1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2006 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 /* 26 * Copyright (c) 1990 Mentat Inc. 27 */ 28 29 #pragma ident "%Z%%M% %I% %E% SMI" 30 31 /* 32 * This file contains the interface control functions for IPv6. 33 */ 34 35 #include <sys/types.h> 36 #include <sys/sysmacros.h> 37 #include <sys/stream.h> 38 #include <sys/dlpi.h> 39 #include <sys/stropts.h> 40 #include <sys/ddi.h> 41 #include <sys/cmn_err.h> 42 #include <sys/kstat.h> 43 #include <sys/debug.h> 44 #include <sys/zone.h> 45 46 #include <sys/systm.h> 47 #include <sys/param.h> 48 #include <sys/socket.h> 49 #include <sys/isa_defs.h> 50 #include <net/if.h> 51 #include <net/if_dl.h> 52 #include <net/route.h> 53 #include <netinet/in.h> 54 #include <netinet/igmp_var.h> 55 #include <netinet/ip6.h> 56 #include <netinet/icmp6.h> 57 #include <netinet/in.h> 58 59 #include <inet/common.h> 60 #include <inet/nd.h> 61 #include <inet/mib2.h> 62 #include <inet/ip.h> 63 #include <inet/ip6.h> 64 #include <inet/ip_multi.h> 65 #include <inet/ip_ire.h> 66 #include <inet/ip_rts.h> 67 #include <inet/ip_ndp.h> 68 #include <inet/ip_if.h> 69 #include <inet/ip6_asp.h> 70 #include <inet/tun.h> 71 #include <inet/ipclassifier.h> 72 #include <inet/sctp_ip.h> 73 74 #include <sys/tsol/tndb.h> 75 #include <sys/tsol/tnet.h> 76 77 static in6_addr_t ipv6_ll_template = 78 {(uint32_t)V6_LINKLOCAL, 0x0, 0x0, 0x0}; 79 80 static ipif_t * 81 ipif_lookup_interface_v6(const in6_addr_t *if_addr, const in6_addr_t *dst, 82 queue_t *q, mblk_t *mp, ipsq_func_t func, int *error); 83 84 /* 85 * ipif_lookup_group_v6 86 */ 87 ipif_t * 88 ipif_lookup_group_v6(const in6_addr_t *group, zoneid_t zoneid) 89 { 90 ire_t *ire; 91 ipif_t *ipif; 92 93 ire = ire_lookup_multi_v6(group, zoneid); 94 if (ire == NULL) 95 return (NULL); 96 ipif = ire->ire_ipif; 97 ipif_refhold(ipif); 98 ire_refrele(ire); 99 return (ipif); 100 } 101 102 /* 103 * ill_lookup_group_v6 104 */ 105 ill_t * 106 ill_lookup_group_v6(const in6_addr_t *group, zoneid_t zoneid) 107 { 108 ire_t *ire; 109 ill_t *ill; 110 111 ire = ire_lookup_multi_v6(group, zoneid); 112 if (ire == NULL) 113 return (NULL); 114 ill = ire->ire_ipif->ipif_ill; 115 ill_refhold(ill); 116 ire_refrele(ire); 117 return (ill); 118 } 119 120 /* 121 * Look for an ipif with the specified interface address and destination. 122 * The destination address is used only for matching point-to-point interfaces. 123 */ 124 static ipif_t * 125 ipif_lookup_interface_v6(const in6_addr_t *if_addr, const in6_addr_t *dst, 126 queue_t *q, mblk_t *mp, ipsq_func_t func, int *error) 127 { 128 ipif_t *ipif; 129 ill_t *ill; 130 ipsq_t *ipsq; 131 ill_walk_context_t ctx; 132 133 if (error != NULL) 134 *error = 0; 135 136 /* 137 * First match all the point-to-point interfaces 138 * before looking at non-point-to-point interfaces. 139 * This is done to avoid returning non-point-to-point 140 * ipif instead of unnumbered point-to-point ipif. 141 */ 142 rw_enter(&ill_g_lock, RW_READER); 143 ill = ILL_START_WALK_V6(&ctx); 144 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 145 GRAB_CONN_LOCK(q); 146 mutex_enter(&ill->ill_lock); 147 for (ipif = ill->ill_ipif; ipif != NULL; 148 ipif = ipif->ipif_next) { 149 /* Allow the ipif to be down */ 150 if ((ipif->ipif_flags & IPIF_POINTOPOINT) && 151 (IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6lcl_addr, 152 if_addr)) && 153 (IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6pp_dst_addr, 154 dst))) { 155 if (IPIF_CAN_LOOKUP(ipif)) { 156 ipif_refhold_locked(ipif); 157 mutex_exit(&ill->ill_lock); 158 RELEASE_CONN_LOCK(q); 159 rw_exit(&ill_g_lock); 160 return (ipif); 161 } else if (IPIF_CAN_WAIT(ipif, q)) { 162 ipsq = ill->ill_phyint->phyint_ipsq; 163 mutex_enter(&ipsq->ipsq_lock); 164 mutex_exit(&ill->ill_lock); 165 rw_exit(&ill_g_lock); 166 ipsq_enq(ipsq, q, mp, func, NEW_OP, 167 ill); 168 mutex_exit(&ipsq->ipsq_lock); 169 RELEASE_CONN_LOCK(q); 170 *error = EINPROGRESS; 171 return (NULL); 172 } 173 } 174 } 175 mutex_exit(&ill->ill_lock); 176 RELEASE_CONN_LOCK(q); 177 } 178 rw_exit(&ill_g_lock); 179 /* lookup the ipif based on interface address */ 180 ipif = ipif_lookup_addr_v6(if_addr, NULL, ALL_ZONES, q, mp, func, 181 error); 182 ASSERT(ipif == NULL || ipif->ipif_isv6); 183 return (ipif); 184 } 185 186 /* 187 * Look for an ipif with the specified address. For point-point links 188 * we look for matches on either the destination address and the local 189 * address, but we ignore the check on the local address if IPIF_UNNUMBERED 190 * is set. 191 * Matches on a specific ill if match_ill is set. 192 */ 193 /* ARGSUSED */ 194 ipif_t * 195 ipif_lookup_addr_v6(const in6_addr_t *addr, ill_t *match_ill, zoneid_t zoneid, 196 queue_t *q, mblk_t *mp, ipsq_func_t func, int *error) 197 { 198 ipif_t *ipif; 199 ill_t *ill; 200 boolean_t ptp = B_FALSE; 201 ipsq_t *ipsq; 202 ill_walk_context_t ctx; 203 204 if (error != NULL) 205 *error = 0; 206 207 rw_enter(&ill_g_lock, RW_READER); 208 /* 209 * Repeat twice, first based on local addresses and 210 * next time for pointopoint. 211 */ 212 repeat: 213 ill = ILL_START_WALK_V6(&ctx); 214 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 215 if (match_ill != NULL && ill != match_ill) { 216 continue; 217 } 218 GRAB_CONN_LOCK(q); 219 mutex_enter(&ill->ill_lock); 220 for (ipif = ill->ill_ipif; ipif != NULL; 221 ipif = ipif->ipif_next) { 222 if (zoneid != ALL_ZONES && 223 ipif->ipif_zoneid != zoneid && 224 ipif->ipif_zoneid != ALL_ZONES) 225 continue; 226 /* Allow the ipif to be down */ 227 if ((!ptp && (IN6_ARE_ADDR_EQUAL( 228 &ipif->ipif_v6lcl_addr, addr) && 229 (ipif->ipif_flags & IPIF_UNNUMBERED) == 0)) || 230 (ptp && (ipif->ipif_flags & IPIF_POINTOPOINT) && 231 IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6pp_dst_addr, 232 addr))) { 233 if (IPIF_CAN_LOOKUP(ipif)) { 234 ipif_refhold_locked(ipif); 235 mutex_exit(&ill->ill_lock); 236 RELEASE_CONN_LOCK(q); 237 rw_exit(&ill_g_lock); 238 return (ipif); 239 } else if (IPIF_CAN_WAIT(ipif, q)) { 240 ipsq = ill->ill_phyint->phyint_ipsq; 241 mutex_enter(&ipsq->ipsq_lock); 242 mutex_exit(&ill->ill_lock); 243 rw_exit(&ill_g_lock); 244 ipsq_enq(ipsq, q, mp, func, NEW_OP, 245 ill); 246 mutex_exit(&ipsq->ipsq_lock); 247 RELEASE_CONN_LOCK(q); 248 *error = EINPROGRESS; 249 return (NULL); 250 } 251 } 252 } 253 mutex_exit(&ill->ill_lock); 254 RELEASE_CONN_LOCK(q); 255 } 256 257 /* If we already did the ptp case, then we are done */ 258 if (ptp) { 259 rw_exit(&ill_g_lock); 260 if (error != NULL) 261 *error = ENXIO; 262 return (NULL); 263 } 264 ptp = B_TRUE; 265 goto repeat; 266 } 267 268 /* 269 * Look for an ipif with the specified address. For point-point links 270 * we look for matches on either the destination address and the local 271 * address, but we ignore the check on the local address if IPIF_UNNUMBERED 272 * is set. 273 * Matches on a specific ill if match_ill is set. 274 * Return the zoneid for the ipif. ALL_ZONES if none found. 275 */ 276 zoneid_t 277 ipif_lookup_addr_zoneid_v6(const in6_addr_t *addr, ill_t *match_ill) 278 { 279 ipif_t *ipif; 280 ill_t *ill; 281 boolean_t ptp = B_FALSE; 282 ill_walk_context_t ctx; 283 zoneid_t zoneid; 284 285 rw_enter(&ill_g_lock, RW_READER); 286 /* 287 * Repeat twice, first based on local addresses and 288 * next time for pointopoint. 289 */ 290 repeat: 291 ill = ILL_START_WALK_V6(&ctx); 292 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 293 if (match_ill != NULL && ill != match_ill) { 294 continue; 295 } 296 mutex_enter(&ill->ill_lock); 297 for (ipif = ill->ill_ipif; ipif != NULL; 298 ipif = ipif->ipif_next) { 299 /* Allow the ipif to be down */ 300 if ((!ptp && (IN6_ARE_ADDR_EQUAL( 301 &ipif->ipif_v6lcl_addr, addr) && 302 (ipif->ipif_flags & IPIF_UNNUMBERED) == 0)) || 303 (ptp && (ipif->ipif_flags & IPIF_POINTOPOINT) && 304 IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6pp_dst_addr, 305 addr)) && 306 !(ipif->ipif_state_flags & IPIF_CONDEMNED)) { 307 zoneid = ipif->ipif_zoneid; 308 mutex_exit(&ill->ill_lock); 309 rw_exit(&ill_g_lock); 310 /* 311 * If ipif_zoneid was ALL_ZONES then we have 312 * a trusted extensions shared IP address. 313 * In that case GLOBAL_ZONEID works to send. 314 */ 315 if (zoneid == ALL_ZONES) 316 zoneid = GLOBAL_ZONEID; 317 return (zoneid); 318 } 319 } 320 mutex_exit(&ill->ill_lock); 321 } 322 323 /* If we already did the ptp case, then we are done */ 324 if (ptp) { 325 rw_exit(&ill_g_lock); 326 return (ALL_ZONES); 327 } 328 ptp = B_TRUE; 329 goto repeat; 330 } 331 332 /* 333 * Perform various checks to verify that an address would make sense as a local 334 * interface address. This is currently only called when an attempt is made 335 * to set a local address. 336 * 337 * Does not allow a v4-mapped address, an address that equals the subnet 338 * anycast address, ... a multicast address, ... 339 */ 340 boolean_t 341 ip_local_addr_ok_v6(const in6_addr_t *addr, const in6_addr_t *subnet_mask) 342 { 343 in6_addr_t subnet; 344 345 if (IN6_IS_ADDR_UNSPECIFIED(addr)) 346 return (B_TRUE); /* Allow all zeros */ 347 348 /* 349 * Don't allow all zeroes or host part, but allow 350 * all ones netmask. 351 */ 352 V6_MASK_COPY(*addr, *subnet_mask, subnet); 353 if (IN6_IS_ADDR_V4MAPPED(addr) || 354 (IN6_ARE_ADDR_EQUAL(addr, &subnet) && 355 !IN6_ARE_ADDR_EQUAL(subnet_mask, &ipv6_all_ones)) || 356 (IN6_IS_ADDR_V4COMPAT(addr) && CLASSD(V4_PART_OF_V6((*addr)))) || 357 IN6_IS_ADDR_MULTICAST(addr)) 358 return (B_FALSE); 359 360 return (B_TRUE); 361 } 362 363 /* 364 * Perform various checks to verify that an address would make sense as a 365 * remote/subnet interface address. 366 */ 367 boolean_t 368 ip_remote_addr_ok_v6(const in6_addr_t *addr, const in6_addr_t *subnet_mask) 369 { 370 in6_addr_t subnet; 371 372 if (IN6_IS_ADDR_UNSPECIFIED(addr)) 373 return (B_TRUE); /* Allow all zeros */ 374 375 V6_MASK_COPY(*addr, *subnet_mask, subnet); 376 if (IN6_IS_ADDR_V4MAPPED(addr) || 377 (IN6_ARE_ADDR_EQUAL(addr, &subnet) && 378 !IN6_ARE_ADDR_EQUAL(subnet_mask, &ipv6_all_ones)) || 379 IN6_IS_ADDR_MULTICAST(addr) || 380 (IN6_IS_ADDR_V4COMPAT(addr) && CLASSD(V4_PART_OF_V6((*addr))))) 381 return (B_FALSE); 382 383 return (B_TRUE); 384 } 385 386 /* 387 * ip_rt_add_v6 is called to add an IPv6 route to the forwarding table. 388 * ipif_arg is passed in to associate it with the correct interface 389 * (for link-local destinations and gateways). 390 */ 391 /* ARGSUSED1 */ 392 int 393 ip_rt_add_v6(const in6_addr_t *dst_addr, const in6_addr_t *mask, 394 const in6_addr_t *gw_addr, const in6_addr_t *src_addr, int flags, 395 ipif_t *ipif_arg, ire_t **ire_arg, queue_t *q, mblk_t *mp, ipsq_func_t func, 396 struct rtsa_s *sp) 397 { 398 ire_t *ire; 399 ire_t *gw_ire = NULL; 400 ipif_t *ipif; 401 boolean_t ipif_refheld = B_FALSE; 402 uint_t type; 403 int match_flags = MATCH_IRE_TYPE; 404 int error; 405 tsol_gc_t *gc = NULL; 406 tsol_gcgrp_t *gcgrp = NULL; 407 boolean_t gcgrp_xtraref = B_FALSE; 408 409 if (ire_arg != NULL) 410 *ire_arg = NULL; 411 412 /* 413 * Prevent routes with a zero gateway from being created (since 414 * interfaces can currently be plumbed and brought up with no assigned 415 * address). 416 */ 417 if (IN6_IS_ADDR_UNSPECIFIED(gw_addr)) 418 return (ENETUNREACH); 419 420 /* 421 * If this is the case of RTF_HOST being set, then we set the netmask 422 * to all ones (regardless if one was supplied). 423 */ 424 if (flags & RTF_HOST) 425 mask = &ipv6_all_ones; 426 427 /* 428 * Get the ipif, if any, corresponding to the gw_addr 429 */ 430 ipif = ipif_lookup_interface_v6(gw_addr, dst_addr, q, mp, func, 431 &error); 432 if (ipif != NULL) 433 ipif_refheld = B_TRUE; 434 else if (error == EINPROGRESS) { 435 ip1dbg(("ip_rt_add_v6: null and EINPROGRESS")); 436 return (error); 437 } 438 439 /* 440 * GateD will attempt to create routes with a loopback interface 441 * address as the gateway and with RTF_GATEWAY set. We allow 442 * these routes to be added, but create them as interface routes 443 * since the gateway is an interface address. 