill_name_length - 1,
4030 	    strlen(suffix) + 1);
4031 
4032 	/*
4033 	 * Use of the nd table requires holding the reader lock.
4034 	 * Modifying the nd table thru nd_load/nd_unload requires
4035 	 * the writer lock.
4036 	 */
4037 	rw_enter(&ipst->ips_ip_g_nd_lock, RW_WRITER);
4038 	if (!nd_load(&ipst->ips_ip_g_nd, ill->ill_ndd_name, nd_ill_forward_get,
4039 	    nd_ill_forward_set, (caddr_t)ill)) {
4040 		/*
4041 		 * If the nd_load failed, it only meant that it could not
4042 		 * allocate a new bunch of room for further NDD expansion.
4043 		 * Because of that, the ill_ndd_name will be set to 0, and
4044 		 * this interface is at the mercy of the global ip_forwarding
4045 		 * variable.
4046 		 */
4047 		rw_exit(&ipst->ips_ip_g_nd_lock);
4048 		ill->ill_ndd_name = NULL;
4049 		return (ENOMEM);
4050 	}
4051 	rw_exit(&ipst->ips_ip_g_nd_lock);
4052 	return (0);
4053 }
4054 
4055 /*
4056  * Intializes the context structure and returns the first ill in the list
4057  * cuurently start_list and end_list can have values:
4058  * MAX_G_HEADS		Traverse both IPV4 and IPV6 lists.
4059  * IP_V4_G_HEAD		Traverse IPV4 list only.
4060  * IP_V6_G_HEAD		Traverse IPV6 list only.
4061  */
4062 
4063 /*
4064  * We don't check for CONDEMNED ills here. Caller must do that if
4065  * necessary under the ill lock.
4066  */
4067 ill_t *
4068 ill_first(int start_list, int end_list, ill_walk_context_t *ctx,
4069     ip_stack_t *ipst)
4070 {
4071 	ill_if_t *ifp;
4072 	ill_t *ill;
4073 	avl_tree_t *avl_tree;
4074 
4075 	ASSERT(RW_LOCK_HELD(&ipst->ips_ill_g_lock));
4076 	ASSERT(end_list <= MAX_G_HEADS && start_list >= 0);
4077 
4078 	/*
4079 	 * setup the lists to search
4080 	 */
4081 	if (end_list != MAX_G_HEADS) {
4082 		ctx->ctx_current_list = start_list;
4083 		ctx->ctx_last_list = end_list;
4084 	} else {
4085 		ctx->ctx_last_list = MAX_G_HEADS - 1;
4086 		ctx->ctx_current_list = 0;
4087 	}
4088 
4089 	while (ctx->ctx_current_list <= ctx->ctx_last_list) {
4090 		ifp = IP_VX_ILL_G_LIST(ctx->ctx_current_list, ipst);
4091 		if (ifp != (ill_if_t *)
4092 		    &IP_VX_ILL_G_LIST(ctx->ctx_current_list, ipst)) {
4093 			avl_tree = &ifp->illif_avl_by_ppa;
4094 			ill = avl_first(avl_tree);
4095 			/*
4096 			 * ill is guaranteed to be non NULL or ifp should have
4097 			 * not existed.
4098 			 */
4099 			ASSERT(ill != NULL);
4100 			return (ill);
4101 		}
4102 		ctx->ctx_current_list++;
4103 	}
4104 
4105 	return (NULL);
4106 }
4107 
4108 /*
4109  * returns the next ill in the list. ill_first() must have been called
4110  * before calling ill_next() or bad things will happen.
4111  */
4112 
4113 /*
4114  * We don't check for CONDEMNED ills here. Caller must do that if
4115  * necessary under the ill lock.
4116  */
4117 ill_t *
4118 ill_next(ill_walk_context_t *ctx, ill_t *lastill)
4119 {
4120 	ill_if_t *ifp;
4121 	ill_t *ill;
4122 	ip_stack_t	*ipst = lastill->ill_ipst;
4123 
4124 	ASSERT(lastill->ill_ifptr != (ill_if_t *)
4125 	    &IP_VX_ILL_G_LIST(ctx->ctx_current_list, ipst));
4126 	if ((ill = avl_walk(&lastill->ill_ifptr->illif_avl_by_ppa, lastill,
4127 	    AVL_AFTER)) != NULL) {
4128 		return (ill);
4129 	}
4130 
4131 	/* goto next ill_ifp in the list. */
4132 	ifp = lastill->ill_ifptr->illif_next;
4133 
4134 	/* make sure not at end of circular list */
4135 	while (ifp ==
4136 	    (ill_if_t *)&IP_VX_ILL_G_LIST(ctx->ctx_current_list, ipst)) {
4137 		if (++ctx->ctx_current_list > ctx->ctx_last_list)
4138 			return (NULL);
4139 		ifp = IP_VX_ILL_G_LIST(ctx->ctx_current_list, ipst);
4140 	}
4141 
4142 	return (avl_first(&ifp->illif_avl_by_ppa));
4143 }
4144 
4145 /*
4146  * Check interface name for correct format which is name+ppa.
4147  * name can contain characters and digits, the right most digits
4148  * make up the ppa number. use of octal is not allowed, name must contain
4149  * a ppa, return pointer to the start of ppa.
4150  * In case of error return NULL.
4151  */
4152 static char *
4153 ill_get_ppa_ptr(char *name)
4154 {
4155 	int namelen = mi_strlen(name);
4156 
4157 	int len = namelen;
4158 
4159 	name += len;
4160 	while (len > 0) {
4161 		name--;
4162 		if (*name < '0' || *name > '9')
4163 			break;
4164 		len--;
4165 	}
4166 
4167 	/* empty string, all digits, or no trailing digits */
4168 	if (len == 0 || len == (int)namelen)
4169 		return (NULL);
4170 
4171 	name++;
4172 	/* check for attempted use of octal */
4173 	if (*name == '0' && len != (int)namelen - 1)
4174 		return (NULL);
4175 	return (name);
4176 }
4177 
4178 /*
4179  * use avl tree to locate the ill.
4180  */
4181 static ill_t *
4182 ill_find_by_name(char *name, boolean_t isv6, queue_t *q, mblk_t *mp,
4183     ipsq_func_t func, int *error, ip_stack_t *ipst)
4184 {
4185 	char *ppa_ptr = NULL;
4186 	int len;
4187 	uint_t ppa;
4188 	ill_t *ill = NULL;
4189 	ill_if_t *ifp;
4190 	int list;
4191 	ipsq_t *ipsq;
4192 
4193 	if (error != NULL)
4194 		*error = 0;
4195 
4196 	/*
4197 	 * get ppa ptr
4198 	 */
4199 	if (isv6)
4200 		list = IP_V6_G_HEAD;
4201 	else
4202 		list = IP_V4_G_HEAD;
4203 
4204 	if ((ppa_ptr = ill_get_ppa_ptr(name)) == NULL) {
4205 		if (error != NULL)
4206 			*error = ENXIO;
4207 		return (NULL);
4208 	}
4209 
4210 	len = ppa_ptr - name + 1;
4211 
4212 	ppa = stoi(&ppa_ptr);
4213 
4214 	ifp = IP_VX_ILL_G_LIST(list, ipst);
4215 
4216 	while (ifp != (ill_if_t *)&IP_VX_ILL_G_LIST(list, ipst)) {
4217 		/*
4218 		 * match is done on len - 1 as the name is not null
4219 		 * terminated it contains ppa in addition to the interface
4220 		 * name.
4221 		 */
4222 		if ((ifp->illif_name_len == len) &&
4223 		    bcmp(ifp->illif_name, name, len - 1) == 0) {
4224 			break;
4225 		} else {
4226 			ifp = ifp->illif_next;
4227 		}
4228 	}
4229 
4230 
4231 	if (ifp == (ill_if_t *)&IP_VX_ILL_G_LIST(list, ipst)) {
4232 		/*
4233 		 * Even the interface type does not exist.
4234 		 */
4235 		if (error != NULL)
4236 			*error = ENXIO;
4237 		return (NULL);
4238 	}
4239 
4240 	ill = avl_find(&ifp->illif_avl_by_ppa, (void *) &ppa, NULL);
4241 	if (ill != NULL) {
4242 		/*
4243 		 * The block comment at the start of ipif_down
4244 		 * explains the use of the macros used below
4245 		 */
4246 		GRAB_CONN_LOCK(q);
4247 		mutex_enter(&ill->ill_lock);
4248 		if (ILL_CAN_LOOKUP(ill)) {
4249 			ill_refhold_locked(ill);
4250 			mutex_exit(&ill->ill_lock);
4251 			RELEASE_CONN_LOCK(q);
4252 			return (ill);
4253 		} else if (ILL_CAN_WAIT(ill, q)) {
4254 			ipsq = ill->ill_phyint->phyint_ipsq;
4255 			mutex_enter(&ipsq->ipsq_lock);
4256 			mutex_exit(&ill->ill_lock);
4257 			ipsq_enq(ipsq, q, mp, func, NEW_OP, ill);
4258 			mutex_exit(&ipsq->ipsq_lock);
4259 			RELEASE_CONN_LOCK(q);
4260 			if (error != NULL)
4261 				*error = EINPROGRESS;
4262 			return (NULL);
4263 		}
4264 		mutex_exit(&ill->ill_lock);
4265 		RELEASE_CONN_LOCK(q);
4266 	}
4267 	if (error != NULL)
4268 		*error = ENXIO;
4269 	return (NULL);
4270 }
4271 
4272 /*
4273  * comparison function for use with avl.
4274  */
4275 static int
4276 ill_compare_ppa(const void *ppa_ptr, const void *ill_ptr)
4277 {
4278 	uint_t ppa;
4279 	uint_t ill_ppa;
4280 
4281 	ASSERT(ppa_ptr != NULL && ill_ptr != NULL);
4282 
4283 	ppa = *((uint_t *)ppa_ptr);
4284 	ill_ppa = ((const ill_t *)ill_ptr)->ill_ppa;
4285 	/*
4286 	 * We want the ill with the lowest ppa to be on the
4287 	 * top.
4288 	 */
4289 	if (ill_ppa < ppa)
4290 		return (1);
4291 	if (ill_ppa > ppa)
4292 		return (-1);
4293 	return (0);
4294 }
4295 
4296 /*
4297  * remove an interface type from the global list.
4298  */
4299 static void
4300 ill_delete_interface_type(ill_if_t *interface)
4301 {
4302 	ASSERT(interface != NULL);
4303 	ASSERT(avl_numnodes(&interface->illif_avl_by_ppa) == 0);
4304 
4305 	avl_destroy(&interface->illif_avl_by_ppa);
4306 	if (interface->illif_ppa_arena != NULL)
4307 		vmem_destroy(interface->illif_ppa_arena);
4308 
4309 	remque(interface);
4310 
4311 	mi_free(interface);
4312 }
4313 
4314 /* Defined in ip_netinfo.c */
4315 extern ddi_taskq_t	*eventq_queue_nic;
4316 
4317 /*
4318  * remove ill from the global list.
4319  */
4320 static void
4321 ill_glist_delete(ill_t *ill)
4322 {
4323 	char *nicname;
4324 	size_t nicnamelen;
4325 	hook_nic_event_t *info;
4326 	ip_stack_t	*ipst;
4327 
4328 	if (ill == NULL)
4329 		return;
4330 	ipst = ill->ill_ipst;
4331 	rw_enter(&ipst->ips_ill_g_lock, RW_WRITER);
4332 
4333 	if (ill->ill_name != NULL) {
4334 		nicname = kmem_alloc(ill->ill_name_length, KM_NOSLEEP);
4335 		if (nicname != NULL) {
4336 			bcopy(ill->ill_name, nicname, ill->ill_name_length);
4337 			nicnamelen = ill->ill_name_length;
4338 		}
4339 	} else {
4340 		nicname = NULL;
4341 		nicnamelen = 0;
4342 	}
4343 
4344 	/*
4345 	 * If the ill was never inserted into the AVL tree
4346 	 * we skip the if branch.
4347 	 */
4348 	if (ill->ill_ifptr != NULL) {
4349 		/*
4350 		 * remove from AVL tree and free ppa number
4351 		 */
4352 		avl_remove(&ill->ill_ifptr->illif_avl_by_ppa, ill);
4353 
4354 		if (ill->ill_ifptr->illif_ppa_arena != NULL) {
4355 			vmem_free(ill->ill_ifptr->illif_ppa_arena,
4356 			    (void *)(uintptr_t)(ill->ill_ppa+1), 1);
4357 		}
4358 		if (avl_numnodes(&ill->ill_ifptr->illif_avl_by_ppa) == 0) {
4359 			ill_delete_interface_type(ill->ill_ifptr);
4360 		}
4361 
4362 		/*
4363 		 * Indicate ill is no longer in the list.
4364 		 */
4365 		ill->ill_ifptr = NULL;
4366 		ill->ill_name_length = 0;
4367 		ill->ill_name[0] = '\0';
4368 		ill->ill_ppa = UINT_MAX;
4369 	}
4370 
4371 	/*
4372 	 * Run the unplumb hook after the NIC has disappeared from being
4373 	 * visible so that attempts to revalidate its existance will fail.
4374 	 *
4375 	 * This needs to be run inside the ill_g_lock perimeter to ensure
4376 	 * that the ordering of delivered events to listeners matches the
4377 	 * order of them in the kernel.
4378 	 */
4379 	if ((info = ill->ill_nic_event_info) != NULL) {
4380 		if (info->hne_event != NE_DOWN) {
4381 			ip2dbg(("ill_glist_delete: unexpected nic event %d "
4382 			    "attached for %s\n", info->hne_event,
4383 			    ill->ill_name));
4384 			if (info->hne_data != NULL)
4385 				kmem_free(info->hne_data, info->hne_datalen);
4386 			kmem_free(info, sizeof (hook_nic_event_t));
4387 		} else {
4388 			if (ddi_taskq_dispatch(eventq_queue_nic,
4389 			    ip_ne_queue_func, (void *)info, DDI_SLEEP)
4390 			    == DDI_FAILURE) {
4391 				ip2dbg(("ill_glist_delete: ddi_taskq_dispatch "
4392 				    "failed\n"));
4393 				if (info->hne_data != NULL)
4394 					kmem_free(info->hne_data,
4395 					    info->hne_datalen);
4396 				kmem_free(info, sizeof (hook_nic_event_t));
4397 			}
4398 		}
4399 	}
4400 
4401 	/* Generate NE_UNPLUMB event for ill_name. */
4402 	info = kmem_alloc(sizeof (hook_nic_event_t), KM_NOSLEEP);
4403 	if (info != NULL) {
4404 		info->hne_nic = ill->ill_phyint->phyint_ifindex;
4405 		info->hne_lif = 0;
4406 		info->hne_event = NE_UNPLUMB;
4407 		info->hne_data = nicname;
4408 		info->hne_datalen = nicnamelen;
4409 		info->hne_family = ill->ill_isv6 ?
4410 		    ipst->ips_ipv6_net_data : ipst->ips_ipv4_net_data;
4411 	} else {
4412 		ip2dbg(("ill_glist_delete: could not attach UNPLUMB nic event "
4413 		    "information for %s (ENOMEM)\n", ill->ill_name));
4414 		if (nicname != NULL)
4415 			kmem_free(nicname, nicnamelen);
4416 	}
4417 
4418 	ill->ill_nic_event_info = info;
4419 
4420 	ill_phyint_free(ill);
4421 	rw_exit(&ipst->ips_ill_g_lock);
4422 }
4423 
4424 /*
4425  * allocate a ppa, if the number of plumbed interfaces of this type are
4426  * less than ill_no_arena do a linear search to find a unused ppa.
4427  * When the number goes beyond ill_no_arena switch to using an arena.
4428  * Note: ppa value of zero cannot be allocated from vmem_arena as it
4429  * is the return value for an error condition, so allocation starts at one
4430  * and is decremented by one.
4431  */
4432 static int
4433 ill_alloc_ppa(ill_if_t *ifp, ill_t *ill)
4434 {
4435 	ill_t *tmp_ill;
4436 	uint_t start, end;
4437 	int ppa;
4438 
4439 	if (ifp->illif_ppa_arena == NULL &&
4440 	    (avl_numnodes(&ifp->illif_avl_by_ppa) + 1 > ill_no_arena)) {
4441 		/*
4442 		 * Create an arena.
4443 		 */
4444 		ifp->illif_ppa_arena = vmem_create(ifp->illif_name,
4445 		    (void *)1, UINT_MAX - 1, 1, NULL, NULL,
4446 		    NULL, 0, VM_SLEEP | VMC_IDENTIFIER);
4447 			/* allocate what has already been assigned */
4448 		for (tmp_ill = avl_first(&ifp->illif_avl_by_ppa);
4449 		    tmp_ill != NULL; tmp_ill = avl_walk(&ifp->illif_avl_by_ppa,
4450 		    tmp_ill, AVL_AFTER)) {
4451 			ppa = (int)(uintptr_t)vmem_xalloc(ifp->illif_ppa_arena,
4452 			    1,		/* size */
4453 			    1,		/* align/quantum */
4454 			    0,		/* phase */
4455 			    0,		/* nocross */
4456 			    /* minaddr */
4457 			    (void *)((uintptr_t)tmp_ill->ill_ppa + 1),
4458 			    /* maxaddr */
4459 			    (void *)((uintptr_t)tmp_ill->ill_ppa + 2),
4460 			    VM_NOSLEEP|VM_FIRSTFIT);
4461 			if (ppa == 0) {
4462 				ip1dbg(("ill_alloc_ppa: ppa allocation"
4463 				    " failed while switching"));
4464 				vmem_destroy(ifp->illif_ppa_arena);
4465 				ifp->illif_ppa_arena = NULL;
4466 				break;
4467 			}
4468 		}
4469 	}
4470 
4471 	if (ifp->illif_ppa_arena != NULL) {
4472 		if (ill->ill_ppa == UINT_MAX) {
4473 			ppa = (int)(uintptr_t)vmem_alloc(ifp->illif_ppa_arena,
4474 			    1, VM_NOSLEEP|VM_FIRSTFIT);
4475 			if (ppa == 0)
4476 				return (EAGAIN);
4477 			ill->ill_ppa = --ppa;
4478 		} else {
4479 			ppa = (int)(uintptr_t)vmem_xalloc(ifp->illif_ppa_arena,
4480 			    1, 		/* size */
4481 			    1, 		/* align/quantum */
4482 			    0, 		/* phase */
4483 			    0, 		/* nocross */
4484 			    (void *)(uintptr_t)(ill->ill_ppa + 1), /* minaddr */
4485 			    (void *)(uintptr_t)(ill->ill_ppa + 2), /* maxaddr */
4486 			    VM_NOSLEEP|VM_FIRSTFIT);
4487 			/*
4488 			 * Most likely the allocation failed because
4489 			 * the requested ppa was in use.
4490 			 */
4491 			if (ppa == 0)
4492 				return (EEXIST);
4493 		}
4494 		return (0);
4495 	}
4496 
4497 	/*
4498 	 * No arena is in use and not enough (>ill_no_arena) interfaces have
4499 	 * been plumbed to create one. Do a linear search to get a unused ppa.
4500 	 */
4501 	if (ill->ill_ppa == UINT_MAX) {
4502 		end = UINT_MAX - 1;
4503 		start = 0;
4504 	} else {
4505 		end = start = ill->ill_ppa;
4506 	}
4507 
4508 	tmp_ill = avl_find(&ifp->illif_avl_by_ppa, (void *)&start, NULL);
4509 	while (tmp_ill != NULL && tmp_ill->ill_ppa == start) {
4510 		if (start++ >= end) {
4511 			if (ill->ill_ppa == UINT_MAX)
4512 				return (EAGAIN);
4513 			else
4514 				return (EEXIST);
4515 		}
4516 		tmp_ill = avl_walk(&ifp->illif_avl_by_ppa, tmp_ill, AVL_AFTER);
4517 	}
4518 	ill->ill_ppa = start;
4519 	return (0);
4520 }
4521 
4522 /*
4523  * Insert ill into the list of configured ill's. Once this function completes,
4524  * the ill is globally visible and is available through lookups. More precisely
4525  * this happens after the caller drops the ill_g_lock.
4526  */
4527 static int
4528 ill_glist_insert(ill_t *ill, char *name, boolean_t isv6)
4529 {
4530 	ill_if_t *ill_interface;
4531 	avl_index_t where = 0;
4532 	int error;
4533 	int name_length;
4534 	int index;
4535 	boolean_t check_length = B_FALSE;
4536 	ip_stack_t	*ipst = ill->ill_ipst;
4537 
4538 	ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock));
4539 
4540 	name_length = mi_strlen(name) + 1;
4541 
4542 	if (isv6)
4543 		index = IP_V6_G_HEAD;
4544 	else
4545 		index = IP_V4_G_HEAD;
4546 
4547 	ill_interface = IP_VX_ILL_G_LIST(index, ipst);
4548 	/*
4549 	 * Search for interface type based on name
4550 	 */
4551 	while (ill_interface != (ill_if_t *)&IP_VX_ILL_G_LIST(index, ipst)) {
4552 		if ((ill_interface->illif_name_len == name_length) &&
4553 		    (strcmp(ill_interface->illif_name, name) == 0)) {
4554 			break;
4555 		}
4556 		ill_interface = ill_interface->illif_next;
4557 	}
4558 
4559 	/*
4560 	 * Interface type not found, create one.
4561 	 */
4562 	if (ill_interface == (ill_if_t *)&IP_VX_ILL_G_LIST(index, ipst)) {
4563 
4564 		ill_g_head_t ghead;
4565 
4566 		/*
4567 		 * allocate ill_if_t structure
4568 		 */
4569 
4570 		ill_interface = (ill_if_t *)mi_zalloc(sizeof (ill_if_t));
4571 		if (ill_interface == NULL) {
4572 			return (ENOMEM);
4573 		}
4574 
4575 
4576 
4577 		(void) strcpy(ill_interface->illif_name, name);
4578 		ill_interface->illif_name_len = name_length;
4579 
4580 		avl_create(&ill_interface->illif_avl_by_ppa,
4581 		    ill_compare_ppa, sizeof (ill_t),
4582 		    offsetof(struct ill_s, ill_avl_byppa));
4583 
4584 		/*
4585 		 * link the structure in the back to maintain order
4586 		 * of configuration for ifconfig output.
4587 		 */
4588 		ghead = ipst->ips_ill_g_heads[index];
4589 		insque(ill_interface, ghead.ill_g_list_tail);
4590 
4591 	}
4592 
4593 	if (ill->ill_ppa == UINT_MAX)
4594 		check_length = B_TRUE;
4595 
4596 	error = ill_alloc_ppa(ill_interface, ill);
4597 	if (error != 0) {
4598 		if (avl_numnodes(&ill_interface->illif_avl_by_ppa) == 0)
4599 			ill_delete_interface_type(ill->ill_ifptr);
4600 		return (error);
4601 	}
4602 
4603 	/*
4604 	 * When the ppa is choosen by the system, check that there is
4605 	 * enough space to insert ppa. if a specific ppa was passed in this
4606 	 * check is not required as the interface name passed in will have
4607 	 * the right ppa in it.
4608 	 */
4609 	if (check_length) {
4610 		/*
4611 		 * UINT_MAX - 1 should fit in 10 chars, alloc 12 chars.
4612 		 */
4613 		char buf[sizeof (uint_t) * 3];
4614 
4615 		/*
4616 		 * convert ppa to string to calculate the amount of space
4617 		 * required for it in the name.
4618 		 */
4619 		numtos(ill->ill_ppa, buf);
4620 
4621 		/* Do we have enough space to insert ppa ? */
4622 
4623 		if ((mi_strlen(name) + mi_strlen(buf) + 1) > LIFNAMSIZ) {
4624 			/* Free ppa and interface type struct */
4625 			if (ill_interface->illif_ppa_arena != NULL) {
4626 				vmem_free(ill_interface->illif_ppa_arena,
4627 				    (void *)(uintptr_t)(ill->ill_ppa+1), 1);
4628 			}
4629 			if (avl_numnodes(&ill_interface->illif_avl_by_ppa) ==
4630 			    0) {
4631 				ill_delete_interface_type(ill->ill_ifptr);
4632 			}
4633 
4634 			return (EINVAL);
4635 		}
4636 	}
4637 
4638 	(void) sprintf(ill->ill_name, "%s%u", name, ill->ill_ppa);
4639 	ill->ill_name_length = mi_strlen(ill->ill_name) + 1;
4640 
4641 	(void) avl_find(&ill_interface->illif_avl_by_ppa, &ill->ill_ppa,
4642 	    &where);
4643 	ill->ill_ifptr = ill_interface;
4644 	avl_insert(&ill_interface->illif_avl_by_ppa, ill, where);
4645 
4646 	ill_phyint_reinit(ill);
4647 	return (0);
4648 }
4649 
4650 /* Initialize the per phyint (per IPMP group) ipsq used for serialization */
4651 static boolean_t
4652 ipsq_init(ill_t *ill)
4653 {
4654 	ipsq_t  *ipsq;
4655 
4656 	/* Init the ipsq and impicitly enter as writer */
4657 	ill->ill_phyint->phyint_ipsq =
4658 	    kmem_zalloc(sizeof (ipsq_t), KM_NOSLEEP);
4659 	if (ill->ill_phyint->phyint_ipsq == NULL)
4660 		return (B_FALSE);
4661 	ipsq = ill->ill_phyint->phyint_ipsq;
4662 	ipsq->ipsq_phyint_list = ill->ill_phyint;
4663 	ill->ill_phyint->phyint_ipsq_next = NULL;
4664 	mutex_init(&ipsq->ipsq_lock, NULL, MUTEX_DEFAULT, 0);
4665 	ipsq->ipsq_refs = 1;
4666 	ipsq->ipsq_writer = curthread;
4667 	ipsq->ipsq_reentry_cnt = 1;
4668 	ipsq->ipsq_ipst = ill->ill_ipst;	/* No netstack_hold */
4669 #ifdef DEBUG
4670 	ipsq->ipsq_depth = getpcstack((pc_t *)ipsq->ipsq_stack,
4671 	    IPSQ_STACK_DEPTH);
4672 #endif
4673 	(void) strcpy(ipsq->ipsq_name, ill->ill_name);
4674 	return (B_TRUE);
4675 }
4676 
4677 /*
4678  * ill_init is called by ip_open when a device control stream is opened.
4679  * It does a few initializations, and shoots a DL_INFO_REQ message down
4680  * to the driver.  The response is later picked up in ip_rput_dlpi and
4681  * used to set up default mechanisms for talking to the driver.  (Always
4682  * called as writer.)
4683  *
4684  * If this function returns error, ip_open will call ip_close which in
4685  * turn will call ill_delete to clean up any memory allocated here that
4686  * is not yet freed.
4687  */
4688 int
4689 ill_init(queue_t *q, ill_t *ill)
4690 {
4691 	int	count;
4692 	dl_info_req_t	*dlir;
4693 	mblk_t	*info_mp;
4694 	uchar_t *frag_ptr;
4695 
4696 	/*
4697 	 * The ill is initialized to zero by mi_alloc*(). In addition
4698 	 * some fields already contain valid values, initialized in
4699 	 * ip_open(), before we reach here.
4700 	 */
4701 	mutex_init(&ill->ill_lock, NULL, MUTEX_DEFAULT, 0);
4702 
4703 	ill->ill_rq = q;
4704 	ill->ill_wq = WR(q);
4705 
4706 	info_mp = allocb(MAX(sizeof (dl_info_req_t), sizeof (dl_info_ack_t)),
4707 	    BPRI_HI);
4708 	if (info_mp == NULL)
4709 		return (ENOMEM);
4710 
4711 	/*
4712 	 * Allocate sufficient space to contain our fragment hash table and
4713 	 * the device name.
4714 	 */
4715 	frag_ptr = (uchar_t *)mi_zalloc(ILL_FRAG_HASH_TBL_SIZE +
4716 	    2 * LIFNAMSIZ + 5 + strlen(ipv6_forward_suffix));
4717 	if (frag_ptr == NULL) {
4718 		freemsg(info_mp);
4719 		return (ENOMEM);
4720 	}
4721 	ill->ill_frag_ptr = frag_ptr;
4722 	ill->ill_frag_free_num_pkts = 0;
4723 	ill->ill_last_frag_clean_time = 0;
4724 	ill->ill_frag_hash_tbl = (ipfb_t *)frag_ptr;
4725 	ill->ill_name = (char *)(frag_ptr + ILL_FRAG_HASH_TBL_SIZE);
4726 	for (count = 0; count < ILL_FRAG_HASH_TBL_COUNT; count++) {
4727 		mutex_init(&ill->ill_frag_hash_tbl[count].ipfb_lock,
4728 		    NULL, MUTEX_DEFAULT, NULL);
4729 	}
4730 
4731 	ill->ill_phyint = (phyint_t *)mi_zalloc(sizeof (phyint_t));
4732 	if (ill->ill_phyint == NULL) {
4733 		freemsg(info_mp);
4734 		mi_free(frag_ptr);
4735 		return (ENOMEM);
4736 	}
4737 
4738 	mutex_init(&ill->ill_phyint->phyint_lock, NULL, MUTEX_DEFAULT, 0);
4739 	/*
4740 	 * For now pretend this is a v4 ill. We need to set phyint_ill*
4741 	 * at this point because of the following reason. If we can't
4742 	 * enter the ipsq at some point and cv_wait, the writer that
4743 	 * wakes us up tries to locate us using the list of all phyints
4744 	 * in an ipsq and the ills from the phyint thru the phyint_ill*.
4745 	 * If we don't set it now, we risk a missed wakeup.
4746 	 */
4747 	ill->ill_phyint->phyint_illv4 = ill;
4748 	ill->ill_ppa = UINT_MAX;
4749 	ill->ill_fastpath_list = &ill->ill_fastpath_list;
4750 
4751 	if (!ipsq_init(ill)) {
4752 		freemsg(info_mp);
4753 		mi_free(frag_ptr);
4754 		mi_free(ill->ill_phyint);
4755 		return (ENOMEM);
4756 	}
4757 
4758 	ill->ill_state_flags |= ILL_LL_SUBNET_PENDING;
4759 
4760 
4761 	/* Frag queue limit stuff */
4762 	ill->ill_frag_count = 0;
4763 	ill->ill_ipf_gen = 0;
4764 
4765 	ill->ill_global_timer = INFINITY;
4766 	ill->ill_mcast_v1_time = ill->ill_mcast_v2_time = 0;
4767 	ill->ill_mcast_v1_tset = ill->ill_mcast_v2_tset = 0;
4768 	ill->ill_mcast_rv = MCAST_DEF_ROBUSTNESS;
4769 	ill->ill_mcast_qi = MCAST_DEF_QUERY_INTERVAL;
4770 
4771 	/*
4772 	 * Initialize IPv6 configuration variables.  The IP module is always
4773 	 * opened as an IPv4 module.  Instead tracking down the cases where
4774 	 * it switches to do ipv6, we'll just initialize the IPv6 configuration
4775 	 * here for convenience, this has no effect until the ill is set to do
4776 	 * IPv6.
4777 	 */
4778 	ill->ill_reachable_time = ND_REACHABLE_TIME;
4779 	ill->ill_reachable_retrans_time = ND_RETRANS_TIMER;
4780 	ill->ill_xmit_count = ND_MAX_MULTICAST_SOLICIT;
4781 	ill->ill_max_buf = ND_MAX_Q;
4782 	ill->ill_refcnt = 0;
4783 
4784 	/* Send down the Info Request to the driver. */
4785 	info_mp->b_datap->db_type = M_PCPROTO;
4786 	dlir = (dl_info_req_t *)info_mp->b_rptr;
4787 	info_mp->b_wptr = (uchar_t *)&dlir[1];
4788 	dlir->dl_primitive = DL_INFO_REQ;
4789 
4790 	ill->ill_dlpi_pending = DL_PRIM_INVAL;
4791 
4792 	qprocson(q);
4793 	ill_dlpi_send(ill, info_mp);
4794 
4795 	return (0);
4796 }
4797 
4798 /*
4799  * ill_dls_info
4800  * creates datalink socket info from the device.
4801  */
4802 int
4803 ill_dls_info(struct sockaddr_dl *sdl, const ipif_t *ipif)
4804 {
4805 	size_t	len;
4806 	ill_t	*ill = ipif->ipif_ill;
4807 
4808 	sdl->sdl_family = AF_LINK;
4809 	sdl->sdl_index = ill->ill_phyint->phyint_ifindex;
4810 	sdl->sdl_type = ill->ill_type;
4811 	ipif_get_name(ipif, sdl->sdl_data, sizeof (sdl->sdl_data));
4812 	len = strlen(sdl->sdl_data);
4813 	ASSERT(len < 256);
4814 	sdl->sdl_nlen = (uchar_t)len;
4815 	sdl->sdl_alen = ill->ill_phys_addr_length;
4816 	sdl->sdl_slen = 0;
4817 	if (ill->ill_phys_addr_length != 0 && ill->ill_phys_addr != NULL)
4818 		bcopy(ill->ill_phys_addr, &sdl->sdl_data[len], sdl->sdl_alen);
4819 
4820 	return (sizeof (struct sockaddr_dl));
4821 }
4822 
4823 /*
4824  * ill_xarp_info
4825  * creates xarp info from the device.
4826  */
4827 static int
4828 ill_xarp_info(struct sockaddr_dl *sdl, ill_t *ill)
4829 {
4830 	sdl->sdl_family = AF_LINK;
4831 	sdl->sdl_index = ill->ill_phyint->phyint_ifindex;
4832 	sdl->sdl_type = ill->ill_type;
4833 	ipif_get_name(ill->ill_ipif, sdl->sdl_data, sizeof (sdl->sdl_data));
4834 	sdl->sdl_nlen = (uchar_t)mi_strlen(sdl->sdl_data);
4835 	sdl->sdl_alen = ill->ill_phys_addr_length;
4836 	sdl->sdl_slen = 0;
4837 	return (sdl->sdl_nlen);
4838 }
4839 
4840 static int
4841 loopback_kstat_update(kstat_t *ksp, int rw)
4842 {
4843 	kstat_named_t *kn;
4844 	netstackid_t	stackid;
4845 	netstack_t	*ns;
4846 	ip_stack_t	*ipst;
4847 
4848 	if (ksp == NULL || ksp->ks_data == NULL)
4849 		return (EIO);
4850 
4851 	if (rw == KSTAT_WRITE)
4852 		return (EACCES);
4853 
4854 	kn = KSTAT_NAMED_PTR(ksp);
4855 	stackid = (zoneid_t)(uintptr_t)ksp->ks_private;
4856 
4857 	ns = netstack_find_by_stackid(stackid);
4858 	if (ns == NULL)
4859 		return (-1);
4860 
4861 	ipst = ns->netstack_ip;
4862 	if (ipst == NULL) {
4863 		netstack_rele(ns);
4864 		return (-1);
4865 	}
4866 	kn[0].value.ui32 = ipst->ips_loopback_packets;
4867 	kn[1].value.ui32 = ipst->ips_loopback_packets;
4868 	netstack_rele(ns);
4869 	return (0);
4870 }
4871 
4872 
4873 /*
4874  * Has ifindex been plumbed already.
4875  * Compares both phyint_ifindex and phyint_group_ifindex.
4876  */
4877 static boolean_t
4878 phyint_exists(uint_t index, ip_stack_t *ipst)
4879 {
4880 	phyint_t *phyi;
4881 
4882 	ASSERT(index != 0);
4883 	ASSERT(RW_LOCK_HELD(&ipst->ips_ill_g_lock));
4884 	/*
4885 	 * Indexes are stored in the phyint - a common structure
4886 	 * to both IPv4 and IPv6.
4887 	 */
4888 	phyi = avl_first(&ipst->ips_phyint_g_list->phyint_list_avl_by_index);
4889 	for (; phyi != NULL;
4890 	    phyi = avl_walk(&ipst->ips_phyint_g_list->phyint_list_avl_by_index,
4891 	    phyi, AVL_AFTER)) {
4892 		if (phyi->phyint_ifindex == index ||
4893 		    phyi->phyint_group_ifindex == index)
4894 			return (B_TRUE);
4895 	}
4896 	return (B_FALSE);
4897 }
4898 
4899 /* Pick a unique ifindex */
4900 boolean_t
4901 ip_assign_ifindex(uint_t *indexp, ip_stack_t *ipst)
4902 {
4903 	uint_t starting_index;
4904 
4905 	if (!ipst->ips_ill_index_wrap) {
4906 		*indexp = ipst->ips_ill_index++;
4907 		if (ipst->ips_ill_index == 0) {
4908 			/* Reached the uint_t limit Next time wrap  */
4909 			ipst->ips_ill_index_wrap = B_TRUE;
4910 		}
4911 		return (B_TRUE);
4912 	}
4913 
4914 	/*
4915 	 * Start reusing unused indexes. Note that we hold the ill_g_lock
4916 	 * at this point and don't want to call any function that attempts
4917 	 * to get the lock again.
4918 	 */
4919 	starting_index = ipst->ips_ill_index++;
4920 	for (; ipst->ips_ill_index != starting_index; ipst->ips_ill_index++) {
4921 		if (ipst->ips_ill_index != 0 &&
4922 		    !phyint_exists(ipst->ips_ill_index, ipst)) {
4923 			/* found unused index - use it */
4924 			*indexp = ipst->ips_ill_index;
4925 			return (B_TRUE);
4926 		}
4927 	}
4928 
4929 	/*
4930 	 * all interface indicies are inuse.
4931 	 */
4932 	return (B_FALSE);
4933 }
4934 
4935 /*
4936  * Assign a unique interface index for the phyint.
4937  */
4938 static boolean_t
4939 phyint_assign_ifindex(phyint_t *phyi, ip_stack_t *ipst)
4940 {
4941 	ASSERT(phyi->phyint_ifindex == 0);
4942 	return (ip_assign_ifindex(&phyi->phyint_ifindex, ipst));
4943 }
4944 
4945 /*
4946  * Return a pointer to the ill which matches the supplied name.  Note that
4947  * the ill name length includes the null termination character.  (May be
4948  * called as writer.)
4949  * If do_alloc and the interface is "lo0" it will be automatically created.
4950  * Cannot bump up reference on condemned ills. So dup detect can't be done
4951  * using this func.
4952  */
4953 ill_t *
4954 ill_lookup_on_name(char *name, boolean_t do_alloc, boolean_t isv6,
4955     queue_t *q, mblk_t *mp, ipsq_func_t func, int *error, boolean_t *did_alloc,
4956     ip_stack_t *ipst)
4957 {
4958 	ill_t	*ill;
4959 	ipif_t	*ipif;
4960 	kstat_named_t	*kn;
4961 	boolean_t isloopback;
4962 	ipsq_t *old_ipsq;
4963 	in6_addr_t ov6addr;
4964 
4965 	isloopback = mi_strcmp(name, ipif_loopback_name) == 0;
4966 
4967 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
4968 	ill = ill_find_by_name(name, isv6, q, mp, func, error, ipst);
4969 	rw_exit(&ipst->ips_ill_g_lock);
4970 	if (ill != NULL || (error != NULL && *error == EINPROGRESS))
4971 		return (ill);
4972 
4973 	/*
4974 	 * Couldn't find it.  Does this happen to be a lookup for the
4975 	 * loopback device and are we allowed to allocate it?
4976 	 */
4977 	if (!isloopback || !do_alloc)
4978 		return (NULL);
4979 
4980 	rw_enter(&ipst->ips_ill_g_lock, RW_WRITER);
4981 
4982 	ill = ill_find_by_name(name, isv6, q, mp, func, error, ipst);
4983 	if (ill != NULL || (error != NULL && *error == EINPROGRESS)) {
4984 		rw_exit(&ipst->ips_ill_g_lock);
4985 		return (ill);
4986 	}
4987 
4988 	/* Create the loopback device on demand */
4989 	ill = (ill_t *)(mi_alloc(sizeof (ill_t) +
4990 	    sizeof (ipif_loopback_name), BPRI_MED));
4991 	if (ill == NULL)
4992 		goto done;
4993 
4994 	*ill = ill_null;
4995 	mutex_init(&ill->ill_lock, NULL, MUTEX_DEFAULT, NULL);
4996 	ill->ill_ipst = ipst;
4997 	netstack_hold(ipst->ips_netstack);
4998 	/*
4999 	 * For exclusive stacks we set the zoneid to zero
5000 	 * to make IP operate as if in the global zone.
5001 	 */
5002 	ill->ill_zoneid = GLOBAL_ZONEID;
5003 
5004 	ill->ill_phyint = (phyint_t *)mi_zalloc(sizeof (phyint_t));
5005 	if (ill->ill_phyint == NULL)
5006 		goto done;
5007 
5008 	if (isv6)
5009 		ill->ill_phyint->phyint_illv6 = ill;
5010 	else
5011 		ill->ill_phyint->phyint_illv4 = ill;
5012 	mutex_init(&ill->ill_phyint->phyint_lock, NULL, MUTEX_DEFAULT, 0);
5013 	ill->ill_max_frag = IP_LOOPBACK_MTU;
5014 	/* Add room for tcp+ip headers */
5015 	if (isv6) {
5016 		ill->ill_isv6 = B_TRUE;
5017 		ill->ill_max_frag += IPV6_HDR_LEN + 20;	/* for TCP */
5018 	} else {
5019 		ill->ill_max_frag += IP_SIMPLE_HDR_LENGTH + 20;
5020 	}
5021 	if (!ill_allocate_mibs(ill))
5022 		goto done;
5023 	ill->ill_max_mtu = ill->ill_max_frag;
5024 	/*
5025 	 * ipif_loopback_name can't be pointed at directly because its used
5026 	 * by both the ipv4 and ipv6 interfaces.  When the ill is removed
5027 	 * from the glist, ill_glist_delete() sets the first character of
5028 	 * ill_name to '\0'.
5029 	 */
5030 	ill->ill_name = (char *)ill + sizeof (*ill);
5031 	(void) strcpy(ill->ill_name, ipif_loopback_name);
5032 	ill->ill_name_length = sizeof (ipif_loopback_name);
5033 	/* Set ill_name_set for ill_phyint_reinit to work properly */
5034 
5035 	ill->ill_global_timer = INFINITY;
5036 	ill->ill_mcast_v1_time = ill->ill_mcast_v2_time = 0;
5037 	ill->ill_mcast_v1_tset = ill->ill_mcast_v2_tset = 0;
5038 	ill->ill_mcast_rv = MCAST_DEF_ROBUSTNESS;
5039 	ill->ill_mcast_qi = MCAST_DEF_QUERY_INTERVAL;
5040 
5041 	/* No resolver here. */
5042 	ill->ill_net_type = IRE_LOOPBACK;
5043 
5044 	/* Initialize the ipsq */
5045 	if (!ipsq_init(ill))
5046 		goto done;
5047 
5048 	ill->ill_phyint->phyint_ipsq->ipsq_writer = NULL;
5049 	ill->ill_phyint->phyint_ipsq->ipsq_reentry_cnt--;
5050 	ASSERT(ill->ill_phyint->phyint_ipsq->ipsq_reentry_cnt == 0);
5051 #ifdef DEBUG
5052 	ill->ill_phyint->phyint_ipsq->ipsq_depth = 0;
5053 #endif
5054 	ipif = ipif_allocate(ill, 0L, IRE_LOOPBACK, B_TRUE);
5055 	if (ipif == NULL)
5056 		goto done;
5057 
5058 	ill->ill_flags = ILLF_MULTICAST;
5059 
5060 	ov6addr = ipif->ipif_v6lcl_addr;
5061 	/* Set up default loopback address and mask. */
5062 	if (!isv6) {
5063 		ipaddr_t inaddr_loopback = htonl(INADDR_LOOPBACK);
5064 
5065 		IN6_IPADDR_TO_V4MAPPED(inaddr_loopback, &ipif->ipif_v6lcl_addr);
5066 		ipif->ipif_v6src_addr = ipif->ipif_v6lcl_addr;
5067 		V4MASK_TO_V6(htonl(IN_CLASSA_NET), ipif->ipif_v6net_mask);
5068 		V6_MASK_COPY(ipif->ipif_v6lcl_addr, ipif->ipif_v6net_mask,
5069 		    ipif->ipif_v6subnet);
5070 		ill->ill_flags |= ILLF_IPV4;
5071 	} else {
5072 		ipif->ipif_v6lcl_addr = ipv6_loopback;
5073 		ipif->ipif_v6src_addr = ipif->ipif_v6lcl_addr;
5074 		ipif->ipif_v6net_mask = ipv6_all_ones;
5075 		V6_MASK_COPY(ipif->ipif_v6lcl_addr, ipif->ipif_v6net_mask,
5076 		    ipif->ipif_v6subnet);
5077 		ill->ill_flags |= ILLF_IPV6;
5078 	}
5079 
5080 	/*
5081 	 * Chain us in at the end of the ill list. hold the ill
5082 	 * before we make it globally visible. 1 for the lookup.
5083 	 */
5084 	ill->ill_refcnt = 0;
5085 	ill_refhold(ill);
5086 
5087 	ill->ill_frag_count = 0;
5088 	ill->ill_frag_free_num_pkts = 0;
5089 	ill->ill_last_frag_clean_time = 0;
5090 
5091 	old_ipsq = ill->ill_phyint->phyint_ipsq;
5092 
5093 	if (ill_glist_insert(ill, "lo", isv6) != 0)
5094 		cmn_err(CE_PANIC, "cannot insert loopback interface");
5095 
5096 	/* Let SCTP know so that it can add this to its list */
5097 	sctp_update_ill(ill, SCTP_ILL_INSERT);
5098 
5099 	/*
5100 	 * We have already assigned ipif_v6lcl_addr above, but we need to
5101 	 * call sctp_update_ipif_addr() after SCTP_ILL_INSERT, which
5102 	 * requires to be after ill_glist_insert() since we need the
5103 	 * ill_index set. Pass on ipv6_loopback as the old address.
5104 	 */
5105 	sctp_update_ipif_addr(ipif, ov6addr);
5106 
5107 	/*
5108 	 * If the ipsq was changed in ill_phyint_reinit free the old ipsq.
5109 	 */
5110 	if (old_ipsq != ill->ill_phyint->phyint_ipsq) {
5111 		/* Loopback ills aren't in any IPMP group */
5112 		ASSERT(!(old_ipsq->ipsq_flags & IPSQ_GROUP));
5113 		ipsq_delete(old_ipsq);
5114 	}
5115 
5116 	/*
5117 	 * Delay this till the ipif is allocated as ipif_allocate
5118 	 * de-references ill_phyint for getting the ifindex. We
5119 	 * can't do this before ipif_allocate because ill_phyint_reinit
5120 	 * -> phyint_assign_ifindex expects ipif to be present.
5121 	 */
5122 	mutex_enter(&ill->ill_phyint->phyint_lock);
5123 	ill->ill_phyint->phyint_flags |= PHYI_LOOPBACK | PHYI_VIRTUAL;
5124 	mutex_exit(&ill->ill_phyint->phyint_lock);
5125 
5126 	if (ipst->ips_loopback_ksp == NULL) {
5127 		/* Export loopback interface statistics */
5128 		ipst->ips_loopback_ksp = kstat_create_netstack("lo", 0,
5129 		    ipif_loopback_name, "net",
5130 		    KSTAT_TYPE_NAMED, 2, 0,
5131 		    ipst->ips_netstack->netstack_stackid);
5132 		if (ipst->ips_loopback_ksp != NULL) {
5133 			ipst->ips_loopback_ksp->ks_update =
5134 			    loopback_kstat_update;
5135 			kn = KSTAT_NAMED_PTR(ipst->ips_loopback_ksp);
5136 			kstat_named_init(&kn[0], "ipackets", KSTAT_DATA_UINT32);
5137 			kstat_named_init(&kn[1], "opackets", KSTAT_DATA_UINT32);
5138 			ipst->ips_loopback_ksp->ks_private =
5139 			    (void *)(uintptr_t)ipst->ips_netstack->
5140 			    netstack_stackid;
5141 			kstat_install(ipst->ips_loopback_ksp);
5142 		}
5143 	}
5144 
5145 	if (error != NULL)
5146 		*error = 0;
5147 	*did_alloc = B_TRUE;
5148 	rw_exit(&ipst->ips_ill_g_lock);
5149 	return (ill);
5150 done:
5151 	if (ill != NULL) {
5152 		if (ill->ill_phyint != NULL) {
5153 			ipsq_t	*ipsq;
5154 
5155 			ipsq = ill->ill_phyint->phyint_ipsq;
5156 			if (ipsq != NULL) {
5157 				ipsq->ipsq_ipst = NULL;
5158 				kmem_free(ipsq, sizeof (ipsq_t));
5159 			}
5160 			mi_free(ill->ill_phyint);
5161 		}
5162 		ill_free_mib(ill);
5163 		if (ill->ill_ipst != NULL)
5164 			netstack_rele(ill->ill_ipst->ips_netstack);
5165 		mi_free(ill);
5166 	}
5167 	rw_exit(&ipst->ips_ill_g_lock);
5168 	if (error != NULL)
5169 		*error = ENOMEM;
5170 	return (NULL);
5171 }
5172 
5173 /*
5174  * For IPP calls - use the ip_stack_t for global stack.
5175  */
5176 ill_t *
5177 ill_lookup_on_ifindex_global_instance(uint_t index, boolean_t isv6,
5178     queue_t *q, mblk_t *mp, ipsq_func_t func, int *err)
5179 {
5180 	ip_stack_t	*ipst;
5181 	ill_t		*ill;
5182 
5183 	ipst = netstack_find_by_stackid(GLOBAL_NETSTACKID)->netstack_ip;
5184 	if (ipst == NULL) {
5185 		cmn_err(CE_WARN, "No ip_stack_t for zoneid zero!\n");
5186 		return (NULL);
5187 	}
5188 
5189 	ill = ill_lookup_on_ifindex(index, isv6, q, mp, func, err, ipst);
5190 	netstack_rele(ipst->ips_netstack);
5191 	return (ill);
5192 }
5193 
5194 /*
5195  * Return a pointer to the ill which matches the index and IP version type.
5196  */
5197 ill_t *
5198 ill_lookup_on_ifindex(uint_t index, boolean_t isv6, queue_t *q, mblk_t *mp,
5199     ipsq_func_t func, int *err, ip_stack_t *ipst)
5200 {
5201 	ill_t	*ill;
5202 	ipsq_t  *ipsq;
5203 	phyint_t *phyi;
5204 
5205 	ASSERT((q == NULL && mp == NULL && func == NULL && err == NULL) ||
5206 	    (q != NULL && mp != NULL && func != NULL && err != NULL));
5207 
5208 	if (err != NULL)
5209 		*err = 0;
5210 
5211 	/*
5212 	 * Indexes are stored in the phyint - a common structure
5213 	 * to both IPv4 and IPv6.
5214 	 */
5215 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
5216 	phyi = avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_index,
5217 	    (void *) &index, NULL);
5218 	if (phyi != NULL) {
5219 		ill = isv6 ? phyi->phyint_illv6: phyi->phyint_illv4;
5220 		if (ill != NULL) {
5221 			/*
5222 			 * The block comment at the start of ipif_down
5223 			 * explains the use of the macros used below
5224 			 */
5225 			GRAB_CONN_LOCK(q);
5226 			mutex_enter(&ill->ill_lock);
5227 			if (ILL_CAN_LOOKUP(ill)) {
5228 				ill_refhold_locked(ill);
5229 				mutex_exit(&ill->ill_lock);
5230 				RELEASE_CONN_LOCK(q);
5231 				rw_exit(&ipst->ips_ill_g_lock);
5232 				return (ill);
5233 			} else if (ILL_CAN_WAIT(ill, q)) {
5234 				ipsq = ill->ill_phyint->phyint_ipsq;
5235 				mutex_enter(&ipsq->ipsq_lock);
5236 				rw_exit(&ipst->ips_ill_g_lock);
5237 				mutex_exit(&ill->ill_lock);
5238 				ipsq_enq(ipsq, q, mp, func, NEW_OP, ill);
5239 				mutex_exit(&ipsq->ipsq_lock);
5240 				RELEASE_CONN_LOCK(q);
5241 				if (err != NULL)
5242 					*err = EINPROGRESS;
5243 				return (NULL);
5244 			}
5245 			RELEASE_CONN_LOCK(q);
5246 			mutex_exit(&ill->ill_lock);
5247 		}
5248 	}
5249 	rw_exit(&ipst->ips_ill_g_lock);
5250 	if (err != NULL)
5251 		*err = ENXIO;
5252 	return (NULL);
5253 }
5254 
5255 /*
5256  * Return the ifindex next in sequence after the passed in ifindex.
5257  * If there is no next ifindex for the given protocol, return 0.
5258  */
5259 uint_t
5260 ill_get_next_ifindex(uint_t index, boolean_t isv6, ip_stack_t *ipst)
5261 {
5262 	phyint_t *phyi;
5263 	phyint_t *phyi_initial;
5264 	uint_t   ifindex;
5265 
5266 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
5267 
5268 	if (index == 0) {
5269 		phyi = avl_first(
5270 		    &ipst->ips_phyint_g_list->phyint_list_avl_by_index);
5271 	} else {
5272 		phyi = phyi_initial = avl_find(
5273 		    &ipst->ips_phyint_g_list->phyint_list_avl_by_index,
5274 		    (void *) &index, NULL);
5275 	}
5276 
5277 	for (; phyi != NULL;
5278 	    phyi = avl_walk(&ipst->ips_phyint_g_list->phyint_list_avl_by_index,
5279 	    phyi, AVL_AFTER)) {
5280 		/*
5281 		 * If we're not returning the first interface in the tree
5282 		 * and we still haven't moved past the phyint_t that
5283 		 * corresponds to index, avl_walk needs to be called again
5284 		 */
5285 		if (!((index != 0) && (phyi == phyi_initial))) {
5286 			if (isv6) {
5287 				if ((phyi->phyint_illv6) &&
5288 				    ILL_CAN_LOOKUP(phyi->phyint_illv6) &&
5289 				    (phyi->phyint_illv6->ill_isv6 == 1))
5290 					break;
5291 			} else {
5292 				if ((phyi->phyint_illv4) &&
5293 				    ILL_CAN_LOOKUP(phyi->phyint_illv4) &&
5294 				    (phyi->phyint_illv4->ill_isv6 == 0))
5295 					break;
5296 			}
5297 		}
5298 	}
5299 
5300 	rw_exit(&ipst->ips_ill_g_lock);
5301 
5302 	if (phyi != NULL)
5303 		ifindex = phyi->phyint_ifindex;
5304 	else
5305 		ifindex = 0;
5306 
5307 	return (ifindex);
5308 }
5309 
5310 
5311 /*
5312  * Return the ifindex for the named interface.
5313  * If there is no next ifindex for the interface, return 0.
5314  */
5315 uint_t
5316 ill_get_ifindex_by_name(char *name, ip_stack_t *ipst)
5317 {
5318 	phyint_t	*phyi;
5319 	avl_index_t	where = 0;
5320 	uint_t		ifindex;
5321 
5322 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
5323 
5324 	if ((phyi = avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_name,
5325 	    name, &where)) == NULL) {
5326 		rw_exit(&ipst->ips_ill_g_lock);
5327 		return (0);
5328 	}
5329 
5330 	ifindex = phyi->phyint_ifindex;
5331 
5332 	rw_exit(&ipst->ips_ill_g_lock);
5333 
5334 	return (ifindex);
5335 }
5336 
5337 
5338 /*
5339  * Obtain a reference to the ill. The ill_refcnt is a dynamic refcnt
5340  * that gives a running thread a reference to the ill. This reference must be
5341  * released by the thread when it is done accessing the ill and related
5342  * objects. ill_refcnt can not be used to account for static references
5343  * such as other structures pointing to an ill. Callers must generally
5344  * check whether an ill can be refheld by using ILL_CAN_LOOKUP macros
5345  * or be sure that the ill is not being deleted or changing state before
5346  * calling the refhold functions. A non-zero ill_refcnt ensures that the
5347  * ill won't change any of its critical state such as address, netmask etc.
5348  */
5349 void
5350 ill_refhold(ill_t *ill)
5351 {
5352 	mutex_enter(&ill->ill_lock);
5353 	ill->ill_refcnt++;
5354 	ILL_TRACE_REF(ill);
5355 	mutex_exit(&ill->ill_lock);
5356 }
5357 
5358 void
5359 ill_refhold_locked(ill_t *ill)
5360 {
5361 	ASSERT(MUTEX_HELD(&ill->ill_lock));
5362 	ill->ill_refcnt++;
5363 	ILL_TRACE_REF(ill);
5364 }
5365 
5366 int
5367 ill_check_and_refhold(ill_t *ill)
5368 {
5369 	mutex_enter(&ill->ill_lock);
5370 	if (ILL_CAN_LOOKUP(ill)) {
5371 		ill_refhold_locked(ill);
5372 		mutex_exit(&ill->ill_lock);
5373 		return (0);
5374 	}
5375 	mutex_exit(&ill->ill_lock);
5376 	return (ILL_LOOKUP_FAILED);
5377 }
5378 
5379 /*
5380  * Must not be called while holding any locks. Otherwise if this is
5381  * the last reference to be released, there is a chance of recursive mutex
5382  * panic due to ill_refrele -> ipif_ill_refrele_tail -> qwriter_ip trying
5383  * to restart an ioctl.
5384  */
5385 void
5386 ill_refrele(ill_t *ill)
5387 {
5388 	mutex_enter(&ill->ill_lock);
5389 	ASSERT(ill->ill_refcnt != 0);
5390 	ill->ill_refcnt--;
5391 	ILL_UNTRACE_REF(ill);
5392 	if (ill->ill_refcnt != 0) {
5393 		/* Every ire pointing to the ill adds 1 to ill_refcnt */
5394 		mutex_exit(&ill->ill_lock);
5395 		return;
5396 	}
5397 
5398 	/* Drops the ill_lock */
5399 	ipif_ill_refrele_tail(ill);
5400 }
5401 
5402 /*
5403  * Obtain a weak reference count on the ill. This reference ensures the
5404  * ill won't be freed, but the ill may change any of its critical state
5405  * such as netmask, address etc. Returns an error if the ill has started
5406  * closing.
5407  */
5408 boolean_t
5409 ill_waiter_inc(ill_t *ill)
5410 {
5411 	mutex_enter(&ill->ill_lock);
5412 	if (ill->ill_state_flags & ILL_CONDEMNED) {
5413 		mutex_exit(&ill->ill_lock);
5414 		return (B_FALSE);
5415 	}
5416 	ill->ill_waiters++;
5417 	mutex_exit(&ill->ill_lock);
5418 	return (B_TRUE);
5419 }
5420 
5421 void
5422 ill_waiter_dcr(ill_t *ill)
5423 {
5424 	mutex_enter(&ill->ill_lock);
5425 	ill->ill_waiters--;
5426 	if (ill->ill_waiters == 0)
5427 		cv_broadcast(&ill->ill_cv);
5428 	mutex_exit(&ill->ill_lock);
5429 }
5430 
5431 /*
5432  * Named Dispatch routine to produce a formatted report on all ILLs.
5433  * This report is accessed by using the ndd utility to "get" ND variable
5434  * "ip_ill_status".
5435  */
5436 /* ARGSUSED */
5437 int
5438 ip_ill_report(queue_t *q, mblk_t *mp, caddr_t arg, cred_t *ioc_cr)
5439 {
5440 	ill_t		*ill;
5441 	ill_walk_context_t ctx;
5442 	ip_stack_t	*ipst;
5443 
5444 	ipst = CONNQ_TO_IPST(q);
5445 
5446 	(void) mi_mpprintf(mp,
5447 	    "ILL      " MI_COL_HDRPAD_STR
5448 	/*   01234567[89ABCDEF] */
5449 	    "rq       " MI_COL_HDRPAD_STR
5450 	/*   01234567[89ABCDEF] */
5451 	    "wq       " MI_COL_HDRPAD_STR
5452 	/*   01234567[89ABCDEF] */
5453 	    "upcnt mxfrg err name");
5454 	/*   12345 12345 123 xxxxxxxx  */
5455 
5456 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
5457 	ill = ILL_START_WALK_ALL(&ctx, ipst);
5458 	for (; ill != NULL; ill = ill_next(&ctx, ill)) {
5459 		(void) mi_mpprintf(mp,
5460 		    MI_COL_PTRFMT_STR MI_COL_PTRFMT_STR MI_COL_PTRFMT_STR
5461 		    "%05u %05u %03d %s",
5462 		    (void *)ill, (void *)ill->ill_rq, (void *)ill->ill_wq,
5463 		    ill->ill_ipif_up_count,
5464 		    ill->ill_max_frag, ill->ill_error, ill->ill_name);
5465 	}
5466 	rw_exit(&ipst->ips_ill_g_lock);
5467 
5468 	return (0);
5469 }
5470 
5471 /*
5472  * Named Dispatch routine to produce a formatted report on all IPIFs.
5473  * This report is accessed by using the ndd utility to "get" ND variable
5474  * "ip_ipif_status".
5475  */
5476 /* ARGSUSED */
5477 int
5478 ip_ipif_report(queue_t *q, mblk_t *mp, caddr_t arg, cred_t *ioc_cr)
5479 {
5480 	char	buf1[INET6_ADDRSTRLEN];
5481 	char	buf2[INET6_ADDRSTRLEN];
5482 	char	buf3[INET6_ADDRSTRLEN];
5483 	char	buf4[INET6_ADDRSTRLEN];
5484 	char	buf5[INET6_ADDRSTRLEN];
5485 	char	buf6[INET6_ADDRSTRLEN];
5486 	char	buf[LIFNAMSIZ];
5487 	ill_t	*ill;
5488 	ipif_t	*ipif;
5489 	nv_t	*nvp;
5490 	uint64_t flags;
5491 	zoneid_t zoneid;
5492 	ill_walk_context_t ctx;
5493 	ip_stack_t *ipst = CONNQ_TO_IPST(q);
5494 
5495 	(void) mi_mpprintf(mp,
5496 	    "IPIF metric mtu in/out/forward name zone flags...\n"
5497 	    "\tlocal address\n"
5498 	    "\tsrc address\n"
5499 	    "\tsubnet\n"
5500 	    "\tmask\n"
5501 	    "\tbroadcast\n"
5502 	    "\tp-p-dst");
5503 
5504 	ASSERT(q->q_next == NULL);
5505 	zoneid = Q_TO_CONN(q)->conn_zoneid;	/* IP is a driver */
5506 
5507 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
5508 	ill = ILL_START_WALK_ALL(&ctx, ipst);
5509 	for (; ill != NULL; ill = ill_next(&ctx, ill)) {
5510 		for (ipif = ill->ill_ipif; ipif != NULL;
5511 		    ipif = ipif->ipif_next) {
5512 			if (zoneid != GLOBAL_ZONEID &&
5513 			    zoneid != ipif->ipif_zoneid &&
5514 			    ipif->ipif_zoneid != ALL_ZONES)
5515 				continue;
5516 
5517 			ipif_get_name(ipif, buf, sizeof (buf));
5518 			(void) mi_mpprintf(mp,
5519 			    MI_COL_PTRFMT_STR
5520 			    "%04u %05u %u/%u/%u %s %d",
5521 			    (void *)ipif,
5522 			    ipif->ipif_metric, ipif->ipif_mtu,
5523 			    ipif->ipif_ib_pkt_count,
5524 			    ipif->ipif_ob_pkt_count,
5525 			    ipif->ipif_fo_pkt_count,
5526 			    buf,
5527 			    ipif->ipif_zoneid);
5528 
5529 		flags = ipif->ipif_flags | ipif->ipif_ill->ill_flags |
5530 		    ipif->ipif_ill->ill_phyint->phyint_flags;
5531 
5532 		/* Tack on text strings for any flags. */
5533 		nvp = ipif_nv_tbl;
5534 		for (; nvp < A_END(ipif_nv_tbl); nvp++) {
5535 			if (nvp->nv_value & flags)
5536 				(void) mi_mpprintf_nr(mp, " %s",
5537 				    nvp->nv_name);
5538 		}
5539 		(void) mi_mpprintf(mp,
5540 		    "\t%s\n\t%s\n\t%s\n\t%s\n\t%s\n\t%s",
5541 		    inet_ntop(AF_INET6,
5542 		    &ipif->ipif_v6lcl_addr, buf1, sizeof (buf1)),
5543 		    inet_ntop(AF_INET6,
5544 		    &ipif->ipif_v6src_addr, buf2, sizeof (buf2)),
5545 		    inet_ntop(AF_INET6,
5546 		    &ipif->ipif_v6subnet, buf3, sizeof (buf3)),
5547 		    inet_ntop(AF_INET6,
5548 		    &ipif->ipif_v6net_mask, buf4, sizeof (buf4)),
5549 		    inet_ntop(AF_INET6,
5550 		    &ipif->ipif_v6brd_addr, buf5, sizeof (buf5)),
5551 		    inet_ntop(AF_INET6,
5552 		    &ipif->ipif_v6pp_dst_addr, buf6, sizeof (buf6)));
5553 		}
5554 	}
5555 	rw_exit(&ipst->ips_ill_g_lock);
5556 	return (0);
5557 }
5558 
5559 /*
5560  * ip_ll_subnet_defaults is called when we get the DL_INFO_ACK back from the
5561  * driver.  We construct best guess defaults for lower level information that
5562  * we need.  If an interface is brought up without injection of any overriding
5563  * information from outside, we have to be ready to go with these defaults.
5564  * When we get the first DL_INFO_ACK (from ip_open() sending a DL_INFO_REQ)
5565  * we primarely want the dl_provider_style.
5566  * The subsequent DL_INFO_ACK is received after doing a DL_ATTACH and DL_BIND
5567  * at which point we assume the other part of the information is valid.
5568  */
5569 void
5570 ip_ll_subnet_defaults(ill_t *ill, mblk_t *mp)
5571 {
5572 	uchar_t		*brdcst_addr;
5573 	uint_t		brdcst_addr_length, phys_addr_length;
5574 	t_scalar_t	sap_length;
5575 	dl_info_ack_t	*dlia;
5576 	ip_m_t		*ipm;
5577 	dl_qos_cl_sel1_t *sel1;
5578 
5579 	ASSERT(IAM_WRITER_ILL(ill));
5580 
5581 	/*
5582 	 * Till the ill is fully up ILL_CHANGING will be set and
5583 	 * the ill is not globally visible. So no need for a lock.
5584 	 */
5585 	dlia = (dl_info_ack_t *)mp->b_rptr;
5586 	ill->ill_mactype = dlia->dl_mac_type;
5587 
5588 	ipm = ip_m_lookup(dlia->dl_mac_type);
5589 	if (ipm == NULL) {
5590 		ipm = ip_m_lookup(DL_OTHER);
5591 		ASSERT(ipm != NULL);
5592 	}
5593 	ill->ill_media = ipm;
5594 
5595 	/*
5596 	 * When the new DLPI stuff is ready we'll pull lengths
5597 	 * from dlia.
5598 	 */
5599 	if (dlia->dl_version == DL_VERSION_2) {
5600 		brdcst_addr_length = dlia->dl_brdcst_addr_length;
5601 		brdcst_addr = mi_offset_param(mp, dlia->dl_brdcst_addr_offset,
5602 		    brdcst_addr_length);
5603 		if (brdcst_addr == NULL) {
5604 			brdcst_addr_length = 0;
5605 		}
5606 		sap_length = dlia->dl_sap_length;
5607 		phys_addr_length = dlia->dl_addr_length - ABS(sap_length);
5608 		ip1dbg(("ip: bcast_len %d, sap_len %d, phys_len %d\n",
5609 		    brdcst_addr_length, sap_length, phys_addr_length));
5610 	} else {
5611 		brdcst_addr_length = 6;
5612 		brdcst_addr = ip_six_byte_all_ones;
5613 		sap_length = -2;
5614 		phys_addr_length = brdcst_addr_length;
5615 	}
5616 
5617 	ill->ill_bcast_addr_length = brdcst_addr_length;
5618 	ill->ill_phys_addr_length = phys_addr_length;
5619 	ill->ill_sap_length = sap_length;
5620 	ill->ill_max_frag = dlia->dl_max_sdu;
5621 	ill->ill_max_mtu = ill->ill_max_frag;
5622 
5623 	ill->ill_type = ipm->ip_m_type;
5624 
5625 	if (!ill->ill_dlpi_style_set) {
5626 		if (dlia->dl_provider_style == DL_STYLE2)
5627 			ill->ill_needs_attach = 1;
5628 
5629 		/*
5630 		 * Allocate the first ipif on this ill. We don't delay it
5631 		 * further as ioctl handling assumes atleast one ipif to
5632 		 * be present.
5633 		 *
5634 		 * At this point we don't know whether the ill is v4 or v6.
5635 		 * We will know this whan the SIOCSLIFNAME happens and
5636 		 * the correct value for ill_isv6 will be assigned in
5637 		 * ipif_set_values(). We need to hold the ill lock and
5638 		 * clear the ILL_LL_SUBNET_PENDING flag and atomically do
5639 		 * the wakeup.
5640 		 */
5641 		(void) ipif_allocate(ill, 0, IRE_LOCAL,
5642 		    dlia->dl_provider_style == DL_STYLE2 ? B_FALSE : B_TRUE);
5643 		mutex_enter(&ill->ill_lock);
5644 		ASSERT(ill->ill_dlpi_style_set == 0);
5645 		ill->ill_dlpi_style_set = 1;
5646 		ill->ill_state_flags &= ~ILL_LL_SUBNET_PENDING;
5647 		cv_broadcast(&ill->ill_cv);
5648 		mutex_exit(&ill->ill_lock);
5649 		freemsg(mp);
5650 		return;
5651 	}
5652 	ASSERT(ill->ill_ipif != NULL);
5653 	/*
5654 	 * We know whether it is IPv4 or IPv6 now, as this is the
5655 	 * second DL_INFO_ACK we are recieving in response to the
5656 	 * DL_INFO_REQ sent in ipif_set_values.
5657 	 */
5658 	if (ill->ill_isv6)
5659 		ill->ill_sap = IP6_DL_SAP;
5660 	else
5661 		ill->ill_sap = IP_DL_SAP;
5662 	/*
5663 	 * Set ipif_mtu which is used to set the IRE's
5664 	 * ire_max_frag value. The driver could have sent
5665 	 * a different mtu from what it sent last time. No
5666 	 * need to call ipif_mtu_change because IREs have
5667 	 * not yet been created.
5668 	 */
5669 	ill->ill_ipif->ipif_mtu = ill->ill_max_mtu;
5670 	/*
5671 	 * Clear all the flags that were set based on ill_bcast_addr_length
5672 	 * and ill_phys_addr_length (in ipif_set_values) as these could have
5673 	 * changed now and we need to re-evaluate.
5674 	 */
5675 	ill->ill_flags &= ~(ILLF_MULTICAST | ILLF_NONUD | ILLF_NOARP);
5676 	ill->ill_ipif->ipif_flags &= ~(IPIF_BROADCAST | IPIF_POINTOPOINT);
5677 
5678 	/*
5679 	 * Free ill_resolver_mp and ill_bcast_mp as things could have
5680 	 * changed now.
5681 	 */
5682 	if (ill->ill_bcast_addr_length == 0) {
5683 		if (ill->ill_resolver_mp != NULL)
5684 			freemsg(ill->ill_resolver_mp);
5685 		if (ill->ill_bcast_mp != NULL)
5686 			freemsg(ill->ill_bcast_mp);
5687 		if (ill->ill_flags & ILLF_XRESOLV)
5688 			ill->ill_net_type = IRE_IF_RESOLVER;
5689 		else
5690 			ill->ill_net_type = IRE_IF_NORESOLVER;
5691 		ill->ill_resolver_mp = ill_dlur_gen(NULL,
5692 		    ill->ill_phys_addr_length,
5693 		    ill->ill_sap,
5694 		    ill->ill_sap_length);
5695 		ill->ill_bcast_mp = copymsg(ill->ill_resolver_mp);
5696 
5697 		if (ill->ill_isv6)
5698 			/*
5699 			 * Note: xresolv interfaces will eventually need NOARP
5700 			 * set here as well, but that will require those
5701 			 * external resolvers to have some knowledge of
5702 			 * that flag and act appropriately. Not to be changed
5703 			 * at present.
5704 			 */
5705 			ill->ill_flags |= ILLF_NONUD;
5706 		else
5707 			ill->ill_flags |= ILLF_NOARP;
5708 
5709 		if (ill->ill_phys_addr_length == 0) {
5710 			if (ill->ill_media->ip_m_mac_type == SUNW_DL_VNI) {
5711 				ill->ill_ipif->ipif_flags |= IPIF_NOXMIT;
5712 				ill->ill_phyint->phyint_flags |= PHYI_VIRTUAL;
5713 			} else {
5714 				/* pt-pt supports multicast. */
5715 				ill->ill_flags |= ILLF_MULTICAST;
5716 				ill->ill_ipif->ipif_flags |= IPIF_POINTOPOINT;
5717 			}
5718 		}
5719 	} else {
5720 		ill->ill_net_type = IRE_IF_RESOLVER;
5721 		if (ill->ill_bcast_mp != NULL)
5722 			freemsg(ill->ill_bcast_mp);
5723 		ill->ill_bcast_mp = ill_dlur_gen(brdcst_addr,
5724 		    ill->ill_bcast_addr_length, ill->ill_sap,
5725 		    ill->ill_sap_length);
5726 		/*
5727 		 * Later detect lack of DLPI driver multicast
5728 		 * capability by catching DL_ENABMULTI errors in
5729 		 * ip_rput_dlpi.
5730 		 */
5731 		ill->ill_flags |= ILLF_MULTICAST;
5732 		if (!ill->ill_isv6)
5733 			ill->ill_ipif->ipif_flags |= IPIF_BROADCAST;
5734 	}
5735 	/* By default an interface does not support any CoS marking */
5736 	ill->ill_flags &= ~ILLF_COS_ENABLED;
5737 
5738 	/*
5739 	 * If we get QoS information in DL_INFO_ACK, the device supports
5740 	 * some form of CoS marking, set ILLF_COS_ENABLED.
5741 	 */
5742 	sel1 = (dl_qos_cl_sel1_t *)mi_offset_param(mp, dlia->dl_qos_offset,
5743 	    dlia->dl_qos_length);
5744 	if ((sel1 != NULL) && (sel1->dl_qos_type == DL_QOS_CL_SEL1)) {
5745 		ill->ill_flags |= ILLF_COS_ENABLED;
5746 	}
5747 
5748 	/* Clear any previous error indication. */
5749 	ill->ill_error = 0;
5750 	freemsg(mp);
5751 }
5752 
5753 /*
5754  * Perform various checks to verify that an address would make sense as a
5755  * local, remote, or subnet interface address.
5756  */
5757 static boolean_t
5758 ip_addr_ok_v4(ipaddr_t addr, ipaddr_t subnet_mask)
5759 {
5760 	ipaddr_t	net_mask;
5761 
5762 	/*
5763 	 * Don't allow all zeroes, or all ones, but allow
5764 	 * all ones netmask.
5765 	 */
5766 	if ((net_mask = ip_net_mask(addr)) == 0)
5767 		return (B_FALSE);
5768 	/* A given netmask overrides the "guess" netmask */
5769 	if (subnet_mask != 0)
5770 		net_mask = subnet_mask;
5771 	if ((net_mask != ~(ipaddr_t)0) && ((addr == (addr & net_mask)) ||
5772 	    (addr == (addr | ~net_mask)))) {
5773 		return (B_FALSE);
5774 	}
5775 
5776 	/*
5777 	 * Even if the netmask is all ones, we do not allow address to be
5778 	 * 255.255.255.255
5779 	 */
5780 	if (addr == INADDR_BROADCAST)
5781 		return (B_FALSE);
5782 
5783 	if (CLASSD(addr))
5784 		return (B_FALSE);
5785 
5786 	return (B_TRUE);
5787 }
5788 
5789 #define	V6_IPIF_LINKLOCAL(p)	\
5790 	IN6_IS_ADDR_LINKLOCAL(&(p)->ipif_v6lcl_addr)
5791 
5792 /*
5793  * Compare two given ipifs and check if the second one is better than
5794  * the first one using the order of preference (not taking deprecated
5795  * into acount) specified in ipif_lookup_multicast().
5796  */
5797 static boolean_t
5798 ipif_comp_multi(ipif_t *old_ipif, ipif_t *new_ipif, boolean_t isv6)
5799 {
5800 	/* Check the least preferred first. */
5801 	if (IS_LOOPBACK(old_ipif->ipif_ill)) {
5802 		/* If both ipifs are the same, use the first one. */
5803 		if (IS_LOOPBACK(new_ipif->ipif_ill))
5804 			return (B_FALSE);
5805 		else
5806 			return (B_TRUE);
5807 	}
5808 
5809 	/* For IPv6, check for link local address. */
5810 	if (isv6 && V6_IPIF_LINKLOCAL(old_ipif)) {
5811 		if (IS_LOOPBACK(new_ipif->ipif_ill) ||
5812 		    V6_IPIF_LINKLOCAL(new_ipif)) {
5813 			/* The second one is equal or less preferred. */
5814 			return (B_FALSE);
5815 		} else {
5816 			return (B_TRUE);
5817 		}
5818 	}
5819 
5820 	/* Then check for point to point interface. */
5821 	if (old_ipif->ipif_flags & IPIF_POINTOPOINT) {
5822 		if (IS_LOOPBACK(new_ipif->ipif_ill) ||
5823 		    (isv6 && V6_IPIF_LINKLOCAL(new_ipif)) ||
5824 		    (new_ipif->ipif_flags & IPIF_POINTOPOINT)) {
5825 			return (B_FALSE);
5826 		} else {
5827 			return (B_TRUE);
5828 		}
5829 	}
5830 
5831 	/* old_ipif is a normal interface, so no need to use the new one. */
5832 	return (B_FALSE);
5833 }
5834 
5835 /*
5836  * Find any non-virtual, not condemned, and up multicast capable interface
5837  * given an IP instance and zoneid.  Order of preference is:
5838  *
5839  * 1. normal
5840  * 1.1 normal, but deprecated
5841  * 2. point to point
5842  * 2.1 point to point, but deprecated
5843  * 3. link local
5844  * 3.1 link local, but deprecated
5845  * 4. loopback.
5846  */
5847 ipif_t *
5848 ipif_lookup_multicast(ip_stack_t *ipst, zoneid_t zoneid, boolean_t isv6)
5849 {
5850 	ill_t			*ill;
5851 	ill_walk_context_t	ctx;
5852 	ipif_t			*ipif;
5853 	ipif_t			*saved_ipif = NULL;
5854 	ipif_t			*dep_ipif = NULL;
5855 
5856 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
5857 	if (isv6)
5858 		ill = ILL_START_WALK_V6(&ctx, ipst);
5859 	else
5860 		ill = ILL_START_WALK_V4(&ctx, ipst);
5861 
5862 	for (; ill != NULL; ill = ill_next(&ctx, ill)) {
5863 		mutex_enter(&ill->ill_lock);
5864 		if (IS_VNI(ill) || !ILL_CAN_LOOKUP(ill) ||
5865 		    !(ill->ill_flags & ILLF_MULTICAST)) {
5866 			mutex_exit(&ill->ill_lock);
5867 			continue;
5868 		}
5869 		for (ipif = ill->ill_ipif; ipif != NULL;
5870 		    ipif = ipif->ipif_next) {
5871 			if (zoneid != ipif->ipif_zoneid &&
5872 			    zoneid != ALL_ZONES &&
5873 			    ipif->ipif_zoneid != ALL_ZONES) {
5874 				continue;
5875 			}
5876 			if (!(ipif->ipif_flags & IPIF_UP) ||
5877 			    !IPIF_CAN_LOOKUP(ipif)) {
5878 				continue;
5879 			}
5880 
5881 			/*
5882 			 * Found one candidate.  If it is deprecated,
5883 			 * remember it in dep_ipif.  If it is not deprecated,
5884 			 * remember it in saved_ipif.
5885 			 */
5886 			if (ipif->ipif_flags & IPIF_DEPRECATED) {
5887 				if (dep_ipif == NULL) {
5888 					dep_ipif = ipif;
5889 				} else if (ipif_comp_multi(dep_ipif, ipif,
5890 				    isv6)) {
5891 					/*
5892 					 * If the previous dep_ipif does not
5893 					 * belong to the same ill, we've done
5894 					 * a ipif_refhold() on it.  So we need
5895 					 * to release it.
5896 					 */
5897 					if (dep_ipif->ipif_ill != ill)
5898 						ipif_refrele(dep_ipif);
5899 					dep_ipif = ipif;
5900 				}
5901 				continue;
5902 			}
5903 			if (saved_ipif == NULL) {
5904 				saved_ipif = ipif;
5905 			} else {
5906 				if (ipif_comp_multi(saved_ipif, ipif, isv6)) {
5907 					if (saved_ipif->ipif_ill != ill)
5908 						ipif_refrele(saved_ipif);
5909 					saved_ipif = ipif;
5910 				}
5911 			}
5912 		}
5913 		/*
5914 		 * Before going to the next ill, do a ipif_refhold() on the
5915 		 * saved ones.
5916 		 */
5917 		if (saved_ipif != NULL && saved_ipif->ipif_ill == ill)
5918 			ipif_refhold_locked(saved_ipif);
5919 		if (dep_ipif != NULL && dep_ipif->ipif_ill == ill)
5920 			ipif_refhold_locked(dep_ipif);
5921 		mutex_exit(&ill->ill_lock);
5922 	}
5923 	rw_exit(&ipst->ips_ill_g_lock);
5924 
5925 	/*
5926 	 * If we have only the saved_ipif, return it.  But if we have both
5927 	 * saved_ipif and dep_ipif, check to see which one is better.
5928 	 */
5929 	if (saved_ipif != NULL) {
5930 		if (dep_ipif != NULL) {
5931 			if (ipif_comp_multi(saved_ipif, dep_ipif, isv6)) {
5932 				ipif_refrele(saved_ipif);
5933 				return (dep_ipif);
5934 			} else {
5935 				ipif_refrele(dep_ipif);
5936 				return (saved_ipif);
5937 			}
5938 		}
5939 		return (saved_ipif);
5940 	} else {
5941 		return (dep_ipif);
5942 	}
5943 }
5944 
5945 /*
5946  * This function is called when an application does not specify an interface
5947  * to be used for multicast traffic (joining a group/sending data).  It
5948  * calls ire_lookup_multi() to look for an interface route for the
5949  * specified multicast group.  Doing this allows the administrator to add
5950  * prefix routes for multicast to indicate which interface to be used for
5951  * multicast traffic in the above scenario.  The route could be for all
5952  * multicast (224.0/4), for a single multicast group (a /32 route) or
5953  * anything in between.  If there is no such multicast route, we just find
5954  * any multicast capable interface and return it.  The returned ipif
5955  * is refhold'ed.
5956  */
5957 ipif_t *
5958 ipif_lookup_group(ipaddr_t group, zoneid_t zoneid, ip_stack_t *ipst)
5959 {
5960 	ire_t			*ire;
5961 	ipif_t			*ipif;
5962 
5963 	ire = ire_lookup_multi(group, zoneid, ipst);
5964 	if (ire != NULL) {
5965 		ipif = ire->ire_ipif;
5966 		ipif_refhold(ipif);
5967 		ire_refrele(ire);
5968 		return (ipif);
5969 	}
5970 
5971 	return (ipif_lookup_multicast(ipst, zoneid, B_FALSE));
5972 }
5973 
5974 /*
5975  * Look for an ipif with the specified interface address and destination.
5976  * The destination address is used only for matching point-to-point interfaces.
5977  */
5978 ipif_t *
5979 ipif_lookup_interface(ipaddr_t if_addr, ipaddr_t dst, queue_t *q, mblk_t *mp,
5980     ipsq_func_t func, int *error, ip_stack_t *ipst)
5981 {
5982 	ipif_t	*ipif;
5983 	ill_t	*ill;
5984 	ill_walk_context_t ctx;
5985 	ipsq_t	*ipsq;
5986 
5987 	if (error != NULL)
5988 		*error = 0;
5989 
5990 	/*
5991 	 * First match all the point-to-point interfaces
5992 	 * before looking at non-point-to-point interfaces.
5993 	 * This is done to avoid returning non-point-to-point
5994 	 * ipif instead of unnumbered point-to-point ipif.
5995 	 */
5996 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
5997 	ill = ILL_START_WALK_V4(&ctx, ipst);
5998 	for (; ill != NULL; ill = ill_next(&ctx, ill)) {
5999 		GRAB_CONN_LOCK(q);
6000 		mutex_enter(&ill->ill_lock);
6001 		for (ipif = ill->ill_ipif; ipif != NULL;
6002 		    ipif = ipif->ipif_next) {
6003 			/* Allow the ipif to be down */
6004 			if ((ipif->ipif_flags & IPIF_POINTOPOINT) &&
6005 			    (ipif->ipif_lcl_addr == if_addr) &&
6006 			    (ipif->ipif_pp_dst_addr == dst)) {
6007 				/*
6008 				 * The block comment at the start of ipif_down
6009 				 * explains the use of the macros used below
6010 				 */
6011 				if (IPIF_CAN_LOOKUP(ipif)) {
6012 					ipif_refhold_locked(ipif);
6013 					mutex_exit(&ill->ill_lock);
6014 					RELEASE_CONN_LOCK(q);
6015 					rw_exit(&ipst->ips_ill_g_lock);
6016 					return (ipif);
6017 				} else if (IPIF_CAN_WAIT(ipif, q)) {
6018 					ipsq = ill->ill_phyint->phyint_ipsq;
6019 					mutex_enter(&ipsq->ipsq_lock);
6020 					mutex_exit(&ill->ill_lock);
6021 					rw_exit(&ipst->ips_ill_g_lock);
6022 					ipsq_enq(ipsq, q, mp, func, NEW_OP,
6023 					    ill);
6024 					mutex_exit(&ipsq->ipsq_lock);
6025 					RELEASE_CONN_LOCK(q);
6026 					if (error != NULL)
6027 						*error = EINPROGRESS;
6028 					return (NULL);
6029 				}
6030 			}
6031 		}
6032 		mutex_exit(&ill->ill_lock);
6033 		RELEASE_CONN_LOCK(q);
6034 	}
6035 	rw_exit(&ipst->ips_ill_g_lock);
6036 
6037 	/* lookup the ipif based on interface address */
6038 	ipif = ipif_lookup_addr(if_addr, NULL, ALL_ZONES, q, mp, func, error,
6039 	    ipst);
6040 	ASSERT(ipif == NULL || !ipif->ipif_isv6);
6041 	return (ipif);
6042 }
6043 
6044 /*
6045  * Look for an ipif with the specified address. For point-point links
6046  * we look for matches on either the destination address and the local
6047  * address, but we ignore the check on the local address if IPIF_UNNUMBERED
6048  * is set.
6049  * Matches on a specific ill if match_ill is set.
6050  */
6051 ipif_t *
6052 ipif_lookup_addr(ipaddr_t addr, ill_t *match_ill, zoneid_t zoneid, queue_t *q,
6053     mblk_t *mp, ipsq_func_t func, int *error, ip_stack_t *ipst)
6054 {
6055 	ipif_t  *ipif;
6056 	ill_t   *ill;
6057 	boolean_t ptp = B_FALSE;
6058 	ipsq_t	*ipsq;
6059 	ill_walk_context_t	ctx;
6060 
6061 	if (error != NULL)
6062 		*error = 0;
6063 
6064 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
6065 	/*
6066 	 * Repeat twice, first based on local addresses and
6067 	 * next time for pointopoint.
6068 	 */
6069 repeat:
6070 	ill = ILL_START_WALK_V4(&ctx, ipst);
6071 	for (; ill != NULL; ill = ill_next(&ctx, ill)) {
6072 		if (match_ill != NULL && ill != match_ill) {
6073 			continue;
6074 		}
6075 		GRAB_CONN_LOCK(q);
6076 		mutex_enter(&ill->ill_lock);
6077 		for (ipif = ill->ill_ipif; ipif != NULL;
6078 		    ipif = ipif->ipif_next) {
6079 			if (zoneid != ALL_ZONES &&
6080 			    zoneid != ipif->ipif_zoneid &&
6081 			    ipif->ipif_zoneid != ALL_ZONES)
6082 				continue;
6083 			/* Allow the ipif to be down */
6084 			if ((!ptp && (ipif->ipif_lcl_addr == addr) &&
6085 			    ((ipif->ipif_flags & IPIF_UNNUMBERED) == 0)) ||
6086 			    (ptp && (ipif->ipif_flags & IPIF_POINTOPOINT) &&
6087 			    (ipif->ipif_pp_dst_addr == addr))) {
6088 				/*
6089 				 * The block comment at the start of ipif_down
6090 				 * explains the use of the macros used below
6091 				 */
6092 				if (IPIF_CAN_LOOKUP(ipif)) {
6093 					ipif_refhold_locked(ipif);
6094 					mutex_exit(&ill->ill_lock);
6095 					RELEASE_CONN_LOCK(q);
6096 					rw_exit(&ipst->ips_ill_g_lock);
6097 					return (ipif);
6098 				} else if (IPIF_CAN_WAIT(ipif, q)) {
6099 					ipsq = ill->ill_phyint->phyint_ipsq;
6100 					mutex_enter(&ipsq->ipsq_lock);
6101 					mutex_exit(&ill->ill_lock);
6102 					rw_exit(&ipst->ips_ill_g_lock);
6103 					ipsq_enq(ipsq, q, mp, func, NEW_OP,
6104 					    ill);
6105 					mutex_exit(&ipsq->ipsq_lock);
6106 					RELEASE_CONN_LOCK(q);
6107 					if (error != NULL)
6108 						*error = EINPROGRESS;
6109 					return (NULL);
6110 				}
6111 			}
6112 		}
6113 		mutex_exit(&ill->ill_lock);
6114 		RELEASE_CONN_LOCK(q);
6115 	}
6116 
6117 	/* If we already did the ptp case, then we are done */
6118 	if (ptp) {
6119 		rw_exit(&ipst->ips_ill_g_lock);
6120 		if (error != NULL)
6121 			*error = ENXIO;
6122 		return (NULL);
6123 	}
6124 	ptp = B_TRUE;
6125 	goto repeat;
6126 }
6127 
6128 /*
6129  * Look for an ipif with the specified address. For point-point links
6130  * we look for matches on either the destination address and the local
6131  * address, but we ignore the check on the local address if IPIF_UNNUMBERED
6132  * is set.
6133  * Matches on a specific ill if match_ill is set.
6134  * Return the zoneid for the ipif which matches. ALL_ZONES if no match.
6135  */
6136 zoneid_t
6137 ipif_lookup_addr_zoneid(ipaddr_t addr, ill_t *match_ill, ip_stack_t *ipst)
6138 {
6139 	zoneid_t zoneid;
6140 	ipif_t  *ipif;
6141 	ill_t   *ill;
6142 	boolean_t ptp = B_FALSE;
6143 	ill_walk_context_t	ctx;
6144 
6145 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
6146 	/*
6147 	 * Repeat twice, first based on local addresses and
6148 	 * next time for pointopoint.
6149 	 */
6150 repeat:
6151 	ill = ILL_START_WALK_V4(&ctx, ipst);
6152 	for (; ill != NULL; ill = ill_next(&ctx, ill)) {
6153 		if (match_ill != NULL && ill != match_ill) {
6154 			continue;
6155 		}
6156 		mutex_enter(&ill->ill_lock);
6157 		for (ipif = ill->ill_ipif; ipif != NULL;
6158 		    ipif = ipif->ipif_next) {
6159 			/* Allow the ipif to be down */
6160 			if ((!ptp && (ipif->ipif_lcl_addr == addr) &&
6161 			    ((ipif->ipif_flags & IPIF_UNNUMBERED) == 0)) ||
6162 			    (ptp && (ipif->ipif_flags & IPIF_POINTOPOINT) &&
6163 			    (ipif->ipif_pp_dst_addr == addr)) &&
6164 			    !(ipif->ipif_state_flags & IPIF_CONDEMNED)) {
6165 				zoneid = ipif->ipif_zoneid;
6166 				mutex_exit(&ill->ill_lock);
6167 				rw_exit(&ipst->ips_ill_g_lock);
6168 				/*
6169 				 * If ipif_zoneid was ALL_ZONES then we have
6170 				 * a trusted extensions shared IP address.
6171 				 * In that case GLOBAL_ZONEID works to send.
6172 				 */
6173 				if (zoneid == ALL_ZONES)
6174 					zoneid = GLOBAL_ZONEID;
6175 				return (zoneid);
6176 			}
6177 		}
6178 		mutex_exit(&ill->ill_lock);
6179 	}
6180 
6181 	/* If we already did the ptp case, then we are done */
6182 	if (ptp) {
6183 		rw_exit(&ipst->ips_ill_g_lock);
6184 		return (ALL_ZONES);
6185 	}
6186 	ptp = B_TRUE;
6187 	goto repeat;
6188 }
6189 
6190 /*
6191  * Look for an ipif that matches the specified remote address i.e. the
6192  * ipif that would receive the specified packet.
6193  * First look for directly connected interfaces and then do a recursive
6194  * IRE lookup and pick the first ipif corresponding to the source address in the
6195  * ire.
6196  * Returns: held ipif
6197  */
6198 ipif_t *
6199 ipif_lookup_remote(ill_t *ill, ipaddr_t addr, zoneid_t zoneid)
6200 {
6201 	ipif_t	*ipif;
6202 	ire_t	*ire;
6203 	ip_stack_t	*ipst = ill->ill_ipst;
6204 
6205 	ASSERT(!ill->ill_isv6);
6206 
6207 	/*
6208 	 * Someone could be changing this ipif currently or change it
6209 	 * after we return this. Thus  a few packets could use the old
6210 	 * old values. However structure updates/creates (ire, ilg, ilm etc)
6211 	 * will atomically be updated or cleaned up with the new value
6212 	 * Thus we don't need a lock to check the flags or other attrs below.
6213 	 */
6214 	mutex_enter(&ill->ill_lock);
6215 	for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) {
6216 		if (!IPIF_CAN_LOOKUP(ipif))
6217 			continue;
6218 		if (zoneid != ALL_ZONES && zoneid != ipif->ipif_zoneid &&
6219 		    ipif->ipif_zoneid != ALL_ZONES)
6220 			continue;
6221 		/* Allow the ipif to be down */
6222 		if (ipif->ipif_flags & IPIF_POINTOPOINT) {
6223 			if ((ipif->ipif_pp_dst_addr == addr) ||
6224 			    (!(ipif->ipif_flags & IPIF_UNNUMBERED) &&
6225 			    ipif->ipif_lcl_addr == addr)) {
6226 				ipif_refhold_locked(ipif);
6227 				mutex_exit(&ill->ill_lock);
6228 				return (ipif);
6229 			}
6230 		} else if (ipif->ipif_subnet == (addr & ipif->ipif_net_mask)) {
6231 			ipif_refhold_locked(ipif);
6232 			mutex_exit(&ill->ill_lock);
6233 			return (ipif);
6234 		}
6235 	}
6236 	mutex_exit(&ill->ill_lock);
6237 	ire = ire_route_lookup(addr, 0, 0, 0, NULL, NULL, zoneid,
6238 	    NULL, MATCH_IRE_RECURSIVE, ipst);
6239 	if (ire != NULL) {
6240 		/*
6241 		 * The callers of this function wants to know the
6242 		 * interface on which they have to send the replies
6243 		 * back. For IRE_CACHES that have ire_stq and ire_ipif
6244 		 * derived from different ills, we really don't care
6245 		 * what we return here.
6246 		 */
6247 		ipif = ire->ire_ipif;
6248 		if (ipif != NULL) {
6249 			ipif_refhold(ipif);
6250 			ire_refrele(ire);
6251 			return (ipif);
6252 		}
6253 		ire_refrele(ire);
6254 	}
6255 	/* Pick the first interface */
6256 	ipif = ipif_get_next_ipif(NULL, ill);
6257 	return (ipif);
6258 }
6259 
6260 /*
6261  * This func does not prevent refcnt from increasing. But if
6262  * the caller has taken steps to that effect, then this func
6263  * can be used to determine whether the ill has become quiescent
6264  */
6265 boolean_t
6266 ill_is_quiescent(ill_t *ill)
6267 {
6268 	ipif_t	*ipif;
6269 
6270 	ASSERT(MUTEX_HELD(&ill->ill_lock));
6271 
6272 	for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) {
6273 		if (ipif->ipif_refcnt != 0 || ipif->ipif_ire_cnt != 0) {
6274 			return (B_FALSE);
6275 		}
6276 	}
6277 	if (ill->ill_ire_cnt != 0 || ill->ill_refcnt != 0 ||
6278 	    ill->ill_nce_cnt != 0) {
6279 		return (B_FALSE);
6280 	}
6281 	return (B_TRUE);
6282 }
6283 
6284 /*
6285  * This func does not prevent refcnt from increasing. But if
6286  * the caller has taken steps to that effect, then this func
6287  * can be used to determine whether the ipif has become quiescent
6288  */
6289 static boolean_t
6290 ipif_is_quiescent(ipif_t *ipif)
6291 {
6292 	ill_t *ill;
6293 
6294 	ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock));
6295 
6296 	if (ipif->ipif_refcnt != 0 || ipif->ipif_ire_cnt != 0) {
6297 		return (B_FALSE);
6298 	}
6299 
6300 	ill = ipif->ipif_ill;
6301 	if (ill->ill_ipif_up_count != 0 || ill->ill_ipif_dup_count != 0 ||
6302 	    ill->ill_logical_down) {
6303 		return (B_TRUE);
6304 	}
6305 
6306 	/* This is the last ipif going down or being deleted on this ill */
6307 	if (ill->ill_ire_cnt != 0 || ill->ill_refcnt != 0) {
6308 		return (B_FALSE);
6309 	}
6310 
6311 	return (B_TRUE);
6312 }
6313 
6314 /*
6315  * This func does not prevent refcnt from increasing. But if
6316  * the caller has taken steps to that effect, then this func
6317  * can be used to determine whether the ipifs marked with IPIF_MOVING
6318  * have become quiescent and can be moved in a failover/failback.
6319  */
6320 static ipif_t *
6321 ill_quiescent_to_move(ill_t *ill)
6322 {
6323 	ipif_t  *ipif;
6324 
6325 	ASSERT(MUTEX_HELD(&ill->ill_lock));
6326 
6327 	for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) {
6328 		if (ipif->ipif_state_flags & IPIF_MOVING) {
6329 			if (ipif->ipif_refcnt != 0 || ipif->ipif_ire_cnt != 0) {
6330 				return (ipif);
6331 			}
6332 		}
6333 	}
6334 	return (NULL);
6335 }
6336 
6337 /*
6338  * The ipif/ill/ire has been refreled. Do the tail processing.
6339  * Determine if the ipif or ill in question has become quiescent and if so
6340  * wakeup close and/or restart any queued pending ioctl that is waiting
6341  * for the ipif_down (or ill_down)
6342  */
6343 void
6344 ipif_ill_refrele_tail(ill_t *ill)
6345 {
6346 	mblk_t	*mp;
6347 	conn_t	*connp;
6348 	ipsq_t	*ipsq;
6349 	ipif_t	*ipif;
6350 	dl_notify_ind_t *dlindp;
6351 
6352 	ASSERT(MUTEX_HELD(&ill->ill_lock));
6353 
6354 	if ((ill->ill_state_flags & ILL_CONDEMNED) &&
6355 	    ill_is_quiescent(ill)) {
6356 		/* ill_close may be waiting */
6357 		cv_broadcast(&ill->ill_cv);
6358 	}
6359 
6360 	/* ipsq can't change because ill_lock  is held */
6361 	ipsq = ill->ill_phyint->phyint_ipsq;
6362 	if (ipsq->ipsq_waitfor == 0) {
6363 		/* Not waiting for anything, just return. */
6364 		mutex_exit(&ill->ill_lock);
6365 		return;
6366 	}
6367 	ASSERT(ipsq->ipsq_pending_mp != NULL &&
6368 	    ipsq->ipsq_pending_ipif != NULL);
6369 	/*
6370 	 * ipif->ipif_refcnt must go down to zero for restarting REMOVEIF.
6371 	 * Last ipif going down needs to down the ill, so ill_ire_cnt must
6372 	 * be zero for restarting an ioctl that ends up downing the ill.
6373 	 */
6374 	ipif = ipsq->ipsq_pending_ipif;
6375 	if (ipif->ipif_ill != ill) {
6376 		/* The ioctl is pending on some other ill. */
6377 		mutex_exit(&ill->ill_lock);
6378 		return;
6379 	}
6380 
6381 	switch (ipsq->ipsq_waitfor) {
6382 	case IPIF_DOWN:
6383 	case IPIF_FREE:
6384 		if (!ipif_is_quiescent(ipif)) {
6385 			mutex_exit(&ill->ill_lock);
6386 			return;
6387 		}
6388 		break;
6389 
6390 	case ILL_DOWN:
6391 	case ILL_FREE:
6392 		/*
6393 		 * case ILL_FREE arises only for loopback. otherwise ill_delete
6394 		 * waits synchronously in ip_close, and no message is queued in
6395 		 * ipsq_pending_mp at all in this case
6396 		 */
6397 		if (!ill_is_quiescent(ill)) {
6398 			mutex_exit(&ill->ill_lock);
6399 			return;
6400 		}
6401 
6402 		break;
6403 
6404 	case ILL_MOVE_OK:
6405 		if (ill_quiescent_to_move(ill) != NULL) {
6406 			mutex_exit(&ill->ill_lock);
6407 			return;
6408 		}
6409 
6410 		break;
6411 	default:
6412 		cmn_err(CE_PANIC, "ipsq: %p unknown ipsq_waitfor %d\n",
6413 		    (void *)ipsq, ipsq->ipsq_waitfor);
6414 	}
6415 
6416 	/*
6417 	 * Incr refcnt for the qwriter_ip call below which
6418 	 * does a refrele
6419 	 */
6420 	ill_refhold_locked(ill);
6421 	mutex_exit(&ill->ill_lock);
6422 
6423 	mp = ipsq_pending_mp_get(ipsq, &connp);
6424 	ASSERT(mp != NULL);
6425 
6426 	/*
6427 	 * NOTE: all of the qwriter_ip() calls below use CUR_OP since
6428 	 * we can only get here when the current operation decides it
6429 	 * it needs to quiesce via ipsq_pending_mp_add().
6430 	 */
6431 	switch (mp->b_datap->db_type) {
6432 	case M_PCPROTO:
6433 	case M_PROTO:
6434 		/*
6435 		 * For now, only DL_NOTIFY_IND messages can use this facility.
6436 		 */
6437 		dlindp = (dl_notify_ind_t *)mp->b_rptr;
6438 		ASSERT(dlindp->dl_primitive == DL_NOTIFY_IND);
6439 
6440 		switch (dlindp->dl_notification) {
6441 		case DL_NOTE_PHYS_ADDR:
6442 			qwriter_ip(ill, ill->ill_rq, mp,
6443 			    ill_set_phys_addr_tail, CUR_OP, B_TRUE);
6444 			return;
6445 		default:
6446 			ASSERT(0);
6447 		}
6448 		break;
6449 
6450 	case M_ERROR:
6451 	case M_HANGUP:
6452 		qwriter_ip(ill, ill->ill_rq, mp, ipif_all_down_tail, CUR_OP,
6453 		    B_TRUE);
6454 		return;
6455 
6456 	case M_IOCTL:
6457 	case M_IOCDATA:
6458 		qwriter_ip(ill, (connp != NULL ? CONNP_TO_WQ(connp) :
6459 		    ill->ill_wq), mp, ip_reprocess_ioctl, CUR_OP, B_TRUE);
6460 		return;
6461 
6462 	default:
6463 		cmn_err(CE_PANIC, "ipif_ill_refrele_tail mp %p "
6464 		    "db_type %d\n", (void *)mp, mp->b_datap->db_type);
6465 	}
6466 }
6467 
6468 #ifdef DEBUG
6469 /* Reuse trace buffer from beginning (if reached the end) and record trace */
6470 static void
6471 th_trace_rrecord(th_trace_t *th_trace)
6472 {
6473 	tr_buf_t *tr_buf;
6474 	uint_t lastref;
6475 
6476 	lastref = th_trace->th_trace_lastref;
6477 	lastref++;
6478 	if (lastref == TR_BUF_MAX)
6479 		lastref = 0;
6480 	th_trace->th_trace_lastref = lastref;
6481 	tr_buf = &th_trace->th_trbuf[lastref];
6482 	tr_buf->tr_time = lbolt;
6483 	tr_buf->tr_depth = getpcstack(tr_buf->tr_stack, TR_STACK_DEPTH);
6484 }
6485 
6486 static void
6487 th_trace_free(void *value)
6488 {
6489 	th_trace_t *th_trace = value;
6490 
6491 	ASSERT(th_trace->th_refcnt == 0);
6492 	kmem_free(th_trace, sizeof (*th_trace));
6493 }
6494 
6495 /*
6496  * Find or create the per-thread hash table used to track object references.
6497  * The ipst argument is NULL if we shouldn't allocate.
6498  *
6499  * Accesses per-thread data, so there's no need to lock here.
6500  */
6501 static mod_hash_t *
6502 th_trace_gethash(ip_stack_t *ipst)
6503 {
6504 	th_hash_t *thh;
6505 
6506 	if ((thh = tsd_get(ip_thread_data)) == NULL && ipst != NULL) {
6507 		mod_hash_t *mh;
6508 		char name[256];
6509 		size_t objsize, rshift;
6510 		int retv;
6511 
6512 		if ((thh = kmem_alloc(sizeof (*thh), KM_NOSLEEP)) == NULL)
6513 			return (NULL);
6514 		(void) snprintf(name, sizeof (name), "th_trace_%p", curthread);
6515 
6516 		/*
6517 		 * We use mod_hash_create_extended here rather than the more
6518 		 * obvious mod_hash_create_ptrhash because the latter has a
6519 		 * hard-coded KM_SLEEP, and we'd prefer to fail rather than
6520 		 * block.
6521 		 */
6522 		objsize = MAX(MAX(sizeof (ill_t), sizeof (ipif_t)),
6523 		    MAX(sizeof (ire_t), sizeof (nce_t)));
6524 		rshift = highbit(objsize);
6525 		mh = mod_hash_create_extended(name, 64, mod_hash_null_keydtor,
6526 		    th_trace_free, mod_hash_byptr, (void *)rshift,
6527 		    mod_hash_ptrkey_cmp, KM_NOSLEEP);
6528 		if (mh == NULL) {
6529 			kmem_free(thh, sizeof (*thh));
6530 			return (NULL);
6531 		}
6532 		thh->thh_hash = mh;
6533 		thh->thh_ipst = ipst;
6534 		/*
6535 		 * We trace ills, ipifs, ires, and nces.  All of these are
6536 		 * per-IP-stack, so the lock on the thread list is as well.
6537 		 */
6538 		rw_enter(&ip_thread_rwlock, RW_WRITER);
6539 		list_insert_tail(&ip_thread_list, thh);
6540 		rw_exit(&ip_thread_rwlock);
6541 		retv = tsd_set(ip_thread_data, thh);
6542 		ASSERT(retv == 0);
6543 	}
6544 	return (thh != NULL ? thh->thh_hash : NULL);
6545 }
6546 
6547 boolean_t
6548 th_trace_ref(const void *obj, ip_stack_t *ipst)
6549 {
6550 	th_trace_t *th_trace;
6551 	mod_hash_t *mh;
6552 	mod_hash_val_t val;
6553 
6554 	if ((mh = th_trace_gethash(ipst)) == NULL)
6555 		return (B_FALSE);
6556 
6557 	/*
6558 	 * Attempt to locate the trace buffer for this obj and thread.
6559 	 * If it does not exist, then allocate a new trace buffer and
6560 	 * insert into the hash.
6561 	 */
6562 	if (mod_hash_find(mh, (mod_hash_key_t)obj, &val) == MH_ERR_NOTFOUND) {
6563 		th_trace = kmem_zalloc(sizeof (th_trace_t), KM_NOSLEEP);
6564 		if (th_trace == NULL)
6565 			return (B_FALSE);
6566 
6567 		th_trace->th_id = curthread;
6568 		if (mod_hash_insert(mh, (mod_hash_key_t)obj,
6569 		    (mod_hash_val_t)th_trace) != 0) {
6570 			kmem_free(th_trace, sizeof (th_trace_t));
6571 			return (B_FALSE);
6572 		}
6573 	} else {
6574 		th_trace = (th_trace_t *)val;
6575 	}
6576 
6577 	ASSERT(th_trace->th_refcnt >= 0 &&
6578 	    th_trace->th_refcnt < TR_BUF_MAX - 1);
6579 
6580 	th_trace->th_refcnt++;
6581 	th_trace_rrecord(th_trace);
6582 	return (B_TRUE);
6583 }
6584 
6585 /*
6586  * For the purpose of tracing a reference release, we assume that global
6587  * tracing is always on and that the same thread initiated the reference hold
6588  * is releasing.
6589  */
6590 void
6591 th_trace_unref(const void *obj)
6592 {
6593 	int retv;
6594 	mod_hash_t *mh;
6595 	th_trace_t *th_trace;
6596 	mod_hash_val_t val;
6597 
6598 	mh = th_trace_gethash(NULL);
6599 	retv = mod_hash_find(mh, (mod_hash_key_t)obj, &val);
6600 	ASSERT(retv == 0);
6601 	th_trace = (th_trace_t *)val;
6602 
6603 	ASSERT(th_trace->th_refcnt > 0);
6604 	th_trace->th_refcnt--;
6605 	th_trace_rrecord(th_trace);
6606 }
6607 
6608 /*
6609  * If tracing has been disabled, then we assume that the reference counts are
6610  * now useless, and we clear them out before destroying the entries.
