1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 1991, 2010, Oracle and/or its affiliates. All rights reserved. 24 * Copyright (c) 1990 Mentat Inc. 25 */ 26 27 #include <sys/types.h> 28 #include <sys/stream.h> 29 #include <sys/dlpi.h> 30 #include <sys/stropts.h> 31 #include <sys/sysmacros.h> 32 #include <sys/strsubr.h> 33 #include <sys/strlog.h> 34 #include <sys/strsun.h> 35 #include <sys/zone.h> 36 #define _SUN_TPI_VERSION 2 37 #include <sys/tihdr.h> 38 #include <sys/xti_inet.h> 39 #include <sys/ddi.h> 40 #include <sys/suntpi.h> 41 #include <sys/cmn_err.h> 42 #include <sys/debug.h> 43 #include <sys/kobj.h> 44 #include <sys/modctl.h> 45 #include <sys/atomic.h> 46 #include <sys/policy.h> 47 #include <sys/priv.h> 48 #include <sys/taskq.h> 49 50 #include <sys/systm.h> 51 #include <sys/param.h> 52 #include <sys/kmem.h> 53 #include <sys/sdt.h> 54 #include <sys/socket.h> 55 #include <sys/vtrace.h> 56 #include <sys/isa_defs.h> 57 #include <sys/mac.h> 58 #include <net/if.h> 59 #include <net/if_arp.h> 60 #include <net/route.h> 61 #include <sys/sockio.h> 62 #include <netinet/in.h> 63 #include <net/if_dl.h> 64 65 #include <inet/common.h> 66 #include <inet/mi.h> 67 #include <inet/mib2.h> 68 #include <inet/nd.h> 69 #include <inet/arp.h> 70 #include <inet/snmpcom.h> 71 #include <inet/optcom.h> 72 #include <inet/kstatcom.h> 73 74 #include <netinet/igmp_var.h> 75 #include <netinet/ip6.h> 76 #include <netinet/icmp6.h> 77 #include <netinet/sctp.h> 78 79 #include <inet/ip.h> 80 #include <inet/ip_impl.h> 81 #include <inet/ip6.h> 82 #include <inet/ip6_asp.h> 83 #include <inet/tcp.h> 84 #include <inet/tcp_impl.h> 85 #include <inet/ip_multi.h> 86 #include <inet/ip_if.h> 87 #include <inet/ip_ire.h> 88 #include <inet/ip_ftable.h> 89 #include <inet/ip_rts.h> 90 #include <inet/ip_ndp.h> 91 #include <inet/ip_listutils.h> 92 #include <netinet/igmp.h> 93 #include <netinet/ip_mroute.h> 94 #include <inet/ipp_common.h> 95 96 #include <net/pfkeyv2.h> 97 #include <inet/sadb.h> 98 #include <inet/ipsec_impl.h> 99 #include <inet/iptun/iptun_impl.h> 100 #include <inet/ipdrop.h> 101 #include <inet/ip_netinfo.h> 102 #include <inet/ilb_ip.h> 103 104 #include <sys/ethernet.h> 105 #include <net/if_types.h> 106 #include <sys/cpuvar.h> 107 108 #include <ipp/ipp.h> 109 #include <ipp/ipp_impl.h> 110 #include <ipp/ipgpc/ipgpc.h> 111 112 #include <sys/pattr.h> 113 #include <inet/ipclassifier.h> 114 #include <inet/sctp_ip.h> 115 #include <inet/sctp/sctp_impl.h> 116 #include <inet/udp_impl.h> 117 #include <inet/rawip_impl.h> 118 #include <inet/rts_impl.h> 119 120 #include <sys/tsol/label.h> 121 #include <sys/tsol/tnet.h> 122 123 #include <sys/squeue_impl.h> 124 #include <inet/ip_arp.h> 125 126 #include <sys/clock_impl.h> /* For LBOLT_FASTPATH{,64} */ 127 128 /* 129 * Values for squeue switch: 130 * IP_SQUEUE_ENTER_NODRAIN: SQ_NODRAIN 131 * IP_SQUEUE_ENTER: SQ_PROCESS 132 * IP_SQUEUE_FILL: SQ_FILL 133 */ 134 int ip_squeue_enter = IP_SQUEUE_ENTER; /* Setable in /etc/system */ 135 136 int ip_squeue_flag; 137 138 /* 139 * Setable in /etc/system 140 */ 141 int ip_poll_normal_ms = 100; 142 int ip_poll_normal_ticks = 0; 143 int ip_modclose_ackwait_ms = 3000; 144 145 /* 146 * It would be nice to have these present only in DEBUG systems, but the 147 * current design of the global symbol checking logic requires them to be 148 * unconditionally present. 149 */ 150 uint_t ip_thread_data; /* TSD key for debug support */ 151 krwlock_t ip_thread_rwlock; 152 list_t ip_thread_list; 153 154 /* 155 * Structure to represent a linked list of msgblks. Used by ip_snmp_ functions. 156 */ 157 158 struct listptr_s { 159 mblk_t *lp_head; /* pointer to the head of the list */ 160 mblk_t *lp_tail; /* pointer to the tail of the list */ 161 }; 162 163 typedef struct listptr_s listptr_t; 164 165 /* 166 * This is used by ip_snmp_get_mib2_ip_route_media and 167 * ip_snmp_get_mib2_ip6_route_media to carry the lists of return data. 168 */ 169 typedef struct iproutedata_s { 170 uint_t ird_idx; 171 uint_t ird_flags; /* see below */ 172 listptr_t ird_route; /* ipRouteEntryTable */ 173 listptr_t ird_netmedia; /* ipNetToMediaEntryTable */ 174 listptr_t ird_attrs; /* ipRouteAttributeTable */ 175 } iproutedata_t; 176 177 /* Include ire_testhidden and IRE_IF_CLONE routes */ 178 #define IRD_REPORT_ALL 0x01 179 180 /* 181 * Cluster specific hooks. These should be NULL when booted as a non-cluster 182 */ 183 184 /* 185 * Hook functions to enable cluster networking 186 * On non-clustered systems these vectors must always be NULL. 187 * 188 * Hook function to Check ip specified ip address is a shared ip address 189 * in the cluster 190 * 191 */ 192 int (*cl_inet_isclusterwide)(netstackid_t stack_id, uint8_t protocol, 193 sa_family_t addr_family, uint8_t *laddrp, void *args) = NULL; 194 195 /* 196 * Hook function to generate cluster wide ip fragment identifier 197 */ 198 uint32_t (*cl_inet_ipident)(netstackid_t stack_id, uint8_t protocol, 199 sa_family_t addr_family, uint8_t *laddrp, uint8_t *faddrp, 200 void *args) = NULL; 201 202 /* 203 * Hook function to generate cluster wide SPI. 204 */ 205 void (*cl_inet_getspi)(netstackid_t, uint8_t, uint8_t *, size_t, 206 void *) = NULL; 207 208 /* 209 * Hook function to verify if the SPI is already utlized. 210 */ 211 212 int (*cl_inet_checkspi)(netstackid_t, uint8_t, uint32_t, void *) = NULL; 213 214 /* 215 * Hook function to delete the SPI from the cluster wide repository. 216 */ 217 218 void (*cl_inet_deletespi)(netstackid_t, uint8_t, uint32_t, void *) = NULL; 219 220 /* 221 * Hook function to inform the cluster when packet received on an IDLE SA 222 */ 223 224 void (*cl_inet_idlesa)(netstackid_t, uint8_t, uint32_t, sa_family_t, 225 in6_addr_t, in6_addr_t, void *) = NULL; 226 227 /* 228 * Synchronization notes: 229 * 230 * IP is a fully D_MP STREAMS module/driver. Thus it does not depend on any 231 * MT level protection given by STREAMS. IP uses a combination of its own 232 * internal serialization mechanism and standard Solaris locking techniques. 233 * The internal serialization is per phyint. This is used to serialize 234 * plumbing operations, IPMP operations, most set ioctls, etc. 235 * 236 * Plumbing is a long sequence of operations involving message 237 * exchanges between IP, ARP and device drivers. Many set ioctls are typically 238 * involved in plumbing operations. A natural model is to serialize these 239 * ioctls one per ill. For example plumbing of hme0 and qfe0 can go on in 240 * parallel without any interference. But various set ioctls on hme0 are best 241 * serialized, along with IPMP operations and processing of DLPI control 242 * messages received from drivers on a per phyint basis. This serialization is 243 * provided by the ipsq_t and primitives operating on this. Details can 244 * be found in ip_if.c above the core primitives operating on ipsq_t. 245 * 246 * Lookups of an ipif or ill by a thread return a refheld ipif / ill. 247 * Simiarly lookup of an ire by a thread also returns a refheld ire. 248 * In addition ipif's and ill's referenced by the ire are also indirectly 249 * refheld. Thus no ipif or ill can vanish as long as an ipif is refheld 250 * directly or indirectly. For example an SIOCSLIFADDR ioctl that changes the 251 * address of an ipif has to go through the ipsq_t. This ensures that only 252 * one such exclusive operation proceeds at any time on the ipif. It then 253 * waits for all refcnts 254 * associated with this ipif to come down to zero. The address is changed 255 * only after the ipif has been quiesced. Then the ipif is brought up again. 256 * More details are described above the comment in ip_sioctl_flags. 257 * 258 * Packet processing is based mostly on IREs and are fully multi-threaded 259 * using standard Solaris MT techniques. 260 * 261 * There are explicit locks in IP to handle: 262 * - The ip_g_head list maintained by mi_open_link() and friends. 263 * 264 * - The reassembly data structures (one lock per hash bucket) 265 * 266 * - conn_lock is meant to protect conn_t fields. The fields actually 267 * protected by conn_lock are documented in the conn_t definition. 268 * 269 * - ire_lock to protect some of the fields of the ire, IRE tables 270 * (one lock per hash bucket). Refer to ip_ire.c for details. 271 * 272 * - ndp_g_lock and ncec_lock for protecting NCEs. 273 * 274 * - ill_lock protects fields of the ill and ipif. Details in ip.h 275 * 276 * - ill_g_lock: This is a global reader/writer lock. Protects the following 277 * * The AVL tree based global multi list of all ills. 278 * * The linked list of all ipifs of an ill 279 * * The <ipsq-xop> mapping 280 * * <ill-phyint> association 281 * Insertion/deletion of an ill in the system, insertion/deletion of an ipif 282 * into an ill, changing the <ipsq-xop> mapping of an ill, changing the 283 * <ill-phyint> assoc of an ill will all have to hold the ill_g_lock as 284 * writer for the actual duration of the insertion/deletion/change. 285 * 286 * - ill_lock: This is a per ill mutex. 287 * It protects some members of the ill_t struct; see ip.h for details. 288 * It also protects the <ill-phyint> assoc. 289 * It also protects the list of ipifs hanging off the ill. 290 * 291 * - ipsq_lock: This is a per ipsq_t mutex lock. 292 * This protects some members of the ipsq_t struct; see ip.h for details. 293 * It also protects the <ipsq-ipxop> mapping 294 * 295 * - ipx_lock: This is a per ipxop_t mutex lock. 296 * This protects some members of the ipxop_t struct; see ip.h for details. 297 * 298 * - phyint_lock: This is a per phyint mutex lock. Protects just the 299 * phyint_flags 300 * 301 * - ip_addr_avail_lock: This is used to ensure the uniqueness of IP addresses. 302 * This lock is held in ipif_up_done and the ipif is marked IPIF_UP and the 303 * uniqueness check also done atomically. 304 * 305 * - ill_g_usesrc_lock: This readers/writer lock protects the usesrc 306 * group list linked by ill_usesrc_grp_next. It also protects the 307 * ill_usesrc_ifindex field. It is taken as a writer when a member of the 308 * group is being added or deleted. This lock is taken as a reader when 309 * walking the list/group(eg: to get the number of members in a usesrc group). 310 * Note, it is only necessary to take this lock if the ill_usesrc_grp_next 311 * field is changing state i.e from NULL to non-NULL or vice-versa. For 312 * example, it is not necessary to take this lock in the initial portion 313 * of ip_sioctl_slifusesrc or at all in ip_sioctl_flags since these 314 * operations are executed exclusively and that ensures that the "usesrc 315 * group state" cannot change. The "usesrc group state" change can happen 316 * only in the latter part of ip_sioctl_slifusesrc and in ill_delete. 317 * 318 * Changing <ill-phyint>, <ipsq-xop> assocications: 319 * 320 * To change the <ill-phyint> association, the ill_g_lock must be held 321 * as writer, and the ill_locks of both the v4 and v6 instance of the ill 322 * must be held. 323 * 324 * To change the <ipsq-xop> association, the ill_g_lock must be held as 325 * writer, the ipsq_lock must be held, and one must be writer on the ipsq. 326 * This is only done when ills are added or removed from IPMP groups. 327 * 328 * To add or delete an ipif from the list of ipifs hanging off the ill, 329 * ill_g_lock (writer) and ill_lock must be held and the thread must be 330 * a writer on the associated ipsq. 331 * 332 * To add or delete an ill to the system, the ill_g_lock must be held as 333 * writer and the thread must be a writer on the associated ipsq. 334 * 335 * To add or delete an ilm to an ill, the ill_lock must be held and the thread 336 * must be a writer on the associated ipsq. 337 * 338 * Lock hierarchy 339 * 340 * Some lock hierarchy scenarios are listed below. 341 * 342 * ill_g_lock -> conn_lock -> ill_lock -> ipsq_lock -> ipx_lock 343 * ill_g_lock -> ill_lock(s) -> phyint_lock 344 * ill_g_lock -> ndp_g_lock -> ill_lock -> ncec_lock 345 * ill_g_lock -> ip_addr_avail_lock 346 * conn_lock -> irb_lock -> ill_lock -> ire_lock 347 * ill_g_lock -> ip_g_nd_lock 348 * ill_g_lock -> ips_ipmp_lock -> ill_lock -> nce_lock 349 * ill_g_lock -> ndp_g_lock -> ill_lock -> ncec_lock -> nce_lock 350 * arl_lock -> ill_lock 351 * ips_ire_dep_lock -> irb_lock 352 * 353 * When more than 1 ill lock is needed to be held, all ill lock addresses 354 * are sorted on address and locked starting from highest addressed lock 355 * downward. 356 * 357 * Multicast scenarios 358 * ips_ill_g_lock -> ill_mcast_lock 359 * conn_ilg_lock -> ips_ill_g_lock -> ill_lock 360 * ill_mcast_serializer -> ill_mcast_lock -> ips_ipmp_lock -> ill_lock 361 * ill_mcast_serializer -> ill_mcast_lock -> connf_lock -> conn_lock 362 * ill_mcast_serializer -> ill_mcast_lock -> conn_ilg_lock 363 * ill_mcast_serializer -> ill_mcast_lock -> ips_igmp_timer_lock 364 * 365 * IPsec scenarios 366 * 367 * ipsa_lock -> ill_g_lock -> ill_lock 368 * ill_g_usesrc_lock -> ill_g_lock -> ill_lock 369 * 370 * Trusted Solaris scenarios 371 * 372 * igsa_lock -> gcgrp_rwlock -> gcgrp_lock 373 * igsa_lock -> gcdb_lock 374 * gcgrp_rwlock -> ire_lock 375 * gcgrp_rwlock -> gcdb_lock 376 * 377 * squeue(sq_lock), flow related (ft_lock, fe_lock) locking 378 * 379 * cpu_lock --> ill_lock --> sqset_lock --> sq_lock 380 * sq_lock -> conn_lock -> QLOCK(q) 381 * ill_lock -> ft_lock -> fe_lock 382 * 383 * Routing/forwarding table locking notes: 384 * 385 * Lock acquisition order: Radix tree lock, irb_lock. 386 * Requirements: 387 * i. Walker must not hold any locks during the walker callback. 388 * ii Walker must not see a truncated tree during the walk because of any node 389 * deletion. 390 * iii Existing code assumes ire_bucket is valid if it is non-null and is used 391 * in many places in the code to walk the irb list. Thus even if all the 392 * ires in a bucket have been deleted, we still can't free the radix node 393 * until the ires have actually been inactive'd (freed). 394 * 395 * Tree traversal - Need to hold the global tree lock in read mode. 396 * Before dropping the global tree lock, need to either increment the ire_refcnt 397 * to ensure that the radix node can't be deleted. 398 * 399 * Tree add - Need to hold the global tree lock in write mode to add a 400 * radix node. To prevent the node from being deleted, increment the 401 * irb_refcnt, after the node is added to the tree. The ire itself is 402 * added later while holding the irb_lock, but not the tree lock. 403 * 404 * Tree delete - Need to hold the global tree lock and irb_lock in write mode. 405 * All associated ires must be inactive (i.e. freed), and irb_refcnt 406 * must be zero. 407 * 408 * Walker - Increment irb_refcnt before calling the walker callback. Hold the 409 * global tree lock (read mode) for traversal. 410 * 411 * IRE dependencies - In some cases we hold ips_ire_dep_lock across ire_refrele 412 * hence we will acquire irb_lock while holding ips_ire_dep_lock. 413 * 414 * IPsec notes : 415 * 416 * IP interacts with the IPsec code (AH/ESP) by storing IPsec attributes 417 * in the ip_xmit_attr_t ip_recv_attr_t. For outbound datagrams, the 418 * ip_xmit_attr_t has the 419 * information used by the IPsec code for applying the right level of 420 * protection. The information initialized by IP in the ip_xmit_attr_t 421 * is determined by the per-socket policy or global policy in the system. 422 * For inbound datagrams, the ip_recv_attr_t 423 * starts out with nothing in it. It gets filled 424 * with the right information if it goes through the AH/ESP code, which 425 * happens if the incoming packet is secure. The information initialized 426 * by AH/ESP, is later used by IP (during fanouts to ULP) to see whether 427 * the policy requirements needed by per-socket policy or global policy 428 * is met or not. 429 * 430 * For fully connected sockets i.e dst, src [addr, port] is known, 431 * conn_policy_cached is set indicating that policy has been cached. 432 * conn_in_enforce_policy may or may not be set depending on whether 433 * there is a global policy match or per-socket policy match. 434 * Policy inheriting happpens in ip_policy_set once the destination is known. 435 * Once the right policy is set on the conn_t, policy cannot change for 436 * this socket. This makes life simpler for TCP (UDP ?) where 437 * re-transmissions go out with the same policy. For symmetry, policy 438 * is cached for fully connected UDP sockets also. Thus if policy is cached, 439 * it also implies that policy is latched i.e policy cannot change 440 * on these sockets. As we have the right policy on the conn, we don't 441 * have to lookup global policy for every outbound and inbound datagram 442 * and thus serving as an optimization. Note that a global policy change 443 * does not affect fully connected sockets if they have policy. If fully 444 * connected sockets did not have any policy associated with it, global 445 * policy change may affect them. 446 * 447 * IP Flow control notes: 448 * --------------------- 449 * Non-TCP streams are flow controlled by IP. The way this is accomplished 450 * differs when ILL_CAPAB_DLD_DIRECT is enabled for that IP instance. When 451 * ILL_DIRECT_CAPABLE(ill) is TRUE, IP can do direct function calls into 452 * GLDv3. Otherwise packets are sent down to lower layers using STREAMS 453 * functions. 454 * 455 * Per Tx ring udp flow control: 456 * This is applicable only when ILL_CAPAB_DLD_DIRECT capability is set in 457 * the ill (i.e. ILL_DIRECT_CAPABLE(ill) is true). 458 * 459 * The underlying link can expose multiple Tx rings to the GLDv3 mac layer. 460 * To achieve best performance, outgoing traffic need to be fanned out among 461 * these Tx ring. mac_tx() is called (via str_mdata_fastpath_put()) to send 462 * traffic out of the NIC and it takes a fanout hint. UDP connections pass 463 * the address of connp as fanout hint to mac_tx(). Under flow controlled 464 * condition, mac_tx() returns a non-NULL cookie (ip_mac_tx_cookie_t). This 465 * cookie points to a specific Tx ring that is blocked. The cookie is used to 466 * hash into an idl_tx_list[] entry in idl_tx_list[] array. Each idl_tx_list_t 467 * point to drain_lists (idl_t's). These drain list will store the blocked UDP 468 * connp's. The drain list is not a single list but a configurable number of 469 * lists. 470 * 471 * The diagram below shows idl_tx_list_t's and their drain_lists. ip_stack_t 472 * has an array of idl_tx_list_t. The size of the array is TX_FANOUT_SIZE 473 * which is equal to 128. This array in turn contains a pointer to idl_t[], 474 * the ip drain list. The idl_t[] array size is MIN(max_ncpus, 8). The drain 475 * list will point to the list of connp's that are flow controlled. 476 * 477 * --------------- ------- ------- ------- 478 * |->|drain_list[0]|-->|connp|-->|connp|-->|connp|--> 479 * | --------------- ------- ------- ------- 480 * | --------------- ------- ------- ------- 481 * |->|drain_list[1]|-->|connp|-->|connp|-->|connp|--> 482 * ---------------- | --------------- ------- ------- ------- 483 * |idl_tx_list[0]|->| --------------- ------- ------- ------- 484 * ---------------- |->|drain_list[2]|-->|connp|-->|connp|-->|connp|--> 485 * | --------------- ------- ------- ------- 486 * . . . . . 487 * | --------------- ------- ------- ------- 488 * |->|drain_list[n]|-->|connp|-->|connp|-->|connp|--> 489 * --------------- ------- ------- ------- 490 * --------------- ------- ------- ------- 491 * |->|drain_list[0]|-->|connp|-->|connp|-->|connp|--> 492 * | --------------- ------- ------- ------- 493 * | --------------- ------- ------- ------- 494 * ---------------- |->|drain_list[1]|-->|connp|-->|connp|-->|connp|--> 495 * |idl_tx_list[1]|->| --------------- ------- ------- ------- 496 * ---------------- | . . . . 497 * | --------------- ------- ------- ------- 498 * |->|drain_list[n]|-->|connp|-->|connp|-->|connp|--> 499 * --------------- ------- ------- ------- 500 * ..... 501 * ---------------- 502 * |idl_tx_list[n]|-> ... 503 * ---------------- 504 * 505 * When mac_tx() returns a cookie, the cookie is hashed into an index into 506 * ips_idl_tx_list[], and conn_drain_insert() is called with the idl_tx_list 507 * to insert the conn onto. conn_drain_insert() asserts flow control for the 508 * sockets via su_txq_full() (non-STREAMS) or QFULL on conn_wq (STREAMS). 509 * Further, conn_blocked is set to indicate that the conn is blocked. 510 * 511 * GLDv3 calls ill_flow_enable() when flow control is relieved. The cookie 512 * passed in the call to ill_flow_enable() identifies the blocked Tx ring and 513 * is again hashed to locate the appropriate idl_tx_list, which is then 514 * drained via conn_walk_drain(). conn_walk_drain() goes through each conn in 515 * the drain list and calls conn_drain_remove() to clear flow control (via 516 * calling su_txq_full() or clearing QFULL), and remove the conn from the 517 * drain list. 518 * 519 * Note that the drain list is not a single list but a (configurable) array of 520 * lists (8 elements by default). Synchronization between drain insertion and 521 * flow control wakeup is handled by using idl_txl->txl_lock, and only 522 * conn_drain_insert() and conn_drain_remove() manipulate the drain list. 523 * 524 * Flow control via STREAMS is used when ILL_DIRECT_CAPABLE() returns FALSE. 525 * On the send side, if the packet cannot be sent down to the driver by IP 526 * (canput() fails), ip_xmit() drops the packet and returns EWOULDBLOCK to the 527 * caller, who may then invoke ixa_check_drain_insert() to insert the conn on 528 * the 0'th drain list. When ip_wsrv() runs on the ill_wq because flow 529 * control has been relieved, the blocked conns in the 0'th drain list are 530 * drained as in the non-STREAMS case. 531 * 532 * In both the STREAMS and non-STREAMS cases, the sockfs upcall to set QFULL 533 * is done when the conn is inserted into the drain list (conn_drain_insert()) 534 * and cleared when the conn is removed from the it (conn_drain_remove()). 535 * 536 * IPQOS notes: 537 * 538 * IPQoS Policies are applied to packets using IPPF (IP Policy framework) 539 * and IPQoS modules. IPPF includes hooks in IP at different control points 540 * (callout positions) which direct packets to IPQoS modules for policy 541 * processing. Policies, if present, are global. 542 * 543 * The callout positions are located in the following paths: 544 * o local_in (packets destined for this host) 545 * o local_out (packets orginating from this host ) 546 * o fwd_in (packets forwarded by this m/c - inbound) 547 * o fwd_out (packets forwarded by this m/c - outbound) 548 * Hooks at these callout points can be enabled/disabled using the ndd variable 549 * ip_policy_mask (a bit mask with the 4 LSB indicating the callout positions). 550 * By default all the callout positions are enabled. 551 * 552 * Outbound (local_out) 553 * Hooks are placed in ire_send_wire_v4 and ire_send_wire_v6. 554 * 555 * Inbound (local_in) 556 * Hooks are placed in ip_fanout_v4 and ip_fanout_v6. 557 * 558 * Forwarding (in and out) 559 * Hooks are placed in ire_recv_forward_v4/v6. 560 * 561 * IP Policy Framework processing (IPPF processing) 562 * Policy processing for a packet is initiated by ip_process, which ascertains 563 * that the classifier (ipgpc) is loaded and configured, failing which the 564 * packet resumes normal processing in IP. If the clasifier is present, the 565 * packet is acted upon by one or more IPQoS modules (action instances), per 566 * filters configured in ipgpc and resumes normal IP processing thereafter. 567 * An action instance can drop a packet in course of its processing. 568 * 569 * Zones notes: 570 * 571 * The partitioning rules for networking are as follows: 572 * 1) Packets coming from a zone must have a source address belonging to that 573 * zone. 574 * 2) Packets coming from a zone can only be sent on a physical interface on 575 * which the zone has an IP address. 576 * 3) Between two zones on the same machine, packet delivery is only allowed if 577 * there's a matching route for the destination and zone in the forwarding 578 * table. 579 * 4) The TCP and UDP port spaces are per-zone; that is, two processes in 580 * different zones can bind to the same port with the wildcard address 581 * (INADDR_ANY). 582 * 583 * The granularity of interface partitioning is at the logical interface level. 584 * Therefore, every zone has its own IP addresses, and incoming packets can be 585 * attributed to a zone unambiguously. A logical interface is placed into a zone 586 * using the SIOCSLIFZONE ioctl; this sets the ipif_zoneid field in the ipif_t 587 * structure. Rule (1) is implemented by modifying the source address selection 588 * algorithm so that the list of eligible addresses is filtered based on the 589 * sending process zone. 590 * 591 * The Internet Routing Entries (IREs) are either exclusive to a zone or shared 592 * across all zones, depending on their type. Here is the break-up: 593 * 594 * IRE type Shared/exclusive 595 * -------- ---------------- 596 * IRE_BROADCAST Exclusive 597 * IRE_DEFAULT (default routes) Shared (*) 598 * IRE_LOCAL Exclusive (x) 599 * IRE_LOOPBACK Exclusive 600 * IRE_PREFIX (net routes) Shared (*) 601 * IRE_IF_NORESOLVER (interface routes) Exclusive 602 * IRE_IF_RESOLVER (interface routes) Exclusive 603 * IRE_IF_CLONE (interface routes) Exclusive 604 * IRE_HOST (host routes) Shared (*) 605 * 606 * (*) A zone can only use a default or off-subnet route if the gateway is 607 * directly reachable from the zone, that is, if the gateway's address matches 608 * one of the zone's logical interfaces. 609 * 610 * (x) IRE_LOCAL are handled a bit differently. 611 * When ip_restrict_interzone_loopback is set (the default), 612 * ire_route_recursive restricts loopback using an IRE_LOCAL 613 * between zone to the case when L2 would have conceptually looped the packet 614 * back, i.e. the loopback which is required since neither Ethernet drivers 615 * nor Ethernet hardware loops them back. This is the case when the normal 616 * routes (ignoring IREs with different zoneids) would send out the packet on 617 * the same ill as the ill with which is IRE_LOCAL is associated. 618 * 619 * Multiple zones can share a common broadcast address; typically all zones 620 * share the 255.255.255.255 address. Incoming as well as locally originated 621 * broadcast packets must be dispatched to all the zones on the broadcast 622 * network. For directed broadcasts (e.g. 10.16.72.255) this is not trivial 623 * since some zones may not be on the 10.16.72/24 network. To handle this, each 624 * zone has its own set of IRE_BROADCAST entries; then, broadcast packets are 625 * sent to every zone that has an IRE_BROADCAST entry for the destination 626 * address on the input ill, see ip_input_broadcast(). 627 * 628 * Applications in different zones can join the same multicast group address. 629 * The same logic applies for multicast as for broadcast. ip_input_multicast 630 * dispatches packets to all zones that have members on the physical interface. 631 */ 632 633 /* 634 * Squeue Fanout flags: 635 * 0: No fanout. 636 * 1: Fanout across all squeues 637 */ 638 boolean_t ip_squeue_fanout = 0; 639 640 /* 641 * Maximum dups allowed per packet. 642 */ 643 uint_t ip_max_frag_dups = 10; 644 645 static int ip_open(queue_t *q, dev_t *devp, int flag, int sflag, 646 cred_t *credp, boolean_t isv6); 647 static mblk_t *ip_xmit_attach_llhdr(mblk_t *, nce_t *); 648 649 static boolean_t icmp_inbound_verify_v4(mblk_t *, icmph_t *, ip_recv_attr_t *); 650 static void icmp_inbound_too_big_v4(icmph_t *, ip_recv_attr_t *); 651 static void icmp_inbound_error_fanout_v4(mblk_t *, icmph_t *, 652 ip_recv_attr_t *); 653 static void icmp_options_update(ipha_t *); 654 static void icmp_param_problem(mblk_t *, uint8_t, ip_recv_attr_t *); 655 static void icmp_pkt(mblk_t *, void *, size_t, ip_recv_attr_t *); 656 static mblk_t *icmp_pkt_err_ok(mblk_t *, ip_recv_attr_t *); 657 static void icmp_redirect_v4(mblk_t *mp, ipha_t *, icmph_t *, 658 ip_recv_attr_t *); 659 static void icmp_send_redirect(mblk_t *, ipaddr_t, ip_recv_attr_t *); 660 static void icmp_send_reply_v4(mblk_t *, ipha_t *, icmph_t *, 661 ip_recv_attr_t *); 662 663 mblk_t *ip_dlpi_alloc(size_t, t_uscalar_t); 664 char *ip_dot_addr(ipaddr_t, char *); 665 mblk_t *ip_carve_mp(mblk_t **, ssize_t); 666 int ip_close(queue_t *, int); 667 static char *ip_dot_saddr(uchar_t *, char *); 668 static void ip_lrput(queue_t *, mblk_t *); 669 ipaddr_t ip_net_mask(ipaddr_t); 670 char *ip_nv_lookup(nv_t *, int); 671 void ip_rput(queue_t *, mblk_t *); 672 static void ip_rput_dlpi_writer(ipsq_t *dummy_sq, queue_t *q, mblk_t *mp, 673 void *dummy_arg); 674 int ip_snmp_get(queue_t *, mblk_t *, int, boolean_t); 675 static mblk_t *ip_snmp_get_mib2_ip(queue_t *, mblk_t *, 676 mib2_ipIfStatsEntry_t *, ip_stack_t *, boolean_t); 677 static mblk_t *ip_snmp_get_mib2_ip_traffic_stats(queue_t *, mblk_t *, 678 ip_stack_t *, boolean_t); 679 static mblk_t *ip_snmp_get_mib2_ip6(queue_t *, mblk_t *, ip_stack_t *, 680 boolean_t); 681 static mblk_t *ip_snmp_get_mib2_icmp(queue_t *, mblk_t *, ip_stack_t *ipst); 682 static mblk_t *ip_snmp_get_mib2_icmp6(queue_t *, mblk_t *, ip_stack_t *ipst); 683 static mblk_t *ip_snmp_get_mib2_igmp(queue_t *, mblk_t *, ip_stack_t *ipst); 684 static mblk_t *ip_snmp_get_mib2_multi(queue_t *, mblk_t *, ip_stack_t *ipst); 685 static mblk_t *ip_snmp_get_mib2_ip_addr(queue_t *, mblk_t *, 686 ip_stack_t *ipst, boolean_t); 687 static mblk_t *ip_snmp_get_mib2_ip6_addr(queue_t *, mblk_t *, 688 ip_stack_t *ipst, boolean_t); 689 static mblk_t *ip_snmp_get_mib2_ip_group_src(queue_t *, mblk_t *, 690 ip_stack_t *ipst); 691 static mblk_t *ip_snmp_get_mib2_ip6_group_src(queue_t *, mblk_t *, 692 ip_stack_t *ipst); 693 static mblk_t *ip_snmp_get_mib2_ip_group_mem(queue_t *, mblk_t *, 694 ip_stack_t *ipst); 695 static mblk_t *ip_snmp_get_mib2_ip6_group_mem(queue_t *, mblk_t *, 696 ip_stack_t *ipst); 697 static mblk_t *ip_snmp_get_mib2_virt_multi(queue_t *, mblk_t *, 698 ip_stack_t *ipst); 699 static mblk_t *ip_snmp_get_mib2_multi_rtable(queue_t *, mblk_t *, 700 ip_stack_t *ipst); 701 static mblk_t *ip_snmp_get_mib2_ip_route_media(queue_t *, mblk_t *, int, 702 ip_stack_t *ipst); 703 static mblk_t *ip_snmp_get_mib2_ip6_route_media(queue_t *, mblk_t *, int, 704 ip_stack_t *ipst); 705 static void ip_snmp_get2_v4(ire_t *, iproutedata_t *); 706 static void ip_snmp_get2_v6_route(ire_t *, iproutedata_t *); 707 static int ip_snmp_get2_v4_media(ncec_t *, iproutedata_t *); 708 static int ip_snmp_get2_v6_media(ncec_t *, iproutedata_t *); 709 int ip_snmp_set(queue_t *, int, int, uchar_t *, int); 710 711 static mblk_t *ip_fragment_copyhdr(uchar_t *, int, int, ip_stack_t *, 712 mblk_t *); 713 714 static void conn_drain_init(ip_stack_t *); 715 static void conn_drain_fini(ip_stack_t *); 716 static void conn_drain(conn_t *connp, boolean_t closing); 717 718 static void conn_walk_drain(ip_stack_t *, idl_tx_list_t *); 719 static void conn_walk_sctp(pfv_t, void *, zoneid_t, netstack_t *); 720 721 static void *ip_stack_init(netstackid_t stackid, netstack_t *ns); 722 static void ip_stack_shutdown(netstackid_t stackid, void *arg); 723 static void ip_stack_fini(netstackid_t stackid, void *arg); 724 725 static int ip_multirt_apply_membership(int (*fn)(conn_t *, boolean_t, 726 const in6_addr_t *, ipaddr_t, uint_t, mcast_record_t, const in6_addr_t *), 727 ire_t *, conn_t *, boolean_t, const in6_addr_t *, mcast_record_t, 728 const in6_addr_t *); 729 730 static int ip_squeue_switch(int); 731 732 static void *ip_kstat_init(netstackid_t, ip_stack_t *); 733 static void ip_kstat_fini(netstackid_t, kstat_t *); 734 static int ip_kstat_update(kstat_t *kp, int rw); 735 static void *icmp_kstat_init(netstackid_t); 736 static void icmp_kstat_fini(netstackid_t, kstat_t *); 737 static int icmp_kstat_update(kstat_t *kp, int rw); 738 static void *ip_kstat2_init(netstackid_t, ip_stat_t *); 739 static void ip_kstat2_fini(netstackid_t, kstat_t *); 740 741 static void ipobs_init(ip_stack_t *); 742 static void ipobs_fini(ip_stack_t *); 743 744 static int ip_tp_cpu_update(cpu_setup_t, int, void *); 745 746 ipaddr_t ip_g_all_ones = IP_HOST_MASK; 747 748 static long ip_rput_pullups; 749 int dohwcksum = 1; /* use h/w cksum if supported by the hardware */ 750 751 vmem_t *ip_minor_arena_sa; /* for minor nos. from INET_MIN_DEV+2 thru 2^^18-1 */ 752 vmem_t *ip_minor_arena_la; /* for minor nos. from 2^^18 thru 2^^32-1 */ 753 754 int ip_debug; 755 756 /* 757 * Multirouting/CGTP stuff 758 */ 759 int ip_cgtp_filter_rev = CGTP_FILTER_REV; /* CGTP hooks version */ 760 761 /* 762 * IP tunables related declarations. Definitions are in ip_tunables.c 763 */ 764 extern mod_prop_info_t ip_propinfo_tbl[]; 765 extern int ip_propinfo_count; 766 767 /* 768 * Table of IP ioctls encoding the various properties of the ioctl and 769 * indexed based on the last byte of the ioctl command. Occasionally there 770 * is a clash, and there is more than 1 ioctl with the same last byte. 771 * In such a case 1 ioctl is encoded in the ndx table and the remaining 772 * ioctls are encoded in the misc table. An entry in the ndx table is 773 * retrieved by indexing on the last byte of the ioctl command and comparing 774 * the ioctl command with the value in the ndx table. In the event of a 775 * mismatch the misc table is then searched sequentially for the desired 776 * ioctl command. 777 * 778 * Entry: <command> <copyin_size> <flags> <cmd_type> <function> <restart_func> 779 */ 780 ip_ioctl_cmd_t ip_ndx_ioctl_table[] = { 781 /* 000 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 782 /* 001 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 783 /* 002 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 784 /* 003 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 785 /* 004 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 786 /* 005 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 787 /* 006 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 788 /* 007 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 789 /* 008 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 790 /* 009 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 791 792 /* 010 */ { SIOCADDRT, sizeof (struct rtentry), IPI_PRIV, 793 MISC_CMD, ip_siocaddrt, NULL }, 794 /* 011 */ { SIOCDELRT, sizeof (struct rtentry), IPI_PRIV, 795 MISC_CMD, ip_siocdelrt, NULL }, 796 797 /* 012 */ { SIOCSIFADDR, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 798 IF_CMD, ip_sioctl_addr, ip_sioctl_addr_restart }, 799 /* 013 */ { SIOCGIFADDR, sizeof (struct ifreq), IPI_GET_CMD, 800 IF_CMD, ip_sioctl_get_addr, NULL }, 801 802 /* 014 */ { SIOCSIFDSTADDR, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 803 IF_CMD, ip_sioctl_dstaddr, ip_sioctl_dstaddr_restart }, 804 /* 015 */ { SIOCGIFDSTADDR, sizeof (struct ifreq), 805 IPI_GET_CMD, IF_CMD, ip_sioctl_get_dstaddr, NULL }, 806 807 /* 016 */ { SIOCSIFFLAGS, sizeof (struct ifreq), 808 IPI_PRIV | IPI_WR, 809 IF_CMD, ip_sioctl_flags, ip_sioctl_flags_restart }, 810 /* 017 */ { SIOCGIFFLAGS, sizeof (struct ifreq), 811 IPI_MODOK | IPI_GET_CMD, 812 IF_CMD, ip_sioctl_get_flags, NULL }, 813 814 /* 018 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 815 /* 019 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 816 817 /* copyin size cannot be coded for SIOCGIFCONF */ 818 /* 020 */ { O_SIOCGIFCONF, 0, IPI_GET_CMD, 819 MISC_CMD, ip_sioctl_get_ifconf, NULL }, 820 821 /* 021 */ { SIOCSIFMTU, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 822 IF_CMD, ip_sioctl_mtu, NULL }, 823 /* 022 */ { SIOCGIFMTU, sizeof (struct ifreq), IPI_GET_CMD, 824 IF_CMD, ip_sioctl_get_mtu, NULL }, 825 /* 023 */ { SIOCGIFBRDADDR, sizeof (struct ifreq), 826 IPI_GET_CMD, IF_CMD, ip_sioctl_get_brdaddr, NULL }, 827 /* 024 */ { SIOCSIFBRDADDR, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 828 IF_CMD, ip_sioctl_brdaddr, NULL }, 829 /* 025 */ { SIOCGIFNETMASK, sizeof (struct ifreq), 830 IPI_GET_CMD, IF_CMD, ip_sioctl_get_netmask, NULL }, 831 /* 026 */ { SIOCSIFNETMASK, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 832 IF_CMD, ip_sioctl_netmask, ip_sioctl_netmask_restart }, 833 /* 027 */ { SIOCGIFMETRIC, sizeof (struct ifreq), 834 IPI_GET_CMD, IF_CMD, ip_sioctl_get_metric, NULL }, 835 /* 028 */ { SIOCSIFMETRIC, sizeof (struct ifreq), IPI_PRIV, 836 IF_CMD, ip_sioctl_metric, NULL }, 837 /* 029 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 838 839 /* See 166-168 below for extended SIOC*XARP ioctls */ 840 /* 030 */ { SIOCSARP, sizeof (struct arpreq), IPI_PRIV | IPI_WR, 841 ARP_CMD, ip_sioctl_arp, NULL }, 842 /* 031 */ { SIOCGARP, sizeof (struct arpreq), IPI_GET_CMD, 843 ARP_CMD, ip_sioctl_arp, NULL }, 844 /* 032 */ { SIOCDARP, sizeof (struct arpreq), IPI_PRIV | IPI_WR, 845 ARP_CMD, ip_sioctl_arp, NULL }, 846 847 /* 033 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 848 /* 034 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 849 /* 035 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 850 /* 036 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 851 /* 037 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 852 /* 038 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 853 /* 039 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 854 /* 040 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 855 /* 041 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 856 /* 042 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 857 /* 043 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 858 /* 044 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 859 /* 045 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 860 /* 046 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 861 /* 047 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 862 /* 048 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 863 /* 049 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 864 /* 050 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 865 /* 051 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 866 /* 052 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 867 /* 053 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 868 869 /* 054 */ { IF_UNITSEL, sizeof (int), IPI_PRIV | IPI_WR | IPI_MODOK, 870 MISC_CMD, if_unitsel, if_unitsel_restart }, 871 872 /* 055 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 873 /* 056 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 874 /* 057 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 875 /* 058 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 876 /* 059 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 877 /* 060 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 878 /* 061 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 879 /* 062 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 880 /* 063 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 881 /* 064 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 882 /* 065 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 883 /* 066 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 884 /* 067 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 885 /* 068 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 886 /* 069 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 887 /* 070 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 888 /* 071 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 889 /* 072 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 890 891 /* 073 */ { SIOCSIFNAME, sizeof (struct ifreq), 892 IPI_PRIV | IPI_WR | IPI_MODOK, 893 IF_CMD, ip_sioctl_sifname, NULL }, 894 895 /* 074 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 896 /* 075 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 897 /* 076 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 898 /* 077 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 899 /* 078 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 900 /* 079 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 901 /* 080 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 902 /* 081 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 903 /* 082 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 904 /* 083 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 905 /* 084 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 906 /* 085 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 907 /* 086 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 908 909 /* 087 */ { SIOCGIFNUM, sizeof (int), IPI_GET_CMD, 910 MISC_CMD, ip_sioctl_get_ifnum, NULL }, 911 /* 088 */ { SIOCGIFMUXID, sizeof (struct ifreq), IPI_GET_CMD, 912 IF_CMD, ip_sioctl_get_muxid, NULL }, 913 /* 089 */ { SIOCSIFMUXID, sizeof (struct ifreq), 914 IPI_PRIV | IPI_WR, IF_CMD, ip_sioctl_muxid, NULL }, 915 916 /* Both if and lif variants share same func */ 917 /* 090 */ { SIOCGIFINDEX, sizeof (struct ifreq), IPI_GET_CMD, 918 IF_CMD, ip_sioctl_get_lifindex, NULL }, 919 /* Both if and lif variants share same func */ 920 /* 091 */ { SIOCSIFINDEX, sizeof (struct ifreq), 921 IPI_PRIV | IPI_WR, IF_CMD, ip_sioctl_slifindex, NULL }, 922 923 /* copyin size cannot be coded for SIOCGIFCONF */ 924 /* 092 */ { SIOCGIFCONF, 0, IPI_GET_CMD, 925 MISC_CMD, ip_sioctl_get_ifconf, NULL }, 926 /* 093 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 927 /* 094 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 928 /* 095 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 929 /* 096 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 930 /* 097 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 931 /* 098 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 932 /* 099 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 933 /* 100 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 934 /* 101 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 935 /* 102 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 936 /* 103 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 937 /* 104 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 938 /* 105 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 939 /* 106 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 940 /* 107 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 941 /* 108 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 942 /* 109 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 943 944 /* 110 */ { SIOCLIFREMOVEIF, sizeof (struct lifreq), 945 IPI_PRIV | IPI_WR, LIF_CMD, ip_sioctl_removeif, 946 ip_sioctl_removeif_restart }, 947 /* 111 */ { SIOCLIFADDIF, sizeof (struct lifreq), 948 IPI_GET_CMD | IPI_PRIV | IPI_WR, 949 LIF_CMD, ip_sioctl_addif, NULL }, 950 #define SIOCLIFADDR_NDX 112 951 /* 112 */ { SIOCSLIFADDR, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 952 LIF_CMD, ip_sioctl_addr, ip_sioctl_addr_restart }, 953 /* 113 */ { SIOCGLIFADDR, sizeof (struct lifreq), 954 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_addr, NULL }, 955 /* 114 */ { SIOCSLIFDSTADDR, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 956 LIF_CMD, ip_sioctl_dstaddr, ip_sioctl_dstaddr_restart }, 957 /* 115 */ { SIOCGLIFDSTADDR, sizeof (struct lifreq), 958 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_dstaddr, NULL }, 959 /* 116 */ { SIOCSLIFFLAGS, sizeof (struct lifreq), 960 IPI_PRIV | IPI_WR, 961 LIF_CMD, ip_sioctl_flags, ip_sioctl_flags_restart }, 962 /* 117 */ { SIOCGLIFFLAGS, sizeof (struct lifreq), 963 IPI_GET_CMD | IPI_MODOK, 964 LIF_CMD, ip_sioctl_get_flags, NULL }, 965 966 /* 118 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 967 /* 119 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 968 969 /* 120 */ { O_SIOCGLIFCONF, 0, IPI_GET_CMD, MISC_CMD, 970 ip_sioctl_get_lifconf, NULL }, 971 /* 121 */ { SIOCSLIFMTU, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 972 LIF_CMD, ip_sioctl_mtu, NULL }, 973 /* 122 */ { SIOCGLIFMTU, sizeof (struct lifreq), IPI_GET_CMD, 974 LIF_CMD, ip_sioctl_get_mtu, NULL }, 975 /* 123 */ { SIOCGLIFBRDADDR, sizeof (struct lifreq), 976 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_brdaddr, NULL }, 977 /* 124 */ { SIOCSLIFBRDADDR, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 978 LIF_CMD, ip_sioctl_brdaddr, NULL }, 979 /* 125 */ { SIOCGLIFNETMASK, sizeof (struct lifreq), 980 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_netmask, NULL }, 981 /* 126 */ { SIOCSLIFNETMASK, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 982 LIF_CMD, ip_sioctl_netmask, ip_sioctl_netmask_restart }, 983 /* 127 */ { SIOCGLIFMETRIC, sizeof (struct lifreq), 984 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_metric, NULL }, 985 /* 128 */ { SIOCSLIFMETRIC, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 986 LIF_CMD, ip_sioctl_metric, NULL }, 987 /* 129 */ { SIOCSLIFNAME, sizeof (struct lifreq), 988 IPI_PRIV | IPI_WR | IPI_MODOK, 989 LIF_CMD, ip_sioctl_slifname, 990 ip_sioctl_slifname_restart }, 991 992 /* 130 */ { SIOCGLIFNUM, sizeof (struct lifnum), IPI_GET_CMD, 993 MISC_CMD, ip_sioctl_get_lifnum, NULL }, 994 /* 131 */ { SIOCGLIFMUXID, sizeof (struct lifreq), 995 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_muxid, NULL }, 996 /* 132 */ { SIOCSLIFMUXID, sizeof (struct lifreq), 997 IPI_PRIV | IPI_WR, LIF_CMD, ip_sioctl_muxid, NULL }, 998 /* 133 */ { SIOCGLIFINDEX, sizeof (struct lifreq), 999 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_lifindex, 0 }, 1000 /* 134 */ { SIOCSLIFINDEX, sizeof (struct lifreq), 1001 IPI_PRIV | IPI_WR, LIF_CMD, ip_sioctl_slifindex, 0 }, 1002 /* 135 */ { SIOCSLIFTOKEN, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1003 LIF_CMD, ip_sioctl_token, NULL }, 1004 /* 136 */ { SIOCGLIFTOKEN, sizeof (struct lifreq), 1005 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_token, NULL }, 1006 /* 137 */ { SIOCSLIFSUBNET, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1007 LIF_CMD, ip_sioctl_subnet, ip_sioctl_subnet_restart }, 1008 /* 138 */ { SIOCGLIFSUBNET, sizeof (struct lifreq), 1009 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_subnet, NULL }, 1010 /* 139 */ { SIOCSLIFLNKINFO, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1011 LIF_CMD, ip_sioctl_lnkinfo, NULL }, 1012 1013 /* 140 */ { SIOCGLIFLNKINFO, sizeof (struct lifreq), 1014 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_lnkinfo, NULL }, 1015 /* 141 */ { SIOCLIFDELND, sizeof (struct lifreq), IPI_PRIV, 1016 LIF_CMD, ip_siocdelndp_v6, NULL }, 1017 /* 142 */ { SIOCLIFGETND, sizeof (struct lifreq), IPI_GET_CMD, 1018 LIF_CMD, ip_siocqueryndp_v6, NULL }, 1019 /* 143 */ { SIOCLIFSETND, sizeof (struct lifreq), IPI_PRIV, 1020 LIF_CMD, ip_siocsetndp_v6, NULL }, 1021 /* 144 */ { SIOCTMYADDR, sizeof (struct sioc_addrreq), IPI_GET_CMD, 1022 MISC_CMD, ip_sioctl_tmyaddr, NULL }, 1023 /* 145 */ { SIOCTONLINK, sizeof (struct sioc_addrreq), IPI_GET_CMD, 1024 MISC_CMD, ip_sioctl_tonlink, NULL }, 1025 /* 146 */ { SIOCTMYSITE, sizeof (struct sioc_addrreq), 0, 1026 MISC_CMD, ip_sioctl_tmysite, NULL }, 1027 /* 147 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1028 /* 148 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1029 /* IPSECioctls handled in ip_sioctl_copyin_setup itself */ 1030 /* 149 */ { SIOCFIPSECONFIG, 0, IPI_PRIV, MISC_CMD, NULL, NULL }, 1031 /* 150 */ { SIOCSIPSECONFIG, 0, IPI_PRIV, MISC_CMD, NULL, NULL }, 1032 /* 151 */ { SIOCDIPSECONFIG, 0, IPI_PRIV, MISC_CMD, NULL, NULL }, 1033 /* 152 */ { SIOCLIPSECONFIG, 0, IPI_PRIV, MISC_CMD, NULL, NULL }, 1034 1035 /* 153 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1036 1037 /* 154 */ { SIOCGLIFBINDING, sizeof (struct lifreq), IPI_GET_CMD, 1038 LIF_CMD, ip_sioctl_get_binding, NULL }, 1039 /* 155 */ { SIOCSLIFGROUPNAME, sizeof (struct lifreq), 1040 IPI_PRIV | IPI_WR, 1041 LIF_CMD, ip_sioctl_groupname, ip_sioctl_groupname }, 1042 /* 156 */ { SIOCGLIFGROUPNAME, sizeof (struct lifreq), 1043 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_groupname, NULL }, 1044 /* 157 */ { SIOCGLIFGROUPINFO, sizeof (lifgroupinfo_t), 1045 IPI_GET_CMD, MISC_CMD, ip_sioctl_groupinfo, NULL }, 1046 1047 /* Leave 158-160 unused; used to be SIOC*IFARP ioctls */ 1048 /* 158 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1049 /* 159 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1050 /* 160 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1051 1052 /* 161 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1053 1054 /* These are handled in ip_sioctl_copyin_setup itself */ 1055 /* 162 */ { SIOCGIP6ADDRPOLICY, 0, IPI_NULL_BCONT, 1056 MISC_CMD, NULL, NULL }, 1057 /* 163 */ { SIOCSIP6ADDRPOLICY, 0, IPI_PRIV | IPI_NULL_BCONT, 1058 MISC_CMD, NULL, NULL }, 1059 /* 164 */ { SIOCGDSTINFO, 0, IPI_GET_CMD, MISC_CMD, NULL, NULL }, 1060 1061 /* 165 */ { SIOCGLIFCONF, 0, IPI_GET_CMD, MISC_CMD, 1062 ip_sioctl_get_lifconf, NULL }, 1063 1064 /* 166 */ { SIOCSXARP, sizeof (struct xarpreq), IPI_PRIV | IPI_WR, 1065 XARP_CMD, ip_sioctl_arp, NULL }, 1066 /* 167 */ { SIOCGXARP, sizeof (struct xarpreq), IPI_GET_CMD, 1067 XARP_CMD, ip_sioctl_arp, NULL }, 1068 /* 168 */ { SIOCDXARP, sizeof (struct xarpreq), IPI_PRIV | IPI_WR, 1069 XARP_CMD, ip_sioctl_arp, NULL }, 1070 1071 /* SIOCPOPSOCKFS is not handled by IP */ 1072 /* 169 */ { IPI_DONTCARE /* SIOCPOPSOCKFS */, 0, 0, 0, NULL, NULL }, 1073 1074 /* 170 */ { SIOCGLIFZONE, sizeof (struct lifreq), 1075 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_lifzone, NULL }, 1076 /* 171 */ { SIOCSLIFZONE, sizeof (struct lifreq), 1077 IPI_PRIV | IPI_WR, LIF_CMD, ip_sioctl_slifzone, 1078 ip_sioctl_slifzone_restart }, 1079 /* 172-174 are SCTP ioctls and not handled by IP */ 1080 /* 172 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1081 /* 173 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1082 /* 174 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1083 /* 175 */ { SIOCGLIFUSESRC, sizeof (struct lifreq), 1084 IPI_GET_CMD, LIF_CMD, 1085 ip_sioctl_get_lifusesrc, 0 }, 1086 /* 176 */ { SIOCSLIFUSESRC, sizeof (struct lifreq), 1087 IPI_PRIV | IPI_WR, 1088 LIF_CMD, ip_sioctl_slifusesrc, 1089 NULL }, 1090 /* 177 */ { SIOCGLIFSRCOF, 0, IPI_GET_CMD, MISC_CMD, 1091 ip_sioctl_get_lifsrcof, NULL }, 1092 /* 178 */ { SIOCGMSFILTER, sizeof (struct group_filter), IPI_GET_CMD, 1093 MSFILT_CMD, ip_sioctl_msfilter, NULL }, 1094 /* 179 */ { SIOCSMSFILTER, sizeof (struct group_filter), 0, 1095 MSFILT_CMD, ip_sioctl_msfilter, NULL }, 1096 /* 180 */ { SIOCGIPMSFILTER, sizeof (struct ip_msfilter), IPI_GET_CMD, 1097 MSFILT_CMD, ip_sioctl_msfilter, NULL }, 1098 /* 181 */ { SIOCSIPMSFILTER, sizeof (struct ip_msfilter), 0, 1099 MSFILT_CMD, ip_sioctl_msfilter, NULL }, 1100 /* 182 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1101 /* SIOCSENABLESDP is handled by SDP */ 1102 /* 183 */ { IPI_DONTCARE /* SIOCSENABLESDP */, 0, 0, 0, NULL, NULL }, 1103 /* 184 */ { IPI_DONTCARE /* SIOCSQPTR */, 0, 0, 0, NULL, NULL }, 1104 /* 185 */ { SIOCGIFHWADDR, sizeof (struct ifreq), IPI_GET_CMD, 1105 IF_CMD, ip_sioctl_get_ifhwaddr, NULL }, 1106 /* 186 */ { IPI_DONTCARE /* SIOCGSTAMP */, 0, 0, 0, NULL, NULL }, 1107 /* 187 */ { SIOCILB, 0, IPI_PRIV | IPI_GET_CMD, MISC_CMD, 1108 ip_sioctl_ilb_cmd, NULL }, 1109 /* 188 */ { SIOCGETPROP, 0, IPI_GET_CMD, 0, NULL, NULL }, 1110 /* 189 */ { SIOCSETPROP, 0, IPI_PRIV | IPI_WR, 0, NULL, NULL}, 1111 /* 190 */ { SIOCGLIFDADSTATE, sizeof (struct lifreq), 1112 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_dadstate, NULL }, 1113 /* 191 */ { SIOCSLIFPREFIX, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1114 LIF_CMD, ip_sioctl_prefix, ip_sioctl_prefix_restart }, 1115 /* 192 */ { SIOCGLIFHWADDR, sizeof (struct lifreq), IPI_GET_CMD, 1116 LIF_CMD, ip_sioctl_get_lifhwaddr, NULL } 1117 }; 1118 1119 int ip_ndx_ioctl_count = sizeof (ip_ndx_ioctl_table) / sizeof (ip_ioctl_cmd_t); 1120 1121 ip_ioctl_cmd_t ip_misc_ioctl_table[] = { 1122 { I_LINK, 0, IPI_PRIV | IPI_WR, 0, NULL, NULL }, 1123 { I_UNLINK, 0, IPI_PRIV | IPI_WR, 0, NULL, NULL }, 1124 { I_PLINK, 0, IPI_PRIV | IPI_WR, 0, NULL, NULL }, 1125 { I_PUNLINK, 0, IPI_PRIV | IPI_WR, 0, NULL, NULL }, 1126 { ND_GET, 0, 0, 0, NULL, NULL }, 1127 { ND_SET, 0, IPI_PRIV | IPI_WR, 0, NULL, NULL }, 1128 { IP_IOCTL, 0, 0, 0, NULL, NULL }, 1129 { SIOCGETVIFCNT, sizeof (struct sioc_vif_req), IPI_GET_CMD, 1130 MISC_CMD, mrt_ioctl}, 1131 { SIOCGETSGCNT, sizeof (struct sioc_sg_req), IPI_GET_CMD, 1132 MISC_CMD, mrt_ioctl}, 1133 { SIOCGETLSGCNT, sizeof (struct sioc_lsg_req), IPI_GET_CMD, 1134 MISC_CMD, mrt_ioctl} 1135 }; 1136 1137 int ip_misc_ioctl_count = 1138 sizeof (ip_misc_ioctl_table) / sizeof (ip_ioctl_cmd_t); 1139 1140 int conn_drain_nthreads; /* Number of drainers reqd. */ 1141 /* Settable in /etc/system */ 1142 /* Defined in ip_ire.c */ 1143 extern uint32_t ip_ire_max_bucket_cnt, ip6_ire_max_bucket_cnt; 1144 extern uint32_t ip_ire_min_bucket_cnt, ip6_ire_min_bucket_cnt; 1145 extern uint32_t ip_ire_mem_ratio, ip_ire_cpu_ratio; 1146 1147 static nv_t ire_nv_arr[] = { 1148 { IRE_BROADCAST, "BROADCAST" }, 1149 { IRE_LOCAL, "LOCAL" }, 1150 { IRE_LOOPBACK, "LOOPBACK" }, 1151 { IRE_DEFAULT, "DEFAULT" }, 1152 { IRE_PREFIX, "PREFIX" }, 1153 { IRE_IF_NORESOLVER, "IF_NORESOL" }, 1154 { IRE_IF_RESOLVER, "IF_RESOLV" }, 1155 { IRE_IF_CLONE, "IF_CLONE" }, 1156 { IRE_HOST, "HOST" }, 1157 { IRE_MULTICAST, "MULTICAST" }, 1158 { IRE_NOROUTE, "NOROUTE" }, 1159 { 0 } 1160 }; 1161 1162 nv_t *ire_nv_tbl = ire_nv_arr; 1163 1164 /* Simple ICMP IP Header Template */ 1165 static ipha_t icmp_ipha = { 1166 IP_SIMPLE_HDR_VERSION, 0, 0, 0, 0, 0, IPPROTO_ICMP 1167 }; 1168 1169 struct module_info ip_mod_info = { 1170 IP_MOD_ID, IP_MOD_NAME, IP_MOD_MINPSZ, IP_MOD_MAXPSZ, IP_MOD_HIWAT, 1171 IP_MOD_LOWAT 1172 }; 1173 1174 /* 1175 * Duplicate static symbols within a module confuses mdb; so we avoid the 1176 * problem by making the symbols here distinct from those in udp.c. 1177 */ 1178 1179 /* 1180 * Entry points for IP as a device and as a module. 1181 * We have separate open functions for the /dev/ip and /dev/ip6 devices. 1182 */ 1183 static struct qinit iprinitv4 = { 1184 (pfi_t)ip_rput, NULL, ip_openv4, ip_close, NULL, 1185 &ip_mod_info 1186 }; 1187 1188 struct qinit iprinitv6 = { 1189 (pfi_t)ip_rput_v6, NULL, ip_openv6, ip_close, NULL, 1190 &ip_mod_info 1191 }; 1192 1193 static struct qinit ipwinit = { 1194 (pfi_t)ip_wput_nondata, (pfi_t)ip_wsrv, NULL, NULL, NULL, 1195 &ip_mod_info 1196 }; 1197 1198 static struct qinit iplrinit = { 1199 (pfi_t)ip_lrput, NULL, ip_openv4, ip_close, NULL, 1200 &ip_mod_info 1201 }; 1202 1203 static struct qinit iplwinit = { 1204 (pfi_t)ip_lwput, NULL, NULL, NULL, NULL, 1205 &ip_mod_info 1206 }; 1207 1208 /* For AF_INET aka /dev/ip */ 1209 struct streamtab ipinfov4 = { 1210 &iprinitv4, &ipwinit, &iplrinit, &iplwinit 1211 }; 1212 1213 /* For AF_INET6 aka /dev/ip6 */ 1214 struct streamtab ipinfov6 = { 1215 &iprinitv6, &ipwinit, &iplrinit, &iplwinit 1216 }; 1217 1218 #ifdef DEBUG 1219 boolean_t skip_sctp_cksum = B_FALSE; 1220 #endif 1221 1222 /* 1223 * Generate an ICMP fragmentation needed message. 1224 * When called from ip_output side a minimal ip_recv_attr_t needs to be 1225 * constructed by the caller. 1226 */ 1227 void 1228 icmp_frag_needed(mblk_t *mp, int mtu, ip_recv_attr_t *ira) 1229 { 1230 icmph_t icmph; 1231 ip_stack_t *ipst = ira->ira_ill->ill_ipst; 1232 1233 mp = icmp_pkt_err_ok(mp, ira); 1234 if (mp == NULL) 1235 return; 1236 1237 bzero(&icmph, sizeof (icmph_t)); 1238 icmph.icmph_type = ICMP_DEST_UNREACHABLE; 1239 icmph.icmph_code = ICMP_FRAGMENTATION_NEEDED; 1240 icmph.icmph_du_mtu = htons((uint16_t)mtu); 1241 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutFragNeeded); 1242 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDestUnreachs); 1243 1244 icmp_pkt(mp, &icmph, sizeof (icmph_t), ira); 1245 } 1246 1247 /* 1248 * icmp_inbound_v4 deals with ICMP messages that are handled by IP. 1249 * If the ICMP message is consumed by IP, i.e., it should not be delivered 1250 * to any IPPROTO_ICMP raw sockets, then it returns NULL. 1251 * Likewise, if the ICMP error is misformed (too short, etc), then it 1252 * returns NULL. The caller uses this to determine whether or not to send 1253 * to raw sockets. 1254 * 1255 * All error messages are passed to the matching transport stream. 1256 * 1257 * The following cases are handled by icmp_inbound: 1258 * 1) It needs to send a reply back and possibly delivering it 1259 * to the "interested" upper clients. 1260 * 2) Return the mblk so that the caller can pass it to the RAW socket clients. 1261 * 3) It needs to change some values in IP only. 1262 * 4) It needs to change some values in IP and upper layers e.g TCP 1263 * by delivering an error to the upper layers. 1264 * 1265 * We handle the above three cases in the context of IPsec in the 1266 * following way : 1267 * 1268 * 1) Send the reply back in the same way as the request came in. 1269 * If it came in encrypted, it goes out encrypted. If it came in 1270 * clear, it goes out in clear. Thus, this will prevent chosen 1271 * plain text attack. 1272 * 2) The client may or may not expect things to come in secure. 1273 * If it comes in secure, the policy constraints are checked 1274 * before delivering it to the upper layers. If it comes in 1275 * clear, ipsec_inbound_accept_clear will decide whether to 1276 * accept this in clear or not. In both the cases, if the returned 1277 * message (IP header + 8 bytes) that caused the icmp message has 1278 * AH/ESP headers, it is sent up to AH/ESP for validation before 1279 * sending up. If there are only 8 bytes of returned message, then 1280 * upper client will not be notified. 1281 * 3) Check with global policy to see whether it matches the constaints. 1282 * But this will be done only if icmp_accept_messages_in_clear is 1283 * zero. 1284 * 4) If we need to change both in IP and ULP, then the decision taken 1285 * while affecting the values in IP and while delivering up to TCP 1286 * should be the same. 1287 * 1288 * There are two cases. 1289 * 1290 * a) If we reject data at the IP layer (ipsec_check_global_policy() 1291 * failed), we will not deliver it to the ULP, even though they 1292 * are *willing* to accept in *clear*. This is fine as our global 1293 * disposition to icmp messages asks us reject the datagram. 1294 * 1295 * b) If we accept data at the IP layer (ipsec_check_global_policy() 1296 * succeeded or icmp_accept_messages_in_clear is 1), and not able 1297 * to deliver it to ULP (policy failed), it can lead to 1298 * consistency problems. The cases known at this time are 1299 * ICMP_DESTINATION_UNREACHABLE messages with following code 1300 * values : 1301 * 1302 * - ICMP_FRAGMENTATION_NEEDED : IP adapts to the new value 1303 * and Upper layer rejects. Then the communication will 1304 * come to a stop. This is solved by making similar decisions 1305 * at both levels. Currently, when we are unable to deliver 1306 * to the Upper Layer (due to policy failures) while IP has 1307 * adjusted dce_pmtu, the next outbound datagram would 1308 * generate a local ICMP_FRAGMENTATION_NEEDED message - which 1309 * will be with the right level of protection. Thus the right 1310 * value will be communicated even if we are not able to 1311 * communicate when we get from the wire initially. But this 1312 * assumes there would be at least one outbound datagram after 1313 * IP has adjusted its dce_pmtu value. To make things 1314 * simpler, we accept in clear after the validation of 1315 * AH/ESP headers. 1316 * 1317 * - Other ICMP ERRORS : We may not be able to deliver it to the 1318 * upper layer depending on the level of protection the upper 1319 * layer expects and the disposition in ipsec_inbound_accept_clear(). 1320 * ipsec_inbound_accept_clear() decides whether a given ICMP error 1321 * should be accepted in clear when the Upper layer expects secure. 1322 * Thus the communication may get aborted by some bad ICMP 1323 * packets. 1324 */ 1325 mblk_t * 1326 icmp_inbound_v4(mblk_t *mp, ip_recv_attr_t *ira) 1327 { 1328 icmph_t *icmph; 1329 ipha_t *ipha; /* Outer header */ 1330 int ip_hdr_length; /* Outer header length */ 1331 boolean_t interested; 1332 ipif_t *ipif; 1333 uint32_t ts; 1334 uint32_t *tsp; 1335 timestruc_t now; 1336 ill_t *ill = ira->ira_ill; 1337 ip_stack_t *ipst = ill->ill_ipst; 1338 zoneid_t zoneid = ira->ira_zoneid; 1339 int len_needed; 1340 mblk_t *mp_ret = NULL; 1341 1342 ipha = (ipha_t *)mp->b_rptr; 1343 1344 BUMP_MIB(&ipst->ips_icmp_mib, icmpInMsgs); 1345 1346 ip_hdr_length = ira->ira_ip_hdr_length; 1347 if ((mp->b_wptr - mp->b_rptr) < (ip_hdr_length + ICMPH_SIZE)) { 1348 if (ira->ira_pktlen < (ip_hdr_length + ICMPH_SIZE)) { 1349 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInTruncatedPkts); 1350 ip_drop_input("ipIfStatsInTruncatedPkts", mp, ill); 1351 freemsg(mp); 1352 return (NULL); 1353 } 1354 /* Last chance to get real. */ 1355 ipha = ip_pullup(mp, ip_hdr_length + ICMPH_SIZE, ira); 1356 if (ipha == NULL) { 1357 BUMP_MIB(&ipst->ips_icmp_mib, icmpInErrors); 1358 freemsg(mp); 1359 return (NULL); 1360 } 1361 } 1362 1363 /* The IP header will always be a multiple of four bytes */ 1364 icmph = (icmph_t *)&mp->b_rptr[ip_hdr_length]; 1365 ip2dbg(("icmp_inbound_v4: type %d code %d\n", icmph->icmph_type, 1366 icmph->icmph_code)); 1367 1368 /* 1369 * We will set "interested" to "true" if we should pass a copy to 1370 * the transport or if we handle the packet locally. 