xref: /titanic_44/usr/src/uts/common/inet/ip/ip6_ire.c (revision a2d4930d8e20c711535bea8fe88a53eeba789d2d)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2010 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 /*
26  * Copyright (c) 1990 Mentat Inc.
27  */
28 
29 /*
30  * This file contains routines that manipulate Internet Routing Entries (IREs).
31  */
32 #include <sys/types.h>
33 #include <sys/stream.h>
34 #include <sys/stropts.h>
35 #include <sys/ddi.h>
36 #include <sys/cmn_err.h>
37 
38 #include <sys/systm.h>
39 #include <sys/param.h>
40 #include <sys/socket.h>
41 #include <net/if.h>
42 #include <net/route.h>
43 #include <netinet/in.h>
44 #include <net/if_dl.h>
45 #include <netinet/ip6.h>
46 #include <netinet/icmp6.h>
47 
48 #include <inet/common.h>
49 #include <inet/mi.h>
50 #include <inet/ip.h>
51 #include <inet/ip6.h>
52 #include <inet/ip_ndp.h>
53 #include <inet/ip_if.h>
54 #include <inet/ip_ire.h>
55 #include <inet/ipclassifier.h>
56 #include <inet/nd.h>
57 #include <sys/kmem.h>
58 #include <sys/zone.h>
59 
60 #include <sys/tsol/label.h>
61 #include <sys/tsol/tnet.h>
62 
63 #define	IS_DEFAULT_ROUTE_V6(ire)	\
64 	(((ire)->ire_type & IRE_DEFAULT) || \
65 	    (((ire)->ire_type & IRE_INTERFACE) && \
66 	    (IN6_IS_ADDR_UNSPECIFIED(&(ire)->ire_addr_v6))))
67 
68 static	ire_t	ire_null;
69 
70 static ire_t *
71 ire_ftable_lookup_impl_v6(const in6_addr_t *addr, const in6_addr_t *mask,
72     const in6_addr_t *gateway, int type, const ill_t *ill,
73     zoneid_t zoneid, const ts_label_t *tsl, int flags,
74     ip_stack_t *ipst);
75 
76 /*
77  * Initialize the ire that is specific to IPv6 part and call
78  * ire_init_common to finish it.
79  * Returns zero or errno.
80  */
81 int
82 ire_init_v6(ire_t *ire, const in6_addr_t *v6addr, const in6_addr_t *v6mask,
83     const in6_addr_t *v6gateway, ushort_t type, ill_t *ill,
84     zoneid_t zoneid, uint_t flags, tsol_gc_t *gc, ip_stack_t *ipst)
85 {
86 	int error;
87 
88 	/*
89 	 * Reject IRE security attmakeribute creation/initialization
90 	 * if system is not running in Trusted mode.
91 	 */
92 	if (gc != NULL && !is_system_labeled())
93 		return (EINVAL);
94 
95 	BUMP_IRE_STATS(ipst->ips_ire_stats_v6, ire_stats_alloced);
96 	if (v6addr != NULL)
97 		ire->ire_addr_v6 = *v6addr;
98 	if (v6gateway != NULL)
99 		ire->ire_gateway_addr_v6 = *v6gateway;
100 
101 	/* Make sure we don't have stray values in some fields */
102 	switch (type) {
103 	case IRE_LOOPBACK:
104 	case IRE_HOST:
105 	case IRE_LOCAL:
106 	case IRE_IF_CLONE:
107 		ire->ire_mask_v6 = ipv6_all_ones;
108 		ire->ire_masklen = IPV6_ABITS;
109 		break;
110 	case IRE_PREFIX:
111 	case IRE_DEFAULT:
112 	case IRE_IF_RESOLVER:
113 	case IRE_IF_NORESOLVER:
114 		if (v6mask != NULL) {
115 			ire->ire_mask_v6 = *v6mask;
116 			ire->ire_masklen =
117 			    ip_mask_to_plen_v6(&ire->ire_mask_v6);
118 		}
119 		break;
120 	case IRE_MULTICAST:
121 	case IRE_NOROUTE:
122 		ASSERT(v6mask == NULL);
123 		break;
124 	default:
125 		ASSERT(0);
126 		return (EINVAL);
127 	}
128 
129 	error = ire_init_common(ire, type, ill, zoneid, flags, IPV6_VERSION,
130 	    gc, ipst);
131 	if (error != NULL)
132 		return (error);
133 
134 	/* Determine which function pointers to use */
135 	ire->ire_postfragfn = ip_xmit;		/* Common case */
136 
137 	switch (ire->ire_type) {
138 	case IRE_LOCAL:
139 		ire->ire_sendfn = ire_send_local_v6;
140 		ire->ire_recvfn = ire_recv_local_v6;
141 		ASSERT(ire->ire_ill != NULL);
142 		if (ire->ire_ill->ill_flags & ILLF_NOACCEPT)
143 			ire->ire_recvfn = ire_recv_noaccept_v6;
144 		break;
145 	case IRE_LOOPBACK:
146 		ire->ire_sendfn = ire_send_local_v6;
147 		ire->ire_recvfn = ire_recv_loopback_v6;
148 		break;
149 	case IRE_MULTICAST:
150 		ire->ire_postfragfn = ip_postfrag_loopcheck;
151 		ire->ire_sendfn = ire_send_multicast_v6;
152 		ire->ire_recvfn = ire_recv_multicast_v6;
153 		break;
154 	default:
155 		/*
156 		 * For IRE_IF_ALL and IRE_OFFLINK we forward received
157 		 * packets by default.
158 		 */
159 		ire->ire_sendfn = ire_send_wire_v6;
160 		ire->ire_recvfn = ire_recv_forward_v6;
161 		break;
162 	}
163 	if (ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) {
164 		ire->ire_sendfn = ire_send_noroute_v6;
165 		ire->ire_recvfn = ire_recv_noroute_v6;
166 	} else if (ire->ire_flags & RTF_MULTIRT) {
167 		ire->ire_postfragfn = ip_postfrag_multirt_v6;
168 		ire->ire_sendfn = ire_send_multirt_v6;
169 		ire->ire_recvfn = ire_recv_multirt_v6;
170 	}
171 	ire->ire_nce_capable = ire_determine_nce_capable(ire);
172 	return (0);
173 }
174 
175 /*
176  * ire_create_v6 is called to allocate and initialize a new IRE.
177  *
178  * NOTE : This is called as writer sometimes though not required
179  * by this function.
180  */
181 /* ARGSUSED */
182 ire_t *
183 ire_create_v6(const in6_addr_t *v6addr, const in6_addr_t *v6mask,
184     const in6_addr_t *v6gateway, ushort_t type, ill_t *ill, zoneid_t zoneid,
185     uint_t flags, tsol_gc_t *gc, ip_stack_t *ipst)
186 {
187 	ire_t	*ire;
188 	int	error;
189 
190 	ASSERT(!IN6_IS_ADDR_V4MAPPED(v6addr));
191 
192 	ire = kmem_cache_alloc(ire_cache, KM_NOSLEEP);
193 	if (ire == NULL) {
194 		DTRACE_PROBE(kmem__cache__alloc);
195 		return (NULL);
196 	}
197 	*ire = ire_null;
198 
199 	error = ire_init_v6(ire, v6addr, v6mask, v6gateway,
200 	    type, ill, zoneid, flags, gc, ipst);
201 
202 	if (error != 0) {
203 		DTRACE_PROBE2(ire__init__v6, ire_t *, ire, int, error);
204 		kmem_cache_free(ire_cache, ire);
205 		return (NULL);
206 	}
207 	return (ire);
208 }
209 
210 /*
211  * Find the ill matching a multicast group.
212  * Allows different routes for multicast addresses
213  * in the unicast routing table (akin to FF::0/8 but could be more specific)
214  * which point at different interfaces. This is used when IPV6_MULTICAST_IF
215  * isn't specified (when sending) and when IPV6_JOIN_GROUP doesn't
216  * specify the interface to join on.
