1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2007 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 /* Copyright (c) 1990 Mentat Inc. */ 26 27 #pragma ident "%Z%%M% %I% %E% SMI" 28 29 /* 30 * This file contains the interface control functions for IP. 31 */ 32 33 #include <sys/types.h> 34 #include <sys/stream.h> 35 #include <sys/dlpi.h> 36 #include <sys/stropts.h> 37 #include <sys/strsun.h> 38 #include <sys/sysmacros.h> 39 #include <sys/strlog.h> 40 #include <sys/ddi.h> 41 #include <sys/sunddi.h> 42 #include <sys/cmn_err.h> 43 #include <sys/kstat.h> 44 #include <sys/debug.h> 45 #include <sys/zone.h> 46 #include <sys/sunldi.h> 47 #include <sys/file.h> 48 49 #include <sys/kmem.h> 50 #include <sys/systm.h> 51 #include <sys/param.h> 52 #include <sys/socket.h> 53 #include <sys/isa_defs.h> 54 #include <net/if.h> 55 #include <net/if_arp.h> 56 #include <net/if_types.h> 57 #include <net/if_dl.h> 58 #include <net/route.h> 59 #include <sys/sockio.h> 60 #include <netinet/in.h> 61 #include <netinet/ip6.h> 62 #include <netinet/icmp6.h> 63 #include <netinet/igmp_var.h> 64 #include <sys/strsun.h> 65 #include <sys/policy.h> 66 #include <sys/ethernet.h> 67 68 #include <inet/common.h> /* for various inet/mi.h and inet/nd.h needs */ 69 #include <inet/mi.h> 70 #include <inet/nd.h> 71 #include <inet/arp.h> 72 #include <inet/mib2.h> 73 #include <inet/ip.h> 74 #include <inet/ip6.h> 75 #include <inet/ip6_asp.h> 76 #include <inet/tcp.h> 77 #include <inet/ip_multi.h> 78 #include <inet/ip_ire.h> 79 #include <inet/ip_ftable.h> 80 #include <inet/ip_rts.h> 81 #include <inet/ip_ndp.h> 82 #include <inet/ip_if.h> 83 #include <inet/ip_impl.h> 84 #include <inet/tun.h> 85 #include <inet/sctp_ip.h> 86 #include <inet/ip_netinfo.h> 87 #include <inet/mib2.h> 88 89 #include <net/pfkeyv2.h> 90 #include <inet/ipsec_info.h> 91 #include <inet/sadb.h> 92 #include <inet/ipsec_impl.h> 93 #include <sys/iphada.h> 94 95 96 #include <netinet/igmp.h> 97 #include <inet/ip_listutils.h> 98 #include <inet/ipclassifier.h> 99 #include <sys/mac.h> 100 101 #include <sys/systeminfo.h> 102 #include <sys/bootconf.h> 103 104 #include <sys/tsol/tndb.h> 105 #include <sys/tsol/tnet.h> 106 107 /* The character which tells where the ill_name ends */ 108 #define IPIF_SEPARATOR_CHAR ':' 109 110 /* IP ioctl function table entry */ 111 typedef struct ipft_s { 112 int ipft_cmd; 113 pfi_t ipft_pfi; 114 int ipft_min_size; 115 int ipft_flags; 116 } ipft_t; 117 #define IPFT_F_NO_REPLY 0x1 /* IP ioctl does not expect any reply */ 118 #define IPFT_F_SELF_REPLY 0x2 /* ioctl callee does the ioctl reply */ 119 120 typedef struct ip_sock_ar_s { 121 union { 122 area_t ip_sock_area; 123 ared_t ip_sock_ared; 124 areq_t ip_sock_areq; 125 } ip_sock_ar_u; 126 queue_t *ip_sock_ar_q; 127 } ip_sock_ar_t; 128 129 static int nd_ill_forward_get(queue_t *, mblk_t *, caddr_t, cred_t *); 130 static int nd_ill_forward_set(queue_t *q, mblk_t *mp, 131 char *value, caddr_t cp, cred_t *ioc_cr); 132 133 static boolean_t ip_addr_ok_v4(ipaddr_t addr, ipaddr_t subnet_mask); 134 static ip_m_t *ip_m_lookup(t_uscalar_t mac_type); 135 static int ip_sioctl_addr_tail(ipif_t *ipif, sin_t *sin, queue_t *q, 136 mblk_t *mp, boolean_t need_up); 137 static int ip_sioctl_dstaddr_tail(ipif_t *ipif, sin_t *sin, queue_t *q, 138 mblk_t *mp, boolean_t need_up); 139 static int ip_sioctl_slifzone_tail(ipif_t *ipif, zoneid_t zoneid, 140 queue_t *q, mblk_t *mp, boolean_t need_up); 141 static int ip_sioctl_flags_tail(ipif_t *ipif, uint64_t flags, queue_t *q, 142 mblk_t *mp, boolean_t need_up); 143 static int ip_sioctl_netmask_tail(ipif_t *ipif, sin_t *sin, queue_t *q, 144 mblk_t *mp); 145 static int ip_sioctl_subnet_tail(ipif_t *ipif, in6_addr_t, in6_addr_t, 146 queue_t *q, mblk_t *mp, boolean_t need_up); 147 static int ip_sioctl_arp_common(ill_t *ill, queue_t *q, mblk_t *mp, 148 sin_t *sin, boolean_t x_arp_ioctl, boolean_t if_arp_ioctl); 149 static int ip_sioctl_plink_ipmod(ipsq_t *ipsq, queue_t *q, mblk_t *mp, 150 int ioccmd, struct linkblk *li, boolean_t doconsist); 151 static ipaddr_t ip_subnet_mask(ipaddr_t addr, ipif_t **, ip_stack_t *); 152 static void ip_wput_ioctl(queue_t *q, mblk_t *mp); 153 static void ipsq_flush(ill_t *ill); 154 155 static int ip_sioctl_token_tail(ipif_t *ipif, sin6_t *sin6, int addrlen, 156 queue_t *q, mblk_t *mp, boolean_t need_up); 157 static void ipsq_delete(ipsq_t *); 158 159 static ipif_t *ipif_allocate(ill_t *ill, int id, uint_t ire_type, 160 boolean_t initialize); 161 static void ipif_check_bcast_ires(ipif_t *test_ipif); 162 static ire_t **ipif_create_bcast_ires(ipif_t *ipif, ire_t **irep); 163 static boolean_t ipif_comp_multi(ipif_t *old_ipif, ipif_t *new_ipif, 164 boolean_t isv6); 165 static void ipif_down_delete_ire(ire_t *ire, char *ipif); 166 static void ipif_delete_cache_ire(ire_t *, char *); 167 static int ipif_logical_down(ipif_t *ipif, queue_t *q, mblk_t *mp); 168 static void ipif_free(ipif_t *ipif); 169 static void ipif_free_tail(ipif_t *ipif); 170 static void ipif_mtu_change(ire_t *ire, char *ipif_arg); 171 static void ipif_multicast_down(ipif_t *ipif); 172 static void ipif_recreate_interface_routes(ipif_t *old_ipif, ipif_t *ipif); 173 static void ipif_set_default(ipif_t *ipif); 174 static int ipif_set_values(queue_t *q, mblk_t *mp, 175 char *interf_name, uint_t *ppa); 176 static int ipif_set_values_tail(ill_t *ill, ipif_t *ipif, mblk_t *mp, 177 queue_t *q); 178 static ipif_t *ipif_lookup_on_name(char *name, size_t namelen, 179 boolean_t do_alloc, boolean_t *exists, boolean_t isv6, zoneid_t zoneid, 180 queue_t *q, mblk_t *mp, ipsq_func_t func, int *error, ip_stack_t *); 181 static int ipif_up(ipif_t *ipif, queue_t *q, mblk_t *mp); 182 static void ipif_update_other_ipifs(ipif_t *old_ipif, ill_group_t *illgrp); 183 184 static int ill_alloc_ppa(ill_if_t *, ill_t *); 185 static int ill_arp_off(ill_t *ill); 186 static int ill_arp_on(ill_t *ill); 187 static void ill_delete_interface_type(ill_if_t *); 188 static int ill_dl_up(ill_t *ill, ipif_t *ipif, mblk_t *mp, queue_t *q); 189 static void ill_dl_down(ill_t *ill); 190 static void ill_down(ill_t *ill); 191 static void ill_downi(ire_t *ire, char *ill_arg); 192 static void ill_free_mib(ill_t *ill); 193 static void ill_glist_delete(ill_t *); 194 static boolean_t ill_has_usable_ipif(ill_t *); 195 static int ill_lock_ipsq_ills(ipsq_t *sq, ill_t **list, int); 196 static void ill_nominate_bcast_rcv(ill_group_t *illgrp); 197 static void ill_phyint_free(ill_t *ill); 198 static void ill_phyint_reinit(ill_t *ill); 199 static void ill_set_nce_router_flags(ill_t *, boolean_t); 200 static void ill_set_phys_addr_tail(ipsq_t *, queue_t *, mblk_t *, void *); 201 static void ill_signal_ipsq_ills(ipsq_t *, boolean_t); 202 static boolean_t ill_split_ipsq(ipsq_t *cur_sq); 203 static void ill_stq_cache_delete(ire_t *, char *); 204 205 static boolean_t ip_ether_v6intfid(uint_t, uint8_t *, in6_addr_t *); 206 static boolean_t ip_nodef_v6intfid(uint_t, uint8_t *, in6_addr_t *); 207 static boolean_t ip_ether_v6mapinfo(uint_t, uint8_t *, uint8_t *, uint32_t *, 208 in6_addr_t *); 209 static boolean_t ip_ether_v4mapinfo(uint_t, uint8_t *, uint8_t *, uint32_t *, 210 ipaddr_t *); 211 static boolean_t ip_ib_v6intfid(uint_t, uint8_t *, in6_addr_t *); 212 static boolean_t ip_ib_v6mapinfo(uint_t, uint8_t *, uint8_t *, uint32_t *, 213 in6_addr_t *); 214 static boolean_t ip_ib_v4mapinfo(uint_t, uint8_t *, uint8_t *, uint32_t *, 215 ipaddr_t *); 216 217 static void ipif_save_ire(ipif_t *, ire_t *); 218 static void ipif_remove_ire(ipif_t *, ire_t *); 219 static void ip_cgtp_bcast_add(ire_t *, ire_t *, ip_stack_t *); 220 static void ip_cgtp_bcast_delete(ire_t *, ip_stack_t *); 221 222 /* 223 * Per-ill IPsec capabilities management. 224 */ 225 static ill_ipsec_capab_t *ill_ipsec_capab_alloc(void); 226 static void ill_ipsec_capab_free(ill_ipsec_capab_t *); 227 static void ill_ipsec_capab_add(ill_t *, uint_t, boolean_t); 228 static void ill_ipsec_capab_delete(ill_t *, uint_t); 229 static boolean_t ill_ipsec_capab_resize_algparm(ill_ipsec_capab_t *, int); 230 static void ill_capability_proto(ill_t *, int, mblk_t *); 231 static void ill_capability_dispatch(ill_t *, mblk_t *, dl_capability_sub_t *, 232 boolean_t); 233 static void ill_capability_id_ack(ill_t *, mblk_t *, dl_capability_sub_t *); 234 static void ill_capability_mdt_ack(ill_t *, mblk_t *, dl_capability_sub_t *); 235 static void ill_capability_mdt_reset(ill_t *, mblk_t **); 236 static void ill_capability_ipsec_ack(ill_t *, mblk_t *, dl_capability_sub_t *); 237 static void ill_capability_ipsec_reset(ill_t *, mblk_t **); 238 static void ill_capability_hcksum_ack(ill_t *, mblk_t *, dl_capability_sub_t *); 239 static void ill_capability_hcksum_reset(ill_t *, mblk_t **); 240 static void ill_capability_zerocopy_ack(ill_t *, mblk_t *, 241 dl_capability_sub_t *); 242 static void ill_capability_zerocopy_reset(ill_t *, mblk_t **); 243 static void ill_capability_lso_ack(ill_t *, mblk_t *, dl_capability_sub_t *); 244 static void ill_capability_lso_reset(ill_t *, mblk_t **); 245 static void ill_capability_dls_ack(ill_t *, mblk_t *, dl_capability_sub_t *); 246 static mac_resource_handle_t ill_ring_add(void *, mac_resource_t *); 247 static void ill_capability_dls_reset(ill_t *, mblk_t **); 248 static void ill_capability_dls_disable(ill_t *); 249 250 static void illgrp_cache_delete(ire_t *, char *); 251 static void illgrp_delete(ill_t *ill); 252 static void illgrp_reset_schednext(ill_t *ill); 253 254 static ill_t *ill_prev_usesrc(ill_t *); 255 static int ill_relink_usesrc_ills(ill_t *, ill_t *, uint_t); 256 static void ill_disband_usesrc_group(ill_t *); 257 258 static void conn_cleanup_stale_ire(conn_t *, caddr_t); 259 260 /* 261 * if we go over the memory footprint limit more than once in this msec 262 * interval, we'll start pruning aggressively. 263 */ 264 int ip_min_frag_prune_time = 0; 265 266 /* 267 * max # of IPsec algorithms supported. Limited to 1 byte by PF_KEY 268 * and the IPsec DOI 269 */ 270 #define MAX_IPSEC_ALGS 256 271 272 #define BITSPERBYTE 8 273 #define BITS(type) (BITSPERBYTE * (long)sizeof (type)) 274 275 #define IPSEC_ALG_ENABLE(algs, algid) \ 276 ((algs)[(algid) / BITS(ipsec_capab_elem_t)] |= \ 277 (1 << ((algid) % BITS(ipsec_capab_elem_t)))) 278 279 #define IPSEC_ALG_IS_ENABLED(algid, algs) \ 280 ((algs)[(algid) / BITS(ipsec_capab_elem_t)] & \ 281 (1 << ((algid) % BITS(ipsec_capab_elem_t)))) 282 283 typedef uint8_t ipsec_capab_elem_t; 284 285 /* 286 * Per-algorithm parameters. Note that at present, only encryption 287 * algorithms have variable keysize (IKE does not provide a way to negotiate 288 * auth algorithm keysize). 289 * 290 * All sizes here are in bits. 291 */ 292 typedef struct 293 { 294 uint16_t minkeylen; 295 uint16_t maxkeylen; 296 } ipsec_capab_algparm_t; 297 298 /* 299 * Per-ill capabilities. 300 */ 301 struct ill_ipsec_capab_s { 302 ipsec_capab_elem_t *encr_hw_algs; 303 ipsec_capab_elem_t *auth_hw_algs; 304 uint32_t algs_size; /* size of _hw_algs in bytes */ 305 /* algorithm key lengths */ 306 ipsec_capab_algparm_t *encr_algparm; 307 uint32_t encr_algparm_size; 308 uint32_t encr_algparm_end; 309 }; 310 311 /* 312 * The field values are larger than strictly necessary for simple 313 * AR_ENTRY_ADDs but the padding lets us accomodate the socket ioctls. 314 */ 315 static area_t ip_area_template = { 316 AR_ENTRY_ADD, /* area_cmd */ 317 sizeof (ip_sock_ar_t) + (IP_ADDR_LEN*2) + sizeof (struct sockaddr_dl), 318 /* area_name_offset */ 319 /* area_name_length temporarily holds this structure length */ 320 sizeof (area_t), /* area_name_length */ 321 IP_ARP_PROTO_TYPE, /* area_proto */ 322 sizeof (ip_sock_ar_t), /* area_proto_addr_offset */ 323 IP_ADDR_LEN, /* area_proto_addr_length */ 324 sizeof (ip_sock_ar_t) + IP_ADDR_LEN, 325 /* area_proto_mask_offset */ 326 0, /* area_flags */ 327 sizeof (ip_sock_ar_t) + IP_ADDR_LEN + IP_ADDR_LEN, 328 /* area_hw_addr_offset */ 329 /* Zero length hw_addr_length means 'use your idea of the address' */ 330 0 /* area_hw_addr_length */ 331 }; 332 333 /* 334 * AR_ENTRY_ADD/DELETE templates have been added for IPv6 external resolver 335 * support 336 */ 337 static area_t ip6_area_template = { 338 AR_ENTRY_ADD, /* area_cmd */ 339 sizeof (ip_sock_ar_t) + (IPV6_ADDR_LEN*2) + sizeof (sin6_t), 340 /* area_name_offset */ 341 /* area_name_length temporarily holds this structure length */ 342 sizeof (area_t), /* area_name_length */ 343 IP_ARP_PROTO_TYPE, /* area_proto */ 344 sizeof (ip_sock_ar_t), /* area_proto_addr_offset */ 345 IPV6_ADDR_LEN, /* area_proto_addr_length */ 346 sizeof (ip_sock_ar_t) + IPV6_ADDR_LEN, 347 /* area_proto_mask_offset */ 348 0, /* area_flags */ 349 sizeof (ip_sock_ar_t) + IPV6_ADDR_LEN + IPV6_ADDR_LEN, 350 /* area_hw_addr_offset */ 351 /* Zero length hw_addr_length means 'use your idea of the address' */ 352 0 /* area_hw_addr_length */ 353 }; 354 355 static ared_t ip_ared_template = { 356 AR_ENTRY_DELETE, 357 sizeof (ared_t) + IP_ADDR_LEN, 358 sizeof (ared_t), 359 IP_ARP_PROTO_TYPE, 360 sizeof (ared_t), 361 IP_ADDR_LEN 362 }; 363 364 static ared_t ip6_ared_template = { 365 AR_ENTRY_DELETE, 366 sizeof (ared_t) + IPV6_ADDR_LEN, 367 sizeof (ared_t), 368 IP_ARP_PROTO_TYPE, 369 sizeof (ared_t), 370 IPV6_ADDR_LEN 371 }; 372 373 /* 374 * A template for an IPv6 AR_ENTRY_QUERY template has not been created, as 375 * as the areq doesn't include an IP address in ill_dl_up() (the only place a 376 * areq is used). 377 */ 378 static areq_t ip_areq_template = { 379 AR_ENTRY_QUERY, /* cmd */ 380 sizeof (areq_t)+(2*IP_ADDR_LEN), /* name offset */ 381 sizeof (areq_t), /* name len (filled by ill_arp_alloc) */ 382 IP_ARP_PROTO_TYPE, /* protocol, from arps perspective */ 383 sizeof (areq_t), /* target addr offset */ 384 IP_ADDR_LEN, /* target addr_length */ 385 0, /* flags */ 386 sizeof (areq_t) + IP_ADDR_LEN, /* sender addr offset */ 387 IP_ADDR_LEN, /* sender addr length */ 388 AR_EQ_DEFAULT_XMIT_COUNT, /* xmit_count */ 389 AR_EQ_DEFAULT_XMIT_INTERVAL, /* (re)xmit_interval in milliseconds */ 390 AR_EQ_DEFAULT_MAX_BUFFERED /* max # of requests to buffer */ 391 /* anything else filled in by the code */ 392 }; 393 394 static arc_t ip_aru_template = { 395 AR_INTERFACE_UP, 396 sizeof (arc_t), /* Name offset */ 397 sizeof (arc_t) /* Name length (set by ill_arp_alloc) */ 398 }; 399 400 static arc_t ip_ard_template = { 401 AR_INTERFACE_DOWN, 402 sizeof (arc_t), /* Name offset */ 403 sizeof (arc_t) /* Name length (set by ill_arp_alloc) */ 404 }; 405 406 static arc_t ip_aron_template = { 407 AR_INTERFACE_ON, 408 sizeof (arc_t), /* Name offset */ 409 sizeof (arc_t) /* Name length (set by ill_arp_alloc) */ 410 }; 411 412 static arc_t ip_aroff_template = { 413 AR_INTERFACE_OFF, 414 sizeof (arc_t), /* Name offset */ 415 sizeof (arc_t) /* Name length (set by ill_arp_alloc) */ 416 }; 417 418 419 static arma_t ip_arma_multi_template = { 420 AR_MAPPING_ADD, 421 sizeof (arma_t) + 3*IP_ADDR_LEN + IP_MAX_HW_LEN, 422 /* Name offset */ 423 sizeof (arma_t), /* Name length (set by ill_arp_alloc) */ 424 IP_ARP_PROTO_TYPE, 425 sizeof (arma_t), /* proto_addr_offset */ 426 IP_ADDR_LEN, /* proto_addr_length */ 427 sizeof (arma_t) + IP_ADDR_LEN, /* proto_mask_offset */ 428 sizeof (arma_t) + 2*IP_ADDR_LEN, /* proto_extract_mask_offset */ 429 ACE_F_PERMANENT | ACE_F_MAPPING, /* flags */ 430 sizeof (arma_t) + 3*IP_ADDR_LEN, /* hw_addr_offset */ 431 IP_MAX_HW_LEN, /* hw_addr_length */ 432 0, /* hw_mapping_start */ 433 }; 434 435 static ipft_t ip_ioctl_ftbl[] = { 436 { IP_IOC_IRE_DELETE, ip_ire_delete, sizeof (ipid_t), 0 }, 437 { IP_IOC_IRE_DELETE_NO_REPLY, ip_ire_delete, sizeof (ipid_t), 438 IPFT_F_NO_REPLY }, 439 { IP_IOC_IRE_ADVISE_NO_REPLY, ip_ire_advise, sizeof (ipic_t), 440 IPFT_F_NO_REPLY }, 441 { IP_IOC_RTS_REQUEST, ip_rts_request, 0, IPFT_F_SELF_REPLY }, 442 { 0 } 443 }; 444 445 /* Simple ICMP IP Header Template */ 446 static ipha_t icmp_ipha = { 447 IP_SIMPLE_HDR_VERSION, 0, 0, 0, 0, 0, IPPROTO_ICMP 448 }; 449 450 /* Flag descriptors for ip_ipif_report */ 451 static nv_t ipif_nv_tbl[] = { 452 { IPIF_UP, "UP" }, 453 { IPIF_BROADCAST, "BROADCAST" }, 454 { ILLF_DEBUG, "DEBUG" }, 455 { PHYI_LOOPBACK, "LOOPBACK" }, 456 { IPIF_POINTOPOINT, "POINTOPOINT" }, 457 { ILLF_NOTRAILERS, "NOTRAILERS" }, 458 { PHYI_RUNNING, "RUNNING" }, 459 { ILLF_NOARP, "NOARP" }, 460 { PHYI_PROMISC, "PROMISC" }, 461 { PHYI_ALLMULTI, "ALLMULTI" }, 462 { PHYI_INTELLIGENT, "INTELLIGENT" }, 463 { ILLF_MULTICAST, "MULTICAST" }, 464 { PHYI_MULTI_BCAST, "MULTI_BCAST" }, 465 { IPIF_UNNUMBERED, "UNNUMBERED" }, 466 { IPIF_DHCPRUNNING, "DHCP" }, 467 { IPIF_PRIVATE, "PRIVATE" }, 468 { IPIF_NOXMIT, "NOXMIT" }, 469 { IPIF_NOLOCAL, "NOLOCAL" }, 470 { IPIF_DEPRECATED, "DEPRECATED" }, 471 { IPIF_PREFERRED, "PREFERRED" }, 472 { IPIF_TEMPORARY, "TEMPORARY" }, 473 { IPIF_ADDRCONF, "ADDRCONF" }, 474 { PHYI_VIRTUAL, "VIRTUAL" }, 475 { ILLF_ROUTER, "ROUTER" }, 476 { ILLF_NONUD, "NONUD" }, 477 { IPIF_ANYCAST, "ANYCAST" }, 478 { ILLF_NORTEXCH, "NORTEXCH" }, 479 { ILLF_IPV4, "IPV4" }, 480 { ILLF_IPV6, "IPV6" }, 481 { IPIF_NOFAILOVER, "NOFAILOVER" }, 482 { PHYI_FAILED, "FAILED" }, 483 { PHYI_STANDBY, "STANDBY" }, 484 { PHYI_INACTIVE, "INACTIVE" }, 485 { PHYI_OFFLINE, "OFFLINE" }, 486 }; 487 488 static uchar_t ip_six_byte_all_ones[] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF }; 489 490 static ip_m_t ip_m_tbl[] = { 491 { DL_ETHER, IFT_ETHER, ip_ether_v4mapinfo, ip_ether_v6mapinfo, 492 ip_ether_v6intfid }, 493 { DL_CSMACD, IFT_ISO88023, ip_ether_v4mapinfo, ip_ether_v6mapinfo, 494 ip_nodef_v6intfid }, 495 { DL_TPB, IFT_ISO88024, ip_ether_v4mapinfo, ip_ether_v6mapinfo, 496 ip_nodef_v6intfid }, 497 { DL_TPR, IFT_ISO88025, ip_ether_v4mapinfo, ip_ether_v6mapinfo, 498 ip_nodef_v6intfid }, 499 { DL_FDDI, IFT_FDDI, ip_ether_v4mapinfo, ip_ether_v6mapinfo, 500 ip_ether_v6intfid }, 501 { DL_IB, IFT_IB, ip_ib_v4mapinfo, ip_ib_v6mapinfo, 502 ip_ib_v6intfid }, 503 { SUNW_DL_VNI, IFT_OTHER, NULL, NULL, NULL}, 504 { DL_OTHER, IFT_OTHER, ip_ether_v4mapinfo, ip_ether_v6mapinfo, 505 ip_nodef_v6intfid } 506 }; 507 508 static ill_t ill_null; /* Empty ILL for init. */ 509 char ipif_loopback_name[] = "lo0"; 510 static char *ipv4_forward_suffix = ":ip_forwarding"; 511 static char *ipv6_forward_suffix = ":ip6_forwarding"; 512 static sin6_t sin6_null; /* Zero address for quick clears */ 513 static sin_t sin_null; /* Zero address for quick clears */ 514 515 /* When set search for unused ipif_seqid */ 516 static ipif_t ipif_zero; 517 518 /* 519 * ppa arena is created after these many 520 * interfaces have been plumbed. 521 */ 522 uint_t ill_no_arena = 12; /* Setable in /etc/system */ 523 524 /* 525 * Enable soft rings if ip_squeue_soft_ring or ip_squeue_fanout 526 * is set and ip_soft_rings_cnt > 0. ip_squeue_soft_ring is 527 * set through platform specific code (Niagara/Ontario). 528 */ 529 #define SOFT_RINGS_ENABLED() (ip_soft_rings_cnt ? \ 530 (ip_squeue_soft_ring || ip_squeue_fanout) : B_FALSE) 531 532 #define ILL_CAPAB_DLS (ILL_CAPAB_SOFT_RING | ILL_CAPAB_POLL) 533 534 static uint_t 535 ipif_rand(ip_stack_t *ipst) 536 { 537 ipst->ips_ipif_src_random = ipst->ips_ipif_src_random * 1103515245 + 538 12345; 539 return ((ipst->ips_ipif_src_random >> 16) & 0x7fff); 540 } 541 542 /* 543 * Allocate per-interface mibs. 544 * Returns true if ok. False otherwise. 545 * ipsq may not yet be allocated (loopback case ). 546 */ 547 static boolean_t 548 ill_allocate_mibs(ill_t *ill) 549 { 550 /* Already allocated? */ 551 if (ill->ill_ip_mib != NULL) { 552 if (ill->ill_isv6) 553 ASSERT(ill->ill_icmp6_mib != NULL); 554 return (B_TRUE); 555 } 556 557 ill->ill_ip_mib = kmem_zalloc(sizeof (*ill->ill_ip_mib), 558 KM_NOSLEEP); 559 if (ill->ill_ip_mib == NULL) { 560 return (B_FALSE); 561 } 562 563 /* Setup static information */ 564 SET_MIB(ill->ill_ip_mib->ipIfStatsEntrySize, 565 sizeof (mib2_ipIfStatsEntry_t)); 566 if (ill->ill_isv6) { 567 ill->ill_ip_mib->ipIfStatsIPVersion = MIB2_INETADDRESSTYPE_ipv6; 568 SET_MIB(ill->ill_ip_mib->ipIfStatsAddrEntrySize, 569 sizeof (mib2_ipv6AddrEntry_t)); 570 SET_MIB(ill->ill_ip_mib->ipIfStatsRouteEntrySize, 571 sizeof (mib2_ipv6RouteEntry_t)); 572 SET_MIB(ill->ill_ip_mib->ipIfStatsNetToMediaEntrySize, 573 sizeof (mib2_ipv6NetToMediaEntry_t)); 574 SET_MIB(ill->ill_ip_mib->ipIfStatsMemberEntrySize, 575 sizeof (ipv6_member_t)); 576 SET_MIB(ill->ill_ip_mib->ipIfStatsGroupSourceEntrySize, 577 sizeof (ipv6_grpsrc_t)); 578 } else { 579 ill->ill_ip_mib->ipIfStatsIPVersion = MIB2_INETADDRESSTYPE_ipv4; 580 SET_MIB(ill->ill_ip_mib->ipIfStatsAddrEntrySize, 581 sizeof (mib2_ipAddrEntry_t)); 582 SET_MIB(ill->ill_ip_mib->ipIfStatsRouteEntrySize, 583 sizeof (mib2_ipRouteEntry_t)); 584 SET_MIB(ill->ill_ip_mib->ipIfStatsNetToMediaEntrySize, 585 sizeof (mib2_ipNetToMediaEntry_t)); 586 SET_MIB(ill->ill_ip_mib->ipIfStatsMemberEntrySize, 587 sizeof (ip_member_t)); 588 SET_MIB(ill->ill_ip_mib->ipIfStatsGroupSourceEntrySize, 589 sizeof (ip_grpsrc_t)); 590 591 /* 592 * For a v4 ill, we are done at this point, because per ill 593 * icmp mibs are only used for v6. 594 */ 595 return (B_TRUE); 596 } 597 598 ill->ill_icmp6_mib = kmem_zalloc(sizeof (*ill->ill_icmp6_mib), 599 KM_NOSLEEP); 600 if (ill->ill_icmp6_mib == NULL) { 601 kmem_free(ill->ill_ip_mib, sizeof (*ill->ill_ip_mib)); 602 ill->ill_ip_mib = NULL; 603 return (B_FALSE); 604 } 605 /* static icmp info */ 606 ill->ill_icmp6_mib->ipv6IfIcmpEntrySize = 607 sizeof (mib2_ipv6IfIcmpEntry_t); 608 /* 609 * The ipIfStatsIfindex and ipv6IfIcmpIndex will be assigned later 610 * after the phyint merge occurs in ipif_set_values -> ill_glist_insert 611 * -> ill_phyint_reinit 612 */ 613 return (B_TRUE); 614 } 615 616 /* 617 * Common code for preparation of ARP commands. Two points to remember: 618 * 1) The ill_name is tacked on at the end of the allocated space so 619 * the templates name_offset field must contain the total space 620 * to allocate less the name length. 621 * 622 * 2) The templates name_length field should contain the *template* 623 * length. We use it as a parameter to bcopy() and then write 624 * the real ill_name_length into the name_length field of the copy. 625 * (Always called as writer.) 626 */ 627 mblk_t * 628 ill_arp_alloc(ill_t *ill, uchar_t *template, caddr_t addr) 629 { 630 arc_t *arc = (arc_t *)template; 631 char *cp; 632 int len; 633 mblk_t *mp; 634 uint_t name_length = ill->ill_name_length; 635 uint_t template_len = arc->arc_name_length; 636 637 len = arc->arc_name_offset + name_length; 638 mp = allocb(len, BPRI_HI); 639 if (mp == NULL) 640 return (NULL); 641 cp = (char *)mp->b_rptr; 642 mp->b_wptr = (uchar_t *)&cp[len]; 643 if (template_len) 644 bcopy(template, cp, template_len); 645 if (len > template_len) 646 bzero(&cp[template_len], len - template_len); 647 mp->b_datap->db_type = M_PROTO; 648 649 arc = (arc_t *)cp; 650 arc->arc_name_length = name_length; 651 cp = (char *)arc + arc->arc_name_offset; 652 bcopy(ill->ill_name, cp, name_length); 653 654 if (addr) { 655 area_t *area = (area_t *)mp->b_rptr; 656 657 cp = (char *)area + area->area_proto_addr_offset; 658 bcopy(addr, cp, area->area_proto_addr_length); 659 if (area->area_cmd == AR_ENTRY_ADD) { 660 cp = (char *)area; 661 len = area->area_proto_addr_length; 662 if (area->area_proto_mask_offset) 663 cp += area->area_proto_mask_offset; 664 else 665 cp += area->area_proto_addr_offset + len; 666 while (len-- > 0) 667 *cp++ = (char)~0; 668 } 669 } 670 return (mp); 671 } 672 673 mblk_t * 674 ipif_area_alloc(ipif_t *ipif) 675 { 676 return (ill_arp_alloc(ipif->ipif_ill, (uchar_t *)&ip_area_template, 677 (char *)&ipif->ipif_lcl_addr)); 678 } 679 680 mblk_t * 681 ipif_ared_alloc(ipif_t *ipif) 682 { 683 return (ill_arp_alloc(ipif->ipif_ill, (uchar_t *)&ip_ared_template, 684 (char *)&ipif->ipif_lcl_addr)); 685 } 686 687 mblk_t * 688 ill_ared_alloc(ill_t *ill, ipaddr_t addr) 689 { 690 return (ill_arp_alloc(ill, (uchar_t *)&ip_ared_template, 691 (char *)&addr)); 692 } 693 694 /* 695 * Completely vaporize a lower level tap and all associated interfaces. 696 * ill_delete is called only out of ip_close when the device control 697 * stream is being closed. 698 */ 699 void 700 ill_delete(ill_t *ill) 701 { 702 ipif_t *ipif; 703 ill_t *prev_ill; 704 ip_stack_t *ipst = ill->ill_ipst; 705 706 /* 707 * ill_delete may be forcibly entering the ipsq. The previous 708 * ioctl may not have completed and may need to be aborted. 709 * ipsq_flush takes care of it. If we don't need to enter the 710 * the ipsq forcibly, the 2nd invocation of ipsq_flush in 711 * ill_delete_tail is sufficient. 712 */ 713 ipsq_flush(ill); 714 715 /* 716 * Nuke all interfaces. ipif_free will take down the interface, 717 * remove it from the list, and free the data structure. 718 * Walk down the ipif list and remove the logical interfaces 719 * first before removing the main ipif. We can't unplumb 720 * zeroth interface first in the case of IPv6 as reset_conn_ill 721 * -> ip_ll_delmulti_v6 de-references ill_ipif for checking 722 * POINTOPOINT. 723 * 724 * If ill_ipif was not properly initialized (i.e low on memory), 725 * then no interfaces to clean up. In this case just clean up the 726 * ill. 727 */ 728 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) 729 ipif_free(ipif); 730 731 /* 732 * Used only by ill_arp_on and ill_arp_off, which are writers. 733 * So nobody can be using this mp now. Free the mp allocated for 734 * honoring ILLF_NOARP 735 */ 736 freemsg(ill->ill_arp_on_mp); 737 ill->ill_arp_on_mp = NULL; 738 739 /* Clean up msgs on pending upcalls for mrouted */ 740 reset_mrt_ill(ill); 741 742 /* 743 * ipif_free -> reset_conn_ipif will remove all multicast 744 * references for IPv4. For IPv6, we need to do it here as 745 * it points only at ills. 746 */ 747 reset_conn_ill(ill); 748 749 /* 750 * ill_down will arrange to blow off any IRE's dependent on this 751 * ILL, and shut down fragmentation reassembly. 752 */ 753 ill_down(ill); 754 755 /* Let SCTP know, so that it can remove this from its list. */ 756 sctp_update_ill(ill, SCTP_ILL_REMOVE); 757 758 /* 759 * If an address on this ILL is being used as a source address then 760 * clear out the pointers in other ILLs that point to this ILL. 761 */ 762 rw_enter(&ipst->ips_ill_g_usesrc_lock, RW_WRITER); 763 if (ill->ill_usesrc_grp_next != NULL) { 764 if (ill->ill_usesrc_ifindex == 0) { /* usesrc ILL ? */ 765 ill_disband_usesrc_group(ill); 766 } else { /* consumer of the usesrc ILL */ 767 prev_ill = ill_prev_usesrc(ill); 768 prev_ill->ill_usesrc_grp_next = 769 ill->ill_usesrc_grp_next; 770 } 771 } 772 rw_exit(&ipst->ips_ill_g_usesrc_lock); 773 } 774 775 static void 776 ipif_non_duplicate(ipif_t *ipif) 777 { 778 ill_t *ill = ipif->ipif_ill; 779 mutex_enter(&ill->ill_lock); 780 if (ipif->ipif_flags & IPIF_DUPLICATE) { 781 ipif->ipif_flags &= ~IPIF_DUPLICATE; 782 ASSERT(ill->ill_ipif_dup_count > 0); 783 ill->ill_ipif_dup_count--; 784 } 785 mutex_exit(&ill->ill_lock); 786 } 787 788 /* 789 * ill_delete_tail is called from ip_modclose after all references 790 * to the closing ill are gone. The wait is done in ip_modclose 791 */ 792 void 793 ill_delete_tail(ill_t *ill) 794 { 795 mblk_t **mpp; 796 ipif_t *ipif; 797 ip_stack_t *ipst = ill->ill_ipst; 798 799 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 800 ipif_non_duplicate(ipif); 801 ipif_down_tail(ipif); 802 } 803 804 ASSERT(ill->ill_ipif_dup_count == 0 && 805 ill->ill_arp_down_mp == NULL && 806 ill->ill_arp_del_mapping_mp == NULL); 807 808 /* 809 * If polling capability is enabled (which signifies direct 810 * upcall into IP and driver has ill saved as a handle), 811 * we need to make sure that unbind has completed before we 812 * let the ill disappear and driver no longer has any reference 813 * to this ill. 814 */ 815 mutex_enter(&ill->ill_lock); 816 while (ill->ill_state_flags & ILL_DL_UNBIND_IN_PROGRESS) 817 cv_wait(&ill->ill_cv, &ill->ill_lock); 818 mutex_exit(&ill->ill_lock); 819 820 /* 821 * Clean up polling and soft ring capabilities 822 */ 823 if (ill->ill_capabilities & (ILL_CAPAB_POLL|ILL_CAPAB_SOFT_RING)) 824 ill_capability_dls_disable(ill); 825 826 if (ill->ill_net_type != IRE_LOOPBACK) 827 qprocsoff(ill->ill_rq); 828 829 /* 830 * We do an ipsq_flush once again now. New messages could have 831 * landed up from below (M_ERROR or M_HANGUP). Similarly ioctls 832 * could also have landed up if an ioctl thread had looked up 833 * the ill before we set the ILL_CONDEMNED flag, but not yet 834 * enqueued the ioctl when we did the ipsq_flush last time. 835 */ 836 ipsq_flush(ill); 837 838 /* 839 * Free capabilities. 840 */ 841 if (ill->ill_ipsec_capab_ah != NULL) { 842 ill_ipsec_capab_delete(ill, DL_CAPAB_IPSEC_AH); 843 ill_ipsec_capab_free(ill->ill_ipsec_capab_ah); 844 ill->ill_ipsec_capab_ah = NULL; 845 } 846 847 if (ill->ill_ipsec_capab_esp != NULL) { 848 ill_ipsec_capab_delete(ill, DL_CAPAB_IPSEC_ESP); 849 ill_ipsec_capab_free(ill->ill_ipsec_capab_esp); 850 ill->ill_ipsec_capab_esp = NULL; 851 } 852 853 if (ill->ill_mdt_capab != NULL) { 854 kmem_free(ill->ill_mdt_capab, sizeof (ill_mdt_capab_t)); 855 ill->ill_mdt_capab = NULL; 856 } 857 858 if (ill->ill_hcksum_capab != NULL) { 859 kmem_free(ill->ill_hcksum_capab, sizeof (ill_hcksum_capab_t)); 860 ill->ill_hcksum_capab = NULL; 861 } 862 863 if (ill->ill_zerocopy_capab != NULL) { 864 kmem_free(ill->ill_zerocopy_capab, 865 sizeof (ill_zerocopy_capab_t)); 866 ill->ill_zerocopy_capab = NULL; 867 } 868 869 if (ill->ill_lso_capab != NULL) { 870 kmem_free(ill->ill_lso_capab, sizeof (ill_lso_capab_t)); 871 ill->ill_lso_capab = NULL; 872 } 873 874 if (ill->ill_dls_capab != NULL) { 875 CONN_DEC_REF(ill->ill_dls_capab->ill_unbind_conn); 876 ill->ill_dls_capab->ill_unbind_conn = NULL; 877 kmem_free(ill->ill_dls_capab, 878 sizeof (ill_dls_capab_t) + 879 (sizeof (ill_rx_ring_t) * ILL_MAX_RINGS)); 880 ill->ill_dls_capab = NULL; 881 } 882 883 ASSERT(!(ill->ill_capabilities & ILL_CAPAB_POLL)); 884 885 while (ill->ill_ipif != NULL) 886 ipif_free_tail(ill->ill_ipif); 887 888 /* 889 * We have removed all references to ilm from conn and the ones joined 890 * within the kernel. 891 * 892 * We don't walk conns, mrts and ires because 893 * 894 * 1) reset_conn_ill and reset_mrt_ill cleans up conns and mrts. 895 * 2) ill_down ->ill_downi walks all the ires and cleans up 896 * ill references. 897 */ 898 ASSERT(ilm_walk_ill(ill) == 0); 899 /* 900 * Take us out of the list of ILLs. ill_glist_delete -> ill_phyint_free 901 * could free the phyint. No more reference to the phyint after this 902 * point. 903 */ 904 (void) ill_glist_delete(ill); 905 906 rw_enter(&ipst->ips_ip_g_nd_lock, RW_WRITER); 907 if (ill->ill_ndd_name != NULL) 908 nd_unload(&ipst->ips_ip_g_nd, ill->ill_ndd_name); 909 rw_exit(&ipst->ips_ip_g_nd_lock); 910 911 912 if (ill->ill_frag_ptr != NULL) { 913 uint_t count; 914 915 for (count = 0; count < ILL_FRAG_HASH_TBL_COUNT; count++) { 916 mutex_destroy(&ill->ill_frag_hash_tbl[count].ipfb_lock); 917 } 918 mi_free(ill->ill_frag_ptr); 919 ill->ill_frag_ptr = NULL; 920 ill->ill_frag_hash_tbl = NULL; 921 } 922 923 freemsg(ill->ill_nd_lla_mp); 924 /* Free all retained control messages. */ 925 mpp = &ill->ill_first_mp_to_free; 926 do { 927 while (mpp[0]) { 928 mblk_t *mp; 929 mblk_t *mp1; 930 931 mp = mpp[0]; 932 mpp[0] = mp->b_next; 933 for (mp1 = mp; mp1 != NULL; mp1 = mp1->b_cont) { 934 mp1->b_next = NULL; 935 mp1->b_prev = NULL; 936 } 937 freemsg(mp); 938 } 939 } while (mpp++ != &ill->ill_last_mp_to_free); 940 941 ill_free_mib(ill); 942 /* Drop refcnt here */ 943 netstack_rele(ill->ill_ipst->ips_netstack); 944 ill->ill_ipst = NULL; 945 946 ILL_TRACE_CLEANUP(ill); 947 } 948 949 static void 950 ill_free_mib(ill_t *ill) 951 { 952 ip_stack_t *ipst = ill->ill_ipst; 953 954 /* 955 * MIB statistics must not be lost, so when an interface 956 * goes away the counter values will be added to the global 957 * MIBs. 958 */ 959 if (ill->ill_ip_mib != NULL) { 960 if (ill->ill_isv6) { 961 ip_mib2_add_ip_stats(&ipst->ips_ip6_mib, 962 ill->ill_ip_mib); 963 } else { 964 ip_mib2_add_ip_stats(&ipst->ips_ip_mib, 965 ill->ill_ip_mib); 966 } 967 968 kmem_free(ill->ill_ip_mib, sizeof (*ill->ill_ip_mib)); 969 ill->ill_ip_mib = NULL; 970 } 971 if (ill->ill_icmp6_mib != NULL) { 972 ip_mib2_add_icmp6_stats(&ipst->ips_icmp6_mib, 973 ill->ill_icmp6_mib); 974 kmem_free(ill->ill_icmp6_mib, sizeof (*ill->ill_icmp6_mib)); 975 ill->ill_icmp6_mib = NULL; 976 } 977 } 978 979 /* 980 * Concatenate together a physical address and a sap. 981 * 982 * Sap_lengths are interpreted as follows: 983 * sap_length == 0 ==> no sap 984 * sap_length > 0 ==> sap is at the head of the dlpi address 985 * sap_length < 0 ==> sap is at the tail of the dlpi address 986 */ 987 static void 988 ill_dlur_copy_address(uchar_t *phys_src, uint_t phys_length, 989 t_scalar_t sap_src, t_scalar_t sap_length, uchar_t *dst) 990 { 991 uint16_t sap_addr = (uint16_t)sap_src; 992 993 if (sap_length == 0) { 994 if (phys_src == NULL) 995 bzero(dst, phys_length); 996 else 997 bcopy(phys_src, dst, phys_length); 998 } else if (sap_length < 0) { 999 if (phys_src == NULL) 1000 bzero(dst, phys_length); 1001 else 1002 bcopy(phys_src, dst, phys_length); 1003 bcopy(&sap_addr, (char *)dst + phys_length, sizeof (sap_addr)); 1004 } else { 1005 bcopy(&sap_addr, dst, sizeof (sap_addr)); 1006 if (phys_src == NULL) 1007 bzero((char *)dst + sap_length, phys_length); 1008 else 1009 bcopy(phys_src, (char *)dst + sap_length, phys_length); 1010 } 1011 } 1012 1013 /* 1014 * Generate a dl_unitdata_req mblk for the device and address given. 1015 * addr_length is the length of the physical portion of the address. 1016 * If addr is NULL include an all zero address of the specified length. 1017 * TRUE? In any case, addr_length is taken to be the entire length of the 1018 * dlpi address, including the absolute value of sap_length. 1019 */ 1020 mblk_t * 1021 ill_dlur_gen(uchar_t *addr, uint_t addr_length, t_uscalar_t sap, 1022 t_scalar_t sap_length) 1023 { 1024 dl_unitdata_req_t *dlur; 1025 mblk_t *mp; 1026 t_scalar_t abs_sap_length; /* absolute value */ 1027 1028 abs_sap_length = ABS(sap_length); 1029 mp = ip_dlpi_alloc(sizeof (*dlur) + addr_length + abs_sap_length, 1030 DL_UNITDATA_REQ); 1031 if (mp == NULL) 1032 return (NULL); 1033 dlur = (dl_unitdata_req_t *)mp->b_rptr; 1034 /* HACK: accomodate incompatible DLPI drivers */ 1035 if (addr_length == 8) 1036 addr_length = 6; 1037 dlur->dl_dest_addr_length = addr_length + abs_sap_length; 1038 dlur->dl_dest_addr_offset = sizeof (*dlur); 1039 dlur->dl_priority.dl_min = 0; 1040 dlur->dl_priority.dl_max = 0; 1041 ill_dlur_copy_address(addr, addr_length, sap, sap_length, 1042 (uchar_t *)&dlur[1]); 1043 return (mp); 1044 } 1045 1046 /* 1047 * Add the 'mp' to the list of pending mp's headed by ill_pending_mp 1048 * Return an error if we already have 1 or more ioctls in progress. 1049 * This is used only for non-exclusive ioctls. Currently this is used 1050 * for SIOC*ARP and SIOCGTUNPARAM ioctls. Most set ioctls are exclusive 1051 * and thus need to use ipsq_pending_mp_add. 1052 */ 1053 boolean_t 1054 ill_pending_mp_add(ill_t *ill, conn_t *connp, mblk_t *add_mp) 1055 { 1056 ASSERT(MUTEX_HELD(&ill->ill_lock)); 1057 ASSERT((add_mp->b_next == NULL) && (add_mp->b_prev == NULL)); 1058 /* 1059 * M_IOCDATA from ioctls, M_IOCTL from tunnel ioctls. 1060 */ 1061 ASSERT((add_mp->b_datap->db_type == M_IOCDATA) || 1062 (add_mp->b_datap->db_type == M_IOCTL)); 1063 1064 ASSERT(MUTEX_HELD(&connp->conn_lock)); 1065 /* 1066 * Return error if the conn has started closing. The conn 1067 * could have finished cleaning up the pending mp list, 1068 * If so we should not add another mp to the list negating 1069 * the cleanup. 1070 */ 1071 if (connp->conn_state_flags & CONN_CLOSING) 1072 return (B_FALSE); 1073 /* 1074 * Add the pending mp to the head of the list, chained by b_next. 1075 * Note down the conn on which the ioctl request came, in b_prev. 1076 * This will be used to later get the conn, when we get a response 1077 * on the ill queue, from some other module (typically arp) 1078 */ 1079 add_mp->b_next = (void *)ill->ill_pending_mp; 1080 add_mp->b_queue = CONNP_TO_WQ(connp); 1081 ill->ill_pending_mp = add_mp; 1082 if (connp != NULL) 1083 connp->conn_oper_pending_ill = ill; 1084 return (B_TRUE); 1085 } 1086 1087 /* 1088 * Retrieve the ill_pending_mp and return it. We have to walk the list 1089 * of mblks starting at ill_pending_mp, and match based on the ioc_id. 1090 */ 1091 mblk_t * 1092 ill_pending_mp_get(ill_t *ill, conn_t **connpp, uint_t ioc_id) 1093 { 1094 mblk_t *prev = NULL; 1095 mblk_t *curr = NULL; 1096 uint_t id; 1097 conn_t *connp; 1098 1099 /* 1100 * When the conn closes, conn_ioctl_cleanup needs to clean 1101 * up the pending mp, but it does not know the ioc_id and 1102 * passes in a zero for it. 1103 */ 1104 mutex_enter(&ill->ill_lock); 1105 if (ioc_id != 0) 1106 *connpp = NULL; 1107 1108 /* Search the list for the appropriate ioctl based on ioc_id */ 1109 for (prev = NULL, curr = ill->ill_pending_mp; curr != NULL; 1110 prev = curr, curr = curr->b_next) { 1111 id = ((struct iocblk *)curr->b_rptr)->ioc_id; 1112 connp = Q_TO_CONN(curr->b_queue); 1113 /* Match based on the ioc_id or based on the conn */ 1114 if ((id == ioc_id) || (ioc_id == 0 && connp == *connpp)) 1115 break; 1116 } 1117 1118 if (curr != NULL) { 1119 /* Unlink the mblk from the pending mp list */ 1120 if (prev != NULL) { 1121 prev->b_next = curr->b_next; 1122 } else { 1123 ASSERT(ill->ill_pending_mp == curr); 1124 ill->ill_pending_mp = curr->b_next; 1125 } 1126 1127 /* 1128 * conn refcnt must have been bumped up at the start of 1129 * the ioctl. So we can safely access the conn. 1130 */ 1131 ASSERT(CONN_Q(curr->b_queue)); 1132 *connpp = Q_TO_CONN(curr->b_queue); 1133 curr->b_next = NULL; 1134 curr->b_queue = NULL; 1135 } 1136 1137 mutex_exit(&ill->ill_lock); 1138 1139 return (curr); 1140 } 1141 1142 /* 1143 * Add the pending mp to the list. There can be only 1 pending mp 1144 * in the list. Any exclusive ioctl that needs to wait for a response 1145 * from another module or driver needs to use this function to set 1146 * the ipsq_pending_mp to the ioctl mblk and wait for the response from 1147 * the other module/driver. This is also used while waiting for the 1148 * ipif/ill/ire refcnts to drop to zero in bringing down an ipif. 1149 */ 1150 boolean_t 1151 ipsq_pending_mp_add(conn_t *connp, ipif_t *ipif, queue_t *q, mblk_t *add_mp, 1152 int waitfor) 1153 { 1154 ipsq_t *ipsq = ipif->ipif_ill->ill_phyint->phyint_ipsq; 1155 1156 ASSERT(IAM_WRITER_IPIF(ipif)); 1157 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 1158 ASSERT((add_mp->b_next == NULL) && (add_mp->b_prev == NULL)); 1159 ASSERT(ipsq->ipsq_pending_mp == NULL); 1160 /* 1161 * The caller may be using a different ipif than the one passed into 1162 * ipsq_current_start() (e.g., suppose an ioctl that came in on the V4 1163 * ill needs to wait for the V6 ill to quiesce). So we can't ASSERT 1164 * that `ipsq_current_ipif == ipif'. 1165 */ 1166 ASSERT(ipsq->ipsq_current_ipif != NULL); 1167 1168 /* 1169 * M_IOCDATA from ioctls, M_IOCTL from tunnel ioctls, 1170 * M_ERROR/M_HANGUP/M_PROTO/M_PCPROTO from the driver. 1171 */ 1172 ASSERT((DB_TYPE(add_mp) == M_IOCDATA) || (DB_TYPE(add_mp) == M_IOCTL) || 1173 (DB_TYPE(add_mp) == M_ERROR) || (DB_TYPE(add_mp) == M_HANGUP) || 1174 (DB_TYPE(add_mp) == M_PROTO) || (DB_TYPE(add_mp) == M_PCPROTO)); 1175 1176 if (connp != NULL) { 1177 ASSERT(MUTEX_HELD(&connp->conn_lock)); 1178 /* 1179 * Return error if the conn has started closing. The conn 1180 * could have finished cleaning up the pending mp list, 1181 * If so we should not add another mp to the list negating 1182 * the cleanup. 1183 */ 1184 if (connp->conn_state_flags & CONN_CLOSING) 1185 return (B_FALSE); 1186 } 1187 mutex_enter(&ipsq->ipsq_lock); 1188 ipsq->ipsq_pending_ipif = ipif; 1189 /* 1190 * Note down the queue in b_queue. This will be returned by 1191 * ipsq_pending_mp_get. Caller will then use these values to restart 1192 * the processing 1193 */ 1194 add_mp->b_next = NULL; 1195 add_mp->b_queue = q; 1196 ipsq->ipsq_pending_mp = add_mp; 1197 ipsq->ipsq_waitfor = waitfor; 1198 1199 if (connp != NULL) 1200 connp->conn_oper_pending_ill = ipif->ipif_ill; 1201 mutex_exit(&ipsq->ipsq_lock); 1202 return (B_TRUE); 1203 } 1204 1205 /* 1206 * Retrieve the ipsq_pending_mp and return it. There can be only 1 mp 1207 * queued in the list. 1208 */ 1209 mblk_t * 1210 ipsq_pending_mp_get(ipsq_t *ipsq, conn_t **connpp) 1211 { 1212 mblk_t *curr = NULL; 1213 1214 mutex_enter(&ipsq->ipsq_lock); 1215 *connpp = NULL; 1216 if (ipsq->ipsq_pending_mp == NULL) { 1217 mutex_exit(&ipsq->ipsq_lock); 1218 return (NULL); 1219 } 1220 1221 /* There can be only 1 such excl message */ 1222 curr = ipsq->ipsq_pending_mp; 1223 ASSERT(curr != NULL && curr->b_next == NULL); 1224 ipsq->ipsq_pending_ipif = NULL; 1225 ipsq->ipsq_pending_mp = NULL; 1226 ipsq->ipsq_waitfor = 0; 1227 mutex_exit(&ipsq->ipsq_lock); 1228 1229 if (CONN_Q(curr->b_queue)) { 1230 /* 1231 * This mp did a refhold on the conn, at the start of the ioctl. 1232 * So we can safely return a pointer to the conn to the caller. 1233 */ 1234 *connpp = Q_TO_CONN(curr->b_queue); 1235 } else { 1236 *connpp = NULL; 1237 } 1238 curr->b_next = NULL; 1239 curr->b_prev = NULL; 1240 return (curr); 1241 } 1242 1243 /* 1244 * Cleanup the ioctl mp queued in ipsq_pending_mp 1245 * - Called in the ill_delete path 1246 * - Called in the M_ERROR or M_HANGUP path on the ill. 1247 * - Called in the conn close path. 1248 */ 1249 boolean_t 1250 ipsq_pending_mp_cleanup(ill_t *ill, conn_t *connp) 1251 { 1252 mblk_t *mp; 1253 ipsq_t *ipsq; 1254 queue_t *q; 1255 ipif_t *ipif; 1256 1257 ASSERT(IAM_WRITER_ILL(ill)); 1258 ipsq = ill->ill_phyint->phyint_ipsq; 1259 mutex_enter(&ipsq->ipsq_lock); 1260 /* 1261 * If connp is null, unconditionally clean up the ipsq_pending_mp. 1262 * This happens in M_ERROR/M_HANGUP. We need to abort the current ioctl 1263 * even if it is meant for another ill, since we have to enqueue 1264 * a new mp now in ipsq_pending_mp to complete the ipif_down. 1265 * If connp is non-null we are called from the conn close path. 1266 */ 1267 mp = ipsq->ipsq_pending_mp; 1268 if (mp == NULL || (connp != NULL && 1269 mp->b_queue != CONNP_TO_WQ(connp))) { 1270 mutex_exit(&ipsq->ipsq_lock); 1271 return (B_FALSE); 1272 } 1273 /* Now remove from the ipsq_pending_mp */ 1274 ipsq->ipsq_pending_mp = NULL; 1275 q = mp->b_queue; 1276 mp->b_next = NULL; 1277 mp->b_prev = NULL; 1278 mp->b_queue = NULL; 1279 1280 /* If MOVE was in progress, clear the move_in_progress fields also. */ 1281 ill = ipsq->ipsq_pending_ipif->ipif_ill; 1282 if (ill->ill_move_in_progress) { 1283 ILL_CLEAR_MOVE(ill); 1284 } else if (ill->ill_up_ipifs) { 1285 ill_group_cleanup(ill); 1286 } 1287 1288 ipif = ipsq->ipsq_pending_ipif; 1289 ipsq->ipsq_pending_ipif = NULL; 1290 ipsq->ipsq_waitfor = 0; 1291 ipsq->ipsq_current_ipif = NULL; 1292 ipsq->ipsq_current_ioctl = 0; 1293 mutex_exit(&ipsq->ipsq_lock); 1294 1295 if (DB_TYPE(mp) == M_IOCTL || DB_TYPE(mp) == M_IOCDATA) { 1296 if (connp == NULL) { 1297 ip_ioctl_finish(q, mp, ENXIO, NO_COPYOUT, NULL); 1298 } else { 1299 ip_ioctl_finish(q, mp, ENXIO, CONN_CLOSE, NULL); 1300 mutex_enter(&ipif->ipif_ill->ill_lock); 1301 ipif->ipif_state_flags &= ~IPIF_CHANGING; 1302 mutex_exit(&ipif->ipif_ill->ill_lock); 1303 } 1304 } else { 1305 /* 1306 * IP-MT XXX In the case of TLI/XTI bind / optmgmt this can't 1307 * be just inet_freemsg. we have to restart it 1308 * otherwise the thread will be stuck. 1309 */ 1310 inet_freemsg(mp); 1311 } 1312 return (B_TRUE); 1313 } 1314 1315 /* 1316 * The ill is closing. Cleanup all the pending mps. Called exclusively 1317 * towards the end of ill_delete. The refcount has gone to 0. So nobody 1318 * knows this ill, and hence nobody can add an mp to this list 1319 */ 1320 static void 1321 ill_pending_mp_cleanup(ill_t *ill) 1322 { 1323 mblk_t *mp; 1324 queue_t *q; 1325 1326 ASSERT(IAM_WRITER_ILL(ill)); 1327 1328 mutex_enter(&ill->ill_lock); 1329 /* 1330 * Every mp on the pending mp list originating from an ioctl 1331 * added 1 to the conn refcnt, at the start of the ioctl. 1332 * So bump it down now. See comments in ip_wput_nondata() 1333 */ 1334 while (ill->ill_pending_mp != NULL) { 1335 mp = ill->ill_pending_mp; 1336 ill->ill_pending_mp = mp->b_next; 1337 mutex_exit(&ill->ill_lock); 1338 1339 q = mp->b_queue; 1340 ASSERT(CONN_Q(q)); 1341 mp->b_next = NULL; 1342 mp->b_prev = NULL; 1343 mp->b_queue = NULL; 1344 ip_ioctl_finish(q, mp, ENXIO, NO_COPYOUT, NULL); 1345 mutex_enter(&ill->ill_lock); 1346 } 1347 ill->ill_pending_ipif = NULL; 1348 1349 mutex_exit(&ill->ill_lock); 1350 } 1351 1352 /* 1353 * Called in the conn close path and ill delete path 1354 */ 1355 static void 1356 ipsq_xopq_mp_cleanup(ill_t *ill, conn_t *connp) 1357 { 1358 ipsq_t *ipsq; 1359 mblk_t *prev; 1360 mblk_t *curr; 1361 mblk_t *next; 1362 queue_t *q; 1363 mblk_t *tmp_list = NULL; 1364 1365 ASSERT(IAM_WRITER_ILL(ill)); 1366 if (connp != NULL) 1367 q = CONNP_TO_WQ(connp); 1368 else 1369 q = ill->ill_wq; 1370 1371 ipsq = ill->ill_phyint->phyint_ipsq; 1372 /* 1373 * Cleanup the ioctl mp's queued in ipsq_xopq_pending_mp if any. 1374 * In the case of ioctl from a conn, there can be only 1 mp 1375 * queued on the ipsq. If an ill is being unplumbed, only messages 1376 * related to this ill are flushed, like M_ERROR or M_HANGUP message. 1377 * ioctls meant for this ill form conn's are not flushed. They will 1378 * be processed during ipsq_exit and will not find the ill and will 1379 * return error. 1380 */ 1381 mutex_enter(&ipsq->ipsq_lock); 1382 for (prev = NULL, curr = ipsq->ipsq_xopq_mphead; curr != NULL; 1383 curr = next) { 1384 next = curr->b_next; 1385 if (curr->b_queue == q || curr->b_queue == RD(q)) { 1386 /* Unlink the mblk from the pending mp list */ 1387 if (prev != NULL) { 1388 prev->b_next = curr->b_next; 1389 } else { 1390 ASSERT(ipsq->ipsq_xopq_mphead == curr); 1391 ipsq->ipsq_xopq_mphead = curr->b_next; 1392 } 1393 if (ipsq->ipsq_xopq_mptail == curr) 1394 ipsq->ipsq_xopq_mptail = prev; 1395 /* 1396 * Create a temporary list and release the ipsq lock 1397 * New elements are added to the head of the tmp_list 1398 */ 1399 curr->b_next = tmp_list; 1400 tmp_list = curr; 1401 } else { 1402 prev = curr; 1403 } 1404 } 1405 mutex_exit(&ipsq->ipsq_lock); 1406 1407 while (tmp_list != NULL) { 1408 curr = tmp_list; 1409 tmp_list = curr->b_next; 1410 curr->b_next = NULL; 1411 curr->b_prev = NULL; 1412 curr->b_queue = NULL; 1413 if (DB_TYPE(curr) == M_IOCTL || DB_TYPE(curr) == M_IOCDATA) { 1414 ip_ioctl_finish(q, curr, ENXIO, connp != NULL ? 1415 CONN_CLOSE : NO_COPYOUT, NULL); 1416 } else { 1417 /* 1418 * IP-MT XXX In the case of TLI/XTI bind / optmgmt 1419 * this can't be just inet_freemsg. we have to 1420 * restart it otherwise the thread will be stuck. 1421 */ 1422 inet_freemsg(curr); 1423 } 1424 } 1425 } 1426 1427 /* 1428 * This conn has started closing. Cleanup any pending ioctl from this conn. 1429 * STREAMS ensures that there can be at most 1 ioctl pending on a stream. 1430 */ 1431 void 1432 conn_ioctl_cleanup(conn_t *connp) 1433 { 1434 mblk_t *curr; 1435 ipsq_t *ipsq; 1436 ill_t *ill; 1437 boolean_t refheld; 1438 1439 /* 1440 * Is any exclusive ioctl pending ? If so clean it up. If the 1441 * ioctl has not yet started, the mp is pending in the list headed by 1442 * ipsq_xopq_head. If the ioctl has started the mp could be present in 1443 * ipsq_pending_mp. If the ioctl timed out in the streamhead but 1444 * is currently executing now the mp is not queued anywhere but 1445 * conn_oper_pending_ill is null. The conn close will wait 1446 * till the conn_ref drops to zero. 1447 */ 1448 mutex_enter(&connp->conn_lock); 1449 ill = connp->conn_oper_pending_ill; 1450 if (ill == NULL) { 1451 mutex_exit(&connp->conn_lock); 1452 return; 1453 } 1454 1455 curr = ill_pending_mp_get(ill, &connp, 0); 1456 if (curr != NULL) { 1457 mutex_exit(&connp->conn_lock); 1458 CONN_DEC_REF(connp); 1459 inet_freemsg(curr); 1460 return; 1461 } 1462 /* 1463 * We may not be able to refhold the ill if the ill/ipif 1464 * is changing. But we need to make sure that the ill will 1465 * not vanish. So we just bump up the ill_waiter count. 1466 */ 1467 refheld = ill_waiter_inc(ill); 1468 mutex_exit(&connp->conn_lock); 1469 if (refheld) { 1470 if (ipsq_enter(ill, B_TRUE)) { 1471 ill_waiter_dcr(ill); 1472 /* 1473 * Check whether this ioctl has started and is 1474 * pending now in ipsq_pending_mp. If it is not 1475 * found there then check whether this ioctl has 1476 * not even started and is in the ipsq_xopq list. 1477 */ 1478 if (!ipsq_pending_mp_cleanup(ill, connp)) 1479 ipsq_xopq_mp_cleanup(ill, connp); 1480 ipsq = ill->ill_phyint->phyint_ipsq; 1481 ipsq_exit(ipsq, B_TRUE, B_TRUE); 1482 return; 1483 } 1484 } 1485 1486 /* 1487 * The ill is also closing and we could not bump up the 1488 * ill_waiter_count or we could not enter the ipsq. Leave 1489 * the cleanup to ill_delete 1490 */ 1491 mutex_enter(&connp->conn_lock); 1492 while (connp->conn_oper_pending_ill != NULL) 1493 cv_wait(&connp->conn_refcv, &connp->conn_lock); 1494 mutex_exit(&connp->conn_lock); 1495 if (refheld) 1496 ill_waiter_dcr(ill); 1497 } 1498 1499 /* 1500 * ipcl_walk function for cleaning up conn_*_ill fields. 1501 */ 1502 static void 1503 conn_cleanup_ill(conn_t *connp, caddr_t arg) 1504 { 1505 ill_t *ill = (ill_t *)arg; 1506 ire_t *ire; 1507 1508 mutex_enter(&connp->conn_lock); 1509 if (connp->conn_multicast_ill == ill) { 1510 /* Revert to late binding */ 1511 connp->conn_multicast_ill = NULL; 1512 connp->conn_orig_multicast_ifindex = 0; 1513 } 1514 if (connp->conn_incoming_ill == ill) 1515 connp->conn_incoming_ill = NULL; 1516 if (connp->conn_outgoing_ill == ill) 1517 connp->conn_outgoing_ill = NULL; 1518 if (connp->conn_outgoing_pill == ill) 1519 connp->conn_outgoing_pill = NULL; 1520 if (connp->conn_nofailover_ill == ill) 1521 connp->conn_nofailover_ill = NULL; 1522 if (connp->conn_xmit_if_ill == ill) 1523 connp->conn_xmit_if_ill = NULL; 1524 if (connp->conn_ire_cache != NULL) { 1525 ire = connp->conn_ire_cache; 1526 /* 1527 * ip_newroute creates IRE_CACHE with ire_stq coming from 1528 * interface X and ipif coming from interface Y, if interface 1529 * X and Y are part of the same IPMPgroup. Thus whenever 1530 * interface X goes down, remove all references to it by 1531 * checking both on ire_ipif and ire_stq. 1532 */ 1533 if ((ire->ire_ipif != NULL && ire->ire_ipif->ipif_ill == ill) || 1534 (ire->ire_type == IRE_CACHE && 1535 ire->ire_stq == ill->ill_wq)) { 1536 connp->conn_ire_cache = NULL; 1537 mutex_exit(&connp->conn_lock); 1538 ire_refrele_notr(ire); 1539 return; 1540 } 1541 } 1542 mutex_exit(&connp->conn_lock); 1543 1544 } 1545 1546 /* ARGSUSED */ 1547 void 1548 ipif_all_down_tail(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 1549 { 1550 ill_t *ill = q->q_ptr; 1551 ipif_t *ipif; 1552 1553 ASSERT(IAM_WRITER_IPSQ(ipsq)); 1554 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 1555 ipif_non_duplicate(ipif); 1556 ipif_down_tail(ipif); 1557 } 1558 freemsg(mp); 1559 ipsq_current_finish(ipsq); 1560 } 1561 1562 /* 1563 * ill_down_start is called when we want to down this ill and bring it up again 1564 * It is called when we receive an M_ERROR / M_HANGUP. In this case we shut down 1565 * all interfaces, but don't tear down any plumbing. 1566 */ 1567 boolean_t 1568 ill_down_start(queue_t *q, mblk_t *mp) 1569 { 1570 ill_t *ill = q->q_ptr; 1571 ipif_t *ipif; 1572 1573 ASSERT(IAM_WRITER_ILL(ill)); 1574 1575 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) 1576 (void) ipif_down(ipif, NULL, NULL); 1577 1578 ill_down(ill); 1579 1580 (void) ipsq_pending_mp_cleanup(ill, NULL); 1581 1582 ipsq_current_start(ill->ill_phyint->phyint_ipsq, ill->ill_ipif, 0); 1583 1584 /* 1585 * Atomically test and add the pending mp if references are active. 1586 */ 1587 mutex_enter(&ill->ill_lock); 1588 if (!ill_is_quiescent(ill)) { 1589 /* call cannot fail since `conn_t *' argument is NULL */ 1590 (void) ipsq_pending_mp_add(NULL, ill->ill_ipif, ill->ill_rq, 1591 mp, ILL_DOWN); 1592 mutex_exit(&ill->ill_lock); 1593 return (B_FALSE); 1594 } 1595 mutex_exit(&ill->ill_lock); 1596 return (B_TRUE); 1597 } 1598 1599 static void 1600 ill_down(ill_t *ill) 1601 { 1602 ip_stack_t *ipst = ill->ill_ipst; 1603 1604 /* Blow off any IREs dependent on this ILL. */ 1605 ire_walk(ill_downi, (char *)ill, ipst); 1606 1607 /* Remove any conn_*_ill depending on this ill */ 1608 ipcl_walk(conn_cleanup_ill, (caddr_t)ill, ipst); 1609 1610 if (ill->ill_group != NULL) { 1611 illgrp_delete(ill); 1612 } 1613 } 1614 1615 /* 1616 * ire_walk routine used to delete every IRE that depends on queues 1617 * associated with 'ill'. (Always called as writer.) 1618 */ 1619 static void 1620 ill_downi(ire_t *ire, char *ill_arg) 1621 { 1622 ill_t *ill = (ill_t *)ill_arg; 1623 1624 /* 1625 * ip_newroute creates IRE_CACHE with ire_stq coming from 1626 * interface X and ipif coming from interface Y, if interface 1627 * X and Y are part of the same IPMP group. Thus whenever interface 1628 * X goes down, remove all references to it by checking both 1629 * on ire_ipif and ire_stq. 1630 */ 1631 if ((ire->ire_ipif != NULL && ire->ire_ipif->ipif_ill == ill) || 1632 (ire->ire_type == IRE_CACHE && ire->ire_stq == ill->ill_wq)) { 1633 ire_delete(ire); 1634 } 1635 } 1636 1637 /* 1638 * Remove ire/nce from the fastpath list. 1639 */ 1640 void 1641 ill_fastpath_nack(ill_t *ill) 1642 { 1643 nce_fastpath_list_dispatch(ill, NULL, NULL); 1644 } 1645 1646 /* Consume an M_IOCACK of the fastpath probe. */ 1647 void 1648 ill_fastpath_ack(ill_t *ill, mblk_t *mp) 1649 { 1650 mblk_t *mp1 = mp; 1651 1652 /* 1653 * If this was the first attempt turn on the fastpath probing. 1654 */ 1655 mutex_enter(&ill->ill_lock); 1656 if (ill->ill_dlpi_fastpath_state == IDS_INPROGRESS) 1657 ill->ill_dlpi_fastpath_state = IDS_OK; 1658 mutex_exit(&ill->ill_lock); 1659 1660 /* Free the M_IOCACK mblk, hold on to the data */ 1661 mp = mp->b_cont; 1662 freeb(mp1); 1663 if (mp == NULL) 1664 return; 1665 if (mp->b_cont != NULL) { 1666 /* 1667 * Update all IRE's or NCE's that are waiting for 1668 * fastpath update. 1669 */ 1670 nce_fastpath_list_dispatch(ill, ndp_fastpath_update, mp); 1671 mp1 = mp->b_cont; 1672 freeb(mp); 1673 mp = mp1; 1674 } else { 1675 ip0dbg(("ill_fastpath_ack: no b_cont\n")); 1676 } 1677 1678 freeb(mp); 1679 } 1680 1681 /* 1682 * Throw an M_IOCTL message downstream asking "do you know fastpath?" 1683 * The data portion of the request is a dl_unitdata_req_t template for 1684 * what we would send downstream in the absence of a fastpath confirmation. 1685 */ 1686 int 1687 ill_fastpath_probe(ill_t *ill, mblk_t *dlur_mp) 1688 { 1689 struct iocblk *ioc; 1690 mblk_t *mp; 1691 1692 if (dlur_mp == NULL) 1693 return (EINVAL); 1694 1695 mutex_enter(&ill->ill_lock); 1696 switch (ill->ill_dlpi_fastpath_state) { 1697 case IDS_FAILED: 1698 /* 1699 * Driver NAKed the first fastpath ioctl - assume it doesn't 1700 * support it. 1701 */ 1702 mutex_exit(&ill->ill_lock); 1703 return (ENOTSUP); 1704 case IDS_UNKNOWN: 1705 /* This is the first probe */ 1706 ill->ill_dlpi_fastpath_state = IDS_INPROGRESS; 1707 break; 1708 default: 1709 break; 1710 } 1711 mutex_exit(&ill->ill_lock); 1712 1713 if ((mp = mkiocb(DL_IOC_HDR_INFO)) == NULL) 1714 return (EAGAIN); 1715 1716 mp->b_cont = copyb(dlur_mp); 1717 if (mp->b_cont == NULL) { 1718 freeb(mp); 1719 return (EAGAIN); 1720 } 1721 1722 ioc = (struct iocblk *)mp->b_rptr; 1723 ioc->ioc_count = msgdsize(mp->b_cont); 1724 1725 putnext(ill->ill_wq, mp); 1726 return (0); 1727 } 1728 1729 void 1730 ill_capability_probe(ill_t *ill) 1731 { 1732 /* 1733 * Do so only if negotiation is enabled, capabilities are unknown, 1734 * and a capability negotiation is not already in progress. 1735 */ 1736 if (ill->ill_dlpi_capab_state != IDS_UNKNOWN && 1737 ill->ill_dlpi_capab_state != IDS_RENEG) 1738 return; 1739 1740 ill->ill_dlpi_capab_state = IDS_INPROGRESS; 1741 ip1dbg(("ill_capability_probe: starting capability negotiation\n")); 1742 ill_capability_proto(ill, DL_CAPABILITY_REQ, NULL); 1743 } 1744 1745 void 1746 ill_capability_reset(ill_t *ill) 1747 { 1748 mblk_t *sc_mp = NULL; 1749 mblk_t *tmp; 1750 1751 /* 1752 * Note here that we reset the state to UNKNOWN, and later send 1753 * down the DL_CAPABILITY_REQ without first setting the state to 1754 * INPROGRESS. We do this in order to distinguish the 1755 * DL_CAPABILITY_ACK response which may come back in response to 1756 * a "reset" apart from the "probe" DL_CAPABILITY_REQ. This would 1757 * also handle the case where the driver doesn't send us back 1758 * a DL_CAPABILITY_ACK in response, since the "probe" routine 1759 * requires the state to be in UNKNOWN anyway. In any case, all 1760 * features are turned off until the state reaches IDS_OK. 1761 */ 1762 ill->ill_dlpi_capab_state = IDS_UNKNOWN; 1763 1764 /* 1765 * Disable sub-capabilities and request a list of sub-capability 1766 * messages which will be sent down to the driver. Each handler 1767 * allocates the corresponding dl_capability_sub_t inside an 1768 * mblk, and links it to the existing sc_mp mblk, or return it 1769 * as sc_mp if it's the first sub-capability (the passed in 1770 * sc_mp is NULL). Upon returning from all capability handlers, 1771 * sc_mp will be pulled-up, before passing it downstream. 1772 */ 1773 ill_capability_mdt_reset(ill, &sc_mp); 1774 ill_capability_hcksum_reset(ill, &sc_mp); 1775 ill_capability_zerocopy_reset(ill, &sc_mp); 1776 ill_capability_ipsec_reset(ill, &sc_mp); 1777 ill_capability_dls_reset(ill, &sc_mp); 1778 ill_capability_lso_reset(ill, &sc_mp); 1779 1780 /* Nothing to send down in order to disable the capabilities? */ 1781 if (sc_mp == NULL) 1782 return; 1783 1784 tmp = msgpullup(sc_mp, -1); 1785 freemsg(sc_mp); 1786 if ((sc_mp = tmp) == NULL) { 1787 cmn_err(CE_WARN, "ill_capability_reset: unable to send down " 1788 "DL_CAPABILITY_REQ (ENOMEM)\n"); 1789 return; 1790 } 1791 1792 ip1dbg(("ill_capability_reset: resetting negotiated capabilities\n")); 1793 ill_capability_proto(ill, DL_CAPABILITY_REQ, sc_mp); 1794 } 1795 1796 /* 1797 * Request or set new-style hardware capabilities supported by DLS provider. 1798 */ 1799 static void 1800 ill_capability_proto(ill_t *ill, int type, mblk_t *reqp) 1801 { 1802 mblk_t *mp; 1803 dl_capability_req_t *capb; 1804 size_t size = 0; 1805 uint8_t *ptr; 1806 1807 if (reqp != NULL) 1808 size = MBLKL(reqp); 1809 1810 mp = ip_dlpi_alloc(sizeof (dl_capability_req_t) + size, type); 1811 if (mp == NULL) { 1812 freemsg(reqp); 1813 return; 1814 } 1815 ptr = mp->b_rptr; 1816 1817 capb = (dl_capability_req_t *)ptr; 1818 ptr += sizeof (dl_capability_req_t); 1819 1820 if (reqp != NULL) { 1821 capb->dl_sub_offset = sizeof (dl_capability_req_t); 1822 capb->dl_sub_length = size; 1823 bcopy(reqp->b_rptr, ptr, size); 1824 ptr += size; 1825 mp->b_cont = reqp->b_cont; 1826 freeb(reqp); 1827 } 1828 ASSERT(ptr == mp->b_wptr); 1829 1830 ill_dlpi_send(ill, mp); 1831 } 1832 1833 static void 1834 ill_capability_id_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *outers) 1835 { 1836 dl_capab_id_t *id_ic; 1837 uint_t sub_dl_cap = outers->dl_cap; 1838 dl_capability_sub_t *inners; 1839 uint8_t *capend; 1840 1841 ASSERT(sub_dl_cap == DL_CAPAB_ID_WRAPPER); 1842 1843 /* 1844 * Note: range checks here are not absolutely sufficient to 1845 * make us robust against malformed messages sent by drivers; 1846 * this is in keeping with the rest of IP's dlpi handling. 1847 * (Remember, it's coming from something else in the kernel 1848 * address space) 1849 */ 1850 1851 capend = (uint8_t *)(outers + 1) + outers->dl_length; 1852 if (capend > mp->b_wptr) { 1853 cmn_err(CE_WARN, "ill_capability_id_ack: " 1854 "malformed sub-capability too long for mblk"); 1855 return; 1856 } 1857 1858 id_ic = (dl_capab_id_t *)(outers + 1); 1859 1860 if (outers->dl_length < sizeof (*id_ic) || 1861 (inners = &id_ic->id_subcap, 1862 inners->dl_length > (outers->dl_length - sizeof (*inners)))) { 1863 cmn_err(CE_WARN, "ill_capability_id_ack: malformed " 1864 "encapsulated capab type %d too long for mblk", 1865 inners->dl_cap); 1866 return; 1867 } 1868 1869 if (!dlcapabcheckqid(&id_ic->id_mid, ill->ill_lmod_rq)) { 1870 ip1dbg(("ill_capability_id_ack: mid token for capab type %d " 1871 "isn't as expected; pass-thru module(s) detected, " 1872 "discarding capability\n", inners->dl_cap)); 1873 return; 1874 } 1875 1876 /* Process the encapsulated sub-capability */ 1877 ill_capability_dispatch(ill, mp, inners, B_TRUE); 1878 } 1879 1880 /* 1881 * Process Multidata Transmit capability negotiation ack received from a 1882 * DLS Provider. isub must point to the sub-capability (DL_CAPAB_MDT) of a 1883 * DL_CAPABILITY_ACK message. 1884 */ 1885 static void 1886 ill_capability_mdt_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub) 1887 { 1888 mblk_t *nmp = NULL; 1889 dl_capability_req_t *oc; 1890 dl_capab_mdt_t *mdt_ic, *mdt_oc; 1891 ill_mdt_capab_t **ill_mdt_capab; 1892 uint_t sub_dl_cap = isub->dl_cap; 1893 uint8_t *capend; 1894 1895 ASSERT(sub_dl_cap == DL_CAPAB_MDT); 1896 1897 ill_mdt_capab = (ill_mdt_capab_t **)&ill->ill_mdt_capab; 1898 1899 /* 1900 * Note: range checks here are not absolutely sufficient to 1901 * make us robust against malformed messages sent by drivers; 1902 * this is in keeping with the rest of IP's dlpi handling. 1903 * (Remember, it's coming from something else in the kernel 1904 * address space) 1905 */ 1906 1907 capend = (uint8_t *)(isub + 1) + isub->dl_length; 1908 if (capend > mp->b_wptr) { 1909 cmn_err(CE_WARN, "ill_capability_mdt_ack: " 1910 "malformed sub-capability too long for mblk"); 1911 return; 1912 } 1913 1914 mdt_ic = (dl_capab_mdt_t *)(isub + 1); 1915 1916 if (mdt_ic->mdt_version != MDT_VERSION_2) { 1917 cmn_err(CE_CONT, "ill_capability_mdt_ack: " 1918 "unsupported MDT sub-capability (version %d, expected %d)", 1919 mdt_ic->mdt_version, MDT_VERSION_2); 1920 return; 1921 } 1922 1923 if (!dlcapabcheckqid(&mdt_ic->mdt_mid, ill->ill_lmod_rq)) { 1924 ip1dbg(("ill_capability_mdt_ack: mid token for MDT " 1925 "capability isn't as expected; pass-thru module(s) " 1926 "detected, discarding capability\n")); 1927 return; 1928 } 1929 1930 if (mdt_ic->mdt_flags & DL_CAPAB_MDT_ENABLE) { 1931 1932 if (*ill_mdt_capab == NULL) { 1933 *ill_mdt_capab = kmem_zalloc(sizeof (ill_mdt_capab_t), 1934 KM_NOSLEEP); 1935 1936 if (*ill_mdt_capab == NULL) { 1937 cmn_err(CE_WARN, "ill_capability_mdt_ack: " 1938 "could not enable MDT version %d " 1939 "for %s (ENOMEM)\n", MDT_VERSION_2, 1940 ill->ill_name); 1941 return; 1942 } 1943 } 1944 1945 ip1dbg(("ill_capability_mdt_ack: interface %s supports " 1946 "MDT version %d (%d bytes leading, %d bytes trailing " 1947 "header spaces, %d max pld bufs, %d span limit)\n", 1948 ill->ill_name, MDT_VERSION_2, 1949 mdt_ic->mdt_hdr_head, mdt_ic->mdt_hdr_tail, 1950 mdt_ic->mdt_max_pld, mdt_ic->mdt_span_limit)); 1951 1952 (*ill_mdt_capab)->ill_mdt_version = MDT_VERSION_2; 1953 (*ill_mdt_capab)->ill_mdt_on = 1; 1954 /* 1955 * Round the following values to the nearest 32-bit; ULP 1956 * may further adjust them to accomodate for additional 1957 * protocol headers. We pass these values to ULP during 1958 * bind time. 1959 */ 1960 (*ill_mdt_capab)->ill_mdt_hdr_head = 1961 roundup(mdt_ic->mdt_hdr_head, 4); 1962 (*ill_mdt_capab)->ill_mdt_hdr_tail = 1963 roundup(mdt_ic->mdt_hdr_tail, 4); 1964 (*ill_mdt_capab)->ill_mdt_max_pld = mdt_ic->mdt_max_pld; 1965 (*ill_mdt_capab)->ill_mdt_span_limit = mdt_ic->mdt_span_limit; 1966 1967 ill->ill_capabilities |= ILL_CAPAB_MDT; 1968 } else { 1969 uint_t size; 1970 uchar_t *rptr; 1971 1972 size = sizeof (dl_capability_req_t) + 1973 sizeof (dl_capability_sub_t) + sizeof (dl_capab_mdt_t); 1974 1975 if ((nmp = ip_dlpi_alloc(size, DL_CAPABILITY_REQ)) == NULL) { 1976 cmn_err(CE_WARN, "ill_capability_mdt_ack: " 1977 "could not enable MDT for %s (ENOMEM)\n", 1978 ill->ill_name); 1979 return; 1980 } 1981 1982 rptr = nmp->b_rptr; 1983 /* initialize dl_capability_req_t */ 1984 oc = (dl_capability_req_t *)nmp->b_rptr; 1985 oc->dl_sub_offset = sizeof (dl_capability_req_t); 1986 oc->dl_sub_length = sizeof (dl_capability_sub_t) + 1987 sizeof (dl_capab_mdt_t); 1988 nmp->b_rptr += sizeof (dl_capability_req_t); 1989 1990 /* initialize dl_capability_sub_t */ 1991 bcopy(isub, nmp->b_rptr, sizeof (*isub)); 1992 nmp->b_rptr += sizeof (*isub); 1993 1994 /* initialize dl_capab_mdt_t */ 1995 mdt_oc = (dl_capab_mdt_t *)nmp->b_rptr; 1996 bcopy(mdt_ic, mdt_oc, sizeof (*mdt_ic)); 1997 1998 nmp->b_rptr = rptr; 1999 2000 ip1dbg(("ill_capability_mdt_ack: asking interface %s " 2001 "to enable MDT version %d\n", ill->ill_name, 2002 MDT_VERSION_2)); 2003 2004 /* set ENABLE flag */ 2005 mdt_oc->mdt_flags |= DL_CAPAB_MDT_ENABLE; 2006 2007 /* nmp points to a DL_CAPABILITY_REQ message to enable MDT */ 2008 ill_dlpi_send(ill, nmp); 2009 } 2010 } 2011 2012 static void 2013 ill_capability_mdt_reset(ill_t *ill, mblk_t **sc_mp) 2014 { 2015 mblk_t *mp; 2016 dl_capab_mdt_t *mdt_subcap; 2017 dl_capability_sub_t *dl_subcap; 2018 int size; 2019 2020 if (!ILL_MDT_CAPABLE(ill)) 2021 return; 2022 2023 ASSERT(ill->ill_mdt_capab != NULL); 2024 /* 2025 * Clear the capability flag for MDT but retain the ill_mdt_capab 2026 * structure since it's possible that another thread is still 2027 * referring to it. The structure only gets deallocated when 2028 * we destroy the ill. 2029 */ 2030 ill->ill_capabilities &= ~ILL_CAPAB_MDT; 2031 2032 size = sizeof (*dl_subcap) + sizeof (*mdt_subcap); 2033 2034 mp = allocb(size, BPRI_HI); 2035 if (mp == NULL) { 2036 ip1dbg(("ill_capability_mdt_reset: unable to allocate " 2037 "request to disable MDT\n")); 2038 return; 2039 } 2040 2041 mp->b_wptr = mp->b_rptr + size; 2042 2043 dl_subcap = (dl_capability_sub_t *)mp->b_rptr; 2044 dl_subcap->dl_cap = DL_CAPAB_MDT; 2045 dl_subcap->dl_length = sizeof (*mdt_subcap); 2046 2047 mdt_subcap = (dl_capab_mdt_t *)(dl_subcap + 1); 2048 mdt_subcap->mdt_version = ill->ill_mdt_capab->ill_mdt_version; 2049 mdt_subcap->mdt_flags = 0; 2050 mdt_subcap->mdt_hdr_head = 0; 2051 mdt_subcap->mdt_hdr_tail = 0; 2052 2053 if (*sc_mp != NULL) 2054 linkb(*sc_mp, mp); 2055 else 2056 *sc_mp = mp; 2057 } 2058 2059 /* 2060 * Send a DL_NOTIFY_REQ to the specified ill to enable 2061 * DL_NOTE_PROMISC_ON/OFF_PHYS notifications. 2062 * Invoked by ill_capability_ipsec_ack() before enabling IPsec hardware 2063 * acceleration. 2064 * Returns B_TRUE on success, B_FALSE if the message could not be sent. 2065 */ 2066 static boolean_t 2067 ill_enable_promisc_notify(ill_t *ill) 2068 { 2069 mblk_t *mp; 2070 dl_notify_req_t *req; 2071 2072 IPSECHW_DEBUG(IPSECHW_PKT, ("ill_enable_promisc_notify:\n")); 2073 2074 mp = ip_dlpi_alloc(sizeof (dl_notify_req_t), DL_NOTIFY_REQ); 2075 if (mp == NULL) 2076 return (B_FALSE); 2077 2078 req = (dl_notify_req_t *)mp->b_rptr; 2079 req->dl_notifications = DL_NOTE_PROMISC_ON_PHYS | 2080 DL_NOTE_PROMISC_OFF_PHYS; 2081 2082 ill_dlpi_send(ill, mp); 2083 2084 return (B_TRUE); 2085 } 2086 2087 2088 /* 2089 * Allocate an IPsec capability request which will be filled by our 2090 * caller to turn on support for one or more algorithms. 2091 */ 2092 static mblk_t * 2093 ill_alloc_ipsec_cap_req(ill_t *ill, dl_capability_sub_t *isub) 2094 { 2095 mblk_t *nmp; 2096 dl_capability_req_t *ocap; 2097 dl_capab_ipsec_t *ocip; 2098 dl_capab_ipsec_t *icip; 2099 uint8_t *ptr; 2100 icip = (dl_capab_ipsec_t *)(isub + 1); 2101 2102 /* 2103 * The first time around, we send a DL_NOTIFY_REQ to enable 2104 * PROMISC_ON/OFF notification from the provider. We need to 2105 * do this before enabling the algorithms to avoid leakage of 2106 * cleartext packets. 2107 */ 2108 2109 if (!ill_enable_promisc_notify(ill)) 2110 return (NULL); 2111 2112 /* 2113 * Allocate new mblk which will contain a new capability 2114 * request to enable the capabilities. 2115 */ 2116 2117 nmp = ip_dlpi_alloc(sizeof (dl_capability_req_t) + 2118 sizeof (dl_capability_sub_t) + isub->dl_length, DL_CAPABILITY_REQ); 2119 if (nmp == NULL) 2120 return (NULL); 2121 2122 ptr = nmp->b_rptr; 2123 2124 /* initialize dl_capability_req_t */ 2125 ocap = (dl_capability_req_t *)ptr; 2126 ocap->dl_sub_offset = sizeof (dl_capability_req_t); 2127 ocap->dl_sub_length = sizeof (dl_capability_sub_t) + isub->dl_length; 2128 ptr += sizeof (dl_capability_req_t); 2129 2130 /* initialize dl_capability_sub_t */ 2131 bcopy(isub, ptr, sizeof (*isub)); 2132 ptr += sizeof (*isub); 2133 2134 /* initialize dl_capab_ipsec_t */ 2135 ocip = (dl_capab_ipsec_t *)ptr; 2136 bcopy(icip, ocip, sizeof (*icip)); 2137 2138 nmp->b_wptr = (uchar_t *)(&ocip->cip_data[0]); 2139 return (nmp); 2140 } 2141 2142 /* 2143 * Process an IPsec capability negotiation ack received from a DLS Provider. 2144 * isub must point to the sub-capability (DL_CAPAB_IPSEC_AH or 2145 * DL_CAPAB_IPSEC_ESP) of a DL_CAPABILITY_ACK message. 2146 */ 2147 static void 2148 ill_capability_ipsec_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub) 2149 { 2150 dl_capab_ipsec_t *icip; 2151 dl_capab_ipsec_alg_t *ialg; /* ptr to input alg spec. */ 2152 dl_capab_ipsec_alg_t *oalg; /* ptr to output alg spec. */ 2153 uint_t cipher, nciphers; 2154 mblk_t *nmp; 2155 uint_t alg_len; 2156 boolean_t need_sadb_dump; 2157 uint_t sub_dl_cap = isub->dl_cap; 2158 ill_ipsec_capab_t **ill_capab; 2159 uint64_t ill_capab_flag; 2160 uint8_t *capend, *ciphend; 2161 boolean_t sadb_resync; 2162 2163 ASSERT(sub_dl_cap == DL_CAPAB_IPSEC_AH || 2164 sub_dl_cap == DL_CAPAB_IPSEC_ESP); 2165 2166 if (sub_dl_cap == DL_CAPAB_IPSEC_AH) { 2167 ill_capab = (ill_ipsec_capab_t **)&ill->ill_ipsec_capab_ah; 2168 ill_capab_flag = ILL_CAPAB_AH; 2169 } else { 2170 ill_capab = (ill_ipsec_capab_t **)&ill->ill_ipsec_capab_esp; 2171 ill_capab_flag = ILL_CAPAB_ESP; 2172 } 2173 2174 /* 2175 * If the ill capability structure exists, then this incoming 2176 * DL_CAPABILITY_ACK is a response to a "renegotiation" cycle. 2177 * If this is so, then we'd need to resynchronize the SADB 2178 * after re-enabling the offloaded ciphers. 2179 */ 2180 sadb_resync = (*ill_capab != NULL); 2181 2182 /* 2183 * Note: range checks here are not absolutely sufficient to 2184 * make us robust against malformed messages sent by drivers; 2185 * this is in keeping with the rest of IP's dlpi handling. 2186 * (Remember, it's coming from something else in the kernel 2187 * address space) 2188 */ 2189 2190 capend = (uint8_t *)(isub + 1) + isub->dl_length; 2191 if (capend > mp->b_wptr) { 2192 cmn_err(CE_WARN, "ill_capability_ipsec_ack: " 2193 "malformed sub-capability too long for mblk"); 2194 return; 2195 } 2196 2197 /* 2198 * There are two types of acks we process here: 2199 * 1. acks in reply to a (first form) generic capability req 2200 * (no ENABLE flag set) 2201 * 2. acks in reply to a ENABLE capability req. 2202 * (ENABLE flag set) 2203 * 2204 * We process the subcapability passed as argument as follows: 2205 * 1 do initializations 2206 * 1.1 initialize nmp = NULL 2207 * 1.2 set need_sadb_dump to B_FALSE 2208 * 2 for each cipher in subcapability: 2209 * 2.1 if ENABLE flag is set: 2210 * 2.1.1 update per-ill ipsec capabilities info 2211 * 2.1.2 set need_sadb_dump to B_TRUE 2212 * 2.2 if ENABLE flag is not set: 2213 * 2.2.1 if nmp is NULL: 2214 * 2.2.1.1 allocate and initialize nmp 2215 * 2.2.1.2 init current pos in nmp 2216 * 2.2.2 copy current cipher to current pos in nmp 2217 * 2.2.3 set ENABLE flag in nmp 2218 * 2.2.4 update current pos 2219 * 3 if nmp is not equal to NULL, send enable request 2220 * 3.1 send capability request 2221 * 4 if need_sadb_dump is B_TRUE 2222 * 4.1 enable promiscuous on/off notifications 2223 * 4.2 call ill_dlpi_send(isub->dlcap) to send all 2224 * AH or ESP SA's to interface. 2225 */ 2226 2227 nmp = NULL; 2228 oalg = NULL; 2229 need_sadb_dump = B_FALSE; 2230 icip = (dl_capab_ipsec_t *)(isub + 1); 2231 ialg = (dl_capab_ipsec_alg_t *)(&icip->cip_data[0]); 2232 2233 nciphers = icip->cip_nciphers; 2234 ciphend = (uint8_t *)(ialg + icip->cip_nciphers); 2235 2236 if (ciphend > capend) { 2237 cmn_err(CE_WARN, "ill_capability_ipsec_ack: " 2238 "too many ciphers for sub-capability len"); 2239 return; 2240 } 2241 2242 for (cipher = 0; cipher < nciphers; cipher++) { 2243 alg_len = sizeof (dl_capab_ipsec_alg_t); 2244 2245 if (ialg->alg_flag & DL_CAPAB_ALG_ENABLE) { 2246 /* 2247 * TBD: when we provide a way to disable capabilities 2248 * from above, need to manage the request-pending state 2249 * and fail if we were not expecting this ACK. 2250 */ 2251 IPSECHW_DEBUG(IPSECHW_CAPAB, 2252 ("ill_capability_ipsec_ack: got ENABLE ACK\n")); 2253 2254 /* 2255 * Update IPsec capabilities for this ill 2256 */ 2257 2258 if (*ill_capab == NULL) { 2259 IPSECHW_DEBUG(IPSECHW_CAPAB, 2260 ("ill_capability_ipsec_ack: " 2261 "allocating ipsec_capab for ill\n")); 2262 *ill_capab = ill_ipsec_capab_alloc(); 2263 2264 if (*ill_capab == NULL) { 2265 cmn_err(CE_WARN, 2266 "ill_capability_ipsec_ack: " 2267 "could not enable IPsec Hardware " 2268 "acceleration for %s (ENOMEM)\n", 2269 ill->ill_name); 2270 return; 2271 } 2272 } 2273 2274 ASSERT(ialg->alg_type == DL_CAPAB_IPSEC_ALG_AUTH || 2275 ialg->alg_type == DL_CAPAB_IPSEC_ALG_ENCR); 2276 2277 if (ialg->alg_prim >= MAX_IPSEC_ALGS) { 2278 cmn_err(CE_WARN, 2279 "ill_capability_ipsec_ack: " 2280 "malformed IPsec algorithm id %d", 2281 ialg->alg_prim); 2282 continue; 2283 } 2284 2285 if (ialg->alg_type == DL_CAPAB_IPSEC_ALG_AUTH) { 2286 IPSEC_ALG_ENABLE((*ill_capab)->auth_hw_algs, 2287 ialg->alg_prim); 2288 } else { 2289 ipsec_capab_algparm_t *alp; 2290 2291 IPSEC_ALG_ENABLE((*ill_capab)->encr_hw_algs, 2292 ialg->alg_prim); 2293 if (!ill_ipsec_capab_resize_algparm(*ill_capab, 2294 ialg->alg_prim)) { 2295 cmn_err(CE_WARN, 2296 "ill_capability_ipsec_ack: " 2297 "no space for IPsec alg id %d", 2298 ialg->alg_prim); 2299 continue; 2300 } 2301 alp = &((*ill_capab)->encr_algparm[ 2302 ialg->alg_prim]); 2303 alp->minkeylen = ialg->alg_minbits; 2304 alp->maxkeylen = ialg->alg_maxbits; 2305 } 2306 ill->ill_capabilities |= ill_capab_flag; 2307 /* 2308 * indicate that a capability was enabled, which 2309 * will be used below to kick off a SADB dump 2310 * to the ill. 2311 */ 2312 need_sadb_dump = B_TRUE; 2313 } else { 2314 IPSECHW_DEBUG(IPSECHW_CAPAB, 2315 ("ill_capability_ipsec_ack: enabling alg 0x%x\n", 2316 ialg->alg_prim)); 2317 2318 if (nmp == NULL) { 2319 nmp = ill_alloc_ipsec_cap_req(ill, isub); 2320 if (nmp == NULL) { 2321 /* 2322 * Sending the PROMISC_ON/OFF 2323 * notification request failed. 2324 * We cannot enable the algorithms 2325 * since the Provider will not 2326 * notify IP of promiscous mode 2327 * changes, which could lead 2328 * to leakage of packets. 2329 */ 2330 cmn_err(CE_WARN, 2331 "ill_capability_ipsec_ack: " 2332 "could not enable IPsec Hardware " 2333 "acceleration for %s (ENOMEM)\n", 2334 ill->ill_name); 2335 return; 2336 } 2337 /* ptr to current output alg specifier */ 2338 oalg = (dl_capab_ipsec_alg_t *)nmp->b_wptr; 2339 } 2340 2341 /* 2342 * Copy current alg specifier, set ENABLE 2343 * flag, and advance to next output alg. 2344 * For now we enable all IPsec capabilities. 2345 */ 2346 ASSERT(oalg != NULL); 2347 bcopy(ialg, oalg, alg_len); 2348 oalg->alg_flag |= DL_CAPAB_ALG_ENABLE; 2349 nmp->b_wptr += alg_len; 2350 oalg = (dl_capab_ipsec_alg_t *)nmp->b_wptr; 2351 } 2352 2353 /* move to next input algorithm specifier */ 2354 ialg = (dl_capab_ipsec_alg_t *) 2355 ((char *)ialg + alg_len); 2356 } 2357 2358 if (nmp != NULL) 2359 /* 2360 * nmp points to a DL_CAPABILITY_REQ message to enable 2361 * IPsec hardware acceleration. 2362 */ 2363 ill_dlpi_send(ill, nmp); 2364 2365 if (need_sadb_dump) 2366 /* 2367 * An acknowledgement corresponding to a request to 2368 * enable acceleration was received, notify SADB. 2369 */ 2370 ill_ipsec_capab_add(ill, sub_dl_cap, sadb_resync); 2371 } 2372 2373 /* 2374 * Given an mblk with enough space in it, create sub-capability entries for 2375 * DL_CAPAB_IPSEC_{AH,ESP} types which consist of previously-advertised 2376 * offloaded ciphers (both AUTH and ENCR) with their enable flags cleared, 2377 * in preparation for the reset the DL_CAPABILITY_REQ message. 2378 */ 2379 static void 2380 ill_fill_ipsec_reset(uint_t nciphers, int stype, uint_t slen, 2381 ill_ipsec_capab_t *ill_cap, mblk_t *mp) 2382 { 2383 dl_capab_ipsec_t *oipsec; 2384 dl_capab_ipsec_alg_t *oalg; 2385 dl_capability_sub_t *dl_subcap; 2386 int i, k; 2387 2388 ASSERT(nciphers > 0); 2389 ASSERT(ill_cap != NULL); 2390 ASSERT(mp != NULL); 2391 ASSERT(MBLKTAIL(mp) >= sizeof (*dl_subcap) + sizeof (*oipsec) + slen); 2392 2393 /* dl_capability_sub_t for "stype" */ 2394 dl_subcap = (dl_capability_sub_t *)mp->b_wptr; 2395 dl_subcap->dl_cap = stype; 2396 dl_subcap->dl_length = sizeof (dl_capab_ipsec_t) + slen; 2397 mp->b_wptr += sizeof (dl_capability_sub_t); 2398 2399 /* dl_capab_ipsec_t for "stype" */ 2400 oipsec = (dl_capab_ipsec_t *)mp->b_wptr; 2401 oipsec->cip_version = 1; 2402 oipsec->cip_nciphers = nciphers; 2403 mp->b_wptr = (uchar_t *)&oipsec->cip_data[0]; 2404 2405 /* create entries for "stype" AUTH ciphers */ 2406 for (i = 0; i < ill_cap->algs_size; i++) { 2407 for (k = 0; k < BITSPERBYTE; k++) { 2408 if ((ill_cap->auth_hw_algs[i] & (1 << k)) == 0) 2409 continue; 2410 2411 oalg = (dl_capab_ipsec_alg_t *)mp->b_wptr; 2412 bzero((void *)oalg, sizeof (*oalg)); 2413 oalg->alg_type = DL_CAPAB_IPSEC_ALG_AUTH; 2414 oalg->alg_prim = k + (BITSPERBYTE * i); 2415 mp->b_wptr += sizeof (dl_capab_ipsec_alg_t); 2416 } 2417 } 2418 /* create entries for "stype" ENCR ciphers */ 2419 for (i = 0; i < ill_cap->algs_size; i++) { 2420 for (k = 0; k < BITSPERBYTE; k++) { 2421 if ((ill_cap->encr_hw_algs[i] & (1 << k)) == 0) 2422 continue; 2423 2424 oalg = (dl_capab_ipsec_alg_t *)mp->b_wptr; 2425 bzero((void *)oalg, sizeof (*oalg)); 2426 oalg->alg_type = DL_CAPAB_IPSEC_ALG_ENCR; 2427 oalg->alg_prim = k + (BITSPERBYTE * i); 2428 mp->b_wptr += sizeof (dl_capab_ipsec_alg_t); 2429 } 2430 } 2431 } 2432 2433 /* 2434 * Macro to count number of 1s in a byte (8-bit word). The total count is 2435 * accumulated into the passed-in argument (sum). We could use SPARCv9's 2436 * POPC instruction, but our macro is more flexible for an arbitrary length 2437 * of bytes, such as {auth,encr}_hw_algs. These variables are currently 2438 * 256-bits long (MAX_IPSEC_ALGS), so if we know for sure that the length 2439 * stays that way, we can reduce the number of iterations required. 2440 */ 2441 #define COUNT_1S(val, sum) { \ 2442 uint8_t x = val & 0xff; \ 2443 x = (x & 0x55) + ((x >> 1) & 0x55); \ 2444 x = (x & 0x33) + ((x >> 2) & 0x33); \ 2445 sum += (x & 0xf) + ((x >> 4) & 0xf); \ 2446 } 2447 2448 /* ARGSUSED */ 2449 static void 2450 ill_capability_ipsec_reset(ill_t *ill, mblk_t **sc_mp) 2451 { 2452 mblk_t *mp; 2453 ill_ipsec_capab_t *cap_ah = ill->ill_ipsec_capab_ah; 2454 ill_ipsec_capab_t *cap_esp = ill->ill_ipsec_capab_esp; 2455 uint64_t ill_capabilities = ill->ill_capabilities; 2456 int ah_cnt = 0, esp_cnt = 0; 2457 int ah_len = 0, esp_len = 0; 2458 int i, size = 0; 2459 2460 if (!(ill_capabilities & (ILL_CAPAB_AH | ILL_CAPAB_ESP))) 2461 return; 2462 2463 ASSERT(cap_ah != NULL || !(ill_capabilities & ILL_CAPAB_AH)); 2464 ASSERT(cap_esp != NULL || !(ill_capabilities & ILL_CAPAB_ESP)); 2465 2466 /* Find out the number of ciphers for AH */ 2467 if (cap_ah != NULL) { 2468 for (i = 0; i < cap_ah->algs_size; i++) { 2469 COUNT_1S(cap_ah->auth_hw_algs[i], ah_cnt); 2470 COUNT_1S(cap_ah->encr_hw_algs[i], ah_cnt); 2471 } 2472 if (ah_cnt > 0) { 2473 size += sizeof (dl_capability_sub_t) + 2474 sizeof (dl_capab_ipsec_t); 2475 /* dl_capab_ipsec_t contains one dl_capab_ipsec_alg_t */ 2476 ah_len = (ah_cnt - 1) * sizeof (dl_capab_ipsec_alg_t); 2477 size += ah_len; 2478 } 2479 } 2480 2481 /* Find out the number of ciphers for ESP */ 2482 if (cap_esp != NULL) { 2483 for (i = 0; i < cap_esp->algs_size; i++) { 2484 COUNT_1S(cap_esp->auth_hw_algs[i], esp_cnt); 2485 COUNT_1S(cap_esp->encr_hw_algs[i], esp_cnt); 2486 } 2487 if (esp_cnt > 0) { 2488 size += sizeof (dl_capability_sub_t) + 2489 sizeof (dl_capab_ipsec_t); 2490 /* dl_capab_ipsec_t contains one dl_capab_ipsec_alg_t */ 2491 esp_len = (esp_cnt - 1) * sizeof (dl_capab_ipsec_alg_t); 2492 size += esp_len; 2493 } 2494 } 2495 2496 if (size == 0) { 2497 ip1dbg(("ill_capability_ipsec_reset: capabilities exist but " 2498 "there's nothing to reset\n")); 2499 return; 2500 } 2501 2502 mp = allocb(size, BPRI_HI); 2503 if (mp == NULL) { 2504 ip1dbg(("ill_capability_ipsec_reset: unable to allocate " 2505 "request to disable IPSEC Hardware Acceleration\n")); 2506 return; 2507 } 2508 2509 /* 2510 * Clear the capability flags for IPSec HA but retain the ill 2511 * capability structures since it's possible that another thread 2512 * is still referring to them. The structures only get deallocated 2513 * when we destroy the ill. 2514 * 2515 * Various places check the flags to see if the ill is capable of 2516 * hardware acceleration, and by clearing them we ensure that new 2517 * outbound IPSec packets are sent down encrypted. 2518 */ 2519 ill->ill_capabilities &= ~(ILL_CAPAB_AH | ILL_CAPAB_ESP); 2520 2521 /* Fill in DL_CAPAB_IPSEC_AH sub-capability entries */ 2522 if (ah_cnt > 0) { 2523 ill_fill_ipsec_reset(ah_cnt, DL_CAPAB_IPSEC_AH, ah_len, 2524 cap_ah, mp); 2525 ASSERT(mp->b_rptr + size >= mp->b_wptr); 2526 } 2527 2528 /* Fill in DL_CAPAB_IPSEC_ESP sub-capability entries */ 2529 if (esp_cnt > 0) { 2530 ill_fill_ipsec_reset(esp_cnt, DL_CAPAB_IPSEC_ESP, esp_len, 2531 cap_esp, mp); 2532 ASSERT(mp->b_rptr + size >= mp->b_wptr); 2533 } 2534 2535 /* 2536 * At this point we've composed a bunch of sub-capabilities to be 2537 * encapsulated in a DL_CAPABILITY_REQ and later sent downstream 2538 * by the caller. Upon receiving this reset message, the driver 2539 * must stop inbound decryption (by destroying all inbound SAs) 2540 * and let the corresponding packets come in encrypted. 2541 */ 2542 2543 if (*sc_mp != NULL) 2544 linkb(*sc_mp, mp); 2545 else 2546 *sc_mp = mp; 2547 } 2548 2549 static void 2550 ill_capability_dispatch(ill_t *ill, mblk_t *mp, dl_capability_sub_t *subp, 2551 boolean_t encapsulated) 2552 { 2553 boolean_t legacy = B_FALSE; 2554 2555 /* 2556 * If this DL_CAPABILITY_ACK came in as a response to our "reset" 2557 * DL_CAPABILITY_REQ, ignore it during this cycle. We've just 2558 * instructed the driver to disable its advertised capabilities, 2559 * so there's no point in accepting any response at this moment. 2560 */ 2561 if (ill->ill_dlpi_capab_state == IDS_UNKNOWN) 2562 return; 2563 2564 /* 2565 * Note that only the following two sub-capabilities may be 2566 * considered as "legacy", since their original definitions 2567 * do not incorporate the dl_mid_t module ID token, and hence 2568 * may require the use of the wrapper sub-capability. 2569 */ 2570 switch (subp->dl_cap) { 2571 case DL_CAPAB_IPSEC_AH: 2572 case DL_CAPAB_IPSEC_ESP: 2573 legacy = B_TRUE; 2574 break; 2575 } 2576 2577 /* 2578 * For legacy sub-capabilities which don't incorporate a queue_t 2579 * pointer in their structures, discard them if we detect that 2580 * there are intermediate modules in between IP and the driver. 2581 */ 2582 if (!encapsulated && legacy && ill->ill_lmod_cnt > 1) { 2583 ip1dbg(("ill_capability_dispatch: unencapsulated capab type " 2584 "%d discarded; %d module(s) present below IP\n", 2585 subp->dl_cap, ill->ill_lmod_cnt)); 2586 return; 2587 } 2588 2589 switch (subp->dl_cap) { 2590 case DL_CAPAB_IPSEC_AH: 2591 case DL_CAPAB_IPSEC_ESP: 2592 ill_capability_ipsec_ack(ill, mp, subp); 2593 break; 2594 case DL_CAPAB_MDT: 2595 ill_capability_mdt_ack(ill, mp, subp); 2596 break; 2597 case DL_CAPAB_HCKSUM: 2598 ill_capability_hcksum_ack(ill, mp, subp); 2599 break; 2600 case DL_CAPAB_ZEROCOPY: 2601 ill_capability_zerocopy_ack(ill, mp, subp); 2602 break; 2603 case DL_CAPAB_POLL: 2604 if (!SOFT_RINGS_ENABLED()) 2605 ill_capability_dls_ack(ill, mp, subp); 2606 break; 2607 case DL_CAPAB_SOFT_RING: 2608 if (SOFT_RINGS_ENABLED()) 2609 ill_capability_dls_ack(ill, mp, subp); 2610 break; 2611 case DL_CAPAB_LSO: 2612 ill_capability_lso_ack(ill, mp, subp); 2613 break; 2614 default: 2615 ip1dbg(("ill_capability_dispatch: unknown capab type %d\n", 2616 subp->dl_cap)); 2617 } 2618 } 2619 2620 /* 2621 * As part of negotiating polling capability, the driver tells us 2622 * the default (or normal) blanking interval and packet threshold 2623 * (the receive timer fires if blanking interval is reached or 2624 * the packet threshold is reached). 2625 * 2626 * As part of manipulating the polling interval, we always use our 2627 * estimated interval (avg service time * number of packets queued 2628 * on the squeue) but we try to blank for a minimum of 2629 * rr_normal_blank_time * rr_max_blank_ratio. We disable the 2630 * packet threshold during this time. When we are not in polling mode 2631 * we set the blank interval typically lower, rr_normal_pkt_cnt * 2632 * rr_min_blank_ratio but up the packet cnt by a ratio of 2633 * rr_min_pkt_cnt_ratio so that we are still getting chains if 2634 * possible although for a shorter interval. 2635 */ 2636 #define RR_MAX_BLANK_RATIO 20 2637 #define RR_MIN_BLANK_RATIO 10 2638 #define RR_MAX_PKT_CNT_RATIO 3 2639 #define RR_MIN_PKT_CNT_RATIO 3 2640 2641 /* 2642 * These can be tuned via /etc/system. 2643 */ 2644 int rr_max_blank_ratio = RR_MAX_BLANK_RATIO; 2645 int rr_min_blank_ratio = RR_MIN_BLANK_RATIO; 2646 int rr_max_pkt_cnt_ratio = RR_MAX_PKT_CNT_RATIO; 2647 int rr_min_pkt_cnt_ratio = RR_MIN_PKT_CNT_RATIO; 2648 2649 static mac_resource_handle_t 2650 ill_ring_add(void *arg, mac_resource_t *mrp) 2651 { 2652 ill_t *ill = (ill_t *)arg; 2653 mac_rx_fifo_t *mrfp = (mac_rx_fifo_t *)mrp; 2654 ill_rx_ring_t *rx_ring; 2655 int ip_rx_index; 2656 2657 ASSERT(mrp != NULL); 2658 if (mrp->mr_type != MAC_RX_FIFO) { 2659 return (NULL); 2660 } 2661 ASSERT(ill != NULL); 2662 ASSERT(ill->ill_dls_capab != NULL); 2663 2664 mutex_enter(&ill->ill_lock); 2665 for (ip_rx_index = 0; ip_rx_index < ILL_MAX_RINGS; ip_rx_index++) { 2666 rx_ring = &ill->ill_dls_capab->ill_ring_tbl[ip_rx_index]; 2667 ASSERT(rx_ring != NULL); 2668 2669 if (rx_ring->rr_ring_state == ILL_RING_FREE) { 2670 time_t normal_blank_time = 2671 mrfp->mrf_normal_blank_time; 2672 uint_t normal_pkt_cnt = 2673 mrfp->mrf_normal_pkt_count; 2674 2675 bzero(rx_ring, sizeof (ill_rx_ring_t)); 2676 2677 rx_ring->rr_blank = mrfp->mrf_blank; 2678 rx_ring->rr_handle = mrfp->mrf_arg; 2679 rx_ring->rr_ill = ill; 2680 rx_ring->rr_normal_blank_time = normal_blank_time; 2681 rx_ring->rr_normal_pkt_cnt = normal_pkt_cnt; 2682 2683 rx_ring->rr_max_blank_time = 2684 normal_blank_time * rr_max_blank_ratio; 2685 rx_ring->rr_min_blank_time = 2686 normal_blank_time * rr_min_blank_ratio; 2687 rx_ring->rr_max_pkt_cnt = 2688 normal_pkt_cnt * rr_max_pkt_cnt_ratio; 2689 rx_ring->rr_min_pkt_cnt = 2690 normal_pkt_cnt * rr_min_pkt_cnt_ratio; 2691 2692 rx_ring->rr_ring_state = ILL_RING_INUSE; 2693 mutex_exit(&ill->ill_lock); 2694 2695 DTRACE_PROBE2(ill__ring__add, (void *), ill, 2696 (int), ip_rx_index); 2697 return ((mac_resource_handle_t)rx_ring); 2698 } 2699 } 2700 2701 /* 2702 * We ran out of ILL_MAX_RINGS worth rx_ring structures. If 2703 * we have devices which can overwhelm this limit, ILL_MAX_RING 2704 * should be made configurable. Meanwhile it cause no panic because 2705 * driver will pass ip_input a NULL handle which will make 2706 * IP allocate the default squeue and Polling mode will not 2707 * be used for this ring. 2708 */ 2709 cmn_err(CE_NOTE, "Reached maximum number of receiving rings (%d) " 2710 "for %s\n", ILL_MAX_RINGS, ill->ill_name); 2711 2712 mutex_exit(&ill->ill_lock); 2713 return (NULL); 2714 } 2715 2716 static boolean_t 2717 ill_capability_dls_init(ill_t *ill) 2718 { 2719 ill_dls_capab_t *ill_dls = ill->ill_dls_capab; 2720 conn_t *connp; 2721 size_t sz; 2722 ip_stack_t *ipst = ill->ill_ipst; 2723 2724 if (ill->ill_capabilities & ILL_CAPAB_SOFT_RING) { 2725 if (ill_dls == NULL) { 2726 cmn_err(CE_PANIC, "ill_capability_dls_init: " 2727 "soft_ring enabled for ill=%s (%p) but data " 2728 "structs uninitialized\n", ill->ill_name, 2729 (void *)ill); 2730 } 2731 return (B_TRUE); 2732 } else if (ill->ill_capabilities & ILL_CAPAB_POLL) { 2733 if (ill_dls == NULL) { 2734 cmn_err(CE_PANIC, "ill_capability_dls_init: " 2735 "polling enabled for ill=%s (%p) but data " 2736 "structs uninitialized\n", ill->ill_name, 2737 (void *)ill); 2738 } 2739 return (B_TRUE); 2740 } 2741 2742 if (ill_dls != NULL) { 2743 ill_rx_ring_t *rx_ring = ill_dls->ill_ring_tbl; 2744 /* Soft_Ring or polling is being re-enabled */ 2745 2746 connp = ill_dls->ill_unbind_conn; 2747 ASSERT(rx_ring != NULL); 2748 bzero((void *)ill_dls, sizeof (ill_dls_capab_t)); 2749 bzero((void *)rx_ring, 2750 sizeof (ill_rx_ring_t) * ILL_MAX_RINGS); 2751 ill_dls->ill_ring_tbl = rx_ring; 2752 ill_dls->ill_unbind_conn = connp; 2753 return (B_TRUE); 2754 } 2755 2756 if ((connp = ipcl_conn_create(IPCL_TCPCONN, KM_NOSLEEP, 2757 ipst->ips_netstack)) == NULL) 2758 return (B_FALSE); 2759 2760 sz = sizeof (ill_dls_capab_t); 2761 sz += sizeof (ill_rx_ring_t) * ILL_MAX_RINGS; 2762 2763 ill_dls = kmem_zalloc(sz, KM_NOSLEEP); 2764 if (ill_dls == NULL) { 2765 cmn_err(CE_WARN, "ill_capability_dls_init: could not " 2766 "allocate dls_capab for %s (%p)\n", ill->ill_name, 2767 (void *)ill); 2768 CONN_DEC_REF(connp); 2769 return (B_FALSE); 2770 } 2771 2772 /* Allocate space to hold ring table */ 2773 ill_dls->ill_ring_tbl = (ill_rx_ring_t *)&ill_dls[1]; 2774 ill->ill_dls_capab = ill_dls; 2775 ill_dls->ill_unbind_conn = connp; 2776 return (B_TRUE); 2777 } 2778 2779 /* 2780 * ill_capability_dls_disable: disable soft_ring and/or polling 2781 * capability. Since any of the rings might already be in use, need 2782 * to call ip_squeue_clean_all() which gets behind the squeue to disable 2783 * direct calls if necessary. 2784 */ 2785 static void 2786 ill_capability_dls_disable(ill_t *ill) 2787 { 2788 ill_dls_capab_t *ill_dls = ill->ill_dls_capab; 2789 2790 if (ill->ill_capabilities & ILL_CAPAB_DLS) { 2791 ip_squeue_clean_all(ill); 2792 ill_dls->ill_tx = NULL; 2793 ill_dls->ill_tx_handle = NULL; 2794 ill_dls->ill_dls_change_status = NULL; 2795 ill_dls->ill_dls_bind = NULL; 2796 ill_dls->ill_dls_unbind = NULL; 2797 } 2798 2799 ASSERT(!(ill->ill_capabilities & ILL_CAPAB_DLS)); 2800 } 2801 2802 static void 2803 ill_capability_dls_capable(ill_t *ill, dl_capab_dls_t *idls, 2804 dl_capability_sub_t *isub) 2805 { 2806 uint_t size; 2807 uchar_t *rptr; 2808 dl_capab_dls_t dls, *odls; 2809 ill_dls_capab_t *ill_dls; 2810 mblk_t *nmp = NULL; 2811 dl_capability_req_t *ocap; 2812 uint_t sub_dl_cap = isub->dl_cap; 2813 2814 if (!ill_capability_dls_init(ill)) 2815 return; 2816 ill_dls = ill->ill_dls_capab; 2817 2818 /* Copy locally to get the members aligned */ 2819 bcopy((void *)idls, (void *)&dls, 2820 sizeof (dl_capab_dls_t)); 2821 2822 /* Get the tx function and handle from dld */ 2823 ill_dls->ill_tx = (ip_dld_tx_t)dls.dls_tx; 2824 ill_dls->ill_tx_handle = (void *)dls.dls_tx_handle; 2825 2826 if (sub_dl_cap == DL_CAPAB_SOFT_RING) { 2827 ill_dls->ill_dls_change_status = 2828 (ip_dls_chg_soft_ring_t)dls.dls_ring_change_status; 2829 ill_dls->ill_dls_bind = (ip_dls_bind_t)dls.dls_ring_bind; 2830 ill_dls->ill_dls_unbind = 2831 (ip_dls_unbind_t)dls.dls_ring_unbind; 2832 ill_dls->ill_dls_soft_ring_cnt = ip_soft_rings_cnt; 2833 } 2834 2835 size = sizeof (dl_capability_req_t) + sizeof (dl_capability_sub_t) + 2836 isub->dl_length; 2837 2838 if ((nmp = ip_dlpi_alloc(size, DL_CAPABILITY_REQ)) == NULL) { 2839 cmn_err(CE_WARN, "ill_capability_dls_capable: could " 2840 "not allocate memory for CAPAB_REQ for %s (%p)\n", 2841 ill->ill_name, (void *)ill); 2842 return; 2843 } 2844 2845 /* initialize dl_capability_req_t */ 2846 rptr = nmp->b_rptr; 2847 ocap = (dl_capability_req_t *)rptr; 2848 ocap->dl_sub_offset = sizeof (dl_capability_req_t); 2849 ocap->dl_sub_length = sizeof (dl_capability_sub_t) + isub->dl_length; 2850 rptr += sizeof (dl_capability_req_t); 2851 2852 /* initialize dl_capability_sub_t */ 2853 bcopy(isub, rptr, sizeof (*isub)); 2854 rptr += sizeof (*isub); 2855 2856 odls = (dl_capab_dls_t *)rptr; 2857 rptr += sizeof (dl_capab_dls_t); 2858 2859 /* initialize dl_capab_dls_t to be sent down */ 2860 dls.dls_rx_handle = (uintptr_t)ill; 2861 dls.dls_rx = (uintptr_t)ip_input; 2862 dls.dls_ring_add = (uintptr_t)ill_ring_add; 2863 2864 if (sub_dl_cap == DL_CAPAB_SOFT_RING) { 2865 dls.dls_ring_cnt = ip_soft_rings_cnt; 2866 dls.dls_ring_assign = (uintptr_t)ip_soft_ring_assignment; 2867 dls.dls_flags = SOFT_RING_ENABLE; 2868 } else { 2869 dls.dls_flags = POLL_ENABLE; 2870 ip1dbg(("ill_capability_dls_capable: asking interface %s " 2871 "to enable polling\n", ill->ill_name)); 2872 } 2873 bcopy((void *)&dls, (void *)odls, 2874 sizeof (dl_capab_dls_t)); 2875 ASSERT(nmp->b_wptr == (nmp->b_rptr + size)); 2876 /* 2877 * nmp points to a DL_CAPABILITY_REQ message to 2878 * enable either soft_ring or polling 2879 */ 2880 ill_dlpi_send(ill, nmp); 2881 } 2882 2883 static void 2884 ill_capability_dls_reset(ill_t *ill, mblk_t **sc_mp) 2885 { 2886 mblk_t *mp; 2887 dl_capab_dls_t *idls; 2888 dl_capability_sub_t *dl_subcap; 2889 int size; 2890 2891 if (!(ill->ill_capabilities & ILL_CAPAB_DLS)) 2892 return; 2893 2894 ASSERT(ill->ill_dls_capab != NULL); 2895 2896 size = sizeof (*dl_subcap) + sizeof (*idls); 2897 2898 mp = allocb(size, BPRI_HI); 2899 if (mp == NULL) { 2900 ip1dbg(("ill_capability_dls_reset: unable to allocate " 2901 "request to disable soft_ring\n")); 2902 return; 2903 } 2904 2905 mp->b_wptr = mp->b_rptr + size; 2906 2907 dl_subcap = (dl_capability_sub_t *)mp->b_rptr; 2908 dl_subcap->dl_length = sizeof (*idls); 2909 if (ill->ill_capabilities & ILL_CAPAB_SOFT_RING) 2910 dl_subcap->dl_cap = DL_CAPAB_SOFT_RING; 2911 else 2912 dl_subcap->dl_cap = DL_CAPAB_POLL; 2913 2914 idls = (dl_capab_dls_t *)(dl_subcap + 1); 2915 if (ill->ill_capabilities & ILL_CAPAB_SOFT_RING) 2916 idls->dls_flags = SOFT_RING_DISABLE; 2917 else 2918 idls->dls_flags = POLL_DISABLE; 2919 2920 if (*sc_mp != NULL) 2921 linkb(*sc_mp, mp); 2922 else 2923 *sc_mp = mp; 2924 } 2925 2926 /* 2927 * Process a soft_ring/poll capability negotiation ack received 2928 * from a DLS Provider.isub must point to the sub-capability 2929 * (DL_CAPAB_SOFT_RING/DL_CAPAB_POLL) of a DL_CAPABILITY_ACK message. 2930 */ 2931 static void 2932 ill_capability_dls_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub) 2933 { 2934 dl_capab_dls_t *idls; 2935 uint_t sub_dl_cap = isub->dl_cap; 2936 uint8_t *capend; 2937 2938 ASSERT(sub_dl_cap == DL_CAPAB_SOFT_RING || 2939 sub_dl_cap == DL_CAPAB_POLL); 2940 2941 if (ill->ill_isv6) 2942 return; 2943 2944 /* 2945 * Note: range checks here are not absolutely sufficient to 2946 * make us robust against malformed messages sent by drivers; 2947 * this is in keeping with the rest of IP's dlpi handling. 2948 * (Remember, it's coming from something else in the kernel 2949 * address space) 2950 */ 2951 capend = (uint8_t *)(isub + 1) + isub->dl_length; 2952 if (capend > mp->b_wptr) { 2953 cmn_err(CE_WARN, "ill_capability_dls_ack: " 2954 "malformed sub-capability too long for mblk"); 2955 return; 2956 } 2957 2958 /* 2959 * There are two types of acks we process here: 2960 * 1. acks in reply to a (first form) generic capability req 2961 * (dls_flag will be set to SOFT_RING_CAPABLE or POLL_CAPABLE) 2962 * 2. acks in reply to a SOFT_RING_ENABLE or POLL_ENABLE 2963 * capability req. 2964 */ 2965 idls = (dl_capab_dls_t *)(isub + 1); 2966 2967 if (!dlcapabcheckqid(&idls->dls_mid, ill->ill_lmod_rq)) { 2968 ip1dbg(("ill_capability_dls_ack: mid token for dls " 2969 "capability isn't as expected; pass-thru " 2970 "module(s) detected, discarding capability\n")); 2971 if (ill->ill_capabilities & ILL_CAPAB_DLS) { 2972 /* 2973 * This is a capability renegotitation case. 2974 * The interface better be unusable at this 2975 * point other wise bad things will happen 2976 * if we disable direct calls on a running 2977 * and up interface. 2978 */ 2979 ill_capability_dls_disable(ill); 2980 } 2981 return; 2982 } 2983 2984 switch (idls->dls_flags) { 2985 default: 2986 /* Disable if unknown flag */ 2987 case SOFT_RING_DISABLE: 2988 case POLL_DISABLE: 2989 ill_capability_dls_disable(ill); 2990 break; 2991 case SOFT_RING_CAPABLE: 2992 case POLL_CAPABLE: 2993 /* 2994 * If the capability was already enabled, its safe 2995 * to disable it first to get rid of stale information 2996 * and then start enabling it again. 2997 */ 2998 ill_capability_dls_disable(ill); 2999 ill_capability_dls_capable(ill, idls, isub); 3000 break; 3001 case SOFT_RING_ENABLE: 3002 case POLL_ENABLE: 3003 mutex_enter(&ill->ill_lock); 3004 if (sub_dl_cap == DL_CAPAB_SOFT_RING && 3005 !(ill->ill_capabilities & ILL_CAPAB_SOFT_RING)) { 3006 ASSERT(ill->ill_dls_capab != NULL); 3007 ill->ill_capabilities |= ILL_CAPAB_SOFT_RING; 3008 } 3009 if (sub_dl_cap == DL_CAPAB_POLL && 3010 !(ill->ill_capabilities & ILL_CAPAB_POLL)) { 3011 ASSERT(ill->ill_dls_capab != NULL); 3012 ill->ill_capabilities |= ILL_CAPAB_POLL; 3013 ip1dbg(("ill_capability_dls_ack: interface %s " 3014 "has enabled polling\n", ill->ill_name)); 3015 } 3016 mutex_exit(&ill->ill_lock); 3017 break; 3018 } 3019 } 3020 3021 /* 3022 * Process a hardware checksum offload capability negotiation ack received 3023 * from a DLS Provider.isub must point to the sub-capability (DL_CAPAB_HCKSUM) 3024 * of a DL_CAPABILITY_ACK message. 