1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2009 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 /* 26 * Copyright (c) 1990 Mentat Inc. 27 */ 28 29 /* 30 * This file contains the interface control functions for IPv6. 31 */ 32 33 #include <sys/types.h> 34 #include <sys/sysmacros.h> 35 #include <sys/stream.h> 36 #include <sys/dlpi.h> 37 #include <sys/stropts.h> 38 #include <sys/ddi.h> 39 #include <sys/cmn_err.h> 40 #include <sys/kstat.h> 41 #include <sys/debug.h> 42 #include <sys/zone.h> 43 #include <sys/policy.h> 44 45 #include <sys/systm.h> 46 #include <sys/param.h> 47 #include <sys/socket.h> 48 #include <sys/isa_defs.h> 49 #include <net/if.h> 50 #include <net/if_dl.h> 51 #include <net/route.h> 52 #include <netinet/in.h> 53 #include <netinet/igmp_var.h> 54 #include <netinet/ip6.h> 55 #include <netinet/icmp6.h> 56 57 #include <inet/common.h> 58 #include <inet/nd.h> 59 #include <inet/mib2.h> 60 #include <inet/ip.h> 61 #include <inet/ip6.h> 62 #include <inet/ip_multi.h> 63 #include <inet/ip_ire.h> 64 #include <inet/ip_rts.h> 65 #include <inet/ip_ndp.h> 66 #include <inet/ip_if.h> 67 #include <inet/ip6_asp.h> 68 #include <inet/ipclassifier.h> 69 #include <inet/sctp_ip.h> 70 71 #include <sys/tsol/tndb.h> 72 #include <sys/tsol/tnet.h> 73 74 static in6_addr_t ipv6_ll_template = 75 {(uint32_t)V6_LINKLOCAL, 0x0, 0x0, 0x0}; 76 77 static ipif_t * 78 ipif_lookup_interface_v6(const in6_addr_t *if_addr, const in6_addr_t *dst, 79 ip_stack_t *ipst); 80 81 static int ipif_add_ires_v6(ipif_t *, boolean_t); 82 83 /* 84 * This function is called when an application does not specify an interface 85 * to be used for multicast traffic. It calls ire_lookup_multi_v6() to look 86 * for an interface route for the specified multicast group. Doing 87 * this allows the administrator to add prefix routes for multicast to 88 * indicate which interface to be used for multicast traffic in the above 89 * scenario. The route could be for all multicast (ff00::/8), for a single 90 * multicast group (a /128 route) or anything in between. If there is no 91 * such multicast route, we just find any multicast capable interface and 92 * return it. 93 * 94 * We support MULTIRT and RTF_SETSRC on the multicast routes added to the 95 * unicast table. This is used by CGTP. 96 */ 97 ill_t * 98 ill_lookup_group_v6(const in6_addr_t *group, zoneid_t zoneid, ip_stack_t *ipst, 99 boolean_t *multirtp, in6_addr_t *setsrcp) 100 { 101 ill_t *ill; 102 103 ill = ire_lookup_multi_ill_v6(group, zoneid, ipst, multirtp, setsrcp); 104 if (ill != NULL) 105 return (ill); 106 107 return (ill_lookup_multicast(ipst, zoneid, B_TRUE)); 108 } 109 110 /* 111 * Look for an ipif with the specified interface address and destination. 112 * The destination address is used only for matching point-to-point interfaces. 113 */ 114 static ipif_t * 115 ipif_lookup_interface_v6(const in6_addr_t *if_addr, const in6_addr_t *dst, 116 ip_stack_t *ipst) 117 { 118 ipif_t *ipif; 119 ill_t *ill; 120 ill_walk_context_t ctx; 121 122 /* 123 * First match all the point-to-point interfaces 124 * before looking at non-point-to-point interfaces. 125 * This is done to avoid returning non-point-to-point 126 * ipif instead of unnumbered point-to-point ipif. 127 */ 128 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 129 ill = ILL_START_WALK_V6(&ctx, ipst); 130 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 131 mutex_enter(&ill->ill_lock); 132 for (ipif = ill->ill_ipif; ipif != NULL; 133 ipif = ipif->ipif_next) { 134 /* Allow the ipif to be down */ 135 if ((ipif->ipif_flags & IPIF_POINTOPOINT) && 136 (IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6lcl_addr, 137 if_addr)) && 138 (IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6pp_dst_addr, 139 dst))) { 140 if (!IPIF_IS_CONDEMNED(ipif)) { 141 ipif_refhold_locked(ipif); 142 mutex_exit(&ill->ill_lock); 143 rw_exit(&ipst->ips_ill_g_lock); 144 return (ipif); 145 } 146 } 147 } 148 mutex_exit(&ill->ill_lock); 149 } 150 rw_exit(&ipst->ips_ill_g_lock); 151 /* lookup the ipif based on interface address */ 152 ipif = ipif_lookup_addr_v6(if_addr, NULL, ALL_ZONES, ipst); 153 ASSERT(ipif == NULL || ipif->ipif_isv6); 154 return (ipif); 155 } 156 157 /* 158 * Common function for ipif_lookup_addr_v6() and ipif_lookup_addr_exact_v6(). 159 */ 160 static ipif_t * 161 ipif_lookup_addr_common_v6(const in6_addr_t *addr, ill_t *match_ill, 162 uint32_t match_flags, zoneid_t zoneid, ip_stack_t *ipst) 163 { 164 ipif_t *ipif; 165 ill_t *ill; 166 boolean_t ptp = B_FALSE; 167 ill_walk_context_t ctx; 168 boolean_t match_illgrp = (match_flags & IPIF_MATCH_ILLGRP); 169 boolean_t no_duplicate = (match_flags & IPIF_MATCH_NONDUP); 170 171 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 172 /* 173 * Repeat twice, first based on local addresses and 174 * next time for pointopoint. 175 */ 176 repeat: 177 ill = ILL_START_WALK_V6(&ctx, ipst); 178 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 179 if (match_ill != NULL && ill != match_ill && 180 (!match_illgrp || !IS_IN_SAME_ILLGRP(ill, match_ill))) { 181 continue; 182 } 183 mutex_enter(&ill->ill_lock); 184 for (ipif = ill->ill_ipif; ipif != NULL; 185 ipif = ipif->ipif_next) { 186 if (zoneid != ALL_ZONES && 187 ipif->ipif_zoneid != zoneid && 188 ipif->ipif_zoneid != ALL_ZONES) 189 continue; 190 191 if (no_duplicate && 192 !(ipif->ipif_flags & IPIF_UP)) { 193 continue; 194 } 195 196 /* Allow the ipif to be down */ 197 if ((!ptp && (IN6_ARE_ADDR_EQUAL( 198 &ipif->ipif_v6lcl_addr, addr) && 199 (ipif->ipif_flags & IPIF_UNNUMBERED) == 0)) || 200 (ptp && (ipif->ipif_flags & IPIF_POINTOPOINT) && 201 IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6pp_dst_addr, 202 addr))) { 203 if (!IPIF_IS_CONDEMNED(ipif)) { 204 ipif_refhold_locked(ipif); 205 mutex_exit(&ill->ill_lock); 206 rw_exit(&ipst->ips_ill_g_lock); 207 return (ipif); 208 } 209 } 210 } 211 mutex_exit(&ill->ill_lock); 212 } 213 214 /* If we already did the ptp case, then we are done */ 215 if (ptp) { 216 rw_exit(&ipst->ips_ill_g_lock); 217 return (NULL); 218 } 219 ptp = B_TRUE; 220 goto repeat; 221 } 222 223 /* 224 * Lookup an ipif with the specified address. For point-to-point links we 225 * look for matches on either the destination address or the local address, 226 * but we skip the local address check if IPIF_UNNUMBERED is set. If the 227 * `match_ill' argument is non-NULL, the lookup is restricted to that ill 228 * (or illgrp if `match_ill' is in an IPMP group). 229 */ 230 ipif_t * 231 ipif_lookup_addr_v6(const in6_addr_t *addr, ill_t *match_ill, zoneid_t zoneid, 232 ip_stack_t *ipst) 233 { 234 return (ipif_lookup_addr_common_v6(addr, match_ill, IPIF_MATCH_ILLGRP, 235 zoneid, ipst)); 236 } 237 238 /* 239 * Lookup an ipif with the specified address. Similar to ipif_lookup_addr, 240 * except that we will only return an address if it is not marked as 241 * IPIF_DUPLICATE 242 */ 243 ipif_t * 244 ipif_lookup_addr_nondup_v6(const in6_addr_t *addr, ill_t *match_ill, 245 zoneid_t zoneid, ip_stack_t *ipst) 246 { 247 return (ipif_lookup_addr_common_v6(addr, match_ill, 248 (IPIF_MATCH_ILLGRP | IPIF_MATCH_NONDUP), zoneid, 249 ipst)); 250 } 251 252 /* 253 * Special abbreviated version of ipif_lookup_addr_v6() that doesn't match 254 * `match_ill' across the IPMP group. This function is only needed in some 255 * corner-cases; almost everything should use ipif_lookup_addr_v6(). 256 */ 257 ipif_t * 258 ipif_lookup_addr_exact_v6(const in6_addr_t *addr, ill_t *match_ill, 259 ip_stack_t *ipst) 260 { 261 ASSERT(match_ill != NULL); 262 return (ipif_lookup_addr_common_v6(addr, match_ill, 0, ALL_ZONES, 263 ipst)); 264 } 265 266 /* 267 * Look for an ipif with the specified address. For point-point links 268 * we look for matches on either the destination address and the local 269 * address, but we ignore the check on the local address if IPIF_UNNUMBERED 270 * is set. 271 * If the `match_ill' argument is non-NULL, the lookup is restricted to that 272 * ill (or illgrp if `match_ill' is in an IPMP group). 273 * Return the zoneid for the ipif. ALL_ZONES if none found. 274 */ 275 zoneid_t 276 ipif_lookup_addr_zoneid_v6(const in6_addr_t *addr, ill_t *match_ill, 277 ip_stack_t *ipst) 278 { 279 ipif_t *ipif; 280 ill_t *ill; 281 boolean_t ptp = B_FALSE; 282 ill_walk_context_t ctx; 283 zoneid_t zoneid; 284 285 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 286 /* 287 * Repeat twice, first based on local addresses and 288 * next time for pointopoint. 289 */ 290 repeat: 291 ill = ILL_START_WALK_V6(&ctx, ipst); 292 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 293 if (match_ill != NULL && ill != match_ill && 294 !IS_IN_SAME_ILLGRP(ill, match_ill)) { 295 continue; 296 } 297 mutex_enter(&ill->ill_lock); 298 for (ipif = ill->ill_ipif; ipif != NULL; 299 ipif = ipif->ipif_next) { 300 /* Allow the ipif to be down */ 301 if ((!ptp && (IN6_ARE_ADDR_EQUAL( 302 &ipif->ipif_v6lcl_addr, addr) && 303 (ipif->ipif_flags & IPIF_UNNUMBERED) == 0)) || 304 (ptp && (ipif->ipif_flags & IPIF_POINTOPOINT) && 305 IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6pp_dst_addr, 306 addr)) && 307 !(ipif->ipif_state_flags & IPIF_CONDEMNED)) { 308 zoneid = ipif->ipif_zoneid; 309 mutex_exit(&ill->ill_lock); 310 rw_exit(&ipst->ips_ill_g_lock); 311 /* 312 * If ipif_zoneid was ALL_ZONES then we have 313 * a trusted extensions shared IP address. 314 * In that case GLOBAL_ZONEID works to send. 315 */ 316 if (zoneid == ALL_ZONES) 317 zoneid = GLOBAL_ZONEID; 318 return (zoneid); 319 } 320 } 321 mutex_exit(&ill->ill_lock); 322 } 323 324 /* If we already did the ptp case, then we are done */ 325 if (ptp) { 326 rw_exit(&ipst->ips_ill_g_lock); 327 return (ALL_ZONES); 328 } 329 ptp = B_TRUE; 330 goto repeat; 331 } 332 333 /* 334 * Perform various checks to verify that an address would make sense as a local 335 * interface address. This is currently only called when an attempt is made 336 * to set a local address. 337 * 338 * Does not allow a v4-mapped address, an address that equals the subnet 339 * anycast address, ... a multicast address, ... 340 */ 341 boolean_t 342 ip_local_addr_ok_v6(const in6_addr_t *addr, const in6_addr_t *subnet_mask) 343 { 344 in6_addr_t subnet; 345 346 if (IN6_IS_ADDR_UNSPECIFIED(addr)) 347 return (B_TRUE); /* Allow all zeros */ 348 349 /* 350 * Don't allow all zeroes or host part, but allow 351 * all ones netmask. 352 */ 353 V6_MASK_COPY(*addr, *subnet_mask, subnet); 354 if (IN6_IS_ADDR_V4MAPPED(addr) || 355 (IN6_ARE_ADDR_EQUAL(addr, &subnet) && 356 !IN6_ARE_ADDR_EQUAL(subnet_mask, &ipv6_all_ones)) || 357 (IN6_IS_ADDR_V4COMPAT(addr) && CLASSD(V4_PART_OF_V6((*addr)))) || 358 IN6_IS_ADDR_MULTICAST(addr)) 359 return (B_FALSE); 360 361 return (B_TRUE); 362 } 363 364 /* 365 * Perform various checks to verify that an address would make sense as a 366 * remote/subnet interface address. 