6611  */
6612 void
6613 th_trace_cleanup(const void *obj, boolean_t trace_disable)
6614 {
6615 	th_hash_t	*thh;
6616 	mod_hash_t	*mh;
6617 	mod_hash_val_t	val;
6618 	th_trace_t	*th_trace;
6619 	int		retv;
6620 
6621 	rw_enter(&ip_thread_rwlock, RW_READER);
6622 	for (thh = list_head(&ip_thread_list); thh != NULL;
6623 	    thh = list_next(&ip_thread_list, thh)) {
6624 		if (mod_hash_find(mh = thh->thh_hash, (mod_hash_key_t)obj,
6625 		    &val) == 0) {
6626 			th_trace = (th_trace_t *)val;
6627 			if (trace_disable)
6628 				th_trace->th_refcnt = 0;
6629 			retv = mod_hash_destroy(mh, (mod_hash_key_t)obj);
6630 			ASSERT(retv == 0);
6631 		}
6632 	}
6633 	rw_exit(&ip_thread_rwlock);
6634 }
6635 
6636 void
6637 ipif_trace_ref(ipif_t *ipif)
6638 {
6639 	ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock));
6640 
6641 	if (ipif->ipif_trace_disable)
6642 		return;
6643 
6644 	if (!th_trace_ref(ipif, ipif->ipif_ill->ill_ipst)) {
6645 		ipif->ipif_trace_disable = B_TRUE;
6646 		ipif_trace_cleanup(ipif);
6647 	}
6648 }
6649 
6650 void
6651 ipif_untrace_ref(ipif_t *ipif)
6652 {
6653 	ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock));
6654 
6655 	if (!ipif->ipif_trace_disable)
6656 		th_trace_unref(ipif);
6657 }
6658 
6659 void
6660 ill_trace_ref(ill_t *ill)
6661 {
6662 	ASSERT(MUTEX_HELD(&ill->ill_lock));
6663 
6664 	if (ill->ill_trace_disable)
6665 		return;
6666 
6667 	if (!th_trace_ref(ill, ill->ill_ipst)) {
6668 		ill->ill_trace_disable = B_TRUE;
6669 		ill_trace_cleanup(ill);
6670 	}
6671 }
6672 
6673 void
6674 ill_untrace_ref(ill_t *ill)
6675 {
6676 	ASSERT(MUTEX_HELD(&ill->ill_lock));
6677 
6678 	if (!ill->ill_trace_disable)
6679 		th_trace_unref(ill);
6680 }
6681 
6682 /*
6683  * Called when ipif is unplumbed or when memory alloc fails.  Note that on
6684  * failure, ipif_trace_disable is set.
6685  */
6686 static void
6687 ipif_trace_cleanup(const ipif_t *ipif)
6688 {
6689 	th_trace_cleanup(ipif, ipif->ipif_trace_disable);
6690 }
6691 
6692 /*
6693  * Called when ill is unplumbed or when memory alloc fails.  Note that on
6694  * failure, ill_trace_disable is set.
6695  */
6696 static void
6697 ill_trace_cleanup(const ill_t *ill)
6698 {
6699 	th_trace_cleanup(ill, ill->ill_trace_disable);
6700 }
6701 #endif /* DEBUG */
6702 
6703 void
6704 ipif_refhold_locked(ipif_t *ipif)
6705 {
6706 	ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock));
6707 	ipif->ipif_refcnt++;
6708 	IPIF_TRACE_REF(ipif);
6709 }
6710 
6711 void
6712 ipif_refhold(ipif_t *ipif)
6713 {
6714 	ill_t	*ill;
6715 
6716 	ill = ipif->ipif_ill;
6717 	mutex_enter(&ill->ill_lock);
6718 	ipif->ipif_refcnt++;
6719 	IPIF_TRACE_REF(ipif);
6720 	mutex_exit(&ill->ill_lock);
6721 }
6722 
6723 /*
6724  * Must not be called while holding any locks. Otherwise if this is
6725  * the last reference to be released there is a chance of recursive mutex
6726  * panic due to ipif_refrele -> ipif_ill_refrele_tail -> qwriter_ip trying
6727  * to restart an ioctl.
6728  */
6729 void
6730 ipif_refrele(ipif_t *ipif)
6731 {
6732 	ill_t	*ill;
6733 
6734 	ill = ipif->ipif_ill;
6735 
6736 	mutex_enter(&ill->ill_lock);
6737 	ASSERT(ipif->ipif_refcnt != 0);
6738 	ipif->ipif_refcnt--;
6739 	IPIF_UNTRACE_REF(ipif);
6740 	if (ipif->ipif_refcnt != 0) {
6741 		mutex_exit(&ill->ill_lock);
6742 		return;
6743 	}
6744 
6745 	/* Drops the ill_lock */
6746 	ipif_ill_refrele_tail(ill);
6747 }
6748 
6749 ipif_t *
6750 ipif_get_next_ipif(ipif_t *curr, ill_t *ill)
6751 {
6752 	ipif_t	*ipif;
6753 
6754 	mutex_enter(&ill->ill_lock);
6755 	for (ipif = (curr == NULL ? ill->ill_ipif : curr->ipif_next);
6756 	    ipif != NULL; ipif = ipif->ipif_next) {
6757 		if (!IPIF_CAN_LOOKUP(ipif))
6758 			continue;
6759 		ipif_refhold_locked(ipif);
6760 		mutex_exit(&ill->ill_lock);
6761 		return (ipif);
6762 	}
6763 	mutex_exit(&ill->ill_lock);
6764 	return (NULL);
6765 }
6766 
6767 /*
6768  * TODO: make this table extendible at run time
6769  * Return a pointer to the mac type info for 'mac_type'
6770  */
6771 static ip_m_t *
6772 ip_m_lookup(t_uscalar_t mac_type)
6773 {
6774 	ip_m_t	*ipm;
6775 
6776 	for (ipm = ip_m_tbl; ipm < A_END(ip_m_tbl); ipm++)
6777 		if (ipm->ip_m_mac_type == mac_type)
6778 			return (ipm);
6779 	return (NULL);
6780 }
6781 
6782 /*
6783  * ip_rt_add is called to add an IPv4 route to the forwarding table.
6784  * ipif_arg is passed in to associate it with the correct interface.
6785  * We may need to restart this operation if the ipif cannot be looked up
6786  * due to an exclusive operation that is currently in progress. The restart
6787  * entry point is specified by 'func'
6788  */
6789 int
6790 ip_rt_add(ipaddr_t dst_addr, ipaddr_t mask, ipaddr_t gw_addr,
6791     ipaddr_t src_addr, int flags, ipif_t *ipif_arg, ire_t **ire_arg,
6792     boolean_t ioctl_msg, queue_t *q, mblk_t *mp, ipsq_func_t func,
6793     struct rtsa_s *sp, ip_stack_t *ipst)
6794 {
6795 	ire_t	*ire;
6796 	ire_t	*gw_ire = NULL;
6797 	ipif_t	*ipif = NULL;
6798 	boolean_t ipif_refheld = B_FALSE;
6799 	uint_t	type;
6800 	int	match_flags = MATCH_IRE_TYPE;
6801 	int	error;
6802 	tsol_gc_t *gc = NULL;
6803 	tsol_gcgrp_t *gcgrp = NULL;
6804 	boolean_t gcgrp_xtraref = B_FALSE;
6805 
6806 	ip1dbg(("ip_rt_add:"));
6807 
6808 	if (ire_arg != NULL)
6809 		*ire_arg = NULL;
6810 
6811 	/*
6812 	 * If this is the case of RTF_HOST being set, then we set the netmask
6813 	 * to all ones (regardless if one was supplied).
6814 	 */
6815 	if (flags & RTF_HOST)
6816 		mask = IP_HOST_MASK;
6817 
6818 	/*
6819 	 * Prevent routes with a zero gateway from being created (since
6820 	 * interfaces can currently be plumbed and brought up no assigned
6821 	 * address).
6822 	 */
6823 	if (gw_addr == 0)
6824 		return (ENETUNREACH);
6825 	/*
6826 	 * Get the ipif, if any, corresponding to the gw_addr
6827 	 */
6828 	ipif = ipif_lookup_interface(gw_addr, dst_addr, q, mp, func, &error,
6829 	    ipst);
6830 	if (ipif != NULL) {
6831 		if (IS_VNI(ipif->ipif_ill)) {
6832 			ipif_refrele(ipif);
6833 			return (EINVAL);
6834 		}
6835 		ipif_refheld = B_TRUE;
6836 	} else if (error == EINPROGRESS) {
6837 		ip1dbg(("ip_rt_add: null and EINPROGRESS"));
6838 		return (EINPROGRESS);
6839 	} else {
6840 		error = 0;
6841 	}
6842 
6843 	if (ipif != NULL) {
6844 		ip1dbg(("ip_rt_add: ipif_lookup_interface done ipif nonnull"));
6845 		ASSERT(!MUTEX_HELD(&ipif->ipif_ill->ill_lock));
6846 	} else {
6847 		ip1dbg(("ip_rt_add: ipif_lookup_interface done ipif is null"));
6848 	}
6849 
6850 	/*
6851 	 * GateD will attempt to create routes with a loopback interface
6852 	 * address as the gateway and with RTF_GATEWAY set.  We allow
6853 	 * these routes to be added, but create them as interface routes
6854 	 * since the gateway is an interface address.
6855 	 */
6856 	if ((ipif != NULL) && (ipif->ipif_ire_type == IRE_LOOPBACK)) {
6857 		flags &= ~RTF_GATEWAY;
6858 		if (gw_addr == INADDR_LOOPBACK && dst_addr == INADDR_LOOPBACK &&
6859 		    mask == IP_HOST_MASK) {
6860 			ire = ire_ctable_lookup(dst_addr, 0, IRE_LOOPBACK, ipif,
6861 			    ALL_ZONES, NULL, match_flags, ipst);
6862 			if (ire != NULL) {
6863 				ire_refrele(ire);
6864 				if (ipif_refheld)
6865 					ipif_refrele(ipif);
6866 				return (EEXIST);
6867 			}
6868 			ip1dbg(("ipif_up_done: 0x%p creating IRE 0x%x"
6869 			    "for 0x%x\n", (void *)ipif,
6870 			    ipif->ipif_ire_type,
6871 			    ntohl(ipif->ipif_lcl_addr)));
6872 			ire = ire_create(
6873 			    (uchar_t *)&dst_addr,	/* dest address */
6874 			    (uchar_t *)&mask,		/* mask */
6875 			    (uchar_t *)&ipif->ipif_src_addr,
6876 			    NULL,			/* no gateway */
6877 			    &ipif->ipif_mtu,
6878 			    NULL,
6879 			    ipif->ipif_rq,		/* recv-from queue */
6880 			    NULL,			/* no send-to queue */
6881 			    ipif->ipif_ire_type,	/* LOOPBACK */
6882 			    ipif,
6883 			    0,
6884 			    0,
6885 			    0,
6886 			    (ipif->ipif_flags & IPIF_PRIVATE) ?
6887 			    RTF_PRIVATE : 0,
6888 			    &ire_uinfo_null,
6889 			    NULL,
6890 			    NULL,
6891 			    ipst);
6892 
6893 			if (ire == NULL) {
6894 				if (ipif_refheld)
6895 					ipif_refrele(ipif);
6896 				return (ENOMEM);
6897 			}
6898 			error = ire_add(&ire, q, mp, func, B_FALSE);
6899 			if (error == 0)
6900 				goto save_ire;
6901 			if (ipif_refheld)
6902 				ipif_refrele(ipif);
6903 			return (error);
6904 
6905 		}
6906 	}
6907 
6908 	/*
6909 	 * Traditionally, interface routes are ones where RTF_GATEWAY isn't set
6910 	 * and the gateway address provided is one of the system's interface
6911 	 * addresses.  By using the routing socket interface and supplying an
6912 	 * RTA_IFP sockaddr with an interface index, an alternate method of
6913 	 * specifying an interface route to be created is available which uses
6914 	 * the interface index that specifies the outgoing interface rather than
6915 	 * the address of an outgoing interface (which may not be able to
6916 	 * uniquely identify an interface).  When coupled with the RTF_GATEWAY
6917 	 * flag, routes can be specified which not only specify the next-hop to
6918 	 * be used when routing to a certain prefix, but also which outgoing
6919 	 * interface should be used.
6920 	 *
6921 	 * Previously, interfaces would have unique addresses assigned to them
6922 	 * and so the address assigned to a particular interface could be used
6923 	 * to identify a particular interface.  One exception to this was the
6924 	 * case of an unnumbered interface (where IPIF_UNNUMBERED was set).
6925 	 *
6926 	 * With the advent of IPv6 and its link-local addresses, this
6927 	 * restriction was relaxed and interfaces could share addresses between
6928 	 * themselves.  In fact, typically all of the link-local interfaces on
6929 	 * an IPv6 node or router will have the same link-local address.  In
6930 	 * order to differentiate between these interfaces, the use of an
6931 	 * interface index is necessary and this index can be carried inside a
6932 	 * RTA_IFP sockaddr (which is actually a sockaddr_dl).  One restriction
6933 	 * of using the interface index, however, is that all of the ipif's that
6934 	 * are part of an ill have the same index and so the RTA_IFP sockaddr
6935 	 * cannot be used to differentiate between ipif's (or logical
6936 	 * interfaces) that belong to the same ill (physical interface).
6937 	 *
6938 	 * For example, in the following case involving IPv4 interfaces and
6939 	 * logical interfaces
6940 	 *
6941 	 *	192.0.2.32	255.255.255.224	192.0.2.33	U	if0
6942 	 *	192.0.2.32	255.255.255.224	192.0.2.34	U	if0:1
6943 	 *	192.0.2.32	255.255.255.224	192.0.2.35	U	if0:2
6944 	 *
6945 	 * the ipif's corresponding to each of these interface routes can be
6946 	 * uniquely identified by the "gateway" (actually interface address).
6947 	 *
6948 	 * In this case involving multiple IPv6 default routes to a particular
6949 	 * link-local gateway, the use of RTA_IFP is necessary to specify which
6950 	 * default route is of interest:
6951 	 *
6952 	 *	default		fe80::123:4567:89ab:cdef	U	if0
6953 	 *	default		fe80::123:4567:89ab:cdef	U	if1
6954 	 */
6955 
6956 	/* RTF_GATEWAY not set */
6957 	if (!(flags & RTF_GATEWAY)) {
6958 		queue_t	*stq;
6959 
6960 		if (sp != NULL) {
6961 			ip2dbg(("ip_rt_add: gateway security attributes "
6962 			    "cannot be set with interface route\n"));
6963 			if (ipif_refheld)
6964 				ipif_refrele(ipif);
6965 			return (EINVAL);
6966 		}
6967 
6968 		/*
6969 		 * As the interface index specified with the RTA_IFP sockaddr is
6970 		 * the same for all ipif's off of an ill, the matching logic
6971 		 * below uses MATCH_IRE_ILL if such an index was specified.
6972 		 * This means that routes sharing the same prefix when added
6973 		 * using a RTA_IFP sockaddr must have distinct interface
6974 		 * indices (namely, they must be on distinct ill's).
6975 		 *
6976 		 * On the other hand, since the gateway address will usually be
6977 		 * different for each ipif on the system, the matching logic
6978 		 * uses MATCH_IRE_IPIF in the case of a traditional interface
6979 		 * route.  This means that interface routes for the same prefix
6980 		 * can be created if they belong to distinct ipif's and if a
6981 		 * RTA_IFP sockaddr is not present.
6982 		 */
6983 		if (ipif_arg != NULL) {
6984 			if (ipif_refheld)  {
6985 				ipif_refrele(ipif);
6986 				ipif_refheld = B_FALSE;
6987 			}
6988 			ipif = ipif_arg;
6989 			match_flags |= MATCH_IRE_ILL;
6990 		} else {
6991 			/*
6992 			 * Check the ipif corresponding to the gw_addr
6993 			 */
6994 			if (ipif == NULL)
6995 				return (ENETUNREACH);
6996 			match_flags |= MATCH_IRE_IPIF;
6997 		}
6998 		ASSERT(ipif != NULL);
6999 
7000 		/*
7001 		 * We check for an existing entry at this point.
7002 		 *
7003 		 * Since a netmask isn't passed in via the ioctl interface
7004 		 * (SIOCADDRT), we don't check for a matching netmask in that
7005 		 * case.
7006 		 */
7007 		if (!ioctl_msg)
7008 			match_flags |= MATCH_IRE_MASK;
7009 		ire = ire_ftable_lookup(dst_addr, mask, 0, IRE_INTERFACE, ipif,
7010 		    NULL, ALL_ZONES, 0, NULL, match_flags, ipst);
7011 		if (ire != NULL) {
7012 			ire_refrele(ire);
7013 			if (ipif_refheld)
7014 				ipif_refrele(ipif);
7015 			return (EEXIST);
7016 		}
7017 
7018 		stq = (ipif->ipif_net_type == IRE_IF_RESOLVER)
7019 		    ? ipif->ipif_rq : ipif->ipif_wq;
7020 
7021 		/*
7022 		 * Create a copy of the IRE_LOOPBACK,
7023 		 * IRE_IF_NORESOLVER or IRE_IF_RESOLVER with
7024 		 * the modified address and netmask.
7025 		 */
7026 		ire = ire_create(
7027 		    (uchar_t *)&dst_addr,
7028 		    (uint8_t *)&mask,
7029 		    (uint8_t *)&ipif->ipif_src_addr,
7030 		    NULL,
7031 		    &ipif->ipif_mtu,
7032 		    NULL,
7033 		    NULL,
7034 		    stq,
7035 		    ipif->ipif_net_type,
7036 		    ipif,
7037 		    0,
7038 		    0,
7039 		    0,
7040 		    flags,
7041 		    &ire_uinfo_null,
7042 		    NULL,
7043 		    NULL,
7044 		    ipst);
7045 		if (ire == NULL) {
7046 			if (ipif_refheld)
7047 				ipif_refrele(ipif);
7048 			return (ENOMEM);
7049 		}
7050 
7051 		/*
7052 		 * Some software (for example, GateD and Sun Cluster) attempts
7053 		 * to create (what amount to) IRE_PREFIX routes with the
7054 		 * loopback address as the gateway.  This is primarily done to
7055 		 * set up prefixes with the RTF_REJECT flag set (for example,
7056 		 * when generating aggregate routes.)
7057 		 *
7058 		 * If the IRE type (as defined by ipif->ipif_net_type) is
7059 		 * IRE_LOOPBACK, then we map the request into a
7060 		 * IRE_IF_NORESOLVER. We also OR in the RTF_BLACKHOLE flag as
7061 		 * these interface routes, by definition, can only be that.
7062 		 *
7063 		 * Needless to say, the real IRE_LOOPBACK is NOT created by this
7064 		 * routine, but rather using ire_create() directly.
7065 		 *
7066 		 */
7067 		if (ipif->ipif_net_type == IRE_LOOPBACK) {
7068 			ire->ire_type = IRE_IF_NORESOLVER;
7069 			ire->ire_flags |= RTF_BLACKHOLE;
7070 		}
7071 
7072 		error = ire_add(&ire, q, mp, func, B_FALSE);
7073 		if (error == 0)
7074 			goto save_ire;
7075 
7076 		/*
7077 		 * In the result of failure, ire_add() will have already
7078 		 * deleted the ire in question, so there is no need to
7079 		 * do that here.
7080 		 */
7081 		if (ipif_refheld)
7082 			ipif_refrele(ipif);
7083 		return (error);
7084 	}
7085 	if (ipif_refheld) {
7086 		ipif_refrele(ipif);
7087 		ipif_refheld = B_FALSE;
7088 	}
7089 
7090 	/*
7091 	 * Get an interface IRE for the specified gateway.
7092 	 * If we don't have an IRE_IF_NORESOLVER or IRE_IF_RESOLVER for the
7093 	 * gateway, it is currently unreachable and we fail the request
7094 	 * accordingly.
7095 	 */
7096 	ipif = ipif_arg;
7097 	if (ipif_arg != NULL)
7098 		match_flags |= MATCH_IRE_ILL;
7099 	gw_ire = ire_ftable_lookup(gw_addr, 0, 0, IRE_INTERFACE, ipif_arg, NULL,
7100 	    ALL_ZONES, 0, NULL, match_flags, ipst);
7101 	if (gw_ire == NULL)
7102 		return (ENETUNREACH);
7103 
7104 	/*
7105 	 * We create one of three types of IREs as a result of this request
7106 	 * based on the netmask.  A netmask of all ones (which is automatically
7107 	 * assumed when RTF_HOST is set) results in an IRE_HOST being created.
7108 	 * An all zeroes netmask implies a default route so an IRE_DEFAULT is
7109 	 * created.  Otherwise, an IRE_PREFIX route is created for the
7110 	 * destination prefix.
7111 	 */
7112 	if (mask == IP_HOST_MASK)
7113 		type = IRE_HOST;
7114 	else if (mask == 0)
7115 		type = IRE_DEFAULT;
7116 	else
7117 		type = IRE_PREFIX;
7118 
7119 	/* check for a duplicate entry */
7120 	ire = ire_ftable_lookup(dst_addr, mask, gw_addr, type, ipif_arg,
7121 	    NULL, ALL_ZONES, 0, NULL,
7122 	    match_flags | MATCH_IRE_MASK | MATCH_IRE_GW, ipst);
7123 	if (ire != NULL) {
7124 		ire_refrele(gw_ire);
7125 		ire_refrele(ire);
7126 		return (EEXIST);
7127 	}
7128 
7129 	/* Security attribute exists */
7130 	if (sp != NULL) {
7131 		tsol_gcgrp_addr_t ga;
7132 
7133 		/* find or create the gateway credentials group */
7134 		ga.ga_af = AF_INET;
7135 		IN6_IPADDR_TO_V4MAPPED(gw_addr, &ga.ga_addr);
7136 
7137 		/* we hold reference to it upon success */
7138 		gcgrp = gcgrp_lookup(&ga, B_TRUE);
7139 		if (gcgrp == NULL) {
7140 			ire_refrele(gw_ire);
7141 			return (ENOMEM);
7142 		}
7143 
7144 		/*
7145 		 * Create and add the security attribute to the group; a
7146 		 * reference to the group is made upon allocating a new
7147 		 * entry successfully.  If it finds an already-existing
7148 		 * entry for the security attribute in the group, it simply
7149 		 * returns it and no new reference is made to the group.
7150 		 */
7151 		gc = gc_create(sp, gcgrp, &gcgrp_xtraref);
7152 		if (gc == NULL) {
7153 			/* release reference held by gcgrp_lookup */
7154 			GCGRP_REFRELE(gcgrp);
7155 			ire_refrele(gw_ire);
7156 			return (ENOMEM);
7157 		}
7158 	}
7159 
7160 	/* Create the IRE. */
7161 	ire = ire_create(
7162 	    (uchar_t *)&dst_addr,		/* dest address */
7163 	    (uchar_t *)&mask,			/* mask */
7164 	    /* src address assigned by the caller? */
7165 	    (uchar_t *)(((src_addr != INADDR_ANY) &&
7166 	    (flags & RTF_SETSRC)) ?  &src_addr : NULL),
7167 	    (uchar_t *)&gw_addr,		/* gateway address */
7168 	    &gw_ire->ire_max_frag,
7169 	    NULL,				/* no src nce */
7170 	    NULL,				/* no recv-from queue */
7171 	    NULL,				/* no send-to queue */
7172 	    (ushort_t)type,			/* IRE type */
7173 	    ipif_arg,
7174 	    0,
7175 	    0,
7176 	    0,
7177 	    flags,
7178 	    &gw_ire->ire_uinfo,			/* Inherit ULP info from gw */
7179 	    gc,					/* security attribute */
7180 	    NULL,
7181 	    ipst);
7182 
7183 	/*
7184 	 * The ire holds a reference to the 'gc' and the 'gc' holds a
7185 	 * reference to the 'gcgrp'. We can now release the extra reference
7186 	 * the 'gcgrp' acquired in the gcgrp_lookup, if it was not used.
7187 	 */
7188 	if (gcgrp_xtraref)
7189 		GCGRP_REFRELE(gcgrp);
7190 	if (ire == NULL) {
7191 		if (gc != NULL)
7192 			GC_REFRELE(gc);
7193 		ire_refrele(gw_ire);
7194 		return (ENOMEM);
7195 	}
7196 
7197 	/*
7198 	 * POLICY: should we allow an RTF_HOST with address INADDR_ANY?
7199 	 * SUN/OS socket stuff does but do we really want to allow 0.0.0.0?
7200 	 */
7201 
7202 	/* Add the new IRE. */
7203 	error = ire_add(&ire, q, mp, func, B_FALSE);
7204 	if (error != 0) {
7205 		/*
7206 		 * In the result of failure, ire_add() will have already
7207 		 * deleted the ire in question, so there is no need to
7208 		 * do that here.
7209 		 */
7210 		ire_refrele(gw_ire);
7211 		return (error);
7212 	}
7213 
7214 	if (flags & RTF_MULTIRT) {
7215 		/*
7216 		 * Invoke the CGTP (multirouting) filtering module
7217 		 * to add the dst address in the filtering database.
7218 		 * Replicated inbound packets coming from that address
7219 		 * will be filtered to discard the duplicates.
7220 		 * It is not necessary to call the CGTP filter hook
7221 		 * when the dst address is a broadcast or multicast,
7222 		 * because an IP source address cannot be a broadcast
7223 		 * or a multicast.
7224 		 */
7225 		ire_t *ire_dst = ire_ctable_lookup(ire->ire_addr, 0,
7226 		    IRE_BROADCAST, NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst);
7227 		if (ire_dst != NULL) {
7228 			ip_cgtp_bcast_add(ire, ire_dst, ipst);
7229 			ire_refrele(ire_dst);
7230 			goto save_ire;
7231 		}
7232 		if (ipst->ips_ip_cgtp_filter_ops != NULL &&
7233 		    !CLASSD(ire->ire_addr)) {
7234 			int res = ipst->ips_ip_cgtp_filter_ops->cfo_add_dest_v4(
7235 			    ipst->ips_netstack->netstack_stackid,
7236 			    ire->ire_addr,
7237 			    ire->ire_gateway_addr,
7238 			    ire->ire_src_addr,
7239 			    gw_ire->ire_src_addr);
7240 			if (res != 0) {
7241 				ire_refrele(gw_ire);
7242 				ire_delete(ire);
7243 				return (res);
7244 			}
7245 		}
7246 	}
7247 
7248 	/*
7249 	 * Now that the prefix IRE entry has been created, delete any
7250 	 * existing gateway IRE cache entries as well as any IRE caches
7251 	 * using the gateway, and force them to be created through
7252 	 * ip_newroute.
7253 	 */
7254 	if (gc != NULL) {
7255 		ASSERT(gcgrp != NULL);
7256 		ire_clookup_delete_cache_gw(gw_addr, ALL_ZONES, ipst);
7257 	}
7258 
7259 save_ire:
7260 	if (gw_ire != NULL) {
7261 		ire_refrele(gw_ire);
7262 	}
7263 	if (ipif != NULL) {
7264 		/*
7265 		 * Save enough information so that we can recreate the IRE if
7266 		 * the interface goes down and then up.  The metrics associated
7267 		 * with the route will be saved as well when rts_setmetrics() is
7268 		 * called after the IRE has been created.  In the case where
7269 		 * memory cannot be allocated, none of this information will be
7270 		 * saved.
7271 		 */
7272 		ipif_save_ire(ipif, ire);
7273 	}
7274 	if (ioctl_msg)
7275 		ip_rts_rtmsg(RTM_OLDADD, ire, 0, ipst);
7276 	if (ire_arg != NULL) {
7277 		/*
7278 		 * Store the ire that was successfully added into where ire_arg
7279 		 * points to so that callers don't have to look it up
7280 		 * themselves (but they are responsible for ire_refrele()ing
7281 		 * the ire when they are finished with it).
7282 		 */
7283 		*ire_arg = ire;
7284 	} else {
7285 		ire_refrele(ire);		/* Held in ire_add */
7286 	}
7287 	if (ipif_refheld)
7288 		ipif_refrele(ipif);
7289 	return (0);
7290 }
7291 
7292 /*
7293  * ip_rt_delete is called to delete an IPv4 route.
7294  * ipif_arg is passed in to associate it with the correct interface.
7295  * We may need to restart this operation if the ipif cannot be looked up
7296  * due to an exclusive operation that is currently in progress. The restart
7297  * entry point is specified by 'func'
7298  */
7299 /* ARGSUSED4 */
7300 int
7301 ip_rt_delete(ipaddr_t dst_addr, ipaddr_t mask, ipaddr_t gw_addr,
7302     uint_t rtm_addrs, int flags, ipif_t *ipif_arg, boolean_t ioctl_msg,
7303     queue_t *q, mblk_t *mp, ipsq_func_t func, ip_stack_t *ipst)
7304 {
7305 	ire_t	*ire = NULL;
7306 	ipif_t	*ipif;
7307 	boolean_t ipif_refheld = B_FALSE;
7308 	uint_t	type;
7309 	uint_t	match_flags = MATCH_IRE_TYPE;
7310 	int	err = 0;
7311 
7312 	ip1dbg(("ip_rt_delete:"));
7313 	/*
7314 	 * If this is the case of RTF_HOST being set, then we set the netmask
7315 	 * to all ones.  Otherwise, we use the netmask if one was supplied.
7316 	 */
7317 	if (flags & RTF_HOST) {
7318 		mask = IP_HOST_MASK;
7319 		match_flags |= MATCH_IRE_MASK;
7320 	} else if (rtm_addrs & RTA_NETMASK) {
7321 		match_flags |= MATCH_IRE_MASK;
7322 	}
7323 
7324 	/*
7325 	 * Note that RTF_GATEWAY is never set on a delete, therefore
7326 	 * we check if the gateway address is one of our interfaces first,
7327 	 * and fall back on RTF_GATEWAY routes.
7328 	 *
7329 	 * This makes it possible to delete an original
7330 	 * IRE_IF_NORESOLVER/IRE_IF_RESOLVER - consistent with SunOS 4.1.
7331 	 *
7332 	 * As the interface index specified with the RTA_IFP sockaddr is the
7333 	 * same for all ipif's off of an ill, the matching logic below uses
7334 	 * MATCH_IRE_ILL if such an index was specified.  This means a route
7335 	 * sharing the same prefix and interface index as the the route
7336 	 * intended to be deleted might be deleted instead if a RTA_IFP sockaddr
7337 	 * is specified in the request.
7338 	 *
7339 	 * On the other hand, since the gateway address will usually be
7340 	 * different for each ipif on the system, the matching logic
7341 	 * uses MATCH_IRE_IPIF in the case of a traditional interface
7342 	 * route.  This means that interface routes for the same prefix can be
7343 	 * uniquely identified if they belong to distinct ipif's and if a
7344 	 * RTA_IFP sockaddr is not present.
7345 	 *
7346 	 * For more detail on specifying routes by gateway address and by
7347 	 * interface index, see the comments in ip_rt_add().
7348 	 */
7349 	ipif = ipif_lookup_interface(gw_addr, dst_addr, q, mp, func, &err,
7350 	    ipst);
7351 	if (ipif != NULL)
7352 		ipif_refheld = B_TRUE;
7353 	else if (err == EINPROGRESS)
7354 		return (err);
7355 	else
7356 		err = 0;
7357 	if (ipif != NULL) {
7358 		if (ipif_arg != NULL) {
7359 			if (ipif_refheld) {
7360 				ipif_refrele(ipif);
7361 				ipif_refheld = B_FALSE;
7362 			}
7363 			ipif = ipif_arg;
7364 			match_flags |= MATCH_IRE_ILL;
7365 		} else {
7366 			match_flags |= MATCH_IRE_IPIF;
7367 		}
7368 		if (ipif->ipif_ire_type == IRE_LOOPBACK) {
7369 			ire = ire_ctable_lookup(dst_addr, 0, IRE_LOOPBACK, ipif,
7370 			    ALL_ZONES, NULL, match_flags, ipst);
7371 		}
7372 		if (ire == NULL) {
7373 			ire = ire_ftable_lookup(dst_addr, mask, 0,
7374 			    IRE_INTERFACE, ipif, NULL, ALL_ZONES, 0, NULL,
7375 			    match_flags, ipst);
7376 		}
7377 	}
7378 
7379 	if (ire == NULL) {
7380 		/*
7381 		 * At this point, the gateway address is not one of our own
7382 		 * addresses or a matching interface route was not found.  We
7383 		 * set the IRE type to lookup based on whether
7384 		 * this is a host route, a default route or just a prefix.
7385 		 *
7386 		 * If an ipif_arg was passed in, then the lookup is based on an
7387 		 * interface index so MATCH_IRE_ILL is added to match_flags.
7388 		 * In any case, MATCH_IRE_IPIF is cleared and MATCH_IRE_GW is
7389 		 * set as the route being looked up is not a traditional
7390 		 * interface route.
7391 		 */
7392 		match_flags &= ~MATCH_IRE_IPIF;
7393 		match_flags |= MATCH_IRE_GW;
7394 		if (ipif_arg != NULL)
7395 			match_flags |= MATCH_IRE_ILL;
7396 		if (mask == IP_HOST_MASK)
7397 			type = IRE_HOST;
7398 		else if (mask == 0)
7399 			type = IRE_DEFAULT;
7400 		else
7401 			type = IRE_PREFIX;
7402 		ire = ire_ftable_lookup(dst_addr, mask, gw_addr, type, ipif_arg,
7403 		    NULL, ALL_ZONES, 0, NULL, match_flags, ipst);
7404 	}
7405 
7406 	if (ipif_refheld)
7407 		ipif_refrele(ipif);
7408 
7409 	/* ipif is not refheld anymore */
7410 	if (ire == NULL)
7411 		return (ESRCH);
7412 
7413 	if (ire->ire_flags & RTF_MULTIRT) {
7414 		/*
7415 		 * Invoke the CGTP (multirouting) filtering module
7416 		 * to remove the dst address from the filtering database.
7417 		 * Packets coming from that address will no longer be
7418 		 * filtered to remove duplicates.
7419 		 */
7420 		if (ipst->ips_ip_cgtp_filter_ops != NULL) {
7421 			err = ipst->ips_ip_cgtp_filter_ops->cfo_del_dest_v4(
7422 			    ipst->ips_netstack->netstack_stackid,
7423 			    ire->ire_addr, ire->ire_gateway_addr);
7424 		}
7425 		ip_cgtp_bcast_delete(ire, ipst);
7426 	}
7427 
7428 	ipif = ire->ire_ipif;
7429 	if (ipif != NULL)
7430 		ipif_remove_ire(ipif, ire);
7431 	if (ioctl_msg)
7432 		ip_rts_rtmsg(RTM_OLDDEL, ire, 0, ipst);
7433 	ire_delete(ire);
7434 	ire_refrele(ire);
7435 	return (err);
7436 }
7437 
7438 /*
7439  * ip_siocaddrt is called to complete processing of an SIOCADDRT IOCTL.
7440  */
7441 /* ARGSUSED */
7442 int
7443 ip_siocaddrt(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp,
7444     ip_ioctl_cmd_t *ipip, void *dummy_if_req)
7445 {
7446 	ipaddr_t dst_addr;
7447 	ipaddr_t gw_addr;
7448 	ipaddr_t mask;
7449 	int error = 0;
7450 	mblk_t *mp1;
7451 	struct rtentry *rt;
7452 	ipif_t *ipif = NULL;
7453 	ip_stack_t	*ipst;
7454 
7455 	ASSERT(q->q_next == NULL);
7456 	ipst = CONNQ_TO_IPST(q);
7457 
7458 	ip1dbg(("ip_siocaddrt:"));
7459 	/* Existence of mp1 verified in ip_wput_nondata */
7460 	mp1 = mp->b_cont->b_cont;
7461 	rt = (struct rtentry *)mp1->b_rptr;
7462 
7463 	dst_addr = ((sin_t *)&rt->rt_dst)->sin_addr.s_addr;
7464 	gw_addr = ((sin_t *)&rt->rt_gateway)->sin_addr.s_addr;
7465 
7466 	/*
7467 	 * If the RTF_HOST flag is on, this is a request to assign a gateway
7468 	 * to a particular host address.  In this case, we set the netmask to
7469 	 * all ones for the particular destination address.  Otherwise,
7470 	 * determine the netmask to be used based on dst_addr and the interfaces
7471 	 * in use.
7472 	 */
7473 	if (rt->rt_flags & RTF_HOST) {
7474 		mask = IP_HOST_MASK;
7475 	} else {
7476 		/*
7477 		 * Note that ip_subnet_mask returns a zero mask in the case of
7478 		 * default (an all-zeroes address).
7479 		 */
7480 		mask = ip_subnet_mask(dst_addr, &ipif, ipst);
7481 	}
7482 
7483 	error = ip_rt_add(dst_addr, mask, gw_addr, 0, rt->rt_flags, NULL, NULL,
7484 	    B_TRUE, q, mp, ip_process_ioctl, NULL, ipst);
7485 	if (ipif != NULL)
7486 		ipif_refrele(ipif);
7487 	return (error);
7488 }
7489 
7490 /*
7491  * ip_siocdelrt is called to complete processing of an SIOCDELRT IOCTL.
7492  */
7493 /* ARGSUSED */
7494 int
7495 ip_siocdelrt(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp,
7496     ip_ioctl_cmd_t *ipip, void *dummy_if_req)
7497 {
7498 	ipaddr_t dst_addr;
7499 	ipaddr_t gw_addr;
7500 	ipaddr_t mask;
7501 	int error;
7502 	mblk_t *mp1;
7503 	struct rtentry *rt;
7504 	ipif_t *ipif = NULL;
7505 	ip_stack_t	*ipst;
7506 
7507 	ASSERT(q->q_next == NULL);
7508 	ipst = CONNQ_TO_IPST(q);
7509 
7510 	ip1dbg(("ip_siocdelrt:"));
7511 	/* Existence of mp1 verified in ip_wput_nondata */
7512 	mp1 = mp->b_cont->b_cont;
7513 	rt = (struct rtentry *)mp1->b_rptr;
7514 
7515 	dst_addr = ((sin_t *)&rt->rt_dst)->sin_addr.s_addr;
7516 	gw_addr = ((sin_t *)&rt->rt_gateway)->sin_addr.s_addr;
7517 
7518 	/*
7519 	 * If the RTF_HOST flag is on, this is a request to delete a gateway
7520 	 * to a particular host address.  In this case, we set the netmask to
7521 	 * all ones for the particular destination address.  Otherwise,
7522 	 * determine the netmask to be used based on dst_addr and the interfaces
7523 	 * in use.
7524 	 */
7525 	if (rt->rt_flags & RTF_HOST) {
7526 		mask = IP_HOST_MASK;
7527 	} else {
7528 		/*
7529 		 * Note that ip_subnet_mask returns a zero mask in the case of
7530 		 * default (an all-zeroes address).
7531 		 */
7532 		mask = ip_subnet_mask(dst_addr, &ipif, ipst);
7533 	}
7534 
7535 	error = ip_rt_delete(dst_addr, mask, gw_addr,
7536 	    RTA_DST | RTA_GATEWAY | RTA_NETMASK, rt->rt_flags, NULL, B_TRUE, q,
7537 	    mp, ip_process_ioctl, ipst);
7538 	if (ipif != NULL)
7539 		ipif_refrele(ipif);
7540 	return (error);
7541 }
7542 
7543 /*
7544  * Enqueue the mp onto the ipsq, chained by b_next.
7545  * b_prev stores the function to be executed later, and b_queue the queue
7546  * where this mp originated.
7547  */
7548 void
7549 ipsq_enq(ipsq_t *ipsq, queue_t *q, mblk_t *mp, ipsq_func_t func, int type,
7550     ill_t *pending_ill)
7551 {
7552 	conn_t	*connp = NULL;
7553 
7554 	ASSERT(MUTEX_HELD(&ipsq->ipsq_lock));
7555 	ASSERT(func != NULL);
7556 
7557 	mp->b_queue = q;
7558 	mp->b_prev = (void *)func;
7559 	mp->b_next = NULL;
7560 
7561 	switch (type) {
7562 	case CUR_OP:
7563 		if (ipsq->ipsq_mptail != NULL) {
7564 			ASSERT(ipsq->ipsq_mphead != NULL);
7565 			ipsq->ipsq_mptail->b_next = mp;
7566 		} else {
7567 			ASSERT(ipsq->ipsq_mphead == NULL);
7568 			ipsq->ipsq_mphead = mp;
7569 		}
7570 		ipsq->ipsq_mptail = mp;
7571 		break;
7572 
7573 	case NEW_OP:
7574 		if (ipsq->ipsq_xopq_mptail != NULL) {
7575 			ASSERT(ipsq->ipsq_xopq_mphead != NULL);
7576 			ipsq->ipsq_xopq_mptail->b_next = mp;
7577 		} else {
7578 			ASSERT(ipsq->ipsq_xopq_mphead == NULL);
7579 			ipsq->ipsq_xopq_mphead = mp;
7580 		}
7581 		ipsq->ipsq_xopq_mptail = mp;
7582 		break;
7583 	default:
7584 		cmn_err(CE_PANIC, "ipsq_enq %d type \n", type);
7585 	}
7586 
7587 	if (CONN_Q(q) && pending_ill != NULL) {
7588 		connp = Q_TO_CONN(q);
7589 
7590 		ASSERT(MUTEX_HELD(&connp->conn_lock));
7591 		connp->conn_oper_pending_ill = pending_ill;
7592 	}
7593 }
7594 
7595 /*
7596  * Return the mp at the head of the ipsq. After emptying the ipsq
7597  * look at the next ioctl, if this ioctl is complete. Otherwise
7598  * return, we will resume when we complete the current ioctl.
7599  * The current ioctl will wait till it gets a response from the
7600  * driver below.
7601  */
7602 static mblk_t *
7603 ipsq_dq(ipsq_t *ipsq)
7604 {
7605 	mblk_t	*mp;
7606 
7607 	ASSERT(MUTEX_HELD(&ipsq->ipsq_lock));
7608 
7609 	mp = ipsq->ipsq_mphead;
7610 	if (mp != NULL) {
7611 		ipsq->ipsq_mphead = mp->b_next;
7612 		if (ipsq->ipsq_mphead == NULL)
7613 			ipsq->ipsq_mptail = NULL;
7614 		mp->b_next = NULL;
7615 		return (mp);
7616 	}
7617 	if (ipsq->ipsq_current_ipif != NULL)
7618 		return (NULL);
7619 	mp = ipsq->ipsq_xopq_mphead;
7620 	if (mp != NULL) {
7621 		ipsq->ipsq_xopq_mphead = mp->b_next;
7622 		if (ipsq->ipsq_xopq_mphead == NULL)
7623 			ipsq->ipsq_xopq_mptail = NULL;
7624 		mp->b_next = NULL;
7625 		return (mp);
7626 	}
7627 	return (NULL);
7628 }
7629 
7630 /*
7631  * Enter the ipsq corresponding to ill, by waiting synchronously till
7632  * we can enter the ipsq exclusively. Unless 'force' is used, the ipsq
7633  * will have to drain completely before ipsq_enter returns success.
7634  * ipsq_current_ipif will be set if some exclusive ioctl is in progress,
7635  * and the ipsq_exit logic will start the next enqueued ioctl after
7636  * completion of the current ioctl. If 'force' is used, we don't wait
7637  * for the enqueued ioctls. This is needed when a conn_close wants to
7638  * enter the ipsq and abort an ioctl that is somehow stuck. Unplumb
7639  * of an ill can also use this option. But we dont' use it currently.
7640  */
7641 #define	ENTER_SQ_WAIT_TICKS 100
7642 boolean_t
7643 ipsq_enter(ill_t *ill, boolean_t force)
7644 {
7645 	ipsq_t	*ipsq;
7646 	boolean_t waited_enough = B_FALSE;
7647 
7648 	/*
7649 	 * Holding the ill_lock prevents <ill-ipsq> assocs from changing.
7650 	 * Since the <ill-ipsq> assocs could change while we wait for the
7651 	 * writer, it is easier to wait on a fixed global rather than try to
7652 	 * cv_wait on a changing ipsq.
7653 	 */
7654 	mutex_enter(&ill->ill_lock);
7655 	for (;;) {
7656 		if (ill->ill_state_flags & ILL_CONDEMNED) {
7657 			mutex_exit(&ill->ill_lock);
7658 			return (B_FALSE);
7659 		}
7660 
7661 		ipsq = ill->ill_phyint->phyint_ipsq;
7662 		mutex_enter(&ipsq->ipsq_lock);
7663 		if (ipsq->ipsq_writer == NULL &&
7664 		    (ipsq->ipsq_current_ipif == NULL || waited_enough)) {
7665 			break;
7666 		} else if (ipsq->ipsq_writer != NULL) {
7667 			mutex_exit(&ipsq->ipsq_lock);
7668 			cv_wait(&ill->ill_cv, &ill->ill_lock);
7669 		} else {
7670 			mutex_exit(&ipsq->ipsq_lock);
7671 			if (force) {
7672 				(void) cv_timedwait(&ill->ill_cv,
7673 				    &ill->ill_lock,
7674 				    lbolt + ENTER_SQ_WAIT_TICKS);
7675 				waited_enough = B_TRUE;
7676 				continue;
7677 			} else {
7678 				cv_wait(&ill->ill_cv, &ill->ill_lock);
7679 			}
7680 		}
7681 	}
7682 
7683 	ASSERT(ipsq->ipsq_mphead == NULL && ipsq->ipsq_mptail == NULL);
7684 	ASSERT(ipsq->ipsq_reentry_cnt == 0);
7685 	ipsq->ipsq_writer = curthread;
7686 	ipsq->ipsq_reentry_cnt++;
7687 #ifdef DEBUG
7688 	ipsq->ipsq_depth = getpcstack(ipsq->ipsq_stack, IPSQ_STACK_DEPTH);
7689 #endif
7690 	mutex_exit(&ipsq->ipsq_lock);
7691 	mutex_exit(&ill->ill_lock);
7692 	return (B_TRUE);
7693 }
7694 
7695 /*
7696  * The ipsq_t (ipsq) is the synchronization data structure used to serialize
7697  * certain critical operations like plumbing (i.e. most set ioctls),
7698  * multicast joins, igmp/mld timers, IPMP operations etc. On a non-IPMP
7699  * system there is 1 ipsq per phyint. On an IPMP system there is 1 ipsq per
7700  * IPMP group. The ipsq serializes exclusive ioctls issued by applications
7701  * on a per ipsq basis in ipsq_xopq_mphead. It also protects against multiple
7702  * threads executing in the ipsq. Responses from the driver pertain to the
7703  * current ioctl (say a DL_BIND_ACK in response to a DL_BIND_REQUEST initiated
7704  * as part of bringing up the interface) and are enqueued in ipsq_mphead.
7705  *
7706  * If a thread does not want to reenter the ipsq when it is already writer,
7707  * it must make sure that the specified reentry point to be called later
7708  * when the ipsq is empty, nor any code path starting from the specified reentry
7709  * point must never ever try to enter the ipsq again. Otherwise it can lead
7710  * to an infinite loop. The reentry point ip_rput_dlpi_writer is an example.
7711  * When the thread that is currently exclusive finishes, it (ipsq_exit)
7712  * dequeues the requests waiting to become exclusive in ipsq_mphead and calls
7713  * the reentry point. When the list at ipsq_mphead becomes empty ipsq_exit
7714  * proceeds to dequeue the next ioctl in ipsq_xopq_mphead and start the next
7715  * ioctl if the current ioctl has completed. If the current ioctl is still
7716  * in progress it simply returns. The current ioctl could be waiting for
7717  * a response from another module (arp_ or the driver or could be waiting for
7718  * the ipif/ill/ire refcnts to drop to zero. In such a case the ipsq_pending_mp
7719  * and ipsq_pending_ipif are set. ipsq_current_ipif is set throughout the
7720  * execution of the ioctl and ipsq_exit does not start the next ioctl unless
7721  * ipsq_current_ipif is clear which happens only on ioctl completion.
7722  */
7723 
7724 /*
7725  * Try to enter the ipsq exclusively, corresponding to ipif or ill. (only 1 of
7726  * ipif or ill can be specified). The caller ensures ipif or ill is valid by
7727  * ref-holding it if necessary. If the ipsq cannot be entered, the mp is queued
7728  * completion.
7729  */
7730 ipsq_t *
7731 ipsq_try_enter(ipif_t *ipif, ill_t *ill, queue_t *q, mblk_t *mp,
7732     ipsq_func_t func, int type, boolean_t reentry_ok)
7733 {
7734 	ipsq_t	*ipsq;
7735 
7736 	/* Only 1 of ipif or ill can be specified */
7737 	ASSERT((ipif != NULL) ^ (ill != NULL));
7738 	if (ipif != NULL)
7739 		ill = ipif->ipif_ill;
7740 
7741 	/*
7742 	 * lock ordering ill_g_lock -> conn_lock -> ill_lock -> ipsq_lock
7743 	 * ipsq of an ill can't change when ill_lock is held.
7744 	 */
7745 	GRAB_CONN_LOCK(q);
7746 	mutex_enter(&ill->ill_lock);
7747 	ipsq = ill->ill_phyint->phyint_ipsq;
7748 	mutex_enter(&ipsq->ipsq_lock);
7749 
7750 	/*
7751 	 * 1. Enter the ipsq if we are already writer and reentry is ok.
7752 	 *    (Note: If the caller does not specify reentry_ok then neither
7753 	 *    'func' nor any of its callees must ever attempt to enter the ipsq
7754 	 *    again. Otherwise it can lead to an infinite loop
7755 	 * 2. Enter the ipsq if there is no current writer and this attempted
7756 	 *    entry is part of the current ioctl or operation
7757 	 * 3. Enter the ipsq if there is no current writer and this is a new
7758 	 *    ioctl (or operation) and the ioctl (or operation) queue is
7759 	 *    empty and there is no ioctl (or operation) currently in progress
7760 	 */
7761 	if ((ipsq->ipsq_writer == NULL && ((type == CUR_OP) ||
7762 	    (type == NEW_OP && ipsq->ipsq_xopq_mphead == NULL &&
7763 	    ipsq->ipsq_current_ipif == NULL))) ||
7764 	    (ipsq->ipsq_writer == curthread && reentry_ok)) {
7765 		/* Success. */
7766 		ipsq->ipsq_reentry_cnt++;
7767 		ipsq->ipsq_writer = curthread;
7768 		mutex_exit(&ipsq->ipsq_lock);
7769 		mutex_exit(&ill->ill_lock);
7770 		RELEASE_CONN_LOCK(q);
7771 #ifdef DEBUG
7772 		ipsq->ipsq_depth = getpcstack(ipsq->ipsq_stack,
7773 		    IPSQ_STACK_DEPTH);
7774 #endif
7775 		return (ipsq);
7776 	}
7777 
7778 	ipsq_enq(ipsq, q, mp, func, type, ill);
7779 
7780 	mutex_exit(&ipsq->ipsq_lock);
7781 	mutex_exit(&ill->ill_lock);
7782 	RELEASE_CONN_LOCK(q);
7783 	return (NULL);
7784 }
7785 
7786 /*
7787  * Try to enter the IPSQ corresponding to `ill' as writer.  The caller ensures
7788  * ill is valid by refholding it if necessary; we will refrele.  If the IPSQ
7789  * cannot be entered, the mp is queued for completion.
7790  */
7791 void
7792 qwriter_ip(ill_t *ill, queue_t *q, mblk_t *mp, ipsq_func_t func, int type,
7793     boolean_t reentry_ok)
7794 {
7795 	ipsq_t	*ipsq;
7796 
7797 	ipsq = ipsq_try_enter(NULL, ill, q, mp, func, type, reentry_ok);
7798 
7799 	/*
7800 	 * Drop the caller's refhold on the ill.  This is safe since we either
7801 	 * entered the IPSQ (and thus are exclusive), or failed to enter the
7802 	 * IPSQ, in which case we return without accessing ill anymore.  This
7803 	 * is needed because func needs to see the correct refcount.
7804 	 * e.g. removeif can work only then.
7805 	 */
7806 	ill_refrele(ill);
7807 	if (ipsq != NULL) {
7808 		(*func)(ipsq, q, mp, NULL);
7809 		ipsq_exit(ipsq, B_TRUE, B_TRUE);
7810 	}
7811 }
7812 
7813 /*
7814  * If there are more than ILL_GRP_CNT ills in a group,
7815  * we use kmem alloc'd buffers, else use the stack
7816  */
7817 #define	ILL_GRP_CNT	14
7818 /*
7819  * Drain the ipsq, if there are messages on it, and then leave the ipsq.
7820  * Called by a thread that is currently exclusive on this ipsq.
7821  */
7822 void
7823 ipsq_exit(ipsq_t *ipsq, boolean_t start_igmp_timer, boolean_t start_mld_timer)
7824 {
7825 	queue_t	*q;
7826 	mblk_t	*mp;
7827 	ipsq_func_t	func;
7828 	int	next;
7829 	ill_t	**ill_list = NULL;
7830 	size_t	ill_list_size = 0;
7831 	int	cnt = 0;
7832 	boolean_t need_ipsq_free = B_FALSE;
7833 	ip_stack_t	*ipst = ipsq->ipsq_ipst;
7834 
7835 	ASSERT(IAM_WRITER_IPSQ(ipsq));
7836 	mutex_enter(&ipsq->ipsq_lock);
7837 	ASSERT(ipsq->ipsq_reentry_cnt >= 1);
7838 	if (ipsq->ipsq_reentry_cnt != 1) {
7839 		ipsq->ipsq_reentry_cnt--;
7840 		mutex_exit(&ipsq->ipsq_lock);
7841 		return;
7842 	}
7843 
7844 	mp = ipsq_dq(ipsq);
7845 	while (mp != NULL) {
7846 again:
7847 		mutex_exit(&ipsq->ipsq_lock);
7848 		func = (ipsq_func_t)mp->b_prev;
7849 		q = (queue_t *)mp->b_queue;
7850 		mp->b_prev = NULL;
7851 		mp->b_queue = NULL;
7852 
7853 		/*
7854 		 * If 'q' is an conn queue, it is valid, since we did a
7855 		 * a refhold on the connp, at the start of the ioctl.
7856 		 * If 'q' is an ill queue, it is valid, since close of an
7857 		 * ill will clean up the 'ipsq'.
7858 		 */
7859 		(*func)(ipsq, q, mp, NULL);
7860 
7861 		mutex_enter(&ipsq->ipsq_lock);
7862 		mp = ipsq_dq(ipsq);
7863 	}
7864 
7865 	mutex_exit(&ipsq->ipsq_lock);
7866 
7867 	/*
7868 	 * Need to grab the locks in the right order. Need to
7869 	 * atomically check (under ipsq_lock) that there are no
7870 	 * messages before relinquishing the ipsq. Also need to
7871 	 * atomically wakeup waiters on ill_cv while holding ill_lock.
7872 	 * Holding ill_g_lock ensures that ipsq list of ills is stable.
7873 	 * If we need to call ill_split_ipsq and change <ill-ipsq> we need
7874 	 * to grab ill_g_lock as writer.
7875 	 */
7876 	rw_enter(&ipst->ips_ill_g_lock,
7877 	    ipsq->ipsq_split ? RW_WRITER : RW_READER);
7878 
7879 	/* ipsq_refs can't change while ill_g_lock is held as reader */
7880 	if (ipsq->ipsq_refs != 0) {
7881 		/* At most 2 ills v4/v6 per phyint */
7882 		cnt = ipsq->ipsq_refs << 1;
7883 		ill_list_size = cnt * sizeof (ill_t *);
7884 		/*
7885 		 * If memory allocation fails, we will do the split
7886 		 * the next time ipsq_exit is called for whatever reason.
7887 		 * As long as the ipsq_split flag is set the need to
7888 		 * split is remembered.
7889 		 */
7890 		ill_list = kmem_zalloc(ill_list_size, KM_NOSLEEP);
7891 		if (ill_list != NULL)
7892 			cnt = ill_lock_ipsq_ills(ipsq, ill_list, cnt);
7893 	}
7894 	mutex_enter(&ipsq->ipsq_lock);
7895 	mp = ipsq_dq(ipsq);
7896 	if (mp != NULL) {
7897 		/* oops, some message has landed up, we can't get out */
7898 		if (ill_list != NULL)
7899 			ill_unlock_ills(ill_list, cnt);
7900 		rw_exit(&ipst->ips_ill_g_lock);
7901 		if (ill_list != NULL)
7902 			kmem_free(ill_list, ill_list_size);
7903 		ill_list = NULL;
7904 		ill_list_size = 0;
7905 		cnt = 0;
7906 		goto again;
7907 	}
7908 
7909 	/*
7910 	 * Split only if no ioctl is pending and if memory alloc succeeded
7911 	 * above.
7912 	 */
7913 	if (ipsq->ipsq_split && ipsq->ipsq_current_ipif == NULL &&
7914 	    ill_list != NULL) {
7915 		/*
7916 		 * No new ill can join this ipsq since we are holding the
7917 		 * ill_g_lock. Hence ill_split_ipsq can safely traverse the
7918 		 * ipsq. ill_split_ipsq may fail due to memory shortage.
7919 		 * If so we will retry on the next ipsq_exit.
7920 		 */
7921 		ipsq->ipsq_split = ill_split_ipsq(ipsq);
7922 	}
7923 
7924 	/*
7925 	 * We are holding the ipsq lock, hence no new messages can
7926 	 * land up on the ipsq, and there are no messages currently.
7927 	 * Now safe to get out. Wake up waiters and relinquish ipsq
7928 	 * atomically while holding ill locks.
7929 	 */
7930 	ipsq->ipsq_writer = NULL;
7931 	ipsq->ipsq_reentry_cnt--;
7932 	ASSERT(ipsq->ipsq_reentry_cnt == 0);
7933 #ifdef DEBUG
7934 	ipsq->ipsq_depth = 0;
7935 #endif
7936 	mutex_exit(&ipsq->ipsq_lock);
7937 	/*
7938 	 * For IPMP this should wake up all ills in this ipsq.
7939 	 * We need to hold the ill_lock while waking up waiters to
7940 	 * avoid missed wakeups. But there is no need to acquire all
7941 	 * the ill locks and then wakeup. If we have not acquired all
7942 	 * the locks (due to memory failure above) ill_signal_ipsq_ills
7943 	 * wakes up ills one at a time after getting the right ill_lock
7944 	 */
7945 	ill_signal_ipsq_ills(ipsq, ill_list != NULL);
7946 	if (ill_list != NULL)
7947 		ill_unlock_ills(ill_list, cnt);
7948 	if (ipsq->ipsq_refs == 0)
7949 		need_ipsq_free = B_TRUE;
7950 	rw_exit(&ipst->ips_ill_g_lock);
7951 	if (ill_list != 0)
7952 		kmem_free(ill_list, ill_list_size);
7953 
7954 	if (need_ipsq_free) {
7955 		/*
7956 		 * Free the ipsq. ipsq_refs can't increase because ipsq can't be
7957 		 * looked up. ipsq can be looked up only thru ill or phyint
7958 		 * and there are no ills/phyint on this ipsq.
7959 		 */
7960 		ipsq_delete(ipsq);
7961 	}
7962 	/*
7963 	 * Now start any igmp or mld timers that could not be started
7964 	 * while inside the ipsq. The timers can't be started while inside
7965 	 * the ipsq, since igmp_start_timers may need to call untimeout()
7966 	 * which can't be done while holding a lock i.e. the ipsq. Otherwise
7967 	 * there could be a deadlock since the timeout handlers
7968 	 * mld_timeout_handler / igmp_timeout_handler also synchronously
7969 	 * wait in ipsq_enter() trying to get the ipsq.
7970 	 *
7971 	 * However there is one exception to the above. If this thread is
7972 	 * itself the igmp/mld timeout handler thread, then we don't want
7973 	 * to start any new timer until the current handler is done. The
7974 	 * handler thread passes in B_FALSE for start_igmp/mld_timers, while
7975 	 * all others pass B_TRUE.
7976 	 */
7977 	if (start_igmp_timer) {
7978 		mutex_enter(&ipst->ips_igmp_timer_lock);
7979 		next = ipst->ips_igmp_deferred_next;
7980 		ipst->ips_igmp_deferred_next = INFINITY;
7981 		mutex_exit(&ipst->ips_igmp_timer_lock);
7982 
7983 		if (next != INFINITY)
7984 			igmp_start_timers(next, ipst);
7985 	}
7986 
7987 	if (start_mld_timer) {
7988 		mutex_enter(&ipst->ips_mld_timer_lock);
7989 		next = ipst->ips_mld_deferred_next;
7990 		ipst->ips_mld_deferred_next = INFINITY;
7991 		mutex_exit(&ipst->ips_mld_timer_lock);
7992 
7993 		if (next != INFINITY)
7994 			mld_start_timers(next, ipst);
7995 	}
7996 }
7997 
7998 /*
7999  * Start the current exclusive operation on `ipsq'; associate it with `ipif'
8000  * and `ioccmd'.
8001  */
8002 void
8003 ipsq_current_start(ipsq_t *ipsq, ipif_t *ipif, int ioccmd)
8004 {
8005 	ASSERT(IAM_WRITER_IPSQ(ipsq));
8006 
8007 	mutex_enter(&ipsq->ipsq_lock);
8008 	ASSERT(ipsq->ipsq_current_ipif == NULL);
8009 	ASSERT(ipsq->ipsq_current_ioctl == 0);
8010 	ipsq->ipsq_current_ipif = ipif;
8011 	ipsq->ipsq_current_ioctl = ioccmd;
8012 	mutex_exit(&ipsq->ipsq_lock);
8013 }
8014 
8015 /*
8016  * Finish the current exclusive operation on `ipsq'.  Note that other
8017  * operations will not be able to proceed until an ipsq_exit() is done.
8018  */
8019 void
8020 ipsq_current_finish(ipsq_t *ipsq)
8021 {
8022 	ipif_t *ipif = ipsq->ipsq_current_ipif;
8023 
8024 	ASSERT(IAM_WRITER_IPSQ(ipsq));
8025 
8026 	/*
8027 	 * For SIOCSLIFREMOVEIF, the ipif has been already been blown away
8028 	 * (but we're careful to never set IPIF_CHANGING in that case).
8029 	 */
8030 	if (ipsq->ipsq_current_ioctl != SIOCLIFREMOVEIF) {
8031 		mutex_enter(&ipif->ipif_ill->ill_lock);
8032 		ipif->ipif_state_flags &= ~IPIF_CHANGING;
8033 
8034 		/* Send any queued event */
8035 		ill_nic_info_dispatch(ipif->ipif_ill);
8036 		mutex_exit(&ipif->ipif_ill->ill_lock);
8037 	}
8038 
8039 	mutex_enter(&ipsq->ipsq_lock);
8040 	ASSERT(ipsq->ipsq_current_ipif != NULL);
8041 	ipsq->ipsq_current_ipif = NULL;
8042 	ipsq->ipsq_current_ioctl = 0;
8043 	mutex_exit(&ipsq->ipsq_lock);
8044 }
8045 
8046 /*
8047  * The ill is closing. Flush all messages on the ipsq that originated
8048  * from this ill. Usually there wont' be any messages on the ipsq_xopq_mphead
8049  * for this ill since ipsq_enter could not have entered until then.
8050  * New messages can't be queued since the CONDEMNED flag is set.
8051  */
8052 static void
8053 ipsq_flush(ill_t *ill)
8054 {
8055 	queue_t	*q;
8056 	mblk_t	*prev;
8057 	mblk_t	*mp;
8058 	mblk_t	*mp_next;
8059 	ipsq_t	*ipsq;
8060 
8061 	ASSERT(IAM_WRITER_ILL(ill));
8062 	ipsq = ill->ill_phyint->phyint_ipsq;
8063 	/*
8064 	 * Flush any messages sent up by the driver.
8065 	 */
8066 	mutex_enter(&ipsq->ipsq_lock);
8067 	for (prev = NULL, mp = ipsq->ipsq_mphead; mp != NULL; mp = mp_next) {
8068 		mp_next = mp->b_next;
8069 		q = mp->b_queue;
8070 		if (q == ill->ill_rq || q == ill->ill_wq) {
8071 			/* Remove the mp from the ipsq */
8072 			if (prev == NULL)
8073 				ipsq->ipsq_mphead = mp->b_next;
8074 			else
8075 				prev->b_next = mp->b_next;
8076 			if (ipsq->ipsq_mptail == mp) {
8077 				ASSERT(mp_next == NULL);
8078 				ipsq->ipsq_mptail = prev;
8079 			}
8080 			inet_freemsg(mp);
8081 		} else {
8082 			prev = mp;
8083 		}
8084 	}
8085 	mutex_exit(&ipsq->ipsq_lock);
8086 	(void) ipsq_pending_mp_cleanup(ill, NULL);
8087 	ipsq_xopq_mp_cleanup(ill, NULL);
8088 	ill_pending_mp_cleanup(ill);
8089 }
8090 
8091 /* ARGSUSED */
8092 int
8093 ip_sioctl_slifoindex(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
8094     ip_ioctl_cmd_t *ipip, void *ifreq)
8095 {
8096 	ill_t	*ill;
8097 	struct lifreq	*lifr = (struct lifreq *)ifreq;
8098 	boolean_t isv6;
8099 	conn_t	*connp;
8100 	ip_stack_t	*ipst;
8101 
8102 	connp = Q_TO_CONN(q);
8103 	ipst = connp->conn_netstack->netstack_ip;
8104 	isv6 = connp->conn_af_isv6;
8105 	/*
8106 	 * Set original index.
8107 	 * Failover and failback move logical interfaces
8108 	 * from one physical interface to another.  The
8109 	 * original index indicates the parent of a logical
8110 	 * interface, in other words, the physical interface
8111 	 * the logical interface will be moved back to on
8112 	 * failback.
8113 	 */
8114 
8115 	/*
8116 	 * Don't allow the original index to be changed
8117 	 * for non-failover addresses, autoconfigured
8118 	 * addresses, or IPv6 link local addresses.
8119 	 */
8120 	if (((ipif->ipif_flags & (IPIF_NOFAILOVER | IPIF_ADDRCONF)) != NULL) ||
8121 	    (isv6 && IN6_IS_ADDR_LINKLOCAL(&ipif->ipif_v6lcl_addr))) {
8122 		return (EINVAL);
8123 	}
8124 	/*
8125 	 * The new original index must be in use by some
8126 	 * physical interface.
8127 	 */
8128 	ill = ill_lookup_on_ifindex(lifr->lifr_index, isv6, NULL, NULL,
8129 	    NULL, NULL, ipst);
8130 	if (ill == NULL)
8131 		return (ENXIO);
8132 	ill_refrele(ill);
8133 
8134 	ipif->ipif_orig_ifindex = lifr->lifr_index;
8135 	/*
8136 	 * When this ipif gets failed back, don't
8137 	 * preserve the original id, as it is no
8138 	 * longer applicable.
8139 	 */
8140 	ipif->ipif_orig_ipifid = 0;
8141 	/*
8142 	 * For IPv4, change the original index of any
8143 	 * multicast addresses associated with the
8144 	 * ipif to the new value.
8145 	 */
8146 	if (!isv6) {
8147 		ilm_t *ilm;
8148 
8149 		mutex_enter(&ipif->ipif_ill->ill_lock);
8150 		for (ilm = ipif->ipif_ill->ill_ilm; ilm != NULL;
8151 		    ilm = ilm->ilm_next) {
8152 			if (ilm->ilm_ipif == ipif) {
8153 				ilm->ilm_orig_ifindex = lifr->lifr_index;
8154 			}
8155 		}
8156 		mutex_exit(&ipif->ipif_ill->ill_lock);
8157 	}
8158 	return (0);
8159 }
8160 
8161 /* ARGSUSED */
8162 int
8163 ip_sioctl_get_oindex(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
8164     ip_ioctl_cmd_t *ipip, void *ifreq)
8165 {
8166 	struct lifreq *lifr = (struct lifreq *)ifreq;
8167 
8168 	/*
8169 	 * Get the original interface index i.e the one
8170 	 * before FAILOVER if it ever happened.
8171 	 */
8172 	lifr->lifr_index = ipif->ipif_orig_ifindex;
8173 	return (0);
8174 }
8175 
8176 /*
8177  * Parse an iftun_req structure coming down SIOC[GS]TUNPARAM ioctls,
8178  * refhold and return the associated ipif
8179  */
8180 /* ARGSUSED */
8181 int
8182 ip_extract_tunreq(queue_t *q, mblk_t *mp, const ip_ioctl_cmd_t *ipip,
8183     cmd_info_t *ci, ipsq_func_t func)
8184 {
8185 	boolean_t exists;
8186 	struct iftun_req *ta;
8187 	ipif_t	*ipif;
8188 	ill_t	*ill;
8189 	boolean_t isv6;
8190 	mblk_t	*mp1;
8191 	int	error;
8192 	conn_t	*connp;
8193 	ip_stack_t	*ipst;
8194 
8195 	/* Existence verified in ip_wput_nondata */
8196 	mp1 = mp->b_cont->b_cont;
8197 	ta = (struct iftun_req *)mp1->b_rptr;
8198 	/*
8199 	 * Null terminate the string to protect against buffer
8200 	 * overrun. String was generated by user code and may not
8201 	 * be trusted.
8202 	 */
8203 	ta->ifta_lifr_name[LIFNAMSIZ - 1] = '\0';
8204 
8205 	connp = Q_TO_CONN(q);
8206 	isv6 = connp->conn_af_isv6;
8207 	ipst = connp->conn_netstack->netstack_ip;
8208 
8209 	/* Disallows implicit create */
8210 	ipif = ipif_lookup_on_name(ta->ifta_lifr_name,
8211 	    mi_strlen(ta->ifta_lifr_name), B_FALSE, &exists, isv6,
8212 	    connp->conn_zoneid, CONNP_TO_WQ(connp), mp, func, &error, ipst);
8213 	if (ipif == NULL)
8214 		return (error);
8215 
8216 	if (ipif->ipif_id != 0) {
8217 		/*
8218 		 * We really don't want to set/get tunnel parameters
8219 		 * on virtual tunnel interfaces.  Only allow the
8220 		 * base tunnel to do these.
8221 		 */
8222 		ipif_refrele(ipif);
8223 		return (EINVAL);
8224 	}
8225 
8226 	/*
8227 	 * Send down to tunnel mod for ioctl processing.
8228 	 * Will finish ioctl in ip_rput_other().
8229 	 */
8230 	ill = ipif->ipif_ill;
8231 	if (ill->ill_net_type == IRE_LOOPBACK) {
8232 		ipif_refrele(ipif);
8233 		return (EOPNOTSUPP);
8234 	}
8235 
8236 	if (ill->ill_wq == NULL) {
8237 		ipif_refrele(ipif);
8238 		return (ENXIO);
8239 	}
8240 	/*
8241 	 * Mark the ioctl as coming from an IPv6 interface for
8242 	 * tun's convenience.
8243 	 */
8244 	if (ill->ill_isv6)
8245 		ta->ifta_flags |= 0x80000000;
8246 	ci->ci_ipif = ipif;
8247 	return (0);
8248 }
8249 
8250 /*
8251  * Parse an ifreq or lifreq struct coming down ioctls and refhold
8252  * and return the associated ipif.
8253  * Return value:
8254  *	Non zero: An error has occurred. ci may not be filled out.
8255  *	zero : ci is filled out with the ioctl cmd in ci.ci_name, and
8256  *	a held ipif in ci.ci_ipif.
8257  */
8258 int
8259 ip_extract_lifreq(queue_t *q, mblk_t *mp, const ip_ioctl_cmd_t *ipip,
8260     cmd_info_t *ci, ipsq_func_t func)
8261 {
8262 	sin_t		*sin;
8263 	sin6_t		*sin6;
8264 	char		*name;
8265 	struct ifreq    *ifr;
8266 	struct lifreq    *lifr;
8267 	ipif_t		*ipif = NULL;
8268 	ill_t		*ill;
8269 	conn_t		*connp;
8270 	boolean_t	isv6;
8271 	boolean_t	exists;
8272 	int		err;
8273 	mblk_t		*mp1;
8274 	zoneid_t	zoneid;
8275 	ip_stack_t	*ipst;
8276 
8277 	if (q->q_next != NULL) {
8278 		ill = (ill_t *)q->q_ptr;
8279 		isv6 = ill->ill_isv6;
8280 		connp = NULL;
8281 		zoneid = ALL_ZONES;
8282 		ipst = ill->ill_ipst;
8283 	} else {
8284 		ill = NULL;
8285 		connp = Q_TO_CONN(q);
8286 		isv6 = connp->conn_af_isv6;
8287 		zoneid = connp->conn_zoneid;
8288 		if (zoneid == GLOBAL_ZONEID) {
8289 			/* global zone can access ipifs in all zones */
8290 			zoneid = ALL_ZONES;
8291 		}
8292 		ipst = connp->conn_netstack->netstack_ip;
8293 	}
8294 
8295 	/* Has been checked in ip_wput_nondata */
8296 	mp1 = mp->b_cont->b_cont;
8297 
8298 	if (ipip->ipi_cmd_type == IF_CMD) {
8299 		/* This a old style SIOC[GS]IF* command */
8300 		ifr = (struct ifreq *)mp1->b_rptr;
8301 		/*
8302 		 * Null terminate the string to protect against buffer
8303 		 * overrun. String was generated by user code and may not
8304 		 * be trusted.
8305 		 */
8306 		ifr->ifr_name[IFNAMSIZ - 1] = '\0';
8307 		sin = (sin_t *)&ifr->ifr_addr;
8308 		name = ifr->ifr_name;
8309 		ci->ci_sin = sin;
8310 		ci->ci_sin6 = NULL;
8311 		ci->ci_lifr = (struct lifreq *)ifr;
8312 	} else {
8313 		/* This a new style SIOC[GS]LIF* command */
8314 		ASSERT(ipip->ipi_cmd_type == LIF_CMD);
8315 		lifr = (struct lifreq *)mp1->b_rptr;
8316 		/*
8317 		 * Null terminate the string to protect against buffer
8318 		 * overrun. String was generated by user code and may not
8319 		 * be trusted.
8320 		 */
8321 		lifr->lifr_name[LIFNAMSIZ - 1] = '\0';
8322 		name = lifr->lifr_name;
8323 		sin = (sin_t *)&lifr->lifr_addr;
8324 		sin6 = (sin6_t *)&lifr->lifr_addr;
8325 		if (ipip->ipi_cmd == SIOCSLIFGROUPNAME) {
8326 			(void) strncpy(ci->ci_groupname, lifr->lifr_groupname,
8327 			    LIFNAMSIZ);
8328 		}
8329 		ci->ci_sin = sin;
8330 		ci->ci_sin6 = sin6;
8331 		ci->ci_lifr = lifr;
8332 	}
8333 
8334 	if (ipip->ipi_cmd == SIOCSLIFNAME) {
8335 		/*
8336 		 * The ioctl will be failed if the ioctl comes down
8337 		 * an conn stream
8338 		 */
8339 		if (ill == NULL) {
8340 			/*
8341 			 * Not an ill queue, return EINVAL same as the
8342 			 * old error code.
8343 			 */
8344 			return (ENXIO);
8345 		}
8346 		ipif = ill->ill_ipif;
8347 		ipif_refhold(ipif);
8348 	} else {
8349 		ipif = ipif_lookup_on_name(name, mi_strlen(name), B_FALSE,
8350 		    &exists, isv6, zoneid,
8351 		    (connp == NULL) ? q : CONNP_TO_WQ(connp), mp, func, &err,
8352 		    ipst);
8353 		if (ipif == NULL) {
8354 			if (err == EINPROGRESS)
8355 				return (err);
8356 			if (ipip->ipi_cmd == SIOCLIFFAILOVER ||
8357 			    ipip->ipi_cmd == SIOCLIFFAILBACK) {
8358 				/*
8359 				 * Need to try both v4 and v6 since this
8360 				 * ioctl can come down either v4 or v6
8361 				 * socket. The lifreq.lifr_family passed
8362 				 * down by this ioctl is AF_UNSPEC.
8363 				 */
8364 				ipif = ipif_lookup_on_name(name,
8365 				    mi_strlen(name), B_FALSE, &exists, !isv6,
8366 				    zoneid, (connp == NULL) ? q :
8367 				    CONNP_TO_WQ(connp), mp, func, &err, ipst);
8368 				if (err == EINPROGRESS)
8369 					return (err);
8370 			}
8371 			err = 0;	/* Ensure we don't use it below */
8372 		}
8373 	}
8374 
8375 	/*
8376 	 * Old style [GS]IFCMD does not admit IPv6 ipif
8377 	 */
8378 	if (ipif != NULL && ipif->ipif_isv6 && ipip->ipi_cmd_type == IF_CMD) {
8379 		ipif_refrele(ipif);
8380 		return (ENXIO);
8381 	}
8382 
8383 	if (ipif == NULL && ill != NULL && ill->ill_ipif != NULL &&
8384 	    name[0] == '\0') {
8385 		/*
8386 		 * Handle a or a SIOC?IF* with a null name
8387 		 * during plumb (on the ill queue before the I_PLINK).
8388 		 */
8389 		ipif = ill->ill_ipif;
8390 		ipif_refhold(ipif);
8391 	}
8392 
8393 	if (ipif == NULL)
8394 		return (ENXIO);
8395 
8396 	/*
8397 	 * Allow only GET operations if this ipif has been created
8398 	 * temporarily due to a MOVE operation.
8399 	 */
8400 	if (ipif->ipif_replace_zero && !(ipip->ipi_flags & IPI_REPL)) {
8401 		ipif_refrele(ipif);
8402 		return (EINVAL);
8403 	}
8404 
8405 	ci->ci_ipif = ipif;
8406 	return (0);
8407 }
8408 
8409 /*
8410  * Return the total number of ipifs.
8411  */
8412 static uint_t
8413 ip_get_numifs(zoneid_t zoneid, ip_stack_t *ipst)
8414 {
8415 	uint_t numifs = 0;
8416 	ill_t	*ill;
8417 	ill_walk_context_t	ctx;
8418 	ipif_t	*ipif;
8419 
8420 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
8421 	ill = ILL_START_WALK_V4(&ctx, ipst);
8422 
8423 	while (ill != NULL) {
8424 		for (ipif = ill->ill_ipif; ipif != NULL;
8425 		    ipif = ipif->ipif_next) {
8426 			if (ipif->ipif_zoneid == zoneid ||
8427 			    ipif->ipif_zoneid == ALL_ZONES)
8428 				numifs++;
8429 		}
8430 		ill = ill_next(&ctx, ill);
8431 	}
8432 	rw_exit(&ipst->ips_ill_g_lock);
8433 	return (numifs);
8434 }
8435 
8436 /*
8437  * Return the total number of ipifs.
8438  */
8439 static uint_t
8440 ip_get_numlifs(int family, int lifn_flags, zoneid_t zoneid, ip_stack_t *ipst)
8441 {
8442 	uint_t numifs = 0;
8443 	ill_t	*ill;
8444 	ipif_t	*ipif;
8445 	ill_walk_context_t	ctx;
8446 
8447 	ip1dbg(("ip_get_numlifs(%d %u %d)\n", family, lifn_flags, (int)zoneid));
8448 
8449 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
8450 	if (family == AF_INET)
8451 		ill = ILL_START_WALK_V4(&ctx, ipst);
8452 	else if (family == AF_INET6)
8453 		ill = ILL_START_WALK_V6(&ctx, ipst);
8454 	else
8455 		ill = ILL_START_WALK_ALL(&ctx, ipst);
8456 
8457 	for (; ill != NULL; ill = ill_next(&ctx, ill)) {
8458 		for (ipif = ill->ill_ipif; ipif != NULL;
8459 		    ipif = ipif->ipif_next) {
8460 			if ((ipif->ipif_flags & IPIF_NOXMIT) &&
8461 			    !(lifn_flags & LIFC_NOXMIT))
8462 				continue;
8463 			if ((ipif->ipif_flags & IPIF_TEMPORARY) &&
8464 			    !(lifn_flags & LIFC_TEMPORARY))
8465 				continue;
8466 			if (((ipif->ipif_flags &
8467 			    (IPIF_NOXMIT|IPIF_NOLOCAL|
8468 			    IPIF_DEPRECATED)) ||
8469 			    IS_LOOPBACK(ill) ||
8470 			    !(ipif->ipif_flags & IPIF_UP)) &&
8471 			    (lifn_flags & LIFC_EXTERNAL_SOURCE))
8472 				continue;
8473 
8474 			if (zoneid != ipif->ipif_zoneid &&
8475 			    ipif->ipif_zoneid != ALL_ZONES &&
8476 			    (zoneid != GLOBAL_ZONEID ||
8477 			    !(lifn_flags & LIFC_ALLZONES)))
8478 				continue;
8479 
8480 			numifs++;
8481 		}
8482 	}
8483 	rw_exit(&ipst->ips_ill_g_lock);
8484 	return (numifs);
8485 }
8486 
8487 uint_t
8488 ip_get_lifsrcofnum(ill_t *ill)
8489 {
8490 	uint_t numifs = 0;
8491 	ill_t	*ill_head = ill;
8492 	ip_stack_t	*ipst = ill->ill_ipst;
8493 
8494 	/*
8495 	 * ill_g_usesrc_lock protects ill_usesrc_grp_next, for example, some
8496 	 * other thread may be trying to relink the ILLs in this usesrc group
8497 	 * and adjusting the ill_usesrc_grp_next pointers
8498 	 */
8499 	rw_enter(&ipst->ips_ill_g_usesrc_lock, RW_READER);
8500 	if ((ill->ill_usesrc_ifindex == 0) &&
8501 	    (ill->ill_usesrc_grp_next != NULL)) {
8502 		for (; (ill != NULL) && (ill->ill_usesrc_grp_next != ill_head);
8503 		    ill = ill->ill_usesrc_grp_next)
8504 			numifs++;
8505 	}
8506 	rw_exit(&ipst->ips_ill_g_usesrc_lock);
8507 
8508 	return (numifs);
8509 }
8510 
8511 /* Null values are passed in for ipif, sin, and ifreq */
8512 /* ARGSUSED */
8513 int
8514 ip_sioctl_get_ifnum(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q,
8515     mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq)
8516 {
8517 	int *nump;
8518 	conn_t *connp = Q_TO_CONN(q);
8519 
8520 	ASSERT(q->q_next == NULL); /* not a valid ioctl for ip as a module */
8521 
8522 	/* Existence of b_cont->b_cont checked in ip_wput_nondata */
8523 	nump = (int *)mp->b_cont->b_cont->b_rptr;
8524 
8525 	*nump = ip_get_numifs(connp->conn_zoneid,
8526 	    connp->conn_netstack->netstack_ip);
8527 	ip1dbg(("ip_sioctl_get_ifnum numifs %d", *nump));
8528 	return (0);
8529 }
8530 
8531 /* Null values are passed in for ipif, sin, and ifreq */
8532 /* ARGSUSED */
8533 int
8534 ip_sioctl_get_lifnum(ipif_t *dummy_ipif, sin_t *dummy_sin,
8535     queue_t *q, mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq)
8536 {
8537 	struct lifnum *lifn;
8538 	mblk_t	*mp1;
8539 	conn_t *connp = Q_TO_CONN(q);
8540 
8541 	ASSERT(q->q_next == NULL); /* not a valid ioctl for ip as a module */
8542 
8543 	/* Existence checked in ip_wput_nondata */
8544 	mp1 = mp->b_cont->b_cont;
8545 
8546 	lifn = (struct lifnum *)mp1->b_rptr;
8547 	switch (lifn->lifn_family) {
8548 	case AF_UNSPEC:
8549 	case AF_INET:
8550 	case AF_INET6:
8551 		break;
8552 	default:
8553 		return (EAFNOSUPPORT);
8554 	}
8555 
8556 	lifn->lifn_count = ip_get_numlifs(lifn->lifn_family, lifn->lifn_flags,
8557 	    connp->conn_zoneid, connp->conn_netstack->netstack_ip);
8558 	ip1dbg(("ip_sioctl_get_lifnum numifs %d", lifn->lifn_count));
8559 	return (0);
8560 }
8561 
8562 /* ARGSUSED */
8563 int
8564 ip_sioctl_get_ifconf(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q,
8565     mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq)
8566 {
8567 	STRUCT_HANDLE(ifconf, ifc);
8568 	mblk_t *mp1;
8569 	struct iocblk *iocp;
8570 	struct ifreq *ifr;
8571 	ill_walk_context_t	ctx;
8572 	ill_t	*ill;
8573 	ipif_t	*ipif;
8574 	struct sockaddr_in *sin;
8575 	int32_t	ifclen;
8576 	zoneid_t zoneid;
8577 	ip_stack_t *ipst = CONNQ_TO_IPST(q);
8578 
8579 	ASSERT(q->q_next == NULL); /* not valid ioctls for ip as a module */
8580 
8581 	ip1dbg(("ip_sioctl_get_ifconf"));
8582 	/* Existence verified in ip_wput_nondata */
8583 	mp1 = mp->b_cont->b_cont;
8584 	iocp = (struct iocblk *)mp->b_rptr;
8585 	zoneid = Q_TO_CONN(q)->conn_zoneid;
8586 
8587 	/*
8588 	 * The original SIOCGIFCONF passed in a struct ifconf which specified
8589 	 * the user buffer address and length into which the list of struct
8590 	 * ifreqs was to be copied.  Since AT&T Streams does not seem to
8591 	 * allow M_COPYOUT to be used in conjunction with I_STR IOCTLS,
8592 	 * the SIOCGIFCONF operation was redefined to simply provide
8593 	 * a large output buffer into which we are supposed to jam the ifreq
8594 	 * array.  The same ioctl command code was used, despite the fact that
8595 	 * both the applications and the kernel code had to change, thus making
8596 	 * it impossible to support both interfaces.
8597 	 *
8598 	 * For reasons not good enough to try to explain, the following
8599 	 * algorithm is used for deciding what to do with one of these:
8600 	 * If the IOCTL comes in as an I_STR, it is assumed to be of the new
8601 	 * form with the output buffer coming down as the continuation message.
8602 	 * If it arrives as a TRANSPARENT IOCTL, it is assumed to be old style,
8603 	 * and we have to copy in the ifconf structure to find out how big the
8604 	 * output buffer is and where to copy out to.  Sure no problem...
8605 	 *
8606 	 */
8607 	STRUCT_SET_HANDLE(ifc, iocp->ioc_flag, NULL);
8608 	if ((mp1->b_wptr - mp1->b_rptr) == STRUCT_SIZE(ifc)) {
8609 		int numifs = 0;
8610 		size_t ifc_bufsize;
8611 
8612 		/*
8613 		 * Must be (better be!) continuation of a TRANSPARENT
8614 		 * IOCTL.  We just copied in the ifconf structure.
8615 		 */
8616 		STRUCT_SET_HANDLE(ifc, iocp->ioc_flag,
8617 		    (struct ifconf *)mp1->b_rptr);
8618 
8619 		/*
8620 		 * Allocate a buffer to hold requested information.
8621 		 *
8622 		 * If ifc_len is larger than what is needed, we only
8623 		 * allocate what we will use.
8624 		 *
8625 		 * If ifc_len is smaller than what is needed, return
8626 		 * EINVAL.
8627 		 *
8628 		 * XXX: the ill_t structure can hava 2 counters, for
8629 		 * v4 and v6 (not just ill_ipif_up_count) to store the
8630 		 * number of interfaces for a device, so we don't need
8631 		 * to count them here...
8632 		 */
8633 		numifs = ip_get_numifs(zoneid, ipst);
8634 
8635 		ifclen = STRUCT_FGET(ifc, ifc_len);
8636 		ifc_bufsize = numifs * sizeof (struct ifreq);
8637 		if (ifc_bufsize > ifclen) {
8638 			if (iocp->ioc_cmd == O_SIOCGIFCONF) {
8639 				/* old behaviour */
8640 				return (EINVAL);
8641 			} else {
8642 				ifc_bufsize = ifclen;
8643 			}
8644 		}
8645 
8646 		mp1 = mi_copyout_alloc(q, mp,
8647 		    STRUCT_FGETP(ifc, ifc_buf), ifc_bufsize, B_FALSE);
8648 		if (mp1 == NULL)
8649 			return (ENOMEM);
8650 
8651 		mp1->b_wptr = mp1->b_rptr + ifc_bufsize;
8652 	}
8653 	bzero(mp1->b_rptr, mp1->b_wptr - mp1->b_rptr);
8654 	/*
8655 	 * the SIOCGIFCONF ioctl only knows about
8656 	 * IPv4 addresses, so don't try to tell
8657 	 * it about interfaces with IPv6-only
8658 	 * addresses. (Last parm 'isv6' is B_FALSE)
8659 	 */
8660 
8661 	ifr = (struct ifreq *)mp1->b_rptr;
8662 
8663 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
8664 	ill = ILL_START_WALK_V4(&ctx, ipst);
8665 	for (; ill != NULL; ill = ill_next(&ctx, ill)) {
8666 		for (ipif = ill->ill_ipif; ipif != NULL;
8667 		    ipif = ipif->ipif_next) {
8668 			if (zoneid != ipif->ipif_zoneid &&
8669 			    ipif->ipif_zoneid != ALL_ZONES)
8670 				continue;
8671 			if ((uchar_t *)&ifr[1] > mp1->b_wptr) {
8672 				if (iocp->ioc_cmd == O_SIOCGIFCONF) {
8673 					/* old behaviour */
8674 					rw_exit(&ipst->ips_ill_g_lock);
8675 					return (EINVAL);
8676 				} else {
8677 					goto if_copydone;
8678 				}
8679 			}
8680 			ipif_get_name(ipif, ifr->ifr_name,
8681 			    sizeof (ifr->ifr_name));
8682 			sin = (sin_t *)&ifr->ifr_addr;
8683 			*sin = sin_null;
8684 			sin->sin_family = AF_INET;
8685 			sin->sin_addr.s_addr = ipif->ipif_lcl_addr;
8686 			ifr++;
8687 		}
8688 	}
8689 if_copydone:
8690 	rw_exit(&ipst->ips_ill_g_lock);
8691 	mp1->b_wptr = (uchar_t *)ifr;
8692 
8693 	if (STRUCT_BUF(ifc) != NULL) {
8694 		STRUCT_FSET(ifc, ifc_len,
8695 		    (int)((uchar_t *)ifr - mp1->b_rptr));
8696 	}
8697 	return (0);
8698 }
8699 
8700 /*
8701  * Get the interfaces using the address hosted on the interface passed in,
8702  * as a source adddress
8703  */
8704 /* ARGSUSED */
8705 int
8706 ip_sioctl_get_lifsrcof(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q,
8707     mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq)
8708 {
8709 	mblk_t *mp1;
8710 	ill_t	*ill, *ill_head;
8711 	ipif_t	*ipif, *orig_ipif;
8712 	int	numlifs = 0;
8713 	size_t	lifs_bufsize, lifsmaxlen;
8714 	struct	lifreq *lifr;
8715 	struct iocblk *iocp = (struct iocblk *)mp->b_rptr;
8716 	uint_t	ifindex;
8717 	zoneid_t zoneid;
8718 	int err = 0;
8719 	boolean_t isv6 = B_FALSE;
8720 	struct	sockaddr_in	*sin;
8721 	struct	sockaddr_in6	*sin6;
8722 	STRUCT_HANDLE(lifsrcof, lifs);
8723 	ip_stack_t		*ipst;
8724 
8725 	ipst = CONNQ_TO_IPST(q);
8726 
8727 	ASSERT(q->q_next == NULL);
8728 
8729 	zoneid = Q_TO_CONN(q)->conn_zoneid;
8730 
8731 	/* Existence verified in ip_wput_nondata */
8732 	mp1 = mp->b_cont->b_cont;
8733 
8734 	/*
8735 	 * Must be (better be!) continuation of a TRANSPARENT
8736 	 * IOCTL.  We just copied in the lifsrcof structure.
8737 	 */
8738 	STRUCT_SET_HANDLE(lifs, iocp->ioc_flag,
8739 	    (struct lifsrcof *)mp1->b_rptr);
8740 
8741 	if (MBLKL(mp1) != STRUCT_SIZE(lifs))
8742 		return (EINVAL);
8743 
8744 	ifindex = STRUCT_FGET(lifs, lifs_ifindex);
8745 	isv6 = (Q_TO_CONN(q))->conn_af_isv6;
8746 	ipif = ipif_lookup_on_ifindex(ifindex, isv6, zoneid, q, mp,
8747 	    ip_process_ioctl, &err, ipst);
8748 	if (ipif == NULL) {
8749 		ip1dbg(("ip_sioctl_get_lifsrcof: no ipif for ifindex %d\n",
8750 		    ifindex));
8751 		return (err);
8752 	}
8753 
8754 
8755 	/* Allocate a buffer to hold requested information */
8756 	numlifs = ip_get_lifsrcofnum(ipif->ipif_ill);
8757 	lifs_bufsize = numlifs * sizeof (struct lifreq);
8758 	lifsmaxlen =  STRUCT_FGET(lifs, lifs_maxlen);
8759 	/* The actual size needed is always returned in lifs_len */
8760 	STRUCT_FSET(lifs, lifs_len, lifs_bufsize);
8761 
8762 	/* If the amount we need is more than what is passed in, abort */
8763 	if (lifs_bufsize > lifsmaxlen || lifs_bufsize == 0) {
8764 		ipif_refrele(ipif);
8765 		return (0);
8766 	}
8767 
8768 	mp1 = mi_copyout_alloc(q, mp,
8769 	    STRUCT_FGETP(lifs, lifs_buf), lifs_bufsize, B_FALSE);
8770 	if (mp1 == NULL) {
8771 		ipif_refrele(ipif);
8772 		return (ENOMEM);
8773 	}
8774 
8775 	mp1->b_wptr = mp1->b_rptr + lifs_bufsize;
8776 	bzero(mp1->b_rptr, lifs_bufsize);
8777 
8778 	lifr = (struct lifreq *)mp1->b_rptr;
8779 
8780 	ill = ill_head = ipif->ipif_ill;
8781 	orig_ipif = ipif;
8782 
8783 	/* ill_g_usesrc_lock protects ill_usesrc_grp_next */
8784 	rw_enter(&ipst->ips_ill_g_usesrc_lock, RW_READER);
8785 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
8786 
8787 	ill = ill->ill_usesrc_grp_next; /* start from next ill */
8788 	for (; (ill != NULL) && (ill != ill_head);
8789 	    ill = ill->ill_usesrc_grp_next) {
8790 
8791 		if ((uchar_t *)&lifr[1] > mp1->b_wptr)
8792 			break;
8793 
8794 		ipif = ill->ill_ipif;
8795 		ipif_get_name(ipif, lifr->lifr_name, sizeof (lifr->lifr_name));
8796 		if (ipif->ipif_isv6) {
8797 			sin6 = (sin6_t *)&lifr->lifr_addr;
8798 			*sin6 = sin6_null;
8799 			sin6->sin6_family = AF_INET6;
8800 			sin6->sin6_addr = ipif->ipif_v6lcl_addr;
8801 			lifr->lifr_addrlen = ip_mask_to_plen_v6(
8802 			    &ipif->ipif_v6net_mask);
8803 		} else {
8804 			sin = (sin_t *)&lifr->lifr_addr;
8805 			*sin = sin_null;
8806 			sin->sin_family = AF_INET;
8807 			sin->sin_addr.s_addr = ipif->ipif_lcl_addr;
8808 			lifr->lifr_addrlen = ip_mask_to_plen(
8809 			    ipif->ipif_net_mask);
8810 		}
8811 		lifr++;
8812 	}
8813 	rw_exit(&ipst->ips_ill_g_usesrc_lock);
8814 	rw_exit(&ipst->ips_ill_g_lock);
8815 	ipif_refrele(orig_ipif);
8816 	mp1->b_wptr = (uchar_t *)lifr;
8817 	STRUCT_FSET(lifs, lifs_len, (int)((uchar_t *)lifr - mp1->b_rptr));
8818 
8819 	return (0);
8820 }
8821 
8822 /* ARGSUSED */
8823 int
8824 ip_sioctl_get_lifconf(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q,
8825     mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq)
8826 {
8827 	mblk_t *mp1;
8828 	int	list;
8829 	ill_t	*ill;
8830 	ipif_t	*ipif;
8831 	int	flags;
8832 	int	numlifs = 0;
8833 	size_t	lifc_bufsize;
8834 	struct	lifreq *lifr;
8835 	sa_family_t	family;
8836 	struct	sockaddr_in	*sin;
8837 	struct	sockaddr_in6	*sin6;
8838 	ill_walk_context_t	ctx;
8839 	struct iocblk *iocp = (struct iocblk *)mp->b_rptr;
8840 	int32_t	lifclen;
8841 	zoneid_t zoneid;
8842 	STRUCT_HANDLE(lifconf, lifc);
8843 	ip_stack_t *ipst = CONNQ_TO_IPST(q);
8844 
8845 	ip1dbg(("ip_sioctl_get_lifconf"));
8846 
8847 	ASSERT(q->q_next == NULL);
8848 
8849 	zoneid = Q_TO_CONN(q)->conn_zoneid;
8850 
8851 	/* Existence verified in ip_wput_nondata */
8852 	mp1 = mp->b_cont->b_cont;
8853 
8854 	/*
8855 	 * An extended version of SIOCGIFCONF that takes an
8856 	 * additional address family and flags field.
8857 	 * AF_UNSPEC retrieve both IPv4 and IPv6.
8858 	 * Unless LIFC_NOXMIT is specified the IPIF_NOXMIT
8859 	 * interfaces are omitted.
8860 	 * Similarly, IPIF_TEMPORARY interfaces are omitted
8861 	 * unless LIFC_TEMPORARY is specified.
8862 	 * If LIFC_EXTERNAL_SOURCE is specified, IPIF_NOXMIT,
8863 	 * IPIF_NOLOCAL, PHYI_LOOPBACK, IPIF_DEPRECATED and
8864 	 * not IPIF_UP interfaces are omitted. LIFC_EXTERNAL_SOURCE
8865 	 * has priority over LIFC_NOXMIT.
8866 	 */
8867 	STRUCT_SET_HANDLE(lifc, iocp->ioc_flag, NULL);
8868 
8869 	if ((mp1->b_wptr - mp1->b_rptr) != STRUCT_SIZE(lifc))
8870 		return (EINVAL);
8871 
8872 	/*
8873 	 * Must be (better be!) continuation of a TRANSPARENT
8874 	 * IOCTL.  We just copied in the lifconf structure.
8875 	 */
8876 	STRUCT_SET_HANDLE(lifc, iocp->ioc_flag, (struct lifconf *)mp1->b_rptr);
8877 
8878 	family = STRUCT_FGET(lifc, lifc_family);
8879 	flags = STRUCT_FGET(lifc, lifc_flags);
8880 
8881 	switch (family) {
8882 	case AF_UNSPEC:
8883 		/*
8884 		 * walk all ILL's.
8885 		 */
8886 		list = MAX_G_HEADS;
8887 		break;
8888 	case AF_INET:
8889 		/*
8890 		 * walk only IPV4 ILL's.
8891 		 */
8892 		list = IP_V4_G_HEAD;
8893 		break;
8894 	case AF_INET6:
8895 		/*
8896 		 * walk only IPV6 ILL's.
8897 		 */
8898 		list = IP_V6_G_HEAD;
8899 		break;
8900 	default:
8901 		return (EAFNOSUPPORT);
8902 	}
8903 
8904 	/*
8905 	 * Allocate a buffer to hold requested information.
8906 	 *
8907 	 * If lifc_len is larger than what is needed, we only
8908 	 * allocate what we will use.
8909 	 *
8910 	 * If lifc_len is smaller than what is needed, return
8911 	 * EINVAL.
8912 	 */
8913 	numlifs = ip_get_numlifs(family, flags, zoneid, ipst);
8914 	lifc_bufsize = numlifs * sizeof (struct lifreq);
8915 	lifclen = STRUCT_FGET(lifc, lifc_len);
8916 	if (lifc_bufsize > lifclen) {
8917 		if (iocp->ioc_cmd == O_SIOCGLIFCONF)
8918 			return (EINVAL);
8919 		else
8920 			lifc_bufsize = lifclen;
8921 	}
8922 
8923 	mp1 = mi_copyout_alloc(q, mp,
8924 	    STRUCT_FGETP(lifc, lifc_buf), lifc_bufsize, B_FALSE);
8925 	if (mp1 == NULL)
8926 		return (ENOMEM);
8927 
8928 	mp1->b_wptr = mp1->b_rptr + lifc_bufsize;
8929 	bzero(mp1->b_rptr, mp1->b_wptr - mp1->b_rptr);
8930 
8931 	lifr = (struct lifreq *)mp1->b_rptr;
8932 
8933 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
8934 	ill = ill_first(list, list, &ctx, ipst);
8935 	for (; ill != NULL; ill = ill_next(&ctx, ill)) {
8936 		for (ipif = ill->ill_ipif; ipif != NULL;
8937 		    ipif = ipif->ipif_next) {
8938 			if ((ipif->ipif_flags & IPIF_NOXMIT) &&
8939 			    !(flags & LIFC_NOXMIT))
8940 				continue;
8941 
8942 			if ((ipif->ipif_flags & IPIF_TEMPORARY) &&
8943 			    !(flags & LIFC_TEMPORARY))
8944 				continue;
8945 
8946 			if (((ipif->ipif_flags &
8947 			    (IPIF_NOXMIT|IPIF_NOLOCAL|
8948 			    IPIF_DEPRECATED)) ||
8949 			    IS_LOOPBACK(ill) ||
8950 			    !(ipif->ipif_flags & IPIF_UP)) &&
8951 			    (flags & LIFC_EXTERNAL_SOURCE))
8952 				continue;
8953 
8954 			if (zoneid != ipif->ipif_zoneid &&
8955 			    ipif->ipif_zoneid != ALL_ZONES &&
8956 			    (zoneid != GLOBAL_ZONEID ||
8957 			    !(flags & LIFC_ALLZONES)))
8958 				continue;
8959 
8960 			if ((uchar_t *)&lifr[1] > mp1->b_wptr) {
8961 				if (iocp->ioc_cmd == O_SIOCGLIFCONF) {
8962 					rw_exit(&ipst->ips_ill_g_lock);
8963 					return (EINVAL);
8964 				} else {
8965 					goto lif_copydone;
8966 				}
8967 			}
8968 
8969 			ipif_get_name(ipif, lifr->lifr_name,
8970 			    sizeof (lifr->lifr_name));
8971 			if (ipif->ipif_isv6) {
8972 				sin6 = (sin6_t *)&lifr->lifr_addr;
8973 				*sin6 = sin6_null;
8974 				sin6->sin6_family = AF_INET6;
8975 				sin6->sin6_addr =
8976 				    ipif->ipif_v6lcl_addr;
8977 				lifr->lifr_addrlen =
8978 				    ip_mask_to_plen_v6(
8979 				    &ipif->ipif_v6net_mask);
8980 			} else {
8981 				sin = (sin_t *)&lifr->lifr_addr;
8982 				*sin = sin_null;
8983 				sin->sin_family = AF_INET;
8984 				sin->sin_addr.s_addr =
8985 				    ipif->ipif_lcl_addr;
8986 				lifr->lifr_addrlen =
8987 				    ip_mask_to_plen(
8988 				    ipif->ipif_net_mask);
8989 			}
8990 			lifr++;
8991 		}
8992 	}
8993 lif_copydone:
8994 	rw_exit(&ipst->ips_ill_g_lock);
8995 
8996 	mp1->b_wptr = (uchar_t *)lifr;
8997 	if (STRUCT_BUF(lifc) != NULL) {
8998 		STRUCT_FSET(lifc, lifc_len,
8999 		    (int)((uchar_t *)lifr - mp1->b_rptr));
9000 	}
9001 	return (0);
9002 }
9003 
9004 /* ARGSUSED */
9005 int
9006 ip_sioctl_set_ipmpfailback(ipif_t *dummy_ipif, sin_t *dummy_sin,
9007     queue_t *q, mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq)
9008 {
9009 	ip_stack_t	*ipst;
9010 
9011 	if (q->q_next == NULL)
9012 		ipst = CONNQ_TO_IPST(q);
9013 	else
9014 		ipst = ILLQ_TO_IPST(q);
9015 
9016 	/* Existence of b_cont->b_cont checked in ip_wput_nondata */
9017 	ipst->ips_ipmp_enable_failback = *(int *)mp->b_cont->b_cont->b_rptr;
9018 	return (0);
9019 }
9020 
9021 static void
9022 ip_sioctl_ip6addrpolicy(queue_t *q, mblk_t *mp)
9023 {
9024 	ip6_asp_t *table;
9025 	size_t table_size;
9026 	mblk_t *data_mp;
9027 	struct iocblk *iocp = (struct iocblk *)mp->b_rptr;
9028 	ip_stack_t	*ipst;
9029 
9030 	if (q->q_next == NULL)
9031 		ipst = CONNQ_TO_IPST(q);
9032 	else
9033 		ipst = ILLQ_TO_IPST(q);
9034 
9035 	/* These two ioctls are I_STR only */
9036 	if (iocp->ioc_count == TRANSPARENT) {
9037 		miocnak(q, mp, 0, EINVAL);
9038 		return;
9039 	}
9040 
9041 	data_mp = mp->b_cont;
9042 	if (data_mp == NULL) {
9043 		/* The user passed us a NULL argument */
9044 		table = NULL;
9045 		table_size = iocp->ioc_count;
9046 	} else {
9047 		/*
9048 		 * The user provided a table.  The stream head
9049 		 * may have copied in the user data in chunks,
9050 		 * so make sure everything is pulled up
9051 		 * properly.
9052 		 */
9053 		if (MBLKL(data_mp) < iocp->ioc_count) {
9054 			mblk_t *new_data_mp;
9055 			if ((new_data_mp = msgpullup(data_mp, -1)) ==
9056 			    NULL) {
9057 				miocnak(q, mp, 0, ENOMEM);
9058 				return;
9059 			}
9060 			freemsg(data_mp);
9061 			data_mp = new_data_mp;
9062 			mp->b_cont = data_mp;
9063 		}
9064 		table = (ip6_asp_t *)data_mp->b_rptr;
9065 		table_size = iocp->ioc_count;
9066 	}
9067 
9068 	switch (iocp->ioc_cmd) {
9069 	case SIOCGIP6ADDRPOLICY:
9070 		iocp->ioc_rval = ip6_asp_get(table, table_size, ipst);
9071 		if (iocp->ioc_rval == -1)
9072 			iocp->ioc_error = EINVAL;
9073 #if defined(_SYSCALL32_IMPL) && _LONG_LONG_ALIGNMENT_32 == 4
9074 		else if (table != NULL &&
9075 		    (iocp->ioc_flag & IOC_MODELS) == IOC_ILP32) {
9076 			ip6_asp_t *src = table;
9077 			ip6_asp32_t *dst = (void *)table;
9078 			int count = table_size / sizeof (ip6_asp_t);
9079 			int i;
9080 
9081 			/*
9082 			 * We need to do an in-place shrink of the array
9083 			 * to match the alignment attributes of the
9084 			 * 32-bit ABI looking at it.
9085 			 */
9086 			/* LINTED: logical expression always true: op "||" */
9087 			ASSERT(sizeof (*src) > sizeof (*dst));
9088 			for (i = 1; i < count; i++)
9089 				bcopy(src + i, dst + i, sizeof (*dst));
9090 		}
9091 #endif
9092 		break;
9093 
9094 	case SIOCSIP6ADDRPOLICY:
9095 		ASSERT(mp->b_prev == NULL);
9096 		mp->b_prev = (void *)q;
9097 #if defined(_SYSCALL32_IMPL) && _LONG_LONG_ALIGNMENT_32 == 4
9098 		/*
9099 		 * We pass in the datamodel here so that the ip6_asp_replace()
9100 		 * routine can handle converting from 32-bit to native formats
9101 		 * where necessary.
9102 		 *
9103 		 * A better way to handle this might be to convert the inbound
9104 		 * data structure here, and hang it off a new 'mp'; thus the
9105 		 * ip6_asp_replace() logic would always be dealing with native
9106 		 * format data structures..
9107 		 *
9108 		 * (An even simpler way to handle these ioctls is to just
9109 		 * add a 32-bit trailing 'pad' field to the ip6_asp_t structure
9110 		 * and just recompile everything that depends on it.)
9111 		 */
9112 #endif
9113 		ip6_asp_replace(mp, table, table_size, B_FALSE, ipst,
9114 		    iocp->ioc_flag & IOC_MODELS);
9115 		return;
9116 	}
9117 
9118 	DB_TYPE(mp) =  (iocp->ioc_error == 0) ? M_IOCACK : M_IOCNAK;
9119 	qreply(q, mp);
9120 }
9121 
9122 static void
9123 ip_sioctl_dstinfo(queue_t *q, mblk_t *mp)
9124 {
9125 	mblk_t 		*data_mp;
9126 	struct dstinforeq	*dir;
9127 	uint8_t		*end, *cur;
9128 	in6_addr_t	*daddr, *saddr;
9129 	ipaddr_t	v4daddr;
9130 	ire_t		*ire;
9131 	char		*slabel, *dlabel;
9132 	boolean_t	isipv4;
9133 	int		match_ire;
9134 	ill_t		*dst_ill;
9135 	ipif_t		*src_ipif, *ire_ipif;
9136 	struct iocblk *iocp = (struct iocblk *)mp->b_rptr;
9137 	zoneid_t	zoneid;
9138 	ip_stack_t	*ipst = CONNQ_TO_IPST(q);
9139 
9140 	ASSERT(q->q_next == NULL); /* this ioctl not allowed if ip is module */
9141 	zoneid = Q_TO_CONN(q)->conn_zoneid;
9142 
9143 	/*
9144 	 * This ioctl is I_STR only, and must have a
9145 	 * data mblk following the M_IOCTL mblk.
9146 	 */
9147 	data_mp = mp->b_cont;
9148 	if (iocp->ioc_count == TRANSPARENT || data_mp == NULL) {
9149 		miocnak(q, mp, 0, EINVAL);
9150 		return;
9151 	}
9152 
9153 	if (MBLKL(data_mp) < iocp->ioc_count) {
9154 		mblk_t *new_data_mp;
9155 
9156 		if ((new_data_mp = msgpullup(data_mp, -1)) == NULL) {
9157 			miocnak(q, mp, 0, ENOMEM);
9158 			return;
9159 		}
9160 		freemsg(data_mp);
9161 		data_mp = new_data_mp;
9162 		mp->b_cont = data_mp;
9163 	}
9164 	match_ire = MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT | MATCH_IRE_PARENT;
9165 
9166 	for (cur = data_mp->b_rptr, end = data_mp->b_wptr;
9167 	    end - cur >= sizeof (struct dstinforeq);
9168 	    cur += sizeof (struct dstinforeq)) {
9169 		dir = (struct dstinforeq *)cur;
9170 		daddr = &dir->dir_daddr;
9171 		saddr = &dir->dir_saddr;
9172 
9173 		/*
9174 		 * ip_addr_scope_v6() and ip6_asp_lookup() handle
9175 		 * v4 mapped addresses; ire_ftable_lookup[_v6]()
9176 		 * and ipif_select_source[_v6]() do not.
