1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 1991, 2010, Oracle and/or its affiliates. All rights reserved. 24 * Copyright (c) 1990 Mentat Inc. 25 * Copyright (c) 2012 Joyent, Inc. All rights reserved. 26 * Copyright (c) 2014, OmniTI Computer Consulting, Inc. All rights reserved. 27 */ 28 29 #include <sys/types.h> 30 #include <sys/stream.h> 31 #include <sys/dlpi.h> 32 #include <sys/stropts.h> 33 #include <sys/sysmacros.h> 34 #include <sys/strsubr.h> 35 #include <sys/strlog.h> 36 #include <sys/strsun.h> 37 #include <sys/zone.h> 38 #define _SUN_TPI_VERSION 2 39 #include <sys/tihdr.h> 40 #include <sys/xti_inet.h> 41 #include <sys/ddi.h> 42 #include <sys/suntpi.h> 43 #include <sys/cmn_err.h> 44 #include <sys/debug.h> 45 #include <sys/kobj.h> 46 #include <sys/modctl.h> 47 #include <sys/atomic.h> 48 #include <sys/policy.h> 49 #include <sys/priv.h> 50 #include <sys/taskq.h> 51 52 #include <sys/systm.h> 53 #include <sys/param.h> 54 #include <sys/kmem.h> 55 #include <sys/sdt.h> 56 #include <sys/socket.h> 57 #include <sys/vtrace.h> 58 #include <sys/isa_defs.h> 59 #include <sys/mac.h> 60 #include <net/if.h> 61 #include <net/if_arp.h> 62 #include <net/route.h> 63 #include <sys/sockio.h> 64 #include <netinet/in.h> 65 #include <net/if_dl.h> 66 67 #include <inet/common.h> 68 #include <inet/mi.h> 69 #include <inet/mib2.h> 70 #include <inet/nd.h> 71 #include <inet/arp.h> 72 #include <inet/snmpcom.h> 73 #include <inet/optcom.h> 74 #include <inet/kstatcom.h> 75 76 #include <netinet/igmp_var.h> 77 #include <netinet/ip6.h> 78 #include <netinet/icmp6.h> 79 #include <netinet/sctp.h> 80 81 #include <inet/ip.h> 82 #include <inet/ip_impl.h> 83 #include <inet/ip6.h> 84 #include <inet/ip6_asp.h> 85 #include <inet/tcp.h> 86 #include <inet/tcp_impl.h> 87 #include <inet/ip_multi.h> 88 #include <inet/ip_if.h> 89 #include <inet/ip_ire.h> 90 #include <inet/ip_ftable.h> 91 #include <inet/ip_rts.h> 92 #include <inet/ip_ndp.h> 93 #include <inet/ip_listutils.h> 94 #include <netinet/igmp.h> 95 #include <netinet/ip_mroute.h> 96 #include <inet/ipp_common.h> 97 98 #include <net/pfkeyv2.h> 99 #include <inet/sadb.h> 100 #include <inet/ipsec_impl.h> 101 #include <inet/iptun/iptun_impl.h> 102 #include <inet/ipdrop.h> 103 #include <inet/ip_netinfo.h> 104 #include <inet/ilb_ip.h> 105 106 #include <sys/ethernet.h> 107 #include <net/if_types.h> 108 #include <sys/cpuvar.h> 109 110 #include <ipp/ipp.h> 111 #include <ipp/ipp_impl.h> 112 #include <ipp/ipgpc/ipgpc.h> 113 114 #include <sys/pattr.h> 115 #include <inet/ipclassifier.h> 116 #include <inet/sctp_ip.h> 117 #include <inet/sctp/sctp_impl.h> 118 #include <inet/udp_impl.h> 119 #include <inet/rawip_impl.h> 120 #include <inet/rts_impl.h> 121 122 #include <sys/tsol/label.h> 123 #include <sys/tsol/tnet.h> 124 125 #include <sys/squeue_impl.h> 126 #include <inet/ip_arp.h> 127 128 #include <sys/clock_impl.h> /* For LBOLT_FASTPATH{,64} */ 129 130 /* 131 * Values for squeue switch: 132 * IP_SQUEUE_ENTER_NODRAIN: SQ_NODRAIN 133 * IP_SQUEUE_ENTER: SQ_PROCESS 134 * IP_SQUEUE_FILL: SQ_FILL 135 */ 136 int ip_squeue_enter = IP_SQUEUE_ENTER; /* Setable in /etc/system */ 137 138 int ip_squeue_flag; 139 140 /* 141 * Setable in /etc/system 142 */ 143 int ip_poll_normal_ms = 100; 144 int ip_poll_normal_ticks = 0; 145 int ip_modclose_ackwait_ms = 3000; 146 147 /* 148 * It would be nice to have these present only in DEBUG systems, but the 149 * current design of the global symbol checking logic requires them to be 150 * unconditionally present. 151 */ 152 uint_t ip_thread_data; /* TSD key for debug support */ 153 krwlock_t ip_thread_rwlock; 154 list_t ip_thread_list; 155 156 /* 157 * Structure to represent a linked list of msgblks. Used by ip_snmp_ functions. 158 */ 159 160 struct listptr_s { 161 mblk_t *lp_head; /* pointer to the head of the list */ 162 mblk_t *lp_tail; /* pointer to the tail of the list */ 163 }; 164 165 typedef struct listptr_s listptr_t; 166 167 /* 168 * This is used by ip_snmp_get_mib2_ip_route_media and 169 * ip_snmp_get_mib2_ip6_route_media to carry the lists of return data. 170 */ 171 typedef struct iproutedata_s { 172 uint_t ird_idx; 173 uint_t ird_flags; /* see below */ 174 listptr_t ird_route; /* ipRouteEntryTable */ 175 listptr_t ird_netmedia; /* ipNetToMediaEntryTable */ 176 listptr_t ird_attrs; /* ipRouteAttributeTable */ 177 } iproutedata_t; 178 179 /* Include ire_testhidden and IRE_IF_CLONE routes */ 180 #define IRD_REPORT_ALL 0x01 181 182 /* 183 * Cluster specific hooks. These should be NULL when booted as a non-cluster 184 */ 185 186 /* 187 * Hook functions to enable cluster networking 188 * On non-clustered systems these vectors must always be NULL. 189 * 190 * Hook function to Check ip specified ip address is a shared ip address 191 * in the cluster 192 * 193 */ 194 int (*cl_inet_isclusterwide)(netstackid_t stack_id, uint8_t protocol, 195 sa_family_t addr_family, uint8_t *laddrp, void *args) = NULL; 196 197 /* 198 * Hook function to generate cluster wide ip fragment identifier 199 */ 200 uint32_t (*cl_inet_ipident)(netstackid_t stack_id, uint8_t protocol, 201 sa_family_t addr_family, uint8_t *laddrp, uint8_t *faddrp, 202 void *args) = NULL; 203 204 /* 205 * Hook function to generate cluster wide SPI. 206 */ 207 void (*cl_inet_getspi)(netstackid_t, uint8_t, uint8_t *, size_t, 208 void *) = NULL; 209 210 /* 211 * Hook function to verify if the SPI is already utlized. 212 */ 213 214 int (*cl_inet_checkspi)(netstackid_t, uint8_t, uint32_t, void *) = NULL; 215 216 /* 217 * Hook function to delete the SPI from the cluster wide repository. 218 */ 219 220 void (*cl_inet_deletespi)(netstackid_t, uint8_t, uint32_t, void *) = NULL; 221 222 /* 223 * Hook function to inform the cluster when packet received on an IDLE SA 224 */ 225 226 void (*cl_inet_idlesa)(netstackid_t, uint8_t, uint32_t, sa_family_t, 227 in6_addr_t, in6_addr_t, void *) = NULL; 228 229 /* 230 * Synchronization notes: 231 * 232 * IP is a fully D_MP STREAMS module/driver. Thus it does not depend on any 233 * MT level protection given by STREAMS. IP uses a combination of its own 234 * internal serialization mechanism and standard Solaris locking techniques. 235 * The internal serialization is per phyint. This is used to serialize 236 * plumbing operations, IPMP operations, most set ioctls, etc. 237 * 238 * Plumbing is a long sequence of operations involving message 239 * exchanges between IP, ARP and device drivers. Many set ioctls are typically 240 * involved in plumbing operations. A natural model is to serialize these 241 * ioctls one per ill. For example plumbing of hme0 and qfe0 can go on in 242 * parallel without any interference. But various set ioctls on hme0 are best 243 * serialized, along with IPMP operations and processing of DLPI control 244 * messages received from drivers on a per phyint basis. This serialization is 245 * provided by the ipsq_t and primitives operating on this. Details can 246 * be found in ip_if.c above the core primitives operating on ipsq_t. 247 * 248 * Lookups of an ipif or ill by a thread return a refheld ipif / ill. 249 * Simiarly lookup of an ire by a thread also returns a refheld ire. 250 * In addition ipif's and ill's referenced by the ire are also indirectly 251 * refheld. Thus no ipif or ill can vanish as long as an ipif is refheld 252 * directly or indirectly. For example an SIOCSLIFADDR ioctl that changes the 253 * address of an ipif has to go through the ipsq_t. This ensures that only 254 * one such exclusive operation proceeds at any time on the ipif. It then 255 * waits for all refcnts 256 * associated with this ipif to come down to zero. The address is changed 257 * only after the ipif has been quiesced. Then the ipif is brought up again. 258 * More details are described above the comment in ip_sioctl_flags. 259 * 260 * Packet processing is based mostly on IREs and are fully multi-threaded 261 * using standard Solaris MT techniques. 262 * 263 * There are explicit locks in IP to handle: 264 * - The ip_g_head list maintained by mi_open_link() and friends. 265 * 266 * - The reassembly data structures (one lock per hash bucket) 267 * 268 * - conn_lock is meant to protect conn_t fields. The fields actually 269 * protected by conn_lock are documented in the conn_t definition. 270 * 271 * - ire_lock to protect some of the fields of the ire, IRE tables 272 * (one lock per hash bucket). Refer to ip_ire.c for details. 273 * 274 * - ndp_g_lock and ncec_lock for protecting NCEs. 275 * 276 * - ill_lock protects fields of the ill and ipif. Details in ip.h 277 * 278 * - ill_g_lock: This is a global reader/writer lock. Protects the following 279 * * The AVL tree based global multi list of all ills. 280 * * The linked list of all ipifs of an ill 281 * * The <ipsq-xop> mapping 282 * * <ill-phyint> association 283 * Insertion/deletion of an ill in the system, insertion/deletion of an ipif 284 * into an ill, changing the <ipsq-xop> mapping of an ill, changing the 285 * <ill-phyint> assoc of an ill will all have to hold the ill_g_lock as 286 * writer for the actual duration of the insertion/deletion/change. 287 * 288 * - ill_lock: This is a per ill mutex. 289 * It protects some members of the ill_t struct; see ip.h for details. 290 * It also protects the <ill-phyint> assoc. 291 * It also protects the list of ipifs hanging off the ill. 292 * 293 * - ipsq_lock: This is a per ipsq_t mutex lock. 294 * This protects some members of the ipsq_t struct; see ip.h for details. 295 * It also protects the <ipsq-ipxop> mapping 296 * 297 * - ipx_lock: This is a per ipxop_t mutex lock. 298 * This protects some members of the ipxop_t struct; see ip.h for details. 299 * 300 * - phyint_lock: This is a per phyint mutex lock. Protects just the 301 * phyint_flags 302 * 303 * - ip_addr_avail_lock: This is used to ensure the uniqueness of IP addresses. 304 * This lock is held in ipif_up_done and the ipif is marked IPIF_UP and the 305 * uniqueness check also done atomically. 306 * 307 * - ill_g_usesrc_lock: This readers/writer lock protects the usesrc 308 * group list linked by ill_usesrc_grp_next. It also protects the 309 * ill_usesrc_ifindex field. It is taken as a writer when a member of the 310 * group is being added or deleted. This lock is taken as a reader when 311 * walking the list/group(eg: to get the number of members in a usesrc group). 312 * Note, it is only necessary to take this lock if the ill_usesrc_grp_next 313 * field is changing state i.e from NULL to non-NULL or vice-versa. For 314 * example, it is not necessary to take this lock in the initial portion 315 * of ip_sioctl_slifusesrc or at all in ip_sioctl_flags since these 316 * operations are executed exclusively and that ensures that the "usesrc 317 * group state" cannot change. The "usesrc group state" change can happen 318 * only in the latter part of ip_sioctl_slifusesrc and in ill_delete. 319 * 320 * Changing <ill-phyint>, <ipsq-xop> assocications: 321 * 322 * To change the <ill-phyint> association, the ill_g_lock must be held 323 * as writer, and the ill_locks of both the v4 and v6 instance of the ill 324 * must be held. 325 * 326 * To change the <ipsq-xop> association, the ill_g_lock must be held as 327 * writer, the ipsq_lock must be held, and one must be writer on the ipsq. 328 * This is only done when ills are added or removed from IPMP groups. 329 * 330 * To add or delete an ipif from the list of ipifs hanging off the ill, 331 * ill_g_lock (writer) and ill_lock must be held and the thread must be 332 * a writer on the associated ipsq. 333 * 334 * To add or delete an ill to the system, the ill_g_lock must be held as 335 * writer and the thread must be a writer on the associated ipsq. 336 * 337 * To add or delete an ilm to an ill, the ill_lock must be held and the thread 338 * must be a writer on the associated ipsq. 339 * 340 * Lock hierarchy 341 * 342 * Some lock hierarchy scenarios are listed below. 343 * 344 * ill_g_lock -> conn_lock -> ill_lock -> ipsq_lock -> ipx_lock 345 * ill_g_lock -> ill_lock(s) -> phyint_lock 346 * ill_g_lock -> ndp_g_lock -> ill_lock -> ncec_lock 347 * ill_g_lock -> ip_addr_avail_lock 348 * conn_lock -> irb_lock -> ill_lock -> ire_lock 349 * ill_g_lock -> ip_g_nd_lock 350 * ill_g_lock -> ips_ipmp_lock -> ill_lock -> nce_lock 351 * ill_g_lock -> ndp_g_lock -> ill_lock -> ncec_lock -> nce_lock 352 * arl_lock -> ill_lock 353 * ips_ire_dep_lock -> irb_lock 354 * 355 * When more than 1 ill lock is needed to be held, all ill lock addresses 356 * are sorted on address and locked starting from highest addressed lock 357 * downward. 358 * 359 * Multicast scenarios 360 * ips_ill_g_lock -> ill_mcast_lock 361 * conn_ilg_lock -> ips_ill_g_lock -> ill_lock 362 * ill_mcast_serializer -> ill_mcast_lock -> ips_ipmp_lock -> ill_lock 363 * ill_mcast_serializer -> ill_mcast_lock -> connf_lock -> conn_lock 364 * ill_mcast_serializer -> ill_mcast_lock -> conn_ilg_lock 365 * ill_mcast_serializer -> ill_mcast_lock -> ips_igmp_timer_lock 366 * 367 * IPsec scenarios 368 * 369 * ipsa_lock -> ill_g_lock -> ill_lock 370 * ill_g_usesrc_lock -> ill_g_lock -> ill_lock 371 * 372 * Trusted Solaris scenarios 373 * 374 * igsa_lock -> gcgrp_rwlock -> gcgrp_lock 375 * igsa_lock -> gcdb_lock 376 * gcgrp_rwlock -> ire_lock 377 * gcgrp_rwlock -> gcdb_lock 378 * 379 * squeue(sq_lock), flow related (ft_lock, fe_lock) locking 380 * 381 * cpu_lock --> ill_lock --> sqset_lock --> sq_lock 382 * sq_lock -> conn_lock -> QLOCK(q) 383 * ill_lock -> ft_lock -> fe_lock 384 * 385 * Routing/forwarding table locking notes: 386 * 387 * Lock acquisition order: Radix tree lock, irb_lock. 388 * Requirements: 389 * i. Walker must not hold any locks during the walker callback. 390 * ii Walker must not see a truncated tree during the walk because of any node 391 * deletion. 392 * iii Existing code assumes ire_bucket is valid if it is non-null and is used 393 * in many places in the code to walk the irb list. Thus even if all the 394 * ires in a bucket have been deleted, we still can't free the radix node 395 * until the ires have actually been inactive'd (freed). 396 * 397 * Tree traversal - Need to hold the global tree lock in read mode. 398 * Before dropping the global tree lock, need to either increment the ire_refcnt 399 * to ensure that the radix node can't be deleted. 400 * 401 * Tree add - Need to hold the global tree lock in write mode to add a 402 * radix node. To prevent the node from being deleted, increment the 403 * irb_refcnt, after the node is added to the tree. The ire itself is 404 * added later while holding the irb_lock, but not the tree lock. 405 * 406 * Tree delete - Need to hold the global tree lock and irb_lock in write mode. 407 * All associated ires must be inactive (i.e. freed), and irb_refcnt 408 * must be zero. 409 * 410 * Walker - Increment irb_refcnt before calling the walker callback. Hold the 411 * global tree lock (read mode) for traversal. 412 * 413 * IRE dependencies - In some cases we hold ips_ire_dep_lock across ire_refrele 414 * hence we will acquire irb_lock while holding ips_ire_dep_lock. 415 * 416 * IPsec notes : 417 * 418 * IP interacts with the IPsec code (AH/ESP) by storing IPsec attributes 419 * in the ip_xmit_attr_t ip_recv_attr_t. For outbound datagrams, the 420 * ip_xmit_attr_t has the 421 * information used by the IPsec code for applying the right level of 422 * protection. The information initialized by IP in the ip_xmit_attr_t 423 * is determined by the per-socket policy or global policy in the system. 424 * For inbound datagrams, the ip_recv_attr_t 425 * starts out with nothing in it. It gets filled 426 * with the right information if it goes through the AH/ESP code, which 427 * happens if the incoming packet is secure. The information initialized 428 * by AH/ESP, is later used by IP (during fanouts to ULP) to see whether 429 * the policy requirements needed by per-socket policy or global policy 430 * is met or not. 431 * 432 * For fully connected sockets i.e dst, src [addr, port] is known, 433 * conn_policy_cached is set indicating that policy has been cached. 434 * conn_in_enforce_policy may or may not be set depending on whether 435 * there is a global policy match or per-socket policy match. 436 * Policy inheriting happpens in ip_policy_set once the destination is known. 437 * Once the right policy is set on the conn_t, policy cannot change for 438 * this socket. This makes life simpler for TCP (UDP ?) where 439 * re-transmissions go out with the same policy. For symmetry, policy 440 * is cached for fully connected UDP sockets also. Thus if policy is cached, 441 * it also implies that policy is latched i.e policy cannot change 442 * on these sockets. As we have the right policy on the conn, we don't 443 * have to lookup global policy for every outbound and inbound datagram 444 * and thus serving as an optimization. Note that a global policy change 445 * does not affect fully connected sockets if they have policy. If fully 446 * connected sockets did not have any policy associated with it, global 447 * policy change may affect them. 448 * 449 * IP Flow control notes: 450 * --------------------- 451 * Non-TCP streams are flow controlled by IP. The way this is accomplished 452 * differs when ILL_CAPAB_DLD_DIRECT is enabled for that IP instance. When 453 * ILL_DIRECT_CAPABLE(ill) is TRUE, IP can do direct function calls into 454 * GLDv3. Otherwise packets are sent down to lower layers using STREAMS 455 * functions. 456 * 457 * Per Tx ring udp flow control: 458 * This is applicable only when ILL_CAPAB_DLD_DIRECT capability is set in 459 * the ill (i.e. ILL_DIRECT_CAPABLE(ill) is true). 460 * 461 * The underlying link can expose multiple Tx rings to the GLDv3 mac layer. 462 * To achieve best performance, outgoing traffic need to be fanned out among 463 * these Tx ring. mac_tx() is called (via str_mdata_fastpath_put()) to send 464 * traffic out of the NIC and it takes a fanout hint. UDP connections pass 465 * the address of connp as fanout hint to mac_tx(). Under flow controlled 466 * condition, mac_tx() returns a non-NULL cookie (ip_mac_tx_cookie_t). This 467 * cookie points to a specific Tx ring that is blocked. The cookie is used to 468 * hash into an idl_tx_list[] entry in idl_tx_list[] array. Each idl_tx_list_t 469 * point to drain_lists (idl_t's). These drain list will store the blocked UDP 470 * connp's. The drain list is not a single list but a configurable number of 471 * lists. 472 * 473 * The diagram below shows idl_tx_list_t's and their drain_lists. ip_stack_t 474 * has an array of idl_tx_list_t. The size of the array is TX_FANOUT_SIZE 475 * which is equal to 128. This array in turn contains a pointer to idl_t[], 476 * the ip drain list. The idl_t[] array size is MIN(max_ncpus, 8). The drain 477 * list will point to the list of connp's that are flow controlled. 478 * 479 * --------------- ------- ------- ------- 480 * |->|drain_list[0]|-->|connp|-->|connp|-->|connp|--> 481 * | --------------- ------- ------- ------- 482 * | --------------- ------- ------- ------- 483 * |->|drain_list[1]|-->|connp|-->|connp|-->|connp|--> 484 * ---------------- | --------------- ------- ------- ------- 485 * |idl_tx_list[0]|->| --------------- ------- ------- ------- 486 * ---------------- |->|drain_list[2]|-->|connp|-->|connp|-->|connp|--> 487 * | --------------- ------- ------- ------- 488 * . . . . . 489 * | --------------- ------- ------- ------- 490 * |->|drain_list[n]|-->|connp|-->|connp|-->|connp|--> 491 * --------------- ------- ------- ------- 492 * --------------- ------- ------- ------- 493 * |->|drain_list[0]|-->|connp|-->|connp|-->|connp|--> 494 * | --------------- ------- ------- ------- 495 * | --------------- ------- ------- ------- 496 * ---------------- |->|drain_list[1]|-->|connp|-->|connp|-->|connp|--> 497 * |idl_tx_list[1]|->| --------------- ------- ------- ------- 498 * ---------------- | . . . . 499 * | --------------- ------- ------- ------- 500 * |->|drain_list[n]|-->|connp|-->|connp|-->|connp|--> 501 * --------------- ------- ------- ------- 502 * ..... 503 * ---------------- 504 * |idl_tx_list[n]|-> ... 505 * ---------------- 506 * 507 * When mac_tx() returns a cookie, the cookie is hashed into an index into 508 * ips_idl_tx_list[], and conn_drain_insert() is called with the idl_tx_list 509 * to insert the conn onto. conn_drain_insert() asserts flow control for the 510 * sockets via su_txq_full() (non-STREAMS) or QFULL on conn_wq (STREAMS). 511 * Further, conn_blocked is set to indicate that the conn is blocked. 512 * 513 * GLDv3 calls ill_flow_enable() when flow control is relieved. The cookie 514 * passed in the call to ill_flow_enable() identifies the blocked Tx ring and 515 * is again hashed to locate the appropriate idl_tx_list, which is then 516 * drained via conn_walk_drain(). conn_walk_drain() goes through each conn in 517 * the drain list and calls conn_drain_remove() to clear flow control (via 518 * calling su_txq_full() or clearing QFULL), and remove the conn from the 519 * drain list. 520 * 521 * Note that the drain list is not a single list but a (configurable) array of 522 * lists (8 elements by default). Synchronization between drain insertion and 523 * flow control wakeup is handled by using idl_txl->txl_lock, and only 524 * conn_drain_insert() and conn_drain_remove() manipulate the drain list. 525 * 526 * Flow control via STREAMS is used when ILL_DIRECT_CAPABLE() returns FALSE. 527 * On the send side, if the packet cannot be sent down to the driver by IP 528 * (canput() fails), ip_xmit() drops the packet and returns EWOULDBLOCK to the 529 * caller, who may then invoke ixa_check_drain_insert() to insert the conn on 530 * the 0'th drain list. When ip_wsrv() runs on the ill_wq because flow 531 * control has been relieved, the blocked conns in the 0'th drain list are 532 * drained as in the non-STREAMS case. 533 * 534 * In both the STREAMS and non-STREAMS cases, the sockfs upcall to set QFULL 535 * is done when the conn is inserted into the drain list (conn_drain_insert()) 536 * and cleared when the conn is removed from the it (conn_drain_remove()). 537 * 538 * IPQOS notes: 539 * 540 * IPQoS Policies are applied to packets using IPPF (IP Policy framework) 541 * and IPQoS modules. IPPF includes hooks in IP at different control points 542 * (callout positions) which direct packets to IPQoS modules for policy 543 * processing. Policies, if present, are global. 544 * 545 * The callout positions are located in the following paths: 546 * o local_in (packets destined for this host) 547 * o local_out (packets orginating from this host ) 548 * o fwd_in (packets forwarded by this m/c - inbound) 549 * o fwd_out (packets forwarded by this m/c - outbound) 550 * Hooks at these callout points can be enabled/disabled using the ndd variable 551 * ip_policy_mask (a bit mask with the 4 LSB indicating the callout positions). 552 * By default all the callout positions are enabled. 553 * 554 * Outbound (local_out) 555 * Hooks are placed in ire_send_wire_v4 and ire_send_wire_v6. 556 * 557 * Inbound (local_in) 558 * Hooks are placed in ip_fanout_v4 and ip_fanout_v6. 559 * 560 * Forwarding (in and out) 561 * Hooks are placed in ire_recv_forward_v4/v6. 562 * 563 * IP Policy Framework processing (IPPF processing) 564 * Policy processing for a packet is initiated by ip_process, which ascertains 565 * that the classifier (ipgpc) is loaded and configured, failing which the 566 * packet resumes normal processing in IP. If the clasifier is present, the 567 * packet is acted upon by one or more IPQoS modules (action instances), per 568 * filters configured in ipgpc and resumes normal IP processing thereafter. 569 * An action instance can drop a packet in course of its processing. 570 * 571 * Zones notes: 572 * 573 * The partitioning rules for networking are as follows: 574 * 1) Packets coming from a zone must have a source address belonging to that 575 * zone. 576 * 2) Packets coming from a zone can only be sent on a physical interface on 577 * which the zone has an IP address. 578 * 3) Between two zones on the same machine, packet delivery is only allowed if 579 * there's a matching route for the destination and zone in the forwarding 580 * table. 581 * 4) The TCP and UDP port spaces are per-zone; that is, two processes in 582 * different zones can bind to the same port with the wildcard address 583 * (INADDR_ANY). 584 * 585 * The granularity of interface partitioning is at the logical interface level. 586 * Therefore, every zone has its own IP addresses, and incoming packets can be 587 * attributed to a zone unambiguously. A logical interface is placed into a zone 588 * using the SIOCSLIFZONE ioctl; this sets the ipif_zoneid field in the ipif_t 589 * structure. Rule (1) is implemented by modifying the source address selection 590 * algorithm so that the list of eligible addresses is filtered based on the 591 * sending process zone. 592 * 593 * The Internet Routing Entries (IREs) are either exclusive to a zone or shared 594 * across all zones, depending on their type. Here is the break-up: 595 * 596 * IRE type Shared/exclusive 597 * -------- ---------------- 598 * IRE_BROADCAST Exclusive 599 * IRE_DEFAULT (default routes) Shared (*) 600 * IRE_LOCAL Exclusive (x) 601 * IRE_LOOPBACK Exclusive 602 * IRE_PREFIX (net routes) Shared (*) 603 * IRE_IF_NORESOLVER (interface routes) Exclusive 604 * IRE_IF_RESOLVER (interface routes) Exclusive 605 * IRE_IF_CLONE (interface routes) Exclusive 606 * IRE_HOST (host routes) Shared (*) 607 * 608 * (*) A zone can only use a default or off-subnet route if the gateway is 609 * directly reachable from the zone, that is, if the gateway's address matches 610 * one of the zone's logical interfaces. 611 * 612 * (x) IRE_LOCAL are handled a bit differently. 613 * When ip_restrict_interzone_loopback is set (the default), 614 * ire_route_recursive restricts loopback using an IRE_LOCAL 615 * between zone to the case when L2 would have conceptually looped the packet 616 * back, i.e. the loopback which is required since neither Ethernet drivers 617 * nor Ethernet hardware loops them back. This is the case when the normal 618 * routes (ignoring IREs with different zoneids) would send out the packet on 619 * the same ill as the ill with which is IRE_LOCAL is associated. 620 * 621 * Multiple zones can share a common broadcast address; typically all zones 622 * share the 255.255.255.255 address. Incoming as well as locally originated 623 * broadcast packets must be dispatched to all the zones on the broadcast 624 * network. For directed broadcasts (e.g. 10.16.72.255) this is not trivial 625 * since some zones may not be on the 10.16.72/24 network. To handle this, each 626 * zone has its own set of IRE_BROADCAST entries; then, broadcast packets are 627 * sent to every zone that has an IRE_BROADCAST entry for the destination 628 * address on the input ill, see ip_input_broadcast(). 629 * 630 * Applications in different zones can join the same multicast group address. 631 * The same logic applies for multicast as for broadcast. ip_input_multicast 632 * dispatches packets to all zones that have members on the physical interface. 633 */ 634 635 /* 636 * Squeue Fanout flags: 637 * 0: No fanout. 638 * 1: Fanout across all squeues 639 */ 640 boolean_t ip_squeue_fanout = 0; 641 642 /* 643 * Maximum dups allowed per packet. 644 */ 645 uint_t ip_max_frag_dups = 10; 646 647 static int ip_open(queue_t *q, dev_t *devp, int flag, int sflag, 648 cred_t *credp, boolean_t isv6); 649 static mblk_t *ip_xmit_attach_llhdr(mblk_t *, nce_t *); 650 651 static boolean_t icmp_inbound_verify_v4(mblk_t *, icmph_t *, ip_recv_attr_t *); 652 static void icmp_inbound_too_big_v4(icmph_t *, ip_recv_attr_t *); 653 static void icmp_inbound_error_fanout_v4(mblk_t *, icmph_t *, 654 ip_recv_attr_t *); 655 static void icmp_options_update(ipha_t *); 656 static void icmp_param_problem(mblk_t *, uint8_t, ip_recv_attr_t *); 657 static void icmp_pkt(mblk_t *, void *, size_t, ip_recv_attr_t *); 658 static mblk_t *icmp_pkt_err_ok(mblk_t *, ip_recv_attr_t *); 659 static void icmp_redirect_v4(mblk_t *mp, ipha_t *, icmph_t *, 660 ip_recv_attr_t *); 661 static void icmp_send_redirect(mblk_t *, ipaddr_t, ip_recv_attr_t *); 662 static void icmp_send_reply_v4(mblk_t *, ipha_t *, icmph_t *, 663 ip_recv_attr_t *); 664 665 mblk_t *ip_dlpi_alloc(size_t, t_uscalar_t); 666 char *ip_dot_addr(ipaddr_t, char *); 667 mblk_t *ip_carve_mp(mblk_t **, ssize_t); 668 int ip_close(queue_t *, int); 669 static char *ip_dot_saddr(uchar_t *, char *); 670 static void ip_lrput(queue_t *, mblk_t *); 671 ipaddr_t ip_net_mask(ipaddr_t); 672 char *ip_nv_lookup(nv_t *, int); 673 void ip_rput(queue_t *, mblk_t *); 674 static void ip_rput_dlpi_writer(ipsq_t *dummy_sq, queue_t *q, mblk_t *mp, 675 void *dummy_arg); 676 int ip_snmp_get(queue_t *, mblk_t *, int, boolean_t); 677 static mblk_t *ip_snmp_get_mib2_ip(queue_t *, mblk_t *, 678 mib2_ipIfStatsEntry_t *, ip_stack_t *, boolean_t); 679 static mblk_t *ip_snmp_get_mib2_ip_traffic_stats(queue_t *, mblk_t *, 680 ip_stack_t *, boolean_t); 681 static mblk_t *ip_snmp_get_mib2_ip6(queue_t *, mblk_t *, ip_stack_t *, 682 boolean_t); 683 static mblk_t *ip_snmp_get_mib2_icmp(queue_t *, mblk_t *, ip_stack_t *ipst); 684 static mblk_t *ip_snmp_get_mib2_icmp6(queue_t *, mblk_t *, ip_stack_t *ipst); 685 static mblk_t *ip_snmp_get_mib2_igmp(queue_t *, mblk_t *, ip_stack_t *ipst); 686 static mblk_t *ip_snmp_get_mib2_multi(queue_t *, mblk_t *, ip_stack_t *ipst); 687 static mblk_t *ip_snmp_get_mib2_ip_addr(queue_t *, mblk_t *, 688 ip_stack_t *ipst, boolean_t); 689 static mblk_t *ip_snmp_get_mib2_ip6_addr(queue_t *, mblk_t *, 690 ip_stack_t *ipst, boolean_t); 691 static mblk_t *ip_snmp_get_mib2_ip_group_src(queue_t *, mblk_t *, 692 ip_stack_t *ipst); 693 static mblk_t *ip_snmp_get_mib2_ip6_group_src(queue_t *, mblk_t *, 694 ip_stack_t *ipst); 695 static mblk_t *ip_snmp_get_mib2_ip_group_mem(queue_t *, mblk_t *, 696 ip_stack_t *ipst); 697 static mblk_t *ip_snmp_get_mib2_ip6_group_mem(queue_t *, mblk_t *, 698 ip_stack_t *ipst); 699 static mblk_t *ip_snmp_get_mib2_virt_multi(queue_t *, mblk_t *, 700 ip_stack_t *ipst); 701 static mblk_t *ip_snmp_get_mib2_multi_rtable(queue_t *, mblk_t *, 702 ip_stack_t *ipst); 703 static mblk_t *ip_snmp_get_mib2_ip_route_media(queue_t *, mblk_t *, int, 704 ip_stack_t *ipst); 705 static mblk_t *ip_snmp_get_mib2_ip6_route_media(queue_t *, mblk_t *, int, 706 ip_stack_t *ipst); 707 static void ip_snmp_get2_v4(ire_t *, iproutedata_t *); 708 static void ip_snmp_get2_v6_route(ire_t *, iproutedata_t *); 709 static int ip_snmp_get2_v4_media(ncec_t *, iproutedata_t *); 710 static int ip_snmp_get2_v6_media(ncec_t *, iproutedata_t *); 711 int ip_snmp_set(queue_t *, int, int, uchar_t *, int); 712 713 static mblk_t *ip_fragment_copyhdr(uchar_t *, int, int, ip_stack_t *, 714 mblk_t *); 715 716 static void conn_drain_init(ip_stack_t *); 717 static void conn_drain_fini(ip_stack_t *); 718 static void conn_drain(conn_t *connp, boolean_t closing); 719 720 static void conn_walk_drain(ip_stack_t *, idl_tx_list_t *); 721 static void conn_walk_sctp(pfv_t, void *, zoneid_t, netstack_t *); 722 723 static void *ip_stack_init(netstackid_t stackid, netstack_t *ns); 724 static void ip_stack_shutdown(netstackid_t stackid, void *arg); 725 static void ip_stack_fini(netstackid_t stackid, void *arg); 726 727 static int ip_multirt_apply_membership(int (*fn)(conn_t *, boolean_t, 728 const in6_addr_t *, ipaddr_t, uint_t, mcast_record_t, const in6_addr_t *), 729 ire_t *, conn_t *, boolean_t, const in6_addr_t *, mcast_record_t, 730 const in6_addr_t *); 731 732 static int ip_squeue_switch(int); 733 734 static void *ip_kstat_init(netstackid_t, ip_stack_t *); 735 static void ip_kstat_fini(netstackid_t, kstat_t *); 736 static int ip_kstat_update(kstat_t *kp, int rw); 737 static void *icmp_kstat_init(netstackid_t); 738 static void icmp_kstat_fini(netstackid_t, kstat_t *); 739 static int icmp_kstat_update(kstat_t *kp, int rw); 740 static void *ip_kstat2_init(netstackid_t, ip_stat_t *); 741 static void ip_kstat2_fini(netstackid_t, kstat_t *); 742 743 static void ipobs_init(ip_stack_t *); 744 static void ipobs_fini(ip_stack_t *); 745 746 static int ip_tp_cpu_update(cpu_setup_t, int, void *); 747 748 ipaddr_t ip_g_all_ones = IP_HOST_MASK; 749 750 static long ip_rput_pullups; 751 int dohwcksum = 1; /* use h/w cksum if supported by the hardware */ 752 753 vmem_t *ip_minor_arena_sa; /* for minor nos. from INET_MIN_DEV+2 thru 2^^18-1 */ 754 vmem_t *ip_minor_arena_la; /* for minor nos. from 2^^18 thru 2^^32-1 */ 755 756 int ip_debug; 757 758 /* 759 * Multirouting/CGTP stuff 760 */ 761 int ip_cgtp_filter_rev = CGTP_FILTER_REV; /* CGTP hooks version */ 762 763 /* 764 * IP tunables related declarations. Definitions are in ip_tunables.c 765 */ 766 extern mod_prop_info_t ip_propinfo_tbl[]; 767 extern int ip_propinfo_count; 768 769 /* 770 * Table of IP ioctls encoding the various properties of the ioctl and 771 * indexed based on the last byte of the ioctl command. Occasionally there 772 * is a clash, and there is more than 1 ioctl with the same last byte. 773 * In such a case 1 ioctl is encoded in the ndx table and the remaining 774 * ioctls are encoded in the misc table. An entry in the ndx table is 775 * retrieved by indexing on the last byte of the ioctl command and comparing 776 * the ioctl command with the value in the ndx table. In the event of a 777 * mismatch the misc table is then searched sequentially for the desired 778 * ioctl command. 