217  *
218  * Supports link-local addresses by using ire_route_recursive which follows
219  * the ill when recursing.
220  *
221  * To handle CGTP, since we don't have a separate IRE_MULTICAST for each group
222  * and the MULTIRT property can be different for different groups, we
223  * extract RTF_MULTIRT from the special unicast route added for a group
224  * with CGTP and pass that back in the multirtp argument.
225  * This is used in ip_set_destination etc to set ixa_postfragfn for multicast.
226  * We have a setsrcp argument for the same reason.
227  */
228 ill_t *
229 ire_lookup_multi_ill_v6(const in6_addr_t *group, zoneid_t zoneid,
230     ip_stack_t *ipst, boolean_t *multirtp, in6_addr_t *setsrcp)
231 {
232 	ire_t	*ire;
233 	ill_t	*ill;
234 
235 	ire = ire_route_recursive_v6(group, 0, NULL, zoneid, NULL,
236 	    MATCH_IRE_DSTONLY, IRR_NONE, 0, ipst, setsrcp, NULL, NULL);
237 	ASSERT(ire != NULL);
238 
239 	if (ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) {
240 		ire_refrele(ire);
241 		return (NULL);
242 	}
243 
244 	if (multirtp != NULL)
245 		*multirtp = (ire->ire_flags & RTF_MULTIRT) != 0;
246 
247 	ill = ire_nexthop_ill(ire);
248 	ire_refrele(ire);
249 	return (ill);
250 }
251 
252 /*
253  * This function takes a mask and returns number of bits set in the
254  * mask (the represented prefix length).  Assumes a contiguous mask.
255  */
256 int
257 ip_mask_to_plen_v6(const in6_addr_t *v6mask)
258 {
259 	int		bits;
260 	int		plen = IPV6_ABITS;
261 	int		i;
262 
263 	for (i = 3; i >= 0; i--) {
264 		if (v6mask->s6_addr32[i] == 0) {
265 			plen -= 32;
266 			continue;
267 		}
268 		bits = ffs(ntohl(v6mask->s6_addr32[i])) - 1;
269 		if (bits == 0)
270 			break;
271 		plen -= bits;
272 	}
273 
274 	return (plen);
275 }
276 
277 /*
278  * Convert a prefix length to the mask for that prefix.
279  * Returns the argument bitmask.
280  */
281 in6_addr_t *
282 ip_plen_to_mask_v6(uint_t plen, in6_addr_t *bitmask)
283 {
284 	uint32_t *ptr;
285 
286 	if (plen < 0 || plen > IPV6_ABITS)
287 		return (NULL);
288 	*bitmask = ipv6_all_zeros;
289 	if (plen == 0)
290 		return (bitmask);
291 
292 	ptr = (uint32_t *)bitmask;
293 	while (plen > 32) {
294 		*ptr++ = 0xffffffffU;
295 		plen -= 32;
296 	}
297 	*ptr = htonl(0xffffffffU << (32 - plen));
298 	return (bitmask);
299 }
300 
301 /*
302  * Add a fully initialized IPv6 IRE to the forwarding table.
303  * This returns NULL on failure, or a held IRE on success.
304  * Normally the returned IRE is the same as the argument. But a different
305  * IRE will be returned if the added IRE is deemed identical to an existing
306  * one. In that case ire_identical_ref will be increased.
307  * The caller always needs to do an ire_refrele() on the returned IRE.
308  */
309 ire_t *
310 ire_add_v6(ire_t *ire)
311 {
312 	ire_t	*ire1;
313 	int	mask_table_index;
314 	irb_t	*irb_ptr;
315 	ire_t	**irep;
316 	int	match_flags;
317 	int	error;
318 	ip_stack_t	*ipst = ire->ire_ipst;
319 
320 	ASSERT(ire->ire_ipversion == IPV6_VERSION);
321 
322 	/* Make sure the address is properly masked. */
323 	V6_MASK_COPY(ire->ire_addr_v6, ire->ire_mask_v6, ire->ire_addr_v6);
324 
325 	mask_table_index = ip_mask_to_plen_v6(&ire->ire_mask_v6);
326 	if ((ipst->ips_ip_forwarding_table_v6[mask_table_index]) == NULL) {
327 		irb_t *ptr;
328 		int i;
329 
330 		ptr = (irb_t *)mi_zalloc((ipst->ips_ip6_ftable_hash_size *
331 		    sizeof (irb_t)));
332 		if (ptr == NULL) {
333 			ire_delete(ire);
334 			return (NULL);
335 		}
336 		for (i = 0; i < ipst->ips_ip6_ftable_hash_size; i++) {
337 			rw_init(&ptr[i].irb_lock, NULL, RW_DEFAULT, NULL);
338 			ptr[i].irb_ipst = ipst;
339 		}
340 		mutex_enter(&ipst->ips_ire_ft_init_lock);
341 		if (ipst->ips_ip_forwarding_table_v6[mask_table_index] ==
342 		    NULL) {
343 			ipst->ips_ip_forwarding_table_v6[mask_table_index] =
344 			    ptr;
345 			mutex_exit(&ipst->ips_ire_ft_init_lock);
346 		} else {
347 			/*
348 			 * Some other thread won the race in
349 			 * initializing the forwarding table at the
350 			 * same index.
351 			 */
352 			mutex_exit(&ipst->ips_ire_ft_init_lock);
353 			for (i = 0; i < ipst->ips_ip6_ftable_hash_size; i++) {
354 				rw_destroy(&ptr[i].irb_lock);
355 			}
356 			mi_free(ptr);
357 		}
358 	}
359 	irb_ptr = &(ipst->ips_ip_forwarding_table_v6[mask_table_index][
360 	    IRE_ADDR_MASK_HASH_V6(ire->ire_addr_v6, ire->ire_mask_v6,
361 	    ipst->ips_ip6_ftable_hash_size)]);
362 
363 	match_flags = (MATCH_IRE_MASK | MATCH_IRE_TYPE | MATCH_IRE_GW);
364 	if (ire->ire_ill != NULL)
365 		match_flags |= MATCH_IRE_ILL;
366 	/*
367 	 * Start the atomic add of the ire. Grab the bucket lock and the
368 	 * ill lock. Check for condemned.
369 	 */
370 	error = ire_atomic_start(irb_ptr, ire);
371 	if (error != 0) {
372 		ire_delete(ire);
373 		return (NULL);
374 	}
375 
376 	/*
377 	 * If we are creating a hidden IRE, make sure we search for
378 	 * hidden IREs when searching for duplicates below.
379 	 * Otherwise, we might find an IRE on some other interface
380 	 * that's not marked hidden.
381 	 */
382 	if (ire->ire_testhidden)
383 		match_flags |= MATCH_IRE_TESTHIDDEN;
384 
385 	/*
386 	 * Atomically check for duplicate and insert in the table.
387 	 */
388 	for (ire1 = irb_ptr->irb_ire; ire1 != NULL; ire1 = ire1->ire_next) {
389 		if (IRE_IS_CONDEMNED(ire1))
390 			continue;
391 		/*
392 		 * Here we need an exact match on zoneid, i.e.,
393 		 * ire_match_args doesn't fit.
394 		 */
395 		if (ire1->ire_zoneid != ire->ire_zoneid)
396 			continue;
397 
398 		if (ire1->ire_type != ire->ire_type)
399 			continue;
400 
401 		/*
402 		 * Note: We do not allow multiple routes that differ only
403 		 * in the gateway security attributes; such routes are
404 		 * considered duplicates.
405 		 * To change that we explicitly have to treat them as
406 		 * different here.
407 		 */
408 		if (ire_match_args_v6(ire1, &ire->ire_addr_v6,
409 		    &ire->ire_mask_v6, &ire->ire_gateway_addr_v6,
410 		    ire->ire_type, ire->ire_ill, ire->ire_zoneid, NULL,
411 		    match_flags)) {
412 			/*
413 			 * Return the old ire after doing a REFHOLD.