9177 		 */
9178 		dir->dir_dscope = ip_addr_scope_v6(daddr);
9179 		dlabel = ip6_asp_lookup(daddr, &dir->dir_precedence, ipst);
9180 
9181 		isipv4 = IN6_IS_ADDR_V4MAPPED(daddr);
9182 		if (isipv4) {
9183 			IN6_V4MAPPED_TO_IPADDR(daddr, v4daddr);
9184 			ire = ire_ftable_lookup(v4daddr, NULL, NULL,
9185 			    0, NULL, NULL, zoneid, 0, NULL, match_ire, ipst);
9186 		} else {
9187 			ire = ire_ftable_lookup_v6(daddr, NULL, NULL,
9188 			    0, NULL, NULL, zoneid, 0, NULL, match_ire, ipst);
9189 		}
9190 		if (ire == NULL) {
9191 			dir->dir_dreachable = 0;
9192 
9193 			/* move on to next dst addr */
9194 			continue;
9195 		}
9196 		dir->dir_dreachable = 1;
9197 
9198 		ire_ipif = ire->ire_ipif;
9199 		if (ire_ipif == NULL)
9200 			goto next_dst;
9201 
9202 		/*
9203 		 * We expect to get back an interface ire or a
9204 		 * gateway ire cache entry.  For both types, the
9205 		 * output interface is ire_ipif->ipif_ill.
9206 		 */
9207 		dst_ill = ire_ipif->ipif_ill;
9208 		dir->dir_dmactype = dst_ill->ill_mactype;
9209 
9210 		if (isipv4) {
9211 			src_ipif = ipif_select_source(dst_ill, v4daddr, zoneid);
9212 		} else {
9213 			src_ipif = ipif_select_source_v6(dst_ill,
9214 			    daddr, RESTRICT_TO_NONE, IPV6_PREFER_SRC_DEFAULT,
9215 			    zoneid);
9216 		}
9217 		if (src_ipif == NULL)
9218 			goto next_dst;
9219 
9220 		*saddr = src_ipif->ipif_v6lcl_addr;
9221 		dir->dir_sscope = ip_addr_scope_v6(saddr);
9222 		slabel = ip6_asp_lookup(saddr, NULL, ipst);
9223 		dir->dir_labelmatch = ip6_asp_labelcmp(dlabel, slabel);
9224 		dir->dir_sdeprecated =
9225 		    (src_ipif->ipif_flags & IPIF_DEPRECATED) ? 1 : 0;
9226 		ipif_refrele(src_ipif);
9227 next_dst:
9228 		ire_refrele(ire);
9229 	}
9230 	miocack(q, mp, iocp->ioc_count, 0);
9231 }
9232 
9233 
9234 /*
9235  * Check if this is an address assigned to this machine.
9236  * Skips interfaces that are down by using ire checks.
9237  * Translates mapped addresses to v4 addresses and then
9238  * treats them as such, returning true if the v4 address
9239  * associated with this mapped address is configured.
9240  * Note: Applications will have to be careful what they do
9241  * with the response; use of mapped addresses limits
9242  * what can be done with the socket, especially with
9243  * respect to socket options and ioctls - neither IPv4
9244  * options nor IPv6 sticky options/ancillary data options
9245  * may be used.
9246  */
9247 /* ARGSUSED */
9248 int
9249 ip_sioctl_tmyaddr(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp,
9250     ip_ioctl_cmd_t *ipip, void *dummy_ifreq)
9251 {
9252 	struct sioc_addrreq *sia;
9253 	sin_t *sin;
9254 	ire_t *ire;
9255 	mblk_t *mp1;
9256 	zoneid_t zoneid;
9257 	ip_stack_t	*ipst;
9258 
9259 	ip1dbg(("ip_sioctl_tmyaddr"));
9260 
9261 	ASSERT(q->q_next == NULL); /* this ioctl not allowed if ip is module */
9262 	zoneid = Q_TO_CONN(q)->conn_zoneid;
9263 	ipst = CONNQ_TO_IPST(q);
9264 
9265 	/* Existence verified in ip_wput_nondata */
9266 	mp1 = mp->b_cont->b_cont;
9267 	sia = (struct sioc_addrreq *)mp1->b_rptr;
9268 	sin = (sin_t *)&sia->sa_addr;
9269 	switch (sin->sin_family) {
9270 	case AF_INET6: {
9271 		sin6_t *sin6 = (sin6_t *)sin;
9272 
9273 		if (IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) {
9274 			ipaddr_t v4_addr;
9275 
9276 			IN6_V4MAPPED_TO_IPADDR(&sin6->sin6_addr,
9277 			    v4_addr);
9278 			ire = ire_ctable_lookup(v4_addr, 0,
9279 			    IRE_LOCAL|IRE_LOOPBACK, NULL, zoneid,
9280 			    NULL, MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY, ipst);
9281 		} else {
9282 			in6_addr_t v6addr;
9283 
9284 			v6addr = sin6->sin6_addr;
9285 			ire = ire_ctable_lookup_v6(&v6addr, 0,
9286 			    IRE_LOCAL|IRE_LOOPBACK, NULL, zoneid,
9287 			    NULL, MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY, ipst);
9288 		}
9289 		break;
9290 	}
9291 	case AF_INET: {
9292 		ipaddr_t v4addr;
9293 
9294 		v4addr = sin->sin_addr.s_addr;
9295 		ire = ire_ctable_lookup(v4addr, 0,
9296 		    IRE_LOCAL|IRE_LOOPBACK, NULL, zoneid,
9297 		    NULL, MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY, ipst);
9298 		break;
9299 	}
9300 	default:
9301 		return (EAFNOSUPPORT);
9302 	}
9303 	if (ire != NULL) {
9304 		sia->sa_res = 1;
9305 		ire_refrele(ire);
9306 	} else {
9307 		sia->sa_res = 0;
9308 	}
9309 	return (0);
9310 }
9311 
9312 /*
9313  * Check if this is an address assigned on-link i.e. neighbor,
9314  * and makes sure it's reachable from the current zone.
9315  * Returns true for my addresses as well.
9316  * Translates mapped addresses to v4 addresses and then
9317  * treats them as such, returning true if the v4 address
9318  * associated with this mapped address is configured.
9319  * Note: Applications will have to be careful what they do
9320  * with the response; use of mapped addresses limits
9321  * what can be done with the socket, especially with
9322  * respect to socket options and ioctls - neither IPv4
9323  * options nor IPv6 sticky options/ancillary data options
9324  * may be used.
9325  */
9326 /* ARGSUSED */
9327 int
9328 ip_sioctl_tonlink(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp,
9329     ip_ioctl_cmd_t *ipip, void *duymmy_ifreq)
9330 {
9331 	struct sioc_addrreq *sia;
9332 	sin_t *sin;
9333 	mblk_t	*mp1;
9334 	ire_t *ire = NULL;
9335 	zoneid_t zoneid;
9336 	ip_stack_t	*ipst;
9337 
9338 	ip1dbg(("ip_sioctl_tonlink"));
9339 
9340 	ASSERT(q->q_next == NULL); /* this ioctl not allowed if ip is module */
9341 	zoneid = Q_TO_CONN(q)->conn_zoneid;
9342 	ipst = CONNQ_TO_IPST(q);
9343 
9344 	/* Existence verified in ip_wput_nondata */
9345 	mp1 = mp->b_cont->b_cont;
9346 	sia = (struct sioc_addrreq *)mp1->b_rptr;
9347 	sin = (sin_t *)&sia->sa_addr;
9348 
9349 	/*
9350 	 * Match addresses with a zero gateway field to avoid
9351 	 * routes going through a router.
9352 	 * Exclude broadcast and multicast addresses.
9353 	 */
9354 	switch (sin->sin_family) {
9355 	case AF_INET6: {
9356 		sin6_t *sin6 = (sin6_t *)sin;
9357 
9358 		if (IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) {
9359 			ipaddr_t v4_addr;
9360 
9361 			IN6_V4MAPPED_TO_IPADDR(&sin6->sin6_addr,
9362 			    v4_addr);
9363 			if (!CLASSD(v4_addr)) {
9364 				ire = ire_route_lookup(v4_addr, 0, 0, 0,
9365 				    NULL, NULL, zoneid, NULL,
9366 				    MATCH_IRE_GW, ipst);
9367 			}
9368 		} else {
9369 			in6_addr_t v6addr;
9370 			in6_addr_t v6gw;
9371 
9372 			v6addr = sin6->sin6_addr;
9373 			v6gw = ipv6_all_zeros;
9374 			if (!IN6_IS_ADDR_MULTICAST(&v6addr)) {
9375 				ire = ire_route_lookup_v6(&v6addr, 0,
9376 				    &v6gw, 0, NULL, NULL, zoneid,
9377 				    NULL, MATCH_IRE_GW, ipst);
9378 			}
9379 		}
9380 		break;
9381 	}
9382 	case AF_INET: {
9383 		ipaddr_t v4addr;
9384 
9385 		v4addr = sin->sin_addr.s_addr;
9386 		if (!CLASSD(v4addr)) {
9387 			ire = ire_route_lookup(v4addr, 0, 0, 0,
9388 			    NULL, NULL, zoneid, NULL,
9389 			    MATCH_IRE_GW, ipst);
9390 		}
9391 		break;
9392 	}
9393 	default:
9394 		return (EAFNOSUPPORT);
9395 	}
9396 	sia->sa_res = 0;
9397 	if (ire != NULL) {
9398 		if (ire->ire_type & (IRE_INTERFACE|IRE_CACHE|
9399 		    IRE_LOCAL|IRE_LOOPBACK)) {
9400 			sia->sa_res = 1;
9401 		}
9402 		ire_refrele(ire);
9403 	}
9404 	return (0);
9405 }
9406 
9407 /*
9408  * TBD: implement when kernel maintaines a list of site prefixes.
9409  */
9410 /* ARGSUSED */
9411 int
9412 ip_sioctl_tmysite(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
9413     ip_ioctl_cmd_t *ipip, void *ifreq)
9414 {
9415 	return (ENXIO);
9416 }
9417 
9418 /* ARGSUSED */
9419 int
9420 ip_sioctl_tunparam(ipif_t *ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp,
9421     ip_ioctl_cmd_t *ipip, void *dummy_ifreq)
9422 {
9423 	ill_t  		*ill;
9424 	mblk_t		*mp1;
9425 	conn_t		*connp;
9426 	boolean_t	success;
9427 
9428 	ip1dbg(("ip_sioctl_tunparam(%s:%u %p)\n",
9429 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
9430 	/* ioctl comes down on an conn */
9431 	ASSERT(!(q->q_flag & QREADR) && q->q_next == NULL);
9432 	connp = Q_TO_CONN(q);
9433 
9434 	mp->b_datap->db_type = M_IOCTL;
9435 
9436 	/*
9437 	 * Send down a copy. (copymsg does not copy b_next/b_prev).
9438 	 * The original mp contains contaminated b_next values due to 'mi',
9439 	 * which is needed to do the mi_copy_done. Unfortunately if we
9440 	 * send down the original mblk itself and if we are popped due to an
9441 	 * an unplumb before the response comes back from tunnel,
9442 	 * the streamhead (which does a freemsg) will see this contaminated
9443 	 * message and the assertion in freemsg about non-null b_next/b_prev
9444 	 * will panic a DEBUG kernel.
9445 	 */
9446 	mp1 = copymsg(mp);
9447 	if (mp1 == NULL)
9448 		return (ENOMEM);
9449 
9450 	ill = ipif->ipif_ill;
9451 	mutex_enter(&connp->conn_lock);
9452 	mutex_enter(&ill->ill_lock);
9453 	if (ipip->ipi_cmd == SIOCSTUNPARAM || ipip->ipi_cmd == OSIOCSTUNPARAM) {
9454 		success = ipsq_pending_mp_add(connp, ipif, CONNP_TO_WQ(connp),
9455 		    mp, 0);
9456 	} else {
9457 		success = ill_pending_mp_add(ill, connp, mp);
9458 	}
9459 	mutex_exit(&ill->ill_lock);
9460 	mutex_exit(&connp->conn_lock);
9461 
9462 	if (success) {
9463 		ip1dbg(("sending down tunparam request "));
9464 		putnext(ill->ill_wq, mp1);
9465 		return (EINPROGRESS);
9466 	} else {
9467 		/* The conn has started closing */
9468 		freemsg(mp1);
9469 		return (EINTR);
9470 	}
9471 }
9472 
9473 /*
9474  * ARP IOCTLs.
9475  * How does IP get in the business of fronting ARP configuration/queries?
9476  * Well it's like this, the Berkeley ARP IOCTLs (SIOCGARP, SIOCDARP, SIOCSARP)
9477  * are by tradition passed in through a datagram socket.  That lands in IP.
9478  * As it happens, this is just as well since the interface is quite crude in
9479  * that it passes in no information about protocol or hardware types, or
9480  * interface association.  After making the protocol assumption, IP is in
9481  * the position to look up the name of the ILL, which ARP will need, and
9482  * format a request that can be handled by ARP.  The request is passed up
9483  * stream to ARP, and the original IOCTL is completed by IP when ARP passes
9484  * back a response.  ARP supports its own set of more general IOCTLs, in
9485  * case anyone is interested.
9486  */
9487 /* ARGSUSED */
9488 int
9489 ip_sioctl_arp(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
9490     ip_ioctl_cmd_t *ipip, void *dummy_ifreq)
9491 {
9492 	mblk_t *mp1;
9493 	mblk_t *mp2;
9494 	mblk_t *pending_mp;
9495 	ipaddr_t ipaddr;
9496 	area_t *area;
9497 	struct iocblk *iocp;
9498 	conn_t *connp;
9499 	struct arpreq *ar;
9500 	struct xarpreq *xar;
9501 	int flags, alength;
9502 	char *lladdr;
9503 	ip_stack_t	*ipst;
9504 	ill_t *ill = ipif->ipif_ill;
9505 	boolean_t if_arp_ioctl = B_FALSE;
9506 
9507 	ASSERT(!(q->q_flag & QREADR) && q->q_next == NULL);
9508 	connp = Q_TO_CONN(q);
9509 	ipst = connp->conn_netstack->netstack_ip;
9510 
9511 	if (ipip->ipi_cmd_type == XARP_CMD) {
9512 		/* We have a chain - M_IOCTL-->MI_COPY_MBLK-->XARPREQ_MBLK */
9513 		xar = (struct xarpreq *)mp->b_cont->b_cont->b_rptr;
9514 		ar = NULL;
9515 
9516 		flags = xar->xarp_flags;
9517 		lladdr = LLADDR(&xar->xarp_ha);
9518 		if_arp_ioctl = (xar->xarp_ha.sdl_nlen != 0);
9519 		/*
9520 		 * Validate against user's link layer address length
9521 		 * input and name and addr length limits.
9522 		 */
9523 		alength = ill->ill_phys_addr_length;
9524 		if (ipip->ipi_cmd == SIOCSXARP) {
9525 			if (alength != xar->xarp_ha.sdl_alen ||
9526 			    (alength + xar->xarp_ha.sdl_nlen >
9527 			    sizeof (xar->xarp_ha.sdl_data)))
9528 				return (EINVAL);
9529 		}
9530 	} else {
9531 		/* We have a chain - M_IOCTL-->MI_COPY_MBLK-->ARPREQ_MBLK */
9532 		ar = (struct arpreq *)mp->b_cont->b_cont->b_rptr;
9533 		xar = NULL;
9534 
9535 		flags = ar->arp_flags;
9536 		lladdr = ar->arp_ha.sa_data;
9537 		/*
9538 		 * Theoretically, the sa_family could tell us what link
9539 		 * layer type this operation is trying to deal with. By
9540 		 * common usage AF_UNSPEC means ethernet. We'll assume
9541 		 * any attempt to use the SIOC?ARP ioctls is for ethernet,
9542 		 * for now. Our new SIOC*XARP ioctls can be used more
9543 		 * generally.
9544 		 *
9545 		 * If the underlying media happens to have a non 6 byte
9546 		 * address, arp module will fail set/get, but the del
9547 		 * operation will succeed.
9548 		 */
9549 		alength = 6;
9550 		if ((ipip->ipi_cmd != SIOCDARP) &&
9551 		    (alength != ill->ill_phys_addr_length)) {
9552 			return (EINVAL);
9553 		}
9554 	}
9555 
9556 	/*
9557 	 * We are going to pass up to ARP a packet chain that looks
9558 	 * like:
9559 	 *
9560 	 * M_IOCTL-->ARP_op_MBLK-->ORIG_M_IOCTL-->MI_COPY_MBLK-->[X]ARPREQ_MBLK
9561 	 *
9562 	 * Get a copy of the original IOCTL mblk to head the chain,
9563 	 * to be sent up (in mp1). Also get another copy to store
9564 	 * in the ill_pending_mp list, for matching the response
9565 	 * when it comes back from ARP.
9566 	 */
9567 	mp1 = copyb(mp);
9568 	pending_mp = copymsg(mp);
9569 	if (mp1 == NULL || pending_mp == NULL) {
9570 		if (mp1 != NULL)
9571 			freeb(mp1);
9572 		if (pending_mp != NULL)
9573 			inet_freemsg(pending_mp);
9574 		return (ENOMEM);
9575 	}
9576 
9577 	ipaddr = sin->sin_addr.s_addr;
9578 
9579 	mp2 = ill_arp_alloc(ill, (uchar_t *)&ip_area_template,
9580 	    (caddr_t)&ipaddr);
9581 	if (mp2 == NULL) {
9582 		freeb(mp1);
9583 		inet_freemsg(pending_mp);
9584 		return (ENOMEM);
9585 	}
9586 	/* Put together the chain. */
9587 	mp1->b_cont = mp2;
9588 	mp1->b_datap->db_type = M_IOCTL;
9589 	mp2->b_cont = mp;
9590 	mp2->b_datap->db_type = M_DATA;
9591 
9592 	iocp = (struct iocblk *)mp1->b_rptr;
9593 
9594 	/*
9595 	 * An M_IOCDATA's payload (struct copyresp) is mostly the same as an
9596 	 * M_IOCTL's payload (struct iocblk), but 'struct copyresp' has a
9597 	 * cp_private field (or cp_rval on 32-bit systems) in place of the
9598 	 * ioc_count field; set ioc_count to be correct.
9599 	 */
9600 	iocp->ioc_count = MBLKL(mp1->b_cont);
9601 
9602 	/*
9603 	 * Set the proper command in the ARP message.
9604 	 * Convert the SIOC{G|S|D}ARP calls into our
9605 	 * AR_ENTRY_xxx calls.
9606 	 */
9607 	area = (area_t *)mp2->b_rptr;
9608 	switch (iocp->ioc_cmd) {
9609 	case SIOCDARP:
9610 	case SIOCDXARP:
9611 		/*
9612 		 * We defer deleting the corresponding IRE until
9613 		 * we return from arp.
9614 		 */
9615 		area->area_cmd = AR_ENTRY_DELETE;
9616 		area->area_proto_mask_offset = 0;
9617 		break;
9618 	case SIOCGARP:
9619 	case SIOCGXARP:
9620 		area->area_cmd = AR_ENTRY_SQUERY;
9621 		area->area_proto_mask_offset = 0;
9622 		break;
9623 	case SIOCSARP:
9624 	case SIOCSXARP:
9625 		/*
9626 		 * Delete the corresponding ire to make sure IP will
9627 		 * pick up any change from arp.
9628 		 */
9629 		if (!if_arp_ioctl) {
9630 			(void) ip_ire_clookup_and_delete(ipaddr, NULL, ipst);
9631 		} else {
9632 			ipif_t *ipif = ipif_get_next_ipif(NULL, ill);
9633 			if (ipif != NULL) {
9634 				(void) ip_ire_clookup_and_delete(ipaddr, ipif,
9635 				    ipst);
9636 				ipif_refrele(ipif);
9637 			}
9638 		}
9639 		break;
9640 	}
9641 	iocp->ioc_cmd = area->area_cmd;
9642 
9643 	/*
9644 	 * Fill in the rest of the ARP operation fields.
9645 	 */
9646 	area->area_hw_addr_length = alength;
9647 	bcopy(lladdr, (char *)area + area->area_hw_addr_offset, alength);
9648 
9649 	/* Translate the flags. */
9650 	if (flags & ATF_PERM)
9651 		area->area_flags |= ACE_F_PERMANENT;
9652 	if (flags & ATF_PUBL)
9653 		area->area_flags |= ACE_F_PUBLISH;
9654 	if (flags & ATF_AUTHORITY)
9655 		area->area_flags |= ACE_F_AUTHORITY;
9656 
9657 	/*
9658 	 * Before sending 'mp' to ARP, we have to clear the b_next
9659 	 * and b_prev. Otherwise if STREAMS encounters such a message
9660 	 * in freemsg(), (because ARP can close any time) it can cause
9661 	 * a panic. But mi code needs the b_next and b_prev values of
9662 	 * mp->b_cont, to complete the ioctl. So we store it here
9663 	 * in pending_mp->bcont, and restore it in ip_sioctl_iocack()
9664 	 * when the response comes down from ARP.
9665 	 */
9666 	pending_mp->b_cont->b_next = mp->b_cont->b_next;
9667 	pending_mp->b_cont->b_prev = mp->b_cont->b_prev;
9668 	mp->b_cont->b_next = NULL;
9669 	mp->b_cont->b_prev = NULL;
9670 
9671 	mutex_enter(&connp->conn_lock);
9672 	mutex_enter(&ill->ill_lock);
9673 	/* conn has not yet started closing, hence this can't fail */
9674 	VERIFY(ill_pending_mp_add(ill, connp, pending_mp) != 0);
9675 	mutex_exit(&ill->ill_lock);
9676 	mutex_exit(&connp->conn_lock);
9677 
9678 	/*
9679 	 * Up to ARP it goes.  The response will come back in ip_wput() as an
9680 	 * M_IOCACK, and will be handed to ip_sioctl_iocack() for completion.
9681 	 */
9682 	putnext(ill->ill_rq, mp1);
9683 	return (EINPROGRESS);
9684 }
9685 
9686 /*
9687  * Parse an [x]arpreq structure coming down SIOC[GSD][X]ARP ioctls, identify
9688  * the associated sin and refhold and return the associated ipif via `ci'.
9689  */
9690 int
9691 ip_extract_arpreq(queue_t *q, mblk_t *mp, const ip_ioctl_cmd_t *ipip,
9692     cmd_info_t *ci, ipsq_func_t func)
9693 {
9694 	mblk_t	*mp1;
9695 	int	err;
9696 	sin_t	*sin;
9697 	conn_t	*connp;
9698 	ipif_t	*ipif;
9699 	ire_t	*ire = NULL;
9700 	ill_t	*ill = NULL;
9701 	boolean_t exists;
9702 	ip_stack_t *ipst;
9703 	struct arpreq *ar;
9704 	struct xarpreq *xar;
9705 	struct sockaddr_dl *sdl;
9706 
9707 	/* ioctl comes down on a conn */
9708 	ASSERT(!(q->q_flag & QREADR) && q->q_next == NULL);
9709 	connp = Q_TO_CONN(q);
9710 	if (connp->conn_af_isv6)
9711 		return (ENXIO);
9712 
9713 	ipst = connp->conn_netstack->netstack_ip;
9714 
9715 	/* Verified in ip_wput_nondata */
9716 	mp1 = mp->b_cont->b_cont;
9717 
9718 	if (ipip->ipi_cmd_type == XARP_CMD) {
9719 		ASSERT(MBLKL(mp1) >= sizeof (struct xarpreq));
9720 		xar = (struct xarpreq *)mp1->b_rptr;
9721 		sin = (sin_t *)&xar->xarp_pa;
9722 		sdl = &xar->xarp_ha;
9723 
9724 		if (sdl->sdl_family != AF_LINK || sin->sin_family != AF_INET)
9725 			return (ENXIO);
9726 		if (sdl->sdl_nlen >= LIFNAMSIZ)
9727 			return (EINVAL);
9728 	} else {
9729 		ASSERT(ipip->ipi_cmd_type == ARP_CMD);
9730 		ASSERT(MBLKL(mp1) >= sizeof (struct arpreq));
9731 		ar = (struct arpreq *)mp1->b_rptr;
9732 		sin = (sin_t *)&ar->arp_pa;
9733 	}
9734 
9735 	if (ipip->ipi_cmd_type == XARP_CMD && sdl->sdl_nlen != 0) {
9736 		ipif = ipif_lookup_on_name(sdl->sdl_data, sdl->sdl_nlen,
9737 		    B_FALSE, &exists, B_FALSE, ALL_ZONES, CONNP_TO_WQ(connp),
9738 		    mp, func, &err, ipst);
9739 		if (ipif == NULL)
9740 			return (err);
9741 		if (ipif->ipif_id != 0 ||
9742 		    ipif->ipif_net_type != IRE_IF_RESOLVER) {
9743 			ipif_refrele(ipif);
9744 			return (ENXIO);
9745 		}
9746 	} else {
9747 		/*
9748 		 * Either an SIOC[DGS]ARP or an SIOC[DGS]XARP with sdl_nlen ==
9749 		 * 0: use the IP address to figure out the ill.	 In the IPMP
9750 		 * case, a simple forwarding table lookup will return the
9751 		 * IRE_IF_RESOLVER for the first interface in the group, which
9752 		 * might not be the interface on which the requested IP
9753 		 * address was resolved due to the ill selection algorithm
9754 		 * (see ip_newroute_get_dst_ill()).  So we do a cache table
9755 		 * lookup first: if the IRE cache entry for the IP address is
9756 		 * still there, it will contain the ill pointer for the right
9757 		 * interface, so we use that. If the cache entry has been
9758 		 * flushed, we fall back to the forwarding table lookup. This
9759 		 * should be rare enough since IRE cache entries have a longer
9760 		 * life expectancy than ARP cache entries.
9761 		 */
9762 		ire = ire_cache_lookup(sin->sin_addr.s_addr, ALL_ZONES, NULL,
9763 		    ipst);
9764 		if ((ire == NULL) || (ire->ire_type == IRE_LOOPBACK) ||
9765 		    ((ill = ire_to_ill(ire)) == NULL) ||
9766 		    (ill->ill_net_type != IRE_IF_RESOLVER)) {
9767 			if (ire != NULL)
9768 				ire_refrele(ire);
9769 			ire = ire_ftable_lookup(sin->sin_addr.s_addr,
9770 			    0, 0, IRE_IF_RESOLVER, NULL, NULL, ALL_ZONES, 0,
9771 			    NULL, MATCH_IRE_TYPE, ipst);
9772 			if (ire == NULL || ((ill = ire_to_ill(ire)) == NULL)) {
9773 
9774 				if (ire != NULL)
9775 					ire_refrele(ire);
9776 				return (ENXIO);
9777 			}
9778 		}
9779 		ASSERT(ire != NULL && ill != NULL);
9780 		ipif = ill->ill_ipif;
9781 		ipif_refhold(ipif);
9782 		ire_refrele(ire);
9783 	}
9784 	ci->ci_sin = sin;
9785 	ci->ci_ipif = ipif;
9786 	return (0);
9787 }
9788 
9789 /*
9790  * Do I_PLINK/I_LINK or I_PUNLINK/I_UNLINK with consistency checks and also
9791  * atomically set/clear the muxids. Also complete the ioctl by acking or
9792  * naking it.  Note that the code is structured such that the link type,
9793  * whether it's persistent or not, is treated equally.  ifconfig(1M) and
9794  * its clones use the persistent link, while pppd(1M) and perhaps many
9795  * other daemons may use non-persistent link.  When combined with some
9796  * ill_t states, linking and unlinking lower streams may be used as
9797  * indicators of dynamic re-plumbing events [see PSARC/1999/348].
9798  */
9799 /* ARGSUSED */
9800 void
9801 ip_sioctl_plink(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg)
9802 {
9803 	mblk_t		*mp1, *mp2;
9804 	struct linkblk	*li;
9805 	struct ipmx_s	*ipmxp;
9806 	ill_t		*ill;
9807 	int		ioccmd = ((struct iocblk *)mp->b_rptr)->ioc_cmd;
9808 	int		err = 0;
9809 	boolean_t	entered_ipsq = B_FALSE;
9810 	boolean_t	islink;
9811 	ip_stack_t	*ipst;
9812 
9813 	if (CONN_Q(q))
9814 		ipst = CONNQ_TO_IPST(q);
9815 	else
9816 		ipst = ILLQ_TO_IPST(q);
9817 
9818 	ASSERT(ioccmd == I_PLINK || ioccmd == I_PUNLINK ||
9819 	    ioccmd == I_LINK || ioccmd == I_UNLINK);
9820 
9821 	islink = (ioccmd == I_PLINK || ioccmd == I_LINK);
9822 
9823 	mp1 = mp->b_cont;	/* This is the linkblk info */
9824 	li = (struct linkblk *)mp1->b_rptr;
9825 
9826 	/*
9827 	 * ARP has added this special mblk, and the utility is asking us
9828 	 * to perform consistency checks, and also atomically set the
9829 	 * muxid. Ifconfig is an example.  It achieves this by using
9830 	 * /dev/arp as the mux to plink the arp stream, and pushes arp on
9831 	 * to /dev/udp[6] stream for use as the mux when plinking the IP
9832 	 * stream. SIOCSLIFMUXID is not required.  See ifconfig.c, arp.c
9833 	 * and other comments in this routine for more details.
9834 	 */
9835 	mp2 = mp1->b_cont;	/* This is added by ARP */
9836 
9837 	/*
9838 	 * If I_{P}LINK/I_{P}UNLINK is issued by a utility other than
9839 	 * ifconfig which didn't push ARP on top of the dummy mux, we won't
9840 	 * get the special mblk above.  For backward compatibility, we
9841 	 * request ip_sioctl_plink_ipmod() to skip the consistency checks.
9842 	 * The utility will use SIOCSLIFMUXID to store the muxids.  This is
9843 	 * not atomic, and can leave the streams unplumbable if the utility
9844 	 * is interrupted before it does the SIOCSLIFMUXID.
9845 	 */
9846 	if (mp2 == NULL) {
9847 		err = ip_sioctl_plink_ipmod(ipsq, q, mp, ioccmd, li, B_FALSE);
9848 		if (err == EINPROGRESS)
9849 			return;
9850 		goto done;
9851 	}
9852 
9853 	/*
9854 	 * This is an I_{P}LINK sent down by ifconfig through the ARP module;
9855 	 * ARP has appended this last mblk to tell us whether the lower stream
9856 	 * is an arp-dev stream or an IP module stream.
9857 	 */
9858 	ipmxp = (struct ipmx_s *)mp2->b_rptr;
9859 	if (ipmxp->ipmx_arpdev_stream) {
9860 		/*
9861 		 * The lower stream is the arp-dev stream.
9862 		 */
9863 		ill = ill_lookup_on_name(ipmxp->ipmx_name, B_FALSE, B_FALSE,
9864 		    q, mp, ip_sioctl_plink, &err, NULL, ipst);
9865 		if (ill == NULL) {
9866 			if (err == EINPROGRESS)
9867 				return;
9868 			err = EINVAL;
9869 			goto done;
9870 		}
9871 
9872 		if (ipsq == NULL) {
9873 			ipsq = ipsq_try_enter(NULL, ill, q, mp, ip_sioctl_plink,
9874 			    NEW_OP, B_TRUE);
9875 			if (ipsq == NULL) {
9876 				ill_refrele(ill);
9877 				return;
9878 			}
9879 			entered_ipsq = B_TRUE;
9880 		}
9881 		ASSERT(IAM_WRITER_ILL(ill));
9882 		ill_refrele(ill);
9883 
9884 		/*
9885 		 * To ensure consistency between IP and ARP, the following
9886 		 * LIFO scheme is used in plink/punlink. (IP first, ARP last).
9887 		 * This is because the muxid's are stored in the IP stream on
9888 		 * the ill.
9889 		 *
9890 		 * I_{P}LINK: ifconfig plinks the IP stream before plinking
9891 		 * the ARP stream. On an arp-dev stream, IP checks that it is
9892 		 * not yet plinked, and it also checks that the corresponding
9893 		 * IP stream is already plinked.
9894 		 *
9895 		 * I_{P}UNLINK: ifconfig punlinks the ARP stream before
9896 		 * punlinking the IP stream. IP does not allow punlink of the
9897 		 * IP stream unless the arp stream has been punlinked.
9898 		 */
9899 		if ((islink &&
9900 		    (ill->ill_arp_muxid != 0 || ill->ill_ip_muxid == 0)) ||
9901 		    (!islink && ill->ill_arp_muxid != li->l_index)) {
9902 			err = EINVAL;
9903 			goto done;
9904 		}
9905 		ill->ill_arp_muxid = islink ? li->l_index : 0;
9906 	} else {
9907 		/*
9908 		 * The lower stream is probably an IP module stream.  Do
9909 		 * consistency checking.
9910 		 */
9911 		err = ip_sioctl_plink_ipmod(ipsq, q, mp, ioccmd, li, B_TRUE);
9912 		if (err == EINPROGRESS)
9913 			return;
9914 	}
9915 done:
9916 	if (err == 0)
9917 		miocack(q, mp, 0, 0);
9918 	else
9919 		miocnak(q, mp, 0, err);
9920 
9921 	/* Conn was refheld in ip_sioctl_copyin_setup */
9922 	if (CONN_Q(q))
9923 		CONN_OPER_PENDING_DONE(Q_TO_CONN(q));
9924 	if (entered_ipsq)
9925 		ipsq_exit(ipsq, B_TRUE, B_TRUE);
9926 }
9927 
9928 /*
9929  * Process I_{P}LINK and I_{P}UNLINK requests named by `ioccmd' and pointed to
9930  * by `mp' and `li' for the IP module stream (if li->q_bot is in fact an IP
9931  * module stream).  If `doconsist' is set, then do the extended consistency
9932  * checks requested by ifconfig(1M) and (atomically) set ill_ip_muxid here.
9933  * Returns zero on success, EINPROGRESS if the operation is still pending, or
9934  * an error code on failure.
9935  */
9936 static int
9937 ip_sioctl_plink_ipmod(ipsq_t *ipsq, queue_t *q, mblk_t *mp, int ioccmd,
9938     struct linkblk *li, boolean_t doconsist)
9939 {
9940 	ill_t  		*ill;
9941 	queue_t		*ipwq, *dwq;
9942 	const char	*name;
9943 	struct qinit	*qinfo;
9944 	boolean_t	islink = (ioccmd == I_PLINK || ioccmd == I_LINK);
9945 	boolean_t	entered_ipsq = B_FALSE;
9946 
9947 	/*
9948 	 * Walk the lower stream to verify it's the IP module stream.
9949 	 * The IP module is identified by its name, wput function,
9950 	 * and non-NULL q_next.  STREAMS ensures that the lower stream
9951 	 * (li->l_qbot) will not vanish until this ioctl completes.
9952 	 */
9953 	for (ipwq = li->l_qbot; ipwq != NULL; ipwq = ipwq->q_next) {
9954 		qinfo = ipwq->q_qinfo;
9955 		name = qinfo->qi_minfo->mi_idname;
9956 		if (name != NULL && strcmp(name, ip_mod_info.mi_idname) == 0 &&
9957 		    qinfo->qi_putp != (pfi_t)ip_lwput && ipwq->q_next != NULL) {
9958 			break;
9959 		}
9960 	}
9961 
9962 	/*
9963 	 * If this isn't an IP module stream, bail.
9964 	 */
9965 	if (ipwq == NULL)
9966 		return (0);
9967 
9968 	ill = ipwq->q_ptr;
9969 	ASSERT(ill != NULL);
9970 
9971 	if (ipsq == NULL) {
9972 		ipsq = ipsq_try_enter(NULL, ill, q, mp, ip_sioctl_plink,
9973 		    NEW_OP, B_TRUE);
9974 		if (ipsq == NULL)
9975 			return (EINPROGRESS);
9976 		entered_ipsq = B_TRUE;
9977 	}
9978 	ASSERT(IAM_WRITER_ILL(ill));
9979 
9980 	if (doconsist) {
9981 		/*
9982 		 * Consistency checking requires that I_{P}LINK occurs
9983 		 * prior to setting ill_ip_muxid, and that I_{P}UNLINK
9984 		 * occurs prior to clearing ill_arp_muxid.
9985 		 */
9986 		if ((islink && ill->ill_ip_muxid != 0) ||
9987 		    (!islink && ill->ill_arp_muxid != 0)) {
9988 			if (entered_ipsq)
9989 				ipsq_exit(ipsq, B_TRUE, B_TRUE);
9990 			return (EINVAL);
9991 		}
9992 	}
9993 
9994 	/*
9995 	 * As part of I_{P}LINKing, stash the number of downstream modules and
9996 	 * the read queue of the module immediately below IP in the ill.
9997 	 * These are used during the capability negotiation below.
9998 	 */
9999 	ill->ill_lmod_rq = NULL;
10000 	ill->ill_lmod_cnt = 0;
10001 	if (islink && ((dwq = ipwq->q_next) != NULL)) {
10002 		ill->ill_lmod_rq = RD(dwq);
10003 		for (; dwq != NULL; dwq = dwq->q_next)
10004 			ill->ill_lmod_cnt++;
10005 	}
10006 
10007 	if (doconsist)
10008 		ill->ill_ip_muxid = islink ? li->l_index : 0;
10009 
10010 	/*
10011 	 * If there's at least one up ipif on this ill, then we're bound to
10012 	 * the underlying driver via DLPI.  In that case, renegotiate
10013 	 * capabilities to account for any possible change in modules
10014 	 * interposed between IP and the driver.
10015 	 */
10016 	if (ill->ill_ipif_up_count > 0) {
10017 		if (islink)
10018 			ill_capability_probe(ill);
10019 		else
10020 			ill_capability_reset(ill);
10021 	}
10022 
10023 	if (entered_ipsq)
10024 		ipsq_exit(ipsq, B_TRUE, B_TRUE);
10025 
10026 	return (0);
10027 }
10028 
10029 /*
10030  * Search the ioctl command in the ioctl tables and return a pointer
10031  * to the ioctl command information. The ioctl command tables are
10032  * static and fully populated at compile time.
10033  */
10034 ip_ioctl_cmd_t *
10035 ip_sioctl_lookup(int ioc_cmd)
10036 {
10037 	int index;
10038 	ip_ioctl_cmd_t *ipip;
10039 	ip_ioctl_cmd_t *ipip_end;
10040 
10041 	if (ioc_cmd == IPI_DONTCARE)
10042 		return (NULL);
10043 
10044 	/*
10045 	 * Do a 2 step search. First search the indexed table
10046 	 * based on the least significant byte of the ioctl cmd.
10047 	 * If we don't find a match, then search the misc table
10048 	 * serially.
10049 	 */
10050 	index = ioc_cmd & 0xFF;
10051 	if (index < ip_ndx_ioctl_count) {
10052 		ipip = &ip_ndx_ioctl_table[index];
10053 		if (ipip->ipi_cmd == ioc_cmd) {
10054 			/* Found a match in the ndx table */
10055 			return (ipip);
10056 		}
10057 	}
10058 
10059 	/* Search the misc table */
10060 	ipip_end = &ip_misc_ioctl_table[ip_misc_ioctl_count];
10061 	for (ipip = ip_misc_ioctl_table; ipip < ipip_end; ipip++) {
10062 		if (ipip->ipi_cmd == ioc_cmd)
10063 			/* Found a match in the misc table */
10064 			return (ipip);
10065 	}
10066 
10067 	return (NULL);
10068 }
10069 
10070 /*
10071  * Wrapper function for resuming deferred ioctl processing
10072  * Used for SIOCGDSTINFO, SIOCGIP6ADDRPOLICY, SIOCGMSFILTER,
10073  * SIOCSMSFILTER, SIOCGIPMSFILTER, and SIOCSIPMSFILTER currently.
10074  */
10075 /* ARGSUSED */
10076 void
10077 ip_sioctl_copyin_resume(ipsq_t *dummy_ipsq, queue_t *q, mblk_t *mp,
10078     void *dummy_arg)
10079 {
10080 	ip_sioctl_copyin_setup(q, mp);
10081 }
10082 
10083 /*
10084  * ip_sioctl_copyin_setup is called by ip_wput with any M_IOCTL message
10085  * that arrives.  Most of the IOCTLs are "socket" IOCTLs which we handle
10086  * in either I_STR or TRANSPARENT form, using the mi_copy facility.
10087  * We establish here the size of the block to be copied in.  mi_copyin
10088  * arranges for this to happen, an processing continues in ip_wput with
10089  * an M_IOCDATA message.
10090  */
10091 void
10092 ip_sioctl_copyin_setup(queue_t *q, mblk_t *mp)
10093 {
10094 	int	copyin_size;
10095 	struct iocblk *iocp = (struct iocblk *)mp->b_rptr;
10096 	ip_ioctl_cmd_t *ipip;
10097 	cred_t *cr;
10098 	ip_stack_t	*ipst;
10099 
10100 	if (CONN_Q(q))
10101 		ipst = CONNQ_TO_IPST(q);
10102 	else
10103 		ipst = ILLQ_TO_IPST(q);
10104 
10105 	ipip = ip_sioctl_lookup(iocp->ioc_cmd);
10106 	if (ipip == NULL) {
10107 		/*
10108 		 * The ioctl is not one we understand or own.
10109 		 * Pass it along to be processed down stream,
10110 		 * if this is a module instance of IP, else nak
10111 		 * the ioctl.
10112 		 */
10113 		if (q->q_next == NULL) {
10114 			goto nak;
10115 		} else {
10116 			putnext(q, mp);
10117 			return;
10118 		}
10119 	}
10120 
10121 	/*
10122 	 * If this is deferred, then we will do all the checks when we
10123 	 * come back.
10124 	 */
10125 	if ((iocp->ioc_cmd == SIOCGDSTINFO ||
10126 	    iocp->ioc_cmd == SIOCGIP6ADDRPOLICY) && !ip6_asp_can_lookup(ipst)) {
10127 		ip6_asp_pending_op(q, mp, ip_sioctl_copyin_resume);
10128 		return;
10129 	}
10130 
10131 	/*
10132 	 * Only allow a very small subset of IP ioctls on this stream if
10133 	 * IP is a module and not a driver. Allowing ioctls to be processed
10134 	 * in this case may cause assert failures or data corruption.
10135 	 * Typically G[L]IFFLAGS, SLIFNAME/IF_UNITSEL are the only few
10136 	 * ioctls allowed on an IP module stream, after which this stream
10137 	 * normally becomes a multiplexor (at which time the stream head
10138 	 * will fail all ioctls).
10139 	 */
10140 	if ((q->q_next != NULL) && !(ipip->ipi_flags & IPI_MODOK)) {
10141 		if (ipip->ipi_flags & IPI_PASS_DOWN) {
10142 			/*
10143 			 * Pass common Streams ioctls which the IP
10144 			 * module does not own or consume along to
10145 			 * be processed down stream.
10146 			 */
10147 			putnext(q, mp);
10148 			return;
10149 		} else {
10150 			goto nak;
10151 		}
10152 	}
10153 
10154 	/* Make sure we have ioctl data to process. */
10155 	if (mp->b_cont == NULL && !(ipip->ipi_flags & IPI_NULL_BCONT))
10156 		goto nak;
10157 
10158 	/*
10159 	 * Prefer dblk credential over ioctl credential; some synthesized
10160 	 * ioctls have kcred set because there's no way to crhold()
10161 	 * a credential in some contexts.  (ioc_cr is not crfree() by
10162 	 * the framework; the caller of ioctl needs to hold the reference
10163 	 * for the duration of the call).
10164 	 */
10165 	cr = DB_CREDDEF(mp, iocp->ioc_cr);
10166 
10167 	/* Make sure normal users don't send down privileged ioctls */
10168 	if ((ipip->ipi_flags & IPI_PRIV) &&
10169 	    (cr != NULL) && secpolicy_ip_config(cr, B_TRUE) != 0) {
10170 		/* We checked the privilege earlier but log it here */
10171 		miocnak(q, mp, 0, secpolicy_ip_config(cr, B_FALSE));
10172 		return;
10173 	}
10174 
10175 	/*
10176 	 * The ioctl command tables can only encode fixed length
10177 	 * ioctl data. If the length is variable, the table will
10178 	 * encode the length as zero. Such special cases are handled
10179 	 * below in the switch.
10180 	 */
10181 	if (ipip->ipi_copyin_size != 0) {
10182 		mi_copyin(q, mp, NULL, ipip->ipi_copyin_size);
10183 		return;
10184 	}
10185 
10186 	switch (iocp->ioc_cmd) {
10187 	case O_SIOCGIFCONF:
10188 	case SIOCGIFCONF:
10189 		/*
10190 		 * This IOCTL is hilarious.  See comments in
10191 		 * ip_sioctl_get_ifconf for the story.
10192 		 */
10193 		if (iocp->ioc_count == TRANSPARENT)
10194 			copyin_size = SIZEOF_STRUCT(ifconf,
10195 			    iocp->ioc_flag);
10196 		else
10197 			copyin_size = iocp->ioc_count;
10198 		mi_copyin(q, mp, NULL, copyin_size);
10199 		return;
10200 
10201 	case O_SIOCGLIFCONF:
10202 	case SIOCGLIFCONF:
10203 		copyin_size = SIZEOF_STRUCT(lifconf, iocp->ioc_flag);
10204 		mi_copyin(q, mp, NULL, copyin_size);
10205 		return;
10206 
10207 	case SIOCGLIFSRCOF:
10208 		copyin_size = SIZEOF_STRUCT(lifsrcof, iocp->ioc_flag);
10209 		mi_copyin(q, mp, NULL, copyin_size);
10210 		return;
10211 	case SIOCGIP6ADDRPOLICY:
10212 		ip_sioctl_ip6addrpolicy(q, mp);
10213 		ip6_asp_table_refrele(ipst);
10214 		return;
10215 
10216 	case SIOCSIP6ADDRPOLICY:
10217 		ip_sioctl_ip6addrpolicy(q, mp);
10218 		return;
10219 
10220 	case SIOCGDSTINFO:
10221 		ip_sioctl_dstinfo(q, mp);
10222 		ip6_asp_table_refrele(ipst);
10223 		return;
10224 
10225 	case I_PLINK:
10226 	case I_PUNLINK:
10227 	case I_LINK:
10228 	case I_UNLINK:
10229 		/*
10230 		 * We treat non-persistent link similarly as the persistent
10231 		 * link case, in terms of plumbing/unplumbing, as well as
10232 		 * dynamic re-plumbing events indicator.  See comments
10233 		 * in ip_sioctl_plink() for more.
10234 		 *
10235 		 * Request can be enqueued in the 'ipsq' while waiting
10236 		 * to become exclusive. So bump up the conn ref.
10237 		 */
10238 		if (CONN_Q(q))
10239 			CONN_INC_REF(Q_TO_CONN(q));
10240 		ip_sioctl_plink(NULL, q, mp, NULL);
10241 		return;
10242 
10243 	case ND_GET:
10244 	case ND_SET:
10245 		/*
10246 		 * Use of the nd table requires holding the reader lock.
10247 		 * Modifying the nd table thru nd_load/nd_unload requires
10248 		 * the writer lock.
10249 		 */
10250 		rw_enter(&ipst->ips_ip_g_nd_lock, RW_READER);
10251 		if (nd_getset(q, ipst->ips_ip_g_nd, mp)) {
10252 			rw_exit(&ipst->ips_ip_g_nd_lock);
10253 
10254 			if (iocp->ioc_error)
10255 				iocp->ioc_count = 0;
10256 			mp->b_datap->db_type = M_IOCACK;
10257 			qreply(q, mp);
10258 			return;
10259 		}
10260 		rw_exit(&ipst->ips_ip_g_nd_lock);
10261 		/*
10262 		 * We don't understand this subioctl of ND_GET / ND_SET.
10263 		 * Maybe intended for some driver / module below us
10264 		 */
10265 		if (q->q_next) {
10266 			putnext(q, mp);
10267 		} else {
10268 			iocp->ioc_error = ENOENT;
10269 			mp->b_datap->db_type = M_IOCNAK;
10270 			iocp->ioc_count = 0;
10271 			qreply(q, mp);
10272 		}
10273 		return;
10274 
10275 	case IP_IOCTL:
10276 		ip_wput_ioctl(q, mp);
10277 		return;
10278 	default:
10279 		cmn_err(CE_PANIC, "should not happen ");
10280 	}
10281 nak:
10282 	if (mp->b_cont != NULL) {
10283 		freemsg(mp->b_cont);
10284 		mp->b_cont = NULL;
10285 	}
10286 	iocp->ioc_error = EINVAL;
10287 	mp->b_datap->db_type = M_IOCNAK;
10288 	iocp->ioc_count = 0;
10289 	qreply(q, mp);
10290 }
10291 
10292 /* ip_wput hands off ARP IOCTL responses to us */
10293 void
10294 ip_sioctl_iocack(queue_t *q, mblk_t *mp)
10295 {
10296 	struct arpreq *ar;
10297 	struct xarpreq *xar;
10298 	area_t	*area;
10299 	mblk_t	*area_mp;
10300 	struct iocblk *iocp;
10301 	mblk_t	*orig_ioc_mp, *tmp;
10302 	struct iocblk	*orig_iocp;
10303 	ill_t *ill;
10304 	conn_t *connp = NULL;
10305 	uint_t ioc_id;
10306 	mblk_t *pending_mp;
10307 	int x_arp_ioctl = B_FALSE, ifx_arp_ioctl = B_FALSE;
10308 	int *flagsp;
10309 	char *storage = NULL;
10310 	sin_t *sin;
10311 	ipaddr_t addr;
10312 	int err;
10313 	ip_stack_t *ipst;
10314 
10315 	ill = q->q_ptr;
10316 	ASSERT(ill != NULL);
10317 	ipst = ill->ill_ipst;
10318 
10319 	/*
10320 	 * We should get back from ARP a packet chain that looks like:
10321 	 * M_IOCACK-->ARP_op_MBLK-->ORIG_M_IOCTL-->MI_COPY_MBLK-->[X]ARPREQ_MBLK
10322 	 */
10323 	if (!(area_mp = mp->b_cont) ||
10324 	    (area_mp->b_wptr - area_mp->b_rptr) < sizeof (ip_sock_ar_t) ||
10325 	    !(orig_ioc_mp = area_mp->b_cont) ||
10326 	    !orig_ioc_mp->b_cont || !orig_ioc_mp->b_cont->b_cont) {
10327 		freemsg(mp);
10328 		return;
10329 	}
10330 
10331 	orig_iocp = (struct iocblk *)orig_ioc_mp->b_rptr;
10332 
10333 	tmp = (orig_ioc_mp->b_cont)->b_cont;
10334 	if ((orig_iocp->ioc_cmd == SIOCGXARP) ||
10335 	    (orig_iocp->ioc_cmd == SIOCSXARP) ||
10336 	    (orig_iocp->ioc_cmd == SIOCDXARP)) {
10337 		x_arp_ioctl = B_TRUE;
10338 		xar = (struct xarpreq *)tmp->b_rptr;
10339 		sin = (sin_t *)&xar->xarp_pa;
10340 		flagsp = &xar->xarp_flags;
10341 		storage = xar->xarp_ha.sdl_data;
10342 		if (xar->xarp_ha.sdl_nlen != 0)
10343 			ifx_arp_ioctl = B_TRUE;
10344 	} else {
10345 		ar = (struct arpreq *)tmp->b_rptr;
10346 		sin = (sin_t *)&ar->arp_pa;
10347 		flagsp = &ar->arp_flags;
10348 		storage = ar->arp_ha.sa_data;
10349 	}
10350 
10351 	iocp = (struct iocblk *)mp->b_rptr;
10352 
10353 	/*
10354 	 * Pick out the originating queue based on the ioc_id.
10355 	 */
10356 	ioc_id = iocp->ioc_id;
10357 	pending_mp = ill_pending_mp_get(ill, &connp, ioc_id);
10358 	if (pending_mp == NULL) {
10359 		ASSERT(connp == NULL);
10360 		inet_freemsg(mp);
10361 		return;
10362 	}
10363 	ASSERT(connp != NULL);
10364 	q = CONNP_TO_WQ(connp);
10365 
10366 	/* Uncouple the internally generated IOCTL from the original one */
10367 	area = (area_t *)area_mp->b_rptr;
10368 	area_mp->b_cont = NULL;
10369 
10370 	/*
10371 	 * Restore the b_next and b_prev used by mi code. This is needed
10372 	 * to complete the ioctl using mi* functions. We stored them in
10373 	 * the pending mp prior to sending the request to ARP.
10374 	 */
10375 	orig_ioc_mp->b_cont->b_next = pending_mp->b_cont->b_next;
10376 	orig_ioc_mp->b_cont->b_prev = pending_mp->b_cont->b_prev;
10377 	inet_freemsg(pending_mp);
10378 
10379 	/*
10380 	 * We're done if there was an error or if this is not an SIOCG{X}ARP
10381 	 * Catch the case where there is an IRE_CACHE by no entry in the
10382 	 * arp table.
10383 	 */
10384 	addr = sin->sin_addr.s_addr;
10385 	if (iocp->ioc_error && iocp->ioc_cmd == AR_ENTRY_SQUERY) {
10386 		ire_t			*ire;
10387 		dl_unitdata_req_t	*dlup;
10388 		mblk_t			*llmp;
10389 		int			addr_len;
10390 		ill_t			*ipsqill = NULL;
10391 
10392 		if (ifx_arp_ioctl) {
10393 			/*
10394 			 * There's no need to lookup the ill, since
10395 			 * we've already done that when we started
10396 			 * processing the ioctl and sent the message
10397 			 * to ARP on that ill.  So use the ill that
10398 			 * is stored in q->q_ptr.
10399 			 */
10400 			ipsqill = ill;
10401 			ire = ire_ctable_lookup(addr, 0, IRE_CACHE,
10402 			    ipsqill->ill_ipif, ALL_ZONES,
10403 			    NULL, MATCH_IRE_TYPE | MATCH_IRE_ILL, ipst);
10404 		} else {
10405 			ire = ire_ctable_lookup(addr, 0, IRE_CACHE,
10406 			    NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst);
10407 			if (ire != NULL)
10408 				ipsqill = ire_to_ill(ire);
10409 		}
10410 
10411 		if ((x_arp_ioctl) && (ipsqill != NULL))
10412 			storage += ill_xarp_info(&xar->xarp_ha, ipsqill);
10413 
10414 		if (ire != NULL) {
10415 			/*
10416 			 * Since the ire obtained from cachetable is used for
10417 			 * mac addr copying below, treat an incomplete ire as if
10418 			 * as if we never found it.
10419 			 */
10420 			if (ire->ire_nce != NULL &&
10421 			    ire->ire_nce->nce_state != ND_REACHABLE) {
10422 				ire_refrele(ire);
10423 				ire = NULL;
10424 				ipsqill = NULL;
10425 				goto errack;
10426 			}
10427 			*flagsp = ATF_INUSE;
10428 			llmp = (ire->ire_nce != NULL ?
10429 			    ire->ire_nce->nce_res_mp : NULL);
10430 			if (llmp != NULL && ipsqill != NULL) {
10431 				uchar_t *macaddr;
10432 
10433 				addr_len = ipsqill->ill_phys_addr_length;
10434 				if (x_arp_ioctl && ((addr_len +
10435 				    ipsqill->ill_name_length) >
10436 				    sizeof (xar->xarp_ha.sdl_data))) {
10437 					ire_refrele(ire);
10438 					freemsg(mp);
10439 					ip_ioctl_finish(q, orig_ioc_mp,
10440 					    EINVAL, NO_COPYOUT, NULL);
10441 					return;
10442 				}
10443 				*flagsp |= ATF_COM;
10444 				dlup = (dl_unitdata_req_t *)llmp->b_rptr;
10445 				if (ipsqill->ill_sap_length < 0)
10446 					macaddr = llmp->b_rptr +
10447 					    dlup->dl_dest_addr_offset;
10448 				else
10449 					macaddr = llmp->b_rptr +
10450 					    dlup->dl_dest_addr_offset +
10451 					    ipsqill->ill_sap_length;
10452 				/*
10453 				 * For SIOCGARP, MAC address length
10454 				 * validation has already been done
10455 				 * before the ioctl was issued to ARP to
10456 				 * allow it to progress only on 6 byte
10457 				 * addressable (ethernet like) media. Thus
10458 				 * the mac address copying can not overwrite
10459 				 * the sa_data area below.
10460 				 */
10461 				bcopy(macaddr, storage, addr_len);
10462 			}
10463 			/* Ditch the internal IOCTL. */
10464 			freemsg(mp);
10465 			ire_refrele(ire);
10466 			ip_ioctl_finish(q, orig_ioc_mp, 0, COPYOUT, NULL);
10467 			return;
10468 		}
10469 	}
10470 
10471 	/*
10472 	 * Delete the coresponding IRE_CACHE if any.
10473 	 * Reset the error if there was one (in case there was no entry
10474 	 * in arp.)
10475 	 */
10476 	if (iocp->ioc_cmd == AR_ENTRY_DELETE) {
10477 		ipif_t *ipintf = NULL;
10478 
10479 		if (ifx_arp_ioctl) {
10480 			/*
10481 			 * There's no need to lookup the ill, since
10482 			 * we've already done that when we started
10483 			 * processing the ioctl and sent the message
10484 			 * to ARP on that ill.  So use the ill that
10485 			 * is stored in q->q_ptr.
10486 			 */
10487 			ipintf = ill->ill_ipif;
10488 		}
10489 		if (ip_ire_clookup_and_delete(addr, ipintf, ipst)) {
10490 			/*
10491 			 * The address in "addr" may be an entry for a
10492 			 * router. If that's true, then any off-net
10493 			 * IRE_CACHE entries that go through the router
10494 			 * with address "addr" must be clobbered. Use
10495 			 * ire_walk to achieve this goal.
10496 			 */
10497 			if (ifx_arp_ioctl)
10498 				ire_walk_ill_v4(MATCH_IRE_ILL, 0,
10499 				    ire_delete_cache_gw, (char *)&addr, ill);
10500 			else
10501 				ire_walk_v4(ire_delete_cache_gw, (char *)&addr,
10502 				    ALL_ZONES, ipst);
10503 			iocp->ioc_error = 0;
10504 		}
10505 	}
10506 errack:
10507 	if (iocp->ioc_error || iocp->ioc_cmd != AR_ENTRY_SQUERY) {
10508 		err = iocp->ioc_error;
10509 		freemsg(mp);
10510 		ip_ioctl_finish(q, orig_ioc_mp, err, NO_COPYOUT, NULL);
10511 		return;
10512 	}
10513 
10514 	/*
10515 	 * Completion of an SIOCG{X}ARP.  Translate the information from
10516 	 * the area_t into the struct {x}arpreq.
10517 	 */
10518 	if (x_arp_ioctl) {
10519 		storage += ill_xarp_info(&xar->xarp_ha, ill);
10520 		if ((ill->ill_phys_addr_length + ill->ill_name_length) >
10521 		    sizeof (xar->xarp_ha.sdl_data)) {
10522 			freemsg(mp);
10523 			ip_ioctl_finish(q, orig_ioc_mp, EINVAL, NO_COPYOUT,
10524 			    NULL);
10525 			return;
10526 		}
10527 	}
10528 	*flagsp = ATF_INUSE;
10529 	if (area->area_flags & ACE_F_PERMANENT)
10530 		*flagsp |= ATF_PERM;
10531 	if (area->area_flags & ACE_F_PUBLISH)
10532 		*flagsp |= ATF_PUBL;
10533 	if (area->area_flags & ACE_F_AUTHORITY)
10534 		*flagsp |= ATF_AUTHORITY;
10535 	if (area->area_hw_addr_length != 0) {
10536 		*flagsp |= ATF_COM;
10537 		/*
10538 		 * For SIOCGARP, MAC address length validation has
10539 		 * already been done before the ioctl was issued to ARP
10540 		 * to allow it to progress only on 6 byte addressable
10541 		 * (ethernet like) media. Thus the mac address copying
10542 		 * can not overwrite the sa_data area below.
10543 		 */
10544 		bcopy((char *)area + area->area_hw_addr_offset,
10545 		    storage, area->area_hw_addr_length);
10546 	}
10547 
10548 	/* Ditch the internal IOCTL. */
10549 	freemsg(mp);
10550 	/* Complete the original. */
10551 	ip_ioctl_finish(q, orig_ioc_mp, 0, COPYOUT, NULL);
10552 }
10553 
10554 /*
10555  * Create a new logical interface. If ipif_id is zero (i.e. not a logical
10556  * interface) create the next available logical interface for this
10557  * physical interface.
10558  * If ipif is NULL (i.e. the lookup didn't find one) attempt to create an
10559  * ipif with the specified name.
10560  *
10561  * If the address family is not AF_UNSPEC then set the address as well.
10562  *
10563  * If ip_sioctl_addr returns EINPROGRESS then the ioctl (the copyout)
10564  * is completed when the DL_BIND_ACK arrive in ip_rput_dlpi_writer.
10565  *
10566  * Executed as a writer on the ill or ill group.
10567  * So no lock is needed to traverse the ipif chain, or examine the
10568  * phyint flags.
10569  */
10570 /* ARGSUSED */
10571 int
10572 ip_sioctl_addif(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp,
10573     ip_ioctl_cmd_t *dummy_ipip, void *dummy_ifreq)
10574 {
10575 	mblk_t	*mp1;
10576 	struct lifreq *lifr;
10577 	boolean_t	isv6;
10578 	boolean_t	exists;
10579 	char 	*name;
10580 	char	*endp;
10581 	char	*cp;
10582 	int	namelen;
10583 	ipif_t	*ipif;
10584 	long	id;
10585 	ipsq_t	*ipsq;
10586 	ill_t	*ill;
10587 	sin_t	*sin;
10588 	int	err = 0;
10589 	boolean_t found_sep = B_FALSE;
10590 	conn_t	*connp;
10591 	zoneid_t zoneid;
10592 	int	orig_ifindex = 0;
10593 	ip_stack_t *ipst = CONNQ_TO_IPST(q);
10594 
10595 	ASSERT(q->q_next == NULL);
10596 	ip1dbg(("ip_sioctl_addif\n"));
10597 	/* Existence of mp1 has been checked in ip_wput_nondata */
10598 	mp1 = mp->b_cont->b_cont;
10599 	/*
10600 	 * Null terminate the string to protect against buffer
10601 	 * overrun. String was generated by user code and may not
10602 	 * be trusted.
10603 	 */
10604 	lifr = (struct lifreq *)mp1->b_rptr;
10605 	lifr->lifr_name[LIFNAMSIZ - 1] = '\0';
10606 	name = lifr->lifr_name;
10607 	ASSERT(CONN_Q(q));
10608 	connp = Q_TO_CONN(q);
10609 	isv6 = connp->conn_af_isv6;
10610 	zoneid = connp->conn_zoneid;
10611 	namelen = mi_strlen(name);
10612 	if (namelen == 0)
10613 		return (EINVAL);
10614 
10615 	exists = B_FALSE;
10616 	if ((namelen + 1 == sizeof (ipif_loopback_name)) &&
10617 	    (mi_strcmp(name, ipif_loopback_name) == 0)) {
10618 		/*
10619 		 * Allow creating lo0 using SIOCLIFADDIF.
10620 		 * can't be any other writer thread. So can pass null below
10621 		 * for the last 4 args to ipif_lookup_name.
10622 		 */
10623 		ipif = ipif_lookup_on_name(lifr->lifr_name, namelen, B_TRUE,
10624 		    &exists, isv6, zoneid, NULL, NULL, NULL, NULL, ipst);
10625 		/* Prevent any further action */
10626 		if (ipif == NULL) {
10627 			return (ENOBUFS);
10628 		} else if (!exists) {
10629 			/* We created the ipif now and as writer */
10630 			ipif_refrele(ipif);
10631 			return (0);
10632 		} else {
10633 			ill = ipif->ipif_ill;
10634 			ill_refhold(ill);
10635 			ipif_refrele(ipif);
10636 		}
10637 	} else {
10638 		/* Look for a colon in the name. */
10639 		endp = &name[namelen];
10640 		for (cp = endp; --cp > name; ) {
10641 			if (*cp == IPIF_SEPARATOR_CHAR) {
10642 				found_sep = B_TRUE;
10643 				/*
10644 				 * Reject any non-decimal aliases for plumbing
10645 				 * of logical interfaces. Aliases with leading
10646 				 * zeroes are also rejected as they introduce
10647 				 * ambiguity in the naming of the interfaces.
10648 				 * Comparing with "0" takes care of all such
10649 				 * cases.
10650 				 */
10651 				if ((strncmp("0", cp+1, 1)) == 0)
10652 					return (EINVAL);
10653 
10654 				if (ddi_strtol(cp+1, &endp, 10, &id) != 0 ||
10655 				    id <= 0 || *endp != '\0') {
10656 					return (EINVAL);
10657 				}
10658 				*cp = '\0';
10659 				break;
10660 			}
10661 		}
10662 		ill = ill_lookup_on_name(name, B_FALSE, isv6,
10663 		    CONNP_TO_WQ(connp), mp, ip_process_ioctl, &err, NULL, ipst);
10664 		if (found_sep)
10665 			*cp = IPIF_SEPARATOR_CHAR;
10666 		if (ill == NULL)
10667 			return (err);
10668 	}
10669 
10670 	ipsq = ipsq_try_enter(NULL, ill, q, mp, ip_process_ioctl, NEW_OP,
10671 	    B_TRUE);
10672 
10673 	/*
10674 	 * Release the refhold due to the lookup, now that we are excl
10675 	 * or we are just returning
10676 	 */
10677 	ill_refrele(ill);
10678 
10679 	if (ipsq == NULL)
10680 		return (EINPROGRESS);
10681 
10682 	/*
10683 	 * If the interface is failed, inactive or offlined, look for a working
10684 	 * interface in the ill group and create the ipif there. If we can't
10685 	 * find a good interface, create the ipif anyway so that in.mpathd can
10686 	 * move it to the first repaired interface.
10687 	 */
10688 	if ((ill->ill_phyint->phyint_flags &
10689 	    (PHYI_FAILED|PHYI_INACTIVE|PHYI_OFFLINE)) &&
10690 	    ill->ill_phyint->phyint_groupname_len != 0) {
10691 		phyint_t *phyi;
10692 		char *groupname = ill->ill_phyint->phyint_groupname;
10693 
10694 		/*
10695 		 * We're looking for a working interface, but it doesn't matter
10696 		 * if it's up or down; so instead of following the group lists,
10697 		 * we look at each physical interface and compare the groupname.
10698 		 * We're only interested in interfaces with IPv4 (resp. IPv6)
10699 		 * plumbed when we're adding an IPv4 (resp. IPv6) ipif.
10700 		 * Otherwise we create the ipif on the failed interface.
10701 		 */
10702 		rw_enter(&ipst->ips_ill_g_lock, RW_READER);
10703 		phyi = avl_first(&ipst->ips_phyint_g_list->
10704 		    phyint_list_avl_by_index);
10705 		for (; phyi != NULL;
10706 		    phyi = avl_walk(&ipst->ips_phyint_g_list->
10707 		    phyint_list_avl_by_index,
10708 		    phyi, AVL_AFTER)) {
10709 			if (phyi->phyint_groupname_len == 0)
10710 				continue;
10711 			ASSERT(phyi->phyint_groupname != NULL);
10712 			if (mi_strcmp(groupname, phyi->phyint_groupname) == 0 &&
10713 			    !(phyi->phyint_flags &
10714 			    (PHYI_FAILED|PHYI_INACTIVE|PHYI_OFFLINE)) &&
10715 			    (ill->ill_isv6 ? (phyi->phyint_illv6 != NULL) :
10716 			    (phyi->phyint_illv4 != NULL))) {
10717 				break;
10718 			}
10719 		}
10720 		rw_exit(&ipst->ips_ill_g_lock);
10721 
10722 		if (phyi != NULL) {
10723 			orig_ifindex = ill->ill_phyint->phyint_ifindex;
10724 			ill = (ill->ill_isv6 ? phyi->phyint_illv6 :
10725 			    phyi->phyint_illv4);
10726 		}
10727 	}
10728 
10729 	/*
10730 	 * We are now exclusive on the ipsq, so an ill move will be serialized
10731 	 * before or after us.
10732 	 */
10733 	ASSERT(IAM_WRITER_ILL(ill));
10734 	ASSERT(ill->ill_move_in_progress == B_FALSE);
10735 
10736 	if (found_sep && orig_ifindex == 0) {
10737 		/* Now see if there is an IPIF with this unit number. */
10738 		for (ipif = ill->ill_ipif; ipif != NULL;
10739 		    ipif = ipif->ipif_next) {
10740 			if (ipif->ipif_id == id) {
10741 				err = EEXIST;
10742 				goto done;
10743 			}
10744 		}
10745 	}
10746 
10747 	/*
10748 	 * We use IRE_LOCAL for lo0:1 etc. for "receive only" use
10749 	 * of lo0. We never come here when we plumb lo0:0. It
10750 	 * happens in ipif_lookup_on_name.
10751 	 * The specified unit number is ignored when we create the ipif on a
10752 	 * different interface. However, we save it in ipif_orig_ipifid below so
10753 	 * that the ipif fails back to the right position.
10754 	 */
10755 	if ((ipif = ipif_allocate(ill, (found_sep && orig_ifindex == 0) ?
10756 	    id : -1, IRE_LOCAL, B_TRUE)) == NULL) {
10757 		err = ENOBUFS;
10758 		goto done;
10759 	}
10760 
10761 	/* Return created name with ioctl */
10762 	(void) sprintf(lifr->lifr_name, "%s%c%d", ill->ill_name,
10763 	    IPIF_SEPARATOR_CHAR, ipif->ipif_id);
10764 	ip1dbg(("created %s\n", lifr->lifr_name));
10765 
10766 	/* Set address */
10767 	sin = (sin_t *)&lifr->lifr_addr;
10768 	if (sin->sin_family != AF_UNSPEC) {
10769 		err = ip_sioctl_addr(ipif, sin, q, mp,
10770 		    &ip_ndx_ioctl_table[SIOCLIFADDR_NDX], lifr);
10771 	}
10772 
10773 	/* Set ifindex and unit number for failback */
10774 	if (err == 0 && orig_ifindex != 0) {
10775 		ipif->ipif_orig_ifindex = orig_ifindex;
10776 		if (found_sep) {
10777 			ipif->ipif_orig_ipifid = id;
10778 		}
10779 	}
10780 
10781 done:
10782 	ipsq_exit(ipsq, B_TRUE, B_TRUE);
10783 	return (err);
10784 }
10785 
10786 /*
10787  * Remove an existing logical interface. If ipif_id is zero (i.e. not a logical
10788  * interface) delete it based on the IP address (on this physical interface).
10789  * Otherwise delete it based on the ipif_id.
10790  * Also, special handling to allow a removeif of lo0.
10791  */
10792 /* ARGSUSED */
10793 int
10794 ip_sioctl_removeif(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
10795     ip_ioctl_cmd_t *ipip, void *dummy_if_req)
10796 {
10797 	conn_t		*connp;
10798 	ill_t		*ill = ipif->ipif_ill;
10799 	boolean_t	 success;
10800 	ip_stack_t	*ipst;
10801 
10802 	ipst = CONNQ_TO_IPST(q);
10803 
10804 	ASSERT(q->q_next == NULL);
10805 	ip1dbg(("ip_sioctl_remove_if(%s:%u %p)\n",
10806 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
10807 	ASSERT(IAM_WRITER_IPIF(ipif));
10808 
10809 	connp = Q_TO_CONN(q);
10810 	/*
10811 	 * Special case for unplumbing lo0 (the loopback physical interface).
10812 	 * If unplumbing lo0, the incoming address structure has been
10813 	 * initialized to all zeros. When unplumbing lo0, all its logical
10814 	 * interfaces must be removed too.
10815 	 *
10816 	 * Note that this interface may be called to remove a specific
10817 	 * loopback logical interface (eg, lo0:1). But in that case
10818 	 * ipif->ipif_id != 0 so that the code path for that case is the
10819 	 * same as any other interface (meaning it skips the code directly
10820 	 * below).
10821 	 */
10822 	if (ipif->ipif_id == 0 && ipif->ipif_net_type == IRE_LOOPBACK) {
10823 		if (sin->sin_family == AF_UNSPEC &&
10824 		    (IN6_IS_ADDR_UNSPECIFIED(&((sin6_t *)sin)->sin6_addr))) {
10825 			/*
10826 			 * Mark it condemned. No new ref. will be made to ill.
10827 			 */
10828 			mutex_enter(&ill->ill_lock);
10829 			ill->ill_state_flags |= ILL_CONDEMNED;
10830 			for (ipif = ill->ill_ipif; ipif != NULL;
10831 			    ipif = ipif->ipif_next) {
10832 				ipif->ipif_state_flags |= IPIF_CONDEMNED;
10833 			}
10834 			mutex_exit(&ill->ill_lock);
10835 
10836 			ipif = ill->ill_ipif;
10837 			/* unplumb the loopback interface */
10838 			ill_delete(ill);
10839 			mutex_enter(&connp->conn_lock);
10840 			mutex_enter(&ill->ill_lock);
10841 			ASSERT(ill->ill_group == NULL);
10842 
10843 			/* Are any references to this ill active */
10844 			if (ill_is_quiescent(ill)) {
10845 				mutex_exit(&ill->ill_lock);
10846 				mutex_exit(&connp->conn_lock);
10847 				ill_delete_tail(ill);
10848 				mi_free(ill);
10849 				return (0);
10850 			}
10851 			success = ipsq_pending_mp_add(connp, ipif,
10852 			    CONNP_TO_WQ(connp), mp, ILL_FREE);
10853 			mutex_exit(&connp->conn_lock);
10854 			mutex_exit(&ill->ill_lock);
10855 			if (success)
10856 				return (EINPROGRESS);
10857 			else
10858 				return (EINTR);
10859 		}
10860 	}
10861 
10862 	/*
10863 	 * We are exclusive on the ipsq, so an ill move will be serialized
10864 	 * before or after us.
10865 	 */
10866 	ASSERT(ill->ill_move_in_progress == B_FALSE);
10867 
10868 	if (ipif->ipif_id == 0) {
10869 		/* Find based on address */
10870 		if (ipif->ipif_isv6) {
10871 			sin6_t *sin6;
10872 
10873 			if (sin->sin_family != AF_INET6)
10874 				return (EAFNOSUPPORT);
10875 
10876 			sin6 = (sin6_t *)sin;
10877 			/* We are a writer, so we should be able to lookup */
10878 			ipif = ipif_lookup_addr_v6(&sin6->sin6_addr,
10879 			    ill, ALL_ZONES, NULL, NULL, NULL, NULL, ipst);
10880 			if (ipif == NULL) {
10881 				/*
10882 				 * Maybe the address in on another interface in
10883 				 * the same IPMP group? We check this below.
10884 				 */
10885 				ipif = ipif_lookup_addr_v6(&sin6->sin6_addr,
10886 				    NULL, ALL_ZONES, NULL, NULL, NULL, NULL,
10887 				    ipst);
10888 			}
10889 		} else {
10890 			ipaddr_t addr;
10891 
10892 			if (sin->sin_family != AF_INET)
10893 				return (EAFNOSUPPORT);
10894 
10895 			addr = sin->sin_addr.s_addr;
10896 			/* We are a writer, so we should be able to lookup */
10897 			ipif = ipif_lookup_addr(addr, ill, ALL_ZONES, NULL,
10898 			    NULL, NULL, NULL, ipst);
10899 			if (ipif == NULL) {
10900 				/*
10901 				 * Maybe the address in on another interface in
10902 				 * the same IPMP group? We check this below.
10903 				 */
10904 				ipif = ipif_lookup_addr(addr, NULL, ALL_ZONES,
10905 				    NULL, NULL, NULL, NULL, ipst);
10906 			}
10907 		}
10908 		if (ipif == NULL) {
10909 			return (EADDRNOTAVAIL);
10910 		}
10911 		/*
10912 		 * When the address to be removed is hosted on a different
10913 		 * interface, we check if the interface is in the same IPMP
10914 		 * group as the specified one; if so we proceed with the
10915 		 * removal.
10916 		 * ill->ill_group is NULL when the ill is down, so we have to
10917 		 * compare the group names instead.
10918 		 */
10919 		if (ipif->ipif_ill != ill &&
10920 		    (ipif->ipif_ill->ill_phyint->phyint_groupname_len == 0 ||
10921 		    ill->ill_phyint->phyint_groupname_len == 0 ||
10922 		    mi_strcmp(ipif->ipif_ill->ill_phyint->phyint_groupname,
10923 		    ill->ill_phyint->phyint_groupname) != 0)) {
10924 			ipif_refrele(ipif);
10925 			return (EADDRNOTAVAIL);
10926 		}
10927 
10928 		/* This is a writer */
10929 		ipif_refrele(ipif);
10930 	}
10931 
10932 	/*
10933 	 * Can not delete instance zero since it is tied to the ill.
10934 	 */
10935 	if (ipif->ipif_id == 0)
10936 		return (EBUSY);
10937 
10938 	mutex_enter(&ill->ill_lock);
10939 	ipif->ipif_state_flags |= IPIF_CONDEMNED;
10940 	mutex_exit(&ill->ill_lock);
10941 
10942 	ipif_free(ipif);
10943 
10944 	mutex_enter(&connp->conn_lock);
10945 	mutex_enter(&ill->ill_lock);
10946 
10947 	/* Are any references to this ipif active */
10948 	if (ipif->ipif_refcnt == 0 && ipif->ipif_ire_cnt == 0) {
10949 		mutex_exit(&ill->ill_lock);
10950 		mutex_exit(&connp->conn_lock);
10951 		ipif_non_duplicate(ipif);
10952 		ipif_down_tail(ipif);
10953 		ipif_free_tail(ipif);
10954 		return (0);
10955 	}
10956 	success = ipsq_pending_mp_add(connp, ipif, CONNP_TO_WQ(connp), mp,
10957 	    IPIF_FREE);
10958 	mutex_exit(&ill->ill_lock);
10959 	mutex_exit(&connp->conn_lock);
10960 	if (success)
10961 		return (EINPROGRESS);
10962 	else
10963 		return (EINTR);
10964 }
10965 
10966 /*
10967  * Restart the removeif ioctl. The refcnt has gone down to 0.
10968  * The ipif is already condemned. So can't find it thru lookups.
10969  */
10970 /* ARGSUSED */
10971 int
10972 ip_sioctl_removeif_restart(ipif_t *ipif, sin_t *dummy_sin, queue_t *q,
10973     mblk_t *mp, ip_ioctl_cmd_t *ipip, void *dummy_if_req)
10974 {
10975 	ill_t *ill = ipif->ipif_ill;
10976 
10977 	ASSERT(IAM_WRITER_IPIF(ipif));
10978 	ASSERT(ipif->ipif_state_flags & IPIF_CONDEMNED);
10979 
10980 	ip1dbg(("ip_sioctl_removeif_restart(%s:%u %p)\n",
10981 	    ill->ill_name, ipif->ipif_id, (void *)ipif));
10982 
10983 	if (ipif->ipif_id == 0 && ipif->ipif_net_type == IRE_LOOPBACK) {
10984 		ASSERT(ill->ill_state_flags & ILL_CONDEMNED);
10985 		ill_delete_tail(ill);
10986 		mi_free(ill);
10987 		return (0);
10988 	}
10989 
10990 	ipif_non_duplicate(ipif);
10991 	ipif_down_tail(ipif);
10992 	ipif_free_tail(ipif);
10993 
10994 	ILL_UNMARK_CHANGING(ill);
10995 	return (0);
10996 }
10997 
10998 /*
10999  * Set the local interface address.
11000  * Allow an address of all zero when the interface is down.
11001  */
11002 /* ARGSUSED */
11003 int
11004 ip_sioctl_addr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
11005     ip_ioctl_cmd_t *dummy_ipip, void *dummy_ifreq)
11006 {
11007 	int err = 0;
11008 	in6_addr_t v6addr;
11009 	boolean_t need_up = B_FALSE;
11010 
11011 	ip1dbg(("ip_sioctl_addr(%s:%u %p)\n",
11012 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
11013 
11014 	ASSERT(IAM_WRITER_IPIF(ipif));
11015 
11016 	if (ipif->ipif_isv6) {
11017 		sin6_t *sin6;
11018 		ill_t *ill;
11019 		phyint_t *phyi;
11020 
11021 		if (sin->sin_family != AF_INET6)
11022 			return (EAFNOSUPPORT);
11023 
11024 		sin6 = (sin6_t *)sin;
11025 		v6addr = sin6->sin6_addr;
11026 		ill = ipif->ipif_ill;
11027 		phyi = ill->ill_phyint;
11028 
11029 		/*
11030 		 * Enforce that true multicast interfaces have a link-local
11031 		 * address for logical unit 0.
11032 		 */
11033 		if (ipif->ipif_id == 0 &&
11034 		    (ill->ill_flags & ILLF_MULTICAST) &&
11035 		    !(ipif->ipif_flags & (IPIF_POINTOPOINT)) &&
11036 		    !(phyi->phyint_flags & (PHYI_LOOPBACK)) &&
11037 		    !IN6_IS_ADDR_LINKLOCAL(&v6addr)) {
11038 			return (EADDRNOTAVAIL);
11039 		}
11040 
11041 		/*
11042 		 * up interfaces shouldn't have the unspecified address
11043 		 * unless they also have the IPIF_NOLOCAL flags set and
11044 		 * have a subnet assigned.
11045 		 */
11046 		if ((ipif->ipif_flags & IPIF_UP) &&
11047 		    IN6_IS_ADDR_UNSPECIFIED(&v6addr) &&
11048 		    (!(ipif->ipif_flags & IPIF_NOLOCAL) ||
11049 		    IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6subnet))) {
11050 			return (EADDRNOTAVAIL);
11051 		}
11052 
11053 		if (!ip_local_addr_ok_v6(&v6addr, &ipif->ipif_v6net_mask))
11054 			return (EADDRNOTAVAIL);
11055 	} else {
11056 		ipaddr_t addr;
11057 
11058 		if (sin->sin_family != AF_INET)
11059 			return (EAFNOSUPPORT);
11060 
11061 		addr = sin->sin_addr.s_addr;
11062 
11063 		/* Allow 0 as the local address. */
11064 		if (addr != 0 && !ip_addr_ok_v4(addr, ipif->ipif_net_mask))
11065 			return (EADDRNOTAVAIL);
11066 
11067 		IN6_IPADDR_TO_V4MAPPED(addr, &v6addr);
11068 	}
11069 
11070 
11071 	/*
11072 	 * Even if there is no change we redo things just to rerun
11073 	 * ipif_set_default.
11074 	 */
11075 	if (ipif->ipif_flags & IPIF_UP) {
11076 		/*
11077 		 * Setting a new local address, make sure
11078 		 * we have net and subnet bcast ire's for
11079 		 * the old address if we need them.
11080 		 */
11081 		if (!ipif->ipif_isv6)
11082 			ipif_check_bcast_ires(ipif);
11083 		/*
11084 		 * If the interface is already marked up,
11085 		 * we call ipif_down which will take care
11086 		 * of ditching any IREs that have been set
11087 		 * up based on the old interface address.
11088 		 */
11089 		err = ipif_logical_down(ipif, q, mp);
11090 		if (err == EINPROGRESS)
11091 			return (err);
11092 		ipif_down_tail(ipif);
11093 		need_up = 1;
11094 	}
11095 
11096 	err = ip_sioctl_addr_tail(ipif, sin, q, mp, need_up);
11097 	return (err);
11098 }
11099 
11100 int
11101 ip_sioctl_addr_tail(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
11102     boolean_t need_up)
11103 {
11104 	in6_addr_t v6addr;
11105 	in6_addr_t ov6addr;
11106 	ipaddr_t addr;
11107 	sin6_t	*sin6;
11108 	int	sinlen;
11109 	int	err = 0;
11110 	ill_t	*ill = ipif->ipif_ill;
11111 	boolean_t need_dl_down;
11112 	boolean_t need_arp_down;
11113 	struct iocblk *iocp;
11114 
11115 	iocp = (mp != NULL) ? (struct iocblk *)mp->b_rptr : NULL;
11116 
11117 	ip1dbg(("ip_sioctl_addr_tail(%s:%u %p)\n",
11118 	    ill->ill_name, ipif->ipif_id, (void *)ipif));
11119 	ASSERT(IAM_WRITER_IPIF(ipif));
11120 
11121 	/* Must cancel any pending timer before taking the ill_lock */
11122 	if (ipif->ipif_recovery_id != 0)
11123 		(void) untimeout(ipif->ipif_recovery_id);
11124 	ipif->ipif_recovery_id = 0;
11125 
11126 	if (ipif->ipif_isv6) {
11127 		sin6 = (sin6_t *)sin;
11128 		v6addr = sin6->sin6_addr;
11129 		sinlen = sizeof (struct sockaddr_in6);
11130 	} else {
11131 		addr = sin->sin_addr.s_addr;
11132 		IN6_IPADDR_TO_V4MAPPED(addr, &v6addr);
11133 		sinlen = sizeof (struct sockaddr_in);
11134 	}
11135 	mutex_enter(&ill->ill_lock);
11136 	ov6addr = ipif->ipif_v6lcl_addr;
11137 	ipif->ipif_v6lcl_addr = v6addr;
11138 	sctp_update_ipif_addr(ipif, ov6addr);
11139 	if (ipif->ipif_flags & (IPIF_ANYCAST | IPIF_NOLOCAL)) {
11140 		ipif->ipif_v6src_addr = ipv6_all_zeros;
11141 	} else {
11142 		ipif->ipif_v6src_addr = v6addr;
11143 	}
11144 	ipif->ipif_addr_ready = 0;
11145 
11146 	/*
11147 	 * If the interface was previously marked as a duplicate, then since
11148 	 * we've now got a "new" address, it should no longer be considered a
11149 	 * duplicate -- even if the "new" address is the same as the old one.
11150 	 * Note that if all ipifs are down, we may have a pending ARP down
11151 	 * event to handle.  This is because we want to recover from duplicates
11152 	 * and thus delay tearing down ARP until the duplicates have been
11153 	 * removed or disabled.
11154 	 */
11155 	need_dl_down = need_arp_down = B_FALSE;
11156 	if (ipif->ipif_flags & IPIF_DUPLICATE) {
11157 		need_arp_down = !need_up;
11158 		ipif->ipif_flags &= ~IPIF_DUPLICATE;
11159 		if (--ill->ill_ipif_dup_count == 0 && !need_up &&
11160 		    ill->ill_ipif_up_count == 0 && ill->ill_dl_up) {
11161 			need_dl_down = B_TRUE;
11162 		}
11163 	}
11164 
11165 	if (ipif->ipif_isv6 && IN6_IS_ADDR_6TO4(&v6addr) &&
11166 	    !ill->ill_is_6to4tun) {
11167 		queue_t *wqp = ill->ill_wq;
11168 
11169 		/*
11170 		 * The local address of this interface is a 6to4 address,
11171 		 * check if this interface is in fact a 6to4 tunnel or just
11172 		 * an interface configured with a 6to4 address.  We are only
11173 		 * interested in the former.
11174 		 */
11175 		if (wqp != NULL) {
11176 			while ((wqp->q_next != NULL) &&
11177 			    (wqp->q_next->q_qinfo != NULL) &&
11178 			    (wqp->q_next->q_qinfo->qi_minfo != NULL)) {
11179 
11180 				if (wqp->q_next->q_qinfo->qi_minfo->mi_idnum
11181 				    == TUN6TO4_MODID) {
11182 					/* set for use in IP */
11183 					ill->ill_is_6to4tun = 1;
11184 					break;
11185 				}
11186 				wqp = wqp->q_next;
11187 			}
11188 		}
11189 	}
11190 
11191 	ipif_set_default(ipif);
11192 
11193 	/*
11194 	 * When publishing an interface address change event, we only notify
11195 	 * the event listeners of the new address.  It is assumed that if they
11196 	 * actively care about the addresses assigned that they will have
11197 	 * already discovered the previous address assigned (if there was one.)
11198 	 *
11199 	 * Don't attach nic event message for SIOCLIFADDIF ioctl.
11200 	 */
11201 	if (iocp != NULL && iocp->ioc_cmd != SIOCLIFADDIF) {
11202 		hook_nic_event_t *info;
11203 		if ((info = ipif->ipif_ill->ill_nic_event_info) != NULL) {
11204 			ip2dbg(("ip_sioctl_addr_tail: unexpected nic event %d "
11205 			    "attached for %s\n", info->hne_event,
11206 			    ill->ill_name));
11207 			if (info->hne_data != NULL)
11208 				kmem_free(info->hne_data, info->hne_datalen);
11209 			kmem_free(info, sizeof (hook_nic_event_t));
11210 		}
11211 
11212 		info = kmem_alloc(sizeof (hook_nic_event_t), KM_NOSLEEP);
11213 		if (info != NULL) {
11214 			ip_stack_t	*ipst = ill->ill_ipst;
11215 
11216 			info->hne_nic =
11217 			    ipif->ipif_ill->ill_phyint->phyint_hook_ifindex;
11218 			info->hne_lif = MAP_IPIF_ID(ipif->ipif_id);
11219 			info->hne_event = NE_ADDRESS_CHANGE;
11220 			info->hne_family = ipif->ipif_isv6 ?
11221 			    ipst->ips_ipv6_net_data : ipst->ips_ipv4_net_data;
11222 			info->hne_data = kmem_alloc(sinlen, KM_NOSLEEP);
11223 			if (info->hne_data != NULL) {
11224 				info->hne_datalen = sinlen;
11225 				bcopy(sin, info->hne_data, sinlen);
11226 			} else {
11227 				ip2dbg(("ip_sioctl_addr_tail: could not attach "
11228 				    "address information for ADDRESS_CHANGE nic"
11229 				    " event of %s (ENOMEM)\n",
11230 				    ipif->ipif_ill->ill_name));
11231 				kmem_free(info, sizeof (hook_nic_event_t));
11232 			}
11233 		} else
11234 			ip2dbg(("ip_sioctl_addr_tail: could not attach "
11235 			    "ADDRESS_CHANGE nic event information for %s "
11236 			    "(ENOMEM)\n", ipif->ipif_ill->ill_name));
11237 
11238 		ipif->ipif_ill->ill_nic_event_info = info;
11239 	}
11240 
11241 	mutex_exit(&ill->ill_lock);
11242 
11243 	if (need_up) {
11244 		/*
11245 		 * Now bring the interface back up.  If this
11246 		 * is the only IPIF for the ILL, ipif_up
11247 		 * will have to re-bind to the device, so
11248 		 * we may get back EINPROGRESS, in which
11249 		 * case, this IOCTL will get completed in
11250 		 * ip_rput_dlpi when we see the DL_BIND_ACK.
11251 		 */
11252 		err = ipif_up(ipif, q, mp);
11253 	}
11254 
11255 	if (need_dl_down)
11256 		ill_dl_down(ill);
11257 	if (need_arp_down)
11258 		ipif_arp_down(ipif);
11259 
11260 	return (err);
11261 }
11262 
11263 
11264 /*
11265  * Restart entry point to restart the address set operation after the
11266  * refcounts have dropped to zero.
11267  */
11268 /* ARGSUSED */
11269 int
11270 ip_sioctl_addr_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
11271     ip_ioctl_cmd_t *ipip, void *ifreq)
11272 {
11273 	ip1dbg(("ip_sioctl_addr_restart(%s:%u %p)\n",
11274 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
11275 	ASSERT(IAM_WRITER_IPIF(ipif));
11276 	ipif_down_tail(ipif);
11277 	return (ip_sioctl_addr_tail(ipif, sin, q, mp, B_TRUE));
11278 }
11279 
11280 /* ARGSUSED */
11281 int
11282 ip_sioctl_get_addr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
11283     ip_ioctl_cmd_t *ipip, void *if_req)
11284 {
11285 	sin6_t *sin6 = (struct sockaddr_in6 *)sin;
11286 	struct lifreq *lifr = (struct lifreq *)if_req;
11287 
11288 	ip1dbg(("ip_sioctl_get_addr(%s:%u %p)\n",
11289 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
11290 	/*
11291 	 * The net mask and address can't change since we have a
11292 	 * reference to the ipif. So no lock is necessary.
11293 	 */
11294 	if (ipif->ipif_isv6) {
11295 		*sin6 = sin6_null;
11296 		sin6->sin6_family = AF_INET6;
11297 		sin6->sin6_addr = ipif->ipif_v6lcl_addr;
11298 		ASSERT(ipip->ipi_cmd_type == LIF_CMD);
11299 		lifr->lifr_addrlen =
11300 		    ip_mask_to_plen_v6(&ipif->ipif_v6net_mask);
11301 	} else {
11302 		*sin = sin_null;
11303 		sin->sin_family = AF_INET;
11304 		sin->sin_addr.s_addr = ipif->ipif_lcl_addr;
11305 		if (ipip->ipi_cmd_type == LIF_CMD) {
11306 			lifr->lifr_addrlen =
11307 			    ip_mask_to_plen(ipif->ipif_net_mask);
11308 		}
11309 	}
11310 	return (0);
11311 }
11312 
11313 /*
11314  * Set the destination address for a pt-pt interface.
11315  */
11316 /* ARGSUSED */
11317 int
11318 ip_sioctl_dstaddr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
11319     ip_ioctl_cmd_t *ipip, void *if_req)
11320 {
11321 	int err = 0;
11322 	in6_addr_t v6addr;
11323 	boolean_t need_up = B_FALSE;
11324 
11325 	ip1dbg(("ip_sioctl_dstaddr(%s:%u %p)\n",
11326 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
11327 	ASSERT(IAM_WRITER_IPIF(ipif));
11328 
11329 	if (ipif->ipif_isv6) {
11330 		sin6_t *sin6;
11331 
11332 		if (sin->sin_family != AF_INET6)
11333 			return (EAFNOSUPPORT);
11334 
11335 		sin6 = (sin6_t *)sin;
11336 		v6addr = sin6->sin6_addr;
11337 
11338 		if (!ip_remote_addr_ok_v6(&v6addr, &ipif->ipif_v6net_mask))
11339 			return (EADDRNOTAVAIL);
11340 	} else {
11341 		ipaddr_t addr;
11342 
11343 		if (sin->sin_family != AF_INET)
11344 			return (EAFNOSUPPORT);
11345 
11346 		addr = sin->sin_addr.s_addr;
11347 		if (!ip_addr_ok_v4(addr, ipif->ipif_net_mask))
11348 			return (EADDRNOTAVAIL);
11349 
11350 		IN6_IPADDR_TO_V4MAPPED(addr, &v6addr);
11351 	}
11352 
11353 	if (IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6pp_dst_addr, &v6addr))
11354 		return (0);	/* No change */
11355 
11356 	if (ipif->ipif_flags & IPIF_UP) {
11357 		/*
11358 		 * If the interface is already marked up,
11359 		 * we call ipif_down which will take care
11360 		 * of ditching any IREs that have been set
11361 		 * up based on the old pp dst address.
11362 		 */
11363 		err = ipif_logical_down(ipif, q, mp);
11364 		if (err == EINPROGRESS)
11365 			return (err);
11366 		ipif_down_tail(ipif);
11367 		need_up = B_TRUE;
11368 	}
11369 	/*
11370 	 * could return EINPROGRESS. If so ioctl will complete in
11371 	 * ip_rput_dlpi_writer
11372 	 */
11373 	err = ip_sioctl_dstaddr_tail(ipif, sin, q, mp, need_up);
11374 	return (err);
11375 }
11376 
11377 static int
11378 ip_sioctl_dstaddr_tail(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
11379     boolean_t need_up)
11380 {
11381 	in6_addr_t v6addr;
11382 	ill_t	*ill = ipif->ipif_ill;
11383 	int	err = 0;
11384 	boolean_t need_dl_down;
11385 	boolean_t need_arp_down;
11386 
11387 	ip1dbg(("ip_sioctl_dstaddr_tail(%s:%u %p)\n", ill->ill_name,
11388 	    ipif->ipif_id, (void *)ipif));
11389 
11390 	/* Must cancel any pending timer before taking the ill_lock */
11391 	if (ipif->ipif_recovery_id != 0)
11392 		(void) untimeout(ipif->ipif_recovery_id);
11393 	ipif->ipif_recovery_id = 0;
11394 
11395 	if (ipif->ipif_isv6) {
11396 		sin6_t *sin6;
11397 
11398 		sin6 = (sin6_t *)sin;
11399 		v6addr = sin6->sin6_addr;
11400 	} else {
11401 		ipaddr_t addr;
11402 
11403 		addr = sin->sin_addr.s_addr;
11404 		IN6_IPADDR_TO_V4MAPPED(addr, &v6addr);
11405 	}
11406 	mutex_enter(&ill->ill_lock);
11407 	/* Set point to point destination address. */
11408 	if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) {
11409 		/*
11410 		 * Allow this as a means of creating logical
11411 		 * pt-pt interfaces on top of e.g. an Ethernet.
11412 		 * XXX Undocumented HACK for testing.
11413 		 * pt-pt interfaces are created with NUD disabled.
11414 		 */
11415 		ipif->ipif_flags |= IPIF_POINTOPOINT;
11416 		ipif->ipif_flags &= ~IPIF_BROADCAST;
11417 		if (ipif->ipif_isv6)
11418 			ill->ill_flags |= ILLF_NONUD;
11419 	}
11420 
11421 	/*
11422 	 * If the interface was previously marked as a duplicate, then since
11423 	 * we've now got a "new" address, it should no longer be considered a
11424 	 * duplicate -- even if the "new" address is the same as the old one.
11425 	 * Note that if all ipifs are down, we may have a pending ARP down
11426 	 * event to handle.
11427 	 */
11428 	need_dl_down = need_arp_down = B_FALSE;
11429 	if (ipif->ipif_flags & IPIF_DUPLICATE) {
11430 		need_arp_down = !need_up;
11431 		ipif->ipif_flags &= ~IPIF_DUPLICATE;
11432 		if (--ill->ill_ipif_dup_count == 0 && !need_up &&
11433 		    ill->ill_ipif_up_count == 0 && ill->ill_dl_up) {
11434 			need_dl_down = B_TRUE;
11435 		}
11436 	}
11437 
11438 	/* Set the new address. */
11439 	ipif->ipif_v6pp_dst_addr = v6addr;
11440 	/* Make sure subnet tracks pp_dst */
11441 	ipif->ipif_v6subnet = ipif->ipif_v6pp_dst_addr;
11442 	mutex_exit(&ill->ill_lock);
11443 
11444 	if (need_up) {
11445 		/*
11446 		 * Now bring the interface back up.  If this
11447 		 * is the only IPIF for the ILL, ipif_up
11448 		 * will have to re-bind to the device, so
11449 		 * we may get back EINPROGRESS, in which
11450 		 * case, this IOCTL will get completed in
11451 		 * ip_rput_dlpi when we see the DL_BIND_ACK.
11452 		 */
11453 		err = ipif_up(ipif, q, mp);
11454 	}
11455 
11456 	if (need_dl_down)
11457 		ill_dl_down(ill);
11458 
11459 	if (need_arp_down)
11460 		ipif_arp_down(ipif);
11461 	return (err);
11462 }
11463 
11464 /*
11465  * Restart entry point to restart the dstaddress set operation after the
11466  * refcounts have dropped to zero.
11467  */
11468 /* ARGSUSED */
11469 int
11470 ip_sioctl_dstaddr_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
11471     ip_ioctl_cmd_t *ipip, void *ifreq)
11472 {
11473 	ip1dbg(("ip_sioctl_dstaddr_restart(%s:%u %p)\n",
11474 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
11475 	ipif_down_tail(ipif);
11476 	return (ip_sioctl_dstaddr_tail(ipif, sin, q, mp, B_TRUE));
11477 }
11478 
11479 /* ARGSUSED */
11480 int
11481 ip_sioctl_get_dstaddr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
11482     ip_ioctl_cmd_t *ipip, void *if_req)
11483 {
11484 	sin6_t	*sin6 = (struct sockaddr_in6 *)sin;
11485 
11486 	ip1dbg(("ip_sioctl_get_dstaddr(%s:%u %p)\n",
11487 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
11488 	/*
11489 	 * Get point to point destination address. The addresses can't
11490 	 * change since we hold a reference to the ipif.
11491 	 */
11492 	if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0)
11493 		return (EADDRNOTAVAIL);
11494 
11495 	if (ipif->ipif_isv6) {
11496 		ASSERT(ipip->ipi_cmd_type == LIF_CMD);
11497 		*sin6 = sin6_null;
11498 		sin6->sin6_family = AF_INET6;
11499 		sin6->sin6_addr = ipif->ipif_v6pp_dst_addr;
11500 	} else {
11501 		*sin = sin_null;
11502 		sin->sin_family = AF_INET;
11503 		sin->sin_addr.s_addr = ipif->ipif_pp_dst_addr;
11504 	}
11505 	return (0);
11506 }
11507 
11508 /*
11509  * part of ipmp, make this func return the active/inactive state and
11510  * caller can set once atomically instead of multiple mutex_enter/mutex_exit
11511  */
11512 /*
11513  * This function either sets or clears the IFF_INACTIVE flag.
11514  *
11515  * As long as there are some addresses or multicast memberships on the
11516  * IPv4 or IPv6 interface of the "phyi" that does not belong in here, we
11517  * will consider it to be ACTIVE (clear IFF_INACTIVE) i.e the interface
11518  * will be used for outbound packets.
11519  *
11520  * Caller needs to verify the validity of setting IFF_INACTIVE.
11521  */
11522 static void
11523 phyint_inactive(phyint_t *phyi)
11524 {
11525 	ill_t *ill_v4;
11526 	ill_t *ill_v6;
11527 	ipif_t *ipif;
11528 	ilm_t *ilm;
11529 
11530 	ill_v4 = phyi->phyint_illv4;
11531 	ill_v6 = phyi->phyint_illv6;
11532 
11533 	/*
11534 	 * No need for a lock while traversing the list since iam
11535 	 * a writer
11536 	 */
11537 	if (ill_v4 != NULL) {
11538 		ASSERT(IAM_WRITER_ILL(ill_v4));
11539 		for (ipif = ill_v4->ill_ipif; ipif != NULL;
11540 		    ipif = ipif->ipif_next) {
11541 			if (ipif->ipif_orig_ifindex != phyi->phyint_ifindex) {
11542 				mutex_enter(&phyi->phyint_lock);
11543 				phyi->phyint_flags &= ~PHYI_INACTIVE;
11544 				mutex_exit(&phyi->phyint_lock);
11545 				return;
11546 			}
11547 		}
11548 		for (ilm = ill_v4->ill_ilm; ilm != NULL;
11549 		    ilm = ilm->ilm_next) {
11550 			if (ilm->ilm_orig_ifindex != phyi->phyint_ifindex) {
11551 				mutex_enter(&phyi->phyint_lock);
11552 				phyi->phyint_flags &= ~PHYI_INACTIVE;
11553 				mutex_exit(&phyi->phyint_lock);
11554 				return;
11555 			}
11556 		}
11557 	}
11558 	if (ill_v6 != NULL) {
11559 		ill_v6 = phyi->phyint_illv6;
11560 		for (ipif = ill_v6->ill_ipif; ipif != NULL;
11561 		    ipif = ipif->ipif_next) {
11562 			if (ipif->ipif_orig_ifindex != phyi->phyint_ifindex) {
11563 				mutex_enter(&phyi->phyint_lock);
11564 				phyi->phyint_flags &= ~PHYI_INACTIVE;
11565 				mutex_exit(&phyi->phyint_lock);
11566 				return;
11567 			}
11568 		}
11569 		for (ilm = ill_v6->ill_ilm; ilm != NULL;
11570 		    ilm = ilm->ilm_next) {
11571 			if (ilm->ilm_orig_ifindex != phyi->phyint_ifindex) {
11572 				mutex_enter(&phyi->phyint_lock);
11573 				phyi->phyint_flags &= ~PHYI_INACTIVE;
11574 				mutex_exit(&phyi->phyint_lock);
11575 				return;
11576 			}
11577 		}
11578 	}
11579 	mutex_enter(&phyi->phyint_lock);
11580 	phyi->phyint_flags |= PHYI_INACTIVE;
11581 	mutex_exit(&phyi->phyint_lock);
11582 }
11583 
11584 /*
11585  * This function is called only when the phyint flags change. Currently
11586  * called from ip_sioctl_flags. We re-do the broadcast nomination so
11587  * that we can select a good ill.
11588  */
11589 static void
11590 ip_redo_nomination(phyint_t *phyi)
11591 {
11592 	ill_t *ill_v4;
11593 
11594 	ill_v4 = phyi->phyint_illv4;
11595 
11596 	if (ill_v4 != NULL && ill_v4->ill_group != NULL) {
11597 		ASSERT(IAM_WRITER_ILL(ill_v4));
11598 		if (ill_v4->ill_group->illgrp_ill_count > 1)
11599 			ill_nominate_bcast_rcv(ill_v4->ill_group);
11600 	}
11601 }
11602 
11603 /*
11604  * Heuristic to check if ill is INACTIVE.
11605  * Checks if ill has an ipif with an usable ip address.
11606  *
11607  * Return values:
11608  *	B_TRUE	- ill is INACTIVE; has no usable ipif
11609  *	B_FALSE - ill is not INACTIVE; ill has at least one usable ipif
11610  */
11611 static boolean_t
11612 ill_is_inactive(ill_t *ill)
11613 {
11614 	ipif_t *ipif;
11615 
11616 	/* Check whether it is in an IPMP group */
11617 	if (ill->ill_phyint->phyint_groupname == NULL)
11618 		return (B_FALSE);
11619 
11620 	if (ill->ill_ipif_up_count == 0)
11621 		return (B_TRUE);
11622 
11623 	for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) {
11624 		uint64_t flags = ipif->ipif_flags;
11625 
11626 		/*
11627 		 * This ipif is usable if it is IPIF_UP and not a
11628 		 * dedicated test address.  A dedicated test address
11629 		 * is marked IPIF_NOFAILOVER *and* IPIF_DEPRECATED
11630 		 * (note in particular that V6 test addresses are
11631 		 * link-local data addresses and thus are marked
11632 		 * IPIF_NOFAILOVER but not IPIF_DEPRECATED).
11633 		 */
11634 		if ((flags & IPIF_UP) &&
11635 		    ((flags & (IPIF_DEPRECATED|IPIF_NOFAILOVER)) !=
11636 		    (IPIF_DEPRECATED|IPIF_NOFAILOVER)))
11637 			return (B_FALSE);
11638 	}
11639 	return (B_TRUE);
11640 }
11641 
11642 /*
11643  * Set interface flags.
11644  * Need to do special action for IPIF_UP, IPIF_DEPRECATED, IPIF_NOXMIT,
11645  * IPIF_NOLOCAL, ILLF_NONUD, ILLF_NOARP, IPIF_PRIVATE, IPIF_ANYCAST,
11646  * IPIF_PREFERRED, PHYI_STANDBY, PHYI_FAILED and PHYI_OFFLINE.
11647  *
11648  * NOTE : We really don't enforce that ipif_id zero should be used
11649  *	  for setting any flags other than IFF_LOGINT_FLAGS. This
11650  *	  is because applications generally does SICGLIFFLAGS and
11651  *	  ORs in the new flags (that affects the logical) and does a
11652  *	  SIOCSLIFFLAGS. Thus, "flags" below could contain bits other
11653  *	  than IFF_LOGINT_FLAGS. One could check whether "turn_on" - the
11654  *	  flags that will be turned on is correct with respect to
11655  *	  ipif_id 0. For backward compatibility reasons, it is not done.
11656  */
11657 /* ARGSUSED */
11658 int
11659 ip_sioctl_flags(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
11660     ip_ioctl_cmd_t *ipip, void *if_req)
11661 {
11662 	uint64_t turn_on;
11663 	uint64_t turn_off;
11664 	int	err;
11665 	boolean_t need_up = B_FALSE;
11666 	phyint_t *phyi;
11667 	ill_t *ill;
11668 	uint64_t intf_flags;
11669 	boolean_t phyint_flags_modified = B_FALSE;
11670 	uint64_t flags;
11671 	struct ifreq *ifr;
11672 	struct lifreq *lifr;
11673 	boolean_t set_linklocal = B_FALSE;
11674 	boolean_t zero_source = B_FALSE;
11675 	ip_stack_t *ipst;
11676 
11677 	ip1dbg(("ip_sioctl_flags(%s:%u %p)\n",
11678 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
11679 
11680 	ASSERT(IAM_WRITER_IPIF(ipif));
11681 
11682 	ill = ipif->ipif_ill;
11683 	phyi = ill->ill_phyint;
11684 	ipst = ill->ill_ipst;
11685 
11686 	if (ipip->ipi_cmd_type == IF_CMD) {
11687 		ifr = (struct ifreq *)if_req;
11688 		flags =  (uint64_t)(ifr->ifr_flags & 0x0000ffff);
11689 	} else {
11690 		lifr = (struct lifreq *)if_req;
11691 		flags = lifr->lifr_flags;
11692 	}
11693 
11694 	intf_flags = ipif->ipif_flags | ill->ill_flags | phyi->phyint_flags;
11695 
11696 	/*
11697 	 * Has the flags been set correctly till now ?
11698 	 */
11699 	ASSERT((phyi->phyint_flags & ~(IFF_PHYINT_FLAGS)) == 0);
11700 	ASSERT((ill->ill_flags & ~(IFF_PHYINTINST_FLAGS)) == 0);
11701 	ASSERT((ipif->ipif_flags & ~(IFF_LOGINT_FLAGS)) == 0);
11702 	/*
11703 	 * Compare the new flags to the old, and partition
11704 	 * into those coming on and those going off.
11705 	 * For the 16 bit command keep the bits above bit 16 unchanged.
11706 	 */
11707 	if (ipip->ipi_cmd == SIOCSIFFLAGS)
11708 		flags |= intf_flags & ~0xFFFF;
11709 
11710 	/*
11711 	 * First check which bits will change and then which will
11712 	 * go on and off
11713 	 */
11714 	turn_on = (flags ^ intf_flags) & ~IFF_CANTCHANGE;
11715 	if (!turn_on)
11716 		return (0);	/* No change */
11717 
11718 	turn_off = intf_flags & turn_on;
11719 	turn_on ^= turn_off;
11720 	err = 0;
11721 
11722 	/*
11723 	 * Don't allow any bits belonging to the logical interface
11724 	 * to be set or cleared on the replacement ipif that was
11725 	 * created temporarily during a MOVE.
11726 	 */
11727 	if (ipif->ipif_replace_zero &&
11728 	    ((turn_on|turn_off) & IFF_LOGINT_FLAGS) != 0) {
11729 		return (EINVAL);
11730 	}
11731 
11732 	/*
11733 	 * Only allow the IFF_XRESOLV and IFF_TEMPORARY flags to be set on
11734 	 * IPv6 interfaces.
11735 	 */
11736 	if ((turn_on & (IFF_XRESOLV|IFF_TEMPORARY)) && !(ipif->ipif_isv6))
11737 		return (EINVAL);
11738 
11739 	/*
11740 	 * cannot turn off IFF_NOXMIT on  VNI interfaces.