367 */ 368 boolean_t 369 ip_remote_addr_ok_v6(const in6_addr_t *addr, const in6_addr_t *subnet_mask) 370 { 371 in6_addr_t subnet; 372 373 if (IN6_IS_ADDR_UNSPECIFIED(addr)) 374 return (B_TRUE); /* Allow all zeros */ 375 376 V6_MASK_COPY(*addr, *subnet_mask, subnet); 377 if (IN6_IS_ADDR_V4MAPPED(addr) || 378 (IN6_ARE_ADDR_EQUAL(addr, &subnet) && 379 !IN6_ARE_ADDR_EQUAL(subnet_mask, &ipv6_all_ones)) || 380 IN6_IS_ADDR_MULTICAST(addr) || 381 (IN6_IS_ADDR_V4COMPAT(addr) && CLASSD(V4_PART_OF_V6((*addr))))) 382 return (B_FALSE); 383 384 return (B_TRUE); 385 } 386 387 /* 388 * ip_rt_add_v6 is called to add an IPv6 route to the forwarding table. 389 * ill is passed in to associate it with the correct interface 390 * (for link-local destinations and gateways). 391 * If ire_arg is set, then we return the held IRE in that location. 392 */ 393 /* ARGSUSED1 */ 394 int 395 ip_rt_add_v6(const in6_addr_t *dst_addr, const in6_addr_t *mask, 396 const in6_addr_t *gw_addr, const in6_addr_t *src_addr, int flags, 397 ill_t *ill, ire_t **ire_arg, struct rtsa_s *sp, ip_stack_t *ipst, 398 zoneid_t zoneid) 399 { 400 ire_t *ire, *nire; 401 ire_t *gw_ire = NULL; 402 ipif_t *ipif; 403 uint_t type; 404 int match_flags = MATCH_IRE_TYPE; 405 tsol_gc_t *gc = NULL; 406 tsol_gcgrp_t *gcgrp = NULL; 407 boolean_t gcgrp_xtraref = B_FALSE; 408 409 if (ire_arg != NULL) 410 *ire_arg = NULL; 411 412 /* 413 * Prevent routes with a zero gateway from being created (since 414 * interfaces can currently be plumbed and brought up with no assigned 415 * address). 416 */ 417 if (IN6_IS_ADDR_UNSPECIFIED(gw_addr)) 418 return (ENETUNREACH); 419 420 /* 421 * If this is the case of RTF_HOST being set, then we set the netmask 422 * to all ones (regardless if one was supplied). 423 */ 424 if (flags & RTF_HOST) 425 mask = &ipv6_all_ones; 426 427 /* 428 * Get the ipif, if any, corresponding to the gw_addr 429 * If -ifp was specified we restrict ourselves to the ill, otherwise 430 * we match on the gatway and destination to handle unnumbered pt-pt 431 * interfaces. 432 */ 433 if (ill != NULL) 434 ipif = ipif_lookup_addr_v6(gw_addr, ill, ALL_ZONES, ipst); 435 else 436 ipif = ipif_lookup_interface_v6(gw_addr, dst_addr, ipst); 437 if (ipif != NULL) { 438 if (IS_VNI(ipif->ipif_ill)) { 439 ipif_refrele(ipif); 440 return (EINVAL); 441 } 442 } 443 444 /* 445 * GateD will attempt to create routes with a loopback interface 446 * address as the gateway and with RTF_GATEWAY set. We allow 447 * these routes to be added, but create them as interface routes 448 * since the gateway is an interface address. 449 */ 450 if ((ipif != NULL) && (ipif->ipif_ire_type == IRE_LOOPBACK)) { 451 flags &= ~RTF_GATEWAY; 452 if (IN6_ARE_ADDR_EQUAL(gw_addr, &ipv6_loopback) && 453 IN6_ARE_ADDR_EQUAL(dst_addr, &ipv6_loopback) && 454 IN6_ARE_ADDR_EQUAL(mask, &ipv6_all_ones)) { 455 ire = ire_ftable_lookup_v6(dst_addr, 0, 0, IRE_LOOPBACK, 456 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, 0, ipst, 457 NULL); 458 if (ire != NULL) { 459 ire_refrele(ire); 460 ipif_refrele(ipif); 461 return (EEXIST); 462 } 463 ip1dbg(("ip_rt_add_v6: 0x%p creating IRE 0x%x" 464 "for 0x%x\n", (void *)ipif, 465 ipif->ipif_ire_type, 466 ntohl(ipif->ipif_lcl_addr))); 467 ire = ire_create_v6( 468 dst_addr, 469 mask, 470 NULL, 471 ipif->ipif_ire_type, /* LOOPBACK */ 472 ipif->ipif_ill, 473 zoneid, 474 (ipif->ipif_flags & IPIF_PRIVATE) ? RTF_PRIVATE : 0, 475 NULL, 476 ipst); 477 478 if (ire == NULL) { 479 ipif_refrele(ipif); 480 return (ENOMEM); 481 } 482 /* src address assigned by the caller? */ 483 if ((flags & RTF_SETSRC) && 484 !IN6_IS_ADDR_UNSPECIFIED(src_addr)) 485 ire->ire_setsrc_addr_v6 = *src_addr; 486 487 nire = ire_add(ire); 488 if (nire == NULL) { 489 /* 490 * In the result of failure, ire_add() will have 491 * already deleted the ire in question, so there 492 * is no need to do that here. 493 */ 494 ipif_refrele(ipif); 495 return (ENOMEM); 496 } 497 /* 498 * Check if it was a duplicate entry. This handles 499 * the case of two racing route adds for the same route 500 */ 501 if (nire != ire) { 502 ASSERT(nire->ire_identical_ref > 1); 503 ire_delete(nire); 504 ire_refrele(nire); 505 ipif_refrele(ipif); 506 return (EEXIST); 507 } 508 ire = nire; 509 goto save_ire; 510 } 511 } 512 513 /* 514 * The routes for multicast with CGTP are quite special in that 515 * the gateway is the local interface address, yet RTF_GATEWAY 516 * is set. We turn off RTF_GATEWAY to provide compatibility with 517 * this undocumented and unusual use of multicast routes. 518 */ 519 if ((flags & RTF_MULTIRT) && ipif != NULL) 520 flags &= ~RTF_GATEWAY; 521 522 /* 523 * Traditionally, interface routes are ones where RTF_GATEWAY isn't set 524 * and the gateway address provided is one of the system's interface 525 * addresses. By using the routing socket interface and supplying an 526 * RTA_IFP sockaddr with an interface index, an alternate method of 527 * specifying an interface route to be created is available which uses 528 * the interface index that specifies the outgoing interface rather than 529 * the address of an outgoing interface (which may not be able to 530 * uniquely identify an interface). When coupled with the RTF_GATEWAY 531 * flag, routes can be specified which not only specify the next-hop to 532 * be used when routing to a certain prefix, but also which outgoing 533 * interface should be used. 534 * 535 * Previously, interfaces would have unique addresses assigned to them 536 * and so the address assigned to a particular interface could be used 537 * to identify a particular interface. One exception to this was the 538 * case of an unnumbered interface (where IPIF_UNNUMBERED was set). 539 * 540 * With the advent of IPv6 and its link-local addresses, this 541 * restriction was relaxed and interfaces could share addresses between 542 * themselves. In fact, typically all of the link-local interfaces on 543 * an IPv6 node or router will have the same link-local address. In 544 * order to differentiate between these interfaces, the use of an 545 * interface index is necessary and this index can be carried inside a 546 * RTA_IFP sockaddr (which is actually a sockaddr_dl). One restriction 547 * of using the interface index, however, is that all of the ipif's that 548 * are part of an ill have the same index and so the RTA_IFP sockaddr 549 * cannot be used to differentiate between ipif's (or logical 550 * interfaces) that belong to the same ill (physical interface). 551 * 552 * For example, in the following case involving IPv4 interfaces and 553 * logical interfaces 554 * 555 * 192.0.2.32 255.255.255.224 192.0.2.33 U if0 556 * 192.0.2.32 255.255.255.224 192.0.2.34 U if0 557 * 192.0.2.32 255.255.255.224 192.0.2.35 U if0 558 * 559 * the ipif's corresponding to each of these interface routes can be 560 * uniquely identified by the "gateway" (actually interface address). 561 * 562 * In this case involving multiple IPv6 default routes to a particular 563 * link-local gateway, the use of RTA_IFP is necessary to specify which 564 * default route is of interest: 565 * 566 * default fe80::123:4567:89ab:cdef U if0 567 * default fe80::123:4567:89ab:cdef U if1 568 */ 569 570 /* RTF_GATEWAY not set */ 571 if (!(flags & RTF_GATEWAY)) { 572 if (sp != NULL) { 573 ip2dbg(("ip_rt_add_v6: gateway security attributes " 574 "cannot be set with interface route\n")); 575 if (ipif != NULL) 576 ipif_refrele(ipif); 577 return (EINVAL); 578 } 579 580 /* 581 * Whether or not ill (RTA_IFP) is set, we require that 582 * the gateway is one of our local addresses. 583 */ 584 if (ipif == NULL) 585 return (ENETUNREACH); 586 587 /* 588 * We use MATCH_IRE_ILL here. If the caller specified an 589 * interface (from the RTA_IFP sockaddr) we use it, otherwise 590 * we use the ill derived from the gateway address. 591 * We can always match the gateway address since we record it 592 * in ire_gateway_addr. 593 * We don't allow RTA_IFP to specify a different ill than the 594 * one matching the ipif to make sure we can delete the route. 595 */ 596 match_flags |= MATCH_IRE_GW | MATCH_IRE_ILL; 597 if (ill == NULL) { 598 ill = ipif->ipif_ill; 599 } else if (ill != ipif->ipif_ill) { 600 ipif_refrele(ipif); 601 return (EINVAL); 602 } 603 604 /* 605 * We check for an existing entry at this point. 606 */ 607 match_flags |= MATCH_IRE_MASK; 608 ire = ire_ftable_lookup_v6(dst_addr, mask, gw_addr, 609 IRE_INTERFACE, ill, ALL_ZONES, NULL, match_flags, 0, ipst, 610 NULL); 611 if (ire != NULL) { 612 ire_refrele(ire); 613 ipif_refrele(ipif); 614 return (EEXIST); 615 } 616 617 /* 618 * Create a copy of the IRE_LOOPBACK, IRE_IF_NORESOLVER or 619 * IRE_IF_RESOLVER with the modified address, netmask, and 620 * gateway. 621 */ 622 ire = ire_create_v6( 623 dst_addr, 624 mask, 625 gw_addr, 626 ill->ill_net_type, 627 ill, 628 zoneid, 629 flags, 630 NULL, 631 ipst); 632 if (ire == NULL) { 633 ipif_refrele(ipif); 634 return (ENOMEM); 635 } 636 637 /* 638 * Some software (for example, GateD and Sun Cluster) attempts 639 * to create (what amount to) IRE_PREFIX routes with the 640 * loopback address as the gateway. This is primarily done to 641 * set up prefixes with the RTF_REJECT flag set (for example, 642 * when generating aggregate routes). We also OR in the 643 * RTF_BLACKHOLE flag as these interface routes, by 644 * definition, can only be that. 645 * 646 * If the IRE type (as defined by ill->ill_net_type) is 647 * IRE_LOOPBACK, then we map the request into a 648 * IRE_IF_NORESOLVER. 649 * 650 * Needless to say, the real IRE_LOOPBACK is NOT created by this 651 * routine, but rather using ire_create_v6() directly. 652 */ 653 if (ill->ill_net_type == IRE_LOOPBACK) { 654 ire->ire_type = IRE_IF_NORESOLVER; 655 ire->ire_flags |= RTF_BLACKHOLE; 656 } 657 /* src address assigned by the caller? */ 658 if ((flags & RTF_SETSRC) && !IN6_IS_ADDR_UNSPECIFIED(src_addr)) 659 ire->ire_setsrc_addr_v6 = *src_addr; 660 661 nire = ire_add(ire); 662 if (nire == NULL) { 663 /* 664 * In the result of failure, ire_add() will have 665 * already deleted the ire in question, so there 666 * is no need to do that here. 667 */ 668 ipif_refrele(ipif); 669 return (ENOMEM); 670 } 671 /* 672 * Check if it was a duplicate entry. This handles 673 * the case of two racing route adds for the same route 674 */ 675 if (nire != ire) { 676 ASSERT(nire->ire_identical_ref > 1); 677 ire_delete(nire); 678 ire_refrele(nire); 679 ipif_refrele(ipif); 680 return (EEXIST); 681 } 682 ire = nire; 683 goto save_ire; 684 } 685 686 /* 687 * Get an interface IRE for the specified gateway. 688 * If we don't have an IRE_IF_NORESOLVER or IRE_IF_RESOLVER for the 689 * gateway, it is currently unreachable and we fail the request 690 * accordingly. 691 * If RTA_IFP was specified we look on that particular ill. 692 */ 693 if (ill != NULL) 694 match_flags |= MATCH_IRE_ILL; 695 696 /* Check whether the gateway is reachable. */ 697 type = IRE_INTERFACE; 698 if (flags & RTF_INDIRECT) 699 type |= IRE_OFFLINK; 700 701 gw_ire = ire_ftable_lookup_v6(gw_addr, 0, 0, type, ill, 702 ALL_ZONES, NULL, match_flags, 0, ipst, NULL); 703 if (gw_ire == NULL) { 704 if (ipif != NULL) 705 ipif_refrele(ipif); 706 return (ENETUNREACH); 707 } 708 709 /* 710 * We create one of three types of IREs as a result of this request 711 * based on the netmask. A netmask of all ones (which is automatically 712 * assumed when RTF_HOST is set) results in an IRE_HOST being created. 