779 * 780 * Entry: <command> <copyin_size> <flags> <cmd_type> <function> <restart_func> 781 */ 782 ip_ioctl_cmd_t ip_ndx_ioctl_table[] = { 783 /* 000 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 784 /* 001 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 785 /* 002 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 786 /* 003 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 787 /* 004 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 788 /* 005 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 789 /* 006 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 790 /* 007 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 791 /* 008 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 792 /* 009 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 793 794 /* 010 */ { SIOCADDRT, sizeof (struct rtentry), IPI_PRIV, 795 MISC_CMD, ip_siocaddrt, NULL }, 796 /* 011 */ { SIOCDELRT, sizeof (struct rtentry), IPI_PRIV, 797 MISC_CMD, ip_siocdelrt, NULL }, 798 799 /* 012 */ { SIOCSIFADDR, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 800 IF_CMD, ip_sioctl_addr, ip_sioctl_addr_restart }, 801 /* 013 */ { SIOCGIFADDR, sizeof (struct ifreq), IPI_GET_CMD, 802 IF_CMD, ip_sioctl_get_addr, NULL }, 803 804 /* 014 */ { SIOCSIFDSTADDR, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 805 IF_CMD, ip_sioctl_dstaddr, ip_sioctl_dstaddr_restart }, 806 /* 015 */ { SIOCGIFDSTADDR, sizeof (struct ifreq), 807 IPI_GET_CMD, IF_CMD, ip_sioctl_get_dstaddr, NULL }, 808 809 /* 016 */ { SIOCSIFFLAGS, sizeof (struct ifreq), 810 IPI_PRIV | IPI_WR, 811 IF_CMD, ip_sioctl_flags, ip_sioctl_flags_restart }, 812 /* 017 */ { SIOCGIFFLAGS, sizeof (struct ifreq), 813 IPI_MODOK | IPI_GET_CMD, 814 IF_CMD, ip_sioctl_get_flags, NULL }, 815 816 /* 018 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 817 /* 019 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 818 819 /* copyin size cannot be coded for SIOCGIFCONF */ 820 /* 020 */ { O_SIOCGIFCONF, 0, IPI_GET_CMD, 821 MISC_CMD, ip_sioctl_get_ifconf, NULL }, 822 823 /* 021 */ { SIOCSIFMTU, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 824 IF_CMD, ip_sioctl_mtu, NULL }, 825 /* 022 */ { SIOCGIFMTU, sizeof (struct ifreq), IPI_GET_CMD, 826 IF_CMD, ip_sioctl_get_mtu, NULL }, 827 /* 023 */ { SIOCGIFBRDADDR, sizeof (struct ifreq), 828 IPI_GET_CMD, IF_CMD, ip_sioctl_get_brdaddr, NULL }, 829 /* 024 */ { SIOCSIFBRDADDR, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 830 IF_CMD, ip_sioctl_brdaddr, NULL }, 831 /* 025 */ { SIOCGIFNETMASK, sizeof (struct ifreq), 832 IPI_GET_CMD, IF_CMD, ip_sioctl_get_netmask, NULL }, 833 /* 026 */ { SIOCSIFNETMASK, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 834 IF_CMD, ip_sioctl_netmask, ip_sioctl_netmask_restart }, 835 /* 027 */ { SIOCGIFMETRIC, sizeof (struct ifreq), 836 IPI_GET_CMD, IF_CMD, ip_sioctl_get_metric, NULL }, 837 /* 028 */ { SIOCSIFMETRIC, sizeof (struct ifreq), IPI_PRIV, 838 IF_CMD, ip_sioctl_metric, NULL }, 839 /* 029 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 840 841 /* See 166-168 below for extended SIOC*XARP ioctls */ 842 /* 030 */ { SIOCSARP, sizeof (struct arpreq), IPI_PRIV | IPI_WR, 843 ARP_CMD, ip_sioctl_arp, NULL }, 844 /* 031 */ { SIOCGARP, sizeof (struct arpreq), IPI_GET_CMD, 845 ARP_CMD, ip_sioctl_arp, NULL }, 846 /* 032 */ { SIOCDARP, sizeof (struct arpreq), IPI_PRIV | IPI_WR, 847 ARP_CMD, ip_sioctl_arp, NULL }, 848 849 /* 033 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 850 /* 034 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 851 /* 035 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 852 /* 036 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 853 /* 037 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 854 /* 038 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 855 /* 039 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 856 /* 040 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 857 /* 041 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 858 /* 042 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 859 /* 043 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 860 /* 044 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 861 /* 045 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 862 /* 046 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 863 /* 047 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 864 /* 048 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 865 /* 049 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 866 /* 050 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 867 /* 051 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 868 /* 052 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 869 /* 053 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 870 871 /* 054 */ { IF_UNITSEL, sizeof (int), IPI_PRIV | IPI_WR | IPI_MODOK, 872 MISC_CMD, if_unitsel, if_unitsel_restart }, 873 874 /* 055 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 875 /* 056 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 876 /* 057 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 877 /* 058 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 878 /* 059 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 879 /* 060 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 880 /* 061 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 881 /* 062 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 882 /* 063 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 883 /* 064 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 884 /* 065 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 885 /* 066 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 886 /* 067 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 887 /* 068 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 888 /* 069 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 889 /* 070 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 890 /* 071 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 891 /* 072 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 892 893 /* 073 */ { SIOCSIFNAME, sizeof (struct ifreq), 894 IPI_PRIV | IPI_WR | IPI_MODOK, 895 IF_CMD, ip_sioctl_sifname, NULL }, 896 897 /* 074 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 898 /* 075 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 899 /* 076 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 900 /* 077 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 901 /* 078 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 902 /* 079 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 903 /* 080 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 904 /* 081 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 905 /* 082 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 906 /* 083 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 907 /* 084 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 908 /* 085 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 909 /* 086 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 910 911 /* 087 */ { SIOCGIFNUM, sizeof (int), IPI_GET_CMD, 912 MISC_CMD, ip_sioctl_get_ifnum, NULL }, 913 /* 088 */ { SIOCGIFMUXID, sizeof (struct ifreq), IPI_GET_CMD, 914 IF_CMD, ip_sioctl_get_muxid, NULL }, 915 /* 089 */ { SIOCSIFMUXID, sizeof (struct ifreq), 916 IPI_PRIV | IPI_WR, IF_CMD, ip_sioctl_muxid, NULL }, 917 918 /* Both if and lif variants share same func */ 919 /* 090 */ { SIOCGIFINDEX, sizeof (struct ifreq), IPI_GET_CMD, 920 IF_CMD, ip_sioctl_get_lifindex, NULL }, 921 /* Both if and lif variants share same func */ 922 /* 091 */ { SIOCSIFINDEX, sizeof (struct ifreq), 923 IPI_PRIV | IPI_WR, IF_CMD, ip_sioctl_slifindex, NULL }, 924 925 /* copyin size cannot be coded for SIOCGIFCONF */ 926 /* 092 */ { SIOCGIFCONF, 0, IPI_GET_CMD, 927 MISC_CMD, ip_sioctl_get_ifconf, NULL }, 928 /* 093 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 929 /* 094 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 930 /* 095 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 931 /* 096 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 932 /* 097 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 933 /* 098 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 934 /* 099 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 935 /* 100 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 936 /* 101 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 937 /* 102 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 938 /* 103 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 939 /* 104 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 940 /* 105 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 941 /* 106 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 942 /* 107 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 943 /* 108 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 944 /* 109 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 945 946 /* 110 */ { SIOCLIFREMOVEIF, sizeof (struct lifreq), 947 IPI_PRIV | IPI_WR, LIF_CMD, ip_sioctl_removeif, 948 ip_sioctl_removeif_restart }, 949 /* 111 */ { SIOCLIFADDIF, sizeof (struct lifreq), 950 IPI_GET_CMD | IPI_PRIV | IPI_WR, 951 LIF_CMD, ip_sioctl_addif, NULL }, 952 #define SIOCLIFADDR_NDX 112 953 /* 112 */ { SIOCSLIFADDR, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 954 LIF_CMD, ip_sioctl_addr, ip_sioctl_addr_restart }, 955 /* 113 */ { SIOCGLIFADDR, sizeof (struct lifreq), 956 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_addr, NULL }, 957 /* 114 */ { SIOCSLIFDSTADDR, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 958 LIF_CMD, ip_sioctl_dstaddr, ip_sioctl_dstaddr_restart }, 959 /* 115 */ { SIOCGLIFDSTADDR, sizeof (struct lifreq), 960 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_dstaddr, NULL }, 961 /* 116 */ { SIOCSLIFFLAGS, sizeof (struct lifreq), 962 IPI_PRIV | IPI_WR, 963 LIF_CMD, ip_sioctl_flags, ip_sioctl_flags_restart }, 964 /* 117 */ { SIOCGLIFFLAGS, sizeof (struct lifreq), 965 IPI_GET_CMD | IPI_MODOK, 966 LIF_CMD, ip_sioctl_get_flags, NULL }, 967 968 /* 118 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 969 /* 119 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 970 971 /* 120 */ { O_SIOCGLIFCONF, 0, IPI_GET_CMD, MISC_CMD, 972 ip_sioctl_get_lifconf, NULL }, 973 /* 121 */ { SIOCSLIFMTU, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 974 LIF_CMD, ip_sioctl_mtu, NULL }, 975 /* 122 */ { SIOCGLIFMTU, sizeof (struct lifreq), IPI_GET_CMD, 976 LIF_CMD, ip_sioctl_get_mtu, NULL }, 977 /* 123 */ { SIOCGLIFBRDADDR, sizeof (struct lifreq), 978 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_brdaddr, NULL }, 979 /* 124 */ { SIOCSLIFBRDADDR, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 980 LIF_CMD, ip_sioctl_brdaddr, NULL }, 981 /* 125 */ { SIOCGLIFNETMASK, sizeof (struct lifreq), 982 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_netmask, NULL }, 983 /* 126 */ { SIOCSLIFNETMASK, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 984 LIF_CMD, ip_sioctl_netmask, ip_sioctl_netmask_restart }, 985 /* 127 */ { SIOCGLIFMETRIC, sizeof (struct lifreq), 986 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_metric, NULL }, 987 /* 128 */ { SIOCSLIFMETRIC, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 988 LIF_CMD, ip_sioctl_metric, NULL }, 989 /* 129 */ { SIOCSLIFNAME, sizeof (struct lifreq), 990 IPI_PRIV | IPI_WR | IPI_MODOK, 991 LIF_CMD, ip_sioctl_slifname, 992 ip_sioctl_slifname_restart }, 993 994 /* 130 */ { SIOCGLIFNUM, sizeof (struct lifnum), IPI_GET_CMD, 995 MISC_CMD, ip_sioctl_get_lifnum, NULL }, 996 /* 131 */ { SIOCGLIFMUXID, sizeof (struct lifreq), 997 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_muxid, NULL }, 998 /* 132 */ { SIOCSLIFMUXID, sizeof (struct lifreq), 999 IPI_PRIV | IPI_WR, LIF_CMD, ip_sioctl_muxid, NULL }, 1000 /* 133 */ { SIOCGLIFINDEX, sizeof (struct lifreq), 1001 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_lifindex, 0 }, 1002 /* 134 */ { SIOCSLIFINDEX, sizeof (struct lifreq), 1003 IPI_PRIV | IPI_WR, LIF_CMD, ip_sioctl_slifindex, 0 }, 1004 /* 135 */ { SIOCSLIFTOKEN, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1005 LIF_CMD, ip_sioctl_token, NULL }, 1006 /* 136 */ { SIOCGLIFTOKEN, sizeof (struct lifreq), 1007 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_token, NULL }, 1008 /* 137 */ { SIOCSLIFSUBNET, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1009 LIF_CMD, ip_sioctl_subnet, ip_sioctl_subnet_restart }, 1010 /* 138 */ { SIOCGLIFSUBNET, sizeof (struct lifreq), 1011 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_subnet, NULL }, 1012 /* 139 */ { SIOCSLIFLNKINFO, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1013 LIF_CMD, ip_sioctl_lnkinfo, NULL }, 1014 1015 /* 140 */ { SIOCGLIFLNKINFO, sizeof (struct lifreq), 1016 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_lnkinfo, NULL }, 1017 /* 141 */ { SIOCLIFDELND, sizeof (struct lifreq), IPI_PRIV, 1018 LIF_CMD, ip_siocdelndp_v6, NULL }, 1019 /* 142 */ { SIOCLIFGETND, sizeof (struct lifreq), IPI_GET_CMD, 1020 LIF_CMD, ip_siocqueryndp_v6, NULL }, 1021 /* 143 */ { SIOCLIFSETND, sizeof (struct lifreq), IPI_PRIV, 1022 LIF_CMD, ip_siocsetndp_v6, NULL }, 1023 /* 144 */ { SIOCTMYADDR, sizeof (struct sioc_addrreq), IPI_GET_CMD, 1024 MISC_CMD, ip_sioctl_tmyaddr, NULL }, 1025 /* 145 */ { SIOCTONLINK, sizeof (struct sioc_addrreq), IPI_GET_CMD, 1026 MISC_CMD, ip_sioctl_tonlink, NULL }, 1027 /* 146 */ { SIOCTMYSITE, sizeof (struct sioc_addrreq), 0, 1028 MISC_CMD, ip_sioctl_tmysite, NULL }, 1029 /* 147 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1030 /* 148 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1031 1032 /* Old *IPSECONFIG ioctls are now deprecated, now see spdsock.c */ 1033 /* 149 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1034 /* 150 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1035 /* 151 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1036 /* 152 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1037 1038 /* 153 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1039 1040 /* 154 */ { SIOCGLIFBINDING, sizeof (struct lifreq), IPI_GET_CMD, 1041 LIF_CMD, ip_sioctl_get_binding, NULL }, 1042 /* 155 */ { SIOCSLIFGROUPNAME, sizeof (struct lifreq), 1043 IPI_PRIV | IPI_WR, 1044 LIF_CMD, ip_sioctl_groupname, ip_sioctl_groupname }, 1045 /* 156 */ { SIOCGLIFGROUPNAME, sizeof (struct lifreq), 1046 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_groupname, NULL }, 1047 /* 157 */ { SIOCGLIFGROUPINFO, sizeof (lifgroupinfo_t), 1048 IPI_GET_CMD, MISC_CMD, ip_sioctl_groupinfo, NULL }, 1049 1050 /* Leave 158-160 unused; used to be SIOC*IFARP ioctls */ 1051 /* 158 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1052 /* 159 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1053 /* 160 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1054 1055 /* 161 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1056 1057 /* These are handled in ip_sioctl_copyin_setup itself */ 1058 /* 162 */ { SIOCGIP6ADDRPOLICY, 0, IPI_NULL_BCONT, 1059 MISC_CMD, NULL, NULL }, 1060 /* 163 */ { SIOCSIP6ADDRPOLICY, 0, IPI_PRIV | IPI_NULL_BCONT, 1061 MISC_CMD, NULL, NULL }, 1062 /* 164 */ { SIOCGDSTINFO, 0, IPI_GET_CMD, MISC_CMD, NULL, NULL }, 1063 1064 /* 165 */ { SIOCGLIFCONF, 0, IPI_GET_CMD, MISC_CMD, 1065 ip_sioctl_get_lifconf, NULL }, 1066 1067 /* 166 */ { SIOCSXARP, sizeof (struct xarpreq), IPI_PRIV | IPI_WR, 1068 XARP_CMD, ip_sioctl_arp, NULL }, 1069 /* 167 */ { SIOCGXARP, sizeof (struct xarpreq), IPI_GET_CMD, 1070 XARP_CMD, ip_sioctl_arp, NULL }, 1071 /* 168 */ { SIOCDXARP, sizeof (struct xarpreq), IPI_PRIV | IPI_WR, 1072 XARP_CMD, ip_sioctl_arp, NULL }, 1073 1074 /* SIOCPOPSOCKFS is not handled by IP */ 1075 /* 169 */ { IPI_DONTCARE /* SIOCPOPSOCKFS */, 0, 0, 0, NULL, NULL }, 1076 1077 /* 170 */ { SIOCGLIFZONE, sizeof (struct lifreq), 1078 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_lifzone, NULL }, 1079 /* 171 */ { SIOCSLIFZONE, sizeof (struct lifreq), 1080 IPI_PRIV | IPI_WR, LIF_CMD, ip_sioctl_slifzone, 1081 ip_sioctl_slifzone_restart }, 1082 /* 172-174 are SCTP ioctls and not handled by IP */ 1083 /* 172 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1084 /* 173 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1085 /* 174 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1086 /* 175 */ { SIOCGLIFUSESRC, sizeof (struct lifreq), 1087 IPI_GET_CMD, LIF_CMD, 1088 ip_sioctl_get_lifusesrc, 0 }, 1089 /* 176 */ { SIOCSLIFUSESRC, sizeof (struct lifreq), 1090 IPI_PRIV | IPI_WR, 1091 LIF_CMD, ip_sioctl_slifusesrc, 1092 NULL }, 1093 /* 177 */ { SIOCGLIFSRCOF, 0, IPI_GET_CMD, MISC_CMD, 1094 ip_sioctl_get_lifsrcof, NULL }, 1095 /* 178 */ { SIOCGMSFILTER, sizeof (struct group_filter), IPI_GET_CMD, 1096 MSFILT_CMD, ip_sioctl_msfilter, NULL }, 1097 /* 179 */ { SIOCSMSFILTER, sizeof (struct group_filter), 0, 1098 MSFILT_CMD, ip_sioctl_msfilter, NULL }, 1099 /* 180 */ { SIOCGIPMSFILTER, sizeof (struct ip_msfilter), IPI_GET_CMD, 1100 MSFILT_CMD, ip_sioctl_msfilter, NULL }, 1101 /* 181 */ { SIOCSIPMSFILTER, sizeof (struct ip_msfilter), 0, 1102 MSFILT_CMD, ip_sioctl_msfilter, NULL }, 1103 /* 182 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1104 /* SIOCSENABLESDP is handled by SDP */ 1105 /* 183 */ { IPI_DONTCARE /* SIOCSENABLESDP */, 0, 0, 0, NULL, NULL }, 1106 /* 184 */ { IPI_DONTCARE /* SIOCSQPTR */, 0, 0, 0, NULL, NULL }, 1107 /* 185 */ { SIOCGIFHWADDR, sizeof (struct ifreq), IPI_GET_CMD, 1108 IF_CMD, ip_sioctl_get_ifhwaddr, NULL }, 1109 /* 186 */ { IPI_DONTCARE /* SIOCGSTAMP */, 0, 0, 0, NULL, NULL }, 1110 /* 187 */ { SIOCILB, 0, IPI_PRIV | IPI_GET_CMD, MISC_CMD, 1111 ip_sioctl_ilb_cmd, NULL }, 1112 /* 188 */ { SIOCGETPROP, 0, IPI_GET_CMD, 0, NULL, NULL }, 1113 /* 189 */ { SIOCSETPROP, 0, IPI_PRIV | IPI_WR, 0, NULL, NULL}, 1114 /* 190 */ { SIOCGLIFDADSTATE, sizeof (struct lifreq), 1115 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_dadstate, NULL }, 1116 /* 191 */ { SIOCSLIFPREFIX, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1117 LIF_CMD, ip_sioctl_prefix, ip_sioctl_prefix_restart }, 1118 /* 192 */ { SIOCGLIFHWADDR, sizeof (struct lifreq), IPI_GET_CMD, 1119 LIF_CMD, ip_sioctl_get_lifhwaddr, NULL } 1120 }; 1121 1122 int ip_ndx_ioctl_count = sizeof (ip_ndx_ioctl_table) / sizeof (ip_ioctl_cmd_t); 1123 1124 ip_ioctl_cmd_t ip_misc_ioctl_table[] = { 1125 { I_LINK, 0, IPI_PRIV | IPI_WR, 0, NULL, NULL }, 1126 { I_UNLINK, 0, IPI_PRIV | IPI_WR, 0, NULL, NULL }, 1127 { I_PLINK, 0, IPI_PRIV | IPI_WR, 0, NULL, NULL }, 1128 { I_PUNLINK, 0, IPI_PRIV | IPI_WR, 0, NULL, NULL }, 1129 { ND_GET, 0, 0, 0, NULL, NULL }, 1130 { ND_SET, 0, IPI_PRIV | IPI_WR, 0, NULL, NULL }, 1131 { IP_IOCTL, 0, 0, 0, NULL, NULL }, 1132 { SIOCGETVIFCNT, sizeof (struct sioc_vif_req), IPI_GET_CMD, 1133 MISC_CMD, mrt_ioctl}, 1134 { SIOCGETSGCNT, sizeof (struct sioc_sg_req), IPI_GET_CMD, 1135 MISC_CMD, mrt_ioctl}, 1136 { SIOCGETLSGCNT, sizeof (struct sioc_lsg_req), IPI_GET_CMD, 1137 MISC_CMD, mrt_ioctl} 1138 }; 1139 1140 int ip_misc_ioctl_count = 1141 sizeof (ip_misc_ioctl_table) / sizeof (ip_ioctl_cmd_t); 1142 1143 int conn_drain_nthreads; /* Number of drainers reqd. */ 1144 /* Settable in /etc/system */ 1145 /* Defined in ip_ire.c */ 1146 extern uint32_t ip_ire_max_bucket_cnt, ip6_ire_max_bucket_cnt; 1147 extern uint32_t ip_ire_min_bucket_cnt, ip6_ire_min_bucket_cnt; 1148 extern uint32_t ip_ire_mem_ratio, ip_ire_cpu_ratio; 1149 1150 static nv_t ire_nv_arr[] = { 1151 { IRE_BROADCAST, "BROADCAST" }, 1152 { IRE_LOCAL, "LOCAL" }, 1153 { IRE_LOOPBACK, "LOOPBACK" }, 1154 { IRE_DEFAULT, "DEFAULT" }, 1155 { IRE_PREFIX, "PREFIX" }, 1156 { IRE_IF_NORESOLVER, "IF_NORESOL" }, 1157 { IRE_IF_RESOLVER, "IF_RESOLV" }, 1158 { IRE_IF_CLONE, "IF_CLONE" }, 1159 { IRE_HOST, "HOST" }, 1160 { IRE_MULTICAST, "MULTICAST" }, 1161 { IRE_NOROUTE, "NOROUTE" }, 1162 { 0 } 1163 }; 1164 1165 nv_t *ire_nv_tbl = ire_nv_arr; 1166 1167 /* Simple ICMP IP Header Template */ 1168 static ipha_t icmp_ipha = { 1169 IP_SIMPLE_HDR_VERSION, 0, 0, 0, 0, 0, IPPROTO_ICMP 1170 }; 1171 1172 struct module_info ip_mod_info = { 1173 IP_MOD_ID, IP_MOD_NAME, IP_MOD_MINPSZ, IP_MOD_MAXPSZ, IP_MOD_HIWAT, 1174 IP_MOD_LOWAT 1175 }; 1176 1177 /* 1178 * Duplicate static symbols within a module confuses mdb; so we avoid the 1179 * problem by making the symbols here distinct from those in udp.c. 1180 */ 1181 1182 /* 1183 * Entry points for IP as a device and as a module. 1184 * We have separate open functions for the /dev/ip and /dev/ip6 devices. 1185 */ 1186 static struct qinit iprinitv4 = { 1187 (pfi_t)ip_rput, NULL, ip_openv4, ip_close, NULL, 1188 &ip_mod_info 1189 }; 1190 1191 struct qinit iprinitv6 = { 1192 (pfi_t)ip_rput_v6, NULL, ip_openv6, ip_close, NULL, 1193 &ip_mod_info 1194 }; 1195 1196 static struct qinit ipwinit = { 1197 (pfi_t)ip_wput_nondata, (pfi_t)ip_wsrv, NULL, NULL, NULL, 1198 &ip_mod_info 1199 }; 1200 1201 static struct qinit iplrinit = { 1202 (pfi_t)ip_lrput, NULL, ip_openv4, ip_close, NULL, 1203 &ip_mod_info 1204 }; 1205 1206 static struct qinit iplwinit = { 1207 (pfi_t)ip_lwput, NULL, NULL, NULL, NULL, 1208 &ip_mod_info 1209 }; 1210 1211 /* For AF_INET aka /dev/ip */ 1212 struct streamtab ipinfov4 = { 1213 &iprinitv4, &ipwinit, &iplrinit, &iplwinit 1214 }; 1215 1216 /* For AF_INET6 aka /dev/ip6 */ 1217 struct streamtab ipinfov6 = { 1218 &iprinitv6, &ipwinit, &iplrinit, &iplwinit 1219 }; 1220 1221 #ifdef DEBUG 1222 boolean_t skip_sctp_cksum = B_FALSE; 1223 #endif 1224 1225 /* 1226 * Generate an ICMP fragmentation needed message. 1227 * When called from ip_output side a minimal ip_recv_attr_t needs to be 1228 * constructed by the caller. 1229 */ 1230 void 1231 icmp_frag_needed(mblk_t *mp, int mtu, ip_recv_attr_t *ira) 1232 { 1233 icmph_t icmph; 1234 ip_stack_t *ipst = ira->ira_ill->ill_ipst; 1235 1236 mp = icmp_pkt_err_ok(mp, ira); 1237 if (mp == NULL) 1238 return; 1239 1240 bzero(&icmph, sizeof (icmph_t)); 1241 icmph.icmph_type = ICMP_DEST_UNREACHABLE; 1242 icmph.icmph_code = ICMP_FRAGMENTATION_NEEDED; 1243 icmph.icmph_du_mtu = htons((uint16_t)mtu); 1244 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutFragNeeded); 1245 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDestUnreachs); 1246 1247 icmp_pkt(mp, &icmph, sizeof (icmph_t), ira); 1248 } 1249 1250 /* 1251 * icmp_inbound_v4 deals with ICMP messages that are handled by IP. 1252 * If the ICMP message is consumed by IP, i.e., it should not be delivered 1253 * to any IPPROTO_ICMP raw sockets, then it returns NULL. 1254 * Likewise, if the ICMP error is misformed (too short, etc), then it 1255 * returns NULL. The caller uses this to determine whether or not to send 1256 * to raw sockets. 1257 * 1258 * All error messages are passed to the matching transport stream. 1259 * 1260 * The following cases are handled by icmp_inbound: 1261 * 1) It needs to send a reply back and possibly delivering it 1262 * to the "interested" upper clients. 1263 * 2) Return the mblk so that the caller can pass it to the RAW socket clients. 1264 * 3) It needs to change some values in IP only. 1265 * 4) It needs to change some values in IP and upper layers e.g TCP 1266 * by delivering an error to the upper layers. 1267 * 1268 * We handle the above three cases in the context of IPsec in the 1269 * following way : 1270 * 1271 * 1) Send the reply back in the same way as the request came in. 1272 * If it came in encrypted, it goes out encrypted. If it came in 1273 * clear, it goes out in clear. Thus, this will prevent chosen 1274 * plain text attack. 1275 * 2) The client may or may not expect things to come in secure. 1276 * If it comes in secure, the policy constraints are checked 1277 * before delivering it to the upper layers. If it comes in 1278 * clear, ipsec_inbound_accept_clear will decide whether to 1279 * accept this in clear or not. In both the cases, if the returned 1280 * message (IP header + 8 bytes) that caused the icmp message has 1281 * AH/ESP headers, it is sent up to AH/ESP for validation before 1282 * sending up. If there are only 8 bytes of returned message, then 1283 * upper client will not be notified. 1284 * 3) Check with global policy to see whether it matches the constaints. 1285 * But this will be done only if icmp_accept_messages_in_clear is 1286 * zero. 1287 * 4) If we need to change both in IP and ULP, then the decision taken 1288 * while affecting the values in IP and while delivering up to TCP 1289 * should be the same. 1290 * 1291 * There are two cases. 1292 * 1293 * a) If we reject data at the IP layer (ipsec_check_global_policy() 1294 * failed), we will not deliver it to the ULP, even though they 1295 * are *willing* to accept in *clear*. This is fine as our global 1296 * disposition to icmp messages asks us reject the datagram. 1297 * 1298 * b) If we accept data at the IP layer (ipsec_check_global_policy() 1299 * succeeded or icmp_accept_messages_in_clear is 1), and not able 1300 * to deliver it to ULP (policy failed), it can lead to 1301 * consistency problems. The cases known at this time are 1302 * ICMP_DESTINATION_UNREACHABLE messages with following code 1303 * values : 1304 * 1305 * - ICMP_FRAGMENTATION_NEEDED : IP adapts to the new value 1306 * and Upper layer rejects. Then the communication will 1307 * come to a stop. This is solved by making similar decisions 1308 * at both levels. Currently, when we are unable to deliver 1309 * to the Upper Layer (due to policy failures) while IP has 1310 * adjusted dce_pmtu, the next outbound datagram would 1311 * generate a local ICMP_FRAGMENTATION_NEEDED message - which 1312 * will be with the right level of protection. Thus the right 1313 * value will be communicated even if we are not able to 1314 * communicate when we get from the wire initially. But this 1315 * assumes there would be at least one outbound datagram after 1316 * IP has adjusted its dce_pmtu value. To make things 1317 * simpler, we accept in clear after the validation of 1318 * AH/ESP headers. 1319 * 1320 * - Other ICMP ERRORS : We may not be able to deliver it to the 1321 * upper layer depending on the level of protection the upper 1322 * layer expects and the disposition in ipsec_inbound_accept_clear(). 1323 * ipsec_inbound_accept_clear() decides whether a given ICMP error 1324 * should be accepted in clear when the Upper layer expects secure. 1325 * Thus the communication may get aborted by some bad ICMP 1326 * packets. 1327 */ 1328 mblk_t * 1329 icmp_inbound_v4(mblk_t *mp, ip_recv_attr_t *ira) 1330 { 1331 icmph_t *icmph; 1332 ipha_t *ipha; /* Outer header */ 1333 int ip_hdr_length; /* Outer header length */ 1334 boolean_t interested; 1335 ipif_t *ipif; 1336 uint32_t ts; 1337 uint32_t *tsp; 1338 timestruc_t now; 1339 ill_t *ill = ira->ira_ill; 1340 ip_stack_t *ipst = ill->ill_ipst; 1341 zoneid_t zoneid = ira->ira_zoneid; 1342 int len_needed; 1343 mblk_t *mp_ret = NULL; 1344 1345 ipha = (ipha_t *)mp->b_rptr; 1346 1347 BUMP_MIB(&ipst->ips_icmp_mib, icmpInMsgs); 1348 1349 ip_hdr_length = ira->ira_ip_hdr_length; 1350 if ((mp->b_wptr - mp->b_rptr) < (ip_hdr_length + ICMPH_SIZE)) { 1351 if (ira->ira_pktlen < (ip_hdr_length + ICMPH_SIZE)) { 1352 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInTruncatedPkts); 1353 ip_drop_input("ipIfStatsInTruncatedPkts", mp, ill); 1354 freemsg(mp); 1355 return (NULL); 1356 } 1357 /* Last chance to get real. */ 1358 ipha = ip_pullup(mp, ip_hdr_length + ICMPH_SIZE, ira); 1359 if (ipha == NULL) { 1360 BUMP_MIB(&ipst->ips_icmp_mib, icmpInErrors); 1361 freemsg(mp); 1362 return (NULL); 1363 } 1364 } 1365 1366 /* The IP header will always be a multiple of four bytes */ 1367 icmph = (icmph_t *)&mp->b_rptr[ip_hdr_length]; 1368 ip2dbg(("icmp_inbound_v4: type %d code %d\n", icmph->icmph_type, 1369 icmph->icmph_code)); 1370 1371 /* 1372 * We will set "interested" to "true" if we should pass a copy to 1373 * the transport or if we handle the packet locally. 