3025 */ 3026 static void 3027 ill_capability_hcksum_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub) 3028 { 3029 dl_capability_req_t *ocap; 3030 dl_capab_hcksum_t *ihck, *ohck; 3031 ill_hcksum_capab_t **ill_hcksum; 3032 mblk_t *nmp = NULL; 3033 uint_t sub_dl_cap = isub->dl_cap; 3034 uint8_t *capend; 3035 3036 ASSERT(sub_dl_cap == DL_CAPAB_HCKSUM); 3037 3038 ill_hcksum = (ill_hcksum_capab_t **)&ill->ill_hcksum_capab; 3039 3040 /* 3041 * Note: range checks here are not absolutely sufficient to 3042 * make us robust against malformed messages sent by drivers; 3043 * this is in keeping with the rest of IP's dlpi handling. 3044 * (Remember, it's coming from something else in the kernel 3045 * address space) 3046 */ 3047 capend = (uint8_t *)(isub + 1) + isub->dl_length; 3048 if (capend > mp->b_wptr) { 3049 cmn_err(CE_WARN, "ill_capability_hcksum_ack: " 3050 "malformed sub-capability too long for mblk"); 3051 return; 3052 } 3053 3054 /* 3055 * There are two types of acks we process here: 3056 * 1. acks in reply to a (first form) generic capability req 3057 * (no ENABLE flag set) 3058 * 2. acks in reply to a ENABLE capability req. 3059 * (ENABLE flag set) 3060 */ 3061 ihck = (dl_capab_hcksum_t *)(isub + 1); 3062 3063 if (ihck->hcksum_version != HCKSUM_VERSION_1) { 3064 cmn_err(CE_CONT, "ill_capability_hcksum_ack: " 3065 "unsupported hardware checksum " 3066 "sub-capability (version %d, expected %d)", 3067 ihck->hcksum_version, HCKSUM_VERSION_1); 3068 return; 3069 } 3070 3071 if (!dlcapabcheckqid(&ihck->hcksum_mid, ill->ill_lmod_rq)) { 3072 ip1dbg(("ill_capability_hcksum_ack: mid token for hardware " 3073 "checksum capability isn't as expected; pass-thru " 3074 "module(s) detected, discarding capability\n")); 3075 return; 3076 } 3077 3078 #define CURR_HCKSUM_CAPAB \ 3079 (HCKSUM_INET_PARTIAL | HCKSUM_INET_FULL_V4 | \ 3080 HCKSUM_INET_FULL_V6 | HCKSUM_IPHDRCKSUM) 3081 3082 if ((ihck->hcksum_txflags & HCKSUM_ENABLE) && 3083 (ihck->hcksum_txflags & CURR_HCKSUM_CAPAB)) { 3084 /* do ENABLE processing */ 3085 if (*ill_hcksum == NULL) { 3086 *ill_hcksum = kmem_zalloc(sizeof (ill_hcksum_capab_t), 3087 KM_NOSLEEP); 3088 3089 if (*ill_hcksum == NULL) { 3090 cmn_err(CE_WARN, "ill_capability_hcksum_ack: " 3091 "could not enable hcksum version %d " 3092 "for %s (ENOMEM)\n", HCKSUM_CURRENT_VERSION, 3093 ill->ill_name); 3094 return; 3095 } 3096 } 3097 3098 (*ill_hcksum)->ill_hcksum_version = ihck->hcksum_version; 3099 (*ill_hcksum)->ill_hcksum_txflags = ihck->hcksum_txflags; 3100 ill->ill_capabilities |= ILL_CAPAB_HCKSUM; 3101 ip1dbg(("ill_capability_hcksum_ack: interface %s " 3102 "has enabled hardware checksumming\n ", 3103 ill->ill_name)); 3104 } else if (ihck->hcksum_txflags & CURR_HCKSUM_CAPAB) { 3105 /* 3106 * Enabling hardware checksum offload 3107 * Currently IP supports {TCP,UDP}/IPv4 3108 * partial and full cksum offload and 3109 * IPv4 header checksum offload. 3110 * Allocate new mblk which will 3111 * contain a new capability request 3112 * to enable hardware checksum offload. 3113 */ 3114 uint_t size; 3115 uchar_t *rptr; 3116 3117 size = sizeof (dl_capability_req_t) + 3118 sizeof (dl_capability_sub_t) + isub->dl_length; 3119 3120 if ((nmp = ip_dlpi_alloc(size, DL_CAPABILITY_REQ)) == NULL) { 3121 cmn_err(CE_WARN, "ill_capability_hcksum_ack: " 3122 "could not enable hardware cksum for %s (ENOMEM)\n", 3123 ill->ill_name); 3124 return; 3125 } 3126 3127 rptr = nmp->b_rptr; 3128 /* initialize dl_capability_req_t */ 3129 ocap = (dl_capability_req_t *)nmp->b_rptr; 3130 ocap->dl_sub_offset = 3131 sizeof (dl_capability_req_t); 3132 ocap->dl_sub_length = 3133 sizeof (dl_capability_sub_t) + 3134 isub->dl_length; 3135 nmp->b_rptr += sizeof (dl_capability_req_t); 3136 3137 /* initialize dl_capability_sub_t */ 3138 bcopy(isub, nmp->b_rptr, sizeof (*isub)); 3139 nmp->b_rptr += sizeof (*isub); 3140 3141 /* initialize dl_capab_hcksum_t */ 3142 ohck = (dl_capab_hcksum_t *)nmp->b_rptr; 3143 bcopy(ihck, ohck, sizeof (*ihck)); 3144 3145 nmp->b_rptr = rptr; 3146 ASSERT(nmp->b_wptr == (nmp->b_rptr + size)); 3147 3148 /* Set ENABLE flag */ 3149 ohck->hcksum_txflags &= CURR_HCKSUM_CAPAB; 3150 ohck->hcksum_txflags |= HCKSUM_ENABLE; 3151 3152 /* 3153 * nmp points to a DL_CAPABILITY_REQ message to enable 3154 * hardware checksum acceleration. 3155 */ 3156 ill_dlpi_send(ill, nmp); 3157 } else { 3158 ip1dbg(("ill_capability_hcksum_ack: interface %s has " 3159 "advertised %x hardware checksum capability flags\n", 3160 ill->ill_name, ihck->hcksum_txflags)); 3161 } 3162 } 3163 3164 static void 3165 ill_capability_hcksum_reset(ill_t *ill, mblk_t **sc_mp) 3166 { 3167 mblk_t *mp; 3168 dl_capab_hcksum_t *hck_subcap; 3169 dl_capability_sub_t *dl_subcap; 3170 int size; 3171 3172 if (!ILL_HCKSUM_CAPABLE(ill)) 3173 return; 3174 3175 ASSERT(ill->ill_hcksum_capab != NULL); 3176 /* 3177 * Clear the capability flag for hardware checksum offload but 3178 * retain the ill_hcksum_capab structure since it's possible that 3179 * another thread is still referring to it. The structure only 3180 * gets deallocated when we destroy the ill. 3181 */ 3182 ill->ill_capabilities &= ~ILL_CAPAB_HCKSUM; 3183 3184 size = sizeof (*dl_subcap) + sizeof (*hck_subcap); 3185 3186 mp = allocb(size, BPRI_HI); 3187 if (mp == NULL) { 3188 ip1dbg(("ill_capability_hcksum_reset: unable to allocate " 3189 "request to disable hardware checksum offload\n")); 3190 return; 3191 } 3192 3193 mp->b_wptr = mp->b_rptr + size; 3194 3195 dl_subcap = (dl_capability_sub_t *)mp->b_rptr; 3196 dl_subcap->dl_cap = DL_CAPAB_HCKSUM; 3197 dl_subcap->dl_length = sizeof (*hck_subcap); 3198 3199 hck_subcap = (dl_capab_hcksum_t *)(dl_subcap + 1); 3200 hck_subcap->hcksum_version = ill->ill_hcksum_capab->ill_hcksum_version; 3201 hck_subcap->hcksum_txflags = 0; 3202 3203 if (*sc_mp != NULL) 3204 linkb(*sc_mp, mp); 3205 else 3206 *sc_mp = mp; 3207 } 3208 3209 static void 3210 ill_capability_zerocopy_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub) 3211 { 3212 mblk_t *nmp = NULL; 3213 dl_capability_req_t *oc; 3214 dl_capab_zerocopy_t *zc_ic, *zc_oc; 3215 ill_zerocopy_capab_t **ill_zerocopy_capab; 3216 uint_t sub_dl_cap = isub->dl_cap; 3217 uint8_t *capend; 3218 3219 ASSERT(sub_dl_cap == DL_CAPAB_ZEROCOPY); 3220 3221 ill_zerocopy_capab = (ill_zerocopy_capab_t **)&ill->ill_zerocopy_capab; 3222 3223 /* 3224 * Note: range checks here are not absolutely sufficient to 3225 * make us robust against malformed messages sent by drivers; 3226 * this is in keeping with the rest of IP's dlpi handling. 3227 * (Remember, it's coming from something else in the kernel 3228 * address space) 3229 */ 3230 capend = (uint8_t *)(isub + 1) + isub->dl_length; 3231 if (capend > mp->b_wptr) { 3232 cmn_err(CE_WARN, "ill_capability_zerocopy_ack: " 3233 "malformed sub-capability too long for mblk"); 3234 return; 3235 } 3236 3237 zc_ic = (dl_capab_zerocopy_t *)(isub + 1); 3238 if (zc_ic->zerocopy_version != ZEROCOPY_VERSION_1) { 3239 cmn_err(CE_CONT, "ill_capability_zerocopy_ack: " 3240 "unsupported ZEROCOPY sub-capability (version %d, " 3241 "expected %d)", zc_ic->zerocopy_version, 3242 ZEROCOPY_VERSION_1); 3243 return; 3244 } 3245 3246 if (!dlcapabcheckqid(&zc_ic->zerocopy_mid, ill->ill_lmod_rq)) { 3247 ip1dbg(("ill_capability_zerocopy_ack: mid token for zerocopy " 3248 "capability isn't as expected; pass-thru module(s) " 3249 "detected, discarding capability\n")); 3250 return; 3251 } 3252 3253 if ((zc_ic->zerocopy_flags & DL_CAPAB_VMSAFE_MEM) != 0) { 3254 if (*ill_zerocopy_capab == NULL) { 3255 *ill_zerocopy_capab = 3256 kmem_zalloc(sizeof (ill_zerocopy_capab_t), 3257 KM_NOSLEEP); 3258 3259 if (*ill_zerocopy_capab == NULL) { 3260 cmn_err(CE_WARN, "ill_capability_zerocopy_ack: " 3261 "could not enable Zero-copy version %d " 3262 "for %s (ENOMEM)\n", ZEROCOPY_VERSION_1, 3263 ill->ill_name); 3264 return; 3265 } 3266 } 3267 3268 ip1dbg(("ill_capability_zerocopy_ack: interface %s " 3269 "supports Zero-copy version %d\n", ill->ill_name, 3270 ZEROCOPY_VERSION_1)); 3271 3272 (*ill_zerocopy_capab)->ill_zerocopy_version = 3273 zc_ic->zerocopy_version; 3274 (*ill_zerocopy_capab)->ill_zerocopy_flags = 3275 zc_ic->zerocopy_flags; 3276 3277 ill->ill_capabilities |= ILL_CAPAB_ZEROCOPY; 3278 } else { 3279 uint_t size; 3280 uchar_t *rptr; 3281 3282 size = sizeof (dl_capability_req_t) + 3283 sizeof (dl_capability_sub_t) + 3284 sizeof (dl_capab_zerocopy_t); 3285 3286 if ((nmp = ip_dlpi_alloc(size, DL_CAPABILITY_REQ)) == NULL) { 3287 cmn_err(CE_WARN, "ill_capability_zerocopy_ack: " 3288 "could not enable zerocopy for %s (ENOMEM)\n", 3289 ill->ill_name); 3290 return; 3291 } 3292 3293 rptr = nmp->b_rptr; 3294 /* initialize dl_capability_req_t */ 3295 oc = (dl_capability_req_t *)rptr; 3296 oc->dl_sub_offset = sizeof (dl_capability_req_t); 3297 oc->dl_sub_length = sizeof (dl_capability_sub_t) + 3298 sizeof (dl_capab_zerocopy_t); 3299 rptr += sizeof (dl_capability_req_t); 3300 3301 /* initialize dl_capability_sub_t */ 3302 bcopy(isub, rptr, sizeof (*isub)); 3303 rptr += sizeof (*isub); 3304 3305 /* initialize dl_capab_zerocopy_t */ 3306 zc_oc = (dl_capab_zerocopy_t *)rptr; 3307 *zc_oc = *zc_ic; 3308 3309 ip1dbg(("ill_capability_zerocopy_ack: asking interface %s " 3310 "to enable zero-copy version %d\n", ill->ill_name, 3311 ZEROCOPY_VERSION_1)); 3312 3313 /* set VMSAFE_MEM flag */ 3314 zc_oc->zerocopy_flags |= DL_CAPAB_VMSAFE_MEM; 3315 3316 /* nmp points to a DL_CAPABILITY_REQ message to enable zcopy */ 3317 ill_dlpi_send(ill, nmp); 3318 } 3319 } 3320 3321 static void 3322 ill_capability_zerocopy_reset(ill_t *ill, mblk_t **sc_mp) 3323 { 3324 mblk_t *mp; 3325 dl_capab_zerocopy_t *zerocopy_subcap; 3326 dl_capability_sub_t *dl_subcap; 3327 int size; 3328 3329 if (!(ill->ill_capabilities & ILL_CAPAB_ZEROCOPY)) 3330 return; 3331 3332 ASSERT(ill->ill_zerocopy_capab != NULL); 3333 /* 3334 * Clear the capability flag for Zero-copy but retain the 3335 * ill_zerocopy_capab structure since it's possible that another 3336 * thread is still referring to it. The structure only gets 3337 * deallocated when we destroy the ill. 3338 */ 3339 ill->ill_capabilities &= ~ILL_CAPAB_ZEROCOPY; 3340 3341 size = sizeof (*dl_subcap) + sizeof (*zerocopy_subcap); 3342 3343 mp = allocb(size, BPRI_HI); 3344 if (mp == NULL) { 3345 ip1dbg(("ill_capability_zerocopy_reset: unable to allocate " 3346 "request to disable Zero-copy\n")); 3347 return; 3348 } 3349 3350 mp->b_wptr = mp->b_rptr + size; 3351 3352 dl_subcap = (dl_capability_sub_t *)mp->b_rptr; 3353 dl_subcap->dl_cap = DL_CAPAB_ZEROCOPY; 3354 dl_subcap->dl_length = sizeof (*zerocopy_subcap); 3355 3356 zerocopy_subcap = (dl_capab_zerocopy_t *)(dl_subcap + 1); 3357 zerocopy_subcap->zerocopy_version = 3358 ill->ill_zerocopy_capab->ill_zerocopy_version; 3359 zerocopy_subcap->zerocopy_flags = 0; 3360 3361 if (*sc_mp != NULL) 3362 linkb(*sc_mp, mp); 3363 else 3364 *sc_mp = mp; 3365 } 3366 3367 /* 3368 * Process Large Segment Offload capability negotiation ack received from a 3369 * DLS Provider. isub must point to the sub-capability (DL_CAPAB_LSO) of a 3370 * DL_CAPABILITY_ACK message. 3371 */ 3372 static void 3373 ill_capability_lso_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub) 3374 { 3375 mblk_t *nmp = NULL; 3376 dl_capability_req_t *oc; 3377 dl_capab_lso_t *lso_ic, *lso_oc; 3378 ill_lso_capab_t **ill_lso_capab; 3379 uint_t sub_dl_cap = isub->dl_cap; 3380 uint8_t *capend; 3381 3382 ASSERT(sub_dl_cap == DL_CAPAB_LSO); 3383 3384 ill_lso_capab = (ill_lso_capab_t **)&ill->ill_lso_capab; 3385 3386 /* 3387 * Note: range checks here are not absolutely sufficient to 3388 * make us robust against malformed messages sent by drivers; 3389 * this is in keeping with the rest of IP's dlpi handling. 3390 * (Remember, it's coming from something else in the kernel 3391 * address space) 3392 */ 3393 capend = (uint8_t *)(isub + 1) + isub->dl_length; 3394 if (capend > mp->b_wptr) { 3395 cmn_err(CE_WARN, "ill_capability_lso_ack: " 3396 "malformed sub-capability too long for mblk"); 3397 return; 3398 } 3399 3400 lso_ic = (dl_capab_lso_t *)(isub + 1); 3401 3402 if (lso_ic->lso_version != LSO_VERSION_1) { 3403 cmn_err(CE_CONT, "ill_capability_lso_ack: " 3404 "unsupported LSO sub-capability (version %d, expected %d)", 3405 lso_ic->lso_version, LSO_VERSION_1); 3406 return; 3407 } 3408 3409 if (!dlcapabcheckqid(&lso_ic->lso_mid, ill->ill_lmod_rq)) { 3410 ip1dbg(("ill_capability_lso_ack: mid token for LSO " 3411 "capability isn't as expected; pass-thru module(s) " 3412 "detected, discarding capability\n")); 3413 return; 3414 } 3415 3416 if ((lso_ic->lso_flags & LSO_TX_ENABLE) && 3417 (lso_ic->lso_flags & LSO_TX_BASIC_TCP_IPV4)) { 3418 if (*ill_lso_capab == NULL) { 3419 *ill_lso_capab = kmem_zalloc(sizeof (ill_lso_capab_t), 3420 KM_NOSLEEP); 3421 3422 if (*ill_lso_capab == NULL) { 3423 cmn_err(CE_WARN, "ill_capability_lso_ack: " 3424 "could not enable LSO version %d " 3425 "for %s (ENOMEM)\n", LSO_VERSION_1, 3426 ill->ill_name); 3427 return; 3428 } 3429 } 3430 3431 (*ill_lso_capab)->ill_lso_version = lso_ic->lso_version; 3432 (*ill_lso_capab)->ill_lso_flags = lso_ic->lso_flags; 3433 (*ill_lso_capab)->ill_lso_max = lso_ic->lso_max; 3434 ill->ill_capabilities |= ILL_CAPAB_LSO; 3435 3436 ip1dbg(("ill_capability_lso_ack: interface %s " 3437 "has enabled LSO\n ", ill->ill_name)); 3438 } else if (lso_ic->lso_flags & LSO_TX_BASIC_TCP_IPV4) { 3439 uint_t size; 3440 uchar_t *rptr; 3441 3442 size = sizeof (dl_capability_req_t) + 3443 sizeof (dl_capability_sub_t) + sizeof (dl_capab_lso_t); 3444 3445 if ((nmp = ip_dlpi_alloc(size, DL_CAPABILITY_REQ)) == NULL) { 3446 cmn_err(CE_WARN, "ill_capability_lso_ack: " 3447 "could not enable LSO for %s (ENOMEM)\n", 3448 ill->ill_name); 3449 return; 3450 } 3451 3452 rptr = nmp->b_rptr; 3453 /* initialize dl_capability_req_t */ 3454 oc = (dl_capability_req_t *)nmp->b_rptr; 3455 oc->dl_sub_offset = sizeof (dl_capability_req_t); 3456 oc->dl_sub_length = sizeof (dl_capability_sub_t) + 3457 sizeof (dl_capab_lso_t); 3458 nmp->b_rptr += sizeof (dl_capability_req_t); 3459 3460 /* initialize dl_capability_sub_t */ 3461 bcopy(isub, nmp->b_rptr, sizeof (*isub)); 3462 nmp->b_rptr += sizeof (*isub); 3463 3464 /* initialize dl_capab_lso_t */ 3465 lso_oc = (dl_capab_lso_t *)nmp->b_rptr; 3466 bcopy(lso_ic, lso_oc, sizeof (*lso_ic)); 3467 3468 nmp->b_rptr = rptr; 3469 ASSERT(nmp->b_wptr == (nmp->b_rptr + size)); 3470 3471 /* set ENABLE flag */ 3472 lso_oc->lso_flags |= LSO_TX_ENABLE; 3473 3474 /* nmp points to a DL_CAPABILITY_REQ message to enable LSO */ 3475 ill_dlpi_send(ill, nmp); 3476 } else { 3477 ip1dbg(("ill_capability_lso_ack: interface %s has " 3478 "advertised %x LSO capability flags\n", 3479 ill->ill_name, lso_ic->lso_flags)); 3480 } 3481 } 3482 3483 3484 static void 3485 ill_capability_lso_reset(ill_t *ill, mblk_t **sc_mp) 3486 { 3487 mblk_t *mp; 3488 dl_capab_lso_t *lso_subcap; 3489 dl_capability_sub_t *dl_subcap; 3490 int size; 3491 3492 if (!(ill->ill_capabilities & ILL_CAPAB_LSO)) 3493 return; 3494 3495 ASSERT(ill->ill_lso_capab != NULL); 3496 /* 3497 * Clear the capability flag for LSO but retain the 3498 * ill_lso_capab structure since it's possible that another 3499 * thread is still referring to it. The structure only gets 3500 * deallocated when we destroy the ill. 3501 */ 3502 ill->ill_capabilities &= ~ILL_CAPAB_LSO; 3503 3504 size = sizeof (*dl_subcap) + sizeof (*lso_subcap); 3505 3506 mp = allocb(size, BPRI_HI); 3507 if (mp == NULL) { 3508 ip1dbg(("ill_capability_lso_reset: unable to allocate " 3509 "request to disable LSO\n")); 3510 return; 3511 } 3512 3513 mp->b_wptr = mp->b_rptr + size; 3514 3515 dl_subcap = (dl_capability_sub_t *)mp->b_rptr; 3516 dl_subcap->dl_cap = DL_CAPAB_LSO; 3517 dl_subcap->dl_length = sizeof (*lso_subcap); 3518 3519 lso_subcap = (dl_capab_lso_t *)(dl_subcap + 1); 3520 lso_subcap->lso_version = ill->ill_lso_capab->ill_lso_version; 3521 lso_subcap->lso_flags = 0; 3522 3523 if (*sc_mp != NULL) 3524 linkb(*sc_mp, mp); 3525 else 3526 *sc_mp = mp; 3527 } 3528 3529 /* 3530 * Consume a new-style hardware capabilities negotiation ack. 3531 * Called from ip_rput_dlpi_writer(). 3532 */ 3533 void 3534 ill_capability_ack(ill_t *ill, mblk_t *mp) 3535 { 3536 dl_capability_ack_t *capp; 3537 dl_capability_sub_t *subp, *endp; 3538 3539 if (ill->ill_dlpi_capab_state == IDS_INPROGRESS) 3540 ill->ill_dlpi_capab_state = IDS_OK; 3541 3542 capp = (dl_capability_ack_t *)mp->b_rptr; 3543 3544 if (capp->dl_sub_length == 0) 3545 /* no new-style capabilities */ 3546 return; 3547 3548 /* make sure the driver supplied correct dl_sub_length */ 3549 if ((sizeof (*capp) + capp->dl_sub_length) > MBLKL(mp)) { 3550 ip0dbg(("ill_capability_ack: bad DL_CAPABILITY_ACK, " 3551 "invalid dl_sub_length (%d)\n", capp->dl_sub_length)); 3552 return; 3553 } 3554 3555 #define SC(base, offset) (dl_capability_sub_t *)(((uchar_t *)(base))+(offset)) 3556 /* 3557 * There are sub-capabilities. Process the ones we know about. 3558 * Loop until we don't have room for another sub-cap header.. 3559 */ 3560 for (subp = SC(capp, capp->dl_sub_offset), 3561 endp = SC(subp, capp->dl_sub_length - sizeof (*subp)); 3562 subp <= endp; 3563 subp = SC(subp, sizeof (dl_capability_sub_t) + subp->dl_length)) { 3564 3565 switch (subp->dl_cap) { 3566 case DL_CAPAB_ID_WRAPPER: 3567 ill_capability_id_ack(ill, mp, subp); 3568 break; 3569 default: 3570 ill_capability_dispatch(ill, mp, subp, B_FALSE); 3571 break; 3572 } 3573 } 3574 #undef SC 3575 } 3576 3577 /* 3578 * This routine is called to scan the fragmentation reassembly table for 3579 * the specified ILL for any packets that are starting to smell. 3580 * dead_interval is the maximum time in seconds that will be tolerated. It 3581 * will either be the value specified in ip_g_frag_timeout, or zero if the 3582 * ILL is shutting down and it is time to blow everything off. 3583 * 3584 * It returns the number of seconds (as a time_t) that the next frag timer 3585 * should be scheduled for, 0 meaning that the timer doesn't need to be 3586 * re-started. Note that the method of calculating next_timeout isn't 3587 * entirely accurate since time will flow between the time we grab 3588 * current_time and the time we schedule the next timeout. This isn't a 3589 * big problem since this is the timer for sending an ICMP reassembly time 3590 * exceeded messages, and it doesn't have to be exactly accurate. 3591 * 3592 * This function is 3593 * sometimes called as writer, although this is not required. 3594 */ 3595 time_t 3596 ill_frag_timeout(ill_t *ill, time_t dead_interval) 3597 { 3598 ipfb_t *ipfb; 3599 ipfb_t *endp; 3600 ipf_t *ipf; 3601 ipf_t *ipfnext; 3602 mblk_t *mp; 3603 time_t current_time = gethrestime_sec(); 3604 time_t next_timeout = 0; 3605 uint32_t hdr_length; 3606 mblk_t *send_icmp_head; 3607 mblk_t *send_icmp_head_v6; 3608 zoneid_t zoneid; 3609 ip_stack_t *ipst = ill->ill_ipst; 3610 3611 ipfb = ill->ill_frag_hash_tbl; 3612 if (ipfb == NULL) 3613 return (B_FALSE); 3614 endp = &ipfb[ILL_FRAG_HASH_TBL_COUNT]; 3615 /* Walk the frag hash table. */ 3616 for (; ipfb < endp; ipfb++) { 3617 send_icmp_head = NULL; 3618 send_icmp_head_v6 = NULL; 3619 mutex_enter(&ipfb->ipfb_lock); 3620 while ((ipf = ipfb->ipfb_ipf) != 0) { 3621 time_t frag_time = current_time - ipf->ipf_timestamp; 3622 time_t frag_timeout; 3623 3624 if (frag_time < dead_interval) { 3625 /* 3626 * There are some outstanding fragments 3627 * that will timeout later. Make note of 3628 * the time so that we can reschedule the 3629 * next timeout appropriately. 3630 */ 3631 frag_timeout = dead_interval - frag_time; 3632 if (next_timeout == 0 || 3633 frag_timeout < next_timeout) { 3634 next_timeout = frag_timeout; 3635 } 3636 break; 3637 } 3638 /* Time's up. Get it out of here. */ 3639 hdr_length = ipf->ipf_nf_hdr_len; 3640 ipfnext = ipf->ipf_hash_next; 3641 if (ipfnext) 3642 ipfnext->ipf_ptphn = ipf->ipf_ptphn; 3643 *ipf->ipf_ptphn = ipfnext; 3644 mp = ipf->ipf_mp->b_cont; 3645 for (; mp; mp = mp->b_cont) { 3646 /* Extra points for neatness. */ 3647 IP_REASS_SET_START(mp, 0); 3648 IP_REASS_SET_END(mp, 0); 3649 } 3650 mp = ipf->ipf_mp->b_cont; 3651 ill->ill_frag_count -= ipf->ipf_count; 3652 ASSERT(ipfb->ipfb_count >= ipf->ipf_count); 3653 ipfb->ipfb_count -= ipf->ipf_count; 3654 ASSERT(ipfb->ipfb_frag_pkts > 0); 3655 ipfb->ipfb_frag_pkts--; 3656 /* 3657 * We do not send any icmp message from here because 3658 * we currently are holding the ipfb_lock for this 3659 * hash chain. If we try and send any icmp messages 3660 * from here we may end up via a put back into ip 3661 * trying to get the same lock, causing a recursive 3662 * mutex panic. Instead we build a list and send all 3663 * the icmp messages after we have dropped the lock. 3664 */ 3665 if (ill->ill_isv6) { 3666 if (hdr_length != 0) { 3667 mp->b_next = send_icmp_head_v6; 3668 send_icmp_head_v6 = mp; 3669 } else { 3670 freemsg(mp); 3671 } 3672 } else { 3673 if (hdr_length != 0) { 3674 mp->b_next = send_icmp_head; 3675 send_icmp_head = mp; 3676 } else { 3677 freemsg(mp); 3678 } 3679 } 3680 BUMP_MIB(ill->ill_ip_mib, ipIfStatsReasmFails); 3681 freeb(ipf->ipf_mp); 3682 } 3683 mutex_exit(&ipfb->ipfb_lock); 3684 /* 3685 * Now need to send any icmp messages that we delayed from 3686 * above. 3687 */ 3688 while (send_icmp_head_v6 != NULL) { 3689 ip6_t *ip6h; 3690 3691 mp = send_icmp_head_v6; 3692 send_icmp_head_v6 = send_icmp_head_v6->b_next; 3693 mp->b_next = NULL; 3694 if (mp->b_datap->db_type == M_CTL) 3695 ip6h = (ip6_t *)mp->b_cont->b_rptr; 3696 else 3697 ip6h = (ip6_t *)mp->b_rptr; 3698 zoneid = ipif_lookup_addr_zoneid_v6(&ip6h->ip6_dst, 3699 ill, ipst); 3700 if (zoneid == ALL_ZONES) { 3701 freemsg(mp); 3702 } else { 3703 icmp_time_exceeded_v6(ill->ill_wq, mp, 3704 ICMP_REASSEMBLY_TIME_EXCEEDED, B_FALSE, 3705 B_FALSE, zoneid, ipst); 3706 } 3707 } 3708 while (send_icmp_head != NULL) { 3709 ipaddr_t dst; 3710 3711 mp = send_icmp_head; 3712 send_icmp_head = send_icmp_head->b_next; 3713 mp->b_next = NULL; 3714 3715 if (mp->b_datap->db_type == M_CTL) 3716 dst = ((ipha_t *)mp->b_cont->b_rptr)->ipha_dst; 3717 else 3718 dst = ((ipha_t *)mp->b_rptr)->ipha_dst; 3719 3720 zoneid = ipif_lookup_addr_zoneid(dst, ill, ipst); 3721 if (zoneid == ALL_ZONES) { 3722 freemsg(mp); 3723 } else { 3724 icmp_time_exceeded(ill->ill_wq, mp, 3725 ICMP_REASSEMBLY_TIME_EXCEEDED, zoneid, 3726 ipst); 3727 } 3728 } 3729 } 3730 /* 3731 * A non-dying ILL will use the return value to decide whether to 3732 * restart the frag timer, and for how long. 3733 */ 3734 return (next_timeout); 3735 } 3736 3737 /* 3738 * This routine is called when the approximate count of mblk memory used 3739 * for the specified ILL has exceeded max_count. 3740 */ 3741 void 3742 ill_frag_prune(ill_t *ill, uint_t max_count) 3743 { 3744 ipfb_t *ipfb; 3745 ipf_t *ipf; 3746 size_t count; 3747 3748 /* 3749 * If we are here within ip_min_frag_prune_time msecs remove 3750 * ill_frag_free_num_pkts oldest packets from each bucket and increment 3751 * ill_frag_free_num_pkts. 3752 */ 3753 mutex_enter(&ill->ill_lock); 3754 if (TICK_TO_MSEC(lbolt - ill->ill_last_frag_clean_time) <= 3755 (ip_min_frag_prune_time != 0 ? 3756 ip_min_frag_prune_time : msec_per_tick)) { 3757 3758 ill->ill_frag_free_num_pkts++; 3759 3760 } else { 3761 ill->ill_frag_free_num_pkts = 0; 3762 } 3763 ill->ill_last_frag_clean_time = lbolt; 3764 mutex_exit(&ill->ill_lock); 3765 3766 /* 3767 * free ill_frag_free_num_pkts oldest packets from each bucket. 3768 */ 3769 if (ill->ill_frag_free_num_pkts != 0) { 3770 int ix; 3771 3772 for (ix = 0; ix < ILL_FRAG_HASH_TBL_COUNT; ix++) { 3773 ipfb = &ill->ill_frag_hash_tbl[ix]; 3774 mutex_enter(&ipfb->ipfb_lock); 3775 if (ipfb->ipfb_ipf != NULL) { 3776 ill_frag_free_pkts(ill, ipfb, ipfb->ipfb_ipf, 3777 ill->ill_frag_free_num_pkts); 3778 } 3779 mutex_exit(&ipfb->ipfb_lock); 3780 } 3781 } 3782 /* 3783 * While the reassembly list for this ILL is too big, prune a fragment 3784 * queue by age, oldest first. Note that the per ILL count is 3785 * approximate, while the per frag hash bucket counts are accurate. 3786 */ 3787 while (ill->ill_frag_count > max_count) { 3788 int ix; 3789 ipfb_t *oipfb = NULL; 3790 uint_t oldest = UINT_MAX; 3791 3792 count = 0; 3793 for (ix = 0; ix < ILL_FRAG_HASH_TBL_COUNT; ix++) { 3794 ipfb = &ill->ill_frag_hash_tbl[ix]; 3795 mutex_enter(&ipfb->ipfb_lock); 3796 ipf = ipfb->ipfb_ipf; 3797 if (ipf != NULL && ipf->ipf_gen < oldest) { 3798 oldest = ipf->ipf_gen; 3799 oipfb = ipfb; 3800 } 3801 count += ipfb->ipfb_count; 3802 mutex_exit(&ipfb->ipfb_lock); 3803 } 3804 /* Refresh the per ILL count */ 3805 ill->ill_frag_count = count; 3806 if (oipfb == NULL) { 3807 ill->ill_frag_count = 0; 3808 break; 3809 } 3810 if (count <= max_count) 3811 return; /* Somebody beat us to it, nothing to do */ 3812 mutex_enter(&oipfb->ipfb_lock); 3813 ipf = oipfb->ipfb_ipf; 3814 if (ipf != NULL) { 3815 ill_frag_free_pkts(ill, oipfb, ipf, 1); 3816 } 3817 mutex_exit(&oipfb->ipfb_lock); 3818 } 3819 } 3820 3821 /* 3822 * free 'free_cnt' fragmented packets starting at ipf. 3823 */ 3824 void 3825 ill_frag_free_pkts(ill_t *ill, ipfb_t *ipfb, ipf_t *ipf, int free_cnt) 3826 { 3827 size_t count; 3828 mblk_t *mp; 3829 mblk_t *tmp; 3830 ipf_t **ipfp = ipf->ipf_ptphn; 3831 3832 ASSERT(MUTEX_HELD(&ipfb->ipfb_lock)); 3833 ASSERT(ipfp != NULL); 3834 ASSERT(ipf != NULL); 3835 3836 while (ipf != NULL && free_cnt-- > 0) { 3837 count = ipf->ipf_count; 3838 mp = ipf->ipf_mp; 3839 ipf = ipf->ipf_hash_next; 3840 for (tmp = mp; tmp; tmp = tmp->b_cont) { 3841 IP_REASS_SET_START(tmp, 0); 3842 IP_REASS_SET_END(tmp, 0); 3843 } 3844 ill->ill_frag_count -= count; 3845 ASSERT(ipfb->ipfb_count >= count); 3846 ipfb->ipfb_count -= count; 3847 ASSERT(ipfb->ipfb_frag_pkts > 0); 3848 ipfb->ipfb_frag_pkts--; 3849 freemsg(mp); 3850 BUMP_MIB(ill->ill_ip_mib, ipIfStatsReasmFails); 3851 } 3852 3853 if (ipf) 3854 ipf->ipf_ptphn = ipfp; 3855 ipfp[0] = ipf; 3856 } 3857 3858 #define ND_FORWARD_WARNING "The <if>:ip*_forwarding ndd variables are " \ 3859 "obsolete and may be removed in a future release of Solaris. Use " \ 3860 "ifconfig(1M) to manipulate the forwarding status of an interface." 3861 3862 /* 3863 * For obsolete per-interface forwarding configuration; 3864 * called in response to ND_GET. 3865 */ 3866 /* ARGSUSED */ 3867 static int 3868 nd_ill_forward_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *ioc_cr) 3869 { 3870 ill_t *ill = (ill_t *)cp; 3871 3872 cmn_err(CE_WARN, ND_FORWARD_WARNING); 3873 3874 (void) mi_mpprintf(mp, "%d", (ill->ill_flags & ILLF_ROUTER) != 0); 3875 return (0); 3876 } 3877 3878 /* 3879 * For obsolete per-interface forwarding configuration; 3880 * called in response to ND_SET. 3881 */ 3882 /* ARGSUSED */ 3883 static int 3884 nd_ill_forward_set(queue_t *q, mblk_t *mp, char *valuestr, caddr_t cp, 3885 cred_t *ioc_cr) 3886 { 3887 long value; 3888 int retval; 3889 ip_stack_t *ipst = CONNQ_TO_IPST(q); 3890 3891 cmn_err(CE_WARN, ND_FORWARD_WARNING); 3892 3893 if (ddi_strtol(valuestr, NULL, 10, &value) != 0 || 3894 value < 0 || value > 1) { 3895 return (EINVAL); 3896 } 3897 3898 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 3899 retval = ill_forward_set((ill_t *)cp, (value != 0)); 3900 rw_exit(&ipst->ips_ill_g_lock); 3901 return (retval); 3902 } 3903 3904 /* 3905 * Set an ill's ILLF_ROUTER flag appropriately. If the ill is part of an 3906 * IPMP group, make sure all ill's in the group adopt the new policy. Send 3907 * up RTS_IFINFO routing socket messages for each interface whose flags we 3908 * change. 3909 */ 3910 int 3911 ill_forward_set(ill_t *ill, boolean_t enable) 3912 { 3913 ill_group_t *illgrp; 3914 ip_stack_t *ipst = ill->ill_ipst; 3915 3916 ASSERT(IAM_WRITER_ILL(ill) || RW_READ_HELD(&ipst->ips_ill_g_lock)); 3917 3918 if ((enable && (ill->ill_flags & ILLF_ROUTER)) || 3919 (!enable && !(ill->ill_flags & ILLF_ROUTER))) 3920 return (0); 3921 3922 if (IS_LOOPBACK(ill)) 3923 return (EINVAL); 3924 3925 /* 3926 * If the ill is in an IPMP group, set the forwarding policy on all 3927 * members of the group to the same value. 3928 */ 3929 illgrp = ill->ill_group; 3930 if (illgrp != NULL) { 3931 ill_t *tmp_ill; 3932 3933 for (tmp_ill = illgrp->illgrp_ill; tmp_ill != NULL; 3934 tmp_ill = tmp_ill->ill_group_next) { 3935 ip1dbg(("ill_forward_set: %s %s forwarding on %s", 3936 (enable ? "Enabling" : "Disabling"), 3937 (tmp_ill->ill_isv6 ? "IPv6" : "IPv4"), 3938 tmp_ill->ill_name)); 3939 mutex_enter(&tmp_ill->ill_lock); 3940 if (enable) 3941 tmp_ill->ill_flags |= ILLF_ROUTER; 3942 else 3943 tmp_ill->ill_flags &= ~ILLF_ROUTER; 3944 mutex_exit(&tmp_ill->ill_lock); 3945 if (tmp_ill->ill_isv6) 3946 ill_set_nce_router_flags(tmp_ill, enable); 3947 /* Notify routing socket listeners of this change. */ 3948 ip_rts_ifmsg(tmp_ill->ill_ipif); 3949 } 3950 } else { 3951 ip1dbg(("ill_forward_set: %s %s forwarding on %s", 3952 (enable ? "Enabling" : "Disabling"), 3953 (ill->ill_isv6 ? "IPv6" : "IPv4"), ill->ill_name)); 3954 mutex_enter(&ill->ill_lock); 3955 if (enable) 3956 ill->ill_flags |= ILLF_ROUTER; 3957 else 3958 ill->ill_flags &= ~ILLF_ROUTER; 3959 mutex_exit(&ill->ill_lock); 3960 if (ill->ill_isv6) 3961 ill_set_nce_router_flags(ill, enable); 3962 /* Notify routing socket listeners of this change. */ 3963 ip_rts_ifmsg(ill->ill_ipif); 3964 } 3965 3966 return (0); 3967 } 3968 3969 /* 3970 * Based on the ILLF_ROUTER flag of an ill, make sure all local nce's for 3971 * addresses assigned to the ill have the NCE_F_ISROUTER flag appropriately 3972 * set or clear. 3973 */ 3974 static void 3975 ill_set_nce_router_flags(ill_t *ill, boolean_t enable) 3976 { 3977 ipif_t *ipif; 3978 nce_t *nce; 3979 3980 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 3981 nce = ndp_lookup_v6(ill, &ipif->ipif_v6lcl_addr, B_FALSE); 3982 if (nce != NULL) { 3983 mutex_enter(&nce->nce_lock); 3984 if (enable) 3985 nce->nce_flags |= NCE_F_ISROUTER; 3986 else 3987 nce->nce_flags &= ~NCE_F_ISROUTER; 3988 mutex_exit(&nce->nce_lock); 3989 NCE_REFRELE(nce); 3990 } 3991 } 3992 } 3993 3994 /* 3995 * Given an ill with a _valid_ name, add the ip_forwarding ndd variable 3996 * for this ill. Make sure the v6/v4 question has been answered about this 3997 * ill. The creation of this ndd variable is only for backwards compatibility. 3998 * The preferred way to control per-interface IP forwarding is through the 3999 * ILLF_ROUTER interface flag. 4000 */ 4001 static int 4002 ill_set_ndd_name(ill_t *ill) 4003 { 4004 char *suffix; 4005 ip_stack_t *ipst = ill->ill_ipst; 4006 4007 ASSERT(IAM_WRITER_ILL(ill)); 4008 4009 if (ill->ill_isv6) 4010 suffix = ipv6_forward_suffix; 4011 else 4012 suffix = ipv4_forward_suffix; 4013 4014 ill->ill_ndd_name = ill->ill_name + ill->ill_name_length; 4015 bcopy(ill->ill_name, ill->ill_ndd_name, ill->ill_name_length - 1); 4016 /* 4017 * Copies over the '\0'. 4018 * Note that strlen(suffix) is always bounded. 4019 */ 4020 bcopy(suffix, ill->ill_ndd_name + ill->ill_name_length - 1, 4021 strlen(suffix) + 1); 4022 4023 /* 4024 * Use of the nd table requires holding the reader lock. 4025 * Modifying the nd table thru nd_load/nd_unload requires 4026 * the writer lock. 4027 */ 4028 rw_enter(&ipst->ips_ip_g_nd_lock, RW_WRITER); 4029 if (!nd_load(&ipst->ips_ip_g_nd, ill->ill_ndd_name, nd_ill_forward_get, 4030 nd_ill_forward_set, (caddr_t)ill)) { 4031 /* 4032 * If the nd_load failed, it only meant that it could not 4033 * allocate a new bunch of room for further NDD expansion. 4034 * Because of that, the ill_ndd_name will be set to 0, and 4035 * this interface is at the mercy of the global ip_forwarding 4036 * variable. 4037 */ 4038 rw_exit(&ipst->ips_ip_g_nd_lock); 4039 ill->ill_ndd_name = NULL; 4040 return (ENOMEM); 4041 } 4042 rw_exit(&ipst->ips_ip_g_nd_lock); 4043 return (0); 4044 } 4045 4046 /* 4047 * Intializes the context structure and returns the first ill in the list 4048 * cuurently start_list and end_list can have values: 4049 * MAX_G_HEADS Traverse both IPV4 and IPV6 lists. 4050 * IP_V4_G_HEAD Traverse IPV4 list only. 4051 * IP_V6_G_HEAD Traverse IPV6 list only. 4052 */ 4053 4054 /* 4055 * We don't check for CONDEMNED ills here. Caller must do that if 4056 * necessary under the ill lock. 4057 */ 4058 ill_t * 4059 ill_first(int start_list, int end_list, ill_walk_context_t *ctx, 4060 ip_stack_t *ipst) 4061 { 4062 ill_if_t *ifp; 4063 ill_t *ill; 4064 avl_tree_t *avl_tree; 4065 4066 ASSERT(RW_LOCK_HELD(&ipst->ips_ill_g_lock)); 4067 ASSERT(end_list <= MAX_G_HEADS && start_list >= 0); 4068 4069 /* 4070 * setup the lists to search 4071 */ 4072 if (end_list != MAX_G_HEADS) { 4073 ctx->ctx_current_list = start_list; 4074 ctx->ctx_last_list = end_list; 4075 } else { 4076 ctx->ctx_last_list = MAX_G_HEADS - 1; 4077 ctx->ctx_current_list = 0; 4078 } 4079 4080 while (ctx->ctx_current_list <= ctx->ctx_last_list) { 4081 ifp = IP_VX_ILL_G_LIST(ctx->ctx_current_list, ipst); 4082 if (ifp != (ill_if_t *) 4083 &IP_VX_ILL_G_LIST(ctx->ctx_current_list, ipst)) { 4084 avl_tree = &ifp->illif_avl_by_ppa; 4085 ill = avl_first(avl_tree); 4086 /* 4087 * ill is guaranteed to be non NULL or ifp should have 4088 * not existed. 4089 */ 4090 ASSERT(ill != NULL); 4091 return (ill); 4092 } 4093 ctx->ctx_current_list++; 4094 } 4095 4096 return (NULL); 4097 } 4098 4099 /* 4100 * returns the next ill in the list. ill_first() must have been called 4101 * before calling ill_next() or bad things will happen. 4102 */ 4103 4104 /* 4105 * We don't check for CONDEMNED ills here. Caller must do that if 4106 * necessary under the ill lock. 4107 */ 4108 ill_t * 4109 ill_next(ill_walk_context_t *ctx, ill_t *lastill) 4110 { 4111 ill_if_t *ifp; 4112 ill_t *ill; 4113 ip_stack_t *ipst = lastill->ill_ipst; 4114 4115 ASSERT(lastill->ill_ifptr != (ill_if_t *) 4116 &IP_VX_ILL_G_LIST(ctx->ctx_current_list, ipst)); 4117 if ((ill = avl_walk(&lastill->ill_ifptr->illif_avl_by_ppa, lastill, 4118 AVL_AFTER)) != NULL) { 4119 return (ill); 4120 } 4121 4122 /* goto next ill_ifp in the list. */ 4123 ifp = lastill->ill_ifptr->illif_next; 4124 4125 /* make sure not at end of circular list */ 4126 while (ifp == 4127 (ill_if_t *)&IP_VX_ILL_G_LIST(ctx->ctx_current_list, ipst)) { 4128 if (++ctx->ctx_current_list > ctx->ctx_last_list) 4129 return (NULL); 4130 ifp = IP_VX_ILL_G_LIST(ctx->ctx_current_list, ipst); 4131 } 4132 4133 return (avl_first(&ifp->illif_avl_by_ppa)); 4134 } 4135 4136 /* 4137 * Check interface name for correct format which is name+ppa. 4138 * name can contain characters and digits, the right most digits 4139 * make up the ppa number. use of octal is not allowed, name must contain 4140 * a ppa, return pointer to the start of ppa. 4141 * In case of error return NULL. 4142 */ 4143 static char * 4144 ill_get_ppa_ptr(char *name) 4145 { 4146 int namelen = mi_strlen(name); 4147 4148 int len = namelen; 4149 4150 name += len; 4151 while (len > 0) { 4152 name--; 4153 if (*name < '0' || *name > '9') 4154 break; 4155 len--; 4156 } 4157 4158 /* empty string, all digits, or no trailing digits */ 4159 if (len == 0 || len == (int)namelen) 4160 return (NULL); 4161 4162 name++; 4163 /* check for attempted use of octal */ 4164 if (*name == '0' && len != (int)namelen - 1) 4165 return (NULL); 4166 return (name); 4167 } 4168 4169 /* 4170 * use avl tree to locate the ill. 4171 */ 4172 static ill_t * 4173 ill_find_by_name(char *name, boolean_t isv6, queue_t *q, mblk_t *mp, 4174 ipsq_func_t func, int *error, ip_stack_t *ipst) 4175 { 4176 char *ppa_ptr = NULL; 4177 int len; 4178 uint_t ppa; 4179 ill_t *ill = NULL; 4180 ill_if_t *ifp; 4181 int list; 4182 ipsq_t *ipsq; 4183 4184 if (error != NULL) 4185 *error = 0; 4186 4187 /* 4188 * get ppa ptr 4189 */ 4190 if (isv6) 4191 list = IP_V6_G_HEAD; 4192 else 4193 list = IP_V4_G_HEAD; 4194 4195 if ((ppa_ptr = ill_get_ppa_ptr(name)) == NULL) { 4196 if (error != NULL) 4197 *error = ENXIO; 4198 return (NULL); 4199 } 4200 4201 len = ppa_ptr - name + 1; 4202 4203 ppa = stoi(&ppa_ptr); 4204 4205 ifp = IP_VX_ILL_G_LIST(list, ipst); 4206 4207 while (ifp != (ill_if_t *)&IP_VX_ILL_G_LIST(list, ipst)) { 4208 /* 4209 * match is done on len - 1 as the name is not null 4210 * terminated it contains ppa in addition to the interface 4211 * name. 4212 */ 4213 if ((ifp->illif_name_len == len) && 4214 bcmp(ifp->illif_name, name, len - 1) == 0) { 4215 break; 4216 } else { 4217 ifp = ifp->illif_next; 4218 } 4219 } 4220 4221 4222 if (ifp == (ill_if_t *)&IP_VX_ILL_G_LIST(list, ipst)) { 4223 /* 4224 * Even the interface type does not exist. 4225 */ 4226 if (error != NULL) 4227 *error = ENXIO; 4228 return (NULL); 4229 } 4230 4231 ill = avl_find(&ifp->illif_avl_by_ppa, (void *) &ppa, NULL); 4232 if (ill != NULL) { 4233 /* 4234 * The block comment at the start of ipif_down 4235 * explains the use of the macros used below 4236 */ 4237 GRAB_CONN_LOCK(q); 4238 mutex_enter(&ill->ill_lock); 4239 if (ILL_CAN_LOOKUP(ill)) { 4240 ill_refhold_locked(ill); 4241 mutex_exit(&ill->ill_lock); 4242 RELEASE_CONN_LOCK(q); 4243 return (ill); 4244 } else if (ILL_CAN_WAIT(ill, q)) { 4245 ipsq = ill->ill_phyint->phyint_ipsq; 4246 mutex_enter(&ipsq->ipsq_lock); 4247 mutex_exit(&ill->ill_lock); 4248 ipsq_enq(ipsq, q, mp, func, NEW_OP, ill); 4249 mutex_exit(&ipsq->ipsq_lock); 4250 RELEASE_CONN_LOCK(q); 4251 *error = EINPROGRESS; 4252 return (NULL); 4253 } 4254 mutex_exit(&ill->ill_lock); 4255 RELEASE_CONN_LOCK(q); 4256 } 4257 if (error != NULL) 4258 *error = ENXIO; 4259 return (NULL); 4260 } 4261 4262 /* 4263 * comparison function for use with avl. 4264 */ 4265 static int 4266 ill_compare_ppa(const void *ppa_ptr, const void *ill_ptr) 4267 { 4268 uint_t ppa; 4269 uint_t ill_ppa; 4270 4271 ASSERT(ppa_ptr != NULL && ill_ptr != NULL); 4272 4273 ppa = *((uint_t *)ppa_ptr); 4274 ill_ppa = ((const ill_t *)ill_ptr)->ill_ppa; 4275 /* 4276 * We want the ill with the lowest ppa to be on the 4277 * top. 4278 */ 4279 if (ill_ppa < ppa) 4280 return (1); 4281 if (ill_ppa > ppa) 4282 return (-1); 4283 return (0); 4284 } 4285 4286 /* 4287 * remove an interface type from the global list. 4288 */ 4289 static void 4290 ill_delete_interface_type(ill_if_t *interface) 4291 { 4292 ASSERT(interface != NULL); 4293 ASSERT(avl_numnodes(&interface->illif_avl_by_ppa) == 0); 4294 4295 avl_destroy(&interface->illif_avl_by_ppa); 4296 if (interface->illif_ppa_arena != NULL) 4297 vmem_destroy(interface->illif_ppa_arena); 4298 4299 remque(interface); 4300 4301 mi_free(interface); 4302 } 4303 4304 /* Defined in ip_netinfo.c */ 4305 extern ddi_taskq_t *eventq_queue_nic; 4306 4307 /* 4308 * remove ill from the global list. 4309 */ 4310 static void 4311 ill_glist_delete(ill_t *ill) 4312 { 4313 char *nicname; 4314 size_t nicnamelen; 4315 hook_nic_event_t *info; 4316 ip_stack_t *ipst; 4317 4318 if (ill == NULL) 4319 return; 4320 ipst = ill->ill_ipst; 4321 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 4322 4323 if (ill->ill_name != NULL) { 4324 nicname = kmem_alloc(ill->ill_name_length, KM_NOSLEEP); 4325 if (nicname != NULL) { 4326 bcopy(ill->ill_name, nicname, ill->ill_name_length); 4327 nicnamelen = ill->ill_name_length; 4328 } 4329 } else { 4330 nicname = NULL; 4331 nicnamelen = 0; 4332 } 4333 4334 /* 4335 * If the ill was never inserted into the AVL tree 4336 * we skip the if branch. 4337 */ 4338 if (ill->ill_ifptr != NULL) { 4339 /* 4340 * remove from AVL tree and free ppa number 4341 */ 4342 avl_remove(&ill->ill_ifptr->illif_avl_by_ppa, ill); 4343 4344 if (ill->ill_ifptr->illif_ppa_arena != NULL) { 4345 vmem_free(ill->ill_ifptr->illif_ppa_arena, 4346 (void *)(uintptr_t)(ill->ill_ppa+1), 1); 4347 } 4348 if (avl_numnodes(&ill->ill_ifptr->illif_avl_by_ppa) == 0) { 4349 ill_delete_interface_type(ill->ill_ifptr); 4350 } 4351 4352 /* 4353 * Indicate ill is no longer in the list. 4354 */ 4355 ill->ill_ifptr = NULL; 4356 ill->ill_name_length = 0; 4357 ill->ill_name[0] = '\0'; 4358 ill->ill_ppa = UINT_MAX; 4359 } 4360 4361 /* 4362 * Run the unplumb hook after the NIC has disappeared from being 4363 * visible so that attempts to revalidate its existance will fail. 4364 * 4365 * This needs to be run inside the ill_g_lock perimeter to ensure 4366 * that the ordering of delivered events to listeners matches the 4367 * order of them in the kernel. 4368 */ 4369 if ((info = ill->ill_nic_event_info) != NULL) { 4370 if (info->hne_event != NE_DOWN) { 4371 ip2dbg(("ill_glist_delete: unexpected nic event %d " 4372 "attached for %s\n", info->hne_event, 4373 ill->ill_name)); 4374 if (info->hne_data != NULL) 4375 kmem_free(info->hne_data, info->hne_datalen); 4376 kmem_free(info, sizeof (hook_nic_event_t)); 4377 } else { 4378 if (ddi_taskq_dispatch(eventq_queue_nic, 4379 ip_ne_queue_func, (void *)info, DDI_SLEEP) 4380 == DDI_FAILURE) { 4381 ip2dbg(("ill_glist_delete: ddi_taskq_dispatch " 4382 "failed\n")); 4383 if (info->hne_data != NULL) 4384 kmem_free(info->hne_data, 4385 info->hne_datalen); 4386 kmem_free(info, sizeof (hook_nic_event_t)); 4387 } 4388 } 4389 } 4390 4391 /* Generate NE_UNPLUMB event for ill_name. */ 4392 info = kmem_alloc(sizeof (hook_nic_event_t), KM_NOSLEEP); 4393 if (info != NULL) { 4394 info->hne_nic = ill->ill_phyint->phyint_ifindex; 4395 info->hne_lif = 0; 4396 info->hne_event = NE_UNPLUMB; 4397 info->hne_data = nicname; 4398 info->hne_datalen = nicnamelen; 4399 info->hne_family = ill->ill_isv6 ? 4400 ipst->ips_ipv6_net_data : ipst->ips_ipv4_net_data; 4401 } else { 4402 ip2dbg(("ill_glist_delete: could not attach UNPLUMB nic event " 4403 "information for %s (ENOMEM)\n", ill->ill_name)); 4404 if (nicname != NULL) 4405 kmem_free(nicname, nicnamelen); 4406 } 4407 4408 ill->ill_nic_event_info = info; 4409 4410 ill_phyint_free(ill); 4411 rw_exit(&ipst->ips_ill_g_lock); 4412 } 4413 4414 /* 4415 * allocate a ppa, if the number of plumbed interfaces of this type are 4416 * less than ill_no_arena do a linear search to find a unused ppa. 4417 * When the number goes beyond ill_no_arena switch to using an arena. 4418 * Note: ppa value of zero cannot be allocated from vmem_arena as it 4419 * is the return value for an error condition, so allocation starts at one 4420 * and is decremented by one. 4421 */ 4422 static int 4423 ill_alloc_ppa(ill_if_t *ifp, ill_t *ill) 4424 { 4425 ill_t *tmp_ill; 4426 uint_t start, end; 4427 int ppa; 4428 4429 if (ifp->illif_ppa_arena == NULL && 4430 (avl_numnodes(&ifp->illif_avl_by_ppa) + 1 > ill_no_arena)) { 4431 /* 4432 * Create an arena. 4433 */ 4434 ifp->illif_ppa_arena = vmem_create(ifp->illif_name, 4435 (void *)1, UINT_MAX - 1, 1, NULL, NULL, 4436 NULL, 0, VM_SLEEP | VMC_IDENTIFIER); 4437 /* allocate what has already been assigned */ 4438 for (tmp_ill = avl_first(&ifp->illif_avl_by_ppa); 4439 tmp_ill != NULL; tmp_ill = avl_walk(&ifp->illif_avl_by_ppa, 4440 tmp_ill, AVL_AFTER)) { 4441 ppa = (int)(uintptr_t)vmem_xalloc(ifp->illif_ppa_arena, 4442 1, /* size */ 4443 1, /* align/quantum */ 4444 0, /* phase */ 4445 0, /* nocross */ 4446 /* minaddr */ 4447 (void *)((uintptr_t)tmp_ill->ill_ppa + 1), 4448 /* maxaddr */ 4449 (void *)((uintptr_t)tmp_ill->ill_ppa + 2), 4450 VM_NOSLEEP|VM_FIRSTFIT); 4451 if (ppa == 0) { 4452 ip1dbg(("ill_alloc_ppa: ppa allocation" 4453 " failed while switching")); 4454 vmem_destroy(ifp->illif_ppa_arena); 4455 ifp->illif_ppa_arena = NULL; 4456 break; 4457 } 4458 } 4459 } 4460 4461 if (ifp->illif_ppa_arena != NULL) { 4462 if (ill->ill_ppa == UINT_MAX) { 4463 ppa = (int)(uintptr_t)vmem_alloc(ifp->illif_ppa_arena, 4464 1, VM_NOSLEEP|VM_FIRSTFIT); 4465 if (ppa == 0) 4466 return (EAGAIN); 4467 ill->ill_ppa = --ppa; 4468 } else { 4469 ppa = (int)(uintptr_t)vmem_xalloc(ifp->illif_ppa_arena, 4470 1, /* size */ 4471 1, /* align/quantum */ 4472 0, /* phase */ 4473 0, /* nocross */ 4474 (void *)(uintptr_t)(ill->ill_ppa + 1), /* minaddr */ 4475 (void *)(uintptr_t)(ill->ill_ppa + 2), /* maxaddr */ 4476 VM_NOSLEEP|VM_FIRSTFIT); 4477 /* 4478 * Most likely the allocation failed because 4479 * the requested ppa was in use. 4480 */ 4481 if (ppa == 0) 4482 return (EEXIST); 4483 } 4484 return (0); 4485 } 4486 4487 /* 4488 * No arena is in use and not enough (>ill_no_arena) interfaces have 4489 * been plumbed to create one. Do a linear search to get a unused ppa. 4490 */ 4491 if (ill->ill_ppa == UINT_MAX) { 4492 end = UINT_MAX - 1; 4493 start = 0; 4494 } else { 4495 end = start = ill->ill_ppa; 4496 } 4497 4498 tmp_ill = avl_find(&ifp->illif_avl_by_ppa, (void *)&start, NULL); 4499 while (tmp_ill != NULL && tmp_ill->ill_ppa == start) { 4500 if (start++ >= end) { 4501 if (ill->ill_ppa == UINT_MAX) 4502 return (EAGAIN); 4503 else 4504 return (EEXIST); 4505 } 4506 tmp_ill = avl_walk(&ifp->illif_avl_by_ppa, tmp_ill, AVL_AFTER); 4507 } 4508 ill->ill_ppa = start; 4509 return (0); 4510 } 4511 4512 /* 4513 * Insert ill into the list of configured ill's. Once this function completes, 4514 * the ill is globally visible and is available through lookups. More precisely 4515 * this happens after the caller drops the ill_g_lock. 4516 */ 4517 static int 4518 ill_glist_insert(ill_t *ill, char *name, boolean_t isv6) 4519 { 4520 ill_if_t *ill_interface; 4521 avl_index_t where = 0; 4522 int error; 4523 int name_length; 4524 int index; 4525 boolean_t check_length = B_FALSE; 4526 ip_stack_t *ipst = ill->ill_ipst; 4527 4528 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); 4529 4530 name_length = mi_strlen(name) + 1; 4531 4532 if (isv6) 4533 index = IP_V6_G_HEAD; 4534 else 4535 index = IP_V4_G_HEAD; 4536 4537 ill_interface = IP_VX_ILL_G_LIST(index, ipst); 4538 /* 4539 * Search for interface type based on name 4540 */ 4541 while (ill_interface != (ill_if_t *)&IP_VX_ILL_G_LIST(index, ipst)) { 4542 if ((ill_interface->illif_name_len == name_length) && 4543 (strcmp(ill_interface->illif_name, name) == 0)) { 4544 break; 4545 } 4546 ill_interface = ill_interface->illif_next; 4547 } 4548 4549 /* 4550 * Interface type not found, create one. 4551 */ 4552 if (ill_interface == (ill_if_t *)&IP_VX_ILL_G_LIST(index, ipst)) { 4553 4554 ill_g_head_t ghead; 4555 4556 /* 4557 * allocate ill_if_t structure 4558 */ 4559 4560 ill_interface = (ill_if_t *)mi_zalloc(sizeof (ill_if_t)); 4561 if (ill_interface == NULL) { 4562 return (ENOMEM); 4563 } 4564 4565 4566 4567 (void) strcpy(ill_interface->illif_name, name); 4568 ill_interface->illif_name_len = name_length; 4569 4570 avl_create(&ill_interface->illif_avl_by_ppa, 4571 ill_compare_ppa, sizeof (ill_t), 4572 offsetof(struct ill_s, ill_avl_byppa)); 4573 4574 /* 4575 * link the structure in the back to maintain order 4576 * of configuration for ifconfig output. 4577 */ 4578 ghead = ipst->ips_ill_g_heads[index]; 4579 insque(ill_interface, ghead.ill_g_list_tail); 4580 4581 } 4582 4583 if (ill->ill_ppa == UINT_MAX) 4584 check_length = B_TRUE; 4585 4586 error = ill_alloc_ppa(ill_interface, ill); 4587 if (error != 0) { 4588 if (avl_numnodes(&ill_interface->illif_avl_by_ppa) == 0) 4589 ill_delete_interface_type(ill->ill_ifptr); 4590 return (error); 4591 } 4592 4593 /* 4594 * When the ppa is choosen by the system, check that there is 4595 * enough space to insert ppa. if a specific ppa was passed in this 4596 * check is not required as the interface name passed in will have 4597 * the right ppa in it. 4598 */ 4599 if (check_length) { 4600 /* 4601 * UINT_MAX - 1 should fit in 10 chars, alloc 12 chars. 4602 */ 4603 char buf[sizeof (uint_t) * 3]; 4604 4605 /* 4606 * convert ppa to string to calculate the amount of space 4607 * required for it in the name. 4608 */ 4609 numtos(ill->ill_ppa, buf); 4610 4611 /* Do we have enough space to insert ppa ? */ 4612 4613 if ((mi_strlen(name) + mi_strlen(buf) + 1) > LIFNAMSIZ) { 4614 /* Free ppa and interface type struct */ 4615 if (ill_interface->illif_ppa_arena != NULL) { 4616 vmem_free(ill_interface->illif_ppa_arena, 4617 (void *)(uintptr_t)(ill->ill_ppa+1), 1); 4618 } 4619 if (avl_numnodes(&ill_interface->illif_avl_by_ppa) == 4620 0) { 4621 ill_delete_interface_type(ill->ill_ifptr); 4622 } 4623 4624 return (EINVAL); 4625 } 4626 } 4627 4628 (void) sprintf(ill->ill_name, "%s%u", name, ill->ill_ppa); 4629 ill->ill_name_length = mi_strlen(ill->ill_name) + 1; 4630 4631 (void) avl_find(&ill_interface->illif_avl_by_ppa, &ill->ill_ppa, 4632 &where); 4633 ill->ill_ifptr = ill_interface; 4634 avl_insert(&ill_interface->illif_avl_by_ppa, ill, where); 4635 4636 ill_phyint_reinit(ill); 4637 return (0); 4638 } 4639 4640 /* Initialize the per phyint (per IPMP group) ipsq used for serialization */ 4641 static boolean_t 4642 ipsq_init(ill_t *ill) 4643 { 4644 ipsq_t *ipsq; 4645 4646 /* Init the ipsq and impicitly enter as writer */ 4647 ill->ill_phyint->phyint_ipsq = 4648 kmem_zalloc(sizeof (ipsq_t), KM_NOSLEEP); 4649 if (ill->ill_phyint->phyint_ipsq == NULL) 4650 return (B_FALSE); 4651 ipsq = ill->ill_phyint->phyint_ipsq; 4652 ipsq->ipsq_phyint_list = ill->ill_phyint; 4653 ill->ill_phyint->phyint_ipsq_next = NULL; 4654 mutex_init(&ipsq->ipsq_lock, NULL, MUTEX_DEFAULT, 0); 4655 ipsq->ipsq_refs = 1; 4656 ipsq->ipsq_writer = curthread; 4657 ipsq->ipsq_reentry_cnt = 1; 4658 ipsq->ipsq_ipst = ill->ill_ipst; /* No netstack_hold */ 4659 #ifdef ILL_DEBUG 4660 ipsq->ipsq_depth = getpcstack((pc_t *)ipsq->ipsq_stack, IP_STACK_DEPTH); 4661 #endif 4662 (void) strcpy(ipsq->ipsq_name, ill->ill_name); 4663 return (B_TRUE); 4664 } 4665 4666 /* 4667 * ill_init is called by ip_open when a device control stream is opened. 4668 * It does a few initializations, and shoots a DL_INFO_REQ message down 4669 * to the driver. The response is later picked up in ip_rput_dlpi and 4670 * used to set up default mechanisms for talking to the driver. (Always 4671 * called as writer.) 4672 * 4673 * If this function returns error, ip_open will call ip_close which in 4674 * turn will call ill_delete to clean up any memory allocated here that 4675 * is not yet freed. 4676 */ 4677 int 4678 ill_init(queue_t *q, ill_t *ill) 4679 { 4680 int count; 4681 dl_info_req_t *dlir; 4682 mblk_t *info_mp; 4683 uchar_t *frag_ptr; 4684 4685 /* 4686 * The ill is initialized to zero by mi_alloc*(). In addition 4687 * some fields already contain valid values, initialized in 4688 * ip_open(), before we reach here. 4689 */ 4690 mutex_init(&ill->ill_lock, NULL, MUTEX_DEFAULT, 0); 4691 4692 ill->ill_rq = q; 4693 ill->ill_wq = WR(q); 4694 4695 info_mp = allocb(MAX(sizeof (dl_info_req_t), sizeof (dl_info_ack_t)), 4696 BPRI_HI); 4697 if (info_mp == NULL) 4698 return (ENOMEM); 4699 4700 /* 4701 * Allocate sufficient space to contain our fragment hash table and 4702 * the device name. 4703 */ 4704 frag_ptr = (uchar_t *)mi_zalloc(ILL_FRAG_HASH_TBL_SIZE + 4705 2 * LIFNAMSIZ + 5 + strlen(ipv6_forward_suffix)); 4706 if (frag_ptr == NULL) { 4707 freemsg(info_mp); 4708 return (ENOMEM); 4709 } 4710 ill->ill_frag_ptr = frag_ptr; 4711 ill->ill_frag_free_num_pkts = 0; 4712 ill->ill_last_frag_clean_time = 0; 4713 ill->ill_frag_hash_tbl = (ipfb_t *)frag_ptr; 4714 ill->ill_name = (char *)(frag_ptr + ILL_FRAG_HASH_TBL_SIZE); 4715 for (count = 0; count < ILL_FRAG_HASH_TBL_COUNT; count++) { 4716 mutex_init(&ill->ill_frag_hash_tbl[count].ipfb_lock, 4717 NULL, MUTEX_DEFAULT, NULL); 4718 } 4719 4720 ill->ill_phyint = (phyint_t *)mi_zalloc(sizeof (phyint_t)); 4721 if (ill->ill_phyint == NULL) { 4722 freemsg(info_mp); 4723 mi_free(frag_ptr); 4724 return (ENOMEM); 4725 } 4726 4727 mutex_init(&ill->ill_phyint->phyint_lock, NULL, MUTEX_DEFAULT, 0); 4728 /* 4729 * For now pretend this is a v4 ill. We need to set phyint_ill* 4730 * at this point because of the following reason. If we can't 4731 * enter the ipsq at some point and cv_wait, the writer that 4732 * wakes us up tries to locate us using the list of all phyints 4733 * in an ipsq and the ills from the phyint thru the phyint_ill*. 4734 * If we don't set it now, we risk a missed wakeup. 4735 */ 4736 ill->ill_phyint->phyint_illv4 = ill; 4737 ill->ill_ppa = UINT_MAX; 4738 ill->ill_fastpath_list = &ill->ill_fastpath_list; 4739 4740 if (!ipsq_init(ill)) { 4741 freemsg(info_mp); 4742 mi_free(frag_ptr); 4743 mi_free(ill->ill_phyint); 4744 return (ENOMEM); 4745 } 4746 4747 ill->ill_state_flags |= ILL_LL_SUBNET_PENDING; 4748 4749 4750 /* Frag queue limit stuff */ 4751 ill->ill_frag_count = 0; 4752 ill->ill_ipf_gen = 0; 4753 4754 ill->ill_global_timer = INFINITY; 4755 ill->ill_mcast_v1_time = ill->ill_mcast_v2_time = 0; 4756 ill->ill_mcast_v1_tset = ill->ill_mcast_v2_tset = 0; 4757 ill->ill_mcast_rv = MCAST_DEF_ROBUSTNESS; 4758 ill->ill_mcast_qi = MCAST_DEF_QUERY_INTERVAL; 4759 4760 /* 4761 * Initialize IPv6 configuration variables. The IP module is always 4762 * opened as an IPv4 module. Instead tracking down the cases where 4763 * it switches to do ipv6, we'll just initialize the IPv6 configuration 4764 * here for convenience, this has no effect until the ill is set to do 4765 * IPv6. 4766 */ 4767 ill->ill_reachable_time = ND_REACHABLE_TIME; 4768 ill->ill_reachable_retrans_time = ND_RETRANS_TIMER; 4769 ill->ill_xmit_count = ND_MAX_MULTICAST_SOLICIT; 4770 ill->ill_max_buf = ND_MAX_Q; 4771 ill->ill_refcnt = 0; 4772 4773 /* Send down the Info Request to the driver. */ 4774 info_mp->b_datap->db_type = M_PCPROTO; 4775 dlir = (dl_info_req_t *)info_mp->b_rptr; 4776 info_mp->b_wptr = (uchar_t *)&dlir[1]; 4777 dlir->dl_primitive = DL_INFO_REQ; 4778 4779 ill->ill_dlpi_pending = DL_PRIM_INVAL; 4780 4781 qprocson(q); 4782 ill_dlpi_send(ill, info_mp); 4783 4784 return (0); 4785 } 4786 4787 /* 4788 * ill_dls_info 4789 * creates datalink socket info from the device. 4790 */ 4791 int 4792 ill_dls_info(struct sockaddr_dl *sdl, const ipif_t *ipif) 4793 { 4794 size_t len; 4795 ill_t *ill = ipif->ipif_ill; 4796 4797 sdl->sdl_family = AF_LINK; 4798 sdl->sdl_index = ill->ill_phyint->phyint_ifindex; 4799 sdl->sdl_type = ill->ill_type; 4800 (void) ipif_get_name(ipif, sdl->sdl_data, sizeof (sdl->sdl_data)); 4801 len = strlen(sdl->sdl_data); 4802 ASSERT(len < 256); 4803 sdl->sdl_nlen = (uchar_t)len; 4804 sdl->sdl_alen = ill->ill_phys_addr_length; 4805 sdl->sdl_slen = 0; 4806 if (ill->ill_phys_addr_length != 0 && ill->ill_phys_addr != NULL) 4807 bcopy(ill->ill_phys_addr, &sdl->sdl_data[len], sdl->sdl_alen); 4808 4809 return (sizeof (struct sockaddr_dl)); 4810 } 4811 4812 /* 4813 * ill_xarp_info 4814 * creates xarp info from the device. 4815 */ 4816 static int 4817 ill_xarp_info(struct sockaddr_dl *sdl, ill_t *ill) 4818 { 4819 sdl->sdl_family = AF_LINK; 4820 sdl->sdl_index = ill->ill_phyint->phyint_ifindex; 4821 sdl->sdl_type = ill->ill_type; 4822 (void) ipif_get_name(ill->ill_ipif, sdl->sdl_data, 4823 sizeof (sdl->sdl_data)); 4824 sdl->sdl_nlen = (uchar_t)mi_strlen(sdl->sdl_data); 4825 sdl->sdl_alen = ill->ill_phys_addr_length; 4826 sdl->sdl_slen = 0; 4827 return (sdl->sdl_nlen); 4828 } 4829 4830 static int 4831 loopback_kstat_update(kstat_t *ksp, int rw) 4832 { 4833 kstat_named_t *kn; 4834 netstackid_t stackid; 4835 netstack_t *ns; 4836 ip_stack_t *ipst; 4837 4838 if (ksp == NULL || ksp->ks_data == NULL) 4839 return (EIO); 4840 4841 if (rw == KSTAT_WRITE) 4842 return (EACCES); 4843 4844 kn = KSTAT_NAMED_PTR(ksp); 4845 stackid = (zoneid_t)(uintptr_t)ksp->ks_private; 4846 4847 ns = netstack_find_by_stackid(stackid); 4848 if (ns == NULL) 4849 return (-1); 4850 4851 ipst = ns->netstack_ip; 4852 if (ipst == NULL) { 4853 netstack_rele(ns); 4854 return (-1); 4855 } 4856 kn[0].value.ui32 = ipst->ips_loopback_packets; 4857 kn[1].value.ui32 = ipst->ips_loopback_packets; 4858 netstack_rele(ns); 4859 return (0); 4860 } 4861 4862 4863 /* 4864 * Has ifindex been plumbed already. 4865 * Compares both phyint_ifindex and phyint_group_ifindex. 4866 */ 4867 static boolean_t 4868 phyint_exists(uint_t index, ip_stack_t *ipst) 4869 { 4870 phyint_t *phyi; 4871 4872 ASSERT(index != 0); 4873 ASSERT(RW_LOCK_HELD(&ipst->ips_ill_g_lock)); 4874 /* 4875 * Indexes are stored in the phyint - a common structure 4876 * to both IPv4 and IPv6. 4877 */ 4878 phyi = avl_first(&ipst->ips_phyint_g_list->phyint_list_avl_by_index); 4879 for (; phyi != NULL; 4880 phyi = avl_walk(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 4881 phyi, AVL_AFTER)) { 4882 if (phyi->phyint_ifindex == index || 4883 phyi->phyint_group_ifindex == index) 4884 return (B_TRUE); 4885 } 4886 return (B_FALSE); 4887 } 4888 4889 /* Pick a unique ifindex */ 4890 boolean_t 4891 ip_assign_ifindex(uint_t *indexp, ip_stack_t *ipst) 4892 { 4893 uint_t starting_index; 4894 4895 if (!ipst->ips_ill_index_wrap) { 4896 *indexp = ipst->ips_ill_index++; 4897 if (ipst->ips_ill_index == 0) { 4898 /* Reached the uint_t limit Next time wrap */ 4899 ipst->ips_ill_index_wrap = B_TRUE; 4900 } 4901 return (B_TRUE); 4902 } 4903 4904 /* 4905 * Start reusing unused indexes. Note that we hold the ill_g_lock 4906 * at this point and don't want to call any function that attempts 4907 * to get the lock again. 4908 */ 4909 starting_index = ipst->ips_ill_index++; 4910 for (; ipst->ips_ill_index != starting_index; ipst->ips_ill_index++) { 4911 if (ipst->ips_ill_index != 0 && 4912 !phyint_exists(ipst->ips_ill_index, ipst)) { 4913 /* found unused index - use it */ 4914 *indexp = ipst->ips_ill_index; 4915 return (B_TRUE); 4916 } 4917 } 4918 4919 /* 4920 * all interface indicies are inuse. 4921 */ 4922 return (B_FALSE); 4923 } 4924 4925 /* 4926 * Assign a unique interface index for the phyint. 4927 */ 4928 static boolean_t 4929 phyint_assign_ifindex(phyint_t *phyi, ip_stack_t *ipst) 4930 { 4931 ASSERT(phyi->phyint_ifindex == 0); 4932 return (ip_assign_ifindex(&phyi->phyint_ifindex, ipst)); 4933 } 4934 4935 /* 4936 * Return a pointer to the ill which matches the supplied name. Note that 4937 * the ill name length includes the null termination character. (May be 4938 * called as writer.) 4939 * If do_alloc and the interface is "lo0" it will be automatically created. 4940 * Cannot bump up reference on condemned ills. So dup detect can't be done 4941 * using this func. 4942 */ 4943 ill_t * 4944 ill_lookup_on_name(char *name, boolean_t do_alloc, boolean_t isv6, 4945 queue_t *q, mblk_t *mp, ipsq_func_t func, int *error, boolean_t *did_alloc, 4946 ip_stack_t *ipst) 4947 { 4948 ill_t *ill; 4949 ipif_t *ipif; 4950 kstat_named_t *kn; 4951 boolean_t isloopback; 4952 ipsq_t *old_ipsq; 4953 in6_addr_t ov6addr; 4954 4955 isloopback = mi_strcmp(name, ipif_loopback_name) == 0; 4956 4957 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 4958 ill = ill_find_by_name(name, isv6, q, mp, func, error, ipst); 4959 rw_exit(&ipst->ips_ill_g_lock); 4960 if (ill != NULL || (error != NULL && *error == EINPROGRESS)) 4961 return (ill); 4962 4963 /* 4964 * Couldn't find it. Does this happen to be a lookup for the 4965 * loopback device and are we allowed to allocate it? 4966 */ 4967 if (!isloopback || !do_alloc) 4968 return (NULL); 4969 4970 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 4971 4972 ill = ill_find_by_name(name, isv6, q, mp, func, error, ipst); 4973 if (ill != NULL || (error != NULL && *error == EINPROGRESS)) { 4974 rw_exit(&ipst->ips_ill_g_lock); 4975 return (ill); 4976 } 4977 4978 /* Create the loopback device on demand */ 4979 ill = (ill_t *)(mi_alloc(sizeof (ill_t) + 4980 sizeof (ipif_loopback_name), BPRI_MED)); 4981 if (ill == NULL) 4982 goto done; 4983 4984 *ill = ill_null; 4985 mutex_init(&ill->ill_lock, NULL, MUTEX_DEFAULT, NULL); 4986 ill->ill_ipst = ipst; 4987 netstack_hold(ipst->ips_netstack); 4988 /* 4989 * For exclusive stacks we set the zoneid to zero 4990 * to make IP operate as if in the global zone. 4991 */ 4992 ill->ill_zoneid = GLOBAL_ZONEID; 4993 4994 ill->ill_phyint = (phyint_t *)mi_zalloc(sizeof (phyint_t)); 4995 if (ill->ill_phyint == NULL) 4996 goto done; 4997 4998 if (isv6) 4999 ill->ill_phyint->phyint_illv6 = ill; 5000 else 5001 ill->ill_phyint->phyint_illv4 = ill; 5002 mutex_init(&ill->ill_phyint->phyint_lock, NULL, MUTEX_DEFAULT, 0); 5003 ill->ill_max_frag = IP_LOOPBACK_MTU; 5004 /* Add room for tcp+ip headers */ 5005 if (isv6) { 5006 ill->ill_isv6 = B_TRUE; 5007 ill->ill_max_frag += IPV6_HDR_LEN + 20; /* for TCP */ 5008 } else { 5009 ill->ill_max_frag += IP_SIMPLE_HDR_LENGTH + 20; 5010 } 5011 if (!ill_allocate_mibs(ill)) 5012 goto done; 5013 ill->ill_max_mtu = ill->ill_max_frag; 5014 /* 5015 * ipif_loopback_name can't be pointed at directly because its used 5016 * by both the ipv4 and ipv6 interfaces. When the ill is removed 5017 * from the glist, ill_glist_delete() sets the first character of 5018 * ill_name to '\0'. 5019 */ 5020 ill->ill_name = (char *)ill + sizeof (*ill); 5021 (void) strcpy(ill->ill_name, ipif_loopback_name); 5022 ill->ill_name_length = sizeof (ipif_loopback_name); 5023 /* Set ill_name_set for ill_phyint_reinit to work properly */ 5024 5025 ill->ill_global_timer = INFINITY; 5026 ill->ill_mcast_v1_time = ill->ill_mcast_v2_time = 0; 5027 ill->ill_mcast_v1_tset = ill->ill_mcast_v2_tset = 0; 5028 ill->ill_mcast_rv = MCAST_DEF_ROBUSTNESS; 5029 ill->ill_mcast_qi = MCAST_DEF_QUERY_INTERVAL; 5030 5031 /* No resolver here. */ 5032 ill->ill_net_type = IRE_LOOPBACK; 5033 5034 /* Initialize the ipsq */ 5035 if (!ipsq_init(ill)) 5036 goto done; 5037 5038 ill->ill_phyint->phyint_ipsq->ipsq_writer = NULL; 5039 ill->ill_phyint->phyint_ipsq->ipsq_reentry_cnt--; 5040 ASSERT(ill->ill_phyint->phyint_ipsq->ipsq_reentry_cnt == 0); 5041 #ifdef ILL_DEBUG 5042 ill->ill_phyint->phyint_ipsq->ipsq_depth = 0; 5043 #endif 5044 ipif = ipif_allocate(ill, 0L, IRE_LOOPBACK, B_TRUE); 5045 if (ipif == NULL) 5046 goto done; 5047 5048 ill->ill_flags = ILLF_MULTICAST; 5049 5050 ov6addr = ipif->ipif_v6lcl_addr; 5051 /* Set up default loopback address and mask. */ 5052 if (!isv6) { 5053 ipaddr_t inaddr_loopback = htonl(INADDR_LOOPBACK); 5054 5055 IN6_IPADDR_TO_V4MAPPED(inaddr_loopback, &ipif->ipif_v6lcl_addr); 5056 ipif->ipif_v6src_addr = ipif->ipif_v6lcl_addr; 5057 V4MASK_TO_V6(htonl(IN_CLASSA_NET), ipif->ipif_v6net_mask); 5058 V6_MASK_COPY(ipif->ipif_v6lcl_addr, ipif->ipif_v6net_mask, 5059 ipif->ipif_v6subnet); 5060 ill->ill_flags |= ILLF_IPV4; 5061 } else { 5062 ipif->ipif_v6lcl_addr = ipv6_loopback; 5063 ipif->ipif_v6src_addr = ipif->ipif_v6lcl_addr; 5064 ipif->ipif_v6net_mask = ipv6_all_ones; 5065 V6_MASK_COPY(ipif->ipif_v6lcl_addr, ipif->ipif_v6net_mask, 5066 ipif->ipif_v6subnet); 5067 ill->ill_flags |= ILLF_IPV6; 5068 } 5069 5070 /* 5071 * Chain us in at the end of the ill list. hold the ill 5072 * before we make it globally visible. 1 for the lookup. 5073 */ 5074 ill->ill_refcnt = 0; 5075 ill_refhold(ill); 5076 5077 ill->ill_frag_count = 0; 5078 ill->ill_frag_free_num_pkts = 0; 5079 ill->ill_last_frag_clean_time = 0; 5080 5081 old_ipsq = ill->ill_phyint->phyint_ipsq; 5082 5083 if (ill_glist_insert(ill, "lo", isv6) != 0) 5084 cmn_err(CE_PANIC, "cannot insert loopback interface"); 5085 5086 /* Let SCTP know so that it can add this to its list */ 5087 sctp_update_ill(ill, SCTP_ILL_INSERT); 5088 5089 /* 5090 * We have already assigned ipif_v6lcl_addr above, but we need to 5091 * call sctp_update_ipif_addr() after SCTP_ILL_INSERT, which 5092 * requires to be after ill_glist_insert() since we need the 5093 * ill_index set. Pass on ipv6_loopback as the old address. 5094 */ 5095 sctp_update_ipif_addr(ipif, ov6addr); 5096 5097 /* 5098 * If the ipsq was changed in ill_phyint_reinit free the old ipsq. 5099 */ 5100 if (old_ipsq != ill->ill_phyint->phyint_ipsq) { 5101 /* Loopback ills aren't in any IPMP group */ 5102 ASSERT(!(old_ipsq->ipsq_flags & IPSQ_GROUP)); 5103 ipsq_delete(old_ipsq); 5104 } 5105 5106 /* 5107 * Delay this till the ipif is allocated as ipif_allocate 5108 * de-references ill_phyint for getting the ifindex. We 5109 * can't do this before ipif_allocate because ill_phyint_reinit 5110 * -> phyint_assign_ifindex expects ipif to be present. 5111 */ 5112 mutex_enter(&ill->ill_phyint->phyint_lock); 5113 ill->ill_phyint->phyint_flags |= PHYI_LOOPBACK | PHYI_VIRTUAL; 5114 mutex_exit(&ill->ill_phyint->phyint_lock); 5115 5116 if (ipst->ips_loopback_ksp == NULL) { 5117 /* Export loopback interface statistics */ 5118 ipst->ips_loopback_ksp = kstat_create_netstack("lo", 0, 5119 ipif_loopback_name, "net", 5120 KSTAT_TYPE_NAMED, 2, 0, 5121 ipst->ips_netstack->netstack_stackid); 5122 if (ipst->ips_loopback_ksp != NULL) { 5123 ipst->ips_loopback_ksp->ks_update = 5124 loopback_kstat_update; 5125 kn = KSTAT_NAMED_PTR(ipst->ips_loopback_ksp); 5126 kstat_named_init(&kn[0], "ipackets", KSTAT_DATA_UINT32); 5127 kstat_named_init(&kn[1], "opackets", KSTAT_DATA_UINT32); 5128 ipst->ips_loopback_ksp->ks_private = 5129 (void *)(uintptr_t)ipst->ips_netstack-> 5130 netstack_stackid; 5131 kstat_install(ipst->ips_loopback_ksp); 5132 } 5133 } 5134 5135 if (error != NULL) 5136 *error = 0; 5137 *did_alloc = B_TRUE; 5138 rw_exit(&ipst->ips_ill_g_lock); 5139 return (ill); 5140 done: 5141 if (ill != NULL) { 5142 if (ill->ill_phyint != NULL) { 5143 ipsq_t *ipsq; 5144 5145 ipsq = ill->ill_phyint->phyint_ipsq; 5146 if (ipsq != NULL) { 5147 ipsq->ipsq_ipst = NULL; 5148 kmem_free(ipsq, sizeof (ipsq_t)); 5149 } 5150 mi_free(ill->ill_phyint); 5151 } 5152 ill_free_mib(ill); 5153 if (ill->ill_ipst != NULL) 5154 netstack_rele(ill->ill_ipst->ips_netstack); 5155 mi_free(ill); 5156 } 5157 rw_exit(&ipst->ips_ill_g_lock); 5158 if (error != NULL) 5159 *error = ENOMEM; 5160 return (NULL); 5161 } 5162 5163 /* 5164 * For IPP calls - use the ip_stack_t for global stack. 5165 */ 5166 ill_t * 5167 ill_lookup_on_ifindex_global_instance(uint_t index, boolean_t isv6, 5168 queue_t *q, mblk_t *mp, ipsq_func_t func, int *err) 5169 { 5170 ip_stack_t *ipst; 5171 ill_t *ill; 5172 5173 ipst = netstack_find_by_stackid(GLOBAL_NETSTACKID)->netstack_ip; 5174 if (ipst == NULL) { 5175 cmn_err(CE_WARN, "No ip_stack_t for zoneid zero!\n"); 5176 return (NULL); 5177 } 5178 5179 ill = ill_lookup_on_ifindex(index, isv6, q, mp, func, err, ipst); 5180 netstack_rele(ipst->ips_netstack); 5181 return (ill); 5182 } 5183 5184 /* 5185 * Return a pointer to the ill which matches the index and IP version type. 5186 */ 5187 ill_t * 5188 ill_lookup_on_ifindex(uint_t index, boolean_t isv6, queue_t *q, mblk_t *mp, 5189 ipsq_func_t func, int *err, ip_stack_t *ipst) 5190 { 5191 ill_t *ill; 5192 ipsq_t *ipsq; 5193 phyint_t *phyi; 5194 5195 ASSERT((q == NULL && mp == NULL && func == NULL && err == NULL) || 5196 (q != NULL && mp != NULL && func != NULL && err != NULL)); 5197 5198 if (err != NULL) 5199 *err = 0; 5200 5201 /* 5202 * Indexes are stored in the phyint - a common structure 5203 * to both IPv4 and IPv6. 5204 */ 5205 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 5206 phyi = avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 5207 (void *) &index, NULL); 5208 if (phyi != NULL) { 5209 ill = isv6 ? phyi->phyint_illv6: phyi->phyint_illv4; 5210 if (ill != NULL) { 5211 /* 5212 * The block comment at the start of ipif_down 5213 * explains the use of the macros used below 5214 */ 5215 GRAB_CONN_LOCK(q); 5216 mutex_enter(&ill->ill_lock); 5217 if (ILL_CAN_LOOKUP(ill)) { 5218 ill_refhold_locked(ill); 5219 mutex_exit(&ill->ill_lock); 5220 RELEASE_CONN_LOCK(q); 5221 rw_exit(&ipst->ips_ill_g_lock); 5222 return (ill); 5223 } else if (ILL_CAN_WAIT(ill, q)) { 5224 ipsq = ill->ill_phyint->phyint_ipsq; 5225 mutex_enter(&ipsq->ipsq_lock); 5226 rw_exit(&ipst->ips_ill_g_lock); 5227 mutex_exit(&ill->ill_lock); 5228 ipsq_enq(ipsq, q, mp, func, NEW_OP, ill); 5229 mutex_exit(&ipsq->ipsq_lock); 5230 RELEASE_CONN_LOCK(q); 5231 *err = EINPROGRESS; 5232 return (NULL); 5233 } 5234 RELEASE_CONN_LOCK(q); 5235 mutex_exit(&ill->ill_lock); 5236 } 5237 } 5238 rw_exit(&ipst->ips_ill_g_lock); 5239 if (err != NULL) 5240 *err = ENXIO; 5241 return (NULL); 5242 } 5243 5244 /* 5245 * Return the ifindex next in sequence after the passed in ifindex. 5246 * If there is no next ifindex for the given protocol, return 0. 5247 */ 5248 uint_t 5249 ill_get_next_ifindex(uint_t index, boolean_t isv6, ip_stack_t *ipst) 5250 { 5251 phyint_t *phyi; 5252 phyint_t *phyi_initial; 5253 uint_t ifindex; 5254 5255 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 5256 5257 if (index == 0) { 5258 phyi = avl_first( 5259 &ipst->ips_phyint_g_list->phyint_list_avl_by_index); 5260 } else { 5261 phyi = phyi_initial = avl_find( 5262 &ipst->ips_phyint_g_list->phyint_list_avl_by_index, 5263 (void *) &index, NULL); 5264 } 5265 5266 for (; phyi != NULL; 5267 phyi = avl_walk(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 5268 phyi, AVL_AFTER)) { 5269 /* 5270 * If we're not returning the first interface in the tree 5271 * and we still haven't moved past the phyint_t that 5272 * corresponds to index, avl_walk needs to be called again 5273 */ 5274 if (!((index != 0) && (phyi == phyi_initial))) { 5275 if (isv6) { 5276 if ((phyi->phyint_illv6) && 5277 ILL_CAN_LOOKUP(phyi->phyint_illv6) && 5278 (phyi->phyint_illv6->ill_isv6 == 1)) 5279 break; 5280 } else { 5281 if ((phyi->phyint_illv4) && 5282 ILL_CAN_LOOKUP(phyi->phyint_illv4) && 5283 (phyi->phyint_illv4->ill_isv6 == 0)) 5284 break; 5285 } 5286 } 5287 } 5288 5289 rw_exit(&ipst->ips_ill_g_lock); 5290 5291 if (phyi != NULL) 5292 ifindex = phyi->phyint_ifindex; 5293 else 5294 ifindex = 0; 5295 5296 return (ifindex); 5297 } 5298 5299 5300 /* 5301 * Return the ifindex for the named interface. 5302 * If there is no next ifindex for the interface, return 0. 5303 */ 5304 uint_t 5305 ill_get_ifindex_by_name(char *name, ip_stack_t *ipst) 5306 { 5307 phyint_t *phyi; 5308 avl_index_t where = 0; 5309 uint_t ifindex; 5310 5311 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 5312 5313 if ((phyi = avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_name, 5314 name, &where)) == NULL) { 5315 rw_exit(&ipst->ips_ill_g_lock); 5316 return (0); 5317 } 5318 5319 ifindex = phyi->phyint_ifindex; 5320 5321 rw_exit(&ipst->ips_ill_g_lock); 5322 5323 return (ifindex); 5324 } 5325 5326 5327 /* 5328 * Obtain a reference to the ill. The ill_refcnt is a dynamic refcnt 5329 * that gives a running thread a reference to the ill. This reference must be 5330 * released by the thread when it is done accessing the ill and related 5331 * objects. ill_refcnt can not be used to account for static references 5332 * such as other structures pointing to an ill. Callers must generally 5333 * check whether an ill can be refheld by using ILL_CAN_LOOKUP macros 5334 * or be sure that the ill is not being deleted or changing state before 5335 * calling the refhold functions. A non-zero ill_refcnt ensures that the 5336 * ill won't change any of its critical state such as address, netmask etc. 5337 */ 5338 void 5339 ill_refhold(ill_t *ill) 5340 { 5341 mutex_enter(&ill->ill_lock); 5342 ill->ill_refcnt++; 5343 ILL_TRACE_REF(ill); 5344 mutex_exit(&ill->ill_lock); 5345 } 5346 5347 void 5348 ill_refhold_locked(ill_t *ill) 5349 { 5350 ASSERT(MUTEX_HELD(&ill->ill_lock)); 5351 ill->ill_refcnt++; 5352 ILL_TRACE_REF(ill); 5353 } 5354 5355 int 5356 ill_check_and_refhold(ill_t *ill) 5357 { 5358 mutex_enter(&ill->ill_lock); 5359 if (ILL_CAN_LOOKUP(ill)) { 5360 ill_refhold_locked(ill); 5361 mutex_exit(&ill->ill_lock); 5362 return (0); 5363 } 5364 mutex_exit(&ill->ill_lock); 5365 return (ILL_LOOKUP_FAILED); 5366 } 5367 5368 /* 5369 * Must not be called while holding any locks. Otherwise if this is 5370 * the last reference to be released, there is a chance of recursive mutex 5371 * panic due to ill_refrele -> ipif_ill_refrele_tail -> qwriter_ip trying 5372 * to restart an ioctl. 5373 */ 5374 void 5375 ill_refrele(ill_t *ill) 5376 { 5377 mutex_enter(&ill->ill_lock); 5378 ASSERT(ill->ill_refcnt != 0); 5379 ill->ill_refcnt--; 5380 ILL_UNTRACE_REF(ill); 5381 if (ill->ill_refcnt != 0) { 5382 /* Every ire pointing to the ill adds 1 to ill_refcnt */ 5383 mutex_exit(&ill->ill_lock); 5384 return; 5385 } 5386 5387 /* Drops the ill_lock */ 5388 ipif_ill_refrele_tail(ill); 5389 } 5390 5391 /* 5392 * Obtain a weak reference count on the ill. This reference ensures the 5393 * ill won't be freed, but the ill may change any of its critical state 5394 * such as netmask, address etc. Returns an error if the ill has started 5395 * closing. 5396 */ 5397 boolean_t 5398 ill_waiter_inc(ill_t *ill) 5399 { 5400 mutex_enter(&ill->ill_lock); 5401 if (ill->ill_state_flags & ILL_CONDEMNED) { 5402 mutex_exit(&ill->ill_lock); 5403 return (B_FALSE); 5404 } 5405 ill->ill_waiters++; 5406 mutex_exit(&ill->ill_lock); 5407 return (B_TRUE); 5408 } 5409 5410 void 5411 ill_waiter_dcr(ill_t *ill) 5412 { 5413 mutex_enter(&ill->ill_lock); 5414 ill->ill_waiters--; 5415 if (ill->ill_waiters == 0) 5416 cv_broadcast(&ill->ill_cv); 5417 mutex_exit(&ill->ill_lock); 5418 } 5419 5420 /* 5421 * Named Dispatch routine to produce a formatted report on all ILLs. 5422 * This report is accessed by using the ndd utility to "get" ND variable 5423 * "ip_ill_status". 5424 */ 5425 /* ARGSUSED */ 5426 int 5427 ip_ill_report(queue_t *q, mblk_t *mp, caddr_t arg, cred_t *ioc_cr) 5428 { 5429 ill_t *ill; 5430 ill_walk_context_t ctx; 5431 ip_stack_t *ipst; 5432 5433 ipst = CONNQ_TO_IPST(q); 5434 5435 (void) mi_mpprintf(mp, 5436 "ILL " MI_COL_HDRPAD_STR 5437 /* 01234567[89ABCDEF] */ 5438 "rq " MI_COL_HDRPAD_STR 5439 /* 01234567[89ABCDEF] */ 5440 "wq " MI_COL_HDRPAD_STR 5441 /* 01234567[89ABCDEF] */ 5442 "upcnt mxfrg err name"); 5443 /* 12345 12345 123 xxxxxxxx */ 5444 5445 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 5446 ill = ILL_START_WALK_ALL(&ctx, ipst); 5447 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 5448 (void) mi_mpprintf(mp, 5449 MI_COL_PTRFMT_STR MI_COL_PTRFMT_STR MI_COL_PTRFMT_STR 5450 "%05u %05u %03d %s", 5451 (void *)ill, (void *)ill->ill_rq, (void *)ill->ill_wq, 5452 ill->ill_ipif_up_count, 5453 ill->ill_max_frag, ill->ill_error, ill->ill_name); 5454 } 5455 rw_exit(&ipst->ips_ill_g_lock); 5456 5457 return (0); 5458 } 5459 5460 /* 5461 * Named Dispatch routine to produce a formatted report on all IPIFs. 5462 * This report is accessed by using the ndd utility to "get" ND variable 5463 * "ip_ipif_status". 5464 */ 5465 /* ARGSUSED */ 5466 int 5467 ip_ipif_report(queue_t *q, mblk_t *mp, caddr_t arg, cred_t *ioc_cr) 5468 { 5469 char buf1[INET6_ADDRSTRLEN]; 5470 char buf2[INET6_ADDRSTRLEN]; 5471 char buf3[INET6_ADDRSTRLEN]; 5472 char buf4[INET6_ADDRSTRLEN]; 5473 char buf5[INET6_ADDRSTRLEN]; 5474 char buf6[INET6_ADDRSTRLEN]; 5475 char buf[LIFNAMSIZ]; 5476 ill_t *ill; 5477 ipif_t *ipif; 5478 nv_t *nvp; 5479 uint64_t flags; 5480 zoneid_t zoneid; 5481 ill_walk_context_t ctx; 5482 ip_stack_t *ipst = CONNQ_TO_IPST(q); 5483 5484 (void) mi_mpprintf(mp, 5485 "IPIF metric mtu in/out/forward name zone flags...\n" 5486 "\tlocal address\n" 5487 "\tsrc address\n" 5488 "\tsubnet\n" 5489 "\tmask\n" 5490 "\tbroadcast\n" 5491 "\tp-p-dst"); 5492 5493 ASSERT(q->q_next == NULL); 5494 zoneid = Q_TO_CONN(q)->conn_zoneid; /* IP is a driver */ 5495 5496 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 5497 ill = ILL_START_WALK_ALL(&ctx, ipst); 5498 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 5499 for (ipif = ill->ill_ipif; ipif != NULL; 5500 ipif = ipif->ipif_next) { 5501 if (zoneid != GLOBAL_ZONEID && 5502 zoneid != ipif->ipif_zoneid && 5503 ipif->ipif_zoneid != ALL_ZONES) 5504 continue; 5505 (void) mi_mpprintf(mp, 5506 MI_COL_PTRFMT_STR 5507 "%04u %05u %u/%u/%u %s %d", 5508 (void *)ipif, 5509 ipif->ipif_metric, ipif->ipif_mtu, 5510 ipif->ipif_ib_pkt_count, 5511 ipif->ipif_ob_pkt_count, 5512 ipif->ipif_fo_pkt_count, 5513 ipif_get_name(ipif, buf, sizeof (buf)), 5514 ipif->ipif_zoneid); 5515 5516 flags = ipif->ipif_flags | ipif->ipif_ill->ill_flags | 5517 ipif->ipif_ill->ill_phyint->phyint_flags; 5518 5519 /* Tack on text strings for any flags. */ 5520 nvp = ipif_nv_tbl; 5521 for (; nvp < A_END(ipif_nv_tbl); nvp++) { 5522 if (nvp->nv_value & flags) 5523 (void) mi_mpprintf_nr(mp, " %s", 5524 nvp->nv_name); 5525 } 5526 (void) mi_mpprintf(mp, 5527 "\t%s\n\t%s\n\t%s\n\t%s\n\t%s\n\t%s", 5528 inet_ntop(AF_INET6, 5529 &ipif->ipif_v6lcl_addr, buf1, sizeof (buf1)), 5530 inet_ntop(AF_INET6, 5531 &ipif->ipif_v6src_addr, buf2, sizeof (buf2)), 5532 inet_ntop(AF_INET6, 5533 &ipif->ipif_v6subnet, buf3, sizeof (buf3)), 5534 inet_ntop(AF_INET6, 5535 &ipif->ipif_v6net_mask, buf4, sizeof (buf4)), 5536 inet_ntop(AF_INET6, 5537 &ipif->ipif_v6brd_addr, buf5, sizeof (buf5)), 5538 inet_ntop(AF_INET6, 5539 &ipif->ipif_v6pp_dst_addr, buf6, sizeof (buf6))); 5540 } 5541 } 5542 rw_exit(&ipst->ips_ill_g_lock); 5543 return (0); 5544 } 5545 5546 /* 5547 * ip_ll_subnet_defaults is called when we get the DL_INFO_ACK back from the 5548 * driver. We construct best guess defaults for lower level information that 5549 * we need. If an interface is brought up without injection of any overriding 5550 * information from outside, we have to be ready to go with these defaults. 5551 * When we get the first DL_INFO_ACK (from ip_open() sending a DL_INFO_REQ) 5552 * we primarely want the dl_provider_style. 5553 * The subsequent DL_INFO_ACK is received after doing a DL_ATTACH and DL_BIND 5554 * at which point we assume the other part of the information is valid. 5555 */ 5556 void 5557 ip_ll_subnet_defaults(ill_t *ill, mblk_t *mp) 5558 { 5559 uchar_t *brdcst_addr; 5560 uint_t brdcst_addr_length, phys_addr_length; 5561 t_scalar_t sap_length; 5562 dl_info_ack_t *dlia; 5563 ip_m_t *ipm; 5564 dl_qos_cl_sel1_t *sel1; 5565 5566 ASSERT(IAM_WRITER_ILL(ill)); 5567 5568 /* 5569 * Till the ill is fully up ILL_CHANGING will be set and 5570 * the ill is not globally visible. So no need for a lock. 5571 */ 5572 dlia = (dl_info_ack_t *)mp->b_rptr; 5573 ill->ill_mactype = dlia->dl_mac_type; 5574 5575 ipm = ip_m_lookup(dlia->dl_mac_type); 5576 if (ipm == NULL) { 5577 ipm = ip_m_lookup(DL_OTHER); 5578 ASSERT(ipm != NULL); 5579 } 5580 ill->ill_media = ipm; 5581 5582 /* 5583 * When the new DLPI stuff is ready we'll pull lengths 5584 * from dlia. 5585 */ 5586 if (dlia->dl_version == DL_VERSION_2) { 5587 brdcst_addr_length = dlia->dl_brdcst_addr_length; 5588 brdcst_addr = mi_offset_param(mp, dlia->dl_brdcst_addr_offset, 5589 brdcst_addr_length); 5590 if (brdcst_addr == NULL) { 5591 brdcst_addr_length = 0; 5592 } 5593 sap_length = dlia->dl_sap_length; 5594 phys_addr_length = dlia->dl_addr_length - ABS(sap_length); 5595 ip1dbg(("ip: bcast_len %d, sap_len %d, phys_len %d\n", 5596 brdcst_addr_length, sap_length, phys_addr_length)); 5597 } else { 5598 brdcst_addr_length = 6; 5599 brdcst_addr = ip_six_byte_all_ones; 5600 sap_length = -2; 5601 phys_addr_length = brdcst_addr_length; 5602 } 5603 5604 ill->ill_bcast_addr_length = brdcst_addr_length; 5605 ill->ill_phys_addr_length = phys_addr_length; 5606 ill->ill_sap_length = sap_length; 5607 ill->ill_max_frag = dlia->dl_max_sdu; 5608 ill->ill_max_mtu = ill->ill_max_frag; 5609 5610 ill->ill_type = ipm->ip_m_type; 5611 5612 if (!ill->ill_dlpi_style_set) { 5613 if (dlia->dl_provider_style == DL_STYLE2) 5614 ill->ill_needs_attach = 1; 5615 5616 /* 5617 * Allocate the first ipif on this ill. We don't delay it 5618 * further as ioctl handling assumes atleast one ipif to 5619 * be present. 5620 * 5621 * At this point we don't know whether the ill is v4 or v6. 5622 * We will know this whan the SIOCSLIFNAME happens and 5623 * the correct value for ill_isv6 will be assigned in 5624 * ipif_set_values(). We need to hold the ill lock and 5625 * clear the ILL_LL_SUBNET_PENDING flag and atomically do 5626 * the wakeup. 5627 */ 5628 (void) ipif_allocate(ill, 0, IRE_LOCAL, 5629 dlia->dl_provider_style == DL_STYLE2 ? B_FALSE : B_TRUE); 5630 mutex_enter(&ill->ill_lock); 5631 ASSERT(ill->ill_dlpi_style_set == 0); 5632 ill->ill_dlpi_style_set = 1; 5633 ill->ill_state_flags &= ~ILL_LL_SUBNET_PENDING; 5634 cv_broadcast(&ill->ill_cv); 5635 mutex_exit(&ill->ill_lock); 5636 freemsg(mp); 5637 return; 5638 } 5639 ASSERT(ill->ill_ipif != NULL); 5640 /* 5641 * We know whether it is IPv4 or IPv6 now, as this is the 5642 * second DL_INFO_ACK we are recieving in response to the 5643 * DL_INFO_REQ sent in ipif_set_values. 5644 */ 5645 if (ill->ill_isv6) 5646 ill->ill_sap = IP6_DL_SAP; 5647 else 5648 ill->ill_sap = IP_DL_SAP; 5649 /* 5650 * Set ipif_mtu which is used to set the IRE's 5651 * ire_max_frag value. The driver could have sent 5652 * a different mtu from what it sent last time. No 5653 * need to call ipif_mtu_change because IREs have 5654 * not yet been created. 5655 */ 5656 ill->ill_ipif->ipif_mtu = ill->ill_max_mtu; 5657 /* 5658 * Clear all the flags that were set based on ill_bcast_addr_length 5659 * and ill_phys_addr_length (in ipif_set_values) as these could have 5660 * changed now and we need to re-evaluate. 5661 */ 5662 ill->ill_flags &= ~(ILLF_MULTICAST | ILLF_NONUD | ILLF_NOARP); 5663 ill->ill_ipif->ipif_flags &= ~(IPIF_BROADCAST | IPIF_POINTOPOINT); 5664 5665 /* 5666 * Free ill_resolver_mp and ill_bcast_mp as things could have 5667 * changed now. 5668 */ 5669 if (ill->ill_bcast_addr_length == 0) { 5670 if (ill->ill_resolver_mp != NULL) 5671 freemsg(ill->ill_resolver_mp); 5672 if (ill->ill_bcast_mp != NULL) 5673 freemsg(ill->ill_bcast_mp); 5674 if (ill->ill_flags & ILLF_XRESOLV) 5675 ill->ill_net_type = IRE_IF_RESOLVER; 5676 else 5677 ill->ill_net_type = IRE_IF_NORESOLVER; 5678 ill->ill_resolver_mp = ill_dlur_gen(NULL, 5679 ill->ill_phys_addr_length, 5680 ill->ill_sap, 5681 ill->ill_sap_length); 5682 ill->ill_bcast_mp = copymsg(ill->ill_resolver_mp); 5683 5684 if (ill->ill_isv6) 5685 /* 5686 * Note: xresolv interfaces will eventually need NOARP 5687 * set here as well, but that will require those 5688 * external resolvers to have some knowledge of 5689 * that flag and act appropriately. Not to be changed 5690 * at present. 5691 */ 5692 ill->ill_flags |= ILLF_NONUD; 5693 else 5694 ill->ill_flags |= ILLF_NOARP; 5695 5696 if (ill->ill_phys_addr_length == 0) { 5697 if (ill->ill_media->ip_m_mac_type == SUNW_DL_VNI) { 5698 ill->ill_ipif->ipif_flags |= IPIF_NOXMIT; 5699 ill->ill_phyint->phyint_flags |= PHYI_VIRTUAL; 5700 } else { 5701 /* pt-pt supports multicast. */ 5702 ill->ill_flags |= ILLF_MULTICAST; 5703 ill->ill_ipif->ipif_flags |= IPIF_POINTOPOINT; 5704 } 5705 } 5706 } else { 5707 ill->ill_net_type = IRE_IF_RESOLVER; 5708 if (ill->ill_bcast_mp != NULL) 5709 freemsg(ill->ill_bcast_mp); 5710 ill->ill_bcast_mp = ill_dlur_gen(brdcst_addr, 5711 ill->ill_bcast_addr_length, ill->ill_sap, 5712 ill->ill_sap_length); 5713 /* 5714 * Later detect lack of DLPI driver multicast 5715 * capability by catching DL_ENABMULTI errors in 5716 * ip_rput_dlpi. 5717 */ 5718 ill->ill_flags |= ILLF_MULTICAST; 5719 if (!ill->ill_isv6) 5720 ill->ill_ipif->ipif_flags |= IPIF_BROADCAST; 5721 } 5722 /* By default an interface does not support any CoS marking */ 5723 ill->ill_flags &= ~ILLF_COS_ENABLED; 5724 5725 /* 5726 * If we get QoS information in DL_INFO_ACK, the device supports 5727 * some form of CoS marking, set ILLF_COS_ENABLED. 5728 */ 5729 sel1 = (dl_qos_cl_sel1_t *)mi_offset_param(mp, dlia->dl_qos_offset, 5730 dlia->dl_qos_length); 5731 if ((sel1 != NULL) && (sel1->dl_qos_type == DL_QOS_CL_SEL1)) { 5732 ill->ill_flags |= ILLF_COS_ENABLED; 5733 } 5734 5735 /* Clear any previous error indication. */ 5736 ill->ill_error = 0; 5737 freemsg(mp); 5738 } 5739 5740 /* 5741 * Perform various checks to verify that an address would make sense as a 5742 * local, remote, or subnet interface address. 5743 */ 5744 static boolean_t 5745 ip_addr_ok_v4(ipaddr_t addr, ipaddr_t subnet_mask) 5746 { 5747 ipaddr_t net_mask; 5748 5749 /* 5750 * Don't allow all zeroes, all ones or experimental address, but allow 5751 * all ones netmask. 5752 */ 5753 if ((net_mask = ip_net_mask(addr)) == 0) 5754 return (B_FALSE); 5755 /* A given netmask overrides the "guess" netmask */ 5756 if (subnet_mask != 0) 5757 net_mask = subnet_mask; 5758 if ((net_mask != ~(ipaddr_t)0) && ((addr == (addr & net_mask)) || 5759 (addr == (addr | ~net_mask)))) { 5760 return (B_FALSE); 5761 } 5762 if (CLASSD(addr)) 5763 return (B_FALSE); 5764 5765 return (B_TRUE); 5766 } 5767 5768 #define V6_IPIF_LINKLOCAL(p) \ 5769 IN6_IS_ADDR_LINKLOCAL(&(p)->ipif_v6lcl_addr) 5770 5771 /* 5772 * Compare two given ipifs and check if the second one is better than 5773 * the first one using the order of preference (not taking deprecated 5774 * into acount) specified in ipif_lookup_multicast(). 5775 */ 5776 static boolean_t 5777 ipif_comp_multi(ipif_t *old_ipif, ipif_t *new_ipif, boolean_t isv6) 5778 { 5779 /* Check the least preferred first. */ 5780 if (IS_LOOPBACK(old_ipif->ipif_ill)) { 5781 /* If both ipifs are the same, use the first one. */ 5782 if (IS_LOOPBACK(new_ipif->ipif_ill)) 5783 return (B_FALSE); 5784 else 5785 return (B_TRUE); 5786 } 5787 5788 /* For IPv6, check for link local address. */ 5789 if (isv6 && V6_IPIF_LINKLOCAL(old_ipif)) { 5790 if (IS_LOOPBACK(new_ipif->ipif_ill) || 5791 V6_IPIF_LINKLOCAL(new_ipif)) { 5792 /* The second one is equal or less preferred. */ 5793 return (B_FALSE); 5794 } else { 5795 return (B_TRUE); 5796 } 5797 } 5798 5799 /* Then check for point to point interface. */ 5800 if (old_ipif->ipif_flags & IPIF_POINTOPOINT) { 5801 if (IS_LOOPBACK(new_ipif->ipif_ill) || 5802 (isv6 && V6_IPIF_LINKLOCAL(new_ipif)) || 5803 (new_ipif->ipif_flags & IPIF_POINTOPOINT)) { 5804 return (B_FALSE); 5805 } else { 5806 return (B_TRUE); 5807 } 5808 } 5809 5810 /* old_ipif is a normal interface, so no need to use the new one. */ 5811 return (B_FALSE); 5812 } 5813 5814 /* 5815 * Find any non-virtual, not condemned, and up multicast capable interface 5816 * given an IP instance and zoneid. Order of preference is: 5817 * 5818 * 1. normal 5819 * 1.1 normal, but deprecated 5820 * 2. point to point 5821 * 2.1 point to point, but deprecated 5822 * 3. link local 5823 * 3.1 link local, but deprecated 5824 * 4. loopback. 5825 */ 5826 ipif_t * 5827 ipif_lookup_multicast(ip_stack_t *ipst, zoneid_t zoneid, boolean_t isv6) 5828 { 5829 ill_t *ill; 5830 ill_walk_context_t ctx; 5831 ipif_t *ipif; 5832 ipif_t *saved_ipif = NULL; 5833 ipif_t *dep_ipif = NULL; 5834 5835 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 5836 if (isv6) 5837 ill = ILL_START_WALK_V6(&ctx, ipst); 5838 else 5839 ill = ILL_START_WALK_V4(&ctx, ipst); 5840 5841 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 5842 mutex_enter(&ill->ill_lock); 5843 if (IS_VNI(ill) || !ILL_CAN_LOOKUP(ill) || 5844 !(ill->ill_flags & ILLF_MULTICAST)) { 5845 mutex_exit(&ill->ill_lock); 5846 continue; 5847 } 5848 for (ipif = ill->ill_ipif; ipif != NULL; 5849 ipif = ipif->ipif_next) { 5850 if (zoneid != ipif->ipif_zoneid && 5851 zoneid != ALL_ZONES && 5852 ipif->ipif_zoneid != ALL_ZONES) { 5853 continue; 5854 } 5855 if (!(ipif->ipif_flags & IPIF_UP) || 5856 !IPIF_CAN_LOOKUP(ipif)) { 5857 continue; 5858 } 5859 5860 /* 5861 * Found one candidate. If it is deprecated, 5862 * remember it in dep_ipif. If it is not deprecated, 5863 * remember it in saved_ipif. 5864 */ 5865 if (ipif->ipif_flags & IPIF_DEPRECATED) { 5866 if (dep_ipif == NULL) { 5867 dep_ipif = ipif; 5868 } else if (ipif_comp_multi(dep_ipif, ipif, 5869 isv6)) { 5870 /* 5871 * If the previous dep_ipif does not 5872 * belong to the same ill, we've done 5873 * a ipif_refhold() on it. So we need 5874 * to release it. 5875 */ 5876 if (dep_ipif->ipif_ill != ill) 5877 ipif_refrele(dep_ipif); 5878 dep_ipif = ipif; 5879 } 5880 continue; 5881 } 5882 if (saved_ipif == NULL) { 5883 saved_ipif = ipif; 5884 } else { 5885 if (ipif_comp_multi(saved_ipif, ipif, isv6)) { 5886 if (saved_ipif->ipif_ill != ill) 5887 ipif_refrele(saved_ipif); 5888 saved_ipif = ipif; 5889 } 5890 } 5891 } 5892 /* 5893 * Before going to the next ill, do a ipif_refhold() on the 5894 * saved ones. 5895 */ 5896 if (saved_ipif != NULL && saved_ipif->ipif_ill == ill) 5897 ipif_refhold_locked(saved_ipif); 5898 if (dep_ipif != NULL && dep_ipif->ipif_ill == ill) 5899 ipif_refhold_locked(dep_ipif); 5900 mutex_exit(&ill->ill_lock); 5901 } 5902 rw_exit(&ipst->ips_ill_g_lock); 5903 5904 /* 5905 * If we have only the saved_ipif, return it. But if we have both 5906 * saved_ipif and dep_ipif, check to see which one is better. 5907 */ 5908 if (saved_ipif != NULL) { 5909 if (dep_ipif != NULL) { 5910 if (ipif_comp_multi(saved_ipif, dep_ipif, isv6)) { 5911 ipif_refrele(saved_ipif); 5912 return (dep_ipif); 5913 } else { 5914 ipif_refrele(dep_ipif); 5915 return (saved_ipif); 5916 } 5917 } 5918 return (saved_ipif); 5919 } else { 5920 return (dep_ipif); 5921 } 5922 } 5923 5924 /* 5925 * This function is called when an application does not specify an interface 5926 * to be used for multicast traffic (joining a group/sending data). It 5927 * calls ire_lookup_multi() to look for an interface route for the 5928 * specified multicast group. Doing this allows the administrator to add 5929 * prefix routes for multicast to indicate which interface to be used for 5930 * multicast traffic in the above scenario. The route could be for all 5931 * multicast (224.0/4), for a single multicast group (a /32 route) or 5932 * anything in between. If there is no such multicast route, we just find 5933 * any multicast capable interface and return it. The returned ipif 5934 * is refhold'ed. 5935 */ 5936 ipif_t * 5937 ipif_lookup_group(ipaddr_t group, zoneid_t zoneid, ip_stack_t *ipst) 5938 { 5939 ire_t *ire; 5940 ipif_t *ipif; 5941 5942 ire = ire_lookup_multi(group, zoneid, ipst); 5943 if (ire != NULL) { 5944 ipif = ire->ire_ipif; 5945 ipif_refhold(ipif); 5946 ire_refrele(ire); 5947 return (ipif); 5948 } 5949 5950 return (ipif_lookup_multicast(ipst, zoneid, B_FALSE)); 5951 } 5952 5953 /* 5954 * Look for an ipif with the specified interface address and destination. 5955 * The destination address is used only for matching point-to-point interfaces. 5956 */ 5957 ipif_t * 5958 ipif_lookup_interface(ipaddr_t if_addr, ipaddr_t dst, queue_t *q, mblk_t *mp, 5959 ipsq_func_t func, int *error, ip_stack_t *ipst) 5960 { 5961 ipif_t *ipif; 5962 ill_t *ill; 5963 ill_walk_context_t ctx; 5964 ipsq_t *ipsq; 5965 5966 if (error != NULL) 5967 *error = 0; 5968 5969 /* 5970 * First match all the point-to-point interfaces 5971 * before looking at non-point-to-point interfaces. 5972 * This is done to avoid returning non-point-to-point 5973 * ipif instead of unnumbered point-to-point ipif. 5974 */ 5975 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 5976 ill = ILL_START_WALK_V4(&ctx, ipst); 5977 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 5978 GRAB_CONN_LOCK(q); 5979 mutex_enter(&ill->ill_lock); 5980 for (ipif = ill->ill_ipif; ipif != NULL; 5981 ipif = ipif->ipif_next) { 5982 /* Allow the ipif to be down */ 5983 if ((ipif->ipif_flags & IPIF_POINTOPOINT) && 5984 (ipif->ipif_lcl_addr == if_addr) && 5985 (ipif->ipif_pp_dst_addr == dst)) { 5986 /* 5987 * The block comment at the start of ipif_down 5988 * explains the use of the macros used below 5989 */ 5990 if (IPIF_CAN_LOOKUP(ipif)) { 5991 ipif_refhold_locked(ipif); 5992 mutex_exit(&ill->ill_lock); 5993 RELEASE_CONN_LOCK(q); 5994 rw_exit(&ipst->ips_ill_g_lock); 5995 return (ipif); 5996 } else if (IPIF_CAN_WAIT(ipif, q)) { 5997 ipsq = ill->ill_phyint->phyint_ipsq; 5998 mutex_enter(&ipsq->ipsq_lock); 5999 mutex_exit(&ill->ill_lock); 6000 rw_exit(&ipst->ips_ill_g_lock); 6001 ipsq_enq(ipsq, q, mp, func, NEW_OP, 6002 ill); 6003 mutex_exit(&ipsq->ipsq_lock); 6004 RELEASE_CONN_LOCK(q); 6005 *error = EINPROGRESS; 6006 return (NULL); 6007 } 6008 } 6009 } 6010 mutex_exit(&ill->ill_lock); 6011 RELEASE_CONN_LOCK(q); 6012 } 6013 rw_exit(&ipst->ips_ill_g_lock); 6014 6015 /* lookup the ipif based on interface address */ 6016 ipif = ipif_lookup_addr(if_addr, NULL, ALL_ZONES, q, mp, func, error, 6017 ipst); 6018 ASSERT(ipif == NULL || !ipif->ipif_isv6); 6019 return (ipif); 6020 } 6021 6022 /* 6023 * Look for an ipif with the specified address. For point-point links 6024 * we look for matches on either the destination address and the local 6025 * address, but we ignore the check on the local address if IPIF_UNNUMBERED 6026 * is set. 6027 * Matches on a specific ill if match_ill is set. 6028 */ 6029 ipif_t * 6030 ipif_lookup_addr(ipaddr_t addr, ill_t *match_ill, zoneid_t zoneid, queue_t *q, 6031 mblk_t *mp, ipsq_func_t func, int *error, ip_stack_t *ipst) 6032 { 6033 ipif_t *ipif; 6034 ill_t *ill; 6035 boolean_t ptp = B_FALSE; 6036 ipsq_t *ipsq; 6037 ill_walk_context_t ctx; 6038 6039 if (error != NULL) 6040 *error = 0; 6041 6042 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 6043 /* 6044 * Repeat twice, first based on local addresses and 6045 * next time for pointopoint. 6046 */ 6047 repeat: 6048 ill = ILL_START_WALK_V4(&ctx, ipst); 6049 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 6050 if (match_ill != NULL && ill != match_ill) { 6051 continue; 6052 } 6053 GRAB_CONN_LOCK(q); 6054 mutex_enter(&ill->ill_lock); 6055 for (ipif = ill->ill_ipif; ipif != NULL; 6056 ipif = ipif->ipif_next) { 6057 if (zoneid != ALL_ZONES && 6058 zoneid != ipif->ipif_zoneid && 6059 ipif->ipif_zoneid != ALL_ZONES) 6060 continue; 6061 /* Allow the ipif to be down */ 6062 if ((!ptp && (ipif->ipif_lcl_addr == addr) && 6063 ((ipif->ipif_flags & IPIF_UNNUMBERED) == 0)) || 6064 (ptp && (ipif->ipif_flags & IPIF_POINTOPOINT) && 6065 (ipif->ipif_pp_dst_addr == addr))) { 6066 /* 6067 * The block comment at the start of ipif_down 6068 * explains the use of the macros used below 6069 */ 6070 if (IPIF_CAN_LOOKUP(ipif)) { 6071 ipif_refhold_locked(ipif); 6072 mutex_exit(&ill->ill_lock); 6073 RELEASE_CONN_LOCK(q); 6074 rw_exit(&ipst->ips_ill_g_lock); 6075 return (ipif); 6076 } else if (IPIF_CAN_WAIT(ipif, q)) { 6077 ipsq = ill->ill_phyint->phyint_ipsq; 6078 mutex_enter(&ipsq->ipsq_lock); 6079 mutex_exit(&ill->ill_lock); 6080 rw_exit(&ipst->ips_ill_g_lock); 6081 ipsq_enq(ipsq, q, mp, func, NEW_OP, 6082 ill); 6083 mutex_exit(&ipsq->ipsq_lock); 6084 RELEASE_CONN_LOCK(q); 6085 *error = EINPROGRESS; 6086 return (NULL); 6087 } 6088 } 6089 } 6090 mutex_exit(&ill->ill_lock); 6091 RELEASE_CONN_LOCK(q); 6092 } 6093 6094 /* If we already did the ptp case, then we are done */ 6095 if (ptp) { 6096 rw_exit(&ipst->ips_ill_g_lock); 6097 if (error != NULL) 6098 *error = ENXIO; 6099 return (NULL); 6100 } 6101 ptp = B_TRUE; 6102 goto repeat; 6103 } 6104 6105 /* 6106 * Look for an ipif with the specified address. For point-point links 6107 * we look for matches on either the destination address and the local 6108 * address, but we ignore the check on the local address if IPIF_UNNUMBERED 6109 * is set. 6110 * Matches on a specific ill if match_ill is set. 6111 * Return the zoneid for the ipif which matches. ALL_ZONES if no match. 6112 */ 6113 zoneid_t 6114 ipif_lookup_addr_zoneid(ipaddr_t addr, ill_t *match_ill, ip_stack_t *ipst) 6115 { 6116 zoneid_t zoneid; 6117 ipif_t *ipif; 6118 ill_t *ill; 6119 boolean_t ptp = B_FALSE; 6120 ill_walk_context_t ctx; 6121 6122 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 6123 /* 6124 * Repeat twice, first based on local addresses and 6125 * next time for pointopoint. 6126 */ 6127 repeat: 6128 ill = ILL_START_WALK_V4(&ctx, ipst); 6129 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 6130 if (match_ill != NULL && ill != match_ill) { 6131 continue; 6132 } 6133 mutex_enter(&ill->ill_lock); 6134 for (ipif = ill->ill_ipif; ipif != NULL; 6135 ipif = ipif->ipif_next) { 6136 /* Allow the ipif to be down */ 6137 if ((!ptp && (ipif->ipif_lcl_addr == addr) && 6138 ((ipif->ipif_flags & IPIF_UNNUMBERED) == 0)) || 6139 (ptp && (ipif->ipif_flags & IPIF_POINTOPOINT) && 6140 (ipif->ipif_pp_dst_addr == addr)) && 6141 !(ipif->ipif_state_flags & IPIF_CONDEMNED)) { 6142 zoneid = ipif->ipif_zoneid; 6143 mutex_exit(&ill->ill_lock); 6144 rw_exit(&ipst->ips_ill_g_lock); 6145 /* 6146 * If ipif_zoneid was ALL_ZONES then we have 6147 * a trusted extensions shared IP address. 6148 * In that case GLOBAL_ZONEID works to send. 6149 */ 6150 if (zoneid == ALL_ZONES) 6151 zoneid = GLOBAL_ZONEID; 6152 return (zoneid); 6153 } 6154 } 6155 mutex_exit(&ill->ill_lock); 6156 } 6157 6158 /* If we already did the ptp case, then we are done */ 6159 if (ptp) { 6160 rw_exit(&ipst->ips_ill_g_lock); 6161 return (ALL_ZONES); 6162 } 6163 ptp = B_TRUE; 6164 goto repeat; 6165 } 6166 6167 /* 6168 * Look for an ipif that matches the specified remote address i.e. the 6169 * ipif that would receive the specified packet. 6170 * First look for directly connected interfaces and then do a recursive 6171 * IRE lookup and pick the first ipif corresponding to the source address in the 6172 * ire. 6173 * Returns: held ipif 6174 */ 6175 ipif_t * 6176 ipif_lookup_remote(ill_t *ill, ipaddr_t addr, zoneid_t zoneid) 6177 { 6178 ipif_t *ipif; 6179 ire_t *ire; 6180 ip_stack_t *ipst = ill->ill_ipst; 6181 6182 ASSERT(!ill->ill_isv6); 6183 6184 /* 6185 * Someone could be changing this ipif currently or change it 6186 * after we return this. Thus a few packets could use the old 6187 * old values. However structure updates/creates (ire, ilg, ilm etc) 6188 * will atomically be updated or cleaned up with the new value 6189 * Thus we don't need a lock to check the flags or other attrs below. 6190 */ 6191 mutex_enter(&ill->ill_lock); 6192 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 6193 if (!IPIF_CAN_LOOKUP(ipif)) 6194 continue; 6195 if (zoneid != ALL_ZONES && zoneid != ipif->ipif_zoneid && 6196 ipif->ipif_zoneid != ALL_ZONES) 6197 continue; 6198 /* Allow the ipif to be down */ 6199 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 6200 if ((ipif->ipif_pp_dst_addr == addr) || 6201 (!