1371 */ 1372 interested = B_FALSE; 1373 switch (icmph->icmph_type) { 1374 case ICMP_ECHO_REPLY: 1375 BUMP_MIB(&ipst->ips_icmp_mib, icmpInEchoReps); 1376 break; 1377 case ICMP_DEST_UNREACHABLE: 1378 if (icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED) 1379 BUMP_MIB(&ipst->ips_icmp_mib, icmpInFragNeeded); 1380 interested = B_TRUE; /* Pass up to transport */ 1381 BUMP_MIB(&ipst->ips_icmp_mib, icmpInDestUnreachs); 1382 break; 1383 case ICMP_SOURCE_QUENCH: 1384 interested = B_TRUE; /* Pass up to transport */ 1385 BUMP_MIB(&ipst->ips_icmp_mib, icmpInSrcQuenchs); 1386 break; 1387 case ICMP_REDIRECT: 1388 if (!ipst->ips_ip_ignore_redirect) 1389 interested = B_TRUE; 1390 BUMP_MIB(&ipst->ips_icmp_mib, icmpInRedirects); 1391 break; 1392 case ICMP_ECHO_REQUEST: 1393 /* 1394 * Whether to respond to echo requests that come in as IP 1395 * broadcasts or as IP multicast is subject to debate 1396 * (what isn't?). We aim to please, you pick it. 1397 * Default is do it. 1398 */ 1399 if (ira->ira_flags & IRAF_MULTICAST) { 1400 /* multicast: respond based on tunable */ 1401 interested = ipst->ips_ip_g_resp_to_echo_mcast; 1402 } else if (ira->ira_flags & IRAF_BROADCAST) { 1403 /* broadcast: respond based on tunable */ 1404 interested = ipst->ips_ip_g_resp_to_echo_bcast; 1405 } else { 1406 /* unicast: always respond */ 1407 interested = B_TRUE; 1408 } 1409 BUMP_MIB(&ipst->ips_icmp_mib, icmpInEchos); 1410 if (!interested) { 1411 /* We never pass these to RAW sockets */ 1412 freemsg(mp); 1413 return (NULL); 1414 } 1415 1416 /* Check db_ref to make sure we can modify the packet. */ 1417 if (mp->b_datap->db_ref > 1) { 1418 mblk_t *mp1; 1419 1420 mp1 = copymsg(mp); 1421 freemsg(mp); 1422 if (!mp1) { 1423 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops); 1424 return (NULL); 1425 } 1426 mp = mp1; 1427 ipha = (ipha_t *)mp->b_rptr; 1428 icmph = (icmph_t *)&mp->b_rptr[ip_hdr_length]; 1429 } 1430 icmph->icmph_type = ICMP_ECHO_REPLY; 1431 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutEchoReps); 1432 icmp_send_reply_v4(mp, ipha, icmph, ira); 1433 return (NULL); 1434 1435 case ICMP_ROUTER_ADVERTISEMENT: 1436 case ICMP_ROUTER_SOLICITATION: 1437 break; 1438 case ICMP_TIME_EXCEEDED: 1439 interested = B_TRUE; /* Pass up to transport */ 1440 BUMP_MIB(&ipst->ips_icmp_mib, icmpInTimeExcds); 1441 break; 1442 case ICMP_PARAM_PROBLEM: 1443 interested = B_TRUE; /* Pass up to transport */ 1444 BUMP_MIB(&ipst->ips_icmp_mib, icmpInParmProbs); 1445 break; 1446 case ICMP_TIME_STAMP_REQUEST: 1447 /* Response to Time Stamp Requests is local policy. */ 1448 if (ipst->ips_ip_g_resp_to_timestamp) { 1449 if (ira->ira_flags & IRAF_MULTIBROADCAST) 1450 interested = 1451 ipst->ips_ip_g_resp_to_timestamp_bcast; 1452 else 1453 interested = B_TRUE; 1454 } 1455 if (!interested) { 1456 /* We never pass these to RAW sockets */ 1457 freemsg(mp); 1458 return (NULL); 1459 } 1460 1461 /* Make sure we have enough of the packet */ 1462 len_needed = ip_hdr_length + ICMPH_SIZE + 1463 3 * sizeof (uint32_t); 1464 1465 if (mp->b_wptr - mp->b_rptr < len_needed) { 1466 ipha = ip_pullup(mp, len_needed, ira); 1467 if (ipha == NULL) { 1468 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 1469 ip_drop_input("ipIfStatsInDiscards - ip_pullup", 1470 mp, ill); 1471 freemsg(mp); 1472 return (NULL); 1473 } 1474 /* Refresh following the pullup. */ 1475 icmph = (icmph_t *)&mp->b_rptr[ip_hdr_length]; 1476 } 1477 BUMP_MIB(&ipst->ips_icmp_mib, icmpInTimestamps); 1478 /* Check db_ref to make sure we can modify the packet. */ 1479 if (mp->b_datap->db_ref > 1) { 1480 mblk_t *mp1; 1481 1482 mp1 = copymsg(mp); 1483 freemsg(mp); 1484 if (!mp1) { 1485 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops); 1486 return (NULL); 1487 } 1488 mp = mp1; 1489 ipha = (ipha_t *)mp->b_rptr; 1490 icmph = (icmph_t *)&mp->b_rptr[ip_hdr_length]; 1491 } 1492 icmph->icmph_type = ICMP_TIME_STAMP_REPLY; 1493 tsp = (uint32_t *)&icmph[1]; 1494 tsp++; /* Skip past 'originate time' */ 1495 /* Compute # of milliseconds since midnight */ 1496 gethrestime(&now); 1497 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 + 1498 now.tv_nsec / (NANOSEC / MILLISEC); 1499 *tsp++ = htonl(ts); /* Lay in 'receive time' */ 1500 *tsp++ = htonl(ts); /* Lay in 'send time' */ 1501 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutTimestampReps); 1502 icmp_send_reply_v4(mp, ipha, icmph, ira); 1503 return (NULL); 1504 1505 case ICMP_TIME_STAMP_REPLY: 1506 BUMP_MIB(&ipst->ips_icmp_mib, icmpInTimestampReps); 1507 break; 1508 case ICMP_INFO_REQUEST: 1509 /* Per RFC 1122 3.2.2.7, ignore this. */ 1510 case ICMP_INFO_REPLY: 1511 break; 1512 case ICMP_ADDRESS_MASK_REQUEST: 1513 if (ira->ira_flags & IRAF_MULTIBROADCAST) { 1514 interested = 1515 ipst->ips_ip_respond_to_address_mask_broadcast; 1516 } else { 1517 interested = B_TRUE; 1518 } 1519 if (!interested) { 1520 /* We never pass these to RAW sockets */ 1521 freemsg(mp); 1522 return (NULL); 1523 } 1524 len_needed = ip_hdr_length + ICMPH_SIZE + IP_ADDR_LEN; 1525 if (mp->b_wptr - mp->b_rptr < len_needed) { 1526 ipha = ip_pullup(mp, len_needed, ira); 1527 if (ipha == NULL) { 1528 BUMP_MIB(ill->ill_ip_mib, 1529 ipIfStatsInTruncatedPkts); 1530 ip_drop_input("ipIfStatsInTruncatedPkts", mp, 1531 ill); 1532 freemsg(mp); 1533 return (NULL); 1534 } 1535 /* Refresh following the pullup. */ 1536 icmph = (icmph_t *)&mp->b_rptr[ip_hdr_length]; 1537 } 1538 BUMP_MIB(&ipst->ips_icmp_mib, icmpInAddrMasks); 1539 /* Check db_ref to make sure we can modify the packet. */ 1540 if (mp->b_datap->db_ref > 1) { 1541 mblk_t *mp1; 1542 1543 mp1 = copymsg(mp); 1544 freemsg(mp); 1545 if (!mp1) { 1546 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops); 1547 return (NULL); 1548 } 1549 mp = mp1; 1550 ipha = (ipha_t *)mp->b_rptr; 1551 icmph = (icmph_t *)&mp->b_rptr[ip_hdr_length]; 1552 } 1553 /* 1554 * Need the ipif with the mask be the same as the source 1555 * address of the mask reply. For unicast we have a specific 1556 * ipif. For multicast/broadcast we only handle onlink 1557 * senders, and use the source address to pick an ipif. 1558 */ 1559 ipif = ipif_lookup_addr(ipha->ipha_dst, ill, zoneid, ipst); 1560 if (ipif == NULL) { 1561 /* Broadcast or multicast */ 1562 ipif = ipif_lookup_remote(ill, ipha->ipha_src, zoneid); 1563 if (ipif == NULL) { 1564 freemsg(mp); 1565 return (NULL); 1566 } 1567 } 1568 icmph->icmph_type = ICMP_ADDRESS_MASK_REPLY; 1569 bcopy(&ipif->ipif_net_mask, &icmph[1], IP_ADDR_LEN); 1570 ipif_refrele(ipif); 1571 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutAddrMaskReps); 1572 icmp_send_reply_v4(mp, ipha, icmph, ira); 1573 return (NULL); 1574 1575 case ICMP_ADDRESS_MASK_REPLY: 1576 BUMP_MIB(&ipst->ips_icmp_mib, icmpInAddrMaskReps); 1577 break; 1578 default: 1579 interested = B_TRUE; /* Pass up to transport */ 1580 BUMP_MIB(&ipst->ips_icmp_mib, icmpInUnknowns); 1581 break; 1582 } 1583 /* 1584 * See if there is an ICMP client to avoid an extra copymsg/freemsg 1585 * if there isn't one. 1586 */ 1587 if (ipst->ips_ipcl_proto_fanout_v4[IPPROTO_ICMP].connf_head != NULL) { 1588 /* If there is an ICMP client and we want one too, copy it. */ 1589 1590 if (!interested) { 1591 /* Caller will deliver to RAW sockets */ 1592 return (mp); 1593 } 1594 mp_ret = copymsg(mp); 1595 if (mp_ret == NULL) { 1596 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 1597 ip_drop_input("ipIfStatsInDiscards - copymsg", mp, ill); 1598 } 1599 } else if (!interested) { 1600 /* Neither we nor raw sockets are interested. Drop packet now */ 1601 freemsg(mp); 1602 return (NULL); 1603 } 1604 1605 /* 1606 * ICMP error or redirect packet. Make sure we have enough of 1607 * the header and that db_ref == 1 since we might end up modifying 1608 * the packet. 1609 */ 1610 if (mp->b_cont != NULL) { 1611 if (ip_pullup(mp, -1, ira) == NULL) { 1612 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 1613 ip_drop_input("ipIfStatsInDiscards - ip_pullup", 1614 mp, ill); 1615 freemsg(mp); 1616 return (mp_ret); 1617 } 1618 } 1619 1620 if (mp->b_datap->db_ref > 1) { 1621 mblk_t *mp1; 1622 1623 mp1 = copymsg(mp); 1624 if (mp1 == NULL) { 1625 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 1626 ip_drop_input("ipIfStatsInDiscards - copymsg", mp, ill); 1627 freemsg(mp); 1628 return (mp_ret); 1629 } 1630 freemsg(mp); 1631 mp = mp1; 1632 } 1633 1634 /* 1635 * In case mp has changed, verify the message before any further 1636 * processes. 1637 */ 1638 ipha = (ipha_t *)mp->b_rptr; 1639 icmph = (icmph_t *)&mp->b_rptr[ip_hdr_length]; 1640 if (!icmp_inbound_verify_v4(mp, icmph, ira)) { 1641 freemsg(mp); 1642 return (mp_ret); 1643 } 1644 1645 switch (icmph->icmph_type) { 1646 case ICMP_REDIRECT: 1647 icmp_redirect_v4(mp, ipha, icmph, ira); 1648 break; 1649 case ICMP_DEST_UNREACHABLE: 1650 if (icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED) { 1651 /* Update DCE and adjust MTU is icmp header if needed */ 1652 icmp_inbound_too_big_v4(icmph, ira); 1653 } 1654 /* FALLTHRU */ 1655 default: 1656 icmp_inbound_error_fanout_v4(mp, icmph, ira); 1657 break; 1658 } 1659 return (mp_ret); 1660 } 1661 1662 /* 1663 * Send an ICMP echo, timestamp or address mask reply. 1664 * The caller has already updated the payload part of the packet. 1665 * We handle the ICMP checksum, IP source address selection and feed 1666 * the packet into ip_output_simple. 1667 */ 1668 static void 1669 icmp_send_reply_v4(mblk_t *mp, ipha_t *ipha, icmph_t *icmph, 1670 ip_recv_attr_t *ira) 1671 { 1672 uint_t ip_hdr_length = ira->ira_ip_hdr_length; 1673 ill_t *ill = ira->ira_ill; 1674 ip_stack_t *ipst = ill->ill_ipst; 1675 ip_xmit_attr_t ixas; 1676 1677 /* Send out an ICMP packet */ 1678 icmph->icmph_checksum = 0; 1679 icmph->icmph_checksum = IP_CSUM(mp, ip_hdr_length, 0); 1680 /* Reset time to live. */ 1681 ipha->ipha_ttl = ipst->ips_ip_def_ttl; 1682 { 1683 /* Swap source and destination addresses */ 1684 ipaddr_t tmp; 1685 1686 tmp = ipha->ipha_src; 1687 ipha->ipha_src = ipha->ipha_dst; 1688 ipha->ipha_dst = tmp; 1689 } 1690 ipha->ipha_ident = 0; 1691 if (!IS_SIMPLE_IPH(ipha)) 1692 icmp_options_update(ipha); 1693 1694 bzero(&ixas, sizeof (ixas)); 1695 ixas.ixa_flags = IXAF_BASIC_SIMPLE_V4; 1696 ixas.ixa_zoneid = ira->ira_zoneid; 1697 ixas.ixa_cred = kcred; 1698 ixas.ixa_cpid = NOPID; 1699 ixas.ixa_tsl = ira->ira_tsl; /* Behave as a multi-level responder */ 1700 ixas.ixa_ifindex = 0; 1701 ixas.ixa_ipst = ipst; 1702 ixas.ixa_multicast_ttl = IP_DEFAULT_MULTICAST_TTL; 1703 1704 if (!(ira->ira_flags & IRAF_IPSEC_SECURE)) { 1705 /* 1706 * This packet should go out the same way as it 1707 * came in i.e in clear, independent of the IPsec policy 1708 * for transmitting packets. 1709 */ 1710 ixas.ixa_flags |= IXAF_NO_IPSEC; 1711 } else { 1712 if (!ipsec_in_to_out(ira, &ixas, mp, ipha, NULL)) { 1713 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 1714 /* Note: mp already consumed and ip_drop_packet done */ 1715 return; 1716 } 1717 } 1718 if (ira->ira_flags & IRAF_MULTIBROADCAST) { 1719 /* 1720 * Not one or our addresses (IRE_LOCALs), thus we let 1721 * ip_output_simple pick the source. 1722 */ 1723 ipha->ipha_src = INADDR_ANY; 1724 ixas.ixa_flags |= IXAF_SET_SOURCE; 1725 } 1726 /* Should we send with DF and use dce_pmtu? */ 1727 if (ipst->ips_ipv4_icmp_return_pmtu) { 1728 ixas.ixa_flags |= IXAF_PMTU_DISCOVERY; 1729 ipha->ipha_fragment_offset_and_flags |= IPH_DF_HTONS; 1730 } 1731 1732 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutMsgs); 1733 1734 (void) ip_output_simple(mp, &ixas); 1735 ixa_cleanup(&ixas); 1736 } 1737 1738 /* 1739 * Verify the ICMP messages for either for ICMP error or redirect packet. 1740 * The caller should have fully pulled up the message. If it's a redirect 1741 * packet, only basic checks on IP header will be done; otherwise, verify 1742 * the packet by looking at the included ULP header. 1743 * 1744 * Called before icmp_inbound_error_fanout_v4 is called. 1745 */ 1746 static boolean_t 1747 icmp_inbound_verify_v4(mblk_t *mp, icmph_t *icmph, ip_recv_attr_t *ira) 1748 { 1749 ill_t *ill = ira->ira_ill; 1750 int hdr_length; 1751 ip_stack_t *ipst = ira->ira_ill->ill_ipst; 1752 conn_t *connp; 1753 ipha_t *ipha; /* Inner IP header */ 1754 1755 ipha = (ipha_t *)&icmph[1]; 1756 if ((uchar_t *)ipha + IP_SIMPLE_HDR_LENGTH > mp->b_wptr) 1757 goto truncated; 1758 1759 hdr_length = IPH_HDR_LENGTH(ipha); 1760 1761 if ((IPH_HDR_VERSION(ipha) != IPV4_VERSION)) 1762 goto discard_pkt; 1763 1764 if (hdr_length < sizeof (ipha_t)) 1765 goto truncated; 1766 1767 if ((uchar_t *)ipha + hdr_length > mp->b_wptr) 1768 goto truncated; 1769 1770 /* 1771 * Stop here for ICMP_REDIRECT. 1772 */ 1773 if (icmph->icmph_type == ICMP_REDIRECT) 1774 return (B_TRUE); 1775 1776 /* 1777 * ICMP errors only. 1778 */ 1779 switch (ipha->ipha_protocol) { 1780 case IPPROTO_UDP: 1781 /* 1782 * Verify we have at least ICMP_MIN_TP_HDR_LEN bytes of 1783 * transport header. 1784 */ 1785 if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN > 1786 mp->b_wptr) 1787 goto truncated; 1788 break; 1789 case IPPROTO_TCP: { 1790 tcpha_t *tcpha; 1791 1792 /* 1793 * Verify we have at least ICMP_MIN_TP_HDR_LEN bytes of 1794 * transport header. 1795 */ 1796 if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN > 1797 mp->b_wptr) 1798 goto truncated; 1799 1800 tcpha = (tcpha_t *)((uchar_t *)ipha + hdr_length); 1801 connp = ipcl_tcp_lookup_reversed_ipv4(ipha, tcpha, TCPS_LISTEN, 1802 ipst); 1803 if (connp == NULL) 1804 goto discard_pkt; 1805 1806 if ((connp->conn_verifyicmp != NULL) && 1807 !connp->conn_verifyicmp(connp, tcpha, icmph, NULL, ira)) { 1808 CONN_DEC_REF(connp); 1809 goto discard_pkt; 1810 } 1811 CONN_DEC_REF(connp); 1812 break; 1813 } 1814 case IPPROTO_SCTP: 1815 /* 1816 * Verify we have at least ICMP_MIN_TP_HDR_LEN bytes of 1817 * transport header. 1818 */ 1819 if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN > 1820 mp->b_wptr) 1821 goto truncated; 1822 break; 1823 case IPPROTO_ESP: 1824 case IPPROTO_AH: 1825 break; 1826 case IPPROTO_ENCAP: 1827 if ((uchar_t *)ipha + hdr_length + sizeof (ipha_t) > 1828 mp->b_wptr) 1829 goto truncated; 1830 break; 1831 default: 1832 break; 1833 } 1834 1835 return (B_TRUE); 1836 1837 discard_pkt: 1838 /* Bogus ICMP error. */ 1839 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 1840 return (B_FALSE); 1841 1842 truncated: 1843 /* We pulled up everthing already. Must be truncated */ 1844 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInTruncatedPkts); 1845 ip_drop_input("ipIfStatsInTruncatedPkts", mp, ill); 1846 return (B_FALSE); 1847 } 1848 1849 /* Table from RFC 1191 */ 1850 static int icmp_frag_size_table[] = 1851 { 32000, 17914, 8166, 4352, 2002, 1496, 1006, 508, 296, 68 }; 1852 1853 /* 1854 * Process received ICMP Packet too big. 1855 * Just handles the DCE create/update, including using the above table of 1856 * PMTU guesses. The caller is responsible for validating the packet before 1857 * passing it in and also to fanout the ICMP error to any matching transport 1858 * conns. Assumes the message has been fully pulled up and verified. 1859 * 1860 * Before getting here, the caller has called icmp_inbound_verify_v4() 1861 * that should have verified with ULP to prevent undoing the changes we're 1862 * going to make to DCE. For example, TCP might have verified that the packet 1863 * which generated error is in the send window. 1864 * 1865 * In some cases modified this MTU in the ICMP header packet; the caller 1866 * should pass to the matching ULP after this returns. 1867 */ 1868 static void 1869 icmp_inbound_too_big_v4(icmph_t *icmph, ip_recv_attr_t *ira) 1870 { 1871 dce_t *dce; 1872 int old_mtu; 1873 int mtu, orig_mtu; 1874 ipaddr_t dst; 1875 boolean_t disable_pmtud; 1876 ill_t *ill = ira->ira_ill; 1877 ip_stack_t *ipst = ill->ill_ipst; 1878 uint_t hdr_length; 1879 ipha_t *ipha; 1880 1881 /* Caller already pulled up everything. */ 1882 ipha = (ipha_t *)&icmph[1]; 1883 ASSERT(icmph->icmph_type == ICMP_DEST_UNREACHABLE && 1884 icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED); 1885 ASSERT(ill != NULL); 1886 1887 hdr_length = IPH_HDR_LENGTH(ipha); 1888 1889 /* 1890 * We handle path MTU for source routed packets since the DCE 1891 * is looked up using the final destination. 1892 */ 1893 dst = ip_get_dst(ipha); 1894 1895 dce = dce_lookup_and_add_v4(dst, ipst); 1896 if (dce == NULL) { 1897 /* Couldn't add a unique one - ENOMEM */ 1898 ip1dbg(("icmp_inbound_too_big_v4: no dce for 0x%x\n", 1899 ntohl(dst))); 1900 return; 1901 } 1902 1903 /* Check for MTU discovery advice as described in RFC 1191 */ 1904 mtu = ntohs(icmph->icmph_du_mtu); 1905 orig_mtu = mtu; 1906 disable_pmtud = B_FALSE; 1907 1908 mutex_enter(&dce->dce_lock); 1909 if (dce->dce_flags & DCEF_PMTU) 1910 old_mtu = dce->dce_pmtu; 1911 else 1912 old_mtu = ill->ill_mtu; 1913 1914 if (icmph->icmph_du_zero != 0 || mtu < ipst->ips_ip_pmtu_min) { 1915 uint32_t length; 1916 int i; 1917 1918 /* 1919 * Use the table from RFC 1191 to figure out 1920 * the next "plateau" based on the length in 1921 * the original IP packet. 1922 */ 1923 length = ntohs(ipha->ipha_length); 1924 DTRACE_PROBE2(ip4__pmtu__guess, dce_t *, dce, 1925 uint32_t, length); 1926 if (old_mtu <= length && 1927 old_mtu >= length - hdr_length) { 1928 /* 1929 * Handle broken BSD 4.2 systems that 1930 * return the wrong ipha_length in ICMP 1931 * errors. 1932 */ 1933 ip1dbg(("Wrong mtu: sent %d, dce %d\n", 1934 length, old_mtu)); 1935 length -= hdr_length; 1936 } 1937 for (i = 0; i < A_CNT(icmp_frag_size_table); i++) { 1938 if (length > icmp_frag_size_table[i]) 1939 break; 1940 } 1941 if (i == A_CNT(icmp_frag_size_table)) { 1942 /* Smaller than IP_MIN_MTU! */ 1943 ip1dbg(("Too big for packet size %d\n", 1944 length)); 1945 disable_pmtud = B_TRUE; 1946 mtu = ipst->ips_ip_pmtu_min; 1947 } else { 1948 mtu = icmp_frag_size_table[i]; 1949 ip1dbg(("Calculated mtu %d, packet size %d, " 1950 "before %d\n", mtu, length, old_mtu)); 1951 if (mtu < ipst->ips_ip_pmtu_min) { 1952 mtu = ipst->ips_ip_pmtu_min; 1953 disable_pmtud = B_TRUE; 1954 } 1955 } 1956 } 1957 if (disable_pmtud) 1958 dce->dce_flags |= DCEF_TOO_SMALL_PMTU; 1959 else 1960 dce->dce_flags &= ~DCEF_TOO_SMALL_PMTU; 1961 1962 dce->dce_pmtu = MIN(old_mtu, mtu); 1963 /* Prepare to send the new max frag size for the ULP. */ 1964 icmph->icmph_du_zero = 0; 1965 icmph->icmph_du_mtu = htons((uint16_t)dce->dce_pmtu); 1966 DTRACE_PROBE4(ip4__pmtu__change, icmph_t *, icmph, dce_t *, 1967 dce, int, orig_mtu, int, mtu); 1968 1969 /* We now have a PMTU for sure */ 1970 dce->dce_flags |= DCEF_PMTU; 1971 dce->dce_last_change_time = TICK_TO_SEC(ddi_get_lbolt64()); 1972 mutex_exit(&dce->dce_lock); 1973 /* 1974 * After dropping the lock the new value is visible to everyone. 1975 * Then we bump the generation number so any cached values reinspect 1976 * the dce_t. 1977 */ 1978 dce_increment_generation(dce); 1979 dce_refrele(dce); 1980 } 1981 1982 /* 1983 * If the packet in error is Self-Encapsulated, icmp_inbound_error_fanout_v4 1984 * calls this function. 1985 */ 1986 static mblk_t * 1987 icmp_inbound_self_encap_error_v4(mblk_t *mp, ipha_t *ipha, ipha_t *in_ipha) 1988 { 1989 int length; 1990 1991 ASSERT(mp->b_datap->db_type == M_DATA); 1992 1993 /* icmp_inbound_v4 has already pulled up the whole error packet */ 1994 ASSERT(mp->b_cont == NULL); 1995 1996 /* 1997 * The length that we want to overlay is the inner header 1998 * and what follows it. 1999 */ 2000 length = msgdsize(mp) - ((uchar_t *)in_ipha - mp->b_rptr); 2001 2002 /* 2003 * Overlay the inner header and whatever follows it over the 2004 * outer header. 2005 */ 2006 bcopy((uchar_t *)in_ipha, (uchar_t *)ipha, length); 2007 2008 /* Adjust for what we removed */ 2009 mp->b_wptr -= (uchar_t *)in_ipha - (uchar_t *)ipha; 2010 return (mp); 2011 } 2012 2013 /* 2014 * Try to pass the ICMP message upstream in case the ULP cares. 2015 * 2016 * If the packet that caused the ICMP error is secure, we send 2017 * it to AH/ESP to make sure that the attached packet has a 2018 * valid association. ipha in the code below points to the 2019 * IP header of the packet that caused the error. 2020 * 2021 * For IPsec cases, we let the next-layer-up (which has access to 2022 * cached policy on the conn_t, or can query the SPD directly) 2023 * subtract out any IPsec overhead if they must. We therefore make no 2024 * adjustments here for IPsec overhead. 2025 * 2026 * IFN could have been generated locally or by some router. 2027 * 2028 * LOCAL : ire_send_wire (before calling ipsec_out_process) can call 2029 * icmp_frag_needed/icmp_pkt2big_v6 to generated a local IFN. 2030 * This happens because IP adjusted its value of MTU on an 2031 * earlier IFN message and could not tell the upper layer, 2032 * the new adjusted value of MTU e.g. Packet was encrypted 2033 * or there was not enough information to fanout to upper 2034 * layers. Thus on the next outbound datagram, ire_send_wire 2035 * generates the IFN, where IPsec processing has *not* been 2036 * done. 2037 * 2038 * Note that we retain ixa_fragsize across IPsec thus once 2039 * we have picking ixa_fragsize and entered ipsec_out_process we do 2040 * no change the fragsize even if the path MTU changes before 2041 * we reach ip_output_post_ipsec. 2042 * 2043 * In the local case, IRAF_LOOPBACK will be set indicating 2044 * that IFN was generated locally. 2045 * 2046 * ROUTER : IFN could be secure or non-secure. 2047 * 2048 * * SECURE : We use the IPSEC_IN to fanout to AH/ESP if the 2049 * packet in error has AH/ESP headers to validate the AH/ESP 2050 * headers. AH/ESP will verify whether there is a valid SA or 2051 * not and send it back. We will fanout again if we have more 2052 * data in the packet. 2053 * 2054 * If the packet in error does not have AH/ESP, we handle it 2055 * like any other case. 2056 * 2057 * * NON_SECURE : If the packet in error has AH/ESP headers, we send it 2058 * up to AH/ESP for validation. AH/ESP will verify whether there is a 2059 * valid SA or not and send it back. We will fanout again if 2060 * we have more data in the packet. 2061 * 2062 * If the packet in error does not have AH/ESP, we handle it 2063 * like any other case. 2064 * 2065 * The caller must have called icmp_inbound_verify_v4. 2066 */ 2067 static void 2068 icmp_inbound_error_fanout_v4(mblk_t *mp, icmph_t *icmph, ip_recv_attr_t *ira) 2069 { 2070 uint16_t *up; /* Pointer to ports in ULP header */ 2071 uint32_t ports; /* reversed ports for fanout */ 2072 ipha_t ripha; /* With reversed addresses */ 2073 ipha_t *ipha; /* Inner IP header */ 2074 uint_t hdr_length; /* Inner IP header length */ 2075 tcpha_t *tcpha; 2076 conn_t *connp; 2077 ill_t *ill = ira->ira_ill; 2078 ip_stack_t *ipst = ill->ill_ipst; 2079 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 2080 ill_t *rill = ira->ira_rill; 2081 2082 /* Caller already pulled up everything. */ 2083 ipha = (ipha_t *)&icmph[1]; 2084 ASSERT((uchar_t *)&ipha[1] <= mp->b_wptr); 2085 ASSERT(mp->b_cont == NULL); 2086 2087 hdr_length = IPH_HDR_LENGTH(ipha); 2088 ira->ira_protocol = ipha->ipha_protocol; 2089 2090 /* 2091 * We need a separate IP header with the source and destination 2092 * addresses reversed to do fanout/classification because the ipha in 2093 * the ICMP error is in the form we sent it out. 2094 */ 2095 ripha.ipha_src = ipha->ipha_dst; 2096 ripha.ipha_dst = ipha->ipha_src; 2097 ripha.ipha_protocol = ipha->ipha_protocol; 2098 ripha.ipha_version_and_hdr_length = ipha->ipha_version_and_hdr_length; 2099 2100 ip2dbg(("icmp_inbound_error_v4: proto %d %x to %x: %d/%d\n", 2101 ripha.ipha_protocol, ntohl(ipha->ipha_src), 2102 ntohl(ipha->ipha_dst), 2103 icmph->icmph_type, icmph->icmph_code)); 2104 2105 switch (ipha->ipha_protocol) { 2106 case IPPROTO_UDP: 2107 up = (uint16_t *)((uchar_t *)ipha + hdr_length); 2108 2109 /* Attempt to find a client stream based on port. */ 2110 ip2dbg(("icmp_inbound_error_v4: UDP ports %d to %d\n", 2111 ntohs(up[0]), ntohs(up[1]))); 2112 2113 /* Note that we send error to all matches. */ 2114 ira->ira_flags |= IRAF_ICMP_ERROR; 2115 ip_fanout_udp_multi_v4(mp, &ripha, up[0], up[1], ira); 2116 ira->ira_flags &= ~IRAF_ICMP_ERROR; 2117 return; 2118 2119 case IPPROTO_TCP: 2120 /* 2121 * Find a TCP client stream for this packet. 2122 * Note that we do a reverse lookup since the header is 2123 * in the form we sent it out. 2124 */ 2125 tcpha = (tcpha_t *)((uchar_t *)ipha + hdr_length); 2126 connp = ipcl_tcp_lookup_reversed_ipv4(ipha, tcpha, TCPS_LISTEN, 2127 ipst); 2128 if (connp == NULL) 2129 goto discard_pkt; 2130 2131 if (CONN_INBOUND_POLICY_PRESENT(connp, ipss) || 2132 (ira->ira_flags & IRAF_IPSEC_SECURE)) { 2133 mp = ipsec_check_inbound_policy(mp, connp, 2134 ipha, NULL, ira); 2135 if (mp == NULL) { 2136 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 2137 /* Note that mp is NULL */ 2138 ip_drop_input("ipIfStatsInDiscards", mp, ill); 2139 CONN_DEC_REF(connp); 2140 return; 2141 } 2142 } 2143 2144 ira->ira_flags |= IRAF_ICMP_ERROR; 2145 ira->ira_ill = ira->ira_rill = NULL; 2146 if (IPCL_IS_TCP(connp)) { 2147 SQUEUE_ENTER_ONE(connp->conn_sqp, mp, 2148 connp->conn_recvicmp, connp, ira, SQ_FILL, 2149 SQTAG_TCP_INPUT_ICMP_ERR); 2150 } else { 2151 /* Not TCP; must be SOCK_RAW, IPPROTO_TCP */ 2152 (connp->conn_recv)(connp, mp, NULL, ira); 2153 CONN_DEC_REF(connp); 2154 } 2155 ira->ira_ill = ill; 2156 ira->ira_rill = rill; 2157 ira->ira_flags &= ~IRAF_ICMP_ERROR; 2158 return; 2159 2160 case IPPROTO_SCTP: 2161 up = (uint16_t *)((uchar_t *)ipha + hdr_length); 2162 /* Find a SCTP client stream for this packet. */ 2163 ((uint16_t *)&ports)[0] = up[1]; 2164 ((uint16_t *)&ports)[1] = up[0]; 2165 2166 ira->ira_flags |= IRAF_ICMP_ERROR; 2167 ip_fanout_sctp(mp, &ripha, NULL, ports, ira); 2168 ira->ira_flags &= ~IRAF_ICMP_ERROR; 2169 return; 2170 2171 case IPPROTO_ESP: 2172 case IPPROTO_AH: 2173 if (!ipsec_loaded(ipss)) { 2174 ip_proto_not_sup(mp, ira); 2175 return; 2176 } 2177 2178 if (ipha->ipha_protocol == IPPROTO_ESP) 2179 mp = ipsecesp_icmp_error(mp, ira); 2180 else 2181 mp = ipsecah_icmp_error(mp, ira); 2182 if (mp == NULL) 2183 return; 2184 2185 /* Just in case ipsec didn't preserve the NULL b_cont */ 2186 if (mp->b_cont != NULL) { 2187 if (!pullupmsg(mp, -1)) 2188 goto discard_pkt; 2189 } 2190 2191 /* 2192 * Note that ira_pktlen and ira_ip_hdr_length are no longer 2193 * correct, but we don't use them any more here. 2194 * 2195 * If succesful, the mp has been modified to not include 2196 * the ESP/AH header so we can fanout to the ULP's icmp 2197 * error handler. 2198 */ 2199 if (mp->b_wptr - mp->b_rptr < IP_SIMPLE_HDR_LENGTH) 2200 goto truncated; 2201 2202 /* Verify the modified message before any further processes. */ 2203 ipha = (ipha_t *)mp->b_rptr; 2204 hdr_length = IPH_HDR_LENGTH(ipha); 2205 icmph = (icmph_t *)&mp->b_rptr[hdr_length]; 2206 if (!icmp_inbound_verify_v4(mp, icmph, ira)) { 2207 freemsg(mp); 2208 return; 2209 } 2210 2211 icmp_inbound_error_fanout_v4(mp, icmph, ira); 2212 return; 2213 2214 case IPPROTO_ENCAP: { 2215 /* Look for self-encapsulated packets that caused an error */ 2216 ipha_t *in_ipha; 2217 2218 /* 2219 * Caller has verified that length has to be 2220 * at least the size of IP header. 2221 */ 2222 ASSERT(hdr_length >= sizeof (ipha_t)); 2223 /* 2224 * Check the sanity of the inner IP header like 2225 * we did for the outer header. 2226 */ 2227 in_ipha = (ipha_t *)((uchar_t *)ipha + hdr_length); 2228 if ((IPH_HDR_VERSION(in_ipha) != IPV4_VERSION)) { 2229 goto discard_pkt; 2230 } 2231 if (IPH_HDR_LENGTH(in_ipha) < sizeof (ipha_t)) { 2232 goto discard_pkt; 2233 } 2234 /* Check for Self-encapsulated tunnels */ 2235 if (in_ipha->ipha_src == ipha->ipha_src && 2236 in_ipha->ipha_dst == ipha->ipha_dst) { 2237 2238 mp = icmp_inbound_self_encap_error_v4(mp, ipha, 2239 in_ipha); 2240 if (mp == NULL) 2241 goto discard_pkt; 2242 2243 /* 2244 * Just in case self_encap didn't preserve the NULL 2245 * b_cont 2246 */ 2247 if (mp->b_cont != NULL) { 2248 if (!pullupmsg(mp, -1)) 2249 goto discard_pkt; 2250 } 2251 /* 2252 * Note that ira_pktlen and ira_ip_hdr_length are no 2253 * longer correct, but we don't use them any more here. 2254 */ 2255 if (mp->b_wptr - mp->b_rptr < IP_SIMPLE_HDR_LENGTH) 2256 goto truncated; 2257 2258 /* 2259 * Verify the modified message before any further 2260 * processes. 2261 */ 2262 ipha = (ipha_t *)mp->b_rptr; 2263 hdr_length = IPH_HDR_LENGTH(ipha); 2264 icmph = (icmph_t *)&mp->b_rptr[hdr_length]; 2265 if (!icmp_inbound_verify_v4(mp, icmph, ira)) { 2266 freemsg(mp); 2267 return; 2268 } 2269 2270 /* 2271 * The packet in error is self-encapsualted. 2272 * And we are finding it further encapsulated 2273 * which we could not have possibly generated. 2274 */ 2275 if (ipha->ipha_protocol == IPPROTO_ENCAP) { 2276 goto discard_pkt; 2277 } 2278 icmp_inbound_error_fanout_v4(mp, icmph, ira); 2279 return; 2280 } 2281 /* No self-encapsulated */ 2282 /* FALLTHRU */ 2283 } 2284 case IPPROTO_IPV6: 2285 if ((connp = ipcl_iptun_classify_v4(&ripha.ipha_src, 2286 &ripha.ipha_dst, ipst)) != NULL) { 2287 ira->ira_flags |= IRAF_ICMP_ERROR; 2288 connp->conn_recvicmp(connp, mp, NULL, ira); 2289 CONN_DEC_REF(connp); 2290 ira->ira_flags &= ~IRAF_ICMP_ERROR; 2291 return; 2292 } 2293 /* 2294 * No IP tunnel is interested, fallthrough and see 2295 * if a raw socket will want it. 2296 */ 2297 /* FALLTHRU */ 2298 default: 2299 ira->ira_flags |= IRAF_ICMP_ERROR; 2300 ip_fanout_proto_v4(mp, &ripha, ira); 2301 ira->ira_flags &= ~IRAF_ICMP_ERROR; 2302 return; 2303 } 2304 /* NOTREACHED */ 2305 discard_pkt: 2306 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 2307 ip1dbg(("icmp_inbound_error_fanout_v4: drop pkt\n")); 2308 ip_drop_input("ipIfStatsInDiscards", mp, ill); 2309 freemsg(mp); 2310 return; 2311 2312 truncated: 2313 /* We pulled up everthing already. Must be truncated */ 2314 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInTruncatedPkts); 2315 ip_drop_input("ipIfStatsInTruncatedPkts", mp, ill); 2316 freemsg(mp); 2317 } 2318 2319 /* 2320 * Common IP options parser. 2321 * 2322 * Setup routine: fill in *optp with options-parsing state, then 2323 * tail-call ipoptp_next to return the first option. 2324 */ 2325 uint8_t 2326 ipoptp_first(ipoptp_t *optp, ipha_t *ipha) 2327 { 2328 uint32_t totallen; /* total length of all options */ 2329 2330 totallen = ipha->ipha_version_and_hdr_length - 2331 (uint8_t)((IP_VERSION << 4) + IP_SIMPLE_HDR_LENGTH_IN_WORDS); 2332 totallen <<= 2; 2333 optp->ipoptp_next = (uint8_t *)(&ipha[1]); 2334 optp->ipoptp_end = optp->ipoptp_next + totallen; 2335 optp->ipoptp_flags = 0; 2336 return (ipoptp_next(optp)); 2337 } 2338 2339 /* Like above but without an ipha_t */ 2340 uint8_t 2341 ipoptp_first2(ipoptp_t *optp, uint32_t totallen, uint8_t *opt) 2342 { 2343 optp->ipoptp_next = opt; 2344 optp->ipoptp_end = optp->ipoptp_next + totallen; 2345 optp->ipoptp_flags = 0; 2346 return (ipoptp_next(optp)); 2347 } 2348 2349 /* 2350 * Common IP options parser: extract next option. 2351 */ 2352 uint8_t 2353 ipoptp_next(ipoptp_t *optp) 2354 { 2355 uint8_t *end = optp->ipoptp_end; 2356 uint8_t *cur = optp->ipoptp_next; 2357 uint8_t opt, len, pointer; 2358 2359 /* 2360 * If cur > end already, then the ipoptp_end or ipoptp_next pointer 2361 * has been corrupted. 2362 */ 2363 ASSERT(cur <= end); 2364 2365 if (cur == end) 2366 return (IPOPT_EOL); 2367 2368 opt = cur[IPOPT_OPTVAL]; 2369 2370 /* 2371 * Skip any NOP options. 2372 */ 2373 while (opt == IPOPT_NOP) { 2374 cur++; 2375 if (cur == end) 2376 return (IPOPT_EOL); 2377 opt = cur[IPOPT_OPTVAL]; 2378 } 2379 2380 if (opt == IPOPT_EOL) 2381 return (IPOPT_EOL); 2382 2383 /* 2384 * Option requiring a length. 2385 */ 2386 if ((cur + 1) >= end) { 2387 optp->ipoptp_flags |= IPOPTP_ERROR; 2388 return (IPOPT_EOL); 2389 } 2390 len = cur[IPOPT_OLEN]; 2391 if (len < 2) { 2392 optp->ipoptp_flags |= IPOPTP_ERROR; 2393 return (IPOPT_EOL); 2394 } 2395 optp->ipoptp_cur = cur; 2396 optp->ipoptp_len = len; 2397 optp->ipoptp_next = cur + len; 2398 if (cur + len > end) { 2399 optp->ipoptp_flags |= IPOPTP_ERROR; 2400 return (IPOPT_EOL); 2401 } 2402 2403 /* 2404 * For the options which require a pointer field, make sure 2405 * its there, and make sure it points to either something 2406 * inside this option, or the end of the option. 2407 */ 2408 switch (opt) { 2409 case IPOPT_RR: 2410 case IPOPT_TS: 2411 case IPOPT_LSRR: 2412 case IPOPT_SSRR: 2413 if (len <= IPOPT_OFFSET) { 2414 optp->ipoptp_flags |= IPOPTP_ERROR; 2415 return (opt); 2416 } 2417 pointer = cur[IPOPT_OFFSET]; 2418 if (pointer - 1 > len) { 2419 optp->ipoptp_flags |= IPOPTP_ERROR; 2420 return (opt); 2421 } 2422 break; 2423 } 2424 2425 /* 2426 * Sanity check the pointer field based on the type of the 2427 * option. 2428 */ 2429 switch (opt) { 2430 case IPOPT_RR: 2431 case IPOPT_SSRR: 2432 case IPOPT_LSRR: 2433 if (pointer < IPOPT_MINOFF_SR) 2434 optp->ipoptp_flags |= IPOPTP_ERROR; 2435 break; 2436 case IPOPT_TS: 2437 if (pointer < IPOPT_MINOFF_IT) 2438 optp->ipoptp_flags |= IPOPTP_ERROR; 2439 /* 2440 * Note that the Internet Timestamp option also 2441 * contains two four bit fields (the Overflow field, 2442 * and the Flag field), which follow the pointer 2443 * field. We don't need to check that these fields 2444 * fall within the length of the option because this 2445 * was implicitely done above. We've checked that the 2446 * pointer value is at least IPOPT_MINOFF_IT, and that 2447 * it falls within the option. Since IPOPT_MINOFF_IT > 2448 * IPOPT_POS_OV_FLG, we don't need the explicit check. 2449 */ 2450 ASSERT(len > IPOPT_POS_OV_FLG); 2451 break; 2452 } 2453 2454 return (opt); 2455 } 2456 2457 /* 2458 * Use the outgoing IP header to create an IP_OPTIONS option the way 2459 * it was passed down from the application. 2460 * 2461 * This is compatible with BSD in that it returns 2462 * the reverse source route with the final destination 2463 * as the last entry. The first 4 bytes of the option 2464 * will contain the final destination. 2465 */ 2466 int 2467 ip_opt_get_user(conn_t *connp, uchar_t *buf) 2468 { 2469 ipoptp_t opts; 2470 uchar_t *opt; 2471 uint8_t optval; 2472 uint8_t optlen; 2473 uint32_t len = 0; 2474 uchar_t *buf1 = buf; 2475 uint32_t totallen; 2476 ipaddr_t dst; 2477 ip_pkt_t *ipp = &connp->conn_xmit_ipp; 2478 2479 if (!(ipp->ipp_fields & IPPF_IPV4_OPTIONS)) 2480 return (0); 2481 2482 totallen = ipp->ipp_ipv4_options_len; 2483 if (totallen & 0x3) 2484 return (0); 2485 2486 buf += IP_ADDR_LEN; /* Leave room for final destination */ 2487 len += IP_ADDR_LEN; 2488 bzero(buf1, IP_ADDR_LEN); 2489 2490 dst = connp->conn_faddr_v4; 2491 2492 for (optval = ipoptp_first2(&opts, totallen, ipp->ipp_ipv4_options); 2493 optval != IPOPT_EOL; 2494 optval = ipoptp_next(&opts)) { 2495 int off; 2496 2497 opt = opts.ipoptp_cur; 2498 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 2499 break; 2500 } 2501 optlen = opts.ipoptp_len; 2502 2503 switch (optval) { 2504 case IPOPT_SSRR: 2505 case IPOPT_LSRR: 2506 2507 /* 2508 * Insert destination as the first entry in the source 2509 * route and move down the entries on step. 2510 * The last entry gets placed at buf1. 2511 */ 2512 buf[IPOPT_OPTVAL] = optval; 2513 buf[IPOPT_OLEN] = optlen; 2514 buf[IPOPT_OFFSET] = optlen; 2515 2516 off = optlen - IP_ADDR_LEN; 2517 if (off < 0) { 2518 /* No entries in source route */ 2519 break; 2520 } 2521 /* Last entry in source route if not already set */ 2522 if (dst == INADDR_ANY) 2523 bcopy(opt + off, buf1, IP_ADDR_LEN); 2524 off -= IP_ADDR_LEN; 2525 2526 while (off > 0) { 2527 bcopy(opt + off, 2528 buf + off + IP_ADDR_LEN, 2529 IP_ADDR_LEN); 2530 off -= IP_ADDR_LEN; 2531 } 2532 /* ipha_dst into first slot */ 2533 bcopy(&dst, buf + off + IP_ADDR_LEN, 2534 IP_ADDR_LEN); 2535 buf += optlen; 2536 len += optlen; 2537 break; 2538 2539 default: 2540 bcopy(opt, buf, optlen); 2541 buf += optlen; 2542 len += optlen; 2543 break; 2544 } 2545 } 2546 done: 2547 /* Pad the resulting options */ 2548 while (len & 0x3) { 2549 *buf++ = IPOPT_EOL; 2550 len++; 2551 } 2552 return (len); 2553 } 2554 2555 /* 2556 * Update any record route or timestamp options to include this host. 2557 * Reverse any source route option. 2558 * This routine assumes that the options are well formed i.e. that they 2559 * have already been checked. 2560 */ 2561 static void 2562 icmp_options_update(ipha_t *ipha) 2563 { 2564 ipoptp_t opts; 2565 uchar_t *opt; 2566 uint8_t optval; 2567 ipaddr_t src; /* Our local address */ 2568 ipaddr_t dst; 2569 2570 ip2dbg(("icmp_options_update\n")); 2571 src = ipha->ipha_src; 2572 dst = ipha->ipha_dst; 2573 2574 for (optval = ipoptp_first(&opts, ipha); 2575 optval != IPOPT_EOL; 2576 optval = ipoptp_next(&opts)) { 2577 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 2578 opt = opts.ipoptp_cur; 2579 ip2dbg(("icmp_options_update: opt %d, len %d\n", 2580 optval, opts.ipoptp_len)); 2581 switch (optval) { 2582 int off1, off2; 2583 case IPOPT_SSRR: 2584 case IPOPT_LSRR: 2585 /* 2586 * Reverse the source route. The first entry 2587 * should be the next to last one in the current 2588 * source route (the last entry is our address). 2589 * The last entry should be the final destination. 2590 */ 2591 off1 = IPOPT_MINOFF_SR - 1; 2592 off2 = opt[IPOPT_OFFSET] - IP_ADDR_LEN - 1; 2593 if (off2 < 0) { 2594 /* No entries in source route */ 2595 ip1dbg(( 2596 "icmp_options_update: bad src route\n")); 2597 break; 2598 } 2599 bcopy((char *)opt + off2, &dst, IP_ADDR_LEN); 2600 bcopy(&ipha->ipha_dst, (char *)opt + off2, IP_ADDR_LEN); 2601 bcopy(&dst, &ipha->ipha_dst, IP_ADDR_LEN); 2602 off2 -= IP_ADDR_LEN; 2603 2604 while (off1 < off2) { 2605 bcopy((char *)opt + off1, &src, IP_ADDR_LEN); 2606 bcopy((char *)opt + off2, (char *)opt + off1, 2607 IP_ADDR_LEN); 2608 bcopy(&src, (char *)opt + off2, IP_ADDR_LEN); 2609 off1 += IP_ADDR_LEN; 2610 off2 -= IP_ADDR_LEN; 2611 } 2612 opt[IPOPT_OFFSET] = IPOPT_MINOFF_SR; 2613 break; 2614 } 2615 } 2616 } 2617 2618 /* 2619 * Process received ICMP Redirect messages. 2620 * Assumes the caller has verified that the headers are in the pulled up mblk. 2621 * Consumes mp. 2622 */ 2623 static void 2624 icmp_redirect_v4(mblk_t *mp, ipha_t *ipha, icmph_t *icmph, ip_recv_attr_t *ira) 2625 { 2626 ire_t *ire, *nire; 2627 ire_t *prev_ire; 2628 ipaddr_t src, dst, gateway; 2629 ip_stack_t *ipst = ira->ira_ill->ill_ipst; 2630 ipha_t *inner_ipha; /* Inner IP header */ 2631 2632 /* Caller already pulled up everything. */ 2633 inner_ipha = (ipha_t *)&icmph[1]; 2634 src = ipha->ipha_src; 2635 dst = inner_ipha->ipha_dst; 2636 gateway = icmph->icmph_rd_gateway; 2637 /* Make sure the new gateway is reachable somehow. */ 2638 ire = ire_ftable_lookup_v4(gateway, 0, 0, IRE_ONLINK, NULL, 2639 ALL_ZONES, NULL, MATCH_IRE_TYPE, 0, ipst, NULL); 2640 /* 2641 * Make sure we had a route for the dest in question and that 2642 * that route was pointing to the old gateway (the source of the 2643 * redirect packet.) 2644 * We do longest match and then compare ire_gateway_addr below. 2645 */ 2646 prev_ire = ire_ftable_lookup_v4(dst, 0, 0, 0, NULL, ALL_ZONES, 2647 NULL, MATCH_IRE_DSTONLY, 0, ipst, NULL); 2648 /* 2649 * Check that 2650 * the redirect was not from ourselves 2651 * the new gateway and the old gateway are directly reachable 2652 */ 2653 if (prev_ire == NULL || ire == NULL || 2654 (prev_ire->ire_type & (IRE_LOCAL|IRE_LOOPBACK)) || 2655 (prev_ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) || 2656 !(ire->ire_type & IRE_IF_ALL) || 2657 prev_ire->ire_gateway_addr != src) { 2658 BUMP_MIB(&ipst->ips_icmp_mib, icmpInBadRedirects); 2659 ip_drop_input("icmpInBadRedirects - ire", mp, ira->ira_ill); 2660 freemsg(mp); 2661 if (ire != NULL) 2662 ire_refrele(ire); 2663 if (prev_ire != NULL) 2664 ire_refrele(prev_ire); 2665 return; 2666 } 2667 2668 ire_refrele(prev_ire); 2669 ire_refrele(ire); 2670 2671 /* 2672 * TODO: more precise handling for cases 0, 2, 3, the latter two 2673 * require TOS routing 2674 */ 2675 switch (icmph->icmph_code) { 2676 case 0: 2677 case 1: 2678 /* TODO: TOS specificity for cases 2 and 3 */ 2679 case 2: 2680 case 3: 2681 break; 2682 default: 2683 BUMP_MIB(&ipst->ips_icmp_mib, icmpInBadRedirects); 2684 ip_drop_input("icmpInBadRedirects - code", mp, ira->ira_ill); 2685 freemsg(mp); 2686 return; 2687 } 2688 /* 2689 * Create a Route Association. This will allow us to remember that 2690 * someone we believe told us to use the particular gateway. 2691 */ 2692 ire = ire_create( 2693 (uchar_t *)&dst, /* dest addr */ 2694 (uchar_t *)&ip_g_all_ones, /* mask */ 2695 (uchar_t *)&gateway, /* gateway addr */ 2696 IRE_HOST, 2697 NULL, /* ill */ 2698 ALL_ZONES, 2699 (RTF_DYNAMIC | RTF_GATEWAY | RTF_HOST), 2700 NULL, /* tsol_gc_t */ 2701 ipst); 2702 2703 if (ire == NULL) { 2704 freemsg(mp); 2705 return; 2706 } 2707 nire = ire_add(ire); 2708 /* Check if it was a duplicate entry */ 2709 if (nire != NULL && nire != ire) { 2710 ASSERT(nire->ire_identical_ref > 1); 2711 ire_delete(nire); 2712 ire_refrele(nire); 2713 nire = NULL; 2714 } 2715 ire = nire; 2716 if (ire != NULL) { 2717 ire_refrele(ire); /* Held in ire_add */ 2718 2719 /* tell routing sockets that we received a redirect */ 2720 ip_rts_change(RTM_REDIRECT, dst, gateway, IP_HOST_MASK, 0, src, 2721 (RTF_DYNAMIC | RTF_GATEWAY | RTF_HOST), 0, 2722 (RTA_DST | RTA_GATEWAY | RTA_NETMASK | RTA_AUTHOR), ipst); 2723 } 2724 2725 /* 2726 * Delete any existing IRE_HOST type redirect ires for this destination. 2727 * This together with the added IRE has the effect of 2728 * modifying an existing redirect. 2729 */ 2730 prev_ire = ire_ftable_lookup_v4(dst, 0, src, IRE_HOST, NULL, 2731 ALL_ZONES, NULL, (MATCH_IRE_GW | MATCH_IRE_TYPE), 0, ipst, NULL); 2732 if (prev_ire != NULL) { 2733 if (prev_ire ->ire_flags & RTF_DYNAMIC) 2734 ire_delete(prev_ire); 2735 ire_refrele(prev_ire); 2736 } 2737 2738 freemsg(mp); 2739 } 2740 2741 /* 2742 * Generate an ICMP parameter problem message. 2743 * When called from ip_output side a minimal ip_recv_attr_t needs to be 2744 * constructed by the caller. 2745 */ 2746 static void 2747 icmp_param_problem(mblk_t *mp, uint8_t ptr, ip_recv_attr_t *ira) 2748 { 2749 icmph_t icmph; 2750 ip_stack_t *ipst = ira->ira_ill->ill_ipst; 2751 2752 mp = icmp_pkt_err_ok(mp, ira); 2753 if (mp == NULL) 2754 return; 2755 2756 bzero(&icmph, sizeof (icmph_t)); 2757 icmph.icmph_type = ICMP_PARAM_PROBLEM; 2758 icmph.icmph_pp_ptr = ptr; 2759 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutParmProbs); 2760 icmp_pkt(mp, &icmph, sizeof (icmph_t), ira); 2761 } 2762 2763 /* 2764 * Build and ship an IPv4 ICMP message using the packet data in mp, and 2765 * the ICMP header pointed to by "stuff". (May be called as writer.) 2766 * Note: assumes that icmp_pkt_err_ok has been called to verify that 2767 * an icmp error packet can be sent. 2768 * Assigns an appropriate source address to the packet. If ipha_dst is 2769 * one of our addresses use it for source. Otherwise let ip_output_simple 2770 * pick the source address. 2771 */ 2772 static void 2773 icmp_pkt(mblk_t *mp, void *stuff, size_t len, ip_recv_attr_t *ira) 2774 { 2775 ipaddr_t dst; 2776 icmph_t *icmph; 2777 ipha_t *ipha; 2778 uint_t len_needed; 2779 size_t msg_len; 2780 mblk_t *mp1; 2781 ipaddr_t src; 2782 ire_t *ire; 2783 ip_xmit_attr_t ixas; 2784 ip_stack_t *ipst = ira->ira_ill->ill_ipst; 2785 2786 ipha = (ipha_t *)mp->b_rptr; 2787 2788 bzero(&ixas, sizeof (ixas)); 2789 ixas.ixa_flags = IXAF_BASIC_SIMPLE_V4; 2790 ixas.ixa_zoneid = ira->ira_zoneid; 2791 ixas.ixa_ifindex = 0; 2792 ixas.ixa_ipst = ipst; 2793 ixas.ixa_cred = kcred; 2794 ixas.ixa_cpid = NOPID; 2795 ixas.ixa_tsl = ira->ira_tsl; /* Behave as a multi-level responder */ 2796 ixas.ixa_multicast_ttl = IP_DEFAULT_MULTICAST_TTL; 2797 2798 if (ira->ira_flags & IRAF_IPSEC_SECURE) { 2799 /* 2800 * Apply IPsec based on how IPsec was applied to 2801 * the packet that had the error. 2802 * 2803 * If it was an outbound packet that caused the ICMP 2804 * error, then the caller will have setup the IRA 2805 * appropriately. 2806 */ 2807 if (!ipsec_in_to_out(ira, &ixas, mp, ipha, NULL)) { 2808 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 2809 /* Note: mp already consumed and ip_drop_packet done */ 2810 return; 2811 } 2812 } else { 2813 /* 2814 * This is in clear. The icmp message we are building 2815 * here should go out in clear, independent of our policy. 2816 */ 2817 ixas.ixa_flags |= IXAF_NO_IPSEC; 2818 } 2819 2820 /* Remember our eventual destination */ 2821 dst = ipha->ipha_src; 2822 2823 /* 2824 * If the packet was for one of our unicast addresses, make 2825 * sure we respond with that as the source. Otherwise 2826 * have ip_output_simple pick the source address. 2827 */ 2828 ire = ire_ftable_lookup_v4(ipha->ipha_dst, 0, 0, 2829 (IRE_LOCAL|IRE_LOOPBACK), NULL, ira->ira_zoneid, NULL, 2830 MATCH_IRE_TYPE|MATCH_IRE_ZONEONLY, 0, ipst, NULL); 2831 if (ire != NULL) { 2832 ire_refrele(ire); 2833 src = ipha->ipha_dst; 2834 } else { 2835 src = INADDR_ANY; 2836 ixas.ixa_flags |= IXAF_SET_SOURCE; 2837 } 2838 2839 /* 2840 * Check if we can send back more then 8 bytes in addition to 2841 * the IP header. We try to send 64 bytes of data and the internal 2842 * header in the special cases of ipv4 encapsulated ipv4 or ipv6. 2843 */ 2844 len_needed = IPH_HDR_LENGTH(ipha); 2845 if (ipha->ipha_protocol == IPPROTO_ENCAP || 2846 ipha->ipha_protocol == IPPROTO_IPV6) { 2847 if (!pullupmsg(mp, -1)) { 2848 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 2849 ip_drop_output("ipIfStatsOutDiscards", mp, NULL); 2850 freemsg(mp); 2851 return; 2852 } 2853 ipha = (ipha_t *)mp->b_rptr; 2854 2855 if (ipha->ipha_protocol == IPPROTO_ENCAP) { 2856 len_needed += IPH_HDR_LENGTH(((uchar_t *)ipha + 2857 len_needed)); 2858 } else { 2859 ip6_t *ip6h = (ip6_t *)((uchar_t *)ipha + len_needed); 2860 2861 ASSERT(ipha->ipha_protocol == IPPROTO_IPV6); 2862 len_needed += ip_hdr_length_v6(mp, ip6h); 2863 } 2864 } 2865 len_needed += ipst->ips_ip_icmp_return; 2866 msg_len = msgdsize(mp); 2867 if (msg_len > len_needed) { 2868 (void) adjmsg(mp, len_needed - msg_len); 2869 msg_len = len_needed; 2870 } 2871 mp1 = allocb(sizeof (icmp_ipha) + len, BPRI_MED); 2872 if (mp1 == NULL) { 2873 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutErrors); 2874 freemsg(mp); 2875 return; 2876 } 2877 mp1->b_cont = mp; 2878 mp = mp1; 2879 2880 /* 2881 * Set IXAF_TRUSTED_ICMP so we can let the ICMP messages this 2882 * node generates be accepted in peace by all on-host destinations. 2883 * If we do NOT assume that all on-host destinations trust 2884 * self-generated ICMP messages, then rework here, ip6.c, and spd.c. 2885 * (Look for IXAF_TRUSTED_ICMP). 2886 */ 2887 ixas.ixa_flags |= IXAF_TRUSTED_ICMP; 2888 2889 ipha = (ipha_t *)mp->b_rptr; 2890 mp1->b_wptr = (uchar_t *)ipha + (sizeof (icmp_ipha) + len); 2891 *ipha = icmp_ipha; 2892 ipha->ipha_src = src; 2893 ipha->ipha_dst = dst; 2894 ipha->ipha_ttl = ipst->ips_ip_def_ttl; 2895 msg_len += sizeof (icmp_ipha) + len; 2896 if (msg_len > IP_MAXPACKET) { 2897 (void) adjmsg(mp, IP_MAXPACKET - msg_len); 2898 msg_len = IP_MAXPACKET; 2899 } 2900 ipha->ipha_length = htons((uint16_t)msg_len); 2901 icmph = (icmph_t *)&ipha[1]; 2902 bcopy(stuff, icmph, len); 2903 icmph->icmph_checksum = 0; 2904 icmph->icmph_checksum = IP_CSUM(mp, (int32_t)sizeof (ipha_t), 0); 2905 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutMsgs); 2906 2907 (void) ip_output_simple(mp, &ixas); 2908 ixa_cleanup(&ixas); 2909 } 2910 2911 /* 2912 * Determine if an ICMP error packet can be sent given the rate limit. 2913 * The limit consists of an average frequency (icmp_pkt_err_interval measured 2914 * in milliseconds) and a burst size. Burst size number of packets can 2915 * be sent arbitrarely closely spaced. 2916 * The state is tracked using two variables to implement an approximate 2917 * token bucket filter: 2918 * icmp_pkt_err_last - lbolt value when the last burst started 2919 * icmp_pkt_err_sent - number of packets sent in current burst 2920 */ 2921 boolean_t 2922 icmp_err_rate_limit(ip_stack_t *ipst) 2923 { 2924 clock_t now = TICK_TO_MSEC(ddi_get_lbolt()); 2925 uint_t refilled; /* Number of packets refilled in tbf since last */ 2926 /* Guard against changes by loading into local variable */ 2927 uint_t err_interval = ipst->ips_ip_icmp_err_interval; 2928 2929 if (err_interval == 0) 2930 return (B_FALSE); 2931 2932 if (ipst->ips_icmp_pkt_err_last > now) { 2933 /* 100HZ lbolt in ms for 32bit arch wraps every 49.7 days */ 2934 ipst->ips_icmp_pkt_err_last = 0; 2935 ipst->ips_icmp_pkt_err_sent = 0; 2936 } 2937 /* 2938 * If we are in a burst update the token bucket filter. 2939 * Update the "last" time to be close to "now" but make sure 2940 * we don't loose precision. 2941 */ 2942 if (ipst->ips_icmp_pkt_err_sent != 0) { 2943 refilled = (now - ipst->ips_icmp_pkt_err_last)/err_interval; 2944 if (refilled > ipst->ips_icmp_pkt_err_sent) { 2945 ipst->ips_icmp_pkt_err_sent = 0; 2946 } else { 2947 ipst->ips_icmp_pkt_err_sent -= refilled; 2948 ipst->ips_icmp_pkt_err_last += refilled * err_interval; 2949 } 2950 } 2951 if (ipst->ips_icmp_pkt_err_sent == 0) { 2952 /* Start of new burst */ 2953 ipst->ips_icmp_pkt_err_last = now; 2954 } 2955 if (ipst->ips_icmp_pkt_err_sent < ipst->ips_ip_icmp_err_burst) { 2956 ipst->ips_icmp_pkt_err_sent++; 2957 ip1dbg(("icmp_err_rate_limit: %d sent in burst\n", 2958 ipst->ips_icmp_pkt_err_sent)); 2959 return (B_FALSE); 2960 } 2961 ip1dbg(("icmp_err_rate_limit: dropped\n")); 2962 return (B_TRUE); 2963 } 2964 2965 /* 2966 * Check if it is ok to send an IPv4 ICMP error packet in 2967 * response to the IPv4 packet in mp. 2968 * Free the message and return null if no 2969 * ICMP error packet should be sent. 2970 */ 2971 static mblk_t * 2972 icmp_pkt_err_ok(mblk_t *mp, ip_recv_attr_t *ira) 2973 { 2974 ip_stack_t *ipst = ira->ira_ill->ill_ipst; 2975 icmph_t *icmph; 2976 ipha_t *ipha; 2977 uint_t len_needed; 2978 2979 if (!mp) 2980 return (NULL); 2981 ipha = (ipha_t *)mp->b_rptr; 2982 if (ip_csum_hdr(ipha)) { 2983 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsInCksumErrs); 2984 ip_drop_input("ipIfStatsInCksumErrs", mp, NULL); 2985 freemsg(mp); 2986 return (NULL); 2987 } 2988 if (ip_type_v4(ipha->ipha_dst, ipst) == IRE_BROADCAST || 2989 ip_type_v4(ipha->ipha_src, ipst) == IRE_BROADCAST || 2990 CLASSD(ipha->ipha_dst) || 2991 CLASSD(ipha->ipha_src) || 2992 (ntohs(ipha->ipha_fragment_offset_and_flags) & IPH_OFFSET)) { 2993 /* Note: only errors to the fragment with offset 0 */ 2994 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops); 2995 freemsg(mp); 2996 return (NULL); 2997 } 2998 if (ipha->ipha_protocol == IPPROTO_ICMP) { 2999 /* 3000 * Check the ICMP type. RFC 1122 sez: don't send ICMP 3001 * errors in response to any ICMP errors. 3002 */ 3003 len_needed = IPH_HDR_LENGTH(ipha) + ICMPH_SIZE; 3004 if (mp->b_wptr - mp->b_rptr < len_needed) { 3005 if (!pullupmsg(mp, len_needed)) { 3006 BUMP_MIB(&ipst->ips_icmp_mib, icmpInErrors); 3007 freemsg(mp); 3008 return (NULL); 3009 } 3010 ipha = (ipha_t *)mp->b_rptr; 3011 } 3012 icmph = (icmph_t *) 3013 (&((char *)ipha)[IPH_HDR_LENGTH(ipha)]); 3014 switch (icmph->icmph_type) { 3015 case ICMP_DEST_UNREACHABLE: 3016 case ICMP_SOURCE_QUENCH: 3017 case ICMP_TIME_EXCEEDED: 3018 case ICMP_PARAM_PROBLEM: 3019 case ICMP_REDIRECT: 3020 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops); 3021 freemsg(mp); 3022 return (NULL); 3023 default: 3024 break; 3025 } 3026 } 3027 /* 3028 * If this is a labeled system, then check to see if we're allowed to 3029 * send a response to this particular sender. If not, then just drop. 3030 */ 3031 if (is_system_labeled() && !tsol_can_reply_error(mp, ira)) { 3032 ip2dbg(("icmp_pkt_err_ok: can't respond to packet\n")); 3033 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops); 3034 freemsg(mp); 3035 return (NULL); 3036 } 3037 if (icmp_err_rate_limit(ipst)) { 3038 /* 3039 * Only send ICMP error packets every so often. 3040 * This should be done on a per port/source basis, 3041 * but for now this will suffice. 3042 */ 3043 freemsg(mp); 3044 return (NULL); 3045 } 3046 return (mp); 3047 } 3048 3049 /* 3050 * Called when a packet was sent out the same link that it arrived on. 3051 * Check if it is ok to send a redirect and then send it. 3052 */ 3053 void 3054 ip_send_potential_redirect_v4(mblk_t *mp, ipha_t *ipha, ire_t *ire, 3055 ip_recv_attr_t *ira) 3056 { 3057 ip_stack_t *ipst = ira->ira_ill->ill_ipst; 3058 ipaddr_t src, nhop; 3059 mblk_t *mp1; 3060 ire_t *nhop_ire; 3061 3062 /* 3063 * Check the source address to see if it originated 3064 * on the same logical subnet it is going back out on. 3065 * If so, we should be able to send it a redirect. 3066 * Avoid sending a redirect if the destination 3067 * is directly connected (i.e., we matched an IRE_ONLINK), 3068 * or if the packet was source routed out this interface. 3069 * 3070 * We avoid sending a redirect if the 3071 * destination is directly connected 3072 * because it is possible that multiple 3073 * IP subnets may have been configured on 3074 * the link, and the source may not 3075 * be on the same subnet as ip destination, 3076 * even though they are on the same 3077 * physical link. 3078 */ 3079 if ((ire->ire_type & IRE_ONLINK) || 3080 ip_source_routed(ipha, ipst)) 3081 return; 3082 3083 nhop_ire = ire_nexthop(ire); 3084 if (nhop_ire == NULL) 3085 return; 3086 3087 nhop = nhop_ire->ire_addr; 3088 3089 if (nhop_ire->ire_type & IRE_IF_CLONE) { 3090 ire_t *ire2; 3091 3092 /* Follow ire_dep_parent to find non-clone IRE_INTERFACE */ 3093 mutex_enter(&nhop_ire->ire_lock); 3094 ire2 = nhop_ire->ire_dep_parent; 3095 if (ire2 != NULL) 3096 ire_refhold(ire2); 3097 mutex_exit(&nhop_ire->ire_lock); 3098 ire_refrele(nhop_ire); 3099 nhop_ire = ire2; 3100 } 3101 if (nhop_ire == NULL) 3102 return; 3103 3104 ASSERT(!(nhop_ire->ire_type & IRE_IF_CLONE)); 3105 3106 src = ipha->ipha_src; 3107 3108 /* 3109 * We look at the interface ire for the nexthop, 3110 * to see if ipha_src is in the same subnet 3111 * as the nexthop. 3112 */ 3113 if ((src & nhop_ire->ire_mask) == (nhop & nhop_ire->ire_mask)) { 3114 /* 3115 * The source is directly connected. 3116 */ 3117 mp1 = copymsg(mp); 3118 if (mp1 != NULL) { 3119 icmp_send_redirect(mp1, nhop, ira); 3120 } 3121 } 3122 ire_refrele(nhop_ire); 3123 } 3124 3125 /* 3126 * Generate an ICMP redirect message. 3127 */ 3128 static void 3129 icmp_send_redirect(mblk_t *mp, ipaddr_t gateway, ip_recv_attr_t *ira) 3130 { 3131 icmph_t icmph; 3132 ip_stack_t *ipst = ira->ira_ill->ill_ipst; 3133 3134 mp = icmp_pkt_err_ok(mp, ira); 3135 if (mp == NULL) 3136 return; 3137 3138 bzero(&icmph, sizeof (icmph_t)); 3139 icmph.icmph_type = ICMP_REDIRECT; 3140 icmph.icmph_code = 1; 3141 icmph.icmph_rd_gateway = gateway; 3142 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutRedirects); 3143 icmp_pkt(mp, &icmph, sizeof (icmph_t), ira); 3144 } 3145 3146 /* 3147 * Generate an ICMP time exceeded message. 3148 */ 3149 void 3150 icmp_time_exceeded(mblk_t *mp, uint8_t code, ip_recv_attr_t *ira) 3151 { 3152 icmph_t icmph; 3153 ip_stack_t *ipst = ira->ira_ill->ill_ipst; 3154 3155 mp = icmp_pkt_err_ok(mp, ira); 3156 if (mp == NULL) 3157 return; 3158 3159 bzero(&icmph, sizeof (icmph_t)); 3160 icmph.icmph_type = ICMP_TIME_EXCEEDED; 3161 icmph.icmph_code = code; 3162 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutTimeExcds); 3163 icmp_pkt(mp, &icmph, sizeof (icmph_t), ira); 3164 } 3165 3166 /* 3167 * Generate an ICMP unreachable message. 3168 * When called from ip_output side a minimal ip_recv_attr_t needs to be 3169 * constructed by the caller. 3170 */ 3171 void 3172 icmp_unreachable(mblk_t *mp, uint8_t code, ip_recv_attr_t *ira) 3173 { 3174 icmph_t icmph; 3175 ip_stack_t *ipst = ira->ira_ill->ill_ipst; 3176 3177 mp = icmp_pkt_err_ok(mp, ira); 3178 if (mp == NULL) 3179 return; 3180 3181 bzero(&icmph, sizeof (icmph_t)); 3182 icmph.icmph_type = ICMP_DEST_UNREACHABLE; 3183 icmph.icmph_code = code; 3184 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDestUnreachs); 3185 icmp_pkt(mp, &icmph, sizeof (icmph_t), ira); 3186 } 3187 3188 /* 3189 * Latch in the IPsec state for a stream based the policy in the listener 3190 * and the actions in the ip_recv_attr_t. 3191 * Called directly from TCP and SCTP. 3192 */ 3193 boolean_t 3194 ip_ipsec_policy_inherit(conn_t *connp, conn_t *lconnp, ip_recv_attr_t *ira) 3195 { 3196 ASSERT(lconnp->conn_policy != NULL); 3197 ASSERT(connp->conn_policy == NULL); 3198 3199 IPPH_REFHOLD(lconnp->conn_policy); 3200 connp->conn_policy = lconnp->conn_policy; 3201 3202 if (ira->ira_ipsec_action != NULL) { 3203 if (connp->conn_latch == NULL) { 3204 connp->conn_latch = iplatch_create(); 3205 if (connp->conn_latch == NULL) 3206 return (B_FALSE); 3207 } 3208 ipsec_latch_inbound(connp, ira); 3209 } 3210 return (B_TRUE); 3211 } 3212 3213 /* 3214 * Verify whether or not the IP address is a valid local address. 3215 * Could be a unicast, including one for a down interface. 3216 * If allow_mcbc then a multicast or broadcast address is also 3217 * acceptable. 3218 * 3219 * In the case of a broadcast/multicast address, however, the 3220 * upper protocol is expected to reset the src address 3221 * to zero when we return IPVL_MCAST/IPVL_BCAST so that 3222 * no packets are emitted with broadcast/multicast address as 3223 * source address (that violates hosts requirements RFC 1122) 3224 * The addresses valid for bind are: 3225 * (1) - INADDR_ANY (0) 3226 * (2) - IP address of an UP interface 3227 * (3) - IP address of a DOWN interface 3228 * (4) - valid local IP broadcast addresses. In this case 3229 * the conn will only receive packets destined to 3230 * the specified broadcast address. 3231 * (5) - a multicast address. In this case 3232 * the conn will only receive packets destined to 3233 * the specified multicast address. Note: the 3234 * application still has to issue an 3235 * IP_ADD_MEMBERSHIP socket option. 3236 * 3237 * In all the above cases, the bound address must be valid in the current zone. 3238 * When the address is loopback, multicast or broadcast, there might be many 3239 * matching IREs so bind has to look up based on the zone. 3240 */ 3241 ip_laddr_t 3242 ip_laddr_verify_v4(ipaddr_t src_addr, zoneid_t zoneid, 3243 ip_stack_t *ipst, boolean_t allow_mcbc) 3244 { 3245 ire_t *src_ire; 3246 3247 ASSERT(src_addr != INADDR_ANY); 3248 3249 src_ire = ire_ftable_lookup_v4(src_addr, 0, 0, 0, 3250 NULL, zoneid, NULL, MATCH_IRE_ZONEONLY, 0, ipst, NULL); 3251 3252 /* 3253 * If an address other than in6addr_any is requested, 3254 * we verify that it is a valid address for bind 3255 * Note: Following code is in if-else-if form for 3256 * readability compared to a condition check. 3257 */ 3258 if (src_ire != NULL && (src_ire->ire_type & (IRE_LOCAL|IRE_LOOPBACK))) { 3259 /* 3260 * (2) Bind to address of local UP interface 3261 */ 3262 ire_refrele(src_ire); 3263 return (IPVL_UNICAST_UP); 3264 } else if (src_ire != NULL && src_ire->ire_type & IRE_BROADCAST) { 3265 /* 3266 * (4) Bind to broadcast address 3267 */ 3268 ire_refrele(src_ire); 3269 if (allow_mcbc) 3270 return (IPVL_BCAST); 3271 else 3272 return (IPVL_BAD); 3273 } else if (CLASSD(src_addr)) { 3274 /* (5) bind to multicast address. */ 3275 if (src_ire != NULL) 3276 ire_refrele(src_ire); 3277 3278 if (allow_mcbc) 3279 return (IPVL_MCAST); 3280 else 3281 return (IPVL_BAD); 3282 } else { 3283 ipif_t *ipif; 3284 3285 /* 3286 * (3) Bind to address of local DOWN interface? 3287 * (ipif_lookup_addr() looks up all interfaces 3288 * but we do not get here for UP interfaces 3289 * - case (2) above) 3290 */ 3291 if (src_ire != NULL) 3292 ire_refrele(src_ire); 3293 3294 ipif = ipif_lookup_addr(src_addr, NULL, zoneid, ipst); 3295 if (ipif == NULL) 3296 return (IPVL_BAD); 3297 3298 /* Not a useful source? */ 3299 if (ipif->ipif_flags & (IPIF_NOLOCAL | IPIF_ANYCAST)) { 3300 ipif_refrele(ipif); 3301 return (IPVL_BAD); 3302 } 3303 ipif_refrele(ipif); 3304 return (IPVL_UNICAST_DOWN); 3305 } 3306 } 3307 3308 /* 3309 * Insert in the bind fanout for IPv4 and IPv6. 3310 * The caller should already have used ip_laddr_verify_v*() before calling 3311 * this. 3312 */ 3313 int 3314 ip_laddr_fanout_insert(conn_t *connp) 3315 { 3316 int error; 3317 3318 /* 3319 * Allow setting new policies. For example, disconnects result 3320 * in us being called. As we would have set conn_policy_cached 3321 * to B_TRUE before, we should set it to B_FALSE, so that policy 3322 * can change after the disconnect. 3323 */ 3324 connp->conn_policy_cached = B_FALSE; 3325 3326 error = ipcl_bind_insert(connp); 3327 if (error != 0) { 3328 if (connp->conn_anon_port) { 3329 (void) tsol_mlp_anon(crgetzone(connp->conn_cred), 3330 connp->conn_mlp_type, connp->conn_proto, 3331 ntohs(connp->conn_lport), B_FALSE); 3332 } 3333 connp->conn_mlp_type = mlptSingle; 3334 } 3335 return (error); 3336 } 3337 3338 /* 3339 * Verify that both the source and destination addresses are valid. If 3340 * IPDF_VERIFY_DST is not set, then the destination address may be unreachable, 3341 * i.e. have no route to it. Protocols like TCP want to verify destination 3342 * reachability, while tunnels do not. 3343 * 3344 * Determine the route, the interface, and (optionally) the source address 3345 * to use to reach a given destination. 3346 * Note that we allow connect to broadcast and multicast addresses when 3347 * IPDF_ALLOW_MCBC is set. 3348 * first_hop and dst_addr are normally the same, but if source routing 3349 * they will differ; in that case the first_hop is what we'll use for the 3350 * routing lookup but the dce and label checks will be done on dst_addr, 3351 * 3352 * If uinfo is set, then we fill in the best available information 3353 * we have for the destination. This is based on (in priority order) any 3354 * metrics and path MTU stored in a dce_t, route metrics, and finally the 3355 * ill_mtu. 3356 * 3357 * Tsol note: If we have a source route then dst_addr != firsthop. But we 3358 * always do the label check on dst_addr. 3359 */ 3360 int 3361 ip_set_destination_v4(ipaddr_t *src_addrp, ipaddr_t dst_addr, ipaddr_t firsthop, 3362 ip_xmit_attr_t *ixa, iulp_t *uinfo, uint32_t flags, uint_t mac_mode) 3363 { 3364 ire_t *ire = NULL; 3365 int error = 0; 3366 ipaddr_t setsrc; /* RTF_SETSRC */ 3367 zoneid_t zoneid = ixa->ixa_zoneid; /* Honors SO_ALLZONES */ 3368 ip_stack_t *ipst = ixa->ixa_ipst; 3369 dce_t *dce; 3370 uint_t pmtu; 3371 uint_t generation; 3372 nce_t *nce; 3373 ill_t *ill = NULL; 3374 boolean_t multirt = B_FALSE; 3375 3376 ASSERT(ixa->ixa_flags & IXAF_IS_IPV4); 3377 3378 /* 3379 * We never send to zero; the ULPs map it to the loopback address. 3380 * We can't allow it since we use zero to mean unitialized in some 3381 * places. 3382 */ 3383 ASSERT(dst_addr != INADDR_ANY); 3384 3385 if (is_system_labeled()) { 3386 ts_label_t *tsl = NULL; 3387 3388 error = tsol_check_dest(ixa->ixa_tsl, &dst_addr, IPV4_VERSION, 3389 mac_mode, (flags & IPDF_ZONE_IS_GLOBAL) != 0, &tsl); 3390 if (error != 0) 3391 return (error); 3392 if (tsl != NULL) { 3393 /* Update the label */ 3394 ip_xmit_attr_replace_tsl(ixa, tsl); 3395 } 3396 } 3397 3398 setsrc = INADDR_ANY; 3399 /* 3400 * Select a route; For IPMP interfaces, we would only select 3401 * a "hidden" route (i.e., going through a specific under_ill) 3402 * if ixa_ifindex has been specified. 3403 */ 3404 ire = ip_select_route_v4(firsthop, *src_addrp, ixa, 3405 &generation, &setsrc, &error, &multirt); 3406 ASSERT(ire != NULL); /* IRE_NOROUTE if none found */ 3407 if (error != 0) 3408 goto bad_addr; 3409 3410 /* 3411 * ire can't be a broadcast or multicast unless IPDF_ALLOW_MCBC is set. 3412 * If IPDF_VERIFY_DST is set, the destination must be reachable; 3413 * Otherwise the destination needn't be reachable. 