713 * An all zeroes netmask implies a default route so an IRE_DEFAULT is 714 * created. Otherwise, an IRE_PREFIX route is created for the 715 * destination prefix. 716 */ 717 if (IN6_ARE_ADDR_EQUAL(mask, &ipv6_all_ones)) 718 type = IRE_HOST; 719 else if (IN6_IS_ADDR_UNSPECIFIED(mask)) 720 type = IRE_DEFAULT; 721 else 722 type = IRE_PREFIX; 723 724 /* check for a duplicate entry */ 725 ire = ire_ftable_lookup_v6(dst_addr, mask, gw_addr, type, ill, 726 ALL_ZONES, NULL, 727 match_flags | MATCH_IRE_MASK | MATCH_IRE_GW, 0, ipst, NULL); 728 if (ire != NULL) { 729 if (ipif != NULL) 730 ipif_refrele(ipif); 731 ire_refrele(gw_ire); 732 ire_refrele(ire); 733 return (EEXIST); 734 } 735 736 /* Security attribute exists */ 737 if (sp != NULL) { 738 tsol_gcgrp_addr_t ga; 739 740 /* find or create the gateway credentials group */ 741 ga.ga_af = AF_INET6; 742 ga.ga_addr = *gw_addr; 743 744 /* we hold reference to it upon success */ 745 gcgrp = gcgrp_lookup(&ga, B_TRUE); 746 if (gcgrp == NULL) { 747 if (ipif != NULL) 748 ipif_refrele(ipif); 749 ire_refrele(gw_ire); 750 return (ENOMEM); 751 } 752 753 /* 754 * Create and add the security attribute to the group; a 755 * reference to the group is made upon allocating a new 756 * entry successfully. If it finds an already-existing 757 * entry for the security attribute in the group, it simply 758 * returns it and no new reference is made to the group. 759 */ 760 gc = gc_create(sp, gcgrp, &gcgrp_xtraref); 761 if (gc == NULL) { 762 /* release reference held by gcgrp_lookup */ 763 GCGRP_REFRELE(gcgrp); 764 if (ipif != NULL) 765 ipif_refrele(ipif); 766 ire_refrele(gw_ire); 767 return (ENOMEM); 768 } 769 } 770 771 /* Create the IRE. */ 772 ire = ire_create_v6( 773 dst_addr, /* dest address */ 774 mask, /* mask */ 775 gw_addr, /* gateway address */ 776 (ushort_t)type, /* IRE type */ 777 ill, 778 zoneid, 779 flags, 780 gc, /* security attribute */ 781 ipst); 782 783 /* 784 * The ire holds a reference to the 'gc' and the 'gc' holds a 785 * reference to the 'gcgrp'. We can now release the extra reference 786 * the 'gcgrp' acquired in the gcgrp_lookup, if it was not used. 787 */ 788 if (gcgrp_xtraref) 789 GCGRP_REFRELE(gcgrp); 790 if (ire == NULL) { 791 if (gc != NULL) 792 GC_REFRELE(gc); 793 if (ipif != NULL) 794 ipif_refrele(ipif); 795 ire_refrele(gw_ire); 796 return (ENOMEM); 797 } 798 799 /* src address assigned by the caller? */ 800 if ((flags & RTF_SETSRC) && !IN6_IS_ADDR_UNSPECIFIED(src_addr)) 801 ire->ire_setsrc_addr_v6 = *src_addr; 802 803 /* 804 * POLICY: should we allow an RTF_HOST with address INADDR_ANY? 805 * SUN/OS socket stuff does but do we really want to allow ::0 ? 806 */ 807 808 /* Add the new IRE. */ 809 nire = ire_add(ire); 810 if (nire == NULL) { 811 /* 812 * In the result of failure, ire_add() will have 813 * already deleted the ire in question, so there 814 * is no need to do that here. 815 */ 816 if (ipif != NULL) 817 ipif_refrele(ipif); 818 ire_refrele(gw_ire); 819 return (ENOMEM); 820 } 821 /* 822 * Check if it was a duplicate entry. This handles 823 * the case of two racing route adds for the same route 824 */ 825 if (nire != ire) { 826 ASSERT(nire->ire_identical_ref > 1); 827 ire_delete(nire); 828 ire_refrele(nire); 829 if (ipif != NULL) 830 ipif_refrele(ipif); 831 ire_refrele(gw_ire); 832 return (EEXIST); 833 } 834 ire = nire; 835 836 if (flags & RTF_MULTIRT) { 837 /* 838 * Invoke the CGTP (multirouting) filtering module 839 * to add the dst address in the filtering database. 840 * Replicated inbound packets coming from that address 841 * will be filtered to discard the duplicates. 842 * It is not necessary to call the CGTP filter hook 843 * when the dst address is a multicast, because an 844 * IP source address cannot be a multicast. 845 */ 846 if (ipst->ips_ip_cgtp_filter_ops != NULL && 847 !IN6_IS_ADDR_MULTICAST(&(ire->ire_addr_v6))) { 848 int res; 849 ipif_t *src_ipif; 850 851 /* Find the source address corresponding to gw_ire */ 852 src_ipif = ipif_lookup_addr_v6( 853 &gw_ire->ire_gateway_addr_v6, NULL, zoneid, ipst); 854 if (src_ipif != NULL) { 855 res = ipst->ips_ip_cgtp_filter_ops-> 856 cfo_add_dest_v6( 857 ipst->ips_netstack->netstack_stackid, 858 &ire->ire_addr_v6, 859 &ire->ire_gateway_addr_v6, 860 &ire->ire_setsrc_addr_v6, 861 &src_ipif->ipif_v6lcl_addr); 862 ipif_refrele(src_ipif); 863 } else { 864 res = EADDRNOTAVAIL; 865 } 866 if (res != 0) { 867 if (ipif != NULL) 868 ipif_refrele(ipif); 869 ire_refrele(gw_ire); 870 ire_delete(ire); 871 ire_refrele(ire); /* Held in ire_add */ 872 return (res); 873 } 874 } 875 } 876 877 save_ire: 878 if (gw_ire != NULL) { 879 ire_refrele(gw_ire); 880 gw_ire = NULL; 881 } 882 if (ire->ire_ill != NULL) { 883 /* 884 * Save enough information so that we can recreate the IRE if 885 * the ILL goes down and then up. The metrics associated 886 * with the route will be saved as well when rts_setmetrics() is 887 * called after the IRE has been created. In the case where 888 * memory cannot be allocated, none of this information will be 889 * saved. 890 */ 891 ill_save_ire(ire->ire_ill, ire); 892 } 893 894 if (ire_arg != NULL) { 895 /* 896 * Store the ire that was successfully added into where ire_arg 897 * points to so that callers don't have to look it up 898 * themselves (but they are responsible for ire_refrele()ing 899 * the ire when they are finished with it). 900 */ 901 *ire_arg = ire; 902 } else { 903 ire_refrele(ire); /* Held in ire_add */ 904 } 905 if (ipif != NULL) 906 ipif_refrele(ipif); 907 return (0); 908 } 909 910 /* 911 * ip_rt_delete_v6 is called to delete an IPv6 route. 912 * ill is passed in to associate it with the correct interface. 913 * (for link-local destinations and gateways). 914 */ 915 /* ARGSUSED4 */ 916 int 917 ip_rt_delete_v6(const in6_addr_t *dst_addr, const in6_addr_t *mask, 918 const in6_addr_t *gw_addr, uint_t rtm_addrs, int flags, ill_t *ill, 919 ip_stack_t *ipst, zoneid_t zoneid) 920 { 921 ire_t *ire = NULL; 922 ipif_t *ipif; 923 uint_t type; 924 uint_t match_flags = MATCH_IRE_TYPE; 925 int err = 0; 926 927 /* 928 * If this is the case of RTF_HOST being set, then we set the netmask 929 * to all ones. Otherwise, we use the netmask if one was supplied. 930 */ 931 if (flags & RTF_HOST) { 932 mask = &ipv6_all_ones; 933 match_flags |= MATCH_IRE_MASK; 934 } else if (rtm_addrs & RTA_NETMASK) { 935 match_flags |= MATCH_IRE_MASK; 936 } 937 938 /* 939 * Note that RTF_GATEWAY is never set on a delete, therefore 940 * we check if the gateway address is one of our interfaces first, 941 * and fall back on RTF_GATEWAY routes. 942 * 943 * This makes it possible to delete an original 944 * IRE_IF_NORESOLVER/IRE_IF_RESOLVER - consistent with SunOS 4.1. 945 * However, we have RTF_KERNEL set on the ones created by ipif_up 946 * and those can not be deleted here. 947 * 948 * We use MATCH_IRE_ILL if we know the interface. If the caller 949 * specified an interface (from the RTA_IFP sockaddr) we use it, 950 * otherwise we use the ill derived from the gateway address. 951 * We can always match the gateway address since we record it 952 * in ire_gateway_addr. 953 * 954 * For more detail on specifying routes by gateway address and by 955 * interface index, see the comments in ip_rt_add_v6(). 956 */ 957 ipif = ipif_lookup_interface_v6(gw_addr, dst_addr, ipst); 958 if (ipif != NULL) { 959 ill_t *ill_match; 960 961 if (ill != NULL) 962 ill_match = ill; 963 else 964 ill_match = ipif->ipif_ill; 965 966 match_flags |= MATCH_IRE_ILL; 967 if (ipif->ipif_ire_type == IRE_LOOPBACK) { 968 ire = ire_ftable_lookup_v6(dst_addr, 0, 0, IRE_LOOPBACK, 969 ill_match, ALL_ZONES, NULL, match_flags, 0, ipst, 970 NULL); 971 } 972 if (ire == NULL) { 973 match_flags |= MATCH_IRE_GW; 974 ire = ire_ftable_lookup_v6(dst_addr, mask, gw_addr, 975 IRE_INTERFACE, ill_match, ALL_ZONES, NULL, 976 match_flags, 0, ipst, NULL); 977 } 978 /* Avoid deleting routes created by kernel from an ipif */ 979 if (ire != NULL && (ire->ire_flags & RTF_KERNEL)) { 980 ire_refrele(ire); 981 ire = NULL; 982 } 983 984 /* Restore in case we didn't find a match */ 985 match_flags &= ~(MATCH_IRE_GW|MATCH_IRE_ILL); 986 } 987 988 if (ire == NULL) { 989 /* 990 * At this point, the gateway address is not one of our own 991 * addresses or a matching interface route was not found. We 992 * set the IRE type to lookup based on whether 993 * this is a host route, a default route or just a prefix. 994 * 995 * If an ill was passed in, then the lookup is based on an 996 * interface index so MATCH_IRE_ILL is added to match_flags. 997 */ 998 match_flags |= MATCH_IRE_GW; 999 if (ill != NULL) 1000 match_flags |= MATCH_IRE_ILL; 1001 if (IN6_ARE_ADDR_EQUAL(mask, &ipv6_all_ones)) 1002 type = IRE_HOST; 1003 else if (IN6_IS_ADDR_UNSPECIFIED(mask)) 1004 type = IRE_DEFAULT; 1005 else 1006 type = IRE_PREFIX; 1007 ire = ire_ftable_lookup_v6(dst_addr, mask, gw_addr, type, 1008 ill, ALL_ZONES, NULL, match_flags, 0, ipst, NULL); 1009 } 1010 1011 if (ipif != NULL) { 1012 ipif_refrele(ipif); 1013 ipif = NULL; 1014 } 1015 if (ire == NULL) 1016 return (ESRCH); 1017 1018 if (ire->ire_flags & RTF_MULTIRT) { 1019 /* 1020 * Invoke the CGTP (multirouting) filtering module 1021 * to remove the dst address from the filtering database. 1022 * Packets coming from that address will no longer be 1023 * filtered to remove duplicates. 1024 */ 1025 if (ipst->ips_ip_cgtp_filter_ops != NULL) { 1026 err = ipst->ips_ip_cgtp_filter_ops->cfo_del_dest_v6( 1027 ipst->ips_netstack->netstack_stackid, 1028 &ire->ire_addr_v6, &ire->ire_gateway_addr_v6); 1029 } 1030 } 1031 1032 ill = ire->ire_ill; 1033 if (ill != NULL) 1034 ill_remove_saved_ire(ill, ire); 1035 ire_delete(ire); 1036 ire_refrele(ire); 1037 return (err); 1038 } 1039 1040 /* 1041 * Derive an interface id from the link layer address. 1042 */ 1043 void 1044 ill_setdefaulttoken(ill_t *ill) 1045 { 1046 if (!ill->ill_manual_token) { 1047 bzero(&ill->ill_token, sizeof (ill->ill_token)); 1048 MEDIA_V6INTFID(ill->ill_media, ill, &ill->ill_token); 1049 ill->ill_token_length = IPV6_TOKEN_LEN; 1050 } 1051 } 1052 1053 void 1054 ill_setdesttoken(ill_t *ill) 1055 { 1056 bzero(&ill->ill_dest_token, sizeof (ill->ill_dest_token)); 1057 MEDIA_V6DESTINTFID(ill->ill_media, ill, &ill->ill_dest_token); 1058 } 1059 1060 /* 1061 * Create a link-local address from a token. 1062 */ 1063 static void 1064 ipif_get_linklocal(in6_addr_t *dest, const in6_addr_t *token) 1065 { 1066 int i; 1067 1068 for (i = 0; i < 4; i++) { 1069 dest->s6_addr32[i] = 1070 token->s6_addr32[i] | ipv6_ll_template.s6_addr32[i]; 1071 } 1072 } 1073 1074 /* 1075 * Set a default IPv6 address for a 6to4 tunnel interface 2002:<tsrc>::1/16 1076 */ 1077 static void 1078 ipif_set6to4addr(ipif_t *ipif) 1079 { 1080 ill_t *ill = ipif->ipif_ill; 1081 struct in_addr v4phys; 1082 1083 ASSERT(ill->ill_mactype == DL_6TO4); 1084 ASSERT(ill->ill_phys_addr_length == sizeof (struct in_addr)); 1085 ASSERT(ipif->ipif_isv6); 1086 1087 if (ipif->ipif_flags & IPIF_UP) 1088 return; 1089 1090 (void) ip_plen_to_mask_v6(16, &ipif->ipif_v6net_mask); 1091 bcopy(ill->ill_phys_addr, &v4phys, sizeof (struct in_addr)); 1092 IN6_V4ADDR_TO_6TO4(&v4phys, &ipif->ipif_v6lcl_addr); 1093 V6_MASK_COPY(ipif->ipif_v6lcl_addr, ipif->ipif_v6net_mask, 1094 ipif->ipif_v6subnet); 1095 } 1096 1097 /* 1098 * Is it not possible to set the link local address? 