414 			 * As most of the callers continue to use the IRE
415 			 * after adding, we return a held ire. This will
416 			 * avoid a lookup in the caller again. If the callers
417 			 * don't want to use it, they need to do a REFRELE.
418 			 */
419 			ip1dbg(("found dup ire existing %p new %p",
420 			    (void *)ire1, (void *)ire));
421 			ire_refhold(ire1);
422 			atomic_add_32(&ire1->ire_identical_ref, 1);
423 			ire_atomic_end(irb_ptr, ire);
424 			ire_delete(ire);
425 			return (ire1);
426 		}
427 	}
428 
429 	/*
430 	 * Normally we do head insertion since most things do not care about
431 	 * the order of the IREs in the bucket.
432 	 * However, due to shared-IP zones (and restrict_interzone_loopback)
433 	 * we can have an IRE_LOCAL as well as IRE_IF_CLONE for the same
434 	 * address. For that reason we do tail insertion for IRE_IF_CLONE.
435 	 */
436 	irep = (ire_t **)irb_ptr;
437 	if (ire->ire_type & IRE_IF_CLONE) {
438 		while ((ire1 = *irep) != NULL)
439 			irep = &ire1->ire_next;
440 	}
441 	/* Insert at *irep */
442 	ire1 = *irep;
443 	if (ire1 != NULL)
444 		ire1->ire_ptpn = &ire->ire_next;
445 	ire->ire_next = ire1;
446 	/* Link the new one in. */
447 	ire->ire_ptpn = irep;
448 	/*
449 	 * ire_walk routines de-reference ire_next without holding
450 	 * a lock. Before we point to the new ire, we want to make
451 	 * sure the store that sets the ire_next of the new ire
452 	 * reaches global visibility, so that ire_walk routines
453 	 * don't see a truncated list of ires i.e if the ire_next
454 	 * of the new ire gets set after we do "*irep = ire" due
455 	 * to re-ordering, the ire_walk thread will see a NULL
456 	 * once it accesses the ire_next of the new ire.
457 	 * membar_producer() makes sure that the following store
458 	 * happens *after* all of the above stores.
459 	 */
460 	membar_producer();
461 	*irep = ire;
462 	ire->ire_bucket = irb_ptr;
463 	/*
464 	 * We return a bumped up IRE above. Keep it symmetrical
465 	 * so that the callers will always have to release. This
466 	 * helps the callers of this function because they continue
467 	 * to use the IRE after adding and hence they don't have to
468 	 * lookup again after we return the IRE.
469 	 *
470 	 * NOTE : We don't have to use atomics as this is appearing
471 	 * in the list for the first time and no one else can bump
472 	 * up the reference count on this yet.
473 	 */
474 	ire_refhold_locked(ire);
475 	BUMP_IRE_STATS(ipst->ips_ire_stats_v6, ire_stats_inserted);
476 	irb_ptr->irb_ire_cnt++;
477 
478 	if (ire->ire_ill != NULL) {
479 		DTRACE_PROBE3(ill__incr__cnt, (ill_t *), ire->ire_ill,
480 		    (char *), "ire", (void *), ire);
481 		ire->ire_ill->ill_ire_cnt++;
482 		ASSERT(ire->ire_ill->ill_ire_cnt != 0);	/* Wraparound */
483 	}
484 	ire_atomic_end(irb_ptr, ire);
485 
486 	/* Make any caching of the IREs be notified or updated */
487 	ire_flush_cache_v6(ire, IRE_FLUSH_ADD);
488 
489 	return (ire);
490 }
491 
492 /*
493  * Search for all HOST REDIRECT routes that are
494  * pointing at the specified gateway and
495  * delete them. This routine is called only
496  * when a default gateway is going away.
497  */
498 static void
499 ire_delete_host_redirects_v6(const in6_addr_t *gateway, ip_stack_t *ipst)
500 {
501 	irb_t *irb_ptr;
502 	irb_t *irb;
503 	ire_t *ire;
504 	in6_addr_t gw_addr_v6;
505 	int i;
506 
507 	/* get the hash table for HOST routes */
508 	irb_ptr = ipst->ips_ip_forwarding_table_v6[(IP6_MASK_TABLE_SIZE - 1)];
509 	if (irb_ptr == NULL)
510 		return;
511 	for (i = 0; (i < ipst->ips_ip6_ftable_hash_size); i++) {
512 		irb = &irb_ptr[i];
513 		irb_refhold(irb);
514 		for (ire = irb->irb_ire; ire != NULL; ire = ire->ire_next) {
515 			if (!(ire->ire_flags & RTF_DYNAMIC))
516 				continue;
517 			mutex_enter(&ire->ire_lock);
518 			gw_addr_v6 = ire->ire_gateway_addr_v6;
519 			mutex_exit(&ire->ire_lock);
520 			if (IN6_ARE_ADDR_EQUAL(&gw_addr_v6, gateway))
521 				ire_delete(ire);
522 		}
523 		irb_refrele(irb);
524 	}
525 }
526 
527 /*
528  * Delete the specified IRE.
529  * All calls should use ire_delete().
530  * Sometimes called as writer though not required by this function.
531  *
532  * NOTE : This function is called only if the ire was added
533  * in the list.
534  */
535 void
536 ire_delete_v6(ire_t *ire)
537 {
538 	in6_addr_t gw_addr_v6;
539 	ip_stack_t	*ipst = ire->ire_ipst;
540 
541 	/*
542 	 * Make sure ire_generation increases from ire_flush_cache happen
543 	 * after any lookup/reader has read ire_generation.
544 	 * Since the rw_enter makes us wait until any lookup/reader has
545 	 * completed we can exit the lock immediately.
546 	 */
547 	rw_enter(&ipst->ips_ip6_ire_head_lock, RW_WRITER);
548 	rw_exit(&ipst->ips_ip6_ire_head_lock);
549 
550 	ASSERT(ire->ire_refcnt >= 1);
551 	ASSERT(ire->ire_ipversion == IPV6_VERSION);
552 
553 	ire_flush_cache_v6(ire, IRE_FLUSH_DELETE);
554 
555 	if (ire->ire_type == IRE_DEFAULT) {
556 		/*
557 		 * when a default gateway is going away
558 		 * delete all the host redirects pointing at that
559 		 * gateway.
560 		 */
561 		mutex_enter(&ire->ire_lock);
562 		gw_addr_v6 = ire->ire_gateway_addr_v6;
563 		mutex_exit(&ire->ire_lock);
564 		ire_delete_host_redirects_v6(&gw_addr_v6, ipst);
565 	}
566 
567 	/*
568 	 * If we are deleting an IRE_INTERFACE then we make sure we also
569 	 * delete any IRE_IF_CLONE that has been created from it.
570 	 * Those are always in ire_dep_children.
571 	 */
572 	if ((ire->ire_type & IRE_INTERFACE) && ire->ire_dep_children != 0)
573 		ire_dep_delete_if_clone(ire);
574 
575 	/* Remove from parent dependencies and child */
576 	rw_enter(&ipst->ips_ire_dep_lock, RW_WRITER);
577 	if (ire->ire_dep_parent != NULL) {
578 		ire_dep_remove(ire);
579 	}
580 	while (ire->ire_dep_children != NULL)
581 		ire_dep_remove(ire->ire_dep_children);
582 	rw_exit(&ipst->ips_ire_dep_lock);
583 }
584 
585 /*
586  * When an IRE is added or deleted this routine is called to make sure
587  * any caching of IRE information is notified or updated.
588  *
589  * The flag argument indicates if the flush request is due to addition
590  * of new route (IRE_FLUSH_ADD), deletion of old route (IRE_FLUSH_DELETE),
591  * or a change to ire_gateway_addr (IRE_FLUSH_GWCHANGE).