3414 * 3415 * If we match on a reject or black hole, then we've got a 3416 * local failure. May as well fail out the connect() attempt, 3417 * since it's never going to succeed. 3418 */ 3419 if (ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) { 3420 /* 3421 * If we're verifying destination reachability, we always want 3422 * to complain here. 3423 * 3424 * If we're not verifying destination reachability but the 3425 * destination has a route, we still want to fail on the 3426 * temporary address and broadcast address tests. 3427 * 3428 * In both cases do we let the code continue so some reasonable 3429 * information is returned to the caller. That enables the 3430 * caller to use (and even cache) the IRE. conn_ip_ouput will 3431 * use the generation mismatch path to check for the unreachable 3432 * case thereby avoiding any specific check in the main path. 3433 */ 3434 ASSERT(generation == IRE_GENERATION_VERIFY); 3435 if (flags & IPDF_VERIFY_DST) { 3436 /* 3437 * Set errno but continue to set up ixa_ire to be 3438 * the RTF_REJECT|RTF_BLACKHOLE IRE. 3439 * That allows callers to use ip_output to get an 3440 * ICMP error back. 3441 */ 3442 if (!(ire->ire_type & IRE_HOST)) 3443 error = ENETUNREACH; 3444 else 3445 error = EHOSTUNREACH; 3446 } 3447 } 3448 3449 if ((ire->ire_type & (IRE_BROADCAST|IRE_MULTICAST)) && 3450 !(flags & IPDF_ALLOW_MCBC)) { 3451 ire_refrele(ire); 3452 ire = ire_reject(ipst, B_FALSE); 3453 generation = IRE_GENERATION_VERIFY; 3454 error = ENETUNREACH; 3455 } 3456 3457 /* Cache things */ 3458 if (ixa->ixa_ire != NULL) 3459 ire_refrele_notr(ixa->ixa_ire); 3460 #ifdef DEBUG 3461 ire_refhold_notr(ire); 3462 ire_refrele(ire); 3463 #endif 3464 ixa->ixa_ire = ire; 3465 ixa->ixa_ire_generation = generation; 3466 3467 /* 3468 * Ensure that ixa_dce is always set any time that ixa_ire is set, 3469 * since some callers will send a packet to conn_ip_output() even if 3470 * there's an error. 3471 */ 3472 if (flags & IPDF_UNIQUE_DCE) { 3473 /* Fallback to the default dce if allocation fails */ 3474 dce = dce_lookup_and_add_v4(dst_addr, ipst); 3475 if (dce != NULL) 3476 generation = dce->dce_generation; 3477 else 3478 dce = dce_lookup_v4(dst_addr, ipst, &generation); 3479 } else { 3480 dce = dce_lookup_v4(dst_addr, ipst, &generation); 3481 } 3482 ASSERT(dce != NULL); 3483 if (ixa->ixa_dce != NULL) 3484 dce_refrele_notr(ixa->ixa_dce); 3485 #ifdef DEBUG 3486 dce_refhold_notr(dce); 3487 dce_refrele(dce); 3488 #endif 3489 ixa->ixa_dce = dce; 3490 ixa->ixa_dce_generation = generation; 3491 3492 /* 3493 * For multicast with multirt we have a flag passed back from 3494 * ire_lookup_multi_ill_v4 since we don't have an IRE for each 3495 * possible multicast address. 3496 * We also need a flag for multicast since we can't check 3497 * whether RTF_MULTIRT is set in ixa_ire for multicast. 3498 */ 3499 if (multirt) { 3500 ixa->ixa_postfragfn = ip_postfrag_multirt_v4; 3501 ixa->ixa_flags |= IXAF_MULTIRT_MULTICAST; 3502 } else { 3503 ixa->ixa_postfragfn = ire->ire_postfragfn; 3504 ixa->ixa_flags &= ~IXAF_MULTIRT_MULTICAST; 3505 } 3506 if (!(ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE))) { 3507 /* Get an nce to cache. */ 3508 nce = ire_to_nce(ire, firsthop, NULL); 3509 if (nce == NULL) { 3510 /* Allocation failure? */ 3511 ixa->ixa_ire_generation = IRE_GENERATION_VERIFY; 3512 } else { 3513 if (ixa->ixa_nce != NULL) 3514 nce_refrele(ixa->ixa_nce); 3515 ixa->ixa_nce = nce; 3516 } 3517 } 3518 3519 /* 3520 * If the source address is a loopback address, the 3521 * destination had best be local or multicast. 3522 * If we are sending to an IRE_LOCAL using a loopback source then 3523 * it had better be the same zoneid. 3524 */ 3525 if (*src_addrp == htonl(INADDR_LOOPBACK)) { 3526 if ((ire->ire_type & IRE_LOCAL) && ire->ire_zoneid != zoneid) { 3527 ire = NULL; /* Stored in ixa_ire */ 3528 error = EADDRNOTAVAIL; 3529 goto bad_addr; 3530 } 3531 if (!(ire->ire_type & (IRE_LOOPBACK|IRE_LOCAL|IRE_MULTICAST))) { 3532 ire = NULL; /* Stored in ixa_ire */ 3533 error = EADDRNOTAVAIL; 3534 goto bad_addr; 3535 } 3536 } 3537 if (ire->ire_type & IRE_BROADCAST) { 3538 /* 3539 * If the ULP didn't have a specified source, then we 3540 * make sure we reselect the source when sending 3541 * broadcasts out different interfaces. 3542 */ 3543 if (flags & IPDF_SELECT_SRC) 3544 ixa->ixa_flags |= IXAF_SET_SOURCE; 3545 else 3546 ixa->ixa_flags &= ~IXAF_SET_SOURCE; 3547 } 3548 3549 /* 3550 * Does the caller want us to pick a source address? 3551 */ 3552 if (flags & IPDF_SELECT_SRC) { 3553 ipaddr_t src_addr; 3554 3555 /* 3556 * We use use ire_nexthop_ill to avoid the under ipmp 3557 * interface for source address selection. Note that for ipmp 3558 * probe packets, ixa_ifindex would have been specified, and 3559 * the ip_select_route() invocation would have picked an ire 3560 * will ire_ill pointing at an under interface. 3561 */ 3562 ill = ire_nexthop_ill(ire); 3563 3564 /* If unreachable we have no ill but need some source */ 3565 if (ill == NULL) { 3566 src_addr = htonl(INADDR_LOOPBACK); 3567 /* Make sure we look for a better source address */ 3568 generation = SRC_GENERATION_VERIFY; 3569 } else { 3570 error = ip_select_source_v4(ill, setsrc, dst_addr, 3571 ixa->ixa_multicast_ifaddr, zoneid, 3572 ipst, &src_addr, &generation, NULL); 3573 if (error != 0) { 3574 ire = NULL; /* Stored in ixa_ire */ 3575 goto bad_addr; 3576 } 3577 } 3578 3579 /* 3580 * We allow the source address to to down. 3581 * However, we check that we don't use the loopback address 3582 * as a source when sending out on the wire. 3583 */ 3584 if ((src_addr == htonl(INADDR_LOOPBACK)) && 3585 !(ire->ire_type & (IRE_LOCAL|IRE_LOOPBACK|IRE_MULTICAST)) && 3586 !(ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE))) { 3587 ire = NULL; /* Stored in ixa_ire */ 3588 error = EADDRNOTAVAIL; 3589 goto bad_addr; 3590 } 3591 3592 *src_addrp = src_addr; 3593 ixa->ixa_src_generation = generation; 3594 } 3595 3596 /* 3597 * Make sure we don't leave an unreachable ixa_nce in place 3598 * since ip_select_route is used when we unplumb i.e., remove 3599 * references on ixa_ire, ixa_nce, and ixa_dce. 3600 */ 3601 nce = ixa->ixa_nce; 3602 if (nce != NULL && nce->nce_is_condemned) { 3603 nce_refrele(nce); 3604 ixa->ixa_nce = NULL; 3605 ixa->ixa_ire_generation = IRE_GENERATION_VERIFY; 3606 } 3607 3608 /* 3609 * The caller has set IXAF_PMTU_DISCOVERY if path MTU is desired. 3610 * However, we can't do it for IPv4 multicast or broadcast. 3611 */ 3612 if (ire->ire_type & (IRE_BROADCAST|IRE_MULTICAST)) 3613 ixa->ixa_flags &= ~IXAF_PMTU_DISCOVERY; 3614 3615 /* 3616 * Set initial value for fragmentation limit. Either conn_ip_output 3617 * or ULP might updates it when there are routing changes. 3618 * Handles a NULL ixa_ire->ire_ill or a NULL ixa_nce for RTF_REJECT. 3619 */ 3620 pmtu = ip_get_pmtu(ixa); 3621 ixa->ixa_fragsize = pmtu; 3622 /* Make sure ixa_fragsize and ixa_pmtu remain identical */ 3623 if (ixa->ixa_flags & IXAF_VERIFY_PMTU) 3624 ixa->ixa_pmtu = pmtu; 3625 3626 /* 3627 * Extract information useful for some transports. 3628 * First we look for DCE metrics. Then we take what we have in 3629 * the metrics in the route, where the offlink is used if we have 3630 * one. 3631 */ 3632 if (uinfo != NULL) { 3633 bzero(uinfo, sizeof (*uinfo)); 3634 3635 if (dce->dce_flags & DCEF_UINFO) 3636 *uinfo = dce->dce_uinfo; 3637 3638 rts_merge_metrics(uinfo, &ire->ire_metrics); 3639 3640 /* Allow ire_metrics to decrease the path MTU from above */ 3641 if (uinfo->iulp_mtu == 0 || uinfo->iulp_mtu > pmtu) 3642 uinfo->iulp_mtu = pmtu; 3643 3644 uinfo->iulp_localnet = (ire->ire_type & IRE_ONLINK) != 0; 3645 uinfo->iulp_loopback = (ire->ire_type & IRE_LOOPBACK) != 0; 3646 uinfo->iulp_local = (ire->ire_type & IRE_LOCAL) != 0; 3647 } 3648 3649 if (ill != NULL) 3650 ill_refrele(ill); 3651 3652 return (error); 3653 3654 bad_addr: 3655 if (ire != NULL) 3656 ire_refrele(ire); 3657 3658 if (ill != NULL) 3659 ill_refrele(ill); 3660 3661 /* 3662 * Make sure we don't leave an unreachable ixa_nce in place 3663 * since ip_select_route is used when we unplumb i.e., remove 3664 * references on ixa_ire, ixa_nce, and ixa_dce. 3665 */ 3666 nce = ixa->ixa_nce; 3667 if (nce != NULL && nce->nce_is_condemned) { 3668 nce_refrele(nce); 3669 ixa->ixa_nce = NULL; 3670 ixa->ixa_ire_generation = IRE_GENERATION_VERIFY; 3671 } 3672 3673 return (error); 3674 } 3675 3676 3677 /* 3678 * Get the base MTU for the case when path MTU discovery is not used. 3679 * Takes the MTU of the IRE into account. 3680 */ 3681 uint_t 3682 ip_get_base_mtu(ill_t *ill, ire_t *ire) 3683 { 3684 uint_t mtu = ill->ill_mtu; 3685 uint_t iremtu = ire->ire_metrics.iulp_mtu; 3686 3687 if (iremtu != 0 && iremtu < mtu) 3688 mtu = iremtu; 3689 3690 return (mtu); 3691 } 3692 3693 /* 3694 * Get the PMTU for the attributes. Handles both IPv4 and IPv6. 3695 * Assumes that ixa_ire, dce, and nce have already been set up. 3696 * 3697 * The caller has set IXAF_PMTU_DISCOVERY if path MTU discovery is desired. 3698 * We avoid path MTU discovery if it is disabled with ndd. 3699 * Furtermore, if the path MTU is too small, then we don't set DF for IPv4. 3700 * 3701 * NOTE: We also used to turn it off for source routed packets. That 3702 * is no longer required since the dce is per final destination. 3703 */ 3704 uint_t 3705 ip_get_pmtu(ip_xmit_attr_t *ixa) 3706 { 3707 ip_stack_t *ipst = ixa->ixa_ipst; 3708 dce_t *dce; 3709 nce_t *nce; 3710 ire_t *ire; 3711 uint_t pmtu; 3712 3713 ire = ixa->ixa_ire; 3714 dce = ixa->ixa_dce; 3715 nce = ixa->ixa_nce; 3716 3717 /* 3718 * If path MTU discovery has been turned off by ndd, then we ignore 3719 * any dce_pmtu and for IPv4 we will not set DF. 3720 */ 3721 if (!ipst->ips_ip_path_mtu_discovery) 3722 ixa->ixa_flags &= ~IXAF_PMTU_DISCOVERY; 3723 3724 pmtu = IP_MAXPACKET; 3725 /* 3726 * Decide whether whether IPv4 sets DF 3727 * For IPv6 "no DF" means to use the 1280 mtu 3728 */ 3729 if (ixa->ixa_flags & IXAF_PMTU_DISCOVERY) { 3730 ixa->ixa_flags |= IXAF_PMTU_IPV4_DF; 3731 } else { 3732 ixa->ixa_flags &= ~IXAF_PMTU_IPV4_DF; 3733 if (!(ixa->ixa_flags & IXAF_IS_IPV4)) 3734 pmtu = IPV6_MIN_MTU; 3735 } 3736 3737 /* Check if the PMTU is to old before we use it */ 3738 if ((dce->dce_flags & DCEF_PMTU) && 3739 TICK_TO_SEC(ddi_get_lbolt64()) - dce->dce_last_change_time > 3740 ipst->ips_ip_pathmtu_interval) { 3741 /* 3742 * Older than 20 minutes. Drop the path MTU information. 3743 */ 3744 mutex_enter(&dce->dce_lock); 3745 dce->dce_flags &= ~(DCEF_PMTU|DCEF_TOO_SMALL_PMTU); 3746 dce->dce_last_change_time = TICK_TO_SEC(ddi_get_lbolt64()); 3747 mutex_exit(&dce->dce_lock); 3748 dce_increment_generation(dce); 3749 } 3750 3751 /* The metrics on the route can lower the path MTU */ 3752 if (ire->ire_metrics.iulp_mtu != 0 && 3753 ire->ire_metrics.iulp_mtu < pmtu) 3754 pmtu = ire->ire_metrics.iulp_mtu; 3755 3756 /* 3757 * If the path MTU is smaller than some minimum, we still use dce_pmtu 3758 * above (would be 576 for IPv4 and 1280 for IPv6), but we clear 3759 * IXAF_PMTU_IPV4_DF so that we avoid setting DF for IPv4. 3760 */ 3761 if (ixa->ixa_flags & IXAF_PMTU_DISCOVERY) { 3762 if (dce->dce_flags & DCEF_PMTU) { 3763 if (dce->dce_pmtu < pmtu) 3764 pmtu = dce->dce_pmtu; 3765 3766 if (dce->dce_flags & DCEF_TOO_SMALL_PMTU) { 3767 ixa->ixa_flags |= IXAF_PMTU_TOO_SMALL; 3768 ixa->ixa_flags &= ~IXAF_PMTU_IPV4_DF; 3769 } else { 3770 ixa->ixa_flags &= ~IXAF_PMTU_TOO_SMALL; 3771 ixa->ixa_flags |= IXAF_PMTU_IPV4_DF; 3772 } 3773 } else { 3774 ixa->ixa_flags &= ~IXAF_PMTU_TOO_SMALL; 3775 ixa->ixa_flags |= IXAF_PMTU_IPV4_DF; 3776 } 3777 } 3778 3779 /* 3780 * If we have an IRE_LOCAL we use the loopback mtu instead of 3781 * the ill for going out the wire i.e., IRE_LOCAL gets the same 3782 * mtu as IRE_LOOPBACK. 3783 */ 3784 if (ire->ire_type & (IRE_LOCAL|IRE_LOOPBACK)) { 3785 uint_t loopback_mtu; 3786 3787 loopback_mtu = (ire->ire_ipversion == IPV6_VERSION) ? 3788 ip_loopback_mtu_v6plus : ip_loopback_mtuplus; 3789 3790 if (loopback_mtu < pmtu) 3791 pmtu = loopback_mtu; 3792 } else if (nce != NULL) { 3793 /* 3794 * Make sure we don't exceed the interface MTU. 3795 * In the case of RTF_REJECT or RTF_BLACKHOLE we might not have 3796 * an ill. We'd use the above IP_MAXPACKET in that case just 3797 * to tell the transport something larger than zero. 3798 */ 3799 if (nce->nce_common->ncec_ill->ill_mtu < pmtu) 3800 pmtu = nce->nce_common->ncec_ill->ill_mtu; 3801 if (nce->nce_common->ncec_ill != nce->nce_ill && 3802 nce->nce_ill->ill_mtu < pmtu) { 3803 /* 3804 * for interfaces in an IPMP group, the mtu of 3805 * the nce_ill (under_ill) could be different 3806 * from the mtu of the ncec_ill, so we take the 3807 * min of the two. 3808 */ 3809 pmtu = nce->nce_ill->ill_mtu; 3810 } 3811 } 3812 3813 /* 3814 * Handle the IPV6_USE_MIN_MTU socket option or ancillary data. 3815 * Only applies to IPv6. 3816 */ 3817 if (!(ixa->ixa_flags & IXAF_IS_IPV4)) { 3818 if (ixa->ixa_flags & IXAF_USE_MIN_MTU) { 3819 switch (ixa->ixa_use_min_mtu) { 3820 case IPV6_USE_MIN_MTU_MULTICAST: 3821 if (ire->ire_type & IRE_MULTICAST) 3822 pmtu = IPV6_MIN_MTU; 3823 break; 3824 case IPV6_USE_MIN_MTU_ALWAYS: 3825 pmtu = IPV6_MIN_MTU; 3826 break; 3827 case IPV6_USE_MIN_MTU_NEVER: 3828 break; 3829 } 3830 } else { 3831 /* Default is IPV6_USE_MIN_MTU_MULTICAST */ 3832 if (ire->ire_type & IRE_MULTICAST) 3833 pmtu = IPV6_MIN_MTU; 3834 } 3835 } 3836 3837 /* 3838 * After receiving an ICMPv6 "packet too big" message with a 3839 * MTU < 1280, and for multirouted IPv6 packets, the IP layer 3840 * will insert a 8-byte fragment header in every packet. We compensate 3841 * for those cases by returning a smaller path MTU to the ULP. 3842 * 3843 * In the case of CGTP then ip_output will add a fragment header. 3844 * Make sure there is room for it by telling a smaller number 3845 * to the transport. 3846 * 3847 * When IXAF_IPV6_ADDR_FRAGHDR we subtract the frag hdr here 3848 * so the ULPs consistently see a iulp_pmtu and ip_get_pmtu() 3849 * which is the size of the packets it can send. 3850 */ 3851 if (!(ixa->ixa_flags & IXAF_IS_IPV4)) { 3852 if ((dce->dce_flags & DCEF_TOO_SMALL_PMTU) || 3853 (ire->ire_flags & RTF_MULTIRT) || 3854 (ixa->ixa_flags & IXAF_MULTIRT_MULTICAST)) { 3855 pmtu -= sizeof (ip6_frag_t); 3856 ixa->ixa_flags |= IXAF_IPV6_ADD_FRAGHDR; 3857 } 3858 } 3859 3860 return (pmtu); 3861 } 3862 3863 /* 3864 * Carve "len" bytes out of an mblk chain, consuming any we empty, and duping 3865 * the final piece where we don't. Return a pointer to the first mblk in the 3866 * result, and update the pointer to the next mblk to chew on. If anything 3867 * goes wrong (i.e., dupb fails), we waste everything in sight and return a 3868 * NULL pointer. 3869 */ 3870 mblk_t * 3871 ip_carve_mp(mblk_t **mpp, ssize_t len) 3872 { 3873 mblk_t *mp0; 3874 mblk_t *mp1; 3875 mblk_t *mp2; 3876 3877 if (!len || !mpp || !(mp0 = *mpp)) 3878 return (NULL); 3879 /* If we aren't going to consume the first mblk, we need a dup. */ 3880 if (mp0->b_wptr - mp0->b_rptr > len) { 3881 mp1 = dupb(mp0); 3882 if (mp1) { 3883 /* Partition the data between the two mblks. */ 3884 mp1->b_wptr = mp1->b_rptr + len; 3885 mp0->b_rptr = mp1->b_wptr; 3886 /* 3887 * after adjustments if mblk not consumed is now 3888 * unaligned, try to align it. If this fails free 3889 * all messages and let upper layer recover. 3890 */ 3891 if (!OK_32PTR(mp0->b_rptr)) { 3892 if (!pullupmsg(mp0, -1)) { 3893 freemsg(mp0); 3894 freemsg(mp1); 3895 *mpp = NULL; 3896 return (NULL); 3897 } 3898 } 3899 } 3900 return (mp1); 3901 } 3902 /* Eat through as many mblks as we need to get len bytes. */ 3903 len -= mp0->b_wptr - mp0->b_rptr; 3904 for (mp2 = mp1 = mp0; (mp2 = mp2->b_cont) != 0 && len; mp1 = mp2) { 3905 if (mp2->b_wptr - mp2->b_rptr > len) { 3906 /* 3907 * We won't consume the entire last mblk. Like 3908 * above, dup and partition it. 3909 */ 3910 mp1->b_cont = dupb(mp2); 3911 mp1 = mp1->b_cont; 3912 if (!mp1) { 3913 /* 3914 * Trouble. Rather than go to a lot of 3915 * trouble to clean up, we free the messages. 3916 * This won't be any worse than losing it on 3917 * the wire. 3918 */ 3919 freemsg(mp0); 3920 freemsg(mp2); 3921 *mpp = NULL; 3922 return (NULL); 3923 } 3924 mp1->b_wptr = mp1->b_rptr + len; 3925 mp2->b_rptr = mp1->b_wptr; 3926 /* 3927 * after adjustments if mblk not consumed is now 3928 * unaligned, try to align it. If this fails free 3929 * all messages and let upper layer recover. 3930 */ 3931 if (!OK_32PTR(mp2->b_rptr)) { 3932 if (!pullupmsg(mp2, -1)) { 3933 freemsg(mp0); 3934 freemsg(mp2); 3935 *mpp = NULL; 3936 return (NULL); 3937 } 3938 } 3939 *mpp = mp2; 3940 return (mp0); 3941 } 3942 /* Decrement len by the amount we just got. */ 3943 len -= mp2->b_wptr - mp2->b_rptr; 3944 } 3945 /* 3946 * len should be reduced to zero now. If not our caller has 3947 * screwed up. 3948 */ 3949 if (len) { 3950 /* Shouldn't happen! */ 3951 freemsg(mp0); 3952 *mpp = NULL; 3953 return (NULL); 3954 } 3955 /* 3956 * We consumed up to exactly the end of an mblk. Detach the part 3957 * we are returning from the rest of the chain. 3958 */ 3959 mp1->b_cont = NULL; 3960 *mpp = mp2; 3961 return (mp0); 3962 } 3963 3964 /* The ill stream is being unplumbed. Called from ip_close */ 3965 int 3966 ip_modclose(ill_t *ill) 3967 { 3968 boolean_t success; 3969 ipsq_t *ipsq; 3970 ipif_t *ipif; 3971 queue_t *q = ill->ill_rq; 3972 ip_stack_t *ipst = ill->ill_ipst; 3973 int i; 3974 arl_ill_common_t *ai = ill->ill_common; 3975 3976 /* 3977 * The punlink prior to this may have initiated a capability 3978 * negotiation. But ipsq_enter will block until that finishes or 3979 * times out. 3980 */ 3981 success = ipsq_enter(ill, B_FALSE, NEW_OP); 3982 3983 /* 3984 * Open/close/push/pop is guaranteed to be single threaded 3985 * per stream by STREAMS. FS guarantees that all references 3986 * from top are gone before close is called. So there can't 3987 * be another close thread that has set CONDEMNED on this ill. 3988 * and cause ipsq_enter to return failure. 3989 */ 3990 ASSERT(success); 3991 ipsq = ill->ill_phyint->phyint_ipsq; 3992 3993 /* 3994 * Mark it condemned. No new reference will be made to this ill. 3995 * Lookup functions will return an error. Threads that try to 3996 * increment the refcnt must check for ILL_CAN_LOOKUP. This ensures 3997 * that the refcnt will drop down to zero. 3998 */ 3999 mutex_enter(&ill->ill_lock); 4000 ill->ill_state_flags |= ILL_CONDEMNED; 4001 for (ipif = ill->ill_ipif; ipif != NULL; 4002 ipif = ipif->ipif_next) { 4003 ipif->ipif_state_flags |= IPIF_CONDEMNED; 4004 } 4005 /* 4006 * Wake up anybody waiting to enter the ipsq. ipsq_enter 4007 * returns error if ILL_CONDEMNED is set 4008 */ 4009 cv_broadcast(&ill->ill_cv); 4010 mutex_exit(&ill->ill_lock); 4011 4012 /* 4013 * Send all the deferred DLPI messages downstream which came in 4014 * during the small window right before ipsq_enter(). We do this 4015 * without waiting for the ACKs because all the ACKs for M_PROTO 4016 * messages are ignored in ip_rput() when ILL_CONDEMNED is set. 4017 */ 4018 ill_dlpi_send_deferred(ill); 4019 4020 /* 4021 * Shut down fragmentation reassembly. 4022 * ill_frag_timer won't start a timer again. 4023 * Now cancel any existing timer 4024 */ 4025 (void) untimeout(ill->ill_frag_timer_id); 4026 (void) ill_frag_timeout(ill, 0); 4027 4028 /* 4029 * Call ill_delete to bring down the ipifs, ilms and ill on 4030 * this ill. Then wait for the refcnts to drop to zero. 4031 * ill_is_freeable checks whether the ill is really quiescent. 4032 * Then make sure that threads that are waiting to enter the 4033 * ipsq have seen the error returned by ipsq_enter and have 4034 * gone away. Then we call ill_delete_tail which does the 4035 * DL_UNBIND_REQ with the driver and then qprocsoff. 4036 */ 4037 ill_delete(ill); 4038 mutex_enter(&ill->ill_lock); 4039 while (!ill_is_freeable(ill)) 4040 cv_wait(&ill->ill_cv, &ill->ill_lock); 4041 4042 while (ill->ill_waiters) 4043 cv_wait(&ill->ill_cv, &ill->ill_lock); 4044 4045 mutex_exit(&ill->ill_lock); 4046 4047 /* 4048 * ill_delete_tail drops reference on ill_ipst, but we need to keep 4049 * it held until the end of the function since the cleanup 4050 * below needs to be able to use the ip_stack_t. 4051 */ 4052 netstack_hold(ipst->ips_netstack); 4053 4054 /* qprocsoff is done via ill_delete_tail */ 4055 ill_delete_tail(ill); 4056 /* 4057 * synchronously wait for arp stream to unbind. After this, we 4058 * cannot get any data packets up from the driver. 4059 */ 4060 arp_unbind_complete(ill); 4061 ASSERT(ill->ill_ipst == NULL); 4062 4063 /* 4064 * Walk through all conns and qenable those that have queued data. 4065 * Close synchronization needs this to 4066 * be done to ensure that all upper layers blocked 4067 * due to flow control to the closing device 4068 * get unblocked. 4069 */ 4070 ip1dbg(("ip_wsrv: walking\n")); 4071 for (i = 0; i < TX_FANOUT_SIZE; i++) { 4072 conn_walk_drain(ipst, &ipst->ips_idl_tx_list[i]); 4073 } 4074 4075 /* 4076 * ai can be null if this is an IPv6 ill, or if the IPv4 4077 * stream is being torn down before ARP was plumbed (e.g., 4078 * /sbin/ifconfig plumbing a stream twice, and encountering 4079 * an error 4080 */ 4081 if (ai != NULL) { 4082 ASSERT(!ill->ill_isv6); 4083 mutex_enter(&ai->ai_lock); 4084 ai->ai_ill = NULL; 4085 if (ai->ai_arl == NULL) { 4086 mutex_destroy(&ai->ai_lock); 4087 kmem_free(ai, sizeof (*ai)); 4088 } else { 4089 cv_signal(&ai->ai_ill_unplumb_done); 4090 mutex_exit(&ai->ai_lock); 4091 } 4092 } 4093 4094 mutex_enter(&ipst->ips_ip_mi_lock); 4095 mi_close_unlink(&ipst->ips_ip_g_head, (IDP)ill); 4096 mutex_exit(&ipst->ips_ip_mi_lock); 4097 4098 /* 4099 * credp could be null if the open didn't succeed and ip_modopen 4100 * itself calls ip_close. 4101 */ 4102 if (ill->ill_credp != NULL) 4103 crfree(ill->ill_credp); 4104 4105 mutex_destroy(&ill->ill_saved_ire_lock); 4106 mutex_destroy(&ill->ill_lock); 4107 rw_destroy(&ill->ill_mcast_lock); 4108 mutex_destroy(&ill->ill_mcast_serializer); 4109 list_destroy(&ill->ill_nce); 4110 4111 /* 4112 * Now we are done with the module close pieces that 4113 * need the netstack_t. 4114 */ 4115 netstack_rele(ipst->ips_netstack); 4116 4117 mi_close_free((IDP)ill); 4118 q->q_ptr = WR(q)->q_ptr = NULL; 4119 4120 ipsq_exit(ipsq); 4121 4122 return (0); 4123 } 4124 4125 /* 4126 * This is called as part of close() for IP, UDP, ICMP, and RTS 4127 * in order to quiesce the conn. 4128 */ 4129 void 4130 ip_quiesce_conn(conn_t *connp) 4131 { 4132 boolean_t drain_cleanup_reqd = B_FALSE; 4133 boolean_t conn_ioctl_cleanup_reqd = B_FALSE; 4134 boolean_t ilg_cleanup_reqd = B_FALSE; 4135 ip_stack_t *ipst; 4136 4137 ASSERT(!IPCL_IS_TCP(connp)); 4138 ipst = connp->conn_netstack->netstack_ip; 4139 4140 /* 4141 * Mark the conn as closing, and this conn must not be 4142 * inserted in future into any list. Eg. conn_drain_insert(), 4143 * won't insert this conn into the conn_drain_list. 4144 * 4145 * conn_idl, and conn_ilg cannot get set henceforth. 4146 */ 4147 mutex_enter(&connp->conn_lock); 4148 ASSERT(!(connp->conn_state_flags & CONN_QUIESCED)); 4149 connp->conn_state_flags |= CONN_CLOSING; 4150 if (connp->conn_idl != NULL) 4151 drain_cleanup_reqd = B_TRUE; 4152 if (connp->conn_oper_pending_ill != NULL) 4153 conn_ioctl_cleanup_reqd = B_TRUE; 4154 if (connp->conn_dhcpinit_ill != NULL) { 4155 ASSERT(connp->conn_dhcpinit_ill->ill_dhcpinit != 0); 4156 atomic_dec_32(&connp->conn_dhcpinit_ill->ill_dhcpinit); 4157 ill_set_inputfn(connp->conn_dhcpinit_ill); 4158 connp->conn_dhcpinit_ill = NULL; 4159 } 4160 if (connp->conn_ilg != NULL) 4161 ilg_cleanup_reqd = B_TRUE; 4162 mutex_exit(&connp->conn_lock); 4163 4164 if (conn_ioctl_cleanup_reqd) 4165 conn_ioctl_cleanup(connp); 4166 4167 if (is_system_labeled() && connp->conn_anon_port) { 4168 (void) tsol_mlp_anon(crgetzone(connp->conn_cred), 4169 connp->conn_mlp_type, connp->conn_proto, 4170 ntohs(connp->conn_lport), B_FALSE); 4171 connp->conn_anon_port = 0; 4172 } 4173 connp->conn_mlp_type = mlptSingle; 4174 4175 /* 4176 * Remove this conn from any fanout list it is on. 4177 * and then wait for any threads currently operating 4178 * on this endpoint to finish 4179 */ 4180 ipcl_hash_remove(connp); 4181 4182 /* 4183 * Remove this conn from the drain list, and do any other cleanup that 4184 * may be required. (TCP conns are never flow controlled, and 4185 * conn_idl will be NULL.) 4186 */ 4187 if (drain_cleanup_reqd && connp->conn_idl != NULL) { 4188 idl_t *idl = connp->conn_idl; 4189 4190 mutex_enter(&idl->idl_lock); 4191 conn_drain(connp, B_TRUE); 4192 mutex_exit(&idl->idl_lock); 4193 } 4194 4195 if (connp == ipst->ips_ip_g_mrouter) 4196 (void) ip_mrouter_done(ipst); 4197 4198 if (ilg_cleanup_reqd) 4199 ilg_delete_all(connp); 4200 4201 /* 4202 * Now conn refcnt can increase only thru CONN_INC_REF_LOCKED. 4203 * callers from write side can't be there now because close 4204 * is in progress. The only other caller is ipcl_walk 4205 * which checks for the condemned flag. 4206 */ 4207 mutex_enter(&connp->conn_lock); 4208 connp->conn_state_flags |= CONN_CONDEMNED; 4209 while (connp->conn_ref != 1) 4210 cv_wait(&connp->conn_cv, &connp->conn_lock); 4211 connp->conn_state_flags |= CONN_QUIESCED; 4212 mutex_exit(&connp->conn_lock); 4213 } 4214 4215 /* ARGSUSED */ 4216 int 4217 ip_close(queue_t *q, int flags) 4218 { 4219 conn_t *connp; 4220 4221 /* 4222 * Call the appropriate delete routine depending on whether this is 4223 * a module or device. 4224 */ 4225 if (WR(q)->q_next != NULL) { 4226 /* This is a module close */ 4227 return (ip_modclose((ill_t *)q->q_ptr)); 4228 } 4229 4230 connp = q->q_ptr; 4231 ip_quiesce_conn(connp); 4232 4233 qprocsoff(q); 4234 4235 /* 4236 * Now we are truly single threaded on this stream, and can 4237 * delete the things hanging off the connp, and finally the connp. 4238 * We removed this connp from the fanout list, it cannot be 4239 * accessed thru the fanouts, and we already waited for the 4240 * conn_ref to drop to 0. We are already in close, so 4241 * there cannot be any other thread from the top. qprocsoff 4242 * has completed, and service has completed or won't run in 4243 * future. 4244 */ 4245 ASSERT(connp->conn_ref == 1); 4246 4247 inet_minor_free(connp->conn_minor_arena, connp->conn_dev); 4248 4249 connp->conn_ref--; 4250 ipcl_conn_destroy(connp); 4251 4252 q->q_ptr = WR(q)->q_ptr = NULL; 4253 return (0); 4254 } 4255 4256 /* 4257 * Wapper around putnext() so that ip_rts_request can merely use 4258 * conn_recv. 4259 */ 4260 /*ARGSUSED2*/ 4261 static void 4262 ip_conn_input(void *arg1, mblk_t *mp, void *arg2, ip_recv_attr_t *ira) 4263 { 4264 conn_t *connp = (conn_t *)arg1; 4265 4266 putnext(connp->conn_rq, mp); 4267 } 4268 4269 /* Dummy in case ICMP error delivery is attempted to a /dev/ip instance */ 4270 /* ARGSUSED */ 4271 static void 4272 ip_conn_input_icmp(void *arg1, mblk_t *mp, void *arg2, ip_recv_attr_t *ira) 4273 { 4274 freemsg(mp); 4275 } 4276 4277 /* 4278 * Called when the module is about to be unloaded 4279 */ 4280 void 4281 ip_ddi_destroy(void) 4282 { 4283 /* This needs to be called before destroying any transports. */ 4284 mutex_enter(&cpu_lock); 4285 unregister_cpu_setup_func(ip_tp_cpu_update, NULL); 4286 mutex_exit(&cpu_lock); 4287 4288 tnet_fini(); 4289 4290 icmp_ddi_g_destroy(); 4291 rts_ddi_g_destroy(); 4292 udp_ddi_g_destroy(); 4293 sctp_ddi_g_destroy(); 4294 tcp_ddi_g_destroy(); 4295 ilb_ddi_g_destroy(); 4296 dce_g_destroy(); 4297 ipsec_policy_g_destroy(); 4298 ipcl_g_destroy(); 4299 ip_net_g_destroy(); 4300 ip_ire_g_fini(); 4301 inet_minor_destroy(ip_minor_arena_sa); 4302 #if defined(_LP64) 4303 inet_minor_destroy(ip_minor_arena_la); 4304 #endif 4305 4306 #ifdef DEBUG 4307 list_destroy(&ip_thread_list); 4308 rw_destroy(&ip_thread_rwlock); 4309 tsd_destroy(&ip_thread_data); 4310 #endif 4311 4312 netstack_unregister(NS_IP); 4313 } 4314 4315 /* 4316 * First step in cleanup. 4317 */ 4318 /* ARGSUSED */ 4319 static void 4320 ip_stack_shutdown(netstackid_t stackid, void *arg) 4321 { 4322 ip_stack_t *ipst = (ip_stack_t *)arg; 4323 4324 #ifdef NS_DEBUG 4325 printf("ip_stack_shutdown(%p, stack %d)\n", (void *)ipst, stackid); 4326 #endif 4327 4328 /* 4329 * Perform cleanup for special interfaces (loopback and IPMP). 4330 */ 4331 ip_interface_cleanup(ipst); 4332 4333 /* 4334 * The *_hook_shutdown()s start the process of notifying any 4335 * consumers that things are going away.... nothing is destroyed. 4336 */ 4337 ipv4_hook_shutdown(ipst); 4338 ipv6_hook_shutdown(ipst); 4339 arp_hook_shutdown(ipst); 4340 4341 mutex_enter(&ipst->ips_capab_taskq_lock); 4342 ipst->ips_capab_taskq_quit = B_TRUE; 4343 cv_signal(&ipst->ips_capab_taskq_cv); 4344 mutex_exit(&ipst->ips_capab_taskq_lock); 4345 } 4346 4347 /* 4348 * Free the IP stack instance. 4349 */ 4350 static void 4351 ip_stack_fini(netstackid_t stackid, void *arg) 4352 { 4353 ip_stack_t *ipst = (ip_stack_t *)arg; 4354 int ret; 4355 4356 #ifdef NS_DEBUG 4357 printf("ip_stack_fini(%p, stack %d)\n", (void *)ipst, stackid); 4358 #endif 4359 /* 4360 * At this point, all of the notifications that the events and 4361 * protocols are going away have been run, meaning that we can 4362 * now set about starting to clean things up. 4363 */ 4364 ipobs_fini(ipst); 4365 ipv4_hook_destroy(ipst); 4366 ipv6_hook_destroy(ipst); 4367 arp_hook_destroy(ipst); 4368 ip_net_destroy(ipst); 4369 4370 ipmp_destroy(ipst); 4371 4372 ip_kstat_fini(stackid, ipst->ips_ip_mibkp); 4373 ipst->ips_ip_mibkp = NULL; 4374 icmp_kstat_fini(stackid, ipst->ips_icmp_mibkp); 4375 ipst->ips_icmp_mibkp = NULL; 4376 ip_kstat2_fini(stackid, ipst->ips_ip_kstat); 4377 ipst->ips_ip_kstat = NULL; 4378 bzero(&ipst->ips_ip_statistics, sizeof (ipst->ips_ip_statistics)); 4379 ip6_kstat_fini(stackid, ipst->ips_ip6_kstat); 4380 ipst->ips_ip6_kstat = NULL; 4381 bzero(&ipst->ips_ip6_statistics, sizeof (ipst->ips_ip6_statistics)); 4382 4383 kmem_free(ipst->ips_propinfo_tbl, 4384 ip_propinfo_count * sizeof (mod_prop_info_t)); 4385 ipst->ips_propinfo_tbl = NULL; 4386 4387 dce_stack_destroy(ipst); 4388 ip_mrouter_stack_destroy(ipst); 4389 4390 ret = untimeout(ipst->ips_igmp_timeout_id); 4391 if (ret == -1) { 4392 ASSERT(ipst->ips_igmp_timeout_id == 0); 4393 } else { 4394 ASSERT(ipst->ips_igmp_timeout_id != 0); 4395 ipst->ips_igmp_timeout_id = 0; 4396 } 4397 ret = untimeout(ipst->ips_igmp_slowtimeout_id); 4398 if (ret == -1) { 4399 ASSERT(ipst->ips_igmp_slowtimeout_id == 0); 4400 } else { 4401 ASSERT(ipst->ips_igmp_slowtimeout_id != 0); 4402 ipst->ips_igmp_slowtimeout_id = 0; 4403 } 4404 ret = untimeout(ipst->ips_mld_timeout_id); 4405 if (ret == -1) { 4406 ASSERT(ipst->ips_mld_timeout_id == 0); 4407 } else { 4408 ASSERT(ipst->ips_mld_timeout_id != 0); 4409 ipst->ips_mld_timeout_id = 0; 4410 } 4411 ret = untimeout(ipst->ips_mld_slowtimeout_id); 4412 if (ret == -1) { 4413 ASSERT(ipst->ips_mld_slowtimeout_id == 0); 4414 } else { 4415 ASSERT(ipst->ips_mld_slowtimeout_id != 0); 4416 ipst->ips_mld_slowtimeout_id = 0; 4417 } 4418 4419 ip_ire_fini(ipst); 4420 ip6_asp_free(ipst); 4421 conn_drain_fini(ipst); 4422 ipcl_destroy(ipst); 4423 4424 mutex_destroy(&ipst->ips_ndp4->ndp_g_lock); 4425 mutex_destroy(&ipst->ips_ndp6->ndp_g_lock); 4426 kmem_free(ipst->ips_ndp4, sizeof (ndp_g_t)); 4427 ipst->ips_ndp4 = NULL; 4428 kmem_free(ipst->ips_ndp6, sizeof (ndp_g_t)); 4429 ipst->ips_ndp6 = NULL; 4430 4431 if (ipst->ips_loopback_ksp != NULL) { 4432 kstat_delete_netstack(ipst->ips_loopback_ksp, stackid); 4433 ipst->ips_loopback_ksp = NULL; 4434 } 4435 4436 mutex_destroy(&ipst->ips_capab_taskq_lock); 4437 cv_destroy(&ipst->ips_capab_taskq_cv); 4438 4439 rw_destroy(&ipst->ips_srcid_lock); 4440 4441 mutex_destroy(&ipst->ips_ip_mi_lock); 4442 rw_destroy(&ipst->ips_ill_g_usesrc_lock); 4443 4444 mutex_destroy(&ipst->ips_igmp_timer_lock); 4445 mutex_destroy(&ipst->ips_mld_timer_lock); 4446 mutex_destroy(&ipst->ips_igmp_slowtimeout_lock); 4447 mutex_destroy(&ipst->ips_mld_slowtimeout_lock); 4448 mutex_destroy(&ipst->ips_ip_addr_avail_lock); 4449 rw_destroy(&ipst->ips_ill_g_lock); 4450 4451 kmem_free(ipst->ips_phyint_g_list, sizeof (phyint_list_t)); 4452 ipst->ips_phyint_g_list = NULL; 4453 kmem_free(ipst->ips_ill_g_heads, sizeof (ill_g_head_t) * MAX_G_HEADS); 4454 ipst->ips_ill_g_heads = NULL; 4455 4456 ldi_ident_release(ipst->ips_ldi_ident); 4457 kmem_free(ipst, sizeof (*ipst)); 4458 } 4459 4460 /* 4461 * This function is called from the TSD destructor, and is used to debug 4462 * reference count issues in IP. See block comment in <inet/ip_if.h> for 4463 * details. 4464 */ 4465 static void 4466 ip_thread_exit(void *phash) 4467 { 4468 th_hash_t *thh = phash; 4469 4470 rw_enter(&ip_thread_rwlock, RW_WRITER); 4471 list_remove(&ip_thread_list, thh); 4472 rw_exit(&ip_thread_rwlock); 4473 mod_hash_destroy_hash(thh->thh_hash); 4474 kmem_free(thh, sizeof (*thh)); 4475 } 4476 4477 /* 4478 * Called when the IP kernel module is loaded into the kernel 4479 */ 4480 void 4481 ip_ddi_init(void) 4482 { 4483 ip_squeue_flag = ip_squeue_switch(ip_squeue_enter); 4484 4485 /* 4486 * For IP and TCP the minor numbers should start from 2 since we have 4 4487 * initial devices: ip, ip6, tcp, tcp6. 4488 */ 4489 /* 4490 * If this is a 64-bit kernel, then create two separate arenas - 4491 * one for TLIs in the range of INET_MIN_DEV+2 through 2^^18-1, and the 4492 * other for socket apps in the range 2^^18 through 2^^32-1. 4493 */ 4494 ip_minor_arena_la = NULL; 4495 ip_minor_arena_sa = NULL; 4496 #if defined(_LP64) 4497 if ((ip_minor_arena_sa = inet_minor_create("ip_minor_arena_sa", 4498 INET_MIN_DEV + 2, MAXMIN32, KM_SLEEP)) == NULL) { 4499 cmn_err(CE_PANIC, 4500 "ip_ddi_init: ip_minor_arena_sa creation failed\n"); 4501 } 4502 if ((ip_minor_arena_la = inet_minor_create("ip_minor_arena_la", 4503 MAXMIN32 + 1, MAXMIN64, KM_SLEEP)) == NULL) { 4504 cmn_err(CE_PANIC, 4505 "ip_ddi_init: ip_minor_arena_la creation failed\n"); 4506 } 4507 #else 4508 if ((ip_minor_arena_sa = inet_minor_create("ip_minor_arena_sa", 4509 INET_MIN_DEV + 2, MAXMIN, KM_SLEEP)) == NULL) { 4510 cmn_err(CE_PANIC, 4511 "ip_ddi_init: ip_minor_arena_sa creation failed\n"); 4512 } 4513 #endif 4514 ip_poll_normal_ticks = MSEC_TO_TICK_ROUNDUP(ip_poll_normal_ms); 4515 4516 ipcl_g_init(); 4517 ip_ire_g_init(); 4518 ip_net_g_init(); 4519 4520 #ifdef DEBUG 4521 tsd_create(&ip_thread_data, ip_thread_exit); 4522 rw_init(&ip_thread_rwlock, NULL, RW_DEFAULT, NULL); 4523 list_create(&ip_thread_list, sizeof (th_hash_t), 4524 offsetof(th_hash_t, thh_link)); 4525 #endif 4526 ipsec_policy_g_init(); 4527 tcp_ddi_g_init(); 4528 sctp_ddi_g_init(); 4529 dce_g_init(); 4530 4531 /* 4532 * We want to be informed each time a stack is created or 4533 * destroyed in the kernel, so we can maintain the 4534 * set of udp_stack_t's. 4535 */ 4536 netstack_register(NS_IP, ip_stack_init, ip_stack_shutdown, 4537 ip_stack_fini); 4538 4539 tnet_init(); 4540 4541 udp_ddi_g_init(); 4542 rts_ddi_g_init(); 4543 icmp_ddi_g_init(); 4544 ilb_ddi_g_init(); 4545 4546 /* This needs to be called after all transports are initialized. */ 4547 mutex_enter(&cpu_lock); 4548 register_cpu_setup_func(ip_tp_cpu_update, NULL); 4549 mutex_exit(&cpu_lock); 4550 } 4551 4552 /* 4553 * Initialize the IP stack instance. 4554 */ 4555 static void * 4556 ip_stack_init(netstackid_t stackid, netstack_t *ns) 4557 { 4558 ip_stack_t *ipst; 4559 size_t arrsz; 4560 major_t major; 4561 4562 #ifdef NS_DEBUG 4563 printf("ip_stack_init(stack %d)\n", stackid); 4564 #endif 4565 4566 ipst = (ip_stack_t *)kmem_zalloc(sizeof (*ipst), KM_SLEEP); 4567 ipst->ips_netstack = ns; 4568 4569 ipst->ips_ill_g_heads = kmem_zalloc(sizeof (ill_g_head_t) * MAX_G_HEADS, 4570 KM_SLEEP); 4571 ipst->ips_phyint_g_list = kmem_zalloc(sizeof (phyint_list_t), 4572 KM_SLEEP); 4573 ipst->ips_ndp4 = kmem_zalloc(sizeof (ndp_g_t), KM_SLEEP); 4574 ipst->ips_ndp6 = kmem_zalloc(sizeof (ndp_g_t), KM_SLEEP); 4575 mutex_init(&ipst->ips_ndp4->ndp_g_lock, NULL, MUTEX_DEFAULT, NULL); 4576 mutex_init(&ipst->ips_ndp6->ndp_g_lock, NULL, MUTEX_DEFAULT, NULL); 4577 4578 mutex_init(&ipst->ips_igmp_timer_lock, NULL, MUTEX_DEFAULT, NULL); 4579 ipst->ips_igmp_deferred_next = INFINITY; 4580 mutex_init(&ipst->ips_mld_timer_lock, NULL, MUTEX_DEFAULT, NULL); 4581 ipst->ips_mld_deferred_next = INFINITY; 4582 mutex_init(&ipst->ips_igmp_slowtimeout_lock, NULL, MUTEX_DEFAULT, NULL); 4583 mutex_init(&ipst->ips_mld_slowtimeout_lock, NULL, MUTEX_DEFAULT, NULL); 4584 mutex_init(&ipst->ips_ip_mi_lock, NULL, MUTEX_DEFAULT, NULL); 4585 mutex_init(&ipst->ips_ip_addr_avail_lock, NULL, MUTEX_DEFAULT, NULL); 4586 rw_init(&ipst->ips_ill_g_lock, NULL, RW_DEFAULT, NULL); 4587 rw_init(&ipst->ips_ill_g_usesrc_lock, NULL, RW_DEFAULT, NULL); 4588 4589 ipcl_init(ipst); 4590 ip_ire_init(ipst); 4591 ip6_asp_init(ipst); 4592 ipif_init(ipst); 4593 conn_drain_init(ipst); 4594 ip_mrouter_stack_init(ipst); 4595 dce_stack_init(ipst); 4596 4597 ipst->ips_ip_multirt_log_interval = 1000; 4598 4599 ipst->ips_ill_index = 1; 4600 4601 ipst->ips_saved_ip_forwarding = -1; 4602 ipst->ips_reg_vif_num = ALL_VIFS; /* Index to Register vif */ 4603 4604 arrsz = ip_propinfo_count * sizeof (mod_prop_info_t); 4605 ipst->ips_propinfo_tbl = (mod_prop_info_t *)kmem_alloc(arrsz, KM_SLEEP); 4606 bcopy(ip_propinfo_tbl, ipst->ips_propinfo_tbl, arrsz); 4607 4608 ipst->ips_ip_mibkp = ip_kstat_init(stackid, ipst); 4609 ipst->ips_icmp_mibkp = icmp_kstat_init(stackid); 4610 ipst->ips_ip_kstat = ip_kstat2_init(stackid, &ipst->ips_ip_statistics); 4611 ipst->ips_ip6_kstat = 4612 ip6_kstat_init(stackid, &ipst->ips_ip6_statistics); 4613 4614 ipst->ips_ip_src_id = 1; 4615 rw_init(&ipst->ips_srcid_lock, NULL, RW_DEFAULT, NULL); 4616 4617 ipst->ips_src_generation = SRC_GENERATION_INITIAL; 4618 4619 ip_net_init(ipst, ns); 4620 ipv4_hook_init(ipst); 4621 ipv6_hook_init(ipst); 4622 arp_hook_init(ipst); 4623 ipmp_init(ipst); 4624 ipobs_init(ipst); 4625 4626 /* 4627 * Create the taskq dispatcher thread and initialize related stuff. 4628 */ 4629 ipst->ips_capab_taskq_thread = thread_create(NULL, 0, 4630 ill_taskq_dispatch, ipst, 0, &p0, TS_RUN, minclsyspri); 4631 mutex_init(&ipst->ips_capab_taskq_lock, NULL, MUTEX_DEFAULT, NULL); 4632 cv_init(&ipst->ips_capab_taskq_cv, NULL, CV_DEFAULT, NULL); 4633 4634 major = mod_name_to_major(INET_NAME); 4635 (void) ldi_ident_from_major(major, &ipst->ips_ldi_ident); 4636 return (ipst); 4637 } 4638 4639 /* 4640 * Allocate and initialize a DLPI template of the specified length. (May be 4641 * called as writer.) 4642 */ 4643 mblk_t * 4644 ip_dlpi_alloc(size_t len, t_uscalar_t prim) 4645 { 4646 mblk_t *mp; 4647 4648 mp = allocb(len, BPRI_MED); 4649 if (!mp) 4650 return (NULL); 4651 4652 /* 4653 * DLPIv2 says that DL_INFO_REQ and DL_TOKEN_REQ (the latter 4654 * of which we don't seem to use) are sent with M_PCPROTO, and 4655 * that other DLPI are M_PROTO. 4656 */ 4657 if (prim == DL_INFO_REQ) { 4658 mp->b_datap->db_type = M_PCPROTO; 4659 } else { 4660 mp->b_datap->db_type = M_PROTO; 4661 } 4662 4663 mp->b_wptr = mp->b_rptr + len; 4664 bzero(mp->b_rptr, len); 4665 ((dl_unitdata_req_t *)mp->b_rptr)->dl_primitive = prim; 4666 return (mp); 4667 } 4668 4669 /* 4670 * Allocate and initialize a DLPI notification. (May be called as writer.) 4671 */ 4672 mblk_t * 4673 ip_dlnotify_alloc(uint_t notification, uint_t data) 4674 { 4675 dl_notify_ind_t *notifyp; 4676 mblk_t *mp; 4677 4678 if ((mp = ip_dlpi_alloc(DL_NOTIFY_IND_SIZE, DL_NOTIFY_IND)) == NULL) 4679 return (NULL); 4680 4681 notifyp = (dl_notify_ind_t *)mp->b_rptr; 4682 notifyp->dl_notification = notification; 4683 notifyp->dl_data = data; 4684 return (mp); 4685 } 4686 4687 /* 4688 * Debug formatting routine. Returns a character string representation of the 4689 * addr in buf, of the form xxx.xxx.xxx.xxx. This routine takes the address 4690 * in the form of a ipaddr_t and calls ip_dot_saddr with a pointer. 4691 * 4692 * Once the ndd table-printing interfaces are removed, this can be changed to 4693 * standard dotted-decimal form. 4694 */ 4695 char * 4696 ip_dot_addr(ipaddr_t addr, char *buf) 4697 { 4698 uint8_t *ap = (uint8_t *)&addr; 4699 4700 (void) mi_sprintf(buf, "%03d.%03d.%03d.%03d", 4701 ap[0] & 0xFF, ap[1] & 0xFF, ap[2] & 0xFF, ap[3] & 0xFF); 4702 return (buf); 4703 } 4704 4705 /* 4706 * Write the given MAC address as a printable string in the usual colon- 4707 * separated format. 4708 */ 4709 const char * 4710 mac_colon_addr(const uint8_t *addr, size_t alen, char *buf, size_t buflen) 4711 { 4712 char *bp; 4713 4714 if (alen == 0 || buflen < 4) 4715 return ("?"); 4716 bp = buf; 4717 for (;;) { 4718 /* 4719 * If there are more MAC address bytes available, but we won't 4720 * have any room to print them, then add "..." to the string 4721 * instead. See below for the 'magic number' explanation. 4722 */ 4723 if ((alen == 2 && buflen < 6) || (alen > 2 && buflen < 7)) { 4724 (void) strcpy(bp, "..."); 4725 break; 4726 } 4727 (void) sprintf(bp, "%02x", *addr++); 4728 bp += 2; 4729 if (--alen == 0) 4730 break; 4731 *bp++ = ':'; 4732 buflen -= 3; 4733 /* 4734 * At this point, based on the first 'if' statement above, 4735 * either alen == 1 and buflen >= 3, or alen > 1 and 4736 * buflen >= 4. The first case leaves room for the final "xx" 4737 * number and trailing NUL byte. The second leaves room for at 4738 * least "...". Thus the apparently 'magic' numbers chosen for 4739 * that statement. 4740 */ 4741 } 4742 return (buf); 4743 } 4744 4745 /* 4746 * Called when it is conceptually a ULP that would sent the packet 4747 * e.g., port unreachable and protocol unreachable. Check that the packet 4748 * would have passed the IPsec global policy before sending the error. 4749 * 4750 * Send an ICMP error after patching up the packet appropriately. 4751 * Uses ip_drop_input and bumps the appropriate MIB. 4752 */ 4753 void 4754 ip_fanout_send_icmp_v4(mblk_t *mp, uint_t icmp_type, uint_t icmp_code, 4755 ip_recv_attr_t *ira) 4756 { 4757 ipha_t *ipha; 4758 boolean_t secure; 4759 ill_t *ill = ira->ira_ill; 4760 ip_stack_t *ipst = ill->ill_ipst; 4761 netstack_t *ns = ipst->ips_netstack; 4762 ipsec_stack_t *ipss = ns->netstack_ipsec; 4763 4764 secure = ira->ira_flags & IRAF_IPSEC_SECURE; 4765 4766 /* 4767 * We are generating an icmp error for some inbound packet. 4768 * Called from all ip_fanout_(udp, tcp, proto) functions. 4769 * Before we generate an error, check with global policy 4770 * to see whether this is allowed to enter the system. As 4771 * there is no "conn", we are checking with global policy. 4772 */ 4773 ipha = (ipha_t *)mp->b_rptr; 4774 if (secure || ipss->ipsec_inbound_v4_policy_present) { 4775 mp = ipsec_check_global_policy(mp, NULL, ipha, NULL, ira, ns); 4776 if (mp == NULL) 4777 return; 4778 } 4779 4780 /* We never send errors for protocols that we do implement */ 4781 if (ira->ira_protocol == IPPROTO_ICMP || 4782 ira->ira_protocol == IPPROTO_IGMP) { 4783 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 4784 ip_drop_input("ip_fanout_send_icmp_v4", mp, ill); 4785 freemsg(mp); 4786 return; 4787 } 4788 /* 4789 * Have to correct checksum since 4790 * the packet might have been 4791 * fragmented and the reassembly code in ip_rput 4792 * does not restore the IP checksum. 4793 */ 4794 ipha->ipha_hdr_checksum = 0; 4795 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 4796 4797 switch (icmp_type) { 4798 case ICMP_DEST_UNREACHABLE: 4799 switch (icmp_code) { 4800 case ICMP_PROTOCOL_UNREACHABLE: 4801 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInUnknownProtos); 4802 ip_drop_input("ipIfStatsInUnknownProtos", mp, ill); 4803 break; 4804 case ICMP_PORT_UNREACHABLE: 4805 BUMP_MIB(ill->ill_ip_mib, udpIfStatsNoPorts); 4806 ip_drop_input("ipIfStatsNoPorts", mp, ill); 4807 break; 4808 } 4809 4810 icmp_unreachable(mp, icmp_code, ira); 4811 break; 4812 default: 4813 #ifdef DEBUG 4814 panic("ip_fanout_send_icmp_v4: wrong type"); 4815 /*NOTREACHED*/ 4816 #else 4817 freemsg(mp); 4818 break; 4819 #endif 4820 } 4821 } 4822 4823 /* 4824 * Used to send an ICMP error message when a packet is received for 4825 * a protocol that is not supported. The mblk passed as argument 4826 * is consumed by this function. 4827 */ 4828 void 4829 ip_proto_not_sup(mblk_t *mp, ip_recv_attr_t *ira) 4830 { 4831 ipha_t *ipha; 4832 4833 ipha = (ipha_t *)mp->b_rptr; 4834 if (ira->ira_flags & IRAF_IS_IPV4) { 4835 ASSERT(IPH_HDR_VERSION(ipha) == IP_VERSION); 4836 ip_fanout_send_icmp_v4(mp, ICMP_DEST_UNREACHABLE, 4837 ICMP_PROTOCOL_UNREACHABLE, ira); 4838 } else { 4839 ASSERT(IPH_HDR_VERSION(ipha) == IPV6_VERSION); 4840 ip_fanout_send_icmp_v6(mp, ICMP6_PARAM_PROB, 4841 ICMP6_PARAMPROB_NEXTHEADER, ira); 4842 } 4843 } 4844 4845 /* 4846 * Deliver a rawip packet to the given conn, possibly applying ipsec policy. 4847 * Handles IPv4 and IPv6. 4848 * We are responsible for disposing of mp, such as by freemsg() or putnext() 4849 * Caller is responsible for dropping references to the conn. 4850 */ 4851 void 4852 ip_fanout_proto_conn(conn_t *connp, mblk_t *mp, ipha_t *ipha, ip6_t *ip6h, 4853 ip_recv_attr_t *ira) 4854 { 4855 ill_t *ill = ira->ira_ill; 4856 ip_stack_t *ipst = ill->ill_ipst; 4857 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 4858 boolean_t secure; 4859 uint_t protocol = ira->ira_protocol; 4860 iaflags_t iraflags = ira->ira_flags; 4861 queue_t *rq; 4862 4863 secure = iraflags & IRAF_IPSEC_SECURE; 4864 4865 rq = connp->conn_rq; 4866 if (IPCL_IS_NONSTR(connp) ? connp->conn_flow_cntrld : !canputnext(rq)) { 4867 switch (protocol) { 4868 case IPPROTO_ICMPV6: 4869 BUMP_MIB(ill->ill_icmp6_mib, ipv6IfIcmpInOverflows); 4870 break; 4871 case IPPROTO_ICMP: 4872 BUMP_MIB(&ipst->ips_icmp_mib, icmpInOverflows); 4873 break; 4874 default: 4875 BUMP_MIB(ill->ill_ip_mib, rawipIfStatsInOverflows); 4876 break; 4877 } 4878 freemsg(mp); 4879 return; 4880 } 4881 4882 ASSERT(!(IPCL_IS_IPTUN(connp))); 4883 4884 if (((iraflags & IRAF_IS_IPV4) ? 4885 CONN_INBOUND_POLICY_PRESENT(connp, ipss) : 4886 CONN_INBOUND_POLICY_PRESENT_V6(connp, ipss)) || 4887 secure) { 4888 mp = ipsec_check_inbound_policy(mp, connp, ipha, 4889 ip6h, ira); 4890 if (mp == NULL) { 4891 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 4892 /* Note that mp is NULL */ 4893 ip_drop_input("ipIfStatsInDiscards", mp, ill); 4894 return; 4895 } 4896 } 4897 4898 if (iraflags & IRAF_ICMP_ERROR) { 4899 (connp->conn_recvicmp)(connp, mp, NULL, ira); 4900 } else { 4901 ill_t *rill = ira->ira_rill; 4902 4903 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers); 4904 ira->ira_ill = ira->ira_rill = NULL; 4905 /* Send it upstream */ 4906 (connp->conn_recv)(connp, mp, NULL, ira); 4907 ira->ira_ill = ill; 4908 ira->ira_rill = rill; 4909 } 4910 } 4911 4912 /* 4913 * Handle protocols with which IP is less intimate. There 4914 * can be more than one stream bound to a particular 4915 * protocol. When this is the case, normally each one gets a copy 4916 * of any incoming packets. 4917 * 4918 * IPsec NOTE : 4919 * 4920 * Don't allow a secure packet going up a non-secure connection. 4921 * We don't allow this because 4922 * 4923 * 1) Reply might go out in clear which will be dropped at 4924 * the sending side. 4925 * 2) If the reply goes out in clear it will give the 4926 * adversary enough information for getting the key in 4927 * most of the cases. 4928 * 4929 * Moreover getting a secure packet when we expect clear 4930 * implies that SA's were added without checking for 4931 * policy on both ends. This should not happen once ISAKMP 4932 * is used to negotiate SAs as SAs will be added only after 4933 * verifying the policy. 4934 * 4935 * Zones notes: 4936 * Earlier in ip_input on a system with multiple shared-IP zones we 4937 * duplicate the multicast and broadcast packets and send them up 4938 * with each explicit zoneid that exists on that ill. 4939 * This means that here we can match the zoneid with SO_ALLZONES being special. 4940 */ 4941 void 4942 ip_fanout_proto_v4(mblk_t *mp, ipha_t *ipha, ip_recv_attr_t *ira) 4943 { 4944 mblk_t *mp1; 4945 ipaddr_t laddr; 4946 conn_t *connp, *first_connp, *next_connp; 4947 connf_t *connfp; 4948 ill_t *ill = ira->ira_ill; 4949 ip_stack_t *ipst = ill->ill_ipst; 4950 4951 laddr = ipha->ipha_dst; 4952 4953 connfp = &ipst->ips_ipcl_proto_fanout_v4[ira->ira_protocol]; 4954 mutex_enter(&connfp->connf_lock); 4955 connp = connfp->connf_head; 4956 for (connp = connfp->connf_head; connp != NULL; 4957 connp = connp->conn_next) { 4958 /* Note: IPCL_PROTO_MATCH includes conn_wantpacket */ 4959 if (IPCL_PROTO_MATCH(connp, ira, ipha) && 4960 (!(ira->ira_flags & IRAF_SYSTEM_LABELED) || 4961 tsol_receive_local(mp, &laddr, IPV4_VERSION, ira, connp))) { 4962 break; 4963 } 4964 } 4965 4966 if (connp == NULL) { 4967 /* 4968 * No one bound to these addresses. Is 4969 * there a client that wants all 4970 * unclaimed datagrams? 4971 */ 4972 mutex_exit(&connfp->connf_lock); 4973 ip_fanout_send_icmp_v4(mp, ICMP_DEST_UNREACHABLE, 4974 ICMP_PROTOCOL_UNREACHABLE, ira); 4975 return; 4976 } 4977 4978 ASSERT(IPCL_IS_NONSTR(connp) || connp->conn_rq != NULL); 4979 4980 CONN_INC_REF(connp); 4981 first_connp = connp; 4982 connp = connp->conn_next; 4983 4984 for (;;) { 4985 while (connp != NULL) { 4986 /* Note: IPCL_PROTO_MATCH includes conn_wantpacket */ 4987 if (IPCL_PROTO_MATCH(connp, ira, ipha) && 4988 (!(ira->ira_flags & IRAF_SYSTEM_LABELED) || 4989 tsol_receive_local(mp, &laddr, IPV4_VERSION, 4990 ira, connp))) 4991 break; 4992 connp = connp->conn_next; 4993 } 4994 4995 if (connp == NULL) { 4996 /* No more interested clients */ 4997 connp = first_connp; 4998 break; 4999 } 5000 if (((mp1 = dupmsg(mp)) == NULL) && 5001 ((mp1 = copymsg(mp)) == NULL)) { 5002 /* Memory allocation failed */ 5003 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 5004 ip_drop_input("ipIfStatsInDiscards", mp, ill); 5005 connp = first_connp; 5006 break; 5007 } 5008 5009 CONN_INC_REF(connp); 5010 mutex_exit(&connfp->connf_lock); 5011 5012 ip_fanout_proto_conn(connp, mp1, (ipha_t *)mp1->b_rptr, NULL, 5013 ira); 5014 5015 mutex_enter(&connfp->connf_lock); 5016 /* Follow the next pointer before releasing the conn. */ 5017 next_connp = connp->conn_next; 5018 CONN_DEC_REF(connp); 5019 connp = next_connp; 5020 } 5021 5022 /* Last one. Send it upstream. */ 5023 mutex_exit(&connfp->connf_lock); 5024 5025 ip_fanout_proto_conn(connp, mp, ipha, NULL, ira); 5026 5027 CONN_DEC_REF(connp); 5028 } 5029 5030 /* 5031 * If we have a IPsec NAT-Traversal packet, strip the zero-SPI or 5032 * pass it along to ESP if the SPI is non-zero. Returns the mblk if the mblk 5033 * is not consumed. 5034 * 5035 * One of three things can happen, all of which affect the passed-in mblk: 5036 * 5037 * 1.) The packet is stock UDP and gets its zero-SPI stripped. Return mblk.. 5038 * 5039 * 2.) The packet is ESP-in-UDP, gets transformed into an equivalent 5040 * ESP packet, and is passed along to ESP for consumption. Return NULL. 5041 * 5042 * 3.) The packet is an ESP-in-UDP Keepalive. Drop it and return NULL. 5043 */ 5044 mblk_t * 5045 zero_spi_check(mblk_t *mp, ip_recv_attr_t *ira) 5046 { 5047 int shift, plen, iph_len; 5048 ipha_t *ipha; 5049 udpha_t *udpha; 5050 uint32_t *spi; 5051 uint32_t esp_ports; 5052 uint8_t *orptr; 5053 ip_stack_t *ipst = ira->ira_ill->ill_ipst; 5054 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 5055 5056 ipha = (ipha_t *)mp->b_rptr; 5057 iph_len = ira->ira_ip_hdr_length; 5058 plen = ira->ira_pktlen; 5059 5060 if (plen - iph_len - sizeof (udpha_t) < sizeof (uint32_t)) { 5061 /* 5062 * Most likely a keepalive for the benefit of an intervening 5063 * NAT. These aren't for us, per se, so drop it. 5064 * 5065 * RFC 3947/8 doesn't say for sure what to do for 2-3 5066 * byte packets (keepalives are 1-byte), but we'll drop them 5067 * also. 5068 */ 5069 ip_drop_packet(mp, B_TRUE, ira->ira_ill, 5070 DROPPER(ipss, ipds_esp_nat_t_ka), &ipss->ipsec_dropper); 5071 return (NULL); 5072 } 5073 5074 if (MBLKL(mp) < iph_len + sizeof (udpha_t) + sizeof (*spi)) { 5075 /* might as well pull it all up - it might be ESP. */ 5076 if (!pullupmsg(mp, -1)) { 5077 ip_drop_packet(mp, B_TRUE, ira->ira_ill, 5078 DROPPER(ipss, ipds_esp_nomem), 5079 &ipss->ipsec_dropper); 5080 return (NULL); 5081 } 5082 5083 ipha = (ipha_t *)mp->b_rptr; 5084 } 5085 spi = (uint32_t *)(mp->b_rptr + iph_len + sizeof (udpha_t)); 5086 if (*spi == 0) { 5087 /* UDP packet - remove 0-spi. */ 5088 shift = sizeof (uint32_t); 5089 } else { 5090 /* ESP-in-UDP packet - reduce to ESP. */ 5091 ipha->ipha_protocol = IPPROTO_ESP; 5092 shift = sizeof (udpha_t); 5093 } 5094 5095 /* Fix IP header */ 5096 ira->ira_pktlen = (plen - shift); 5097 ipha->ipha_length = htons(ira->ira_pktlen); 5098 ipha->ipha_hdr_checksum = 0; 5099 5100 orptr = mp->b_rptr; 5101 mp->b_rptr += shift; 5102 5103 udpha = (udpha_t *)(orptr + iph_len); 5104 if (*spi == 0) { 5105 ASSERT((uint8_t *)ipha == orptr); 5106 udpha->uha_length = htons(plen - shift - iph_len); 5107 iph_len += sizeof (udpha_t); /* For the call to ovbcopy(). */ 5108 esp_ports = 0; 5109 } else { 5110 esp_ports = *((uint32_t *)udpha); 5111 ASSERT(esp_ports != 0); 5112 } 5113 ovbcopy(orptr, orptr + shift, iph_len); 5114 if (esp_ports != 0) /* Punt up for ESP processing. */ { 5115 ipha = (ipha_t *)(orptr + shift); 5116 5117 ira->ira_flags |= IRAF_ESP_UDP_PORTS; 5118 ira->ira_esp_udp_ports = esp_ports; 5119 ip_fanout_v4(mp, ipha, ira); 5120 return (NULL); 5121 } 5122 return (mp); 5123 } 5124 5125 /* 5126 * Deliver a udp packet to the given conn, possibly applying ipsec policy. 5127 * Handles IPv4 and IPv6. 5128 * We are responsible for disposing of mp, such as by freemsg() or putnext() 5129 * Caller is responsible for dropping references to the conn. 5130 */ 5131 void 5132 ip_fanout_udp_conn(conn_t *connp, mblk_t *mp, ipha_t *ipha, ip6_t *ip6h, 5133 ip_recv_attr_t *ira) 5134 { 5135 ill_t *ill = ira->ira_ill; 5136 ip_stack_t *ipst = ill->ill_ipst; 5137 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 5138 boolean_t secure; 5139 iaflags_t iraflags = ira->ira_flags; 5140 5141 secure = iraflags & IRAF_IPSEC_SECURE; 5142 5143 if (IPCL_IS_NONSTR(connp) ? connp->conn_flow_cntrld : 5144 !canputnext(connp->conn_rq)) { 5145 BUMP_MIB(ill->ill_ip_mib, udpIfStatsInOverflows); 5146 freemsg(mp); 5147 return; 5148 } 5149 5150 if (((iraflags & IRAF_IS_IPV4) ? 5151 CONN_INBOUND_POLICY_PRESENT(connp, ipss) : 5152 CONN_INBOUND_POLICY_PRESENT_V6(connp, ipss)) || 5153 secure) { 5154 mp = ipsec_check_inbound_policy(mp, connp, ipha, 5155 ip6h, ira); 5156 if (mp == NULL) { 5157 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 5158 /* Note that mp is NULL */ 5159 ip_drop_input("ipIfStatsInDiscards", mp, ill); 5160 return; 5161 } 5162 } 5163 5164 /* 5165 * Since this code is not used for UDP unicast we don't need a NAT_T 5166 * check. Only ip_fanout_v4 has that check. 5167 */ 5168 if (ira->ira_flags & IRAF_ICMP_ERROR) { 5169 (connp->conn_recvicmp)(connp, mp, NULL, ira); 5170 } else { 5171 ill_t *rill = ira->ira_rill; 5172 5173 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers); 5174 ira->ira_ill = ira->ira_rill = NULL; 5175 /* Send it upstream */ 5176 (connp->conn_recv)(connp, mp, NULL, ira); 5177 ira->ira_ill = ill; 5178 ira->ira_rill = rill; 5179 } 5180 } 5181 5182 /* 5183 * Fanout for UDP packets that are multicast or broadcast, and ICMP errors. 5184 * (Unicast fanout is handled in ip_input_v4.) 5185 * 5186 * If SO_REUSEADDR is set all multicast and broadcast packets 5187 * will be delivered to all conns bound to the same port. 5188 * 5189 * If there is at least one matching AF_INET receiver, then we will 5190 * ignore any AF_INET6 receivers. 5191 * In the special case where an AF_INET socket binds to 0.0.0.0/<port> and an 5192 * AF_INET6 socket binds to ::/<port>, only the AF_INET socket receives the IPv4 5193 * packets. 5194 * 5195 * Zones notes: 5196 * Earlier in ip_input on a system with multiple shared-IP zones we 5197 * duplicate the multicast and broadcast packets and send them up 5198 * with each explicit zoneid that exists on that ill. 5199 * This means that here we can match the zoneid with SO_ALLZONES being special. 5200 */ 5201 void 5202 ip_fanout_udp_multi_v4(mblk_t *mp, ipha_t *ipha, uint16_t lport, uint16_t fport, 5203 ip_recv_attr_t *ira) 5204 { 5205 ipaddr_t laddr; 5206 in6_addr_t v6faddr; 5207 conn_t *connp; 5208 connf_t *connfp; 5209 ipaddr_t faddr; 5210 ill_t *ill = ira->ira_ill; 5211 ip_stack_t *ipst = ill->ill_ipst; 5212 5213 ASSERT(ira->ira_flags & (IRAF_MULTIBROADCAST|IRAF_ICMP_ERROR)); 5214 5215 laddr = ipha->ipha_dst; 5216 faddr = ipha->ipha_src; 5217 5218 connfp = &ipst->ips_ipcl_udp_fanout[IPCL_UDP_HASH(lport, ipst)]; 5219 mutex_enter(&connfp->connf_lock); 5220 connp = connfp->connf_head; 5221 5222 /* 5223 * If SO_REUSEADDR has been set on the first we send the 5224 * packet to all clients that have joined the group and 5225 * match the port. 5226 */ 5227 while (connp != NULL) { 5228 if ((IPCL_UDP_MATCH(connp, lport, laddr, fport, faddr)) && 5229 conn_wantpacket(connp, ira, ipha) && 5230 (!(ira->ira_flags & IRAF_SYSTEM_LABELED) || 5231 tsol_receive_local(mp, &laddr, IPV4_VERSION, ira, connp))) 5232 break; 5233 connp = connp->conn_next; 5234 } 5235 5236 if (connp == NULL) 5237 goto notfound; 5238 5239 CONN_INC_REF(connp); 5240 5241 if (connp->conn_reuseaddr) { 5242 conn_t *first_connp = connp; 5243 conn_t *next_connp; 5244 mblk_t *mp1; 5245 5246 connp = connp->conn_next; 5247 for (;;) { 5248 while (connp != NULL) { 5249 if (IPCL_UDP_MATCH(connp, lport, laddr, 5250 fport, faddr) && 5251 conn_wantpacket(connp, ira, ipha) && 5252 (!(ira->ira_flags & IRAF_SYSTEM_LABELED) || 5253 tsol_receive_local(mp, &laddr, IPV4_VERSION, 5254 ira, connp))) 5255 break; 5256 connp = connp->conn_next; 5257 } 5258 if (connp == NULL) { 5259 /* No more interested clients */ 5260 connp = first_connp; 5261 break; 5262 } 5263 if (((mp1 = dupmsg(mp)) == NULL) && 5264 ((mp1 = copymsg(mp)) == NULL)) { 5265 /* Memory allocation failed */ 5266 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 5267 ip_drop_input("ipIfStatsInDiscards", mp, ill); 5268 connp = first_connp; 5269 break; 5270 } 5271 CONN_INC_REF(connp); 5272 mutex_exit(&connfp->connf_lock); 5273 5274 IP_STAT(ipst, ip_udp_fanmb); 5275 ip_fanout_udp_conn(connp, mp1, (ipha_t *)mp1->b_rptr, 5276 NULL, ira); 5277 mutex_enter(&connfp->connf_lock); 5278 /* Follow the next pointer before releasing the conn */ 5279 next_connp = connp->conn_next; 5280 CONN_DEC_REF(connp); 5281 connp = next_connp; 5282 } 5283 } 5284 5285 /* Last one. Send it upstream. */ 5286 mutex_exit(&connfp->connf_lock); 5287 IP_STAT(ipst, ip_udp_fanmb); 5288 ip_fanout_udp_conn(connp, mp, ipha, NULL, ira); 5289 CONN_DEC_REF(connp); 5290 return; 5291 5292 notfound: 5293 mutex_exit(&connfp->connf_lock); 5294 /* 5295 * IPv6 endpoints bound to multicast IPv4-mapped addresses 5296 * have already been matched above, since they live in the IPv4 5297 * fanout tables. This implies we only need to 5298 * check for IPv6 in6addr_any endpoints here. 5299 * Thus we compare using ipv6_all_zeros instead of the destination 5300 * address, except for the multicast group membership lookup which 5301 * uses the IPv4 destination. 5302 */ 5303 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &v6faddr); 5304 connfp = &ipst->ips_ipcl_udp_fanout[IPCL_UDP_HASH(lport, ipst)]; 5305 mutex_enter(&connfp->connf_lock); 5306 connp = connfp->connf_head; 5307 /* 5308 * IPv4 multicast packet being delivered to an AF_INET6 5309 * in6addr_any endpoint. 5310 * Need to check conn_wantpacket(). Note that we use conn_wantpacket() 5311 * and not conn_wantpacket_v6() since any multicast membership is 5312 * for an IPv4-mapped multicast address. 5313 */ 5314 while (connp != NULL) { 5315 if (IPCL_UDP_MATCH_V6(connp, lport, ipv6_all_zeros, 5316 fport, v6faddr) && 5317 conn_wantpacket(connp, ira, ipha) && 5318 (!(ira->ira_flags & IRAF_SYSTEM_LABELED) || 5319 tsol_receive_local(mp, &laddr, IPV4_VERSION, ira, connp))) 5320 break; 5321 connp = connp->conn_next; 5322 } 5323 5324 if (connp == NULL) { 5325 /* 5326 * No one bound to this port. Is 5327 * there a client that wants all 5328 * unclaimed datagrams? 5329 */ 5330 mutex_exit(&connfp->connf_lock); 5331 5332 if (ipst->ips_ipcl_proto_fanout_v4[IPPROTO_UDP].connf_head != 5333 NULL) { 5334 ASSERT(ira->ira_protocol == IPPROTO_UDP); 5335 ip_fanout_proto_v4(mp, ipha, ira); 5336 } else { 5337 /* 5338 * We used to attempt to send an icmp error here, but 5339 * since this is known to be a multicast packet 5340 * and we don't send icmp errors in response to 5341 * multicast, just drop the packet and give up sooner. 5342 */ 5343 BUMP_MIB(ill->ill_ip_mib, udpIfStatsNoPorts); 5344 freemsg(mp); 5345 } 5346 return; 5347 } 5348 ASSERT(IPCL_IS_NONSTR(connp) || connp->conn_rq != NULL); 5349 5350 /* 5351 * If SO_REUSEADDR has been set on the first we send the 5352 * packet to all clients that have joined the group and 5353 * match the port. 5354 */ 5355 if (connp->conn_reuseaddr) { 5356 conn_t *first_connp = connp; 5357 conn_t *next_connp; 5358 mblk_t *mp1; 5359 5360 CONN_INC_REF(connp); 5361 connp = connp->conn_next; 5362 for (;;) { 5363 while (connp != NULL) { 5364 if (IPCL_UDP_MATCH_V6(connp, lport, 5365 ipv6_all_zeros, fport, v6faddr) && 5366 conn_wantpacket(connp, ira, ipha) && 5367 (!(ira->ira_flags & IRAF_SYSTEM_LABELED) || 5368 tsol_receive_local(mp, &laddr, IPV4_VERSION, 5369 ira, connp))) 5370 break; 5371 connp = connp->conn_next; 5372 } 5373 if (connp == NULL) { 5374 /* No more interested clients */ 5375 connp = first_connp; 5376 break; 5377 } 5378 if (((mp1 = dupmsg(mp)) == NULL) && 5379 ((mp1 = copymsg(mp)) == NULL)) { 5380 /* Memory allocation failed */ 5381 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 5382 ip_drop_input("ipIfStatsInDiscards", mp, ill); 5383 connp = first_connp; 5384 break; 5385 } 5386 CONN_INC_REF(connp); 5387 mutex_exit(&connfp->connf_lock); 5388 5389 IP_STAT(ipst, ip_udp_fanmb); 5390 ip_fanout_udp_conn(connp, mp1, (ipha_t *)mp1->b_rptr, 5391 NULL, ira); 5392 mutex_enter(&connfp->connf_lock); 5393 /* Follow the next pointer before releasing the conn */ 5394 next_connp = connp->conn_next; 5395 CONN_DEC_REF(connp); 5396 connp = next_connp; 5397 } 5398 } 5399 5400 /* Last one. Send it upstream. */ 5401 mutex_exit(&connfp->connf_lock); 5402 IP_STAT(ipst, ip_udp_fanmb); 5403 ip_fanout_udp_conn(connp, mp, ipha, NULL, ira); 5404 CONN_DEC_REF(connp); 5405 } 5406 5407 /* 5408 * Split an incoming packet's IPv4 options into the label and the other options. 