1099 * The address can be set if the token is set, and the token 1100 * isn't too long. 1101 * Return B_TRUE if the address can't be set, or B_FALSE if it can. 1102 */ 1103 boolean_t 1104 ipif_cant_setlinklocal(ipif_t *ipif) 1105 { 1106 ill_t *ill = ipif->ipif_ill; 1107 1108 if (IN6_IS_ADDR_UNSPECIFIED(&ill->ill_token) || 1109 ill->ill_token_length > IPV6_ABITS - IPV6_LL_PREFIXLEN) 1110 return (B_TRUE); 1111 1112 return (B_FALSE); 1113 } 1114 1115 /* 1116 * Generate a link-local address from the token. 1117 */ 1118 void 1119 ipif_setlinklocal(ipif_t *ipif) 1120 { 1121 ill_t *ill = ipif->ipif_ill; 1122 in6_addr_t ov6addr; 1123 1124 ASSERT(IAM_WRITER_ILL(ill)); 1125 1126 /* 1127 * ill_manual_linklocal is set when the link-local address was 1128 * manually configured. 1129 */ 1130 if (ill->ill_manual_linklocal) 1131 return; 1132 1133 /* 1134 * IPv6 interfaces over 6to4 tunnels are special. They do not have 1135 * link-local addresses, but instead have a single automatically 1136 * generated global address. 1137 */ 1138 if (ill->ill_mactype == DL_6TO4) { 1139 ipif_set6to4addr(ipif); 1140 return; 1141 } 1142 1143 if (ipif_cant_setlinklocal(ipif)) 1144 return; 1145 1146 ov6addr = ipif->ipif_v6lcl_addr; 1147 ipif_get_linklocal(&ipif->ipif_v6lcl_addr, &ill->ill_token); 1148 sctp_update_ipif_addr(ipif, ov6addr); 1149 (void) ip_plen_to_mask_v6(IPV6_LL_PREFIXLEN, &ipif->ipif_v6net_mask); 1150 if (IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6pp_dst_addr)) { 1151 V6_MASK_COPY(ipif->ipif_v6lcl_addr, ipif->ipif_v6net_mask, 1152 ipif->ipif_v6subnet); 1153 } 1154 1155 ip_rts_newaddrmsg(RTM_CHGADDR, 0, ipif, RTSQ_DEFAULT); 1156 } 1157 1158 /* 1159 * Generate a destination link-local address for a point-to-point IPv6 1160 * interface with a destination interface id (IP tunnels are such interfaces) 1161 * based on the destination token. 1162 */ 1163 void 1164 ipif_setdestlinklocal(ipif_t *ipif) 1165 { 1166 ill_t *ill = ipif->ipif_ill; 1167 1168 ASSERT(IAM_WRITER_ILL(ill)); 1169 1170 if (ill->ill_manual_dst_linklocal) 1171 return; 1172 1173 if (IN6_IS_ADDR_UNSPECIFIED(&ill->ill_dest_token)) 1174 return; 1175 1176 ipif_get_linklocal(&ipif->ipif_v6pp_dst_addr, &ill->ill_dest_token); 1177 ipif->ipif_v6subnet = ipif->ipif_v6pp_dst_addr; 1178 } 1179 1180 /* 1181 * Get the resolver set up for a new ipif. (Always called as writer.) 1182 */ 1183 int 1184 ipif_ndp_up(ipif_t *ipif, boolean_t initial) 1185 { 1186 ill_t *ill = ipif->ipif_ill; 1187 int err = 0; 1188 nce_t *nce = NULL; 1189 boolean_t added_ipif = B_FALSE; 1190 1191 DTRACE_PROBE3(ipif__downup, char *, "ipif_ndp_up", 1192 ill_t *, ill, ipif_t *, ipif); 1193 ip1dbg(("ipif_ndp_up(%s:%u)\n", ill->ill_name, ipif->ipif_id)); 1194 1195 if (IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr) || 1196 (!(ill->ill_net_type & IRE_INTERFACE))) { 1197 ipif->ipif_addr_ready = 1; 1198 return (0); 1199 } 1200 1201 if ((ipif->ipif_flags & (IPIF_UNNUMBERED|IPIF_NOLOCAL)) == 0) { 1202 uint16_t flags; 1203 uint16_t state; 1204 uchar_t *hw_addr; 1205 ill_t *bound_ill; 1206 ipmp_illgrp_t *illg = ill->ill_grp; 1207 uint_t hw_addr_len; 1208 1209 flags = NCE_F_MYADDR | NCE_F_NONUD | NCE_F_PUBLISH | 1210 NCE_F_AUTHORITY; 1211 if (ill->ill_flags & ILLF_ROUTER) 1212 flags |= NCE_F_ISROUTER; 1213 1214 if (ipif->ipif_flags & IPIF_ANYCAST) 1215 flags |= NCE_F_ANYCAST; 1216 1217 if (IS_IPMP(ill)) { 1218 ASSERT(ill->ill_net_type == IRE_IF_RESOLVER); 1219 /* 1220 * If we're here via ipif_up(), then the ipif won't be 1221 * bound yet -- add it to the group, which will bind 1222 * it if possible. (We would add it in ipif_up(), but 1223 * deleting on failure there is gruesome.) If we're 1224 * here via ipmp_ill_bind_ipif(), then the ipif has 1225 * already been added to the group and we just need to 1226 * use the binding. 1227 */ 1228 if ((bound_ill = ipmp_ipif_bound_ill(ipif)) == NULL) { 1229 bound_ill = ipmp_illgrp_add_ipif(illg, ipif); 1230 if (bound_ill == NULL) { 1231 /* 1232 * We couldn't bind the ipif to an ill 1233 * yet, so we have nothing to publish. 1234 * Set ipif_addr_ready so that this 1235 * address can be used locally for now. 1236 * The routing socket message will be 1237 * sent from ipif_up_done_v6(). 1238 */ 1239 ipif->ipif_addr_ready = 1; 1240 return (0); 1241 } 1242 added_ipif = B_TRUE; 1243 } 1244 hw_addr = bound_ill->ill_nd_lla; 1245 hw_addr_len = bound_ill->ill_phys_addr_length; 1246 } else { 1247 bound_ill = ill; 1248 hw_addr = ill->ill_nd_lla; 1249 hw_addr_len = ill->ill_phys_addr_length; 1250 } 1251 1252 /* 1253 * If this is an initial bring-up (or the ipif was never 1254 * completely brought up), do DAD. Otherwise, we're here 1255 * because IPMP has rebound an address to this ill: send 1256 * unsolicited advertisements to inform others. 1257 */ 1258 if (initial || !ipif->ipif_addr_ready) { 1259 /* Causes Duplicate Address Detection to run */ 1260 state = ND_PROBE; 1261 } else { 1262 state = ND_REACHABLE; 1263 flags |= NCE_F_UNSOL_ADV; 1264 } 1265 1266 retry: 1267 err = nce_lookup_then_add_v6(ill, hw_addr, hw_addr_len, 1268 &ipif->ipif_v6lcl_addr, flags, state, &nce); 1269 switch (err) { 1270 case 0: 1271 ip1dbg(("ipif_ndp_up: NCE created for %s\n", 1272 ill->ill_name)); 1273 ipif->ipif_addr_ready = 1; 1274 ipif->ipif_added_nce = 1; 1275 nce->nce_ipif_cnt++; 1276 break; 1277 case EINPROGRESS: 1278 ip1dbg(("ipif_ndp_up: running DAD now for %s\n", 1279 ill->ill_name)); 1280 ipif->ipif_added_nce = 1; 1281 nce->nce_ipif_cnt++; 1282 break; 1283 case EEXIST: 1284 ip1dbg(("ipif_ndp_up: NCE already exists for %s\n", 1285 ill->ill_name)); 1286 if (!NCE_MYADDR(nce->nce_common)) { 1287 /* 1288 * A leftover nce from before this address 1289 * existed 1290 */ 1291 ncec_delete(nce->nce_common); 1292 nce_refrele(nce); 1293 nce = NULL; 1294 goto retry; 1295 } 1296 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) { 1297 nce_refrele(nce); 1298 nce = NULL; 1299 ip1dbg(("ipif_ndp_up: NCE already exists " 1300 "for %s\n", ill->ill_name)); 1301 goto fail; 1302 } 1303 /* 1304 * Duplicate local addresses are permissible for 1305 * IPIF_POINTOPOINT interfaces which will get marked 1306 * IPIF_UNNUMBERED later in 1307 * ip_addr_availability_check(). 1308 * 1309 * The nce_ipif_cnt field tracks the number of 1310 * ipifs that have nce_addr as their local address. 1311 */ 1312 ipif->ipif_addr_ready = 1; 1313 ipif->ipif_added_nce = 1; 1314 nce->nce_ipif_cnt++; 1315 err = 0; 1316 break; 1317 default: 1318 ip1dbg(("ipif_ndp_up: NCE creation failed for %s\n", 1319 ill->ill_name)); 1320 goto fail; 1321 } 1322 } else { 1323 /* No local NCE for this entry */ 1324 ipif->ipif_addr_ready = 1; 1325 } 1326 if (nce != NULL) 1327 nce_refrele(nce); 1328 return (0); 1329 fail: 1330 if (added_ipif) 1331 ipmp_illgrp_del_ipif(ill->ill_grp, ipif); 1332 1333 return (err); 1334 } 1335 1336 /* Remove all cache entries for this logical interface */ 1337 void 1338 ipif_ndp_down(ipif_t *ipif) 1339 { 1340 ipif_nce_down(ipif); 1341 } 1342 1343 /* 1344 * Return the scope of the given IPv6 address. If the address is an 1345 * IPv4 mapped IPv6 address, return the scope of the corresponding 1346 * IPv4 address. 1347 */ 1348 in6addr_scope_t 1349 ip_addr_scope_v6(const in6_addr_t *addr) 1350 { 1351 static in6_addr_t ipv6loopback = IN6ADDR_LOOPBACK_INIT; 1352 1353 if (IN6_IS_ADDR_V4MAPPED(addr)) { 1354 in_addr_t v4addr_h = ntohl(V4_PART_OF_V6((*addr))); 1355 if ((v4addr_h >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET || 1356 (v4addr_h & IN_AUTOCONF_MASK) == IN_AUTOCONF_NET) 1357 return (IP6_SCOPE_LINKLOCAL); 1358 if ((v4addr_h & IN_PRIVATE8_MASK) == IN_PRIVATE8_NET || 1359 (v4addr_h & IN_PRIVATE12_MASK) == IN_PRIVATE12_NET || 1360 (v4addr_h & IN_PRIVATE16_MASK) == IN_PRIVATE16_NET) 1361 return (IP6_SCOPE_SITELOCAL); 1362 return (IP6_SCOPE_GLOBAL); 1363 } 1364 1365 if (IN6_IS_ADDR_MULTICAST(addr)) 1366 return (IN6_ADDR_MC_SCOPE(addr)); 1367 1368 /* link-local and loopback addresses are of link-local scope */ 1369 if (IN6_IS_ADDR_LINKLOCAL(addr) || 1370 IN6_ARE_ADDR_EQUAL(addr, &ipv6loopback)) 1371 return (IP6_SCOPE_LINKLOCAL); 1372 if (IN6_IS_ADDR_SITELOCAL(addr)) 1373 return (IP6_SCOPE_SITELOCAL); 1374 return (IP6_SCOPE_GLOBAL); 1375 } 1376 1377 1378 /* 1379 * Returns the length of the common prefix of a1 and a2, as per 1380 * CommonPrefixLen() defined in RFC 3484. 1381 */ 1382 static int 1383 ip_common_prefix_v6(const in6_addr_t *a1, const in6_addr_t *a2) 1384 { 1385 int i; 1386 uint32_t a1val, a2val, mask; 1387 1388 for (i = 0; i < 4; i++) { 1389 if ((a1val = a1->s6_addr32[i]) != (a2val = a2->s6_addr32[i])) { 1390 a1val ^= a2val; 1391 i *= 32; 1392 mask = 0x80000000u; 1393 while (!(a1val & mask)) { 1394 mask >>= 1; 1395 i++; 1396 } 1397 return (i); 1398 } 1399 } 1400 return (IPV6_ABITS); 1401 } 1402 1403 #define IPIF_VALID_IPV6_SOURCE(ipif) \ 1404 (((ipif)->ipif_flags & IPIF_UP) && \ 1405 !((ipif)->ipif_flags & (IPIF_NOLOCAL|IPIF_ANYCAST)) && \ 1406 !((ipif)->ipif_ill->ill_flags & ILLF_NOACCEPT)) 1407 1408 /* source address candidate */ 1409 typedef struct candidate { 1410 ipif_t *cand_ipif; 1411 /* The properties of this candidate */ 1412 boolean_t cand_isdst; 1413 boolean_t cand_isdst_set; 1414 in6addr_scope_t cand_scope; 1415 boolean_t cand_scope_set; 1416 boolean_t cand_isdeprecated; 1417 boolean_t cand_isdeprecated_set; 1418 boolean_t cand_ispreferred; 1419 boolean_t cand_ispreferred_set; 1420 boolean_t cand_matchedinterface; 1421 boolean_t cand_matchedinterface_set; 1422 boolean_t cand_matchedlabel; 1423 boolean_t cand_matchedlabel_set; 1424 boolean_t cand_istmp; 1425 boolean_t cand_istmp_set; 1426 int cand_common_pref; 1427 boolean_t cand_common_pref_set; 1428 boolean_t cand_pref_eq; 1429 boolean_t cand_pref_eq_set; 1430 int cand_pref_len; 1431 boolean_t cand_pref_len_set; 1432 } cand_t; 1433 #define cand_srcaddr cand_ipif->ipif_v6lcl_addr 1434 #define cand_mask cand_ipif->ipif_v6net_mask 1435 #define cand_flags cand_ipif->ipif_flags 1436 #define cand_ill cand_ipif->ipif_ill 1437 #define cand_zoneid cand_ipif->ipif_zoneid 1438 1439 /* information about the destination for source address selection */ 1440 typedef struct dstinfo { 1441 const in6_addr_t *dst_addr; 1442 ill_t *dst_ill; 1443 uint_t dst_restrict_ill; 1444 boolean_t dst_prefer_src_tmp; 1445 in6addr_scope_t dst_scope; 1446 char *dst_label; 1447 } dstinfo_t; 1448 1449 /* 1450 * The following functions are rules used to select a source address in 1451 * ipif_select_source_v6(). Each rule compares a current candidate (cc) 1452 * against the best candidate (bc). Each rule has three possible outcomes; 1453 * the candidate is preferred over the best candidate (CAND_PREFER), the 1454 * candidate is not preferred over the best candidate (CAND_AVOID), or the 1455 * candidate is of equal value as the best candidate (CAND_TIE). 