592  */
593 void
594 ire_flush_cache_v6(ire_t *ire, int flag)
595 {
596 	ip_stack_t *ipst = ire->ire_ipst;
597 
598 	/*
599 	 * IRE_IF_CLONE ire's don't provide any new information
600 	 * than the parent from which they are cloned, so don't
601 	 * perturb the generation numbers.
602 	 */
603 	if (ire->ire_type & IRE_IF_CLONE)
604 		return;
605 
606 	/*
607 	 * Ensure that an ire_add during a lookup serializes the updates of
608 	 * the generation numbers under ire_head_lock so that the lookup gets
609 	 * either the old ire and old generation number, or a new ire and new
610 	 * generation number.
611 	 */
612 	rw_enter(&ipst->ips_ip6_ire_head_lock, RW_WRITER);
613 
614 	/*
615 	 * If a route was just added, we need to notify everybody that
616 	 * has cached an IRE_NOROUTE since there might now be a better
617 	 * route for them.
618 	 */
619 	if (flag == IRE_FLUSH_ADD) {
620 		ire_increment_generation(ipst->ips_ire_reject_v6);
621 		ire_increment_generation(ipst->ips_ire_blackhole_v6);
622 	}
623 
624 	/* Adding a default can't otherwise provide a better route */
625 	if (ire->ire_type == IRE_DEFAULT && flag == IRE_FLUSH_ADD) {
626 		rw_exit(&ipst->ips_ip6_ire_head_lock);
627 		return;
628 	}
629 
630 	switch (flag) {
631 	case IRE_FLUSH_DELETE:
632 	case IRE_FLUSH_GWCHANGE:
633 		/*
634 		 * Update ire_generation for all ire_dep_children chains
635 		 * starting with this IRE
636 		 */
637 		ire_dep_incr_generation(ire);
638 		break;
639 	case IRE_FLUSH_ADD: {
640 		in6_addr_t	addr;
641 		in6_addr_t	mask;
642 		ip_stack_t	*ipst = ire->ire_ipst;
643 		uint_t		masklen;
644 
645 		/*
646 		 * Find an IRE which is a shorter match than the ire to be added
647 		 * For any such IRE (which we repeat) we update the
648 		 * ire_generation the same way as in the delete case.
649 		 */
650 		addr = ire->ire_addr_v6;
651 		mask = ire->ire_mask_v6;
652 		masklen = ip_mask_to_plen_v6(&mask);
653 
654 		ire = ire_ftable_lookup_impl_v6(&addr, &mask, NULL, 0, NULL,
655 		    ALL_ZONES, NULL, MATCH_IRE_SHORTERMASK, ipst);
656 		while (ire != NULL) {
657 			/* We need to handle all in the same bucket */
658 			irb_increment_generation(ire->ire_bucket);
659 
660 			mask = ire->ire_mask_v6;
661 			ASSERT(masklen > ip_mask_to_plen_v6(&mask));
662 			masklen = ip_mask_to_plen_v6(&mask);
663 			ire_refrele(ire);
664 			ire = ire_ftable_lookup_impl_v6(&addr, &mask, NULL, 0,
665 			    NULL, ALL_ZONES, NULL, MATCH_IRE_SHORTERMASK, ipst);
666 		}
667 		}
668 		break;
669 	}
670 	rw_exit(&ipst->ips_ip6_ire_head_lock);
671 }
672 
673 /*
674  * Matches the arguments passed with the values in the ire.
675  *
676  * Note: for match types that match using "ill" passed in, ill
677  * must be checked for non-NULL before calling this routine.
678  */
679 boolean_t
680 ire_match_args_v6(ire_t *ire, const in6_addr_t *addr, const in6_addr_t *mask,
681     const in6_addr_t *gateway, int type, const ill_t *ill, zoneid_t zoneid,
682     const ts_label_t *tsl, int match_flags)
683 {
684 	in6_addr_t masked_addr;
685 	in6_addr_t gw_addr_v6;
686 	ill_t *ire_ill = NULL, *dst_ill;
687 	ip_stack_t *ipst = ire->ire_ipst;
688 
689 	ASSERT(ire->ire_ipversion == IPV6_VERSION);
690 	ASSERT(addr != NULL);
691 	ASSERT(mask != NULL);
692 	ASSERT((!(match_flags & MATCH_IRE_GW)) || gateway != NULL);
693 	ASSERT((!(match_flags & MATCH_IRE_ILL)) ||
694 	    (ill != NULL && ill->ill_isv6));
695 
696 	/*
697 	 * If MATCH_IRE_TESTHIDDEN is set, then only return the IRE if it
698 	 * is in fact hidden, to ensure the caller gets the right one.
699 	 */
700 	if (ire->ire_testhidden) {
701 		if (!(match_flags & MATCH_IRE_TESTHIDDEN))
702 			return (B_FALSE);
703 	}
704 
705 	if (zoneid != ALL_ZONES && zoneid != ire->ire_zoneid &&
706 	    ire->ire_zoneid != ALL_ZONES) {
707 		/*
708 		 * If MATCH_IRE_ZONEONLY has been set and the supplied zoneid
709 		 * does not match that of ire_zoneid, a failure to
710 		 * match is reported at this point. Otherwise, since some IREs
711 		 * that are available in the global zone can be used in local
712 		 * zones, additional checks need to be performed:
713 		 *
714 		 * IRE_LOOPBACK
715 		 *	entries should never be matched in this situation.
716 		 *	Each zone has its own IRE_LOOPBACK.
717 		 *
718 		 * IRE_LOCAL
719 		 *	We allow them for any zoneid. ire_route_recursive
720 		 *	does additional checks when
721 		 *	ip_restrict_interzone_loopback is set.
722 		 *
723 		 * If ill_usesrc_ifindex is set
724 		 *	Then we check if the zone has a valid source address
725 		 *	on the usesrc ill.
726 		 *
727 		 * If ire_ill is set, then check that the zone has an ipif
728 		 *	on that ill.
729 		 *
730 		 * Outside of this function (in ire_round_robin) we check
731 		 * that any IRE_OFFLINK has a gateway that reachable from the
732 		 * zone when we have multiple choices (ECMP).
733 		 */
734 		if (match_flags & MATCH_IRE_ZONEONLY)
735 			return (B_FALSE);
736 		if (ire->ire_type & IRE_LOOPBACK)
737 			return (B_FALSE);
738 
739 		if (ire->ire_type & IRE_LOCAL)
740 			goto matchit;
741 
742 		/*
743 		 * The normal case of IRE_ONLINK has a matching zoneid.
744 		 * Here we handle the case when shared-IP zones have been
745 		 * configured with IP addresses on vniN. In that case it
746 		 * is ok for traffic from a zone to use IRE_ONLINK routes
747 		 * if the ill has a usesrc pointing at vniN
748 		 * Applies to IRE_INTERFACE.
749 		 */
750 		dst_ill = ire->ire_ill;
751 		if (ire->ire_type & IRE_ONLINK) {
752 			uint_t	ifindex;
753 
754 			/*
755 			 * Note there is no IRE_INTERFACE on vniN thus
756 			 * can't do an IRE lookup for a matching route.
757 			 */
758 			ifindex = dst_ill->ill_usesrc_ifindex;
759 			if (ifindex == 0)
760 				return (B_FALSE);
761 
762 			/*
763 			 * If there is a usable source address in the
764 			 * zone, then it's ok to return this IRE_INTERFACE
765 			 */
766 			if (!ipif_zone_avail(ifindex, dst_ill->ill_isv6,
767 			    zoneid, ipst)) {
768 				ip3dbg(("ire_match_args: no usrsrc for zone"
769 				    " dst_ill %p\n", (void *)dst_ill));
770 				return (B_FALSE);
771 			}
772 		}
773 		/*
774 		 * For exampe, with
775 		 * route add 11.0.0.0 gw1 -ifp bge0
776 		 * route add 11.0.0.0 gw2 -ifp bge1
777 		 * this code would differentiate based on
778 		 * where the sending zone has addresses.