5409 * If 'allocate' is set it does memory allocation for the ip_pkt_t, including 5410 * clearing out any leftover label or options. 5411 * Otherwise it just makes ipp point into the packet. 5412 * 5413 * Returns zero if ok; ENOMEM if the buffer couldn't be allocated. 5414 */ 5415 int 5416 ip_find_hdr_v4(ipha_t *ipha, ip_pkt_t *ipp, boolean_t allocate) 5417 { 5418 uchar_t *opt; 5419 uint32_t totallen; 5420 uint32_t optval; 5421 uint32_t optlen; 5422 5423 ipp->ipp_fields |= IPPF_HOPLIMIT | IPPF_TCLASS | IPPF_ADDR; 5424 ipp->ipp_hoplimit = ipha->ipha_ttl; 5425 ipp->ipp_type_of_service = ipha->ipha_type_of_service; 5426 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &ipp->ipp_addr); 5427 5428 /* 5429 * Get length (in 4 byte octets) of IP header options. 5430 */ 5431 totallen = ipha->ipha_version_and_hdr_length - 5432 (uint8_t)((IP_VERSION << 4) + IP_SIMPLE_HDR_LENGTH_IN_WORDS); 5433 5434 if (totallen == 0) { 5435 if (!allocate) 5436 return (0); 5437 5438 /* Clear out anything from a previous packet */ 5439 if (ipp->ipp_fields & IPPF_IPV4_OPTIONS) { 5440 kmem_free(ipp->ipp_ipv4_options, 5441 ipp->ipp_ipv4_options_len); 5442 ipp->ipp_ipv4_options = NULL; 5443 ipp->ipp_ipv4_options_len = 0; 5444 ipp->ipp_fields &= ~IPPF_IPV4_OPTIONS; 5445 } 5446 if (ipp->ipp_fields & IPPF_LABEL_V4) { 5447 kmem_free(ipp->ipp_label_v4, ipp->ipp_label_len_v4); 5448 ipp->ipp_label_v4 = NULL; 5449 ipp->ipp_label_len_v4 = 0; 5450 ipp->ipp_fields &= ~IPPF_LABEL_V4; 5451 } 5452 return (0); 5453 } 5454 5455 totallen <<= 2; 5456 opt = (uchar_t *)&ipha[1]; 5457 if (!is_system_labeled()) { 5458 5459 copyall: 5460 if (!allocate) { 5461 if (totallen != 0) { 5462 ipp->ipp_ipv4_options = opt; 5463 ipp->ipp_ipv4_options_len = totallen; 5464 ipp->ipp_fields |= IPPF_IPV4_OPTIONS; 5465 } 5466 return (0); 5467 } 5468 /* Just copy all of options */ 5469 if (ipp->ipp_fields & IPPF_IPV4_OPTIONS) { 5470 if (totallen == ipp->ipp_ipv4_options_len) { 5471 bcopy(opt, ipp->ipp_ipv4_options, totallen); 5472 return (0); 5473 } 5474 kmem_free(ipp->ipp_ipv4_options, 5475 ipp->ipp_ipv4_options_len); 5476 ipp->ipp_ipv4_options = NULL; 5477 ipp->ipp_ipv4_options_len = 0; 5478 ipp->ipp_fields &= ~IPPF_IPV4_OPTIONS; 5479 } 5480 if (totallen == 0) 5481 return (0); 5482 5483 ipp->ipp_ipv4_options = kmem_alloc(totallen, KM_NOSLEEP); 5484 if (ipp->ipp_ipv4_options == NULL) 5485 return (ENOMEM); 5486 ipp->ipp_ipv4_options_len = totallen; 5487 ipp->ipp_fields |= IPPF_IPV4_OPTIONS; 5488 bcopy(opt, ipp->ipp_ipv4_options, totallen); 5489 return (0); 5490 } 5491 5492 if (allocate && (ipp->ipp_fields & IPPF_LABEL_V4)) { 5493 kmem_free(ipp->ipp_label_v4, ipp->ipp_label_len_v4); 5494 ipp->ipp_label_v4 = NULL; 5495 ipp->ipp_label_len_v4 = 0; 5496 ipp->ipp_fields &= ~IPPF_LABEL_V4; 5497 } 5498 5499 /* 5500 * Search for CIPSO option. 5501 * We assume CIPSO is first in options if it is present. 5502 * If it isn't, then ipp_opt_ipv4_options will not include the options 5503 * prior to the CIPSO option. 5504 */ 5505 while (totallen != 0) { 5506 switch (optval = opt[IPOPT_OPTVAL]) { 5507 case IPOPT_EOL: 5508 return (0); 5509 case IPOPT_NOP: 5510 optlen = 1; 5511 break; 5512 default: 5513 if (totallen <= IPOPT_OLEN) 5514 return (EINVAL); 5515 optlen = opt[IPOPT_OLEN]; 5516 if (optlen < 2) 5517 return (EINVAL); 5518 } 5519 if (optlen > totallen) 5520 return (EINVAL); 5521 5522 switch (optval) { 5523 case IPOPT_COMSEC: 5524 if (!allocate) { 5525 ipp->ipp_label_v4 = opt; 5526 ipp->ipp_label_len_v4 = optlen; 5527 ipp->ipp_fields |= IPPF_LABEL_V4; 5528 } else { 5529 ipp->ipp_label_v4 = kmem_alloc(optlen, 5530 KM_NOSLEEP); 5531 if (ipp->ipp_label_v4 == NULL) 5532 return (ENOMEM); 5533 ipp->ipp_label_len_v4 = optlen; 5534 ipp->ipp_fields |= IPPF_LABEL_V4; 5535 bcopy(opt, ipp->ipp_label_v4, optlen); 5536 } 5537 totallen -= optlen; 5538 opt += optlen; 5539 5540 /* Skip padding bytes until we get to a multiple of 4 */ 5541 while ((totallen & 3) != 0 && opt[0] == IPOPT_NOP) { 5542 totallen--; 5543 opt++; 5544 } 5545 /* Remaining as ipp_ipv4_options */ 5546 goto copyall; 5547 } 5548 totallen -= optlen; 5549 opt += optlen; 5550 } 5551 /* No CIPSO found; return everything as ipp_ipv4_options */ 5552 totallen = ipha->ipha_version_and_hdr_length - 5553 (uint8_t)((IP_VERSION << 4) + IP_SIMPLE_HDR_LENGTH_IN_WORDS); 5554 totallen <<= 2; 5555 opt = (uchar_t *)&ipha[1]; 5556 goto copyall; 5557 } 5558 5559 /* 5560 * Efficient versions of lookup for an IRE when we only 5561 * match the address. 5562 * For RTF_REJECT or BLACKHOLE we return IRE_NOROUTE. 5563 * Does not handle multicast addresses. 5564 */ 5565 uint_t 5566 ip_type_v4(ipaddr_t addr, ip_stack_t *ipst) 5567 { 5568 ire_t *ire; 5569 uint_t result; 5570 5571 ire = ire_ftable_lookup_simple_v4(addr, 0, ipst, NULL); 5572 ASSERT(ire != NULL); 5573 if (ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) 5574 result = IRE_NOROUTE; 5575 else 5576 result = ire->ire_type; 5577 ire_refrele(ire); 5578 return (result); 5579 } 5580 5581 /* 5582 * Efficient versions of lookup for an IRE when we only 5583 * match the address. 5584 * For RTF_REJECT or BLACKHOLE we return IRE_NOROUTE. 5585 * Does not handle multicast addresses. 5586 */ 5587 uint_t 5588 ip_type_v6(const in6_addr_t *addr, ip_stack_t *ipst) 5589 { 5590 ire_t *ire; 5591 uint_t result; 5592 5593 ire = ire_ftable_lookup_simple_v6(addr, 0, ipst, NULL); 5594 ASSERT(ire != NULL); 5595 if (ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) 5596 result = IRE_NOROUTE; 5597 else 5598 result = ire->ire_type; 5599 ire_refrele(ire); 5600 return (result); 5601 } 5602 5603 /* 5604 * Nobody should be sending 5605 * packets up this stream 5606 */ 5607 static void 5608 ip_lrput(queue_t *q, mblk_t *mp) 5609 { 5610 switch (mp->b_datap->db_type) { 5611 case M_FLUSH: 5612 /* Turn around */ 5613 if (*mp->b_rptr & FLUSHW) { 5614 *mp->b_rptr &= ~FLUSHR; 5615 qreply(q, mp); 5616 return; 5617 } 5618 break; 5619 } 5620 freemsg(mp); 5621 } 5622 5623 /* Nobody should be sending packets down this stream */ 5624 /* ARGSUSED */ 5625 void 5626 ip_lwput(queue_t *q, mblk_t *mp) 5627 { 5628 freemsg(mp); 5629 } 5630 5631 /* 5632 * Move the first hop in any source route to ipha_dst and remove that part of 5633 * the source route. Called by other protocols. Errors in option formatting 5634 * are ignored - will be handled by ip_output_options. Return the final 5635 * destination (either ipha_dst or the last entry in a source route.) 5636 */ 5637 ipaddr_t 5638 ip_massage_options(ipha_t *ipha, netstack_t *ns) 5639 { 5640 ipoptp_t opts; 5641 uchar_t *opt; 5642 uint8_t optval; 5643 uint8_t optlen; 5644 ipaddr_t dst; 5645 int i; 5646 ip_stack_t *ipst = ns->netstack_ip; 5647 5648 ip2dbg(("ip_massage_options\n")); 5649 dst = ipha->ipha_dst; 5650 for (optval = ipoptp_first(&opts, ipha); 5651 optval != IPOPT_EOL; 5652 optval = ipoptp_next(&opts)) { 5653 opt = opts.ipoptp_cur; 5654 switch (optval) { 5655 uint8_t off; 5656 case IPOPT_SSRR: 5657 case IPOPT_LSRR: 5658 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 5659 ip1dbg(("ip_massage_options: bad src route\n")); 5660 break; 5661 } 5662 optlen = opts.ipoptp_len; 5663 off = opt[IPOPT_OFFSET]; 5664 off--; 5665 redo_srr: 5666 if (optlen < IP_ADDR_LEN || 5667 off > optlen - IP_ADDR_LEN) { 5668 /* End of source route */ 5669 ip1dbg(("ip_massage_options: end of SR\n")); 5670 break; 5671 } 5672 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 5673 ip1dbg(("ip_massage_options: next hop 0x%x\n", 5674 ntohl(dst))); 5675 /* 5676 * Check if our address is present more than 5677 * once as consecutive hops in source route. 5678 * XXX verify per-interface ip_forwarding 5679 * for source route? 5680 */ 5681 if (ip_type_v4(dst, ipst) == IRE_LOCAL) { 5682 off += IP_ADDR_LEN; 5683 goto redo_srr; 5684 } 5685 if (dst == htonl(INADDR_LOOPBACK)) { 5686 ip1dbg(("ip_massage_options: loopback addr in " 5687 "source route!\n")); 5688 break; 5689 } 5690 /* 5691 * Update ipha_dst to be the first hop and remove the 5692 * first hop from the source route (by overwriting 5693 * part of the option with NOP options). 5694 */ 5695 ipha->ipha_dst = dst; 5696 /* Put the last entry in dst */ 5697 off = ((optlen - IP_ADDR_LEN - 3) & ~(IP_ADDR_LEN-1)) + 5698 3; 5699 bcopy(&opt[off], &dst, IP_ADDR_LEN); 5700 5701 ip1dbg(("ip_massage_options: last hop 0x%x\n", 5702 ntohl(dst))); 5703 /* Move down and overwrite */ 5704 opt[IP_ADDR_LEN] = opt[0]; 5705 opt[IP_ADDR_LEN+1] = opt[IPOPT_OLEN] - IP_ADDR_LEN; 5706 opt[IP_ADDR_LEN+2] = opt[IPOPT_OFFSET]; 5707 for (i = 0; i < IP_ADDR_LEN; i++) 5708 opt[i] = IPOPT_NOP; 5709 break; 5710 } 5711 } 5712 return (dst); 5713 } 5714 5715 /* 5716 * Return the network mask 5717 * associated with the specified address. 5718 */ 5719 ipaddr_t 5720 ip_net_mask(ipaddr_t addr) 5721 { 5722 uchar_t *up = (uchar_t *)&addr; 5723 ipaddr_t mask = 0; 5724 uchar_t *maskp = (uchar_t *)&mask; 5725 5726 #if defined(__i386) || defined(__amd64) 5727 #define TOTALLY_BRAIN_DAMAGED_C_COMPILER 5728 #endif 5729 #ifdef TOTALLY_BRAIN_DAMAGED_C_COMPILER 5730 maskp[0] = maskp[1] = maskp[2] = maskp[3] = 0; 5731 #endif 5732 if (CLASSD(addr)) { 5733 maskp[0] = 0xF0; 5734 return (mask); 5735 } 5736 5737 /* We assume Class E default netmask to be 32 */ 5738 if (CLASSE(addr)) 5739 return (0xffffffffU); 5740 5741 if (addr == 0) 5742 return (0); 5743 maskp[0] = 0xFF; 5744 if ((up[0] & 0x80) == 0) 5745 return (mask); 5746 5747 maskp[1] = 0xFF; 5748 if ((up[0] & 0xC0) == 0x80) 5749 return (mask); 5750 5751 maskp[2] = 0xFF; 5752 if ((up[0] & 0xE0) == 0xC0) 5753 return (mask); 5754 5755 /* Otherwise return no mask */ 5756 return ((ipaddr_t)0); 5757 } 5758 5759 /* Name/Value Table Lookup Routine */ 5760 char * 5761 ip_nv_lookup(nv_t *nv, int value) 5762 { 5763 if (!nv) 5764 return (NULL); 5765 for (; nv->nv_name; nv++) { 5766 if (nv->nv_value == value) 5767 return (nv->nv_name); 5768 } 5769 return ("unknown"); 5770 } 5771 5772 static int 5773 ip_wait_for_info_ack(ill_t *ill) 5774 { 5775 int err; 5776 5777 mutex_enter(&ill->ill_lock); 5778 while (ill->ill_state_flags & ILL_LL_SUBNET_PENDING) { 5779 /* 5780 * Return value of 0 indicates a pending signal. 5781 */ 5782 err = cv_wait_sig(&ill->ill_cv, &ill->ill_lock); 5783 if (err == 0) { 5784 mutex_exit(&ill->ill_lock); 5785 return (EINTR); 5786 } 5787 } 5788 mutex_exit(&ill->ill_lock); 5789 /* 5790 * ip_rput_other could have set an error in ill_error on 5791 * receipt of M_ERROR. 5792 */ 5793 return (ill->ill_error); 5794 } 5795 5796 /* 5797 * This is a module open, i.e. this is a control stream for access 5798 * to a DLPI device. We allocate an ill_t as the instance data in 5799 * this case. 5800 */ 5801 static int 5802 ip_modopen(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp) 5803 { 5804 ill_t *ill; 5805 int err; 5806 zoneid_t zoneid; 5807 netstack_t *ns; 5808 ip_stack_t *ipst; 5809 5810 /* 5811 * Prevent unprivileged processes from pushing IP so that 5812 * they can't send raw IP. 5813 */ 5814 if (secpolicy_net_rawaccess(credp) != 0) 5815 return (EPERM); 5816 5817 ns = netstack_find_by_cred(credp); 5818 ASSERT(ns != NULL); 5819 ipst = ns->netstack_ip; 5820 ASSERT(ipst != NULL); 5821 5822 /* 5823 * For exclusive stacks we set the zoneid to zero 5824 * to make IP operate as if in the global zone. 5825 */ 5826 if (ipst->ips_netstack->netstack_stackid != GLOBAL_NETSTACKID) 5827 zoneid = GLOBAL_ZONEID; 5828 else 5829 zoneid = crgetzoneid(credp); 5830 5831 ill = (ill_t *)mi_open_alloc_sleep(sizeof (ill_t)); 5832 q->q_ptr = WR(q)->q_ptr = ill; 5833 ill->ill_ipst = ipst; 5834 ill->ill_zoneid = zoneid; 5835 5836 /* 5837 * ill_init initializes the ill fields and then sends down 5838 * down a DL_INFO_REQ after calling qprocson. 5839 */ 5840 err = ill_init(q, ill); 5841 5842 if (err != 0) { 5843 mi_free(ill); 5844 netstack_rele(ipst->ips_netstack); 5845 q->q_ptr = NULL; 5846 WR(q)->q_ptr = NULL; 5847 return (err); 5848 } 5849 5850 /* 5851 * Wait for the DL_INFO_ACK if a DL_INFO_REQ was sent. 5852 * 5853 * ill_init initializes the ipsq marking this thread as 5854 * writer 5855 */ 5856 ipsq_exit(ill->ill_phyint->phyint_ipsq); 5857 err = ip_wait_for_info_ack(ill); 5858 if (err == 0) 5859 ill->ill_credp = credp; 5860 else 5861 goto fail; 5862 5863 crhold(credp); 5864 5865 mutex_enter(&ipst->ips_ip_mi_lock); 5866 err = mi_open_link(&ipst->ips_ip_g_head, (IDP)q->q_ptr, devp, flag, 5867 sflag, credp); 5868 mutex_exit(&ipst->ips_ip_mi_lock); 5869 fail: 5870 if (err) { 5871 (void) ip_close(q, 0); 5872 return (err); 5873 } 5874 return (0); 5875 } 5876 5877 /* For /dev/ip aka AF_INET open */ 5878 int 5879 ip_openv4(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp) 5880 { 5881 return (ip_open(q, devp, flag, sflag, credp, B_FALSE)); 5882 } 5883 5884 /* For /dev/ip6 aka AF_INET6 open */ 5885 int 5886 ip_openv6(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp) 5887 { 5888 return (ip_open(q, devp, flag, sflag, credp, B_TRUE)); 5889 } 5890 5891 /* IP open routine. */ 5892 int 5893 ip_open(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp, 5894 boolean_t isv6) 5895 { 5896 conn_t *connp; 5897 major_t maj; 5898 zoneid_t zoneid; 5899 netstack_t *ns; 5900 ip_stack_t *ipst; 5901 5902 /* Allow reopen. */ 5903 if (q->q_ptr != NULL) 5904 return (0); 5905 5906 if (sflag & MODOPEN) { 5907 /* This is a module open */ 5908 return (ip_modopen(q, devp, flag, sflag, credp)); 5909 } 5910 5911 if ((flag & ~(FKLYR)) == IP_HELPER_STR) { 5912 /* 5913 * Non streams based socket looking for a stream 5914 * to access IP 5915 */ 5916 return (ip_helper_stream_setup(q, devp, flag, sflag, 5917 credp, isv6)); 5918 } 5919 5920 ns = netstack_find_by_cred(credp); 5921 ASSERT(ns != NULL); 5922 ipst = ns->netstack_ip; 5923 ASSERT(ipst != NULL); 5924 5925 /* 5926 * For exclusive stacks we set the zoneid to zero 5927 * to make IP operate as if in the global zone. 5928 */ 5929 if (ipst->ips_netstack->netstack_stackid != GLOBAL_NETSTACKID) 5930 zoneid = GLOBAL_ZONEID; 5931 else 5932 zoneid = crgetzoneid(credp); 5933 5934 /* 5935 * We are opening as a device. This is an IP client stream, and we 5936 * allocate an conn_t as the instance data. 5937 */ 5938 connp = ipcl_conn_create(IPCL_IPCCONN, KM_SLEEP, ipst->ips_netstack); 5939 5940 /* 5941 * ipcl_conn_create did a netstack_hold. Undo the hold that was 5942 * done by netstack_find_by_cred() 5943 */ 5944 netstack_rele(ipst->ips_netstack); 5945 5946 connp->conn_ixa->ixa_flags |= IXAF_MULTICAST_LOOP | IXAF_SET_ULP_CKSUM; 5947 /* conn_allzones can not be set this early, hence no IPCL_ZONEID */ 5948 connp->conn_ixa->ixa_zoneid = zoneid; 5949 connp->conn_zoneid = zoneid; 5950 5951 connp->conn_rq = q; 5952 q->q_ptr = WR(q)->q_ptr = connp; 5953 5954 /* Minor tells us which /dev entry was opened */ 5955 if (isv6) { 5956 connp->conn_family = AF_INET6; 5957 connp->conn_ipversion = IPV6_VERSION; 5958 connp->conn_ixa->ixa_flags &= ~IXAF_IS_IPV4; 5959 connp->conn_ixa->ixa_src_preferences = IPV6_PREFER_SRC_DEFAULT; 5960 } else { 5961 connp->conn_family = AF_INET; 5962 connp->conn_ipversion = IPV4_VERSION; 5963 connp->conn_ixa->ixa_flags |= IXAF_IS_IPV4; 5964 } 5965 5966 if ((ip_minor_arena_la != NULL) && (flag & SO_SOCKSTR) && 5967 ((connp->conn_dev = inet_minor_alloc(ip_minor_arena_la)) != 0)) { 5968 connp->conn_minor_arena = ip_minor_arena_la; 5969 } else { 5970 /* 5971 * Either minor numbers in the large arena were exhausted 5972 * or a non socket application is doing the open. 5973 * Try to allocate from the small arena. 5974 */ 5975 if ((connp->conn_dev = 5976 inet_minor_alloc(ip_minor_arena_sa)) == 0) { 5977 /* CONN_DEC_REF takes care of netstack_rele() */ 5978 q->q_ptr = WR(q)->q_ptr = NULL; 5979 CONN_DEC_REF(connp); 5980 return (EBUSY); 5981 } 5982 connp->conn_minor_arena = ip_minor_arena_sa; 5983 } 5984 5985 maj = getemajor(*devp); 5986 *devp = makedevice(maj, (minor_t)connp->conn_dev); 5987 5988 /* 5989 * connp->conn_cred is crfree()ed in ipcl_conn_destroy() 5990 */ 5991 connp->conn_cred = credp; 5992 connp->conn_cpid = curproc->p_pid; 5993 /* Cache things in ixa without an extra refhold */ 5994 ASSERT(!(connp->conn_ixa->ixa_free_flags & IXA_FREE_CRED)); 5995 connp->conn_ixa->ixa_cred = connp->conn_cred; 5996 connp->conn_ixa->ixa_cpid = connp->conn_cpid; 5997 if (is_system_labeled()) 5998 connp->conn_ixa->ixa_tsl = crgetlabel(connp->conn_cred); 5999 6000 /* 6001 * Handle IP_IOC_RTS_REQUEST and other ioctls which use conn_recv 6002 */ 6003 connp->conn_recv = ip_conn_input; 6004 connp->conn_recvicmp = ip_conn_input_icmp; 6005 6006 crhold(connp->conn_cred); 6007 6008 /* 6009 * If the caller has the process-wide flag set, then default to MAC 6010 * exempt mode. This allows read-down to unlabeled hosts. 6011 */ 6012 if (getpflags(NET_MAC_AWARE, credp) != 0) 6013 connp->conn_mac_mode = CONN_MAC_AWARE; 6014 6015 connp->conn_zone_is_global = (crgetzoneid(credp) == GLOBAL_ZONEID); 6016 6017 connp->conn_rq = q; 6018 connp->conn_wq = WR(q); 6019 6020 /* Non-zero default values */ 6021 connp->conn_ixa->ixa_flags |= IXAF_MULTICAST_LOOP; 6022 6023 /* 6024 * Make the conn globally visible to walkers 6025 */ 6026 ASSERT(connp->conn_ref == 1); 6027 mutex_enter(&connp->conn_lock); 6028 connp->conn_state_flags &= ~CONN_INCIPIENT; 6029 mutex_exit(&connp->conn_lock); 6030 6031 qprocson(q); 6032 6033 return (0); 6034 } 6035 6036 /* 6037 * Set IPsec policy from an ipsec_req_t. If the req is not "zero" and valid, 6038 * all of them are copied to the conn_t. If the req is "zero", the policy is 6039 * zeroed out. A "zero" policy has zero ipsr_{ah,req,self_encap}_req 6040 * fields. 6041 * We keep only the latest setting of the policy and thus policy setting 6042 * is not incremental/cumulative. 6043 * 6044 * Requests to set policies with multiple alternative actions will 6045 * go through a different API. 6046 */ 6047 int 6048 ipsec_set_req(cred_t *cr, conn_t *connp, ipsec_req_t *req) 6049 { 6050 uint_t ah_req = 0; 6051 uint_t esp_req = 0; 6052 uint_t se_req = 0; 6053 ipsec_act_t *actp = NULL; 6054 uint_t nact; 6055 ipsec_policy_head_t *ph; 6056 boolean_t is_pol_reset, is_pol_inserted = B_FALSE; 6057 int error = 0; 6058 netstack_t *ns = connp->conn_netstack; 6059 ip_stack_t *ipst = ns->netstack_ip; 6060 ipsec_stack_t *ipss = ns->netstack_ipsec; 6061 6062 #define REQ_MASK (IPSEC_PREF_REQUIRED|IPSEC_PREF_NEVER) 6063 6064 /* 6065 * The IP_SEC_OPT option does not allow variable length parameters, 6066 * hence a request cannot be NULL. 6067 */ 6068 if (req == NULL) 6069 return (EINVAL); 6070 6071 ah_req = req->ipsr_ah_req; 6072 esp_req = req->ipsr_esp_req; 6073 se_req = req->ipsr_self_encap_req; 6074 6075 /* Don't allow setting self-encap without one or more of AH/ESP. */ 6076 if (se_req != 0 && esp_req == 0 && ah_req == 0) 6077 return (EINVAL); 6078 6079 /* 6080 * Are we dealing with a request to reset the policy (i.e. 6081 * zero requests). 6082 */ 6083 is_pol_reset = ((ah_req & REQ_MASK) == 0 && 6084 (esp_req & REQ_MASK) == 0 && 6085 (se_req & REQ_MASK) == 0); 6086 6087 if (!is_pol_reset) { 6088 /* 6089 * If we couldn't load IPsec, fail with "protocol 6090 * not supported". 6091 * IPsec may not have been loaded for a request with zero 6092 * policies, so we don't fail in this case. 6093 */ 6094 mutex_enter(&ipss->ipsec_loader_lock); 6095 if (ipss->ipsec_loader_state != IPSEC_LOADER_SUCCEEDED) { 6096 mutex_exit(&ipss->ipsec_loader_lock); 6097 return (EPROTONOSUPPORT); 6098 } 6099 mutex_exit(&ipss->ipsec_loader_lock); 6100 6101 /* 6102 * Test for valid requests. Invalid algorithms 6103 * need to be tested by IPsec code because new 6104 * algorithms can be added dynamically. 6105 */ 6106 if ((ah_req & ~(REQ_MASK|IPSEC_PREF_UNIQUE)) != 0 || 6107 (esp_req & ~(REQ_MASK|IPSEC_PREF_UNIQUE)) != 0 || 6108 (se_req & ~(REQ_MASK|IPSEC_PREF_UNIQUE)) != 0) { 6109 return (EINVAL); 6110 } 6111 6112 /* 6113 * Only privileged users can issue these 6114 * requests. 6115 */ 6116 if (((ah_req & IPSEC_PREF_NEVER) || 6117 (esp_req & IPSEC_PREF_NEVER) || 6118 (se_req & IPSEC_PREF_NEVER)) && 6119 secpolicy_ip_config(cr, B_FALSE) != 0) { 6120 return (EPERM); 6121 } 6122 6123 /* 6124 * The IPSEC_PREF_REQUIRED and IPSEC_PREF_NEVER 6125 * are mutually exclusive. 6126 */ 6127 if (((ah_req & REQ_MASK) == REQ_MASK) || 6128 ((esp_req & REQ_MASK) == REQ_MASK) || 6129 ((se_req & REQ_MASK) == REQ_MASK)) { 6130 /* Both of them are set */ 6131 return (EINVAL); 6132 } 6133 } 6134 6135 ASSERT(MUTEX_HELD(&connp->conn_lock)); 6136 6137 /* 6138 * If we have already cached policies in conn_connect(), don't 6139 * let them change now. We cache policies for connections 6140 * whose src,dst [addr, port] is known. 6141 */ 6142 if (connp->conn_policy_cached) { 6143 return (EINVAL); 6144 } 6145 6146 /* 6147 * We have a zero policies, reset the connection policy if already 6148 * set. This will cause the connection to inherit the 6149 * global policy, if any. 6150 */ 6151 if (is_pol_reset) { 6152 if (connp->conn_policy != NULL) { 6153 IPPH_REFRELE(connp->conn_policy, ipst->ips_netstack); 6154 connp->conn_policy = NULL; 6155 } 6156 connp->conn_in_enforce_policy = B_FALSE; 6157 connp->conn_out_enforce_policy = B_FALSE; 6158 return (0); 6159 } 6160 6161 ph = connp->conn_policy = ipsec_polhead_split(connp->conn_policy, 6162 ipst->ips_netstack); 6163 if (ph == NULL) 6164 goto enomem; 6165 6166 ipsec_actvec_from_req(req, &actp, &nact, ipst->ips_netstack); 6167 if (actp == NULL) 6168 goto enomem; 6169 6170 /* 6171 * Always insert IPv4 policy entries, since they can also apply to 6172 * ipv6 sockets being used in ipv4-compat mode. 6173 */ 6174 if (!ipsec_polhead_insert(ph, actp, nact, IPSEC_AF_V4, 6175 IPSEC_TYPE_INBOUND, ns)) 6176 goto enomem; 6177 is_pol_inserted = B_TRUE; 6178 if (!ipsec_polhead_insert(ph, actp, nact, IPSEC_AF_V4, 6179 IPSEC_TYPE_OUTBOUND, ns)) 6180 goto enomem; 6181 6182 /* 6183 * We're looking at a v6 socket, also insert the v6-specific 6184 * entries. 6185 */ 6186 if (connp->conn_family == AF_INET6) { 6187 if (!ipsec_polhead_insert(ph, actp, nact, IPSEC_AF_V6, 6188 IPSEC_TYPE_INBOUND, ns)) 6189 goto enomem; 6190 if (!ipsec_polhead_insert(ph, actp, nact, IPSEC_AF_V6, 6191 IPSEC_TYPE_OUTBOUND, ns)) 6192 goto enomem; 6193 } 6194 6195 ipsec_actvec_free(actp, nact); 6196 6197 /* 6198 * If the requests need security, set enforce_policy. 6199 * If the requests are IPSEC_PREF_NEVER, one should 6200 * still set conn_out_enforce_policy so that ip_set_destination 6201 * marks the ip_xmit_attr_t appropriatly. This is needed so that 6202 * for connections that we don't cache policy in at connect time, 6203 * if global policy matches in ip_output_attach_policy, we 6204 * don't wrongly inherit global policy. Similarly, we need 6205 * to set conn_in_enforce_policy also so that we don't verify 6206 * policy wrongly. 6207 */ 6208 if ((ah_req & REQ_MASK) != 0 || 6209 (esp_req & REQ_MASK) != 0 || 6210 (se_req & REQ_MASK) != 0) { 6211 connp->conn_in_enforce_policy = B_TRUE; 6212 connp->conn_out_enforce_policy = B_TRUE; 6213 } 6214 6215 return (error); 6216 #undef REQ_MASK 6217 6218 /* 6219 * Common memory-allocation-failure exit path. 6220 */ 6221 enomem: 6222 if (actp != NULL) 6223 ipsec_actvec_free(actp, nact); 6224 if (is_pol_inserted) 6225 ipsec_polhead_flush(ph, ns); 6226 return (ENOMEM); 6227 } 6228 6229 /* 6230 * Set socket options for joining and leaving multicast groups. 6231 * Common to IPv4 and IPv6; inet6 indicates the type of socket. 6232 * The caller has already check that the option name is consistent with 6233 * the address family of the socket. 6234 */ 6235 int 6236 ip_opt_set_multicast_group(conn_t *connp, t_scalar_t name, 6237 uchar_t *invalp, boolean_t inet6, boolean_t checkonly) 6238 { 6239 int *i1 = (int *)invalp; 6240 int error = 0; 6241 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 6242 struct ip_mreq *v4_mreqp; 6243 struct ipv6_mreq *v6_mreqp; 6244 struct group_req *greqp; 6245 ire_t *ire; 6246 boolean_t done = B_FALSE; 6247 ipaddr_t ifaddr; 6248 in6_addr_t v6group; 6249 uint_t ifindex; 6250 boolean_t mcast_opt = B_TRUE; 6251 mcast_record_t fmode; 6252 int (*optfn)(conn_t *, boolean_t, const in6_addr_t *, 6253 ipaddr_t, uint_t, mcast_record_t, const in6_addr_t *); 6254 6255 switch (name) { 6256 case IP_ADD_MEMBERSHIP: 6257 case IPV6_JOIN_GROUP: 6258 mcast_opt = B_FALSE; 6259 /* FALLTHRU */ 6260 case MCAST_JOIN_GROUP: 6261 fmode = MODE_IS_EXCLUDE; 6262 optfn = ip_opt_add_group; 6263 break; 6264 6265 case IP_DROP_MEMBERSHIP: 6266 case IPV6_LEAVE_GROUP: 6267 mcast_opt = B_FALSE; 6268 /* FALLTHRU */ 6269 case MCAST_LEAVE_GROUP: 6270 fmode = MODE_IS_INCLUDE; 6271 optfn = ip_opt_delete_group; 6272 break; 6273 default: 6274 ASSERT(0); 6275 } 6276 6277 if (mcast_opt) { 6278 struct sockaddr_in *sin; 6279 struct sockaddr_in6 *sin6; 6280 6281 greqp = (struct group_req *)i1; 6282 if (greqp->gr_group.ss_family == AF_INET) { 6283 sin = (struct sockaddr_in *)&(greqp->gr_group); 6284 IN6_INADDR_TO_V4MAPPED(&sin->sin_addr, &v6group); 6285 } else { 6286 if (!inet6) 6287 return (EINVAL); /* Not on INET socket */ 6288 6289 sin6 = (struct sockaddr_in6 *)&(greqp->gr_group); 6290 v6group = sin6->sin6_addr; 6291 } 6292 ifaddr = INADDR_ANY; 6293 ifindex = greqp->gr_interface; 6294 } else if (inet6) { 6295 v6_mreqp = (struct ipv6_mreq *)i1; 6296 v6group = v6_mreqp->ipv6mr_multiaddr; 6297 ifaddr = INADDR_ANY; 6298 ifindex = v6_mreqp->ipv6mr_interface; 6299 } else { 6300 v4_mreqp = (struct ip_mreq *)i1; 6301 IN6_INADDR_TO_V4MAPPED(&v4_mreqp->imr_multiaddr, &v6group); 6302 ifaddr = (ipaddr_t)v4_mreqp->imr_interface.s_addr; 6303 ifindex = 0; 6304 } 6305 6306 /* 6307 * In the multirouting case, we need to replicate 6308 * the request on all interfaces that will take part 6309 * in replication. We do so because multirouting is 6310 * reflective, thus we will probably receive multi- 6311 * casts on those interfaces. 6312 * The ip_multirt_apply_membership() succeeds if 6313 * the operation succeeds on at least one interface. 6314 */ 6315 if (IN6_IS_ADDR_V4MAPPED(&v6group)) { 6316 ipaddr_t group; 6317 6318 IN6_V4MAPPED_TO_IPADDR(&v6group, group); 6319 6320 ire = ire_ftable_lookup_v4(group, IP_HOST_MASK, 0, 6321 IRE_HOST | IRE_INTERFACE, NULL, ALL_ZONES, NULL, 6322 MATCH_IRE_MASK | MATCH_IRE_TYPE, 0, ipst, NULL); 6323 } else { 6324 ire = ire_ftable_lookup_v6(&v6group, &ipv6_all_ones, 0, 6325 IRE_HOST | IRE_INTERFACE, NULL, ALL_ZONES, NULL, 6326 MATCH_IRE_MASK | MATCH_IRE_TYPE, 0, ipst, NULL); 6327 } 6328 if (ire != NULL) { 6329 if (ire->ire_flags & RTF_MULTIRT) { 6330 error = ip_multirt_apply_membership(optfn, ire, connp, 6331 checkonly, &v6group, fmode, &ipv6_all_zeros); 6332 done = B_TRUE; 6333 } 6334 ire_refrele(ire); 6335 } 6336 6337 if (!done) { 6338 error = optfn(connp, checkonly, &v6group, ifaddr, ifindex, 6339 fmode, &ipv6_all_zeros); 6340 } 6341 return (error); 6342 } 6343 6344 /* 6345 * Set socket options for joining and leaving multicast groups 6346 * for specific sources. 6347 * Common to IPv4 and IPv6; inet6 indicates the type of socket. 6348 * The caller has already check that the option name is consistent with 6349 * the address family of the socket. 6350 */ 6351 int 6352 ip_opt_set_multicast_sources(conn_t *connp, t_scalar_t name, 6353 uchar_t *invalp, boolean_t inet6, boolean_t checkonly) 6354 { 6355 int *i1 = (int *)invalp; 6356 int error = 0; 6357 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 6358 struct ip_mreq_source *imreqp; 6359 struct group_source_req *gsreqp; 6360 in6_addr_t v6group, v6src; 6361 uint32_t ifindex; 6362 ipaddr_t ifaddr; 6363 boolean_t mcast_opt = B_TRUE; 6364 mcast_record_t fmode; 6365 ire_t *ire; 6366 boolean_t done = B_FALSE; 6367 int (*optfn)(conn_t *, boolean_t, const in6_addr_t *, 6368 ipaddr_t, uint_t, mcast_record_t, const in6_addr_t *); 6369 6370 switch (name) { 6371 case IP_BLOCK_SOURCE: 6372 mcast_opt = B_FALSE; 6373 /* FALLTHRU */ 6374 case MCAST_BLOCK_SOURCE: 6375 fmode = MODE_IS_EXCLUDE; 6376 optfn = ip_opt_add_group; 6377 break; 6378 6379 case IP_UNBLOCK_SOURCE: 6380 mcast_opt = B_FALSE; 6381 /* FALLTHRU */ 6382 case MCAST_UNBLOCK_SOURCE: 6383 fmode = MODE_IS_EXCLUDE; 6384 optfn = ip_opt_delete_group; 6385 break; 6386 6387 case IP_ADD_SOURCE_MEMBERSHIP: 6388 mcast_opt = B_FALSE; 6389 /* FALLTHRU */ 6390 case MCAST_JOIN_SOURCE_GROUP: 6391 fmode = MODE_IS_INCLUDE; 6392 optfn = ip_opt_add_group; 6393 break; 6394 6395 case IP_DROP_SOURCE_MEMBERSHIP: 6396 mcast_opt = B_FALSE; 6397 /* FALLTHRU */ 6398 case MCAST_LEAVE_SOURCE_GROUP: 6399 fmode = MODE_IS_INCLUDE; 6400 optfn = ip_opt_delete_group; 6401 break; 6402 default: 6403 ASSERT(0); 6404 } 6405 6406 if (mcast_opt) { 6407 gsreqp = (struct group_source_req *)i1; 6408 ifindex = gsreqp->gsr_interface; 6409 if (gsreqp->gsr_group.ss_family == AF_INET) { 6410 struct sockaddr_in *s; 6411 s = (struct sockaddr_in *)&gsreqp->gsr_group; 6412 IN6_INADDR_TO_V4MAPPED(&s->sin_addr, &v6group); 6413 s = (struct sockaddr_in *)&gsreqp->gsr_source; 6414 IN6_INADDR_TO_V4MAPPED(&s->sin_addr, &v6src); 6415 } else { 6416 struct sockaddr_in6 *s6; 6417 6418 if (!inet6) 6419 return (EINVAL); /* Not on INET socket */ 6420 6421 s6 = (struct sockaddr_in6 *)&gsreqp->gsr_group; 6422 v6group = s6->sin6_addr; 6423 s6 = (struct sockaddr_in6 *)&gsreqp->gsr_source; 6424 v6src = s6->sin6_addr; 6425 } 6426 ifaddr = INADDR_ANY; 6427 } else { 6428 imreqp = (struct ip_mreq_source *)i1; 6429 IN6_INADDR_TO_V4MAPPED(&imreqp->imr_multiaddr, &v6group); 6430 IN6_INADDR_TO_V4MAPPED(&imreqp->imr_sourceaddr, &v6src); 6431 ifaddr = (ipaddr_t)imreqp->imr_interface.s_addr; 6432 ifindex = 0; 6433 } 6434 6435 /* 6436 * Handle src being mapped INADDR_ANY by changing it to unspecified. 6437 */ 6438 if (IN6_IS_ADDR_V4MAPPED_ANY(&v6src)) 6439 v6src = ipv6_all_zeros; 6440 6441 /* 6442 * In the multirouting case, we need to replicate 6443 * the request as noted in the mcast cases above. 6444 */ 6445 if (IN6_IS_ADDR_V4MAPPED(&v6group)) { 6446 ipaddr_t group; 6447 6448 IN6_V4MAPPED_TO_IPADDR(&v6group, group); 6449 6450 ire = ire_ftable_lookup_v4(group, IP_HOST_MASK, 0, 6451 IRE_HOST | IRE_INTERFACE, NULL, ALL_ZONES, NULL, 6452 MATCH_IRE_MASK | MATCH_IRE_TYPE, 0, ipst, NULL); 6453 } else { 6454 ire = ire_ftable_lookup_v6(&v6group, &ipv6_all_ones, 0, 6455 IRE_HOST | IRE_INTERFACE, NULL, ALL_ZONES, NULL, 6456 MATCH_IRE_MASK | MATCH_IRE_TYPE, 0, ipst, NULL); 6457 } 6458 if (ire != NULL) { 6459 if (ire->ire_flags & RTF_MULTIRT) { 6460 error = ip_multirt_apply_membership(optfn, ire, connp, 6461 checkonly, &v6group, fmode, &v6src); 6462 done = B_TRUE; 6463 } 6464 ire_refrele(ire); 6465 } 6466 if (!done) { 6467 error = optfn(connp, checkonly, &v6group, ifaddr, ifindex, 6468 fmode, &v6src); 6469 } 6470 return (error); 6471 } 6472 6473 /* 6474 * Given a destination address and a pointer to where to put the information 6475 * this routine fills in the mtuinfo. 6476 * The socket must be connected. 6477 * For sctp conn_faddr is the primary address. 6478 */ 6479 int 6480 ip_fill_mtuinfo(conn_t *connp, ip_xmit_attr_t *ixa, struct ip6_mtuinfo *mtuinfo) 6481 { 6482 uint32_t pmtu = IP_MAXPACKET; 6483 uint_t scopeid; 6484 6485 if (IN6_IS_ADDR_UNSPECIFIED(&connp->conn_faddr_v6)) 6486 return (-1); 6487 6488 /* In case we never sent or called ip_set_destination_v4/v6 */ 6489 if (ixa->ixa_ire != NULL) 6490 pmtu = ip_get_pmtu(ixa); 6491 6492 if (ixa->ixa_flags & IXAF_SCOPEID_SET) 6493 scopeid = ixa->ixa_scopeid; 6494 else 6495 scopeid = 0; 6496 6497 bzero(mtuinfo, sizeof (*mtuinfo)); 6498 mtuinfo->ip6m_addr.sin6_family = AF_INET6; 6499 mtuinfo->ip6m_addr.sin6_port = connp->conn_fport; 6500 mtuinfo->ip6m_addr.sin6_addr = connp->conn_faddr_v6; 6501 mtuinfo->ip6m_addr.sin6_scope_id = scopeid; 6502 mtuinfo->ip6m_mtu = pmtu; 6503 6504 return (sizeof (struct ip6_mtuinfo)); 6505 } 6506 6507 /* 6508 * When the src multihoming is changed from weak to [strong, preferred] 6509 * ip_ire_rebind_walker is called to walk the list of all ire_t entries 6510 * and identify routes that were created by user-applications in the 6511 * unbound state (i.e., without RTA_IFP), and for which an ire_ill is not 6512 * currently defined. These routes are then 'rebound', i.e., their ire_ill 6513 * is selected by finding an interface route for the gateway. 6514 */ 6515 /* ARGSUSED */ 6516 void 6517 ip_ire_rebind_walker(ire_t *ire, void *notused) 6518 { 6519 if (!ire->ire_unbound || ire->ire_ill != NULL) 6520 return; 6521 ire_rebind(ire); 6522 ire_delete(ire); 6523 } 6524 6525 /* 6526 * When the src multihoming is changed from [strong, preferred] to weak, 6527 * ip_ire_unbind_walker is called to walk the list of all ire_t entries, and 6528 * set any entries that were created by user-applications in the unbound state 6529 * (i.e., without RTA_IFP) back to having a NULL ire_ill. 6530 */ 6531 /* ARGSUSED */ 6532 void 6533 ip_ire_unbind_walker(ire_t *ire, void *notused) 6534 { 6535 ire_t *new_ire; 6536 6537 if (!ire->ire_unbound || ire->ire_ill == NULL) 6538 return; 6539 if (ire->ire_ipversion == IPV6_VERSION) { 6540 new_ire = ire_create_v6(&ire->ire_addr_v6, &ire->ire_mask_v6, 6541 &ire->ire_gateway_addr_v6, ire->ire_type, NULL, 6542 ire->ire_zoneid, ire->ire_flags, NULL, ire->ire_ipst); 6543 } else { 6544 new_ire = ire_create((uchar_t *)&ire->ire_addr, 6545 (uchar_t *)&ire->ire_mask, 6546 (uchar_t *)&ire->ire_gateway_addr, ire->ire_type, NULL, 6547 ire->ire_zoneid, ire->ire_flags, NULL, ire->ire_ipst); 6548 } 6549 if (new_ire == NULL) 6550 return; 6551 new_ire->ire_unbound = B_TRUE; 6552 /* 6553 * The bound ire must first be deleted so that we don't return 6554 * the existing one on the attempt to add the unbound new_ire. 6555 */ 6556 ire_delete(ire); 6557 new_ire = ire_add(new_ire); 6558 if (new_ire != NULL) 6559 ire_refrele(new_ire); 6560 } 6561 6562 /* 6563 * When the settings of ip*_strict_src_multihoming tunables are changed, 6564 * all cached routes need to be recomputed. This recomputation needs to be 6565 * done when going from weaker to stronger modes so that the cached ire 6566 * for the connection does not violate the current ip*_strict_src_multihoming 6567 * setting. It also needs to be done when going from stronger to weaker modes, 6568 * so that we fall back to matching on the longest-matching-route (as opposed 6569 * to a shorter match that may have been selected in the strong mode 6570 * to satisfy src_multihoming settings). 6571 * 6572 * The cached ixa_ire entires for all conn_t entries are marked as 6573 * "verify" so that they will be recomputed for the next packet. 6574 */ 6575 void 6576 conn_ire_revalidate(conn_t *connp, void *arg) 6577 { 6578 boolean_t isv6 = (boolean_t)arg; 6579 6580 if ((isv6 && connp->conn_ipversion != IPV6_VERSION) || 6581 (!isv6 && connp->conn_ipversion != IPV4_VERSION)) 6582 return; 6583 connp->conn_ixa->ixa_ire_generation = IRE_GENERATION_VERIFY; 6584 } 6585 6586 /* 6587 * Handles both IPv4 and IPv6 reassembly - doing the out-of-order cases, 6588 * When an ipf is passed here for the first time, if 6589 * we already have in-order fragments on the queue, we convert from the fast- 6590 * path reassembly scheme to the hard-case scheme. From then on, additional 6591 * fragments are reassembled here. We keep track of the start and end offsets 6592 * of each piece, and the number of holes in the chain. When the hole count 6593 * goes to zero, we are done! 6594 * 6595 * The ipf_count will be updated to account for any mblk(s) added (pointed to 6596 * by mp) or subtracted (freeb()ed dups), upon return the caller must update 6597 * ipfb_count and ill_frag_count by the difference of ipf_count before and 6598 * after the call to ip_reassemble(). 6599 */ 6600 int 6601 ip_reassemble(mblk_t *mp, ipf_t *ipf, uint_t start, boolean_t more, ill_t *ill, 6602 size_t msg_len) 6603 { 6604 uint_t end; 6605 mblk_t *next_mp; 6606 mblk_t *mp1; 6607 uint_t offset; 6608 boolean_t incr_dups = B_TRUE; 6609 boolean_t offset_zero_seen = B_FALSE; 6610 boolean_t pkt_boundary_checked = B_FALSE; 6611 6612 /* If start == 0 then ipf_nf_hdr_len has to be set. */ 6613 ASSERT(start != 0 || ipf->ipf_nf_hdr_len != 0); 6614 6615 /* Add in byte count */ 6616 ipf->ipf_count += msg_len; 6617 if (ipf->ipf_end) { 6618 /* 6619 * We were part way through in-order reassembly, but now there 6620 * is a hole. We walk through messages already queued, and 6621 * mark them for hard case reassembly. We know that up till 6622 * now they were in order starting from offset zero. 6623 */ 6624 offset = 0; 6625 for (mp1 = ipf->ipf_mp->b_cont; mp1; mp1 = mp1->b_cont) { 6626 IP_REASS_SET_START(mp1, offset); 6627 if (offset == 0) { 6628 ASSERT(ipf->ipf_nf_hdr_len != 0); 6629 offset = -ipf->ipf_nf_hdr_len; 6630 } 6631 offset += mp1->b_wptr - mp1->b_rptr; 6632 IP_REASS_SET_END(mp1, offset); 6633 } 6634 /* One hole at the end. */ 6635 ipf->ipf_hole_cnt = 1; 6636 /* Brand it as a hard case, forever. */ 6637 ipf->ipf_end = 0; 6638 } 6639 /* Walk through all the new pieces. */ 6640 do { 6641 end = start + (mp->b_wptr - mp->b_rptr); 6642 /* 6643 * If start is 0, decrease 'end' only for the first mblk of 6644 * the fragment. Otherwise 'end' can get wrong value in the 6645 * second pass of the loop if first mblk is exactly the 6646 * size of ipf_nf_hdr_len. 6647 */ 6648 if (start == 0 && !offset_zero_seen) { 6649 /* First segment */ 6650 ASSERT(ipf->ipf_nf_hdr_len != 0); 6651 end -= ipf->ipf_nf_hdr_len; 6652 offset_zero_seen = B_TRUE; 6653 } 6654 next_mp = mp->b_cont; 6655 /* 6656 * We are checking to see if there is any interesing data 6657 * to process. If there isn't and the mblk isn't the 6658 * one which carries the unfragmentable header then we 6659 * drop it. It's possible to have just the unfragmentable 6660 * header come through without any data. That needs to be 6661 * saved. 6662 * 6663 * If the assert at the top of this function holds then the 6664 * term "ipf->ipf_nf_hdr_len != 0" isn't needed. This code 6665 * is infrequently traveled enough that the test is left in 6666 * to protect against future code changes which break that 6667 * invariant. 6668 */ 6669 if (start == end && start != 0 && ipf->ipf_nf_hdr_len != 0) { 6670 /* Empty. Blast it. */ 6671 IP_REASS_SET_START(mp, 0); 6672 IP_REASS_SET_END(mp, 0); 6673 /* 6674 * If the ipf points to the mblk we are about to free, 6675 * update ipf to point to the next mblk (or NULL 6676 * if none). 6677 */ 6678 if (ipf->ipf_mp->b_cont == mp) 6679 ipf->ipf_mp->b_cont = next_mp; 6680 freeb(mp); 6681 continue; 6682 } 6683 mp->b_cont = NULL; 6684 IP_REASS_SET_START(mp, start); 6685 IP_REASS_SET_END(mp, end); 6686 if (!ipf->ipf_tail_mp) { 6687 ipf->ipf_tail_mp = mp; 6688 ipf->ipf_mp->b_cont = mp; 6689 if (start == 0 || !more) { 6690 ipf->ipf_hole_cnt = 1; 6691 /* 6692 * if the first fragment comes in more than one 6693 * mblk, this loop will be executed for each 6694 * mblk. Need to adjust hole count so exiting 6695 * this routine will leave hole count at 1. 6696 */ 6697 if (next_mp) 6698 ipf->ipf_hole_cnt++; 6699 } else 6700 ipf->ipf_hole_cnt = 2; 6701 continue; 6702 } else if (ipf->ipf_last_frag_seen && !more && 6703 !pkt_boundary_checked) { 6704 /* 6705 * We check datagram boundary only if this fragment 6706 * claims to be the last fragment and we have seen a 6707 * last fragment in the past too. We do this only 6708 * once for a given fragment. 6709 * 6710 * start cannot be 0 here as fragments with start=0 6711 * and MF=0 gets handled as a complete packet. These 6712 * fragments should not reach here. 6713 */ 6714 6715 if (start + msgdsize(mp) != 6716 IP_REASS_END(ipf->ipf_tail_mp)) { 6717 /* 6718 * We have two fragments both of which claim 6719 * to be the last fragment but gives conflicting 6720 * information about the whole datagram size. 6721 * Something fishy is going on. Drop the 6722 * fragment and free up the reassembly list. 6723 */ 6724 return (IP_REASS_FAILED); 6725 } 6726 6727 /* 6728 * We shouldn't come to this code block again for this 6729 * particular fragment. 6730 */ 6731 pkt_boundary_checked = B_TRUE; 6732 } 6733 6734 /* New stuff at or beyond tail? */ 6735 offset = IP_REASS_END(ipf->ipf_tail_mp); 6736 if (start >= offset) { 6737 if (ipf->ipf_last_frag_seen) { 6738 /* current fragment is beyond last fragment */ 6739 return (IP_REASS_FAILED); 6740 } 6741 /* Link it on end. */ 6742 ipf->ipf_tail_mp->b_cont = mp; 6743 ipf->ipf_tail_mp = mp; 6744 if (more) { 6745 if (start != offset) 6746 ipf->ipf_hole_cnt++; 6747 } else if (start == offset && next_mp == NULL) 6748 ipf->ipf_hole_cnt--; 6749 continue; 6750 } 6751 mp1 = ipf->ipf_mp->b_cont; 6752 offset = IP_REASS_START(mp1); 6753 /* New stuff at the front? */ 6754 if (start < offset) { 6755 if (start == 0) { 6756 if (end >= offset) { 6757 /* Nailed the hole at the begining. */ 6758 ipf->ipf_hole_cnt--; 6759 } 6760 } else if (end < offset) { 6761 /* 6762 * A hole, stuff, and a hole where there used 6763 * to be just a hole. 6764 */ 6765 ipf->ipf_hole_cnt++; 6766 } 6767 mp->b_cont = mp1; 6768 /* Check for overlap. */ 6769 while (end > offset) { 6770 if (end < IP_REASS_END(mp1)) { 6771 mp->b_wptr -= end - offset; 6772 IP_REASS_SET_END(mp, offset); 6773 BUMP_MIB(ill->ill_ip_mib, 6774 ipIfStatsReasmPartDups); 6775 break; 6776 } 6777 /* Did we cover another hole? */ 6778 if ((mp1->b_cont && 6779 IP_REASS_END(mp1) != 6780 IP_REASS_START(mp1->b_cont) && 6781 end >= IP_REASS_START(mp1->b_cont)) || 6782 (!ipf->ipf_last_frag_seen && !more)) { 6783 ipf->ipf_hole_cnt--; 6784 } 6785 /* Clip out mp1. */ 6786 if ((mp->b_cont = mp1->b_cont) == NULL) { 6787 /* 6788 * After clipping out mp1, this guy 6789 * is now hanging off the end. 6790 */ 6791 ipf->ipf_tail_mp = mp; 6792 } 6793 IP_REASS_SET_START(mp1, 0); 6794 IP_REASS_SET_END(mp1, 0); 6795 /* Subtract byte count */ 6796 ipf->ipf_count -= mp1->b_datap->db_lim - 6797 mp1->b_datap->db_base; 6798 freeb(mp1); 6799 BUMP_MIB(ill->ill_ip_mib, 6800 ipIfStatsReasmPartDups); 6801 mp1 = mp->b_cont; 6802 if (!mp1) 6803 break; 6804 offset = IP_REASS_START(mp1); 6805 } 6806 ipf->ipf_mp->b_cont = mp; 6807 continue; 6808 } 6809 /* 6810 * The new piece starts somewhere between the start of the head 6811 * and before the end of the tail. 6812 */ 6813 for (; mp1; mp1 = mp1->b_cont) { 6814 offset = IP_REASS_END(mp1); 6815 if (start < offset) { 6816 if (end <= offset) { 6817 /* Nothing new. */ 6818 IP_REASS_SET_START(mp, 0); 6819 IP_REASS_SET_END(mp, 0); 6820 /* Subtract byte count */ 6821 ipf->ipf_count -= mp->b_datap->db_lim - 6822 mp->b_datap->db_base; 6823 if (incr_dups) { 6824 ipf->ipf_num_dups++; 6825 incr_dups = B_FALSE; 6826 } 6827 freeb(mp); 6828 BUMP_MIB(ill->ill_ip_mib, 6829 ipIfStatsReasmDuplicates); 6830 break; 6831 } 6832 /* 6833 * Trim redundant stuff off beginning of new 6834 * piece. 6835 */ 6836 IP_REASS_SET_START(mp, offset); 6837 mp->b_rptr += offset - start; 6838 BUMP_MIB(ill->ill_ip_mib, 6839 ipIfStatsReasmPartDups); 6840 start = offset; 6841 if (!mp1->b_cont) { 6842 /* 6843 * After trimming, this guy is now 6844 * hanging off the end. 6845 */ 6846 mp1->b_cont = mp; 6847 ipf->ipf_tail_mp = mp; 6848 if (!more) { 6849 ipf->ipf_hole_cnt--; 6850 } 6851 break; 6852 } 6853 } 6854 if (start >= IP_REASS_START(mp1->b_cont)) 6855 continue; 6856 /* Fill a hole */ 6857 if (start > offset) 6858 ipf->ipf_hole_cnt++; 6859 mp->b_cont = mp1->b_cont; 6860 mp1->b_cont = mp; 6861 mp1 = mp->b_cont; 6862 offset = IP_REASS_START(mp1); 6863 if (end >= offset) { 6864 ipf->ipf_hole_cnt--; 6865 /* Check for overlap. */ 6866 while (end > offset) { 6867 if (end < IP_REASS_END(mp1)) { 6868 mp->b_wptr -= end - offset; 6869 IP_REASS_SET_END(mp, offset); 6870 /* 6871 * TODO we might bump 6872 * this up twice if there is 6873 * overlap at both ends. 6874 */ 6875 BUMP_MIB(ill->ill_ip_mib, 6876 ipIfStatsReasmPartDups); 6877 break; 6878 } 6879 /* Did we cover another hole? */ 6880 if ((mp1->b_cont && 6881 IP_REASS_END(mp1) 6882 != IP_REASS_START(mp1->b_cont) && 6883 end >= 6884 IP_REASS_START(mp1->b_cont)) || 6885 (!ipf->ipf_last_frag_seen && 6886 !more)) { 6887 ipf->ipf_hole_cnt--; 6888 } 6889 /* Clip out mp1. */ 6890 if ((mp->b_cont = mp1->b_cont) == 6891 NULL) { 6892 /* 6893 * After clipping out mp1, 6894 * this guy is now hanging 6895 * off the end. 6896 */ 6897 ipf->ipf_tail_mp = mp; 6898 } 6899 IP_REASS_SET_START(mp1, 0); 6900 IP_REASS_SET_END(mp1, 0); 6901 /* Subtract byte count */ 6902 ipf->ipf_count -= 6903 mp1->b_datap->db_lim - 6904 mp1->b_datap->db_base; 6905 freeb(mp1); 6906 BUMP_MIB(ill->ill_ip_mib, 6907 ipIfStatsReasmPartDups); 6908 mp1 = mp->b_cont; 6909 if (!mp1) 6910 break; 6911 offset = IP_REASS_START(mp1); 6912 } 6913 } 6914 break; 6915 } 6916 } while (start = end, mp = next_mp); 6917 6918 /* Fragment just processed could be the last one. Remember this fact */ 6919 if (!more) 6920 ipf->ipf_last_frag_seen = B_TRUE; 6921 6922 /* Still got holes? */ 6923 if (ipf->ipf_hole_cnt) 6924 return (IP_REASS_PARTIAL); 6925 /* Clean up overloaded fields to avoid upstream disasters. */ 6926 for (mp1 = ipf->ipf_mp->b_cont; mp1; mp1 = mp1->b_cont) { 6927 IP_REASS_SET_START(mp1, 0); 6928 IP_REASS_SET_END(mp1, 0); 6929 } 6930 return (IP_REASS_COMPLETE); 6931 } 6932 6933 /* 6934 * Fragmentation reassembly. Each ILL has a hash table for 6935 * queuing packets undergoing reassembly for all IPIFs 6936 * associated with the ILL. The hash is based on the packet 6937 * IP ident field. The ILL frag hash table was allocated 6938 * as a timer block at the time the ILL was created. Whenever 6939 * there is anything on the reassembly queue, the timer will 6940 * be running. Returns the reassembled packet if reassembly completes. 6941 */ 6942 mblk_t * 6943 ip_input_fragment(mblk_t *mp, ipha_t *ipha, ip_recv_attr_t *ira) 6944 { 6945 uint32_t frag_offset_flags; 6946 mblk_t *t_mp; 6947 ipaddr_t dst; 6948 uint8_t proto = ipha->ipha_protocol; 6949 uint32_t sum_val; 6950 uint16_t sum_flags; 6951 ipf_t *ipf; 6952 ipf_t **ipfp; 6953 ipfb_t *ipfb; 6954 uint16_t ident; 6955 uint32_t offset; 6956 ipaddr_t src; 6957 uint_t hdr_length; 6958 uint32_t end; 6959 mblk_t *mp1; 6960 mblk_t *tail_mp; 6961 size_t count; 6962 size_t msg_len; 6963 uint8_t ecn_info = 0; 6964 uint32_t packet_size; 6965 boolean_t pruned = B_FALSE; 6966 ill_t *ill = ira->ira_ill; 6967 ip_stack_t *ipst = ill->ill_ipst; 6968 6969 /* 6970 * Drop the fragmented as early as possible, if 6971 * we don't have resource(s) to re-assemble. 6972 */ 6973 if (ipst->ips_ip_reass_queue_bytes == 0) { 6974 freemsg(mp); 6975 return (NULL); 6976 } 6977 6978 /* Check for fragmentation offset; return if there's none */ 6979 if ((frag_offset_flags = ntohs(ipha->ipha_fragment_offset_and_flags) & 6980 (IPH_MF | IPH_OFFSET)) == 0) 6981 return (mp); 6982 6983 /* 6984 * We utilize hardware computed checksum info only for UDP since 6985 * IP fragmentation is a normal occurrence for the protocol. In 6986 * addition, checksum offload support for IP fragments carrying 6987 * UDP payload is commonly implemented across network adapters. 6988 */ 6989 ASSERT(ira->ira_rill != NULL); 6990 if (proto == IPPROTO_UDP && dohwcksum && 6991 ILL_HCKSUM_CAPABLE(ira->ira_rill) && 6992 (DB_CKSUMFLAGS(mp) & (HCK_FULLCKSUM | HCK_PARTIALCKSUM))) { 6993 mblk_t *mp1 = mp->b_cont; 6994 int32_t len; 6995 6996 /* Record checksum information from the packet */ 6997 sum_val = (uint32_t)DB_CKSUM16(mp); 6998 sum_flags = DB_CKSUMFLAGS(mp); 6999 7000 /* IP payload offset from beginning of mblk */ 7001 offset = ((uchar_t *)ipha + IPH_HDR_LENGTH(ipha)) - mp->b_rptr; 7002 7003 if ((sum_flags & HCK_PARTIALCKSUM) && 7004 (mp1 == NULL || mp1->b_cont == NULL) && 7005 offset >= DB_CKSUMSTART(mp) && 7006 ((len = offset - DB_CKSUMSTART(mp)) & 1) == 0) { 7007 uint32_t adj; 7008 /* 7009 * Partial checksum has been calculated by hardware 7010 * and attached to the packet; in addition, any 7011 * prepended extraneous data is even byte aligned. 7012 * If any such data exists, we adjust the checksum; 7013 * this would also handle any postpended data. 7014 */ 7015 IP_ADJCKSUM_PARTIAL(mp->b_rptr + DB_CKSUMSTART(mp), 7016 mp, mp1, len, adj); 7017 7018 /* One's complement subtract extraneous checksum */ 7019 if (adj >= sum_val) 7020 sum_val = ~(adj - sum_val) & 0xFFFF; 7021 else 7022 sum_val -= adj; 7023 } 7024 } else { 7025 sum_val = 0; 7026 sum_flags = 0; 7027 } 7028 7029 /* Clear hardware checksumming flag */ 7030 DB_CKSUMFLAGS(mp) = 0; 7031 7032 ident = ipha->ipha_ident; 7033 offset = (frag_offset_flags << 3) & 0xFFFF; 7034 src = ipha->ipha_src; 7035 dst = ipha->ipha_dst; 7036 hdr_length = IPH_HDR_LENGTH(ipha); 7037 end = ntohs(ipha->ipha_length) - hdr_length; 7038 7039 /* If end == 0 then we have a packet with no data, so just free it */ 7040 if (end == 0) { 7041 freemsg(mp); 7042 return (NULL); 7043 } 7044 7045 /* Record the ECN field info. */ 7046 ecn_info = (ipha->ipha_type_of_service & 0x3); 7047 if (offset != 0) { 7048 /* 7049 * If this isn't the first piece, strip the header, and 7050 * add the offset to the end value. 7051 */ 7052 mp->b_rptr += hdr_length; 7053 end += offset; 7054 } 7055 7056 /* Handle vnic loopback of fragments */ 7057 if (mp->b_datap->db_ref > 2) 7058 msg_len = 0; 7059 else 7060 msg_len = MBLKSIZE(mp); 7061 7062 tail_mp = mp; 7063 while (tail_mp->b_cont != NULL) { 7064 tail_mp = tail_mp->b_cont; 7065 if (tail_mp->b_datap->db_ref <= 2) 7066 msg_len += MBLKSIZE(tail_mp); 7067 } 7068 7069 /* If the reassembly list for this ILL will get too big, prune it */ 7070 if ((msg_len + sizeof (*ipf) + ill->ill_frag_count) >= 7071 ipst->ips_ip_reass_queue_bytes) { 7072 DTRACE_PROBE3(ip_reass_queue_bytes, uint_t, msg_len, 7073 uint_t, ill->ill_frag_count, 7074 uint_t, ipst->ips_ip_reass_queue_bytes); 7075 ill_frag_prune(ill, 7076 (ipst->ips_ip_reass_queue_bytes < msg_len) ? 0 : 7077 (ipst->ips_ip_reass_queue_bytes - msg_len)); 7078 pruned = B_TRUE; 7079 } 7080 7081 ipfb = &ill->ill_frag_hash_tbl[ILL_FRAG_HASH(src, ident)]; 7082 mutex_enter(&ipfb->ipfb_lock); 7083 7084 ipfp = &ipfb->ipfb_ipf; 7085 /* Try to find an existing fragment queue for this packet. */ 7086 for (;;) { 7087 ipf = ipfp[0]; 7088 if (ipf != NULL) { 7089 /* 7090 * It has to match on ident and src/dst address. 7091 */ 7092 if (ipf->ipf_ident == ident && 7093 ipf->ipf_src == src && 7094 ipf->ipf_dst == dst && 7095 ipf->ipf_protocol == proto) { 7096 /* 7097 * If we have received too many 7098 * duplicate fragments for this packet 7099 * free it. 7100 */ 7101 if (ipf->ipf_num_dups > ip_max_frag_dups) { 7102 ill_frag_free_pkts(ill, ipfb, ipf, 1); 7103 freemsg(mp); 7104 mutex_exit(&ipfb->ipfb_lock); 7105 return (NULL); 7106 } 7107 /* Found it. */ 7108 break; 7109 } 7110 ipfp = &ipf->ipf_hash_next; 7111 continue; 7112 } 7113 7114 /* 7115 * If we pruned the list, do we want to store this new 7116 * fragment?. We apply an optimization here based on the 7117 * fact that most fragments will be received in order. 7118 * So if the offset of this incoming fragment is zero, 7119 * it is the first fragment of a new packet. We will 7120 * keep it. Otherwise drop the fragment, as we have 7121 * probably pruned the packet already (since the 7122 * packet cannot be found). 7123 */ 7124 if (pruned && offset != 0) { 7125 mutex_exit(&ipfb->ipfb_lock); 7126 freemsg(mp); 7127 return (NULL); 7128 } 7129 7130 if (ipfb->ipfb_frag_pkts >= MAX_FRAG_PKTS(ipst)) { 7131 /* 7132 * Too many fragmented packets in this hash 7133 * bucket. Free the oldest. 7134 */ 7135 ill_frag_free_pkts(ill, ipfb, ipfb->ipfb_ipf, 1); 7136 } 7137 7138 /* New guy. Allocate a frag message. */ 7139 mp1 = allocb(sizeof (*ipf), BPRI_MED); 7140 if (mp1 == NULL) { 7141 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 7142 ip_drop_input("ipIfStatsInDiscards", mp, ill); 7143 freemsg(mp); 7144 reass_done: 7145 mutex_exit(&ipfb->ipfb_lock); 7146 return (NULL); 7147 } 7148 7149 BUMP_MIB(ill->ill_ip_mib, ipIfStatsReasmReqds); 7150 mp1->b_cont = mp; 7151 7152 /* Initialize the fragment header. */ 7153 ipf = (ipf_t *)mp1->b_rptr; 7154 ipf->ipf_mp = mp1; 7155 ipf->ipf_ptphn = ipfp; 7156 ipfp[0] = ipf; 7157 ipf->ipf_hash_next = NULL; 7158 ipf->ipf_ident = ident; 7159 ipf->ipf_protocol = proto; 7160 ipf->ipf_src = src; 7161 ipf->ipf_dst = dst; 7162 ipf->ipf_nf_hdr_len = 0; 7163 /* Record reassembly start time. */ 7164 ipf->ipf_timestamp = gethrestime_sec(); 7165 /* Record ipf generation and account for frag header */ 7166 ipf->ipf_gen = ill->ill_ipf_gen++; 7167 ipf->ipf_count = MBLKSIZE(mp1); 7168 ipf->ipf_last_frag_seen = B_FALSE; 7169 ipf->ipf_ecn = ecn_info; 7170 ipf->ipf_num_dups = 0; 7171 ipfb->ipfb_frag_pkts++; 7172 ipf->ipf_checksum = 0; 7173 ipf->ipf_checksum_flags = 0; 7174 7175 /* Store checksum value in fragment header */ 7176 if (sum_flags != 0) { 7177 sum_val = (sum_val & 0xFFFF) + (sum_val >> 16); 7178 sum_val = (sum_val & 0xFFFF) + (sum_val >> 16); 7179 ipf->ipf_checksum = sum_val; 7180 ipf->ipf_checksum_flags = sum_flags; 7181 } 7182 7183 /* 7184 * We handle reassembly two ways. In the easy case, 7185 * where all the fragments show up in order, we do 7186 * minimal bookkeeping, and just clip new pieces on 7187 * the end. If we ever see a hole, then we go off 7188 * to ip_reassemble which has to mark the pieces and 7189 * keep track of the number of holes, etc. Obviously, 7190 * the point of having both mechanisms is so we can 7191 * handle the easy case as efficiently as possible. 7192 */ 7193 if (offset == 0) { 7194 /* Easy case, in-order reassembly so far. */ 7195 ipf->ipf_count += msg_len; 7196 ipf->ipf_tail_mp = tail_mp; 7197 /* 7198 * Keep track of next expected offset in 7199 * ipf_end. 7200 */ 7201 ipf->ipf_end = end; 7202 ipf->ipf_nf_hdr_len = hdr_length; 7203 } else { 7204 /* Hard case, hole at the beginning. */ 7205 ipf->ipf_tail_mp = NULL; 7206 /* 7207 * ipf_end == 0 means that we have given up 7208 * on easy reassembly. 7209 */ 7210 ipf->ipf_end = 0; 7211 7212 /* Forget checksum offload from now on */ 7213 ipf->ipf_checksum_flags = 0; 7214 7215 /* 7216 * ipf_hole_cnt is set by ip_reassemble. 7217 * ipf_count is updated by ip_reassemble. 7218 * No need to check for return value here 7219 * as we don't expect reassembly to complete 7220 * or fail for the first fragment itself. 7221 */ 7222 (void) ip_reassemble(mp, ipf, 7223 (frag_offset_flags & IPH_OFFSET) << 3, 7224 (frag_offset_flags & IPH_MF), ill, msg_len); 7225 } 7226 /* Update per ipfb and ill byte counts */ 7227 ipfb->ipfb_count += ipf->ipf_count; 7228 ASSERT(ipfb->ipfb_count > 0); /* Wraparound */ 7229 atomic_add_32(&ill->ill_frag_count, ipf->ipf_count); 7230 /* If the frag timer wasn't already going, start it. */ 7231 mutex_enter(&ill->ill_lock); 7232 ill_frag_timer_start(ill); 7233 mutex_exit(&ill->ill_lock); 7234 goto reass_done; 7235 } 7236 7237 /* 7238 * If the packet's flag has changed (it could be coming up 7239 * from an interface different than the previous, therefore 7240 * possibly different checksum capability), then forget about 7241 * any stored checksum states. Otherwise add the value to 7242 * the existing one stored in the fragment header. 7243 */ 7244 if (sum_flags != 0 && sum_flags == ipf->ipf_checksum_flags) { 7245 sum_val += ipf->ipf_checksum; 7246 sum_val = (sum_val & 0xFFFF) + (sum_val >> 16); 7247 sum_val = (sum_val & 0xFFFF) + (sum_val >> 16); 7248 ipf->ipf_checksum = sum_val; 7249 } else if (ipf->ipf_checksum_flags != 0) { 7250 /* Forget checksum offload from now on */ 7251 ipf->ipf_checksum_flags = 0; 7252 } 7253 7254 /* 7255 * We have a new piece of a datagram which is already being 7256 * reassembled. Update the ECN info if all IP fragments 7257 * are ECN capable. If there is one which is not, clear 7258 * all the info. If there is at least one which has CE 7259 * code point, IP needs to report that up to transport. 7260 */ 7261 if (ecn_info != IPH_ECN_NECT && ipf->ipf_ecn != IPH_ECN_NECT) { 7262 if (ecn_info == IPH_ECN_CE) 7263 ipf->ipf_ecn = IPH_ECN_CE; 7264 } else { 7265 ipf->ipf_ecn = IPH_ECN_NECT; 7266 } 7267 if (offset && ipf->ipf_end == offset) { 7268 /* The new fragment fits at the end */ 7269 ipf->ipf_tail_mp->b_cont = mp; 7270 /* Update the byte count */ 7271 ipf->ipf_count += msg_len; 7272 /* Update per ipfb and ill byte counts */ 7273 ipfb->ipfb_count += msg_len; 7274 ASSERT(ipfb->ipfb_count > 0); /* Wraparound */ 7275 atomic_add_32(&ill->ill_frag_count, msg_len); 7276 if (frag_offset_flags & IPH_MF) { 7277 /* More to come. */ 7278 ipf->ipf_end = end; 7279 ipf->ipf_tail_mp = tail_mp; 7280 goto reass_done; 7281 } 7282 } else { 7283 /* Go do the hard cases. */ 7284 int ret; 7285 7286 if (offset == 0) 7287 ipf->ipf_nf_hdr_len = hdr_length; 7288 7289 /* Save current byte count */ 7290 count = ipf->ipf_count; 7291 ret = ip_reassemble(mp, ipf, 7292 (frag_offset_flags & IPH_OFFSET) << 3, 7293 (frag_offset_flags & IPH_MF), ill, msg_len); 7294 /* Count of bytes added and subtracted (freeb()ed) */ 7295 count = ipf->ipf_count - count; 7296 if (count) { 7297 /* Update per ipfb and ill byte counts */ 7298 ipfb->ipfb_count += count; 7299 ASSERT(ipfb->ipfb_count > 0); /* Wraparound */ 7300 atomic_add_32(&ill->ill_frag_count, count); 7301 } 7302 if (ret == IP_REASS_PARTIAL) { 7303 goto reass_done; 7304 } else if (ret == IP_REASS_FAILED) { 7305 /* Reassembly failed. Free up all resources */ 7306 ill_frag_free_pkts(ill, ipfb, ipf, 1); 7307 for (t_mp = mp; t_mp != NULL; t_mp = t_mp->b_cont) { 7308 IP_REASS_SET_START(t_mp, 0); 7309 IP_REASS_SET_END(t_mp, 0); 7310 } 7311 freemsg(mp); 7312 goto reass_done; 7313 } 7314 /* We will reach here iff 'ret' is IP_REASS_COMPLETE */ 7315 } 7316 /* 7317 * We have completed reassembly. Unhook the frag header from 7318 * the reassembly list. 7319 * 7320 * Before we free the frag header, record the ECN info 7321 * to report back to the transport. 7322 */ 7323 ecn_info = ipf->ipf_ecn; 7324 BUMP_MIB(ill->ill_ip_mib, ipIfStatsReasmOKs); 7325 ipfp = ipf->ipf_ptphn; 7326 7327 /* We need to supply these to caller */ 7328 if ((sum_flags = ipf->ipf_checksum_flags) != 0) 7329 sum_val = ipf->ipf_checksum; 7330 else 7331 sum_val = 0; 7332 7333 mp1 = ipf->ipf_mp; 7334 count = ipf->ipf_count; 7335 ipf = ipf->ipf_hash_next; 7336 if (ipf != NULL) 7337 ipf->ipf_ptphn = ipfp; 7338 ipfp[0] = ipf; 7339 atomic_add_32(&ill->ill_frag_count, -count); 7340 ASSERT(ipfb->ipfb_count >= count); 7341 ipfb->ipfb_count -= count; 7342 ipfb->ipfb_frag_pkts--; 7343 mutex_exit(&ipfb->ipfb_lock); 7344 /* Ditch the frag header. */ 7345 mp = mp1->b_cont; 7346 7347 freeb(mp1); 7348 7349 /* Restore original IP length in header. */ 7350 packet_size = (uint32_t)msgdsize(mp); 7351 if (packet_size > IP_MAXPACKET) { 7352 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors); 7353 ip_drop_input("Reassembled packet too large", mp, ill); 7354 freemsg(mp); 7355 return (NULL); 7356 } 7357 7358 if (DB_REF(mp) > 1) { 7359 mblk_t *mp2 = copymsg(mp); 7360 7361 if (mp2 == NULL) { 7362 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 7363 ip_drop_input("ipIfStatsInDiscards", mp, ill); 7364 freemsg(mp); 7365 return (NULL); 7366 } 7367 freemsg(mp); 7368 mp = mp2; 7369 } 7370 ipha = (ipha_t *)mp->b_rptr; 7371 7372 ipha->ipha_length = htons((uint16_t)packet_size); 7373 /* We're now complete, zip the frag state */ 7374 ipha->ipha_fragment_offset_and_flags = 0; 7375 /* Record the ECN info. */ 7376 ipha->ipha_type_of_service &= 0xFC; 7377 ipha->ipha_type_of_service |= ecn_info; 7378 7379 /* Update the receive attributes */ 7380 ira->ira_pktlen = packet_size; 7381 ira->ira_ip_hdr_length = IPH_HDR_LENGTH(ipha); 7382 7383 /* Reassembly is successful; set checksum information in packet */ 7384 DB_CKSUM16(mp) = (uint16_t)sum_val; 7385 DB_CKSUMFLAGS(mp) = sum_flags; 7386 DB_CKSUMSTART(mp) = ira->ira_ip_hdr_length; 7387 7388 return (mp); 7389 } 7390 7391 /* 7392 * Pullup function that should be used for IP input in order to 7393 * ensure we do not loose the L2 source address; we need the l2 source 7394 * address for IP_RECVSLLA and for ndp_input. 7395 * 7396 * We return either NULL or b_rptr. 7397 */ 7398 void * 7399 ip_pullup(mblk_t *mp, ssize_t len, ip_recv_attr_t *ira) 7400 { 7401 ill_t *ill = ira->ira_ill; 7402 7403 if (ip_rput_pullups++ == 0) { 7404 (void) mi_strlog(ill->ill_rq, 1, SL_ERROR|SL_TRACE, 7405 "ip_pullup: %s forced us to " 7406 " pullup pkt, hdr len %ld, hdr addr %p", 7407 ill->ill_name, len, (void *)mp->b_rptr); 7408 } 7409 if (!(ira->ira_flags & IRAF_L2SRC_SET)) 7410 ip_setl2src(mp, ira, ira->ira_rill); 7411 ASSERT(ira->ira_flags & IRAF_L2SRC_SET); 7412 if (!pullupmsg(mp, len)) 7413 return (NULL); 7414 else 7415 return (mp->b_rptr); 7416 } 7417 7418 /* 7419 * Make sure ira_l2src has an address. If we don't have one fill with zeros. 7420 * When called from the ULP ira_rill will be NULL hence the caller has to 7421 * pass in the ill. 7422 */ 7423 /* ARGSUSED */ 7424 void 7425 ip_setl2src(mblk_t *mp, ip_recv_attr_t *ira, ill_t *ill) 7426 { 7427 const uchar_t *addr; 7428 int alen; 7429 7430 if (ira->ira_flags & IRAF_L2SRC_SET) 7431 return; 7432 7433 ASSERT(ill != NULL); 7434 alen = ill->ill_phys_addr_length; 7435 ASSERT(alen <= sizeof (ira->ira_l2src)); 7436 if (ira->ira_mhip != NULL && 7437 (addr = ira->ira_mhip->mhi_saddr) != NULL) { 7438 bcopy(addr, ira->ira_l2src, alen); 7439 } else if ((ira->ira_flags & IRAF_L2SRC_LOOPBACK) && 7440 (addr = ill->ill_phys_addr) != NULL) { 7441 bcopy(addr, ira->ira_l2src, alen); 7442 } else { 7443 bzero(ira->ira_l2src, alen); 7444 } 7445 ira->ira_flags |= IRAF_L2SRC_SET; 7446 } 7447 7448 /* 7449 * check ip header length and align it. 7450 */ 7451 mblk_t * 7452 ip_check_and_align_header(mblk_t *mp, uint_t min_size, ip_recv_attr_t *ira) 7453 { 7454 ill_t *ill = ira->ira_ill; 7455 ssize_t len; 7456 7457 len = MBLKL(mp); 7458 7459 if (!OK_32PTR(mp->b_rptr)) 7460 IP_STAT(ill->ill_ipst, ip_notaligned); 7461 else 7462 IP_STAT(ill->ill_ipst, ip_recv_pullup); 7463 7464 /* Guard against bogus device drivers */ 7465 if (len < 0) { 7466 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors); 7467 ip_drop_input("ipIfStatsInHdrErrors", mp, ill); 7468 freemsg(mp); 7469 return (NULL); 7470 } 7471 7472 if (len == 0) { 7473 /* GLD sometimes sends up mblk with b_rptr == b_wptr! */ 7474 mblk_t *mp1 = mp->b_cont; 7475 7476 if (!