1374 */ 1375 interested = B_FALSE; 1376 switch (icmph->icmph_type) { 1377 case ICMP_ECHO_REPLY: 1378 BUMP_MIB(&ipst->ips_icmp_mib, icmpInEchoReps); 1379 break; 1380 case ICMP_DEST_UNREACHABLE: 1381 if (icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED) 1382 BUMP_MIB(&ipst->ips_icmp_mib, icmpInFragNeeded); 1383 interested = B_TRUE; /* Pass up to transport */ 1384 BUMP_MIB(&ipst->ips_icmp_mib, icmpInDestUnreachs); 1385 break; 1386 case ICMP_SOURCE_QUENCH: 1387 interested = B_TRUE; /* Pass up to transport */ 1388 BUMP_MIB(&ipst->ips_icmp_mib, icmpInSrcQuenchs); 1389 break; 1390 case ICMP_REDIRECT: 1391 if (!ipst->ips_ip_ignore_redirect) 1392 interested = B_TRUE; 1393 BUMP_MIB(&ipst->ips_icmp_mib, icmpInRedirects); 1394 break; 1395 case ICMP_ECHO_REQUEST: 1396 /* 1397 * Whether to respond to echo requests that come in as IP 1398 * broadcasts or as IP multicast is subject to debate 1399 * (what isn't?). We aim to please, you pick it. 1400 * Default is do it. 1401 */ 1402 if (ira->ira_flags & IRAF_MULTICAST) { 1403 /* multicast: respond based on tunable */ 1404 interested = ipst->ips_ip_g_resp_to_echo_mcast; 1405 } else if (ira->ira_flags & IRAF_BROADCAST) { 1406 /* broadcast: respond based on tunable */ 1407 interested = ipst->ips_ip_g_resp_to_echo_bcast; 1408 } else { 1409 /* unicast: always respond */ 1410 interested = B_TRUE; 1411 } 1412 BUMP_MIB(&ipst->ips_icmp_mib, icmpInEchos); 1413 if (!interested) { 1414 /* We never pass these to RAW sockets */ 1415 freemsg(mp); 1416 return (NULL); 1417 } 1418 1419 /* Check db_ref to make sure we can modify the packet. */ 1420 if (mp->b_datap->db_ref > 1) { 1421 mblk_t *mp1; 1422 1423 mp1 = copymsg(mp); 1424 freemsg(mp); 1425 if (!mp1) { 1426 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops); 1427 return (NULL); 1428 } 1429 mp = mp1; 1430 ipha = (ipha_t *)mp->b_rptr; 1431 icmph = (icmph_t *)&mp->b_rptr[ip_hdr_length]; 1432 } 1433 icmph->icmph_type = ICMP_ECHO_REPLY; 1434 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutEchoReps); 1435 icmp_send_reply_v4(mp, ipha, icmph, ira); 1436 return (NULL); 1437 1438 case ICMP_ROUTER_ADVERTISEMENT: 1439 case ICMP_ROUTER_SOLICITATION: 1440 break; 1441 case ICMP_TIME_EXCEEDED: 1442 interested = B_TRUE; /* Pass up to transport */ 1443 BUMP_MIB(&ipst->ips_icmp_mib, icmpInTimeExcds); 1444 break; 1445 case ICMP_PARAM_PROBLEM: 1446 interested = B_TRUE; /* Pass up to transport */ 1447 BUMP_MIB(&ipst->ips_icmp_mib, icmpInParmProbs); 1448 break; 1449 case ICMP_TIME_STAMP_REQUEST: 1450 /* Response to Time Stamp Requests is local policy. */ 1451 if (ipst->ips_ip_g_resp_to_timestamp) { 1452 if (ira->ira_flags & IRAF_MULTIBROADCAST) 1453 interested = 1454 ipst->ips_ip_g_resp_to_timestamp_bcast; 1455 else 1456 interested = B_TRUE; 1457 } 1458 if (!interested) { 1459 /* We never pass these to RAW sockets */ 1460 freemsg(mp); 1461 return (NULL); 1462 } 1463 1464 /* Make sure we have enough of the packet */ 1465 len_needed = ip_hdr_length + ICMPH_SIZE + 1466 3 * sizeof (uint32_t); 1467 1468 if (mp->b_wptr - mp->b_rptr < len_needed) { 1469 ipha = ip_pullup(mp, len_needed, ira); 1470 if (ipha == NULL) { 1471 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 1472 ip_drop_input("ipIfStatsInDiscards - ip_pullup", 1473 mp, ill); 1474 freemsg(mp); 1475 return (NULL); 1476 } 1477 /* Refresh following the pullup. */ 1478 icmph = (icmph_t *)&mp->b_rptr[ip_hdr_length]; 1479 } 1480 BUMP_MIB(&ipst->ips_icmp_mib, icmpInTimestamps); 1481 /* Check db_ref to make sure we can modify the packet. */ 1482 if (mp->b_datap->db_ref > 1) { 1483 mblk_t *mp1; 1484 1485 mp1 = copymsg(mp); 1486 freemsg(mp); 1487 if (!mp1) { 1488 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops); 1489 return (NULL); 1490 } 1491 mp = mp1; 1492 ipha = (ipha_t *)mp->b_rptr; 1493 icmph = (icmph_t *)&mp->b_rptr[ip_hdr_length]; 1494 } 1495 icmph->icmph_type = ICMP_TIME_STAMP_REPLY; 1496 tsp = (uint32_t *)&icmph[1]; 1497 tsp++; /* Skip past 'originate time' */ 1498 /* Compute # of milliseconds since midnight */ 1499 gethrestime(&now); 1500 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 + 1501 NSEC2MSEC(now.tv_nsec); 1502 *tsp++ = htonl(ts); /* Lay in 'receive time' */ 1503 *tsp++ = htonl(ts); /* Lay in 'send time' */ 1504 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutTimestampReps); 1505 icmp_send_reply_v4(mp, ipha, icmph, ira); 1506 return (NULL); 1507 1508 case ICMP_TIME_STAMP_REPLY: 1509 BUMP_MIB(&ipst->ips_icmp_mib, icmpInTimestampReps); 1510 break; 1511 case ICMP_INFO_REQUEST: 1512 /* Per RFC 1122 3.2.2.7, ignore this. */ 1513 case ICMP_INFO_REPLY: 1514 break; 1515 case ICMP_ADDRESS_MASK_REQUEST: 1516 if (ira->ira_flags & IRAF_MULTIBROADCAST) { 1517 interested = 1518 ipst->ips_ip_respond_to_address_mask_broadcast; 1519 } else { 1520 interested = B_TRUE; 1521 } 1522 if (!interested) { 1523 /* We never pass these to RAW sockets */ 1524 freemsg(mp); 1525 return (NULL); 1526 } 1527 len_needed = ip_hdr_length + ICMPH_SIZE + IP_ADDR_LEN; 1528 if (mp->b_wptr - mp->b_rptr < len_needed) { 1529 ipha = ip_pullup(mp, len_needed, ira); 1530 if (ipha == NULL) { 1531 BUMP_MIB(ill->ill_ip_mib, 1532 ipIfStatsInTruncatedPkts); 1533 ip_drop_input("ipIfStatsInTruncatedPkts", mp, 1534 ill); 1535 freemsg(mp); 1536 return (NULL); 1537 } 1538 /* Refresh following the pullup. */ 1539 icmph = (icmph_t *)&mp->b_rptr[ip_hdr_length]; 1540 } 1541 BUMP_MIB(&ipst->ips_icmp_mib, icmpInAddrMasks); 1542 /* Check db_ref to make sure we can modify the packet. */ 1543 if (mp->b_datap->db_ref > 1) { 1544 mblk_t *mp1; 1545 1546 mp1 = copymsg(mp); 1547 freemsg(mp); 1548 if (!mp1) { 1549 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops); 1550 return (NULL); 1551 } 1552 mp = mp1; 1553 ipha = (ipha_t *)mp->b_rptr; 1554 icmph = (icmph_t *)&mp->b_rptr[ip_hdr_length]; 1555 } 1556 /* 1557 * Need the ipif with the mask be the same as the source 1558 * address of the mask reply. For unicast we have a specific 1559 * ipif. For multicast/broadcast we only handle onlink 1560 * senders, and use the source address to pick an ipif. 1561 */ 1562 ipif = ipif_lookup_addr(ipha->ipha_dst, ill, zoneid, ipst); 1563 if (ipif == NULL) { 1564 /* Broadcast or multicast */ 1565 ipif = ipif_lookup_remote(ill, ipha->ipha_src, zoneid); 1566 if (ipif == NULL) { 1567 freemsg(mp); 1568 return (NULL); 1569 } 1570 } 1571 icmph->icmph_type = ICMP_ADDRESS_MASK_REPLY; 1572 bcopy(&ipif->ipif_net_mask, &icmph[1], IP_ADDR_LEN); 1573 ipif_refrele(ipif); 1574 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutAddrMaskReps); 1575 icmp_send_reply_v4(mp, ipha, icmph, ira); 1576 return (NULL); 1577 1578 case ICMP_ADDRESS_MASK_REPLY: 1579 BUMP_MIB(&ipst->ips_icmp_mib, icmpInAddrMaskReps); 1580 break; 1581 default: 1582 interested = B_TRUE; /* Pass up to transport */ 1583 BUMP_MIB(&ipst->ips_icmp_mib, icmpInUnknowns); 1584 break; 1585 } 1586 /* 1587 * See if there is an ICMP client to avoid an extra copymsg/freemsg 1588 * if there isn't one. 1589 */ 1590 if (ipst->ips_ipcl_proto_fanout_v4[IPPROTO_ICMP].connf_head != NULL) { 1591 /* If there is an ICMP client and we want one too, copy it. */ 1592 1593 if (!interested) { 1594 /* Caller will deliver to RAW sockets */ 1595 return (mp); 1596 } 1597 mp_ret = copymsg(mp); 1598 if (mp_ret == NULL) { 1599 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 1600 ip_drop_input("ipIfStatsInDiscards - copymsg", mp, ill); 1601 } 1602 } else if (!interested) { 1603 /* Neither we nor raw sockets are interested. Drop packet now */ 1604 freemsg(mp); 1605 return (NULL); 1606 } 1607 1608 /* 1609 * ICMP error or redirect packet. Make sure we have enough of 1610 * the header and that db_ref == 1 since we might end up modifying 1611 * the packet. 1612 */ 1613 if (mp->b_cont != NULL) { 1614 if (ip_pullup(mp, -1, ira) == NULL) { 1615 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 1616 ip_drop_input("ipIfStatsInDiscards - ip_pullup", 1617 mp, ill); 1618 freemsg(mp); 1619 return (mp_ret); 1620 } 1621 } 1622 1623 if (mp->b_datap->db_ref > 1) { 1624 mblk_t *mp1; 1625 1626 mp1 = copymsg(mp); 1627 if (mp1 == NULL) { 1628 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 1629 ip_drop_input("ipIfStatsInDiscards - copymsg", mp, ill); 1630 freemsg(mp); 1631 return (mp_ret); 1632 } 1633 freemsg(mp); 1634 mp = mp1; 1635 } 1636 1637 /* 1638 * In case mp has changed, verify the message before any further 1639 * processes. 1640 */ 1641 ipha = (ipha_t *)mp->b_rptr; 1642 icmph = (icmph_t *)&mp->b_rptr[ip_hdr_length]; 1643 if (!icmp_inbound_verify_v4(mp, icmph, ira)) { 1644 freemsg(mp); 1645 return (mp_ret); 1646 } 1647 1648 switch (icmph->icmph_type) { 1649 case ICMP_REDIRECT: 1650 icmp_redirect_v4(mp, ipha, icmph, ira); 1651 break; 1652 case ICMP_DEST_UNREACHABLE: 1653 if (icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED) { 1654 /* Update DCE and adjust MTU is icmp header if needed */ 1655 icmp_inbound_too_big_v4(icmph, ira); 1656 } 1657 /* FALLTHRU */ 1658 default: 1659 icmp_inbound_error_fanout_v4(mp, icmph, ira); 1660 break; 1661 } 1662 return (mp_ret); 1663 } 1664 1665 /* 1666 * Send an ICMP echo, timestamp or address mask reply. 1667 * The caller has already updated the payload part of the packet. 1668 * We handle the ICMP checksum, IP source address selection and feed 1669 * the packet into ip_output_simple. 1670 */ 1671 static void 1672 icmp_send_reply_v4(mblk_t *mp, ipha_t *ipha, icmph_t *icmph, 1673 ip_recv_attr_t *ira) 1674 { 1675 uint_t ip_hdr_length = ira->ira_ip_hdr_length; 1676 ill_t *ill = ira->ira_ill; 1677 ip_stack_t *ipst = ill->ill_ipst; 1678 ip_xmit_attr_t ixas; 1679 1680 /* Send out an ICMP packet */ 1681 icmph->icmph_checksum = 0; 1682 icmph->icmph_checksum = IP_CSUM(mp, ip_hdr_length, 0); 1683 /* Reset time to live. */ 1684 ipha->ipha_ttl = ipst->ips_ip_def_ttl; 1685 { 1686 /* Swap source and destination addresses */ 1687 ipaddr_t tmp; 1688 1689 tmp = ipha->ipha_src; 1690 ipha->ipha_src = ipha->ipha_dst; 1691 ipha->ipha_dst = tmp; 1692 } 1693 ipha->ipha_ident = 0; 1694 if (!IS_SIMPLE_IPH(ipha)) 1695 icmp_options_update(ipha); 1696 1697 bzero(&ixas, sizeof (ixas)); 1698 ixas.ixa_flags = IXAF_BASIC_SIMPLE_V4; 1699 ixas.ixa_zoneid = ira->ira_zoneid; 1700 ixas.ixa_cred = kcred; 1701 ixas.ixa_cpid = NOPID; 1702 ixas.ixa_tsl = ira->ira_tsl; /* Behave as a multi-level responder */ 1703 ixas.ixa_ifindex = 0; 1704 ixas.ixa_ipst = ipst; 1705 ixas.ixa_multicast_ttl = IP_DEFAULT_MULTICAST_TTL; 1706 1707 if (!(ira->ira_flags & IRAF_IPSEC_SECURE)) { 1708 /* 1709 * This packet should go out the same way as it 1710 * came in i.e in clear, independent of the IPsec policy 1711 * for transmitting packets. 1712 */ 1713 ixas.ixa_flags |= IXAF_NO_IPSEC; 1714 } else { 1715 if (!ipsec_in_to_out(ira, &ixas, mp, ipha, NULL)) { 1716 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 1717 /* Note: mp already consumed and ip_drop_packet done */ 1718 return; 1719 } 1720 } 1721 if (ira->ira_flags & IRAF_MULTIBROADCAST) { 1722 /* 1723 * Not one or our addresses (IRE_LOCALs), thus we let 1724 * ip_output_simple pick the source. 1725 */ 1726 ipha->ipha_src = INADDR_ANY; 1727 ixas.ixa_flags |= IXAF_SET_SOURCE; 1728 } 1729 /* Should we send with DF and use dce_pmtu? */ 1730 if (ipst->ips_ipv4_icmp_return_pmtu) { 1731 ixas.ixa_flags |= IXAF_PMTU_DISCOVERY; 1732 ipha->ipha_fragment_offset_and_flags |= IPH_DF_HTONS; 1733 } 1734 1735 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutMsgs); 1736 1737 (void) ip_output_simple(mp, &ixas); 1738 ixa_cleanup(&ixas); 1739 } 1740 1741 /* 1742 * Verify the ICMP messages for either for ICMP error or redirect packet. 1743 * The caller should have fully pulled up the message. If it's a redirect 1744 * packet, only basic checks on IP header will be done; otherwise, verify 1745 * the packet by looking at the included ULP header. 1746 * 1747 * Called before icmp_inbound_error_fanout_v4 is called. 1748 */ 1749 static boolean_t 1750 icmp_inbound_verify_v4(mblk_t *mp, icmph_t *icmph, ip_recv_attr_t *ira) 1751 { 1752 ill_t *ill = ira->ira_ill; 1753 int hdr_length; 1754 ip_stack_t *ipst = ira->ira_ill->ill_ipst; 1755 conn_t *connp; 1756 ipha_t *ipha; /* Inner IP header */ 1757 1758 ipha = (ipha_t *)&icmph[1]; 1759 if ((uchar_t *)ipha + IP_SIMPLE_HDR_LENGTH > mp->b_wptr) 1760 goto truncated; 1761 1762 hdr_length = IPH_HDR_LENGTH(ipha); 1763 1764 if ((IPH_HDR_VERSION(ipha) != IPV4_VERSION)) 1765 goto discard_pkt; 1766 1767 if (hdr_length < sizeof (ipha_t)) 1768 goto truncated; 1769 1770 if ((uchar_t *)ipha + hdr_length > mp->b_wptr) 1771 goto truncated; 1772 1773 /* 1774 * Stop here for ICMP_REDIRECT. 1775 */ 1776 if (icmph->icmph_type == ICMP_REDIRECT) 1777 return (B_TRUE); 1778 1779 /* 1780 * ICMP errors only. 1781 */ 1782 switch (ipha->ipha_protocol) { 1783 case IPPROTO_UDP: 1784 /* 1785 * Verify we have at least ICMP_MIN_TP_HDR_LEN bytes of 1786 * transport header. 1787 */ 1788 if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN > 1789 mp->b_wptr) 1790 goto truncated; 1791 break; 1792 case IPPROTO_TCP: { 1793 tcpha_t *tcpha; 1794 1795 /* 1796 * Verify we have at least ICMP_MIN_TP_HDR_LEN bytes of 1797 * transport header. 1798 */ 1799 if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN > 1800 mp->b_wptr) 1801 goto truncated; 1802 1803 tcpha = (tcpha_t *)((uchar_t *)ipha + hdr_length); 1804 connp = ipcl_tcp_lookup_reversed_ipv4(ipha, tcpha, TCPS_LISTEN, 1805 ipst); 1806 if (connp == NULL) 1807 goto discard_pkt; 1808 1809 if ((connp->conn_verifyicmp != NULL) && 1810 !connp->conn_verifyicmp(connp, tcpha, icmph, NULL, ira)) { 1811 CONN_DEC_REF(connp); 1812 goto discard_pkt; 1813 } 1814 CONN_DEC_REF(connp); 1815 break; 1816 } 1817 case IPPROTO_SCTP: 1818 /* 1819 * Verify we have at least ICMP_MIN_TP_HDR_LEN bytes of 1820 * transport header. 1821 */ 1822 if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN > 1823 mp->b_wptr) 1824 goto truncated; 1825 break; 1826 case IPPROTO_ESP: 1827 case IPPROTO_AH: 1828 break; 1829 case IPPROTO_ENCAP: 1830 if ((uchar_t *)ipha + hdr_length + sizeof (ipha_t) > 1831 mp->b_wptr) 1832 goto truncated; 1833 break; 1834 default: 1835 break; 1836 } 1837 1838 return (B_TRUE); 1839 1840 discard_pkt: 1841 /* Bogus ICMP error. */ 1842 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 1843 return (B_FALSE); 1844 1845 truncated: 1846 /* We pulled up everthing already. Must be truncated */ 1847 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInTruncatedPkts); 1848 ip_drop_input("ipIfStatsInTruncatedPkts", mp, ill); 1849 return (B_FALSE); 1850 } 1851 1852 /* Table from RFC 1191 */ 1853 static int icmp_frag_size_table[] = 1854 { 32000, 17914, 8166, 4352, 2002, 1496, 1006, 508, 296, 68 }; 1855 1856 /* 1857 * Process received ICMP Packet too big. 1858 * Just handles the DCE create/update, including using the above table of 1859 * PMTU guesses. The caller is responsible for validating the packet before 1860 * passing it in and also to fanout the ICMP error to any matching transport 1861 * conns. Assumes the message has been fully pulled up and verified. 1862 * 1863 * Before getting here, the caller has called icmp_inbound_verify_v4() 1864 * that should have verified with ULP to prevent undoing the changes we're 1865 * going to make to DCE. For example, TCP might have verified that the packet 1866 * which generated error is in the send window. 1867 * 1868 * In some cases modified this MTU in the ICMP header packet; the caller 1869 * should pass to the matching ULP after this returns. 1870 */ 1871 static void 1872 icmp_inbound_too_big_v4(icmph_t *icmph, ip_recv_attr_t *ira) 1873 { 1874 dce_t *dce; 1875 int old_mtu; 1876 int mtu, orig_mtu; 1877 ipaddr_t dst; 1878 boolean_t disable_pmtud; 1879 ill_t *ill = ira->ira_ill; 1880 ip_stack_t *ipst = ill->ill_ipst; 1881 uint_t hdr_length; 1882 ipha_t *ipha; 1883 1884 /* Caller already pulled up everything. */ 1885 ipha = (ipha_t *)&icmph[1]; 1886 ASSERT(icmph->icmph_type == ICMP_DEST_UNREACHABLE && 1887 icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED); 1888 ASSERT(ill != NULL); 1889 1890 hdr_length = IPH_HDR_LENGTH(ipha); 1891 1892 /* 1893 * We handle path MTU for source routed packets since the DCE 1894 * is looked up using the final destination. 1895 */ 1896 dst = ip_get_dst(ipha); 1897 1898 dce = dce_lookup_and_add_v4(dst, ipst); 1899 if (dce == NULL) { 1900 /* Couldn't add a unique one - ENOMEM */ 1901 ip1dbg(("icmp_inbound_too_big_v4: no dce for 0x%x\n", 1902 ntohl(dst))); 1903 return; 1904 } 1905 1906 /* Check for MTU discovery advice as described in RFC 1191 */ 1907 mtu = ntohs(icmph->icmph_du_mtu); 1908 orig_mtu = mtu; 1909 disable_pmtud = B_FALSE; 1910 1911 mutex_enter(&dce->dce_lock); 1912 if (dce->dce_flags & DCEF_PMTU) 1913 old_mtu = dce->dce_pmtu; 1914 else 1915 old_mtu = ill->ill_mtu; 1916 1917 if (icmph->icmph_du_zero != 0 || mtu < ipst->ips_ip_pmtu_min) { 1918 uint32_t length; 1919 int i; 1920 1921 /* 1922 * Use the table from RFC 1191 to figure out 1923 * the next "plateau" based on the length in 1924 * the original IP packet. 1925 */ 1926 length = ntohs(ipha->ipha_length); 1927 DTRACE_PROBE2(ip4__pmtu__guess, dce_t *, dce, 1928 uint32_t, length); 1929 if (old_mtu <= length && 1930 old_mtu >= length - hdr_length) { 1931 /* 1932 * Handle broken BSD 4.2 systems that 1933 * return the wrong ipha_length in ICMP 1934 * errors. 1935 */ 1936 ip1dbg(("Wrong mtu: sent %d, dce %d\n", 1937 length, old_mtu)); 1938 length -= hdr_length; 1939 } 1940 for (i = 0; i < A_CNT(icmp_frag_size_table); i++) { 1941 if (length > icmp_frag_size_table[i]) 1942 break; 1943 } 1944 if (i == A_CNT(icmp_frag_size_table)) { 1945 /* Smaller than IP_MIN_MTU! */ 1946 ip1dbg(("Too big for packet size %d\n", 1947 length)); 1948 disable_pmtud = B_TRUE; 1949 mtu = ipst->ips_ip_pmtu_min; 1950 } else { 1951 mtu = icmp_frag_size_table[i]; 1952 ip1dbg(("Calculated mtu %d, packet size %d, " 1953 "before %d\n", mtu, length, old_mtu)); 1954 if (mtu < ipst->ips_ip_pmtu_min) { 1955 mtu = ipst->ips_ip_pmtu_min; 1956 disable_pmtud = B_TRUE; 1957 } 1958 } 1959 } 1960 if (disable_pmtud) 1961 dce->dce_flags |= DCEF_TOO_SMALL_PMTU; 1962 else 1963 dce->dce_flags &= ~DCEF_TOO_SMALL_PMTU; 1964 1965 dce->dce_pmtu = MIN(old_mtu, mtu); 1966 /* Prepare to send the new max frag size for the ULP. */ 1967 icmph->icmph_du_zero = 0; 1968 icmph->icmph_du_mtu = htons((uint16_t)dce->dce_pmtu); 1969 DTRACE_PROBE4(ip4__pmtu__change, icmph_t *, icmph, dce_t *, 1970 dce, int, orig_mtu, int, mtu); 1971 1972 /* We now have a PMTU for sure */ 1973 dce->dce_flags |= DCEF_PMTU; 1974 dce->dce_last_change_time = TICK_TO_SEC(ddi_get_lbolt64()); 1975 mutex_exit(&dce->dce_lock); 1976 /* 1977 * After dropping the lock the new value is visible to everyone. 1978 * Then we bump the generation number so any cached values reinspect 1979 * the dce_t. 1980 */ 1981 dce_increment_generation(dce); 1982 dce_refrele(dce); 1983 } 1984 1985 /* 1986 * If the packet in error is Self-Encapsulated, icmp_inbound_error_fanout_v4 1987 * calls this function. 1988 */ 1989 static mblk_t * 1990 icmp_inbound_self_encap_error_v4(mblk_t *mp, ipha_t *ipha, ipha_t *in_ipha) 1991 { 1992 int length; 1993 1994 ASSERT(mp->b_datap->db_type == M_DATA); 1995 1996 /* icmp_inbound_v4 has already pulled up the whole error packet */ 1997 ASSERT(mp->b_cont == NULL); 1998 1999 /* 2000 * The length that we want to overlay is the inner header 2001 * and what follows it. 2002 */ 2003 length = msgdsize(mp) - ((uchar_t *)in_ipha - mp->b_rptr); 2004 2005 /* 2006 * Overlay the inner header and whatever follows it over the 2007 * outer header. 2008 */ 2009 bcopy((uchar_t *)in_ipha, (uchar_t *)ipha, length); 2010 2011 /* Adjust for what we removed */ 2012 mp->b_wptr -= (uchar_t *)in_ipha - (uchar_t *)ipha; 2013 return (mp); 2014 } 2015 2016 /* 2017 * Try to pass the ICMP message upstream in case the ULP cares. 2018 * 2019 * If the packet that caused the ICMP error is secure, we send 2020 * it to AH/ESP to make sure that the attached packet has a 2021 * valid association. ipha in the code below points to the 2022 * IP header of the packet that caused the error. 2023 * 2024 * For IPsec cases, we let the next-layer-up (which has access to 2025 * cached policy on the conn_t, or can query the SPD directly) 2026 * subtract out any IPsec overhead if they must. We therefore make no 2027 * adjustments here for IPsec overhead. 2028 * 2029 * IFN could have been generated locally or by some router. 2030 * 2031 * LOCAL : ire_send_wire (before calling ipsec_out_process) can call 2032 * icmp_frag_needed/icmp_pkt2big_v6 to generated a local IFN. 2033 * This happens because IP adjusted its value of MTU on an 2034 * earlier IFN message and could not tell the upper layer, 2035 * the new adjusted value of MTU e.g. Packet was encrypted 2036 * or there was not enough information to fanout to upper 2037 * layers. Thus on the next outbound datagram, ire_send_wire 2038 * generates the IFN, where IPsec processing has *not* been 2039 * done. 2040 * 2041 * Note that we retain ixa_fragsize across IPsec thus once 2042 * we have picking ixa_fragsize and entered ipsec_out_process we do 2043 * no change the fragsize even if the path MTU changes before 2044 * we reach ip_output_post_ipsec. 2045 * 2046 * In the local case, IRAF_LOOPBACK will be set indicating 2047 * that IFN was generated locally. 2048 * 2049 * ROUTER : IFN could be secure or non-secure. 2050 * 2051 * * SECURE : We use the IPSEC_IN to fanout to AH/ESP if the 2052 * packet in error has AH/ESP headers to validate the AH/ESP 2053 * headers. AH/ESP will verify whether there is a valid SA or 2054 * not and send it back. We will fanout again if we have more 2055 * data in the packet. 2056 * 2057 * If the packet in error does not have AH/ESP, we handle it 2058 * like any other case. 2059 * 2060 * * NON_SECURE : If the packet in error has AH/ESP headers, we send it 2061 * up to AH/ESP for validation. AH/ESP will verify whether there is a 2062 * valid SA or not and send it back. We will fanout again if 2063 * we have more data in the packet. 2064 * 2065 * If the packet in error does not have AH/ESP, we handle it 2066 * like any other case. 2067 * 2068 * The caller must have called icmp_inbound_verify_v4. 2069 */ 2070 static void 2071 icmp_inbound_error_fanout_v4(mblk_t *mp, icmph_t *icmph, ip_recv_attr_t *ira) 2072 { 2073 uint16_t *up; /* Pointer to ports in ULP header */ 2074 uint32_t ports; /* reversed ports for fanout */ 2075 ipha_t ripha; /* With reversed addresses */ 2076 ipha_t *ipha; /* Inner IP header */ 2077 uint_t hdr_length; /* Inner IP header length */ 2078 tcpha_t *tcpha; 2079 conn_t *connp; 2080 ill_t *ill = ira->ira_ill; 2081 ip_stack_t *ipst = ill->ill_ipst; 2082 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 2083 ill_t *rill = ira->ira_rill; 2084 2085 /* Caller already pulled up everything. */ 2086 ipha = (ipha_t *)&icmph[1]; 2087 ASSERT((uchar_t *)&ipha[1] <= mp->b_wptr); 2088 ASSERT(mp->b_cont == NULL); 2089 2090 hdr_length = IPH_HDR_LENGTH(ipha); 2091 ira->ira_protocol = ipha->ipha_protocol; 2092 2093 /* 2094 * We need a separate IP header with the source and destination 2095 * addresses reversed to do fanout/classification because the ipha in 2096 * the ICMP error is in the form we sent it out. 2097 */ 2098 ripha.ipha_src = ipha->ipha_dst; 2099 ripha.ipha_dst = ipha->ipha_src; 2100 ripha.ipha_protocol = ipha->ipha_protocol; 2101 ripha.ipha_version_and_hdr_length = ipha->ipha_version_and_hdr_length; 2102 2103 ip2dbg(("icmp_inbound_error_v4: proto %d %x to %x: %d/%d\n", 2104 ripha.ipha_protocol, ntohl(ipha->ipha_src), 2105 ntohl(ipha->ipha_dst), 2106 icmph->icmph_type, icmph->icmph_code)); 2107 2108 switch (ipha->ipha_protocol) { 2109 case IPPROTO_UDP: 2110 up = (uint16_t *)((uchar_t *)ipha + hdr_length); 2111 2112 /* Attempt to find a client stream based on port. */ 2113 ip2dbg(("icmp_inbound_error_v4: UDP ports %d to %d\n", 2114 ntohs(up[0]), ntohs(up[1]))); 2115 2116 /* Note that we send error to all matches. */ 2117 ira->ira_flags |= IRAF_ICMP_ERROR; 2118 ip_fanout_udp_multi_v4(mp, &ripha, up[0], up[1], ira); 2119 ira->ira_flags &= ~IRAF_ICMP_ERROR; 2120 return; 2121 2122 case IPPROTO_TCP: 2123 /* 2124 * Find a TCP client stream for this packet. 2125 * Note that we do a reverse lookup since the header is 2126 * in the form we sent it out. 2127 */ 2128 tcpha = (tcpha_t *)((uchar_t *)ipha + hdr_length); 2129 connp = ipcl_tcp_lookup_reversed_ipv4(ipha, tcpha, TCPS_LISTEN, 2130 ipst); 2131 if (connp == NULL) 2132 goto discard_pkt; 2133 2134 if (CONN_INBOUND_POLICY_PRESENT(connp, ipss) || 2135 (ira->ira_flags & IRAF_IPSEC_SECURE)) { 2136 mp = ipsec_check_inbound_policy(mp, connp, 2137 ipha, NULL, ira); 2138 if (mp == NULL) { 2139 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 2140 /* Note that mp is NULL */ 2141 ip_drop_input("ipIfStatsInDiscards", mp, ill); 2142 CONN_DEC_REF(connp); 2143 return; 2144 } 2145 } 2146 2147 ira->ira_flags |= IRAF_ICMP_ERROR; 2148 ira->ira_ill = ira->ira_rill = NULL; 2149 if (IPCL_IS_TCP(connp)) { 2150 SQUEUE_ENTER_ONE(connp->conn_sqp, mp, 2151 connp->conn_recvicmp, connp, ira, SQ_FILL, 2152 SQTAG_TCP_INPUT_ICMP_ERR); 2153 } else { 2154 /* Not TCP; must be SOCK_RAW, IPPROTO_TCP */ 2155 (connp->conn_recv)(connp, mp, NULL, ira); 2156 CONN_DEC_REF(connp); 2157 } 2158 ira->ira_ill = ill; 2159 ira->ira_rill = rill; 2160 ira->ira_flags &= ~IRAF_ICMP_ERROR; 2161 return; 2162 2163 case IPPROTO_SCTP: 2164 up = (uint16_t *)((uchar_t *)ipha + hdr_length); 2165 /* Find a SCTP client stream for this packet. */ 2166 ((uint16_t *)&ports)[0] = up[1]; 2167 ((uint16_t *)&ports)[1] = up[0]; 2168 2169 ira->ira_flags |= IRAF_ICMP_ERROR; 2170 ip_fanout_sctp(mp, &ripha, NULL, ports, ira); 2171 ira->ira_flags &= ~IRAF_ICMP_ERROR; 2172 return; 2173 2174 case IPPROTO_ESP: 2175 case IPPROTO_AH: 2176 if (!ipsec_loaded(ipss)) { 2177 ip_proto_not_sup(mp, ira); 2178 return; 2179 } 2180 2181 if (ipha->ipha_protocol == IPPROTO_ESP) 2182 mp = ipsecesp_icmp_error(mp, ira); 2183 else 2184 mp = ipsecah_icmp_error(mp, ira); 2185 if (mp == NULL) 2186 return; 2187 2188 /* Just in case ipsec didn't preserve the NULL b_cont */ 2189 if (mp->b_cont != NULL) { 2190 if (!pullupmsg(mp, -1)) 2191 goto discard_pkt; 2192 } 2193 2194 /* 2195 * Note that ira_pktlen and ira_ip_hdr_length are no longer 2196 * correct, but we don't use them any more here. 2197 * 2198 * If succesful, the mp has been modified to not include 2199 * the ESP/AH header so we can fanout to the ULP's icmp 2200 * error handler. 2201 */ 2202 if (mp->b_wptr - mp->b_rptr < IP_SIMPLE_HDR_LENGTH) 2203 goto truncated; 2204 2205 /* Verify the modified message before any further processes. */ 2206 ipha = (ipha_t *)mp->b_rptr; 2207 hdr_length = IPH_HDR_LENGTH(ipha); 2208 icmph = (icmph_t *)&mp->b_rptr[hdr_length]; 2209 if (!icmp_inbound_verify_v4(mp, icmph, ira)) { 2210 freemsg(mp); 2211 return; 2212 } 2213 2214 icmp_inbound_error_fanout_v4(mp, icmph, ira); 2215 return; 2216 2217 case IPPROTO_ENCAP: { 2218 /* Look for self-encapsulated packets that caused an error */ 2219 ipha_t *in_ipha; 2220 2221 /* 2222 * Caller has verified that length has to be 2223 * at least the size of IP header. 2224 */ 2225 ASSERT(hdr_length >= sizeof (ipha_t)); 2226 /* 2227 * Check the sanity of the inner IP header like 2228 * we did for the outer header. 2229 */ 2230 in_ipha = (ipha_t *)((uchar_t *)ipha + hdr_length); 2231 if ((IPH_HDR_VERSION(in_ipha) != IPV4_VERSION)) { 2232 goto discard_pkt; 2233 } 2234 if (IPH_HDR_LENGTH(in_ipha) < sizeof (ipha_t)) { 2235 goto discard_pkt; 2236 } 2237 /* Check for Self-encapsulated tunnels */ 2238 if (in_ipha->ipha_src == ipha->ipha_src && 2239 in_ipha->ipha_dst == ipha->ipha_dst) { 2240 2241 mp = icmp_inbound_self_encap_error_v4(mp, ipha, 2242 in_ipha); 2243 if (mp == NULL) 2244 goto discard_pkt; 2245 2246 /* 2247 * Just in case self_encap didn't preserve the NULL 2248 * b_cont 2249 */ 2250 if (mp->b_cont != NULL) { 2251 if (!pullupmsg(mp, -1)) 2252 goto discard_pkt; 2253 } 2254 /* 2255 * Note that ira_pktlen and ira_ip_hdr_length are no 2256 * longer correct, but we don't use them any more here. 2257 */ 2258 if (mp->b_wptr - mp->b_rptr < IP_SIMPLE_HDR_LENGTH) 2259 goto truncated; 2260 2261 /* 2262 * Verify the modified message before any further 2263 * processes. 2264 */ 2265 ipha = (ipha_t *)mp->b_rptr; 2266 hdr_length = IPH_HDR_LENGTH(ipha); 2267 icmph = (icmph_t *)&mp->b_rptr[hdr_length]; 2268 if (!icmp_inbound_verify_v4(mp, icmph, ira)) { 2269 freemsg(mp); 2270 return; 2271 } 2272 2273 /* 2274 * The packet in error is self-encapsualted. 2275 * And we are finding it further encapsulated 2276 * which we could not have possibly generated. 2277 */ 2278 if (ipha->ipha_protocol == IPPROTO_ENCAP) { 2279 goto discard_pkt; 2280 } 2281 icmp_inbound_error_fanout_v4(mp, icmph, ira); 2282 return; 2283 } 2284 /* No self-encapsulated */ 2285 /* FALLTHRU */ 2286 } 2287 case IPPROTO_IPV6: 2288 if ((connp = ipcl_iptun_classify_v4(&ripha.ipha_src, 2289 &ripha.ipha_dst, ipst)) != NULL) { 2290 ira->ira_flags |= IRAF_ICMP_ERROR; 2291 connp->conn_recvicmp(connp, mp, NULL, ira); 2292 CONN_DEC_REF(connp); 2293 ira->ira_flags &= ~IRAF_ICMP_ERROR; 2294 return; 2295 } 2296 /* 2297 * No IP tunnel is interested, fallthrough and see 2298 * if a raw socket will want it. 2299 */ 2300 /* FALLTHRU */ 2301 default: 2302 ira->ira_flags |= IRAF_ICMP_ERROR; 2303 ip_fanout_proto_v4(mp, &ripha, ira); 2304 ira->ira_flags &= ~IRAF_ICMP_ERROR; 2305 return; 2306 } 2307 /* NOTREACHED */ 2308 discard_pkt: 2309 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 2310 ip1dbg(("icmp_inbound_error_fanout_v4: drop pkt\n")); 2311 ip_drop_input("ipIfStatsInDiscards", mp, ill); 2312 freemsg(mp); 2313 return; 2314 2315 truncated: 2316 /* We pulled up everthing already. Must be truncated */ 2317 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInTruncatedPkts); 2318 ip_drop_input("ipIfStatsInTruncatedPkts", mp, ill); 2319 freemsg(mp); 2320 } 2321 2322 /* 2323 * Common IP options parser. 2324 * 2325 * Setup routine: fill in *optp with options-parsing state, then 2326 * tail-call ipoptp_next to return the first option. 2327 */ 2328 uint8_t 2329 ipoptp_first(ipoptp_t *optp, ipha_t *ipha) 2330 { 2331 uint32_t totallen; /* total length of all options */ 2332 2333 totallen = ipha->ipha_version_and_hdr_length - 2334 (uint8_t)((IP_VERSION << 4) + IP_SIMPLE_HDR_LENGTH_IN_WORDS); 2335 totallen <<= 2; 2336 optp->ipoptp_next = (uint8_t *)(&ipha[1]); 2337 optp->ipoptp_end = optp->ipoptp_next + totallen; 2338 optp->ipoptp_flags = 0; 2339 return (ipoptp_next(optp)); 2340 } 2341 2342 /* Like above but without an ipha_t */ 2343 uint8_t 2344 ipoptp_first2(ipoptp_t *optp, uint32_t totallen, uint8_t *opt) 2345 { 2346 optp->ipoptp_next = opt; 2347 optp->ipoptp_end = optp->ipoptp_next + totallen; 2348 optp->ipoptp_flags = 0; 2349 return (ipoptp_next(optp)); 2350 } 2351 2352 /* 2353 * Common IP options parser: extract next option. 2354 */ 2355 uint8_t 2356 ipoptp_next(ipoptp_t *optp) 2357 { 2358 uint8_t *end = optp->ipoptp_end; 2359 uint8_t *cur = optp->ipoptp_next; 2360 uint8_t opt, len, pointer; 2361 2362 /* 2363 * If cur > end already, then the ipoptp_end or ipoptp_next pointer 2364 * has been corrupted. 2365 */ 2366 ASSERT(cur <= end); 2367 2368 if (cur == end) 2369 return (IPOPT_EOL); 2370 2371 opt = cur[IPOPT_OPTVAL]; 2372 2373 /* 2374 * Skip any NOP options. 2375 */ 2376 while (opt == IPOPT_NOP) { 2377 cur++; 2378 if (cur == end) 2379 return (IPOPT_EOL); 2380 opt = cur[IPOPT_OPTVAL]; 2381 } 2382 2383 if (opt == IPOPT_EOL) 2384 return (IPOPT_EOL); 2385 2386 /* 2387 * Option requiring a length. 2388 */ 2389 if ((cur + 1) >= end) { 2390 optp->ipoptp_flags |= IPOPTP_ERROR; 2391 return (IPOPT_EOL); 2392 } 2393 len = cur[IPOPT_OLEN]; 2394 if (len < 2) { 2395 optp->ipoptp_flags |= IPOPTP_ERROR; 2396 return (IPOPT_EOL); 2397 } 2398 optp->ipoptp_cur = cur; 2399 optp->ipoptp_len = len; 2400 optp->ipoptp_next = cur + len; 2401 if (cur + len > end) { 2402 optp->ipoptp_flags |= IPOPTP_ERROR; 2403 return (IPOPT_EOL); 2404 } 2405 2406 /* 2407 * For the options which require a pointer field, make sure 2408 * its there, and make sure it points to either something 2409 * inside this option, or the end of the option. 2410 */ 2411 switch (opt) { 2412 case IPOPT_RR: 2413 case IPOPT_TS: 2414 case IPOPT_LSRR: 2415 case IPOPT_SSRR: 2416 if (len <= IPOPT_OFFSET) { 2417 optp->ipoptp_flags |= IPOPTP_ERROR; 2418 return (opt); 2419 } 2420 pointer = cur[IPOPT_OFFSET]; 2421 if (pointer - 1 > len) { 2422 optp->ipoptp_flags |= IPOPTP_ERROR; 2423 return (opt); 2424 } 2425 break; 2426 } 2427 2428 /* 2429 * Sanity check the pointer field based on the type of the 2430 * option. 2431 */ 2432 switch (opt) { 2433 case IPOPT_RR: 2434 case IPOPT_SSRR: 2435 case IPOPT_LSRR: 2436 if (pointer < IPOPT_MINOFF_SR) 2437 optp->ipoptp_flags |= IPOPTP_ERROR; 2438 break; 2439 case IPOPT_TS: 2440 if (pointer < IPOPT_MINOFF_IT) 2441 optp->ipoptp_flags |= IPOPTP_ERROR; 2442 /* 2443 * Note that the Internet Timestamp option also 2444 * contains two four bit fields (the Overflow field, 2445 * and the Flag field), which follow the pointer 2446 * field. We don't need to check that these fields 2447 * fall within the length of the option because this 2448 * was implicitely done above. We've checked that the 2449 * pointer value is at least IPOPT_MINOFF_IT, and that 2450 * it falls within the option. Since IPOPT_MINOFF_IT > 2451 * IPOPT_POS_OV_FLG, we don't need the explicit check. 2452 */ 2453 ASSERT(len > IPOPT_POS_OV_FLG); 2454 break; 2455 } 2456 2457 return (opt); 2458 } 2459 2460 /* 2461 * Use the outgoing IP header to create an IP_OPTIONS option the way 2462 * it was passed down from the application. 2463 * 2464 * This is compatible with BSD in that it returns 2465 * the reverse source route with the final destination 2466 * as the last entry. The first 4 bytes of the option 2467 * will contain the final destination. 2468 */ 2469 int 2470 ip_opt_get_user(conn_t *connp, uchar_t *buf) 2471 { 2472 ipoptp_t opts; 2473 uchar_t *opt; 2474 uint8_t optval; 2475 uint8_t optlen; 2476 uint32_t len = 0; 2477 uchar_t *buf1 = buf; 2478 uint32_t totallen; 2479 ipaddr_t dst; 2480 ip_pkt_t *ipp = &connp->conn_xmit_ipp; 2481 2482 if (!(ipp->ipp_fields & IPPF_IPV4_OPTIONS)) 2483 return (0); 2484 2485 totallen = ipp->ipp_ipv4_options_len; 2486 if (totallen & 0x3) 2487 return (0); 2488 2489 buf += IP_ADDR_LEN; /* Leave room for final destination */ 2490 len += IP_ADDR_LEN; 2491 bzero(buf1, IP_ADDR_LEN); 2492 2493 dst = connp->conn_faddr_v4; 2494 2495 for (optval = ipoptp_first2(&opts, totallen, ipp->ipp_ipv4_options); 2496 optval != IPOPT_EOL; 2497 optval = ipoptp_next(&opts)) { 2498 int off; 2499 2500 opt = opts.ipoptp_cur; 2501 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 2502 break; 2503 } 2504 optlen = opts.ipoptp_len; 2505 2506 switch (optval) { 2507 case IPOPT_SSRR: 2508 case IPOPT_LSRR: 2509 2510 /* 2511 * Insert destination as the first entry in the source 2512 * route and move down the entries on step. 2513 * The last entry gets placed at buf1. 2514 */ 2515 buf[IPOPT_OPTVAL] = optval; 2516 buf[IPOPT_OLEN] = optlen; 2517 buf[IPOPT_OFFSET] = optlen; 2518 2519 off = optlen - IP_ADDR_LEN; 2520 if (off < 0) { 2521 /* No entries in source route */ 2522 break; 2523 } 2524 /* Last entry in source route if not already set */ 2525 if (dst == INADDR_ANY) 2526 bcopy(opt + off, buf1, IP_ADDR_LEN); 2527 off -= IP_ADDR_LEN; 2528 2529 while (off > 0) { 2530 bcopy(opt + off, 2531 buf + off + IP_ADDR_LEN, 2532 IP_ADDR_LEN); 2533 off -= IP_ADDR_LEN; 2534 } 2535 /* ipha_dst into first slot */ 2536 bcopy(&dst, buf + off + IP_ADDR_LEN, 2537 IP_ADDR_LEN); 2538 buf += optlen; 2539 len += optlen; 2540 break; 2541 2542 default: 2543 bcopy(opt, buf, optlen); 2544 buf += optlen; 2545 len += optlen; 2546 break; 2547 } 2548 } 2549 done: 2550 /* Pad the resulting options */ 2551 while (len & 0x3) { 2552 *buf++ = IPOPT_EOL; 2553 len++; 2554 } 2555 return (len); 2556 } 2557 2558 /* 2559 * Update any record route or timestamp options to include this host. 2560 * Reverse any source route option. 2561 * This routine assumes that the options are well formed i.e. that they 2562 * have already been checked. 