(ipif->ipif_flags & IPIF_UNNUMBERED) && 6202 ipif->ipif_lcl_addr == addr)) { 6203 ipif_refhold_locked(ipif); 6204 mutex_exit(&ill->ill_lock); 6205 return (ipif); 6206 } 6207 } else if (ipif->ipif_subnet == (addr & ipif->ipif_net_mask)) { 6208 ipif_refhold_locked(ipif); 6209 mutex_exit(&ill->ill_lock); 6210 return (ipif); 6211 } 6212 } 6213 mutex_exit(&ill->ill_lock); 6214 ire = ire_route_lookup(addr, 0, 0, 0, NULL, NULL, zoneid, 6215 NULL, MATCH_IRE_RECURSIVE, ipst); 6216 if (ire != NULL) { 6217 /* 6218 * The callers of this function wants to know the 6219 * interface on which they have to send the replies 6220 * back. For IRE_CACHES that have ire_stq and ire_ipif 6221 * derived from different ills, we really don't care 6222 * what we return here. 6223 */ 6224 ipif = ire->ire_ipif; 6225 if (ipif != NULL) { 6226 ipif_refhold(ipif); 6227 ire_refrele(ire); 6228 return (ipif); 6229 } 6230 ire_refrele(ire); 6231 } 6232 /* Pick the first interface */ 6233 ipif = ipif_get_next_ipif(NULL, ill); 6234 return (ipif); 6235 } 6236 6237 /* 6238 * This func does not prevent refcnt from increasing. But if 6239 * the caller has taken steps to that effect, then this func 6240 * can be used to determine whether the ill has become quiescent 6241 */ 6242 boolean_t 6243 ill_is_quiescent(ill_t *ill) 6244 { 6245 ipif_t *ipif; 6246 6247 ASSERT(MUTEX_HELD(&ill->ill_lock)); 6248 6249 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 6250 if (ipif->ipif_refcnt != 0 || ipif->ipif_ire_cnt != 0) { 6251 return (B_FALSE); 6252 } 6253 } 6254 if (ill->ill_ire_cnt != 0 || ill->ill_refcnt != 0 || 6255 ill->ill_nce_cnt != 0) { 6256 return (B_FALSE); 6257 } 6258 return (B_TRUE); 6259 } 6260 6261 /* 6262 * This func does not prevent refcnt from increasing. But if 6263 * the caller has taken steps to that effect, then this func 6264 * can be used to determine whether the ipif has become quiescent 6265 */ 6266 static boolean_t 6267 ipif_is_quiescent(ipif_t *ipif) 6268 { 6269 ill_t *ill; 6270 6271 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 6272 6273 if (ipif->ipif_refcnt != 0 || ipif->ipif_ire_cnt != 0) { 6274 return (B_FALSE); 6275 } 6276 6277 ill = ipif->ipif_ill; 6278 if (ill->ill_ipif_up_count != 0 || ill->ill_ipif_dup_count != 0 || 6279 ill->ill_logical_down) { 6280 return (B_TRUE); 6281 } 6282 6283 /* This is the last ipif going down or being deleted on this ill */ 6284 if (ill->ill_ire_cnt != 0 || ill->ill_refcnt != 0) { 6285 return (B_FALSE); 6286 } 6287 6288 return (B_TRUE); 6289 } 6290 6291 /* 6292 * This func does not prevent refcnt from increasing. But if 6293 * the caller has taken steps to that effect, then this func 6294 * can be used to determine whether the ipifs marked with IPIF_MOVING 6295 * have become quiescent and can be moved in a failover/failback. 6296 */ 6297 static ipif_t * 6298 ill_quiescent_to_move(ill_t *ill) 6299 { 6300 ipif_t *ipif; 6301 6302 ASSERT(MUTEX_HELD(&ill->ill_lock)); 6303 6304 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 6305 if (ipif->ipif_state_flags & IPIF_MOVING) { 6306 if (ipif->ipif_refcnt != 0 || ipif->ipif_ire_cnt != 0) { 6307 return (ipif); 6308 } 6309 } 6310 } 6311 return (NULL); 6312 } 6313 6314 /* 6315 * The ipif/ill/ire has been refreled. Do the tail processing. 6316 * Determine if the ipif or ill in question has become quiescent and if so 6317 * wakeup close and/or restart any queued pending ioctl that is waiting 6318 * for the ipif_down (or ill_down) 6319 */ 6320 void 6321 ipif_ill_refrele_tail(ill_t *ill) 6322 { 6323 mblk_t *mp; 6324 conn_t *connp; 6325 ipsq_t *ipsq; 6326 ipif_t *ipif; 6327 dl_notify_ind_t *dlindp; 6328 6329 ASSERT(MUTEX_HELD(&ill->ill_lock)); 6330 6331 if ((ill->ill_state_flags & ILL_CONDEMNED) && 6332 ill_is_quiescent(ill)) { 6333 /* ill_close may be waiting */ 6334 cv_broadcast(&ill->ill_cv); 6335 } 6336 6337 /* ipsq can't change because ill_lock is held */ 6338 ipsq = ill->ill_phyint->phyint_ipsq; 6339 if (ipsq->ipsq_waitfor == 0) { 6340 /* Not waiting for anything, just return. */ 6341 mutex_exit(&ill->ill_lock); 6342 return; 6343 } 6344 ASSERT(ipsq->ipsq_pending_mp != NULL && 6345 ipsq->ipsq_pending_ipif != NULL); 6346 /* 6347 * ipif->ipif_refcnt must go down to zero for restarting REMOVEIF. 6348 * Last ipif going down needs to down the ill, so ill_ire_cnt must 6349 * be zero for restarting an ioctl that ends up downing the ill. 6350 */ 6351 ipif = ipsq->ipsq_pending_ipif; 6352 if (ipif->ipif_ill != ill) { 6353 /* The ioctl is pending on some other ill. */ 6354 mutex_exit(&ill->ill_lock); 6355 return; 6356 } 6357 6358 switch (ipsq->ipsq_waitfor) { 6359 case IPIF_DOWN: 6360 case IPIF_FREE: 6361 if (!ipif_is_quiescent(ipif)) { 6362 mutex_exit(&ill->ill_lock); 6363 return; 6364 } 6365 break; 6366 6367 case ILL_DOWN: 6368 case ILL_FREE: 6369 /* 6370 * case ILL_FREE arises only for loopback. otherwise ill_delete 6371 * waits synchronously in ip_close, and no message is queued in 6372 * ipsq_pending_mp at all in this case 6373 */ 6374 if (!ill_is_quiescent(ill)) { 6375 mutex_exit(&ill->ill_lock); 6376 return; 6377 } 6378 6379 break; 6380 6381 case ILL_MOVE_OK: 6382 if (ill_quiescent_to_move(ill) != NULL) { 6383 mutex_exit(&ill->ill_lock); 6384 return; 6385 } 6386 6387 break; 6388 default: 6389 cmn_err(CE_PANIC, "ipsq: %p unknown ipsq_waitfor %d\n", 6390 (void *)ipsq, ipsq->ipsq_waitfor); 6391 } 6392 6393 /* 6394 * Incr refcnt for the qwriter_ip call below which 6395 * does a refrele 6396 */ 6397 ill_refhold_locked(ill); 6398 mutex_exit(&ill->ill_lock); 6399 6400 mp = ipsq_pending_mp_get(ipsq, &connp); 6401 ASSERT(mp != NULL); 6402 6403 /* 6404 * NOTE: all of the qwriter_ip() calls below use CUR_OP since 6405 * we can only get here when the current operation decides it 6406 * it needs to quiesce via ipsq_pending_mp_add(). 6407 */ 6408 switch (mp->b_datap->db_type) { 6409 case M_PCPROTO: 6410 case M_PROTO: 6411 /* 6412 * For now, only DL_NOTIFY_IND messages can use this facility. 6413 */ 6414 dlindp = (dl_notify_ind_t *)mp->b_rptr; 6415 ASSERT(dlindp->dl_primitive == DL_NOTIFY_IND); 6416 6417 switch (dlindp->dl_notification) { 6418 case DL_NOTE_PHYS_ADDR: 6419 qwriter_ip(ill, ill->ill_rq, mp, 6420 ill_set_phys_addr_tail, CUR_OP, B_TRUE); 6421 return; 6422 default: 6423 ASSERT(0); 6424 } 6425 break; 6426 6427 case M_ERROR: 6428 case M_HANGUP: 6429 qwriter_ip(ill, ill->ill_rq, mp, ipif_all_down_tail, CUR_OP, 6430 B_TRUE); 6431 return; 6432 6433 case M_IOCTL: 6434 case M_IOCDATA: 6435 qwriter_ip(ill, (connp != NULL ? CONNP_TO_WQ(connp) : 6436 ill->ill_wq), mp, ip_reprocess_ioctl, CUR_OP, B_TRUE); 6437 return; 6438 6439 default: 6440 cmn_err(CE_PANIC, "ipif_ill_refrele_tail mp %p " 6441 "db_type %d\n", (void *)mp, mp->b_datap->db_type); 6442 } 6443 } 6444 6445 #ifdef ILL_DEBUG 6446 /* Reuse trace buffer from beginning (if reached the end) and record trace */ 6447 void 6448 th_trace_rrecord(th_trace_t *th_trace) 6449 { 6450 tr_buf_t *tr_buf; 6451 uint_t lastref; 6452 6453 lastref = th_trace->th_trace_lastref; 6454 lastref++; 6455 if (lastref == TR_BUF_MAX) 6456 lastref = 0; 6457 th_trace->th_trace_lastref = lastref; 6458 tr_buf = &th_trace->th_trbuf[lastref]; 6459 tr_buf->tr_depth = getpcstack(tr_buf->tr_stack, IP_STACK_DEPTH); 6460 } 6461 6462 th_trace_t * 6463 th_trace_ipif_lookup(ipif_t *ipif) 6464 { 6465 int bucket_id; 6466 th_trace_t *th_trace; 6467 6468 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 6469 6470 bucket_id = IP_TR_HASH(curthread); 6471 ASSERT(bucket_id < IP_TR_HASH_MAX); 6472 6473 for (th_trace = ipif->ipif_trace[bucket_id]; th_trace != NULL; 6474 th_trace = th_trace->th_next) { 6475 if (th_trace->th_id == curthread) 6476 return (th_trace); 6477 } 6478 return (NULL); 6479 } 6480 6481 void 6482 ipif_trace_ref(ipif_t *ipif) 6483 { 6484 int bucket_id; 6485 th_trace_t *th_trace; 6486 6487 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 6488 6489 if (ipif->ipif_trace_disable) 6490 return; 6491 6492 /* 6493 * Attempt to locate the trace buffer for the curthread. 6494 * If it does not exist, then allocate a new trace buffer 6495 * and link it in list of trace bufs for this ipif, at the head 6496 */ 6497 th_trace = th_trace_ipif_lookup(ipif); 6498 if (th_trace == NULL) { 6499 bucket_id = IP_TR_HASH(curthread); 6500 th_trace = (th_trace_t *)kmem_zalloc(sizeof (th_trace_t), 6501 KM_NOSLEEP); 6502 if (th_trace == NULL) { 6503 ipif->ipif_trace_disable = B_TRUE; 6504 ipif_trace_cleanup(ipif); 6505 return; 6506 } 6507 th_trace->th_id = curthread; 6508 th_trace->th_next = ipif->ipif_trace[bucket_id]; 6509 th_trace->th_prev = &ipif->ipif_trace[bucket_id]; 6510 if (th_trace->th_next != NULL) 6511 th_trace->th_next->th_prev = &th_trace->th_next; 6512 ipif->ipif_trace[bucket_id] = th_trace; 6513 } 6514 ASSERT(th_trace->th_refcnt >= 0 && 6515 th_trace->th_refcnt < TR_BUF_MAX -1); 6516 th_trace->th_refcnt++; 6517 th_trace_rrecord(th_trace); 6518 } 6519 6520 void 6521 ipif_untrace_ref(ipif_t *ipif) 6522 { 6523 th_trace_t *th_trace; 6524 6525 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 6526 6527 if (ipif->ipif_trace_disable) 6528 return; 6529 th_trace = th_trace_ipif_lookup(ipif); 6530 ASSERT(th_trace != NULL); 6531 ASSERT(th_trace->th_refcnt > 0); 6532 6533 th_trace->th_refcnt--; 6534 th_trace_rrecord(th_trace); 6535 } 6536 6537 th_trace_t * 6538 th_trace_ill_lookup(ill_t *ill) 6539 { 6540 th_trace_t *th_trace; 6541 int bucket_id; 6542 6543 ASSERT(MUTEX_HELD(&ill->ill_lock)); 6544 6545 bucket_id = IP_TR_HASH(curthread); 6546 ASSERT(bucket_id < IP_TR_HASH_MAX); 6547 6548 for (th_trace = ill->ill_trace[bucket_id]; th_trace != NULL; 6549 th_trace = th_trace->th_next) { 6550 if (th_trace->th_id == curthread) 6551 return (th_trace); 6552 } 6553 return (NULL); 6554 } 6555 6556 void 6557 ill_trace_ref(ill_t *ill) 6558 { 6559 int bucket_id; 6560 th_trace_t *th_trace; 6561 6562 ASSERT(MUTEX_HELD(&ill->ill_lock)); 6563 if (ill->ill_trace_disable) 6564 return; 6565 /* 6566 * Attempt to locate the trace buffer for the curthread. 6567 * If it does not exist, then allocate a new trace buffer 6568 * and link it in list of trace bufs for this ill, at the head 6569 */ 6570 th_trace = th_trace_ill_lookup(ill); 6571 if (th_trace == NULL) { 6572 bucket_id = IP_TR_HASH(curthread); 6573 th_trace = (th_trace_t *)kmem_zalloc(sizeof (th_trace_t), 6574 KM_NOSLEEP); 6575 if (th_trace == NULL) { 6576 ill->ill_trace_disable = B_TRUE; 6577 ill_trace_cleanup(ill); 6578 return; 6579 } 6580 th_trace->th_id = curthread; 6581 th_trace->th_next = ill->ill_trace[bucket_id]; 6582 th_trace->th_prev = &ill->ill_trace[bucket_id]; 6583 if (th_trace->th_next != NULL) 6584 th_trace->th_next->th_prev = &th_trace->th_next; 6585 ill->ill_trace[bucket_id] = th_trace; 6586 } 6587 ASSERT(th_trace->th_refcnt >= 0 && 6588 th_trace->th_refcnt < TR_BUF_MAX - 1); 6589 6590 th_trace->th_refcnt++; 6591 th_trace_rrecord(th_trace); 6592 } 6593 6594 void 6595 ill_untrace_ref(ill_t *ill) 6596 { 6597 th_trace_t *th_trace; 6598 6599 ASSERT(MUTEX_HELD(&ill->ill_lock)); 6600 6601 if (ill->ill_trace_disable) 6602 return; 6603 th_trace = th_trace_ill_lookup(ill); 6604 ASSERT(th_trace != NULL); 6605 ASSERT(th_trace->th_refcnt > 0); 6606 6607 th_trace->th_refcnt--; 6608 th_trace_rrecord(th_trace); 6609 } 6610 6611 /* 6612 * Verify that this thread has no refs to the ipif and free 6613 * the trace buffers 6614 */ 6615 /* ARGSUSED */ 6616 void 6617 ipif_thread_exit(ipif_t *ipif, void *dummy) 6618 { 6619 th_trace_t *th_trace; 6620 6621 mutex_enter(&ipif->ipif_ill->ill_lock); 6622 6623 th_trace = th_trace_ipif_lookup(ipif); 6624 if (th_trace == NULL) { 6625 mutex_exit(&ipif->ipif_ill->ill_lock); 6626 return; 6627 } 6628 ASSERT(th_trace->th_refcnt == 0); 6629 /* unlink th_trace and free it */ 6630 *th_trace->th_prev = th_trace->th_next; 6631 if (th_trace->th_next != NULL) 6632 th_trace->th_next->th_prev = th_trace->th_prev; 6633 th_trace->th_next = NULL; 6634 th_trace->th_prev = NULL; 6635 kmem_free(th_trace, sizeof (th_trace_t)); 6636 6637 mutex_exit(&ipif->ipif_ill->ill_lock); 6638 } 6639 6640 /* 6641 * Verify that this thread has no refs to the ill and free 6642 * the trace buffers 6643 */ 6644 /* ARGSUSED */ 6645 void 6646 ill_thread_exit(ill_t *ill, void *dummy) 6647 { 6648 th_trace_t *th_trace; 6649 6650 mutex_enter(&ill->ill_lock); 6651 6652 th_trace = th_trace_ill_lookup(ill); 6653 if (th_trace == NULL) { 6654 mutex_exit(&ill->ill_lock); 6655 return; 6656 } 6657 ASSERT(th_trace->th_refcnt == 0); 6658 /* unlink th_trace and free it */ 6659 *th_trace->th_prev = th_trace->th_next; 6660 if (th_trace->th_next != NULL) 6661 th_trace->th_next->th_prev = th_trace->th_prev; 6662 th_trace->th_next = NULL; 6663 th_trace->th_prev = NULL; 6664 kmem_free(th_trace, sizeof (th_trace_t)); 6665 6666 mutex_exit(&ill->ill_lock); 6667 } 6668 #endif 6669 6670 #ifdef ILL_DEBUG 6671 void 6672 ip_thread_exit_stack(ip_stack_t *ipst) 6673 { 6674 ill_t *ill; 6675 ipif_t *ipif; 6676 ill_walk_context_t ctx; 6677 6678 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 6679 ill = ILL_START_WALK_ALL(&ctx, ipst); 6680 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 6681 for (ipif = ill->ill_ipif; ipif != NULL; 6682 ipif = ipif->ipif_next) { 6683 ipif_thread_exit(ipif, NULL); 6684 } 6685 ill_thread_exit(ill, NULL); 6686 } 6687 rw_exit(&ipst->ips_ill_g_lock); 6688 6689 ire_walk(ire_thread_exit, NULL, ipst); 6690 ndp_walk_common(ipst->ips_ndp4, NULL, nce_thread_exit, NULL, B_FALSE); 6691 ndp_walk_common(ipst->ips_ndp6, NULL, nce_thread_exit, NULL, B_FALSE); 6692 } 6693 6694 /* 6695 * This is a function which is called from thread_exit 6696 * that can be used to debug reference count issues in IP. See comment in 6697 * <inet/ip.h> on how it is used. 6698 */ 6699 void 6700 ip_thread_exit(void) 6701 { 6702 netstack_t *ns; 6703 6704 ns = netstack_get_current(); 6705 if (ns != NULL) { 6706 ip_thread_exit_stack(ns->netstack_ip); 6707 netstack_rele(ns); 6708 } 6709 } 6710 6711 /* 6712 * Called when ipif is unplumbed or when memory alloc fails 6713 */ 6714 void 6715 ipif_trace_cleanup(ipif_t *ipif) 6716 { 6717 int i; 6718 th_trace_t *th_trace; 6719 th_trace_t *th_trace_next; 6720 6721 for (i = 0; i < IP_TR_HASH_MAX; i++) { 6722 for (th_trace = ipif->ipif_trace[i]; th_trace != NULL; 6723 th_trace = th_trace_next) { 6724 th_trace_next = th_trace->th_next; 6725 kmem_free(th_trace, sizeof (th_trace_t)); 6726 } 6727 ipif->ipif_trace[i] = NULL; 6728 } 6729 } 6730 6731 /* 6732 * Called when ill is unplumbed or when memory alloc fails 6733 */ 6734 void 6735 ill_trace_cleanup(ill_t *ill) 6736 { 6737 int i; 6738 th_trace_t *th_trace; 6739 th_trace_t *th_trace_next; 6740 6741 for (i = 0; i < IP_TR_HASH_MAX; i++) { 6742 for (th_trace = ill->ill_trace[i]; th_trace != NULL; 6743 th_trace = th_trace_next) { 6744 th_trace_next = th_trace->th_next; 6745 kmem_free(th_trace, sizeof (th_trace_t)); 6746 } 6747 ill->ill_trace[i] = NULL; 6748 } 6749 } 6750 6751 #else 6752 void ip_thread_exit(void) {} 6753 #endif 6754 6755 void 6756 ipif_refhold_locked(ipif_t *ipif) 6757 { 6758 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 6759 ipif->ipif_refcnt++; 6760 IPIF_TRACE_REF(ipif); 6761 } 6762 6763 void 6764 ipif_refhold(ipif_t *ipif) 6765 { 6766 ill_t *ill; 6767 6768 ill = ipif->ipif_ill; 6769 mutex_enter(&ill->ill_lock); 6770 ipif->ipif_refcnt++; 6771 IPIF_TRACE_REF(ipif); 6772 mutex_exit(&ill->ill_lock); 6773 } 6774 6775 /* 6776 * Must not be called while holding any locks. Otherwise if this is 6777 * the last reference to be released there is a chance of recursive mutex 6778 * panic due to ipif_refrele -> ipif_ill_refrele_tail -> qwriter_ip trying 6779 * to restart an ioctl. 6780 */ 6781 void 6782 ipif_refrele(ipif_t *ipif) 6783 { 6784 ill_t *ill; 6785 6786 ill = ipif->ipif_ill; 6787 6788 mutex_enter(&ill->ill_lock); 6789 ASSERT(ipif->ipif_refcnt != 0); 6790 ipif->ipif_refcnt--; 6791 IPIF_UNTRACE_REF(ipif); 6792 if (ipif->ipif_refcnt != 0) { 6793 mutex_exit(&ill->ill_lock); 6794 return; 6795 } 6796 6797 /* Drops the ill_lock */ 6798 ipif_ill_refrele_tail(ill); 6799 } 6800 6801 ipif_t * 6802 ipif_get_next_ipif(ipif_t *curr, ill_t *ill) 6803 { 6804 ipif_t *ipif; 6805 6806 mutex_enter(&ill->ill_lock); 6807 for (ipif = (curr == NULL ? ill->ill_ipif : curr->ipif_next); 6808 ipif != NULL; ipif = ipif->ipif_next) { 6809 if (!IPIF_CAN_LOOKUP(ipif)) 6810 continue; 6811 ipif_refhold_locked(ipif); 6812 mutex_exit(&ill->ill_lock); 6813 return (ipif); 6814 } 6815 mutex_exit(&ill->ill_lock); 6816 return (NULL); 6817 } 6818 6819 /* 6820 * TODO: make this table extendible at run time 6821 * Return a pointer to the mac type info for 'mac_type' 6822 */ 6823 static ip_m_t * 6824 ip_m_lookup(t_uscalar_t mac_type) 6825 { 6826 ip_m_t *ipm; 6827 6828 for (ipm = ip_m_tbl; ipm < A_END(ip_m_tbl); ipm++) 6829 if (ipm->ip_m_mac_type == mac_type) 6830 return (ipm); 6831 return (NULL); 6832 } 6833 6834 /* 6835 * ip_rt_add is called to add an IPv4 route to the forwarding table. 6836 * ipif_arg is passed in to associate it with the correct interface. 6837 * We may need to restart this operation if the ipif cannot be looked up 6838 * due to an exclusive operation that is currently in progress. The restart 6839 * entry point is specified by 'func' 6840 */ 6841 int 6842 ip_rt_add(ipaddr_t dst_addr, ipaddr_t mask, ipaddr_t gw_addr, 6843 ipaddr_t src_addr, int flags, ipif_t *ipif_arg, ire_t **ire_arg, 6844 boolean_t ioctl_msg, queue_t *q, mblk_t *mp, ipsq_func_t func, 6845 struct rtsa_s *sp, ip_stack_t *ipst) 6846 { 6847 ire_t *ire; 6848 ire_t *gw_ire = NULL; 6849 ipif_t *ipif = NULL; 6850 boolean_t ipif_refheld = B_FALSE; 6851 uint_t type; 6852 int match_flags = MATCH_IRE_TYPE; 6853 int error; 6854 tsol_gc_t *gc = NULL; 6855 tsol_gcgrp_t *gcgrp = NULL; 6856 boolean_t gcgrp_xtraref = B_FALSE; 6857 6858 ip1dbg(("ip_rt_add:")); 6859 6860 if (ire_arg != NULL) 6861 *ire_arg = NULL; 6862 6863 /* 6864 * If this is the case of RTF_HOST being set, then we set the netmask 6865 * to all ones (regardless if one was supplied). 6866 */ 6867 if (flags & RTF_HOST) 6868 mask = IP_HOST_MASK; 6869 6870 /* 6871 * Prevent routes with a zero gateway from being created (since 6872 * interfaces can currently be plumbed and brought up no assigned 6873 * address). 6874 */ 6875 if (gw_addr == 0) 6876 return (ENETUNREACH); 6877 /* 6878 * Get the ipif, if any, corresponding to the gw_addr 6879 */ 6880 ipif = ipif_lookup_interface(gw_addr, dst_addr, q, mp, func, &error, 6881 ipst); 6882 if (ipif != NULL) { 6883 if (IS_VNI(ipif->ipif_ill)) { 6884 ipif_refrele(ipif); 6885 return (EINVAL); 6886 } 6887 ipif_refheld = B_TRUE; 6888 } else if (error == EINPROGRESS) { 6889 ip1dbg(("ip_rt_add: null and EINPROGRESS")); 6890 return (EINPROGRESS); 6891 } else { 6892 error = 0; 6893 } 6894 6895 if (ipif != NULL) { 6896 ip1dbg(("ip_rt_add: ipif_lookup_interface done ipif nonnull")); 6897 ASSERT(!MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 6898 } else { 6899 ip1dbg(("ip_rt_add: ipif_lookup_interface done ipif is null")); 6900 } 6901 6902 /* 6903 * GateD will attempt to create routes with a loopback interface 6904 * address as the gateway and with RTF_GATEWAY set. We allow 6905 * these routes to be added, but create them as interface routes 6906 * since the gateway is an interface address. 6907 */ 6908 if ((ipif != NULL) && (ipif->ipif_ire_type == IRE_LOOPBACK)) { 6909 flags &= ~RTF_GATEWAY; 6910 if (gw_addr == INADDR_LOOPBACK && dst_addr == INADDR_LOOPBACK && 6911 mask == IP_HOST_MASK) { 6912 ire = ire_ctable_lookup(dst_addr, 0, IRE_LOOPBACK, ipif, 6913 ALL_ZONES, NULL, match_flags, ipst); 6914 if (ire != NULL) { 6915 ire_refrele(ire); 6916 if (ipif_refheld) 6917 ipif_refrele(ipif); 6918 return (EEXIST); 6919 } 6920 ip1dbg(("ipif_up_done: 0x%p creating IRE 0x%x" 6921 "for 0x%x\n", (void *)ipif, 6922 ipif->ipif_ire_type, 6923 ntohl(ipif->ipif_lcl_addr))); 6924 ire = ire_create( 6925 (uchar_t *)&dst_addr, /* dest address */ 6926 (uchar_t *)&mask, /* mask */ 6927 (uchar_t *)&ipif->ipif_src_addr, 6928 NULL, /* no gateway */ 6929 &ipif->ipif_mtu, 6930 NULL, 6931 ipif->ipif_rq, /* recv-from queue */ 6932 NULL, /* no send-to queue */ 6933 ipif->ipif_ire_type, /* LOOPBACK */ 6934 ipif, 6935 0, 6936 0, 6937 0, 6938 (ipif->ipif_flags & IPIF_PRIVATE) ? 6939 RTF_PRIVATE : 0, 6940 &ire_uinfo_null, 6941 NULL, 6942 NULL, 6943 ipst); 6944 6945 if (ire == NULL) { 6946 if (ipif_refheld) 6947 ipif_refrele(ipif); 6948 return (ENOMEM); 6949 } 6950 error = ire_add(&ire, q, mp, func, B_FALSE); 6951 if (error == 0) 6952 goto save_ire; 6953 if (ipif_refheld) 6954 ipif_refrele(ipif); 6955 return (error); 6956 6957 } 6958 } 6959 6960 /* 6961 * Traditionally, interface routes are ones where RTF_GATEWAY isn't set 6962 * and the gateway address provided is one of the system's interface 6963 * addresses. By using the routing socket interface and supplying an 6964 * RTA_IFP sockaddr with an interface index, an alternate method of 6965 * specifying an interface route to be created is available which uses 6966 * the interface index that specifies the outgoing interface rather than 6967 * the address of an outgoing interface (which may not be able to 6968 * uniquely identify an interface). When coupled with the RTF_GATEWAY 6969 * flag, routes can be specified which not only specify the next-hop to 6970 * be used when routing to a certain prefix, but also which outgoing 6971 * interface should be used. 6972 * 6973 * Previously, interfaces would have unique addresses assigned to them 6974 * and so the address assigned to a particular interface could be used 6975 * to identify a particular interface. One exception to this was the 6976 * case of an unnumbered interface (where IPIF_UNNUMBERED was set). 6977 * 6978 * With the advent of IPv6 and its link-local addresses, this 6979 * restriction was relaxed and interfaces could share addresses between 6980 * themselves. In fact, typically all of the link-local interfaces on 6981 * an IPv6 node or router will have the same link-local address. In 6982 * order to differentiate between these interfaces, the use of an 6983 * interface index is necessary and this index can be carried inside a 6984 * RTA_IFP sockaddr (which is actually a sockaddr_dl). One restriction 6985 * of using the interface index, however, is that all of the ipif's that 6986 * are part of an ill have the same index and so the RTA_IFP sockaddr 6987 * cannot be used to differentiate between ipif's (or logical 6988 * interfaces) that belong to the same ill (physical interface). 6989 * 6990 * For example, in the following case involving IPv4 interfaces and 6991 * logical interfaces 6992 * 6993 * 192.0.2.32 255.255.255.224 192.0.2.33 U if0 6994 * 192.0.2.32 255.255.255.224 192.0.2.34 U if0:1 6995 * 192.0.2.32 255.255.255.224 192.0.2.35 U if0:2 6996 * 6997 * the ipif's corresponding to each of these interface routes can be 6998 * uniquely identified by the "gateway" (actually interface address). 6999 * 7000 * In this case involving multiple IPv6 default routes to a particular 7001 * link-local gateway, the use of RTA_IFP is necessary to specify which 7002 * default route is of interest: 7003 * 7004 * default fe80::123:4567:89ab:cdef U if0 7005 * default fe80::123:4567:89ab:cdef U if1 7006 */ 7007 7008 /* RTF_GATEWAY not set */ 7009 if (!(flags & RTF_GATEWAY)) { 7010 queue_t *stq; 7011 7012 if (sp != NULL) { 7013 ip2dbg(("ip_rt_add: gateway security attributes " 7014 "cannot be set with interface route\n")); 7015 if (ipif_refheld) 7016 ipif_refrele(ipif); 7017 return (EINVAL); 7018 } 7019 7020 /* 7021 * As the interface index specified with the RTA_IFP sockaddr is 7022 * the same for all ipif's off of an ill, the matching logic 7023 * below uses MATCH_IRE_ILL if such an index was specified. 7024 * This means that routes sharing the same prefix when added 7025 * using a RTA_IFP sockaddr must have distinct interface 7026 * indices (namely, they must be on distinct ill's). 7027 * 7028 * On the other hand, since the gateway address will usually be 7029 * different for each ipif on the system, the matching logic 7030 * uses MATCH_IRE_IPIF in the case of a traditional interface 7031 * route. This means that interface routes for the same prefix 7032 * can be created if they belong to distinct ipif's and if a 7033 * RTA_IFP sockaddr is not present. 7034 */ 7035 if (ipif_arg != NULL) { 7036 if (ipif_refheld) { 7037 ipif_refrele(ipif); 7038 ipif_refheld = B_FALSE; 7039 } 7040 ipif = ipif_arg; 7041 match_flags |= MATCH_IRE_ILL; 7042 } else { 7043 /* 7044 * Check the ipif corresponding to the gw_addr 7045 */ 7046 if (ipif == NULL) 7047 return (ENETUNREACH); 7048 match_flags |= MATCH_IRE_IPIF; 7049 } 7050 ASSERT(ipif != NULL); 7051 7052 /* 7053 * We check for an existing entry at this point. 7054 * 7055 * Since a netmask isn't passed in via the ioctl interface 7056 * (SIOCADDRT), we don't check for a matching netmask in that 7057 * case. 7058 */ 7059 if (!ioctl_msg) 7060 match_flags |= MATCH_IRE_MASK; 7061 ire = ire_ftable_lookup(dst_addr, mask, 0, IRE_INTERFACE, ipif, 7062 NULL, ALL_ZONES, 0, NULL, match_flags, ipst); 7063 if (ire != NULL) { 7064 ire_refrele(ire); 7065 if (ipif_refheld) 7066 ipif_refrele(ipif); 7067 return (EEXIST); 7068 } 7069 7070 stq = (ipif->ipif_net_type == IRE_IF_RESOLVER) 7071 ? ipif->ipif_rq : ipif->ipif_wq; 7072 7073 /* 7074 * Create a copy of the IRE_LOOPBACK, 7075 * IRE_IF_NORESOLVER or IRE_IF_RESOLVER with 7076 * the modified address and netmask. 7077 */ 7078 ire = ire_create( 7079 (uchar_t *)&dst_addr, 7080 (uint8_t *)&mask, 7081 (uint8_t *)&ipif->ipif_src_addr, 7082 NULL, 7083 &ipif->ipif_mtu, 7084 NULL, 7085 NULL, 7086 stq, 7087 ipif->ipif_net_type, 7088 ipif, 7089 0, 7090 0, 7091 0, 7092 flags, 7093 &ire_uinfo_null, 7094 NULL, 7095 NULL, 7096 ipst); 7097 if (ire == NULL) { 7098 if (ipif_refheld) 7099 ipif_refrele(ipif); 7100 return (ENOMEM); 7101 } 7102 7103 /* 7104 * Some software (for example, GateD and Sun Cluster) attempts 7105 * to create (what amount to) IRE_PREFIX routes with the 7106 * loopback address as the gateway. This is primarily done to 7107 * set up prefixes with the RTF_REJECT flag set (for example, 7108 * when generating aggregate routes.) 7109 * 7110 * If the IRE type (as defined by ipif->ipif_net_type) is 7111 * IRE_LOOPBACK, then we map the request into a 7112 * IRE_IF_NORESOLVER. 7113 * 7114 * Needless to say, the real IRE_LOOPBACK is NOT created by this 7115 * routine, but rather using ire_create() directly. 7116 * 7117 */ 7118 if (ipif->ipif_net_type == IRE_LOOPBACK) 7119 ire->ire_type = IRE_IF_NORESOLVER; 7120 7121 error = ire_add(&ire, q, mp, func, B_FALSE); 7122 if (error == 0) 7123 goto save_ire; 7124 7125 /* 7126 * In the result of failure, ire_add() will have already 7127 * deleted the ire in question, so there is no need to 7128 * do that here. 7129 */ 7130 if (ipif_refheld) 7131 ipif_refrele(ipif); 7132 return (error); 7133 } 7134 if (ipif_refheld) { 7135 ipif_refrele(ipif); 7136 ipif_refheld = B_FALSE; 7137 } 7138 7139 /* 7140 * Get an interface IRE for the specified gateway. 7141 * If we don't have an IRE_IF_NORESOLVER or IRE_IF_RESOLVER for the 7142 * gateway, it is currently unreachable and we fail the request 7143 * accordingly. 7144 */ 7145 ipif = ipif_arg; 7146 if (ipif_arg != NULL) 7147 match_flags |= MATCH_IRE_ILL; 7148 gw_ire = ire_ftable_lookup(gw_addr, 0, 0, IRE_INTERFACE, ipif_arg, NULL, 7149 ALL_ZONES, 0, NULL, match_flags, ipst); 7150 if (gw_ire == NULL) 7151 return (ENETUNREACH); 7152 7153 /* 7154 * We create one of three types of IREs as a result of this request 7155 * based on the netmask. A netmask of all ones (which is automatically 7156 * assumed when RTF_HOST is set) results in an IRE_HOST being created. 7157 * An all zeroes netmask implies a default route so an IRE_DEFAULT is 7158 * created. Otherwise, an IRE_PREFIX route is created for the 7159 * destination prefix. 7160 */ 7161 if (mask == IP_HOST_MASK) 7162 type = IRE_HOST; 7163 else if (mask == 0) 7164 type = IRE_DEFAULT; 7165 else 7166 type = IRE_PREFIX; 7167 7168 /* check for a duplicate entry */ 7169 ire = ire_ftable_lookup(dst_addr, mask, gw_addr, type, ipif_arg, 7170 NULL, ALL_ZONES, 0, NULL, 7171 match_flags | MATCH_IRE_MASK | MATCH_IRE_GW, ipst); 7172 if (ire != NULL) { 7173 ire_refrele(gw_ire); 7174 ire_refrele(ire); 7175 return (EEXIST); 7176 } 7177 7178 /* Security attribute exists */ 7179 if (sp != NULL) { 7180 tsol_gcgrp_addr_t ga; 7181 7182 /* find or create the gateway credentials group */ 7183 ga.ga_af = AF_INET; 7184 IN6_IPADDR_TO_V4MAPPED(gw_addr, &ga.ga_addr); 7185 7186 /* we hold reference to it upon success */ 7187 gcgrp = gcgrp_lookup(&ga, B_TRUE); 7188 if (gcgrp == NULL) { 7189 ire_refrele(gw_ire); 7190 return (ENOMEM); 7191 } 7192 7193 /* 7194 * Create and add the security attribute to the group; a 7195 * reference to the group is made upon allocating a new 7196 * entry successfully. If it finds an already-existing 7197 * entry for the security attribute in the group, it simply 7198 * returns it and no new reference is made to the group. 7199 */ 7200 gc = gc_create(sp, gcgrp, &gcgrp_xtraref); 7201 if (gc == NULL) { 7202 /* release reference held by gcgrp_lookup */ 7203 GCGRP_REFRELE(gcgrp); 7204 ire_refrele(gw_ire); 7205 return (ENOMEM); 7206 } 7207 } 7208 7209 /* Create the IRE. */ 7210 ire = ire_create( 7211 (uchar_t *)&dst_addr, /* dest address */ 7212 (uchar_t *)&mask, /* mask */ 7213 /* src address assigned by the caller? */ 7214 (uchar_t *)(((src_addr != INADDR_ANY) && 7215 (flags & RTF_SETSRC)) ? &src_addr : NULL), 7216 (uchar_t *)&gw_addr, /* gateway address */ 7217 &gw_ire->ire_max_frag, 7218 NULL, /* no src nce */ 7219 NULL, /* no recv-from queue */ 7220 NULL, /* no send-to queue */ 7221 (ushort_t)type, /* IRE type */ 7222 ipif_arg, 7223 0, 7224 0, 7225 0, 7226 flags, 7227 &gw_ire->ire_uinfo, /* Inherit ULP info from gw */ 7228 gc, /* security attribute */ 7229 NULL, 7230 ipst); 7231 7232 /* 7233 * The ire holds a reference to the 'gc' and the 'gc' holds a 7234 * reference to the 'gcgrp'. We can now release the extra reference 7235 * the 'gcgrp' acquired in the gcgrp_lookup, if it was not used. 7236 */ 7237 if (gcgrp_xtraref) 7238 GCGRP_REFRELE(gcgrp); 7239 if (ire == NULL) { 7240 if (gc != NULL) 7241 GC_REFRELE(gc); 7242 ire_refrele(gw_ire); 7243 return (ENOMEM); 7244 } 7245 7246 /* 7247 * POLICY: should we allow an RTF_HOST with address INADDR_ANY? 7248 * SUN/OS socket stuff does but do we really want to allow 0.0.0.0? 7249 */ 7250 7251 /* Add the new IRE. */ 7252 error = ire_add(&ire, q, mp, func, B_FALSE); 7253 if (error != 0) { 7254 /* 7255 * In the result of failure, ire_add() will have already 7256 * deleted the ire in question, so there is no need to 7257 * do that here. 7258 */ 7259 ire_refrele(gw_ire); 7260 return (error); 7261 } 7262 7263 if (flags & RTF_MULTIRT) { 7264 /* 7265 * Invoke the CGTP (multirouting) filtering module 7266 * to add the dst address in the filtering database. 7267 * Replicated inbound packets coming from that address 7268 * will be filtered to discard the duplicates. 7269 * It is not necessary to call the CGTP filter hook 7270 * when the dst address is a broadcast or multicast, 7271 * because an IP source address cannot be a broadcast 7272 * or a multicast. 7273 */ 7274 ire_t *ire_dst = ire_ctable_lookup(ire->ire_addr, 0, 7275 IRE_BROADCAST, NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 7276 if (ire_dst != NULL) { 7277 ip_cgtp_bcast_add(ire, ire_dst, ipst); 7278 ire_refrele(ire_dst); 7279 goto save_ire; 7280 } 7281 if (ipst->ips_ip_cgtp_filter_ops != NULL && 7282 !CLASSD(ire->ire_addr)) { 7283 int res = ipst->ips_ip_cgtp_filter_ops->cfo_add_dest_v4( 7284 ipst->ips_netstack->netstack_stackid, 7285 ire->ire_addr, 7286 ire->ire_gateway_addr, 7287 ire->ire_src_addr, 7288 gw_ire->ire_src_addr); 7289 if (res != 0) { 7290 ire_refrele(gw_ire); 7291 ire_delete(ire); 7292 return (res); 7293 } 7294 } 7295 } 7296 7297 /* 7298 * Now that the prefix IRE entry has been created, delete any 7299 * existing gateway IRE cache entries as well as any IRE caches 7300 * using the gateway, and force them to be created through 7301 * ip_newroute. 7302 */ 7303 if (gc != NULL) { 7304 ASSERT(gcgrp != NULL); 7305 ire_clookup_delete_cache_gw(gw_addr, ALL_ZONES, ipst); 7306 } 7307 7308 save_ire: 7309 if (gw_ire != NULL) { 7310 ire_refrele(gw_ire); 7311 } 7312 if (ipif != NULL) { 7313 /* 7314 * Save enough information so that we can recreate the IRE if 7315 * the interface goes down and then up. The metrics associated 7316 * with the route will be saved as well when rts_setmetrics() is 7317 * called after the IRE has been created. In the case where 7318 * memory cannot be allocated, none of this information will be 7319 * saved. 7320 */ 7321 ipif_save_ire(ipif, ire); 7322 } 7323 if (ioctl_msg) 7324 ip_rts_rtmsg(RTM_OLDADD, ire, 0, ipst); 7325 if (ire_arg != NULL) { 7326 /* 7327 * Store the ire that was successfully added into where ire_arg 7328 * points to so that callers don't have to look it up 7329 * themselves (but they are responsible for ire_refrele()ing 7330 * the ire when they are finished with it). 7331 */ 7332 *ire_arg = ire; 7333 } else { 7334 ire_refrele(ire); /* Held in ire_add */ 7335 } 7336 if (ipif_refheld) 7337 ipif_refrele(ipif); 7338 return (0); 7339 } 7340 7341 /* 7342 * ip_rt_delete is called to delete an IPv4 route. 7343 * ipif_arg is passed in to associate it with the correct interface. 7344 * We may need to restart this operation if the ipif cannot be looked up 7345 * due to an exclusive operation that is currently in progress. The restart 7346 * entry point is specified by 'func' 7347 */ 7348 /* ARGSUSED4 */ 7349 int 7350 ip_rt_delete(ipaddr_t dst_addr, ipaddr_t mask, ipaddr_t gw_addr, 7351 uint_t rtm_addrs, int flags, ipif_t *ipif_arg, boolean_t ioctl_msg, 7352 queue_t *q, mblk_t *mp, ipsq_func_t func, ip_stack_t *ipst) 7353 { 7354 ire_t *ire = NULL; 7355 ipif_t *ipif; 7356 boolean_t ipif_refheld = B_FALSE; 7357 uint_t type; 7358 uint_t match_flags = MATCH_IRE_TYPE; 7359 int err = 0; 7360 7361 ip1dbg(("ip_rt_delete:")); 7362 /* 7363 * If this is the case of RTF_HOST being set, then we set the netmask 7364 * to all ones. Otherwise, we use the netmask if one was supplied. 7365 */ 7366 if (flags & RTF_HOST) { 7367 mask = IP_HOST_MASK; 7368 match_flags |= MATCH_IRE_MASK; 7369 } else if (rtm_addrs & RTA_NETMASK) { 7370 match_flags |= MATCH_IRE_MASK; 7371 } 7372 7373 /* 7374 * Note that RTF_GATEWAY is never set on a delete, therefore 7375 * we check if the gateway address is one of our interfaces first, 7376 * and fall back on RTF_GATEWAY routes. 7377 * 7378 * This makes it possible to delete an original 7379 * IRE_IF_NORESOLVER/IRE_IF_RESOLVER - consistent with SunOS 4.1. 7380 * 7381 * As the interface index specified with the RTA_IFP sockaddr is the 7382 * same for all ipif's off of an ill, the matching logic below uses 7383 * MATCH_IRE_ILL if such an index was specified. This means a route 7384 * sharing the same prefix and interface index as the the route 7385 * intended to be deleted might be deleted instead if a RTA_IFP sockaddr 7386 * is specified in the request. 7387 * 7388 * On the other hand, since the gateway address will usually be 7389 * different for each ipif on the system, the matching logic 7390 * uses MATCH_IRE_IPIF in the case of a traditional interface 7391 * route. This means that interface routes for the same prefix can be 7392 * uniquely identified if they belong to distinct ipif's and if a 7393 * RTA_IFP sockaddr is not present. 7394 * 7395 * For more detail on specifying routes by gateway address and by 7396 * interface index, see the comments in ip_rt_add(). 7397 */ 7398 ipif = ipif_lookup_interface(gw_addr, dst_addr, q, mp, func, &err, 7399 ipst); 7400 if (ipif != NULL) 7401 ipif_refheld = B_TRUE; 7402 else if (err == EINPROGRESS) 7403 return (err); 7404 else 7405 err = 0; 7406 if (ipif != NULL) { 7407 if (ipif_arg != NULL) { 7408 if (ipif_refheld) { 7409 ipif_refrele(ipif); 7410 ipif_refheld = B_FALSE; 7411 } 7412 ipif = ipif_arg; 7413 match_flags |= MATCH_IRE_ILL; 7414 } else { 7415 match_flags |= MATCH_IRE_IPIF; 7416 } 7417 if (ipif->ipif_ire_type == IRE_LOOPBACK) { 7418 ire = ire_ctable_lookup(dst_addr, 0, IRE_LOOPBACK, ipif, 7419 ALL_ZONES, NULL, match_flags, ipst); 7420 } 7421 if (ire == NULL) { 7422 ire = ire_ftable_lookup(dst_addr, mask, 0, 7423 IRE_INTERFACE, ipif, NULL, ALL_ZONES, 0, NULL, 7424 match_flags, ipst); 7425 } 7426 } 7427 7428 if (ire == NULL) { 7429 /* 7430 * At this point, the gateway address is not one of our own 7431 * addresses or a matching interface route was not found. We 7432 * set the IRE type to lookup based on whether 7433 * this is a host route, a default route or just a prefix. 7434 * 7435 * If an ipif_arg was passed in, then the lookup is based on an 7436 * interface index so MATCH_IRE_ILL is added to match_flags. 7437 * In any case, MATCH_IRE_IPIF is cleared and MATCH_IRE_GW is 7438 * set as the route being looked up is not a traditional 7439 * interface route. 7440 */ 7441 match_flags &= ~MATCH_IRE_IPIF; 7442 match_flags |= MATCH_IRE_GW; 7443 if (ipif_arg != NULL) 7444 match_flags |= MATCH_IRE_ILL; 7445 if (mask == IP_HOST_MASK) 7446 type = IRE_HOST; 7447 else if (mask == 0) 7448 type = IRE_DEFAULT; 7449 else 7450 type = IRE_PREFIX; 7451 ire = ire_ftable_lookup(dst_addr, mask, gw_addr, type, ipif_arg, 7452 NULL, ALL_ZONES, 0, NULL, match_flags, ipst); 7453 } 7454 7455 if (ipif_refheld) 7456 ipif_refrele(ipif); 7457 7458 /* ipif is not refheld anymore */ 7459 if (ire == NULL) 7460 return (ESRCH); 7461 7462 if (ire->ire_flags & RTF_MULTIRT) { 7463 /* 7464 * Invoke the CGTP (multirouting) filtering module 7465 * to remove the dst address from the filtering database. 7466 * Packets coming from that address will no longer be 7467 * filtered to remove duplicates. 7468 */ 7469 if (ipst->ips_ip_cgtp_filter_ops != NULL) { 7470 err = ipst->ips_ip_cgtp_filter_ops->cfo_del_dest_v4( 7471 ipst->ips_netstack->netstack_stackid, 7472 ire->ire_addr, ire->ire_gateway_addr); 7473 } 7474 ip_cgtp_bcast_delete(ire, ipst); 7475 } 7476 7477 ipif = ire->ire_ipif; 7478 if (ipif != NULL) 7479 ipif_remove_ire(ipif, ire); 7480 if (ioctl_msg) 7481 ip_rts_rtmsg(RTM_OLDDEL, ire, 0, ipst); 7482 ire_delete(ire); 7483 ire_refrele(ire); 7484 return (err); 7485 } 7486 7487 /* 7488 * ip_siocaddrt is called to complete processing of an SIOCADDRT IOCTL. 7489 */ 7490 /* ARGSUSED */ 7491 int 7492 ip_siocaddrt(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 7493 ip_ioctl_cmd_t *ipip, void *dummy_if_req) 7494 { 7495 ipaddr_t dst_addr; 7496 ipaddr_t gw_addr; 7497 ipaddr_t mask; 7498 int error = 0; 7499 mblk_t *mp1; 7500 struct rtentry *rt; 7501 ipif_t *ipif = NULL; 7502 ip_stack_t *ipst; 7503 7504 ASSERT(q->q_next == NULL); 7505 ipst = CONNQ_TO_IPST(q); 7506 7507 ip1dbg(("ip_siocaddrt:")); 7508 /* Existence of mp1 verified in ip_wput_nondata */ 7509 mp1 = mp->b_cont->b_cont; 7510 rt = (struct rtentry *)mp1->b_rptr; 7511 7512 dst_addr = ((sin_t *)&rt->rt_dst)->sin_addr.s_addr; 7513 gw_addr = ((sin_t *)&rt->rt_gateway)->sin_addr.s_addr; 7514 7515 /* 7516 * If the RTF_HOST flag is on, this is a request to assign a gateway 7517 * to a particular host address. In this case, we set the netmask to 7518 * all ones for the particular destination address. Otherwise, 7519 * determine the netmask to be used based on dst_addr and the interfaces 7520 * in use. 7521 */ 7522 if (rt->rt_flags & RTF_HOST) { 7523 mask = IP_HOST_MASK; 7524 } else { 7525 /* 7526 * Note that ip_subnet_mask returns a zero mask in the case of 7527 * default (an all-zeroes address). 7528 */ 7529 mask = ip_subnet_mask(dst_addr, &ipif, ipst); 7530 } 7531 7532 error = ip_rt_add(dst_addr, mask, gw_addr, 0, rt->rt_flags, NULL, NULL, 7533 B_TRUE, q, mp, ip_process_ioctl, NULL, ipst); 7534 if (ipif != NULL) 7535 ipif_refrele(ipif); 7536 return (error); 7537 } 7538 7539 /* 7540 * ip_siocdelrt is called to complete processing of an SIOCDELRT IOCTL. 7541 */ 7542 /* ARGSUSED */ 7543 int 7544 ip_siocdelrt(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 7545 ip_ioctl_cmd_t *ipip, void *dummy_if_req) 7546 { 7547 ipaddr_t dst_addr; 7548 ipaddr_t gw_addr; 7549 ipaddr_t mask; 7550 int error; 7551 mblk_t *mp1; 7552 struct rtentry *rt; 7553 ipif_t *ipif = NULL; 7554 ip_stack_t *ipst; 7555 7556 ASSERT(q->q_next == NULL); 7557 ipst = CONNQ_TO_IPST(q); 7558 7559 ip1dbg(("ip_siocdelrt:")); 7560 /* Existence of mp1 verified in ip_wput_nondata */ 7561 mp1 = mp->b_cont->b_cont; 7562 rt = (struct rtentry *)mp1->b_rptr; 7563 7564 dst_addr = ((sin_t *)&rt->rt_dst)->sin_addr.s_addr; 7565 gw_addr = ((sin_t *)&rt->rt_gateway)->sin_addr.s_addr; 7566 7567 /* 7568 * If the RTF_HOST flag is on, this is a request to delete a gateway 7569 * to a particular host address. In this case, we set the netmask to 7570 * all ones for the particular destination address. Otherwise, 7571 * determine the netmask to be used based on dst_addr and the interfaces 7572 * in use. 7573 */ 7574 if (rt->rt_flags & RTF_HOST) { 7575 mask = IP_HOST_MASK; 7576 } else { 7577 /* 7578 * Note that ip_subnet_mask returns a zero mask in the case of 7579 * default (an all-zeroes address). 7580 */ 7581 mask = ip_subnet_mask(dst_addr, &ipif, ipst); 7582 } 7583 7584 error = ip_rt_delete(dst_addr, mask, gw_addr, 7585 RTA_DST | RTA_GATEWAY | RTA_NETMASK, rt->rt_flags, NULL, B_TRUE, q, 7586 mp, ip_process_ioctl, ipst); 7587 if (ipif != NULL) 7588 ipif_refrele(ipif); 7589 return (error); 7590 } 7591 7592 /* 7593 * Enqueue the mp onto the ipsq, chained by b_next. 7594 * b_prev stores the function to be executed later, and b_queue the queue 7595 * where this mp originated. 7596 */ 7597 void 7598 ipsq_enq(ipsq_t *ipsq, queue_t *q, mblk_t *mp, ipsq_func_t func, int type, 7599 ill_t *pending_ill) 7600 { 7601 conn_t *connp = NULL; 7602 7603 ASSERT(MUTEX_HELD(&ipsq->ipsq_lock)); 7604 ASSERT(func != NULL); 7605 7606 mp->b_queue = q; 7607 mp->b_prev = (void *)func; 7608 mp->b_next = NULL; 7609 7610 switch (type) { 7611 case CUR_OP: 7612 if (ipsq->ipsq_mptail != NULL) { 7613 ASSERT(ipsq->ipsq_mphead != NULL); 7614 ipsq->ipsq_mptail->b_next = mp; 7615 } else { 7616 ASSERT(ipsq->ipsq_mphead == NULL); 7617 ipsq->ipsq_mphead = mp; 7618 } 7619 ipsq->ipsq_mptail = mp; 7620 break; 7621 7622 case NEW_OP: 7623 if (ipsq->ipsq_xopq_mptail != NULL) { 7624 ASSERT(ipsq->ipsq_xopq_mphead != NULL); 7625 ipsq->ipsq_xopq_mptail->b_next = mp; 7626 } else { 7627 ASSERT(ipsq->ipsq_xopq_mphead == NULL); 7628 ipsq->ipsq_xopq_mphead = mp; 7629 } 7630 ipsq->ipsq_xopq_mptail = mp; 7631 break; 7632 default: 7633 cmn_err(CE_PANIC, "ipsq_enq %d type \n", type); 7634 } 7635 7636 if (CONN_Q(q) && pending_ill != NULL) { 7637 connp = Q_TO_CONN(q); 7638 7639 ASSERT(MUTEX_HELD(&connp->conn_lock)); 7640 connp->conn_oper_pending_ill = pending_ill; 7641 } 7642 } 7643 7644 /* 7645 * Return the mp at the head of the ipsq. After emptying the ipsq 7646 * look at the next ioctl, if this ioctl is complete. Otherwise 7647 * return, we will resume when we complete the current ioctl. 7648 * The current ioctl will wait till it gets a response from the 7649 * driver below. 7650 */ 7651 static mblk_t * 7652 ipsq_dq(ipsq_t *ipsq) 7653 { 7654 mblk_t *mp; 7655 7656 ASSERT(MUTEX_HELD(&ipsq->ipsq_lock)); 7657 7658 mp = ipsq->ipsq_mphead; 7659 if (mp != NULL) { 7660 ipsq->ipsq_mphead = mp->b_next; 7661 if (ipsq->ipsq_mphead == NULL) 7662 ipsq->ipsq_mptail = NULL; 7663 mp->b_next = NULL; 7664 return (mp); 7665 } 7666 if (ipsq->ipsq_current_ipif != NULL) 7667 return (NULL); 7668 mp = ipsq->ipsq_xopq_mphead; 7669 if (mp != NULL) { 7670 ipsq->ipsq_xopq_mphead = mp->b_next; 7671 if (ipsq->ipsq_xopq_mphead == NULL) 7672 ipsq->ipsq_xopq_mptail = NULL; 7673 mp->b_next = NULL; 7674 return (mp); 7675 } 7676 return (NULL); 7677 } 7678 7679 /* 7680 * Enter the ipsq corresponding to ill, by waiting synchronously till 7681 * we can enter the ipsq exclusively. Unless 'force' is used, the ipsq 7682 * will have to drain completely before ipsq_enter returns success. 7683 * ipsq_current_ipif will be set if some exclusive ioctl is in progress, 7684 * and the ipsq_exit logic will start the next enqueued ioctl after 7685 * completion of the current ioctl. If 'force' is used, we don't wait 7686 * for the enqueued ioctls. This is needed when a conn_close wants to 7687 * enter the ipsq and abort an ioctl that is somehow stuck. Unplumb 7688 * of an ill can also use this option. But we dont' use it currently. 7689 */ 7690 #define ENTER_SQ_WAIT_TICKS 100 7691 boolean_t 7692 ipsq_enter(ill_t *ill, boolean_t force) 7693 { 7694 ipsq_t *ipsq; 7695 boolean_t waited_enough = B_FALSE; 7696 7697 /* 7698 * Holding the ill_lock prevents <ill-ipsq> assocs from changing. 7699 * Since the <ill-ipsq> assocs could change while we wait for the 7700 * writer, it is easier to wait on a fixed global rather than try to 7701 * cv_wait on a changing ipsq. 7702 */ 7703 mutex_enter(&ill->ill_lock); 7704 for (;;) { 7705 if (ill->ill_state_flags & ILL_CONDEMNED) { 7706 mutex_exit(&ill->ill_lock); 7707 return (B_FALSE); 7708 } 7709 7710 ipsq = ill->ill_phyint->phyint_ipsq; 7711 mutex_enter(&ipsq->ipsq_lock); 7712 if (ipsq->ipsq_writer == NULL && 7713 (ipsq->ipsq_current_ipif == NULL || waited_enough)) { 7714 break; 7715 } else if (ipsq->ipsq_writer != NULL) { 7716 mutex_exit(&ipsq->ipsq_lock); 7717 cv_wait(&ill->ill_cv, &ill->ill_lock); 7718 } else { 7719 mutex_exit(&ipsq->ipsq_lock); 7720 if (force) { 7721 (void) cv_timedwait(&ill->ill_cv, 7722 &ill->ill_lock, 7723 lbolt + ENTER_SQ_WAIT_TICKS); 7724 waited_enough = B_TRUE; 7725 continue; 7726 } else { 7727 cv_wait(&ill->ill_cv, &ill->ill_lock); 7728 } 7729 } 7730 } 7731 7732 ASSERT(ipsq->ipsq_mphead == NULL && ipsq->ipsq_mptail == NULL); 7733 ASSERT(ipsq->ipsq_reentry_cnt == 0); 7734 ipsq->ipsq_writer = curthread; 7735 ipsq->ipsq_reentry_cnt++; 7736 #ifdef ILL_DEBUG 7737 ipsq->ipsq_depth = getpcstack(ipsq->ipsq_stack, IP_STACK_DEPTH); 7738 #endif 7739 mutex_exit(&ipsq->ipsq_lock); 7740 mutex_exit(&ill->ill_lock); 7741 return (B_TRUE); 7742 } 7743 7744 /* 7745 * The ipsq_t (ipsq) is the synchronization data structure used to serialize 7746 * certain critical operations like plumbing (i.e. most set ioctls), 7747 * multicast joins, igmp/mld timers, IPMP operations etc. On a non-IPMP 7748 * system there is 1 ipsq per phyint. On an IPMP system there is 1 ipsq per 7749 * IPMP group. The ipsq serializes exclusive ioctls issued by applications 7750 * on a per ipsq basis in ipsq_xopq_mphead. It also protects against multiple 7751 * threads executing in the ipsq. Responses from the driver pertain to the 7752 * current ioctl (say a DL_BIND_ACK in response to a DL_BIND_REQUEST initiated 7753 * as part of bringing up the interface) and are enqueued in ipsq_mphead. 7754 * 7755 * If a thread does not want to reenter the ipsq when it is already writer, 7756 * it must make sure that the specified reentry point to be called later 7757 * when the ipsq is empty, nor any code path starting from the specified reentry 7758 * point must never ever try to enter the ipsq again. Otherwise it can lead 7759 * to an infinite loop. The reentry point ip_rput_dlpi_writer is an example. 7760 * When the thread that is currently exclusive finishes, it (ipsq_exit) 7761 * dequeues the requests waiting to become exclusive in ipsq_mphead and calls 7762 * the reentry point. When the list at ipsq_mphead becomes empty ipsq_exit 7763 * proceeds to dequeue the next ioctl in ipsq_xopq_mphead and start the next 7764 * ioctl if the current ioctl has completed. If the current ioctl is still 7765 * in progress it simply returns. The current ioctl could be waiting for 7766 * a response from another module (arp_ or the driver or could be waiting for 7767 * the ipif/ill/ire refcnts to drop to zero. In such a case the ipsq_pending_mp 7768 * and ipsq_pending_ipif are set. ipsq_current_ipif is set throughout the 7769 * execution of the ioctl and ipsq_exit does not start the next ioctl unless 7770 * ipsq_current_ipif is clear which happens only on ioctl completion. 7771 */ 7772 7773 /* 7774 * Try to enter the ipsq exclusively, corresponding to ipif or ill. (only 1 of 7775 * ipif or ill can be specified). The caller ensures ipif or ill is valid by 7776 * ref-holding it if necessary. If the ipsq cannot be entered, the mp is queued 7777 * completion. 7778 */ 7779 ipsq_t * 7780 ipsq_try_enter(ipif_t *ipif, ill_t *ill, queue_t *q, mblk_t *mp, 7781 ipsq_func_t func, int type, boolean_t reentry_ok) 7782 { 7783 ipsq_t *ipsq; 7784 7785 /* Only 1 of ipif or ill can be specified */ 7786 ASSERT((ipif != NULL) ^ (ill != NULL)); 7787 if (ipif != NULL) 7788 ill = ipif->ipif_ill; 7789 7790 /* 7791 * lock ordering ill_g_lock -> conn_lock -> ill_lock -> ipsq_lock 7792 * ipsq of an ill can't change when ill_lock is held. 7793 */ 7794 GRAB_CONN_LOCK(q); 7795 mutex_enter(&ill->ill_lock); 7796 ipsq = ill->ill_phyint->phyint_ipsq; 7797 mutex_enter(&ipsq->ipsq_lock); 7798 7799 /* 7800 * 1. Enter the ipsq if we are already writer and reentry is ok. 7801 * (Note: If the caller does not specify reentry_ok then neither 7802 * 'func' nor any of its callees must ever attempt to enter the ipsq 7803 * again. Otherwise it can lead to an infinite loop 7804 * 2. Enter the ipsq if there is no current writer and this attempted 7805 * entry is part of the current ioctl or operation 7806 * 3. Enter the ipsq if there is no current writer and this is a new 7807 * ioctl (or operation) and the ioctl (or operation) queue is 7808 * empty and there is no ioctl (or operation) currently in progress 7809 */ 7810 if ((ipsq->ipsq_writer == NULL && ((type == CUR_OP) || 7811 (type == NEW_OP && ipsq->ipsq_xopq_mphead == NULL && 7812 ipsq->ipsq_current_ipif == NULL))) || 7813 (ipsq->ipsq_writer == curthread && reentry_ok)) { 7814 /* Success. */ 7815 ipsq->ipsq_reentry_cnt++; 7816 ipsq->ipsq_writer = curthread; 7817 mutex_exit(&ipsq->ipsq_lock); 7818 mutex_exit(&ill->ill_lock); 7819 RELEASE_CONN_LOCK(q); 7820 #ifdef ILL_DEBUG 7821 ipsq->ipsq_depth = getpcstack(ipsq->ipsq_stack, IP_STACK_DEPTH); 7822 #endif 7823 return (ipsq); 7824 } 7825 7826 ipsq_enq(ipsq, q, mp, func, type, ill); 7827 7828 mutex_exit(&ipsq->ipsq_lock); 7829 mutex_exit(&ill->ill_lock); 7830 RELEASE_CONN_LOCK(q); 7831 return (NULL); 7832 } 7833 7834 /* 7835 * Try to enter the IPSQ corresponding to `ill' as writer. The caller ensures 7836 * ill is valid by refholding it if necessary; we will refrele. If the IPSQ 7837 * cannot be entered, the mp is queued for completion. 7838 */ 7839 void 7840 qwriter_ip(ill_t *ill, queue_t *q, mblk_t *mp, ipsq_func_t func, int type, 7841 boolean_t reentry_ok) 7842 { 7843 ipsq_t *ipsq; 7844 7845 ipsq = ipsq_try_enter(NULL, ill, q, mp, func, type, reentry_ok); 7846 7847 /* 7848 * Drop the caller's refhold on the ill. This is safe since we either 7849 * entered the IPSQ (and thus are exclusive), or failed to enter the 7850 * IPSQ, in which case we return without accessing ill anymore. This 7851 * is needed because func needs to see the correct refcount. 7852 * e.g. removeif can work only then. 7853 */ 7854 ill_refrele(ill); 7855 if (ipsq != NULL) { 7856 (*func)(ipsq, q, mp, NULL); 7857 ipsq_exit(ipsq, B_TRUE, B_TRUE); 7858 } 7859 } 7860 7861 /* 7862 * If there are more than ILL_GRP_CNT ills in a group, 7863 * we use kmem alloc'd buffers, else use the stack 7864 */ 7865 #define ILL_GRP_CNT 14 7866 /* 7867 * Drain the ipsq, if there are messages on it, and then leave the ipsq. 7868 * Called by a thread that is currently exclusive on this ipsq. 7869 */ 7870 void 7871 ipsq_exit(ipsq_t *ipsq, boolean_t start_igmp_timer, boolean_t start_mld_timer) 7872 { 7873 queue_t *q; 7874 mblk_t *mp; 7875 ipsq_func_t func; 7876 int next; 7877 ill_t **ill_list = NULL; 7878 size_t ill_list_size = 0; 7879 int cnt = 0; 7880 boolean_t need_ipsq_free = B_FALSE; 7881 ip_stack_t *ipst = ipsq->ipsq_ipst; 7882 7883 ASSERT(IAM_WRITER_IPSQ(ipsq)); 7884 mutex_enter(&ipsq->ipsq_lock); 7885 ASSERT(ipsq->ipsq_reentry_cnt >= 1); 7886 if (ipsq->ipsq_reentry_cnt != 1) { 7887 ipsq->ipsq_reentry_cnt--; 7888 mutex_exit(&ipsq->ipsq_lock); 7889 return; 7890 } 7891 7892 mp = ipsq_dq(ipsq); 7893 while (mp != NULL) { 7894 again: 7895 mutex_exit(&ipsq->ipsq_lock); 7896 func = (ipsq_func_t)mp->b_prev; 7897 q = (queue_t *)mp->b_queue; 7898 mp->b_prev = NULL; 7899 mp->b_queue = NULL; 7900 7901 /* 7902 * If 'q' is an conn queue, it is valid, since we did a 7903 * a refhold on the connp, at the start of the ioctl. 7904 * If 'q' is an ill queue, it is valid, since close of an 7905 * ill will clean up the 'ipsq'. 7906 */ 7907 (*func)(ipsq, q, mp, NULL); 7908 7909 mutex_enter(&ipsq->ipsq_lock); 7910 mp = ipsq_dq(ipsq); 7911 } 7912 7913 mutex_exit(&ipsq->ipsq_lock); 7914 7915 /* 7916 * Need to grab the locks in the right order. Need to 7917 * atomically check (under ipsq_lock) that there are no 7918 * messages before relinquishing the ipsq. Also need to 7919 * atomically wakeup waiters on ill_cv while holding ill_lock. 7920 * Holding ill_g_lock ensures that ipsq list of ills is stable. 7921 * If we need to call ill_split_ipsq and change <ill-ipsq> we need 7922 * to grab ill_g_lock as writer. 7923 */ 7924 rw_enter(&ipst->ips_ill_g_lock, 7925 ipsq->ipsq_split ? RW_WRITER : RW_READER); 7926 7927 /* ipsq_refs can't change while ill_g_lock is held as reader */ 7928 if (ipsq->ipsq_refs != 0) { 7929 /* At most 2 ills v4/v6 per phyint */ 7930 cnt = ipsq->ipsq_refs << 1; 7931 ill_list_size = cnt * sizeof (ill_t *); 7932 /* 7933 * If memory allocation fails, we will do the split 7934 * the next time ipsq_exit is called for whatever reason. 7935 * As long as the ipsq_split flag is set the need to 7936 * split is remembered. 7937 */ 7938 ill_list = kmem_zalloc(ill_list_size, KM_NOSLEEP); 7939 if (ill_list != NULL) 7940 cnt = ill_lock_ipsq_ills(ipsq, ill_list, cnt); 7941 } 7942 mutex_enter(&ipsq->ipsq_lock); 7943 mp = ipsq_dq(ipsq); 7944 if (mp != NULL) { 7945 /* oops, some message has landed up, we can't get out */ 7946 if (ill_list != NULL) 7947 ill_unlock_ills(ill_list, cnt); 7948 rw_exit(&ipst->ips_ill_g_lock); 7949 if (ill_list != NULL) 7950 kmem_free(ill_list, ill_list_size); 7951 ill_list = NULL; 7952 ill_list_size = 0; 7953 cnt = 0; 7954 goto again; 7955 } 7956 7957 /* 7958 * Split only if no ioctl is pending and if memory alloc succeeded 7959 * above. 7960 */ 7961 if (ipsq->ipsq_split && ipsq->ipsq_current_ipif == NULL && 7962 ill_list != NULL) { 7963 /* 7964 * No new ill can join this ipsq since we are holding the 7965 * ill_g_lock. Hence ill_split_ipsq can safely traverse the 7966 * ipsq. ill_split_ipsq may fail due to memory shortage. 7967 * If so we will retry on the next ipsq_exit. 7968 */ 7969 ipsq->ipsq_split = ill_split_ipsq(ipsq); 7970 } 7971 7972 /* 7973 * We are holding the ipsq lock, hence no new messages can 7974 * land up on the ipsq, and there are no messages currently. 7975 * Now safe to get out. Wake up waiters and relinquish ipsq 7976 * atomically while holding ill locks. 7977 */ 7978 ipsq->ipsq_writer = NULL; 7979 ipsq->ipsq_reentry_cnt--; 7980 ASSERT(ipsq->ipsq_reentry_cnt == 0); 7981 #ifdef ILL_DEBUG 7982 ipsq->ipsq_depth = 0; 7983 #endif 7984 mutex_exit(&ipsq->ipsq_lock); 7985 /* 7986 * For IPMP this should wake up all ills in this ipsq. 7987 * We need to hold the ill_lock while waking up waiters to 7988 * avoid missed wakeups. But there is no need to acquire all 7989 * the ill locks and then wakeup. If we have not acquired all 7990 * the locks (due to memory failure above) ill_signal_ipsq_ills 7991 * wakes up ills one at a time after getting the right ill_lock 7992 */ 7993 ill_signal_ipsq_ills(ipsq, ill_list != NULL); 7994 if (ill_list != NULL) 7995 ill_unlock_ills(ill_list, cnt); 7996 if (ipsq->ipsq_refs == 0) 7997 need_ipsq_free = B_TRUE; 7998 rw_exit(&ipst->ips_ill_g_lock); 7999 if (ill_list != 0) 8000 kmem_free(ill_list, ill_list_size); 8001 8002 if (need_ipsq_free) { 8003 /* 8004 * Free the ipsq. ipsq_refs can't increase because ipsq can't be 8005 * looked up. ipsq can be looked up only thru ill or phyint 8006 * and there are no ills/phyint on this ipsq. 8007 */ 8008 ipsq_delete(ipsq); 8009 } 8010 /* 8011 * Now start any igmp or mld timers that could not be started 8012 * while inside the ipsq. The timers can't be started while inside 8013 * the ipsq, since igmp_start_timers may need to call untimeout() 8014 * which can't be done while holding a lock i.e. the ipsq. Otherwise 8015 * there could be a deadlock since the timeout handlers 8016 * mld_timeout_handler / igmp_timeout_handler also synchronously 8017 * wait in ipsq_enter() trying to get the ipsq. 8018 * 8019 * However there is one exception to the above. If this thread is 8020 * itself the igmp/mld timeout handler thread, then we don't want 8021 * to start any new timer until the current handler is done. The 8022 * handler thread passes in B_FALSE for start_igmp/mld_timers, while 8023 * all others pass B_TRUE. 8024 */ 8025 if (start_igmp_timer) { 8026 mutex_enter(&ipst->ips_igmp_timer_lock); 8027 next = ipst->ips_igmp_deferred_next; 8028 ipst->ips_igmp_deferred_next = INFINITY; 8029 mutex_exit(&ipst->ips_igmp_timer_lock); 8030 8031 if (next != INFINITY) 8032 igmp_start_timers(next, ipst); 8033 } 8034 8035 if (start_mld_timer) { 8036 mutex_enter(&ipst->ips_mld_timer_lock); 8037 next = ipst->ips_mld_deferred_next; 8038 ipst->ips_mld_deferred_next = INFINITY; 8039 mutex_exit(&ipst->ips_mld_timer_lock); 8040 8041 if (next != INFINITY) 8042 mld_start_timers(next, ipst); 8043 } 8044 } 8045 8046 /* 8047 * Start the current exclusive operation on `ipsq'; associate it with `ipif' 8048 * and `ioccmd'. 8049 */ 8050 void 8051 ipsq_current_start(ipsq_t *ipsq, ipif_t *ipif, int ioccmd) 8052 { 8053 ASSERT(IAM_WRITER_IPSQ(ipsq)); 8054 8055 mutex_enter(&ipsq->ipsq_lock); 8056 ASSERT(ipsq->ipsq_current_ipif == NULL); 8057 ASSERT(ipsq->ipsq_current_ioctl == 0); 8058 ipsq->ipsq_current_ipif = ipif; 8059 ipsq->ipsq_current_ioctl = ioccmd; 8060 mutex_exit(&ipsq->ipsq_lock); 8061 } 8062 8063 /* 8064 * Finish the current exclusive operation on `ipsq'. Note that other 8065 * operations will not be able to proceed until an ipsq_exit() is done. 8066 */ 8067 void 8068 ipsq_current_finish(ipsq_t *ipsq) 8069 { 8070 ipif_t *ipif = ipsq->ipsq_current_ipif; 8071 8072 ASSERT(IAM_WRITER_IPSQ(ipsq)); 8073 8074 /* 8075 * For SIOCSLIFREMOVEIF, the ipif has been already been blown away 8076 * (but we're careful to never set IPIF_CHANGING in that case). 8077 */ 8078 if (ipsq->ipsq_current_ioctl != SIOCLIFREMOVEIF) { 8079 mutex_enter(&ipif->ipif_ill->ill_lock); 8080 ipif->ipif_state_flags &= ~IPIF_CHANGING; 8081 8082 /* Send any queued event */ 8083 ill_nic_info_dispatch(ipif->ipif_ill); 8084 mutex_exit(&ipif->ipif_ill->ill_lock); 8085 } 8086 8087 mutex_enter(&ipsq->ipsq_lock); 8088 ASSERT(ipsq->ipsq_current_ipif != NULL); 8089 ipsq->ipsq_current_ipif = NULL; 8090 ipsq->ipsq_current_ioctl = 0; 8091 mutex_exit(&ipsq->ipsq_lock); 8092 } 8093 8094 /* 8095 * The ill is closing. Flush all messages on the ipsq that originated 8096 * from this ill. Usually there wont' be any messages on the ipsq_xopq_mphead 8097 * for this ill since ipsq_enter could not have entered until then. 8098 * New messages can't be queued since the CONDEMNED flag is set. 8099 */ 8100 static void 8101 ipsq_flush(ill_t *ill) 8102 { 8103 queue_t *q; 8104 mblk_t *prev; 8105 mblk_t *mp; 8106 mblk_t *mp_next; 8107 ipsq_t *ipsq; 8108 8109 ASSERT(IAM_WRITER_ILL(ill)); 8110 ipsq = ill->ill_phyint->phyint_ipsq; 8111 /* 8112 * Flush any messages sent up by the driver. 8113 */ 8114 mutex_enter(&ipsq->ipsq_lock); 8115 for (prev = NULL, mp = ipsq->ipsq_mphead; mp != NULL; mp = mp_next) { 8116 mp_next = mp->b_next; 8117 q = mp->b_queue; 8118 if (q == ill->ill_rq || q == ill->ill_wq) { 8119 /* Remove the mp from the ipsq */ 8120 if (prev == NULL) 8121 ipsq->ipsq_mphead = mp->b_next; 8122 else 8123 prev->b_next = mp->b_next; 8124 if (ipsq->ipsq_mptail == mp) { 8125 ASSERT(mp_next == NULL); 8126 ipsq->ipsq_mptail = prev; 8127 } 8128 inet_freemsg(mp); 8129 } else { 8130 prev = mp; 8131 } 8132 } 8133 mutex_exit(&ipsq->ipsq_lock); 8134 (void) ipsq_pending_mp_cleanup(ill, NULL); 8135 ipsq_xopq_mp_cleanup(ill, NULL); 8136 ill_pending_mp_cleanup(ill); 8137 } 8138 8139 /* ARGSUSED */ 8140 int 8141 ip_sioctl_slifoindex(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 8142 ip_ioctl_cmd_t *ipip, void *ifreq) 8143 { 8144 ill_t *ill; 8145 struct lifreq *lifr = (struct lifreq *)ifreq; 8146 boolean_t isv6; 8147 conn_t *connp; 8148 ip_stack_t *ipst; 8149 8150 connp = Q_TO_CONN(q); 8151 ipst = connp->conn_netstack->netstack_ip; 8152 isv6 = connp->conn_af_isv6; 8153 /* 8154 * Set original index. 8155 * Failover and failback move logical interfaces 8156 * from one physical interface to another. The 8157 * original index indicates the parent of a logical 8158 * interface, in other words, the physical interface 8159 * the logical interface will be moved back to on 8160 * failback. 8161 */ 8162 8163 /* 8164 * Don't allow the original index to be changed 8165 * for non-failover addresses, autoconfigured 8166 * addresses, or IPv6 link local addresses. 8167 */ 8168 if (((ipif->ipif_flags & (IPIF_NOFAILOVER | IPIF_ADDRCONF)) != NULL) || 8169 (isv6 && IN6_IS_ADDR_LINKLOCAL(&ipif->ipif_v6lcl_addr))) { 8170 return (EINVAL); 8171 } 8172 /* 8173 * The new original index must be in use by some 8174 * physical interface. 8175 */ 8176 ill = ill_lookup_on_ifindex(lifr->lifr_index, isv6, NULL, NULL, 8177 NULL, NULL, ipst); 8178 if (ill == NULL) 8179 return (ENXIO); 8180 ill_refrele(ill); 8181 8182 ipif->ipif_orig_ifindex = lifr->lifr_index; 8183 /* 8184 * When this ipif gets failed back, don't 8185 * preserve the original id, as it is no 8186 * longer applicable. 8187 */ 8188 ipif->ipif_orig_ipifid = 0; 8189 /* 8190 * For IPv4, change the original index of any 8191 * multicast addresses associated with the 8192 * ipif to the new value. 8193 */ 8194 if (!isv6) { 8195 ilm_t *ilm; 8196 8197 mutex_enter(&ipif->ipif_ill->ill_lock); 8198 for (ilm = ipif->ipif_ill->ill_ilm; ilm != NULL; 8199 ilm = ilm->ilm_next) { 8200 if (ilm->ilm_ipif == ipif) { 8201 ilm->ilm_orig_ifindex = lifr->lifr_index; 8202 } 8203 } 8204 mutex_exit(&ipif->ipif_ill->ill_lock); 8205 } 8206 return (0); 8207 } 8208 8209 /* ARGSUSED */ 8210 int 8211 ip_sioctl_get_oindex(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 8212 ip_ioctl_cmd_t *ipip, void *ifreq) 8213 { 8214 struct lifreq *lifr = (struct lifreq *)ifreq; 8215 8216 /* 8217 * Get the original interface index i.e the one 8218 * before FAILOVER if it ever happened. 8219 */ 8220 lifr->lifr_index = ipif->ipif_orig_ifindex; 8221 return (0); 8222 } 8223 8224 /* 8225 * Parse an iftun_req structure coming down SIOC[GS]TUNPARAM ioctls, 8226 * refhold and return the associated ipif 8227 */ 8228 int 8229 ip_extract_tunreq(queue_t *q, mblk_t *mp, ipif_t **ipifp, ipsq_func_t func) 8230 { 8231 boolean_t exists; 8232 struct iftun_req *ta; 8233 ipif_t *ipif; 8234 ill_t *ill; 8235 boolean_t isv6; 8236 mblk_t *mp1; 8237 int error; 8238 conn_t *connp; 8239 ip_stack_t *ipst; 8240 8241 /* Existence verified in ip_wput_nondata */ 8242 mp1 = mp->b_cont->b_cont; 8243 ta = (struct iftun_req *)mp1->b_rptr; 8244 /* 8245 * Null terminate the string to protect against buffer 8246 * overrun. String was generated by user code and may not 8247 * be trusted. 8248 */ 8249 ta->ifta_lifr_name[LIFNAMSIZ - 1] = '\0'; 8250 8251 connp = Q_TO_CONN(q); 8252 isv6 = connp->conn_af_isv6; 8253 ipst = connp->conn_netstack->netstack_ip; 8254 8255 /* Disallows implicit create */ 8256 ipif = ipif_lookup_on_name(ta->ifta_lifr_name, 8257 mi_strlen(ta->ifta_lifr_name), B_FALSE, &exists, isv6, 8258 connp->conn_zoneid, CONNP_TO_WQ(connp), mp, func, &error, ipst); 8259 if (ipif == NULL) 8260 return (error); 8261 8262 if (ipif->ipif_id != 0) { 8263 /* 8264 * We really don't want to set/get tunnel parameters 8265 * on virtual tunnel interfaces. Only allow the 8266 * base tunnel to do these. 8267 */ 8268 ipif_refrele(ipif); 8269 return (EINVAL); 8270 } 8271 8272 /* 8273 * Send down to tunnel mod for ioctl processing. 8274 * Will finish ioctl in ip_rput_other(). 8275 */ 8276 ill = ipif->ipif_ill; 8277 if (ill->ill_net_type == IRE_LOOPBACK) { 8278 ipif_refrele(ipif); 8279 return (EOPNOTSUPP); 8280 } 8281 8282 if (ill->ill_wq == NULL) { 8283 ipif_refrele(ipif); 8284 return (ENXIO); 8285 } 8286 /* 8287 * Mark the ioctl as coming from an IPv6 interface for 8288 * tun's convenience. 8289 */ 8290 if (ill->ill_isv6) 8291 ta->ifta_flags |= 0x80000000; 8292 *ipifp = ipif; 8293 return (0); 8294 } 8295 8296 /* 8297 * Parse an ifreq or lifreq struct coming down ioctls and refhold 8298 * and return the associated ipif. 8299 * Return value: 8300 * Non zero: An error has occurred. ci may not be filled out. 8301 * zero : ci is filled out with the ioctl cmd in ci.ci_name, and 8302 * a held ipif in ci.ci_ipif. 8303 */ 8304 int 8305 ip_extract_lifreq_cmn(queue_t *q, mblk_t *mp, int cmd_type, int flags, 8306 cmd_info_t *ci, ipsq_func_t func) 8307 { 8308 sin_t *sin; 8309 sin6_t *sin6; 8310 char *name; 8311 struct ifreq *ifr; 8312 struct lifreq *lifr; 8313 ipif_t *ipif = NULL; 8314 ill_t *ill; 8315 conn_t *connp; 8316 boolean_t isv6; 8317 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 8318 boolean_t exists; 8319 int err; 8320 mblk_t *mp1; 8321 zoneid_t zoneid; 8322 ip_stack_t *ipst; 8323 8324 if (q->q_next != NULL) { 8325 ill = (ill_t *)q->q_ptr; 8326 isv6 = ill->ill_isv6; 8327 connp = NULL; 8328 zoneid = ALL_ZONES; 8329 ipst = ill->ill_ipst; 8330 } else { 8331 ill = NULL; 8332 connp = Q_TO_CONN(q); 8333 isv6 = connp->conn_af_isv6; 8334 zoneid = connp->conn_zoneid; 8335 if (zoneid == GLOBAL_ZONEID) { 8336 /* global zone can access ipifs in all zones */ 8337 zoneid = ALL_ZONES; 8338 } 8339 ipst = connp->conn_netstack->netstack_ip; 8340 } 8341 8342 /* Has been checked in ip_wput_nondata */ 8343 mp1 = mp->b_cont->b_cont; 8344 8345 8346 if (cmd_type == IF_CMD) { 8347 /* This a old style SIOC[GS]IF* command */ 8348 ifr = (struct ifreq *)mp1->b_rptr; 8349 /* 8350 * Null terminate the string to protect against buffer 8351 * overrun. String was generated by user code and may not 8352 * be trusted. 8353 */ 8354 ifr->ifr_name[IFNAMSIZ - 1] = '\0'; 8355 sin = (sin_t *)&ifr->ifr_addr; 8356 name = ifr->ifr_name; 8357 ci->ci_sin = sin; 8358 ci->ci_sin6 = NULL; 8359 ci->ci_lifr = (struct lifreq *)ifr; 8360 } else { 8361 /* This a new style SIOC[GS]LIF* command */ 8362 ASSERT(cmd_type == LIF_CMD); 8363 lifr = (struct lifreq *)mp1->b_rptr; 8364 /* 8365 * Null terminate the string to protect against buffer 8366 * overrun. String was generated by user code and may not 8367 * be trusted. 8368 */ 8369 lifr->lifr_name[LIFNAMSIZ - 1] = '\0'; 8370 name = lifr->lifr_name; 8371 sin = (sin_t *)&lifr->lifr_addr; 8372 sin6 = (sin6_t *)&lifr->lifr_addr; 8373 if (iocp->ioc_cmd == SIOCSLIFGROUPNAME) { 8374 (void) strncpy(ci->ci_groupname, lifr->lifr_groupname, 8375 LIFNAMSIZ); 8376 } 8377 ci->ci_sin = sin; 8378 ci->ci_sin6 = sin6; 8379 ci->ci_lifr = lifr; 8380 } 8381 8382 if (iocp->ioc_cmd == SIOCSLIFNAME) { 8383 /* 8384 * The ioctl will be failed if the ioctl comes down 8385 * an conn stream 8386 */ 8387 if (ill == NULL) { 8388 /* 8389 * Not an ill queue, return EINVAL same as the 8390 * old error code. 8391 */ 8392 return (ENXIO); 8393 } 8394 ipif = ill->ill_ipif; 8395 ipif_refhold(ipif); 8396 } else { 8397 ipif = ipif_lookup_on_name(name, mi_strlen(name), B_FALSE, 8398 &exists, isv6, zoneid, 8399 (connp == NULL) ? q : CONNP_TO_WQ(connp), mp, func, &err, 8400 ipst); 8401 if (ipif == NULL) { 8402 if (err == EINPROGRESS) 8403 return (err); 8404 if (iocp->ioc_cmd == SIOCLIFFAILOVER || 8405 iocp->ioc_cmd == SIOCLIFFAILBACK) { 8406 /* 8407 * Need to try both v4 and v6 since this 8408 * ioctl can come down either v4 or v6 8409 * socket. The lifreq.lifr_family passed 8410 * down by this ioctl is AF_UNSPEC. 8411 */ 8412 ipif = ipif_lookup_on_name(name, 8413 mi_strlen(name), B_FALSE, &exists, !isv6, 8414 zoneid, (connp == NULL) ? q : 8415 CONNP_TO_WQ(connp), mp, func, &err, ipst); 8416 if (err == EINPROGRESS) 8417 return (err); 8418 } 8419 err = 0; /* Ensure we don't use it below */ 8420 } 8421 } 8422 8423 /* 8424 * Old style [GS]IFCMD does not admit IPv6 ipif 8425 */ 8426 if (ipif != NULL && ipif->ipif_isv6 && cmd_type == IF_CMD) { 8427 ipif_refrele(ipif); 8428 return (ENXIO); 8429 } 8430 8431 if (ipif == NULL && ill != NULL && ill->ill_ipif != NULL && 8432 name[0] == '\0') { 8433 /* 8434 * Handle a or a SIOC?IF* with a null name 8435 * during plumb (on the ill queue before the I_PLINK). 8436 */ 8437 ipif = ill->ill_ipif; 8438 ipif_refhold(ipif); 8439 } 8440 8441 if (ipif == NULL) 8442 return (ENXIO); 8443 8444 /* 8445 * Allow only GET operations if this ipif has been created 8446 * temporarily due to a MOVE operation. 8447 */ 8448 if (ipif->ipif_replace_zero && !(flags & IPI_REPL)) { 8449 ipif_refrele(ipif); 8450 return (EINVAL); 8451 } 8452 8453 ci->ci_ipif = ipif; 8454 return (0); 8455 } 8456 8457 /* 8458 * Return the total number of ipifs. 8459 */ 8460 static uint_t 8461 ip_get_numifs(zoneid_t zoneid, ip_stack_t *ipst) 8462 { 8463 uint_t numifs = 0; 8464 ill_t *ill; 8465 ill_walk_context_t ctx; 8466 ipif_t *ipif; 8467 8468 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 8469 ill = ILL_START_WALK_V4(&ctx, ipst); 8470 8471 while (ill != NULL) { 8472 for (ipif = ill->ill_ipif; ipif != NULL; 8473 ipif = ipif->ipif_next) { 8474 if (ipif->ipif_zoneid == zoneid || 8475 ipif->ipif_zoneid == ALL_ZONES) 8476 numifs++; 8477 } 8478 ill = ill_next(&ctx, ill); 8479 } 8480 rw_exit(&ipst->ips_ill_g_lock); 8481 return (numifs); 8482 } 8483 8484 /* 8485 * Return the total number of ipifs. 8486 */ 8487 static uint_t 8488 ip_get_numlifs(int family, int lifn_flags, zoneid_t zoneid, ip_stack_t *ipst) 8489 { 8490 uint_t numifs = 0; 8491 ill_t *ill; 8492 ipif_t *ipif; 8493 ill_walk_context_t ctx; 8494 8495 ip1dbg(("ip_get_numlifs(%d %u %d)\n", family, lifn_flags, (int)zoneid)); 8496 8497 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 8498 if (family == AF_INET) 8499 ill = ILL_START_WALK_V4(&ctx, ipst); 8500 else if (family == AF_INET6) 8501 ill = ILL_START_WALK_V6(&ctx, ipst); 8502 else 8503 ill = ILL_START_WALK_ALL(&ctx, ipst); 8504 8505 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 8506 for (ipif = ill->ill_ipif; ipif != NULL; 8507 ipif = ipif->ipif_next) { 8508 if ((ipif->ipif_flags & IPIF_NOXMIT) && 8509 !(lifn_flags & LIFC_NOXMIT)) 8510 continue; 8511 if ((ipif->ipif_flags & IPIF_TEMPORARY) && 8512 !(lifn_flags & LIFC_TEMPORARY)) 8513 continue; 8514 if (((ipif->ipif_flags & 8515 (IPIF_NOXMIT|IPIF_NOLOCAL| 8516 IPIF_DEPRECATED)) || 8517 IS_LOOPBACK(ill) || 8518 !(ipif->ipif_flags & IPIF_UP)) && 8519 (lifn_flags & LIFC_EXTERNAL_SOURCE)) 8520 continue; 8521 8522 if (zoneid != ipif->ipif_zoneid && 8523 ipif->ipif_zoneid != ALL_ZONES && 8524 (zoneid != GLOBAL_ZONEID || 8525 !(lifn_flags & LIFC_ALLZONES))) 8526 continue; 8527 8528 numifs++; 8529 } 8530 } 8531 rw_exit(&ipst->ips_ill_g_lock); 8532 return (numifs); 8533 } 8534 8535 uint_t 8536 ip_get_lifsrcofnum(ill_t *ill) 8537 { 8538 uint_t numifs = 0; 8539 ill_t *ill_head = ill; 8540 ip_stack_t *ipst = ill->ill_ipst; 8541 8542 /* 8543 * ill_g_usesrc_lock protects ill_usesrc_grp_next, for example, some 8544 * other thread may be trying to relink the ILLs in this usesrc group 8545 * and adjusting the ill_usesrc_grp_next pointers 8546 */ 8547 rw_enter(&ipst->ips_ill_g_usesrc_lock, RW_READER); 8548 if ((ill->ill_usesrc_ifindex == 0) && 8549 (ill->ill_usesrc_grp_next != NULL)) { 8550 for (; (ill != NULL) && (ill->ill_usesrc_grp_next != ill_head); 8551 ill = ill->ill_usesrc_grp_next) 8552 numifs++; 8553 } 8554 rw_exit(&ipst->ips_ill_g_usesrc_lock); 8555 8556 return (numifs); 8557 } 8558 8559 /* Null values are passed in for ipif, sin, and ifreq */ 8560 /* ARGSUSED */ 8561 int 8562 ip_sioctl_get_ifnum(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, 8563 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) 8564 { 8565 int *nump; 8566 conn_t *connp = Q_TO_CONN(q); 8567 8568 ASSERT(q->q_next == NULL); /* not a valid ioctl for ip as a module */ 8569 8570 /* Existence of b_cont->b_cont checked in ip_wput_nondata */ 8571 nump = (int *)mp->b_cont->b_cont->b_rptr; 8572 8573 *nump = ip_get_numifs(connp->conn_zoneid, 8574 connp->conn_netstack->netstack_ip); 8575 ip1dbg(("ip_sioctl_get_ifnum numifs %d", *nump)); 8576 return (0); 8577 } 8578 8579 /* Null values are passed in for ipif, sin, and ifreq */ 8580 /* ARGSUSED */ 8581 int 8582 ip_sioctl_get_lifnum(ipif_t *dummy_ipif, sin_t *dummy_sin, 8583 queue_t *q, mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) 8584 { 8585 struct lifnum *lifn; 8586 mblk_t *mp1; 8587 conn_t *connp = Q_TO_CONN(q); 8588 8589 ASSERT(q->q_next == NULL); /* not a valid ioctl for ip as a module */ 8590 8591 /* Existence checked in ip_wput_nondata */ 8592 mp1 = mp->b_cont->b_cont; 8593 8594 lifn = (struct lifnum *)mp1->b_rptr; 8595 switch (lifn->lifn_family) { 8596 case AF_UNSPEC: 8597 case AF_INET: 8598 case AF_INET6: 8599 break; 8600 default: 8601 return (EAFNOSUPPORT); 8602 } 8603 8604 lifn->lifn_count = ip_get_numlifs(lifn->lifn_family, lifn->lifn_flags, 8605 connp->conn_zoneid, connp->conn_netstack->netstack_ip); 8606 ip1dbg(("ip_sioctl_get_lifnum numifs %d", lifn->lifn_count)); 8607 return (0); 8608 } 8609 8610 /* ARGSUSED */ 8611 int 8612 ip_sioctl_get_ifconf(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, 8613 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) 8614 { 8615 STRUCT_HANDLE(ifconf, ifc); 8616 mblk_t *mp1; 8617 struct iocblk *iocp; 8618 struct ifreq *ifr; 8619 ill_walk_context_t ctx; 8620 ill_t *ill; 8621 ipif_t *ipif; 8622 struct sockaddr_in *sin; 8623 int32_t ifclen; 8624 zoneid_t zoneid; 8625 ip_stack_t *ipst = CONNQ_TO_IPST(q); 8626 8627 ASSERT(q->q_next == NULL); /* not valid ioctls for ip as a module */ 8628 8629 ip1dbg(("ip_sioctl_get_ifconf")); 8630 /* Existence verified in ip_wput_nondata */ 8631 mp1 = mp->b_cont->b_cont; 8632 iocp = (struct iocblk *)mp->b_rptr; 8633 zoneid = Q_TO_CONN(q)->conn_zoneid; 8634 8635 /* 8636 * The original SIOCGIFCONF passed in a struct ifconf which specified 8637 * the user buffer address and length into which the list of struct 8638 * ifreqs was to be copied. Since AT&T Streams does not seem to 8639 * allow M_COPYOUT to be used in conjunction with I_STR IOCTLS, 8640 * the SIOCGIFCONF operation was redefined to simply provide 8641 * a large output buffer into which we are supposed to jam the ifreq 8642 * array. The same ioctl command code was used, despite the fact that 8643 * both the applications and the kernel code had to change, thus making 8644 * it impossible to support both interfaces. 8645 * 8646 * For reasons not good enough to try to explain, the following 8647 * algorithm is used for deciding what to do with one of these: 8648 * If the IOCTL comes in as an I_STR, it is assumed to be of the new 8649 * form with the output buffer coming down as the continuation message. 8650 * If it arrives as a TRANSPARENT IOCTL, it is assumed to be old style, 8651 * and we have to copy in the ifconf structure to find out how big the 8652 * output buffer is and where to copy out to. Sure no problem... 8653 * 8654 */ 8655 STRUCT_SET_HANDLE(ifc, iocp->ioc_flag, NULL); 8656 if ((mp1->b_wptr - mp1->b_rptr) == STRUCT_SIZE(ifc)) { 8657 int numifs = 0; 8658 size_t ifc_bufsize; 8659 8660 /* 8661 * Must be (better be!) continuation of a TRANSPARENT 8662 * IOCTL. We just copied in the ifconf structure. 8663 */ 8664 STRUCT_SET_HANDLE(ifc, iocp->ioc_flag, 8665 (struct ifconf *)mp1->b_rptr); 8666 8667 /* 8668 * Allocate a buffer to hold requested information. 8669 * 8670 * If ifc_len is larger than what is needed, we only 8671 * allocate what we will use. 8672 * 8673 * If ifc_len is smaller than what is needed, return 8674 * EINVAL. 8675 * 8676 * XXX: the ill_t structure can hava 2 counters, for 8677 * v4 and v6 (not just ill_ipif_up_count) to store the 8678 * number of interfaces for a device, so we don't need 8679 * to count them here... 8680 */ 8681 numifs = ip_get_numifs(zoneid, ipst); 8682 8683 ifclen = STRUCT_FGET(ifc, ifc_len); 8684 ifc_bufsize = numifs * sizeof (struct ifreq); 8685 if (ifc_bufsize > ifclen) { 8686 if (iocp->ioc_cmd == O_SIOCGIFCONF) { 8687 /* old behaviour */ 8688 return (EINVAL); 8689 } else { 8690 ifc_bufsize = ifclen; 8691 } 8692 } 8693 8694 mp1 = mi_copyout_alloc(q, mp, 8695 STRUCT_FGETP(ifc, ifc_buf), ifc_bufsize, B_FALSE); 8696 if (mp1 == NULL) 8697 return (ENOMEM); 8698 8699 mp1->b_wptr = mp1->b_rptr + ifc_bufsize; 8700 } 8701 bzero(mp1->b_rptr, mp1->b_wptr - mp1->b_rptr); 8702 /* 8703 * the SIOCGIFCONF ioctl only knows about 8704 * IPv4 addresses, so don't try to tell 8705 * it about interfaces with IPv6-only 8706 * addresses. (Last parm 'isv6' is B_FALSE) 8707 */ 8708 8709 ifr = (struct ifreq *)mp1->b_rptr; 8710 8711 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 8712 ill = ILL_START_WALK_V4(&ctx, ipst); 8713 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 8714 for (ipif = ill->ill_ipif; ipif != NULL; 8715 ipif = ipif->ipif_next) { 8716 if (zoneid != ipif->ipif_zoneid && 8717 ipif->ipif_zoneid != ALL_ZONES) 8718 continue; 8719 if ((uchar_t *)&ifr[1] > mp1->b_wptr) { 8720 if (iocp->ioc_cmd == O_SIOCGIFCONF) { 8721 /* old behaviour */ 8722 rw_exit(&ipst->ips_ill_g_lock); 8723 return (EINVAL); 8724 } else { 8725 goto if_copydone; 8726 } 8727 } 8728 (void) ipif_get_name(ipif, 8729 ifr->ifr_name, 8730 sizeof (ifr->ifr_name)); 8731 sin = (sin_t *)&ifr->ifr_addr; 8732 *sin = sin_null; 8733 sin->sin_family = AF_INET; 8734 sin->sin_addr.s_addr = ipif->ipif_lcl_addr; 8735 ifr++; 8736 } 8737 } 8738 if_copydone: 8739 rw_exit(&ipst->ips_ill_g_lock); 8740 mp1->b_wptr = (uchar_t *)ifr; 8741 8742 if (STRUCT_BUF(ifc) != NULL) { 8743 STRUCT_FSET(ifc, ifc_len, 8744 (int)((uchar_t *)ifr - mp1->b_rptr)); 8745 } 8746 return (0); 8747 } 8748 8749 /* 8750 * Get the interfaces using the address hosted on the interface passed in, 8751 * as a source adddress 8752 */ 8753 /* ARGSUSED */ 8754 int 8755 ip_sioctl_get_lifsrcof(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, 8756 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) 8757 { 8758 mblk_t *mp1; 8759 ill_t *ill, *ill_head; 8760 ipif_t *ipif, *orig_ipif; 8761 int numlifs = 0; 8762 size_t lifs_bufsize, lifsmaxlen; 8763 struct lifreq *lifr; 8764 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 8765 uint_t ifindex; 8766 zoneid_t zoneid; 8767 int err = 0; 8768 boolean_t isv6 = B_FALSE; 8769 struct sockaddr_in *sin; 8770 struct sockaddr_in6 *sin6; 8771 STRUCT_HANDLE(lifsrcof, lifs); 8772 ip_stack_t *ipst; 8773 8774 ipst = CONNQ_TO_IPST(q); 8775 8776 ASSERT(q->q_next == NULL); 8777 8778 zoneid = Q_TO_CONN(q)->conn_zoneid; 8779 8780 /* Existence verified in ip_wput_nondata */ 8781 mp1 = mp->b_cont->b_cont; 8782 8783 /* 8784 * Must be (better be!) continuation of a TRANSPARENT 8785 * IOCTL. We just copied in the lifsrcof structure. 8786 */ 8787 STRUCT_SET_HANDLE(lifs, iocp->ioc_flag, 8788 (struct lifsrcof *)mp1->b_rptr); 8789 8790 if (MBLKL(mp1) != STRUCT_SIZE(lifs)) 8791 return (EINVAL); 8792 8793 ifindex = STRUCT_FGET(lifs, lifs_ifindex); 8794 isv6 = (Q_TO_CONN(q))->conn_af_isv6; 8795 ipif = ipif_lookup_on_ifindex(ifindex, isv6, zoneid, q, mp, 8796 ip_process_ioctl, &err, ipst); 8797 if (ipif == NULL) { 8798 ip1dbg(("ip_sioctl_get_lifsrcof: no ipif for ifindex %d\n", 8799 ifindex)); 8800 return (err); 8801 } 8802 8803 8804 /* Allocate a buffer to hold requested information */ 8805 numlifs = ip_get_lifsrcofnum(ipif->ipif_ill); 8806 lifs_bufsize = numlifs * sizeof (struct lifreq); 8807 lifsmaxlen = STRUCT_FGET(lifs, lifs_maxlen); 8808 /* The actual size needed is always returned in lifs_len */ 8809 STRUCT_FSET(lifs, lifs_len, lifs_bufsize); 8810 8811 /* If the amount we need is more than what is passed in, abort */ 8812 if (lifs_bufsize > lifsmaxlen || lifs_bufsize == 0) { 8813 ipif_refrele(ipif); 8814 return (0); 8815 } 8816 8817 mp1 = mi_copyout_alloc(q, mp, 8818 STRUCT_FGETP(lifs, lifs_buf), lifs_bufsize, B_FALSE); 8819 if (mp1 == NULL) { 8820 ipif_refrele(ipif); 8821 return (ENOMEM); 8822 } 8823 8824 mp1->b_wptr = mp1->b_rptr + lifs_bufsize; 8825 bzero(mp1->b_rptr, lifs_bufsize); 8826 8827 lifr = (struct lifreq *)mp1->b_rptr; 8828 8829 ill = ill_head = ipif->ipif_ill; 8830 orig_ipif = ipif; 8831 8832 /* ill_g_usesrc_lock protects ill_usesrc_grp_next */ 8833 rw_enter(&ipst->ips_ill_g_usesrc_lock, RW_READER); 8834 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 8835 8836 ill = ill->ill_usesrc_grp_next; /* start from next ill */ 8837 for (; (ill != NULL) && (ill != ill_head); 8838 ill = ill->ill_usesrc_grp_next) { 8839 8840 if ((uchar_t *)&lifr[1] > mp1->b_wptr) 8841 break; 8842 8843 ipif = ill->ill_ipif; 8844 (void) ipif_get_name(ipif, 8845 lifr->lifr_name, sizeof (lifr->lifr_name)); 8846 if (ipif->ipif_isv6) { 8847 sin6 = (sin6_t *)&lifr->lifr_addr; 8848 *sin6 = sin6_null; 8849 sin6->sin6_family = AF_INET6; 8850 sin6->sin6_addr = ipif->ipif_v6lcl_addr; 8851 lifr->lifr_addrlen = ip_mask_to_plen_v6( 8852 &ipif->ipif_v6net_mask); 8853 } else { 8854 sin = (sin_t *)&lifr->lifr_addr; 8855 *sin = sin_null; 8856 sin->sin_family = AF_INET; 8857 sin->sin_addr.s_addr = ipif->ipif_lcl_addr; 8858 lifr->lifr_addrlen = ip_mask_to_plen( 8859 ipif->ipif_net_mask); 8860 } 8861 lifr++; 8862 } 8863 rw_exit(&ipst->ips_ill_g_usesrc_lock); 8864 rw_exit(&ipst->ips_ill_g_lock); 8865 ipif_refrele(orig_ipif); 8866 mp1->b_wptr = (uchar_t *)lifr; 8867 STRUCT_FSET(lifs, lifs_len, (int)((uchar_t *)lifr - mp1->b_rptr)); 8868 8869 return (0); 8870 } 8871 8872 /* ARGSUSED */ 8873 int 8874 ip_sioctl_get_lifconf(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, 8875 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) 8876 { 8877 mblk_t *mp1; 8878 int list; 8879 ill_t *ill; 8880 ipif_t *ipif; 8881 int flags; 8882 int numlifs = 0; 8883 size_t lifc_bufsize; 8884 struct lifreq *lifr; 8885 sa_family_t family; 8886 struct sockaddr_in *sin; 8887 struct sockaddr_in6 *sin6; 8888 ill_walk_context_t ctx; 8889 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 8890 int32_t lifclen; 8891 zoneid_t zoneid; 8892 STRUCT_HANDLE(lifconf, lifc); 8893 ip_stack_t *ipst = CONNQ_TO_IPST(q); 8894 8895 ip1dbg(("ip_sioctl_get_lifconf")); 8896 8897 ASSERT(q->q_next == NULL); 8898 8899 zoneid = Q_TO_CONN(q)->conn_zoneid; 8900 8901 /* Existence verified in ip_wput_nondata */ 8902 mp1 = mp->b_cont->b_cont; 8903 8904 /* 8905 * An extended version of SIOCGIFCONF that takes an 8906 * additional address family and flags field. 8907 * AF_UNSPEC retrieve both IPv4 and IPv6. 8908 * Unless LIFC_NOXMIT is specified the IPIF_NOXMIT 8909 * interfaces are omitted. 8910 * Similarly, IPIF_TEMPORARY interfaces are omitted 8911 * unless LIFC_TEMPORARY is specified. 8912 * If LIFC_EXTERNAL_SOURCE is specified, IPIF_NOXMIT, 8913 * IPIF_NOLOCAL, PHYI_LOOPBACK, IPIF_DEPRECATED and 8914 * not IPIF_UP interfaces are omitted. LIFC_EXTERNAL_SOURCE 8915 * has priority over LIFC_NOXMIT. 8916 */ 8917 STRUCT_SET_HANDLE(lifc, iocp->ioc_flag, NULL); 8918 8919 if ((mp1->b_wptr - mp1->b_rptr) != STRUCT_SIZE(lifc)) 8920 return (EINVAL); 8921 8922 /* 8923 * Must be (better be!) continuation of a TRANSPARENT 8924 * IOCTL. We just copied in the lifconf structure. 8925 */ 8926 STRUCT_SET_HANDLE(lifc, iocp->ioc_flag, (struct lifconf *)mp1->b_rptr); 8927 8928 family = STRUCT_FGET(lifc, lifc_family); 8929 flags = STRUCT_FGET(lifc, lifc_flags); 8930 8931 switch (family) { 8932 case AF_UNSPEC: 8933 /* 8934 * walk all ILL's. 8935 */ 8936 list = MAX_G_HEADS; 8937 break; 8938 case AF_INET: 8939 /* 8940 * walk only IPV4 ILL's. 8941 */ 8942 list = IP_V4_G_HEAD; 8943 break; 8944 case AF_INET6: 8945 /* 8946 * walk only IPV6 ILL's. 8947 */ 8948 list = IP_V6_G_HEAD; 8949 break; 8950 default: 8951 return (EAFNOSUPPORT); 8952 } 8953 8954 /* 8955 * Allocate a buffer to hold requested information. 8956 * 8957 * If lifc_len is larger than what is needed, we only 8958 * allocate what we will use. 8959 * 8960 * If lifc_len is smaller than what is needed, return 8961 * EINVAL. 8962 */ 8963 numlifs = ip_get_numlifs(family, flags, zoneid, ipst); 8964 lifc_bufsize = numlifs * sizeof (struct lifreq); 8965 lifclen = STRUCT_FGET(lifc, lifc_len); 8966 if (lifc_bufsize > lifclen) { 8967 if (iocp->ioc_cmd == O_SIOCGLIFCONF) 8968 return (EINVAL); 8969 else 8970 lifc_bufsize = lifclen; 8971 } 8972 8973 mp1 = mi_copyout_alloc(q, mp, 8974 STRUCT_FGETP(lifc, lifc_buf), lifc_bufsize, B_FALSE); 8975 if (mp1 == NULL) 8976 return (ENOMEM); 8977 8978 mp1->b_wptr = mp1->b_rptr + lifc_bufsize; 8979 bzero(mp1->b_rptr, mp1->b_wptr - mp1->b_rptr); 8980 8981 lifr = (struct lifreq *)mp1->b_rptr; 8982 8983 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 8984 ill = ill_first(list, list, &ctx, ipst); 8985 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 8986 for (ipif = ill->ill_ipif; ipif != NULL; 8987 ipif = ipif->ipif_next) { 8988 if ((ipif->ipif_flags & IPIF_NOXMIT) && 8989 !(flags & LIFC_NOXMIT)) 8990 continue; 8991 8992 if ((ipif->ipif_flags & IPIF_TEMPORARY) && 8993 !(flags & LIFC_TEMPORARY)) 8994 continue; 8995 8996 if (((ipif->ipif_flags & 8997 (IPIF_NOXMIT|IPIF_NOLOCAL| 8998 IPIF_DEPRECATED)) || 8999 IS_LOOPBACK(ill) || 9000 !(ipif->ipif_flags & IPIF_UP)) && 9001 (flags & LIFC_EXTERNAL_SOURCE)) 9002 continue; 9003 9004 if (zoneid != ipif->ipif_zoneid && 9005 ipif->ipif_zoneid != ALL_ZONES && 9006 (zoneid != GLOBAL_ZONEID || 9007 !(flags & LIFC_ALLZONES))) 9008 continue; 9009 9010 if ((uchar_t *)&lifr[1] > mp1->b_wptr) { 9011 if (iocp->ioc_cmd == O_SIOCGLIFCONF) { 9012 rw_exit(&ipst->ips_ill_g_lock); 9013 return (EINVAL); 9014 } else { 9015 goto lif_copydone; 9016 } 9017 } 9018 9019 (void) ipif_get_name(ipif, lifr->lifr_name, 9020 sizeof (lifr->lifr_name)); 9021 if (ipif->ipif_isv6) { 9022 sin6 = (sin6_t *)&lifr->lifr_addr; 9023 *sin6 = sin6_null; 9024 sin6->sin6_family = AF_INET6; 9025 sin6->sin6_addr = 9026 ipif->ipif_v6lcl_addr; 9027 lifr->lifr_addrlen = 9028 ip_mask_to_plen_v6( 9029 &ipif->ipif_v6net_mask); 9030 } else { 9031 sin = (sin_t *)&lifr->lifr_addr; 9032 *sin = sin_null; 9033 sin->sin_family = AF_INET; 9034 sin->sin_addr.s_addr = 9035 ipif->ipif_lcl_addr; 9036 lifr->lifr_addrlen = 9037 ip_mask_to_plen( 9038 ipif->ipif_net_mask); 9039 } 9040 lifr++; 9041 } 9042 } 9043 lif_copydone: 9044 rw_exit(&ipst->ips_ill_g_lock); 9045 9046 mp1->b_wptr = (uchar_t *)lifr; 9047 if (STRUCT_BUF(lifc) != NULL) { 9048 STRUCT_FSET(lifc, lifc_len, 9049 (int)((uchar_t *)lifr - mp1->b_rptr)); 9050 } 9051 return (0); 9052 } 9053 9054 /* ARGSUSED */ 9055 int 9056 ip_sioctl_set_ipmpfailback(ipif_t *dummy_ipif, sin_t *dummy_sin, 9057 queue_t *q, mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) 9058 { 9059 ip_stack_t *ipst; 9060 9061 if (q->q_next == NULL) 9062 ipst = CONNQ_TO_IPST(q); 9063 else 9064 ipst = ILLQ_TO_IPST(q); 9065 9066 /* Existence of b_cont->b_cont checked in ip_wput_nondata */ 9067 ipst->ips_ipmp_enable_failback = *(int *)mp->b_cont->b_cont->b_rptr; 9068 return (0); 9069 } 9070 9071 static void 9072 ip_sioctl_ip6addrpolicy(queue_t *q, mblk_t *mp) 9073 { 9074 ip6_asp_t *table; 9075 size_t table_size; 9076 mblk_t *data_mp; 9077 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 9078 ip_stack_t *ipst; 9079 9080 if (q->q_next == NULL) 9081 ipst = CONNQ_TO_IPST(q); 9082 else 9083 ipst = ILLQ_TO_IPST(q); 9084 9085 /* These two ioctls are I_STR only */ 9086 if (iocp->ioc_count == TRANSPARENT) { 9087 miocnak(q, mp, 0, EINVAL); 9088 return; 9089 } 9090 9091 data_mp = mp->b_cont; 9092 if (data_mp == NULL) { 9093 /* The user passed us a NULL argument */ 9094 table = NULL; 9095 table_size = iocp->ioc_count; 9096 } else { 9097 /* 9098 * The user provided a table. The stream head 9099 * may have copied in the user data in chunks, 9100 * so make sure everything is pulled up 9101 * properly. 9102 */ 9103 if (MBLKL(data_mp) < iocp->ioc_count) { 9104 mblk_t *new_data_mp; 9105 if ((new_data_mp = msgpullup(data_mp, -1)) == 9106 NULL) { 9107 miocnak(q, mp, 0, ENOMEM); 9108 return; 9109 } 9110 freemsg(data_mp); 9111 data_mp = new_data_mp; 9112 mp->b_cont = data_mp; 9113 } 9114 table = (ip6_asp_t *)data_mp->b_rptr; 9115 table_size = iocp->ioc_count; 9116 } 9117 9118 switch (iocp->ioc_cmd) { 9119 case SIOCGIP6ADDRPOLICY: 9120 iocp->ioc_rval = ip6_asp_get(table, table_size, ipst); 9121 if (iocp->ioc_rval == -1) 9122 iocp->ioc_error = EINVAL; 9123 #if defined(_SYSCALL32_IMPL) && _LONG_LONG_ALIGNMENT_32 == 4 9124 else if (table != NULL && 9125 (iocp->ioc_flag & IOC_MODELS) == IOC_ILP32) { 9126 ip6_asp_t *src = table; 9127 ip6_asp32_t *dst = (void *)table; 9128 int count = table_size / sizeof (ip6_asp_t); 9129 int i; 9130 9131 /* 9132 * We need to do an in-place shrink of the array 9133 * to match the alignment attributes of the 9134 * 32-bit ABI looking at it. 9135 */ 9136 /* LINTED: logical expression always true: op "||" */ 9137 ASSERT(sizeof (*src) > sizeof (*dst)); 9138 for (i = 1; i < count; i++) 9139 bcopy(src + i, dst + i, sizeof (*dst)); 9140 } 9141 #endif 9142 break; 9143 9144 case SIOCSIP6ADDRPOLICY: 9145 ASSERT(mp->b_prev == NULL); 9146 mp->b_prev = (void *)q; 9147 #if defined(_SYSCALL32_IMPL) && _LONG_LONG_ALIGNMENT_32 == 4 9148 /* 9149 * We pass in the datamodel here so that the ip6_asp_replace() 9150 * routine can handle converting from 32-bit to native formats 9151 * where necessary. 9152 * 9153 * A better way to handle this might be to convert the inbound 9154 * data structure here, and hang it off a new 'mp'; thus the 9155 * ip6_asp_replace() logic would always be dealing with native 9156 * format data structures.. 9157 * 9158 * (An even simpler way to handle these ioctls is to just 9159 * add a 32-bit trailing 'pad' field to the ip6_asp_t structure 9160 * and just recompile everything that depends on it.) 9161 */ 9162 #endif 9163 ip6_asp_replace(mp, table, table_size, B_FALSE, ipst, 9164 iocp->ioc_flag & IOC_MODELS); 9165 return; 9166 } 9167 9168 DB_TYPE(mp) = (iocp->ioc_error == 0) ? M_IOCACK : M_IOCNAK; 9169 qreply(q, mp); 9170 } 9171 9172 static void 9173 ip_sioctl_dstinfo(queue_t *q, mblk_t *mp) 9174 { 9175 mblk_t *data_mp; 9176 struct dstinforeq *dir; 9177 uint8_t *end, *cur; 9178 in6_addr_t *daddr, *saddr; 9179 ipaddr_t v4daddr; 9180 ire_t *ire; 9181 char *slabel, *dlabel; 9182 boolean_t isipv4; 9183 int match_ire; 9184 ill_t *dst_ill; 9185 ipif_t *src_ipif, *ire_ipif; 9186 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 9187 zoneid_t zoneid; 9188 ip_stack_t *ipst = CONNQ_TO_IPST(q); 9189 9190 ASSERT(q->q_next == NULL); /* this ioctl not allowed if ip is module */ 9191 zoneid = Q_TO_CONN(q)->conn_zoneid; 9192 9193 /* 9194 * This ioctl is I_STR only, and must have a 9195 * data mblk following the M_IOCTL mblk. 9196 */ 9197 data_mp = mp->b_cont; 9198 if (iocp->ioc_count == TRANSPARENT || data_mp == NULL) { 9199 miocnak(q, mp, 0, EINVAL); 9200 return; 9201 } 9202 9203 if (MBLKL(data_mp) < iocp->ioc_count) { 9204 mblk_t *new_data_mp; 9205 9206 if ((new_data_mp = msgpullup(data_mp, -1)) == NULL) { 9207 miocnak(q, mp, 0, ENOMEM); 9208 return; 9209 } 9210 freemsg(data_mp); 9211 data_mp = new_data_mp; 9212 mp->b_cont = data_mp; 9213 } 9214 match_ire = MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT | MATCH_IRE_PARENT; 9215 9216 for (cur = data_mp->b_rptr, end = data_mp->b_wptr; 9217 end - cur >= sizeof (struct dstinforeq); 9218 cur += sizeof (struct dstinforeq)) { 9219 dir = (struct dstinforeq *)cur; 9220 daddr = &dir->dir_daddr; 9221 saddr = &dir->dir_saddr; 9222 9223 /* 9224 * ip_addr_scope_v6() and ip6_asp_lookup() handle 9225 * v4 mapped addresses; ire_ftable_lookup[_v6]() 9226 * and ipif_select_source[_v6]() do not. 9227 */ 9228 dir->dir_dscope = ip_addr_scope_v6(daddr); 9229 dlabel = ip6_asp_lookup(daddr, &dir->dir_precedence, ipst); 9230 9231 isipv4 = IN6_IS_ADDR_V4MAPPED(daddr); 9232 if (isipv4) { 9233 IN6_V4MAPPED_TO_IPADDR(daddr, v4daddr); 9234 ire = ire_ftable_lookup(v4daddr, NULL, NULL, 9235 0, NULL, NULL, zoneid, 0, NULL, match_ire, ipst); 9236 } else { 9237 ire = ire_ftable_lookup_v6(daddr, NULL, NULL, 9238 0, NULL, NULL, zoneid, 0, NULL, match_ire, ipst); 9239 } 9240 if (ire == NULL) { 9241 dir->dir_dreachable = 0; 9242 9243 /* move on to next dst addr */ 9244 continue; 9245 } 9246 dir->dir_dreachable = 1; 9247 9248 ire_ipif = ire->ire_ipif; 9249 if (ire_ipif == NULL) 9250 goto next_dst; 9251 9252 /* 9253 * We expect to get back an interface ire or a 9254 * gateway ire cache entry. For both types, the 9255 * output interface is ire_ipif->ipif_ill. 9256 */ 9257 dst_ill = ire_ipif->ipif_ill; 9258 dir->dir_dmactype = dst_ill->ill_mactype; 9259 9260 if (isipv4) { 9261 src_ipif = ipif_select_source(dst_ill, v4daddr, zoneid); 9262 } else { 9263 src_ipif = ipif_select_source_v6(dst_ill, 9264 daddr, RESTRICT_TO_NONE, IPV6_PREFER_SRC_DEFAULT, 9265 zoneid); 9266 } 9267 if (src_ipif == NULL) 9268 goto next_dst; 9269 9270 *saddr = src_ipif->ipif_v6lcl_addr; 9271 dir->dir_sscope = ip_addr_scope_v6(saddr); 9272 slabel = ip6_asp_lookup(saddr, NULL, ipst); 9273 dir->dir_labelmatch = ip6_asp_labelcmp(dlabel, slabel); 9274 dir->dir_sdeprecated = 9275 (src_ipif->ipif_flags & IPIF_DEPRECATED) ? 1 : 0; 9276 ipif_refrele(src_ipif); 9277 next_dst: 9278 ire_refrele(ire); 9279 } 9280 miocack(q, mp, iocp->ioc_count, 0); 9281 } 9282 9283 9284 /* 9285 * Check if this is an address assigned to this machine. 9286 * Skips interfaces that are down by using ire checks. 9287 * Translates mapped addresses to v4 addresses and then 9288 * treats them as such, returning true if the v4 address 9289 * associated with this mapped address is configured. 9290 * Note: Applications will have to be careful what they do 9291 * with the response; use of mapped addresses limits 9292 * what can be done with the socket, especially with 9293 * respect to socket options and ioctls - neither IPv4 9294 * options nor IPv6 sticky options/ancillary data options 9295 * may be used. 9296 */ 9297 /* ARGSUSED */ 9298 int 9299 ip_sioctl_tmyaddr(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 9300 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 9301 { 9302 struct sioc_addrreq *sia; 9303 sin_t *sin; 9304 ire_t *ire; 9305 mblk_t *mp1; 9306 zoneid_t zoneid; 9307 ip_stack_t *ipst; 9308 9309 ip1dbg(("ip_sioctl_tmyaddr")); 9310 9311 ASSERT(q->q_next == NULL); /* this ioctl not allowed if ip is module */ 9312 zoneid = Q_TO_CONN(q)->conn_zoneid; 9313 ipst = CONNQ_TO_IPST(q); 9314 9315 /* Existence verified in ip_wput_nondata */ 9316 mp1 = mp->b_cont->b_cont; 9317 sia = (struct sioc_addrreq *)mp1->b_rptr; 9318 sin = (sin_t *)&sia->sa_addr; 9319 switch (sin->sin_family) { 9320 case AF_INET6: { 9321 sin6_t *sin6 = (sin6_t *)sin; 9322 9323 if (IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) { 9324 ipaddr_t v4_addr; 9325 9326 IN6_V4MAPPED_TO_IPADDR(&sin6->sin6_addr, 9327 v4_addr); 9328 ire = ire_ctable_lookup(v4_addr, 0, 9329 IRE_LOCAL|IRE_LOOPBACK, NULL, zoneid, 9330 NULL, MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY, ipst); 9331 } else { 9332 in6_addr_t v6addr; 9333 9334 v6addr = sin6->sin6_addr; 9335 ire = ire_ctable_lookup_v6(&v6addr, 0, 9336 IRE_LOCAL|IRE_LOOPBACK, NULL, zoneid, 9337 NULL, MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY, ipst); 9338 } 9339 break; 9340 } 9341 case AF_INET: { 9342 ipaddr_t v4addr; 9343 9344 v4addr = sin->sin_addr.s_addr; 9345 ire = ire_ctable_lookup(v4addr, 0, 9346 IRE_LOCAL|IRE_LOOPBACK, NULL, zoneid, 9347 NULL, MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY, ipst); 9348 break; 9349 } 9350 default: 9351 return (EAFNOSUPPORT); 9352 } 9353 if (ire != NULL) { 9354 sia->sa_res = 1; 9355 ire_refrele(ire); 9356 } else { 9357 sia->sa_res = 0; 9358 } 9359 return (0); 9360 } 9361 9362 /* 9363 * Check if this is an address assigned on-link i.e. neighbor, 9364 * and makes sure it's reachable from the current zone. 9365 * Returns true for my addresses as well. 9366 * Translates mapped addresses to v4 addresses and then 9367 * treats them as such, returning true if the v4 address 9368 * associated with this mapped address is configured. 9369 * Note: Applications will have to be careful what they do 9370 * with the response; use of mapped addresses limits 9371 * what can be done with the socket, especially with 9372 * respect to socket options and ioctls - neither IPv4 9373 * options nor IPv6 sticky options/ancillary data options 9374 * may be used. 9375 */ 9376 /* ARGSUSED */ 9377 int 9378 ip_sioctl_tonlink(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 9379 ip_ioctl_cmd_t *ipip, void *duymmy_ifreq) 9380 { 9381 struct sioc_addrreq *sia; 9382 sin_t *sin; 9383 mblk_t *mp1; 9384 ire_t *ire = NULL; 9385 zoneid_t zoneid; 9386 ip_stack_t *ipst; 9387 9388 ip1dbg(("ip_sioctl_tonlink")); 9389 9390 ASSERT(q->q_next == NULL); /* this ioctl not allowed if ip is module */ 9391 zoneid = Q_TO_CONN(q)->conn_zoneid; 9392 ipst = CONNQ_TO_IPST(q); 9393 9394 /* Existence verified in ip_wput_nondata */ 9395 mp1 = mp->b_cont->b_cont; 9396 sia = (struct sioc_addrreq *)mp1->b_rptr; 9397 sin = (sin_t *)&sia->sa_addr; 9398 9399 /* 9400 * Match addresses with a zero gateway field to avoid 9401 * routes going through a router. 9402 * Exclude broadcast and multicast addresses. 9403 */ 9404 switch (sin->sin_family) { 9405 case AF_INET6: { 9406 sin6_t *sin6 = (sin6_t *)sin; 9407 9408 if (IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) { 9409 ipaddr_t v4_addr; 9410 9411 IN6_V4MAPPED_TO_IPADDR(&sin6->sin6_addr, 9412 v4_addr); 9413 if (!CLASSD(v4_addr)) { 9414 ire = ire_route_lookup(v4_addr, 0, 0, 0, 9415 NULL, NULL, zoneid, NULL, 9416 MATCH_IRE_GW, ipst); 9417 } 9418 } else { 9419 in6_addr_t v6addr; 9420 in6_addr_t v6gw; 9421 9422 v6addr = sin6->sin6_addr; 9423 v6gw = ipv6_all_zeros; 9424 if (!IN6_IS_ADDR_MULTICAST(&v6addr)) { 9425 ire = ire_route_lookup_v6(&v6addr, 0, 9426 &v6gw, 0, NULL, NULL, zoneid, 9427 NULL, MATCH_IRE_GW, ipst); 9428 } 9429 } 9430 break; 9431 } 9432 case AF_INET: { 9433 ipaddr_t v4addr; 9434 9435 v4addr = sin->sin_addr.s_addr; 9436 if (!CLASSD(v4addr)) { 9437 ire = ire_route_lookup(v4addr, 0, 0, 0, 9438 NULL, NULL, zoneid, NULL, 9439 MATCH_IRE_GW, ipst); 9440 } 9441 break; 9442 } 9443 default: 9444 return (EAFNOSUPPORT); 9445 } 9446 sia->sa_res = 0; 9447 if (ire != NULL) { 9448 if (ire->ire_type & (IRE_INTERFACE|IRE_CACHE| 9449 IRE_LOCAL|IRE_LOOPBACK)) { 9450 sia->sa_res = 1; 9451 } 9452 ire_refrele(ire); 9453 } 9454 return (0); 9455 } 9456 9457 /* 9458 * TBD: implement when kernel maintaines a list of site prefixes. 