1456 * 1457 * These rules are part of a greater "Default Address Selection for IPv6" 1458 * sheme, which is standards based work coming out of the IETF ipv6 working 1459 * group. The IETF document defines both IPv6 source address selection and 1460 * destination address ordering. The rules defined here implement the IPv6 1461 * source address selection. Destination address ordering is done by 1462 * libnsl, and uses a similar set of rules to implement the sorting. 1463 * 1464 * Most of the rules are defined by the RFC and are not typically altered. The 1465 * last rule, number 8, has language that allows for local preferences. In the 1466 * scheme below, this means that new Solaris rules should normally go between 1467 * rule_ifprefix and rule_prefix. 1468 */ 1469 typedef enum {CAND_AVOID, CAND_TIE, CAND_PREFER} rule_res_t; 1470 typedef rule_res_t (*rulef_t)(cand_t *, cand_t *, const dstinfo_t *, 1471 ip_stack_t *); 1472 1473 /* Prefer an address if it is equal to the destination address. */ 1474 /* ARGSUSED3 */ 1475 static rule_res_t 1476 rule_isdst(cand_t *bc, cand_t *cc, const dstinfo_t *dstinfo, ip_stack_t *ipst) 1477 { 1478 if (!bc->cand_isdst_set) { 1479 bc->cand_isdst = 1480 IN6_ARE_ADDR_EQUAL(&bc->cand_srcaddr, dstinfo->dst_addr); 1481 bc->cand_isdst_set = B_TRUE; 1482 } 1483 1484 cc->cand_isdst = 1485 IN6_ARE_ADDR_EQUAL(&cc->cand_srcaddr, dstinfo->dst_addr); 1486 cc->cand_isdst_set = B_TRUE; 1487 1488 if (cc->cand_isdst == bc->cand_isdst) 1489 return (CAND_TIE); 1490 else if (cc->cand_isdst) 1491 return (CAND_PREFER); 1492 else 1493 return (CAND_AVOID); 1494 } 1495 1496 /* 1497 * Prefer addresses that are of closest scope to the destination. Always 1498 * prefer addresses that are of greater scope than the destination over 1499 * those that are of lesser scope than the destination. 1500 */ 1501 /* ARGSUSED3 */ 1502 static rule_res_t 1503 rule_scope(cand_t *bc, cand_t *cc, const dstinfo_t *dstinfo, ip_stack_t *ipst) 1504 { 1505 if (!bc->cand_scope_set) { 1506 bc->cand_scope = ip_addr_scope_v6(&bc->cand_srcaddr); 1507 bc->cand_scope_set = B_TRUE; 1508 } 1509 1510 cc->cand_scope = ip_addr_scope_v6(&cc->cand_srcaddr); 1511 cc->cand_scope_set = B_TRUE; 1512 1513 if (cc->cand_scope < bc->cand_scope) { 1514 if (cc->cand_scope < dstinfo->dst_scope) 1515 return (CAND_AVOID); 1516 else 1517 return (CAND_PREFER); 1518 } else if (bc->cand_scope < cc->cand_scope) { 1519 if (bc->cand_scope < dstinfo->dst_scope) 1520 return (CAND_PREFER); 1521 else 1522 return (CAND_AVOID); 1523 } else { 1524 return (CAND_TIE); 1525 } 1526 } 1527 1528 /* 1529 * Prefer non-deprecated source addresses. 1530 */ 1531 /* ARGSUSED2 */ 1532 static rule_res_t 1533 rule_deprecated(cand_t *bc, cand_t *cc, const dstinfo_t *dstinfo, 1534 ip_stack_t *ipst) 1535 { 1536 if (!bc->cand_isdeprecated_set) { 1537 bc->cand_isdeprecated = 1538 ((bc->cand_flags & IPIF_DEPRECATED) != 0); 1539 bc->cand_isdeprecated_set = B_TRUE; 1540 } 1541 1542 cc->cand_isdeprecated = ((cc->cand_flags & IPIF_DEPRECATED) != 0); 1543 cc->cand_isdeprecated_set = B_TRUE; 1544 1545 if (bc->cand_isdeprecated == cc->cand_isdeprecated) 1546 return (CAND_TIE); 1547 else if (cc->cand_isdeprecated) 1548 return (CAND_AVOID); 1549 else 1550 return (CAND_PREFER); 1551 } 1552 1553 /* 1554 * Prefer source addresses that have the IPIF_PREFERRED flag set. This 1555 * rule must be before rule_interface because the flag could be set on any 1556 * interface, not just the interface being used for outgoing packets (for 1557 * example, the IFF_PREFERRED could be set on an address assigned to the 1558 * loopback interface). 1559 */ 1560 /* ARGSUSED2 */ 1561 static rule_res_t 1562 rule_preferred(cand_t *bc, cand_t *cc, const dstinfo_t *dstinfo, 1563 ip_stack_t *ipst) 1564 { 1565 if (!bc->cand_ispreferred_set) { 1566 bc->cand_ispreferred = ((bc->cand_flags & IPIF_PREFERRED) != 0); 1567 bc->cand_ispreferred_set = B_TRUE; 1568 } 1569 1570 cc->cand_ispreferred = ((cc->cand_flags & IPIF_PREFERRED) != 0); 1571 cc->cand_ispreferred_set = B_TRUE; 1572 1573 if (bc->cand_ispreferred == cc->cand_ispreferred) 1574 return (CAND_TIE); 1575 else if (cc->cand_ispreferred) 1576 return (CAND_PREFER); 1577 else 1578 return (CAND_AVOID); 1579 } 1580 1581 /* 1582 * Prefer source addresses that are assigned to the outgoing interface. 1583 */ 1584 /* ARGSUSED3 */ 1585 static rule_res_t 1586 rule_interface(cand_t *bc, cand_t *cc, const dstinfo_t *dstinfo, 1587 ip_stack_t *ipst) 1588 { 1589 ill_t *dstill = dstinfo->dst_ill; 1590 1591 /* 1592 * If dstinfo->dst_restrict_ill is set, this rule is unnecessary 1593 * since we know all candidates will be on the same link. 1594 */ 1595 if (dstinfo->dst_restrict_ill) 1596 return (CAND_TIE); 1597 1598 if (!bc->cand_matchedinterface_set) { 1599 bc->cand_matchedinterface = bc->cand_ill == dstill; 1600 bc->cand_matchedinterface_set = B_TRUE; 1601 } 1602 1603 cc->cand_matchedinterface = cc->cand_ill == dstill; 1604 cc->cand_matchedinterface_set = B_TRUE; 1605 1606 if (bc->cand_matchedinterface == cc->cand_matchedinterface) 1607 return (CAND_TIE); 1608 else if (cc->cand_matchedinterface) 1609 return (CAND_PREFER); 1610 else 1611 return (CAND_AVOID); 1612 } 1613 1614 /* 1615 * Prefer source addresses whose label matches the destination's label. 1616 */ 1617 static rule_res_t 1618 rule_label(cand_t *bc, cand_t *cc, const dstinfo_t *dstinfo, ip_stack_t *ipst) 1619 { 1620 char *label; 1621 1622 if (!bc->cand_matchedlabel_set) { 1623 label = ip6_asp_lookup(&bc->cand_srcaddr, NULL, ipst); 1624 bc->cand_matchedlabel = 1625 ip6_asp_labelcmp(label, dstinfo->dst_label); 1626 bc->cand_matchedlabel_set = B_TRUE; 1627 } 1628 1629 label = ip6_asp_lookup(&cc->cand_srcaddr, NULL, ipst); 1630 cc->cand_matchedlabel = ip6_asp_labelcmp(label, dstinfo->dst_label); 1631 cc->cand_matchedlabel_set = B_TRUE; 1632 1633 if (bc->cand_matchedlabel == cc->cand_matchedlabel) 1634 return (CAND_TIE); 1635 else if (cc->cand_matchedlabel) 1636 return (CAND_PREFER); 1637 else 1638 return (CAND_AVOID); 1639 } 1640 1641 /* 1642 * Prefer public addresses over temporary ones. An application can reverse 1643 * the logic of this rule and prefer temporary addresses by using the 1644 * IPV6_SRC_PREFERENCES socket option. 1645 */ 1646 /* ARGSUSED3 */ 1647 static rule_res_t 1648 rule_temporary(cand_t *bc, cand_t *cc, const dstinfo_t *dstinfo, 1649 ip_stack_t *ipst) 1650 { 1651 if (!bc->cand_istmp_set) { 1652 bc->cand_istmp = ((bc->cand_flags & IPIF_TEMPORARY) != 0); 1653 bc->cand_istmp_set = B_TRUE; 1654 } 1655 1656 cc->cand_istmp = ((cc->cand_flags & IPIF_TEMPORARY) != 0); 1657 cc->cand_istmp_set = B_TRUE; 1658 1659 if (bc->cand_istmp == cc->cand_istmp) 1660 return (CAND_TIE); 1661 1662 if (dstinfo->dst_prefer_src_tmp && cc->cand_istmp) 1663 return (CAND_PREFER); 1664 else if (!dstinfo->dst_prefer_src_tmp && !cc->cand_istmp) 1665 return (CAND_PREFER); 1666 else 1667 return (CAND_AVOID); 1668 } 1669 1670 /* 1671 * Prefer source addresses with longer matching prefix with the destination 1672 * under the interface mask. This gets us on the same subnet before applying 1673 * any Solaris-specific rules. 1674 */ 1675 /* ARGSUSED3 */ 1676 static rule_res_t 1677 rule_ifprefix(cand_t *bc, cand_t *cc, const dstinfo_t *dstinfo, 1678 ip_stack_t *ipst) 1679 { 1680 if (!bc->cand_pref_eq_set) { 1681 bc->cand_pref_eq = V6_MASK_EQ_2(bc->cand_srcaddr, 1682 bc->cand_mask, *dstinfo->dst_addr); 1683 bc->cand_pref_eq_set = B_TRUE; 1684 } 1685 1686 cc->cand_pref_eq = V6_MASK_EQ_2(cc->cand_srcaddr, cc->cand_mask, 1687 *dstinfo->dst_addr); 1688 cc->cand_pref_eq_set = B_TRUE; 1689 1690 if (bc->cand_pref_eq) { 1691 if (cc->cand_pref_eq) { 1692 if (!bc->cand_pref_len_set) { 1693 bc->cand_pref_len = 1694 ip_mask_to_plen_v6(&bc->cand_mask); 1695 bc->cand_pref_len_set = B_TRUE; 1696 } 1697 cc->cand_pref_len = ip_mask_to_plen_v6(&cc->cand_mask); 1698 cc->cand_pref_len_set = B_TRUE; 1699 if (bc->cand_pref_len == cc->cand_pref_len) 1700 return (CAND_TIE); 1701 else if (bc->cand_pref_len > cc->cand_pref_len) 1702 return (CAND_AVOID); 1703 else 1704 return (CAND_PREFER); 1705 } else { 1706 return (CAND_AVOID); 1707 } 1708 } else { 1709 if (cc->cand_pref_eq) 1710 return (CAND_PREFER); 1711 else 1712 return (CAND_TIE); 1713 } 1714 } 1715 1716 /* 1717 * Prefer to use zone-specific addresses when possible instead of all-zones 1718 * addresses. 1719 */ 1720 /* ARGSUSED2 */ 1721 static rule_res_t 1722 rule_zone_specific(cand_t *bc, cand_t *cc, const dstinfo_t *dstinfo, 1723 ip_stack_t *ipst) 1724 { 1725 if ((bc->cand_zoneid == ALL_ZONES) == 1726 (cc->cand_zoneid == ALL_ZONES)) 1727 return (CAND_TIE); 1728 else if (cc->cand_zoneid == ALL_ZONES) 1729 return (CAND_AVOID); 1730 else 1731 return (CAND_PREFER); 1732 } 1733 1734 /* 1735 * Prefer to use DHCPv6 (first) and static addresses (second) when possible 1736 * instead of statelessly autoconfigured addresses. 1737 * 1738 * This is done after trying all other preferences (and before the final tie 1739 * breaker) so that, if all else is equal, we select addresses configured by 1740 * DHCPv6 over other addresses. We presume that DHCPv6 addresses, unlike 1741 * stateless autoconfigured addresses, are deliberately configured by an 1742 * administrator, and thus are correctly set up in DNS and network packet 1743 * filters. 1744 */ 1745 /* ARGSUSED2 */ 1746 static rule_res_t 1747 rule_addr_type(cand_t *bc, cand_t *cc, const dstinfo_t *dstinfo, 1748 ip_stack_t *ipst) 1749 { 1750 #define ATYPE(x) \ 1751 ((x) & IPIF_DHCPRUNNING) ? 1 : ((x) & IPIF_ADDRCONF) ? 3 : 2 1752 int bcval = ATYPE(bc->cand_flags); 1753 int ccval = ATYPE(cc->cand_flags); 1754 #undef ATYPE 1755 1756 if (bcval == ccval) 1757 return (CAND_TIE); 1758 else if (ccval < bcval) 1759 return (CAND_PREFER); 1760 else 1761 return (CAND_AVOID); 1762 } 1763 1764 /* 1765 * Prefer source addresses with longer matching prefix with the destination. 1766 * We do the longest matching prefix calculation by doing an xor of both 1767 * addresses with the destination, and pick the address with the longest string 1768 * of leading zeros, as per CommonPrefixLen() defined in RFC 3484. 1769 */ 1770 /* ARGSUSED3 */ 1771 static rule_res_t 1772 rule_prefix(cand_t *bc, cand_t *cc, const dstinfo_t *dstinfo, ip_stack_t *ipst) 1773 { 1774 if (!bc->cand_common_pref_set) { 1775 bc->cand_common_pref = ip_common_prefix_v6(&bc->cand_srcaddr, 1776 dstinfo->dst_addr); 1777 bc->cand_common_pref_set = B_TRUE; 1778 } 1779 1780 cc->cand_common_pref = ip_common_prefix_v6(&cc->cand_srcaddr, 1781 dstinfo->dst_addr); 1782 cc->cand_common_pref_set = B_TRUE; 1783 1784 if (bc->cand_common_pref == cc->cand_common_pref) 1785 return (CAND_TIE); 1786 else if (bc->cand_common_pref > cc->cand_common_pref) 1787 return (CAND_AVOID); 1788 else 1789 return (CAND_PREFER); 1790 } 1791 1792 /* 1793 * Last rule: we must pick something, so just prefer the current best 1794 * candidate. 