2563 */ 2564 static void 2565 icmp_options_update(ipha_t *ipha) 2566 { 2567 ipoptp_t opts; 2568 uchar_t *opt; 2569 uint8_t optval; 2570 ipaddr_t src; /* Our local address */ 2571 ipaddr_t dst; 2572 2573 ip2dbg(("icmp_options_update\n")); 2574 src = ipha->ipha_src; 2575 dst = ipha->ipha_dst; 2576 2577 for (optval = ipoptp_first(&opts, ipha); 2578 optval != IPOPT_EOL; 2579 optval = ipoptp_next(&opts)) { 2580 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 2581 opt = opts.ipoptp_cur; 2582 ip2dbg(("icmp_options_update: opt %d, len %d\n", 2583 optval, opts.ipoptp_len)); 2584 switch (optval) { 2585 int off1, off2; 2586 case IPOPT_SSRR: 2587 case IPOPT_LSRR: 2588 /* 2589 * Reverse the source route. The first entry 2590 * should be the next to last one in the current 2591 * source route (the last entry is our address). 2592 * The last entry should be the final destination. 2593 */ 2594 off1 = IPOPT_MINOFF_SR - 1; 2595 off2 = opt[IPOPT_OFFSET] - IP_ADDR_LEN - 1; 2596 if (off2 < 0) { 2597 /* No entries in source route */ 2598 ip1dbg(( 2599 "icmp_options_update: bad src route\n")); 2600 break; 2601 } 2602 bcopy((char *)opt + off2, &dst, IP_ADDR_LEN); 2603 bcopy(&ipha->ipha_dst, (char *)opt + off2, IP_ADDR_LEN); 2604 bcopy(&dst, &ipha->ipha_dst, IP_ADDR_LEN); 2605 off2 -= IP_ADDR_LEN; 2606 2607 while (off1 < off2) { 2608 bcopy((char *)opt + off1, &src, IP_ADDR_LEN); 2609 bcopy((char *)opt + off2, (char *)opt + off1, 2610 IP_ADDR_LEN); 2611 bcopy(&src, (char *)opt + off2, IP_ADDR_LEN); 2612 off1 += IP_ADDR_LEN; 2613 off2 -= IP_ADDR_LEN; 2614 } 2615 opt[IPOPT_OFFSET] = IPOPT_MINOFF_SR; 2616 break; 2617 } 2618 } 2619 } 2620 2621 /* 2622 * Process received ICMP Redirect messages. 2623 * Assumes the caller has verified that the headers are in the pulled up mblk. 2624 * Consumes mp. 2625 */ 2626 static void 2627 icmp_redirect_v4(mblk_t *mp, ipha_t *ipha, icmph_t *icmph, ip_recv_attr_t *ira) 2628 { 2629 ire_t *ire, *nire; 2630 ire_t *prev_ire; 2631 ipaddr_t src, dst, gateway; 2632 ip_stack_t *ipst = ira->ira_ill->ill_ipst; 2633 ipha_t *inner_ipha; /* Inner IP header */ 2634 2635 /* Caller already pulled up everything. */ 2636 inner_ipha = (ipha_t *)&icmph[1]; 2637 src = ipha->ipha_src; 2638 dst = inner_ipha->ipha_dst; 2639 gateway = icmph->icmph_rd_gateway; 2640 /* Make sure the new gateway is reachable somehow. */ 2641 ire = ire_ftable_lookup_v4(gateway, 0, 0, IRE_ONLINK, NULL, 2642 ALL_ZONES, NULL, MATCH_IRE_TYPE, 0, ipst, NULL); 2643 /* 2644 * Make sure we had a route for the dest in question and that 2645 * that route was pointing to the old gateway (the source of the 2646 * redirect packet.) 2647 * We do longest match and then compare ire_gateway_addr below. 2648 */ 2649 prev_ire = ire_ftable_lookup_v4(dst, 0, 0, 0, NULL, ALL_ZONES, 2650 NULL, MATCH_IRE_DSTONLY, 0, ipst, NULL); 2651 /* 2652 * Check that 2653 * the redirect was not from ourselves 2654 * the new gateway and the old gateway are directly reachable 2655 */ 2656 if (prev_ire == NULL || ire == NULL || 2657 (prev_ire->ire_type & (IRE_LOCAL|IRE_LOOPBACK)) || 2658 (prev_ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) || 2659 !(ire->ire_type & IRE_IF_ALL) || 2660 prev_ire->ire_gateway_addr != src) { 2661 BUMP_MIB(&ipst->ips_icmp_mib, icmpInBadRedirects); 2662 ip_drop_input("icmpInBadRedirects - ire", mp, ira->ira_ill); 2663 freemsg(mp); 2664 if (ire != NULL) 2665 ire_refrele(ire); 2666 if (prev_ire != NULL) 2667 ire_refrele(prev_ire); 2668 return; 2669 } 2670 2671 ire_refrele(prev_ire); 2672 ire_refrele(ire); 2673 2674 /* 2675 * TODO: more precise handling for cases 0, 2, 3, the latter two 2676 * require TOS routing 2677 */ 2678 switch (icmph->icmph_code) { 2679 case 0: 2680 case 1: 2681 /* TODO: TOS specificity for cases 2 and 3 */ 2682 case 2: 2683 case 3: 2684 break; 2685 default: 2686 BUMP_MIB(&ipst->ips_icmp_mib, icmpInBadRedirects); 2687 ip_drop_input("icmpInBadRedirects - code", mp, ira->ira_ill); 2688 freemsg(mp); 2689 return; 2690 } 2691 /* 2692 * Create a Route Association. This will allow us to remember that 2693 * someone we believe told us to use the particular gateway. 2694 */ 2695 ire = ire_create( 2696 (uchar_t *)&dst, /* dest addr */ 2697 (uchar_t *)&ip_g_all_ones, /* mask */ 2698 (uchar_t *)&gateway, /* gateway addr */ 2699 IRE_HOST, 2700 NULL, /* ill */ 2701 ALL_ZONES, 2702 (RTF_DYNAMIC | RTF_GATEWAY | RTF_HOST), 2703 NULL, /* tsol_gc_t */ 2704 ipst); 2705 2706 if (ire == NULL) { 2707 freemsg(mp); 2708 return; 2709 } 2710 nire = ire_add(ire); 2711 /* Check if it was a duplicate entry */ 2712 if (nire != NULL && nire != ire) { 2713 ASSERT(nire->ire_identical_ref > 1); 2714 ire_delete(nire); 2715 ire_refrele(nire); 2716 nire = NULL; 2717 } 2718 ire = nire; 2719 if (ire != NULL) { 2720 ire_refrele(ire); /* Held in ire_add */ 2721 2722 /* tell routing sockets that we received a redirect */ 2723 ip_rts_change(RTM_REDIRECT, dst, gateway, IP_HOST_MASK, 0, src, 2724 (RTF_DYNAMIC | RTF_GATEWAY | RTF_HOST), 0, 2725 (RTA_DST | RTA_GATEWAY | RTA_NETMASK | RTA_AUTHOR), ipst); 2726 } 2727 2728 /* 2729 * Delete any existing IRE_HOST type redirect ires for this destination. 2730 * This together with the added IRE has the effect of 2731 * modifying an existing redirect. 2732 */ 2733 prev_ire = ire_ftable_lookup_v4(dst, 0, src, IRE_HOST, NULL, 2734 ALL_ZONES, NULL, (MATCH_IRE_GW | MATCH_IRE_TYPE), 0, ipst, NULL); 2735 if (prev_ire != NULL) { 2736 if (prev_ire ->ire_flags & RTF_DYNAMIC) 2737 ire_delete(prev_ire); 2738 ire_refrele(prev_ire); 2739 } 2740 2741 freemsg(mp); 2742 } 2743 2744 /* 2745 * Generate an ICMP parameter problem message. 2746 * When called from ip_output side a minimal ip_recv_attr_t needs to be 2747 * constructed by the caller. 2748 */ 2749 static void 2750 icmp_param_problem(mblk_t *mp, uint8_t ptr, ip_recv_attr_t *ira) 2751 { 2752 icmph_t icmph; 2753 ip_stack_t *ipst = ira->ira_ill->ill_ipst; 2754 2755 mp = icmp_pkt_err_ok(mp, ira); 2756 if (mp == NULL) 2757 return; 2758 2759 bzero(&icmph, sizeof (icmph_t)); 2760 icmph.icmph_type = ICMP_PARAM_PROBLEM; 2761 icmph.icmph_pp_ptr = ptr; 2762 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutParmProbs); 2763 icmp_pkt(mp, &icmph, sizeof (icmph_t), ira); 2764 } 2765 2766 /* 2767 * Build and ship an IPv4 ICMP message using the packet data in mp, and 2768 * the ICMP header pointed to by "stuff". (May be called as writer.) 2769 * Note: assumes that icmp_pkt_err_ok has been called to verify that 2770 * an icmp error packet can be sent. 2771 * Assigns an appropriate source address to the packet. If ipha_dst is 2772 * one of our addresses use it for source. Otherwise let ip_output_simple 2773 * pick the source address. 2774 */ 2775 static void 2776 icmp_pkt(mblk_t *mp, void *stuff, size_t len, ip_recv_attr_t *ira) 2777 { 2778 ipaddr_t dst; 2779 icmph_t *icmph; 2780 ipha_t *ipha; 2781 uint_t len_needed; 2782 size_t msg_len; 2783 mblk_t *mp1; 2784 ipaddr_t src; 2785 ire_t *ire; 2786 ip_xmit_attr_t ixas; 2787 ip_stack_t *ipst = ira->ira_ill->ill_ipst; 2788 2789 ipha = (ipha_t *)mp->b_rptr; 2790 2791 bzero(&ixas, sizeof (ixas)); 2792 ixas.ixa_flags = IXAF_BASIC_SIMPLE_V4; 2793 ixas.ixa_zoneid = ira->ira_zoneid; 2794 ixas.ixa_ifindex = 0; 2795 ixas.ixa_ipst = ipst; 2796 ixas.ixa_cred = kcred; 2797 ixas.ixa_cpid = NOPID; 2798 ixas.ixa_tsl = ira->ira_tsl; /* Behave as a multi-level responder */ 2799 ixas.ixa_multicast_ttl = IP_DEFAULT_MULTICAST_TTL; 2800 2801 if (ira->ira_flags & IRAF_IPSEC_SECURE) { 2802 /* 2803 * Apply IPsec based on how IPsec was applied to 2804 * the packet that had the error. 2805 * 2806 * If it was an outbound packet that caused the ICMP 2807 * error, then the caller will have setup the IRA 2808 * appropriately. 2809 */ 2810 if (!ipsec_in_to_out(ira, &ixas, mp, ipha, NULL)) { 2811 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 2812 /* Note: mp already consumed and ip_drop_packet done */ 2813 return; 2814 } 2815 } else { 2816 /* 2817 * This is in clear. The icmp message we are building 2818 * here should go out in clear, independent of our policy. 2819 */ 2820 ixas.ixa_flags |= IXAF_NO_IPSEC; 2821 } 2822 2823 /* Remember our eventual destination */ 2824 dst = ipha->ipha_src; 2825 2826 /* 2827 * If the packet was for one of our unicast addresses, make 2828 * sure we respond with that as the source. Otherwise 2829 * have ip_output_simple pick the source address. 2830 */ 2831 ire = ire_ftable_lookup_v4(ipha->ipha_dst, 0, 0, 2832 (IRE_LOCAL|IRE_LOOPBACK), NULL, ira->ira_zoneid, NULL, 2833 MATCH_IRE_TYPE|MATCH_IRE_ZONEONLY, 0, ipst, NULL); 2834 if (ire != NULL) { 2835 ire_refrele(ire); 2836 src = ipha->ipha_dst; 2837 } else { 2838 src = INADDR_ANY; 2839 ixas.ixa_flags |= IXAF_SET_SOURCE; 2840 } 2841 2842 /* 2843 * Check if we can send back more then 8 bytes in addition to 2844 * the IP header. We try to send 64 bytes of data and the internal 2845 * header in the special cases of ipv4 encapsulated ipv4 or ipv6. 2846 */ 2847 len_needed = IPH_HDR_LENGTH(ipha); 2848 if (ipha->ipha_protocol == IPPROTO_ENCAP || 2849 ipha->ipha_protocol == IPPROTO_IPV6) { 2850 if (!pullupmsg(mp, -1)) { 2851 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 2852 ip_drop_output("ipIfStatsOutDiscards", mp, NULL); 2853 freemsg(mp); 2854 return; 2855 } 2856 ipha = (ipha_t *)mp->b_rptr; 2857 2858 if (ipha->ipha_protocol == IPPROTO_ENCAP) { 2859 len_needed += IPH_HDR_LENGTH(((uchar_t *)ipha + 2860 len_needed)); 2861 } else { 2862 ip6_t *ip6h = (ip6_t *)((uchar_t *)ipha + len_needed); 2863 2864 ASSERT(ipha->ipha_protocol == IPPROTO_IPV6); 2865 len_needed += ip_hdr_length_v6(mp, ip6h); 2866 } 2867 } 2868 len_needed += ipst->ips_ip_icmp_return; 2869 msg_len = msgdsize(mp); 2870 if (msg_len > len_needed) { 2871 (void) adjmsg(mp, len_needed - msg_len); 2872 msg_len = len_needed; 2873 } 2874 mp1 = allocb(sizeof (icmp_ipha) + len, BPRI_MED); 2875 if (mp1 == NULL) { 2876 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutErrors); 2877 freemsg(mp); 2878 return; 2879 } 2880 mp1->b_cont = mp; 2881 mp = mp1; 2882 2883 /* 2884 * Set IXAF_TRUSTED_ICMP so we can let the ICMP messages this 2885 * node generates be accepted in peace by all on-host destinations. 2886 * If we do NOT assume that all on-host destinations trust 2887 * self-generated ICMP messages, then rework here, ip6.c, and spd.c. 2888 * (Look for IXAF_TRUSTED_ICMP). 2889 */ 2890 ixas.ixa_flags |= IXAF_TRUSTED_ICMP; 2891 2892 ipha = (ipha_t *)mp->b_rptr; 2893 mp1->b_wptr = (uchar_t *)ipha + (sizeof (icmp_ipha) + len); 2894 *ipha = icmp_ipha; 2895 ipha->ipha_src = src; 2896 ipha->ipha_dst = dst; 2897 ipha->ipha_ttl = ipst->ips_ip_def_ttl; 2898 msg_len += sizeof (icmp_ipha) + len; 2899 if (msg_len > IP_MAXPACKET) { 2900 (void) adjmsg(mp, IP_MAXPACKET - msg_len); 2901 msg_len = IP_MAXPACKET; 2902 } 2903 ipha->ipha_length = htons((uint16_t)msg_len); 2904 icmph = (icmph_t *)&ipha[1]; 2905 bcopy(stuff, icmph, len); 2906 icmph->icmph_checksum = 0; 2907 icmph->icmph_checksum = IP_CSUM(mp, (int32_t)sizeof (ipha_t), 0); 2908 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutMsgs); 2909 2910 (void) ip_output_simple(mp, &ixas); 2911 ixa_cleanup(&ixas); 2912 } 2913 2914 /* 2915 * Determine if an ICMP error packet can be sent given the rate limit. 2916 * The limit consists of an average frequency (icmp_pkt_err_interval measured 2917 * in milliseconds) and a burst size. Burst size number of packets can 2918 * be sent arbitrarely closely spaced. 2919 * The state is tracked using two variables to implement an approximate 2920 * token bucket filter: 2921 * icmp_pkt_err_last - lbolt value when the last burst started 2922 * icmp_pkt_err_sent - number of packets sent in current burst 2923 */ 2924 boolean_t 2925 icmp_err_rate_limit(ip_stack_t *ipst) 2926 { 2927 clock_t now = TICK_TO_MSEC(ddi_get_lbolt()); 2928 uint_t refilled; /* Number of packets refilled in tbf since last */ 2929 /* Guard against changes by loading into local variable */ 2930 uint_t err_interval = ipst->ips_ip_icmp_err_interval; 2931 2932 if (err_interval == 0) 2933 return (B_FALSE); 2934 2935 if (ipst->ips_icmp_pkt_err_last > now) { 2936 /* 100HZ lbolt in ms for 32bit arch wraps every 49.7 days */ 2937 ipst->ips_icmp_pkt_err_last = 0; 2938 ipst->ips_icmp_pkt_err_sent = 0; 2939 } 2940 /* 2941 * If we are in a burst update the token bucket filter. 2942 * Update the "last" time to be close to "now" but make sure 2943 * we don't loose precision. 2944 */ 2945 if (ipst->ips_icmp_pkt_err_sent != 0) { 2946 refilled = (now - ipst->ips_icmp_pkt_err_last)/err_interval; 2947 if (refilled > ipst->ips_icmp_pkt_err_sent) { 2948 ipst->ips_icmp_pkt_err_sent = 0; 2949 } else { 2950 ipst->ips_icmp_pkt_err_sent -= refilled; 2951 ipst->ips_icmp_pkt_err_last += refilled * err_interval; 2952 } 2953 } 2954 if (ipst->ips_icmp_pkt_err_sent == 0) { 2955 /* Start of new burst */ 2956 ipst->ips_icmp_pkt_err_last = now; 2957 } 2958 if (ipst->ips_icmp_pkt_err_sent < ipst->ips_ip_icmp_err_burst) { 2959 ipst->ips_icmp_pkt_err_sent++; 2960 ip1dbg(("icmp_err_rate_limit: %d sent in burst\n", 2961 ipst->ips_icmp_pkt_err_sent)); 2962 return (B_FALSE); 2963 } 2964 ip1dbg(("icmp_err_rate_limit: dropped\n")); 2965 return (B_TRUE); 2966 } 2967 2968 /* 2969 * Check if it is ok to send an IPv4 ICMP error packet in 2970 * response to the IPv4 packet in mp. 2971 * Free the message and return null if no 2972 * ICMP error packet should be sent. 2973 */ 2974 static mblk_t * 2975 icmp_pkt_err_ok(mblk_t *mp, ip_recv_attr_t *ira) 2976 { 2977 ip_stack_t *ipst = ira->ira_ill->ill_ipst; 2978 icmph_t *icmph; 2979 ipha_t *ipha; 2980 uint_t len_needed; 2981 2982 if (!mp) 2983 return (NULL); 2984 ipha = (ipha_t *)mp->b_rptr; 2985 if (ip_csum_hdr(ipha)) { 2986 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsInCksumErrs); 2987 ip_drop_input("ipIfStatsInCksumErrs", mp, NULL); 2988 freemsg(mp); 2989 return (NULL); 2990 } 2991 if (ip_type_v4(ipha->ipha_dst, ipst) == IRE_BROADCAST || 2992 ip_type_v4(ipha->ipha_src, ipst) == IRE_BROADCAST || 2993 CLASSD(ipha->ipha_dst) || 2994 CLASSD(ipha->ipha_src) || 2995 (ntohs(ipha->ipha_fragment_offset_and_flags) & IPH_OFFSET)) { 2996 /* Note: only errors to the fragment with offset 0 */ 2997 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops); 2998 freemsg(mp); 2999 return (NULL); 3000 } 3001 if (ipha->ipha_protocol == IPPROTO_ICMP) { 3002 /* 3003 * Check the ICMP type. RFC 1122 sez: don't send ICMP 3004 * errors in response to any ICMP errors. 3005 */ 3006 len_needed = IPH_HDR_LENGTH(ipha) + ICMPH_SIZE; 3007 if (mp->b_wptr - mp->b_rptr < len_needed) { 3008 if (!pullupmsg(mp, len_needed)) { 3009 BUMP_MIB(&ipst->ips_icmp_mib, icmpInErrors); 3010 freemsg(mp); 3011 return (NULL); 3012 } 3013 ipha = (ipha_t *)mp->b_rptr; 3014 } 3015 icmph = (icmph_t *) 3016 (&((char *)ipha)[IPH_HDR_LENGTH(ipha)]); 3017 switch (icmph->icmph_type) { 3018 case ICMP_DEST_UNREACHABLE: 3019 case ICMP_SOURCE_QUENCH: 3020 case ICMP_TIME_EXCEEDED: 3021 case ICMP_PARAM_PROBLEM: 3022 case ICMP_REDIRECT: 3023 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops); 3024 freemsg(mp); 3025 return (NULL); 3026 default: 3027 break; 3028 } 3029 } 3030 /* 3031 * If this is a labeled system, then check to see if we're allowed to 3032 * send a response to this particular sender. If not, then just drop. 3033 */ 3034 if (is_system_labeled() && !tsol_can_reply_error(mp, ira)) { 3035 ip2dbg(("icmp_pkt_err_ok: can't respond to packet\n")); 3036 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops); 3037 freemsg(mp); 3038 return (NULL); 3039 } 3040 if (icmp_err_rate_limit(ipst)) { 3041 /* 3042 * Only send ICMP error packets every so often. 3043 * This should be done on a per port/source basis, 3044 * but for now this will suffice. 3045 */ 3046 freemsg(mp); 3047 return (NULL); 3048 } 3049 return (mp); 3050 } 3051 3052 /* 3053 * Called when a packet was sent out the same link that it arrived on. 3054 * Check if it is ok to send a redirect and then send it. 3055 */ 3056 void 3057 ip_send_potential_redirect_v4(mblk_t *mp, ipha_t *ipha, ire_t *ire, 3058 ip_recv_attr_t *ira) 3059 { 3060 ip_stack_t *ipst = ira->ira_ill->ill_ipst; 3061 ipaddr_t src, nhop; 3062 mblk_t *mp1; 3063 ire_t *nhop_ire; 3064 3065 /* 3066 * Check the source address to see if it originated 3067 * on the same logical subnet it is going back out on. 3068 * If so, we should be able to send it a redirect. 3069 * Avoid sending a redirect if the destination 3070 * is directly connected (i.e., we matched an IRE_ONLINK), 3071 * or if the packet was source routed out this interface. 3072 * 3073 * We avoid sending a redirect if the 3074 * destination is directly connected 3075 * because it is possible that multiple 3076 * IP subnets may have been configured on 3077 * the link, and the source may not 3078 * be on the same subnet as ip destination, 3079 * even though they are on the same 3080 * physical link. 3081 */ 3082 if ((ire->ire_type & IRE_ONLINK) || 3083 ip_source_routed(ipha, ipst)) 3084 return; 3085 3086 nhop_ire = ire_nexthop(ire); 3087 if (nhop_ire == NULL) 3088 return; 3089 3090 nhop = nhop_ire->ire_addr; 3091 3092 if (nhop_ire->ire_type & IRE_IF_CLONE) { 3093 ire_t *ire2; 3094 3095 /* Follow ire_dep_parent to find non-clone IRE_INTERFACE */ 3096 mutex_enter(&nhop_ire->ire_lock); 3097 ire2 = nhop_ire->ire_dep_parent; 3098 if (ire2 != NULL) 3099 ire_refhold(ire2); 3100 mutex_exit(&nhop_ire->ire_lock); 3101 ire_refrele(nhop_ire); 3102 nhop_ire = ire2; 3103 } 3104 if (nhop_ire == NULL) 3105 return; 3106 3107 ASSERT(!(nhop_ire->ire_type & IRE_IF_CLONE)); 3108 3109 src = ipha->ipha_src; 3110 3111 /* 3112 * We look at the interface ire for the nexthop, 3113 * to see if ipha_src is in the same subnet 3114 * as the nexthop. 3115 */ 3116 if ((src & nhop_ire->ire_mask) == (nhop & nhop_ire->ire_mask)) { 3117 /* 3118 * The source is directly connected. 3119 */ 3120 mp1 = copymsg(mp); 3121 if (mp1 != NULL) { 3122 icmp_send_redirect(mp1, nhop, ira); 3123 } 3124 } 3125 ire_refrele(nhop_ire); 3126 } 3127 3128 /* 3129 * Generate an ICMP redirect message. 3130 */ 3131 static void 3132 icmp_send_redirect(mblk_t *mp, ipaddr_t gateway, ip_recv_attr_t *ira) 3133 { 3134 icmph_t icmph; 3135 ip_stack_t *ipst = ira->ira_ill->ill_ipst; 3136 3137 mp = icmp_pkt_err_ok(mp, ira); 3138 if (mp == NULL) 3139 return; 3140 3141 bzero(&icmph, sizeof (icmph_t)); 3142 icmph.icmph_type = ICMP_REDIRECT; 3143 icmph.icmph_code = 1; 3144 icmph.icmph_rd_gateway = gateway; 3145 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutRedirects); 3146 icmp_pkt(mp, &icmph, sizeof (icmph_t), ira); 3147 } 3148 3149 /* 3150 * Generate an ICMP time exceeded message. 3151 */ 3152 void 3153 icmp_time_exceeded(mblk_t *mp, uint8_t code, ip_recv_attr_t *ira) 3154 { 3155 icmph_t icmph; 3156 ip_stack_t *ipst = ira->ira_ill->ill_ipst; 3157 3158 mp = icmp_pkt_err_ok(mp, ira); 3159 if (mp == NULL) 3160 return; 3161 3162 bzero(&icmph, sizeof (icmph_t)); 3163 icmph.icmph_type = ICMP_TIME_EXCEEDED; 3164 icmph.icmph_code = code; 3165 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutTimeExcds); 3166 icmp_pkt(mp, &icmph, sizeof (icmph_t), ira); 3167 } 3168 3169 /* 3170 * Generate an ICMP unreachable message. 3171 * When called from ip_output side a minimal ip_recv_attr_t needs to be 3172 * constructed by the caller. 3173 */ 3174 void 3175 icmp_unreachable(mblk_t *mp, uint8_t code, ip_recv_attr_t *ira) 3176 { 3177 icmph_t icmph; 3178 ip_stack_t *ipst = ira->ira_ill->ill_ipst; 3179 3180 mp = icmp_pkt_err_ok(mp, ira); 3181 if (mp == NULL) 3182 return; 3183 3184 bzero(&icmph, sizeof (icmph_t)); 3185 icmph.icmph_type = ICMP_DEST_UNREACHABLE; 3186 icmph.icmph_code = code; 3187 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDestUnreachs); 3188 icmp_pkt(mp, &icmph, sizeof (icmph_t), ira); 3189 } 3190 3191 /* 3192 * Latch in the IPsec state for a stream based the policy in the listener 3193 * and the actions in the ip_recv_attr_t. 3194 * Called directly from TCP and SCTP. 3195 */ 3196 boolean_t 3197 ip_ipsec_policy_inherit(conn_t *connp, conn_t *lconnp, ip_recv_attr_t *ira) 3198 { 3199 ASSERT(lconnp->conn_policy != NULL); 3200 ASSERT(connp->conn_policy == NULL); 3201 3202 IPPH_REFHOLD(lconnp->conn_policy); 3203 connp->conn_policy = lconnp->conn_policy; 3204 3205 if (ira->ira_ipsec_action != NULL) { 3206 if (connp->conn_latch == NULL) { 3207 connp->conn_latch = iplatch_create(); 3208 if (connp->conn_latch == NULL) 3209 return (B_FALSE); 3210 } 3211 ipsec_latch_inbound(connp, ira); 3212 } 3213 return (B_TRUE); 3214 } 3215 3216 /* 3217 * Verify whether or not the IP address is a valid local address. 3218 * Could be a unicast, including one for a down interface. 3219 * If allow_mcbc then a multicast or broadcast address is also 3220 * acceptable. 3221 * 3222 * In the case of a broadcast/multicast address, however, the 3223 * upper protocol is expected to reset the src address 3224 * to zero when we return IPVL_MCAST/IPVL_BCAST so that 3225 * no packets are emitted with broadcast/multicast address as 3226 * source address (that violates hosts requirements RFC 1122) 3227 * The addresses valid for bind are: 3228 * (1) - INADDR_ANY (0) 3229 * (2) - IP address of an UP interface 3230 * (3) - IP address of a DOWN interface 3231 * (4) - valid local IP broadcast addresses. In this case 3232 * the conn will only receive packets destined to 3233 * the specified broadcast address. 3234 * (5) - a multicast address. In this case 3235 * the conn will only receive packets destined to 3236 * the specified multicast address. Note: the 3237 * application still has to issue an 3238 * IP_ADD_MEMBERSHIP socket option. 3239 * 3240 * In all the above cases, the bound address must be valid in the current zone. 3241 * When the address is loopback, multicast or broadcast, there might be many 3242 * matching IREs so bind has to look up based on the zone. 3243 */ 3244 ip_laddr_t 3245 ip_laddr_verify_v4(ipaddr_t src_addr, zoneid_t zoneid, 3246 ip_stack_t *ipst, boolean_t allow_mcbc) 3247 { 3248 ire_t *src_ire; 3249 3250 ASSERT(src_addr != INADDR_ANY); 3251 3252 src_ire = ire_ftable_lookup_v4(src_addr, 0, 0, 0, 3253 NULL, zoneid, NULL, MATCH_IRE_ZONEONLY, 0, ipst, NULL); 3254 3255 /* 3256 * If an address other than in6addr_any is requested, 3257 * we verify that it is a valid address for bind 3258 * Note: Following code is in if-else-if form for 3259 * readability compared to a condition check. 3260 */ 3261 if (src_ire != NULL && (src_ire->ire_type & (IRE_LOCAL|IRE_LOOPBACK))) { 3262 /* 3263 * (2) Bind to address of local UP interface 3264 */ 3265 ire_refrele(src_ire); 3266 return (IPVL_UNICAST_UP); 3267 } else if (src_ire != NULL && src_ire->ire_type & IRE_BROADCAST) { 3268 /* 3269 * (4) Bind to broadcast address 3270 */ 3271 ire_refrele(src_ire); 3272 if (allow_mcbc) 3273 return (IPVL_BCAST); 3274 else 3275 return (IPVL_BAD); 3276 } else if (CLASSD(src_addr)) { 3277 /* (5) bind to multicast address. */ 3278 if (src_ire != NULL) 3279 ire_refrele(src_ire); 3280 3281 if (allow_mcbc) 3282 return (IPVL_MCAST); 3283 else 3284 return (IPVL_BAD); 3285 } else { 3286 ipif_t *ipif; 3287 3288 /* 3289 * (3) Bind to address of local DOWN interface? 3290 * (ipif_lookup_addr() looks up all interfaces 3291 * but we do not get here for UP interfaces 3292 * - case (2) above) 3293 */ 3294 if (src_ire != NULL) 3295 ire_refrele(src_ire); 3296 3297 ipif = ipif_lookup_addr(src_addr, NULL, zoneid, ipst); 3298 if (ipif == NULL) 3299 return (IPVL_BAD); 3300 3301 /* Not a useful source? */ 3302 if (ipif->ipif_flags & (IPIF_NOLOCAL | IPIF_ANYCAST)) { 3303 ipif_refrele(ipif); 3304 return (IPVL_BAD); 3305 } 3306 ipif_refrele(ipif); 3307 return (IPVL_UNICAST_DOWN); 3308 } 3309 } 3310 3311 /* 3312 * Insert in the bind fanout for IPv4 and IPv6. 3313 * The caller should already have used ip_laddr_verify_v*() before calling 3314 * this. 3315 */ 3316 int 3317 ip_laddr_fanout_insert(conn_t *connp) 3318 { 3319 int error; 3320 3321 /* 3322 * Allow setting new policies. For example, disconnects result 3323 * in us being called. As we would have set conn_policy_cached 3324 * to B_TRUE before, we should set it to B_FALSE, so that policy 3325 * can change after the disconnect. 3326 */ 3327 connp->conn_policy_cached = B_FALSE; 3328 3329 error = ipcl_bind_insert(connp); 3330 if (error != 0) { 3331 if (connp->conn_anon_port) { 3332 (void) tsol_mlp_anon(crgetzone(connp->conn_cred), 3333 connp->conn_mlp_type, connp->conn_proto, 3334 ntohs(connp->conn_lport), B_FALSE); 3335 } 3336 connp->conn_mlp_type = mlptSingle; 3337 } 3338 return (error); 3339 } 3340 3341 /* 3342 * Verify that both the source and destination addresses are valid. If 3343 * IPDF_VERIFY_DST is not set, then the destination address may be unreachable, 3344 * i.e. have no route to it. Protocols like TCP want to verify destination 3345 * reachability, while tunnels do not. 3346 * 3347 * Determine the route, the interface, and (optionally) the source address 3348 * to use to reach a given destination. 3349 * Note that we allow connect to broadcast and multicast addresses when 3350 * IPDF_ALLOW_MCBC is set. 3351 * first_hop and dst_addr are normally the same, but if source routing 3352 * they will differ; in that case the first_hop is what we'll use for the 3353 * routing lookup but the dce and label checks will be done on dst_addr, 3354 * 3355 * If uinfo is set, then we fill in the best available information 3356 * we have for the destination. This is based on (in priority order) any 3357 * metrics and path MTU stored in a dce_t, route metrics, and finally the 3358 * ill_mtu/ill_mc_mtu. 3359 * 3360 * Tsol note: If we have a source route then dst_addr != firsthop. But we 3361 * always do the label check on dst_addr. 3362 */ 3363 int 3364 ip_set_destination_v4(ipaddr_t *src_addrp, ipaddr_t dst_addr, ipaddr_t firsthop, 3365 ip_xmit_attr_t *ixa, iulp_t *uinfo, uint32_t flags, uint_t mac_mode) 3366 { 3367 ire_t *ire = NULL; 3368 int error = 0; 3369 ipaddr_t setsrc; /* RTF_SETSRC */ 3370 zoneid_t zoneid = ixa->ixa_zoneid; /* Honors SO_ALLZONES */ 3371 ip_stack_t *ipst = ixa->ixa_ipst; 3372 dce_t *dce; 3373 uint_t pmtu; 3374 uint_t generation; 3375 nce_t *nce; 3376 ill_t *ill = NULL; 3377 boolean_t multirt = B_FALSE; 3378 3379 ASSERT(ixa->ixa_flags & IXAF_IS_IPV4); 3380 3381 /* 3382 * We never send to zero; the ULPs map it to the loopback address. 3383 * We can't allow it since we use zero to mean unitialized in some 3384 * places. 3385 */ 3386 ASSERT(dst_addr != INADDR_ANY); 3387 3388 if (is_system_labeled()) { 3389 ts_label_t *tsl = NULL; 3390 3391 error = tsol_check_dest(ixa->ixa_tsl, &dst_addr, IPV4_VERSION, 3392 mac_mode, (flags & IPDF_ZONE_IS_GLOBAL) != 0, &tsl); 3393 if (error != 0) 3394 return (error); 3395 if (tsl != NULL) { 3396 /* Update the label */ 3397 ip_xmit_attr_replace_tsl(ixa, tsl); 3398 } 3399 } 3400 3401 setsrc = INADDR_ANY; 3402 /* 3403 * Select a route; For IPMP interfaces, we would only select 3404 * a "hidden" route (i.e., going through a specific under_ill) 3405 * if ixa_ifindex has been specified. 3406 */ 3407 ire = ip_select_route_v4(firsthop, *src_addrp, ixa, 3408 &generation, &setsrc, &error, &multirt); 3409 ASSERT(ire != NULL); /* IRE_NOROUTE if none found */ 3410 if (error != 0) 3411 goto bad_addr; 3412 3413 /* 3414 * ire can't be a broadcast or multicast unless IPDF_ALLOW_MCBC is set. 3415 * If IPDF_VERIFY_DST is set, the destination must be reachable; 3416 * Otherwise the destination needn't be reachable. 3417 * 3418 * If we match on a reject or black hole, then we've got a 3419 * local failure. May as well fail out the connect() attempt, 3420 * since it's never going to succeed. 3421 */ 3422 if (ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) { 3423 /* 3424 * If we're verifying destination reachability, we always want 3425 * to complain here. 3426 * 3427 * If we're not verifying destination reachability but the 3428 * destination has a route, we still want to fail on the 3429 * temporary address and broadcast address tests. 3430 * 3431 * In both cases do we let the code continue so some reasonable 3432 * information is returned to the caller. That enables the 3433 * caller to use (and even cache) the IRE. conn_ip_ouput will 3434 * use the generation mismatch path to check for the unreachable 3435 * case thereby avoiding any specific check in the main path. 3436 */ 3437 ASSERT(generation == IRE_GENERATION_VERIFY); 3438 if (flags & IPDF_VERIFY_DST) { 3439 /* 3440 * Set errno but continue to set up ixa_ire to be 3441 * the RTF_REJECT|RTF_BLACKHOLE IRE. 3442 * That allows callers to use ip_output to get an 3443 * ICMP error back. 3444 */ 3445 if (!(ire->ire_type & IRE_HOST)) 3446 error = ENETUNREACH; 3447 else 3448 error = EHOSTUNREACH; 3449 } 3450 } 3451 3452 if ((ire->ire_type & (IRE_BROADCAST|IRE_MULTICAST)) && 3453 !(flags & IPDF_ALLOW_MCBC)) { 3454 ire_refrele(ire); 3455 ire = ire_reject(ipst, B_FALSE); 3456 generation = IRE_GENERATION_VERIFY; 3457 error = ENETUNREACH; 3458 } 3459 3460 /* Cache things */ 3461 if (ixa->ixa_ire != NULL) 3462 ire_refrele_notr(ixa->ixa_ire); 3463 #ifdef DEBUG 3464 ire_refhold_notr(ire); 3465 ire_refrele(ire); 3466 #endif 3467 ixa->ixa_ire = ire; 3468 ixa->ixa_ire_generation = generation; 3469 3470 /* 3471 * Ensure that ixa_dce is always set any time that ixa_ire is set, 3472 * since some callers will send a packet to conn_ip_output() even if 3473 * there's an error. 3474 */ 3475 if (flags & IPDF_UNIQUE_DCE) { 3476 /* Fallback to the default dce if allocation fails */ 3477 dce = dce_lookup_and_add_v4(dst_addr, ipst); 3478 if (dce != NULL) 3479 generation = dce->dce_generation; 3480 else 3481 dce = dce_lookup_v4(dst_addr, ipst, &generation); 3482 } else { 3483 dce = dce_lookup_v4(dst_addr, ipst, &generation); 3484 } 3485 ASSERT(dce != NULL); 3486 if (ixa->ixa_dce != NULL) 3487 dce_refrele_notr(ixa->ixa_dce); 3488 #ifdef DEBUG 3489 dce_refhold_notr(dce); 3490 dce_refrele(dce); 3491 #endif 3492 ixa->ixa_dce = dce; 3493 ixa->ixa_dce_generation = generation; 3494 3495 /* 3496 * For multicast with multirt we have a flag passed back from 3497 * ire_lookup_multi_ill_v4 since we don't have an IRE for each 3498 * possible multicast address. 3499 * We also need a flag for multicast since we can't check 3500 * whether RTF_MULTIRT is set in ixa_ire for multicast. 3501 */ 3502 if (multirt) { 3503 ixa->ixa_postfragfn = ip_postfrag_multirt_v4; 3504 ixa->ixa_flags |= IXAF_MULTIRT_MULTICAST; 3505 } else { 3506 ixa->ixa_postfragfn = ire->ire_postfragfn; 3507 ixa->ixa_flags &= ~IXAF_MULTIRT_MULTICAST; 3508 } 3509 if (!(ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE))) { 3510 /* Get an nce to cache. */ 3511 nce = ire_to_nce(ire, firsthop, NULL); 3512 if (nce == NULL) { 3513 /* Allocation failure? */ 3514 ixa->ixa_ire_generation = IRE_GENERATION_VERIFY; 3515 } else { 3516 if (ixa->ixa_nce != NULL) 3517 nce_refrele(ixa->ixa_nce); 3518 ixa->ixa_nce = nce; 3519 } 3520 } 3521 3522 /* 3523 * If the source address is a loopback address, the 3524 * destination had best be local or multicast. 3525 * If we are sending to an IRE_LOCAL using a loopback source then 3526 * it had better be the same zoneid. 3527 */ 3528 if (*src_addrp == htonl(INADDR_LOOPBACK)) { 3529 if ((ire->ire_type & IRE_LOCAL) && ire->ire_zoneid != zoneid) { 3530 ire = NULL; /* Stored in ixa_ire */ 3531 error = EADDRNOTAVAIL; 3532 goto bad_addr; 3533 } 3534 if (!(ire->ire_type & (IRE_LOOPBACK|IRE_LOCAL|IRE_MULTICAST))) { 3535 ire = NULL; /* Stored in ixa_ire */ 3536 error = EADDRNOTAVAIL; 3537 goto bad_addr; 3538 } 3539 } 3540 if (ire->ire_type & IRE_BROADCAST) { 3541 /* 3542 * If the ULP didn't have a specified source, then we 3543 * make sure we reselect the source when sending 3544 * broadcasts out different interfaces. 3545 */ 3546 if (flags & IPDF_SELECT_SRC) 3547 ixa->ixa_flags |= IXAF_SET_SOURCE; 3548 else 3549 ixa->ixa_flags &= ~IXAF_SET_SOURCE; 3550 } 3551 3552 /* 3553 * Does the caller want us to pick a source address? 3554 */ 3555 if (flags & IPDF_SELECT_SRC) { 3556 ipaddr_t src_addr; 3557 3558 /* 3559 * We use use ire_nexthop_ill to avoid the under ipmp 3560 * interface for source address selection. Note that for ipmp 3561 * probe packets, ixa_ifindex would have been specified, and 3562 * the ip_select_route() invocation would have picked an ire 3563 * will ire_ill pointing at an under interface. 