11741 	 */
11742 	if ((turn_off & IFF_NOXMIT) && IS_VNI(ipif->ipif_ill))
11743 		return (EINVAL);
11744 
11745 	/*
11746 	 * Don't allow the IFF_ROUTER flag to be turned on on loopback
11747 	 * interfaces.  It makes no sense in that context.
11748 	 */
11749 	if ((turn_on & IFF_ROUTER) && (phyi->phyint_flags & PHYI_LOOPBACK))
11750 		return (EINVAL);
11751 
11752 	if (flags & (IFF_NOLOCAL|IFF_ANYCAST))
11753 		zero_source = B_TRUE;
11754 
11755 	/*
11756 	 * For IPv6 ipif_id 0, don't allow the interface to be up without
11757 	 * a link local address if IFF_NOLOCAL or IFF_ANYCAST are not set.
11758 	 * If the link local address isn't set, and can be set, it will get
11759 	 * set later on in this function.
11760 	 */
11761 	if (ipif->ipif_id == 0 && ipif->ipif_isv6 &&
11762 	    (flags & IFF_UP) && !zero_source &&
11763 	    IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr)) {
11764 		if (ipif_cant_setlinklocal(ipif))
11765 			return (EINVAL);
11766 		set_linklocal = B_TRUE;
11767 	}
11768 
11769 	/*
11770 	 * ILL cannot be part of a usesrc group and and IPMP group at the
11771 	 * same time. No need to grab ill_g_usesrc_lock here, see
11772 	 * synchronization notes in ip.c
11773 	 */
11774 	if (turn_on & PHYI_STANDBY &&
11775 	    ipif->ipif_ill->ill_usesrc_grp_next != NULL) {
11776 		return (EINVAL);
11777 	}
11778 
11779 	/*
11780 	 * If we modify physical interface flags, we'll potentially need to
11781 	 * send up two routing socket messages for the changes (one for the
11782 	 * IPv4 ill, and another for the IPv6 ill).  Note that here.
11783 	 */
11784 	if ((turn_on|turn_off) & IFF_PHYINT_FLAGS)
11785 		phyint_flags_modified = B_TRUE;
11786 
11787 	/*
11788 	 * If we are setting or clearing FAILED or STANDBY or OFFLINE,
11789 	 * we need to flush the IRE_CACHES belonging to this ill.
11790 	 * We handle this case here without doing the DOWN/UP dance
11791 	 * like it is done for other flags. If some other flags are
11792 	 * being turned on/off with FAILED/STANDBY/OFFLINE, the code
11793 	 * below will handle it by bringing it down and then
11794 	 * bringing it UP.
11795 	 */
11796 	if ((turn_on|turn_off) & (PHYI_FAILED|PHYI_STANDBY|PHYI_OFFLINE)) {
11797 		ill_t *ill_v4, *ill_v6;
11798 
11799 		ill_v4 = phyi->phyint_illv4;
11800 		ill_v6 = phyi->phyint_illv6;
11801 
11802 		/*
11803 		 * First set the INACTIVE flag if needed. Then delete the ires.
11804 		 * ire_add will atomically prevent creating new IRE_CACHEs
11805 		 * unless hidden flag is set.
11806 		 * PHYI_FAILED and PHYI_INACTIVE are exclusive
11807 		 */
11808 		if ((turn_on & PHYI_FAILED) &&
11809 		    ((intf_flags & PHYI_STANDBY) ||
11810 		    !ipst->ips_ipmp_enable_failback)) {
11811 			/* Reset PHYI_INACTIVE when PHYI_FAILED is being set */
11812 			phyi->phyint_flags &= ~PHYI_INACTIVE;
11813 		}
11814 		if ((turn_off & PHYI_FAILED) &&
11815 		    ((intf_flags & PHYI_STANDBY) ||
11816 		    (!ipst->ips_ipmp_enable_failback &&
11817 		    ill_is_inactive(ill)))) {
11818 			phyint_inactive(phyi);
11819 		}
11820 
11821 		if (turn_on & PHYI_STANDBY) {
11822 			/*
11823 			 * We implicitly set INACTIVE only when STANDBY is set.
11824 			 * INACTIVE is also set on non-STANDBY phyint when user
11825 			 * disables FAILBACK using configuration file.
11826 			 * Do not allow STANDBY to be set on such INACTIVE
11827 			 * phyint
11828 			 */
11829 			if (phyi->phyint_flags & PHYI_INACTIVE)
11830 				return (EINVAL);
11831 			if (!(phyi->phyint_flags & PHYI_FAILED))
11832 				phyint_inactive(phyi);
11833 		}
11834 		if (turn_off & PHYI_STANDBY) {
11835 			if (ipst->ips_ipmp_enable_failback) {
11836 				/*
11837 				 * Reset PHYI_INACTIVE.
11838 				 */
11839 				phyi->phyint_flags &= ~PHYI_INACTIVE;
11840 			} else if (ill_is_inactive(ill) &&
11841 			    !(phyi->phyint_flags & PHYI_FAILED)) {
11842 				/*
11843 				 * Need to set INACTIVE, when user sets
11844 				 * STANDBY on a non-STANDBY phyint and
11845 				 * later resets STANDBY
11846 				 */
11847 				phyint_inactive(phyi);
11848 			}
11849 		}
11850 		/*
11851 		 * We should always send up a message so that the
11852 		 * daemons come to know of it. Note that the zeroth
11853 		 * interface can be down and the check below for IPIF_UP
11854 		 * will not make sense as we are actually setting
11855 		 * a phyint flag here. We assume that the ipif used
11856 		 * is always the zeroth ipif. (ip_rts_ifmsg does not
11857 		 * send up any message for non-zero ipifs).
11858 		 */
11859 		phyint_flags_modified = B_TRUE;
11860 
11861 		if (ill_v4 != NULL) {
11862 			ire_walk_ill_v4(MATCH_IRE_ILL | MATCH_IRE_TYPE,
11863 			    IRE_CACHE, ill_stq_cache_delete,
11864 			    (char *)ill_v4, ill_v4);
11865 			illgrp_reset_schednext(ill_v4);
11866 		}
11867 		if (ill_v6 != NULL) {
11868 			ire_walk_ill_v6(MATCH_IRE_ILL | MATCH_IRE_TYPE,
11869 			    IRE_CACHE, ill_stq_cache_delete,
11870 			    (char *)ill_v6, ill_v6);
11871 			illgrp_reset_schednext(ill_v6);
11872 		}
11873 	}
11874 
11875 	/*
11876 	 * If ILLF_ROUTER changes, we need to change the ip forwarding
11877 	 * status of the interface and, if the interface is part of an IPMP
11878 	 * group, all other interfaces that are part of the same IPMP
11879 	 * group.
11880 	 */
11881 	if ((turn_on | turn_off) & ILLF_ROUTER)
11882 		(void) ill_forward_set(ill, ((turn_on & ILLF_ROUTER) != 0));
11883 
11884 	/*
11885 	 * If the interface is not UP and we are not going to
11886 	 * bring it UP, record the flags and return. When the
11887 	 * interface comes UP later, the right actions will be
11888 	 * taken.
11889 	 */
11890 	if (!(ipif->ipif_flags & IPIF_UP) &&
11891 	    !(turn_on & IPIF_UP)) {
11892 		/* Record new flags in their respective places. */
11893 		mutex_enter(&ill->ill_lock);
11894 		mutex_enter(&ill->ill_phyint->phyint_lock);
11895 		ipif->ipif_flags |= (turn_on & IFF_LOGINT_FLAGS);
11896 		ipif->ipif_flags &= (~turn_off & IFF_LOGINT_FLAGS);
11897 		ill->ill_flags |= (turn_on & IFF_PHYINTINST_FLAGS);
11898 		ill->ill_flags &= (~turn_off & IFF_PHYINTINST_FLAGS);
11899 		phyi->phyint_flags |= (turn_on & IFF_PHYINT_FLAGS);
11900 		phyi->phyint_flags &= (~turn_off & IFF_PHYINT_FLAGS);
11901 		mutex_exit(&ill->ill_lock);
11902 		mutex_exit(&ill->ill_phyint->phyint_lock);
11903 
11904 		/*
11905 		 * We do the broadcast and nomination here rather
11906 		 * than waiting for a FAILOVER/FAILBACK to happen. In
11907 		 * the case of FAILBACK from INACTIVE standby to the
11908 		 * interface that has been repaired, PHYI_FAILED has not
11909 		 * been cleared yet. If there are only two interfaces in
11910 		 * that group, all we have is a FAILED and INACTIVE
11911 		 * interface. If we do the nomination soon after a failback,
11912 		 * the broadcast nomination code would select the
11913 		 * INACTIVE interface for receiving broadcasts as FAILED is
11914 		 * not yet cleared. As we don't want STANDBY/INACTIVE to
11915 		 * receive broadcast packets, we need to redo nomination
11916 		 * when the FAILED is cleared here. Thus, in general we
11917 		 * always do the nomination here for FAILED, STANDBY
11918 		 * and OFFLINE.
11919 		 */
11920 		if (((turn_on | turn_off) &
11921 		    (PHYI_FAILED|PHYI_STANDBY|PHYI_OFFLINE))) {
11922 			ip_redo_nomination(phyi);
11923 		}
11924 		if (phyint_flags_modified) {
11925 			if (phyi->phyint_illv4 != NULL) {
11926 				ip_rts_ifmsg(phyi->phyint_illv4->
11927 				    ill_ipif);
11928 			}
11929 			if (phyi->phyint_illv6 != NULL) {
11930 				ip_rts_ifmsg(phyi->phyint_illv6->
11931 				    ill_ipif);
11932 			}
11933 		}
11934 		return (0);
11935 	} else if (set_linklocal || zero_source) {
11936 		mutex_enter(&ill->ill_lock);
11937 		if (set_linklocal)
11938 			ipif->ipif_state_flags |= IPIF_SET_LINKLOCAL;
11939 		if (zero_source)
11940 			ipif->ipif_state_flags |= IPIF_ZERO_SOURCE;
11941 		mutex_exit(&ill->ill_lock);
11942 	}
11943 
11944 	/*
11945 	 * Disallow IPv6 interfaces coming up that have the unspecified address,
11946 	 * or point-to-point interfaces with an unspecified destination. We do
11947 	 * allow the address to be unspecified for IPIF_NOLOCAL interfaces that
11948 	 * have a subnet assigned, which is how in.ndpd currently manages its
11949 	 * onlink prefix list when no addresses are configured with those
11950 	 * prefixes.
11951 	 */
11952 	if (ipif->ipif_isv6 &&
11953 	    ((IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr) &&
11954 	    (!(ipif->ipif_flags & IPIF_NOLOCAL) && !(turn_on & IPIF_NOLOCAL) ||
11955 	    IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6subnet))) ||
11956 	    ((ipif->ipif_flags & IPIF_POINTOPOINT) &&
11957 	    IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6pp_dst_addr)))) {
11958 		return (EINVAL);
11959 	}
11960 
11961 	/*
11962 	 * Prevent IPv4 point-to-point interfaces with a 0.0.0.0 destination
11963 	 * from being brought up.
11964 	 */
11965 	if (!ipif->ipif_isv6 &&
11966 	    ((ipif->ipif_flags & IPIF_POINTOPOINT) &&
11967 	    ipif->ipif_pp_dst_addr == INADDR_ANY)) {
11968 		return (EINVAL);
11969 	}
11970 
11971 	/*
11972 	 * The only flag changes that we currently take specific action on
11973 	 * is IPIF_UP, IPIF_DEPRECATED, IPIF_NOXMIT, IPIF_NOLOCAL,
11974 	 * ILLF_NOARP, ILLF_NONUD, IPIF_PRIVATE, IPIF_ANYCAST, and
11975 	 * IPIF_PREFERRED.  This is done by bring the ipif down, changing
11976 	 * the flags and bringing it back up again.
11977 	 */
11978 	if ((turn_on|turn_off) &
11979 	    (IPIF_UP|IPIF_DEPRECATED|IPIF_NOXMIT|IPIF_NOLOCAL|ILLF_NOARP|
11980 	    ILLF_NONUD|IPIF_PRIVATE|IPIF_ANYCAST|IPIF_PREFERRED)) {
11981 		/*
11982 		 * Taking this ipif down, make sure we have
11983 		 * valid net and subnet bcast ire's for other
11984 		 * logical interfaces, if we need them.
11985 		 */
11986 		if (!ipif->ipif_isv6)
11987 			ipif_check_bcast_ires(ipif);
11988 
11989 		if (((ipif->ipif_flags | turn_on) & IPIF_UP) &&
11990 		    !(turn_off & IPIF_UP)) {
11991 			need_up = B_TRUE;
11992 			if (ipif->ipif_flags & IPIF_UP)
11993 				ill->ill_logical_down = 1;
11994 			turn_on &= ~IPIF_UP;
11995 		}
11996 		err = ipif_down(ipif, q, mp);
11997 		ip1dbg(("ipif_down returns %d err ", err));
11998 		if (err == EINPROGRESS)
11999 			return (err);
12000 		ipif_down_tail(ipif);
12001 	}
12002 	return (ip_sioctl_flags_tail(ipif, flags, q, mp, need_up));
12003 }
12004 
12005 static int
12006 ip_sioctl_flags_tail(ipif_t *ipif, uint64_t flags, queue_t *q, mblk_t *mp,
12007     boolean_t need_up)
12008 {
12009 	ill_t	*ill;
12010 	phyint_t *phyi;
12011 	uint64_t turn_on;
12012 	uint64_t turn_off;
12013 	uint64_t intf_flags;
12014 	boolean_t phyint_flags_modified = B_FALSE;
12015 	int	err = 0;
12016 	boolean_t set_linklocal = B_FALSE;
12017 	boolean_t zero_source = B_FALSE;
12018 
12019 	ip1dbg(("ip_sioctl_flags_tail(%s:%u)\n",
12020 	    ipif->ipif_ill->ill_name, ipif->ipif_id));
12021 
12022 	ASSERT(IAM_WRITER_IPIF(ipif));
12023 
12024 	ill = ipif->ipif_ill;
12025 	phyi = ill->ill_phyint;
12026 
12027 	intf_flags = ipif->ipif_flags | ill->ill_flags | phyi->phyint_flags;
12028 	turn_on = (flags ^ intf_flags) & ~(IFF_CANTCHANGE | IFF_UP);
12029 
12030 	turn_off = intf_flags & turn_on;
12031 	turn_on ^= turn_off;
12032 
12033 	if ((turn_on|turn_off) & (PHYI_FAILED|PHYI_STANDBY|PHYI_OFFLINE))
12034 		phyint_flags_modified = B_TRUE;
12035 
12036 	/*
12037 	 * Now we change the flags. Track current value of
12038 	 * other flags in their respective places.
12039 	 */
12040 	mutex_enter(&ill->ill_lock);
12041 	mutex_enter(&phyi->phyint_lock);
12042 	ipif->ipif_flags |= (turn_on & IFF_LOGINT_FLAGS);
12043 	ipif->ipif_flags &= (~turn_off & IFF_LOGINT_FLAGS);
12044 	ill->ill_flags |= (turn_on & IFF_PHYINTINST_FLAGS);
12045 	ill->ill_flags &= (~turn_off & IFF_PHYINTINST_FLAGS);
12046 	phyi->phyint_flags |= (turn_on & IFF_PHYINT_FLAGS);
12047 	phyi->phyint_flags &= (~turn_off & IFF_PHYINT_FLAGS);
12048 	if (ipif->ipif_state_flags & IPIF_SET_LINKLOCAL) {
12049 		set_linklocal = B_TRUE;
12050 		ipif->ipif_state_flags &= ~IPIF_SET_LINKLOCAL;
12051 	}
12052 	if (ipif->ipif_state_flags & IPIF_ZERO_SOURCE) {
12053 		zero_source = B_TRUE;
12054 		ipif->ipif_state_flags &= ~IPIF_ZERO_SOURCE;
12055 	}
12056 	mutex_exit(&ill->ill_lock);
12057 	mutex_exit(&phyi->phyint_lock);
12058 
12059 	if (((turn_on | turn_off) & (PHYI_FAILED|PHYI_STANDBY|PHYI_OFFLINE)))
12060 		ip_redo_nomination(phyi);
12061 
12062 	if (set_linklocal)
12063 		(void) ipif_setlinklocal(ipif);
12064 
12065 	if (zero_source)
12066 		ipif->ipif_v6src_addr = ipv6_all_zeros;
12067 	else
12068 		ipif->ipif_v6src_addr = ipif->ipif_v6lcl_addr;
12069 
12070 	if (need_up) {
12071 		/*
12072 		 * XXX ipif_up really does not know whether a phyint flags
12073 		 * was modified or not. So, it sends up information on
12074 		 * only one routing sockets message. As we don't bring up
12075 		 * the interface and also set STANDBY/FAILED simultaneously
12076 		 * it should be okay.
12077 		 */
12078 		err = ipif_up(ipif, q, mp);
12079 	} else {
12080 		/*
12081 		 * Make sure routing socket sees all changes to the flags.
12082 		 * ipif_up_done* handles this when we use ipif_up.
12083 		 */
12084 		if (phyint_flags_modified) {
12085 			if (phyi->phyint_illv4 != NULL) {
12086 				ip_rts_ifmsg(phyi->phyint_illv4->
12087 				    ill_ipif);
12088 			}
12089 			if (phyi->phyint_illv6 != NULL) {
12090 				ip_rts_ifmsg(phyi->phyint_illv6->
12091 				    ill_ipif);
12092 			}
12093 		} else {
12094 			ip_rts_ifmsg(ipif);
12095 		}
12096 		/*
12097 		 * Update the flags in SCTP's IPIF list, ipif_up() will do
12098 		 * this in need_up case.
12099 		 */
12100 		sctp_update_ipif(ipif, SCTP_IPIF_UPDATE);
12101 	}
12102 	return (err);
12103 }
12104 
12105 /*
12106  * Restart entry point to restart the flags restart operation after the
12107  * refcounts have dropped to zero.
12108  */
12109 /* ARGSUSED */
12110 int
12111 ip_sioctl_flags_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
12112     ip_ioctl_cmd_t *ipip, void *if_req)
12113 {
12114 	int	err;
12115 	struct ifreq *ifr = (struct ifreq *)if_req;
12116 	struct lifreq *lifr = (struct lifreq *)if_req;
12117 
12118 	ip1dbg(("ip_sioctl_flags_restart(%s:%u %p)\n",
12119 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
12120 
12121 	ipif_down_tail(ipif);
12122 	if (ipip->ipi_cmd_type == IF_CMD) {
12123 		/*
12124 		 * Since ip_sioctl_flags expects an int and ifr_flags
12125 		 * is a short we need to cast ifr_flags into an int
12126 		 * to avoid having sign extension cause bits to get
12127 		 * set that should not be.
12128 		 */
12129 		err = ip_sioctl_flags_tail(ipif,
12130 		    (uint64_t)(ifr->ifr_flags & 0x0000ffff),
12131 		    q, mp, B_TRUE);
12132 	} else {
12133 		err = ip_sioctl_flags_tail(ipif, lifr->lifr_flags,
12134 		    q, mp, B_TRUE);
12135 	}
12136 	return (err);
12137 }
12138 
12139 /*
12140  * Can operate on either a module or a driver queue.
12141  */
12142 /* ARGSUSED */
12143 int
12144 ip_sioctl_get_flags(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
12145     ip_ioctl_cmd_t *ipip, void *if_req)
12146 {
12147 	/*
12148 	 * Has the flags been set correctly till now ?
12149 	 */
12150 	ill_t *ill = ipif->ipif_ill;
12151 	phyint_t *phyi = ill->ill_phyint;
12152 
12153 	ip1dbg(("ip_sioctl_get_flags(%s:%u %p)\n",
12154 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
12155 	ASSERT((phyi->phyint_flags & ~(IFF_PHYINT_FLAGS)) == 0);
12156 	ASSERT((ill->ill_flags & ~(IFF_PHYINTINST_FLAGS)) == 0);
12157 	ASSERT((ipif->ipif_flags & ~(IFF_LOGINT_FLAGS)) == 0);
12158 
12159 	/*
12160 	 * Need a lock since some flags can be set even when there are
12161 	 * references to the ipif.
12162 	 */
12163 	mutex_enter(&ill->ill_lock);
12164 	if (ipip->ipi_cmd_type == IF_CMD) {
12165 		struct ifreq *ifr = (struct ifreq *)if_req;
12166 
12167 		/* Get interface flags (low 16 only). */
12168 		ifr->ifr_flags = ((ipif->ipif_flags |
12169 		    ill->ill_flags | phyi->phyint_flags) & 0xffff);
12170 	} else {
12171 		struct lifreq *lifr = (struct lifreq *)if_req;
12172 
12173 		/* Get interface flags. */
12174 		lifr->lifr_flags = ipif->ipif_flags |
12175 		    ill->ill_flags | phyi->phyint_flags;
12176 	}
12177 	mutex_exit(&ill->ill_lock);
12178 	return (0);
12179 }
12180 
12181 /* ARGSUSED */
12182 int
12183 ip_sioctl_mtu(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
12184     ip_ioctl_cmd_t *ipip, void *if_req)
12185 {
12186 	int mtu;
12187 	int ip_min_mtu;
12188 	struct ifreq	*ifr;
12189 	struct lifreq *lifr;
12190 	ire_t	*ire;
12191 	ip_stack_t *ipst;
12192 
12193 	ip1dbg(("ip_sioctl_mtu(%s:%u %p)\n", ipif->ipif_ill->ill_name,
12194 	    ipif->ipif_id, (void *)ipif));
12195 	if (ipip->ipi_cmd_type == IF_CMD) {
12196 		ifr = (struct ifreq *)if_req;
12197 		mtu = ifr->ifr_metric;
12198 	} else {
12199 		lifr = (struct lifreq *)if_req;
12200 		mtu = lifr->lifr_mtu;
12201 	}
12202 
12203 	if (ipif->ipif_isv6)
12204 		ip_min_mtu = IPV6_MIN_MTU;
12205 	else
12206 		ip_min_mtu = IP_MIN_MTU;
12207 
12208 	if (mtu > ipif->ipif_ill->ill_max_frag || mtu < ip_min_mtu)
12209 		return (EINVAL);
12210 
12211 	/*
12212 	 * Change the MTU size in all relevant ire's.
12213 	 * Mtu change Vs. new ire creation - protocol below.
12214 	 * First change ipif_mtu and the ire_max_frag of the
12215 	 * interface ire. Then do an ire walk and change the
12216 	 * ire_max_frag of all affected ires. During ire_add
12217 	 * under the bucket lock, set the ire_max_frag of the
12218 	 * new ire being created from the ipif/ire from which
12219 	 * it is being derived. If an mtu change happens after
12220 	 * the ire is added, the new ire will be cleaned up.
12221 	 * Conversely if the mtu change happens before the ire
12222 	 * is added, ire_add will see the new value of the mtu.
12223 	 */
12224 	ipif->ipif_mtu = mtu;
12225 	ipif->ipif_flags |= IPIF_FIXEDMTU;
12226 
12227 	if (ipif->ipif_isv6)
12228 		ire = ipif_to_ire_v6(ipif);
12229 	else
12230 		ire = ipif_to_ire(ipif);
12231 	if (ire != NULL) {
12232 		ire->ire_max_frag = ipif->ipif_mtu;
12233 		ire_refrele(ire);
12234 	}
12235 	ipst = ipif->ipif_ill->ill_ipst;
12236 	if (ipif->ipif_flags & IPIF_UP) {
12237 		if (ipif->ipif_isv6)
12238 			ire_walk_v6(ipif_mtu_change, (char *)ipif, ALL_ZONES,
12239 			    ipst);
12240 		else
12241 			ire_walk_v4(ipif_mtu_change, (char *)ipif, ALL_ZONES,
12242 			    ipst);
12243 	}
12244 	/* Update the MTU in SCTP's list */
12245 	sctp_update_ipif(ipif, SCTP_IPIF_UPDATE);
12246 	return (0);
12247 }
12248 
12249 /* Get interface MTU. */
12250 /* ARGSUSED */
12251 int
12252 ip_sioctl_get_mtu(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
12253 	ip_ioctl_cmd_t *ipip, void *if_req)
12254 {
12255 	struct ifreq	*ifr;
12256 	struct lifreq	*lifr;
12257 
12258 	ip1dbg(("ip_sioctl_get_mtu(%s:%u %p)\n",
12259 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
12260 	if (ipip->ipi_cmd_type == IF_CMD) {
12261 		ifr = (struct ifreq *)if_req;
12262 		ifr->ifr_metric = ipif->ipif_mtu;
12263 	} else {
12264 		lifr = (struct lifreq *)if_req;
12265 		lifr->lifr_mtu = ipif->ipif_mtu;
12266 	}
12267 	return (0);
12268 }
12269 
12270 /* Set interface broadcast address. */
12271 /* ARGSUSED2 */
12272 int
12273 ip_sioctl_brdaddr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
12274 	ip_ioctl_cmd_t *ipip, void *if_req)
12275 {
12276 	ipaddr_t addr;
12277 	ire_t	*ire;
12278 	ip_stack_t	*ipst = ipif->ipif_ill->ill_ipst;
12279 
12280 	ip1dbg(("ip_sioctl_brdaddr(%s:%u)\n", ipif->ipif_ill->ill_name,
12281 	    ipif->ipif_id));
12282 
12283 	ASSERT(IAM_WRITER_IPIF(ipif));
12284 	if (!(ipif->ipif_flags & IPIF_BROADCAST))
12285 		return (EADDRNOTAVAIL);
12286 
12287 	ASSERT(!(ipif->ipif_isv6));	/* No IPv6 broadcast */
12288 
12289 	if (sin->sin_family != AF_INET)
12290 		return (EAFNOSUPPORT);
12291 
12292 	addr = sin->sin_addr.s_addr;
12293 	if (ipif->ipif_flags & IPIF_UP) {
12294 		/*
12295 		 * If we are already up, make sure the new
12296 		 * broadcast address makes sense.  If it does,
12297 		 * there should be an IRE for it already.
12298 		 * Don't match on ipif, only on the ill
12299 		 * since we are sharing these now. Don't use
12300 		 * MATCH_IRE_ILL_GROUP as we are looking for
12301 		 * the broadcast ire on this ill and each ill
12302 		 * in the group has its own broadcast ire.
12303 		 */
12304 		ire = ire_ctable_lookup(addr, 0, IRE_BROADCAST,
12305 		    ipif, ALL_ZONES, NULL,
12306 		    (MATCH_IRE_ILL | MATCH_IRE_TYPE), ipst);
12307 		if (ire == NULL) {
12308 			return (EINVAL);
12309 		} else {
12310 			ire_refrele(ire);
12311 		}
12312 	}
12313 	/*
12314 	 * Changing the broadcast addr for this ipif.
12315 	 * Make sure we have valid net and subnet bcast
12316 	 * ire's for other logical interfaces, if needed.
12317 	 */
12318 	if (addr != ipif->ipif_brd_addr)
12319 		ipif_check_bcast_ires(ipif);
12320 	IN6_IPADDR_TO_V4MAPPED(addr, &ipif->ipif_v6brd_addr);
12321 	return (0);
12322 }
12323 
12324 /* Get interface broadcast address. */
12325 /* ARGSUSED */
12326 int
12327 ip_sioctl_get_brdaddr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
12328     ip_ioctl_cmd_t *ipip, void *if_req)
12329 {
12330 	ip1dbg(("ip_sioctl_get_brdaddr(%s:%u %p)\n",
12331 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
12332 	if (!(ipif->ipif_flags & IPIF_BROADCAST))
12333 		return (EADDRNOTAVAIL);
12334 
12335 	/* IPIF_BROADCAST not possible with IPv6 */
12336 	ASSERT(!ipif->ipif_isv6);
12337 	*sin = sin_null;
12338 	sin->sin_family = AF_INET;
12339 	sin->sin_addr.s_addr = ipif->ipif_brd_addr;
12340 	return (0);
12341 }
12342 
12343 /*
12344  * This routine is called to handle the SIOCS*IFNETMASK IOCTL.
12345  */
12346 /* ARGSUSED */
12347 int
12348 ip_sioctl_netmask(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
12349     ip_ioctl_cmd_t *ipip, void *if_req)
12350 {
12351 	int err = 0;
12352 	in6_addr_t v6mask;
12353 
12354 	ip1dbg(("ip_sioctl_netmask(%s:%u %p)\n",
12355 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
12356 
12357 	ASSERT(IAM_WRITER_IPIF(ipif));
12358 
12359 	if (ipif->ipif_isv6) {
12360 		sin6_t *sin6;
12361 
12362 		if (sin->sin_family != AF_INET6)
12363 			return (EAFNOSUPPORT);
12364 
12365 		sin6 = (sin6_t *)sin;
12366 		v6mask = sin6->sin6_addr;
12367 	} else {
12368 		ipaddr_t mask;
12369 
12370 		if (sin->sin_family != AF_INET)
12371 			return (EAFNOSUPPORT);
12372 
12373 		mask = sin->sin_addr.s_addr;
12374 		V4MASK_TO_V6(mask, v6mask);
12375 	}
12376 
12377 	/*
12378 	 * No big deal if the interface isn't already up, or the mask
12379 	 * isn't really changing, or this is pt-pt.
12380 	 */
12381 	if (!(ipif->ipif_flags & IPIF_UP) ||
12382 	    IN6_ARE_ADDR_EQUAL(&v6mask, &ipif->ipif_v6net_mask) ||
12383 	    (ipif->ipif_flags & IPIF_POINTOPOINT)) {
12384 		ipif->ipif_v6net_mask = v6mask;
12385 		if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) {
12386 			V6_MASK_COPY(ipif->ipif_v6lcl_addr,
12387 			    ipif->ipif_v6net_mask,
12388 			    ipif->ipif_v6subnet);
12389 		}
12390 		return (0);
12391 	}
12392 	/*
12393 	 * Make sure we have valid net and subnet broadcast ire's
12394 	 * for the old netmask, if needed by other logical interfaces.
12395 	 */
12396 	if (!ipif->ipif_isv6)
12397 		ipif_check_bcast_ires(ipif);
12398 
12399 	err = ipif_logical_down(ipif, q, mp);
12400 	if (err == EINPROGRESS)
12401 		return (err);
12402 	ipif_down_tail(ipif);
12403 	err = ip_sioctl_netmask_tail(ipif, sin, q, mp);
12404 	return (err);
12405 }
12406 
12407 static int
12408 ip_sioctl_netmask_tail(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp)
12409 {
12410 	in6_addr_t v6mask;
12411 	int err = 0;
12412 
12413 	ip1dbg(("ip_sioctl_netmask_tail(%s:%u %p)\n",
12414 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
12415 
12416 	if (ipif->ipif_isv6) {
12417 		sin6_t *sin6;
12418 
12419 		sin6 = (sin6_t *)sin;
12420 		v6mask = sin6->sin6_addr;
12421 	} else {
12422 		ipaddr_t mask;
12423 
12424 		mask = sin->sin_addr.s_addr;
12425 		V4MASK_TO_V6(mask, v6mask);
12426 	}
12427 
12428 	ipif->ipif_v6net_mask = v6mask;
12429 	if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) {
12430 		V6_MASK_COPY(ipif->ipif_v6lcl_addr, ipif->ipif_v6net_mask,
12431 		    ipif->ipif_v6subnet);
12432 	}
12433 	err = ipif_up(ipif, q, mp);
12434 
12435 	if (err == 0 || err == EINPROGRESS) {
12436 		/*
12437 		 * The interface must be DL_BOUND if this packet has to
12438 		 * go out on the wire. Since we only go through a logical
12439 		 * down and are bound with the driver during an internal
12440 		 * down/up that is satisfied.
12441 		 */
12442 		if (!ipif->ipif_isv6 && ipif->ipif_ill->ill_wq != NULL) {
12443 			/* Potentially broadcast an address mask reply. */
12444 			ipif_mask_reply(ipif);
12445 		}
12446 	}
12447 	return (err);
12448 }
12449 
12450 /* ARGSUSED */
12451 int
12452 ip_sioctl_netmask_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
12453     ip_ioctl_cmd_t *ipip, void *if_req)
12454 {
12455 	ip1dbg(("ip_sioctl_netmask_restart(%s:%u %p)\n",
12456 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
12457 	ipif_down_tail(ipif);
12458 	return (ip_sioctl_netmask_tail(ipif, sin, q, mp));
12459 }
12460 
12461 /* Get interface net mask. */
12462 /* ARGSUSED */
12463 int
12464 ip_sioctl_get_netmask(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
12465     ip_ioctl_cmd_t *ipip, void *if_req)
12466 {
12467 	struct lifreq *lifr = (struct lifreq *)if_req;
12468 	struct sockaddr_in6 *sin6 = (sin6_t *)sin;
12469 
12470 	ip1dbg(("ip_sioctl_get_netmask(%s:%u %p)\n",
12471 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
12472 
12473 	/*
12474 	 * net mask can't change since we have a reference to the ipif.
12475 	 */
12476 	if (ipif->ipif_isv6) {
12477 		ASSERT(ipip->ipi_cmd_type == LIF_CMD);
12478 		*sin6 = sin6_null;
12479 		sin6->sin6_family = AF_INET6;
12480 		sin6->sin6_addr = ipif->ipif_v6net_mask;
12481 		lifr->lifr_addrlen =
12482 		    ip_mask_to_plen_v6(&ipif->ipif_v6net_mask);
12483 	} else {
12484 		*sin = sin_null;
12485 		sin->sin_family = AF_INET;
12486 		sin->sin_addr.s_addr = ipif->ipif_net_mask;
12487 		if (ipip->ipi_cmd_type == LIF_CMD) {
12488 			lifr->lifr_addrlen =
12489 			    ip_mask_to_plen(ipif->ipif_net_mask);
12490 		}
12491 	}
12492 	return (0);
12493 }
12494 
12495 /* ARGSUSED */
12496 int
12497 ip_sioctl_metric(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
12498     ip_ioctl_cmd_t *ipip, void *if_req)
12499 {
12500 
12501 	ip1dbg(("ip_sioctl_metric(%s:%u %p)\n",
12502 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
12503 	/*
12504 	 * Set interface metric.  We don't use this for
12505 	 * anything but we keep track of it in case it is
12506 	 * important to routing applications or such.
12507 	 */
12508 	if (ipip->ipi_cmd_type == IF_CMD) {
12509 		struct ifreq    *ifr;
12510 
12511 		ifr = (struct ifreq *)if_req;
12512 		ipif->ipif_metric = ifr->ifr_metric;
12513 	} else {
12514 		struct lifreq   *lifr;
12515 
12516 		lifr = (struct lifreq *)if_req;
12517 		ipif->ipif_metric = lifr->lifr_metric;
12518 	}
12519 	return (0);
12520 }
12521 
12522 
12523 /* ARGSUSED */
12524 int
12525 ip_sioctl_get_metric(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
12526     ip_ioctl_cmd_t *ipip, void *if_req)
12527 {
12528 
12529 	/* Get interface metric. */
12530 	ip1dbg(("ip_sioctl_get_metric(%s:%u %p)\n",
12531 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
12532 	if (ipip->ipi_cmd_type == IF_CMD) {
12533 		struct ifreq    *ifr;
12534 
12535 		ifr = (struct ifreq *)if_req;
12536 		ifr->ifr_metric = ipif->ipif_metric;
12537 	} else {
12538 		struct lifreq   *lifr;
12539 
12540 		lifr = (struct lifreq *)if_req;
12541 		lifr->lifr_metric = ipif->ipif_metric;
12542 	}
12543 
12544 	return (0);
12545 }
12546 
12547 /* ARGSUSED */
12548 int
12549 ip_sioctl_muxid(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
12550     ip_ioctl_cmd_t *ipip, void *if_req)
12551 {
12552 
12553 	ip1dbg(("ip_sioctl_muxid(%s:%u %p)\n",
12554 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
12555 	/*
12556 	 * Set the muxid returned from I_PLINK.
12557 	 */
12558 	if (ipip->ipi_cmd_type == IF_CMD) {
12559 		struct ifreq *ifr = (struct ifreq *)if_req;
12560 
12561 		ipif->ipif_ill->ill_ip_muxid = ifr->ifr_ip_muxid;
12562 		ipif->ipif_ill->ill_arp_muxid = ifr->ifr_arp_muxid;
12563 	} else {
12564 		struct lifreq *lifr = (struct lifreq *)if_req;
12565 
12566 		ipif->ipif_ill->ill_ip_muxid = lifr->lifr_ip_muxid;
12567 		ipif->ipif_ill->ill_arp_muxid = lifr->lifr_arp_muxid;
12568 	}
12569 	return (0);
12570 }
12571 
12572 /* ARGSUSED */
12573 int
12574 ip_sioctl_get_muxid(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
12575     ip_ioctl_cmd_t *ipip, void *if_req)
12576 {
12577 
12578 	ip1dbg(("ip_sioctl_get_muxid(%s:%u %p)\n",
12579 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
12580 	/*
12581 	 * Get the muxid saved in ill for I_PUNLINK.
12582 	 */
12583 	if (ipip->ipi_cmd_type == IF_CMD) {
12584 		struct ifreq *ifr = (struct ifreq *)if_req;
12585 
12586 		ifr->ifr_ip_muxid = ipif->ipif_ill->ill_ip_muxid;
12587 		ifr->ifr_arp_muxid = ipif->ipif_ill->ill_arp_muxid;
12588 	} else {
12589 		struct lifreq *lifr = (struct lifreq *)if_req;
12590 
12591 		lifr->lifr_ip_muxid = ipif->ipif_ill->ill_ip_muxid;
12592 		lifr->lifr_arp_muxid = ipif->ipif_ill->ill_arp_muxid;
12593 	}
12594 	return (0);
12595 }
12596 
12597 /*
12598  * Set the subnet prefix. Does not modify the broadcast address.
12599  */
12600 /* ARGSUSED */
12601 int
12602 ip_sioctl_subnet(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
12603     ip_ioctl_cmd_t *ipip, void *if_req)
12604 {
12605 	int err = 0;
12606 	in6_addr_t v6addr;
12607 	in6_addr_t v6mask;
12608 	boolean_t need_up = B_FALSE;
12609 	int addrlen;
12610 
12611 	ip1dbg(("ip_sioctl_subnet(%s:%u %p)\n",
12612 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
12613 
12614 	ASSERT(IAM_WRITER_IPIF(ipif));
12615 	addrlen = ((struct lifreq *)if_req)->lifr_addrlen;
12616 
12617 	if (ipif->ipif_isv6) {
12618 		sin6_t *sin6;
12619 
12620 		if (sin->sin_family != AF_INET6)
12621 			return (EAFNOSUPPORT);
12622 
12623 		sin6 = (sin6_t *)sin;
12624 		v6addr = sin6->sin6_addr;
12625 		if (!ip_remote_addr_ok_v6(&v6addr, &ipv6_all_ones))
12626 			return (EADDRNOTAVAIL);
12627 	} else {
12628 		ipaddr_t addr;
12629 
12630 		if (sin->sin_family != AF_INET)
12631 			return (EAFNOSUPPORT);
12632 
12633 		addr = sin->sin_addr.s_addr;
12634 		if (!ip_addr_ok_v4(addr, 0xFFFFFFFF))
12635 			return (EADDRNOTAVAIL);
12636 		IN6_IPADDR_TO_V4MAPPED(addr, &v6addr);
12637 		/* Add 96 bits */
12638 		addrlen += IPV6_ABITS - IP_ABITS;
12639 	}
12640 
12641 	if (ip_plen_to_mask_v6(addrlen, &v6mask) == NULL)
12642 		return (EINVAL);
12643 
12644 	/* Check if bits in the address is set past the mask */
12645 	if (!V6_MASK_EQ(v6addr, v6mask, v6addr))
12646 		return (EINVAL);
12647 
12648 	if (IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6subnet, &v6addr) &&
12649 	    IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6net_mask, &v6mask))
12650 		return (0);	/* No change */
12651 
12652 	if (ipif->ipif_flags & IPIF_UP) {
12653 		/*
12654 		 * If the interface is already marked up,
12655 		 * we call ipif_down which will take care
12656 		 * of ditching any IREs that have been set
12657 		 * up based on the old interface address.
12658 		 */
12659 		err = ipif_logical_down(ipif, q, mp);
12660 		if (err == EINPROGRESS)
12661 			return (err);
12662 		ipif_down_tail(ipif);
12663 		need_up = B_TRUE;
12664 	}
12665 
12666 	err = ip_sioctl_subnet_tail(ipif, v6addr, v6mask, q, mp, need_up);
12667 	return (err);
12668 }
12669 
12670 static int
12671 ip_sioctl_subnet_tail(ipif_t *ipif, in6_addr_t v6addr, in6_addr_t v6mask,
12672     queue_t *q, mblk_t *mp, boolean_t need_up)
12673 {
12674 	ill_t	*ill = ipif->ipif_ill;
12675 	int	err = 0;
12676 
12677 	ip1dbg(("ip_sioctl_subnet_tail(%s:%u %p)\n",
12678 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
12679 
12680 	/* Set the new address. */
12681 	mutex_enter(&ill->ill_lock);
12682 	ipif->ipif_v6net_mask = v6mask;
12683 	if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) {
12684 		V6_MASK_COPY(v6addr, ipif->ipif_v6net_mask,
12685 		    ipif->ipif_v6subnet);
12686 	}
12687 	mutex_exit(&ill->ill_lock);
12688 
12689 	if (need_up) {
12690 		/*
12691 		 * Now bring the interface back up.  If this
12692 		 * is the only IPIF for the ILL, ipif_up
12693 		 * will have to re-bind to the device, so
12694 		 * we may get back EINPROGRESS, in which
12695 		 * case, this IOCTL will get completed in
12696 		 * ip_rput_dlpi when we see the DL_BIND_ACK.
12697 		 */
12698 		err = ipif_up(ipif, q, mp);
12699 		if (err == EINPROGRESS)
12700 			return (err);
12701 	}
12702 	return (err);
12703 }
12704 
12705 /* ARGSUSED */
12706 int
12707 ip_sioctl_subnet_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
12708     ip_ioctl_cmd_t *ipip, void *if_req)
12709 {
12710 	int	addrlen;
12711 	in6_addr_t v6addr;
12712 	in6_addr_t v6mask;
12713 	struct lifreq *lifr = (struct lifreq *)if_req;
12714 
12715 	ip1dbg(("ip_sioctl_subnet_restart(%s:%u %p)\n",
12716 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
12717 	ipif_down_tail(ipif);
12718 
12719 	addrlen = lifr->lifr_addrlen;
12720 	if (ipif->ipif_isv6) {
12721 		sin6_t *sin6;
12722 
12723 		sin6 = (sin6_t *)sin;
12724 		v6addr = sin6->sin6_addr;
12725 	} else {
12726 		ipaddr_t addr;
12727 
12728 		addr = sin->sin_addr.s_addr;
12729 		IN6_IPADDR_TO_V4MAPPED(addr, &v6addr);
12730 		addrlen += IPV6_ABITS - IP_ABITS;
12731 	}
12732 	(void) ip_plen_to_mask_v6(addrlen, &v6mask);
12733 
12734 	return (ip_sioctl_subnet_tail(ipif, v6addr, v6mask, q, mp, B_TRUE));
12735 }
12736 
12737 /* ARGSUSED */
12738 int
12739 ip_sioctl_get_subnet(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
12740     ip_ioctl_cmd_t *ipip, void *if_req)
12741 {
12742 	struct lifreq *lifr = (struct lifreq *)if_req;
12743 	struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)sin;
12744 
12745 	ip1dbg(("ip_sioctl_get_subnet(%s:%u %p)\n",
12746 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
12747 	ASSERT(ipip->ipi_cmd_type == LIF_CMD);
12748 
12749 	if (ipif->ipif_isv6) {
12750 		*sin6 = sin6_null;
12751 		sin6->sin6_family = AF_INET6;
12752 		sin6->sin6_addr = ipif->ipif_v6subnet;
12753 		lifr->lifr_addrlen =
12754 		    ip_mask_to_plen_v6(&ipif->ipif_v6net_mask);
12755 	} else {
12756 		*sin = sin_null;
12757 		sin->sin_family = AF_INET;
12758 		sin->sin_addr.s_addr = ipif->ipif_subnet;
12759 		lifr->lifr_addrlen = ip_mask_to_plen(ipif->ipif_net_mask);
12760 	}
12761 	return (0);
12762 }
12763 
12764 /*
12765  * Set the IPv6 address token.
12766  */
12767 /* ARGSUSED */
12768 int
12769 ip_sioctl_token(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
12770     ip_ioctl_cmd_t *ipi, void *if_req)
12771 {
12772 	ill_t *ill = ipif->ipif_ill;
12773 	int err;
12774 	in6_addr_t v6addr;
12775 	in6_addr_t v6mask;
12776 	boolean_t need_up = B_FALSE;
12777 	int i;
12778 	sin6_t *sin6 = (sin6_t *)sin;
12779 	struct lifreq *lifr = (struct lifreq *)if_req;
12780 	int addrlen;
12781 
12782 	ip1dbg(("ip_sioctl_token(%s:%u %p)\n",
12783 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
12784 	ASSERT(IAM_WRITER_IPIF(ipif));
12785 
12786 	addrlen = lifr->lifr_addrlen;
12787 	/* Only allow for logical unit zero i.e. not on "le0:17" */
12788 	if (ipif->ipif_id != 0)
12789 		return (EINVAL);
12790 
12791 	if (!ipif->ipif_isv6)
12792 		return (EINVAL);
12793 
12794 	if (addrlen > IPV6_ABITS)
12795 		return (EINVAL);
12796 
12797 	v6addr = sin6->sin6_addr;
12798 
12799 	/*
12800 	 * The length of the token is the length from the end.  To get
12801 	 * the proper mask for this, compute the mask of the bits not
12802 	 * in the token; ie. the prefix, and then xor to get the mask.
12803 	 */
12804 	if (ip_plen_to_mask_v6(IPV6_ABITS - addrlen, &v6mask) == NULL)
12805 		return (EINVAL);
12806 	for (i = 0; i < 4; i++) {
12807 		v6mask.s6_addr32[i] ^= (uint32_t)0xffffffff;
12808 	}
12809 
12810 	if (V6_MASK_EQ(v6addr, v6mask, ill->ill_token) &&
12811 	    ill->ill_token_length == addrlen)
12812 		return (0);	/* No change */
12813 
12814 	if (ipif->ipif_flags & IPIF_UP) {
12815 		err = ipif_logical_down(ipif, q, mp);
12816 		if (err == EINPROGRESS)
12817 			return (err);
12818 		ipif_down_tail(ipif);
12819 		need_up = B_TRUE;
12820 	}
12821 	err = ip_sioctl_token_tail(ipif, sin6, addrlen, q, mp, need_up);
12822 	return (err);
12823 }
12824 
12825 static int
12826 ip_sioctl_token_tail(ipif_t *ipif, sin6_t *sin6, int addrlen, queue_t *q,
12827     mblk_t *mp, boolean_t need_up)
12828 {
12829 	in6_addr_t v6addr;
12830 	in6_addr_t v6mask;
12831 	ill_t	*ill = ipif->ipif_ill;
12832 	int	i;
12833 	int	err = 0;
12834 
12835 	ip1dbg(("ip_sioctl_token_tail(%s:%u %p)\n",
12836 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
12837 	v6addr = sin6->sin6_addr;
12838 	/*
12839 	 * The length of the token is the length from the end.  To get
12840 	 * the proper mask for this, compute the mask of the bits not
12841 	 * in the token; ie. the prefix, and then xor to get the mask.
12842 	 */
12843 	(void) ip_plen_to_mask_v6(IPV6_ABITS - addrlen, &v6mask);
12844 	for (i = 0; i < 4; i++)
12845 		v6mask.s6_addr32[i] ^= (uint32_t)0xffffffff;
12846 
12847 	mutex_enter(&ill->ill_lock);
12848 	V6_MASK_COPY(v6addr, v6mask, ill->ill_token);
12849 	ill->ill_token_length = addrlen;
12850 	mutex_exit(&ill->ill_lock);
12851 
12852 	if (need_up) {
12853 		/*
12854 		 * Now bring the interface back up.  If this
12855 		 * is the only IPIF for the ILL, ipif_up
12856 		 * will have to re-bind to the device, so
12857 		 * we may get back EINPROGRESS, in which
12858 		 * case, this IOCTL will get completed in
12859 		 * ip_rput_dlpi when we see the DL_BIND_ACK.
12860 		 */
12861 		err = ipif_up(ipif, q, mp);
12862 		if (err == EINPROGRESS)
12863 			return (err);
12864 	}
12865 	return (err);
12866 }
12867 
12868 /* ARGSUSED */
12869 int
12870 ip_sioctl_get_token(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
12871     ip_ioctl_cmd_t *ipi, void *if_req)
12872 {
12873 	ill_t *ill;
12874 	sin6_t *sin6 = (sin6_t *)sin;
12875 	struct lifreq *lifr = (struct lifreq *)if_req;
12876 
12877 	ip1dbg(("ip_sioctl_get_token(%s:%u %p)\n",
12878 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
12879 	if (ipif->ipif_id != 0)
12880 		return (EINVAL);
12881 
12882 	ill = ipif->ipif_ill;
12883 	if (!ill->ill_isv6)
12884 		return (ENXIO);
12885 
12886 	*sin6 = sin6_null;
12887 	sin6->sin6_family = AF_INET6;
12888 	ASSERT(!IN6_IS_ADDR_V4MAPPED(&ill->ill_token));
12889 	sin6->sin6_addr = ill->ill_token;
12890 	lifr->lifr_addrlen = ill->ill_token_length;
12891 	return (0);
12892 }
12893 
12894 /*
12895  * Set (hardware) link specific information that might override
12896  * what was acquired through the DL_INFO_ACK.
12897  * The logic is as follows.
12898  *
12899  * become exclusive
12900  * set CHANGING flag
12901  * change mtu on affected IREs
12902  * clear CHANGING flag
12903  *
12904  * An ire add that occurs before the CHANGING flag is set will have its mtu
12905  * changed by the ip_sioctl_lnkinfo.
12906  *
12907  * During the time the CHANGING flag is set, no new ires will be added to the
12908  * bucket, and ire add will fail (due the CHANGING flag).
12909  *
12910  * An ire add that occurs after the CHANGING flag is set will have the right mtu
12911  * before it is added to the bucket.
12912  *
12913  * Obviously only 1 thread can set the CHANGING flag and we need to become
12914  * exclusive to set the flag.
12915  */
12916 /* ARGSUSED */
12917 int
12918 ip_sioctl_lnkinfo(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
12919     ip_ioctl_cmd_t *ipi, void *if_req)
12920 {
12921 	ill_t		*ill = ipif->ipif_ill;
12922 	ipif_t		*nipif;
12923 	int		ip_min_mtu;
12924 	boolean_t	mtu_walk = B_FALSE;
12925 	struct lifreq	*lifr = (struct lifreq *)if_req;
12926 	lif_ifinfo_req_t *lir;
12927 	ire_t		*ire;
12928 
12929 	ip1dbg(("ip_sioctl_lnkinfo(%s:%u %p)\n",
12930 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
12931 	lir = &lifr->lifr_ifinfo;
12932 	ASSERT(IAM_WRITER_IPIF(ipif));
12933 
12934 	/* Only allow for logical unit zero i.e. not on "le0:17" */
12935 	if (ipif->ipif_id != 0)
12936 		return (EINVAL);
12937 
12938 	/* Set interface MTU. */
12939 	if (ipif->ipif_isv6)
12940 		ip_min_mtu = IPV6_MIN_MTU;
12941 	else
12942 		ip_min_mtu = IP_MIN_MTU;
12943 
12944 	/*
12945 	 * Verify values before we set anything. Allow zero to
12946 	 * mean unspecified.
12947 	 */
12948 	if (lir->lir_maxmtu != 0 &&
12949 	    (lir->lir_maxmtu > ill->ill_max_frag ||
12950 	    lir->lir_maxmtu < ip_min_mtu))
12951 		return (EINVAL);
12952 	if (lir->lir_reachtime != 0 &&
12953 	    lir->lir_reachtime > ND_MAX_REACHTIME)
12954 		return (EINVAL);
12955 	if (lir->lir_reachretrans != 0 &&
12956 	    lir->lir_reachretrans > ND_MAX_REACHRETRANSTIME)
12957 		return (EINVAL);
12958 
12959 	mutex_enter(&ill->ill_lock);
12960 	ill->ill_state_flags |= ILL_CHANGING;
12961 	for (nipif = ill->ill_ipif; nipif != NULL;
12962 	    nipif = nipif->ipif_next) {
12963 		nipif->ipif_state_flags |= IPIF_CHANGING;
12964 	}
12965 
12966 	mutex_exit(&ill->ill_lock);
12967 
12968 	if (lir->lir_maxmtu != 0) {
12969 		ill->ill_max_mtu = lir->lir_maxmtu;
12970 		ill->ill_mtu_userspecified = 1;
12971 		mtu_walk = B_TRUE;
12972 	}
12973 
12974 	if (lir->lir_reachtime != 0)
12975 		ill->ill_reachable_time = lir->lir_reachtime;
12976 
12977 	if (lir->lir_reachretrans != 0)
12978 		ill->ill_reachable_retrans_time = lir->lir_reachretrans;
12979 
12980 	ill->ill_max_hops = lir->lir_maxhops;
12981 
12982 	ill->ill_max_buf = ND_MAX_Q;
12983 
12984 	if (mtu_walk) {
12985 		/*
12986 		 * Set the MTU on all ipifs associated with this ill except
12987 		 * for those whose MTU was fixed via SIOCSLIFMTU.
12988 		 */
12989 		for (nipif = ill->ill_ipif; nipif != NULL;
12990 		    nipif = nipif->ipif_next) {
12991 			if (nipif->ipif_flags & IPIF_FIXEDMTU)
12992 				continue;
12993 
12994 			nipif->ipif_mtu = ill->ill_max_mtu;
12995 
12996 			if (!(nipif->ipif_flags & IPIF_UP))
12997 				continue;
12998 
12999 			if (nipif->ipif_isv6)
13000 				ire = ipif_to_ire_v6(nipif);
13001 			else
13002 				ire = ipif_to_ire(nipif);
13003 			if (ire != NULL) {
13004 				ire->ire_max_frag = ipif->ipif_mtu;
13005 				ire_refrele(ire);
13006 			}
13007 			if (ill->ill_isv6) {
13008 				ire_walk_ill_v6(MATCH_IRE_ILL, 0,
13009 				    ipif_mtu_change, (char *)nipif,
13010 				    ill);
13011 			} else {
13012 				ire_walk_ill_v4(MATCH_IRE_ILL, 0,
13013 				    ipif_mtu_change, (char *)nipif,
13014 				    ill);
13015 			}
13016 		}
13017 	}
13018 
13019 	mutex_enter(&ill->ill_lock);
13020 	for (nipif = ill->ill_ipif; nipif != NULL;
13021 	    nipif = nipif->ipif_next) {
13022 		nipif->ipif_state_flags &= ~IPIF_CHANGING;
13023 	}
13024 	ILL_UNMARK_CHANGING(ill);
13025 	mutex_exit(&ill->ill_lock);
13026 
13027 	return (0);
13028 }
13029 
13030 /* ARGSUSED */
13031 int
13032 ip_sioctl_get_lnkinfo(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
13033     ip_ioctl_cmd_t *ipi, void *if_req)
13034 {
13035 	struct lif_ifinfo_req *lir;
13036 	ill_t *ill = ipif->ipif_ill;
13037 
13038 	ip1dbg(("ip_sioctl_get_lnkinfo(%s:%u %p)\n",
13039 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
13040 	if (ipif->ipif_id != 0)
13041 		return (EINVAL);
13042 
13043 	lir = &((struct lifreq *)if_req)->lifr_ifinfo;
13044 	lir->lir_maxhops = ill->ill_max_hops;
13045 	lir->lir_reachtime = ill->ill_reachable_time;
13046 	lir->lir_reachretrans = ill->ill_reachable_retrans_time;
13047 	lir->lir_maxmtu = ill->ill_max_mtu;
13048 
13049 	return (0);
13050 }
13051 
13052 /*
13053  * Return best guess as to the subnet mask for the specified address.
13054  * Based on the subnet masks for all the configured interfaces.
13055  *
13056  * We end up returning a zero mask in the case of default, multicast or
13057  * experimental.
13058  */
13059 static ipaddr_t
13060 ip_subnet_mask(ipaddr_t addr, ipif_t **ipifp, ip_stack_t *ipst)
13061 {
13062 	ipaddr_t net_mask;
13063 	ill_t	*ill;
13064 	ipif_t	*ipif;
13065 	ill_walk_context_t ctx;
13066 	ipif_t	*fallback_ipif = NULL;
13067 
13068 	net_mask = ip_net_mask(addr);
13069 	if (net_mask == 0) {
13070 		*ipifp = NULL;
13071 		return (0);
13072 	}
13073 
13074 	/* Let's check to see if this is maybe a local subnet route. */
13075 	/* this function only applies to IPv4 interfaces */
13076 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
13077 	ill = ILL_START_WALK_V4(&ctx, ipst);
13078 	for (; ill != NULL; ill = ill_next(&ctx, ill)) {
13079 		mutex_enter(&ill->ill_lock);
13080 		for (ipif = ill->ill_ipif; ipif != NULL;
13081 		    ipif = ipif->ipif_next) {
13082 			if (!IPIF_CAN_LOOKUP(ipif))
13083 				continue;
13084 			if (!(ipif->ipif_flags & IPIF_UP))
13085 				continue;
13086 			if ((ipif->ipif_subnet & net_mask) ==
13087 			    (addr & net_mask)) {
13088 				/*
13089 				 * Don't trust pt-pt interfaces if there are
13090 				 * other interfaces.
13091 				 */
13092 				if (ipif->ipif_flags & IPIF_POINTOPOINT) {
13093 					if (fallback_ipif == NULL) {
13094 						ipif_refhold_locked(ipif);
13095 						fallback_ipif = ipif;
13096 					}
13097 					continue;
13098 				}
13099 
13100 				/*
13101 				 * Fine. Just assume the same net mask as the
13102 				 * directly attached subnet interface is using.
13103 				 */
13104 				ipif_refhold_locked(ipif);
13105 				mutex_exit(&ill->ill_lock);
13106 				rw_exit(&ipst->ips_ill_g_lock);
13107 				if (fallback_ipif != NULL)
13108 					ipif_refrele(fallback_ipif);
13109 				*ipifp = ipif;
13110 				return (ipif->ipif_net_mask);
13111 			}
13112 		}
13113 		mutex_exit(&ill->ill_lock);
13114 	}
13115 	rw_exit(&ipst->ips_ill_g_lock);
13116 
13117 	*ipifp = fallback_ipif;
13118 	return ((fallback_ipif != NULL) ?
13119 	    fallback_ipif->ipif_net_mask : net_mask);
13120 }
13121 
13122 /*
13123  * ip_sioctl_copyin_setup calls ip_wput_ioctl to process the IP_IOCTL ioctl.
13124  */
13125 static void
13126 ip_wput_ioctl(queue_t *q, mblk_t *mp)
13127 {
13128 	IOCP	iocp;
13129 	ipft_t	*ipft;
13130 	ipllc_t	*ipllc;
13131 	mblk_t	*mp1;
13132 	cred_t	*cr;
13133 	int	error = 0;
13134 	conn_t	*connp;
13135 
13136 	ip1dbg(("ip_wput_ioctl"));
13137 	iocp = (IOCP)mp->b_rptr;
13138 	mp1 = mp->b_cont;
13139 	if (mp1 == NULL) {
13140 		iocp->ioc_error = EINVAL;
13141 		mp->b_datap->db_type = M_IOCNAK;
13142 		iocp->ioc_count = 0;
13143 		qreply(q, mp);
13144 		return;
13145 	}
13146 
13147 	/*
13148 	 * These IOCTLs provide various control capabilities to
13149 	 * upstream agents such as ULPs and processes.	There
13150 	 * are currently two such IOCTLs implemented.  They
13151 	 * are used by TCP to provide update information for
13152 	 * existing IREs and to forcibly delete an IRE for a
13153 	 * host that is not responding, thereby forcing an
13154 	 * attempt at a new route.
13155 	 */
13156 	iocp->ioc_error = EINVAL;
13157 	if (!pullupmsg(mp1, sizeof (ipllc->ipllc_cmd)))
13158 		goto done;
13159 
13160 	ipllc = (ipllc_t *)mp1->b_rptr;
13161 	for (ipft = ip_ioctl_ftbl; ipft->ipft_pfi; ipft++) {
13162 		if (ipllc->ipllc_cmd == ipft->ipft_cmd)
13163 			break;
13164 	}
13165 	/*
13166 	 * prefer credential from mblk over ioctl;
13167 	 * see ip_sioctl_copyin_setup
13168 	 */
13169 	cr = DB_CREDDEF(mp, iocp->ioc_cr);
13170 
13171 	/*
13172 	 * Refhold the conn in case the request gets queued up in some lookup
13173 	 */
13174 	ASSERT(CONN_Q(q));
13175 	connp = Q_TO_CONN(q);
13176 	CONN_INC_REF(connp);
13177 	if (ipft->ipft_pfi &&
13178 	    ((mp1->b_wptr - mp1->b_rptr) >= ipft->ipft_min_size ||
13179 	    pullupmsg(mp1, ipft->ipft_min_size))) {
13180 		error = (*ipft->ipft_pfi)(q,
13181 		    (ipft->ipft_flags & IPFT_F_SELF_REPLY) ? mp : mp1, cr);
13182 	}
13183 	if (ipft->ipft_flags & IPFT_F_SELF_REPLY) {
13184 		/*
13185 		 * CONN_OPER_PENDING_DONE happens in the function called
13186 		 * through ipft_pfi above.
13187 		 */
13188 		return;
13189 	}
13190 
13191 	CONN_OPER_PENDING_DONE(connp);
13192 	if (ipft->ipft_flags & IPFT_F_NO_REPLY) {
13193 		freemsg(mp);
13194 		return;
13195 	}
13196 	iocp->ioc_error = error;
13197 
13198 done:
13199 	mp->b_datap->db_type = M_IOCACK;
13200 	if (iocp->ioc_error)
13201 		iocp->ioc_count = 0;
13202 	qreply(q, mp);
13203 }
13204 
13205 /*
13206  * Lookup an ipif using the sequence id (ipif_seqid)
13207  */
13208 ipif_t *
13209 ipif_lookup_seqid(ill_t *ill, uint_t seqid)
13210 {
13211 	ipif_t *ipif;
13212 
13213 	ASSERT(MUTEX_HELD(&ill->ill_lock));
13214 
13215 	for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) {
13216 		if (ipif->ipif_seqid == seqid && IPIF_CAN_LOOKUP(ipif))
13217 			return (ipif);
13218 	}
13219 	return (NULL);
13220 }
13221 
13222 /*
13223  * Assign a unique id for the ipif. This is used later when we send
13224  * IRES to ARP for resolution where we initialize ire_ipif_seqid
13225  * to the value pointed by ire_ipif->ipif_seqid. Later when the
13226  * IRE is added, we verify that ipif has not disappeared.
13227  */
13228 
13229 static void
13230 ipif_assign_seqid(ipif_t *ipif)
13231 {
13232 	ip_stack_t	*ipst = ipif->ipif_ill->ill_ipst;
13233 
13234 	ipif->ipif_seqid = atomic_add_64_nv(&ipst->ips_ipif_g_seqid, 1);
13235 }
13236 
13237 /*
13238  * Insert the ipif, so that the list of ipifs on the ill will be sorted
13239  * with respect to ipif_id. Note that an ipif with an ipif_id of -1 will
13240  * be inserted into the first space available in the list. The value of
13241  * ipif_id will then be set to the appropriate value for its position.
13242  */
13243 static int
13244 ipif_insert(ipif_t *ipif, boolean_t acquire_g_lock, boolean_t acquire_ill_lock)
13245 {
13246 	ill_t *ill;
13247 	ipif_t *tipif;
13248 	ipif_t **tipifp;
13249 	int id;
13250 	ip_stack_t	*ipst;
13251 
13252 	ASSERT(ipif->ipif_ill->ill_net_type == IRE_LOOPBACK ||
13253 	    IAM_WRITER_IPIF(ipif));
13254 
13255 	ill = ipif->ipif_ill;
13256 	ASSERT(ill != NULL);
13257 	ipst = ill->ill_ipst;
13258 
13259 	/*
13260 	 * In the case of lo0:0 we already hold the ill_g_lock.
13261 	 * ill_lookup_on_name (acquires ill_g_lock) -> ipif_allocate ->
13262 	 * ipif_insert. Another such caller is ipif_move.
13263 	 */
13264 	if (acquire_g_lock)
13265 		rw_enter(&ipst->ips_ill_g_lock, RW_WRITER);
13266 	if (acquire_ill_lock)
13267 		mutex_enter(&ill->ill_lock);
13268 	id = ipif->ipif_id;
13269 	tipifp = &(ill->ill_ipif);
13270 	if (id == -1) {	/* need to find a real id */
13271 		id = 0;
13272 		while ((tipif = *tipifp) != NULL) {
13273 			ASSERT(tipif->ipif_id >= id);
13274 			if (tipif->ipif_id != id)
13275 				break; /* non-consecutive id */
13276 			id++;
13277 			tipifp = &(tipif->ipif_next);
13278 		}
13279 		/* limit number of logical interfaces */
13280 		if (id >= ipst->ips_ip_addrs_per_if) {
13281 			if (acquire_ill_lock)
13282 				mutex_exit(&ill->ill_lock);
13283 			if (acquire_g_lock)
13284 				rw_exit(&ipst->ips_ill_g_lock);
13285 			return (-1);
13286 		}
13287 		ipif->ipif_id = id; /* assign new id */
13288 	} else if (id < ipst->ips_ip_addrs_per_if) {
13289 		/* we have a real id; insert ipif in the right place */
13290 		while ((tipif = *tipifp) != NULL) {
13291 			ASSERT(tipif->ipif_id != id);
13292 			if (tipif->ipif_id > id)
13293 				break; /* found correct location */
13294 			tipifp = &(tipif->ipif_next);
13295 		}
13296 	} else {
13297 		if (acquire_ill_lock)
13298 			mutex_exit(&ill->ill_lock);
13299 		if (acquire_g_lock)
13300 			rw_exit(&ipst->ips_ill_g_lock);
13301 		return (-1);
13302 	}
13303 
13304 	ASSERT(tipifp != &(ill->ill_ipif) || id == 0);
13305 
13306 	ipif->ipif_next = tipif;
13307 	*tipifp = ipif;
13308 	if (acquire_ill_lock)
13309 		mutex_exit(&ill->ill_lock);
13310 	if (acquire_g_lock)
13311 		rw_exit(&ipst->ips_ill_g_lock);
13312 	return (0);
13313 }
13314 
13315 static void
13316 ipif_remove(ipif_t *ipif, boolean_t acquire_ill_lock)
13317 {
13318 	ipif_t	**ipifp;
13319 	ill_t	*ill = ipif->ipif_ill;
13320 
13321 	ASSERT(RW_WRITE_HELD(&ill->ill_ipst->ips_ill_g_lock));
13322 	if (acquire_ill_lock)
13323 		mutex_enter(&ill->ill_lock);
13324 	else
13325 		ASSERT(MUTEX_HELD(&ill->ill_lock));
13326 
13327 	ipifp = &ill->ill_ipif;
13328 	for (; *ipifp != NULL; ipifp = &ipifp[0]->ipif_next) {
13329 		if (*ipifp == ipif) {
13330 			*ipifp = ipif->ipif_next;
13331 			break;
13332 		}
13333 	}
13334 
13335 	if (acquire_ill_lock)
13336 		mutex_exit(&ill->ill_lock);
13337 }
13338 
13339 /*
13340  * Allocate and initialize a new interface control structure.  (Always
13341  * called as writer.)
13342  * When ipif_allocate() is called from ip_ll_subnet_defaults, the ill
13343  * is not part of the global linked list of ills. ipif_seqid is unique
13344  * in the system and to preserve the uniqueness, it is assigned only
13345  * when ill becomes part of the global list. At that point ill will
13346  * have a name. If it doesn't get assigned here, it will get assigned
13347  * in ipif_set_values() as part of SIOCSLIFNAME processing.
13348  * Aditionally, if we come here from ip_ll_subnet_defaults, we don't set
13349  * the interface flags or any other information from the DL_INFO_ACK for
13350  * DL_STYLE2 drivers (initialize == B_FALSE), since we won't have them at
13351  * this point. The flags etc. will be set in ip_ll_subnet_defaults when the
13352  * second DL_INFO_ACK comes in from the driver.
13353  */
13354 static ipif_t *
13355 ipif_allocate(ill_t *ill, int id, uint_t ire_type, boolean_t initialize)
13356 {
13357 	ipif_t	*ipif;
13358 	phyint_t *phyi;
13359 
13360 	ip1dbg(("ipif_allocate(%s:%d ill %p)\n",
13361 	    ill->ill_name, id, (void *)ill));
13362 	ASSERT(ire_type == IRE_LOOPBACK || IAM_WRITER_ILL(ill));
13363 
13364 	if ((ipif = (ipif_t *)mi_alloc(sizeof (ipif_t), BPRI_MED)) == NULL)
13365 		return (NULL);
13366 	*ipif = ipif_zero;	/* start clean */
13367 
13368 	ipif->ipif_ill = ill;
13369 	ipif->ipif_id = id;	/* could be -1 */
13370 	/*
13371 	 * Inherit the zoneid from the ill; for the shared stack instance
13372 	 * this is always the global zone
13373 	 */
13374 	ipif->ipif_zoneid = ill->ill_zoneid;
13375 
13376 	mutex_init(&ipif->ipif_saved_ire_lock, NULL, MUTEX_DEFAULT, NULL);
13377 
13378 	ipif->ipif_refcnt = 0;
13379 	ipif->ipif_saved_ire_cnt = 0;
13380 
13381 	if (ipif_insert(ipif, ire_type != IRE_LOOPBACK, B_TRUE)) {
13382 		mi_free(ipif);
13383 		return (NULL);
13384 	}
13385 	/* -1 id should have been replaced by real id */
13386 	id = ipif->ipif_id;
13387 	ASSERT(id >= 0);
13388 
13389 	if (ill->ill_name[0] != '\0')
13390 		ipif_assign_seqid(ipif);
13391 
13392 	/*
13393 	 * Keep a copy of original id in ipif_orig_ipifid.  Failback
13394 	 * will attempt to restore the original id.  The SIOCSLIFOINDEX
13395 	 * ioctl sets ipif_orig_ipifid to zero.
13396 	 */
13397 	ipif->ipif_orig_ipifid = id;
13398 
13399 	/*
13400 	 * We grab the ill_lock and phyint_lock to protect the flag changes.
13401 	 * The ipif is still not up and can't be looked up until the
13402 	 * ioctl completes and the IPIF_CHANGING flag is cleared.
13403 	 */
13404 	mutex_enter(&ill->ill_lock);
13405 	mutex_enter(&ill->ill_phyint->phyint_lock);
13406 	/*
13407 	 * Set the running flag when logical interface zero is created.
13408 	 * For subsequent logical interfaces, a DLPI link down
13409 	 * notification message may have cleared the running flag to
13410 	 * indicate the link is down, so we shouldn't just blindly set it.
13411 	 */
13412 	if (id == 0)
13413 		ill->ill_phyint->phyint_flags |= PHYI_RUNNING;
13414 	ipif->ipif_ire_type = ire_type;
13415 	phyi = ill->ill_phyint;
13416 	ipif->ipif_orig_ifindex = phyi->phyint_ifindex;
13417 
13418 	if (ipif->ipif_isv6) {
13419 		ill->ill_flags |= ILLF_IPV6;
13420 	} else {
13421 		ipaddr_t inaddr_any = INADDR_ANY;
13422 
13423 		ill->ill_flags |= ILLF_IPV4;
13424 
13425 		/* Keep the IN6_IS_ADDR_V4MAPPED assertions happy */
13426 		IN6_IPADDR_TO_V4MAPPED(inaddr_any,
13427 		    &ipif->ipif_v6lcl_addr);
13428 		IN6_IPADDR_TO_V4MAPPED(inaddr_any,
13429 		    &ipif->ipif_v6src_addr);
13430 		IN6_IPADDR_TO_V4MAPPED(inaddr_any,
13431 		    &ipif->ipif_v6subnet);
13432 		IN6_IPADDR_TO_V4MAPPED(inaddr_any,
13433 		    &ipif->ipif_v6net_mask);
13434 		IN6_IPADDR_TO_V4MAPPED(inaddr_any,
13435 		    &ipif->ipif_v6brd_addr);
13436 		IN6_IPADDR_TO_V4MAPPED(inaddr_any,
13437 		    &ipif->ipif_v6pp_dst_addr);
13438 	}
13439 
13440 	/*
13441 	 * Don't set the interface flags etc. now, will do it in
13442 	 * ip_ll_subnet_defaults.
13443 	 */
13444 	if (!initialize) {
13445 		mutex_exit(&ill->ill_lock);
13446 		mutex_exit(&ill->ill_phyint->phyint_lock);
13447 		return (ipif);
13448 	}
13449 	ipif->ipif_mtu = ill->ill_max_mtu;
13450 
13451 	if (ill->ill_bcast_addr_length != 0) {
13452 		/*
13453 		 * Later detect lack of DLPI driver multicast
13454 		 * capability by catching DL_ENABMULTI errors in
13455 		 * ip_rput_dlpi.
13456 		 */
13457 		ill->ill_flags |= ILLF_MULTICAST;
13458 		if (!ipif->ipif_isv6)
13459 			ipif->ipif_flags |= IPIF_BROADCAST;
13460 	} else {
13461 		if (ill->ill_net_type != IRE_LOOPBACK) {
13462 			if (ipif->ipif_isv6)
13463 				/*
13464 				 * Note: xresolv interfaces will eventually need
13465 				 * NOARP set here as well, but that will require
13466 				 * those external resolvers to have some
13467 				 * knowledge of that flag and act appropriately.
13468 				 * Not to be changed at present.
13469 				 */
13470 				ill->ill_flags |= ILLF_NONUD;
13471 			else
13472 				ill->ill_flags |= ILLF_NOARP;
13473 		}
13474 		if (ill->ill_phys_addr_length == 0) {
13475 			if (ill->ill_media &&
13476 			    ill->ill_media->ip_m_mac_type == SUNW_DL_VNI) {
13477 				ipif->ipif_flags |= IPIF_NOXMIT;
13478 				phyi->phyint_flags |= PHYI_VIRTUAL;
13479 			} else {
13480 				/* pt-pt supports multicast. */
13481 				ill->ill_flags |= ILLF_MULTICAST;
13482 				if (ill->ill_net_type == IRE_LOOPBACK) {
13483 					phyi->phyint_flags |=
13484 					    (PHYI_LOOPBACK | PHYI_VIRTUAL);
13485 				} else {
13486 					ipif->ipif_flags |= IPIF_POINTOPOINT;
13487 				}
13488 			}
13489 		}
13490 	}
13491 	mutex_exit(&ill->ill_lock);
13492 	mutex_exit(&ill->ill_phyint->phyint_lock);
13493 	return (ipif);
13494 }
13495 
13496 /*
13497  * If appropriate, send a message up to the resolver delete the entry
13498  * for the address of this interface which is going out of business.
13499  * (Always called as writer).
13500  *
13501  * NOTE : We need to check for NULL mps as some of the fields are
13502  *	  initialized only for some interface types. See ipif_resolver_up()
13503  *	  for details.
13504  */
13505 void
13506 ipif_arp_down(ipif_t *ipif)
13507 {
13508 	mblk_t	*mp;
13509 	ill_t	*ill = ipif->ipif_ill;
13510 
13511 	ip1dbg(("ipif_arp_down(%s:%u)\n", ill->ill_name, ipif->ipif_id));
13512 	ASSERT(IAM_WRITER_IPIF(ipif));
13513 
13514 	/* Delete the mapping for the local address */
13515 	mp = ipif->ipif_arp_del_mp;
13516 	if (mp != NULL) {
13517 		ip1dbg(("ipif_arp_down: arp cmd %x for %s:%u\n",
13518 		    *(unsigned *)mp->b_rptr, ill->ill_name, ipif->ipif_id));
13519 		putnext(ill->ill_rq, mp);
13520 		ipif->ipif_arp_del_mp = NULL;
13521 	}
13522 
13523 	/*
13524 	 * If this is the last ipif that is going down and there are no
13525 	 * duplicate addresses we may yet attempt to re-probe, then we need to
13526 	 * clean up ARP completely.
13527 	 */
13528 	if (ill->ill_ipif_up_count == 0 && ill->ill_ipif_dup_count == 0) {
13529 
13530 		/* Send up AR_INTERFACE_DOWN message */
13531 		mp = ill->ill_arp_down_mp;
13532 		if (mp != NULL) {
13533 			ip1dbg(("ipif_arp_down: arp cmd %x for %s:%u\n",
13534 			    *(unsigned *)mp->b_rptr, ill->ill_name,
13535 			    ipif->ipif_id));
13536 			putnext(ill->ill_rq, mp);
13537 			ill->ill_arp_down_mp = NULL;
13538 		}
13539 
13540 		/* Tell ARP to delete the multicast mappings */
13541 		mp = ill->ill_arp_del_mapping_mp;
13542 		if (mp != NULL) {
13543 			ip1dbg(("ipif_arp_down: arp cmd %x for %s:%u\n",
13544 			    *(unsigned *)mp->b_rptr, ill->ill_name,
13545 			    ipif->ipif_id));
13546 			putnext(ill->ill_rq, mp);
13547 			ill->ill_arp_del_mapping_mp = NULL;
13548 		}
13549 	}
13550 }
13551 
13552 /*
13553  * This function sets up the multicast mappings in ARP. When ipif_resolver_up
13554  * calls this function, it passes a non-NULL arp_add_mapping_mp indicating
13555  * that it wants the add_mp allocated in this function to be returned
13556  * wihtout sending it to arp. When ip_rput_dlpi_writer calls this to
13557  * just re-do the multicast, it wants us to send the add_mp to ARP also.
13558  * ipif_resolver_up does not want us to do the "add" i.e sending to ARP,
13559  * as it does a ipif_arp_down after calling this function - which will
13560  * remove what we add here.
13561  *
13562  * Returns -1 on failures and 0 on success.
13563  */
13564 int
13565 ipif_arp_setup_multicast(ipif_t *ipif, mblk_t **arp_add_mapping_mp)
13566 {
13567 	mblk_t	*del_mp = NULL;
13568 	mblk_t *add_mp = NULL;
13569 	mblk_t *mp;
13570 	ill_t	*ill = ipif->ipif_ill;
13571 	phyint_t *phyi = ill->ill_phyint;
13572 	ipaddr_t addr, mask, extract_mask = 0;
13573 	arma_t	*arma;
13574 	uint8_t *maddr, *bphys_addr;
13575 	uint32_t hw_start;
13576 	dl_unitdata_req_t *dlur;
13577 
13578 	ASSERT(IAM_WRITER_IPIF(ipif));
13579 	if (ipif->ipif_flags & IPIF_POINTOPOINT)
13580 		return (0);
13581 
13582 	/*
13583 	 * Delete the existing mapping from ARP. Normally ipif_down
13584 	 * -> ipif_arp_down should send this up to ARP. The only
13585 	 * reason we would find this when we are switching from
13586 	 * Multicast to Broadcast where we did not do a down.
13587 	 */
13588 	mp = ill->ill_arp_del_mapping_mp;
13589 	if (mp != NULL) {
13590 		ip1dbg(("ipif_arp_down: arp cmd %x for %s:%u\n",
13591 		    *(unsigned *)mp->b_rptr, ill->ill_name, ipif->ipif_id));
13592 		putnext(ill->ill_rq, mp);
13593 		ill->ill_arp_del_mapping_mp = NULL;
13594 	}
13595 
13596 	if (arp_add_mapping_mp != NULL)
13597 		*arp_add_mapping_mp = NULL;
13598 
13599 	/*
13600 	 * Check that the address is not to long for the constant
13601 	 * length reserved in the template arma_t.
13602 	 */
13603 	if (ill->ill_phys_addr_length > IP_MAX_HW_LEN)
13604 		return (-1);
13605 
13606 	/* Add mapping mblk */
13607 	addr = (ipaddr_t)htonl(INADDR_UNSPEC_GROUP);
13608 	mask = (ipaddr_t)htonl(IN_CLASSD_NET);
13609 	add_mp = ill_arp_alloc(ill, (uchar_t *)&ip_arma_multi_template,
13610 	    (caddr_t)&addr);
13611 	if (add_mp == NULL)
13612 		return (-1);
13613 	arma = (arma_t *)add_mp->b_rptr;
13614 	maddr = (uint8_t *)arma + arma->arma_hw_addr_offset;
13615 	bcopy(&mask, (char *)arma + arma->arma_proto_mask_offset, IP_ADDR_LEN);
13616 	arma->arma_hw_addr_length = ill->ill_phys_addr_length;
13617 
13618 	/*
13619 	 * Determine the broadcast address.
13620 	 */
13621 	dlur = (dl_unitdata_req_t *)ill->ill_bcast_mp->b_rptr;
13622 	if (ill->ill_sap_length < 0)
13623 		bphys_addr = (uchar_t *)dlur + dlur->dl_dest_addr_offset;
13624 	else
13625 		bphys_addr = (uchar_t *)dlur +
13626 		    dlur->dl_dest_addr_offset + ill->ill_sap_length;
13627 	/*
13628 	 * Check PHYI_MULTI_BCAST and length of physical
13629 	 * address to determine if we use the mapping or the
13630 	 * broadcast address.
13631 	 */
13632 	if (!(phyi->phyint_flags & PHYI_MULTI_BCAST))
13633 		if (!MEDIA_V4MINFO(ill->ill_media, ill->ill_phys_addr_length,
13634 		    bphys_addr, maddr, &hw_start, &extract_mask))
13635 			phyi->phyint_flags |= PHYI_MULTI_BCAST;
13636 
13637 	if ((phyi->phyint_flags & PHYI_MULTI_BCAST) ||
13638 	    (ill->ill_flags & ILLF_MULTICAST)) {
13639 		/* Make sure this will not match the "exact" entry. */
13640 		addr = (ipaddr_t)htonl(INADDR_ALLHOSTS_GROUP);
13641 		del_mp = ill_arp_alloc(ill, (uchar_t *)&ip_ared_template,
13642 		    (caddr_t)&addr);
13643 		if (del_mp == NULL) {
13644 			freemsg(add_mp);
13645 			return (-1);
13646 		}
13647 		bcopy(&extract_mask, (char *)arma +
13648 		    arma->arma_proto_extract_mask_offset, IP_ADDR_LEN);
13649 		if (phyi->phyint_flags & PHYI_MULTI_BCAST) {
13650 			/* Use link-layer broadcast address for MULTI_BCAST */
13651 			bcopy(bphys_addr, maddr, ill->ill_phys_addr_length);
13652 			ip2dbg(("ipif_arp_setup_multicast: adding"
13653 			    " MULTI_BCAST ARP setup for %s\n", ill->ill_name));
13654 		} else {
13655 			arma->arma_hw_mapping_start = hw_start;
13656 			ip2dbg(("ipif_arp_setup_multicast: adding multicast"
13657 			    " ARP setup for %s\n", ill->ill_name));
13658 		}
13659 	} else {
13660 		freemsg(add_mp);
13661 		ASSERT(del_mp == NULL);
13662 		/* It is neither MULTICAST nor MULTI_BCAST */
13663 		return (0);
13664 	}
13665 	ASSERT(add_mp != NULL && del_mp != NULL);
13666 	ASSERT(ill->ill_arp_del_mapping_mp == NULL);
13667 	ill->ill_arp_del_mapping_mp = del_mp;
13668 	if (arp_add_mapping_mp != NULL) {
13669 		/* The caller just wants the mblks allocated */
13670 		*arp_add_mapping_mp = add_mp;
13671 	} else {
13672 		/* The caller wants us to send it to arp */
13673 		putnext(ill->ill_rq, add_mp);
13674 	}
13675 	return (0);
13676 }
13677 
13678 /*
13679  * Get the resolver set up for a new interface address.
13680  * (Always called as writer.)
13681  * Called both for IPv4 and IPv6 interfaces,
13682  * though it only sets up the resolver for v6
13683  * if it's an xresolv interface (one using an external resolver).
13684  * Honors ILLF_NOARP.
13685  * The enumerated value res_act is used to tune the behavior.
13686  * If set to Res_act_initial, then we set up all the resolver
13687  * structures for a new interface.  If set to Res_act_move, then
13688  * we just send an AR_ENTRY_ADD message up to ARP for IPv4
13689  * interfaces; this is called by ip_rput_dlpi_writer() to handle
13690  * asynchronous hardware address change notification.  If set to
13691  * Res_act_defend, then we tell ARP that it needs to send a single
13692  * gratuitous message in defense of the address.
13693  * Returns error on failure.
13694  */
13695 int
13696 ipif_resolver_up(ipif_t *ipif, enum ip_resolver_action res_act)
13697 {
13698 	caddr_t	addr;
13699 	mblk_t	*arp_up_mp = NULL;
13700 	mblk_t	*arp_down_mp = NULL;
13701 	mblk_t	*arp_add_mp = NULL;
13702 	mblk_t	*arp_del_mp = NULL;
13703 	mblk_t	*arp_add_mapping_mp = NULL;
13704 	mblk_t	*arp_del_mapping_mp = NULL;
13705 	ill_t	*ill = ipif->ipif_ill;
13706 	uchar_t	*area_p = NULL;
13707 	uchar_t	*ared_p = NULL;
13708 	int	err = ENOMEM;
13709 	boolean_t was_dup;
13710 
13711 	ip1dbg(("ipif_resolver_up(%s:%u) flags 0x%x\n",
13712 	    ill->ill_name, ipif->ipif_id, (uint_t)ipif->ipif_flags));
13713 	ASSERT(IAM_WRITER_IPIF(ipif));
13714 
13715 	was_dup = B_FALSE;
13716 	if (res_act == Res_act_initial) {
13717 		ipif->ipif_addr_ready = 0;
13718 		/*
13719 		 * We're bringing an interface up here.  There's no way that we
13720 		 * should need to shut down ARP now.
13721 		 */
13722 		mutex_enter(&ill->ill_lock);
13723 		if (ipif->ipif_flags & IPIF_DUPLICATE) {
13724 			ipif->ipif_flags &= ~IPIF_DUPLICATE;
13725 			ill->ill_ipif_dup_count--;
13726 			was_dup = B_TRUE;
13727 		}
13728 		mutex_exit(&ill->ill_lock);
13729 	}
13730 	if (ipif->ipif_recovery_id != 0)
13731 		(void) untimeout(ipif->ipif_recovery_id);
13732 	ipif->ipif_recovery_id = 0;
13733 	if (ill->ill_net_type != IRE_IF_RESOLVER) {
13734 		ipif->ipif_addr_ready = 1;
13735 		return (0);
13736 	}
13737 	/* NDP will set the ipif_addr_ready flag when it's ready */
13738 	if (ill->ill_isv6 && !(ill->ill_flags & ILLF_XRESOLV))
13739 		return (0);
13740 
13741 	if (ill->ill_isv6) {
13742 		/*
13743 		 * External resolver for IPv6
13744 		 */
13745 		ASSERT(res_act == Res_act_initial);
13746 		if (!IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr)) {
13747 			addr = (caddr_t)&ipif->ipif_v6lcl_addr;
13748 			area_p = (uchar_t *)&ip6_area_template;
13749 			ared_p = (uchar_t *)&ip6_ared_template;
13750 		}
13751 	} else {
13752 		/*
13753 		 * IPv4 arp case. If the ARP stream has already started
13754 		 * closing, fail this request for ARP bringup. Else
13755 		 * record the fact that an ARP bringup is pending.
13756 		 */
13757 		mutex_enter(&ill->ill_lock);
13758 		if (ill->ill_arp_closing) {
13759 			mutex_exit(&ill->ill_lock);
13760 			err = EINVAL;
13761 			goto failed;
13762 		} else {
13763 			if (ill->ill_ipif_up_count == 0 &&
13764 			    ill->ill_ipif_dup_count == 0 && !was_dup)
13765 				ill->ill_arp_bringup_pending = 1;
13766 			mutex_exit(&ill->ill_lock);
13767 		}
13768 		if (ipif->ipif_lcl_addr != INADDR_ANY) {
13769 			addr = (caddr_t)&ipif->ipif_lcl_addr;
13770 			area_p = (uchar_t *)&ip_area_template;
13771 			ared_p = (uchar_t *)&ip_ared_template;
13772 		}
13773 	}
13774 
13775 	/*
13776 	 * Add an entry for the local address in ARP only if it
13777 	 * is not UNNUMBERED and the address is not INADDR_ANY.
13778 	 */
13779 	if (!(ipif->ipif_flags & IPIF_UNNUMBERED) && area_p != NULL) {
13780 		area_t *area;
13781 
13782 		/* Now ask ARP to publish our address. */
13783 		arp_add_mp = ill_arp_alloc(ill, area_p, addr);
13784 		if (arp_add_mp == NULL)
13785 			goto failed;
13786 		area = (area_t *)arp_add_mp->b_rptr;
13787 		if (res_act != Res_act_initial) {
13788 			/*
13789 			 * Copy the new hardware address and length into
13790 			 * arp_add_mp to be sent to ARP.
13791 			 */
13792 			area->area_hw_addr_length = ill->ill_phys_addr_length;
13793 			bcopy(ill->ill_phys_addr,
13794 			    ((char *)area + area->area_hw_addr_offset),
13795 			    area->area_hw_addr_length);
13796 		}
13797 
13798 		area->area_flags = ACE_F_PERMANENT | ACE_F_PUBLISH |
13799 		    ACE_F_MYADDR;
13800 
13801 		if (res_act == Res_act_defend) {
13802 			area->area_flags |= ACE_F_DEFEND;
13803 			/*
13804 			 * If we're just defending our address now, then
13805 			 * there's no need to set up ARP multicast mappings.
13806 			 * The publish command is enough.
13807 			 */
13808 			goto done;
13809 		}
13810 
13811 		if (res_act != Res_act_initial)
13812 			goto arp_setup_multicast;
13813 
13814 		/*
13815 		 * Allocate an ARP deletion message so we know we can tell ARP
13816 		 * when the interface goes down.
13817 		 */
13818 		arp_del_mp = ill_arp_alloc(ill, ared_p, addr);
13819 		if (arp_del_mp == NULL)
13820 			goto failed;
13821 
13822 	} else {
13823 		if (res_act != Res_act_initial)
13824 			goto done;
13825 	}
13826 	/*
13827 	 * Need to bring up ARP or setup multicast mapping only
13828 	 * when the first interface is coming UP.
13829 	 */
13830 	if (ill->ill_ipif_up_count != 0 || ill->ill_ipif_dup_count != 0 ||
13831 	    was_dup) {
13832 		goto done;
13833 	}
13834 
13835 	/*
13836 	 * Allocate an ARP down message (to be saved) and an ARP up
13837 	 * message.
13838 	 */
13839 	arp_down_mp = ill_arp_alloc(ill, (uchar_t *)&ip_ard_template, 0);
13840 	if (arp_down_mp == NULL)
13841 		goto failed;
13842 
13843 	arp_up_mp = ill_arp_alloc(ill, (uchar_t *)&ip_aru_template, 0);
13844 	if (arp_up_mp == NULL)
13845 		goto failed;
13846 
13847 	if (ipif->ipif_flags & IPIF_POINTOPOINT)
13848 		goto done;
13849 
13850 arp_setup_multicast:
13851 	/*
13852 	 * Setup the multicast mappings. This function initializes
13853 	 * ill_arp_del_mapping_mp also. This does not need to be done for
13854 	 * IPv6.
13855 	 */
13856 	if (!ill->ill_isv6) {
13857 		err = ipif_arp_setup_multicast(ipif, &arp_add_mapping_mp);
13858 		if (err != 0)
13859 			goto failed;
13860 		ASSERT(ill->ill_arp_del_mapping_mp != NULL);
13861 		ASSERT(arp_add_mapping_mp != NULL);
13862 	}
13863 
13864 done:
13865 	if (arp_del_mp != NULL) {
13866 		ASSERT(ipif->ipif_arp_del_mp == NULL);
13867 		ipif->ipif_arp_del_mp = arp_del_mp;
13868 	}
13869 	if (arp_down_mp != NULL) {
13870 		ASSERT(ill->ill_arp_down_mp == NULL);
13871 		ill->ill_arp_down_mp = arp_down_mp;
13872 	}
13873 	if (arp_del_mapping_mp != NULL) {
13874 		ASSERT(ill->ill_arp_del_mapping_mp == NULL);
13875 		ill->ill_arp_del_mapping_mp = arp_del_mapping_mp;
13876 	}
13877 	if (arp_up_mp != NULL) {
13878 		ip1dbg(("ipif_resolver_up: ARP_UP for %s:%u\n",
13879 		    ill->ill_name, ipif->ipif_id));
13880 		putnext(ill->ill_rq, arp_up_mp);
13881 	}
13882 	if (arp_add_mp != NULL) {
13883 		ip1dbg(("ipif_resolver_up: ARP_ADD for %s:%u\n",
13884 		    ill->ill_name, ipif->ipif_id));
13885 		/*
13886 		 * If it's an extended ARP implementation, then we'll wait to
13887 		 * hear that DAD has finished before using the interface.
13888 		 */
13889 		if (!ill->ill_arp_extend)
13890 			ipif->ipif_addr_ready = 1;
13891 		putnext(ill->ill_rq, arp_add_mp);
13892 	} else {
13893 		ipif->ipif_addr_ready = 1;
13894 	}
13895 	if (arp_add_mapping_mp != NULL) {
13896 		ip1dbg(("ipif_resolver_up: MAPPING_ADD for %s:%u\n",
13897 		    ill->ill_name, ipif->ipif_id));
13898 		putnext(ill->ill_rq, arp_add_mapping_mp);
13899 	}
13900 	if (res_act != Res_act_initial)
13901 		return (0);
13902 
13903 	if (ill->ill_flags & ILLF_NOARP)
13904 		err = ill_arp_off(ill);
13905 	else
13906 		err = ill_arp_on(ill);
13907 	if (err != 0) {
13908 		ip0dbg(("ipif_resolver_up: arp_on/off failed %d\n", err));
13909 		freemsg(ipif->ipif_arp_del_mp);
13910 		freemsg(ill->ill_arp_down_mp);
13911 		freemsg(ill->ill_arp_del_mapping_mp);
13912 		ipif->ipif_arp_del_mp = NULL;
13913 		ill->ill_arp_down_mp = NULL;
13914 		ill->ill_arp_del_mapping_mp = NULL;
13915 		return (err);
13916 	}
13917 	return ((ill->ill_ipif_up_count != 0 || was_dup ||
13918 	    ill->ill_ipif_dup_count != 0) ? 0 : EINPROGRESS);
13919 
13920 failed:
13921 	ip1dbg(("ipif_resolver_up: FAILED\n"));
13922 	freemsg(arp_add_mp);
13923 	freemsg(arp_del_mp);
13924 	freemsg(arp_add_mapping_mp);
13925 	freemsg(arp_up_mp);
13926 	freemsg(arp_down_mp);
13927 	ill->ill_arp_bringup_pending = 0;
13928 	return (err);
13929 }
13930 
13931 /*
13932  * This routine restarts IPv4 duplicate address detection (DAD) when a link has
13933  * just gone back up.
13934  */
13935 static void
13936 ipif_arp_start_dad(ipif_t *ipif)
13937 {
13938 	ill_t *ill = ipif->ipif_ill;
13939 	mblk_t *arp_add_mp;
13940 	area_t *area;
13941 
13942 	if (ill->ill_net_type != IRE_IF_RESOLVER || ill->ill_arp_closing ||
13943 	    (ipif->ipif_flags & IPIF_UNNUMBERED) ||
13944 	    ipif->ipif_lcl_addr == INADDR_ANY ||
13945 	    (arp_add_mp = ill_arp_alloc(ill, (uchar_t *)&ip_area_template,
13946 	    (char *)&ipif->ipif_lcl_addr)) == NULL) {
13947 		/*
13948 		 * If we can't contact ARP for some reason, that's not really a
13949 		 * problem.  Just send out the routing socket notification that
13950 		 * DAD completion would have done, and continue.
13951 		 */
13952 		ipif_mask_reply(ipif);
13953 		ip_rts_ifmsg(ipif);
13954 		ip_rts_newaddrmsg(RTM_ADD, 0, ipif);
13955 		sctp_update_ipif(ipif, SCTP_IPIF_UP);
13956 		ipif->ipif_addr_ready = 1;
13957 		return;
13958 	}
13959 
13960 	/* Setting the 'unverified' flag restarts DAD */
13961 	area = (area_t *)arp_add_mp->b_rptr;
13962 	area->area_flags = ACE_F_PERMANENT | ACE_F_PUBLISH | ACE_F_MYADDR |
13963 	    ACE_F_UNVERIFIED;
13964 	putnext(ill->ill_rq, arp_add_mp);
13965 }
13966 
13967 static void
13968 ipif_ndp_start_dad(ipif_t *ipif)
13969 {
13970 	nce_t *nce;
13971 
13972 	nce = ndp_lookup_v6(ipif->ipif_ill, &ipif->ipif_v6lcl_addr, B_FALSE);
13973 	if (nce == NULL)
13974 		return;
13975 
13976 	if (!ndp_restart_dad(nce)) {
13977 		/*
13978 		 * If we can't restart DAD for some reason, that's not really a
13979 		 * problem.  Just send out the routing socket notification that
13980 		 * DAD completion would have done, and continue.
13981 		 */
13982 		ip_rts_ifmsg(ipif);
13983 		ip_rts_newaddrmsg(RTM_ADD, 0, ipif);
13984 		sctp_update_ipif(ipif, SCTP_IPIF_UP);
13985 		ipif->ipif_addr_ready = 1;
13986 	}
13987 	NCE_REFRELE(nce);
13988 }
13989 
13990 /*
13991  * Restart duplicate address detection on all interfaces on the given ill.
13992  *
13993  * This is called when an interface transitions from down to up
13994  * (DL_NOTE_LINK_UP) or up to down (DL_NOTE_LINK_DOWN).
13995  *
13996  * Note that since the underlying physical link has transitioned, we must cause
13997  * at least one routing socket message to be sent here, either via DAD
13998  * completion or just by default on the first ipif.  (If we don't do this, then
13999  * in.mpathd will see long delays when doing link-based failure recovery.)
14000  */
14001 void
14002 ill_restart_dad(ill_t *ill, boolean_t went_up)
14003 {
14004 	ipif_t *ipif;
14005 
14006 	if (ill == NULL)
14007 		return;
14008 
14009 	/*
14010 	 * If layer two doesn't support duplicate address detection, then just
14011 	 * send the routing socket message now and be done with it.
14012 	 */
14013 	if ((ill->ill_isv6 && (ill->ill_flags & ILLF_XRESOLV)) ||
14014 	    (!ill->ill_isv6 && !ill->ill_arp_extend)) {
14015 		ip_rts_ifmsg(ill->ill_ipif);
14016 		return;
14017 	}
14018 
14019 	for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) {
14020 		if (went_up) {
14021 			if (ipif->ipif_flags & IPIF_UP) {
14022 				if (ill->ill_isv6)
14023 					ipif_ndp_start_dad(ipif);
14024 				else
14025 					ipif_arp_start_dad(ipif);
14026 			} else if (ill->ill_isv6 &&
14027 			    (ipif->ipif_flags & IPIF_DUPLICATE)) {
14028 				/*
14029 				 * For IPv4, the ARP module itself will
14030 				 * automatically start the DAD process when it
14031 				 * sees DL_NOTE_LINK_UP.  We respond to the
14032 				 * AR_CN_READY at the completion of that task.
14033 				 * For IPv6, we must kick off the bring-up
14034 				 * process now.
14035 				 */
14036 				ndp_do_recovery(ipif);
14037 			} else {
14038 				/*
14039 				 * Unfortunately, the first ipif is "special"
14040 				 * and represents the underlying ill in the
14041 				 * routing socket messages.  Thus, when this
14042 				 * one ipif is down, we must still notify so
14043 				 * that the user knows the IFF_RUNNING status
14044 				 * change.  (If the first ipif is up, then
14045 				 * we'll handle eventual routing socket
14046 				 * notification via DAD completion.)
14047 				 */
14048 				if (ipif == ill->ill_ipif)
14049 					ip_rts_ifmsg(ill->ill_ipif);
14050 			}
14051 		} else {
14052 			/*
14053 			 * After link down, we'll need to send a new routing
14054 			 * message when the link comes back, so clear
14055 			 * ipif_addr_ready.
14056 			 */
14057 			ipif->ipif_addr_ready = 0;
14058 		}
14059 	}
14060 
14061 	/*
14062 	 * If we've torn down links, then notify the user right away.
14063 	 */
14064 	if (!went_up)
14065 		ip_rts_ifmsg(ill->ill_ipif);
14066 }
14067 
14068 /*
14069  * Wakeup all threads waiting to enter the ipsq, and sleeping
14070  * on any of the ills in this ipsq. The ill_lock of the ill
14071  * must be held so that waiters don't miss wakeups
14072  */
14073 static void
14074 ill_signal_ipsq_ills(ipsq_t *ipsq, boolean_t caller_holds_lock)
14075 {
14076 	phyint_t *phyint;
14077 
14078 	phyint = ipsq->ipsq_phyint_list;
14079 	while (phyint != NULL) {
14080 		if (phyint->phyint_illv4) {
14081 			if (!caller_holds_lock)
14082 				mutex_enter(&phyint->phyint_illv4->ill_lock);
14083 			ASSERT(MUTEX_HELD(&phyint->phyint_illv4->ill_lock));
14084 			cv_broadcast(&phyint->phyint_illv4->ill_cv);
14085 			if (!caller_holds_lock)
14086 				mutex_exit(&phyint->phyint_illv4->ill_lock);
14087 		}
14088 		if (phyint->phyint_illv6) {
14089 			if (!caller_holds_lock)
14090 				mutex_enter(&phyint->phyint_illv6->ill_lock);
14091 			ASSERT(MUTEX_HELD(&phyint->phyint_illv6->ill_lock));
14092 			cv_broadcast(&phyint->phyint_illv6->ill_cv);
14093 			if (!caller_holds_lock)
14094 				mutex_exit(&phyint->phyint_illv6->ill_lock);
14095 		}
14096 		phyint = phyint->phyint_ipsq_next;
14097 	}
14098 }
14099 
14100 static ipsq_t *
14101 ipsq_create(char *groupname, ip_stack_t *ipst)
14102 {
14103 	ipsq_t	*ipsq;
14104 
14105 	ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock));
14106 	ipsq = kmem_zalloc(sizeof (ipsq_t), KM_NOSLEEP);
14107 	if (ipsq == NULL) {
14108 		return (NULL);
14109 	}
14110 
14111 	if (groupname != NULL)
14112 		(void) strcpy(ipsq->ipsq_name, groupname);
14113 	else
14114 		ipsq->ipsq_name[0] = '\0';
14115 
14116 	mutex_init(&ipsq->ipsq_lock, NULL, MUTEX_DEFAULT, NULL);
14117 	ipsq->ipsq_flags |= IPSQ_GROUP;
14118 	ipsq->ipsq_next = ipst->ips_ipsq_g_head;
14119 	ipst->ips_ipsq_g_head = ipsq;
14120 	ipsq->ipsq_ipst = ipst;		/* No netstack_hold */
14121 	return (ipsq);
14122 }
14123 
14124 /*
14125  * Return an ipsq correspoding to the groupname. If 'create' is true
14126  * allocate a new ipsq if one does not exist. Usually an ipsq is associated
14127  * uniquely with an IPMP group. However during IPMP groupname operations,
14128  * multiple IPMP groups may be associated with a single ipsq. But no
14129  * IPMP group can be associated with more than 1 ipsq at any time.
14130  * For example
14131  *	Interfaces		IPMP grpname	ipsq	ipsq_name      ipsq_refs
14132  * 	hme1, hme2		mpk17-84	ipsq1	mpk17-84	2
14133  *	hme3, hme4		mpk17-85	ipsq2	mpk17-85	2
14134  *
14135  * Now the command ifconfig hme3 group mpk17-84 results in the temporary
14136  * status shown below during the execution of the above command.
14137  * 	hme1, hme2, hme3, hme4	mpk17-84, mpk17-85	ipsq1	mpk17-84  4
14138  *
14139  * After the completion of the above groupname command we return to the stable
14140  * state shown below.
14141  * 	hme1, hme2, hme3	mpk17-84	ipsq1	mpk17-84	3
14142  *	hme4			mpk17-85	ipsq2	mpk17-85	1
14143  *
14144  * Because of the above, we don't search based on the ipsq_name since that
14145  * would miss the correct ipsq during certain windows as shown above.
14146  * The ipsq_name is only used during split of an ipsq to return the ipsq to its
14147  * natural state.
14148  */
14149 static ipsq_t *
14150 ip_ipsq_lookup(char *groupname, boolean_t create, ipsq_t *exclude_ipsq,
14151     ip_stack_t *ipst)
14152 {
14153 	ipsq_t	*ipsq;
14154 	int	group_len;
14155 	phyint_t *phyint;
14156 
14157 	ASSERT(RW_LOCK_HELD(&ipst->ips_ill_g_lock));
14158 
14159 	group_len = strlen(groupname);
14160 	ASSERT(group_len != 0);
14161 	group_len++;
14162 
14163 	for (ipsq = ipst->ips_ipsq_g_head;
14164 	    ipsq != NULL;
14165 	    ipsq = ipsq->ipsq_next) {
14166 		/*
14167 		 * When an ipsq is being split, and ill_split_ipsq
14168 		 * calls this function, we exclude it from being considered.
14169 		 */
14170 		if (ipsq == exclude_ipsq)
14171 			continue;
14172 
14173 		/*
14174 		 * Compare against the ipsq_name. The groupname change happens
14175 		 * in 2 phases. The 1st phase merges the from group into
14176 		 * the to group's ipsq, by calling ill_merge_groups and restarts
14177 		 * the ioctl. The 2nd phase then locates the ipsq again thru
14178 		 * ipsq_name. At this point the phyint_groupname has not been
14179 		 * updated.
14180 		 */
14181 		if ((group_len == strlen(ipsq->ipsq_name) + 1) &&
14182 		    (bcmp(ipsq->ipsq_name, groupname, group_len) == 0)) {
14183 			/*
14184 			 * Verify that an ipmp groupname is exactly
14185 			 * part of 1 ipsq and is not found in any other
14186 			 * ipsq.
14187 			 */
14188 			ASSERT(ip_ipsq_lookup(groupname, B_FALSE, ipsq, ipst) ==
14189 			    NULL);
14190 			return (ipsq);
14191 		}
14192 
14193 		/*
14194 		 * Comparison against ipsq_name alone is not sufficient.
14195 		 * In the case when groups are currently being
14196 		 * merged, the ipsq could hold other IPMP groups temporarily.
14197 		 * so we walk the phyint list and compare against the
14198 		 * phyint_groupname as well.
14199 		 */
14200 		phyint = ipsq->ipsq_phyint_list;
14201 		while (phyint != NULL) {
14202 			if ((group_len == phyint->phyint_groupname_len) &&
14203 			    (bcmp(phyint->phyint_groupname, groupname,
14204 			    group_len) == 0)) {
14205 				/*
14206 				 * Verify that an ipmp groupname is exactly
14207 				 * part of 1 ipsq and is not found in any other
14208 				 * ipsq.
14209 				 */
14210 				ASSERT(ip_ipsq_lookup(groupname, B_FALSE, ipsq,
14211 				    ipst) == NULL);
14212 				return (ipsq);
14213 			}
14214 			phyint = phyint->phyint_ipsq_next;
14215 		}
14216 	}
14217 	if (create)
14218 		ipsq = ipsq_create(groupname, ipst);
14219 	return (ipsq);
14220 }
14221 
14222 static void
14223 ipsq_delete(ipsq_t *ipsq)
14224 {
14225 	ipsq_t *nipsq;
14226 	ipsq_t *pipsq = NULL;
14227 	ip_stack_t *ipst = ipsq->ipsq_ipst;
14228 
14229 	/*
14230 	 * We don't hold the ipsq lock, but we are sure no new
14231 	 * messages can land up, since the ipsq_refs is zero.
14232 	 * i.e. this ipsq is unnamed and no phyint or phyint group
14233 	 * is associated with this ipsq. (Lookups are based on ill_name
14234 	 * or phyint_groupname)
14235 	 */
14236 	ASSERT(ipsq->ipsq_refs == 0);
14237 	ASSERT(ipsq->ipsq_xopq_mphead == NULL && ipsq->ipsq_mphead == NULL);
14238 	ASSERT(ipsq->ipsq_pending_mp == NULL);
14239 	if (!(ipsq->ipsq_flags & IPSQ_GROUP)) {
14240 		/*
14241 		 * This is not the ipsq of an IPMP group.
14242 		 */
14243 		ipsq->ipsq_ipst = NULL;
14244 		kmem_free(ipsq, sizeof (ipsq_t));
14245 		return;
14246 	}
14247 
14248 	rw_enter(&ipst->ips_ill_g_lock, RW_WRITER);
14249 
14250 	/*
14251 	 * Locate the ipsq  before we can remove it from
14252 	 * the singly linked list of ipsq's.
14253 	 */
14254 	for (nipsq = ipst->ips_ipsq_g_head; nipsq != NULL;
14255 	    nipsq = nipsq->ipsq_next) {
14256 		if (nipsq == ipsq) {
14257 			break;
14258 		}
14259 		pipsq = nipsq;
14260 	}
14261 
14262 	ASSERT(nipsq == ipsq);
14263 
14264 	/* unlink ipsq from the list */
14265 	if (pipsq != NULL)
14266 		pipsq->ipsq_next = ipsq->ipsq_next;
14267 	else
14268 		ipst->ips_ipsq_g_head = ipsq->ipsq_next;
14269 	ipsq->ipsq_ipst = NULL;
14270 	kmem_free(ipsq, sizeof (ipsq_t));
14271 	rw_exit(&ipst->ips_ill_g_lock);
14272 }
14273 
14274 static void
14275 ill_move_to_new_ipsq(ipsq_t *old_ipsq, ipsq_t *new_ipsq, mblk_t *current_mp,
14276     queue_t *q)
14277 {
14278 	ASSERT(MUTEX_HELD(&new_ipsq->ipsq_lock));
14279 	ASSERT(old_ipsq->ipsq_mphead == NULL && old_ipsq->ipsq_mptail == NULL);
14280 	ASSERT(old_ipsq->ipsq_pending_ipif == NULL);
14281 	ASSERT(old_ipsq->ipsq_pending_mp == NULL);
14282 	ASSERT(current_mp != NULL);
14283 
14284 	ipsq_enq(new_ipsq, q, current_mp, (ipsq_func_t)ip_process_ioctl,
14285 	    NEW_OP, NULL);
14286 
14287 	ASSERT(new_ipsq->ipsq_xopq_mptail != NULL &&
14288 	    new_ipsq->ipsq_xopq_mphead != NULL);
14289 
14290 	/*
14291 	 * move from old ipsq to the new ipsq.