1795 */ 1796 /* ARGSUSED */ 1797 static rule_res_t 1798 rule_must_be_last(cand_t *bc, cand_t *cc, const dstinfo_t *dstinfo, 1799 ip_stack_t *ipst) 1800 { 1801 return (CAND_AVOID); 1802 } 1803 1804 /* 1805 * Determine the best source address given a destination address and a 1806 * destination ill. If no suitable source address is found, it returns 1807 * NULL. If there is a usable address pointed to by the usesrc 1808 * (i.e ill_usesrc_ifindex != 0) then return that first since it is more 1809 * fine grained (i.e per interface) 1810 * 1811 * This implementation is based on the "Default Address Selection for IPv6" 1812 * specification produced by the IETF IPv6 working group. It has been 1813 * implemented so that the list of addresses is only traversed once (the 1814 * specification's algorithm could traverse the list of addresses once for 1815 * every rule). 1816 * 1817 * The restrict_ill argument restricts the algorithm to choose a source 1818 * address that is assigned to the destination ill. This is used when 1819 * the destination address is a link-local or multicast address, and when 1820 * ipv6_strict_dst_multihoming is turned on. 1821 * 1822 * src_prefs is the caller's set of source address preferences. If source 1823 * address selection is being called to determine the source address of a 1824 * connected socket (from ip_set_destination_v6()), then the preferences are 1825 * taken from conn_ixa->ixa_src_preferences. These preferences can be set on a 1826 * per-socket basis using the IPV6_SRC_PREFERENCES socket option. The only 1827 * preference currently implemented is for rfc3041 temporary addresses. 1828 */ 1829 ipif_t * 1830 ipif_select_source_v6(ill_t *dstill, const in6_addr_t *dst, 1831 boolean_t restrict_ill, uint32_t src_prefs, zoneid_t zoneid, 1832 boolean_t allow_usesrc, boolean_t *notreadyp) 1833 { 1834 dstinfo_t dstinfo; 1835 char dstr[INET6_ADDRSTRLEN]; 1836 char sstr[INET6_ADDRSTRLEN]; 1837 ipif_t *ipif, *start_ipif, *next_ipif; 1838 ill_t *ill, *usesrc_ill = NULL, *ipmp_ill = NULL; 1839 ill_walk_context_t ctx; 1840 cand_t best_c; /* The best candidate */ 1841 cand_t curr_c; /* The current candidate */ 1842 uint_t index; 1843 boolean_t first_candidate = B_TRUE; 1844 rule_res_t rule_result; 1845 tsol_tpc_t *src_rhtp, *dst_rhtp; 1846 ip_stack_t *ipst = dstill->ill_ipst; 1847 1848 /* 1849 * The list of ordering rules. They are applied in the order they 1850 * appear in the list. 1851 * 1852 * Solaris doesn't currently support Mobile IPv6, so there's no 1853 * rule_mipv6 corresponding to rule 4 in the specification. 1854 */ 1855 rulef_t rules[] = { 1856 rule_isdst, 1857 rule_scope, 1858 rule_deprecated, 1859 rule_preferred, 1860 rule_interface, 1861 rule_label, 1862 rule_temporary, 1863 rule_ifprefix, /* local rules after this */ 1864 rule_zone_specific, 1865 rule_addr_type, 1866 rule_prefix, /* local rules before this */ 1867 rule_must_be_last, /* must always be last */ 1868 NULL 1869 }; 1870 1871 ASSERT(dstill->ill_isv6); 1872 ASSERT(!IN6_IS_ADDR_V4MAPPED(dst)); 1873 1874 /* 1875 * Check if there is a usable src address pointed to by the 1876 * usesrc ifindex. This has higher precedence since it is 1877 * finer grained (i.e per interface) v/s being system wide. 1878 */ 1879 if (dstill->ill_usesrc_ifindex != 0 && allow_usesrc) { 1880 if ((usesrc_ill = 1881 ill_lookup_on_ifindex(dstill->ill_usesrc_ifindex, B_TRUE, 1882 ipst)) != NULL) { 1883 dstinfo.dst_ill = usesrc_ill; 1884 } else { 1885 return (NULL); 1886 } 1887 } else if (IS_UNDER_IPMP(dstill)) { 1888 /* 1889 * Test addresses should never be used for source address 1890 * selection, so if we were passed an underlying ill, switch 1891 * to the IPMP meta-interface. 1892 */ 1893 if ((ipmp_ill = ipmp_ill_hold_ipmp_ill(dstill)) != NULL) 1894 dstinfo.dst_ill = ipmp_ill; 1895 else 1896 return (NULL); 1897 } else { 1898 dstinfo.dst_ill = dstill; 1899 } 1900 1901 /* 1902 * If we're dealing with an unlabeled destination on a labeled system, 1903 * make sure that we ignore source addresses that are incompatible with 1904 * the destination's default label. That destination's default label 1905 * must dominate the minimum label on the source address. 1906 * 1907 * (Note that this has to do with Trusted Solaris. It's not related to 1908 * the labels described by ip6_asp_lookup.) 1909 */ 1910 dst_rhtp = NULL; 1911 if (is_system_labeled()) { 1912 dst_rhtp = find_tpc(dst, IPV6_VERSION, B_FALSE); 1913 if (dst_rhtp == NULL) 1914 return (NULL); 1915 if (dst_rhtp->tpc_tp.host_type != UNLABELED) { 1916 TPC_RELE(dst_rhtp); 1917 dst_rhtp = NULL; 1918 } 1919 } 1920 1921 dstinfo.dst_addr = dst; 1922 dstinfo.dst_scope = ip_addr_scope_v6(dst); 1923 dstinfo.dst_label = ip6_asp_lookup(dst, NULL, ipst); 1924 dstinfo.dst_prefer_src_tmp = ((src_prefs & IPV6_PREFER_SRC_TMP) != 0); 1925 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 1926 /* 1927 * Section three of the I-D states that for multicast and 1928 * link-local destinations, the candidate set must be restricted to 1929 * an interface that is on the same link as the outgoing interface. 1930 * Also, when ipv6_strict_dst_multihoming is turned on, always 1931 * restrict the source address to the destination link as doing 1932 * otherwise will almost certainly cause problems. 1933 */ 1934 if (IN6_IS_ADDR_LINKLOCAL(dst) || IN6_IS_ADDR_MULTICAST(dst) || 1935 ipst->ips_ipv6_strict_dst_multihoming || usesrc_ill != NULL) { 1936 dstinfo.dst_restrict_ill = B_TRUE; 1937 } else { 1938 dstinfo.dst_restrict_ill = restrict_ill; 1939 } 1940 1941 bzero(&best_c, sizeof (cand_t)); 1942 1943 /* 1944 * Take a pass through the list of IPv6 interfaces to choose the best 1945 * possible source address. If restrict_ill is set, just use dst_ill. 1946 */ 1947 if (dstinfo.dst_restrict_ill) 1948 ill = dstinfo.dst_ill; 1949 else 1950 ill = ILL_START_WALK_V6(&ctx, ipst); 1951 1952 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 1953 ASSERT(ill->ill_isv6); 1954 1955 /* 1956 * Test addresses should never be used for source address 1957 * selection, so ignore underlying ills. 1958 */ 1959 if (IS_UNDER_IPMP(ill)) 1960 continue; 1961 1962 if (ill->ill_ipif == NULL) 1963 continue; 1964 /* 1965 * For source address selection, we treat the ipif list as 1966 * circular and continue until we get back to where we 1967 * started. This allows IPMP to vary source address selection 1968 * (which improves inbound load spreading) by caching its last 1969 * ending point and starting from there. NOTE: we don't have 1970 * to worry about ill_src_ipif changing ills since that can't 1971 * happen on the IPMP ill. 1972 */ 1973 start_ipif = ill->ill_ipif; 1974 if (IS_IPMP(ill) && ill->ill_src_ipif != NULL) 1975 start_ipif = ill->ill_src_ipif; 1976 1977 ipif = start_ipif; 1978 do { 1979 if ((next_ipif = ipif->ipif_next) == NULL) 1980 next_ipif = ill->ill_ipif; 1981 1982 if (!IPIF_VALID_IPV6_SOURCE(ipif)) 1983 continue; 1984 1985 if (!ipif->ipif_addr_ready) { 1986 if (notreadyp != NULL) 1987 *notreadyp = B_TRUE; 1988 continue; 1989 } 1990 1991 if (zoneid != ALL_ZONES && 1992 ipif->ipif_zoneid != zoneid && 1993 ipif->ipif_zoneid != ALL_ZONES) 1994 continue; 1995 1996 /* 1997 * Check compatibility of local address for 1998 * destination's default label if we're on a labeled 1999 * system. Incompatible addresses can't be used at 2000 * all and must be skipped over. 2001 */ 2002 if (dst_rhtp != NULL) { 2003 boolean_t incompat; 2004 2005 src_rhtp = find_tpc(&ipif->ipif_v6lcl_addr, 2006 IPV6_VERSION, B_FALSE); 2007 if (src_rhtp == NULL) 2008 continue; 2009 incompat = 2010 src_rhtp->tpc_tp.host_type != SUN_CIPSO || 2011 src_rhtp->tpc_tp.tp_doi != 2012 dst_rhtp->tpc_tp.tp_doi || 2013 (!_blinrange(&dst_rhtp->tpc_tp.tp_def_label, 2014 &src_rhtp->tpc_tp.tp_sl_range_cipso) && 2015 !blinlset(&dst_rhtp->tpc_tp.tp_def_label, 2016 src_rhtp->tpc_tp.tp_sl_set_cipso)); 2017 TPC_RELE(src_rhtp); 2018 if (incompat) 2019 continue; 2020 } 2021 2022 if (first_candidate) { 2023 /* 2024 * This is first valid address in the list. 2025 * It is automatically the best candidate 2026 * so far. 2027 */ 2028 best_c.cand_ipif = ipif; 2029 first_candidate = B_FALSE; 2030 continue; 2031 } 2032 2033 bzero(&curr_c, sizeof (cand_t)); 2034 curr_c.cand_ipif = ipif; 2035 2036 /* 2037 * Compare this current candidate (curr_c) with the 2038 * best candidate (best_c) by applying the 2039 * comparison rules in order until one breaks the 2040 * tie. 2041 */ 2042 for (index = 0; rules[index] != NULL; index++) { 2043 /* Apply a comparison rule. */ 2044 rule_result = (rules[index])(&best_c, &curr_c, 2045 &dstinfo, ipst); 2046 if (rule_result == CAND_AVOID) { 2047 /* 2048 * The best candidate is still the 2049 * best candidate. Forget about 2050 * this current candidate and go on 2051 * to the next one. 2052 */ 2053 break; 2054 } else if (rule_result == CAND_PREFER) { 2055 /* 2056 * This candidate is prefered. It 2057 * becomes the best candidate so 2058 * far. Go on to the next address. 2059 */ 2060 best_c = curr_c; 2061 break; 2062 } 2063 /* We have a tie, apply the next rule. */ 2064 } 2065 2066 /* 2067 * The last rule must be a tie breaker rule and 2068 * must never produce a tie. At this point, the 2069 * candidate should have either been rejected, or 2070 * have been prefered as the best candidate so far. 2071 */ 2072 ASSERT(rule_result != CAND_TIE); 2073 } while ((ipif = next_ipif) != start_ipif); 2074 2075 /* 2076 * For IPMP, update the source ipif rotor to the next ipif, 2077 * provided we can look it up. (We must not use it if it's 2078 * IPIF_CONDEMNED since we may have grabbed ill_g_lock after 2079 * ipif_free() checked ill_src_ipif.) 2080 */ 2081 if (IS_IPMP(ill) && ipif != NULL) { 2082 mutex_enter(&ipif->ipif_ill->ill_lock); 2083 next_ipif = ipif->ipif_next; 2084 if (next_ipif != NULL && !IPIF_IS_CONDEMNED(next_ipif)) 2085 ill->ill_src_ipif = next_ipif; 2086 else 2087 ill->ill_src_ipif = NULL; 2088 mutex_exit(&ipif->ipif_ill->ill_lock); 2089 } 2090 2091 /* 2092 * Only one ill to consider if dst_restrict_ill is set. 2093 */ 2094 if (dstinfo.dst_restrict_ill) 2095 break; 2096 } 2097 2098 ipif = best_c.cand_ipif; 2099 ip1dbg(("ipif_select_source_v6(%s, %s) -> %s\n", 2100 dstinfo.dst_ill->ill_name, 2101 inet_ntop(AF_INET6, dstinfo.dst_addr, dstr, sizeof (dstr)), 2102 (ipif == NULL ? "NULL" : 2103 inet_ntop(AF_INET6, &ipif->ipif_v6lcl_addr, sstr, sizeof (sstr))))); 2104 2105 if (usesrc_ill != NULL) 2106 ill_refrele(usesrc_ill); 2107 2108 if (ipmp_ill != NULL) 2109 ill_refrele(ipmp_ill); 2110 2111 if (dst_rhtp != NULL) 2112 TPC_RELE(dst_rhtp); 2113 2114 if (ipif == NULL) { 2115 rw_exit(&ipst->ips_ill_g_lock); 2116 return (NULL); 2117 } 2118 2119 mutex_enter(&ipif->ipif_ill->ill_lock); 2120 if (!IPIF_IS_CONDEMNED(ipif)) { 2121 ipif_refhold_locked(ipif); 2122 mutex_exit(&ipif->ipif_ill->ill_lock); 2123 rw_exit(&ipst->ips_ill_g_lock); 2124 return (ipif); 2125 } 2126 mutex_exit(&ipif->ipif_ill->ill_lock); 2127 rw_exit(&ipst->ips_ill_g_lock); 2128 ip1dbg(("ipif_select_source_v6 cannot lookup ipif %p" 2129 " returning null \n", (void *)ipif)); 2130 2131 return (NULL); 2132 } 2133 2134 /* 2135 * Pick a source address based on the destination ill and an optional setsrc 2136 * address. 