3564 */ 3565 ill = ire_nexthop_ill(ire); 3566 3567 /* If unreachable we have no ill but need some source */ 3568 if (ill == NULL) { 3569 src_addr = htonl(INADDR_LOOPBACK); 3570 /* Make sure we look for a better source address */ 3571 generation = SRC_GENERATION_VERIFY; 3572 } else { 3573 error = ip_select_source_v4(ill, setsrc, dst_addr, 3574 ixa->ixa_multicast_ifaddr, zoneid, 3575 ipst, &src_addr, &generation, NULL); 3576 if (error != 0) { 3577 ire = NULL; /* Stored in ixa_ire */ 3578 goto bad_addr; 3579 } 3580 } 3581 3582 /* 3583 * We allow the source address to to down. 3584 * However, we check that we don't use the loopback address 3585 * as a source when sending out on the wire. 3586 */ 3587 if ((src_addr == htonl(INADDR_LOOPBACK)) && 3588 !(ire->ire_type & (IRE_LOCAL|IRE_LOOPBACK|IRE_MULTICAST)) && 3589 !(ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE))) { 3590 ire = NULL; /* Stored in ixa_ire */ 3591 error = EADDRNOTAVAIL; 3592 goto bad_addr; 3593 } 3594 3595 *src_addrp = src_addr; 3596 ixa->ixa_src_generation = generation; 3597 } 3598 3599 /* 3600 * Make sure we don't leave an unreachable ixa_nce in place 3601 * since ip_select_route is used when we unplumb i.e., remove 3602 * references on ixa_ire, ixa_nce, and ixa_dce. 3603 */ 3604 nce = ixa->ixa_nce; 3605 if (nce != NULL && nce->nce_is_condemned) { 3606 nce_refrele(nce); 3607 ixa->ixa_nce = NULL; 3608 ixa->ixa_ire_generation = IRE_GENERATION_VERIFY; 3609 } 3610 3611 /* 3612 * The caller has set IXAF_PMTU_DISCOVERY if path MTU is desired. 3613 * However, we can't do it for IPv4 multicast or broadcast. 3614 */ 3615 if (ire->ire_type & (IRE_BROADCAST|IRE_MULTICAST)) 3616 ixa->ixa_flags &= ~IXAF_PMTU_DISCOVERY; 3617 3618 /* 3619 * Set initial value for fragmentation limit. Either conn_ip_output 3620 * or ULP might updates it when there are routing changes. 3621 * Handles a NULL ixa_ire->ire_ill or a NULL ixa_nce for RTF_REJECT. 3622 */ 3623 pmtu = ip_get_pmtu(ixa); 3624 ixa->ixa_fragsize = pmtu; 3625 /* Make sure ixa_fragsize and ixa_pmtu remain identical */ 3626 if (ixa->ixa_flags & IXAF_VERIFY_PMTU) 3627 ixa->ixa_pmtu = pmtu; 3628 3629 /* 3630 * Extract information useful for some transports. 3631 * First we look for DCE metrics. Then we take what we have in 3632 * the metrics in the route, where the offlink is used if we have 3633 * one. 3634 */ 3635 if (uinfo != NULL) { 3636 bzero(uinfo, sizeof (*uinfo)); 3637 3638 if (dce->dce_flags & DCEF_UINFO) 3639 *uinfo = dce->dce_uinfo; 3640 3641 rts_merge_metrics(uinfo, &ire->ire_metrics); 3642 3643 /* Allow ire_metrics to decrease the path MTU from above */ 3644 if (uinfo->iulp_mtu == 0 || uinfo->iulp_mtu > pmtu) 3645 uinfo->iulp_mtu = pmtu; 3646 3647 uinfo->iulp_localnet = (ire->ire_type & IRE_ONLINK) != 0; 3648 uinfo->iulp_loopback = (ire->ire_type & IRE_LOOPBACK) != 0; 3649 uinfo->iulp_local = (ire->ire_type & IRE_LOCAL) != 0; 3650 } 3651 3652 if (ill != NULL) 3653 ill_refrele(ill); 3654 3655 return (error); 3656 3657 bad_addr: 3658 if (ire != NULL) 3659 ire_refrele(ire); 3660 3661 if (ill != NULL) 3662 ill_refrele(ill); 3663 3664 /* 3665 * Make sure we don't leave an unreachable ixa_nce in place 3666 * since ip_select_route is used when we unplumb i.e., remove 3667 * references on ixa_ire, ixa_nce, and ixa_dce. 3668 */ 3669 nce = ixa->ixa_nce; 3670 if (nce != NULL && nce->nce_is_condemned) { 3671 nce_refrele(nce); 3672 ixa->ixa_nce = NULL; 3673 ixa->ixa_ire_generation = IRE_GENERATION_VERIFY; 3674 } 3675 3676 return (error); 3677 } 3678 3679 3680 /* 3681 * Get the base MTU for the case when path MTU discovery is not used. 3682 * Takes the MTU of the IRE into account. 3683 */ 3684 uint_t 3685 ip_get_base_mtu(ill_t *ill, ire_t *ire) 3686 { 3687 uint_t mtu; 3688 uint_t iremtu = ire->ire_metrics.iulp_mtu; 3689 3690 if (ire->ire_type & (IRE_MULTICAST|IRE_BROADCAST)) 3691 mtu = ill->ill_mc_mtu; 3692 else 3693 mtu = ill->ill_mtu; 3694 3695 if (iremtu != 0 && iremtu < mtu) 3696 mtu = iremtu; 3697 3698 return (mtu); 3699 } 3700 3701 /* 3702 * Get the PMTU for the attributes. Handles both IPv4 and IPv6. 3703 * Assumes that ixa_ire, dce, and nce have already been set up. 3704 * 3705 * The caller has set IXAF_PMTU_DISCOVERY if path MTU discovery is desired. 3706 * We avoid path MTU discovery if it is disabled with ndd. 3707 * Furtermore, if the path MTU is too small, then we don't set DF for IPv4. 3708 * 3709 * NOTE: We also used to turn it off for source routed packets. That 3710 * is no longer required since the dce is per final destination. 3711 */ 3712 uint_t 3713 ip_get_pmtu(ip_xmit_attr_t *ixa) 3714 { 3715 ip_stack_t *ipst = ixa->ixa_ipst; 3716 dce_t *dce; 3717 nce_t *nce; 3718 ire_t *ire; 3719 uint_t pmtu; 3720 3721 ire = ixa->ixa_ire; 3722 dce = ixa->ixa_dce; 3723 nce = ixa->ixa_nce; 3724 3725 /* 3726 * If path MTU discovery has been turned off by ndd, then we ignore 3727 * any dce_pmtu and for IPv4 we will not set DF. 3728 */ 3729 if (!ipst->ips_ip_path_mtu_discovery) 3730 ixa->ixa_flags &= ~IXAF_PMTU_DISCOVERY; 3731 3732 pmtu = IP_MAXPACKET; 3733 /* 3734 * Decide whether whether IPv4 sets DF 3735 * For IPv6 "no DF" means to use the 1280 mtu 3736 */ 3737 if (ixa->ixa_flags & IXAF_PMTU_DISCOVERY) { 3738 ixa->ixa_flags |= IXAF_PMTU_IPV4_DF; 3739 } else { 3740 ixa->ixa_flags &= ~IXAF_PMTU_IPV4_DF; 3741 if (!(ixa->ixa_flags & IXAF_IS_IPV4)) 3742 pmtu = IPV6_MIN_MTU; 3743 } 3744 3745 /* Check if the PMTU is to old before we use it */ 3746 if ((dce->dce_flags & DCEF_PMTU) && 3747 TICK_TO_SEC(ddi_get_lbolt64()) - dce->dce_last_change_time > 3748 ipst->ips_ip_pathmtu_interval) { 3749 /* 3750 * Older than 20 minutes. Drop the path MTU information. 3751 */ 3752 mutex_enter(&dce->dce_lock); 3753 dce->dce_flags &= ~(DCEF_PMTU|DCEF_TOO_SMALL_PMTU); 3754 dce->dce_last_change_time = TICK_TO_SEC(ddi_get_lbolt64()); 3755 mutex_exit(&dce->dce_lock); 3756 dce_increment_generation(dce); 3757 } 3758 3759 /* The metrics on the route can lower the path MTU */ 3760 if (ire->ire_metrics.iulp_mtu != 0 && 3761 ire->ire_metrics.iulp_mtu < pmtu) 3762 pmtu = ire->ire_metrics.iulp_mtu; 3763 3764 /* 3765 * If the path MTU is smaller than some minimum, we still use dce_pmtu 3766 * above (would be 576 for IPv4 and 1280 for IPv6), but we clear 3767 * IXAF_PMTU_IPV4_DF so that we avoid setting DF for IPv4. 3768 */ 3769 if (ixa->ixa_flags & IXAF_PMTU_DISCOVERY) { 3770 if (dce->dce_flags & DCEF_PMTU) { 3771 if (dce->dce_pmtu < pmtu) 3772 pmtu = dce->dce_pmtu; 3773 3774 if (dce->dce_flags & DCEF_TOO_SMALL_PMTU) { 3775 ixa->ixa_flags |= IXAF_PMTU_TOO_SMALL; 3776 ixa->ixa_flags &= ~IXAF_PMTU_IPV4_DF; 3777 } else { 3778 ixa->ixa_flags &= ~IXAF_PMTU_TOO_SMALL; 3779 ixa->ixa_flags |= IXAF_PMTU_IPV4_DF; 3780 } 3781 } else { 3782 ixa->ixa_flags &= ~IXAF_PMTU_TOO_SMALL; 3783 ixa->ixa_flags |= IXAF_PMTU_IPV4_DF; 3784 } 3785 } 3786 3787 /* 3788 * If we have an IRE_LOCAL we use the loopback mtu instead of 3789 * the ill for going out the wire i.e., IRE_LOCAL gets the same 3790 * mtu as IRE_LOOPBACK. 3791 */ 3792 if (ire->ire_type & (IRE_LOCAL|IRE_LOOPBACK)) { 3793 uint_t loopback_mtu; 3794 3795 loopback_mtu = (ire->ire_ipversion == IPV6_VERSION) ? 3796 ip_loopback_mtu_v6plus : ip_loopback_mtuplus; 3797 3798 if (loopback_mtu < pmtu) 3799 pmtu = loopback_mtu; 3800 } else if (nce != NULL) { 3801 /* 3802 * Make sure we don't exceed the interface MTU. 3803 * In the case of RTF_REJECT or RTF_BLACKHOLE we might not have 3804 * an ill. We'd use the above IP_MAXPACKET in that case just 3805 * to tell the transport something larger than zero. 3806 */ 3807 if (ire->ire_type & (IRE_MULTICAST|IRE_BROADCAST)) { 3808 if (nce->nce_common->ncec_ill->ill_mc_mtu < pmtu) 3809 pmtu = nce->nce_common->ncec_ill->ill_mc_mtu; 3810 if (nce->nce_common->ncec_ill != nce->nce_ill && 3811 nce->nce_ill->ill_mc_mtu < pmtu) { 3812 /* 3813 * for interfaces in an IPMP group, the mtu of 3814 * the nce_ill (under_ill) could be different 3815 * from the mtu of the ncec_ill, so we take the 3816 * min of the two. 3817 */ 3818 pmtu = nce->nce_ill->ill_mc_mtu; 3819 } 3820 } else { 3821 if (nce->nce_common->ncec_ill->ill_mtu < pmtu) 3822 pmtu = nce->nce_common->ncec_ill->ill_mtu; 3823 if (nce->nce_common->ncec_ill != nce->nce_ill && 3824 nce->nce_ill->ill_mtu < pmtu) { 3825 /* 3826 * for interfaces in an IPMP group, the mtu of 3827 * the nce_ill (under_ill) could be different 3828 * from the mtu of the ncec_ill, so we take the 3829 * min of the two. 3830 */ 3831 pmtu = nce->nce_ill->ill_mtu; 3832 } 3833 } 3834 } 3835 3836 /* 3837 * Handle the IPV6_USE_MIN_MTU socket option or ancillary data. 3838 * Only applies to IPv6. 3839 */ 3840 if (!(ixa->ixa_flags & IXAF_IS_IPV4)) { 3841 if (ixa->ixa_flags & IXAF_USE_MIN_MTU) { 3842 switch (ixa->ixa_use_min_mtu) { 3843 case IPV6_USE_MIN_MTU_MULTICAST: 3844 if (ire->ire_type & IRE_MULTICAST) 3845 pmtu = IPV6_MIN_MTU; 3846 break; 3847 case IPV6_USE_MIN_MTU_ALWAYS: 3848 pmtu = IPV6_MIN_MTU; 3849 break; 3850 case IPV6_USE_MIN_MTU_NEVER: 3851 break; 3852 } 3853 } else { 3854 /* Default is IPV6_USE_MIN_MTU_MULTICAST */ 3855 if (ire->ire_type & IRE_MULTICAST) 3856 pmtu = IPV6_MIN_MTU; 3857 } 3858 } 3859 3860 /* 3861 * After receiving an ICMPv6 "packet too big" message with a 3862 * MTU < 1280, and for multirouted IPv6 packets, the IP layer 3863 * will insert a 8-byte fragment header in every packet. We compensate 3864 * for those cases by returning a smaller path MTU to the ULP. 3865 * 3866 * In the case of CGTP then ip_output will add a fragment header. 3867 * Make sure there is room for it by telling a smaller number 3868 * to the transport. 3869 * 3870 * When IXAF_IPV6_ADDR_FRAGHDR we subtract the frag hdr here 3871 * so the ULPs consistently see a iulp_pmtu and ip_get_pmtu() 3872 * which is the size of the packets it can send. 3873 */ 3874 if (!(ixa->ixa_flags & IXAF_IS_IPV4)) { 3875 if ((dce->dce_flags & DCEF_TOO_SMALL_PMTU) || 3876 (ire->ire_flags & RTF_MULTIRT) || 3877 (ixa->ixa_flags & IXAF_MULTIRT_MULTICAST)) { 3878 pmtu -= sizeof (ip6_frag_t); 3879 ixa->ixa_flags |= IXAF_IPV6_ADD_FRAGHDR; 3880 } 3881 } 3882 3883 return (pmtu); 3884 } 3885 3886 /* 3887 * Carve "len" bytes out of an mblk chain, consuming any we empty, and duping 3888 * the final piece where we don't. Return a pointer to the first mblk in the 3889 * result, and update the pointer to the next mblk to chew on. If anything 3890 * goes wrong (i.e., dupb fails), we waste everything in sight and return a 3891 * NULL pointer. 3892 */ 3893 mblk_t * 3894 ip_carve_mp(mblk_t **mpp, ssize_t len) 3895 { 3896 mblk_t *mp0; 3897 mblk_t *mp1; 3898 mblk_t *mp2; 3899 3900 if (!len || !mpp || !(mp0 = *mpp)) 3901 return (NULL); 3902 /* If we aren't going to consume the first mblk, we need a dup. */ 3903 if (mp0->b_wptr - mp0->b_rptr > len) { 3904 mp1 = dupb(mp0); 3905 if (mp1) { 3906 /* Partition the data between the two mblks. */ 3907 mp1->b_wptr = mp1->b_rptr + len; 3908 mp0->b_rptr = mp1->b_wptr; 3909 /* 3910 * after adjustments if mblk not consumed is now 3911 * unaligned, try to align it. If this fails free 3912 * all messages and let upper layer recover. 3913 */ 3914 if (!OK_32PTR(mp0->b_rptr)) { 3915 if (!pullupmsg(mp0, -1)) { 3916 freemsg(mp0); 3917 freemsg(mp1); 3918 *mpp = NULL; 3919 return (NULL); 3920 } 3921 } 3922 } 3923 return (mp1); 3924 } 3925 /* Eat through as many mblks as we need to get len bytes. */ 3926 len -= mp0->b_wptr - mp0->b_rptr; 3927 for (mp2 = mp1 = mp0; (mp2 = mp2->b_cont) != 0 && len; mp1 = mp2) { 3928 if (mp2->b_wptr - mp2->b_rptr > len) { 3929 /* 3930 * We won't consume the entire last mblk. Like 3931 * above, dup and partition it. 3932 */ 3933 mp1->b_cont = dupb(mp2); 3934 mp1 = mp1->b_cont; 3935 if (!mp1) { 3936 /* 3937 * Trouble. Rather than go to a lot of 3938 * trouble to clean up, we free the messages. 3939 * This won't be any worse than losing it on 3940 * the wire. 3941 */ 3942 freemsg(mp0); 3943 freemsg(mp2); 3944 *mpp = NULL; 3945 return (NULL); 3946 } 3947 mp1->b_wptr = mp1->b_rptr + len; 3948 mp2->b_rptr = mp1->b_wptr; 3949 /* 3950 * after adjustments if mblk not consumed is now 3951 * unaligned, try to align it. If this fails free 3952 * all messages and let upper layer recover. 3953 */ 3954 if (!OK_32PTR(mp2->b_rptr)) { 3955 if (!pullupmsg(mp2, -1)) { 3956 freemsg(mp0); 3957 freemsg(mp2); 3958 *mpp = NULL; 3959 return (NULL); 3960 } 3961 } 3962 *mpp = mp2; 3963 return (mp0); 3964 } 3965 /* Decrement len by the amount we just got. */ 3966 len -= mp2->b_wptr - mp2->b_rptr; 3967 } 3968 /* 3969 * len should be reduced to zero now. If not our caller has 3970 * screwed up. 3971 */ 3972 if (len) { 3973 /* Shouldn't happen! */ 3974 freemsg(mp0); 3975 *mpp = NULL; 3976 return (NULL); 3977 } 3978 /* 3979 * We consumed up to exactly the end of an mblk. Detach the part 3980 * we are returning from the rest of the chain. 3981 */ 3982 mp1->b_cont = NULL; 3983 *mpp = mp2; 3984 return (mp0); 3985 } 3986 3987 /* The ill stream is being unplumbed. Called from ip_close */ 3988 int 3989 ip_modclose(ill_t *ill) 3990 { 3991 boolean_t success; 3992 ipsq_t *ipsq; 3993 ipif_t *ipif; 3994 queue_t *q = ill->ill_rq; 3995 ip_stack_t *ipst = ill->ill_ipst; 3996 int i; 3997 arl_ill_common_t *ai = ill->ill_common; 3998 3999 /* 4000 * The punlink prior to this may have initiated a capability 4001 * negotiation. But ipsq_enter will block until that finishes or 4002 * times out. 4003 */ 4004 success = ipsq_enter(ill, B_FALSE, NEW_OP); 4005 4006 /* 4007 * Open/close/push/pop is guaranteed to be single threaded 4008 * per stream by STREAMS. FS guarantees that all references 4009 * from top are gone before close is called. So there can't 4010 * be another close thread that has set CONDEMNED on this ill. 4011 * and cause ipsq_enter to return failure. 4012 */ 4013 ASSERT(success); 4014 ipsq = ill->ill_phyint->phyint_ipsq; 4015 4016 /* 4017 * Mark it condemned. No new reference will be made to this ill. 4018 * Lookup functions will return an error. Threads that try to 4019 * increment the refcnt must check for ILL_CAN_LOOKUP. This ensures 4020 * that the refcnt will drop down to zero. 4021 */ 4022 mutex_enter(&ill->ill_lock); 4023 ill->ill_state_flags |= ILL_CONDEMNED; 4024 for (ipif = ill->ill_ipif; ipif != NULL; 4025 ipif = ipif->ipif_next) { 4026 ipif->ipif_state_flags |= IPIF_CONDEMNED; 4027 } 4028 /* 4029 * Wake up anybody waiting to enter the ipsq. ipsq_enter 4030 * returns error if ILL_CONDEMNED is set 4031 */ 4032 cv_broadcast(&ill->ill_cv); 4033 mutex_exit(&ill->ill_lock); 4034 4035 /* 4036 * Send all the deferred DLPI messages downstream which came in 4037 * during the small window right before ipsq_enter(). We do this 4038 * without waiting for the ACKs because all the ACKs for M_PROTO 4039 * messages are ignored in ip_rput() when ILL_CONDEMNED is set. 4040 */ 4041 ill_dlpi_send_deferred(ill); 4042 4043 /* 4044 * Shut down fragmentation reassembly. 4045 * ill_frag_timer won't start a timer again. 4046 * Now cancel any existing timer 4047 */ 4048 (void) untimeout(ill->ill_frag_timer_id); 4049 (void) ill_frag_timeout(ill, 0); 4050 4051 /* 4052 * Call ill_delete to bring down the ipifs, ilms and ill on 4053 * this ill. Then wait for the refcnts to drop to zero. 4054 * ill_is_freeable checks whether the ill is really quiescent. 4055 * Then make sure that threads that are waiting to enter the 4056 * ipsq have seen the error returned by ipsq_enter and have 4057 * gone away. Then we call ill_delete_tail which does the 4058 * DL_UNBIND_REQ with the driver and then qprocsoff. 4059 */ 4060 ill_delete(ill); 4061 mutex_enter(&ill->ill_lock); 4062 while (!ill_is_freeable(ill)) 4063 cv_wait(&ill->ill_cv, &ill->ill_lock); 4064 4065 while (ill->ill_waiters) 4066 cv_wait(&ill->ill_cv, &ill->ill_lock); 4067 4068 mutex_exit(&ill->ill_lock); 4069 4070 /* 4071 * ill_delete_tail drops reference on ill_ipst, but we need to keep 4072 * it held until the end of the function since the cleanup 4073 * below needs to be able to use the ip_stack_t. 4074 */ 4075 netstack_hold(ipst->ips_netstack); 4076 4077 /* qprocsoff is done via ill_delete_tail */ 4078 ill_delete_tail(ill); 4079 /* 4080 * synchronously wait for arp stream to unbind. After this, we 4081 * cannot get any data packets up from the driver. 4082 */ 4083 arp_unbind_complete(ill); 4084 ASSERT(ill->ill_ipst == NULL); 4085 4086 /* 4087 * Walk through all conns and qenable those that have queued data. 4088 * Close synchronization needs this to 4089 * be done to ensure that all upper layers blocked 4090 * due to flow control to the closing device 4091 * get unblocked. 4092 */ 4093 ip1dbg(("ip_wsrv: walking\n")); 4094 for (i = 0; i < TX_FANOUT_SIZE; i++) { 4095 conn_walk_drain(ipst, &ipst->ips_idl_tx_list[i]); 4096 } 4097 4098 /* 4099 * ai can be null if this is an IPv6 ill, or if the IPv4 4100 * stream is being torn down before ARP was plumbed (e.g., 4101 * /sbin/ifconfig plumbing a stream twice, and encountering 4102 * an error 4103 */ 4104 if (ai != NULL) { 4105 ASSERT(!ill->ill_isv6); 4106 mutex_enter(&ai->ai_lock); 4107 ai->ai_ill = NULL; 4108 if (ai->ai_arl == NULL) { 4109 mutex_destroy(&ai->ai_lock); 4110 kmem_free(ai, sizeof (*ai)); 4111 } else { 4112 cv_signal(&ai->ai_ill_unplumb_done); 4113 mutex_exit(&ai->ai_lock); 4114 } 4115 } 4116 4117 mutex_enter(&ipst->ips_ip_mi_lock); 4118 mi_close_unlink(&ipst->ips_ip_g_head, (IDP)ill); 4119 mutex_exit(&ipst->ips_ip_mi_lock); 4120 4121 /* 4122 * credp could be null if the open didn't succeed and ip_modopen 4123 * itself calls ip_close. 4124 */ 4125 if (ill->ill_credp != NULL) 4126 crfree(ill->ill_credp); 4127 4128 mutex_destroy(&ill->ill_saved_ire_lock); 4129 mutex_destroy(&ill->ill_lock); 4130 rw_destroy(&ill->ill_mcast_lock); 4131 mutex_destroy(&ill->ill_mcast_serializer); 4132 list_destroy(&ill->ill_nce); 4133 4134 /* 4135 * Now we are done with the module close pieces that 4136 * need the netstack_t. 4137 */ 4138 netstack_rele(ipst->ips_netstack); 4139 4140 mi_close_free((IDP)ill); 4141 q->q_ptr = WR(q)->q_ptr = NULL; 4142 4143 ipsq_exit(ipsq); 4144 4145 return (0); 4146 } 4147 4148 /* 4149 * This is called as part of close() for IP, UDP, ICMP, and RTS 4150 * in order to quiesce the conn. 4151 */ 4152 void 4153 ip_quiesce_conn(conn_t *connp) 4154 { 4155 boolean_t drain_cleanup_reqd = B_FALSE; 4156 boolean_t conn_ioctl_cleanup_reqd = B_FALSE; 4157 boolean_t ilg_cleanup_reqd = B_FALSE; 4158 ip_stack_t *ipst; 4159 4160 ASSERT(!IPCL_IS_TCP(connp)); 4161 ipst = connp->conn_netstack->netstack_ip; 4162 4163 /* 4164 * Mark the conn as closing, and this conn must not be 4165 * inserted in future into any list. Eg. conn_drain_insert(), 4166 * won't insert this conn into the conn_drain_list. 4167 * 4168 * conn_idl, and conn_ilg cannot get set henceforth. 4169 */ 4170 mutex_enter(&connp->conn_lock); 4171 ASSERT(!(connp->conn_state_flags & CONN_QUIESCED)); 4172 connp->conn_state_flags |= CONN_CLOSING; 4173 if (connp->conn_idl != NULL) 4174 drain_cleanup_reqd = B_TRUE; 4175 if (connp->conn_oper_pending_ill != NULL) 4176 conn_ioctl_cleanup_reqd = B_TRUE; 4177 if (connp->conn_dhcpinit_ill != NULL) { 4178 ASSERT(connp->conn_dhcpinit_ill->ill_dhcpinit != 0); 4179 atomic_dec_32(&connp->conn_dhcpinit_ill->ill_dhcpinit); 4180 ill_set_inputfn(connp->conn_dhcpinit_ill); 4181 connp->conn_dhcpinit_ill = NULL; 4182 } 4183 if (connp->conn_ilg != NULL) 4184 ilg_cleanup_reqd = B_TRUE; 4185 mutex_exit(&connp->conn_lock); 4186 4187 if (conn_ioctl_cleanup_reqd) 4188 conn_ioctl_cleanup(connp); 4189 4190 if (is_system_labeled() && connp->conn_anon_port) { 4191 (void) tsol_mlp_anon(crgetzone(connp->conn_cred), 4192 connp->conn_mlp_type, connp->conn_proto, 4193 ntohs(connp->conn_lport), B_FALSE); 4194 connp->conn_anon_port = 0; 4195 } 4196 connp->conn_mlp_type = mlptSingle; 4197 4198 /* 4199 * Remove this conn from any fanout list it is on. 4200 * and then wait for any threads currently operating 4201 * on this endpoint to finish 4202 */ 4203 ipcl_hash_remove(connp); 4204 4205 /* 4206 * Remove this conn from the drain list, and do any other cleanup that 4207 * may be required. (TCP conns are never flow controlled, and 4208 * conn_idl will be NULL.) 4209 */ 4210 if (drain_cleanup_reqd && connp->conn_idl != NULL) { 4211 idl_t *idl = connp->conn_idl; 4212 4213 mutex_enter(&idl->idl_lock); 4214 conn_drain(connp, B_TRUE); 4215 mutex_exit(&idl->idl_lock); 4216 } 4217 4218 if (connp == ipst->ips_ip_g_mrouter) 4219 (void) ip_mrouter_done(ipst); 4220 4221 if (ilg_cleanup_reqd) 4222 ilg_delete_all(connp); 4223 4224 /* 4225 * Now conn refcnt can increase only thru CONN_INC_REF_LOCKED. 4226 * callers from write side can't be there now because close 4227 * is in progress. The only other caller is ipcl_walk 4228 * which checks for the condemned flag. 4229 */ 4230 mutex_enter(&connp->conn_lock); 4231 connp->conn_state_flags |= CONN_CONDEMNED; 4232 while (connp->conn_ref != 1) 4233 cv_wait(&connp->conn_cv, &connp->conn_lock); 4234 connp->conn_state_flags |= CONN_QUIESCED; 4235 mutex_exit(&connp->conn_lock); 4236 } 4237 4238 /* ARGSUSED */ 4239 int 4240 ip_close(queue_t *q, int flags) 4241 { 4242 conn_t *connp; 4243 4244 /* 4245 * Call the appropriate delete routine depending on whether this is 4246 * a module or device. 4247 */ 4248 if (WR(q)->q_next != NULL) { 4249 /* This is a module close */ 4250 return (ip_modclose((ill_t *)q->q_ptr)); 4251 } 4252 4253 connp = q->q_ptr; 4254 ip_quiesce_conn(connp); 4255 4256 qprocsoff(q); 4257 4258 /* 4259 * Now we are truly single threaded on this stream, and can 4260 * delete the things hanging off the connp, and finally the connp. 4261 * We removed this connp from the fanout list, it cannot be 4262 * accessed thru the fanouts, and we already waited for the 4263 * conn_ref to drop to 0. We are already in close, so 4264 * there cannot be any other thread from the top. qprocsoff 4265 * has completed, and service has completed or won't run in 4266 * future. 4267 */ 4268 ASSERT(connp->conn_ref == 1); 4269 4270 inet_minor_free(connp->conn_minor_arena, connp->conn_dev); 4271 4272 connp->conn_ref--; 4273 ipcl_conn_destroy(connp); 4274 4275 q->q_ptr = WR(q)->q_ptr = NULL; 4276 return (0); 4277 } 4278 4279 /* 4280 * Wapper around putnext() so that ip_rts_request can merely use 4281 * conn_recv. 4282 */ 4283 /*ARGSUSED2*/ 4284 static void 4285 ip_conn_input(void *arg1, mblk_t *mp, void *arg2, ip_recv_attr_t *ira) 4286 { 4287 conn_t *connp = (conn_t *)arg1; 4288 4289 putnext(connp->conn_rq, mp); 4290 } 4291 4292 /* Dummy in case ICMP error delivery is attempted to a /dev/ip instance */ 4293 /* ARGSUSED */ 4294 static void 4295 ip_conn_input_icmp(void *arg1, mblk_t *mp, void *arg2, ip_recv_attr_t *ira) 4296 { 4297 freemsg(mp); 4298 } 4299 4300 /* 4301 * Called when the module is about to be unloaded 4302 */ 4303 void 4304 ip_ddi_destroy(void) 4305 { 4306 /* This needs to be called before destroying any transports. */ 4307 mutex_enter(&cpu_lock); 4308 unregister_cpu_setup_func(ip_tp_cpu_update, NULL); 4309 mutex_exit(&cpu_lock); 4310 4311 tnet_fini(); 4312 4313 icmp_ddi_g_destroy(); 4314 rts_ddi_g_destroy(); 4315 udp_ddi_g_destroy(); 4316 sctp_ddi_g_destroy(); 4317 tcp_ddi_g_destroy(); 4318 ilb_ddi_g_destroy(); 4319 dce_g_destroy(); 4320 ipsec_policy_g_destroy(); 4321 ipcl_g_destroy(); 4322 ip_net_g_destroy(); 4323 ip_ire_g_fini(); 4324 inet_minor_destroy(ip_minor_arena_sa); 4325 #if defined(_LP64) 4326 inet_minor_destroy(ip_minor_arena_la); 4327 #endif 4328 4329 #ifdef DEBUG 4330 list_destroy(&ip_thread_list); 4331 rw_destroy(&ip_thread_rwlock); 4332 tsd_destroy(&ip_thread_data); 4333 #endif 4334 4335 netstack_unregister(NS_IP); 4336 } 4337 4338 /* 4339 * First step in cleanup. 4340 */ 4341 /* ARGSUSED */ 4342 static void 4343 ip_stack_shutdown(netstackid_t stackid, void *arg) 4344 { 4345 ip_stack_t *ipst = (ip_stack_t *)arg; 4346 kt_did_t ktid; 4347 4348 #ifdef NS_DEBUG 4349 printf("ip_stack_shutdown(%p, stack %d)\n", (void *)ipst, stackid); 4350 #endif 4351 4352 /* 4353 * Perform cleanup for special interfaces (loopback and IPMP). 4354 */ 4355 ip_interface_cleanup(ipst); 4356 4357 /* 4358 * The *_hook_shutdown()s start the process of notifying any 4359 * consumers that things are going away.... nothing is destroyed. 4360 */ 4361 ipv4_hook_shutdown(ipst); 4362 ipv6_hook_shutdown(ipst); 4363 arp_hook_shutdown(ipst); 4364 4365 mutex_enter(&ipst->ips_capab_taskq_lock); 4366 ktid = ipst->ips_capab_taskq_thread->t_did; 4367 ipst->ips_capab_taskq_quit = B_TRUE; 4368 cv_signal(&ipst->ips_capab_taskq_cv); 4369 mutex_exit(&ipst->ips_capab_taskq_lock); 4370 4371 /* 4372 * In rare occurrences, particularly on virtual hardware where CPUs can 4373 * be de-scheduled, the thread that we just signaled will not run until 4374 * after we have gotten through parts of ip_stack_fini. If that happens 4375 * then we'll try to grab the ips_capab_taskq_lock as part of returning 4376 * from cv_wait which no longer exists. 4377 */ 4378 thread_join(ktid); 4379 } 4380 4381 /* 4382 * Free the IP stack instance. 4383 */ 4384 static void 4385 ip_stack_fini(netstackid_t stackid, void *arg) 4386 { 4387 ip_stack_t *ipst = (ip_stack_t *)arg; 4388 int ret; 4389 4390 #ifdef NS_DEBUG 4391 printf("ip_stack_fini(%p, stack %d)\n", (void *)ipst, stackid); 4392 #endif 4393 /* 4394 * At this point, all of the notifications that the events and 4395 * protocols are going away have been run, meaning that we can 4396 * now set about starting to clean things up. 4397 */ 4398 ipobs_fini(ipst); 4399 ipv4_hook_destroy(ipst); 4400 ipv6_hook_destroy(ipst); 4401 arp_hook_destroy(ipst); 4402 ip_net_destroy(ipst); 4403 4404 ipmp_destroy(ipst); 4405 4406 ip_kstat_fini(stackid, ipst->ips_ip_mibkp); 4407 ipst->ips_ip_mibkp = NULL; 4408 icmp_kstat_fini(stackid, ipst->ips_icmp_mibkp); 4409 ipst->ips_icmp_mibkp = NULL; 4410 ip_kstat2_fini(stackid, ipst->ips_ip_kstat); 4411 ipst->ips_ip_kstat = NULL; 4412 bzero(&ipst->ips_ip_statistics, sizeof (ipst->ips_ip_statistics)); 4413 ip6_kstat_fini(stackid, ipst->ips_ip6_kstat); 4414 ipst->ips_ip6_kstat = NULL; 4415 bzero(&ipst->ips_ip6_statistics, sizeof (ipst->ips_ip6_statistics)); 4416 4417 kmem_free(ipst->ips_propinfo_tbl, 4418 ip_propinfo_count * sizeof (mod_prop_info_t)); 4419 ipst->ips_propinfo_tbl = NULL; 4420 4421 dce_stack_destroy(ipst); 4422 ip_mrouter_stack_destroy(ipst); 4423 4424 ret = untimeout(ipst->ips_igmp_timeout_id); 4425 if (ret == -1) { 4426 ASSERT(ipst->ips_igmp_timeout_id == 0); 4427 } else { 4428 ASSERT(ipst->ips_igmp_timeout_id != 0); 4429 ipst->ips_igmp_timeout_id = 0; 4430 } 4431 ret = untimeout(ipst->ips_igmp_slowtimeout_id); 4432 if (ret == -1) { 4433 ASSERT(ipst->ips_igmp_slowtimeout_id == 0); 4434 } else { 4435 ASSERT(ipst->ips_igmp_slowtimeout_id != 0); 4436 ipst->ips_igmp_slowtimeout_id = 0; 4437 } 4438 ret = untimeout(ipst->ips_mld_timeout_id); 4439 if (ret == -1) { 4440 ASSERT(ipst->ips_mld_timeout_id == 0); 4441 } else { 4442 ASSERT(ipst->ips_mld_timeout_id != 0); 4443 ipst->ips_mld_timeout_id = 0; 4444 } 4445 ret = untimeout(ipst->ips_mld_slowtimeout_id); 4446 if (ret == -1) { 4447 ASSERT(ipst->ips_mld_slowtimeout_id == 0); 4448 } else { 4449 ASSERT(ipst->ips_mld_slowtimeout_id != 0); 4450 ipst->ips_mld_slowtimeout_id = 0; 4451 } 4452 4453 ip_ire_fini(ipst); 4454 ip6_asp_free(ipst); 4455 conn_drain_fini(ipst); 4456 ipcl_destroy(ipst); 4457 4458 mutex_destroy(&ipst->ips_ndp4->ndp_g_lock); 4459 mutex_destroy(&ipst->ips_ndp6->ndp_g_lock); 4460 kmem_free(ipst->ips_ndp4, sizeof (ndp_g_t)); 4461 ipst->ips_ndp4 = NULL; 4462 kmem_free(ipst->ips_ndp6, sizeof (ndp_g_t)); 4463 ipst->ips_ndp6 = NULL; 4464 4465 if (ipst->ips_loopback_ksp != NULL) { 4466 kstat_delete_netstack(ipst->ips_loopback_ksp, stackid); 4467 ipst->ips_loopback_ksp = NULL; 4468 } 4469 4470 mutex_destroy(&ipst->ips_capab_taskq_lock); 4471 cv_destroy(&ipst->ips_capab_taskq_cv); 4472 4473 rw_destroy(&ipst->ips_srcid_lock); 4474 4475 mutex_destroy(&ipst->ips_ip_mi_lock); 4476 rw_destroy(&ipst->ips_ill_g_usesrc_lock); 4477 4478 mutex_destroy(&ipst->ips_igmp_timer_lock); 4479 mutex_destroy(&ipst->ips_mld_timer_lock); 4480 mutex_destroy(&ipst->ips_igmp_slowtimeout_lock); 4481 mutex_destroy(&ipst->ips_mld_slowtimeout_lock); 4482 mutex_destroy(&ipst->ips_ip_addr_avail_lock); 4483 rw_destroy(&ipst->ips_ill_g_lock); 4484 4485 kmem_free(ipst->ips_phyint_g_list, sizeof (phyint_list_t)); 4486 ipst->ips_phyint_g_list = NULL; 4487 kmem_free(ipst->ips_ill_g_heads, sizeof (ill_g_head_t) * MAX_G_HEADS); 4488 ipst->ips_ill_g_heads = NULL; 4489 4490 ldi_ident_release(ipst->ips_ldi_ident); 4491 kmem_free(ipst, sizeof (*ipst)); 4492 } 4493 4494 /* 4495 * This function is called from the TSD destructor, and is used to debug 4496 * reference count issues in IP. See block comment in <inet/ip_if.h> for 4497 * details. 4498 */ 4499 static void 4500 ip_thread_exit(void *phash) 4501 { 4502 th_hash_t *thh = phash; 4503 4504 rw_enter(&ip_thread_rwlock, RW_WRITER); 4505 list_remove(&ip_thread_list, thh); 4506 rw_exit(&ip_thread_rwlock); 4507 mod_hash_destroy_hash(thh->thh_hash); 4508 kmem_free(thh, sizeof (*thh)); 4509 } 4510 4511 /* 4512 * Called when the IP kernel module is loaded into the kernel 4513 */ 4514 void 4515 ip_ddi_init(void) 4516 { 4517 ip_squeue_flag = ip_squeue_switch(ip_squeue_enter); 4518 4519 /* 4520 * For IP and TCP the minor numbers should start from 2 since we have 4 4521 * initial devices: ip, ip6, tcp, tcp6. 4522 */ 4523 /* 4524 * If this is a 64-bit kernel, then create two separate arenas - 4525 * one for TLIs in the range of INET_MIN_DEV+2 through 2^^18-1, and the 4526 * other for socket apps in the range 2^^18 through 2^^32-1. 4527 */ 4528 ip_minor_arena_la = NULL; 4529 ip_minor_arena_sa = NULL; 4530 #if defined(_LP64) 4531 if ((ip_minor_arena_sa = inet_minor_create("ip_minor_arena_sa", 4532 INET_MIN_DEV + 2, MAXMIN32, KM_SLEEP)) == NULL) { 4533 cmn_err(CE_PANIC, 4534 "ip_ddi_init: ip_minor_arena_sa creation failed\n"); 4535 } 4536 if ((ip_minor_arena_la = inet_minor_create("ip_minor_arena_la", 4537 MAXMIN32 + 1, MAXMIN64, KM_SLEEP)) == NULL) { 4538 cmn_err(CE_PANIC, 4539 "ip_ddi_init: ip_minor_arena_la creation failed\n"); 4540 } 4541 #else 4542 if ((ip_minor_arena_sa = inet_minor_create("ip_minor_arena_sa", 4543 INET_MIN_DEV + 2, MAXMIN, KM_SLEEP)) == NULL) { 4544 cmn_err(CE_PANIC, 4545 "ip_ddi_init: ip_minor_arena_sa creation failed\n"); 4546 } 4547 #endif 4548 ip_poll_normal_ticks = MSEC_TO_TICK_ROUNDUP(ip_poll_normal_ms); 4549 4550 ipcl_g_init(); 4551 ip_ire_g_init(); 4552 ip_net_g_init(); 4553 4554 #ifdef DEBUG 4555 tsd_create(&ip_thread_data, ip_thread_exit); 4556 rw_init(&ip_thread_rwlock, NULL, RW_DEFAULT, NULL); 4557 list_create(&ip_thread_list, sizeof (th_hash_t), 4558 offsetof(th_hash_t, thh_link)); 4559 #endif 4560 ipsec_policy_g_init(); 4561 tcp_ddi_g_init(); 4562 sctp_ddi_g_init(); 4563 dce_g_init(); 4564 4565 /* 4566 * We want to be informed each time a stack is created or 4567 * destroyed in the kernel, so we can maintain the 4568 * set of udp_stack_t's. 4569 */ 4570 netstack_register(NS_IP, ip_stack_init, ip_stack_shutdown, 4571 ip_stack_fini); 4572 4573 tnet_init(); 4574 4575 udp_ddi_g_init(); 4576 rts_ddi_g_init(); 4577 icmp_ddi_g_init(); 4578 ilb_ddi_g_init(); 4579 4580 /* This needs to be called after all transports are initialized. */ 4581 mutex_enter(&cpu_lock); 4582 register_cpu_setup_func(ip_tp_cpu_update, NULL); 4583 mutex_exit(&cpu_lock); 4584 } 4585 4586 /* 4587 * Initialize the IP stack instance. 