444 */ 445 if ((ipif != NULL) && (ipif->ipif_ire_type == IRE_LOOPBACK)) { 446 flags &= ~RTF_GATEWAY; 447 if (IN6_ARE_ADDR_EQUAL(gw_addr, &ipv6_loopback) && 448 IN6_ARE_ADDR_EQUAL(dst_addr, &ipv6_loopback) && 449 IN6_ARE_ADDR_EQUAL(mask, &ipv6_all_ones)) { 450 ire = ire_ctable_lookup_v6(dst_addr, 0, IRE_LOOPBACK, 451 ipif, ALL_ZONES, NULL, match_flags); 452 if (ire != NULL) { 453 ire_refrele(ire); 454 if (ipif_refheld) 455 ipif_refrele(ipif); 456 return (EEXIST); 457 } 458 ip1dbg(("ipif_up_done: 0x%p creating IRE 0x%x" 459 "for 0x%x\n", (void *)ipif, 460 ipif->ipif_ire_type, 461 ntohl(ipif->ipif_lcl_addr))); 462 ire = ire_create_v6( 463 dst_addr, 464 mask, 465 &ipif->ipif_v6src_addr, 466 NULL, 467 &ipif->ipif_mtu, 468 NULL, 469 NULL, 470 NULL, 471 ipif->ipif_net_type, 472 ipif->ipif_resolver_mp, 473 ipif, 474 NULL, 475 0, 476 0, 477 flags, 478 &ire_uinfo_null, 479 NULL, 480 NULL); 481 if (ire == NULL) { 482 if (ipif_refheld) 483 ipif_refrele(ipif); 484 return (ENOMEM); 485 } 486 error = ire_add(&ire, q, mp, func, B_FALSE); 487 if (error == 0) 488 goto save_ire; 489 /* 490 * In the result of failure, ire_add() will have already 491 * deleted the ire in question, so there is no need to 492 * do that here. 493 */ 494 if (ipif_refheld) 495 ipif_refrele(ipif); 496 return (error); 497 } 498 } 499 500 /* 501 * Traditionally, interface routes are ones where RTF_GATEWAY isn't set 502 * and the gateway address provided is one of the system's interface 503 * addresses. By using the routing socket interface and supplying an 504 * RTA_IFP sockaddr with an interface index, an alternate method of 505 * specifying an interface route to be created is available which uses 506 * the interface index that specifies the outgoing interface rather than 507 * the address of an outgoing interface (which may not be able to 508 * uniquely identify an interface). When coupled with the RTF_GATEWAY 509 * flag, routes can be specified which not only specify the next-hop to 510 * be used when routing to a certain prefix, but also which outgoing 511 * interface should be used. 512 * 513 * Previously, interfaces would have unique addresses assigned to them 514 * and so the address assigned to a particular interface could be used 515 * to identify a particular interface. One exception to this was the 516 * case of an unnumbered interface (where IPIF_UNNUMBERED was set). 517 * 518 * With the advent of IPv6 and its link-local addresses, this 519 * restriction was relaxed and interfaces could share addresses between 520 * themselves. In fact, typically all of the link-local interfaces on 521 * an IPv6 node or router will have the same link-local address. In 522 * order to differentiate between these interfaces, the use of an 523 * interface index is necessary and this index can be carried inside a 524 * RTA_IFP sockaddr (which is actually a sockaddr_dl). One restriction 525 * of using the interface index, however, is that all of the ipif's that 526 * are part of an ill have the same index and so the RTA_IFP sockaddr 527 * cannot be used to differentiate between ipif's (or logical 528 * interfaces) that belong to the same ill (physical interface). 529 * 530 * For example, in the following case involving IPv4 interfaces and 531 * logical interfaces 532 * 533 * 192.0.2.32 255.255.255.224 192.0.2.33 U if0 534 * 192.0.2.32 255.255.255.224 192.0.2.34 U if0:1 535 * 192.0.2.32 255.255.255.224 192.0.2.35 U if0:2 536 * 537 * the ipif's corresponding to each of these interface routes can be 538 * uniquely identified by the "gateway" (actually interface address). 539 * 540 * In this case involving multiple IPv6 default routes to a particular 541 * link-local gateway, the use of RTA_IFP is necessary to specify which 542 * default route is of interest: 543 * 544 * default fe80::123:4567:89ab:cdef U if0 545 * default fe80::123:4567:89ab:cdef U if1 546 */ 547 548 /* RTF_GATEWAY not set */ 549 if (!(flags & RTF_GATEWAY)) { 550 queue_t *stq; 551 552 if (sp != NULL) { 553 ip2dbg(("ip_rt_add_v6: gateway security attributes " 554 "cannot be set with interface route\n")); 555 if (ipif_refheld) 556 ipif_refrele(ipif); 557 return (EINVAL); 558 } 559 560 /* 561 * As the interface index specified with the RTA_IFP sockaddr is 562 * the same for all ipif's off of an ill, the matching logic 563 * below uses MATCH_IRE_ILL if such an index was specified. 564 * This means that routes sharing the same prefix when added 565 * using a RTA_IFP sockaddr must have distinct interface 566 * indices (namely, they must be on distinct ill's). 567 * 568 * On the other hand, since the gateway address will usually be 569 * different for each ipif on the system, the matching logic 570 * uses MATCH_IRE_IPIF in the case of a traditional interface 571 * route. This means that interface routes for the same prefix 572 * can be created if they belong to distinct ipif's and if a 573 * RTA_IFP sockaddr is not present. 574 */ 575 if (ipif_arg != NULL) { 576 if (ipif_refheld) { 577 ipif_refrele(ipif); 578 ipif_refheld = B_FALSE; 579 } 580 ipif = ipif_arg; 581 match_flags |= MATCH_IRE_ILL; 582 } else { 583 /* 584 * Check the ipif corresponding to the gw_addr 585 */ 586 if (ipif == NULL) 587 return (ENETUNREACH); 588 match_flags |= MATCH_IRE_IPIF; 589 } 590 591 ASSERT(ipif != NULL); 592 /* 593 * We check for an existing entry at this point. 594 */ 595 match_flags |= MATCH_IRE_MASK; 596 ire = ire_ftable_lookup_v6(dst_addr, mask, 0, IRE_INTERFACE, 597 ipif, NULL, ALL_ZONES, 0, NULL, match_flags); 598 if (ire != NULL) { 599 ire_refrele(ire); 600 if (ipif_refheld) 601 ipif_refrele(ipif); 602 return (EEXIST); 603 } 604 605 stq = (ipif->ipif_net_type == IRE_IF_RESOLVER) 606 ? ipif->ipif_rq : ipif->ipif_wq; 607 608 /* 609 * Create a copy of the IRE_LOOPBACK, IRE_IF_NORESOLVER or 610 * IRE_IF_RESOLVER with the modified address and netmask. 611 */ 612 ire = ire_create_v6( 613 dst_addr, 614 mask, 615 &ipif->ipif_v6src_addr, 616 NULL, 617 &ipif->ipif_mtu, 618 NULL, 619 NULL, 620 stq, 621 ipif->ipif_net_type, 622 ipif->ipif_resolver_mp, 623 ipif, 624 NULL, 625 0, 626 0, 627 flags, 628 &ire_uinfo_null, 629 NULL, 630 NULL); 631 if (ire == NULL) { 632 if (ipif_refheld) 633 ipif_refrele(ipif); 634 return (ENOMEM); 635 } 636 637 /* 638 * Some software (for example, GateD and Sun Cluster) attempts 639 * to create (what amount to) IRE_PREFIX routes with the 640 * loopback address as the gateway. This is primarily done to 641 * set up prefixes with the RTF_REJECT flag set (for example, 642 * when generating aggregate routes.) 643 * 644 * If the IRE type (as defined by ipif->ipif_net_type) is 645 * IRE_LOOPBACK, then we map the request into a 646 * IRE_IF_NORESOLVER. 647 * 648 * Needless to say, the real IRE_LOOPBACK is NOT created by this 649 * routine, but rather using ire_create_v6() directly. 650 */ 651 if (ipif->ipif_net_type == IRE_LOOPBACK) 652 ire->ire_type = IRE_IF_NORESOLVER; 653 error = ire_add(&ire, q, mp, func, B_FALSE); 654 if (error == 0) 655 goto save_ire; 656 /* 657 * In the result of failure, ire_add() will have already 658 * deleted the ire in question, so there is no need to 659 * do that here. 660 */ 661 if (ipif_refheld) 662 ipif_refrele(ipif); 663 return (error); 664 } 665 if (ipif_refheld) { 666 ipif_refrele(ipif); 667 ipif_refheld = B_FALSE; 668 } 669 670 /* 671 * Get an interface IRE for the specified gateway. 672 * If we don't have an IRE_IF_NORESOLVER or IRE_IF_RESOLVER for the 673 * gateway, it is currently unreachable and we fail the request 674 * accordingly. 675 */ 676 ipif = ipif_arg; 677 if (ipif_arg != NULL) 678 match_flags |= MATCH_IRE_ILL; 679 gw_ire = ire_ftable_lookup_v6(gw_addr, 0, 0, IRE_INTERFACE, ipif_arg, 680 NULL, ALL_ZONES, 0, NULL, match_flags); 681 if (gw_ire == NULL) 682 return (ENETUNREACH); 683 684 /* 685 * We create one of three types of IREs as a result of this request 686 * based on the netmask. A netmask of all ones (which is automatically 687 * assumed when RTF_HOST is set) results in an IRE_HOST being created. 688 * An all zeroes netmask implies a default route so an IRE_DEFAULT is 689 * created. Otherwise, an IRE_PREFIX route is created for the 690 * destination prefix. 691 */ 692 if (IN6_ARE_ADDR_EQUAL(mask, &ipv6_all_ones)) 693 type = IRE_HOST; 694 else if (IN6_IS_ADDR_UNSPECIFIED(mask)) 695 type = IRE_DEFAULT; 696 else 697 type = IRE_PREFIX; 698 699 /* check for a duplicate entry */ 700 ire = ire_ftable_lookup_v6(dst_addr, mask, gw_addr, type, ipif_arg, 701 NULL, ALL_ZONES, 0, NULL, 702 match_flags | MATCH_IRE_MASK | MATCH_IRE_GW); 703 if (ire != NULL) { 704 ire_refrele(gw_ire); 705 ire_refrele(ire); 706 return (EEXIST); 707 } 708 709 /* Security attribute exists */ 710 if (sp != NULL) { 711 tsol_gcgrp_addr_t ga; 712 713 /* find or create the gateway credentials group */ 714 ga.ga_af = AF_INET6; 715 ga.ga_addr = *gw_addr; 716 717 /* we hold reference to it upon success */ 718 gcgrp = gcgrp_lookup(&ga, B_TRUE); 719 if (gcgrp == NULL) { 720 ire_refrele(gw_ire); 721 return (ENOMEM); 722 } 723 724 /* 725 * Create and add the security attribute to the group; a 726 * reference to the group is made upon allocating a new 727 * entry successfully. If it finds an already-existing 728 * entry for the security attribute in the group, it simply 729 * returns it and no new reference is made to the group. 730 */ 731 gc = gc_create(sp, gcgrp, &gcgrp_xtraref); 732 if (gc == NULL) { 733 /* release reference held by gcgrp_lookup */ 734 GCGRP_REFRELE(gcgrp); 735 ire_refrele(gw_ire); 736 return (ENOMEM); 737 } 738 } 739 740 /* Create the IRE. */ 741 ire = ire_create_v6( 742 dst_addr, /* dest address */ 743 mask, /* mask */ 744 /* src address assigned by the caller? */ 745 (((flags & RTF_SETSRC) && !IN6_IS_ADDR_UNSPECIFIED(src_addr)) ? 746 src_addr : NULL), 747 gw_addr, /* gateway address */ 748 &gw_ire->ire_max_frag, 749 NULL, /* no Fast Path header */ 750 NULL, /* no recv-from queue */ 751 NULL, /* no send-to queue */ 752 (ushort_t)type, /* IRE type */ 753 NULL, 754 ipif_arg, 755 NULL, 756 0, 757 0, 758 flags, 759 &gw_ire->ire_uinfo, /* Inherit ULP info from gw */ 760 gc, /* security attribute */ 761 NULL); 762 /* 763 * The ire holds a reference to the 'gc' and the 'gc' holds a 764 * reference to the 'gcgrp'. We can now release the extra reference 765 * the 'gcgrp' acquired in the gcgrp_lookup, if it was not used. 766 */ 767 if (gcgrp_xtraref) 768 GCGRP_REFRELE(gcgrp); 769 if (ire == NULL) { 770 if (gc != NULL) 771 GC_REFRELE(gc); 772 ire_refrele(gw_ire); 773 return (ENOMEM); 774 } 775 776 /* 777 * POLICY: should we allow an RTF_HOST with address INADDR_ANY? 778 * SUN/OS socket stuff does but do we really want to allow ::0 ? 779 */ 780 781 /* Add the new IRE. */ 782 error = ire_add(&ire, q, mp, func, B_FALSE); 783 /* 784 * In the result of failure, ire_add() will have already 785 * deleted the ire in question, so there is no need to 786 * do that here. 787 */ 788 if (error != 0) { 789 ire_refrele(gw_ire); 790 return (error); 791 } 792 793 if (flags & RTF_MULTIRT) { 794 /* 795 * Invoke the CGTP (multirouting) filtering module 796 * to add the dst address in the filtering database. 797 * Replicated inbound packets coming from that address 798 * will be filtered to discard the duplicates. 799 * It is not necessary to call the CGTP filter hook 800 * when the dst address is a multicast, because an 801 * IP source address cannot be a multicast. 802 */ 803 if ((ip_cgtp_filter_ops != NULL) && 804 !IN6_IS_ADDR_MULTICAST(&(ire->ire_addr_v6))) { 805 int res = ip_cgtp_filter_ops->cfo_add_dest_v6( 806 &ire->ire_addr_v6, 807 &ire->ire_gateway_addr_v6, 808 &ire->ire_src_addr_v6, 809 &gw_ire->ire_src_addr_v6); 810 if (res != 0) { 811 ire_refrele(gw_ire); 812 ire_delete(ire); 813 return (res); 814 } 815 } 816 } 817 818 /* 819 * Now that the prefix IRE entry has been created, delete any 820 * existing gateway IRE cache entries as well as any IRE caches 821 * using the gateway, and force them to be created through 822 * ip_newroute_v6. 823 */ 824 if (gc != NULL) { 825 ASSERT(gcgrp != NULL); 826 ire_clookup_delete_cache_gw_v6(gw_addr, ALL_ZONES); 827 } 828 829 save_ire: 830 if (gw_ire != NULL) { 831 ire_refrele(gw_ire); 832 } 833 if (ipif != NULL) { 834 mblk_t *save_mp; 835 836 /* 837 * Save enough information so that we can recreate the IRE if 838 * the interface goes down and then up. The metrics associated 839 * with the route will be saved as well when rts_setmetrics() is 840 * called after the IRE has been created. In the case where 841 * memory cannot be allocated, none of this information will be 842 * saved. 