14292 	 */
14293 	new_ipsq->ipsq_xopq_mptail->b_next = old_ipsq->ipsq_xopq_mphead;
14294 	if (old_ipsq->ipsq_xopq_mphead != NULL)
14295 		new_ipsq->ipsq_xopq_mptail = old_ipsq->ipsq_xopq_mptail;
14296 
14297 	old_ipsq->ipsq_xopq_mphead = old_ipsq->ipsq_xopq_mptail = NULL;
14298 }
14299 
14300 void
14301 ill_group_cleanup(ill_t *ill)
14302 {
14303 	ill_t *ill_v4;
14304 	ill_t *ill_v6;
14305 	ipif_t *ipif;
14306 
14307 	ill_v4 = ill->ill_phyint->phyint_illv4;
14308 	ill_v6 = ill->ill_phyint->phyint_illv6;
14309 
14310 	if (ill_v4 != NULL) {
14311 		mutex_enter(&ill_v4->ill_lock);
14312 		for (ipif = ill_v4->ill_ipif; ipif != NULL;
14313 		    ipif = ipif->ipif_next) {
14314 			IPIF_UNMARK_MOVING(ipif);
14315 		}
14316 		ill_v4->ill_up_ipifs = B_FALSE;
14317 		mutex_exit(&ill_v4->ill_lock);
14318 	}
14319 
14320 	if (ill_v6 != NULL) {
14321 		mutex_enter(&ill_v6->ill_lock);
14322 		for (ipif = ill_v6->ill_ipif; ipif != NULL;
14323 		    ipif = ipif->ipif_next) {
14324 			IPIF_UNMARK_MOVING(ipif);
14325 		}
14326 		ill_v6->ill_up_ipifs = B_FALSE;
14327 		mutex_exit(&ill_v6->ill_lock);
14328 	}
14329 }
14330 /*
14331  * This function is called when an ill has had a change in its group status
14332  * to bring up all the ipifs that were up before the change.
14333  */
14334 int
14335 ill_up_ipifs(ill_t *ill, queue_t *q, mblk_t *mp)
14336 {
14337 	ipif_t *ipif;
14338 	ill_t *ill_v4;
14339 	ill_t *ill_v6;
14340 	ill_t *from_ill;
14341 	int err = 0;
14342 
14343 
14344 	ASSERT(IAM_WRITER_ILL(ill));
14345 
14346 	/*
14347 	 * Except for ipif_state_flags and ill_state_flags the other
14348 	 * fields of the ipif/ill that are modified below are protected
14349 	 * implicitly since we are a writer. We would have tried to down
14350 	 * even an ipif that was already down, in ill_down_ipifs. So we
14351 	 * just blindly clear the IPIF_CHANGING flag here on all ipifs.
14352 	 */
14353 	ill_v4 = ill->ill_phyint->phyint_illv4;
14354 	ill_v6 = ill->ill_phyint->phyint_illv6;
14355 	if (ill_v4 != NULL) {
14356 		ill_v4->ill_up_ipifs = B_TRUE;
14357 		for (ipif = ill_v4->ill_ipif; ipif != NULL;
14358 		    ipif = ipif->ipif_next) {
14359 			mutex_enter(&ill_v4->ill_lock);
14360 			ipif->ipif_state_flags &= ~IPIF_CHANGING;
14361 			IPIF_UNMARK_MOVING(ipif);
14362 			mutex_exit(&ill_v4->ill_lock);
14363 			if (ipif->ipif_was_up) {
14364 				if (!(ipif->ipif_flags & IPIF_UP))
14365 					err = ipif_up(ipif, q, mp);
14366 				ipif->ipif_was_up = B_FALSE;
14367 				if (err != 0) {
14368 					/*
14369 					 * Can there be any other error ?
14370 					 */
14371 					ASSERT(err == EINPROGRESS);
14372 					return (err);
14373 				}
14374 			}
14375 		}
14376 		mutex_enter(&ill_v4->ill_lock);
14377 		ill_v4->ill_state_flags &= ~ILL_CHANGING;
14378 		mutex_exit(&ill_v4->ill_lock);
14379 		ill_v4->ill_up_ipifs = B_FALSE;
14380 		if (ill_v4->ill_move_in_progress) {
14381 			ASSERT(ill_v4->ill_move_peer != NULL);
14382 			ill_v4->ill_move_in_progress = B_FALSE;
14383 			from_ill = ill_v4->ill_move_peer;
14384 			from_ill->ill_move_in_progress = B_FALSE;
14385 			from_ill->ill_move_peer = NULL;
14386 			mutex_enter(&from_ill->ill_lock);
14387 			from_ill->ill_state_flags &= ~ILL_CHANGING;
14388 			mutex_exit(&from_ill->ill_lock);
14389 			if (ill_v6 == NULL) {
14390 				if (from_ill->ill_phyint->phyint_flags &
14391 				    PHYI_STANDBY) {
14392 					phyint_inactive(from_ill->ill_phyint);
14393 				}
14394 				if (ill_v4->ill_phyint->phyint_flags &
14395 				    PHYI_STANDBY) {
14396 					phyint_inactive(ill_v4->ill_phyint);
14397 				}
14398 			}
14399 			ill_v4->ill_move_peer = NULL;
14400 		}
14401 	}
14402 
14403 	if (ill_v6 != NULL) {
14404 		ill_v6->ill_up_ipifs = B_TRUE;
14405 		for (ipif = ill_v6->ill_ipif; ipif != NULL;
14406 		    ipif = ipif->ipif_next) {
14407 			mutex_enter(&ill_v6->ill_lock);
14408 			ipif->ipif_state_flags &= ~IPIF_CHANGING;
14409 			IPIF_UNMARK_MOVING(ipif);
14410 			mutex_exit(&ill_v6->ill_lock);
14411 			if (ipif->ipif_was_up) {
14412 				if (!(ipif->ipif_flags & IPIF_UP))
14413 					err = ipif_up(ipif, q, mp);
14414 				ipif->ipif_was_up = B_FALSE;
14415 				if (err != 0) {
14416 					/*
14417 					 * Can there be any other error ?
14418 					 */
14419 					ASSERT(err == EINPROGRESS);
14420 					return (err);
14421 				}
14422 			}
14423 		}
14424 		mutex_enter(&ill_v6->ill_lock);
14425 		ill_v6->ill_state_flags &= ~ILL_CHANGING;
14426 		mutex_exit(&ill_v6->ill_lock);
14427 		ill_v6->ill_up_ipifs = B_FALSE;
14428 		if (ill_v6->ill_move_in_progress) {
14429 			ASSERT(ill_v6->ill_move_peer != NULL);
14430 			ill_v6->ill_move_in_progress = B_FALSE;
14431 			from_ill = ill_v6->ill_move_peer;
14432 			from_ill->ill_move_in_progress = B_FALSE;
14433 			from_ill->ill_move_peer = NULL;
14434 			mutex_enter(&from_ill->ill_lock);
14435 			from_ill->ill_state_flags &= ~ILL_CHANGING;
14436 			mutex_exit(&from_ill->ill_lock);
14437 			if (from_ill->ill_phyint->phyint_flags & PHYI_STANDBY) {
14438 				phyint_inactive(from_ill->ill_phyint);
14439 			}
14440 			if (ill_v6->ill_phyint->phyint_flags & PHYI_STANDBY) {
14441 				phyint_inactive(ill_v6->ill_phyint);
14442 			}
14443 			ill_v6->ill_move_peer = NULL;
14444 		}
14445 	}
14446 	return (0);
14447 }
14448 
14449 /*
14450  * bring down all the approriate ipifs.
14451  */
14452 /* ARGSUSED */
14453 static void
14454 ill_down_ipifs(ill_t *ill, mblk_t *mp, int index, boolean_t chk_nofailover)
14455 {
14456 	ipif_t *ipif;
14457 
14458 	ASSERT(IAM_WRITER_ILL(ill));
14459 
14460 	/*
14461 	 * Except for ipif_state_flags the other fields of the ipif/ill that
14462 	 * are modified below are protected implicitly since we are a writer
14463 	 */
14464 	for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) {
14465 		if (chk_nofailover && (ipif->ipif_flags & IPIF_NOFAILOVER))
14466 			continue;
14467 		if (index == 0 || index == ipif->ipif_orig_ifindex) {
14468 			/*
14469 			 * We go through the ipif_down logic even if the ipif
14470 			 * is already down, since routes can be added based
14471 			 * on down ipifs. Going through ipif_down once again
14472 			 * will delete any IREs created based on these routes.
14473 			 */
14474 			if (ipif->ipif_flags & IPIF_UP)
14475 				ipif->ipif_was_up = B_TRUE;
14476 			/*
14477 			 * If called with chk_nofailover true ipif is moving.
14478 			 */
14479 			mutex_enter(&ill->ill_lock);
14480 			if (chk_nofailover) {
14481 				ipif->ipif_state_flags |=
14482 				    IPIF_MOVING | IPIF_CHANGING;
14483 			} else {
14484 				ipif->ipif_state_flags |= IPIF_CHANGING;
14485 			}
14486 			mutex_exit(&ill->ill_lock);
14487 			/*
14488 			 * Need to re-create net/subnet bcast ires if
14489 			 * they are dependent on ipif.
14490 			 */
14491 			if (!ipif->ipif_isv6)
14492 				ipif_check_bcast_ires(ipif);
14493 			(void) ipif_logical_down(ipif, NULL, NULL);
14494 			ipif_non_duplicate(ipif);
14495 			ipif_down_tail(ipif);
14496 		}
14497 	}
14498 }
14499 
14500 #define	IPSQ_INC_REF(ipsq, ipst)	{			\
14501 	ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock));		\
14502 	(ipsq)->ipsq_refs++;				\
14503 }
14504 
14505 #define	IPSQ_DEC_REF(ipsq, ipst)	{			\
14506 	ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock));		\
14507 	(ipsq)->ipsq_refs--;				\
14508 	if ((ipsq)->ipsq_refs == 0)				\
14509 		(ipsq)->ipsq_name[0] = '\0'; 		\
14510 }
14511 
14512 /*
14513  * Change the ipsq of all the ill's whose current ipsq is 'cur_ipsq' to
14514  * new_ipsq.
14515  */
14516 static void
14517 ill_merge_ipsq(ipsq_t *cur_ipsq, ipsq_t *new_ipsq, ip_stack_t *ipst)
14518 {
14519 	phyint_t *phyint;
14520 	phyint_t *next_phyint;
14521 
14522 	/*
14523 	 * To change the ipsq of an ill, we need to hold the ill_g_lock as
14524 	 * writer and the ill_lock of the ill in question. Also the dest
14525 	 * ipsq can't vanish while we hold the ill_g_lock as writer.
14526 	 */
14527 	ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock));
14528 
14529 	phyint = cur_ipsq->ipsq_phyint_list;
14530 	cur_ipsq->ipsq_phyint_list = NULL;
14531 	while (phyint != NULL) {
14532 		next_phyint = phyint->phyint_ipsq_next;
14533 		IPSQ_DEC_REF(cur_ipsq, ipst);
14534 		phyint->phyint_ipsq_next = new_ipsq->ipsq_phyint_list;
14535 		new_ipsq->ipsq_phyint_list = phyint;
14536 		IPSQ_INC_REF(new_ipsq, ipst);
14537 		phyint->phyint_ipsq = new_ipsq;
14538 		phyint = next_phyint;
14539 	}
14540 }
14541 
14542 #define	SPLIT_SUCCESS		0
14543 #define	SPLIT_NOT_NEEDED	1
14544 #define	SPLIT_FAILED		2
14545 
14546 int
14547 ill_split_to_grp_ipsq(phyint_t *phyint, ipsq_t *cur_ipsq, boolean_t need_retry,
14548     ip_stack_t *ipst)
14549 {
14550 	ipsq_t *newipsq = NULL;
14551 
14552 	/*
14553 	 * Assertions denote pre-requisites for changing the ipsq of
14554 	 * a phyint
14555 	 */
14556 	ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock));
14557 	/*
14558 	 * <ill-phyint> assocs can't change while ill_g_lock
14559 	 * is held as writer. See ill_phyint_reinit()
14560 	 */
14561 	ASSERT(phyint->phyint_illv4 == NULL ||
14562 	    MUTEX_HELD(&phyint->phyint_illv4->ill_lock));
14563 	ASSERT(phyint->phyint_illv6 == NULL ||
14564 	    MUTEX_HELD(&phyint->phyint_illv6->ill_lock));
14565 
14566 	if ((phyint->phyint_groupname_len !=
14567 	    (strlen(cur_ipsq->ipsq_name) + 1) ||
14568 	    bcmp(phyint->phyint_groupname, cur_ipsq->ipsq_name,
14569 	    phyint->phyint_groupname_len) != 0)) {
14570 		/*
14571 		 * Once we fail in creating a new ipsq due to memory shortage,
14572 		 * don't attempt to create new ipsq again, based on another
14573 		 * phyint, since we want all phyints belonging to an IPMP group
14574 		 * to be in the same ipsq even in the event of mem alloc fails.
14575 		 */
14576 		newipsq = ip_ipsq_lookup(phyint->phyint_groupname, !need_retry,
14577 		    cur_ipsq, ipst);
14578 		if (newipsq == NULL) {
14579 			/* Memory allocation failure */
14580 			return (SPLIT_FAILED);
14581 		} else {
14582 			/* ipsq_refs protected by ill_g_lock (writer) */
14583 			IPSQ_DEC_REF(cur_ipsq, ipst);
14584 			phyint->phyint_ipsq = newipsq;
14585 			phyint->phyint_ipsq_next = newipsq->ipsq_phyint_list;
14586 			newipsq->ipsq_phyint_list = phyint;
14587 			IPSQ_INC_REF(newipsq, ipst);
14588 			return (SPLIT_SUCCESS);
14589 		}
14590 	}
14591 	return (SPLIT_NOT_NEEDED);
14592 }
14593 
14594 /*
14595  * The ill locks of the phyint and the ill_g_lock (writer) must be held
14596  * to do this split
14597  */
14598 static int
14599 ill_split_to_own_ipsq(phyint_t *phyint, ipsq_t *cur_ipsq, ip_stack_t *ipst)
14600 {
14601 	ipsq_t *newipsq;
14602 
14603 	ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock));
14604 	/*
14605 	 * <ill-phyint> assocs can't change while ill_g_lock
14606 	 * is held as writer. See ill_phyint_reinit()
14607 	 */
14608 
14609 	ASSERT(phyint->phyint_illv4 == NULL ||
14610 	    MUTEX_HELD(&phyint->phyint_illv4->ill_lock));
14611 	ASSERT(phyint->phyint_illv6 == NULL ||
14612 	    MUTEX_HELD(&phyint->phyint_illv6->ill_lock));
14613 
14614 	if (!ipsq_init((phyint->phyint_illv4 != NULL) ?
14615 	    phyint->phyint_illv4: phyint->phyint_illv6)) {
14616 		/*
14617 		 * ipsq_init failed due to no memory
14618 		 * caller will use the same ipsq
14619 		 */
14620 		return (SPLIT_FAILED);
14621 	}
14622 
14623 	/* ipsq_ref is protected by ill_g_lock (writer) */
14624 	IPSQ_DEC_REF(cur_ipsq, ipst);
14625 
14626 	/*
14627 	 * This is a new ipsq that is unknown to the world.
14628 	 * So we don't need to hold ipsq_lock,
14629 	 */
14630 	newipsq = phyint->phyint_ipsq;
14631 	newipsq->ipsq_writer = NULL;
14632 	newipsq->ipsq_reentry_cnt--;
14633 	ASSERT(newipsq->ipsq_reentry_cnt == 0);
14634 #ifdef DEBUG
14635 	newipsq->ipsq_depth = 0;
14636 #endif
14637 
14638 	return (SPLIT_SUCCESS);
14639 }
14640 
14641 /*
14642  * Change the ipsq of all the ill's whose current ipsq is 'cur_ipsq' to
14643  * ipsq's representing their individual groups or themselves. Return
14644  * whether split needs to be retried again later.
14645  */
14646 static boolean_t
14647 ill_split_ipsq(ipsq_t *cur_ipsq)
14648 {
14649 	phyint_t *phyint;
14650 	phyint_t *next_phyint;
14651 	int	error;
14652 	boolean_t need_retry = B_FALSE;
14653 	ip_stack_t	*ipst = cur_ipsq->ipsq_ipst;
14654 
14655 	phyint = cur_ipsq->ipsq_phyint_list;
14656 	cur_ipsq->ipsq_phyint_list = NULL;
14657 	while (phyint != NULL) {
14658 		next_phyint = phyint->phyint_ipsq_next;
14659 		/*
14660 		 * 'created' will tell us whether the callee actually
14661 		 * created an ipsq. Lack of memory may force the callee
14662 		 * to return without creating an ipsq.
14663 		 */
14664 		if (phyint->phyint_groupname == NULL) {
14665 			error = ill_split_to_own_ipsq(phyint, cur_ipsq, ipst);
14666 		} else {
14667 			error = ill_split_to_grp_ipsq(phyint, cur_ipsq,
14668 			    need_retry, ipst);
14669 		}
14670 
14671 		switch (error) {
14672 		case SPLIT_FAILED:
14673 			need_retry = B_TRUE;
14674 			/* FALLTHRU */
14675 		case SPLIT_NOT_NEEDED:
14676 			/*
14677 			 * Keep it on the list.
14678 			 */
14679 			phyint->phyint_ipsq_next = cur_ipsq->ipsq_phyint_list;
14680 			cur_ipsq->ipsq_phyint_list = phyint;
14681 			break;
14682 		case SPLIT_SUCCESS:
14683 			break;
14684 		default:
14685 			ASSERT(0);
14686 		}
14687 
14688 		phyint = next_phyint;
14689 	}
14690 	return (need_retry);
14691 }
14692 
14693 /*
14694  * given an ipsq 'ipsq' lock all ills associated with this ipsq.
14695  * and return the ills in the list. This list will be
14696  * needed to unlock all the ills later on by the caller.
14697  * The <ill-ipsq> associations could change between the
14698  * lock and unlock. Hence the unlock can't traverse the
14699  * ipsq to get the list of ills.
14700  */
14701 static int
14702 ill_lock_ipsq_ills(ipsq_t *ipsq, ill_t **list, int list_max)
14703 {
14704 	int	cnt = 0;
14705 	phyint_t	*phyint;
14706 	ip_stack_t	*ipst = ipsq->ipsq_ipst;
14707 
14708 	/*
14709 	 * The caller holds ill_g_lock to ensure that the ill memberships
14710 	 * of the ipsq don't change
14711 	 */
14712 	ASSERT(RW_LOCK_HELD(&ipst->ips_ill_g_lock));
14713 
14714 	phyint = ipsq->ipsq_phyint_list;
14715 	while (phyint != NULL) {
14716 		if (phyint->phyint_illv4 != NULL) {
14717 			ASSERT(cnt < list_max);
14718 			list[cnt++] = phyint->phyint_illv4;
14719 		}
14720 		if (phyint->phyint_illv6 != NULL) {
14721 			ASSERT(cnt < list_max);
14722 			list[cnt++] = phyint->phyint_illv6;
14723 		}
14724 		phyint = phyint->phyint_ipsq_next;
14725 	}
14726 	ill_lock_ills(list, cnt);
14727 	return (cnt);
14728 }
14729 
14730 void
14731 ill_lock_ills(ill_t **list, int cnt)
14732 {
14733 	int	i;
14734 
14735 	if (cnt > 1) {
14736 		boolean_t try_again;
14737 		do {
14738 			try_again = B_FALSE;
14739 			for (i = 0; i < cnt - 1; i++) {
14740 				if (list[i] < list[i + 1]) {
14741 					ill_t	*tmp;
14742 
14743 					/* swap the elements */
14744 					tmp = list[i];
14745 					list[i] = list[i + 1];
14746 					list[i + 1] = tmp;
14747 					try_again = B_TRUE;
14748 				}
14749 			}
14750 		} while (try_again);
14751 	}
14752 
14753 	for (i = 0; i < cnt; i++) {
14754 		if (i == 0) {
14755 			if (list[i] != NULL)
14756 				mutex_enter(&list[i]->ill_lock);
14757 			else
14758 				return;
14759 		} else if ((list[i-1] != list[i]) && (list[i] != NULL)) {
14760 			mutex_enter(&list[i]->ill_lock);
14761 		}
14762 	}
14763 }
14764 
14765 void
14766 ill_unlock_ills(ill_t **list, int cnt)
14767 {
14768 	int	i;
14769 
14770 	for (i = 0; i < cnt; i++) {
14771 		if ((i == 0) && (list[i] != NULL)) {
14772 			mutex_exit(&list[i]->ill_lock);
14773 		} else if ((list[i-1] != list[i]) && (list[i] != NULL)) {
14774 			mutex_exit(&list[i]->ill_lock);
14775 		}
14776 	}
14777 }
14778 
14779 /*
14780  * Merge all the ills from 1 ipsq group into another ipsq group.
14781  * The source ipsq group is specified by the ipsq associated with
14782  * 'from_ill'. The destination ipsq group is specified by the ipsq
14783  * associated with 'to_ill' or 'groupname' respectively.
14784  * Note that ipsq itself does not have a reference count mechanism
14785  * and functions don't look up an ipsq and pass it around. Instead
14786  * functions pass around an ill or groupname, and the ipsq is looked
14787  * up from the ill or groupname and the required operation performed
14788  * atomically with the lookup on the ipsq.
14789  */
14790 static int
14791 ill_merge_groups(ill_t *from_ill, ill_t *to_ill, char *groupname, mblk_t *mp,
14792     queue_t *q)
14793 {
14794 	ipsq_t *old_ipsq;
14795 	ipsq_t *new_ipsq;
14796 	ill_t	**ill_list;
14797 	int	cnt;
14798 	size_t	ill_list_size;
14799 	boolean_t became_writer_on_new_sq = B_FALSE;
14800 	ip_stack_t	*ipst = from_ill->ill_ipst;
14801 
14802 	ASSERT(to_ill == NULL || ipst == to_ill->ill_ipst);
14803 	/* Exactly 1 of 'to_ill' and groupname can be specified. */
14804 	ASSERT((to_ill != NULL) ^ (groupname != NULL));
14805 
14806 	/*
14807 	 * Need to hold ill_g_lock as writer and also the ill_lock to
14808 	 * change the <ill-ipsq> assoc of an ill. Need to hold the
14809 	 * ipsq_lock to prevent new messages from landing on an ipsq.
14810 	 */
14811 	rw_enter(&ipst->ips_ill_g_lock, RW_WRITER);
14812 
14813 	old_ipsq = from_ill->ill_phyint->phyint_ipsq;
14814 	if (groupname != NULL)
14815 		new_ipsq = ip_ipsq_lookup(groupname, B_TRUE, NULL, ipst);
14816 	else {
14817 		new_ipsq = to_ill->ill_phyint->phyint_ipsq;
14818 	}
14819 
14820 	ASSERT(old_ipsq != NULL && new_ipsq != NULL);
14821 
14822 	/*
14823 	 * both groups are on the same ipsq.
14824 	 */
14825 	if (old_ipsq == new_ipsq) {
14826 		rw_exit(&ipst->ips_ill_g_lock);
14827 		return (0);
14828 	}
14829 
14830 	cnt = old_ipsq->ipsq_refs << 1;
14831 	ill_list_size = cnt * sizeof (ill_t *);
14832 	ill_list = kmem_zalloc(ill_list_size, KM_NOSLEEP);
14833 	if (ill_list == NULL) {
14834 		rw_exit(&ipst->ips_ill_g_lock);
14835 		return (ENOMEM);
14836 	}
14837 	cnt = ill_lock_ipsq_ills(old_ipsq, ill_list, cnt);
14838 
14839 	/* Need ipsq lock to enque messages on new ipsq or to become writer */
14840 	mutex_enter(&new_ipsq->ipsq_lock);
14841 	if ((new_ipsq->ipsq_writer == NULL &&
14842 	    new_ipsq->ipsq_current_ipif == NULL) ||
14843 	    (new_ipsq->ipsq_writer == curthread)) {
14844 		new_ipsq->ipsq_writer = curthread;
14845 		new_ipsq->ipsq_reentry_cnt++;
14846 		became_writer_on_new_sq = B_TRUE;
14847 	}
14848 
14849 	/*
14850 	 * We are holding ill_g_lock as writer and all the ill locks of
14851 	 * the old ipsq. So the old_ipsq can't be looked up, and hence no new
14852 	 * message can land up on the old ipsq even though we don't hold the
14853 	 * ipsq_lock of the old_ipsq. Now move all messages to the newipsq.
14854 	 */
14855 	ill_move_to_new_ipsq(old_ipsq, new_ipsq, mp, q);
14856 
14857 	/*
14858 	 * now change the ipsq of all ills in the 'old_ipsq' to 'new_ipsq'.
14859 	 * 'new_ipsq' has been looked up, and it can't change its <ill-ipsq>
14860 	 * assocs. till we release the ill_g_lock, and hence it can't vanish.
14861 	 */
14862 	ill_merge_ipsq(old_ipsq, new_ipsq, ipst);
14863 
14864 	/*
14865 	 * Mark the new ipsq as needing a split since it is currently
14866 	 * being shared by more than 1 IPMP group. The split will
14867 	 * occur at the end of ipsq_exit
14868 	 */
14869 	new_ipsq->ipsq_split = B_TRUE;
14870 
14871 	/* Now release all the locks */
14872 	mutex_exit(&new_ipsq->ipsq_lock);
14873 	ill_unlock_ills(ill_list, cnt);
14874 	rw_exit(&ipst->ips_ill_g_lock);
14875 
14876 	kmem_free(ill_list, ill_list_size);
14877 
14878 	/*
14879 	 * If we succeeded in becoming writer on the new ipsq, then
14880 	 * drain the new ipsq and start processing  all enqueued messages
14881 	 * including the current ioctl we are processing which is either
14882 	 * a set groupname or failover/failback.
14883 	 */
14884 	if (became_writer_on_new_sq)
14885 		ipsq_exit(new_ipsq, B_TRUE, B_TRUE);
14886 
14887 	/*
14888 	 * syncq has been changed and all the messages have been moved.
14889 	 */
14890 	mutex_enter(&old_ipsq->ipsq_lock);
14891 	old_ipsq->ipsq_current_ipif = NULL;
14892 	old_ipsq->ipsq_current_ioctl = 0;
14893 	mutex_exit(&old_ipsq->ipsq_lock);
14894 	return (EINPROGRESS);
14895 }
14896 
14897 /*
14898  * Delete and add the loopback copy and non-loopback copy of
14899  * the BROADCAST ire corresponding to ill and addr. Used to
14900  * group broadcast ires together when ill becomes part of
14901  * a group.
14902  *
14903  * This function is also called when ill is leaving the group
14904  * so that the ires belonging to the group gets re-grouped.
14905  */
14906 static void
14907 ill_bcast_delete_and_add(ill_t *ill, ipaddr_t addr)
14908 {
14909 	ire_t *ire, *nire, *nire_next, *ire_head = NULL;
14910 	ire_t **ire_ptpn = &ire_head;
14911 	ip_stack_t	*ipst = ill->ill_ipst;
14912 
14913 	/*
14914 	 * The loopback and non-loopback IREs are inserted in the order in which
14915 	 * they're found, on the basis that they are correctly ordered (loopback
14916 	 * first).
14917 	 */
14918 	for (;;) {
14919 		ire = ire_ctable_lookup(addr, 0, IRE_BROADCAST, ill->ill_ipif,
14920 		    ALL_ZONES, NULL, MATCH_IRE_TYPE | MATCH_IRE_ILL, ipst);
14921 		if (ire == NULL)
14922 			break;
14923 
14924 		/*
14925 		 * we are passing in KM_SLEEP because it is not easy to
14926 		 * go back to a sane state in case of memory failure.
14927 		 */
14928 		nire = kmem_cache_alloc(ire_cache, KM_SLEEP);
14929 		ASSERT(nire != NULL);
14930 		bzero(nire, sizeof (ire_t));
14931 		/*
14932 		 * Don't use ire_max_frag directly since we don't
14933 		 * hold on to 'ire' until we add the new ire 'nire' and
14934 		 * we don't want the new ire to have a dangling reference
14935 		 * to 'ire'. The ire_max_frag of a broadcast ire must
14936 		 * be in sync with the ipif_mtu of the associate ipif.
14937 		 * For eg. this happens as a result of SIOCSLIFNAME,
14938 		 * SIOCSLIFLNKINFO or a DL_NOTE_SDU_SIZE inititated by
14939 		 * the driver. A change in ire_max_frag triggered as
14940 		 * as a result of path mtu discovery, or due to an
14941 		 * IP_IOC_IRE_ADVISE_NOREPLY from the transport or due a
14942 		 * route change -mtu command does not apply to broadcast ires.
14943 		 *
14944 		 * XXX We need a recovery strategy here if ire_init fails
14945 		 */
14946 		if (ire_init(nire,
14947 		    (uchar_t *)&ire->ire_addr,
14948 		    (uchar_t *)&ire->ire_mask,
14949 		    (uchar_t *)&ire->ire_src_addr,
14950 		    (uchar_t *)&ire->ire_gateway_addr,
14951 		    ire->ire_stq == NULL ? &ip_loopback_mtu :
14952 		    &ire->ire_ipif->ipif_mtu,
14953 		    ire->ire_nce,
14954 		    ire->ire_rfq,
14955 		    ire->ire_stq,
14956 		    ire->ire_type,
14957 		    ire->ire_ipif,
14958 		    ire->ire_cmask,
14959 		    ire->ire_phandle,
14960 		    ire->ire_ihandle,
14961 		    ire->ire_flags,
14962 		    &ire->ire_uinfo,
14963 		    NULL,
14964 		    NULL,
14965 		    ipst) == NULL) {
14966 			cmn_err(CE_PANIC, "ire_init() failed");
14967 		}
14968 		ire_delete(ire);
14969 		ire_refrele(ire);
14970 
14971 		/*
14972 		 * The newly created IREs are inserted at the tail of the list
14973 		 * starting with ire_head. As we've just allocated them no one
14974 		 * knows about them so it's safe.
14975 		 */
14976 		*ire_ptpn = nire;
14977 		ire_ptpn = &nire->ire_next;
14978 	}
14979 
14980 	for (nire = ire_head; nire != NULL; nire = nire_next) {
14981 		int error;
14982 		ire_t *oire;
14983 		/* unlink the IRE from our list before calling ire_add() */
14984 		nire_next = nire->ire_next;
14985 		nire->ire_next = NULL;
14986 
14987 		/* ire_add adds the ire at the right place in the list */
14988 		oire = nire;
14989 		error = ire_add(&nire, NULL, NULL, NULL, B_FALSE);
14990 		ASSERT(error == 0);
14991 		ASSERT(oire == nire);
14992 		ire_refrele(nire);	/* Held in ire_add */
14993 	}
14994 }
14995 
14996 /*
14997  * This function is usually called when an ill is inserted in
14998  * a group and all the ipifs are already UP. As all the ipifs
14999  * are already UP, the broadcast ires have already been created
15000  * and been inserted. But, ire_add_v4 would not have grouped properly.
15001  * We need to re-group for the benefit of ip_wput_ire which
15002  * expects BROADCAST ires to be grouped properly to avoid sending
15003  * more than one copy of the broadcast packet per group.
15004  *
15005  * NOTE : We don't check for ill_ipif_up_count to be non-zero here
15006  *	  because when ipif_up_done ends up calling this, ires have
15007  *        already been added before illgrp_insert i.e before ill_group
15008  *	  has been initialized.
15009  */
15010 static void
15011 ill_group_bcast_for_xmit(ill_t *ill)
15012 {
15013 	ill_group_t *illgrp;
15014 	ipif_t *ipif;
15015 	ipaddr_t addr;
15016 	ipaddr_t net_mask;
15017 	ipaddr_t subnet_netmask;
15018 
15019 	illgrp = ill->ill_group;
15020 
15021 	/*
15022 	 * This function is called even when an ill is deleted from
15023 	 * the group. Hence, illgrp could be null.
15024 	 */
15025 	if (illgrp != NULL && illgrp->illgrp_ill_count == 1)
15026 		return;
15027 
15028 	/*
15029 	 * Delete all the BROADCAST ires matching this ill and add
15030 	 * them back. This time, ire_add_v4 should take care of
15031 	 * grouping them with others because ill is part of the
15032 	 * group.
15033 	 */
15034 	ill_bcast_delete_and_add(ill, 0);
15035 	ill_bcast_delete_and_add(ill, INADDR_BROADCAST);
15036 
15037 	for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) {
15038 
15039 		if ((ipif->ipif_lcl_addr != INADDR_ANY) &&
15040 		    !(ipif->ipif_flags & IPIF_NOLOCAL)) {
15041 			net_mask = ip_net_mask(ipif->ipif_lcl_addr);
15042 		} else {
15043 			net_mask = htonl(IN_CLASSA_NET);
15044 		}
15045 		addr = net_mask & ipif->ipif_subnet;
15046 		ill_bcast_delete_and_add(ill, addr);
15047 		ill_bcast_delete_and_add(ill, ~net_mask | addr);
15048 
15049 		subnet_netmask = ipif->ipif_net_mask;
15050 		addr = ipif->ipif_subnet;
15051 		ill_bcast_delete_and_add(ill, addr);
15052 		ill_bcast_delete_and_add(ill, ~subnet_netmask | addr);
15053 	}
15054 }
15055 
15056 /*
15057  * This function is called from illgrp_delete when ill is being deleted
15058  * from the group.
15059  *
15060  * As ill is not there in the group anymore, any address belonging
15061  * to this ill should be cleared of IRE_MARK_NORECV.
15062  */
15063 static void
15064 ill_clear_bcast_mark(ill_t *ill, ipaddr_t addr)
15065 {
15066 	ire_t *ire;
15067 	irb_t *irb;
15068 	ip_stack_t	*ipst = ill->ill_ipst;
15069 
15070 	ASSERT(ill->ill_group == NULL);
15071 
15072 	ire = ire_ctable_lookup(addr, 0, IRE_BROADCAST, ill->ill_ipif,
15073 	    ALL_ZONES, NULL, MATCH_IRE_TYPE | MATCH_IRE_ILL, ipst);
15074 
15075 	if (ire != NULL) {
15076 		/*
15077 		 * IPMP and plumbing operations are serialized on the ipsq, so
15078 		 * no one will insert or delete a broadcast ire under our feet.
15079 		 */
15080 		irb = ire->ire_bucket;
15081 		rw_enter(&irb->irb_lock, RW_READER);
15082 		ire_refrele(ire);
15083 
15084 		for (; ire != NULL; ire = ire->ire_next) {
15085 			if (ire->ire_addr != addr)
15086 				break;
15087 			if (ire_to_ill(ire) != ill)
15088 				continue;
15089 
15090 			ASSERT(!(ire->ire_marks & IRE_MARK_CONDEMNED));
15091 			ire->ire_marks &= ~IRE_MARK_NORECV;
15092 		}
15093 		rw_exit(&irb->irb_lock);
15094 	}
15095 }
15096 
15097 /*
15098  * This function must be called only after the broadcast ires
15099  * have been grouped together. For a given address addr, nominate
15100  * only one of the ires whose interface is not FAILED or OFFLINE.
15101  *
15102  * This is also called when an ipif goes down, so that we can nominate
15103  * a different ire with the same address for receiving.
15104  */
15105 static void
15106 ill_mark_bcast(ill_group_t *illgrp, ipaddr_t addr, ip_stack_t *ipst)
15107 {
15108 	irb_t *irb;
15109 	ire_t *ire;
15110 	ire_t *ire1;
15111 	ire_t *save_ire;
15112 	ire_t **irep = NULL;
15113 	boolean_t first = B_TRUE;
15114 	ire_t *clear_ire = NULL;
15115 	ire_t *start_ire = NULL;
15116 	ire_t	*new_lb_ire;
15117 	ire_t	*new_nlb_ire;
15118 	boolean_t new_lb_ire_used = B_FALSE;
15119 	boolean_t new_nlb_ire_used = B_FALSE;
15120 	uint64_t match_flags;
15121 	uint64_t phyi_flags;
15122 	boolean_t fallback = B_FALSE;
15123 	uint_t	max_frag;
15124 
15125 	ire = ire_ctable_lookup(addr, 0, IRE_BROADCAST, NULL, ALL_ZONES,
15126 	    NULL, MATCH_IRE_TYPE, ipst);
15127 	/*
15128 	 * We may not be able to find some ires if a previous
15129 	 * ire_create failed. This happens when an ipif goes
15130 	 * down and we are unable to create BROADCAST ires due
15131 	 * to memory failure. Thus, we have to check for NULL
15132 	 * below. This should handle the case for LOOPBACK,
15133 	 * POINTOPOINT and interfaces with some POINTOPOINT
15134 	 * logicals for which there are no BROADCAST ires.
15135 	 */
15136 	if (ire == NULL)
15137 		return;
15138 	/*
15139 	 * Currently IRE_BROADCASTS are deleted when an ipif
15140 	 * goes down which runs exclusively. Thus, setting
15141 	 * IRE_MARK_RCVD should not race with ire_delete marking
15142 	 * IRE_MARK_CONDEMNED. We grab the lock below just to
15143 	 * be consistent with other parts of the code that walks
15144 	 * a given bucket.
15145 	 */
15146 	save_ire = ire;
15147 	irb = ire->ire_bucket;
15148 	new_lb_ire = kmem_cache_alloc(ire_cache, KM_NOSLEEP);
15149 	if (new_lb_ire == NULL) {
15150 		ire_refrele(ire);
15151 		return;
15152 	}
15153 	new_nlb_ire = kmem_cache_alloc(ire_cache, KM_NOSLEEP);
15154 	if (new_nlb_ire == NULL) {
15155 		ire_refrele(ire);
15156 		kmem_cache_free(ire_cache, new_lb_ire);
15157 		return;
15158 	}
15159 	IRB_REFHOLD(irb);
15160 	rw_enter(&irb->irb_lock, RW_WRITER);
15161 	/*
15162 	 * Get to the first ire matching the address and the
15163 	 * group. If the address does not match we are done
15164 	 * as we could not find the IRE. If the address matches
15165 	 * we should get to the first one matching the group.
15166 	 */
15167 	while (ire != NULL) {
15168 		if (ire->ire_addr != addr ||
15169 		    ire->ire_ipif->ipif_ill->ill_group == illgrp) {
15170 			break;
15171 		}
15172 		ire = ire->ire_next;
15173 	}
15174 	match_flags = PHYI_FAILED | PHYI_INACTIVE;
15175 	start_ire = ire;
15176 redo:
15177 	while (ire != NULL && ire->ire_addr == addr &&
15178 	    ire->ire_ipif->ipif_ill->ill_group == illgrp) {
15179 		/*
15180 		 * The first ire for any address within a group
15181 		 * should always be the one with IRE_MARK_NORECV cleared
15182 		 * so that ip_wput_ire can avoid searching for one.
15183 		 * Note down the insertion point which will be used
15184 		 * later.
15185 		 */
15186 		if (first && (irep == NULL))
15187 			irep = ire->ire_ptpn;
15188 		/*
15189 		 * PHYI_FAILED is set when the interface fails.
15190 		 * This interface might have become good, but the
15191 		 * daemon has not yet detected. We should still
15192 		 * not receive on this. PHYI_OFFLINE should never
15193 		 * be picked as this has been offlined and soon
15194 		 * be removed.
15195 		 */
15196 		phyi_flags = ire->ire_ipif->ipif_ill->ill_phyint->phyint_flags;
15197 		if (phyi_flags & PHYI_OFFLINE) {
15198 			ire->ire_marks |= IRE_MARK_NORECV;
15199 			ire = ire->ire_next;
15200 			continue;
15201 		}
15202 		if (phyi_flags & match_flags) {
15203 			ire->ire_marks |= IRE_MARK_NORECV;
15204 			ire = ire->ire_next;
15205 			if ((phyi_flags & (PHYI_FAILED | PHYI_INACTIVE)) ==
15206 			    PHYI_INACTIVE) {
15207 				fallback = B_TRUE;
15208 			}
15209 			continue;
15210 		}
15211 		if (first) {
15212 			/*
15213 			 * We will move this to the front of the list later
15214 			 * on.
15215 			 */
15216 			clear_ire = ire;
15217 			ire->ire_marks &= ~IRE_MARK_NORECV;
15218 		} else {
15219 			ire->ire_marks |= IRE_MARK_NORECV;
15220 		}
15221 		first = B_FALSE;
15222 		ire = ire->ire_next;
15223 	}
15224 	/*
15225 	 * If we never nominated anybody, try nominating at least
15226 	 * an INACTIVE, if we found one. Do it only once though.
15227 	 */
15228 	if (first && (match_flags == (PHYI_FAILED | PHYI_INACTIVE)) &&
15229 	    fallback) {
15230 		match_flags = PHYI_FAILED;
15231 		ire = start_ire;
15232 		irep = NULL;
15233 		goto redo;
15234 	}
15235 	ire_refrele(save_ire);
15236 
15237 	/*
15238 	 * irep non-NULL indicates that we entered the while loop
15239 	 * above. If clear_ire is at the insertion point, we don't
15240 	 * have to do anything. clear_ire will be NULL if all the
15241 	 * interfaces are failed.
15242 	 *
15243 	 * We cannot unlink and reinsert the ire at the right place
15244 	 * in the list since there can be other walkers of this bucket.
15245 	 * Instead we delete and recreate the ire
15246 	 */
15247 	if (clear_ire != NULL && irep != NULL && *irep != clear_ire) {
15248 		ire_t *clear_ire_stq = NULL;
15249 
15250 		bzero(new_lb_ire, sizeof (ire_t));
15251 		/* XXX We need a recovery strategy here. */
15252 		if (ire_init(new_lb_ire,
15253 		    (uchar_t *)&clear_ire->ire_addr,
15254 		    (uchar_t *)&clear_ire->ire_mask,
15255 		    (uchar_t *)&clear_ire->ire_src_addr,
15256 		    (uchar_t *)&clear_ire->ire_gateway_addr,
15257 		    &clear_ire->ire_max_frag,
15258 		    NULL, /* let ire_nce_init derive the resolver info */
15259 		    clear_ire->ire_rfq,
15260 		    clear_ire->ire_stq,
15261 		    clear_ire->ire_type,
15262 		    clear_ire->ire_ipif,
15263 		    clear_ire->ire_cmask,
15264 		    clear_ire->ire_phandle,
15265 		    clear_ire->ire_ihandle,
15266 		    clear_ire->ire_flags,
15267 		    &clear_ire->ire_uinfo,
15268 		    NULL,
15269 		    NULL,
15270 		    ipst) == NULL)
15271 			cmn_err(CE_PANIC, "ire_init() failed");
15272 		if (clear_ire->ire_stq == NULL) {
15273 			ire_t *ire_next = clear_ire->ire_next;
15274 			if (ire_next != NULL &&
15275 			    ire_next->ire_stq != NULL &&
15276 			    ire_next->ire_addr == clear_ire->ire_addr &&
15277 			    ire_next->ire_ipif->ipif_ill ==
15278 			    clear_ire->ire_ipif->ipif_ill) {
15279 				clear_ire_stq = ire_next;
15280 
15281 				bzero(new_nlb_ire, sizeof (ire_t));
15282 				/* XXX We need a recovery strategy here. */
15283 				if (ire_init(new_nlb_ire,
15284 				    (uchar_t *)&clear_ire_stq->ire_addr,
15285 				    (uchar_t *)&clear_ire_stq->ire_mask,
15286 				    (uchar_t *)&clear_ire_stq->ire_src_addr,
15287 				    (uchar_t *)&clear_ire_stq->ire_gateway_addr,
15288 				    &clear_ire_stq->ire_max_frag,
15289 				    NULL,
15290 				    clear_ire_stq->ire_rfq,
15291 				    clear_ire_stq->ire_stq,
15292 				    clear_ire_stq->ire_type,
15293 				    clear_ire_stq->ire_ipif,
15294 				    clear_ire_stq->ire_cmask,
15295 				    clear_ire_stq->ire_phandle,
15296 				    clear_ire_stq->ire_ihandle,
15297 				    clear_ire_stq->ire_flags,
15298 				    &clear_ire_stq->ire_uinfo,
15299 				    NULL,
15300 				    NULL,
15301 				    ipst) == NULL)
15302 					cmn_err(CE_PANIC, "ire_init() failed");
15303 			}
15304 		}
15305 
15306 		/*
15307 		 * Delete the ire. We can't call ire_delete() since
15308 		 * we are holding the bucket lock. We can't release the
15309 		 * bucket lock since we can't allow irep to change. So just
15310 		 * mark it CONDEMNED. The IRB_REFRELE will delete the
15311 		 * ire from the list and do the refrele.
15312 		 */
15313 		clear_ire->ire_marks |= IRE_MARK_CONDEMNED;
15314 		irb->irb_marks |= IRB_MARK_CONDEMNED;
15315 
15316 		if (clear_ire_stq != NULL && clear_ire_stq->ire_nce != NULL) {
15317 			nce_fastpath_list_delete(clear_ire_stq->ire_nce);
15318 			clear_ire_stq->ire_marks |= IRE_MARK_CONDEMNED;
15319 		}
15320 
15321 		/*
15322 		 * Also take care of otherfields like ib/ob pkt count
15323 		 * etc. Need to dup them. ditto in ill_bcast_delete_and_add
15324 		 */
15325 
15326 		/* Set the max_frag before adding the ire */
15327 		max_frag = *new_lb_ire->ire_max_fragp;
15328 		new_lb_ire->ire_max_fragp = NULL;
15329 		new_lb_ire->ire_max_frag = max_frag;
15330 
15331 		/* Add the new ire's. Insert at *irep */
15332 		new_lb_ire->ire_bucket = clear_ire->ire_bucket;
15333 		ire1 = *irep;
15334 		if (ire1 != NULL)
15335 			ire1->ire_ptpn = &new_lb_ire->ire_next;
15336 		new_lb_ire->ire_next = ire1;
15337 		/* Link the new one in. */
15338 		new_lb_ire->ire_ptpn = irep;
15339 		membar_producer();
15340 		*irep = new_lb_ire;
15341 		new_lb_ire_used = B_TRUE;
15342 		BUMP_IRE_STATS(ipst->ips_ire_stats_v4, ire_stats_inserted);
15343 		new_lb_ire->ire_bucket->irb_ire_cnt++;
15344 		new_lb_ire->ire_ipif->ipif_ire_cnt++;
15345 
15346 		if (clear_ire_stq != NULL) {
15347 			/* Set the max_frag before adding the ire */
15348 			max_frag = *new_nlb_ire->ire_max_fragp;
15349 			new_nlb_ire->ire_max_fragp = NULL;
15350 			new_nlb_ire->ire_max_frag = max_frag;
15351 
15352 			new_nlb_ire->ire_bucket = clear_ire->ire_bucket;
15353 			irep = &new_lb_ire->ire_next;
15354 			/* Add the new ire. Insert at *irep */
15355 			ire1 = *irep;
15356 			if (ire1 != NULL)
15357 				ire1->ire_ptpn = &new_nlb_ire->ire_next;
15358 			new_nlb_ire->ire_next = ire1;
15359 			/* Link the new one in. */
15360 			new_nlb_ire->ire_ptpn = irep;
15361 			membar_producer();
15362 			*irep = new_nlb_ire;
15363 			new_nlb_ire_used = B_TRUE;
15364 			BUMP_IRE_STATS(ipst->ips_ire_stats_v4,
15365 			    ire_stats_inserted);
15366 			new_nlb_ire->ire_bucket->irb_ire_cnt++;
15367 			new_nlb_ire->ire_ipif->ipif_ire_cnt++;
15368 			((ill_t *)new_nlb_ire->ire_stq->q_ptr)->ill_ire_cnt++;
15369 		}
15370 	}
15371 	rw_exit(&irb->irb_lock);
15372 	if (!new_lb_ire_used)
15373 		kmem_cache_free(ire_cache, new_lb_ire);
15374 	if (!new_nlb_ire_used)
15375 		kmem_cache_free(ire_cache, new_nlb_ire);
15376 	IRB_REFRELE(irb);
15377 }
15378 
15379 /*
15380  * Whenever an ipif goes down we have to renominate a different
15381  * broadcast ire to receive. Whenever an ipif comes up, we need
15382  * to make sure that we have only one nominated to receive.
15383  */
15384 static void
15385 ipif_renominate_bcast(ipif_t *ipif)
15386 {
15387 	ill_t *ill = ipif->ipif_ill;
15388 	ipaddr_t subnet_addr;
15389 	ipaddr_t net_addr;
15390 	ipaddr_t net_mask = 0;
15391 	ipaddr_t subnet_netmask;
15392 	ipaddr_t addr;
15393 	ill_group_t *illgrp;
15394 	ip_stack_t	*ipst = ill->ill_ipst;
15395 
15396 	illgrp = ill->ill_group;
15397 	/*
15398 	 * If this is the last ipif going down, it might take
15399 	 * the ill out of the group. In that case ipif_down ->
15400 	 * illgrp_delete takes care of doing the nomination.
15401 	 * ipif_down does not call for this case.
15402 	 */
15403 	ASSERT(illgrp != NULL);
15404 
15405 	/* There could not have been any ires associated with this */
15406 	if (ipif->ipif_subnet == 0)
15407 		return;
15408 
15409 	ill_mark_bcast(illgrp, 0, ipst);
15410 	ill_mark_bcast(illgrp, INADDR_BROADCAST, ipst);
15411 
15412 	if ((ipif->ipif_lcl_addr != INADDR_ANY) &&
15413 	    !(ipif->ipif_flags & IPIF_NOLOCAL)) {
15414 		net_mask = ip_net_mask(ipif->ipif_lcl_addr);
15415 	} else {
15416 		net_mask = htonl(IN_CLASSA_NET);
15417 	}
15418 	addr = net_mask & ipif->ipif_subnet;
15419 	ill_mark_bcast(illgrp, addr, ipst);
15420 
15421 	net_addr = ~net_mask | addr;
15422 	ill_mark_bcast(illgrp, net_addr, ipst);
15423 
15424 	subnet_netmask = ipif->ipif_net_mask;
15425 	addr = ipif->ipif_subnet;
15426 	ill_mark_bcast(illgrp, addr, ipst);
15427 
15428 	subnet_addr = ~subnet_netmask | addr;
15429 	ill_mark_bcast(illgrp, subnet_addr, ipst);
15430 }
15431 
15432 /*
15433  * Whenever we form or delete ill groups, we need to nominate one set of
15434  * BROADCAST ires for receiving in the group.
15435  *
15436  * 1) When ipif_up_done -> ilgrp_insert calls this function, BROADCAST ires
15437  *    have been added, but ill_ipif_up_count is 0. Thus, we don't assert
15438  *    for ill_ipif_up_count to be non-zero. This is the only case where
15439  *    ill_ipif_up_count is zero and we would still find the ires.
15440  *
15441  * 2) ip_sioctl_group_name/ifgrp_insert calls this function, at least one
15442  *    ipif is UP and we just have to do the nomination.
15443  *
15444  * 3) When ill_handoff_responsibility calls us, some ill has been removed
15445  *    from the group. So, we have to do the nomination.
15446  *
15447  * Because of (3), there could be just one ill in the group. But we have
15448  * to nominate still as IRE_MARK_NORCV may have been marked on this.
15449  * Thus, this function does not optimize when there is only one ill as
15450  * it is not correct for (3).
15451  */
15452 static void
15453 ill_nominate_bcast_rcv(ill_group_t *illgrp)
15454 {
15455 	ill_t *ill;
15456 	ipif_t *ipif;
15457 	ipaddr_t subnet_addr;
15458 	ipaddr_t prev_subnet_addr = 0;
15459 	ipaddr_t net_addr;
15460 	ipaddr_t prev_net_addr = 0;
15461 	ipaddr_t net_mask = 0;
15462 	ipaddr_t subnet_netmask;
15463 	ipaddr_t addr;
15464 	ip_stack_t	*ipst;
15465 
15466 	/*
15467 	 * When the last memeber is leaving, there is nothing to
15468 	 * nominate.
15469 	 */
15470 	if (illgrp->illgrp_ill_count == 0) {
15471 		ASSERT(illgrp->illgrp_ill == NULL);
15472 		return;
15473 	}
15474 
15475 	ill = illgrp->illgrp_ill;
15476 	ASSERT(!ill->ill_isv6);
15477 	ipst = ill->ill_ipst;
15478 	/*
15479 	 * We assume that ires with same address and belonging to the
15480 	 * same group, has been grouped together. Nominating a *single*
15481 	 * ill in the group for sending and receiving broadcast is done
15482 	 * by making sure that the first BROADCAST ire (which will be
15483 	 * the one returned by ire_ctable_lookup for ip_rput and the
15484 	 * one that will be used in ip_wput_ire) will be the one that
15485 	 * will not have IRE_MARK_NORECV set.
15486 	 *
15487 	 * 1) ip_rput checks and discards packets received on ires marked
15488 	 *    with IRE_MARK_NORECV. Thus, we don't send up duplicate
15489 	 *    broadcast packets. We need to clear IRE_MARK_NORECV on the
15490 	 *    first ire in the group for every broadcast address in the group.
15491 	 *    ip_rput will accept packets only on the first ire i.e only
15492 	 *    one copy of the ill.
15493 	 *
15494 	 * 2) ip_wput_ire needs to send out just one copy of the broadcast
15495 	 *    packet for the whole group. It needs to send out on the ill
15496 	 *    whose ire has not been marked with IRE_MARK_NORECV. If it sends
15497 	 *    on the one marked with IRE_MARK_NORECV, ip_rput will accept
15498 	 *    the copy echoed back on other port where the ire is not marked
15499 	 *    with IRE_MARK_NORECV.
15500 	 *
15501 	 * Note that we just need to have the first IRE either loopback or
15502 	 * non-loopback (either of them may not exist if ire_create failed
15503 	 * during ipif_down) with IRE_MARK_NORECV not set. ip_rput will
15504 	 * always hit the first one and hence will always accept one copy.
15505 	 *
15506 	 * We have a broadcast ire per ill for all the unique prefixes
15507 	 * hosted on that ill. As we don't have a way of knowing the
15508 	 * unique prefixes on a given ill and hence in the whole group,
15509 	 * we just call ill_mark_bcast on all the prefixes that exist
15510 	 * in the group. For the common case of one prefix, the code
15511 	 * below optimizes by remebering the last address used for
15512 	 * markng. In the case of multiple prefixes, this will still
15513 	 * optimize depending the order of prefixes.
15514 	 *
15515 	 * The only unique address across the whole group is 0.0.0.0 and
15516 	 * 255.255.255.255 and thus we call only once. ill_mark_bcast enables
15517 	 * the first ire in the bucket for receiving and disables the
15518 	 * others.
15519 	 */
15520 	ill_mark_bcast(illgrp, 0, ipst);
15521 	ill_mark_bcast(illgrp, INADDR_BROADCAST, ipst);
15522 	for (; ill != NULL; ill = ill->ill_group_next) {
15523 
15524 		for (ipif = ill->ill_ipif; ipif != NULL;
15525 		    ipif = ipif->ipif_next) {
15526 
15527 			if (!(ipif->ipif_flags & IPIF_UP) ||
15528 			    ipif->ipif_subnet == 0) {
15529 				continue;
15530 			}
15531 			if ((ipif->ipif_lcl_addr != INADDR_ANY) &&
15532 			    !(ipif->ipif_flags & IPIF_NOLOCAL)) {
15533 				net_mask = ip_net_mask(ipif->ipif_lcl_addr);
15534 			} else {
15535 				net_mask = htonl(IN_CLASSA_NET);
15536 			}
15537 			addr = net_mask & ipif->ipif_subnet;
15538 			if (prev_net_addr == 0 || prev_net_addr != addr) {
15539 				ill_mark_bcast(illgrp, addr, ipst);
15540 				net_addr = ~net_mask | addr;
15541 				ill_mark_bcast(illgrp, net_addr, ipst);
15542 			}
15543 			prev_net_addr = addr;
15544 
15545 			subnet_netmask = ipif->ipif_net_mask;
15546 			addr = ipif->ipif_subnet;
15547 			if (prev_subnet_addr == 0 ||
15548 			    prev_subnet_addr != addr) {
15549 				ill_mark_bcast(illgrp, addr, ipst);
15550 				subnet_addr = ~subnet_netmask | addr;
15551 				ill_mark_bcast(illgrp, subnet_addr, ipst);
15552 			}
15553 			prev_subnet_addr = addr;
15554 		}
15555 	}
15556 }
15557 
15558 /*
15559  * This function is called while forming ill groups.
15560  *
15561  * Currently, we handle only allmulti groups. We want to join
15562  * allmulti on only one of the ills in the groups. In future,
15563  * when we have link aggregation, we may have to join normal
15564  * multicast groups on multiple ills as switch does inbound load
15565  * balancing. Following are the functions that calls this
15566  * function :
15567  *
15568  * 1) ill_recover_multicast : Interface is coming back UP.
15569  *    When the first ipif comes back UP, ipif_up_done/ipif_up_done_v6
15570  *    will call ill_recover_multicast to recover all the multicast
15571  *    groups. We need to make sure that only one member is joined
15572  *    in the ill group.
15573  *
15574  * 2) ip_addmulti/ip_addmulti_v6 : ill groups has already been formed.
15575  *    Somebody is joining allmulti. We need to make sure that only one
15576  *    member is joined in the group.
15577  *
15578  * 3) illgrp_insert : If allmulti has already joined, we need to make
15579  *    sure that only one member is joined in the group.
15580  *
15581  * 4) ip_delmulti/ip_delmulti_v6 : Somebody in the group is leaving
15582  *    allmulti who we have nominated. We need to pick someother ill.
15583  *
15584  * 5) illgrp_delete : The ill we nominated is leaving the group,
15585  *    we need to pick a new ill to join the group.
15586  *
15587  * For (1), (2), (5) - we just have to check whether there is
15588  * a good ill joined in the group. If we could not find any ills
15589  * joined the group, we should join.
15590  *
15591  * For (4), the one that was nominated to receive, left the group.
15592  * There could be nobody joined in the group when this function is
15593  * called.
15594  *
15595  * For (3) - we need to explicitly check whether there are multiple
15596  * ills joined in the group.
15597  *
15598  * For simplicity, we don't differentiate any of the above cases. We
15599  * just leave the group if it is joined on any of them and join on
15600  * the first good ill.
15601  */
15602 int
15603 ill_nominate_mcast_rcv(ill_group_t *illgrp)
15604 {
15605 	ilm_t *ilm;
15606 	ill_t *ill;
15607 	ill_t *fallback_inactive_ill = NULL;
15608 	ill_t *fallback_failed_ill = NULL;
15609 	int ret = 0;
15610 
15611 	/*
15612 	 * Leave the allmulti on all the ills and start fresh.
15613 	 */
15614 	for (ill = illgrp->illgrp_ill; ill != NULL;
15615 	    ill = ill->ill_group_next) {
15616 		if (ill->ill_join_allmulti)
15617 			(void) ip_leave_allmulti(ill->ill_ipif);
15618 	}
15619 
15620 	/*
15621 	 * Choose a good ill. Fallback to inactive or failed if
15622 	 * none available. We need to fallback to FAILED in the
15623 	 * case where we have 2 interfaces in a group - where
15624 	 * one of them is failed and another is a good one and
15625 	 * the good one (not marked inactive) is leaving the group.
15626 	 */
15627 	ret = 0;
15628 	for (ill = illgrp->illgrp_ill; ill != NULL;
15629 	    ill = ill->ill_group_next) {
15630 		/* Never pick an offline interface */
15631 		if (ill->ill_phyint->phyint_flags & PHYI_OFFLINE)
15632 			continue;
15633 
15634 		if (ill->ill_phyint->phyint_flags & PHYI_FAILED) {
15635 			fallback_failed_ill = ill;
15636 			continue;
15637 		}
15638 		if (ill->ill_phyint->phyint_flags & PHYI_INACTIVE) {
15639 			fallback_inactive_ill = ill;
15640 			continue;
15641 		}
15642 		for (ilm = ill->ill_ilm; ilm != NULL; ilm = ilm->ilm_next) {
15643 			if (IN6_IS_ADDR_UNSPECIFIED(&ilm->ilm_v6addr)) {
15644 				ret = ip_join_allmulti(ill->ill_ipif);
15645 				/*
15646 				 * ip_join_allmulti can fail because of memory
15647 				 * failures. So, make sure we join at least
15648 				 * on one ill.
15649 				 */
15650 				if (ill->ill_join_allmulti)
15651 					return (0);
15652 			}
15653 		}
15654 	}
15655 	if (ret != 0) {
15656 		/*
15657 		 * If we tried nominating above and failed to do so,
15658 		 * return error. We might have tried multiple times.
15659 		 * But, return the latest error.
15660 		 */
15661 		return (ret);
15662 	}
15663 	if ((ill = fallback_inactive_ill) != NULL) {
15664 		for (ilm = ill->ill_ilm; ilm != NULL; ilm = ilm->ilm_next) {
15665 			if (IN6_IS_ADDR_UNSPECIFIED(&ilm->ilm_v6addr)) {
15666 				ret = ip_join_allmulti(ill->ill_ipif);
15667 				return (ret);
15668 			}
15669 		}
15670 	} else if ((ill = fallback_failed_ill) != NULL) {
15671 		for (ilm = ill->ill_ilm; ilm != NULL; ilm = ilm->ilm_next) {
15672 			if (IN6_IS_ADDR_UNSPECIFIED(&ilm->ilm_v6addr)) {
15673 				ret = ip_join_allmulti(ill->ill_ipif);
15674 				return (ret);
15675 			}
15676 		}
15677 	}
15678 	return (0);
15679 }
15680 
15681 /*
15682  * This function is called from illgrp_delete after it is
15683  * deleted from the group to reschedule responsibilities
15684  * to a different ill.
15685  */
15686 static void
15687 ill_handoff_responsibility(ill_t *ill, ill_group_t *illgrp)
15688 {
15689 	ilm_t	*ilm;
15690 	ipif_t	*ipif;
15691 	ipaddr_t subnet_addr;
15692 	ipaddr_t net_addr;
15693 	ipaddr_t net_mask = 0;
15694 	ipaddr_t subnet_netmask;
15695 	ipaddr_t addr;
15696 	ip_stack_t *ipst = ill->ill_ipst;
15697 
15698 	ASSERT(ill->ill_group == NULL);
15699 	/*
15700 	 * Broadcast Responsibility:
15701 	 *
15702 	 * 1. If this ill has been nominated for receiving broadcast
15703 	 * packets, we need to find a new one. Before we find a new
15704 	 * one, we need to re-group the ires that are part of this new
15705 	 * group (assumed by ill_nominate_bcast_rcv). We do this by
15706 	 * calling ill_group_bcast_for_xmit(ill) which will do the right
15707 	 * thing for us.
15708 	 *
15709 	 * 2. If this ill was not nominated for receiving broadcast
15710 	 * packets, we need to clear the IRE_MARK_NORECV flag
15711 	 * so that we continue to send up broadcast packets.
15712 	 */
15713 	if (!ill->ill_isv6) {
15714 		/*
15715 		 * Case 1 above : No optimization here. Just redo the
15716 		 * nomination.
15717 		 */
15718 		ill_group_bcast_for_xmit(ill);
15719 		ill_nominate_bcast_rcv(illgrp);
15720 
15721 		/*
15722 		 * Case 2 above : Lookup and clear IRE_MARK_NORECV.
15723 		 */
15724 		ill_clear_bcast_mark(ill, 0);
15725 		ill_clear_bcast_mark(ill, INADDR_BROADCAST);
15726 
15727 		for (ipif = ill->ill_ipif; ipif != NULL;
15728 		    ipif = ipif->ipif_next) {
15729 
15730 			if (!(ipif->ipif_flags & IPIF_UP) ||
15731 			    ipif->ipif_subnet == 0) {
15732 				continue;
15733 			}
15734 			if ((ipif->ipif_lcl_addr != INADDR_ANY) &&
15735 			    !(ipif->ipif_flags & IPIF_NOLOCAL)) {
15736 				net_mask = ip_net_mask(ipif->ipif_lcl_addr);
15737 			} else {
15738 				net_mask = htonl(IN_CLASSA_NET);
15739 			}
15740 			addr = net_mask & ipif->ipif_subnet;
15741 			ill_clear_bcast_mark(ill, addr);
15742 
15743 			net_addr = ~net_mask | addr;
15744 			ill_clear_bcast_mark(ill, net_addr);
15745 
15746 			subnet_netmask = ipif->ipif_net_mask;
15747 			addr = ipif->ipif_subnet;
15748 			ill_clear_bcast_mark(ill, addr);
15749 
15750 			subnet_addr = ~subnet_netmask | addr;
15751 			ill_clear_bcast_mark(ill, subnet_addr);
15752 		}
15753 	}
15754 
15755 	/*
15756 	 * Multicast Responsibility.
15757 	 *
15758 	 * If we have joined allmulti on this one, find a new member
15759 	 * in the group to join allmulti. As this ill is already part
15760 	 * of allmulti, we don't have to join on this one.
15761 	 *
15762 	 * If we have not joined allmulti on this one, there is no
15763 	 * responsibility to handoff. But we need to take new
15764 	 * responsibility i.e, join allmulti on this one if we need
15765 	 * to.
15766 	 */
15767 	if (ill->ill_join_allmulti) {
15768 		(void) ill_nominate_mcast_rcv(illgrp);
15769 	} else {
15770 		for (ilm = ill->ill_ilm; ilm != NULL; ilm = ilm->ilm_next) {
15771 			if (IN6_IS_ADDR_UNSPECIFIED(&ilm->ilm_v6addr)) {
15772 				(void) ip_join_allmulti(ill->ill_ipif);
15773 				break;
15774 			}
15775 		}
15776 	}
15777 
15778 	/*
15779 	 * We intentionally do the flushing of IRE_CACHES only matching
15780 	 * on the ill and not on groups. Note that we are already deleted
15781 	 * from the group.
15782 	 *
15783 	 * This will make sure that all IRE_CACHES whose stq is pointing
15784 	 * at ill_wq or ire_ipif->ipif_ill pointing at this ill will get
15785 	 * deleted and IRE_CACHES that are not pointing at this ill will
15786 	 * be left alone.
15787 	 */
15788 	if (ill->ill_isv6) {
15789 		ire_walk_ill_v6(MATCH_IRE_ILL | MATCH_IRE_TYPE,
15790 		    IRE_CACHE, illgrp_cache_delete, (char *)ill, ill);
15791 	} else {
15792 		ire_walk_ill_v4(MATCH_IRE_ILL | MATCH_IRE_TYPE,
15793 		    IRE_CACHE, illgrp_cache_delete, (char *)ill, ill);
15794 	}
15795 
15796 	/*
15797 	 * Some conn may have cached one of the IREs deleted above. By removing
15798 	 * the ire reference, we clean up the extra reference to the ill held in
15799 	 * ire->ire_stq.
15800 	 */
15801 	ipcl_walk(conn_cleanup_stale_ire, NULL, ipst);
15802 
15803 	/*
15804 	 * Re-do source address selection for all the members in the
15805 	 * group, if they borrowed source address from one of the ipifs
15806 	 * in this ill.
15807 	 */
15808 	for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) {
15809 		if (ill->ill_isv6) {
15810 			ipif_update_other_ipifs_v6(ipif, illgrp);
15811 		} else {
15812 			ipif_update_other_ipifs(ipif, illgrp);
15813 		}
15814 	}
15815 }
15816 
15817 /*
15818  * Delete the ill from the group. The caller makes sure that it is
15819  * in a group and it okay to delete from the group. So, we always
15820  * delete here.
15821  */
15822 static void
15823 illgrp_delete(ill_t *ill)
15824 {
15825 	ill_group_t *illgrp;
15826 	ill_group_t *tmpg;
15827 	ill_t *tmp_ill;
15828 	ip_stack_t	*ipst = ill->ill_ipst;
15829 
15830 	/*
15831 	 * Reset illgrp_ill_schednext if it was pointing at us.
15832 	 * We need to do this before we set ill_group to NULL.
15833 	 */
15834 	rw_enter(&ipst->ips_ill_g_lock, RW_WRITER);
15835 	mutex_enter(&ill->ill_lock);
15836 
15837 	illgrp_reset_schednext(ill);
15838 
15839 	illgrp = ill->ill_group;
15840 
15841 	/* Delete the ill from illgrp. */
15842 	if (illgrp->illgrp_ill == ill) {
15843 		illgrp->illgrp_ill = ill->ill_group_next;
15844 	} else {
15845 		tmp_ill = illgrp->illgrp_ill;
15846 		while (tmp_ill->ill_group_next != ill) {
15847 			tmp_ill = tmp_ill->ill_group_next;
15848 			ASSERT(tmp_ill != NULL);
15849 		}
15850 		tmp_ill->ill_group_next = ill->ill_group_next;
15851 	}
15852 	ill->ill_group = NULL;
15853 	ill->ill_group_next = NULL;
15854 
15855 	illgrp->illgrp_ill_count--;
15856 	mutex_exit(&ill->ill_lock);
15857 	rw_exit(&ipst->ips_ill_g_lock);
15858 
15859 	/*
15860 	 * As this ill is leaving the group, we need to hand off
15861 	 * the responsibilities to the other ills in the group, if
15862 	 * this ill had some responsibilities.
15863 	 */
15864 
15865 	ill_handoff_responsibility(ill, illgrp);
15866 
15867 	rw_enter(&ipst->ips_ill_g_lock, RW_WRITER);
15868 
15869 	if (illgrp->illgrp_ill_count == 0) {
15870 
15871 		ASSERT(illgrp->illgrp_ill == NULL);
15872 		if (ill->ill_isv6) {
15873 			if (illgrp == ipst->ips_illgrp_head_v6) {
15874 				ipst->ips_illgrp_head_v6 = illgrp->illgrp_next;
15875 			} else {
15876 				tmpg = ipst->ips_illgrp_head_v6;
15877 				while (tmpg->illgrp_next != illgrp) {
15878 					tmpg = tmpg->illgrp_next;
15879 					ASSERT(tmpg != NULL);
15880 				}
15881 				tmpg->illgrp_next = illgrp->illgrp_next;
15882 			}
15883 		} else {
15884 			if (illgrp == ipst->ips_illgrp_head_v4) {
15885 				ipst->ips_illgrp_head_v4 = illgrp->illgrp_next;
15886 			} else {
15887 				tmpg = ipst->ips_illgrp_head_v4;
15888 				while (tmpg->illgrp_next != illgrp) {
15889 					tmpg = tmpg->illgrp_next;
15890 					ASSERT(tmpg != NULL);
15891 				}
15892 				tmpg->illgrp_next = illgrp->illgrp_next;
15893 			}
15894 		}
15895 		mutex_destroy(&illgrp->illgrp_lock);
15896 		mi_free(illgrp);
15897 	}
15898 	rw_exit(&ipst->ips_ill_g_lock);
15899 
15900 	/*
15901 	 * Even though the ill is out of the group its not necessary
15902 	 * to set ipsq_split as TRUE as the ipifs could be down temporarily
15903 	 * We will split the ipsq when phyint_groupname is set to NULL.
15904 	 */
15905 
15906 	/*
15907 	 * Send a routing sockets message if we are deleting from
15908 	 * groups with names.
15909 	 */
15910 	if (ill->ill_phyint->phyint_groupname_len != 0)
15911 		ip_rts_ifmsg(ill->ill_ipif);
15912 }
15913 
15914 /*
15915  * Re-do source address selection. This is normally called when
15916  * an ill joins the group or when a non-NOLOCAL/DEPRECATED/ANYCAST
15917  * ipif comes up.
15918  */
15919 void
15920 ill_update_source_selection(ill_t *ill)
15921 {
15922 	ipif_t *ipif;
15923 
15924 	ASSERT(IAM_WRITER_ILL(ill));
15925 
15926 	if (ill->ill_group != NULL)
15927 		ill = ill->ill_group->illgrp_ill;
15928 
15929 	for (; ill != NULL; ill = ill->ill_group_next) {
15930 		for (ipif = ill->ill_ipif; ipif != NULL;
15931 		    ipif = ipif->ipif_next) {
15932 			if (ill->ill_isv6)
15933 				ipif_recreate_interface_routes_v6(NULL, ipif);
15934 			else
15935 				ipif_recreate_interface_routes(NULL, ipif);
15936 		}
15937 	}
15938 }
15939 
15940 /*
15941  * Insert ill in a group headed by illgrp_head. The caller can either
15942  * pass a groupname in which case we search for a group with the
15943  * same name to insert in or pass a group to insert in. This function
15944  * would only search groups with names.
15945  *
15946  * NOTE : The caller should make sure that there is at least one ipif
15947  *	  UP on this ill so that illgrp_scheduler can pick this ill
15948  *	  for outbound packets. If ill_ipif_up_count is zero, we have
15949  *	  already sent a DL_UNBIND to the driver and we don't want to
15950  *	  send anymore packets. We don't assert for ipif_up_count
15951  *	  to be greater than zero, because ipif_up_done wants to call
15952  *	  this function before bumping up the ipif_up_count. See
15953  *	  ipif_up_done() for details.
15954  */
15955 int
15956 illgrp_insert(ill_group_t **illgrp_head, ill_t *ill, char *groupname,
15957     ill_group_t *grp_to_insert, boolean_t ipif_is_coming_up)
15958 {
15959 	ill_group_t *illgrp;
15960 	ill_t *prev_ill;
15961 	phyint_t *phyi;
15962 	ip_stack_t	*ipst = ill->ill_ipst;
15963 
15964 	ASSERT(ill->ill_group == NULL);
15965 
15966 	rw_enter(&ipst->ips_ill_g_lock, RW_WRITER);
15967 	mutex_enter(&ill->ill_lock);
15968 
15969 	if (groupname != NULL) {
15970 		/*
15971 		 * Look for a group with a matching groupname to insert.
15972 		 */
15973 		for (illgrp = *illgrp_head; illgrp != NULL;
15974 		    illgrp = illgrp->illgrp_next) {
15975 
15976 			ill_t *tmp_ill;
15977 
15978 			/*
15979 			 * If we have an ill_group_t in the list which has
15980 			 * no ill_t assigned then we must be in the process of
15981 			 * removing this group. We skip this as illgrp_delete()
15982 			 * will remove it from the list.
15983 			 */
15984 			if ((tmp_ill = illgrp->illgrp_ill) == NULL) {
15985 				ASSERT(illgrp->illgrp_ill_count == 0);
15986 				continue;
15987 			}
15988 
15989 			ASSERT(tmp_ill->ill_phyint != NULL);
15990 			phyi = tmp_ill->ill_phyint;
15991 			/*
15992 			 * Look at groups which has names only.
15993 			 */
15994 			if (phyi->phyint_groupname_len == 0)
15995 				continue;
15996 			/*
15997 			 * Names are stored in the phyint common to both
15998 			 * IPv4 and IPv6.
15999 			 */
16000 			if (mi_strcmp(phyi->phyint_groupname,
16001 			    groupname) == 0) {
16002 				break;
16003 			}
16004 		}
16005 	} else {
16006 		/*
16007 		 * If the caller passes in a NULL "grp_to_insert", we
16008 		 * allocate one below and insert this singleton.
16009 		 */
16010 		illgrp = grp_to_insert;
16011 	}
16012 
16013 	ill->ill_group_next = NULL;
16014 
16015 	if (illgrp == NULL) {
16016 		illgrp = (ill_group_t *)mi_zalloc(sizeof (ill_group_t));
16017 		if (illgrp == NULL) {
16018 			return (ENOMEM);
16019 		}
16020 		illgrp->illgrp_next = *illgrp_head;
16021 		*illgrp_head = illgrp;
16022 		illgrp->illgrp_ill = ill;
16023 		illgrp->illgrp_ill_count = 1;
16024 		ill->ill_group = illgrp;
16025 		/*
16026 		 * Used in illgrp_scheduler to protect multiple threads
16027 		 * from traversing the list.
16028 		 */
16029 		mutex_init(&illgrp->illgrp_lock, NULL, MUTEX_DEFAULT, 0);
16030 	} else {
16031 		ASSERT(ill->ill_net_type ==
16032 		    illgrp->illgrp_ill->ill_net_type);
16033 		ASSERT(ill->ill_type == illgrp->illgrp_ill->ill_type);
16034 
16035 		/* Insert ill at tail of this group */
16036 		prev_ill = illgrp->illgrp_ill;
16037 		while (prev_ill->ill_group_next != NULL)
16038 			prev_ill = prev_ill->ill_group_next;
16039 		prev_ill->ill_group_next = ill;
16040 		ill->ill_group = illgrp;
16041 		illgrp->illgrp_ill_count++;
16042 		/*
16043 		 * Inherit group properties. Currently only forwarding
16044 		 * is the property we try to keep the same with all the
16045 		 * ills. When there are more, we will abstract this into
16046 		 * a function.
16047 		 */
16048 		ill->ill_flags &= ~ILLF_ROUTER;
16049 		ill->ill_flags |= (illgrp->illgrp_ill->ill_flags & ILLF_ROUTER);
16050 	}
16051 	mutex_exit(&ill->ill_lock);
16052 	rw_exit(&ipst->ips_ill_g_lock);
16053 
16054 	/*
16055 	 * 1) When ipif_up_done() calls this function, ipif_up_count
16056 	 *    may be zero as it has not yet been bumped. But the ires
16057 	 *    have already been added. So, we do the nomination here
16058 	 *    itself. But, when ip_sioctl_groupname calls this, it checks
16059 	 *    for ill_ipif_up_count != 0. Thus we don't check for
16060 	 *    ill_ipif_up_count here while nominating broadcast ires for
16061 	 *    receive.
16062 	 *
16063 	 * 2) Similarly, we need to call ill_group_bcast_for_xmit here
16064 	 *    to group them properly as ire_add() has already happened
16065 	 *    in the ipif_up_done() case. For ip_sioctl_groupname/ifgrp_insert
16066 	 *    case, we need to do it here anyway.
16067 	 */
16068 	if (!ill->ill_isv6) {
16069 		ill_group_bcast_for_xmit(ill);
16070 		ill_nominate_bcast_rcv(illgrp);
16071 	}
16072 
16073 	if (!ipif_is_coming_up) {
16074 		/*
16075 		 * When ipif_up_done() calls this function, the multicast
16076 		 * groups have not been joined yet. So, there is no point in
16077 		 * nomination. ip_join_allmulti will handle groups when
16078 		 * ill_recover_multicast is called from ipif_up_done() later.
16079 		 */
16080 		(void) ill_nominate_mcast_rcv(illgrp);
16081 		/*
16082 		 * ipif_up_done calls ill_update_source_selection
16083 		 * anyway. Moreover, we don't want to re-create
16084 		 * interface routes while ipif_up_done() still has reference
16085 		 * to them. Refer to ipif_up_done() for more details.
16086 		 */
16087 		ill_update_source_selection(ill);
16088 	}
16089 
16090 	/*
16091 	 * Send a routing sockets message if we are inserting into
16092 	 * groups with names.
16093 	 */
16094 	if (groupname != NULL)
16095 		ip_rts_ifmsg(ill->ill_ipif);
16096 	return (0);
16097 }
16098 
16099 /*
16100  * Return the first phyint matching the groupname. There could
16101  * be more than one when there are ill groups.
16102  *
16103  * If 'usable' is set, then we exclude ones that are marked with any of
16104  * (PHYI_FAILED|PHYI_OFFLINE|PHYI_INACTIVE).
16105  * Needs work: called only from ip_sioctl_groupname and from the ipmp/netinfo
16106  * emulation of ipmp.
16107  */
16108 phyint_t *
16109 phyint_lookup_group(char *groupname, boolean_t usable, ip_stack_t *ipst)
16110 {
16111 	phyint_t *phyi;
16112 
16113 	ASSERT(RW_LOCK_HELD(&ipst->ips_ill_g_lock));
16114 	/*
16115 	 * Group names are stored in the phyint - a common structure
16116 	 * to both IPv4 and IPv6.
16117 	 */
16118 	phyi = avl_first(&ipst->ips_phyint_g_list->phyint_list_avl_by_index);
16119 	for (; phyi != NULL;
16120 	    phyi = avl_walk(&ipst->ips_phyint_g_list->phyint_list_avl_by_index,
16121 	    phyi, AVL_AFTER)) {
16122 		if (phyi->phyint_groupname_len == 0)
16123 			continue;
16124 		/*
16125 		 * Skip the ones that should not be used since the callers
16126 		 * sometime use this for sending packets.
16127 		 */
16128 		if (usable && (phyi->phyint_flags &
16129 		    (PHYI_FAILED|PHYI_OFFLINE|PHYI_INACTIVE)))
16130 			continue;
16131 
16132 		ASSERT(phyi->phyint_groupname != NULL);
16133 		if (mi_strcmp(groupname, phyi->phyint_groupname) == 0)
16134 			return (phyi);
16135 	}
16136 	return (NULL);
16137 }
16138 
16139 
16140 /*
16141  * Return the first usable phyint matching the group index. By 'usable'
16142  * we exclude ones that are marked ununsable with any of
16143  * (PHYI_FAILED|PHYI_OFFLINE|PHYI_INACTIVE).
16144  *
16145  * Used only for the ipmp/netinfo emulation of ipmp.
16146  */
16147 phyint_t *
16148 phyint_lookup_group_ifindex(uint_t group_ifindex, ip_stack_t *ipst)
16149 {
16150 	phyint_t *phyi;
16151 
16152 	ASSERT(RW_LOCK_HELD(&ipst->ips_ill_g_lock));
16153 
16154 	if (!ipst->ips_ipmp_hook_emulation)
16155 		return (NULL);
16156 
16157 	/*
16158 	 * Group indicies are stored in the phyint - a common structure
16159 	 * to both IPv4 and IPv6.
16160 	 */
16161 	phyi = avl_first(&ipst->ips_phyint_g_list->phyint_list_avl_by_index);
16162 	for (; phyi != NULL;
16163 	    phyi = avl_walk(&ipst->ips_phyint_g_list->phyint_list_avl_by_index,
16164 	    phyi, AVL_AFTER)) {
16165 		/* Ignore the ones that do not have a group */
16166 		if (phyi->phyint_groupname_len == 0)
16167 			continue;
16168 
16169 		ASSERT(phyi->phyint_group_ifindex != 0);
16170 		/*
16171 		 * Skip the ones that should not be used since the callers
16172 		 * sometime use this for sending packets.
16173 		 */
16174 		if (phyi->phyint_flags &
16175 		    (PHYI_FAILED|PHYI_OFFLINE|PHYI_INACTIVE))
16176 			continue;
16177 		if (phyi->phyint_group_ifindex == group_ifindex)
16178 			return (phyi);
16179 	}
16180 	return (NULL);
16181 }
16182 
16183 
16184 /*
16185  * MT notes on creation and deletion of IPMP groups
16186  *
16187  * Creation and deletion of IPMP groups introduce the need to merge or
16188  * split the associated serialization objects i.e the ipsq's. Normally all
16189  * the ills in an IPMP group would map to a single ipsq. If IPMP is not enabled
16190  * an ill-pair(v4, v6) i.e. phyint would map to a single ipsq. However during
16191  * the execution of the SIOCSLIFGROUPNAME command the picture changes. There
16192  * is a need to change the <ill-ipsq> association and we have to operate on both
16193  * the source and destination IPMP groups. For eg. attempting to set the
16194  * groupname of hme0 to mpk17-85 when it already belongs to mpk17-84 has to
16195  * handle 2 IPMP groups and 2 ipsqs. All the ills belonging to either of the
16196  * source or destination IPMP group are mapped to a single ipsq for executing
16197  * the SIOCSLIFGROUPNAME command. This is termed as a merge of the ipsq's.
16198  * The <ill-ipsq> mapping is restored back to normal at a later point. This is
16199  * termed as a split of the ipsq. The converse of the merge i.e. a split of the
16200  * ipsq happens while unwinding from ipsq_exit. If at least 1 set groupname
16201  * occurred on the ipsq, then the ipsq_split flag is set. This indicates the
16202  * ipsq has to be examined for redoing the <ill-ipsq> associations.
16203  *
16204  * In the above example the ioctl handling code locates the current ipsq of hme0
16205  * which is ipsq(mpk17-84). It then enters the above ipsq immediately or
16206  * eventually (after queueing the ioctl in ipsq(mpk17-84)). Then it locates
16207  * the destination ipsq which is ipsq(mpk17-85) and merges the source ipsq into
16208  * the destination ipsq. If the destination ipsq is not busy, it also enters
16209  * the destination ipsq exclusively. Now the actual groupname setting operation
16210  * can proceed. If the destination ipsq is busy, the operation is enqueued
16211  * on the destination (merged) ipsq and will be handled in the unwind from
16212  * ipsq_exit.
16213  *
16214  * To prevent other threads accessing the ill while the group name change is
16215  * in progres, we bring down the ipifs which also removes the ill from the
16216  * group. The group is changed in phyint and when the first ipif on the ill
16217  * is brought up, the ill is inserted into the right IPMP group by
16218  * illgrp_insert.
16219  */
16220 /* ARGSUSED */
16221 int
16222 ip_sioctl_groupname(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
16223     ip_ioctl_cmd_t *ipip, void *ifreq)
16224 {
16225 	int i;
16226 	char *tmp;
16227 	int namelen;
16228 	ill_t *ill = ipif->ipif_ill;
16229 	ill_t *ill_v4, *ill_v6;
16230 	int err = 0;
16231 	phyint_t *phyi;
16232 	phyint_t *phyi_tmp;
16233 	struct lifreq *lifr;
16234 	mblk_t	*mp1;
16235 	char *groupname;
16236 	ipsq_t *ipsq;
16237 	ip_stack_t	*ipst = ill->ill_ipst;
16238 
16239 	ASSERT(IAM_WRITER_IPIF(ipif));
16240 
16241 	/* Existance verified in ip_wput_nondata */
16242 	mp1 = mp->b_cont->b_cont;
16243 	lifr = (struct lifreq *)mp1->b_rptr;
16244 	groupname = lifr->lifr_groupname;
16245 
16246 	if (ipif->ipif_id != 0)
16247 		return (EINVAL);
16248 
16249 	phyi = ill->ill_phyint;
16250 	ASSERT(phyi != NULL);
16251 
16252 	if (phyi->phyint_flags & PHYI_VIRTUAL)
16253 		return (EINVAL);
16254 
16255 	tmp = groupname;
16256 	for (i = 0; i < LIFNAMSIZ && *tmp != '\0'; tmp++, i++)
16257 		;
16258 
16259 	if (i == LIFNAMSIZ) {
16260 		/* no null termination */
16261 		return (EINVAL);
16262 	}
16263 
16264 	/*
16265 	 * Calculate the namelen exclusive of the null
16266 	 * termination character.
16267 	 */
16268 	namelen = tmp - groupname;
16269 
16270 	ill_v4 = phyi->phyint_illv4;
16271 	ill_v6 = phyi->phyint_illv6;
16272 
16273 	/*
16274 	 * ILL cannot be part of a usesrc group and and IPMP group at the
16275 	 * same time. No need to grab the ill_g_usesrc_lock here, see
16276 	 * synchronization notes in ip.c
16277 	 */
16278 	if (ipif->ipif_ill->ill_usesrc_grp_next != NULL) {
16279 		return (EINVAL);
16280 	}
16281 
16282 	/*
16283 	 * mark the ill as changing.
16284 	 * this should queue all new requests on the syncq.
16285 	 */
16286 	GRAB_ILL_LOCKS(ill_v4, ill_v6);
16287 
16288 	if (ill_v4 != NULL)
16289 		ill_v4->ill_state_flags |= ILL_CHANGING;
16290 	if (ill_v6 != NULL)
16291 		ill_v6->ill_state_flags |= ILL_CHANGING;
16292 	RELEASE_ILL_LOCKS(ill_v4, ill_v6);
16293 
16294 	if (namelen == 0) {
16295 		/*
16296 		 * Null string means remove this interface from the
16297 		 * existing group.
16298 		 */
16299 		if (phyi->phyint_groupname_len == 0) {
16300 			/*
16301 			 * Never was in a group.
16302 			 */
16303 			err = 0;
16304 			goto done;
16305 		}
16306 
16307 		/*
16308 		 * IPv4 or IPv6 may be temporarily out of the group when all
16309 		 * the ipifs are down. Thus, we need to check for ill_group to
16310 		 * be non-NULL.
16311 		 */
16312 		if (ill_v4 != NULL && ill_v4->ill_group != NULL) {
16313 			ill_down_ipifs(ill_v4, mp, 0, B_FALSE);
16314 			mutex_enter(&ill_v4->ill_lock);
16315 			if (!ill_is_quiescent(ill_v4)) {
16316 				/*
16317 				 * ipsq_pending_mp_add will not fail since
16318 				 * connp is NULL
16319 				 */
16320 				(void) ipsq_pending_mp_add(NULL,
16321 				    ill_v4->ill_ipif, q, mp, ILL_DOWN);
16322 				mutex_exit(&ill_v4->ill_lock);
16323 				err = EINPROGRESS;
16324 				goto done;
16325 			}
16326 			mutex_exit(&ill_v4->ill_lock);
16327 		}
16328 
16329 		if (ill_v6 != NULL && ill_v6->ill_group != NULL) {
16330 			ill_down_ipifs(ill_v6, mp, 0, B_FALSE);
16331 			mutex_enter(&ill_v6->ill_lock);
16332 			if (!ill_is_quiescent(ill_v6)) {
16333 				(void) ipsq_pending_mp_add(NULL,
16334 				    ill_v6->ill_ipif, q, mp, ILL_DOWN);
16335 				mutex_exit(&ill_v6->ill_lock);
16336 				err = EINPROGRESS;
16337 				goto done;
16338 			}
16339 			mutex_exit(&ill_v6->ill_lock);
16340 		}
16341 
16342 		rw_enter(&ipst->ips_ill_g_lock, RW_WRITER);
16343 		GRAB_ILL_LOCKS(ill_v4, ill_v6);
16344 		mutex_enter(&phyi->phyint_lock);
16345 		ASSERT(phyi->phyint_groupname != NULL);
16346 		mi_free(phyi->phyint_groupname);
16347 		phyi->phyint_groupname = NULL;
16348 		phyi->phyint_groupname_len = 0;
16349 
16350 		/* Restore the ifindex used to be the per interface one */
16351 		phyi->phyint_group_ifindex = 0;
16352 		phyi->phyint_hook_ifindex = phyi->phyint_ifindex;
16353 		mutex_exit(&phyi->phyint_lock);
16354 		RELEASE_ILL_LOCKS(ill_v4, ill_v6);
16355 		rw_exit(&ipst->ips_ill_g_lock);
16356 		err = ill_up_ipifs(ill, q, mp);
16357 
16358 		/*
16359 		 * set the split flag so that the ipsq can be split
16360 		 */
16361 		mutex_enter(&phyi->phyint_ipsq->ipsq_lock);
16362 		phyi->phyint_ipsq->ipsq_split = B_TRUE;
16363 		mutex_exit(&phyi->phyint_ipsq->ipsq_lock);
16364 
16365 	} else {
16366 		if (phyi->phyint_groupname_len != 0) {
16367 			ASSERT(phyi->phyint_groupname != NULL);
16368 			/* Are we inserting in the same group ? */
16369 			if (mi_strcmp(groupname,
16370 			    phyi->phyint_groupname) == 0) {
16371 				err = 0;
16372 				goto done;
16373 			}
16374 		}
16375 
16376 		rw_enter(&ipst->ips_ill_g_lock, RW_READER);
16377 		/*
16378 		 * Merge ipsq for the group's.
16379 		 * This check is here as multiple groups/ills might be
16380 		 * sharing the same ipsq.
16381 		 * If we have to merege than the operation is restarted
16382 		 * on the new ipsq.
16383 		 */
16384 		ipsq = ip_ipsq_lookup(groupname, B_FALSE, NULL, ipst);
16385 		if (phyi->phyint_ipsq != ipsq) {
16386 			rw_exit(&ipst->ips_ill_g_lock);
16387 			err = ill_merge_groups(ill, NULL, groupname, mp, q);
16388 			goto done;
16389 		}
16390 		/*
16391 		 * Running exclusive on new ipsq.
16392 		 */
16393 
16394 		ASSERT(ipsq != NULL);
16395 		ASSERT(ipsq->ipsq_writer == curthread);
16396 
16397 		/*
16398 		 * Check whether the ill_type and ill_net_type matches before
16399 		 * we allocate any memory so that the cleanup is easier.
16400 		 *
16401 		 * We can't group dissimilar ones as we can't load spread
16402 		 * packets across the group because of potential link-level
16403 		 * header differences.
16404 		 */
16405 		phyi_tmp = phyint_lookup_group(groupname, B_FALSE, ipst);
16406 		if (phyi_tmp != NULL) {
16407 			if ((ill_v4 != NULL &&
16408 			    phyi_tmp->phyint_illv4 != NULL) &&
16409 			    ((ill_v4->ill_net_type !=
16410 			    phyi_tmp->phyint_illv4->ill_net_type) ||
16411 			    (ill_v4->ill_type !=
16412 			    phyi_tmp->phyint_illv4->ill_type))) {
16413 				mutex_enter(&phyi->phyint_ipsq->ipsq_lock);
16414 				phyi->phyint_ipsq->ipsq_split = B_TRUE;
16415 				mutex_exit(&phyi->phyint_ipsq->ipsq_lock);
16416 				rw_exit(&ipst->ips_ill_g_lock);
16417 				return (EINVAL);
16418 			}
16419 			if ((ill_v6 != NULL &&
16420 			    phyi_tmp->phyint_illv6 != NULL) &&
16421 			    ((ill_v6->ill_net_type !=
16422 			    phyi_tmp->phyint_illv6->ill_net_type) ||
16423 			    (ill_v6->ill_type !=
16424 			    phyi_tmp->phyint_illv6->ill_type))) {
16425 				mutex_enter(&phyi->phyint_ipsq->ipsq_lock);
16426 				phyi->phyint_ipsq->ipsq_split = B_TRUE;
16427 				mutex_exit(&phyi->phyint_ipsq->ipsq_lock);
16428 				rw_exit(&ipst->ips_ill_g_lock);
16429 				return (EINVAL);
16430 			}
16431 		}
16432 
16433 		rw_exit(&ipst->ips_ill_g_lock);
16434 
16435 		/*
16436 		 * bring down all v4 ipifs.
16437 		 */
16438 		if (ill_v4 != NULL) {
16439 			ill_down_ipifs(ill_v4, mp, 0, B_FALSE);
16440 		}
16441 
16442 		/*
16443 		 * bring down all v6 ipifs.
16444 		 */
16445 		if (ill_v6 != NULL) {
16446 			ill_down_ipifs(ill_v6, mp, 0, B_FALSE);
16447 		}
16448 
16449 		/*
16450 		 * make sure all ipifs are down and there are no active
16451 		 * references. Call to ipsq_pending_mp_add will not fail
16452 		 * since connp is NULL.
16453 		 */
16454 		if (ill_v4 != NULL) {
16455 			mutex_enter(&ill_v4->ill_lock);
16456 			if (!ill_is_quiescent(ill_v4)) {
16457 				(void) ipsq_pending_mp_add(NULL,
16458 				    ill_v4->ill_ipif, q, mp, ILL_DOWN);
16459 				mutex_exit(&ill_v4->ill_lock);
16460 				err = EINPROGRESS;
16461 				goto done;
16462 			}
16463 			mutex_exit(&ill_v4->ill_lock);
16464 		}
16465 
16466 		if (ill_v6 != NULL) {
16467 			mutex_enter(&ill_v6->ill_lock);
16468 			if (!ill_is_quiescent(ill_v6)) {
16469 				(void) ipsq_pending_mp_add(NULL,
16470 				    ill_v6->ill_ipif, q, mp, ILL_DOWN);
16471 				mutex_exit(&ill_v6->ill_lock);
16472 				err = EINPROGRESS;
16473 				goto done;
16474 			}
16475 			mutex_exit(&ill_v6->ill_lock);
16476 		}
16477 
16478 		/*
16479 		 * allocate including space for null terminator
16480 		 * before we insert.
16481 		 */
16482 		tmp = (char *)mi_alloc(namelen + 1, BPRI_MED);
16483 		if (tmp == NULL)
16484 			return (ENOMEM);
16485 
16486 		rw_enter(&ipst->ips_ill_g_lock, RW_WRITER);
16487 		GRAB_ILL_LOCKS(ill_v4, ill_v6);
16488 		mutex_enter(&phyi->phyint_lock);
16489 		if (phyi->phyint_groupname_len != 0) {
16490 			ASSERT(phyi->phyint_groupname != NULL);
16491 			mi_free(phyi->phyint_groupname);
16492 		}
16493 
16494 		/*
16495 		 * setup the new group name.
16496 		 */
16497 		phyi->phyint_groupname = tmp;
16498 		bcopy(groupname, phyi->phyint_groupname, namelen + 1);
16499 		phyi->phyint_groupname_len = namelen + 1;
16500 
16501 		if (ipst->ips_ipmp_hook_emulation) {
16502 			/*
16503 			 * If the group already exists we use the existing
16504 			 * group_ifindex, otherwise we pick a new index here.
16505 			 */
16506 			if (phyi_tmp != NULL) {
16507 				phyi->phyint_group_ifindex =
16508 				    phyi_tmp->phyint_group_ifindex;
16509 			} else {
16510 				/* XXX We need a recovery strategy here. */
16511 				if (!ip_assign_ifindex(
16512 				    &phyi->phyint_group_ifindex, ipst))
16513 					cmn_err(CE_PANIC,
16514 					    "ip_assign_ifindex() failed");
16515 			}
16516 		}
16517 		/*
16518 		 * Select whether the netinfo and hook use the per-interface
16519 		 * or per-group ifindex.
16520 		 */
16521 		if (ipst->ips_ipmp_hook_emulation)
16522 			phyi->phyint_hook_ifindex = phyi->phyint_group_ifindex;
16523 		else
16524 			phyi->phyint_hook_ifindex = phyi->phyint_ifindex;
16525 
16526 		if (ipst->ips_ipmp_hook_emulation &&
16527 		    phyi_tmp != NULL) {
16528 			/* First phyint in group - group PLUMB event */
16529 			ill_nic_info_plumb(ill, B_TRUE);
16530 		}
16531 		mutex_exit(&phyi->phyint_lock);
16532 		RELEASE_ILL_LOCKS(ill_v4, ill_v6);
16533 		rw_exit(&ipst->ips_ill_g_lock);
16534 
16535 		err = ill_up_ipifs(ill, q, mp);
16536 	}
16537 
16538 done:
16539 	/*
16540 	 *  normally ILL_CHANGING is cleared in ill_up_ipifs.
16541 	 */
16542 	if (err != EINPROGRESS) {
16543 		GRAB_ILL_LOCKS(ill_v4, ill_v6);
16544 		if (ill_v4 != NULL)
16545 			ill_v4->ill_state_flags &= ~ILL_CHANGING;
16546 		if (ill_v6 != NULL)
16547 			ill_v6->ill_state_flags &= ~ILL_CHANGING;
16548 		RELEASE_ILL_LOCKS(ill_v4, ill_v6);
16549 	}
16550 	return (err);
16551 }
16552 
16553 /* ARGSUSED */
16554 int
16555 ip_sioctl_get_groupname(ipif_t *ipif, sin_t *dummy_sin, queue_t *q,
16556     mblk_t *mp, ip_ioctl_cmd_t *ipip, void *dummy_ifreq)
16557 {
16558 	ill_t *ill;
16559 	phyint_t *phyi;
16560 	struct lifreq *lifr;
16561 	mblk_t	*mp1;
16562 
16563 	/* Existence verified in ip_wput_nondata */
16564 	mp1 = mp->b_cont->b_cont;
16565 	lifr = (struct lifreq *)mp1->b_rptr;
16566 	ill = ipif->ipif_ill;
16567 	phyi = ill->ill_phyint;
16568 
16569 	lifr->lifr_groupname[0] = '\0';
16570 	/*
16571 	 * ill_group may be null if all the interfaces
16572 	 * are down. But still, the phyint should always
16573 	 * hold the name.
16574 	 */
16575 	if (phyi->phyint_groupname_len != 0) {
16576 		bcopy(phyi->phyint_groupname, lifr->lifr_groupname,
16577 		    phyi->phyint_groupname_len);
16578 	}
16579 
16580 	return (0);
16581 }
16582 
16583 
16584 typedef struct conn_move_s {
16585 	ill_t	*cm_from_ill;
16586 	ill_t	*cm_to_ill;
16587 	int	cm_ifindex;
16588 } conn_move_t;
16589 
16590 /*
16591  * ipcl_walk function for moving conn_multicast_ill for a given ill.
16592  */
16593 static void
16594 conn_move(conn_t *connp, caddr_t arg)
16595 {
16596 	conn_move_t *connm;
16597 	int ifindex;
16598 	int i;
16599 	ill_t *from_ill;
16600 	ill_t *to_ill;
16601 	ilg_t *ilg;
16602 	ilm_t *ret_ilm;
16603 
16604 	connm = (conn_move_t *)arg;
16605 	ifindex = connm->cm_ifindex;
16606 	from_ill = connm->cm_from_ill;
16607 	to_ill = connm->cm_to_ill;
16608 
16609 	/* Change IP_BOUND_IF/IPV6_BOUND_IF associations. */
16610 
16611 	/* All multicast fields protected by conn_lock */
16612 	mutex_enter(&connp->conn_lock);
16613 	ASSERT(connp->conn_outgoing_ill == connp->conn_incoming_ill);
16614 	if ((connp->conn_outgoing_ill == from_ill) &&
16615 	    (ifindex == 0 || connp->conn_orig_bound_ifindex == ifindex)) {
16616 		connp->conn_outgoing_ill = to_ill;
16617 		connp->conn_incoming_ill = to_ill;
16618 	}
16619 
16620 	/* Change IP_MULTICAST_IF/IPV6_MULTICAST_IF associations */
16621 
16622 	if ((connp->conn_multicast_ill == from_ill) &&
16623 	    (ifindex == 0 || connp->conn_orig_multicast_ifindex == ifindex)) {
16624 		connp->conn_multicast_ill = connm->cm_to_ill;
16625 	}
16626 
16627 	/*
16628 	 * Change the ilg_ill to point to the new one. This assumes
16629 	 * ilm_move_v6 has moved the ilms to new_ill and the driver
16630 	 * has been told to receive packets on this interface.
16631 	 * ilm_move_v6 FAILBACKS all the ilms successfully always.
16632 	 * But when doing a FAILOVER, it might fail with ENOMEM and so
16633 	 * some ilms may not have moved. We check to see whether
16634 	 * the ilms have moved to to_ill. We can't check on from_ill
16635 	 * as in the process of moving, we could have split an ilm
16636 	 * in to two - which has the same orig_ifindex and v6group.
16637 	 *
16638 	 * For IPv4, ilg_ipif moves implicitly. The code below really
16639 	 * does not do anything for IPv4 as ilg_ill is NULL for IPv4.
16640 	 */
16641 	for (i = connp->conn_ilg_inuse - 1; i >= 0; i--) {
16642 		ilg = &connp->conn_ilg[i];
16643 		if ((ilg->ilg_ill == from_ill) &&
16644 		    (ifindex == 0 || ilg->ilg_orig_ifindex == ifindex)) {
16645 			/* ifindex != 0 indicates failback */
16646 			if (ifindex != 0) {
16647 				connp->conn_ilg[i].ilg_ill = to_ill;
16648 				continue;
16649 			}
16650 
16651 			ret_ilm = ilm_lookup_ill_index_v6(to_ill,
16652 			    &ilg->ilg_v6group, ilg->ilg_orig_ifindex,
16653 			    connp->conn_zoneid);
16654 
16655 			if (ret_ilm != NULL)
16656 				connp->conn_ilg[i].ilg_ill = to_ill;
16657 		}
16658 	}
16659 	mutex_exit(&connp->conn_lock);
16660 }
16661 
16662 static void
16663 conn_move_ill(ill_t *from_ill, ill_t *to_ill, int ifindex)
16664 {
16665 	conn_move_t connm;
16666 	ip_stack_t	*ipst = from_ill->ill_ipst;
16667 
16668 	connm.cm_from_ill = from_ill;
16669 	connm.cm_to_ill = to_ill;
16670 	connm.cm_ifindex = ifindex;
16671 
16672 	ipcl_walk(conn_move, (caddr_t)&connm, ipst);
16673 }
16674 
16675 /*
16676  * ilm has been moved from from_ill to to_ill.
16677  * Send DL_DISABMULTI_REQ to ill and DL_ENABMULTI_REQ on to_ill.
16678  * appropriately.
16679  *
16680  * NOTE : We can't reuse the code in ip_ll_addmulti/delmulti because
16681  *	  the code there de-references ipif_ill to get the ill to
16682  *	  send multicast requests. It does not work as ipif is on its
16683  *	  move and already moved when this function is called.
16684  *	  Thus, we need to use from_ill and to_ill send down multicast
16685  *	  requests.
16686  */
16687 static void
16688 ilm_send_multicast_reqs(ill_t *from_ill, ill_t *to_ill)
16689 {
16690 	ipif_t *ipif;
16691 	ilm_t *ilm;
16692 
16693 	/*
16694 	 * See whether we need to send down DL_ENABMULTI_REQ on
16695 	 * to_ill as ilm has just been added.
16696 	 */
16697 	ASSERT(IAM_WRITER_ILL(to_ill));
16698 	ASSERT(IAM_WRITER_ILL(from_ill));
16699 
16700 	ILM_WALKER_HOLD(to_ill);
16701 	for (ilm = to_ill->ill_ilm; ilm != NULL; ilm = ilm->ilm_next) {
16702 
16703 		if (!ilm->ilm_is_new || (ilm->ilm_flags & ILM_DELETED))
16704 			continue;
16705 		/*
16706 		 * no locks held, ill/ipif cannot dissappear as long
16707 		 * as we are writer.
16708 		 */
16709 		ipif = to_ill->ill_ipif;
16710 		/*
16711 		 * No need to hold any lock as we are the writer and this
16712 		 * can only be changed by a writer.
16713 		 */
16714 		ilm->ilm_is_new = B_FALSE;
16715 
16716 		if (to_ill->ill_net_type != IRE_IF_RESOLVER ||
16717 		    ipif->ipif_flags & IPIF_POINTOPOINT) {
16718 			ip1dbg(("ilm_send_multicast_reqs: to_ill not "
16719 			    "resolver\n"));
16720 			continue;		/* Must be IRE_IF_NORESOLVER */
16721 		}
16722 
16723 
16724 		if (to_ill->ill_phyint->phyint_flags & PHYI_MULTI_BCAST) {
16725 			ip1dbg(("ilm_send_multicast_reqs: "
16726 			    "to_ill MULTI_BCAST\n"));
16727 			goto from;
16728 		}
16729 
16730 		if (to_ill->ill_isv6)
16731 			mld_joingroup(ilm);
16732 		else
16733 			igmp_joingroup(ilm);
16734 
16735 		if (to_ill->ill_ipif_up_count == 0) {
16736 			/*
16737 			 * Nobody there. All multicast addresses will be
16738 			 * re-joined when we get the DL_BIND_ACK bringing the
16739 			 * interface up.
16740 			 */
16741 			ilm->ilm_notify_driver = B_FALSE;
16742 			ip1dbg(("ilm_send_multicast_reqs: to_ill nobody up\n"));
16743 			goto from;
16744 		}
16745 
16746 		/*
16747 		 * For allmulti address, we want to join on only one interface.
16748 		 * Checking for ilm_numentries_v6 is not correct as you may
16749 		 * find an ilm with zero address on to_ill, but we may not
16750 		 * have nominated to_ill for receiving. Thus, if we have
16751 		 * nominated from_ill (ill_join_allmulti is set), nominate
16752 		 * only if to_ill is not already nominated (to_ill normally
16753 		 * should not have been nominated if "from_ill" has already
16754 		 * been nominated. As we don't prevent failovers from happening
16755 		 * across groups, we don't assert).
16756 		 */
16757 		if (IN6_IS_ADDR_UNSPECIFIED(&ilm->ilm_v6addr)) {
16758 			/*
16759 			 * There is no need to hold ill locks as we are
16760 			 * writer on both ills and when ill_join_allmulti
16761 			 * is changed the thread is always a writer.
16762 			 */
16763 			if (from_ill->ill_join_allmulti &&
16764 			    !to_ill->ill_join_allmulti) {
16765 				(void) ip_join_allmulti(to_ill->ill_ipif);
16766 			}
16767 		} else if (ilm->ilm_notify_driver) {
16768 
16769 			/*
16770 			 * This is a newly moved ilm so we need to tell the
16771 			 * driver about the new group. There can be more than
16772 			 * one ilm's for the same group in the list each with a
16773 			 * different orig_ifindex. We have to inform the driver
16774 			 * once. In ilm_move_v[4,6] we only set the flag
16775 			 * ilm_notify_driver for the first ilm.
16776 			 */
16777 
16778 			(void) ip_ll_send_enabmulti_req(to_ill,
16779 			    &ilm->ilm_v6addr);
16780 		}
16781 
16782 		ilm->ilm_notify_driver = B_FALSE;
16783 
16784 		/*
16785 		 * See whether we need to send down DL_DISABMULTI_REQ on
16786 		 * from_ill as ilm has just been removed.