4588 */ 4589 static void * 4590 ip_stack_init(netstackid_t stackid, netstack_t *ns) 4591 { 4592 ip_stack_t *ipst; 4593 size_t arrsz; 4594 major_t major; 4595 4596 #ifdef NS_DEBUG 4597 printf("ip_stack_init(stack %d)\n", stackid); 4598 #endif 4599 4600 ipst = (ip_stack_t *)kmem_zalloc(sizeof (*ipst), KM_SLEEP); 4601 ipst->ips_netstack = ns; 4602 4603 ipst->ips_ill_g_heads = kmem_zalloc(sizeof (ill_g_head_t) * MAX_G_HEADS, 4604 KM_SLEEP); 4605 ipst->ips_phyint_g_list = kmem_zalloc(sizeof (phyint_list_t), 4606 KM_SLEEP); 4607 ipst->ips_ndp4 = kmem_zalloc(sizeof (ndp_g_t), KM_SLEEP); 4608 ipst->ips_ndp6 = kmem_zalloc(sizeof (ndp_g_t), KM_SLEEP); 4609 mutex_init(&ipst->ips_ndp4->ndp_g_lock, NULL, MUTEX_DEFAULT, NULL); 4610 mutex_init(&ipst->ips_ndp6->ndp_g_lock, NULL, MUTEX_DEFAULT, NULL); 4611 4612 mutex_init(&ipst->ips_igmp_timer_lock, NULL, MUTEX_DEFAULT, NULL); 4613 ipst->ips_igmp_deferred_next = INFINITY; 4614 mutex_init(&ipst->ips_mld_timer_lock, NULL, MUTEX_DEFAULT, NULL); 4615 ipst->ips_mld_deferred_next = INFINITY; 4616 mutex_init(&ipst->ips_igmp_slowtimeout_lock, NULL, MUTEX_DEFAULT, NULL); 4617 mutex_init(&ipst->ips_mld_slowtimeout_lock, NULL, MUTEX_DEFAULT, NULL); 4618 mutex_init(&ipst->ips_ip_mi_lock, NULL, MUTEX_DEFAULT, NULL); 4619 mutex_init(&ipst->ips_ip_addr_avail_lock, NULL, MUTEX_DEFAULT, NULL); 4620 rw_init(&ipst->ips_ill_g_lock, NULL, RW_DEFAULT, NULL); 4621 rw_init(&ipst->ips_ill_g_usesrc_lock, NULL, RW_DEFAULT, NULL); 4622 4623 ipcl_init(ipst); 4624 ip_ire_init(ipst); 4625 ip6_asp_init(ipst); 4626 ipif_init(ipst); 4627 conn_drain_init(ipst); 4628 ip_mrouter_stack_init(ipst); 4629 dce_stack_init(ipst); 4630 4631 ipst->ips_ip_multirt_log_interval = 1000; 4632 4633 ipst->ips_ill_index = 1; 4634 4635 ipst->ips_saved_ip_forwarding = -1; 4636 ipst->ips_reg_vif_num = ALL_VIFS; /* Index to Register vif */ 4637 4638 arrsz = ip_propinfo_count * sizeof (mod_prop_info_t); 4639 ipst->ips_propinfo_tbl = (mod_prop_info_t *)kmem_alloc(arrsz, KM_SLEEP); 4640 bcopy(ip_propinfo_tbl, ipst->ips_propinfo_tbl, arrsz); 4641 4642 ipst->ips_ip_mibkp = ip_kstat_init(stackid, ipst); 4643 ipst->ips_icmp_mibkp = icmp_kstat_init(stackid); 4644 ipst->ips_ip_kstat = ip_kstat2_init(stackid, &ipst->ips_ip_statistics); 4645 ipst->ips_ip6_kstat = 4646 ip6_kstat_init(stackid, &ipst->ips_ip6_statistics); 4647 4648 ipst->ips_ip_src_id = 1; 4649 rw_init(&ipst->ips_srcid_lock, NULL, RW_DEFAULT, NULL); 4650 4651 ipst->ips_src_generation = SRC_GENERATION_INITIAL; 4652 4653 ip_net_init(ipst, ns); 4654 ipv4_hook_init(ipst); 4655 ipv6_hook_init(ipst); 4656 arp_hook_init(ipst); 4657 ipmp_init(ipst); 4658 ipobs_init(ipst); 4659 4660 /* 4661 * Create the taskq dispatcher thread and initialize related stuff. 4662 */ 4663 mutex_init(&ipst->ips_capab_taskq_lock, NULL, MUTEX_DEFAULT, NULL); 4664 cv_init(&ipst->ips_capab_taskq_cv, NULL, CV_DEFAULT, NULL); 4665 ipst->ips_capab_taskq_thread = thread_create(NULL, 0, 4666 ill_taskq_dispatch, ipst, 0, &p0, TS_RUN, minclsyspri); 4667 4668 major = mod_name_to_major(INET_NAME); 4669 (void) ldi_ident_from_major(major, &ipst->ips_ldi_ident); 4670 return (ipst); 4671 } 4672 4673 /* 4674 * Allocate and initialize a DLPI template of the specified length. (May be 4675 * called as writer.) 4676 */ 4677 mblk_t * 4678 ip_dlpi_alloc(size_t len, t_uscalar_t prim) 4679 { 4680 mblk_t *mp; 4681 4682 mp = allocb(len, BPRI_MED); 4683 if (!mp) 4684 return (NULL); 4685 4686 /* 4687 * DLPIv2 says that DL_INFO_REQ and DL_TOKEN_REQ (the latter 4688 * of which we don't seem to use) are sent with M_PCPROTO, and 4689 * that other DLPI are M_PROTO. 4690 */ 4691 if (prim == DL_INFO_REQ) { 4692 mp->b_datap->db_type = M_PCPROTO; 4693 } else { 4694 mp->b_datap->db_type = M_PROTO; 4695 } 4696 4697 mp->b_wptr = mp->b_rptr + len; 4698 bzero(mp->b_rptr, len); 4699 ((dl_unitdata_req_t *)mp->b_rptr)->dl_primitive = prim; 4700 return (mp); 4701 } 4702 4703 /* 4704 * Allocate and initialize a DLPI notification. (May be called as writer.) 4705 */ 4706 mblk_t * 4707 ip_dlnotify_alloc(uint_t notification, uint_t data) 4708 { 4709 dl_notify_ind_t *notifyp; 4710 mblk_t *mp; 4711 4712 if ((mp = ip_dlpi_alloc(DL_NOTIFY_IND_SIZE, DL_NOTIFY_IND)) == NULL) 4713 return (NULL); 4714 4715 notifyp = (dl_notify_ind_t *)mp->b_rptr; 4716 notifyp->dl_notification = notification; 4717 notifyp->dl_data = data; 4718 return (mp); 4719 } 4720 4721 mblk_t * 4722 ip_dlnotify_alloc2(uint_t notification, uint_t data1, uint_t data2) 4723 { 4724 dl_notify_ind_t *notifyp; 4725 mblk_t *mp; 4726 4727 if ((mp = ip_dlpi_alloc(DL_NOTIFY_IND_SIZE, DL_NOTIFY_IND)) == NULL) 4728 return (NULL); 4729 4730 notifyp = (dl_notify_ind_t *)mp->b_rptr; 4731 notifyp->dl_notification = notification; 4732 notifyp->dl_data1 = data1; 4733 notifyp->dl_data2 = data2; 4734 return (mp); 4735 } 4736 4737 /* 4738 * Debug formatting routine. Returns a character string representation of the 4739 * addr in buf, of the form xxx.xxx.xxx.xxx. This routine takes the address 4740 * in the form of a ipaddr_t and calls ip_dot_saddr with a pointer. 4741 * 4742 * Once the ndd table-printing interfaces are removed, this can be changed to 4743 * standard dotted-decimal form. 4744 */ 4745 char * 4746 ip_dot_addr(ipaddr_t addr, char *buf) 4747 { 4748 uint8_t *ap = (uint8_t *)&addr; 4749 4750 (void) mi_sprintf(buf, "%03d.%03d.%03d.%03d", 4751 ap[0] & 0xFF, ap[1] & 0xFF, ap[2] & 0xFF, ap[3] & 0xFF); 4752 return (buf); 4753 } 4754 4755 /* 4756 * Write the given MAC address as a printable string in the usual colon- 4757 * separated format. 4758 */ 4759 const char * 4760 mac_colon_addr(const uint8_t *addr, size_t alen, char *buf, size_t buflen) 4761 { 4762 char *bp; 4763 4764 if (alen == 0 || buflen < 4) 4765 return ("?"); 4766 bp = buf; 4767 for (;;) { 4768 /* 4769 * If there are more MAC address bytes available, but we won't 4770 * have any room to print them, then add "..." to the string 4771 * instead. See below for the 'magic number' explanation. 4772 */ 4773 if ((alen == 2 && buflen < 6) || (alen > 2 && buflen < 7)) { 4774 (void) strcpy(bp, "..."); 4775 break; 4776 } 4777 (void) sprintf(bp, "%02x", *addr++); 4778 bp += 2; 4779 if (--alen == 0) 4780 break; 4781 *bp++ = ':'; 4782 buflen -= 3; 4783 /* 4784 * At this point, based on the first 'if' statement above, 4785 * either alen == 1 and buflen >= 3, or alen > 1 and 4786 * buflen >= 4. The first case leaves room for the final "xx" 4787 * number and trailing NUL byte. The second leaves room for at 4788 * least "...". Thus the apparently 'magic' numbers chosen for 4789 * that statement. 4790 */ 4791 } 4792 return (buf); 4793 } 4794 4795 /* 4796 * Called when it is conceptually a ULP that would sent the packet 4797 * e.g., port unreachable and protocol unreachable. Check that the packet 4798 * would have passed the IPsec global policy before sending the error. 4799 * 4800 * Send an ICMP error after patching up the packet appropriately. 4801 * Uses ip_drop_input and bumps the appropriate MIB. 4802 */ 4803 void 4804 ip_fanout_send_icmp_v4(mblk_t *mp, uint_t icmp_type, uint_t icmp_code, 4805 ip_recv_attr_t *ira) 4806 { 4807 ipha_t *ipha; 4808 boolean_t secure; 4809 ill_t *ill = ira->ira_ill; 4810 ip_stack_t *ipst = ill->ill_ipst; 4811 netstack_t *ns = ipst->ips_netstack; 4812 ipsec_stack_t *ipss = ns->netstack_ipsec; 4813 4814 secure = ira->ira_flags & IRAF_IPSEC_SECURE; 4815 4816 /* 4817 * We are generating an icmp error for some inbound packet. 4818 * Called from all ip_fanout_(udp, tcp, proto) functions. 4819 * Before we generate an error, check with global policy 4820 * to see whether this is allowed to enter the system. As 4821 * there is no "conn", we are checking with global policy. 4822 */ 4823 ipha = (ipha_t *)mp->b_rptr; 4824 if (secure || ipss->ipsec_inbound_v4_policy_present) { 4825 mp = ipsec_check_global_policy(mp, NULL, ipha, NULL, ira, ns); 4826 if (mp == NULL) 4827 return; 4828 } 4829 4830 /* We never send errors for protocols that we do implement */ 4831 if (ira->ira_protocol == IPPROTO_ICMP || 4832 ira->ira_protocol == IPPROTO_IGMP) { 4833 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 4834 ip_drop_input("ip_fanout_send_icmp_v4", mp, ill); 4835 freemsg(mp); 4836 return; 4837 } 4838 /* 4839 * Have to correct checksum since 4840 * the packet might have been 4841 * fragmented and the reassembly code in ip_rput 4842 * does not restore the IP checksum. 4843 */ 4844 ipha->ipha_hdr_checksum = 0; 4845 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 4846 4847 switch (icmp_type) { 4848 case ICMP_DEST_UNREACHABLE: 4849 switch (icmp_code) { 4850 case ICMP_PROTOCOL_UNREACHABLE: 4851 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInUnknownProtos); 4852 ip_drop_input("ipIfStatsInUnknownProtos", mp, ill); 4853 break; 4854 case ICMP_PORT_UNREACHABLE: 4855 BUMP_MIB(ill->ill_ip_mib, udpIfStatsNoPorts); 4856 ip_drop_input("ipIfStatsNoPorts", mp, ill); 4857 break; 4858 } 4859 4860 icmp_unreachable(mp, icmp_code, ira); 4861 break; 4862 default: 4863 #ifdef DEBUG 4864 panic("ip_fanout_send_icmp_v4: wrong type"); 4865 /*NOTREACHED*/ 4866 #else 4867 freemsg(mp); 4868 break; 4869 #endif 4870 } 4871 } 4872 4873 /* 4874 * Used to send an ICMP error message when a packet is received for 4875 * a protocol that is not supported. The mblk passed as argument 4876 * is consumed by this function. 4877 */ 4878 void 4879 ip_proto_not_sup(mblk_t *mp, ip_recv_attr_t *ira) 4880 { 4881 ipha_t *ipha; 4882 4883 ipha = (ipha_t *)mp->b_rptr; 4884 if (ira->ira_flags & IRAF_IS_IPV4) { 4885 ASSERT(IPH_HDR_VERSION(ipha) == IP_VERSION); 4886 ip_fanout_send_icmp_v4(mp, ICMP_DEST_UNREACHABLE, 4887 ICMP_PROTOCOL_UNREACHABLE, ira); 4888 } else { 4889 ASSERT(IPH_HDR_VERSION(ipha) == IPV6_VERSION); 4890 ip_fanout_send_icmp_v6(mp, ICMP6_PARAM_PROB, 4891 ICMP6_PARAMPROB_NEXTHEADER, ira); 4892 } 4893 } 4894 4895 /* 4896 * Deliver a rawip packet to the given conn, possibly applying ipsec policy. 4897 * Handles IPv4 and IPv6. 4898 * We are responsible for disposing of mp, such as by freemsg() or putnext() 4899 * Caller is responsible for dropping references to the conn. 4900 */ 4901 void 4902 ip_fanout_proto_conn(conn_t *connp, mblk_t *mp, ipha_t *ipha, ip6_t *ip6h, 4903 ip_recv_attr_t *ira) 4904 { 4905 ill_t *ill = ira->ira_ill; 4906 ip_stack_t *ipst = ill->ill_ipst; 4907 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 4908 boolean_t secure; 4909 uint_t protocol = ira->ira_protocol; 4910 iaflags_t iraflags = ira->ira_flags; 4911 queue_t *rq; 4912 4913 secure = iraflags & IRAF_IPSEC_SECURE; 4914 4915 rq = connp->conn_rq; 4916 if (IPCL_IS_NONSTR(connp) ? connp->conn_flow_cntrld : !canputnext(rq)) { 4917 switch (protocol) { 4918 case IPPROTO_ICMPV6: 4919 BUMP_MIB(ill->ill_icmp6_mib, ipv6IfIcmpInOverflows); 4920 break; 4921 case IPPROTO_ICMP: 4922 BUMP_MIB(&ipst->ips_icmp_mib, icmpInOverflows); 4923 break; 4924 default: 4925 BUMP_MIB(ill->ill_ip_mib, rawipIfStatsInOverflows); 4926 break; 4927 } 4928 freemsg(mp); 4929 return; 4930 } 4931 4932 ASSERT(!(IPCL_IS_IPTUN(connp))); 4933 4934 if (((iraflags & IRAF_IS_IPV4) ? 4935 CONN_INBOUND_POLICY_PRESENT(connp, ipss) : 4936 CONN_INBOUND_POLICY_PRESENT_V6(connp, ipss)) || 4937 secure) { 4938 mp = ipsec_check_inbound_policy(mp, connp, ipha, 4939 ip6h, ira); 4940 if (mp == NULL) { 4941 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 4942 /* Note that mp is NULL */ 4943 ip_drop_input("ipIfStatsInDiscards", mp, ill); 4944 return; 4945 } 4946 } 4947 4948 if (iraflags & IRAF_ICMP_ERROR) { 4949 (connp->conn_recvicmp)(connp, mp, NULL, ira); 4950 } else { 4951 ill_t *rill = ira->ira_rill; 4952 4953 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers); 4954 ira->ira_ill = ira->ira_rill = NULL; 4955 /* Send it upstream */ 4956 (connp->conn_recv)(connp, mp, NULL, ira); 4957 ira->ira_ill = ill; 4958 ira->ira_rill = rill; 4959 } 4960 } 4961 4962 /* 4963 * Handle protocols with which IP is less intimate. There 4964 * can be more than one stream bound to a particular 4965 * protocol. When this is the case, normally each one gets a copy 4966 * of any incoming packets. 4967 * 4968 * IPsec NOTE : 4969 * 4970 * Don't allow a secure packet going up a non-secure connection. 4971 * We don't allow this because 4972 * 4973 * 1) Reply might go out in clear which will be dropped at 4974 * the sending side. 4975 * 2) If the reply goes out in clear it will give the 4976 * adversary enough information for getting the key in 4977 * most of the cases. 4978 * 4979 * Moreover getting a secure packet when we expect clear 4980 * implies that SA's were added without checking for 4981 * policy on both ends. This should not happen once ISAKMP 4982 * is used to negotiate SAs as SAs will be added only after 4983 * verifying the policy. 4984 * 4985 * Zones notes: 4986 * Earlier in ip_input on a system with multiple shared-IP zones we 4987 * duplicate the multicast and broadcast packets and send them up 4988 * with each explicit zoneid that exists on that ill. 4989 * This means that here we can match the zoneid with SO_ALLZONES being special. 4990 */ 4991 void 4992 ip_fanout_proto_v4(mblk_t *mp, ipha_t *ipha, ip_recv_attr_t *ira) 4993 { 4994 mblk_t *mp1; 4995 ipaddr_t laddr; 4996 conn_t *connp, *first_connp, *next_connp; 4997 connf_t *connfp; 4998 ill_t *ill = ira->ira_ill; 4999 ip_stack_t *ipst = ill->ill_ipst; 5000 5001 laddr = ipha->ipha_dst; 5002 5003 connfp = &ipst->ips_ipcl_proto_fanout_v4[ira->ira_protocol]; 5004 mutex_enter(&connfp->connf_lock); 5005 connp = connfp->connf_head; 5006 for (connp = connfp->connf_head; connp != NULL; 5007 connp = connp->conn_next) { 5008 /* Note: IPCL_PROTO_MATCH includes conn_wantpacket */ 5009 if (IPCL_PROTO_MATCH(connp, ira, ipha) && 5010 (!(ira->ira_flags & IRAF_SYSTEM_LABELED) || 5011 tsol_receive_local(mp, &laddr, IPV4_VERSION, ira, connp))) { 5012 break; 5013 } 5014 } 5015 5016 if (connp == NULL) { 5017 /* 5018 * No one bound to these addresses. Is 5019 * there a client that wants all 5020 * unclaimed datagrams? 5021 */ 5022 mutex_exit(&connfp->connf_lock); 5023 ip_fanout_send_icmp_v4(mp, ICMP_DEST_UNREACHABLE, 5024 ICMP_PROTOCOL_UNREACHABLE, ira); 5025 return; 5026 } 5027 5028 ASSERT(IPCL_IS_NONSTR(connp) || connp->conn_rq != NULL); 5029 5030 CONN_INC_REF(connp); 5031 first_connp = connp; 5032 connp = connp->conn_next; 5033 5034 for (;;) { 5035 while (connp != NULL) { 5036 /* Note: IPCL_PROTO_MATCH includes conn_wantpacket */ 5037 if (IPCL_PROTO_MATCH(connp, ira, ipha) && 5038 (!(ira->ira_flags & IRAF_SYSTEM_LABELED) || 5039 tsol_receive_local(mp, &laddr, IPV4_VERSION, 5040 ira, connp))) 5041 break; 5042 connp = connp->conn_next; 5043 } 5044 5045 if (connp == NULL) { 5046 /* No more interested clients */ 5047 connp = first_connp; 5048 break; 5049 } 5050 if (((mp1 = dupmsg(mp)) == NULL) && 5051 ((mp1 = copymsg(mp)) == NULL)) { 5052 /* Memory allocation failed */ 5053 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 5054 ip_drop_input("ipIfStatsInDiscards", mp, ill); 5055 connp = first_connp; 5056 break; 5057 } 5058 5059 CONN_INC_REF(connp); 5060 mutex_exit(&connfp->connf_lock); 5061 5062 ip_fanout_proto_conn(connp, mp1, (ipha_t *)mp1->b_rptr, NULL, 5063 ira); 5064 5065 mutex_enter(&connfp->connf_lock); 5066 /* Follow the next pointer before releasing the conn. */ 5067 next_connp = connp->conn_next; 5068 CONN_DEC_REF(connp); 5069 connp = next_connp; 5070 } 5071 5072 /* Last one. Send it upstream. */ 5073 mutex_exit(&connfp->connf_lock); 5074 5075 ip_fanout_proto_conn(connp, mp, ipha, NULL, ira); 5076 5077 CONN_DEC_REF(connp); 5078 } 5079 5080 /* 5081 * If we have a IPsec NAT-Traversal packet, strip the zero-SPI or 5082 * pass it along to ESP if the SPI is non-zero. Returns the mblk if the mblk 5083 * is not consumed. 5084 * 5085 * One of three things can happen, all of which affect the passed-in mblk: 5086 * 5087 * 1.) The packet is stock UDP and gets its zero-SPI stripped. Return mblk.. 5088 * 5089 * 2.) The packet is ESP-in-UDP, gets transformed into an equivalent 5090 * ESP packet, and is passed along to ESP for consumption. Return NULL. 5091 * 5092 * 3.) The packet is an ESP-in-UDP Keepalive. Drop it and return NULL. 5093 */ 5094 mblk_t * 5095 zero_spi_check(mblk_t *mp, ip_recv_attr_t *ira) 5096 { 5097 int shift, plen, iph_len; 5098 ipha_t *ipha; 5099 udpha_t *udpha; 5100 uint32_t *spi; 5101 uint32_t esp_ports; 5102 uint8_t *orptr; 5103 ip_stack_t *ipst = ira->ira_ill->ill_ipst; 5104 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 5105 5106 ipha = (ipha_t *)mp->b_rptr; 5107 iph_len = ira->ira_ip_hdr_length; 5108 plen = ira->ira_pktlen; 5109 5110 if (plen - iph_len - sizeof (udpha_t) < sizeof (uint32_t)) { 5111 /* 5112 * Most likely a keepalive for the benefit of an intervening 5113 * NAT. These aren't for us, per se, so drop it. 5114 * 5115 * RFC 3947/8 doesn't say for sure what to do for 2-3 5116 * byte packets (keepalives are 1-byte), but we'll drop them 5117 * also. 5118 */ 5119 ip_drop_packet(mp, B_TRUE, ira->ira_ill, 5120 DROPPER(ipss, ipds_esp_nat_t_ka), &ipss->ipsec_dropper); 5121 return (NULL); 5122 } 5123 5124 if (MBLKL(mp) < iph_len + sizeof (udpha_t) + sizeof (*spi)) { 5125 /* might as well pull it all up - it might be ESP. */ 5126 if (!pullupmsg(mp, -1)) { 5127 ip_drop_packet(mp, B_TRUE, ira->ira_ill, 5128 DROPPER(ipss, ipds_esp_nomem), 5129 &ipss->ipsec_dropper); 5130 return (NULL); 5131 } 5132 5133 ipha = (ipha_t *)mp->b_rptr; 5134 } 5135 spi = (uint32_t *)(mp->b_rptr + iph_len + sizeof (udpha_t)); 5136 if (*spi == 0) { 5137 /* UDP packet - remove 0-spi. */ 5138 shift = sizeof (uint32_t); 5139 } else { 5140 /* ESP-in-UDP packet - reduce to ESP. */ 5141 ipha->ipha_protocol = IPPROTO_ESP; 5142 shift = sizeof (udpha_t); 5143 } 5144 5145 /* Fix IP header */ 5146 ira->ira_pktlen = (plen - shift); 5147 ipha->ipha_length = htons(ira->ira_pktlen); 5148 ipha->ipha_hdr_checksum = 0; 5149 5150 orptr = mp->b_rptr; 5151 mp->b_rptr += shift; 5152 5153 udpha = (udpha_t *)(orptr + iph_len); 5154 if (*spi == 0) { 5155 ASSERT((uint8_t *)ipha == orptr); 5156 udpha->uha_length = htons(plen - shift - iph_len); 5157 iph_len += sizeof (udpha_t); /* For the call to ovbcopy(). */ 5158 esp_ports = 0; 5159 } else { 5160 esp_ports = *((uint32_t *)udpha); 5161 ASSERT(esp_ports != 0); 5162 } 5163 ovbcopy(orptr, orptr + shift, iph_len); 5164 if (esp_ports != 0) /* Punt up for ESP processing. */ { 5165 ipha = (ipha_t *)(orptr + shift); 5166 5167 ira->ira_flags |= IRAF_ESP_UDP_PORTS; 5168 ira->ira_esp_udp_ports = esp_ports; 5169 ip_fanout_v4(mp, ipha, ira); 5170 return (NULL); 5171 } 5172 return (mp); 5173 } 5174 5175 /* 5176 * Deliver a udp packet to the given conn, possibly applying ipsec policy. 5177 * Handles IPv4 and IPv6. 5178 * We are responsible for disposing of mp, such as by freemsg() or putnext() 5179 * Caller is responsible for dropping references to the conn. 5180 */ 5181 void 5182 ip_fanout_udp_conn(conn_t *connp, mblk_t *mp, ipha_t *ipha, ip6_t *ip6h, 5183 ip_recv_attr_t *ira) 5184 { 5185 ill_t *ill = ira->ira_ill; 5186 ip_stack_t *ipst = ill->ill_ipst; 5187 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 5188 boolean_t secure; 5189 iaflags_t iraflags = ira->ira_flags; 5190 5191 secure = iraflags & IRAF_IPSEC_SECURE; 5192 5193 if (IPCL_IS_NONSTR(connp) ? connp->conn_flow_cntrld : 5194 !canputnext(connp->conn_rq)) { 5195 BUMP_MIB(ill->ill_ip_mib, udpIfStatsInOverflows); 5196 freemsg(mp); 5197 return; 5198 } 5199 5200 if (((iraflags & IRAF_IS_IPV4) ? 5201 CONN_INBOUND_POLICY_PRESENT(connp, ipss) : 5202 CONN_INBOUND_POLICY_PRESENT_V6(connp, ipss)) || 5203 secure) { 5204 mp = ipsec_check_inbound_policy(mp, connp, ipha, 5205 ip6h, ira); 5206 if (mp == NULL) { 5207 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 5208 /* Note that mp is NULL */ 5209 ip_drop_input("ipIfStatsInDiscards", mp, ill); 5210 return; 5211 } 5212 } 5213 5214 /* 5215 * Since this code is not used for UDP unicast we don't need a NAT_T 5216 * check. Only ip_fanout_v4 has that check. 5217 */ 5218 if (ira->ira_flags & IRAF_ICMP_ERROR) { 5219 (connp->conn_recvicmp)(connp, mp, NULL, ira); 5220 } else { 5221 ill_t *rill = ira->ira_rill; 5222 5223 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers); 5224 ira->ira_ill = ira->ira_rill = NULL; 5225 /* Send it upstream */ 5226 (connp->conn_recv)(connp, mp, NULL, ira); 5227 ira->ira_ill = ill; 5228 ira->ira_rill = rill; 5229 } 5230 } 5231 5232 /* 5233 * Fanout for UDP packets that are multicast or broadcast, and ICMP errors. 5234 * (Unicast fanout is handled in ip_input_v4.) 5235 * 5236 * If SO_REUSEADDR is set all multicast and broadcast packets 5237 * will be delivered to all conns bound to the same port. 5238 * 5239 * If there is at least one matching AF_INET receiver, then we will 5240 * ignore any AF_INET6 receivers. 5241 * In the special case where an AF_INET socket binds to 0.0.0.0/<port> and an 5242 * AF_INET6 socket binds to ::/<port>, only the AF_INET socket receives the IPv4 5243 * packets. 5244 * 5245 * Zones notes: 5246 * Earlier in ip_input on a system with multiple shared-IP zones we 5247 * duplicate the multicast and broadcast packets and send them up 5248 * with each explicit zoneid that exists on that ill. 5249 * This means that here we can match the zoneid with SO_ALLZONES being special. 5250 */ 5251 void 5252 ip_fanout_udp_multi_v4(mblk_t *mp, ipha_t *ipha, uint16_t lport, uint16_t fport, 5253 ip_recv_attr_t *ira) 5254 { 5255 ipaddr_t laddr; 5256 in6_addr_t v6faddr; 5257 conn_t *connp; 5258 connf_t *connfp; 5259 ipaddr_t faddr; 5260 ill_t *ill = ira->ira_ill; 5261 ip_stack_t *ipst = ill->ill_ipst; 5262 5263 ASSERT(ira->ira_flags & (IRAF_MULTIBROADCAST|IRAF_ICMP_ERROR)); 5264 5265 laddr = ipha->ipha_dst; 5266 faddr = ipha->ipha_src; 5267 5268 connfp = &ipst->ips_ipcl_udp_fanout[IPCL_UDP_HASH(lport, ipst)]; 5269 mutex_enter(&connfp->connf_lock); 5270 connp = connfp->connf_head; 5271 5272 /* 5273 * If SO_REUSEADDR has been set on the first we send the 5274 * packet to all clients that have joined the group and 5275 * match the port. 5276 */ 5277 while (connp != NULL) { 5278 if ((IPCL_UDP_MATCH(connp, lport, laddr, fport, faddr)) && 5279 conn_wantpacket(connp, ira, ipha) && 5280 (!(ira->ira_flags & IRAF_SYSTEM_LABELED) || 5281 tsol_receive_local(mp, &laddr, IPV4_VERSION, ira, connp))) 5282 break; 5283 connp = connp->conn_next; 5284 } 5285 5286 if (connp == NULL) 5287 goto notfound; 5288 5289 CONN_INC_REF(connp); 5290 5291 if (connp->conn_reuseaddr) { 5292 conn_t *first_connp = connp; 5293 conn_t *next_connp; 5294 mblk_t *mp1; 5295 5296 connp = connp->conn_next; 5297 for (;;) { 5298 while (connp != NULL) { 5299 if (IPCL_UDP_MATCH(connp, lport, laddr, 5300 fport, faddr) && 5301 conn_wantpacket(connp, ira, ipha) && 5302 (!(ira->ira_flags & IRAF_SYSTEM_LABELED) || 5303 tsol_receive_local(mp, &laddr, IPV4_VERSION, 5304 ira, connp))) 5305 break; 5306 connp = connp->conn_next; 5307 } 5308 if (connp == NULL) { 5309 /* No more interested clients */ 5310 connp = first_connp; 5311 break; 5312 } 5313 if (((mp1 = dupmsg(mp)) == NULL) && 5314 ((mp1 = copymsg(mp)) == NULL)) { 5315 /* Memory allocation failed */ 5316 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 5317 ip_drop_input("ipIfStatsInDiscards", mp, ill); 5318 connp = first_connp; 5319 break; 5320 } 5321 CONN_INC_REF(connp); 5322 mutex_exit(&connfp->connf_lock); 5323 5324 IP_STAT(ipst, ip_udp_fanmb); 5325 ip_fanout_udp_conn(connp, mp1, (ipha_t *)mp1->b_rptr, 5326 NULL, ira); 5327 mutex_enter(&connfp->connf_lock); 5328 /* Follow the next pointer before releasing the conn */ 5329 next_connp = connp->conn_next; 5330 CONN_DEC_REF(connp); 5331 connp = next_connp; 5332 } 5333 } 5334 5335 /* Last one. Send it upstream. */ 5336 mutex_exit(&connfp->connf_lock); 5337 IP_STAT(ipst, ip_udp_fanmb); 5338 ip_fanout_udp_conn(connp, mp, ipha, NULL, ira); 5339 CONN_DEC_REF(connp); 5340 return; 5341 5342 notfound: 5343 mutex_exit(&connfp->connf_lock); 5344 /* 5345 * IPv6 endpoints bound to multicast IPv4-mapped addresses 5346 * have already been matched above, since they live in the IPv4 5347 * fanout tables. This implies we only need to 5348 * check for IPv6 in6addr_any endpoints here. 5349 * Thus we compare using ipv6_all_zeros instead of the destination 5350 * address, except for the multicast group membership lookup which 5351 * uses the IPv4 destination. 5352 */ 5353 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &v6faddr); 5354 connfp = &ipst->ips_ipcl_udp_fanout[IPCL_UDP_HASH(lport, ipst)]; 5355 mutex_enter(&connfp->connf_lock); 5356 connp = connfp->connf_head; 5357 /* 5358 * IPv4 multicast packet being delivered to an AF_INET6 5359 * in6addr_any endpoint. 5360 * Need to check conn_wantpacket(). Note that we use conn_wantpacket() 5361 * and not conn_wantpacket_v6() since any multicast membership is 5362 * for an IPv4-mapped multicast address. 5363 */ 5364 while (connp != NULL) { 5365 if (IPCL_UDP_MATCH_V6(connp, lport, ipv6_all_zeros, 5366 fport, v6faddr) && 5367 conn_wantpacket(connp, ira, ipha) && 5368 (!(ira->ira_flags & IRAF_SYSTEM_LABELED) || 5369 tsol_receive_local(mp, &laddr, IPV4_VERSION, ira, connp))) 5370 break; 5371 connp = connp->conn_next; 5372 } 5373 5374 if (connp == NULL) { 5375 /* 5376 * No one bound to this port. Is 5377 * there a client that wants all 5378 * unclaimed datagrams? 5379 */ 5380 mutex_exit(&connfp->connf_lock); 5381 5382 if (ipst->ips_ipcl_proto_fanout_v4[IPPROTO_UDP].connf_head != 5383 NULL) { 5384 ASSERT(ira->ira_protocol == IPPROTO_UDP); 5385 ip_fanout_proto_v4(mp, ipha, ira); 5386 } else { 5387 /* 5388 * We used to attempt to send an icmp error here, but 5389 * since this is known to be a multicast packet 5390 * and we don't send icmp errors in response to 5391 * multicast, just drop the packet and give up sooner. 5392 */ 5393 BUMP_MIB(ill->ill_ip_mib, udpIfStatsNoPorts); 5394 freemsg(mp); 5395 } 5396 return; 5397 } 5398 ASSERT(IPCL_IS_NONSTR(connp) || connp->conn_rq != NULL); 5399 5400 /* 5401 * If SO_REUSEADDR has been set on the first we send the 5402 * packet to all clients that have joined the group and 5403 * match the port. 5404 */ 5405 if (connp->conn_reuseaddr) { 5406 conn_t *first_connp = connp; 5407 conn_t *next_connp; 5408 mblk_t *mp1; 5409 5410 CONN_INC_REF(connp); 5411 connp = connp->conn_next; 5412 for (;;) { 5413 while (connp != NULL) { 5414 if (IPCL_UDP_MATCH_V6(connp, lport, 5415 ipv6_all_zeros, fport, v6faddr) && 5416 conn_wantpacket(connp, ira, ipha) && 5417 (!(ira->ira_flags & IRAF_SYSTEM_LABELED) || 5418 tsol_receive_local(mp, &laddr, IPV4_VERSION, 5419 ira, connp))) 5420 break; 5421 connp = connp->conn_next; 5422 } 5423 if (connp == NULL) { 5424 /* No more interested clients */ 5425 connp = first_connp; 5426 break; 5427 } 5428 if (((mp1 = dupmsg(mp)) == NULL) && 5429 ((mp1 = copymsg(mp)) == NULL)) { 5430 /* Memory allocation failed */ 5431 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 5432 ip_drop_input("ipIfStatsInDiscards", mp, ill); 5433 connp = first_connp; 5434 break; 5435 } 5436 CONN_INC_REF(connp); 5437 mutex_exit(&connfp->connf_lock); 5438 5439 IP_STAT(ipst, ip_udp_fanmb); 5440 ip_fanout_udp_conn(connp, mp1, (ipha_t *)mp1->b_rptr, 5441 NULL, ira); 5442 mutex_enter(&connfp->connf_lock); 5443 /* Follow the next pointer before releasing the conn */ 5444 next_connp = connp->conn_next; 5445 CONN_DEC_REF(connp); 5446 connp = next_connp; 5447 } 5448 } 5449 5450 /* Last one. Send it upstream. */ 5451 mutex_exit(&connfp->connf_lock); 5452 IP_STAT(ipst, ip_udp_fanmb); 5453 ip_fanout_udp_conn(connp, mp, ipha, NULL, ira); 5454 CONN_DEC_REF(connp); 5455 } 5456 5457 /* 5458 * Split an incoming packet's IPv4 options into the label and the other options. 5459 * If 'allocate' is set it does memory allocation for the ip_pkt_t, including 5460 * clearing out any leftover label or options. 5461 * Otherwise it just makes ipp point into the packet. 5462 * 5463 * Returns zero if ok; ENOMEM if the buffer couldn't be allocated. 5464 */ 5465 int 5466 ip_find_hdr_v4(ipha_t *ipha, ip_pkt_t *ipp, boolean_t allocate) 5467 { 5468 uchar_t *opt; 5469 uint32_t totallen; 5470 uint32_t optval; 5471 uint32_t optlen; 5472 5473 ipp->ipp_fields |= IPPF_HOPLIMIT | IPPF_TCLASS | IPPF_ADDR; 5474 ipp->ipp_hoplimit = ipha->ipha_ttl; 5475 ipp->ipp_type_of_service = ipha->ipha_type_of_service; 5476 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &ipp->ipp_addr); 5477 5478 /* 5479 * Get length (in 4 byte octets) of IP header options. 5480 */ 5481 totallen = ipha->ipha_version_and_hdr_length - 5482 (uint8_t)((IP_VERSION << 4) + IP_SIMPLE_HDR_LENGTH_IN_WORDS); 5483 5484 if (totallen == 0) { 5485 if (!allocate) 5486 return (0); 5487 5488 /* Clear out anything from a previous packet */ 5489 if (ipp->ipp_fields & IPPF_IPV4_OPTIONS) { 5490 kmem_free(ipp->ipp_ipv4_options, 5491 ipp->ipp_ipv4_options_len); 5492 ipp->ipp_ipv4_options = NULL; 5493 ipp->ipp_ipv4_options_len = 0; 5494 ipp->ipp_fields &= ~IPPF_IPV4_OPTIONS; 5495 } 5496 if (ipp->ipp_fields & IPPF_LABEL_V4) { 5497 kmem_free(ipp->ipp_label_v4, ipp->ipp_label_len_v4); 5498 ipp->ipp_label_v4 = NULL; 5499 ipp->ipp_label_len_v4 = 0; 5500 ipp->ipp_fields &= ~IPPF_LABEL_V4; 5501 } 5502 return (0); 5503 } 5504 5505 totallen <<= 2; 5506 opt = (uchar_t *)&ipha[1]; 5507 if (!is_system_labeled()) { 5508 5509 copyall: 5510 if (!allocate) { 5511 if (totallen != 0) { 5512 ipp->ipp_ipv4_options = opt; 5513 ipp->ipp_ipv4_options_len = totallen; 5514 ipp->ipp_fields |= IPPF_IPV4_OPTIONS; 5515 } 5516 return (0); 5517 } 5518 /* Just copy all of options */ 5519 if (ipp->ipp_fields & IPPF_IPV4_OPTIONS) { 5520 if (totallen == ipp->ipp_ipv4_options_len) { 5521 bcopy(opt, ipp->ipp_ipv4_options, totallen); 5522 return (0); 5523 } 5524 kmem_free(ipp->ipp_ipv4_options, 5525 ipp->ipp_ipv4_options_len); 5526 ipp->ipp_ipv4_options = NULL; 5527 ipp->ipp_ipv4_options_len = 0; 5528 ipp->ipp_fields &= ~IPPF_IPV4_OPTIONS; 5529 } 5530 if (totallen == 0) 5531 return (0); 5532 5533 ipp->ipp_ipv4_options = kmem_alloc(totallen, KM_NOSLEEP); 5534 if (ipp->ipp_ipv4_options == NULL) 5535 return (ENOMEM); 5536 ipp->ipp_ipv4_options_len = totallen; 5537 ipp->ipp_fields |= IPPF_IPV4_OPTIONS; 5538 bcopy(opt, ipp->ipp_ipv4_options, totallen); 5539 return (0); 5540 } 5541 5542 if (allocate && (ipp->ipp_fields & IPPF_LABEL_V4)) { 5543 kmem_free(ipp->ipp_label_v4, ipp->ipp_label_len_v4); 5544 ipp->ipp_label_v4 = NULL; 5545 ipp->ipp_label_len_v4 = 0; 5546 ipp->ipp_fields &= ~IPPF_LABEL_V4; 5547 } 5548 5549 /* 5550 * Search for CIPSO option. 5551 * We assume CIPSO is first in options if it is present. 5552 * If it isn't, then ipp_opt_ipv4_options will not include the options 5553 * prior to the CIPSO option. 5554 */ 5555 while (totallen != 0) { 5556 switch (optval = opt[IPOPT_OPTVAL]) { 5557 case IPOPT_EOL: 5558 return (0); 5559 case IPOPT_NOP: 5560 optlen = 1; 5561 break; 5562 default: 5563 if (totallen <= IPOPT_OLEN) 5564 return (EINVAL); 5565 optlen = opt[IPOPT_OLEN]; 5566 if (optlen < 2) 5567 return (EINVAL); 5568 } 5569 if (optlen > totallen) 5570 return (EINVAL); 5571 5572 switch (optval) { 5573 case IPOPT_COMSEC: 5574 if (!allocate) { 5575 ipp->ipp_label_v4 = opt; 5576 ipp->ipp_label_len_v4 = optlen; 5577 ipp->ipp_fields |= IPPF_LABEL_V4; 5578 } else { 5579 ipp->ipp_label_v4 = kmem_alloc(optlen, 5580 KM_NOSLEEP); 5581 if (ipp->ipp_label_v4 == NULL) 5582 return (ENOMEM); 5583 ipp->ipp_label_len_v4 = optlen; 5584 ipp->ipp_fields |= IPPF_LABEL_V4; 5585 bcopy(opt, ipp->ipp_label_v4, optlen); 5586 } 5587 totallen -= optlen; 5588 opt += optlen; 5589 5590 /* Skip padding bytes until we get to a multiple of 4 */ 5591 while ((totallen & 3) != 0 && opt[0] == IPOPT_NOP) { 5592 totallen--; 5593 opt++; 5594 } 5595 /* Remaining as ipp_ipv4_options */ 5596 goto copyall; 5597 } 5598 totallen -= optlen; 5599 opt += optlen; 5600 } 5601 /* No CIPSO found; return everything as ipp_ipv4_options */ 5602 totallen = ipha->ipha_version_and_hdr_length - 5603 (uint8_t)((IP_VERSION << 4) + IP_SIMPLE_HDR_LENGTH_IN_WORDS); 5604 totallen <<= 2; 5605 opt = (uchar_t *)&ipha[1]; 5606 goto copyall; 5607 } 5608 5609 /* 5610 * Efficient versions of lookup for an IRE when we only 5611 * match the address. 5612 * For RTF_REJECT or BLACKHOLE we return IRE_NOROUTE. 5613 * Does not handle multicast addresses. 5614 */ 5615 uint_t 5616 ip_type_v4(ipaddr_t addr, ip_stack_t *ipst) 5617 { 5618 ire_t *ire; 5619 uint_t result; 5620 5621 ire = ire_ftable_lookup_simple_v4(addr, 0, ipst, NULL); 5622 ASSERT(ire != NULL); 5623 if (ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) 5624 result = IRE_NOROUTE; 5625 else 5626 result = ire->ire_type; 5627 ire_refrele(ire); 5628 return (result); 5629 } 5630 5631 /* 5632 * Efficient versions of lookup for an IRE when we only 5633 * match the address. 5634 * For RTF_REJECT or BLACKHOLE we return IRE_NOROUTE. 5635 * Does not handle multicast addresses. 5636 */ 5637 uint_t 5638 ip_type_v6(const in6_addr_t *addr, ip_stack_t *ipst) 5639 { 5640 ire_t *ire; 5641 uint_t result; 5642 5643 ire = ire_ftable_lookup_simple_v6(addr, 0, ipst, NULL); 5644 ASSERT(ire != NULL); 5645 if (ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) 5646 result = IRE_NOROUTE; 5647 else 5648 result = ire->ire_type; 5649 ire_refrele(ire); 5650 return (result); 5651 } 5652 5653 /* 5654 * Nobody should be sending 5655 * packets up this stream 5656 */ 5657 static void 5658 ip_lrput(queue_t *q, mblk_t *mp) 5659 { 5660 switch (mp->b_datap->db_type) { 5661 case M_FLUSH: 5662 /* Turn around */ 5663 if (*mp->b_rptr & FLUSHW) { 5664 *mp->b_rptr &= ~FLUSHR; 5665 qreply(q, mp); 5666 return; 5667 } 5668 break; 5669 } 5670 freemsg(mp); 5671 } 5672 5673 /* Nobody should be sending packets down this stream */ 5674 /* ARGSUSED */ 5675 void 5676 ip_lwput(queue_t *q, mblk_t *mp) 5677 { 5678 freemsg(mp); 5679 } 5680 5681 /* 5682 * Move the first hop in any source route to ipha_dst and remove that part of 5683 * the source route. Called by other protocols. Errors in option formatting 5684 * are ignored - will be handled by ip_output_options. Return the final 5685 * destination (either ipha_dst or the last entry in a source route.) 