779 		 * Only if the zone has an address on bge0 can it use the first
780 		 * route. It isn't clear if this behavior is documented
781 		 * anywhere.
782 		 */
783 		if (dst_ill != NULL && (ire->ire_type & IRE_OFFLINK)) {
784 			ipif_t	*tipif;
785 
786 			mutex_enter(&dst_ill->ill_lock);
787 			for (tipif = dst_ill->ill_ipif;
788 			    tipif != NULL; tipif = tipif->ipif_next) {
789 				if (!IPIF_IS_CONDEMNED(tipif) &&
790 				    (tipif->ipif_flags & IPIF_UP) &&
791 				    (tipif->ipif_zoneid == zoneid ||
792 				    tipif->ipif_zoneid == ALL_ZONES))
793 					break;
794 			}
795 			mutex_exit(&dst_ill->ill_lock);
796 			if (tipif == NULL)
797 				return (B_FALSE);
798 		}
799 	}
800 
801 matchit:
802 	if (match_flags & MATCH_IRE_GW) {
803 		mutex_enter(&ire->ire_lock);
804 		gw_addr_v6 = ire->ire_gateway_addr_v6;
805 		mutex_exit(&ire->ire_lock);
806 	}
807 	if (match_flags & MATCH_IRE_ILL) {
808 		ire_ill = ire->ire_ill;
809 
810 		/*
811 		 * If asked to match an ill, we *must* match
812 		 * on the ire_ill for ipmp test addresses, or
813 		 * any of the ill in the group for data addresses.
814 		 * If we don't, we may as well fail.
815 		 * However, we need an exception for IRE_LOCALs to ensure
816 		 * we loopback packets even sent to test addresses on different
817 		 * interfaces in the group.
818 		 */
819 		if ((match_flags & MATCH_IRE_TESTHIDDEN) &&
820 		    !(ire->ire_type & IRE_LOCAL)) {
821 			if (ire->ire_ill != ill)
822 				return (B_FALSE);
823 		} else  {
824 			match_flags &= ~MATCH_IRE_TESTHIDDEN;
825 			/*
826 			 * We know that ill is not NULL, but ire_ill could be
827 			 * NULL
828 			 */
829 			if (ire_ill == NULL || !IS_ON_SAME_LAN(ill, ire_ill))
830 				return (B_FALSE);
831 		}
832 	}
833 	/* No ire_addr_v6 bits set past the mask */
834 	ASSERT(V6_MASK_EQ(ire->ire_addr_v6, ire->ire_mask_v6,
835 	    ire->ire_addr_v6));
836 	V6_MASK_COPY(*addr, *mask, masked_addr);
837 	if (V6_MASK_EQ(*addr, *mask, ire->ire_addr_v6) &&
838 	    ((!(match_flags & MATCH_IRE_GW)) ||
839 	    IN6_ARE_ADDR_EQUAL(&gw_addr_v6, gateway)) &&
840 	    ((!(match_flags & MATCH_IRE_TYPE)) || (ire->ire_type & type)) &&
841 	    ((!(match_flags & MATCH_IRE_TESTHIDDEN)) || ire->ire_testhidden) &&
842 	    ((!(match_flags & MATCH_IRE_MASK)) ||
843 	    (IN6_ARE_ADDR_EQUAL(&ire->ire_mask_v6, mask))) &&
844 	    ((!(match_flags & MATCH_IRE_SECATTR)) ||
845 	    (!is_system_labeled()) ||
846 	    (tsol_ire_match_gwattr(ire, tsl) == 0))) {
847 		/* We found the matched IRE */
848 		return (B_TRUE);
849 	}
850 	return (B_FALSE);
851 }
852 
853 /*
854  * Check if the zoneid (not ALL_ZONES) has an IRE_INTERFACE for the specified
855  * gateway address. If ill is non-NULL we also match on it.
856  * The caller must hold a read lock on RADIX_NODE_HEAD if lock_held is set.
857  */
858 boolean_t
859 ire_gateway_ok_zone_v6(const in6_addr_t *gateway, zoneid_t zoneid, ill_t *ill,
860     const ts_label_t *tsl, ip_stack_t *ipst, boolean_t lock_held)
861 {
862 	ire_t	*ire;
863 	uint_t	match_flags;
864 
865 	if (lock_held)
866 		ASSERT(RW_READ_HELD(&ipst->ips_ip6_ire_head_lock));
867 	else
868 		rw_enter(&ipst->ips_ip6_ire_head_lock, RW_READER);
869 
870 	match_flags = MATCH_IRE_TYPE | MATCH_IRE_SECATTR;
871 	if (ill != NULL)
872 		match_flags |= MATCH_IRE_ILL;
873 
874 	ire = ire_ftable_lookup_impl_v6(gateway, &ipv6_all_zeros,
875 	    &ipv6_all_zeros, IRE_INTERFACE, ill, zoneid, tsl, match_flags,
876 	    ipst);
877 
878 	if (!lock_held)
879 		rw_exit(&ipst->ips_ip6_ire_head_lock);
880 	if (ire != NULL) {
881 		ire_refrele(ire);
882 		return (B_TRUE);
883 	} else {
884 		return (B_FALSE);
885 	}
886 }
887 
888 /*
889  * Lookup a route in forwarding table.
890  * specific lookup is indicated by passing the
891  * required parameters and indicating the
892  * match required in flag field.
893  *
894  * Supports link-local addresses by following the ipif/ill when recursing.
895  */
896 ire_t *
897 ire_ftable_lookup_v6(const in6_addr_t *addr, const in6_addr_t *mask,
898     const in6_addr_t *gateway, int type, const ill_t *ill,
899     zoneid_t zoneid, const ts_label_t *tsl, int flags,
900     uint32_t xmit_hint, ip_stack_t *ipst, uint_t *generationp)
901 {
902 	ire_t *ire = NULL;
903 
904 	ASSERT(addr != NULL);
905 	ASSERT((!(flags & MATCH_IRE_MASK)) || mask != NULL);
906 	ASSERT((!(flags & MATCH_IRE_GW)) || gateway != NULL);
907 	ASSERT(ill == NULL || ill->ill_isv6);
908 
909 	ASSERT(!IN6_IS_ADDR_V4MAPPED(addr));
910 
911 	/*
912 	 * ire_match_args_v6() will dereference ill if MATCH_IRE_ILL
913 	 * is set.
914 	 */
915 	if ((flags & (MATCH_IRE_ILL)) && (ill == NULL))
916 		return (NULL);
917 
918 	rw_enter(&ipst->ips_ip6_ire_head_lock, RW_READER);
919 	ire = ire_ftable_lookup_impl_v6(addr, mask, gateway, type, ill, zoneid,
920 	    tsl, flags, ipst);
921 	if (ire == NULL) {
922 		rw_exit(&ipst->ips_ip6_ire_head_lock);
923 		return (NULL);
924 	}
925 
926 	/*
927 	 * round-robin only if we have more than one route in the bucket.
928 	 * ips_ip_ecmp_behavior controls when we do ECMP
929 	 *	2:	always
930 	 *	1:	for IRE_DEFAULT and /0 IRE_INTERFACE
931 	 *	0:	never
932 	 *
933 	 * Note: if we found an IRE_IF_CLONE we won't look at the bucket with
934 	 * other ECMP IRE_INTERFACEs since the IRE_IF_CLONE is a /128 match
935 	 * and the IRE_INTERFACESs are likely to be shorter matches.