9459 */ 9460 /* ARGSUSED */ 9461 int 9462 ip_sioctl_tmysite(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 9463 ip_ioctl_cmd_t *ipip, void *ifreq) 9464 { 9465 return (ENXIO); 9466 } 9467 9468 /* ARGSUSED */ 9469 int 9470 ip_sioctl_tunparam(ipif_t *ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 9471 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 9472 { 9473 ill_t *ill; 9474 mblk_t *mp1; 9475 conn_t *connp; 9476 boolean_t success; 9477 9478 ip1dbg(("ip_sioctl_tunparam(%s:%u %p)\n", 9479 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 9480 /* ioctl comes down on an conn */ 9481 ASSERT(!(q->q_flag & QREADR) && q->q_next == NULL); 9482 connp = Q_TO_CONN(q); 9483 9484 mp->b_datap->db_type = M_IOCTL; 9485 9486 /* 9487 * Send down a copy. (copymsg does not copy b_next/b_prev). 9488 * The original mp contains contaminated b_next values due to 'mi', 9489 * which is needed to do the mi_copy_done. Unfortunately if we 9490 * send down the original mblk itself and if we are popped due to an 9491 * an unplumb before the response comes back from tunnel, 9492 * the streamhead (which does a freemsg) will see this contaminated 9493 * message and the assertion in freemsg about non-null b_next/b_prev 9494 * will panic a DEBUG kernel. 9495 */ 9496 mp1 = copymsg(mp); 9497 if (mp1 == NULL) 9498 return (ENOMEM); 9499 9500 ill = ipif->ipif_ill; 9501 mutex_enter(&connp->conn_lock); 9502 mutex_enter(&ill->ill_lock); 9503 if (ipip->ipi_cmd == SIOCSTUNPARAM || ipip->ipi_cmd == OSIOCSTUNPARAM) { 9504 success = ipsq_pending_mp_add(connp, ipif, CONNP_TO_WQ(connp), 9505 mp, 0); 9506 } else { 9507 success = ill_pending_mp_add(ill, connp, mp); 9508 } 9509 mutex_exit(&ill->ill_lock); 9510 mutex_exit(&connp->conn_lock); 9511 9512 if (success) { 9513 ip1dbg(("sending down tunparam request ")); 9514 putnext(ill->ill_wq, mp1); 9515 return (EINPROGRESS); 9516 } else { 9517 /* The conn has started closing */ 9518 freemsg(mp1); 9519 return (EINTR); 9520 } 9521 } 9522 9523 static int 9524 ip_sioctl_arp_common(ill_t *ill, queue_t *q, mblk_t *mp, sin_t *sin, 9525 boolean_t x_arp_ioctl, boolean_t if_arp_ioctl) 9526 { 9527 mblk_t *mp1; 9528 mblk_t *mp2; 9529 mblk_t *pending_mp; 9530 ipaddr_t ipaddr; 9531 area_t *area; 9532 struct iocblk *iocp; 9533 conn_t *connp; 9534 struct arpreq *ar; 9535 struct xarpreq *xar; 9536 boolean_t success; 9537 int flags, alength; 9538 char *lladdr; 9539 ip_stack_t *ipst; 9540 9541 ASSERT(!(q->q_flag & QREADR) && q->q_next == NULL); 9542 connp = Q_TO_CONN(q); 9543 ipst = connp->conn_netstack->netstack_ip; 9544 9545 iocp = (struct iocblk *)mp->b_rptr; 9546 /* 9547 * ill has already been set depending on whether 9548 * bsd style or interface style ioctl. 9549 */ 9550 ASSERT(ill != NULL); 9551 9552 /* 9553 * Is this one of the new SIOC*XARP ioctls? 9554 */ 9555 if (x_arp_ioctl) { 9556 /* We have a chain - M_IOCTL-->MI_COPY_MBLK-->XARPREQ_MBLK */ 9557 xar = (struct xarpreq *)mp->b_cont->b_cont->b_rptr; 9558 ar = NULL; 9559 9560 flags = xar->xarp_flags; 9561 lladdr = LLADDR(&xar->xarp_ha); 9562 /* 9563 * Validate against user's link layer address length 9564 * input and name and addr length limits. 9565 */ 9566 alength = ill->ill_phys_addr_length; 9567 if (iocp->ioc_cmd == SIOCSXARP) { 9568 if (alength != xar->xarp_ha.sdl_alen || 9569 (alength + xar->xarp_ha.sdl_nlen > 9570 sizeof (xar->xarp_ha.sdl_data))) 9571 return (EINVAL); 9572 } 9573 } else { 9574 /* We have a chain - M_IOCTL-->MI_COPY_MBLK-->ARPREQ_MBLK */ 9575 ar = (struct arpreq *)mp->b_cont->b_cont->b_rptr; 9576 xar = NULL; 9577 9578 flags = ar->arp_flags; 9579 lladdr = ar->arp_ha.sa_data; 9580 /* 9581 * Theoretically, the sa_family could tell us what link 9582 * layer type this operation is trying to deal with. By 9583 * common usage AF_UNSPEC means ethernet. We'll assume 9584 * any attempt to use the SIOC?ARP ioctls is for ethernet, 9585 * for now. Our new SIOC*XARP ioctls can be used more 9586 * generally. 9587 * 9588 * If the underlying media happens to have a non 6 byte 9589 * address, arp module will fail set/get, but the del 9590 * operation will succeed. 9591 */ 9592 alength = 6; 9593 if ((iocp->ioc_cmd != SIOCDARP) && 9594 (alength != ill->ill_phys_addr_length)) { 9595 return (EINVAL); 9596 } 9597 } 9598 9599 /* 9600 * We are going to pass up to ARP a packet chain that looks 9601 * like: 9602 * 9603 * M_IOCTL-->ARP_op_MBLK-->ORIG_M_IOCTL-->MI_COPY_MBLK-->[X]ARPREQ_MBLK 9604 * 9605 * Get a copy of the original IOCTL mblk to head the chain, 9606 * to be sent up (in mp1). Also get another copy to store 9607 * in the ill_pending_mp list, for matching the response 9608 * when it comes back from ARP. 9609 */ 9610 mp1 = copyb(mp); 9611 pending_mp = copymsg(mp); 9612 if (mp1 == NULL || pending_mp == NULL) { 9613 if (mp1 != NULL) 9614 freeb(mp1); 9615 if (pending_mp != NULL) 9616 inet_freemsg(pending_mp); 9617 return (ENOMEM); 9618 } 9619 9620 ipaddr = sin->sin_addr.s_addr; 9621 9622 mp2 = ill_arp_alloc(ill, (uchar_t *)&ip_area_template, 9623 (caddr_t)&ipaddr); 9624 if (mp2 == NULL) { 9625 freeb(mp1); 9626 inet_freemsg(pending_mp); 9627 return (ENOMEM); 9628 } 9629 /* Put together the chain. */ 9630 mp1->b_cont = mp2; 9631 mp1->b_datap->db_type = M_IOCTL; 9632 mp2->b_cont = mp; 9633 mp2->b_datap->db_type = M_DATA; 9634 9635 iocp = (struct iocblk *)mp1->b_rptr; 9636 9637 /* 9638 * An M_IOCDATA's payload (struct copyresp) is mostly the same as an 9639 * M_IOCTL's payload (struct iocblk), but 'struct copyresp' has a 9640 * cp_private field (or cp_rval on 32-bit systems) in place of the 9641 * ioc_count field; set ioc_count to be correct. 9642 */ 9643 iocp->ioc_count = MBLKL(mp1->b_cont); 9644 9645 /* 9646 * Set the proper command in the ARP message. 9647 * Convert the SIOC{G|S|D}ARP calls into our 9648 * AR_ENTRY_xxx calls. 9649 */ 9650 area = (area_t *)mp2->b_rptr; 9651 switch (iocp->ioc_cmd) { 9652 case SIOCDARP: 9653 case SIOCDXARP: 9654 /* 9655 * We defer deleting the corresponding IRE until 9656 * we return from arp. 9657 */ 9658 area->area_cmd = AR_ENTRY_DELETE; 9659 area->area_proto_mask_offset = 0; 9660 break; 9661 case SIOCGARP: 9662 case SIOCGXARP: 9663 area->area_cmd = AR_ENTRY_SQUERY; 9664 area->area_proto_mask_offset = 0; 9665 break; 9666 case SIOCSARP: 9667 case SIOCSXARP: { 9668 /* 9669 * Delete the corresponding ire to make sure IP will 9670 * pick up any change from arp. 9671 */ 9672 if (!if_arp_ioctl) { 9673 (void) ip_ire_clookup_and_delete(ipaddr, NULL, ipst); 9674 break; 9675 } else { 9676 ipif_t *ipif = ipif_get_next_ipif(NULL, ill); 9677 if (ipif != NULL) { 9678 (void) ip_ire_clookup_and_delete(ipaddr, ipif, 9679 ipst); 9680 ipif_refrele(ipif); 9681 } 9682 break; 9683 } 9684 } 9685 } 9686 iocp->ioc_cmd = area->area_cmd; 9687 9688 /* 9689 * Before sending 'mp' to ARP, we have to clear the b_next 9690 * and b_prev. Otherwise if STREAMS encounters such a message 9691 * in freemsg(), (because ARP can close any time) it can cause 9692 * a panic. But mi code needs the b_next and b_prev values of 9693 * mp->b_cont, to complete the ioctl. So we store it here 9694 * in pending_mp->bcont, and restore it in ip_sioctl_iocack() 9695 * when the response comes down from ARP. 9696 */ 9697 pending_mp->b_cont->b_next = mp->b_cont->b_next; 9698 pending_mp->b_cont->b_prev = mp->b_cont->b_prev; 9699 mp->b_cont->b_next = NULL; 9700 mp->b_cont->b_prev = NULL; 9701 9702 mutex_enter(&connp->conn_lock); 9703 mutex_enter(&ill->ill_lock); 9704 /* conn has not yet started closing, hence this can't fail */ 9705 success = ill_pending_mp_add(ill, connp, pending_mp); 9706 ASSERT(success); 9707 mutex_exit(&ill->ill_lock); 9708 mutex_exit(&connp->conn_lock); 9709 9710 /* 9711 * Fill in the rest of the ARP operation fields. 9712 */ 9713 area->area_hw_addr_length = alength; 9714 bcopy(lladdr, 9715 (char *)area + area->area_hw_addr_offset, 9716 area->area_hw_addr_length); 9717 /* Translate the flags. */ 9718 if (flags & ATF_PERM) 9719 area->area_flags |= ACE_F_PERMANENT; 9720 if (flags & ATF_PUBL) 9721 area->area_flags |= ACE_F_PUBLISH; 9722 if (flags & ATF_AUTHORITY) 9723 area->area_flags |= ACE_F_AUTHORITY; 9724 9725 /* 9726 * Up to ARP it goes. The response will come 9727 * back in ip_wput as an M_IOCACK message, and 9728 * will be handed to ip_sioctl_iocack for 9729 * completion. 9730 */ 9731 putnext(ill->ill_rq, mp1); 9732 return (EINPROGRESS); 9733 } 9734 9735 /* ARGSUSED */ 9736 int 9737 ip_sioctl_xarp(ipif_t *ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 9738 ip_ioctl_cmd_t *ipip, void *ifreq) 9739 { 9740 struct xarpreq *xar; 9741 boolean_t isv6; 9742 mblk_t *mp1; 9743 int err; 9744 conn_t *connp; 9745 int ifnamelen; 9746 ire_t *ire = NULL; 9747 ill_t *ill = NULL; 9748 struct sockaddr_in *sin; 9749 boolean_t if_arp_ioctl = B_FALSE; 9750 ip_stack_t *ipst; 9751 9752 /* ioctl comes down on an conn */ 9753 ASSERT(!(q->q_flag & QREADR) && q->q_next == NULL); 9754 connp = Q_TO_CONN(q); 9755 isv6 = connp->conn_af_isv6; 9756 ipst = connp->conn_netstack->netstack_ip; 9757 9758 /* Existance verified in ip_wput_nondata */ 9759 mp1 = mp->b_cont->b_cont; 9760 9761 ASSERT(MBLKL(mp1) >= sizeof (*xar)); 9762 xar = (struct xarpreq *)mp1->b_rptr; 9763 sin = (sin_t *)&xar->xarp_pa; 9764 9765 if (isv6 || (xar->xarp_ha.sdl_family != AF_LINK) || 9766 (xar->xarp_pa.ss_family != AF_INET)) 9767 return (ENXIO); 9768 9769 ifnamelen = xar->xarp_ha.sdl_nlen; 9770 if (ifnamelen != 0) { 9771 char *cptr, cval; 9772 9773 if (ifnamelen >= LIFNAMSIZ) 9774 return (EINVAL); 9775 9776 /* 9777 * Instead of bcopying a bunch of bytes, 9778 * null-terminate the string in-situ. 9779 */ 9780 cptr = xar->xarp_ha.sdl_data + ifnamelen; 9781 cval = *cptr; 9782 *cptr = '\0'; 9783 ill = ill_lookup_on_name(xar->xarp_ha.sdl_data, 9784 B_FALSE, isv6, CONNP_TO_WQ(connp), mp, ip_process_ioctl, 9785 &err, NULL, ipst); 9786 *cptr = cval; 9787 if (ill == NULL) 9788 return (err); 9789 if (ill->ill_net_type != IRE_IF_RESOLVER) { 9790 ill_refrele(ill); 9791 return (ENXIO); 9792 } 9793 9794 if_arp_ioctl = B_TRUE; 9795 } else { 9796 /* 9797 * PSARC 2003/088 states that if sdl_nlen == 0, it behaves 9798 * as an extended BSD ioctl. The kernel uses the IP address 9799 * to figure out the network interface. 9800 */ 9801 ire = ire_cache_lookup(sin->sin_addr.s_addr, ALL_ZONES, NULL, 9802 ipst); 9803 if ((ire == NULL) || (ire->ire_type == IRE_LOOPBACK) || 9804 ((ill = ire_to_ill(ire)) == NULL) || 9805 (ill->ill_net_type != IRE_IF_RESOLVER)) { 9806 if (ire != NULL) 9807 ire_refrele(ire); 9808 ire = ire_ftable_lookup(sin->sin_addr.s_addr, 9809 0, 0, IRE_IF_RESOLVER, NULL, NULL, ALL_ZONES, 0, 9810 NULL, MATCH_IRE_TYPE, ipst); 9811 if ((ire == NULL) || 9812 ((ill = ire_to_ill(ire)) == NULL)) { 9813 if (ire != NULL) 9814 ire_refrele(ire); 9815 return (ENXIO); 9816 } 9817 } 9818 ASSERT(ire != NULL && ill != NULL); 9819 } 9820 9821 err = ip_sioctl_arp_common(ill, q, mp, sin, B_TRUE, if_arp_ioctl); 9822 if (if_arp_ioctl) 9823 ill_refrele(ill); 9824 if (ire != NULL) 9825 ire_refrele(ire); 9826 9827 return (err); 9828 } 9829 9830 /* 9831 * ARP IOCTLs. 9832 * How does IP get in the business of fronting ARP configuration/queries? 9833 * Well its like this, the Berkeley ARP IOCTLs (SIOCGARP, SIOCDARP, SIOCSARP) 9834 * are by tradition passed in through a datagram socket. That lands in IP. 9835 * As it happens, this is just as well since the interface is quite crude in 9836 * that it passes in no information about protocol or hardware types, or 9837 * interface association. After making the protocol assumption, IP is in 9838 * the position to look up the name of the ILL, which ARP will need, and 9839 * format a request that can be handled by ARP. The request is passed up 9840 * stream to ARP, and the original IOCTL is completed by IP when ARP passes 9841 * back a response. ARP supports its own set of more general IOCTLs, in 9842 * case anyone is interested. 9843 */ 9844 /* ARGSUSED */ 9845 int 9846 ip_sioctl_arp(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 9847 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 9848 { 9849 struct arpreq *ar; 9850 struct sockaddr_in *sin; 9851 ire_t *ire; 9852 boolean_t isv6; 9853 mblk_t *mp1; 9854 int err; 9855 conn_t *connp; 9856 ill_t *ill; 9857 ip_stack_t *ipst; 9858 9859 /* ioctl comes down on an conn */ 9860 ASSERT(!(q->q_flag & QREADR) && q->q_next == NULL); 9861 connp = Q_TO_CONN(q); 9862 ipst = CONNQ_TO_IPST(q); 9863 isv6 = connp->conn_af_isv6; 9864 if (isv6) 9865 return (ENXIO); 9866 9867 /* Existance verified in ip_wput_nondata */ 9868 mp1 = mp->b_cont->b_cont; 9869 9870 ar = (struct arpreq *)mp1->b_rptr; 9871 sin = (sin_t *)&ar->arp_pa; 9872 9873 /* 9874 * We need to let ARP know on which interface the IP 9875 * address has an ARP mapping. In the IPMP case, a 9876 * simple forwarding table lookup will return the 9877 * IRE_IF_RESOLVER for the first interface in the group, 9878 * which might not be the interface on which the 9879 * requested IP address was resolved due to the ill 9880 * selection algorithm (see ip_newroute_get_dst_ill()). 9881 * So we do a cache table lookup first: if the IRE cache 9882 * entry for the IP address is still there, it will 9883 * contain the ill pointer for the right interface, so 9884 * we use that. If the cache entry has been flushed, we 9885 * fall back to the forwarding table lookup. This should 9886 * be rare enough since IRE cache entries have a longer 9887 * life expectancy than ARP cache entries. 9888 */ 9889 ire = ire_cache_lookup(sin->sin_addr.s_addr, ALL_ZONES, NULL, ipst); 9890 if ((ire == NULL) || (ire->ire_type == IRE_LOOPBACK) || 9891 ((ill = ire_to_ill(ire)) == NULL)) { 9892 if (ire != NULL) 9893 ire_refrele(ire); 9894 ire = ire_ftable_lookup(sin->sin_addr.s_addr, 9895 0, 0, IRE_IF_RESOLVER, NULL, NULL, ALL_ZONES, 0, 9896 NULL, MATCH_IRE_TYPE, ipst); 9897 if ((ire == NULL) || ((ill = ire_to_ill(ire)) == NULL)) { 9898 if (ire != NULL) 9899 ire_refrele(ire); 9900 return (ENXIO); 9901 } 9902 } 9903 ASSERT(ire != NULL && ill != NULL); 9904 9905 err = ip_sioctl_arp_common(ill, q, mp, sin, B_FALSE, B_FALSE); 9906 ire_refrele(ire); 9907 return (err); 9908 } 9909 9910 /* 9911 * Do I_PLINK/I_LINK or I_PUNLINK/I_UNLINK with consistency checks and also 9912 * atomically set/clear the muxids. Also complete the ioctl by acking or 9913 * naking it. Note that the code is structured such that the link type, 9914 * whether it's persistent or not, is treated equally. ifconfig(1M) and 9915 * its clones use the persistent link, while pppd(1M) and perhaps many 9916 * other daemons may use non-persistent link. When combined with some 9917 * ill_t states, linking and unlinking lower streams may be used as 9918 * indicators of dynamic re-plumbing events [see PSARC/1999/348]. 9919 */ 9920 /* ARGSUSED */ 9921 void 9922 ip_sioctl_plink(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 9923 { 9924 mblk_t *mp1, *mp2; 9925 struct linkblk *li; 9926 struct ipmx_s *ipmxp; 9927 ill_t *ill; 9928 int ioccmd = ((struct iocblk *)mp->b_rptr)->ioc_cmd; 9929 int err = 0; 9930 boolean_t entered_ipsq = B_FALSE; 9931 boolean_t islink; 9932 ip_stack_t *ipst; 9933 9934 if (CONN_Q(q)) 9935 ipst = CONNQ_TO_IPST(q); 9936 else 9937 ipst = ILLQ_TO_IPST(q); 9938 9939 ASSERT(ioccmd == I_PLINK || ioccmd == I_PUNLINK || 9940 ioccmd == I_LINK || ioccmd == I_UNLINK); 9941 9942 islink = (ioccmd == I_PLINK || ioccmd == I_LINK); 9943 9944 mp1 = mp->b_cont; /* This is the linkblk info */ 9945 li = (struct linkblk *)mp1->b_rptr; 9946 9947 /* 9948 * ARP has added this special mblk, and the utility is asking us 9949 * to perform consistency checks, and also atomically set the 9950 * muxid. Ifconfig is an example. It achieves this by using 9951 * /dev/arp as the mux to plink the arp stream, and pushes arp on 9952 * to /dev/udp[6] stream for use as the mux when plinking the IP 9953 * stream. SIOCSLIFMUXID is not required. See ifconfig.c, arp.c 9954 * and other comments in this routine for more details. 9955 */ 9956 mp2 = mp1->b_cont; /* This is added by ARP */ 9957 9958 /* 9959 * If I_{P}LINK/I_{P}UNLINK is issued by a utility other than 9960 * ifconfig which didn't push ARP on top of the dummy mux, we won't 9961 * get the special mblk above. For backward compatibility, we 9962 * request ip_sioctl_plink_ipmod() to skip the consistency checks. 9963 * The utility will use SIOCSLIFMUXID to store the muxids. This is 9964 * not atomic, and can leave the streams unplumbable if the utility 9965 * is interrupted before it does the SIOCSLIFMUXID. 9966 */ 9967 if (mp2 == NULL) { 9968 err = ip_sioctl_plink_ipmod(ipsq, q, mp, ioccmd, li, B_FALSE); 9969 if (err == EINPROGRESS) 9970 return; 9971 goto done; 9972 } 9973 9974 /* 9975 * This is an I_{P}LINK sent down by ifconfig through the ARP module; 9976 * ARP has appended this last mblk to tell us whether the lower stream 9977 * is an arp-dev stream or an IP module stream. 9978 */ 9979 ipmxp = (struct ipmx_s *)mp2->b_rptr; 9980 if (ipmxp->ipmx_arpdev_stream) { 9981 /* 9982 * The lower stream is the arp-dev stream. 9983 */ 9984 ill = ill_lookup_on_name(ipmxp->ipmx_name, B_FALSE, B_FALSE, 9985 q, mp, ip_sioctl_plink, &err, NULL, ipst); 9986 if (ill == NULL) { 9987 if (err == EINPROGRESS) 9988 return; 9989 err = EINVAL; 9990 goto done; 9991 } 9992 9993 if (ipsq == NULL) { 9994 ipsq = ipsq_try_enter(NULL, ill, q, mp, ip_sioctl_plink, 9995 NEW_OP, B_TRUE); 9996 if (ipsq == NULL) { 9997 ill_refrele(ill); 9998 return; 9999 } 10000 entered_ipsq = B_TRUE; 10001 } 10002 ASSERT(IAM_WRITER_ILL(ill)); 10003 ill_refrele(ill); 10004 10005 /* 10006 * To ensure consistency between IP and ARP, the following 10007 * LIFO scheme is used in plink/punlink. (IP first, ARP last). 10008 * This is because the muxid's are stored in the IP stream on 10009 * the ill. 10010 * 10011 * I_{P}LINK: ifconfig plinks the IP stream before plinking 10012 * the ARP stream. On an arp-dev stream, IP checks that it is 10013 * not yet plinked, and it also checks that the corresponding 10014 * IP stream is already plinked. 10015 * 10016 * I_{P}UNLINK: ifconfig punlinks the ARP stream before 10017 * punlinking the IP stream. IP does not allow punlink of the 10018 * IP stream unless the arp stream has been punlinked. 10019 */ 10020 if ((islink && 10021 (ill->ill_arp_muxid != 0 || ill->ill_ip_muxid == 0)) || 10022 (!islink && ill->ill_arp_muxid != li->l_index)) { 10023 err = EINVAL; 10024 goto done; 10025 } 10026 ill->ill_arp_muxid = islink ? li->l_index : 0; 10027 } else { 10028 /* 10029 * The lower stream is probably an IP module stream. Do 10030 * consistency checking. 10031 */ 10032 err = ip_sioctl_plink_ipmod(ipsq, q, mp, ioccmd, li, B_TRUE); 10033 if (err == EINPROGRESS) 10034 return; 10035 } 10036 done: 10037 if (err == 0) 10038 miocack(q, mp, 0, 0); 10039 else 10040 miocnak(q, mp, 0, err); 10041 10042 /* Conn was refheld in ip_sioctl_copyin_setup */ 10043 if (CONN_Q(q)) 10044 CONN_OPER_PENDING_DONE(Q_TO_CONN(q)); 10045 if (entered_ipsq) 10046 ipsq_exit(ipsq, B_TRUE, B_TRUE); 10047 } 10048 10049 /* 10050 * Process I_{P}LINK and I_{P}UNLINK requests named by `ioccmd' and pointed to 10051 * by `mp' and `li' for the IP module stream (if li->q_bot is in fact an IP 10052 * module stream). If `doconsist' is set, then do the extended consistency 10053 * checks requested by ifconfig(1M) and (atomically) set ill_ip_muxid here. 10054 * Returns zero on success, EINPROGRESS if the operation is still pending, or 10055 * an error code on failure. 10056 */ 10057 static int 10058 ip_sioctl_plink_ipmod(ipsq_t *ipsq, queue_t *q, mblk_t *mp, int ioccmd, 10059 struct linkblk *li, boolean_t doconsist) 10060 { 10061 ill_t *ill; 10062 queue_t *ipwq, *dwq; 10063 const char *name; 10064 struct qinit *qinfo; 10065 boolean_t islink = (ioccmd == I_PLINK || ioccmd == I_LINK); 10066 boolean_t entered_ipsq = B_FALSE; 10067 10068 /* 10069 * Walk the lower stream to verify it's the IP module stream. 10070 * The IP module is identified by its name, wput function, 10071 * and non-NULL q_next. STREAMS ensures that the lower stream 10072 * (li->l_qbot) will not vanish until this ioctl completes. 10073 */ 10074 for (ipwq = li->l_qbot; ipwq != NULL; ipwq = ipwq->q_next) { 10075 qinfo = ipwq->q_qinfo; 10076 name = qinfo->qi_minfo->mi_idname; 10077 if (name != NULL && strcmp(name, ip_mod_info.mi_idname) == 0 && 10078 qinfo->qi_putp != (pfi_t)ip_lwput && ipwq->q_next != NULL) { 10079 break; 10080 } 10081 } 10082 10083 /* 10084 * If this isn't an IP module stream, bail. 10085 */ 10086 if (ipwq == NULL) 10087 return (0); 10088 10089 ill = ipwq->q_ptr; 10090 ASSERT(ill != NULL); 10091 10092 if (ipsq == NULL) { 10093 ipsq = ipsq_try_enter(NULL, ill, q, mp, ip_sioctl_plink, 10094 NEW_OP, B_TRUE); 10095 if (ipsq == NULL) 10096 return (EINPROGRESS); 10097 entered_ipsq = B_TRUE; 10098 } 10099 ASSERT(IAM_WRITER_ILL(ill)); 10100 10101 if (doconsist) { 10102 /* 10103 * Consistency checking requires that I_{P}LINK occurs 10104 * prior to setting ill_ip_muxid, and that I_{P}UNLINK 10105 * occurs prior to clearing ill_arp_muxid. 10106 */ 10107 if ((islink && ill->ill_ip_muxid != 0) || 10108 (!islink && ill->ill_arp_muxid != 0)) { 10109 if (entered_ipsq) 10110 ipsq_exit(ipsq, B_TRUE, B_TRUE); 10111 return (EINVAL); 10112 } 10113 } 10114 10115 /* 10116 * As part of I_{P}LINKing, stash the number of downstream modules and 10117 * the read queue of the module immediately below IP in the ill. 10118 * These are used during the capability negotiation below. 10119 */ 10120 ill->ill_lmod_rq = NULL; 10121 ill->ill_lmod_cnt = 0; 10122 if (islink && ((dwq = ipwq->q_next) != NULL)) { 10123 ill->ill_lmod_rq = RD(dwq); 10124 for (; dwq != NULL; dwq = dwq->q_next) 10125 ill->ill_lmod_cnt++; 10126 } 10127 10128 if (doconsist) 10129 ill->ill_ip_muxid = islink ? li->l_index : 0; 10130 10131 /* 10132 * If there's at least one up ipif on this ill, then we're bound to 10133 * the underlying driver via DLPI. In that case, renegotiate 10134 * capabilities to account for any possible change in modules 10135 * interposed between IP and the driver. 10136 */ 10137 if (ill->ill_ipif_up_count > 0) { 10138 if (islink) 10139 ill_capability_probe(ill); 10140 else 10141 ill_capability_reset(ill); 10142 } 10143 10144 if (entered_ipsq) 10145 ipsq_exit(ipsq, B_TRUE, B_TRUE); 10146 10147 return (0); 10148 } 10149 10150 /* 10151 * Search the ioctl command in the ioctl tables and return a pointer 10152 * to the ioctl command information. The ioctl command tables are 10153 * static and fully populated at compile time. 10154 */ 10155 ip_ioctl_cmd_t * 10156 ip_sioctl_lookup(int ioc_cmd) 10157 { 10158 int index; 10159 ip_ioctl_cmd_t *ipip; 10160 ip_ioctl_cmd_t *ipip_end; 10161 10162 if (ioc_cmd == IPI_DONTCARE) 10163 return (NULL); 10164 10165 /* 10166 * Do a 2 step search. First search the indexed table 10167 * based on the least significant byte of the ioctl cmd. 10168 * If we don't find a match, then search the misc table 10169 * serially. 10170 */ 10171 index = ioc_cmd & 0xFF; 10172 if (index < ip_ndx_ioctl_count) { 10173 ipip = &ip_ndx_ioctl_table[index]; 10174 if (ipip->ipi_cmd == ioc_cmd) { 10175 /* Found a match in the ndx table */ 10176 return (ipip); 10177 } 10178 } 10179 10180 /* Search the misc table */ 10181 ipip_end = &ip_misc_ioctl_table[ip_misc_ioctl_count]; 10182 for (ipip = ip_misc_ioctl_table; ipip < ipip_end; ipip++) { 10183 if (ipip->ipi_cmd == ioc_cmd) 10184 /* Found a match in the misc table */ 10185 return (ipip); 10186 } 10187 10188 return (NULL); 10189 } 10190 10191 /* 10192 * Wrapper function for resuming deferred ioctl processing 10193 * Used for SIOCGDSTINFO, SIOCGIP6ADDRPOLICY, SIOCGMSFILTER, 10194 * SIOCSMSFILTER, SIOCGIPMSFILTER, and SIOCSIPMSFILTER currently. 10195 */ 10196 /* ARGSUSED */ 10197 void 10198 ip_sioctl_copyin_resume(ipsq_t *dummy_ipsq, queue_t *q, mblk_t *mp, 10199 void *dummy_arg) 10200 { 10201 ip_sioctl_copyin_setup(q, mp); 10202 } 10203 10204 /* 10205 * ip_sioctl_copyin_setup is called by ip_wput with any M_IOCTL message 10206 * that arrives. Most of the IOCTLs are "socket" IOCTLs which we handle 10207 * in either I_STR or TRANSPARENT form, using the mi_copy facility. 10208 * We establish here the size of the block to be copied in. mi_copyin 10209 * arranges for this to happen, an processing continues in ip_wput with 10210 * an M_IOCDATA message. 10211 */ 10212 void 10213 ip_sioctl_copyin_setup(queue_t *q, mblk_t *mp) 10214 { 10215 int copyin_size; 10216 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 10217 ip_ioctl_cmd_t *ipip; 10218 cred_t *cr; 10219 ip_stack_t *ipst; 10220 10221 if (CONN_Q(q)) 10222 ipst = CONNQ_TO_IPST(q); 10223 else 10224 ipst = ILLQ_TO_IPST(q); 10225 10226 ipip = ip_sioctl_lookup(iocp->ioc_cmd); 10227 if (ipip == NULL) { 10228 /* 10229 * The ioctl is not one we understand or own. 10230 * Pass it along to be processed down stream, 10231 * if this is a module instance of IP, else nak 10232 * the ioctl. 10233 */ 10234 if (q->q_next == NULL) { 10235 goto nak; 10236 } else { 10237 putnext(q, mp); 10238 return; 10239 } 10240 } 10241 10242 /* 10243 * If this is deferred, then we will do all the checks when we 10244 * come back. 10245 */ 10246 if ((iocp->ioc_cmd == SIOCGDSTINFO || 10247 iocp->ioc_cmd == SIOCGIP6ADDRPOLICY) && !ip6_asp_can_lookup(ipst)) { 10248 ip6_asp_pending_op(q, mp, ip_sioctl_copyin_resume); 10249 return; 10250 } 10251 10252 /* 10253 * Only allow a very small subset of IP ioctls on this stream if 10254 * IP is a module and not a driver. Allowing ioctls to be processed 10255 * in this case may cause assert failures or data corruption. 10256 * Typically G[L]IFFLAGS, SLIFNAME/IF_UNITSEL are the only few 10257 * ioctls allowed on an IP module stream, after which this stream 10258 * normally becomes a multiplexor (at which time the stream head 10259 * will fail all ioctls). 10260 */ 10261 if ((q->q_next != NULL) && !(ipip->ipi_flags & IPI_MODOK)) { 10262 if (ipip->ipi_flags & IPI_PASS_DOWN) { 10263 /* 10264 * Pass common Streams ioctls which the IP 10265 * module does not own or consume along to 10266 * be processed down stream. 10267 */ 10268 putnext(q, mp); 10269 return; 10270 } else { 10271 goto nak; 10272 } 10273 } 10274 10275 /* Make sure we have ioctl data to process. */ 10276 if (mp->b_cont == NULL && !(ipip->ipi_flags & IPI_NULL_BCONT)) 10277 goto nak; 10278 10279 /* 10280 * Prefer dblk credential over ioctl credential; some synthesized 10281 * ioctls have kcred set because there's no way to crhold() 10282 * a credential in some contexts. (ioc_cr is not crfree() by 10283 * the framework; the caller of ioctl needs to hold the reference 10284 * for the duration of the call). 10285 */ 10286 cr = DB_CREDDEF(mp, iocp->ioc_cr); 10287 10288 /* Make sure normal users don't send down privileged ioctls */ 10289 if ((ipip->ipi_flags & IPI_PRIV) && 10290 (cr != NULL) && secpolicy_ip_config(cr, B_TRUE) != 0) { 10291 /* We checked the privilege earlier but log it here */ 10292 miocnak(q, mp, 0, secpolicy_ip_config(cr, B_FALSE)); 10293 return; 10294 } 10295 10296 /* 10297 * The ioctl command tables can only encode fixed length 10298 * ioctl data. If the length is variable, the table will 10299 * encode the length as zero. Such special cases are handled 10300 * below in the switch. 10301 */ 10302 if (ipip->ipi_copyin_size != 0) { 10303 mi_copyin(q, mp, NULL, ipip->ipi_copyin_size); 10304 return; 10305 } 10306 10307 switch (iocp->ioc_cmd) { 10308 case O_SIOCGIFCONF: 10309 case SIOCGIFCONF: 10310 /* 10311 * This IOCTL is hilarious. See comments in 10312 * ip_sioctl_get_ifconf for the story. 10313 */ 10314 if (iocp->ioc_count == TRANSPARENT) 10315 copyin_size = SIZEOF_STRUCT(ifconf, 10316 iocp->ioc_flag); 10317 else 10318 copyin_size = iocp->ioc_count; 10319 mi_copyin(q, mp, NULL, copyin_size); 10320 return; 10321 10322 case O_SIOCGLIFCONF: 10323 case SIOCGLIFCONF: 10324 copyin_size = SIZEOF_STRUCT(lifconf, iocp->ioc_flag); 10325 mi_copyin(q, mp, NULL, copyin_size); 10326 return; 10327 10328 case SIOCGLIFSRCOF: 10329 copyin_size = SIZEOF_STRUCT(lifsrcof, iocp->ioc_flag); 10330 mi_copyin(q, mp, NULL, copyin_size); 10331 return; 10332 case SIOCGIP6ADDRPOLICY: 10333 ip_sioctl_ip6addrpolicy(q, mp); 10334 ip6_asp_table_refrele(ipst); 10335 return; 10336 10337 case SIOCSIP6ADDRPOLICY: 10338 ip_sioctl_ip6addrpolicy(q, mp); 10339 return; 10340 10341 case SIOCGDSTINFO: 10342 ip_sioctl_dstinfo(q, mp); 10343 ip6_asp_table_refrele(ipst); 10344 return; 10345 10346 case I_PLINK: 10347 case I_PUNLINK: 10348 case I_LINK: 10349 case I_UNLINK: 10350 /* 10351 * We treat non-persistent link similarly as the persistent 10352 * link case, in terms of plumbing/unplumbing, as well as 10353 * dynamic re-plumbing events indicator. See comments 10354 * in ip_sioctl_plink() for more. 10355 * 10356 * Request can be enqueued in the 'ipsq' while waiting 10357 * to become exclusive. So bump up the conn ref. 10358 */ 10359 if (CONN_Q(q)) 10360 CONN_INC_REF(Q_TO_CONN(q)); 10361 ip_sioctl_plink(NULL, q, mp, NULL); 10362 return; 10363 10364 case ND_GET: 10365 case ND_SET: 10366 /* 10367 * Use of the nd table requires holding the reader lock. 10368 * Modifying the nd table thru nd_load/nd_unload requires 10369 * the writer lock. 10370 */ 10371 rw_enter(&ipst->ips_ip_g_nd_lock, RW_READER); 10372 if (nd_getset(q, ipst->ips_ip_g_nd, mp)) { 10373 rw_exit(&ipst->ips_ip_g_nd_lock); 10374 10375 if (iocp->ioc_error) 10376 iocp->ioc_count = 0; 10377 mp->b_datap->db_type = M_IOCACK; 10378 qreply(q, mp); 10379 return; 10380 } 10381 rw_exit(&ipst->ips_ip_g_nd_lock); 10382 /* 10383 * We don't understand this subioctl of ND_GET / ND_SET. 10384 * Maybe intended for some driver / module below us 10385 */ 10386 if (q->q_next) { 10387 putnext(q, mp); 10388 } else { 10389 iocp->ioc_error = ENOENT; 10390 mp->b_datap->db_type = M_IOCNAK; 10391 iocp->ioc_count = 0; 10392 qreply(q, mp); 10393 } 10394 return; 10395 10396 case IP_IOCTL: 10397 ip_wput_ioctl(q, mp); 10398 return; 10399 default: 10400 cmn_err(CE_PANIC, "should not happen "); 10401 } 10402 nak: 10403 if (mp->b_cont != NULL) { 10404 freemsg(mp->b_cont); 10405 mp->b_cont = NULL; 10406 } 10407 iocp->ioc_error = EINVAL; 10408 mp->b_datap->db_type = M_IOCNAK; 10409 iocp->ioc_count = 0; 10410 qreply(q, mp); 10411 } 10412 10413 /* ip_wput hands off ARP IOCTL responses to us */ 10414 void 10415 ip_sioctl_iocack(queue_t *q, mblk_t *mp) 10416 { 10417 struct arpreq *ar; 10418 struct xarpreq *xar; 10419 area_t *area; 10420 mblk_t *area_mp; 10421 struct iocblk *iocp; 10422 mblk_t *orig_ioc_mp, *tmp; 10423 struct iocblk *orig_iocp; 10424 ill_t *ill; 10425 conn_t *connp = NULL; 10426 uint_t ioc_id; 10427 mblk_t *pending_mp; 10428 int x_arp_ioctl = B_FALSE, ifx_arp_ioctl = B_FALSE; 10429 int *flagsp; 10430 char *storage = NULL; 10431 sin_t *sin; 10432 ipaddr_t addr; 10433 int err; 10434 ip_stack_t *ipst; 10435 10436 ill = q->q_ptr; 10437 ASSERT(ill != NULL); 10438 ipst = ill->ill_ipst; 10439 10440 /* 10441 * We should get back from ARP a packet chain that looks like: 10442 * M_IOCACK-->ARP_op_MBLK-->ORIG_M_IOCTL-->MI_COPY_MBLK-->[X]ARPREQ_MBLK 10443 */ 10444 if (!(area_mp = mp->b_cont) || 10445 (area_mp->b_wptr - area_mp->b_rptr) < sizeof (ip_sock_ar_t) || 10446 !(orig_ioc_mp = area_mp->b_cont) || 10447 !orig_ioc_mp->b_cont || !orig_ioc_mp->b_cont->b_cont) { 10448 freemsg(mp); 10449 return; 10450 } 10451 10452 orig_iocp = (struct iocblk *)orig_ioc_mp->b_rptr; 10453 10454 tmp = (orig_ioc_mp->b_cont)->b_cont; 10455 if ((orig_iocp->ioc_cmd == SIOCGXARP) || 10456 (orig_iocp->ioc_cmd == SIOCSXARP) || 10457 (orig_iocp->ioc_cmd == SIOCDXARP)) { 10458 x_arp_ioctl = B_TRUE; 10459 xar = (struct xarpreq *)tmp->b_rptr; 10460 sin = (sin_t *)&xar->xarp_pa; 10461 flagsp = &xar->xarp_flags; 10462 storage = xar->xarp_ha.sdl_data; 10463 if (xar->xarp_ha.sdl_nlen != 0) 10464 ifx_arp_ioctl = B_TRUE; 10465 } else { 10466 ar = (struct arpreq *)tmp->b_rptr; 10467 sin = (sin_t *)&ar->arp_pa; 10468 flagsp = &ar->arp_flags; 10469 storage = ar->arp_ha.sa_data; 10470 } 10471 10472 iocp = (struct iocblk *)mp->b_rptr; 10473 10474 /* 10475 * Pick out the originating queue based on the ioc_id. 10476 */ 10477 ioc_id = iocp->ioc_id; 10478 pending_mp = ill_pending_mp_get(ill, &connp, ioc_id); 10479 if (pending_mp == NULL) { 10480 ASSERT(connp == NULL); 10481 inet_freemsg(mp); 10482 return; 10483 } 10484 ASSERT(connp != NULL); 10485 q = CONNP_TO_WQ(connp); 10486 10487 /* Uncouple the internally generated IOCTL from the original one */ 10488 area = (area_t *)area_mp->b_rptr; 10489 area_mp->b_cont = NULL; 10490 10491 /* 10492 * Restore the b_next and b_prev used by mi code. This is needed 10493 * to complete the ioctl using mi* functions. We stored them in 10494 * the pending mp prior to sending the request to ARP. 10495 */ 10496 orig_ioc_mp->b_cont->b_next = pending_mp->b_cont->b_next; 10497 orig_ioc_mp->b_cont->b_prev = pending_mp->b_cont->b_prev; 10498 inet_freemsg(pending_mp); 10499 10500 /* 10501 * We're done if there was an error or if this is not an SIOCG{X}ARP 10502 * Catch the case where there is an IRE_CACHE by no entry in the 10503 * arp table. 10504 */ 10505 addr = sin->sin_addr.s_addr; 10506 if (iocp->ioc_error && iocp->ioc_cmd == AR_ENTRY_SQUERY) { 10507 ire_t *ire; 10508 dl_unitdata_req_t *dlup; 10509 mblk_t *llmp; 10510 int addr_len; 10511 ill_t *ipsqill = NULL; 10512 10513 if (ifx_arp_ioctl) { 10514 /* 10515 * There's no need to lookup the ill, since 10516 * we've already done that when we started 10517 * processing the ioctl and sent the message 10518 * to ARP on that ill. So use the ill that 10519 * is stored in q->q_ptr. 10520 */ 10521 ipsqill = ill; 10522 ire = ire_ctable_lookup(addr, 0, IRE_CACHE, 10523 ipsqill->ill_ipif, ALL_ZONES, 10524 NULL, MATCH_IRE_TYPE | MATCH_IRE_ILL, ipst); 10525 } else { 10526 ire = ire_ctable_lookup(addr, 0, IRE_CACHE, 10527 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 10528 if (ire != NULL) 10529 ipsqill = ire_to_ill(ire); 10530 } 10531 10532 if ((x_arp_ioctl) && (ipsqill != NULL)) 10533 storage += ill_xarp_info(&xar->xarp_ha, ipsqill); 10534 10535 if (ire != NULL) { 10536 /* 10537 * Since the ire obtained from cachetable is used for 10538 * mac addr copying below, treat an incomplete ire as if 10539 * as if we never found it. 10540 */ 10541 if (ire->ire_nce != NULL && 10542 ire->ire_nce->nce_state != ND_REACHABLE) { 10543 ire_refrele(ire); 10544 ire = NULL; 10545 ipsqill = NULL; 10546 goto errack; 10547 } 10548 *flagsp = ATF_INUSE; 10549 llmp = (ire->ire_nce != NULL ? 10550 ire->ire_nce->nce_res_mp : NULL); 10551 if (llmp != NULL && ipsqill != NULL) { 10552 uchar_t *macaddr; 10553 10554 addr_len = ipsqill->ill_phys_addr_length; 10555 if (x_arp_ioctl && ((addr_len + 10556 ipsqill->ill_name_length) > 10557 sizeof (xar->xarp_ha.sdl_data))) { 10558 ire_refrele(ire); 10559 freemsg(mp); 10560 ip_ioctl_finish(q, orig_ioc_mp, 10561 EINVAL, NO_COPYOUT, NULL); 10562 return; 10563 } 10564 *flagsp |= ATF_COM; 10565 dlup = (dl_unitdata_req_t *)llmp->b_rptr; 10566 if (ipsqill->ill_sap_length < 0) 10567 macaddr = llmp->b_rptr + 10568 dlup->dl_dest_addr_offset; 10569 else 10570 macaddr = llmp->b_rptr + 10571 dlup->dl_dest_addr_offset + 10572 ipsqill->ill_sap_length; 10573 /* 10574 * For SIOCGARP, MAC address length 10575 * validation has already been done 10576 * before the ioctl was issued to ARP to 10577 * allow it to progress only on 6 byte 10578 * addressable (ethernet like) media. Thus 10579 * the mac address copying can not overwrite 10580 * the sa_data area below. 10581 */ 10582 bcopy(macaddr, storage, addr_len); 10583 } 10584 /* Ditch the internal IOCTL. */ 10585 freemsg(mp); 10586 ire_refrele(ire); 10587 ip_ioctl_finish(q, orig_ioc_mp, 0, COPYOUT, NULL); 10588 return; 10589 } 10590 } 10591 10592 /* 10593 * Delete the coresponding IRE_CACHE if any. 10594 * Reset the error if there was one (in case there was no entry 10595 * in arp.) 10596 */ 10597 if (iocp->ioc_cmd == AR_ENTRY_DELETE) { 10598 ipif_t *ipintf = NULL; 10599 10600 if (ifx_arp_ioctl) { 10601 /* 10602 * There's no need to lookup the ill, since 10603 * we've already done that when we started 10604 * processing the ioctl and sent the message 10605 * to ARP on that ill. So use the ill that 10606 * is stored in q->q_ptr. 10607 */ 10608 ipintf = ill->ill_ipif; 10609 } 10610 if (ip_ire_clookup_and_delete(addr, ipintf, ipst)) { 10611 /* 10612 * The address in "addr" may be an entry for a 10613 * router. If that's true, then any off-net 10614 * IRE_CACHE entries that go through the router 10615 * with address "addr" must be clobbered. Use 10616 * ire_walk to achieve this goal. 10617 */ 10618 if (ifx_arp_ioctl) 10619 ire_walk_ill_v4(MATCH_IRE_ILL, 0, 10620 ire_delete_cache_gw, (char *)&addr, ill); 10621 else 10622 ire_walk_v4(ire_delete_cache_gw, (char *)&addr, 10623 ALL_ZONES, ipst); 10624 iocp->ioc_error = 0; 10625 } 10626 } 10627 errack: 10628 if (iocp->ioc_error || iocp->ioc_cmd != AR_ENTRY_SQUERY) { 10629 err = iocp->ioc_error; 10630 freemsg(mp); 10631 ip_ioctl_finish(q, orig_ioc_mp, err, NO_COPYOUT, NULL); 10632 return; 10633 } 10634 10635 /* 10636 * Completion of an SIOCG{X}ARP. Translate the information from 10637 * the area_t into the struct {x}arpreq. 10638 */ 10639 if (x_arp_ioctl) { 10640 storage += ill_xarp_info(&xar->xarp_ha, ill); 10641 if ((ill->ill_phys_addr_length + ill->ill_name_length) > 10642 sizeof (xar->xarp_ha.sdl_data)) { 10643 freemsg(mp); 10644 ip_ioctl_finish(q, orig_ioc_mp, EINVAL, NO_COPYOUT, 10645 NULL); 10646 return; 10647 } 10648 } 10649 *flagsp = ATF_INUSE; 10650 if (area->area_flags & ACE_F_PERMANENT) 10651 *flagsp |= ATF_PERM; 10652 if (area->area_flags & ACE_F_PUBLISH) 10653 *flagsp |= ATF_PUBL; 10654 if (area->area_flags & ACE_F_AUTHORITY) 10655 *flagsp |= ATF_AUTHORITY; 10656 if (area->area_hw_addr_length != 0) { 10657 *flagsp |= ATF_COM; 10658 /* 10659 * For SIOCGARP, MAC address length validation has 10660 * already been done before the ioctl was issued to ARP 10661 * to allow it to progress only on 6 byte addressable 10662 * (ethernet like) media. Thus the mac address copying 10663 * can not overwrite the sa_data area below. 10664 */ 10665 bcopy((char *)area + area->area_hw_addr_offset, 10666 storage, area->area_hw_addr_length); 10667 } 10668 10669 /* Ditch the internal IOCTL. */ 10670 freemsg(mp); 10671 /* Complete the original. */ 10672 ip_ioctl_finish(q, orig_ioc_mp, 0, COPYOUT, NULL); 10673 } 10674 10675 /* 10676 * Create a new logical interface. If ipif_id is zero (i.e. not a logical 10677 * interface) create the next available logical interface for this 10678 * physical interface. 10679 * If ipif is NULL (i.e. the lookup didn't find one) attempt to create an 10680 * ipif with the specified name. 10681 * 10682 * If the address family is not AF_UNSPEC then set the address as well. 10683 * 10684 * If ip_sioctl_addr returns EINPROGRESS then the ioctl (the copyout) 10685 * is completed when the DL_BIND_ACK arrive in ip_rput_dlpi_writer. 10686 * 10687 * Executed as a writer on the ill or ill group. 10688 * So no lock is needed to traverse the ipif chain, or examine the 10689 * phyint flags. 10690 */ 10691 /* ARGSUSED */ 10692 int 10693 ip_sioctl_addif(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 10694 ip_ioctl_cmd_t *dummy_ipip, void *dummy_ifreq) 10695 { 10696 mblk_t *mp1; 10697 struct lifreq *lifr; 10698 boolean_t isv6; 10699 boolean_t exists; 10700 char *name; 10701 char *endp; 10702 char *cp; 10703 int namelen; 10704 ipif_t *ipif; 10705 long id; 10706 ipsq_t *ipsq; 10707 ill_t *ill; 10708 sin_t *sin; 10709 int err = 0; 10710 boolean_t found_sep = B_FALSE; 10711 conn_t *connp; 10712 zoneid_t zoneid; 10713 int orig_ifindex = 0; 10714 ip_stack_t *ipst = CONNQ_TO_IPST(q); 10715 10716 ASSERT(q->q_next == NULL); 10717 ip1dbg(("ip_sioctl_addif\n")); 10718 /* Existence of mp1 has been checked in ip_wput_nondata */ 10719 mp1 = mp->b_cont->b_cont; 10720 /* 10721 * Null terminate the string to protect against buffer 10722 * overrun. String was generated by user code and may not 10723 * be trusted. 10724 */ 10725 lifr = (struct lifreq *)mp1->b_rptr; 10726 lifr->lifr_name[LIFNAMSIZ - 1] = '\0'; 10727 name = lifr->lifr_name; 10728 ASSERT(CONN_Q(q)); 10729 connp = Q_TO_CONN(q); 10730 isv6 = connp->conn_af_isv6; 10731 zoneid = connp->conn_zoneid; 10732 namelen = mi_strlen(name); 10733 if (namelen == 0) 10734 return (EINVAL); 10735 10736 exists = B_FALSE; 10737 if ((namelen + 1 == sizeof (ipif_loopback_name)) && 10738 (mi_strcmp(name, ipif_loopback_name) == 0)) { 10739 /* 10740 * Allow creating lo0 using SIOCLIFADDIF. 10741 * can't be any other writer thread. So can pass null below 10742 * for the last 4 args to ipif_lookup_name. 10743 */ 10744 ipif = ipif_lookup_on_name(lifr->lifr_name, namelen, B_TRUE, 10745 &exists, isv6, zoneid, NULL, NULL, NULL, NULL, ipst); 10746 /* Prevent any further action */ 10747 if (ipif == NULL) { 10748 return (ENOBUFS); 10749 } else if (!exists) { 10750 /* We created the ipif now and as writer */ 10751 ipif_refrele(ipif); 10752 return (0); 10753 } else { 10754 ill = ipif->ipif_ill; 10755 ill_refhold(ill); 10756 ipif_refrele(ipif); 10757 } 10758 } else { 10759 /* Look for a colon in the name. */ 10760 endp = &name[namelen]; 10761 for (cp = endp; --cp > name; ) { 10762 if (*cp == IPIF_SEPARATOR_CHAR) { 10763 found_sep = B_TRUE; 10764 /* 10765 * Reject any non-decimal aliases for plumbing 10766 * of logical interfaces. Aliases with leading 10767 * zeroes are also rejected as they introduce 10768 * ambiguity in the naming of the interfaces. 10769 * Comparing with "0" takes care of all such 10770 * cases. 10771 */ 10772 if ((strncmp("0", cp+1, 1)) == 0) 10773 return (EINVAL); 10774 10775 if (ddi_strtol(cp+1, &endp, 10, &id) != 0 || 10776 id <= 0 || *endp != '\0') { 10777 return (EINVAL); 10778 } 10779 *cp = '\0'; 10780 break; 10781 } 10782 } 10783 ill = ill_lookup_on_name(name, B_FALSE, isv6, 10784 CONNP_TO_WQ(connp), mp, ip_process_ioctl, &err, NULL, ipst); 10785 if (found_sep) 10786 *cp = IPIF_SEPARATOR_CHAR; 10787 if (ill == NULL) 10788 return (err); 10789 } 10790 10791 ipsq = ipsq_try_enter(NULL, ill, q, mp, ip_process_ioctl, NEW_OP, 10792 B_TRUE); 10793 10794 /* 10795 * Release the refhold due to the lookup, now that we are excl 10796 * or we are just returning 10797 */ 10798 ill_refrele(ill); 10799 10800 if (ipsq == NULL) 10801 return (EINPROGRESS); 10802 10803 /* 10804 * If the interface is failed, inactive or offlined, look for a working 10805 * interface in the ill group and create the ipif there. If we can't 10806 * find a good interface, create the ipif anyway so that in.mpathd can 10807 * move it to the first repaired interface. 10808 */ 10809 if ((ill->ill_phyint->phyint_flags & 10810 (PHYI_FAILED|PHYI_INACTIVE|PHYI_OFFLINE)) && 10811 ill->ill_phyint->phyint_groupname_len != 0) { 10812 phyint_t *phyi; 10813 char *groupname = ill->ill_phyint->phyint_groupname; 10814 10815 /* 10816 * We're looking for a working interface, but it doesn't matter 10817 * if it's up or down; so instead of following the group lists, 10818 * we look at each physical interface and compare the groupname. 10819 * We're only interested in interfaces with IPv4 (resp. IPv6) 10820 * plumbed when we're adding an IPv4 (resp. IPv6) ipif. 10821 * Otherwise we create the ipif on the failed interface. 10822 */ 10823 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 10824 phyi = avl_first(&ipst->ips_phyint_g_list-> 10825 phyint_list_avl_by_index); 10826 for (; phyi != NULL; 10827 phyi = avl_walk(&ipst->ips_phyint_g_list-> 10828 phyint_list_avl_by_index, 10829 phyi, AVL_AFTER)) { 10830 if (phyi->phyint_groupname_len == 0) 10831 continue; 10832 ASSERT(phyi->phyint_groupname != NULL); 10833 if (mi_strcmp(groupname, phyi->phyint_groupname) == 0 && 10834 !(phyi->phyint_flags & 10835 (PHYI_FAILED|PHYI_INACTIVE|PHYI_OFFLINE)) && 10836 (ill->ill_isv6 ? (phyi->phyint_illv6 != NULL) : 10837 (phyi->phyint_illv4 != NULL))) { 10838 break; 10839 } 10840 } 10841 rw_exit(&ipst->ips_ill_g_lock); 10842 10843 if (phyi != NULL) { 10844 orig_ifindex = ill->ill_phyint->phyint_ifindex; 10845 ill = (ill->ill_isv6 ? phyi->phyint_illv6 : 10846 phyi->phyint_illv4); 10847 } 10848 } 10849 10850 /* 10851 * We are now exclusive on the ipsq, so an ill move will be serialized 10852 * before or after us. 10853 */ 10854 ASSERT(IAM_WRITER_ILL(ill)); 10855 ASSERT(ill->ill_move_in_progress == B_FALSE); 10856 10857 if (found_sep && orig_ifindex == 0) { 10858 /* Now see if there is an IPIF with this unit number. */ 10859 for (ipif = ill->ill_ipif; ipif != NULL; 10860 ipif = ipif->ipif_next) { 10861 if (ipif->ipif_id == id) { 10862 err = EEXIST; 10863 goto done; 10864 } 10865 } 10866 } 10867 10868 /* 10869 * We use IRE_LOCAL for lo0:1 etc. for "receive only" use 10870 * of lo0. We never come here when we plumb lo0:0. It 10871 * happens in ipif_lookup_on_name. 10872 * The specified unit number is ignored when we create the ipif on a 10873 * different interface. However, we save it in ipif_orig_ipifid below so 10874 * that the ipif fails back to the right position. 10875 */ 10876 if ((ipif = ipif_allocate(ill, (found_sep && orig_ifindex == 0) ? 10877 id : -1, IRE_LOCAL, B_TRUE)) == NULL) { 10878 err = ENOBUFS; 10879 goto done; 10880 } 10881 10882 /* Return created name with ioctl */ 10883 (void) sprintf(lifr->lifr_name, "%s%c%d", ill->ill_name, 10884 IPIF_SEPARATOR_CHAR, ipif->ipif_id); 10885 ip1dbg(("created %s\n", lifr->lifr_name)); 10886 10887 /* Set address */ 10888 sin = (sin_t *)&lifr->lifr_addr; 10889 if (sin->sin_family != AF_UNSPEC) { 10890 err = ip_sioctl_addr(ipif, sin, q, mp, 10891 &ip_ndx_ioctl_table[SIOCLIFADDR_NDX], lifr); 10892 } 10893 10894 /* Set ifindex and unit number for failback */ 10895 if (err == 0 && orig_ifindex != 0) { 10896 ipif->ipif_orig_ifindex = orig_ifindex; 10897 if (found_sep) { 10898 ipif->ipif_orig_ipifid = id; 10899 } 10900 } 10901 10902 done: 10903 ipsq_exit(ipsq, B_TRUE, B_TRUE); 10904 return (err); 10905 } 10906 10907 /* 10908 * Remove an existing logical interface. If ipif_id is zero (i.e. not a logical 10909 * interface) delete it based on the IP address (on this physical interface). 10910 * Otherwise delete it based on the ipif_id. 10911 * Also, special handling to allow a removeif of lo0. 10912 */ 10913 /* ARGSUSED */ 10914 int 10915 ip_sioctl_removeif(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10916 ip_ioctl_cmd_t *ipip, void *dummy_if_req) 10917 { 10918 conn_t *connp; 10919 ill_t *ill = ipif->ipif_ill; 10920 boolean_t success; 10921 ip_stack_t *ipst; 10922 10923 ipst = CONNQ_TO_IPST(q); 10924 10925 ASSERT(q->q_next == NULL); 10926 ip1dbg(("ip_sioctl_remove_if(%s:%u %p)\n", 10927 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 10928 ASSERT(IAM_WRITER_IPIF(ipif)); 10929 10930 connp = Q_TO_CONN(q); 10931 /* 10932 * Special case for unplumbing lo0 (the loopback physical interface). 10933 * If unplumbing lo0, the incoming address structure has been 10934 * initialized to all zeros. When unplumbing lo0, all its logical 10935 * interfaces must be removed too. 10936 * 10937 * Note that this interface may be called to remove a specific 10938 * loopback logical interface (eg, lo0:1). But in that case 10939 * ipif->ipif_id != 0 so that the code path for that case is the 10940 * same as any other interface (meaning it skips the code directly 10941 * below). 10942 */ 10943 if (ipif->ipif_id == 0 && ipif->ipif_net_type == IRE_LOOPBACK) { 10944 if (sin->sin_family == AF_UNSPEC && 10945 (IN6_IS_ADDR_UNSPECIFIED(&((sin6_t *)sin)->sin6_addr))) { 10946 /* 10947 * Mark it condemned. No new ref. will be made to ill. 10948 */ 10949 mutex_enter(&ill->ill_lock); 10950 ill->ill_state_flags |= ILL_CONDEMNED; 10951 for (ipif = ill->ill_ipif; ipif != NULL; 10952 ipif = ipif->ipif_next) { 10953 ipif->ipif_state_flags |= IPIF_CONDEMNED; 10954 } 10955 mutex_exit(&ill->ill_lock); 10956 10957 ipif = ill->ill_ipif; 10958 /* unplumb the loopback interface */ 10959 ill_delete(ill); 10960 mutex_enter(&connp->conn_lock); 10961 mutex_enter(&ill->ill_lock); 10962 ASSERT(ill->ill_group == NULL); 10963 10964 /* Are any references to this ill active */ 10965 if (ill_is_quiescent(ill)) { 10966 mutex_exit(&ill->ill_lock); 10967 mutex_exit(&connp->conn_lock); 10968 ill_delete_tail(ill); 10969 mi_free(ill); 10970 return (0); 10971 } 10972 success = ipsq_pending_mp_add(connp, ipif, 10973 CONNP_TO_WQ(connp), mp, ILL_FREE); 10974 mutex_exit(&connp->conn_lock); 10975 mutex_exit(&ill->ill_lock); 10976 if (success) 10977 return (EINPROGRESS); 10978 else 10979 return (EINTR); 10980 } 10981 } 10982 10983 /* 10984 * We are exclusive on the ipsq, so an ill move will be serialized 10985 * before or after us. 10986 */ 10987 ASSERT(ill->ill_move_in_progress == B_FALSE); 10988 10989 if (ipif->ipif_id == 0) { 10990 /* Find based on address */ 10991 if (ipif->ipif_isv6) { 10992 sin6_t *sin6; 10993 10994 if (sin->sin_family != AF_INET6) 10995 return (EAFNOSUPPORT); 10996 10997 sin6 = (sin6_t *)sin; 10998 /* We are a writer, so we should be able to lookup */ 10999 ipif = ipif_lookup_addr_v6(&sin6->sin6_addr, 11000 ill, ALL_ZONES, NULL, NULL, NULL, NULL, ipst); 11001 if (ipif == NULL) { 11002 /* 11003 * Maybe the address in on another interface in 11004 * the same IPMP group? We check this below. 11005 */ 11006 ipif = ipif_lookup_addr_v6(&sin6->sin6_addr, 11007 NULL, ALL_ZONES, NULL, NULL, NULL, NULL, 11008 ipst); 11009 } 11010 } else { 11011 ipaddr_t addr; 11012 11013 if (sin->sin_family != AF_INET) 11014 return (EAFNOSUPPORT); 11015 11016 addr = sin->sin_addr.s_addr; 11017 /* We are a writer, so we should be able to lookup */ 11018 ipif = ipif_lookup_addr(addr, ill, ALL_ZONES, NULL, 11019 NULL, NULL, NULL, ipst); 11020 if (ipif == NULL) { 11021 /* 11022 * Maybe the address in on another interface in 11023 * the same IPMP group? We check this below. 11024 */ 11025 ipif = ipif_lookup_addr(addr, NULL, ALL_ZONES, 11026 NULL, NULL, NULL, NULL, ipst); 11027 } 11028 } 11029 if (ipif == NULL) { 11030 return (EADDRNOTAVAIL); 11031 } 11032 /* 11033 * When the address to be removed is hosted on a different 11034 * interface, we check if the interface is in the same IPMP 11035 * group as the specified one; if so we proceed with the 11036 * removal. 11037 * ill->ill_group is NULL when the ill is down, so we have to 11038 * compare the group names instead. 11039 */ 11040 if (ipif->ipif_ill != ill && 11041 (ipif->ipif_ill->ill_phyint->phyint_groupname_len == 0 || 11042 ill->ill_phyint->phyint_groupname_len == 0 || 11043 mi_strcmp(ipif->ipif_ill->ill_phyint->phyint_groupname, 11044 ill->ill_phyint->phyint_groupname) != 0)) { 11045 ipif_refrele(ipif); 11046 return (EADDRNOTAVAIL); 11047 } 11048 11049 /* This is a writer */ 11050 ipif_refrele(ipif); 11051 } 11052 11053 /* 11054 * Can not delete instance zero since it is tied to the ill. 11055 */ 11056 if (ipif->ipif_id == 0) 11057 return (EBUSY); 11058 11059 mutex_enter(&ill->ill_lock); 11060 ipif->ipif_state_flags |= IPIF_CONDEMNED; 11061 mutex_exit(&ill->ill_lock); 11062 11063 ipif_free(ipif); 11064 11065 mutex_enter(&connp->conn_lock); 11066 mutex_enter(&ill->ill_lock); 11067 11068 /* Are any references to this ipif active */ 11069 if (ipif->ipif_refcnt == 0 && ipif->ipif_ire_cnt == 0) { 11070 mutex_exit(&ill->ill_lock); 11071 mutex_exit(&connp->conn_lock); 11072 ipif_non_duplicate(ipif); 11073 ipif_down_tail(ipif); 11074 ipif_free_tail(ipif); 11075 return (0); 11076 } 11077 success = ipsq_pending_mp_add(connp, ipif, CONNP_TO_WQ(connp), mp, 11078 IPIF_FREE); 11079 mutex_exit(&ill->ill_lock); 11080 mutex_exit(&connp->conn_lock); 11081 if (success) 11082 return (EINPROGRESS); 11083 else 11084 return (EINTR); 11085 } 11086 11087 /* 11088 * Restart the removeif ioctl. The refcnt has gone down to 0. 11089 * The ipif is already condemned. So can't find it thru lookups. 11090 */ 11091 /* ARGSUSED */ 11092 int 11093 ip_sioctl_removeif_restart(ipif_t *ipif, sin_t *dummy_sin, queue_t *q, 11094 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *dummy_if_req) 11095 { 11096 ill_t *ill; 11097 11098 ip1dbg(("ip_sioctl_removeif_restart(%s:%u %p)\n", 11099 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11100 if (ipif->ipif_id == 0 && ipif->ipif_net_type == IRE_LOOPBACK) { 11101 ill = ipif->ipif_ill; 11102 ASSERT(IAM_WRITER_ILL(ill)); 11103 ASSERT((ipif->ipif_state_flags & IPIF_CONDEMNED) && 11104 (ill->ill_state_flags & IPIF_CONDEMNED)); 11105 ill_delete_tail(ill); 11106 mi_free(ill); 11107 return (0); 11108 } 11109 11110 ill = ipif->ipif_ill; 11111 ASSERT(IAM_WRITER_IPIF(ipif)); 11112 ASSERT(ipif->ipif_state_flags & IPIF_CONDEMNED); 11113 11114 ipif_non_duplicate(ipif); 11115 ipif_down_tail(ipif); 11116 ipif_free_tail(ipif); 11117 11118 ILL_UNMARK_CHANGING(ill); 11119 return (0); 11120 } 11121 11122 /* 11123 * Set the local interface address. 11124 * Allow an address of all zero when the interface is down. 11125 */ 11126 /* ARGSUSED */ 11127 int 11128 ip_sioctl_addr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11129 ip_ioctl_cmd_t *dummy_ipip, void *dummy_ifreq) 11130 { 11131 int err = 0; 11132 in6_addr_t v6addr; 11133 boolean_t need_up = B_FALSE; 11134 11135 ip1dbg(("ip_sioctl_addr(%s:%u %p)\n", 11136 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11137 11138 ASSERT(IAM_WRITER_IPIF(ipif)); 11139 11140 if (ipif->ipif_isv6) { 11141 sin6_t *sin6; 11142 ill_t *ill; 11143 phyint_t *phyi; 11144 11145 if (sin->sin_family != AF_INET6) 11146 return (EAFNOSUPPORT); 11147 11148 sin6 = (sin6_t *)sin; 11149 v6addr = sin6->sin6_addr; 11150 ill = ipif->ipif_ill; 11151 phyi = ill->ill_phyint; 11152 11153 /* 11154 * Enforce that true multicast interfaces have a link-local 11155 * address for logical unit 0. 11156 */ 11157 if (ipif->ipif_id == 0 && 11158 (ill->ill_flags & ILLF_MULTICAST) && 11159 !(ipif->ipif_flags & (IPIF_POINTOPOINT)) && 11160 !(phyi->phyint_flags & (PHYI_LOOPBACK)) && 11161 !IN6_IS_ADDR_LINKLOCAL(&v6addr)) { 11162 return (EADDRNOTAVAIL); 11163 } 11164 11165 /* 11166 * up interfaces shouldn't have the unspecified address 11167 * unless they also have the IPIF_NOLOCAL flags set and 11168 * have a subnet assigned. 11169 */ 11170 if ((ipif->ipif_flags & IPIF_UP) && 11171 IN6_IS_ADDR_UNSPECIFIED(&v6addr) && 11172 (!(ipif->ipif_flags & IPIF_NOLOCAL) || 11173 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6subnet))) { 11174 return (EADDRNOTAVAIL); 11175 } 11176 11177 if (!ip_local_addr_ok_v6(&v6addr, &ipif->ipif_v6net_mask)) 11178 return (EADDRNOTAVAIL); 11179 } else { 11180 ipaddr_t addr; 11181 11182 if (sin->sin_family != AF_INET) 11183 return (EAFNOSUPPORT); 11184 11185 addr = sin->sin_addr.s_addr; 11186 11187 /* Allow 0 as the local address. */ 11188 if (addr != 0 && !ip_addr_ok_v4(addr, ipif->ipif_net_mask)) 11189 return (EADDRNOTAVAIL); 11190 11191 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 11192 } 11193 11194 11195 /* 11196 * Even if there is no change we redo things just to rerun 11197 * ipif_set_default. 11198 */ 11199 if (ipif->ipif_flags & IPIF_UP) { 11200 /* 11201 * Setting a new local address, make sure 11202 * we have net and subnet bcast ire's for 11203 * the old address if we need them. 11204 */ 11205 if (!ipif->ipif_isv6) 11206 ipif_check_bcast_ires(ipif); 11207 /* 11208 * If the interface is already marked up, 11209 * we call ipif_down which will take care 11210 * of ditching any IREs that have been set 11211 * up based on the old interface address. 11212 */ 11213 err = ipif_logical_down(ipif, q, mp); 11214 if (err == EINPROGRESS) 11215 return (err); 11216 ipif_down_tail(ipif); 11217 need_up = 1; 11218 } 11219 11220 err = ip_sioctl_addr_tail(ipif, sin, q, mp, need_up); 11221 return (err); 11222 } 11223 11224 int 11225 ip_sioctl_addr_tail(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11226 boolean_t need_up) 11227 { 11228 in6_addr_t v6addr; 11229 in6_addr_t ov6addr; 11230 ipaddr_t addr; 11231 sin6_t *sin6; 11232 int sinlen; 11233 int err = 0; 11234 ill_t *ill = ipif->ipif_ill; 11235 boolean_t need_dl_down; 11236 boolean_t need_arp_down; 11237 struct iocblk *iocp; 11238 11239 iocp = (mp != NULL) ? (struct iocblk *)mp->b_rptr : NULL; 11240 11241 ip1dbg(("ip_sioctl_addr_tail(%s:%u %p)\n", 11242 ill->ill_name, ipif->ipif_id, (void *)ipif)); 11243 ASSERT(IAM_WRITER_IPIF(ipif)); 11244 11245 /* Must cancel any pending timer before taking the ill_lock */ 11246 if (ipif->ipif_recovery_id != 0) 11247 (void) untimeout(ipif->ipif_recovery_id); 11248 ipif->ipif_recovery_id = 0; 11249 11250 if (ipif->ipif_isv6) { 11251 sin6 = (sin6_t *)sin; 11252 v6addr = sin6->sin6_addr; 11253 sinlen = sizeof (struct sockaddr_in6); 11254 } else { 11255 addr = sin->sin_addr.s_addr; 11256 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 11257 sinlen = sizeof (struct sockaddr_in); 11258 } 11259 mutex_enter(&ill->ill_lock); 11260 ov6addr = ipif->ipif_v6lcl_addr; 11261 ipif->ipif_v6lcl_addr = v6addr; 11262 sctp_update_ipif_addr(ipif, ov6addr); 11263 if (ipif->ipif_flags & (IPIF_ANYCAST | IPIF_NOLOCAL)) { 11264 ipif->ipif_v6src_addr = ipv6_all_zeros; 11265 } else { 11266 ipif->ipif_v6src_addr = v6addr; 11267 } 11268 ipif->ipif_addr_ready = 0; 11269 11270 /* 11271 * If the interface was previously marked as a duplicate, then since 11272 * we've now got a "new" address, it should no longer be considered a 11273 * duplicate -- even if the "new" address is the same as the old one. 11274 * Note that if all ipifs are down, we may have a pending ARP down 11275 * event to handle. This is because we want to recover from duplicates 11276 * and thus delay tearing down ARP until the duplicates have been 11277 * removed or disabled. 11278 */ 11279 need_dl_down = need_arp_down = B_FALSE; 11280 if (ipif->ipif_flags & IPIF_DUPLICATE) { 11281 need_arp_down = !need_up; 11282 ipif->ipif_flags &= ~IPIF_DUPLICATE; 11283 if (--ill->ill_ipif_dup_count == 0 && !need_up && 11284 ill->ill_ipif_up_count == 0 && ill->ill_dl_up) { 11285 need_dl_down = B_TRUE; 11286 } 11287 } 11288 11289 if (ipif->ipif_isv6 && IN6_IS_ADDR_6TO4(&v6addr) && 11290 !ill->ill_is_6to4tun) { 11291 queue_t *wqp = ill->ill_wq; 11292 11293 /* 11294 * The local address of this interface is a 6to4 address, 11295 * check if this interface is in fact a 6to4 tunnel or just 11296 * an interface configured with a 6to4 address. We are only 11297 * interested in the former. 11298 */ 11299 if (wqp != NULL) { 11300 while ((wqp->q_next != NULL) && 11301 (wqp->q_next->q_qinfo != NULL) && 11302 (wqp->q_next->q_qinfo->qi_minfo != NULL)) { 11303 11304 if (wqp->q_next->q_qinfo->qi_minfo->mi_idnum 11305 == TUN6TO4_MODID) { 11306 /* set for use in IP */ 11307 ill->ill_is_6to4tun = 1; 11308 break; 11309 } 11310 wqp = wqp->q_next; 11311 } 11312 } 11313 } 11314 11315 ipif_set_default(ipif); 11316 11317 /* 11318 * When publishing an interface address change event, we only notify 11319 * the event listeners of the new address. It is assumed that if they 11320 * actively care about the addresses assigned that they will have 11321 * already discovered the previous address assigned (if there was one.) 11322 * 11323 * Don't attach nic event message for SIOCLIFADDIF ioctl. 11324 */ 11325 if (iocp != NULL && iocp->ioc_cmd != SIOCLIFADDIF) { 11326 hook_nic_event_t *info; 11327 if ((info = ipif->ipif_ill->ill_nic_event_info) != NULL) { 11328 ip2dbg(("ip_sioctl_addr_tail: unexpected nic event %d " 11329 "attached for %s\n", info->hne_event, 11330 ill->ill_name)); 11331 if (info->hne_data != NULL) 11332 kmem_free(info->hne_data, info->hne_datalen); 11333 kmem_free(info, sizeof (hook_nic_event_t)); 11334 } 11335 11336 info = kmem_alloc(sizeof (hook_nic_event_t), KM_NOSLEEP); 11337 if (info != NULL) { 11338 ip_stack_t *ipst = ill->ill_ipst; 11339 11340 info->hne_nic = 11341 ipif->ipif_ill->ill_phyint->phyint_hook_ifindex; 11342 info->hne_lif = MAP_IPIF_ID(ipif->ipif_id); 11343 info->hne_event = NE_ADDRESS_CHANGE; 11344 info->hne_family = ipif->ipif_isv6 ? 11345 ipst->ips_ipv6_net_data : ipst->ips_ipv4_net_data; 11346 info->hne_data = kmem_alloc(sinlen, KM_NOSLEEP); 11347 if (info->hne_data != NULL) { 11348 info->hne_datalen = sinlen; 11349 bcopy(sin, info->hne_data, sinlen); 11350 } else { 11351 ip2dbg(("ip_sioctl_addr_tail: could not attach " 11352 "address information for ADDRESS_CHANGE nic" 11353 " event of %s (ENOMEM)\n", 11354 ipif->ipif_ill->ill_name)); 11355 kmem_free(info, sizeof (hook_nic_event_t)); 11356 } 11357 } else 11358 ip2dbg(("ip_sioctl_addr_tail: could not attach " 11359 "ADDRESS_CHANGE nic event information for %s " 11360 "(ENOMEM)\n", ipif->ipif_ill->ill_name)); 11361 11362 ipif->ipif_ill->ill_nic_event_info = info; 11363 } 11364 11365 mutex_exit(&ill->ill_lock); 11366 11367 if (need_up) { 11368 /* 11369 * Now bring the interface back up. If this 11370 * is the only IPIF for the ILL, ipif_up 11371 * will have to re-bind to the device, so 11372 * we may get back EINPROGRESS, in which 11373 * case, this IOCTL will get completed in 11374 * ip_rput_dlpi when we see the DL_BIND_ACK. 11375 */ 11376 err = ipif_up(ipif, q, mp); 11377 } 11378 11379 if (need_dl_down) 11380 ill_dl_down(ill); 11381 if (need_arp_down) 11382 ipif_arp_down(ipif); 11383 11384 return (err); 11385 } 11386 11387 11388 /* 11389 * Restart entry point to restart the address set operation after the 11390 * refcounts have dropped to zero. 11391 */ 11392 /* ARGSUSED */ 11393 int 11394 ip_sioctl_addr_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11395 ip_ioctl_cmd_t *ipip, void *ifreq) 11396 { 11397 ip1dbg(("ip_sioctl_addr_restart(%s:%u %p)\n", 11398 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11399 ASSERT(IAM_WRITER_IPIF(ipif)); 11400 ipif_down_tail(ipif); 11401 return (ip_sioctl_addr_tail(ipif, sin, q, mp, B_TRUE)); 11402 } 11403 11404 /* ARGSUSED */ 11405 int 11406 ip_sioctl_get_addr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11407 ip_ioctl_cmd_t *ipip, void *if_req) 11408 { 11409 sin6_t *sin6 = (struct sockaddr_in6 *)sin; 11410 struct lifreq *lifr = (struct lifreq *)if_req; 11411 11412 ip1dbg(("ip_sioctl_get_addr(%s:%u %p)\n", 11413 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11414 /* 11415 * The net mask and address can't change since we have a 11416 * reference to the ipif. So no lock is necessary. 11417 */ 11418 if (ipif->ipif_isv6) { 11419 *sin6 = sin6_null; 11420 sin6->sin6_family = AF_INET6; 11421 sin6->sin6_addr = ipif->ipif_v6lcl_addr; 11422 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 11423 lifr->lifr_addrlen = 11424 ip_mask_to_plen_v6(&ipif->ipif_v6net_mask); 11425 } else { 11426 *sin = sin_null; 11427 sin->sin_family = AF_INET; 11428 sin->sin_addr.s_addr = ipif->ipif_lcl_addr; 11429 if (ipip->ipi_cmd_type == LIF_CMD) { 11430 lifr->lifr_addrlen = 11431 ip_mask_to_plen(ipif->ipif_net_mask); 11432 } 11433 } 11434 return (0); 11435 } 11436 11437 /* 11438 * Set the destination address for a pt-pt interface. 11439 */ 11440 /* ARGSUSED */ 11441 int 11442 ip_sioctl_dstaddr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11443 ip_ioctl_cmd_t *ipip, void *if_req) 11444 { 11445 int err = 0; 11446 in6_addr_t v6addr; 11447 boolean_t need_up = B_FALSE; 11448 11449 ip1dbg(("ip_sioctl_dstaddr(%s:%u %p)\n", 11450 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11451 ASSERT(IAM_WRITER_IPIF(ipif)); 11452 11453 if (ipif->ipif_isv6) { 11454 sin6_t *sin6; 11455 11456 if (sin->sin_family != AF_INET6) 11457 return (EAFNOSUPPORT); 11458 11459 sin6 = (sin6_t *)sin; 11460 v6addr = sin6->sin6_addr; 11461 11462 if (!ip_remote_addr_ok_v6(&v6addr, &ipif->ipif_v6net_mask)) 11463 return (EADDRNOTAVAIL); 11464 } else { 11465 ipaddr_t addr; 11466 11467 if (sin->sin_family != AF_INET) 11468 return (EAFNOSUPPORT); 11469 11470 addr = sin->sin_addr.s_addr; 11471 if (!ip_addr_ok_v4(addr, ipif->ipif_net_mask)) 11472 return (EADDRNOTAVAIL); 11473 11474 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 11475 } 11476 11477 if (IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6pp_dst_addr, &v6addr)) 11478 return (0); /* No change */ 11479 11480 if (ipif->ipif_flags & IPIF_UP) { 11481 /* 11482 * If the interface is already marked up, 11483 * we call ipif_down which will take care 11484 * of ditching any IREs that have been set 11485 * up based on the old pp dst address. 11486 */ 11487 err = ipif_logical_down(ipif, q, mp); 11488 if (err == EINPROGRESS) 11489 return (err); 11490 ipif_down_tail(ipif); 11491 need_up = B_TRUE; 11492 } 11493 /* 11494 * could return EINPROGRESS. If so ioctl will complete in 11495 * ip_rput_dlpi_writer 11496 */ 11497 err = ip_sioctl_dstaddr_tail(ipif, sin, q, mp, need_up); 11498 return (err); 11499 } 11500 11501 static int 11502 ip_sioctl_dstaddr_tail(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11503 boolean_t need_up) 11504 { 11505 in6_addr_t v6addr; 11506 ill_t *ill = ipif->ipif_ill; 11507 int err = 0; 11508 boolean_t need_dl_down; 11509 boolean_t need_arp_down; 11510 11511 ip1dbg(("ip_sioctl_dstaddr_tail(%s:%u %p)\n", ill->ill_name, 11512 ipif->ipif_id, (void *)ipif)); 11513 11514 /* Must cancel any pending timer before taking the ill_lock */ 11515 if (ipif->ipif_recovery_id != 0) 11516 (void) untimeout(ipif->ipif_recovery_id); 11517 ipif->ipif_recovery_id = 0; 11518 11519 if (ipif->ipif_isv6) { 11520 sin6_t *sin6; 11521 11522 sin6 = (sin6_t *)sin; 11523 v6addr = sin6->sin6_addr; 11524 } else { 11525 ipaddr_t addr; 11526 11527 addr = sin->sin_addr.s_addr; 11528 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 11529 } 11530 mutex_enter(&ill->ill_lock); 11531 /* Set point to point destination address. */ 11532 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) { 11533 /* 11534 * Allow this as a means of creating logical 11535 * pt-pt interfaces on top of e.g. an Ethernet. 11536 * XXX Undocumented HACK for testing. 11537 * pt-pt interfaces are created with NUD disabled. 11538 */ 11539 ipif->ipif_flags |= IPIF_POINTOPOINT; 11540 ipif->ipif_flags &= ~IPIF_BROADCAST; 11541 if (ipif->ipif_isv6) 11542 ill->ill_flags |= ILLF_NONUD; 11543 } 11544 11545 /* 11546 * If the interface was previously marked as a duplicate, then since 11547 * we've now got a "new" address, it should no longer be considered a 11548 * duplicate -- even if the "new" address is the same as the old one. 11549 * Note that if all ipifs are down, we may have a pending ARP down 11550 * event to handle. 11551 */ 11552 need_dl_down = need_arp_down = B_FALSE; 11553 if (ipif->ipif_flags & IPIF_DUPLICATE) { 11554 need_arp_down = !need_up; 11555 ipif->ipif_flags &= ~IPIF_DUPLICATE; 11556 if (--ill->ill_ipif_dup_count == 0 && !need_up && 11557 ill->ill_ipif_up_count == 0 && ill->ill_dl_up) { 11558 need_dl_down = B_TRUE; 11559 } 11560 } 11561 11562 /* Set the new address. */ 11563 ipif->ipif_v6pp_dst_addr = v6addr; 11564 /* Make sure subnet tracks pp_dst */ 11565 ipif->ipif_v6subnet = ipif->ipif_v6pp_dst_addr; 11566 mutex_exit(&ill->ill_lock); 11567 11568 if (need_up) { 11569 /* 11570 * Now bring the interface back up. If this 11571 * is the only IPIF for the ILL, ipif_up 11572 * will have to re-bind to the device, so 11573 * we may get back EINPROGRESS, in which 11574 * case, this IOCTL will get completed in 11575 * ip_rput_dlpi when we see the DL_BIND_ACK. 11576 */ 11577 err = ipif_up(ipif, q, mp); 11578 } 11579 11580 if (need_dl_down) 11581 ill_dl_down(ill); 11582 11583 if (need_arp_down) 11584 ipif_arp_down(ipif); 11585 return (err); 11586 } 11587 11588 /* 11589 * Restart entry point to restart the dstaddress set operation after the 11590 * refcounts have dropped to zero. 11591 */ 11592 /* ARGSUSED */ 11593 int 11594 ip_sioctl_dstaddr_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11595 ip_ioctl_cmd_t *ipip, void *ifreq) 11596 { 11597 ip1dbg(("ip_sioctl_dstaddr_restart(%s:%u %p)\n", 11598 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11599 ipif_down_tail(ipif); 11600 return (ip_sioctl_dstaddr_tail(ipif, sin, q, mp, B_TRUE)); 11601 } 11602 11603 /* ARGSUSED */ 11604 int 11605 ip_sioctl_get_dstaddr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11606 ip_ioctl_cmd_t *ipip, void *if_req) 11607 { 11608 sin6_t *sin6 = (struct sockaddr_in6 *)sin; 11609 11610 ip1dbg(("ip_sioctl_get_dstaddr(%s:%u %p)\n", 11611 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11612 /* 11613 * Get point to point destination address. The addresses can't 11614 * change since we hold a reference to the ipif. 11615 */ 11616 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) 11617 return (EADDRNOTAVAIL); 11618 11619 if (ipif->ipif_isv6) { 11620 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 11621 *sin6 = sin6_null; 11622 sin6->sin6_family = AF_INET6; 11623 sin6->sin6_addr = ipif->ipif_v6pp_dst_addr; 11624 } else { 11625 *sin = sin_null; 11626 sin->sin_family = AF_INET; 11627 sin->sin_addr.s_addr = ipif->ipif_pp_dst_addr; 11628 } 11629 return (0); 11630 } 11631 11632 /* 11633 * part of ipmp, make this func return the active/inactive state and 11634 * caller can set once atomically instead of multiple mutex_enter/mutex_exit 11635 */ 11636 /* 11637 * This function either sets or clears the IFF_INACTIVE flag. 11638 * 11639 * As long as there are some addresses or multicast memberships on the 11640 * IPv4 or IPv6 interface of the "phyi" that does not belong in here, we 11641 * will consider it to be ACTIVE (clear IFF_INACTIVE) i.e the interface 11642 * will be used for outbound packets. 11643 * 11644 * Caller needs to verify the validity of setting IFF_INACTIVE. 11645 */ 11646 static void 11647 phyint_inactive(phyint_t *phyi) 11648 { 11649 ill_t *ill_v4; 11650 ill_t *ill_v6; 11651 ipif_t *ipif; 11652 ilm_t *ilm; 11653 11654 ill_v4 = phyi->phyint_illv4; 11655 ill_v6 = phyi->phyint_illv6; 11656 11657 /* 11658 * No need for a lock while traversing the list since iam 11659 * a writer 11660 */ 11661 if (ill_v4 != NULL) { 11662 ASSERT(IAM_WRITER_ILL(ill_v4)); 11663 for (ipif = ill_v4->ill_ipif; ipif != NULL; 11664 ipif = ipif->ipif_next) { 11665 if (ipif->ipif_orig_ifindex != phyi->phyint_ifindex) { 11666 mutex_enter(&phyi->phyint_lock); 11667 phyi->phyint_flags &= ~PHYI_INACTIVE; 11668 mutex_exit(&phyi->phyint_lock); 11669 return; 11670 } 11671 } 11672 for (ilm = ill_v4->ill_ilm; ilm != NULL; 11673 ilm = ilm->ilm_next) { 11674 if (ilm->ilm_orig_ifindex != phyi->phyint_ifindex) { 11675 mutex_enter(&phyi->phyint_lock); 11676 phyi->phyint_flags &= ~PHYI_INACTIVE; 11677 mutex_exit(&phyi->phyint_lock); 11678 return; 11679 } 11680 } 11681 } 11682 if (ill_v6 != NULL) { 11683 ill_v6 = phyi->phyint_illv6; 11684 for (ipif = ill_v6->ill_ipif; ipif != NULL; 11685 ipif = ipif->ipif_next) { 11686 if (ipif->ipif_orig_ifindex != phyi->phyint_ifindex) { 11687 mutex_enter(&phyi->phyint_lock); 11688 phyi->phyint_flags &= ~PHYI_INACTIVE; 11689 mutex_exit(&phyi->phyint_lock); 11690 return; 11691 } 11692 } 11693 for (ilm = ill_v6->ill_ilm; ilm != NULL; 11694 ilm = ilm->ilm_next) { 11695 if (ilm->ilm_orig_ifindex != phyi->phyint_ifindex) { 11696 mutex_enter(&phyi->phyint_lock); 11697 phyi->phyint_flags &= ~PHYI_INACTIVE; 11698 mutex_exit(&phyi->phyint_lock); 11699 return; 11700 } 11701 } 11702 } 11703 mutex_enter(&phyi->phyint_lock); 11704 phyi->phyint_flags |= PHYI_INACTIVE; 11705 mutex_exit(&phyi->phyint_lock); 11706 } 11707 11708 /* 11709 * This function is called only when the phyint flags change. Currently 11710 * called from ip_sioctl_flags. We re-do the broadcast nomination so 11711 * that we can select a good ill. 11712 */ 11713 static void 11714 ip_redo_nomination(phyint_t *phyi) 11715 { 11716 ill_t *ill_v4; 11717 11718 ill_v4 = phyi->phyint_illv4; 11719 11720 if (ill_v4 != NULL && ill_v4->ill_group != NULL) { 11721 ASSERT(IAM_WRITER_ILL(ill_v4)); 11722 if (ill_v4->ill_group->illgrp_ill_count > 1) 11723 ill_nominate_bcast_rcv(ill_v4->ill_group); 11724 } 11725 } 11726 11727 /* 11728 * Heuristic to check if ill is INACTIVE. 11729 * Checks if ill has an ipif with an usable ip address. 11730 * 11731 * Return values: 11732 * B_TRUE - ill is INACTIVE; has no usable ipif 11733 * B_FALSE - ill is not INACTIVE; ill has at least one usable ipif 11734 */ 11735 static boolean_t 11736 ill_is_inactive(ill_t *ill) 11737 { 11738 ipif_t *ipif; 11739 11740 /* Check whether it is in an IPMP group */ 11741 if (ill->ill_phyint->phyint_groupname == NULL) 11742 return (B_FALSE); 11743 11744 if (ill->ill_ipif_up_count == 0) 11745 return (B_TRUE); 11746 11747 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 11748 uint64_t flags = ipif->ipif_flags; 11749 11750 /* 11751 * This ipif is usable if it is IPIF_UP and not a 11752 * dedicated test address. A dedicated test address 11753 * is marked IPIF_NOFAILOVER *and* IPIF_DEPRECATED 11754 * (note in particular that V6 test addresses are 11755 * link-local data addresses and thus are marked 11756 * IPIF_NOFAILOVER but not IPIF_DEPRECATED). 11757 */ 11758 if ((flags & IPIF_UP) && 11759 ((flags & (IPIF_DEPRECATED|IPIF_NOFAILOVER)) != 11760 (IPIF_DEPRECATED|IPIF_NOFAILOVER))) 11761 return (B_FALSE); 11762 } 11763 return (B_TRUE); 11764 } 11765 11766 /* 11767 * Set interface flags. 11768 * Need to do special action for IPIF_UP, IPIF_DEPRECATED, IPIF_NOXMIT, 11769 * IPIF_NOLOCAL, ILLF_NONUD, ILLF_NOARP, IPIF_PRIVATE, IPIF_ANYCAST, 11770 * IPIF_PREFERRED, PHYI_STANDBY, PHYI_FAILED and PHYI_OFFLINE. 11771 * 11772 * NOTE : We really don't enforce that ipif_id zero should be used 11773 * for setting any flags other than IFF_LOGINT_FLAGS. This 11774 * is because applications generally does SICGLIFFLAGS and 11775 * ORs in the new flags (that affects the logical) and does a 11776 * SIOCSLIFFLAGS. Thus, "flags" below could contain bits other 11777 * than IFF_LOGINT_FLAGS. One could check whether "turn_on" - the 11778 * flags that will be turned on is correct with respect to 11779 * ipif_id 0. For backward compatibility reasons, it is not done. 11780 */ 11781 /* ARGSUSED */ 11782 int 11783 ip_sioctl_flags(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11784 ip_ioctl_cmd_t *ipip, void *if_req) 11785 { 11786 uint64_t turn_on; 11787 uint64_t turn_off; 11788 int err; 11789 boolean_t need_up = B_FALSE; 11790 phyint_t *phyi; 11791 ill_t *ill; 11792 uint64_t intf_flags; 11793 boolean_t phyint_flags_modified = B_FALSE; 11794 uint64_t flags; 11795 struct ifreq *ifr; 11796 struct lifreq *lifr; 11797 boolean_t set_linklocal = B_FALSE; 11798 boolean_t zero_source = B_FALSE; 11799 ip_stack_t *ipst; 11800 11801 ip1dbg(("ip_sioctl_flags(%s:%u %p)\n", 11802 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11803 11804 ASSERT(IAM_WRITER_IPIF(ipif)); 11805 11806 ill = ipif->ipif_ill; 11807 phyi = ill->ill_phyint; 11808 ipst = ill->ill_ipst; 11809 11810 if (ipip->ipi_cmd_type == IF_CMD) { 11811 ifr = (struct ifreq *)if_req; 11812 flags = (uint64_t)(ifr->ifr_flags & 0x0000ffff); 11813 } else { 11814 lifr = (struct lifreq *)if_req; 11815 flags = lifr->lifr_flags; 11816 } 11817 11818 intf_flags = ipif->ipif_flags | ill->ill_flags | phyi->phyint_flags; 11819 11820 /* 11821 * Has the flags been set correctly till now ? 11822 */ 11823 ASSERT((phyi->phyint_flags & ~(IFF_PHYINT_FLAGS)) == 0); 11824 ASSERT((ill->ill_flags & ~(IFF_PHYINTINST_FLAGS)) == 0); 11825 ASSERT((ipif->ipif_flags & ~(IFF_LOGINT_FLAGS)) == 0); 11826 /* 11827 * Compare the new flags to the old, and partition 11828 * into those coming on and those going off. 11829 * For the 16 bit command keep the bits above bit 16 unchanged. 11830 */ 11831 if (ipip->ipi_cmd == SIOCSIFFLAGS) 11832 flags |= intf_flags & ~0xFFFF; 11833 11834 /* 11835 * First check which bits will change and then which will 11836 * go on and off 11837 */ 11838 turn_on = (flags ^ intf_flags) & ~IFF_CANTCHANGE; 11839 if (!turn_on) 11840 return (0); /* No change */ 11841 11842 turn_off = intf_flags & turn_on; 11843 turn_on ^= turn_off; 11844 err = 0; 11845 11846 /* 11847 * Don't allow any bits belonging to the logical interface 11848 * to be set or cleared on the replacement ipif that was 11849 * created temporarily during a MOVE. 11850 */ 11851 if (ipif->ipif_replace_zero && 11852 ((turn_on|turn_off) & IFF_LOGINT_FLAGS) != 0) { 11853 return (EINVAL); 11854 } 11855 11856 /* 11857 * Only allow the IFF_XRESOLV and IFF_TEMPORARY flags to be set on 11858 * IPv6 interfaces. 11859 */ 11860 if ((turn_on & (IFF_XRESOLV|IFF_TEMPORARY)) && !(ipif->ipif_isv6)) 11861 return (EINVAL); 11862 11863 /* 11864 * cannot turn off IFF_NOXMIT on VNI interfaces. 11865 */ 11866 if ((turn_off & IFF_NOXMIT) && IS_VNI(ipif->ipif_ill)) 11867 return (EINVAL); 11868 11869 /* 11870 * Don't allow the IFF_ROUTER flag to be turned on on loopback 11871 * interfaces. It makes no sense in that context. 11872 */ 11873 if ((turn_on & IFF_ROUTER) && (phyi->phyint_flags & PHYI_LOOPBACK)) 11874 return (EINVAL); 11875 11876 if (flags & (IFF_NOLOCAL|IFF_ANYCAST)) 11877 zero_source = B_TRUE; 11878 11879 /* 11880 * For IPv6 ipif_id 0, don't allow the interface to be up without 11881 * a link local address if IFF_NOLOCAL or IFF_ANYCAST are not set. 11882 * If the link local address isn't set, and can be set, it will get 11883 * set later on in this function. 11884 */ 11885 if (ipif->ipif_id == 0 && ipif->ipif_isv6 && 11886 (flags & IFF_UP) && !zero_source && 11887 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr)) { 11888 if (ipif_cant_setlinklocal(ipif)) 11889 return (EINVAL); 11890 set_linklocal = B_TRUE; 11891 } 11892 11893 /* 11894 * ILL cannot be part of a usesrc group and and IPMP group at the 11895 * same time. No need to grab ill_g_usesrc_lock here, see 11896 * synchronization notes in ip.c 11897 */ 11898 if (turn_on & PHYI_STANDBY && 11899 ipif->ipif_ill->ill_usesrc_grp_next != NULL) { 11900 return (EINVAL); 11901 } 11902 11903 /* 11904 * If we modify physical interface flags, we'll potentially need to 11905 * send up two routing socket messages for the changes (one for the 11906 * IPv4 ill, and another for the IPv6 ill). Note that here. 11907 */ 11908 if ((turn_on|turn_off) & IFF_PHYINT_FLAGS) 11909 phyint_flags_modified = B_TRUE; 11910 11911 /* 11912 * If we are setting or clearing FAILED or STANDBY or OFFLINE, 11913 * we need to flush the IRE_CACHES belonging to this ill. 11914 * We handle this case here without doing the DOWN/UP dance 11915 * like it is done for other flags. If some other flags are 11916 * being turned on/off with FAILED/STANDBY/OFFLINE, the code 11917 * below will handle it by bringing it down and then 11918 * bringing it UP. 11919 */ 11920 if ((turn_on|turn_off) & (PHYI_FAILED|PHYI_STANDBY|PHYI_OFFLINE)) { 11921 ill_t *ill_v4, *ill_v6; 11922 11923 ill_v4 = phyi->phyint_illv4; 11924 ill_v6 = phyi->phyint_illv6; 11925 11926 /* 11927 * First set the INACTIVE flag if needed. Then delete the ires. 11928 * ire_add will atomically prevent creating new IRE_CACHEs 11929 * unless hidden flag is set. 11930 * PHYI_FAILED and PHYI_INACTIVE are exclusive 11931 */ 11932 if ((turn_on & PHYI_FAILED) && 11933 ((intf_flags & PHYI_STANDBY) || 11934 !ipst->ips_ipmp_enable_failback)) { 11935 /* Reset PHYI_INACTIVE when PHYI_FAILED is being set */ 11936 phyi->phyint_flags &= ~PHYI_INACTIVE; 11937 } 11938 if ((turn_off & PHYI_FAILED) && 11939 ((intf_flags & PHYI_STANDBY) || 11940 (!ipst->ips_ipmp_enable_failback && 11941 ill_is_inactive(ill)))) { 11942 phyint_inactive(phyi); 11943 } 11944 11945 if (turn_on & PHYI_STANDBY) { 11946 /* 11947 * We implicitly set INACTIVE only when STANDBY is set. 11948 * INACTIVE is also set on non-STANDBY phyint when user 11949 * disables FAILBACK using configuration file. 11950 * Do not allow STANDBY to be set on such INACTIVE 11951 * phyint 11952 */ 11953 if (phyi->phyint_flags & PHYI_INACTIVE) 11954 return (EINVAL); 11955 if (!(phyi->phyint_flags & PHYI_FAILED)) 11956 phyint_inactive(phyi); 11957 } 11958 if (turn_off & PHYI_STANDBY) { 11959 if (ipst->ips_ipmp_enable_failback) { 11960 /* 11961 * Reset PHYI_INACTIVE. 11962 */ 11963 phyi->phyint_flags &= ~PHYI_INACTIVE; 11964 } else if (ill_is_inactive(ill) && 11965 !(phyi->phyint_flags & PHYI_FAILED)) { 11966 /* 11967 * Need to set INACTIVE, when user sets 11968 * STANDBY on a non-STANDBY phyint and 11969 * later resets STANDBY 11970 */ 11971 phyint_inactive(phyi); 11972 } 11973 } 11974 /* 11975 * We should always send up a message so that the 11976 * daemons come to know of it. Note that the zeroth 11977 * interface can be down and the check below for IPIF_UP 11978 * will not make sense as we are actually setting 11979 * a phyint flag here. We assume that the ipif used 11980 * is always the zeroth ipif. (ip_rts_ifmsg does not 11981 * send up any message for non-zero ipifs). 11982 */ 11983 phyint_flags_modified = B_TRUE; 11984 11985 if (ill_v4 != NULL) { 11986 ire_walk_ill_v4(MATCH_IRE_ILL | MATCH_IRE_TYPE, 11987 IRE_CACHE, ill_stq_cache_delete, 11988 (char *)ill_v4, ill_v4); 11989 illgrp_reset_schednext(ill_v4); 11990 } 11991 if (ill_v6 != NULL) { 11992 ire_walk_ill_v6(MATCH_IRE_ILL | MATCH_IRE_TYPE, 11993 IRE_CACHE, ill_stq_cache_delete, 11994 (char *)ill_v6, ill_v6); 11995 illgrp_reset_schednext(ill_v6); 11996 } 11997 } 11998 11999 /* 12000 * If ILLF_ROUTER changes, we need to change the ip forwarding 12001 * status of the interface and, if the interface is part of an IPMP 12002 * group, all other interfaces that are part of the same IPMP 12003 * group. 12004 */ 12005 if ((turn_on | turn_off) & ILLF_ROUTER) 12006 (void) ill_forward_set(ill, ((turn_on & ILLF_ROUTER) != 0)); 12007 12008 /* 12009 * If the interface is not UP and we are not going to 12010 * bring it UP, record the flags and return. When the 12011 * interface comes UP later, the right actions will be 12012 * taken. 12013 */ 12014 if (!(ipif->ipif_flags & IPIF_UP) && 12015 !(turn_on & IPIF_UP)) { 12016 /* Record new flags in their respective places. */ 12017 mutex_enter(&ill->ill_lock); 12018 mutex_enter(&ill->ill_phyint->phyint_lock); 12019 ipif->ipif_flags |= (turn_on & IFF_LOGINT_FLAGS); 12020 ipif->ipif_flags &= (~turn_off & IFF_LOGINT_FLAGS); 12021 ill->ill_flags |= (turn_on & IFF_PHYINTINST_FLAGS); 12022 ill->ill_flags &= (~turn_off & IFF_PHYINTINST_FLAGS); 12023 phyi->phyint_flags |= (turn_on & IFF_PHYINT_FLAGS); 12024 phyi->phyint_flags &= (~turn_off & IFF_PHYINT_FLAGS); 12025 mutex_exit(&ill->ill_lock); 12026 mutex_exit(&ill->ill_phyint->phyint_lock); 12027 12028 /* 12029 * We do the broadcast and nomination here rather 12030 * than waiting for a FAILOVER/FAILBACK to happen. In 12031 * the case of FAILBACK from INACTIVE standby to the 12032 * interface that has been repaired, PHYI_FAILED has not 12033 * been cleared yet. If there are only two interfaces in 12034 * that group, all we have is a FAILED and INACTIVE 12035 * interface. If we do the nomination soon after a failback, 12036 * the broadcast nomination code would select the 12037 * INACTIVE interface for receiving broadcasts as FAILED is 12038 * not yet cleared. As we don't want STANDBY/INACTIVE to 12039 * receive broadcast packets, we need to redo nomination 12040 * when the FAILED is cleared here. Thus, in general we 12041 * always do the nomination here for FAILED, STANDBY 12042 * and OFFLINE. 12043 */ 12044 if (((turn_on | turn_off) & 12045 (PHYI_FAILED|PHYI_STANDBY|PHYI_OFFLINE))) { 12046 ip_redo_nomination(phyi); 12047 } 12048 if (phyint_flags_modified) { 12049 if (phyi->phyint_illv4 != NULL) { 12050 ip_rts_ifmsg(phyi->phyint_illv4-> 12051 ill_ipif); 12052 } 12053 if (phyi->phyint_illv6 != NULL) { 12054 ip_rts_ifmsg(phyi->phyint_illv6-> 12055 ill_ipif); 12056 } 12057 } 12058 return (0); 12059 } else if (set_linklocal || zero_source) { 12060 mutex_enter(&ill->ill_lock); 12061 if (set_linklocal) 12062 ipif->ipif_state_flags |= IPIF_SET_LINKLOCAL; 12063 if (zero_source) 12064 ipif->ipif_state_flags |= IPIF_ZERO_SOURCE; 12065 mutex_exit(&ill->ill_lock); 12066 } 12067 12068 /* 12069 * Disallow IPv6 interfaces coming up that have the unspecified address, 12070 * or point-to-point interfaces with an unspecified destination. We do 12071 * allow the address to be unspecified for IPIF_NOLOCAL interfaces that 12072 * have a subnet assigned, which is how in.ndpd currently manages its 12073 * onlink prefix list when no addresses are configured with those 12074 * prefixes. 12075 */ 12076 if (ipif->ipif_isv6 && 12077 ((IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr) && 12078 (!(ipif->ipif_flags & IPIF_NOLOCAL) && !(turn_on & IPIF_NOLOCAL) || 12079 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6subnet))) || 12080 ((ipif->ipif_flags & IPIF_POINTOPOINT) && 12081 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6pp_dst_addr)))) { 12082 return (EINVAL); 12083 } 12084 12085 /* 12086 * Prevent IPv4 point-to-point interfaces with a 0.0.0.0 destination 12087 * from being brought up. 12088 */ 12089 if (!ipif->ipif_isv6 && 12090 ((ipif->ipif_flags & IPIF_POINTOPOINT) && 12091 ipif->ipif_pp_dst_addr == INADDR_ANY)) { 12092 return (EINVAL); 12093 } 12094 12095 /* 12096 * The only flag changes that we currently take specific action on 12097 * is IPIF_UP, IPIF_DEPRECATED, IPIF_NOXMIT, IPIF_NOLOCAL, 12098 * ILLF_NOARP, ILLF_NONUD, IPIF_PRIVATE, IPIF_ANYCAST, and 12099 * IPIF_PREFERRED. This is done by bring the ipif down, changing 12100 * the flags and bringing it back up again. 12101 */ 12102 if ((turn_on|turn_off) & 12103 (IPIF_UP|IPIF_DEPRECATED|IPIF_NOXMIT|IPIF_NOLOCAL|ILLF_NOARP| 12104 ILLF_NONUD|IPIF_PRIVATE|IPIF_ANYCAST|IPIF_PREFERRED)) { 12105 /* 12106 * Taking this ipif down, make sure we have 12107 * valid net and subnet bcast ire's for other 12108 * logical interfaces, if we need them. 12109 */ 12110 if (!ipif->ipif_isv6) 12111 ipif_check_bcast_ires(ipif); 12112 12113 if (((ipif->ipif_flags | turn_on) & IPIF_UP) && 12114 !(turn_off & IPIF_UP)) { 12115 need_up = B_TRUE; 12116 if (ipif->ipif_flags & IPIF_UP) 12117 ill->ill_logical_down = 1; 12118 turn_on &= ~IPIF_UP; 12119 } 12120 err = ipif_down(ipif, q, mp); 12121 ip1dbg(("ipif_down returns %d err ", err)); 12122 if (err == EINPROGRESS) 12123 return (err); 12124 ipif_down_tail(ipif); 12125 } 12126 return (ip_sioctl_flags_tail(ipif, flags, q, mp, need_up)); 12127 } 12128 12129 static int 12130 ip_sioctl_flags_tail(ipif_t *ipif, uint64_t flags, queue_t *q, mblk_t *mp, 12131 boolean_t need_up) 12132 { 12133 ill_t *ill; 12134 phyint_t *phyi; 12135 uint64_t turn_on; 12136 uint64_t turn_off; 12137 uint64_t intf_flags; 12138 boolean_t phyint_flags_modified = B_FALSE; 12139 int err = 0; 12140 boolean_t set_linklocal = B_FALSE; 12141 boolean_t zero_source = B_FALSE; 12142 12143 ip1dbg(("ip_sioctl_flags_tail(%s:%u)\n", 12144 ipif->ipif_ill->ill_name, ipif->ipif_id)); 12145 12146 ASSERT(IAM_WRITER_IPIF(ipif)); 12147 12148 ill = ipif->ipif_ill; 12149 phyi = ill->ill_phyint; 12150 12151 intf_flags = ipif->ipif_flags | ill->ill_flags | phyi->phyint_flags; 12152 turn_on = (flags ^ intf_flags) & ~(IFF_CANTCHANGE | IFF_UP); 12153 12154 turn_off = intf_flags & turn_on; 12155 turn_on ^= turn_off; 12156 12157 if ((turn_on|turn_off) & (PHYI_FAILED|PHYI_STANDBY|PHYI_OFFLINE)) 12158 phyint_flags_modified = B_TRUE; 12159 12160 /* 12161 * Now we change the flags. Track current value of 12162 * other flags in their respective places. 12163 */ 12164 mutex_enter(&ill->ill_lock); 12165 mutex_enter(&phyi->phyint_lock); 12166 ipif->ipif_flags |= (turn_on & IFF_LOGINT_FLAGS); 12167 ipif->ipif_flags &= (~turn_off & IFF_LOGINT_FLAGS); 12168 ill->ill_flags |= (turn_on & IFF_PHYINTINST_FLAGS); 12169 ill->ill_flags &= (~turn_off & IFF_PHYINTINST_FLAGS); 12170 phyi->phyint_flags |= (turn_on & IFF_PHYINT_FLAGS); 12171 phyi->phyint_flags &= (~turn_off & IFF_PHYINT_FLAGS); 12172 if (ipif->ipif_state_flags & IPIF_SET_LINKLOCAL) { 12173 set_linklocal = B_TRUE; 12174 ipif->ipif_state_flags &= ~IPIF_SET_LINKLOCAL; 12175 } 12176 if (ipif->ipif_state_flags & IPIF_ZERO_SOURCE) { 12177 zero_source = B_TRUE; 12178 ipif->ipif_state_flags &= ~IPIF_ZERO_SOURCE; 12179 } 12180 mutex_exit(&ill->ill_lock); 12181 mutex_exit(&phyi->phyint_lock); 12182 12183 if (((turn_on | turn_off) & (PHYI_FAILED|PHYI_STANDBY|PHYI_OFFLINE))) 12184 ip_redo_nomination(phyi); 12185 12186 if (set_linklocal) 12187 (void) ipif_setlinklocal(ipif); 12188 12189 if (zero_source) 12190 ipif->ipif_v6src_addr = ipv6_all_zeros; 12191 else 12192 ipif->ipif_v6src_addr = ipif->ipif_v6lcl_addr; 12193 12194 if (need_up) { 12195 /* 12196 * XXX ipif_up really does not know whether a phyint flags 12197 * was modified or not. So, it sends up information on 12198 * only one routing sockets message. As we don't bring up 12199 * the interface and also set STANDBY/FAILED simultaneously 12200 * it should be okay. 12201 */ 12202 err = ipif_up(ipif, q, mp); 12203 } else { 12204 /* 12205 * Make sure routing socket sees all changes to the flags. 12206 * ipif_up_done* handles this when we use ipif_up. 12207 */ 12208 if (phyint_flags_modified) { 12209 if (phyi->phyint_illv4 != NULL) { 12210 ip_rts_ifmsg(phyi->phyint_illv4-> 12211 ill_ipif); 12212 } 12213 if (phyi->phyint_illv6 != NULL) { 12214 ip_rts_ifmsg(phyi->phyint_illv6-> 12215 ill_ipif); 12216 } 12217 } else { 12218 ip_rts_ifmsg(ipif); 12219 } 12220 /* 12221 * Update the flags in SCTP's IPIF list, ipif_up() will do 12222 * this in need_up case. 12223 */ 12224 sctp_update_ipif(ipif, SCTP_IPIF_UPDATE); 12225 } 12226 return (err); 12227 } 12228 12229 /* 12230 * Restart entry point to restart the flags restart operation after the 12231 * refcounts have dropped to zero. 12232 */ 12233 /* ARGSUSED */ 12234 int 12235 ip_sioctl_flags_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12236 ip_ioctl_cmd_t *ipip, void *if_req) 12237 { 12238 int err; 12239 struct ifreq *ifr = (struct ifreq *)if_req; 12240 struct lifreq *lifr = (struct lifreq *)if_req; 12241 12242 ip1dbg(("ip_sioctl_flags_restart(%s:%u %p)\n", 12243 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12244 12245 ipif_down_tail(ipif); 12246 if (ipip->ipi_cmd_type == IF_CMD) { 12247 /* 12248 * Since ip_sioctl_flags expects an int and ifr_flags 12249 * is a short we need to cast ifr_flags into an int 12250 * to avoid having sign extension cause bits to get 12251 * set that should not be. 12252 */ 12253 err = ip_sioctl_flags_tail(ipif, 12254 (uint64_t)(ifr->ifr_flags & 0x0000ffff), 12255 q, mp, B_TRUE); 12256 } else { 12257 err = ip_sioctl_flags_tail(ipif, lifr->lifr_flags, 12258 q, mp, B_TRUE); 12259 } 12260 return (err); 12261 } 12262 12263 /* 12264 * Can operate on either a module or a driver queue. 12265 */ 12266 /* ARGSUSED */ 12267 int 12268 ip_sioctl_get_flags(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12269 ip_ioctl_cmd_t *ipip, void *if_req) 12270 { 12271 /* 12272 * Has the flags been set correctly till now ? 12273 */ 12274 ill_t *ill = ipif->ipif_ill; 12275 phyint_t *phyi = ill->ill_phyint; 12276 12277 ip1dbg(("ip_sioctl_get_flags(%s:%u %p)\n", 12278 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12279 ASSERT((phyi->phyint_flags & ~(IFF_PHYINT_FLAGS)) == 0); 12280 ASSERT((ill->ill_flags & ~(IFF_PHYINTINST_FLAGS)) == 0); 12281 ASSERT((ipif->ipif_flags & ~(IFF_LOGINT_FLAGS)) == 0); 12282 12283 /* 12284 * Need a lock since some flags can be set even when there are 12285 * references to the ipif. 12286 */ 12287 mutex_enter(&ill->ill_lock); 12288 if (ipip->ipi_cmd_type == IF_CMD) { 12289 struct ifreq *ifr = (struct ifreq *)if_req; 12290 12291 /* Get interface flags (low 16 only). */ 12292 ifr->ifr_flags = ((ipif->ipif_flags | 12293 ill->ill_flags | phyi->phyint_flags) & 0xffff); 12294 } else { 12295 struct lifreq *lifr = (struct lifreq *)if_req; 12296 12297 /* Get interface flags. */ 12298 lifr->lifr_flags = ipif->ipif_flags | 12299 ill->ill_flags | phyi->phyint_flags; 12300 } 12301 mutex_exit(&ill->ill_lock); 12302 return (0); 12303 } 12304 12305 /* ARGSUSED */ 12306 int 12307 ip_sioctl_mtu(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12308 ip_ioctl_cmd_t *ipip, void *if_req) 12309 { 12310 int mtu; 12311 int ip_min_mtu; 12312 struct ifreq *ifr; 12313 struct lifreq *lifr; 12314 ire_t *ire; 12315 ip_stack_t *ipst; 12316 12317 ip1dbg(("ip_sioctl_mtu(%s:%u %p)\n", ipif->ipif_ill->ill_name, 12318 ipif->ipif_id, (void *)ipif)); 12319 if (ipip->ipi_cmd_type == IF_CMD) { 12320 ifr = (struct ifreq *)if_req; 12321 mtu = ifr->ifr_metric; 12322 } else { 12323 lifr = (struct lifreq *)if_req; 12324 mtu = lifr->lifr_mtu; 12325 } 12326 12327 if (ipif->ipif_isv6) 12328 ip_min_mtu = IPV6_MIN_MTU; 12329 else 12330 ip_min_mtu = IP_MIN_MTU; 12331 12332 if (mtu > ipif->ipif_ill->ill_max_frag || mtu < ip_min_mtu) 12333 return (EINVAL); 12334 12335 /* 12336 * Change the MTU size in all relevant ire's. 12337 * Mtu change Vs. new ire creation - protocol below. 12338 * First change ipif_mtu and the ire_max_frag of the 12339 * interface ire. Then do an ire walk and change the 12340 * ire_max_frag of all affected ires. During ire_add 12341 * under the bucket lock, set the ire_max_frag of the 12342 * new ire being created from the ipif/ire from which 12343 * it is being derived. If an mtu change happens after 12344 * the ire is added, the new ire will be cleaned up. 12345 * Conversely if the mtu change happens before the ire 12346 * is added, ire_add will see the new value of the mtu. 12347 */ 12348 ipif->ipif_mtu = mtu; 12349 ipif->ipif_flags |= IPIF_FIXEDMTU; 12350 12351 if (ipif->ipif_isv6) 12352 ire = ipif_to_ire_v6(ipif); 12353 else 12354 ire = ipif_to_ire(ipif); 12355 if (ire != NULL) { 12356 ire->ire_max_frag = ipif->ipif_mtu; 12357 ire_refrele(ire); 12358 } 12359 ipst = ipif->ipif_ill->ill_ipst; 12360 if (ipif->ipif_flags & IPIF_UP) { 12361 if (ipif->ipif_isv6) 12362 ire_walk_v6(ipif_mtu_change, (char *)ipif, ALL_ZONES, 12363 ipst); 12364 else 12365 ire_walk_v4(ipif_mtu_change, (char *)ipif, ALL_ZONES, 12366 ipst); 12367 } 12368 /* Update the MTU in SCTP's list */ 12369 sctp_update_ipif(ipif, SCTP_IPIF_UPDATE); 12370 return (0); 12371 } 12372 12373 /* Get interface MTU. */ 12374 /* ARGSUSED */ 12375 int 12376 ip_sioctl_get_mtu(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12377 ip_ioctl_cmd_t *ipip, void *if_req) 12378 { 12379 struct ifreq *ifr; 12380 struct lifreq *lifr; 12381 12382 ip1dbg(("ip_sioctl_get_mtu(%s:%u %p)\n", 12383 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12384 if (ipip->ipi_cmd_type == IF_CMD) { 12385 ifr = (struct ifreq *)if_req; 12386 ifr->ifr_metric = ipif->ipif_mtu; 12387 } else { 12388 lifr = (struct lifreq *)if_req; 12389 lifr->lifr_mtu = ipif->ipif_mtu; 12390 } 12391 return (0); 12392 } 12393 12394 /* Set interface broadcast address. */ 12395 /* ARGSUSED2 */ 12396 int 12397 ip_sioctl_brdaddr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12398 ip_ioctl_cmd_t *ipip, void *if_req) 12399 { 12400 ipaddr_t addr; 12401 ire_t *ire; 12402 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 12403 12404 ip1dbg(("ip_sioctl_brdaddr(%s:%u)\n", ipif->ipif_ill->ill_name, 12405 ipif->ipif_id)); 12406 12407 ASSERT(IAM_WRITER_IPIF(ipif)); 12408 if (!(ipif->ipif_flags & IPIF_BROADCAST)) 12409 return (EADDRNOTAVAIL); 12410 12411 ASSERT(!(ipif->ipif_isv6)); /* No IPv6 broadcast */ 12412 12413 if (sin->sin_family != AF_INET) 12414 return (EAFNOSUPPORT); 12415 12416 addr = sin->sin_addr.s_addr; 12417 if (ipif->ipif_flags & IPIF_UP) { 12418 /* 12419 * If we are already up, make sure the new 12420 * broadcast address makes sense. If it does, 12421 * there should be an IRE for it already. 12422 * Don't match on ipif, only on the ill 12423 * since we are sharing these now. Don't use 12424 * MATCH_IRE_ILL_GROUP as we are looking for 12425 * the broadcast ire on this ill and each ill 12426 * in the group has its own broadcast ire. 12427 */ 12428 ire = ire_ctable_lookup(addr, 0, IRE_BROADCAST, 12429 ipif, ALL_ZONES, NULL, 12430 (MATCH_IRE_ILL | MATCH_IRE_TYPE), ipst); 12431 if (ire == NULL) { 12432 return (EINVAL); 12433 } else { 12434 ire_refrele(ire); 12435 } 12436 } 12437 /* 12438 * Changing the broadcast addr for this ipif. 12439 * Make sure we have valid net and subnet bcast 12440 * ire's for other logical interfaces, if needed. 12441 */ 12442 if (addr != ipif->ipif_brd_addr) 12443 ipif_check_bcast_ires(ipif); 12444 IN6_IPADDR_TO_V4MAPPED(addr, &ipif->ipif_v6brd_addr); 12445 return (0); 12446 } 12447 12448 /* Get interface broadcast address. */ 12449 /* ARGSUSED */ 12450 int 12451 ip_sioctl_get_brdaddr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12452 ip_ioctl_cmd_t *ipip, void *if_req) 12453 { 12454 ip1dbg(("ip_sioctl_get_brdaddr(%s:%u %p)\n", 12455 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12456 if (!(ipif->ipif_flags & IPIF_BROADCAST)) 12457 return (EADDRNOTAVAIL); 12458 12459 /* IPIF_BROADCAST not possible with IPv6 */ 12460 ASSERT(!ipif->ipif_isv6); 12461 *sin = sin_null; 12462 sin->sin_family = AF_INET; 12463 sin->sin_addr.s_addr = ipif->ipif_brd_addr; 12464 return (0); 12465 } 12466 12467 /* 12468 * This routine is called to handle the SIOCS*IFNETMASK IOCTL. 12469 */ 12470 /* ARGSUSED */ 12471 int 12472 ip_sioctl_netmask(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12473 ip_ioctl_cmd_t *ipip, void *if_req) 12474 { 12475 int err = 0; 12476 in6_addr_t v6mask; 12477 12478 ip1dbg(("ip_sioctl_netmask(%s:%u %p)\n", 12479 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12480 12481 ASSERT(IAM_WRITER_IPIF(ipif)); 12482 12483 if (ipif->ipif_isv6) { 12484 sin6_t *sin6; 12485 12486 if (sin->sin_family != AF_INET6) 12487 return (EAFNOSUPPORT); 12488 12489 sin6 = (sin6_t *)sin; 12490 v6mask = sin6->sin6_addr; 12491 } else { 12492 ipaddr_t mask; 12493 12494 if (sin->sin_family != AF_INET) 12495 return (EAFNOSUPPORT); 12496 12497 mask = sin->sin_addr.s_addr; 12498 V4MASK_TO_V6(mask, v6mask); 12499 } 12500 12501 /* 12502 * No big deal if the interface isn't already up, or the mask 12503 * isn't really changing, or this is pt-pt. 12504 */ 12505 if (!