5686 */ 5687 ipaddr_t 5688 ip_massage_options(ipha_t *ipha, netstack_t *ns) 5689 { 5690 ipoptp_t opts; 5691 uchar_t *opt; 5692 uint8_t optval; 5693 uint8_t optlen; 5694 ipaddr_t dst; 5695 int i; 5696 ip_stack_t *ipst = ns->netstack_ip; 5697 5698 ip2dbg(("ip_massage_options\n")); 5699 dst = ipha->ipha_dst; 5700 for (optval = ipoptp_first(&opts, ipha); 5701 optval != IPOPT_EOL; 5702 optval = ipoptp_next(&opts)) { 5703 opt = opts.ipoptp_cur; 5704 switch (optval) { 5705 uint8_t off; 5706 case IPOPT_SSRR: 5707 case IPOPT_LSRR: 5708 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 5709 ip1dbg(("ip_massage_options: bad src route\n")); 5710 break; 5711 } 5712 optlen = opts.ipoptp_len; 5713 off = opt[IPOPT_OFFSET]; 5714 off--; 5715 redo_srr: 5716 if (optlen < IP_ADDR_LEN || 5717 off > optlen - IP_ADDR_LEN) { 5718 /* End of source route */ 5719 ip1dbg(("ip_massage_options: end of SR\n")); 5720 break; 5721 } 5722 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 5723 ip1dbg(("ip_massage_options: next hop 0x%x\n", 5724 ntohl(dst))); 5725 /* 5726 * Check if our address is present more than 5727 * once as consecutive hops in source route. 5728 * XXX verify per-interface ip_forwarding 5729 * for source route? 5730 */ 5731 if (ip_type_v4(dst, ipst) == IRE_LOCAL) { 5732 off += IP_ADDR_LEN; 5733 goto redo_srr; 5734 } 5735 if (dst == htonl(INADDR_LOOPBACK)) { 5736 ip1dbg(("ip_massage_options: loopback addr in " 5737 "source route!\n")); 5738 break; 5739 } 5740 /* 5741 * Update ipha_dst to be the first hop and remove the 5742 * first hop from the source route (by overwriting 5743 * part of the option with NOP options). 5744 */ 5745 ipha->ipha_dst = dst; 5746 /* Put the last entry in dst */ 5747 off = ((optlen - IP_ADDR_LEN - 3) & ~(IP_ADDR_LEN-1)) + 5748 3; 5749 bcopy(&opt[off], &dst, IP_ADDR_LEN); 5750 5751 ip1dbg(("ip_massage_options: last hop 0x%x\n", 5752 ntohl(dst))); 5753 /* Move down and overwrite */ 5754 opt[IP_ADDR_LEN] = opt[0]; 5755 opt[IP_ADDR_LEN+1] = opt[IPOPT_OLEN] - IP_ADDR_LEN; 5756 opt[IP_ADDR_LEN+2] = opt[IPOPT_OFFSET]; 5757 for (i = 0; i < IP_ADDR_LEN; i++) 5758 opt[i] = IPOPT_NOP; 5759 break; 5760 } 5761 } 5762 return (dst); 5763 } 5764 5765 /* 5766 * Return the network mask 5767 * associated with the specified address. 5768 */ 5769 ipaddr_t 5770 ip_net_mask(ipaddr_t addr) 5771 { 5772 uchar_t *up = (uchar_t *)&addr; 5773 ipaddr_t mask = 0; 5774 uchar_t *maskp = (uchar_t *)&mask; 5775 5776 #if defined(__i386) || defined(__amd64) 5777 #define TOTALLY_BRAIN_DAMAGED_C_COMPILER 5778 #endif 5779 #ifdef TOTALLY_BRAIN_DAMAGED_C_COMPILER 5780 maskp[0] = maskp[1] = maskp[2] = maskp[3] = 0; 5781 #endif 5782 if (CLASSD(addr)) { 5783 maskp[0] = 0xF0; 5784 return (mask); 5785 } 5786 5787 /* We assume Class E default netmask to be 32 */ 5788 if (CLASSE(addr)) 5789 return (0xffffffffU); 5790 5791 if (addr == 0) 5792 return (0); 5793 maskp[0] = 0xFF; 5794 if ((up[0] & 0x80) == 0) 5795 return (mask); 5796 5797 maskp[1] = 0xFF; 5798 if ((up[0] & 0xC0) == 0x80) 5799 return (mask); 5800 5801 maskp[2] = 0xFF; 5802 if ((up[0] & 0xE0) == 0xC0) 5803 return (mask); 5804 5805 /* Otherwise return no mask */ 5806 return ((ipaddr_t)0); 5807 } 5808 5809 /* Name/Value Table Lookup Routine */ 5810 char * 5811 ip_nv_lookup(nv_t *nv, int value) 5812 { 5813 if (!nv) 5814 return (NULL); 5815 for (; nv->nv_name; nv++) { 5816 if (nv->nv_value == value) 5817 return (nv->nv_name); 5818 } 5819 return ("unknown"); 5820 } 5821 5822 static int 5823 ip_wait_for_info_ack(ill_t *ill) 5824 { 5825 int err; 5826 5827 mutex_enter(&ill->ill_lock); 5828 while (ill->ill_state_flags & ILL_LL_SUBNET_PENDING) { 5829 /* 5830 * Return value of 0 indicates a pending signal. 5831 */ 5832 err = cv_wait_sig(&ill->ill_cv, &ill->ill_lock); 5833 if (err == 0) { 5834 mutex_exit(&ill->ill_lock); 5835 return (EINTR); 5836 } 5837 } 5838 mutex_exit(&ill->ill_lock); 5839 /* 5840 * ip_rput_other could have set an error in ill_error on 5841 * receipt of M_ERROR. 5842 */ 5843 return (ill->ill_error); 5844 } 5845 5846 /* 5847 * This is a module open, i.e. this is a control stream for access 5848 * to a DLPI device. We allocate an ill_t as the instance data in 5849 * this case. 5850 */ 5851 static int 5852 ip_modopen(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp) 5853 { 5854 ill_t *ill; 5855 int err; 5856 zoneid_t zoneid; 5857 netstack_t *ns; 5858 ip_stack_t *ipst; 5859 5860 /* 5861 * Prevent unprivileged processes from pushing IP so that 5862 * they can't send raw IP. 5863 */ 5864 if (secpolicy_net_rawaccess(credp) != 0) 5865 return (EPERM); 5866 5867 ns = netstack_find_by_cred(credp); 5868 ASSERT(ns != NULL); 5869 ipst = ns->netstack_ip; 5870 ASSERT(ipst != NULL); 5871 5872 /* 5873 * For exclusive stacks we set the zoneid to zero 5874 * to make IP operate as if in the global zone. 5875 */ 5876 if (ipst->ips_netstack->netstack_stackid != GLOBAL_NETSTACKID) 5877 zoneid = GLOBAL_ZONEID; 5878 else 5879 zoneid = crgetzoneid(credp); 5880 5881 ill = (ill_t *)mi_open_alloc_sleep(sizeof (ill_t)); 5882 q->q_ptr = WR(q)->q_ptr = ill; 5883 ill->ill_ipst = ipst; 5884 ill->ill_zoneid = zoneid; 5885 5886 /* 5887 * ill_init initializes the ill fields and then sends down 5888 * down a DL_INFO_REQ after calling qprocson. 5889 */ 5890 err = ill_init(q, ill); 5891 5892 if (err != 0) { 5893 mi_free(ill); 5894 netstack_rele(ipst->ips_netstack); 5895 q->q_ptr = NULL; 5896 WR(q)->q_ptr = NULL; 5897 return (err); 5898 } 5899 5900 /* 5901 * Wait for the DL_INFO_ACK if a DL_INFO_REQ was sent. 5902 * 5903 * ill_init initializes the ipsq marking this thread as 5904 * writer 5905 */ 5906 ipsq_exit(ill->ill_phyint->phyint_ipsq); 5907 err = ip_wait_for_info_ack(ill); 5908 if (err == 0) 5909 ill->ill_credp = credp; 5910 else 5911 goto fail; 5912 5913 crhold(credp); 5914 5915 mutex_enter(&ipst->ips_ip_mi_lock); 5916 err = mi_open_link(&ipst->ips_ip_g_head, (IDP)q->q_ptr, devp, flag, 5917 sflag, credp); 5918 mutex_exit(&ipst->ips_ip_mi_lock); 5919 fail: 5920 if (err) { 5921 (void) ip_close(q, 0); 5922 return (err); 5923 } 5924 return (0); 5925 } 5926 5927 /* For /dev/ip aka AF_INET open */ 5928 int 5929 ip_openv4(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp) 5930 { 5931 return (ip_open(q, devp, flag, sflag, credp, B_FALSE)); 5932 } 5933 5934 /* For /dev/ip6 aka AF_INET6 open */ 5935 int 5936 ip_openv6(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp) 5937 { 5938 return (ip_open(q, devp, flag, sflag, credp, B_TRUE)); 5939 } 5940 5941 /* IP open routine. */ 5942 int 5943 ip_open(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp, 5944 boolean_t isv6) 5945 { 5946 conn_t *connp; 5947 major_t maj; 5948 zoneid_t zoneid; 5949 netstack_t *ns; 5950 ip_stack_t *ipst; 5951 5952 /* Allow reopen. */ 5953 if (q->q_ptr != NULL) 5954 return (0); 5955 5956 if (sflag & MODOPEN) { 5957 /* This is a module open */ 5958 return (ip_modopen(q, devp, flag, sflag, credp)); 5959 } 5960 5961 if ((flag & ~(FKLYR)) == IP_HELPER_STR) { 5962 /* 5963 * Non streams based socket looking for a stream 5964 * to access IP 5965 */ 5966 return (ip_helper_stream_setup(q, devp, flag, sflag, 5967 credp, isv6)); 5968 } 5969 5970 ns = netstack_find_by_cred(credp); 5971 ASSERT(ns != NULL); 5972 ipst = ns->netstack_ip; 5973 ASSERT(ipst != NULL); 5974 5975 /* 5976 * For exclusive stacks we set the zoneid to zero 5977 * to make IP operate as if in the global zone. 5978 */ 5979 if (ipst->ips_netstack->netstack_stackid != GLOBAL_NETSTACKID) 5980 zoneid = GLOBAL_ZONEID; 5981 else 5982 zoneid = crgetzoneid(credp); 5983 5984 /* 5985 * We are opening as a device. This is an IP client stream, and we 5986 * allocate an conn_t as the instance data. 5987 */ 5988 connp = ipcl_conn_create(IPCL_IPCCONN, KM_SLEEP, ipst->ips_netstack); 5989 5990 /* 5991 * ipcl_conn_create did a netstack_hold. Undo the hold that was 5992 * done by netstack_find_by_cred() 5993 */ 5994 netstack_rele(ipst->ips_netstack); 5995 5996 connp->conn_ixa->ixa_flags |= IXAF_MULTICAST_LOOP | IXAF_SET_ULP_CKSUM; 5997 /* conn_allzones can not be set this early, hence no IPCL_ZONEID */ 5998 connp->conn_ixa->ixa_zoneid = zoneid; 5999 connp->conn_zoneid = zoneid; 6000 6001 connp->conn_rq = q; 6002 q->q_ptr = WR(q)->q_ptr = connp; 6003 6004 /* Minor tells us which /dev entry was opened */ 6005 if (isv6) { 6006 connp->conn_family = AF_INET6; 6007 connp->conn_ipversion = IPV6_VERSION; 6008 connp->conn_ixa->ixa_flags &= ~IXAF_IS_IPV4; 6009 connp->conn_ixa->ixa_src_preferences = IPV6_PREFER_SRC_DEFAULT; 6010 } else { 6011 connp->conn_family = AF_INET; 6012 connp->conn_ipversion = IPV4_VERSION; 6013 connp->conn_ixa->ixa_flags |= IXAF_IS_IPV4; 6014 } 6015 6016 if ((ip_minor_arena_la != NULL) && (flag & SO_SOCKSTR) && 6017 ((connp->conn_dev = inet_minor_alloc(ip_minor_arena_la)) != 0)) { 6018 connp->conn_minor_arena = ip_minor_arena_la; 6019 } else { 6020 /* 6021 * Either minor numbers in the large arena were exhausted 6022 * or a non socket application is doing the open. 6023 * Try to allocate from the small arena. 6024 */ 6025 if ((connp->conn_dev = 6026 inet_minor_alloc(ip_minor_arena_sa)) == 0) { 6027 /* CONN_DEC_REF takes care of netstack_rele() */ 6028 q->q_ptr = WR(q)->q_ptr = NULL; 6029 CONN_DEC_REF(connp); 6030 return (EBUSY); 6031 } 6032 connp->conn_minor_arena = ip_minor_arena_sa; 6033 } 6034 6035 maj = getemajor(*devp); 6036 *devp = makedevice(maj, (minor_t)connp->conn_dev); 6037 6038 /* 6039 * connp->conn_cred is crfree()ed in ipcl_conn_destroy() 6040 */ 6041 connp->conn_cred = credp; 6042 connp->conn_cpid = curproc->p_pid; 6043 /* Cache things in ixa without an extra refhold */ 6044 ASSERT(!(connp->conn_ixa->ixa_free_flags & IXA_FREE_CRED)); 6045 connp->conn_ixa->ixa_cred = connp->conn_cred; 6046 connp->conn_ixa->ixa_cpid = connp->conn_cpid; 6047 if (is_system_labeled()) 6048 connp->conn_ixa->ixa_tsl = crgetlabel(connp->conn_cred); 6049 6050 /* 6051 * Handle IP_IOC_RTS_REQUEST and other ioctls which use conn_recv 6052 */ 6053 connp->conn_recv = ip_conn_input; 6054 connp->conn_recvicmp = ip_conn_input_icmp; 6055 6056 crhold(connp->conn_cred); 6057 6058 /* 6059 * If the caller has the process-wide flag set, then default to MAC 6060 * exempt mode. This allows read-down to unlabeled hosts. 6061 */ 6062 if (getpflags(NET_MAC_AWARE, credp) != 0) 6063 connp->conn_mac_mode = CONN_MAC_AWARE; 6064 6065 connp->conn_zone_is_global = (crgetzoneid(credp) == GLOBAL_ZONEID); 6066 6067 connp->conn_rq = q; 6068 connp->conn_wq = WR(q); 6069 6070 /* Non-zero default values */ 6071 connp->conn_ixa->ixa_flags |= IXAF_MULTICAST_LOOP; 6072 6073 /* 6074 * Make the conn globally visible to walkers 6075 */ 6076 ASSERT(connp->conn_ref == 1); 6077 mutex_enter(&connp->conn_lock); 6078 connp->conn_state_flags &= ~CONN_INCIPIENT; 6079 mutex_exit(&connp->conn_lock); 6080 6081 qprocson(q); 6082 6083 return (0); 6084 } 6085 6086 /* 6087 * Set IPsec policy from an ipsec_req_t. If the req is not "zero" and valid, 6088 * all of them are copied to the conn_t. If the req is "zero", the policy is 6089 * zeroed out. A "zero" policy has zero ipsr_{ah,req,self_encap}_req 6090 * fields. 6091 * We keep only the latest setting of the policy and thus policy setting 6092 * is not incremental/cumulative. 6093 * 6094 * Requests to set policies with multiple alternative actions will 6095 * go through a different API. 6096 */ 6097 int 6098 ipsec_set_req(cred_t *cr, conn_t *connp, ipsec_req_t *req) 6099 { 6100 uint_t ah_req = 0; 6101 uint_t esp_req = 0; 6102 uint_t se_req = 0; 6103 ipsec_act_t *actp = NULL; 6104 uint_t nact; 6105 ipsec_policy_head_t *ph; 6106 boolean_t is_pol_reset, is_pol_inserted = B_FALSE; 6107 int error = 0; 6108 netstack_t *ns = connp->conn_netstack; 6109 ip_stack_t *ipst = ns->netstack_ip; 6110 ipsec_stack_t *ipss = ns->netstack_ipsec; 6111 6112 #define REQ_MASK (IPSEC_PREF_REQUIRED|IPSEC_PREF_NEVER) 6113 6114 /* 6115 * The IP_SEC_OPT option does not allow variable length parameters, 6116 * hence a request cannot be NULL. 6117 */ 6118 if (req == NULL) 6119 return (EINVAL); 6120 6121 ah_req = req->ipsr_ah_req; 6122 esp_req = req->ipsr_esp_req; 6123 se_req = req->ipsr_self_encap_req; 6124 6125 /* Don't allow setting self-encap without one or more of AH/ESP. */ 6126 if (se_req != 0 && esp_req == 0 && ah_req == 0) 6127 return (EINVAL); 6128 6129 /* 6130 * Are we dealing with a request to reset the policy (i.e. 6131 * zero requests). 6132 */ 6133 is_pol_reset = ((ah_req & REQ_MASK) == 0 && 6134 (esp_req & REQ_MASK) == 0 && 6135 (se_req & REQ_MASK) == 0); 6136 6137 if (!is_pol_reset) { 6138 /* 6139 * If we couldn't load IPsec, fail with "protocol 6140 * not supported". 6141 * IPsec may not have been loaded for a request with zero 6142 * policies, so we don't fail in this case. 6143 */ 6144 mutex_enter(&ipss->ipsec_loader_lock); 6145 if (ipss->ipsec_loader_state != IPSEC_LOADER_SUCCEEDED) { 6146 mutex_exit(&ipss->ipsec_loader_lock); 6147 return (EPROTONOSUPPORT); 6148 } 6149 mutex_exit(&ipss->ipsec_loader_lock); 6150 6151 /* 6152 * Test for valid requests. Invalid algorithms 6153 * need to be tested by IPsec code because new 6154 * algorithms can be added dynamically. 6155 */ 6156 if ((ah_req & ~(REQ_MASK|IPSEC_PREF_UNIQUE)) != 0 || 6157 (esp_req & ~(REQ_MASK|IPSEC_PREF_UNIQUE)) != 0 || 6158 (se_req & ~(REQ_MASK|IPSEC_PREF_UNIQUE)) != 0) { 6159 return (EINVAL); 6160 } 6161 6162 /* 6163 * Only privileged users can issue these 6164 * requests. 6165 */ 6166 if (((ah_req & IPSEC_PREF_NEVER) || 6167 (esp_req & IPSEC_PREF_NEVER) || 6168 (se_req & IPSEC_PREF_NEVER)) && 6169 secpolicy_ip_config(cr, B_FALSE) != 0) { 6170 return (EPERM); 6171 } 6172 6173 /* 6174 * The IPSEC_PREF_REQUIRED and IPSEC_PREF_NEVER 6175 * are mutually exclusive. 6176 */ 6177 if (((ah_req & REQ_MASK) == REQ_MASK) || 6178 ((esp_req & REQ_MASK) == REQ_MASK) || 6179 ((se_req & REQ_MASK) == REQ_MASK)) { 6180 /* Both of them are set */ 6181 return (EINVAL); 6182 } 6183 } 6184 6185 ASSERT(MUTEX_HELD(&connp->conn_lock)); 6186 6187 /* 6188 * If we have already cached policies in conn_connect(), don't 6189 * let them change now. We cache policies for connections 6190 * whose src,dst [addr, port] is known. 6191 */ 6192 if (connp->conn_policy_cached) { 6193 return (EINVAL); 6194 } 6195 6196 /* 6197 * We have a zero policies, reset the connection policy if already 6198 * set. This will cause the connection to inherit the 6199 * global policy, if any. 6200 */ 6201 if (is_pol_reset) { 6202 if (connp->conn_policy != NULL) { 6203 IPPH_REFRELE(connp->conn_policy, ipst->ips_netstack); 6204 connp->conn_policy = NULL; 6205 } 6206 connp->conn_in_enforce_policy = B_FALSE; 6207 connp->conn_out_enforce_policy = B_FALSE; 6208 return (0); 6209 } 6210 6211 ph = connp->conn_policy = ipsec_polhead_split(connp->conn_policy, 6212 ipst->ips_netstack); 6213 if (ph == NULL) 6214 goto enomem; 6215 6216 ipsec_actvec_from_req(req, &actp, &nact, ipst->ips_netstack); 6217 if (actp == NULL) 6218 goto enomem; 6219 6220 /* 6221 * Always insert IPv4 policy entries, since they can also apply to 6222 * ipv6 sockets being used in ipv4-compat mode. 6223 */ 6224 if (!ipsec_polhead_insert(ph, actp, nact, IPSEC_AF_V4, 6225 IPSEC_TYPE_INBOUND, ns)) 6226 goto enomem; 6227 is_pol_inserted = B_TRUE; 6228 if (!ipsec_polhead_insert(ph, actp, nact, IPSEC_AF_V4, 6229 IPSEC_TYPE_OUTBOUND, ns)) 6230 goto enomem; 6231 6232 /* 6233 * We're looking at a v6 socket, also insert the v6-specific 6234 * entries. 6235 */ 6236 if (connp->conn_family == AF_INET6) { 6237 if (!ipsec_polhead_insert(ph, actp, nact, IPSEC_AF_V6, 6238 IPSEC_TYPE_INBOUND, ns)) 6239 goto enomem; 6240 if (!ipsec_polhead_insert(ph, actp, nact, IPSEC_AF_V6, 6241 IPSEC_TYPE_OUTBOUND, ns)) 6242 goto enomem; 6243 } 6244 6245 ipsec_actvec_free(actp, nact); 6246 6247 /* 6248 * If the requests need security, set enforce_policy. 6249 * If the requests are IPSEC_PREF_NEVER, one should 6250 * still set conn_out_enforce_policy so that ip_set_destination 6251 * marks the ip_xmit_attr_t appropriatly. This is needed so that 6252 * for connections that we don't cache policy in at connect time, 6253 * if global policy matches in ip_output_attach_policy, we 6254 * don't wrongly inherit global policy. Similarly, we need 6255 * to set conn_in_enforce_policy also so that we don't verify 6256 * policy wrongly. 6257 */ 6258 if ((ah_req & REQ_MASK) != 0 || 6259 (esp_req & REQ_MASK) != 0 || 6260 (se_req & REQ_MASK) != 0) { 6261 connp->conn_in_enforce_policy = B_TRUE; 6262 connp->conn_out_enforce_policy = B_TRUE; 6263 } 6264 6265 return (error); 6266 #undef REQ_MASK 6267 6268 /* 6269 * Common memory-allocation-failure exit path. 6270 */ 6271 enomem: 6272 if (actp != NULL) 6273 ipsec_actvec_free(actp, nact); 6274 if (is_pol_inserted) 6275 ipsec_polhead_flush(ph, ns); 6276 return (ENOMEM); 6277 } 6278 6279 /* 6280 * Set socket options for joining and leaving multicast groups. 6281 * Common to IPv4 and IPv6; inet6 indicates the type of socket. 6282 * The caller has already check that the option name is consistent with 6283 * the address family of the socket. 6284 */ 6285 int 6286 ip_opt_set_multicast_group(conn_t *connp, t_scalar_t name, 6287 uchar_t *invalp, boolean_t inet6, boolean_t checkonly) 6288 { 6289 int *i1 = (int *)invalp; 6290 int error = 0; 6291 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 6292 struct ip_mreq *v4_mreqp; 6293 struct ipv6_mreq *v6_mreqp; 6294 struct group_req *greqp; 6295 ire_t *ire; 6296 boolean_t done = B_FALSE; 6297 ipaddr_t ifaddr; 6298 in6_addr_t v6group; 6299 uint_t ifindex; 6300 boolean_t mcast_opt = B_TRUE; 6301 mcast_record_t fmode; 6302 int (*optfn)(conn_t *, boolean_t, const in6_addr_t *, 6303 ipaddr_t, uint_t, mcast_record_t, const in6_addr_t *); 6304 6305 switch (name) { 6306 case IP_ADD_MEMBERSHIP: 6307 case IPV6_JOIN_GROUP: 6308 mcast_opt = B_FALSE; 6309 /* FALLTHRU */ 6310 case MCAST_JOIN_GROUP: 6311 fmode = MODE_IS_EXCLUDE; 6312 optfn = ip_opt_add_group; 6313 break; 6314 6315 case IP_DROP_MEMBERSHIP: 6316 case IPV6_LEAVE_GROUP: 6317 mcast_opt = B_FALSE; 6318 /* FALLTHRU */ 6319 case MCAST_LEAVE_GROUP: 6320 fmode = MODE_IS_INCLUDE; 6321 optfn = ip_opt_delete_group; 6322 break; 6323 default: 6324 ASSERT(0); 6325 } 6326 6327 if (mcast_opt) { 6328 struct sockaddr_in *sin; 6329 struct sockaddr_in6 *sin6; 6330 6331 greqp = (struct group_req *)i1; 6332 if (greqp->gr_group.ss_family == AF_INET) { 6333 sin = (struct sockaddr_in *)&(greqp->gr_group); 6334 IN6_INADDR_TO_V4MAPPED(&sin->sin_addr, &v6group); 6335 } else { 6336 if (!inet6) 6337 return (EINVAL); /* Not on INET socket */ 6338 6339 sin6 = (struct sockaddr_in6 *)&(greqp->gr_group); 6340 v6group = sin6->sin6_addr; 6341 } 6342 ifaddr = INADDR_ANY; 6343 ifindex = greqp->gr_interface; 6344 } else if (inet6) { 6345 v6_mreqp = (struct ipv6_mreq *)i1; 6346 v6group = v6_mreqp->ipv6mr_multiaddr; 6347 ifaddr = INADDR_ANY; 6348 ifindex = v6_mreqp->ipv6mr_interface; 6349 } else { 6350 v4_mreqp = (struct ip_mreq *)i1; 6351 IN6_INADDR_TO_V4MAPPED(&v4_mreqp->imr_multiaddr, &v6group); 6352 ifaddr = (ipaddr_t)v4_mreqp->imr_interface.s_addr; 6353 ifindex = 0; 6354 } 6355 6356 /* 6357 * In the multirouting case, we need to replicate 6358 * the request on all interfaces that will take part 6359 * in replication. We do so because multirouting is 6360 * reflective, thus we will probably receive multi- 6361 * casts on those interfaces. 6362 * The ip_multirt_apply_membership() succeeds if 6363 * the operation succeeds on at least one interface. 6364 */ 6365 if (IN6_IS_ADDR_V4MAPPED(&v6group)) { 6366 ipaddr_t group; 6367 6368 IN6_V4MAPPED_TO_IPADDR(&v6group, group); 6369 6370 ire = ire_ftable_lookup_v4(group, IP_HOST_MASK, 0, 6371 IRE_HOST | IRE_INTERFACE, NULL, ALL_ZONES, NULL, 6372 MATCH_IRE_MASK | MATCH_IRE_TYPE, 0, ipst, NULL); 6373 } else { 6374 ire = ire_ftable_lookup_v6(&v6group, &ipv6_all_ones, 0, 6375 IRE_HOST | IRE_INTERFACE, NULL, ALL_ZONES, NULL, 6376 MATCH_IRE_MASK | MATCH_IRE_TYPE, 0, ipst, NULL); 6377 } 6378 if (ire != NULL) { 6379 if (ire->ire_flags & RTF_MULTIRT) { 6380 error = ip_multirt_apply_membership(optfn, ire, connp, 6381 checkonly, &v6group, fmode, &ipv6_all_zeros); 6382 done = B_TRUE; 6383 } 6384 ire_refrele(ire); 6385 } 6386 6387 if (!done) { 6388 error = optfn(connp, checkonly, &v6group, ifaddr, ifindex, 6389 fmode, &ipv6_all_zeros); 6390 } 6391 return (error); 6392 } 6393 6394 /* 6395 * Set socket options for joining and leaving multicast groups 6396 * for specific sources. 6397 * Common to IPv4 and IPv6; inet6 indicates the type of socket. 6398 * The caller has already check that the option name is consistent with 6399 * the address family of the socket. 6400 */ 6401 int 6402 ip_opt_set_multicast_sources(conn_t *connp, t_scalar_t name, 6403 uchar_t *invalp, boolean_t inet6, boolean_t checkonly) 6404 { 6405 int *i1 = (int *)invalp; 6406 int error = 0; 6407 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 6408 struct ip_mreq_source *imreqp; 6409 struct group_source_req *gsreqp; 6410 in6_addr_t v6group, v6src; 6411 uint32_t ifindex; 6412 ipaddr_t ifaddr; 6413 boolean_t mcast_opt = B_TRUE; 6414 mcast_record_t fmode; 6415 ire_t *ire; 6416 boolean_t done = B_FALSE; 6417 int (*optfn)(conn_t *, boolean_t, const in6_addr_t *, 6418 ipaddr_t, uint_t, mcast_record_t, const in6_addr_t *); 6419 6420 switch (name) { 6421 case IP_BLOCK_SOURCE: 6422 mcast_opt = B_FALSE; 6423 /* FALLTHRU */ 6424 case MCAST_BLOCK_SOURCE: 6425 fmode = MODE_IS_EXCLUDE; 6426 optfn = ip_opt_add_group; 6427 break; 6428 6429 case IP_UNBLOCK_SOURCE: 6430 mcast_opt = B_FALSE; 6431 /* FALLTHRU */ 6432 case MCAST_UNBLOCK_SOURCE: 6433 fmode = MODE_IS_EXCLUDE; 6434 optfn = ip_opt_delete_group; 6435 break; 6436 6437 case IP_ADD_SOURCE_MEMBERSHIP: 6438 mcast_opt = B_FALSE; 6439 /* FALLTHRU */ 6440 case MCAST_JOIN_SOURCE_GROUP: 6441 fmode = MODE_IS_INCLUDE; 6442 optfn = ip_opt_add_group; 6443 break; 6444 6445 case IP_DROP_SOURCE_MEMBERSHIP: 6446 mcast_opt = B_FALSE; 6447 /* FALLTHRU */ 6448 case MCAST_LEAVE_SOURCE_GROUP: 6449 fmode = MODE_IS_INCLUDE; 6450 optfn = ip_opt_delete_group; 6451 break; 6452 default: 6453 ASSERT(0); 6454 } 6455 6456 if (mcast_opt) { 6457 gsreqp = (struct group_source_req *)i1; 6458 ifindex = gsreqp->gsr_interface; 6459 if (gsreqp->gsr_group.ss_family == AF_INET) { 6460 struct sockaddr_in *s; 6461 s = (struct sockaddr_in *)&gsreqp->gsr_group; 6462 IN6_INADDR_TO_V4MAPPED(&s->sin_addr, &v6group); 6463 s = (struct sockaddr_in *)&gsreqp->gsr_source; 6464 IN6_INADDR_TO_V4MAPPED(&s->sin_addr, &v6src); 6465 } else { 6466 struct sockaddr_in6 *s6; 6467 6468 if (!inet6) 6469 return (EINVAL); /* Not on INET socket */ 6470 6471 s6 = (struct sockaddr_in6 *)&gsreqp->gsr_group; 6472 v6group = s6->sin6_addr; 6473 s6 = (struct sockaddr_in6 *)&gsreqp->gsr_source; 6474 v6src = s6->sin6_addr; 6475 } 6476 ifaddr = INADDR_ANY; 6477 } else { 6478 imreqp = (struct ip_mreq_source *)i1; 6479 IN6_INADDR_TO_V4MAPPED(&imreqp->imr_multiaddr, &v6group); 6480 IN6_INADDR_TO_V4MAPPED(&imreqp->imr_sourceaddr, &v6src); 6481 ifaddr = (ipaddr_t)imreqp->imr_interface.s_addr; 6482 ifindex = 0; 6483 } 6484 6485 /* 6486 * Handle src being mapped INADDR_ANY by changing it to unspecified. 6487 */ 6488 if (IN6_IS_ADDR_V4MAPPED_ANY(&v6src)) 6489 v6src = ipv6_all_zeros; 6490 6491 /* 6492 * In the multirouting case, we need to replicate 6493 * the request as noted in the mcast cases above. 6494 */ 6495 if (IN6_IS_ADDR_V4MAPPED(&v6group)) { 6496 ipaddr_t group; 6497 6498 IN6_V4MAPPED_TO_IPADDR(&v6group, group); 6499 6500 ire = ire_ftable_lookup_v4(group, IP_HOST_MASK, 0, 6501 IRE_HOST | IRE_INTERFACE, NULL, ALL_ZONES, NULL, 6502 MATCH_IRE_MASK | MATCH_IRE_TYPE, 0, ipst, NULL); 6503 } else { 6504 ire = ire_ftable_lookup_v6(&v6group, &ipv6_all_ones, 0, 6505 IRE_HOST | IRE_INTERFACE, NULL, ALL_ZONES, NULL, 6506 MATCH_IRE_MASK | MATCH_IRE_TYPE, 0, ipst, NULL); 6507 } 6508 if (ire != NULL) { 6509 if (ire->ire_flags & RTF_MULTIRT) { 6510 error = ip_multirt_apply_membership(optfn, ire, connp, 6511 checkonly, &v6group, fmode, &v6src); 6512 done = B_TRUE; 6513 } 6514 ire_refrele(ire); 6515 } 6516 if (!done) { 6517 error = optfn(connp, checkonly, &v6group, ifaddr, ifindex, 6518 fmode, &v6src); 6519 } 6520 return (error); 6521 } 6522 6523 /* 6524 * Given a destination address and a pointer to where to put the information 6525 * this routine fills in the mtuinfo. 6526 * The socket must be connected. 6527 * For sctp conn_faddr is the primary address. 6528 */ 6529 int 6530 ip_fill_mtuinfo(conn_t *connp, ip_xmit_attr_t *ixa, struct ip6_mtuinfo *mtuinfo) 6531 { 6532 uint32_t pmtu = IP_MAXPACKET; 6533 uint_t scopeid; 6534 6535 if (IN6_IS_ADDR_UNSPECIFIED(&connp->conn_faddr_v6)) 6536 return (-1); 6537 6538 /* In case we never sent or called ip_set_destination_v4/v6 */ 6539 if (ixa->ixa_ire != NULL) 6540 pmtu = ip_get_pmtu(ixa); 6541 6542 if (ixa->ixa_flags & IXAF_SCOPEID_SET) 6543 scopeid = ixa->ixa_scopeid; 6544 else 6545 scopeid = 0; 6546 6547 bzero(mtuinfo, sizeof (*mtuinfo)); 6548 mtuinfo->ip6m_addr.sin6_family = AF_INET6; 6549 mtuinfo->ip6m_addr.sin6_port = connp->conn_fport; 6550 mtuinfo->ip6m_addr.sin6_addr = connp->conn_faddr_v6; 6551 mtuinfo->ip6m_addr.sin6_scope_id = scopeid; 6552 mtuinfo->ip6m_mtu = pmtu; 6553 6554 return (sizeof (struct ip6_mtuinfo)); 6555 } 6556 6557 /* 6558 * When the src multihoming is changed from weak to [strong, preferred] 6559 * ip_ire_rebind_walker is called to walk the list of all ire_t entries 6560 * and identify routes that were created by user-applications in the 6561 * unbound state (i.e., without RTA_IFP), and for which an ire_ill is not 6562 * currently defined. These routes are then 'rebound', i.e., their ire_ill 6563 * is selected by finding an interface route for the gateway. 6564 */ 6565 /* ARGSUSED */ 6566 void 6567 ip_ire_rebind_walker(ire_t *ire, void *notused) 6568 { 6569 if (!ire->ire_unbound || ire->ire_ill != NULL) 6570 return; 6571 ire_rebind(ire); 6572 ire_delete(ire); 6573 } 6574 6575 /* 6576 * When the src multihoming is changed from [strong, preferred] to weak, 6577 * ip_ire_unbind_walker is called to walk the list of all ire_t entries, and 6578 * set any entries that were created by user-applications in the unbound state 6579 * (i.e., without RTA_IFP) back to having a NULL ire_ill. 6580 */ 6581 /* ARGSUSED */ 6582 void 6583 ip_ire_unbind_walker(ire_t *ire, void *notused) 6584 { 6585 ire_t *new_ire; 6586 6587 if (!ire->ire_unbound || ire->ire_ill == NULL) 6588 return; 6589 if (ire->ire_ipversion == IPV6_VERSION) { 6590 new_ire = ire_create_v6(&ire->ire_addr_v6, &ire->ire_mask_v6, 6591 &ire->ire_gateway_addr_v6, ire->ire_type, NULL, 6592 ire->ire_zoneid, ire->ire_flags, NULL, ire->ire_ipst); 6593 } else { 6594 new_ire = ire_create((uchar_t *)&ire->ire_addr, 6595 (uchar_t *)&ire->ire_mask, 6596 (uchar_t *)&ire->ire_gateway_addr, ire->ire_type, NULL, 6597 ire->ire_zoneid, ire->ire_flags, NULL, ire->ire_ipst); 6598 } 6599 if (new_ire == NULL) 6600 return; 6601 new_ire->ire_unbound = B_TRUE; 6602 /* 6603 * The bound ire must first be deleted so that we don't return 6604 * the existing one on the attempt to add the unbound new_ire. 6605 */ 6606 ire_delete(ire); 6607 new_ire = ire_add(new_ire); 6608 if (new_ire != NULL) 6609 ire_refrele(new_ire); 6610 } 6611 6612 /* 6613 * When the settings of ip*_strict_src_multihoming tunables are changed, 6614 * all cached routes need to be recomputed. This recomputation needs to be 6615 * done when going from weaker to stronger modes so that the cached ire 6616 * for the connection does not violate the current ip*_strict_src_multihoming 6617 * setting. It also needs to be done when going from stronger to weaker modes, 6618 * so that we fall back to matching on the longest-matching-route (as opposed 6619 * to a shorter match that may have been selected in the strong mode 6620 * to satisfy src_multihoming settings). 6621 * 6622 * The cached ixa_ire entires for all conn_t entries are marked as 6623 * "verify" so that they will be recomputed for the next packet. 6624 */ 6625 void 6626 conn_ire_revalidate(conn_t *connp, void *arg) 6627 { 6628 boolean_t isv6 = (boolean_t)arg; 6629 6630 if ((isv6 && connp->conn_ipversion != IPV6_VERSION) || 6631 (!isv6 && connp->conn_ipversion != IPV4_VERSION)) 6632 return; 6633 connp->conn_ixa->ixa_ire_generation = IRE_GENERATION_VERIFY; 6634 } 6635 6636 /* 6637 * Handles both IPv4 and IPv6 reassembly - doing the out-of-order cases, 6638 * When an ipf is passed here for the first time, if 6639 * we already have in-order fragments on the queue, we convert from the fast- 6640 * path reassembly scheme to the hard-case scheme. From then on, additional 6641 * fragments are reassembled here. We keep track of the start and end offsets 6642 * of each piece, and the number of holes in the chain. When the hole count 6643 * goes to zero, we are done! 6644 * 6645 * The ipf_count will be updated to account for any mblk(s) added (pointed to 6646 * by mp) or subtracted (freeb()ed dups), upon return the caller must update 6647 * ipfb_count and ill_frag_count by the difference of ipf_count before and 6648 * after the call to ip_reassemble(). 6649 */ 6650 int 6651 ip_reassemble(mblk_t *mp, ipf_t *ipf, uint_t start, boolean_t more, ill_t *ill, 6652 size_t msg_len) 6653 { 6654 uint_t end; 6655 mblk_t *next_mp; 6656 mblk_t *mp1; 6657 uint_t offset; 6658 boolean_t incr_dups = B_TRUE; 6659 boolean_t offset_zero_seen = B_FALSE; 6660 boolean_t pkt_boundary_checked = B_FALSE; 6661 6662 /* If start == 0 then ipf_nf_hdr_len has to be set. */ 6663 ASSERT(start != 0 || ipf->ipf_nf_hdr_len != 0); 6664 6665 /* Add in byte count */ 6666 ipf->ipf_count += msg_len; 6667 if (ipf->ipf_end) { 6668 /* 6669 * We were part way through in-order reassembly, but now there 6670 * is a hole. We walk through messages already queued, and 6671 * mark them for hard case reassembly. We know that up till 6672 * now they were in order starting from offset zero. 6673 */ 6674 offset = 0; 6675 for (mp1 = ipf->ipf_mp->b_cont; mp1; mp1 = mp1->b_cont) { 6676 IP_REASS_SET_START(mp1, offset); 6677 if (offset == 0) { 6678 ASSERT(ipf->ipf_nf_hdr_len != 0); 6679 offset = -ipf->ipf_nf_hdr_len; 6680 } 6681 offset += mp1->b_wptr - mp1->b_rptr; 6682 IP_REASS_SET_END(mp1, offset); 6683 } 6684 /* One hole at the end. */ 6685 ipf->ipf_hole_cnt = 1; 6686 /* Brand it as a hard case, forever. */ 6687 ipf->ipf_end = 0; 6688 } 6689 /* Walk through all the new pieces. */ 6690 do { 6691 end = start + (mp->b_wptr - mp->b_rptr); 6692 /* 6693 * If start is 0, decrease 'end' only for the first mblk of 6694 * the fragment. Otherwise 'end' can get wrong value in the 6695 * second pass of the loop if first mblk is exactly the 6696 * size of ipf_nf_hdr_len. 6697 */ 6698 if (start == 0 && !offset_zero_seen) { 6699 /* First segment */ 6700 ASSERT(ipf->ipf_nf_hdr_len != 0); 6701 end -= ipf->ipf_nf_hdr_len; 6702 offset_zero_seen = B_TRUE; 6703 } 6704 next_mp = mp->b_cont; 6705 /* 6706 * We are checking to see if there is any interesing data 6707 * to process. If there isn't and the mblk isn't the 6708 * one which carries the unfragmentable header then we 6709 * drop it. It's possible to have just the unfragmentable 6710 * header come through without any data. That needs to be 6711 * saved. 6712 * 6713 * If the assert at the top of this function holds then the 6714 * term "ipf->ipf_nf_hdr_len != 0" isn't needed. This code 6715 * is infrequently traveled enough that the test is left in 6716 * to protect against future code changes which break that 6717 * invariant. 6718 */ 6719 if (start == end && start != 0 && ipf->ipf_nf_hdr_len != 0) { 6720 /* Empty. Blast it. */ 6721 IP_REASS_SET_START(mp, 0); 6722 IP_REASS_SET_END(mp, 0); 6723 /* 6724 * If the ipf points to the mblk we are about to free, 6725 * update ipf to point to the next mblk (or NULL 6726 * if none). 6727 */ 6728 if (ipf->ipf_mp->b_cont == mp) 6729 ipf->ipf_mp->b_cont = next_mp; 6730 freeb(mp); 6731 continue; 6732 } 6733 mp->b_cont = NULL; 6734 IP_REASS_SET_START(mp, start); 6735 IP_REASS_SET_END(mp, end); 6736 if (!ipf->ipf_tail_mp) { 6737 ipf->ipf_tail_mp = mp; 6738 ipf->ipf_mp->b_cont = mp; 6739 if (start == 0 || !more) { 6740 ipf->ipf_hole_cnt = 1; 6741 /* 6742 * if the first fragment comes in more than one 6743 * mblk, this loop will be executed for each 6744 * mblk. Need to adjust hole count so exiting 6745 * this routine will leave hole count at 1. 