(ira->ira_flags & IRAF_L2SRC_SET)) 7477 ip_setl2src(mp, ira, ira->ira_rill); 7478 ASSERT(ira->ira_flags & IRAF_L2SRC_SET); 7479 7480 freeb(mp); 7481 mp = mp1; 7482 if (mp == NULL) 7483 return (NULL); 7484 7485 if (OK_32PTR(mp->b_rptr) && MBLKL(mp) >= min_size) 7486 return (mp); 7487 } 7488 if (ip_pullup(mp, min_size, ira) == NULL) { 7489 if (msgdsize(mp) < min_size) { 7490 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors); 7491 ip_drop_input("ipIfStatsInHdrErrors", mp, ill); 7492 } else { 7493 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 7494 ip_drop_input("ipIfStatsInDiscards", mp, ill); 7495 } 7496 freemsg(mp); 7497 return (NULL); 7498 } 7499 return (mp); 7500 } 7501 7502 /* 7503 * Common code for IPv4 and IPv6 to check and pullup multi-mblks 7504 */ 7505 mblk_t * 7506 ip_check_length(mblk_t *mp, uchar_t *rptr, ssize_t len, uint_t pkt_len, 7507 uint_t min_size, ip_recv_attr_t *ira) 7508 { 7509 ill_t *ill = ira->ira_ill; 7510 7511 /* 7512 * Make sure we have data length consistent 7513 * with the IP header. 7514 */ 7515 if (mp->b_cont == NULL) { 7516 /* pkt_len is based on ipha_len, not the mblk length */ 7517 if (pkt_len < min_size) { 7518 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors); 7519 ip_drop_input("ipIfStatsInHdrErrors", mp, ill); 7520 freemsg(mp); 7521 return (NULL); 7522 } 7523 if (len < 0) { 7524 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInTruncatedPkts); 7525 ip_drop_input("ipIfStatsInTruncatedPkts", mp, ill); 7526 freemsg(mp); 7527 return (NULL); 7528 } 7529 /* Drop any pad */ 7530 mp->b_wptr = rptr + pkt_len; 7531 } else if ((len += msgdsize(mp->b_cont)) != 0) { 7532 ASSERT(pkt_len >= min_size); 7533 if (pkt_len < min_size) { 7534 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors); 7535 ip_drop_input("ipIfStatsInHdrErrors", mp, ill); 7536 freemsg(mp); 7537 return (NULL); 7538 } 7539 if (len < 0) { 7540 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInTruncatedPkts); 7541 ip_drop_input("ipIfStatsInTruncatedPkts", mp, ill); 7542 freemsg(mp); 7543 return (NULL); 7544 } 7545 /* Drop any pad */ 7546 (void) adjmsg(mp, -len); 7547 /* 7548 * adjmsg may have freed an mblk from the chain, hence 7549 * invalidate any hw checksum here. This will force IP to 7550 * calculate the checksum in sw, but only for this packet. 7551 */ 7552 DB_CKSUMFLAGS(mp) = 0; 7553 IP_STAT(ill->ill_ipst, ip_multimblk); 7554 } 7555 return (mp); 7556 } 7557 7558 /* 7559 * Check that the IPv4 opt_len is consistent with the packet and pullup 7560 * the options. 7561 */ 7562 mblk_t * 7563 ip_check_optlen(mblk_t *mp, ipha_t *ipha, uint_t opt_len, uint_t pkt_len, 7564 ip_recv_attr_t *ira) 7565 { 7566 ill_t *ill = ira->ira_ill; 7567 ssize_t len; 7568 7569 /* Assume no IPv6 packets arrive over the IPv4 queue */ 7570 if (IPH_HDR_VERSION(ipha) != IPV4_VERSION) { 7571 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors); 7572 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInWrongIPVersion); 7573 ip_drop_input("IPvN packet on IPv4 ill", mp, ill); 7574 freemsg(mp); 7575 return (NULL); 7576 } 7577 7578 if (opt_len > (15 - IP_SIMPLE_HDR_LENGTH_IN_WORDS)) { 7579 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors); 7580 ip_drop_input("ipIfStatsInHdrErrors", mp, ill); 7581 freemsg(mp); 7582 return (NULL); 7583 } 7584 /* 7585 * Recompute complete header length and make sure we 7586 * have access to all of it. 7587 */ 7588 len = ((size_t)opt_len + IP_SIMPLE_HDR_LENGTH_IN_WORDS) << 2; 7589 if (len > (mp->b_wptr - mp->b_rptr)) { 7590 if (len > pkt_len) { 7591 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors); 7592 ip_drop_input("ipIfStatsInHdrErrors", mp, ill); 7593 freemsg(mp); 7594 return (NULL); 7595 } 7596 if (ip_pullup(mp, len, ira) == NULL) { 7597 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 7598 ip_drop_input("ipIfStatsInDiscards", mp, ill); 7599 freemsg(mp); 7600 return (NULL); 7601 } 7602 } 7603 return (mp); 7604 } 7605 7606 /* 7607 * Returns a new ire, or the same ire, or NULL. 7608 * If a different IRE is returned, then it is held; the caller 7609 * needs to release it. 7610 * In no case is there any hold/release on the ire argument. 7611 */ 7612 ire_t * 7613 ip_check_multihome(void *addr, ire_t *ire, ill_t *ill) 7614 { 7615 ire_t *new_ire; 7616 ill_t *ire_ill; 7617 uint_t ifindex; 7618 ip_stack_t *ipst = ill->ill_ipst; 7619 boolean_t strict_check = B_FALSE; 7620 7621 /* 7622 * IPMP common case: if IRE and ILL are in the same group, there's no 7623 * issue (e.g. packet received on an underlying interface matched an 7624 * IRE_LOCAL on its associated group interface). 7625 */ 7626 ASSERT(ire->ire_ill != NULL); 7627 if (IS_IN_SAME_ILLGRP(ill, ire->ire_ill)) 7628 return (ire); 7629 7630 /* 7631 * Do another ire lookup here, using the ingress ill, to see if the 7632 * interface is in a usesrc group. 7633 * As long as the ills belong to the same group, we don't consider 7634 * them to be arriving on the wrong interface. Thus, if the switch 7635 * is doing inbound load spreading, we won't drop packets when the 7636 * ip*_strict_dst_multihoming switch is on. 7637 * We also need to check for IPIF_UNNUMBERED point2point interfaces 7638 * where the local address may not be unique. In this case we were 7639 * at the mercy of the initial ire lookup and the IRE_LOCAL it 7640 * actually returned. The new lookup, which is more specific, should 7641 * only find the IRE_LOCAL associated with the ingress ill if one 7642 * exists. 7643 */ 7644 if (ire->ire_ipversion == IPV4_VERSION) { 7645 if (ipst->ips_ip_strict_dst_multihoming) 7646 strict_check = B_TRUE; 7647 new_ire = ire_ftable_lookup_v4(*((ipaddr_t *)addr), 0, 0, 7648 IRE_LOCAL, ill, ALL_ZONES, NULL, 7649 (MATCH_IRE_TYPE|MATCH_IRE_ILL), 0, ipst, NULL); 7650 } else { 7651 ASSERT(!IN6_IS_ADDR_MULTICAST((in6_addr_t *)addr)); 7652 if (ipst->ips_ipv6_strict_dst_multihoming) 7653 strict_check = B_TRUE; 7654 new_ire = ire_ftable_lookup_v6((in6_addr_t *)addr, NULL, NULL, 7655 IRE_LOCAL, ill, ALL_ZONES, NULL, 7656 (MATCH_IRE_TYPE|MATCH_IRE_ILL), 0, ipst, NULL); 7657 } 7658 /* 7659 * If the same ire that was returned in ip_input() is found then this 7660 * is an indication that usesrc groups are in use. The packet 7661 * arrived on a different ill in the group than the one associated with 7662 * the destination address. If a different ire was found then the same 7663 * IP address must be hosted on multiple ills. This is possible with 7664 * unnumbered point2point interfaces. We switch to use this new ire in 7665 * order to have accurate interface statistics. 7666 */ 7667 if (new_ire != NULL) { 7668 /* Note: held in one case but not the other? Caller handles */ 7669 if (new_ire != ire) 7670 return (new_ire); 7671 /* Unchanged */ 7672 ire_refrele(new_ire); 7673 return (ire); 7674 } 7675 7676 /* 7677 * Chase pointers once and store locally. 7678 */ 7679 ASSERT(ire->ire_ill != NULL); 7680 ire_ill = ire->ire_ill; 7681 ifindex = ill->ill_usesrc_ifindex; 7682 7683 /* 7684 * Check if it's a legal address on the 'usesrc' interface. 7685 * For IPMP data addresses the IRE_LOCAL is the upper, hence we 7686 * can just check phyint_ifindex. 7687 */ 7688 if (ifindex != 0 && ifindex == ire_ill->ill_phyint->phyint_ifindex) { 7689 return (ire); 7690 } 7691 7692 /* 7693 * If the ip*_strict_dst_multihoming switch is on then we can 7694 * only accept this packet if the interface is marked as routing. 7695 */ 7696 if (!(strict_check)) 7697 return (ire); 7698 7699 if ((ill->ill_flags & ire->ire_ill->ill_flags & ILLF_ROUTER) != 0) { 7700 return (ire); 7701 } 7702 return (NULL); 7703 } 7704 7705 /* 7706 * This function is used to construct a mac_header_info_s from a 7707 * DL_UNITDATA_IND message. 7708 * The address fields in the mhi structure points into the message, 7709 * thus the caller can't use those fields after freeing the message. 7710 * 7711 * We determine whether the packet received is a non-unicast packet 7712 * and in doing so, determine whether or not it is broadcast vs multicast. 7713 * For it to be a broadcast packet, we must have the appropriate mblk_t 7714 * hanging off the ill_t. If this is either not present or doesn't match 7715 * the destination mac address in the DL_UNITDATA_IND, the packet is deemed 7716 * to be multicast. Thus NICs that have no broadcast address (or no 7717 * capability for one, such as point to point links) cannot return as 7718 * the packet being broadcast. 7719 */ 7720 void 7721 ip_dlur_to_mhi(ill_t *ill, mblk_t *mb, struct mac_header_info_s *mhip) 7722 { 7723 dl_unitdata_ind_t *ind = (dl_unitdata_ind_t *)mb->b_rptr; 7724 mblk_t *bmp; 7725 uint_t extra_offset; 7726 7727 bzero(mhip, sizeof (struct mac_header_info_s)); 7728 7729 mhip->mhi_dsttype = MAC_ADDRTYPE_UNICAST; 7730 7731 if (ill->ill_sap_length < 0) 7732 extra_offset = 0; 7733 else 7734 extra_offset = ill->ill_sap_length; 7735 7736 mhip->mhi_daddr = (uchar_t *)ind + ind->dl_dest_addr_offset + 7737 extra_offset; 7738 mhip->mhi_saddr = (uchar_t *)ind + ind->dl_src_addr_offset + 7739 extra_offset; 7740 7741 if (!ind->dl_group_address) 7742 return; 7743 7744 /* Multicast or broadcast */ 7745 mhip->mhi_dsttype = MAC_ADDRTYPE_MULTICAST; 7746 7747 if (ind->dl_dest_addr_offset > sizeof (*ind) && 7748 ind->dl_dest_addr_offset + ind->dl_dest_addr_length < MBLKL(mb) && 7749 (bmp = ill->ill_bcast_mp) != NULL) { 7750 dl_unitdata_req_t *dlur; 7751 uint8_t *bphys_addr; 7752 7753 dlur = (dl_unitdata_req_t *)bmp->b_rptr; 7754 bphys_addr = (uchar_t *)dlur + dlur->dl_dest_addr_offset + 7755 extra_offset; 7756 7757 if (bcmp(mhip->mhi_daddr, bphys_addr, 7758 ind->dl_dest_addr_length) == 0) 7759 mhip->mhi_dsttype = MAC_ADDRTYPE_BROADCAST; 7760 } 7761 } 7762 7763 /* 7764 * This function is used to construct a mac_header_info_s from a 7765 * M_DATA fastpath message from a DLPI driver. 7766 * The address fields in the mhi structure points into the message, 7767 * thus the caller can't use those fields after freeing the message. 7768 * 7769 * We determine whether the packet received is a non-unicast packet 7770 * and in doing so, determine whether or not it is broadcast vs multicast. 7771 * For it to be a broadcast packet, we must have the appropriate mblk_t 7772 * hanging off the ill_t. If this is either not present or doesn't match 7773 * the destination mac address in the DL_UNITDATA_IND, the packet is deemed 7774 * to be multicast. Thus NICs that have no broadcast address (or no 7775 * capability for one, such as point to point links) cannot return as 7776 * the packet being broadcast. 7777 */ 7778 void 7779 ip_mdata_to_mhi(ill_t *ill, mblk_t *mp, struct mac_header_info_s *mhip) 7780 { 7781 mblk_t *bmp; 7782 struct ether_header *pether; 7783 7784 bzero(mhip, sizeof (struct mac_header_info_s)); 7785 7786 mhip->mhi_dsttype = MAC_ADDRTYPE_UNICAST; 7787 7788 pether = (struct ether_header *)((char *)mp->b_rptr 7789 - sizeof (struct ether_header)); 7790 7791 /* 7792 * Make sure the interface is an ethernet type, since we don't 7793 * know the header format for anything but Ethernet. Also make 7794 * sure we are pointing correctly above db_base. 7795 */ 7796 if (ill->ill_type != IFT_ETHER) 7797 return; 7798 7799 retry: 7800 if ((uchar_t *)pether < mp->b_datap->db_base) 7801 return; 7802 7803 /* Is there a VLAN tag? */ 7804 if (ill->ill_isv6) { 7805 if (pether->ether_type != htons(ETHERTYPE_IPV6)) { 7806 pether = (struct ether_header *)((char *)pether - 4); 7807 goto retry; 7808 } 7809 } else { 7810 if (pether->ether_type != htons(ETHERTYPE_IP)) { 7811 pether = (struct ether_header *)((char *)pether - 4); 7812 goto retry; 7813 } 7814 } 7815 mhip->mhi_daddr = (uchar_t *)&pether->ether_dhost; 7816 mhip->mhi_saddr = (uchar_t *)&pether->ether_shost; 7817 7818 if (!(mhip->mhi_daddr[0] & 0x01)) 7819 return; 7820 7821 /* Multicast or broadcast */ 7822 mhip->mhi_dsttype = MAC_ADDRTYPE_MULTICAST; 7823 7824 if ((bmp = ill->ill_bcast_mp) != NULL) { 7825 dl_unitdata_req_t *dlur; 7826 uint8_t *bphys_addr; 7827 uint_t addrlen; 7828 7829 dlur = (dl_unitdata_req_t *)bmp->b_rptr; 7830 addrlen = dlur->dl_dest_addr_length; 7831 if (ill->ill_sap_length < 0) { 7832 bphys_addr = (uchar_t *)dlur + 7833 dlur->dl_dest_addr_offset; 7834 addrlen += ill->ill_sap_length; 7835 } else { 7836 bphys_addr = (uchar_t *)dlur + 7837 dlur->dl_dest_addr_offset + 7838 ill->ill_sap_length; 7839 addrlen -= ill->ill_sap_length; 7840 } 7841 if (bcmp(mhip->mhi_daddr, bphys_addr, addrlen) == 0) 7842 mhip->mhi_dsttype = MAC_ADDRTYPE_BROADCAST; 7843 } 7844 } 7845 7846 /* 7847 * Handle anything but M_DATA messages 7848 * We see the DL_UNITDATA_IND which are part 7849 * of the data path, and also the other messages from the driver. 7850 */ 7851 void 7852 ip_rput_notdata(ill_t *ill, mblk_t *mp) 7853 { 7854 mblk_t *first_mp; 7855 struct iocblk *iocp; 7856 struct mac_header_info_s mhi; 7857 7858 switch (DB_TYPE(mp)) { 7859 case M_PROTO: 7860 case M_PCPROTO: { 7861 if (((dl_unitdata_ind_t *)mp->b_rptr)->dl_primitive != 7862 DL_UNITDATA_IND) { 7863 /* Go handle anything other than data elsewhere. */ 7864 ip_rput_dlpi(ill, mp); 7865 return; 7866 } 7867 7868 first_mp = mp; 7869 mp = first_mp->b_cont; 7870 first_mp->b_cont = NULL; 7871 7872 if (mp == NULL) { 7873 freeb(first_mp); 7874 return; 7875 } 7876 ip_dlur_to_mhi(ill, first_mp, &mhi); 7877 if (ill->ill_isv6) 7878 ip_input_v6(ill, NULL, mp, &mhi); 7879 else 7880 ip_input(ill, NULL, mp, &mhi); 7881 7882 /* Ditch the DLPI header. */ 7883 freeb(first_mp); 7884 return; 7885 } 7886 case M_IOCACK: 7887 iocp = (struct iocblk *)mp->b_rptr; 7888 switch (iocp->ioc_cmd) { 7889 case DL_IOC_HDR_INFO: 7890 ill_fastpath_ack(ill, mp); 7891 return; 7892 default: 7893 putnext(ill->ill_rq, mp); 7894 return; 7895 } 7896 /* FALLTHRU */ 7897 case M_ERROR: 7898 case M_HANGUP: 7899 mutex_enter(&ill->ill_lock); 7900 if (ill->ill_state_flags & ILL_CONDEMNED) { 7901 mutex_exit(&ill->ill_lock); 7902 freemsg(mp); 7903 return; 7904 } 7905 ill_refhold_locked(ill); 7906 mutex_exit(&ill->ill_lock); 7907 qwriter_ip(ill, ill->ill_rq, mp, ip_rput_other, CUR_OP, 7908 B_FALSE); 7909 return; 7910 case M_CTL: 7911 putnext(ill->ill_rq, mp); 7912 return; 7913 case M_IOCNAK: 7914 ip1dbg(("got iocnak ")); 7915 iocp = (struct iocblk *)mp->b_rptr; 7916 switch (iocp->ioc_cmd) { 7917 case DL_IOC_HDR_INFO: 7918 ip_rput_other(NULL, ill->ill_rq, mp, NULL); 7919 return; 7920 default: 7921 break; 7922 } 7923 /* FALLTHRU */ 7924 default: 7925 putnext(ill->ill_rq, mp); 7926 return; 7927 } 7928 } 7929 7930 /* Read side put procedure. Packets coming from the wire arrive here. */ 7931 void 7932 ip_rput(queue_t *q, mblk_t *mp) 7933 { 7934 ill_t *ill; 7935 union DL_primitives *dl; 7936 7937 ill = (ill_t *)q->q_ptr; 7938 7939 if (ill->ill_state_flags & (ILL_CONDEMNED | ILL_LL_SUBNET_PENDING)) { 7940 /* 7941 * If things are opening or closing, only accept high-priority 7942 * DLPI messages. (On open ill->ill_ipif has not yet been 7943 * created; on close, things hanging off the ill may have been 7944 * freed already.) 7945 */ 7946 dl = (union DL_primitives *)mp->b_rptr; 7947 if (DB_TYPE(mp) != M_PCPROTO || 7948 dl->dl_primitive == DL_UNITDATA_IND) { 7949 inet_freemsg(mp); 7950 return; 7951 } 7952 } 7953 if (DB_TYPE(mp) == M_DATA) { 7954 struct mac_header_info_s mhi; 7955 7956 ip_mdata_to_mhi(ill, mp, &mhi); 7957 ip_input(ill, NULL, mp, &mhi); 7958 } else { 7959 ip_rput_notdata(ill, mp); 7960 } 7961 } 7962 7963 /* 7964 * Move the information to a copy. 7965 */ 7966 mblk_t * 7967 ip_fix_dbref(mblk_t *mp, ip_recv_attr_t *ira) 7968 { 7969 mblk_t *mp1; 7970 ill_t *ill = ira->ira_ill; 7971 ip_stack_t *ipst = ill->ill_ipst; 7972 7973 IP_STAT(ipst, ip_db_ref); 7974 7975 /* Make sure we have ira_l2src before we loose the original mblk */ 7976 if (!(ira->ira_flags & IRAF_L2SRC_SET)) 7977 ip_setl2src(mp, ira, ira->ira_rill); 7978 7979 mp1 = copymsg(mp); 7980 if (mp1 == NULL) { 7981 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 7982 ip_drop_input("ipIfStatsInDiscards", mp, ill); 7983 freemsg(mp); 7984 return (NULL); 7985 } 7986 /* preserve the hardware checksum flags and data, if present */ 7987 if (DB_CKSUMFLAGS(mp) != 0) { 7988 DB_CKSUMFLAGS(mp1) = DB_CKSUMFLAGS(mp); 7989 DB_CKSUMSTART(mp1) = DB_CKSUMSTART(mp); 7990 DB_CKSUMSTUFF(mp1) = DB_CKSUMSTUFF(mp); 7991 DB_CKSUMEND(mp1) = DB_CKSUMEND(mp); 7992 DB_CKSUM16(mp1) = DB_CKSUM16(mp); 7993 } 7994 freemsg(mp); 7995 return (mp1); 7996 } 7997 7998 static void 7999 ip_dlpi_error(ill_t *ill, t_uscalar_t prim, t_uscalar_t dl_err, 8000 t_uscalar_t err) 8001 { 8002 if (dl_err == DL_SYSERR) { 8003 (void) mi_strlog(ill->ill_rq, 1, SL_CONSOLE|SL_ERROR|SL_TRACE, 8004 "%s: %s failed: DL_SYSERR (errno %u)\n", 8005 ill->ill_name, dl_primstr(prim), err); 8006 return; 8007 } 8008 8009 (void) mi_strlog(ill->ill_rq, 1, SL_CONSOLE|SL_ERROR|SL_TRACE, 8010 "%s: %s failed: %s\n", ill->ill_name, dl_primstr(prim), 8011 dl_errstr(dl_err)); 8012 } 8013 8014 /* 8015 * ip_rput_dlpi is called by ip_rput to handle all DLPI messages other 8016 * than DL_UNITDATA_IND messages. If we need to process this message 8017 * exclusively, we call qwriter_ip, in which case we also need to call 8018 * ill_refhold before that, since qwriter_ip does an ill_refrele. 8019 */ 8020 void 8021 ip_rput_dlpi(ill_t *ill, mblk_t *mp) 8022 { 8023 dl_ok_ack_t *dloa = (dl_ok_ack_t *)mp->b_rptr; 8024 dl_error_ack_t *dlea = (dl_error_ack_t *)dloa; 8025 queue_t *q = ill->ill_rq; 8026 t_uscalar_t prim = dloa->dl_primitive; 8027 t_uscalar_t reqprim = DL_PRIM_INVAL; 8028 8029 DTRACE_PROBE3(ill__dlpi, char *, "ip_rput_dlpi", 8030 char *, dl_primstr(prim), ill_t *, ill); 8031 ip1dbg(("ip_rput_dlpi")); 8032 8033 /* 8034 * If we received an ACK but didn't send a request for it, then it 8035 * can't be part of any pending operation; discard up-front. 8036 */ 8037 switch (prim) { 8038 case DL_ERROR_ACK: 8039 reqprim = dlea->dl_error_primitive; 8040 ip2dbg(("ip_rput_dlpi(%s): DL_ERROR_ACK for %s (0x%x): %s " 8041 "(0x%x), unix %u\n", ill->ill_name, dl_primstr(reqprim), 8042 reqprim, dl_errstr(dlea->dl_errno), dlea->dl_errno, 8043 dlea->dl_unix_errno)); 8044 break; 8045 case DL_OK_ACK: 8046 reqprim = dloa->dl_correct_primitive; 8047 break; 8048 case DL_INFO_ACK: 8049 reqprim = DL_INFO_REQ; 8050 break; 8051 case DL_BIND_ACK: 8052 reqprim = DL_BIND_REQ; 8053 break; 8054 case DL_PHYS_ADDR_ACK: 8055 reqprim = DL_PHYS_ADDR_REQ; 8056 break; 8057 case DL_NOTIFY_ACK: 8058 reqprim = DL_NOTIFY_REQ; 8059 break; 8060 case DL_CAPABILITY_ACK: 8061 reqprim = DL_CAPABILITY_REQ; 8062 break; 8063 } 8064 8065 if (prim != DL_NOTIFY_IND) { 8066 if (reqprim == DL_PRIM_INVAL || 8067 !ill_dlpi_pending(ill, reqprim)) { 8068 /* Not a DLPI message we support or expected */ 8069 freemsg(mp); 8070 return; 8071 } 8072 ip1dbg(("ip_rput: received %s for %s\n", dl_primstr(prim), 8073 dl_primstr(reqprim))); 8074 } 8075 8076 switch (reqprim) { 8077 case DL_UNBIND_REQ: 8078 /* 8079 * NOTE: we mark the unbind as complete even if we got a 8080 * DL_ERROR_ACK, since there's not much else we can do. 8081 */ 8082 mutex_enter(&ill->ill_lock); 8083 ill->ill_state_flags &= ~ILL_DL_UNBIND_IN_PROGRESS; 8084 cv_signal(&ill->ill_cv); 8085 mutex_exit(&ill->ill_lock); 8086 break; 8087 8088 case DL_ENABMULTI_REQ: 8089 if (prim == DL_OK_ACK) { 8090 if (ill->ill_dlpi_multicast_state == IDS_INPROGRESS) 8091 ill->ill_dlpi_multicast_state = IDS_OK; 8092 } 8093 break; 8094 } 8095 8096 /* 8097 * The message is one we're waiting for (or DL_NOTIFY_IND), but we 8098 * need to become writer to continue to process it. Because an 8099 * exclusive operation doesn't complete until replies to all queued 8100 * DLPI messages have been received, we know we're in the middle of an 8101 * exclusive operation and pass CUR_OP (except for DL_NOTIFY_IND). 8102 * 8103 * As required by qwriter_ip(), we refhold the ill; it will refrele. 8104 * Since this is on the ill stream we unconditionally bump up the 8105 * refcount without doing ILL_CAN_LOOKUP(). 8106 */ 8107 ill_refhold(ill); 8108 if (prim == DL_NOTIFY_IND) 8109 qwriter_ip(ill, q, mp, ip_rput_dlpi_writer, NEW_OP, B_FALSE); 8110 else 8111 qwriter_ip(ill, q, mp, ip_rput_dlpi_writer, CUR_OP, B_FALSE); 8112 } 8113 8114 /* 8115 * Handling of DLPI messages that require exclusive access to the ipsq. 8116 * 8117 * Need to do ipsq_pending_mp_get on ioctl completion, which could 8118 * happen here. (along with mi_copy_done) 8119 */ 8120 /* ARGSUSED */ 8121 static void 8122 ip_rput_dlpi_writer(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 8123 { 8124 dl_ok_ack_t *dloa = (dl_ok_ack_t *)mp->b_rptr; 8125 dl_error_ack_t *dlea = (dl_error_ack_t *)dloa; 8126 int err = 0; 8127 ill_t *ill = (ill_t *)q->q_ptr; 8128 ipif_t *ipif = NULL; 8129 mblk_t *mp1 = NULL; 8130 conn_t *connp = NULL; 8131 t_uscalar_t paddrreq; 8132 mblk_t *mp_hw; 8133 boolean_t success; 8134 boolean_t ioctl_aborted = B_FALSE; 8135 boolean_t log = B_TRUE; 8136 8137 DTRACE_PROBE3(ill__dlpi, char *, "ip_rput_dlpi_writer", 8138 char *, dl_primstr(dloa->dl_primitive), ill_t *, ill); 8139 8140 ip1dbg(("ip_rput_dlpi_writer ..")); 8141 ASSERT(ipsq->ipsq_xop == ill->ill_phyint->phyint_ipsq->ipsq_xop); 8142 ASSERT(IAM_WRITER_ILL(ill)); 8143 8144 ipif = ipsq->ipsq_xop->ipx_pending_ipif; 8145 /* 8146 * The current ioctl could have been aborted by the user and a new 8147 * ioctl to bring up another ill could have started. We could still 8148 * get a response from the driver later. 8149 */ 8150 if (ipif != NULL && ipif->ipif_ill != ill) 8151 ioctl_aborted = B_TRUE; 8152 8153 switch (dloa->dl_primitive) { 8154 case DL_ERROR_ACK: 8155 ip1dbg(("ip_rput_dlpi_writer: got DL_ERROR_ACK for %s\n", 8156 dl_primstr(dlea->dl_error_primitive))); 8157 8158 DTRACE_PROBE3(ill__dlpi, char *, "ip_rput_dlpi_writer error", 8159 char *, dl_primstr(dlea->dl_error_primitive), 8160 ill_t *, ill); 8161 8162 switch (dlea->dl_error_primitive) { 8163 case DL_DISABMULTI_REQ: 8164 ill_dlpi_done(ill, dlea->dl_error_primitive); 8165 break; 8166 case DL_PROMISCON_REQ: 8167 case DL_PROMISCOFF_REQ: 8168 case DL_UNBIND_REQ: 8169 case DL_ATTACH_REQ: 8170 case DL_INFO_REQ: 8171 ill_dlpi_done(ill, dlea->dl_error_primitive); 8172 break; 8173 case DL_NOTIFY_REQ: 8174 ill_dlpi_done(ill, DL_NOTIFY_REQ); 8175 log = B_FALSE; 8176 break; 8177 case DL_PHYS_ADDR_REQ: 8178 /* 8179 * For IPv6 only, there are two additional 8180 * phys_addr_req's sent to the driver to get the 8181 * IPv6 token and lla. This allows IP to acquire 8182 * the hardware address format for a given interface 8183 * without having built in knowledge of the hardware 8184 * address. ill_phys_addr_pend keeps track of the last 8185 * DL_PAR sent so we know which response we are 8186 * dealing with. ill_dlpi_done will update 8187 * ill_phys_addr_pend when it sends the next req. 8188 * We don't complete the IOCTL until all three DL_PARs 8189 * have been attempted, so set *_len to 0 and break. 8190 */ 8191 paddrreq = ill->ill_phys_addr_pend; 8192 ill_dlpi_done(ill, DL_PHYS_ADDR_REQ); 8193 if (paddrreq == DL_IPV6_TOKEN) { 8194 ill->ill_token_length = 0; 8195 log = B_FALSE; 8196 break; 8197 } else if (paddrreq == DL_IPV6_LINK_LAYER_ADDR) { 8198 ill->ill_nd_lla_len = 0; 8199 log = B_FALSE; 8200 break; 8201 } 8202 /* 8203 * Something went wrong with the DL_PHYS_ADDR_REQ. 8204 * We presumably have an IOCTL hanging out waiting 8205 * for completion. Find it and complete the IOCTL 8206 * with the error noted. 8207 * However, ill_dl_phys was called on an ill queue 8208 * (from SIOCSLIFNAME), thus conn_pending_ill is not 8209 * set. But the ioctl is known to be pending on ill_wq. 8210 */ 8211 if (!ill->ill_ifname_pending) 8212 break; 8213 ill->ill_ifname_pending = 0; 8214 if (!ioctl_aborted) 8215 mp1 = ipsq_pending_mp_get(ipsq, &connp); 8216 if (mp1 != NULL) { 8217 /* 8218 * This operation (SIOCSLIFNAME) must have 8219 * happened on the ill. Assert there is no conn 8220 */ 8221 ASSERT(connp == NULL); 8222 q = ill->ill_wq; 8223 } 8224 break; 8225 case DL_BIND_REQ: 8226 ill_dlpi_done(ill, DL_BIND_REQ); 8227 if (ill->ill_ifname_pending) 8228 break; 8229 mutex_enter(&ill->ill_lock); 8230 ill->ill_state_flags &= ~ILL_DOWN_IN_PROGRESS; 8231 mutex_exit(&ill->ill_lock); 8232 /* 8233 * Something went wrong with the bind. We presumably 8234 * have an IOCTL hanging out waiting for completion. 8235 * Find it, take down the interface that was coming 8236 * up, and complete the IOCTL with the error noted. 8237 */ 8238 if (!ioctl_aborted) 8239 mp1 = ipsq_pending_mp_get(ipsq, &connp); 8240 if (mp1 != NULL) { 8241 /* 8242 * This might be a result of a DL_NOTE_REPLUMB 8243 * notification. In that case, connp is NULL. 8244 */ 8245 if (connp != NULL) 8246 q = CONNP_TO_WQ(connp); 8247 8248 (void) ipif_down(ipif, NULL, NULL); 8249 /* error is set below the switch */ 8250 } 8251 break; 8252 case DL_ENABMULTI_REQ: 8253 ill_dlpi_done(ill, DL_ENABMULTI_REQ); 8254 8255 if (ill->ill_dlpi_multicast_state == IDS_INPROGRESS) 8256 ill->ill_dlpi_multicast_state = IDS_FAILED; 8257 if (ill->ill_dlpi_multicast_state == IDS_FAILED) { 8258 8259 printf("ip: joining multicasts failed (%d)" 8260 " on %s - will use link layer " 8261 "broadcasts for multicast\n", 8262 dlea->dl_errno, ill->ill_name); 8263 8264 /* 8265 * Set up for multi_bcast; We are the 8266 * writer, so ok to access ill->ill_ipif 8267 * without any lock. 8268 */ 8269 mutex_enter(&ill->ill_phyint->phyint_lock); 8270 ill->ill_phyint->phyint_flags |= 8271 PHYI_MULTI_BCAST; 8272 mutex_exit(&ill->ill_phyint->phyint_lock); 8273 8274 } 8275 freemsg(mp); /* Don't want to pass this up */ 8276 return; 8277 case DL_CAPABILITY_REQ: 8278 ip1dbg(("ip_rput_dlpi_writer: got DL_ERROR_ACK for " 8279 "DL_CAPABILITY REQ\n")); 8280 if (ill->ill_dlpi_capab_state == IDCS_PROBE_SENT) 8281 ill->ill_dlpi_capab_state = IDCS_FAILED; 8282 ill_capability_done(ill); 8283 freemsg(mp); 8284 return; 8285 } 8286 /* 8287 * Note the error for IOCTL completion (mp1 is set when 8288 * ready to complete ioctl). If ill_ifname_pending_err is 8289 * set, an error occured during plumbing (ill_ifname_pending), 8290 * so we want to report that error. 8291 * 8292 * NOTE: there are two addtional DL_PHYS_ADDR_REQ's 8293 * (DL_IPV6_TOKEN and DL_IPV6_LINK_LAYER_ADDR) that are 8294 * expected to get errack'd if the driver doesn't support 8295 * these flags (e.g. ethernet). log will be set to B_FALSE 8296 * if these error conditions are encountered. 8297 */ 8298 if (mp1 != NULL) { 8299 if (ill->ill_ifname_pending_err != 0) { 8300 err = ill->ill_ifname_pending_err; 8301 ill->ill_ifname_pending_err = 0; 8302 } else { 8303 err = dlea->dl_unix_errno ? 8304 dlea->dl_unix_errno : ENXIO; 8305 } 8306 /* 8307 * If we're plumbing an interface and an error hasn't already 8308 * been saved, set ill_ifname_pending_err to the error passed 8309 * up. Ignore the error if log is B_FALSE (see comment above). 8310 */ 8311 } else if (log && ill->ill_ifname_pending && 8312 ill->ill_ifname_pending_err == 0) { 8313 ill->ill_ifname_pending_err = dlea->dl_unix_errno ? 8314 dlea->dl_unix_errno : ENXIO; 8315 } 8316 8317 if (log) 8318 ip_dlpi_error(ill, dlea->dl_error_primitive, 8319 dlea->dl_errno, dlea->dl_unix_errno); 8320 break; 8321 case DL_CAPABILITY_ACK: 8322 ill_capability_ack(ill, mp); 8323 /* 8324 * The message has been handed off to ill_capability_ack 8325 * and must not be freed below 8326 */ 8327 mp = NULL; 8328 break; 8329 8330 case DL_INFO_ACK: 8331 /* Call a routine to handle this one. */ 8332 ill_dlpi_done(ill, DL_INFO_REQ); 8333 ip_ll_subnet_defaults(ill, mp); 8334 ASSERT(!MUTEX_HELD(&ill->ill_phyint->phyint_ipsq->ipsq_lock)); 8335 return; 8336 case DL_BIND_ACK: 8337 /* 8338 * We should have an IOCTL waiting on this unless 8339 * sent by ill_dl_phys, in which case just return 8340 */ 8341 ill_dlpi_done(ill, DL_BIND_REQ); 8342 8343 if (ill->ill_ifname_pending) { 8344 DTRACE_PROBE2(ip__rput__dlpi__ifname__pending, 8345 ill_t *, ill, mblk_t *, mp); 8346 break; 8347 } 8348 mutex_enter(&ill->ill_lock); 8349 ill->ill_dl_up = 1; 8350 ill->ill_state_flags &= ~ILL_DOWN_IN_PROGRESS; 8351 mutex_exit(&ill->ill_lock); 8352 8353 if (!ioctl_aborted) 8354 mp1 = ipsq_pending_mp_get(ipsq, &connp); 8355 if (mp1 == NULL) { 8356 DTRACE_PROBE1(ip__rput__dlpi__no__mblk, ill_t *, ill); 8357 break; 8358 } 8359 /* 8360 * mp1 was added by ill_dl_up(). if that is a result of 8361 * a DL_NOTE_REPLUMB notification, connp could be NULL. 8362 */ 8363 if (connp != NULL) 8364 q = CONNP_TO_WQ(connp); 8365 /* 8366 * We are exclusive. So nothing can change even after 8367 * we get the pending mp. 8368 */ 8369 ip1dbg(("ip_rput_dlpi: bind_ack %s\n", ill->ill_name)); 8370 DTRACE_PROBE1(ip__rput__dlpi__bind__ack, ill_t *, ill); 8371 ill_nic_event_dispatch(ill, 0, NE_UP, NULL, 0); 8372 8373 /* 8374 * Now bring up the resolver; when that is complete, we'll 8375 * create IREs. Note that we intentionally mirror what 8376 * ipif_up() would have done, because we got here by way of 8377 * ill_dl_up(), which stopped ipif_up()'s processing. 8378 */ 8379 if (ill->ill_isv6) { 8380 /* 8381 * v6 interfaces. 8382 * Unlike ARP which has to do another bind 8383 * and attach, once we get here we are 8384 * done with NDP 8385 */ 8386 (void) ipif_resolver_up(ipif, Res_act_initial); 8387 if ((err = ipif_ndp_up(ipif, B_TRUE)) == 0) 8388 err = ipif_up_done_v6(ipif); 8389 } else if (ill->ill_net_type == IRE_IF_RESOLVER) { 8390 /* 8391 * ARP and other v4 external resolvers. 8392 * Leave the pending mblk intact so that 8393 * the ioctl completes in ip_rput(). 8394 */ 8395 if (connp != NULL) 8396 mutex_enter(&connp->conn_lock); 8397 mutex_enter(&ill->ill_lock); 8398 success = ipsq_pending_mp_add(connp, ipif, q, mp1, 0); 8399 mutex_exit(&ill->ill_lock); 8400 if (connp != NULL) 8401 mutex_exit(&connp->conn_lock); 8402 if (success) { 8403 err = ipif_resolver_up(ipif, Res_act_initial); 8404 if (err == EINPROGRESS) { 8405 freemsg(mp); 8406 return; 8407 } 8408 mp1 = ipsq_pending_mp_get(ipsq, &connp); 8409 } else { 8410 /* The conn has started closing */ 8411 err = EINTR; 8412 } 8413 } else { 8414 /* 8415 * This one is complete. Reply to pending ioctl. 8416 */ 8417 (void) ipif_resolver_up(ipif, Res_act_initial); 8418 err = ipif_up_done(ipif); 8419 } 8420 8421 if ((err == 0) && (ill->ill_up_ipifs)) { 8422 err = ill_up_ipifs(ill, q, mp1); 8423 if (err == EINPROGRESS) { 8424 freemsg(mp); 8425 return; 8426 } 8427 } 8428 8429 /* 8430 * If we have a moved ipif to bring up, and everything has 8431 * succeeded to this point, bring it up on the IPMP ill. 8432 * Otherwise, leave it down -- the admin can try to bring it 8433 * up by hand if need be. 8434 */ 8435 if (ill->ill_move_ipif != NULL) { 8436 if (err != 0) { 8437 ill->ill_move_ipif = NULL; 8438 } else { 8439 ipif = ill->ill_move_ipif; 8440 ill->ill_move_ipif = NULL; 8441 err = ipif_up(ipif, q, mp1); 8442 if (err == EINPROGRESS) { 8443 freemsg(mp); 8444 return; 8445 } 8446 } 8447 } 8448 break; 8449 8450 case DL_NOTIFY_IND: { 8451 dl_notify_ind_t *notify = (dl_notify_ind_t *)mp->b_rptr; 8452 uint_t orig_mtu; 8453 8454 switch (notify->dl_notification) { 8455 case DL_NOTE_PHYS_ADDR: 8456 err = ill_set_phys_addr(ill, mp); 8457 break; 8458 8459 case DL_NOTE_REPLUMB: 8460 /* 8461 * Directly return after calling ill_replumb(). 8462 * Note that we should not free mp as it is reused 8463 * in the ill_replumb() function. 8464 */ 8465 err = ill_replumb(ill, mp); 8466 return; 8467 8468 case DL_NOTE_FASTPATH_FLUSH: 8469 nce_flush(ill, B_FALSE); 8470 break; 8471 8472 case DL_NOTE_SDU_SIZE: 8473 /* 8474 * The dce and fragmentation code can cope with 8475 * this changing while packets are being sent. 8476 * When packets are sent ip_output will discover 8477 * a change. 8478 * 8479 * Change the MTU size of the interface. 8480 */ 8481 mutex_enter(&ill->ill_lock); 8482 ill->ill_current_frag = (uint_t)notify->dl_data; 8483 if (ill->ill_current_frag > ill->ill_max_frag) 8484 ill->ill_max_frag = ill->ill_current_frag; 8485 8486 orig_mtu = ill->ill_mtu; 8487 if (!(ill->ill_flags & ILLF_FIXEDMTU)) { 8488 ill->ill_mtu = ill->ill_current_frag; 8489 8490 /* 8491 * If ill_user_mtu was set (via 8492 * SIOCSLIFLNKINFO), clamp ill_mtu at it. 8493 */ 8494 if (ill->ill_user_mtu != 0 && 8495 ill->ill_user_mtu < ill->ill_mtu) 8496 ill->ill_mtu = ill->ill_user_mtu; 8497 8498 if (ill->ill_isv6) { 8499 if (ill->ill_mtu < IPV6_MIN_MTU) 8500 ill->ill_mtu = IPV6_MIN_MTU; 8501 } else { 8502 if (ill->ill_mtu < IP_MIN_MTU) 8503 ill->ill_mtu = IP_MIN_MTU; 8504 } 8505 } 8506 mutex_exit(&ill->ill_lock); 8507 /* 8508 * Make sure all dce_generation checks find out 8509 * that ill_mtu has changed. 8510 */ 8511 if (orig_mtu != ill->ill_mtu) { 8512 dce_increment_all_generations(ill->ill_isv6, 8513 ill->ill_ipst); 8514 } 8515 8516 /* 8517 * Refresh IPMP meta-interface MTU if necessary. 8518 */ 8519 if (IS_UNDER_IPMP(ill)) 8520 ipmp_illgrp_refresh_mtu(ill->ill_grp); 8521 break; 8522 8523 case DL_NOTE_LINK_UP: 8524 case DL_NOTE_LINK_DOWN: { 8525 /* 8526 * We are writer. ill / phyint / ipsq assocs stable. 8527 * The RUNNING flag reflects the state of the link. 8528 */ 8529 phyint_t *phyint = ill->ill_phyint; 8530 uint64_t new_phyint_flags; 8531 boolean_t changed = B_FALSE; 8532 boolean_t went_up; 8533 8534 went_up = notify->dl_notification == DL_NOTE_LINK_UP; 8535 mutex_enter(&phyint->phyint_lock); 8536 8537 new_phyint_flags = went_up ? 8538 phyint->phyint_flags | PHYI_RUNNING : 8539 phyint->phyint_flags & ~PHYI_RUNNING; 8540 8541 if (IS_IPMP(ill)) { 8542 new_phyint_flags = went_up ? 8543 new_phyint_flags & ~PHYI_FAILED : 8544 new_phyint_flags | PHYI_FAILED; 8545 } 8546 8547 if (new_phyint_flags != phyint->phyint_flags) { 8548 phyint->phyint_flags = new_phyint_flags; 8549 changed = B_TRUE; 8550 } 8551 mutex_exit(&phyint->phyint_lock); 8552 /* 8553 * ill_restart_dad handles the DAD restart and routing 8554 * socket notification logic. 8555 */ 8556 if (changed) { 8557 ill_restart_dad(phyint->phyint_illv4, went_up); 8558 ill_restart_dad(phyint->phyint_illv6, went_up); 8559 } 8560 break; 8561 } 8562 case DL_NOTE_PROMISC_ON_PHYS: { 8563 phyint_t *phyint = ill->ill_phyint; 8564 8565 mutex_enter(&phyint->phyint_lock); 8566 phyint->phyint_flags |= PHYI_PROMISC; 8567 mutex_exit(&phyint->phyint_lock); 8568 break; 8569 } 8570 case DL_NOTE_PROMISC_OFF_PHYS: { 8571 phyint_t *phyint = ill->ill_phyint; 8572 8573 mutex_enter(&phyint->phyint_lock); 8574 phyint->phyint_flags &= ~PHYI_PROMISC; 8575 mutex_exit(&phyint->phyint_lock); 8576 break; 8577 } 8578 case DL_NOTE_CAPAB_RENEG: 8579 /* 8580 * Something changed on the driver side. 8581 * It wants us to renegotiate the capabilities 8582 * on this ill. One possible cause is the aggregation 8583 * interface under us where a port got added or 8584 * went away. 8585 * 8586 * If the capability negotiation is already done 8587 * or is in progress, reset the capabilities and 8588 * mark the ill's ill_capab_reneg to be B_TRUE, 8589 * so that when the ack comes back, we can start 8590 * the renegotiation process. 8591 * 8592 * Note that if ill_capab_reneg is already B_TRUE 8593 * (ill_dlpi_capab_state is IDS_UNKNOWN in this case), 8594 * the capability resetting request has been sent 8595 * and the renegotiation has not been started yet; 8596 * nothing needs to be done in this case. 8597 */ 8598 ipsq_current_start(ipsq, ill->ill_ipif, 0); 8599 ill_capability_reset(ill, B_TRUE); 8600 ipsq_current_finish(ipsq); 8601 break; 8602 8603 case DL_NOTE_ALLOWED_IPS: 8604 ill_set_allowed_ips(ill, mp); 8605 break; 8606 default: 8607 ip0dbg(("ip_rput_dlpi_writer: unknown notification " 8608 "type 0x%x for DL_NOTIFY_IND\n", 8609 notify->dl_notification)); 8610 break; 8611 } 8612 8613 /* 8614 * As this is an asynchronous operation, we 8615 * should not call ill_dlpi_done 8616 */ 8617 break; 8618 } 8619 case DL_NOTIFY_ACK: { 8620 dl_notify_ack_t *noteack = (dl_notify_ack_t *)mp->b_rptr; 8621 8622 if (noteack->dl_notifications & DL_NOTE_LINK_UP) 8623 ill->ill_note_link = 1; 8624 ill_dlpi_done(ill, DL_NOTIFY_REQ); 8625 break; 8626 } 8627 case DL_PHYS_ADDR_ACK: { 8628 /* 8629 * As part of plumbing the interface via SIOCSLIFNAME, 8630 * ill_dl_phys() will queue a series of DL_PHYS_ADDR_REQs, 8631 * whose answers we receive here. As each answer is received, 8632 * we call ill_dlpi_done() to dispatch the next request as 8633 * we're processing the current one. Once all answers have 8634 * been received, we use ipsq_pending_mp_get() to dequeue the 8635 * outstanding IOCTL and reply to it. (Because ill_dl_phys() 8636 * is invoked from an ill queue, conn_oper_pending_ill is not 8637 * available, but we know the ioctl is pending on ill_wq.) 8638 */ 8639 uint_t paddrlen, paddroff; 8640 uint8_t *addr; 8641 8642 paddrreq = ill->ill_phys_addr_pend; 8643 paddrlen = ((dl_phys_addr_ack_t *)mp->b_rptr)->dl_addr_length; 8644 paddroff = ((dl_phys_addr_ack_t *)mp->b_rptr)->dl_addr_offset; 8645 addr = mp->b_rptr + paddroff; 8646 8647 ill_dlpi_done(ill, DL_PHYS_ADDR_REQ); 8648 if (paddrreq == DL_IPV6_TOKEN) { 8649 /* 8650 * bcopy to low-order bits of ill_token 8651 * 8652 * XXX Temporary hack - currently, all known tokens 8653 * are 64 bits, so I'll cheat for the moment. 8654 */ 8655 bcopy(addr, &ill->ill_token.s6_addr32[2], paddrlen); 8656 ill->ill_token_length = paddrlen; 8657 break; 8658 } else if (paddrreq == DL_IPV6_LINK_LAYER_ADDR) { 8659 ASSERT(ill->ill_nd_lla_mp == NULL); 8660 ill_set_ndmp(ill, mp, paddroff, paddrlen); 8661 mp = NULL; 8662 break; 8663 } else if (paddrreq == DL_CURR_DEST_ADDR) { 8664 ASSERT(ill->ill_dest_addr_mp == NULL); 8665 ill->ill_dest_addr_mp = mp; 8666 ill->ill_dest_addr = addr; 8667 mp = NULL; 8668 if (ill->ill_isv6) { 8669 ill_setdesttoken(ill); 8670 ipif_setdestlinklocal(ill->ill_ipif); 8671 } 8672 break; 8673 } 8674 8675 ASSERT(paddrreq == DL_CURR_PHYS_ADDR); 8676 ASSERT(ill->ill_phys_addr_mp == NULL); 8677 if (!ill->ill_ifname_pending) 8678 break; 8679 ill->ill_ifname_pending = 0; 8680 if (!ioctl_aborted) 8681 mp1 = ipsq_pending_mp_get(ipsq, &connp); 8682 if (mp1 != NULL) { 8683 ASSERT(connp == NULL); 8684 q = ill->ill_wq; 8685 } 8686 /* 8687 * If any error acks received during the plumbing sequence, 8688 * ill_ifname_pending_err will be set. Break out and send up 8689 * the error to the pending ioctl. 8690 */ 8691 if (ill->ill_ifname_pending_err != 0) { 8692 err = ill->ill_ifname_pending_err; 8693 ill->ill_ifname_pending_err = 0; 8694 break; 8695 } 8696 8697 ill->ill_phys_addr_mp = mp; 8698 ill->ill_phys_addr = (paddrlen == 0 ? NULL : addr); 8699 mp = NULL; 8700 8701 /* 8702 * If paddrlen or ill_phys_addr_length is zero, the DLPI 8703 * provider doesn't support physical addresses. We check both 8704 * paddrlen and ill_phys_addr_length because sppp (PPP) does 8705 * not have physical addresses, but historically adversises a 8706 * physical address length of 0 in its DL_INFO_ACK, but 6 in 8707 * its DL_PHYS_ADDR_ACK. 8708 */ 8709 if (paddrlen == 0 || ill->ill_phys_addr_length == 0) { 8710 ill->ill_phys_addr = NULL; 8711 } else if (paddrlen != ill->ill_phys_addr_length) { 8712 ip0dbg(("DL_PHYS_ADDR_ACK: got addrlen %d, expected %d", 8713 paddrlen, ill->ill_phys_addr_length)); 8714 err = EINVAL; 8715 break; 8716 } 8717 8718 if (ill->ill_nd_lla_mp == NULL) { 8719 if ((mp_hw = copyb(ill->ill_phys_addr_mp)) == NULL) { 8720 err = ENOMEM; 8721 break; 8722 } 8723 ill_set_ndmp(ill, mp_hw, paddroff, paddrlen); 8724 } 8725 8726 if (ill->ill_isv6) { 8727 ill_setdefaulttoken(ill); 8728 ipif_setlinklocal(ill->ill_ipif); 8729 } 8730 break; 8731 } 8732 case DL_OK_ACK: 8733 ip2dbg(("DL_OK_ACK %s (0x%x)\n", 8734 dl_primstr((int)dloa->dl_correct_primitive), 8735 dloa->dl_correct_primitive)); 8736 DTRACE_PROBE3(ill__dlpi, char *, "ip_rput_dlpi_writer ok", 8737 char *, dl_primstr(dloa->dl_correct_primitive), 8738 ill_t *, ill); 8739 8740 switch (dloa->dl_correct_primitive) { 8741 case DL_ENABMULTI_REQ: 8742 case DL_DISABMULTI_REQ: 8743 ill_dlpi_done(ill, dloa->dl_correct_primitive); 8744 break; 8745 case DL_PROMISCON_REQ: 8746 case DL_PROMISCOFF_REQ: 8747 case DL_UNBIND_REQ: 8748 case DL_ATTACH_REQ: 8749 ill_dlpi_done(ill, dloa->dl_correct_primitive); 8750 break; 8751 } 8752 break; 8753 default: 8754 break; 8755 } 8756 8757 freemsg(mp); 8758 if (mp1 == NULL) 8759 return; 8760 8761 /* 8762 * The operation must complete without EINPROGRESS since 8763 * ipsq_pending_mp_get() has removed the mblk (mp1). Otherwise, 8764 * the operation will be stuck forever inside the IPSQ. 8765 */ 8766 ASSERT(err != EINPROGRESS); 8767 8768 DTRACE_PROBE4(ipif__ioctl, char *, "ip_rput_dlpi_writer finish", 8769 int, ipsq->ipsq_xop->ipx_current_ioctl, ill_t *, ill, 8770 ipif_t *, NULL); 8771 8772 switch (ipsq->ipsq_xop->ipx_current_ioctl) { 8773 case 0: 8774 ipsq_current_finish(ipsq); 8775 break; 8776 8777 case SIOCSLIFNAME: 8778 case IF_UNITSEL: { 8779 ill_t *ill_other = ILL_OTHER(ill); 8780 8781 /* 8782 * If SIOCSLIFNAME or IF_UNITSEL is about to succeed, and the 8783 * ill has a peer which is in an IPMP group, then place ill 8784 * into the same group. One catch: although ifconfig plumbs 8785 * the appropriate IPMP meta-interface prior to plumbing this 8786 * ill, it is possible for multiple ifconfig applications to 8787 * race (or for another application to adjust plumbing), in 8788 * which case the IPMP meta-interface we need will be missing. 8789 * If so, kick the phyint out of the group. 8790 */ 8791 if (err == 0 && ill_other != NULL && IS_UNDER_IPMP(ill_other)) { 8792 ipmp_grp_t *grp = ill->ill_phyint->phyint_grp; 8793 ipmp_illgrp_t *illg; 8794 8795 illg = ill->ill_isv6 ? grp->gr_v6 : grp->gr_v4; 8796 if (illg == NULL) 8797 ipmp_phyint_leave_grp(ill->ill_phyint); 8798 else 8799 ipmp_ill_join_illgrp(ill, illg); 8800 } 8801 8802 if (ipsq->ipsq_xop->ipx_current_ioctl == IF_UNITSEL) 8803 ip_ioctl_finish(q, mp1, err, NO_COPYOUT, ipsq); 8804 else 8805 ip_ioctl_finish(q, mp1, err, COPYOUT, ipsq); 8806 break; 8807 } 8808 case SIOCLIFADDIF: 8809 ip_ioctl_finish(q, mp1, err, COPYOUT, ipsq); 8810 break; 8811 8812 default: 8813 ip_ioctl_finish(q, mp1, err, NO_COPYOUT, ipsq); 8814 break; 8815 } 8816 } 8817 8818 /* 8819 * ip_rput_other is called by ip_rput to handle messages modifying the global 8820 * state in IP. If 'ipsq' is non-NULL, caller is writer on it. 8821 */ 8822 /* ARGSUSED */ 8823 void 8824 ip_rput_other(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 8825 { 8826 ill_t *ill = q->q_ptr; 8827 struct iocblk *iocp; 8828 8829 ip1dbg(("ip_rput_other ")); 8830 if (ipsq != NULL) { 8831 ASSERT(IAM_WRITER_IPSQ(ipsq)); 8832 ASSERT(ipsq->ipsq_xop == 8833 ill->ill_phyint->phyint_ipsq->ipsq_xop); 8834 } 8835 8836 switch (mp->b_datap->db_type) { 8837 case M_ERROR: 8838 case M_HANGUP: 8839 /* 8840 * The device has a problem. We force the ILL down. It can 8841 * be brought up again manually using SIOCSIFFLAGS (via 8842 * ifconfig or equivalent). 8843 */ 8844 ASSERT(ipsq != NULL); 8845 if (mp->b_rptr < mp->b_wptr) 8846 ill->ill_error = (int)(*mp->b_rptr & 0xFF); 8847 if (ill->ill_error == 0) 8848 ill->ill_error = ENXIO; 8849 if (!ill_down_start(q, mp)) 8850 return; 8851 ipif_all_down_tail(ipsq, q, mp, NULL); 8852 break; 8853 case M_IOCNAK: { 8854 iocp = (struct iocblk *)mp->b_rptr; 8855 8856 ASSERT(iocp->ioc_cmd == DL_IOC_HDR_INFO); 8857 /* 8858 * If this was the first attempt, turn off the fastpath 8859 * probing. 8860 */ 8861 mutex_enter(&ill->ill_lock); 8862 if (ill->ill_dlpi_fastpath_state == IDS_INPROGRESS) { 8863 ill->ill_dlpi_fastpath_state = IDS_FAILED; 8864 mutex_exit(&ill->ill_lock); 8865 /* 8866 * don't flush the nce_t entries: we use them 8867 * as an index to the ncec itself. 8868 */ 8869 ip1dbg(("ip_rput: DLPI fastpath off on interface %s\n", 8870 ill->ill_name)); 8871 } else { 8872 mutex_exit(&ill->ill_lock); 8873 } 8874 freemsg(mp); 8875 break; 8876 } 8877 default: 8878 ASSERT(0); 8879 break; 8880 } 8881 } 8882 8883 /* 8884 * Update any source route, record route or timestamp options 8885 * When it fails it has consumed the message and BUMPed the MIB. 8886 */ 8887 boolean_t 8888 ip_forward_options(mblk_t *mp, ipha_t *ipha, ill_t *dst_ill, 8889 ip_recv_attr_t *ira) 8890 { 8891 ipoptp_t opts; 8892 uchar_t *opt; 8893 uint8_t optval; 8894 uint8_t optlen; 8895 ipaddr_t dst; 8896 ipaddr_t ifaddr; 8897 uint32_t ts; 8898 timestruc_t now; 8899 ip_stack_t *ipst = ira->ira_ill->ill_ipst; 8900 8901 ip2dbg(("ip_forward_options\n")); 8902 dst = ipha->ipha_dst; 8903 for (optval = ipoptp_first(&opts, ipha); 8904 optval != IPOPT_EOL; 8905 optval = ipoptp_next(&opts)) { 8906 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 8907 opt = opts.ipoptp_cur; 8908 optlen = opts.ipoptp_len; 8909 ip2dbg(("ip_forward_options: opt %d, len %d\n", 8910 optval, opts.ipoptp_len)); 8911 switch (optval) { 8912 uint32_t off; 8913 case IPOPT_SSRR: 8914 case IPOPT_LSRR: 8915 /* Check if adminstratively disabled */ 8916 if (!ipst->ips_ip_forward_src_routed) { 8917 BUMP_MIB(dst_ill->ill_ip_mib, 8918 ipIfStatsForwProhibits); 8919 ip_drop_input("ICMP_SOURCE_ROUTE_FAILED", 8920 mp, dst_ill); 8921 icmp_unreachable(mp, ICMP_SOURCE_ROUTE_FAILED, 8922 ira); 8923 return (B_FALSE); 8924 } 8925 if (ip_type_v4(dst, ipst) != IRE_LOCAL) { 8926 /* 8927 * Must be partial since ip_input_options 8928 * checked for strict. 8929 */ 8930 break; 8931 } 8932 off = opt[IPOPT_OFFSET]; 8933 off--; 8934 redo_srr: 8935 if (optlen < IP_ADDR_LEN || 8936 off > optlen - IP_ADDR_LEN) { 8937 /* End of source route */ 8938 ip1dbg(( 8939 "ip_forward_options: end of SR\n")); 8940 break; 8941 } 8942 /* Pick a reasonable address on the outbound if */ 8943 ASSERT(dst_ill != NULL); 8944 if (ip_select_source_v4(dst_ill, INADDR_ANY, dst, 8945 INADDR_ANY, ALL_ZONES, ipst, &ifaddr, NULL, 8946 NULL) != 0) { 8947 /* No source! Shouldn't happen */ 8948 ifaddr = INADDR_ANY; 8949 } 8950 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 8951 bcopy(&ifaddr, (char *)opt + off, IP_ADDR_LEN); 8952 ip1dbg(("ip_forward_options: next hop 0x%x\n", 8953 ntohl(dst))); 8954 8955 /* 8956 * Check if our address is present more than 8957 * once as consecutive hops in source route. 8958 */ 8959 if (ip_type_v4(dst, ipst) == IRE_LOCAL) { 8960 off += IP_ADDR_LEN; 8961 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 8962 goto redo_srr; 8963 } 8964 ipha->ipha_dst = dst; 8965 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 8966 break; 8967 case IPOPT_RR: 8968 off = opt[IPOPT_OFFSET]; 8969 off--; 8970 if (optlen < IP_ADDR_LEN || 8971 off > optlen - IP_ADDR_LEN) { 8972 /* No more room - ignore */ 8973 ip1dbg(( 8974 "ip_forward_options: end of RR\n")); 8975 break; 8976 } 8977 /* Pick a reasonable address on the outbound if */ 8978 ASSERT(dst_ill != NULL); 8979 if (ip_select_source_v4(dst_ill, INADDR_ANY, dst, 8980 INADDR_ANY, ALL_ZONES, ipst, &ifaddr, NULL, 8981 NULL) != 0) { 8982 /* No source! Shouldn't happen */ 8983 ifaddr = INADDR_ANY; 8984 } 8985 bcopy(&ifaddr, (char *)opt + off, IP_ADDR_LEN); 8986 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 8987 break; 8988 case IPOPT_TS: 8989 /* Insert timestamp if there is room */ 8990 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 8991 case IPOPT_TS_TSONLY: 8992 off = IPOPT_TS_TIMELEN; 8993 break; 8994 case IPOPT_TS_PRESPEC: 8995 case IPOPT_TS_PRESPEC_RFC791: 8996 /* Verify that the address matched */ 8997 off = opt[IPOPT_OFFSET] - 1; 8998 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 8999 if (ip_type_v4(dst, ipst) != IRE_LOCAL) { 9000 /* Not for us */ 9001 break; 9002 } 9003 /* FALLTHRU */ 9004 case IPOPT_TS_TSANDADDR: 9005 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 9006 break; 9007 default: 9008 /* 9009 * ip_*put_options should have already 9010 * dropped this packet. 9011 */ 9012 cmn_err(CE_PANIC, "ip_forward_options: " 9013 "unknown IT - bug in ip_input_options?\n"); 9014 return (B_TRUE); /* Keep "lint" happy */ 9015 } 9016 if (opt[IPOPT_OFFSET] - 1 + off > optlen) { 9017 /* Increase overflow counter */ 9018 off = (opt[IPOPT_POS_OV_FLG] >> 4) + 1; 9019 opt[IPOPT_POS_OV_FLG] = 9020 (uint8_t)((opt[IPOPT_POS_OV_FLG] & 0x0F) | 9021 (off << 4)); 9022 break; 9023 } 9024 off = opt[IPOPT_OFFSET] - 1; 9025 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 9026 case IPOPT_TS_PRESPEC: 9027 case IPOPT_TS_PRESPEC_RFC791: 9028 case IPOPT_TS_TSANDADDR: 9029 /* Pick a reasonable addr on the outbound if */ 9030 ASSERT(dst_ill != NULL); 9031 if (ip_select_source_v4(dst_ill, INADDR_ANY, 9032 dst, INADDR_ANY, ALL_ZONES, ipst, &ifaddr, 9033 NULL, NULL) != 0) { 9034 /* No source! Shouldn't happen */ 9035 ifaddr = INADDR_ANY; 9036 } 9037 bcopy(&ifaddr, (char *)opt + off, IP_ADDR_LEN); 9038 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 9039 /* FALLTHRU */ 9040 case IPOPT_TS_TSONLY: 9041 off = opt[IPOPT_OFFSET] - 1; 9042 /* Compute # of milliseconds since midnight */ 9043 gethrestime(&now); 9044 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 + 9045 now.tv_nsec / (NANOSEC / MILLISEC); 9046 bcopy(&ts, (char *)opt + off, IPOPT_TS_TIMELEN); 9047 opt[IPOPT_OFFSET] += IPOPT_TS_TIMELEN; 9048 break; 9049 } 9050 break; 9051 } 9052 } 9053 return (B_TRUE); 9054 } 9055 9056 /* 9057 * Call ill_frag_timeout to do garbage collection. ill_frag_timeout 9058 * returns 'true' if there are still fragments left on the queue, in 9059 * which case we restart the timer. 9060 */ 9061 void 9062 ill_frag_timer(void *arg) 9063 { 9064 ill_t *ill = (ill_t *)arg; 9065 boolean_t frag_pending; 9066 ip_stack_t *ipst = ill->ill_ipst; 9067 time_t timeout; 9068 9069 mutex_enter(&ill->ill_lock); 9070 ASSERT(!ill->ill_fragtimer_executing); 9071 if (ill->ill_state_flags & ILL_CONDEMNED) { 9072 ill->ill_frag_timer_id = 0; 9073 mutex_exit(&ill->ill_lock); 9074 return; 9075 } 9076 ill->ill_fragtimer_executing = 1; 9077 mutex_exit(&ill->ill_lock); 9078 9079 timeout = (ill->ill_isv6 ? ipst->ips_ipv6_reassembly_timeout : 9080 ipst->ips_ip_reassembly_timeout); 9081 9082 frag_pending = ill_frag_timeout(ill, timeout); 9083 9084 /* 9085 * Restart the timer, if we have fragments pending or if someone 9086 * wanted us to be scheduled again. 9087 */ 9088 mutex_enter(&ill->ill_lock); 9089 ill->ill_fragtimer_executing = 0; 9090 ill->ill_frag_timer_id = 0; 9091 if (frag_pending || ill->ill_fragtimer_needrestart) 9092 ill_frag_timer_start(ill); 9093 mutex_exit(&ill->ill_lock); 9094 } 9095 9096 void 9097 ill_frag_timer_start(ill_t *ill) 9098 { 9099 ip_stack_t *ipst = ill->ill_ipst; 9100 clock_t timeo_ms; 9101 9102 ASSERT(MUTEX_HELD(&ill->ill_lock)); 9103 9104 /* If the ill is closing or opening don't proceed */ 9105 if (ill->ill_state_flags & ILL_CONDEMNED) 9106 return; 9107 9108 if (ill->ill_fragtimer_executing) { 9109 /* 9110 * ill_frag_timer is currently executing. Just record the 9111 * the fact that we want the timer to be restarted. 9112 * ill_frag_timer will post a timeout before it returns, 9113 * ensuring it will be called again. 9114 */ 9115 ill->ill_fragtimer_needrestart = 1; 9116 return; 9117 } 9118 9119 if (ill->ill_frag_timer_id == 0) { 9120 timeo_ms = (ill->ill_isv6 ? ipst->ips_ipv6_reassembly_timeout : 9121 ipst->ips_ip_reassembly_timeout) * SECONDS; 9122 9123 /* 9124 * The timer is neither running nor is the timeout handler 9125 * executing. Post a timeout so that ill_frag_timer will be 9126 * called 9127 */ 9128 ill->ill_frag_timer_id = timeout(ill_frag_timer, ill, 9129 MSEC_TO_TICK(timeo_ms >> 1)); 9130 ill->ill_fragtimer_needrestart = 0; 9131 } 9132 } 9133 9134 /* 9135 * Update any source route, record route or timestamp options. 9136 * Check that we are at end of strict source route. 9137 * The options have already been checked for sanity in ip_input_options(). 9138 */ 9139 boolean_t 9140 ip_input_local_options(mblk_t *mp, ipha_t *ipha, ip_recv_attr_t *ira) 9141 { 9142 ipoptp_t opts; 9143 uchar_t *opt; 9144 uint8_t optval; 9145 uint8_t optlen; 9146 ipaddr_t dst; 9147 ipaddr_t ifaddr; 9148 uint32_t ts; 9149 timestruc_t now; 9150 ill_t *ill = ira->ira_ill; 9151 ip_stack_t *ipst = ill->ill_ipst; 9152 9153 ip2dbg(("ip_input_local_options\n")); 9154 9155 for (optval = ipoptp_first(&opts, ipha); 9156 optval != IPOPT_EOL; 9157 optval = ipoptp_next(&opts)) { 9158 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 9159 opt = opts.ipoptp_cur; 9160 optlen = opts.ipoptp_len; 9161 ip2dbg(("ip_input_local_options: opt %d, len %d\n", 9162 optval, optlen)); 9163 switch (optval) { 9164 uint32_t off; 9165 case IPOPT_SSRR: 9166 case IPOPT_LSRR: 9167 off = opt[IPOPT_OFFSET]; 9168 off--; 9169 if (optlen < IP_ADDR_LEN || 9170 off > optlen - IP_ADDR_LEN) { 9171 /* End of source route */ 9172 ip1dbg(("ip_input_local_options: end of SR\n")); 9173 break; 9174 } 9175 /* 9176 * This will only happen if two consecutive entries 9177 * in the source route contains our address or if 9178 * it is a packet with a loose source route which 9179 * reaches us before consuming the whole source route 9180 */ 9181 ip1dbg(("ip_input_local_options: not end of SR\n")); 9182 if (optval == IPOPT_SSRR) { 9183 goto bad_src_route; 9184 } 9185 /* 9186 * Hack: instead of dropping the packet truncate the 9187 * source route to what has been used by filling the 9188 * rest with IPOPT_NOP. 9189 */ 9190 opt[IPOPT_OLEN] = (uint8_t)off; 9191 while (off < optlen) { 9192 opt[off++] = IPOPT_NOP; 9193 } 9194 break; 9195 case IPOPT_RR: 9196 off = opt[IPOPT_OFFSET]; 9197 off--; 9198 if (optlen < IP_ADDR_LEN || 9199 off > optlen - IP_ADDR_LEN) { 9200 /* No more room - ignore */ 9201 ip1dbg(( 9202 "ip_input_local_options: end of RR\n")); 9203 break; 9204 } 9205 /* Pick a reasonable address on the outbound if */ 9206 if (ip_select_source_v4(ill, INADDR_ANY, ipha->ipha_dst, 9207 INADDR_ANY, ALL_ZONES, ipst, &ifaddr, NULL, 9208 NULL) != 0) { 9209 /* No source! Shouldn't happen */ 9210 ifaddr = INADDR_ANY; 9211 } 9212 bcopy(&ifaddr, (char *)opt + off, IP_ADDR_LEN); 9213 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 9214 break; 9215 case IPOPT_TS: 9216 /* Insert timestamp if there is romm */ 9217 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 9218 case IPOPT_TS_TSONLY: 9219 off = IPOPT_TS_TIMELEN; 9220 break; 9221 case IPOPT_TS_PRESPEC: 9222 case IPOPT_TS_PRESPEC_RFC791: 9223 /* Verify that the address matched */ 9224 off = opt[IPOPT_OFFSET] - 1; 9225 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 9226 if (ip_type_v4(dst, ipst) != IRE_LOCAL) { 9227 /* Not for us */ 9228 break; 9229 } 9230 /* FALLTHRU */ 9231 case IPOPT_TS_TSANDADDR: 9232 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 9233 break; 9234 default: 9235 /* 9236 * ip_*put_options should have already 9237 * dropped this packet. 9238 */ 9239 cmn_err(CE_PANIC, "ip_input_local_options: " 9240 "unknown IT - bug in ip_input_options?\n"); 9241 return (B_TRUE); /* Keep "lint" happy */ 9242 } 9243 if (opt[IPOPT_OFFSET] - 1 + off > optlen) { 9244 /* Increase overflow counter */ 9245 off = (opt[IPOPT_POS_OV_FLG] >> 4) + 1; 9246 opt[IPOPT_POS_OV_FLG] = 9247 (uint8_t)((opt[IPOPT_POS_OV_FLG] & 0x0F) | 9248 (off << 4)); 9249 break; 9250 } 9251 off = opt[IPOPT_OFFSET] - 1; 9252 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 9253 case IPOPT_TS_PRESPEC: 9254 case IPOPT_TS_PRESPEC_RFC791: 9255 case IPOPT_TS_TSANDADDR: 9256 /* Pick a reasonable addr on the outbound if */ 9257 if (ip_select_source_v4(ill, INADDR_ANY, 9258 ipha->ipha_dst, INADDR_ANY, ALL_ZONES, ipst, 9259 &ifaddr, NULL, NULL) != 0) { 9260 /* No source! Shouldn't happen */ 9261 ifaddr = INADDR_ANY; 9262 } 9263 bcopy(&ifaddr, (char *)opt + off, IP_ADDR_LEN); 9264 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 9265 /* FALLTHRU */ 9266 case IPOPT_TS_TSONLY: 9267 off = opt[IPOPT_OFFSET] - 1; 9268 /* Compute # of milliseconds since midnight */ 9269 gethrestime(&now); 9270 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 + 9271 now.tv_nsec / (NANOSEC / MILLISEC); 9272 bcopy(&ts, (char *)opt + off, IPOPT_TS_TIMELEN); 9273 opt[IPOPT_OFFSET] += IPOPT_TS_TIMELEN; 9274 break; 9275 } 9276 break; 9277 } 9278 } 9279 return (B_TRUE); 9280 9281 bad_src_route: 9282 /* make sure we clear any indication of a hardware checksum */ 9283 DB_CKSUMFLAGS(mp) = 0; 9284 ip_drop_input("ICMP_SOURCE_ROUTE_FAILED", mp, ill); 9285 icmp_unreachable(mp, ICMP_SOURCE_ROUTE_FAILED, ira); 9286 return (B_FALSE); 9287 9288 } 9289 9290 /* 9291 * Process IP options in an inbound packet. Always returns the nexthop. 9292 * Normally this is the passed in nexthop, but if there is an option 9293 * that effects the nexthop (such as a source route) that will be returned. 9294 * Sets *errorp if there is an error, in which case an ICMP error has been sent 9295 * and mp freed. 9296 */ 9297 ipaddr_t 9298 ip_input_options(ipha_t *ipha, ipaddr_t dst, mblk_t *mp, 9299 ip_recv_attr_t *ira, int *errorp) 9300 { 9301 ip_stack_t *ipst = ira->ira_ill->ill_ipst; 9302 ipoptp_t opts; 9303 uchar_t *opt; 9304 uint8_t optval; 9305 uint8_t optlen; 9306 intptr_t code = 0; 9307 ire_t *ire; 9308 9309 ip2dbg(("ip_input_options\n")); 9310 *errorp = 0; 9311 for (optval = ipoptp_first(&opts, ipha); 9312 optval != IPOPT_EOL; 9313 optval = ipoptp_next(&opts)) { 9314 opt = opts.ipoptp_cur; 9315 optlen = opts.ipoptp_len; 9316 ip2dbg(("ip_input_options: opt %d, len %d\n", 9317 optval, optlen)); 9318 /* 9319 * Note: we need to verify the checksum before we 9320 * modify anything thus this routine only extracts the next 9321 * hop dst from any source route. 9322 */ 9323 switch (optval) { 9324 uint32_t off; 9325 case IPOPT_SSRR: 9326 case IPOPT_LSRR: 9327 if (ip_type_v4(dst, ipst) != IRE_LOCAL) { 9328 if (optval == IPOPT_SSRR) { 9329 ip1dbg(("ip_input_options: not next" 9330 " strict source route 0x%x\n", 9331 ntohl(dst))); 9332 code = (char *)&ipha->ipha_dst - 9333 (char *)ipha; 9334 goto param_prob; /* RouterReq's */ 9335 } 9336 ip2dbg(("ip_input_options: " 9337 "not next source route 0x%x\n", 9338 ntohl(dst))); 9339 break; 9340 } 9341 9342 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 9343 ip1dbg(( 9344 "ip_input_options: bad option offset\n")); 9345 code = (char *)&opt[IPOPT_OLEN] - 9346 (char *)ipha; 9347 goto param_prob; 9348 } 9349 off = opt[IPOPT_OFFSET]; 9350 off--; 9351 redo_srr: 9352 if (optlen < IP_ADDR_LEN || 9353 off > optlen - IP_ADDR_LEN) { 9354 /* End of source route */ 9355 ip1dbg(("ip_input_options: end of SR\n")); 9356 break; 9357 } 9358 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 9359 ip1dbg(("ip_input_options: next hop 0x%x\n", 9360 ntohl(dst))); 9361 9362 /* 9363 * Check if our address is present more than 9364 * once as consecutive hops in source route. 9365 * XXX verify per-interface ip_forwarding 9366 * for source route? 9367 */ 9368 if (ip_type_v4(dst, ipst) == IRE_LOCAL) { 9369 off += IP_ADDR_LEN; 9370 goto redo_srr; 9371 } 9372 9373 if (dst == htonl(INADDR_LOOPBACK)) { 9374 ip1dbg(("ip_input_options: loopback addr in " 9375 "source route!\n")); 9376 goto bad_src_route; 9377 } 9378 /* 9379 * For strict: verify that dst is directly 9380 * reachable. 9381 */ 9382 if (optval == IPOPT_SSRR) { 9383 ire = ire_ftable_lookup_v4(dst, 0, 0, 9384 IRE_INTERFACE, NULL, ALL_ZONES, 9385 ira->ira_tsl, 9386 MATCH_IRE_TYPE | MATCH_IRE_SECATTR, 0, ipst, 9387 NULL); 9388 if (ire == NULL) { 9389 ip1dbg(("ip_input_options: SSRR not " 9390 "directly reachable: 0x%x\n", 9391 ntohl(dst))); 9392 goto bad_src_route; 9393 } 9394 ire_refrele(ire); 9395 } 9396 /* 9397 * Defer update of the offset and the record route 9398 * until the packet is forwarded. 9399 */ 9400 break; 9401 case IPOPT_RR: 9402 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 9403 ip1dbg(( 9404 "ip_input_options: bad option offset\n")); 9405 code = (char *)&opt[IPOPT_OLEN] - 9406 (char *)ipha; 9407 goto param_prob; 9408 } 9409 break; 9410 case IPOPT_TS: 9411 /* 9412 * Verify that length >= 5 and that there is either 9413 * room for another timestamp or that the overflow 9414 * counter is not maxed out. 9415 */ 9416 code = (char *)&opt[IPOPT_OLEN] - (char *)ipha; 9417 if (optlen < IPOPT_MINLEN_IT) { 9418 goto param_prob; 9419 } 9420 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 9421 ip1dbg(( 9422 "ip_input_options: bad option offset\n")); 9423 code = (char *)&opt[IPOPT_OFFSET] - 9424 (char *)ipha; 9425 goto param_prob; 9426 } 9427 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 9428 case IPOPT_TS_TSONLY: 9429 off = IPOPT_TS_TIMELEN; 9430 break; 9431 case IPOPT_TS_TSANDADDR: 9432 case IPOPT_TS_PRESPEC: 9433 case IPOPT_TS_PRESPEC_RFC791: 9434 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 9435 break; 9436 default: 9437 code = (char *)&opt[IPOPT_POS_OV_FLG] - 9438 (char *)ipha; 9439 goto param_prob; 9440 } 9441 if (opt[IPOPT_OFFSET] - 1 + off > optlen && 9442 (opt[IPOPT_POS_OV_FLG] & 0xF0) == 0xF0) { 9443 /* 9444 * No room and the overflow counter is 15 9445 * already. 9446 */ 9447 goto param_prob; 9448 } 9449 break; 9450 } 9451 } 9452 9453 if ((opts.ipoptp_flags & IPOPTP_ERROR) == 0) { 9454 return (dst); 9455 } 9456 9457 ip1dbg(("ip_input_options: error processing IP options.")); 9458 code = (char *)&opt[IPOPT_OFFSET] - (char *)ipha; 9459 9460 param_prob: 9461 /* make sure we clear any indication of a hardware checksum */ 9462 DB_CKSUMFLAGS(mp) = 0; 9463 ip_drop_input("ICMP_PARAM_PROBLEM", mp, ira->ira_ill); 9464 icmp_param_problem(mp, (uint8_t)code, ira); 9465 *errorp = -1; 9466 return (dst); 9467 9468 bad_src_route: 9469 /* make sure we clear any indication of a hardware checksum */ 9470 DB_CKSUMFLAGS(mp) = 0; 9471 ip_drop_input("ICMP_SOURCE_ROUTE_FAILED", mp, ira->ira_ill); 9472 icmp_unreachable(mp, ICMP_SOURCE_ROUTE_FAILED, ira); 9473 *errorp = -1; 9474 return (dst); 9475 } 9476 9477 /* 9478 * IP & ICMP info in >=14 msg's ... 9479 * - ip fixed part (mib2_ip_t) 9480 * - icmp fixed part (mib2_icmp_t) 9481 * - ipAddrEntryTable (ip 20) all IPv4 ipifs 9482 * - ipRouteEntryTable (ip 21) all IPv4 IREs 9483 * - ipNetToMediaEntryTable (ip 22) all IPv4 Neighbor Cache entries 9484 * - ipRouteAttributeTable (ip 102) labeled routes 9485 * - ip multicast membership (ip_member_t) 9486 * - ip multicast source filtering (ip_grpsrc_t) 9487 * - igmp fixed part (struct igmpstat) 9488 * - multicast routing stats (struct mrtstat) 9489 * - multicast routing vifs (array of struct vifctl) 9490 * - multicast routing routes (array of struct mfcctl) 9491 * - ip6 fixed part (mib2_ipv6IfStatsEntry_t) 9492 * One per ill plus one generic 9493 * - icmp6 fixed part (mib2_ipv6IfIcmpEntry_t) 9494 * One per ill plus one generic 9495 * - ipv6RouteEntry all IPv6 IREs 9496 * - ipv6RouteAttributeTable (ip6 102) labeled routes 9497 * - ipv6NetToMediaEntry all IPv6 Neighbor Cache entries 9498 * - ipv6AddrEntry all IPv6 ipifs 9499 * - ipv6 multicast membership (ipv6_member_t) 9500 * - ipv6 multicast source filtering (ipv6_grpsrc_t) 9501 * 9502 * NOTE: original mpctl is copied for msg's 2..N, since its ctl part is 9503 * already filled in by the caller. 