(ipif->ipif_flags & IPIF_UP) || 12506 IN6_ARE_ADDR_EQUAL(&v6mask, &ipif->ipif_v6net_mask) || 12507 (ipif->ipif_flags & IPIF_POINTOPOINT)) { 12508 ipif->ipif_v6net_mask = v6mask; 12509 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) { 12510 V6_MASK_COPY(ipif->ipif_v6lcl_addr, 12511 ipif->ipif_v6net_mask, 12512 ipif->ipif_v6subnet); 12513 } 12514 return (0); 12515 } 12516 /* 12517 * Make sure we have valid net and subnet broadcast ire's 12518 * for the old netmask, if needed by other logical interfaces. 12519 */ 12520 if (!ipif->ipif_isv6) 12521 ipif_check_bcast_ires(ipif); 12522 12523 err = ipif_logical_down(ipif, q, mp); 12524 if (err == EINPROGRESS) 12525 return (err); 12526 ipif_down_tail(ipif); 12527 err = ip_sioctl_netmask_tail(ipif, sin, q, mp); 12528 return (err); 12529 } 12530 12531 static int 12532 ip_sioctl_netmask_tail(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp) 12533 { 12534 in6_addr_t v6mask; 12535 int err = 0; 12536 12537 ip1dbg(("ip_sioctl_netmask_tail(%s:%u %p)\n", 12538 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12539 12540 if (ipif->ipif_isv6) { 12541 sin6_t *sin6; 12542 12543 sin6 = (sin6_t *)sin; 12544 v6mask = sin6->sin6_addr; 12545 } else { 12546 ipaddr_t mask; 12547 12548 mask = sin->sin_addr.s_addr; 12549 V4MASK_TO_V6(mask, v6mask); 12550 } 12551 12552 ipif->ipif_v6net_mask = v6mask; 12553 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) { 12554 V6_MASK_COPY(ipif->ipif_v6lcl_addr, ipif->ipif_v6net_mask, 12555 ipif->ipif_v6subnet); 12556 } 12557 err = ipif_up(ipif, q, mp); 12558 12559 if (err == 0 || err == EINPROGRESS) { 12560 /* 12561 * The interface must be DL_BOUND if this packet has to 12562 * go out on the wire. Since we only go through a logical 12563 * down and are bound with the driver during an internal 12564 * down/up that is satisfied. 12565 */ 12566 if (!ipif->ipif_isv6 && ipif->ipif_ill->ill_wq != NULL) { 12567 /* Potentially broadcast an address mask reply. */ 12568 ipif_mask_reply(ipif); 12569 } 12570 } 12571 return (err); 12572 } 12573 12574 /* ARGSUSED */ 12575 int 12576 ip_sioctl_netmask_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12577 ip_ioctl_cmd_t *ipip, void *if_req) 12578 { 12579 ip1dbg(("ip_sioctl_netmask_restart(%s:%u %p)\n", 12580 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12581 ipif_down_tail(ipif); 12582 return (ip_sioctl_netmask_tail(ipif, sin, q, mp)); 12583 } 12584 12585 /* Get interface net mask. */ 12586 /* ARGSUSED */ 12587 int 12588 ip_sioctl_get_netmask(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12589 ip_ioctl_cmd_t *ipip, void *if_req) 12590 { 12591 struct lifreq *lifr = (struct lifreq *)if_req; 12592 struct sockaddr_in6 *sin6 = (sin6_t *)sin; 12593 12594 ip1dbg(("ip_sioctl_get_netmask(%s:%u %p)\n", 12595 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12596 12597 /* 12598 * net mask can't change since we have a reference to the ipif. 12599 */ 12600 if (ipif->ipif_isv6) { 12601 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 12602 *sin6 = sin6_null; 12603 sin6->sin6_family = AF_INET6; 12604 sin6->sin6_addr = ipif->ipif_v6net_mask; 12605 lifr->lifr_addrlen = 12606 ip_mask_to_plen_v6(&ipif->ipif_v6net_mask); 12607 } else { 12608 *sin = sin_null; 12609 sin->sin_family = AF_INET; 12610 sin->sin_addr.s_addr = ipif->ipif_net_mask; 12611 if (ipip->ipi_cmd_type == LIF_CMD) { 12612 lifr->lifr_addrlen = 12613 ip_mask_to_plen(ipif->ipif_net_mask); 12614 } 12615 } 12616 return (0); 12617 } 12618 12619 /* ARGSUSED */ 12620 int 12621 ip_sioctl_metric(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12622 ip_ioctl_cmd_t *ipip, void *if_req) 12623 { 12624 12625 ip1dbg(("ip_sioctl_metric(%s:%u %p)\n", 12626 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12627 /* 12628 * Set interface metric. We don't use this for 12629 * anything but we keep track of it in case it is 12630 * important to routing applications or such. 12631 */ 12632 if (ipip->ipi_cmd_type == IF_CMD) { 12633 struct ifreq *ifr; 12634 12635 ifr = (struct ifreq *)if_req; 12636 ipif->ipif_metric = ifr->ifr_metric; 12637 } else { 12638 struct lifreq *lifr; 12639 12640 lifr = (struct lifreq *)if_req; 12641 ipif->ipif_metric = lifr->lifr_metric; 12642 } 12643 return (0); 12644 } 12645 12646 12647 /* ARGSUSED */ 12648 int 12649 ip_sioctl_get_metric(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12650 ip_ioctl_cmd_t *ipip, void *if_req) 12651 { 12652 12653 /* Get interface metric. */ 12654 ip1dbg(("ip_sioctl_get_metric(%s:%u %p)\n", 12655 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12656 if (ipip->ipi_cmd_type == IF_CMD) { 12657 struct ifreq *ifr; 12658 12659 ifr = (struct ifreq *)if_req; 12660 ifr->ifr_metric = ipif->ipif_metric; 12661 } else { 12662 struct lifreq *lifr; 12663 12664 lifr = (struct lifreq *)if_req; 12665 lifr->lifr_metric = ipif->ipif_metric; 12666 } 12667 12668 return (0); 12669 } 12670 12671 /* ARGSUSED */ 12672 int 12673 ip_sioctl_muxid(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12674 ip_ioctl_cmd_t *ipip, void *if_req) 12675 { 12676 12677 ip1dbg(("ip_sioctl_muxid(%s:%u %p)\n", 12678 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12679 /* 12680 * Set the muxid returned from I_PLINK. 12681 */ 12682 if (ipip->ipi_cmd_type == IF_CMD) { 12683 struct ifreq *ifr = (struct ifreq *)if_req; 12684 12685 ipif->ipif_ill->ill_ip_muxid = ifr->ifr_ip_muxid; 12686 ipif->ipif_ill->ill_arp_muxid = ifr->ifr_arp_muxid; 12687 } else { 12688 struct lifreq *lifr = (struct lifreq *)if_req; 12689 12690 ipif->ipif_ill->ill_ip_muxid = lifr->lifr_ip_muxid; 12691 ipif->ipif_ill->ill_arp_muxid = lifr->lifr_arp_muxid; 12692 } 12693 return (0); 12694 } 12695 12696 /* ARGSUSED */ 12697 int 12698 ip_sioctl_get_muxid(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12699 ip_ioctl_cmd_t *ipip, void *if_req) 12700 { 12701 12702 ip1dbg(("ip_sioctl_get_muxid(%s:%u %p)\n", 12703 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12704 /* 12705 * Get the muxid saved in ill for I_PUNLINK. 12706 */ 12707 if (ipip->ipi_cmd_type == IF_CMD) { 12708 struct ifreq *ifr = (struct ifreq *)if_req; 12709 12710 ifr->ifr_ip_muxid = ipif->ipif_ill->ill_ip_muxid; 12711 ifr->ifr_arp_muxid = ipif->ipif_ill->ill_arp_muxid; 12712 } else { 12713 struct lifreq *lifr = (struct lifreq *)if_req; 12714 12715 lifr->lifr_ip_muxid = ipif->ipif_ill->ill_ip_muxid; 12716 lifr->lifr_arp_muxid = ipif->ipif_ill->ill_arp_muxid; 12717 } 12718 return (0); 12719 } 12720 12721 /* 12722 * Set the subnet prefix. Does not modify the broadcast address. 12723 */ 12724 /* ARGSUSED */ 12725 int 12726 ip_sioctl_subnet(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12727 ip_ioctl_cmd_t *ipip, void *if_req) 12728 { 12729 int err = 0; 12730 in6_addr_t v6addr; 12731 in6_addr_t v6mask; 12732 boolean_t need_up = B_FALSE; 12733 int addrlen; 12734 12735 ip1dbg(("ip_sioctl_subnet(%s:%u %p)\n", 12736 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12737 12738 ASSERT(IAM_WRITER_IPIF(ipif)); 12739 addrlen = ((struct lifreq *)if_req)->lifr_addrlen; 12740 12741 if (ipif->ipif_isv6) { 12742 sin6_t *sin6; 12743 12744 if (sin->sin_family != AF_INET6) 12745 return (EAFNOSUPPORT); 12746 12747 sin6 = (sin6_t *)sin; 12748 v6addr = sin6->sin6_addr; 12749 if (!ip_remote_addr_ok_v6(&v6addr, &ipv6_all_ones)) 12750 return (EADDRNOTAVAIL); 12751 } else { 12752 ipaddr_t addr; 12753 12754 if (sin->sin_family != AF_INET) 12755 return (EAFNOSUPPORT); 12756 12757 addr = sin->sin_addr.s_addr; 12758 if (!ip_addr_ok_v4(addr, 0xFFFFFFFF)) 12759 return (EADDRNOTAVAIL); 12760 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 12761 /* Add 96 bits */ 12762 addrlen += IPV6_ABITS - IP_ABITS; 12763 } 12764 12765 if (ip_plen_to_mask_v6(addrlen, &v6mask) == NULL) 12766 return (EINVAL); 12767 12768 /* Check if bits in the address is set past the mask */ 12769 if (!V6_MASK_EQ(v6addr, v6mask, v6addr)) 12770 return (EINVAL); 12771 12772 if (IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6subnet, &v6addr) && 12773 IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6net_mask, &v6mask)) 12774 return (0); /* No change */ 12775 12776 if (ipif->ipif_flags & IPIF_UP) { 12777 /* 12778 * If the interface is already marked up, 12779 * we call ipif_down which will take care 12780 * of ditching any IREs that have been set 12781 * up based on the old interface address. 12782 */ 12783 err = ipif_logical_down(ipif, q, mp); 12784 if (err == EINPROGRESS) 12785 return (err); 12786 ipif_down_tail(ipif); 12787 need_up = B_TRUE; 12788 } 12789 12790 err = ip_sioctl_subnet_tail(ipif, v6addr, v6mask, q, mp, need_up); 12791 return (err); 12792 } 12793 12794 static int 12795 ip_sioctl_subnet_tail(ipif_t *ipif, in6_addr_t v6addr, in6_addr_t v6mask, 12796 queue_t *q, mblk_t *mp, boolean_t need_up) 12797 { 12798 ill_t *ill = ipif->ipif_ill; 12799 int err = 0; 12800 12801 ip1dbg(("ip_sioctl_subnet_tail(%s:%u %p)\n", 12802 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12803 12804 /* Set the new address. */ 12805 mutex_enter(&ill->ill_lock); 12806 ipif->ipif_v6net_mask = v6mask; 12807 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) { 12808 V6_MASK_COPY(v6addr, ipif->ipif_v6net_mask, 12809 ipif->ipif_v6subnet); 12810 } 12811 mutex_exit(&ill->ill_lock); 12812 12813 if (need_up) { 12814 /* 12815 * Now bring the interface back up. If this 12816 * is the only IPIF for the ILL, ipif_up 12817 * will have to re-bind to the device, so 12818 * we may get back EINPROGRESS, in which 12819 * case, this IOCTL will get completed in 12820 * ip_rput_dlpi when we see the DL_BIND_ACK. 12821 */ 12822 err = ipif_up(ipif, q, mp); 12823 if (err == EINPROGRESS) 12824 return (err); 12825 } 12826 return (err); 12827 } 12828 12829 /* ARGSUSED */ 12830 int 12831 ip_sioctl_subnet_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12832 ip_ioctl_cmd_t *ipip, void *if_req) 12833 { 12834 int addrlen; 12835 in6_addr_t v6addr; 12836 in6_addr_t v6mask; 12837 struct lifreq *lifr = (struct lifreq *)if_req; 12838 12839 ip1dbg(("ip_sioctl_subnet_restart(%s:%u %p)\n", 12840 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12841 ipif_down_tail(ipif); 12842 12843 addrlen = lifr->lifr_addrlen; 12844 if (ipif->ipif_isv6) { 12845 sin6_t *sin6; 12846 12847 sin6 = (sin6_t *)sin; 12848 v6addr = sin6->sin6_addr; 12849 } else { 12850 ipaddr_t addr; 12851 12852 addr = sin->sin_addr.s_addr; 12853 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 12854 addrlen += IPV6_ABITS - IP_ABITS; 12855 } 12856 (void) ip_plen_to_mask_v6(addrlen, &v6mask); 12857 12858 return (ip_sioctl_subnet_tail(ipif, v6addr, v6mask, q, mp, B_TRUE)); 12859 } 12860 12861 /* ARGSUSED */ 12862 int 12863 ip_sioctl_get_subnet(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12864 ip_ioctl_cmd_t *ipip, void *if_req) 12865 { 12866 struct lifreq *lifr = (struct lifreq *)if_req; 12867 struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)sin; 12868 12869 ip1dbg(("ip_sioctl_get_subnet(%s:%u %p)\n", 12870 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12871 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 12872 12873 if (ipif->ipif_isv6) { 12874 *sin6 = sin6_null; 12875 sin6->sin6_family = AF_INET6; 12876 sin6->sin6_addr = ipif->ipif_v6subnet; 12877 lifr->lifr_addrlen = 12878 ip_mask_to_plen_v6(&ipif->ipif_v6net_mask); 12879 } else { 12880 *sin = sin_null; 12881 sin->sin_family = AF_INET; 12882 sin->sin_addr.s_addr = ipif->ipif_subnet; 12883 lifr->lifr_addrlen = ip_mask_to_plen(ipif->ipif_net_mask); 12884 } 12885 return (0); 12886 } 12887 12888 /* 12889 * Set the IPv6 address token. 12890 */ 12891 /* ARGSUSED */ 12892 int 12893 ip_sioctl_token(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12894 ip_ioctl_cmd_t *ipi, void *if_req) 12895 { 12896 ill_t *ill = ipif->ipif_ill; 12897 int err; 12898 in6_addr_t v6addr; 12899 in6_addr_t v6mask; 12900 boolean_t need_up = B_FALSE; 12901 int i; 12902 sin6_t *sin6 = (sin6_t *)sin; 12903 struct lifreq *lifr = (struct lifreq *)if_req; 12904 int addrlen; 12905 12906 ip1dbg(("ip_sioctl_token(%s:%u %p)\n", 12907 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12908 ASSERT(IAM_WRITER_IPIF(ipif)); 12909 12910 addrlen = lifr->lifr_addrlen; 12911 /* Only allow for logical unit zero i.e. not on "le0:17" */ 12912 if (ipif->ipif_id != 0) 12913 return (EINVAL); 12914 12915 if (!ipif->ipif_isv6) 12916 return (EINVAL); 12917 12918 if (addrlen > IPV6_ABITS) 12919 return (EINVAL); 12920 12921 v6addr = sin6->sin6_addr; 12922 12923 /* 12924 * The length of the token is the length from the end. To get 12925 * the proper mask for this, compute the mask of the bits not 12926 * in the token; ie. the prefix, and then xor to get the mask. 12927 */ 12928 if (ip_plen_to_mask_v6(IPV6_ABITS - addrlen, &v6mask) == NULL) 12929 return (EINVAL); 12930 for (i = 0; i < 4; i++) { 12931 v6mask.s6_addr32[i] ^= (uint32_t)0xffffffff; 12932 } 12933 12934 if (V6_MASK_EQ(v6addr, v6mask, ill->ill_token) && 12935 ill->ill_token_length == addrlen) 12936 return (0); /* No change */ 12937 12938 if (ipif->ipif_flags & IPIF_UP) { 12939 err = ipif_logical_down(ipif, q, mp); 12940 if (err == EINPROGRESS) 12941 return (err); 12942 ipif_down_tail(ipif); 12943 need_up = B_TRUE; 12944 } 12945 err = ip_sioctl_token_tail(ipif, sin6, addrlen, q, mp, need_up); 12946 return (err); 12947 } 12948 12949 static int 12950 ip_sioctl_token_tail(ipif_t *ipif, sin6_t *sin6, int addrlen, queue_t *q, 12951 mblk_t *mp, boolean_t need_up) 12952 { 12953 in6_addr_t v6addr; 12954 in6_addr_t v6mask; 12955 ill_t *ill = ipif->ipif_ill; 12956 int i; 12957 int err = 0; 12958 12959 ip1dbg(("ip_sioctl_token_tail(%s:%u %p)\n", 12960 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12961 v6addr = sin6->sin6_addr; 12962 /* 12963 * The length of the token is the length from the end. To get 12964 * the proper mask for this, compute the mask of the bits not 12965 * in the token; ie. the prefix, and then xor to get the mask. 12966 */ 12967 (void) ip_plen_to_mask_v6(IPV6_ABITS - addrlen, &v6mask); 12968 for (i = 0; i < 4; i++) 12969 v6mask.s6_addr32[i] ^= (uint32_t)0xffffffff; 12970 12971 mutex_enter(&ill->ill_lock); 12972 V6_MASK_COPY(v6addr, v6mask, ill->ill_token); 12973 ill->ill_token_length = addrlen; 12974 mutex_exit(&ill->ill_lock); 12975 12976 if (need_up) { 12977 /* 12978 * Now bring the interface back up. If this 12979 * is the only IPIF for the ILL, ipif_up 12980 * will have to re-bind to the device, so 12981 * we may get back EINPROGRESS, in which 12982 * case, this IOCTL will get completed in 12983 * ip_rput_dlpi when we see the DL_BIND_ACK. 12984 */ 12985 err = ipif_up(ipif, q, mp); 12986 if (err == EINPROGRESS) 12987 return (err); 12988 } 12989 return (err); 12990 } 12991 12992 /* ARGSUSED */ 12993 int 12994 ip_sioctl_get_token(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12995 ip_ioctl_cmd_t *ipi, void *if_req) 12996 { 12997 ill_t *ill; 12998 sin6_t *sin6 = (sin6_t *)sin; 12999 struct lifreq *lifr = (struct lifreq *)if_req; 13000 13001 ip1dbg(("ip_sioctl_get_token(%s:%u %p)\n", 13002 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 13003 if (ipif->ipif_id != 0) 13004 return (EINVAL); 13005 13006 ill = ipif->ipif_ill; 13007 if (!ill->ill_isv6) 13008 return (ENXIO); 13009 13010 *sin6 = sin6_null; 13011 sin6->sin6_family = AF_INET6; 13012 ASSERT(!IN6_IS_ADDR_V4MAPPED(&ill->ill_token)); 13013 sin6->sin6_addr = ill->ill_token; 13014 lifr->lifr_addrlen = ill->ill_token_length; 13015 return (0); 13016 } 13017 13018 /* 13019 * Set (hardware) link specific information that might override 13020 * what was acquired through the DL_INFO_ACK. 13021 * The logic is as follows. 13022 * 13023 * become exclusive 13024 * set CHANGING flag 13025 * change mtu on affected IREs 13026 * clear CHANGING flag 13027 * 13028 * An ire add that occurs before the CHANGING flag is set will have its mtu 13029 * changed by the ip_sioctl_lnkinfo. 13030 * 13031 * During the time the CHANGING flag is set, no new ires will be added to the 13032 * bucket, and ire add will fail (due the CHANGING flag). 13033 * 13034 * An ire add that occurs after the CHANGING flag is set will have the right mtu 13035 * before it is added to the bucket. 13036 * 13037 * Obviously only 1 thread can set the CHANGING flag and we need to become 13038 * exclusive to set the flag. 13039 */ 13040 /* ARGSUSED */ 13041 int 13042 ip_sioctl_lnkinfo(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 13043 ip_ioctl_cmd_t *ipi, void *if_req) 13044 { 13045 ill_t *ill = ipif->ipif_ill; 13046 ipif_t *nipif; 13047 int ip_min_mtu; 13048 boolean_t mtu_walk = B_FALSE; 13049 struct lifreq *lifr = (struct lifreq *)if_req; 13050 lif_ifinfo_req_t *lir; 13051 ire_t *ire; 13052 13053 ip1dbg(("ip_sioctl_lnkinfo(%s:%u %p)\n", 13054 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 13055 lir = &lifr->lifr_ifinfo; 13056 ASSERT(IAM_WRITER_IPIF(ipif)); 13057 13058 /* Only allow for logical unit zero i.e. not on "le0:17" */ 13059 if (ipif->ipif_id != 0) 13060 return (EINVAL); 13061 13062 /* Set interface MTU. */ 13063 if (ipif->ipif_isv6) 13064 ip_min_mtu = IPV6_MIN_MTU; 13065 else 13066 ip_min_mtu = IP_MIN_MTU; 13067 13068 /* 13069 * Verify values before we set anything. Allow zero to 13070 * mean unspecified. 13071 */ 13072 if (lir->lir_maxmtu != 0 && 13073 (lir->lir_maxmtu > ill->ill_max_frag || 13074 lir->lir_maxmtu < ip_min_mtu)) 13075 return (EINVAL); 13076 if (lir->lir_reachtime != 0 && 13077 lir->lir_reachtime > ND_MAX_REACHTIME) 13078 return (EINVAL); 13079 if (lir->lir_reachretrans != 0 && 13080 lir->lir_reachretrans > ND_MAX_REACHRETRANSTIME) 13081 return (EINVAL); 13082 13083 mutex_enter(&ill->ill_lock); 13084 ill->ill_state_flags |= ILL_CHANGING; 13085 for (nipif = ill->ill_ipif; nipif != NULL; 13086 nipif = nipif->ipif_next) { 13087 nipif->ipif_state_flags |= IPIF_CHANGING; 13088 } 13089 13090 mutex_exit(&ill->ill_lock); 13091 13092 if (lir->lir_maxmtu != 0) { 13093 ill->ill_max_mtu = lir->lir_maxmtu; 13094 ill->ill_mtu_userspecified = 1; 13095 mtu_walk = B_TRUE; 13096 } 13097 13098 if (lir->lir_reachtime != 0) 13099 ill->ill_reachable_time = lir->lir_reachtime; 13100 13101 if (lir->lir_reachretrans != 0) 13102 ill->ill_reachable_retrans_time = lir->lir_reachretrans; 13103 13104 ill->ill_max_hops = lir->lir_maxhops; 13105 13106 ill->ill_max_buf = ND_MAX_Q; 13107 13108 if (mtu_walk) { 13109 /* 13110 * Set the MTU on all ipifs associated with this ill except 13111 * for those whose MTU was fixed via SIOCSLIFMTU. 13112 */ 13113 for (nipif = ill->ill_ipif; nipif != NULL; 13114 nipif = nipif->ipif_next) { 13115 if (nipif->ipif_flags & IPIF_FIXEDMTU) 13116 continue; 13117 13118 nipif->ipif_mtu = ill->ill_max_mtu; 13119 13120 if (!(nipif->ipif_flags & IPIF_UP)) 13121 continue; 13122 13123 if (nipif->ipif_isv6) 13124 ire = ipif_to_ire_v6(nipif); 13125 else 13126 ire = ipif_to_ire(nipif); 13127 if (ire != NULL) { 13128 ire->ire_max_frag = ipif->ipif_mtu; 13129 ire_refrele(ire); 13130 } 13131 if (ill->ill_isv6) { 13132 ire_walk_ill_v6(MATCH_IRE_ILL, 0, 13133 ipif_mtu_change, (char *)nipif, 13134 ill); 13135 } else { 13136 ire_walk_ill_v4(MATCH_IRE_ILL, 0, 13137 ipif_mtu_change, (char *)nipif, 13138 ill); 13139 } 13140 } 13141 } 13142 13143 mutex_enter(&ill->ill_lock); 13144 for (nipif = ill->ill_ipif; nipif != NULL; 13145 nipif = nipif->ipif_next) { 13146 nipif->ipif_state_flags &= ~IPIF_CHANGING; 13147 } 13148 ILL_UNMARK_CHANGING(ill); 13149 mutex_exit(&ill->ill_lock); 13150 13151 return (0); 13152 } 13153 13154 /* ARGSUSED */ 13155 int 13156 ip_sioctl_get_lnkinfo(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 13157 ip_ioctl_cmd_t *ipi, void *if_req) 13158 { 13159 struct lif_ifinfo_req *lir; 13160 ill_t *ill = ipif->ipif_ill; 13161 13162 ip1dbg(("ip_sioctl_get_lnkinfo(%s:%u %p)\n", 13163 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 13164 if (ipif->ipif_id != 0) 13165 return (EINVAL); 13166 13167 lir = &((struct lifreq *)if_req)->lifr_ifinfo; 13168 lir->lir_maxhops = ill->ill_max_hops; 13169 lir->lir_reachtime = ill->ill_reachable_time; 13170 lir->lir_reachretrans = ill->ill_reachable_retrans_time; 13171 lir->lir_maxmtu = ill->ill_max_mtu; 13172 13173 return (0); 13174 } 13175 13176 /* 13177 * Return best guess as to the subnet mask for the specified address. 13178 * Based on the subnet masks for all the configured interfaces. 13179 * 13180 * We end up returning a zero mask in the case of default, multicast or 13181 * experimental. 13182 */ 13183 static ipaddr_t 13184 ip_subnet_mask(ipaddr_t addr, ipif_t **ipifp, ip_stack_t *ipst) 13185 { 13186 ipaddr_t net_mask; 13187 ill_t *ill; 13188 ipif_t *ipif; 13189 ill_walk_context_t ctx; 13190 ipif_t *fallback_ipif = NULL; 13191 13192 net_mask = ip_net_mask(addr); 13193 if (net_mask == 0) { 13194 *ipifp = NULL; 13195 return (0); 13196 } 13197 13198 /* Let's check to see if this is maybe a local subnet route. */ 13199 /* this function only applies to IPv4 interfaces */ 13200 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 13201 ill = ILL_START_WALK_V4(&ctx, ipst); 13202 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 13203 mutex_enter(&ill->ill_lock); 13204 for (ipif = ill->ill_ipif; ipif != NULL; 13205 ipif = ipif->ipif_next) { 13206 if (!IPIF_CAN_LOOKUP(ipif)) 13207 continue; 13208 if (!(ipif->ipif_flags & IPIF_UP)) 13209 continue; 13210 if ((ipif->ipif_subnet & net_mask) == 13211 (addr & net_mask)) { 13212 /* 13213 * Don't trust pt-pt interfaces if there are 13214 * other interfaces. 13215 */ 13216 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 13217 if (fallback_ipif == NULL) { 13218 ipif_refhold_locked(ipif); 13219 fallback_ipif = ipif; 13220 } 13221 continue; 13222 } 13223 13224 /* 13225 * Fine. Just assume the same net mask as the 13226 * directly attached subnet interface is using. 13227 */ 13228 ipif_refhold_locked(ipif); 13229 mutex_exit(&ill->ill_lock); 13230 rw_exit(&ipst->ips_ill_g_lock); 13231 if (fallback_ipif != NULL) 13232 ipif_refrele(fallback_ipif); 13233 *ipifp = ipif; 13234 return (ipif->ipif_net_mask); 13235 } 13236 } 13237 mutex_exit(&ill->ill_lock); 13238 } 13239 rw_exit(&ipst->ips_ill_g_lock); 13240 13241 *ipifp = fallback_ipif; 13242 return ((fallback_ipif != NULL) ? 13243 fallback_ipif->ipif_net_mask : net_mask); 13244 } 13245 13246 /* 13247 * ip_sioctl_copyin_setup calls ip_wput_ioctl to process the IP_IOCTL ioctl. 13248 */ 13249 static void 13250 ip_wput_ioctl(queue_t *q, mblk_t *mp) 13251 { 13252 IOCP iocp; 13253 ipft_t *ipft; 13254 ipllc_t *ipllc; 13255 mblk_t *mp1; 13256 cred_t *cr; 13257 int error = 0; 13258 conn_t *connp; 13259 13260 ip1dbg(("ip_wput_ioctl")); 13261 iocp = (IOCP)mp->b_rptr; 13262 mp1 = mp->b_cont; 13263 if (mp1 == NULL) { 13264 iocp->ioc_error = EINVAL; 13265 mp->b_datap->db_type = M_IOCNAK; 13266 iocp->ioc_count = 0; 13267 qreply(q, mp); 13268 return; 13269 } 13270 13271 /* 13272 * These IOCTLs provide various control capabilities to 13273 * upstream agents such as ULPs and processes. There 13274 * are currently two such IOCTLs implemented. They 13275 * are used by TCP to provide update information for 13276 * existing IREs and to forcibly delete an IRE for a 13277 * host that is not responding, thereby forcing an 13278 * attempt at a new route. 13279 */ 13280 iocp->ioc_error = EINVAL; 13281 if (!pullupmsg(mp1, sizeof (ipllc->ipllc_cmd))) 13282 goto done; 13283 13284 ipllc = (ipllc_t *)mp1->b_rptr; 13285 for (ipft = ip_ioctl_ftbl; ipft->ipft_pfi; ipft++) { 13286 if (ipllc->ipllc_cmd == ipft->ipft_cmd) 13287 break; 13288 } 13289 /* 13290 * prefer credential from mblk over ioctl; 13291 * see ip_sioctl_copyin_setup 13292 */ 13293 cr = DB_CREDDEF(mp, iocp->ioc_cr); 13294 13295 /* 13296 * Refhold the conn in case the request gets queued up in some lookup 13297 */ 13298 ASSERT(CONN_Q(q)); 13299 connp = Q_TO_CONN(q); 13300 CONN_INC_REF(connp); 13301 if (ipft->ipft_pfi && 13302 ((mp1->b_wptr - mp1->b_rptr) >= ipft->ipft_min_size || 13303 pullupmsg(mp1, ipft->ipft_min_size))) { 13304 error = (*ipft->ipft_pfi)(q, 13305 (ipft->ipft_flags & IPFT_F_SELF_REPLY) ? mp : mp1, cr); 13306 } 13307 if (ipft->ipft_flags & IPFT_F_SELF_REPLY) { 13308 /* 13309 * CONN_OPER_PENDING_DONE happens in the function called 13310 * through ipft_pfi above. 13311 */ 13312 return; 13313 } 13314 13315 CONN_OPER_PENDING_DONE(connp); 13316 if (ipft->ipft_flags & IPFT_F_NO_REPLY) { 13317 freemsg(mp); 13318 return; 13319 } 13320 iocp->ioc_error = error; 13321 13322 done: 13323 mp->b_datap->db_type = M_IOCACK; 13324 if (iocp->ioc_error) 13325 iocp->ioc_count = 0; 13326 qreply(q, mp); 13327 } 13328 13329 /* 13330 * Lookup an ipif using the sequence id (ipif_seqid) 13331 */ 13332 ipif_t * 13333 ipif_lookup_seqid(ill_t *ill, uint_t seqid) 13334 { 13335 ipif_t *ipif; 13336 13337 ASSERT(MUTEX_HELD(&ill->ill_lock)); 13338 13339 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 13340 if (ipif->ipif_seqid == seqid && IPIF_CAN_LOOKUP(ipif)) 13341 return (ipif); 13342 } 13343 return (NULL); 13344 } 13345 13346 /* 13347 * Assign a unique id for the ipif. This is used later when we send 13348 * IRES to ARP for resolution where we initialize ire_ipif_seqid 13349 * to the value pointed by ire_ipif->ipif_seqid. Later when the 13350 * IRE is added, we verify that ipif has not disappeared. 13351 */ 13352 13353 static void 13354 ipif_assign_seqid(ipif_t *ipif) 13355 { 13356 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 13357 13358 ipif->ipif_seqid = atomic_add_64_nv(&ipst->ips_ipif_g_seqid, 1); 13359 } 13360 13361 /* 13362 * Insert the ipif, so that the list of ipifs on the ill will be sorted 13363 * with respect to ipif_id. Note that an ipif with an ipif_id of -1 will 13364 * be inserted into the first space available in the list. The value of 13365 * ipif_id will then be set to the appropriate value for its position. 13366 */ 13367 static int 13368 ipif_insert(ipif_t *ipif, boolean_t acquire_g_lock, boolean_t acquire_ill_lock) 13369 { 13370 ill_t *ill; 13371 ipif_t *tipif; 13372 ipif_t **tipifp; 13373 int id; 13374 ip_stack_t *ipst; 13375 13376 ASSERT(ipif->ipif_ill->ill_net_type == IRE_LOOPBACK || 13377 IAM_WRITER_IPIF(ipif)); 13378 13379 ill = ipif->ipif_ill; 13380 ASSERT(ill != NULL); 13381 ipst = ill->ill_ipst; 13382 13383 /* 13384 * In the case of lo0:0 we already hold the ill_g_lock. 13385 * ill_lookup_on_name (acquires ill_g_lock) -> ipif_allocate -> 13386 * ipif_insert. Another such caller is ipif_move. 13387 */ 13388 if (acquire_g_lock) 13389 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 13390 if (acquire_ill_lock) 13391 mutex_enter(&ill->ill_lock); 13392 id = ipif->ipif_id; 13393 tipifp = &(ill->ill_ipif); 13394 if (id == -1) { /* need to find a real id */ 13395 id = 0; 13396 while ((tipif = *tipifp) != NULL) { 13397 ASSERT(tipif->ipif_id >= id); 13398 if (tipif->ipif_id != id) 13399 break; /* non-consecutive id */ 13400 id++; 13401 tipifp = &(tipif->ipif_next); 13402 } 13403 /* limit number of logical interfaces */ 13404 if (id >= ipst->ips_ip_addrs_per_if) { 13405 if (acquire_ill_lock) 13406 mutex_exit(&ill->ill_lock); 13407 if (acquire_g_lock) 13408 rw_exit(&ipst->ips_ill_g_lock); 13409 return (-1); 13410 } 13411 ipif->ipif_id = id; /* assign new id */ 13412 } else if (id < ipst->ips_ip_addrs_per_if) { 13413 /* we have a real id; insert ipif in the right place */ 13414 while ((tipif = *tipifp) != NULL) { 13415 ASSERT(tipif->ipif_id != id); 13416 if (tipif->ipif_id > id) 13417 break; /* found correct location */ 13418 tipifp = &(tipif->ipif_next); 13419 } 13420 } else { 13421 if (acquire_ill_lock) 13422 mutex_exit(&ill->ill_lock); 13423 if (acquire_g_lock) 13424 rw_exit(&ipst->ips_ill_g_lock); 13425 return (-1); 13426 } 13427 13428 ASSERT(tipifp != &(ill->ill_ipif) || id == 0); 13429 13430 ipif->ipif_next = tipif; 13431 *tipifp = ipif; 13432 if (acquire_ill_lock) 13433 mutex_exit(&ill->ill_lock); 13434 if (acquire_g_lock) 13435 rw_exit(&ipst->ips_ill_g_lock); 13436 return (0); 13437 } 13438 13439 static void 13440 ipif_remove(ipif_t *ipif, boolean_t acquire_ill_lock) 13441 { 13442 ipif_t **ipifp; 13443 ill_t *ill = ipif->ipif_ill; 13444 13445 ASSERT(RW_WRITE_HELD(&ill->ill_ipst->ips_ill_g_lock)); 13446 if (acquire_ill_lock) 13447 mutex_enter(&ill->ill_lock); 13448 else 13449 ASSERT(MUTEX_HELD(&ill->ill_lock)); 13450 13451 ipifp = &ill->ill_ipif; 13452 for (; *ipifp != NULL; ipifp = &ipifp[0]->ipif_next) { 13453 if (*ipifp == ipif) { 13454 *ipifp = ipif->ipif_next; 13455 break; 13456 } 13457 } 13458 13459 if (acquire_ill_lock) 13460 mutex_exit(&ill->ill_lock); 13461 } 13462 13463 /* 13464 * Allocate and initialize a new interface control structure. (Always 13465 * called as writer.) 13466 * When ipif_allocate() is called from ip_ll_subnet_defaults, the ill 13467 * is not part of the global linked list of ills. ipif_seqid is unique 13468 * in the system and to preserve the uniqueness, it is assigned only 13469 * when ill becomes part of the global list. At that point ill will 13470 * have a name. If it doesn't get assigned here, it will get assigned 13471 * in ipif_set_values() as part of SIOCSLIFNAME processing. 13472 * Aditionally, if we come here from ip_ll_subnet_defaults, we don't set 13473 * the interface flags or any other information from the DL_INFO_ACK for 13474 * DL_STYLE2 drivers (initialize == B_FALSE), since we won't have them at 13475 * this point. The flags etc. will be set in ip_ll_subnet_defaults when the 13476 * second DL_INFO_ACK comes in from the driver. 13477 */ 13478 static ipif_t * 13479 ipif_allocate(ill_t *ill, int id, uint_t ire_type, boolean_t initialize) 13480 { 13481 ipif_t *ipif; 13482 phyint_t *phyi; 13483 13484 ip1dbg(("ipif_allocate(%s:%d ill %p)\n", 13485 ill->ill_name, id, (void *)ill)); 13486 ASSERT(ire_type == IRE_LOOPBACK || IAM_WRITER_ILL(ill)); 13487 13488 if ((ipif = (ipif_t *)mi_alloc(sizeof (ipif_t), BPRI_MED)) == NULL) 13489 return (NULL); 13490 *ipif = ipif_zero; /* start clean */ 13491 13492 ipif->ipif_ill = ill; 13493 ipif->ipif_id = id; /* could be -1 */ 13494 /* 13495 * Inherit the zoneid from the ill; for the shared stack instance 13496 * this is always the global zone 13497 */ 13498 ipif->ipif_zoneid = ill->ill_zoneid; 13499 13500 mutex_init(&ipif->ipif_saved_ire_lock, NULL, MUTEX_DEFAULT, NULL); 13501 13502 ipif->ipif_refcnt = 0; 13503 ipif->ipif_saved_ire_cnt = 0; 13504 13505 if (ipif_insert(ipif, ire_type != IRE_LOOPBACK, B_TRUE)) { 13506 mi_free(ipif); 13507 return (NULL); 13508 } 13509 /* -1 id should have been replaced by real id */ 13510 id = ipif->ipif_id; 13511 ASSERT(id >= 0); 13512 13513 if (ill->ill_name[0] != '\0') 13514 ipif_assign_seqid(ipif); 13515 13516 /* 13517 * Keep a copy of original id in ipif_orig_ipifid. Failback 13518 * will attempt to restore the original id. The SIOCSLIFOINDEX 13519 * ioctl sets ipif_orig_ipifid to zero. 13520 */ 13521 ipif->ipif_orig_ipifid = id; 13522 13523 /* 13524 * We grab the ill_lock and phyint_lock to protect the flag changes. 13525 * The ipif is still not up and can't be looked up until the 13526 * ioctl completes and the IPIF_CHANGING flag is cleared. 13527 */ 13528 mutex_enter(&ill->ill_lock); 13529 mutex_enter(&ill->ill_phyint->phyint_lock); 13530 /* 13531 * Set the running flag when logical interface zero is created. 13532 * For subsequent logical interfaces, a DLPI link down 13533 * notification message may have cleared the running flag to 13534 * indicate the link is down, so we shouldn't just blindly set it. 13535 */ 13536 if (id == 0) 13537 ill->ill_phyint->phyint_flags |= PHYI_RUNNING; 13538 ipif->ipif_ire_type = ire_type; 13539 phyi = ill->ill_phyint; 13540 ipif->ipif_orig_ifindex = phyi->phyint_ifindex; 13541 13542 if (ipif->ipif_isv6) { 13543 ill->ill_flags |= ILLF_IPV6; 13544 } else { 13545 ipaddr_t inaddr_any = INADDR_ANY; 13546 13547 ill->ill_flags |= ILLF_IPV4; 13548 13549 /* Keep the IN6_IS_ADDR_V4MAPPED assertions happy */ 13550 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 13551 &ipif->ipif_v6lcl_addr); 13552 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 13553 &ipif->ipif_v6src_addr); 13554 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 13555 &ipif->ipif_v6subnet); 13556 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 13557 &ipif->ipif_v6net_mask); 13558 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 13559 &ipif->ipif_v6brd_addr); 13560 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 13561 &ipif->ipif_v6pp_dst_addr); 13562 } 13563 13564 /* 13565 * Don't set the interface flags etc. now, will do it in 13566 * ip_ll_subnet_defaults. 13567 */ 13568 if (!initialize) { 13569 mutex_exit(&ill->ill_lock); 13570 mutex_exit(&ill->ill_phyint->phyint_lock); 13571 return (ipif); 13572 } 13573 ipif->ipif_mtu = ill->ill_max_mtu; 13574 13575 if (ill->ill_bcast_addr_length != 0) { 13576 /* 13577 * Later detect lack of DLPI driver multicast 13578 * capability by catching DL_ENABMULTI errors in 13579 * ip_rput_dlpi. 13580 */ 13581 ill->ill_flags |= ILLF_MULTICAST; 13582 if (!ipif->ipif_isv6) 13583 ipif->ipif_flags |= IPIF_BROADCAST; 13584 } else { 13585 if (ill->ill_net_type != IRE_LOOPBACK) { 13586 if (ipif->ipif_isv6) 13587 /* 13588 * Note: xresolv interfaces will eventually need 13589 * NOARP set here as well, but that will require 13590 * those external resolvers to have some 13591 * knowledge of that flag and act appropriately. 13592 * Not to be changed at present. 13593 */ 13594 ill->ill_flags |= ILLF_NONUD; 13595 else 13596 ill->ill_flags |= ILLF_NOARP; 13597 } 13598 if (ill->ill_phys_addr_length == 0) { 13599 if (ill->ill_media && 13600 ill->ill_media->ip_m_mac_type == SUNW_DL_VNI) { 13601 ipif->ipif_flags |= IPIF_NOXMIT; 13602 phyi->phyint_flags |= PHYI_VIRTUAL; 13603 } else { 13604 /* pt-pt supports multicast. */ 13605 ill->ill_flags |= ILLF_MULTICAST; 13606 if (ill->ill_net_type == IRE_LOOPBACK) { 13607 phyi->phyint_flags |= 13608 (PHYI_LOOPBACK | PHYI_VIRTUAL); 13609 } else { 13610 ipif->ipif_flags |= IPIF_POINTOPOINT; 13611 } 13612 } 13613 } 13614 } 13615 mutex_exit(&ill->ill_lock); 13616 mutex_exit(&ill->ill_phyint->phyint_lock); 13617 return (ipif); 13618 } 13619 13620 /* 13621 * If appropriate, send a message up to the resolver delete the entry 13622 * for the address of this interface which is going out of business. 13623 * (Always called as writer). 13624 * 13625 * NOTE : We need to check for NULL mps as some of the fields are 13626 * initialized only for some interface types. See ipif_resolver_up() 13627 * for details. 13628 */ 13629 void 13630 ipif_arp_down(ipif_t *ipif) 13631 { 13632 mblk_t *mp; 13633 ill_t *ill = ipif->ipif_ill; 13634 13635 ip1dbg(("ipif_arp_down(%s:%u)\n", ill->ill_name, ipif->ipif_id)); 13636 ASSERT(IAM_WRITER_IPIF(ipif)); 13637 13638 /* Delete the mapping for the local address */ 13639 mp = ipif->ipif_arp_del_mp; 13640 if (mp != NULL) { 13641 ip1dbg(("ipif_arp_down: arp cmd %x for %s:%u\n", 13642 *(unsigned *)mp->b_rptr, ill->ill_name, ipif->ipif_id)); 13643 putnext(ill->ill_rq, mp); 13644 ipif->ipif_arp_del_mp = NULL; 13645 } 13646 13647 /* 13648 * If this is the last ipif that is going down and there are no 13649 * duplicate addresses we may yet attempt to re-probe, then we need to 13650 * clean up ARP completely. 13651 */ 13652 if (ill->ill_ipif_up_count == 0 && ill->ill_ipif_dup_count == 0) { 13653 13654 /* Send up AR_INTERFACE_DOWN message */ 13655 mp = ill->ill_arp_down_mp; 13656 if (mp != NULL) { 13657 ip1dbg(("ipif_arp_down: arp cmd %x for %s:%u\n", 13658 *(unsigned *)mp->b_rptr, ill->ill_name, 13659 ipif->ipif_id)); 13660 putnext(ill->ill_rq, mp); 13661 ill->ill_arp_down_mp = NULL; 13662 } 13663 13664 /* Tell ARP to delete the multicast mappings */ 13665 mp = ill->ill_arp_del_mapping_mp; 13666 if (mp != NULL) { 13667 ip1dbg(("ipif_arp_down: arp cmd %x for %s:%u\n", 13668 *(unsigned *)mp->b_rptr, ill->ill_name, 13669 ipif->ipif_id)); 13670 putnext(ill->ill_rq, mp); 13671 ill->ill_arp_del_mapping_mp = NULL; 13672 } 13673 } 13674 } 13675 13676 /* 13677 * This function sets up the multicast mappings in ARP. When ipif_resolver_up 13678 * calls this function, it passes a non-NULL arp_add_mapping_mp indicating 13679 * that it wants the add_mp allocated in this function to be returned 13680 * wihtout sending it to arp. When ip_rput_dlpi_writer calls this to 13681 * just re-do the multicast, it wants us to send the add_mp to ARP also. 13682 * ipif_resolver_up does not want us to do the "add" i.e sending to ARP, 13683 * as it does a ipif_arp_down after calling this function - which will 13684 * remove what we add here. 13685 * 13686 * Returns -1 on failures and 0 on success. 13687 */ 13688 int 13689 ipif_arp_setup_multicast(ipif_t *ipif, mblk_t **arp_add_mapping_mp) 13690 { 13691 mblk_t *del_mp = NULL; 13692 mblk_t *add_mp = NULL; 13693 mblk_t *mp; 13694 ill_t *ill = ipif->ipif_ill; 13695 phyint_t *phyi = ill->ill_phyint; 13696 ipaddr_t addr, mask, extract_mask = 0; 13697 arma_t *arma; 13698 uint8_t *maddr, *bphys_addr; 13699 uint32_t hw_start; 13700 dl_unitdata_req_t *dlur; 13701 13702 ASSERT(IAM_WRITER_IPIF(ipif)); 13703 if (ipif->ipif_flags & IPIF_POINTOPOINT) 13704 return (0); 13705 13706 /* 13707 * Delete the existing mapping from ARP. Normally ipif_down 13708 * -> ipif_arp_down should send this up to ARP. The only 13709 * reason we would find this when we are switching from 13710 * Multicast to Broadcast where we did not do a down. 13711 */ 13712 mp = ill->ill_arp_del_mapping_mp; 13713 if (mp != NULL) { 13714 ip1dbg(("ipif_arp_down: arp cmd %x for %s:%u\n", 13715 *(unsigned *)mp->b_rptr, ill->ill_name, ipif->ipif_id)); 13716 putnext(ill->ill_rq, mp); 13717 ill->ill_arp_del_mapping_mp = NULL; 13718 } 13719 13720 if (arp_add_mapping_mp != NULL) 13721 *arp_add_mapping_mp = NULL; 13722 13723 /* 13724 * Check that the address is not to long for the constant 13725 * length reserved in the template arma_t. 13726 */ 13727 if (ill->ill_phys_addr_length > IP_MAX_HW_LEN) 13728 return (-1); 13729 13730 /* Add mapping mblk */ 13731 addr = (ipaddr_t)htonl(INADDR_UNSPEC_GROUP); 13732 mask = (ipaddr_t)htonl(IN_CLASSD_NET); 13733 add_mp = ill_arp_alloc(ill, (uchar_t *)&ip_arma_multi_template, 13734 (caddr_t)&addr); 13735 if (add_mp == NULL) 13736 return (-1); 13737 arma = (arma_t *)add_mp->b_rptr; 13738 maddr = (uint8_t *)arma + arma->arma_hw_addr_offset; 13739 bcopy(&mask, (char *)arma + arma->arma_proto_mask_offset, IP_ADDR_LEN); 13740 arma->arma_hw_addr_length = ill->ill_phys_addr_length; 13741 13742 /* 13743 * Determine the broadcast address. 13744 */ 13745 dlur = (dl_unitdata_req_t *)ill->ill_bcast_mp->b_rptr; 13746 if (ill->ill_sap_length < 0) 13747 bphys_addr = (uchar_t *)dlur + dlur->dl_dest_addr_offset; 13748 else 13749 bphys_addr = (uchar_t *)dlur + 13750 dlur->dl_dest_addr_offset + ill->ill_sap_length; 13751 /* 13752 * Check PHYI_MULTI_BCAST and length of physical 13753 * address to determine if we use the mapping or the 13754 * broadcast address. 13755 */ 13756 if (!(phyi->phyint_flags & PHYI_MULTI_BCAST)) 13757 if (!MEDIA_V4MINFO(ill->ill_media, ill->ill_phys_addr_length, 13758 bphys_addr, maddr, &hw_start, &extract_mask)) 13759 phyi->phyint_flags |= PHYI_MULTI_BCAST; 13760 13761 if ((phyi->phyint_flags & PHYI_MULTI_BCAST) || 13762 (ill->ill_flags & ILLF_MULTICAST)) { 13763 /* Make sure this will not match the "exact" entry. */ 13764 addr = (ipaddr_t)htonl(INADDR_ALLHOSTS_GROUP); 13765 del_mp = ill_arp_alloc(ill, (uchar_t *)&ip_ared_template, 13766 (caddr_t)&addr); 13767 if (del_mp == NULL) { 13768 freemsg(add_mp); 13769 return (-1); 13770 } 13771 bcopy(&extract_mask, (char *)arma + 13772 arma->arma_proto_extract_mask_offset, IP_ADDR_LEN); 13773 if (phyi->phyint_flags & PHYI_MULTI_BCAST) { 13774 /* Use link-layer broadcast address for MULTI_BCAST */ 13775 bcopy(bphys_addr, maddr, ill->ill_phys_addr_length); 13776 ip2dbg(("ipif_arp_setup_multicast: adding" 13777 " MULTI_BCAST ARP setup for %s\n", ill->ill_name)); 13778 } else { 13779 arma->arma_hw_mapping_start = hw_start; 13780 ip2dbg(("ipif_arp_setup_multicast: adding multicast" 13781 " ARP setup for %s\n", ill->ill_name)); 13782 } 13783 } else { 13784 freemsg(add_mp); 13785 ASSERT(del_mp == NULL); 13786 /* It is neither MULTICAST nor MULTI_BCAST */ 13787 return (0); 13788 } 13789 ASSERT(add_mp != NULL && del_mp != NULL); 13790 ASSERT(ill->ill_arp_del_mapping_mp == NULL); 13791 ill->ill_arp_del_mapping_mp = del_mp; 13792 if (arp_add_mapping_mp != NULL) { 13793 /* The caller just wants the mblks allocated */ 13794 *arp_add_mapping_mp = add_mp; 13795 } else { 13796 /* The caller wants us to send it to arp */ 13797 putnext(ill->ill_rq, add_mp); 13798 } 13799 return (0); 13800 } 13801 13802 /* 13803 * Get the resolver set up for a new interface address. 13804 * (Always called as writer.) 13805 * Called both for IPv4 and IPv6 interfaces, 13806 * though it only sets up the resolver for v6 13807 * if it's an xresolv interface (one using an external resolver). 13808 * Honors ILLF_NOARP. 13809 * The enumerated value res_act is used to tune the behavior. 13810 * If set to Res_act_initial, then we set up all the resolver 13811 * structures for a new interface. If set to Res_act_move, then 13812 * we just send an AR_ENTRY_ADD message up to ARP for IPv4 13813 * interfaces; this is called by ip_rput_dlpi_writer() to handle 13814 * asynchronous hardware address change notification. If set to 13815 * Res_act_defend, then we tell ARP that it needs to send a single 13816 * gratuitous message in defense of the address. 13817 * Returns error on failure. 13818 */ 13819 int 13820 ipif_resolver_up(ipif_t *ipif, enum ip_resolver_action res_act) 13821 { 13822 caddr_t addr; 13823 mblk_t *arp_up_mp = NULL; 13824 mblk_t *arp_down_mp = NULL; 13825 mblk_t *arp_add_mp = NULL; 13826 mblk_t *arp_del_mp = NULL; 13827 mblk_t *arp_add_mapping_mp = NULL; 13828 mblk_t *arp_del_mapping_mp = NULL; 13829 ill_t *ill = ipif->ipif_ill; 13830 uchar_t *area_p = NULL; 13831 uchar_t *ared_p = NULL; 13832 int err = ENOMEM; 13833 boolean_t was_dup; 13834 13835 ip1dbg(("ipif_resolver_up(%s:%u) flags 0x%x\n", 13836 ill->ill_name, ipif->ipif_id, (uint_t)ipif->ipif_flags)); 13837 ASSERT(IAM_WRITER_IPIF(ipif)); 13838 13839 was_dup = B_FALSE; 13840 if (res_act == Res_act_initial) { 13841 ipif->ipif_addr_ready = 0; 13842 /* 13843 * We're bringing an interface up here. There's no way that we 13844 * should need to shut down ARP now. 13845 */ 13846 mutex_enter(&ill->ill_lock); 13847 if (ipif->ipif_flags & IPIF_DUPLICATE) { 13848 ipif->ipif_flags &= ~IPIF_DUPLICATE; 13849 ill->ill_ipif_dup_count--; 13850 was_dup = B_TRUE; 13851 } 13852 mutex_exit(&ill->ill_lock); 13853 } 13854 if (ipif->ipif_recovery_id != 0) 13855 (void) untimeout(ipif->ipif_recovery_id); 13856 ipif->ipif_recovery_id = 0; 13857 if (ill->ill_net_type != IRE_IF_RESOLVER) { 13858 ipif->ipif_addr_ready = 1; 13859 return (0); 13860 } 13861 /* NDP will set the ipif_addr_ready flag when it's ready */ 13862 if (ill->ill_isv6 && !(ill->ill_flags & ILLF_XRESOLV)) 13863 return (0); 13864 13865 if (ill->ill_isv6) { 13866 /* 13867 * External resolver for IPv6 13868 */ 13869 ASSERT(res_act == Res_act_initial); 13870 if (!IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr)) { 13871 addr = (caddr_t)&ipif->ipif_v6lcl_addr; 13872 area_p = (uchar_t *)&ip6_area_template; 13873 ared_p = (uchar_t *)&ip6_ared_template; 13874 } 13875 } else { 13876 /* 13877 * IPv4 arp case. If the ARP stream has already started 13878 * closing, fail this request for ARP bringup. Else 13879 * record the fact that an ARP bringup is pending. 13880 */ 13881 mutex_enter(&ill->ill_lock); 13882 if (ill->ill_arp_closing) { 13883 mutex_exit(&ill->ill_lock); 13884 err = EINVAL; 13885 goto failed; 13886 } else { 13887 if (ill->ill_ipif_up_count == 0 && 13888 ill->ill_ipif_dup_count == 0 && !was_dup) 13889 ill->ill_arp_bringup_pending = 1; 13890 mutex_exit(&ill->ill_lock); 13891 } 13892 if (ipif->ipif_lcl_addr != INADDR_ANY) { 13893 addr = (caddr_t)&ipif->ipif_lcl_addr; 13894 area_p = (uchar_t *)&ip_area_template; 13895 ared_p = (uchar_t *)&ip_ared_template; 13896 } 13897 } 13898 13899 /* 13900 * Add an entry for the local address in ARP only if it 13901 * is not UNNUMBERED and the address is not INADDR_ANY. 13902 */ 13903 if (!(ipif->ipif_flags & IPIF_UNNUMBERED) && area_p != NULL) { 13904 area_t *area; 13905 13906 /* Now ask ARP to publish our address. */ 13907 arp_add_mp = ill_arp_alloc(ill, area_p, addr); 13908 if (arp_add_mp == NULL) 13909 goto failed; 13910 area = (area_t *)arp_add_mp->b_rptr; 13911 if (res_act != Res_act_initial) { 13912 /* 13913 * Copy the new hardware address and length into 13914 * arp_add_mp to be sent to ARP. 13915 */ 13916 area->area_hw_addr_length = ill->ill_phys_addr_length; 13917 bcopy(ill->ill_phys_addr, 13918 ((char *)area + area->area_hw_addr_offset), 13919 area->area_hw_addr_length); 13920 } 13921 13922 area->area_flags = ACE_F_PERMANENT | ACE_F_PUBLISH | 13923 ACE_F_MYADDR; 13924 13925 if (res_act == Res_act_defend) { 13926 area->area_flags |= ACE_F_DEFEND; 13927 /* 13928 * If we're just defending our address now, then 13929 * there's no need to set up ARP multicast mappings. 13930 * The publish command is enough. 13931 */ 13932 goto done; 13933 } 13934 13935 if (res_act != Res_act_initial) 13936 goto arp_setup_multicast; 13937 13938 /* 13939 * Allocate an ARP deletion message so we know we can tell ARP 13940 * when the interface goes down. 13941 */ 13942 arp_del_mp = ill_arp_alloc(ill, ared_p, addr); 13943 if (arp_del_mp == NULL) 13944 goto failed; 13945 13946 } else { 13947 if (res_act != Res_act_initial) 13948 goto done; 13949 } 13950 /* 13951 * Need to bring up ARP or setup multicast mapping only 13952 * when the first interface is coming UP. 13953 */ 13954 if (ill->ill_ipif_up_count != 0 || ill->ill_ipif_dup_count != 0 || 13955 was_dup) { 13956 goto done; 13957 } 13958 13959 /* 13960 * Allocate an ARP down message (to be saved) and an ARP up 13961 * message. 13962 */ 13963 arp_down_mp = ill_arp_alloc(ill, (uchar_t *)&ip_ard_template, 0); 13964 if (arp_down_mp == NULL) 13965 goto failed; 13966 13967 arp_up_mp = ill_arp_alloc(ill, (uchar_t *)&ip_aru_template, 0); 13968 if (arp_up_mp == NULL) 13969 goto failed; 13970 13971 if (ipif->ipif_flags & IPIF_POINTOPOINT) 13972 goto done; 13973 13974 arp_setup_multicast: 13975 /* 13976 * Setup the multicast mappings. This function initializes 13977 * ill_arp_del_mapping_mp also. This does not need to be done for 13978 * IPv6. 13979 */ 13980 if (!ill->ill_isv6) { 13981 err = ipif_arp_setup_multicast(ipif, &arp_add_mapping_mp); 13982 if (err != 0) 13983 goto failed; 13984 ASSERT(ill->ill_arp_del_mapping_mp != NULL); 13985 ASSERT(arp_add_mapping_mp != NULL); 13986 } 13987 13988 done: 13989 if (arp_del_mp != NULL) { 13990 ASSERT(ipif->ipif_arp_del_mp == NULL); 13991 ipif->ipif_arp_del_mp = arp_del_mp; 13992 } 13993 if (arp_down_mp != NULL) { 13994 ASSERT(ill->ill_arp_down_mp == NULL); 13995 ill->ill_arp_down_mp = arp_down_mp; 13996 } 13997 if (arp_del_mapping_mp != NULL) { 13998 ASSERT(ill->ill_arp_del_mapping_mp == NULL); 13999 ill->ill_arp_del_mapping_mp = arp_del_mapping_mp; 14000 } 14001 if (arp_up_mp != NULL) { 14002 ip1dbg(("ipif_resolver_up: ARP_UP for %s:%u\n", 14003 ill->ill_name, ipif->ipif_id)); 14004 putnext(ill->ill_rq, arp_up_mp); 14005 } 14006 if (arp_add_mp != NULL) { 14007 ip1dbg(("ipif_resolver_up: ARP_ADD for %s:%u\n", 14008 ill->ill_name, ipif->ipif_id)); 14009 /* 14010 * If it's an extended ARP implementation, then we'll wait to 14011 * hear that DAD has finished before using the interface. 14012 */ 14013 if (!ill->ill_arp_extend) 14014 ipif->ipif_addr_ready = 1; 14015 putnext(ill->ill_rq, arp_add_mp); 14016 } else { 14017 ipif->ipif_addr_ready = 1; 14018 } 14019 if (arp_add_mapping_mp != NULL) { 14020 ip1dbg(("ipif_resolver_up: MAPPING_ADD for %s:%u\n", 14021 ill->ill_name, ipif->ipif_id)); 14022 putnext(ill->ill_rq, arp_add_mapping_mp); 14023 } 14024 if (res_act != Res_act_initial) 14025 return (0); 14026 14027 if (ill->ill_flags & ILLF_NOARP) 14028 err = ill_arp_off(ill); 14029 else 14030 err = ill_arp_on(ill); 14031 if (err != 0) { 14032 ip0dbg(("ipif_resolver_up: arp_on/off failed %d\n", err)); 14033 freemsg(ipif->ipif_arp_del_mp); 14034 freemsg(ill->ill_arp_down_mp); 14035 freemsg(ill->ill_arp_del_mapping_mp); 14036 ipif->ipif_arp_del_mp = NULL; 14037 ill->ill_arp_down_mp = NULL; 14038 ill->ill_arp_del_mapping_mp = NULL; 14039 return (err); 14040 } 14041 return ((ill->ill_ipif_up_count != 0 || was_dup || 14042 ill->ill_ipif_dup_count != 0) ? 0 : EINPROGRESS); 14043 14044 failed: 14045 ip1dbg(("ipif_resolver_up: FAILED\n")); 14046 freemsg(arp_add_mp); 14047 freemsg(arp_del_mp); 14048 freemsg(arp_add_mapping_mp); 14049 freemsg(arp_up_mp); 14050 freemsg(arp_down_mp); 14051 ill->ill_arp_bringup_pending = 0; 14052 return (err); 14053 } 14054 14055 /* 14056 * This routine restarts IPv4 duplicate address detection (DAD) when a link has 14057 * just gone back up. 14058 */ 14059 static void 14060 ipif_arp_start_dad(ipif_t *ipif) 14061 { 14062 ill_t *ill = ipif->ipif_ill; 14063 mblk_t *arp_add_mp; 14064 area_t *area; 14065 14066 if (ill->ill_net_type != IRE_IF_RESOLVER || ill->ill_arp_closing || 14067 (ipif->ipif_flags & IPIF_UNNUMBERED) || 14068 ipif->ipif_lcl_addr == INADDR_ANY || 14069 (arp_add_mp = ill_arp_alloc(ill, (uchar_t *)&ip_area_template, 14070 (char *)&ipif->ipif_lcl_addr)) == NULL) { 14071 /* 14072 * If we can't contact ARP for some reason, that's not really a 14073 * problem. Just send out the routing socket notification that 14074 * DAD completion would have done, and continue. 14075 */ 14076 ipif_mask_reply(ipif); 14077 ip_rts_ifmsg(ipif); 14078 ip_rts_newaddrmsg(RTM_ADD, 0, ipif); 14079 sctp_update_ipif(ipif, SCTP_IPIF_UP); 14080 ipif->ipif_addr_ready = 1; 14081 return; 14082 } 14083 14084 /* Setting the 'unverified' flag restarts DAD */ 14085 area = (area_t *)arp_add_mp->b_rptr; 14086 area->area_flags = ACE_F_PERMANENT | ACE_F_PUBLISH | ACE_F_MYADDR | 14087 ACE_F_UNVERIFIED; 14088 putnext(ill->ill_rq, arp_add_mp); 14089 } 14090 14091 static void 14092 ipif_ndp_start_dad(ipif_t *ipif) 14093 { 14094 nce_t *nce; 14095 14096 nce = ndp_lookup_v6(ipif->ipif_ill, &ipif->ipif_v6lcl_addr, B_FALSE); 14097 if (nce == NULL) 14098 return; 14099 14100 if (!ndp_restart_dad(nce)) { 14101 /* 14102 * If we can't restart DAD for some reason, that's not really a 14103 * problem. Just send out the routing socket notification that 14104 * DAD completion would have done, and continue. 14105 */ 14106 ip_rts_ifmsg(ipif); 14107 ip_rts_newaddrmsg(RTM_ADD, 0, ipif); 14108 sctp_update_ipif(ipif, SCTP_IPIF_UP); 14109 ipif->ipif_addr_ready = 1; 14110 } 14111 NCE_REFRELE(nce); 14112 } 14113 14114 /* 14115 * Restart duplicate address detection on all interfaces on the given ill. 14116 * 14117 * This is called when an interface transitions from down to up 14118 * (DL_NOTE_LINK_UP) or up to down (DL_NOTE_LINK_DOWN). 14119 * 14120 * Note that since the underlying physical link has transitioned, we must cause 14121 * at least one routing socket message to be sent here, either via DAD 14122 * completion or just by default on the first ipif. (If we don't do this, then 14123 * in.mpathd will see long delays when doing link-based failure recovery.) 14124 */ 14125 void 14126 ill_restart_dad(ill_t *ill, boolean_t went_up) 14127 { 14128 ipif_t *ipif; 14129 14130 if (ill == NULL) 14131 return; 14132 14133 /* 14134 * If layer two doesn't support duplicate address detection, then just 14135 * send the routing socket message now and be done with it. 14136 */ 14137 if ((ill->ill_isv6 && (ill->ill_flags & ILLF_XRESOLV)) || 14138 (!ill->ill_isv6 && !ill->ill_arp_extend)) { 14139 ip_rts_ifmsg(ill->ill_ipif); 14140 return; 14141 } 14142 14143 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 14144 if (went_up) { 14145 if (ipif->ipif_flags & IPIF_UP) { 14146 if (ill->ill_isv6) 14147 ipif_ndp_start_dad(ipif); 14148 else 14149 ipif_arp_start_dad(ipif); 14150 } else if (ill->ill_isv6 && 14151 (ipif->ipif_flags & IPIF_DUPLICATE)) { 14152 /* 14153 * For IPv4, the ARP module itself will 14154 * automatically start the DAD process when it 14155 * sees DL_NOTE_LINK_UP. We respond to the 14156 * AR_CN_READY at the completion of that task. 14157 * For IPv6, we must kick off the bring-up 14158 * process now. 14159 */ 14160 ndp_do_recovery(ipif); 14161 } else { 14162 /* 14163 * Unfortunately, the first ipif is "special" 14164 * and represents the underlying ill in the 14165 * routing socket messages. Thus, when this 14166 * one ipif is down, we must still notify so 14167 * that the user knows the IFF_RUNNING status 14168 * change. (If the first ipif is up, then 14169 * we'll handle eventual routing socket 14170 * notification via DAD completion.) 14171 */ 14172 if (ipif == ill->ill_ipif) 14173 ip_rts_ifmsg(ill->ill_ipif); 14174 } 14175 } else { 14176 /* 14177 * After link down, we'll need to send a new routing 14178 * message when the link comes back, so clear 14179 * ipif_addr_ready. 14180 */ 14181 ipif->ipif_addr_ready = 0; 14182 } 14183 } 14184 14185 /* 14186 * If we've torn down links, then notify the user right away. 14187 */ 14188 if (!went_up) 14189 ip_rts_ifmsg(ill->ill_ipif); 14190 } 14191 14192 /* 14193 * Wakeup all threads waiting to enter the ipsq, and sleeping 14194 * on any of the ills in this ipsq. The ill_lock of the ill 14195 * must be held so that waiters don't miss wakeups 14196 */ 14197 static void 14198 ill_signal_ipsq_ills(ipsq_t *ipsq, boolean_t caller_holds_lock) 14199 { 14200 phyint_t *phyint; 14201 14202 phyint = ipsq->ipsq_phyint_list; 14203 while (phyint != NULL) { 14204 if (phyint->phyint_illv4) { 14205 if (!caller_holds_lock) 14206 mutex_enter(&phyint->phyint_illv4->ill_lock); 14207 ASSERT(MUTEX_HELD(&phyint->phyint_illv4->ill_lock)); 14208 cv_broadcast(&phyint->phyint_illv4->ill_cv); 14209 if (!caller_holds_lock) 14210 mutex_exit(&phyint->phyint_illv4->ill_lock); 14211 } 14212 if (phyint->phyint_illv6) { 14213 if (!caller_holds_lock) 14214 mutex_enter(&phyint->phyint_illv6->ill_lock); 14215 ASSERT(MUTEX_HELD(&phyint->phyint_illv6->ill_lock)); 14216 cv_broadcast(&phyint->phyint_illv6->ill_cv); 14217 if (!caller_holds_lock) 14218 mutex_exit(&phyint->phyint_illv6->ill_lock); 14219 } 14220 phyint = phyint->phyint_ipsq_next; 14221 } 14222 } 14223 14224 static ipsq_t * 14225 ipsq_create(char *groupname, ip_stack_t *ipst) 14226 { 14227 ipsq_t *ipsq; 14228 14229 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); 14230 ipsq = kmem_zalloc(sizeof (ipsq_t), KM_NOSLEEP); 14231 if (ipsq == NULL) { 14232 return (NULL); 14233 } 14234 14235 if (groupname != NULL) 14236 (void) strcpy(ipsq->ipsq_name, groupname); 14237 else 14238 ipsq->ipsq_name[0] = '\0'; 14239 14240 mutex_init(&ipsq->ipsq_lock, NULL, MUTEX_DEFAULT, NULL); 14241 ipsq->ipsq_flags |= IPSQ_GROUP; 14242 ipsq->ipsq_next = ipst->ips_ipsq_g_head; 14243 ipst->ips_ipsq_g_head = ipsq; 14244 ipsq->ipsq_ipst = ipst; /* No netstack_hold */ 14245 return (ipsq); 14246 } 14247 14248 /* 14249 * Return an ipsq correspoding to the groupname. If 'create' is true 14250 * allocate a new ipsq if one does not exist. Usually an ipsq is associated 14251 * uniquely with an IPMP group. However during IPMP groupname operations, 14252 * multiple IPMP groups may be associated with a single ipsq. But no 14253 * IPMP group can be associated with more than 1 ipsq at any time. 14254 * For example 14255 * Interfaces IPMP grpname ipsq ipsq_name ipsq_refs 14256 * hme1, hme2 mpk17-84 ipsq1 mpk17-84 2 14257 * hme3, hme4 mpk17-85 ipsq2 mpk17-85 2 14258 * 14259 * Now the command ifconfig hme3 group mpk17-84 results in the temporary 14260 * status shown below during the execution of the above command. 14261 * hme1, hme2, hme3, hme4 mpk17-84, mpk17-85 ipsq1 mpk17-84 4 14262 * 14263 * After the completion of the above groupname command we return to the stable 14264 * state shown below. 14265 * hme1, hme2, hme3 mpk17-84 ipsq1 mpk17-84 3 14266 * hme4 mpk17-85 ipsq2 mpk17-85 1 14267 * 14268 * Because of the above, we don't search based on the ipsq_name since that 14269 * would miss the correct ipsq during certain windows as shown above. 14270 * The ipsq_name is only used during split of an ipsq to return the ipsq to its 14271 * natural state. 14272 */ 14273 static ipsq_t * 14274 ip_ipsq_lookup(char *groupname, boolean_t create, ipsq_t *exclude_ipsq, 14275 ip_stack_t *ipst) 14276 { 14277 ipsq_t *ipsq; 14278 int group_len; 14279 phyint_t *phyint; 14280 14281 ASSERT(RW_LOCK_HELD(&ipst->ips_ill_g_lock)); 14282 14283 group_len = strlen(groupname); 14284 ASSERT(group_len != 0); 14285 group_len++; 14286 14287 for (ipsq = ipst->ips_ipsq_g_head; 14288 ipsq != NULL; 14289 ipsq = ipsq->ipsq_next) { 14290 /* 14291 * When an ipsq is being split, and ill_split_ipsq 14292 * calls this function, we exclude it from being considered. 14293 */ 14294 if (ipsq == exclude_ipsq) 14295 continue; 14296 14297 /* 14298 * Compare against the ipsq_name. The groupname change happens 14299 * in 2 phases. The 1st phase merges the from group into 14300 * the to group's ipsq, by calling ill_merge_groups and restarts 14301 * the ioctl. The 2nd phase then locates the ipsq again thru 14302 * ipsq_name. At this point the phyint_groupname has not been 14303 * updated. 14304 */ 14305 if ((group_len == strlen(ipsq->ipsq_name) + 1) && 14306 (bcmp(ipsq->ipsq_name, groupname, group_len) == 0)) { 14307 /* 14308 * Verify that an ipmp groupname is exactly 14309 * part of 1 ipsq and is not found in any other 14310 * ipsq. 14311 */ 14312 ASSERT(ip_ipsq_lookup(groupname, B_FALSE, ipsq, ipst) == 14313 NULL); 14314 return (ipsq); 14315 } 14316 14317 /* 14318 * Comparison against ipsq_name alone is not sufficient. 14319 * In the case when groups are currently being 14320 * merged, the ipsq could hold other IPMP groups temporarily. 14321 * so we walk the phyint list and compare against the 14322 * phyint_groupname as well. 14323 */ 14324 phyint = ipsq->ipsq_phyint_list; 14325 while (phyint != NULL) { 14326 if ((group_len == phyint->phyint_groupname_len) && 14327 (bcmp(phyint->phyint_groupname, groupname, 14328 group_len) == 0)) { 14329 /* 14330 * Verify that an ipmp groupname is exactly 14331 * part of 1 ipsq and is not found in any other 14332 * ipsq. 14333 */ 14334 ASSERT(ip_ipsq_lookup(groupname, B_FALSE, ipsq, 14335 ipst) == NULL); 14336 return (ipsq); 14337 } 14338 phyint = phyint->phyint_ipsq_next; 14339 } 14340 } 14341 if (create) 14342 ipsq = ipsq_create(groupname, ipst); 14343 return (ipsq); 14344 } 14345 14346 static void 14347 ipsq_delete(ipsq_t *ipsq) 14348 { 14349 ipsq_t *nipsq; 14350 ipsq_t *pipsq = NULL; 14351 ip_stack_t *ipst = ipsq->ipsq_ipst; 14352 14353 /* 14354 * We don't hold the ipsq lock, but we are sure no new 14355 * messages can land up, since the ipsq_refs is zero. 14356 * i.e. this ipsq is unnamed and no phyint or phyint group 14357 * is associated with this ipsq. (Lookups are based on ill_name 14358 * or phyint_groupname) 14359 */ 14360 ASSERT(ipsq->ipsq_refs == 0); 14361 ASSERT(ipsq->ipsq_xopq_mphead == NULL && ipsq->ipsq_mphead == NULL); 14362 ASSERT(ipsq->ipsq_pending_mp == NULL); 14363 if (!(ipsq->ipsq_flags & IPSQ_GROUP)) { 14364 /* 14365 * This is not the ipsq of an IPMP group. 14366 */ 14367 ipsq->ipsq_ipst = NULL; 14368 kmem_free(ipsq, sizeof (ipsq_t)); 14369 return; 14370 } 14371 14372 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 14373 14374 /* 14375 * Locate the ipsq before we can remove it from 14376 * the singly linked list of ipsq's. 14377 */ 14378 for (nipsq = ipst->ips_ipsq_g_head; nipsq != NULL; 14379 nipsq = nipsq->ipsq_next) { 14380 if (nipsq == ipsq) { 14381 break; 14382 } 14383 pipsq = nipsq; 14384 } 14385 14386 ASSERT(nipsq == ipsq); 14387 14388 /* unlink ipsq from the list */ 14389 if (pipsq != NULL) 14390 pipsq->ipsq_next = ipsq->ipsq_next; 14391 else 14392 ipst->ips_ipsq_g_head = ipsq->ipsq_next; 14393 ipsq->ipsq_ipst = NULL; 14394 kmem_free(ipsq, sizeof (ipsq_t)); 14395 rw_exit(&ipst->ips_ill_g_lock); 14396 } 14397 14398 static void 14399 ill_move_to_new_ipsq(ipsq_t *old_ipsq, ipsq_t *new_ipsq, mblk_t *current_mp, 14400 queue_t *q) 14401 { 14402 ASSERT(MUTEX_HELD(&new_ipsq->ipsq_lock)); 14403 ASSERT(old_ipsq->ipsq_mphead == NULL && old_ipsq->ipsq_mptail == NULL); 14404 ASSERT(old_ipsq->ipsq_pending_ipif == NULL); 14405 ASSERT(old_ipsq->ipsq_pending_mp == NULL); 14406 ASSERT(current_mp != NULL); 14407 14408 ipsq_enq(new_ipsq, q, current_mp, (ipsq_func_t)ip_process_ioctl, 14409 NEW_OP, NULL); 14410 14411 ASSERT(new_ipsq->ipsq_xopq_mptail != NULL && 14412 new_ipsq->ipsq_xopq_mphead != NULL); 14413 14414 /* 14415 * move from old ipsq to the new ipsq. 14416 */ 14417 new_ipsq->ipsq_xopq_mptail->b_next = old_ipsq->ipsq_xopq_mphead; 14418 if (old_ipsq->ipsq_xopq_mphead != NULL) 14419 new_ipsq->ipsq_xopq_mptail = old_ipsq->ipsq_xopq_mptail; 14420 14421 old_ipsq->ipsq_xopq_mphead = old_ipsq->ipsq_xopq_mptail = NULL; 14422 } 14423 14424 void 14425 ill_group_cleanup(ill_t *ill) 14426 { 14427 ill_t *ill_v4; 14428 ill_t *ill_v6; 14429 ipif_t *ipif; 14430 14431 ill_v4 = ill->ill_phyint->phyint_illv4; 14432 ill_v6 = ill->ill_phyint->phyint_illv6; 14433 14434 if (ill_v4 != NULL) { 14435 mutex_enter(&ill_v4->ill_lock); 14436 for (ipif = ill_v4->ill_ipif; ipif != NULL; 14437 ipif = ipif->ipif_next) { 14438 IPIF_UNMARK_MOVING(ipif); 14439 } 14440 ill_v4->ill_up_ipifs = B_FALSE; 14441 mutex_exit(&ill_v4->ill_lock); 14442 } 14443 14444 if (ill_v6 != NULL) { 14445 mutex_enter(&ill_v6->ill_lock); 14446 for (ipif = ill_v6->ill_ipif; ipif != NULL; 14447 ipif = ipif->ipif_next) { 14448 IPIF_UNMARK_MOVING(ipif); 14449 } 14450 ill_v6->ill_up_ipifs = B_FALSE; 14451 mutex_exit(&ill_v6->ill_lock); 14452 } 14453 } 14454 /* 14455 * This function is called when an ill has had a change in its group status 14456 * to bring up all the ipifs that were up before the change. 14457 */ 14458 int 14459 ill_up_ipifs(ill_t *ill, queue_t *q, mblk_t *mp) 14460 { 14461 ipif_t *ipif; 14462 ill_t *ill_v4; 14463 ill_t *ill_v6; 14464 ill_t *from_ill; 14465 int err = 0; 14466 14467 14468 ASSERT(IAM_WRITER_ILL(ill)); 14469 14470 /* 14471 * Except for ipif_state_flags and ill_state_flags the other 14472 * fields of the ipif/ill that are modified below are protected 14473 * implicitly since we are a writer. We would have tried to down 14474 * even an ipif that was already down, in ill_down_ipifs. So we 14475 * just blindly clear the IPIF_CHANGING flag here on all ipifs. 14476 */ 14477 ill_v4 = ill->ill_phyint->phyint_illv4; 14478 ill_v6 = ill->ill_phyint->phyint_illv6; 14479 if (ill_v4 != NULL) { 14480 ill_v4->ill_up_ipifs = B_TRUE; 14481 for (ipif = ill_v4->ill_ipif; ipif != NULL; 14482 ipif = ipif->ipif_next) { 14483 mutex_enter(&ill_v4->ill_lock); 14484 ipif->ipif_state_flags &= ~IPIF_CHANGING; 14485 IPIF_UNMARK_MOVING(ipif); 14486 mutex_exit(&ill_v4->ill_lock); 14487 if (ipif->ipif_was_up) { 14488 if (!(ipif->ipif_flags & IPIF_UP)) 14489 err = ipif_up(ipif, q, mp); 14490 ipif->ipif_was_up = B_FALSE; 14491 if (err != 0) { 14492 /* 14493 * Can there be any other error ? 14494 */ 14495 ASSERT(err == EINPROGRESS); 14496 return (err); 14497 } 14498 } 14499 } 14500 mutex_enter(&ill_v4->ill_lock); 14501 ill_v4->ill_state_flags &= ~ILL_CHANGING; 14502 mutex_exit(&ill_v4->ill_lock); 14503 ill_v4->ill_up_ipifs = B_FALSE; 14504 if (ill_v4->ill_move_in_progress) { 14505 ASSERT(ill_v4->ill_move_peer != NULL); 14506 ill_v4->ill_move_in_progress = B_FALSE; 14507 from_ill = ill_v4->ill_move_peer; 14508 from_ill->ill_move_in_progress = B_FALSE; 14509 from_ill->ill_move_peer = NULL; 14510 mutex_enter(&from_ill->ill_lock); 14511 from_ill->ill_state_flags &= ~ILL_CHANGING; 14512 mutex_exit(&from_ill->ill_lock); 14513 if (ill_v6 == NULL) { 14514 if (from_ill->ill_phyint->phyint_flags & 14515 PHYI_STANDBY) { 14516 phyint_inactive(from_ill->ill_phyint); 14517 } 14518 if (ill_v4->ill_phyint->phyint_flags & 14519 PHYI_STANDBY) { 14520 phyint_inactive(ill_v4->ill_phyint); 14521 } 14522 } 14523 ill_v4->ill_move_peer = NULL; 14524 } 14525 } 14526 14527 if (ill_v6 != NULL) { 14528 ill_v6->ill_up_ipifs = B_TRUE; 14529 for (ipif = ill_v6->ill_ipif; ipif != NULL; 14530 ipif = ipif->ipif_next) { 14531 mutex_enter(&ill_v6->ill_lock); 14532 ipif->ipif_state_flags &= ~IPIF_CHANGING; 14533 IPIF_UNMARK_MOVING(ipif); 14534 mutex_exit(&ill_v6->ill_lock); 14535 if (ipif->ipif_was_up) { 14536 if (!(ipif->ipif_flags & IPIF_UP)) 14537 err = ipif_up(ipif, q, mp); 14538 ipif->ipif_was_up = B_FALSE; 14539 if (err != 0) { 14540 /* 14541 * Can there be any other error ? 14542 */ 14543 ASSERT(err == EINPROGRESS); 14544 return (err); 14545 } 14546 } 14547 } 14548 mutex_enter(&ill_v6->ill_lock); 14549 ill_v6->ill_state_flags &= ~ILL_CHANGING; 14550 mutex_exit(&ill_v6->ill_lock); 14551 ill_v6->ill_up_ipifs = B_FALSE; 14552 if (ill_v6->ill_move_in_progress) { 14553 ASSERT(ill_v6->ill_move_peer != NULL); 14554 ill_v6->ill_move_in_progress = B_FALSE; 14555 from_ill = ill_v6->ill_move_peer; 14556 from_ill->ill_move_in_progress = B_FALSE; 14557 from_ill->ill_move_peer = NULL; 14558 mutex_enter(&from_ill->ill_lock); 14559 from_ill->ill_state_flags &= ~ILL_CHANGING; 14560 mutex_exit(&from_ill->ill_lock); 14561 if (from_ill->ill_phyint->phyint_flags & PHYI_STANDBY) { 14562 phyint_inactive(from_ill->ill_phyint); 14563 } 14564 if (ill_v6->ill_phyint->phyint_flags & PHYI_STANDBY) { 14565 phyint_inactive(ill_v6->ill_phyint); 14566 } 14567 ill_v6->ill_move_peer = NULL; 14568 } 14569 } 14570 return (0); 14571 } 14572 14573 /* 14574 * bring down all the approriate ipifs. 14575 */ 14576 /* ARGSUSED */ 14577 static void 14578 ill_down_ipifs(ill_t *ill, mblk_t *mp, int index, boolean_t chk_nofailover) 14579 { 14580 ipif_t *ipif; 14581 14582 ASSERT(IAM_WRITER_ILL(ill)); 14583 14584 /* 14585 * Except for ipif_state_flags the other fields of the ipif/ill that 14586 * are modified below are protected implicitly since we are a writer 14587 */ 14588 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 14589 if (chk_nofailover && (ipif->ipif_flags & IPIF_NOFAILOVER)) 14590 continue; 14591 if (index == 0 || index == ipif->ipif_orig_ifindex) { 14592 /* 14593 * We go through the ipif_down logic even if the ipif 14594 * is already down, since routes can be added based 14595 * on down ipifs. Going through ipif_down once again 14596 * will delete any IREs created based on these routes. 14597 */ 14598 if (ipif->ipif_flags & IPIF_UP) 14599 ipif->ipif_was_up = B_TRUE; 14600 /* 14601 * If called with chk_nofailover true ipif is moving. 14602 */ 14603 mutex_enter(&ill->ill_lock); 14604 if (chk_nofailover) { 14605 ipif->ipif_state_flags |= 14606 IPIF_MOVING | IPIF_CHANGING; 14607 } else { 14608 ipif->ipif_state_flags |= IPIF_CHANGING; 14609 } 14610 mutex_exit(&ill->ill_lock); 14611 /* 14612 * Need to re-create net/subnet bcast ires if 14613 * they are dependent on ipif. 14614 */ 14615 if (!ipif->ipif_isv6) 14616 ipif_check_bcast_ires(ipif); 14617 (void) ipif_logical_down(ipif, NULL, NULL); 14618 ipif_non_duplicate(ipif); 14619 ipif_down_tail(ipif); 14620 } 14621 } 14622 } 14623 14624 #define IPSQ_INC_REF(ipsq, ipst) { \ 14625 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); \ 14626 (ipsq)->ipsq_refs++; \ 14627 } 14628 14629 #define IPSQ_DEC_REF(ipsq, ipst) { \ 14630 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); \ 14631 (ipsq)->ipsq_refs--; \ 14632 if ((ipsq)->ipsq_refs == 0) \ 14633 (ipsq)->ipsq_name[0] = '\0'; \ 14634 } 14635 14636 /* 14637 * Change the ipsq of all the ill's whose current ipsq is 'cur_ipsq' to 14638 * new_ipsq. 14639 */ 14640 static void 14641 ill_merge_ipsq(ipsq_t *cur_ipsq, ipsq_t *new_ipsq, ip_stack_t *ipst) 14642 { 14643 phyint_t *phyint; 14644 phyint_t *next_phyint; 14645 14646 /* 14647 * To change the ipsq of an ill, we need to hold the ill_g_lock as 14648 * writer and the ill_lock of the ill in question. Also the dest 14649 * ipsq can't vanish while we hold the ill_g_lock as writer. 14650 */ 14651 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); 14652 14653 phyint = cur_ipsq->ipsq_phyint_list; 14654 cur_ipsq->ipsq_phyint_list = NULL; 14655 while (phyint != NULL) { 14656 next_phyint = phyint->phyint_ipsq_next; 14657 IPSQ_DEC_REF(cur_ipsq, ipst); 14658 phyint->phyint_ipsq_next = new_ipsq->ipsq_phyint_list; 14659 new_ipsq->ipsq_phyint_list = phyint; 14660 IPSQ_INC_REF(new_ipsq, ipst); 14661 phyint->phyint_ipsq = new_ipsq; 14662 phyint = next_phyint; 14663 } 14664 } 14665 14666 #define SPLIT_SUCCESS 0 14667 #define SPLIT_NOT_NEEDED 1 14668 #define SPLIT_FAILED 2 14669 14670 int 14671 ill_split_to_grp_ipsq(phyint_t *phyint, ipsq_t *cur_ipsq, boolean_t need_retry, 14672 ip_stack_t *ipst) 14673 { 14674 ipsq_t *newipsq = NULL; 14675 14676 /* 14677 * Assertions denote pre-requisites for changing the ipsq of 14678 * a phyint 14679 */ 14680 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); 14681 /* 14682 * <ill-phyint> assocs can't change while ill_g_lock 14683 * is held as writer. See ill_phyint_reinit() 14684 */ 14685 ASSERT(phyint->phyint_illv4 == NULL || 14686 MUTEX_HELD(&phyint->phyint_illv4->ill_lock)); 14687 ASSERT(phyint->phyint_illv6 == NULL || 14688 MUTEX_HELD(&phyint->phyint_illv6->ill_lock)); 14689 14690 if ((phyint->phyint_groupname_len != 14691 (strlen(cur_ipsq->ipsq_name) + 1) || 14692 bcmp(phyint->phyint_groupname, cur_ipsq->ipsq_name, 14693 phyint->phyint_groupname_len) != 0)) { 14694 /* 14695 * Once we fail in creating a new ipsq due to memory shortage, 14696 * don't attempt to create new ipsq again, based on another 14697 * phyint, since we want all phyints belonging to an IPMP group 14698 * to be in the same ipsq even in the event of mem alloc fails. 14699 */ 14700 newipsq = ip_ipsq_lookup(phyint->phyint_groupname, !need_retry, 14701 cur_ipsq, ipst); 14702 if (newipsq == NULL) { 14703 /* Memory allocation failure */ 14704 return (SPLIT_FAILED); 14705 } else { 14706 /* ipsq_refs protected by ill_g_lock (writer) */ 14707 IPSQ_DEC_REF(cur_ipsq, ipst); 14708 phyint->phyint_ipsq = newipsq; 14709 phyint->phyint_ipsq_next = newipsq->ipsq_phyint_list; 14710 newipsq->ipsq_phyint_list = phyint; 14711 IPSQ_INC_REF(newipsq, ipst); 14712 return (SPLIT_SUCCESS); 14713 } 14714 } 14715 return (SPLIT_NOT_NEEDED); 14716 } 14717 14718 /* 14719 * The ill locks of the phyint and the ill_g_lock (writer) must be held 14720 * to do this split 14721 */ 14722 static int 14723 ill_split_to_own_ipsq(phyint_t *phyint, ipsq_t *cur_ipsq, ip_stack_t *ipst) 14724 { 14725 ipsq_t *newipsq; 14726 14727 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); 14728 /* 14729 * <ill-phyint> assocs can't change while ill_g_lock 14730 * is held as writer. See ill_phyint_reinit() 14731 */ 14732 14733 ASSERT(phyint->phyint_illv4 == NULL || 14734 MUTEX_HELD(&phyint->phyint_illv4->ill_lock)); 14735 ASSERT(phyint->phyint_illv6 == NULL || 14736 MUTEX_HELD(&phyint->phyint_illv6->ill_lock)); 14737 14738 if (!ipsq_init((phyint->phyint_illv4 != NULL) ? 14739 phyint->phyint_illv4: phyint->phyint_illv6)) { 14740 /* 14741 * ipsq_init failed due to no memory 14742 * caller will use the same ipsq 14743 */ 14744 return (SPLIT_FAILED); 14745 } 14746 14747 /* ipsq_ref is protected by ill_g_lock (writer) */ 14748 IPSQ_DEC_REF(cur_ipsq, ipst); 14749 14750 /* 14751 * This is a new ipsq that is unknown to the world. 14752 * So we don't need to hold ipsq_lock, 14753 */ 14754 newipsq = phyint->phyint_ipsq; 14755 newipsq->ipsq_writer = NULL; 14756 newipsq->ipsq_reentry_cnt--; 14757 ASSERT(newipsq->ipsq_reentry_cnt == 0); 14758 #ifdef ILL_DEBUG 14759 newipsq->ipsq_depth = 0; 14760 #endif 14761 14762 return (SPLIT_SUCCESS); 14763 } 14764 14765 /* 14766 * Change the ipsq of all the ill's whose current ipsq is 'cur_ipsq' to 14767 * ipsq's representing their individual groups or themselves. Return 14768 * whether split needs to be retried again later. 14769 */ 14770 static boolean_t 14771 ill_split_ipsq(ipsq_t *cur_ipsq) 14772 { 14773 phyint_t *phyint; 14774 phyint_t *next_phyint; 14775 int error; 14776 boolean_t need_retry = B_FALSE; 14777 ip_stack_t *ipst = cur_ipsq->ipsq_ipst; 14778 14779 phyint = cur_ipsq->ipsq_phyint_list; 14780 cur_ipsq->ipsq_phyint_list = NULL; 14781 while (phyint != NULL) { 14782 next_phyint = phyint->phyint_ipsq_next; 14783 /* 14784 * 'created' will tell us whether the callee actually 14785 * created an ipsq. Lack of memory may force the callee 14786 * to return without creating an ipsq. 14787 */ 14788 if (phyint->phyint_groupname == NULL) { 14789 error = ill_split_to_own_ipsq(phyint, cur_ipsq, ipst); 14790 } else { 14791 error = ill_split_to_grp_ipsq(phyint, cur_ipsq, 14792 need_retry, ipst); 14793 } 14794 14795 switch (error) { 14796 case SPLIT_FAILED: 14797 need_retry = B_TRUE; 14798 /* FALLTHRU */ 14799 case SPLIT_NOT_NEEDED: 14800 /* 14801 * Keep it on the list. 14802 */ 14803 phyint->phyint_ipsq_next = cur_ipsq->ipsq_phyint_list; 14804 cur_ipsq->ipsq_phyint_list = phyint; 14805 break; 14806 case SPLIT_SUCCESS: 14807 break; 14808 default: 14809 ASSERT(0); 14810 } 14811 14812 phyint = next_phyint; 14813 } 14814 return (need_retry); 14815 } 14816 14817 /* 14818 * given an ipsq 'ipsq' lock all ills associated with this ipsq. 14819 * and return the ills in the list. This list will be 14820 * needed to unlock all the ills later on by the caller. 14821 * The <ill-ipsq> associations could change between the 14822 * lock and unlock. Hence the unlock can't traverse the 14823 * ipsq to get the list of ills. 14824 */ 14825 static int 14826 ill_lock_ipsq_ills(ipsq_t *ipsq, ill_t **list, int list_max) 14827 { 14828 int cnt = 0; 14829 phyint_t *phyint; 14830 ip_stack_t *ipst = ipsq->ipsq_ipst; 14831 14832 /* 14833 * The caller holds ill_g_lock to ensure that the ill memberships 14834 * of the ipsq don't change 14835 */ 14836 ASSERT(RW_LOCK_HELD(&ipst->ips_ill_g_lock)); 14837 14838 phyint = ipsq->ipsq_phyint_list; 14839 while (phyint != NULL) { 14840 if (phyint->phyint_illv4 != NULL) { 14841 ASSERT(cnt < list_max); 14842 list[cnt++] = phyint->phyint_illv4; 14843 } 14844 if (phyint->phyint_illv6 != NULL) { 14845 ASSERT(cnt < list_max); 14846 list[cnt++] = phyint->phyint_illv6; 14847 } 14848 phyint = phyint->phyint_ipsq_next; 14849 } 14850 ill_lock_ills(list, cnt); 14851 return (cnt); 14852 } 14853 14854 void 14855 ill_lock_ills(ill_t **list, int cnt) 14856 { 14857 int i; 14858 14859 if (cnt > 1) { 14860 boolean_t try_again; 14861 do { 14862 try_again = B_FALSE; 14863 for (i = 0; i < cnt - 1; i++) { 14864 if (list[i] < list[i + 1]) { 14865 ill_t *tmp; 14866 14867 /* swap the elements */ 14868 tmp = list[i]; 14869 list[i] = list[i + 1]; 14870 list[i + 1] = tmp; 14871 try_again = B_TRUE; 14872 } 14873 } 14874 } while (try_again); 14875 } 14876 14877 for (i = 0; i < cnt; i++) { 14878 if (i == 0) { 14879 if (list[i] != NULL) 14880 mutex_enter(&list[i]->ill_lock); 14881 else 14882 return; 14883 } else if ((list[i-1] != list[i]) && (list[i] != NULL)) { 14884 mutex_enter(&list[i]->ill_lock); 14885 } 14886 } 14887 } 14888 14889 void 14890 ill_unlock_ills(ill_t **list, int cnt) 14891 { 14892 int i; 14893 14894 for (i = 0; i < cnt; i++) { 14895 if ((i == 0) && (list[i] != NULL)) { 14896 mutex_exit(&list[i]->ill_lock); 14897 } else if ((list[i-1] != list[i]) && (list[i] != NULL)) { 14898 mutex_exit(&list[i]->ill_lock); 14899 } 14900 } 14901 } 14902 14903 /* 14904 * Merge all the ills from 1 ipsq group into another ipsq group. 14905 * The source ipsq group is specified by the ipsq associated with 14906 * 'from_ill'. The destination ipsq group is specified by the ipsq 14907 * associated with 'to_ill' or 'groupname' respectively. 14908 * Note that ipsq itself does not have a reference count mechanism 14909 * and functions don't look up an ipsq and pass it around. Instead 14910 * functions pass around an ill or groupname, and the ipsq is looked 14911 * up from the ill or groupname and the required operation performed 14912 * atomically with the lookup on the ipsq. 14913 */ 14914 static int 14915 ill_merge_groups(ill_t *from_ill, ill_t *to_ill, char *groupname, mblk_t *mp, 14916 queue_t *q) 14917 { 14918 ipsq_t *old_ipsq; 14919 ipsq_t *new_ipsq; 14920 ill_t **ill_list; 14921 int cnt; 14922 size_t ill_list_size; 14923 boolean_t became_writer_on_new_sq = B_FALSE; 14924 ip_stack_t *ipst = from_ill->ill_ipst; 14925 14926 ASSERT(to_ill == NULL || ipst == to_ill->ill_ipst); 14927 /* Exactly 1 of 'to_ill' and groupname can be specified. */ 14928 ASSERT((to_ill != NULL) ^ (groupname != NULL)); 14929 14930 /* 14931 * Need to hold ill_g_lock as writer and also the ill_lock to 14932 * change the <ill-ipsq> assoc of an ill. Need to hold the 14933 * ipsq_lock to prevent new messages from landing on an ipsq. 14934 */ 14935 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 14936 14937 old_ipsq = from_ill->ill_phyint->phyint_ipsq; 14938 if (groupname != NULL) 14939 new_ipsq = ip_ipsq_lookup(groupname, B_TRUE, NULL, ipst); 14940 else { 14941 new_ipsq = to_ill->ill_phyint->phyint_ipsq; 14942 } 14943 14944 ASSERT(old_ipsq != NULL && new_ipsq != NULL); 14945 14946 /* 14947 * both groups are on the same ipsq. 14948 */ 14949 if (old_ipsq == new_ipsq) { 14950 rw_exit(&ipst->ips_ill_g_lock); 14951 return (0); 14952 } 14953 14954 cnt = old_ipsq->ipsq_refs << 1; 14955 ill_list_size = cnt * sizeof (ill_t *); 14956 ill_list = kmem_zalloc(ill_list_size, KM_NOSLEEP); 14957 if (ill_list == NULL) { 14958 rw_exit(&ipst->ips_ill_g_lock); 14959 return (ENOMEM); 14960 } 14961 cnt = ill_lock_ipsq_ills(old_ipsq, ill_list, cnt); 14962 14963 /* Need ipsq lock to enque messages on new ipsq or to become writer */ 14964 mutex_enter(&new_ipsq->ipsq_lock); 14965 if ((new_ipsq->ipsq_writer == NULL && 14966 new_ipsq->ipsq_current_ipif == NULL) || 14967 (new_ipsq->ipsq_writer == curthread)) { 14968 new_ipsq->ipsq_writer = curthread; 14969 new_ipsq->ipsq_reentry_cnt++; 14970 became_writer_on_new_sq = B_TRUE; 14971 } 14972 14973 /* 14974 * We are holding ill_g_lock as writer and all the ill locks of 14975 * the old ipsq. So the old_ipsq can't be looked up, and hence no new 14976 * message can land up on the old ipsq even though we don't hold the 14977 * ipsq_lock of the old_ipsq. Now move all messages to the newipsq. 14978 */ 14979 ill_move_to_new_ipsq(old_ipsq, new_ipsq, mp, q); 14980 14981 /* 14982 * now change the ipsq of all ills in the 'old_ipsq' to 'new_ipsq'. 14983 * 'new_ipsq' has been looked up, and it can't change its <ill-ipsq> 14984 * assocs. till we release the ill_g_lock, and hence it can't vanish. 14985 */ 14986 ill_merge_ipsq(old_ipsq, new_ipsq, ipst); 14987 14988 /* 14989 * Mark the new ipsq as needing a split since it is currently 14990 * being shared by more than 1 IPMP group. The split will 14991 * occur at the end of ipsq_exit 14992 */ 14993 new_ipsq->ipsq_split = B_TRUE; 14994 14995 /* Now release all the locks */ 14996 mutex_exit(&new_ipsq->ipsq_lock); 14997 ill_unlock_ills(ill_list, cnt); 14998 rw_exit(&ipst->ips_ill_g_lock); 14999 15000 kmem_free(ill_list, ill_list_size); 15001 15002 /* 15003 * If we succeeded in becoming writer on the new ipsq, then 15004 * drain the new ipsq and start processing all enqueued messages 15005 * including the current ioctl we are processing which is either 15006 * a set groupname or failover/failback. 15007 */ 15008 if (became_writer_on_new_sq) 15009 ipsq_exit(new_ipsq, B_TRUE, B_TRUE); 15010 15011 /* 15012 * syncq has been changed and all the messages have been moved. 15013 */ 15014 mutex_enter(&old_ipsq->ipsq_lock); 15015 old_ipsq->ipsq_current_ipif = NULL; 15016 old_ipsq->ipsq_current_ioctl = 0; 15017 mutex_exit(&old_ipsq->ipsq_lock); 15018 return (EINPROGRESS); 15019 } 15020 15021 /* 15022 * Delete and add the loopback copy and non-loopback copy of 15023 * the BROADCAST ire corresponding to ill and addr. Used to 15024 * group broadcast ires together when ill becomes part of 15025 * a group. 15026 * 15027 * This function is also called when ill is leaving the group 15028 * so that the ires belonging to the group gets re-grouped. 15029 */ 15030 static void 15031 ill_bcast_delete_and_add(ill_t *ill, ipaddr_t addr) 15032 { 15033 ire_t *ire, *nire, *nire_next, *ire_head = NULL; 15034 ire_t **ire_ptpn = &ire_head; 15035 ip_stack_t *ipst = ill->ill_ipst; 15036 15037 /* 15038 * The loopback and non-loopback IREs are inserted in the order in which 15039 * they're found, on the basis that they are correctly ordered (loopback 15040 * first). 15041 */ 15042 for (;;) { 15043 ire = ire_ctable_lookup(addr, 0, IRE_BROADCAST, ill->ill_ipif, 15044 ALL_ZONES, NULL, MATCH_IRE_TYPE | MATCH_IRE_ILL, ipst); 15045 if (ire == NULL) 15046 break; 15047 15048 /* 15049 * we are passing in KM_SLEEP because it is not easy to 15050 * go back to a sane state in case of memory failure. 15051 */ 15052 nire = kmem_cache_alloc(ire_cache, KM_SLEEP); 15053 ASSERT(nire != NULL); 15054 bzero(nire, sizeof (ire_t)); 15055 /* 15056 * Don't use ire_max_frag directly since we don't 15057 * hold on to 'ire' until we add the new ire 'nire' and 15058 * we don't want the new ire to have a dangling reference 15059 * to 'ire'. The ire_max_frag of a broadcast ire must 15060 * be in sync with the ipif_mtu of the associate ipif. 15061 * For eg. this happens as a result of SIOCSLIFNAME, 15062 * SIOCSLIFLNKINFO or a DL_NOTE_SDU_SIZE inititated by 15063 * the driver. A change in ire_max_frag triggered as 15064 * as a result of path mtu discovery, or due to an 15065 * IP_IOC_IRE_ADVISE_NOREPLY from the transport or due a 15066 * route change -mtu command does not apply to broadcast ires. 15067 * 15068 * XXX We need a recovery strategy here if ire_init fails 15069 */ 15070 if (ire_init(nire, 15071 (uchar_t *)&ire->ire_addr, 15072 (uchar_t *)&ire->ire_mask, 15073 (uchar_t *)&ire->ire_src_addr, 15074 (uchar_t *)&ire->ire_gateway_addr, 15075 ire->ire_stq == NULL ? &ip_loopback_mtu : 15076 &ire->ire_ipif->ipif_mtu, 15077 ire->ire_nce, 15078 ire->ire_rfq, 15079 ire->ire_stq, 15080 ire->ire_type, 15081 ire->ire_ipif, 15082 ire->ire_cmask, 15083 ire->ire_phandle, 15084 ire->ire_ihandle, 15085 ire->ire_flags, 15086 &ire->ire_uinfo, 15087 NULL, 15088 NULL, 15089 ipst) == NULL) { 15090 cmn_err(CE_PANIC, "ire_init() failed"); 15091 } 15092 ire_delete(ire); 15093 ire_refrele(ire); 15094 15095 /* 15096 * The newly created IREs are inserted at the tail of the list 15097 * starting with ire_head. As we've just allocated them no one 15098 * knows about them so it's safe. 15099 */ 15100 *ire_ptpn = nire; 15101 ire_ptpn = &nire->ire_next; 15102 } 15103 15104 for (nire = ire_head; nire != NULL; nire = nire_next) { 15105 int error; 15106 ire_t *oire; 15107 /* unlink the IRE from our list before calling ire_add() */ 15108 nire_next = nire->ire_next; 15109 nire->ire_next = NULL; 15110 15111 /* ire_add adds the ire at the right place in the list */ 15112 oire = nire; 15113 error = ire_add(&nire, NULL, NULL, NULL, B_FALSE); 15114 ASSERT(error == 0); 15115 ASSERT(oire == nire); 15116 ire_refrele(nire); /* Held in ire_add */ 15117 } 15118 } 15119 15120 /* 15121 * This function is usually called when an ill is inserted in 15122 * a group and all the ipifs are already UP. As all the ipifs 15123 * are already UP, the broadcast ires have already been created 15124 * and been inserted. But, ire_add_v4 would not have grouped properly. 15125 * We need to re-group for the benefit of ip_wput_ire which 15126 * expects BROADCAST ires to be grouped properly to avoid sending 15127 * more than one copy of the broadcast packet per group. 15128 * 15129 * NOTE : We don't check for ill_ipif_up_count to be non-zero here 15130 * because when ipif_up_done ends up calling this, ires have 15131 * already been added before illgrp_insert i.e before ill_group 15132 * has been initialized. 15133 */ 15134 static void 15135 ill_group_bcast_for_xmit(ill_t *ill) 15136 { 15137 ill_group_t *illgrp; 15138 ipif_t *ipif; 15139 ipaddr_t addr; 15140 ipaddr_t net_mask; 15141 ipaddr_t subnet_netmask; 15142 15143 illgrp = ill->ill_group; 15144 15145 /* 15146 * This function is called even when an ill is deleted from 15147 * the group. Hence, illgrp could be null. 15148 */ 15149 if (illgrp != NULL && illgrp->illgrp_ill_count == 1) 15150 return; 15151 15152 /* 15153 * Delete all the BROADCAST ires matching this ill and add 15154 * them back. This time, ire_add_v4 should take care of 15155 * grouping them with others because ill is part of the 15156 * group. 15157 */ 15158 ill_bcast_delete_and_add(ill, 0); 15159 ill_bcast_delete_and_add(ill, INADDR_BROADCAST); 15160 15161 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 15162 15163 if ((ipif->ipif_lcl_addr != INADDR_ANY) && 15164 !(ipif->ipif_flags & IPIF_NOLOCAL)) { 15165 net_mask = ip_net_mask(ipif->ipif_lcl_addr); 15166 } else { 15167 net_mask = htonl(IN_CLASSA_NET); 15168 } 15169 addr = net_mask & ipif->ipif_subnet; 15170 ill_bcast_delete_and_add(ill, addr); 15171 ill_bcast_delete_and_add(ill, ~net_mask | addr); 15172 15173 subnet_netmask = ipif->ipif_net_mask; 15174 addr = ipif->ipif_subnet; 15175 ill_bcast_delete_and_add(ill, addr); 15176 ill_bcast_delete_and_add(ill, ~subnet_netmask | addr); 15177 } 15178 } 15179 15180 /* 15181 * This function is called from illgrp_delete when ill is being deleted 15182 * from the group. 15183 * 15184 * As ill is not there in the group anymore, any address belonging 15185 * to this ill should be cleared of IRE_MARK_NORECV. 15186 */ 15187 static void 15188 ill_clear_bcast_mark(ill_t *ill, ipaddr_t addr) 15189 { 15190 ire_t *ire; 15191 irb_t *irb; 15192 ip_stack_t *ipst = ill->ill_ipst; 15193 15194 ASSERT(ill->ill_group == NULL); 15195 15196 ire = ire_ctable_lookup(addr, 0, IRE_BROADCAST, ill->ill_ipif, 15197 ALL_ZONES, NULL, MATCH_IRE_TYPE | MATCH_IRE_ILL, ipst); 15198 15199 if (ire != NULL) { 15200 /* 15201 * IPMP and plumbing operations are serialized on the ipsq, so 15202 * no one will insert or delete a broadcast ire under our feet. 15203 */ 15204 irb = ire->ire_bucket; 15205 rw_enter(&irb->irb_lock, RW_READER); 15206 ire_refrele(ire); 15207 15208 for (; ire != NULL; ire = ire->ire_next) { 15209 if (ire->ire_addr != addr) 15210 break; 15211 if (ire_to_ill(ire) != ill) 15212 continue; 15213 15214 ASSERT(!(ire->ire_marks & IRE_MARK_CONDEMNED)); 15215 ire->ire_marks &= ~IRE_MARK_NORECV; 15216 } 15217 rw_exit(&irb->irb_lock); 15218 } 15219 } 15220 15221 /* 15222 * This function must be called only after the broadcast ires 15223 * have been grouped together. For a given address addr, nominate 15224 * only one of the ires whose interface is not FAILED or OFFLINE. 15225 * 15226 * This is also called when an ipif goes down, so that we can nominate 15227 * a different ire with the same address for receiving. 15228 */ 15229 static void 15230 ill_mark_bcast(ill_group_t *illgrp, ipaddr_t addr, ip_stack_t *ipst) 15231 { 15232 irb_t *irb; 15233 ire_t *ire; 15234 ire_t *ire1; 15235 ire_t *save_ire; 15236 ire_t **irep = NULL; 15237 boolean_t first = B_TRUE; 15238 ire_t *clear_ire = NULL; 15239 ire_t *start_ire = NULL; 15240 ire_t *new_lb_ire; 15241 ire_t *new_nlb_ire; 15242 boolean_t new_lb_ire_used = B_FALSE; 15243 boolean_t new_nlb_ire_used = B_FALSE; 15244 uint64_t match_flags; 15245 uint64_t phyi_flags; 15246 boolean_t fallback = B_FALSE; 15247 uint_t max_frag; 15248 15249 ire = ire_ctable_lookup(addr, 0, IRE_BROADCAST, NULL, ALL_ZONES, 15250 NULL, MATCH_IRE_TYPE, ipst); 15251 /* 15252 * We may not be able to find some ires if a previous 15253 * ire_create failed. This happens when an ipif goes 15254 * down and we are unable to create BROADCAST ires due 15255 * to memory failure. Thus, we have to check for NULL 15256 * below. This should handle the case for LOOPBACK, 15257 * POINTOPOINT and interfaces with some POINTOPOINT 15258 * logicals for which there are no BROADCAST ires. 15259 */ 15260 if (ire == NULL) 15261 return; 15262 /* 15263 * Currently IRE_BROADCASTS are deleted when an ipif 15264 * goes down which runs exclusively. Thus, setting 15265 * IRE_MARK_RCVD should not race with ire_delete marking 15266 * IRE_MARK_CONDEMNED. We grab the lock below just to 15267 * be consistent with other parts of the code that walks 15268 * a given bucket. 15269 */ 15270 save_ire = ire; 15271 irb = ire->ire_bucket; 15272 new_lb_ire = kmem_cache_alloc(ire_cache, KM_NOSLEEP); 15273 if (new_lb_ire == NULL) { 15274 ire_refrele(ire); 15275 return; 15276 } 15277 new_nlb_ire = kmem_cache_alloc(ire_cache, KM_NOSLEEP); 15278 if (new_nlb_ire == NULL) { 15279 ire_refrele(ire); 15280 kmem_cache_free(ire_cache, new_lb_ire); 15281 return; 15282 } 15283 IRB_REFHOLD(irb); 15284 rw_enter(&irb->irb_lock, RW_WRITER); 15285 /* 15286 * Get to the first ire matching the address and the 15287 * group. If the address does not match we are done 15288 * as we could not find the IRE. If the address matches 15289 * we should get to the first one matching the group. 15290 */ 15291 while (ire != NULL) { 15292 if (ire->ire_addr != addr || 15293 ire->ire_ipif->ipif_ill->ill_group == illgrp) { 15294 break; 15295 } 15296 ire = ire->ire_next; 15297 } 15298 match_flags = PHYI_FAILED | PHYI_INACTIVE; 15299 start_ire = ire; 15300 redo: 15301 while (ire != NULL && ire->ire_addr == addr && 15302 ire->ire_ipif->ipif_ill->ill_group == illgrp) { 15303 /* 15304 * The first ire for any address within a group 15305 * should always be the one with IRE_MARK_NORECV cleared 15306 * so that ip_wput_ire can avoid searching for one. 15307 * Note down the insertion point which will be used 15308 * later. 15309 */ 15310 if (first && (irep == NULL)) 15311 irep = ire->ire_ptpn; 15312 /* 15313 * PHYI_FAILED is set when the interface fails. 15314 * This interface might have become good, but the 15315 * daemon has not yet detected. We should still 15316 * not receive on this. PHYI_OFFLINE should never 15317 * be picked as this has been offlined and soon 15318 * be removed. 15319 */ 15320 phyi_flags = ire->ire_ipif->ipif_ill->ill_phyint->phyint_flags; 15321 if (phyi_flags & PHYI_OFFLINE) { 15322 ire->ire_marks |= IRE_MARK_NORECV; 15323 ire = ire->ire_next; 15324 continue; 15325 } 15326 if (phyi_flags & match_flags) { 15327 ire->ire_marks |= IRE_MARK_NORECV; 15328 ire = ire->ire_next; 15329 if ((phyi_flags & (PHYI_FAILED | PHYI_INACTIVE)) == 15330 PHYI_INACTIVE) { 15331 fallback = B_TRUE; 15332 } 15333 continue; 15334 } 15335 if (first) { 15336 /* 15337 * We will move this to the front of the list later 15338 * on. 15339 */ 15340 clear_ire = ire; 15341 ire->ire_marks &= ~IRE_MARK_NORECV; 15342 } else { 15343 ire->ire_marks |= IRE_MARK_NORECV; 15344 } 15345 first = B_FALSE; 15346 ire = ire->ire_next; 15347 } 15348 /* 15349 * If we never nominated anybody, try nominating at least 15350 * an INACTIVE, if we found one. Do it only once though. 15351 */ 15352 if (first && (match_flags == (PHYI_FAILED | PHYI_INACTIVE)) && 15353 fallback) { 15354 match_flags = PHYI_FAILED; 15355 ire = start_ire; 15356 irep = NULL; 15357 goto redo; 15358 } 15359 ire_refrele(save_ire); 15360 15361 /* 15362 * irep non-NULL indicates that we entered the while loop 15363 * above. If clear_ire is at the insertion point, we don't 15364 * have to do anything. clear_ire will be NULL if all the 15365 * interfaces are failed. 15366 * 15367 * We cannot unlink and reinsert the ire at the right place 15368 * in the list since there can be other walkers of this bucket. 15369 * Instead we delete and recreate the ire 15370 */ 15371 if (clear_ire != NULL && irep != NULL && *irep != clear_ire) { 15372 ire_t *clear_ire_stq = NULL; 15373 15374 bzero(new_lb_ire, sizeof (ire_t)); 15375 /* XXX We need a recovery strategy here. */ 15376 if (ire_init(new_lb_ire, 15377 (uchar_t *)&clear_ire->ire_addr, 15378 (uchar_t *)&clear_ire->ire_mask, 15379 (uchar_t *)&clear_ire->ire_src_addr, 15380 (uchar_t *)&clear_ire->ire_gateway_addr, 15381 &clear_ire->ire_max_frag, 15382 NULL, /* let ire_nce_init derive the resolver info */ 15383 clear_ire->ire_rfq, 15384 clear_ire->ire_stq, 15385 clear_ire->ire_type, 15386 clear_ire->ire_ipif, 15387 clear_ire->ire_cmask, 15388 clear_ire->ire_phandle, 15389 clear_ire->ire_ihandle, 15390 clear_ire->ire_flags, 15391 &clear_ire->ire_uinfo, 15392 NULL, 15393 NULL, 15394 ipst) == NULL) 15395 cmn_err(CE_PANIC, "ire_init() failed"); 15396 if (clear_ire->ire_stq == NULL) { 15397 ire_t *ire_next = clear_ire->ire_next; 15398 if (ire_next != NULL && 15399 ire_next->ire_stq != NULL && 15400 ire_next->ire_addr == clear_ire->ire_addr && 15401 ire_next->ire_ipif->ipif_ill == 15402 clear_ire->ire_ipif->ipif_ill) { 15403 clear_ire_stq = ire_next; 15404 15405 bzero(new_nlb_ire, sizeof (ire_t)); 15406 /* XXX We need a recovery strategy here. */ 15407 if (ire_init(new_nlb_ire, 15408 (uchar_t *)&clear_ire_stq->ire_addr, 15409 (uchar_t *)&clear_ire_stq->ire_mask, 15410 (uchar_t *)&clear_ire_stq->ire_src_addr, 15411 (uchar_t *)&clear_ire_stq->ire_gateway_addr, 15412 &clear_ire_stq->ire_max_frag, 15413 NULL, 15414 clear_ire_stq->ire_rfq, 15415 clear_ire_stq->ire_stq, 15416 clear_ire_stq->ire_type, 15417 clear_ire_stq->ire_ipif, 15418 clear_ire_stq->ire_cmask, 15419 clear_ire_stq->ire_phandle, 15420 clear_ire_stq->ire_ihandle, 15421 clear_ire_stq->ire_flags, 15422 &clear_ire_stq->ire_uinfo, 15423 NULL, 15424 NULL, 15425 ipst) == NULL) 15426 cmn_err(CE_PANIC, "ire_init() failed"); 15427 } 15428 } 15429 15430 /* 15431 * Delete the ire. We can't call ire_delete() since 15432 * we are holding the bucket lock. We can't release the 15433 * bucket lock since we can't allow irep to change. So just 15434 * mark it CONDEMNED. The IRB_REFRELE will delete the 15435 * ire from the list and do the refrele. 15436 */ 15437 clear_ire->ire_marks |= IRE_MARK_CONDEMNED; 15438 irb->irb_marks |= IRB_MARK_CONDEMNED; 15439 15440 if (clear_ire_stq != NULL && clear_ire_stq->ire_nce != NULL) { 15441 nce_fastpath_list_delete(clear_ire_stq->ire_nce); 15442 clear_ire_stq->ire_marks |= IRE_MARK_CONDEMNED; 15443 } 15444 15445 /* 15446 * Also take care of otherfields like ib/ob pkt count 15447 * etc. Need to dup them. ditto in ill_bcast_delete_and_add 15448 */ 15449 15450 /* Set the max_frag before adding the ire */ 15451 max_frag = *new_lb_ire->ire_max_fragp; 15452 new_lb_ire->ire_max_fragp = NULL; 15453 new_lb_ire->ire_max_frag = max_frag; 15454 15455 /* Add the new ire's. Insert at *irep */ 15456 new_lb_ire->ire_bucket = clear_ire->ire_bucket; 15457 ire1 = *irep; 15458 if (ire1 != NULL) 15459 ire1->ire_ptpn = &new_lb_ire->ire_next; 15460 new_lb_ire->ire_next = ire1; 15461 /* Link the new one in. */ 15462 new_lb_ire->ire_ptpn = irep; 15463 membar_producer(); 15464 *irep = new_lb_ire; 15465 new_lb_ire_used = B_TRUE; 15466 BUMP_IRE_STATS(ipst->ips_ire_stats_v4, ire_stats_inserted); 15467 new_lb_ire->ire_bucket->irb_ire_cnt++; 15468 new_lb_ire->ire_ipif->ipif_ire_cnt++; 15469 15470 if (clear_ire_stq != NULL) { 15471 /* Set the max_frag before adding the ire */ 15472 max_frag = *new_nlb_ire->ire_max_fragp; 15473 new_nlb_ire->ire_max_fragp = NULL; 15474 new_nlb_ire->ire_max_frag = max_frag; 15475 15476 new_nlb_ire->ire_bucket = clear_ire->ire_bucket; 15477 irep = &new_lb_ire->ire_next; 15478 /* Add the new ire. Insert at *irep */ 15479 ire1 = *irep; 15480 if (ire1 != NULL) 15481 ire1->ire_ptpn = &new_nlb_ire->ire_next; 15482 new_nlb_ire->ire_next = ire1; 15483 /* Link the new one in. */ 15484 new_nlb_ire->ire_ptpn = irep; 15485 membar_producer(); 15486 *irep = new_nlb_ire; 15487 new_nlb_ire_used = B_TRUE; 15488 BUMP_IRE_STATS(ipst->ips_ire_stats_v4, 15489 ire_stats_inserted); 15490 new_nlb_ire->ire_bucket->irb_ire_cnt++; 15491 new_nlb_ire->ire_ipif->ipif_ire_cnt++; 15492 ((ill_t *)new_nlb_ire->ire_stq->q_ptr)->ill_ire_cnt++; 15493 } 15494 } 15495 rw_exit(&irb->irb_lock); 15496 if (!new_lb_ire_used) 15497 kmem_cache_free(ire_cache, new_lb_ire); 15498 if (!new_nlb_ire_used) 15499 kmem_cache_free(ire_cache, new_nlb_ire); 15500 IRB_REFRELE(irb); 15501 } 15502 15503 /* 15504 * Whenever an ipif goes down we have to renominate a different 15505 * broadcast ire to receive. Whenever an ipif comes up, we need 15506 * to make sure that we have only one nominated to receive. 15507 */ 15508 static void 15509 ipif_renominate_bcast(ipif_t *ipif) 15510 { 15511 ill_t *ill = ipif->ipif_ill; 15512 ipaddr_t subnet_addr; 15513 ipaddr_t net_addr; 15514 ipaddr_t net_mask = 0; 15515 ipaddr_t subnet_netmask; 15516 ipaddr_t addr; 15517 ill_group_t *illgrp; 15518 ip_stack_t *ipst = ill->ill_ipst; 15519 15520 illgrp = ill->ill_group; 15521 /* 15522 * If this is the last ipif going down, it might take 15523 * the ill out of the group. In that case ipif_down -> 15524 * illgrp_delete takes care of doing the nomination. 15525 * ipif_down does not call for this case. 15526 */ 15527 ASSERT(illgrp != NULL); 15528 15529 /* There could not have been any ires associated with this */ 15530 if (ipif->ipif_subnet == 0) 15531 return; 15532 15533 ill_mark_bcast(illgrp, 0, ipst); 15534 ill_mark_bcast(illgrp, INADDR_BROADCAST, ipst); 15535 15536 if ((ipif->ipif_lcl_addr != INADDR_ANY) && 15537 !(ipif->ipif_flags & IPIF_NOLOCAL)) { 15538 net_mask = ip_net_mask(ipif->ipif_lcl_addr); 15539 } else { 15540 net_mask = htonl(IN_CLASSA_NET); 15541 } 15542 addr = net_mask & ipif->ipif_subnet; 15543 ill_mark_bcast(illgrp, addr, ipst); 15544 15545 net_addr = ~net_mask | addr; 15546 ill_mark_bcast(illgrp, net_addr, ipst); 15547 15548 subnet_netmask = ipif->ipif_net_mask; 15549 addr = ipif->ipif_subnet; 15550 ill_mark_bcast(illgrp, addr, ipst); 15551 15552 subnet_addr = ~subnet_netmask | addr; 15553 ill_mark_bcast(illgrp, subnet_addr, ipst); 15554 } 15555 15556 /* 15557 * Whenever we form or delete ill groups, we need to nominate one set of 15558 * BROADCAST ires for receiving in the group. 