843 */ 844 save_mp = allocb(sizeof (ifrt_t), BPRI_MED); 845 if (save_mp != NULL) { 846 ifrt_t *ifrt; 847 848 save_mp->b_wptr += sizeof (ifrt_t); 849 ifrt = (ifrt_t *)save_mp->b_rptr; 850 bzero(ifrt, sizeof (ifrt_t)); 851 ifrt->ifrt_type = ire->ire_type; 852 ifrt->ifrt_v6addr = ire->ire_addr_v6; 853 mutex_enter(&ire->ire_lock); 854 ifrt->ifrt_v6gateway_addr = ire->ire_gateway_addr_v6; 855 ifrt->ifrt_v6src_addr = ire->ire_src_addr_v6; 856 mutex_exit(&ire->ire_lock); 857 ifrt->ifrt_v6mask = ire->ire_mask_v6; 858 ifrt->ifrt_flags = ire->ire_flags; 859 ifrt->ifrt_max_frag = ire->ire_max_frag; 860 mutex_enter(&ipif->ipif_saved_ire_lock); 861 save_mp->b_cont = ipif->ipif_saved_ire_mp; 862 ipif->ipif_saved_ire_mp = save_mp; 863 ipif->ipif_saved_ire_cnt++; 864 mutex_exit(&ipif->ipif_saved_ire_lock); 865 } 866 } 867 if (ire_arg != NULL) { 868 /* 869 * Store the ire that was successfully added into where ire_arg 870 * points to so that callers don't have to look it up 871 * themselves (but they are responsible for ire_refrele()ing 872 * the ire when they are finished with it). 873 */ 874 *ire_arg = ire; 875 } else { 876 ire_refrele(ire); /* Held in ire_add */ 877 } 878 if (ipif_refheld) 879 ipif_refrele(ipif); 880 return (0); 881 } 882 883 /* 884 * ip_rt_delete_v6 is called to delete an IPv6 route. 885 * ipif_arg is passed in to associate it with the correct interface 886 * (for link-local destinations and gateways). 887 */ 888 /* ARGSUSED4 */ 889 int 890 ip_rt_delete_v6(const in6_addr_t *dst_addr, const in6_addr_t *mask, 891 const in6_addr_t *gw_addr, uint_t rtm_addrs, int flags, ipif_t *ipif_arg, 892 queue_t *q, mblk_t *mp, ipsq_func_t func) 893 { 894 ire_t *ire = NULL; 895 ipif_t *ipif; 896 uint_t type; 897 uint_t match_flags = MATCH_IRE_TYPE; 898 int err = 0; 899 boolean_t ipif_refheld = B_FALSE; 900 901 /* 902 * If this is the case of RTF_HOST being set, then we set the netmask 903 * to all ones. Otherwise, we use the netmask if one was supplied. 904 */ 905 if (flags & RTF_HOST) { 906 mask = &ipv6_all_ones; 907 match_flags |= MATCH_IRE_MASK; 908 } else if (rtm_addrs & RTA_NETMASK) { 909 match_flags |= MATCH_IRE_MASK; 910 } 911 912 /* 913 * Note that RTF_GATEWAY is never set on a delete, therefore 914 * we check if the gateway address is one of our interfaces first, 915 * and fall back on RTF_GATEWAY routes. 916 * 917 * This makes it possible to delete an original 918 * IRE_IF_NORESOLVER/IRE_IF_RESOLVER - consistent with SunOS 4.1. 919 * 920 * As the interface index specified with the RTA_IFP sockaddr is the 921 * same for all ipif's off of an ill, the matching logic below uses 922 * MATCH_IRE_ILL if such an index was specified. This means a route 923 * sharing the same prefix and interface index as the the route 924 * intended to be deleted might be deleted instead if a RTA_IFP sockaddr 925 * is specified in the request. 926 * 927 * On the other hand, since the gateway address will usually be 928 * different for each ipif on the system, the matching logic 929 * uses MATCH_IRE_IPIF in the case of a traditional interface 930 * route. This means that interface routes for the same prefix can be 931 * uniquely identified if they belong to distinct ipif's and if a 932 * RTA_IFP sockaddr is not present. 933 * 934 * For more detail on specifying routes by gateway address and by 935 * interface index, see the comments in ip_rt_add_v6(). 936 */ 937 ipif = ipif_lookup_interface_v6(gw_addr, dst_addr, q, mp, func, &err); 938 if (ipif != NULL) { 939 ipif_refheld = B_TRUE; 940 if (ipif_arg != NULL) { 941 ipif_refrele(ipif); 942 ipif_refheld = B_FALSE; 943 ipif = ipif_arg; 944 match_flags |= MATCH_IRE_ILL; 945 } else { 946 match_flags |= MATCH_IRE_IPIF; 947 } 948 949 if (ipif->ipif_ire_type == IRE_LOOPBACK) 950 ire = ire_ctable_lookup_v6(dst_addr, 0, IRE_LOOPBACK, 951 ipif, ALL_ZONES, NULL, match_flags); 952 if (ire == NULL) 953 ire = ire_ftable_lookup_v6(dst_addr, mask, 0, 954 IRE_INTERFACE, ipif, NULL, ALL_ZONES, 0, NULL, 955 match_flags); 956 } else if (err == EINPROGRESS) { 957 return (err); 958 } else { 959 err = 0; 960 } 961 if (ire == NULL) { 962 /* 963 * At this point, the gateway address is not one of our own 964 * addresses or a matching interface route was not found. We 965 * set the IRE type to lookup based on whether 966 * this is a host route, a default route or just a prefix. 967 * 968 * If an ipif_arg was passed in, then the lookup is based on an 969 * interface index so MATCH_IRE_ILL is added to match_flags. 970 * In any case, MATCH_IRE_IPIF is cleared and MATCH_IRE_GW is 971 * set as the route being looked up is not a traditional 972 * interface route. 973 */ 974 match_flags &= ~MATCH_IRE_IPIF; 975 match_flags |= MATCH_IRE_GW; 976 if (ipif_arg != NULL) 977 match_flags |= MATCH_IRE_ILL; 978 if (IN6_ARE_ADDR_EQUAL(mask, &ipv6_all_ones)) 979 type = IRE_HOST; 980 else if (IN6_IS_ADDR_UNSPECIFIED(mask)) 981 type = IRE_DEFAULT; 982 else 983 type = IRE_PREFIX; 984 ire = ire_ftable_lookup_v6(dst_addr, mask, gw_addr, type, 985 ipif_arg, NULL, ALL_ZONES, 0, NULL, match_flags); 986 } 987 988 if (ipif_refheld) { 989 ipif_refrele(ipif); 990 ipif_refheld = B_FALSE; 991 } 992 if (ire == NULL) 993 return (ESRCH); 994 995 if (ire->ire_flags & RTF_MULTIRT) { 996 /* 997 * Invoke the CGTP (multirouting) filtering module 998 * to remove the dst address from the filtering database. 999 * Packets coming from that address will no longer be 1000 * filtered to remove duplicates. 1001 */ 1002 if (ip_cgtp_filter_ops != NULL) { 1003 err = ip_cgtp_filter_ops->cfo_del_dest_v6( 1004 &ire->ire_addr_v6, &ire->ire_gateway_addr_v6); 1005 } 1006 } 1007 1008 ipif = ire->ire_ipif; 1009 if (ipif != NULL) { 1010 mblk_t **mpp; 1011 mblk_t *mp; 1012 ifrt_t *ifrt; 1013 in6_addr_t gw_addr_v6; 1014 1015 /* Remove from ipif_saved_ire_mp list if it is there */ 1016 mutex_enter(&ire->ire_lock); 1017 gw_addr_v6 = ire->ire_gateway_addr_v6; 1018 mutex_exit(&ire->ire_lock); 1019 mutex_enter(&ipif->ipif_saved_ire_lock); 1020 for (mpp = &ipif->ipif_saved_ire_mp; *mpp != NULL; 1021 mpp = &(*mpp)->b_cont) { 1022 /* 1023 * On a given ipif, the triple of address, gateway and 1024 * mask is unique for each saved IRE (in the case of 1025 * ordinary interface routes, the gateway address is 1026 * all-zeroes). 1027 */ 1028 mp = *mpp; 1029 ifrt = (ifrt_t *)mp->b_rptr; 1030 if (IN6_ARE_ADDR_EQUAL(&ifrt->ifrt_v6addr, 1031 &ire->ire_addr_v6) && 1032 IN6_ARE_ADDR_EQUAL(&ifrt->ifrt_v6gateway_addr, 1033 &gw_addr_v6) && 1034 IN6_ARE_ADDR_EQUAL(&ifrt->ifrt_v6mask, 1035 &ire->ire_mask_v6)) { 1036 *mpp = mp->b_cont; 1037 ipif->ipif_saved_ire_cnt--; 1038 freeb(mp); 1039 break; 1040 } 1041 } 1042 mutex_exit(&ipif->ipif_saved_ire_lock); 1043 } 1044 ire_delete(ire); 1045 ire_refrele(ire); 1046 return (err); 1047 } 1048 1049 /* 1050 * Derive a token from the link layer address. 1051 */ 1052 boolean_t 1053 ill_setdefaulttoken(ill_t *ill) 1054 { 1055 int i; 1056 in6_addr_t v6addr, v6mask; 1057 1058 /* 1059 * Though we execute on the ipsq, we need to hold the ill_lock 1060 * to prevent readers from seeing partially updated values 1061 * while we do the update. 1062 */ 1063 mutex_enter(&ill->ill_lock); 1064 if (!MEDIA_V6INTFID(ill->ill_media, ill->ill_phys_addr_length, 1065 ill->ill_phys_addr, &v6addr)) { 1066 mutex_exit(&ill->ill_lock); 1067 return (B_FALSE); 1068 } 1069 1070 (void) ip_plen_to_mask_v6(IPV6_TOKEN_LEN, &v6mask); 1071 1072 for (i = 0; i < 4; i++) 1073 v6mask.s6_addr32[i] = v6mask.s6_addr32[i] ^ 1074 (uint32_t)0xffffffff; 1075 1076 V6_MASK_COPY(v6addr, v6mask, ill->ill_token); 1077 ill->ill_token_length = IPV6_TOKEN_LEN; 1078 mutex_exit(&ill->ill_lock); 1079 return (B_TRUE); 1080 } 1081 1082 /* 1083 * Create a link-local address from a token. 1084 */ 1085 static void 1086 ipif_get_linklocal(in6_addr_t *dest, const in6_addr_t *token) 1087 { 1088 int i; 1089 1090 for (i = 0; i < 4; i++) { 1091 dest->s6_addr32[i] = 1092 token->s6_addr32[i] | ipv6_ll_template.s6_addr32[i]; 1093 } 1094 } 1095 1096 /* 1097 * Set a nice default address for either automatic tunnels tsrc/96 or 1098 * 6to4 tunnels 2002:<tsrc>::1/64 1099 */ 1100 static void 1101 ipif_set_tun_auto_addr(ipif_t *ipif, struct iftun_req *ta) 1102 { 1103 sin6_t sin6; 1104 sin_t *sin; 1105 ill_t *ill = ipif->ipif_ill; 1106 tun_t *tp = (tun_t *)ill->ill_wq->q_next->q_ptr; 1107 1108 if (ta->ifta_saddr.ss_family != AF_INET || 1109 (ipif->ipif_flags & IPIF_UP) || !ipif->ipif_isv6 || 1110 (ta->ifta_flags & IFTUN_SRC) == 0) 1111 return; 1112 1113 /* 1114 * Check the tunnel type by examining q_next->q_ptr 1115 */ 1116 if (tp->tun_flags & TUN_AUTOMATIC) { 1117 /* this is an automatic tunnel */ 1118 (void) ip_plen_to_mask_v6(IPV6_ABITS - IP_ABITS, 1119 &ipif->ipif_v6net_mask); 1120 bzero(&sin6, sizeof (sin6_t)); 1121 sin = (sin_t *)&ta->ifta_saddr; 1122 V4_PART_OF_V6(sin6.sin6_addr) = sin->sin_addr.s_addr; 1123 sin6.sin6_family = AF_INET6; 1124 (void) ip_sioctl_addr(ipif, (sin_t *)&sin6, 1125 NULL, NULL, NULL, NULL); 1126 } else if (tp->tun_flags & TUN_6TO4) { 1127 /* this is a 6to4 tunnel */ 1128 (void) ip_plen_to_mask_v6(IPV6_PREFIX_LEN, 1129 &ipif->ipif_v6net_mask); 1130 sin = (sin_t *)&ta->ifta_saddr; 1131 /* create a 6to4 address from the IPv4 tsrc */ 1132 IN6_V4ADDR_TO_6TO4(&sin->sin_addr, &sin6.sin6_addr); 1133 sin6.sin6_family = AF_INET6; 1134 (void) ip_sioctl_addr(ipif, (sin_t *)&sin6, 1135 NULL, NULL, NULL, NULL); 1136 } else { 1137 ip1dbg(("ipif_set_tun_auto_addr: Unknown tunnel type")); 1138 return; 1139 } 1140 } 1141 1142 /* 1143 * Set link local for ipif_id 0 of a configured tunnel based on the 1144 * tsrc or tdst parameter 1145 * For tunnels over IPv4 use the IPv4 address prepended with 32 zeros as 1146 * the token. 1147 * For tunnels over IPv6 use the low-order 64 bits of the "inner" IPv6 address 1148 * as the token for the "outer" link. 1149 */ 1150 void 1151 ipif_set_tun_llink(ill_t *ill, struct iftun_req *ta) 1152 { 1153 ipif_t *ipif; 1154 sin_t *sin; 1155 in6_addr_t *s6addr; 1156 1157 ASSERT(IAM_WRITER_ILL(ill)); 1158 1159 /* The first ipif must be id zero. */ 1160 ipif = ill->ill_ipif; 1161 ASSERT(ipif->ipif_id == 0); 1162 1163 /* no link local for automatic tunnels */ 1164 if (!(ipif->ipif_flags & IPIF_POINTOPOINT)) { 1165 ipif_set_tun_auto_addr(ipif, ta); 1166 return; 1167 } 1168 1169 if ((ta->ifta_flags & IFTUN_DST) && 1170 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6pp_dst_addr)) { 1171 sin6_t sin6; 1172 1173 ASSERT(!(ipif->ipif_flags & IPIF_UP)); 1174 bzero(&sin6, sizeof (sin6_t)); 1175 if ((ta->ifta_saddr.ss_family == AF_INET)) { 1176 sin = (sin_t *)&ta->ifta_daddr; 1177 V4_PART_OF_V6(sin6.sin6_addr) = 1178 sin->sin_addr.s_addr; 1179 } else { 1180 s6addr = 1181 &((sin6_t *)&ta->ifta_daddr)->sin6_addr; 1182 sin6.sin6_addr.s6_addr32[3] = s6addr->s6_addr32[3]; 1183 sin6.sin6_addr.s6_addr32[2] = s6addr->s6_addr32[2]; 1184 } 1185 ipif_get_linklocal(&ipif->ipif_v6pp_dst_addr, 1186 &sin6.sin6_addr); 1187 ipif->ipif_v6subnet = ipif->ipif_v6pp_dst_addr; 1188 } 1189 if ((ta->ifta_flags & IFTUN_SRC)) { 1190 ASSERT(!(ipif->ipif_flags & IPIF_UP)); 1191 1192 /* Set the token if it isn't already set */ 1193 if (IN6_IS_ADDR_UNSPECIFIED(&ill->ill_token)) { 1194 if ((ta->ifta_saddr.ss_family == AF_INET)) { 1195 sin = (sin_t *)&ta->ifta_saddr; 1196 V4_PART_OF_V6(ill->ill_token) = 1197 sin->sin_addr.s_addr; 1198 } else { 1199 s6addr = 1200 &((sin6_t *)&ta->ifta_saddr)->sin6_addr; 1201 ill->ill_token.s6_addr32[3] = 1202 s6addr->s6_addr32[3]; 1203 ill->ill_token.s6_addr32[2] = 1204 s6addr->s6_addr32[2]; 1205 } 1206 ill->ill_token_length = IPV6_TOKEN_LEN; 1207 } 1208 /* 1209 * Attempt to set the link local address if it isn't set. 1210 */ 1211 if (IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr)) 1212 (void) ipif_setlinklocal(ipif); 1213 } 1214 } 1215 1216 /* 1217 * Is it not possible to set the link local address? 1218 * The address can be set if the token is set, and the token 1219 * isn't too long. 1220 * Return B_TRUE if the address can't be set, or B_FALSE if it can. 1221 */ 1222 boolean_t 1223 ipif_cant_setlinklocal(ipif_t *ipif) 1224 { 1225 ill_t *ill = ipif->ipif_ill; 1226 1227 if (IN6_IS_ADDR_UNSPECIFIED(&ill->ill_token) || 1228 ill->ill_token_length > IPV6_ABITS - IPV6_LL_PREFIXLEN) 1229 return (B_TRUE); 1230 1231 return (B_FALSE); 1232 } 1233 1234 /* 1235 * Generate a link-local address from the token. 