9504 * If legacy_req is true then MIB structures needs to be truncated to their 9505 * legacy sizes before being returned. 9506 * Return value of 0 indicates that no messages were sent and caller 9507 * should free mpctl. 9508 */ 9509 int 9510 ip_snmp_get(queue_t *q, mblk_t *mpctl, int level, boolean_t legacy_req) 9511 { 9512 ip_stack_t *ipst; 9513 sctp_stack_t *sctps; 9514 9515 if (q->q_next != NULL) { 9516 ipst = ILLQ_TO_IPST(q); 9517 } else { 9518 ipst = CONNQ_TO_IPST(q); 9519 } 9520 ASSERT(ipst != NULL); 9521 sctps = ipst->ips_netstack->netstack_sctp; 9522 9523 if (mpctl == NULL || mpctl->b_cont == NULL) { 9524 return (0); 9525 } 9526 9527 /* 9528 * For the purposes of the (broken) packet shell use 9529 * of the level we make sure MIB2_TCP/MIB2_UDP can be used 9530 * to make TCP and UDP appear first in the list of mib items. 9531 * TBD: We could expand this and use it in netstat so that 9532 * the kernel doesn't have to produce large tables (connections, 9533 * routes, etc) when netstat only wants the statistics or a particular 9534 * table. 9535 */ 9536 if (!(level == MIB2_TCP || level == MIB2_UDP)) { 9537 if ((mpctl = icmp_snmp_get(q, mpctl)) == NULL) { 9538 return (1); 9539 } 9540 } 9541 9542 if (level != MIB2_TCP) { 9543 if ((mpctl = udp_snmp_get(q, mpctl, legacy_req)) == NULL) { 9544 return (1); 9545 } 9546 } 9547 9548 if (level != MIB2_UDP) { 9549 if ((mpctl = tcp_snmp_get(q, mpctl, legacy_req)) == NULL) { 9550 return (1); 9551 } 9552 } 9553 9554 if ((mpctl = ip_snmp_get_mib2_ip_traffic_stats(q, mpctl, 9555 ipst, legacy_req)) == NULL) { 9556 return (1); 9557 } 9558 9559 if ((mpctl = ip_snmp_get_mib2_ip6(q, mpctl, ipst, 9560 legacy_req)) == NULL) { 9561 return (1); 9562 } 9563 9564 if ((mpctl = ip_snmp_get_mib2_icmp(q, mpctl, ipst)) == NULL) { 9565 return (1); 9566 } 9567 9568 if ((mpctl = ip_snmp_get_mib2_icmp6(q, mpctl, ipst)) == NULL) { 9569 return (1); 9570 } 9571 9572 if ((mpctl = ip_snmp_get_mib2_igmp(q, mpctl, ipst)) == NULL) { 9573 return (1); 9574 } 9575 9576 if ((mpctl = ip_snmp_get_mib2_multi(q, mpctl, ipst)) == NULL) { 9577 return (1); 9578 } 9579 9580 if ((mpctl = ip_snmp_get_mib2_ip_addr(q, mpctl, ipst, 9581 legacy_req)) == NULL) { 9582 return (1); 9583 } 9584 9585 if ((mpctl = ip_snmp_get_mib2_ip6_addr(q, mpctl, ipst, 9586 legacy_req)) == NULL) { 9587 return (1); 9588 } 9589 9590 if ((mpctl = ip_snmp_get_mib2_ip_group_mem(q, mpctl, ipst)) == NULL) { 9591 return (1); 9592 } 9593 9594 if ((mpctl = ip_snmp_get_mib2_ip6_group_mem(q, mpctl, ipst)) == NULL) { 9595 return (1); 9596 } 9597 9598 if ((mpctl = ip_snmp_get_mib2_ip_group_src(q, mpctl, ipst)) == NULL) { 9599 return (1); 9600 } 9601 9602 if ((mpctl = ip_snmp_get_mib2_ip6_group_src(q, mpctl, ipst)) == NULL) { 9603 return (1); 9604 } 9605 9606 if ((mpctl = ip_snmp_get_mib2_virt_multi(q, mpctl, ipst)) == NULL) { 9607 return (1); 9608 } 9609 9610 if ((mpctl = ip_snmp_get_mib2_multi_rtable(q, mpctl, ipst)) == NULL) { 9611 return (1); 9612 } 9613 9614 mpctl = ip_snmp_get_mib2_ip_route_media(q, mpctl, level, ipst); 9615 if (mpctl == NULL) 9616 return (1); 9617 9618 mpctl = ip_snmp_get_mib2_ip6_route_media(q, mpctl, level, ipst); 9619 if (mpctl == NULL) 9620 return (1); 9621 9622 if ((mpctl = sctp_snmp_get_mib2(q, mpctl, sctps)) == NULL) { 9623 return (1); 9624 } 9625 if ((mpctl = ip_snmp_get_mib2_ip_dce(q, mpctl, ipst)) == NULL) { 9626 return (1); 9627 } 9628 freemsg(mpctl); 9629 return (1); 9630 } 9631 9632 /* Get global (legacy) IPv4 statistics */ 9633 static mblk_t * 9634 ip_snmp_get_mib2_ip(queue_t *q, mblk_t *mpctl, mib2_ipIfStatsEntry_t *ipmib, 9635 ip_stack_t *ipst, boolean_t legacy_req) 9636 { 9637 mib2_ip_t old_ip_mib; 9638 struct opthdr *optp; 9639 mblk_t *mp2ctl; 9640 mib2_ipAddrEntry_t mae; 9641 9642 /* 9643 * make a copy of the original message 9644 */ 9645 mp2ctl = copymsg(mpctl); 9646 9647 /* fixed length IP structure... */ 9648 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 9649 optp->level = MIB2_IP; 9650 optp->name = 0; 9651 SET_MIB(old_ip_mib.ipForwarding, 9652 (WE_ARE_FORWARDING(ipst) ? 1 : 2)); 9653 SET_MIB(old_ip_mib.ipDefaultTTL, 9654 (uint32_t)ipst->ips_ip_def_ttl); 9655 SET_MIB(old_ip_mib.ipReasmTimeout, 9656 ipst->ips_ip_reassembly_timeout); 9657 SET_MIB(old_ip_mib.ipAddrEntrySize, 9658 (legacy_req) ? LEGACY_MIB_SIZE(&mae, mib2_ipAddrEntry_t) : 9659 sizeof (mib2_ipAddrEntry_t)); 9660 SET_MIB(old_ip_mib.ipRouteEntrySize, 9661 sizeof (mib2_ipRouteEntry_t)); 9662 SET_MIB(old_ip_mib.ipNetToMediaEntrySize, 9663 sizeof (mib2_ipNetToMediaEntry_t)); 9664 SET_MIB(old_ip_mib.ipMemberEntrySize, sizeof (ip_member_t)); 9665 SET_MIB(old_ip_mib.ipGroupSourceEntrySize, sizeof (ip_grpsrc_t)); 9666 SET_MIB(old_ip_mib.ipRouteAttributeSize, 9667 sizeof (mib2_ipAttributeEntry_t)); 9668 SET_MIB(old_ip_mib.transportMLPSize, sizeof (mib2_transportMLPEntry_t)); 9669 SET_MIB(old_ip_mib.ipDestEntrySize, sizeof (dest_cache_entry_t)); 9670 9671 /* 9672 * Grab the statistics from the new IP MIB 9673 */ 9674 SET_MIB(old_ip_mib.ipInReceives, 9675 (uint32_t)ipmib->ipIfStatsHCInReceives); 9676 SET_MIB(old_ip_mib.ipInHdrErrors, ipmib->ipIfStatsInHdrErrors); 9677 SET_MIB(old_ip_mib.ipInAddrErrors, ipmib->ipIfStatsInAddrErrors); 9678 SET_MIB(old_ip_mib.ipForwDatagrams, 9679 (uint32_t)ipmib->ipIfStatsHCOutForwDatagrams); 9680 SET_MIB(old_ip_mib.ipInUnknownProtos, 9681 ipmib->ipIfStatsInUnknownProtos); 9682 SET_MIB(old_ip_mib.ipInDiscards, ipmib->ipIfStatsInDiscards); 9683 SET_MIB(old_ip_mib.ipInDelivers, 9684 (uint32_t)ipmib->ipIfStatsHCInDelivers); 9685 SET_MIB(old_ip_mib.ipOutRequests, 9686 (uint32_t)ipmib->ipIfStatsHCOutRequests); 9687 SET_MIB(old_ip_mib.ipOutDiscards, ipmib->ipIfStatsOutDiscards); 9688 SET_MIB(old_ip_mib.ipOutNoRoutes, ipmib->ipIfStatsOutNoRoutes); 9689 SET_MIB(old_ip_mib.ipReasmReqds, ipmib->ipIfStatsReasmReqds); 9690 SET_MIB(old_ip_mib.ipReasmOKs, ipmib->ipIfStatsReasmOKs); 9691 SET_MIB(old_ip_mib.ipReasmFails, ipmib->ipIfStatsReasmFails); 9692 SET_MIB(old_ip_mib.ipFragOKs, ipmib->ipIfStatsOutFragOKs); 9693 SET_MIB(old_ip_mib.ipFragFails, ipmib->ipIfStatsOutFragFails); 9694 SET_MIB(old_ip_mib.ipFragCreates, ipmib->ipIfStatsOutFragCreates); 9695 9696 /* ipRoutingDiscards is not being used */ 9697 SET_MIB(old_ip_mib.ipRoutingDiscards, 0); 9698 SET_MIB(old_ip_mib.tcpInErrs, ipmib->tcpIfStatsInErrs); 9699 SET_MIB(old_ip_mib.udpNoPorts, ipmib->udpIfStatsNoPorts); 9700 SET_MIB(old_ip_mib.ipInCksumErrs, ipmib->ipIfStatsInCksumErrs); 9701 SET_MIB(old_ip_mib.ipReasmDuplicates, 9702 ipmib->ipIfStatsReasmDuplicates); 9703 SET_MIB(old_ip_mib.ipReasmPartDups, ipmib->ipIfStatsReasmPartDups); 9704 SET_MIB(old_ip_mib.ipForwProhibits, ipmib->ipIfStatsForwProhibits); 9705 SET_MIB(old_ip_mib.udpInCksumErrs, ipmib->udpIfStatsInCksumErrs); 9706 SET_MIB(old_ip_mib.udpInOverflows, ipmib->udpIfStatsInOverflows); 9707 SET_MIB(old_ip_mib.rawipInOverflows, 9708 ipmib->rawipIfStatsInOverflows); 9709 9710 SET_MIB(old_ip_mib.ipsecInSucceeded, ipmib->ipsecIfStatsInSucceeded); 9711 SET_MIB(old_ip_mib.ipsecInFailed, ipmib->ipsecIfStatsInFailed); 9712 SET_MIB(old_ip_mib.ipInIPv6, ipmib->ipIfStatsInWrongIPVersion); 9713 SET_MIB(old_ip_mib.ipOutIPv6, ipmib->ipIfStatsOutWrongIPVersion); 9714 SET_MIB(old_ip_mib.ipOutSwitchIPv6, 9715 ipmib->ipIfStatsOutSwitchIPVersion); 9716 9717 if (!snmp_append_data(mpctl->b_cont, (char *)&old_ip_mib, 9718 (int)sizeof (old_ip_mib))) { 9719 ip1dbg(("ip_snmp_get_mib2_ip: failed to allocate %u bytes\n", 9720 (uint_t)sizeof (old_ip_mib))); 9721 } 9722 9723 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 9724 ip3dbg(("ip_snmp_get_mib2_ip: level %d, name %d, len %d\n", 9725 (int)optp->level, (int)optp->name, (int)optp->len)); 9726 qreply(q, mpctl); 9727 return (mp2ctl); 9728 } 9729 9730 /* Per interface IPv4 statistics */ 9731 static mblk_t * 9732 ip_snmp_get_mib2_ip_traffic_stats(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst, 9733 boolean_t legacy_req) 9734 { 9735 struct opthdr *optp; 9736 mblk_t *mp2ctl; 9737 ill_t *ill; 9738 ill_walk_context_t ctx; 9739 mblk_t *mp_tail = NULL; 9740 mib2_ipIfStatsEntry_t global_ip_mib; 9741 mib2_ipAddrEntry_t mae; 9742 9743 /* 9744 * Make a copy of the original message 9745 */ 9746 mp2ctl = copymsg(mpctl); 9747 9748 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 9749 optp->level = MIB2_IP; 9750 optp->name = MIB2_IP_TRAFFIC_STATS; 9751 /* Include "unknown interface" ip_mib */ 9752 ipst->ips_ip_mib.ipIfStatsIPVersion = MIB2_INETADDRESSTYPE_ipv4; 9753 ipst->ips_ip_mib.ipIfStatsIfIndex = 9754 MIB2_UNKNOWN_INTERFACE; /* Flag to netstat */ 9755 SET_MIB(ipst->ips_ip_mib.ipIfStatsForwarding, 9756 (ipst->ips_ip_forwarding ? 1 : 2)); 9757 SET_MIB(ipst->ips_ip_mib.ipIfStatsDefaultTTL, 9758 (uint32_t)ipst->ips_ip_def_ttl); 9759 SET_MIB(ipst->ips_ip_mib.ipIfStatsEntrySize, 9760 sizeof (mib2_ipIfStatsEntry_t)); 9761 SET_MIB(ipst->ips_ip_mib.ipIfStatsAddrEntrySize, 9762 sizeof (mib2_ipAddrEntry_t)); 9763 SET_MIB(ipst->ips_ip_mib.ipIfStatsRouteEntrySize, 9764 sizeof (mib2_ipRouteEntry_t)); 9765 SET_MIB(ipst->ips_ip_mib.ipIfStatsNetToMediaEntrySize, 9766 sizeof (mib2_ipNetToMediaEntry_t)); 9767 SET_MIB(ipst->ips_ip_mib.ipIfStatsMemberEntrySize, 9768 sizeof (ip_member_t)); 9769 SET_MIB(ipst->ips_ip_mib.ipIfStatsGroupSourceEntrySize, 9770 sizeof (ip_grpsrc_t)); 9771 9772 bcopy(&ipst->ips_ip_mib, &global_ip_mib, sizeof (global_ip_mib)); 9773 9774 if (legacy_req) { 9775 SET_MIB(global_ip_mib.ipIfStatsAddrEntrySize, 9776 LEGACY_MIB_SIZE(&mae, mib2_ipAddrEntry_t)); 9777 } 9778 9779 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 9780 (char *)&global_ip_mib, (int)sizeof (global_ip_mib))) { 9781 ip1dbg(("ip_snmp_get_mib2_ip_traffic_stats: " 9782 "failed to allocate %u bytes\n", 9783 (uint_t)sizeof (global_ip_mib))); 9784 } 9785 9786 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 9787 ill = ILL_START_WALK_V4(&ctx, ipst); 9788 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 9789 ill->ill_ip_mib->ipIfStatsIfIndex = 9790 ill->ill_phyint->phyint_ifindex; 9791 SET_MIB(ill->ill_ip_mib->ipIfStatsForwarding, 9792 (ipst->ips_ip_forwarding ? 1 : 2)); 9793 SET_MIB(ill->ill_ip_mib->ipIfStatsDefaultTTL, 9794 (uint32_t)ipst->ips_ip_def_ttl); 9795 9796 ip_mib2_add_ip_stats(&global_ip_mib, ill->ill_ip_mib); 9797 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 9798 (char *)ill->ill_ip_mib, 9799 (int)sizeof (*ill->ill_ip_mib))) { 9800 ip1dbg(("ip_snmp_get_mib2_ip_traffic_stats: " 9801 "failed to allocate %u bytes\n", 9802 (uint_t)sizeof (*ill->ill_ip_mib))); 9803 } 9804 } 9805 rw_exit(&ipst->ips_ill_g_lock); 9806 9807 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 9808 ip3dbg(("ip_snmp_get_mib2_ip_traffic_stats: " 9809 "level %d, name %d, len %d\n", 9810 (int)optp->level, (int)optp->name, (int)optp->len)); 9811 qreply(q, mpctl); 9812 9813 if (mp2ctl == NULL) 9814 return (NULL); 9815 9816 return (ip_snmp_get_mib2_ip(q, mp2ctl, &global_ip_mib, ipst, 9817 legacy_req)); 9818 } 9819 9820 /* Global IPv4 ICMP statistics */ 9821 static mblk_t * 9822 ip_snmp_get_mib2_icmp(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 9823 { 9824 struct opthdr *optp; 9825 mblk_t *mp2ctl; 9826 9827 /* 9828 * Make a copy of the original message 9829 */ 9830 mp2ctl = copymsg(mpctl); 9831 9832 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 9833 optp->level = MIB2_ICMP; 9834 optp->name = 0; 9835 if (!snmp_append_data(mpctl->b_cont, (char *)&ipst->ips_icmp_mib, 9836 (int)sizeof (ipst->ips_icmp_mib))) { 9837 ip1dbg(("ip_snmp_get_mib2_icmp: failed to allocate %u bytes\n", 9838 (uint_t)sizeof (ipst->ips_icmp_mib))); 9839 } 9840 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 9841 ip3dbg(("ip_snmp_get_mib2_icmp: level %d, name %d, len %d\n", 9842 (int)optp->level, (int)optp->name, (int)optp->len)); 9843 qreply(q, mpctl); 9844 return (mp2ctl); 9845 } 9846 9847 /* Global IPv4 IGMP statistics */ 9848 static mblk_t * 9849 ip_snmp_get_mib2_igmp(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 9850 { 9851 struct opthdr *optp; 9852 mblk_t *mp2ctl; 9853 9854 /* 9855 * make a copy of the original message 9856 */ 9857 mp2ctl = copymsg(mpctl); 9858 9859 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 9860 optp->level = EXPER_IGMP; 9861 optp->name = 0; 9862 if (!snmp_append_data(mpctl->b_cont, (char *)&ipst->ips_igmpstat, 9863 (int)sizeof (ipst->ips_igmpstat))) { 9864 ip1dbg(("ip_snmp_get_mib2_igmp: failed to allocate %u bytes\n", 9865 (uint_t)sizeof (ipst->ips_igmpstat))); 9866 } 9867 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 9868 ip3dbg(("ip_snmp_get_mib2_igmp: level %d, name %d, len %d\n", 9869 (int)optp->level, (int)optp->name, (int)optp->len)); 9870 qreply(q, mpctl); 9871 return (mp2ctl); 9872 } 9873 9874 /* Global IPv4 Multicast Routing statistics */ 9875 static mblk_t * 9876 ip_snmp_get_mib2_multi(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 9877 { 9878 struct opthdr *optp; 9879 mblk_t *mp2ctl; 9880 9881 /* 9882 * make a copy of the original message 9883 */ 9884 mp2ctl = copymsg(mpctl); 9885 9886 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 9887 optp->level = EXPER_DVMRP; 9888 optp->name = 0; 9889 if (!ip_mroute_stats(mpctl->b_cont, ipst)) { 9890 ip0dbg(("ip_mroute_stats: failed\n")); 9891 } 9892 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 9893 ip3dbg(("ip_snmp_get_mib2_multi: level %d, name %d, len %d\n", 9894 (int)optp->level, (int)optp->name, (int)optp->len)); 9895 qreply(q, mpctl); 9896 return (mp2ctl); 9897 } 9898 9899 /* IPv4 address information */ 9900 static mblk_t * 9901 ip_snmp_get_mib2_ip_addr(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst, 9902 boolean_t legacy_req) 9903 { 9904 struct opthdr *optp; 9905 mblk_t *mp2ctl; 9906 mblk_t *mp_tail = NULL; 9907 ill_t *ill; 9908 ipif_t *ipif; 9909 uint_t bitval; 9910 mib2_ipAddrEntry_t mae; 9911 size_t mae_size; 9912 zoneid_t zoneid; 9913 ill_walk_context_t ctx; 9914 9915 /* 9916 * make a copy of the original message 9917 */ 9918 mp2ctl = copymsg(mpctl); 9919 9920 mae_size = (legacy_req) ? LEGACY_MIB_SIZE(&mae, mib2_ipAddrEntry_t) : 9921 sizeof (mib2_ipAddrEntry_t); 9922 9923 /* ipAddrEntryTable */ 9924 9925 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 9926 optp->level = MIB2_IP; 9927 optp->name = MIB2_IP_ADDR; 9928 zoneid = Q_TO_CONN(q)->conn_zoneid; 9929 9930 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 9931 ill = ILL_START_WALK_V4(&ctx, ipst); 9932 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 9933 for (ipif = ill->ill_ipif; ipif != NULL; 9934 ipif = ipif->ipif_next) { 9935 if (ipif->ipif_zoneid != zoneid && 9936 ipif->ipif_zoneid != ALL_ZONES) 9937 continue; 9938 /* Sum of count from dead IRE_LO* and our current */ 9939 mae.ipAdEntInfo.ae_ibcnt = ipif->ipif_ib_pkt_count; 9940 if (ipif->ipif_ire_local != NULL) { 9941 mae.ipAdEntInfo.ae_ibcnt += 9942 ipif->ipif_ire_local->ire_ib_pkt_count; 9943 } 9944 mae.ipAdEntInfo.ae_obcnt = 0; 9945 mae.ipAdEntInfo.ae_focnt = 0; 9946 9947 ipif_get_name(ipif, mae.ipAdEntIfIndex.o_bytes, 9948 OCTET_LENGTH); 9949 mae.ipAdEntIfIndex.o_length = 9950 mi_strlen(mae.ipAdEntIfIndex.o_bytes); 9951 mae.ipAdEntAddr = ipif->ipif_lcl_addr; 9952 mae.ipAdEntNetMask = ipif->ipif_net_mask; 9953 mae.ipAdEntInfo.ae_subnet = ipif->ipif_subnet; 9954 mae.ipAdEntInfo.ae_subnet_len = 9955 ip_mask_to_plen(ipif->ipif_net_mask); 9956 mae.ipAdEntInfo.ae_src_addr = ipif->ipif_lcl_addr; 9957 for (bitval = 1; 9958 bitval && 9959 !(bitval & ipif->ipif_brd_addr); 9960 bitval <<= 1) 9961 noop; 9962 mae.ipAdEntBcastAddr = bitval; 9963 mae.ipAdEntReasmMaxSize = IP_MAXPACKET; 9964 mae.ipAdEntInfo.ae_mtu = ipif->ipif_ill->ill_mtu; 9965 mae.ipAdEntInfo.ae_metric = ipif->ipif_ill->ill_metric; 9966 mae.ipAdEntInfo.ae_broadcast_addr = 9967 ipif->ipif_brd_addr; 9968 mae.ipAdEntInfo.ae_pp_dst_addr = 9969 ipif->ipif_pp_dst_addr; 9970 mae.ipAdEntInfo.ae_flags = ipif->ipif_flags | 9971 ill->ill_flags | ill->ill_phyint->phyint_flags; 9972 mae.ipAdEntRetransmitTime = 9973 ill->ill_reachable_retrans_time; 9974 9975 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 9976 (char *)&mae, (int)mae_size)) { 9977 ip1dbg(("ip_snmp_get_mib2_ip_addr: failed to " 9978 "allocate %u bytes\n", (uint_t)mae_size)); 9979 } 9980 } 9981 } 9982 rw_exit(&ipst->ips_ill_g_lock); 9983 9984 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 9985 ip3dbg(("ip_snmp_get_mib2_ip_addr: level %d, name %d, len %d\n", 9986 (int)optp->level, (int)optp->name, (int)optp->len)); 9987 qreply(q, mpctl); 9988 return (mp2ctl); 9989 } 9990 9991 /* IPv6 address information */ 9992 static mblk_t * 9993 ip_snmp_get_mib2_ip6_addr(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst, 9994 boolean_t legacy_req) 9995 { 9996 struct opthdr *optp; 9997 mblk_t *mp2ctl; 9998 mblk_t *mp_tail = NULL; 9999 ill_t *ill; 10000 ipif_t *ipif; 10001 mib2_ipv6AddrEntry_t mae6; 10002 size_t mae6_size; 10003 zoneid_t zoneid; 10004 ill_walk_context_t ctx; 10005 10006 /* 10007 * make a copy of the original message 10008 */ 10009 mp2ctl = copymsg(mpctl); 10010 10011 mae6_size = (legacy_req) ? 10012 LEGACY_MIB_SIZE(&mae6, mib2_ipv6AddrEntry_t) : 10013 sizeof (mib2_ipv6AddrEntry_t); 10014 10015 /* ipv6AddrEntryTable */ 10016 10017 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 10018 optp->level = MIB2_IP6; 10019 optp->name = MIB2_IP6_ADDR; 10020 zoneid = Q_TO_CONN(q)->conn_zoneid; 10021 10022 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 10023 ill = ILL_START_WALK_V6(&ctx, ipst); 10024 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 10025 for (ipif = ill->ill_ipif; ipif != NULL; 10026 ipif = ipif->ipif_next) { 10027 if (ipif->ipif_zoneid != zoneid && 10028 ipif->ipif_zoneid != ALL_ZONES) 10029 continue; 10030 /* Sum of count from dead IRE_LO* and our current */ 10031 mae6.ipv6AddrInfo.ae_ibcnt = ipif->ipif_ib_pkt_count; 10032 if (ipif->ipif_ire_local != NULL) { 10033 mae6.ipv6AddrInfo.ae_ibcnt += 10034 ipif->ipif_ire_local->ire_ib_pkt_count; 10035 } 10036 mae6.ipv6AddrInfo.ae_obcnt = 0; 10037 mae6.ipv6AddrInfo.ae_focnt = 0; 10038 10039 ipif_get_name(ipif, mae6.ipv6AddrIfIndex.o_bytes, 10040 OCTET_LENGTH); 10041 mae6.ipv6AddrIfIndex.o_length = 10042 mi_strlen(mae6.ipv6AddrIfIndex.o_bytes); 10043 mae6.ipv6AddrAddress = ipif->ipif_v6lcl_addr; 10044 mae6.ipv6AddrPfxLength = 10045 ip_mask_to_plen_v6(&ipif->ipif_v6net_mask); 10046 mae6.ipv6AddrInfo.ae_subnet = ipif->ipif_v6subnet; 10047 mae6.ipv6AddrInfo.ae_subnet_len = 10048 mae6.ipv6AddrPfxLength; 10049 mae6.ipv6AddrInfo.ae_src_addr = ipif->ipif_v6lcl_addr; 10050 10051 /* Type: stateless(1), stateful(2), unknown(3) */ 10052 if (ipif->ipif_flags & IPIF_ADDRCONF) 10053 mae6.ipv6AddrType = 1; 10054 else 10055 mae6.ipv6AddrType = 2; 10056 /* Anycast: true(1), false(2) */ 10057 if (ipif->ipif_flags & IPIF_ANYCAST) 10058 mae6.ipv6AddrAnycastFlag = 1; 10059 else 10060 mae6.ipv6AddrAnycastFlag = 2; 10061 10062 /* 10063 * Address status: preferred(1), deprecated(2), 10064 * invalid(3), inaccessible(4), unknown(5) 10065 */ 10066 if (ipif->ipif_flags & IPIF_NOLOCAL) 10067 mae6.ipv6AddrStatus = 3; 10068 else if (ipif->ipif_flags & IPIF_DEPRECATED) 10069 mae6.ipv6AddrStatus = 2; 10070 else 10071 mae6.ipv6AddrStatus = 1; 10072 mae6.ipv6AddrInfo.ae_mtu = ipif->ipif_ill->ill_mtu; 10073 mae6.ipv6AddrInfo.ae_metric = 10074 ipif->ipif_ill->ill_metric; 10075 mae6.ipv6AddrInfo.ae_pp_dst_addr = 10076 ipif->ipif_v6pp_dst_addr; 10077 mae6.ipv6AddrInfo.ae_flags = ipif->ipif_flags | 10078 ill->ill_flags | ill->ill_phyint->phyint_flags; 10079 mae6.ipv6AddrReasmMaxSize = IP_MAXPACKET; 10080 mae6.ipv6AddrIdentifier = ill->ill_token; 10081 mae6.ipv6AddrIdentifierLen = ill->ill_token_length; 10082 mae6.ipv6AddrReachableTime = ill->ill_reachable_time; 10083 mae6.ipv6AddrRetransmitTime = 10084 ill->ill_reachable_retrans_time; 10085 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 10086 (char *)&mae6, (int)mae6_size)) { 10087 ip1dbg(("ip_snmp_get_mib2_ip6_addr: failed to " 10088 "allocate %u bytes\n", 10089 (uint_t)mae6_size)); 10090 } 10091 } 10092 } 10093 rw_exit(&ipst->ips_ill_g_lock); 10094 10095 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 10096 ip3dbg(("ip_snmp_get_mib2_ip6_addr: level %d, name %d, len %d\n", 10097 (int)optp->level, (int)optp->name, (int)optp->len)); 10098 qreply(q, mpctl); 10099 return (mp2ctl); 10100 } 10101 10102 /* IPv4 multicast group membership. */ 10103 static mblk_t * 10104 ip_snmp_get_mib2_ip_group_mem(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 10105 { 10106 struct opthdr *optp; 10107 mblk_t *mp2ctl; 10108 ill_t *ill; 10109 ipif_t *ipif; 10110 ilm_t *ilm; 10111 ip_member_t ipm; 10112 mblk_t *mp_tail = NULL; 10113 ill_walk_context_t ctx; 10114 zoneid_t zoneid; 10115 10116 /* 10117 * make a copy of the original message 10118 */ 10119 mp2ctl = copymsg(mpctl); 10120 zoneid = Q_TO_CONN(q)->conn_zoneid; 10121 10122 /* ipGroupMember table */ 10123 optp = (struct opthdr *)&mpctl->b_rptr[ 10124 sizeof (struct T_optmgmt_ack)]; 10125 optp->level = MIB2_IP; 10126 optp->name = EXPER_IP_GROUP_MEMBERSHIP; 10127 10128 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 10129 ill = ILL_START_WALK_V4(&ctx, ipst); 10130 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 10131 /* Make sure the ill isn't going away. */ 10132 if (!ill_check_and_refhold(ill)) 10133 continue; 10134 rw_exit(&ipst->ips_ill_g_lock); 10135 rw_enter(&ill->ill_mcast_lock, RW_READER); 10136 for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) { 10137 if (ilm->ilm_zoneid != zoneid && 10138 ilm->ilm_zoneid != ALL_ZONES) 10139 continue; 10140 10141 /* Is there an ipif for ilm_ifaddr? */ 10142 for (ipif = ill->ill_ipif; ipif != NULL; 10143 ipif = ipif->ipif_next) { 10144 if (!IPIF_IS_CONDEMNED(ipif) && 10145 ipif->ipif_lcl_addr == ilm->ilm_ifaddr && 10146 ilm->ilm_ifaddr != INADDR_ANY) 10147 break; 10148 } 10149 if (ipif != NULL) { 10150 ipif_get_name(ipif, 10151 ipm.ipGroupMemberIfIndex.o_bytes, 10152 OCTET_LENGTH); 10153 } else { 10154 ill_get_name(ill, 10155 ipm.ipGroupMemberIfIndex.o_bytes, 10156 OCTET_LENGTH); 10157 } 10158 ipm.ipGroupMemberIfIndex.o_length = 10159 mi_strlen(ipm.ipGroupMemberIfIndex.o_bytes); 10160 10161 ipm.ipGroupMemberAddress = ilm->ilm_addr; 10162 ipm.ipGroupMemberRefCnt = ilm->ilm_refcnt; 10163 ipm.ipGroupMemberFilterMode = ilm->ilm_fmode; 10164 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 10165 (char *)&ipm, (int)sizeof (ipm))) { 10166 ip1dbg(("ip_snmp_get_mib2_ip_group: " 10167 "failed to allocate %u bytes\n", 10168 (uint_t)sizeof (ipm))); 10169 } 10170 } 10171 rw_exit(&ill->ill_mcast_lock); 10172 ill_refrele(ill); 10173 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 10174 } 10175 rw_exit(&ipst->ips_ill_g_lock); 10176 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 10177 ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n", 10178 (int)optp->level, (int)optp->name, (int)optp->len)); 10179 qreply(q, mpctl); 10180 return (mp2ctl); 10181 } 10182 10183 /* IPv6 multicast group membership. */ 10184 static mblk_t * 10185 ip_snmp_get_mib2_ip6_group_mem(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 10186 { 10187 struct opthdr *optp; 10188 mblk_t *mp2ctl; 10189 ill_t *ill; 10190 ilm_t *ilm; 10191 ipv6_member_t ipm6; 10192 mblk_t *mp_tail = NULL; 10193 ill_walk_context_t ctx; 10194 zoneid_t zoneid; 10195 10196 /* 10197 * make a copy of the original message 10198 */ 10199 mp2ctl = copymsg(mpctl); 10200 zoneid = Q_TO_CONN(q)->conn_zoneid; 10201 10202 /* ip6GroupMember table */ 10203 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 10204 optp->level = MIB2_IP6; 10205 optp->name = EXPER_IP6_GROUP_MEMBERSHIP; 10206 10207 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 10208 ill = ILL_START_WALK_V6(&ctx, ipst); 10209 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 10210 /* Make sure the ill isn't going away. */ 10211 if (!ill_check_and_refhold(ill)) 10212 continue; 10213 rw_exit(&ipst->ips_ill_g_lock); 10214 /* 10215 * Normally we don't have any members on under IPMP interfaces. 10216 * We report them as a debugging aid. 10217 */ 10218 rw_enter(&ill->ill_mcast_lock, RW_READER); 10219 ipm6.ipv6GroupMemberIfIndex = ill->ill_phyint->phyint_ifindex; 10220 for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) { 10221 if (ilm->ilm_zoneid != zoneid && 10222 ilm->ilm_zoneid != ALL_ZONES) 10223 continue; /* not this zone */ 10224 ipm6.ipv6GroupMemberAddress = ilm->ilm_v6addr; 10225 ipm6.ipv6GroupMemberRefCnt = ilm->ilm_refcnt; 10226 ipm6.ipv6GroupMemberFilterMode = ilm->ilm_fmode; 10227 if (!snmp_append_data2(mpctl->b_cont, 10228 &mp_tail, 10229 (char *)&ipm6, (int)sizeof (ipm6))) { 10230 ip1dbg(("ip_snmp_get_mib2_ip6_group: " 10231 "failed to allocate %u bytes\n", 10232 (uint_t)sizeof (ipm6))); 10233 } 10234 } 10235 rw_exit(&ill->ill_mcast_lock); 10236 ill_refrele(ill); 10237 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 10238 } 10239 rw_exit(&ipst->ips_ill_g_lock); 10240 10241 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 10242 ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n", 10243 (int)optp->level, (int)optp->name, (int)optp->len)); 10244 qreply(q, mpctl); 10245 return (mp2ctl); 10246 } 10247 10248 /* IP multicast filtered sources */ 10249 static mblk_t * 10250 ip_snmp_get_mib2_ip_group_src(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 10251 { 10252 struct opthdr *optp; 10253 mblk_t *mp2ctl; 10254 ill_t *ill; 10255 ipif_t *ipif; 10256 ilm_t *ilm; 10257 ip_grpsrc_t ips; 10258 mblk_t *mp_tail = NULL; 10259 ill_walk_context_t ctx; 10260 zoneid_t zoneid; 10261 int i; 10262 slist_t *sl; 10263 10264 /* 10265 * make a copy of the original message 10266 */ 10267 mp2ctl = copymsg(mpctl); 10268 zoneid = Q_TO_CONN(q)->conn_zoneid; 10269 10270 /* ipGroupSource table */ 10271 optp = (struct opthdr *)&mpctl->b_rptr[ 10272 sizeof (struct T_optmgmt_ack)]; 10273 optp->level = MIB2_IP; 10274 optp->name = EXPER_IP_GROUP_SOURCES; 10275 10276 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 10277 ill = ILL_START_WALK_V4(&ctx, ipst); 10278 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 10279 /* Make sure the ill isn't going away. */ 10280 if (!ill_check_and_refhold(ill)) 10281 continue; 10282 rw_exit(&ipst->ips_ill_g_lock); 10283 rw_enter(&ill->ill_mcast_lock, RW_READER); 10284 for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) { 10285 sl = ilm->ilm_filter; 10286 if (ilm->ilm_zoneid != zoneid && 10287 ilm->ilm_zoneid != ALL_ZONES) 10288 continue; 10289 if (SLIST_IS_EMPTY(sl)) 10290 continue; 10291 10292 /* Is there an ipif for ilm_ifaddr? */ 10293 for (ipif = ill->ill_ipif; ipif != NULL; 10294 ipif = ipif->ipif_next) { 10295 if (!IPIF_IS_CONDEMNED(ipif) && 10296 ipif->ipif_lcl_addr == ilm->ilm_ifaddr && 10297 ilm->ilm_ifaddr != INADDR_ANY) 10298 break; 10299 } 10300 if (ipif != NULL) { 10301 ipif_get_name(ipif, 10302 ips.ipGroupSourceIfIndex.o_bytes, 10303 OCTET_LENGTH); 10304 } else { 10305 ill_get_name(ill, 10306 ips.ipGroupSourceIfIndex.o_bytes, 10307 OCTET_LENGTH); 10308 } 10309 ips.ipGroupSourceIfIndex.o_length = 10310 mi_strlen(ips.ipGroupSourceIfIndex.o_bytes); 10311 10312 ips.ipGroupSourceGroup = ilm->ilm_addr; 10313 for (i = 0; i < sl->sl_numsrc; i++) { 10314 if (!IN6_IS_ADDR_V4MAPPED(&sl->sl_addr[i])) 10315 continue; 10316 IN6_V4MAPPED_TO_IPADDR(&sl->sl_addr[i], 10317 ips.ipGroupSourceAddress); 10318 if (snmp_append_data2(mpctl->b_cont, &mp_tail, 10319 (char *)&ips, (int)sizeof (ips)) == 0) { 10320 ip1dbg(("ip_snmp_get_mib2_ip_group_src:" 10321 " failed to allocate %u bytes\n", 10322 (uint_t)sizeof (ips))); 10323 } 10324 } 10325 } 10326 rw_exit(&ill->ill_mcast_lock); 10327 ill_refrele(ill); 10328 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 10329 } 10330 rw_exit(&ipst->ips_ill_g_lock); 10331 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 10332 ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n", 10333 (int)optp->level, (int)optp->name, (int)optp->len)); 10334 qreply(q, mpctl); 10335 return (mp2ctl); 10336 } 10337 10338 /* IPv6 multicast filtered sources. */ 10339 static mblk_t * 10340 ip_snmp_get_mib2_ip6_group_src(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 10341 { 10342 struct opthdr *optp; 10343 mblk_t *mp2ctl; 10344 ill_t *ill; 10345 ilm_t *ilm; 10346 ipv6_grpsrc_t ips6; 10347 mblk_t *mp_tail = NULL; 10348 ill_walk_context_t ctx; 10349 zoneid_t zoneid; 10350 int i; 10351 slist_t *sl; 10352 10353 /* 10354 * make a copy of the original message 10355 */ 10356 mp2ctl = copymsg(mpctl); 10357 zoneid = Q_TO_CONN(q)->conn_zoneid; 10358 10359 /* ip6GroupMember table */ 10360 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 10361 optp->level = MIB2_IP6; 10362 optp->name = EXPER_IP6_GROUP_SOURCES; 10363 10364 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 10365 ill = ILL_START_WALK_V6(&ctx, ipst); 10366 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 10367 /* Make sure the ill isn't going away. */ 10368 if (!ill_check_and_refhold(ill)) 10369 continue; 10370 rw_exit(&ipst->ips_ill_g_lock); 10371 /* 10372 * Normally we don't have any members on under IPMP interfaces. 10373 * We report them as a debugging aid. 10374 */ 10375 rw_enter(&ill->ill_mcast_lock, RW_READER); 10376 ips6.ipv6GroupSourceIfIndex = ill->ill_phyint->phyint_ifindex; 10377 for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) { 10378 sl = ilm->ilm_filter; 10379 if (ilm->ilm_zoneid != zoneid && 10380 ilm->ilm_zoneid != ALL_ZONES) 10381 continue; 10382 if (SLIST_IS_EMPTY(sl)) 10383 continue; 10384 ips6.ipv6GroupSourceGroup = ilm->ilm_v6addr; 10385 for (i = 0; i < sl->sl_numsrc; i++) { 10386 ips6.ipv6GroupSourceAddress = sl->sl_addr[i]; 10387 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 10388 (char *)&ips6, (int)sizeof (ips6))) { 10389 ip1dbg(("ip_snmp_get_mib2_ip6_" 10390 "group_src: failed to allocate " 10391 "%u bytes\n", 10392 (uint_t)sizeof (ips6))); 10393 } 10394 } 10395 } 10396 rw_exit(&ill->ill_mcast_lock); 10397 ill_refrele(ill); 10398 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 10399 } 10400 rw_exit(&ipst->ips_ill_g_lock); 10401 10402 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 10403 ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n", 10404 (int)optp->level, (int)optp->name, (int)optp->len)); 10405 qreply(q, mpctl); 10406 return (mp2ctl); 10407 } 10408 10409 /* Multicast routing virtual interface table. */ 10410 static mblk_t * 10411 ip_snmp_get_mib2_virt_multi(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 10412 { 10413 struct opthdr *optp; 10414 mblk_t *mp2ctl; 10415 10416 /* 10417 * make a copy of the original message 10418 */ 10419 mp2ctl = copymsg(mpctl); 10420 10421 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 10422 optp->level = EXPER_DVMRP; 10423 optp->name = EXPER_DVMRP_VIF; 10424 if (!ip_mroute_vif(mpctl->b_cont, ipst)) { 10425 ip0dbg(("ip_mroute_vif: failed\n")); 10426 } 10427 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 10428 ip3dbg(("ip_snmp_get_mib2_virt_multi: level %d, name %d, len %d\n", 10429 (int)optp->level, (int)optp->name, (int)optp->len)); 10430 qreply(q, mpctl); 10431 return (mp2ctl); 10432 } 10433 10434 /* Multicast routing table. */ 10435 static mblk_t * 10436 ip_snmp_get_mib2_multi_rtable(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 10437 { 10438 struct opthdr *optp; 10439 mblk_t *mp2ctl; 10440 10441 /* 10442 * make a copy of the original message 10443 */ 10444 mp2ctl = copymsg(mpctl); 10445 10446 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 10447 optp->level = EXPER_DVMRP; 10448 optp->name = EXPER_DVMRP_MRT; 10449 if (!ip_mroute_mrt(mpctl->b_cont, ipst)) { 10450 ip0dbg(("ip_mroute_mrt: failed\n")); 10451 } 10452 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 10453 ip3dbg(("ip_snmp_get_mib2_multi_rtable: level %d, name %d, len %d\n", 10454 (int)optp->level, (int)optp->name, (int)optp->len)); 10455 qreply(q, mpctl); 10456 return (mp2ctl); 10457 } 10458 10459 /* 10460 * Return ipRouteEntryTable, ipNetToMediaEntryTable, and ipRouteAttributeTable 10461 * in one IRE walk. 10462 */ 10463 static mblk_t * 10464 ip_snmp_get_mib2_ip_route_media(queue_t *q, mblk_t *mpctl, int level, 10465 ip_stack_t *ipst) 10466 { 10467 struct opthdr *optp; 10468 mblk_t *mp2ctl; /* Returned */ 10469 mblk_t *mp3ctl; /* nettomedia */ 10470 mblk_t *mp4ctl; /* routeattrs */ 10471 iproutedata_t ird; 10472 zoneid_t zoneid; 10473 10474 /* 10475 * make copies of the original message 10476 * - mp2ctl is returned unchanged to the caller for his use 10477 * - mpctl is sent upstream as ipRouteEntryTable 10478 * - mp3ctl is sent upstream as ipNetToMediaEntryTable 10479 * - mp4ctl is sent upstream as ipRouteAttributeTable 10480 */ 10481 mp2ctl = copymsg(mpctl); 10482 mp3ctl = copymsg(mpctl); 10483 mp4ctl = copymsg(mpctl); 10484 if (mp3ctl == NULL || mp4ctl == NULL) { 10485 freemsg(mp4ctl); 10486 freemsg(mp3ctl); 10487 freemsg(mp2ctl); 10488 freemsg(mpctl); 10489 return (NULL); 10490 } 10491 10492 bzero(&ird, sizeof (ird)); 10493 10494 ird.ird_route.lp_head = mpctl->b_cont; 10495 ird.ird_netmedia.lp_head = mp3ctl->b_cont; 10496 ird.ird_attrs.lp_head = mp4ctl->b_cont; 10497 /* 10498 * If the level has been set the special EXPER_IP_AND_ALL_IRES value, 10499 * then also include ire_testhidden IREs and IRE_IF_CLONE. This is 10500 * intended a temporary solution until a proper MIB API is provided 10501 * that provides complete filtering/caller-opt-in. 10502 */ 10503 if (level == EXPER_IP_AND_ALL_IRES) 10504 ird.ird_flags |= IRD_REPORT_ALL; 10505 10506 zoneid = Q_TO_CONN(q)->conn_zoneid; 10507 ire_walk_v4(ip_snmp_get2_v4, &ird, zoneid, ipst); 10508 10509 /* ipRouteEntryTable in mpctl */ 10510 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 10511 optp->level = MIB2_IP; 10512 optp->name = MIB2_IP_ROUTE; 10513 optp->len = msgdsize(ird.ird_route.lp_head); 10514 ip3dbg(("ip_snmp_get_mib2_ip_route_media: level %d, name %d, len %d\n", 10515 (int)optp->level, (int)optp->name, (int)optp->len)); 10516 qreply(q, mpctl); 10517 10518 /* ipNetToMediaEntryTable in mp3ctl */ 10519 ncec_walk(NULL, ip_snmp_get2_v4_media, &ird, ipst); 10520 10521 optp = (struct opthdr *)&mp3ctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 10522 optp->level = MIB2_IP; 10523 optp->name = MIB2_IP_MEDIA; 10524 optp->len = msgdsize(ird.ird_netmedia.lp_head); 10525 ip3dbg(("ip_snmp_get_mib2_ip_route_media: level %d, name %d, len %d\n", 10526 (int)optp->level, (int)optp->name, (int)optp->len)); 10527 qreply(q, mp3ctl); 10528 10529 /* ipRouteAttributeTable in mp4ctl */ 10530 optp = (struct opthdr *)&mp4ctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 10531 optp->level = MIB2_IP; 10532 optp->name = EXPER_IP_RTATTR; 10533 optp->len = msgdsize(ird.ird_attrs.lp_head); 10534 ip3dbg(("ip_snmp_get_mib2_ip_route_media: level %d, name %d, len %d\n", 10535 (int)optp->level, (int)optp->name, (int)optp->len)); 10536 if (optp->len == 0) 10537 freemsg(mp4ctl); 10538 else 10539 qreply(q, mp4ctl); 10540 10541 return (mp2ctl); 10542 } 10543 10544 /* 10545 * Return ipv6RouteEntryTable and ipv6RouteAttributeTable in one IRE walk, and 10546 * ipv6NetToMediaEntryTable in an NDP walk. 10547 */ 10548 static mblk_t * 10549 ip_snmp_get_mib2_ip6_route_media(queue_t *q, mblk_t *mpctl, int level, 10550 ip_stack_t *ipst) 10551 { 10552 struct opthdr *optp; 10553 mblk_t *mp2ctl; /* Returned */ 10554 mblk_t *mp3ctl; /* nettomedia */ 10555 mblk_t *mp4ctl; /* routeattrs */ 10556 iproutedata_t ird; 10557 zoneid_t zoneid; 10558 10559 /* 10560 * make copies of the original message 10561 * - mp2ctl is returned unchanged to the caller for his use 10562 * - mpctl is sent upstream as ipv6RouteEntryTable 10563 * - mp3ctl is sent upstream as ipv6NetToMediaEntryTable 10564 * - mp4ctl is sent upstream as ipv6RouteAttributeTable 10565 */ 10566 mp2ctl = copymsg(mpctl); 10567 mp3ctl = copymsg(mpctl); 10568 mp4ctl = copymsg(mpctl); 10569 if (mp3ctl == NULL || mp4ctl == NULL) { 10570 freemsg(mp4ctl); 10571 freemsg(mp3ctl); 10572 freemsg(mp2ctl); 10573 freemsg(mpctl); 10574 return (NULL); 10575 } 10576 10577 bzero(&ird, sizeof (ird)); 10578 10579 ird.ird_route.lp_head = mpctl->b_cont; 10580 ird.ird_netmedia.lp_head = mp3ctl->b_cont; 10581 ird.ird_attrs.lp_head = mp4ctl->b_cont; 10582 /* 10583 * If the level has been set the special EXPER_IP_AND_ALL_IRES value, 10584 * then also include ire_testhidden IREs and IRE_IF_CLONE. This is 10585 * intended a temporary solution until a proper MIB API is provided 10586 * that provides complete filtering/caller-opt-in. 10587 */ 10588 if (level == EXPER_IP_AND_ALL_IRES) 10589 ird.ird_flags |= IRD_REPORT_ALL; 10590 10591 zoneid = Q_TO_CONN(q)->conn_zoneid; 10592 ire_walk_v6(ip_snmp_get2_v6_route, &ird, zoneid, ipst); 10593 10594 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 10595 optp->level = MIB2_IP6; 10596 optp->name = MIB2_IP6_ROUTE; 10597 optp->len = msgdsize(ird.ird_route.lp_head); 10598 ip3dbg(("ip_snmp_get_mib2_ip6_route_media: level %d, name %d, len %d\n", 10599 (int)optp->level, (int)optp->name, (int)optp->len)); 10600 qreply(q, mpctl); 10601 10602 /* ipv6NetToMediaEntryTable in mp3ctl */ 10603 ncec_walk(NULL, ip_snmp_get2_v6_media, &ird, ipst); 10604 10605 optp = (struct opthdr *)&mp3ctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 10606 optp->level = MIB2_IP6; 10607 optp->name = MIB2_IP6_MEDIA; 10608 optp->len = msgdsize(ird.ird_netmedia.lp_head); 10609 ip3dbg(("ip_snmp_get_mib2_ip6_route_media: level %d, name %d, len %d\n", 10610 (int)optp->level, (int)optp->name, (int)optp->len)); 10611 qreply(q, mp3ctl); 10612 10613 /* ipv6RouteAttributeTable in mp4ctl */ 10614 optp = (struct opthdr *)&mp4ctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 10615 optp->level = MIB2_IP6; 10616 optp->name = EXPER_IP_RTATTR; 10617 optp->len = msgdsize(ird.ird_attrs.lp_head); 10618 ip3dbg(("ip_snmp_get_mib2_ip6_route_media: level %d, name %d, len %d\n", 10619 (int)optp->level, (int)optp->name, (int)optp->len)); 10620 if (optp->len == 0) 10621 freemsg(mp4ctl); 10622 else 10623 qreply(q, mp4ctl); 10624 10625 return (mp2ctl); 10626 } 10627 10628 /* 10629 * IPv6 mib: One per ill 10630 */ 10631 static mblk_t * 10632 ip_snmp_get_mib2_ip6(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst, 10633 boolean_t legacy_req) 10634 { 10635 struct opthdr *optp; 10636 mblk_t *mp2ctl; 10637 ill_t *ill; 10638 ill_walk_context_t ctx; 10639 mblk_t *mp_tail = NULL; 10640 mib2_ipv6AddrEntry_t mae6; 10641 mib2_ipIfStatsEntry_t *ise; 10642 size_t ise_size, iae_size; 10643 10644 /* 10645 * Make a copy of the original message 10646 */ 10647 mp2ctl = copymsg(mpctl); 10648 10649 /* fixed length IPv6 structure ... */ 10650 10651 if (legacy_req) { 10652 ise_size = LEGACY_MIB_SIZE(&ipst->ips_ip6_mib, 10653 mib2_ipIfStatsEntry_t); 10654 iae_size = LEGACY_MIB_SIZE(&mae6, mib2_ipv6AddrEntry_t); 10655 } else { 10656 ise_size = sizeof (mib2_ipIfStatsEntry_t); 10657 iae_size = sizeof (mib2_ipv6AddrEntry_t); 10658 } 10659 10660 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 10661 optp->level = MIB2_IP6; 10662 optp->name = 0; 10663 /* Include "unknown interface" ip6_mib */ 10664 ipst->ips_ip6_mib.ipIfStatsIPVersion = MIB2_INETADDRESSTYPE_ipv6; 10665 ipst->ips_ip6_mib.ipIfStatsIfIndex = 10666 MIB2_UNKNOWN_INTERFACE; /* Flag to netstat */ 10667 SET_MIB(ipst->ips_ip6_mib.ipIfStatsForwarding, 10668 ipst->ips_ipv6_forwarding ? 1 : 2); 10669 SET_MIB(ipst->ips_ip6_mib.ipIfStatsDefaultHopLimit, 10670 ipst->ips_ipv6_def_hops); 10671 SET_MIB(ipst->ips_ip6_mib.ipIfStatsEntrySize, 10672 sizeof (mib2_ipIfStatsEntry_t)); 10673 SET_MIB(ipst->ips_ip6_mib.ipIfStatsAddrEntrySize, 10674 sizeof (mib2_ipv6AddrEntry_t)); 10675 SET_MIB(ipst->ips_ip6_mib.ipIfStatsRouteEntrySize, 10676 sizeof (mib2_ipv6RouteEntry_t)); 10677 SET_MIB(ipst->ips_ip6_mib.ipIfStatsNetToMediaEntrySize, 10678 sizeof (mib2_ipv6NetToMediaEntry_t)); 10679 SET_MIB(ipst->ips_ip6_mib.ipIfStatsMemberEntrySize, 10680 sizeof (ipv6_member_t)); 10681 SET_MIB(ipst->ips_ip6_mib.ipIfStatsGroupSourceEntrySize, 10682 sizeof (ipv6_grpsrc_t)); 10683 10684 /* 10685 * Synchronize 64- and 32-bit counters 10686 */ 10687 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsInReceives, 10688 ipIfStatsHCInReceives); 10689 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsInDelivers, 10690 ipIfStatsHCInDelivers); 10691 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsOutRequests, 10692 ipIfStatsHCOutRequests); 10693 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsOutForwDatagrams, 10694 ipIfStatsHCOutForwDatagrams); 10695 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsOutMcastPkts, 10696 ipIfStatsHCOutMcastPkts); 10697 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsInMcastPkts, 10698 ipIfStatsHCInMcastPkts); 10699 10700 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 10701 (char *)&ipst->ips_ip6_mib, (int)ise_size)) { 10702 ip1dbg(("ip_snmp_get_mib2_ip6: failed to allocate %u bytes\n", 10703 (uint_t)ise_size)); 10704 } else if (legacy_req) { 10705 /* Adjust the EntrySize fields for legacy requests. */ 10706 ise = 10707 (mib2_ipIfStatsEntry_t *)(mp_tail->b_wptr - (int)ise_size); 10708 SET_MIB(ise->ipIfStatsEntrySize, ise_size); 10709 SET_MIB(ise->ipIfStatsAddrEntrySize, iae_size); 10710 } 10711 10712 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 10713 ill = ILL_START_WALK_V6(&ctx, ipst); 10714 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 10715 ill->ill_ip_mib->ipIfStatsIfIndex = 10716 ill->ill_phyint->phyint_ifindex; 10717 SET_MIB(ill->ill_ip_mib->ipIfStatsForwarding, 10718 ipst->ips_ipv6_forwarding ? 1 : 2); 10719 SET_MIB(ill->ill_ip_mib->ipIfStatsDefaultHopLimit, 10720 ill->ill_max_hops); 10721 10722 /* 10723 * Synchronize 64- and 32-bit counters 10724 */ 10725 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsInReceives, 10726 ipIfStatsHCInReceives); 10727 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsInDelivers, 10728 ipIfStatsHCInDelivers); 10729 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsOutRequests, 10730 ipIfStatsHCOutRequests); 10731 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsOutForwDatagrams, 10732 ipIfStatsHCOutForwDatagrams); 10733 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsOutMcastPkts, 10734 ipIfStatsHCOutMcastPkts); 10735 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsInMcastPkts, 10736 ipIfStatsHCInMcastPkts); 10737 10738 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 10739 (char *)ill->ill_ip_mib, (int)ise_size)) { 10740 ip1dbg(("ip_snmp_get_mib2_ip6: failed to allocate " 10741 "%u bytes\n", (uint_t)ise_size)); 10742 } else if (legacy_req) { 10743 /* Adjust the EntrySize fields for legacy requests. */ 10744 ise = (mib2_ipIfStatsEntry_t *)(mp_tail->b_wptr - 10745 (int)ise_size); 10746 SET_MIB(ise->ipIfStatsEntrySize, ise_size); 10747 SET_MIB(ise->ipIfStatsAddrEntrySize, iae_size); 10748 } 10749 } 10750 rw_exit(&ipst->ips_ill_g_lock); 10751 10752 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 10753 ip3dbg(("ip_snmp_get_mib2_ip6: level %d, name %d, len %d\n", 10754 (int)optp->level, (int)optp->name, (int)optp->len)); 10755 qreply(q, mpctl); 10756 return (mp2ctl); 10757 } 10758 10759 /* 10760 * ICMPv6 mib: One per ill 10761 */ 10762 static mblk_t * 10763 ip_snmp_get_mib2_icmp6(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 10764 { 10765 struct opthdr *optp; 10766 mblk_t *mp2ctl; 10767 ill_t *ill; 10768 ill_walk_context_t ctx; 10769 mblk_t *mp_tail = NULL; 10770 /* 10771 * Make a copy of the original message 10772 */ 10773 mp2ctl = copymsg(mpctl); 10774 10775 /* fixed length ICMPv6 structure ... */ 10776 10777 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 10778 optp->level = MIB2_ICMP6; 10779 optp->name = 0; 10780 /* Include "unknown interface" icmp6_mib */ 10781 ipst->ips_icmp6_mib.ipv6IfIcmpIfIndex = 10782 MIB2_UNKNOWN_INTERFACE; /* netstat flag */ 10783 ipst->ips_icmp6_mib.ipv6IfIcmpEntrySize = 10784 sizeof (mib2_ipv6IfIcmpEntry_t); 10785 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 10786 (char *)&ipst->ips_icmp6_mib, 10787 (int)sizeof (ipst->ips_icmp6_mib))) { 10788 ip1dbg(("ip_snmp_get_mib2_icmp6: failed to allocate %u bytes\n", 10789 (uint_t)sizeof (ipst->ips_icmp6_mib))); 10790 } 10791 10792 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 10793 ill = ILL_START_WALK_V6(&ctx, ipst); 10794 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 10795 ill->ill_icmp6_mib->ipv6IfIcmpIfIndex = 10796 ill->ill_phyint->phyint_ifindex; 10797 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 10798 (char *)ill->ill_icmp6_mib, 10799 (int)sizeof (*ill->ill_icmp6_mib))) { 10800 ip1dbg(("ip_snmp_get_mib2_icmp6: failed to allocate " 10801 "%u bytes\n", 10802 (uint_t)sizeof (*ill->ill_icmp6_mib))); 10803 } 10804 } 10805 rw_exit(&ipst->ips_ill_g_lock); 10806 10807 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 10808 ip3dbg(("ip_snmp_get_mib2_icmp6: level %d, name %d, len %d\n", 10809 (int)optp->level, (int)optp->name, (int)optp->len)); 10810 qreply(q, mpctl); 10811 return (mp2ctl); 10812 } 10813 10814 /* 10815 * ire_walk routine to create both ipRouteEntryTable and 10816 * ipRouteAttributeTable in one IRE walk 10817 */ 10818 static void 10819 ip_snmp_get2_v4(ire_t *ire, iproutedata_t *ird) 10820 { 10821 ill_t *ill; 10822 mib2_ipRouteEntry_t *re; 10823 mib2_ipAttributeEntry_t iaes; 10824 tsol_ire_gw_secattr_t *attrp; 10825 tsol_gc_t *gc = NULL; 10826 tsol_gcgrp_t *gcgrp = NULL; 10827 ip_stack_t *ipst = ire->ire_ipst; 10828 10829 ASSERT(ire->ire_ipversion == IPV4_VERSION); 10830 10831 if (!(ird->ird_flags & IRD_REPORT_ALL)) { 10832 if (ire->ire_testhidden) 10833 return; 10834 if (ire->ire_type & IRE_IF_CLONE) 10835 return; 10836 } 10837 10838 if ((re = kmem_zalloc(sizeof (*re), KM_NOSLEEP)) == NULL) 10839 return; 10840 10841 if ((attrp = ire->ire_gw_secattr) != NULL) { 10842 mutex_enter(&attrp->igsa_lock); 10843 if ((gc = attrp->igsa_gc) != NULL) { 10844 gcgrp = gc->gc_grp; 10845 ASSERT(gcgrp != NULL); 10846 rw_enter(&gcgrp->gcgrp_rwlock, RW_READER); 10847 } 10848 mutex_exit(&attrp->igsa_lock); 10849 } 10850 /* 10851 * Return all IRE types for route table... let caller pick and choose 10852 */ 10853 re->ipRouteDest = ire->ire_addr; 10854 ill = ire->ire_ill; 10855 re->ipRouteIfIndex.o_length = 0; 10856 if (ill != NULL) { 10857 ill_get_name(ill, re->ipRouteIfIndex.o_bytes, OCTET_LENGTH); 10858 re->ipRouteIfIndex.o_length = 10859 mi_strlen(re->ipRouteIfIndex.o_bytes); 10860 } 10861 re->ipRouteMetric1 = -1; 10862 re->ipRouteMetric2 = -1; 10863 re->ipRouteMetric3 = -1; 10864 re->ipRouteMetric4 = -1; 10865 10866 re->ipRouteNextHop = ire->ire_gateway_addr; 10867 /* indirect(4), direct(3), or invalid(2) */ 10868 if (ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) 10869 re->ipRouteType = 2; 10870 else if (ire->ire_type & IRE_ONLINK) 10871 re->ipRouteType = 3; 10872 else 10873 re->ipRouteType = 4; 10874 10875 re->ipRouteProto = -1; 10876 re->ipRouteAge = gethrestime_sec() - ire->ire_create_time; 10877 re->ipRouteMask = ire->ire_mask; 10878 re->ipRouteMetric5 = -1; 10879 re->ipRouteInfo.re_max_frag = ire->ire_metrics.iulp_mtu; 10880 if (ire->ire_ill != NULL && re->ipRouteInfo.re_max_frag == 0) 10881 re->ipRouteInfo.re_max_frag = ire->ire_ill->ill_mtu; 10882 10883 re->ipRouteInfo.re_frag_flag = 0; 10884 re->ipRouteInfo.re_rtt = 0; 10885 re->ipRouteInfo.re_src_addr = 0; 10886 re->ipRouteInfo.re_ref = ire->ire_refcnt; 10887 re->ipRouteInfo.re_obpkt = ire->ire_ob_pkt_count; 10888 re->ipRouteInfo.re_ibpkt = ire->ire_ib_pkt_count; 10889 re->ipRouteInfo.re_flags = ire->ire_flags; 10890 10891 /* Add the IRE_IF_CLONE's counters to their parent IRE_INTERFACE */ 10892 if (ire->ire_type & IRE_INTERFACE) { 10893 ire_t *child; 10894 10895 rw_enter(&ipst->ips_ire_dep_lock, RW_READER); 10896 child = ire->ire_dep_children; 10897 while (child != NULL) { 10898 re->ipRouteInfo.re_obpkt += child->ire_ob_pkt_count; 10899 re->ipRouteInfo.re_ibpkt += child->ire_ib_pkt_count; 10900 child = child->ire_dep_sib_next; 10901 } 10902 rw_exit(&ipst->ips_ire_dep_lock); 10903 } 10904 10905 if (ire->ire_flags & RTF_DYNAMIC) { 10906 re->ipRouteInfo.re_ire_type = IRE_HOST_REDIRECT; 10907 } else { 10908 re->ipRouteInfo.re_ire_type = ire->ire_type; 10909 } 10910 10911 if (!snmp_append_data2(ird->ird_route.lp_head, &ird->ird_route.lp_tail, 10912 (char *)re, (int)sizeof (*re))) { 10913 ip1dbg(("ip_snmp_get2_v4: failed to allocate %u bytes\n", 10914 (uint_t)sizeof (*re))); 10915 } 10916 10917 if (gc != NULL) { 10918 iaes.iae_routeidx = ird->ird_idx; 10919 iaes.iae_doi = gc->gc_db->gcdb_doi; 10920 iaes.iae_slrange = gc->gc_db->gcdb_slrange; 10921 10922 if (!snmp_append_data2(ird->ird_attrs.lp_head, 10923 &ird->ird_attrs.lp_tail, (char *)&iaes, sizeof (iaes))) { 10924 ip1dbg(("ip_snmp_get2_v4: failed to allocate %u " 10925 "bytes\n", (uint_t)sizeof (iaes))); 10926 } 10927 } 10928 10929 /* bump route index for next pass */ 10930 ird->ird_idx++; 10931 10932 kmem_free(re, sizeof (*re)); 10933 if (gcgrp != NULL) 10934 rw_exit(&gcgrp->gcgrp_rwlock); 10935 } 10936 10937 /* 10938 * ire_walk routine to create ipv6RouteEntryTable and ipRouteEntryTable. 10939 */ 10940 static void 10941 ip_snmp_get2_v6_route(ire_t *ire, iproutedata_t *ird) 10942 { 10943 ill_t *ill; 10944 mib2_ipv6RouteEntry_t *re; 10945 mib2_ipAttributeEntry_t iaes; 10946 tsol_ire_gw_secattr_t *attrp; 10947 tsol_gc_t *gc = NULL; 10948 tsol_gcgrp_t *gcgrp = NULL; 10949 ip_stack_t *ipst = ire->ire_ipst; 10950 10951 ASSERT(ire->ire_ipversion == IPV6_VERSION); 10952 10953 if (!(ird->ird_flags & IRD_REPORT_ALL)) { 10954 if (ire->ire_testhidden) 10955 return; 10956 if (ire->ire_type & IRE_IF_CLONE) 10957 return; 10958 } 10959 10960 if ((re = kmem_zalloc(sizeof (*re), KM_NOSLEEP)) == NULL) 10961 return; 10962 10963 if ((attrp = ire->ire_gw_secattr) != NULL) { 10964 mutex_enter(&attrp->igsa_lock); 10965 if ((gc = attrp->igsa_gc) != NULL) { 10966 gcgrp = gc->gc_grp; 10967 ASSERT(gcgrp != NULL); 10968 rw_enter(&gcgrp->gcgrp_rwlock, RW_READER); 10969 } 10970 mutex_exit(&attrp->igsa_lock); 10971 } 10972 /* 10973 * Return all IRE types for route table... let caller pick and choose 10974 */ 10975 re->ipv6RouteDest = ire->ire_addr_v6; 10976 re->ipv6RoutePfxLength = ip_mask_to_plen_v6(&ire->ire_mask_v6); 10977 re->ipv6RouteIndex = 0; /* Unique when multiple with same dest/plen */ 10978 re->ipv6RouteIfIndex.o_length = 0; 10979 ill = ire->ire_ill; 10980 if (ill != NULL) { 10981 ill_get_name(ill, re->ipv6RouteIfIndex.o_bytes, OCTET_LENGTH); 10982 re->ipv6RouteIfIndex.o_length = 10983 mi_strlen(re->ipv6RouteIfIndex.o_bytes); 10984 } 10985 10986 ASSERT(!(ire->ire_type & IRE_BROADCAST)); 10987 10988 mutex_enter(&ire->ire_lock); 10989 re->ipv6RouteNextHop = ire->ire_gateway_addr_v6; 10990 mutex_exit(&ire->ire_lock); 10991 10992 /* remote(4), local(3), or discard(2) */ 10993 if (ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) 10994 re->ipv6RouteType = 2; 10995 else if (ire->ire_type & IRE_ONLINK) 10996 re->ipv6RouteType = 3; 10997 else 10998 re->ipv6RouteType = 4; 10999 11000 re->ipv6RouteProtocol = -1; 11001 re->ipv6RoutePolicy = 0; 11002 re->ipv6RouteAge = gethrestime_sec() - ire->ire_create_time; 11003 re->ipv6RouteNextHopRDI = 0; 11004 re->ipv6RouteWeight = 0; 11005 re->ipv6RouteMetric = 0; 11006 re->ipv6RouteInfo.re_max_frag = ire->ire_metrics.iulp_mtu; 11007 if (ire->ire_ill != NULL && re->ipv6RouteInfo.re_max_frag == 0) 11008 re->ipv6RouteInfo.re_max_frag = ire->ire_ill->ill_mtu; 11009 11010 re->ipv6RouteInfo.re_frag_flag = 0; 11011 re->ipv6RouteInfo.re_rtt = 0; 11012 re->ipv6RouteInfo.re_src_addr = ipv6_all_zeros; 11013 re->ipv6RouteInfo.re_obpkt = ire->ire_ob_pkt_count; 11014 re->ipv6RouteInfo.re_ibpkt = ire->ire_ib_pkt_count; 11015 re->ipv6RouteInfo.re_ref = ire->ire_refcnt; 11016 re->ipv6RouteInfo.re_flags = ire->ire_flags; 11017 11018 /* Add the IRE_IF_CLONE's counters to their parent IRE_INTERFACE */ 11019 if (ire->ire_type & IRE_INTERFACE) { 11020 ire_t *child; 11021 11022 rw_enter(&ipst->ips_ire_dep_lock, RW_READER); 11023 child = ire->ire_dep_children; 11024 while (child != NULL) { 11025 re->ipv6RouteInfo.re_obpkt += child->ire_ob_pkt_count; 11026 re->ipv6RouteInfo.re_ibpkt += child->ire_ib_pkt_count; 11027 child = child->ire_dep_sib_next; 11028 } 11029 rw_exit(&ipst->ips_ire_dep_lock); 11030 } 11031 if (ire->ire_flags & RTF_DYNAMIC) { 11032 re->ipv6RouteInfo.re_ire_type = IRE_HOST_REDIRECT; 11033 } else { 11034 re->ipv6RouteInfo.re_ire_type = ire->ire_type; 11035 } 11036 11037 if (!snmp_append_data2(ird->ird_route.lp_head, &ird->ird_route.lp_tail, 11038 (char *)re, (int)sizeof (*re))) { 11039 ip1dbg(("ip_snmp_get2_v6: failed to allocate %u bytes\n", 11040 (uint_t)sizeof (*re))); 11041 } 11042 11043 if (gc != NULL) { 11044 iaes.iae_routeidx = ird->ird_idx; 11045 iaes.iae_doi = gc->gc_db->gcdb_doi; 11046 iaes.iae_slrange = gc->gc_db->gcdb_slrange; 11047 11048 if (!snmp_append_data2(ird->ird_attrs.lp_head, 11049 &ird->ird_attrs.lp_tail, (char *)&iaes, sizeof (iaes))) { 11050 ip1dbg(("ip_snmp_get2_v6: failed to allocate %u " 11051 "bytes\n", (uint_t)sizeof (iaes))); 11052 } 11053 } 11054 11055 /* bump route index for next pass */ 11056 ird->ird_idx++; 11057 11058 kmem_free(re, sizeof (*re)); 11059 if (gcgrp != NULL) 11060 rw_exit(&gcgrp->gcgrp_rwlock); 11061 } 11062 11063 /* 11064 * ncec_walk routine to create ipv6NetToMediaEntryTable 11065 */ 11066 static int 11067 ip_snmp_get2_v6_media(ncec_t *ncec, iproutedata_t *ird) 11068 { 11069 ill_t *ill; 11070 mib2_ipv6NetToMediaEntry_t ntme; 11071 11072 ill = ncec->ncec_ill; 11073 /* skip arpce entries, and loopback ncec entries */ 11074 if (ill->ill_isv6 == B_FALSE || ill->ill_net_type == IRE_LOOPBACK) 11075 return (0); 11076 /* 11077 * Neighbor cache entry attached to IRE with on-link 11078 * destination. 11079 * We report all IPMP groups on ncec_ill which is normally the upper. 11080 */ 11081 ntme.ipv6NetToMediaIfIndex = ill->ill_phyint->phyint_ifindex; 11082 ntme.ipv6NetToMediaNetAddress = ncec->ncec_addr; 11083 ntme.ipv6NetToMediaPhysAddress.o_length = ill->ill_phys_addr_length; 11084 if (ncec->ncec_lladdr != NULL) { 11085 bcopy(ncec->ncec_lladdr, ntme.ipv6NetToMediaPhysAddress.o_bytes, 11086 ntme.ipv6NetToMediaPhysAddress.o_length); 11087 } 11088 /* 11089 * Note: Returns ND_* states. Should be: 11090 * reachable(1), stale(2), delay(3), probe(4), 11091 * invalid(5), unknown(6) 11092 */ 11093 ntme.ipv6NetToMediaState = ncec->ncec_state; 11094 ntme.ipv6NetToMediaLastUpdated = 0; 11095 11096 /* other(1), dynamic(2), static(3), local(4) */ 11097 if (NCE_MYADDR(ncec)) { 11098 ntme.ipv6NetToMediaType = 4; 11099 } else if (ncec->ncec_flags & NCE_F_PUBLISH) { 11100 ntme.ipv6NetToMediaType = 1; /* proxy */ 11101 } else if (ncec->ncec_flags & NCE_F_STATIC) { 11102 ntme.ipv6NetToMediaType = 3; 11103 } else if (ncec->ncec_flags & (NCE_F_MCAST|NCE_F_BCAST)) { 11104 ntme.ipv6NetToMediaType = 1; 11105 } else { 11106 ntme.ipv6NetToMediaType = 2; 11107 } 11108 11109 if (!snmp_append_data2(ird->ird_netmedia.lp_head, 11110 &ird->ird_netmedia.lp_tail, (char *)&ntme, sizeof (ntme))) { 11111 ip1dbg(("ip_snmp_get2_v6_media: failed to allocate %u bytes\n", 11112 (uint_t)sizeof (ntme))); 11113 } 11114 return (0); 11115 } 11116 11117 int 11118 nce2ace(ncec_t *ncec) 11119 { 11120 int flags = 0; 11121 11122 if (NCE_ISREACHABLE(ncec)) 11123 flags |= ACE_F_RESOLVED; 11124 if (ncec->ncec_flags & NCE_F_AUTHORITY) 11125 flags |= ACE_F_AUTHORITY; 11126 if (ncec->ncec_flags & NCE_F_PUBLISH) 11127 flags |= ACE_F_PUBLISH; 11128 if ((ncec->ncec_flags & NCE_F_NONUD) != 0) 11129 flags |= ACE_F_PERMANENT; 11130 if (NCE_MYADDR(ncec)) 11131 flags |= (ACE_F_MYADDR | ACE_F_AUTHORITY); 11132 if (ncec->ncec_flags & NCE_F_UNVERIFIED) 11133 flags |= ACE_F_UNVERIFIED; 11134 if (ncec->ncec_flags & NCE_F_AUTHORITY) 11135 flags |= ACE_F_AUTHORITY; 11136 if (ncec->ncec_flags & NCE_F_DELAYED) 11137 flags |= ACE_F_DELAYED; 11138 return (flags); 11139 } 11140 11141 /* 11142 * ncec_walk routine to create ipNetToMediaEntryTable 11143 */ 11144 static int 11145 ip_snmp_get2_v4_media(ncec_t *ncec, iproutedata_t *ird) 11146 { 11147 ill_t *ill; 11148 mib2_ipNetToMediaEntry_t ntme; 11149 const char *name = "unknown"; 11150 ipaddr_t ncec_addr; 11151 11152 ill = ncec->ncec_ill; 11153 if (ill->ill_isv6 || (ncec->ncec_flags & NCE_F_BCAST) || 11154 ill->ill_net_type == IRE_LOOPBACK) 11155 return (0); 11156 11157 /* We report all IPMP groups on ncec_ill which is normally the upper. */ 11158 name = ill->ill_name; 11159 /* Based on RFC 4293: other(1), inval(2), dyn(3), stat(4) */ 11160 if (NCE_MYADDR(ncec)) { 11161 ntme.ipNetToMediaType = 4; 11162 } else if (ncec->ncec_flags & (NCE_F_MCAST|NCE_F_BCAST|NCE_F_PUBLISH)) { 11163 ntme.ipNetToMediaType = 1; 11164 } else { 11165 ntme.ipNetToMediaType = 3; 11166 } 11167 ntme.ipNetToMediaIfIndex.o_length = MIN(OCTET_LENGTH, strlen(name)); 11168 bcopy(name, ntme.ipNetToMediaIfIndex.o_bytes, 11169 ntme.ipNetToMediaIfIndex.o_length); 11170 11171 IN6_V4MAPPED_TO_IPADDR(&ncec->ncec_addr, ncec_addr); 11172 bcopy(&ncec_addr, &ntme.ipNetToMediaNetAddress, sizeof (ncec_addr)); 11173 11174 ntme.ipNetToMediaInfo.ntm_mask.o_length = sizeof (ipaddr_t); 11175 ncec_addr = INADDR_BROADCAST; 11176 bcopy(&ncec_addr, ntme.ipNetToMediaInfo.ntm_mask.o_bytes, 11177 sizeof (ncec_addr)); 11178 /* 11179 * map all the flags to the ACE counterpart. 11180 */ 11181 ntme.ipNetToMediaInfo.ntm_flags = nce2ace(ncec); 11182 11183 ntme.ipNetToMediaPhysAddress.o_length = 11184 MIN(OCTET_LENGTH, ill->ill_phys_addr_length); 11185 11186 if (!NCE_ISREACHABLE(ncec)) 11187 ntme.ipNetToMediaPhysAddress.o_length = 0; 11188 else { 11189 if (ncec->ncec_lladdr != NULL) { 11190 bcopy(ncec->ncec_lladdr, 11191 ntme.ipNetToMediaPhysAddress.o_bytes, 11192 ntme.ipNetToMediaPhysAddress.o_length); 11193 } 11194 } 11195 11196 if (!snmp_append_data2(ird->ird_netmedia.lp_head, 11197 &ird->ird_netmedia.lp_tail, (char *)&ntme, sizeof (ntme))) { 11198 ip1dbg(("ip_snmp_get2_v4_media: failed to allocate %u bytes\n", 11199 (uint_t)sizeof (ntme))); 11200 } 11201 return (0); 11202 } 11203 11204 /* 11205 * return (0) if invalid set request, 1 otherwise, including non-tcp requests 11206 */ 11207 /* ARGSUSED */ 11208 int 11209 ip_snmp_set(queue_t *q, int level, int name, uchar_t *ptr, int len) 11210 { 11211 switch (level) { 11212 case MIB2_IP: 11213 case MIB2_ICMP: 11214 switch (name) { 11215 default: 11216 break; 11217 } 11218 return (1); 11219 default: 11220 return (1); 11221 } 11222 } 11223 11224 /* 11225 * When there exists both a 64- and 32-bit counter of a particular type 11226 * (i.e., InReceives), only the 64-bit counters are added. 11227 */ 11228 void 11229 ip_mib2_add_ip_stats(mib2_ipIfStatsEntry_t *o1, mib2_ipIfStatsEntry_t *o2) 11230 { 11231 UPDATE_MIB(o1, ipIfStatsInHdrErrors, o2->ipIfStatsInHdrErrors); 11232 UPDATE_MIB(o1, ipIfStatsInTooBigErrors, o2->ipIfStatsInTooBigErrors); 11233 UPDATE_MIB(o1, ipIfStatsInNoRoutes, o2->ipIfStatsInNoRoutes); 11234 UPDATE_MIB(o1, ipIfStatsInAddrErrors, o2->ipIfStatsInAddrErrors); 11235 UPDATE_MIB(o1, ipIfStatsInUnknownProtos, o2->ipIfStatsInUnknownProtos); 11236 UPDATE_MIB(o1, ipIfStatsInTruncatedPkts, o2->ipIfStatsInTruncatedPkts); 11237 UPDATE_MIB(o1, ipIfStatsInDiscards, o2->ipIfStatsInDiscards); 11238 UPDATE_MIB(o1, ipIfStatsOutDiscards, o2->ipIfStatsOutDiscards); 11239 UPDATE_MIB(o1, ipIfStatsOutFragOKs, o2->ipIfStatsOutFragOKs); 11240 UPDATE_MIB(o1, ipIfStatsOutFragFails, o2->ipIfStatsOutFragFails); 11241 UPDATE_MIB(o1, ipIfStatsOutFragCreates, o2->ipIfStatsOutFragCreates); 11242 UPDATE_MIB(o1, ipIfStatsReasmReqds, o2->ipIfStatsReasmReqds); 11243 UPDATE_MIB(o1, ipIfStatsReasmOKs, o2->ipIfStatsReasmOKs); 11244 UPDATE_MIB(o1, ipIfStatsReasmFails, o2->ipIfStatsReasmFails); 11245 UPDATE_MIB(o1, ipIfStatsOutNoRoutes, o2->ipIfStatsOutNoRoutes); 11246 UPDATE_MIB(o1, ipIfStatsReasmDuplicates, o2->ipIfStatsReasmDuplicates); 11247 UPDATE_MIB(o1, ipIfStatsReasmPartDups, o2->ipIfStatsReasmPartDups); 11248 UPDATE_MIB(o1, ipIfStatsForwProhibits, o2->ipIfStatsForwProhibits); 11249 UPDATE_MIB(o1, udpInCksumErrs, o2->udpInCksumErrs); 11250 UPDATE_MIB(o1, udpInOverflows, o2->udpInOverflows); 11251 UPDATE_MIB(o1, rawipInOverflows, o2->rawipInOverflows); 11252 UPDATE_MIB(o1, ipIfStatsInWrongIPVersion, 11253 o2->ipIfStatsInWrongIPVersion); 11254 UPDATE_MIB(o1, ipIfStatsOutWrongIPVersion, 11255 o2->ipIfStatsInWrongIPVersion); 11256 UPDATE_MIB(o1, ipIfStatsOutSwitchIPVersion, 11257 o2->ipIfStatsOutSwitchIPVersion); 11258 UPDATE_MIB(o1, ipIfStatsHCInReceives, o2->ipIfStatsHCInReceives); 11259 UPDATE_MIB(o1, ipIfStatsHCInOctets, o2->ipIfStatsHCInOctets); 11260 UPDATE_MIB(o1, ipIfStatsHCInForwDatagrams, 11261 o2->ipIfStatsHCInForwDatagrams); 11262 UPDATE_MIB(o1, ipIfStatsHCInDelivers, o2->ipIfStatsHCInDelivers); 11263 UPDATE_MIB(o1, ipIfStatsHCOutRequests, o2->ipIfStatsHCOutRequests); 11264 UPDATE_MIB(o1, ipIfStatsHCOutForwDatagrams, 11265 o2->ipIfStatsHCOutForwDatagrams); 11266 UPDATE_MIB(o1, ipIfStatsOutFragReqds, o2->ipIfStatsOutFragReqds); 11267 UPDATE_MIB(o1, ipIfStatsHCOutTransmits, o2->ipIfStatsHCOutTransmits); 11268 UPDATE_MIB(o1, ipIfStatsHCOutOctets, o2->ipIfStatsHCOutOctets); 11269 UPDATE_MIB(o1, ipIfStatsHCInMcastPkts, o2->ipIfStatsHCInMcastPkts); 11270 UPDATE_MIB(o1, ipIfStatsHCInMcastOctets, o2->ipIfStatsHCInMcastOctets); 11271 UPDATE_MIB(o1, ipIfStatsHCOutMcastPkts, o2->ipIfStatsHCOutMcastPkts); 11272 UPDATE_MIB(o1, ipIfStatsHCOutMcastOctets, 11273 o2->ipIfStatsHCOutMcastOctets); 11274 UPDATE_MIB(o1, ipIfStatsHCInBcastPkts, o2->ipIfStatsHCInBcastPkts); 11275 UPDATE_MIB(o1, ipIfStatsHCOutBcastPkts, o2->ipIfStatsHCOutBcastPkts); 11276 UPDATE_MIB(o1, ipsecInSucceeded, o2->ipsecInSucceeded); 11277 UPDATE_MIB(o1, ipsecInFailed, o2->ipsecInFailed); 11278 UPDATE_MIB(o1, ipInCksumErrs, o2->ipInCksumErrs); 11279 UPDATE_MIB(o1, tcpInErrs, o2->tcpInErrs); 11280 UPDATE_MIB(o1, udpNoPorts, o2->udpNoPorts); 11281 } 11282 11283 void 11284 ip_mib2_add_icmp6_stats(mib2_ipv6IfIcmpEntry_t *o1, mib2_ipv6IfIcmpEntry_t *o2) 11285 { 11286 UPDATE_MIB(o1, ipv6IfIcmpInMsgs, o2->ipv6IfIcmpInMsgs); 11287 UPDATE_MIB(o1, ipv6IfIcmpInErrors, o2->ipv6IfIcmpInErrors); 11288 UPDATE_MIB(o1, ipv6IfIcmpInDestUnreachs, o2->ipv6IfIcmpInDestUnreachs); 11289 UPDATE_MIB(o1, ipv6IfIcmpInAdminProhibs, o2->ipv6IfIcmpInAdminProhibs); 11290 UPDATE_MIB(o1, ipv6IfIcmpInTimeExcds, o2->ipv6IfIcmpInTimeExcds); 11291 UPDATE_MIB(o1, ipv6IfIcmpInParmProblems, o2->ipv6IfIcmpInParmProblems); 11292 UPDATE_MIB(o1, ipv6IfIcmpInPktTooBigs, o2->ipv6IfIcmpInPktTooBigs); 11293 UPDATE_MIB(o1, ipv6IfIcmpInEchos, o2->ipv6IfIcmpInEchos); 11294 UPDATE_MIB(o1, ipv6IfIcmpInEchoReplies, o2->ipv6IfIcmpInEchoReplies); 11295 UPDATE_MIB(o1, ipv6IfIcmpInRouterSolicits, 11296 o2->ipv6IfIcmpInRouterSolicits); 11297 UPDATE_MIB(o1, ipv6IfIcmpInRouterAdvertisements, 11298 o2->ipv6IfIcmpInRouterAdvertisements); 11299 UPDATE_MIB(o1, ipv6IfIcmpInNeighborSolicits, 11300 o2->ipv6IfIcmpInNeighborSolicits); 11301 UPDATE_MIB(o1, ipv6IfIcmpInNeighborAdvertisements, 11302 o2->ipv6IfIcmpInNeighborAdvertisements); 11303 UPDATE_MIB(o1, ipv6IfIcmpInRedirects, o2->ipv6IfIcmpInRedirects); 11304 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembQueries, 11305 o2->ipv6IfIcmpInGroupMembQueries); 11306 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembResponses, 11307 o2->ipv6IfIcmpInGroupMembResponses); 11308 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembReductions, 11309 o2->ipv6IfIcmpInGroupMembReductions); 11310 UPDATE_MIB(o1, ipv6IfIcmpOutMsgs, o2->ipv6IfIcmpOutMsgs); 11311 UPDATE_MIB(o1, ipv6IfIcmpOutErrors, o2->ipv6IfIcmpOutErrors); 11312 UPDATE_MIB(o1, ipv6IfIcmpOutDestUnreachs, 11313 o2->ipv6IfIcmpOutDestUnreachs); 11314 UPDATE_MIB(o1, ipv6IfIcmpOutAdminProhibs, 11315 o2->ipv6IfIcmpOutAdminProhibs); 11316 UPDATE_MIB(o1, ipv6IfIcmpOutTimeExcds, o2->ipv6IfIcmpOutTimeExcds); 11317 UPDATE_MIB(o1, ipv6IfIcmpOutParmProblems, 11318 o2->ipv6IfIcmpOutParmProblems); 11319 UPDATE_MIB(o1, ipv6IfIcmpOutPktTooBigs, o2->ipv6IfIcmpOutPktTooBigs); 11320 UPDATE_MIB(o1, ipv6IfIcmpOutEchos, o2->ipv6IfIcmpOutEchos); 11321 UPDATE_MIB(o1, ipv6IfIcmpOutEchoReplies, o2->ipv6IfIcmpOutEchoReplies); 11322 UPDATE_MIB(o1, ipv6IfIcmpOutRouterSolicits, 11323 o2->ipv6IfIcmpOutRouterSolicits); 11324 UPDATE_MIB(o1, ipv6IfIcmpOutRouterAdvertisements, 11325 o2->ipv6IfIcmpOutRouterAdvertisements); 11326 UPDATE_MIB(o1, ipv6IfIcmpOutNeighborSolicits, 11327 o2->ipv6IfIcmpOutNeighborSolicits); 11328 UPDATE_MIB(o1, ipv6IfIcmpOutNeighborAdvertisements, 11329 o2->ipv6IfIcmpOutNeighborAdvertisements); 11330 UPDATE_MIB(o1, ipv6IfIcmpOutRedirects, o2->ipv6IfIcmpOutRedirects); 11331 UPDATE_MIB(o1, ipv6IfIcmpOutGroupMembQueries, 11332 o2->ipv6IfIcmpOutGroupMembQueries); 11333 UPDATE_MIB(o1, ipv6IfIcmpOutGroupMembResponses, 11334 o2->ipv6IfIcmpOutGroupMembResponses); 11335 UPDATE_MIB(o1, ipv6IfIcmpOutGroupMembReductions, 11336 o2->ipv6IfIcmpOutGroupMembReductions); 11337 UPDATE_MIB(o1, ipv6IfIcmpInOverflows, o2->ipv6IfIcmpInOverflows); 11338 UPDATE_MIB(o1, ipv6IfIcmpBadHoplimit, o2->ipv6IfIcmpBadHoplimit); 11339 UPDATE_MIB(o1, ipv6IfIcmpInBadNeighborAdvertisements, 11340 o2->ipv6IfIcmpInBadNeighborAdvertisements); 11341 UPDATE_MIB(o1, ipv6IfIcmpInBadNeighborSolicitations, 11342 o2->ipv6IfIcmpInBadNeighborSolicitations); 11343 UPDATE_MIB(o1, ipv6IfIcmpInBadRedirects, o2->ipv6IfIcmpInBadRedirects); 11344 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembTotal, 11345 o2->ipv6IfIcmpInGroupMembTotal); 11346 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembBadQueries, 11347 o2->ipv6IfIcmpInGroupMembBadQueries); 11348 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembBadReports, 11349 o2->ipv6IfIcmpInGroupMembBadReports); 11350 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembOurReports, 11351 o2->ipv6IfIcmpInGroupMembOurReports); 11352 } 11353 11354 /* 11355 * Called before the options are updated to check if this packet will 11356 * be source routed from here. 11357 * This routine assumes that the options are well formed i.e. that they 11358 * have already been checked. 