15559 * 15560 * 1) When ipif_up_done -> ilgrp_insert calls this function, BROADCAST ires 15561 * have been added, but ill_ipif_up_count is 0. Thus, we don't assert 15562 * for ill_ipif_up_count to be non-zero. This is the only case where 15563 * ill_ipif_up_count is zero and we would still find the ires. 15564 * 15565 * 2) ip_sioctl_group_name/ifgrp_insert calls this function, at least one 15566 * ipif is UP and we just have to do the nomination. 15567 * 15568 * 3) When ill_handoff_responsibility calls us, some ill has been removed 15569 * from the group. So, we have to do the nomination. 15570 * 15571 * Because of (3), there could be just one ill in the group. But we have 15572 * to nominate still as IRE_MARK_NORCV may have been marked on this. 15573 * Thus, this function does not optimize when there is only one ill as 15574 * it is not correct for (3). 15575 */ 15576 static void 15577 ill_nominate_bcast_rcv(ill_group_t *illgrp) 15578 { 15579 ill_t *ill; 15580 ipif_t *ipif; 15581 ipaddr_t subnet_addr; 15582 ipaddr_t prev_subnet_addr = 0; 15583 ipaddr_t net_addr; 15584 ipaddr_t prev_net_addr = 0; 15585 ipaddr_t net_mask = 0; 15586 ipaddr_t subnet_netmask; 15587 ipaddr_t addr; 15588 ip_stack_t *ipst; 15589 15590 /* 15591 * When the last memeber is leaving, there is nothing to 15592 * nominate. 15593 */ 15594 if (illgrp->illgrp_ill_count == 0) { 15595 ASSERT(illgrp->illgrp_ill == NULL); 15596 return; 15597 } 15598 15599 ill = illgrp->illgrp_ill; 15600 ASSERT(!ill->ill_isv6); 15601 ipst = ill->ill_ipst; 15602 /* 15603 * We assume that ires with same address and belonging to the 15604 * same group, has been grouped together. Nominating a *single* 15605 * ill in the group for sending and receiving broadcast is done 15606 * by making sure that the first BROADCAST ire (which will be 15607 * the one returned by ire_ctable_lookup for ip_rput and the 15608 * one that will be used in ip_wput_ire) will be the one that 15609 * will not have IRE_MARK_NORECV set. 15610 * 15611 * 1) ip_rput checks and discards packets received on ires marked 15612 * with IRE_MARK_NORECV. Thus, we don't send up duplicate 15613 * broadcast packets. We need to clear IRE_MARK_NORECV on the 15614 * first ire in the group for every broadcast address in the group. 15615 * ip_rput will accept packets only on the first ire i.e only 15616 * one copy of the ill. 15617 * 15618 * 2) ip_wput_ire needs to send out just one copy of the broadcast 15619 * packet for the whole group. It needs to send out on the ill 15620 * whose ire has not been marked with IRE_MARK_NORECV. If it sends 15621 * on the one marked with IRE_MARK_NORECV, ip_rput will accept 15622 * the copy echoed back on other port where the ire is not marked 15623 * with IRE_MARK_NORECV. 15624 * 15625 * Note that we just need to have the first IRE either loopback or 15626 * non-loopback (either of them may not exist if ire_create failed 15627 * during ipif_down) with IRE_MARK_NORECV not set. ip_rput will 15628 * always hit the first one and hence will always accept one copy. 15629 * 15630 * We have a broadcast ire per ill for all the unique prefixes 15631 * hosted on that ill. As we don't have a way of knowing the 15632 * unique prefixes on a given ill and hence in the whole group, 15633 * we just call ill_mark_bcast on all the prefixes that exist 15634 * in the group. For the common case of one prefix, the code 15635 * below optimizes by remebering the last address used for 15636 * markng. In the case of multiple prefixes, this will still 15637 * optimize depending the order of prefixes. 15638 * 15639 * The only unique address across the whole group is 0.0.0.0 and 15640 * 255.255.255.255 and thus we call only once. ill_mark_bcast enables 15641 * the first ire in the bucket for receiving and disables the 15642 * others. 15643 */ 15644 ill_mark_bcast(illgrp, 0, ipst); 15645 ill_mark_bcast(illgrp, INADDR_BROADCAST, ipst); 15646 for (; ill != NULL; ill = ill->ill_group_next) { 15647 15648 for (ipif = ill->ill_ipif; ipif != NULL; 15649 ipif = ipif->ipif_next) { 15650 15651 if (!(ipif->ipif_flags & IPIF_UP) || 15652 ipif->ipif_subnet == 0) { 15653 continue; 15654 } 15655 if ((ipif->ipif_lcl_addr != INADDR_ANY) && 15656 !(ipif->ipif_flags & IPIF_NOLOCAL)) { 15657 net_mask = ip_net_mask(ipif->ipif_lcl_addr); 15658 } else { 15659 net_mask = htonl(IN_CLASSA_NET); 15660 } 15661 addr = net_mask & ipif->ipif_subnet; 15662 if (prev_net_addr == 0 || prev_net_addr != addr) { 15663 ill_mark_bcast(illgrp, addr, ipst); 15664 net_addr = ~net_mask | addr; 15665 ill_mark_bcast(illgrp, net_addr, ipst); 15666 } 15667 prev_net_addr = addr; 15668 15669 subnet_netmask = ipif->ipif_net_mask; 15670 addr = ipif->ipif_subnet; 15671 if (prev_subnet_addr == 0 || 15672 prev_subnet_addr != addr) { 15673 ill_mark_bcast(illgrp, addr, ipst); 15674 subnet_addr = ~subnet_netmask | addr; 15675 ill_mark_bcast(illgrp, subnet_addr, ipst); 15676 } 15677 prev_subnet_addr = addr; 15678 } 15679 } 15680 } 15681 15682 /* 15683 * This function is called while forming ill groups. 15684 * 15685 * Currently, we handle only allmulti groups. We want to join 15686 * allmulti on only one of the ills in the groups. In future, 15687 * when we have link aggregation, we may have to join normal 15688 * multicast groups on multiple ills as switch does inbound load 15689 * balancing. Following are the functions that calls this 15690 * function : 15691 * 15692 * 1) ill_recover_multicast : Interface is coming back UP. 15693 * When the first ipif comes back UP, ipif_up_done/ipif_up_done_v6 15694 * will call ill_recover_multicast to recover all the multicast 15695 * groups. We need to make sure that only one member is joined 15696 * in the ill group. 15697 * 15698 * 2) ip_addmulti/ip_addmulti_v6 : ill groups has already been formed. 15699 * Somebody is joining allmulti. We need to make sure that only one 15700 * member is joined in the group. 15701 * 15702 * 3) illgrp_insert : If allmulti has already joined, we need to make 15703 * sure that only one member is joined in the group. 15704 * 15705 * 4) ip_delmulti/ip_delmulti_v6 : Somebody in the group is leaving 15706 * allmulti who we have nominated. We need to pick someother ill. 15707 * 15708 * 5) illgrp_delete : The ill we nominated is leaving the group, 15709 * we need to pick a new ill to join the group. 15710 * 15711 * For (1), (2), (5) - we just have to check whether there is 15712 * a good ill joined in the group. If we could not find any ills 15713 * joined the group, we should join. 15714 * 15715 * For (4), the one that was nominated to receive, left the group. 15716 * There could be nobody joined in the group when this function is 15717 * called. 15718 * 15719 * For (3) - we need to explicitly check whether there are multiple 15720 * ills joined in the group. 15721 * 15722 * For simplicity, we don't differentiate any of the above cases. We 15723 * just leave the group if it is joined on any of them and join on 15724 * the first good ill. 15725 */ 15726 int 15727 ill_nominate_mcast_rcv(ill_group_t *illgrp) 15728 { 15729 ilm_t *ilm; 15730 ill_t *ill; 15731 ill_t *fallback_inactive_ill = NULL; 15732 ill_t *fallback_failed_ill = NULL; 15733 int ret = 0; 15734 15735 /* 15736 * Leave the allmulti on all the ills and start fresh. 15737 */ 15738 for (ill = illgrp->illgrp_ill; ill != NULL; 15739 ill = ill->ill_group_next) { 15740 if (ill->ill_join_allmulti) 15741 (void) ip_leave_allmulti(ill->ill_ipif); 15742 } 15743 15744 /* 15745 * Choose a good ill. Fallback to inactive or failed if 15746 * none available. We need to fallback to FAILED in the 15747 * case where we have 2 interfaces in a group - where 15748 * one of them is failed and another is a good one and 15749 * the good one (not marked inactive) is leaving the group. 15750 */ 15751 ret = 0; 15752 for (ill = illgrp->illgrp_ill; ill != NULL; 15753 ill = ill->ill_group_next) { 15754 /* Never pick an offline interface */ 15755 if (ill->ill_phyint->phyint_flags & PHYI_OFFLINE) 15756 continue; 15757 15758 if (ill->ill_phyint->phyint_flags & PHYI_FAILED) { 15759 fallback_failed_ill = ill; 15760 continue; 15761 } 15762 if (ill->ill_phyint->phyint_flags & PHYI_INACTIVE) { 15763 fallback_inactive_ill = ill; 15764 continue; 15765 } 15766 for (ilm = ill->ill_ilm; ilm != NULL; ilm = ilm->ilm_next) { 15767 if (IN6_IS_ADDR_UNSPECIFIED(&ilm->ilm_v6addr)) { 15768 ret = ip_join_allmulti(ill->ill_ipif); 15769 /* 15770 * ip_join_allmulti can fail because of memory 15771 * failures. So, make sure we join at least 15772 * on one ill. 15773 */ 15774 if (ill->ill_join_allmulti) 15775 return (0); 15776 } 15777 } 15778 } 15779 if (ret != 0) { 15780 /* 15781 * If we tried nominating above and failed to do so, 15782 * return error. We might have tried multiple times. 15783 * But, return the latest error. 15784 */ 15785 return (ret); 15786 } 15787 if ((ill = fallback_inactive_ill) != NULL) { 15788 for (ilm = ill->ill_ilm; ilm != NULL; ilm = ilm->ilm_next) { 15789 if (IN6_IS_ADDR_UNSPECIFIED(&ilm->ilm_v6addr)) { 15790 ret = ip_join_allmulti(ill->ill_ipif); 15791 return (ret); 15792 } 15793 } 15794 } else if ((ill = fallback_failed_ill) != NULL) { 15795 for (ilm = ill->ill_ilm; ilm != NULL; ilm = ilm->ilm_next) { 15796 if (IN6_IS_ADDR_UNSPECIFIED(&ilm->ilm_v6addr)) { 15797 ret = ip_join_allmulti(ill->ill_ipif); 15798 return (ret); 15799 } 15800 } 15801 } 15802 return (0); 15803 } 15804 15805 /* 15806 * This function is called from illgrp_delete after it is 15807 * deleted from the group to reschedule responsibilities 15808 * to a different ill. 15809 */ 15810 static void 15811 ill_handoff_responsibility(ill_t *ill, ill_group_t *illgrp) 15812 { 15813 ilm_t *ilm; 15814 ipif_t *ipif; 15815 ipaddr_t subnet_addr; 15816 ipaddr_t net_addr; 15817 ipaddr_t net_mask = 0; 15818 ipaddr_t subnet_netmask; 15819 ipaddr_t addr; 15820 ip_stack_t *ipst = ill->ill_ipst; 15821 15822 ASSERT(ill->ill_group == NULL); 15823 /* 15824 * Broadcast Responsibility: 15825 * 15826 * 1. If this ill has been nominated for receiving broadcast 15827 * packets, we need to find a new one. Before we find a new 15828 * one, we need to re-group the ires that are part of this new 15829 * group (assumed by ill_nominate_bcast_rcv). We do this by 15830 * calling ill_group_bcast_for_xmit(ill) which will do the right 15831 * thing for us. 15832 * 15833 * 2. If this ill was not nominated for receiving broadcast 15834 * packets, we need to clear the IRE_MARK_NORECV flag 15835 * so that we continue to send up broadcast packets. 15836 */ 15837 if (!ill->ill_isv6) { 15838 /* 15839 * Case 1 above : No optimization here. Just redo the 15840 * nomination. 15841 */ 15842 ill_group_bcast_for_xmit(ill); 15843 ill_nominate_bcast_rcv(illgrp); 15844 15845 /* 15846 * Case 2 above : Lookup and clear IRE_MARK_NORECV. 15847 */ 15848 ill_clear_bcast_mark(ill, 0); 15849 ill_clear_bcast_mark(ill, INADDR_BROADCAST); 15850 15851 for (ipif = ill->ill_ipif; ipif != NULL; 15852 ipif = ipif->ipif_next) { 15853 15854 if (!(ipif->ipif_flags & IPIF_UP) || 15855 ipif->ipif_subnet == 0) { 15856 continue; 15857 } 15858 if ((ipif->ipif_lcl_addr != INADDR_ANY) && 15859 !(ipif->ipif_flags & IPIF_NOLOCAL)) { 15860 net_mask = ip_net_mask(ipif->ipif_lcl_addr); 15861 } else { 15862 net_mask = htonl(IN_CLASSA_NET); 15863 } 15864 addr = net_mask & ipif->ipif_subnet; 15865 ill_clear_bcast_mark(ill, addr); 15866 15867 net_addr = ~net_mask | addr; 15868 ill_clear_bcast_mark(ill, net_addr); 15869 15870 subnet_netmask = ipif->ipif_net_mask; 15871 addr = ipif->ipif_subnet; 15872 ill_clear_bcast_mark(ill, addr); 15873 15874 subnet_addr = ~subnet_netmask | addr; 15875 ill_clear_bcast_mark(ill, subnet_addr); 15876 } 15877 } 15878 15879 /* 15880 * Multicast Responsibility. 15881 * 15882 * If we have joined allmulti on this one, find a new member 15883 * in the group to join allmulti. As this ill is already part 15884 * of allmulti, we don't have to join on this one. 15885 * 15886 * If we have not joined allmulti on this one, there is no 15887 * responsibility to handoff. But we need to take new 15888 * responsibility i.e, join allmulti on this one if we need 15889 * to. 15890 */ 15891 if (ill->ill_join_allmulti) { 15892 (void) ill_nominate_mcast_rcv(illgrp); 15893 } else { 15894 for (ilm = ill->ill_ilm; ilm != NULL; ilm = ilm->ilm_next) { 15895 if (IN6_IS_ADDR_UNSPECIFIED(&ilm->ilm_v6addr)) { 15896 (void) ip_join_allmulti(ill->ill_ipif); 15897 break; 15898 } 15899 } 15900 } 15901 15902 /* 15903 * We intentionally do the flushing of IRE_CACHES only matching 15904 * on the ill and not on groups. Note that we are already deleted 15905 * from the group. 15906 * 15907 * This will make sure that all IRE_CACHES whose stq is pointing 15908 * at ill_wq or ire_ipif->ipif_ill pointing at this ill will get 15909 * deleted and IRE_CACHES that are not pointing at this ill will 15910 * be left alone. 15911 */ 15912 if (ill->ill_isv6) { 15913 ire_walk_ill_v6(MATCH_IRE_ILL | MATCH_IRE_TYPE, 15914 IRE_CACHE, illgrp_cache_delete, (char *)ill, ill); 15915 } else { 15916 ire_walk_ill_v4(MATCH_IRE_ILL | MATCH_IRE_TYPE, 15917 IRE_CACHE, illgrp_cache_delete, (char *)ill, ill); 15918 } 15919 15920 /* 15921 * Some conn may have cached one of the IREs deleted above. By removing 15922 * the ire reference, we clean up the extra reference to the ill held in 15923 * ire->ire_stq. 15924 */ 15925 ipcl_walk(conn_cleanup_stale_ire, NULL, ipst); 15926 15927 /* 15928 * Re-do source address selection for all the members in the 15929 * group, if they borrowed source address from one of the ipifs 15930 * in this ill. 15931 */ 15932 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 15933 if (ill->ill_isv6) { 15934 ipif_update_other_ipifs_v6(ipif, illgrp); 15935 } else { 15936 ipif_update_other_ipifs(ipif, illgrp); 15937 } 15938 } 15939 } 15940 15941 /* 15942 * Delete the ill from the group. The caller makes sure that it is 15943 * in a group and it okay to delete from the group. So, we always 15944 * delete here. 15945 */ 15946 static void 15947 illgrp_delete(ill_t *ill) 15948 { 15949 ill_group_t *illgrp; 15950 ill_group_t *tmpg; 15951 ill_t *tmp_ill; 15952 ip_stack_t *ipst = ill->ill_ipst; 15953 15954 /* 15955 * Reset illgrp_ill_schednext if it was pointing at us. 15956 * We need to do this before we set ill_group to NULL. 15957 */ 15958 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 15959 mutex_enter(&ill->ill_lock); 15960 15961 illgrp_reset_schednext(ill); 15962 15963 illgrp = ill->ill_group; 15964 15965 /* Delete the ill from illgrp. */ 15966 if (illgrp->illgrp_ill == ill) { 15967 illgrp->illgrp_ill = ill->ill_group_next; 15968 } else { 15969 tmp_ill = illgrp->illgrp_ill; 15970 while (tmp_ill->ill_group_next != ill) { 15971 tmp_ill = tmp_ill->ill_group_next; 15972 ASSERT(tmp_ill != NULL); 15973 } 15974 tmp_ill->ill_group_next = ill->ill_group_next; 15975 } 15976 ill->ill_group = NULL; 15977 ill->ill_group_next = NULL; 15978 15979 illgrp->illgrp_ill_count--; 15980 mutex_exit(&ill->ill_lock); 15981 rw_exit(&ipst->ips_ill_g_lock); 15982 15983 /* 15984 * As this ill is leaving the group, we need to hand off 15985 * the responsibilities to the other ills in the group, if 15986 * this ill had some responsibilities. 15987 */ 15988 15989 ill_handoff_responsibility(ill, illgrp); 15990 15991 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 15992 15993 if (illgrp->illgrp_ill_count == 0) { 15994 15995 ASSERT(illgrp->illgrp_ill == NULL); 15996 if (ill->ill_isv6) { 15997 if (illgrp == ipst->ips_illgrp_head_v6) { 15998 ipst->ips_illgrp_head_v6 = illgrp->illgrp_next; 15999 } else { 16000 tmpg = ipst->ips_illgrp_head_v6; 16001 while (tmpg->illgrp_next != illgrp) { 16002 tmpg = tmpg->illgrp_next; 16003 ASSERT(tmpg != NULL); 16004 } 16005 tmpg->illgrp_next = illgrp->illgrp_next; 16006 } 16007 } else { 16008 if (illgrp == ipst->ips_illgrp_head_v4) { 16009 ipst->ips_illgrp_head_v4 = illgrp->illgrp_next; 16010 } else { 16011 tmpg = ipst->ips_illgrp_head_v4; 16012 while (tmpg->illgrp_next != illgrp) { 16013 tmpg = tmpg->illgrp_next; 16014 ASSERT(tmpg != NULL); 16015 } 16016 tmpg->illgrp_next = illgrp->illgrp_next; 16017 } 16018 } 16019 mutex_destroy(&illgrp->illgrp_lock); 16020 mi_free(illgrp); 16021 } 16022 rw_exit(&ipst->ips_ill_g_lock); 16023 16024 /* 16025 * Even though the ill is out of the group its not necessary 16026 * to set ipsq_split as TRUE as the ipifs could be down temporarily 16027 * We will split the ipsq when phyint_groupname is set to NULL. 16028 */ 16029 16030 /* 16031 * Send a routing sockets message if we are deleting from 16032 * groups with names. 16033 */ 16034 if (ill->ill_phyint->phyint_groupname_len != 0) 16035 ip_rts_ifmsg(ill->ill_ipif); 16036 } 16037 16038 /* 16039 * Re-do source address selection. This is normally called when 16040 * an ill joins the group or when a non-NOLOCAL/DEPRECATED/ANYCAST 16041 * ipif comes up. 16042 */ 16043 void 16044 ill_update_source_selection(ill_t *ill) 16045 { 16046 ipif_t *ipif; 16047 16048 ASSERT(IAM_WRITER_ILL(ill)); 16049 16050 if (ill->ill_group != NULL) 16051 ill = ill->ill_group->illgrp_ill; 16052 16053 for (; ill != NULL; ill = ill->ill_group_next) { 16054 for (ipif = ill->ill_ipif; ipif != NULL; 16055 ipif = ipif->ipif_next) { 16056 if (ill->ill_isv6) 16057 ipif_recreate_interface_routes_v6(NULL, ipif); 16058 else 16059 ipif_recreate_interface_routes(NULL, ipif); 16060 } 16061 } 16062 } 16063 16064 /* 16065 * Insert ill in a group headed by illgrp_head. The caller can either 16066 * pass a groupname in which case we search for a group with the 16067 * same name to insert in or pass a group to insert in. This function 16068 * would only search groups with names. 16069 * 16070 * NOTE : The caller should make sure that there is at least one ipif 16071 * UP on this ill so that illgrp_scheduler can pick this ill 16072 * for outbound packets. If ill_ipif_up_count is zero, we have 16073 * already sent a DL_UNBIND to the driver and we don't want to 16074 * send anymore packets. We don't assert for ipif_up_count 16075 * to be greater than zero, because ipif_up_done wants to call 16076 * this function before bumping up the ipif_up_count. See 16077 * ipif_up_done() for details. 16078 */ 16079 int 16080 illgrp_insert(ill_group_t **illgrp_head, ill_t *ill, char *groupname, 16081 ill_group_t *grp_to_insert, boolean_t ipif_is_coming_up) 16082 { 16083 ill_group_t *illgrp; 16084 ill_t *prev_ill; 16085 phyint_t *phyi; 16086 ip_stack_t *ipst = ill->ill_ipst; 16087 16088 ASSERT(ill->ill_group == NULL); 16089 16090 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 16091 mutex_enter(&ill->ill_lock); 16092 16093 if (groupname != NULL) { 16094 /* 16095 * Look for a group with a matching groupname to insert. 16096 */ 16097 for (illgrp = *illgrp_head; illgrp != NULL; 16098 illgrp = illgrp->illgrp_next) { 16099 16100 ill_t *tmp_ill; 16101 16102 /* 16103 * If we have an ill_group_t in the list which has 16104 * no ill_t assigned then we must be in the process of 16105 * removing this group. We skip this as illgrp_delete() 16106 * will remove it from the list. 16107 */ 16108 if ((tmp_ill = illgrp->illgrp_ill) == NULL) { 16109 ASSERT(illgrp->illgrp_ill_count == 0); 16110 continue; 16111 } 16112 16113 ASSERT(tmp_ill->ill_phyint != NULL); 16114 phyi = tmp_ill->ill_phyint; 16115 /* 16116 * Look at groups which has names only. 16117 */ 16118 if (phyi->phyint_groupname_len == 0) 16119 continue; 16120 /* 16121 * Names are stored in the phyint common to both 16122 * IPv4 and IPv6. 16123 */ 16124 if (mi_strcmp(phyi->phyint_groupname, 16125 groupname) == 0) { 16126 break; 16127 } 16128 } 16129 } else { 16130 /* 16131 * If the caller passes in a NULL "grp_to_insert", we 16132 * allocate one below and insert this singleton. 16133 */ 16134 illgrp = grp_to_insert; 16135 } 16136 16137 ill->ill_group_next = NULL; 16138 16139 if (illgrp == NULL) { 16140 illgrp = (ill_group_t *)mi_zalloc(sizeof (ill_group_t)); 16141 if (illgrp == NULL) { 16142 return (ENOMEM); 16143 } 16144 illgrp->illgrp_next = *illgrp_head; 16145 *illgrp_head = illgrp; 16146 illgrp->illgrp_ill = ill; 16147 illgrp->illgrp_ill_count = 1; 16148 ill->ill_group = illgrp; 16149 /* 16150 * Used in illgrp_scheduler to protect multiple threads 16151 * from traversing the list. 16152 */ 16153 mutex_init(&illgrp->illgrp_lock, NULL, MUTEX_DEFAULT, 0); 16154 } else { 16155 ASSERT(ill->ill_net_type == 16156 illgrp->illgrp_ill->ill_net_type); 16157 ASSERT(ill->ill_type == illgrp->illgrp_ill->ill_type); 16158 16159 /* Insert ill at tail of this group */ 16160 prev_ill = illgrp->illgrp_ill; 16161 while (prev_ill->ill_group_next != NULL) 16162 prev_ill = prev_ill->ill_group_next; 16163 prev_ill->ill_group_next = ill; 16164 ill->ill_group = illgrp; 16165 illgrp->illgrp_ill_count++; 16166 /* 16167 * Inherit group properties. Currently only forwarding 16168 * is the property we try to keep the same with all the 16169 * ills. When there are more, we will abstract this into 16170 * a function. 16171 */ 16172 ill->ill_flags &= ~ILLF_ROUTER; 16173 ill->ill_flags |= (illgrp->illgrp_ill->ill_flags & ILLF_ROUTER); 16174 } 16175 mutex_exit(&ill->ill_lock); 16176 rw_exit(&ipst->ips_ill_g_lock); 16177 16178 /* 16179 * 1) When ipif_up_done() calls this function, ipif_up_count 16180 * may be zero as it has not yet been bumped. But the ires 16181 * have already been added. So, we do the nomination here 16182 * itself. But, when ip_sioctl_groupname calls this, it checks 16183 * for ill_ipif_up_count != 0. Thus we don't check for 16184 * ill_ipif_up_count here while nominating broadcast ires for 16185 * receive. 16186 * 16187 * 2) Similarly, we need to call ill_group_bcast_for_xmit here 16188 * to group them properly as ire_add() has already happened 16189 * in the ipif_up_done() case. For ip_sioctl_groupname/ifgrp_insert 16190 * case, we need to do it here anyway. 16191 */ 16192 if (!ill->ill_isv6) { 16193 ill_group_bcast_for_xmit(ill); 16194 ill_nominate_bcast_rcv(illgrp); 16195 } 16196 16197 if (!ipif_is_coming_up) { 16198 /* 16199 * When ipif_up_done() calls this function, the multicast 16200 * groups have not been joined yet. So, there is no point in 16201 * nomination. ip_join_allmulti will handle groups when 16202 * ill_recover_multicast is called from ipif_up_done() later. 16203 */ 16204 (void) ill_nominate_mcast_rcv(illgrp); 16205 /* 16206 * ipif_up_done calls ill_update_source_selection 16207 * anyway. Moreover, we don't want to re-create 16208 * interface routes while ipif_up_done() still has reference 16209 * to them. Refer to ipif_up_done() for more details. 16210 */ 16211 ill_update_source_selection(ill); 16212 } 16213 16214 /* 16215 * Send a routing sockets message if we are inserting into 16216 * groups with names. 16217 */ 16218 if (groupname != NULL) 16219 ip_rts_ifmsg(ill->ill_ipif); 16220 return (0); 16221 } 16222 16223 /* 16224 * Return the first phyint matching the groupname. There could 16225 * be more than one when there are ill groups. 16226 * 16227 * If 'usable' is set, then we exclude ones that are marked with any of 16228 * (PHYI_FAILED|PHYI_OFFLINE|PHYI_INACTIVE). 16229 * Needs work: called only from ip_sioctl_groupname and from the ipmp/netinfo 16230 * emulation of ipmp. 16231 */ 16232 phyint_t * 16233 phyint_lookup_group(char *groupname, boolean_t usable, ip_stack_t *ipst) 16234 { 16235 phyint_t *phyi; 16236 16237 ASSERT(RW_LOCK_HELD(&ipst->ips_ill_g_lock)); 16238 /* 16239 * Group names are stored in the phyint - a common structure 16240 * to both IPv4 and IPv6. 16241 */ 16242 phyi = avl_first(&ipst->ips_phyint_g_list->phyint_list_avl_by_index); 16243 for (; phyi != NULL; 16244 phyi = avl_walk(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 16245 phyi, AVL_AFTER)) { 16246 if (phyi->phyint_groupname_len == 0) 16247 continue; 16248 /* 16249 * Skip the ones that should not be used since the callers 16250 * sometime use this for sending packets. 16251 */ 16252 if (usable && (phyi->phyint_flags & 16253 (PHYI_FAILED|PHYI_OFFLINE|PHYI_INACTIVE))) 16254 continue; 16255 16256 ASSERT(phyi->phyint_groupname != NULL); 16257 if (mi_strcmp(groupname, phyi->phyint_groupname) == 0) 16258 return (phyi); 16259 } 16260 return (NULL); 16261 } 16262 16263 16264 /* 16265 * Return the first usable phyint matching the group index. By 'usable' 16266 * we exclude ones that are marked ununsable with any of 16267 * (PHYI_FAILED|PHYI_OFFLINE|PHYI_INACTIVE). 16268 * 16269 * Used only for the ipmp/netinfo emulation of ipmp. 16270 */ 16271 phyint_t * 16272 phyint_lookup_group_ifindex(uint_t group_ifindex, ip_stack_t *ipst) 16273 { 16274 phyint_t *phyi; 16275 16276 ASSERT(RW_LOCK_HELD(&ipst->ips_ill_g_lock)); 16277 16278 if (!ipst->ips_ipmp_hook_emulation) 16279 return (NULL); 16280 16281 /* 16282 * Group indicies are stored in the phyint - a common structure 16283 * to both IPv4 and IPv6. 16284 */ 16285 phyi = avl_first(&ipst->ips_phyint_g_list->phyint_list_avl_by_index); 16286 for (; phyi != NULL; 16287 phyi = avl_walk(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 16288 phyi, AVL_AFTER)) { 16289 /* Ignore the ones that do not have a group */ 16290 if (phyi->phyint_groupname_len == 0) 16291 continue; 16292 16293 ASSERT(phyi->phyint_group_ifindex != 0); 16294 /* 16295 * Skip the ones that should not be used since the callers 16296 * sometime use this for sending packets. 16297 */ 16298 if (phyi->phyint_flags & 16299 (PHYI_FAILED|PHYI_OFFLINE|PHYI_INACTIVE)) 16300 continue; 16301 if (phyi->phyint_group_ifindex == group_ifindex) 16302 return (phyi); 16303 } 16304 return (NULL); 16305 } 16306 16307 16308 /* 16309 * MT notes on creation and deletion of IPMP groups 16310 * 16311 * Creation and deletion of IPMP groups introduce the need to merge or 16312 * split the associated serialization objects i.e the ipsq's. Normally all 16313 * the ills in an IPMP group would map to a single ipsq. If IPMP is not enabled 16314 * an ill-pair(v4, v6) i.e. phyint would map to a single ipsq. However during 16315 * the execution of the SIOCSLIFGROUPNAME command the picture changes. There 16316 * is a need to change the <ill-ipsq> association and we have to operate on both 16317 * the source and destination IPMP groups. For eg. attempting to set the 16318 * groupname of hme0 to mpk17-85 when it already belongs to mpk17-84 has to 16319 * handle 2 IPMP groups and 2 ipsqs. All the ills belonging to either of the 16320 * source or destination IPMP group are mapped to a single ipsq for executing 16321 * the SIOCSLIFGROUPNAME command. This is termed as a merge of the ipsq's. 16322 * The <ill-ipsq> mapping is restored back to normal at a later point. This is 16323 * termed as a split of the ipsq. The converse of the merge i.e. a split of the 16324 * ipsq happens while unwinding from ipsq_exit. If at least 1 set groupname 16325 * occurred on the ipsq, then the ipsq_split flag is set. This indicates the 16326 * ipsq has to be examined for redoing the <ill-ipsq> associations. 16327 * 16328 * In the above example the ioctl handling code locates the current ipsq of hme0 16329 * which is ipsq(mpk17-84). It then enters the above ipsq immediately or 16330 * eventually (after queueing the ioctl in ipsq(mpk17-84)). Then it locates 16331 * the destination ipsq which is ipsq(mpk17-85) and merges the source ipsq into 16332 * the destination ipsq. If the destination ipsq is not busy, it also enters 16333 * the destination ipsq exclusively. Now the actual groupname setting operation 16334 * can proceed. If the destination ipsq is busy, the operation is enqueued 16335 * on the destination (merged) ipsq and will be handled in the unwind from 16336 * ipsq_exit. 16337 * 16338 * To prevent other threads accessing the ill while the group name change is 16339 * in progres, we bring down the ipifs which also removes the ill from the 16340 * group. The group is changed in phyint and when the first ipif on the ill 16341 * is brought up, the ill is inserted into the right IPMP group by 16342 * illgrp_insert. 16343 */ 16344 /* ARGSUSED */ 16345 int 16346 ip_sioctl_groupname(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 16347 ip_ioctl_cmd_t *ipip, void *ifreq) 16348 { 16349 int i; 16350 char *tmp; 16351 int namelen; 16352 ill_t *ill = ipif->ipif_ill; 16353 ill_t *ill_v4, *ill_v6; 16354 int err = 0; 16355 phyint_t *phyi; 16356 phyint_t *phyi_tmp; 16357 struct lifreq *lifr; 16358 mblk_t *mp1; 16359 char *groupname; 16360 ipsq_t *ipsq; 16361 ip_stack_t *ipst = ill->ill_ipst; 16362 16363 ASSERT(IAM_WRITER_IPIF(ipif)); 16364 16365 /* Existance verified in ip_wput_nondata */ 16366 mp1 = mp->b_cont->b_cont; 16367 lifr = (struct lifreq *)mp1->b_rptr; 16368 groupname = lifr->lifr_groupname; 16369 16370 if (ipif->ipif_id != 0) 16371 return (EINVAL); 16372 16373 phyi = ill->ill_phyint; 16374 ASSERT(phyi != NULL); 16375 16376 if (phyi->phyint_flags & PHYI_VIRTUAL) 16377 return (EINVAL); 16378 16379 tmp = groupname; 16380 for (i = 0; i < LIFNAMSIZ && *tmp != '\0'; tmp++, i++) 16381 ; 16382 16383 if (i == LIFNAMSIZ) { 16384 /* no null termination */ 16385 return (EINVAL); 16386 } 16387 16388 /* 16389 * Calculate the namelen exclusive of the null 16390 * termination character. 16391 */ 16392 namelen = tmp - groupname; 16393 16394 ill_v4 = phyi->phyint_illv4; 16395 ill_v6 = phyi->phyint_illv6; 16396 16397 /* 16398 * ILL cannot be part of a usesrc group and and IPMP group at the 16399 * same time. No need to grab the ill_g_usesrc_lock here, see 16400 * synchronization notes in ip.c 16401 */ 16402 if (ipif->ipif_ill->ill_usesrc_grp_next != NULL) { 16403 return (EINVAL); 16404 } 16405 16406 /* 16407 * mark the ill as changing. 16408 * this should queue all new requests on the syncq. 16409 */ 16410 GRAB_ILL_LOCKS(ill_v4, ill_v6); 16411 16412 if (ill_v4 != NULL) 16413 ill_v4->ill_state_flags |= ILL_CHANGING; 16414 if (ill_v6 != NULL) 16415 ill_v6->ill_state_flags |= ILL_CHANGING; 16416 RELEASE_ILL_LOCKS(ill_v4, ill_v6); 16417 16418 if (namelen == 0) { 16419 /* 16420 * Null string means remove this interface from the 16421 * existing group. 16422 */ 16423 if (phyi->phyint_groupname_len == 0) { 16424 /* 16425 * Never was in a group. 16426 */ 16427 err = 0; 16428 goto done; 16429 } 16430 16431 /* 16432 * IPv4 or IPv6 may be temporarily out of the group when all 16433 * the ipifs are down. Thus, we need to check for ill_group to 16434 * be non-NULL. 16435 */ 16436 if (ill_v4 != NULL && ill_v4->ill_group != NULL) { 16437 ill_down_ipifs(ill_v4, mp, 0, B_FALSE); 16438 mutex_enter(&ill_v4->ill_lock); 16439 if (!ill_is_quiescent(ill_v4)) { 16440 /* 16441 * ipsq_pending_mp_add will not fail since 16442 * connp is NULL 16443 */ 16444 (void) ipsq_pending_mp_add(NULL, 16445 ill_v4->ill_ipif, q, mp, ILL_DOWN); 16446 mutex_exit(&ill_v4->ill_lock); 16447 err = EINPROGRESS; 16448 goto done; 16449 } 16450 mutex_exit(&ill_v4->ill_lock); 16451 } 16452 16453 if (ill_v6 != NULL && ill_v6->ill_group != NULL) { 16454 ill_down_ipifs(ill_v6, mp, 0, B_FALSE); 16455 mutex_enter(&ill_v6->ill_lock); 16456 if (!ill_is_quiescent(ill_v6)) { 16457 (void) ipsq_pending_mp_add(NULL, 16458 ill_v6->ill_ipif, q, mp, ILL_DOWN); 16459 mutex_exit(&ill_v6->ill_lock); 16460 err = EINPROGRESS; 16461 goto done; 16462 } 16463 mutex_exit(&ill_v6->ill_lock); 16464 } 16465 16466 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 16467 GRAB_ILL_LOCKS(ill_v4, ill_v6); 16468 mutex_enter(&phyi->phyint_lock); 16469 ASSERT(phyi->phyint_groupname != NULL); 16470 mi_free(phyi->phyint_groupname); 16471 phyi->phyint_groupname = NULL; 16472 phyi->phyint_groupname_len = 0; 16473 16474 /* Restore the ifindex used to be the per interface one */ 16475 phyi->phyint_group_ifindex = 0; 16476 phyi->phyint_hook_ifindex = phyi->phyint_ifindex; 16477 mutex_exit(&phyi->phyint_lock); 16478 RELEASE_ILL_LOCKS(ill_v4, ill_v6); 16479 rw_exit(&ipst->ips_ill_g_lock); 16480 err = ill_up_ipifs(ill, q, mp); 16481 16482 /* 16483 * set the split flag so that the ipsq can be split 16484 */ 16485 mutex_enter(&phyi->phyint_ipsq->ipsq_lock); 16486 phyi->phyint_ipsq->ipsq_split = B_TRUE; 16487 mutex_exit(&phyi->phyint_ipsq->ipsq_lock); 16488 16489 } else { 16490 if (phyi->phyint_groupname_len != 0) { 16491 ASSERT(phyi->phyint_groupname != NULL); 16492 /* Are we inserting in the same group ? */ 16493 if (mi_strcmp(groupname, 16494 phyi->phyint_groupname) == 0) { 16495 err = 0; 16496 goto done; 16497 } 16498 } 16499 16500 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 16501 /* 16502 * Merge ipsq for the group's. 16503 * This check is here as multiple groups/ills might be 16504 * sharing the same ipsq. 16505 * If we have to merege than the operation is restarted 16506 * on the new ipsq. 16507 */ 16508 ipsq = ip_ipsq_lookup(groupname, B_FALSE, NULL, ipst); 16509 if (phyi->phyint_ipsq != ipsq) { 16510 rw_exit(&ipst->ips_ill_g_lock); 16511 err = ill_merge_groups(ill, NULL, groupname, mp, q); 16512 goto done; 16513 } 16514 /* 16515 * Running exclusive on new ipsq. 16516 */ 16517 16518 ASSERT(ipsq != NULL); 16519 ASSERT(ipsq->ipsq_writer == curthread); 16520 16521 /* 16522 * Check whether the ill_type and ill_net_type matches before 16523 * we allocate any memory so that the cleanup is easier. 16524 * 16525 * We can't group dissimilar ones as we can't load spread 16526 * packets across the group because of potential link-level 16527 * header differences. 16528 */ 16529 phyi_tmp = phyint_lookup_group(groupname, B_FALSE, ipst); 16530 if (phyi_tmp != NULL) { 16531 if ((ill_v4 != NULL && 16532 phyi_tmp->phyint_illv4 != NULL) && 16533 ((ill_v4->ill_net_type != 16534 phyi_tmp->phyint_illv4->ill_net_type) || 16535 (ill_v4->ill_type != 16536 phyi_tmp->phyint_illv4->ill_type))) { 16537 mutex_enter(&phyi->phyint_ipsq->ipsq_lock); 16538 phyi->phyint_ipsq->ipsq_split = B_TRUE; 16539 mutex_exit(&phyi->phyint_ipsq->ipsq_lock); 16540 rw_exit(&ipst->ips_ill_g_lock); 16541 return (EINVAL); 16542 } 16543 if ((ill_v6 != NULL && 16544 phyi_tmp->phyint_illv6 != NULL) && 16545 ((ill_v6->ill_net_type != 16546 phyi_tmp->phyint_illv6->ill_net_type) || 16547 (ill_v6->ill_type != 16548 phyi_tmp->phyint_illv6->ill_type))) { 16549 mutex_enter(&phyi->phyint_ipsq->ipsq_lock); 16550 phyi->phyint_ipsq->ipsq_split = B_TRUE; 16551 mutex_exit(&phyi->phyint_ipsq->ipsq_lock); 16552 rw_exit(&ipst->ips_ill_g_lock); 16553 return (EINVAL); 16554 } 16555 } 16556 16557 rw_exit(&ipst->ips_ill_g_lock); 16558 16559 /* 16560 * bring down all v4 ipifs. 16561 */ 16562 if (ill_v4 != NULL) { 16563 ill_down_ipifs(ill_v4, mp, 0, B_FALSE); 16564 } 16565 16566 /* 16567 * bring down all v6 ipifs. 16568 */ 16569 if (ill_v6 != NULL) { 16570 ill_down_ipifs(ill_v6, mp, 0, B_FALSE); 16571 } 16572 16573 /* 16574 * make sure all ipifs are down and there are no active 16575 * references. Call to ipsq_pending_mp_add will not fail 16576 * since connp is NULL. 16577 */ 16578 if (ill_v4 != NULL) { 16579 mutex_enter(&ill_v4->ill_lock); 16580 if (!ill_is_quiescent(ill_v4)) { 16581 (void) ipsq_pending_mp_add(NULL, 16582 ill_v4->ill_ipif, q, mp, ILL_DOWN); 16583 mutex_exit(&ill_v4->ill_lock); 16584 err = EINPROGRESS; 16585 goto done; 16586 } 16587 mutex_exit(&ill_v4->ill_lock); 16588 } 16589 16590 if (ill_v6 != NULL) { 16591 mutex_enter(&ill_v6->ill_lock); 16592 if (!ill_is_quiescent(ill_v6)) { 16593 (void) ipsq_pending_mp_add(NULL, 16594 ill_v6->ill_ipif, q, mp, ILL_DOWN); 16595 mutex_exit(&ill_v6->ill_lock); 16596 err = EINPROGRESS; 16597 goto done; 16598 } 16599 mutex_exit(&ill_v6->ill_lock); 16600 } 16601 16602 /* 16603 * allocate including space for null terminator 16604 * before we insert. 16605 */ 16606 tmp = (char *)mi_alloc(namelen + 1, BPRI_MED); 16607 if (tmp == NULL) 16608 return (ENOMEM); 16609 16610 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 16611 GRAB_ILL_LOCKS(ill_v4, ill_v6); 16612 mutex_enter(&phyi->phyint_lock); 16613 if (phyi->phyint_groupname_len != 0) { 16614 ASSERT(phyi->phyint_groupname != NULL); 16615 mi_free(phyi->phyint_groupname); 16616 } 16617 16618 /* 16619 * setup the new group name. 16620 */ 16621 phyi->phyint_groupname = tmp; 16622 bcopy(groupname, phyi->phyint_groupname, namelen + 1); 16623 phyi->phyint_groupname_len = namelen + 1; 16624 16625 if (ipst->ips_ipmp_hook_emulation) { 16626 /* 16627 * If the group already exists we use the existing 16628 * group_ifindex, otherwise we pick a new index here. 16629 */ 16630 if (phyi_tmp != NULL) { 16631 phyi->phyint_group_ifindex = 16632 phyi_tmp->phyint_group_ifindex; 16633 } else { 16634 /* XXX We need a recovery strategy here. */ 16635 if (!ip_assign_ifindex( 16636 &phyi->phyint_group_ifindex, ipst)) 16637 cmn_err(CE_PANIC, 16638 "ip_assign_ifindex() failed"); 16639 } 16640 } 16641 /* 16642 * Select whether the netinfo and hook use the per-interface 16643 * or per-group ifindex. 16644 */ 16645 if (ipst->ips_ipmp_hook_emulation) 16646 phyi->phyint_hook_ifindex = phyi->phyint_group_ifindex; 16647 else 16648 phyi->phyint_hook_ifindex = phyi->phyint_ifindex; 16649 16650 if (ipst->ips_ipmp_hook_emulation && 16651 phyi_tmp != NULL) { 16652 /* First phyint in group - group PLUMB event */ 16653 ill_nic_info_plumb(ill, B_TRUE); 16654 } 16655 mutex_exit(&phyi->phyint_lock); 16656 RELEASE_ILL_LOCKS(ill_v4, ill_v6); 16657 rw_exit(&ipst->ips_ill_g_lock); 16658 16659 err = ill_up_ipifs(ill, q, mp); 16660 } 16661 16662 done: 16663 /* 16664 * normally ILL_CHANGING is cleared in ill_up_ipifs. 16665 */ 16666 if (err != EINPROGRESS) { 16667 GRAB_ILL_LOCKS(ill_v4, ill_v6); 16668 if (ill_v4 != NULL) 16669 ill_v4->ill_state_flags &= ~ILL_CHANGING; 16670 if (ill_v6 != NULL) 16671 ill_v6->ill_state_flags &= ~ILL_CHANGING; 16672 RELEASE_ILL_LOCKS(ill_v4, ill_v6); 16673 } 16674 return (err); 16675 } 16676 16677 /* ARGSUSED */ 16678 int 16679 ip_sioctl_get_groupname(ipif_t *ipif, sin_t *dummy_sin, queue_t *q, 16680 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 16681 { 16682 ill_t *ill; 16683 phyint_t *phyi; 16684 struct lifreq *lifr; 16685 mblk_t *mp1; 16686 16687 /* Existence verified in ip_wput_nondata */ 16688 mp1 = mp->b_cont->b_cont; 16689 lifr = (struct lifreq *)mp1->b_rptr; 16690 ill = ipif->ipif_ill; 16691 phyi = ill->ill_phyint; 16692 16693 lifr->lifr_groupname[0] = '\0'; 16694 /* 16695 * ill_group may be null if all the interfaces 16696 * are down. But still, the phyint should always 16697 * hold the name. 16698 */ 16699 if (phyi->phyint_groupname_len != 0) { 16700 bcopy(phyi->phyint_groupname, lifr->lifr_groupname, 16701 phyi->phyint_groupname_len); 16702 } 16703 16704 return (0); 16705 } 16706 16707 16708 typedef struct conn_move_s { 16709 ill_t *cm_from_ill; 16710 ill_t *cm_to_ill; 16711 int cm_ifindex; 16712 } conn_move_t; 16713 16714 /* 16715 * ipcl_walk function for moving conn_multicast_ill for a given ill. 16716 */ 16717 static void 16718 conn_move(conn_t *connp, caddr_t arg) 16719 { 16720 conn_move_t *connm; 16721 int ifindex; 16722 int i; 16723 ill_t *from_ill; 16724 ill_t *to_ill; 16725 ilg_t *ilg; 16726 ilm_t *ret_ilm; 16727 16728 connm = (conn_move_t *)arg; 16729 ifindex = connm->cm_ifindex; 16730 from_ill = connm->cm_from_ill; 16731 to_ill = connm->cm_to_ill; 16732 16733 /* Change IP_BOUND_IF/IPV6_BOUND_IF associations. */ 16734 16735 /* All multicast fields protected by conn_lock */ 16736 mutex_enter(&connp->conn_lock); 16737 ASSERT(connp->conn_outgoing_ill == connp->conn_incoming_ill); 16738 if ((connp->conn_outgoing_ill == from_ill) && 16739 (ifindex == 0 || connp->conn_orig_bound_ifindex == ifindex)) { 16740 connp->conn_outgoing_ill = to_ill; 16741 connp->conn_incoming_ill = to_ill; 16742 } 16743 16744 /* Change IP_MULTICAST_IF/IPV6_MULTICAST_IF associations */ 16745 16746 if ((connp->conn_multicast_ill == from_ill) && 16747 (ifindex == 0 || connp->conn_orig_multicast_ifindex == ifindex)) { 16748 connp->conn_multicast_ill = connm->cm_to_ill; 16749 } 16750 16751 /* Change IP_XMIT_IF associations */ 16752 if ((connp->conn_xmit_if_ill == from_ill) && 16753 (ifindex == 0 || connp->conn_orig_xmit_ifindex == ifindex)) { 16754 connp->conn_xmit_if_ill = to_ill; 16755 } 16756 /* 16757 * Change the ilg_ill to point to the new one. This assumes 16758 * ilm_move_v6 has moved the ilms to new_ill and the driver 16759 * has been told to receive packets on this interface. 16760 * ilm_move_v6 FAILBACKS all the ilms successfully always. 16761 * But when doing a FAILOVER, it might fail with ENOMEM and so 16762 * some ilms may not have moved. We check to see whether 16763 * the ilms have moved to to_ill. We can't check on from_ill 16764 * as in the process of moving, we could have split an ilm 16765 * in to two - which has the same orig_ifindex and v6group. 16766 * 16767 * For IPv4, ilg_ipif moves implicitly. The code below really 16768 * does not do anything for IPv4 as ilg_ill is NULL for IPv4. 16769 */ 16770 for (i = connp->conn_ilg_inuse - 1; i >= 0; i--) { 16771 ilg = &connp->conn_ilg[i]; 16772 if ((ilg->ilg_ill == from_ill) && 16773 (ifindex == 0 || ilg->ilg_orig_ifindex == ifindex)) { 16774 /* ifindex != 0 indicates failback */ 16775 if (ifindex != 0) { 16776 connp->conn_ilg[i].ilg_ill = to_ill; 16777 continue; 16778 } 16779 16780 ret_ilm = ilm_lookup_ill_index_v6(to_ill, 16781 &ilg->ilg_v6group, ilg->ilg_orig_ifindex, 16782 connp->conn_zoneid); 16783 16784 if (ret_ilm != NULL) 16785 connp->conn_ilg[i].ilg_ill = to_ill; 16786 } 16787 } 16788 mutex_exit(&connp->conn_lock); 16789 } 16790 16791 static void 16792 conn_move_ill(ill_t *from_ill, ill_t *to_ill, int ifindex) 16793 { 16794 conn_move_t connm; 16795 ip_stack_t *ipst = from_ill->ill_ipst; 16796 16797 connm.cm_from_ill = from_ill; 16798 connm.cm_to_ill = to_ill; 16799 connm.cm_ifindex = ifindex; 16800 16801 ipcl_walk(conn_move, (caddr_t)&connm, ipst); 16802 } 16803 16804 /* 16805 * ilm has been moved from from_ill to to_ill. 16806 * Send DL_DISABMULTI_REQ to ill and DL_ENABMULTI_REQ on to_ill. 16807 * appropriately. 16808 * 16809 * NOTE : We can't reuse the code in ip_ll_addmulti/delmulti because 16810 * the code there de-references ipif_ill to get the ill to 16811 * send multicast requests. It does not work as ipif is on its 16812 * move and already moved when this function is called. 16813 * Thus, we need to use from_ill and to_ill send down multicast 16814 * requests. 16815 */ 16816 static void 16817 ilm_send_multicast_reqs(ill_t *from_ill, ill_t *to_ill) 16818 { 16819 ipif_t *ipif; 16820 ilm_t *ilm; 16821 16822 /* 16823 * See whether we need to send down DL_ENABMULTI_REQ on 16824 * to_ill as ilm has just been added. 16825 */ 16826 ASSERT(IAM_WRITER_ILL(to_ill)); 16827 ASSERT(IAM_WRITER_ILL(from_ill)); 16828 16829 ILM_WALKER_HOLD(to_ill); 16830 for (ilm = to_ill->ill_ilm; ilm != NULL; ilm = ilm->ilm_next) { 16831 16832 if (!ilm->ilm_is_new || (ilm->ilm_flags & ILM_DELETED)) 16833 continue; 16834 /* 16835 * no locks held, ill/ipif cannot dissappear as long 16836 * as we are writer. 16837 */ 16838 ipif = to_ill->ill_ipif; 16839 /* 16840 * No need to hold any lock as we are the writer and this 16841 * can only be changed by a writer. 16842 */ 16843 ilm->ilm_is_new = B_FALSE; 16844 16845 if (to_ill->ill_net_type != IRE_IF_RESOLVER || 16846 ipif->ipif_flags & IPIF_POINTOPOINT) { 16847 ip1dbg(("ilm_send_multicast_reqs: to_ill not " 16848 "resolver\n")); 16849 continue; /* Must be IRE_IF_NORESOLVER */ 16850 } 16851 16852 16853 if (to_ill->ill_phyint->phyint_flags & PHYI_MULTI_BCAST) { 16854 ip1dbg(("ilm_send_multicast_reqs: " 16855 "to_ill MULTI_BCAST\n")); 16856 goto from; 16857 } 16858 16859 if (to_ill->ill_isv6) 16860 mld_joingroup(ilm); 16861 else 16862 igmp_joingroup(ilm); 16863 16864 if (to_ill->ill_ipif_up_count == 0) { 16865 /* 16866 * Nobody there. All multicast addresses will be 16867 * re-joined when we get the DL_BIND_ACK bringing the 16868 * interface up. 16869 */ 16870 ilm->ilm_notify_driver = B_FALSE; 16871 ip1dbg(("ilm_send_multicast_reqs: to_ill nobody up\n")); 16872 goto from; 16873 } 16874 16875 /* 16876 * For allmulti address, we want to join on only one interface. 16877 * Checking for ilm_numentries_v6 is not correct as you may 16878 * find an ilm with zero address on to_ill, but we may not 16879 * have nominated to_ill for receiving. Thus, if we have 16880 * nominated from_ill (ill_join_allmulti is set), nominate 16881 * only if to_ill is not already nominated (to_ill normally 16882 * should not have been nominated if "from_ill" has already 16883 * been nominated. As we don't prevent failovers from happening 16884 * across groups, we don't assert). 16885 */ 16886 if (IN6_IS_ADDR_UNSPECIFIED(&ilm->ilm_v6addr)) { 16887 /* 16888 * There is no need to hold ill locks as we are 16889 * writer on both ills and when ill_join_allmulti 16890 * is changed the thread is always a writer. 16891 */ 16892 if (from_ill->ill_join_allmulti && 16893 !to_ill->ill_join_allmulti) { 16894 (void) ip_join_allmulti(to_ill->ill_ipif); 16895 } 16896 } else if (ilm->ilm_notify_driver) { 16897 16898 /* 16899 * This is a newly moved ilm so we need to tell the 16900 * driver about the new group. There can be more than 16901 * one ilm's for the same group in the list each with a 16902 * different orig_ifindex. We have to inform the driver 16903 * once. In ilm_move_v[4,6] we only set the flag 16904 * ilm_notify_driver for the first ilm. 16905 */ 16906 16907 (void) ip_ll_send_enabmulti_req(to_ill, 16908 &ilm->ilm_v6addr); 16909 } 16910 16911 ilm->ilm_notify_driver = B_FALSE; 16912 16913 /* 16914 * See whether we need to send down DL_DISABMULTI_REQ on 16915 * from_ill as ilm has just been removed. 16916 */ 16917 from: 16918 ipif = from_ill->ill_ipif; 16919 if (from_ill->ill_net_type != IRE_IF_RESOLVER || 16920 ipif->ipif_flags & IPIF_POINTOPOINT) { 16921 ip1dbg(("ilm_send_multicast_reqs: " 16922 "from_ill not resolver\n")); 16923 continue; /* Must be IRE_IF_NORESOLVER */ 16924 } 16925 16926 if (from_ill->ill_phyint->phyint_flags & PHYI_MULTI_BCAST) { 16927 ip1dbg(("ilm_send_multicast_reqs: " 16928 "from_ill MULTI_BCAST\n")); 16929 continue; 16930 } 16931 16932 if (IN6_IS_ADDR_UNSPECIFIED(&ilm->ilm_v6addr)) { 16933 if (from_ill->ill_join_allmulti) 16934 (void) ip_leave_allmulti(from_ill->ill_ipif); 16935 } else if (ilm_numentries_v6(from_ill, &ilm->ilm_v6addr) == 0) { 16936 (void) ip_ll_send_disabmulti_req(from_ill, 16937 &ilm->ilm_v6addr); 16938 } 16939 } 16940 ILM_WALKER_RELE(to_ill); 16941 } 16942 16943 /* 16944 * This function is called when all multicast memberships needs 16945 * to be moved from "from_ill" to "to_ill" for IPv6. This function is 16946 * called only once unlike the IPv4 counterpart where it is called after 16947 * every logical interface is moved. The reason is due to multicast 16948 * memberships are joined using an interface address in IPv4 while in 16949 * IPv6, interface index is used. 16950 */ 16951 static void 16952 ilm_move_v6(ill_t *from_ill, ill_t *to_ill, int ifindex) 16953 { 16954 ilm_t *ilm; 16955 ilm_t *ilm_next; 16956 ilm_t *new_ilm; 16957 ilm_t **ilmp; 16958 int count; 16959 char buf[INET6_ADDRSTRLEN]; 16960 in6_addr_t ipv6_snm = ipv6_solicited_node_mcast; 16961 ip_stack_t *ipst = from_ill->ill_ipst; 16962 16963 ASSERT(MUTEX_HELD(&to_ill->ill_lock)); 16964 ASSERT(MUTEX_HELD(&from_ill->ill_lock)); 16965 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); 16966 16967 if (ifindex == 0) { 16968 /* 16969 * Form the solicited node mcast address which is used later. 16970 */ 16971 ipif_t *ipif; 16972 16973 ipif = from_ill->ill_ipif; 16974 ASSERT(ipif->ipif_id == 0); 16975 16976 ipv6_snm.s6_addr32[3] |= ipif->ipif_v6lcl_addr.s6_addr32[3]; 16977 } 16978 16979 ilmp = &from_ill->ill_ilm; 16980 for (ilm = from_ill->ill_ilm; ilm != NULL; ilm = ilm_next) { 16981 ilm_next = ilm->ilm_next; 16982 16983 if (ilm->ilm_flags & ILM_DELETED) { 16984 ilmp = &ilm->ilm_next; 16985 continue; 16986 } 16987 16988 new_ilm = ilm_lookup_ill_index_v6(to_ill, &ilm->ilm_v6addr, 16989 ilm->ilm_orig_ifindex, ilm->ilm_zoneid); 16990 ASSERT(ilm->ilm_orig_ifindex != 0); 16991 if (ilm->ilm_orig_ifindex == ifindex) { 16992 /* 16993 * We are failing back multicast memberships. 16994 * If the same ilm exists in to_ill, it means somebody 16995 * has joined the same group there e.g. ff02::1 16996 * is joined within the kernel when the interfaces 16997 * came UP. 16998 */ 16999 ASSERT(ilm->ilm_ipif == NULL); 17000 if (new_ilm != NULL) { 17001 new_ilm->ilm_refcnt += ilm->ilm_refcnt; 17002 if (new_ilm->ilm_fmode != MODE_IS_EXCLUDE || 17003 !SLIST_IS_EMPTY(new_ilm->ilm_filter)) { 17004 new_ilm->ilm_is_new = B_TRUE; 17005 } 17006 } else { 17007 /* 17008 * check if we can just move the ilm 17009 */ 17010 if (from_ill->ill_ilm_walker_cnt != 0) { 17011 /* 17012 * We have walkers we cannot move 17013 * the ilm, so allocate a new ilm, 17014 * this (old) ilm will be marked 17015 * ILM_DELETED at the end of the loop 17016 * and will be freed when the 17017 * last walker exits. 17018 */ 17019 new_ilm = (ilm_t *)mi_zalloc 17020 (sizeof (ilm_t)); 17021 if (new_ilm == NULL) { 17022 ip0dbg(("ilm_move_v6: " 17023 "FAILBACK of IPv6" 17024 " multicast address %s : " 17025 "from %s to" 17026 " %s failed : ENOMEM \n", 17027 inet_ntop(AF_INET6, 17028 &ilm->ilm_v6addr, buf, 17029 sizeof (buf)), 17030 from_ill->ill_name, 17031 to_ill->ill_name)); 17032 17033 ilmp = &ilm->ilm_next; 17034 continue; 17035 } 17036 *new_ilm = *ilm; 17037 /* 17038 * we don't want new_ilm linked to 17039 * ilm's filter list. 17040 */ 17041 new_ilm->ilm_filter = NULL; 17042 } else { 17043 /* 17044 * No walkers we can move the ilm. 17045 * lets take it out of the list. 17046 */ 17047 *ilmp = ilm->ilm_next; 17048 ilm->ilm_next = NULL; 17049 new_ilm = ilm; 17050 } 17051 17052 /* 17053 * if this is the first ilm for the group 17054 * set ilm_notify_driver so that we notify the 17055 * driver in ilm_send_multicast_reqs. 17056 */ 17057 if (ilm_lookup_ill_v6(to_ill, 17058 &new_ilm->ilm_v6addr, ALL_ZONES) == NULL) 17059 new_ilm->ilm_notify_driver = B_TRUE; 17060 17061 new_ilm->ilm_ill = to_ill; 17062 /* Add to the to_ill's list */ 17063 new_ilm->ilm_next = to_ill->ill_ilm; 17064 to_ill->ill_ilm = new_ilm; 17065 /* 17066 * set the flag so that mld_joingroup is 17067 * called in ilm_send_multicast_reqs(). 17068 */ 17069 new_ilm->ilm_is_new = B_TRUE; 17070 } 17071 goto bottom; 17072 } else if (ifindex != 0) { 17073 /* 17074 * If this is FAILBACK (ifindex != 0) and the ifindex 17075 * has not matched above, look at the next ilm. 17076 */ 17077 ilmp = &ilm->ilm_next; 17078 continue; 17079 } 17080 /* 17081 * If we are here, it means ifindex is 0. Failover 17082 * everything. 17083 * 17084 * We need to handle solicited node mcast address 17085 * and all_nodes mcast address differently as they 17086 * are joined witin the kenrel (ipif_multicast_up) 17087 * and potentially from the userland. We are called 17088 * after the ipifs of from_ill has been moved. 17089 * If we still find ilms on ill with solicited node 17090 * mcast address or all_nodes mcast address, it must 17091 * belong to the UP interface that has not moved e.g. 17092 * ipif_id 0 with the link local prefix does not move. 17093 * We join this on the new ill accounting for all the 17094 * userland memberships so that applications don't 17095 * see any failure. 17096 * 17097 * We need to make sure that we account only for the 17098 * solicited node and all node multicast addresses 17099 * that was brought UP on these. In the case of 17100 * a failover from A to B, we might have ilms belonging 17101 * to A (ilm_orig_ifindex pointing at A) on B accounting 17102 * for the membership from the userland. If we are failing 17103 * over from B to C now, we will find the ones belonging 17104 * to A on B. These don't account for the ill_ipif_up_count. 17105 * They just move from B to C. The check below on 17106 * ilm_orig_ifindex ensures that. 17107 */ 17108 if ((ilm->ilm_orig_ifindex == 17109 from_ill->ill_phyint->phyint_ifindex) && 17110 (IN6_ARE_ADDR_EQUAL(&ipv6_snm, &ilm->ilm_v6addr) || 17111 IN6_ARE_ADDR_EQUAL(&ipv6_all_hosts_mcast, 17112 &ilm->ilm_v6addr))) { 17113 ASSERT(ilm->ilm_refcnt > 0); 17114 count = ilm->ilm_refcnt - from_ill->ill_ipif_up_count; 17115 /* 17116 * For indentation reasons, we are not using a 17117 * "else" here. 17118 */ 17119 if (count == 0) { 17120 ilmp = &ilm->ilm_next; 17121 continue; 17122 } 17123 ilm->ilm_refcnt -= count; 17124 if (new_ilm != NULL) { 17125 /* 17126 * Can find one with the same 17127 * ilm_orig_ifindex, if we are failing 17128 * over to a STANDBY. This happens 17129 * when somebody wants to join a group 17130 * on a STANDBY interface and we 17131 * internally join on a different one. 17132 * If we had joined on from_ill then, a 17133 * failover now will find a new ilm 17134 * with this index. 17135 */ 17136 ip1dbg(("ilm_move_v6: FAILOVER, found" 17137 " new ilm on %s, group address %s\n", 17138 to_ill->ill_name, 17139 inet_ntop(AF_INET6, 17140 &ilm->ilm_v6addr, buf, 17141 sizeof (buf)))); 17142 new_ilm->ilm_refcnt += count; 17143 if (new_ilm->ilm_fmode != MODE_IS_EXCLUDE || 17144 !SLIST_IS_EMPTY(new_ilm->ilm_filter)) { 17145 new_ilm->ilm_is_new = B_TRUE; 17146 } 17147 } else { 17148 new_ilm = (ilm_t *)mi_zalloc(sizeof (ilm_t)); 17149 if (new_ilm == NULL) { 17150 ip0dbg(("ilm_move_v6: FAILOVER of IPv6" 17151 " multicast address %s : from %s to" 17152 " %s failed : ENOMEM \n", 17153 inet_ntop(AF_INET6, 17154 &ilm->ilm_v6addr, buf, 17155 sizeof (buf)), from_ill->ill_name, 17156 to_ill->ill_name)); 17157 ilmp = &ilm->ilm_next; 17158 continue; 17159 } 17160 *new_ilm = *ilm; 17161 new_ilm->ilm_filter = NULL; 17162 new_ilm->ilm_refcnt = count; 17163 new_ilm->ilm_timer = INFINITY; 17164 new_ilm->ilm_rtx.rtx_timer = INFINITY; 17165 new_ilm->ilm_is_new = B_TRUE; 17166 /* 17167 * If the to_ill has not joined this 17168 * group we need to tell the driver in 17169 * ill_send_multicast_reqs. 17170 */ 17171 if (ilm_lookup_ill_v6(to_ill, 17172 &new_ilm->ilm_v6addr, ALL_ZONES) == NULL) 17173 new_ilm->ilm_notify_driver = B_TRUE; 17174 17175 new_ilm->ilm_ill = to_ill; 17176 /* Add to the to_ill's list */ 17177 new_ilm->ilm_next = to_ill->ill_ilm; 17178 to_ill->ill_ilm = new_ilm; 17179 ASSERT(new_ilm->ilm_ipif == NULL); 17180 } 17181 if (ilm->ilm_refcnt == 0) { 17182 goto bottom; 17183 } else { 17184 new_ilm->ilm_fmode = MODE_IS_EXCLUDE; 17185 CLEAR_SLIST(new_ilm->ilm_filter); 17186 ilmp = &ilm->ilm_next; 17187 } 17188 continue; 17189 } else { 17190 /* 17191 * ifindex = 0 means, move everything pointing at 17192 * from_ill. We are doing this becuase ill has 17193 * either FAILED or became INACTIVE. 17194 * 17195 * As we would like to move things later back to 17196 * from_ill, we want to retain the identity of this 17197 * ilm. Thus, we don't blindly increment the reference 17198 * count on the ilms matching the address alone. We 17199 * need to match on the ilm_orig_index also. new_ilm 17200 * was obtained by matching ilm_orig_index also. 17201 */ 17202 if (new_ilm != NULL) { 17203 /* 17204 * This is possible only if a previous restore 17205 * was incomplete i.e restore to 17206 * ilm_orig_ifindex left some ilms because 17207 * of some failures. Thus when we are failing 17208 * again, we might find our old friends there. 17209 */ 17210 ip1dbg(("ilm_move_v6: FAILOVER, found new ilm" 17211 " on %s, group address %s\n", 17212 to_ill->ill_name, 17213 inet_ntop(AF_INET6, 17214 &ilm->ilm_v6addr, buf, 17215 sizeof (buf)))); 17216 new_ilm->ilm_refcnt += ilm->ilm_refcnt; 17217 if (new_ilm->ilm_fmode != MODE_IS_EXCLUDE || 17218 !SLIST_IS_EMPTY(new_ilm->ilm_filter)) { 17219 new_ilm->ilm_is_new = B_TRUE; 17220 } 17221 } else { 17222 if (from_ill->ill_ilm_walker_cnt != 0) { 17223 new_ilm = (ilm_t *) 17224 mi_zalloc(sizeof (ilm_t)); 17225 if (new_ilm == NULL) { 17226 ip0dbg(("ilm_move_v6: " 17227 "FAILOVER of IPv6" 17228 " multicast address %s : " 17229 "from %s to" 17230 " %s failed : ENOMEM \n", 17231 inet_ntop(AF_INET6, 17232 &ilm->ilm_v6addr, buf, 17233 sizeof (buf)), 17234 from_ill->ill_name, 17235 to_ill->ill_name)); 17236 17237 ilmp = &ilm->ilm_next; 17238 continue; 17239 } 17240 *new_ilm = *ilm; 17241 new_ilm->ilm_filter = NULL; 17242 } else { 17243 *ilmp = ilm->ilm_next; 17244 new_ilm = ilm; 17245 } 17246 /* 17247 * If the to_ill has not joined this 17248 * group we need to tell the driver in 17249 * ill_send_multicast_reqs. 17250 */ 17251 if (ilm_lookup_ill_v6(to_ill, 17252 &new_ilm->ilm_v6addr, ALL_ZONES) == NULL) 17253 new_ilm->ilm_notify_driver = B_TRUE; 17254 17255 /* Add to the to_ill's list */ 17256 new_ilm->ilm_next = to_ill->ill_ilm; 17257 to_ill->ill_ilm = new_ilm; 17258 ASSERT(ilm->ilm_ipif == NULL); 17259 new_ilm->ilm_ill = to_ill; 17260 new_ilm->ilm_is_new = B_TRUE; 17261 } 17262 17263 } 17264 17265 bottom: 17266 /* 17267 * Revert multicast filter state to (EXCLUDE, NULL). 17268 * new_ilm->ilm_is_new should already be set if needed. 17269 */ 17270 new_ilm->ilm_fmode = MODE_IS_EXCLUDE; 17271 CLEAR_SLIST(new_ilm->ilm_filter); 17272 /* 17273 * We allocated/got a new ilm, free the old one. 17274 */ 17275 if (new_ilm != ilm) { 17276 if (from_ill->ill_ilm_walker_cnt == 0) { 17277 *ilmp = ilm->ilm_next; 17278 ilm->ilm_next = NULL; 17279 FREE_SLIST(ilm->ilm_filter); 17280 FREE_SLIST(ilm->ilm_pendsrcs); 17281 FREE_SLIST(ilm->ilm_rtx.rtx_allow); 17282 FREE_SLIST(ilm->ilm_rtx.rtx_block); 17283 mi_free((char *)ilm); 17284 } else { 17285 ilm->ilm_flags |= ILM_DELETED; 17286 from_ill->ill_ilm_cleanup_reqd = 1; 17287 ilmp = &ilm->ilm_next; 17288 } 17289 } 17290 } 17291 } 17292 17293 /* 17294 * Move all the multicast memberships to to_ill. Called when 17295 * an ipif moves from "from_ill" to "to_ill". This function is slightly 17296 * different from IPv6 counterpart as multicast memberships are associated 17297 * with ills in IPv6. This function is called after every ipif is moved 17298 * unlike IPv6, where it is moved only once. 17299 */ 17300 static void 17301 ilm_move_v4(ill_t *from_ill, ill_t *to_ill, ipif_t *ipif) 17302 { 17303 ilm_t *ilm; 17304 ilm_t *ilm_next; 17305 ilm_t *new_ilm; 17306 ilm_t **ilmp; 17307 ip_stack_t *ipst = from_ill->ill_ipst; 17308 17309 ASSERT(MUTEX_HELD(&to_ill->ill_lock)); 17310 ASSERT(MUTEX_HELD(&from_ill->ill_lock)); 17311 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); 17312 17313 ilmp = &from_ill->ill_ilm; 17314 for (ilm = from_ill->ill_ilm; ilm != NULL; ilm = ilm_next) { 17315 ilm_next = ilm->ilm_next; 17316 17317 if (ilm->ilm_flags & ILM_DELETED) { 17318 ilmp = &ilm->ilm_next; 17319 continue; 17320 } 17321 17322 ASSERT(ilm->ilm_ipif != NULL); 17323 17324 if (ilm->ilm_ipif != ipif) { 17325 ilmp = &ilm->ilm_next; 17326 continue; 17327 } 17328 17329 if (V4_PART_OF_V6(ilm->ilm_v6addr) == 17330 htonl(INADDR_ALLHOSTS_GROUP)) { 17331 new_ilm = ilm_lookup_ipif(ipif, 17332 V4_PART_OF_V6(ilm->ilm_v6addr)); 17333 if (new_ilm != NULL) { 17334 new_ilm->ilm_refcnt += ilm->ilm_refcnt; 17335 /* 17336 * We still need to deal with the from_ill. 17337 */ 17338 new_ilm->ilm_is_new = B_TRUE; 17339 new_ilm->ilm_fmode = MODE_IS_EXCLUDE; 17340 CLEAR_SLIST(new_ilm->ilm_filter); 17341 goto delete_ilm; 17342 } 17343 /* 17344 * If we could not find one e.g. ipif is 17345 * still down on to_ill, we add this ilm 17346 * on ill_new to preserve the reference 17347 * count. 17348 */ 17349 } 17350 /* 17351 * When ipifs move, ilms always move with it 17352 * to the NEW ill. Thus we should never be 17353 * able to find ilm till we really move it here. 17354 */ 17355 ASSERT(ilm_lookup_ipif(ipif, 17356 V4_PART_OF_V6(ilm->ilm_v6addr)) == NULL); 17357 17358 if (from_ill->ill_ilm_walker_cnt != 0) { 17359 new_ilm = (ilm_t *)mi_zalloc(sizeof (ilm_t)); 17360 if (new_ilm == NULL) { 17361 char buf[INET6_ADDRSTRLEN]; 17362 ip0dbg(("ilm_move_v4: FAILBACK of IPv4" 17363 " multicast address %s : " 17364 "from %s to" 17365 " %s failed : ENOMEM \n", 17366 inet_ntop(AF_INET, 17367 &ilm->ilm_v6addr, buf, 17368 sizeof (buf)), 17369 from_ill->ill_name, 17370 to_ill->ill_name)); 17371 17372 ilmp = &ilm->ilm_next; 17373 continue; 17374 } 17375 *new_ilm = *ilm; 17376 /* We don't want new_ilm linked to ilm's filter list */ 17377 new_ilm->ilm_filter = NULL; 17378 } else { 17379 /* Remove from the list */ 17380 *ilmp = ilm->ilm_next; 17381 new_ilm = ilm; 17382 } 17383 17384 /* 17385 * If we have never joined this group on the to_ill 17386 * make sure we tell the driver. 17387 */ 17388 if (ilm_lookup_ill_v6(to_ill, &new_ilm->ilm_v6addr, 17389 ALL_ZONES) == NULL) 17390 new_ilm->ilm_notify_driver = B_TRUE; 17391 17392 /* Add to the to_ill's list */ 17393 new_ilm->ilm_next = to_ill->ill_ilm; 17394 to_ill->ill_ilm = new_ilm; 17395 new_ilm->ilm_is_new = B_TRUE; 17396 17397 /* 17398 * Revert multicast filter state to (EXCLUDE, NULL) 17399 */ 17400 new_ilm->ilm_fmode = MODE_IS_EXCLUDE; 17401 CLEAR_SLIST(new_ilm->ilm_filter); 17402 17403 /* 17404 * Delete only if we have allocated a new ilm. 17405 */ 17406 if (new_ilm != ilm) { 17407 delete_ilm: 17408 if (from_ill->ill_ilm_walker_cnt == 0) { 17409 /* Remove from the list */ 17410 *ilmp = ilm->ilm_next; 17411 ilm->ilm_next = NULL; 17412 FREE_SLIST(ilm->ilm_filter); 17413 FREE_SLIST(ilm->ilm_pendsrcs); 17414 FREE_SLIST(ilm->ilm_rtx.rtx_allow); 17415 FREE_SLIST(ilm->ilm_rtx.rtx_block); 17416 mi_free((char *)ilm); 17417 } else { 17418 ilm->ilm_flags |= ILM_DELETED; 17419 from_ill->ill_ilm_cleanup_reqd = 1; 17420 ilmp = &ilm->ilm_next; 17421 } 17422 } 17423 } 17424 } 17425 17426 static uint_t 17427 ipif_get_id(ill_t *ill, uint_t id) 17428 { 17429 uint_t unit; 17430 ipif_t *tipif; 17431 boolean_t found = B_FALSE; 17432 ip_stack_t *ipst = ill->ill_ipst; 17433 17434 /* 17435 * During failback, we want to go back to the same id 17436 * instead of the smallest id so that the original 17437 * configuration is maintained. id is non-zero in that 17438 * case. 17439 */ 17440 if (id != 0) { 17441 /* 17442 * While failing back, if we still have an ipif with 17443 * MAX_ADDRS_PER_IF, it means this will be replaced 17444 * as soon as we return from this function. It was 17445 * to set to MAX_ADDRS_PER_IF by the caller so that 17446 * we can choose the smallest id. Thus we return zero 17447 * in that case ignoring the hint. 17448 */ 17449 if (ill->ill_ipif->ipif_id == MAX_ADDRS_PER_IF) 17450 return (0); 17451 for (tipif = ill->ill_ipif; tipif != NULL; 17452 tipif = tipif->ipif_next) { 17453 if (tipif->ipif_id == id) { 17454 found = B_TRUE; 17455 break; 17456 } 17457 } 17458 /* 17459 * If somebody already plumbed another logical 17460 * with the same id, we won't be able to find it. 17461 */ 17462 if (!found) 17463 return (id); 17464 } 17465 for (unit = 0; unit <= ipst->ips_ip_addrs_per_if; unit++) { 17466 found = B_FALSE; 17467 for (tipif = ill->ill_ipif; tipif != NULL; 17468 tipif = tipif->ipif_next) { 17469 if (tipif->ipif_id == unit) { 17470 found = B_TRUE; 17471 break; 17472 } 17473 } 17474 if (!found) 17475 break; 17476 } 17477 return (unit); 17478 } 17479 17480 /* ARGSUSED */ 17481 static int 17482 ipif_move(ipif_t *ipif, ill_t *to_ill, queue_t *q, mblk_t *mp, 17483 ipif_t **rep_ipif_ptr) 17484 { 17485 ill_t *from_ill; 17486 ipif_t *rep_ipif; 17487 uint_t unit; 17488 int err = 0; 17489 ipif_t *to_ipif; 17490 struct iocblk *iocp; 17491 boolean_t failback_cmd; 17492 boolean_t remove_ipif; 17493 int rc; 17494 ip_stack_t *ipst; 17495 17496 ASSERT(IAM_WRITER_ILL(to_ill)); 17497 ASSERT(IAM_WRITER_IPIF(ipif)); 17498 17499 iocp = (struct iocblk *)mp->b_rptr; 17500 failback_cmd = (iocp->ioc_cmd == SIOCLIFFAILBACK); 17501 remove_ipif = B_FALSE; 17502 17503 from_ill = ipif->ipif_ill; 17504 ipst = from_ill->ill_ipst; 17505 17506 ASSERT(MUTEX_HELD(&to_ill->ill_lock)); 17507 ASSERT(MUTEX_HELD(&from_ill->ill_lock)); 17508 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); 17509 17510 /* 17511 * Don't move LINK LOCAL addresses as they are tied to 17512 * physical interface. 17513 */ 17514 if (from_ill->ill_isv6 && 17515 IN6_IS_ADDR_LINKLOCAL(&ipif->ipif_v6lcl_addr)) { 17516 ipif->ipif_was_up = B_FALSE; 17517 IPIF_UNMARK_MOVING(ipif); 17518 return (0); 17519 } 17520 17521 /* 17522 * We set the ipif_id to maximum so that the search for 17523 * ipif_id will pick the lowest number i.e 0 in the 17524 * following 2 cases : 17525 * 17526 * 1) We have a replacement ipif at the head of to_ill. 17527 * We can't remove it yet as we can exceed ip_addrs_per_if 17528 * on to_ill and hence the MOVE might fail. We want to 17529 * remove it only if we could move the ipif. Thus, by 17530 * setting it to the MAX value, we make the search in 17531 * ipif_get_id return the zeroth id. 17532 * 17533 * 2) When DR pulls out the NIC and re-plumbs the interface, 17534 * we might just have a zero address plumbed on the ipif 17535 * with zero id in the case of IPv4. We remove that while 17536 * doing the failback. We want to remove it only if we 17537 * could move the ipif. Thus, by setting it to the MAX 17538 * value, we make the search in ipif_get_id return the 17539 * zeroth id. 17540 * 17541 * Both (1) and (2) are done only when when we are moving 17542 * an ipif (either due to failover/failback) which originally 17543 * belonged to this interface i.e the ipif_orig_ifindex is 17544 * the same as to_ill's ifindex. This is needed so that 17545 * FAILOVER from A -> B ( A failed) followed by FAILOVER 17546 * from B -> A (B is being removed from the group) and 17547 * FAILBACK from A -> B restores the original configuration. 17548 * Without the check for orig_ifindex, the second FAILOVER 17549 * could make the ipif belonging to B replace the A's zeroth 17550 * ipif and the subsequent failback re-creating the replacement 17551 * ipif again. 17552 * 17553 * NOTE : We created the replacement ipif when we did a 17554 * FAILOVER (See below). We could check for FAILBACK and 17555 * then look for replacement ipif to be removed. But we don't 17556 * want to do that because we wan't to allow the possibility 17557 * of a FAILOVER from A -> B (which creates the replacement ipif), 17558 * followed by a *FAILOVER* from B -> A instead of a FAILBACK 17559 * from B -> A. 17560 */ 17561 to_ipif = to_ill->ill_ipif; 17562 if ((to_ill->ill_phyint->phyint_ifindex == 17563 ipif->ipif_orig_ifindex) && 17564 IPIF_REPL_CHECK(to_ipif, failback_cmd)) { 17565 ASSERT(to_ipif->ipif_id == 0); 17566 remove_ipif = B_TRUE; 17567 to_ipif->ipif_id = MAX_ADDRS_PER_IF; 17568 } 17569 /* 17570 * Find the lowest logical unit number on the to_ill. 17571 * If we are failing back, try to get the original id 17572 * rather than the lowest one so that the original 17573 * configuration is maintained. 17574 * 17575 * XXX need a better scheme for this. 17576 */ 17577 if (failback_cmd) { 17578 unit = ipif_get_id(to_ill, ipif->ipif_orig_ipifid); 17579 } else { 17580 unit = ipif_get_id(to_ill, 0); 17581 } 17582 17583 /* Reset back to zero in case we fail below */ 17584 if (to_ipif->ipif_id == MAX_ADDRS_PER_IF) 17585 to_ipif->ipif_id = 0; 17586 17587 if (unit == ipst->ips_ip_addrs_per_if) { 17588 ipif->ipif_was_up = B_FALSE; 17589 IPIF_UNMARK_MOVING(ipif); 17590 return (EINVAL); 17591 } 17592 17593 /* 17594 * ipif is ready to move from "from_ill" to "to_ill". 17595 * 17596 * 1) If we are moving ipif with id zero, create a 17597 * replacement ipif for this ipif on from_ill. If this fails 17598 * fail the MOVE operation. 17599 * 17600 * 2) Remove the replacement ipif on to_ill if any. 17601 * We could remove the replacement ipif when we are moving 17602 * the ipif with id zero. But what if somebody already 17603 * unplumbed it ? Thus we always remove it if it is present. 17604 * We want to do it only if we are sure we are going to 17605 * move the ipif to to_ill which is why there are no 17606 * returns due to error till ipif is linked to to_ill. 17607 * Note that the first ipif that we failback will always 17608 * be zero if it is present. 17609 */ 17610 if (ipif->ipif_id == 0) { 17611 ipaddr_t inaddr_any = INADDR_ANY; 17612 17613 rep_ipif = (ipif_t *)mi_alloc(sizeof (ipif_t), BPRI_MED); 17614 if (rep_ipif == NULL) { 17615 ipif->ipif_was_up = B_FALSE; 17616 IPIF_UNMARK_MOVING(ipif); 17617 return (ENOMEM); 17618 } 17619 *rep_ipif = ipif_zero; 17620 /* 17621 * Before we put the ipif on the list, store the addresses 17622 * as mapped addresses as some of the ioctls e.g SIOCGIFADDR 17623 * assumes so. This logic is not any different from what 17624 * ipif_allocate does. 17625 */ 17626 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 17627 &rep_ipif->ipif_v6lcl_addr); 17628 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 17629 &rep_ipif->ipif_v6src_addr); 17630 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 17631 &rep_ipif->ipif_v6subnet); 17632 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 17633 &rep_ipif->ipif_v6net_mask); 17634 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 17635 &rep_ipif->ipif_v6brd_addr); 17636 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 17637 &rep_ipif->ipif_v6pp_dst_addr); 17638 /* 17639 * We mark IPIF_NOFAILOVER so that this can never 17640 * move. 17641 */ 17642 rep_ipif->ipif_flags = ipif->ipif_flags | IPIF_NOFAILOVER; 17643 rep_ipif->ipif_flags &= ~IPIF_UP & ~IPIF_DUPLICATE; 17644 rep_ipif->ipif_replace_zero = B_TRUE; 17645 mutex_init(&rep_ipif->ipif_saved_ire_lock, NULL, 17646 MUTEX_DEFAULT, NULL); 17647 rep_ipif->ipif_id = 0; 17648 rep_ipif->ipif_ire_type = ipif->ipif_ire_type; 17649 rep_ipif->ipif_ill = from_ill; 17650 rep_ipif->ipif_orig_ifindex = 17651 from_ill->ill_phyint->phyint_ifindex; 17652 /* Insert at head */ 17653 rep_ipif->ipif_next = from_ill->ill_ipif; 17654 from_ill->ill_ipif = rep_ipif; 17655 /* 17656 * We don't really care to let apps know about 17657 * this interface. 17658 */ 17659 } 17660 17661 if (remove_ipif) { 17662 /* 17663 * We set to a max value above for this case to get 17664 * id zero. ASSERT that we did get one. 17665 */ 17666 ASSERT((to_ipif->ipif_id == 0) && (unit == 0)); 17667 rep_ipif = to_ipif; 17668 to_ill->ill_ipif = rep_ipif->ipif_next; 17669 rep_ipif->ipif_next = NULL; 17670 /* 17671 * If some apps scanned and find this interface, 17672 * it is time to let them know, so that they can 17673 * delete it. 17674 */ 17675 17676 *rep_ipif_ptr = rep_ipif; 17677 } 17678 17679 /* Get it out of the ILL interface list. */ 17680 ipif_remove(ipif, B_FALSE); 17681 17682 /* Assign the new ill */ 17683 ipif->ipif_ill = to_ill; 17684 ipif->ipif_id = unit; 17685 /* id has already been checked */ 17686 rc = ipif_insert(ipif, B_FALSE, B_FALSE); 17687 ASSERT(rc == 0); 17688 /* Let SCTP update its list */ 17689 sctp_move_ipif(ipif, from_ill, to_ill); 17690 /* 17691 * Handle the failover and failback of ipif_t between 17692 * ill_t that have differing maximum mtu values. 17693 */ 17694 if (ipif->ipif_mtu > to_ill->ill_max_mtu) { 17695 if (ipif->ipif_saved_mtu == 0) { 17696 /* 17697 * As this ipif_t is moving to an ill_t 17698 * that has a lower ill_max_mtu, its 17699 * ipif_mtu needs to be saved so it can 17700 * be restored during failback or during 17701 * failover to an ill_t which has a 17702 * higher ill_max_mtu. 17703 */ 17704 ipif->ipif_saved_mtu = ipif->ipif_mtu; 17705 ipif->ipif_mtu = to_ill->ill_max_mtu; 17706 } else { 17707 /* 17708 * The ipif_t is, once again, moving to 17709 * an ill_t that has a lower maximum mtu 17710 * value. 17711 */ 17712 ipif->ipif_mtu = to_ill->ill_max_mtu; 17713 } 17714 } else if (ipif->ipif_mtu < to_ill->ill_max_mtu && 17715 ipif->ipif_saved_mtu != 0) { 17716 /* 17717 * The mtu of this ipif_t had to be reduced 17718 * during an earlier failover; this is an 17719 * opportunity for it to be increased (either as 17720 * part of another failover or a failback). 17721 */ 17722 if (ipif->ipif_saved_mtu <= to_ill->ill_max_mtu) { 17723 ipif->ipif_mtu = ipif->ipif_saved_mtu; 17724 ipif->ipif_saved_mtu = 0; 17725 } else { 17726 ipif->ipif_mtu = to_ill->ill_max_mtu; 17727 } 17728 } 17729 17730 /* 17731 * We preserve all the other fields of the ipif including 17732 * ipif_saved_ire_mp. The routes that are saved here will 17733 * be recreated on the new interface and back on the old 17734 * interface when we move back. 17735 */ 17736 ASSERT(ipif->ipif_arp_del_mp == NULL); 17737 17738 return (err); 17739 } 17740 17741 static int 17742 ipif_move_all(ill_t *from_ill, ill_t *to_ill, queue_t *q, mblk_t *mp, 17743 int ifindex, ipif_t **rep_ipif_ptr) 17744 { 17745 ipif_t *mipif; 17746 ipif_t *ipif_next; 17747 int err; 17748 17749 /* 17750 * We don't really try to MOVE back things if some of the 17751 * operations fail. The daemon will take care of moving again 17752 * later on. 17753 */ 17754 for (mipif = from_ill->ill_ipif; mipif != NULL; mipif = ipif_next) { 17755 ipif_next = mipif->ipif_next; 17756 if (!(mipif->ipif_flags & IPIF_NOFAILOVER) && 17757 (ifindex == 0 || ifindex == mipif->ipif_orig_ifindex)) { 17758 17759 err = ipif_move(mipif, to_ill, q, mp, rep_ipif_ptr); 17760 17761 /* 17762 * When the MOVE fails, it is the job of the 17763 * application to take care of this properly 17764 * i.e try again if it is ENOMEM. 17765 */ 17766 if (mipif->ipif_ill != from_ill) { 17767 /* 17768 * ipif has moved. 17769 * 17770 * Move the multicast memberships associated 17771 * with this ipif to the new ill. For IPv6, we 17772 * do it once after all the ipifs are moved 17773 * (in ill_move) as they are not associated 17774 * with ipifs. 17775 * 17776 * We need to move the ilms as the ipif has 17777 * already been moved to a new ill even 17778 * in the case of errors. Neither 17779 * ilm_free(ipif) will find the ilm 17780 * when somebody unplumbs this ipif nor 17781 * ilm_delete(ilm) will be able to find the 17782 * ilm, if we don't move now. 17783 */ 17784 if (!from_ill->ill_isv6) 17785 ilm_move_v4(from_ill, to_ill, mipif); 17786 } 17787 17788 if (err != 0) 17789 return (err); 17790 } 17791 } 17792 return (0); 17793 } 17794 17795 static int 17796 ill_move(ill_t *from_ill, ill_t *to_ill, queue_t *q, mblk_t *mp) 17797 { 17798 int ifindex; 17799 int err; 17800 struct iocblk *iocp; 17801 ipif_t *ipif; 17802 ipif_t *rep_ipif_ptr = NULL; 17803 ipif_t *from_ipif = NULL; 17804 boolean_t check_rep_if = B_FALSE; 17805 ip_stack_t *ipst = from_ill->ill_ipst; 17806 17807 iocp = (struct iocblk *)mp->b_rptr; 17808 if (iocp->ioc_cmd == SIOCLIFFAILOVER) { 17809 /* 17810 * Move everything pointing at from_ill to to_ill. 17811 * We acheive this by passing in 0 as ifindex. 17812 */ 17813 ifindex = 0; 17814 } else { 17815 /* 17816 * Move everything pointing at from_ill whose original 17817 * ifindex of connp, ipif, ilm points at to_ill->ill_index. 17818 * We acheive this by passing in ifindex rather than 0. 17819 * Multicast vifs, ilgs move implicitly because ipifs move. 17820 */ 17821 ASSERT(iocp->ioc_cmd == SIOCLIFFAILBACK); 17822 ifindex = to_ill->ill_phyint->phyint_ifindex; 17823 } 17824 17825 /* 17826 * Determine if there is at least one ipif that would move from 17827 * 'from_ill' to 'to_ill'. If so, it is possible that the replacement 17828 * ipif (if it exists) on the to_ill would be consumed as a result of 17829 * the move, in which case we need to quiesce the replacement ipif also. 17830 */ 17831 for (from_ipif = from_ill->ill_ipif; from_ipif != NULL; 17832 from_ipif = from_ipif->ipif_next) { 17833 if (((ifindex == 0) || 17834 (ifindex == from_ipif->ipif_orig_ifindex)) && 17835 !(from_ipif->ipif_flags & IPIF_NOFAILOVER)) { 17836 check_rep_if = B_TRUE; 17837 break; 17838 } 17839 } 17840 17841 17842 ill_down_ipifs(from_ill, mp, ifindex, B_TRUE); 17843 17844 GRAB_ILL_LOCKS(from_ill, to_ill); 17845 if ((ipif = ill_quiescent_to_move(from_ill)) != NULL) { 17846 (void) ipsq_pending_mp_add(NULL, ipif, q, 17847 mp, ILL_MOVE_OK); 17848 RELEASE_ILL_LOCKS(from_ill, to_ill); 17849 return (EINPROGRESS); 17850 } 17851 17852 /* Check if the replacement ipif is quiescent to delete */ 17853 if (check_rep_if && IPIF_REPL_CHECK(to_ill->ill_ipif, 17854 (iocp->ioc_cmd == SIOCLIFFAILBACK))) { 17855 to_ill->ill_ipif->ipif_state_flags |= 17856 IPIF_MOVING | IPIF_CHANGING; 17857 if ((ipif = ill_quiescent_to_move(to_ill)) != NULL) { 17858 (void) ipsq_pending_mp_add(NULL, ipif, q, 17859 mp, ILL_MOVE_OK); 17860 RELEASE_ILL_LOCKS(from_ill, to_ill); 17861 return (EINPROGRESS); 17862 } 17863 } 17864 RELEASE_ILL_LOCKS(from_ill, to_ill); 17865 17866 ASSERT(!MUTEX_HELD(&to_ill->ill_lock)); 17867 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 17868 GRAB_ILL_LOCKS(from_ill, to_ill); 17869 err = ipif_move_all(from_ill, to_ill, q, mp, ifindex, &rep_ipif_ptr); 17870 17871 /* ilm_move is done inside ipif_move for IPv4 */ 17872 if (err == 0 && from_ill->ill_isv6) 17873 ilm_move_v6(from_ill, to_ill, ifindex); 17874 17875 RELEASE_ILL_LOCKS(from_ill, to_ill); 17876 rw_exit(&ipst->ips_ill_g_lock); 17877 17878 /* 17879 * send rts messages and multicast messages. 17880 */ 17881 if (rep_ipif_ptr != NULL) { 17882 if (rep_ipif_ptr->ipif_recovery_id != 0) { 17883 (void) untimeout(rep_ipif_ptr->ipif_recovery_id); 17884 rep_ipif_ptr->ipif_recovery_id = 0; 17885 } 17886 ip_rts_ifmsg(rep_ipif_ptr); 17887 ip_rts_newaddrmsg(RTM_DELETE, 0, rep_ipif_ptr); 17888 IPIF_TRACE_CLEANUP(rep_ipif_ptr); 17889 mi_free(rep_ipif_ptr); 17890 } 17891 17892 conn_move_ill(from_ill, to_ill, ifindex); 17893 17894 return (err); 17895 } 17896 17897 /* 17898 * Used to extract arguments for FAILOVER/FAILBACK ioctls. 17899 * Also checks for the validity of the arguments. 17900 * Note: We are already exclusive inside the from group. 17901 * It is upto the caller to release refcnt on the to_ill's. 17902 */ 17903 static int 17904 ip_extract_move_args(queue_t *q, mblk_t *mp, ill_t **ill_from_v4, 17905 ill_t **ill_from_v6, ill_t **ill_to_v4, ill_t **ill_to_v6) 17906 { 17907 int dst_index; 17908 ipif_t *ipif_v4, *ipif_v6; 17909 struct lifreq *lifr; 17910 mblk_t *mp1; 17911 boolean_t exists; 17912 sin_t *sin; 17913 int err = 0; 17914 ip_stack_t *ipst; 17915 17916 if (CONN_Q(q)) 17917 ipst = CONNQ_TO_IPST(q); 17918 else 17919 ipst = ILLQ_TO_IPST(q); 17920 17921 17922 if ((mp1 = mp->b_cont) == NULL) 17923 return (EPROTO); 17924 17925 if ((mp1 = mp1->b_cont) == NULL) 17926 return (EPROTO); 17927 17928 lifr = (struct lifreq *)mp1->b_rptr; 17929 sin = (sin_t *)&lifr->lifr_addr; 17930 17931 /* 17932 * We operate on both IPv4 and IPv6. Thus, we don't allow IPv4/IPv6 17933 * specific operations. 17934 */ 17935 if (sin->sin_family != AF_UNSPEC) 17936 return (EINVAL); 17937 17938 /* 17939 * Get ipif with id 0. We are writer on the from ill. So we can pass 17940 * NULLs for the last 4 args and we know the lookup won't fail 17941 * with EINPROGRESS. 17942 */ 17943 ipif_v4 = ipif_lookup_on_name(lifr->lifr_name, 17944 mi_strlen(lifr->lifr_name), B_FALSE, &exists, B_FALSE, 17945 ALL_ZONES, NULL, NULL, NULL, NULL, ipst); 17946 ipif_v6 = ipif_lookup_on_name(lifr->lifr_name, 17947 mi_strlen(lifr->lifr_name), B_FALSE, &exists, B_TRUE, 17948 ALL_ZONES, NULL, NULL, NULL, NULL, ipst); 17949 17950 if (ipif_v4 == NULL && ipif_v6 == NULL) 17951 return (ENXIO); 17952 17953 if (ipif_v4 != NULL) { 17954 ASSERT(ipif_v4->ipif_refcnt != 0); 17955 if (ipif_v4->ipif_id != 0) { 17956 err = EINVAL; 17957 goto done; 17958 } 17959 17960 ASSERT(IAM_WRITER_IPIF(ipif_v4)); 17961 *ill_from_v4 = ipif_v4->ipif_ill; 17962 } 17963 17964 if (ipif_v6 != NULL) { 17965 ASSERT(ipif_v6->ipif_refcnt != 0); 17966 if (ipif_v6->ipif_id != 0) { 17967 err = EINVAL; 17968 goto done; 17969 } 17970 17971 ASSERT(IAM_WRITER_IPIF(ipif_v6)); 17972 *ill_from_v6 = ipif_v6->ipif_ill; 17973 } 17974 17975 err = 0; 17976 dst_index = lifr->lifr_movetoindex; 17977 *ill_to_v4 = ill_lookup_on_ifindex(dst_index, B_FALSE, 17978 q, mp, ip_process_ioctl, &err, ipst); 17979 if (err != 0) { 17980 /* 17981 * There could be only v6. 17982 */ 17983 if (err != ENXIO) 17984 goto done; 17985 err = 0; 17986 } 17987 17988 *ill_to_v6 = ill_lookup_on_ifindex(dst_index, B_TRUE, 17989 q, mp, ip_process_ioctl, &err, ipst); 17990 if (err != 0) { 17991 if (err != ENXIO) 17992 goto done; 17993 if (*ill_to_v4 == NULL) { 17994 err = ENXIO; 17995 goto done; 17996 } 17997 err = 0; 17998 } 17999 18000 /* 18001 * If we have something to MOVE i.e "from" not NULL, 18002 * "to" should be non-NULL. 18003 */ 18004 if ((*ill_from_v4 != NULL && *ill_to_v4 == NULL) || 18005 (*ill_from_v6 != NULL && *ill_to_v6 == NULL)) { 18006 err = EINVAL; 18007 } 18008 18009 done: 18010 if (ipif_v4 != NULL) 18011 ipif_refrele(ipif_v4); 18012 if (ipif_v6 != NULL) 18013 ipif_refrele(ipif_v6); 18014 return (err); 18015 } 18016 18017 /* 18018 * FAILOVER and FAILBACK are modelled as MOVE operations. 18019 * 18020 * We don't check whether the MOVE is within the same group or 18021 * not, because this ioctl can be used as a generic mechanism 18022 * to failover from interface A to B, though things will function 18023 * only if they are really part of the same group. Moreover, 18024 * all ipifs may be down and hence temporarily out of the group. 18025 * 18026 * ipif's that need to be moved are first brought down; V4 ipifs are brought 18027 * down first and then V6. For each we wait for the ipif's to become quiescent. 18028 * Bringing down the ipifs ensures that all ires pointing to these ipifs's 18029 * have been deleted and there are no active references. Once quiescent the 18030 * ipif's are moved and brought up on the new ill. 18031 * 18032 * Normally the source ill and destination ill belong to the same IPMP group 18033 * and hence the same ipsq_t. In the event they don't belong to the same 18034 * same group the two ipsq's are first merged into one ipsq - that of the 18035 * to_ill. The multicast memberships on the source and destination ill cannot 18036 * change during the move operation since multicast joins/leaves also have to 18037 * execute on the same ipsq and are hence serialized. 18038 */ 18039 /* ARGSUSED */ 18040 int 18041 ip_sioctl_move(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 18042 ip_ioctl_cmd_t *ipip, void *ifreq) 18043 { 18044 ill_t *ill_to_v4 = NULL; 18045 ill_t *ill_to_v6 = NULL; 18046 ill_t *ill_from_v4 = NULL; 18047 ill_t *ill_from_v6 = NULL; 18048 int err = 0; 18049 18050 /* 18051 * setup from and to ill's, we can get EINPROGRESS only for 18052 * to_ill's. 18053 */ 18054 err = ip_extract_move_args(q, mp, &ill_from_v4, &ill_from_v6, 18055 &ill_to_v4, &ill_to_v6); 18056 18057 if (err != 0) { 18058 ip0dbg(("ip_sioctl_move: extract args failed\n")); 18059 goto done; 18060 } 18061 18062 /* 18063 * nothing to do. 18064 */ 18065 if ((ill_from_v4 != NULL) && (ill_from_v4 == ill_to_v4)) { 18066 goto done; 18067 } 18068 18069 /* 18070 * nothing to do. 18071 */ 18072 if ((ill_from_v6 != NULL) && (ill_from_v6 == ill_to_v6)) { 18073 goto done; 18074 } 18075 18076 /* 18077 * Mark the ill as changing. 18078 * ILL_CHANGING flag is cleared when the ipif's are brought up 18079 * in ill_up_ipifs in case of error they are cleared below. 18080 */ 18081 18082 GRAB_ILL_LOCKS(ill_from_v4, ill_from_v6); 18083 if (ill_from_v4 != NULL) 18084 ill_from_v4->ill_state_flags |= ILL_CHANGING; 18085 if (ill_from_v6 != NULL) 18086 ill_from_v6->ill_state_flags |= ILL_CHANGING; 18087 RELEASE_ILL_LOCKS(ill_from_v4, ill_from_v6); 18088 18089 /* 18090 * Make sure that both src and dst are 18091 * in the same syncq group. If not make it happen. 18092 * We are not holding any locks because we are the writer 18093 * on the from_ipsq and we will hold locks in ill_merge_groups 18094 * to protect to_ipsq against changing. 18095 */ 18096 if (ill_from_v4 != NULL) { 18097 if (ill_from_v4->ill_phyint->phyint_ipsq != 18098 ill_to_v4->ill_phyint->phyint_ipsq) { 18099 err = ill_merge_groups(ill_from_v4, ill_to_v4, 18100 NULL, mp, q); 18101 goto err_ret; 18102 18103 } 18104 ASSERT(!MUTEX_HELD(&ill_to_v4->ill_lock)); 18105 } else { 18106 18107 if (ill_from_v6->ill_phyint->phyint_ipsq != 18108 ill_to_v6->ill_phyint->phyint_ipsq) { 18109 err = ill_merge_groups(ill_from_v6, ill_to_v6, 18110 NULL, mp, q); 18111 goto err_ret; 18112 18113 } 18114 ASSERT(!MUTEX_HELD(&ill_to_v6->ill_lock)); 18115 } 18116 18117 /* 18118 * Now that the ipsq's have been merged and we are the writer 18119 * lets mark to_ill as changing as well. 18120 */ 18121 18122 GRAB_ILL_LOCKS(ill_to_v4, ill_to_v6); 18123 if (ill_to_v4 != NULL) 18124 ill_to_v4->ill_state_flags |= ILL_CHANGING; 18125 if (ill_to_v6 != NULL) 18126 ill_to_v6->ill_state_flags |= ILL_CHANGING; 18127 RELEASE_ILL_LOCKS(ill_to_v4, ill_to_v6); 18128 18129 /* 18130 * Its ok for us to proceed with the move even if 18131 * ill_pending_mp is non null on one of the from ill's as the reply 18132 * should not be looking at the ipif, it should only care about the 18133 * ill itself. 18134 */ 18135 18136 /* 18137 * lets move ipv4 first. 18138 */ 18139 if (ill_from_v4 != NULL) { 18140 ASSERT(IAM_WRITER_ILL(ill_to_v4)); 18141 ill_from_v4->ill_move_in_progress = B_TRUE; 18142 ill_to_v4->ill_move_in_progress = B_TRUE; 18143 ill_to_v4->ill_move_peer = ill_from_v4; 18144 ill_from_v4->ill_move_peer = ill_to_v4; 18145 err = ill_move(ill_from_v4, ill_to_v4, q, mp); 18146 } 18147 18148 /* 18149 * Now lets move ipv6. 18150 */ 18151 if (err == 0 && ill_from_v6 != NULL) { 18152 ASSERT(IAM_WRITER_ILL(ill_to_v6)); 18153 ill_from_v6->ill_move_in_progress = B_TRUE; 18154 ill_to_v6->ill_move_in_progress = B_TRUE; 18155 ill_to_v6->ill_move_peer = ill_from_v6; 18156 ill_from_v6->ill_move_peer = ill_to_v6; 18157 err = ill_move(ill_from_v6, ill_to_v6, q, mp); 18158 } 18159 18160 err_ret: 18161 /* 18162 * EINPROGRESS means we are waiting for the ipif's that need to be 18163 * moved to become quiescent. 18164 */ 18165 if (err == EINPROGRESS) { 18166 goto done; 18167 } 18168 18169 /* 18170 * if err is set ill_up_ipifs will not be called 18171 * lets clear the flags. 18172 */ 18173 18174 GRAB_ILL_LOCKS(ill_to_v4, ill_to_v6); 18175 GRAB_ILL_LOCKS(ill_from_v4, ill_from_v6); 18176 /* 18177 * Some of the clearing may be redundant. But it is simple 18178 * not making any extra checks. 18179 */ 18180 if (ill_from_v6 != NULL) { 18181 ill_from_v6->ill_move_in_progress = B_FALSE; 18182 ill_from_v6->ill_move_peer = NULL; 18183 ill_from_v6->ill_state_flags &= ~ILL_CHANGING; 18184 } 18185 if (ill_from_v4 != NULL) { 18186 ill_from_v4->ill_move_in_progress = B_FALSE; 18187 ill_from_v4->ill_move_peer = NULL; 18188 ill_from_v4->ill_state_flags &= ~ILL_CHANGING; 18189 } 18190 if (ill_to_v6 != NULL) { 18191 ill_to_v6->ill_move_in_progress = B_FALSE; 18192 ill_to_v6->ill_move_peer = NULL; 18193 ill_to_v6->ill_state_flags &= ~ILL_CHANGING; 18194 } 18195 if (ill_to_v4 != NULL) { 18196 ill_to_v4->ill_move_in_progress = B_FALSE; 18197 ill_to_v4->ill_move_peer = NULL; 18198 ill_to_v4->ill_state_flags &= ~ILL_CHANGING; 18199 } 18200 18201 /* 18202 * Check for setting INACTIVE, if STANDBY is set and FAILED is not set. 18203 * Do this always to maintain proper state i.e even in case of errors. 18204 * As phyint_inactive looks at both v4 and v6 interfaces, 18205 * we need not call on both v4 and v6 interfaces. 18206 */ 18207 if (ill_from_v4 != NULL) { 18208 if ((ill_from_v4->ill_phyint->phyint_flags & 18209 (PHYI_STANDBY | PHYI_FAILED)) == PHYI_STANDBY) { 18210 phyint_inactive(ill_from_v4->ill_phyint); 18211 } 18212 } else if (ill_from_v6 != NULL) { 18213 if ((ill_from_v6->ill_phyint->phyint_flags & 18214 (PHYI_STANDBY | PHYI_FAILED)) == PHYI_STANDBY) { 18215 phyint_inactive(ill_from_v6->ill_phyint); 18216 } 18217 } 18218 18219 if (ill_to_v4 != NULL) { 18220 if (ill_to_v4->ill_phyint->phyint_flags & PHYI_INACTIVE) { 18221 ill_to_v4->ill_phyint->phyint_flags &= ~PHYI_INACTIVE; 18222 } 18223 } else if (ill_to_v6 != NULL) { 18224 if (ill_to_v6->ill_phyint->phyint_flags & PHYI_INACTIVE) { 18225 ill_to_v6->ill_phyint->phyint_flags &= ~PHYI_INACTIVE; 18226 } 18227 } 18228 18229 RELEASE_ILL_LOCKS(ill_to_v4, ill_to_v6); 18230 RELEASE_ILL_LOCKS(ill_from_v4, ill_from_v6); 18231 18232 no_err: 18233 /* 18234 * lets bring the interfaces up on the to_ill. 18235 */ 18236 if (err == 0) { 18237 err = ill_up_ipifs(ill_to_v4 == NULL ? ill_to_v6:ill_to_v4, 18238 q, mp); 18239 } 18240 18241 if (err == 0) { 18242 if (ill_from_v4 != NULL && ill_to_v4 != NULL) 18243 ilm_send_multicast_reqs(ill_from_v4, ill_to_v4); 18244 18245 if (ill_from_v6 != NULL && ill_to_v6 != NULL) 18246 ilm_send_multicast_reqs(ill_from_v6, ill_to_v6); 18247 } 18248 done: 18249 18250 if (ill_to_v4 != NULL) { 18251 ill_refrele(ill_to_v4); 18252 } 18253 if (ill_to_v6 != NULL) { 18254 ill_refrele(ill_to_v6); 18255 } 18256 18257 return (err); 18258 } 18259 18260 static void 18261 ill_dl_down(ill_t *ill) 18262 { 18263 /* 18264 * The ill is down; unbind but stay attached since we're still 18265 * associated with a PPA. If we have negotiated DLPI capabilites 18266 * with the data link service provider (IDS_OK) then reset them. 18267 * The interval between unbinding and rebinding is potentially 18268 * unbounded hence we cannot assume things will be the same. 18269 * The DLPI capabilities will be probed again when the data link 18270 * is brought up. 18271 */ 18272 mblk_t *mp = ill->ill_unbind_mp; 18273 hook_nic_event_t *info; 18274 18275 ip1dbg(("ill_dl_down(%s)\n", ill->ill_name)); 18276 18277 ill->ill_unbind_mp = NULL; 18278 if (mp != NULL) { 18279 ip1dbg(("ill_dl_down: %s (%u) for %s\n", 18280 dlpi_prim_str(*(int *)mp->b_rptr), *(int *)mp->b_rptr, 18281 ill->ill_name)); 18282 mutex_enter(&ill->ill_lock); 18283 ill->ill_state_flags |= ILL_DL_UNBIND_IN_PROGRESS; 18284 mutex_exit(&ill->ill_lock); 18285 if (ill->ill_dlpi_capab_state == IDS_OK) 18286 ill_capability_reset(ill); 18287 ill_dlpi_send(ill, mp); 18288 } 18289 18290 /* 18291 * Toss all of our multicast memberships. We could keep them, but 18292 * then we'd have to do bookkeeping of any joins and leaves performed 18293 * by the application while the the interface is down (we can't just 18294 * issue them because arp cannot currently process AR_ENTRY_SQUERY's 18295 * on a downed interface). 18296 */ 18297 ill_leave_multicast(ill); 18298 18299 mutex_enter(&ill->ill_lock); 18300 18301 ill->ill_dl_up = 0; 18302 18303 if ((info = ill->ill_nic_event_info) != NULL) { 18304 ip2dbg(("ill_dl_down:unexpected nic event %d attached for %s\n", 18305 info->hne_event, ill->ill_name)); 18306 if (info->hne_data != NULL) 18307 kmem_free(info->hne_data, info->hne_datalen); 18308 kmem_free(info, sizeof (hook_nic_event_t)); 18309 } 18310 18311 info = kmem_alloc(sizeof (hook_nic_event_t), KM_NOSLEEP); 18312 if (info != NULL) { 18313 ip_stack_t *ipst = ill->ill_ipst; 18314 18315 info->hne_nic = ill->ill_phyint->phyint_hook_ifindex; 18316 info->hne_lif = 0; 18317 info->hne_event = NE_DOWN; 18318 info->hne_data = NULL; 18319 info->hne_datalen = 0; 18320 info->hne_family = ill->ill_isv6 ? 18321 ipst->ips_ipv6_net_data : ipst->ips_ipv4_net_data; 18322 } else 18323 ip2dbg(("ill_dl_down: could not attach DOWN nic event " 18324 "information for %s (ENOMEM)\n", ill->ill_name)); 18325 18326 ill->ill_nic_event_info = info; 18327 18328 mutex_exit(&ill->ill_lock); 18329 } 18330 18331 static void 18332 ill_dlpi_dispatch(ill_t *ill, mblk_t *mp) 18333 { 18334 union DL_primitives *dlp; 18335 t_uscalar_t prim; 18336 18337 ASSERT(DB_TYPE(mp) == M_PROTO || DB_TYPE(mp) == M_PCPROTO); 18338 18339 dlp = (union DL_primitives *)mp->b_rptr; 18340 prim = dlp->dl_primitive; 18341 18342 ip1dbg(("ill_dlpi_dispatch: sending %s (%u) to %s\n", 18343 dlpi_prim_str(prim), prim, ill->ill_name)); 18344 18345 switch (prim) { 18346 case DL_PHYS_ADDR_REQ: 18347 { 18348 dl_phys_addr_req_t *dlpap = (dl_phys_addr_req_t *)mp->b_rptr; 18349 ill->ill_phys_addr_pend = dlpap->dl_addr_type; 18350 break; 18351 } 18352 case DL_BIND_REQ: 18353 mutex_enter(&ill->ill_lock); 18354 ill->ill_state_flags &= ~ILL_DL_UNBIND_IN_PROGRESS; 18355 mutex_exit(&ill->ill_lock); 18356 break; 18357 } 18358 18359 /* 18360 * Except for the ACKs for the M_PCPROTO messages, all other ACKs 18361 * are dropped by ip_rput() if ILL_CONDEMNED is set. Therefore 18362 * we only wait for the ACK of the DL_UNBIND_REQ. 18363 */ 18364 mutex_enter(&ill->ill_lock); 18365 if (!(ill->ill_state_flags & ILL_CONDEMNED) || 18366 (prim == DL_UNBIND_REQ)) { 18367 ill->ill_dlpi_pending = prim; 18368 } 18369 mutex_exit(&ill->ill_lock); 18370 18371 putnext(ill->ill_wq, mp); 18372 } 18373 18374 /* 18375 * Helper function for ill_dlpi_send(). 18376 */ 18377 /* ARGSUSED */ 18378 static void 18379 ill_dlpi_send_writer(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *arg) 18380 { 18381 ill_dlpi_send((ill_t *)q->q_ptr, mp); 18382 } 18383 18384 /* 18385 * Send a DLPI control message to the driver but make sure there 18386 * is only one outstanding message. Uses ill_dlpi_pending to tell 18387 * when it must queue. ip_rput_dlpi_writer calls ill_dlpi_done() 18388 * when an ACK or a NAK is received to process the next queued message. 18389 */ 18390 void 18391 ill_dlpi_send(ill_t *ill, mblk_t *mp) 18392 { 18393 mblk_t **mpp; 18394 18395 ASSERT(DB_TYPE(mp) == M_PROTO || DB_TYPE(mp) == M_PCPROTO); 18396 18397 /* 18398 * To ensure that any DLPI requests for current exclusive operation 18399 * are always completely sent before any DLPI messages for other 18400 * operations, require writer access before enqueuing. 18401 */ 18402 if (!IAM_WRITER_ILL(ill)) { 18403 ill_refhold(ill); 18404 /* qwriter_ip() does the ill_refrele() */ 18405 qwriter_ip(ill, ill->ill_wq, mp, ill_dlpi_send_writer, 18406 NEW_OP, B_TRUE); 18407 return; 18408 } 18409 18410 mutex_enter(&ill->ill_lock); 18411 if (ill->ill_dlpi_pending != DL_PRIM_INVAL) { 18412 /* Must queue message. Tail insertion */ 18413 mpp = &ill->ill_dlpi_deferred; 18414 while (*mpp != NULL) 18415 mpp = &((*mpp)->b_next); 18416 18417 ip1dbg(("ill_dlpi_send: deferring request for %s\n", 18418 ill->ill_name)); 18419 18420 *mpp = mp; 18421 mutex_exit(&ill->ill_lock); 18422 return; 18423 } 18424 mutex_exit(&ill->ill_lock); 18425 ill_dlpi_dispatch(ill, mp); 18426 } 18427 18428 /* 18429 * Send all deferred DLPI messages without waiting for their ACKs. 18430 */ 18431 void 18432 ill_dlpi_send_deferred(ill_t *ill) 18433 { 18434 mblk_t *mp, *nextmp; 18435 18436 /* 18437 * Clear ill_dlpi_pending so that the message is not queued in 18438 * ill_dlpi_send(). 18439 */ 18440 mutex_enter(&ill->ill_lock); 18441 ill->ill_dlpi_pending = DL_PRIM_INVAL; 18442 mp = ill->ill_dlpi_deferred; 18443 ill->ill_dlpi_deferred = NULL; 18444 mutex_exit(&ill->ill_lock); 18445 18446 for (; mp != NULL; mp = nextmp) { 18447 nextmp = mp->b_next; 18448 mp->b_next = NULL; 18449 ill_dlpi_send(ill, mp); 18450 } 18451 } 18452 18453 /* 18454 * Check if the DLPI primitive `prim' is pending; print a warning if not. 18455 */ 18456 boolean_t 18457 ill_dlpi_pending(ill_t *ill, t_uscalar_t prim) 18458 { 18459 t_uscalar_t prim_pending; 18460 18461 mutex_enter(&ill->ill_lock); 18462 prim_pending = ill->ill_dlpi_pending; 18463 mutex_exit(&ill->ill_lock); 18464 18465 /* 18466 * During teardown, ill_dlpi_send_deferred() will send requests 18467 * without waiting; don't bother printing any warnings in that case. 18468 */ 18469 if (!(ill->ill_flags & ILL_CONDEMNED) && prim_pending != prim) { 18470 if (prim_pending == DL_PRIM_INVAL) { 18471 (void) mi_strlog(ill->ill_rq, 1, 18472 SL_CONSOLE|SL_ERROR|SL_TRACE, "ip: received " 18473 "unsolicited ack for %s on %s\n", 18474 dlpi_prim_str(prim), ill->ill_name); 18475 } else { 18476 (void) mi_strlog(ill->ill_rq, 1, 18477 SL_CONSOLE|SL_ERROR|SL_TRACE, "ip: received " 18478 "unexpected ack for %s on %s (expecting %s)\n", 18479 dlpi_prim_str(prim), ill->ill_name, 18480 dlpi_prim_str(prim_pending)); 18481 } 18482 } 18483 return (prim_pending == prim); 18484 } 18485 18486 /* 18487 * Called when an DLPI control message has been acked or nacked to 18488 * send down the next queued message (if any). 18489 */ 18490 void 18491 ill_dlpi_done(ill_t *ill, t_uscalar_t prim) 18492 { 18493 mblk_t *mp; 18494 18495 ASSERT(IAM_WRITER_ILL(ill)); 18496 mutex_enter(&ill->ill_lock); 18497 18498 ASSERT(prim != DL_PRIM_INVAL); 18499 ASSERT(ill->ill_dlpi_pending == prim); 18500 18501 ip1dbg(("ill_dlpi_done: %s has completed %s (%u)\n", ill->ill_name, 18502 dlpi_prim_str(ill->ill_dlpi_pending), ill->ill_dlpi_pending)); 18503 18504 if ((mp = ill->ill_dlpi_deferred) == NULL) { 18505 ill->ill_dlpi_pending = DL_PRIM_INVAL; 18506 cv_signal(&ill->ill_cv); 18507 mutex_exit(&ill->ill_lock); 18508 return; 18509 } 18510 18511 ill->ill_dlpi_deferred = mp->b_next; 18512 mp->b_next = NULL; 18513 mutex_exit(&ill->ill_lock); 18514 18515 ill_dlpi_dispatch(ill, mp); 18516 } 18517 18518 void 18519 conn_delete_ire(conn_t *connp, caddr_t arg) 18520 { 18521 ipif_t *ipif = (ipif_t *)arg; 18522 ire_t *ire; 18523 18524 /* 18525 * Look at the cached ires on conns which has pointers to ipifs. 18526 * We just call ire_refrele which clears up the reference 18527 * to ire. Called when a conn closes. Also called from ipif_free 18528 * to cleanup indirect references to the stale ipif via the cached ire. 18529 */ 18530 mutex_enter(&connp->conn_lock); 18531 ire = connp->conn_ire_cache; 18532 if (ire != NULL && (ipif == NULL || ire->ire_ipif == ipif)) { 18533 connp->conn_ire_cache = NULL; 18534 mutex_exit(&connp->conn_lock); 18535 IRE_REFRELE_NOTR(ire); 18536 return; 18537 } 18538 mutex_exit(&connp->conn_lock); 18539 18540 } 18541 18542 /* 18543 * Some operations (illgrp_delete(), ipif_down()) conditionally delete a number 18544 * of IREs. Those IREs may have been previously cached in the conn structure. 18545 * This ipcl_walk() walker function releases all references to such IREs based 18546 * on the condemned flag. 18547 */ 18548 /* ARGSUSED */ 18549 void 18550 conn_cleanup_stale_ire(conn_t *connp, caddr_t arg) 18551 { 18552 ire_t *ire; 18553 18554 mutex_enter(&connp->conn_lock); 18555 ire = connp->conn_ire_cache; 18556 if (ire != NULL && (ire->ire_marks & IRE_MARK_CONDEMNED)) { 18557 connp->conn_ire_cache = NULL; 18558 mutex_exit(&connp->conn_lock); 18559 IRE_REFRELE_NOTR(ire); 18560 return; 18561 } 18562 mutex_exit(&connp->conn_lock); 18563 } 18564 18565 /* 18566 * Take down a specific interface, but don't lose any information about it. 18567 * Also delete interface from its interface group (ifgrp). 