1236 * Return zero if the address was set, or non-zero if it couldn't be set. 1237 */ 1238 int 1239 ipif_setlinklocal(ipif_t *ipif) 1240 { 1241 ill_t *ill = ipif->ipif_ill; 1242 1243 ASSERT(IAM_WRITER_ILL(ill)); 1244 1245 if (ipif_cant_setlinklocal(ipif)) 1246 return (-1); 1247 1248 ipif_get_linklocal(&ipif->ipif_v6lcl_addr, &ill->ill_token); 1249 (void) ip_plen_to_mask_v6(IPV6_LL_PREFIXLEN, &ipif->ipif_v6net_mask); 1250 V6_MASK_COPY(ipif->ipif_v6lcl_addr, ipif->ipif_v6net_mask, 1251 ipif->ipif_v6subnet); 1252 1253 if (ipif->ipif_flags & IPIF_NOLOCAL) { 1254 ipif->ipif_v6src_addr = ipv6_all_zeros; 1255 } else { 1256 ipif->ipif_v6src_addr = ipif->ipif_v6lcl_addr; 1257 } 1258 return (0); 1259 } 1260 1261 /* 1262 * This function sets up the multicast mappings in NDP. 1263 * Unlike ARP, there are no mapping_mps here. We delete the 1264 * mapping nces and add a new one. 1265 * 1266 * Returns non-zero on error and 0 on success. 1267 */ 1268 int 1269 ipif_ndp_setup_multicast(ipif_t *ipif, nce_t **ret_nce) 1270 { 1271 ill_t *ill = ipif->ipif_ill; 1272 in6_addr_t v6_mcast_addr = {(uint32_t)V6_MCAST, 0, 0, 0}; 1273 in6_addr_t v6_mcast_mask = {(uint32_t)V6_MCAST, 0, 0, 0}; 1274 in6_addr_t v6_extract_mask; 1275 uchar_t *phys_addr, *bphys_addr, *alloc_phys; 1276 nce_t *mnce = NULL; 1277 int err = 0; 1278 phyint_t *phyi = ill->ill_phyint; 1279 uint32_t hw_extract_start; 1280 dl_unitdata_req_t *dlur; 1281 1282 if (ret_nce != NULL) 1283 *ret_nce = NULL; 1284 /* 1285 * Delete the mapping nce. Normally these should not exist 1286 * as a previous ipif_down -> ipif_ndp_down should have deleted 1287 * all the nces. But they can exist if ip_rput_dlpi_writer 1288 * calls this when PHYI_MULTI_BCAST is set. 1289 */ 1290 mnce = ndp_lookup_v6(ill, &v6_mcast_addr, B_FALSE); 1291 if (mnce != NULL) { 1292 ndp_delete(mnce); 1293 NCE_REFRELE(mnce); 1294 mnce = NULL; 1295 } 1296 1297 /* 1298 * Get media specific v6 mapping information. Note that 1299 * nd_lla_len can be 0 for tunnels. 1300 */ 1301 alloc_phys = kmem_alloc(ill->ill_nd_lla_len, KM_NOSLEEP); 1302 if ((alloc_phys == NULL) && (ill->ill_nd_lla_len != 0)) 1303 return (ENOMEM); 1304 /* 1305 * Determine the broadcast address. 1306 */ 1307 dlur = (dl_unitdata_req_t *)ill->ill_bcast_mp->b_rptr; 1308 if (ill->ill_sap_length < 0) 1309 bphys_addr = (uchar_t *)dlur + dlur->dl_dest_addr_offset; 1310 else 1311 bphys_addr = (uchar_t *)dlur + 1312 dlur->dl_dest_addr_offset + ill->ill_sap_length; 1313 1314 /* 1315 * Check PHYI_MULTI_BCAST and possible length of physical 1316 * address to determine if we use the mapping or the 1317 * broadcast address. 1318 */ 1319 if ((phyi->phyint_flags & PHYI_MULTI_BCAST) || 1320 (!MEDIA_V6MINFO(ill->ill_media, ill->ill_nd_lla_len, 1321 bphys_addr, alloc_phys, &hw_extract_start, 1322 &v6_extract_mask))) { 1323 if (ill->ill_phys_addr_length > IP_MAX_HW_LEN) { 1324 kmem_free(alloc_phys, ill->ill_nd_lla_len); 1325 return (E2BIG); 1326 } 1327 /* Use the link-layer broadcast address for MULTI_BCAST */ 1328 phys_addr = bphys_addr; 1329 bzero(&v6_extract_mask, sizeof (v6_extract_mask)); 1330 hw_extract_start = ill->ill_nd_lla_len; 1331 } else { 1332 phys_addr = alloc_phys; 1333 } 1334 if ((ipif->ipif_flags & IPIF_BROADCAST) || 1335 (ill->ill_flags & ILLF_MULTICAST) || 1336 (phyi->phyint_flags & PHYI_MULTI_BCAST)) { 1337 mutex_enter(&ndp6.ndp_g_lock); 1338 err = ndp_add(ill, 1339 phys_addr, 1340 &v6_mcast_addr, /* v6 address */ 1341 &v6_mcast_mask, /* v6 mask */ 1342 &v6_extract_mask, 1343 hw_extract_start, 1344 NCE_F_MAPPING | NCE_F_PERMANENT | NCE_F_NONUD, 1345 ND_REACHABLE, 1346 &mnce, 1347 NULL, 1348 NULL); 1349 mutex_exit(&ndp6.ndp_g_lock); 1350 if (err == 0) { 1351 if (ret_nce != NULL) { 1352 *ret_nce = mnce; 1353 } else { 1354 NCE_REFRELE(mnce); 1355 } 1356 } 1357 } 1358 kmem_free(alloc_phys, ill->ill_nd_lla_len); 1359 return (err); 1360 } 1361 1362 /* 1363 * Get the resolver set up for a new interface address. (Always called 1364 * as writer.) 1365 */ 1366 int 1367 ipif_ndp_up(ipif_t *ipif, const in6_addr_t *addr, boolean_t macaddr_change) 1368 { 1369 ill_t *ill = ipif->ipif_ill; 1370 int err = 0; 1371 nce_t *nce = NULL; 1372 nce_t *mnce = NULL; 1373 1374 ip1dbg(("ipif_ndp_up(%s:%u)\n", 1375 ipif->ipif_ill->ill_name, ipif->ipif_id)); 1376 1377 /* 1378 * ND not supported on XRESOLV interfaces. If ND support (multicast) 1379 * added later, take out this check. 1380 */ 1381 if ((ill->ill_flags & ILLF_XRESOLV) || 1382 IN6_IS_ADDR_UNSPECIFIED(addr) || 1383 (!(ill->ill_net_type & IRE_INTERFACE))) { 1384 ipif->ipif_addr_ready = 1; 1385 return (0); 1386 } 1387 1388 /* 1389 * Need to setup multicast mapping only when the first 1390 * interface is coming UP. 1391 */ 1392 if (ill->ill_ipif_up_count == 0 && 1393 (ill->ill_flags & ILLF_MULTICAST)) { 1394 /* 1395 * We set the multicast before setting up the mapping for 1396 * local address because ipif_ndp_setup_multicast does 1397 * ndp_walk to delete nces which will delete the mapping 1398 * for local address also if we added the mapping for 1399 * local address first. 1400 */ 1401 err = ipif_ndp_setup_multicast(ipif, &mnce); 1402 if (err != 0) 1403 return (err); 1404 } 1405 1406 if ((ipif->ipif_flags & (IPIF_UNNUMBERED|IPIF_NOLOCAL)) == 0) { 1407 uint16_t flags; 1408 uchar_t *hw_addr = NULL; 1409 1410 /* Permanent entries don't need NUD */ 1411 flags = NCE_F_PERMANENT; 1412 flags |= NCE_F_NONUD; 1413 if (ill->ill_flags & ILLF_ROUTER) 1414 flags |= NCE_F_ISROUTER; 1415 1416 if (ipif->ipif_flags & IPIF_ANYCAST) 1417 flags |= NCE_F_ANYCAST; 1418 1419 if (ill->ill_net_type == IRE_IF_RESOLVER) { 1420 hw_addr = ill->ill_nd_lla; 1421 1422 if (ill->ill_move_in_progress || macaddr_change) { 1423 /* 1424 * Addresses are failing over to this ill. 1425 * Don't wait for NUD to see this change. 1426 * Publish our new link-layer address. 1427 */ 1428 flags |= NCE_F_UNSOL_ADV; 1429 } 1430 } 1431 err = ndp_lookup_then_add(ill, 1432 hw_addr, 1433 addr, 1434 &ipv6_all_ones, 1435 &ipv6_all_zeros, 1436 0, 1437 flags, 1438 ND_PROBE, /* Causes Duplicate Address Detection to run */ 1439 &nce, 1440 NULL, 1441 NULL); 1442 switch (err) { 1443 case 0: 1444 ip1dbg(("ipif_ndp_up: NCE created for %s\n", 1445 ill->ill_name)); 1446 ipif->ipif_addr_ready = 1; 1447 break; 1448 case EINPROGRESS: 1449 ip1dbg(("ipif_ndp_up: running DAD now for %s\n", 1450 ill->ill_name)); 1451 break; 1452 case EEXIST: 1453 NCE_REFRELE(nce); 1454 ip1dbg(("ipif_ndp_up: NCE already exists for %s\n", 1455 ill->ill_name)); 1456 if (mnce != NULL) { 1457 ndp_delete(mnce); 1458 NCE_REFRELE(mnce); 1459 } 1460 return (err); 1461 default: 1462 ip1dbg(("ipif_ndp_up: NCE creation failed %s\n", 1463 ill->ill_name)); 1464 if (mnce != NULL) { 1465 ndp_delete(mnce); 1466 NCE_REFRELE(mnce); 1467 } 1468 return (err); 1469 } 1470 } else { 1471 /* No local NCE for this entry */ 1472 ipif->ipif_addr_ready = 1; 1473 } 1474 if (nce != NULL) 1475 NCE_REFRELE(nce); 1476 if (mnce != NULL) 1477 NCE_REFRELE(mnce); 1478 return (0); 1479 } 1480 1481 /* Remove all cache entries for this logical interface */ 1482 void 1483 ipif_ndp_down(ipif_t *ipif) 1484 { 1485 nce_t *nce; 1486 1487 if (ipif->ipif_isv6) { 1488 nce = ndp_lookup_v6(ipif->ipif_ill, &ipif->ipif_v6lcl_addr, 1489 B_FALSE); 1490 if (nce != NULL) { 1491 ndp_delete(nce); 1492 NCE_REFRELE(nce); 1493 } 1494 } 1495 /* 1496 * Remove mapping and all other nces dependent on this ill 1497 * when the last ipif is going away. 1498 */ 1499 if (ipif->ipif_ill->ill_ipif_up_count == 0) { 1500 ndp_walk(ipif->ipif_ill, (pfi_t)ndp_delete_per_ill, 1501 (uchar_t *)ipif->ipif_ill); 1502 } 1503 } 1504 1505 /* 1506 * Used when an interface comes up to recreate any extra routes on this 1507 * interface. 1508 */ 1509 static ire_t ** 1510 ipif_recover_ire_v6(ipif_t *ipif) 1511 { 1512 mblk_t *mp; 1513 ire_t **ipif_saved_irep; 1514 ire_t **irep; 1515 1516 ip1dbg(("ipif_recover_ire_v6(%s:%u)", ipif->ipif_ill->ill_name, 1517 ipif->ipif_id)); 1518 1519 ASSERT(ipif->ipif_isv6); 1520 1521 mutex_enter(&ipif->ipif_saved_ire_lock); 1522 ipif_saved_irep = (ire_t **)kmem_zalloc(sizeof (ire_t *) * 1523 ipif->ipif_saved_ire_cnt, KM_NOSLEEP); 1524 if (ipif_saved_irep == NULL) { 1525 mutex_exit(&ipif->ipif_saved_ire_lock); 1526 return (NULL); 1527 } 1528 1529 irep = ipif_saved_irep; 1530 1531 for (mp = ipif->ipif_saved_ire_mp; mp != NULL; mp = mp->b_cont) { 1532 ire_t *ire; 1533 queue_t *rfq; 1534 queue_t *stq; 1535 ifrt_t *ifrt; 1536 in6_addr_t *src_addr; 1537 in6_addr_t *gateway_addr; 1538 mblk_t *resolver_mp; 1539 char buf[INET6_ADDRSTRLEN]; 1540 ushort_t type; 1541 1542 /* 1543 * When the ire was initially created and then added in 1544 * ip_rt_add_v6(), it was created either using 1545 * ipif->ipif_net_type in the case of a traditional interface 1546 * route, or as one of the IRE_OFFSUBNET types (with the 1547 * exception of IRE_HOST type redirect ire which is created by 1548 * icmp_redirect_v6() and which we don't need to save or 1549 * recover). In the case where ipif->ipif_net_type was 1550 * IRE_LOOPBACK, ip_rt_add_v6() will update the ire_type to 1551 * IRE_IF_NORESOLVER before calling ire_add_v6() to satisfy 1552 * software like GateD and Sun Cluster which creates routes 1553 * using the the loopback interface's address as a gateway. 1554 * 1555 * As ifrt->ifrt_type reflects the already updated ire_type and 1556 * since ire_create_v6() expects that IRE_IF_NORESOLVER will 1557 * have a valid ire_dlureq_mp field (which doesn't make sense 1558 * for a IRE_LOOPBACK), ire_create_v6() will be called in the 1559 * same way here as in ip_rt_add_v6(), namely using 1560 * ipif->ipif_net_type when the route looks like a traditional 1561 * interface route (where ifrt->ifrt_type & IRE_INTERFACE is 1562 * true) and otherwise using the saved ifrt->ifrt_type. This 1563 * means that in the case where ipif->ipif_net_type is 1564 * IRE_LOOPBACK, the ire created by ire_create_v6() will be an 1565 * IRE_LOOPBACK, it will then be turned into an 1566 * IRE_IF_NORESOLVER and then added by ire_add_v6(). 1567 */ 1568 ifrt = (ifrt_t *)mp->b_rptr; 1569 if (ifrt->ifrt_type & IRE_INTERFACE) { 1570 rfq = NULL; 1571 stq = (ipif->ipif_net_type == IRE_IF_RESOLVER) 1572 ? ipif->ipif_rq : ipif->ipif_wq; 1573 src_addr = (ifrt->ifrt_flags & RTF_SETSRC) 1574 ? &ifrt->ifrt_v6src_addr 1575 : &ipif->ipif_v6src_addr; 1576 gateway_addr = NULL; 1577 resolver_mp = ipif->ipif_resolver_mp; 1578 type = ipif->ipif_net_type; 1579 } else { 1580 rfq = NULL; 1581 stq = NULL; 1582 src_addr = (ifrt->ifrt_flags & RTF_SETSRC) 1583 ? &ifrt->ifrt_v6src_addr : NULL; 1584 gateway_addr = &ifrt->ifrt_v6gateway_addr; 1585 resolver_mp = NULL; 1586 type = ifrt->ifrt_type; 1587 } 1588 1589 /* 1590 * Create a copy of the IRE with the saved address and netmask. 1591 */ 1592 ip1dbg(("ipif_recover_ire_v6: creating IRE %s (%d) for %s/%d\n", 1593 ip_nv_lookup(ire_nv_tbl, ifrt->ifrt_type), ifrt->ifrt_type, 1594 inet_ntop(AF_INET6, &ifrt->ifrt_v6addr, buf, sizeof (buf)), 1595 ip_mask_to_plen_v6(&ifrt->ifrt_v6mask))); 1596 ire = ire_create_v6( 1597 &ifrt->ifrt_v6addr, 1598 &ifrt->ifrt_v6mask, 1599 src_addr, 1600 gateway_addr, 1601 &ifrt->ifrt_max_frag, 1602 NULL, 1603 rfq, 1604 stq, 1605 type, 1606 resolver_mp, 1607 ipif, 1608 NULL, 1609 0, 1610 0, 1611 ifrt->ifrt_flags, 1612 &ifrt->ifrt_iulp_info, 1613 NULL, 1614 NULL); 1615 if (ire == NULL) { 1616 mutex_exit(&ipif->ipif_saved_ire_lock); 1617 kmem_free(ipif_saved_irep, 1618 ipif->ipif_saved_ire_cnt * sizeof (ire_t *)); 1619 return (NULL); 1620 } 1621 1622 /* 1623 * Some software (for example, GateD and Sun Cluster) attempts 1624 * to create (what amount to) IRE_PREFIX routes with the 1625 * loopback address as the gateway. This is primarily done to 1626 * set up prefixes with the RTF_REJECT flag set (for example, 1627 * when generating aggregate routes.) 1628 * 1629 * If the IRE type (as defined by ipif->ipif_net_type) is 1630 * IRE_LOOPBACK, then we map the request into a 1631 * IRE_IF_NORESOLVER. 1632 */ 1633 if (ipif->ipif_net_type == IRE_LOOPBACK) 1634 ire->ire_type = IRE_IF_NORESOLVER; 1635 /* 1636 * ire held by ire_add, will be refreled' in ipif_up_done 1637 * towards the end 1638 */ 1639 (void) ire_add(&ire, NULL, NULL, NULL, B_FALSE); 1640 *irep = ire; 1641 irep++; 1642 ip1dbg(("ipif_recover_ire_v6: added ire %p\n", (void *)ire)); 1643 } 1644 mutex_exit(&ipif->ipif_saved_ire_lock); 1645 return (ipif_saved_irep); 1646 } 1647 1648 /* 1649 * Return the scope of the given IPv6 address. If the address is an 1650 * IPv4 mapped IPv6 address, return the scope of the corresponding 1651 * IPv4 address. 