11359 */ 11360 boolean_t 11361 ip_source_routed(ipha_t *ipha, ip_stack_t *ipst) 11362 { 11363 ipoptp_t opts; 11364 uchar_t *opt; 11365 uint8_t optval; 11366 uint8_t optlen; 11367 ipaddr_t dst; 11368 11369 if (IS_SIMPLE_IPH(ipha)) { 11370 ip2dbg(("not source routed\n")); 11371 return (B_FALSE); 11372 } 11373 dst = ipha->ipha_dst; 11374 for (optval = ipoptp_first(&opts, ipha); 11375 optval != IPOPT_EOL; 11376 optval = ipoptp_next(&opts)) { 11377 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 11378 opt = opts.ipoptp_cur; 11379 optlen = opts.ipoptp_len; 11380 ip2dbg(("ip_source_routed: opt %d, len %d\n", 11381 optval, optlen)); 11382 switch (optval) { 11383 uint32_t off; 11384 case IPOPT_SSRR: 11385 case IPOPT_LSRR: 11386 /* 11387 * If dst is one of our addresses and there are some 11388 * entries left in the source route return (true). 11389 */ 11390 if (ip_type_v4(dst, ipst) != IRE_LOCAL) { 11391 ip2dbg(("ip_source_routed: not next" 11392 " source route 0x%x\n", 11393 ntohl(dst))); 11394 return (B_FALSE); 11395 } 11396 off = opt[IPOPT_OFFSET]; 11397 off--; 11398 if (optlen < IP_ADDR_LEN || 11399 off > optlen - IP_ADDR_LEN) { 11400 /* End of source route */ 11401 ip1dbg(("ip_source_routed: end of SR\n")); 11402 return (B_FALSE); 11403 } 11404 return (B_TRUE); 11405 } 11406 } 11407 ip2dbg(("not source routed\n")); 11408 return (B_FALSE); 11409 } 11410 11411 /* 11412 * ip_unbind is called by the transports to remove a conn from 11413 * the fanout table. 11414 */ 11415 void 11416 ip_unbind(conn_t *connp) 11417 { 11418 11419 ASSERT(!MUTEX_HELD(&connp->conn_lock)); 11420 11421 if (is_system_labeled() && connp->conn_anon_port) { 11422 (void) tsol_mlp_anon(crgetzone(connp->conn_cred), 11423 connp->conn_mlp_type, connp->conn_proto, 11424 ntohs(connp->conn_lport), B_FALSE); 11425 connp->conn_anon_port = 0; 11426 } 11427 connp->conn_mlp_type = mlptSingle; 11428 11429 ipcl_hash_remove(connp); 11430 } 11431 11432 /* 11433 * Used for deciding the MSS size for the upper layer. Thus 11434 * we need to check the outbound policy values in the conn. 11435 */ 11436 int 11437 conn_ipsec_length(conn_t *connp) 11438 { 11439 ipsec_latch_t *ipl; 11440 11441 ipl = connp->conn_latch; 11442 if (ipl == NULL) 11443 return (0); 11444 11445 if (connp->conn_ixa->ixa_ipsec_policy == NULL) 11446 return (0); 11447 11448 return (connp->conn_ixa->ixa_ipsec_policy->ipsp_act->ipa_ovhd); 11449 } 11450 11451 /* 11452 * Returns an estimate of the IPsec headers size. This is used if 11453 * we don't want to call into IPsec to get the exact size. 11454 */ 11455 int 11456 ipsec_out_extra_length(ip_xmit_attr_t *ixa) 11457 { 11458 ipsec_action_t *a; 11459 11460 if (!(ixa->ixa_flags & IXAF_IPSEC_SECURE)) 11461 return (0); 11462 11463 a = ixa->ixa_ipsec_action; 11464 if (a == NULL) { 11465 ASSERT(ixa->ixa_ipsec_policy != NULL); 11466 a = ixa->ixa_ipsec_policy->ipsp_act; 11467 } 11468 ASSERT(a != NULL); 11469 11470 return (a->ipa_ovhd); 11471 } 11472 11473 /* 11474 * If there are any source route options, return the true final 11475 * destination. Otherwise, return the destination. 11476 */ 11477 ipaddr_t 11478 ip_get_dst(ipha_t *ipha) 11479 { 11480 ipoptp_t opts; 11481 uchar_t *opt; 11482 uint8_t optval; 11483 uint8_t optlen; 11484 ipaddr_t dst; 11485 uint32_t off; 11486 11487 dst = ipha->ipha_dst; 11488 11489 if (IS_SIMPLE_IPH(ipha)) 11490 return (dst); 11491 11492 for (optval = ipoptp_first(&opts, ipha); 11493 optval != IPOPT_EOL; 11494 optval = ipoptp_next(&opts)) { 11495 opt = opts.ipoptp_cur; 11496 optlen = opts.ipoptp_len; 11497 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 11498 switch (optval) { 11499 case IPOPT_SSRR: 11500 case IPOPT_LSRR: 11501 off = opt[IPOPT_OFFSET]; 11502 /* 11503 * If one of the conditions is true, it means 11504 * end of options and dst already has the right 11505 * value. 11506 */ 11507 if (!(optlen < IP_ADDR_LEN || off > optlen - 3)) { 11508 off = optlen - IP_ADDR_LEN; 11509 bcopy(&opt[off], &dst, IP_ADDR_LEN); 11510 } 11511 return (dst); 11512 default: 11513 break; 11514 } 11515 } 11516 11517 return (dst); 11518 } 11519 11520 /* 11521 * Outbound IP fragmentation routine. 11522 * Assumes the caller has checked whether or not fragmentation should 11523 * be allowed. Here we copy the DF bit from the header to all the generated 11524 * fragments. 11525 */ 11526 int 11527 ip_fragment_v4(mblk_t *mp_orig, nce_t *nce, iaflags_t ixaflags, 11528 uint_t pkt_len, uint32_t max_frag, uint32_t xmit_hint, zoneid_t szone, 11529 zoneid_t nolzid, pfirepostfrag_t postfragfn, uintptr_t *ixa_cookie) 11530 { 11531 int i1; 11532 int hdr_len; 11533 mblk_t *hdr_mp; 11534 ipha_t *ipha; 11535 int ip_data_end; 11536 int len; 11537 mblk_t *mp = mp_orig; 11538 int offset; 11539 ill_t *ill = nce->nce_ill; 11540 ip_stack_t *ipst = ill->ill_ipst; 11541 mblk_t *carve_mp; 11542 uint32_t frag_flag; 11543 uint_t priority = mp->b_band; 11544 int error = 0; 11545 11546 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragReqds); 11547 11548 if (pkt_len != msgdsize(mp)) { 11549 ip0dbg(("Packet length mismatch: %d, %ld\n", 11550 pkt_len, msgdsize(mp))); 11551 freemsg(mp); 11552 return (EINVAL); 11553 } 11554 11555 if (max_frag == 0) { 11556 ip1dbg(("ip_fragment_v4: max_frag is zero. Dropping packet\n")); 11557 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragFails); 11558 ip_drop_output("FragFails: zero max_frag", mp, ill); 11559 freemsg(mp); 11560 return (EINVAL); 11561 } 11562 11563 ASSERT(MBLKL(mp) >= sizeof (ipha_t)); 11564 ipha = (ipha_t *)mp->b_rptr; 11565 ASSERT(ntohs(ipha->ipha_length) == pkt_len); 11566 frag_flag = ntohs(ipha->ipha_fragment_offset_and_flags) & IPH_DF; 11567 11568 /* 11569 * Establish the starting offset. May not be zero if we are fragging 11570 * a fragment that is being forwarded. 11571 */ 11572 offset = ntohs(ipha->ipha_fragment_offset_and_flags) & IPH_OFFSET; 11573 11574 /* TODO why is this test needed? */ 11575 if (((max_frag - ntohs(ipha->ipha_length)) & ~7) < 8) { 11576 /* TODO: notify ulp somehow */ 11577 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragFails); 11578 ip_drop_output("FragFails: bad starting offset", mp, ill); 11579 freemsg(mp); 11580 return (EINVAL); 11581 } 11582 11583 hdr_len = IPH_HDR_LENGTH(ipha); 11584 ipha->ipha_hdr_checksum = 0; 11585 11586 /* 11587 * Establish the number of bytes maximum per frag, after putting 11588 * in the header. 11589 */ 11590 len = (max_frag - hdr_len) & ~7; 11591 11592 /* Get a copy of the header for the trailing frags */ 11593 hdr_mp = ip_fragment_copyhdr((uchar_t *)ipha, hdr_len, offset, ipst, 11594 mp); 11595 if (hdr_mp == NULL) { 11596 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragFails); 11597 ip_drop_output("FragFails: no hdr_mp", mp, ill); 11598 freemsg(mp); 11599 return (ENOBUFS); 11600 } 11601 11602 /* Store the starting offset, with the MoreFrags flag. */ 11603 i1 = offset | IPH_MF | frag_flag; 11604 ipha->ipha_fragment_offset_and_flags = htons((uint16_t)i1); 11605 11606 /* Establish the ending byte offset, based on the starting offset. */ 11607 offset <<= 3; 11608 ip_data_end = offset + ntohs(ipha->ipha_length) - hdr_len; 11609 11610 /* Store the length of the first fragment in the IP header. */ 11611 i1 = len + hdr_len; 11612 ASSERT(i1 <= IP_MAXPACKET); 11613 ipha->ipha_length = htons((uint16_t)i1); 11614 11615 /* 11616 * Compute the IP header checksum for the first frag. We have to 11617 * watch out that we stop at the end of the header. 11618 */ 11619 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 11620 11621 /* 11622 * Now carve off the first frag. Note that this will include the 11623 * original IP header. 11624 */ 11625 if (!(mp = ip_carve_mp(&mp_orig, i1))) { 11626 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragFails); 11627 ip_drop_output("FragFails: could not carve mp", mp_orig, ill); 11628 freeb(hdr_mp); 11629 freemsg(mp_orig); 11630 return (ENOBUFS); 11631 } 11632 11633 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragCreates); 11634 11635 error = postfragfn(mp, nce, ixaflags, i1, xmit_hint, szone, nolzid, 11636 ixa_cookie); 11637 if (error != 0 && error != EWOULDBLOCK) { 11638 /* No point in sending the other fragments */ 11639 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragFails); 11640 ip_drop_output("FragFails: postfragfn failed", mp_orig, ill); 11641 freeb(hdr_mp); 11642 freemsg(mp_orig); 11643 return (error); 11644 } 11645 11646 /* No need to redo state machine in loop */ 11647 ixaflags &= ~IXAF_REACH_CONF; 11648 11649 /* Advance the offset to the second frag starting point. */ 11650 offset += len; 11651 /* 11652 * Update hdr_len from the copied header - there might be less options 11653 * in the later fragments. 11654 */ 11655 hdr_len = IPH_HDR_LENGTH(hdr_mp->b_rptr); 11656 /* Loop until done. */ 11657 for (;;) { 11658 uint16_t offset_and_flags; 11659 uint16_t ip_len; 11660 11661 if (ip_data_end - offset > len) { 11662 /* 11663 * Carve off the appropriate amount from the original 11664 * datagram. 11665 */ 11666 if (!(carve_mp = ip_carve_mp(&mp_orig, len))) { 11667 mp = NULL; 11668 break; 11669 } 11670 /* 11671 * More frags after this one. Get another copy 11672 * of the header. 11673 */ 11674 if (carve_mp->b_datap->db_ref == 1 && 11675 hdr_mp->b_wptr - hdr_mp->b_rptr < 11676 carve_mp->b_rptr - carve_mp->b_datap->db_base) { 11677 /* Inline IP header */ 11678 carve_mp->b_rptr -= hdr_mp->b_wptr - 11679 hdr_mp->b_rptr; 11680 bcopy(hdr_mp->b_rptr, carve_mp->b_rptr, 11681 hdr_mp->b_wptr - hdr_mp->b_rptr); 11682 mp = carve_mp; 11683 } else { 11684 if (!(mp = copyb(hdr_mp))) { 11685 freemsg(carve_mp); 11686 break; 11687 } 11688 /* Get priority marking, if any. */ 11689 mp->b_band = priority; 11690 mp->b_cont = carve_mp; 11691 } 11692 ipha = (ipha_t *)mp->b_rptr; 11693 offset_and_flags = IPH_MF; 11694 } else { 11695 /* 11696 * Last frag. Consume the header. Set len to 11697 * the length of this last piece. 11698 */ 11699 len = ip_data_end - offset; 11700 11701 /* 11702 * Carve off the appropriate amount from the original 11703 * datagram. 11704 */ 11705 if (!(carve_mp = ip_carve_mp(&mp_orig, len))) { 11706 mp = NULL; 11707 break; 11708 } 11709 if (carve_mp->b_datap->db_ref == 1 && 11710 hdr_mp->b_wptr - hdr_mp->b_rptr < 11711 carve_mp->b_rptr - carve_mp->b_datap->db_base) { 11712 /* Inline IP header */ 11713 carve_mp->b_rptr -= hdr_mp->b_wptr - 11714 hdr_mp->b_rptr; 11715 bcopy(hdr_mp->b_rptr, carve_mp->b_rptr, 11716 hdr_mp->b_wptr - hdr_mp->b_rptr); 11717 mp = carve_mp; 11718 freeb(hdr_mp); 11719 hdr_mp = mp; 11720 } else { 11721 mp = hdr_mp; 11722 /* Get priority marking, if any. */ 11723 mp->b_band = priority; 11724 mp->b_cont = carve_mp; 11725 } 11726 ipha = (ipha_t *)mp->b_rptr; 11727 /* A frag of a frag might have IPH_MF non-zero */ 11728 offset_and_flags = 11729 ntohs(ipha->ipha_fragment_offset_and_flags) & 11730 IPH_MF; 11731 } 11732 offset_and_flags |= (uint16_t)(offset >> 3); 11733 offset_and_flags |= (uint16_t)frag_flag; 11734 /* Store the offset and flags in the IP header. */ 11735 ipha->ipha_fragment_offset_and_flags = htons(offset_and_flags); 11736 11737 /* Store the length in the IP header. */ 11738 ip_len = (uint16_t)(len + hdr_len); 11739 ipha->ipha_length = htons(ip_len); 11740 11741 /* 11742 * Set the IP header checksum. Note that mp is just 11743 * the header, so this is easy to pass to ip_csum. 11744 */ 11745 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 11746 11747 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragCreates); 11748 11749 error = postfragfn(mp, nce, ixaflags, ip_len, xmit_hint, szone, 11750 nolzid, ixa_cookie); 11751 /* All done if we just consumed the hdr_mp. */ 11752 if (mp == hdr_mp) { 11753 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragOKs); 11754 return (error); 11755 } 11756 if (error != 0 && error != EWOULDBLOCK) { 11757 DTRACE_PROBE2(ip__xmit__frag__fail, ill_t *, ill, 11758 mblk_t *, hdr_mp); 11759 /* No point in sending the other fragments */ 11760 break; 11761 } 11762 11763 /* Otherwise, advance and loop. */ 11764 offset += len; 11765 } 11766 /* Clean up following allocation failure. */ 11767 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragFails); 11768 ip_drop_output("FragFails: loop ended", NULL, ill); 11769 if (mp != hdr_mp) 11770 freeb(hdr_mp); 11771 if (mp != mp_orig) 11772 freemsg(mp_orig); 11773 return (error); 11774 } 11775 11776 /* 11777 * Copy the header plus those options which have the copy bit set 11778 */ 11779 static mblk_t * 11780 ip_fragment_copyhdr(uchar_t *rptr, int hdr_len, int offset, ip_stack_t *ipst, 11781 mblk_t *src) 11782 { 11783 mblk_t *mp; 11784 uchar_t *up; 11785 11786 /* 11787 * Quick check if we need to look for options without the copy bit 11788 * set 11789 */ 11790 mp = allocb_tmpl(ipst->ips_ip_wroff_extra + hdr_len, src); 11791 if (!mp) 11792 return (mp); 11793 mp->b_rptr += ipst->ips_ip_wroff_extra; 11794 if (hdr_len == IP_SIMPLE_HDR_LENGTH || offset != 0) { 11795 bcopy(rptr, mp->b_rptr, hdr_len); 11796 mp->b_wptr += hdr_len + ipst->ips_ip_wroff_extra; 11797 return (mp); 11798 } 11799 up = mp->b_rptr; 11800 bcopy(rptr, up, IP_SIMPLE_HDR_LENGTH); 11801 up += IP_SIMPLE_HDR_LENGTH; 11802 rptr += IP_SIMPLE_HDR_LENGTH; 11803 hdr_len -= IP_SIMPLE_HDR_LENGTH; 11804 while (hdr_len > 0) { 11805 uint32_t optval; 11806 uint32_t optlen; 11807 11808 optval = *rptr; 11809 if (optval == IPOPT_EOL) 11810 break; 11811 if (optval == IPOPT_NOP) 11812 optlen = 1; 11813 else 11814 optlen = rptr[1]; 11815 if (optval & IPOPT_COPY) { 11816 bcopy(rptr, up, optlen); 11817 up += optlen; 11818 } 11819 rptr += optlen; 11820 hdr_len -= optlen; 11821 } 11822 /* 11823 * Make sure that we drop an even number of words by filling 11824 * with EOL to the next word boundary. 11825 */ 11826 for (hdr_len = up - (mp->b_rptr + IP_SIMPLE_HDR_LENGTH); 11827 hdr_len & 0x3; hdr_len++) 11828 *up++ = IPOPT_EOL; 11829 mp->b_wptr = up; 11830 /* Update header length */ 11831 mp->b_rptr[0] = (uint8_t)((IP_VERSION << 4) | ((up - mp->b_rptr) >> 2)); 11832 return (mp); 11833 } 11834 11835 /* 11836 * Update any source route, record route, or timestamp options when 11837 * sending a packet back to ourselves. 11838 * Check that we are at end of strict source route. 11839 * The options have been sanity checked by ip_output_options(). 11840 */ 11841 void 11842 ip_output_local_options(ipha_t *ipha, ip_stack_t *ipst) 11843 { 11844 ipoptp_t opts; 11845 uchar_t *opt; 11846 uint8_t optval; 11847 uint8_t optlen; 11848 ipaddr_t dst; 11849 uint32_t ts; 11850 timestruc_t now; 11851 11852 for (optval = ipoptp_first(&opts, ipha); 11853 optval != IPOPT_EOL; 11854 optval = ipoptp_next(&opts)) { 11855 opt = opts.ipoptp_cur; 11856 optlen = opts.ipoptp_len; 11857 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 11858 switch (optval) { 11859 uint32_t off; 11860 case IPOPT_SSRR: 11861 case IPOPT_LSRR: 11862 off = opt[IPOPT_OFFSET]; 11863 off--; 11864 if (optlen < IP_ADDR_LEN || 11865 off > optlen - IP_ADDR_LEN) { 11866 /* End of source route */ 11867 break; 11868 } 11869 /* 11870 * This will only happen if two consecutive entries 11871 * in the source route contains our address or if 11872 * it is a packet with a loose source route which 11873 * reaches us before consuming the whole source route 11874 */ 11875 11876 if (optval == IPOPT_SSRR) { 11877 return; 11878 } 11879 /* 11880 * Hack: instead of dropping the packet truncate the 11881 * source route to what has been used by filling the 11882 * rest with IPOPT_NOP. 11883 */ 11884 opt[IPOPT_OLEN] = (uint8_t)off; 11885 while (off < optlen) { 11886 opt[off++] = IPOPT_NOP; 11887 } 11888 break; 11889 case IPOPT_RR: 11890 off = opt[IPOPT_OFFSET]; 11891 off--; 11892 if (optlen < IP_ADDR_LEN || 11893 off > optlen - IP_ADDR_LEN) { 11894 /* No more room - ignore */ 11895 ip1dbg(( 11896 "ip_output_local_options: end of RR\n")); 11897 break; 11898 } 11899 dst = htonl(INADDR_LOOPBACK); 11900 bcopy(&dst, (char *)opt + off, IP_ADDR_LEN); 11901 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 11902 break; 11903 case IPOPT_TS: 11904 /* Insert timestamp if there is romm */ 11905 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 11906 case IPOPT_TS_TSONLY: 11907 off = IPOPT_TS_TIMELEN; 11908 break; 11909 case IPOPT_TS_PRESPEC: 11910 case IPOPT_TS_PRESPEC_RFC791: 11911 /* Verify that the address matched */ 11912 off = opt[IPOPT_OFFSET] - 1; 11913 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 11914 if (ip_type_v4(dst, ipst) != IRE_LOCAL) { 11915 /* Not for us */ 11916 break; 11917 } 11918 /* FALLTHRU */ 11919 case IPOPT_TS_TSANDADDR: 11920 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 11921 break; 11922 default: 11923 /* 11924 * ip_*put_options should have already 11925 * dropped this packet. 11926 */ 11927 cmn_err(CE_PANIC, "ip_output_local_options: " 11928 "unknown IT - bug in ip_output_options?\n"); 11929 return; /* Keep "lint" happy */ 11930 } 11931 if (opt[IPOPT_OFFSET] - 1 + off > optlen) { 11932 /* Increase overflow counter */ 11933 off = (opt[IPOPT_POS_OV_FLG] >> 4) + 1; 11934 opt[IPOPT_POS_OV_FLG] = (uint8_t) 11935 (opt[IPOPT_POS_OV_FLG] & 0x0F) | 11936 (off << 4); 11937 break; 11938 } 11939 off = opt[IPOPT_OFFSET] - 1; 11940 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 11941 case IPOPT_TS_PRESPEC: 11942 case IPOPT_TS_PRESPEC_RFC791: 11943 case IPOPT_TS_TSANDADDR: 11944 dst = htonl(INADDR_LOOPBACK); 11945 bcopy(&dst, (char *)opt + off, IP_ADDR_LEN); 11946 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 11947 /* FALLTHRU */ 11948 case IPOPT_TS_TSONLY: 11949 off = opt[IPOPT_OFFSET] - 1; 11950 /* Compute # of milliseconds since midnight */ 11951 gethrestime(&now); 11952 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 + 11953 now.tv_nsec / (NANOSEC / MILLISEC); 11954 bcopy(&ts, (char *)opt + off, IPOPT_TS_TIMELEN); 11955 opt[IPOPT_OFFSET] += IPOPT_TS_TIMELEN; 11956 break; 11957 } 11958 break; 11959 } 11960 } 11961 } 11962 11963 /* 11964 * Prepend an M_DATA fastpath header, and if none present prepend a 11965 * DL_UNITDATA_REQ. Frees the mblk on failure. 11966 * 11967 * nce_dlur_mp and nce_fp_mp can not disappear once they have been set. 11968 * If there is a change to them, the nce will be deleted (condemned) and 11969 * a new nce_t will be created when packets are sent. Thus we need no locks 11970 * to access those fields. 11971 * 11972 * We preserve b_band to support IPQoS. If a DL_UNITDATA_REQ is prepended 11973 * we place b_band in dl_priority.dl_max. 11974 */ 11975 static mblk_t * 11976 ip_xmit_attach_llhdr(mblk_t *mp, nce_t *nce) 11977 { 11978 uint_t hlen; 11979 mblk_t *mp1; 11980 uint_t priority; 11981 uchar_t *rptr; 11982 11983 rptr = mp->b_rptr; 11984 11985 ASSERT(DB_TYPE(mp) == M_DATA); 11986 priority = mp->b_band; 11987 11988 ASSERT(nce != NULL); 11989 if ((mp1 = nce->nce_fp_mp) != NULL) { 11990 hlen = MBLKL(mp1); 11991 /* 11992 * Check if we have enough room to prepend fastpath 11993 * header 11994 */ 11995 if (hlen != 0 && (rptr - mp->b_datap->db_base) >= hlen) { 11996 rptr -= hlen; 11997 bcopy(mp1->b_rptr, rptr, hlen); 11998 /* 11999 * Set the b_rptr to the start of the link layer 12000 * header 12001 */ 12002 mp->b_rptr = rptr; 12003 return (mp); 12004 } 12005 mp1 = copyb(mp1); 12006 if (mp1 == NULL) { 12007 ill_t *ill = nce->nce_ill; 12008 12009 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 12010 ip_drop_output("ipIfStatsOutDiscards", mp, ill); 12011 freemsg(mp); 12012 return (NULL); 12013 } 12014 mp1->b_band = priority; 12015 mp1->b_cont = mp; 12016 DB_CKSUMSTART(mp1) = DB_CKSUMSTART(mp); 12017 DB_CKSUMSTUFF(mp1) = DB_CKSUMSTUFF(mp); 12018 DB_CKSUMEND(mp1) = DB_CKSUMEND(mp); 12019 DB_CKSUMFLAGS(mp1) = DB_CKSUMFLAGS(mp); 12020 DB_LSOMSS(mp1) = DB_LSOMSS(mp); 12021 DTRACE_PROBE1(ip__xmit__copyb, (mblk_t *), mp1); 12022 /* 12023 * XXX disable ICK_VALID and compute checksum 12024 * here; can happen if nce_fp_mp changes and 12025 * it can't be copied now due to insufficient 12026 * space. (unlikely, fp mp can change, but it 12027 * does not increase in length) 12028 */ 12029 return (mp1); 12030 } 12031 mp1 = copyb(nce->nce_dlur_mp); 12032 12033 if (mp1 == NULL) { 12034 ill_t *ill = nce->nce_ill; 12035 12036 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 12037 ip_drop_output("ipIfStatsOutDiscards", mp, ill); 12038 freemsg(mp); 12039 return (NULL); 12040 } 12041 mp1->b_cont = mp; 12042 if (priority != 0) { 12043 mp1->b_band = priority; 12044 ((dl_unitdata_req_t *)(mp1->b_rptr))->dl_priority.dl_max = 12045 priority; 12046 } 12047 return (mp1); 12048 #undef rptr 12049 } 12050 12051 /* 12052 * Finish the outbound IPsec processing. This function is called from 12053 * ipsec_out_process() if the IPsec packet was processed 12054 * synchronously, or from {ah,esp}_kcf_callback_outbound() if it was processed 12055 * asynchronously. 12056 * 12057 * This is common to IPv4 and IPv6. 12058 */ 12059 int 12060 ip_output_post_ipsec(mblk_t *mp, ip_xmit_attr_t *ixa) 12061 { 12062 iaflags_t ixaflags = ixa->ixa_flags; 12063 uint_t pktlen; 12064 12065 12066 /* AH/ESP don't update ixa_pktlen when they modify the packet */ 12067 if (ixaflags & IXAF_IS_IPV4) { 12068 ipha_t *ipha = (ipha_t *)mp->b_rptr; 12069 12070 ASSERT(IPH_HDR_VERSION(ipha) == IPV4_VERSION); 12071 pktlen = ntohs(ipha->ipha_length); 12072 } else { 12073 ip6_t *ip6h = (ip6_t *)mp->b_rptr; 12074 12075 ASSERT(IPH_HDR_VERSION(mp->b_rptr) == IPV6_VERSION); 12076 pktlen = ntohs(ip6h->ip6_plen) + IPV6_HDR_LEN; 12077 } 12078 12079 /* 12080 * We release any hard reference on the SAs here to make 12081 * sure the SAs can be garbage collected. ipsr_sa has a soft reference 12082 * on the SAs. 12083 * If in the future we want the hard latching of the SAs in the 12084 * ip_xmit_attr_t then we should remove this. 12085 */ 12086 if (ixa->ixa_ipsec_esp_sa != NULL) { 12087 IPSA_REFRELE(ixa->ixa_ipsec_esp_sa); 12088 ixa->ixa_ipsec_esp_sa = NULL; 12089 } 12090 if (ixa->ixa_ipsec_ah_sa != NULL) { 12091 IPSA_REFRELE(ixa->ixa_ipsec_ah_sa); 12092 ixa->ixa_ipsec_ah_sa = NULL; 12093 } 12094 12095 /* Do we need to fragment? */ 12096 if ((ixa->ixa_flags & IXAF_IPV6_ADD_FRAGHDR) || 12097 pktlen > ixa->ixa_fragsize) { 12098 if (ixaflags & IXAF_IS_IPV4) { 12099 ASSERT(!(ixa->ixa_flags & IXAF_IPV6_ADD_FRAGHDR)); 12100 /* 12101 * We check for the DF case in ipsec_out_process 12102 * hence this only handles the non-DF case. 12103 */ 12104 return (ip_fragment_v4(mp, ixa->ixa_nce, ixa->ixa_flags, 12105 pktlen, ixa->ixa_fragsize, 12106 ixa->ixa_xmit_hint, ixa->ixa_zoneid, 12107 ixa->ixa_no_loop_zoneid, ixa->ixa_postfragfn, 12108 &ixa->ixa_cookie)); 12109 } else { 12110 mp = ip_fraghdr_add_v6(mp, ixa->ixa_ident, ixa); 12111 if (mp == NULL) { 12112 /* MIB and ip_drop_output already done */ 12113 return (ENOMEM); 12114 } 12115 pktlen += sizeof (ip6_frag_t); 12116 if (pktlen > ixa->ixa_fragsize) { 12117 return (ip_fragment_v6(mp, ixa->ixa_nce, 12118 ixa->ixa_flags, pktlen, 12119 ixa->ixa_fragsize, ixa->ixa_xmit_hint, 12120 ixa->ixa_zoneid, ixa->ixa_no_loop_zoneid, 12121 ixa->ixa_postfragfn, &ixa->ixa_cookie)); 12122 } 12123 } 12124 } 12125 return ((ixa->ixa_postfragfn)(mp, ixa->ixa_nce, ixa->ixa_flags, 12126 pktlen, ixa->ixa_xmit_hint, ixa->ixa_zoneid, 12127 ixa->ixa_no_loop_zoneid, NULL)); 12128 } 12129 12130 /* 12131 * Finish the inbound IPsec processing. This function is called from 12132 * ipsec_out_process() if the IPsec packet was processed 12133 * synchronously, or from {ah,esp}_kcf_callback_outbound() if it was processed 12134 * asynchronously. 12135 * 12136 * This is common to IPv4 and IPv6. 12137 */ 12138 void 12139 ip_input_post_ipsec(mblk_t *mp, ip_recv_attr_t *ira) 12140 { 12141 iaflags_t iraflags = ira->ira_flags; 12142 12143 /* Length might have changed */ 12144 if (iraflags & IRAF_IS_IPV4) { 12145 ipha_t *ipha = (ipha_t *)mp->b_rptr; 12146 12147 ASSERT(IPH_HDR_VERSION(ipha) == IPV4_VERSION); 12148 ira->ira_pktlen = ntohs(ipha->ipha_length); 12149 ira->ira_ip_hdr_length = IPH_HDR_LENGTH(ipha); 12150 ira->ira_protocol = ipha->ipha_protocol; 12151 12152 ip_fanout_v4(mp, ipha, ira); 12153 } else { 12154 ip6_t *ip6h = (ip6_t *)mp->b_rptr; 12155 uint8_t *nexthdrp; 12156 12157 ASSERT(IPH_HDR_VERSION(mp->b_rptr) == IPV6_VERSION); 12158 ira->ira_pktlen = ntohs(ip6h->ip6_plen) + IPV6_HDR_LEN; 12159 if (!ip_hdr_length_nexthdr_v6(mp, ip6h, &ira->ira_ip_hdr_length, 12160 &nexthdrp)) { 12161 /* Malformed packet */ 12162 BUMP_MIB(ira->ira_ill->ill_ip_mib, ipIfStatsInDiscards); 12163 ip_drop_input("ipIfStatsInDiscards", mp, ira->ira_ill); 12164 freemsg(mp); 12165 return; 12166 } 12167 ira->ira_protocol = *nexthdrp; 12168 ip_fanout_v6(mp, ip6h, ira); 12169 } 12170 } 12171 12172 /* 12173 * Select which AH & ESP SA's to use (if any) for the outbound packet. 12174 * 12175 * If this function returns B_TRUE, the requested SA's have been filled 12176 * into the ixa_ipsec_*_sa pointers. 12177 * 12178 * If the function returns B_FALSE, the packet has been "consumed", most 12179 * likely by an ACQUIRE sent up via PF_KEY to a key management daemon. 12180 * 12181 * The SA references created by the protocol-specific "select" 12182 * function will be released in ip_output_post_ipsec. 12183 */ 12184 static boolean_t 12185 ipsec_out_select_sa(mblk_t *mp, ip_xmit_attr_t *ixa) 12186 { 12187 boolean_t need_ah_acquire = B_FALSE, need_esp_acquire = B_FALSE; 12188 ipsec_policy_t *pp; 12189 ipsec_action_t *ap; 12190 12191 ASSERT(ixa->ixa_flags & IXAF_IPSEC_SECURE); 12192 ASSERT((ixa->ixa_ipsec_policy != NULL) || 12193 (ixa->ixa_ipsec_action != NULL)); 12194 12195 ap = ixa->ixa_ipsec_action; 12196 if (ap == NULL) { 12197 pp = ixa->ixa_ipsec_policy; 12198 ASSERT(pp != NULL); 12199 ap = pp->ipsp_act; 12200 ASSERT(ap != NULL); 12201 } 12202 12203 /* 12204 * We have an action. now, let's select SA's. 12205 * A side effect of setting ixa_ipsec_*_sa is that it will 12206 * be cached in the conn_t. 12207 */ 12208 if (ap->ipa_want_esp) { 12209 if (ixa->ixa_ipsec_esp_sa == NULL) { 12210 need_esp_acquire = !ipsec_outbound_sa(mp, ixa, 12211 IPPROTO_ESP); 12212 } 12213 ASSERT(need_esp_acquire || ixa->ixa_ipsec_esp_sa != NULL); 12214 } 12215 12216 if (ap->ipa_want_ah) { 12217 if (ixa->ixa_ipsec_ah_sa == NULL) { 12218 need_ah_acquire = !ipsec_outbound_sa(mp, ixa, 12219 IPPROTO_AH); 12220 } 12221 ASSERT(need_ah_acquire || ixa->ixa_ipsec_ah_sa != NULL); 12222 /* 12223 * The ESP and AH processing order needs to be preserved 12224 * when both protocols are required (ESP should be applied 12225 * before AH for an outbound packet). Force an ESP ACQUIRE 12226 * when both ESP and AH are required, and an AH ACQUIRE 12227 * is needed. 12228 */ 12229 if (ap->ipa_want_esp && need_ah_acquire) 12230 need_esp_acquire = B_TRUE; 12231 } 12232 12233 /* 12234 * Send an ACQUIRE (extended, regular, or both) if we need one. 12235 * Release SAs that got referenced, but will not be used until we 12236 * acquire _all_ of the SAs we need. 12237 */ 12238 if (need_ah_acquire || need_esp_acquire) { 12239 if (ixa->ixa_ipsec_ah_sa != NULL) { 12240 IPSA_REFRELE(ixa->ixa_ipsec_ah_sa); 12241 ixa->ixa_ipsec_ah_sa = NULL; 12242 } 12243 if (ixa->ixa_ipsec_esp_sa != NULL) { 12244 IPSA_REFRELE(ixa->ixa_ipsec_esp_sa); 12245 ixa->ixa_ipsec_esp_sa = NULL; 12246 } 12247 12248 sadb_acquire(mp, ixa, need_ah_acquire, need_esp_acquire); 12249 return (B_FALSE); 12250 } 12251 12252 return (B_TRUE); 12253 } 12254 12255 /* 12256 * Handle IPsec output processing. 12257 * This function is only entered once for a given packet. 12258 * We try to do things synchronously, but if we need to have user-level 12259 * set up SAs, or ESP or AH uses asynchronous kEF, then the operation 12260 * will be completed 12261 * - when the SAs are added in esp_add_sa_finish/ah_add_sa_finish 12262 * - when asynchronous ESP is done it will do AH 12263 * 12264 * In all cases we come back in ip_output_post_ipsec() to fragment and 12265 * send out the packet. 12266 */ 12267 int 12268 ipsec_out_process(mblk_t *mp, ip_xmit_attr_t *ixa) 12269 { 12270 ill_t *ill = ixa->ixa_nce->nce_ill; 12271 ip_stack_t *ipst = ixa->ixa_ipst; 12272 ipsec_stack_t *ipss; 12273 ipsec_policy_t *pp; 12274 ipsec_action_t *ap; 12275 12276 ASSERT(ixa->ixa_flags & IXAF_IPSEC_SECURE); 12277 12278 ASSERT((ixa->ixa_ipsec_policy != NULL) || 12279 (ixa->ixa_ipsec_action != NULL)); 12280 12281 ipss = ipst->ips_netstack->netstack_ipsec; 12282 if (!ipsec_loaded(ipss)) { 12283 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 12284 ip_drop_packet(mp, B_TRUE, ill, 12285 DROPPER(ipss, ipds_ip_ipsec_not_loaded), 12286 &ipss->ipsec_dropper); 12287 return (ENOTSUP); 12288 } 12289 12290 ap = ixa->ixa_ipsec_action; 12291 if (ap == NULL) { 12292 pp = ixa->ixa_ipsec_policy; 12293 ASSERT(pp != NULL); 12294 ap = pp->ipsp_act; 12295 ASSERT(ap != NULL); 12296 } 12297 12298 /* Handle explicit drop action and bypass. */ 12299 switch (ap->ipa_act.ipa_type) { 12300 case IPSEC_ACT_DISCARD: 12301 case IPSEC_ACT_REJECT: 12302 ip_drop_packet(mp, B_FALSE, ill, 12303 DROPPER(ipss, ipds_spd_explicit), &ipss->ipsec_spd_dropper); 12304 return (EHOSTUNREACH); /* IPsec policy failure */ 12305 case IPSEC_ACT_BYPASS: 12306 return (ip_output_post_ipsec(mp, ixa)); 12307 } 12308 12309 /* 12310 * The order of processing is first insert a IP header if needed. 12311 * Then insert the ESP header and then the AH header. 12312 */ 12313 if ((ixa->ixa_flags & IXAF_IS_IPV4) && ap->ipa_want_se) { 12314 /* 12315 * First get the outer IP header before sending 12316 * it to ESP. 12317 */ 12318 ipha_t *oipha, *iipha; 12319 mblk_t *outer_mp, *inner_mp; 12320 12321 if ((outer_mp = allocb(sizeof (ipha_t), BPRI_HI)) == NULL) { 12322 (void) mi_strlog(ill->ill_rq, 0, 12323 SL_ERROR|SL_TRACE|SL_CONSOLE, 12324 "ipsec_out_process: " 12325 "Self-Encapsulation failed: Out of memory\n"); 12326 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 12327 ip_drop_output("ipIfStatsOutDiscards", mp, ill); 12328 freemsg(mp); 12329 return (ENOBUFS); 12330 } 12331 inner_mp = mp; 12332 ASSERT(inner_mp->b_datap->db_type == M_DATA); 12333 oipha = (ipha_t *)outer_mp->b_rptr; 12334 iipha = (ipha_t *)inner_mp->b_rptr; 12335 *oipha = *iipha; 12336 outer_mp->b_wptr += sizeof (ipha_t); 12337 oipha->ipha_length = htons(ntohs(iipha->ipha_length) + 12338 sizeof (ipha_t)); 12339 oipha->ipha_protocol = IPPROTO_ENCAP; 12340 oipha->ipha_version_and_hdr_length = 12341 IP_SIMPLE_HDR_VERSION; 12342 oipha->ipha_hdr_checksum = 0; 12343 oipha->ipha_hdr_checksum = ip_csum_hdr(oipha); 12344 outer_mp->b_cont = inner_mp; 12345 mp = outer_mp; 12346 12347 ixa->ixa_flags |= IXAF_IPSEC_TUNNEL; 12348 } 12349 12350 /* If we need to wait for a SA then we can't return any errno */ 12351 if (((ap->ipa_want_ah && (ixa->ixa_ipsec_ah_sa == NULL)) || 12352 (ap->ipa_want_esp && (ixa->ixa_ipsec_esp_sa == NULL))) && 12353 !ipsec_out_select_sa(mp, ixa)) 12354 return (0); 12355 12356 /* 12357 * By now, we know what SA's to use. Toss over to ESP & AH 12358 * to do the heavy lifting. 12359 */ 12360 if (ap->ipa_want_esp) { 12361 ASSERT(ixa->ixa_ipsec_esp_sa != NULL); 12362 12363 mp = ixa->ixa_ipsec_esp_sa->ipsa_output_func(mp, ixa); 12364 if (mp == NULL) { 12365 /* 12366 * Either it failed or is pending. In the former case 12367 * ipIfStatsInDiscards was increased. 12368 */ 12369 return (0); 12370 } 12371 } 12372 12373 if (ap->ipa_want_ah) { 12374 ASSERT(ixa->ixa_ipsec_ah_sa != NULL); 12375 12376 mp = ixa->ixa_ipsec_ah_sa->ipsa_output_func(mp, ixa); 12377 if (mp == NULL) { 12378 /* 12379 * Either it failed or is pending. In the former case 12380 * ipIfStatsInDiscards was increased. 12381 */ 12382 return (0); 12383 } 12384 } 12385 /* 12386 * We are done with IPsec processing. Send it over 12387 * the wire. 12388 */ 12389 return (ip_output_post_ipsec(mp, ixa)); 12390 } 12391 12392 /* 12393 * ioctls that go through a down/up sequence may need to wait for the down 12394 * to complete. This involves waiting for the ire and ipif refcnts to go down 12395 * to zero. Subsequently the ioctl is restarted from ipif_ill_refrele_tail. 12396 */ 12397 /* ARGSUSED */ 12398 void 12399 ip_reprocess_ioctl(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 12400 { 12401 struct iocblk *iocp; 12402 mblk_t *mp1; 12403 ip_ioctl_cmd_t *ipip; 12404 int err; 12405 sin_t *sin; 12406 struct lifreq *lifr; 12407 struct ifreq *ifr; 12408 12409 iocp = (struct iocblk *)mp->b_rptr; 12410 ASSERT(ipsq != NULL); 12411 /* Existence of mp1 verified in ip_wput_nondata */ 12412 mp1 = mp->b_cont->b_cont; 12413 ipip = ip_sioctl_lookup(iocp->ioc_cmd); 12414 if (ipip->ipi_cmd == SIOCSLIFNAME || ipip->ipi_cmd == IF_UNITSEL) { 12415 /* 12416 * Special case where ipx_current_ipif is not set: 12417 * ill_phyint_reinit merged the v4 and v6 into a single ipsq. 12418 * We are here as were not able to complete the operation in 12419 * ipif_set_values because we could not become exclusive on 12420 * the new ipsq. 12421 */ 12422 ill_t *ill = q->q_ptr; 12423 ipsq_current_start(ipsq, ill->ill_ipif, ipip->ipi_cmd); 12424 } 12425 ASSERT(ipsq->ipsq_xop->ipx_current_ipif != NULL); 12426 12427 if (ipip->ipi_cmd_type == IF_CMD) { 12428 /* This a old style SIOC[GS]IF* command */ 12429 ifr = (struct ifreq *)mp1->b_rptr; 12430 sin = (sin_t *)&ifr->ifr_addr; 12431 } else if (ipip->ipi_cmd_type == LIF_CMD) { 12432 /* This a new style SIOC[GS]LIF* command */ 12433 lifr = (struct lifreq *)mp1->b_rptr; 12434 sin = (sin_t *)&lifr->lifr_addr; 12435 } else { 12436 sin = NULL; 12437 } 12438 12439 err = (*ipip->ipi_func_restart)(ipsq->ipsq_xop->ipx_current_ipif, sin, 12440 q, mp, ipip, mp1->b_rptr); 12441 12442 DTRACE_PROBE4(ipif__ioctl, char *, "ip_reprocess_ioctl finish", 12443 int, ipip->ipi_cmd, 12444 ill_t *, ipsq->ipsq_xop->ipx_current_ipif->ipif_ill, 12445 ipif_t *, ipsq->ipsq_xop->ipx_current_ipif); 12446 12447 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), ipsq); 12448 } 12449 12450 /* 12451 * ioctl processing 12452 * 12453 * ioctl processing starts with ip_sioctl_copyin_setup(), which looks up 12454 * the ioctl command in the ioctl tables, determines the copyin data size 12455 * from the ipi_copyin_size field, and does an mi_copyin() of that size. 12456 * 12457 * ioctl processing then continues when the M_IOCDATA makes its way down to 12458 * ip_wput_nondata(). The ioctl is looked up again in the ioctl table, its 12459 * associated 'conn' is refheld till the end of the ioctl and the general 12460 * ioctl processing function ip_process_ioctl() is called to extract the 12461 * arguments and process the ioctl. To simplify extraction, ioctl commands 12462 * are "typed" based on the arguments they take (e.g., LIF_CMD which takes a 12463 * `struct lifreq'), and a common extract function (e.g., ip_extract_lifreq()) 12464 * is used to extract the ioctl's arguments. 12465 * 12466 * ip_process_ioctl determines if the ioctl needs to be serialized, and if 12467 * so goes thru the serialization primitive ipsq_try_enter. Then the 12468 * appropriate function to handle the ioctl is called based on the entry in 12469 * the ioctl table. ioctl completion is encapsulated in ip_ioctl_finish 12470 * which also refreleases the 'conn' that was refheld at the start of the 12471 * ioctl. Finally ipsq_exit is called if needed to exit the ipsq. 12472 * 12473 * Many exclusive ioctls go thru an internal down up sequence as part of 12474 * the operation. For example an attempt to change the IP address of an 12475 * ipif entails ipif_down, set address, ipif_up. Bringing down the interface 12476 * does all the cleanup such as deleting all ires that use this address. 12477 * Then we need to wait till all references to the interface go away. 12478 */ 12479 void 12480 ip_process_ioctl(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *arg) 12481 { 12482 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 12483 ip_ioctl_cmd_t *ipip = arg; 12484 ip_extract_func_t *extract_funcp; 12485 cmd_info_t ci; 12486 int err; 12487 boolean_t entered_ipsq = B_FALSE; 12488 12489 ip3dbg(("ip_process_ioctl: ioctl %X\n", iocp->ioc_cmd)); 12490 12491 if (ipip == NULL) 12492 ipip = ip_sioctl_lookup(iocp->ioc_cmd); 12493 12494 /* 12495 * SIOCLIFADDIF needs to go thru a special path since the 12496 * ill may not exist yet. This happens in the case of lo0 12497 * which is created using this ioctl. 12498 */ 12499 if (ipip->ipi_cmd == SIOCLIFADDIF) { 12500 err = ip_sioctl_addif(NULL, NULL, q, mp, NULL, NULL); 12501 DTRACE_PROBE4(ipif__ioctl, char *, "ip_process_ioctl finish", 12502 int, ipip->ipi_cmd, ill_t *, NULL, ipif_t *, NULL); 12503 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), NULL); 12504 return; 12505 } 12506 12507 ci.ci_ipif = NULL; 12508 switch (ipip->ipi_cmd_type) { 12509 case MISC_CMD: 12510 case MSFILT_CMD: 12511 /* 12512 * All MISC_CMD ioctls come in here -- e.g. SIOCGLIFCONF. 12513 */ 12514 if (ipip->ipi_cmd == IF_UNITSEL) { 12515 /* ioctl comes down the ill */ 12516 ci.ci_ipif = ((ill_t *)q->q_ptr)->ill_ipif; 12517 ipif_refhold(ci.ci_ipif); 12518 } 12519 err = 0; 12520 ci.ci_sin = NULL; 12521 ci.ci_sin6 = NULL; 12522 ci.ci_lifr = NULL; 12523 extract_funcp = NULL; 12524 break; 12525 12526 case IF_CMD: 12527 case LIF_CMD: 12528 extract_funcp = ip_extract_lifreq; 12529 break; 12530 12531 case ARP_CMD: 12532 case XARP_CMD: 12533 extract_funcp = ip_extract_arpreq; 12534 break; 12535 12536 default: 12537 ASSERT(0); 12538 } 12539 12540 if (extract_funcp != NULL) { 12541 err = (*extract_funcp)(q, mp, ipip, &ci); 12542 if (err != 0) { 12543 DTRACE_PROBE4(ipif__ioctl, 12544 char *, "ip_process_ioctl finish err", 12545 int, ipip->ipi_cmd, ill_t *, NULL, ipif_t *, NULL); 12546 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), NULL); 12547 return; 12548 } 12549 12550 /* 12551 * All of the extraction functions return a refheld ipif. 12552 */ 12553 ASSERT(ci.ci_ipif != NULL); 12554 } 12555 12556 if (!(ipip->ipi_flags & IPI_WR)) { 12557 /* 12558 * A return value of EINPROGRESS means the ioctl is 12559 * either queued and waiting for some reason or has 12560 * already completed. 12561 */ 12562 err = (*ipip->ipi_func)(ci.ci_ipif, ci.ci_sin, q, mp, ipip, 12563 ci.ci_lifr); 12564 if (ci.ci_ipif != NULL) { 12565 DTRACE_PROBE4(ipif__ioctl, 12566 char *, "ip_process_ioctl finish RD", 12567 int, ipip->ipi_cmd, ill_t *, ci.ci_ipif->ipif_ill, 12568 ipif_t *, ci.ci_ipif); 12569 ipif_refrele(ci.ci_ipif); 12570 } else { 12571 DTRACE_PROBE4(ipif__ioctl, 12572 char *, "ip_process_ioctl finish RD", 12573 int, ipip->ipi_cmd, ill_t *, NULL, ipif_t *, NULL); 12574 } 12575 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), NULL); 12576 return; 12577 } 12578 12579 ASSERT(ci.ci_ipif != NULL); 12580 12581 /* 12582 * If ipsq is non-NULL, we are already being called exclusively 12583 */ 12584 ASSERT(ipsq == NULL || IAM_WRITER_IPSQ(ipsq)); 12585 if (ipsq == NULL) { 12586 ipsq = ipsq_try_enter(ci.ci_ipif, NULL, q, mp, ip_process_ioctl, 12587 NEW_OP, B_TRUE); 12588 if (ipsq == NULL) { 12589 ipif_refrele(ci.ci_ipif); 12590 return; 12591 } 12592 entered_ipsq = B_TRUE; 12593 } 12594 /* 12595 * Release the ipif so that ipif_down and friends that wait for 12596 * references to go away are not misled about the current ipif_refcnt 12597 * values. We are writer so we can access the ipif even after releasing 12598 * the ipif. 12599 */ 12600 ipif_refrele(ci.ci_ipif); 12601 12602 ipsq_current_start(ipsq, ci.ci_ipif, ipip->ipi_cmd); 12603 12604 /* 12605 * A return value of EINPROGRESS means the ioctl is 12606 * either queued and waiting for some reason or has 12607 * already completed. 12608 */ 12609 err = (*ipip->ipi_func)(ci.ci_ipif, ci.ci_sin, q, mp, ipip, ci.ci_lifr); 12610 12611 DTRACE_PROBE4(ipif__ioctl, char *, "ip_process_ioctl finish WR", 12612 int, ipip->ipi_cmd, 12613 ill_t *, ci.ci_ipif == NULL ? NULL : ci.ci_ipif->ipif_ill, 12614 ipif_t *, ci.ci_ipif); 12615 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), ipsq); 12616 12617 if (entered_ipsq) 12618 ipsq_exit(ipsq); 12619 } 12620 12621 /* 12622 * Complete the ioctl. Typically ioctls use the mi package and need to 12623 * do mi_copyout/mi_copy_done. 12624 */ 12625 void 12626 ip_ioctl_finish(queue_t *q, mblk_t *mp, int err, int mode, ipsq_t *ipsq) 12627 { 12628 conn_t *connp = NULL; 12629 12630 if (err == EINPROGRESS) 12631 return; 12632 12633 if (CONN_Q(q)) { 12634 connp = Q_TO_CONN(q); 12635 ASSERT(connp->conn_ref >= 2); 12636 } 12637 12638 switch (mode) { 12639 case COPYOUT: 12640 if (err == 0) 12641 mi_copyout(q, mp); 12642 else 12643 mi_copy_done(q, mp, err); 12644 break; 12645 12646 case NO_COPYOUT: 12647 mi_copy_done(q, mp, err); 12648 break; 12649 12650 default: 12651 ASSERT(mode == CONN_CLOSE); /* aborted through CONN_CLOSE */ 12652 break; 12653 } 12654 12655 /* 12656 * The conn refhold and ioctlref placed on the conn at the start of the 12657 * ioctl are released here. 12658 */ 12659 if (connp != NULL) { 12660 CONN_DEC_IOCTLREF(connp); 12661 CONN_OPER_PENDING_DONE(connp); 12662 } 12663 12664 if (ipsq != NULL) 12665 ipsq_current_finish(ipsq); 12666 } 12667 12668 /* Handles all non data messages */ 12669 void 12670 ip_wput_nondata(queue_t *q, mblk_t *mp) 12671 { 12672 mblk_t *mp1; 12673 struct iocblk *iocp; 12674 ip_ioctl_cmd_t *ipip; 12675 conn_t *connp; 12676 cred_t *cr; 12677 char *proto_str; 12678 12679 if (CONN_Q(q)) 12680 connp = Q_TO_CONN(q); 12681 else 12682 connp = NULL; 12683 12684 switch (DB_TYPE(mp)) { 12685 case M_IOCTL: 12686 /* 12687 * IOCTL processing begins in ip_sioctl_copyin_setup which 12688 * will arrange to copy in associated control structures. 12689 */ 12690 ip_sioctl_copyin_setup(q, mp); 12691 return; 12692 case M_IOCDATA: 12693 /* 12694 * Ensure that this is associated with one of our trans- 12695 * parent ioctls. If it's not ours, discard it if we're 12696 * running as a driver, or pass it on if we're a module. 12697 */ 12698 iocp = (struct iocblk *)mp->b_rptr; 12699 ipip = ip_sioctl_lookup(iocp->ioc_cmd); 12700 if (ipip == NULL) { 12701 if (q->q_next == NULL) { 12702 goto nak; 12703 } else { 12704 putnext(q, mp); 12705 } 12706 return; 12707 } 12708 if ((q->q_next != NULL) && !(ipip->ipi_flags & IPI_MODOK)) { 12709 /* 12710 * The ioctl is one we recognise, but is not consumed 12711 * by IP as a module and we are a module, so we drop 12712 */ 12713 goto nak; 12714 } 12715 12716 /* IOCTL continuation following copyin or copyout. */ 12717 if (mi_copy_state(q, mp, NULL) == -1) { 12718 /* 12719 * The copy operation failed. mi_copy_state already 12720 * cleaned up, so we're out of here. 12721 */ 12722 return; 12723 } 12724 /* 12725 * If we just completed a copy in, we become writer and 12726 * continue processing in ip_sioctl_copyin_done. If it 12727 * was a copy out, we call mi_copyout again. If there is 12728 * nothing more to copy out, it will complete the IOCTL. 12729 */ 12730 if (MI_COPY_DIRECTION(mp) == MI_COPY_IN) { 12731 if (!(mp1 = mp->b_cont) || !(mp1 = mp1->b_cont)) { 12732 mi_copy_done(q, mp, EPROTO); 12733 return; 12734 } 12735 /* 12736 * Check for cases that need more copying. A return 12737 * value of 0 means a second copyin has been started, 12738 * so we return; a return value of 1 means no more 12739 * copying is needed, so we continue. 12740 */ 12741 if (ipip->ipi_cmd_type == MSFILT_CMD && 12742 MI_COPY_COUNT(mp) == 1) { 12743 if (ip_copyin_msfilter(q, mp) == 0) 12744 return; 12745 } 12746 /* 12747 * Refhold the conn, till the ioctl completes. This is 12748 * needed in case the ioctl ends up in the pending mp 12749 * list. Every mp in the ipx_pending_mp list must have 12750 * a refhold on the conn to resume processing. The 12751 * refhold is released when the ioctl completes 12752 * (whether normally or abnormally). An ioctlref is also 12753 * placed on the conn to prevent TCP from removing the 12754 * queue needed to send the ioctl reply back. 12755 * In all cases ip_ioctl_finish is called to finish 12756 * the ioctl and release the refholds. 12757 */ 12758 if (connp != NULL) { 12759 /* This is not a reentry */ 12760 CONN_INC_REF(connp); 12761 CONN_INC_IOCTLREF(connp); 12762 } else { 12763 if (!(ipip->ipi_flags & IPI_MODOK)) { 12764 mi_copy_done(q, mp, EINVAL); 12765 return; 12766 } 12767 } 12768 12769 ip_process_ioctl(NULL, q, mp, ipip); 12770 12771 } else { 12772 mi_copyout(q, mp); 12773 } 12774 return; 12775 12776 case M_IOCNAK: 12777 /* 12778 * The only way we could get here is if a resolver didn't like 12779 * an IOCTL we sent it. This shouldn't happen. 12780 */ 12781 (void) mi_strlog(q, 1, SL_ERROR|SL_TRACE, 12782 "ip_wput_nondata: unexpected M_IOCNAK, ioc_cmd 0x%x", 12783 ((struct iocblk *)mp->b_rptr)->ioc_cmd); 12784 freemsg(mp); 12785 return; 12786 case M_IOCACK: 12787 /* /dev/ip shouldn't see this */ 12788 goto nak; 12789 case M_FLUSH: 12790 if (*mp->b_rptr & FLUSHW) 12791 flushq(q, FLUSHALL); 12792 if (q->q_next) { 12793 putnext(q, mp); 12794 return; 12795 } 12796 if (*mp->b_rptr & FLUSHR) { 12797 *mp->b_rptr &= ~FLUSHW; 12798 qreply(q, mp); 12799 return; 12800 } 12801 freemsg(mp); 12802 return; 12803 case M_CTL: 12804 break; 12805 case M_PROTO: 12806 case M_PCPROTO: 12807 /* 12808 * The only PROTO messages we expect are SNMP-related. 12809 */ 12810 switch (((union T_primitives *)mp->b_rptr)->type) { 12811 case T_SVR4_OPTMGMT_REQ: 12812 ip2dbg(("ip_wput_nondata: T_SVR4_OPTMGMT_REQ " 12813 "flags %x\n", 12814 ((struct T_optmgmt_req *)mp->b_rptr)->MGMT_flags)); 12815 12816 if (connp == NULL) { 12817 proto_str = "T_SVR4_OPTMGMT_REQ"; 12818 goto protonak; 12819 } 12820 12821 /* 12822 * All Solaris components should pass a db_credp 12823 * for this TPI message, hence we ASSERT. 12824 * But in case there is some other M_PROTO that looks 12825 * like a TPI message sent by some other kernel 12826 * component, we check and return an error. 12827 */ 12828 cr = msg_getcred(mp, NULL); 12829 ASSERT(cr != NULL); 12830 if (cr == NULL) { 12831 mp = mi_tpi_err_ack_alloc(mp, TSYSERR, EINVAL); 12832 if (mp != NULL) 12833 qreply(q, mp); 12834 return; 12835 } 12836 12837 if (!snmpcom_req(q, mp, ip_snmp_set, ip_snmp_get, cr)) { 12838 proto_str = "Bad SNMPCOM request?"; 12839 goto protonak; 12840 } 12841 return; 12842 default: 12843 ip1dbg(("ip_wput_nondata: dropping M_PROTO prim %u\n", 12844 (int)*(uint_t *)mp->b_rptr)); 12845 freemsg(mp); 12846 return; 12847 } 12848 default: 12849 break; 12850 } 12851 if (q->q_next) { 12852 putnext(q, mp); 12853 } else 12854 freemsg(mp); 12855 return; 12856 12857 nak: 12858 iocp->ioc_error = EINVAL; 12859 mp->b_datap->db_type = M_IOCNAK; 12860 iocp->ioc_count = 0; 12861 qreply(q, mp); 12862 return; 12863 12864 protonak: 12865 cmn_err(CE_NOTE, "IP doesn't process %s as a module", proto_str); 12866 if ((mp = mi_tpi_err_ack_alloc(mp, TPROTO, EINVAL)) != NULL) 12867 qreply(q, mp); 12868 } 12869 12870 /* 12871 * Process IP options in an outbound packet. Verify that the nexthop in a 12872 * strict source route is onlink. 12873 * Returns non-zero if something fails in which case an ICMP error has been 12874 * sent and mp freed. 12875 * 12876 * Assumes the ULP has called ip_massage_options to move nexthop into ipha_dst. 12877 */ 12878 int 12879 ip_output_options(mblk_t *mp, ipha_t *ipha, ip_xmit_attr_t *ixa, ill_t *ill) 12880 { 12881 ipoptp_t opts; 12882 uchar_t *opt; 12883 uint8_t optval; 12884 uint8_t optlen; 12885 ipaddr_t dst; 12886 intptr_t code = 0; 12887 ire_t *ire; 12888 ip_stack_t *ipst = ixa->ixa_ipst; 12889 ip_recv_attr_t iras; 12890 12891 ip2dbg(("ip_output_options\n")); 12892 12893 dst = ipha->ipha_dst; 12894 for (optval = ipoptp_first(&opts, ipha); 12895 optval != IPOPT_EOL; 12896 optval = ipoptp_next(&opts)) { 12897 opt = opts.ipoptp_cur; 12898 optlen = opts.ipoptp_len; 12899 ip2dbg(("ip_output_options: opt %d, len %d\n", 12900 optval, optlen)); 12901 switch (optval) { 12902 uint32_t off; 12903 case IPOPT_SSRR: 12904 case IPOPT_LSRR: 12905 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 12906 ip1dbg(( 12907 "ip_output_options: bad option offset\n")); 12908 code = (char *)&opt[IPOPT_OLEN] - 12909 (char *)ipha; 12910 goto param_prob; 12911 } 12912 off = opt[IPOPT_OFFSET]; 12913 ip1dbg(("ip_output_options: next hop 0x%x\n", 12914 ntohl(dst))); 12915 /* 12916 * For strict: verify that dst is directly 12917 * reachable. 12918 */ 12919 if (optval == IPOPT_SSRR) { 12920 ire = ire_ftable_lookup_v4(dst, 0, 0, 12921 IRE_INTERFACE, NULL, ALL_ZONES, 12922 ixa->ixa_tsl, 12923 MATCH_IRE_TYPE | MATCH_IRE_SECATTR, 0, ipst, 12924 NULL); 12925 if (ire == NULL) { 12926 ip1dbg(("ip_output_options: SSRR not" 12927 " directly reachable: 0x%x\n", 12928 ntohl(dst))); 12929 goto bad_src_route; 12930 } 12931 ire_refrele(ire); 12932 } 12933 break; 12934 case IPOPT_RR: 12935 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 12936 ip1dbg(( 12937 "ip_output_options: bad option offset\n")); 12938 code = (char *)&opt[IPOPT_OLEN] - 12939 (char *)ipha; 12940 goto param_prob; 12941 } 12942 break; 12943 case IPOPT_TS: 12944 /* 12945 * Verify that length >=5 and that there is either 12946 * room for another timestamp or that the overflow 12947 * counter is not maxed out. 12948 */ 12949 code = (char *)&opt[IPOPT_OLEN] - (char *)ipha; 12950 if (optlen < IPOPT_MINLEN_IT) { 12951 goto param_prob; 12952 } 12953 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 12954 ip1dbg(( 12955 "ip_output_options: bad option offset\n")); 12956 code = (char *)&opt[IPOPT_OFFSET] - 12957 (char *)ipha; 12958 goto param_prob; 12959 } 12960 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 12961 case IPOPT_TS_TSONLY: 12962 off = IPOPT_TS_TIMELEN; 12963 break; 12964 case IPOPT_TS_TSANDADDR: 12965 case IPOPT_TS_PRESPEC: 12966 case IPOPT_TS_PRESPEC_RFC791: 12967 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 12968 break; 12969 default: 12970 code = (char *)&opt[IPOPT_POS_OV_FLG] - 12971 (char *)ipha; 12972 goto param_prob; 12973 } 12974 if (opt[IPOPT_OFFSET] - 1 + off > optlen && 12975 (opt[IPOPT_POS_OV_FLG] & 0xF0) == 0xF0) { 12976 /* 12977 * No room and the overflow counter is 15 12978 * already. 12979 */ 12980 goto param_prob; 12981 } 12982 break; 12983 } 12984 } 12985 12986 if ((opts.ipoptp_flags & IPOPTP_ERROR) == 0) 12987 return (0); 12988 12989 ip1dbg(("ip_output_options: error processing IP options.")); 12990 code = (char *)&opt[IPOPT_OFFSET] - (char *)ipha; 12991 12992 param_prob: 12993 bzero(&iras, sizeof (iras)); 12994 iras.ira_ill = iras.ira_rill = ill; 12995 iras.ira_ruifindex = ill->ill_phyint->phyint_ifindex; 12996 iras.ira_rifindex = iras.ira_ruifindex; 12997 iras.ira_flags = IRAF_IS_IPV4; 12998 12999 ip_drop_output("ip_output_options", mp, ill); 13000 icmp_param_problem(mp, (uint8_t)code, &iras); 13001 ASSERT(!(iras.ira_flags & IRAF_IPSEC_SECURE)); 13002 return (-1); 13003 13004 bad_src_route: 13005 bzero(&iras, sizeof (iras)); 13006 iras.ira_ill = iras.ira_rill = ill; 13007 iras.ira_ruifindex = ill->ill_phyint->phyint_ifindex; 13008 iras.ira_rifindex = iras.ira_ruifindex; 13009 iras.ira_flags = IRAF_IS_IPV4; 13010 13011 ip_drop_input("ICMP_SOURCE_ROUTE_FAILED", mp, ill); 13012 icmp_unreachable(mp, ICMP_SOURCE_ROUTE_FAILED, &iras); 13013 ASSERT(!(iras.ira_flags & IRAF_IPSEC_SECURE)); 13014 return (-1); 13015 } 13016 13017 /* 13018 * The maximum value of conn_drain_list_cnt is CONN_MAXDRAINCNT. 13019 * conn_drain_list_cnt can be changed by setting conn_drain_nthreads 13020 * thru /etc/system. 13021 */ 13022 #define CONN_MAXDRAINCNT 64 13023 13024 static void 13025 conn_drain_init(ip_stack_t *ipst) 13026 { 13027 int i, j; 13028 idl_tx_list_t *itl_tx; 13029 13030 ipst->ips_conn_drain_list_cnt = conn_drain_nthreads; 13031 13032 if ((ipst->ips_conn_drain_list_cnt == 0) || 13033 (ipst->ips_conn_drain_list_cnt > CONN_MAXDRAINCNT)) { 13034 /* 13035 * Default value of the number of drainers is the 13036 * number of cpus, subject to maximum of 8 drainers. 13037 */ 13038 if (boot_max_ncpus != -1) 13039 ipst->ips_conn_drain_list_cnt = MIN(boot_max_ncpus, 8); 13040 else 13041 ipst->ips_conn_drain_list_cnt = MIN(max_ncpus, 8); 13042 } 13043 13044 ipst->ips_idl_tx_list = 13045 kmem_zalloc(TX_FANOUT_SIZE * sizeof (idl_tx_list_t), KM_SLEEP); 13046 for (i = 0; i < TX_FANOUT_SIZE; i++) { 13047 itl_tx = &ipst->ips_idl_tx_list[i]; 13048 itl_tx->txl_drain_list = 13049 kmem_zalloc(ipst->ips_conn_drain_list_cnt * 13050 sizeof (idl_t), KM_SLEEP); 13051 mutex_init(&itl_tx->txl_lock, NULL, MUTEX_DEFAULT, NULL); 13052 for (j = 0; j < ipst->ips_conn_drain_list_cnt; j++) { 13053 mutex_init(&itl_tx->txl_drain_list[j].idl_lock, NULL, 13054 MUTEX_DEFAULT, NULL); 13055 itl_tx->txl_drain_list[j].idl_itl = itl_tx; 13056 } 13057 } 13058 } 13059 13060 static void 13061 conn_drain_fini(ip_stack_t *ipst) 13062 { 13063 int i; 13064 idl_tx_list_t *itl_tx; 13065 13066 for (i = 0; i < TX_FANOUT_SIZE; i++) { 13067 itl_tx = &ipst->ips_idl_tx_list[i]; 13068 kmem_free(itl_tx->txl_drain_list, 13069 ipst->ips_conn_drain_list_cnt * sizeof (idl_t)); 13070 } 13071 kmem_free(ipst->ips_idl_tx_list, 13072 TX_FANOUT_SIZE * sizeof (idl_tx_list_t)); 13073 ipst->ips_idl_tx_list = NULL; 13074 } 13075 13076 /* 13077 * Flow control has blocked us from proceeding. Insert the given conn in one 13078 * of the conn drain lists. When flow control is unblocked, either ip_wsrv() 13079 * (STREAMS) or ill_flow_enable() (direct) will be called back, which in turn 13080 * will call conn_walk_drain(). See the flow control notes at the top of this 13081 * file for more details. 13082 */ 13083 void 13084 conn_drain_insert(conn_t *connp, idl_tx_list_t *tx_list) 13085 { 13086 idl_t *idl = tx_list->txl_drain_list; 13087 uint_t index; 13088 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 13089 13090 mutex_enter(&connp->conn_lock); 13091 if (connp->conn_state_flags & CONN_CLOSING) { 13092 /* 13093 * The conn is closing as a result of which CONN_CLOSING 13094 * is set. Return. 13095 */ 13096 mutex_exit(&connp->conn_lock); 13097 return; 13098 } else if (connp->conn_idl == NULL) { 13099 /* 13100 * Assign the next drain list round robin. We dont' use 13101 * a lock, and thus it may not be strictly round robin. 13102 * Atomicity of load/stores is enough to make sure that 13103 * conn_drain_list_index is always within bounds. 13104 */ 13105 index = tx_list->txl_drain_index; 13106 ASSERT(index < ipst->ips_conn_drain_list_cnt); 13107 connp->conn_idl = &tx_list->txl_drain_list[index]; 13108 index++; 13109 if (index == ipst->ips_conn_drain_list_cnt) 13110 index = 0; 13111 tx_list->txl_drain_index = index; 13112 } else { 13113 ASSERT(connp->conn_idl->idl_itl == tx_list); 13114 } 13115 mutex_exit(&connp->conn_lock); 13116 13117 idl = connp->conn_idl; 13118 mutex_enter(&idl->idl_lock); 13119 if ((connp->conn_drain_prev != NULL) || 13120 (connp->conn_state_flags & CONN_CLOSING)) { 13121 /* 13122 * The conn is either already in the drain list or closing. 13123 * (We needed to check for CONN_CLOSING again since close can 13124 * sneak in between dropping conn_lock and acquiring idl_lock.) 13125 */ 13126 mutex_exit(&idl->idl_lock); 13127 return; 13128 } 13129 13130 /* 13131 * The conn is not in the drain list. Insert it at the 13132 * tail of the drain list. The drain list is circular 13133 * and doubly linked. idl_conn points to the 1st element 13134 * in the list. 13135 */ 13136 if (idl->idl_conn == NULL) { 13137 idl->idl_conn = connp; 13138 connp->conn_drain_next = connp; 13139 connp->conn_drain_prev = connp; 13140 } else { 13141 conn_t *head = idl->idl_conn; 13142 13143 connp->conn_drain_next = head; 13144 connp->conn_drain_prev = head->conn_drain_prev; 13145 head->conn_drain_prev->conn_drain_next = connp; 13146 head->conn_drain_prev = connp; 13147 } 13148 /* 13149 * For non streams based sockets assert flow control. 13150 */ 13151 conn_setqfull(connp, NULL); 13152 mutex_exit(&idl->idl_lock); 13153 } 13154 13155 static void 13156 conn_drain_remove(conn_t *connp) 13157 { 13158 idl_t *idl = connp->conn_idl; 13159 13160 if (idl != NULL) { 13161 /* 13162 * Remove ourself from the drain list. 13163 */ 13164 if (connp->conn_drain_next == connp) { 13165 /* Singleton in the list */ 13166 ASSERT(connp->conn_drain_prev == connp); 13167 idl->idl_conn = NULL; 13168 } else { 13169 connp->conn_drain_prev->conn_drain_next = 13170 connp->conn_drain_next; 13171 connp->conn_drain_next->conn_drain_prev = 13172 connp->conn_drain_prev; 13173 if (idl->idl_conn == connp) 13174 idl->idl_conn = connp->conn_drain_next; 13175 } 13176 13177 /* 13178 * NOTE: because conn_idl is associated with a specific drain 13179 * list which in turn is tied to the index the TX ring 13180 * (txl_cookie) hashes to, and because the TX ring can change 13181 * over the lifetime of the conn_t, we must clear conn_idl so 13182 * a subsequent conn_drain_insert() will set conn_idl again 13183 * based on the latest txl_cookie. 13184 */ 13185 connp->conn_idl = NULL; 13186 } 13187 connp->conn_drain_next = NULL; 13188 connp->conn_drain_prev = NULL; 13189 13190 conn_clrqfull(connp, NULL); 13191 /* 13192 * For streams based sockets open up flow control. 13193 */ 13194 if (!IPCL_IS_NONSTR(connp)) 13195 enableok(connp->conn_wq); 13196 } 13197 13198 /* 13199 * This conn is closing, and we are called from ip_close. OR 13200 * this conn is draining because flow-control on the ill has been relieved. 13201 * 13202 * We must also need to remove conn's on this idl from the list, and also 13203 * inform the sockfs upcalls about the change in flow-control. 13204 */ 13205 static void 13206 conn_drain(conn_t *connp, boolean_t closing) 13207 { 13208 idl_t *idl; 13209 conn_t *next_connp; 13210 13211 /* 13212 * connp->conn_idl is stable at this point, and no lock is needed 13213 * to check it. If we are called from ip_close, close has already 13214 * set CONN_CLOSING, thus freezing the value of conn_idl, and 13215 * called us only because conn_idl is non-null. If we are called thru 13216 * service, conn_idl could be null, but it cannot change because 13217 * service is single-threaded per queue, and there cannot be another 13218 * instance of service trying to call conn_drain_insert on this conn 13219 * now. 13220 */ 13221 ASSERT(!closing || connp == NULL || connp->conn_idl != NULL); 13222 13223 /* 13224 * If the conn doesn't exist or is not on a drain list, bail. 13225 */ 13226 if (connp == NULL || connp->conn_idl == NULL || 13227 connp->conn_drain_prev == NULL) { 13228 return; 13229 } 13230 13231 idl = connp->conn_idl; 13232 ASSERT(MUTEX_HELD(&idl->idl_lock)); 13233 13234 if (!closing) { 13235 next_connp = connp->conn_drain_next; 13236 while (next_connp != connp) { 13237 conn_t *delconnp = next_connp; 13238 13239 next_connp = next_connp->conn_drain_next; 13240 conn_drain_remove(delconnp); 13241 } 13242 ASSERT(connp->conn_drain_next == idl->idl_conn); 13243 } 13244 conn_drain_remove(connp); 13245 } 13246 13247 /* 13248 * Write service routine. Shared perimeter entry point. 