2137 * The result is stored in srcp. If generation is set, then put the source 2138 * generation number there before we look for the source address (to avoid 2139 * missing changes in the set of source addresses. 2140 * If flagsp is set, then us it to pass back ipif_flags. 2141 * 2142 * If the caller wants to cache the returned source address and detect when 2143 * that might be stale, the caller should pass in a generation argument, 2144 * which the caller can later compare against ips_src_generation 2145 * 2146 * The precedence order for selecting an IPv6 source address is: 2147 * - RTF_SETSRC on the first ire in the recursive lookup always wins. 2148 * - If usrsrc is set, swap the ill to be the usesrc one. 2149 * - If IPMP is used on the ill, select a random address from the most 2150 * preferred ones below: 2151 * That is followed by the long list of IPv6 source address selection rules 2152 * starting with rule_isdst(), rule_scope(), etc. 2153 * 2154 * We have lower preference for ALL_ZONES IP addresses, 2155 * as they pose problems with unlabeled destinations. 2156 * 2157 * Note that when multiple IP addresses match e.g., with rule_scope() we pick 2158 * the first one if IPMP is not in use. With IPMP we randomize. 2159 */ 2160 int 2161 ip_select_source_v6(ill_t *ill, const in6_addr_t *setsrc, const in6_addr_t *dst, 2162 zoneid_t zoneid, ip_stack_t *ipst, uint_t restrict_ill, uint32_t src_prefs, 2163 in6_addr_t *srcp, uint32_t *generation, uint64_t *flagsp) 2164 { 2165 ipif_t *ipif; 2166 boolean_t notready = B_FALSE; /* Set if !ipif_addr_ready found */ 2167 2168 if (flagsp != NULL) 2169 *flagsp = 0; 2170 2171 /* 2172 * Need to grab the generation number before we check to 2173 * avoid a race with a change to the set of local addresses. 2174 * No lock needed since the thread which updates the set of local 2175 * addresses use ipif/ill locks and exit those (hence a store memory 2176 * barrier) before doing the atomic increase of ips_src_generation. 2177 */ 2178 if (generation != NULL) { 2179 *generation = ipst->ips_src_generation; 2180 } 2181 2182 /* Was RTF_SETSRC set on the first IRE in the recursive lookup? */ 2183 if (setsrc != NULL && !IN6_IS_ADDR_UNSPECIFIED(setsrc)) { 2184 *srcp = *setsrc; 2185 return (0); 2186 } 2187 2188 ipif = ipif_select_source_v6(ill, dst, restrict_ill, src_prefs, zoneid, 2189 B_TRUE, ¬ready); 2190 if (ipif == NULL) { 2191 if (notready) 2192 return (ENETDOWN); 2193 else 2194 return (EADDRNOTAVAIL); 2195 } 2196 *srcp = ipif->ipif_v6lcl_addr; 2197 if (flagsp != NULL) 2198 *flagsp = ipif->ipif_flags; 2199 ipif_refrele(ipif); 2200 return (0); 2201 } 2202 2203 /* 2204 * Perform an attach and bind to get phys addr plus info_req for 2205 * the physical device. 2206 * q and mp represents an ioctl which will be queued waiting for 2207 * completion of the DLPI message exchange. 2208 * MUST be called on an ill queue. 2209 * 2210 * Returns EINPROGRESS when mp has been consumed by queueing it. 2211 * The ioctl will complete in ip_rput. 2212 */ 2213 int 2214 ill_dl_phys(ill_t *ill, ipif_t *ipif, mblk_t *mp, queue_t *q) 2215 { 2216 mblk_t *v6token_mp = NULL; 2217 mblk_t *v6lla_mp = NULL; 2218 mblk_t *dest_mp = NULL; 2219 mblk_t *phys_mp = NULL; 2220 mblk_t *info_mp = NULL; 2221 mblk_t *attach_mp = NULL; 2222 mblk_t *bind_mp = NULL; 2223 mblk_t *unbind_mp = NULL; 2224 mblk_t *notify_mp = NULL; 2225 mblk_t *capab_mp = NULL; 2226 2227 ip1dbg(("ill_dl_phys(%s:%u)\n", ill->ill_name, ipif->ipif_id)); 2228 ASSERT(ill->ill_dlpi_style_set); 2229 ASSERT(WR(q)->q_next != NULL); 2230 2231 if (ill->ill_isv6) { 2232 v6token_mp = ip_dlpi_alloc(sizeof (dl_phys_addr_req_t) + 2233 sizeof (t_scalar_t), DL_PHYS_ADDR_REQ); 2234 if (v6token_mp == NULL) 2235 goto bad; 2236 ((dl_phys_addr_req_t *)v6token_mp->b_rptr)->dl_addr_type = 2237 DL_IPV6_TOKEN; 2238 2239 v6lla_mp = ip_dlpi_alloc(sizeof (dl_phys_addr_req_t) + 2240 sizeof (t_scalar_t), DL_PHYS_ADDR_REQ); 2241 if (v6lla_mp == NULL) 2242 goto bad; 2243 ((dl_phys_addr_req_t *)v6lla_mp->b_rptr)->dl_addr_type = 2244 DL_IPV6_LINK_LAYER_ADDR; 2245 } 2246 2247 if (ill->ill_mactype == DL_IPV4 || ill->ill_mactype == DL_IPV6) { 2248 dest_mp = ip_dlpi_alloc(sizeof (dl_phys_addr_req_t) + 2249 sizeof (t_scalar_t), DL_PHYS_ADDR_REQ); 2250 if (dest_mp == NULL) 2251 goto bad; 2252 ((dl_phys_addr_req_t *)dest_mp->b_rptr)->dl_addr_type = 2253 DL_CURR_DEST_ADDR; 2254 } 2255 2256 /* 2257 * Allocate a DL_NOTIFY_REQ and set the notifications we want. 2258 */ 2259 notify_mp = ip_dlpi_alloc(sizeof (dl_notify_req_t) + sizeof (long), 2260 DL_NOTIFY_REQ); 2261 if (notify_mp == NULL) 2262 goto bad; 2263 ((dl_notify_req_t *)notify_mp->b_rptr)->dl_notifications = 2264 (DL_NOTE_PHYS_ADDR | DL_NOTE_SDU_SIZE | DL_NOTE_FASTPATH_FLUSH | 2265 DL_NOTE_LINK_UP | DL_NOTE_LINK_DOWN | DL_NOTE_CAPAB_RENEG | 2266 DL_NOTE_PROMISC_ON_PHYS | DL_NOTE_PROMISC_OFF_PHYS | 2267 DL_NOTE_REPLUMB); 2268 2269 phys_mp = ip_dlpi_alloc(sizeof (dl_phys_addr_req_t) + 2270 sizeof (t_scalar_t), DL_PHYS_ADDR_REQ); 2271 if (phys_mp == NULL) 2272 goto bad; 2273 ((dl_phys_addr_req_t *)phys_mp->b_rptr)->dl_addr_type = 2274 DL_CURR_PHYS_ADDR; 2275 2276 info_mp = ip_dlpi_alloc( 2277 sizeof (dl_info_req_t) + sizeof (dl_info_ack_t), 2278 DL_INFO_REQ); 2279 if (info_mp == NULL) 2280 goto bad; 2281 2282 ASSERT(ill->ill_dlpi_capab_state == IDCS_UNKNOWN); 2283 capab_mp = ip_dlpi_alloc(sizeof (dl_capability_req_t), 2284 DL_CAPABILITY_REQ); 2285 if (capab_mp == NULL) 2286 goto bad; 2287 2288 bind_mp = ip_dlpi_alloc(sizeof (dl_bind_req_t) + sizeof (long), 2289 DL_BIND_REQ); 2290 if (bind_mp == NULL) 2291 goto bad; 2292 ((dl_bind_req_t *)bind_mp->b_rptr)->dl_sap = ill->ill_sap; 2293 ((dl_bind_req_t *)bind_mp->b_rptr)->dl_service_mode = DL_CLDLS; 2294 2295 unbind_mp = ip_dlpi_alloc(sizeof (dl_unbind_req_t), DL_UNBIND_REQ); 2296 if (unbind_mp == NULL) 2297 goto bad; 2298 2299 /* If we need to attach, pre-alloc and initialize the mblk */ 2300 if (ill->ill_needs_attach) { 2301 attach_mp = ip_dlpi_alloc(sizeof (dl_attach_req_t), 2302 DL_ATTACH_REQ); 2303 if (attach_mp == NULL) 2304 goto bad; 2305 ((dl_attach_req_t *)attach_mp->b_rptr)->dl_ppa = ill->ill_ppa; 2306 } 2307 2308 /* 2309 * Here we are going to delay the ioctl ack until after 2310 * ACKs from DL_PHYS_ADDR_REQ. So need to save the 2311 * original ioctl message before sending the requests 2312 */ 2313 mutex_enter(&ill->ill_lock); 2314 /* ipsq_pending_mp_add won't fail since we pass in a NULL connp */ 2315 (void) ipsq_pending_mp_add(NULL, ipif, ill->ill_wq, mp, 0); 2316 /* 2317 * Set ill_phys_addr_pend to zero. It will be set to the addr_type of 2318 * the DL_PHYS_ADDR_REQ in ill_dlpi_send() and ill_dlpi_done(). It will 2319 * be used to track which DL_PHYS_ADDR_REQ is being ACK'd/NAK'd. 2320 */ 2321 ill->ill_phys_addr_pend = 0; 2322 mutex_exit(&ill->ill_lock); 2323 2324 if (attach_mp != NULL) { 2325 ip1dbg(("ill_dl_phys: attach\n")); 2326 ill_dlpi_send(ill, attach_mp); 2327 } 2328 ill_dlpi_send(ill, bind_mp); 2329 ill_dlpi_send(ill, info_mp); 2330 2331 /* 2332 * Send the capability request to get the VRRP capability information. 2333 */ 2334 ill_capability_send(ill, capab_mp); 2335 2336 if (v6token_mp != NULL) 2337 ill_dlpi_send(ill, v6token_mp); 2338 if (v6lla_mp != NULL) 2339 ill_dlpi_send(ill, v6lla_mp); 2340 if (dest_mp != NULL) 2341 ill_dlpi_send(ill, dest_mp); 2342 ill_dlpi_send(ill, phys_mp); 2343 ill_dlpi_send(ill, notify_mp); 2344 ill_dlpi_send(ill, unbind_mp); 2345 2346 /* 2347 * This operation will complete in ip_rput_dlpi_writer with either 2348 * a DL_PHYS_ADDR_ACK or DL_ERROR_ACK. 2349 */ 2350 return (EINPROGRESS); 2351 bad: 2352 freemsg(v6token_mp); 2353 freemsg(v6lla_mp); 2354 freemsg(dest_mp); 2355 freemsg(phys_mp); 2356 freemsg(info_mp); 2357 freemsg(attach_mp); 2358 freemsg(bind_mp); 2359 freemsg(capab_mp); 2360 freemsg(unbind_mp); 2361 freemsg(notify_mp); 2362 return (ENOMEM); 2363 } 2364 2365 /* Add room for tcp+ip headers */ 2366 uint_t ip_loopback_mtu_v6plus = IP_LOOPBACK_MTU + IPV6_HDR_LEN + 20; 2367 2368 /* 2369 * DLPI is up. 2370 * Create all the IREs associated with an interface bring up multicast. 2371 * Set the interface flag and finish other initialization 2372 * that potentially had to be differed to after DL_BIND_ACK. 2373 */ 2374 int 2375 ipif_up_done_v6(ipif_t *ipif) 2376 { 2377 ill_t *ill = ipif->ipif_ill; 2378 int err; 2379 boolean_t loopback = B_FALSE; 2380 2381 ip1dbg(("ipif_up_done_v6(%s:%u)\n", 2382 ipif->ipif_ill->ill_name, ipif->ipif_id)); 2383 DTRACE_PROBE3(ipif__downup, char *, "ipif_up_done_v6", 2384 ill_t *, ill, ipif_t *, ipif); 2385 2386 /* Check if this is a loopback interface */ 2387 if (ipif->ipif_ill->ill_wq == NULL) 2388 loopback = B_TRUE; 2389 2390 ASSERT(ipif->ipif_isv6); 2391 ASSERT(!MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 2392 2393 if (IS_LOOPBACK(ill) || ill->ill_net_type == IRE_IF_NORESOLVER) { 2394 nce_t *loop_nce = NULL; 2395 uint16_t flags = (NCE_F_MYADDR | NCE_F_NONUD | NCE_F_AUTHORITY); 2396 2397 /* 2398 * lo0:1 and subsequent ipifs were marked IRE_LOCAL in 2399 * ipif_lookup_on_name(), but in the case of zones we can have 2400 * several loopback addresses on lo0. So all the interfaces with 2401 * loopback addresses need to be marked IRE_LOOPBACK. 2402 */ 2403 if (IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6lcl_addr, &ipv6_loopback)) 2404 ipif->ipif_ire_type = IRE_LOOPBACK; 2405 else 2406 ipif->ipif_ire_type = IRE_LOCAL; 2407 if (ill->ill_net_type != IRE_LOOPBACK) 2408 flags |= NCE_F_PUBLISH; 2409 err = nce_lookup_then_add_v6(ill, NULL, 2410 ill->ill_phys_addr_length, 2411 &ipif->ipif_v6lcl_addr, flags, ND_REACHABLE, &loop_nce); 2412 2413 /* A shared-IP zone sees EEXIST for lo0:N */ 2414 if (err == 0 || err == EEXIST) { 2415 ipif->ipif_added_nce = 1; 2416 loop_nce->nce_ipif_cnt++; 2417 nce_refrele(loop_nce); 2418 err = 0; 2419 } else { 2420 ASSERT(loop_nce == NULL); 2421 return (err); 2422 } 2423 } 2424 2425 err = ipif_add_ires_v6(ipif, loopback); 2426 if (err != 0) { 2427 /* 2428 * See comments about return value from 2429 * ipif_addr_availability_check() in ipif_add_ires_v6(). 2430 */ 2431 if (err != EADDRINUSE) { 2432 ipif_ndp_down(ipif); 2433 } else { 2434 /* 2435 * Make IPMP aware of the deleted ipif so that 2436 * the needed ipmp cleanup (e.g., of ipif_bound_ill) 2437 * can be completed. Note that we do not want to 2438 * destroy the nce that was created on the ipmp_ill 2439 * for the active copy of the duplicate address in 2440 * use. 2441 */ 2442 if (IS_IPMP(ill)) 2443 ipmp_illgrp_del_ipif(ill->ill_grp, ipif); 2444 err = EADDRNOTAVAIL; 2445 } 2446 return (err); 2447 } 2448 2449 if (ill->ill_ipif_up_count == 1 && !loopback) { 2450 /* Recover any additional IREs entries for this ill */ 2451 (void) ill_recover_saved_ire(ill); 2452 } 2453 2454 if (ill->ill_need_recover_multicast) { 2455 /* 2456 * Need to recover all multicast memberships in the driver. 2457 * This had to be deferred until we had attached. 