1652 */ 1653 in6addr_scope_t 1654 ip_addr_scope_v6(const in6_addr_t *addr) 1655 { 1656 static in6_addr_t ipv6loopback = IN6ADDR_LOOPBACK_INIT; 1657 1658 if (IN6_IS_ADDR_V4MAPPED(addr)) { 1659 in_addr_t v4addr_h = ntohl(V4_PART_OF_V6((*addr))); 1660 if ((v4addr_h >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET || 1661 (v4addr_h & IN_AUTOCONF_MASK) == IN_AUTOCONF_NET) 1662 return (IP6_SCOPE_LINKLOCAL); 1663 if ((v4addr_h & IN_PRIVATE8_MASK) == IN_PRIVATE8_NET || 1664 (v4addr_h & IN_PRIVATE12_MASK) == IN_PRIVATE12_NET || 1665 (v4addr_h & IN_PRIVATE16_MASK) == IN_PRIVATE16_NET) 1666 return (IP6_SCOPE_SITELOCAL); 1667 return (IP6_SCOPE_GLOBAL); 1668 } 1669 1670 if (IN6_IS_ADDR_MULTICAST(addr)) 1671 return (IN6_ADDR_MC_SCOPE(addr)); 1672 1673 /* link-local and loopback addresses are of link-local scope */ 1674 if (IN6_IS_ADDR_LINKLOCAL(addr) || 1675 IN6_ARE_ADDR_EQUAL(addr, &ipv6loopback)) 1676 return (IP6_SCOPE_LINKLOCAL); 1677 if (IN6_IS_ADDR_SITELOCAL(addr)) 1678 return (IP6_SCOPE_SITELOCAL); 1679 return (IP6_SCOPE_GLOBAL); 1680 } 1681 1682 1683 /* 1684 * Calculates the xor of a1 and a2, and stores the result in res. 1685 */ 1686 static void 1687 ip_addr_xor_v6(const in6_addr_t *a1, const in6_addr_t *a2, in6_addr_t *res) 1688 { 1689 int i; 1690 1691 for (i = 0; i < 4; i++) 1692 res->s6_addr32[i] = a1->s6_addr32[i] ^ a2->s6_addr32[i]; 1693 } 1694 1695 #define IPIF_VALID_IPV6_SOURCE(ipif) \ 1696 (((ipif)->ipif_flags & IPIF_UP) && \ 1697 !((ipif)->ipif_flags & (IPIF_NOLOCAL|IPIF_ANYCAST)) && \ 1698 (ipif)->ipif_addr_ready) 1699 1700 /* source address candidate */ 1701 typedef struct candidate { 1702 ipif_t *cand_ipif; 1703 /* The properties of this candidate */ 1704 boolean_t cand_isdst; 1705 boolean_t cand_isdst_set; 1706 in6addr_scope_t cand_scope; 1707 boolean_t cand_scope_set; 1708 boolean_t cand_isdeprecated; 1709 boolean_t cand_isdeprecated_set; 1710 boolean_t cand_ispreferred; 1711 boolean_t cand_ispreferred_set; 1712 boolean_t cand_matchedinterface; 1713 boolean_t cand_matchedinterface_set; 1714 boolean_t cand_matchedlabel; 1715 boolean_t cand_matchedlabel_set; 1716 boolean_t cand_istmp; 1717 boolean_t cand_istmp_set; 1718 in6_addr_t cand_xor; 1719 boolean_t cand_xor_set; 1720 } cand_t; 1721 #define cand_srcaddr cand_ipif->ipif_v6lcl_addr 1722 #define cand_flags cand_ipif->ipif_flags 1723 #define cand_ill cand_ipif->ipif_ill 1724 #define cand_zoneid cand_ipif->ipif_zoneid 1725 1726 /* information about the destination for source address selection */ 1727 typedef struct dstinfo { 1728 const in6_addr_t *dst_addr; 1729 ill_t *dst_ill; 1730 uint_t dst_restrict_ill; 1731 boolean_t dst_prefer_src_tmp; 1732 in6addr_scope_t dst_scope; 1733 char *dst_label; 1734 } dstinfo_t; 1735 1736 /* 1737 * The following functions are rules used to select a source address in 1738 * ipif_select_source_v6(). Each rule compares a current candidate (cc) 1739 * against the best candidate (bc). Each rule has three possible outcomes; 1740 * the candidate is preferred over the best candidate (CAND_PREFER), the 1741 * candidate is not preferred over the best candidate (CAND_AVOID), or the 1742 * candidate is of equal value as the best candidate (CAND_TIE). 1743 * 1744 * These rules are part of a greater "Default Address Selection for IPv6" 1745 * sheme, which is standards based work coming out of the IETF ipv6 working 1746 * group. The IETF document defines both IPv6 source address selection and 1747 * destination address ordering. The rules defined here implement the IPv6 1748 * source address selection. Destination address ordering is done by 1749 * libnsl, and uses a similar set of rules to implement the sorting. 1750 */ 1751 typedef enum {CAND_AVOID, CAND_TIE, CAND_PREFER} rule_res_t; 1752 typedef rule_res_t (*rulef_t)(cand_t *, cand_t *, const dstinfo_t *); 1753 1754 /* Prefer an address if it is equal to the destination address. */ 1755 static rule_res_t 1756 rule_isdst(cand_t *bc, cand_t *cc, const dstinfo_t *dstinfo) 1757 { 1758 if (!bc->cand_isdst_set) { 1759 bc->cand_isdst = 1760 IN6_ARE_ADDR_EQUAL(&bc->cand_srcaddr, dstinfo->dst_addr); 1761 bc->cand_isdst_set = B_TRUE; 1762 } 1763 1764 cc->cand_isdst = 1765 IN6_ARE_ADDR_EQUAL(&cc->cand_srcaddr, dstinfo->dst_addr); 1766 cc->cand_isdst_set = B_TRUE; 1767 1768 if (cc->cand_isdst == bc->cand_isdst) 1769 return (CAND_TIE); 1770 else if (cc->cand_isdst) 1771 return (CAND_PREFER); 1772 else 1773 return (CAND_AVOID); 1774 } 1775 1776 /* 1777 * Prefer addresses that are of closest scope to the destination. Always 1778 * prefer addresses that are of greater scope than the destination over 1779 * those that are of lesser scope than the destination. 1780 */ 1781 static rule_res_t 1782 rule_scope(cand_t *bc, cand_t *cc, const dstinfo_t *dstinfo) 1783 { 1784 if (!bc->cand_scope_set) { 1785 bc->cand_scope = ip_addr_scope_v6(&bc->cand_srcaddr); 1786 bc->cand_scope_set = B_TRUE; 1787 } 1788 1789 cc->cand_scope = ip_addr_scope_v6(&cc->cand_srcaddr); 1790 cc->cand_scope_set = B_TRUE; 1791 1792 if (cc->cand_scope < bc->cand_scope) { 1793 if (cc->cand_scope < dstinfo->dst_scope) 1794 return (CAND_AVOID); 1795 else 1796 return (CAND_PREFER); 1797 } else if (bc->cand_scope < cc->cand_scope) { 1798 if (bc->cand_scope < dstinfo->dst_scope) 1799 return (CAND_PREFER); 1800 else 1801 return (CAND_AVOID); 1802 } else { 1803 return (CAND_TIE); 1804 } 1805 } 1806 1807 /* 1808 * Prefer non-deprecated source addresses. 1809 */ 1810 /* ARGSUSED2 */ 1811 static rule_res_t 1812 rule_deprecated(cand_t *bc, cand_t *cc, const dstinfo_t *dstinfo) 1813 { 1814 if (!bc->cand_isdeprecated_set) { 1815 bc->cand_isdeprecated = 1816 ((bc->cand_flags & IPIF_DEPRECATED) != 0); 1817 bc->cand_isdeprecated_set = B_TRUE; 1818 } 1819 1820 cc->cand_isdeprecated = ((cc->cand_flags & IPIF_DEPRECATED) != 0); 1821 cc->cand_isdeprecated_set = B_TRUE; 1822 1823 if (bc->cand_isdeprecated == cc->cand_isdeprecated) 1824 return (CAND_TIE); 1825 else if (cc->cand_isdeprecated) 1826 return (CAND_AVOID); 1827 else 1828 return (CAND_PREFER); 1829 } 1830 1831 /* 1832 * Prefer source addresses that have the IPIF_PREFERRED flag set. This 1833 * rule must be before rule_interface because the flag could be set on any 1834 * interface, not just the interface being used for outgoing packets (for 1835 * example, the IFF_PREFERRED could be set on an address assigned to the 1836 * loopback interface). 1837 */ 1838 /* ARGSUSED2 */ 1839 static rule_res_t 1840 rule_preferred(cand_t *bc, cand_t *cc, const dstinfo_t *dstinfo) 1841 { 1842 if (!bc->cand_ispreferred_set) { 1843 bc->cand_ispreferred = ((bc->cand_flags & IPIF_PREFERRED) != 0); 1844 bc->cand_ispreferred_set = B_TRUE; 1845 } 1846 1847 cc->cand_ispreferred = ((cc->cand_flags & IPIF_PREFERRED) != 0); 1848 cc->cand_ispreferred_set = B_TRUE; 1849 1850 if (bc->cand_ispreferred == cc->cand_ispreferred) 1851 return (CAND_TIE); 1852 else if (cc->cand_ispreferred) 1853 return (CAND_PREFER); 1854 else 1855 return (CAND_AVOID); 1856 } 1857 1858 /* 1859 * Prefer source addresses that are assigned to the outgoing interface, or 1860 * to an interface that is in the same IPMP group as the outgoing 1861 * interface. 1862 */ 1863 static rule_res_t 1864 rule_interface(cand_t *bc, cand_t *cc, const dstinfo_t *dstinfo) 1865 { 1866 ill_t *dstill = dstinfo->dst_ill; 1867 1868 /* 1869 * If dstinfo->dst_restrict_ill is set, this rule is unnecessary 1870 * since we know all candidates will be on the same link. 1871 */ 1872 if (dstinfo->dst_restrict_ill) 1873 return (CAND_TIE); 1874 1875 if (!bc->cand_matchedinterface_set) { 1876 bc->cand_matchedinterface = (bc->cand_ill == dstill || 1877 (dstill->ill_group != NULL && 1878 dstill->ill_group == bc->cand_ill->ill_group)); 1879 bc->cand_matchedinterface_set = B_TRUE; 1880 } 1881 1882 cc->cand_matchedinterface = (cc->cand_ill == dstill || 1883 (dstill->ill_group != NULL && 1884 dstill->ill_group == cc->cand_ill->ill_group)); 1885 cc->cand_matchedinterface_set = B_TRUE; 1886 1887 if (bc->cand_matchedinterface == cc->cand_matchedinterface) 1888 return (CAND_TIE); 1889 else if (cc->cand_matchedinterface) 1890 return (CAND_PREFER); 1891 else 1892 return (CAND_AVOID); 1893 } 1894 1895 /* 1896 * Prefer source addresses whose label matches the destination's label. 1897 */ 1898 static rule_res_t 1899 rule_label(cand_t *bc, cand_t *cc, const dstinfo_t *dstinfo) 1900 { 1901 char *label; 1902 1903 if (!bc->cand_matchedlabel_set) { 1904 label = ip6_asp_lookup(&bc->cand_srcaddr, NULL); 1905 bc->cand_matchedlabel = 1906 ip6_asp_labelcmp(label, dstinfo->dst_label); 1907 bc->cand_matchedlabel_set = B_TRUE; 1908 } 1909 1910 label = ip6_asp_lookup(&cc->cand_srcaddr, NULL); 1911 cc->cand_matchedlabel = ip6_asp_labelcmp(label, dstinfo->dst_label); 1912 cc->cand_matchedlabel_set = B_TRUE; 1913 1914 if (bc->cand_matchedlabel == cc->cand_matchedlabel) 1915 return (CAND_TIE); 1916 else if (cc->cand_matchedlabel) 1917 return (CAND_PREFER); 1918 else 1919 return (CAND_AVOID); 1920 } 1921 1922 /* 1923 * Prefer public addresses over temporary ones. An application can reverse 1924 * the logic of this rule and prefer temporary addresses by using the 1925 * IPV6_SRC_PREFERENCES socket option. 1926 */ 1927 static rule_res_t 1928 rule_temporary(cand_t *bc, cand_t *cc, const dstinfo_t *dstinfo) 1929 { 1930 if (!bc->cand_istmp_set) { 1931 bc->cand_istmp = ((bc->cand_flags & IPIF_TEMPORARY) != 0); 1932 bc->cand_istmp_set = B_TRUE; 1933 } 1934 1935 cc->cand_istmp = ((cc->cand_flags & IPIF_TEMPORARY) != 0); 1936 cc->cand_istmp_set = B_TRUE; 1937 1938 if (bc->cand_istmp == cc->cand_istmp) 1939 return (CAND_TIE); 1940 1941 if (dstinfo->dst_prefer_src_tmp && cc->cand_istmp) 1942 return (CAND_PREFER); 1943 else if (!dstinfo->dst_prefer_src_tmp && !cc->cand_istmp) 1944 return (CAND_PREFER); 1945 else 1946 return (CAND_AVOID); 1947 } 1948 1949 /* 1950 * Prefer source addresses with longer matching prefix with the 1951 * destination. Since this is the last rule, it must not produce a tie. 1952 * We do the longest matching prefix calculation and the tie break in one 1953 * calculation by doing an xor of both addresses with the destination, and 1954 * pick the address with the smallest xor value. That way, we're both 1955 * picking the address with the longest matching prefix, and breaking the 1956 * tie if they happen to have both have equal mathing prefixes. 1957 */ 1958 static rule_res_t 1959 rule_prefix(cand_t *bc, cand_t *cc, const dstinfo_t *dstinfo) 1960 { 1961 int i; 1962 1963 if (!bc->cand_xor_set) { 1964 ip_addr_xor_v6(&bc->cand_srcaddr, 1965 dstinfo->dst_addr, &bc->cand_xor); 1966 bc->cand_xor_set = B_TRUE; 1967 } 1968 1969 ip_addr_xor_v6(&cc->cand_srcaddr, dstinfo->dst_addr, &cc->cand_xor); 1970 cc->cand_xor_set = B_TRUE; 1971 1972 for (i = 0; i < 4; i++) { 1973 if (bc->cand_xor.s6_addr32[i] != cc->cand_xor.s6_addr32[i]) 1974 break; 1975 } 1976 1977 if (cc->cand_xor.s6_addr32[i] < bc->cand_xor.s6_addr32[i]) 1978 return (CAND_PREFER); 1979 else 1980 return (CAND_AVOID); 1981 } 1982 1983 /* 1984 * Prefer to use zone-specific addresses when possible instead of all-zones 1985 * addresses. 1986 */ 1987 /* ARGSUSED2 */ 1988 static rule_res_t 1989 rule_zone_specific(cand_t *bc, cand_t *cc, const dstinfo_t *dstinfo) 1990 { 1991 if ((bc->cand_zoneid == ALL_ZONES) == 1992 (cc->cand_zoneid == ALL_ZONES)) 1993 return (CAND_TIE); 1994 else if (cc->cand_zoneid == ALL_ZONES) 1995 return (CAND_AVOID); 1996 else 1997 return (CAND_PREFER); 1998 } 1999 2000 /* 2001 * Determine the best source address given a destination address and a 2002 * destination ill. If no suitable source address is found, it returns 2003 * NULL. If there is a usable address pointed to by the usesrc 2004 * (i.e ill_usesrc_ifindex != 0) then return that first since it is more 2005 * fine grained (i.e per interface) 2006 * 2007 * This implementation is based on the "Default Address Selection for IPv6" 2008 * specification produced by the IETF IPv6 working group. It has been 2009 * implemented so that the list of addresses is only traversed once (the 2010 * specification's algorithm could traverse the list of addresses once for 2011 * every rule). 