13249 * The device queue's messages has fallen below the low water mark and STREAMS 13250 * has backenabled the ill_wq. Send sockfs notification about flow-control on 13251 * each waiting conn. 13252 */ 13253 void 13254 ip_wsrv(queue_t *q) 13255 { 13256 ill_t *ill; 13257 13258 ill = (ill_t *)q->q_ptr; 13259 if (ill->ill_state_flags == 0) { 13260 ip_stack_t *ipst = ill->ill_ipst; 13261 13262 /* 13263 * The device flow control has opened up. 13264 * Walk through conn drain lists and qenable the 13265 * first conn in each list. This makes sense only 13266 * if the stream is fully plumbed and setup. 13267 * Hence the ill_state_flags check above. 13268 */ 13269 ip1dbg(("ip_wsrv: walking\n")); 13270 conn_walk_drain(ipst, &ipst->ips_idl_tx_list[0]); 13271 enableok(ill->ill_wq); 13272 } 13273 } 13274 13275 /* 13276 * Callback to disable flow control in IP. 13277 * 13278 * This is a mac client callback added when the DLD_CAPAB_DIRECT capability 13279 * is enabled. 13280 * 13281 * When MAC_TX() is not able to send any more packets, dld sets its queue 13282 * to QFULL and enable the STREAMS flow control. Later, when the underlying 13283 * driver is able to continue to send packets, it calls mac_tx_(ring_)update() 13284 * function and wakes up corresponding mac worker threads, which in turn 13285 * calls this callback function, and disables flow control. 13286 */ 13287 void 13288 ill_flow_enable(void *arg, ip_mac_tx_cookie_t cookie) 13289 { 13290 ill_t *ill = (ill_t *)arg; 13291 ip_stack_t *ipst = ill->ill_ipst; 13292 idl_tx_list_t *idl_txl; 13293 13294 idl_txl = &ipst->ips_idl_tx_list[IDLHASHINDEX(cookie)]; 13295 mutex_enter(&idl_txl->txl_lock); 13296 /* add code to to set a flag to indicate idl_txl is enabled */ 13297 conn_walk_drain(ipst, idl_txl); 13298 mutex_exit(&idl_txl->txl_lock); 13299 } 13300 13301 /* 13302 * Flow control has been relieved and STREAMS has backenabled us; drain 13303 * all the conn lists on `tx_list'. 13304 */ 13305 static void 13306 conn_walk_drain(ip_stack_t *ipst, idl_tx_list_t *tx_list) 13307 { 13308 int i; 13309 idl_t *idl; 13310 13311 IP_STAT(ipst, ip_conn_walk_drain); 13312 13313 for (i = 0; i < ipst->ips_conn_drain_list_cnt; i++) { 13314 idl = &tx_list->txl_drain_list[i]; 13315 mutex_enter(&idl->idl_lock); 13316 conn_drain(idl->idl_conn, B_FALSE); 13317 mutex_exit(&idl->idl_lock); 13318 } 13319 } 13320 13321 /* 13322 * Determine if the ill and multicast aspects of that packets 13323 * "matches" the conn. 13324 */ 13325 boolean_t 13326 conn_wantpacket(conn_t *connp, ip_recv_attr_t *ira, ipha_t *ipha) 13327 { 13328 ill_t *ill = ira->ira_rill; 13329 zoneid_t zoneid = ira->ira_zoneid; 13330 uint_t in_ifindex; 13331 ipaddr_t dst, src; 13332 13333 dst = ipha->ipha_dst; 13334 src = ipha->ipha_src; 13335 13336 /* 13337 * conn_incoming_ifindex is set by IP_BOUND_IF which limits 13338 * unicast, broadcast and multicast reception to 13339 * conn_incoming_ifindex. 13340 * conn_wantpacket is called for unicast, broadcast and 13341 * multicast packets. 13342 */ 13343 in_ifindex = connp->conn_incoming_ifindex; 13344 13345 /* mpathd can bind to the under IPMP interface, which we allow */ 13346 if (in_ifindex != 0 && in_ifindex != ill->ill_phyint->phyint_ifindex) { 13347 if (!IS_UNDER_IPMP(ill)) 13348 return (B_FALSE); 13349 13350 if (in_ifindex != ipmp_ill_get_ipmp_ifindex(ill)) 13351 return (B_FALSE); 13352 } 13353 13354 if (!IPCL_ZONE_MATCH(connp, zoneid)) 13355 return (B_FALSE); 13356 13357 if (!(ira->ira_flags & IRAF_MULTICAST)) 13358 return (B_TRUE); 13359 13360 if (connp->conn_multi_router) { 13361 /* multicast packet and multicast router socket: send up */ 13362 return (B_TRUE); 13363 } 13364 13365 if (ipha->ipha_protocol == IPPROTO_PIM || 13366 ipha->ipha_protocol == IPPROTO_RSVP) 13367 return (B_TRUE); 13368 13369 return (conn_hasmembers_ill_withsrc_v4(connp, dst, src, ira->ira_ill)); 13370 } 13371 13372 void 13373 conn_setqfull(conn_t *connp, boolean_t *flow_stopped) 13374 { 13375 if (IPCL_IS_NONSTR(connp)) { 13376 (*connp->conn_upcalls->su_txq_full) 13377 (connp->conn_upper_handle, B_TRUE); 13378 if (flow_stopped != NULL) 13379 *flow_stopped = B_TRUE; 13380 } else { 13381 queue_t *q = connp->conn_wq; 13382 13383 ASSERT(q != NULL); 13384 if (!(q->q_flag & QFULL)) { 13385 mutex_enter(QLOCK(q)); 13386 if (!(q->q_flag & QFULL)) { 13387 /* still need to set QFULL */ 13388 q->q_flag |= QFULL; 13389 /* set flow_stopped to true under QLOCK */ 13390 if (flow_stopped != NULL) 13391 *flow_stopped = B_TRUE; 13392 mutex_exit(QLOCK(q)); 13393 } else { 13394 /* flow_stopped is left unchanged */ 13395 mutex_exit(QLOCK(q)); 13396 } 13397 } 13398 } 13399 } 13400 13401 void 13402 conn_clrqfull(conn_t *connp, boolean_t *flow_stopped) 13403 { 13404 if (IPCL_IS_NONSTR(connp)) { 13405 (*connp->conn_upcalls->su_txq_full) 13406 (connp->conn_upper_handle, B_FALSE); 13407 if (flow_stopped != NULL) 13408 *flow_stopped = B_FALSE; 13409 } else { 13410 queue_t *q = connp->conn_wq; 13411 13412 ASSERT(q != NULL); 13413 if (q->q_flag & QFULL) { 13414 mutex_enter(QLOCK(q)); 13415 if (q->q_flag & QFULL) { 13416 q->q_flag &= ~QFULL; 13417 /* set flow_stopped to false under QLOCK */ 13418 if (flow_stopped != NULL) 13419 *flow_stopped = B_FALSE; 13420 mutex_exit(QLOCK(q)); 13421 if (q->q_flag & QWANTW) 13422 qbackenable(q, 0); 13423 } else { 13424 /* flow_stopped is left unchanged */ 13425 mutex_exit(QLOCK(q)); 13426 } 13427 } 13428 } 13429 13430 mutex_enter(&connp->conn_lock); 13431 connp->conn_blocked = B_FALSE; 13432 mutex_exit(&connp->conn_lock); 13433 } 13434 13435 /* 13436 * Return the length in bytes of the IPv4 headers (base header, label, and 13437 * other IP options) that will be needed based on the 13438 * ip_pkt_t structure passed by the caller. 13439 * 13440 * The returned length does not include the length of the upper level 13441 * protocol (ULP) header. 13442 * The caller needs to check that the length doesn't exceed the max for IPv4. 13443 */ 13444 int 13445 ip_total_hdrs_len_v4(const ip_pkt_t *ipp) 13446 { 13447 int len; 13448 13449 len = IP_SIMPLE_HDR_LENGTH; 13450 if (ipp->ipp_fields & IPPF_LABEL_V4) { 13451 ASSERT(ipp->ipp_label_len_v4 != 0); 13452 /* We need to round up here */ 13453 len += (ipp->ipp_label_len_v4 + 3) & ~3; 13454 } 13455 13456 if (ipp->ipp_fields & IPPF_IPV4_OPTIONS) { 13457 ASSERT(ipp->ipp_ipv4_options_len != 0); 13458 ASSERT((ipp->ipp_ipv4_options_len & 3) == 0); 13459 len += ipp->ipp_ipv4_options_len; 13460 } 13461 return (len); 13462 } 13463 13464 /* 13465 * All-purpose routine to build an IPv4 header with options based 13466 * on the abstract ip_pkt_t. 13467 * 13468 * The caller has to set the source and destination address as well as 13469 * ipha_length. The caller has to massage any source route and compensate 13470 * for the ULP pseudo-header checksum due to the source route. 13471 */ 13472 void 13473 ip_build_hdrs_v4(uchar_t *buf, uint_t buf_len, const ip_pkt_t *ipp, 13474 uint8_t protocol) 13475 { 13476 ipha_t *ipha = (ipha_t *)buf; 13477 uint8_t *cp; 13478 13479 /* Initialize IPv4 header */ 13480 ipha->ipha_type_of_service = ipp->ipp_type_of_service; 13481 ipha->ipha_length = 0; /* Caller will set later */ 13482 ipha->ipha_ident = 0; 13483 ipha->ipha_fragment_offset_and_flags = 0; 13484 ipha->ipha_ttl = ipp->ipp_unicast_hops; 13485 ipha->ipha_protocol = protocol; 13486 ipha->ipha_hdr_checksum = 0; 13487 13488 if ((ipp->ipp_fields & IPPF_ADDR) && 13489 IN6_IS_ADDR_V4MAPPED(&ipp->ipp_addr)) 13490 ipha->ipha_src = ipp->ipp_addr_v4; 13491 13492 cp = (uint8_t *)&ipha[1]; 13493 if (ipp->ipp_fields & IPPF_LABEL_V4) { 13494 ASSERT(ipp->ipp_label_len_v4 != 0); 13495 bcopy(ipp->ipp_label_v4, cp, ipp->ipp_label_len_v4); 13496 cp += ipp->ipp_label_len_v4; 13497 /* We need to round up here */ 13498 while ((uintptr_t)cp & 0x3) { 13499 *cp++ = IPOPT_NOP; 13500 } 13501 } 13502 13503 if (ipp->ipp_fields & IPPF_IPV4_OPTIONS) { 13504 ASSERT(ipp->ipp_ipv4_options_len != 0); 13505 ASSERT((ipp->ipp_ipv4_options_len & 3) == 0); 13506 bcopy(ipp->ipp_ipv4_options, cp, ipp->ipp_ipv4_options_len); 13507 cp += ipp->ipp_ipv4_options_len; 13508 } 13509 ipha->ipha_version_and_hdr_length = 13510 (uint8_t)((IP_VERSION << 4) + buf_len / 4); 13511 13512 ASSERT((int)(cp - buf) == buf_len); 13513 } 13514 13515 /* Allocate the private structure */ 13516 static int 13517 ip_priv_alloc(void **bufp) 13518 { 13519 void *buf; 13520 13521 if ((buf = kmem_alloc(sizeof (ip_priv_t), KM_NOSLEEP)) == NULL) 13522 return (ENOMEM); 13523 13524 *bufp = buf; 13525 return (0); 13526 } 13527 13528 /* Function to delete the private structure */ 13529 void 13530 ip_priv_free(void *buf) 13531 { 13532 ASSERT(buf != NULL); 13533 kmem_free(buf, sizeof (ip_priv_t)); 13534 } 13535 13536 /* 13537 * The entry point for IPPF processing. 13538 * If the classifier (IPGPC_CLASSIFY) is not loaded and configured, the 13539 * routine just returns. 13540 * 13541 * When called, ip_process generates an ipp_packet_t structure 13542 * which holds the state information for this packet and invokes the 13543 * the classifier (via ipp_packet_process). The classification, depending on 13544 * configured filters, results in a list of actions for this packet. Invoking 13545 * an action may cause the packet to be dropped, in which case we return NULL. 13546 * proc indicates the callout position for 13547 * this packet and ill is the interface this packet arrived on or will leave 13548 * on (inbound and outbound resp.). 13549 * 13550 * We do the processing on the rill (mapped to the upper if ipmp), but MIB 13551 * on the ill corrsponding to the destination IP address. 13552 */ 13553 mblk_t * 13554 ip_process(ip_proc_t proc, mblk_t *mp, ill_t *rill, ill_t *ill) 13555 { 13556 ip_priv_t *priv; 13557 ipp_action_id_t aid; 13558 int rc = 0; 13559 ipp_packet_t *pp; 13560 13561 /* If the classifier is not loaded, return */ 13562 if ((aid = ipp_action_lookup(IPGPC_CLASSIFY)) == IPP_ACTION_INVAL) { 13563 return (mp); 13564 } 13565 13566 ASSERT(mp != NULL); 13567 13568 /* Allocate the packet structure */ 13569 rc = ipp_packet_alloc(&pp, "ip", aid); 13570 if (rc != 0) 13571 goto drop; 13572 13573 /* Allocate the private structure */ 13574 rc = ip_priv_alloc((void **)&priv); 13575 if (rc != 0) { 13576 ipp_packet_free(pp); 13577 goto drop; 13578 } 13579 priv->proc = proc; 13580 priv->ill_index = ill_get_upper_ifindex(rill); 13581 13582 ipp_packet_set_private(pp, priv, ip_priv_free); 13583 ipp_packet_set_data(pp, mp); 13584 13585 /* Invoke the classifier */ 13586 rc = ipp_packet_process(&pp); 13587 if (pp != NULL) { 13588 mp = ipp_packet_get_data(pp); 13589 ipp_packet_free(pp); 13590 if (rc != 0) 13591 goto drop; 13592 return (mp); 13593 } else { 13594 /* No mp to trace in ip_drop_input/ip_drop_output */ 13595 mp = NULL; 13596 } 13597 drop: 13598 if (proc == IPP_LOCAL_IN || proc == IPP_FWD_IN) { 13599 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13600 ip_drop_input("ip_process", mp, ill); 13601 } else { 13602 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 13603 ip_drop_output("ip_process", mp, ill); 13604 } 13605 freemsg(mp); 13606 return (NULL); 13607 } 13608 13609 /* 13610 * Propagate a multicast group membership operation (add/drop) on 13611 * all the interfaces crossed by the related multirt routes. 13612 * The call is considered successful if the operation succeeds 13613 * on at least one interface. 13614 * 13615 * This assumes that a set of IRE_HOST/RTF_MULTIRT has been created for the 13616 * multicast addresses with the ire argument being the first one. 13617 * We walk the bucket to find all the of those. 13618 * 13619 * Common to IPv4 and IPv6. 13620 */ 13621 static int 13622 ip_multirt_apply_membership(int (*fn)(conn_t *, boolean_t, 13623 const in6_addr_t *, ipaddr_t, uint_t, mcast_record_t, const in6_addr_t *), 13624 ire_t *ire, conn_t *connp, boolean_t checkonly, const in6_addr_t *v6group, 13625 mcast_record_t fmode, const in6_addr_t *v6src) 13626 { 13627 ire_t *ire_gw; 13628 irb_t *irb; 13629 int ifindex; 13630 int error = 0; 13631 int result; 13632 ip_stack_t *ipst = ire->ire_ipst; 13633 ipaddr_t group; 13634 boolean_t isv6; 13635 int match_flags; 13636 13637 if (IN6_IS_ADDR_V4MAPPED(v6group)) { 13638 IN6_V4MAPPED_TO_IPADDR(v6group, group); 13639 isv6 = B_FALSE; 13640 } else { 13641 isv6 = B_TRUE; 13642 } 13643 13644 irb = ire->ire_bucket; 13645 ASSERT(irb != NULL); 13646 13647 result = 0; 13648 irb_refhold(irb); 13649 for (; ire != NULL; ire = ire->ire_next) { 13650 if ((ire->ire_flags & RTF_MULTIRT) == 0) 13651 continue; 13652 13653 /* We handle -ifp routes by matching on the ill if set */ 13654 match_flags = MATCH_IRE_TYPE; 13655 if (ire->ire_ill != NULL) 13656 match_flags |= MATCH_IRE_ILL; 13657 13658 if (isv6) { 13659 if (!IN6_ARE_ADDR_EQUAL(&ire->ire_addr_v6, v6group)) 13660 continue; 13661 13662 ire_gw = ire_ftable_lookup_v6(&ire->ire_gateway_addr_v6, 13663 0, 0, IRE_INTERFACE, ire->ire_ill, ALL_ZONES, NULL, 13664 match_flags, 0, ipst, NULL); 13665 } else { 13666 if (ire->ire_addr != group) 13667 continue; 13668 13669 ire_gw = ire_ftable_lookup_v4(ire->ire_gateway_addr, 13670 0, 0, IRE_INTERFACE, ire->ire_ill, ALL_ZONES, NULL, 13671 match_flags, 0, ipst, NULL); 13672 } 13673 /* No interface route exists for the gateway; skip this ire. */ 13674 if (ire_gw == NULL) 13675 continue; 13676 if (ire_gw->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) { 13677 ire_refrele(ire_gw); 13678 continue; 13679 } 13680 ASSERT(ire_gw->ire_ill != NULL); /* IRE_INTERFACE */ 13681 ifindex = ire_gw->ire_ill->ill_phyint->phyint_ifindex; 13682 13683 /* 13684 * The operation is considered a success if 13685 * it succeeds at least once on any one interface. 13686 */ 13687 error = fn(connp, checkonly, v6group, INADDR_ANY, ifindex, 13688 fmode, v6src); 13689 if (error == 0) 13690 result = CGTP_MCAST_SUCCESS; 13691 13692 ire_refrele(ire_gw); 13693 } 13694 irb_refrele(irb); 13695 /* 13696 * Consider the call as successful if we succeeded on at least 13697 * one interface. Otherwise, return the last encountered error. 13698 */ 13699 return (result == CGTP_MCAST_SUCCESS ? 0 : error); 13700 } 13701 13702 /* 13703 * Return the expected CGTP hooks version number. 13704 */ 13705 int 13706 ip_cgtp_filter_supported(void) 13707 { 13708 return (ip_cgtp_filter_rev); 13709 } 13710 13711 /* 13712 * CGTP hooks can be registered by invoking this function. 13713 * Checks that the version number matches. 13714 */ 13715 int 13716 ip_cgtp_filter_register(netstackid_t stackid, cgtp_filter_ops_t *ops) 13717 { 13718 netstack_t *ns; 13719 ip_stack_t *ipst; 13720 13721 if (ops->cfo_filter_rev != CGTP_FILTER_REV) 13722 return (ENOTSUP); 13723 13724 ns = netstack_find_by_stackid(stackid); 13725 if (ns == NULL) 13726 return (EINVAL); 13727 ipst = ns->netstack_ip; 13728 ASSERT(ipst != NULL); 13729 13730 if (ipst->ips_ip_cgtp_filter_ops != NULL) { 13731 netstack_rele(ns); 13732 return (EALREADY); 13733 } 13734 13735 ipst->ips_ip_cgtp_filter_ops = ops; 13736 13737 ill_set_inputfn_all(ipst); 13738 13739 netstack_rele(ns); 13740 return (0); 13741 } 13742 13743 /* 13744 * CGTP hooks can be unregistered by invoking this function. 13745 * Returns ENXIO if there was no registration. 13746 * Returns EBUSY if the ndd variable has not been turned off. 13747 */ 13748 int 13749 ip_cgtp_filter_unregister(netstackid_t stackid) 13750 { 13751 netstack_t *ns; 13752 ip_stack_t *ipst; 13753 13754 ns = netstack_find_by_stackid(stackid); 13755 if (ns == NULL) 13756 return (EINVAL); 13757 ipst = ns->netstack_ip; 13758 ASSERT(ipst != NULL); 13759 13760 if (ipst->ips_ip_cgtp_filter) { 13761 netstack_rele(ns); 13762 return (EBUSY); 13763 } 13764 13765 if (ipst->ips_ip_cgtp_filter_ops == NULL) { 13766 netstack_rele(ns); 13767 return (ENXIO); 13768 } 13769 ipst->ips_ip_cgtp_filter_ops = NULL; 13770 13771 ill_set_inputfn_all(ipst); 13772 13773 netstack_rele(ns); 13774 return (0); 13775 } 13776 13777 /* 13778 * Check whether there is a CGTP filter registration. 13779 * Returns non-zero if there is a registration, otherwise returns zero. 13780 * Note: returns zero if bad stackid. 13781 */ 13782 int 13783 ip_cgtp_filter_is_registered(netstackid_t stackid) 13784 { 13785 netstack_t *ns; 13786 ip_stack_t *ipst; 13787 int ret; 13788 13789 ns = netstack_find_by_stackid(stackid); 13790 if (ns == NULL) 13791 return (0); 13792 ipst = ns->netstack_ip; 13793 ASSERT(ipst != NULL); 13794 13795 if (ipst->ips_ip_cgtp_filter_ops != NULL) 13796 ret = 1; 13797 else 13798 ret = 0; 13799 13800 netstack_rele(ns); 13801 return (ret); 13802 } 13803 13804 static int 13805 ip_squeue_switch(int val) 13806 { 13807 int rval; 13808 13809 switch (val) { 13810 case IP_SQUEUE_ENTER_NODRAIN: 13811 rval = SQ_NODRAIN; 13812 break; 13813 case IP_SQUEUE_ENTER: 13814 rval = SQ_PROCESS; 13815 break; 13816 case IP_SQUEUE_FILL: 13817 default: 13818 rval = SQ_FILL; 13819 break; 13820 } 13821 return (rval); 13822 } 13823 13824 static void * 13825 ip_kstat2_init(netstackid_t stackid, ip_stat_t *ip_statisticsp) 13826 { 13827 kstat_t *ksp; 13828 13829 ip_stat_t template = { 13830 { "ip_udp_fannorm", KSTAT_DATA_UINT64 }, 13831 { "ip_udp_fanmb", KSTAT_DATA_UINT64 }, 13832 { "ip_recv_pullup", KSTAT_DATA_UINT64 }, 13833 { "ip_db_ref", KSTAT_DATA_UINT64 }, 13834 { "ip_notaligned", KSTAT_DATA_UINT64 }, 13835 { "ip_multimblk", KSTAT_DATA_UINT64 }, 13836 { "ip_opt", KSTAT_DATA_UINT64 }, 13837 { "ipsec_proto_ahesp", KSTAT_DATA_UINT64 }, 13838 { "ip_conn_flputbq", KSTAT_DATA_UINT64 }, 13839 { "ip_conn_walk_drain", KSTAT_DATA_UINT64 }, 13840 { "ip_out_sw_cksum", KSTAT_DATA_UINT64 }, 13841 { "ip_out_sw_cksum_bytes", KSTAT_DATA_UINT64 }, 13842 { "ip_in_sw_cksum", KSTAT_DATA_UINT64 }, 13843 { "ip_ire_reclaim_calls", KSTAT_DATA_UINT64 }, 13844 { "ip_ire_reclaim_deleted", KSTAT_DATA_UINT64 }, 13845 { "ip_nce_reclaim_calls", KSTAT_DATA_UINT64 }, 13846 { "ip_nce_reclaim_deleted", KSTAT_DATA_UINT64 }, 13847 { "ip_dce_reclaim_calls", KSTAT_DATA_UINT64 }, 13848 { "ip_dce_reclaim_deleted", KSTAT_DATA_UINT64 }, 13849 { "ip_tcp_in_full_hw_cksum_err", KSTAT_DATA_UINT64 }, 13850 { "ip_tcp_in_part_hw_cksum_err", KSTAT_DATA_UINT64 }, 13851 { "ip_tcp_in_sw_cksum_err", KSTAT_DATA_UINT64 }, 13852 { "ip_udp_in_full_hw_cksum_err", KSTAT_DATA_UINT64 }, 13853 { "ip_udp_in_part_hw_cksum_err", KSTAT_DATA_UINT64 }, 13854 { "ip_udp_in_sw_cksum_err", KSTAT_DATA_UINT64 }, 13855 { "conn_in_recvdstaddr", KSTAT_DATA_UINT64 }, 13856 { "conn_in_recvopts", KSTAT_DATA_UINT64 }, 13857 { "conn_in_recvif", KSTAT_DATA_UINT64 }, 13858 { "conn_in_recvslla", KSTAT_DATA_UINT64 }, 13859 { "conn_in_recvucred", KSTAT_DATA_UINT64 }, 13860 { "conn_in_recvttl", KSTAT_DATA_UINT64 }, 13861 { "conn_in_recvhopopts", KSTAT_DATA_UINT64 }, 13862 { "conn_in_recvhoplimit", KSTAT_DATA_UINT64 }, 13863 { "conn_in_recvdstopts", KSTAT_DATA_UINT64 }, 13864 { "conn_in_recvrthdrdstopts", KSTAT_DATA_UINT64 }, 13865 { "conn_in_recvrthdr", KSTAT_DATA_UINT64 }, 13866 { "conn_in_recvpktinfo", KSTAT_DATA_UINT64 }, 13867 { "conn_in_recvtclass", KSTAT_DATA_UINT64 }, 13868 { "conn_in_timestamp", KSTAT_DATA_UINT64 }, 13869 }; 13870 13871 ksp = kstat_create_netstack("ip", 0, "ipstat", "net", 13872 KSTAT_TYPE_NAMED, sizeof (template) / sizeof (kstat_named_t), 13873 KSTAT_FLAG_VIRTUAL, stackid); 13874 13875 if (ksp == NULL) 13876 return (NULL); 13877 13878 bcopy(&template, ip_statisticsp, sizeof (template)); 13879 ksp->ks_data = (void *)ip_statisticsp; 13880 ksp->ks_private = (void *)(uintptr_t)stackid; 13881 13882 kstat_install(ksp); 13883 return (ksp); 13884 } 13885 13886 static void 13887 ip_kstat2_fini(netstackid_t stackid, kstat_t *ksp) 13888 { 13889 if (ksp != NULL) { 13890 ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private); 13891 kstat_delete_netstack(ksp, stackid); 13892 } 13893 } 13894 13895 static void * 13896 ip_kstat_init(netstackid_t stackid, ip_stack_t *ipst) 13897 { 13898 kstat_t *ksp; 13899 13900 ip_named_kstat_t template = { 13901 { "forwarding", KSTAT_DATA_UINT32, 0 }, 13902 { "defaultTTL", KSTAT_DATA_UINT32, 0 }, 13903 { "inReceives", KSTAT_DATA_UINT64, 0 }, 13904 { "inHdrErrors", KSTAT_DATA_UINT32, 0 }, 13905 { "inAddrErrors", KSTAT_DATA_UINT32, 0 }, 13906 { "forwDatagrams", KSTAT_DATA_UINT64, 0 }, 13907 { "inUnknownProtos", KSTAT_DATA_UINT32, 0 }, 13908 { "inDiscards", KSTAT_DATA_UINT32, 0 }, 13909 { "inDelivers", KSTAT_DATA_UINT64, 0 }, 13910 { "outRequests", KSTAT_DATA_UINT64, 0 }, 13911 { "outDiscards", KSTAT_DATA_UINT32, 0 }, 13912 { "outNoRoutes", KSTAT_DATA_UINT32, 0 }, 13913 { "reasmTimeout", KSTAT_DATA_UINT32, 0 }, 13914 { "reasmReqds", KSTAT_DATA_UINT32, 0 }, 13915 { "reasmOKs", KSTAT_DATA_UINT32, 0 }, 13916 { "reasmFails", KSTAT_DATA_UINT32, 0 }, 13917 { "fragOKs", KSTAT_DATA_UINT32, 0 }, 13918 { "fragFails", KSTAT_DATA_UINT32, 0 }, 13919 { "fragCreates", KSTAT_DATA_UINT32, 0 }, 13920 { "addrEntrySize", KSTAT_DATA_INT32, 0 }, 13921 { "routeEntrySize", KSTAT_DATA_INT32, 0 }, 13922 { "netToMediaEntrySize", KSTAT_DATA_INT32, 0 }, 13923 { "routingDiscards", KSTAT_DATA_UINT32, 0 }, 13924 { "inErrs", KSTAT_DATA_UINT32, 0 }, 13925 { "noPorts", KSTAT_DATA_UINT32, 0 }, 13926 { "inCksumErrs", KSTAT_DATA_UINT32, 0 }, 13927 { "reasmDuplicates", KSTAT_DATA_UINT32, 0 }, 13928 { "reasmPartDups", KSTAT_DATA_UINT32, 0 }, 13929 { "forwProhibits", KSTAT_DATA_UINT32, 0 }, 13930 { "udpInCksumErrs", KSTAT_DATA_UINT32, 0 }, 13931 { "udpInOverflows", KSTAT_DATA_UINT32, 0 }, 13932 { "rawipInOverflows", KSTAT_DATA_UINT32, 0 }, 13933 { "ipsecInSucceeded", KSTAT_DATA_UINT32, 0 }, 13934 { "ipsecInFailed", KSTAT_DATA_INT32, 0 }, 13935 { "memberEntrySize", KSTAT_DATA_INT32, 0 }, 13936 { "inIPv6", KSTAT_DATA_UINT32, 0 }, 13937 { "outIPv6", KSTAT_DATA_UINT32, 0 }, 13938 { "outSwitchIPv6", KSTAT_DATA_UINT32, 0 }, 13939 }; 13940 13941 ksp = kstat_create_netstack("ip", 0, "ip", "mib2", KSTAT_TYPE_NAMED, 13942 NUM_OF_FIELDS(ip_named_kstat_t), 0, stackid); 13943 if (ksp == NULL || ksp->ks_data == NULL) 13944 return (NULL); 13945 13946 template.forwarding.value.ui32 = WE_ARE_FORWARDING(ipst) ? 1:2; 13947 template.defaultTTL.value.ui32 = (uint32_t)ipst->ips_ip_def_ttl; 13948 template.reasmTimeout.value.ui32 = ipst->ips_ip_reassembly_timeout; 13949 template.addrEntrySize.value.i32 = sizeof (mib2_ipAddrEntry_t); 13950 template.routeEntrySize.value.i32 = sizeof (mib2_ipRouteEntry_t); 13951 13952 template.netToMediaEntrySize.value.i32 = 13953 sizeof (mib2_ipNetToMediaEntry_t); 13954 13955 template.memberEntrySize.value.i32 = sizeof (ipv6_member_t); 13956 13957 bcopy(&template, ksp->ks_data, sizeof (template)); 13958 ksp->ks_update = ip_kstat_update; 13959 ksp->ks_private = (void *)(uintptr_t)stackid; 13960 13961 kstat_install(ksp); 13962 return (ksp); 13963 } 13964 13965 static void 13966 ip_kstat_fini(netstackid_t stackid, kstat_t *ksp) 13967 { 13968 if (ksp != NULL) { 13969 ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private); 13970 kstat_delete_netstack(ksp, stackid); 13971 } 13972 } 13973 13974 static int 13975 ip_kstat_update(kstat_t *kp, int rw) 13976 { 13977 ip_named_kstat_t *ipkp; 13978 mib2_ipIfStatsEntry_t ipmib; 13979 ill_walk_context_t ctx; 13980 ill_t *ill; 13981 netstackid_t stackid = (zoneid_t)(uintptr_t)kp->ks_private; 13982 netstack_t *ns; 13983 ip_stack_t *ipst; 13984 13985 if (kp == NULL || kp->ks_data == NULL) 13986 return (EIO); 13987 13988 if (rw == KSTAT_WRITE) 13989 return (EACCES); 13990 13991 ns = netstack_find_by_stackid(stackid); 13992 if (ns == NULL) 13993 return (-1); 13994 ipst = ns->netstack_ip; 13995 if (ipst == NULL) { 13996 netstack_rele(ns); 13997 return (-1); 13998 } 13999 ipkp = (ip_named_kstat_t *)kp->ks_data; 14000 14001 bcopy(&ipst->ips_ip_mib, &ipmib, sizeof (ipmib)); 14002 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 14003 ill = ILL_START_WALK_V4(&ctx, ipst); 14004 for (; ill != NULL; ill = ill_next(&ctx, ill)) 14005 ip_mib2_add_ip_stats(&ipmib, ill->ill_ip_mib); 14006 rw_exit(&ipst->ips_ill_g_lock); 14007 14008 ipkp->forwarding.value.ui32 = ipmib.ipIfStatsForwarding; 14009 ipkp->defaultTTL.value.ui32 = ipmib.ipIfStatsDefaultTTL; 14010 ipkp->inReceives.value.ui64 = ipmib.ipIfStatsHCInReceives; 14011 ipkp->inHdrErrors.value.ui32 = ipmib.ipIfStatsInHdrErrors; 14012 ipkp->inAddrErrors.value.ui32 = ipmib.ipIfStatsInAddrErrors; 14013 ipkp->forwDatagrams.value.ui64 = ipmib.ipIfStatsHCOutForwDatagrams; 14014 ipkp->inUnknownProtos.value.ui32 = ipmib.ipIfStatsInUnknownProtos; 14015 ipkp->inDiscards.value.ui32 = ipmib.ipIfStatsInDiscards; 14016 ipkp->inDelivers.value.ui64 = ipmib.ipIfStatsHCInDelivers; 14017 ipkp->outRequests.value.ui64 = ipmib.ipIfStatsHCOutRequests; 14018 ipkp->outDiscards.value.ui32 = ipmib.ipIfStatsOutDiscards; 14019 ipkp->outNoRoutes.value.ui32 = ipmib.ipIfStatsOutNoRoutes; 14020 ipkp->reasmTimeout.value.ui32 = ipst->ips_ip_reassembly_timeout; 14021 ipkp->reasmReqds.value.ui32 = ipmib.ipIfStatsReasmReqds; 14022 ipkp->reasmOKs.value.ui32 = ipmib.ipIfStatsReasmOKs; 14023 ipkp->reasmFails.value.ui32 = ipmib.ipIfStatsReasmFails; 14024 ipkp->fragOKs.value.ui32 = ipmib.ipIfStatsOutFragOKs; 14025 ipkp->fragFails.value.ui32 = ipmib.ipIfStatsOutFragFails; 14026 ipkp->fragCreates.value.ui32 = ipmib.ipIfStatsOutFragCreates; 14027 14028 ipkp->routingDiscards.value.ui32 = 0; 14029 ipkp->inErrs.value.ui32 = ipmib.tcpIfStatsInErrs; 14030 ipkp->noPorts.value.ui32 = ipmib.udpIfStatsNoPorts; 14031 ipkp->inCksumErrs.value.ui32 = ipmib.ipIfStatsInCksumErrs; 14032 ipkp->reasmDuplicates.value.ui32 = ipmib.ipIfStatsReasmDuplicates; 14033 ipkp->reasmPartDups.value.ui32 = ipmib.ipIfStatsReasmPartDups; 14034 ipkp->forwProhibits.value.ui32 = ipmib.ipIfStatsForwProhibits; 14035 ipkp->udpInCksumErrs.value.ui32 = ipmib.udpIfStatsInCksumErrs; 14036 ipkp->udpInOverflows.value.ui32 = ipmib.udpIfStatsInOverflows; 14037 ipkp->rawipInOverflows.value.ui32 = ipmib.rawipIfStatsInOverflows; 14038 ipkp->ipsecInSucceeded.value.ui32 = ipmib.ipsecIfStatsInSucceeded; 14039 ipkp->ipsecInFailed.value.i32 = ipmib.ipsecIfStatsInFailed; 14040 14041 ipkp->inIPv6.value.ui32 = ipmib.ipIfStatsInWrongIPVersion; 14042 ipkp->outIPv6.value.ui32 = ipmib.ipIfStatsOutWrongIPVersion; 14043 ipkp->outSwitchIPv6.value.ui32 = ipmib.ipIfStatsOutSwitchIPVersion; 14044 14045 netstack_rele(ns); 14046 14047 return (0); 14048 } 14049 14050 static void * 14051 icmp_kstat_init(netstackid_t stackid) 14052 { 14053 kstat_t *ksp; 14054 14055 icmp_named_kstat_t template = { 14056 { "inMsgs", KSTAT_DATA_UINT32 }, 14057 { "inErrors", KSTAT_DATA_UINT32 }, 14058 { "inDestUnreachs", KSTAT_DATA_UINT32 }, 14059 { "inTimeExcds", KSTAT_DATA_UINT32 }, 14060 { "inParmProbs", KSTAT_DATA_UINT32 }, 14061 { "inSrcQuenchs", KSTAT_DATA_UINT32 }, 14062 { "inRedirects", KSTAT_DATA_UINT32 }, 14063 { "inEchos", KSTAT_DATA_UINT32 }, 14064 { "inEchoReps", KSTAT_DATA_UINT32 }, 14065 { "inTimestamps", KSTAT_DATA_UINT32 }, 14066 { "inTimestampReps", KSTAT_DATA_UINT32 }, 14067 { "inAddrMasks", KSTAT_DATA_UINT32 }, 14068 { "inAddrMaskReps", KSTAT_DATA_UINT32 }, 14069 { "outMsgs", KSTAT_DATA_UINT32 }, 14070 { "outErrors", KSTAT_DATA_UINT32 }, 14071 { "outDestUnreachs", KSTAT_DATA_UINT32 }, 14072 { "outTimeExcds", KSTAT_DATA_UINT32 }, 14073 { "outParmProbs", KSTAT_DATA_UINT32 }, 14074 { "outSrcQuenchs", KSTAT_DATA_UINT32 }, 14075 { "outRedirects", KSTAT_DATA_UINT32 }, 14076 { "outEchos", KSTAT_DATA_UINT32 }, 14077 { "outEchoReps", KSTAT_DATA_UINT32 }, 14078 { "outTimestamps", KSTAT_DATA_UINT32 }, 14079 { "outTimestampReps", KSTAT_DATA_UINT32 }, 14080 { "outAddrMasks", KSTAT_DATA_UINT32 }, 14081 { "outAddrMaskReps", KSTAT_DATA_UINT32 }, 14082 { "inChksumErrs", KSTAT_DATA_UINT32 }, 14083 { "inUnknowns", KSTAT_DATA_UINT32 }, 14084 { "inFragNeeded", KSTAT_DATA_UINT32 }, 14085 { "outFragNeeded", KSTAT_DATA_UINT32 }, 14086 { "outDrops", KSTAT_DATA_UINT32 }, 14087 { "inOverFlows", KSTAT_DATA_UINT32 }, 14088 { "inBadRedirects", KSTAT_DATA_UINT32 }, 14089 }; 14090 14091 ksp = kstat_create_netstack("ip", 0, "icmp", "mib2", KSTAT_TYPE_NAMED, 14092 NUM_OF_FIELDS(icmp_named_kstat_t), 0, stackid); 14093 if (ksp == NULL || ksp->ks_data == NULL) 14094 return (NULL); 14095 14096 bcopy(&template, ksp->ks_data, sizeof (template)); 14097 14098 ksp->ks_update = icmp_kstat_update; 14099 ksp->ks_private = (void *)(uintptr_t)stackid; 14100 14101 kstat_install(ksp); 14102 return (ksp); 14103 } 14104 14105 static void 14106 icmp_kstat_fini(netstackid_t stackid, kstat_t *ksp) 14107 { 14108 if (ksp != NULL) { 14109 ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private); 14110 kstat_delete_netstack(ksp, stackid); 14111 } 14112 } 14113 14114 static int 14115 icmp_kstat_update(kstat_t *kp, int rw) 14116 { 14117 icmp_named_kstat_t *icmpkp; 14118 netstackid_t stackid = (zoneid_t)(uintptr_t)kp->ks_private; 14119 netstack_t *ns; 14120 ip_stack_t *ipst; 14121 14122 if ((kp == NULL) || (kp->ks_data == NULL)) 14123 return (EIO); 14124 14125 if (rw == KSTAT_WRITE) 14126 return (EACCES); 14127 14128 ns = netstack_find_by_stackid(stackid); 14129 if (ns == NULL) 14130 return (-1); 14131 ipst = ns->netstack_ip; 14132 if (ipst == NULL) { 14133 netstack_rele(ns); 14134 return (-1); 14135 } 14136 icmpkp = (icmp_named_kstat_t *)kp->ks_data; 14137 14138 icmpkp->inMsgs.value.ui32 = ipst->ips_icmp_mib.icmpInMsgs; 14139 icmpkp->inErrors.value.ui32 = ipst->ips_icmp_mib.icmpInErrors; 14140 icmpkp->inDestUnreachs.value.ui32 = 14141 ipst->ips_icmp_mib.icmpInDestUnreachs; 14142 icmpkp->inTimeExcds.value.ui32 = ipst->ips_icmp_mib.icmpInTimeExcds; 14143 icmpkp->inParmProbs.value.ui32 = ipst->ips_icmp_mib.icmpInParmProbs; 14144 icmpkp->inSrcQuenchs.value.ui32 = ipst->ips_icmp_mib.icmpInSrcQuenchs; 14145 icmpkp->inRedirects.value.ui32 = ipst->ips_icmp_mib.icmpInRedirects; 14146 icmpkp->inEchos.value.ui32 = ipst->ips_icmp_mib.icmpInEchos; 14147 icmpkp->inEchoReps.value.ui32 = ipst->ips_icmp_mib.icmpInEchoReps; 14148 icmpkp->inTimestamps.value.ui32 = ipst->ips_icmp_mib.icmpInTimestamps; 14149 icmpkp->inTimestampReps.value.ui32 = 14150 ipst->ips_icmp_mib.icmpInTimestampReps; 14151 icmpkp->inAddrMasks.value.ui32 = ipst->ips_icmp_mib.icmpInAddrMasks; 14152 icmpkp->inAddrMaskReps.value.ui32 = 14153 ipst->ips_icmp_mib.icmpInAddrMaskReps; 14154 icmpkp->outMsgs.value.ui32 = ipst->ips_icmp_mib.icmpOutMsgs; 14155 icmpkp->outErrors.value.ui32 = ipst->ips_icmp_mib.icmpOutErrors; 14156 icmpkp->outDestUnreachs.value.ui32 = 14157 ipst->ips_icmp_mib.icmpOutDestUnreachs; 14158 icmpkp->outTimeExcds.value.ui32 = ipst->ips_icmp_mib.icmpOutTimeExcds; 14159 icmpkp->outParmProbs.value.ui32 = ipst->ips_icmp_mib.icmpOutParmProbs; 14160 icmpkp->outSrcQuenchs.value.ui32 = 14161 ipst->ips_icmp_mib.icmpOutSrcQuenchs; 14162 icmpkp->outRedirects.value.ui32 = ipst->ips_icmp_mib.icmpOutRedirects; 14163 icmpkp->outEchos.value.ui32 = ipst->ips_icmp_mib.icmpOutEchos; 14164 icmpkp->outEchoReps.value.ui32 = ipst->ips_icmp_mib.icmpOutEchoReps; 14165 icmpkp->outTimestamps.value.ui32 = 14166 ipst->ips_icmp_mib.icmpOutTimestamps; 14167 icmpkp->outTimestampReps.value.ui32 = 14168 ipst->ips_icmp_mib.icmpOutTimestampReps; 14169 icmpkp->outAddrMasks.value.ui32 = 14170 ipst->ips_icmp_mib.icmpOutAddrMasks; 14171 icmpkp->outAddrMaskReps.value.ui32 = 14172 ipst->ips_icmp_mib.icmpOutAddrMaskReps; 14173 icmpkp->inCksumErrs.value.ui32 = ipst->ips_icmp_mib.icmpInCksumErrs; 14174 icmpkp->inUnknowns.value.ui32 = ipst->ips_icmp_mib.icmpInUnknowns; 14175 icmpkp->inFragNeeded.value.ui32 = ipst->ips_icmp_mib.icmpInFragNeeded; 14176 icmpkp->outFragNeeded.value.ui32 = 14177 ipst->ips_icmp_mib.icmpOutFragNeeded; 14178 icmpkp->outDrops.value.ui32 = ipst->ips_icmp_mib.icmpOutDrops; 14179 icmpkp->inOverflows.value.ui32 = ipst->ips_icmp_mib.icmpInOverflows; 14180 icmpkp->inBadRedirects.value.ui32 = 14181 ipst->ips_icmp_mib.icmpInBadRedirects; 14182 14183 netstack_rele(ns); 14184 return (0); 14185 } 14186 14187 /* 14188 * This is the fanout function for raw socket opened for SCTP. Note 14189 * that it is called after SCTP checks that there is no socket which 14190 * wants a packet. Then before SCTP handles this out of the blue packet, 14191 * this function is called to see if there is any raw socket for SCTP. 14192 * If there is and it is bound to the correct address, the packet will 14193 * be sent to that socket. Note that only one raw socket can be bound to 14194 * a port. This is assured in ipcl_sctp_hash_insert(); 14195 */ 14196 void 14197 ip_fanout_sctp_raw(mblk_t *mp, ipha_t *ipha, ip6_t *ip6h, uint32_t ports, 14198 ip_recv_attr_t *ira) 14199 { 14200 conn_t *connp; 14201 queue_t *rq; 14202 boolean_t secure; 14203 ill_t *ill = ira->ira_ill; 14204 ip_stack_t *ipst = ill->ill_ipst; 14205 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 14206 sctp_stack_t *sctps = ipst->ips_netstack->netstack_sctp; 14207 iaflags_t iraflags = ira->ira_flags; 14208 ill_t *rill = ira->ira_rill; 14209 14210 secure = iraflags & IRAF_IPSEC_SECURE; 14211 14212 connp = ipcl_classify_raw(mp, IPPROTO_SCTP, ports, ipha, ip6h, 14213 ira, ipst); 14214 if (connp == NULL) { 14215 /* 14216 * Although raw sctp is not summed, OOB chunks must be. 14217 * Drop the packet here if the sctp checksum failed. 14218 */ 14219 if (iraflags & IRAF_SCTP_CSUM_ERR) { 14220 SCTPS_BUMP_MIB(sctps, sctpChecksumError); 14221 freemsg(mp); 14222 return; 14223 } 14224 ira->ira_ill = ira->ira_rill = NULL; 14225 sctp_ootb_input(mp, ira, ipst); 14226 ira->ira_ill = ill; 14227 ira->ira_rill = rill; 14228 return; 14229 } 14230 rq = connp->conn_rq; 14231 if (IPCL_IS_NONSTR(connp) ? connp->conn_flow_cntrld : !canputnext(rq)) { 14232 CONN_DEC_REF(connp); 14233 BUMP_MIB(ill->ill_ip_mib, rawipIfStatsInOverflows); 14234 freemsg(mp); 14235 return; 14236 } 14237 if (((iraflags & IRAF_IS_IPV4) ? 14238 CONN_INBOUND_POLICY_PRESENT(connp, ipss) : 14239 CONN_INBOUND_POLICY_PRESENT_V6(connp, ipss)) || 14240 secure) { 14241 mp = ipsec_check_inbound_policy(mp, connp, ipha, 14242 ip6h, ira); 14243 if (mp == NULL) { 14244 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14245 /* Note that mp is NULL */ 14246 ip_drop_input("ipIfStatsInDiscards", mp, ill); 14247 CONN_DEC_REF(connp); 14248 return; 14249 } 14250 } 14251 14252 if (iraflags & IRAF_ICMP_ERROR) { 14253 (connp->conn_recvicmp)(connp, mp, NULL, ira); 14254 } else { 14255 ill_t *rill = ira->ira_rill; 14256 14257 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers); 14258 /* This is the SOCK_RAW, IPPROTO_SCTP case. */ 14259 ira->ira_ill = ira->ira_rill = NULL; 14260 (connp->conn_recv)(connp, mp, NULL, ira); 14261 ira->ira_ill = ill; 14262 ira->ira_rill = rill; 14263 } 14264 CONN_DEC_REF(connp); 14265 } 14266 14267 /* 14268 * Free a packet that has the link-layer dl_unitdata_req_t or fast-path 14269 * header before the ip payload. 14270 */ 14271 static void 14272 ip_xmit_flowctl_drop(ill_t *ill, mblk_t *mp, boolean_t is_fp_mp, int fp_mp_len) 14273 { 14274 int len = (mp->b_wptr - mp->b_rptr); 14275 mblk_t *ip_mp; 14276 14277 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 14278 if (is_fp_mp || len != fp_mp_len) { 14279 if (len > fp_mp_len) { 14280 /* 14281 * fastpath header and ip header in the first mblk 14282 */ 14283 mp->b_rptr += fp_mp_len; 14284 } else { 14285 /* 14286 * ip_xmit_attach_llhdr had to prepend an mblk to 14287 * attach the fastpath header before ip header. 14288 */ 14289 ip_mp = mp->b_cont; 14290 freeb(mp); 14291 mp = ip_mp; 14292 mp->b_rptr += (fp_mp_len - len); 14293 } 14294 } else { 14295 ip_mp = mp->b_cont; 14296 freeb(mp); 14297 mp = ip_mp; 14298 } 14299 ip_drop_output("ipIfStatsOutDiscards - flow ctl", mp, ill); 14300 freemsg(mp); 14301 } 14302 14303 /* 14304 * Normal post fragmentation function. 14305 * 14306 * Send a packet using the passed in nce. This handles both IPv4 and IPv6 14307 * using the same state machine. 14308 * 14309 * We return an error on failure. In particular we return EWOULDBLOCK 14310 * when the driver flow controls. In that case this ensures that ip_wsrv runs 14311 * (currently by canputnext failure resulting in backenabling from GLD.) 14312 * This allows the callers of conn_ip_output() to use EWOULDBLOCK as an 14313 * indication that they can flow control until ip_wsrv() tells then to restart. 14314 * 14315 * If the nce passed by caller is incomplete, this function 14316 * queues the packet and if necessary, sends ARP request and bails. 14317 * If the Neighbor Cache passed is fully resolved, we simply prepend 14318 * the link-layer header to the packet, do ipsec hw acceleration 14319 * work if necessary, and send the packet out on the wire. 14320 */ 14321 /* ARGSUSED6 */ 14322 int 14323 ip_xmit(mblk_t *mp, nce_t *nce, iaflags_t ixaflags, uint_t pkt_len, 14324 uint32_t xmit_hint, zoneid_t szone, zoneid_t nolzid, uintptr_t *ixacookie) 14325 { 14326 queue_t *wq; 14327 ill_t *ill = nce->nce_ill; 14328 ip_stack_t *ipst = ill->ill_ipst; 14329 uint64_t delta; 14330 boolean_t isv6 = ill->ill_isv6; 14331 boolean_t fp_mp; 14332 ncec_t *ncec = nce->nce_common; 14333 int64_t now = LBOLT_FASTPATH64; 14334 boolean_t is_probe; 14335 14336 DTRACE_PROBE1(ip__xmit, nce_t *, nce); 14337 14338 ASSERT(mp != NULL); 14339 ASSERT(mp->b_datap->db_type == M_DATA); 14340 ASSERT(pkt_len == msgdsize(mp)); 14341 14342 /* 14343 * If we have already been here and are coming back after ARP/ND. 14344 * the IXAF_NO_TRACE flag is set. We skip FW_HOOKS, DTRACE and ipobs 14345 * in that case since they have seen the packet when it came here 14346 * the first time. 14347 */ 14348 if (ixaflags & IXAF_NO_TRACE) 14349 goto sendit; 14350 14351 if (ixaflags & IXAF_IS_IPV4) { 14352 ipha_t *ipha = (ipha_t *)mp->b_rptr; 14353 14354 ASSERT(!isv6); 14355 ASSERT(pkt_len == ntohs(((ipha_t *)mp->b_rptr)->ipha_length)); 14356 if (HOOKS4_INTERESTED_PHYSICAL_OUT(ipst) && 14357 !(ixaflags & IXAF_NO_PFHOOK)) { 14358 int error; 14359 14360 FW_HOOKS(ipst->ips_ip4_physical_out_event, 14361 ipst->ips_ipv4firewall_physical_out, 14362 NULL, ill, ipha, mp, mp, 0, ipst, error); 14363 DTRACE_PROBE1(ip4__physical__out__end, 14364 mblk_t *, mp); 14365 if (mp == NULL) 14366 return (error); 14367 14368 /* The length could have changed */ 14369 pkt_len = msgdsize(mp); 14370 } 14371 if (ipst->ips_ip4_observe.he_interested) { 14372 /* 14373 * Note that for TX the zoneid is the sending 14374 * zone, whether or not MLP is in play. 14375 * Since the szone argument is the IP zoneid (i.e., 14376 * zero for exclusive-IP zones) and ipobs wants 14377 * the system zoneid, we map it here. 14378 */ 14379 szone = IP_REAL_ZONEID(szone, ipst); 14380 14381 /* 14382 * On the outbound path the destination zone will be 14383 * unknown as we're sending this packet out on the 14384 * wire. 14385 */ 14386 ipobs_hook(mp, IPOBS_HOOK_OUTBOUND, szone, ALL_ZONES, 14387 ill, ipst); 14388 } 14389 DTRACE_IP7(send, mblk_t *, mp, conn_t *, NULL, 14390 void_ip_t *, ipha, __dtrace_ipsr_ill_t *, ill, 14391 ipha_t *, ipha, ip6_t *, NULL, int, 0); 14392 } else { 14393 ip6_t *ip6h = (ip6_t *)mp->b_rptr; 14394 14395 ASSERT(isv6); 14396 ASSERT(pkt_len == 14397 ntohs(((ip6_t *)mp->b_rptr)->ip6_plen) + IPV6_HDR_LEN); 14398 if (HOOKS6_INTERESTED_PHYSICAL_OUT(ipst) && 14399 !(ixaflags & IXAF_NO_PFHOOK)) { 14400 int error; 14401 14402 FW_HOOKS6(ipst->ips_ip6_physical_out_event, 14403 ipst->ips_ipv6firewall_physical_out, 14404 NULL, ill, ip6h, mp, mp, 0, ipst, error); 14405 DTRACE_PROBE1(ip6__physical__out__end, 14406 mblk_t *, mp); 14407 if (mp == NULL) 14408 return (error); 14409 14410 /* The length could have changed */ 14411 pkt_len = msgdsize(mp); 14412 } 14413 if (ipst->ips_ip6_observe.he_interested) { 14414 /* See above */ 14415 szone = IP_REAL_ZONEID(szone, ipst); 14416 14417 ipobs_hook(mp, IPOBS_HOOK_OUTBOUND, szone, ALL_ZONES, 14418 ill, ipst); 14419 } 14420 DTRACE_IP7(send, mblk_t *, mp, conn_t *, NULL, 14421 void_ip_t *, ip6h, __dtrace_ipsr_ill_t *, ill, 14422 ipha_t *, NULL, ip6_t *, ip6h, int, 0); 14423 } 14424 14425 sendit: 14426 /* 14427 * We check the state without a lock because the state can never 14428 * move "backwards" to initial or incomplete. 14429 */ 14430 switch (ncec->ncec_state) { 14431 case ND_REACHABLE: 14432 case ND_STALE: 14433 case ND_DELAY: 14434 case ND_PROBE: 14435 mp = ip_xmit_attach_llhdr(mp, nce); 14436 if (mp == NULL) { 14437 /* 14438 * ip_xmit_attach_llhdr has increased 14439 * ipIfStatsOutDiscards and called ip_drop_output() 14440 */ 14441 return (ENOBUFS); 14442 } 14443 /* 14444 * check if nce_fastpath completed and we tagged on a 14445 * copy of nce_fp_mp in ip_xmit_attach_llhdr(). 14446 */ 14447 fp_mp = (mp->b_datap->db_type == M_DATA); 14448 14449 if (fp_mp && 14450 (ill->ill_capabilities & ILL_CAPAB_DLD_DIRECT)) { 14451 ill_dld_direct_t *idd; 14452 14453 idd = &ill->ill_dld_capab->idc_direct; 14454 /* 14455 * Send the packet directly to DLD, where it 14456 * may be queued depending on the availability 14457 * of transmit resources at the media layer. 14458 * Return value should be taken into 14459 * account and flow control the TCP. 14460 */ 14461 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutTransmits); 14462 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutOctets, 14463 pkt_len); 14464 14465 if (ixaflags & IXAF_NO_DEV_FLOW_CTL) { 14466 (void) idd->idd_tx_df(idd->idd_tx_dh, mp, 14467 (uintptr_t)xmit_hint, IP_DROP_ON_NO_DESC); 14468 } else { 14469 uintptr_t cookie; 14470 14471 if ((cookie = idd->idd_tx_df(idd->idd_tx_dh, 14472 mp, (uintptr_t)xmit_hint, 0)) != 0) { 14473 if (ixacookie != NULL) 14474 *ixacookie = cookie; 14475 return (EWOULDBLOCK); 14476 } 14477 } 14478 } else { 14479 wq = ill->ill_wq; 14480 14481 if (!(ixaflags & IXAF_NO_DEV_FLOW_CTL) && 14482 !canputnext(wq)) { 14483 if (ixacookie != NULL) 14484 *ixacookie = 0; 14485 ip_xmit_flowctl_drop(ill, mp, fp_mp, 14486 nce->nce_fp_mp != NULL ? 14487 MBLKL(nce->nce_fp_mp) : 0); 14488 return (EWOULDBLOCK); 14489 } 14490 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutTransmits); 14491 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutOctets, 14492 pkt_len); 14493 putnext(wq, mp); 14494 } 14495 14496 /* 14497 * The rest of this function implements Neighbor Unreachability 14498 * detection. Determine if the ncec is eligible for NUD. 14499 */ 14500 if (ncec->ncec_flags & NCE_F_NONUD) 14501 return (0); 14502 14503 ASSERT(ncec->ncec_state != ND_INCOMPLETE); 14504 14505 /* 14506 * Check for upper layer advice 14507 */ 14508 if (ixaflags & IXAF_REACH_CONF) { 14509 timeout_id_t tid; 14510 14511 /* 14512 * It should be o.k. to check the state without 14513 * a lock here, at most we lose an advice. 14514 */ 14515 ncec->ncec_last = TICK_TO_MSEC(now); 14516 if (ncec->ncec_state != ND_REACHABLE) { 14517 mutex_enter(&ncec->ncec_lock); 14518 ncec->ncec_state = ND_REACHABLE; 14519 tid = ncec->ncec_timeout_id; 14520 ncec->ncec_timeout_id = 0; 14521 mutex_exit(&ncec->ncec_lock); 14522 (void) untimeout(tid); 14523 if (ip_debug > 2) { 14524 /* ip1dbg */ 14525 pr_addr_dbg("ip_xmit: state" 14526 " for %s changed to" 14527 " REACHABLE\n", AF_INET6, 14528 &ncec->ncec_addr); 14529 } 14530 } 14531 return (0); 14532 } 14533 14534 delta = TICK_TO_MSEC(now) - ncec->ncec_last; 14535 ip1dbg(("ip_xmit: delta = %" PRId64 14536 " ill_reachable_time = %d \n", delta, 14537 ill->ill_reachable_time)); 14538 if (delta > (uint64_t)ill->ill_reachable_time) { 14539 mutex_enter(&ncec->ncec_lock); 14540 switch (ncec->ncec_state) { 14541 case ND_REACHABLE: 14542 ASSERT((ncec->ncec_flags & NCE_F_NONUD) == 0); 14543 /* FALLTHROUGH */ 14544 case ND_STALE: 14545 /* 14546 * ND_REACHABLE is identical to 14547 * ND_STALE in this specific case. If 14548 * reachable time has expired for this 14549 * neighbor (delta is greater than 14550 * reachable time), conceptually, the 14551 * neighbor cache is no longer in 14552 * REACHABLE state, but already in 14553 * STALE state. So the correct 14554 * transition here is to ND_DELAY. 14555 */ 14556 ncec->ncec_state = ND_DELAY; 14557 mutex_exit(&ncec->ncec_lock); 14558 nce_restart_timer(ncec, 14559 ipst->ips_delay_first_probe_time); 14560 if (ip_debug > 3) { 14561 /* ip2dbg */ 14562 pr_addr_dbg("ip_xmit: state" 14563 " for %s changed to" 14564 " DELAY\n", AF_INET6, 14565 &ncec->ncec_addr); 14566 } 14567 break; 14568 case ND_DELAY: 14569 case ND_PROBE: 14570 mutex_exit(&ncec->ncec_lock); 14571 /* Timers have already started */ 14572 break; 14573 case ND_UNREACHABLE: 14574 /* 14575 * nce_timer has detected that this ncec 14576 * is unreachable and initiated deleting 14577 * this ncec. 14578 * This is a harmless race where we found the 14579 * ncec before it was deleted and have 14580 * just sent out a packet using this 14581 * unreachable ncec. 14582 */ 14583 mutex_exit(&ncec->ncec_lock); 14584 break; 14585 default: 14586 ASSERT(0); 14587 mutex_exit(&ncec->ncec_lock); 14588 } 14589 } 14590 return (0); 14591 14592 case ND_INCOMPLETE: 14593 /* 14594 * the state could have changed since we didn't hold the lock. 14595 * Re-verify state under lock. 14596 */ 14597 is_probe = ipmp_packet_is_probe(mp, nce->nce_ill); 14598 mutex_enter(&ncec->ncec_lock); 14599 if (NCE_ISREACHABLE(ncec)) { 14600 mutex_exit(&ncec->ncec_lock); 14601 goto sendit; 14602 } 14603 /* queue the packet */ 14604 nce_queue_mp(ncec, mp, is_probe); 14605 mutex_exit(&ncec->ncec_lock); 14606 DTRACE_PROBE2(ip__xmit__incomplete, 14607 (ncec_t *), ncec, (mblk_t *), mp); 14608 return (0); 14609 14610 case ND_INITIAL: 14611 /* 14612 * State could have changed since we didn't hold the lock, so 14613 * re-verify state. 14614 */ 14615 is_probe = ipmp_packet_is_probe(mp, nce->nce_ill); 14616 mutex_enter(&ncec->ncec_lock); 14617 if (NCE_ISREACHABLE(ncec)) { 14618 mutex_exit(&ncec->ncec_lock); 14619 goto sendit; 14620 } 14621 nce_queue_mp(ncec, mp, is_probe); 14622 if (ncec->ncec_state == ND_INITIAL) { 14623 ncec->ncec_state = ND_INCOMPLETE; 14624 mutex_exit(&ncec->ncec_lock); 14625 /* 14626 * figure out the source we want to use 14627 * and resolve it. 14628 */ 14629 ip_ndp_resolve(ncec); 14630 } else { 14631 mutex_exit(&ncec->ncec_lock); 14632 } 14633 return (0); 14634 14635 case ND_UNREACHABLE: 14636 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 14637 ip_drop_output("ipIfStatsOutDiscards - ND_UNREACHABLE", 14638 mp, ill); 14639 freemsg(mp); 14640 return (0); 14641 14642 default: 14643 ASSERT(0); 14644 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 14645 ip_drop_output("ipIfStatsOutDiscards - ND_other", 14646 mp, ill); 14647 freemsg(mp); 14648 return (ENETUNREACH); 14649 } 14650 } 14651 14652 /* 14653 * Return B_TRUE if the buffers differ in length or content. 14654 * This is used for comparing extension header buffers. 14655 * Note that an extension header would be declared different 14656 * even if all that changed was the next header value in that header i.e. 14657 * what really changed is the next extension header. 14658 */ 14659 boolean_t 14660 ip_cmpbuf(const void *abuf, uint_t alen, boolean_t b_valid, const void *bbuf, 14661 uint_t blen) 14662 { 14663 if (!b_valid) 14664 blen = 0; 14665 14666 if (alen != blen) 14667 return (B_TRUE); 14668 if (alen == 0) 14669 return (B_FALSE); /* Both zero length */ 14670 return (bcmp(abuf, bbuf, alen)); 14671 } 14672 14673 /* 14674 * Preallocate memory for ip_savebuf(). Returns B_TRUE if ok. 14675 * Return B_FALSE if memory allocation fails - don't change any state! 14676 */ 14677 boolean_t 14678 ip_allocbuf(void **dstp, uint_t *dstlenp, boolean_t src_valid, 14679 const void *src, uint_t srclen) 14680 { 14681 void *dst; 14682 14683 if (!src_valid) 14684 srclen = 0; 14685 14686 ASSERT(*dstlenp == 0); 14687 if (src != NULL && srclen != 0) { 14688 dst = mi_alloc(srclen, BPRI_MED); 14689 if (dst == NULL) 14690 return (B_FALSE); 14691 } else { 14692 dst = NULL; 14693 } 14694 if (*dstp != NULL) 14695 mi_free(*dstp); 14696 *dstp = dst; 14697 *dstlenp = dst == NULL ? 0 : srclen; 14698 return (B_TRUE); 14699 } 14700 14701 /* 14702 * Replace what is in *dst, *dstlen with the source. 14703 * Assumes ip_allocbuf has already been called. 14704 */ 14705 void 14706 ip_savebuf(void **dstp, uint_t *dstlenp, boolean_t src_valid, 14707 const void *src, uint_t srclen) 14708 { 14709 if (!src_valid) 14710 srclen = 0; 14711 14712 ASSERT(*dstlenp == srclen); 14713 if (src != NULL && srclen != 0) 14714 bcopy(src, *dstp, srclen); 14715 } 14716 14717 /* 14718 * Free the storage pointed to by the members of an ip_pkt_t. 14719 */ 14720 void 14721 ip_pkt_free(ip_pkt_t *ipp) 14722 { 14723 uint_t fields = ipp->ipp_fields; 14724 14725 if (fields & IPPF_HOPOPTS) { 14726 kmem_free(ipp->ipp_hopopts, ipp->ipp_hopoptslen); 14727 ipp->ipp_hopopts = NULL; 14728 ipp->ipp_hopoptslen = 0; 14729 } 14730 if (fields & IPPF_RTHDRDSTOPTS) { 14731 kmem_free(ipp->ipp_rthdrdstopts, ipp->ipp_rthdrdstoptslen); 14732 ipp->ipp_rthdrdstopts = NULL; 14733 ipp->ipp_rthdrdstoptslen = 0; 14734 } 14735 if (fields & IPPF_DSTOPTS) { 14736 kmem_free(ipp->ipp_dstopts, ipp->ipp_dstoptslen); 14737 ipp->ipp_dstopts = NULL; 14738 ipp->ipp_dstoptslen = 0; 14739 } 14740 if (fields & IPPF_RTHDR) { 14741 kmem_free(ipp->ipp_rthdr, ipp->ipp_rthdrlen); 14742 ipp->ipp_rthdr = NULL; 14743 ipp->ipp_rthdrlen = 0; 14744 } 14745 if (fields & IPPF_IPV4_OPTIONS) { 14746 kmem_free(ipp->ipp_ipv4_options, ipp->ipp_ipv4_options_len); 14747 ipp->ipp_ipv4_options = NULL; 14748 ipp->ipp_ipv4_options_len = 0; 14749 } 14750 if (fields & IPPF_LABEL_V4) { 14751 kmem_free(ipp->ipp_label_v4, ipp->ipp_label_len_v4); 14752 ipp->ipp_label_v4 = NULL; 14753 ipp->ipp_label_len_v4 = 0; 14754 } 14755 if (fields & IPPF_LABEL_V6) { 14756 kmem_free(ipp->ipp_label_v6, ipp->ipp_label_len_v6); 14757 ipp->ipp_label_v6 = NULL; 14758 ipp->ipp_label_len_v6 = 0; 14759 } 14760 ipp->ipp_fields &= ~(IPPF_HOPOPTS | IPPF_RTHDRDSTOPTS | IPPF_DSTOPTS | 14761 IPPF_RTHDR | IPPF_IPV4_OPTIONS | IPPF_LABEL_V4 | IPPF_LABEL_V6); 14762 } 14763 14764 /* 14765 * Copy from src to dst and allocate as needed. 14766 * Returns zero or ENOMEM. 14767 * 14768 * The caller must initialize dst to zero. 14769 */ 14770 int 14771 ip_pkt_copy(ip_pkt_t *src, ip_pkt_t *dst, int kmflag) 14772 { 14773 uint_t fields = src->ipp_fields; 14774 14775 /* Start with fields that don't require memory allocation */ 14776 dst->ipp_fields = fields & 14777 ~(IPPF_HOPOPTS | IPPF_RTHDRDSTOPTS | IPPF_DSTOPTS | 14778 IPPF_RTHDR | IPPF_IPV4_OPTIONS | IPPF_LABEL_V4 | IPPF_LABEL_V6); 14779 14780 dst->ipp_addr = src->ipp_addr; 14781 dst->ipp_unicast_hops = src->ipp_unicast_hops; 14782 dst->ipp_hoplimit = src->ipp_hoplimit; 14783 dst->ipp_tclass = src->ipp_tclass; 14784 dst->ipp_type_of_service = src->ipp_type_of_service; 14785 14786 if (!(fields & (IPPF_HOPOPTS | IPPF_RTHDRDSTOPTS | IPPF_DSTOPTS | 14787 IPPF_RTHDR | IPPF_IPV4_OPTIONS | IPPF_LABEL_V4 | IPPF_LABEL_V6))) 14788 return (0); 14789 14790 if (fields & IPPF_HOPOPTS) { 14791 dst->ipp_hopopts = kmem_alloc(src->ipp_hopoptslen, kmflag); 14792 if (dst->ipp_hopopts == NULL) { 14793 ip_pkt_free(dst); 14794 return (ENOMEM); 14795 } 14796 dst->ipp_fields |= IPPF_HOPOPTS; 14797 bcopy(src->ipp_hopopts, dst->ipp_hopopts, 14798 src->ipp_hopoptslen); 14799 dst->ipp_hopoptslen = src->ipp_hopoptslen; 14800 } 14801 if (fields & IPPF_RTHDRDSTOPTS) { 14802 dst->ipp_rthdrdstopts = kmem_alloc(src->ipp_rthdrdstoptslen, 14803 kmflag); 14804 if (dst->ipp_rthdrdstopts == NULL) { 14805 ip_pkt_free(dst); 14806 return (ENOMEM); 14807 } 14808 dst->ipp_fields |= IPPF_RTHDRDSTOPTS; 14809 bcopy(src->ipp_rthdrdstopts, dst->ipp_rthdrdstopts, 14810 src->ipp_rthdrdstoptslen); 14811 dst->ipp_rthdrdstoptslen = src->ipp_rthdrdstoptslen; 14812 } 14813 if (fields & IPPF_DSTOPTS) { 14814 dst->ipp_dstopts = kmem_alloc(src->ipp_dstoptslen, kmflag); 14815 if (dst->ipp_dstopts == NULL) { 14816 ip_pkt_free(dst); 14817 return (ENOMEM); 14818 } 14819 dst->ipp_fields |= IPPF_DSTOPTS; 14820 bcopy(src->ipp_dstopts, dst->ipp_dstopts, 14821 src->ipp_dstoptslen); 14822 dst->ipp_dstoptslen = src->ipp_dstoptslen; 14823 } 14824 if (fields & IPPF_RTHDR) { 14825 dst->ipp_rthdr = kmem_alloc(src->ipp_rthdrlen, kmflag); 14826 if (dst->ipp_rthdr == NULL) { 14827 ip_pkt_free(dst); 14828 return (ENOMEM); 14829 } 14830 dst->ipp_fields |= IPPF_RTHDR; 14831 bcopy(src->ipp_rthdr, dst->ipp_rthdr, 14832 src->ipp_rthdrlen); 14833 dst->ipp_rthdrlen = src->ipp_rthdrlen; 14834 } 14835 if (fields & IPPF_IPV4_OPTIONS) { 14836 dst->ipp_ipv4_options = kmem_alloc(src->ipp_ipv4_options_len, 14837 kmflag); 14838 if (dst->ipp_ipv4_options == NULL) { 14839 ip_pkt_free(dst); 14840 return (ENOMEM); 14841 } 14842 dst->ipp_fields |= IPPF_IPV4_OPTIONS; 14843 bcopy(src->ipp_ipv4_options, dst->ipp_ipv4_options, 14844 src->ipp_ipv4_options_len); 14845 dst->ipp_ipv4_options_len = src->ipp_ipv4_options_len; 14846 } 14847 if (fields & IPPF_LABEL_V4) { 14848 dst->ipp_label_v4 = kmem_alloc(src->ipp_label_len_v4, kmflag); 14849 if (dst->ipp_label_v4 == NULL) { 14850 ip_pkt_free(dst); 14851 return (ENOMEM); 14852 } 14853 dst->ipp_fields |= IPPF_LABEL_V4; 14854 bcopy(src->ipp_label_v4, dst->ipp_label_v4, 14855 src->ipp_label_len_v4); 14856 dst->ipp_label_len_v4 = src->ipp_label_len_v4; 14857 } 14858 if (fields & IPPF_LABEL_V6) { 14859 dst->ipp_label_v6 = kmem_alloc(src->ipp_label_len_v6, kmflag); 14860 if (dst->ipp_label_v6 == NULL) { 14861 ip_pkt_free(dst); 14862 return (ENOMEM); 14863 } 14864 dst->ipp_fields |= IPPF_LABEL_V6; 14865 bcopy(src->ipp_label_v6, dst->ipp_label_v6, 14866 src->ipp_label_len_v6); 14867 dst->ipp_label_len_v6 = src->ipp_label_len_v6; 14868 } 14869 if (fields & IPPF_FRAGHDR) { 14870 dst->ipp_fraghdr = kmem_alloc(src->ipp_fraghdrlen, kmflag); 14871 if (dst->ipp_fraghdr == NULL) { 14872 ip_pkt_free(dst); 14873 return (ENOMEM); 14874 } 14875 dst->ipp_fields |= IPPF_FRAGHDR; 14876 bcopy(src->ipp_fraghdr, dst->ipp_fraghdr, 14877 src->ipp_fraghdrlen); 14878 dst->ipp_fraghdrlen = src->ipp_fraghdrlen; 14879 } 14880 return (0); 14881 } 14882 14883 /* 14884 * Returns INADDR_ANY if no source route 14885 */ 14886 ipaddr_t 14887 ip_pkt_source_route_v4(const ip_pkt_t *ipp) 14888 { 14889 ipaddr_t nexthop = INADDR_ANY; 14890 ipoptp_t opts; 14891 uchar_t *opt; 14892 uint8_t optval; 14893 uint8_t optlen; 14894 uint32_t totallen; 14895 14896 if (!(ipp->ipp_fields & IPPF_IPV4_OPTIONS)) 14897 return (INADDR_ANY); 14898 14899 totallen = ipp->ipp_ipv4_options_len; 14900 if (totallen & 0x3) 14901 return (INADDR_ANY); 14902 14903 for (optval = ipoptp_first2(&opts, totallen, ipp->ipp_ipv4_options); 14904 optval != IPOPT_EOL; 14905 optval = ipoptp_next(&opts)) { 14906 opt = opts.ipoptp_cur; 14907 switch (optval) { 14908 uint8_t off; 14909 case IPOPT_SSRR: 14910 case IPOPT_LSRR: 14911 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 14912 break; 14913 } 14914 optlen = opts.ipoptp_len; 14915 off = opt[IPOPT_OFFSET]; 14916 off--; 14917 if (optlen < IP_ADDR_LEN || 14918 off > optlen - IP_ADDR_LEN) { 14919 /* End of source route */ 14920 break; 14921 } 14922 bcopy((char *)opt + off, &nexthop, IP_ADDR_LEN); 14923 if (nexthop == htonl(INADDR_LOOPBACK)) { 14924 /* Ignore */ 14925 nexthop = INADDR_ANY; 14926 break; 14927 } 14928 break; 14929 } 14930 } 14931 return (nexthop); 14932 } 14933 14934 /* 14935 * Reverse a source route. 14936 */ 14937 void 14938 ip_pkt_source_route_reverse_v4(ip_pkt_t *ipp) 14939 { 14940 ipaddr_t tmp; 14941 ipoptp_t opts; 14942 uchar_t *opt; 14943 uint8_t optval; 14944 uint32_t totallen; 14945 14946 if (!(ipp->ipp_fields & IPPF_IPV4_OPTIONS)) 14947 return; 14948 14949 totallen = ipp->ipp_ipv4_options_len; 14950 if (totallen & 0x3) 14951 return; 14952 14953 for (optval = ipoptp_first2(&opts, totallen, ipp->ipp_ipv4_options); 14954 optval != IPOPT_EOL; 14955 optval = ipoptp_next(&opts)) { 14956 uint8_t off1, off2; 14957 14958 opt = opts.ipoptp_cur; 14959 switch (optval) { 14960 case IPOPT_SSRR: 14961 case IPOPT_LSRR: 14962 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 14963 break; 14964 } 14965 off1 = IPOPT_MINOFF_SR - 1; 14966 off2 = opt[IPOPT_OFFSET] - IP_ADDR_LEN - 1; 14967 while (off2 > off1) { 14968 bcopy(opt + off2, &tmp, IP_ADDR_LEN); 14969 bcopy(opt + off1, opt + off2, IP_ADDR_LEN); 14970 bcopy(&tmp, opt + off2, IP_ADDR_LEN); 14971 off2 -= IP_ADDR_LEN; 14972 off1 += IP_ADDR_LEN; 14973 } 14974 opt[IPOPT_OFFSET] = IPOPT_MINOFF_SR; 14975 break; 14976 } 14977 } 14978 } 14979 14980 /* 14981 * Returns NULL if no routing header 14982 */ 14983 in6_addr_t * 14984 ip_pkt_source_route_v6(const ip_pkt_t *ipp) 14985 { 14986 in6_addr_t *nexthop = NULL; 14987 ip6_rthdr0_t *rthdr; 14988 14989 if (!(ipp->ipp_fields & IPPF_RTHDR)) 14990 return (NULL); 14991 14992 rthdr = (ip6_rthdr0_t *)ipp->ipp_rthdr; 14993 if (rthdr->ip6r0_segleft == 0) 14994 return (NULL); 14995 14996 nexthop = (in6_addr_t *)((char *)rthdr + sizeof (*rthdr)); 14997 return (nexthop); 14998 } 14999 15000 zoneid_t 15001 ip_get_zoneid_v4(ipaddr_t addr, mblk_t *mp, ip_recv_attr_t *ira, 15002 zoneid_t lookup_zoneid) 15003 { 15004 ip_stack_t *ipst = ira->ira_ill->ill_ipst; 15005 ire_t *ire; 15006 int ire_flags = MATCH_IRE_TYPE; 15007 zoneid_t zoneid = ALL_ZONES; 15008 15009 if (is_system_labeled() && !tsol_can_accept_raw(mp, ira, B_FALSE)) 15010 return (ALL_ZONES); 15011 15012 if (lookup_zoneid != ALL_ZONES) 15013 ire_flags |= MATCH_IRE_ZONEONLY; 15014 ire = ire_ftable_lookup_v4(addr, NULL, NULL, IRE_LOCAL | IRE_LOOPBACK, 15015 NULL, lookup_zoneid, NULL, ire_flags, 0, ipst, NULL); 15016 if (ire != NULL) { 15017 zoneid = IP_REAL_ZONEID(ire->ire_zoneid, ipst); 15018 ire_refrele(ire); 15019 } 15020 return (zoneid); 15021 } 15022 15023 zoneid_t 15024 ip_get_zoneid_v6(in6_addr_t *addr, mblk_t *mp, const ill_t *ill, 15025 ip_recv_attr_t *ira, zoneid_t lookup_zoneid) 15026 { 15027 ip_stack_t *ipst = ira->ira_ill->ill_ipst; 15028 ire_t *ire; 15029 int ire_flags = MATCH_IRE_TYPE; 15030 zoneid_t zoneid = ALL_ZONES; 15031 15032 if (is_system_labeled() && !tsol_can_accept_raw(mp, ira, B_FALSE)) 15033 return (ALL_ZONES); 15034 15035 if (IN6_IS_ADDR_LINKLOCAL(addr)) 15036 ire_flags |= MATCH_IRE_ILL; 15037 15038 if (lookup_zoneid != ALL_ZONES) 15039 ire_flags |= MATCH_IRE_ZONEONLY; 15040 ire = ire_ftable_lookup_v6(addr, NULL, NULL, IRE_LOCAL | IRE_LOOPBACK, 15041 ill, lookup_zoneid, NULL, ire_flags, 0, ipst, NULL); 15042 if (ire != NULL) { 15043 zoneid = IP_REAL_ZONEID(ire->ire_zoneid, ipst); 15044 ire_refrele(ire); 15045 } 15046 return (zoneid); 15047 } 15048 15049 /* 15050 * IP obserability hook support functions. 15051 */ 15052 static void 15053 ipobs_init(ip_stack_t *ipst) 15054 { 15055 netid_t id; 15056 15057 id = net_getnetidbynetstackid(ipst->ips_netstack->netstack_stackid); 15058 15059 ipst->ips_ip4_observe_pr = net_protocol_lookup(id, NHF_INET); 15060 VERIFY(ipst->ips_ip4_observe_pr != NULL); 15061 15062 ipst->ips_ip6_observe_pr = net_protocol_lookup(id, NHF_INET6); 15063 VERIFY(ipst->ips_ip6_observe_pr != NULL); 15064 } 15065 15066 static void 15067 ipobs_fini(ip_stack_t *ipst) 15068 { 15069 15070 VERIFY(net_protocol_release(ipst->ips_ip4_observe_pr) == 0); 15071 VERIFY(net_protocol_release(ipst->ips_ip6_observe_pr) == 0); 15072 } 15073 15074 /* 15075 * hook_pkt_observe_t is composed in network byte order so that the 15076 * entire mblk_t chain handed into hook_run can be used as-is. 15077 * The caveat is that use of the fields, such as the zone fields, 15078 * requires conversion into host byte order first. 15079 */ 15080 void 15081 ipobs_hook(mblk_t *mp, int htype, zoneid_t zsrc, zoneid_t zdst, 15082 const ill_t *ill, ip_stack_t *ipst) 15083 { 15084 hook_pkt_observe_t *hdr; 15085 uint64_t grifindex; 15086 mblk_t *imp; 15087 15088 imp = allocb(sizeof (*hdr), BPRI_HI); 15089 if (imp == NULL) 15090 return; 15091 15092 hdr = (hook_pkt_observe_t *)imp->b_rptr; 15093 /* 15094 * b_wptr is set to make the apparent size of the data in the mblk_t 15095 * to exclude the pointers at the end of hook_pkt_observer_t. 15096 */ 15097 imp->b_wptr = imp->b_rptr + sizeof (dl_ipnetinfo_t); 15098 imp->b_cont = mp; 15099 15100 ASSERT(DB_TYPE(mp) == M_DATA); 15101 15102 if (IS_UNDER_IPMP(ill)) 15103 grifindex = ipmp_ill_get_ipmp_ifindex(ill); 15104 else 15105 grifindex = 0; 15106 15107 hdr->hpo_version = 1; 15108 hdr->hpo_htype = htons(htype); 15109 hdr->hpo_pktlen = htonl((ulong_t)msgdsize(mp)); 15110 hdr->hpo_ifindex = htonl(ill->ill_phyint->phyint_ifindex); 15111 hdr->hpo_grifindex = htonl(grifindex); 15112 hdr->hpo_zsrc = htonl(zsrc); 15113 hdr->hpo_zdst = htonl(zdst); 15114 hdr->hpo_pkt = imp; 15115 hdr->hpo_ctx = ipst->ips_netstack; 15116 15117 if (ill->ill_isv6) { 15118 hdr->hpo_family = AF_INET6; 15119 (void) hook_run(ipst->ips_ipv6_net_data->netd_hooks, 15120 ipst->ips_ipv6observing, (hook_data_t)hdr); 15121 } else { 15122 hdr->hpo_family = AF_INET; 15123 (void) hook_run(ipst->ips_ipv4_net_data->netd_hooks, 15124 ipst->ips_ipv4observing, (hook_data_t)hdr); 15125 } 15126 15127 imp->b_cont = NULL; 15128 freemsg(imp); 15129 } 15130 15131 /* 15132 * Utility routine that checks if `v4srcp' is a valid address on underlying 15133 * interface `ill'. If `ipifp' is non-NULL, it's set to a held ipif 15134 * associated with `v4srcp' on success. NOTE: if this is not called from 15135 * inside the IPSQ (ill_g_lock is not held), `ill' may be removed from the 15136 * group during or after this lookup. 15137 */ 15138 boolean_t 15139 ipif_lookup_testaddr_v4(ill_t *ill, const in_addr_t *v4srcp, ipif_t **ipifp) 15140 { 15141 ipif_t *ipif; 15142 15143 ipif = ipif_lookup_addr_exact(*v4srcp, ill, ill->ill_ipst); 15144 if (ipif != NULL) { 15145 if (ipifp != NULL) 15146 *ipifp = ipif; 15147 else 15148 ipif_refrele(ipif); 15149 return (B_TRUE); 15150 } 15151 15152 ip1dbg(("ipif_lookup_testaddr_v4: cannot find ipif for src %x\n", 15153 *v4srcp)); 15154 return (B_FALSE); 15155 } 15156 15157 /* 15158 * Transport protocol call back function for CPU state change. 15159 */ 15160 /* ARGSUSED */ 15161 static int 15162 ip_tp_cpu_update(cpu_setup_t what, int id, void *arg) 15163 { 15164 processorid_t cpu_seqid; 15165 netstack_handle_t nh; 15166 netstack_t *ns; 15167 15168 ASSERT(MUTEX_HELD(&cpu_lock)); 15169 15170 switch (what) { 15171 case CPU_CONFIG: 15172 case CPU_ON: 15173 case CPU_INIT: 15174 case CPU_CPUPART_IN: 15175 cpu_seqid = cpu[id]->cpu_seqid; 15176 netstack_next_init(&nh); 15177 while ((ns = netstack_next(&nh)) != NULL) { 15178 tcp_stack_cpu_add(ns->netstack_tcp, cpu_seqid); 15179 sctp_stack_cpu_add(ns->netstack_sctp, cpu_seqid); 15180 udp_stack_cpu_add(ns->netstack_udp, cpu_seqid); 15181 netstack_rele(ns); 15182 } 15183 netstack_next_fini(&nh); 15184 break; 15185 case CPU_UNCONFIG: 15186 case CPU_OFF: 15187 case CPU_CPUPART_OUT: 15188 /* 15189 * Nothing to do. We don't remove the per CPU stats from 15190 * the IP stack even when the CPU goes offline. 15191 */ 15192 break; 15193 default: 15194 break; 15195 } 15196 return (0); 15197 } 15198