936 	 */
937 	if (ire->ire_bucket->irb_ire_cnt > 1 && !(flags & MATCH_IRE_GW)) {
938 		if (ipst->ips_ip_ecmp_behavior == 2 ||
939 		    (ipst->ips_ip_ecmp_behavior == 1 &&
940 		    IS_DEFAULT_ROUTE_V6(ire))) {
941 			ire_t	*next_ire;
942 			ire_ftable_args_t margs;
943 
944 			bzero(&margs, sizeof (margs));
945 			margs.ift_addr_v6 = *addr;
946 			if (mask != NULL)
947 				margs.ift_mask_v6 = *mask;
948 			if (gateway != NULL)
949 				margs.ift_gateway_v6 = *gateway;
950 			margs.ift_type = type;
951 			margs.ift_ill = ill;
952 			margs.ift_zoneid = zoneid;
953 			margs.ift_tsl = tsl;
954 			margs.ift_flags = flags;
955 
956 			next_ire = ire_round_robin(ire->ire_bucket, &margs,
957 			    xmit_hint, ire, ipst);
958 			if (next_ire == NULL) {
959 				/* keep ire if next_ire is null */
960 				goto done;
961 			}
962 			ire_refrele(ire);
963 			ire = next_ire;
964 		}
965 	}
966 
967 done:
968 	/* Return generation before dropping lock */
969 	if (generationp != NULL)
970 		*generationp = ire->ire_generation;
971 
972 	rw_exit(&ipst->ips_ip6_ire_head_lock);
973 
974 	/*
975 	 * For shared-IP zones we need additional checks to what was
976 	 * done in ire_match_args to make sure IRE_LOCALs are handled.
977 	 *
978 	 * When ip_restrict_interzone_loopback is set, then
979 	 * we ensure that IRE_LOCAL are only used for loopback
980 	 * between zones when the logical "Ethernet" would
981 	 * have looped them back. That is, if in the absense of
982 	 * the IRE_LOCAL we would have sent to packet out the
983 	 * same ill.
984 	 */
985 	if ((ire->ire_type & IRE_LOCAL) && zoneid != ALL_ZONES &&
986 	    ire->ire_zoneid != zoneid && ire->ire_zoneid != ALL_ZONES &&
987 	    ipst->ips_ip_restrict_interzone_loopback) {
988 		ire = ire_alt_local(ire, zoneid, tsl, ill, generationp);
989 		ASSERT(ire != NULL);
990 	}
991 
992 	return (ire);
993 }
994 
995 /*
996  * Look up a single ire. The caller holds either the read or write lock.
997  */
998 ire_t *
999 ire_ftable_lookup_impl_v6(const in6_addr_t *addr, const in6_addr_t *mask,
1000     const in6_addr_t *gateway, int type, const ill_t *ill,
1001     zoneid_t zoneid, const ts_label_t *tsl, int flags,
1002     ip_stack_t *ipst)
1003 {
1004 	irb_t *irb_ptr;
1005 	ire_t *ire = NULL;
1006 	int i;
1007 
1008 	ASSERT(RW_LOCK_HELD(&ipst->ips_ip6_ire_head_lock));
1009 
1010 	/*
1011 	 * If the mask is known, the lookup
1012 	 * is simple, if the mask is not known
1013 	 * we need to search.
1014 	 */
1015 	if (flags & MATCH_IRE_MASK) {
1016 		uint_t masklen;
1017 
1018 		masklen = ip_mask_to_plen_v6(mask);
1019 		if (ipst->ips_ip_forwarding_table_v6[masklen] == NULL) {
1020 			return (NULL);
1021 		}
1022 		irb_ptr = &(ipst->ips_ip_forwarding_table_v6[masklen][
1023 		    IRE_ADDR_MASK_HASH_V6(*addr, *mask,
1024 		    ipst->ips_ip6_ftable_hash_size)]);
1025 		rw_enter(&irb_ptr->irb_lock, RW_READER);
1026 		for (ire = irb_ptr->irb_ire; ire != NULL;
1027 		    ire = ire->ire_next) {
1028 			if (IRE_IS_CONDEMNED(ire))
1029 				continue;
1030 			if (ire_match_args_v6(ire, addr, mask, gateway, type,
1031 			    ill, zoneid, tsl, flags))
1032 				goto found_ire;
1033 		}
1034 		rw_exit(&irb_ptr->irb_lock);
1035 	} else {
1036 		uint_t masklen;
1037 
1038 		/*
1039 		 * In this case we don't know the mask, we need to
1040 		 * search the table assuming different mask sizes.
1041 		 */
1042 		if (flags & MATCH_IRE_SHORTERMASK) {
1043 			masklen = ip_mask_to_plen_v6(mask);
1044 			if (masklen == 0) {
1045 				/* Nothing shorter than zero */
1046 				return (NULL);
1047 			}
1048 			masklen--;
1049 		} else {
1050 			masklen = IP6_MASK_TABLE_SIZE - 1;
1051 		}
1052 
1053 		for (i = masklen; i >= 0; i--) {
1054 			in6_addr_t tmpmask;
1055 
1056 			if ((ipst->ips_ip_forwarding_table_v6[i]) == NULL)
1057 				continue;
1058 			(void) ip_plen_to_mask_v6(i, &tmpmask);
1059 			irb_ptr = &ipst->ips_ip_forwarding_table_v6[i][
1060 			    IRE_ADDR_MASK_HASH_V6(*addr, tmpmask,
1061 			    ipst->ips_ip6_ftable_hash_size)];
1062 			rw_enter(&irb_ptr->irb_lock, RW_READER);
1063 			for (ire = irb_ptr->irb_ire; ire != NULL;
1064 			    ire = ire->ire_next) {
1065 				if (IRE_IS_CONDEMNED(ire))
1066 					continue;
1067 				if (ire_match_args_v6(ire, addr,
1068 				    &ire->ire_mask_v6, gateway, type, ill,
1069 				    zoneid, tsl, flags))
1070 					goto found_ire;
1071 			}
1072 			rw_exit(&irb_ptr->irb_lock);
1073 		}
1074 	}
1075 	ASSERT(ire == NULL);
1076 	ip1dbg(("ire_ftable_lookup_v6: returning NULL ire"));
1077 	return (NULL);
1078 
1079 found_ire:
1080 	ire_refhold(ire);
1081 	rw_exit(&irb_ptr->irb_lock);
1082 	return (ire);
1083 }
1084 
1085 
1086 /*
1087  * This function is called by
1088  * ip_input/ire_route_recursive when doing a route lookup on only the
1089  * destination address.
1090  *
1091  * The optimizations of this function over ire_ftable_lookup are:
1092  *	o removing unnecessary flag matching
1093  *	o doing longest prefix match instead of overloading it further
1094  *	  with the unnecessary "best_prefix_match"
1095  *
1096  * If no route is found we return IRE_NOROUTE.
1097  */
1098 ire_t *
1099 ire_ftable_lookup_simple_v6(const in6_addr_t *addr, uint32_t xmit_hint,
1100     ip_stack_t *ipst, uint_t *generationp)
1101 {
1102 	ire_t	*ire;
1103 
1104 	ire = ire_ftable_lookup_v6(addr, NULL, NULL, 0, NULL, ALL_ZONES, NULL,
1105 	    MATCH_IRE_DSTONLY, xmit_hint, ipst, generationp);
1106 	if (ire == NULL) {
1107 		ire = ire_reject(ipst, B_TRUE);
1108 		if (generationp != NULL)
1109 			*generationp = IRE_GENERATION_VERIFY;
1110 	}
1111 	/* ftable_lookup did round robin */
1112 	return (ire);
1113 }
1114 
1115 ire_t *
1116 ip_select_route_v6(const in6_addr_t *dst, ip_xmit_attr_t *ixa,
1117     uint_t *generationp, in6_addr_t *setsrcp, int *errorp, boolean_t *multirtp)
1118 {
1119 	ASSERT(!(ixa->ixa_flags & IXAF_IS_IPV4));
1120 
1121 	return (ip_select_route(dst, ixa, generationp, setsrcp, errorp,
1122 	    multirtp));
1123 }
1124 
1125 /*
1126  * Recursively look for a route to the destination. Can also match on
1127  * the zoneid, ill, and label. Used for the data paths. See also
1128  * ire_route_recursive_dstonly.