18568 * (Always called as writer.) 18569 * This function goes through the down sequence even if the interface is 18570 * already down. There are 2 reasons. 18571 * a. Currently we permit interface routes that depend on down interfaces 18572 * to be added. This behaviour itself is questionable. However it appears 18573 * that both Solaris and 4.3 BSD have exhibited this behaviour for a long 18574 * time. We go thru the cleanup in order to remove these routes. 18575 * b. The bringup of the interface could fail in ill_dl_up i.e. we get 18576 * DL_ERROR_ACK in response to the the DL_BIND request. The interface is 18577 * down, but we need to cleanup i.e. do ill_dl_down and 18578 * ip_rput_dlpi_writer (DL_ERROR_ACK) -> ipif_down. 18579 * 18580 * IP-MT notes: 18581 * 18582 * Model of reference to interfaces. 18583 * 18584 * The following members in ipif_t track references to the ipif. 18585 * int ipif_refcnt; Active reference count 18586 * uint_t ipif_ire_cnt; Number of ire's referencing this ipif 18587 * The following members in ill_t track references to the ill. 18588 * int ill_refcnt; active refcnt 18589 * uint_t ill_ire_cnt; Number of ires referencing ill 18590 * uint_t ill_nce_cnt; Number of nces referencing ill 18591 * 18592 * Reference to an ipif or ill can be obtained in any of the following ways. 18593 * 18594 * Through the lookup functions ipif_lookup_* / ill_lookup_* functions 18595 * Pointers to ipif / ill from other data structures viz ire and conn. 18596 * Implicit reference to the ipif / ill by holding a reference to the ire. 18597 * 18598 * The ipif/ill lookup functions return a reference held ipif / ill. 18599 * ipif_refcnt and ill_refcnt track the reference counts respectively. 18600 * This is a purely dynamic reference count associated with threads holding 18601 * references to the ipif / ill. Pointers from other structures do not 18602 * count towards this reference count. 18603 * 18604 * ipif_ire_cnt/ill_ire_cnt is the number of ire's associated with the 18605 * ipif/ill. This is incremented whenever a new ire is created referencing the 18606 * ipif/ill. This is done atomically inside ire_add_v[46] where the ire is 18607 * actually added to the ire hash table. The count is decremented in 18608 * ire_inactive where the ire is destroyed. 18609 * 18610 * nce's reference ill's thru nce_ill and the count of nce's associated with 18611 * an ill is recorded in ill_nce_cnt. This is incremented atomically in 18612 * ndp_add_v4()/ndp_add_v6() where the nce is actually added to the 18613 * table. Similarly it is decremented in ndp_inactive() where the nce 18614 * is destroyed. 18615 * 18616 * Flow of ioctls involving interface down/up 18617 * 18618 * The following is the sequence of an attempt to set some critical flags on an 18619 * up interface. 18620 * ip_sioctl_flags 18621 * ipif_down 18622 * wait for ipif to be quiescent 18623 * ipif_down_tail 18624 * ip_sioctl_flags_tail 18625 * 18626 * All set ioctls that involve down/up sequence would have a skeleton similar 18627 * to the above. All the *tail functions are called after the refcounts have 18628 * dropped to the appropriate values. 18629 * 18630 * The mechanism to quiesce an ipif is as follows. 18631 * 18632 * Mark the ipif as IPIF_CHANGING. No more lookups will be allowed 18633 * on the ipif. Callers either pass a flag requesting wait or the lookup 18634 * functions will return NULL. 18635 * 18636 * Delete all ires referencing this ipif 18637 * 18638 * Any thread attempting to do an ipif_refhold on an ipif that has been 18639 * obtained thru a cached pointer will first make sure that 18640 * the ipif can be refheld using the macro IPIF_CAN_LOOKUP and only then 18641 * increment the refcount. 18642 * 18643 * The above guarantees that the ipif refcount will eventually come down to 18644 * zero and the ipif will quiesce, once all threads that currently hold a 18645 * reference to the ipif refrelease the ipif. The ipif is quiescent after the 18646 * ipif_refcount has dropped to zero and all ire's associated with this ipif 18647 * have also been ire_inactive'd. i.e. when ipif_ire_cnt and ipif_refcnt both 18648 * drop to zero. 18649 * 18650 * Lookups during the IPIF_CHANGING/ILL_CHANGING interval. 18651 * 18652 * Threads trying to lookup an ipif or ill can pass a flag requesting 18653 * wait and restart if the ipif / ill cannot be looked up currently. 18654 * For eg. bind, and route operations (Eg. route add / delete) cannot return 18655 * failure if the ipif is currently undergoing an exclusive operation, and 18656 * hence pass the flag. The mblk is then enqueued in the ipsq and the operation 18657 * is restarted by ipsq_exit() when the currently exclusive ioctl completes. 18658 * The lookup and enqueue is atomic using the ill_lock and ipsq_lock. The 18659 * lookup is done holding the ill_lock. Hence the ill/ipif state flags can't 18660 * change while the ill_lock is held. Before dropping the ill_lock we acquire 18661 * the ipsq_lock and call ipsq_enq. This ensures that ipsq_exit can't finish 18662 * until we release the ipsq_lock, even though the the ill/ipif state flags 18663 * can change after we drop the ill_lock. 18664 * 18665 * An attempt to send out a packet using an ipif that is currently 18666 * IPIF_CHANGING will fail. No attempt is made in this case to enqueue this 18667 * operation and restart it later when the exclusive condition on the ipif ends. 18668 * This is an example of not passing the wait flag to the lookup functions. For 18669 * example an attempt to refhold and use conn->conn_multicast_ipif and send 18670 * out a multicast packet on that ipif will fail while the ipif is 18671 * IPIF_CHANGING. An attempt to create an IRE_CACHE using an ipif that is 18672 * currently IPIF_CHANGING will also fail. 18673 */ 18674 int 18675 ipif_down(ipif_t *ipif, queue_t *q, mblk_t *mp) 18676 { 18677 ill_t *ill = ipif->ipif_ill; 18678 phyint_t *phyi; 18679 conn_t *connp; 18680 boolean_t success; 18681 boolean_t ipif_was_up = B_FALSE; 18682 ip_stack_t *ipst = ill->ill_ipst; 18683 18684 ASSERT(IAM_WRITER_IPIF(ipif)); 18685 18686 ip1dbg(("ipif_down(%s:%u)\n", ill->ill_name, ipif->ipif_id)); 18687 18688 if (ipif->ipif_flags & IPIF_UP) { 18689 mutex_enter(&ill->ill_lock); 18690 ipif->ipif_flags &= ~IPIF_UP; 18691 ASSERT(ill->ill_ipif_up_count > 0); 18692 --ill->ill_ipif_up_count; 18693 mutex_exit(&ill->ill_lock); 18694 ipif_was_up = B_TRUE; 18695 /* Update status in SCTP's list */ 18696 sctp_update_ipif(ipif, SCTP_IPIF_DOWN); 18697 } 18698 18699 /* 18700 * Blow away memberships we established in ipif_multicast_up(). 18701 */ 18702 ipif_multicast_down(ipif); 18703 18704 /* 18705 * Remove from the mapping for __sin6_src_id. We insert only 18706 * when the address is not INADDR_ANY. As IPv4 addresses are 18707 * stored as mapped addresses, we need to check for mapped 18708 * INADDR_ANY also. 18709 */ 18710 if (ipif_was_up && !IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr) && 18711 !IN6_IS_ADDR_V4MAPPED_ANY(&ipif->ipif_v6lcl_addr) && 18712 !(ipif->ipif_flags & IPIF_NOLOCAL)) { 18713 int err; 18714 18715 err = ip_srcid_remove(&ipif->ipif_v6lcl_addr, 18716 ipif->ipif_zoneid, ipst); 18717 if (err != 0) { 18718 ip0dbg(("ipif_down: srcid_remove %d\n", err)); 18719 } 18720 } 18721 18722 /* 18723 * Before we delete the ill from the group (if any), we need 18724 * to make sure that we delete all the routes dependent on 18725 * this and also any ipifs dependent on this ipif for 18726 * source address. We need to do before we delete from 18727 * the group because 18728 * 18729 * 1) ipif_down_delete_ire de-references ill->ill_group. 18730 * 18731 * 2) ipif_update_other_ipifs needs to walk the whole group 18732 * for re-doing source address selection. Note that 18733 * ipif_select_source[_v6] called from 18734 * ipif_update_other_ipifs[_v6] will not pick this ipif 18735 * because we have already marked down here i.e cleared 18736 * IPIF_UP. 18737 */ 18738 if (ipif->ipif_isv6) { 18739 ire_walk_v6(ipif_down_delete_ire, (char *)ipif, ALL_ZONES, 18740 ipst); 18741 } else { 18742 ire_walk_v4(ipif_down_delete_ire, (char *)ipif, ALL_ZONES, 18743 ipst); 18744 } 18745 18746 /* 18747 * Cleaning up the conn_ire_cache or conns must be done only after the 18748 * ires have been deleted above. Otherwise a thread could end up 18749 * caching an ire in a conn after we have finished the cleanup of the 18750 * conn. The caching is done after making sure that the ire is not yet 18751 * condemned. Also documented in the block comment above ip_output 18752 */ 18753 ipcl_walk(conn_cleanup_stale_ire, NULL, ipst); 18754 /* Also, delete the ires cached in SCTP */ 18755 sctp_ire_cache_flush(ipif); 18756 18757 /* Resolve any IPsec/IKE NAT-T instances that depend on this ipif. */ 18758 nattymod_clean_ipif(ipif); 18759 18760 /* 18761 * Update any other ipifs which have used "our" local address as 18762 * a source address. This entails removing and recreating IRE_INTERFACE 18763 * entries for such ipifs. 18764 */ 18765 if (ipif->ipif_isv6) 18766 ipif_update_other_ipifs_v6(ipif, ill->ill_group); 18767 else 18768 ipif_update_other_ipifs(ipif, ill->ill_group); 18769 18770 if (ipif_was_up) { 18771 /* 18772 * Check whether it is last ipif to leave this group. 18773 * If this is the last ipif to leave, we should remove 18774 * this ill from the group as ipif_select_source will not 18775 * be able to find any useful ipifs if this ill is selected 18776 * for load balancing. 18777 * 18778 * For nameless groups, we should call ifgrp_delete if this 18779 * belongs to some group. As this ipif is going down, we may 18780 * need to reconstruct groups. 18781 */ 18782 phyi = ill->ill_phyint; 18783 /* 18784 * If the phyint_groupname_len is 0, it may or may not 18785 * be in the nameless group. If the phyint_groupname_len is 18786 * not 0, then this ill should be part of some group. 18787 * As we always insert this ill in the group if 18788 * phyint_groupname_len is not zero when the first ipif 18789 * comes up (in ipif_up_done), it should be in a group 18790 * when the namelen is not 0. 18791 * 18792 * NOTE : When we delete the ill from the group,it will 18793 * blow away all the IRE_CACHES pointing either at this ipif or 18794 * ill_wq (illgrp_cache_delete does this). Thus, no IRES 18795 * should be pointing at this ill. 18796 */ 18797 ASSERT(phyi->phyint_groupname_len == 0 || 18798 (phyi->phyint_groupname != NULL && ill->ill_group != NULL)); 18799 18800 if (phyi->phyint_groupname_len != 0) { 18801 if (ill->ill_ipif_up_count == 0) 18802 illgrp_delete(ill); 18803 } 18804 18805 /* 18806 * If we have deleted some of the broadcast ires associated 18807 * with this ipif, we need to re-nominate somebody else if 18808 * the ires that we deleted were the nominated ones. 18809 */ 18810 if (ill->ill_group != NULL && !ill->ill_isv6) 18811 ipif_renominate_bcast(ipif); 18812 } 18813 18814 /* 18815 * neighbor-discovery or arp entries for this interface. 18816 */ 18817 ipif_ndp_down(ipif); 18818 18819 /* 18820 * If mp is NULL the caller will wait for the appropriate refcnt. 18821 * Eg. ip_sioctl_removeif -> ipif_free -> ipif_down 18822 * and ill_delete -> ipif_free -> ipif_down 18823 */ 18824 if (mp == NULL) { 18825 ASSERT(q == NULL); 18826 return (0); 18827 } 18828 18829 if (CONN_Q(q)) { 18830 connp = Q_TO_CONN(q); 18831 mutex_enter(&connp->conn_lock); 18832 } else { 18833 connp = NULL; 18834 } 18835 mutex_enter(&ill->ill_lock); 18836 /* 18837 * Are there any ire's pointing to this ipif that are still active ? 18838 * If this is the last ipif going down, are there any ire's pointing 18839 * to this ill that are still active ? 18840 */ 18841 if (ipif_is_quiescent(ipif)) { 18842 mutex_exit(&ill->ill_lock); 18843 if (connp != NULL) 18844 mutex_exit(&connp->conn_lock); 18845 return (0); 18846 } 18847 18848 ip1dbg(("ipif_down: need to wait, adding pending mp %s ill %p", 18849 ill->ill_name, (void *)ill)); 18850 /* 18851 * Enqueue the mp atomically in ipsq_pending_mp. When the refcount 18852 * drops down, the operation will be restarted by ipif_ill_refrele_tail 18853 * which in turn is called by the last refrele on the ipif/ill/ire. 18854 */ 18855 success = ipsq_pending_mp_add(connp, ipif, q, mp, IPIF_DOWN); 18856 if (!success) { 18857 /* The conn is closing. So just return */ 18858 ASSERT(connp != NULL); 18859 mutex_exit(&ill->ill_lock); 18860 mutex_exit(&connp->conn_lock); 18861 return (EINTR); 18862 } 18863 18864 mutex_exit(&ill->ill_lock); 18865 if (connp != NULL) 18866 mutex_exit(&connp->conn_lock); 18867 return (EINPROGRESS); 18868 } 18869 18870 void 18871 ipif_down_tail(ipif_t *ipif) 18872 { 18873 ill_t *ill = ipif->ipif_ill; 18874 18875 /* 18876 * Skip any loopback interface (null wq). 18877 * If this is the last logical interface on the ill 18878 * have ill_dl_down tell the driver we are gone (unbind) 18879 * Note that lun 0 can ipif_down even though 18880 * there are other logical units that are up. 18881 * This occurs e.g. when we change a "significant" IFF_ flag. 18882 */ 18883 if (ill->ill_wq != NULL && !ill->ill_logical_down && 18884 ill->ill_ipif_up_count == 0 && ill->ill_ipif_dup_count == 0 && 18885 ill->ill_dl_up) { 18886 ill_dl_down(ill); 18887 } 18888 ill->ill_logical_down = 0; 18889 18890 /* 18891 * Have to be after removing the routes in ipif_down_delete_ire. 18892 */ 18893 if (ipif->ipif_isv6) { 18894 if (ill->ill_flags & ILLF_XRESOLV) 18895 ipif_arp_down(ipif); 18896 } else { 18897 ipif_arp_down(ipif); 18898 } 18899 18900 ip_rts_ifmsg(ipif); 18901 ip_rts_newaddrmsg(RTM_DELETE, 0, ipif); 18902 } 18903 18904 /* 18905 * Bring interface logically down without bringing the physical interface 18906 * down e.g. when the netmask is changed. This avoids long lasting link 18907 * negotiations between an ethernet interface and a certain switches. 18908 */ 18909 static int 18910 ipif_logical_down(ipif_t *ipif, queue_t *q, mblk_t *mp) 18911 { 18912 /* 18913 * The ill_logical_down flag is a transient flag. It is set here 18914 * and is cleared once the down has completed in ipif_down_tail. 18915 * This flag does not indicate whether the ill stream is in the 18916 * DL_BOUND state with the driver. Instead this flag is used by 18917 * ipif_down_tail to determine whether to DL_UNBIND the stream with 18918 * the driver. The state of the ill stream i.e. whether it is 18919 * DL_BOUND with the driver or not is indicated by the ill_dl_up flag. 18920 */ 18921 ipif->ipif_ill->ill_logical_down = 1; 18922 return (ipif_down(ipif, q, mp)); 18923 } 18924 18925 /* 18926 * This is called when the SIOCSLIFUSESRC ioctl is processed in IP. 18927 * If the usesrc client ILL is already part of a usesrc group or not, 18928 * in either case a ire_stq with the matching usesrc client ILL will 18929 * locate the IRE's that need to be deleted. We want IREs to be created 18930 * with the new source address. 18931 */ 18932 static void 18933 ipif_delete_cache_ire(ire_t *ire, char *ill_arg) 18934 { 18935 ill_t *ucill = (ill_t *)ill_arg; 18936 18937 ASSERT(IAM_WRITER_ILL(ucill)); 18938 18939 if (ire->ire_stq == NULL) 18940 return; 18941 18942 if ((ire->ire_type == IRE_CACHE) && 18943 ((ill_t *)ire->ire_stq->q_ptr == ucill)) 18944 ire_delete(ire); 18945 } 18946 18947 /* 18948 * ire_walk routine to delete every IRE dependent on the interface 18949 * address that is going down. (Always called as writer.) 18950 * Works for both v4 and v6. 18951 * In addition for checking for ire_ipif matches it also checks for 18952 * IRE_CACHE entries which have the same source address as the 18953 * disappearing ipif since ipif_select_source might have picked 18954 * that source. Note that ipif_down/ipif_update_other_ipifs takes 18955 * care of any IRE_INTERFACE with the disappearing source address. 18956 */ 18957 static void 18958 ipif_down_delete_ire(ire_t *ire, char *ipif_arg) 18959 { 18960 ipif_t *ipif = (ipif_t *)ipif_arg; 18961 ill_t *ire_ill; 18962 ill_t *ipif_ill; 18963 18964 ASSERT(IAM_WRITER_IPIF(ipif)); 18965 if (ire->ire_ipif == NULL) 18966 return; 18967 18968 /* 18969 * For IPv4, we derive source addresses for an IRE from ipif's 18970 * belonging to the same IPMP group as the IRE's outgoing 18971 * interface. If an IRE's outgoing interface isn't in the 18972 * same IPMP group as a particular ipif, then that ipif 18973 * couldn't have been used as a source address for this IRE. 18974 * 18975 * For IPv6, source addresses are only restricted to the IPMP group 18976 * if the IRE is for a link-local address or a multicast address. 18977 * Otherwise, source addresses for an IRE can be chosen from 18978 * interfaces other than the the outgoing interface for that IRE. 18979 * 18980 * For source address selection details, see ipif_select_source() 18981 * and ipif_select_source_v6(). 18982 */ 18983 if (ire->ire_ipversion == IPV4_VERSION || 18984 IN6_IS_ADDR_LINKLOCAL(&ire->ire_addr_v6) || 18985 IN6_IS_ADDR_MULTICAST(&ire->ire_addr_v6)) { 18986 ire_ill = ire->ire_ipif->ipif_ill; 18987 ipif_ill = ipif->ipif_ill; 18988 18989 if (ire_ill->ill_group != ipif_ill->ill_group) { 18990 return; 18991 } 18992 } 18993 18994 18995 if (ire->ire_ipif != ipif) { 18996 /* 18997 * Look for a matching source address. 18998 */ 18999 if (ire->ire_type != IRE_CACHE) 19000 return; 19001 if (ipif->ipif_flags & IPIF_NOLOCAL) 19002 return; 19003 19004 if (ire->ire_ipversion == IPV4_VERSION) { 19005 if (ire->ire_src_addr != ipif->ipif_src_addr) 19006 return; 19007 } else { 19008 if (!IN6_ARE_ADDR_EQUAL(&ire->ire_src_addr_v6, 19009 &ipif->ipif_v6lcl_addr)) 19010 return; 19011 } 19012 ire_delete(ire); 19013 return; 19014 } 19015 /* 19016 * ire_delete() will do an ire_flush_cache which will delete 19017 * all ire_ipif matches 19018 */ 19019 ire_delete(ire); 19020 } 19021 19022 /* 19023 * ire_walk_ill function for deleting all IRE_CACHE entries for an ill when 19024 * 1) an ipif (on that ill) changes the IPIF_DEPRECATED flags, or 19025 * 2) when an interface is brought up or down (on that ill). 19026 * This ensures that the IRE_CACHE entries don't retain stale source 19027 * address selection results. 19028 */ 19029 void 19030 ill_ipif_cache_delete(ire_t *ire, char *ill_arg) 19031 { 19032 ill_t *ill = (ill_t *)ill_arg; 19033 ill_t *ipif_ill; 19034 19035 ASSERT(IAM_WRITER_ILL(ill)); 19036 /* 19037 * We use MATCH_IRE_TYPE/IRE_CACHE while calling ire_walk_ill_v4. 19038 * Hence this should be IRE_CACHE. 19039 */ 19040 ASSERT(ire->ire_type == IRE_CACHE); 19041 19042 /* 19043 * We are called for IRE_CACHES whose ire_ipif matches ill. 19044 * We are only interested in IRE_CACHES that has borrowed 19045 * the source address from ill_arg e.g. ipif_up_done[_v6] 19046 * for which we need to look at ire_ipif->ipif_ill match 19047 * with ill. 19048 */ 19049 ASSERT(ire->ire_ipif != NULL); 19050 ipif_ill = ire->ire_ipif->ipif_ill; 19051 if (ipif_ill == ill || (ill->ill_group != NULL && 19052 ipif_ill->ill_group == ill->ill_group)) { 19053 ire_delete(ire); 19054 } 19055 } 19056 19057 /* 19058 * Delete all the ire whose stq references ill_arg. 19059 */ 19060 static void 19061 ill_stq_cache_delete(ire_t *ire, char *ill_arg) 19062 { 19063 ill_t *ill = (ill_t *)ill_arg; 19064 ill_t *ire_ill; 19065 19066 ASSERT(IAM_WRITER_ILL(ill)); 19067 /* 19068 * We use MATCH_IRE_TYPE/IRE_CACHE while calling ire_walk_ill_v4. 19069 * Hence this should be IRE_CACHE. 19070 */ 19071 ASSERT(ire->ire_type == IRE_CACHE); 19072 19073 /* 19074 * We are called for IRE_CACHES whose ire_stq and ire_ipif 19075 * matches ill. We are only interested in IRE_CACHES that 19076 * has ire_stq->q_ptr pointing at ill_arg. Thus we do the 19077 * filtering here. 19078 */ 19079 ire_ill = (ill_t *)ire->ire_stq->q_ptr; 19080 19081 if (ire_ill == ill) 19082 ire_delete(ire); 19083 } 19084 19085 /* 19086 * This is called when an ill leaves the group. We want to delete 19087 * all IRE_CACHES whose stq is pointing at ill_wq or ire_ipif is 19088 * pointing at ill. 19089 */ 19090 static void 19091 illgrp_cache_delete(ire_t *ire, char *ill_arg) 19092 { 19093 ill_t *ill = (ill_t *)ill_arg; 19094 19095 ASSERT(IAM_WRITER_ILL(ill)); 19096 ASSERT(ill->ill_group == NULL); 19097 /* 19098 * We use MATCH_IRE_TYPE/IRE_CACHE while calling ire_walk_ill_v4. 19099 * Hence this should be IRE_CACHE. 19100 */ 19101 ASSERT(ire->ire_type == IRE_CACHE); 19102 /* 19103 * We are called for IRE_CACHES whose ire_stq and ire_ipif 19104 * matches ill. We are interested in both. 19105 */ 19106 ASSERT((ill == (ill_t *)ire->ire_stq->q_ptr) || 19107 (ire->ire_ipif->ipif_ill == ill)); 19108 19109 ire_delete(ire); 19110 } 19111 19112 /* 19113 * Initiate deallocate of an IPIF. Always called as writer. Called by 19114 * ill_delete or ip_sioctl_removeif. 19115 */ 19116 static void 19117 ipif_free(ipif_t *ipif) 19118 { 19119 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 19120 19121 ASSERT(IAM_WRITER_IPIF(ipif)); 19122 19123 if (ipif->ipif_recovery_id != 0) 19124 (void) untimeout(ipif->ipif_recovery_id); 19125 ipif->ipif_recovery_id = 0; 19126 19127 /* Remove conn references */ 19128 reset_conn_ipif(ipif); 19129 19130 /* 19131 * Make sure we have valid net and subnet broadcast ire's for the 19132 * other ipif's which share them with this ipif. 19133 */ 19134 if (!ipif->ipif_isv6) 19135 ipif_check_bcast_ires(ipif); 19136 19137 /* 19138 * Take down the interface. We can be called either from ill_delete 19139 * or from ip_sioctl_removeif. 19140 */ 19141 (void) ipif_down(ipif, NULL, NULL); 19142 19143 /* 19144 * Now that the interface is down, there's no chance it can still 19145 * become a duplicate. Cancel any timer that may have been set while 19146 * tearing down. 19147 */ 19148 if (ipif->ipif_recovery_id != 0) 19149 (void) untimeout(ipif->ipif_recovery_id); 19150 ipif->ipif_recovery_id = 0; 19151 19152 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 19153 /* Remove pointers to this ill in the multicast routing tables */ 19154 reset_mrt_vif_ipif(ipif); 19155 rw_exit(&ipst->ips_ill_g_lock); 19156 } 19157 19158 /* 19159 * Warning: this is not the only function that calls mi_free on an ipif_t. See 19160 * also ill_move(). 19161 */ 19162 static void 19163 ipif_free_tail(ipif_t *ipif) 19164 { 19165 mblk_t *mp; 19166 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 19167 19168 /* 19169 * Free state for addition IRE_IF_[NO]RESOLVER ire's. 19170 */ 19171 mutex_enter(&ipif->ipif_saved_ire_lock); 19172 mp = ipif->ipif_saved_ire_mp; 19173 ipif->ipif_saved_ire_mp = NULL; 19174 mutex_exit(&ipif->ipif_saved_ire_lock); 19175 freemsg(mp); 19176 19177 /* 19178 * Need to hold both ill_g_lock and ill_lock while 19179 * inserting or removing an ipif from the linked list 19180 * of ipifs hanging off the ill. 19181 */ 19182 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 19183 /* 19184 * Remove all IPv4 multicast memberships on the interface now. 19185 * IPv6 is not handled here as the multicast memberships are 19186 * tied to the ill rather than the ipif. 19187 */ 19188 ilm_free(ipif); 19189 19190 /* 19191 * Since we held the ill_g_lock while doing the ilm_free above, 19192 * we can assert the ilms were really deleted and not just marked 19193 * ILM_DELETED. 19194 */ 19195 ASSERT(ilm_walk_ipif(ipif) == 0); 19196 19197 IPIF_TRACE_CLEANUP(ipif); 19198 19199 /* Ask SCTP to take it out of it list */ 19200 sctp_update_ipif(ipif, SCTP_IPIF_REMOVE); 19201 19202 /* Get it out of the ILL interface list. */ 19203 ipif_remove(ipif, B_TRUE); 19204 rw_exit(&ipst->ips_ill_g_lock); 19205 19206 mutex_destroy(&ipif->ipif_saved_ire_lock); 19207 19208 ASSERT(!(ipif->ipif_flags & (IPIF_UP | IPIF_DUPLICATE))); 19209 ASSERT(ipif->ipif_recovery_id == 0); 19210 19211 /* Free the memory. */ 19212 mi_free(ipif); 19213 } 19214 19215 /* 19216 * Returns an ipif name in the form "ill_name/unit" if ipif_id is not zero, 19217 * "ill_name" otherwise. 19218 */ 19219 char * 19220 ipif_get_name(const ipif_t *ipif, char *buf, int len) 19221 { 19222 char lbuf[32]; 19223 char *name; 19224 size_t name_len; 19225 19226 buf[0] = '\0'; 19227 if (!ipif) 19228 return (buf); 19229 name = ipif->ipif_ill->ill_name; 19230 name_len = ipif->ipif_ill->ill_name_length; 19231 if (ipif->ipif_id != 0) { 19232 (void) sprintf(lbuf, "%s%c%d", name, IPIF_SEPARATOR_CHAR, 19233 ipif->ipif_id); 19234 name = lbuf; 19235 name_len = mi_strlen(name) + 1; 19236 } 19237 len -= 1; 19238 buf[len] = '\0'; 19239 len = MIN(len, name_len); 19240 bcopy(name, buf, len); 19241 return (buf); 19242 } 19243 19244 /* 19245 * Find an IPIF based on the name passed in. Names can be of the 19246 * form <phys> (e.g., le0), <phys>:<#> (e.g., le0:1), 19247 * The <phys> string can have forms like <dev><#> (e.g., le0), 19248 * <dev><#>.<module> (e.g. le0.foo), or <dev>.<module><#> (e.g. ip.tun3). 19249 * When there is no colon, the implied unit id is zero. <phys> must 19250 * correspond to the name of an ILL. (May be called as writer.) 19251 */ 19252 static ipif_t * 19253 ipif_lookup_on_name(char *name, size_t namelen, boolean_t do_alloc, 19254 boolean_t *exists, boolean_t isv6, zoneid_t zoneid, queue_t *q, 19255 mblk_t *mp, ipsq_func_t func, int *error, ip_stack_t *ipst) 19256 { 19257 char *cp; 19258 char *endp; 19259 long id; 19260 ill_t *ill; 19261 ipif_t *ipif; 19262 uint_t ire_type; 19263 boolean_t did_alloc = B_FALSE; 19264 ipsq_t *ipsq; 19265 19266 if (error != NULL) 19267 *error = 0; 19268 19269 /* 19270 * If the caller wants to us to create the ipif, make sure we have a 19271 * valid zoneid 19272 */ 19273 ASSERT(!do_alloc || zoneid != ALL_ZONES); 19274 19275 if (namelen == 0) { 19276 if (error != NULL) 19277 *error = ENXIO; 19278 return (NULL); 19279 } 19280 19281 *exists = B_FALSE; 19282 /* Look for a colon in the name. */ 19283 endp = &name[namelen]; 19284 for (cp = endp; --cp > name; ) { 19285 if (*cp == IPIF_SEPARATOR_CHAR) 19286 break; 19287 } 19288 19289 if (*cp == IPIF_SEPARATOR_CHAR) { 19290 /* 19291 * Reject any non-decimal aliases for logical 19292 * interfaces. Aliases with leading zeroes 19293 * are also rejected as they introduce ambiguity 19294 * in the naming of the interfaces. 19295 * In order to confirm with existing semantics, 19296 * and to not break any programs/script relying 19297 * on that behaviour, if<0>:0 is considered to be 19298 * a valid interface. 19299 * 19300 * If alias has two or more digits and the first 19301 * is zero, fail. 19302 */ 19303 if (&cp[2] < endp && cp[1] == '0') 19304 return (NULL); 19305 } 19306 19307 if (cp <= name) { 19308 cp = endp; 19309 } else { 19310 *cp = '\0'; 19311 } 19312 19313 /* 19314 * Look up the ILL, based on the portion of the name 19315 * before the slash. ill_lookup_on_name returns a held ill. 19316 * Temporary to check whether ill exists already. If so 19317 * ill_lookup_on_name will clear it. 19318 */ 19319 ill = ill_lookup_on_name(name, do_alloc, isv6, 19320 q, mp, func, error, &did_alloc, ipst); 19321 if (cp != endp) 19322 *cp = IPIF_SEPARATOR_CHAR; 19323 if (ill == NULL) 19324 return (NULL); 19325 19326 /* Establish the unit number in the name. */ 19327 id = 0; 19328 if (cp < endp && *endp == '\0') { 19329 /* If there was a colon, the unit number follows. */ 19330 cp++; 19331 if (ddi_strtol(cp, NULL, 0, &id) != 0) { 19332 ill_refrele(ill); 19333 if (error != NULL) 19334 *error = ENXIO; 19335 return (NULL); 19336 } 19337 } 19338 19339 GRAB_CONN_LOCK(q); 19340 mutex_enter(&ill->ill_lock); 19341 /* Now see if there is an IPIF with this unit number. */ 19342 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 19343 if (ipif->ipif_id == id) { 19344 if (zoneid != ALL_ZONES && 19345 zoneid != ipif->ipif_zoneid && 19346 ipif->ipif_zoneid != ALL_ZONES) { 19347 mutex_exit(&ill->ill_lock); 19348 RELEASE_CONN_LOCK(q); 19349 ill_refrele(ill); 19350 if (error != NULL) 19351 *error = ENXIO; 19352 return (NULL); 19353 } 19354 /* 19355 * The block comment at the start of ipif_down 19356 * explains the use of the macros used below 19357 */ 19358 if (IPIF_CAN_LOOKUP(ipif)) { 19359 ipif_refhold_locked(ipif); 19360 mutex_exit(&ill->ill_lock); 19361 if (!did_alloc) 19362 *exists = B_TRUE; 19363 /* 19364 * Drop locks before calling ill_refrele 19365 * since it can potentially call into 19366 * ipif_ill_refrele_tail which can end up 19367 * in trying to acquire any lock. 19368 */ 19369 RELEASE_CONN_LOCK(q); 19370 ill_refrele(ill); 19371 return (ipif); 19372 } else if (IPIF_CAN_WAIT(ipif, q)) { 19373 ipsq = ill->ill_phyint->phyint_ipsq; 19374 mutex_enter(&ipsq->ipsq_lock); 19375 mutex_exit(&ill->ill_lock); 19376 ipsq_enq(ipsq, q, mp, func, NEW_OP, ill); 19377 mutex_exit(&ipsq->ipsq_lock); 19378 RELEASE_CONN_LOCK(q); 19379 ill_refrele(ill); 19380 *error = EINPROGRESS; 19381 return (NULL); 19382 } 19383 } 19384 } 19385 RELEASE_CONN_LOCK(q); 19386 19387 if (!do_alloc) { 19388 mutex_exit(&ill->ill_lock); 19389 ill_refrele(ill); 19390 if (error != NULL) 19391 *error = ENXIO; 19392 return (NULL); 19393 } 19394 19395 /* 19396 * If none found, atomically allocate and return a new one. 19397 * Historically, we used IRE_LOOPBACK only for lun 0, and IRE_LOCAL 19398 * to support "receive only" use of lo0:1 etc. as is still done 19399 * below as an initial guess. 19400 * However, this is now likely to be overriden later in ipif_up_done() 19401 * when we know for sure what address has been configured on the 19402 * interface, since we might have more than one loopback interface 19403 * with a loopback address, e.g. in the case of zones, and all the 19404 * interfaces with loopback addresses need to be marked IRE_LOOPBACK. 19405 */ 19406 if (ill->ill_net_type == IRE_LOOPBACK && id == 0) 19407 ire_type = IRE_LOOPBACK; 19408 else 19409 ire_type = IRE_LOCAL; 19410 ipif = ipif_allocate(ill, id, ire_type, B_TRUE); 19411 if (ipif != NULL) 19412 ipif_refhold_locked(ipif); 19413 else if (error != NULL) 19414 *error = ENOMEM; 19415 mutex_exit(&ill->ill_lock); 19416 ill_refrele(ill); 19417 return (ipif); 19418 } 19419 19420 /* 19421 * This routine is called whenever a new address comes up on an ipif. If 19422 * we are configured to respond to address mask requests, then we are supposed 19423 * to broadcast an address mask reply at this time. This routine is also 19424 * called if we are already up, but a netmask change is made. This is legal 19425 * but might not make the system manager very popular. (May be called 19426 * as writer.) 19427 */ 19428 void 19429 ipif_mask_reply(ipif_t *ipif) 19430 { 19431 icmph_t *icmph; 19432 ipha_t *ipha; 19433 mblk_t *mp; 19434 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 19435 19436 #define REPLY_LEN (sizeof (icmp_ipha) + sizeof (icmph_t) + IP_ADDR_LEN) 19437 19438 if (!ipst->ips_ip_respond_to_address_mask_broadcast) 19439 return; 19440 19441 /* ICMP mask reply is IPv4 only */ 19442 ASSERT(!ipif->ipif_isv6); 19443 /* ICMP mask reply is not for a loopback interface */ 19444 ASSERT(ipif->ipif_ill->ill_wq != NULL); 19445 19446 mp = allocb(REPLY_LEN, BPRI_HI); 19447 if (mp == NULL) 19448 return; 19449 mp->b_wptr = mp->b_rptr + REPLY_LEN; 19450 19451 ipha = (ipha_t *)mp->b_rptr; 19452 bzero(ipha, REPLY_LEN); 19453 *ipha = icmp_ipha; 19454 ipha->ipha_ttl = ipst->ips_ip_broadcast_ttl; 19455 ipha->ipha_src = ipif->ipif_src_addr; 19456 ipha->ipha_dst = ipif->ipif_brd_addr; 19457 ipha->ipha_length = htons(REPLY_LEN); 19458 ipha->ipha_ident = 0; 19459 19460 icmph = (icmph_t *)&ipha[1]; 19461 icmph->icmph_type = ICMP_ADDRESS_MASK_REPLY; 19462 bcopy(&ipif->ipif_net_mask, &icmph[1], IP_ADDR_LEN); 19463 icmph->icmph_checksum = IP_CSUM(mp, sizeof (ipha_t), 0); 19464 19465 put(ipif->ipif_wq, mp); 19466 19467 #undef REPLY_LEN 19468 } 19469 19470 /* 19471 * When the mtu in the ipif changes, we call this routine through ire_walk 19472 * to update all the relevant IREs. 19473 * Skip IRE_LOCAL and "loopback" IRE_BROADCAST by checking ire_stq. 19474 */ 19475 static void 19476 ipif_mtu_change(ire_t *ire, char *ipif_arg) 19477 { 19478 ipif_t *ipif = (ipif_t *)ipif_arg; 19479 19480 if (ire->ire_stq == NULL || ire->ire_ipif != ipif) 19481 return; 19482 ire->ire_max_frag = MIN(ipif->ipif_mtu, IP_MAXPACKET); 19483 } 19484 19485 /* 19486 * When the mtu in the ill changes, we call this routine through ire_walk 19487 * to update all the relevant IREs. 19488 * Skip IRE_LOCAL and "loopback" IRE_BROADCAST by checking ire_stq. 19489 */ 19490 void 19491 ill_mtu_change(ire_t *ire, char *ill_arg) 19492 { 19493 ill_t *ill = (ill_t *)ill_arg; 19494 19495 if (ire->ire_stq == NULL || ire->ire_ipif->ipif_ill != ill) 19496 return; 19497 ire->ire_max_frag = ire->ire_ipif->ipif_mtu; 19498 } 19499 19500 /* 19501 * Join the ipif specific multicast groups. 19502 * Must be called after a mapping has been set up in the resolver. (Always 19503 * called as writer.) 19504 */ 19505 void 19506 ipif_multicast_up(ipif_t *ipif) 19507 { 19508 int err, index; 19509 ill_t *ill; 19510 19511 ASSERT(IAM_WRITER_IPIF(ipif)); 19512 19513 ill = ipif->ipif_ill; 19514 index = ill->ill_phyint->phyint_ifindex; 19515 19516 ip1dbg(("ipif_multicast_up\n")); 19517 if (!(ill->ill_flags & ILLF_MULTICAST) || ipif->ipif_multicast_up) 19518 return; 19519 19520 if (ipif->ipif_isv6) { 19521 if (IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr)) 19522 return; 19523 19524 /* Join the all hosts multicast address */ 19525 ip1dbg(("ipif_multicast_up - addmulti\n")); 19526 /* 19527 * Passing B_TRUE means we have to join the multicast 19528 * membership on this interface even though this is 19529 * FAILED. If we join on a different one in the group, 19530 * we will not be able to delete the membership later 19531 * as we currently don't track where we join when we 19532 * join within the kernel unlike applications where 19533 * we have ilg/ilg_orig_index. See ip_addmulti_v6 19534 * for more on this. 19535 */ 19536 err = ip_addmulti_v6(&ipv6_all_hosts_mcast, ill, index, 19537 ipif->ipif_zoneid, ILGSTAT_NONE, MODE_IS_EXCLUDE, NULL); 19538 if (err != 0) { 19539 ip0dbg(("ipif_multicast_up: " 19540 "all_hosts_mcast failed %d\n", 19541 err)); 19542 return; 19543 } 19544 /* 19545 * Enable multicast for the solicited node multicast address 19546 */ 19547 if (!(ipif->ipif_flags & IPIF_NOLOCAL)) { 19548 in6_addr_t ipv6_multi = ipv6_solicited_node_mcast; 19549 19550 ipv6_multi.s6_addr32[3] |= 19551 ipif->ipif_v6lcl_addr.s6_addr32[3]; 19552 19553 err = ip_addmulti_v6(&ipv6_multi, ill, index, 19554 ipif->ipif_zoneid, ILGSTAT_NONE, MODE_IS_EXCLUDE, 19555 NULL); 19556 if (err != 0) { 19557 ip0dbg(("ipif_multicast_up: solicited MC" 19558 " failed %d\n", err)); 19559 (void) ip_delmulti_v6(&ipv6_all_hosts_mcast, 19560 ill, ill->ill_phyint->phyint_ifindex, 19561 ipif->ipif_zoneid, B_TRUE, B_TRUE); 19562 return; 19563 } 19564 } 19565 } else { 19566 if (ipif->ipif_lcl_addr == INADDR_ANY) 19567 return; 19568 19569 /* Join the all hosts multicast address */ 19570 ip1dbg(("ipif_multicast_up - addmulti\n")); 19571 err = ip_addmulti(htonl(INADDR_ALLHOSTS_GROUP), ipif, 19572 ILGSTAT_NONE, MODE_IS_EXCLUDE, NULL); 19573 if (err) { 19574 ip0dbg(("ipif_multicast_up: failed %d\n", err)); 19575 return; 19576 } 19577 } 19578 ipif->ipif_multicast_up = 1; 19579 } 19580 19581 /* 19582 * Blow away any multicast groups that we joined in ipif_multicast_up(). 19583 * (Explicit memberships are blown away in ill_leave_multicast() when the 19584 * ill is brought down.) 19585 */ 19586 static void 19587 ipif_multicast_down(ipif_t *ipif) 19588 { 19589 int err; 19590 19591 ASSERT(IAM_WRITER_IPIF(ipif)); 19592 19593 ip1dbg(("ipif_multicast_down\n")); 19594 if (!ipif->ipif_multicast_up) 19595 return; 19596 19597 ip1dbg(("ipif_multicast_down - delmulti\n")); 19598 19599 if (!ipif->ipif_isv6) { 19600 err = ip_delmulti(htonl(INADDR_ALLHOSTS_GROUP), ipif, B_TRUE, 19601 B_TRUE); 19602 if (err != 0) 19603 ip0dbg(("ipif_multicast_down: failed %d\n", err)); 19604 19605 ipif->ipif_multicast_up = 0; 19606 return; 19607 } 19608 19609 /* 19610 * Leave the all hosts multicast address. Similar to ip_addmulti_v6, 19611 * we should look for ilms on this ill rather than the ones that have 19612 * been failed over here. They are here temporarily. As 19613 * ipif_multicast_up has joined on this ill, we should delete only 19614 * from this ill. 19615 */ 19616 err = ip_delmulti_v6(&ipv6_all_hosts_mcast, ipif->ipif_ill, 19617 ipif->ipif_ill->ill_phyint->phyint_ifindex, ipif->ipif_zoneid, 19618 B_TRUE, B_TRUE); 19619 if (err != 0) { 19620 ip0dbg(("ipif_multicast_down: all_hosts_mcast failed %d\n", 19621 err)); 19622 } 19623 /* 19624 * Disable multicast for the solicited node multicast address 19625 */ 19626 if (!(ipif->ipif_flags & IPIF_NOLOCAL)) { 19627 in6_addr_t ipv6_multi = ipv6_solicited_node_mcast; 19628 19629 ipv6_multi.s6_addr32[3] |= 19630 ipif->ipif_v6lcl_addr.s6_addr32[3]; 19631 19632 err = ip_delmulti_v6(&ipv6_multi, ipif->ipif_ill, 19633 ipif->ipif_ill->ill_phyint->phyint_ifindex, 19634 ipif->ipif_zoneid, B_TRUE, B_TRUE); 19635 19636 if (err != 0) { 19637 ip0dbg(("ipif_multicast_down: sol MC failed %d\n", 19638 err)); 19639 } 19640 } 19641 19642 ipif->ipif_multicast_up = 0; 19643 } 19644 19645 /* 19646 * Used when an interface comes up to recreate any extra routes on this 19647 * interface. 19648 */ 19649 static ire_t ** 19650 ipif_recover_ire(ipif_t *ipif) 19651 { 19652 mblk_t *mp; 19653 ire_t **ipif_saved_irep; 19654 ire_t **irep; 19655 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 19656 19657 ip1dbg(("ipif_recover_ire(%s:%u)", ipif->ipif_ill->ill_name, 19658 ipif->ipif_id)); 19659 19660 mutex_enter(&ipif->ipif_saved_ire_lock); 19661 ipif_saved_irep = (ire_t **)kmem_zalloc(sizeof (ire_t *) * 19662 ipif->ipif_saved_ire_cnt, KM_NOSLEEP); 19663 if (ipif_saved_irep == NULL) { 19664 mutex_exit(&ipif->ipif_saved_ire_lock); 19665 return (NULL); 19666 } 19667 19668 irep = ipif_saved_irep; 19669 for (mp = ipif->ipif_saved_ire_mp; mp != NULL; mp = mp->b_cont) { 19670 ire_t *ire; 19671 queue_t *rfq; 19672 queue_t *stq; 19673 ifrt_t *ifrt; 19674 uchar_t *src_addr; 19675 uchar_t *gateway_addr; 19676 ushort_t type; 19677 19678 /* 19679 * When the ire was initially created and then added in 19680 * ip_rt_add(), it was created either using ipif->ipif_net_type 19681 * in the case of a traditional interface route, or as one of 19682 * the IRE_OFFSUBNET types (with the exception of 19683 * IRE_HOST types ire which is created by icmp_redirect() and 19684 * which we don't need to save or recover). In the case where 19685 * ipif->ipif_net_type was IRE_LOOPBACK, ip_rt_add() will update 19686 * the ire_type to IRE_IF_NORESOLVER before calling ire_add() 19687 * to satisfy software like GateD and Sun Cluster which creates 19688 * routes using the the loopback interface's address as a 19689 * gateway. 19690 * 19691 * As ifrt->ifrt_type reflects the already updated ire_type, 19692 * ire_create() will be called in the same way here as 19693 * in ip_rt_add(), namely using ipif->ipif_net_type when 19694 * the route looks like a traditional interface route (where 19695 * ifrt->ifrt_type & IRE_INTERFACE is true) and otherwise using 19696 * the saved ifrt->ifrt_type. This means that in the case where 19697 * ipif->ipif_net_type is IRE_LOOPBACK, the ire created by 19698 * ire_create() will be an IRE_LOOPBACK, it will then be turned 19699 * into an IRE_IF_NORESOLVER and then added by ire_add(). 19700 */ 19701 ifrt = (ifrt_t *)mp->b_rptr; 19702 ASSERT(ifrt->ifrt_type != IRE_CACHE); 19703 if (ifrt->ifrt_type & IRE_INTERFACE) { 19704 rfq = NULL; 19705 stq = (ipif->ipif_net_type == IRE_IF_RESOLVER) 19706 ? ipif->ipif_rq : ipif->ipif_wq; 19707 src_addr = (ifrt->ifrt_flags & RTF_SETSRC) 19708 ? (uint8_t *)&ifrt->ifrt_src_addr 19709 : (uint8_t *)&ipif->ipif_src_addr; 19710 gateway_addr = NULL; 19711 type = ipif->ipif_net_type; 19712 } else if (ifrt->ifrt_type & IRE_BROADCAST) { 19713 /* Recover multiroute broadcast IRE. */ 19714 rfq = ipif->ipif_rq; 19715 stq = ipif->ipif_wq; 19716 src_addr = (ifrt->ifrt_flags & RTF_SETSRC) 19717 ? (uint8_t *)&ifrt->ifrt_src_addr 19718 : (uint8_t *)&ipif->ipif_src_addr; 19719 gateway_addr = (uint8_t *)&ifrt->ifrt_gateway_addr; 19720 type = ifrt->ifrt_type; 19721 } else { 19722 rfq = NULL; 19723 stq = NULL; 19724 src_addr = (ifrt->ifrt_flags & RTF_SETSRC) 19725 ? (uint8_t *)&ifrt->ifrt_src_addr : NULL; 19726 gateway_addr = (uint8_t *)&ifrt->ifrt_gateway_addr; 19727 type = ifrt->ifrt_type; 19728 } 19729 19730 /* 19731 * Create a copy of the IRE with the saved address and netmask. 19732 */ 19733 ip1dbg(("ipif_recover_ire: creating IRE %s (%d) for " 19734 "0x%x/0x%x\n", 19735 ip_nv_lookup(ire_nv_tbl, ifrt->ifrt_type), ifrt->ifrt_type, 19736 ntohl(ifrt->ifrt_addr), 19737 ntohl(ifrt->ifrt_mask))); 19738 ire = ire_create( 19739 (uint8_t *)&ifrt->ifrt_addr, 19740 (uint8_t *)&ifrt->ifrt_mask, 19741 src_addr, 19742 gateway_addr, 19743 &ifrt->ifrt_max_frag, 19744 NULL, 19745 rfq, 19746 stq, 19747 type, 19748 ipif, 19749 0, 19750 0, 19751 0, 19752 ifrt->ifrt_flags, 19753 &ifrt->ifrt_iulp_info, 19754 NULL, 19755 NULL, 19756 ipst); 19757 19758 if (ire == NULL) { 19759 mutex_exit(&ipif->ipif_saved_ire_lock); 19760 kmem_free(ipif_saved_irep, 19761 ipif->ipif_saved_ire_cnt * sizeof (ire_t *)); 19762 return (NULL); 19763 } 19764 19765 /* 19766 * Some software (for example, GateD and Sun Cluster) attempts 19767 * to create (what amount to) IRE_PREFIX routes with the 19768 * loopback address as the gateway. This is primarily done to 19769 * set up prefixes with the RTF_REJECT flag set (for example, 19770 * when generating aggregate routes.) 19771 * 19772 * If the IRE type (as defined by ipif->ipif_net_type) is 19773 * IRE_LOOPBACK, then we map the request into a 19774 * IRE_IF_NORESOLVER. 19775 */ 19776 if (ipif->ipif_net_type == IRE_LOOPBACK) 19777 ire->ire_type = IRE_IF_NORESOLVER; 19778 /* 19779 * ire held by ire_add, will be refreled' towards the 19780 * the end of ipif_up_done 19781 */ 19782 (void) ire_add(&ire, NULL, NULL, NULL, B_FALSE); 19783 *irep = ire; 19784 irep++; 19785 ip1dbg(("ipif_recover_ire: added ire %p\n", (void *)ire)); 19786 } 19787 mutex_exit(&ipif->ipif_saved_ire_lock); 19788 return (ipif_saved_irep); 19789 } 19790 19791 /* 19792 * Used to set the netmask and broadcast address to default values when the 19793 * interface is brought up. (Always called as writer.) 19794 */ 19795 static void 19796 ipif_set_default(ipif_t *ipif) 19797 { 19798 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 19799 19800 if (!ipif->ipif_isv6) { 19801 /* 19802 * Interface holds an IPv4 address. Default 19803 * mask is the natural netmask. 19804 */ 19805 if (!ipif->ipif_net_mask) { 19806 ipaddr_t v4mask; 19807 19808 v4mask = ip_net_mask(ipif->ipif_lcl_addr); 19809 V4MASK_TO_V6(v4mask, ipif->ipif_v6net_mask); 19810 } 19811 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 19812 /* ipif_subnet is ipif_pp_dst_addr for pt-pt */ 19813 ipif->ipif_v6subnet = ipif->ipif_v6pp_dst_addr; 19814 } else { 19815 V6_MASK_COPY(ipif->ipif_v6lcl_addr, 19816 ipif->ipif_v6net_mask, ipif->ipif_v6subnet); 19817 } 19818 /* 19819 * NOTE: SunOS 4.X does this even if the broadcast address 19820 * has been already set thus we do the same here. 19821 */ 19822 if (ipif->ipif_flags & IPIF_BROADCAST) { 19823 ipaddr_t v4addr; 19824 19825 v4addr = ipif->ipif_subnet | ~ipif->ipif_net_mask; 19826 IN6_IPADDR_TO_V4MAPPED(v4addr, &ipif->ipif_v6brd_addr); 19827 } 19828 } else { 19829 /* 19830 * Interface holds an IPv6-only address. Default 19831 * mask is all-ones. 19832 */ 19833 if (IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6net_mask)) 19834 ipif->ipif_v6net_mask = ipv6_all_ones; 19835 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 19836 /* ipif_subnet is ipif_pp_dst_addr for pt-pt */ 19837 ipif->ipif_v6subnet = ipif->ipif_v6pp_dst_addr; 19838 } else { 19839 V6_MASK_COPY(ipif->ipif_v6lcl_addr, 19840 ipif->ipif_v6net_mask, ipif->ipif_v6subnet); 19841 } 19842 } 19843 } 19844 19845 /* 19846 * Return 0 if this address can be used as local address without causing 19847 * duplicate address problems. Otherwise, return EADDRNOTAVAIL if the address 19848 * is already up on a different ill, and EADDRINUSE if it's up on the same ill. 19849 * Special checks are needed to allow the same IPv6 link-local address 19850 * on different ills. 19851 * TODO: allowing the same site-local address on different ill's. 19852 */ 19853 int 19854 ip_addr_availability_check(ipif_t *new_ipif) 19855 { 19856 in6_addr_t our_v6addr; 19857 ill_t *ill; 19858 ipif_t *ipif; 19859 ill_walk_context_t ctx; 19860 ip_stack_t *ipst = new_ipif->ipif_ill->ill_ipst; 19861 19862 ASSERT(IAM_WRITER_IPIF(new_ipif)); 19863 ASSERT(MUTEX_HELD(&ipst->ips_ip_addr_avail_lock)); 19864 ASSERT(RW_READ_HELD(&ipst->ips_ill_g_lock)); 19865 19866 new_ipif->ipif_flags &= ~IPIF_UNNUMBERED; 19867 if (IN6_IS_ADDR_UNSPECIFIED(&new_ipif->ipif_v6lcl_addr) || 19868 IN6_IS_ADDR_V4MAPPED_ANY(&new_ipif->ipif_v6lcl_addr)) 19869 return (0); 19870 19871 our_v6addr = new_ipif->ipif_v6lcl_addr; 19872 19873 if (new_ipif->ipif_isv6) 19874 ill = ILL_START_WALK_V6(&ctx, ipst); 19875 else 19876 ill = ILL_START_WALK_V4(&ctx, ipst); 19877 19878 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 19879 for (ipif = ill->ill_ipif; ipif != NULL; 19880 ipif = ipif->ipif_next) { 19881 if ((ipif == new_ipif) || 19882 !(ipif->ipif_flags & IPIF_UP) || 19883 (ipif->ipif_flags & IPIF_UNNUMBERED)) 19884 continue; 19885 if (IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6lcl_addr, 19886 &our_v6addr)) { 19887 if (new_ipif->ipif_flags & IPIF_POINTOPOINT) 19888 new_ipif->ipif_flags |= IPIF_UNNUMBERED; 19889 else if (ipif->ipif_flags & IPIF_POINTOPOINT) 19890 ipif->ipif_flags |= IPIF_UNNUMBERED; 19891 else if (IN6_IS_ADDR_LINKLOCAL(&our_v6addr) && 19892 new_ipif->ipif_ill != ill) 19893 continue; 19894 else if (IN6_IS_ADDR_SITELOCAL(&our_v6addr) && 19895 new_ipif->ipif_ill != ill) 19896 continue; 19897 else if (new_ipif->ipif_zoneid != 19898 ipif->ipif_zoneid && 19899 ipif->ipif_zoneid != ALL_ZONES && 19900 IS_LOOPBACK(ill)) 19901 continue; 19902 else if (new_ipif->ipif_ill == ill) 19903 return (EADDRINUSE); 19904 else 19905 return (EADDRNOTAVAIL); 19906 } 19907 } 19908 } 19909 19910 return (0); 19911 } 19912 19913 /* 19914 * Bring up an ipif: bring up arp/ndp, bring up the DLPI stream, and add 19915 * IREs for the ipif. 19916 * When the routine returns EINPROGRESS then mp has been consumed and 19917 * the ioctl will be acked from ip_rput_dlpi. 19918 */ 19919 static int 19920 ipif_up(ipif_t *ipif, queue_t *q, mblk_t *mp) 19921 { 19922 ill_t *ill = ipif->ipif_ill; 19923 boolean_t isv6 = ipif->ipif_isv6; 19924 int err = 0; 19925 boolean_t success; 19926 19927 ASSERT(IAM_WRITER_IPIF(ipif)); 19928 19929 ip1dbg(("ipif_up(%s:%u)\n", ill->ill_name, ipif->ipif_id)); 19930 19931 /* Shouldn't get here if it is already up. */ 19932 if (ipif->ipif_flags & IPIF_UP) 19933 return (EALREADY); 19934 19935 /* Skip arp/ndp for any loopback interface. */ 19936 if (ill->ill_wq != NULL) { 19937 conn_t *connp = CONN_Q(q) ? Q_TO_CONN(q) : NULL; 19938 ipsq_t *ipsq = ill->ill_phyint->phyint_ipsq; 19939 19940 if (!ill->ill_dl_up) { 19941 /* 19942 * ill_dl_up is not yet set. i.e. we are yet to 19943 * DL_BIND with the driver and this is the first 19944 * logical interface on the ill to become "up". 19945 * Tell the driver to get going (via DL_BIND_REQ). 19946 * Note that changing "significant" IFF_ flags 19947 * address/netmask etc cause a down/up dance, but 19948 * does not cause an unbind (DL_UNBIND) with the driver 19949 */ 19950 return (ill_dl_up(ill, ipif, mp, q)); 19951 } 19952 19953 /* 19954 * ipif_resolver_up may end up sending an 19955 * AR_INTERFACE_UP message to ARP, which would, in 19956 * turn send a DLPI message to the driver. ioctls are 19957 * serialized and so we cannot send more than one 19958 * interface up message at a time. If ipif_resolver_up 19959 * does send an interface up message to ARP, we get 19960 * EINPROGRESS and we will complete in ip_arp_done. 19961 */ 19962 19963 ASSERT(connp != NULL || !CONN_Q(q)); 19964 ASSERT(ipsq->ipsq_pending_mp == NULL); 19965 if (connp != NULL) 19966 mutex_enter(&connp->conn_lock); 19967 mutex_enter(&ill->ill_lock); 19968 success = ipsq_pending_mp_add(connp, ipif, q, mp, 0); 19969 mutex_exit(&ill->ill_lock); 19970 if (connp != NULL) 19971 mutex_exit(&connp->conn_lock); 19972 if (!success) 19973 return (EINTR); 19974 19975 /* 19976 * Crank up IPv6 neighbor discovery 19977 * Unlike ARP, this should complete when 19978 * ipif_ndp_up returns. However, for 19979 * ILLF_XRESOLV interfaces we also send a 19980 * AR_INTERFACE_UP to the external resolver. 19981 * That ioctl will complete in ip_rput. 19982 */ 19983 if (isv6) { 19984 err = ipif_ndp_up(ipif, &ipif->ipif_v6lcl_addr); 19985 if (err != 0) { 19986 if (err != EINPROGRESS) 19987 mp = ipsq_pending_mp_get(ipsq, &connp); 19988 return (err); 19989 } 19990 } 19991 /* Now, ARP */ 19992 err = ipif_resolver_up(ipif, Res_act_initial); 19993 if (err == EINPROGRESS) { 19994 /* We will complete it in ip_arp_done */ 19995 return (err); 19996 } 19997 mp = ipsq_pending_mp_get(ipsq, &connp); 19998 ASSERT(mp != NULL); 19999 if (err != 0) 20000 return (err); 20001 } else { 20002 /* 20003 * Interfaces without underlying hardware don't do duplicate 20004 * address detection. 20005 */ 20006 ASSERT(!(ipif->ipif_flags & IPIF_DUPLICATE)); 20007 ipif->ipif_addr_ready = 1; 20008 } 20009 return (isv6 ? ipif_up_done_v6(ipif) : ipif_up_done(ipif)); 20010 } 20011 20012 /* 20013 * Perform a bind for the physical device. 20014 * When the routine returns EINPROGRESS then mp has been consumed and 20015 * the ioctl will be acked from ip_rput_dlpi. 20016 * Allocate an unbind message and save it until ipif_down. 20017 */ 20018 static int 20019 ill_dl_up(ill_t *ill, ipif_t *ipif, mblk_t *mp, queue_t *q) 20020 { 20021 areq_t *areq; 20022 mblk_t *areq_mp = NULL; 20023 mblk_t *bind_mp = NULL; 20024 mblk_t *unbind_mp = NULL; 20025 conn_t *connp; 20026 boolean_t success; 20027 uint16_t sap_addr; 20028 20029 ip1dbg(("ill_dl_up(%s)\n", ill->ill_name)); 20030 ASSERT(IAM_WRITER_ILL(ill)); 20031 ASSERT(mp != NULL); 20032 20033 /* Create a resolver cookie for ARP */ 20034 if (!ill->ill_isv6 && ill->ill_net_type == IRE_IF_RESOLVER) { 20035 areq_mp = ill_arp_alloc(ill, (uchar_t *)&ip_areq_template, 0); 20036 if (areq_mp == NULL) 20037 return (ENOMEM); 20038 20039 freemsg(ill->ill_resolver_mp); 20040 ill->ill_resolver_mp = areq_mp; 20041 areq = (areq_t *)areq_mp->b_rptr; 20042 sap_addr = ill->ill_sap; 20043 bcopy(&sap_addr, areq->areq_sap, sizeof (sap_addr)); 20044 } 20045 bind_mp = ip_dlpi_alloc(sizeof (dl_bind_req_t) + sizeof (long), 20046 DL_BIND_REQ); 20047 if (bind_mp == NULL) 20048 goto bad; 20049 ((dl_bind_req_t *)bind_mp->b_rptr)->dl_sap = ill->ill_sap; 20050 ((dl_bind_req_t *)bind_mp->b_rptr)->dl_service_mode = DL_CLDLS; 20051 20052 unbind_mp = ip_dlpi_alloc(sizeof (dl_unbind_req_t), DL_UNBIND_REQ); 20053 if (unbind_mp == NULL) 20054 goto bad; 20055 20056 /* 20057 * Record state needed to complete this operation when the 20058 * DL_BIND_ACK shows up. Also remember the pre-allocated mblks. 20059 */ 20060 ASSERT(WR(q)->q_next == NULL); 20061 connp = Q_TO_CONN(q); 20062 20063 mutex_enter(&connp->conn_lock); 20064 mutex_enter(&ipif->ipif_ill->ill_lock); 20065 success = ipsq_pending_mp_add(connp, ipif, q, mp, 0); 20066 mutex_exit(&ipif->ipif_ill->ill_lock); 20067 mutex_exit(&connp->conn_lock); 20068 if (!success) 20069 goto bad; 20070 20071 /* 20072 * Save the unbind message for ill_dl_down(); it will be consumed when 20073 * the interface goes down. 20074 */ 20075 ASSERT(ill->ill_unbind_mp == NULL); 20076 ill->ill_unbind_mp = unbind_mp; 20077 20078 ill_dlpi_send(ill, bind_mp); 20079 /* Send down link-layer capabilities probe if not already done. */ 20080 ill_capability_probe(ill); 20081 20082 /* 20083 * Sysid used to rely on the fact that netboots set domainname 20084 * and the like. Now that miniroot boots aren't strictly netboots 20085 * and miniroot network configuration is driven from userland 20086 * these things still need to be set. This situation can be detected 20087 * by comparing the interface being configured here to the one 20088 * dhcack was set to reference by the boot loader. Once sysid is 20089 * converted to use dhcp_ipc_getinfo() this call can go away. 20090 */ 20091 if ((ipif->ipif_flags & IPIF_DHCPRUNNING) && (dhcack != NULL) && 20092 (strcmp(ill->ill_name, dhcack) == 0) && 20093 (strlen(srpc_domain) == 0)) { 20094 if (dhcpinit() != 0) 20095 cmn_err(CE_WARN, "no cached dhcp response"); 20096 } 20097 20098 /* 20099 * This operation will complete in ip_rput_dlpi with either 20100 * a DL_BIND_ACK or DL_ERROR_ACK. 20101 */ 20102 return (EINPROGRESS); 20103 bad: 20104 ip1dbg(("ill_dl_up(%s) FAILED\n", ill->ill_name)); 20105 /* 20106 * We don't have to check for possible removal from illgrp 20107 * as we have not yet inserted in illgrp. For groups 20108 * without names, this ipif is still not UP and hence 20109 * this could not have possibly had any influence in forming 20110 * groups. 20111 */ 20112 20113 freemsg(bind_mp); 20114 freemsg(unbind_mp); 20115 return (ENOMEM); 20116 } 20117 20118 uint_t ip_loopback_mtuplus = IP_LOOPBACK_MTU + IP_SIMPLE_HDR_LENGTH + 20; 20119 20120 /* 20121 * DLPI and ARP is up. 20122 * Create all the IREs associated with an interface bring up multicast. 20123 * Set the interface flag and finish other initialization 20124 * that potentially had to be differed to after DL_BIND_ACK. 20125 */ 20126 int 20127 ipif_up_done(ipif_t *ipif) 20128 { 20129 ire_t *ire_array[20]; 20130 ire_t **irep = ire_array; 20131 ire_t **irep1; 20132 ipaddr_t net_mask = 0; 20133 ipaddr_t subnet_mask, route_mask; 20134 ill_t *ill = ipif->ipif_ill; 20135 queue_t *stq; 20136 ipif_t *src_ipif; 20137 ipif_t *tmp_ipif; 20138 boolean_t flush_ire_cache = B_TRUE; 20139 int err = 0; 20140 phyint_t *phyi; 20141 ire_t **ipif_saved_irep = NULL; 20142 int ipif_saved_ire_cnt; 20143 int cnt; 20144 boolean_t src_ipif_held = B_FALSE; 20145 boolean_t ire_added = B_FALSE; 20146 boolean_t loopback = B_FALSE; 20147 ip_stack_t *ipst = ill->ill_ipst; 20148 20149 ip1dbg(("ipif_up_done(%s:%u)\n", 20150 ipif->ipif_ill->ill_name, ipif->ipif_id)); 20151 /* Check if this is a loopback interface */ 20152 if (ipif->ipif_ill->ill_wq == NULL) 20153 loopback = B_TRUE; 20154 20155 ASSERT(!MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 20156 /* 20157 * If all other interfaces for this ill are down or DEPRECATED, 20158 * or otherwise unsuitable for source address selection, remove 20159 * any IRE_CACHE entries for this ill to make sure source 20160 * address selection gets to take this new ipif into account. 20161 * No need to hold ill_lock while traversing the ipif list since 20162 * we are writer 20163 */ 20164 for (tmp_ipif = ill->ill_ipif; tmp_ipif; 20165 tmp_ipif = tmp_ipif->ipif_next) { 20166 if (((tmp_ipif->ipif_flags & 20167 (IPIF_NOXMIT|IPIF_ANYCAST|IPIF_NOLOCAL|IPIF_DEPRECATED)) || 20168 !(tmp_ipif->ipif_flags & IPIF_UP)) || 20169 (tmp_ipif == ipif)) 20170 continue; 20171 /* first useable pre-existing interface */ 20172 flush_ire_cache = B_FALSE; 20173 break; 20174 } 20175 if (flush_ire_cache) 20176 ire_walk_ill_v4(MATCH_IRE_ILL_GROUP | MATCH_IRE_TYPE, 20177 IRE_CACHE, ill_ipif_cache_delete, (char *)ill, ill); 20178 20179 /* 20180 * Figure out which way the send-to queue should go. Only 20181 * IRE_IF_RESOLVER or IRE_IF_NORESOLVER or IRE_LOOPBACK 20182 * should show up here. 20183 */ 20184 switch (ill->ill_net_type) { 20185 case IRE_IF_RESOLVER: 20186 stq = ill->ill_rq; 20187 break; 20188 case IRE_IF_NORESOLVER: 20189 case IRE_LOOPBACK: 20190 stq = ill->ill_wq; 20191 break; 20192 default: 20193 return (EINVAL); 20194 } 20195 20196 if (IS_LOOPBACK(ill)) { 20197 /* 20198 * lo0:1 and subsequent ipifs were marked IRE_LOCAL in 20199 * ipif_lookup_on_name(), but in the case of zones we can have 20200 * several loopback addresses on lo0. So all the interfaces with 20201 * loopback addresses need to be marked IRE_LOOPBACK. 20202 */ 20203 if (V4_PART_OF_V6(ipif->ipif_v6lcl_addr) == 20204 htonl(INADDR_LOOPBACK)) 20205 ipif->ipif_ire_type = IRE_LOOPBACK; 20206 else 20207 ipif->ipif_ire_type = IRE_LOCAL; 20208 } 20209 20210 if (ipif->ipif_flags & (IPIF_NOLOCAL|IPIF_ANYCAST|IPIF_DEPRECATED)) { 20211 /* 20212 * Can't use our source address. Select a different 20213 * source address for the IRE_INTERFACE and IRE_LOCAL 20214 */ 20215 src_ipif = ipif_select_source(ipif->ipif_ill, 20216 ipif->ipif_subnet, ipif->ipif_zoneid); 20217 if (src_ipif == NULL) 20218 src_ipif = ipif; /* Last resort */ 20219 else 20220 src_ipif_held = B_TRUE; 20221 } else { 20222 src_ipif = ipif; 20223 } 20224 20225 /* Create all the IREs associated with this interface */ 20226 if ((ipif->ipif_lcl_addr != INADDR_ANY) && 20227 !(ipif->ipif_flags & IPIF_NOLOCAL)) { 20228 20229 /* 20230 * If we're on a labeled system then make sure that zone- 20231 * private addresses have proper remote host database entries. 20232 */ 20233 if (is_system_labeled() && 20234 ipif->ipif_ire_type != IRE_LOOPBACK && 20235 !tsol_check_interface_address(ipif)) 20236 return (EINVAL); 20237 20238 /* Register the source address for __sin6_src_id */ 20239 err = ip_srcid_insert(&ipif->ipif_v6lcl_addr, 20240 ipif->ipif_zoneid, ipst); 20241 if (err != 0) { 20242 ip0dbg(("ipif_up_done: srcid_insert %d\n", err)); 20243 return (err); 20244 } 20245 20246 /* If the interface address is set, create the local IRE. */ 20247 ip1dbg(("ipif_up_done: 0x%p creating IRE 0x%x for 0x%x\n", 20248 (void *)ipif, 20249 ipif->ipif_ire_type, 20250 ntohl(ipif->ipif_lcl_addr))); 20251 *irep++ = ire_create( 20252 (uchar_t *)&ipif->ipif_lcl_addr, /* dest address */ 20253 (uchar_t *)&ip_g_all_ones, /* mask */ 20254 (uchar_t *)&src_ipif->ipif_src_addr, /* source address */ 20255 NULL, /* no gateway */ 20256 &ip_loopback_mtuplus, /* max frag size */ 20257 NULL, 20258 ipif->ipif_rq, /* recv-from queue */ 20259 NULL, /* no send-to queue */ 20260 ipif->ipif_ire_type, /* LOCAL or LOOPBACK */ 20261 ipif, 20262 0, 20263 0, 20264 0, 20265 (ipif->ipif_flags & IPIF_PRIVATE) ? 20266 RTF_PRIVATE : 0, 20267 &ire_uinfo_null, 20268 NULL, 20269 NULL, 20270 ipst); 20271 } else { 20272 ip1dbg(( 20273 "ipif_up_done: not creating IRE %d for 0x%x: flags 0x%x\n", 20274 ipif->ipif_ire_type, 20275 ntohl(ipif->ipif_lcl_addr), 20276 (uint_t)ipif->ipif_flags)); 20277 } 20278 if ((ipif->ipif_lcl_addr != INADDR_ANY) && 20279 !(ipif->ipif_flags & IPIF_NOLOCAL)) { 20280 net_mask = ip_net_mask(ipif->ipif_lcl_addr); 20281 } else { 20282 net_mask = htonl(IN_CLASSA_NET); /* fallback */ 20283 } 20284 20285 subnet_mask = ipif->ipif_net_mask; 20286 20287 /* 20288 * If mask was not specified, use natural netmask of 20289 * interface address. Also, store this mask back into the 20290 * ipif struct. 20291 */ 20292 if (subnet_mask == 0) { 20293 subnet_mask = net_mask; 20294 V4MASK_TO_V6(subnet_mask, ipif->ipif_v6net_mask); 20295 V6_MASK_COPY(ipif->ipif_v6lcl_addr, ipif->ipif_v6net_mask, 20296 ipif->ipif_v6subnet); 20297 } 20298 20299 /* Set up the IRE_IF_RESOLVER or IRE_IF_NORESOLVER, as appropriate. */ 20300 if (stq != NULL && !(ipif->ipif_flags & IPIF_NOXMIT) && 20301 ipif->ipif_subnet != INADDR_ANY) { 20302 /* ipif_subnet is ipif_pp_dst_addr for pt-pt */ 20303 20304 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 20305 route_mask = IP_HOST_MASK; 20306 } else { 20307 route_mask = subnet_mask; 20308 } 20309 20310 ip1dbg(("ipif_up_done: ipif 0x%p ill 0x%p " 20311 "creating if IRE ill_net_type 0x%x for 0x%x\n", 20312 (void *)ipif, (void *)ill, 20313 ill->ill_net_type, 20314 ntohl(ipif->ipif_subnet))); 20315 *irep++ = ire_create( 20316 (uchar_t *)&ipif->ipif_subnet, /* dest address */ 20317 (uchar_t *)&route_mask, /* mask */ 20318 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 20319 NULL, /* no gateway */ 20320 &ipif->ipif_mtu, /* max frag */ 20321 NULL, 20322 NULL, /* no recv queue */ 20323 stq, /* send-to queue */ 20324 ill->ill_net_type, /* IF_[NO]RESOLVER */ 20325 ipif, 20326 0, 20327 0, 20328 0, 20329 (ipif->ipif_flags & IPIF_PRIVATE) ? RTF_PRIVATE: 0, 20330 &ire_uinfo_null, 20331 NULL, 20332 NULL, 20333 ipst); 20334 } 20335 20336 /* 20337 * Create any necessary broadcast IREs. 20338 */ 20339 if ((ipif->ipif_subnet != INADDR_ANY) && 20340 (ipif->ipif_flags & IPIF_BROADCAST)) 20341 irep = ipif_create_bcast_ires(ipif, irep); 20342 20343 ASSERT(!MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 20344 20345 /* If an earlier ire_create failed, get out now */ 20346 for (irep1 = irep; irep1 > ire_array; ) { 20347 irep1--; 20348 if (*irep1 == NULL) { 20349 ip1dbg(("ipif_up_done: NULL ire found in ire_array\n")); 20350 err = ENOMEM; 20351 goto bad; 20352 } 20353 } 20354 20355 /* 20356 * Need to atomically check for ip_addr_availablity_check 20357 * under ip_addr_avail_lock, and if it fails got bad, and remove 20358 * from group also.The ill_g_lock is grabbed as reader 20359 * just to make sure no new ills or new ipifs are being added 20360 * to the system while we are checking the uniqueness of addresses. 20361 */ 20362 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 20363 mutex_enter(&ipst->ips_ip_addr_avail_lock); 20364 /* Mark it up, and increment counters. */ 20365 ipif->ipif_flags |= IPIF_UP; 20366 ill->ill_ipif_up_count++; 20367 err = ip_addr_availability_check(ipif); 20368 mutex_exit(&ipst->ips_ip_addr_avail_lock); 20369 rw_exit(&ipst->ips_ill_g_lock); 20370 20371 if (err != 0) { 20372 /* 20373 * Our address may already be up on the same ill. In this case, 20374 * the ARP entry for our ipif replaced the one for the other 20375 * ipif. So we don't want to delete it (otherwise the other ipif 20376 * would be unable to send packets). 20377 * ip_addr_availability_check() identifies this case for us and 20378 * returns EADDRINUSE; we need to turn it into EADDRNOTAVAIL 20379 * which is the expected error code. 20380 */ 20381 if (err == EADDRINUSE) { 20382 freemsg(ipif->ipif_arp_del_mp); 20383 ipif->ipif_arp_del_mp = NULL; 20384 err = EADDRNOTAVAIL; 20385 } 20386 ill->ill_ipif_up_count--; 20387 ipif->ipif_flags &= ~IPIF_UP; 20388 goto bad; 20389 } 20390 20391 /* 20392 * Add in all newly created IREs. ire_create_bcast() has 20393 * already checked for duplicates of the IRE_BROADCAST type. 20394 * We want to add before we call ifgrp_insert which wants 20395 * to know whether IRE_IF_RESOLVER exists or not. 20396 * 20397 * NOTE : We refrele the ire though we may branch to "bad" 20398 * later on where we do ire_delete. This is okay 20399 * because nobody can delete it as we are running 20400 * exclusively. 20401 */ 20402 for (irep1 = irep; irep1 > ire_array; ) { 20403 irep1--; 20404 ASSERT(!MUTEX_HELD(&((*irep1)->ire_ipif->ipif_ill->ill_lock))); 20405 /* 20406 * refheld by ire_add. refele towards the end of the func 20407 */ 20408 (void) ire_add(irep1, NULL, NULL, NULL, B_FALSE); 20409 } 20410 ire_added = B_TRUE; 20411 /* 20412 * Form groups if possible. 20413 * 20414 * If we are supposed to be in a ill_group with a name, insert it 20415 * now as we know that at least one ipif is UP. Otherwise form 20416 * nameless groups. 20417 * 20418 * If ip_enable_group_ifs is set and ipif address is not 0, insert 20419 * this ipif into the appropriate interface group, or create a 20420 * new one. If this is already in a nameless group, we try to form 20421 * a bigger group looking at other ills potentially sharing this 20422 * ipif's prefix. 20423 */ 20424 phyi = ill->ill_phyint; 20425 if (phyi->phyint_groupname_len != 0) { 20426 ASSERT(phyi->phyint_groupname != NULL); 20427 if (ill->ill_ipif_up_count == 1) { 20428 ASSERT(ill->ill_group == NULL); 20429 err = illgrp_insert(&ipst->ips_illgrp_head_v4, ill, 20430 phyi->phyint_groupname, NULL, B_TRUE); 20431 if (err != 0) { 20432 ip1dbg(("ipif_up_done: illgrp allocation " 20433 "failed, error %d\n", err)); 20434 goto bad; 20435 } 20436 } 20437 ASSERT(ill->ill_group != NULL); 20438 } 20439 20440 /* 20441 * When this is part of group, we need to make sure that 20442 * any broadcast ires created because of this ipif coming 20443 * UP gets marked/cleared with IRE_MARK_NORECV appropriately 20444 * so that we don't receive duplicate broadcast packets. 20445 */ 20446 if (ill->ill_group != NULL && ill->ill_ipif_up_count != 0) 20447 ipif_renominate_bcast(ipif); 20448 20449 /* Recover any additional IRE_IF_[NO]RESOLVER entries for this ipif */ 20450 ipif_saved_ire_cnt = ipif->ipif_saved_ire_cnt; 20451 ipif_saved_irep = ipif_recover_ire(ipif); 20452 20453 if (!loopback) { 20454 /* 20455 * If the broadcast address has been set, make sure it makes 20456 * sense based on the interface address. 20457 * Only match on ill since we are sharing broadcast addresses. 20458 */ 20459 if ((ipif->ipif_brd_addr != INADDR_ANY) && 20460 (ipif->ipif_flags & IPIF_BROADCAST)) { 20461 ire_t *ire; 20462 20463 ire = ire_ctable_lookup(ipif->ipif_brd_addr, 0, 20464 IRE_BROADCAST, ipif, ALL_ZONES, 20465 NULL, (MATCH_IRE_TYPE | MATCH_IRE_ILL), ipst); 20466 20467 if (ire == NULL) { 20468 /* 20469 * If there isn't a matching broadcast IRE, 20470 * revert to the default for this netmask. 20471 */ 20472 ipif->ipif_v6brd_addr = ipv6_all_zeros; 20473 mutex_enter(&ipif->ipif_ill->ill_lock); 20474 ipif_set_default(ipif); 20475 mutex_exit(&ipif->ipif_ill->ill_lock); 20476 } else { 20477 ire_refrele(ire); 20478 } 20479 } 20480 20481 } 20482 20483 /* This is the first interface on this ill */ 20484 if (ipif->ipif_ipif_up_count == 1 && !loopback) { 20485 /* 20486 * Need to recover all multicast memberships in the driver. 20487 * This had to be deferred until we had attached. 20488 */ 20489 ill_recover_multicast(ill); 20490 } 20491 /* Join the allhosts multicast address */ 20492 ipif_multicast_up(ipif); 20493 20494 if (!loopback) { 20495 /* 20496 * See whether anybody else would benefit from the 20497 * new ipif that we added. We call this always rather 20498 * than while adding a non-IPIF_NOLOCAL/DEPRECATED/ANYCAST 20499 * ipif is for the benefit of illgrp_insert (done above) 20500 * which does not do source address selection as it does 20501 * not want to re-create interface routes that we are 20502 * having reference to it here. 20503 */ 20504 ill_update_source_selection(ill); 20505 } 20506 20507 for (irep1 = irep; irep1 > ire_array; ) { 20508 irep1--; 20509 if (*irep1 != NULL) { 20510 /* was held in ire_add */ 20511 ire_refrele(*irep1); 20512 } 20513 } 20514 20515 cnt = ipif_saved_ire_cnt; 20516 for (irep1 = ipif_saved_irep; cnt > 0; irep1++, cnt--) { 20517 if (*irep1 != NULL) { 20518 /* was held in ire_add */ 20519 ire_refrele(*irep1); 20520 } 20521 } 20522 20523 if (!loopback && ipif->ipif_addr_ready) { 20524 /* Broadcast an address mask reply. */ 20525 ipif_mask_reply(ipif); 20526 } 20527 if (ipif_saved_irep != NULL) { 20528 kmem_free(ipif_saved_irep, 20529 ipif_saved_ire_cnt * sizeof (ire_t *)); 20530 } 20531 if (src_ipif_held) 20532 ipif_refrele(src_ipif); 20533 20534 /* 20535 * This had to be deferred until we had bound. Tell routing sockets and 20536 * others that this interface is up if it looks like the address has 20537 * been validated. Otherwise, if it isn't ready yet, wait for 20538 * duplicate address detection to do its thing. 20539 */ 20540 if (ipif->ipif_addr_ready) { 20541 ip_rts_ifmsg(ipif); 20542 ip_rts_newaddrmsg(RTM_ADD, 0, ipif); 20543 /* Let SCTP update the status for this ipif */ 20544 sctp_update_ipif(ipif, SCTP_IPIF_UP); 20545 } 20546 return (0); 20547 20548 bad: 20549 ip1dbg(("ipif_up_done: FAILED \n")); 20550 /* 20551 * We don't have to bother removing from ill groups because 20552 * 20553 * 1) For groups with names, we insert only when the first ipif 20554 * comes up. In that case if it fails, it will not be in any 20555 * group. So, we need not try to remove for that case. 20556 * 20557 * 2) For groups without names, either we tried to insert ipif_ill 20558 * in a group as singleton or found some other group to become 20559 * a bigger group. For the former, if it fails we don't have 20560 * anything to do as ipif_ill is not in the group and for the 20561 * latter, there are no failures in illgrp_insert/illgrp_delete 20562 * (ENOMEM can't occur for this. Check ifgrp_insert). 20563 */ 20564 while (irep > ire_array) { 20565 irep--; 20566 if (*irep != NULL) { 20567 ire_delete(*irep); 20568 if (ire_added) 20569 ire_refrele(*irep); 20570 } 20571 } 20572 (void) ip_srcid_remove(&ipif->ipif_v6lcl_addr, ipif->ipif_zoneid, ipst); 20573 20574 if (ipif_saved_irep != NULL) { 20575 kmem_free(ipif_saved_irep, 20576 ipif_saved_ire_cnt * sizeof (ire_t *)); 20577 } 20578 if (src_ipif_held) 20579 ipif_refrele(src_ipif); 20580 20581 ipif_arp_down(ipif); 20582 return (err); 20583 } 20584 20585 /* 20586 * Turn off the ARP with the ILLF_NOARP flag. 20587 */ 20588 static int 20589 ill_arp_off(ill_t *ill) 20590 { 20591 mblk_t *arp_off_mp = NULL; 20592 mblk_t *arp_on_mp = NULL; 20593 20594 ip1dbg(("ill_arp_off(%s)\n", ill->ill_name)); 20595 20596 ASSERT(IAM_WRITER_ILL(ill)); 20597 ASSERT(ill->ill_net_type == IRE_IF_RESOLVER); 20598 20599 /* 20600 * If the on message is still around we've already done 20601 * an arp_off without doing an arp_on thus there is no 20602 * work needed. 20603 */ 20604 if (ill->ill_arp_on_mp != NULL) 20605 return (0); 20606 20607 /* 20608 * Allocate an ARP on message (to be saved) and an ARP off message 20609 */ 20610 arp_off_mp = ill_arp_alloc(ill, (uchar_t *)&ip_aroff_template, 0); 20611 if (!arp_off_mp) 20612 return (ENOMEM); 20613 20614 arp_on_mp = ill_arp_alloc(ill, (uchar_t *)&ip_aron_template, 0); 20615 if (!arp_on_mp) 20616 goto failed; 20617 20618 ASSERT(ill->ill_arp_on_mp == NULL); 20619 ill->ill_arp_on_mp = arp_on_mp; 20620 20621 /* Send an AR_INTERFACE_OFF request */ 20622 putnext(ill->ill_rq, arp_off_mp); 20623 return (0); 20624 failed: 20625 20626 if (arp_off_mp) 20627 freemsg(arp_off_mp); 20628 return (ENOMEM); 20629 } 20630 20631 /* 20632 * Turn on ARP by turning off the ILLF_NOARP flag. 20633 */ 20634 static int 20635 ill_arp_on(ill_t *ill) 20636 { 20637 mblk_t *mp; 20638 20639 ip1dbg(("ipif_arp_on(%s)\n", ill->ill_name)); 20640 20641 ASSERT(ill->ill_net_type == IRE_IF_RESOLVER); 20642 20643 ASSERT(IAM_WRITER_ILL(ill)); 20644 /* 20645 * Send an AR_INTERFACE_ON request if we have already done 20646 * an arp_off (which allocated the message). 20647 */ 20648 if (ill->ill_arp_on_mp != NULL) { 20649 mp = ill->ill_arp_on_mp; 20650 ill->ill_arp_on_mp = NULL; 20651 putnext(ill->ill_rq, mp); 20652 } 20653 return (0); 20654 } 20655 20656 /* 20657 * Called after either deleting ill from the group or when setting 20658 * FAILED or STANDBY on the interface. 20659 */ 20660 static void 20661 illgrp_reset_schednext(ill_t *ill) 20662 { 20663 ill_group_t *illgrp; 20664 ill_t *save_ill; 20665 20666 ASSERT(IAM_WRITER_ILL(ill)); 20667 /* 20668 * When called from illgrp_delete, ill_group will be non-NULL. 20669 * But when called from ip_sioctl_flags, it could be NULL if 20670 * somebody is setting FAILED/INACTIVE on some interface which 20671 * is not part of a group. 20672 */ 20673 illgrp = ill->ill_group; 20674 if (illgrp == NULL) 20675 return; 20676 if (illgrp->illgrp_ill_schednext != ill) 20677 return; 20678 20679 illgrp->illgrp_ill_schednext = NULL; 20680 save_ill = ill; 20681 /* 20682 * Choose a good ill to be the next one for 20683 * outbound traffic. As the flags FAILED/STANDBY is 20684 * not yet marked when called from ip_sioctl_flags, 20685 * we check for ill separately. 20686 */ 20687 for (ill = illgrp->illgrp_ill; ill != NULL; 20688 ill = ill->ill_group_next) { 20689 if ((ill != save_ill) && 20690 !(ill->ill_phyint->phyint_flags & 20691 (PHYI_FAILED|PHYI_INACTIVE|PHYI_OFFLINE))) { 20692 illgrp->illgrp_ill_schednext = ill; 20693 return; 20694 } 20695 } 20696 } 20697 20698 /* 20699 * Given an ill, find the next ill in the group to be scheduled. 20700 * (This should be called by ip_newroute() before ire_create().) 20701 * The passed in ill may be pulled out of the group, after we have picked 20702 * up a different outgoing ill from the same group. However ire add will 20703 * atomically check this. 20704 */ 20705 ill_t * 20706 illgrp_scheduler(ill_t *ill) 20707 { 20708 ill_t *retill; 20709 ill_group_t *illgrp; 20710 int illcnt; 20711 int i; 20712 uint64_t flags; 20713 ip_stack_t *ipst = ill->ill_ipst; 20714 20715 /* 20716 * We don't use a lock to check for the ill_group. If this ill 20717 * is currently being inserted we may end up just returning this 20718 * ill itself. That is ok. 20719 */ 20720 if (ill->ill_group == NULL) { 20721 ill_refhold(ill); 20722 return (ill); 20723 } 20724 20725 /* 20726 * Grab the ill_g_lock as reader to make sure we are dealing with 20727 * a set of stable ills. No ill can be added or deleted or change 20728 * group while we hold the reader lock. 20729 */ 20730 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 20731 if ((illgrp = ill->ill_group) == NULL) { 20732 rw_exit(&ipst->ips_ill_g_lock); 20733 ill_refhold(ill); 20734 return (ill); 20735 } 20736 20737 illcnt = illgrp->illgrp_ill_count; 20738 mutex_enter(&illgrp->illgrp_lock); 20739 retill = illgrp->illgrp_ill_schednext; 20740 20741 if (retill == NULL) 20742 retill = illgrp->illgrp_ill; 20743 20744 /* 20745 * We do a circular search beginning at illgrp_ill_schednext 20746 * or illgrp_ill. We don't check the flags against the ill lock 20747 * since it can change anytime. The ire creation will be atomic 20748 * and will fail if the ill is FAILED or OFFLINE. 20749 */ 20750 for (i = 0; i < illcnt; i++) { 20751 flags = retill->ill_phyint->phyint_flags; 20752 20753 if (!(flags & (PHYI_FAILED|PHYI_INACTIVE|PHYI_OFFLINE)) && 20754 ILL_CAN_LOOKUP(retill)) { 20755 illgrp->illgrp_ill_schednext = retill->ill_group_next; 20756 ill_refhold(retill); 20757 break; 20758 } 20759 retill = retill->ill_group_next; 20760 if (retill == NULL) 20761 retill = illgrp->illgrp_ill; 20762 } 20763 mutex_exit(&illgrp->illgrp_lock); 20764 rw_exit(&ipst->ips_ill_g_lock); 20765 20766 return (i == illcnt ? NULL : retill); 20767 } 20768 20769 /* 20770 * Checks for availbility of a usable source address (if there is one) when the 20771 * destination ILL has the ill_usesrc_ifindex pointing to another ILL. Note 20772 * this selection is done regardless of the destination. 20773 */ 20774 boolean_t 20775 ipif_usesrc_avail(ill_t *ill, zoneid_t zoneid) 20776 { 20777 uint_t ifindex; 20778 ipif_t *ipif = NULL; 20779 ill_t *uill; 20780 boolean_t isv6; 20781 ip_stack_t *ipst = ill->ill_ipst; 20782 20783 ASSERT(ill != NULL); 20784 20785 isv6 = ill->ill_isv6; 20786 ifindex = ill->ill_usesrc_ifindex; 20787 if (ifindex != 0) { 20788 uill = ill_lookup_on_ifindex(ifindex, isv6, NULL, NULL, NULL, 20789 NULL, ipst); 20790 if (uill == NULL) 20791 return (NULL); 20792 mutex_enter(&uill->ill_lock); 20793 for (ipif = uill->ill_ipif; ipif != NULL; 20794 ipif = ipif->ipif_next) { 20795 if (!IPIF_CAN_LOOKUP(ipif)) 20796 continue; 20797 if (ipif->ipif_flags & (IPIF_NOLOCAL|IPIF_ANYCAST)) 20798 continue; 20799 if (!(ipif->ipif_flags & IPIF_UP)) 20800 continue; 20801 if (ipif->ipif_zoneid != zoneid) 20802 continue; 20803 if ((isv6 && 20804 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr)) || 20805 (ipif->ipif_lcl_addr == INADDR_ANY)) 20806 continue; 20807 mutex_exit(&uill->ill_lock); 20808 ill_refrele(uill); 20809 return (B_TRUE); 20810 } 20811 mutex_exit(&uill->ill_lock); 20812 ill_refrele(uill); 20813 } 20814 return (B_FALSE); 20815 } 20816 20817 /* 20818 * Determine the best source address given a destination address and an ill. 20819 * Prefers non-deprecated over deprecated but will return a deprecated 20820 * address if there is no other choice. If there is a usable source address 20821 * on the interface pointed to by ill_usesrc_ifindex then that is given 20822 * first preference. 20823 * 20824 * Returns NULL if there is no suitable source address for the ill. 20825 * This only occurs when there is no valid source address for the ill. 20826 */ 20827 ipif_t * 20828 ipif_select_source(ill_t *ill, ipaddr_t dst, zoneid_t zoneid) 20829 { 20830 ipif_t *ipif; 20831 ipif_t *ipif_dep = NULL; /* Fallback to deprecated */ 20832 ipif_t *ipif_arr[MAX_IPIF_SELECT_SOURCE]; 20833 int index = 0; 20834 boolean_t wrapped = B_FALSE; 20835 boolean_t same_subnet_only = B_FALSE; 20836 boolean_t ipif_same_found, ipif_other_found; 20837 boolean_t specific_found; 20838 ill_t *till, *usill = NULL; 20839 tsol_tpc_t *src_rhtp, *dst_rhtp; 20840 ip_stack_t *ipst = ill->ill_ipst; 20841 20842 if (ill->ill_usesrc_ifindex != 0) { 20843 usill = ill_lookup_on_ifindex(ill->ill_usesrc_ifindex, 20844 B_FALSE, NULL, NULL, NULL, NULL, ipst); 20845 if (usill != NULL) 20846 ill = usill; /* Select source from usesrc ILL */ 20847 else 20848 return (NULL); 20849 } 20850 20851 /* 20852 * If we're dealing with an unlabeled destination on a labeled system, 20853 * make sure that we ignore source addresses that are incompatible with 20854 * the destination's default label. That destination's default label 20855 * must dominate the minimum label on the source address. 20856 */ 20857 dst_rhtp = NULL; 20858 if (is_system_labeled()) { 20859 dst_rhtp = find_tpc(&dst, IPV4_VERSION, B_FALSE); 20860 if (dst_rhtp == NULL) 20861 return (NULL); 20862 if (dst_rhtp->tpc_tp.host_type != UNLABELED) { 20863 TPC_RELE(dst_rhtp); 20864 dst_rhtp = NULL; 20865 } 20866 } 20867 20868 /* 20869 * Holds the ill_g_lock as reader. This makes sure that no ipif/ill 20870 * can be deleted. But an ipif/ill can get CONDEMNED any time. 20871 * After selecting the right ipif, under ill_lock make sure ipif is 20872 * not condemned, and increment refcnt. If ipif is CONDEMNED, 20873 * we retry. Inside the loop we still need to check for CONDEMNED, 20874 * but not under a lock. 20875 */ 20876 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 20877 20878 retry: 20879 till = ill; 20880 ipif_arr[0] = NULL; 20881 20882 if (till->ill_group != NULL) 20883 till = till->ill_group->illgrp_ill; 20884 20885 /* 20886 * Choose one good source address from each ill across the group. 20887 * If possible choose a source address in the same subnet as 20888 * the destination address. 20889 * 20890 * We don't check for PHYI_FAILED or PHYI_INACTIVE or PHYI_OFFLINE 20891 * This is okay because of the following. 20892 * 20893 * If PHYI_FAILED is set and we still have non-deprecated 20894 * addresses, it means the addresses have not yet been 20895 * failed over to a different interface. We potentially 20896 * select them to create IRE_CACHES, which will be later 20897 * flushed when the addresses move over. 20898 * 20899 * If PHYI_INACTIVE is set and we still have non-deprecated 20900 * addresses, it means either the user has configured them 20901 * or PHYI_INACTIVE has not been cleared after the addresses 20902 * been moved over. For the former, in.mpathd does a failover 20903 * when the interface becomes INACTIVE and hence we should 20904 * not find them. Once INACTIVE is set, we don't allow them 20905 * to create logical interfaces anymore. For the latter, a 20906 * flush will happen when INACTIVE is cleared which will 20907 * flush the IRE_CACHES. 20908 * 20909 * If PHYI_OFFLINE is set, all the addresses will be failed 20910 * over soon. We potentially select them to create IRE_CACHEs, 20911 * which will be later flushed when the addresses move over. 20912 * 20913 * NOTE : As ipif_select_source is called to borrow source address 20914 * for an ipif that is part of a group, source address selection 20915 * will be re-done whenever the group changes i.e either an 20916 * insertion/deletion in the group. 20917 * 20918 * Fill ipif_arr[] with source addresses, using these rules: 20919 * 20920 * 1. At most one source address from a given ill ends up 20921 * in ipif_arr[] -- that is, at most one of the ipif's 20922 * associated with a given ill ends up in ipif_arr[]. 20923 * 20924 * 2. If there is at least one non-deprecated ipif in the 20925 * IPMP group with a source address on the same subnet as 20926 * our destination, then fill ipif_arr[] only with 20927 * source addresses on the same subnet as our destination. 20928 * Note that because of (1), only the first 20929 * non-deprecated ipif found with a source address 20930 * matching the destination ends up in ipif_arr[]. 20931 * 20932 * 3. Otherwise, fill ipif_arr[] with non-deprecated source 20933 * addresses not in the same subnet as our destination. 20934 * Again, because of (1), only the first off-subnet source 20935 * address will be chosen. 20936 * 20937 * 4. If there are no non-deprecated ipifs, then just use 20938 * the source address associated with the last deprecated 20939 * one we find that happens to be on the same subnet, 20940 * otherwise the first one not in the same subnet. 20941 */ 20942 specific_found = B_FALSE; 20943 for (; till != NULL; till = till->ill_group_next) { 20944 ipif_same_found = B_FALSE; 20945 ipif_other_found = B_FALSE; 20946 for (ipif = till->ill_ipif; ipif != NULL; 20947 ipif = ipif->ipif_next) { 20948 if (!IPIF_CAN_LOOKUP(ipif)) 20949 continue; 20950 /* Always skip NOLOCAL and ANYCAST interfaces */ 20951 if (ipif->ipif_flags & (IPIF_NOLOCAL|IPIF_ANYCAST)) 20952 continue; 20953 if (!(ipif->ipif_flags & IPIF_UP) || 20954 !ipif->ipif_addr_ready) 20955 continue; 20956 if (ipif->ipif_zoneid != zoneid && 20957 ipif->ipif_zoneid != ALL_ZONES) 20958 continue; 20959 /* 20960 * Interfaces with 0.0.0.0 address are allowed to be UP, 20961 * but are not valid as source addresses. 20962 */ 20963 if (ipif->ipif_lcl_addr == INADDR_ANY) 20964 continue; 20965 20966 /* 20967 * Check compatibility of local address for 20968 * destination's default label if we're on a labeled 20969 * system. Incompatible addresses can't be used at 20970 * all. 20971 */ 20972 if (dst_rhtp != NULL) { 20973 boolean_t incompat; 20974 20975 src_rhtp = find_tpc(&ipif->ipif_lcl_addr, 20976 IPV4_VERSION, B_FALSE); 20977 if (src_rhtp == NULL) 20978 continue; 20979 incompat = 20980 src_rhtp->tpc_tp.host_type != SUN_CIPSO || 20981 src_rhtp->tpc_tp.tp_doi != 20982 dst_rhtp->tpc_tp.tp_doi || 20983 (!_blinrange(&dst_rhtp->tpc_tp.tp_def_label, 20984 &src_rhtp->tpc_tp.tp_sl_range_cipso) && 20985 !blinlset(&dst_rhtp->tpc_tp.tp_def_label, 20986 src_rhtp->tpc_tp.tp_sl_set_cipso)); 20987 TPC_RELE(src_rhtp); 20988 if (incompat) 20989 continue; 20990 } 20991 20992 /* 20993 * We prefer not to use all all-zones addresses, if we 20994 * can avoid it, as they pose problems with unlabeled 20995 * destinations. 20996 */ 20997 if (ipif->ipif_zoneid != ALL_ZONES) { 20998 if (!specific_found && 20999 (!same_subnet_only || 21000 (ipif->ipif_net_mask & dst) == 21001 ipif->ipif_subnet)) { 21002 index = 0; 21003 specific_found = B_TRUE; 21004 ipif_other_found = B_FALSE; 21005 } 21006 } else { 21007 if (specific_found) 21008 continue; 21009 } 21010 if (ipif->ipif_flags & IPIF_DEPRECATED) { 21011 if (ipif_dep == NULL || 21012 (ipif->ipif_net_mask & dst) == 21013 ipif->ipif_subnet) 21014 ipif_dep = ipif; 21015 continue; 21016 } 21017 if ((ipif->ipif_net_mask & dst) == ipif->ipif_subnet) { 21018 /* found a source address in the same subnet */ 21019 if (!same_subnet_only) { 21020 same_subnet_only = B_TRUE; 21021 index = 0; 21022 } 21023 ipif_same_found = B_TRUE; 21024 } else { 21025 if (same_subnet_only || ipif_other_found) 21026 continue; 21027 ipif_other_found = B_TRUE; 21028 } 21029 ipif_arr[index++] = ipif; 21030 if (index == MAX_IPIF_SELECT_SOURCE) { 21031 wrapped = B_TRUE; 21032 index = 0; 21033 } 21034 if (ipif_same_found) 21035 break; 21036 } 21037 } 21038 21039 if (ipif_arr[0] == NULL) { 21040 ipif = ipif_dep; 21041 } else { 21042 if (wrapped) 21043 index = MAX_IPIF_SELECT_SOURCE; 21044 ipif = ipif_arr[ipif_rand(ipst) % index]; 21045 ASSERT(ipif != NULL); 21046 } 21047 21048 if (ipif != NULL) { 21049 mutex_enter(&ipif->ipif_ill->ill_lock); 21050 if (!IPIF_CAN_LOOKUP(ipif)) { 21051 mutex_exit(&ipif->ipif_ill->ill_lock); 21052 goto retry; 21053 } 21054 ipif_refhold_locked(ipif); 21055 mutex_exit(&ipif->ipif_ill->ill_lock); 21056 } 21057 21058 rw_exit(&ipst->ips_ill_g_lock); 21059 if (usill != NULL) 21060 ill_refrele(usill); 21061 if (dst_rhtp != NULL) 21062 TPC_RELE(dst_rhtp); 21063 21064 #ifdef DEBUG 21065 if (ipif == NULL) { 21066 char buf1[INET6_ADDRSTRLEN]; 21067 21068 ip1dbg(("ipif_select_source(%s, %s) -> NULL\n", 21069 ill->ill_name, 21070 inet_ntop(AF_INET, &dst, buf1, sizeof (buf1)))); 21071 } else { 21072 char buf1[INET6_ADDRSTRLEN]; 21073 char buf2[INET6_ADDRSTRLEN]; 21074 21075 ip1dbg(("ipif_select_source(%s, %s) -> %s\n", 21076 ipif->ipif_ill->ill_name, 21077 inet_ntop(AF_INET, &dst, buf1, sizeof (buf1)), 21078 inet_ntop(AF_INET, &ipif->ipif_lcl_addr, 21079 buf2, sizeof (buf2)))); 21080 } 21081 #endif /* DEBUG */ 21082 return (ipif); 21083 } 21084 21085 21086 /* 21087 * If old_ipif is not NULL, see if ipif was derived from old 21088 * ipif and if so, recreate the interface route by re-doing 21089 * source address selection. This happens when ipif_down -> 21090 * ipif_update_other_ipifs calls us. 21091 * 21092 * If old_ipif is NULL, just redo the source address selection 21093 * if needed. This happens when illgrp_insert or ipif_up_done 21094 * calls us. 21095 */ 21096 static void 21097 ipif_recreate_interface_routes(ipif_t *old_ipif, ipif_t *ipif) 21098 { 21099 ire_t *ire; 21100 ire_t *ipif_ire; 21101 queue_t *stq; 21102 ipif_t *nipif; 21103 ill_t *ill; 21104 boolean_t need_rele = B_FALSE; 21105 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 21106 21107 ASSERT(old_ipif == NULL || IAM_WRITER_IPIF(old_ipif)); 21108 ASSERT(IAM_WRITER_IPIF(ipif)); 21109 21110 ill = ipif->ipif_ill; 21111 if (!(ipif->ipif_flags & 21112 (IPIF_NOLOCAL|IPIF_ANYCAST|IPIF_DEPRECATED))) { 21113 /* 21114 * Can't possibly have borrowed the source 21115 * from old_ipif. 21116 */ 21117 return; 21118 } 21119 21120 /* 21121 * Is there any work to be done? No work if the address 21122 * is INADDR_ANY, loopback or NOLOCAL or ANYCAST ( 21123 * ipif_select_source() does not borrow addresses from 21124 * NOLOCAL and ANYCAST interfaces). 21125 */ 21126 if ((old_ipif != NULL) && 21127 ((old_ipif->ipif_lcl_addr == INADDR_ANY) || 21128 (old_ipif->ipif_ill->ill_wq == NULL) || 21129 (old_ipif->ipif_flags & 21130 (IPIF_NOLOCAL|IPIF_ANYCAST)))) { 21131 return; 21132 } 21133 21134 /* 21135 * Perform the same checks as when creating the 21136 * IRE_INTERFACE in ipif_up_done. 21137 */ 21138 if (!(ipif->ipif_flags & IPIF_UP)) 21139 return; 21140 21141 if ((ipif->ipif_flags & IPIF_NOXMIT) || 21142 (ipif->ipif_subnet == INADDR_ANY)) 21143 return; 21144 21145 ipif_ire = ipif_to_ire(ipif); 21146 if (ipif_ire == NULL) 21147 return; 21148 21149 /* 21150 * We know that ipif uses some other source for its 21151 * IRE_INTERFACE. Is it using the source of this 21152 * old_ipif? 21153 */ 21154 if (old_ipif != NULL && 21155 old_ipif->ipif_lcl_addr != ipif_ire->ire_src_addr) { 21156 ire_refrele(ipif_ire); 21157 return; 21158 } 21159 if (ip_debug > 2) { 21160 /* ip1dbg */ 21161 pr_addr_dbg("ipif_recreate_interface_routes: deleting IRE for" 21162 " src %s\n", AF_INET, &ipif_ire->ire_src_addr); 21163 } 21164 21165 stq = ipif_ire->ire_stq; 21166 21167 /* 21168 * Can't use our source address. Select a different 21169 * source address for the IRE_INTERFACE. 21170 */ 21171 nipif = ipif_select_source(ill, ipif->ipif_subnet, ipif->ipif_zoneid); 21172 if (nipif == NULL) { 21173 /* Last resort - all ipif's have IPIF_NOLOCAL */ 21174 nipif = ipif; 21175 } else { 21176 need_rele = B_TRUE; 21177 } 21178 21179 ire = ire_create( 21180 (uchar_t *)&ipif->ipif_subnet, /* dest pref */ 21181 (uchar_t *)&ipif->ipif_net_mask, /* mask */ 21182 (uchar_t *)&nipif->ipif_src_addr, /* src addr */ 21183 NULL, /* no gateway */ 21184 &ipif->ipif_mtu, /* max frag */ 21185 NULL, /* no src nce */ 21186 NULL, /* no recv from queue */ 21187 stq, /* send-to queue */ 21188 ill->ill_net_type, /* IF_[NO]RESOLVER */ 21189 ipif, 21190 0, 21191 0, 21192 0, 21193 0, 21194 &ire_uinfo_null, 21195 NULL, 21196 NULL, 21197 ipst); 21198 21199 if (ire != NULL) { 21200 ire_t *ret_ire; 21201 int error; 21202 21203 /* 21204 * We don't need ipif_ire anymore. We need to delete 21205 * before we add so that ire_add does not detect 21206 * duplicates. 21207 */ 21208 ire_delete(ipif_ire); 21209 ret_ire = ire; 21210 error = ire_add(&ret_ire, NULL, NULL, NULL, B_FALSE); 21211 ASSERT(error == 0); 21212 ASSERT(ire == ret_ire); 21213 /* Held in ire_add */ 21214 ire_refrele(ret_ire); 21215 } 21216 /* 21217 * Either we are falling through from above or could not 21218 * allocate a replacement. 21219 */ 21220 ire_refrele(ipif_ire); 21221 if (need_rele) 21222 ipif_refrele(nipif); 21223 } 21224 21225 /* 21226 * This old_ipif is going away. 21227 * 21228 * Determine if any other ipif's is using our address as 21229 * ipif_lcl_addr (due to those being IPIF_NOLOCAL, IPIF_ANYCAST, or 21230 * IPIF_DEPRECATED). 21231 * Find the IRE_INTERFACE for such ipifs and recreate them 21232 * to use an different source address following the rules in 21233 * ipif_up_done. 21234 * 21235 * This function takes an illgrp as an argument so that illgrp_delete 21236 * can call this to update source address even after deleting the 21237 * old_ipif->ipif_ill from the ill group. 21238 */ 21239 static void 21240 ipif_update_other_ipifs(ipif_t *old_ipif, ill_group_t *illgrp) 21241 { 21242 ipif_t *ipif; 21243 ill_t *ill; 21244 char buf[INET6_ADDRSTRLEN]; 21245 21246 ASSERT(IAM_WRITER_IPIF(old_ipif)); 21247 ASSERT(illgrp == NULL || IAM_WRITER_IPIF(old_ipif)); 21248 21249 ill = old_ipif->ipif_ill; 21250 21251 ip1dbg(("ipif_update_other_ipifs(%s, %s)\n", 21252 ill->ill_name, 21253 inet_ntop(AF_INET, &old_ipif->ipif_lcl_addr, 21254 buf, sizeof (buf)))); 21255 /* 21256 * If this part of a group, look at all ills as ipif_select_source 21257 * borrows source address across all the ills in the group. 21258 */ 21259 if (illgrp != NULL) 21260 ill = illgrp->illgrp_ill; 21261 21262 for (; ill != NULL; ill = ill->ill_group_next) { 21263 for (ipif = ill->ill_ipif; ipif != NULL; 21264 ipif = ipif->ipif_next) { 21265 21266 if (ipif == old_ipif) 21267 continue; 21268 21269 ipif_recreate_interface_routes(old_ipif, ipif); 21270 } 21271 } 21272 } 21273 21274 /* ARGSUSED */ 21275 int 21276 if_unitsel_restart(ipif_t *ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 21277 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 21278 { 21279 /* 21280 * ill_phyint_reinit merged the v4 and v6 into a single 21281 * ipsq. Could also have become part of a ipmp group in the 21282 * process, and we might not have been able to complete the 21283 * operation in ipif_set_values, if we could not become 21284 * exclusive. If so restart it here. 21285 */ 21286 return (ipif_set_values_tail(ipif->ipif_ill, ipif, mp, q)); 21287 } 21288 21289 21290 /* 21291 * Can operate on either a module or a driver queue. 21292 * Returns an error if not a module queue. 21293 */ 21294 /* ARGSUSED */ 21295 int 21296 if_unitsel(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 21297 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 21298 { 21299 queue_t *q1 = q; 21300 char *cp; 21301 char interf_name[LIFNAMSIZ]; 21302 uint_t ppa = *(uint_t *)mp->b_cont->b_cont->b_rptr; 21303 21304 if (q->q_next == NULL) { 21305 ip1dbg(( 21306 "if_unitsel: IF_UNITSEL: no q_next\n")); 21307 return (EINVAL); 21308 } 21309 21310 if (((ill_t *)(q->q_ptr))->ill_name[0] != '\0') 21311 return (EALREADY); 21312 21313 do { 21314 q1 = q1->q_next; 21315 } while (q1->q_next); 21316 cp = q1->q_qinfo->qi_minfo->mi_idname; 21317 (void) sprintf(interf_name, "%s%d", cp, ppa); 21318 21319 /* 21320 * Here we are not going to delay the ioack until after 21321 * ACKs from DL_ATTACH_REQ/DL_BIND_REQ. So no need to save the 21322 * original ioctl message before sending the requests. 21323 */ 21324 return (ipif_set_values(q, mp, interf_name, &ppa)); 21325 } 21326 21327 /* ARGSUSED */ 21328 int 21329 ip_sioctl_sifname(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 21330 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 21331 { 21332 return (ENXIO); 21333 } 21334 21335 /* 21336 * Create any IRE_BROADCAST entries for `ipif', and store those entries in 21337 * `irep'. Returns a pointer to the next free `irep' entry (just like 21338 * ire_check_and_create_bcast()). 21339 */ 21340 static ire_t ** 21341 ipif_create_bcast_ires(ipif_t *ipif, ire_t **irep) 21342 { 21343 ipaddr_t addr; 21344 ipaddr_t netmask = ip_net_mask(ipif->ipif_lcl_addr); 21345 ipaddr_t subnetmask = ipif->ipif_net_mask; 21346 int flags = MATCH_IRE_TYPE | MATCH_IRE_ILL; 21347 21348 ip1dbg(("ipif_create_bcast_ires: creating broadcast IREs\n")); 21349 21350 ASSERT(ipif->ipif_flags & IPIF_BROADCAST); 21351 21352 if (ipif->ipif_lcl_addr == INADDR_ANY || 21353 (ipif->ipif_flags & IPIF_NOLOCAL)) 21354 netmask = htonl(IN_CLASSA_NET); /* fallback */ 21355 21356 irep = ire_check_and_create_bcast(ipif, 0, irep, flags); 21357 irep = ire_check_and_create_bcast(ipif, INADDR_BROADCAST, irep, flags); 21358 21359 /* 21360 * For backward compatibility, we create net broadcast IREs based on 21361 * the old "IP address class system", since some old machines only 21362 * respond to these class derived net broadcast. However, we must not 21363 * create these net broadcast IREs if the subnetmask is shorter than 21364 * the IP address class based derived netmask. Otherwise, we may 21365 * create a net broadcast address which is the same as an IP address 21366 * on the subnet -- and then TCP will refuse to talk to that address. 21367 */ 21368 if (netmask < subnetmask) { 21369 addr = netmask & ipif->ipif_subnet; 21370 irep = ire_check_and_create_bcast(ipif, addr, irep, flags); 21371 irep = ire_check_and_create_bcast(ipif, ~netmask | addr, irep, 21372 flags); 21373 } 21374 21375 /* 21376 * Don't create IRE_BROADCAST IREs for the interface if the subnetmask 21377 * is 0xFFFFFFFF, as an IRE_LOCAL for that interface is already 21378 * created. Creating these broadcast IREs will only create confusion 21379 * as `addr' will be the same as the IP address. 21380 */ 21381 if (subnetmask != 0xFFFFFFFF) { 21382 addr = ipif->ipif_subnet; 21383 irep = ire_check_and_create_bcast(ipif, addr, irep, flags); 21384 irep = ire_check_and_create_bcast(ipif, ~subnetmask | addr, 21385 irep, flags); 21386 } 21387 21388 return (irep); 21389 } 21390 21391 /* 21392 * Broadcast IRE info structure used in the functions below. Since we 21393 * allocate BCAST_COUNT of them on the stack, keep the bit layout compact. 21394 */ 21395 typedef struct bcast_ireinfo { 21396 uchar_t bi_type; /* BCAST_* value from below */ 21397 uchar_t bi_willdie:1, /* will this IRE be going away? */ 21398 bi_needrep:1, /* do we need to replace it? */ 21399 bi_haverep:1, /* have we replaced it? */ 21400 bi_pad:5; 21401 ipaddr_t bi_addr; /* IRE address */ 21402 ipif_t *bi_backup; /* last-ditch ipif to replace it on */ 21403 } bcast_ireinfo_t; 21404 21405 enum { BCAST_ALLONES, BCAST_ALLZEROES, BCAST_NET, BCAST_SUBNET, BCAST_COUNT }; 21406 21407 /* 21408 * Check if `ipif' needs the dying broadcast IRE described by `bireinfop', and 21409 * return B_TRUE if it should immediately be used to recreate the IRE. 21410 */ 21411 static boolean_t 21412 ipif_consider_bcast(ipif_t *ipif, bcast_ireinfo_t *bireinfop) 21413 { 21414 ipaddr_t addr; 21415 21416 ASSERT(!bireinfop->bi_haverep && bireinfop->bi_willdie); 21417 21418 switch (bireinfop->bi_type) { 21419 case BCAST_NET: 21420 addr = ipif->ipif_subnet & ip_net_mask(ipif->ipif_subnet); 21421 if (addr != bireinfop->bi_addr) 21422 return (B_FALSE); 21423 break; 21424 case BCAST_SUBNET: 21425 if (ipif->ipif_subnet != bireinfop->bi_addr) 21426 return (B_FALSE); 21427 break; 21428 } 21429 21430 bireinfop->bi_needrep = 1; 21431 if (ipif->ipif_flags & (IPIF_DEPRECATED|IPIF_NOLOCAL|IPIF_ANYCAST)) { 21432 if (bireinfop->bi_backup == NULL) 21433 bireinfop->bi_backup = ipif; 21434 return (B_FALSE); 21435 } 21436 return (B_TRUE); 21437 } 21438 21439 /* 21440 * Create the broadcast IREs described by `bireinfop' on `ipif', and return 21441 * them ala ire_check_and_create_bcast(). 21442 */ 21443 static ire_t ** 21444 ipif_create_bcast(ipif_t *ipif, bcast_ireinfo_t *bireinfop, ire_t **irep) 21445 { 21446 ipaddr_t mask, addr; 21447 21448 ASSERT(!bireinfop->bi_haverep && bireinfop->bi_needrep); 21449 21450 addr = bireinfop->bi_addr; 21451 irep = ire_create_bcast(ipif, addr, irep); 21452 21453 switch (bireinfop->bi_type) { 21454 case BCAST_NET: 21455 mask = ip_net_mask(ipif->ipif_subnet); 21456 irep = ire_create_bcast(ipif, addr | ~mask, irep); 21457 break; 21458 case BCAST_SUBNET: 21459 mask = ipif->ipif_net_mask; 21460 irep = ire_create_bcast(ipif, addr | ~mask, irep); 21461 break; 21462 } 21463 21464 bireinfop->bi_haverep = 1; 21465 return (irep); 21466 } 21467 21468 /* 21469 * Walk through all of the ipifs on `ill' that will be affected by `test_ipif' 21470 * going away, and determine if any of the broadcast IREs (named by `bireinfop') 21471 * that are going away are still needed. If so, have ipif_create_bcast() 21472 * recreate them (except for the deprecated case, as explained below). 21473 */ 21474 static ire_t ** 21475 ill_create_bcast(ill_t *ill, ipif_t *test_ipif, bcast_ireinfo_t *bireinfo, 21476 ire_t **irep) 21477 { 21478 int i; 21479 ipif_t *ipif; 21480 21481 ASSERT(!ill->ill_isv6); 21482 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 21483 /* 21484 * Skip this ipif if it's (a) the one being taken down, (b) 21485 * not in the same zone, or (c) has no valid local address. 