2012 * 2013 * The restrict_ill argument restricts the algorithm to chose a source 2014 * address that is assigned to the destination ill or an ill in the same 2015 * IPMP group as the destination ill. This is used when the destination 2016 * address is a link-local or multicast address, and when 2017 * ipv6_strict_dst_multihoming is turned on. 2018 * 2019 * src_prefs is the caller's set of source address preferences. If source 2020 * address selection is being called to determine the source address of a 2021 * connected socket (from ip_bind_connected_v6()), then the preferences are 2022 * taken from conn_src_preferences. These preferences can be set on a 2023 * per-socket basis using the IPV6_SRC_PREFERENCES socket option. The only 2024 * preference currently implemented is for rfc3041 temporary addresses. 2025 */ 2026 ipif_t * 2027 ipif_select_source_v6(ill_t *dstill, const in6_addr_t *dst, 2028 uint_t restrict_ill, uint32_t src_prefs, zoneid_t zoneid) 2029 { 2030 dstinfo_t dstinfo; 2031 char dstr[INET6_ADDRSTRLEN]; 2032 char sstr[INET6_ADDRSTRLEN]; 2033 ipif_t *ipif; 2034 ill_t *ill, *usesrc_ill = NULL; 2035 ill_walk_context_t ctx; 2036 cand_t best_c; /* The best candidate */ 2037 cand_t curr_c; /* The current candidate */ 2038 uint_t index; 2039 boolean_t first_candidate = B_TRUE; 2040 rule_res_t rule_result; 2041 tsol_tpc_t *src_rhtp, *dst_rhtp; 2042 2043 /* 2044 * The list of ordering rules. They are applied in the order they 2045 * appear in the list. 2046 * 2047 * XXX rule_mipv6 will need to be implemented (the specification's 2048 * rules 4) if a mobile IPv6 node is ever implemented. 2049 */ 2050 rulef_t rules[] = { 2051 rule_isdst, 2052 rule_scope, 2053 rule_deprecated, 2054 rule_preferred, 2055 rule_interface, 2056 rule_label, 2057 rule_temporary, 2058 rule_prefix, 2059 rule_zone_specific, 2060 NULL 2061 }; 2062 2063 ASSERT(dstill->ill_isv6); 2064 ASSERT(!IN6_IS_ADDR_V4MAPPED(dst)); 2065 2066 /* 2067 * Check if there is a usable src address pointed to by the 2068 * usesrc ifindex. This has higher precedence since it is 2069 * finer grained (i.e per interface) v/s being system wide. 2070 */ 2071 if (dstill->ill_usesrc_ifindex != 0) { 2072 if ((usesrc_ill = 2073 ill_lookup_on_ifindex(dstill->ill_usesrc_ifindex, B_TRUE, 2074 NULL, NULL, NULL, NULL)) != NULL) { 2075 dstinfo.dst_ill = usesrc_ill; 2076 } else { 2077 return (NULL); 2078 } 2079 } else { 2080 dstinfo.dst_ill = dstill; 2081 } 2082 2083 /* 2084 * If we're dealing with an unlabeled destination on a labeled system, 2085 * make sure that we ignore source addresses that are incompatible with 2086 * the destination's default label. That destination's default label 2087 * must dominate the minimum label on the source address. 2088 * 2089 * (Note that this has to do with Trusted Solaris. It's not related to 2090 * the labels described by ip6_asp_lookup.) 2091 */ 2092 dst_rhtp = NULL; 2093 if (is_system_labeled()) { 2094 dst_rhtp = find_tpc(dst, IPV6_VERSION, B_FALSE); 2095 if (dst_rhtp == NULL) 2096 return (NULL); 2097 if (dst_rhtp->tpc_tp.host_type != UNLABELED) { 2098 TPC_RELE(dst_rhtp); 2099 dst_rhtp = NULL; 2100 } 2101 } 2102 2103 dstinfo.dst_addr = dst; 2104 dstinfo.dst_scope = ip_addr_scope_v6(dst); 2105 dstinfo.dst_label = ip6_asp_lookup(dst, NULL); 2106 dstinfo.dst_prefer_src_tmp = ((src_prefs & IPV6_PREFER_SRC_TMP) != 0); 2107 2108 rw_enter(&ill_g_lock, RW_READER); 2109 /* 2110 * Section three of the I-D states that for multicast and 2111 * link-local destinations, the candidate set must be restricted to 2112 * an interface that is on the same link as the outgoing interface. 2113 * Also, when ipv6_strict_dst_multihoming is turned on, always 2114 * restrict the source address to the destination link as doing 2115 * otherwise will almost certainly cause problems. 2116 */ 2117 if (IN6_IS_ADDR_LINKLOCAL(dst) || IN6_IS_ADDR_MULTICAST(dst) || 2118 ipv6_strict_dst_multihoming || usesrc_ill != NULL) { 2119 if (restrict_ill == RESTRICT_TO_NONE) 2120 dstinfo.dst_restrict_ill = RESTRICT_TO_GROUP; 2121 else 2122 dstinfo.dst_restrict_ill = restrict_ill; 2123 } else { 2124 dstinfo.dst_restrict_ill = restrict_ill; 2125 } 2126 2127 bzero(&best_c, sizeof (cand_t)); 2128 2129 /* 2130 * Take a pass through the list of IPv6 interfaces to chose the 2131 * best possible source address. If restrict_ill is true, we only 2132 * iterate through the ill's that are in the same IPMP group as the 2133 * destination's outgoing ill. If restrict_ill is false, we walk 2134 * the entire list of IPv6 ill's. 2135 */ 2136 if (dstinfo.dst_restrict_ill != RESTRICT_TO_NONE) { 2137 if (dstinfo.dst_ill->ill_group != NULL && 2138 dstinfo.dst_restrict_ill == RESTRICT_TO_GROUP) { 2139 ill = dstinfo.dst_ill->ill_group->illgrp_ill; 2140 } else { 2141 ill = dstinfo.dst_ill; 2142 } 2143 } else { 2144 ill = ILL_START_WALK_V6(&ctx); 2145 } 2146 2147 while (ill != NULL) { 2148 ASSERT(ill->ill_isv6); 2149 2150 /* 2151 * Avoid FAILED/OFFLINE ills. 2152 * Global and site local addresses will failover and 2153 * will be available on the new ill. 2154 * But link local addresses don't move. 2155 */ 2156 if (dstinfo.dst_restrict_ill != RESTRICT_TO_ILL && 2157 ill->ill_phyint->phyint_flags & 2158 (PHYI_OFFLINE | PHYI_FAILED)) 2159 goto next_ill; 2160 2161 for (ipif = ill->ill_ipif; ipif != NULL; 2162 ipif = ipif->ipif_next) { 2163 2164 if (!IPIF_VALID_IPV6_SOURCE(ipif)) 2165 continue; 2166 2167 if (zoneid != ALL_ZONES && 2168 ipif->ipif_zoneid != zoneid && 2169 ipif->ipif_zoneid != ALL_ZONES) 2170 continue; 2171 2172 /* 2173 * Check compatibility of local address for 2174 * destination's default label if we're on a labeled 2175 * system. Incompatible addresses can't be used at 2176 * all and must be skipped over. 2177 */ 2178 if (dst_rhtp != NULL) { 2179 boolean_t incompat; 2180 2181 src_rhtp = find_tpc(&ipif->ipif_v6lcl_addr, 2182 IPV6_VERSION, B_FALSE); 2183 if (src_rhtp == NULL) 2184 continue; 2185 incompat = 2186 src_rhtp->tpc_tp.host_type != SUN_CIPSO || 2187 src_rhtp->tpc_tp.tp_doi != 2188 dst_rhtp->tpc_tp.tp_doi || 2189 (!_blinrange(&dst_rhtp->tpc_tp.tp_def_label, 2190 &src_rhtp->tpc_tp.tp_sl_range_cipso) && 2191 !blinlset(&dst_rhtp->tpc_tp.tp_def_label, 2192 src_rhtp->tpc_tp.tp_sl_set_cipso)); 2193 TPC_RELE(src_rhtp); 2194 if (incompat) 2195 continue; 2196 } 2197 2198 if (first_candidate) { 2199 /* 2200 * This is first valid address in the list. 2201 * It is automatically the best candidate 2202 * so far. 2203 */ 2204 best_c.cand_ipif = ipif; 2205 first_candidate = B_FALSE; 2206 continue; 2207 } 2208 2209 bzero(&curr_c, sizeof (cand_t)); 2210 curr_c.cand_ipif = ipif; 2211 2212 /* 2213 * Compare this current candidate (curr_c) with the 2214 * best candidate (best_c) by applying the 2215 * comparison rules in order until one breaks the 2216 * tie. 2217 */ 2218 for (index = 0; rules[index] != NULL; index++) { 2219 /* Apply a comparison rule. */ 2220 rule_result = 2221 (rules[index])(&best_c, &curr_c, &dstinfo); 2222 if (rule_result == CAND_AVOID) { 2223 /* 2224 * The best candidate is still the 2225 * best candidate. Forget about 2226 * this current candidate and go on 2227 * to the next one. 2228 */ 2229 break; 2230 } else if (rule_result == CAND_PREFER) { 2231 /* 2232 * This candidate is prefered. It 2233 * becomes the best candidate so 2234 * far. Go on to the next address. 2235 */ 2236 best_c = curr_c; 2237 break; 2238 } 2239 /* We have a tie, apply the next rule. */ 2240 } 2241 2242 /* 2243 * The last rule must be a tie breaker rule and 2244 * must never produce a tie. At this point, the 2245 * candidate should have either been rejected, or 2246 * have been prefered as the best candidate so far. 2247 */ 2248 ASSERT(rule_result != CAND_TIE); 2249 } 2250 2251 /* 2252 * We may be walking the linked-list of ill's in an 2253 * IPMP group or traversing the IPv6 ill avl tree. If it is a 2254 * usesrc ILL then it can't be part of IPMP group and we 2255 * will exit the while loop. 2256 */ 2257 next_ill: 2258 if (dstinfo.dst_restrict_ill == RESTRICT_TO_ILL) 2259 ill = NULL; 2260 else if (dstinfo.dst_restrict_ill == RESTRICT_TO_GROUP) 2261 ill = ill->ill_group_next; 2262 else 2263 ill = ill_next(&ctx, ill); 2264 } 2265 2266 ipif = best_c.cand_ipif; 2267 ip1dbg(("ipif_select_source_v6(%s, %s) -> %s\n", 2268 dstinfo.dst_ill->ill_name, 2269 inet_ntop(AF_INET6, dstinfo.dst_addr, dstr, sizeof (dstr)), 2270 (ipif == NULL ? "NULL" : 2271 inet_ntop(AF_INET6, &ipif->ipif_v6lcl_addr, sstr, sizeof (sstr))))); 2272 2273 if (usesrc_ill != NULL) 2274 ill_refrele(usesrc_ill); 2275 2276 if (dst_rhtp != NULL) 2277 TPC_RELE(dst_rhtp); 2278 2279 if (ipif == NULL) { 2280 rw_exit(&ill_g_lock); 2281 return (NULL); 2282 } 2283 2284 mutex_enter(&ipif->ipif_ill->ill_lock); 2285 if (IPIF_CAN_LOOKUP(ipif)) { 2286 ipif_refhold_locked(ipif); 2287 mutex_exit(&ipif->ipif_ill->ill_lock); 2288 rw_exit(&ill_g_lock); 2289 return (ipif); 2290 } 2291 mutex_exit(&ipif->ipif_ill->ill_lock); 2292 rw_exit(&ill_g_lock); 2293 ip1dbg(("ipif_select_source_v6 cannot lookup ipif %p" 2294 " returning null \n", (void *)ipif)); 2295 2296 return (NULL); 2297 } 2298 2299 /* 2300 * If old_ipif is not NULL, see if ipif was derived from old 2301 * ipif and if so, recreate the interface route by re-doing 2302 * source address selection. This happens when ipif_down -> 2303 * ipif_update_other_ipifs calls us. 2304 * 2305 * If old_ipif is NULL, just redo the source address selection 2306 * if needed. This happens when illgrp_insert or ipif_up_done_v6 2307 * calls us. 2308 */ 2309 void 2310 ipif_recreate_interface_routes_v6(ipif_t *old_ipif, ipif_t *ipif) 2311 { 2312 ire_t *ire; 2313 ire_t *ipif_ire; 2314 queue_t *stq; 2315 ill_t *ill; 2316 ipif_t *nipif = NULL; 2317 boolean_t nipif_refheld = B_FALSE; 2318 boolean_t ip6_asp_table_held = B_FALSE; 2319 2320 ill = ipif->ipif_ill; 2321 2322 if (!(ipif->ipif_flags & 2323 (IPIF_NOLOCAL|IPIF_ANYCAST|IPIF_DEPRECATED))) { 2324 /* 2325 * Can't possibly have borrowed the source 2326 * from old_ipif. 2327 */ 2328 return; 2329 } 2330 2331 /* 2332 * Is there any work to be done? No work if the address 2333 * is INADDR_ANY, loopback or NOLOCAL or ANYCAST ( 2334 * ipif_select_source_v6() does not borrow addresses from 2335 * NOLOCAL and ANYCAST interfaces). 2336 */ 2337 if ((old_ipif != NULL) && 2338 ((IN6_IS_ADDR_UNSPECIFIED(&old_ipif->ipif_v6lcl_addr)) || 2339 (old_ipif->ipif_ill->ill_wq == NULL) || 2340 (old_ipif->ipif_flags & 2341 (IPIF_NOLOCAL|IPIF_ANYCAST)))) { 2342 return; 2343 } 2344 2345 /* 2346 * Perform the same checks as when creating the 2347 * IRE_INTERFACE in ipif_up_done_v6. 2348 */ 2349 if (!(ipif->ipif_flags & IPIF_UP)) 2350 return; 2351 2352 if ((ipif->ipif_flags & IPIF_NOXMIT)) 2353 return; 2354 2355 if (IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6subnet) && 2356 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6net_mask)) 2357 return; 2358 2359 /* 2360 * We know that ipif uses some other source for its 2361 * IRE_INTERFACE. Is it using the source of this 2362 * old_ipif? 2363 */ 2364 ipif_ire = ipif_to_ire_v6(ipif); 2365 if (ipif_ire == NULL) 2366 return; 2367 2368 if (old_ipif != NULL && 2369 !IN6_ARE_ADDR_EQUAL(&old_ipif->ipif_v6lcl_addr, 2370 &ipif_ire->ire_src_addr_v6)) { 2371 ire_refrele(ipif_ire); 2372 return; 2373 } 2374 2375 if (ip_debug > 2) { 2376 /* ip1dbg */ 2377 pr_addr_dbg("ipif_recreate_interface_routes_v6: deleting IRE" 2378 " for src %s\n", AF_INET6, &ipif_ire->ire_src_addr_v6); 2379 } 2380 2381 stq = ipif_ire->ire_stq; 2382 2383 /* 2384 * Can't use our source address. Select a different source address 2385 * for the IRE_INTERFACE. We restrict interface route source 2386 * address selection to ipif's assigned to the same link as the 2387 * interface. 2388 */ 2389 if (ip6_asp_can_lookup()) { 2390 ip6_asp_table_held = B_TRUE; 2391 nipif = ipif_select_source_v6(ill, &ipif->ipif_v6subnet, 2392 RESTRICT_TO_GROUP, IPV6_PREFER_SRC_DEFAULT, 2393 ipif->ipif_zoneid); 2394 } 2395 if (nipif == NULL) { 2396 /* Last resort - all ipif's have IPIF_NOLOCAL */ 2397 nipif = ipif; 2398 } else { 2399 nipif_refheld = B_TRUE; 2400 } 2401 2402 ire = ire_create_v6( 2403 &ipif->ipif_v6subnet, /* dest pref */ 2404 &ipif->ipif_v6net_mask, /* mask */ 2405 &nipif->ipif_v6src_addr, /* src addr */ 2406 NULL, /* no gateway */ 2407 &ipif->ipif_mtu, /* max frag */ 2408 NULL, /* no Fast path header */ 2409 NULL, /* no recv from queue */ 2410 stq, /* send-to queue */ 2411 ill->ill_net_type, /* IF_[NO]RESOLVER */ 2412 ill->ill_resolver_mp, /* xmit header */ 2413 ipif, 2414 NULL, 2415 0, 2416 0, 2417 0, 2418 &ire_uinfo_null, 2419 NULL, 2420 NULL); 2421 2422 if (ire != NULL) { 2423 ire_t *ret_ire; 2424 int error; 2425 2426 /* 2427 * We don't need ipif_ire anymore. We need to delete 2428 * before we add so that ire_add does not detect 2429 * duplicates. 