1129  *
1130  * If ill is set this means we will match it by adding MATCH_IRE_ILL.
1131  *
1132  * If IRR_ALLOCATE is not set then we will only inspect the existing IREs; never
1133  * create an IRE_IF_CLONE. This is used on the receive side when we are not
1134  * forwarding.
1135  * If IRR_INCOMPLETE is set then we return the IRE even if we can't correctly
1136  * resolve the gateway.
1137  *
1138  * Note that this function never returns NULL. It returns an IRE_NOROUTE
1139  * instead.
1140  *
1141  * If we find any IRE_LOCAL|BROADCAST etc past the first iteration it
1142  * is an error.
1143  * Allow at most one RTF_INDIRECT.
1144  */
1145 ire_t *
1146 ire_route_recursive_impl_v6(ire_t *ire,
1147     const in6_addr_t *nexthop, uint_t ire_type, const ill_t *ill_arg,
1148     zoneid_t zoneid, const ts_label_t *tsl, uint_t match_args,
1149     uint_t irr_flags, uint32_t xmit_hint, ip_stack_t *ipst,
1150     in6_addr_t *setsrcp, tsol_ire_gw_secattr_t **gwattrp, uint_t *generationp)
1151 {
1152 	int		i, j;
1153 	in6_addr_t	v6nexthop = *nexthop;
1154 	ire_t		*ires[MAX_IRE_RECURSION];
1155 	uint_t		generation;
1156 	uint_t		generations[MAX_IRE_RECURSION];
1157 	boolean_t	need_refrele = B_FALSE;
1158 	boolean_t	invalidate = B_FALSE;
1159 	int		prefs[MAX_IRE_RECURSION];
1160 	ill_t		*ill = NULL;
1161 
1162 	if (setsrcp != NULL)
1163 		ASSERT(IN6_IS_ADDR_UNSPECIFIED(setsrcp));
1164 	if (gwattrp != NULL)
1165 		ASSERT(*gwattrp == NULL);
1166 
1167 	if (ill_arg != NULL)
1168 		match_args |= MATCH_IRE_ILL;
1169 
1170 	/*
1171 	 * We iterate up to three times to resolve a route, even though
1172 	 * we have four slots in the array. The extra slot is for an
1173 	 * IRE_IF_CLONE we might need to create.
1174 	 */
1175 	i = 0;
1176 	while (i < MAX_IRE_RECURSION - 1) {
1177 		/* ire_ftable_lookup handles round-robin/ECMP */
1178 		if (ire == NULL) {
1179 			ire = ire_ftable_lookup_v6(&v6nexthop, 0, 0, ire_type,
1180 			    (ill_arg != NULL ? ill_arg : ill), zoneid, tsl,
1181 			    match_args, xmit_hint, ipst, &generation);
1182 		} else {
1183 			/* Caller passed it; extra hold since we will rele */
1184 			ire_refhold(ire);
1185 			if (generationp != NULL)
1186 				generation = *generationp;
1187 			else
1188 				generation = IRE_GENERATION_VERIFY;
1189 		}
1190 
1191 		if (ire == NULL)
1192 			ire = ire_reject(ipst, B_TRUE);
1193 
1194 		/* Need to return the ire with RTF_REJECT|BLACKHOLE */
1195 		if (ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE))
1196 			goto error;
1197 
1198 		ASSERT(!(ire->ire_type & IRE_MULTICAST)); /* Not in ftable */
1199 
1200 		if (i != 0) {
1201 			prefs[i] = ire_pref(ire);
1202 			/*
1203 			 * Don't allow anything unusual past the first
1204 			 * iteration.
1205 			 */
1206 			if ((ire->ire_type &
1207 			    (IRE_LOCAL|IRE_LOOPBACK|IRE_BROADCAST)) ||
1208 			    prefs[i] <= prefs[i-1]) {
1209 				ire_refrele(ire);
1210 				if (irr_flags & IRR_INCOMPLETE) {
1211 					ire = ires[0];
1212 					ire_refhold(ire);
1213 				} else {
1214 					ire = ire_reject(ipst, B_TRUE);
1215 				}
1216 				goto error;
1217 			}
1218 		}
1219 		/* We have a usable IRE */
1220 		ires[i] = ire;
1221 		generations[i] = generation;
1222 		i++;
1223 
1224 		/* The first RTF_SETSRC address is passed back if setsrcp */
1225 		if ((ire->ire_flags & RTF_SETSRC) &&
1226 		    setsrcp != NULL && IN6_IS_ADDR_UNSPECIFIED(setsrcp)) {
1227 			ASSERT(!IN6_IS_ADDR_UNSPECIFIED(
1228 			    &ire->ire_setsrc_addr_v6));
1229 			*setsrcp = ire->ire_setsrc_addr_v6;
1230 		}
1231 
1232 		/* The first ire_gw_secattr is passed back if gwattrp */
1233 		if (ire->ire_gw_secattr != NULL &&
1234 		    gwattrp != NULL && *gwattrp == NULL)
1235 			*gwattrp = ire->ire_gw_secattr;
1236 
1237 		/*
1238 		 * Check if we have a short-cut pointer to an IRE for this
1239 		 * destination, and that the cached dependency isn't stale.
1240 		 * In that case we've rejoined an existing tree towards a
1241 		 * parent, thus we don't need to continue the loop to
1242 		 * discover the rest of the tree.
1243 		 */
1244 		mutex_enter(&ire->ire_lock);
1245 		if (ire->ire_dep_parent != NULL &&
1246 		    ire->ire_dep_parent->ire_generation ==
1247 		    ire->ire_dep_parent_generation) {
1248 			mutex_exit(&ire->ire_lock);
1249 			ire = NULL;
1250 			goto done;
1251 		}
1252 		mutex_exit(&ire->ire_lock);
1253 
1254 		/*
1255 		 * If this type should have an ire_nce_cache (even if it
1256 		 * doesn't yet have one) then we are done. Includes
1257 		 * IRE_INTERFACE with a full 128 bit mask.
1258 		 */
1259 		if (ire->ire_nce_capable) {
1260 			ire = NULL;
1261 			goto done;
1262 		}
1263 		ASSERT(!(ire->ire_type & IRE_IF_CLONE));
1264 		/*
1265 		 * For an IRE_INTERFACE we create an IRE_IF_CLONE for this
1266 		 * particular destination
1267 		 */
1268 		if (ire->ire_type & IRE_INTERFACE) {
1269 			ire_t		*clone;
1270 
1271 			ASSERT(ire->ire_masklen != IPV6_ABITS);
1272 
1273 			/*
1274 			 * In the case of ip_input and ILLF_FORWARDING not
1275 			 * being set, and in the case of RTM_GET, there is
1276 			 * no point in allocating an IRE_IF_CLONE. We return
1277 			 * the IRE_INTERFACE. Note that !IRR_ALLOCATE can
1278 			 * result in a ire_dep_parent which is IRE_IF_*
1279 			 * without an IRE_IF_CLONE.
1280 			 * We recover from that when we need to send packets
1281 			 * by ensuring that the generations become
1282 			 * IRE_GENERATION_VERIFY in this case.
1283 			 */
1284 			if (!(irr_flags & IRR_ALLOCATE)) {
1285 				invalidate = B_TRUE;
1286 				ire = NULL;
1287 				goto done;
1288 			}
1289 
1290 			clone = ire_create_if_clone(ire, &v6nexthop,
1291 			    &generation);
1292 			if (clone == NULL) {
1293 				/*
1294 				 * Temporary failure - no memory.
1295 				 * Don't want caller to cache IRE_NOROUTE.
1296 				 */
1297 				invalidate = B_TRUE;
1298 				ire = ire_blackhole(ipst, B_TRUE);
1299 				goto error;
1300 			}
1301 			/*
1302 			 * Make clone next to last entry and the
1303 			 * IRE_INTERFACE the last in the dependency
1304 			 * chain since the clone depends on the
1305 			 * IRE_INTERFACE.