21486 */ 21487 if (ipif == test_ipif || 21488 ipif->ipif_zoneid != test_ipif->ipif_zoneid || 21489 ipif->ipif_subnet == 0 || 21490 (ipif->ipif_flags & (IPIF_UP|IPIF_BROADCAST|IPIF_NOXMIT)) != 21491 (IPIF_UP|IPIF_BROADCAST)) 21492 continue; 21493 21494 /* 21495 * For each dying IRE that hasn't yet been replaced, see if 21496 * `ipif' needs it and whether the IRE should be recreated on 21497 * `ipif'. If `ipif' is deprecated, ipif_consider_bcast() 21498 * will return B_FALSE even if `ipif' needs the IRE on the 21499 * hopes that we'll later find a needy non-deprecated ipif. 21500 * However, the ipif is recorded in bi_backup for possible 21501 * subsequent use by ipif_check_bcast_ires(). 21502 */ 21503 for (i = 0; i < BCAST_COUNT; i++) { 21504 if (!bireinfo[i].bi_willdie || bireinfo[i].bi_haverep) 21505 continue; 21506 if (!ipif_consider_bcast(ipif, &bireinfo[i])) 21507 continue; 21508 irep = ipif_create_bcast(ipif, &bireinfo[i], irep); 21509 } 21510 21511 /* 21512 * If we've replaced all of the broadcast IREs that are going 21513 * to be taken down, we know we're done. 21514 */ 21515 for (i = 0; i < BCAST_COUNT; i++) { 21516 if (bireinfo[i].bi_willdie && !bireinfo[i].bi_haverep) 21517 break; 21518 } 21519 if (i == BCAST_COUNT) 21520 break; 21521 } 21522 return (irep); 21523 } 21524 21525 /* 21526 * Check if `test_ipif' (which is going away) is associated with any existing 21527 * broadcast IREs, and whether any other ipifs (e.g., on the same ill) were 21528 * using those broadcast IREs. If so, recreate the broadcast IREs on one or 21529 * more of those other ipifs. (The old IREs will be deleted in ipif_down().) 21530 * 21531 * This is necessary because broadcast IREs are shared. In particular, a 21532 * given ill has one set of all-zeroes and all-ones broadcast IREs (for every 21533 * zone), plus one set of all-subnet-ones, all-subnet-zeroes, all-net-ones, 21534 * and all-net-zeroes for every net/subnet (and every zone) it has IPIF_UP 21535 * ipifs on. Thus, if there are two IPIF_UP ipifs on the same subnet with the 21536 * same zone, they will share the same set of broadcast IREs. 21537 * 21538 * Note: the upper bound of 12 IREs comes from the worst case of replacing all 21539 * six pairs (loopback and non-loopback) of broadcast IREs (all-zeroes, 21540 * all-ones, subnet-zeroes, subnet-ones, net-zeroes, and net-ones). 21541 */ 21542 static void 21543 ipif_check_bcast_ires(ipif_t *test_ipif) 21544 { 21545 ill_t *ill = test_ipif->ipif_ill; 21546 ire_t *ire, *ire_array[12]; /* see note above */ 21547 ire_t **irep1, **irep = &ire_array[0]; 21548 uint_t i, willdie; 21549 ipaddr_t mask = ip_net_mask(test_ipif->ipif_subnet); 21550 bcast_ireinfo_t bireinfo[BCAST_COUNT]; 21551 21552 ASSERT(!test_ipif->ipif_isv6); 21553 ASSERT(IAM_WRITER_IPIF(test_ipif)); 21554 21555 /* 21556 * No broadcast IREs for the LOOPBACK interface 21557 * or others such as point to point and IPIF_NOXMIT. 21558 */ 21559 if (!(test_ipif->ipif_flags & IPIF_BROADCAST) || 21560 (test_ipif->ipif_flags & IPIF_NOXMIT)) 21561 return; 21562 21563 bzero(bireinfo, sizeof (bireinfo)); 21564 bireinfo[0].bi_type = BCAST_ALLZEROES; 21565 bireinfo[0].bi_addr = 0; 21566 21567 bireinfo[1].bi_type = BCAST_ALLONES; 21568 bireinfo[1].bi_addr = INADDR_BROADCAST; 21569 21570 bireinfo[2].bi_type = BCAST_NET; 21571 bireinfo[2].bi_addr = test_ipif->ipif_subnet & mask; 21572 21573 if (test_ipif->ipif_net_mask != 0) 21574 mask = test_ipif->ipif_net_mask; 21575 bireinfo[3].bi_type = BCAST_SUBNET; 21576 bireinfo[3].bi_addr = test_ipif->ipif_subnet & mask; 21577 21578 /* 21579 * Figure out what (if any) broadcast IREs will die as a result of 21580 * `test_ipif' going away. If none will die, we're done. 21581 */ 21582 for (i = 0, willdie = 0; i < BCAST_COUNT; i++) { 21583 ire = ire_ctable_lookup(bireinfo[i].bi_addr, 0, IRE_BROADCAST, 21584 test_ipif, ALL_ZONES, NULL, 21585 (MATCH_IRE_TYPE | MATCH_IRE_IPIF), ill->ill_ipst); 21586 if (ire != NULL) { 21587 willdie++; 21588 bireinfo[i].bi_willdie = 1; 21589 ire_refrele(ire); 21590 } 21591 } 21592 21593 if (willdie == 0) 21594 return; 21595 21596 /* 21597 * Walk through all the ipifs that will be affected by the dying IREs, 21598 * and recreate the IREs as necessary. 21599 */ 21600 irep = ill_create_bcast(ill, test_ipif, bireinfo, irep); 21601 21602 /* 21603 * Scan through the set of broadcast IREs and see if there are any 21604 * that we need to replace that have not yet been replaced. If so, 21605 * replace them using the appropriate backup ipif. 21606 */ 21607 for (i = 0; i < BCAST_COUNT; i++) { 21608 if (bireinfo[i].bi_needrep && !bireinfo[i].bi_haverep) 21609 irep = ipif_create_bcast(bireinfo[i].bi_backup, 21610 &bireinfo[i], irep); 21611 } 21612 21613 /* 21614 * If we can't create all of them, don't add any of them. (Code in 21615 * ip_wput_ire() and ire_to_ill() assumes that we always have a 21616 * non-loopback copy and loopback copy for a given address.) 21617 */ 21618 for (irep1 = irep; irep1 > ire_array; ) { 21619 irep1--; 21620 if (*irep1 == NULL) { 21621 ip0dbg(("ipif_check_bcast_ires: can't create " 21622 "IRE_BROADCAST, memory allocation failure\n")); 21623 while (irep > ire_array) { 21624 irep--; 21625 if (*irep != NULL) 21626 ire_delete(*irep); 21627 } 21628 return; 21629 } 21630 } 21631 21632 for (irep1 = irep; irep1 > ire_array; ) { 21633 irep1--; 21634 if (ire_add(irep1, NULL, NULL, NULL, B_FALSE) == 0) 21635 ire_refrele(*irep1); /* Held in ire_add */ 21636 } 21637 } 21638 21639 /* 21640 * Extract both the flags (including IFF_CANTCHANGE) such as IFF_IPV* 21641 * from lifr_flags and the name from lifr_name. 21642 * Set IFF_IPV* and ill_isv6 prior to doing the lookup 21643 * since ipif_lookup_on_name uses the _isv6 flags when matching. 21644 * Returns EINPROGRESS when mp has been consumed by queueing it on 21645 * ill_pending_mp and the ioctl will complete in ip_rput. 21646 * 21647 * Can operate on either a module or a driver queue. 21648 * Returns an error if not a module queue. 21649 */ 21650 /* ARGSUSED */ 21651 int 21652 ip_sioctl_slifname(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 21653 ip_ioctl_cmd_t *ipip, void *if_req) 21654 { 21655 int err; 21656 ill_t *ill; 21657 struct lifreq *lifr = (struct lifreq *)if_req; 21658 21659 ASSERT(ipif != NULL); 21660 ip1dbg(("ip_sioctl_slifname %s\n", lifr->lifr_name)); 21661 21662 if (q->q_next == NULL) { 21663 ip1dbg(( 21664 "if_sioctl_slifname: SIOCSLIFNAME: no q_next\n")); 21665 return (EINVAL); 21666 } 21667 21668 ill = (ill_t *)q->q_ptr; 21669 /* 21670 * If we are not writer on 'q' then this interface exists already 21671 * and previous lookups (ipif_extract_lifreq_cmn) found this ipif. 21672 * So return EALREADY 21673 */ 21674 if (ill != ipif->ipif_ill) 21675 return (EALREADY); 21676 21677 if (ill->ill_name[0] != '\0') 21678 return (EALREADY); 21679 21680 /* 21681 * Set all the flags. Allows all kinds of override. Provide some 21682 * sanity checking by not allowing IFF_BROADCAST and IFF_MULTICAST 21683 * unless there is either multicast/broadcast support in the driver 21684 * or it is a pt-pt link. 21685 */ 21686 if (lifr->lifr_flags & (IFF_PROMISC|IFF_ALLMULTI)) { 21687 /* Meaningless to IP thus don't allow them to be set. */ 21688 ip1dbg(("ip_setname: EINVAL 1\n")); 21689 return (EINVAL); 21690 } 21691 /* 21692 * For a DL_STYLE2 driver (ill_needs_attach), we would not have the 21693 * ill_bcast_addr_length info. 21694 */ 21695 if (!ill->ill_needs_attach && 21696 ((lifr->lifr_flags & IFF_MULTICAST) && 21697 !(lifr->lifr_flags & IFF_POINTOPOINT) && 21698 ill->ill_bcast_addr_length == 0)) { 21699 /* Link not broadcast/pt-pt capable i.e. no multicast */ 21700 ip1dbg(("ip_setname: EINVAL 2\n")); 21701 return (EINVAL); 21702 } 21703 if ((lifr->lifr_flags & IFF_BROADCAST) && 21704 ((lifr->lifr_flags & IFF_IPV6) || 21705 (!ill->ill_needs_attach && ill->ill_bcast_addr_length == 0))) { 21706 /* Link not broadcast capable or IPv6 i.e. no broadcast */ 21707 ip1dbg(("ip_setname: EINVAL 3\n")); 21708 return (EINVAL); 21709 } 21710 if (lifr->lifr_flags & IFF_UP) { 21711 /* Can only be set with SIOCSLIFFLAGS */ 21712 ip1dbg(("ip_setname: EINVAL 4\n")); 21713 return (EINVAL); 21714 } 21715 if ((lifr->lifr_flags & (IFF_IPV6|IFF_IPV4)) != IFF_IPV6 && 21716 (lifr->lifr_flags & (IFF_IPV6|IFF_IPV4)) != IFF_IPV4) { 21717 ip1dbg(("ip_setname: EINVAL 5\n")); 21718 return (EINVAL); 21719 } 21720 /* 21721 * Only allow the IFF_XRESOLV flag to be set on IPv6 interfaces. 21722 */ 21723 if ((lifr->lifr_flags & IFF_XRESOLV) && 21724 !(lifr->lifr_flags & IFF_IPV6) && 21725 !(ipif->ipif_isv6)) { 21726 ip1dbg(("ip_setname: EINVAL 6\n")); 21727 return (EINVAL); 21728 } 21729 21730 /* 21731 * The user has done SIOCGLIFFLAGS prior to this ioctl and hence 21732 * we have all the flags here. So, we assign rather than we OR. 21733 * We can't OR the flags here because we don't want to set 21734 * both IFF_IPV4 and IFF_IPV6. We start off as IFF_IPV4 in 21735 * ipif_allocate and become IFF_IPV4 or IFF_IPV6 here depending 21736 * on lifr_flags value here. 21737 */ 21738 /* 21739 * This ill has not been inserted into the global list. 21740 * So we are still single threaded and don't need any lock 21741 */ 21742 ipif->ipif_flags = lifr->lifr_flags & IFF_LOGINT_FLAGS & 21743 ~IFF_DUPLICATE; 21744 ill->ill_flags = lifr->lifr_flags & IFF_PHYINTINST_FLAGS; 21745 ill->ill_phyint->phyint_flags = lifr->lifr_flags & IFF_PHYINT_FLAGS; 21746 21747 /* We started off as V4. */ 21748 if (ill->ill_flags & ILLF_IPV6) { 21749 ill->ill_phyint->phyint_illv6 = ill; 21750 ill->ill_phyint->phyint_illv4 = NULL; 21751 } 21752 err = ipif_set_values(q, mp, lifr->lifr_name, &lifr->lifr_ppa); 21753 return (err); 21754 } 21755 21756 /* ARGSUSED */ 21757 int 21758 ip_sioctl_slifname_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 21759 ip_ioctl_cmd_t *ipip, void *if_req) 21760 { 21761 /* 21762 * ill_phyint_reinit merged the v4 and v6 into a single 21763 * ipsq. Could also have become part of a ipmp group in the 21764 * process, and we might not have been able to complete the 21765 * slifname in ipif_set_values, if we could not become 21766 * exclusive. If so restart it here 21767 */ 21768 return (ipif_set_values_tail(ipif->ipif_ill, ipif, mp, q)); 21769 } 21770 21771 /* 21772 * Return a pointer to the ipif which matches the index, IP version type and 21773 * zoneid. 21774 */ 21775 ipif_t * 21776 ipif_lookup_on_ifindex(uint_t index, boolean_t isv6, zoneid_t zoneid, 21777 queue_t *q, mblk_t *mp, ipsq_func_t func, int *err, ip_stack_t *ipst) 21778 { 21779 ill_t *ill; 21780 ipsq_t *ipsq; 21781 phyint_t *phyi; 21782 ipif_t *ipif; 21783 21784 ASSERT((q == NULL && mp == NULL && func == NULL && err == NULL) || 21785 (q != NULL && mp != NULL && func != NULL && err != NULL)); 21786 21787 if (err != NULL) 21788 *err = 0; 21789 21790 /* 21791 * Indexes are stored in the phyint - a common structure 21792 * to both IPv4 and IPv6. 21793 */ 21794 21795 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 21796 phyi = avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 21797 (void *) &index, NULL); 21798 if (phyi != NULL) { 21799 ill = isv6 ? phyi->phyint_illv6 : phyi->phyint_illv4; 21800 if (ill == NULL) { 21801 rw_exit(&ipst->ips_ill_g_lock); 21802 if (err != NULL) 21803 *err = ENXIO; 21804 return (NULL); 21805 } 21806 GRAB_CONN_LOCK(q); 21807 mutex_enter(&ill->ill_lock); 21808 if (ILL_CAN_LOOKUP(ill)) { 21809 for (ipif = ill->ill_ipif; ipif != NULL; 21810 ipif = ipif->ipif_next) { 21811 if (IPIF_CAN_LOOKUP(ipif) && 21812 (zoneid == ALL_ZONES || 21813 zoneid == ipif->ipif_zoneid || 21814 ipif->ipif_zoneid == ALL_ZONES)) { 21815 ipif_refhold_locked(ipif); 21816 mutex_exit(&ill->ill_lock); 21817 RELEASE_CONN_LOCK(q); 21818 rw_exit(&ipst->ips_ill_g_lock); 21819 return (ipif); 21820 } 21821 } 21822 } else if (ILL_CAN_WAIT(ill, q)) { 21823 ipsq = ill->ill_phyint->phyint_ipsq; 21824 mutex_enter(&ipsq->ipsq_lock); 21825 rw_exit(&ipst->ips_ill_g_lock); 21826 mutex_exit(&ill->ill_lock); 21827 ipsq_enq(ipsq, q, mp, func, NEW_OP, ill); 21828 mutex_exit(&ipsq->ipsq_lock); 21829 RELEASE_CONN_LOCK(q); 21830 *err = EINPROGRESS; 21831 return (NULL); 21832 } 21833 mutex_exit(&ill->ill_lock); 21834 RELEASE_CONN_LOCK(q); 21835 } 21836 rw_exit(&ipst->ips_ill_g_lock); 21837 if (err != NULL) 21838 *err = ENXIO; 21839 return (NULL); 21840 } 21841 21842 typedef struct conn_change_s { 21843 uint_t cc_old_ifindex; 21844 uint_t cc_new_ifindex; 21845 } conn_change_t; 21846 21847 /* 21848 * ipcl_walk function for changing interface index. 21849 */ 21850 static void 21851 conn_change_ifindex(conn_t *connp, caddr_t arg) 21852 { 21853 conn_change_t *connc; 21854 uint_t old_ifindex; 21855 uint_t new_ifindex; 21856 int i; 21857 ilg_t *ilg; 21858 21859 connc = (conn_change_t *)arg; 21860 old_ifindex = connc->cc_old_ifindex; 21861 new_ifindex = connc->cc_new_ifindex; 21862 21863 if (connp->conn_orig_bound_ifindex == old_ifindex) 21864 connp->conn_orig_bound_ifindex = new_ifindex; 21865 21866 if (connp->conn_orig_multicast_ifindex == old_ifindex) 21867 connp->conn_orig_multicast_ifindex = new_ifindex; 21868 21869 if (connp->conn_orig_xmit_ifindex == old_ifindex) 21870 connp->conn_orig_xmit_ifindex = new_ifindex; 21871 21872 for (i = connp->conn_ilg_inuse - 1; i >= 0; i--) { 21873 ilg = &connp->conn_ilg[i]; 21874 if (ilg->ilg_orig_ifindex == old_ifindex) 21875 ilg->ilg_orig_ifindex = new_ifindex; 21876 } 21877 } 21878 21879 /* 21880 * Walk all the ipifs and ilms on this ill and change the orig_ifindex 21881 * to new_index if it matches the old_index. 21882 * 21883 * Failovers typically happen within a group of ills. But somebody 21884 * can remove an ill from the group after a failover happened. If 21885 * we are setting the ifindex after this, we potentially need to 21886 * look at all the ills rather than just the ones in the group. 21887 * We cut down the work by looking at matching ill_net_types 21888 * and ill_types as we could not possibly grouped them together. 21889 */ 21890 static void 21891 ip_change_ifindex(ill_t *ill_orig, conn_change_t *connc) 21892 { 21893 ill_t *ill; 21894 ipif_t *ipif; 21895 uint_t old_ifindex; 21896 uint_t new_ifindex; 21897 ilm_t *ilm; 21898 ill_walk_context_t ctx; 21899 ip_stack_t *ipst = ill_orig->ill_ipst; 21900 21901 old_ifindex = connc->cc_old_ifindex; 21902 new_ifindex = connc->cc_new_ifindex; 21903 21904 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 21905 ill = ILL_START_WALK_ALL(&ctx, ipst); 21906 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 21907 if ((ill_orig->ill_net_type != ill->ill_net_type) || 21908 (ill_orig->ill_type != ill->ill_type)) { 21909 continue; 21910 } 21911 for (ipif = ill->ill_ipif; ipif != NULL; 21912 ipif = ipif->ipif_next) { 21913 if (ipif->ipif_orig_ifindex == old_ifindex) 21914 ipif->ipif_orig_ifindex = new_ifindex; 21915 } 21916 for (ilm = ill->ill_ilm; ilm != NULL; ilm = ilm->ilm_next) { 21917 if (ilm->ilm_orig_ifindex == old_ifindex) 21918 ilm->ilm_orig_ifindex = new_ifindex; 21919 } 21920 } 21921 rw_exit(&ipst->ips_ill_g_lock); 21922 } 21923 21924 /* 21925 * We first need to ensure that the new index is unique, and 21926 * then carry the change across both v4 and v6 ill representation 21927 * of the physical interface. 21928 */ 21929 /* ARGSUSED */ 21930 int 21931 ip_sioctl_slifindex(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 21932 ip_ioctl_cmd_t *ipip, void *ifreq) 21933 { 21934 ill_t *ill; 21935 ill_t *ill_other; 21936 phyint_t *phyi; 21937 int old_index; 21938 conn_change_t connc; 21939 struct ifreq *ifr = (struct ifreq *)ifreq; 21940 struct lifreq *lifr = (struct lifreq *)ifreq; 21941 uint_t index; 21942 ill_t *ill_v4; 21943 ill_t *ill_v6; 21944 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 21945 21946 if (ipip->ipi_cmd_type == IF_CMD) 21947 index = ifr->ifr_index; 21948 else 21949 index = lifr->lifr_index; 21950 21951 /* 21952 * Only allow on physical interface. Also, index zero is illegal. 21953 * 21954 * Need to check for PHYI_FAILED and PHYI_INACTIVE 21955 * 21956 * 1) If PHYI_FAILED is set, a failover could have happened which 21957 * implies a possible failback might have to happen. As failback 21958 * depends on the old index, we should fail setting the index. 21959 * 21960 * 2) If PHYI_INACTIVE is set, in.mpathd does a failover so that 21961 * any addresses or multicast memberships are failed over to 21962 * a non-STANDBY interface. As failback depends on the old 21963 * index, we should fail setting the index for this case also. 21964 * 21965 * 3) If PHYI_OFFLINE is set, a possible failover has happened. 21966 * Be consistent with PHYI_FAILED and fail the ioctl. 21967 */ 21968 ill = ipif->ipif_ill; 21969 phyi = ill->ill_phyint; 21970 if ((phyi->phyint_flags & (PHYI_FAILED|PHYI_INACTIVE|PHYI_OFFLINE)) || 21971 ipif->ipif_id != 0 || index == 0) { 21972 return (EINVAL); 21973 } 21974 old_index = phyi->phyint_ifindex; 21975 21976 /* If the index is not changing, no work to do */ 21977 if (old_index == index) 21978 return (0); 21979 21980 /* 21981 * Use ill_lookup_on_ifindex to determine if the 21982 * new index is unused and if so allow the change. 21983 */ 21984 ill_v6 = ill_lookup_on_ifindex(index, B_TRUE, NULL, NULL, NULL, NULL, 21985 ipst); 21986 ill_v4 = ill_lookup_on_ifindex(index, B_FALSE, NULL, NULL, NULL, NULL, 21987 ipst); 21988 if (ill_v6 != NULL || ill_v4 != NULL) { 21989 if (ill_v4 != NULL) 21990 ill_refrele(ill_v4); 21991 if (ill_v6 != NULL) 21992 ill_refrele(ill_v6); 21993 return (EBUSY); 21994 } 21995 21996 /* 21997 * The new index is unused. Set it in the phyint. 21998 * Locate the other ill so that we can send a routing 21999 * sockets message. 22000 */ 22001 if (ill->ill_isv6) { 22002 ill_other = phyi->phyint_illv4; 22003 } else { 22004 ill_other = phyi->phyint_illv6; 22005 } 22006 22007 phyi->phyint_ifindex = index; 22008 22009 /* Update SCTP's ILL list */ 22010 sctp_ill_reindex(ill, old_index); 22011 22012 connc.cc_old_ifindex = old_index; 22013 connc.cc_new_ifindex = index; 22014 ip_change_ifindex(ill, &connc); 22015 ipcl_walk(conn_change_ifindex, (caddr_t)&connc, ipst); 22016 22017 /* Send the routing sockets message */ 22018 ip_rts_ifmsg(ipif); 22019 if (ill_other != NULL) 22020 ip_rts_ifmsg(ill_other->ill_ipif); 22021 22022 return (0); 22023 } 22024 22025 /* ARGSUSED */ 22026 int 22027 ip_sioctl_get_lifindex(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 22028 ip_ioctl_cmd_t *ipip, void *ifreq) 22029 { 22030 struct ifreq *ifr = (struct ifreq *)ifreq; 22031 struct lifreq *lifr = (struct lifreq *)ifreq; 22032 22033 ip1dbg(("ip_sioctl_get_lifindex(%s:%u %p)\n", 22034 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 22035 /* Get the interface index */ 22036 if (ipip->ipi_cmd_type == IF_CMD) { 22037 ifr->ifr_index = ipif->ipif_ill->ill_phyint->phyint_ifindex; 22038 } else { 22039 lifr->lifr_index = ipif->ipif_ill->ill_phyint->phyint_ifindex; 22040 } 22041 return (0); 22042 } 22043 22044 /* ARGSUSED */ 22045 int 22046 ip_sioctl_get_lifzone(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 22047 ip_ioctl_cmd_t *ipip, void *ifreq) 22048 { 22049 struct lifreq *lifr = (struct lifreq *)ifreq; 22050 22051 ip1dbg(("ip_sioctl_get_lifzone(%s:%u %p)\n", 22052 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 22053 /* Get the interface zone */ 22054 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 22055 lifr->lifr_zoneid = ipif->ipif_zoneid; 22056 return (0); 22057 } 22058 22059 /* 22060 * Set the zoneid of an interface. 22061 */ 22062 /* ARGSUSED */ 22063 int 22064 ip_sioctl_slifzone(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 22065 ip_ioctl_cmd_t *ipip, void *ifreq) 22066 { 22067 struct lifreq *lifr = (struct lifreq *)ifreq; 22068 int err = 0; 22069 boolean_t need_up = B_FALSE; 22070 zone_t *zptr; 22071 zone_status_t status; 22072 zoneid_t zoneid; 22073 22074 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 22075 if ((zoneid = lifr->lifr_zoneid) == ALL_ZONES) { 22076 if (!is_system_labeled()) 22077 return (ENOTSUP); 22078 zoneid = GLOBAL_ZONEID; 22079 } 22080 22081 /* cannot assign instance zero to a non-global zone */ 22082 if (ipif->ipif_id == 0 && zoneid != GLOBAL_ZONEID) 22083 return (ENOTSUP); 22084 22085 /* 22086 * Cannot assign to a zone that doesn't exist or is shutting down. In 22087 * the event of a race with the zone shutdown processing, since IP 22088 * serializes this ioctl and SIOCGLIFCONF/SIOCLIFREMOVEIF, we know the 22089 * interface will be cleaned up even if the zone is shut down 22090 * immediately after the status check. If the interface can't be brought 22091 * down right away, and the zone is shut down before the restart 22092 * function is called, we resolve the possible races by rechecking the 22093 * zone status in the restart function. 22094 */ 22095 if ((zptr = zone_find_by_id(zoneid)) == NULL) 22096 return (EINVAL); 22097 status = zone_status_get(zptr); 22098 zone_rele(zptr); 22099 22100 if (status != ZONE_IS_READY && status != ZONE_IS_RUNNING) 22101 return (EINVAL); 22102 22103 if (ipif->ipif_flags & IPIF_UP) { 22104 /* 22105 * If the interface is already marked up, 22106 * we call ipif_down which will take care 22107 * of ditching any IREs that have been set 22108 * up based on the old interface address. 22109 */ 22110 err = ipif_logical_down(ipif, q, mp); 22111 if (err == EINPROGRESS) 22112 return (err); 22113 ipif_down_tail(ipif); 22114 need_up = B_TRUE; 22115 } 22116 22117 err = ip_sioctl_slifzone_tail(ipif, lifr->lifr_zoneid, q, mp, need_up); 22118 return (err); 22119 } 22120 22121 static int 22122 ip_sioctl_slifzone_tail(ipif_t *ipif, zoneid_t zoneid, 22123 queue_t *q, mblk_t *mp, boolean_t need_up) 22124 { 22125 int err = 0; 22126 ip_stack_t *ipst; 22127 22128 ip1dbg(("ip_sioctl_zoneid_tail(%s:%u %p)\n", 22129 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 22130 22131 if (CONN_Q(q)) 22132 ipst = CONNQ_TO_IPST(q); 22133 else 22134 ipst = ILLQ_TO_IPST(q); 22135 22136 /* 22137 * For exclusive stacks we don't allow a different zoneid than 22138 * global. 22139 */ 22140 if (ipst->ips_netstack->netstack_stackid != GLOBAL_NETSTACKID && 22141 zoneid != GLOBAL_ZONEID) 22142 return (EINVAL); 22143 22144 /* Set the new zone id. */ 22145 ipif->ipif_zoneid = zoneid; 22146 22147 /* Update sctp list */ 22148 sctp_update_ipif(ipif, SCTP_IPIF_UPDATE); 22149 22150 if (need_up) { 22151 /* 22152 * Now bring the interface back up. If this 22153 * is the only IPIF for the ILL, ipif_up 22154 * will have to re-bind to the device, so 22155 * we may get back EINPROGRESS, in which 22156 * case, this IOCTL will get completed in 22157 * ip_rput_dlpi when we see the DL_BIND_ACK. 22158 */ 22159 err = ipif_up(ipif, q, mp); 22160 } 22161 return (err); 22162 } 22163 22164 /* ARGSUSED */ 22165 int 22166 ip_sioctl_slifzone_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 22167 ip_ioctl_cmd_t *ipip, void *if_req) 22168 { 22169 struct lifreq *lifr = (struct lifreq *)if_req; 22170 zoneid_t zoneid; 22171 zone_t *zptr; 22172 zone_status_t status; 22173 22174 ASSERT(ipif->ipif_id != 0); 22175 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 22176 if ((zoneid = lifr->lifr_zoneid) == ALL_ZONES) 22177 zoneid = GLOBAL_ZONEID; 22178 22179 ip1dbg(("ip_sioctl_slifzone_restart(%s:%u %p)\n", 22180 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 22181 22182 /* 22183 * We recheck the zone status to resolve the following race condition: 22184 * 1) process sends SIOCSLIFZONE to put hme0:1 in zone "myzone"; 22185 * 2) hme0:1 is up and can't be brought down right away; 22186 * ip_sioctl_slifzone() returns EINPROGRESS and the request is queued; 22187 * 3) zone "myzone" is halted; the zone status switches to 22188 * 'shutting_down' and the zones framework sends SIOCGLIFCONF to list 22189 * the interfaces to remove - hme0:1 is not returned because it's not 22190 * yet in "myzone", so it won't be removed; 22191 * 4) the restart function for SIOCSLIFZONE is called; without the 22192 * status check here, we would have hme0:1 in "myzone" after it's been 22193 * destroyed. 22194 * Note that if the status check fails, we need to bring the interface 22195 * back to its state prior to ip_sioctl_slifzone(), hence the call to 22196 * ipif_up_done[_v6](). 22197 */ 22198 status = ZONE_IS_UNINITIALIZED; 22199 if ((zptr = zone_find_by_id(zoneid)) != NULL) { 22200 status = zone_status_get(zptr); 22201 zone_rele(zptr); 22202 } 22203 if (status != ZONE_IS_READY && status != ZONE_IS_RUNNING) { 22204 if (ipif->ipif_isv6) { 22205 (void) ipif_up_done_v6(ipif); 22206 } else { 22207 (void) ipif_up_done(ipif); 22208 } 22209 return (EINVAL); 22210 } 22211 22212 ipif_down_tail(ipif); 22213 22214 return (ip_sioctl_slifzone_tail(ipif, lifr->lifr_zoneid, q, mp, 22215 B_TRUE)); 22216 } 22217 22218 /* ARGSUSED */ 22219 int 22220 ip_sioctl_get_lifusesrc(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 22221 ip_ioctl_cmd_t *ipip, void *ifreq) 22222 { 22223 struct lifreq *lifr = ifreq; 22224 22225 ASSERT(q->q_next == NULL); 22226 ASSERT(CONN_Q(q)); 22227 22228 ip1dbg(("ip_sioctl_get_lifusesrc(%s:%u %p)\n", 22229 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 22230 lifr->lifr_index = ipif->ipif_ill->ill_usesrc_ifindex; 22231 ip1dbg(("ip_sioctl_get_lifusesrc:lifr_index = %d\n", lifr->lifr_index)); 22232 22233 return (0); 22234 } 22235 22236 22237 /* Find the previous ILL in this usesrc group */ 22238 static ill_t * 22239 ill_prev_usesrc(ill_t *uill) 22240 { 22241 ill_t *ill; 22242 22243 for (ill = uill->ill_usesrc_grp_next; 22244 ASSERT(ill), ill->ill_usesrc_grp_next != uill; 22245 ill = ill->ill_usesrc_grp_next) 22246 /* do nothing */; 22247 return (ill); 22248 } 22249 22250 /* 22251 * Release all members of the usesrc group. This routine is called 22252 * from ill_delete when the interface being unplumbed is the 22253 * group head. 22254 */ 22255 static void 22256 ill_disband_usesrc_group(ill_t *uill) 22257 { 22258 ill_t *next_ill, *tmp_ill; 22259 ip_stack_t *ipst = uill->ill_ipst; 22260 22261 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_usesrc_lock)); 22262 next_ill = uill->ill_usesrc_grp_next; 22263 22264 do { 22265 ASSERT(next_ill != NULL); 22266 tmp_ill = next_ill->ill_usesrc_grp_next; 22267 ASSERT(tmp_ill != NULL); 22268 next_ill->ill_usesrc_grp_next = NULL; 22269 next_ill->ill_usesrc_ifindex = 0; 22270 next_ill = tmp_ill; 22271 } while (next_ill->ill_usesrc_ifindex != 0); 22272 uill->ill_usesrc_grp_next = NULL; 22273 } 22274 22275 /* 22276 * Remove the client usesrc ILL from the list and relink to a new list 22277 */ 22278 int 22279 ill_relink_usesrc_ills(ill_t *ucill, ill_t *uill, uint_t ifindex) 22280 { 22281 ill_t *ill, *tmp_ill; 22282 ip_stack_t *ipst = ucill->ill_ipst; 22283 22284 ASSERT((ucill != NULL) && (ucill->ill_usesrc_grp_next != NULL) && 22285 (uill != NULL) && RW_WRITE_HELD(&ipst->ips_ill_g_usesrc_lock)); 22286 22287 /* 22288 * Check if the usesrc client ILL passed in is not already 22289 * in use as a usesrc ILL i.e one whose source address is 22290 * in use OR a usesrc ILL is not already in use as a usesrc 22291 * client ILL 22292 */ 22293 if ((ucill->ill_usesrc_ifindex == 0) || 22294 (uill->ill_usesrc_ifindex != 0)) { 22295 return (-1); 22296 } 22297 22298 ill = ill_prev_usesrc(ucill); 22299 ASSERT(ill->ill_usesrc_grp_next != NULL); 22300 22301 /* Remove from the current list */ 22302 if (ill->ill_usesrc_grp_next->ill_usesrc_grp_next == ill) { 22303 /* Only two elements in the list */ 22304 ASSERT(ill->ill_usesrc_ifindex == 0); 22305 ill->ill_usesrc_grp_next = NULL; 22306 } else { 22307 ill->ill_usesrc_grp_next = ucill->ill_usesrc_grp_next; 22308 } 22309 22310 if (ifindex == 0) { 22311 ucill->ill_usesrc_ifindex = 0; 22312 ucill->ill_usesrc_grp_next = NULL; 22313 return (0); 22314 } 22315 22316 ucill->ill_usesrc_ifindex = ifindex; 22317 tmp_ill = uill->ill_usesrc_grp_next; 22318 uill->ill_usesrc_grp_next = ucill; 22319 ucill->ill_usesrc_grp_next = 22320 (tmp_ill != NULL) ? tmp_ill : uill; 22321 return (0); 22322 } 22323 22324 /* 22325 * Set the ill_usesrc and ill_usesrc_head fields. See synchronization notes in 22326 * ip.c for locking details. 22327 */ 22328 /* ARGSUSED */ 22329 int 22330 ip_sioctl_slifusesrc(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 22331 ip_ioctl_cmd_t *ipip, void *ifreq) 22332 { 22333 struct lifreq *lifr = (struct lifreq *)ifreq; 22334 boolean_t isv6 = B_FALSE, reset_flg = B_FALSE, 22335 ill_flag_changed = B_FALSE; 22336 ill_t *usesrc_ill, *usesrc_cli_ill = ipif->ipif_ill; 22337 int err = 0, ret; 22338 uint_t ifindex; 22339 phyint_t *us_phyint, *us_cli_phyint; 22340 ipsq_t *ipsq = NULL; 22341 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 22342 22343 ASSERT(IAM_WRITER_IPIF(ipif)); 22344 ASSERT(q->q_next == NULL); 22345 ASSERT(CONN_Q(q)); 22346 22347 isv6 = (Q_TO_CONN(q))->conn_af_isv6; 22348 us_cli_phyint = usesrc_cli_ill->ill_phyint; 22349 22350 ASSERT(us_cli_phyint != NULL); 22351 22352 /* 22353 * If the client ILL is being used for IPMP, abort. 22354 * Note, this can be done before ipsq_try_enter since we are already 22355 * exclusive on this ILL 22356 */ 22357 if ((us_cli_phyint->phyint_groupname != NULL) || 22358 (us_cli_phyint->phyint_flags & PHYI_STANDBY)) { 22359 return (EINVAL); 22360 } 22361 22362 ifindex = lifr->lifr_index; 22363 if (ifindex == 0) { 22364 if (usesrc_cli_ill->ill_usesrc_grp_next == NULL) { 22365 /* non usesrc group interface, nothing to reset */ 22366 return (0); 22367 } 22368 ifindex = usesrc_cli_ill->ill_usesrc_ifindex; 22369 /* valid reset request */ 22370 reset_flg = B_TRUE; 22371 } 22372 22373 usesrc_ill = ill_lookup_on_ifindex(ifindex, isv6, q, mp, 22374 ip_process_ioctl, &err, ipst); 22375 22376 if (usesrc_ill == NULL) { 22377 return (err); 22378 } 22379 22380 /* 22381 * The usesrc_cli_ill or the usesrc_ill cannot be part of an IPMP 22382 * group nor can either of the interfaces be used for standy. So 22383 * to guarantee mutual exclusion with ip_sioctl_flags (which sets 22384 * PHYI_STANDBY) and ip_sioctl_groupname (which sets the groupname) 22385 * we need to be exclusive on the ipsq belonging to the usesrc_ill. 22386 * We are already exlusive on this ipsq i.e ipsq corresponding to 22387 * the usesrc_cli_ill 22388 */ 22389 ipsq = ipsq_try_enter(NULL, usesrc_ill, q, mp, ip_process_ioctl, 22390 NEW_OP, B_TRUE); 22391 if (ipsq == NULL) { 22392 err = EINPROGRESS; 22393 /* Operation enqueued on the ipsq of the usesrc ILL */ 22394 goto done; 22395 } 22396 22397 /* Check if the usesrc_ill is used for IPMP */ 22398 us_phyint = usesrc_ill->ill_phyint; 22399 if ((us_phyint->phyint_groupname != NULL) || 22400 (us_phyint->phyint_flags & PHYI_STANDBY)) { 22401 err = EINVAL; 22402 goto done; 22403 } 22404 22405 /* 22406 * If the client is already in use as a usesrc_ill or a usesrc_ill is 22407 * already a client then return EINVAL 22408 */ 22409 if (IS_USESRC_ILL(usesrc_cli_ill) || IS_USESRC_CLI_ILL(usesrc_ill)) { 22410 err = EINVAL; 22411 goto done; 22412 } 22413 22414 /* 22415 * If the ill_usesrc_ifindex field is already set to what it needs to 22416 * be then this is a duplicate operation. 22417 */ 22418 if (!reset_flg && usesrc_cli_ill->ill_usesrc_ifindex == ifindex) { 22419 err = 0; 22420 goto done; 22421 } 22422 22423 ip1dbg(("ip_sioctl_slifusesrc: usesrc_cli_ill %s, usesrc_ill %s," 22424 " v6 = %d", usesrc_cli_ill->ill_name, usesrc_ill->ill_name, 22425 usesrc_ill->ill_isv6)); 22426 22427 /* 22428 * The next step ensures that no new ires will be created referencing 22429 * the client ill, until the ILL_CHANGING flag is cleared. Then 22430 * we go through an ire walk deleting all ire caches that reference 22431 * the client ill. New ires referencing the client ill that are added 22432 * to the ire table before the ILL_CHANGING flag is set, will be 22433 * cleaned up by the ire walk below. Attempt to add new ires referencing 22434 * the client ill while the ILL_CHANGING flag is set will be failed 22435 * during the ire_add in ire_atomic_start. ire_atomic_start atomically 22436 * checks (under the ill_g_usesrc_lock) that the ire being added 22437 * is not stale, i.e the ire_stq and ire_ipif are consistent and 22438 * belong to the same usesrc group. 22439 */ 22440 mutex_enter(&usesrc_cli_ill->ill_lock); 22441 usesrc_cli_ill->ill_state_flags |= ILL_CHANGING; 22442 mutex_exit(&usesrc_cli_ill->ill_lock); 22443 ill_flag_changed = B_TRUE; 22444 22445 if (ipif->ipif_isv6) 22446 ire_walk_v6(ipif_delete_cache_ire, (char *)usesrc_cli_ill, 22447 ALL_ZONES, ipst); 22448 else 22449 ire_walk_v4(ipif_delete_cache_ire, (char *)usesrc_cli_ill, 22450 ALL_ZONES, ipst); 22451 22452 /* 22453 * ill_g_usesrc_lock global lock protects the ill_usesrc_grp_next 22454 * and the ill_usesrc_ifindex fields 22455 */ 22456 rw_enter(&ipst->ips_ill_g_usesrc_lock, RW_WRITER); 22457 22458 if (reset_flg) { 22459 ret = ill_relink_usesrc_ills(usesrc_cli_ill, usesrc_ill, 0); 22460 if (ret != 0) { 22461 err = EINVAL; 22462 } 22463 rw_exit(&ipst->ips_ill_g_usesrc_lock); 22464 goto done; 22465 } 22466 22467 /* 22468 * Four possibilities to consider: 22469 * 1. Both usesrc_ill and usesrc_cli_ill are not part of any usesrc grp 22470 * 2. usesrc_ill is part of a group but usesrc_cli_ill isn't 22471 * 3. usesrc_cli_ill is part of a group but usesrc_ill isn't 22472 * 4. Both are part of their respective usesrc groups 22473 */ 22474 if ((usesrc_ill->ill_usesrc_grp_next == NULL) && 22475 (usesrc_cli_ill->ill_usesrc_grp_next == NULL)) { 22476 ASSERT(usesrc_ill->ill_usesrc_ifindex == 0); 22477 usesrc_cli_ill->ill_usesrc_ifindex = ifindex; 22478 usesrc_ill->ill_usesrc_grp_next = usesrc_cli_ill; 22479 usesrc_cli_ill->ill_usesrc_grp_next = usesrc_ill; 22480 } else if ((usesrc_ill->ill_usesrc_grp_next != NULL) && 22481 (usesrc_cli_ill->ill_usesrc_grp_next == NULL)) { 22482 usesrc_cli_ill->ill_usesrc_ifindex = ifindex; 22483 /* Insert at head of list */ 22484 usesrc_cli_ill->ill_usesrc_grp_next = 22485 usesrc_ill->ill_usesrc_grp_next; 22486 usesrc_ill->ill_usesrc_grp_next = usesrc_cli_ill; 22487 } else { 22488 ret = ill_relink_usesrc_ills(usesrc_cli_ill, usesrc_ill, 22489 ifindex); 22490 if (ret != 0) 22491 err = EINVAL; 22492 } 22493 rw_exit(&ipst->ips_ill_g_usesrc_lock); 22494 22495 done: 22496 if (ill_flag_changed) { 22497 mutex_enter(&usesrc_cli_ill->ill_lock); 22498 usesrc_cli_ill->ill_state_flags &= ~ILL_CHANGING; 22499 mutex_exit(&usesrc_cli_ill->ill_lock); 22500 } 22501 if (ipsq != NULL) 22502 ipsq_exit(ipsq, B_TRUE, B_TRUE); 22503 /* The refrele on the lifr_name ipif is done by ip_process_ioctl */ 22504 ill_refrele(usesrc_ill); 22505 return (err); 22506 } 22507 22508 /* 22509 * comparison function used by avl. 22510 */ 22511 static int 22512 ill_phyint_compare_index(const void *index_ptr, const void *phyip) 22513 { 22514 22515 uint_t index; 22516 22517 ASSERT(phyip != NULL && index_ptr != NULL); 22518 22519 index = *((uint_t *)index_ptr); 22520 /* 22521 * let the phyint with the lowest index be on top. 22522 */ 22523 if (((phyint_t *)phyip)->phyint_ifindex < index) 22524 return (1); 22525 if (((phyint_t *)phyip)->phyint_ifindex > index) 22526 return (-1); 22527 return (0); 22528 } 22529 22530 /* 22531 * comparison function used by avl. 22532 */ 22533 static int 22534 ill_phyint_compare_name(const void *name_ptr, const void *phyip) 22535 { 22536 ill_t *ill; 22537 int res = 0; 22538 22539 ASSERT(phyip != NULL && name_ptr != NULL); 22540 22541 if (((phyint_t *)phyip)->phyint_illv4) 22542 ill = ((phyint_t *)phyip)->phyint_illv4; 22543 else 22544 ill = ((phyint_t *)phyip)->phyint_illv6; 22545 ASSERT(ill != NULL); 22546 22547 res = strcmp(ill->ill_name, (char *)name_ptr); 22548 if (res > 0) 22549 return (1); 22550 else if (res < 0) 22551 return (-1); 22552 return (0); 22553 } 22554 /* 22555 * This function is called from ill_delete when the ill is being 22556 * unplumbed. We remove the reference from the phyint and we also 22557 * free the phyint when there are no more references to it. 22558 */ 22559 static void 22560 ill_phyint_free(ill_t *ill) 22561 { 22562 phyint_t *phyi; 22563 phyint_t *next_phyint; 22564 ipsq_t *cur_ipsq; 22565 ip_stack_t *ipst = ill->ill_ipst; 22566 22567 ASSERT(ill->ill_phyint != NULL); 22568 22569 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); 22570 phyi = ill->ill_phyint; 22571 ill->ill_phyint = NULL; 22572 /* 22573 * ill_init allocates a phyint always to store the copy 22574 * of flags relevant to phyint. At that point in time, we could 22575 * not assign the name and hence phyint_illv4/v6 could not be 22576 * initialized. Later in ipif_set_values, we assign the name to 22577 * the ill, at which point in time we assign phyint_illv4/v6. 22578 * Thus we don't rely on phyint_illv6 to be initialized always. 22579 */ 22580 if (ill->ill_flags & ILLF_IPV6) { 22581 phyi->phyint_illv6 = NULL; 22582 } else { 22583 phyi->phyint_illv4 = NULL; 22584 } 22585 /* 22586 * ipif_down removes it from the group when the last ipif goes 22587 * down. 22588 */ 22589 ASSERT(ill->ill_group == NULL); 22590 22591 if (phyi->phyint_illv4 != NULL || phyi->phyint_illv6 != NULL) 22592 return; 22593 22594 /* 22595 * Make sure this phyint was put in the list. 22596 */ 22597 if (phyi->phyint_ifindex > 0) { 22598 avl_remove(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 22599 phyi); 22600 avl_remove(&ipst->ips_phyint_g_list->phyint_list_avl_by_name, 22601 phyi); 22602 } 22603 /* 22604 * remove phyint from the ipsq list. 22605 */ 22606 cur_ipsq = phyi->phyint_ipsq; 22607 if (phyi == cur_ipsq->ipsq_phyint_list) { 22608 cur_ipsq->ipsq_phyint_list = phyi->phyint_ipsq_next; 22609 } else { 22610 next_phyint = cur_ipsq->ipsq_phyint_list; 22611 while (next_phyint != NULL) { 22612 if (next_phyint->phyint_ipsq_next == phyi) { 22613 next_phyint->phyint_ipsq_next = 22614 phyi->phyint_ipsq_next; 22615 break; 22616 } 22617 next_phyint = next_phyint->phyint_ipsq_next; 22618 } 22619 ASSERT(next_phyint != NULL); 22620 } 22621 IPSQ_DEC_REF(cur_ipsq, ipst); 22622 22623 if (phyi->phyint_groupname_len != 0) { 22624 ASSERT(phyi->phyint_groupname != NULL); 22625 mi_free(phyi->phyint_groupname); 22626 } 22627 mi_free(phyi); 22628 } 22629 22630 /* 22631 * Attach the ill to the phyint structure which can be shared by both 22632 * IPv4 and IPv6 ill. ill_init allocates a phyint to just hold flags. This 22633 * function is called from ipif_set_values and ill_lookup_on_name (for 22634 * loopback) where we know the name of the ill. We lookup the ill and if 22635 * there is one present already with the name use that phyint. Otherwise 22636 * reuse the one allocated by ill_init. 22637 */ 22638 static void 22639 ill_phyint_reinit(ill_t *ill) 22640 { 22641 boolean_t isv6 = ill->ill_isv6; 22642 phyint_t *phyi_old; 22643 phyint_t *phyi; 22644 avl_index_t where = 0; 22645 ill_t *ill_other = NULL; 22646 ipsq_t *ipsq; 22647 ip_stack_t *ipst = ill->ill_ipst; 22648 22649 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); 22650 22651 phyi_old = ill->ill_phyint; 22652 ASSERT(isv6 || (phyi_old->phyint_illv4 == ill && 22653 phyi_old->phyint_illv6 == NULL)); 22654 ASSERT(!isv6 || (phyi_old->phyint_illv6 == ill && 22655 phyi_old->phyint_illv4 == NULL)); 22656 ASSERT(phyi_old->phyint_ifindex == 0); 22657 22658 phyi = avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_name, 22659 ill->ill_name, &where); 22660 22661 /* 22662 * 1. We grabbed the ill_g_lock before inserting this ill into 22663 * the global list of ills. So no other thread could have located 22664 * this ill and hence the ipsq of this ill is guaranteed to be empty. 22665 * 2. Now locate the other protocol instance of this ill. 22666 * 3. Now grab both ill locks in the right order, and the phyint lock of 22667 * the new ipsq. Holding ill locks + ill_g_lock ensures that the ipsq 22668 * of neither ill can change. 22669 * 4. Merge the phyint and thus the ipsq as well of this ill onto the 22670 * other ill. 22671 * 5. Release all locks. 22672 */ 22673 22674 /* 22675 * Look for IPv4 if we are initializing IPv6 or look for IPv6 if 22676 * we are initializing IPv4. 22677 */ 22678 if (phyi != NULL) { 22679 ill_other = (isv6) ? phyi->phyint_illv4 : 22680 phyi->phyint_illv6; 22681 ASSERT(ill_other->ill_phyint != NULL); 22682 ASSERT((isv6 && !ill_other->ill_isv6) || 22683 (!isv6 && ill_other->ill_isv6)); 22684 GRAB_ILL_LOCKS(ill, ill_other); 22685 /* 22686 * We are potentially throwing away phyint_flags which 22687 * could be different from the one that we obtain from 22688 * ill_other->ill_phyint. But it is okay as we are assuming 22689 * that the state maintained within IP is correct. 22690 */ 22691 mutex_enter(&phyi->phyint_lock); 22692 if (isv6) { 22693 ASSERT(phyi->phyint_illv6 == NULL); 22694 phyi->phyint_illv6 = ill; 22695 } else { 22696 ASSERT(phyi->phyint_illv4 == NULL); 22697 phyi->phyint_illv4 = ill; 22698 } 22699 /* 22700 * This is a new ill, currently undergoing SLIFNAME 22701 * So we could not have joined an IPMP group until now. 22702 */ 22703 ASSERT(phyi_old->phyint_ipsq_next == NULL && 22704 phyi_old->phyint_groupname == NULL); 22705 22706 /* 22707 * This phyi_old is going away. Decref ipsq_refs and 22708 * assert it is zero. The ipsq itself will be freed in 22709 * ipsq_exit 22710 */ 22711 ipsq = phyi_old->phyint_ipsq; 22712 IPSQ_DEC_REF(ipsq, ipst); 22713 ASSERT(ipsq->ipsq_refs == 0); 22714 /* Get the singleton phyint out of the ipsq list */ 22715 ASSERT(phyi_old->phyint_ipsq_next == NULL); 22716 ipsq->ipsq_phyint_list = NULL; 22717 phyi_old->phyint_illv4 = NULL; 22718 phyi_old->phyint_illv6 = NULL; 22719 mi_free(phyi_old); 22720 } else { 22721 mutex_enter(&ill->ill_lock); 22722 /* 22723 * We don't need to acquire any lock, since 22724 * the ill is not yet visible globally and we 22725 * have not yet released the ill_g_lock. 22726 */ 22727 phyi = phyi_old; 22728 mutex_enter(&phyi->phyint_lock); 22729 /* XXX We need a recovery strategy here. */ 22730 if (!phyint_assign_ifindex(phyi, ipst)) 22731 cmn_err(CE_PANIC, "phyint_assign_ifindex() failed"); 22732 22733 /* No IPMP group yet, thus the hook uses the ifindex */ 22734 phyi->phyint_hook_ifindex = phyi->phyint_ifindex; 22735 22736 avl_insert(&ipst->ips_phyint_g_list->phyint_list_avl_by_name, 22737 (void *)phyi, where); 22738 22739 (void) avl_find(&ipst->ips_phyint_g_list-> 22740 phyint_list_avl_by_index, 22741 &phyi->phyint_ifindex, &where); 22742 avl_insert(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 22743 (void *)phyi, where); 22744 } 22745 22746 /* 22747 * Reassigning ill_phyint automatically reassigns the ipsq also. 22748 * pending mp is not affected because that is per ill basis. 22749 */ 22750 ill->ill_phyint = phyi; 22751 22752 /* 22753 * Keep the index on ipif_orig_index to be used by FAILOVER. 22754 * We do this here as when the first ipif was allocated, 22755 * ipif_allocate does not know the right interface index. 22756 */ 22757 22758 ill->ill_ipif->ipif_orig_ifindex = ill->ill_phyint->phyint_ifindex; 22759 /* 22760 * Now that the phyint's ifindex has been assigned, complete the 22761 * remaining 22762 */ 22763 22764 ill->ill_ip_mib->ipIfStatsIfIndex = ill->ill_phyint->phyint_ifindex; 22765 if (ill->ill_isv6) { 22766 ill->ill_icmp6_mib->ipv6IfIcmpIfIndex = 22767 ill->ill_phyint->phyint_ifindex; 22768 ill->ill_mcast_type = ipst->ips_mld_max_version; 22769 } else { 22770 ill->ill_mcast_type = ipst->ips_igmp_max_version; 22771 } 22772 22773 /* 22774 * Generate an event within the hooks framework to indicate that 22775 * a new interface has just been added to IP. For this event to 22776 * be generated, the network interface must, at least, have an 22777 * ifindex assigned to it. 22778 * 22779 * This needs to be run inside the ill_g_lock perimeter to ensure 22780 * that the ordering of delivered events to listeners matches the 22781 * order of them in the kernel. 22782 * 22783 * This function could be called from ill_lookup_on_name. In that case 22784 * the interface is loopback "lo", which will not generate a NIC event. 22785 */ 22786 if (ill->ill_name_length <= 2 || 22787 ill->ill_name[0] != 'l' || ill->ill_name[1] != 'o') { 22788 /* 22789 * Generate nic plumb event for ill_name even if 22790 * ipmp_hook_emulation is set. That avoids generating events 22791 * for the ill_names should ipmp_hook_emulation be turned on 22792 * later. 22793 */ 22794 ill_nic_info_plumb(ill, B_FALSE); 22795 } 22796 RELEASE_ILL_LOCKS(ill, ill_other); 22797 mutex_exit(&phyi->phyint_lock); 22798 } 22799 22800 /* 22801 * Allocate a NE_PLUMB nic info event and store in the ill. 22802 * If 'group' is set we do it for the group name, otherwise the ill name. 22803 * It will be sent when we leave the ipsq. 22804 */ 22805 void 22806 ill_nic_info_plumb(ill_t *ill, boolean_t group) 22807 { 22808 phyint_t *phyi = ill->ill_phyint; 22809 ip_stack_t *ipst = ill->ill_ipst; 22810 hook_nic_event_t *info; 22811 char *name; 22812 int namelen; 22813 22814 ASSERT(MUTEX_HELD(&ill->ill_lock)); 22815 22816 if ((info = ill->ill_nic_event_info) != NULL) { 22817 ip2dbg(("ill_nic_info_plumb: unexpected nic event %d " 22818 "attached for %s\n", info->hne_event, 22819 ill->ill_name)); 22820 if (info->hne_data != NULL) 22821 kmem_free(info->hne_data, info->hne_datalen); 22822 kmem_free(info, sizeof (hook_nic_event_t)); 22823 ill->ill_nic_event_info = NULL; 22824 } 22825 22826 info = kmem_alloc(sizeof (hook_nic_event_t), KM_NOSLEEP); 22827 if (info == NULL) { 22828 ip2dbg(("ill_nic_info_plumb: could not attach PLUMB nic " 22829 "event information for %s (ENOMEM)\n", 22830 ill->ill_name)); 22831 return; 22832 } 22833 22834 if (group) { 22835 ASSERT(phyi->phyint_groupname_len != 0); 22836 namelen = phyi->phyint_groupname_len; 22837 name = phyi->phyint_groupname; 22838 } else { 22839 namelen = ill->ill_name_length; 22840 name = ill->ill_name; 22841 } 22842 22843 info->hne_nic = phyi->phyint_hook_ifindex; 22844 info->hne_lif = 0; 22845 info->hne_event = NE_PLUMB; 22846 info->hne_family = ill->ill_isv6 ? 22847 ipst->ips_ipv6_net_data : ipst->ips_ipv4_net_data; 22848 22849 info->hne_data = kmem_alloc(namelen, KM_NOSLEEP); 22850 if (info->hne_data != NULL) { 22851 info->hne_datalen = namelen; 22852 bcopy(name, info->hne_data, info->hne_datalen); 22853 } else { 22854 ip2dbg(("ill_nic_info_plumb: could not attach " 22855 "name information for PLUMB nic event " 22856 "of %s (ENOMEM)\n", name)); 22857 kmem_free(info, sizeof (hook_nic_event_t)); 22858 info = NULL; 22859 } 22860 ill->ill_nic_event_info = info; 22861 } 22862 22863 /* 22864 * Unhook the nic event message from the ill and enqueue it 22865 * into the nic event taskq. 22866 */ 22867 void 22868 ill_nic_info_dispatch(ill_t *ill) 22869 { 22870 hook_nic_event_t *info; 22871 22872 ASSERT(MUTEX_HELD(&ill->ill_lock)); 22873 22874 if ((info = ill->ill_nic_event_info) != NULL) { 22875 if (ddi_taskq_dispatch(eventq_queue_nic, 22876 ip_ne_queue_func, info, DDI_SLEEP) == DDI_FAILURE) { 22877 ip2dbg(("ill_nic_info_dispatch: " 22878 "ddi_taskq_dispatch failed\n")); 22879 if (info->hne_data != NULL) 22880 kmem_free(info->hne_data, info->hne_datalen); 22881 kmem_free(info, sizeof (hook_nic_event_t)); 22882 } 22883 ill->ill_nic_event_info = NULL; 22884 } 22885 } 22886 22887 /* 22888 * Notify any downstream modules of the name of this interface. 22889 * An M_IOCTL is used even though we don't expect a successful reply. 22890 * Any reply message from the driver (presumably an M_IOCNAK) will 22891 * eventually get discarded somewhere upstream. The message format is 22892 * simply an SIOCSLIFNAME ioctl just as might be sent from ifconfig 22893 * to IP. 22894 */ 22895 static void 22896 ip_ifname_notify(ill_t *ill, queue_t *q) 22897 { 22898 mblk_t *mp1, *mp2; 22899 struct iocblk *iocp; 22900 struct lifreq *lifr; 22901 22902 mp1 = mkiocb(SIOCSLIFNAME); 22903 if (mp1 == NULL) 22904 return; 22905 mp2 = allocb(sizeof (struct lifreq), BPRI_HI); 22906 if (mp2 == NULL) { 22907 freeb(mp1); 22908 return; 22909 } 22910 22911 mp1->b_cont = mp2; 22912 iocp = (struct iocblk *)mp1->b_rptr; 22913 iocp->ioc_count = sizeof (struct lifreq); 22914 22915 lifr = (struct lifreq *)mp2->b_rptr; 22916 mp2->b_wptr += sizeof (struct lifreq); 22917 bzero(lifr, sizeof (struct lifreq)); 22918 22919 (void) strncpy(lifr->lifr_name, ill->ill_name, LIFNAMSIZ); 22920 lifr->lifr_ppa = ill->ill_ppa; 22921 lifr->lifr_flags = (ill->ill_flags & (ILLF_IPV4|ILLF_IPV6)); 22922 22923 putnext(q, mp1); 22924 } 22925 22926 static int 22927 ipif_set_values_tail(ill_t *ill, ipif_t *ipif, mblk_t *mp, queue_t *q) 22928 { 22929 int err; 22930 ip_stack_t *ipst = ill->ill_ipst; 22931 22932 /* Set the obsolete NDD per-interface forwarding name. */ 22933 err = ill_set_ndd_name(ill); 22934 if (err != 0) { 22935 cmn_err(CE_WARN, "ipif_set_values: ill_set_ndd_name (%d)\n", 22936 err); 22937 } 22938 22939 /* Tell downstream modules where they are. */ 22940 ip_ifname_notify(ill, q); 22941 22942 /* 22943 * ill_dl_phys returns EINPROGRESS in the usual case. 22944 * Error cases are ENOMEM ... 22945 */ 22946 err = ill_dl_phys(ill, ipif, mp, q); 22947 22948 /* 22949 * If there is no IRE expiration timer running, get one started. 22950 * igmp and mld timers will be triggered by the first multicast 22951 */ 22952 if (ipst->ips_ip_ire_expire_id == 0) { 22953 /* 22954 * acquire the lock and check again. 22955 */ 22956 mutex_enter(&ipst->ips_ip_trash_timer_lock); 22957 if (ipst->ips_ip_ire_expire_id == 0) { 22958 ipst->ips_ip_ire_expire_id = timeout( 22959 ip_trash_timer_expire, ipst, 22960 MSEC_TO_TICK(ipst->ips_ip_timer_interval)); 22961 } 22962 mutex_exit(&ipst->ips_ip_trash_timer_lock); 22963 } 22964 22965 if (ill->ill_isv6) { 22966 mutex_enter(&ipst->ips_mld_slowtimeout_lock); 22967 if (ipst->ips_mld_slowtimeout_id == 0) { 22968 ipst->ips_mld_slowtimeout_id = timeout(mld_slowtimo, 22969 (void *)ipst, 22970 MSEC_TO_TICK(MCAST_SLOWTIMO_INTERVAL)); 22971 } 22972 mutex_exit(&ipst->ips_mld_slowtimeout_lock); 22973 } else { 22974 mutex_enter(&ipst->ips_igmp_slowtimeout_lock); 22975 if (ipst->ips_igmp_slowtimeout_id == 0) { 22976 ipst->ips_igmp_slowtimeout_id = timeout(igmp_slowtimo, 22977 (void *)ipst, 22978 MSEC_TO_TICK(MCAST_SLOWTIMO_INTERVAL)); 22979 } 22980 mutex_exit(&ipst->ips_igmp_slowtimeout_lock); 22981 } 22982 22983 return (err); 22984 } 22985 22986 /* 22987 * Common routine for ppa and ifname setting. Should be called exclusive. 22988 * 22989 * Returns EINPROGRESS when mp has been consumed by queueing it on 22990 * ill_pending_mp and the ioctl will complete in ip_rput. 22991 * 22992 * NOTE : If ppa is UNIT_MAX, we assign the next valid ppa and return 22993 * the new name and new ppa in lifr_name and lifr_ppa respectively. 22994 * For SLIFNAME, we pass these values back to the userland. 22995 */ 22996 static int 22997 ipif_set_values(queue_t *q, mblk_t *mp, char *interf_name, uint_t *new_ppa_ptr) 22998 { 22999 ill_t *ill; 23000 ipif_t *ipif; 23001 ipsq_t *ipsq; 23002 char *ppa_ptr; 23003 char *old_ptr; 23004 char old_char; 23005 int error; 23006 ip_stack_t *ipst; 23007 23008 ip1dbg(("ipif_set_values: interface %s\n", interf_name)); 23009 ASSERT(q->q_next != NULL); 23010 ASSERT(interf_name != NULL); 23011 23012 ill = (ill_t *)q->q_ptr; 23013 ipst = ill->ill_ipst; 23014 23015 ASSERT(ill->ill_ipst != NULL); 23016 ASSERT(ill->ill_name[0] == '\0'); 23017 ASSERT(IAM_WRITER_ILL(ill)); 23018 ASSERT((mi_strlen(interf_name) + 1) <= LIFNAMSIZ); 23019 ASSERT(ill->ill_ppa == UINT_MAX); 23020 23021 /* The ppa is sent down by ifconfig or is chosen */ 23022 if ((ppa_ptr = ill_get_ppa_ptr(interf_name)) == NULL) { 23023 return (EINVAL); 23024 } 23025 23026 /* 23027 * make sure ppa passed in is same as ppa in the name. 23028 * This check is not made when ppa == UINT_MAX in that case ppa 23029 * in the name could be anything. System will choose a ppa and 23030 * update new_ppa_ptr and inter_name to contain the choosen ppa. 23031 */ 23032 if (*new_ppa_ptr != UINT_MAX) { 23033 /* stoi changes the pointer */ 23034 old_ptr = ppa_ptr; 23035 /* 23036 * ifconfig passed in 0 for the ppa for DLPI 1 style devices 23037 * (they don't have an externally visible ppa). We assign one 23038 * here so that we can manage the interface. Note that in 23039 * the past this value was always 0 for DLPI 1 drivers. 23040 */ 23041 if (*new_ppa_ptr == 0) 23042 *new_ppa_ptr = stoi(&old_ptr); 23043 else if (*new_ppa_ptr != (uint_t)stoi(&old_ptr)) 23044 return (EINVAL); 23045 } 23046 /* 23047 * terminate string before ppa 23048 * save char at that location. 23049 */ 23050 old_char = ppa_ptr[0]; 23051 ppa_ptr[0] = '\0'; 23052 23053 ill->ill_ppa = *new_ppa_ptr; 23054 /* 23055 * Finish as much work now as possible before calling ill_glist_insert 23056 * which makes the ill globally visible and also merges it with the 23057 * other protocol instance of this phyint. The remaining work is 23058 * done after entering the ipsq which may happen sometime later. 23059 * ill_set_ndd_name occurs after the ill has been made globally visible. 23060 */ 23061 ipif = ill->ill_ipif; 23062 23063 /* We didn't do this when we allocated ipif in ip_ll_subnet_defaults */ 23064 ipif_assign_seqid(ipif); 23065 23066 if (!(ill->ill_flags & (ILLF_IPV4|ILLF_IPV6))) 23067 ill->ill_flags |= ILLF_IPV4; 23068 23069 ASSERT(ipif->ipif_next == NULL); /* Only one ipif on ill */ 23070 ASSERT((ipif->ipif_flags & IPIF_UP) == 0); 23071 23072 if (ill->ill_flags & ILLF_IPV6) { 23073 23074 ill->ill_isv6 = B_TRUE; 23075 if (ill->ill_rq != NULL) { 23076 ill->ill_rq->q_qinfo = &rinit_ipv6; 23077 ill->ill_wq->q_qinfo = &winit_ipv6; 23078 } 23079 23080 /* Keep the !IN6_IS_ADDR_V4MAPPED assertions happy */ 23081 ipif->ipif_v6lcl_addr = ipv6_all_zeros; 23082 ipif->ipif_v6src_addr = ipv6_all_zeros; 23083 ipif->ipif_v6subnet = ipv6_all_zeros; 23084 ipif->ipif_v6net_mask = ipv6_all_zeros; 23085 ipif->ipif_v6brd_addr = ipv6_all_zeros; 23086 ipif->ipif_v6pp_dst_addr = ipv6_all_zeros; 23087 /* 23088 * point-to-point or Non-mulicast capable 23089 * interfaces won't do NUD unless explicitly 23090 * configured to do so. 23091 */ 23092 if (ipif->ipif_flags & IPIF_POINTOPOINT || 23093 !(ill->ill_flags & ILLF_MULTICAST)) { 23094 ill->ill_flags |= ILLF_NONUD; 23095 } 23096 /* Make sure IPv4 specific flag is not set on IPv6 if */ 23097 if (ill->ill_flags & ILLF_NOARP) { 23098 /* 23099 * Note: xresolv interfaces will eventually need 23100 * NOARP set here as well, but that will require 23101 * those external resolvers to have some 23102 * knowledge of that flag and act appropriately. 23103 * Not to be changed at present. 23104 */ 23105 ill->ill_flags &= ~ILLF_NOARP; 23106 } 23107 /* 23108 * Set the ILLF_ROUTER flag according to the global 23109 * IPv6 forwarding policy. 23110 */ 23111 if (ipst->ips_ipv6_forward != 0) 23112 ill->ill_flags |= ILLF_ROUTER; 23113 } else if (ill->ill_flags & ILLF_IPV4) { 23114 ill->ill_isv6 = B_FALSE; 23115 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6lcl_addr); 23116 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6src_addr); 23117 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6subnet); 23118 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6net_mask); 23119 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6brd_addr); 23120 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6pp_dst_addr); 23121 /* 23122 * Set the ILLF_ROUTER flag according to the global 23123 * IPv4 forwarding policy. 23124 */ 23125 if (ipst->ips_ip_g_forward != 0) 23126 ill->ill_flags |= ILLF_ROUTER; 23127 } 23128 23129 ASSERT(ill->ill_phyint != NULL); 23130 23131 /* 23132 * The ipIfStatsIfindex and ipv6IfIcmpIfIndex assignments will 23133 * be completed in ill_glist_insert -> ill_phyint_reinit 23134 */ 23135 if (!ill_allocate_mibs(ill)) 23136 return (ENOMEM); 23137 23138 /* 23139 * Pick a default sap until we get the DL_INFO_ACK back from 23140 * the driver. 23141 */ 23142 if (ill->ill_sap == 0) { 23143 if (ill->ill_isv6) 23144 ill->ill_sap = IP6_DL_SAP; 23145 else 23146 ill->ill_sap = IP_DL_SAP; 23147 } 23148 23149 ill->ill_ifname_pending = 1; 23150 ill->ill_ifname_pending_err = 0; 23151 23152 ill_refhold(ill); 23153 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 23154 if ((error = ill_glist_insert(ill, interf_name, 23155 (ill->ill_flags & ILLF_IPV6) == ILLF_IPV6)) > 0) { 23156 ill->ill_ppa = UINT_MAX; 23157 ill->ill_name[0] = '\0'; 23158 /* 23159 * undo null termination done above. 23160 */ 23161 ppa_ptr[0] = old_char; 23162 rw_exit(&ipst->ips_ill_g_lock); 23163 ill_refrele(ill); 23164 return (error); 23165 } 23166 23167 ASSERT(ill->ill_name_length <= LIFNAMSIZ); 23168 23169 /* 23170 * When we return the buffer pointed to by interf_name should contain 23171 * the same name as in ill_name. 23172 * If a ppa was choosen by the system (ppa passed in was UINT_MAX) 23173 * the buffer pointed to by new_ppa_ptr would not contain the right ppa 23174 * so copy full name and update the ppa ptr. 23175 * When ppa passed in != UINT_MAX all values are correct just undo 23176 * null termination, this saves a bcopy. 23177 */ 23178 if (*new_ppa_ptr == UINT_MAX) { 23179 bcopy(ill->ill_name, interf_name, ill->ill_name_length); 23180 *new_ppa_ptr = ill->ill_ppa; 23181 } else { 23182 /* 23183 * undo null termination done above. 23184 */ 23185 ppa_ptr[0] = old_char; 23186 } 23187 23188 /* Let SCTP know about this ILL */ 23189 sctp_update_ill(ill, SCTP_ILL_INSERT); 23190 23191 ipsq = ipsq_try_enter(NULL, ill, q, mp, ip_reprocess_ioctl, NEW_OP, 23192 B_TRUE); 23193 23194 rw_exit(&ipst->ips_ill_g_lock); 23195 ill_refrele(ill); 23196 if (ipsq == NULL) 23197 return (EINPROGRESS); 23198 23199 /* 23200 * If ill_phyint_reinit() changed our ipsq, then start on the new ipsq. 23201 */ 23202 if (ipsq->ipsq_current_ipif == NULL) 23203 ipsq_current_start(ipsq, ipif, SIOCSLIFNAME); 23204 else 23205 ASSERT(ipsq->ipsq_current_ipif == ipif); 23206 23207 error = ipif_set_values_tail(ill, ipif, mp, q); 23208 ipsq_exit(ipsq, B_TRUE, B_TRUE); 23209 if (error != 0 && error != EINPROGRESS) { 23210 /* 23211 * restore previous values 23212 */ 23213 ill->ill_isv6 = B_FALSE; 23214 } 23215 return (error); 23216 } 23217 23218 23219 void 23220 ipif_init(ip_stack_t *ipst) 23221 { 23222 hrtime_t hrt; 23223 int i; 23224 23225 /* 23226 * Can't call drv_getparm here as it is too early in the boot. 23227 * As we use ipif_src_random just for picking a different 23228 * source address everytime, this need not be really random. 23229 */ 23230 hrt = gethrtime(); 23231 ipst->ips_ipif_src_random = 23232 ((hrt >> 32) & 0xffffffff) * (hrt & 0xffffffff); 23233 23234 for (i = 0; i < MAX_G_HEADS; i++) { 23235 ipst->ips_ill_g_heads[i].ill_g_list_head = 23236 (ill_if_t *)&ipst->ips_ill_g_heads[i]; 23237 ipst->ips_ill_g_heads[i].ill_g_list_tail = 23238 (ill_if_t *)&ipst->ips_ill_g_heads[i]; 23239 } 23240 23241 avl_create(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 23242 ill_phyint_compare_index, 23243 sizeof (phyint_t), 23244 offsetof(struct phyint, phyint_avl_by_index)); 23245 avl_create(&ipst->ips_phyint_g_list->phyint_list_avl_by_name, 23246 ill_phyint_compare_name, 23247 sizeof (phyint_t), 23248 offsetof(struct phyint, phyint_avl_by_name)); 23249 } 23250 23251 /* 23252 * Lookup the ipif corresponding to the onlink destination address. For 23253 * point-to-point interfaces, it matches with remote endpoint destination 23254 * address. For point-to-multipoint interfaces it only tries to match the 23255 * destination with the interface's subnet address. The longest, most specific 23256 * match is found to take care of such rare network configurations like - 23257 * le0: 129.146.1.1/16 23258 * le1: 129.146.2.2/24 23259 * It is used only by SO_DONTROUTE at the moment. 23260 */ 23261 ipif_t * 23262 ipif_lookup_onlink_addr(ipaddr_t addr, zoneid_t zoneid, ip_stack_t *ipst) 23263 { 23264 ipif_t *ipif, *best_ipif; 23265 ill_t *ill; 23266 ill_walk_context_t ctx; 23267 23268 ASSERT(zoneid != ALL_ZONES); 23269 best_ipif = NULL; 23270 23271 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 23272 ill = ILL_START_WALK_V4(&ctx, ipst); 23273 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 23274 mutex_enter(&ill->ill_lock); 23275 for (ipif = ill->ill_ipif; ipif != NULL; 23276 ipif = ipif->ipif_next) { 23277 if (!IPIF_CAN_LOOKUP(ipif)) 23278 continue; 23279 if (ipif->ipif_zoneid != zoneid && 23280 ipif->ipif_zoneid != ALL_ZONES) 23281 continue; 23282 /* 23283 * Point-to-point case. Look for exact match with 23284 * destination address. 23285 */ 23286 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 23287 if (ipif->ipif_pp_dst_addr == addr) { 23288 ipif_refhold_locked(ipif); 23289 mutex_exit(&ill->ill_lock); 23290 rw_exit(&ipst->ips_ill_g_lock); 23291 if (best_ipif != NULL) 23292 ipif_refrele(best_ipif); 23293 return (ipif); 23294 } 23295 } else if (ipif->ipif_subnet == (addr & 23296 ipif->ipif_net_mask)) { 23297 /* 23298 * Point-to-multipoint case. Looping through to 23299 * find the most specific match. If there are 23300 * multiple best match ipif's then prefer ipif's 23301 * that are UP. If there is only one best match 23302 * ipif and it is DOWN we must still return it. 23303 */ 23304 if ((best_ipif == NULL) || 23305 (ipif->ipif_net_mask > 23306 best_ipif->ipif_net_mask) || 23307 ((ipif->ipif_net_mask == 23308 best_ipif->ipif_net_mask) && 23309 ((ipif->ipif_flags & IPIF_UP) && 23310 (!(best_ipif->ipif_flags & IPIF_UP))))) { 23311 ipif_refhold_locked(ipif); 23312 mutex_exit(&ill->ill_lock); 23313 rw_exit(&ipst->ips_ill_g_lock); 23314 if (best_ipif != NULL) 23315 ipif_refrele(best_ipif); 23316 best_ipif = ipif; 23317 rw_enter(&ipst->ips_ill_g_lock, 23318 RW_READER); 23319 mutex_enter(&ill->ill_lock); 23320 } 23321 } 23322 } 23323 mutex_exit(&ill->ill_lock); 23324 } 23325 rw_exit(&ipst->ips_ill_g_lock); 23326 return (best_ipif); 23327 } 23328 23329 23330 /* 23331 * Save enough information so that we can recreate the IRE if 23332 * the interface goes down and then up. 23333 */ 23334 static void 23335 ipif_save_ire(ipif_t *ipif, ire_t *ire) 23336 { 23337 mblk_t *save_mp; 23338 23339 save_mp = allocb(sizeof (ifrt_t), BPRI_MED); 23340 if (save_mp != NULL) { 23341 ifrt_t *ifrt; 23342 23343 save_mp->b_wptr += sizeof (ifrt_t); 23344 ifrt = (ifrt_t *)save_mp->b_rptr; 23345 bzero(ifrt, sizeof (ifrt_t)); 23346 ifrt->ifrt_type = ire->ire_type; 23347 ifrt->ifrt_addr = ire->ire_addr; 23348 ifrt->ifrt_gateway_addr = ire->ire_gateway_addr; 23349 ifrt->ifrt_src_addr = ire->ire_src_addr; 23350 ifrt->ifrt_mask = ire->ire_mask; 23351 ifrt->ifrt_flags = ire->ire_flags; 23352 ifrt->ifrt_max_frag = ire->ire_max_frag; 23353 mutex_enter(&ipif->ipif_saved_ire_lock); 23354 save_mp->b_cont = ipif->ipif_saved_ire_mp; 23355 ipif->ipif_saved_ire_mp = save_mp; 23356 ipif->ipif_saved_ire_cnt++; 23357 mutex_exit(&ipif->ipif_saved_ire_lock); 23358 } 23359 } 23360 23361 23362 static void 23363 ipif_remove_ire(ipif_t *ipif, ire_t *ire) 23364 { 23365 mblk_t **mpp; 23366 mblk_t *mp; 23367 ifrt_t *ifrt; 23368 23369 /* Remove from ipif_saved_ire_mp list if it is there */ 23370 mutex_enter(&ipif->ipif_saved_ire_lock); 23371 for (mpp = &ipif->ipif_saved_ire_mp; *mpp != NULL; 23372 mpp = &(*mpp)->b_cont) { 23373 /* 23374 * On a given ipif, the triple of address, gateway and 23375 * mask is unique for each saved IRE (in the case of 23376 * ordinary interface routes, the gateway address is 23377 * all-zeroes). 23378 */ 23379 mp = *mpp; 23380 ifrt = (ifrt_t *)mp->b_rptr; 23381 if (ifrt->ifrt_addr == ire->ire_addr && 23382 ifrt->ifrt_gateway_addr == ire->ire_gateway_addr && 23383 ifrt->ifrt_mask == ire->ire_mask) { 23384 *mpp = mp->b_cont; 23385 ipif->ipif_saved_ire_cnt--; 23386 freeb(mp); 23387 break; 23388 } 23389 } 23390 mutex_exit(&ipif->ipif_saved_ire_lock); 23391 } 23392 23393 23394 /* 23395 * IP multirouting broadcast routes handling 23396 * Append CGTP broadcast IREs to regular ones created 23397 * at ifconfig time. 23398 */ 23399 static void 23400 ip_cgtp_bcast_add(ire_t *ire, ire_t *ire_dst, ip_stack_t *ipst) 23401 { 23402 ire_t *ire_prim; 23403 23404 ASSERT(ire != NULL); 23405 ASSERT(ire_dst != NULL); 23406 23407 ire_prim = ire_ctable_lookup(ire->ire_gateway_addr, 0, 23408 IRE_BROADCAST, NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 23409 if (ire_prim != NULL) { 23410 /* 23411 * We are in the special case of broadcasts for 23412 * CGTP. We add an IRE_BROADCAST that holds 23413 * the RTF_MULTIRT flag, the destination 23414 * address of ire_dst and the low level 23415 * info of ire_prim. In other words, CGTP 23416 * broadcast is added to the redundant ipif. 23417 */ 23418 ipif_t *ipif_prim; 23419 ire_t *bcast_ire; 23420 23421 ipif_prim = ire_prim->ire_ipif; 23422 23423 ip2dbg(("ip_cgtp_filter_bcast_add: " 23424 "ire_dst %p, ire_prim %p, ipif_prim %p\n", 23425 (void *)ire_dst, (void *)ire_prim, 23426 (void *)ipif_prim)); 23427 23428 bcast_ire = ire_create( 23429 (uchar_t *)&ire->ire_addr, 23430 (uchar_t *)&ip_g_all_ones, 23431 (uchar_t *)&ire_dst->ire_src_addr, 23432 (uchar_t *)&ire->ire_gateway_addr, 23433 &ipif_prim->ipif_mtu, 23434 NULL, 23435 ipif_prim->ipif_rq, 23436 ipif_prim->ipif_wq, 23437 IRE_BROADCAST, 23438 ipif_prim, 23439 0, 23440 0, 23441 0, 23442 ire->ire_flags, 23443 &ire_uinfo_null, 23444 NULL, 23445 NULL, 23446 ipst); 23447 23448 if (bcast_ire != NULL) { 23449 23450 if (ire_add(&bcast_ire, NULL, NULL, NULL, 23451 B_FALSE) == 0) { 23452 ip2dbg(("ip_cgtp_filter_bcast_add: " 23453 "added bcast_ire %p\n", 23454 (void *)bcast_ire)); 23455 23456 ipif_save_ire(bcast_ire->ire_ipif, 23457 bcast_ire); 23458 ire_refrele(bcast_ire); 23459 } 23460 } 23461 ire_refrele(ire_prim); 23462 } 23463 } 23464 23465 23466 /* 23467 * IP multirouting broadcast routes handling 23468 * Remove the broadcast ire 23469 */ 23470 static void 23471 ip_cgtp_bcast_delete(ire_t *ire, ip_stack_t *ipst) 23472 { 23473 ire_t *ire_dst; 23474 23475 ASSERT(ire != NULL); 23476 ire_dst = ire_ctable_lookup(ire->ire_addr, 0, IRE_BROADCAST, 23477 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 23478 if (ire_dst != NULL) { 23479 ire_t *ire_prim; 23480 23481 ire_prim = ire_ctable_lookup(ire->ire_gateway_addr, 0, 23482 IRE_BROADCAST, NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 23483 if (ire_prim != NULL) { 23484 ipif_t *ipif_prim; 23485 ire_t *bcast_ire; 23486 23487 ipif_prim = ire_prim->ire_ipif; 23488 23489 ip2dbg(("ip_cgtp_filter_bcast_delete: " 23490 "ire_dst %p, ire_prim %p, ipif_prim %p\n", 23491 (void *)ire_dst, (void *)ire_prim, 23492 (void *)ipif_prim)); 23493 23494 bcast_ire = ire_ctable_lookup(ire->ire_addr, 23495 ire->ire_gateway_addr, 23496 IRE_BROADCAST, 23497 ipif_prim, ALL_ZONES, 23498 NULL, 23499 MATCH_IRE_TYPE | MATCH_IRE_GW | MATCH_IRE_IPIF | 23500 MATCH_IRE_MASK, ipst); 23501 23502 if (bcast_ire != NULL) { 23503 ip2dbg(("ip_cgtp_filter_bcast_delete: " 23504 "looked up bcast_ire %p\n", 23505 (void *)bcast_ire)); 23506 ipif_remove_ire(bcast_ire->ire_ipif, 23507 bcast_ire); 23508 ire_delete(bcast_ire); 23509 } 23510 ire_refrele(ire_prim); 23511 } 23512 ire_refrele(ire_dst); 23513 } 23514 } 23515 23516 /* 23517 * IPsec hardware acceleration capabilities related functions. 23518 */ 23519 23520 /* 23521 * Free a per-ill IPsec capabilities structure. 23522 */ 23523 static void 23524 ill_ipsec_capab_free(ill_ipsec_capab_t *capab) 23525 { 23526 if (capab->auth_hw_algs != NULL) 23527 kmem_free(capab->auth_hw_algs, capab->algs_size); 23528 if (capab->encr_hw_algs != NULL) 23529 kmem_free(capab->encr_hw_algs, capab->algs_size); 23530 if (capab->encr_algparm != NULL) 23531 kmem_free(capab->encr_algparm, capab->encr_algparm_size); 23532 kmem_free(capab, sizeof (ill_ipsec_capab_t)); 23533 } 23534 23535 /* 23536 * Allocate a new per-ill IPsec capabilities structure. This structure 23537 * is specific to an IPsec protocol (AH or ESP). It is implemented as 23538 * an array which specifies, for each algorithm, whether this algorithm 23539 * is supported by the ill or not. 23540 */ 23541 static ill_ipsec_capab_t * 23542 ill_ipsec_capab_alloc(void) 23543 { 23544 ill_ipsec_capab_t *capab; 23545 uint_t nelems; 23546 23547 capab = kmem_zalloc(sizeof (ill_ipsec_capab_t), KM_NOSLEEP); 23548 if (capab == NULL) 23549 return (NULL); 23550 23551 /* we need one bit per algorithm */ 23552 nelems = MAX_IPSEC_ALGS / BITS(ipsec_capab_elem_t); 23553 capab->algs_size = nelems * sizeof (ipsec_capab_elem_t); 23554 23555 /* allocate memory to store algorithm flags */ 23556 capab->encr_hw_algs = kmem_zalloc(capab->algs_size, KM_NOSLEEP); 23557 if (capab->encr_hw_algs == NULL) 23558 goto nomem; 23559 capab->auth_hw_algs = kmem_zalloc(capab->algs_size, KM_NOSLEEP); 23560 if (capab->auth_hw_algs == NULL) 23561 goto nomem; 23562 /* 23563 * Leave encr_algparm NULL for now since we won't need it half 23564 * the time 23565 */ 23566 return (capab); 23567 23568 nomem: 23569 ill_ipsec_capab_free(capab); 23570 return (NULL); 23571 } 23572 23573 /* 23574 * Resize capability array. Since we're exclusive, this is OK. 23575 */ 23576 static boolean_t 23577 ill_ipsec_capab_resize_algparm(ill_ipsec_capab_t *capab, int algid) 23578 { 23579 ipsec_capab_algparm_t *nalp, *oalp; 23580 uint32_t olen, nlen; 23581 23582 oalp = capab->encr_algparm; 23583 olen = capab->encr_algparm_size; 23584 23585 if (oalp != NULL) { 23586 if (algid < capab->encr_algparm_end) 23587 return (B_TRUE); 23588 } 23589 23590 nlen = (algid + 1) * sizeof (*nalp); 23591 nalp = kmem_zalloc(nlen, KM_NOSLEEP); 23592 if (nalp == NULL) 23593 return (B_FALSE); 23594 23595 if (oalp != NULL) { 23596 bcopy(oalp, nalp, olen); 23597 kmem_free(oalp, olen); 23598 } 23599 capab->encr_algparm = nalp; 23600 capab->encr_algparm_size = nlen; 23601 capab->encr_algparm_end = algid + 1; 23602 23603 return (B_TRUE); 23604 } 23605 23606 /* 23607 * Compare the capabilities of the specified ill with the protocol 23608 * and algorithms specified by the SA passed as argument. 23609 * If they match, returns B_TRUE, B_FALSE if they do not match. 23610 * 23611 * The ill can be passed as a pointer to it, or by specifying its index 23612 * and whether it is an IPv6 ill (ill_index and ill_isv6 arguments). 23613 * 23614 * Called by ipsec_out_is_accelerated() do decide whether an outbound 23615 * packet is eligible for hardware acceleration, and by 23616 * ill_ipsec_capab_send_all() to decide whether a SA must be sent down 23617 * to a particular ill. 23618 */ 23619 boolean_t 23620 ipsec_capab_match(ill_t *ill, uint_t ill_index, boolean_t ill_isv6, 23621 ipsa_t *sa, netstack_t *ns) 23622 { 23623 boolean_t sa_isv6; 23624 uint_t algid; 23625 struct ill_ipsec_capab_s *cpp; 23626 boolean_t need_refrele = B_FALSE; 23627 ip_stack_t *ipst = ns->netstack_ip; 23628 23629 if (ill == NULL) { 23630 ill = ill_lookup_on_ifindex(ill_index, ill_isv6, NULL, 23631 NULL, NULL, NULL, ipst); 23632 if (ill == NULL) { 23633 ip0dbg(("ipsec_capab_match: ill doesn't exist\n")); 23634 return (B_FALSE); 23635 } 23636 need_refrele = B_TRUE; 23637 } 23638 23639 /* 23640 * Use the address length specified by the SA to determine 23641 * if it corresponds to a IPv6 address, and fail the matching 23642 * if the isv6 flag passed as argument does not match. 23643 * Note: this check is used for SADB capability checking before 23644 * sending SA information to an ill. 23645 */ 23646 sa_isv6 = (sa->ipsa_addrfam == AF_INET6); 23647 if (sa_isv6 != ill_isv6) 23648 /* protocol mismatch */ 23649 goto done; 23650 23651 /* 23652 * Check if the ill supports the protocol, algorithm(s) and 23653 * key size(s) specified by the SA, and get the pointers to 23654 * the algorithms supported by the ill. 23655 */ 23656 switch (sa->ipsa_type) { 23657 23658 case SADB_SATYPE_ESP: 23659 if (!(ill->ill_capabilities & ILL_CAPAB_ESP)) 23660 /* ill does not support ESP acceleration */ 23661 goto done; 23662 cpp = ill->ill_ipsec_capab_esp; 23663 algid = sa->ipsa_auth_alg; 23664 if (!IPSEC_ALG_IS_ENABLED(algid, cpp->auth_hw_algs)) 23665 goto done; 23666 algid = sa->ipsa_encr_alg; 23667 if (!IPSEC_ALG_IS_ENABLED(algid, cpp->encr_hw_algs)) 23668 goto done; 23669 if (algid < cpp->encr_algparm_end) { 23670 ipsec_capab_algparm_t *alp = &cpp->encr_algparm[algid]; 23671 if (sa->ipsa_encrkeybits < alp->minkeylen) 23672 goto done; 23673 if (sa->ipsa_encrkeybits > alp->maxkeylen) 23674 goto done; 23675 } 23676 break; 23677 23678 case SADB_SATYPE_AH: 23679 if (!(ill->ill_capabilities & ILL_CAPAB_AH)) 23680 /* ill does not support AH acceleration */ 23681 goto done; 23682 if (!IPSEC_ALG_IS_ENABLED(sa->ipsa_auth_alg, 23683 ill->ill_ipsec_capab_ah->auth_hw_algs)) 23684 goto done; 23685 break; 23686 } 23687 23688 if (need_refrele) 23689 ill_refrele(ill); 23690 return (B_TRUE); 23691 done: 23692 if (need_refrele) 23693 ill_refrele(ill); 23694 return (B_FALSE); 23695 } 23696 23697 23698 /* 23699 * Add a new ill to the list of IPsec capable ills. 23700 * Called from ill_capability_ipsec_ack() when an ACK was received 23701 * indicating that IPsec hardware processing was enabled for an ill. 23702 * 23703 * ill must point to the ill for which acceleration was enabled. 23704 * dl_cap must be set to DL_CAPAB_IPSEC_AH or DL_CAPAB_IPSEC_ESP. 23705 */ 23706 static void 23707 ill_ipsec_capab_add(ill_t *ill, uint_t dl_cap, boolean_t sadb_resync) 23708 { 23709 ipsec_capab_ill_t **ills, *cur_ill, *new_ill; 23710 uint_t sa_type; 23711 uint_t ipproto; 23712 ip_stack_t *ipst = ill->ill_ipst; 23713 23714 ASSERT((dl_cap == DL_CAPAB_IPSEC_AH) || 23715 (dl_cap == DL_CAPAB_IPSEC_ESP)); 23716 23717 switch (dl_cap) { 23718 case DL_CAPAB_IPSEC_AH: 23719 sa_type = SADB_SATYPE_AH; 23720 ills = &ipst->ips_ipsec_capab_ills_ah; 23721 ipproto = IPPROTO_AH; 23722 break; 23723 case DL_CAPAB_IPSEC_ESP: 23724 sa_type = SADB_SATYPE_ESP; 23725 ills = &ipst->ips_ipsec_capab_ills_esp; 23726 ipproto = IPPROTO_ESP; 23727 break; 23728 } 23729 23730 rw_enter(&ipst->ips_ipsec_capab_ills_lock, RW_WRITER); 23731 23732 /* 23733 * Add ill index to list of hardware accelerators. If 23734 * already in list, do nothing. 23735 */ 23736 for (cur_ill = *ills; cur_ill != NULL && 23737 (cur_ill->ill_index != ill->ill_phyint->phyint_ifindex || 23738 cur_ill->ill_isv6 != ill->ill_isv6); cur_ill = cur_ill->next) 23739 ; 23740 23741 if (cur_ill == NULL) { 23742 /* if this is a new entry for this ill */ 23743 new_ill = kmem_zalloc(sizeof (ipsec_capab_ill_t), KM_NOSLEEP); 23744 if (new_ill == NULL) { 23745 rw_exit(&ipst->ips_ipsec_capab_ills_lock); 23746 return; 23747 } 23748 23749 new_ill->ill_index = ill->ill_phyint->phyint_ifindex; 23750 new_ill->ill_isv6 = ill->ill_isv6; 23751 new_ill->next = *ills; 23752 *ills = new_ill; 23753 } else if (!sadb_resync) { 23754 /* not resync'ing SADB and an entry exists for this ill */ 23755 rw_exit(&ipst->ips_ipsec_capab_ills_lock); 23756 return; 23757 } 23758 23759 rw_exit(&ipst->ips_ipsec_capab_ills_lock); 23760 23761 if (ipst->ips_ipcl_proto_fanout_v6[ipproto].connf_head != NULL) 23762 /* 23763 * IPsec module for protocol loaded, initiate dump 23764 * of the SADB to this ill. 23765 */ 23766 sadb_ill_download(ill, sa_type); 23767 } 23768 23769 /* 23770 * Remove an ill from the list of IPsec capable ills. 23771 */ 23772 static void 23773 ill_ipsec_capab_delete(ill_t *ill, uint_t dl_cap) 23774 { 23775 ipsec_capab_ill_t **ills, *cur_ill, *prev_ill; 23776 ip_stack_t *ipst = ill->ill_ipst; 23777 23778 ASSERT(dl_cap == DL_CAPAB_IPSEC_AH || 23779 dl_cap == DL_CAPAB_IPSEC_ESP); 23780 23781 ills = (dl_cap == DL_CAPAB_IPSEC_AH) ? &ipst->ips_ipsec_capab_ills_ah : 23782 &ipst->ips_ipsec_capab_ills_esp; 23783 23784 rw_enter(&ipst->ips_ipsec_capab_ills_lock, RW_WRITER); 23785 23786 prev_ill = NULL; 23787 for (cur_ill = *ills; cur_ill != NULL && (cur_ill->ill_index != 23788 ill->ill_phyint->phyint_ifindex || cur_ill->ill_isv6 != 23789 ill->ill_isv6); prev_ill = cur_ill, cur_ill = cur_ill->next) 23790 ; 23791 if (cur_ill == NULL) { 23792 /* entry not found */ 23793 rw_exit(&ipst->ips_ipsec_capab_ills_lock); 23794 return; 23795 } 23796 if (prev_ill == NULL) { 23797 /* entry at front of list */ 23798 *ills = NULL; 23799 } else { 23800 prev_ill->next = cur_ill->next; 23801 } 23802 kmem_free(cur_ill, sizeof (ipsec_capab_ill_t)); 23803 rw_exit(&ipst->ips_ipsec_capab_ills_lock); 23804 } 23805 23806 /* 23807 * Called by SADB to send a DL_CONTROL_REQ message to every ill 23808 * supporting the specified IPsec protocol acceleration. 23809 * sa_type must be SADB_SATYPE_AH or SADB_SATYPE_ESP. 23810 * We free the mblk and, if sa is non-null, release the held referece. 23811 */ 23812 void 23813 ill_ipsec_capab_send_all(uint_t sa_type, mblk_t *mp, ipsa_t *sa, 23814 netstack_t *ns) 23815 { 23816 ipsec_capab_ill_t *ici, *cur_ici; 23817 ill_t *ill; 23818 mblk_t *nmp, *mp_ship_list = NULL, *next_mp; 23819 ip_stack_t *ipst = ns->netstack_ip; 23820 23821 ici = (sa_type == SADB_SATYPE_AH) ? ipst->ips_ipsec_capab_ills_ah : 23822 ipst->ips_ipsec_capab_ills_esp; 23823 23824 rw_enter(&ipst->ips_ipsec_capab_ills_lock, RW_READER); 23825 23826 for (cur_ici = ici; cur_ici != NULL; cur_ici = cur_ici->next) { 23827 ill = ill_lookup_on_ifindex(cur_ici->ill_index, 23828 cur_ici->ill_isv6, NULL, NULL, NULL, NULL, ipst); 23829 23830 /* 23831 * Handle the case where the ill goes away while the SADB is 23832 * attempting to send messages. If it's going away, it's 23833 * nuking its shadow SADB, so we don't care.. 23834 */ 23835 23836 if (ill == NULL) 23837 continue; 23838 23839 if (sa != NULL) { 23840 /* 23841 * Make sure capabilities match before 23842 * sending SA to ill. 23843 */ 23844 if (!ipsec_capab_match(ill, cur_ici->ill_index, 23845 cur_ici->ill_isv6, sa, ipst->ips_netstack)) { 23846 ill_refrele(ill); 23847 continue; 23848 } 23849 23850 mutex_enter(&sa->ipsa_lock); 23851 sa->ipsa_flags |= IPSA_F_HW; 23852 mutex_exit(&sa->ipsa_lock); 23853 } 23854 23855 /* 23856 * Copy template message, and add it to the front 23857 * of the mblk ship list. We want to avoid holding 23858 * the ipsec_capab_ills_lock while sending the 23859 * message to the ills. 23860 * 23861 * The b_next and b_prev are temporarily used 23862 * to build a list of mblks to be sent down, and to 23863 * save the ill to which they must be sent. 23864 */ 23865 nmp = copymsg(mp); 23866 if (nmp == NULL) { 23867 ill_refrele(ill); 23868 continue; 23869 } 23870 ASSERT(nmp->b_next == NULL && nmp->b_prev == NULL); 23871 nmp->b_next = mp_ship_list; 23872 mp_ship_list = nmp; 23873 nmp->b_prev = (mblk_t *)ill; 23874 } 23875 23876 rw_exit(&ipst->ips_ipsec_capab_ills_lock); 23877 23878 for (nmp = mp_ship_list; nmp != NULL; nmp = next_mp) { 23879 /* restore the mblk to a sane state */ 23880 next_mp = nmp->b_next; 23881 nmp->b_next = NULL; 23882 ill = (ill_t *)nmp->b_prev; 23883 nmp->b_prev = NULL; 23884 23885 ill_dlpi_send(ill, nmp); 23886 ill_refrele(ill); 23887 } 23888 23889 if (sa != NULL) 23890 IPSA_REFRELE(sa); 23891 freemsg(mp); 23892 } 23893 23894 /* 23895 * Derive an interface id from the link layer address. 23896 * Knows about IEEE 802 and IEEE EUI-64 mappings. 23897 */ 23898 static boolean_t 23899 ip_ether_v6intfid(uint_t phys_length, uint8_t *phys_addr, in6_addr_t *v6addr) 23900 { 23901 char *addr; 23902 23903 if (phys_length != ETHERADDRL) 23904 return (B_FALSE); 23905 23906 /* Form EUI-64 like address */ 23907 addr = (char *)&v6addr->s6_addr32[2]; 23908 bcopy((char *)phys_addr, addr, 3); 23909 addr[0] ^= 0x2; /* Toggle Universal/Local bit */ 23910 addr[3] = (char)0xff; 23911 addr[4] = (char)0xfe; 23912 bcopy((char *)phys_addr + 3, addr + 5, 3); 23913 return (B_TRUE); 23914 } 23915 23916 /* ARGSUSED */ 23917 static boolean_t 23918 ip_nodef_v6intfid(uint_t phys_length, uint8_t *phys_addr, in6_addr_t *v6addr) 23919 { 23920 return (B_FALSE); 23921 } 23922 23923 /* ARGSUSED */ 23924 static boolean_t 23925 ip_ether_v6mapinfo(uint_t lla_length, uint8_t *bphys_addr, uint8_t *maddr, 23926 uint32_t *hw_start, in6_addr_t *v6_extract_mask) 23927 { 23928 /* 23929 * Multicast address mappings used over Ethernet/802.X. 23930 * This address is used as a base for mappings. 23931 */ 23932 static uint8_t ipv6_g_phys_multi_addr[] = {0x33, 0x33, 0x00, 23933 0x00, 0x00, 0x00}; 23934 23935 /* 23936 * Extract low order 32 bits from IPv6 multicast address. 23937 * Or that into the link layer address, starting from the 23938 * second byte. 23939 */ 23940 *hw_start = 2; 23941 v6_extract_mask->s6_addr32[0] = 0; 23942 v6_extract_mask->s6_addr32[1] = 0; 23943 v6_extract_mask->s6_addr32[2] = 0; 23944 v6_extract_mask->s6_addr32[3] = 0xffffffffU; 23945 bcopy(ipv6_g_phys_multi_addr, maddr, lla_length); 23946 return (B_TRUE); 23947 } 23948 23949 /* 23950 * Indicate by return value whether multicast is supported. If not, 23951 * this code should not touch/change any parameters. 23952 */ 23953 /* ARGSUSED */ 23954 static boolean_t 23955 ip_ether_v4mapinfo(uint_t phys_length, uint8_t *bphys_addr, uint8_t *maddr, 23956 uint32_t *hw_start, ipaddr_t *extract_mask) 23957 { 23958 /* 23959 * Multicast address mappings used over Ethernet/802.X. 23960 * This address is used as a base for mappings. 23961 */ 23962 static uint8_t ip_g_phys_multi_addr[] = { 0x01, 0x00, 0x5e, 23963 0x00, 0x00, 0x00 }; 23964 23965 if (phys_length != ETHERADDRL) 23966 return (B_FALSE); 23967 23968 *extract_mask = htonl(0x007fffff); 23969 *hw_start = 2; 23970 bcopy(ip_g_phys_multi_addr, maddr, ETHERADDRL); 23971 return (B_TRUE); 23972 } 23973 23974 /* 23975 * Derive IPoIB interface id from the link layer address. 23976 */ 23977 static boolean_t 23978 ip_ib_v6intfid(uint_t phys_length, uint8_t *phys_addr, in6_addr_t *v6addr) 23979 { 23980 char *addr; 23981 23982 if (phys_length != 20) 23983 return (B_FALSE); 23984 addr = (char *)&v6addr->s6_addr32[2]; 23985 bcopy(phys_addr + 12, addr, 8); 23986 /* 23987 * In IBA 1.1 timeframe, some vendors erroneously set the u/l bit 23988 * in the globally assigned EUI-64 GUID to 1, in violation of IEEE 23989 * rules. In these cases, the IBA considers these GUIDs to be in 23990 * "Modified EUI-64" format, and thus toggling the u/l bit is not 23991 * required; vendors are required not to assign global EUI-64's 23992 * that differ only in u/l bit values, thus guaranteeing uniqueness 23993 * of the interface identifier. Whether the GUID is in modified 23994 * or proper EUI-64 format, the ipv6 identifier must have the u/l 23995 * bit set to 1. 23996 */ 23997 addr[0] |= 2; /* Set Universal/Local bit to 1 */ 23998 return (B_TRUE); 23999 } 24000 24001 /* 24002 * Note on mapping from multicast IP addresses to IPoIB multicast link 24003 * addresses. IPoIB multicast link addresses are based on IBA link addresses. 24004 * The format of an IPoIB multicast address is: 24005 * 24006 * 4 byte QPN Scope Sign. Pkey 24007 * +--------------------------------------------+ 24008 * | 00FFFFFF | FF | 1X | X01B | Pkey | GroupID | 24009 * +--------------------------------------------+ 24010 * 24011 * The Scope and Pkey components are properties of the IBA port and 24012 * network interface. They can be ascertained from the broadcast address. 24013 * The Sign. part is the signature, and is 401B for IPv4 and 601B for IPv6. 24014 */ 24015 24016 static boolean_t 24017 ip_ib_v6mapinfo(uint_t lla_length, uint8_t *bphys_addr, uint8_t *maddr, 24018 uint32_t *hw_start, in6_addr_t *v6_extract_mask) 24019 { 24020 /* 24021 * Base IPoIB IPv6 multicast address used for mappings. 24022 * Does not contain the IBA scope/Pkey values. 24023 */ 24024 static uint8_t ipv6_g_phys_ibmulti_addr[] = { 0x00, 0xff, 0xff, 0xff, 24025 0xff, 0x10, 0x60, 0x1b, 0x00, 0x00, 0x00, 0x00, 24026 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }; 24027 24028 /* 24029 * Extract low order 80 bits from IPv6 multicast address. 24030 * Or that into the link layer address, starting from the 24031 * sixth byte. 24032 */ 24033 *hw_start = 6; 24034 bcopy(ipv6_g_phys_ibmulti_addr, maddr, lla_length); 24035 24036 /* 24037 * Now fill in the IBA scope/Pkey values from the broadcast address. 24038 */ 24039 *(maddr + 5) = *(bphys_addr + 5); 24040 *(maddr + 8) = *(bphys_addr + 8); 24041 *(maddr + 9) = *(bphys_addr + 9); 24042 24043 v6_extract_mask->s6_addr32[0] = 0; 24044 v6_extract_mask->s6_addr32[1] = htonl(0x0000ffff); 24045 v6_extract_mask->s6_addr32[2] = 0xffffffffU; 24046 v6_extract_mask->s6_addr32[3] = 0xffffffffU; 24047 return (B_TRUE); 24048 } 24049 24050 static boolean_t 24051 ip_ib_v4mapinfo(uint_t phys_length, uint8_t *bphys_addr, uint8_t *maddr, 24052 uint32_t *hw_start, ipaddr_t *extract_mask) 24053 { 24054 /* 24055 * Base IPoIB IPv4 multicast address used for mappings. 24056 * Does not contain the IBA scope/Pkey values. 24057 */ 24058 static uint8_t ipv4_g_phys_ibmulti_addr[] = { 0x00, 0xff, 0xff, 0xff, 24059 0xff, 0x10, 0x40, 0x1b, 0x00, 0x00, 0x00, 0x00, 24060 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }; 24061 24062 if (phys_length != sizeof (ipv4_g_phys_ibmulti_addr)) 24063 return (B_FALSE); 24064 24065 /* 24066 * Extract low order 28 bits from IPv4 multicast address. 24067 * Or that into the link layer address, starting from the 24068 * sixteenth byte. 24069 */ 24070 *extract_mask = htonl(0x0fffffff); 24071 *hw_start = 16; 24072 bcopy(ipv4_g_phys_ibmulti_addr, maddr, phys_length); 24073 24074 /* 24075 * Now fill in the IBA scope/Pkey values from the broadcast address. 24076 */ 24077 *(maddr + 5) = *(bphys_addr + 5); 24078 *(maddr + 8) = *(bphys_addr + 8); 24079 *(maddr + 9) = *(bphys_addr + 9); 24080 return (B_TRUE); 24081 } 24082 24083 /* 24084 * Returns B_TRUE if an ipif is present in the given zone, matching some flags 24085 * (typically IPIF_UP). If ipifp is non-null, the held ipif is returned there. 24086 * This works for both IPv4 and IPv6; if the passed-in ill is v6, the ipif with 24087 * the link-local address is preferred. 24088 */ 24089 boolean_t 24090 ipif_lookup_zoneid(ill_t *ill, zoneid_t zoneid, int flags, ipif_t **ipifp) 24091 { 24092 ipif_t *ipif; 24093 ipif_t *maybe_ipif = NULL; 24094 24095 mutex_enter(&ill->ill_lock); 24096 if (ill->ill_state_flags & ILL_CONDEMNED) { 24097 mutex_exit(&ill->ill_lock); 24098 if (ipifp != NULL) 24099 *ipifp = NULL; 24100 return (B_FALSE); 24101 } 24102 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 24103 if (!IPIF_CAN_LOOKUP(ipif)) 24104 continue; 24105 if (zoneid != ALL_ZONES && ipif->ipif_zoneid != zoneid && 24106 ipif->ipif_zoneid != ALL_ZONES) 24107 continue; 24108 if ((ipif->ipif_flags & flags) != flags) 24109 continue; 24110 24111 if (ipifp == NULL) { 24112 mutex_exit(&ill->ill_lock); 24113 ASSERT(maybe_ipif == NULL); 24114 return (B_TRUE); 24115 } 24116 if (!ill->ill_isv6 || 24117 IN6_IS_ADDR_LINKLOCAL(&ipif->ipif_v6src_addr)) { 24118 ipif_refhold_locked(ipif); 24119 mutex_exit(&ill->ill_lock); 24120 *ipifp = ipif; 24121 return (B_TRUE); 24122 } 24123 if (maybe_ipif == NULL) 24124 maybe_ipif = ipif; 24125 } 24126 if (ipifp != NULL) { 24127 if (maybe_ipif != NULL) 24128 ipif_refhold_locked(maybe_ipif); 24129 *ipifp = maybe_ipif; 24130 } 24131 mutex_exit(&ill->ill_lock); 24132 return (maybe_ipif != NULL); 24133 } 24134 24135 /* 24136 * Same as ipif_lookup_zoneid() but looks at all the ills in the same group. 24137 */ 24138 boolean_t 24139 ipif_lookup_zoneid_group(ill_t *ill, zoneid_t zoneid, int flags, ipif_t **ipifp) 24140 { 24141 ill_t *illg; 24142 ip_stack_t *ipst = ill->ill_ipst; 24143 24144 /* 24145 * We look at the passed-in ill first without grabbing ill_g_lock. 24146 */ 24147 if (ipif_lookup_zoneid(ill, zoneid, flags, ipifp)) { 24148 return (B_TRUE); 24149 } 24150 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 24151 if (ill->ill_group == NULL) { 24152 /* ill not in a group */ 24153 rw_exit(&ipst->ips_ill_g_lock); 24154 return (B_FALSE); 24155 } 24156 24157 /* 24158 * There's no ipif in the zone on ill, however ill is part of an IPMP 24159 * group. We need to look for an ipif in the zone on all the ills in the 24160 * group. 24161 */ 24162 illg = ill->ill_group->illgrp_ill; 24163 do { 24164 /* 24165 * We don't call ipif_lookup_zoneid() on ill as we already know 24166 * that it's not there. 24167 */ 24168 if (illg != ill && 24169 ipif_lookup_zoneid(illg, zoneid, flags, ipifp)) { 24170 break; 24171 } 24172 } while ((illg = illg->ill_group_next) != NULL); 24173 rw_exit(&ipst->ips_ill_g_lock); 24174 return (illg != NULL); 24175 } 24176 24177 /* 24178 * Check if this ill is only being used to send ICMP probes for IPMP 24179 */ 24180 boolean_t 24181 ill_is_probeonly(ill_t *ill) 24182 { 24183 /* 24184 * Check if the interface is FAILED, or INACTIVE 24185 */ 24186 if (ill->ill_phyint->phyint_flags & (PHYI_FAILED|PHYI_INACTIVE)) 24187 return (B_TRUE); 24188 24189 return (B_FALSE); 24190 } 24191 24192 /* 24193 * Return a pointer to an ipif_t given a combination of (ill_idx,ipif_id) 24194 * If a pointer to an ipif_t is returned then the caller will need to do 24195 * an ill_refrele(). 24196 * 24197 * If there is no real interface which matches the ifindex, then it looks 24198 * for a group that has a matching index. In the case of a group match the 24199 * lifidx must be zero. We don't need emulate the logical interfaces 24200 * since IP Filter's use of netinfo doesn't use that. 24201 */ 24202 ipif_t * 24203 ipif_getby_indexes(uint_t ifindex, uint_t lifidx, boolean_t isv6, 24204 ip_stack_t *ipst) 24205 { 24206 ipif_t *ipif; 24207 ill_t *ill; 24208 24209 ill = ill_lookup_on_ifindex(ifindex, isv6, NULL, NULL, NULL, NULL, 24210 ipst); 24211 24212 if (ill == NULL) { 24213 /* Fallback to group names only if hook_emulation set */ 24214 if (!ipst->ips_ipmp_hook_emulation) 24215 return (NULL); 24216 24217 if (lifidx != 0) 24218 return (NULL); 24219 ill = ill_group_lookup_on_ifindex(ifindex, isv6, ipst); 24220 if (ill == NULL) 24221 return (NULL); 24222 } 24223 24224 mutex_enter(&ill->ill_lock); 24225 if (ill->ill_state_flags & ILL_CONDEMNED) { 24226 mutex_exit(&ill->ill_lock); 24227 ill_refrele(ill); 24228 return (NULL); 24229 } 24230 24231 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 24232 if (!IPIF_CAN_LOOKUP(ipif)) 24233 continue; 24234 if (lifidx == ipif->ipif_id) { 24235 ipif_refhold_locked(ipif); 24236 break; 24237 } 24238 } 24239 24240 mutex_exit(&ill->ill_lock); 24241 ill_refrele(ill); 24242 return (ipif); 24243 } 24244 24245 /* 24246 * Flush the fastpath by deleting any nce's that are waiting for the fastpath, 24247 * There is one exceptions IRE_BROADCAST are difficult to recreate, 24248 * so instead we just nuke their nce_fp_mp's; see ndp_fastpath_flush() 24249 * for details. 24250 */ 24251 void 24252 ill_fastpath_flush(ill_t *ill) 24253 { 24254 ip_stack_t *ipst = ill->ill_ipst; 24255 24256 nce_fastpath_list_dispatch(ill, NULL, NULL); 24257 ndp_walk_common((ill->ill_isv6 ? ipst->ips_ndp6 : ipst->ips_ndp4), 24258 ill, (pfi_t)ndp_fastpath_flush, NULL, B_TRUE); 24259 } 24260 24261 /* 24262 * Set the physical address information for `ill' to the contents of the 24263 * dl_notify_ind_t pointed to by `mp'. Must be called as writer, and will be 24264 * asynchronous if `ill' cannot immediately be quiesced -- in which case 24265 * EINPROGRESS will be returned. 24266 */ 24267 int 24268 ill_set_phys_addr(ill_t *ill, mblk_t *mp) 24269 { 24270 ipsq_t *ipsq = ill->ill_phyint->phyint_ipsq; 24271 dl_notify_ind_t *dlindp = (dl_notify_ind_t *)mp->b_rptr; 24272 24273 ASSERT(IAM_WRITER_IPSQ(ipsq)); 24274 24275 if (dlindp->dl_data != DL_IPV6_LINK_LAYER_ADDR && 24276 dlindp->dl_data != DL_CURR_PHYS_ADDR) { 24277 /* Changing DL_IPV6_TOKEN is not yet supported */ 24278 return (0); 24279 } 24280 24281 /* 24282 * We need to store up to two copies of `mp' in `ill'. Due to the 24283 * design of ipsq_pending_mp_add(), we can't pass them as separate 24284 * arguments to ill_set_phys_addr_tail(). Instead, chain them 24285 * together here, then pull 'em apart in ill_set_phys_addr_tail(). 24286 */ 24287 if ((mp = copyb(mp)) == NULL || (mp->b_cont = copyb(mp)) == NULL) { 24288 freemsg(mp); 24289 return (ENOMEM); 24290 } 24291 24292 ipsq_current_start(ipsq, ill->ill_ipif, 0); 24293 24294 /* 24295 * If we can quiesce the ill, then set the address. If not, then 24296 * ill_set_phys_addr_tail() will be called from ipif_ill_refrele_tail(). 24297 */ 24298 ill_down_ipifs(ill, NULL, 0, B_FALSE); 24299 mutex_enter(&ill->ill_lock); 24300 if (!ill_is_quiescent(ill)) { 24301 /* call cannot fail since `conn_t *' argument is NULL */ 24302 (void) ipsq_pending_mp_add(NULL, ill->ill_ipif, ill->ill_rq, 24303 mp, ILL_DOWN); 24304 mutex_exit(&ill->ill_lock); 24305 return (EINPROGRESS); 24306 } 24307 mutex_exit(&ill->ill_lock); 24308 24309 ill_set_phys_addr_tail(ipsq, ill->ill_rq, mp, NULL); 24310 return (0); 24311 } 24312 24313 /* 24314 * Once the ill associated with `q' has quiesced, set its physical address 24315 * information to the values in `addrmp'. Note that two copies of `addrmp' 24316 * are passed (linked by b_cont), since we sometimes need to save two distinct 24317 * copies in the ill_t, and our context doesn't permit sleeping or allocation 24318 * failure (we'll free the other copy if it's not needed). Since the ill_t 24319 * is quiesced, we know any stale IREs with the old address information have 24320 * already been removed, so we don't need to call ill_fastpath_flush(). 24321 */ 24322 /* ARGSUSED */ 24323 static void 24324 ill_set_phys_addr_tail(ipsq_t *ipsq, queue_t *q, mblk_t *addrmp, void *dummy) 24325 { 24326 ill_t *ill = q->q_ptr; 24327 mblk_t *addrmp2 = unlinkb(addrmp); 24328 dl_notify_ind_t *dlindp = (dl_notify_ind_t *)addrmp->b_rptr; 24329 uint_t addrlen, addroff; 24330 24331 ASSERT(IAM_WRITER_IPSQ(ipsq)); 24332 24333 addroff = dlindp->dl_addr_offset; 24334 addrlen = dlindp->dl_addr_length - ABS(ill->ill_sap_length); 24335 24336 switch (dlindp->dl_data) { 24337 case DL_IPV6_LINK_LAYER_ADDR: 24338 ill_set_ndmp(ill, addrmp, addroff, addrlen); 24339 freemsg(addrmp2); 24340 break; 24341 24342 case DL_CURR_PHYS_ADDR: 24343 freemsg(ill->ill_phys_addr_mp); 24344 ill->ill_phys_addr = addrmp->b_rptr + addroff; 24345 ill->ill_phys_addr_mp = addrmp; 24346 ill->ill_phys_addr_length = addrlen; 24347 24348 if (ill->ill_isv6 && !(ill->ill_flags & ILLF_XRESOLV)) 24349 ill_set_ndmp(ill, addrmp2, addroff, addrlen); 24350 else 24351 freemsg(addrmp2); 24352 break; 24353 default: 24354 ASSERT(0); 24355 } 24356 24357 /* 24358 * If there are ipifs to bring up, ill_up_ipifs() will return 24359 * EINPROGRESS, and ipsq_current_finish() will be called by 24360 * ip_rput_dlpi_writer() or ip_arp_done() when the last ipif is 24361 * brought up. 24362 */ 24363 if (ill_up_ipifs(ill, q, addrmp) != EINPROGRESS) 24364 ipsq_current_finish(ipsq); 24365 } 24366 24367 /* 24368 * Helper routine for setting the ill_nd_lla fields. 24369 */ 24370 void 24371 ill_set_ndmp(ill_t *ill, mblk_t *ndmp, uint_t addroff, uint_t addrlen) 24372 { 24373 freemsg(ill->ill_nd_lla_mp); 24374 ill->ill_nd_lla = ndmp->b_rptr + addroff; 24375 ill->ill_nd_lla_mp = ndmp; 24376 ill->ill_nd_lla_len = addrlen; 24377 } 24378 24379 major_t IP_MAJ; 24380 #define IP "ip" 24381 24382 #define UDP6DEV "/devices/pseudo/udp6@0:udp6" 24383 #define UDPDEV "/devices/pseudo/udp@0:udp" 24384 24385 /* 24386 * Issue REMOVEIF ioctls to have the loopback interfaces 24387 * go away. Other interfaces are either I_LINKed or I_PLINKed; 24388 * the former going away when the user-level processes in the zone 24389 * are killed * and the latter are cleaned up by the stream head 24390 * str_stack_shutdown callback that undoes all I_PLINKs. 24391 */ 24392 void 24393 ip_loopback_cleanup(ip_stack_t *ipst) 24394 { 24395 int error; 24396 ldi_handle_t lh = NULL; 24397 ldi_ident_t li = NULL; 24398 int rval; 24399 cred_t *cr; 24400 struct strioctl iocb; 24401 struct lifreq lifreq; 24402 24403 IP_MAJ = ddi_name_to_major(IP); 24404 24405 #ifdef NS_DEBUG 24406 (void) printf("ip_loopback_cleanup() stackid %d\n", 24407 ipst->ips_netstack->netstack_stackid); 24408 #endif 24409 24410 bzero(&lifreq, sizeof (lifreq)); 24411 (void) strcpy(lifreq.lifr_name, ipif_loopback_name); 24412 24413 error = ldi_ident_from_major(IP_MAJ, &li); 24414 if (error) { 24415 #ifdef DEBUG 24416 printf("ip_loopback_cleanup: lyr ident get failed error %d\n", 24417 error); 24418 #endif 24419 return; 24420 } 24421 24422 cr = zone_get_kcred(netstackid_to_zoneid( 24423 ipst->ips_netstack->netstack_stackid)); 24424 ASSERT(cr != NULL); 24425 error = ldi_open_by_name(UDP6DEV, FREAD|FWRITE, cr, &lh, li); 24426 if (error) { 24427 #ifdef DEBUG 24428 printf("ip_loopback_cleanup: open of UDP6DEV failed error %d\n", 24429 error); 24430 #endif 24431 goto out; 24432 } 24433 iocb.ic_cmd = SIOCLIFREMOVEIF; 24434 iocb.ic_timout = 15; 24435 iocb.ic_len = sizeof (lifreq); 24436 iocb.ic_dp = (char *)&lifreq; 24437 24438 error = ldi_ioctl(lh, I_STR, (intptr_t)&iocb, FKIOCTL, cr, &rval); 24439 /* LINTED - statement has no consequent */ 24440 if (error) { 24441 #ifdef NS_DEBUG 24442 printf("ip_loopback_cleanup: ioctl SIOCLIFREMOVEIF failed on " 24443 "UDP6 error %d\n", error); 24444 #endif 24445 } 24446 (void) ldi_close(lh, FREAD|FWRITE, cr); 24447 lh = NULL; 24448 24449 error = ldi_open_by_name(UDPDEV, FREAD|FWRITE, cr, &lh, li); 24450 if (error) { 24451 #ifdef NS_DEBUG 24452 printf("ip_loopback_cleanup: open of UDPDEV failed error %d\n", 24453 error); 24454 #endif 24455 goto out; 24456 } 24457 24458 iocb.ic_cmd = SIOCLIFREMOVEIF; 24459 iocb.ic_timout = 15; 24460 iocb.ic_len = sizeof (lifreq); 24461 iocb.ic_dp = (char *)&lifreq; 24462 24463 error = ldi_ioctl(lh, I_STR, (intptr_t)&iocb, FKIOCTL, cr, &rval); 24464 /* LINTED - statement has no consequent */ 24465 if (error) { 24466 #ifdef NS_DEBUG 24467 printf("ip_loopback_cleanup: ioctl SIOCLIFREMOVEIF failed on " 24468 "UDP error %d\n", error); 24469 #endif 24470 } 24471 (void) ldi_close(lh, FREAD|FWRITE, cr); 24472 lh = NULL; 24473 24474 out: 24475 /* Close layered handles */ 24476 if (lh) 24477 (void) ldi_close(lh, FREAD|FWRITE, cr); 24478 if (li) 24479 ldi_ident_release(li); 24480 24481 crfree(cr); 24482 } 24483