2430 */ 2431 ire_delete(ipif_ire); 2432 ret_ire = ire; 2433 error = ire_add(&ret_ire, NULL, NULL, NULL, B_FALSE); 2434 ASSERT(error == 0); 2435 ASSERT(ret_ire == ire); 2436 if (ret_ire != NULL) { 2437 /* Held in ire_add */ 2438 ire_refrele(ret_ire); 2439 } 2440 } 2441 /* 2442 * Either we are falling through from above or could not 2443 * allocate a replacement. 2444 */ 2445 ire_refrele(ipif_ire); 2446 if (ip6_asp_table_held) 2447 ip6_asp_table_refrele(); 2448 if (nipif_refheld) 2449 ipif_refrele(nipif); 2450 } 2451 2452 /* 2453 * This old_ipif is going away. 2454 * 2455 * Determine if any other ipif's are using our address as 2456 * ipif_v6lcl_addr (due to those being IPIF_NOLOCAL, IPIF_ANYCAST, or 2457 * IPIF_DEPRECATED). 2458 * Find the IRE_INTERFACE for such ipif's and recreate them 2459 * to use an different source address following the rules in 2460 * ipif_up_done_v6. 2461 * 2462 * This function takes an illgrp as an argument so that illgrp_delete 2463 * can call this to update source address even after deleting the 2464 * old_ipif->ipif_ill from the ill group. 2465 */ 2466 void 2467 ipif_update_other_ipifs_v6(ipif_t *old_ipif, ill_group_t *illgrp) 2468 { 2469 ipif_t *ipif; 2470 ill_t *ill; 2471 char buf[INET6_ADDRSTRLEN]; 2472 2473 ASSERT(IAM_WRITER_IPIF(old_ipif)); 2474 2475 ill = old_ipif->ipif_ill; 2476 2477 ip1dbg(("ipif_update_other_ipifs_v6(%s, %s)\n", 2478 ill->ill_name, 2479 inet_ntop(AF_INET6, &old_ipif->ipif_v6lcl_addr, 2480 buf, sizeof (buf)))); 2481 2482 /* 2483 * If this part of a group, look at all ills as ipif_select_source 2484 * borrows a source address across all the ills in the group. 2485 */ 2486 if (illgrp != NULL) 2487 ill = illgrp->illgrp_ill; 2488 2489 /* Don't need a lock since this is a writer */ 2490 for (; ill != NULL; ill = ill->ill_group_next) { 2491 for (ipif = ill->ill_ipif; ipif != NULL; 2492 ipif = ipif->ipif_next) { 2493 2494 if (ipif == old_ipif) 2495 continue; 2496 2497 ipif_recreate_interface_routes_v6(old_ipif, ipif); 2498 } 2499 } 2500 } 2501 2502 /* 2503 * Perform an attach and bind to get phys addr plus info_req for 2504 * the physical device. 2505 * q and mp represents an ioctl which will be queued waiting for 2506 * completion of the DLPI message exchange. 2507 * MUST be called on an ill queue. Can not set conn_pending_ill for that 2508 * reason thus the DL_PHYS_ADDR_ACK code does not assume ill_pending_q. 2509 * 2510 * Returns EINPROGRESS when mp has been consumed by queueing it on 2511 * ill_pending_mp and the ioctl will complete in ip_rput. 2512 */ 2513 int 2514 ill_dl_phys(ill_t *ill, ipif_t *ipif, mblk_t *mp, queue_t *q) 2515 { 2516 mblk_t *v6token_mp = NULL; 2517 mblk_t *v6lla_mp = NULL; 2518 mblk_t *phys_mp = NULL; 2519 mblk_t *info_mp = NULL; 2520 mblk_t *attach_mp = NULL; 2521 mblk_t *detach_mp = NULL; 2522 mblk_t *bind_mp = NULL; 2523 mblk_t *unbind_mp = NULL; 2524 mblk_t *notify_mp = NULL; 2525 2526 ip1dbg(("ill_dl_phys(%s:%u)\n", ill->ill_name, ipif->ipif_id)); 2527 ASSERT(ill->ill_dlpi_style_set); 2528 ASSERT(WR(q)->q_next != NULL); 2529 2530 if (ill->ill_isv6) { 2531 v6token_mp = ip_dlpi_alloc(sizeof (dl_phys_addr_req_t) + 2532 sizeof (t_scalar_t), DL_PHYS_ADDR_REQ); 2533 if (v6token_mp == NULL) 2534 goto bad; 2535 ((dl_phys_addr_req_t *)v6token_mp->b_rptr)->dl_addr_type = 2536 DL_IPV6_TOKEN; 2537 2538 v6lla_mp = ip_dlpi_alloc(sizeof (dl_phys_addr_req_t) + 2539 sizeof (t_scalar_t), DL_PHYS_ADDR_REQ); 2540 if (v6lla_mp == NULL) 2541 goto bad; 2542 ((dl_phys_addr_req_t *)v6lla_mp->b_rptr)->dl_addr_type = 2543 DL_IPV6_LINK_LAYER_ADDR; 2544 } 2545 2546 /* 2547 * Allocate a DL_NOTIFY_REQ and set the notifications we want. 2548 */ 2549 notify_mp = ip_dlpi_alloc(sizeof (dl_notify_req_t) + sizeof (long), 2550 DL_NOTIFY_REQ); 2551 if (notify_mp == NULL) 2552 goto bad; 2553 ((dl_notify_req_t *)notify_mp->b_rptr)->dl_notifications = 2554 (DL_NOTE_PHYS_ADDR | DL_NOTE_SDU_SIZE | DL_NOTE_FASTPATH_FLUSH | 2555 DL_NOTE_LINK_UP | DL_NOTE_LINK_DOWN | DL_NOTE_CAPAB_RENEG); 2556 2557 phys_mp = ip_dlpi_alloc(sizeof (dl_phys_addr_req_t) + 2558 sizeof (t_scalar_t), DL_PHYS_ADDR_REQ); 2559 if (phys_mp == NULL) 2560 goto bad; 2561 ((dl_phys_addr_req_t *)phys_mp->b_rptr)->dl_addr_type = 2562 DL_CURR_PHYS_ADDR; 2563 2564 info_mp = ip_dlpi_alloc( 2565 sizeof (dl_info_req_t) + sizeof (dl_info_ack_t), 2566 DL_INFO_REQ); 2567 if (info_mp == NULL) 2568 goto bad; 2569 2570 bind_mp = ip_dlpi_alloc(sizeof (dl_bind_req_t) + sizeof (long), 2571 DL_BIND_REQ); 2572 if (bind_mp == NULL) 2573 goto bad; 2574 ((dl_bind_req_t *)bind_mp->b_rptr)->dl_sap = ill->ill_sap; 2575 ((dl_bind_req_t *)bind_mp->b_rptr)->dl_service_mode = DL_CLDLS; 2576 2577 unbind_mp = ip_dlpi_alloc(sizeof (dl_unbind_req_t), DL_UNBIND_REQ); 2578 if (unbind_mp == NULL) 2579 goto bad; 2580 2581 /* If we need to attach/detach, pre-alloc and initialize the mblks */ 2582 if (ill->ill_needs_attach) { 2583 attach_mp = ip_dlpi_alloc(sizeof (dl_attach_req_t), 2584 DL_ATTACH_REQ); 2585 if (attach_mp == NULL) 2586 goto bad; 2587 ((dl_attach_req_t *)attach_mp->b_rptr)->dl_ppa = ill->ill_ppa; 2588 2589 detach_mp = ip_dlpi_alloc(sizeof (dl_detach_req_t), 2590 DL_DETACH_REQ); 2591 if (detach_mp == NULL) 2592 goto bad; 2593 } 2594 2595 /* 2596 * Here we are going to delay the ioctl ack until after 2597 * ACKs from DL_PHYS_ADDR_REQ. So need to save the 2598 * original ioctl message before sending the requests 2599 */ 2600 mutex_enter(&ill->ill_lock); 2601 /* ipsq_pending_mp_add won't fail since we pass in a NULL connp */ 2602 (void) ipsq_pending_mp_add(NULL, ipif, ill->ill_wq, mp, 0); 2603 /* 2604 * Set ill_phys_addr_pend to zero. It will be set to the addr_type of 2605 * the DL_PHYS_ADDR_REQ in ill_dlpi_send() and ill_dlpi_done(). It will 2606 * be used to track which DL_PHYS_ADDR_REQ is being ACK'd/NAK'd. 2607 */ 2608 ill->ill_phys_addr_pend = 0; 2609 mutex_exit(&ill->ill_lock); 2610 2611 if (attach_mp != NULL) { 2612 ip1dbg(("ill_dl_phys: attach\n")); 2613 ill_dlpi_send(ill, attach_mp); 2614 } 2615 ill_dlpi_send(ill, bind_mp); 2616 ill_dlpi_send(ill, info_mp); 2617 if (ill->ill_isv6) { 2618 ill_dlpi_send(ill, v6token_mp); 2619 ill_dlpi_send(ill, v6lla_mp); 2620 } 2621 ill_dlpi_send(ill, phys_mp); 2622 ill_dlpi_send(ill, notify_mp); 2623 ill_dlpi_send(ill, unbind_mp); 2624 2625 /* 2626 * Save the DL_DETACH_REQ (if there is one) for use in ill_delete(). 2627 */ 2628 ASSERT(ill->ill_detach_mp == NULL); 2629 ill->ill_detach_mp = detach_mp; 2630 2631 /* 2632 * This operation will complete in ip_rput_dlpi_writer with either 2633 * a DL_PHYS_ADDR_ACK or DL_ERROR_ACK. 2634 */ 2635 return (EINPROGRESS); 2636 bad: 2637 if (v6token_mp != NULL) 2638 freemsg(v6token_mp); 2639 if (v6lla_mp != NULL) 2640 freemsg(v6lla_mp); 2641 if (phys_mp != NULL) 2642 freemsg(phys_mp); 2643 if (info_mp != NULL) 2644 freemsg(info_mp); 2645 if (attach_mp != NULL) 2646 freemsg(attach_mp); 2647 if (detach_mp != NULL) 2648 freemsg(detach_mp); 2649 if (bind_mp != NULL) 2650 freemsg(bind_mp); 2651 if (unbind_mp != NULL) 2652 freemsg(unbind_mp); 2653 if (notify_mp != NULL) 2654 freemsg(notify_mp); 2655 return (ENOMEM); 2656 } 2657 2658 uint_t ip_loopback_mtu_v6plus = IP_LOOPBACK_MTU + IPV6_HDR_LEN + 20; 2659 2660 /* 2661 * DLPI is up. 2662 * Create all the IREs associated with an interface bring up multicast. 2663 * Set the interface flag and finish other initialization 2664 * that potentially had to be differed to after DL_BIND_ACK. 2665 */ 2666 int 2667 ipif_up_done_v6(ipif_t *ipif) 2668 { 2669 ire_t *ire_array[20]; 2670 ire_t **irep = ire_array; 2671 ire_t **irep1; 2672 ill_t *ill = ipif->ipif_ill; 2673 queue_t *stq; 2674 in6_addr_t v6addr; 2675 in6_addr_t route_mask; 2676 ipif_t *src_ipif = NULL; 2677 ipif_t *tmp_ipif; 2678 boolean_t flush_ire_cache = B_TRUE; 2679 int err; 2680 char buf[INET6_ADDRSTRLEN]; 2681 phyint_t *phyi; 2682 ire_t **ipif_saved_irep = NULL; 2683 int ipif_saved_ire_cnt; 2684 int cnt; 2685 boolean_t src_ipif_held = B_FALSE; 2686 boolean_t ire_added = B_FALSE; 2687 boolean_t loopback = B_FALSE; 2688 boolean_t ip6_asp_table_held = B_FALSE; 2689 2690 ip1dbg(("ipif_up_done_v6(%s:%u)\n", 2691 ipif->ipif_ill->ill_name, ipif->ipif_id)); 2692 2693 /* Check if this is a loopback interface */ 2694 if (ipif->ipif_ill->ill_wq == NULL) 2695 loopback = B_TRUE; 2696 2697 ASSERT(ipif->ipif_isv6); 2698 ASSERT(!MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 2699 2700 /* 2701 * If all other interfaces for this ill are down or DEPRECATED, 2702 * or otherwise unsuitable for source address selection, remove 2703 * any IRE_CACHE entries for this ill to make sure source 2704 * address selection gets to take this new ipif into account. 2705 * No need to hold ill_lock while traversing the ipif list since 2706 * we are writer 2707 */ 2708 for (tmp_ipif = ill->ill_ipif; tmp_ipif; 2709 tmp_ipif = tmp_ipif->ipif_next) { 2710 if (((tmp_ipif->ipif_flags & 2711 (IPIF_NOXMIT|IPIF_ANYCAST|IPIF_NOLOCAL|IPIF_DEPRECATED)) || 2712 !(tmp_ipif->ipif_flags & IPIF_UP)) || 2713 (tmp_ipif == ipif)) 2714 continue; 2715 /* first useable pre-existing interface */ 2716 flush_ire_cache = B_FALSE; 2717 break; 2718 } 2719 if (flush_ire_cache) 2720 ire_walk_ill_v6(MATCH_IRE_ILL_GROUP | MATCH_IRE_TYPE, 2721 IRE_CACHE, ill_ipif_cache_delete, (char *)ill, ill); 2722 2723 /* 2724 * Figure out which way the send-to queue should go. Only 2725 * IRE_IF_RESOLVER or IRE_IF_NORESOLVER should show up here. 2726 */ 2727 switch (ill->ill_net_type) { 2728 case IRE_IF_RESOLVER: 2729 stq = ill->ill_rq; 2730 break; 2731 case IRE_IF_NORESOLVER: 2732 case IRE_LOOPBACK: 2733 stq = ill->ill_wq; 2734 break; 2735 default: 2736 return (EINVAL); 2737 } 2738 2739 if (ill->ill_phyint->phyint_flags & PHYI_LOOPBACK) { 2740 /* 2741 * lo0:1 and subsequent ipifs were marked IRE_LOCAL in 2742 * ipif_lookup_on_name(), but in the case of zones we can have 2743 * several loopback addresses on lo0. So all the interfaces with 2744 * loopback addresses need to be marked IRE_LOOPBACK. 2745 */ 2746 if (IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6lcl_addr, &ipv6_loopback)) 2747 ipif->ipif_ire_type = IRE_LOOPBACK; 2748 else 2749 ipif->ipif_ire_type = IRE_LOCAL; 2750 } 2751 2752 if (ipif->ipif_flags & (IPIF_NOLOCAL|IPIF_ANYCAST|IPIF_DEPRECATED)) { 2753 /* 2754 * Can't use our source address. Select a different 2755 * source address for the IRE_INTERFACE and IRE_LOCAL 2756 */ 2757 if (ip6_asp_can_lookup()) { 2758 ip6_asp_table_held = B_TRUE; 2759 src_ipif = ipif_select_source_v6(ipif->ipif_ill, 2760 &ipif->ipif_v6subnet, RESTRICT_TO_NONE, 2761 IPV6_PREFER_SRC_DEFAULT, ipif->ipif_zoneid); 2762 } 2763 if (src_ipif == NULL) 2764 src_ipif = ipif; /* Last resort */ 2765 else 2766 src_ipif_held = B_TRUE; 2767 } else { 2768 src_ipif = ipif; 2769 } 2770 2771 if (!IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr) && 2772 !(ipif->ipif_flags & IPIF_NOLOCAL)) { 2773 2774 /* 2775 * If we're on a labeled system then make sure that zone- 2776 * private addresses have proper remote host database entries. 2777 */ 2778 if (is_system_labeled() && 2779 ipif->ipif_ire_type != IRE_LOOPBACK) { 2780 if (ip6opt_ls == 0) { 2781 cmn_err(CE_WARN, "IPv6 not enabled " 2782 "via /etc/system"); 2783 return (EINVAL); 2784 } 2785 if (!tsol_check_interface_address(ipif)) 2786 return (EINVAL); 2787 } 2788 2789 /* Register the source address for __sin6_src_id */ 2790 err = ip_srcid_insert(&ipif->ipif_v6lcl_addr, 2791 ipif->ipif_zoneid); 2792 if (err != 0) { 2793 ip0dbg(("ipif_up_done_v6: srcid_insert %d\n", err)); 2794 if (src_ipif_held) 2795 ipif_refrele(src_ipif); 2796 if (ip6_asp_table_held) 2797 ip6_asp_table_refrele(); 2798 return (err); 2799 } 2800 /* 2801 * If the interface address is set, create the LOCAL 2802 * or LOOPBACK IRE. 2803 */ 2804 ip1dbg(("ipif_up_done_v6: creating IRE %d for %s\n", 2805 ipif->ipif_ire_type, 2806 inet_ntop(AF_INET6, &ipif->ipif_v6lcl_addr, 2807 buf, sizeof (buf)))); 2808 2809 *irep++ = ire_create_v6( 2810 &ipif->ipif_v6lcl_addr, /* dest address */ 2811 &ipv6_all_ones, /* mask */ 2812 &src_ipif->ipif_v6src_addr, /* source address */ 2813 NULL, /* no gateway */ 2814 &ip_loopback_mtu_v6plus, /* max frag size */ 2815 NULL, 2816 ipif->ipif_rq, /* recv-from queue */ 2817 NULL, /* no send-to queue */ 2818 ipif->ipif_ire_type, /* LOCAL or LOOPBACK */ 2819 NULL, 2820 ipif, /* interface */ 2821 NULL, 2822 0, 2823 0, 2824 (ipif->ipif_flags & IPIF_PRIVATE) ? RTF_PRIVATE : 0, 2825 &ire_uinfo_null, 2826 NULL, 2827 NULL); 2828 } 2829 2830 /* 2831 * Set up the IRE_IF_RESOLVER or IRE_IF_NORESOLVER, as appropriate. 