16787 		 */
16788 from:
16789 		ipif = from_ill->ill_ipif;
16790 		if (from_ill->ill_net_type != IRE_IF_RESOLVER ||
16791 		    ipif->ipif_flags & IPIF_POINTOPOINT) {
16792 			ip1dbg(("ilm_send_multicast_reqs: "
16793 			    "from_ill not resolver\n"));
16794 			continue;		/* Must be IRE_IF_NORESOLVER */
16795 		}
16796 
16797 		if (from_ill->ill_phyint->phyint_flags & PHYI_MULTI_BCAST) {
16798 			ip1dbg(("ilm_send_multicast_reqs: "
16799 			    "from_ill MULTI_BCAST\n"));
16800 			continue;
16801 		}
16802 
16803 		if (IN6_IS_ADDR_UNSPECIFIED(&ilm->ilm_v6addr)) {
16804 			if (from_ill->ill_join_allmulti)
16805 				(void) ip_leave_allmulti(from_ill->ill_ipif);
16806 		} else if (ilm_numentries_v6(from_ill, &ilm->ilm_v6addr) == 0) {
16807 			(void) ip_ll_send_disabmulti_req(from_ill,
16808 			    &ilm->ilm_v6addr);
16809 		}
16810 	}
16811 	ILM_WALKER_RELE(to_ill);
16812 }
16813 
16814 /*
16815  * This function is called when all multicast memberships needs
16816  * to be moved from "from_ill" to "to_ill" for IPv6. This function is
16817  * called only once unlike the IPv4 counterpart where it is called after
16818  * every logical interface is moved. The reason is due to multicast
16819  * memberships are joined using an interface address in IPv4 while in
16820  * IPv6, interface index is used.
16821  */
16822 static void
16823 ilm_move_v6(ill_t *from_ill, ill_t *to_ill, int ifindex)
16824 {
16825 	ilm_t	*ilm;
16826 	ilm_t	*ilm_next;
16827 	ilm_t	*new_ilm;
16828 	ilm_t	**ilmp;
16829 	int	count;
16830 	char buf[INET6_ADDRSTRLEN];
16831 	in6_addr_t ipv6_snm = ipv6_solicited_node_mcast;
16832 	ip_stack_t	*ipst = from_ill->ill_ipst;
16833 
16834 	ASSERT(MUTEX_HELD(&to_ill->ill_lock));
16835 	ASSERT(MUTEX_HELD(&from_ill->ill_lock));
16836 	ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock));
16837 
16838 	if (ifindex == 0) {
16839 		/*
16840 		 * Form the solicited node mcast address which is used later.
16841 		 */
16842 		ipif_t *ipif;
16843 
16844 		ipif = from_ill->ill_ipif;
16845 		ASSERT(ipif->ipif_id == 0);
16846 
16847 		ipv6_snm.s6_addr32[3] |= ipif->ipif_v6lcl_addr.s6_addr32[3];
16848 	}
16849 
16850 	ilmp = &from_ill->ill_ilm;
16851 	for (ilm = from_ill->ill_ilm; ilm != NULL; ilm = ilm_next) {
16852 		ilm_next = ilm->ilm_next;
16853 
16854 		if (ilm->ilm_flags & ILM_DELETED) {
16855 			ilmp = &ilm->ilm_next;
16856 			continue;
16857 		}
16858 
16859 		new_ilm = ilm_lookup_ill_index_v6(to_ill, &ilm->ilm_v6addr,
16860 		    ilm->ilm_orig_ifindex, ilm->ilm_zoneid);
16861 		ASSERT(ilm->ilm_orig_ifindex != 0);
16862 		if (ilm->ilm_orig_ifindex == ifindex) {
16863 			/*
16864 			 * We are failing back multicast memberships.
16865 			 * If the same ilm exists in to_ill, it means somebody
16866 			 * has joined the same group there e.g. ff02::1
16867 			 * is joined within the kernel when the interfaces
16868 			 * came UP.
16869 			 */
16870 			ASSERT(ilm->ilm_ipif == NULL);
16871 			if (new_ilm != NULL) {
16872 				new_ilm->ilm_refcnt += ilm->ilm_refcnt;
16873 				if (new_ilm->ilm_fmode != MODE_IS_EXCLUDE ||
16874 				    !SLIST_IS_EMPTY(new_ilm->ilm_filter)) {
16875 					new_ilm->ilm_is_new = B_TRUE;
16876 				}
16877 			} else {
16878 				/*
16879 				 * check if we can just move the ilm
16880 				 */
16881 				if (from_ill->ill_ilm_walker_cnt != 0) {
16882 					/*
16883 					 * We have walkers we cannot move
16884 					 * the ilm, so allocate a new ilm,
16885 					 * this (old) ilm will be marked
16886 					 * ILM_DELETED at the end of the loop
16887 					 * and will be freed when the
16888 					 * last walker exits.
16889 					 */
16890 					new_ilm = (ilm_t *)mi_zalloc
16891 					    (sizeof (ilm_t));
16892 					if (new_ilm == NULL) {
16893 						ip0dbg(("ilm_move_v6: "
16894 						    "FAILBACK of IPv6"
16895 						    " multicast address %s : "
16896 						    "from %s to"
16897 						    " %s failed : ENOMEM \n",
16898 						    inet_ntop(AF_INET6,
16899 						    &ilm->ilm_v6addr, buf,
16900 						    sizeof (buf)),
16901 						    from_ill->ill_name,
16902 						    to_ill->ill_name));
16903 
16904 							ilmp = &ilm->ilm_next;
16905 							continue;
16906 					}
16907 					*new_ilm = *ilm;
16908 					/*
16909 					 * we don't want new_ilm linked to
16910 					 * ilm's filter list.
16911 					 */
16912 					new_ilm->ilm_filter = NULL;
16913 				} else {
16914 					/*
16915 					 * No walkers we can move the ilm.
16916 					 * lets take it out of the list.
16917 					 */
16918 					*ilmp = ilm->ilm_next;
16919 					ilm->ilm_next = NULL;
16920 					new_ilm = ilm;
16921 				}
16922 
16923 				/*
16924 				 * if this is the first ilm for the group
16925 				 * set ilm_notify_driver so that we notify the
16926 				 * driver in ilm_send_multicast_reqs.
16927 				 */
16928 				if (ilm_lookup_ill_v6(to_ill,
16929 				    &new_ilm->ilm_v6addr, ALL_ZONES) == NULL)
16930 					new_ilm->ilm_notify_driver = B_TRUE;
16931 
16932 				new_ilm->ilm_ill = to_ill;
16933 				/* Add to the to_ill's list */
16934 				new_ilm->ilm_next = to_ill->ill_ilm;
16935 				to_ill->ill_ilm = new_ilm;
16936 				/*
16937 				 * set the flag so that mld_joingroup is
16938 				 * called in ilm_send_multicast_reqs().
16939 				 */
16940 				new_ilm->ilm_is_new = B_TRUE;
16941 			}
16942 			goto bottom;
16943 		} else if (ifindex != 0) {
16944 			/*
16945 			 * If this is FAILBACK (ifindex != 0) and the ifindex
16946 			 * has not matched above, look at the next ilm.
16947 			 */
16948 			ilmp = &ilm->ilm_next;
16949 			continue;
16950 		}
16951 		/*
16952 		 * If we are here, it means ifindex is 0. Failover
16953 		 * everything.
16954 		 *
16955 		 * We need to handle solicited node mcast address
16956 		 * and all_nodes mcast address differently as they
16957 		 * are joined witin the kenrel (ipif_multicast_up)
16958 		 * and potentially from the userland. We are called
16959 		 * after the ipifs of from_ill has been moved.
16960 		 * If we still find ilms on ill with solicited node
16961 		 * mcast address or all_nodes mcast address, it must
16962 		 * belong to the UP interface that has not moved e.g.
16963 		 * ipif_id 0 with the link local prefix does not move.
16964 		 * We join this on the new ill accounting for all the
16965 		 * userland memberships so that applications don't
16966 		 * see any failure.
16967 		 *
16968 		 * We need to make sure that we account only for the
16969 		 * solicited node and all node multicast addresses
16970 		 * that was brought UP on these. In the case of
16971 		 * a failover from A to B, we might have ilms belonging
16972 		 * to A (ilm_orig_ifindex pointing at A) on B accounting
16973 		 * for the membership from the userland. If we are failing
16974 		 * over from B to C now, we will find the ones belonging
16975 		 * to A on B. These don't account for the ill_ipif_up_count.
16976 		 * They just move from B to C. The check below on
16977 		 * ilm_orig_ifindex ensures that.
16978 		 */
16979 		if ((ilm->ilm_orig_ifindex ==
16980 		    from_ill->ill_phyint->phyint_ifindex) &&
16981 		    (IN6_ARE_ADDR_EQUAL(&ipv6_snm, &ilm->ilm_v6addr) ||
16982 		    IN6_ARE_ADDR_EQUAL(&ipv6_all_hosts_mcast,
16983 		    &ilm->ilm_v6addr))) {
16984 			ASSERT(ilm->ilm_refcnt > 0);
16985 			count = ilm->ilm_refcnt - from_ill->ill_ipif_up_count;
16986 			/*
16987 			 * For indentation reasons, we are not using a
16988 			 * "else" here.
16989 			 */
16990 			if (count == 0) {
16991 				ilmp = &ilm->ilm_next;
16992 				continue;
16993 			}
16994 			ilm->ilm_refcnt -= count;
16995 			if (new_ilm != NULL) {
16996 				/*
16997 				 * Can find one with the same
16998 				 * ilm_orig_ifindex, if we are failing
16999 				 * over to a STANDBY. This happens
17000 				 * when somebody wants to join a group
17001 				 * on a STANDBY interface and we
17002 				 * internally join on a different one.
17003 				 * If we had joined on from_ill then, a
17004 				 * failover now will find a new ilm
17005 				 * with this index.
17006 				 */
17007 				ip1dbg(("ilm_move_v6: FAILOVER, found"
17008 				    " new ilm on %s, group address %s\n",
17009 				    to_ill->ill_name,
17010 				    inet_ntop(AF_INET6,
17011 				    &ilm->ilm_v6addr, buf,
17012 				    sizeof (buf))));
17013 				new_ilm->ilm_refcnt += count;
17014 				if (new_ilm->ilm_fmode != MODE_IS_EXCLUDE ||
17015 				    !SLIST_IS_EMPTY(new_ilm->ilm_filter)) {
17016 					new_ilm->ilm_is_new = B_TRUE;
17017 				}
17018 			} else {
17019 				new_ilm = (ilm_t *)mi_zalloc(sizeof (ilm_t));
17020 				if (new_ilm == NULL) {
17021 					ip0dbg(("ilm_move_v6: FAILOVER of IPv6"
17022 					    " multicast address %s : from %s to"
17023 					    " %s failed : ENOMEM \n",
17024 					    inet_ntop(AF_INET6,
17025 					    &ilm->ilm_v6addr, buf,
17026 					    sizeof (buf)), from_ill->ill_name,
17027 					    to_ill->ill_name));
17028 					ilmp = &ilm->ilm_next;
17029 					continue;
17030 				}
17031 				*new_ilm = *ilm;
17032 				new_ilm->ilm_filter = NULL;
17033 				new_ilm->ilm_refcnt = count;
17034 				new_ilm->ilm_timer = INFINITY;
17035 				new_ilm->ilm_rtx.rtx_timer = INFINITY;
17036 				new_ilm->ilm_is_new = B_TRUE;
17037 				/*
17038 				 * If the to_ill has not joined this
17039 				 * group we need to tell the driver in
17040 				 * ill_send_multicast_reqs.
17041 				 */
17042 				if (ilm_lookup_ill_v6(to_ill,
17043 				    &new_ilm->ilm_v6addr, ALL_ZONES) == NULL)
17044 					new_ilm->ilm_notify_driver = B_TRUE;
17045 
17046 				new_ilm->ilm_ill = to_ill;
17047 				/* Add to the to_ill's list */
17048 				new_ilm->ilm_next = to_ill->ill_ilm;
17049 				to_ill->ill_ilm = new_ilm;
17050 				ASSERT(new_ilm->ilm_ipif == NULL);
17051 			}
17052 			if (ilm->ilm_refcnt == 0) {
17053 				goto bottom;
17054 			} else {
17055 				new_ilm->ilm_fmode = MODE_IS_EXCLUDE;
17056 				CLEAR_SLIST(new_ilm->ilm_filter);
17057 				ilmp = &ilm->ilm_next;
17058 			}
17059 			continue;
17060 		} else {
17061 			/*
17062 			 * ifindex = 0 means, move everything pointing at
17063 			 * from_ill. We are doing this becuase ill has
17064 			 * either FAILED or became INACTIVE.
17065 			 *
17066 			 * As we would like to move things later back to
17067 			 * from_ill, we want to retain the identity of this
17068 			 * ilm. Thus, we don't blindly increment the reference
17069 			 * count on the ilms matching the address alone. We
17070 			 * need to match on the ilm_orig_index also. new_ilm
17071 			 * was obtained by matching ilm_orig_index also.
17072 			 */
17073 			if (new_ilm != NULL) {
17074 				/*
17075 				 * This is possible only if a previous restore
17076 				 * was incomplete i.e restore to
17077 				 * ilm_orig_ifindex left some ilms because
17078 				 * of some failures. Thus when we are failing
17079 				 * again, we might find our old friends there.
17080 				 */
17081 				ip1dbg(("ilm_move_v6: FAILOVER, found new ilm"
17082 				    " on %s, group address %s\n",
17083 				    to_ill->ill_name,
17084 				    inet_ntop(AF_INET6,
17085 				    &ilm->ilm_v6addr, buf,
17086 				    sizeof (buf))));
17087 				new_ilm->ilm_refcnt += ilm->ilm_refcnt;
17088 				if (new_ilm->ilm_fmode != MODE_IS_EXCLUDE ||
17089 				    !SLIST_IS_EMPTY(new_ilm->ilm_filter)) {
17090 					new_ilm->ilm_is_new = B_TRUE;
17091 				}
17092 			} else {
17093 				if (from_ill->ill_ilm_walker_cnt != 0) {
17094 					new_ilm = (ilm_t *)
17095 					    mi_zalloc(sizeof (ilm_t));
17096 					if (new_ilm == NULL) {
17097 						ip0dbg(("ilm_move_v6: "
17098 						    "FAILOVER of IPv6"
17099 						    " multicast address %s : "
17100 						    "from %s to"
17101 						    " %s failed : ENOMEM \n",
17102 						    inet_ntop(AF_INET6,
17103 						    &ilm->ilm_v6addr, buf,
17104 						    sizeof (buf)),
17105 						    from_ill->ill_name,
17106 						    to_ill->ill_name));
17107 
17108 							ilmp = &ilm->ilm_next;
17109 							continue;
17110 					}
17111 					*new_ilm = *ilm;
17112 					new_ilm->ilm_filter = NULL;
17113 				} else {
17114 					*ilmp = ilm->ilm_next;
17115 					new_ilm = ilm;
17116 				}
17117 				/*
17118 				 * If the to_ill has not joined this
17119 				 * group we need to tell the driver in
17120 				 * ill_send_multicast_reqs.
17121 				 */
17122 				if (ilm_lookup_ill_v6(to_ill,
17123 				    &new_ilm->ilm_v6addr, ALL_ZONES) == NULL)
17124 					new_ilm->ilm_notify_driver = B_TRUE;
17125 
17126 				/* Add to the to_ill's list */
17127 				new_ilm->ilm_next = to_ill->ill_ilm;
17128 				to_ill->ill_ilm = new_ilm;
17129 				ASSERT(ilm->ilm_ipif == NULL);
17130 				new_ilm->ilm_ill = to_ill;
17131 				new_ilm->ilm_is_new = B_TRUE;
17132 			}
17133 
17134 		}
17135 
17136 bottom:
17137 		/*
17138 		 * Revert multicast filter state to (EXCLUDE, NULL).
17139 		 * new_ilm->ilm_is_new should already be set if needed.
17140 		 */
17141 		new_ilm->ilm_fmode = MODE_IS_EXCLUDE;
17142 		CLEAR_SLIST(new_ilm->ilm_filter);
17143 		/*
17144 		 * We allocated/got a new ilm, free the old one.
17145 		 */
17146 		if (new_ilm != ilm) {
17147 			if (from_ill->ill_ilm_walker_cnt == 0) {
17148 				*ilmp = ilm->ilm_next;
17149 				ilm->ilm_next = NULL;
17150 				FREE_SLIST(ilm->ilm_filter);
17151 				FREE_SLIST(ilm->ilm_pendsrcs);
17152 				FREE_SLIST(ilm->ilm_rtx.rtx_allow);
17153 				FREE_SLIST(ilm->ilm_rtx.rtx_block);
17154 				mi_free((char *)ilm);
17155 			} else {
17156 				ilm->ilm_flags |= ILM_DELETED;
17157 				from_ill->ill_ilm_cleanup_reqd = 1;
17158 				ilmp = &ilm->ilm_next;
17159 			}
17160 		}
17161 	}
17162 }
17163 
17164 /*
17165  * Move all the multicast memberships to to_ill. Called when
17166  * an ipif moves from "from_ill" to "to_ill". This function is slightly
17167  * different from IPv6 counterpart as multicast memberships are associated
17168  * with ills in IPv6. This function is called after every ipif is moved
17169  * unlike IPv6, where it is moved only once.
17170  */
17171 static void
17172 ilm_move_v4(ill_t *from_ill, ill_t *to_ill, ipif_t *ipif)
17173 {
17174 	ilm_t	*ilm;
17175 	ilm_t	*ilm_next;
17176 	ilm_t	*new_ilm;
17177 	ilm_t	**ilmp;
17178 	ip_stack_t	*ipst = from_ill->ill_ipst;
17179 
17180 	ASSERT(MUTEX_HELD(&to_ill->ill_lock));
17181 	ASSERT(MUTEX_HELD(&from_ill->ill_lock));
17182 	ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock));
17183 
17184 	ilmp = &from_ill->ill_ilm;
17185 	for (ilm = from_ill->ill_ilm; ilm != NULL; ilm = ilm_next) {
17186 		ilm_next = ilm->ilm_next;
17187 
17188 		if (ilm->ilm_flags & ILM_DELETED) {
17189 			ilmp = &ilm->ilm_next;
17190 			continue;
17191 		}
17192 
17193 		ASSERT(ilm->ilm_ipif != NULL);
17194 
17195 		if (ilm->ilm_ipif != ipif) {
17196 			ilmp = &ilm->ilm_next;
17197 			continue;
17198 		}
17199 
17200 		if (V4_PART_OF_V6(ilm->ilm_v6addr) ==
17201 		    htonl(INADDR_ALLHOSTS_GROUP)) {
17202 			new_ilm = ilm_lookup_ipif(ipif,
17203 			    V4_PART_OF_V6(ilm->ilm_v6addr));
17204 			if (new_ilm != NULL) {
17205 				new_ilm->ilm_refcnt += ilm->ilm_refcnt;
17206 				/*
17207 				 * We still need to deal with the from_ill.
17208 				 */
17209 				new_ilm->ilm_is_new = B_TRUE;
17210 				new_ilm->ilm_fmode = MODE_IS_EXCLUDE;
17211 				CLEAR_SLIST(new_ilm->ilm_filter);
17212 				goto delete_ilm;
17213 			}
17214 			/*
17215 			 * If we could not find one e.g. ipif is
17216 			 * still down on to_ill, we add this ilm
17217 			 * on ill_new to preserve the reference
17218 			 * count.
17219 			 */
17220 		}
17221 		/*
17222 		 * When ipifs move, ilms always move with it
17223 		 * to the NEW ill. Thus we should never be
17224 		 * able to find ilm till we really move it here.
17225 		 */
17226 		ASSERT(ilm_lookup_ipif(ipif,
17227 		    V4_PART_OF_V6(ilm->ilm_v6addr)) == NULL);
17228 
17229 		if (from_ill->ill_ilm_walker_cnt != 0) {
17230 			new_ilm = (ilm_t *)mi_zalloc(sizeof (ilm_t));
17231 			if (new_ilm == NULL) {
17232 				char buf[INET6_ADDRSTRLEN];
17233 				ip0dbg(("ilm_move_v4: FAILBACK of IPv4"
17234 				    " multicast address %s : "
17235 				    "from %s to"
17236 				    " %s failed : ENOMEM \n",
17237 				    inet_ntop(AF_INET,
17238 				    &ilm->ilm_v6addr, buf,
17239 				    sizeof (buf)),
17240 				    from_ill->ill_name,
17241 				    to_ill->ill_name));
17242 
17243 				ilmp = &ilm->ilm_next;
17244 				continue;
17245 			}
17246 			*new_ilm = *ilm;
17247 			/* We don't want new_ilm linked to ilm's filter list */
17248 			new_ilm->ilm_filter = NULL;
17249 		} else {
17250 			/* Remove from the list */
17251 			*ilmp = ilm->ilm_next;
17252 			new_ilm = ilm;
17253 		}
17254 
17255 		/*
17256 		 * If we have never joined this group on the to_ill
17257 		 * make sure we tell the driver.
17258 		 */
17259 		if (ilm_lookup_ill_v6(to_ill, &new_ilm->ilm_v6addr,
17260 		    ALL_ZONES) == NULL)
17261 			new_ilm->ilm_notify_driver = B_TRUE;
17262 
17263 		/* Add to the to_ill's list */
17264 		new_ilm->ilm_next = to_ill->ill_ilm;
17265 		to_ill->ill_ilm = new_ilm;
17266 		new_ilm->ilm_is_new = B_TRUE;
17267 
17268 		/*
17269 		 * Revert multicast filter state to (EXCLUDE, NULL)
17270 		 */
17271 		new_ilm->ilm_fmode = MODE_IS_EXCLUDE;
17272 		CLEAR_SLIST(new_ilm->ilm_filter);
17273 
17274 		/*
17275 		 * Delete only if we have allocated a new ilm.
17276 		 */
17277 		if (new_ilm != ilm) {
17278 delete_ilm:
17279 			if (from_ill->ill_ilm_walker_cnt == 0) {
17280 				/* Remove from the list */
17281 				*ilmp = ilm->ilm_next;
17282 				ilm->ilm_next = NULL;
17283 				FREE_SLIST(ilm->ilm_filter);
17284 				FREE_SLIST(ilm->ilm_pendsrcs);
17285 				FREE_SLIST(ilm->ilm_rtx.rtx_allow);
17286 				FREE_SLIST(ilm->ilm_rtx.rtx_block);
17287 				mi_free((char *)ilm);
17288 			} else {
17289 				ilm->ilm_flags |= ILM_DELETED;
17290 				from_ill->ill_ilm_cleanup_reqd = 1;
17291 				ilmp = &ilm->ilm_next;
17292 			}
17293 		}
17294 	}
17295 }
17296 
17297 static uint_t
17298 ipif_get_id(ill_t *ill, uint_t id)
17299 {
17300 	uint_t	unit;
17301 	ipif_t	*tipif;
17302 	boolean_t found = B_FALSE;
17303 	ip_stack_t	*ipst = ill->ill_ipst;
17304 
17305 	/*
17306 	 * During failback, we want to go back to the same id
17307 	 * instead of the smallest id so that the original
17308 	 * configuration is maintained. id is non-zero in that
17309 	 * case.
17310 	 */
17311 	if (id != 0) {
17312 		/*
17313 		 * While failing back, if we still have an ipif with
17314 		 * MAX_ADDRS_PER_IF, it means this will be replaced
17315 		 * as soon as we return from this function. It was
17316 		 * to set to MAX_ADDRS_PER_IF by the caller so that
17317 		 * we can choose the smallest id. Thus we return zero
17318 		 * in that case ignoring the hint.
17319 		 */
17320 		if (ill->ill_ipif->ipif_id == MAX_ADDRS_PER_IF)
17321 			return (0);
17322 		for (tipif = ill->ill_ipif; tipif != NULL;
17323 		    tipif = tipif->ipif_next) {
17324 			if (tipif->ipif_id == id) {
17325 				found = B_TRUE;
17326 				break;
17327 			}
17328 		}
17329 		/*
17330 		 * If somebody already plumbed another logical
17331 		 * with the same id, we won't be able to find it.
17332 		 */
17333 		if (!found)
17334 			return (id);
17335 	}
17336 	for (unit = 0; unit <= ipst->ips_ip_addrs_per_if; unit++) {
17337 		found = B_FALSE;
17338 		for (tipif = ill->ill_ipif; tipif != NULL;
17339 		    tipif = tipif->ipif_next) {
17340 			if (tipif->ipif_id == unit) {
17341 				found = B_TRUE;
17342 				break;
17343 			}
17344 		}
17345 		if (!found)
17346 			break;
17347 	}
17348 	return (unit);
17349 }
17350 
17351 /* ARGSUSED */
17352 static int
17353 ipif_move(ipif_t *ipif, ill_t *to_ill, queue_t *q, mblk_t *mp,
17354     ipif_t **rep_ipif_ptr)
17355 {
17356 	ill_t	*from_ill;
17357 	ipif_t	*rep_ipif;
17358 	uint_t	unit;
17359 	int err = 0;
17360 	ipif_t	*to_ipif;
17361 	struct iocblk	*iocp;
17362 	boolean_t failback_cmd;
17363 	boolean_t remove_ipif;
17364 	int	rc;
17365 	ip_stack_t	*ipst;
17366 
17367 	ASSERT(IAM_WRITER_ILL(to_ill));
17368 	ASSERT(IAM_WRITER_IPIF(ipif));
17369 
17370 	iocp = (struct iocblk *)mp->b_rptr;
17371 	failback_cmd = (iocp->ioc_cmd == SIOCLIFFAILBACK);
17372 	remove_ipif = B_FALSE;
17373 
17374 	from_ill = ipif->ipif_ill;
17375 	ipst = from_ill->ill_ipst;
17376 
17377 	ASSERT(MUTEX_HELD(&to_ill->ill_lock));
17378 	ASSERT(MUTEX_HELD(&from_ill->ill_lock));
17379 	ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock));
17380 
17381 	/*
17382 	 * Don't move LINK LOCAL addresses as they are tied to
17383 	 * physical interface.
17384 	 */
17385 	if (from_ill->ill_isv6 &&
17386 	    IN6_IS_ADDR_LINKLOCAL(&ipif->ipif_v6lcl_addr)) {
17387 		ipif->ipif_was_up = B_FALSE;
17388 		IPIF_UNMARK_MOVING(ipif);
17389 		return (0);
17390 	}
17391 
17392 	/*
17393 	 * We set the ipif_id to maximum so that the search for
17394 	 * ipif_id will pick the lowest number i.e 0 in the
17395 	 * following 2 cases :
17396 	 *
17397 	 * 1) We have a replacement ipif at the head of to_ill.
17398 	 *    We can't remove it yet as we can exceed ip_addrs_per_if
17399 	 *    on to_ill and hence the MOVE might fail. We want to
17400 	 *    remove it only if we could move the ipif. Thus, by
17401 	 *    setting it to the MAX value, we make the search in
17402 	 *    ipif_get_id return the zeroth id.
17403 	 *
17404 	 * 2) When DR pulls out the NIC and re-plumbs the interface,
17405 	 *    we might just have a zero address plumbed on the ipif
17406 	 *    with zero id in the case of IPv4. We remove that while
17407 	 *    doing the failback. We want to remove it only if we
17408 	 *    could move the ipif. Thus, by setting it to the MAX
17409 	 *    value, we make the search in ipif_get_id return the
17410 	 *    zeroth id.
17411 	 *
17412 	 * Both (1) and (2) are done only when when we are moving
17413 	 * an ipif (either due to failover/failback) which originally
17414 	 * belonged to this interface i.e the ipif_orig_ifindex is
17415 	 * the same as to_ill's ifindex. This is needed so that
17416 	 * FAILOVER from A -> B ( A failed) followed by FAILOVER
17417 	 * from B -> A (B is being removed from the group) and
17418 	 * FAILBACK from A -> B restores the original configuration.
17419 	 * Without the check for orig_ifindex, the second FAILOVER
17420 	 * could make the ipif belonging to B replace the A's zeroth
17421 	 * ipif and the subsequent failback re-creating the replacement
17422 	 * ipif again.
17423 	 *
17424 	 * NOTE : We created the replacement ipif when we did a
17425 	 * FAILOVER (See below). We could check for FAILBACK and
17426 	 * then look for replacement ipif to be removed. But we don't
17427 	 * want to do that because we wan't to allow the possibility
17428 	 * of a FAILOVER from A -> B (which creates the replacement ipif),
17429 	 * followed by a *FAILOVER* from B -> A instead of a FAILBACK
17430 	 * from B -> A.
17431 	 */
17432 	to_ipif = to_ill->ill_ipif;
17433 	if ((to_ill->ill_phyint->phyint_ifindex ==
17434 	    ipif->ipif_orig_ifindex) &&
17435 	    IPIF_REPL_CHECK(to_ipif, failback_cmd)) {
17436 		ASSERT(to_ipif->ipif_id == 0);
17437 		remove_ipif = B_TRUE;
17438 		to_ipif->ipif_id = MAX_ADDRS_PER_IF;
17439 	}
17440 	/*
17441 	 * Find the lowest logical unit number on the to_ill.
17442 	 * If we are failing back, try to get the original id
17443 	 * rather than the lowest one so that the original
17444 	 * configuration is maintained.
17445 	 *
17446 	 * XXX need a better scheme for this.
17447 	 */
17448 	if (failback_cmd) {
17449 		unit = ipif_get_id(to_ill, ipif->ipif_orig_ipifid);
17450 	} else {
17451 		unit = ipif_get_id(to_ill, 0);
17452 	}
17453 
17454 	/* Reset back to zero in case we fail below */
17455 	if (to_ipif->ipif_id == MAX_ADDRS_PER_IF)
17456 		to_ipif->ipif_id = 0;
17457 
17458 	if (unit == ipst->ips_ip_addrs_per_if) {
17459 		ipif->ipif_was_up = B_FALSE;
17460 		IPIF_UNMARK_MOVING(ipif);
17461 		return (EINVAL);
17462 	}
17463 
17464 	/*
17465 	 * ipif is ready to move from "from_ill" to "to_ill".
17466 	 *
17467 	 * 1) If we are moving ipif with id zero, create a
17468 	 *    replacement ipif for this ipif on from_ill. If this fails
17469 	 *    fail the MOVE operation.
17470 	 *
17471 	 * 2) Remove the replacement ipif on to_ill if any.
17472 	 *    We could remove the replacement ipif when we are moving
17473 	 *    the ipif with id zero. But what if somebody already
17474 	 *    unplumbed it ? Thus we always remove it if it is present.
17475 	 *    We want to do it only if we are sure we are going to
17476 	 *    move the ipif to to_ill which is why there are no
17477 	 *    returns due to error till ipif is linked to to_ill.
17478 	 *    Note that the first ipif that we failback will always
17479 	 *    be zero if it is present.
17480 	 */
17481 	if (ipif->ipif_id == 0) {
17482 		ipaddr_t inaddr_any = INADDR_ANY;
17483 
17484 		rep_ipif = (ipif_t *)mi_alloc(sizeof (ipif_t), BPRI_MED);
17485 		if (rep_ipif == NULL) {
17486 			ipif->ipif_was_up = B_FALSE;
17487 			IPIF_UNMARK_MOVING(ipif);
17488 			return (ENOMEM);
17489 		}
17490 		*rep_ipif = ipif_zero;
17491 		/*
17492 		 * Before we put the ipif on the list, store the addresses
17493 		 * as mapped addresses as some of the ioctls e.g SIOCGIFADDR
17494 		 * assumes so. This logic is not any different from what
17495 		 * ipif_allocate does.
17496 		 */
17497 		IN6_IPADDR_TO_V4MAPPED(inaddr_any,
17498 		    &rep_ipif->ipif_v6lcl_addr);
17499 		IN6_IPADDR_TO_V4MAPPED(inaddr_any,
17500 		    &rep_ipif->ipif_v6src_addr);
17501 		IN6_IPADDR_TO_V4MAPPED(inaddr_any,
17502 		    &rep_ipif->ipif_v6subnet);
17503 		IN6_IPADDR_TO_V4MAPPED(inaddr_any,
17504 		    &rep_ipif->ipif_v6net_mask);
17505 		IN6_IPADDR_TO_V4MAPPED(inaddr_any,
17506 		    &rep_ipif->ipif_v6brd_addr);
17507 		IN6_IPADDR_TO_V4MAPPED(inaddr_any,
17508 		    &rep_ipif->ipif_v6pp_dst_addr);
17509 		/*
17510 		 * We mark IPIF_NOFAILOVER so that this can never
17511 		 * move.
17512 		 */
17513 		rep_ipif->ipif_flags = ipif->ipif_flags | IPIF_NOFAILOVER;
17514 		rep_ipif->ipif_flags &= ~IPIF_UP & ~IPIF_DUPLICATE;
17515 		rep_ipif->ipif_replace_zero = B_TRUE;
17516 		mutex_init(&rep_ipif->ipif_saved_ire_lock, NULL,
17517 		    MUTEX_DEFAULT, NULL);
17518 		rep_ipif->ipif_id = 0;
17519 		rep_ipif->ipif_ire_type = ipif->ipif_ire_type;
17520 		rep_ipif->ipif_ill = from_ill;
17521 		rep_ipif->ipif_orig_ifindex =
17522 		    from_ill->ill_phyint->phyint_ifindex;
17523 		/* Insert at head */
17524 		rep_ipif->ipif_next = from_ill->ill_ipif;
17525 		from_ill->ill_ipif = rep_ipif;
17526 		/*
17527 		 * We don't really care to let apps know about
17528 		 * this interface.
17529 		 */
17530 	}
17531 
17532 	if (remove_ipif) {
17533 		/*
17534 		 * We set to a max value above for this case to get
17535 		 * id zero. ASSERT that we did get one.
17536 		 */
17537 		ASSERT((to_ipif->ipif_id == 0) && (unit == 0));
17538 		rep_ipif = to_ipif;
17539 		to_ill->ill_ipif = rep_ipif->ipif_next;
17540 		rep_ipif->ipif_next = NULL;
17541 		/*
17542 		 * If some apps scanned and find this interface,
17543 		 * it is time to let them know, so that they can
17544 		 * delete it.
17545 		 */
17546 
17547 		*rep_ipif_ptr = rep_ipif;
17548 	}
17549 
17550 	/* Get it out of the ILL interface list. */
17551 	ipif_remove(ipif, B_FALSE);
17552 
17553 	/* Assign the new ill */
17554 	ipif->ipif_ill = to_ill;
17555 	ipif->ipif_id = unit;
17556 	/* id has already been checked */
17557 	rc = ipif_insert(ipif, B_FALSE, B_FALSE);
17558 	ASSERT(rc == 0);
17559 	/* Let SCTP update its list */
17560 	sctp_move_ipif(ipif, from_ill, to_ill);
17561 	/*
17562 	 * Handle the failover and failback of ipif_t between
17563 	 * ill_t that have differing maximum mtu values.
17564 	 */
17565 	if (ipif->ipif_mtu > to_ill->ill_max_mtu) {
17566 		if (ipif->ipif_saved_mtu == 0) {
17567 			/*
17568 			 * As this ipif_t is moving to an ill_t
17569 			 * that has a lower ill_max_mtu, its
17570 			 * ipif_mtu needs to be saved so it can
17571 			 * be restored during failback or during
17572 			 * failover to an ill_t which has a
17573 			 * higher ill_max_mtu.
17574 			 */
17575 			ipif->ipif_saved_mtu = ipif->ipif_mtu;
17576 			ipif->ipif_mtu = to_ill->ill_max_mtu;
17577 		} else {
17578 			/*
17579 			 * The ipif_t is, once again, moving to
17580 			 * an ill_t that has a lower maximum mtu
17581 			 * value.
17582 			 */
17583 			ipif->ipif_mtu = to_ill->ill_max_mtu;
17584 		}
17585 	} else if (ipif->ipif_mtu < to_ill->ill_max_mtu &&
17586 	    ipif->ipif_saved_mtu != 0) {
17587 		/*
17588 		 * The mtu of this ipif_t had to be reduced
17589 		 * during an earlier failover; this is an
17590 		 * opportunity for it to be increased (either as
17591 		 * part of another failover or a failback).
17592 		 */
17593 		if (ipif->ipif_saved_mtu <= to_ill->ill_max_mtu) {
17594 			ipif->ipif_mtu = ipif->ipif_saved_mtu;
17595 			ipif->ipif_saved_mtu = 0;
17596 		} else {
17597 			ipif->ipif_mtu = to_ill->ill_max_mtu;
17598 		}
17599 	}
17600 
17601 	/*
17602 	 * We preserve all the other fields of the ipif including
17603 	 * ipif_saved_ire_mp. The routes that are saved here will
17604 	 * be recreated on the new interface and back on the old
17605 	 * interface when we move back.
17606 	 */
17607 	ASSERT(ipif->ipif_arp_del_mp == NULL);
17608 
17609 	return (err);
17610 }
17611 
17612 static int
17613 ipif_move_all(ill_t *from_ill, ill_t *to_ill, queue_t *q, mblk_t *mp,
17614     int ifindex, ipif_t **rep_ipif_ptr)
17615 {
17616 	ipif_t *mipif;
17617 	ipif_t *ipif_next;
17618 	int err;
17619 
17620 	/*
17621 	 * We don't really try to MOVE back things if some of the
17622 	 * operations fail. The daemon will take care of moving again
17623 	 * later on.
17624 	 */
17625 	for (mipif = from_ill->ill_ipif; mipif != NULL; mipif = ipif_next) {
17626 		ipif_next = mipif->ipif_next;
17627 		if (!(mipif->ipif_flags & IPIF_NOFAILOVER) &&
17628 		    (ifindex == 0 || ifindex == mipif->ipif_orig_ifindex)) {
17629 
17630 			err = ipif_move(mipif, to_ill, q, mp, rep_ipif_ptr);
17631 
17632 			/*
17633 			 * When the MOVE fails, it is the job of the
17634 			 * application to take care of this properly
17635 			 * i.e try again if it is ENOMEM.
17636 			 */
17637 			if (mipif->ipif_ill != from_ill) {
17638 				/*
17639 				 * ipif has moved.
17640 				 *
17641 				 * Move the multicast memberships associated
17642 				 * with this ipif to the new ill. For IPv6, we
17643 				 * do it once after all the ipifs are moved
17644 				 * (in ill_move) as they are not associated
17645 				 * with ipifs.
17646 				 *
17647 				 * We need to move the ilms as the ipif has
17648 				 * already been moved to a new ill even
17649 				 * in the case of errors. Neither
17650 				 * ilm_free(ipif) will find the ilm
17651 				 * when somebody unplumbs this ipif nor
17652 				 * ilm_delete(ilm) will be able to find the
17653 				 * ilm, if we don't move now.
17654 				 */
17655 				if (!from_ill->ill_isv6)
17656 					ilm_move_v4(from_ill, to_ill, mipif);
17657 			}
17658 
17659 			if (err != 0)
17660 				return (err);
17661 		}
17662 	}
17663 	return (0);
17664 }
17665 
17666 static int
17667 ill_move(ill_t *from_ill, ill_t *to_ill, queue_t *q, mblk_t *mp)
17668 {
17669 	int ifindex;
17670 	int err;
17671 	struct iocblk	*iocp;
17672 	ipif_t	*ipif;
17673 	ipif_t *rep_ipif_ptr = NULL;
17674 	ipif_t	*from_ipif = NULL;
17675 	boolean_t check_rep_if = B_FALSE;
17676 	ip_stack_t	*ipst = from_ill->ill_ipst;
17677 
17678 	iocp = (struct iocblk *)mp->b_rptr;
17679 	if (iocp->ioc_cmd == SIOCLIFFAILOVER) {
17680 		/*
17681 		 * Move everything pointing at from_ill to to_ill.
17682 		 * We acheive this by passing in 0 as ifindex.
17683 		 */
17684 		ifindex = 0;
17685 	} else {
17686 		/*
17687 		 * Move everything pointing at from_ill whose original
17688 		 * ifindex of connp, ipif, ilm points at to_ill->ill_index.
17689 		 * We acheive this by passing in ifindex rather than 0.
17690 		 * Multicast vifs, ilgs move implicitly because ipifs move.
17691 		 */
17692 		ASSERT(iocp->ioc_cmd == SIOCLIFFAILBACK);
17693 		ifindex = to_ill->ill_phyint->phyint_ifindex;
17694 	}
17695 
17696 	/*
17697 	 * Determine if there is at least one ipif that would move from
17698 	 * 'from_ill' to 'to_ill'. If so, it is possible that the replacement
17699 	 * ipif (if it exists) on the to_ill would be consumed as a result of
17700 	 * the move, in which case we need to quiesce the replacement ipif also.
17701 	 */
17702 	for (from_ipif = from_ill->ill_ipif; from_ipif != NULL;
17703 	    from_ipif = from_ipif->ipif_next) {
17704 		if (((ifindex == 0) ||
17705 		    (ifindex == from_ipif->ipif_orig_ifindex)) &&
17706 		    !(from_ipif->ipif_flags & IPIF_NOFAILOVER)) {
17707 			check_rep_if = B_TRUE;
17708 			break;
17709 		}
17710 	}
17711 
17712 
17713 	ill_down_ipifs(from_ill, mp, ifindex, B_TRUE);
17714 
17715 	GRAB_ILL_LOCKS(from_ill, to_ill);
17716 	if ((ipif = ill_quiescent_to_move(from_ill)) != NULL) {
17717 		(void) ipsq_pending_mp_add(NULL, ipif, q,
17718 		    mp, ILL_MOVE_OK);
17719 		RELEASE_ILL_LOCKS(from_ill, to_ill);
17720 		return (EINPROGRESS);
17721 	}
17722 
17723 	/* Check if the replacement ipif is quiescent to delete */
17724 	if (check_rep_if && IPIF_REPL_CHECK(to_ill->ill_ipif,
17725 	    (iocp->ioc_cmd == SIOCLIFFAILBACK))) {
17726 		to_ill->ill_ipif->ipif_state_flags |=
17727 		    IPIF_MOVING | IPIF_CHANGING;
17728 		if ((ipif = ill_quiescent_to_move(to_ill)) != NULL) {
17729 			(void) ipsq_pending_mp_add(NULL, ipif, q,
17730 			    mp, ILL_MOVE_OK);
17731 			RELEASE_ILL_LOCKS(from_ill, to_ill);
17732 			return (EINPROGRESS);
17733 		}
17734 	}
17735 	RELEASE_ILL_LOCKS(from_ill, to_ill);
17736 
17737 	ASSERT(!MUTEX_HELD(&to_ill->ill_lock));
17738 	rw_enter(&ipst->ips_ill_g_lock, RW_WRITER);
17739 	GRAB_ILL_LOCKS(from_ill, to_ill);
17740 	err = ipif_move_all(from_ill, to_ill, q, mp, ifindex, &rep_ipif_ptr);
17741 
17742 	/* ilm_move is done inside ipif_move for IPv4 */
17743 	if (err == 0 && from_ill->ill_isv6)
17744 		ilm_move_v6(from_ill, to_ill, ifindex);
17745 
17746 	RELEASE_ILL_LOCKS(from_ill, to_ill);
17747 	rw_exit(&ipst->ips_ill_g_lock);
17748 
17749 	/*
17750 	 * send rts messages and multicast messages.
17751 	 */
17752 	if (rep_ipif_ptr != NULL) {
17753 		if (rep_ipif_ptr->ipif_recovery_id != 0) {
17754 			(void) untimeout(rep_ipif_ptr->ipif_recovery_id);
17755 			rep_ipif_ptr->ipif_recovery_id = 0;
17756 		}
17757 		ip_rts_ifmsg(rep_ipif_ptr);
17758 		ip_rts_newaddrmsg(RTM_DELETE, 0, rep_ipif_ptr);
17759 #ifdef DEBUG
17760 		ipif_trace_cleanup(rep_ipif_ptr);
17761 #endif
17762 		mi_free(rep_ipif_ptr);
17763 	}
17764 
17765 	conn_move_ill(from_ill, to_ill, ifindex);
17766 
17767 	return (err);
17768 }
17769 
17770 /*
17771  * Used to extract arguments for FAILOVER/FAILBACK ioctls.
17772  * Also checks for the validity of the arguments.
17773  * Note: We are already exclusive inside the from group.
17774  * It is upto the caller to release refcnt on the to_ill's.
17775  */
17776 static int
17777 ip_extract_move_args(queue_t *q, mblk_t *mp, ill_t **ill_from_v4,
17778     ill_t **ill_from_v6, ill_t **ill_to_v4, ill_t **ill_to_v6)
17779 {
17780 	int dst_index;
17781 	ipif_t *ipif_v4, *ipif_v6;
17782 	struct lifreq *lifr;
17783 	mblk_t *mp1;
17784 	boolean_t exists;
17785 	sin_t	*sin;
17786 	int	err = 0;
17787 	ip_stack_t	*ipst;
17788 
17789 	if (CONN_Q(q))
17790 		ipst = CONNQ_TO_IPST(q);
17791 	else
17792 		ipst = ILLQ_TO_IPST(q);
17793 
17794 
17795 	if ((mp1 = mp->b_cont) == NULL)
17796 		return (EPROTO);
17797 
17798 	if ((mp1 = mp1->b_cont) == NULL)
17799 		return (EPROTO);
17800 
17801 	lifr = (struct lifreq *)mp1->b_rptr;
17802 	sin = (sin_t *)&lifr->lifr_addr;
17803 
17804 	/*
17805 	 * We operate on both IPv4 and IPv6. Thus, we don't allow IPv4/IPv6
17806 	 * specific operations.
17807 	 */
17808 	if (sin->sin_family != AF_UNSPEC)
17809 		return (EINVAL);
17810 
17811 	/*
17812 	 * Get ipif with id 0. We are writer on the from ill. So we can pass
17813 	 * NULLs for the last 4 args and we know the lookup won't fail
17814 	 * with EINPROGRESS.
17815 	 */
17816 	ipif_v4 = ipif_lookup_on_name(lifr->lifr_name,
17817 	    mi_strlen(lifr->lifr_name), B_FALSE, &exists, B_FALSE,
17818 	    ALL_ZONES, NULL, NULL, NULL, NULL, ipst);
17819 	ipif_v6 = ipif_lookup_on_name(lifr->lifr_name,
17820 	    mi_strlen(lifr->lifr_name), B_FALSE, &exists, B_TRUE,
17821 	    ALL_ZONES, NULL, NULL, NULL, NULL, ipst);
17822 
17823 	if (ipif_v4 == NULL && ipif_v6 == NULL)
17824 		return (ENXIO);
17825 
17826 	if (ipif_v4 != NULL) {
17827 		ASSERT(ipif_v4->ipif_refcnt != 0);
17828 		if (ipif_v4->ipif_id != 0) {
17829 			err = EINVAL;
17830 			goto done;
17831 		}
17832 
17833 		ASSERT(IAM_WRITER_IPIF(ipif_v4));
17834 		*ill_from_v4 = ipif_v4->ipif_ill;
17835 	}
17836 
17837 	if (ipif_v6 != NULL) {
17838 		ASSERT(ipif_v6->ipif_refcnt != 0);
17839 		if (ipif_v6->ipif_id != 0) {
17840 			err = EINVAL;
17841 			goto done;
17842 		}
17843 
17844 		ASSERT(IAM_WRITER_IPIF(ipif_v6));
17845 		*ill_from_v6 = ipif_v6->ipif_ill;
17846 	}
17847 
17848 	err = 0;
17849 	dst_index = lifr->lifr_movetoindex;
17850 	*ill_to_v4 = ill_lookup_on_ifindex(dst_index, B_FALSE,
17851 	    q, mp, ip_process_ioctl, &err, ipst);
17852 	if (err != 0) {
17853 		/*
17854 		 * There could be only v6.
17855 		 */
17856 		if (err != ENXIO)
17857 			goto done;
17858 		err = 0;
17859 	}
17860 
17861 	*ill_to_v6 = ill_lookup_on_ifindex(dst_index, B_TRUE,
17862 	    q, mp, ip_process_ioctl, &err, ipst);
17863 	if (err != 0) {
17864 		if (err != ENXIO)
17865 			goto done;
17866 		if (*ill_to_v4 == NULL) {
17867 			err = ENXIO;
17868 			goto done;
17869 		}
17870 		err = 0;
17871 	}
17872 
17873 	/*
17874 	 * If we have something to MOVE i.e "from" not NULL,
17875 	 * "to" should be non-NULL.
17876 	 */
17877 	if ((*ill_from_v4 != NULL && *ill_to_v4 == NULL) ||
17878 	    (*ill_from_v6 != NULL && *ill_to_v6 == NULL)) {
17879 		err = EINVAL;
17880 	}
17881 
17882 done:
17883 	if (ipif_v4 != NULL)
17884 		ipif_refrele(ipif_v4);
17885 	if (ipif_v6 != NULL)
17886 		ipif_refrele(ipif_v6);
17887 	return (err);
17888 }
17889 
17890 /*
17891  * FAILOVER and FAILBACK are modelled as MOVE operations.
17892  *
17893  * We don't check whether the MOVE is within the same group or
17894  * not, because this ioctl can be used as a generic mechanism
17895  * to failover from interface A to B, though things will function
17896  * only if they are really part of the same group. Moreover,
17897  * all ipifs may be down and hence temporarily out of the group.
17898  *
17899  * ipif's that need to be moved are first brought down; V4 ipifs are brought
17900  * down first and then V6.  For each we wait for the ipif's to become quiescent.
17901  * Bringing down the ipifs ensures that all ires pointing to these ipifs's
17902  * have been deleted and there are no active references. Once quiescent the
17903  * ipif's are moved and brought up on the new ill.
17904  *
17905  * Normally the source ill and destination ill belong to the same IPMP group
17906  * and hence the same ipsq_t. In the event they don't belong to the same
17907  * same group the two ipsq's are first merged into one ipsq - that of the
17908  * to_ill. The multicast memberships on the source and destination ill cannot
17909  * change during the move operation since multicast joins/leaves also have to
17910  * execute on the same ipsq and are hence serialized.
17911  */
17912 /* ARGSUSED */
17913 int
17914 ip_sioctl_move(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
17915     ip_ioctl_cmd_t *ipip, void *ifreq)
17916 {
17917 	ill_t *ill_to_v4 = NULL;
17918 	ill_t *ill_to_v6 = NULL;
17919 	ill_t *ill_from_v4 = NULL;
17920 	ill_t *ill_from_v6 = NULL;
17921 	int err = 0;
17922 
17923 	/*
17924 	 * setup from and to ill's, we can get EINPROGRESS only for
17925 	 * to_ill's.
17926 	 */
17927 	err = ip_extract_move_args(q, mp, &ill_from_v4, &ill_from_v6,
17928 	    &ill_to_v4, &ill_to_v6);
17929 
17930 	if (err != 0) {
17931 		ip0dbg(("ip_sioctl_move: extract args failed\n"));
17932 		goto done;
17933 	}
17934 
17935 	/*
17936 	 * nothing to do.
17937 	 */
17938 	if ((ill_from_v4 != NULL) && (ill_from_v4 == ill_to_v4)) {
17939 		goto done;
17940 	}
17941 
17942 	/*
17943 	 * nothing to do.
17944 	 */
17945 	if ((ill_from_v6 != NULL) && (ill_from_v6 == ill_to_v6)) {
17946 		goto done;
17947 	}
17948 
17949 	/*
17950 	 * Mark the ill as changing.
17951 	 * ILL_CHANGING flag is cleared when the ipif's are brought up
17952 	 * in ill_up_ipifs in case of error they are cleared below.
17953 	 */
17954 
17955 	GRAB_ILL_LOCKS(ill_from_v4, ill_from_v6);
17956 	if (ill_from_v4 != NULL)
17957 		ill_from_v4->ill_state_flags |= ILL_CHANGING;
17958 	if (ill_from_v6 != NULL)
17959 		ill_from_v6->ill_state_flags |= ILL_CHANGING;
17960 	RELEASE_ILL_LOCKS(ill_from_v4, ill_from_v6);
17961 
17962 	/*
17963 	 * Make sure that both src and dst are
17964 	 * in the same syncq group. If not make it happen.
17965 	 * We are not holding any locks because we are the writer
17966 	 * on the from_ipsq and we will hold locks in ill_merge_groups
17967 	 * to protect to_ipsq against changing.
17968 	 */
17969 	if (ill_from_v4 != NULL) {
17970 		if (ill_from_v4->ill_phyint->phyint_ipsq !=
17971 		    ill_to_v4->ill_phyint->phyint_ipsq) {
17972 			err = ill_merge_groups(ill_from_v4, ill_to_v4,
17973 			    NULL, mp, q);
17974 			goto err_ret;
17975 
17976 		}
17977 		ASSERT(!MUTEX_HELD(&ill_to_v4->ill_lock));
17978 	} else {
17979 
17980 		if (ill_from_v6->ill_phyint->phyint_ipsq !=
17981 		    ill_to_v6->ill_phyint->phyint_ipsq) {
17982 			err = ill_merge_groups(ill_from_v6, ill_to_v6,
17983 			    NULL, mp, q);
17984 			goto err_ret;
17985 
17986 		}
17987 		ASSERT(!MUTEX_HELD(&ill_to_v6->ill_lock));
17988 	}
17989 
17990 	/*
17991 	 * Now that the ipsq's have been merged and we are the writer
17992 	 * lets mark to_ill as changing as well.
17993 	 */
17994 
17995 	GRAB_ILL_LOCKS(ill_to_v4, ill_to_v6);
17996 	if (ill_to_v4 != NULL)
17997 		ill_to_v4->ill_state_flags |= ILL_CHANGING;
17998 	if (ill_to_v6 != NULL)
17999 		ill_to_v6->ill_state_flags |= ILL_CHANGING;
18000 	RELEASE_ILL_LOCKS(ill_to_v4, ill_to_v6);
18001 
18002 	/*
18003 	 * Its ok for us to proceed with the move even if
18004 	 * ill_pending_mp is non null on one of the from ill's as the reply
18005 	 * should not be looking at the ipif, it should only care about the
18006 	 * ill itself.
18007 	 */
18008 
18009 	/*
18010 	 * lets move ipv4 first.
18011 	 */
18012 	if (ill_from_v4 != NULL) {
18013 		ASSERT(IAM_WRITER_ILL(ill_to_v4));
18014 		ill_from_v4->ill_move_in_progress = B_TRUE;
18015 		ill_to_v4->ill_move_in_progress = B_TRUE;
18016 		ill_to_v4->ill_move_peer = ill_from_v4;
18017 		ill_from_v4->ill_move_peer = ill_to_v4;
18018 		err = ill_move(ill_from_v4, ill_to_v4, q, mp);
18019 	}
18020 
18021 	/*
18022 	 * Now lets move ipv6.
18023 	 */
18024 	if (err == 0 && ill_from_v6 != NULL) {
18025 		ASSERT(IAM_WRITER_ILL(ill_to_v6));
18026 		ill_from_v6->ill_move_in_progress = B_TRUE;
18027 		ill_to_v6->ill_move_in_progress = B_TRUE;
18028 		ill_to_v6->ill_move_peer = ill_from_v6;
18029 		ill_from_v6->ill_move_peer = ill_to_v6;
18030 		err = ill_move(ill_from_v6, ill_to_v6, q, mp);
18031 	}
18032 
18033 err_ret:
18034 	/*
18035 	 * EINPROGRESS means we are waiting for the ipif's that need to be
18036 	 * moved to become quiescent.
18037 	 */
18038 	if (err == EINPROGRESS) {
18039 		goto done;
18040 	}
18041 
18042 	/*
18043 	 * if err is set ill_up_ipifs will not be called
18044 	 * lets clear the flags.
18045 	 */
18046 
18047 	GRAB_ILL_LOCKS(ill_to_v4, ill_to_v6);
18048 	GRAB_ILL_LOCKS(ill_from_v4, ill_from_v6);
18049 	/*
18050 	 * Some of the clearing may be redundant. But it is simple
18051 	 * not making any extra checks.
18052 	 */
18053 	if (ill_from_v6 != NULL) {
18054 		ill_from_v6->ill_move_in_progress = B_FALSE;
18055 		ill_from_v6->ill_move_peer = NULL;
18056 		ill_from_v6->ill_state_flags &= ~ILL_CHANGING;
18057 	}
18058 	if (ill_from_v4 != NULL) {
18059 		ill_from_v4->ill_move_in_progress = B_FALSE;
18060 		ill_from_v4->ill_move_peer = NULL;
18061 		ill_from_v4->ill_state_flags &= ~ILL_CHANGING;
18062 	}
18063 	if (ill_to_v6 != NULL) {
18064 		ill_to_v6->ill_move_in_progress = B_FALSE;
18065 		ill_to_v6->ill_move_peer = NULL;
18066 		ill_to_v6->ill_state_flags &= ~ILL_CHANGING;
18067 	}
18068 	if (ill_to_v4 != NULL) {
18069 		ill_to_v4->ill_move_in_progress = B_FALSE;
18070 		ill_to_v4->ill_move_peer = NULL;
18071 		ill_to_v4->ill_state_flags &= ~ILL_CHANGING;
18072 	}
18073 
18074 	/*
18075 	 * Check for setting INACTIVE, if STANDBY is set and FAILED is not set.
18076 	 * Do this always to maintain proper state i.e even in case of errors.
18077 	 * As phyint_inactive looks at both v4 and v6 interfaces,
18078 	 * we need not call on both v4 and v6 interfaces.
18079 	 */
18080 	if (ill_from_v4 != NULL) {
18081 		if ((ill_from_v4->ill_phyint->phyint_flags &
18082 		    (PHYI_STANDBY | PHYI_FAILED)) == PHYI_STANDBY) {
18083 			phyint_inactive(ill_from_v4->ill_phyint);
18084 		}
18085 	} else if (ill_from_v6 != NULL) {
18086 		if ((ill_from_v6->ill_phyint->phyint_flags &
18087 		    (PHYI_STANDBY | PHYI_FAILED)) == PHYI_STANDBY) {
18088 			phyint_inactive(ill_from_v6->ill_phyint);
18089 		}
18090 	}
18091 
18092 	if (ill_to_v4 != NULL) {
18093 		if (ill_to_v4->ill_phyint->phyint_flags & PHYI_INACTIVE) {
18094 			ill_to_v4->ill_phyint->phyint_flags &= ~PHYI_INACTIVE;
18095 		}
18096 	} else if (ill_to_v6 != NULL) {
18097 		if (ill_to_v6->ill_phyint->phyint_flags & PHYI_INACTIVE) {
18098 			ill_to_v6->ill_phyint->phyint_flags &= ~PHYI_INACTIVE;
18099 		}
18100 	}
18101 
18102 	RELEASE_ILL_LOCKS(ill_to_v4, ill_to_v6);
18103 	RELEASE_ILL_LOCKS(ill_from_v4, ill_from_v6);
18104 
18105 no_err:
18106 	/*
18107 	 * lets bring the interfaces up on the to_ill.
18108 	 */
18109 	if (err == 0) {
18110 		err = ill_up_ipifs(ill_to_v4 == NULL ? ill_to_v6:ill_to_v4,
18111 		    q, mp);
18112 	}
18113 
18114 	if (err == 0) {
18115 		if (ill_from_v4 != NULL && ill_to_v4 != NULL)
18116 			ilm_send_multicast_reqs(ill_from_v4, ill_to_v4);
18117 
18118 		if (ill_from_v6 != NULL && ill_to_v6 != NULL)
18119 			ilm_send_multicast_reqs(ill_from_v6, ill_to_v6);
18120 	}
18121 done:
18122 
18123 	if (ill_to_v4 != NULL) {
18124 		ill_refrele(ill_to_v4);
18125 	}
18126 	if (ill_to_v6 != NULL) {
18127 		ill_refrele(ill_to_v6);
18128 	}
18129 
18130 	return (err);
18131 }
18132 
18133 static void
18134 ill_dl_down(ill_t *ill)
18135 {
18136 	/*
18137 	 * The ill is down; unbind but stay attached since we're still
18138 	 * associated with a PPA. If we have negotiated DLPI capabilites
18139 	 * with the data link service provider (IDS_OK) then reset them.
18140 	 * The interval between unbinding and rebinding is potentially
18141 	 * unbounded hence we cannot assume things will be the same.
18142 	 * The DLPI capabilities will be probed again when the data link
18143 	 * is brought up.
18144 	 */
18145 	mblk_t	*mp = ill->ill_unbind_mp;
18146 	hook_nic_event_t *info;
18147 
18148 	ip1dbg(("ill_dl_down(%s)\n", ill->ill_name));
18149 
18150 	ill->ill_unbind_mp = NULL;
18151 	if (mp != NULL) {
18152 		ip1dbg(("ill_dl_down: %s (%u) for %s\n",
18153 		    dl_primstr(*(int *)mp->b_rptr), *(int *)mp->b_rptr,
18154 		    ill->ill_name));
18155 		mutex_enter(&ill->ill_lock);
18156 		ill->ill_state_flags |= ILL_DL_UNBIND_IN_PROGRESS;
18157 		mutex_exit(&ill->ill_lock);
18158 		/*
18159 		 * Reset the capabilities if the negotiation is done or is
18160 		 * still in progress. Note that ill_capability_reset() will
18161 		 * set ill_dlpi_capab_state to IDS_UNKNOWN, so the subsequent
18162 		 * DL_CAPABILITY_ACK and DL_NOTE_CAPAB_RENEG will be ignored.
18163 		 *
18164 		 * Further, reset ill_capab_reneg to be B_FALSE so that the
18165 		 * subsequent DL_CAPABILITY_ACK can be ignored, to prevent
18166 		 * the capabilities renegotiation from happening.
18167 		 */
18168 		if (ill->ill_dlpi_capab_state != IDS_UNKNOWN)
18169 			ill_capability_reset(ill);
18170 		ill->ill_capab_reneg = B_FALSE;
18171 
18172 		ill_dlpi_send(ill, mp);
18173 	}
18174 
18175 	/*
18176 	 * Toss all of our multicast memberships.  We could keep them, but
18177 	 * then we'd have to do bookkeeping of any joins and leaves performed
18178 	 * by the application while the the interface is down (we can't just
18179 	 * issue them because arp cannot currently process AR_ENTRY_SQUERY's
18180 	 * on a downed interface).
18181 	 */
18182 	ill_leave_multicast(ill);
18183 
18184 	mutex_enter(&ill->ill_lock);
18185 
18186 	ill->ill_dl_up = 0;
18187 
18188 	if ((info = ill->ill_nic_event_info) != NULL) {
18189 		ip2dbg(("ill_dl_down:unexpected nic event %d attached for %s\n",
18190 		    info->hne_event, ill->ill_name));
18191 		if (info->hne_data != NULL)
18192 			kmem_free(info->hne_data, info->hne_datalen);
18193 		kmem_free(info, sizeof (hook_nic_event_t));
18194 	}
18195 
18196 	info = kmem_alloc(sizeof (hook_nic_event_t), KM_NOSLEEP);
18197 	if (info != NULL) {
18198 		ip_stack_t	*ipst = ill->ill_ipst;
18199 
18200 		info->hne_nic = ill->ill_phyint->phyint_hook_ifindex;
18201 		info->hne_lif = 0;
18202 		info->hne_event = NE_DOWN;
18203 		info->hne_data = NULL;
18204 		info->hne_datalen = 0;
18205 		info->hne_family = ill->ill_isv6 ?
18206 		    ipst->ips_ipv6_net_data : ipst->ips_ipv4_net_data;
18207 	} else
18208 		ip2dbg(("ill_dl_down: could not attach DOWN nic event "
18209 		    "information for %s (ENOMEM)\n", ill->ill_name));
18210 
18211 	ill->ill_nic_event_info = info;
18212 
18213 	mutex_exit(&ill->ill_lock);
18214 }
18215 
18216 static void
18217 ill_dlpi_dispatch(ill_t *ill, mblk_t *mp)
18218 {
18219 	union DL_primitives *dlp;
18220 	t_uscalar_t prim;
18221 
18222 	ASSERT(DB_TYPE(mp) == M_PROTO || DB_TYPE(mp) == M_PCPROTO);
18223 
18224 	dlp = (union DL_primitives *)mp->b_rptr;
18225 	prim = dlp->dl_primitive;
18226 
18227 	ip1dbg(("ill_dlpi_dispatch: sending %s (%u) to %s\n",
18228 	    dl_primstr(prim), prim, ill->ill_name));
18229 
18230 	switch (prim) {
18231 	case DL_PHYS_ADDR_REQ:
18232 	{
18233 		dl_phys_addr_req_t *dlpap = (dl_phys_addr_req_t *)mp->b_rptr;
18234 		ill->ill_phys_addr_pend = dlpap->dl_addr_type;
18235 		break;
18236 	}
18237 	case DL_BIND_REQ:
18238 		mutex_enter(&ill->ill_lock);
18239 		ill->ill_state_flags &= ~ILL_DL_UNBIND_IN_PROGRESS;
18240 		mutex_exit(&ill->ill_lock);
18241 		break;
18242 	}
18243 
18244 	/*
18245 	 * Except for the ACKs for the M_PCPROTO messages, all other ACKs
18246 	 * are dropped by ip_rput() if ILL_CONDEMNED is set. Therefore
18247 	 * we only wait for the ACK of the DL_UNBIND_REQ.
18248 	 */
18249 	mutex_enter(&ill->ill_lock);
18250 	if (!(ill->ill_state_flags & ILL_CONDEMNED) ||
18251 	    (prim == DL_UNBIND_REQ)) {
18252 		ill->ill_dlpi_pending = prim;
18253 	}
18254 	mutex_exit(&ill->ill_lock);
18255 
18256 	putnext(ill->ill_wq, mp);
18257 }
18258 
18259 /*
18260  * Helper function for ill_dlpi_send().
18261  */
18262 /* ARGSUSED */
18263 static void
18264 ill_dlpi_send_writer(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *arg)
18265 {
18266 	ill_dlpi_send((ill_t *)q->q_ptr, mp);
18267 }
18268 
18269 /*
18270  * Send a DLPI control message to the driver but make sure there
18271  * is only one outstanding message. Uses ill_dlpi_pending to tell
18272  * when it must queue. ip_rput_dlpi_writer calls ill_dlpi_done()
18273  * when an ACK or a NAK is received to process the next queued message.
18274  */
18275 void
18276 ill_dlpi_send(ill_t *ill, mblk_t *mp)
18277 {
18278 	mblk_t **mpp;
18279 
18280 	ASSERT(DB_TYPE(mp) == M_PROTO || DB_TYPE(mp) == M_PCPROTO);
18281 
18282 	/*
18283 	 * To ensure that any DLPI requests for current exclusive operation
18284 	 * are always completely sent before any DLPI messages for other
18285 	 * operations, require writer access before enqueuing.
18286 	 */
18287 	if (!IAM_WRITER_ILL(ill)) {
18288 		ill_refhold(ill);
18289 		/* qwriter_ip() does the ill_refrele() */
18290 		qwriter_ip(ill, ill->ill_wq, mp, ill_dlpi_send_writer,
18291 		    NEW_OP, B_TRUE);
18292 		return;
18293 	}
18294 
18295 	mutex_enter(&ill->ill_lock);
18296 	if (ill->ill_dlpi_pending != DL_PRIM_INVAL) {
18297 		/* Must queue message. Tail insertion */
18298 		mpp = &ill->ill_dlpi_deferred;
18299 		while (*mpp != NULL)
18300 			mpp = &((*mpp)->b_next);
18301 
18302 		ip1dbg(("ill_dlpi_send: deferring request for %s\n",
18303 		    ill->ill_name));
18304 
18305 		*mpp = mp;
18306 		mutex_exit(&ill->ill_lock);
18307 		return;
18308 	}
18309 	mutex_exit(&ill->ill_lock);
18310 	ill_dlpi_dispatch(ill, mp);
18311 }
18312 
18313 /*
18314  * Send all deferred DLPI messages without waiting for their ACKs.
18315  */
18316 void
18317 ill_dlpi_send_deferred(ill_t *ill)
18318 {
18319 	mblk_t *mp, *nextmp;
18320 
18321 	/*
18322 	 * Clear ill_dlpi_pending so that the message is not queued in
18323 	 * ill_dlpi_send().
18324 	 */
18325 	mutex_enter(&ill->ill_lock);
18326 	ill->ill_dlpi_pending = DL_PRIM_INVAL;
18327 	mp = ill->ill_dlpi_deferred;
18328 	ill->ill_dlpi_deferred = NULL;
18329 	mutex_exit(&ill->ill_lock);
18330 
18331 	for (; mp != NULL; mp = nextmp) {
18332 		nextmp = mp->b_next;
18333 		mp->b_next = NULL;
18334 		ill_dlpi_send(ill, mp);
18335 	}
18336 }
18337 
18338 /*
18339  * Check if the DLPI primitive `prim' is pending; print a warning if not.
18340  */
18341 boolean_t
18342 ill_dlpi_pending(ill_t *ill, t_uscalar_t prim)
18343 {
18344 	t_uscalar_t pending;
18345 
18346 	mutex_enter(&ill->ill_lock);
18347 	if (ill->ill_dlpi_pending == prim) {
18348 		mutex_exit(&ill->ill_lock);
18349 		return (B_TRUE);
18350 	}
18351 
18352 	/*
18353 	 * During teardown, ill_dlpi_dispatch() will send DLPI requests
18354 	 * without waiting, so don't print any warnings in that case.
18355 	 */
18356 	if (ill->ill_state_flags & ILL_CONDEMNED) {
18357 		mutex_exit(&ill->ill_lock);
18358 		return (B_FALSE);
18359 	}
18360 	pending = ill->ill_dlpi_pending;
18361 	mutex_exit(&ill->ill_lock);
18362 
18363 	if (pending == DL_PRIM_INVAL) {
18364 		(void) mi_strlog(ill->ill_rq, 1, SL_CONSOLE|SL_ERROR|SL_TRACE,
18365 		    "received unsolicited ack for %s on %s\n",
18366 		    dl_primstr(prim), ill->ill_name);
18367 	} else {
18368 		(void) mi_strlog(ill->ill_rq, 1, SL_CONSOLE|SL_ERROR|SL_TRACE,
18369 		    "received unexpected ack for %s on %s (expecting %s)\n",
18370 		    dl_primstr(prim), ill->ill_name, dl_primstr(pending));
18371 	}
18372 	return (B_FALSE);
18373 }
18374 
18375 /*
18376  * Called when an DLPI control message has been acked or nacked to
18377  * send down the next queued message (if any).
18378  */
18379 void
18380 ill_dlpi_done(ill_t *ill, t_uscalar_t prim)
18381 {
18382 	mblk_t *mp;
18383 
18384 	ASSERT(IAM_WRITER_ILL(ill));
18385 	mutex_enter(&ill->ill_lock);
18386 
18387 	ASSERT(prim != DL_PRIM_INVAL);
18388 	ASSERT(ill->ill_dlpi_pending == prim);
18389 
18390 	ip1dbg(("ill_dlpi_done: %s has completed %s (%u)\n", ill->ill_name,
18391 	    dl_primstr(ill->ill_dlpi_pending), ill->ill_dlpi_pending));
18392 
18393 	if ((mp = ill->ill_dlpi_deferred) == NULL) {
18394 		ill->ill_dlpi_pending = DL_PRIM_INVAL;
18395 		cv_signal(&ill->ill_cv);
18396 		mutex_exit(&ill->ill_lock);
18397 		return;
18398 	}
18399 
18400 	ill->ill_dlpi_deferred = mp->b_next;
18401 	mp->b_next = NULL;
18402 	mutex_exit(&ill->ill_lock);
18403 
18404 	ill_dlpi_dispatch(ill, mp);
18405 }
18406 
18407 void
18408 conn_delete_ire(conn_t *connp, caddr_t arg)
18409 {
18410 	ipif_t	*ipif = (ipif_t *)arg;
18411 	ire_t	*ire;
18412 
18413 	/*
18414 	 * Look at the cached ires on conns which has pointers to ipifs.
18415 	 * We just call ire_refrele which clears up the reference
18416 	 * to ire. Called when a conn closes. Also called from ipif_free
18417 	 * to cleanup indirect references to the stale ipif via the cached ire.
18418 	 */
18419 	mutex_enter(&connp->conn_lock);
18420 	ire = connp->conn_ire_cache;
18421 	if (ire != NULL && (ipif == NULL || ire->ire_ipif == ipif)) {
18422 		connp->conn_ire_cache = NULL;
18423 		mutex_exit(&connp->conn_lock);
18424 		IRE_REFRELE_NOTR(ire);
18425 		return;
18426 	}
18427 	mutex_exit(&connp->conn_lock);
18428 
18429 }
18430 
18431 /*
18432  * Some operations (illgrp_delete(), ipif_down()) conditionally delete a number
18433  * of IREs. Those IREs may have been previously cached in the conn structure.
18434  * This ipcl_walk() walker function releases all references to such IREs based
18435  * on the condemned flag.
18436  */
18437 /* ARGSUSED */
18438 void
18439 conn_cleanup_stale_ire(conn_t *connp, caddr_t arg)
18440 {
18441 	ire_t	*ire;
18442 
18443 	mutex_enter(&connp->conn_lock);
18444 	ire = connp->conn_ire_cache;
18445 	if (ire != NULL && (ire->ire_marks & IRE_MARK_CONDEMNED)) {
18446 		connp->conn_ire_cache = NULL;
18447 		mutex_exit(&connp->conn_lock);
18448 		IRE_REFRELE_NOTR(ire);
18449 		return;
18450 	}
18451 	mutex_exit(&connp->conn_lock);
18452 }
18453 
18454 /*
18455  * Take down a specific interface, but don't lose any information about it.
18456  * Also delete interface from its interface group (ifgrp).
18457  * (Always called as writer.)
18458  * This function goes through the down sequence even if the interface is
18459  * already down. There are 2 reasons.
18460  * a. Currently we permit interface routes that depend on down interfaces
18461  *    to be added. This behaviour itself is questionable. However it appears
18462  *    that both Solaris and 4.3 BSD have exhibited this behaviour for a long
18463  *    time. We go thru the cleanup in order to remove these routes.
18464  * b. The bringup of the interface could fail in ill_dl_up i.e. we get
18465  *    DL_ERROR_ACK in response to the the DL_BIND request. The interface is
18466  *    down, but we need to cleanup i.e. do ill_dl_down and
18467  *    ip_rput_dlpi_writer (DL_ERROR_ACK) -> ipif_down.
18468  *
18469  * IP-MT notes:
18470  *
18471  * Model of reference to interfaces.
18472  *
18473  * The following members in ipif_t track references to the ipif.
18474  *	int     ipif_refcnt;    Active reference count
18475  *	uint_t  ipif_ire_cnt;   Number of ire's referencing this ipif
18476  * The following members in ill_t track references to the ill.
18477  *	int             ill_refcnt;     active refcnt
18478  *	uint_t          ill_ire_cnt;	Number of ires referencing ill
18479  *	uint_t          ill_nce_cnt;	Number of nces referencing ill
18480  *
18481  * Reference to an ipif or ill can be obtained in any of the following ways.
18482  *
18483  * Through the lookup functions ipif_lookup_* / ill_lookup_* functions
18484  * Pointers to ipif / ill from other data structures viz ire and conn.
18485  * Implicit reference to the ipif / ill by holding a reference to the ire.
18486  *
18487  * The ipif/ill lookup functions return a reference held ipif / ill.
18488  * ipif_refcnt and ill_refcnt track the reference counts respectively.
18489  * This is a purely dynamic reference count associated with threads holding
18490  * references to the ipif / ill. Pointers from other structures do not
18491  * count towards this reference count.
18492  *
18493  * ipif_ire_cnt/ill_ire_cnt is the number of ire's associated with the
18494  * ipif/ill. This is incremented whenever a new ire is created referencing the
18495  * ipif/ill. This is done atomically inside ire_add_v[46] where the ire is
18496  * actually added to the ire hash table. The count is decremented in
18497  * ire_inactive where the ire is destroyed.
18498  *
18499  * nce's reference ill's thru nce_ill and the count of nce's associated with
18500  * an ill is recorded in ill_nce_cnt. This is incremented atomically in
18501  * ndp_add_v4()/ndp_add_v6() where the nce is actually added to the
18502  * table. Similarly it is decremented in ndp_inactive() where the nce
18503  * is destroyed.
18504  *
18505  * Flow of ioctls involving interface down/up
18506  *
18507  * The following is the sequence of an attempt to set some critical flags on an
18508  * up interface.
18509  * ip_sioctl_flags
18510  * ipif_down
18511  * wait for ipif to be quiescent
18512  * ipif_down_tail
18513  * ip_sioctl_flags_tail
18514  *
18515  * All set ioctls that involve down/up sequence would have a skeleton similar
18516  * to the above. All the *tail functions are called after the refcounts have
18517  * dropped to the appropriate values.
18518  *
18519  * The mechanism to quiesce an ipif is as follows.
18520  *
18521  * Mark the ipif as IPIF_CHANGING. No more lookups will be allowed
18522  * on the ipif. Callers either pass a flag requesting wait or the lookup
18523  *  functions will return NULL.
18524  *
18525  * Delete all ires referencing this ipif
18526  *
18527  * Any thread attempting to do an ipif_refhold on an ipif that has been
18528  * obtained thru a cached pointer will first make sure that
18529  * the ipif can be refheld using the macro IPIF_CAN_LOOKUP and only then
18530  * increment the refcount.
18531  *
18532  * The above guarantees that the ipif refcount will eventually come down to
18533  * zero and the ipif will quiesce, once all threads that currently hold a
18534  * reference to the ipif refrelease the ipif. The ipif is quiescent after the
18535  * ipif_refcount has dropped to zero and all ire's associated with this ipif
18536  * have also been ire_inactive'd. i.e. when ipif_ire_cnt and ipif_refcnt both
18537  * drop to zero.
18538  *
18539  * Lookups during the IPIF_CHANGING/ILL_CHANGING interval.
18540  *
18541  * Threads trying to lookup an ipif or ill can pass a flag requesting
18542  * wait and restart if the ipif / ill cannot be looked up currently.
18543  * For eg. bind, and route operations (Eg. route add / delete) cannot return
18544  * failure if the ipif is currently undergoing an exclusive operation, and
18545  * hence pass the flag. The mblk is then enqueued in the ipsq and the operation
18546  * is restarted by ipsq_exit() when the currently exclusive ioctl completes.
18547  * The lookup and enqueue is atomic using the ill_lock and ipsq_lock. The
18548  * lookup is done holding the ill_lock. Hence the ill/ipif state flags can't
18549  * change while the ill_lock is held. Before dropping the ill_lock we acquire
18550  * the ipsq_lock and call ipsq_enq. This ensures that ipsq_exit can't finish
18551  * until we release the ipsq_lock, even though the the ill/ipif state flags
18552  * can change after we drop the ill_lock.
18553  *
18554  * An attempt to send out a packet using an ipif that is currently
18555  * IPIF_CHANGING will fail. No attempt is made in this case to enqueue this
18556  * operation and restart it later when the exclusive condition on the ipif ends.
18557  * This is an example of not passing the wait flag to the lookup functions. For
18558  * example an attempt to refhold and use conn->conn_multicast_ipif and send
18559  * out a multicast packet on that ipif will fail while the ipif is
18560  * IPIF_CHANGING. An attempt to create an IRE_CACHE using an ipif that is
18561  * currently IPIF_CHANGING will also fail.
18562  */
18563 int
18564 ipif_down(ipif_t *ipif, queue_t *q, mblk_t *mp)
18565 {
18566 	ill_t		*ill = ipif->ipif_ill;
18567 	phyint_t	*phyi;
18568 	conn_t		*connp;
18569 	boolean_t	success;
18570 	boolean_t	ipif_was_up = B_FALSE;
18571 	ip_stack_t	*ipst = ill->ill_ipst;
18572 
18573 	ASSERT(IAM_WRITER_IPIF(ipif));
18574 
18575 	ip1dbg(("ipif_down(%s:%u)\n", ill->ill_name, ipif->ipif_id));
18576 
18577 	if (ipif->ipif_flags & IPIF_UP) {
18578 		mutex_enter(&ill->ill_lock);
18579 		ipif->ipif_flags &= ~IPIF_UP;
18580 		ASSERT(ill->ill_ipif_up_count > 0);
18581 		--ill->ill_ipif_up_count;
18582 		mutex_exit(&ill->ill_lock);
18583 		ipif_was_up = B_TRUE;
18584 		/* Update status in SCTP's list */
18585 		sctp_update_ipif(ipif, SCTP_IPIF_DOWN);
18586 	}
18587 
18588 	/*
18589 	 * Blow away memberships we established in ipif_multicast_up().
18590 	 */
18591 	ipif_multicast_down(ipif);
18592 
18593 	/*
18594 	 * Remove from the mapping for __sin6_src_id. We insert only
18595 	 * when the address is not INADDR_ANY. As IPv4 addresses are
18596 	 * stored as mapped addresses, we need to check for mapped
18597 	 * INADDR_ANY also.
18598 	 */
18599 	if (ipif_was_up && !IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr) &&
18600 	    !IN6_IS_ADDR_V4MAPPED_ANY(&ipif->ipif_v6lcl_addr) &&
18601 	    !(ipif->ipif_flags & IPIF_NOLOCAL)) {
18602 		int err;
18603 
18604 		err = ip_srcid_remove(&ipif->ipif_v6lcl_addr,
18605 		    ipif->ipif_zoneid, ipst);
18606 		if (err != 0) {
18607 			ip0dbg(("ipif_down: srcid_remove %d\n", err));
18608 		}
18609 	}
18610 
18611 	/*
18612 	 * Before we delete the ill from the group (if any), we need
18613 	 * to make sure that we delete all the routes dependent on
18614 	 * this and also any ipifs dependent on this ipif for
18615 	 * source address. We need to do before we delete from
18616 	 * the group because
18617 	 *
18618 	 * 1) ipif_down_delete_ire de-references ill->ill_group.
18619 	 *
18620 	 * 2) ipif_update_other_ipifs needs to walk the whole group
18621 	 *    for re-doing source address selection. Note that
18622 	 *    ipif_select_source[_v6] called from
18623 	 *    ipif_update_other_ipifs[_v6] will not pick this ipif
18624 	 *    because we have already marked down here i.e cleared
18625 	 *    IPIF_UP.
18626 	 */
18627 	if (ipif->ipif_isv6) {
18628 		ire_walk_v6(ipif_down_delete_ire, (char *)ipif, ALL_ZONES,
18629 		    ipst);
18630 	} else {
18631 		ire_walk_v4(ipif_down_delete_ire, (char *)ipif, ALL_ZONES,
18632 		    ipst);
18633 	}
18634 
18635 	/*
18636 	 * Cleaning up the conn_ire_cache or conns must be done only after the
18637 	 * ires have been deleted above. Otherwise a thread could end up
18638 	 * caching an ire in a conn after we have finished the cleanup of the
18639 	 * conn. The caching is done after making sure that the ire is not yet
18640 	 * condemned. Also documented in the block comment above ip_output
18641 	 */
18642 	ipcl_walk(conn_cleanup_stale_ire, NULL, ipst);
18643 	/* Also, delete the ires cached in SCTP */
18644 	sctp_ire_cache_flush(ipif);
18645 
18646 	/*
18647 	 * Update any other ipifs which have used "our" local address as
18648 	 * a source address. This entails removing and recreating IRE_INTERFACE
18649 	 * entries for such ipifs.
18650 	 */
18651 	if (ipif->ipif_isv6)
18652 		ipif_update_other_ipifs_v6(ipif, ill->ill_group);
18653 	else
18654 		ipif_update_other_ipifs(ipif, ill->ill_group);
18655 
18656 	if (ipif_was_up) {
18657 		/*
18658 		 * Check whether it is last ipif to leave this group.
18659 		 * If this is the last ipif to leave, we should remove
18660 		 * this ill from the group as ipif_select_source will not
18661 		 * be able to find any useful ipifs if this ill is selected
18662 		 * for load balancing.
18663 		 *
18664 		 * For nameless groups, we should call ifgrp_delete if this
18665 		 * belongs to some group. As this ipif is going down, we may
18666 		 * need to reconstruct groups.
18667 		 */
18668 		phyi = ill->ill_phyint;
18669 		/*
18670 		 * If the phyint_groupname_len is 0, it may or may not
18671 		 * be in the nameless group. If the phyint_groupname_len is
18672 		 * not 0, then this ill should be part of some group.
18673 		 * As we always insert this ill in the group if
18674 		 * phyint_groupname_len is not zero when the first ipif
18675 		 * comes up (in ipif_up_done), it should be in a group
18676 		 * when the namelen is not 0.
18677 		 *
18678 		 * NOTE : When we delete the ill from the group,it will
18679 		 * blow away all the IRE_CACHES pointing either at this ipif or
18680 		 * ill_wq (illgrp_cache_delete does this). Thus, no IRES
18681 		 * should be pointing at this ill.
18682 		 */
18683 		ASSERT(phyi->phyint_groupname_len == 0 ||
18684 		    (phyi->phyint_groupname != NULL && ill->ill_group != NULL));
18685 
18686 		if (phyi->phyint_groupname_len != 0) {
18687 			if (ill->ill_ipif_up_count == 0)
18688 				illgrp_delete(ill);
18689 		}
18690 
18691 		/*
18692 		 * If we have deleted some of the broadcast ires associated
18693 		 * with this ipif, we need to re-nominate somebody else if
18694 		 * the ires that we deleted were the nominated ones.
18695 		 */
18696 		if (ill->ill_group != NULL && !ill->ill_isv6)
18697 			ipif_renominate_bcast(ipif);
18698 	}
18699 
18700 	/*
18701 	 * neighbor-discovery or arp entries for this interface.
18702 	 */
18703 	ipif_ndp_down(ipif);
18704 
18705 	/*
18706 	 * If mp is NULL the caller will wait for the appropriate refcnt.
18707 	 * Eg. ip_sioctl_removeif -> ipif_free  -> ipif_down
18708 	 * and ill_delete -> ipif_free -> ipif_down
18709 	 */
18710 	if (mp == NULL) {
18711 		ASSERT(q == NULL);
18712 		return (0);
18713 	}
18714 
18715 	if (CONN_Q(q)) {
18716 		connp = Q_TO_CONN(q);
18717 		mutex_enter(&connp->conn_lock);
18718 	} else {
18719 		connp = NULL;
18720 	}
18721 	mutex_enter(&ill->ill_lock);
18722 	/*
18723 	 * Are there any ire's pointing to this ipif that are still active ?
18724 	 * If this is the last ipif going down, are there any ire's pointing
18725 	 * to this ill that are still active ?
18726 	 */
18727 	if (ipif_is_quiescent(ipif)) {
18728 		mutex_exit(&ill->ill_lock);
18729 		if (connp != NULL)
18730 			mutex_exit(&connp->conn_lock);
18731 		return (0);
18732 	}
18733 
18734 	ip1dbg(("ipif_down: need to wait, adding pending mp %s ill %p",
18735 	    ill->ill_name, (void *)ill));
18736 	/*
18737 	 * Enqueue the mp atomically in ipsq_pending_mp. When the refcount
18738 	 * drops down, the operation will be restarted by ipif_ill_refrele_tail
18739 	 * which in turn is called by the last refrele on the ipif/ill/ire.
18740 	 */
18741 	success = ipsq_pending_mp_add(connp, ipif, q, mp, IPIF_DOWN);
18742 	if (!success) {
18743 		/* The conn is closing. So just return */
18744 		ASSERT(connp != NULL);
18745 		mutex_exit(&ill->ill_lock);
18746 		mutex_exit(&connp->conn_lock);
18747 		return (EINTR);
18748 	}
18749 
18750 	mutex_exit(&ill->ill_lock);
18751 	if (connp != NULL)
18752 		mutex_exit(&connp->conn_lock);
18753 	return (EINPROGRESS);
18754 }
18755 
18756 void
18757 ipif_down_tail(ipif_t *ipif)
18758 {
18759 	ill_t	*ill = ipif->ipif_ill;
18760 
18761 	/*
18762 	 * Skip any loopback interface (null wq).
18763 	 * If this is the last logical interface on the ill
18764 	 * have ill_dl_down tell the driver we are gone (unbind)
18765 	 * Note that lun 0 can ipif_down even though
18766 	 * there are other logical units that are up.
18767 	 * This occurs e.g. when we change a "significant" IFF_ flag.
18768 	 */
18769 	if (ill->ill_wq != NULL && !ill->ill_logical_down &&
18770 	    ill->ill_ipif_up_count == 0 && ill->ill_ipif_dup_count == 0 &&
18771 	    ill->ill_dl_up) {
18772 		ill_dl_down(ill);
18773 	}
18774 	ill->ill_logical_down = 0;
18775 
18776 	/*
18777 	 * Have to be after removing the routes in ipif_down_delete_ire.
18778 	 */
18779 	if (ipif->ipif_isv6) {
18780 		if (ill->ill_flags & ILLF_XRESOLV)
18781 			ipif_arp_down(ipif);
18782 	} else {
18783 		ipif_arp_down(ipif);
18784 	}
18785 
18786 	ip_rts_ifmsg(ipif);
18787 	ip_rts_newaddrmsg(RTM_DELETE, 0, ipif);
18788 }
18789 
18790 /*
18791  * Bring interface logically down without bringing the physical interface
18792  * down e.g. when the netmask is changed. This avoids long lasting link
18793  * negotiations between an ethernet interface and a certain switches.
18794  */
18795 static int
18796 ipif_logical_down(ipif_t *ipif, queue_t *q, mblk_t *mp)
18797 {
18798 	/*
18799 	 * The ill_logical_down flag is a transient flag. It is set here
18800 	 * and is cleared once the down has completed in ipif_down_tail.
18801 	 * This flag does not indicate whether the ill stream is in the
18802 	 * DL_BOUND state with the driver. Instead this flag is used by
18803 	 * ipif_down_tail to determine whether to DL_UNBIND the stream with
18804 	 * the driver. The state of the ill stream i.e. whether it is
18805 	 * DL_BOUND with the driver or not is indicated by the ill_dl_up flag.
18806 	 */
18807 	ipif->ipif_ill->ill_logical_down = 1;
18808 	return (ipif_down(ipif, q, mp));
18809 }
18810 
18811 /*
18812  * This is called when the SIOCSLIFUSESRC ioctl is processed in IP.
18813  * If the usesrc client ILL is already part of a usesrc group or not,
18814  * in either case a ire_stq with the matching usesrc client ILL will
18815  * locate the IRE's that need to be deleted. We want IREs to be created
18816  * with the new source address.
18817  */
18818 static void
18819 ipif_delete_cache_ire(ire_t *ire, char *ill_arg)
18820 {
18821 	ill_t	*ucill = (ill_t *)ill_arg;
18822 
18823 	ASSERT(IAM_WRITER_ILL(ucill));
18824 
18825 	if (ire->ire_stq == NULL)
18826 		return;
18827 
18828 	if ((ire->ire_type == IRE_CACHE) &&
18829 	    ((ill_t *)ire->ire_stq->q_ptr == ucill))
18830 		ire_delete(ire);
18831 }
18832 
18833 /*
18834  * ire_walk routine to delete every IRE dependent on the interface
18835  * address that is going down.	(Always called as writer.)
18836  * Works for both v4 and v6.
18837  * In addition for checking for ire_ipif matches it also checks for
18838  * IRE_CACHE entries which have the same source address as the
18839  * disappearing ipif since ipif_select_source might have picked
18840  * that source. Note that ipif_down/ipif_update_other_ipifs takes
18841  * care of any IRE_INTERFACE with the disappearing source address.
18842  */
18843 static void
18844 ipif_down_delete_ire(ire_t *ire, char *ipif_arg)
18845 {
18846 	ipif_t	*ipif = (ipif_t *)ipif_arg;
18847 	ill_t *ire_ill;
18848 	ill_t *ipif_ill;
18849 
18850 	ASSERT(IAM_WRITER_IPIF(ipif));
18851 	if (ire->ire_ipif == NULL)
18852 		return;
18853 
18854 	/*
18855 	 * For IPv4, we derive source addresses for an IRE from ipif's
18856 	 * belonging to the same IPMP group as the IRE's outgoing
18857 	 * interface.  If an IRE's outgoing interface isn't in the
18858 	 * same IPMP group as a particular ipif, then that ipif
18859 	 * couldn't have been used as a source address for this IRE.
18860 	 *
18861 	 * For IPv6, source addresses are only restricted to the IPMP group
18862 	 * if the IRE is for a link-local address or a multicast address.
18863 	 * Otherwise, source addresses for an IRE can be chosen from
18864 	 * interfaces other than the the outgoing interface for that IRE.
18865 	 *
18866 	 * For source address selection details, see ipif_select_source()
18867 	 * and ipif_select_source_v6().
18868 	 */
18869 	if (ire->ire_ipversion == IPV4_VERSION ||
18870 	    IN6_IS_ADDR_LINKLOCAL(&ire->ire_addr_v6) ||
18871 	    IN6_IS_ADDR_MULTICAST(&ire->ire_addr_v6)) {
18872 		ire_ill = ire->ire_ipif->ipif_ill;
18873 		ipif_ill = ipif->ipif_ill;
18874 
18875 		if (ire_ill->ill_group != ipif_ill->ill_group) {
18876 			return;
18877 		}
18878 	}
18879 
18880 
18881 	if (ire->ire_ipif != ipif) {
18882 		/*
18883 		 * Look for a matching source address.
18884 		 */
18885 		if (ire->ire_type != IRE_CACHE)
18886 			return;
18887 		if (ipif->ipif_flags & IPIF_NOLOCAL)
18888 			return;
18889 
18890 		if (ire->ire_ipversion == IPV4_VERSION) {
18891 			if (ire->ire_src_addr != ipif->ipif_src_addr)
18892 				return;
18893 		} else {
18894 			if (!IN6_ARE_ADDR_EQUAL(&ire->ire_src_addr_v6,
18895 			    &ipif->ipif_v6lcl_addr))
18896 				return;
18897 		}
18898 		ire_delete(ire);
18899 		return;
18900 	}
18901 	/*
18902 	 * ire_delete() will do an ire_flush_cache which will delete
18903 	 * all ire_ipif matches
18904 	 */
18905 	ire_delete(ire);
18906 }
18907 
18908 /*
18909  * ire_walk_ill function for deleting all IRE_CACHE entries for an ill when
18910  * 1) an ipif (on that ill) changes the IPIF_DEPRECATED flags, or
18911  * 2) when an interface is brought up or down (on that ill).
18912  * This ensures that the IRE_CACHE entries don't retain stale source
18913  * address selection results.
18914  */
18915 void
18916 ill_ipif_cache_delete(ire_t *ire, char *ill_arg)
18917 {
18918 	ill_t	*ill = (ill_t *)ill_arg;
18919 	ill_t	*ipif_ill;
18920 
18921 	ASSERT(IAM_WRITER_ILL(ill));
18922 	/*
18923 	 * We use MATCH_IRE_TYPE/IRE_CACHE while calling ire_walk_ill_v4.
18924 	 * Hence this should be IRE_CACHE.
18925 	 */
18926 	ASSERT(ire->ire_type == IRE_CACHE);
18927 
18928 	/*
18929 	 * We are called for IRE_CACHES whose ire_ipif matches ill.
18930 	 * We are only interested in IRE_CACHES that has borrowed
18931 	 * the source address from ill_arg e.g. ipif_up_done[_v6]
18932 	 * for which we need to look at ire_ipif->ipif_ill match
18933 	 * with ill.
18934 	 */
18935 	ASSERT(ire->ire_ipif != NULL);
18936 	ipif_ill = ire->ire_ipif->ipif_ill;
18937 	if (ipif_ill == ill || (ill->ill_group != NULL &&
18938 	    ipif_ill->ill_group == ill->ill_group)) {
18939 		ire_delete(ire);
18940 	}
18941 }
18942 
18943 /*
18944  * Delete all the ire whose stq references ill_arg.
18945  */
18946 static void
18947 ill_stq_cache_delete(ire_t *ire, char *ill_arg)
18948 {
18949 	ill_t	*ill = (ill_t *)ill_arg;
18950 	ill_t	*ire_ill;
18951 
18952 	ASSERT(IAM_WRITER_ILL(ill));
18953 	/*
18954 	 * We use MATCH_IRE_TYPE/IRE_CACHE while calling ire_walk_ill_v4.
18955 	 * Hence this should be IRE_CACHE.
18956 	 */
18957 	ASSERT(ire->ire_type == IRE_CACHE);
18958 
18959 	/*
18960 	 * We are called for IRE_CACHES whose ire_stq and ire_ipif
18961 	 * matches ill. We are only interested in IRE_CACHES that
18962 	 * has ire_stq->q_ptr pointing at ill_arg. Thus we do the
18963 	 * filtering here.
18964 	 */
18965 	ire_ill = (ill_t *)ire->ire_stq->q_ptr;
18966 
18967 	if (ire_ill == ill)
18968 		ire_delete(ire);
18969 }
18970 
18971 /*
18972  * This is called when an ill leaves the group. We want to delete
18973  * all IRE_CACHES whose stq is pointing at ill_wq or ire_ipif is
18974  * pointing at ill.
18975  */
18976 static void
18977 illgrp_cache_delete(ire_t *ire, char *ill_arg)
18978 {
18979 	ill_t	*ill = (ill_t *)ill_arg;
18980 
18981 	ASSERT(IAM_WRITER_ILL(ill));
18982 	ASSERT(ill->ill_group == NULL);
18983 	/*
18984 	 * We use MATCH_IRE_TYPE/IRE_CACHE while calling ire_walk_ill_v4.
18985 	 * Hence this should be IRE_CACHE.
18986 	 */
18987 	ASSERT(ire->ire_type == IRE_CACHE);
18988 	/*
18989 	 * We are called for IRE_CACHES whose ire_stq and ire_ipif
18990 	 * matches ill. We are interested in both.
18991 	 */
18992 	ASSERT((ill == (ill_t *)ire->ire_stq->q_ptr) ||
18993 	    (ire->ire_ipif->ipif_ill == ill));
18994 
18995 	ire_delete(ire);
18996 }
18997 
18998 /*
18999  * Initiate deallocate of an IPIF. Always called as writer. Called by
19000  * ill_delete or ip_sioctl_removeif.
19001  */
19002 static void
19003 ipif_free(ipif_t *ipif)
19004 {
19005 	ip_stack_t	*ipst = ipif->ipif_ill->ill_ipst;
19006 
19007 	ASSERT(IAM_WRITER_IPIF(ipif));
19008 
19009 	if (ipif->ipif_recovery_id != 0)
19010 		(void) untimeout(ipif->ipif_recovery_id);
19011 	ipif->ipif_recovery_id = 0;
19012 
19013 	/* Remove conn references */
19014 	reset_conn_ipif(ipif);
19015 
19016 	/*
19017 	 * Make sure we have valid net and subnet broadcast ire's for the
19018 	 * other ipif's which share them with this ipif.
19019 	 */
19020 	if (!ipif->ipif_isv6)
19021 		ipif_check_bcast_ires(ipif);
19022 
19023 	/*
19024 	 * Take down the interface. We can be called either from ill_delete
19025 	 * or from ip_sioctl_removeif.
19026 	 */
19027 	(void) ipif_down(ipif, NULL, NULL);
19028 
19029 	/*
19030 	 * Now that the interface is down, there's no chance it can still
19031 	 * become a duplicate.  Cancel any timer that may have been set while
19032 	 * tearing down.
19033 	 */
19034 	if (ipif->ipif_recovery_id != 0)
19035 		(void) untimeout(ipif->ipif_recovery_id);
19036 	ipif->ipif_recovery_id = 0;
19037 
19038 	rw_enter(&ipst->ips_ill_g_lock, RW_WRITER);
19039 	/* Remove pointers to this ill in the multicast routing tables */
19040 	reset_mrt_vif_ipif(ipif);
19041 	rw_exit(&ipst->ips_ill_g_lock);
19042 }
19043 
19044 /*
19045  * Warning: this is not the only function that calls mi_free on an ipif_t.  See
19046  * also ill_move().
19047  */
19048 static void
19049 ipif_free_tail(ipif_t *ipif)
19050 {
19051 	mblk_t	*mp;
19052 	ip_stack_t *ipst = ipif->ipif_ill->ill_ipst;
19053 
19054 	/*
19055 	 * Free state for addition IRE_IF_[NO]RESOLVER ire's.
19056 	 */
19057 	mutex_enter(&ipif->ipif_saved_ire_lock);
19058 	mp = ipif->ipif_saved_ire_mp;
19059 	ipif->ipif_saved_ire_mp = NULL;
19060 	mutex_exit(&ipif->ipif_saved_ire_lock);
19061 	freemsg(mp);
19062 
19063 	/*
19064 	 * Need to hold both ill_g_lock and ill_lock while
19065 	 * inserting or removing an ipif from the linked list
19066 	 * of ipifs hanging off the ill.
19067 	 */
19068 	rw_enter(&ipst->ips_ill_g_lock, RW_WRITER);
19069 	/*
19070 	 * Remove all IPv4 multicast memberships on the interface now.
19071 	 * IPv6 is not handled here as the multicast memberships are
19072 	 * tied to the ill rather than the ipif.
19073 	 */
19074 	ilm_free(ipif);
19075 
19076 	/*
19077 	 * Since we held the ill_g_lock while doing the ilm_free above,
19078 	 * we can assert the ilms were really deleted and not just marked
19079 	 * ILM_DELETED.
19080 	 */
19081 	ASSERT(ilm_walk_ipif(ipif) == 0);
19082 
19083 #ifdef DEBUG
19084 	ipif_trace_cleanup(ipif);
19085 #endif
19086 
19087 	/* Ask SCTP to take it out of it list */
19088 	sctp_update_ipif(ipif, SCTP_IPIF_REMOVE);
19089 
19090 	/* Get it out of the ILL interface list. */
19091 	ipif_remove(ipif, B_TRUE);
19092 	rw_exit(&ipst->ips_ill_g_lock);
19093 
19094 	mutex_destroy(&ipif->ipif_saved_ire_lock);
19095 
19096 	ASSERT(!(ipif->ipif_flags & (IPIF_UP | IPIF_DUPLICATE)));
19097 	ASSERT(ipif->ipif_recovery_id == 0);
19098 
19099 	/* Free the memory. */
19100 	mi_free(ipif);
19101 }
19102 
19103 /*
19104  * Sets `buf' to an ipif name of the form "ill_name:id", or "ill_name" if "id"
19105  * is zero.
19106  */
19107 void
19108 ipif_get_name(const ipif_t *ipif, char *buf, int len)
19109 {
19110 	char	lbuf[LIFNAMSIZ];
19111 	char	*name;
19112 	size_t	name_len;
19113 
19114 	buf[0] = '\0';
19115 	name = ipif->ipif_ill->ill_name;
19116 	name_len = ipif->ipif_ill->ill_name_length;
19117 	if (ipif->ipif_id != 0) {
19118 		(void) sprintf(lbuf, "%s%c%d", name, IPIF_SEPARATOR_CHAR,
19119 		    ipif->ipif_id);
19120 		name = lbuf;
19121 		name_len = mi_strlen(name) + 1;
19122 	}
19123 	len -= 1;
19124 	buf[len] = '\0';
19125 	len = MIN(len, name_len);
19126 	bcopy(name, buf, len);
19127 }
19128 
19129 /*
19130  * Find an IPIF based on the name passed in.  Names can be of the
19131  * form <phys> (e.g., le0), <phys>:<#> (e.g., le0:1),
19132  * The <phys> string can have forms like <dev><#> (e.g., le0),
19133  * <dev><#>.<module> (e.g. le0.foo), or <dev>.<module><#> (e.g. ip.tun3).
19134  * When there is no colon, the implied unit id is zero. <phys> must
19135  * correspond to the name of an ILL.  (May be called as writer.)
19136  */
19137 static ipif_t *
19138 ipif_lookup_on_name(char *name, size_t namelen, boolean_t do_alloc,
19139     boolean_t *exists, boolean_t isv6, zoneid_t zoneid, queue_t *q,
19140     mblk_t *mp, ipsq_func_t func, int *error, ip_stack_t *ipst)
19141 {
19142 	char	*cp;
19143 	char	*endp;
19144 	long	id;
19145 	ill_t	*ill;
19146 	ipif_t	*ipif;
19147 	uint_t	ire_type;
19148 	boolean_t did_alloc = B_FALSE;
19149 	ipsq_t	*ipsq;
19150 
19151 	if (error != NULL)
19152 		*error = 0;
19153 
19154 	/*
19155 	 * If the caller wants to us to create the ipif, make sure we have a
19156 	 * valid zoneid
19157 	 */
19158 	ASSERT(!do_alloc || zoneid != ALL_ZONES);
19159 
19160 	if (namelen == 0) {
19161 		if (error != NULL)
19162 			*error = ENXIO;
19163 		return (NULL);
19164 	}
19165 
19166 	*exists = B_FALSE;
19167 	/* Look for a colon in the name. */
19168 	endp = &name[namelen];
19169 	for (cp = endp; --cp > name; ) {
19170 		if (*cp == IPIF_SEPARATOR_CHAR)
19171 			break;
19172 	}
19173 
19174 	if (*cp == IPIF_SEPARATOR_CHAR) {
19175 		/*
19176 		 * Reject any non-decimal aliases for logical
19177 		 * interfaces. Aliases with leading zeroes
19178 		 * are also rejected as they introduce ambiguity
19179 		 * in the naming of the interfaces.
19180 		 * In order to confirm with existing semantics,
19181 		 * and to not break any programs/script relying
19182 		 * on that behaviour, if<0>:0 is considered to be
19183 		 * a valid interface.
19184 		 *
19185 		 * If alias has two or more digits and the first
19186 		 * is zero, fail.
19187 		 */
19188 		if (&cp[2] < endp && cp[1] == '0') {
19189 			if (error != NULL)
19190 				*error = EINVAL;
19191 			return (NULL);
19192 		}
19193 	}
19194 
19195 	if (cp <= name) {
19196 		cp = endp;
19197 	} else {
19198 		*cp = '\0';
19199 	}
19200 
19201 	/*
19202 	 * Look up the ILL, based on the portion of the name
19203 	 * before the slash. ill_lookup_on_name returns a held ill.
19204 	 * Temporary to check whether ill exists already. If so
19205 	 * ill_lookup_on_name will clear it.
19206 	 */
19207 	ill = ill_lookup_on_name(name, do_alloc, isv6,
19208 	    q, mp, func, error, &did_alloc, ipst);
19209 	if (cp != endp)
19210 		*cp = IPIF_SEPARATOR_CHAR;
19211 	if (ill == NULL)
19212 		return (NULL);
19213 
19214 	/* Establish the unit number in the name. */
19215 	id = 0;
19216 	if (cp < endp && *endp == '\0') {
19217 		/* If there was a colon, the unit number follows. */
19218 		cp++;
19219 		if (ddi_strtol(cp, NULL, 0, &id) != 0) {
19220 			ill_refrele(ill);
19221 			if (error != NULL)
19222 				*error = ENXIO;
19223 			return (NULL);
19224 		}
19225 	}
19226 
19227 	GRAB_CONN_LOCK(q);
19228 	mutex_enter(&ill->ill_lock);
19229 	/* Now see if there is an IPIF with this unit number. */
19230 	for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) {
19231 		if (ipif->ipif_id == id) {
19232 			if (zoneid != ALL_ZONES &&
19233 			    zoneid != ipif->ipif_zoneid &&
19234 			    ipif->ipif_zoneid != ALL_ZONES) {
19235 				mutex_exit(&ill->ill_lock);
19236 				RELEASE_CONN_LOCK(q);
19237 				ill_refrele(ill);
19238 				if (error != NULL)
19239 					*error = ENXIO;
19240 				return (NULL);
19241 			}
19242 			/*
19243 			 * The block comment at the start of ipif_down
19244 			 * explains the use of the macros used below
19245 			 */
19246 			if (IPIF_CAN_LOOKUP(ipif)) {
19247 				ipif_refhold_locked(ipif);
19248 				mutex_exit(&ill->ill_lock);
19249 				if (!did_alloc)
19250 					*exists = B_TRUE;
19251 				/*
19252 				 * Drop locks before calling ill_refrele
19253 				 * since it can potentially call into
19254 				 * ipif_ill_refrele_tail which can end up
19255 				 * in trying to acquire any lock.
19256 				 */
19257 				RELEASE_CONN_LOCK(q);
19258 				ill_refrele(ill);
19259 				return (ipif);
19260 			} else if (IPIF_CAN_WAIT(ipif, q)) {
19261 				ipsq = ill->ill_phyint->phyint_ipsq;
19262 				mutex_enter(&ipsq->ipsq_lock);
19263 				mutex_exit(&ill->ill_lock);
19264 				ipsq_enq(ipsq, q, mp, func, NEW_OP, ill);
19265 				mutex_exit(&ipsq->ipsq_lock);
19266 				RELEASE_CONN_LOCK(q);
19267 				ill_refrele(ill);
19268 				if (error != NULL)
19269 					*error = EINPROGRESS;
19270 				return (NULL);
19271 			}
19272 		}
19273 	}
19274 	RELEASE_CONN_LOCK(q);
19275 
19276 	if (!do_alloc) {
19277 		mutex_exit(&ill->ill_lock);
19278 		ill_refrele(ill);
19279 		if (error != NULL)
19280 			*error = ENXIO;
19281 		return (NULL);
19282 	}
19283 
19284 	/*
19285 	 * If none found, atomically allocate and return a new one.
19286 	 * Historically, we used IRE_LOOPBACK only for lun 0, and IRE_LOCAL
19287 	 * to support "receive only" use of lo0:1 etc. as is still done
19288 	 * below as an initial guess.
19289 	 * However, this is now likely to be overriden later in ipif_up_done()
19290 	 * when we know for sure what address has been configured on the
19291 	 * interface, since we might have more than one loopback interface
19292 	 * with a loopback address, e.g. in the case of zones, and all the
19293 	 * interfaces with loopback addresses need to be marked IRE_LOOPBACK.
19294 	 */
19295 	if (ill->ill_net_type == IRE_LOOPBACK && id == 0)
19296 		ire_type = IRE_LOOPBACK;
19297 	else
19298 		ire_type = IRE_LOCAL;
19299 	ipif = ipif_allocate(ill, id, ire_type, B_TRUE);
19300 	if (ipif != NULL)
19301 		ipif_refhold_locked(ipif);
19302 	else if (error != NULL)
19303 		*error = ENOMEM;
19304 	mutex_exit(&ill->ill_lock);
19305 	ill_refrele(ill);
19306 	return (ipif);
19307 }
19308 
19309 /*
19310  * This routine is called whenever a new address comes up on an ipif.  If
19311  * we are configured to respond to address mask requests, then we are supposed
19312  * to broadcast an address mask reply at this time.  This routine is also
19313  * called if we are already up, but a netmask change is made.  This is legal
19314  * but might not make the system manager very popular.	(May be called
19315  * as writer.)