2458 */ 2459 ill_recover_multicast(ill); 2460 } 2461 2462 if (ill->ill_ipif_up_count == 1) { 2463 /* 2464 * Since the interface is now up, it may now be active. 2465 */ 2466 if (IS_UNDER_IPMP(ill)) 2467 ipmp_ill_refresh_active(ill); 2468 } 2469 2470 /* Join the allhosts multicast address and the solicited node MC */ 2471 ipif_multicast_up(ipif); 2472 2473 /* Perhaps ilgs should use this ill */ 2474 update_conn_ill(NULL, ill->ill_ipst); 2475 2476 if (ipif->ipif_addr_ready) 2477 ipif_up_notify(ipif); 2478 2479 return (0); 2480 } 2481 2482 /* 2483 * Add the IREs associated with the ipif. 2484 * Those MUST be explicitly removed in ipif_delete_ires_v6. 2485 */ 2486 static int 2487 ipif_add_ires_v6(ipif_t *ipif, boolean_t loopback) 2488 { 2489 ill_t *ill = ipif->ipif_ill; 2490 ip_stack_t *ipst = ill->ill_ipst; 2491 in6_addr_t v6addr; 2492 in6_addr_t route_mask; 2493 int err; 2494 char buf[INET6_ADDRSTRLEN]; 2495 ire_t *ire_local = NULL; /* LOCAL or LOOPBACK */ 2496 ire_t *ire_if = NULL; 2497 2498 if (!IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr) && 2499 !(ipif->ipif_flags & IPIF_NOLOCAL)) { 2500 2501 /* 2502 * If we're on a labeled system then make sure that zone- 2503 * private addresses have proper remote host database entries. 2504 */ 2505 if (is_system_labeled() && 2506 ipif->ipif_ire_type != IRE_LOOPBACK) { 2507 if (ip6opt_ls == 0) { 2508 cmn_err(CE_WARN, "IPv6 not enabled " 2509 "via /etc/system"); 2510 return (EINVAL); 2511 } 2512 if (!tsol_check_interface_address(ipif)) 2513 return (EINVAL); 2514 } 2515 2516 /* Register the source address for __sin6_src_id */ 2517 err = ip_srcid_insert(&ipif->ipif_v6lcl_addr, 2518 ipif->ipif_zoneid, ipst); 2519 if (err != 0) { 2520 ip0dbg(("ipif_add_ires_v6: srcid_insert %d\n", err)); 2521 return (err); 2522 } 2523 /* 2524 * If the interface address is set, create the LOCAL 2525 * or LOOPBACK IRE. 2526 */ 2527 ip1dbg(("ipif_add_ires_v6: creating IRE %d for %s\n", 2528 ipif->ipif_ire_type, 2529 inet_ntop(AF_INET6, &ipif->ipif_v6lcl_addr, 2530 buf, sizeof (buf)))); 2531 2532 ire_local = ire_create_v6( 2533 &ipif->ipif_v6lcl_addr, /* dest address */ 2534 &ipv6_all_ones, /* mask */ 2535 NULL, /* no gateway */ 2536 ipif->ipif_ire_type, /* LOCAL or LOOPBACK */ 2537 ipif->ipif_ill, /* interface */ 2538 ipif->ipif_zoneid, 2539 ((ipif->ipif_flags & IPIF_PRIVATE) ? 2540 RTF_PRIVATE : 0) | RTF_KERNEL, 2541 NULL, 2542 ipst); 2543 if (ire_local == NULL) { 2544 ip1dbg(("ipif_up_done_v6: NULL ire_local\n")); 2545 err = ENOMEM; 2546 goto bad; 2547 } 2548 } 2549 2550 /* Set up the IRE_IF_RESOLVER or IRE_IF_NORESOLVER, as appropriate. */ 2551 if (!loopback && !(ipif->ipif_flags & IPIF_NOXMIT) && 2552 !(IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6subnet) && 2553 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6net_mask))) { 2554 /* ipif_v6subnet is ipif_v6pp_dst_addr for pt-pt */ 2555 v6addr = ipif->ipif_v6subnet; 2556 2557 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 2558 route_mask = ipv6_all_ones; 2559 } else { 2560 route_mask = ipif->ipif_v6net_mask; 2561 } 2562 2563 ip1dbg(("ipif_add_ires_v6: creating if IRE %d for %s\n", 2564 ill->ill_net_type, 2565 inet_ntop(AF_INET6, &v6addr, buf, sizeof (buf)))); 2566 2567 ire_if = ire_create_v6( 2568 &v6addr, /* dest pref */ 2569 &route_mask, /* mask */ 2570 &ipif->ipif_v6lcl_addr, /* gateway */ 2571 ill->ill_net_type, /* IF_[NO]RESOLVER */ 2572 ipif->ipif_ill, 2573 ipif->ipif_zoneid, 2574 ((ipif->ipif_flags & IPIF_PRIVATE) ? 2575 RTF_PRIVATE : 0) | RTF_KERNEL, 2576 NULL, 2577 ipst); 2578 if (ire_if == NULL) { 2579 ip1dbg(("ipif_up_done: NULL ire_if\n")); 2580 err = ENOMEM; 2581 goto bad; 2582 } 2583 } 2584 2585 /* 2586 * Need to atomically check for IP address availability under 2587 * ip_addr_avail_lock. ill_g_lock is held as reader to ensure no new 2588 * ills or new ipifs can be added while we are checking availability. 2589 */ 2590 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 2591 mutex_enter(&ipst->ips_ip_addr_avail_lock); 2592 ill->ill_ipif_up_count++; 2593 ipif->ipif_flags |= IPIF_UP; 2594 err = ip_addr_availability_check(ipif); 2595 mutex_exit(&ipst->ips_ip_addr_avail_lock); 2596 rw_exit(&ipst->ips_ill_g_lock); 2597 2598 if (err != 0) { 2599 /* 2600 * Our address may already be up on the same ill. In this case, 2601 * the external resolver entry for our ipif replaced the one for 2602 * the other ipif. So we don't want to delete it (otherwise the 2603 * other ipif would be unable to send packets). 2604 * ip_addr_availability_check() identifies this case for us and 2605 * returns EADDRINUSE; Caller must turn it into EADDRNOTAVAIL 2606 * which is the expected error code. 2607 * 2608 * Note that ipif_ndp_down() will only delete the nce in the 2609 * case when the nce_ipif_cnt drops to 0. 2610 */ 2611 ill->ill_ipif_up_count--; 2612 ipif->ipif_flags &= ~IPIF_UP; 2613 goto bad; 2614 } 2615 2616 /* 2617 * Add in all newly created IREs. 2618 * We add the IRE_INTERFACE before the IRE_LOCAL to ensure 2619 * that lookups find the IRE_LOCAL even if the IRE_INTERFACE is 2620 * a /128 route. 2621 */ 2622 if (ire_if != NULL) { 2623 ire_if = ire_add(ire_if); 2624 if (ire_if == NULL) { 2625 err = ENOMEM; 2626 goto bad2; 2627 } 2628 #ifdef DEBUG 2629 ire_refhold_notr(ire_if); 2630 ire_refrele(ire_if); 2631 #endif 2632 } 2633 if (ire_local != NULL) { 2634 ire_local = ire_add(ire_local); 2635 if (ire_local == NULL) { 2636 err = ENOMEM; 2637 goto bad2; 2638 } 2639 #ifdef DEBUG 2640 ire_refhold_notr(ire_local); 2641 ire_refrele(ire_local); 2642 #endif 2643 } 2644 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 2645 if (ire_local != NULL) 2646 ipif->ipif_ire_local = ire_local; 2647 if (ire_if != NULL) 2648 ipif->ipif_ire_if = ire_if; 2649 rw_exit(&ipst->ips_ill_g_lock); 2650 ire_local = NULL; 2651 ire_if = NULL; 2652 2653 if (ipif->ipif_addr_ready) 2654 ipif_up_notify(ipif); 2655 return (0); 2656 2657 bad2: 2658 ill->ill_ipif_up_count--; 2659 ipif->ipif_flags &= ~IPIF_UP; 2660 2661 bad: 2662 if (ire_local != NULL) 2663 ire_delete(ire_local); 2664 if (ire_if != NULL) 2665 ire_delete(ire_if); 2666 2667 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 2668 ire_local = ipif->ipif_ire_local; 2669 ipif->ipif_ire_local = NULL; 2670 ire_if = ipif->ipif_ire_if; 2671 ipif->ipif_ire_if = NULL; 2672 rw_exit(&ipst->ips_ill_g_lock); 2673 if (ire_local != NULL) { 2674 ire_delete(ire_local); 2675 ire_refrele_notr(ire_local); 2676 } 2677 if (ire_if != NULL) { 2678 ire_delete(ire_if); 2679 ire_refrele_notr(ire_if); 2680 } 2681 (void) ip_srcid_remove(&ipif->ipif_v6lcl_addr, ipif->ipif_zoneid, ipst); 2682 2683 return (err); 2684 } 2685 2686 /* Remove all the IREs created by ipif_add_ires_v6 */ 2687 void 2688 ipif_delete_ires_v6(ipif_t *ipif) 2689 { 2690 ill_t *ill = ipif->ipif_ill; 2691 ip_stack_t *ipst = ill->ill_ipst; 2692 ire_t *ire; 2693 2694 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 2695 ire = ipif->ipif_ire_local; 2696 ipif->ipif_ire_local = NULL; 2697 rw_exit(&ipst->ips_ill_g_lock); 2698 if (ire != NULL) { 2699 /* 2700 * Move count to ipif so we don't loose the count due to 2701 * a down/up dance. 2702 */ 2703 atomic_add_32(&ipif->ipif_ib_pkt_count, ire->ire_ib_pkt_count); 2704 2705 ire_delete(ire); 2706 ire_refrele_notr(ire); 2707 } 2708 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 2709 ire = ipif->ipif_ire_if; 2710 ipif->ipif_ire_if = NULL; 2711 rw_exit(&ipst->ips_ill_g_lock); 2712 if (ire != NULL) { 2713 ire_delete(ire); 2714 ire_refrele_notr(ire); 2715 } 2716 } 2717 2718 /* 2719 * Delete an ND entry if it exists. 2720 */ 2721 /* ARGSUSED */ 2722 int 2723 ip_siocdelndp_v6(ipif_t *ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 2724 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 2725 { 2726 sin6_t *sin6; 2727 struct lifreq *lifr; 2728 lif_nd_req_t *lnr; 2729 ill_t *ill = ipif->ipif_ill; 2730 nce_t *nce; 2731 2732 lifr = (struct lifreq *)mp->b_cont->b_cont->b_rptr; 2733 lnr = &lifr->lifr_nd; 2734 /* Only allow for logical unit zero i.e. not on "le0:17" */ 2735 if (ipif->ipif_id != 0) 2736 return (EINVAL); 2737 2738 if (!ipif->ipif_isv6) 2739 return (EINVAL); 2740 2741 if (lnr->lnr_addr.ss_family != AF_INET6) 2742 return (EAFNOSUPPORT); 2743 2744 sin6 = (sin6_t *)&lnr->lnr_addr; 2745 2746 /* 2747 * Since ND mappings must be consistent across an IPMP group, prohibit 2748 * deleting ND mappings on underlying interfaces. 2749 * Don't allow deletion of mappings for local addresses. 2750 */ 2751 if (IS_UNDER_IPMP(ill)) 2752 return (EPERM); 2753 2754 nce = nce_lookup_v6(ill, &sin6->sin6_addr); 2755 if (nce == NULL) 2756 return (ESRCH); 2757 2758 if (NCE_MYADDR(nce->nce_common)) { 2759 nce_refrele(nce); 2760 return (EPERM); 2761 } 2762 2763 /* 2764 * delete the nce_common which will also delete the nces on any 2765 * under_ill in the case of ipmp. 2766 */ 2767 ncec_delete(nce->nce_common); 2768 nce_refrele(nce); 2769 return (0); 2770 } 2771 2772 /* 2773 * Return nbr cache info. 2774 */ 2775 /* ARGSUSED */ 2776 int 2777 ip_siocqueryndp_v6(ipif_t *ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 2778 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 2779 { 2780 ill_t *ill = ipif->ipif_ill; 2781 struct lifreq *lifr; 2782 lif_nd_req_t *lnr; 2783 2784 lifr = (struct lifreq *)mp->b_cont->b_cont->b_rptr; 2785 lnr = &lifr->lifr_nd; 2786 /* Only allow for logical unit zero i.e. not on "le0:17" */ 2787 if (ipif->ipif_id != 0) 2788 return (EINVAL); 2789 2790 if (!ipif->ipif_isv6) 2791 return (EINVAL); 2792 2793 if (lnr->lnr_addr.ss_family != AF_INET6) 2794 return (EAFNOSUPPORT); 2795 2796 if (ill->ill_phys_addr_length > sizeof (lnr->lnr_hdw_addr)) 2797 return (EINVAL); 2798 2799 return (ndp_query(ill, lnr)); 2800 } 2801 2802 /* 2803 * Perform an update of the nd entry for the specified address. 2804 */ 2805 /* ARGSUSED */ 2806 int 2807 ip_siocsetndp_v6(ipif_t *ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 2808 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 2809 { 2810 sin6_t *sin6; 2811 ill_t *ill = ipif->ipif_ill; 2812 struct lifreq *lifr; 2813 lif_nd_req_t *lnr; 2814 ire_t *ire; 2815 2816 lifr = (struct lifreq *)mp->b_cont->b_cont->b_rptr; 2817 lnr = &lifr->lifr_nd; 2818 /* Only allow for logical unit zero i.e. not on "le0:17" */ 2819 if (ipif->ipif_id != 0) 2820 return (EINVAL); 2821 2822 if (!ipif->ipif_isv6) 2823 return (EINVAL); 2824 2825 if (lnr->lnr_addr.ss_family != AF_INET6) 2826 return (EAFNOSUPPORT); 2827 2828 sin6 = (sin6_t *)&lnr->lnr_addr; 2829 2830 /* 2831 * Since ND mappings must be consistent across an IPMP group, prohibit 2832 * updating ND mappings on underlying interfaces. Also, since ND 2833 * mappings for IPMP data addresses are owned by IP itself, prohibit 2834 * updating them. 2835 */ 2836 if (IS_UNDER_IPMP(ill)) 2837 return (EPERM); 2838 2839 if (IS_IPMP(ill)) { 2840 ire = ire_ftable_lookup_v6(&sin6->sin6_addr, NULL, NULL, 2841 IRE_LOCAL, ill, ALL_ZONES, NULL, 2842 MATCH_IRE_TYPE | MATCH_IRE_ILL, 0, ill->ill_ipst, NULL); 2843 if (ire != NULL) { 2844 ire_refrele(ire); 2845 return (EPERM); 2846 } 2847 } 2848 2849 return (ndp_sioc_update(ill, lnr)); 2850 } 2851