2832 * Note that atun interfaces have an all-zero ipif_v6subnet. 2833 * Thus we allow a zero subnet as long as the mask is non-zero. 2834 */ 2835 if (stq != NULL && !(ipif->ipif_flags & IPIF_NOXMIT) && 2836 !(IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6subnet) && 2837 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6net_mask))) { 2838 /* ipif_v6subnet is ipif_v6pp_dst_addr for pt-pt */ 2839 v6addr = ipif->ipif_v6subnet; 2840 2841 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 2842 route_mask = ipv6_all_ones; 2843 } else { 2844 route_mask = ipif->ipif_v6net_mask; 2845 } 2846 2847 ip1dbg(("ipif_up_done_v6: creating if IRE %d for %s\n", 2848 ill->ill_net_type, 2849 inet_ntop(AF_INET6, &v6addr, buf, sizeof (buf)))); 2850 2851 *irep++ = ire_create_v6( 2852 &v6addr, /* dest pref */ 2853 &route_mask, /* mask */ 2854 &src_ipif->ipif_v6src_addr, /* src addr */ 2855 NULL, /* no gateway */ 2856 &ipif->ipif_mtu, /* max frag */ 2857 NULL, /* no Fast path header */ 2858 NULL, /* no recv from queue */ 2859 stq, /* send-to queue */ 2860 ill->ill_net_type, /* IF_[NO]RESOLVER */ 2861 ill->ill_resolver_mp, /* xmit header */ 2862 ipif, 2863 NULL, 2864 0, 2865 0, 2866 (ipif->ipif_flags & IPIF_PRIVATE) ? RTF_PRIVATE : 0, 2867 &ire_uinfo_null, 2868 NULL, 2869 NULL); 2870 } 2871 2872 /* 2873 * Setup 2002::/16 route, if this interface is a 6to4 tunnel 2874 */ 2875 if (IN6_IS_ADDR_6TO4(&ipif->ipif_v6lcl_addr) && 2876 (ill->ill_is_6to4tun)) { 2877 /* 2878 * Destination address is 2002::/16 2879 */ 2880 #ifdef _BIG_ENDIAN 2881 const in6_addr_t prefix_addr = { 0x20020000U, 0, 0, 0 }; 2882 const in6_addr_t prefix_mask = { 0xffff0000U, 0, 0, 0 }; 2883 #else 2884 const in6_addr_t prefix_addr = { 0x00000220U, 0, 0, 0 }; 2885 const in6_addr_t prefix_mask = { 0x0000ffffU, 0, 0, 0 }; 2886 #endif /* _BIG_ENDIAN */ 2887 char buf2[INET6_ADDRSTRLEN]; 2888 ire_t *isdup; 2889 in6_addr_t *first_addr = &ill->ill_ipif->ipif_v6lcl_addr; 2890 2891 /* 2892 * check to see if this route has already been added for 2893 * this tunnel interface. 2894 */ 2895 isdup = ire_ftable_lookup_v6(first_addr, &prefix_mask, 0, 2896 IRE_IF_NORESOLVER, ill->ill_ipif, NULL, ALL_ZONES, 0, NULL, 2897 (MATCH_IRE_SRC | MATCH_IRE_MASK)); 2898 2899 if (isdup == NULL) { 2900 ip1dbg(("ipif_up_done_v6: creating if IRE %d for %s", 2901 IRE_IF_NORESOLVER, inet_ntop(AF_INET6, &v6addr, 2902 buf2, sizeof (buf2)))); 2903 2904 *irep++ = ire_create_v6( 2905 &prefix_addr, /* 2002:: */ 2906 &prefix_mask, /* ffff:: */ 2907 &ipif->ipif_v6lcl_addr, /* src addr */ 2908 NULL, /* gateway */ 2909 &ipif->ipif_mtu, /* max_frag */ 2910 NULL, /* no Fast Path hdr */ 2911 NULL, /* no rfq */ 2912 ill->ill_wq, /* stq */ 2913 IRE_IF_NORESOLVER, /* type */ 2914 ill->ill_resolver_mp, /* dlureq_mp */ 2915 ipif, /* interface */ 2916 NULL, /* v6cmask */ 2917 0, 2918 0, 2919 RTF_UP, 2920 &ire_uinfo_null, 2921 NULL, 2922 NULL); 2923 } else { 2924 ire_refrele(isdup); 2925 } 2926 } 2927 2928 /* If an earlier ire_create failed, get out now */ 2929 for (irep1 = irep; irep1 > ire_array; ) { 2930 irep1--; 2931 if (*irep1 == NULL) { 2932 ip1dbg(("ipif_up_done_v6: NULL ire found in" 2933 " ire_array\n")); 2934 err = ENOMEM; 2935 goto bad; 2936 } 2937 } 2938 2939 ASSERT(!MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 2940 2941 /* 2942 * Need to atomically check for ip_addr_availablity_check 2943 * now under ill_g_lock, and if it fails got bad, and remove 2944 * from group also 2945 */ 2946 rw_enter(&ill_g_lock, RW_READER); 2947 mutex_enter(&ip_addr_avail_lock); 2948 ill->ill_ipif_up_count++; 2949 ipif->ipif_flags |= IPIF_UP; 2950 err = ip_addr_availability_check(ipif); 2951 mutex_exit(&ip_addr_avail_lock); 2952 rw_exit(&ill_g_lock); 2953 2954 if (err != 0) { 2955 /* 2956 * Our address may already be up on the same ill. In this case, 2957 * the external resolver entry for our ipif replaced the one for 2958 * the other ipif. So we don't want to delete it (otherwise the 2959 * other ipif would be unable to send packets). 2960 * ip_addr_availability_check() identifies this case for us and 2961 * returns EADDRINUSE; we need to turn it into EADDRNOTAVAIL 2962 * which is the expected error code. 2963 */ 2964 if (err == EADDRINUSE) { 2965 if (ipif->ipif_ill->ill_flags & ILLF_XRESOLV) { 2966 freemsg(ipif->ipif_arp_del_mp); 2967 ipif->ipif_arp_del_mp = NULL; 2968 } 2969 err = EADDRNOTAVAIL; 2970 } 2971 ill->ill_ipif_up_count--; 2972 ipif->ipif_flags &= ~IPIF_UP; 2973 goto bad; 2974 } 2975 2976 /* 2977 * Add in all newly created IREs. We want to add before 2978 * we call ifgrp_insert which wants to know whether 2979 * IRE_IF_RESOLVER exists or not. 2980 * 2981 * NOTE : We refrele the ire though we may branch to "bad" 2982 * later on where we do ire_delete. This is okay 2983 * because nobody can delete it as we are running 2984 * exclusively. 2985 */ 2986 for (irep1 = irep; irep1 > ire_array; ) { 2987 irep1--; 2988 /* Shouldn't be adding any bcast ire's */ 2989 ASSERT((*irep1)->ire_type != IRE_BROADCAST); 2990 ASSERT(!MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 2991 /* 2992 * refheld by ire_add. refele towards the end of the func 2993 */ 2994 (void) ire_add(irep1, NULL, NULL, NULL, B_FALSE); 2995 } 2996 if (ip6_asp_table_held) { 2997 ip6_asp_table_refrele(); 2998 ip6_asp_table_held = B_FALSE; 2999 } 3000 ire_added = B_TRUE; 3001 3002 /* 3003 * Form groups if possible. 3004 * 3005 * If we are supposed to be in a ill_group with a name, insert it 3006 * now as we know that at least one ipif is UP. Otherwise form 3007 * nameless groups. 3008 * 3009 * If ip_enable_group_ifs is set and ipif address is not ::0, insert 3010 * this ipif into the appropriate interface group, or create a 3011 * new one. If this is already in a nameless group, we try to form 3012 * a bigger group looking at other ills potentially sharing this 3013 * ipif's prefix. 3014 */ 3015 phyi = ill->ill_phyint; 3016 if (phyi->phyint_groupname_len != 0) { 3017 ASSERT(phyi->phyint_groupname != NULL); 3018 if (ill->ill_ipif_up_count == 1) { 3019 ASSERT(ill->ill_group == NULL); 3020 err = illgrp_insert(&illgrp_head_v6, ill, 3021 phyi->phyint_groupname, NULL, B_TRUE); 3022 if (err != 0) { 3023 ip1dbg(("ipif_up_done_v6: illgrp allocation " 3024 "failed, error %d\n", err)); 3025 goto bad; 3026 } 3027 } 3028 ASSERT(ill->ill_group != NULL); 3029 } 3030 3031 /* Recover any additional IRE_IF_[NO]RESOLVER entries for this ipif */ 3032 ipif_saved_ire_cnt = ipif->ipif_saved_ire_cnt; 3033 ipif_saved_irep = ipif_recover_ire_v6(ipif); 3034 3035 if (ipif->ipif_ipif_up_count == 1 && !loopback) { 3036 /* 3037 * Need to recover all multicast memberships in the driver. 3038 * This had to be deferred until we had attached. 3039 */ 3040 ill_recover_multicast(ill); 3041 } 3042 /* Join the allhosts multicast address and the solicited node MC */ 3043 ipif_multicast_up(ipif); 3044 3045 if (!loopback) { 3046 /* 3047 * See whether anybody else would benefit from the 3048 * new ipif that we added. We call this always rather 3049 * than while adding a non-IPIF_NOLOCAL/DEPRECATED/ANYCAST 3050 * ipif for the benefit of illgrp_insert (done above) 3051 * which does not do source address selection as it does 3052 * not want to re-create interface routes that we are 3053 * having reference to it here. 3054 */ 3055 ill_update_source_selection(ill); 3056 } 3057 3058 for (irep1 = irep; irep1 > ire_array; ) { 3059 irep1--; 3060 if (*irep1 != NULL) { 3061 /* was held in ire_add */ 3062 ire_refrele(*irep1); 3063 } 3064 } 3065 3066 cnt = ipif_saved_ire_cnt; 3067 for (irep1 = ipif_saved_irep; cnt > 0; irep1++, cnt--) { 3068 if (*irep1 != NULL) { 3069 /* was held in ire_add */ 3070 ire_refrele(*irep1); 3071 } 3072 } 3073 3074 if (ipif->ipif_addr_ready) { 3075 ip_rts_ifmsg(ipif); 3076 ip_rts_newaddrmsg(RTM_ADD, 0, ipif); 3077 sctp_update_ipif(ipif, SCTP_IPIF_UP); 3078 } 3079 3080 if (ipif_saved_irep != NULL) { 3081 kmem_free(ipif_saved_irep, 3082 ipif_saved_ire_cnt * sizeof (ire_t *)); 3083 } 3084 3085 if (src_ipif_held) 3086 ipif_refrele(src_ipif); 3087 return (0); 3088 3089 bad: 3090 if (ip6_asp_table_held) 3091 ip6_asp_table_refrele(); 3092 /* 3093 * We don't have to bother removing from ill groups because 3094 * 3095 * 1) For groups with names, we insert only when the first ipif 3096 * comes up. In that case if it fails, it will not be in any 3097 * group. So, we need not try to remove for that case. 3098 * 3099 * 2) For groups without names, either we tried to insert ipif_ill 3100 * in a group as singleton or found some other group to become 3101 * a bigger group. For the former, if it fails we don't have 3102 * anything to do as ipif_ill is not in the group and for the 3103 * latter, there are no failures in illgrp_insert/illgrp_delete 3104 * (ENOMEM can't occur for this. Check ifgrp_insert). 3105 */ 3106 3107 while (irep > ire_array) { 3108 irep--; 3109 if (*irep != NULL) { 3110 ire_delete(*irep); 3111 if (ire_added) 3112 ire_refrele(*irep); 3113 } 3114 3115 } 3116 (void) ip_srcid_remove(&ipif->ipif_v6lcl_addr, ipif->ipif_zoneid); 3117 3118 if (ipif_saved_irep != NULL) { 3119 kmem_free(ipif_saved_irep, 3120 ipif_saved_ire_cnt * sizeof (ire_t *)); 3121 } 3122 if (src_ipif_held) 3123 ipif_refrele(src_ipif); 3124 3125 ipif_ndp_down(ipif); 3126 if (ipif->ipif_ill->ill_flags & ILLF_XRESOLV) 3127 ipif_arp_down(ipif); 3128 3129 return (err); 3130 } 3131 3132 /* 3133 * Delete an ND entry and the corresponding IRE_CACHE entry if it exists. 3134 */ 3135 /* ARGSUSED */ 3136 int 3137 ip_siocdelndp_v6(ipif_t *ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 3138 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 3139 { 3140 in6_addr_t addr; 3141 sin6_t *sin6; 3142 nce_t *nce; 3143 struct lifreq *lifr; 3144 lif_nd_req_t *lnr; 3145 mblk_t *mp1; 3146 3147 mp1 = mp->b_cont->b_cont; 3148 lifr = (struct lifreq *)mp1->b_rptr; 3149 lnr = &lifr->lifr_nd; 3150 /* Only allow for logical unit zero i.e. not on "le0:17" */ 3151 if (ipif->ipif_id != 0) 3152 return (EINVAL); 3153 3154 if (!ipif->ipif_isv6) 3155 return (EINVAL); 3156 3157 if (lnr->lnr_addr.ss_family != AF_INET6) 3158 return (EAFNOSUPPORT); 3159 3160 sin6 = (sin6_t *)&lnr->lnr_addr; 3161 addr = sin6->sin6_addr; 3162 nce = ndp_lookup_v6(ipif->ipif_ill, &addr, B_FALSE); 3163 if (nce == NULL) 3164 return (ESRCH); 3165 ndp_delete(nce); 3166 NCE_REFRELE(nce); 3167 return (0); 3168 } 3169 3170 /* 3171 * Return nbr cache info. 3172 */ 3173 /* ARGSUSED */ 3174 int 3175 ip_siocqueryndp_v6(ipif_t *ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 3176 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 3177 { 3178 ill_t *ill = ipif->ipif_ill; 3179 struct lifreq *lifr; 3180 lif_nd_req_t *lnr; 3181 3182 lifr = (struct lifreq *)mp->b_cont->b_cont->b_rptr; 3183 lnr = &lifr->lifr_nd; 3184 /* Only allow for logical unit zero i.e. not on "le0:17" */ 3185 if (ipif->ipif_id != 0) 3186 return (EINVAL); 3187 3188 if (!ipif->ipif_isv6) 3189 return (EINVAL); 3190 3191 if (lnr->lnr_addr.ss_family != AF_INET6) 3192 return (EAFNOSUPPORT); 3193 3194 if (ill->ill_phys_addr_length > sizeof (lnr->lnr_hdw_addr)) 3195 return (EINVAL); 3196 3197 return (ndp_query(ill, lnr)); 3198 } 3199 3200 /* 3201 * Perform an update of the nd entry for the specified address. 3202 */ 3203 /* ARGSUSED */ 3204 int 3205 ip_siocsetndp_v6(ipif_t *ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 3206 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 3207 { 3208 ill_t *ill = ipif->ipif_ill; 3209 struct lifreq *lifr; 3210 lif_nd_req_t *lnr; 3211 3212 lifr = (struct lifreq *)mp->b_cont->b_cont->b_rptr; 3213 lnr = &lifr->lifr_nd; 3214 /* Only allow for logical unit zero i.e. not on "le0:17" */ 3215 if (ipif->ipif_id != 0) 3216 return (EINVAL); 3217 3218 if (!ipif->ipif_isv6) 3219 return (EINVAL); 3220 3221 if (lnr->lnr_addr.ss_family != AF_INET6) 3222 return (EAFNOSUPPORT); 3223 3224 return (ndp_sioc_update(ill, lnr)); 3225 } 3226