19316  */
19317 void
19318 ipif_mask_reply(ipif_t *ipif)
19319 {
19320 	icmph_t	*icmph;
19321 	ipha_t	*ipha;
19322 	mblk_t	*mp;
19323 	ip_stack_t	*ipst = ipif->ipif_ill->ill_ipst;
19324 
19325 #define	REPLY_LEN	(sizeof (icmp_ipha) + sizeof (icmph_t) + IP_ADDR_LEN)
19326 
19327 	if (!ipst->ips_ip_respond_to_address_mask_broadcast)
19328 		return;
19329 
19330 	/* ICMP mask reply is IPv4 only */
19331 	ASSERT(!ipif->ipif_isv6);
19332 	/* ICMP mask reply is not for a loopback interface */
19333 	ASSERT(ipif->ipif_ill->ill_wq != NULL);
19334 
19335 	mp = allocb(REPLY_LEN, BPRI_HI);
19336 	if (mp == NULL)
19337 		return;
19338 	mp->b_wptr = mp->b_rptr + REPLY_LEN;
19339 
19340 	ipha = (ipha_t *)mp->b_rptr;
19341 	bzero(ipha, REPLY_LEN);
19342 	*ipha = icmp_ipha;
19343 	ipha->ipha_ttl = ipst->ips_ip_broadcast_ttl;
19344 	ipha->ipha_src = ipif->ipif_src_addr;
19345 	ipha->ipha_dst = ipif->ipif_brd_addr;
19346 	ipha->ipha_length = htons(REPLY_LEN);
19347 	ipha->ipha_ident = 0;
19348 
19349 	icmph = (icmph_t *)&ipha[1];
19350 	icmph->icmph_type = ICMP_ADDRESS_MASK_REPLY;
19351 	bcopy(&ipif->ipif_net_mask, &icmph[1], IP_ADDR_LEN);
19352 	icmph->icmph_checksum = IP_CSUM(mp, sizeof (ipha_t), 0);
19353 
19354 	put(ipif->ipif_wq, mp);
19355 
19356 #undef	REPLY_LEN
19357 }
19358 
19359 /*
19360  * When the mtu in the ipif changes, we call this routine through ire_walk
19361  * to update all the relevant IREs.
19362  * Skip IRE_LOCAL and "loopback" IRE_BROADCAST by checking ire_stq.
19363  */
19364 static void
19365 ipif_mtu_change(ire_t *ire, char *ipif_arg)
19366 {
19367 	ipif_t *ipif = (ipif_t *)ipif_arg;
19368 
19369 	if (ire->ire_stq == NULL || ire->ire_ipif != ipif)
19370 		return;
19371 	ire->ire_max_frag = MIN(ipif->ipif_mtu, IP_MAXPACKET);
19372 }
19373 
19374 /*
19375  * When the mtu in the ill changes, we call this routine through ire_walk
19376  * to update all the relevant IREs.
19377  * Skip IRE_LOCAL and "loopback" IRE_BROADCAST by checking ire_stq.
19378  */
19379 void
19380 ill_mtu_change(ire_t *ire, char *ill_arg)
19381 {
19382 	ill_t	*ill = (ill_t *)ill_arg;
19383 
19384 	if (ire->ire_stq == NULL || ire->ire_ipif->ipif_ill != ill)
19385 		return;
19386 	ire->ire_max_frag = ire->ire_ipif->ipif_mtu;
19387 }
19388 
19389 /*
19390  * Join the ipif specific multicast groups.
19391  * Must be called after a mapping has been set up in the resolver.  (Always
19392  * called as writer.)
19393  */
19394 void
19395 ipif_multicast_up(ipif_t *ipif)
19396 {
19397 	int err, index;
19398 	ill_t *ill;
19399 
19400 	ASSERT(IAM_WRITER_IPIF(ipif));
19401 
19402 	ill = ipif->ipif_ill;
19403 	index = ill->ill_phyint->phyint_ifindex;
19404 
19405 	ip1dbg(("ipif_multicast_up\n"));
19406 	if (!(ill->ill_flags & ILLF_MULTICAST) || ipif->ipif_multicast_up)
19407 		return;
19408 
19409 	if (ipif->ipif_isv6) {
19410 		if (IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr))
19411 			return;
19412 
19413 		/* Join the all hosts multicast address */
19414 		ip1dbg(("ipif_multicast_up - addmulti\n"));
19415 		/*
19416 		 * Passing B_TRUE means we have to join the multicast
19417 		 * membership on this interface even though this is
19418 		 * FAILED. If we join on a different one in the group,
19419 		 * we will not be able to delete the membership later
19420 		 * as we currently don't track where we join when we
19421 		 * join within the kernel unlike applications where
19422 		 * we have ilg/ilg_orig_index. See ip_addmulti_v6
19423 		 * for more on this.
19424 		 */
19425 		err = ip_addmulti_v6(&ipv6_all_hosts_mcast, ill, index,
19426 		    ipif->ipif_zoneid, ILGSTAT_NONE, MODE_IS_EXCLUDE, NULL);
19427 		if (err != 0) {
19428 			ip0dbg(("ipif_multicast_up: "
19429 			    "all_hosts_mcast failed %d\n",
19430 			    err));
19431 			return;
19432 		}
19433 		/*
19434 		 * Enable multicast for the solicited node multicast address
19435 		 */
19436 		if (!(ipif->ipif_flags & IPIF_NOLOCAL)) {
19437 			in6_addr_t ipv6_multi = ipv6_solicited_node_mcast;
19438 
19439 			ipv6_multi.s6_addr32[3] |=
19440 			    ipif->ipif_v6lcl_addr.s6_addr32[3];
19441 
19442 			err = ip_addmulti_v6(&ipv6_multi, ill, index,
19443 			    ipif->ipif_zoneid, ILGSTAT_NONE, MODE_IS_EXCLUDE,
19444 			    NULL);
19445 			if (err != 0) {
19446 				ip0dbg(("ipif_multicast_up: solicited MC"
19447 				    " failed %d\n", err));
19448 				(void) ip_delmulti_v6(&ipv6_all_hosts_mcast,
19449 				    ill, ill->ill_phyint->phyint_ifindex,
19450 				    ipif->ipif_zoneid, B_TRUE, B_TRUE);
19451 				return;
19452 			}
19453 		}
19454 	} else {
19455 		if (ipif->ipif_lcl_addr == INADDR_ANY)
19456 			return;
19457 
19458 		/* Join the all hosts multicast address */
19459 		ip1dbg(("ipif_multicast_up - addmulti\n"));
19460 		err = ip_addmulti(htonl(INADDR_ALLHOSTS_GROUP), ipif,
19461 		    ILGSTAT_NONE, MODE_IS_EXCLUDE, NULL);
19462 		if (err) {
19463 			ip0dbg(("ipif_multicast_up: failed %d\n", err));
19464 			return;
19465 		}
19466 	}
19467 	ipif->ipif_multicast_up = 1;
19468 }
19469 
19470 /*
19471  * Blow away any multicast groups that we joined in ipif_multicast_up().
19472  * (Explicit memberships are blown away in ill_leave_multicast() when the
19473  * ill is brought down.)
19474  */
19475 static void
19476 ipif_multicast_down(ipif_t *ipif)
19477 {
19478 	int err;
19479 
19480 	ASSERT(IAM_WRITER_IPIF(ipif));
19481 
19482 	ip1dbg(("ipif_multicast_down\n"));
19483 	if (!ipif->ipif_multicast_up)
19484 		return;
19485 
19486 	ip1dbg(("ipif_multicast_down - delmulti\n"));
19487 
19488 	if (!ipif->ipif_isv6) {
19489 		err = ip_delmulti(htonl(INADDR_ALLHOSTS_GROUP), ipif, B_TRUE,
19490 		    B_TRUE);
19491 		if (err != 0)
19492 			ip0dbg(("ipif_multicast_down: failed %d\n", err));
19493 
19494 		ipif->ipif_multicast_up = 0;
19495 		return;
19496 	}
19497 
19498 	/*
19499 	 * Leave the all hosts multicast address. Similar to ip_addmulti_v6,
19500 	 * we should look for ilms on this ill rather than the ones that have
19501 	 * been failed over here.  They are here temporarily. As
19502 	 * ipif_multicast_up has joined on this ill, we should delete only
19503 	 * from this ill.
19504 	 */
19505 	err = ip_delmulti_v6(&ipv6_all_hosts_mcast, ipif->ipif_ill,
19506 	    ipif->ipif_ill->ill_phyint->phyint_ifindex, ipif->ipif_zoneid,
19507 	    B_TRUE, B_TRUE);
19508 	if (err != 0) {
19509 		ip0dbg(("ipif_multicast_down: all_hosts_mcast failed %d\n",
19510 		    err));
19511 	}
19512 	/*
19513 	 * Disable multicast for the solicited node multicast address
19514 	 */
19515 	if (!(ipif->ipif_flags & IPIF_NOLOCAL)) {
19516 		in6_addr_t ipv6_multi = ipv6_solicited_node_mcast;
19517 
19518 		ipv6_multi.s6_addr32[3] |=
19519 		    ipif->ipif_v6lcl_addr.s6_addr32[3];
19520 
19521 		err = ip_delmulti_v6(&ipv6_multi, ipif->ipif_ill,
19522 		    ipif->ipif_ill->ill_phyint->phyint_ifindex,
19523 		    ipif->ipif_zoneid, B_TRUE, B_TRUE);
19524 
19525 		if (err != 0) {
19526 			ip0dbg(("ipif_multicast_down: sol MC failed %d\n",
19527 			    err));
19528 		}
19529 	}
19530 
19531 	ipif->ipif_multicast_up = 0;
19532 }
19533 
19534 /*
19535  * Used when an interface comes up to recreate any extra routes on this
19536  * interface.
19537  */
19538 static ire_t **
19539 ipif_recover_ire(ipif_t *ipif)
19540 {
19541 	mblk_t	*mp;
19542 	ire_t	**ipif_saved_irep;
19543 	ire_t	**irep;
19544 	ip_stack_t	*ipst = ipif->ipif_ill->ill_ipst;
19545 
19546 	ip1dbg(("ipif_recover_ire(%s:%u)", ipif->ipif_ill->ill_name,
19547 	    ipif->ipif_id));
19548 
19549 	mutex_enter(&ipif->ipif_saved_ire_lock);
19550 	ipif_saved_irep = (ire_t **)kmem_zalloc(sizeof (ire_t *) *
19551 	    ipif->ipif_saved_ire_cnt, KM_NOSLEEP);
19552 	if (ipif_saved_irep == NULL) {
19553 		mutex_exit(&ipif->ipif_saved_ire_lock);
19554 		return (NULL);
19555 	}
19556 
19557 	irep = ipif_saved_irep;
19558 	for (mp = ipif->ipif_saved_ire_mp; mp != NULL; mp = mp->b_cont) {
19559 		ire_t		*ire;
19560 		queue_t		*rfq;
19561 		queue_t		*stq;
19562 		ifrt_t		*ifrt;
19563 		uchar_t		*src_addr;
19564 		uchar_t		*gateway_addr;
19565 		ushort_t	type;
19566 
19567 		/*
19568 		 * When the ire was initially created and then added in
19569 		 * ip_rt_add(), it was created either using ipif->ipif_net_type
19570 		 * in the case of a traditional interface route, or as one of
19571 		 * the IRE_OFFSUBNET types (with the exception of
19572 		 * IRE_HOST types ire which is created by icmp_redirect() and
19573 		 * which we don't need to save or recover).  In the case where
19574 		 * ipif->ipif_net_type was IRE_LOOPBACK, ip_rt_add() will update
19575 		 * the ire_type to IRE_IF_NORESOLVER before calling ire_add()
19576 		 * to satisfy software like GateD and Sun Cluster which creates
19577 		 * routes using the the loopback interface's address as a
19578 		 * gateway.
19579 		 *
19580 		 * As ifrt->ifrt_type reflects the already updated ire_type,
19581 		 * ire_create() will be called in the same way here as
19582 		 * in ip_rt_add(), namely using ipif->ipif_net_type when
19583 		 * the route looks like a traditional interface route (where
19584 		 * ifrt->ifrt_type & IRE_INTERFACE is true) and otherwise using
19585 		 * the saved ifrt->ifrt_type.  This means that in the case where
19586 		 * ipif->ipif_net_type is IRE_LOOPBACK, the ire created by
19587 		 * ire_create() will be an IRE_LOOPBACK, it will then be turned
19588 		 * into an IRE_IF_NORESOLVER and then added by ire_add().
19589 		 */
19590 		ifrt = (ifrt_t *)mp->b_rptr;
19591 		ASSERT(ifrt->ifrt_type != IRE_CACHE);
19592 		if (ifrt->ifrt_type & IRE_INTERFACE) {
19593 			rfq = NULL;
19594 			stq = (ipif->ipif_net_type == IRE_IF_RESOLVER)
19595 			    ? ipif->ipif_rq : ipif->ipif_wq;
19596 			src_addr = (ifrt->ifrt_flags & RTF_SETSRC)
19597 			    ? (uint8_t *)&ifrt->ifrt_src_addr
19598 			    : (uint8_t *)&ipif->ipif_src_addr;
19599 			gateway_addr = NULL;
19600 			type = ipif->ipif_net_type;
19601 		} else if (ifrt->ifrt_type & IRE_BROADCAST) {
19602 			/* Recover multiroute broadcast IRE. */
19603 			rfq = ipif->ipif_rq;
19604 			stq = ipif->ipif_wq;
19605 			src_addr = (ifrt->ifrt_flags & RTF_SETSRC)
19606 			    ? (uint8_t *)&ifrt->ifrt_src_addr
19607 			    : (uint8_t *)&ipif->ipif_src_addr;
19608 			gateway_addr = (uint8_t *)&ifrt->ifrt_gateway_addr;
19609 			type = ifrt->ifrt_type;
19610 		} else {
19611 			rfq = NULL;
19612 			stq = NULL;
19613 			src_addr = (ifrt->ifrt_flags & RTF_SETSRC)
19614 			    ? (uint8_t *)&ifrt->ifrt_src_addr : NULL;
19615 			gateway_addr = (uint8_t *)&ifrt->ifrt_gateway_addr;
19616 			type = ifrt->ifrt_type;
19617 		}
19618 
19619 		/*
19620 		 * Create a copy of the IRE with the saved address and netmask.
19621 		 */
19622 		ip1dbg(("ipif_recover_ire: creating IRE %s (%d) for "
19623 		    "0x%x/0x%x\n",
19624 		    ip_nv_lookup(ire_nv_tbl, ifrt->ifrt_type), ifrt->ifrt_type,
19625 		    ntohl(ifrt->ifrt_addr),
19626 		    ntohl(ifrt->ifrt_mask)));
19627 		ire = ire_create(
19628 		    (uint8_t *)&ifrt->ifrt_addr,
19629 		    (uint8_t *)&ifrt->ifrt_mask,
19630 		    src_addr,
19631 		    gateway_addr,
19632 		    &ifrt->ifrt_max_frag,
19633 		    NULL,
19634 		    rfq,
19635 		    stq,
19636 		    type,
19637 		    ipif,
19638 		    0,
19639 		    0,
19640 		    0,
19641 		    ifrt->ifrt_flags,
19642 		    &ifrt->ifrt_iulp_info,
19643 		    NULL,
19644 		    NULL,
19645 		    ipst);
19646 
19647 		if (ire == NULL) {
19648 			mutex_exit(&ipif->ipif_saved_ire_lock);
19649 			kmem_free(ipif_saved_irep,
19650 			    ipif->ipif_saved_ire_cnt * sizeof (ire_t *));
19651 			return (NULL);
19652 		}
19653 
19654 		/*
19655 		 * Some software (for example, GateD and Sun Cluster) attempts
19656 		 * to create (what amount to) IRE_PREFIX routes with the
19657 		 * loopback address as the gateway.  This is primarily done to
19658 		 * set up prefixes with the RTF_REJECT flag set (for example,
19659 		 * when generating aggregate routes.)
19660 		 *
19661 		 * If the IRE type (as defined by ipif->ipif_net_type) is
19662 		 * IRE_LOOPBACK, then we map the request into a
19663 		 * IRE_IF_NORESOLVER.
19664 		 */
19665 		if (ipif->ipif_net_type == IRE_LOOPBACK)
19666 			ire->ire_type = IRE_IF_NORESOLVER;
19667 		/*
19668 		 * ire held by ire_add, will be refreled' towards the
19669 		 * the end of ipif_up_done
19670 		 */
19671 		(void) ire_add(&ire, NULL, NULL, NULL, B_FALSE);
19672 		*irep = ire;
19673 		irep++;
19674 		ip1dbg(("ipif_recover_ire: added ire %p\n", (void *)ire));
19675 	}
19676 	mutex_exit(&ipif->ipif_saved_ire_lock);
19677 	return (ipif_saved_irep);
19678 }
19679 
19680 /*
19681  * Used to set the netmask and broadcast address to default values when the
19682  * interface is brought up.  (Always called as writer.)
19683  */
19684 static void
19685 ipif_set_default(ipif_t *ipif)
19686 {
19687 	ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock));
19688 
19689 	if (!ipif->ipif_isv6) {
19690 		/*
19691 		 * Interface holds an IPv4 address. Default
19692 		 * mask is the natural netmask.
19693 		 */
19694 		if (!ipif->ipif_net_mask) {
19695 			ipaddr_t	v4mask;
19696 
19697 			v4mask = ip_net_mask(ipif->ipif_lcl_addr);
19698 			V4MASK_TO_V6(v4mask, ipif->ipif_v6net_mask);
19699 		}
19700 		if (ipif->ipif_flags & IPIF_POINTOPOINT) {
19701 			/* ipif_subnet is ipif_pp_dst_addr for pt-pt */
19702 			ipif->ipif_v6subnet = ipif->ipif_v6pp_dst_addr;
19703 		} else {
19704 			V6_MASK_COPY(ipif->ipif_v6lcl_addr,
19705 			    ipif->ipif_v6net_mask, ipif->ipif_v6subnet);
19706 		}
19707 		/*
19708 		 * NOTE: SunOS 4.X does this even if the broadcast address
19709 		 * has been already set thus we do the same here.
19710 		 */
19711 		if (ipif->ipif_flags & IPIF_BROADCAST) {
19712 			ipaddr_t	v4addr;
19713 
19714 			v4addr = ipif->ipif_subnet | ~ipif->ipif_net_mask;
19715 			IN6_IPADDR_TO_V4MAPPED(v4addr, &ipif->ipif_v6brd_addr);
19716 		}
19717 	} else {
19718 		/*
19719 		 * Interface holds an IPv6-only address.  Default
19720 		 * mask is all-ones.
19721 		 */
19722 		if (IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6net_mask))
19723 			ipif->ipif_v6net_mask = ipv6_all_ones;
19724 		if (ipif->ipif_flags & IPIF_POINTOPOINT) {
19725 			/* ipif_subnet is ipif_pp_dst_addr for pt-pt */
19726 			ipif->ipif_v6subnet = ipif->ipif_v6pp_dst_addr;
19727 		} else {
19728 			V6_MASK_COPY(ipif->ipif_v6lcl_addr,
19729 			    ipif->ipif_v6net_mask, ipif->ipif_v6subnet);
19730 		}
19731 	}
19732 }
19733 
19734 /*
19735  * Return 0 if this address can be used as local address without causing
19736  * duplicate address problems. Otherwise, return EADDRNOTAVAIL if the address
19737  * is already up on a different ill, and EADDRINUSE if it's up on the same ill.
19738  * Special checks are needed to allow the same IPv6 link-local address
19739  * on different ills.
19740  * TODO: allowing the same site-local address on different ill's.
19741  */
19742 int
19743 ip_addr_availability_check(ipif_t *new_ipif)
19744 {
19745 	in6_addr_t our_v6addr;
19746 	ill_t *ill;
19747 	ipif_t *ipif;
19748 	ill_walk_context_t ctx;
19749 	ip_stack_t	*ipst = new_ipif->ipif_ill->ill_ipst;
19750 
19751 	ASSERT(IAM_WRITER_IPIF(new_ipif));
19752 	ASSERT(MUTEX_HELD(&ipst->ips_ip_addr_avail_lock));
19753 	ASSERT(RW_READ_HELD(&ipst->ips_ill_g_lock));
19754 
19755 	new_ipif->ipif_flags &= ~IPIF_UNNUMBERED;
19756 	if (IN6_IS_ADDR_UNSPECIFIED(&new_ipif->ipif_v6lcl_addr) ||
19757 	    IN6_IS_ADDR_V4MAPPED_ANY(&new_ipif->ipif_v6lcl_addr))
19758 		return (0);
19759 
19760 	our_v6addr = new_ipif->ipif_v6lcl_addr;
19761 
19762 	if (new_ipif->ipif_isv6)
19763 		ill = ILL_START_WALK_V6(&ctx, ipst);
19764 	else
19765 		ill = ILL_START_WALK_V4(&ctx, ipst);
19766 
19767 	for (; ill != NULL; ill = ill_next(&ctx, ill)) {
19768 		for (ipif = ill->ill_ipif; ipif != NULL;
19769 		    ipif = ipif->ipif_next) {
19770 			if ((ipif == new_ipif) ||
19771 			    !(ipif->ipif_flags & IPIF_UP) ||
19772 			    (ipif->ipif_flags & IPIF_UNNUMBERED))
19773 				continue;
19774 			if (IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6lcl_addr,
19775 			    &our_v6addr)) {
19776 				if (new_ipif->ipif_flags & IPIF_POINTOPOINT)
19777 					new_ipif->ipif_flags |= IPIF_UNNUMBERED;
19778 				else if (ipif->ipif_flags & IPIF_POINTOPOINT)
19779 					ipif->ipif_flags |= IPIF_UNNUMBERED;
19780 				else if (IN6_IS_ADDR_LINKLOCAL(&our_v6addr) &&
19781 				    new_ipif->ipif_ill != ill)
19782 					continue;
19783 				else if (IN6_IS_ADDR_SITELOCAL(&our_v6addr) &&
19784 				    new_ipif->ipif_ill != ill)
19785 					continue;
19786 				else if (new_ipif->ipif_zoneid !=
19787 				    ipif->ipif_zoneid &&
19788 				    ipif->ipif_zoneid != ALL_ZONES &&
19789 				    IS_LOOPBACK(ill))
19790 					continue;
19791 				else if (new_ipif->ipif_ill == ill)
19792 					return (EADDRINUSE);
19793 				else
19794 					return (EADDRNOTAVAIL);
19795 			}
19796 		}
19797 	}
19798 
19799 	return (0);
19800 }
19801 
19802 /*
19803  * Bring up an ipif: bring up arp/ndp, bring up the DLPI stream, and add
19804  * IREs for the ipif.
19805  * When the routine returns EINPROGRESS then mp has been consumed and
19806  * the ioctl will be acked from ip_rput_dlpi.
19807  */
19808 static int
19809 ipif_up(ipif_t *ipif, queue_t *q, mblk_t *mp)
19810 {
19811 	ill_t	*ill = ipif->ipif_ill;
19812 	boolean_t isv6 = ipif->ipif_isv6;
19813 	int	err = 0;
19814 	boolean_t success;
19815 
19816 	ASSERT(IAM_WRITER_IPIF(ipif));
19817 
19818 	ip1dbg(("ipif_up(%s:%u)\n", ill->ill_name, ipif->ipif_id));
19819 
19820 	/* Shouldn't get here if it is already up. */
19821 	if (ipif->ipif_flags & IPIF_UP)
19822 		return (EALREADY);
19823 
19824 	/* Skip arp/ndp for any loopback interface. */
19825 	if (ill->ill_wq != NULL) {
19826 		conn_t *connp = CONN_Q(q) ? Q_TO_CONN(q) : NULL;
19827 		ipsq_t	*ipsq = ill->ill_phyint->phyint_ipsq;
19828 
19829 		if (!ill->ill_dl_up) {
19830 			/*
19831 			 * ill_dl_up is not yet set. i.e. we are yet to
19832 			 * DL_BIND with the driver and this is the first
19833 			 * logical interface on the ill to become "up".
19834 			 * Tell the driver to get going (via DL_BIND_REQ).
19835 			 * Note that changing "significant" IFF_ flags
19836 			 * address/netmask etc cause a down/up dance, but
19837 			 * does not cause an unbind (DL_UNBIND) with the driver
19838 			 */
19839 			return (ill_dl_up(ill, ipif, mp, q));
19840 		}
19841 
19842 		/*
19843 		 * ipif_resolver_up may end up sending an
19844 		 * AR_INTERFACE_UP message to ARP, which would, in
19845 		 * turn send a DLPI message to the driver. ioctls are
19846 		 * serialized and so we cannot send more than one
19847 		 * interface up message at a time. If ipif_resolver_up
19848 		 * does send an interface up message to ARP, we get
19849 		 * EINPROGRESS and we will complete in ip_arp_done.
19850 		 */
19851 
19852 		ASSERT(connp != NULL || !CONN_Q(q));
19853 		ASSERT(ipsq->ipsq_pending_mp == NULL);
19854 		if (connp != NULL)
19855 			mutex_enter(&connp->conn_lock);
19856 		mutex_enter(&ill->ill_lock);
19857 		success = ipsq_pending_mp_add(connp, ipif, q, mp, 0);
19858 		mutex_exit(&ill->ill_lock);
19859 		if (connp != NULL)
19860 			mutex_exit(&connp->conn_lock);
19861 		if (!success)
19862 			return (EINTR);
19863 
19864 		/*
19865 		 * Crank up IPv6 neighbor discovery
19866 		 * Unlike ARP, this should complete when
19867 		 * ipif_ndp_up returns. However, for
19868 		 * ILLF_XRESOLV interfaces we also send a
19869 		 * AR_INTERFACE_UP to the external resolver.
19870 		 * That ioctl will complete in ip_rput.
19871 		 */
19872 		if (isv6) {
19873 			err = ipif_ndp_up(ipif);
19874 			if (err != 0) {
19875 				if (err != EINPROGRESS)
19876 					mp = ipsq_pending_mp_get(ipsq, &connp);
19877 				return (err);
19878 			}
19879 		}
19880 		/* Now, ARP */
19881 		err = ipif_resolver_up(ipif, Res_act_initial);
19882 		if (err == EINPROGRESS) {
19883 			/* We will complete it in ip_arp_done */
19884 			return (err);
19885 		}
19886 		mp = ipsq_pending_mp_get(ipsq, &connp);
19887 		ASSERT(mp != NULL);
19888 		if (err != 0)
19889 			return (err);
19890 	} else {
19891 		/*
19892 		 * Interfaces without underlying hardware don't do duplicate
19893 		 * address detection.
19894 		 */
19895 		ASSERT(!(ipif->ipif_flags & IPIF_DUPLICATE));
19896 		ipif->ipif_addr_ready = 1;
19897 	}
19898 	return (isv6 ? ipif_up_done_v6(ipif) : ipif_up_done(ipif));
19899 }
19900 
19901 /*
19902  * Perform a bind for the physical device.
19903  * When the routine returns EINPROGRESS then mp has been consumed and
19904  * the ioctl will be acked from ip_rput_dlpi.
19905  * Allocate an unbind message and save it until ipif_down.
19906  */
19907 static int
19908 ill_dl_up(ill_t *ill, ipif_t *ipif, mblk_t *mp, queue_t *q)
19909 {
19910 	areq_t	*areq;
19911 	mblk_t	*areq_mp = NULL;
19912 	mblk_t	*bind_mp = NULL;
19913 	mblk_t	*unbind_mp = NULL;
19914 	conn_t	*connp;
19915 	boolean_t success;
19916 	uint16_t sap_addr;
19917 
19918 	ip1dbg(("ill_dl_up(%s)\n", ill->ill_name));
19919 	ASSERT(IAM_WRITER_ILL(ill));
19920 	ASSERT(mp != NULL);
19921 
19922 	/* Create a resolver cookie for ARP */
19923 	if (!ill->ill_isv6 && ill->ill_net_type == IRE_IF_RESOLVER) {
19924 		areq_mp = ill_arp_alloc(ill, (uchar_t *)&ip_areq_template, 0);
19925 		if (areq_mp == NULL)
19926 			return (ENOMEM);
19927 
19928 		freemsg(ill->ill_resolver_mp);
19929 		ill->ill_resolver_mp = areq_mp;
19930 		areq = (areq_t *)areq_mp->b_rptr;
19931 		sap_addr = ill->ill_sap;
19932 		bcopy(&sap_addr, areq->areq_sap, sizeof (sap_addr));
19933 	}
19934 	bind_mp = ip_dlpi_alloc(sizeof (dl_bind_req_t) + sizeof (long),
19935 	    DL_BIND_REQ);
19936 	if (bind_mp == NULL)
19937 		goto bad;
19938 	((dl_bind_req_t *)bind_mp->b_rptr)->dl_sap = ill->ill_sap;
19939 	((dl_bind_req_t *)bind_mp->b_rptr)->dl_service_mode = DL_CLDLS;
19940 
19941 	unbind_mp = ip_dlpi_alloc(sizeof (dl_unbind_req_t), DL_UNBIND_REQ);
19942 	if (unbind_mp == NULL)
19943 		goto bad;
19944 
19945 	/*
19946 	 * Record state needed to complete this operation when the
19947 	 * DL_BIND_ACK shows up.  Also remember the pre-allocated mblks.
19948 	 */
19949 	ASSERT(WR(q)->q_next == NULL);
19950 	connp = Q_TO_CONN(q);
19951 
19952 	mutex_enter(&connp->conn_lock);
19953 	mutex_enter(&ipif->ipif_ill->ill_lock);
19954 	success = ipsq_pending_mp_add(connp, ipif, q, mp, 0);
19955 	mutex_exit(&ipif->ipif_ill->ill_lock);
19956 	mutex_exit(&connp->conn_lock);
19957 	if (!success)
19958 		goto bad;
19959 
19960 	/*
19961 	 * Save the unbind message for ill_dl_down(); it will be consumed when
19962 	 * the interface goes down.
19963 	 */
19964 	ASSERT(ill->ill_unbind_mp == NULL);
19965 	ill->ill_unbind_mp = unbind_mp;
19966 
19967 	ill_dlpi_send(ill, bind_mp);
19968 	/* Send down link-layer capabilities probe if not already done. */
19969 	ill_capability_probe(ill);
19970 
19971 	/*
19972 	 * Sysid used to rely on the fact that netboots set domainname
19973 	 * and the like. Now that miniroot boots aren't strictly netboots
19974 	 * and miniroot network configuration is driven from userland
19975 	 * these things still need to be set. This situation can be detected
19976 	 * by comparing the interface being configured here to the one
19977 	 * dhcifname was set to reference by the boot loader. Once sysid is
19978 	 * converted to use dhcp_ipc_getinfo() this call can go away.
19979 	 */
19980 	if ((ipif->ipif_flags & IPIF_DHCPRUNNING) &&
19981 	    (strcmp(ill->ill_name, dhcifname) == 0) &&
19982 	    (strlen(srpc_domain) == 0)) {
19983 		if (dhcpinit() != 0)
19984 			cmn_err(CE_WARN, "no cached dhcp response");
19985 	}
19986 
19987 	/*
19988 	 * This operation will complete in ip_rput_dlpi with either
19989 	 * a DL_BIND_ACK or DL_ERROR_ACK.
19990 	 */
19991 	return (EINPROGRESS);
19992 bad:
19993 	ip1dbg(("ill_dl_up(%s) FAILED\n", ill->ill_name));
19994 	/*
19995 	 * We don't have to check for possible removal from illgrp
19996 	 * as we have not yet inserted in illgrp. For groups
19997 	 * without names, this ipif is still not UP and hence
19998 	 * this could not have possibly had any influence in forming
19999 	 * groups.
20000 	 */
20001 
20002 	freemsg(bind_mp);
20003 	freemsg(unbind_mp);
20004 	return (ENOMEM);
20005 }
20006 
20007 uint_t ip_loopback_mtuplus = IP_LOOPBACK_MTU + IP_SIMPLE_HDR_LENGTH + 20;
20008 
20009 /*
20010  * DLPI and ARP is up.
20011  * Create all the IREs associated with an interface bring up multicast.
20012  * Set the interface flag and finish other initialization
20013  * that potentially had to be differed to after DL_BIND_ACK.
20014  */
20015 int
20016 ipif_up_done(ipif_t *ipif)
20017 {
20018 	ire_t	*ire_array[20];
20019 	ire_t	**irep = ire_array;
20020 	ire_t	**irep1;
20021 	ipaddr_t net_mask = 0;
20022 	ipaddr_t subnet_mask, route_mask;
20023 	ill_t	*ill = ipif->ipif_ill;
20024 	queue_t	*stq;
20025 	ipif_t	 *src_ipif;
20026 	ipif_t   *tmp_ipif;
20027 	boolean_t	flush_ire_cache = B_TRUE;
20028 	int	err = 0;
20029 	phyint_t *phyi;
20030 	ire_t	**ipif_saved_irep = NULL;
20031 	int ipif_saved_ire_cnt;
20032 	int	cnt;
20033 	boolean_t	src_ipif_held = B_FALSE;
20034 	boolean_t	ire_added = B_FALSE;
20035 	boolean_t	loopback = B_FALSE;
20036 	ip_stack_t	*ipst = ill->ill_ipst;
20037 
20038 	ip1dbg(("ipif_up_done(%s:%u)\n",
20039 	    ipif->ipif_ill->ill_name, ipif->ipif_id));
20040 	/* Check if this is a loopback interface */
20041 	if (ipif->ipif_ill->ill_wq == NULL)
20042 		loopback = B_TRUE;
20043 
20044 	ASSERT(!MUTEX_HELD(&ipif->ipif_ill->ill_lock));
20045 	/*
20046 	 * If all other interfaces for this ill are down or DEPRECATED,
20047 	 * or otherwise unsuitable for source address selection, remove
20048 	 * any IRE_CACHE entries for this ill to make sure source
20049 	 * address selection gets to take this new ipif into account.
20050 	 * No need to hold ill_lock while traversing the ipif list since
20051 	 * we are writer
20052 	 */
20053 	for (tmp_ipif = ill->ill_ipif; tmp_ipif;
20054 	    tmp_ipif = tmp_ipif->ipif_next) {
20055 		if (((tmp_ipif->ipif_flags &
20056 		    (IPIF_NOXMIT|IPIF_ANYCAST|IPIF_NOLOCAL|IPIF_DEPRECATED)) ||
20057 		    !(tmp_ipif->ipif_flags & IPIF_UP)) ||
20058 		    (tmp_ipif == ipif))
20059 			continue;
20060 		/* first useable pre-existing interface */
20061 		flush_ire_cache = B_FALSE;
20062 		break;
20063 	}
20064 	if (flush_ire_cache)
20065 		ire_walk_ill_v4(MATCH_IRE_ILL_GROUP | MATCH_IRE_TYPE,
20066 		    IRE_CACHE, ill_ipif_cache_delete, (char *)ill, ill);
20067 
20068 	/*
20069 	 * Figure out which way the send-to queue should go.  Only
20070 	 * IRE_IF_RESOLVER or IRE_IF_NORESOLVER or IRE_LOOPBACK
20071 	 * should show up here.
20072 	 */
20073 	switch (ill->ill_net_type) {
20074 	case IRE_IF_RESOLVER:
20075 		stq = ill->ill_rq;
20076 		break;
20077 	case IRE_IF_NORESOLVER:
20078 	case IRE_LOOPBACK:
20079 		stq = ill->ill_wq;
20080 		break;
20081 	default:
20082 		return (EINVAL);
20083 	}
20084 
20085 	if (IS_LOOPBACK(ill)) {
20086 		/*
20087 		 * lo0:1 and subsequent ipifs were marked IRE_LOCAL in
20088 		 * ipif_lookup_on_name(), but in the case of zones we can have
20089 		 * several loopback addresses on lo0. So all the interfaces with
20090 		 * loopback addresses need to be marked IRE_LOOPBACK.
20091 		 */
20092 		if (V4_PART_OF_V6(ipif->ipif_v6lcl_addr) ==
20093 		    htonl(INADDR_LOOPBACK))
20094 			ipif->ipif_ire_type = IRE_LOOPBACK;
20095 		else
20096 			ipif->ipif_ire_type = IRE_LOCAL;
20097 	}
20098 
20099 	if (ipif->ipif_flags & (IPIF_NOLOCAL|IPIF_ANYCAST|IPIF_DEPRECATED)) {
20100 		/*
20101 		 * Can't use our source address. Select a different
20102 		 * source address for the IRE_INTERFACE and IRE_LOCAL
20103 		 */
20104 		src_ipif = ipif_select_source(ipif->ipif_ill,
20105 		    ipif->ipif_subnet, ipif->ipif_zoneid);
20106 		if (src_ipif == NULL)
20107 			src_ipif = ipif;	/* Last resort */
20108 		else
20109 			src_ipif_held = B_TRUE;
20110 	} else {
20111 		src_ipif = ipif;
20112 	}
20113 
20114 	/* Create all the IREs associated with this interface */
20115 	if ((ipif->ipif_lcl_addr != INADDR_ANY) &&
20116 	    !(ipif->ipif_flags & IPIF_NOLOCAL)) {
20117 
20118 		/*
20119 		 * If we're on a labeled system then make sure that zone-
20120 		 * private addresses have proper remote host database entries.
20121 		 */
20122 		if (is_system_labeled() &&
20123 		    ipif->ipif_ire_type != IRE_LOOPBACK &&
20124 		    !tsol_check_interface_address(ipif))
20125 			return (EINVAL);
20126 
20127 		/* Register the source address for __sin6_src_id */
20128 		err = ip_srcid_insert(&ipif->ipif_v6lcl_addr,
20129 		    ipif->ipif_zoneid, ipst);
20130 		if (err != 0) {
20131 			ip0dbg(("ipif_up_done: srcid_insert %d\n", err));
20132 			return (err);
20133 		}
20134 
20135 		/* If the interface address is set, create the local IRE. */
20136 		ip1dbg(("ipif_up_done: 0x%p creating IRE 0x%x for 0x%x\n",
20137 		    (void *)ipif,
20138 		    ipif->ipif_ire_type,
20139 		    ntohl(ipif->ipif_lcl_addr)));
20140 		*irep++ = ire_create(
20141 		    (uchar_t *)&ipif->ipif_lcl_addr,	/* dest address */
20142 		    (uchar_t *)&ip_g_all_ones,		/* mask */
20143 		    (uchar_t *)&src_ipif->ipif_src_addr, /* source address */
20144 		    NULL,				/* no gateway */
20145 		    &ip_loopback_mtuplus,		/* max frag size */
20146 		    NULL,
20147 		    ipif->ipif_rq,			/* recv-from queue */
20148 		    NULL,				/* no send-to queue */
20149 		    ipif->ipif_ire_type,		/* LOCAL or LOOPBACK */
20150 		    ipif,
20151 		    0,
20152 		    0,
20153 		    0,
20154 		    (ipif->ipif_flags & IPIF_PRIVATE) ?
20155 		    RTF_PRIVATE : 0,
20156 		    &ire_uinfo_null,
20157 		    NULL,
20158 		    NULL,
20159 		    ipst);
20160 	} else {
20161 		ip1dbg((
20162 		    "ipif_up_done: not creating IRE %d for 0x%x: flags 0x%x\n",
20163 		    ipif->ipif_ire_type,
20164 		    ntohl(ipif->ipif_lcl_addr),
20165 		    (uint_t)ipif->ipif_flags));
20166 	}
20167 	if ((ipif->ipif_lcl_addr != INADDR_ANY) &&
20168 	    !(ipif->ipif_flags & IPIF_NOLOCAL)) {
20169 		net_mask = ip_net_mask(ipif->ipif_lcl_addr);
20170 	} else {
20171 		net_mask = htonl(IN_CLASSA_NET);	/* fallback */
20172 	}
20173 
20174 	subnet_mask = ipif->ipif_net_mask;
20175 
20176 	/*
20177 	 * If mask was not specified, use natural netmask of
20178 	 * interface address. Also, store this mask back into the
20179 	 * ipif struct.
20180 	 */
20181 	if (subnet_mask == 0) {
20182 		subnet_mask = net_mask;
20183 		V4MASK_TO_V6(subnet_mask, ipif->ipif_v6net_mask);
20184 		V6_MASK_COPY(ipif->ipif_v6lcl_addr, ipif->ipif_v6net_mask,
20185 		    ipif->ipif_v6subnet);
20186 	}
20187 
20188 	/* Set up the IRE_IF_RESOLVER or IRE_IF_NORESOLVER, as appropriate. */
20189 	if (stq != NULL && !(ipif->ipif_flags & IPIF_NOXMIT) &&
20190 	    ipif->ipif_subnet != INADDR_ANY) {
20191 		/* ipif_subnet is ipif_pp_dst_addr for pt-pt */
20192 
20193 		if (ipif->ipif_flags & IPIF_POINTOPOINT) {
20194 			route_mask = IP_HOST_MASK;
20195 		} else {
20196 			route_mask = subnet_mask;
20197 		}
20198 
20199 		ip1dbg(("ipif_up_done: ipif 0x%p ill 0x%p "
20200 		    "creating if IRE ill_net_type 0x%x for 0x%x\n",
20201 		    (void *)ipif, (void *)ill,
20202 		    ill->ill_net_type,
20203 		    ntohl(ipif->ipif_subnet)));
20204 		*irep++ = ire_create(
20205 		    (uchar_t *)&ipif->ipif_subnet,	/* dest address */
20206 		    (uchar_t *)&route_mask,		/* mask */
20207 		    (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */
20208 		    NULL,				/* no gateway */
20209 		    &ipif->ipif_mtu,			/* max frag */
20210 		    NULL,
20211 		    NULL,				/* no recv queue */
20212 		    stq,				/* send-to queue */
20213 		    ill->ill_net_type,			/* IF_[NO]RESOLVER */
20214 		    ipif,
20215 		    0,
20216 		    0,
20217 		    0,
20218 		    (ipif->ipif_flags & IPIF_PRIVATE) ? RTF_PRIVATE: 0,
20219 		    &ire_uinfo_null,
20220 		    NULL,
20221 		    NULL,
20222 		    ipst);
20223 	}
20224 
20225 	/*
20226 	 * Create any necessary broadcast IREs.
20227 	 */
20228 	if (ipif->ipif_flags & IPIF_BROADCAST)
20229 		irep = ipif_create_bcast_ires(ipif, irep);
20230 
20231 	ASSERT(!MUTEX_HELD(&ipif->ipif_ill->ill_lock));
20232 
20233 	/* If an earlier ire_create failed, get out now */
20234 	for (irep1 = irep; irep1 > ire_array; ) {
20235 		irep1--;
20236 		if (*irep1 == NULL) {
20237 			ip1dbg(("ipif_up_done: NULL ire found in ire_array\n"));
20238 			err = ENOMEM;
20239 			goto bad;
20240 		}
20241 	}
20242 
20243 	/*
20244 	 * Need to atomically check for ip_addr_availablity_check
20245 	 * under ip_addr_avail_lock, and if it fails got bad, and remove
20246 	 * from group also.The ill_g_lock is grabbed as reader
20247 	 * just to make sure no new ills or new ipifs are being added
20248 	 * to the system while we are checking the uniqueness of addresses.
20249 	 */
20250 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
20251 	mutex_enter(&ipst->ips_ip_addr_avail_lock);
20252 	/* Mark it up, and increment counters. */
20253 	ipif->ipif_flags |= IPIF_UP;
20254 	ill->ill_ipif_up_count++;
20255 	err = ip_addr_availability_check(ipif);
20256 	mutex_exit(&ipst->ips_ip_addr_avail_lock);
20257 	rw_exit(&ipst->ips_ill_g_lock);
20258 
20259 	if (err != 0) {
20260 		/*
20261 		 * Our address may already be up on the same ill. In this case,
20262 		 * the ARP entry for our ipif replaced the one for the other
20263 		 * ipif. So we don't want to delete it (otherwise the other ipif
20264 		 * would be unable to send packets).
20265 		 * ip_addr_availability_check() identifies this case for us and
20266 		 * returns EADDRINUSE; we need to turn it into EADDRNOTAVAIL
20267 		 * which is the expected error code.
20268 		 */
20269 		if (err == EADDRINUSE) {
20270 			freemsg(ipif->ipif_arp_del_mp);
20271 			ipif->ipif_arp_del_mp = NULL;
20272 			err = EADDRNOTAVAIL;
20273 		}
20274 		ill->ill_ipif_up_count--;
20275 		ipif->ipif_flags &= ~IPIF_UP;
20276 		goto bad;
20277 	}
20278 
20279 	/*
20280 	 * Add in all newly created IREs.  ire_create_bcast() has
20281 	 * already checked for duplicates of the IRE_BROADCAST type.
20282 	 * We want to add before we call ifgrp_insert which wants
20283 	 * to know whether IRE_IF_RESOLVER exists or not.
20284 	 *
20285 	 * NOTE : We refrele the ire though we may branch to "bad"
20286 	 *	  later on where we do ire_delete. This is okay
20287 	 *	  because nobody can delete it as we are running
20288 	 *	  exclusively.
20289 	 */
20290 	for (irep1 = irep; irep1 > ire_array; ) {
20291 		irep1--;
20292 		ASSERT(!MUTEX_HELD(&((*irep1)->ire_ipif->ipif_ill->ill_lock)));
20293 		/*
20294 		 * refheld by ire_add. refele towards the end of the func
20295 		 */
20296 		(void) ire_add(irep1, NULL, NULL, NULL, B_FALSE);
20297 	}
20298 	ire_added = B_TRUE;
20299 	/*
20300 	 * Form groups if possible.
20301 	 *
20302 	 * If we are supposed to be in a ill_group with a name, insert it
20303 	 * now as we know that at least one ipif is UP. Otherwise form
20304 	 * nameless groups.
20305 	 *
20306 	 * If ip_enable_group_ifs is set and ipif address is not 0, insert
20307 	 * this ipif into the appropriate interface group, or create a
20308 	 * new one. If this is already in a nameless group, we try to form
20309 	 * a bigger group looking at other ills potentially sharing this
20310 	 * ipif's prefix.
20311 	 */
20312 	phyi = ill->ill_phyint;
20313 	if (phyi->phyint_groupname_len != 0) {
20314 		ASSERT(phyi->phyint_groupname != NULL);
20315 		if (ill->ill_ipif_up_count == 1) {
20316 			ASSERT(ill->ill_group == NULL);
20317 			err = illgrp_insert(&ipst->ips_illgrp_head_v4, ill,
20318 			    phyi->phyint_groupname, NULL, B_TRUE);
20319 			if (err != 0) {
20320 				ip1dbg(("ipif_up_done: illgrp allocation "
20321 				    "failed, error %d\n", err));
20322 				goto bad;
20323 			}
20324 		}
20325 		ASSERT(ill->ill_group != NULL);
20326 	}
20327 
20328 	/*
20329 	 * When this is part of group, we need to make sure that
20330 	 * any broadcast ires created because of this ipif coming
20331 	 * UP gets marked/cleared with IRE_MARK_NORECV appropriately
20332 	 * so that we don't receive duplicate broadcast packets.
20333 	 */
20334 	if (ill->ill_group != NULL && ill->ill_ipif_up_count != 0)
20335 		ipif_renominate_bcast(ipif);
20336 
20337 	/* Recover any additional IRE_IF_[NO]RESOLVER entries for this ipif */
20338 	ipif_saved_ire_cnt = ipif->ipif_saved_ire_cnt;
20339 	ipif_saved_irep = ipif_recover_ire(ipif);
20340 
20341 	if (!loopback) {
20342 		/*
20343 		 * If the broadcast address has been set, make sure it makes
20344 		 * sense based on the interface address.
20345 		 * Only match on ill since we are sharing broadcast addresses.
20346 		 */
20347 		if ((ipif->ipif_brd_addr != INADDR_ANY) &&
20348 		    (ipif->ipif_flags & IPIF_BROADCAST)) {
20349 			ire_t	*ire;
20350 
20351 			ire = ire_ctable_lookup(ipif->ipif_brd_addr, 0,
20352 			    IRE_BROADCAST, ipif, ALL_ZONES,
20353 			    NULL, (MATCH_IRE_TYPE | MATCH_IRE_ILL), ipst);
20354 
20355 			if (ire == NULL) {
20356 				/*
20357 				 * If there isn't a matching broadcast IRE,
20358 				 * revert to the default for this netmask.
20359 				 */
20360 				ipif->ipif_v6brd_addr = ipv6_all_zeros;
20361 				mutex_enter(&ipif->ipif_ill->ill_lock);
20362 				ipif_set_default(ipif);
20363 				mutex_exit(&ipif->ipif_ill->ill_lock);
20364 			} else {
20365 				ire_refrele(ire);
20366 			}
20367 		}
20368 
20369 	}
20370 
20371 	/* This is the first interface on this ill */
20372 	if (ipif->ipif_ipif_up_count == 1 && !loopback) {
20373 		/*
20374 		 * Need to recover all multicast memberships in the driver.
20375 		 * This had to be deferred until we had attached.
20376 		 */
20377 		ill_recover_multicast(ill);
20378 	}
20379 	/* Join the allhosts multicast address */
20380 	ipif_multicast_up(ipif);
20381 
20382 	if (!loopback) {
20383 		/*
20384 		 * See whether anybody else would benefit from the
20385 		 * new ipif that we added. We call this always rather
20386 		 * than while adding a non-IPIF_NOLOCAL/DEPRECATED/ANYCAST
20387 		 * ipif is for the benefit of illgrp_insert (done above)
20388 		 * which does not do source address selection as it does
20389 		 * not want to re-create interface routes that we are
20390 		 * having reference to it here.
20391 		 */
20392 		ill_update_source_selection(ill);
20393 	}
20394 
20395 	for (irep1 = irep; irep1 > ire_array; ) {
20396 		irep1--;
20397 		if (*irep1 != NULL) {
20398 			/* was held in ire_add */
20399 			ire_refrele(*irep1);
20400 		}
20401 	}
20402 
20403 	cnt = ipif_saved_ire_cnt;
20404 	for (irep1 = ipif_saved_irep; cnt > 0; irep1++, cnt--) {
20405 		if (*irep1 != NULL) {
20406 			/* was held in ire_add */
20407 			ire_refrele(*irep1);
20408 		}
20409 	}
20410 
20411 	if (!loopback && ipif->ipif_addr_ready) {
20412 		/* Broadcast an address mask reply. */
20413 		ipif_mask_reply(ipif);
20414 	}
20415 	if (ipif_saved_irep != NULL) {
20416 		kmem_free(ipif_saved_irep,
20417 		    ipif_saved_ire_cnt * sizeof (ire_t *));
20418 	}
20419 	if (src_ipif_held)
20420 		ipif_refrele(src_ipif);
20421 
20422 	/*
20423 	 * This had to be deferred until we had bound.  Tell routing sockets and
20424 	 * others that this interface is up if it looks like the address has
20425 	 * been validated.  Otherwise, if it isn't ready yet, wait for
20426 	 * duplicate address detection to do its thing.
20427 	 */
20428 	if (ipif->ipif_addr_ready) {
20429 		ip_rts_ifmsg(ipif);
20430 		ip_rts_newaddrmsg(RTM_ADD, 0, ipif);
20431 		/* Let SCTP update the status for this ipif */
20432 		sctp_update_ipif(ipif, SCTP_IPIF_UP);
20433 	}
20434 	return (0);
20435 
20436 bad:
20437 	ip1dbg(("ipif_up_done: FAILED \n"));
20438 	/*
20439 	 * We don't have to bother removing from ill groups because
20440 	 *
20441 	 * 1) For groups with names, we insert only when the first ipif
20442 	 *    comes up. In that case if it fails, it will not be in any
20443 	 *    group. So, we need not try to remove for that case.
20444 	 *
20445 	 * 2) For groups without names, either we tried to insert ipif_ill
20446 	 *    in a group as singleton or found some other group to become
20447 	 *    a bigger group. For the former, if it fails we don't have
20448 	 *    anything to do as ipif_ill is not in the group and for the
20449 	 *    latter, there are no failures in illgrp_insert/illgrp_delete
20450 	 *    (ENOMEM can't occur for this. Check ifgrp_insert).
20451 	 */
20452 	while (irep > ire_array) {
20453 		irep--;
20454 		if (*irep != NULL) {
20455 			ire_delete(*irep);
20456 			if (ire_added)
20457 				ire_refrele(*irep);
20458 		}
20459 	}
20460 	(void) ip_srcid_remove(&ipif->ipif_v6lcl_addr, ipif->ipif_zoneid, ipst);
20461 
20462 	if (ipif_saved_irep != NULL) {
20463 		kmem_free(ipif_saved_irep,
20464 		    ipif_saved_ire_cnt * sizeof (ire_t *));
20465 	}
20466 	if (src_ipif_held)
20467 		ipif_refrele(src_ipif);
20468 
20469 	ipif_arp_down(ipif);
20470 	return (err);
20471 }
20472 
20473 /*
20474  * Turn off the ARP with the ILLF_NOARP flag.
20475  */
20476 static int
20477 ill_arp_off(ill_t *ill)
20478 {
20479 	mblk_t	*arp_off_mp = NULL;
20480 	mblk_t	*arp_on_mp = NULL;
20481 
20482 	ip1dbg(("ill_arp_off(%s)\n", ill->ill_name));
20483 
20484 	ASSERT(IAM_WRITER_ILL(ill));
20485 	ASSERT(ill->ill_net_type == IRE_IF_RESOLVER);
20486 
20487 	/*
20488 	 * If the on message is still around we've already done
20489 	 * an arp_off without doing an arp_on thus there is no
20490 	 * work needed.
20491 	 */
20492 	if (ill->ill_arp_on_mp != NULL)
20493 		return (0);
20494 
20495 	/*
20496 	 * Allocate an ARP on message (to be saved) and an ARP off message
20497 	 */
20498 	arp_off_mp = ill_arp_alloc(ill, (uchar_t *)&ip_aroff_template, 0);
20499 	if (!arp_off_mp)
20500 		return (ENOMEM);
20501 
20502 	arp_on_mp = ill_arp_alloc(ill, (uchar_t *)&ip_aron_template, 0);
20503 	if (!arp_on_mp)
20504 		goto failed;
20505 
20506 	ASSERT(ill->ill_arp_on_mp == NULL);
20507 	ill->ill_arp_on_mp = arp_on_mp;
20508 
20509 	/* Send an AR_INTERFACE_OFF request */
20510 	putnext(ill->ill_rq, arp_off_mp);
20511 	return (0);
20512 failed:
20513 
20514 	if (arp_off_mp)
20515 		freemsg(arp_off_mp);
20516 	return (ENOMEM);
20517 }
20518 
20519 /*
20520  * Turn on ARP by turning off the ILLF_NOARP flag.
20521  */
20522 static int
20523 ill_arp_on(ill_t *ill)
20524 {
20525 	mblk_t	*mp;
20526 
20527 	ip1dbg(("ipif_arp_on(%s)\n", ill->ill_name));
20528 
20529 	ASSERT(ill->ill_net_type == IRE_IF_RESOLVER);
20530 
20531 	ASSERT(IAM_WRITER_ILL(ill));
20532 	/*
20533 	 * Send an AR_INTERFACE_ON request if we have already done
20534 	 * an arp_off (which allocated the message).
20535 	 */
20536 	if (ill->ill_arp_on_mp != NULL) {
20537 		mp = ill->ill_arp_on_mp;
20538 		ill->ill_arp_on_mp = NULL;
20539 		putnext(ill->ill_rq, mp);
20540 	}
20541 	return (0);
20542 }
20543 
20544 /*
20545  * Called after either deleting ill from the group or when setting
20546  * FAILED or STANDBY on the interface.
20547  */
20548 static void
20549 illgrp_reset_schednext(ill_t *ill)
20550 {
20551 	ill_group_t *illgrp;
20552 	ill_t *save_ill;
20553 
20554 	ASSERT(IAM_WRITER_ILL(ill));
20555 	/*
20556 	 * When called from illgrp_delete, ill_group will be non-NULL.
20557 	 * But when called from ip_sioctl_flags, it could be NULL if
20558 	 * somebody is setting FAILED/INACTIVE on some interface which
20559 	 * is not part of a group.
20560 	 */
20561 	illgrp = ill->ill_group;
20562 	if (illgrp == NULL)
20563 		return;
20564 	if (illgrp->illgrp_ill_schednext != ill)
20565 		return;
20566 
20567 	illgrp->illgrp_ill_schednext = NULL;
20568 	save_ill = ill;
20569 	/*
20570 	 * Choose a good ill to be the next one for
20571 	 * outbound traffic. As the flags FAILED/STANDBY is
20572 	 * not yet marked when called from ip_sioctl_flags,
20573 	 * we check for ill separately.
20574 	 */
20575 	for (ill = illgrp->illgrp_ill; ill != NULL;
20576 	    ill = ill->ill_group_next) {
20577 		if ((ill != save_ill) &&
20578 		    !(ill->ill_phyint->phyint_flags &
20579 		    (PHYI_FAILED|PHYI_INACTIVE|PHYI_OFFLINE))) {
20580 			illgrp->illgrp_ill_schednext = ill;
20581 			return;
20582 		}
20583 	}
20584 }
20585 
20586 /*
20587  * Given an ill, find the next ill in the group to be scheduled.
20588  * (This should be called by ip_newroute() before ire_create().)
20589  * The passed in ill may be pulled out of the group, after we have picked
20590  * up a different outgoing ill from the same group. However ire add will
20591  * atomically check this.
20592  */
20593 ill_t *
20594 illgrp_scheduler(ill_t *ill)
20595 {
20596 	ill_t *retill;
20597 	ill_group_t *illgrp;
20598 	int illcnt;
20599 	int i;
20600 	uint64_t flags;
20601 	ip_stack_t	*ipst = ill->ill_ipst;
20602 
20603 	/*
20604 	 * We don't use a lock to check for the ill_group. If this ill
20605 	 * is currently being inserted we may end up just returning this
20606 	 * ill itself. That is ok.
20607 	 */
20608 	if (ill->ill_group == NULL) {
20609 		ill_refhold(ill);
20610 		return (ill);
20611 	}
20612 
20613 	/*
20614 	 * Grab the ill_g_lock as reader to make sure we are dealing with
20615 	 * a set of stable ills. No ill can be added or deleted or change
20616 	 * group while we hold the reader lock.
20617 	 */
20618 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
20619 	if ((illgrp = ill->ill_group) == NULL) {
20620 		rw_exit(&ipst->ips_ill_g_lock);
20621 		ill_refhold(ill);
20622 		return (ill);
20623 	}
20624 
20625 	illcnt = illgrp->illgrp_ill_count;
20626 	mutex_enter(&illgrp->illgrp_lock);
20627 	retill = illgrp->illgrp_ill_schednext;
20628 
20629 	if (retill == NULL)
20630 		retill = illgrp->illgrp_ill;
20631 
20632 	/*
20633 	 * We do a circular search beginning at illgrp_ill_schednext
20634 	 * or illgrp_ill. We don't check the flags against the ill lock
20635 	 * since it can change anytime. The ire creation will be atomic
20636 	 * and will fail if the ill is FAILED or OFFLINE.
20637 	 */
20638 	for (i = 0; i < illcnt; i++) {
20639 		flags = retill->ill_phyint->phyint_flags;
20640 
20641 		if (!(flags & (PHYI_FAILED|PHYI_INACTIVE|PHYI_OFFLINE)) &&
20642 		    ILL_CAN_LOOKUP(retill)) {
20643 			illgrp->illgrp_ill_schednext = retill->ill_group_next;
20644 			ill_refhold(retill);
20645 			break;
20646 		}
20647 		retill = retill->ill_group_next;
20648 		if (retill == NULL)
20649 			retill = illgrp->illgrp_ill;
20650 	}
20651 	mutex_exit(&illgrp->illgrp_lock);
20652 	rw_exit(&ipst->ips_ill_g_lock);
20653 
20654 	return (i == illcnt ? NULL : retill);
20655 }
20656 
20657 /*
20658  * Checks for availbility of a usable source address (if there is one) when the
20659  * destination ILL has the ill_usesrc_ifindex pointing to another ILL. Note
20660  * this selection is done regardless of the destination.
20661  */
20662 boolean_t
20663 ipif_usesrc_avail(ill_t *ill, zoneid_t zoneid)
20664 {
20665 	uint_t	ifindex;
20666 	ipif_t	*ipif = NULL;
20667 	ill_t	*uill;
20668 	boolean_t isv6;
20669 	ip_stack_t	*ipst = ill->ill_ipst;
20670 
20671 	ASSERT(ill != NULL);
20672 
20673 	isv6 = ill->ill_isv6;
20674 	ifindex = ill->ill_usesrc_ifindex;
20675 	if (ifindex != 0) {
20676 		uill = ill_lookup_on_ifindex(ifindex, isv6, NULL, NULL, NULL,
20677 		    NULL, ipst);
20678 		if (uill == NULL)
20679 			return (NULL);
20680 		mutex_enter(&uill->ill_lock);
20681 		for (ipif = uill->ill_ipif; ipif != NULL;
20682 		    ipif = ipif->ipif_next) {
20683 			if (!IPIF_CAN_LOOKUP(ipif))
20684 				continue;
20685 			if (ipif->ipif_flags & (IPIF_NOLOCAL|IPIF_ANYCAST))
20686 				continue;
20687 			if (!(ipif->ipif_flags & IPIF_UP))
20688 				continue;
20689 			if (ipif->ipif_zoneid != zoneid)
20690 				continue;
20691 			if ((isv6 &&
20692 			    IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr)) ||
20693 			    (ipif->ipif_lcl_addr == INADDR_ANY))
20694 				continue;
20695 			mutex_exit(&uill->ill_lock);
20696 			ill_refrele(uill);
20697 			return (B_TRUE);
20698 		}
20699 		mutex_exit(&uill->ill_lock);
20700 		ill_refrele(uill);
20701 	}
20702 	return (B_FALSE);
20703 }
20704 
20705 /*
20706  * Determine the best source address given a destination address and an ill.
20707  * Prefers non-deprecated over deprecated but will return a deprecated
20708  * address if there is no other choice. If there is a usable source address
20709  * on the interface pointed to by ill_usesrc_ifindex then that is given
20710  * first preference.
20711  *
20712  * Returns NULL if there is no suitable source address for the ill.
20713  * This only occurs when there is no valid source address for the ill.
20714  */
20715 ipif_t *
20716 ipif_select_source(ill_t *ill, ipaddr_t dst, zoneid_t zoneid)
20717 {
20718 	ipif_t *ipif;
20719 	ipif_t *ipif_dep = NULL;	/* Fallback to deprecated */
20720 	ipif_t *ipif_arr[MAX_IPIF_SELECT_SOURCE];
20721 	int index = 0;
20722 	boolean_t wrapped = B_FALSE;
20723 	boolean_t same_subnet_only = B_FALSE;
20724 	boolean_t ipif_same_found, ipif_other_found;
20725 	boolean_t specific_found;
20726 	ill_t	*till, *usill = NULL;
20727 	tsol_tpc_t *src_rhtp, *dst_rhtp;
20728 	ip_stack_t	*ipst = ill->ill_ipst;
20729 
20730 	if (ill->ill_usesrc_ifindex != 0) {
20731 		usill = ill_lookup_on_ifindex(ill->ill_usesrc_ifindex,
20732 		    B_FALSE, NULL, NULL, NULL, NULL, ipst);
20733 		if (usill != NULL)
20734 			ill = usill;	/* Select source from usesrc ILL */
20735 		else
20736 			return (NULL);
20737 	}
20738 
20739 	/*
20740 	 * If we're dealing with an unlabeled destination on a labeled system,
20741 	 * make sure that we ignore source addresses that are incompatible with
20742 	 * the destination's default label.  That destination's default label
20743 	 * must dominate the minimum label on the source address.
20744 	 */
20745 	dst_rhtp = NULL;
20746 	if (is_system_labeled()) {
20747 		dst_rhtp = find_tpc(&dst, IPV4_VERSION, B_FALSE);
20748 		if (dst_rhtp == NULL)
20749 			return (NULL);
20750 		if (dst_rhtp->tpc_tp.host_type != UNLABELED) {
20751 			TPC_RELE(dst_rhtp);
20752 			dst_rhtp = NULL;
20753 		}
20754 	}
20755 
20756 	/*
20757 	 * Holds the ill_g_lock as reader. This makes sure that no ipif/ill
20758 	 * can be deleted. But an ipif/ill can get CONDEMNED any time.
20759 	 * After selecting the right ipif, under ill_lock make sure ipif is
20760 	 * not condemned, and increment refcnt. If ipif is CONDEMNED,
20761 	 * we retry. Inside the loop we still need to check for CONDEMNED,
20762 	 * but not under a lock.
20763 	 */
20764 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
20765 
20766 retry:
20767 	till = ill;
20768 	ipif_arr[0] = NULL;
20769 
20770 	if (till->ill_group != NULL)
20771 		till = till->ill_group->illgrp_ill;
20772 
20773 	/*
20774 	 * Choose one good source address from each ill across the group.
20775 	 * If possible choose a source address in the same subnet as
20776 	 * the destination address.
20777 	 *
20778 	 * We don't check for PHYI_FAILED or PHYI_INACTIVE or PHYI_OFFLINE
20779 	 * This is okay because of the following.
20780 	 *
20781 	 *    If PHYI_FAILED is set and we still have non-deprecated
20782 	 *    addresses, it means the addresses have not yet been
20783 	 *    failed over to a different interface. We potentially
20784 	 *    select them to create IRE_CACHES, which will be later
20785 	 *    flushed when the addresses move over.
20786 	 *
20787 	 *    If PHYI_INACTIVE is set and we still have non-deprecated
20788 	 *    addresses, it means either the user has configured them
20789 	 *    or PHYI_INACTIVE has not been cleared after the addresses
20790 	 *    been moved over. For the former, in.mpathd does a failover
20791 	 *    when the interface becomes INACTIVE and hence we should
20792 	 *    not find them. Once INACTIVE is set, we don't allow them
20793 	 *    to create logical interfaces anymore. For the latter, a
20794 	 *    flush will happen when INACTIVE is cleared which will
20795 	 *    flush the IRE_CACHES.
20796 	 *
20797 	 *    If PHYI_OFFLINE is set, all the addresses will be failed
20798 	 *    over soon. We potentially select them to create IRE_CACHEs,
20799 	 *    which will be later flushed when the addresses move over.
20800 	 *
20801 	 * NOTE : As ipif_select_source is called to borrow source address
20802 	 * for an ipif that is part of a group, source address selection
20803 	 * will be re-done whenever the group changes i.e either an
20804 	 * insertion/deletion in the group.
20805 	 *
20806 	 * Fill ipif_arr[] with source addresses, using these rules:
20807 	 *
20808 	 *	1. At most one source address from a given ill ends up
20809 	 *	   in ipif_arr[] -- that is, at most one of the ipif's
20810 	 *	   associated with a given ill ends up in ipif_arr[].
20811 	 *
20812 	 *	2. If there is at least one non-deprecated ipif in the
20813 	 *	   IPMP group with a source address on the same subnet as
20814 	 *	   our destination, then fill ipif_arr[] only with
20815 	 *	   source addresses on the same subnet as our destination.
20816 	 *	   Note that because of (1), only the first
20817 	 *	   non-deprecated ipif found with a source address
20818 	 *	   matching the destination ends up in ipif_arr[].
20819 	 *
20820 	 *	3. Otherwise, fill ipif_arr[] with non-deprecated source
20821 	 *	   addresses not in the same subnet as our destination.
20822 	 *	   Again, because of (1), only the first off-subnet source
20823 	 *	   address will be chosen.
20824 	 *
20825 	 *	4. If there are no non-deprecated ipifs, then just use
20826 	 *	   the source address associated with the last deprecated
20827 	 *	   one we find that happens to be on the same subnet,
20828 	 *	   otherwise the first one not in the same subnet.
20829 	 */
20830 	specific_found = B_FALSE;
20831 	for (; till != NULL; till = till->ill_group_next) {
20832 		ipif_same_found = B_FALSE;
20833 		ipif_other_found = B_FALSE;
20834 		for (ipif = till->ill_ipif; ipif != NULL;
20835 		    ipif = ipif->ipif_next) {
20836 			if (!IPIF_CAN_LOOKUP(ipif))
20837 				continue;
20838 			/* Always skip NOLOCAL and ANYCAST interfaces */
20839 			if (ipif->ipif_flags & (IPIF_NOLOCAL|IPIF_ANYCAST))
20840 				continue;
20841 			if (!(ipif->ipif_flags & IPIF_UP) ||
20842 			    !ipif->ipif_addr_ready)
20843 				continue;
20844 			if (ipif->ipif_zoneid != zoneid &&
20845 			    ipif->ipif_zoneid != ALL_ZONES)
20846 				continue;
20847 			/*
20848 			 * Interfaces with 0.0.0.0 address are allowed to be UP,
20849 			 * but are not valid as source addresses.
20850 			 */
20851 			if (ipif->ipif_lcl_addr == INADDR_ANY)
20852 				continue;
20853 
20854 			/*
20855 			 * Check compatibility of local address for
20856 			 * destination's default label if we're on a labeled
20857 			 * system.  Incompatible addresses can't be used at
20858 			 * all.
20859 			 */
20860 			if (dst_rhtp != NULL) {
20861 				boolean_t incompat;
20862 
20863 				src_rhtp = find_tpc(&ipif->ipif_lcl_addr,
20864 				    IPV4_VERSION, B_FALSE);
20865 				if (src_rhtp == NULL)
20866 					continue;
20867 				incompat =
20868 				    src_rhtp->tpc_tp.host_type != SUN_CIPSO ||
20869 				    src_rhtp->tpc_tp.tp_doi !=
20870 				    dst_rhtp->tpc_tp.tp_doi ||
20871 				    (!_blinrange(&dst_rhtp->tpc_tp.tp_def_label,
20872 				    &src_rhtp->tpc_tp.tp_sl_range_cipso) &&
20873 				    !blinlset(&dst_rhtp->tpc_tp.tp_def_label,
20874 				    src_rhtp->tpc_tp.tp_sl_set_cipso));
20875 				TPC_RELE(src_rhtp);
20876 				if (incompat)
20877 					continue;
20878 			}
20879 
20880 			/*
20881 			 * We prefer not to use all all-zones addresses, if we
20882 			 * can avoid it, as they pose problems with unlabeled
20883 			 * destinations.
20884 			 */
20885 			if (ipif->ipif_zoneid != ALL_ZONES) {
20886 				if (!specific_found &&
20887 				    (!same_subnet_only ||
20888 				    (ipif->ipif_net_mask & dst) ==
20889 				    ipif->ipif_subnet)) {
20890 					index = 0;
20891 					specific_found = B_TRUE;
20892 					ipif_other_found = B_FALSE;
20893 				}
20894 			} else {
20895 				if (specific_found)
20896 					continue;
20897 			}
20898 			if (ipif->ipif_flags & IPIF_DEPRECATED) {
20899 				if (ipif_dep == NULL ||
20900 				    (ipif->ipif_net_mask & dst) ==
20901 				    ipif->ipif_subnet)
20902 					ipif_dep = ipif;
20903 				continue;
20904 			}
20905 			if ((ipif->ipif_net_mask & dst) == ipif->ipif_subnet) {
20906 				/* found a source address in the same subnet */
20907 				if (!same_subnet_only) {
20908 					same_subnet_only = B_TRUE;
20909 					index = 0;
20910 				}
20911 				ipif_same_found = B_TRUE;
20912 			} else {
20913 				if (same_subnet_only || ipif_other_found)
20914 					continue;
20915 				ipif_other_found = B_TRUE;
20916 			}
20917 			ipif_arr[index++] = ipif;
20918 			if (index == MAX_IPIF_SELECT_SOURCE) {
20919 				wrapped = B_TRUE;
20920 				index = 0;
20921 			}
20922 			if (ipif_same_found)
20923 				break;
20924 		}
20925 	}
20926 
20927 	if (ipif_arr[0] == NULL) {
20928 		ipif = ipif_dep;
20929 	} else {
20930 		if (wrapped)
20931 			index = MAX_IPIF_SELECT_SOURCE;
20932 		ipif = ipif_arr[ipif_rand(ipst) % index];
20933 		ASSERT(ipif != NULL);
20934 	}
20935 
20936 	if (ipif != NULL) {
20937 		mutex_enter(&ipif->ipif_ill->ill_lock);
20938 		if (!IPIF_CAN_LOOKUP(ipif)) {
20939 			mutex_exit(&ipif->ipif_ill->ill_lock);
20940 			goto retry;
20941 		}
20942 		ipif_refhold_locked(ipif);
20943 		mutex_exit(&ipif->ipif_ill->ill_lock);
20944 	}
20945 
20946 	rw_exit(&ipst->ips_ill_g_lock);
20947 	if (usill != NULL)
20948 		ill_refrele(usill);
20949 	if (dst_rhtp != NULL)
20950 		TPC_RELE(dst_rhtp);
20951 
20952 #ifdef DEBUG
20953 	if (ipif == NULL) {
20954 		char buf1[INET6_ADDRSTRLEN];
20955 
20956 		ip1dbg(("ipif_select_source(%s, %s) -> NULL\n",
20957 		    ill->ill_name,
20958 		    inet_ntop(AF_INET, &dst, buf1, sizeof (buf1))));
20959 	} else {
20960 		char buf1[INET6_ADDRSTRLEN];
20961 		char buf2[INET6_ADDRSTRLEN];
20962 
20963 		ip1dbg(("ipif_select_source(%s, %s) -> %s\n",
20964 		    ipif->ipif_ill->ill_name,
20965 		    inet_ntop(AF_INET, &dst, buf1, sizeof (buf1)),
20966 		    inet_ntop(AF_INET, &ipif->ipif_lcl_addr,
20967 		    buf2, sizeof (buf2))));
20968 	}
20969 #endif /* DEBUG */
20970 	return (ipif);
20971 }
20972 
20973 
20974 /*
20975  * If old_ipif is not NULL, see if ipif was derived from old
20976  * ipif and if so, recreate the interface route by re-doing
20977  * source address selection. This happens when ipif_down ->
20978  * ipif_update_other_ipifs calls us.
20979  *
20980  * If old_ipif is NULL, just redo the source address selection
20981  * if needed. This happens when illgrp_insert or ipif_up_done
20982  * calls us.
20983  */
20984 static void
20985 ipif_recreate_interface_routes(ipif_t *old_ipif, ipif_t *ipif)
20986 {
20987 	ire_t *ire;
20988 	ire_t *ipif_ire;
20989 	queue_t *stq;
20990 	ipif_t *nipif;
20991 	ill_t *ill;
20992 	boolean_t need_rele = B_FALSE;
20993 	ip_stack_t	*ipst = ipif->ipif_ill->ill_ipst;
20994 
20995 	ASSERT(old_ipif == NULL || IAM_WRITER_IPIF(old_ipif));
20996 	ASSERT(IAM_WRITER_IPIF(ipif));
20997 
20998 	ill = ipif->ipif_ill;
20999 	if (!(ipif->ipif_flags &
21000 	    (IPIF_NOLOCAL|IPIF_ANYCAST|IPIF_DEPRECATED))) {
21001 		/*
21002 		 * Can't possibly have borrowed the source
21003 		 * from old_ipif.
21004 		 */
21005 		return;
21006 	}
21007 
21008 	/*
21009 	 * Is there any work to be done? No work if the address
21010 	 * is INADDR_ANY, loopback or NOLOCAL or ANYCAST (
21011 	 * ipif_select_source() does not borrow addresses from
21012 	 * NOLOCAL and ANYCAST interfaces).
21013 	 */
21014 	if ((old_ipif != NULL) &&
21015 	    ((old_ipif->ipif_lcl_addr == INADDR_ANY) ||
21016 	    (old_ipif->ipif_ill->ill_wq == NULL) ||
21017 	    (old_ipif->ipif_flags &
21018 	    (IPIF_NOLOCAL|IPIF_ANYCAST)))) {
21019 		return;
21020 	}
21021 
21022 	/*
21023 	 * Perform the same checks as when creating the
21024 	 * IRE_INTERFACE in ipif_up_done.
21025 	 */
21026 	if (!(ipif->ipif_flags & IPIF_UP))
21027 		return;
21028 
21029 	if ((ipif->ipif_flags & IPIF_NOXMIT) ||
21030 	    (ipif->ipif_subnet == INADDR_ANY))
21031 		return;
21032 
21033 	ipif_ire = ipif_to_ire(ipif);
21034 	if (ipif_ire == NULL)
21035 		return;
21036 
21037 	/*
21038 	 * We know that ipif uses some other source for its
21039 	 * IRE_INTERFACE. Is it using the source of this
21040 	 * old_ipif?
21041 	 */
21042 	if (old_ipif != NULL &&
21043 	    old_ipif->ipif_lcl_addr != ipif_ire->ire_src_addr) {
21044 		ire_refrele(ipif_ire);
21045 		return;
21046 	}
21047 	if (ip_debug > 2) {
21048 		/* ip1dbg */
21049 		pr_addr_dbg("ipif_recreate_interface_routes: deleting IRE for"
21050 		    " src %s\n", AF_INET, &ipif_ire->ire_src_addr);
21051 	}
21052 
21053 	stq = ipif_ire->ire_stq;
21054 
21055 	/*
21056 	 * Can't use our source address. Select a different
21057 	 * source address for the IRE_INTERFACE.
21058 	 */
21059 	nipif = ipif_select_source(ill, ipif->ipif_subnet, ipif->ipif_zoneid);
21060 	if (nipif == NULL) {
21061 		/* Last resort - all ipif's have IPIF_NOLOCAL */
21062 		nipif = ipif;
21063 	} else {
21064 		need_rele = B_TRUE;
21065 	}
21066 
21067 	ire = ire_create(
21068 	    (uchar_t *)&ipif->ipif_subnet,	/* dest pref */
21069 	    (uchar_t *)&ipif->ipif_net_mask,	/* mask */
21070 	    (uchar_t *)&nipif->ipif_src_addr,	/* src addr */
21071 	    NULL,				/* no gateway */
21072 	    &ipif->ipif_mtu,			/* max frag */
21073 	    NULL,				/* no src nce */
21074 	    NULL,				/* no recv from queue */
21075 	    stq,				/* send-to queue */
21076 	    ill->ill_net_type,			/* IF_[NO]RESOLVER */
21077 	    ipif,
21078 	    0,
21079 	    0,
21080 	    0,
21081 	    0,
21082 	    &ire_uinfo_null,
21083 	    NULL,
21084 	    NULL,
21085 	    ipst);
21086 
21087 	if (ire != NULL) {
21088 		ire_t *ret_ire;
21089 		int error;
21090 
21091 		/*
21092 		 * We don't need ipif_ire anymore. We need to delete
21093 		 * before we add so that ire_add does not detect
21094 		 * duplicates.
21095 		 */
21096 		ire_delete(ipif_ire);
21097 		ret_ire = ire;
21098 		error = ire_add(&ret_ire, NULL, NULL, NULL, B_FALSE);
21099 		ASSERT(error == 0);
21100 		ASSERT(ire == ret_ire);
21101 		/* Held in ire_add */
21102 		ire_refrele(ret_ire);
21103 	}
21104 	/*
21105 	 * Either we are falling through from above or could not
21106 	 * allocate a replacement.
21107 	 */
21108 	ire_refrele(ipif_ire);
21109 	if (need_rele)
21110 		ipif_refrele(nipif);
21111 }
21112 
21113 /*
21114  * This old_ipif is going away.
21115  *
21116  * Determine if any other ipif's is using our address as
21117  * ipif_lcl_addr (due to those being IPIF_NOLOCAL, IPIF_ANYCAST, or
21118  * IPIF_DEPRECATED).
21119  * Find the IRE_INTERFACE for such ipifs and recreate them
21120  * to use an different source address following the rules in
21121  * ipif_up_done.
21122  *
21123  * This function takes an illgrp as an argument so that illgrp_delete
21124  * can call this to update source address even after deleting the
21125  * old_ipif->ipif_ill from the ill group.
21126  */
21127 static void
21128 ipif_update_other_ipifs(ipif_t *old_ipif, ill_group_t *illgrp)
21129 {
21130 	ipif_t *ipif;
21131 	ill_t *ill;
21132 	char	buf[INET6_ADDRSTRLEN];
21133 
21134 	ASSERT(IAM_WRITER_IPIF(old_ipif));
21135 	ASSERT(illgrp == NULL || IAM_WRITER_IPIF(old_ipif));
21136 
21137 	ill = old_ipif->ipif_ill;
21138 
21139 	ip1dbg(("ipif_update_other_ipifs(%s, %s)\n",
21140 	    ill->ill_name,
21141 	    inet_ntop(AF_INET, &old_ipif->ipif_lcl_addr,
21142 	    buf, sizeof (buf))));
21143 	/*
21144 	 * If this part of a group, look at all ills as ipif_select_source
21145 	 * borrows source address across all the ills in the group.
21146 	 */
21147 	if (illgrp != NULL)
21148 		ill = illgrp->illgrp_ill;
21149 
21150 	for (; ill != NULL; ill = ill->ill_group_next) {
21151 		for (ipif = ill->ill_ipif; ipif != NULL;
21152 		    ipif = ipif->ipif_next) {
21153 
21154 			if (ipif == old_ipif)
21155 				continue;
21156 
21157 			ipif_recreate_interface_routes(old_ipif, ipif);
21158 		}
21159 	}
21160 }
21161 
21162 /* ARGSUSED */
21163 int
21164 if_unitsel_restart(ipif_t *ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp,
21165 	ip_ioctl_cmd_t *ipip, void *dummy_ifreq)
21166 {
21167 	/*
21168 	 * ill_phyint_reinit merged the v4 and v6 into a single
21169 	 * ipsq. Could also have become part of a ipmp group in the
21170 	 * process, and we might not have been able to complete the
21171 	 * operation in ipif_set_values, if we could not become
21172 	 * exclusive.  If so restart it here.
21173 	 */
21174 	return (ipif_set_values_tail(ipif->ipif_ill, ipif, mp, q));
21175 }
21176 
21177 
21178 /*
21179  * Can operate on either a module or a driver queue.
21180  * Returns an error if not a module queue.
21181  */
21182 /* ARGSUSED */
21183 int
21184 if_unitsel(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp,
21185     ip_ioctl_cmd_t *ipip, void *dummy_ifreq)
21186 {
21187 	queue_t		*q1 = q;
21188 	char 		*cp;
21189 	char		interf_name[LIFNAMSIZ];
21190 	uint_t		ppa = *(uint_t *)mp->b_cont->b_cont->b_rptr;
21191 
21192 	if (q->q_next == NULL) {
21193 		ip1dbg((
21194 		    "if_unitsel: IF_UNITSEL: no q_next\n"));
21195 		return (EINVAL);
21196 	}
21197 
21198 	if (((ill_t *)(q->q_ptr))->ill_name[0] != '\0')
21199 		return (EALREADY);
21200 
21201 	do {
21202 		q1 = q1->q_next;
21203 	} while (q1->q_next);
21204 	cp = q1->q_qinfo->qi_minfo->mi_idname;
21205 	(void) sprintf(interf_name, "%s%d", cp, ppa);
21206 
21207 	/*
21208 	 * Here we are not going to delay the ioack until after
21209 	 * ACKs from DL_ATTACH_REQ/DL_BIND_REQ. So no need to save the
21210 	 * original ioctl message before sending the requests.
21211 	 */
21212 	return (ipif_set_values(q, mp, interf_name, &ppa));
21213 }
21214 
21215 /* ARGSUSED */
21216 int
21217 ip_sioctl_sifname(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp,
21218     ip_ioctl_cmd_t *ipip, void *dummy_ifreq)
21219 {
21220 	return (ENXIO);
21221 }
21222 
21223 /*
21224  * Create any IRE_BROADCAST entries for `ipif', and store those entries in
21225  * `irep'.  Returns a pointer to the next free `irep' entry (just like
21226  * ire_check_and_create_bcast()).
21227  */
21228 static ire_t **
21229 ipif_create_bcast_ires(ipif_t *ipif, ire_t **irep)
21230 {
21231 	ipaddr_t addr;
21232 	ipaddr_t netmask = ip_net_mask(ipif->ipif_lcl_addr);
21233 	ipaddr_t subnetmask = ipif->ipif_net_mask;
21234 	int flags = MATCH_IRE_TYPE | MATCH_IRE_ILL;
21235 
21236 	ip1dbg(("ipif_create_bcast_ires: creating broadcast IREs\n"));
21237 
21238 	ASSERT(ipif->ipif_flags & IPIF_BROADCAST);
21239 
21240 	if (ipif->ipif_lcl_addr == INADDR_ANY ||
21241 	    (ipif->ipif_flags & IPIF_NOLOCAL))
21242 		netmask = htonl(IN_CLASSA_NET);		/* fallback */
21243 
21244 	irep = ire_check_and_create_bcast(ipif, 0, irep, flags);
21245 	irep = ire_check_and_create_bcast(ipif, INADDR_BROADCAST, irep, flags);
21246 
21247 	/*
21248 	 * For backward compatibility, we create net broadcast IREs based on
21249 	 * the old "IP address class system", since some old machines only
21250 	 * respond to these class derived net broadcast.  However, we must not
21251 	 * create these net broadcast IREs if the subnetmask is shorter than
21252 	 * the IP address class based derived netmask.  Otherwise, we may
21253 	 * create a net broadcast address which is the same as an IP address
21254 	 * on the subnet -- and then TCP will refuse to talk to that address.
21255 	 */
21256 	if (netmask < subnetmask) {
21257 		addr = netmask & ipif->ipif_subnet;
21258 		irep = ire_check_and_create_bcast(ipif, addr, irep, flags);
21259 		irep = ire_check_and_create_bcast(ipif, ~netmask | addr, irep,
21260 		    flags);
21261 	}
21262 
21263 	/*
21264 	 * Don't create IRE_BROADCAST IREs for the interface if the subnetmask
21265 	 * is 0xFFFFFFFF, as an IRE_LOCAL for that interface is already
21266 	 * created.  Creating these broadcast IREs will only create confusion
21267 	 * as `addr' will be the same as the IP address.
21268 	 */
21269 	if (subnetmask != 0xFFFFFFFF) {
21270 		addr = ipif->ipif_subnet;
21271 		irep = ire_check_and_create_bcast(ipif, addr, irep, flags);
21272 		irep = ire_check_and_create_bcast(ipif, ~subnetmask | addr,
21273 		    irep, flags);
21274 	}
21275 
21276 	return (irep);
21277 }
21278 
21279 /*
21280  * Broadcast IRE info structure used in the functions below.  Since we
21281  * allocate BCAST_COUNT of them on the stack, keep the bit layout compact.
21282  */
21283 typedef struct bcast_ireinfo {
21284 	uchar_t		bi_type;	/* BCAST_* value from below */
21285 	uchar_t		bi_willdie:1, 	/* will this IRE be going away? */
21286 			bi_needrep:1,	/* do we need to replace it? */
21287 			bi_haverep:1,	/* have we replaced it? */
21288 			bi_pad:5;
21289 	ipaddr_t	bi_addr;	/* IRE address */
21290 	ipif_t		*bi_backup;	/* last-ditch ipif to replace it on */
21291 } bcast_ireinfo_t;
21292 
21293 enum { BCAST_ALLONES, BCAST_ALLZEROES, BCAST_NET, BCAST_SUBNET, BCAST_COUNT };
21294 
21295 /*
21296  * Check if `ipif' needs the dying broadcast IRE described by `bireinfop', and
21297  * return B_TRUE if it should immediately be used to recreate the IRE.
21298  */
21299 static boolean_t
21300 ipif_consider_bcast(ipif_t *ipif, bcast_ireinfo_t *bireinfop)
21301 {
21302 	ipaddr_t addr;
21303 
21304 	ASSERT(!bireinfop->bi_haverep && bireinfop->bi_willdie);
21305 
21306 	switch (bireinfop->bi_type) {
21307 	case BCAST_NET:
21308 		addr = ipif->ipif_subnet & ip_net_mask(ipif->ipif_subnet);
21309 		if (addr != bireinfop->bi_addr)
21310 			return (B_FALSE);
21311 		break;
21312 	case BCAST_SUBNET:
21313 		if (ipif->ipif_subnet != bireinfop->bi_addr)
21314 			return (B_FALSE);
21315 		break;
21316 	}
21317 
21318 	bireinfop->bi_needrep = 1;
21319 	if (ipif->ipif_flags & (IPIF_DEPRECATED|IPIF_NOLOCAL|IPIF_ANYCAST)) {
21320 		if (bireinfop->bi_backup == NULL)
21321 			bireinfop->bi_backup = ipif;
21322 		return (B_FALSE);
21323 	}
21324 	return (B_TRUE);
21325 }
21326 
21327 /*
21328  * Create the broadcast IREs described by `bireinfop' on `ipif', and return
21329  * them ala ire_check_and_create_bcast().
21330  */
21331 static ire_t **
21332 ipif_create_bcast(ipif_t *ipif, bcast_ireinfo_t *bireinfop, ire_t **irep)
21333 {
21334 	ipaddr_t mask, addr;
21335 
21336 	ASSERT(!bireinfop->bi_haverep && bireinfop->bi_needrep);
21337 
21338 	addr = bireinfop->bi_addr;
21339 	irep = ire_create_bcast(ipif, addr, irep);
21340 
21341 	switch (bireinfop->bi_type) {
21342 	case BCAST_NET:
21343 		mask = ip_net_mask(ipif->ipif_subnet);
21344 		irep = ire_create_bcast(ipif, addr | ~mask, irep);
21345 		break;
21346 	case BCAST_SUBNET:
21347 		mask = ipif->ipif_net_mask;
21348 		irep = ire_create_bcast(ipif, addr | ~mask, irep);
21349 		break;
21350 	}
21351 
21352 	bireinfop->bi_haverep = 1;
21353 	return (irep);
21354 }
21355 
21356 /*
21357  * Walk through all of the ipifs on `ill' that will be affected by `test_ipif'
21358  * going away, and determine if any of the broadcast IREs (named by `bireinfop')
21359  * that are going away are still needed.  If so, have ipif_create_bcast()
21360  * recreate them (except for the deprecated case, as explained below).
21361  */
21362 static ire_t **
21363 ill_create_bcast(ill_t *ill, ipif_t *test_ipif, bcast_ireinfo_t *bireinfo,
21364     ire_t **irep)
21365 {
21366 	int i;
21367 	ipif_t *ipif;
21368 
21369 	ASSERT(!ill->ill_isv6);
21370 	for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) {
21371 		/*
21372 		 * Skip this ipif if it's (a) the one being taken down, (b)
21373 		 * not in the same zone, or (c) has no valid local address.
21374 		 */
21375 		if (ipif == test_ipif ||
21376 		    ipif->ipif_zoneid != test_ipif->ipif_zoneid ||
21377 		    ipif->ipif_subnet == 0 ||
21378 		    (ipif->ipif_flags & (IPIF_UP|IPIF_BROADCAST|IPIF_NOXMIT)) !=
21379 		    (IPIF_UP|IPIF_BROADCAST))
21380 			continue;
21381 
21382 		/*
21383 		 * For each dying IRE that hasn't yet been replaced, see if
21384 		 * `ipif' needs it and whether the IRE should be recreated on
21385 		 * `ipif'.  If `ipif' is deprecated, ipif_consider_bcast()
21386 		 * will return B_FALSE even if `ipif' needs the IRE on the
21387 		 * hopes that we'll later find a needy non-deprecated ipif.
21388 		 * However, the ipif is recorded in bi_backup for possible
21389 		 * subsequent use by ipif_check_bcast_ires().
21390 		 */
21391 		for (i = 0; i < BCAST_COUNT; i++) {
21392 			if (!bireinfo[i].bi_willdie || bireinfo[i].bi_haverep)
21393 				continue;
21394 			if (!ipif_consider_bcast(ipif, &bireinfo[i]))
21395 				continue;
21396 			irep = ipif_create_bcast(ipif, &bireinfo[i], irep);
21397 		}
21398 
21399 		/*
21400 		 * If we've replaced all of the broadcast IREs that are going
21401 		 * to be taken down, we know we're done.
21402 		 */
21403 		for (i = 0; i < BCAST_COUNT; i++) {
21404 			if (bireinfo[i].bi_willdie && !bireinfo[i].bi_haverep)
21405 				break;
21406 		}
21407 		if (i == BCAST_COUNT)
21408 			break;
21409 	}
21410 	return (irep);
21411 }
21412 
21413 /*
21414  * Check if `test_ipif' (which is going away) is associated with any existing
21415  * broadcast IREs, and whether any other ipifs (e.g., on the same ill) were
21416  * using those broadcast IREs.  If so, recreate the broadcast IREs on one or
21417  * more of those other ipifs.  (The old IREs will be deleted in ipif_down().)
21418  *
21419  * This is necessary because broadcast IREs are shared.  In particular, a
21420  * given ill has one set of all-zeroes and all-ones broadcast IREs (for every
21421  * zone), plus one set of all-subnet-ones, all-subnet-zeroes, all-net-ones,
21422  * and all-net-zeroes for every net/subnet (and every zone) it has IPIF_UP
21423  * ipifs on.  Thus, if there are two IPIF_UP ipifs on the same subnet with the
21424  * same zone, they will share the same set of broadcast IREs.
21425  *
21426  * Note: the upper bound of 12 IREs comes from the worst case of replacing all
21427  * six pairs (loopback and non-loopback) of broadcast IREs (all-zeroes,
21428  * all-ones, subnet-zeroes, subnet-ones, net-zeroes, and net-ones).
21429  */
21430 static void
21431 ipif_check_bcast_ires(ipif_t *test_ipif)
21432 {
21433 	ill_t		*ill = test_ipif->ipif_ill;
21434 	ire_t		*ire, *ire_array[12]; 		/* see note above */
21435 	ire_t		**irep1, **irep = &ire_array[0];
21436 	uint_t 		i, willdie;
21437 	ipaddr_t	mask = ip_net_mask(test_ipif->ipif_subnet);
21438 	bcast_ireinfo_t	bireinfo[BCAST_COUNT];
21439 
21440 	ASSERT(!test_ipif->ipif_isv6);
21441 	ASSERT(IAM_WRITER_IPIF(test_ipif));
21442 
21443 	/*
21444 	 * No broadcast IREs for the LOOPBACK interface
21445 	 * or others such as point to point and IPIF_NOXMIT.
21446 	 */
21447 	if (!(test_ipif->ipif_flags & IPIF_BROADCAST) ||
21448 	    (test_ipif->ipif_flags & IPIF_NOXMIT))
21449 		return;
21450 
21451 	bzero(bireinfo, sizeof (bireinfo));
21452 	bireinfo[0].bi_type = BCAST_ALLZEROES;
21453 	bireinfo[0].bi_addr = 0;
21454 
21455 	bireinfo[1].bi_type = BCAST_ALLONES;
21456 	bireinfo[1].bi_addr = INADDR_BROADCAST;
21457 
21458 	bireinfo[2].bi_type = BCAST_NET;
21459 	bireinfo[2].bi_addr = test_ipif->ipif_subnet & mask;
21460 
21461 	if (test_ipif->ipif_net_mask != 0)
21462 		mask = test_ipif->ipif_net_mask;
21463 	bireinfo[3].bi_type = BCAST_SUBNET;
21464 	bireinfo[3].bi_addr = test_ipif->ipif_subnet & mask;
21465 
21466 	/*
21467 	 * Figure out what (if any) broadcast IREs will die as a result of
21468 	 * `test_ipif' going away.  If none will die, we're done.
21469 	 */
21470 	for (i = 0, willdie = 0; i < BCAST_COUNT; i++) {
21471 		ire = ire_ctable_lookup(bireinfo[i].bi_addr, 0, IRE_BROADCAST,
21472 		    test_ipif, ALL_ZONES, NULL,
21473 		    (MATCH_IRE_TYPE | MATCH_IRE_IPIF), ill->ill_ipst);
21474 		if (ire != NULL) {
21475 			willdie++;
21476 			bireinfo[i].bi_willdie = 1;
21477 			ire_refrele(ire);
21478 		}
21479 	}
21480 
21481 	if (willdie == 0)
21482 		return;
21483 
21484 	/*
21485 	 * Walk through all the ipifs that will be affected by the dying IREs,
21486 	 * and recreate the IREs as necessary.
21487 	 */
21488 	irep = ill_create_bcast(ill, test_ipif, bireinfo, irep);
21489 
21490 	/*
21491 	 * Scan through the set of broadcast IREs and see if there are any
21492 	 * that we need to replace that have not yet been replaced.  If so,
21493 	 * replace them using the appropriate backup ipif.
21494 	 */
21495 	for (i = 0; i < BCAST_COUNT; i++) {
21496 		if (bireinfo[i].bi_needrep && !bireinfo[i].bi_haverep)
21497 			irep = ipif_create_bcast(bireinfo[i].bi_backup,
21498 			    &bireinfo[i], irep);
21499 	}
21500 
21501 	/*
21502 	 * If we can't create all of them, don't add any of them.  (Code in
21503 	 * ip_wput_ire() and ire_to_ill() assumes that we always have a
21504 	 * non-loopback copy and loopback copy for a given address.)
21505 	 */
21506 	for (irep1 = irep; irep1 > ire_array; ) {
21507 		irep1--;
21508 		if (*irep1 == NULL) {
21509 			ip0dbg(("ipif_check_bcast_ires: can't create "
21510 			    "IRE_BROADCAST, memory allocation failure\n"));
21511 			while (irep > ire_array) {
21512 				irep--;
21513 				if (*irep != NULL)
21514 					ire_delete(*irep);
21515 			}
21516 			return;
21517 		}
21518 	}
21519 
21520 	for (irep1 = irep; irep1 > ire_array; ) {
21521 		irep1--;
21522 		if (ire_add(irep1, NULL, NULL, NULL, B_FALSE) == 0)
21523 			ire_refrele(*irep1);		/* Held in ire_add */
21524 	}
21525 }
21526 
21527 /*
21528  * Extract both the flags (including IFF_CANTCHANGE) such as IFF_IPV*
21529  * from lifr_flags and the name from lifr_name.
21530  * Set IFF_IPV* and ill_isv6 prior to doing the lookup
21531  * since ipif_lookup_on_name uses the _isv6 flags when matching.
21532  * Returns EINPROGRESS when mp has been consumed by queueing it on
21533  * ill_pending_mp and the ioctl will complete in ip_rput.
21534  *
21535  * Can operate on either a module or a driver queue.
21536  * Returns an error if not a module queue.
21537  */
21538 /* ARGSUSED */
21539 int
21540 ip_sioctl_slifname(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
21541     ip_ioctl_cmd_t *ipip, void *if_req)
21542 {
21543 	ill_t	*ill = q->q_ptr;
21544 	phyint_t *phyi;
21545 	ip_stack_t *ipst;
21546 	struct lifreq *lifr = if_req;
21547 
21548 	ASSERT(ipif != NULL);
21549 	ip1dbg(("ip_sioctl_slifname %s\n", lifr->lifr_name));
21550 
21551 	if (q->q_next == NULL) {
21552 		ip1dbg(("if_sioctl_slifname: SIOCSLIFNAME: no q_next\n"));
21553 		return (EINVAL);
21554 	}
21555 
21556 	/*
21557 	 * If we are not writer on 'q' then this interface exists already
21558 	 * and previous lookups (ip_extract_lifreq()) found this ipif --
21559 	 * so return EALREADY.
21560 	 */
21561 	if (ill != ipif->ipif_ill)
21562 		return (EALREADY);
21563 
21564 	if (ill->ill_name[0] != '\0')
21565 		return (EALREADY);
21566 
21567 	/*
21568 	 * Set all the flags. Allows all kinds of override. Provide some
21569 	 * sanity checking by not allowing IFF_BROADCAST and IFF_MULTICAST
21570 	 * unless there is either multicast/broadcast support in the driver
21571 	 * or it is a pt-pt link.
21572 	 */
21573 	if (lifr->lifr_flags & (IFF_PROMISC|IFF_ALLMULTI)) {
21574 		/* Meaningless to IP thus don't allow them to be set. */
21575 		ip1dbg(("ip_setname: EINVAL 1\n"));
21576 		return (EINVAL);
21577 	}
21578 
21579 	/*
21580 	 * If there's another ill already with the requested name, ensure
21581 	 * that it's of the same type.	Otherwise, ill_phyint_reinit() will
21582 	 * fuse together two unrelated ills, which will cause chaos.
21583 	 */
21584 	ipst = ill->ill_ipst;
21585 	phyi = avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_name,
21586 	    lifr->lifr_name, NULL);
21587 	if (phyi != NULL) {
21588 		ill_t *ill_mate = phyi->phyint_illv4;
21589 
21590 		if (ill_mate == NULL)
21591 			ill_mate = phyi->phyint_illv6;
21592 		ASSERT(ill_mate != NULL);
21593 
21594 		if (ill_mate->ill_media->ip_m_mac_type !=
21595 		    ill->ill_media->ip_m_mac_type) {
21596 			ip1dbg(("if_sioctl_slifname: SIOCSLIFNAME: attempt to "
21597 			    "use the same ill name on differing media\n"));
21598 			return (EINVAL);
21599 		}
21600 	}
21601 
21602 	/*
21603 	 * For a DL_STYLE2 driver (ill_needs_attach), we would not have the
21604 	 * ill_bcast_addr_length info.
21605 	 */
21606 	if (!ill->ill_needs_attach &&
21607 	    ((lifr->lifr_flags & IFF_MULTICAST) &&
21608 	    !(lifr->lifr_flags & IFF_POINTOPOINT) &&
21609 	    ill->ill_bcast_addr_length == 0)) {
21610 		/* Link not broadcast/pt-pt capable i.e. no multicast */
21611 		ip1dbg(("ip_setname: EINVAL 2\n"));
21612 		return (EINVAL);
21613 	}
21614 	if ((lifr->lifr_flags & IFF_BROADCAST) &&
21615 	    ((lifr->lifr_flags & IFF_IPV6) ||
21616 	    (!ill->ill_needs_attach && ill->ill_bcast_addr_length == 0))) {
21617 		/* Link not broadcast capable or IPv6 i.e. no broadcast */
21618 		ip1dbg(("ip_setname: EINVAL 3\n"));
21619 		return (EINVAL);
21620 	}
21621 	if (lifr->lifr_flags & IFF_UP) {
21622 		/* Can only be set with SIOCSLIFFLAGS */
21623 		ip1dbg(("ip_setname: EINVAL 4\n"));
21624 		return (EINVAL);
21625 	}
21626 	if ((lifr->lifr_flags & (IFF_IPV6|IFF_IPV4)) != IFF_IPV6 &&
21627 	    (lifr->lifr_flags & (IFF_IPV6|IFF_IPV4)) != IFF_IPV4) {
21628 		ip1dbg(("ip_setname: EINVAL 5\n"));
21629 		return (EINVAL);
21630 	}
21631 	/*
21632 	 * Only allow the IFF_XRESOLV flag to be set on IPv6 interfaces.
21633 	 */
21634 	if ((lifr->lifr_flags & IFF_XRESOLV) &&
21635 	    !(lifr->lifr_flags & IFF_IPV6) &&
21636 	    !(ipif->ipif_isv6)) {
21637 		ip1dbg(("ip_setname: EINVAL 6\n"));
21638 		return (EINVAL);
21639 	}
21640 
21641 	/*
21642 	 * The user has done SIOCGLIFFLAGS prior to this ioctl and hence
21643 	 * we have all the flags here. So, we assign rather than we OR.
21644 	 * We can't OR the flags here because we don't want to set
21645 	 * both IFF_IPV4 and IFF_IPV6. We start off as IFF_IPV4 in
21646 	 * ipif_allocate and become IFF_IPV4 or IFF_IPV6 here depending
21647 	 * on lifr_flags value here.
21648 	 */
21649 	/*
21650 	 * This ill has not been inserted into the global list.
21651 	 * So we are still single threaded and don't need any lock
21652 	 */
21653 	ipif->ipif_flags = lifr->lifr_flags & IFF_LOGINT_FLAGS & ~IFF_DUPLICATE;
21654 	ill->ill_flags = lifr->lifr_flags & IFF_PHYINTINST_FLAGS;
21655 	ill->ill_phyint->phyint_flags = lifr->lifr_flags & IFF_PHYINT_FLAGS;
21656 
21657 	/* We started off as V4. */
21658 	if (ill->ill_flags & ILLF_IPV6) {
21659 		ill->ill_phyint->phyint_illv6 = ill;
21660 		ill->ill_phyint->phyint_illv4 = NULL;
21661 	}
21662 
21663 	return (ipif_set_values(q, mp, lifr->lifr_name, &lifr->lifr_ppa));
21664 }
21665 
21666 /* ARGSUSED */
21667 int
21668 ip_sioctl_slifname_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
21669     ip_ioctl_cmd_t *ipip, void *if_req)
21670 {
21671 	/*
21672 	 * ill_phyint_reinit merged the v4 and v6 into a single
21673 	 * ipsq. Could also have become part of a ipmp group in the
21674 	 * process, and we might not have been able to complete the
21675 	 * slifname in ipif_set_values, if we could not become
21676 	 * exclusive.  If so restart it here
21677 	 */
21678 	return (ipif_set_values_tail(ipif->ipif_ill, ipif, mp, q));
21679 }
21680 
21681 /*
21682  * Return a pointer to the ipif which matches the index, IP version type and
21683  * zoneid.
21684  */
21685 ipif_t *
21686 ipif_lookup_on_ifindex(uint_t index, boolean_t isv6, zoneid_t zoneid,
21687     queue_t *q, mblk_t *mp, ipsq_func_t func, int *err, ip_stack_t *ipst)
21688 {
21689 	ill_t	*ill;
21690 	ipif_t	*ipif = NULL;
21691 
21692 	ASSERT((q == NULL && mp == NULL && func == NULL && err == NULL) ||
21693 	    (q != NULL && mp != NULL && func != NULL && err != NULL));
21694 
21695 	if (err != NULL)
21696 		*err = 0;
21697 
21698 	ill = ill_lookup_on_ifindex(index, isv6, q, mp, func, err, ipst);
21699 	if (ill != NULL) {
21700 		mutex_enter(&ill->ill_lock);
21701 		for (ipif = ill->ill_ipif; ipif != NULL;
21702 		    ipif = ipif->ipif_next) {
21703 			if (IPIF_CAN_LOOKUP(ipif) && (zoneid == ALL_ZONES ||
21704 			    zoneid == ipif->ipif_zoneid ||
21705 			    ipif->ipif_zoneid == ALL_ZONES)) {
21706 				ipif_refhold_locked(ipif);
21707 				break;
21708 			}
21709 		}
21710 		mutex_exit(&ill->ill_lock);
21711 		ill_refrele(ill);
21712 		if (ipif == NULL && err != NULL)
21713 			*err = ENXIO;
21714 	}
21715 	return (ipif);
21716 }
21717 
21718 typedef struct conn_change_s {
21719 	uint_t cc_old_ifindex;
21720 	uint_t cc_new_ifindex;
21721 } conn_change_t;
21722 
21723 /*
21724  * ipcl_walk function for changing interface index.
21725  */
21726 static void
21727 conn_change_ifindex(conn_t *connp, caddr_t arg)
21728 {
21729 	conn_change_t *connc;
21730 	uint_t old_ifindex;
21731 	uint_t new_ifindex;
21732 	int i;
21733 	ilg_t *ilg;
21734 
21735 	connc = (conn_change_t *)arg;
21736 	old_ifindex = connc->cc_old_ifindex;
21737 	new_ifindex = connc->cc_new_ifindex;
21738 
21739 	if (connp->conn_orig_bound_ifindex == old_ifindex)
21740 		connp->conn_orig_bound_ifindex = new_ifindex;
21741 
21742 	if (connp->conn_orig_multicast_ifindex == old_ifindex)
21743 		connp->conn_orig_multicast_ifindex = new_ifindex;
21744 
21745 	for (i = connp->conn_ilg_inuse - 1; i >= 0; i--) {
21746 		ilg = &connp->conn_ilg[i];
21747 		if (ilg->ilg_orig_ifindex == old_ifindex)
21748 			ilg->ilg_orig_ifindex = new_ifindex;
21749 	}
21750 }
21751 
21752 /*
21753  * Walk all the ipifs and ilms on this ill and change the orig_ifindex
21754  * to new_index if it matches the old_index.
21755  *
21756  * Failovers typically happen within a group of ills. But somebody
21757  * can remove an ill from the group after a failover happened. If
21758  * we are setting the ifindex after this, we potentially need to
21759  * look at all the ills rather than just the ones in the group.
21760  * We cut down the work by looking at matching ill_net_types
21761  * and ill_types as we could not possibly grouped them together.
21762  */
21763 static void
21764 ip_change_ifindex(ill_t *ill_orig, conn_change_t *connc)
21765 {
21766 	ill_t *ill;
21767 	ipif_t *ipif;
21768 	uint_t old_ifindex;
21769 	uint_t new_ifindex;
21770 	ilm_t *ilm;
21771 	ill_walk_context_t ctx;
21772 	ip_stack_t	*ipst = ill_orig->ill_ipst;
21773 
21774 	old_ifindex = connc->cc_old_ifindex;
21775 	new_ifindex = connc->cc_new_ifindex;
21776 
21777 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
21778 	ill = ILL_START_WALK_ALL(&ctx, ipst);
21779 	for (; ill != NULL; ill = ill_next(&ctx, ill)) {
21780 		if ((ill_orig->ill_net_type != ill->ill_net_type) ||
21781 		    (ill_orig->ill_type != ill->ill_type)) {
21782 			continue;
21783 		}
21784 		for (ipif = ill->ill_ipif; ipif != NULL;
21785 		    ipif = ipif->ipif_next) {
21786 			if (ipif->ipif_orig_ifindex == old_ifindex)
21787 				ipif->ipif_orig_ifindex = new_ifindex;
21788 		}
21789 		for (ilm = ill->ill_ilm; ilm != NULL; ilm = ilm->ilm_next) {
21790 			if (ilm->ilm_orig_ifindex == old_ifindex)
21791 				ilm->ilm_orig_ifindex = new_ifindex;
21792 		}
21793 	}
21794 	rw_exit(&ipst->ips_ill_g_lock);
21795 }
21796 
21797 /*
21798  * We first need to ensure that the new index is unique, and
21799  * then carry the change across both v4 and v6 ill representation
21800  * of the physical interface.
21801  */
21802 /* ARGSUSED */
21803 int
21804 ip_sioctl_slifindex(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
21805     ip_ioctl_cmd_t *ipip, void *ifreq)
21806 {
21807 	ill_t		*ill;
21808 	ill_t		*ill_other;
21809 	phyint_t	*phyi;
21810 	int		old_index;
21811 	conn_change_t	connc;
21812 	struct ifreq	*ifr = (struct ifreq *)ifreq;
21813 	struct lifreq	*lifr = (struct lifreq *)ifreq;
21814 	uint_t	index;
21815 	ill_t	*ill_v4;
21816 	ill_t	*ill_v6;
21817 	ip_stack_t	*ipst = ipif->ipif_ill->ill_ipst;
21818 
21819 	if (ipip->ipi_cmd_type == IF_CMD)
21820 		index = ifr->ifr_index;
21821 	else
21822 		index = lifr->lifr_index;
21823 
21824 	/*
21825 	 * Only allow on physical interface. Also, index zero is illegal.