1306 			 */
1307 			ASSERT(i >= 1);
1308 			ASSERT(i < MAX_IRE_RECURSION);
1309 
1310 			ires[i] = ires[i-1];
1311 			generations[i] = generations[i-1];
1312 			ires[i-1] = clone;
1313 			generations[i-1] = generation;
1314 			i++;
1315 
1316 			ire = NULL;
1317 			goto done;
1318 		}
1319 
1320 		/*
1321 		 * We only match on the type and optionally ILL when
1322 		 * recursing. The type match is used by some callers
1323 		 * to exclude certain types (such as IRE_IF_CLONE or
1324 		 * IRE_LOCAL|IRE_LOOPBACK).
1325 		 */
1326 		match_args &= MATCH_IRE_TYPE;
1327 		v6nexthop = ire->ire_gateway_addr_v6;
1328 		if (ill == NULL && ire->ire_ill != NULL) {
1329 			ill = ire->ire_ill;
1330 			need_refrele = B_TRUE;
1331 			ill_refhold(ill);
1332 			match_args |= MATCH_IRE_ILL;
1333 		}
1334 		/*
1335 		 * We set the prefs[i] value above if i > 0. We've already
1336 		 * done i++ so i is one in the case of the first time around.
1337 		 */
1338 		if (i == 1)
1339 			prefs[0] = ire_pref(ire);
1340 		ire = NULL;
1341 	}
1342 	ASSERT(ire == NULL);
1343 	ire = ire_reject(ipst, B_TRUE);
1344 
1345 error:
1346 	ASSERT(ire != NULL);
1347 	if (need_refrele)
1348 		ill_refrele(ill);
1349 
1350 	/*
1351 	 * In the case of MULTIRT we want to try a different IRE the next
1352 	 * time. We let the next packet retry in that case.
1353 	 */
1354 	if (i > 0 && (ires[0]->ire_flags & RTF_MULTIRT))
1355 		(void) ire_no_good(ires[0]);
1356 
1357 cleanup:
1358 	/* cleanup ires[i] */
1359 	ire_dep_unbuild(ires, i);
1360 	for (j = 0; j < i; j++)
1361 		ire_refrele(ires[j]);
1362 
1363 	ASSERT((ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) ||
1364 	    (irr_flags & IRR_INCOMPLETE));
1365 	/*
1366 	 * Use IRE_GENERATION_VERIFY to ensure that ip_output will redo the
1367 	 * ip_select_route since the reject or lack of memory might be gone.
1368 	 */
1369 	if (generationp != NULL)
1370 		*generationp = IRE_GENERATION_VERIFY;
1371 	return (ire);
1372 
1373 done:
1374 	ASSERT(ire == NULL);
1375 	if (need_refrele)
1376 		ill_refrele(ill);
1377 
1378 	/* Build dependencies */
1379 	if (i > 1 && !ire_dep_build(ires, generations, i)) {
1380 		/* Something in chain was condemned; tear it apart */
1381 		ire = ire_blackhole(ipst, B_TRUE);
1382 		goto cleanup;
1383 	}
1384 
1385 	/*
1386 	 * Release all refholds except the one for ires[0] that we
1387 	 * will return to the caller.
1388 	 */
1389 	for (j = 1; j < i; j++)
1390 		ire_refrele(ires[j]);
1391 
1392 	if (invalidate) {
1393 		/*
1394 		 * Since we needed to allocate but couldn't we need to make
1395 		 * sure that the dependency chain is rebuilt the next time.
1396 		 */
1397 		ire_dep_invalidate_generations(ires[0]);
1398 		generation = IRE_GENERATION_VERIFY;
1399 	} else {
1400 		/*
1401 		 * IREs can have been added or deleted while we did the
1402 		 * recursive lookup and we can't catch those until we've built
1403 		 * the dependencies. We verify the stored
1404 		 * ire_dep_parent_generation to catch any such changes and
1405 		 * return IRE_GENERATION_VERIFY (which will cause
1406 		 * ip_select_route to be called again so we can redo the
1407 		 * recursive lookup next time we send a packet.
1408 		 */
1409 		if (ires[0]->ire_dep_parent == NULL)
1410 			generation = ires[0]->ire_generation;
1411 		else
1412 			generation = ire_dep_validate_generations(ires[0]);
1413 		if (generations[0] != ires[0]->ire_generation) {
1414 			/* Something changed at the top */
1415 			generation = IRE_GENERATION_VERIFY;
1416 		}
1417 	}
1418 	if (generationp != NULL)
1419 		*generationp = generation;
1420 
1421 	return (ires[0]);
1422 }
1423 
1424 ire_t *
1425 ire_route_recursive_v6(const in6_addr_t *nexthop, uint_t ire_type,
1426     const ill_t *ill, zoneid_t zoneid, const ts_label_t *tsl, uint_t match_args,
1427     uint_t irr_flags, uint32_t xmit_hint, ip_stack_t *ipst,
1428     in6_addr_t *setsrcp, tsol_ire_gw_secattr_t **gwattrp, uint_t *generationp)
1429 {
1430 	return (ire_route_recursive_impl_v6(NULL, nexthop, ire_type, ill,
1431 	    zoneid, tsl, match_args, irr_flags, xmit_hint, ipst, setsrcp,
1432 	    gwattrp, generationp));
1433 }
1434 
1435 /*
1436  * Recursively look for a route to the destination.
1437  * We only handle a destination match here, yet we have the same arguments
1438  * as the full match to allow function pointers to select between the two.
1439  *
1440  * Note that this function never returns NULL. It returns an IRE_NOROUTE
1441  * instead.
1442  *
1443  * If we find any IRE_LOCAL|BROADCAST etc past the first iteration it
1444  * is an error.
1445  * Allow at most one RTF_INDIRECT.
1446  */
1447 ire_t *
1448 ire_route_recursive_dstonly_v6(const in6_addr_t *nexthop, uint_t irr_flags,
1449     uint32_t xmit_hint, ip_stack_t *ipst)
1450 {
1451 	ire_t	*ire;
1452 	ire_t	*ire1;
1453 	uint_t	generation;
1454 
1455 	/* ire_ftable_lookup handles round-robin/ECMP */
1456 	ire = ire_ftable_lookup_simple_v6(nexthop, xmit_hint, ipst,
1457 	    &generation);
1458 	ASSERT(ire != NULL);
1459 
1460 	/*
1461 	 * If this type should have an ire_nce_cache (even if it
1462 	 * doesn't yet have one) then we are done. Includes
1463 	 * IRE_INTERFACE with a full 128 bit mask.
1464 	 */
1465 	if (ire->ire_nce_capable)
1466 		return (ire);
1467 
1468 	/*
1469 	 * If the IRE has a current cached parent we know that the whole
1470 	 * parent chain is current, hence we don't need to discover and
1471 	 * build any dependencies by doing a recursive lookup.
1472 	 */
1473 	mutex_enter(&ire->ire_lock);
1474 	if (ire->ire_dep_parent != NULL &&
1475 	    ire->ire_dep_parent->ire_generation ==
1476 	    ire->ire_dep_parent_generation) {
1477 		mutex_exit(&ire->ire_lock);
1478 		return (ire);
1479 	}
1480 	mutex_exit(&ire->ire_lock);
1481 
1482 	/*
1483 	 * Fallback to loop in the normal code starting with the ire
1484 	 * we found. Normally this would return the same ire.
1485 	 */
1486 	ire1 = ire_route_recursive_impl_v6(ire, nexthop, 0, NULL, ALL_ZONES,
1487 	    NULL, MATCH_IRE_DSTONLY, irr_flags, xmit_hint, ipst, NULL, NULL,
1488 	    &generation);
1489 	ire_refrele(ire);
1490 	return (ire1);
1491 }
1492