21826 	 *
21827 	 * Need to check for PHYI_FAILED and PHYI_INACTIVE
21828 	 *
21829 	 * 1) If PHYI_FAILED is set, a failover could have happened which
21830 	 *    implies a possible failback might have to happen. As failback
21831 	 *    depends on the old index, we should fail setting the index.
21832 	 *
21833 	 * 2) If PHYI_INACTIVE is set, in.mpathd does a failover so that
21834 	 *    any addresses or multicast memberships are failed over to
21835 	 *    a non-STANDBY interface. As failback depends on the old
21836 	 *    index, we should fail setting the index for this case also.
21837 	 *
21838 	 * 3) If PHYI_OFFLINE is set, a possible failover has happened.
21839 	 *    Be consistent with PHYI_FAILED and fail the ioctl.
21840 	 */
21841 	ill = ipif->ipif_ill;
21842 	phyi = ill->ill_phyint;
21843 	if ((phyi->phyint_flags & (PHYI_FAILED|PHYI_INACTIVE|PHYI_OFFLINE)) ||
21844 	    ipif->ipif_id != 0 || index == 0) {
21845 		return (EINVAL);
21846 	}
21847 	old_index = phyi->phyint_ifindex;
21848 
21849 	/* If the index is not changing, no work to do */
21850 	if (old_index == index)
21851 		return (0);
21852 
21853 	/*
21854 	 * Use ill_lookup_on_ifindex to determine if the
21855 	 * new index is unused and if so allow the change.
21856 	 */
21857 	ill_v6 = ill_lookup_on_ifindex(index, B_TRUE, NULL, NULL, NULL, NULL,
21858 	    ipst);
21859 	ill_v4 = ill_lookup_on_ifindex(index, B_FALSE, NULL, NULL, NULL, NULL,
21860 	    ipst);
21861 	if (ill_v6 != NULL || ill_v4 != NULL) {
21862 		if (ill_v4 != NULL)
21863 			ill_refrele(ill_v4);
21864 		if (ill_v6 != NULL)
21865 			ill_refrele(ill_v6);
21866 		return (EBUSY);
21867 	}
21868 
21869 	/*
21870 	 * The new index is unused. Set it in the phyint.
21871 	 * Locate the other ill so that we can send a routing
21872 	 * sockets message.
21873 	 */
21874 	if (ill->ill_isv6) {
21875 		ill_other = phyi->phyint_illv4;
21876 	} else {
21877 		ill_other = phyi->phyint_illv6;
21878 	}
21879 
21880 	phyi->phyint_ifindex = index;
21881 
21882 	/* Update SCTP's ILL list */
21883 	sctp_ill_reindex(ill, old_index);
21884 
21885 	connc.cc_old_ifindex = old_index;
21886 	connc.cc_new_ifindex = index;
21887 	ip_change_ifindex(ill, &connc);
21888 	ipcl_walk(conn_change_ifindex, (caddr_t)&connc, ipst);
21889 
21890 	/* Send the routing sockets message */
21891 	ip_rts_ifmsg(ipif);
21892 	if (ill_other != NULL)
21893 		ip_rts_ifmsg(ill_other->ill_ipif);
21894 
21895 	return (0);
21896 }
21897 
21898 /* ARGSUSED */
21899 int
21900 ip_sioctl_get_lifindex(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
21901     ip_ioctl_cmd_t *ipip, void *ifreq)
21902 {
21903 	struct ifreq	*ifr = (struct ifreq *)ifreq;
21904 	struct lifreq	*lifr = (struct lifreq *)ifreq;
21905 
21906 	ip1dbg(("ip_sioctl_get_lifindex(%s:%u %p)\n",
21907 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
21908 	/* Get the interface index */
21909 	if (ipip->ipi_cmd_type == IF_CMD) {
21910 		ifr->ifr_index = ipif->ipif_ill->ill_phyint->phyint_ifindex;
21911 	} else {
21912 		lifr->lifr_index = ipif->ipif_ill->ill_phyint->phyint_ifindex;
21913 	}
21914 	return (0);
21915 }
21916 
21917 /* ARGSUSED */
21918 int
21919 ip_sioctl_get_lifzone(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
21920     ip_ioctl_cmd_t *ipip, void *ifreq)
21921 {
21922 	struct lifreq	*lifr = (struct lifreq *)ifreq;
21923 
21924 	ip1dbg(("ip_sioctl_get_lifzone(%s:%u %p)\n",
21925 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
21926 	/* Get the interface zone */
21927 	ASSERT(ipip->ipi_cmd_type == LIF_CMD);
21928 	lifr->lifr_zoneid = ipif->ipif_zoneid;
21929 	return (0);
21930 }
21931 
21932 /*
21933  * Set the zoneid of an interface.
21934  */
21935 /* ARGSUSED */
21936 int
21937 ip_sioctl_slifzone(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
21938     ip_ioctl_cmd_t *ipip, void *ifreq)
21939 {
21940 	struct lifreq	*lifr = (struct lifreq *)ifreq;
21941 	int err = 0;
21942 	boolean_t need_up = B_FALSE;
21943 	zone_t *zptr;
21944 	zone_status_t status;
21945 	zoneid_t zoneid;
21946 
21947 	ASSERT(ipip->ipi_cmd_type == LIF_CMD);
21948 	if ((zoneid = lifr->lifr_zoneid) == ALL_ZONES) {
21949 		if (!is_system_labeled())
21950 			return (ENOTSUP);
21951 		zoneid = GLOBAL_ZONEID;
21952 	}
21953 
21954 	/* cannot assign instance zero to a non-global zone */
21955 	if (ipif->ipif_id == 0 && zoneid != GLOBAL_ZONEID)
21956 		return (ENOTSUP);
21957 
21958 	/*
21959 	 * Cannot assign to a zone that doesn't exist or is shutting down.  In
21960 	 * the event of a race with the zone shutdown processing, since IP
21961 	 * serializes this ioctl and SIOCGLIFCONF/SIOCLIFREMOVEIF, we know the
21962 	 * interface will be cleaned up even if the zone is shut down
21963 	 * immediately after the status check. If the interface can't be brought
21964 	 * down right away, and the zone is shut down before the restart
21965 	 * function is called, we resolve the possible races by rechecking the
21966 	 * zone status in the restart function.
21967 	 */
21968 	if ((zptr = zone_find_by_id(zoneid)) == NULL)
21969 		return (EINVAL);
21970 	status = zone_status_get(zptr);
21971 	zone_rele(zptr);
21972 
21973 	if (status != ZONE_IS_READY && status != ZONE_IS_RUNNING)
21974 		return (EINVAL);
21975 
21976 	if (ipif->ipif_flags & IPIF_UP) {
21977 		/*
21978 		 * If the interface is already marked up,
21979 		 * we call ipif_down which will take care
21980 		 * of ditching any IREs that have been set
21981 		 * up based on the old interface address.
21982 		 */
21983 		err = ipif_logical_down(ipif, q, mp);
21984 		if (err == EINPROGRESS)
21985 			return (err);
21986 		ipif_down_tail(ipif);
21987 		need_up = B_TRUE;
21988 	}
21989 
21990 	err = ip_sioctl_slifzone_tail(ipif, lifr->lifr_zoneid, q, mp, need_up);
21991 	return (err);
21992 }
21993 
21994 static int
21995 ip_sioctl_slifzone_tail(ipif_t *ipif, zoneid_t zoneid,
21996     queue_t *q, mblk_t *mp, boolean_t need_up)
21997 {
21998 	int	err = 0;
21999 	ip_stack_t	*ipst;
22000 
22001 	ip1dbg(("ip_sioctl_zoneid_tail(%s:%u %p)\n",
22002 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
22003 
22004 	if (CONN_Q(q))
22005 		ipst = CONNQ_TO_IPST(q);
22006 	else
22007 		ipst = ILLQ_TO_IPST(q);
22008 
22009 	/*
22010 	 * For exclusive stacks we don't allow a different zoneid than
22011 	 * global.
22012 	 */
22013 	if (ipst->ips_netstack->netstack_stackid != GLOBAL_NETSTACKID &&
22014 	    zoneid != GLOBAL_ZONEID)
22015 		return (EINVAL);
22016 
22017 	/* Set the new zone id. */
22018 	ipif->ipif_zoneid = zoneid;
22019 
22020 	/* Update sctp list */
22021 	sctp_update_ipif(ipif, SCTP_IPIF_UPDATE);
22022 
22023 	if (need_up) {
22024 		/*
22025 		 * Now bring the interface back up.  If this
22026 		 * is the only IPIF for the ILL, ipif_up
22027 		 * will have to re-bind to the device, so
22028 		 * we may get back EINPROGRESS, in which
22029 		 * case, this IOCTL will get completed in
22030 		 * ip_rput_dlpi when we see the DL_BIND_ACK.
22031 		 */
22032 		err = ipif_up(ipif, q, mp);
22033 	}
22034 	return (err);
22035 }
22036 
22037 /* ARGSUSED */
22038 int
22039 ip_sioctl_slifzone_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
22040     ip_ioctl_cmd_t *ipip, void *if_req)
22041 {
22042 	struct lifreq *lifr = (struct lifreq *)if_req;
22043 	zoneid_t zoneid;
22044 	zone_t *zptr;
22045 	zone_status_t status;
22046 
22047 	ASSERT(ipif->ipif_id != 0);
22048 	ASSERT(ipip->ipi_cmd_type == LIF_CMD);
22049 	if ((zoneid = lifr->lifr_zoneid) == ALL_ZONES)
22050 		zoneid = GLOBAL_ZONEID;
22051 
22052 	ip1dbg(("ip_sioctl_slifzone_restart(%s:%u %p)\n",
22053 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
22054 
22055 	/*
22056 	 * We recheck the zone status to resolve the following race condition:
22057 	 * 1) process sends SIOCSLIFZONE to put hme0:1 in zone "myzone";
22058 	 * 2) hme0:1 is up and can't be brought down right away;
22059 	 * ip_sioctl_slifzone() returns EINPROGRESS and the request is queued;
22060 	 * 3) zone "myzone" is halted; the zone status switches to
22061 	 * 'shutting_down' and the zones framework sends SIOCGLIFCONF to list
22062 	 * the interfaces to remove - hme0:1 is not returned because it's not
22063 	 * yet in "myzone", so it won't be removed;
22064 	 * 4) the restart function for SIOCSLIFZONE is called; without the
22065 	 * status check here, we would have hme0:1 in "myzone" after it's been
22066 	 * destroyed.
22067 	 * Note that if the status check fails, we need to bring the interface
22068 	 * back to its state prior to ip_sioctl_slifzone(), hence the call to
22069 	 * ipif_up_done[_v6]().
22070 	 */
22071 	status = ZONE_IS_UNINITIALIZED;
22072 	if ((zptr = zone_find_by_id(zoneid)) != NULL) {
22073 		status = zone_status_get(zptr);
22074 		zone_rele(zptr);
22075 	}
22076 	if (status != ZONE_IS_READY && status != ZONE_IS_RUNNING) {
22077 		if (ipif->ipif_isv6) {
22078 			(void) ipif_up_done_v6(ipif);
22079 		} else {
22080 			(void) ipif_up_done(ipif);
22081 		}
22082 		return (EINVAL);
22083 	}
22084 
22085 	ipif_down_tail(ipif);
22086 
22087 	return (ip_sioctl_slifzone_tail(ipif, lifr->lifr_zoneid, q, mp,
22088 	    B_TRUE));
22089 }
22090 
22091 /* ARGSUSED */
22092 int
22093 ip_sioctl_get_lifusesrc(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
22094 	ip_ioctl_cmd_t *ipip, void *ifreq)
22095 {
22096 	struct lifreq	*lifr = ifreq;
22097 
22098 	ASSERT(q->q_next == NULL);
22099 	ASSERT(CONN_Q(q));
22100 
22101 	ip1dbg(("ip_sioctl_get_lifusesrc(%s:%u %p)\n",
22102 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
22103 	lifr->lifr_index = ipif->ipif_ill->ill_usesrc_ifindex;
22104 	ip1dbg(("ip_sioctl_get_lifusesrc:lifr_index = %d\n", lifr->lifr_index));
22105 
22106 	return (0);
22107 }
22108 
22109 
22110 /* Find the previous ILL in this usesrc group */
22111 static ill_t *
22112 ill_prev_usesrc(ill_t *uill)
22113 {
22114 	ill_t *ill;
22115 
22116 	for (ill = uill->ill_usesrc_grp_next;
22117 	    ASSERT(ill), ill->ill_usesrc_grp_next != uill;
22118 	    ill = ill->ill_usesrc_grp_next)
22119 		/* do nothing */;
22120 	return (ill);
22121 }
22122 
22123 /*
22124  * Release all members of the usesrc group. This routine is called
22125  * from ill_delete when the interface being unplumbed is the
22126  * group head.
22127  */
22128 static void
22129 ill_disband_usesrc_group(ill_t *uill)
22130 {
22131 	ill_t *next_ill, *tmp_ill;
22132 	ip_stack_t	*ipst = uill->ill_ipst;
22133 
22134 	ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_usesrc_lock));
22135 	next_ill = uill->ill_usesrc_grp_next;
22136 
22137 	do {
22138 		ASSERT(next_ill != NULL);
22139 		tmp_ill = next_ill->ill_usesrc_grp_next;
22140 		ASSERT(tmp_ill != NULL);
22141 		next_ill->ill_usesrc_grp_next = NULL;
22142 		next_ill->ill_usesrc_ifindex = 0;
22143 		next_ill = tmp_ill;
22144 	} while (next_ill->ill_usesrc_ifindex != 0);
22145 	uill->ill_usesrc_grp_next = NULL;
22146 }
22147 
22148 /*
22149  * Remove the client usesrc ILL from the list and relink to a new list
22150  */
22151 int
22152 ill_relink_usesrc_ills(ill_t *ucill, ill_t *uill, uint_t ifindex)
22153 {
22154 	ill_t *ill, *tmp_ill;
22155 	ip_stack_t	*ipst = ucill->ill_ipst;
22156 
22157 	ASSERT((ucill != NULL) && (ucill->ill_usesrc_grp_next != NULL) &&
22158 	    (uill != NULL) && RW_WRITE_HELD(&ipst->ips_ill_g_usesrc_lock));
22159 
22160 	/*
22161 	 * Check if the usesrc client ILL passed in is not already
22162 	 * in use as a usesrc ILL i.e one whose source address is
22163 	 * in use OR a usesrc ILL is not already in use as a usesrc
22164 	 * client ILL
22165 	 */
22166 	if ((ucill->ill_usesrc_ifindex == 0) ||
22167 	    (uill->ill_usesrc_ifindex != 0)) {
22168 		return (-1);
22169 	}
22170 
22171 	ill = ill_prev_usesrc(ucill);
22172 	ASSERT(ill->ill_usesrc_grp_next != NULL);
22173 
22174 	/* Remove from the current list */
22175 	if (ill->ill_usesrc_grp_next->ill_usesrc_grp_next == ill) {
22176 		/* Only two elements in the list */
22177 		ASSERT(ill->ill_usesrc_ifindex == 0);
22178 		ill->ill_usesrc_grp_next = NULL;
22179 	} else {
22180 		ill->ill_usesrc_grp_next = ucill->ill_usesrc_grp_next;
22181 	}
22182 
22183 	if (ifindex == 0) {
22184 		ucill->ill_usesrc_ifindex = 0;
22185 		ucill->ill_usesrc_grp_next = NULL;
22186 		return (0);
22187 	}
22188 
22189 	ucill->ill_usesrc_ifindex = ifindex;
22190 	tmp_ill = uill->ill_usesrc_grp_next;
22191 	uill->ill_usesrc_grp_next = ucill;
22192 	ucill->ill_usesrc_grp_next =
22193 	    (tmp_ill != NULL) ? tmp_ill : uill;
22194 	return (0);
22195 }
22196 
22197 /*
22198  * Set the ill_usesrc and ill_usesrc_head fields. See synchronization notes in
22199  * ip.c for locking details.
22200  */
22201 /* ARGSUSED */
22202 int
22203 ip_sioctl_slifusesrc(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
22204     ip_ioctl_cmd_t *ipip, void *ifreq)
22205 {
22206 	struct lifreq *lifr = (struct lifreq *)ifreq;
22207 	boolean_t isv6 = B_FALSE, reset_flg = B_FALSE,
22208 	    ill_flag_changed = B_FALSE;
22209 	ill_t *usesrc_ill, *usesrc_cli_ill = ipif->ipif_ill;
22210 	int err = 0, ret;
22211 	uint_t ifindex;
22212 	phyint_t *us_phyint, *us_cli_phyint;
22213 	ipsq_t *ipsq = NULL;
22214 	ip_stack_t	*ipst = ipif->ipif_ill->ill_ipst;
22215 
22216 	ASSERT(IAM_WRITER_IPIF(ipif));
22217 	ASSERT(q->q_next == NULL);
22218 	ASSERT(CONN_Q(q));
22219 
22220 	isv6 = (Q_TO_CONN(q))->conn_af_isv6;
22221 	us_cli_phyint = usesrc_cli_ill->ill_phyint;
22222 
22223 	ASSERT(us_cli_phyint != NULL);
22224 
22225 	/*
22226 	 * If the client ILL is being used for IPMP, abort.
22227 	 * Note, this can be done before ipsq_try_enter since we are already
22228 	 * exclusive on this ILL
22229 	 */
22230 	if ((us_cli_phyint->phyint_groupname != NULL) ||
22231 	    (us_cli_phyint->phyint_flags & PHYI_STANDBY)) {
22232 		return (EINVAL);
22233 	}
22234 
22235 	ifindex = lifr->lifr_index;
22236 	if (ifindex == 0) {
22237 		if (usesrc_cli_ill->ill_usesrc_grp_next == NULL) {
22238 			/* non usesrc group interface, nothing to reset */
22239 			return (0);
22240 		}
22241 		ifindex = usesrc_cli_ill->ill_usesrc_ifindex;
22242 		/* valid reset request */
22243 		reset_flg = B_TRUE;
22244 	}
22245 
22246 	usesrc_ill = ill_lookup_on_ifindex(ifindex, isv6, q, mp,
22247 	    ip_process_ioctl, &err, ipst);
22248 
22249 	if (usesrc_ill == NULL) {
22250 		return (err);
22251 	}
22252 
22253 	/*
22254 	 * The usesrc_cli_ill or the usesrc_ill cannot be part of an IPMP
22255 	 * group nor can either of the interfaces be used for standy. So
22256 	 * to guarantee mutual exclusion with ip_sioctl_flags (which sets
22257 	 * PHYI_STANDBY) and ip_sioctl_groupname (which sets the groupname)
22258 	 * we need to be exclusive on the ipsq belonging to the usesrc_ill.
22259 	 * We are already exlusive on this ipsq i.e ipsq corresponding to
22260 	 * the usesrc_cli_ill
22261 	 */
22262 	ipsq = ipsq_try_enter(NULL, usesrc_ill, q, mp, ip_process_ioctl,
22263 	    NEW_OP, B_TRUE);
22264 	if (ipsq == NULL) {
22265 		err = EINPROGRESS;
22266 		/* Operation enqueued on the ipsq of the usesrc ILL */
22267 		goto done;
22268 	}
22269 
22270 	/* Check if the usesrc_ill is used for IPMP */
22271 	us_phyint = usesrc_ill->ill_phyint;
22272 	if ((us_phyint->phyint_groupname != NULL) ||
22273 	    (us_phyint->phyint_flags & PHYI_STANDBY)) {
22274 		err = EINVAL;
22275 		goto done;
22276 	}
22277 
22278 	/*
22279 	 * If the client is already in use as a usesrc_ill or a usesrc_ill is
22280 	 * already a client then return EINVAL
22281 	 */
22282 	if (IS_USESRC_ILL(usesrc_cli_ill) || IS_USESRC_CLI_ILL(usesrc_ill)) {
22283 		err = EINVAL;
22284 		goto done;
22285 	}
22286 
22287 	/*
22288 	 * If the ill_usesrc_ifindex field is already set to what it needs to
22289 	 * be then this is a duplicate operation.
22290 	 */
22291 	if (!reset_flg && usesrc_cli_ill->ill_usesrc_ifindex == ifindex) {
22292 		err = 0;
22293 		goto done;
22294 	}
22295 
22296 	ip1dbg(("ip_sioctl_slifusesrc: usesrc_cli_ill %s, usesrc_ill %s,"
22297 	    " v6 = %d", usesrc_cli_ill->ill_name, usesrc_ill->ill_name,
22298 	    usesrc_ill->ill_isv6));
22299 
22300 	/*
22301 	 * The next step ensures that no new ires will be created referencing
22302 	 * the client ill, until the ILL_CHANGING flag is cleared. Then
22303 	 * we go through an ire walk deleting all ire caches that reference
22304 	 * the client ill. New ires referencing the client ill that are added
22305 	 * to the ire table before the ILL_CHANGING flag is set, will be
22306 	 * cleaned up by the ire walk below. Attempt to add new ires referencing
22307 	 * the client ill while the ILL_CHANGING flag is set will be failed
22308 	 * during the ire_add in ire_atomic_start. ire_atomic_start atomically
22309 	 * checks (under the ill_g_usesrc_lock) that the ire being added
22310 	 * is not stale, i.e the ire_stq and ire_ipif are consistent and
22311 	 * belong to the same usesrc group.
22312 	 */
22313 	mutex_enter(&usesrc_cli_ill->ill_lock);
22314 	usesrc_cli_ill->ill_state_flags |= ILL_CHANGING;
22315 	mutex_exit(&usesrc_cli_ill->ill_lock);
22316 	ill_flag_changed = B_TRUE;
22317 
22318 	if (ipif->ipif_isv6)
22319 		ire_walk_v6(ipif_delete_cache_ire, (char *)usesrc_cli_ill,
22320 		    ALL_ZONES, ipst);
22321 	else
22322 		ire_walk_v4(ipif_delete_cache_ire, (char *)usesrc_cli_ill,
22323 		    ALL_ZONES, ipst);
22324 
22325 	/*
22326 	 * ill_g_usesrc_lock global lock protects the ill_usesrc_grp_next
22327 	 * and the ill_usesrc_ifindex fields
22328 	 */
22329 	rw_enter(&ipst->ips_ill_g_usesrc_lock, RW_WRITER);
22330 
22331 	if (reset_flg) {
22332 		ret = ill_relink_usesrc_ills(usesrc_cli_ill, usesrc_ill, 0);
22333 		if (ret != 0) {
22334 			err = EINVAL;
22335 		}
22336 		rw_exit(&ipst->ips_ill_g_usesrc_lock);
22337 		goto done;
22338 	}
22339 
22340 	/*
22341 	 * Four possibilities to consider:
22342 	 * 1. Both usesrc_ill and usesrc_cli_ill are not part of any usesrc grp
22343 	 * 2. usesrc_ill is part of a group but usesrc_cli_ill isn't
22344 	 * 3. usesrc_cli_ill is part of a group but usesrc_ill isn't
22345 	 * 4. Both are part of their respective usesrc groups
22346 	 */
22347 	if ((usesrc_ill->ill_usesrc_grp_next == NULL) &&
22348 	    (usesrc_cli_ill->ill_usesrc_grp_next == NULL)) {
22349 		ASSERT(usesrc_ill->ill_usesrc_ifindex == 0);
22350 		usesrc_cli_ill->ill_usesrc_ifindex = ifindex;
22351 		usesrc_ill->ill_usesrc_grp_next = usesrc_cli_ill;
22352 		usesrc_cli_ill->ill_usesrc_grp_next = usesrc_ill;
22353 	} else if ((usesrc_ill->ill_usesrc_grp_next != NULL) &&
22354 	    (usesrc_cli_ill->ill_usesrc_grp_next == NULL)) {
22355 		usesrc_cli_ill->ill_usesrc_ifindex = ifindex;
22356 		/* Insert at head of list */
22357 		usesrc_cli_ill->ill_usesrc_grp_next =
22358 		    usesrc_ill->ill_usesrc_grp_next;
22359 		usesrc_ill->ill_usesrc_grp_next = usesrc_cli_ill;
22360 	} else {
22361 		ret = ill_relink_usesrc_ills(usesrc_cli_ill, usesrc_ill,
22362 		    ifindex);
22363 		if (ret != 0)
22364 			err = EINVAL;
22365 	}
22366 	rw_exit(&ipst->ips_ill_g_usesrc_lock);
22367 
22368 done:
22369 	if (ill_flag_changed) {
22370 		mutex_enter(&usesrc_cli_ill->ill_lock);
22371 		usesrc_cli_ill->ill_state_flags &= ~ILL_CHANGING;
22372 		mutex_exit(&usesrc_cli_ill->ill_lock);
22373 	}
22374 	if (ipsq != NULL)
22375 		ipsq_exit(ipsq, B_TRUE, B_TRUE);
22376 	/* The refrele on the lifr_name ipif is done by ip_process_ioctl */
22377 	ill_refrele(usesrc_ill);
22378 	return (err);
22379 }
22380 
22381 /*
22382  * comparison function used by avl.
22383  */
22384 static int
22385 ill_phyint_compare_index(const void *index_ptr, const void *phyip)
22386 {
22387 
22388 	uint_t index;
22389 
22390 	ASSERT(phyip != NULL && index_ptr != NULL);
22391 
22392 	index = *((uint_t *)index_ptr);
22393 	/*
22394 	 * let the phyint with the lowest index be on top.
22395 	 */
22396 	if (((phyint_t *)phyip)->phyint_ifindex < index)
22397 		return (1);
22398 	if (((phyint_t *)phyip)->phyint_ifindex > index)
22399 		return (-1);
22400 	return (0);
22401 }
22402 
22403 /*
22404  * comparison function used by avl.
22405  */
22406 static int
22407 ill_phyint_compare_name(const void *name_ptr, const void *phyip)
22408 {
22409 	ill_t *ill;
22410 	int res = 0;
22411 
22412 	ASSERT(phyip != NULL && name_ptr != NULL);
22413 
22414 	if (((phyint_t *)phyip)->phyint_illv4)
22415 		ill = ((phyint_t *)phyip)->phyint_illv4;
22416 	else
22417 		ill = ((phyint_t *)phyip)->phyint_illv6;
22418 	ASSERT(ill != NULL);
22419 
22420 	res = strcmp(ill->ill_name, (char *)name_ptr);
22421 	if (res > 0)
22422 		return (1);
22423 	else if (res < 0)
22424 		return (-1);
22425 	return (0);
22426 }
22427 /*
22428  * This function is called from ill_delete when the ill is being
22429  * unplumbed. We remove the reference from the phyint and we also
22430  * free the phyint when there are no more references to it.
22431  */
22432 static void
22433 ill_phyint_free(ill_t *ill)
22434 {
22435 	phyint_t *phyi;
22436 	phyint_t *next_phyint;
22437 	ipsq_t *cur_ipsq;
22438 	ip_stack_t	*ipst = ill->ill_ipst;
22439 
22440 	ASSERT(ill->ill_phyint != NULL);
22441 
22442 	ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock));
22443 	phyi = ill->ill_phyint;
22444 	ill->ill_phyint = NULL;
22445 	/*
22446 	 * ill_init allocates a phyint always to store the copy
22447 	 * of flags relevant to phyint. At that point in time, we could
22448 	 * not assign the name and hence phyint_illv4/v6 could not be
22449 	 * initialized. Later in ipif_set_values, we assign the name to
22450 	 * the ill, at which point in time we assign phyint_illv4/v6.
22451 	 * Thus we don't rely on phyint_illv6 to be initialized always.
22452 	 */
22453 	if (ill->ill_flags & ILLF_IPV6) {
22454 		phyi->phyint_illv6 = NULL;
22455 	} else {
22456 		phyi->phyint_illv4 = NULL;
22457 	}
22458 	/*
22459 	 * ipif_down removes it from the group when the last ipif goes
22460 	 * down.
22461 	 */
22462 	ASSERT(ill->ill_group == NULL);
22463 
22464 	if (phyi->phyint_illv4 != NULL || phyi->phyint_illv6 != NULL)
22465 		return;
22466 
22467 	/*
22468 	 * Make sure this phyint was put in the list.
22469 	 */
22470 	if (phyi->phyint_ifindex > 0) {
22471 		avl_remove(&ipst->ips_phyint_g_list->phyint_list_avl_by_index,
22472 		    phyi);
22473 		avl_remove(&ipst->ips_phyint_g_list->phyint_list_avl_by_name,
22474 		    phyi);
22475 	}
22476 	/*
22477 	 * remove phyint from the ipsq list.
22478 	 */
22479 	cur_ipsq = phyi->phyint_ipsq;
22480 	if (phyi == cur_ipsq->ipsq_phyint_list) {
22481 		cur_ipsq->ipsq_phyint_list = phyi->phyint_ipsq_next;
22482 	} else {
22483 		next_phyint = cur_ipsq->ipsq_phyint_list;
22484 		while (next_phyint != NULL) {
22485 			if (next_phyint->phyint_ipsq_next == phyi) {
22486 				next_phyint->phyint_ipsq_next =
22487 				    phyi->phyint_ipsq_next;
22488 				break;
22489 			}
22490 			next_phyint = next_phyint->phyint_ipsq_next;
22491 		}
22492 		ASSERT(next_phyint != NULL);
22493 	}
22494 	IPSQ_DEC_REF(cur_ipsq, ipst);
22495 
22496 	if (phyi->phyint_groupname_len != 0) {
22497 		ASSERT(phyi->phyint_groupname != NULL);
22498 		mi_free(phyi->phyint_groupname);
22499 	}
22500 	mi_free(phyi);
22501 }
22502 
22503 /*
22504  * Attach the ill to the phyint structure which can be shared by both
22505  * IPv4 and IPv6 ill. ill_init allocates a phyint to just hold flags. This
22506  * function is called from ipif_set_values and ill_lookup_on_name (for
22507  * loopback) where we know the name of the ill. We lookup the ill and if
22508  * there is one present already with the name use that phyint. Otherwise
22509  * reuse the one allocated by ill_init.
22510  */
22511 static void
22512 ill_phyint_reinit(ill_t *ill)
22513 {
22514 	boolean_t isv6 = ill->ill_isv6;
22515 	phyint_t *phyi_old;
22516 	phyint_t *phyi;
22517 	avl_index_t where = 0;
22518 	ill_t	*ill_other = NULL;
22519 	ipsq_t	*ipsq;
22520 	ip_stack_t	*ipst = ill->ill_ipst;
22521 
22522 	ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock));
22523 
22524 	phyi_old = ill->ill_phyint;
22525 	ASSERT(isv6 || (phyi_old->phyint_illv4 == ill &&
22526 	    phyi_old->phyint_illv6 == NULL));
22527 	ASSERT(!isv6 || (phyi_old->phyint_illv6 == ill &&
22528 	    phyi_old->phyint_illv4 == NULL));
22529 	ASSERT(phyi_old->phyint_ifindex == 0);
22530 
22531 	phyi = avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_name,
22532 	    ill->ill_name, &where);
22533 
22534 	/*
22535 	 * 1. We grabbed the ill_g_lock before inserting this ill into
22536 	 *    the global list of ills. So no other thread could have located
22537 	 *    this ill and hence the ipsq of this ill is guaranteed to be empty.
22538 	 * 2. Now locate the other protocol instance of this ill.
22539 	 * 3. Now grab both ill locks in the right order, and the phyint lock of
22540 	 *    the new ipsq. Holding ill locks + ill_g_lock ensures that the ipsq
22541 	 *    of neither ill can change.
22542 	 * 4. Merge the phyint and thus the ipsq as well of this ill onto the
22543 	 *    other ill.
22544 	 * 5. Release all locks.
22545 	 */
22546 
22547 	/*
22548 	 * Look for IPv4 if we are initializing IPv6 or look for IPv6 if
22549 	 * we are initializing IPv4.
22550 	 */
22551 	if (phyi != NULL) {
22552 		ill_other = (isv6) ? phyi->phyint_illv4 :
22553 		    phyi->phyint_illv6;
22554 		ASSERT(ill_other->ill_phyint != NULL);
22555 		ASSERT((isv6 && !ill_other->ill_isv6) ||
22556 		    (!isv6 && ill_other->ill_isv6));
22557 		GRAB_ILL_LOCKS(ill, ill_other);
22558 		/*
22559 		 * We are potentially throwing away phyint_flags which
22560 		 * could be different from the one that we obtain from
22561 		 * ill_other->ill_phyint. But it is okay as we are assuming
22562 		 * that the state maintained within IP is correct.
22563 		 */
22564 		mutex_enter(&phyi->phyint_lock);
22565 		if (isv6) {
22566 			ASSERT(phyi->phyint_illv6 == NULL);
22567 			phyi->phyint_illv6 = ill;
22568 		} else {
22569 			ASSERT(phyi->phyint_illv4 == NULL);
22570 			phyi->phyint_illv4 = ill;
22571 		}
22572 		/*
22573 		 * This is a new ill, currently undergoing SLIFNAME
22574 		 * So we could not have joined an IPMP group until now.
22575 		 */
22576 		ASSERT(phyi_old->phyint_ipsq_next == NULL &&
22577 		    phyi_old->phyint_groupname == NULL);
22578 
22579 		/*
22580 		 * This phyi_old is going away. Decref ipsq_refs and
22581 		 * assert it is zero. The ipsq itself will be freed in
22582 		 * ipsq_exit
22583 		 */
22584 		ipsq = phyi_old->phyint_ipsq;
22585 		IPSQ_DEC_REF(ipsq, ipst);
22586 		ASSERT(ipsq->ipsq_refs == 0);
22587 		/* Get the singleton phyint out of the ipsq list */
22588 		ASSERT(phyi_old->phyint_ipsq_next == NULL);
22589 		ipsq->ipsq_phyint_list = NULL;
22590 		phyi_old->phyint_illv4 = NULL;
22591 		phyi_old->phyint_illv6 = NULL;
22592 		mi_free(phyi_old);
22593 	} else {
22594 		mutex_enter(&ill->ill_lock);
22595 		/*
22596 		 * We don't need to acquire any lock, since
22597 		 * the ill is not yet visible globally  and we
22598 		 * have not yet released the ill_g_lock.
22599 		 */
22600 		phyi = phyi_old;
22601 		mutex_enter(&phyi->phyint_lock);
22602 		/* XXX We need a recovery strategy here. */
22603 		if (!phyint_assign_ifindex(phyi, ipst))
22604 			cmn_err(CE_PANIC, "phyint_assign_ifindex() failed");
22605 
22606 		/* No IPMP group yet, thus the hook uses the ifindex */
22607 		phyi->phyint_hook_ifindex = phyi->phyint_ifindex;
22608 
22609 		avl_insert(&ipst->ips_phyint_g_list->phyint_list_avl_by_name,
22610 		    (void *)phyi, where);
22611 
22612 		(void) avl_find(&ipst->ips_phyint_g_list->
22613 		    phyint_list_avl_by_index,
22614 		    &phyi->phyint_ifindex, &where);
22615 		avl_insert(&ipst->ips_phyint_g_list->phyint_list_avl_by_index,
22616 		    (void *)phyi, where);
22617 	}
22618 
22619 	/*
22620 	 * Reassigning ill_phyint automatically reassigns the ipsq also.
22621 	 * pending mp is not affected because that is per ill basis.
22622 	 */
22623 	ill->ill_phyint = phyi;
22624 
22625 	/*
22626 	 * Keep the index on ipif_orig_index to be used by FAILOVER.
22627 	 * We do this here as when the first ipif was allocated,
22628 	 * ipif_allocate does not know the right interface index.
22629 	 */
22630 
22631 	ill->ill_ipif->ipif_orig_ifindex = ill->ill_phyint->phyint_ifindex;
22632 	/*
22633 	 * Now that the phyint's ifindex has been assigned, complete the
22634 	 * remaining
22635 	 */
22636 
22637 	ill->ill_ip_mib->ipIfStatsIfIndex = ill->ill_phyint->phyint_ifindex;
22638 	if (ill->ill_isv6) {
22639 		ill->ill_icmp6_mib->ipv6IfIcmpIfIndex =
22640 		    ill->ill_phyint->phyint_ifindex;
22641 		ill->ill_mcast_type = ipst->ips_mld_max_version;
22642 	} else {
22643 		ill->ill_mcast_type = ipst->ips_igmp_max_version;
22644 	}
22645 
22646 	/*
22647 	 * Generate an event within the hooks framework to indicate that
22648 	 * a new interface has just been added to IP.  For this event to
22649 	 * be generated, the network interface must, at least, have an
22650 	 * ifindex assigned to it.
22651 	 *
22652 	 * This needs to be run inside the ill_g_lock perimeter to ensure
22653 	 * that the ordering of delivered events to listeners matches the
22654 	 * order of them in the kernel.
22655 	 *
22656 	 * This function could be called from ill_lookup_on_name. In that case
22657 	 * the interface is loopback "lo", which will not generate a NIC event.
22658 	 */
22659 	if (ill->ill_name_length <= 2 ||
22660 	    ill->ill_name[0] != 'l' || ill->ill_name[1] != 'o') {
22661 		/*
22662 		 * Generate nic plumb event for ill_name even if
22663 		 * ipmp_hook_emulation is set. That avoids generating events
22664 		 * for the ill_names should ipmp_hook_emulation be turned on
22665 		 * later.
22666 		 */
22667 		ill_nic_info_plumb(ill, B_FALSE);
22668 	}
22669 	RELEASE_ILL_LOCKS(ill, ill_other);
22670 	mutex_exit(&phyi->phyint_lock);
22671 }
22672 
22673 /*
22674  * Allocate a NE_PLUMB nic info event and store in the ill.
22675  * If 'group' is set we do it for the group name, otherwise the ill name.
22676  * It will be sent when we leave the ipsq.
22677  */
22678 void
22679 ill_nic_info_plumb(ill_t *ill, boolean_t group)
22680 {
22681 	phyint_t	*phyi = ill->ill_phyint;
22682 	ip_stack_t	*ipst = ill->ill_ipst;
22683 	hook_nic_event_t *info;
22684 	char		*name;
22685 	int		namelen;
22686 
22687 	ASSERT(MUTEX_HELD(&ill->ill_lock));
22688 
22689 	if ((info = ill->ill_nic_event_info) != NULL) {
22690 		ip2dbg(("ill_nic_info_plumb: unexpected nic event %d "
22691 		    "attached for %s\n", info->hne_event,
22692 		    ill->ill_name));
22693 		if (info->hne_data != NULL)
22694 			kmem_free(info->hne_data, info->hne_datalen);
22695 		kmem_free(info, sizeof (hook_nic_event_t));
22696 		ill->ill_nic_event_info = NULL;
22697 	}
22698 
22699 	info = kmem_alloc(sizeof (hook_nic_event_t), KM_NOSLEEP);
22700 	if (info == NULL) {
22701 		ip2dbg(("ill_nic_info_plumb: could not attach PLUMB nic "
22702 		    "event information for %s (ENOMEM)\n",
22703 		    ill->ill_name));
22704 		return;
22705 	}
22706 
22707 	if (group) {
22708 		ASSERT(phyi->phyint_groupname_len != 0);
22709 		namelen = phyi->phyint_groupname_len;
22710 		name = phyi->phyint_groupname;
22711 	} else {
22712 		namelen = ill->ill_name_length;
22713 		name = ill->ill_name;
22714 	}
22715 
22716 	info->hne_nic = phyi->phyint_hook_ifindex;
22717 	info->hne_lif = 0;
22718 	info->hne_event = NE_PLUMB;
22719 	info->hne_family = ill->ill_isv6 ?
22720 	    ipst->ips_ipv6_net_data : ipst->ips_ipv4_net_data;
22721 
22722 	info->hne_data = kmem_alloc(namelen, KM_NOSLEEP);
22723 	if (info->hne_data != NULL) {
22724 		info->hne_datalen = namelen;
22725 		bcopy(name, info->hne_data, info->hne_datalen);
22726 	} else {
22727 		ip2dbg(("ill_nic_info_plumb: could not attach "
22728 		    "name information for PLUMB nic event "
22729 		    "of %s (ENOMEM)\n", name));
22730 		kmem_free(info, sizeof (hook_nic_event_t));
22731 		info = NULL;
22732 	}
22733 	ill->ill_nic_event_info = info;
22734 }
22735 
22736 /*
22737  * Unhook the nic event message from the ill and enqueue it
22738  * into the nic event taskq.
22739  */
22740 void
22741 ill_nic_info_dispatch(ill_t *ill)
22742 {
22743 	hook_nic_event_t *info;
22744 
22745 	ASSERT(MUTEX_HELD(&ill->ill_lock));
22746 
22747 	if ((info = ill->ill_nic_event_info) != NULL) {
22748 		if (ddi_taskq_dispatch(eventq_queue_nic,
22749 		    ip_ne_queue_func, info, DDI_SLEEP) == DDI_FAILURE) {
22750 			ip2dbg(("ill_nic_info_dispatch: "
22751 			    "ddi_taskq_dispatch failed\n"));
22752 			if (info->hne_data != NULL)
22753 				kmem_free(info->hne_data, info->hne_datalen);
22754 			kmem_free(info, sizeof (hook_nic_event_t));
22755 		}
22756 		ill->ill_nic_event_info = NULL;
22757 	}
22758 }
22759 
22760 /*
22761  * Notify any downstream modules of the name of this interface.
22762  * An M_IOCTL is used even though we don't expect a successful reply.
22763  * Any reply message from the driver (presumably an M_IOCNAK) will
22764  * eventually get discarded somewhere upstream.  The message format is
22765  * simply an SIOCSLIFNAME ioctl just as might be sent from ifconfig
22766  * to IP.
22767  */
22768 static void
22769 ip_ifname_notify(ill_t *ill, queue_t *q)
22770 {
22771 	mblk_t *mp1, *mp2;
22772 	struct iocblk *iocp;
22773 	struct lifreq *lifr;
22774 
22775 	mp1 = mkiocb(SIOCSLIFNAME);
22776 	if (mp1 == NULL)
22777 		return;
22778 	mp2 = allocb(sizeof (struct lifreq), BPRI_HI);
22779 	if (mp2 == NULL) {
22780 		freeb(mp1);
22781 		return;
22782 	}
22783 
22784 	mp1->b_cont = mp2;
22785 	iocp = (struct iocblk *)mp1->b_rptr;
22786 	iocp->ioc_count = sizeof (struct lifreq);
22787 
22788 	lifr = (struct lifreq *)mp2->b_rptr;
22789 	mp2->b_wptr += sizeof (struct lifreq);
22790 	bzero(lifr, sizeof (struct lifreq));
22791 
22792 	(void) strncpy(lifr->lifr_name, ill->ill_name, LIFNAMSIZ);
22793 	lifr->lifr_ppa = ill->ill_ppa;
22794 	lifr->lifr_flags = (ill->ill_flags & (ILLF_IPV4|ILLF_IPV6));
22795 
22796 	putnext(q, mp1);
22797 }
22798 
22799 static int
22800 ipif_set_values_tail(ill_t *ill, ipif_t *ipif, mblk_t *mp, queue_t *q)
22801 {
22802 	int err;
22803 	ip_stack_t	*ipst = ill->ill_ipst;
22804 
22805 	/* Set the obsolete NDD per-interface forwarding name. */
22806 	err = ill_set_ndd_name(ill);
22807 	if (err != 0) {
22808 		cmn_err(CE_WARN, "ipif_set_values: ill_set_ndd_name (%d)\n",
22809 		    err);
22810 	}
22811 
22812 	/* Tell downstream modules where they are. */
22813 	ip_ifname_notify(ill, q);
22814 
22815 	/*
22816 	 * ill_dl_phys returns EINPROGRESS in the usual case.
22817 	 * Error cases are ENOMEM ...
22818 	 */
22819 	err = ill_dl_phys(ill, ipif, mp, q);
22820 
22821 	/*
22822 	 * If there is no IRE expiration timer running, get one started.
22823 	 * igmp and mld timers will be triggered by the first multicast
22824 	 */
22825 	if (ipst->ips_ip_ire_expire_id == 0) {
22826 		/*
22827 		 * acquire the lock and check again.
22828 		 */
22829 		mutex_enter(&ipst->ips_ip_trash_timer_lock);
22830 		if (ipst->ips_ip_ire_expire_id == 0) {
22831 			ipst->ips_ip_ire_expire_id = timeout(
22832 			    ip_trash_timer_expire, ipst,
22833 			    MSEC_TO_TICK(ipst->ips_ip_timer_interval));
22834 		}
22835 		mutex_exit(&ipst->ips_ip_trash_timer_lock);
22836 	}
22837 
22838 	if (ill->ill_isv6) {
22839 		mutex_enter(&ipst->ips_mld_slowtimeout_lock);
22840 		if (ipst->ips_mld_slowtimeout_id == 0) {
22841 			ipst->ips_mld_slowtimeout_id = timeout(mld_slowtimo,
22842 			    (void *)ipst,
22843 			    MSEC_TO_TICK(MCAST_SLOWTIMO_INTERVAL));
22844 		}
22845 		mutex_exit(&ipst->ips_mld_slowtimeout_lock);
22846 	} else {
22847 		mutex_enter(&ipst->ips_igmp_slowtimeout_lock);
22848 		if (ipst->ips_igmp_slowtimeout_id == 0) {
22849 			ipst->ips_igmp_slowtimeout_id = timeout(igmp_slowtimo,
22850 			    (void *)ipst,
22851 			    MSEC_TO_TICK(MCAST_SLOWTIMO_INTERVAL));
22852 		}
22853 		mutex_exit(&ipst->ips_igmp_slowtimeout_lock);
22854 	}
22855 
22856 	return (err);
22857 }
22858 
22859 /*
22860  * Common routine for ppa and ifname setting. Should be called exclusive.
22861  *
22862  * Returns EINPROGRESS when mp has been consumed by queueing it on
22863  * ill_pending_mp and the ioctl will complete in ip_rput.
22864  *
22865  * NOTE : If ppa is UNIT_MAX, we assign the next valid ppa and return
22866  * the new name and new ppa in lifr_name and lifr_ppa respectively.
22867  * For SLIFNAME, we pass these values back to the userland.
22868  */
22869 static int
22870 ipif_set_values(queue_t *q, mblk_t *mp, char *interf_name, uint_t *new_ppa_ptr)
22871 {
22872 	ill_t	*ill;
22873 	ipif_t	*ipif;
22874 	ipsq_t	*ipsq;
22875 	char	*ppa_ptr;
22876 	char	*old_ptr;
22877 	char	old_char;
22878 	int	error;
22879 	ip_stack_t	*ipst;
22880 
22881 	ip1dbg(("ipif_set_values: interface %s\n", interf_name));
22882 	ASSERT(q->q_next != NULL);
22883 	ASSERT(interf_name != NULL);
22884 
22885 	ill = (ill_t *)q->q_ptr;
22886 	ipst = ill->ill_ipst;
22887 
22888 	ASSERT(ill->ill_ipst != NULL);
22889 	ASSERT(ill->ill_name[0] == '\0');
22890 	ASSERT(IAM_WRITER_ILL(ill));
22891 	ASSERT((mi_strlen(interf_name) + 1) <= LIFNAMSIZ);
22892 	ASSERT(ill->ill_ppa == UINT_MAX);
22893 
22894 	/* The ppa is sent down by ifconfig or is chosen */
22895 	if ((ppa_ptr = ill_get_ppa_ptr(interf_name)) == NULL) {
22896 		return (EINVAL);
22897 	}
22898 
22899 	/*
22900 	 * make sure ppa passed in is same as ppa in the name.
22901 	 * This check is not made when ppa == UINT_MAX in that case ppa
22902 	 * in the name could be anything. System will choose a ppa and
22903 	 * update new_ppa_ptr and inter_name to contain the choosen ppa.
22904 	 */
22905 	if (*new_ppa_ptr != UINT_MAX) {
22906 		/* stoi changes the pointer */
22907 		old_ptr = ppa_ptr;
22908 		/*
22909 		 * ifconfig passed in 0 for the ppa for DLPI 1 style devices
22910 		 * (they don't have an externally visible ppa).  We assign one
22911 		 * here so that we can manage the interface.  Note that in
22912 		 * the past this value was always 0 for DLPI 1 drivers.
22913 		 */
22914 		if (*new_ppa_ptr == 0)
22915 			*new_ppa_ptr = stoi(&old_ptr);
22916 		else if (*new_ppa_ptr != (uint_t)stoi(&old_ptr))
22917 			return (EINVAL);
22918 	}
22919 	/*
22920 	 * terminate string before ppa
22921 	 * save char at that location.
22922 	 */
22923 	old_char = ppa_ptr[0];
22924 	ppa_ptr[0] = '\0';
22925 
22926 	ill->ill_ppa = *new_ppa_ptr;
22927 	/*
22928 	 * Finish as much work now as possible before calling ill_glist_insert
22929 	 * which makes the ill globally visible and also merges it with the
22930 	 * other protocol instance of this phyint. The remaining work is
22931 	 * done after entering the ipsq which may happen sometime later.
22932 	 * ill_set_ndd_name occurs after the ill has been made globally visible.
22933 	 */
22934 	ipif = ill->ill_ipif;
22935 
22936 	/* We didn't do this when we allocated ipif in ip_ll_subnet_defaults */
22937 	ipif_assign_seqid(ipif);
22938 
22939 	if (!(ill->ill_flags & (ILLF_IPV4|ILLF_IPV6)))
22940 		ill->ill_flags |= ILLF_IPV4;
22941 
22942 	ASSERT(ipif->ipif_next == NULL);	/* Only one ipif on ill */
22943 	ASSERT((ipif->ipif_flags & IPIF_UP) == 0);
22944 
22945 	if (ill->ill_flags & ILLF_IPV6) {
22946 
22947 		ill->ill_isv6 = B_TRUE;
22948 		if (ill->ill_rq != NULL) {
22949 			ill->ill_rq->q_qinfo = &iprinitv6;
22950 			ill->ill_wq->q_qinfo = &ipwinitv6;
22951 		}
22952 
22953 		/* Keep the !IN6_IS_ADDR_V4MAPPED assertions happy */
22954 		ipif->ipif_v6lcl_addr = ipv6_all_zeros;
22955 		ipif->ipif_v6src_addr = ipv6_all_zeros;
22956 		ipif->ipif_v6subnet = ipv6_all_zeros;
22957 		ipif->ipif_v6net_mask = ipv6_all_zeros;
22958 		ipif->ipif_v6brd_addr = ipv6_all_zeros;
22959 		ipif->ipif_v6pp_dst_addr = ipv6_all_zeros;
22960 		/*
22961 		 * point-to-point or Non-mulicast capable
22962 		 * interfaces won't do NUD unless explicitly
22963 		 * configured to do so.
22964 		 */
22965 		if (ipif->ipif_flags & IPIF_POINTOPOINT ||
22966 		    !(ill->ill_flags & ILLF_MULTICAST)) {
22967 			ill->ill_flags |= ILLF_NONUD;
22968 		}
22969 		/* Make sure IPv4 specific flag is not set on IPv6 if */
22970 		if (ill->ill_flags & ILLF_NOARP) {
22971 			/*
22972 			 * Note: xresolv interfaces will eventually need
22973 			 * NOARP set here as well, but that will require
22974 			 * those external resolvers to have some
22975 			 * knowledge of that flag and act appropriately.
22976 			 * Not to be changed at present.
22977 			 */
22978 			ill->ill_flags &= ~ILLF_NOARP;
22979 		}
22980 		/*
22981 		 * Set the ILLF_ROUTER flag according to the global
22982 		 * IPv6 forwarding policy.
22983 		 */
22984 		if (ipst->ips_ipv6_forward != 0)
22985 			ill->ill_flags |= ILLF_ROUTER;
22986 	} else if (ill->ill_flags & ILLF_IPV4) {
22987 		ill->ill_isv6 = B_FALSE;
22988 		IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6lcl_addr);
22989 		IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6src_addr);
22990 		IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6subnet);
22991 		IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6net_mask);
22992 		IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6brd_addr);
22993 		IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6pp_dst_addr);
22994 		/*
22995 		 * Set the ILLF_ROUTER flag according to the global
22996 		 * IPv4 forwarding policy.
22997 		 */
22998 		if (ipst->ips_ip_g_forward != 0)
22999 			ill->ill_flags |= ILLF_ROUTER;
23000 	}
23001 
23002 	ASSERT(ill->ill_phyint != NULL);
23003 
23004 	/*
23005 	 * The ipIfStatsIfindex and ipv6IfIcmpIfIndex assignments will
23006 	 * be completed in ill_glist_insert -> ill_phyint_reinit
23007 	 */
23008 	if (!ill_allocate_mibs(ill))
23009 		return (ENOMEM);
23010 
23011 	/*
23012 	 * Pick a default sap until we get the DL_INFO_ACK back from
23013 	 * the driver.
23014 	 */
23015 	if (ill->ill_sap == 0) {
23016 		if (ill->ill_isv6)
23017 			ill->ill_sap  = IP6_DL_SAP;
23018 		else
23019 			ill->ill_sap  = IP_DL_SAP;
23020 	}
23021 
23022 	ill->ill_ifname_pending = 1;
23023 	ill->ill_ifname_pending_err = 0;
23024 
23025 	ill_refhold(ill);
23026 	rw_enter(&ipst->ips_ill_g_lock, RW_WRITER);
23027 	if ((error = ill_glist_insert(ill, interf_name,
23028 	    (ill->ill_flags & ILLF_IPV6) == ILLF_IPV6)) > 0) {
23029 		ill->ill_ppa = UINT_MAX;
23030 		ill->ill_name[0] = '\0';
23031 		/*
23032 		 * undo null termination done above.
23033 		 */
23034 		ppa_ptr[0] = old_char;
23035 		rw_exit(&ipst->ips_ill_g_lock);
23036 		ill_refrele(ill);
23037 		return (error);
23038 	}
23039 
23040 	ASSERT(ill->ill_name_length <= LIFNAMSIZ);
23041 
23042 	/*
23043 	 * When we return the buffer pointed to by interf_name should contain
23044 	 * the same name as in ill_name.
23045 	 * If a ppa was choosen by the system (ppa passed in was UINT_MAX)
23046 	 * the buffer pointed to by new_ppa_ptr would not contain the right ppa
23047 	 * so copy full name and update the ppa ptr.
23048 	 * When ppa passed in != UINT_MAX all values are correct just undo
23049 	 * null termination, this saves a bcopy.
23050 	 */
23051 	if (*new_ppa_ptr == UINT_MAX) {
23052 		bcopy(ill->ill_name, interf_name, ill->ill_name_length);
23053 		*new_ppa_ptr = ill->ill_ppa;
23054 	} else {
23055 		/*
23056 		 * undo null termination done above.
23057 		 */
23058 		ppa_ptr[0] = old_char;
23059 	}
23060 
23061 	/* Let SCTP know about this ILL */
23062 	sctp_update_ill(ill, SCTP_ILL_INSERT);
23063 
23064 	ipsq = ipsq_try_enter(NULL, ill, q, mp, ip_reprocess_ioctl, NEW_OP,
23065 	    B_TRUE);
23066 
23067 	rw_exit(&ipst->ips_ill_g_lock);
23068 	ill_refrele(ill);
23069 	if (ipsq == NULL)
23070 		return (EINPROGRESS);
23071 
23072 	/*
23073 	 * If ill_phyint_reinit() changed our ipsq, then start on the new ipsq.
23074 	 */
23075 	if (ipsq->ipsq_current_ipif == NULL)
23076 		ipsq_current_start(ipsq, ipif, SIOCSLIFNAME);
23077 	else
23078 		ASSERT(ipsq->ipsq_current_ipif == ipif);
23079 
23080 	error = ipif_set_values_tail(ill, ipif, mp, q);
23081 	ipsq_exit(ipsq, B_TRUE, B_TRUE);
23082 	if (error != 0 && error != EINPROGRESS) {
23083 		/*
23084 		 * restore previous values
23085 		 */
23086 		ill->ill_isv6 = B_FALSE;
23087 	}
23088 	return (error);
23089 }
23090 
23091 
23092 void
23093 ipif_init(ip_stack_t *ipst)
23094 {
23095 	hrtime_t hrt;
23096 	int i;
23097 
23098 	/*
23099 	 * Can't call drv_getparm here as it is too early in the boot.
23100 	 * As we use ipif_src_random just for picking a different
23101 	 * source address everytime, this need not be really random.
23102 	 */
23103 	hrt = gethrtime();
23104 	ipst->ips_ipif_src_random =
23105 	    ((hrt >> 32) & 0xffffffff) * (hrt & 0xffffffff);
23106 
23107 	for (i = 0; i < MAX_G_HEADS; i++) {
23108 		ipst->ips_ill_g_heads[i].ill_g_list_head =
23109 		    (ill_if_t *)&ipst->ips_ill_g_heads[i];
23110 		ipst->ips_ill_g_heads[i].ill_g_list_tail =
23111 		    (ill_if_t *)&ipst->ips_ill_g_heads[i];
23112 	}
23113 
23114 	avl_create(&ipst->ips_phyint_g_list->phyint_list_avl_by_index,
23115 	    ill_phyint_compare_index,
23116 	    sizeof (phyint_t),
23117 	    offsetof(struct phyint, phyint_avl_by_index));
23118 	avl_create(&ipst->ips_phyint_g_list->phyint_list_avl_by_name,
23119 	    ill_phyint_compare_name,
23120 	    sizeof (phyint_t),
23121 	    offsetof(struct phyint, phyint_avl_by_name));
23122 }
23123 
23124 /*
23125  * Lookup the ipif corresponding to the onlink destination address. For
23126  * point-to-point interfaces, it matches with remote endpoint destination
23127  * address. For point-to-multipoint interfaces it only tries to match the
23128  * destination with the interface's subnet address. The longest, most specific
23129  * match is found to take care of such rare network configurations like -
23130  * le0: 129.146.1.1/16
23131  * le1: 129.146.2.2/24
23132  * It is used only by SO_DONTROUTE at the moment.
23133  */
23134 ipif_t *
23135 ipif_lookup_onlink_addr(ipaddr_t addr, zoneid_t zoneid, ip_stack_t *ipst)
23136 {
23137 	ipif_t	*ipif, *best_ipif;
23138 	ill_t	*ill;
23139 	ill_walk_context_t ctx;
23140 
23141 	ASSERT(zoneid != ALL_ZONES);
23142 	best_ipif = NULL;
23143 
23144 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
23145 	ill = ILL_START_WALK_V4(&ctx, ipst);
23146 	for (; ill != NULL; ill = ill_next(&ctx, ill)) {
23147 		mutex_enter(&ill->ill_lock);
23148 		for (ipif = ill->ill_ipif; ipif != NULL;
23149 		    ipif = ipif->ipif_next) {
23150 			if (!IPIF_CAN_LOOKUP(ipif))
23151 				continue;
23152 			if (ipif->ipif_zoneid != zoneid &&
23153 			    ipif->ipif_zoneid != ALL_ZONES)
23154 				continue;
23155 			/*
23156 			 * Point-to-point case. Look for exact match with
23157 			 * destination address.
23158 			 */
23159 			if (ipif->ipif_flags & IPIF_POINTOPOINT) {
23160 				if (ipif->ipif_pp_dst_addr == addr) {
23161 					ipif_refhold_locked(ipif);
23162 					mutex_exit(&ill->ill_lock);
23163 					rw_exit(&ipst->ips_ill_g_lock);
23164 					if (best_ipif != NULL)
23165 						ipif_refrele(best_ipif);
23166 					return (ipif);
23167 				}
23168 			} else if (ipif->ipif_subnet == (addr &
23169 			    ipif->ipif_net_mask)) {
23170 				/*
23171 				 * Point-to-multipoint case. Looping through to
23172 				 * find the most specific match. If there are
23173 				 * multiple best match ipif's then prefer ipif's
23174 				 * that are UP. If there is only one best match
23175 				 * ipif and it is DOWN we must still return it.
23176 				 */
23177 				if ((best_ipif == NULL) ||
23178 				    (ipif->ipif_net_mask >
23179 				    best_ipif->ipif_net_mask) ||
23180 				    ((ipif->ipif_net_mask ==
23181 				    best_ipif->ipif_net_mask) &&
23182 				    ((ipif->ipif_flags & IPIF_UP) &&
23183 				    (!(best_ipif->ipif_flags & IPIF_UP))))) {
23184 					ipif_refhold_locked(ipif);
23185 					mutex_exit(&ill->ill_lock);
23186 					rw_exit(&ipst->ips_ill_g_lock);
23187 					if (best_ipif != NULL)
23188 						ipif_refrele(best_ipif);
23189 					best_ipif = ipif;
23190 					rw_enter(&ipst->ips_ill_g_lock,
23191 					    RW_READER);
23192 					mutex_enter(&ill->ill_lock);
23193 				}
23194 			}
23195 		}
23196 		mutex_exit(&ill->ill_lock);
23197 	}
23198 	rw_exit(&ipst->ips_ill_g_lock);
23199 	return (best_ipif);
23200 }
23201 
23202 
23203 /*
23204  * Save enough information so that we can recreate the IRE if
23205  * the interface goes down and then up.
23206  */
23207 static void
23208 ipif_save_ire(ipif_t *ipif, ire_t *ire)
23209 {
23210 	mblk_t	*save_mp;
23211 
23212 	save_mp = allocb(sizeof (ifrt_t), BPRI_MED);
23213 	if (save_mp != NULL) {
23214 		ifrt_t	*ifrt;
23215 
23216 		save_mp->b_wptr += sizeof (ifrt_t);
23217 		ifrt = (ifrt_t *)save_mp->b_rptr;
23218 		bzero(ifrt, sizeof (ifrt_t));
23219 		ifrt->ifrt_type = ire->ire_type;
23220 		ifrt->ifrt_addr = ire->ire_addr;
23221 		ifrt->ifrt_gateway_addr = ire->ire_gateway_addr;
23222 		ifrt->ifrt_src_addr = ire->ire_src_addr;
23223 		ifrt->ifrt_mask = ire->ire_mask;
23224 		ifrt->ifrt_flags = ire->ire_flags;
23225 		ifrt->ifrt_max_frag = ire->ire_max_frag;
23226 		mutex_enter(&ipif->ipif_saved_ire_lock);
23227 		save_mp->b_cont = ipif->ipif_saved_ire_mp;
23228 		ipif->ipif_saved_ire_mp = save_mp;
23229 		ipif->ipif_saved_ire_cnt++;
23230 		mutex_exit(&ipif->ipif_saved_ire_lock);
23231 	}
23232 }
23233 
23234 
23235 static void
23236 ipif_remove_ire(ipif_t *ipif, ire_t *ire)
23237 {
23238 	mblk_t	**mpp;
23239 	mblk_t	*mp;
23240 	ifrt_t	*ifrt;
23241 
23242 	/* Remove from ipif_saved_ire_mp list if it is there */
23243 	mutex_enter(&ipif->ipif_saved_ire_lock);
23244 	for (mpp = &ipif->ipif_saved_ire_mp; *mpp != NULL;
23245 	    mpp = &(*mpp)->b_cont) {
23246 		/*
23247 		 * On a given ipif, the triple of address, gateway and
23248 		 * mask is unique for each saved IRE (in the case of
23249 		 * ordinary interface routes, the gateway address is
23250 		 * all-zeroes).
23251 		 */
23252 		mp = *mpp;
23253 		ifrt = (ifrt_t *)mp->b_rptr;
23254 		if (ifrt->ifrt_addr == ire->ire_addr &&
23255 		    ifrt->ifrt_gateway_addr == ire->ire_gateway_addr &&
23256 		    ifrt->ifrt_mask == ire->ire_mask) {
23257 			*mpp = mp->b_cont;
23258 			ipif->ipif_saved_ire_cnt--;
23259 			freeb(mp);
23260 			break;
23261 		}
23262 	}
23263 	mutex_exit(&ipif->ipif_saved_ire_lock);
23264 }
23265 
23266 
23267 /*
23268  * IP multirouting broadcast routes handling
23269  * Append CGTP broadcast IREs to regular ones created
23270  * at ifconfig time.
23271  */
23272 static void
23273 ip_cgtp_bcast_add(ire_t *ire, ire_t *ire_dst, ip_stack_t *ipst)
23274 {
23275 	ire_t *ire_prim;
23276 
23277 	ASSERT(ire != NULL);
23278 	ASSERT(ire_dst != NULL);
23279 
23280 	ire_prim = ire_ctable_lookup(ire->ire_gateway_addr, 0,
23281 	    IRE_BROADCAST, NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst);
23282 	if (ire_prim != NULL) {
23283 		/*
23284 		 * We are in the special case of broadcasts for
23285 		 * CGTP. We add an IRE_BROADCAST that holds
23286 		 * the RTF_MULTIRT flag, the destination
23287 		 * address of ire_dst and the low level
23288 		 * info of ire_prim. In other words, CGTP
23289 		 * broadcast is added to the redundant ipif.
23290 		 */
23291 		ipif_t *ipif_prim;
23292 		ire_t  *bcast_ire;
23293 
23294 		ipif_prim = ire_prim->ire_ipif;
23295 
23296 		ip2dbg(("ip_cgtp_filter_bcast_add: "
23297 		    "ire_dst %p, ire_prim %p, ipif_prim %p\n",
23298 		    (void *)ire_dst, (void *)ire_prim,
23299 		    (void *)ipif_prim));
23300 
23301 		bcast_ire = ire_create(
23302 		    (uchar_t *)&ire->ire_addr,
23303 		    (uchar_t *)&ip_g_all_ones,
23304 		    (uchar_t *)&ire_dst->ire_src_addr,
23305 		    (uchar_t *)&ire->ire_gateway_addr,
23306 		    &ipif_prim->ipif_mtu,
23307 		    NULL,
23308 		    ipif_prim->ipif_rq,
23309 		    ipif_prim->ipif_wq,
23310 		    IRE_BROADCAST,
23311 		    ipif_prim,
23312 		    0,
23313 		    0,
23314 		    0,
23315 		    ire->ire_flags,
23316 		    &ire_uinfo_null,
23317 		    NULL,
23318 		    NULL,
23319 		    ipst);
23320 
23321 		if (bcast_ire != NULL) {
23322 
23323 			if (ire_add(&bcast_ire, NULL, NULL, NULL,
23324 			    B_FALSE) == 0) {
23325 				ip2dbg(("ip_cgtp_filter_bcast_add: "
23326 				    "added bcast_ire %p\n",
23327 				    (void *)bcast_ire));
23328 
23329 				ipif_save_ire(bcast_ire->ire_ipif,
23330 				    bcast_ire);
23331 				ire_refrele(bcast_ire);
23332 			}
23333 		}
23334 		ire_refrele(ire_prim);
23335 	}
23336 }
23337 
23338 
23339 /*
23340  * IP multirouting broadcast routes handling
23341  * Remove the broadcast ire
23342  */
23343 static void
23344 ip_cgtp_bcast_delete(ire_t *ire, ip_stack_t *ipst)
23345 {
23346 	ire_t *ire_dst;
23347 
23348 	ASSERT(ire != NULL);
23349 	ire_dst = ire_ctable_lookup(ire->ire_addr, 0, IRE_BROADCAST,
23350 	    NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst);
23351 	if (ire_dst != NULL) {
23352 		ire_t *ire_prim;
23353 
23354 		ire_prim = ire_ctable_lookup(ire->ire_gateway_addr, 0,
23355 		    IRE_BROADCAST, NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst);
23356 		if (ire_prim != NULL) {
23357 			ipif_t *ipif_prim;
23358 			ire_t  *bcast_ire;
23359 
23360 			ipif_prim = ire_prim->ire_ipif;
23361 
23362 			ip2dbg(("ip_cgtp_filter_bcast_delete: "
23363 			    "ire_dst %p, ire_prim %p, ipif_prim %p\n",
23364 			    (void *)ire_dst, (void *)ire_prim,
23365 			    (void *)ipif_prim));
23366 
23367 			bcast_ire = ire_ctable_lookup(ire->ire_addr,
23368 			    ire->ire_gateway_addr,
23369 			    IRE_BROADCAST,
23370 			    ipif_prim, ALL_ZONES,
23371 			    NULL,
23372 			    MATCH_IRE_TYPE | MATCH_IRE_GW | MATCH_IRE_IPIF |
23373 			    MATCH_IRE_MASK, ipst);
23374 
23375 			if (bcast_ire != NULL) {
23376 				ip2dbg(("ip_cgtp_filter_bcast_delete: "
23377 				    "looked up bcast_ire %p\n",
23378 				    (void *)bcast_ire));
23379 				ipif_remove_ire(bcast_ire->ire_ipif,
23380 				    bcast_ire);
23381 				ire_delete(bcast_ire);
23382 				ire_refrele(bcast_ire);
23383 			}
23384 			ire_refrele(ire_prim);
23385 		}
23386 		ire_refrele(ire_dst);
23387 	}
23388 }
23389 
23390 /*
23391  * IPsec hardware acceleration capabilities related functions.
23392  */
23393 
23394 /*
23395  * Free a per-ill IPsec capabilities structure.
23396  */
23397 static void
23398 ill_ipsec_capab_free(ill_ipsec_capab_t *capab)
23399 {
23400 	if (capab->auth_hw_algs != NULL)
23401 		kmem_free(capab->auth_hw_algs, capab->algs_size);
23402 	if (capab->encr_hw_algs != NULL)
23403 		kmem_free(capab->encr_hw_algs, capab->algs_size);
23404 	if (capab->encr_algparm != NULL)
23405 		kmem_free(capab->encr_algparm, capab->encr_algparm_size);
23406 	kmem_free(capab, sizeof (ill_ipsec_capab_t));
23407 }
23408 
23409 /*
23410  * Allocate a new per-ill IPsec capabilities structure. This structure
23411  * is specific to an IPsec protocol (AH or ESP). It is implemented as
23412  * an array which specifies, for each algorithm, whether this algorithm
23413  * is supported by the ill or not.
23414  */
23415 static ill_ipsec_capab_t *
23416 ill_ipsec_capab_alloc(void)
23417 {
23418 	ill_ipsec_capab_t *capab;
23419 	uint_t nelems;
23420 
23421 	capab = kmem_zalloc(sizeof (ill_ipsec_capab_t), KM_NOSLEEP);
23422 	if (capab == NULL)
23423 		return (NULL);
23424 
23425 	/* we need one bit per algorithm */
23426 	nelems = MAX_IPSEC_ALGS / BITS(ipsec_capab_elem_t);
23427 	capab->algs_size = nelems * sizeof (ipsec_capab_elem_t);
23428 
23429 	/* allocate memory to store algorithm flags */
23430 	capab->encr_hw_algs = kmem_zalloc(capab->algs_size, KM_NOSLEEP);
23431 	if (capab->encr_hw_algs == NULL)
23432 		goto nomem;
23433 	capab->auth_hw_algs = kmem_zalloc(capab->algs_size, KM_NOSLEEP);
23434 	if (capab->auth_hw_algs == NULL)
23435 		goto nomem;
23436 	/*
23437 	 * Leave encr_algparm NULL for now since we won't need it half
23438 	 * the time
23439 	 */
23440 	return (capab);
23441 
23442 nomem:
23443 	ill_ipsec_capab_free(capab);
23444 	return (NULL);
23445 }
23446 
23447 /*
23448  * Resize capability array.  Since we're exclusive, this is OK.
23449  */
23450 static boolean_t
23451 ill_ipsec_capab_resize_algparm(ill_ipsec_capab_t *capab, int algid)
23452 {
23453 	ipsec_capab_algparm_t *nalp, *oalp;
23454 	uint32_t olen, nlen;
23455 
23456 	oalp = capab->encr_algparm;
23457 	olen = capab->encr_algparm_size;
23458 
23459 	if (oalp != NULL) {
23460 		if (algid < capab->encr_algparm_end)
23461 			return (B_TRUE);
23462 	}
23463 
23464 	nlen = (algid + 1) * sizeof (*nalp);
23465 	nalp = kmem_zalloc(nlen, KM_NOSLEEP);
23466 	if (nalp == NULL)
23467 		return (B_FALSE);
23468 
23469 	if (oalp != NULL) {
23470 		bcopy(oalp, nalp, olen);
23471 		kmem_free(oalp, olen);
23472 	}
23473 	capab->encr_algparm = nalp;
23474 	capab->encr_algparm_size = nlen;
23475 	capab->encr_algparm_end = algid + 1;
23476 
23477 	return (B_TRUE);
23478 }
23479 
23480 /*
23481  * Compare the capabilities of the specified ill with the protocol
23482  * and algorithms specified by the SA passed as argument.
23483  * If they match, returns B_TRUE, B_FALSE if they do not match.
23484  *
23485  * The ill can be passed as a pointer to it, or by specifying its index
23486  * and whether it is an IPv6 ill (ill_index and ill_isv6 arguments).
23487  *
23488  * Called by ipsec_out_is_accelerated() do decide whether an outbound
23489  * packet is eligible for hardware acceleration, and by
23490  * ill_ipsec_capab_send_all() to decide whether a SA must be sent down
23491  * to a particular ill.
23492  */
23493 boolean_t
23494 ipsec_capab_match(ill_t *ill, uint_t ill_index, boolean_t ill_isv6,
23495     ipsa_t *sa, netstack_t *ns)
23496 {
23497 	boolean_t sa_isv6;
23498 	uint_t algid;
23499 	struct ill_ipsec_capab_s *cpp;
23500 	boolean_t need_refrele = B_FALSE;
23501 	ip_stack_t	*ipst = ns->netstack_ip;
23502 
23503 	if (ill == NULL) {
23504 		ill = ill_lookup_on_ifindex(ill_index, ill_isv6, NULL,
23505 		    NULL, NULL, NULL, ipst);
23506 		if (ill == NULL) {
23507 			ip0dbg(("ipsec_capab_match: ill doesn't exist\n"));
23508 			return (B_FALSE);
23509 		}
23510 		need_refrele = B_TRUE;
23511 	}
23512 
23513 	/*
23514 	 * Use the address length specified by the SA to determine
23515 	 * if it corresponds to a IPv6 address, and fail the matching
23516 	 * if the isv6 flag passed as argument does not match.
23517 	 * Note: this check is used for SADB capability checking before
23518 	 * sending SA information to an ill.
23519 	 */
23520 	sa_isv6 = (sa->ipsa_addrfam == AF_INET6);
23521 	if (sa_isv6 != ill_isv6)
23522 		/* protocol mismatch */
23523 		goto done;
23524 
23525 	/*
23526 	 * Check if the ill supports the protocol, algorithm(s) and
23527 	 * key size(s) specified by the SA, and get the pointers to
23528 	 * the algorithms supported by the ill.
23529 	 */
23530 	switch (sa->ipsa_type) {
23531 
23532 	case SADB_SATYPE_ESP:
23533 		if (!(ill->ill_capabilities & ILL_CAPAB_ESP))
23534 			/* ill does not support ESP acceleration */
23535 			goto done;
23536 		cpp = ill->ill_ipsec_capab_esp;
23537 		algid = sa->ipsa_auth_alg;
23538 		if (!IPSEC_ALG_IS_ENABLED(algid, cpp->auth_hw_algs))
23539 			goto done;
23540 		algid = sa->ipsa_encr_alg;
23541 		if (!IPSEC_ALG_IS_ENABLED(algid, cpp->encr_hw_algs))
23542 			goto done;
23543 		if (algid < cpp->encr_algparm_end) {
23544 			ipsec_capab_algparm_t *alp = &cpp->encr_algparm[algid];
23545 			if (sa->ipsa_encrkeybits < alp->minkeylen)
23546 				goto done;
23547 			if (sa->ipsa_encrkeybits > alp->maxkeylen)
23548 				goto done;
23549 		}
23550 		break;
23551 
23552 	case SADB_SATYPE_AH:
23553 		if (!(ill->ill_capabilities & ILL_CAPAB_AH))
23554 			/* ill does not support AH acceleration */
23555 			goto done;
23556 		if (!IPSEC_ALG_IS_ENABLED(sa->ipsa_auth_alg,
23557 		    ill->ill_ipsec_capab_ah->auth_hw_algs))
23558 			goto done;
23559 		break;
23560 	}
23561 
23562 	if (need_refrele)
23563 		ill_refrele(ill);
23564 	return (B_TRUE);
23565 done:
23566 	if (need_refrele)
23567 		ill_refrele(ill);
23568 	return (B_FALSE);
23569 }
23570 
23571 
23572 /*
23573  * Add a new ill to the list of IPsec capable ills.
23574  * Called from ill_capability_ipsec_ack() when an ACK was received
23575  * indicating that IPsec hardware processing was enabled for an ill.
23576  *
23577  * ill must point to the ill for which acceleration was enabled.
23578  * dl_cap must be set to DL_CAPAB_IPSEC_AH or DL_CAPAB_IPSEC_ESP.
23579  */
23580 static void
23581 ill_ipsec_capab_add(ill_t *ill, uint_t dl_cap, boolean_t sadb_resync)
23582 {
23583 	ipsec_capab_ill_t **ills, *cur_ill, *new_ill;
23584 	uint_t sa_type;
23585 	uint_t ipproto;
23586 	ip_stack_t	*ipst = ill->ill_ipst;
23587 
23588 	ASSERT((dl_cap == DL_CAPAB_IPSEC_AH) ||
23589 	    (dl_cap == DL_CAPAB_IPSEC_ESP));
23590 
23591 	switch (dl_cap) {
23592 	case DL_CAPAB_IPSEC_AH:
23593 		sa_type = SADB_SATYPE_AH;
23594 		ills = &ipst->ips_ipsec_capab_ills_ah;
23595 		ipproto = IPPROTO_AH;
23596 		break;
23597 	case DL_CAPAB_IPSEC_ESP:
23598 		sa_type = SADB_SATYPE_ESP;
23599 		ills = &ipst->ips_ipsec_capab_ills_esp;
23600 		ipproto = IPPROTO_ESP;
23601 		break;
23602 	}
23603 
23604 	rw_enter(&ipst->ips_ipsec_capab_ills_lock, RW_WRITER);
23605 
23606 	/*
23607 	 * Add ill index to list of hardware accelerators. If
23608 	 * already in list, do nothing.
23609 	 */
23610 	for (cur_ill = *ills; cur_ill != NULL &&
23611 	    (cur_ill->ill_index != ill->ill_phyint->phyint_ifindex ||
23612 	    cur_ill->ill_isv6 != ill->ill_isv6); cur_ill = cur_ill->next)
23613 		;
23614 
23615 	if (cur_ill == NULL) {
23616 		/* if this is a new entry for this ill */
23617 		new_ill = kmem_zalloc(sizeof (ipsec_capab_ill_t), KM_NOSLEEP);
23618 		if (new_ill == NULL) {
23619 			rw_exit(&ipst->ips_ipsec_capab_ills_lock);
23620 			return;
23621 		}
23622 
23623 		new_ill->ill_index = ill->ill_phyint->phyint_ifindex;
23624 		new_ill->ill_isv6 = ill->ill_isv6;
23625 		new_ill->next = *ills;
23626 		*ills = new_ill;
23627 	} else if (!sadb_resync) {
23628 		/* not resync'ing SADB and an entry exists for this ill */
23629 		rw_exit(&ipst->ips_ipsec_capab_ills_lock);
23630 		return;
23631 	}
23632 
23633 	rw_exit(&ipst->ips_ipsec_capab_ills_lock);
23634 
23635 	if (ipst->ips_ipcl_proto_fanout_v6[ipproto].connf_head != NULL)
23636 		/*
23637 		 * IPsec module for protocol loaded, initiate dump
23638 		 * of the SADB to this ill.
23639 		 */
23640 		sadb_ill_download(ill, sa_type);
23641 }
23642 
23643 /*
23644  * Remove an ill from the list of IPsec capable ills.
23645  */
23646 static void
23647 ill_ipsec_capab_delete(ill_t *ill, uint_t dl_cap)
23648 {
23649 	ipsec_capab_ill_t **ills, *cur_ill, *prev_ill;
23650 	ip_stack_t	*ipst = ill->ill_ipst;
23651 
23652 	ASSERT(dl_cap == DL_CAPAB_IPSEC_AH ||
23653 	    dl_cap == DL_CAPAB_IPSEC_ESP);
23654 
23655 	ills = (dl_cap == DL_CAPAB_IPSEC_AH) ? &ipst->ips_ipsec_capab_ills_ah :
23656 	    &ipst->ips_ipsec_capab_ills_esp;
23657 
23658 	rw_enter(&ipst->ips_ipsec_capab_ills_lock, RW_WRITER);
23659 
23660 	prev_ill = NULL;
23661 	for (cur_ill = *ills; cur_ill != NULL && (cur_ill->ill_index !=
23662 	    ill->ill_phyint->phyint_ifindex || cur_ill->ill_isv6 !=
23663 	    ill->ill_isv6); prev_ill = cur_ill, cur_ill = cur_ill->next)
23664 		;
23665 	if (cur_ill == NULL) {
23666 		/* entry not found */
23667 		rw_exit(&ipst->ips_ipsec_capab_ills_lock);
23668 		return;
23669 	}
23670 	if (prev_ill == NULL) {
23671 		/* entry at front of list */
23672 		*ills = NULL;
23673 	} else {
23674 		prev_ill->next = cur_ill->next;
23675 	}
23676 	kmem_free(cur_ill, sizeof (ipsec_capab_ill_t));
23677 	rw_exit(&ipst->ips_ipsec_capab_ills_lock);
23678 }
23679 
23680 /*
23681  * Called by SADB to send a DL_CONTROL_REQ message to every ill
23682  * supporting the specified IPsec protocol acceleration.
23683  * sa_type must be SADB_SATYPE_AH or SADB_SATYPE_ESP.
23684  * We free the mblk and, if sa is non-null, release the held referece.
23685  */
23686 void
23687 ill_ipsec_capab_send_all(uint_t sa_type, mblk_t *mp, ipsa_t *sa,
23688     netstack_t *ns)
23689 {
23690 	ipsec_capab_ill_t *ici, *cur_ici;
23691 	ill_t *ill;
23692 	mblk_t *nmp, *mp_ship_list = NULL, *next_mp;
23693 	ip_stack_t	*ipst = ns->netstack_ip;
23694 
23695 	ici = (sa_type == SADB_SATYPE_AH) ? ipst->ips_ipsec_capab_ills_ah :
23696 	    ipst->ips_ipsec_capab_ills_esp;
23697 
23698 	rw_enter(&ipst->ips_ipsec_capab_ills_lock, RW_READER);
23699 
23700 	for (cur_ici = ici; cur_ici != NULL; cur_ici = cur_ici->next) {
23701 		ill = ill_lookup_on_ifindex(cur_ici->ill_index,
23702 		    cur_ici->ill_isv6, NULL, NULL, NULL, NULL, ipst);
23703 
23704 		/*
23705 		 * Handle the case where the ill goes away while the SADB is
23706 		 * attempting to send messages.  If it's going away, it's
23707 		 * nuking its shadow SADB, so we don't care..
23708 		 */
23709 
23710 		if (ill == NULL)
23711 			continue;
23712 
23713 		if (sa != NULL) {
23714 			/*
23715 			 * Make sure capabilities match before
23716 			 * sending SA to ill.
23717 			 */
23718 			if (!ipsec_capab_match(ill, cur_ici->ill_index,
23719 			    cur_ici->ill_isv6, sa, ipst->ips_netstack)) {
23720 				ill_refrele(ill);
23721 				continue;
23722 			}
23723 
23724 			mutex_enter(&sa->ipsa_lock);
23725 			sa->ipsa_flags |= IPSA_F_HW;
23726 			mutex_exit(&sa->ipsa_lock);
23727 		}
23728 
23729 		/*
23730 		 * Copy template message, and add it to the front
23731 		 * of the mblk ship list. We want to avoid holding
23732 		 * the ipsec_capab_ills_lock while sending the
23733 		 * message to the ills.
23734 		 *
23735 		 * The b_next and b_prev are temporarily used
23736 		 * to build a list of mblks to be sent down, and to
23737 		 * save the ill to which they must be sent.
23738 		 */
23739 		nmp = copymsg(mp);
23740 		if (nmp == NULL) {
23741 			ill_refrele(ill);
23742 			continue;
23743 		}
23744 		ASSERT(nmp->b_next == NULL && nmp->b_prev == NULL);
23745 		nmp->b_next = mp_ship_list;
23746 		mp_ship_list = nmp;
23747 		nmp->b_prev = (mblk_t *)ill;
23748 	}
23749 
23750 	rw_exit(&ipst->ips_ipsec_capab_ills_lock);
23751 
23752 	for (nmp = mp_ship_list; nmp != NULL; nmp = next_mp) {
23753 		/* restore the mblk to a sane state */
23754 		next_mp = nmp->b_next;
23755 		nmp->b_next = NULL;
23756 		ill = (ill_t *)nmp->b_prev;
23757 		nmp->b_prev = NULL;
23758 
23759 		ill_dlpi_send(ill, nmp);
23760 		ill_refrele(ill);
23761 	}
23762 
23763 	if (sa != NULL)
23764 		IPSA_REFRELE(sa);
23765 	freemsg(mp);
23766 }
23767 
23768 /*
23769  * Derive an interface id from the link layer address.
23770  * Knows about IEEE 802 and IEEE EUI-64 mappings.
23771  */
23772 static boolean_t
23773 ip_ether_v6intfid(uint_t phys_length, uint8_t *phys_addr, in6_addr_t *v6addr)
23774 {
23775 	char		*addr;
23776 
23777 	if (phys_length != ETHERADDRL)
23778 		return (B_FALSE);
23779 
23780 	/* Form EUI-64 like address */
23781 	addr = (char *)&v6addr->s6_addr32[2];
23782 	bcopy((char *)phys_addr, addr, 3);
23783 	addr[0] ^= 0x2;		/* Toggle Universal/Local bit */
23784 	addr[3] = (char)0xff;
23785 	addr[4] = (char)0xfe;
23786 	bcopy((char *)phys_addr + 3, addr + 5, 3);
23787 	return (B_TRUE);
23788 }
23789 
23790 /* ARGSUSED */
23791 static boolean_t
23792 ip_nodef_v6intfid(uint_t phys_length, uint8_t *phys_addr, in6_addr_t *v6addr)
23793 {
23794 	return (B_FALSE);
23795 }
23796 
23797 /* ARGSUSED */
23798 static boolean_t
23799 ip_ether_v6mapinfo(uint_t lla_length, uint8_t *bphys_addr, uint8_t *maddr,
23800     uint32_t *hw_start, in6_addr_t *v6_extract_mask)
23801 {
23802 	/*
23803 	 * Multicast address mappings used over Ethernet/802.X.
23804 	 * This address is used as a base for mappings.
23805 	 */
23806 	static uint8_t ipv6_g_phys_multi_addr[] = {0x33, 0x33, 0x00,
23807 	    0x00, 0x00, 0x00};
23808 
23809 	/*
23810 	 * Extract low order 32 bits from IPv6 multicast address.
23811 	 * Or that into the link layer address, starting from the
23812 	 * second byte.
23813 	 */
23814 	*hw_start = 2;
23815 	v6_extract_mask->s6_addr32[0] = 0;
23816 	v6_extract_mask->s6_addr32[1] = 0;
23817 	v6_extract_mask->s6_addr32[2] = 0;
23818 	v6_extract_mask->s6_addr32[3] = 0xffffffffU;
23819 	bcopy(ipv6_g_phys_multi_addr, maddr, lla_length);
23820 	return (B_TRUE);
23821 }
23822 
23823 /*
23824  * Indicate by return value whether multicast is supported. If not,
23825  * this code should not touch/change any parameters.
23826  */
23827 /* ARGSUSED */
23828 static boolean_t
23829 ip_ether_v4mapinfo(uint_t phys_length, uint8_t *bphys_addr, uint8_t *maddr,
23830     uint32_t *hw_start, ipaddr_t *extract_mask)
23831 {
23832 	/*
23833 	 * Multicast address mappings used over Ethernet/802.X.
23834 	 * This address is used as a base for mappings.
23835 	 */
23836 	static uint8_t ip_g_phys_multi_addr[] = { 0x01, 0x00, 0x5e,
23837 	    0x00, 0x00, 0x00 };
23838 
23839 	if (phys_length != ETHERADDRL)
23840 		return (B_FALSE);
23841 
23842 	*extract_mask = htonl(0x007fffff);
23843 	*hw_start = 2;
23844 	bcopy(ip_g_phys_multi_addr, maddr, ETHERADDRL);
23845 	return (B_TRUE);
23846 }
23847 
23848 /*
23849  * Derive IPoIB interface id from the link layer address.
23850  */
23851 static boolean_t
23852 ip_ib_v6intfid(uint_t phys_length, uint8_t *phys_addr, in6_addr_t *v6addr)
23853 {
23854 	char		*addr;
23855 
23856 	if (phys_length != 20)
23857 		return (B_FALSE);
23858 	addr = (char *)&v6addr->s6_addr32[2];
23859 	bcopy(phys_addr + 12, addr, 8);
23860 	/*
23861 	 * In IBA 1.1 timeframe, some vendors erroneously set the u/l bit
23862 	 * in the globally assigned EUI-64 GUID to 1, in violation of IEEE
23863 	 * rules. In these cases, the IBA considers these GUIDs to be in
23864 	 * "Modified EUI-64" format, and thus toggling the u/l bit is not
23865 	 * required; vendors are required not to assign global EUI-64's
23866 	 * that differ only in u/l bit values, thus guaranteeing uniqueness
23867 	 * of the interface identifier. Whether the GUID is in modified
23868 	 * or proper EUI-64 format, the ipv6 identifier must have the u/l
23869 	 * bit set to 1.
23870 	 */
23871 	addr[0] |= 2;			/* Set Universal/Local bit to 1 */
23872 	return (B_TRUE);
23873 }
23874 
23875 /*
23876  * Note on mapping from multicast IP addresses to IPoIB multicast link
23877  * addresses. IPoIB multicast link addresses are based on IBA link addresses.
23878  * The format of an IPoIB multicast address is:
23879  *
23880  *  4 byte QPN      Scope Sign.  Pkey
23881  * +--------------------------------------------+
23882  * | 00FFFFFF | FF | 1X | X01B | Pkey | GroupID |
23883  * +--------------------------------------------+
23884  *
23885  * The Scope and Pkey components are properties of the IBA port and
23886  * network interface. They can be ascertained from the broadcast address.
23887  * The Sign. part is the signature, and is 401B for IPv4 and 601B for IPv6.
23888  */
23889 
23890 static boolean_t
23891 ip_ib_v6mapinfo(uint_t lla_length, uint8_t *bphys_addr, uint8_t *maddr,
23892     uint32_t *hw_start, in6_addr_t *v6_extract_mask)
23893 {
23894 	/*
23895 	 * Base IPoIB IPv6 multicast address used for mappings.
23896 	 * Does not contain the IBA scope/Pkey values.
23897 	 */
23898 	static uint8_t ipv6_g_phys_ibmulti_addr[] = { 0x00, 0xff, 0xff, 0xff,
23899 	    0xff, 0x10, 0x60, 0x1b, 0x00, 0x00, 0x00, 0x00,
23900 	    0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
23901 
23902 	/*
23903 	 * Extract low order 80 bits from IPv6 multicast address.
23904 	 * Or that into the link layer address, starting from the
23905 	 * sixth byte.
23906 	 */
23907 	*hw_start = 6;
23908 	bcopy(ipv6_g_phys_ibmulti_addr, maddr, lla_length);
23909 
23910 	/*
23911 	 * Now fill in the IBA scope/Pkey values from the broadcast address.
23912 	 */
23913 	*(maddr + 5) = *(bphys_addr + 5);
23914 	*(maddr + 8) = *(bphys_addr + 8);
23915 	*(maddr + 9) = *(bphys_addr + 9);
23916 
23917 	v6_extract_mask->s6_addr32[0] = 0;
23918 	v6_extract_mask->s6_addr32[1] = htonl(0x0000ffff);
23919 	v6_extract_mask->s6_addr32[2] = 0xffffffffU;
23920 	v6_extract_mask->s6_addr32[3] = 0xffffffffU;
23921 	return (B_TRUE);
23922 }
23923 
23924 static boolean_t
23925 ip_ib_v4mapinfo(uint_t phys_length, uint8_t *bphys_addr, uint8_t *maddr,
23926     uint32_t *hw_start, ipaddr_t *extract_mask)
23927 {
23928 	/*
23929 	 * Base IPoIB IPv4 multicast address used for mappings.
23930 	 * Does not contain the IBA scope/Pkey values.
23931 	 */
23932 	static uint8_t ipv4_g_phys_ibmulti_addr[] = { 0x00, 0xff, 0xff, 0xff,
23933 	    0xff, 0x10, 0x40, 0x1b, 0x00, 0x00, 0x00, 0x00,
23934 	    0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
23935 
23936 	if (phys_length != sizeof (ipv4_g_phys_ibmulti_addr))
23937 		return (B_FALSE);
23938 
23939 	/*
23940 	 * Extract low order 28 bits from IPv4 multicast address.
23941 	 * Or that into the link layer address, starting from the
23942 	 * sixteenth byte.
23943 	 */
23944 	*extract_mask = htonl(0x0fffffff);
23945 	*hw_start = 16;
23946 	bcopy(ipv4_g_phys_ibmulti_addr, maddr, phys_length);
23947 
23948 	/*
23949 	 * Now fill in the IBA scope/Pkey values from the broadcast address.
23950 	 */
23951 	*(maddr + 5) = *(bphys_addr + 5);
23952 	*(maddr + 8) = *(bphys_addr + 8);
23953 	*(maddr + 9) = *(bphys_addr + 9);
23954 	return (B_TRUE);
23955 }
23956 
23957 /*
23958  * Returns B_TRUE if an ipif is present in the given zone, matching some flags
23959  * (typically IPIF_UP). If ipifp is non-null, the held ipif is returned there.
23960  * This works for both IPv4 and IPv6; if the passed-in ill is v6, the ipif with
23961  * the link-local address is preferred.
23962  */
23963 boolean_t
23964 ipif_lookup_zoneid(ill_t *ill, zoneid_t zoneid, int flags, ipif_t **ipifp)
23965 {
23966 	ipif_t	*ipif;
23967 	ipif_t	*maybe_ipif = NULL;
23968 
23969 	mutex_enter(&ill->ill_lock);
23970 	if (ill->ill_state_flags & ILL_CONDEMNED) {
23971 		mutex_exit(&ill->ill_lock);
23972 		if (ipifp != NULL)
23973 			*ipifp = NULL;
23974 		return (B_FALSE);
23975 	}
23976 	for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) {
23977 		if (!IPIF_CAN_LOOKUP(ipif))
23978 			continue;
23979 		if (zoneid != ALL_ZONES && ipif->ipif_zoneid != zoneid &&
23980 		    ipif->ipif_zoneid != ALL_ZONES)
23981 			continue;
23982 		if ((ipif->ipif_flags & flags) != flags)
23983 			continue;
23984 
23985 		if (ipifp == NULL) {
23986 			mutex_exit(&ill->ill_lock);
23987 			ASSERT(maybe_ipif == NULL);
23988 			return (B_TRUE);
23989 		}
23990 		if (!ill->ill_isv6 ||
23991 		    IN6_IS_ADDR_LINKLOCAL(&ipif->ipif_v6src_addr)) {
23992 			ipif_refhold_locked(ipif);
23993 			mutex_exit(&ill->ill_lock);
23994 			*ipifp = ipif;
23995 			return (B_TRUE);
23996 		}
23997 		if (maybe_ipif == NULL)
23998 			maybe_ipif = ipif;
23999 	}
24000 	if (ipifp != NULL) {
24001 		if (maybe_ipif != NULL)
24002 			ipif_refhold_locked(maybe_ipif);
24003 		*ipifp = maybe_ipif;
24004 	}
24005 	mutex_exit(&ill->ill_lock);
24006 	return (maybe_ipif != NULL);
24007 }
24008 
24009 /*
24010  * Same as ipif_lookup_zoneid() but looks at all the ills in the same group.
24011  */
24012 boolean_t
24013 ipif_lookup_zoneid_group(ill_t *ill, zoneid_t zoneid, int flags, ipif_t **ipifp)
24014 {
24015 	ill_t *illg;
24016 	ip_stack_t	*ipst = ill->ill_ipst;
24017 
24018 	/*
24019 	 * We look at the passed-in ill first without grabbing ill_g_lock.
24020 	 */
24021 	if (ipif_lookup_zoneid(ill, zoneid, flags, ipifp)) {
24022 		return (B_TRUE);
24023 	}
24024 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
24025 	if (ill->ill_group == NULL) {
24026 		/* ill not in a group */
24027 		rw_exit(&ipst->ips_ill_g_lock);
24028 		return (B_FALSE);
24029 	}
24030 
24031 	/*
24032 	 * There's no ipif in the zone on ill, however ill is part of an IPMP
24033 	 * group. We need to look for an ipif in the zone on all the ills in the
24034 	 * group.
24035 	 */
24036 	illg = ill->ill_group->illgrp_ill;
24037 	do {
24038 		/*
24039 		 * We don't call ipif_lookup_zoneid() on ill as we already know
24040 		 * that it's not there.
24041 		 */
24042 		if (illg != ill &&
24043 		    ipif_lookup_zoneid(illg, zoneid, flags, ipifp)) {
24044 			break;
24045 		}
24046 	} while ((illg = illg->ill_group_next) != NULL);
24047 	rw_exit(&ipst->ips_ill_g_lock);
24048 	return (illg != NULL);
24049 }
24050 
24051 /*
24052  * Check if this ill is only being used to send ICMP probes for IPMP
24053  */
24054 boolean_t
24055 ill_is_probeonly(ill_t *ill)
24056 {
24057 	/*
24058 	 * Check if the interface is FAILED, or INACTIVE
24059 	 */
24060 	if (ill->ill_phyint->phyint_flags & (PHYI_FAILED|PHYI_INACTIVE))
24061 		return (B_TRUE);
24062 
24063 	return (B_FALSE);
24064 }
24065 
24066 /*
24067  * Return a pointer to an ipif_t given a combination of (ill_idx,ipif_id)
24068  * If a pointer to an ipif_t is returned then the caller will need to do
24069  * an ill_refrele().
24070  *
24071  * If there is no real interface which matches the ifindex, then it looks
24072  * for a group that has a matching index. In the case of a group match the
24073  * lifidx must be zero. We don't need emulate the logical interfaces
24074  * since IP Filter's use of netinfo doesn't use that.
24075  */
24076 ipif_t *
24077 ipif_getby_indexes(uint_t ifindex, uint_t lifidx, boolean_t isv6,
24078     ip_stack_t *ipst)
24079 {
24080 	ipif_t *ipif;
24081 	ill_t *ill;
24082 
24083 	ill = ill_lookup_on_ifindex(ifindex, isv6, NULL, NULL, NULL, NULL,
24084 	    ipst);
24085 
24086 	if (ill == NULL) {
24087 		/* Fallback to group names only if hook_emulation set */
24088 		if (!ipst->ips_ipmp_hook_emulation)
24089 			return (NULL);
24090 
24091 		if (lifidx != 0)
24092 			return (NULL);
24093 		ill = ill_group_lookup_on_ifindex(ifindex, isv6, ipst);
24094 		if (ill == NULL)
24095 			return (NULL);
24096 	}
24097 
24098 	mutex_enter(&ill->ill_lock);
24099 	if (ill->ill_state_flags & ILL_CONDEMNED) {
24100 		mutex_exit(&ill->ill_lock);
24101 		ill_refrele(ill);
24102 		return (NULL);
24103 	}
24104 
24105 	for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) {
24106 		if (!IPIF_CAN_LOOKUP(ipif))
24107 			continue;
24108 		if (lifidx == ipif->ipif_id) {
24109 			ipif_refhold_locked(ipif);
24110 			break;
24111 		}
24112 	}
24113 
24114 	mutex_exit(&ill->ill_lock);
24115 	ill_refrele(ill);
24116 	return (ipif);
24117 }
24118 
24119 /*
24120  * Flush the fastpath by deleting any nce's that are waiting for the fastpath,
24121  * There is one exceptions IRE_BROADCAST are difficult to recreate,
24122  * so instead we just nuke their nce_fp_mp's; see ndp_fastpath_flush()
24123  * for details.
24124  */
24125 void
24126 ill_fastpath_flush(ill_t *ill)
24127 {
24128 	ip_stack_t *ipst = ill->ill_ipst;
24129 
24130 	nce_fastpath_list_dispatch(ill, NULL, NULL);
24131 	ndp_walk_common((ill->ill_isv6 ? ipst->ips_ndp6 : ipst->ips_ndp4),
24132 	    ill, (pfi_t)ndp_fastpath_flush, NULL, B_TRUE);
24133 }
24134 
24135 /*
24136  * Set the physical address information for `ill' to the contents of the
24137  * dl_notify_ind_t pointed to by `mp'.  Must be called as writer, and will be
24138  * asynchronous if `ill' cannot immediately be quiesced -- in which case
24139  * EINPROGRESS will be returned.
24140  */
24141 int
24142 ill_set_phys_addr(ill_t *ill, mblk_t *mp)
24143 {
24144 	ipsq_t *ipsq = ill->ill_phyint->phyint_ipsq;
24145 	dl_notify_ind_t	*dlindp = (dl_notify_ind_t *)mp->b_rptr;
24146 
24147 	ASSERT(IAM_WRITER_IPSQ(ipsq));
24148 
24149 	if (dlindp->dl_data != DL_IPV6_LINK_LAYER_ADDR &&
24150 	    dlindp->dl_data != DL_CURR_PHYS_ADDR) {
24151 		/* Changing DL_IPV6_TOKEN is not yet supported */
24152 		return (0);
24153 	}
24154 
24155 	/*
24156 	 * We need to store up to two copies of `mp' in `ill'.  Due to the
24157 	 * design of ipsq_pending_mp_add(), we can't pass them as separate
24158 	 * arguments to ill_set_phys_addr_tail().  Instead, chain them
24159 	 * together here, then pull 'em apart in ill_set_phys_addr_tail().
24160 	 */
24161 	if ((mp = copyb(mp)) == NULL || (mp->b_cont = copyb(mp)) == NULL) {
24162 		freemsg(mp);
24163 		return (ENOMEM);
24164 	}
24165 
24166 	ipsq_current_start(ipsq, ill->ill_ipif, 0);
24167 
24168 	/*
24169 	 * If we can quiesce the ill, then set the address.  If not, then
24170 	 * ill_set_phys_addr_tail() will be called from ipif_ill_refrele_tail().
24171 	 */
24172 	ill_down_ipifs(ill, NULL, 0, B_FALSE);
24173 	mutex_enter(&ill->ill_lock);
24174 	if (!ill_is_quiescent(ill)) {
24175 		/* call cannot fail since `conn_t *' argument is NULL */
24176 		(void) ipsq_pending_mp_add(NULL, ill->ill_ipif, ill->ill_rq,
24177 		    mp, ILL_DOWN);
24178 		mutex_exit(&ill->ill_lock);
24179 		return (EINPROGRESS);
24180 	}
24181 	mutex_exit(&ill->ill_lock);
24182 
24183 	ill_set_phys_addr_tail(ipsq, ill->ill_rq, mp, NULL);
24184 	return (0);
24185 }
24186 
24187 /*
24188  * Once the ill associated with `q' has quiesced, set its physical address
24189  * information to the values in `addrmp'.  Note that two copies of `addrmp'
24190  * are passed (linked by b_cont), since we sometimes need to save two distinct
24191  * copies in the ill_t, and our context doesn't permit sleeping or allocation
24192  * failure (we'll free the other copy if it's not needed).  Since the ill_t
24193  * is quiesced, we know any stale IREs with the old address information have
24194  * already been removed, so we don't need to call ill_fastpath_flush().
24195  */
24196 /* ARGSUSED */
24197 static void
24198 ill_set_phys_addr_tail(ipsq_t *ipsq, queue_t *q, mblk_t *addrmp, void *dummy)
24199 {
24200 	ill_t		*ill = q->q_ptr;
24201 	mblk_t		*addrmp2 = unlinkb(addrmp);
24202 	dl_notify_ind_t	*dlindp = (dl_notify_ind_t *)addrmp->b_rptr;
24203 	uint_t		addrlen, addroff;
24204 
24205 	ASSERT(IAM_WRITER_IPSQ(ipsq));
24206 
24207 	addroff	= dlindp->dl_addr_offset;
24208 	addrlen = dlindp->dl_addr_length - ABS(ill->ill_sap_length);
24209 
24210 	switch (dlindp->dl_data) {
24211 	case DL_IPV6_LINK_LAYER_ADDR:
24212 		ill_set_ndmp(ill, addrmp, addroff, addrlen);
24213 		freemsg(addrmp2);
24214 		break;
24215 
24216 	case DL_CURR_PHYS_ADDR:
24217 		freemsg(ill->ill_phys_addr_mp);
24218 		ill->ill_phys_addr = addrmp->b_rptr + addroff;
24219 		ill->ill_phys_addr_mp = addrmp;
24220 		ill->ill_phys_addr_length = addrlen;
24221 
24222 		if (ill->ill_isv6 && !(ill->ill_flags & ILLF_XRESOLV))
24223 			ill_set_ndmp(ill, addrmp2, addroff, addrlen);
24224 		else
24225 			freemsg(addrmp2);
24226 		break;
24227 	default:
24228 		ASSERT(0);
24229 	}
24230 
24231 	/*
24232 	 * If there are ipifs to bring up, ill_up_ipifs() will return
24233 	 * EINPROGRESS, and ipsq_current_finish() will be called by
24234 	 * ip_rput_dlpi_writer() or ip_arp_done() when the last ipif is
24235 	 * brought up.
24236 	 */
24237 	if (ill_up_ipifs(ill, q, addrmp) != EINPROGRESS)
24238 		ipsq_current_finish(ipsq);
24239 }
24240 
24241 /*
24242  * Helper routine for setting the ill_nd_lla fields.
24243  */
24244 void
24245 ill_set_ndmp(ill_t *ill, mblk_t *ndmp, uint_t addroff, uint_t addrlen)
24246 {
24247 	freemsg(ill->ill_nd_lla_mp);
24248 	ill->ill_nd_lla = ndmp->b_rptr + addroff;
24249 	ill->ill_nd_lla_mp = ndmp;
24250 	ill->ill_nd_lla_len = addrlen;
24251 }
24252 
24253 major_t IP_MAJ;
24254 #define	IP	"ip"
24255 
24256 #define	UDP6DEV		"/devices/pseudo/udp6@0:udp6"
24257 #define	UDPDEV		"/devices/pseudo/udp@0:udp"
24258 
24259 /*
24260  * Issue REMOVEIF ioctls to have the loopback interfaces
24261  * go away.  Other interfaces are either I_LINKed or I_PLINKed;
24262  * the former going away when the user-level processes in the zone
24263  * are killed  * and the latter are cleaned up by the stream head
24264  * str_stack_shutdown callback that undoes all I_PLINKs.
24265  */
24266 void
24267 ip_loopback_cleanup(ip_stack_t *ipst)
24268 {
24269 	int error;
24270 	ldi_handle_t	lh = NULL;
24271 	ldi_ident_t	li = NULL;
24272 	int		rval;
24273 	cred_t		*cr;
24274 	struct strioctl iocb;
24275 	struct lifreq	lifreq;
24276 
24277 	IP_MAJ = ddi_name_to_major(IP);
24278 
24279 #ifdef NS_DEBUG
24280 	(void) printf("ip_loopback_cleanup() stackid %d\n",
24281 	    ipst->ips_netstack->netstack_stackid);
24282 #endif
24283 
24284 	bzero(&lifreq, sizeof (lifreq));
24285 	(void) strcpy(lifreq.lifr_name, ipif_loopback_name);
24286 
24287 	error = ldi_ident_from_major(IP_MAJ, &li);
24288 	if (error) {
24289 #ifdef DEBUG
24290 		printf("ip_loopback_cleanup: lyr ident get failed error %d\n",
24291 		    error);
24292 #endif
24293 		return;
24294 	}
24295 
24296 	cr = zone_get_kcred(netstackid_to_zoneid(
24297 	    ipst->ips_netstack->netstack_stackid));
24298 	ASSERT(cr != NULL);
24299 	error = ldi_open_by_name(UDP6DEV, FREAD|FWRITE, cr, &lh, li);
24300 	if (error) {
24301 #ifdef DEBUG
24302 		printf("ip_loopback_cleanup: open of UDP6DEV failed error %d\n",
24303 		    error);
24304 #endif
24305 		goto out;
24306 	}
24307 	iocb.ic_cmd = SIOCLIFREMOVEIF;
24308 	iocb.ic_timout = 15;
24309 	iocb.ic_len = sizeof (lifreq);
24310 	iocb.ic_dp = (char *)&lifreq;
24311 
24312 	error = ldi_ioctl(lh, I_STR, (intptr_t)&iocb, FKIOCTL, cr, &rval);
24313 	/* LINTED - statement has no consequent */
24314 	if (error) {
24315 #ifdef NS_DEBUG
24316 		printf("ip_loopback_cleanup: ioctl SIOCLIFREMOVEIF failed on "
24317 		    "UDP6 error %d\n", error);
24318 #endif
24319 	}
24320 	(void) ldi_close(lh, FREAD|FWRITE, cr);
24321 	lh = NULL;
24322 
24323 	error = ldi_open_by_name(UDPDEV, FREAD|FWRITE, cr, &lh, li);
24324 	if (error) {
24325 #ifdef NS_DEBUG
24326 		printf("ip_loopback_cleanup: open of UDPDEV failed error %d\n",
24327 		    error);
24328 #endif
24329 		goto out;
24330 	}
24331 
24332 	iocb.ic_cmd = SIOCLIFREMOVEIF;
24333 	iocb.ic_timout = 15;
24334 	iocb.ic_len = sizeof (lifreq);
24335 	iocb.ic_dp = (char *)&lifreq;
24336 
24337 	error = ldi_ioctl(lh, I_STR, (intptr_t)&iocb, FKIOCTL, cr, &rval);
24338 	/* LINTED - statement has no consequent */
24339 	if (error) {
24340 #ifdef NS_DEBUG
24341 		printf("ip_loopback_cleanup: ioctl SIOCLIFREMOVEIF failed on "
24342 		    "UDP error %d\n", error);
24343 #endif
24344 	}
24345 	(void) ldi_close(lh, FREAD|FWRITE, cr);
24346 	lh = NULL;
24347 
24348 out:
24349 	/* Close layered handles */
24350 	if (lh)
24351 		(void) ldi_close(lh, FREAD|FWRITE, cr);
24352 	if (li)
24353 		ldi_ident_release(li);
24354 
24355 	crfree(cr);
24356 }
24357