6746 */ 6747 if (next_mp) 6748 ipf->ipf_hole_cnt++; 6749 } else 6750 ipf->ipf_hole_cnt = 2; 6751 continue; 6752 } else if (ipf->ipf_last_frag_seen && !more && 6753 !pkt_boundary_checked) { 6754 /* 6755 * We check datagram boundary only if this fragment 6756 * claims to be the last fragment and we have seen a 6757 * last fragment in the past too. We do this only 6758 * once for a given fragment. 6759 * 6760 * start cannot be 0 here as fragments with start=0 6761 * and MF=0 gets handled as a complete packet. These 6762 * fragments should not reach here. 6763 */ 6764 6765 if (start + msgdsize(mp) != 6766 IP_REASS_END(ipf->ipf_tail_mp)) { 6767 /* 6768 * We have two fragments both of which claim 6769 * to be the last fragment but gives conflicting 6770 * information about the whole datagram size. 6771 * Something fishy is going on. Drop the 6772 * fragment and free up the reassembly list. 6773 */ 6774 return (IP_REASS_FAILED); 6775 } 6776 6777 /* 6778 * We shouldn't come to this code block again for this 6779 * particular fragment. 6780 */ 6781 pkt_boundary_checked = B_TRUE; 6782 } 6783 6784 /* New stuff at or beyond tail? */ 6785 offset = IP_REASS_END(ipf->ipf_tail_mp); 6786 if (start >= offset) { 6787 if (ipf->ipf_last_frag_seen) { 6788 /* current fragment is beyond last fragment */ 6789 return (IP_REASS_FAILED); 6790 } 6791 /* Link it on end. */ 6792 ipf->ipf_tail_mp->b_cont = mp; 6793 ipf->ipf_tail_mp = mp; 6794 if (more) { 6795 if (start != offset) 6796 ipf->ipf_hole_cnt++; 6797 } else if (start == offset && next_mp == NULL) 6798 ipf->ipf_hole_cnt--; 6799 continue; 6800 } 6801 mp1 = ipf->ipf_mp->b_cont; 6802 offset = IP_REASS_START(mp1); 6803 /* New stuff at the front? */ 6804 if (start < offset) { 6805 if (start == 0) { 6806 if (end >= offset) { 6807 /* Nailed the hole at the begining. */ 6808 ipf->ipf_hole_cnt--; 6809 } 6810 } else if (end < offset) { 6811 /* 6812 * A hole, stuff, and a hole where there used 6813 * to be just a hole. 6814 */ 6815 ipf->ipf_hole_cnt++; 6816 } 6817 mp->b_cont = mp1; 6818 /* Check for overlap. */ 6819 while (end > offset) { 6820 if (end < IP_REASS_END(mp1)) { 6821 mp->b_wptr -= end - offset; 6822 IP_REASS_SET_END(mp, offset); 6823 BUMP_MIB(ill->ill_ip_mib, 6824 ipIfStatsReasmPartDups); 6825 break; 6826 } 6827 /* Did we cover another hole? */ 6828 if ((mp1->b_cont && 6829 IP_REASS_END(mp1) != 6830 IP_REASS_START(mp1->b_cont) && 6831 end >= IP_REASS_START(mp1->b_cont)) || 6832 (!ipf->ipf_last_frag_seen && !more)) { 6833 ipf->ipf_hole_cnt--; 6834 } 6835 /* Clip out mp1. */ 6836 if ((mp->b_cont = mp1->b_cont) == NULL) { 6837 /* 6838 * After clipping out mp1, this guy 6839 * is now hanging off the end. 6840 */ 6841 ipf->ipf_tail_mp = mp; 6842 } 6843 IP_REASS_SET_START(mp1, 0); 6844 IP_REASS_SET_END(mp1, 0); 6845 /* Subtract byte count */ 6846 ipf->ipf_count -= mp1->b_datap->db_lim - 6847 mp1->b_datap->db_base; 6848 freeb(mp1); 6849 BUMP_MIB(ill->ill_ip_mib, 6850 ipIfStatsReasmPartDups); 6851 mp1 = mp->b_cont; 6852 if (!mp1) 6853 break; 6854 offset = IP_REASS_START(mp1); 6855 } 6856 ipf->ipf_mp->b_cont = mp; 6857 continue; 6858 } 6859 /* 6860 * The new piece starts somewhere between the start of the head 6861 * and before the end of the tail. 6862 */ 6863 for (; mp1; mp1 = mp1->b_cont) { 6864 offset = IP_REASS_END(mp1); 6865 if (start < offset) { 6866 if (end <= offset) { 6867 /* Nothing new. */ 6868 IP_REASS_SET_START(mp, 0); 6869 IP_REASS_SET_END(mp, 0); 6870 /* Subtract byte count */ 6871 ipf->ipf_count -= mp->b_datap->db_lim - 6872 mp->b_datap->db_base; 6873 if (incr_dups) { 6874 ipf->ipf_num_dups++; 6875 incr_dups = B_FALSE; 6876 } 6877 freeb(mp); 6878 BUMP_MIB(ill->ill_ip_mib, 6879 ipIfStatsReasmDuplicates); 6880 break; 6881 } 6882 /* 6883 * Trim redundant stuff off beginning of new 6884 * piece. 6885 */ 6886 IP_REASS_SET_START(mp, offset); 6887 mp->b_rptr += offset - start; 6888 BUMP_MIB(ill->ill_ip_mib, 6889 ipIfStatsReasmPartDups); 6890 start = offset; 6891 if (!mp1->b_cont) { 6892 /* 6893 * After trimming, this guy is now 6894 * hanging off the end. 6895 */ 6896 mp1->b_cont = mp; 6897 ipf->ipf_tail_mp = mp; 6898 if (!more) { 6899 ipf->ipf_hole_cnt--; 6900 } 6901 break; 6902 } 6903 } 6904 if (start >= IP_REASS_START(mp1->b_cont)) 6905 continue; 6906 /* Fill a hole */ 6907 if (start > offset) 6908 ipf->ipf_hole_cnt++; 6909 mp->b_cont = mp1->b_cont; 6910 mp1->b_cont = mp; 6911 mp1 = mp->b_cont; 6912 offset = IP_REASS_START(mp1); 6913 if (end >= offset) { 6914 ipf->ipf_hole_cnt--; 6915 /* Check for overlap. */ 6916 while (end > offset) { 6917 if (end < IP_REASS_END(mp1)) { 6918 mp->b_wptr -= end - offset; 6919 IP_REASS_SET_END(mp, offset); 6920 /* 6921 * TODO we might bump 6922 * this up twice if there is 6923 * overlap at both ends. 6924 */ 6925 BUMP_MIB(ill->ill_ip_mib, 6926 ipIfStatsReasmPartDups); 6927 break; 6928 } 6929 /* Did we cover another hole? */ 6930 if ((mp1->b_cont && 6931 IP_REASS_END(mp1) 6932 != IP_REASS_START(mp1->b_cont) && 6933 end >= 6934 IP_REASS_START(mp1->b_cont)) || 6935 (!ipf->ipf_last_frag_seen && 6936 !more)) { 6937 ipf->ipf_hole_cnt--; 6938 } 6939 /* Clip out mp1. */ 6940 if ((mp->b_cont = mp1->b_cont) == 6941 NULL) { 6942 /* 6943 * After clipping out mp1, 6944 * this guy is now hanging 6945 * off the end. 6946 */ 6947 ipf->ipf_tail_mp = mp; 6948 } 6949 IP_REASS_SET_START(mp1, 0); 6950 IP_REASS_SET_END(mp1, 0); 6951 /* Subtract byte count */ 6952 ipf->ipf_count -= 6953 mp1->b_datap->db_lim - 6954 mp1->b_datap->db_base; 6955 freeb(mp1); 6956 BUMP_MIB(ill->ill_ip_mib, 6957 ipIfStatsReasmPartDups); 6958 mp1 = mp->b_cont; 6959 if (!mp1) 6960 break; 6961 offset = IP_REASS_START(mp1); 6962 } 6963 } 6964 break; 6965 } 6966 } while (start = end, mp = next_mp); 6967 6968 /* Fragment just processed could be the last one. Remember this fact */ 6969 if (!more) 6970 ipf->ipf_last_frag_seen = B_TRUE; 6971 6972 /* Still got holes? */ 6973 if (ipf->ipf_hole_cnt) 6974 return (IP_REASS_PARTIAL); 6975 /* Clean up overloaded fields to avoid upstream disasters. */ 6976 for (mp1 = ipf->ipf_mp->b_cont; mp1; mp1 = mp1->b_cont) { 6977 IP_REASS_SET_START(mp1, 0); 6978 IP_REASS_SET_END(mp1, 0); 6979 } 6980 return (IP_REASS_COMPLETE); 6981 } 6982 6983 /* 6984 * Fragmentation reassembly. Each ILL has a hash table for 6985 * queuing packets undergoing reassembly for all IPIFs 6986 * associated with the ILL. The hash is based on the packet 6987 * IP ident field. The ILL frag hash table was allocated 6988 * as a timer block at the time the ILL was created. Whenever 6989 * there is anything on the reassembly queue, the timer will 6990 * be running. Returns the reassembled packet if reassembly completes. 6991 */ 6992 mblk_t * 6993 ip_input_fragment(mblk_t *mp, ipha_t *ipha, ip_recv_attr_t *ira) 6994 { 6995 uint32_t frag_offset_flags; 6996 mblk_t *t_mp; 6997 ipaddr_t dst; 6998 uint8_t proto = ipha->ipha_protocol; 6999 uint32_t sum_val; 7000 uint16_t sum_flags; 7001 ipf_t *ipf; 7002 ipf_t **ipfp; 7003 ipfb_t *ipfb; 7004 uint16_t ident; 7005 uint32_t offset; 7006 ipaddr_t src; 7007 uint_t hdr_length; 7008 uint32_t end; 7009 mblk_t *mp1; 7010 mblk_t *tail_mp; 7011 size_t count; 7012 size_t msg_len; 7013 uint8_t ecn_info = 0; 7014 uint32_t packet_size; 7015 boolean_t pruned = B_FALSE; 7016 ill_t *ill = ira->ira_ill; 7017 ip_stack_t *ipst = ill->ill_ipst; 7018 7019 /* 7020 * Drop the fragmented as early as possible, if 7021 * we don't have resource(s) to re-assemble. 7022 */ 7023 if (ipst->ips_ip_reass_queue_bytes == 0) { 7024 freemsg(mp); 7025 return (NULL); 7026 } 7027 7028 /* Check for fragmentation offset; return if there's none */ 7029 if ((frag_offset_flags = ntohs(ipha->ipha_fragment_offset_and_flags) & 7030 (IPH_MF | IPH_OFFSET)) == 0) 7031 return (mp); 7032 7033 /* 7034 * We utilize hardware computed checksum info only for UDP since 7035 * IP fragmentation is a normal occurrence for the protocol. In 7036 * addition, checksum offload support for IP fragments carrying 7037 * UDP payload is commonly implemented across network adapters. 7038 */ 7039 ASSERT(ira->ira_rill != NULL); 7040 if (proto == IPPROTO_UDP && dohwcksum && 7041 ILL_HCKSUM_CAPABLE(ira->ira_rill) && 7042 (DB_CKSUMFLAGS(mp) & (HCK_FULLCKSUM | HCK_PARTIALCKSUM))) { 7043 mblk_t *mp1 = mp->b_cont; 7044 int32_t len; 7045 7046 /* Record checksum information from the packet */ 7047 sum_val = (uint32_t)DB_CKSUM16(mp); 7048 sum_flags = DB_CKSUMFLAGS(mp); 7049 7050 /* IP payload offset from beginning of mblk */ 7051 offset = ((uchar_t *)ipha + IPH_HDR_LENGTH(ipha)) - mp->b_rptr; 7052 7053 if ((sum_flags & HCK_PARTIALCKSUM) && 7054 (mp1 == NULL || mp1->b_cont == NULL) && 7055 offset >= DB_CKSUMSTART(mp) && 7056 ((len = offset - DB_CKSUMSTART(mp)) & 1) == 0) { 7057 uint32_t adj; 7058 /* 7059 * Partial checksum has been calculated by hardware 7060 * and attached to the packet; in addition, any 7061 * prepended extraneous data is even byte aligned. 7062 * If any such data exists, we adjust the checksum; 7063 * this would also handle any postpended data. 7064 */ 7065 IP_ADJCKSUM_PARTIAL(mp->b_rptr + DB_CKSUMSTART(mp), 7066 mp, mp1, len, adj); 7067 7068 /* One's complement subtract extraneous checksum */ 7069 if (adj >= sum_val) 7070 sum_val = ~(adj - sum_val) & 0xFFFF; 7071 else 7072 sum_val -= adj; 7073 } 7074 } else { 7075 sum_val = 0; 7076 sum_flags = 0; 7077 } 7078 7079 /* Clear hardware checksumming flag */ 7080 DB_CKSUMFLAGS(mp) = 0; 7081 7082 ident = ipha->ipha_ident; 7083 offset = (frag_offset_flags << 3) & 0xFFFF; 7084 src = ipha->ipha_src; 7085 dst = ipha->ipha_dst; 7086 hdr_length = IPH_HDR_LENGTH(ipha); 7087 end = ntohs(ipha->ipha_length) - hdr_length; 7088 7089 /* If end == 0 then we have a packet with no data, so just free it */ 7090 if (end == 0) { 7091 freemsg(mp); 7092 return (NULL); 7093 } 7094 7095 /* Record the ECN field info. */ 7096 ecn_info = (ipha->ipha_type_of_service & 0x3); 7097 if (offset != 0) { 7098 /* 7099 * If this isn't the first piece, strip the header, and 7100 * add the offset to the end value. 7101 */ 7102 mp->b_rptr += hdr_length; 7103 end += offset; 7104 } 7105 7106 /* Handle vnic loopback of fragments */ 7107 if (mp->b_datap->db_ref > 2) 7108 msg_len = 0; 7109 else 7110 msg_len = MBLKSIZE(mp); 7111 7112 tail_mp = mp; 7113 while (tail_mp->b_cont != NULL) { 7114 tail_mp = tail_mp->b_cont; 7115 if (tail_mp->b_datap->db_ref <= 2) 7116 msg_len += MBLKSIZE(tail_mp); 7117 } 7118 7119 /* If the reassembly list for this ILL will get too big, prune it */ 7120 if ((msg_len + sizeof (*ipf) + ill->ill_frag_count) >= 7121 ipst->ips_ip_reass_queue_bytes) { 7122 DTRACE_PROBE3(ip_reass_queue_bytes, uint_t, msg_len, 7123 uint_t, ill->ill_frag_count, 7124 uint_t, ipst->ips_ip_reass_queue_bytes); 7125 ill_frag_prune(ill, 7126 (ipst->ips_ip_reass_queue_bytes < msg_len) ? 0 : 7127 (ipst->ips_ip_reass_queue_bytes - msg_len)); 7128 pruned = B_TRUE; 7129 } 7130 7131 ipfb = &ill->ill_frag_hash_tbl[ILL_FRAG_HASH(src, ident)]; 7132 mutex_enter(&ipfb->ipfb_lock); 7133 7134 ipfp = &ipfb->ipfb_ipf; 7135 /* Try to find an existing fragment queue for this packet. */ 7136 for (;;) { 7137 ipf = ipfp[0]; 7138 if (ipf != NULL) { 7139 /* 7140 * It has to match on ident and src/dst address. 7141 */ 7142 if (ipf->ipf_ident == ident && 7143 ipf->ipf_src == src && 7144 ipf->ipf_dst == dst && 7145 ipf->ipf_protocol == proto) { 7146 /* 7147 * If we have received too many 7148 * duplicate fragments for this packet 7149 * free it. 7150 */ 7151 if (ipf->ipf_num_dups > ip_max_frag_dups) { 7152 ill_frag_free_pkts(ill, ipfb, ipf, 1); 7153 freemsg(mp); 7154 mutex_exit(&ipfb->ipfb_lock); 7155 return (NULL); 7156 } 7157 /* Found it. */ 7158 break; 7159 } 7160 ipfp = &ipf->ipf_hash_next; 7161 continue; 7162 } 7163 7164 /* 7165 * If we pruned the list, do we want to store this new 7166 * fragment?. We apply an optimization here based on the 7167 * fact that most fragments will be received in order. 7168 * So if the offset of this incoming fragment is zero, 7169 * it is the first fragment of a new packet. We will 7170 * keep it. Otherwise drop the fragment, as we have 7171 * probably pruned the packet already (since the 7172 * packet cannot be found). 7173 */ 7174 if (pruned && offset != 0) { 7175 mutex_exit(&ipfb->ipfb_lock); 7176 freemsg(mp); 7177 return (NULL); 7178 } 7179 7180 if (ipfb->ipfb_frag_pkts >= MAX_FRAG_PKTS(ipst)) { 7181 /* 7182 * Too many fragmented packets in this hash 7183 * bucket. Free the oldest. 7184 */ 7185 ill_frag_free_pkts(ill, ipfb, ipfb->ipfb_ipf, 1); 7186 } 7187 7188 /* New guy. Allocate a frag message. */ 7189 mp1 = allocb(sizeof (*ipf), BPRI_MED); 7190 if (mp1 == NULL) { 7191 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 7192 ip_drop_input("ipIfStatsInDiscards", mp, ill); 7193 freemsg(mp); 7194 reass_done: 7195 mutex_exit(&ipfb->ipfb_lock); 7196 return (NULL); 7197 } 7198 7199 BUMP_MIB(ill->ill_ip_mib, ipIfStatsReasmReqds); 7200 mp1->b_cont = mp; 7201 7202 /* Initialize the fragment header. */ 7203 ipf = (ipf_t *)mp1->b_rptr; 7204 ipf->ipf_mp = mp1; 7205 ipf->ipf_ptphn = ipfp; 7206 ipfp[0] = ipf; 7207 ipf->ipf_hash_next = NULL; 7208 ipf->ipf_ident = ident; 7209 ipf->ipf_protocol = proto; 7210 ipf->ipf_src = src; 7211 ipf->ipf_dst = dst; 7212 ipf->ipf_nf_hdr_len = 0; 7213 /* Record reassembly start time. */ 7214 ipf->ipf_timestamp = gethrestime_sec(); 7215 /* Record ipf generation and account for frag header */ 7216 ipf->ipf_gen = ill->ill_ipf_gen++; 7217 ipf->ipf_count = MBLKSIZE(mp1); 7218 ipf->ipf_last_frag_seen = B_FALSE; 7219 ipf->ipf_ecn = ecn_info; 7220 ipf->ipf_num_dups = 0; 7221 ipfb->ipfb_frag_pkts++; 7222 ipf->ipf_checksum = 0; 7223 ipf->ipf_checksum_flags = 0; 7224 7225 /* Store checksum value in fragment header */ 7226 if (sum_flags != 0) { 7227 sum_val = (sum_val & 0xFFFF) + (sum_val >> 16); 7228 sum_val = (sum_val & 0xFFFF) + (sum_val >> 16); 7229 ipf->ipf_checksum = sum_val; 7230 ipf->ipf_checksum_flags = sum_flags; 7231 } 7232 7233 /* 7234 * We handle reassembly two ways. In the easy case, 7235 * where all the fragments show up in order, we do 7236 * minimal bookkeeping, and just clip new pieces on 7237 * the end. If we ever see a hole, then we go off 7238 * to ip_reassemble which has to mark the pieces and 7239 * keep track of the number of holes, etc. Obviously, 7240 * the point of having both mechanisms is so we can 7241 * handle the easy case as efficiently as possible. 7242 */ 7243 if (offset == 0) { 7244 /* Easy case, in-order reassembly so far. */ 7245 ipf->ipf_count += msg_len; 7246 ipf->ipf_tail_mp = tail_mp; 7247 /* 7248 * Keep track of next expected offset in 7249 * ipf_end. 7250 */ 7251 ipf->ipf_end = end; 7252 ipf->ipf_nf_hdr_len = hdr_length; 7253 } else { 7254 /* Hard case, hole at the beginning. */ 7255 ipf->ipf_tail_mp = NULL; 7256 /* 7257 * ipf_end == 0 means that we have given up 7258 * on easy reassembly. 7259 */ 7260 ipf->ipf_end = 0; 7261 7262 /* Forget checksum offload from now on */ 7263 ipf->ipf_checksum_flags = 0; 7264 7265 /* 7266 * ipf_hole_cnt is set by ip_reassemble. 7267 * ipf_count is updated by ip_reassemble. 7268 * No need to check for return value here 7269 * as we don't expect reassembly to complete 7270 * or fail for the first fragment itself. 7271 */ 7272 (void) ip_reassemble(mp, ipf, 7273 (frag_offset_flags & IPH_OFFSET) << 3, 7274 (frag_offset_flags & IPH_MF), ill, msg_len); 7275 } 7276 /* Update per ipfb and ill byte counts */ 7277 ipfb->ipfb_count += ipf->ipf_count; 7278 ASSERT(ipfb->ipfb_count > 0); /* Wraparound */ 7279 atomic_add_32(&ill->ill_frag_count, ipf->ipf_count); 7280 /* If the frag timer wasn't already going, start it. */ 7281 mutex_enter(&ill->ill_lock); 7282 ill_frag_timer_start(ill); 7283 mutex_exit(&ill->ill_lock); 7284 goto reass_done; 7285 } 7286 7287 /* 7288 * If the packet's flag has changed (it could be coming up 7289 * from an interface different than the previous, therefore 7290 * possibly different checksum capability), then forget about 7291 * any stored checksum states. Otherwise add the value to 7292 * the existing one stored in the fragment header. 7293 */ 7294 if (sum_flags != 0 && sum_flags == ipf->ipf_checksum_flags) { 7295 sum_val += ipf->ipf_checksum; 7296 sum_val = (sum_val & 0xFFFF) + (sum_val >> 16); 7297 sum_val = (sum_val & 0xFFFF) + (sum_val >> 16); 7298 ipf->ipf_checksum = sum_val; 7299 } else if (ipf->ipf_checksum_flags != 0) { 7300 /* Forget checksum offload from now on */ 7301 ipf->ipf_checksum_flags = 0; 7302 } 7303 7304 /* 7305 * We have a new piece of a datagram which is already being 7306 * reassembled. Update the ECN info if all IP fragments 7307 * are ECN capable. If there is one which is not, clear 7308 * all the info. If there is at least one which has CE 7309 * code point, IP needs to report that up to transport. 7310 */ 7311 if (ecn_info != IPH_ECN_NECT && ipf->ipf_ecn != IPH_ECN_NECT) { 7312 if (ecn_info == IPH_ECN_CE) 7313 ipf->ipf_ecn = IPH_ECN_CE; 7314 } else { 7315 ipf->ipf_ecn = IPH_ECN_NECT; 7316 } 7317 if (offset && ipf->ipf_end == offset) { 7318 /* The new fragment fits at the end */ 7319 ipf->ipf_tail_mp->b_cont = mp; 7320 /* Update the byte count */ 7321 ipf->ipf_count += msg_len; 7322 /* Update per ipfb and ill byte counts */ 7323 ipfb->ipfb_count += msg_len; 7324 ASSERT(ipfb->ipfb_count > 0); /* Wraparound */ 7325 atomic_add_32(&ill->ill_frag_count, msg_len); 7326 if (frag_offset_flags & IPH_MF) { 7327 /* More to come. */ 7328 ipf->ipf_end = end; 7329 ipf->ipf_tail_mp = tail_mp; 7330 goto reass_done; 7331 } 7332 } else { 7333 /* Go do the hard cases. */ 7334 int ret; 7335 7336 if (offset == 0) 7337 ipf->ipf_nf_hdr_len = hdr_length; 7338 7339 /* Save current byte count */ 7340 count = ipf->ipf_count; 7341 ret = ip_reassemble(mp, ipf, 7342 (frag_offset_flags & IPH_OFFSET) << 3, 7343 (frag_offset_flags & IPH_MF), ill, msg_len); 7344 /* Count of bytes added and subtracted (freeb()ed) */ 7345 count = ipf->ipf_count - count; 7346 if (count) { 7347 /* Update per ipfb and ill byte counts */ 7348 ipfb->ipfb_count += count; 7349 ASSERT(ipfb->ipfb_count > 0); /* Wraparound */ 7350 atomic_add_32(&ill->ill_frag_count, count); 7351 } 7352 if (ret == IP_REASS_PARTIAL) { 7353 goto reass_done; 7354 } else if (ret == IP_REASS_FAILED) { 7355 /* Reassembly failed. Free up all resources */ 7356 ill_frag_free_pkts(ill, ipfb, ipf, 1); 7357 for (t_mp = mp; t_mp != NULL; t_mp = t_mp->b_cont) { 7358 IP_REASS_SET_START(t_mp, 0); 7359 IP_REASS_SET_END(t_mp, 0); 7360 } 7361 freemsg(mp); 7362 goto reass_done; 7363 } 7364 /* We will reach here iff 'ret' is IP_REASS_COMPLETE */ 7365 } 7366 /* 7367 * We have completed reassembly. Unhook the frag header from 7368 * the reassembly list. 7369 * 7370 * Before we free the frag header, record the ECN info 7371 * to report back to the transport. 7372 */ 7373 ecn_info = ipf->ipf_ecn; 7374 BUMP_MIB(ill->ill_ip_mib, ipIfStatsReasmOKs); 7375 ipfp = ipf->ipf_ptphn; 7376 7377 /* We need to supply these to caller */ 7378 if ((sum_flags = ipf->ipf_checksum_flags) != 0) 7379 sum_val = ipf->ipf_checksum; 7380 else 7381 sum_val = 0; 7382 7383 mp1 = ipf->ipf_mp; 7384 count = ipf->ipf_count; 7385 ipf = ipf->ipf_hash_next; 7386 if (ipf != NULL) 7387 ipf->ipf_ptphn = ipfp; 7388 ipfp[0] = ipf; 7389 atomic_add_32(&ill->ill_frag_count, -count); 7390 ASSERT(ipfb->ipfb_count >= count); 7391 ipfb->ipfb_count -= count; 7392 ipfb->ipfb_frag_pkts--; 7393 mutex_exit(&ipfb->ipfb_lock); 7394 /* Ditch the frag header. */ 7395 mp = mp1->b_cont; 7396 7397 freeb(mp1); 7398 7399 /* Restore original IP length in header. */ 7400 packet_size = (uint32_t)msgdsize(mp); 7401 if (packet_size > IP_MAXPACKET) { 7402 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors); 7403 ip_drop_input("Reassembled packet too large", mp, ill); 7404 freemsg(mp); 7405 return (NULL); 7406 } 7407 7408 if (DB_REF(mp) > 1) { 7409 mblk_t *mp2 = copymsg(mp); 7410 7411 if (mp2 == NULL) { 7412 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 7413 ip_drop_input("ipIfStatsInDiscards", mp, ill); 7414 freemsg(mp); 7415 return (NULL); 7416 } 7417 freemsg(mp); 7418 mp = mp2; 7419 } 7420 ipha = (ipha_t *)mp->b_rptr; 7421 7422 ipha->ipha_length = htons((uint16_t)packet_size); 7423 /* We're now complete, zip the frag state */ 7424 ipha->ipha_fragment_offset_and_flags = 0; 7425 /* Record the ECN info. */ 7426 ipha->ipha_type_of_service &= 0xFC; 7427 ipha->ipha_type_of_service |= ecn_info; 7428 7429 /* Update the receive attributes */ 7430 ira->ira_pktlen = packet_size; 7431 ira->ira_ip_hdr_length = IPH_HDR_LENGTH(ipha); 7432 7433 /* Reassembly is successful; set checksum information in packet */ 7434 DB_CKSUM16(mp) = (uint16_t)sum_val; 7435 DB_CKSUMFLAGS(mp) = sum_flags; 7436 DB_CKSUMSTART(mp) = ira->ira_ip_hdr_length; 7437 7438 return (mp); 7439 } 7440 7441 /* 7442 * Pullup function that should be used for IP input in order to 7443 * ensure we do not loose the L2 source address; we need the l2 source 7444 * address for IP_RECVSLLA and for ndp_input. 7445 * 7446 * We return either NULL or b_rptr. 7447 */ 7448 void * 7449 ip_pullup(mblk_t *mp, ssize_t len, ip_recv_attr_t *ira) 7450 { 7451 ill_t *ill = ira->ira_ill; 7452 7453 if (ip_rput_pullups++ == 0) { 7454 (void) mi_strlog(ill->ill_rq, 1, SL_ERROR|SL_TRACE, 7455 "ip_pullup: %s forced us to " 7456 " pullup pkt, hdr len %ld, hdr addr %p", 7457 ill->ill_name, len, (void *)mp->b_rptr); 7458 } 7459 if (!(ira->ira_flags & IRAF_L2SRC_SET)) 7460 ip_setl2src(mp, ira, ira->ira_rill); 7461 ASSERT(ira->ira_flags & IRAF_L2SRC_SET); 7462 if (!pullupmsg(mp, len)) 7463 return (NULL); 7464 else 7465 return (mp->b_rptr); 7466 } 7467 7468 /* 7469 * Make sure ira_l2src has an address. If we don't have one fill with zeros. 7470 * When called from the ULP ira_rill will be NULL hence the caller has to 7471 * pass in the ill. 7472 */ 7473 /* ARGSUSED */ 7474 void 7475 ip_setl2src(mblk_t *mp, ip_recv_attr_t *ira, ill_t *ill) 7476 { 7477 const uchar_t *addr; 7478 int alen; 7479 7480 if (ira->ira_flags & IRAF_L2SRC_SET) 7481 return; 7482 7483 ASSERT(ill != NULL); 7484 alen = ill->ill_phys_addr_length; 7485 ASSERT(alen <= sizeof (ira->ira_l2src)); 7486 if (ira->ira_mhip != NULL && 7487 (addr = ira->ira_mhip->mhi_saddr) != NULL) { 7488 bcopy(addr, ira->ira_l2src, alen); 7489 } else if ((ira->ira_flags & IRAF_L2SRC_LOOPBACK) && 7490 (addr = ill->ill_phys_addr) != NULL) { 7491 bcopy(addr, ira->ira_l2src, alen); 7492 } else { 7493 bzero(ira->ira_l2src, alen); 7494 } 7495 ira->ira_flags |= IRAF_L2SRC_SET; 7496 } 7497 7498 /* 7499 * check ip header length and align it. 7500 */ 7501 mblk_t * 7502 ip_check_and_align_header(mblk_t *mp, uint_t min_size, ip_recv_attr_t *ira) 7503 { 7504 ill_t *ill = ira->ira_ill; 7505 ssize_t len; 7506 7507 len = MBLKL(mp); 7508 7509 if (!OK_32PTR(mp->b_rptr)) 7510 IP_STAT(ill->ill_ipst, ip_notaligned); 7511 else 7512 IP_STAT(ill->ill_ipst, ip_recv_pullup); 7513 7514 /* Guard against bogus device drivers */ 7515 if (len < 0) { 7516 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors); 7517 ip_drop_input("ipIfStatsInHdrErrors", mp, ill); 7518 freemsg(mp); 7519 return (NULL); 7520 } 7521 7522 if (len == 0) { 7523 /* GLD sometimes sends up mblk with b_rptr == b_wptr! */ 7524 mblk_t *mp1 = mp->b_cont; 7525 7526 if (!(ira->ira_flags & IRAF_L2SRC_SET)) 7527 ip_setl2src(mp, ira, ira->ira_rill); 7528 ASSERT(ira->ira_flags & IRAF_L2SRC_SET); 7529 7530 freeb(mp); 7531 mp = mp1; 7532 if (mp == NULL) 7533 return (NULL); 7534 7535 if (OK_32PTR(mp->b_rptr) && MBLKL(mp) >= min_size) 7536 return (mp); 7537 } 7538 if (ip_pullup(mp, min_size, ira) == NULL) { 7539 if (msgdsize(mp) < min_size) { 7540 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors); 7541 ip_drop_input("ipIfStatsInHdrErrors", mp, ill); 7542 } else { 7543 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 7544 ip_drop_input("ipIfStatsInDiscards", mp, ill); 7545 } 7546 freemsg(mp); 7547 return (NULL); 7548 } 7549 return (mp); 7550 } 7551 7552 /* 7553 * Common code for IPv4 and IPv6 to check and pullup multi-mblks 7554 */ 7555 mblk_t * 7556 ip_check_length(mblk_t *mp, uchar_t *rptr, ssize_t len, uint_t pkt_len, 7557 uint_t min_size, ip_recv_attr_t *ira) 7558 { 7559 ill_t *ill = ira->ira_ill; 7560 7561 /* 7562 * Make sure we have data length consistent 7563 * with the IP header. 7564 */ 7565 if (mp->b_cont == NULL) { 7566 /* pkt_len is based on ipha_len, not the mblk length */ 7567 if (pkt_len < min_size) { 7568 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors); 7569 ip_drop_input("ipIfStatsInHdrErrors", mp, ill); 7570 freemsg(mp); 7571 return (NULL); 7572 } 7573 if (len < 0) { 7574 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInTruncatedPkts); 7575 ip_drop_input("ipIfStatsInTruncatedPkts", mp, ill); 7576 freemsg(mp); 7577 return (NULL); 7578 } 7579 /* Drop any pad */ 7580 mp->b_wptr = rptr + pkt_len; 7581 } else if ((len += msgdsize(mp->b_cont)) != 0) { 7582 ASSERT(pkt_len >= min_size); 7583 if (pkt_len < min_size) { 7584 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors); 7585 ip_drop_input("ipIfStatsInHdrErrors", mp, ill); 7586 freemsg(mp); 7587 return (NULL); 7588 } 7589 if (len < 0) { 7590 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInTruncatedPkts); 7591 ip_drop_input("ipIfStatsInTruncatedPkts", mp, ill); 7592 freemsg(mp); 7593 return (NULL); 7594 } 7595 /* Drop any pad */ 7596 (void) adjmsg(mp, -len); 7597 /* 7598 * adjmsg may have freed an mblk from the chain, hence 7599 * invalidate any hw checksum here. This will force IP to 7600 * calculate the checksum in sw, but only for this packet. 7601 */ 7602 DB_CKSUMFLAGS(mp) = 0; 7603 IP_STAT(ill->ill_ipst, ip_multimblk); 7604 } 7605 return (mp); 7606 } 7607 7608 /* 7609 * Check that the IPv4 opt_len is consistent with the packet and pullup 7610 * the options. 7611 */ 7612 mblk_t * 7613 ip_check_optlen(mblk_t *mp, ipha_t *ipha, uint_t opt_len, uint_t pkt_len, 7614 ip_recv_attr_t *ira) 7615 { 7616 ill_t *ill = ira->ira_ill; 7617 ssize_t len; 7618 7619 /* Assume no IPv6 packets arrive over the IPv4 queue */ 7620 if (IPH_HDR_VERSION(ipha) != IPV4_VERSION) { 7621 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors); 7622 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInWrongIPVersion); 7623 ip_drop_input("IPvN packet on IPv4 ill", mp, ill); 7624 freemsg(mp); 7625 return (NULL); 7626 } 7627 7628 if (opt_len > (15 - IP_SIMPLE_HDR_LENGTH_IN_WORDS)) { 7629 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors); 7630 ip_drop_input("ipIfStatsInHdrErrors", mp, ill); 7631 freemsg(mp); 7632 return (NULL); 7633 } 7634 /* 7635 * Recompute complete header length and make sure we 7636 * have access to all of it. 7637 */ 7638 len = ((size_t)opt_len + IP_SIMPLE_HDR_LENGTH_IN_WORDS) << 2; 7639 if (len > (mp->b_wptr - mp->b_rptr)) { 7640 if (len > pkt_len) { 7641 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors); 7642 ip_drop_input("ipIfStatsInHdrErrors", mp, ill); 7643 freemsg(mp); 7644 return (NULL); 7645 } 7646 if (ip_pullup(mp, len, ira) == NULL) { 7647 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 7648 ip_drop_input("ipIfStatsInDiscards", mp, ill); 7649 freemsg(mp); 7650 return (NULL); 7651 } 7652 } 7653 return (mp); 7654 } 7655 7656 /* 7657 * Returns a new ire, or the same ire, or NULL. 7658 * If a different IRE is returned, then it is held; the caller 7659 * needs to release it. 7660 * In no case is there any hold/release on the ire argument. 7661 */ 7662 ire_t * 7663 ip_check_multihome(void *addr, ire_t *ire, ill_t *ill) 7664 { 7665 ire_t *new_ire; 7666 ill_t *ire_ill; 7667 uint_t ifindex; 7668 ip_stack_t *ipst = ill->ill_ipst; 7669 boolean_t strict_check = B_FALSE; 7670 7671 /* 7672 * IPMP common case: if IRE and ILL are in the same group, there's no 7673 * issue (e.g. packet received on an underlying interface matched an 7674 * IRE_LOCAL on its associated group interface). 7675 */ 7676 ASSERT(ire->ire_ill != NULL); 7677 if (IS_IN_SAME_ILLGRP(ill, ire->ire_ill)) 7678 return (ire); 7679 7680 /* 7681 * Do another ire lookup here, using the ingress ill, to see if the 7682 * interface is in a usesrc group. 7683 * As long as the ills belong to the same group, we don't consider 7684 * them to be arriving on the wrong interface. Thus, if the switch 7685 * is doing inbound load spreading, we won't drop packets when the 7686 * ip*_strict_dst_multihoming switch is on. 7687 * We also need to check for IPIF_UNNUMBERED point2point interfaces 7688 * where the local address may not be unique. In this case we were 7689 * at the mercy of the initial ire lookup and the IRE_LOCAL it 7690 * actually returned. The new lookup, which is more specific, should 7691 * only find the IRE_LOCAL associated with the ingress ill if one 7692 * exists. 7693 */ 7694 if (ire->ire_ipversion == IPV4_VERSION) { 7695 if (ipst->ips_ip_strict_dst_multihoming) 7696 strict_check = B_TRUE; 7697 new_ire = ire_ftable_lookup_v4(*((ipaddr_t *)addr), 0, 0, 7698 IRE_LOCAL, ill, ALL_ZONES, NULL, 7699 (MATCH_IRE_TYPE|MATCH_IRE_ILL), 0, ipst, NULL); 7700 } else { 7701 ASSERT(!IN6_IS_ADDR_MULTICAST((in6_addr_t *)addr)); 7702 if (ipst->ips_ipv6_strict_dst_multihoming) 7703 strict_check = B_TRUE; 7704 new_ire = ire_ftable_lookup_v6((in6_addr_t *)addr, NULL, NULL, 7705 IRE_LOCAL, ill, ALL_ZONES, NULL, 7706 (MATCH_IRE_TYPE|MATCH_IRE_ILL), 0, ipst, NULL); 7707 } 7708 /* 7709 * If the same ire that was returned in ip_input() is found then this 7710 * is an indication that usesrc groups are in use. The packet 7711 * arrived on a different ill in the group than the one associated with 7712 * the destination address. If a different ire was found then the same 7713 * IP address must be hosted on multiple ills. This is possible with 7714 * unnumbered point2point interfaces. We switch to use this new ire in 7715 * order to have accurate interface statistics. 7716 */ 7717 if (new_ire != NULL) { 7718 /* Note: held in one case but not the other? Caller handles */ 7719 if (new_ire != ire) 7720 return (new_ire); 7721 /* Unchanged */ 7722 ire_refrele(new_ire); 7723 return (ire); 7724 } 7725 7726 /* 7727 * Chase pointers once and store locally. 7728 */ 7729 ASSERT(ire->ire_ill != NULL); 7730 ire_ill = ire->ire_ill; 7731 ifindex = ill->ill_usesrc_ifindex; 7732 7733 /* 7734 * Check if it's a legal address on the 'usesrc' interface. 7735 * For IPMP data addresses the IRE_LOCAL is the upper, hence we 7736 * can just check phyint_ifindex. 7737 */ 7738 if (ifindex != 0 && ifindex == ire_ill->ill_phyint->phyint_ifindex) { 7739 return (ire); 7740 } 7741 7742 /* 7743 * If the ip*_strict_dst_multihoming switch is on then we can 7744 * only accept this packet if the interface is marked as routing. 7745 */ 7746 if (!(strict_check)) 7747 return (ire); 7748 7749 if ((ill->ill_flags & ire->ire_ill->ill_flags & ILLF_ROUTER) != 0) { 7750 return (ire); 7751 } 7752 return (NULL); 7753 } 7754 7755 /* 7756 * This function is used to construct a mac_header_info_s from a 7757 * DL_UNITDATA_IND message. 7758 * The address fields in the mhi structure points into the message, 7759 * thus the caller can't use those fields after freeing the message. 7760 * 7761 * We determine whether the packet received is a non-unicast packet 7762 * and in doing so, determine whether or not it is broadcast vs multicast. 7763 * For it to be a broadcast packet, we must have the appropriate mblk_t 7764 * hanging off the ill_t. If this is either not present or doesn't match 7765 * the destination mac address in the DL_UNITDATA_IND, the packet is deemed 7766 * to be multicast. Thus NICs that have no broadcast address (or no 7767 * capability for one, such as point to point links) cannot return as 7768 * the packet being broadcast. 7769 */ 7770 void 7771 ip_dlur_to_mhi(ill_t *ill, mblk_t *mb, struct mac_header_info_s *mhip) 7772 { 7773 dl_unitdata_ind_t *ind = (dl_unitdata_ind_t *)mb->b_rptr; 7774 mblk_t *bmp; 7775 uint_t extra_offset; 7776 7777 bzero(mhip, sizeof (struct mac_header_info_s)); 7778 7779 mhip->mhi_dsttype = MAC_ADDRTYPE_UNICAST; 7780 7781 if (ill->ill_sap_length < 0) 7782 extra_offset = 0; 7783 else 7784 extra_offset = ill->ill_sap_length; 7785 7786 mhip->mhi_daddr = (uchar_t *)ind + ind->dl_dest_addr_offset + 7787 extra_offset; 7788 mhip->mhi_saddr = (uchar_t *)ind + ind->dl_src_addr_offset + 7789 extra_offset; 7790 7791 if (!ind->dl_group_address) 7792 return; 7793 7794 /* Multicast or broadcast */ 7795 mhip->mhi_dsttype = MAC_ADDRTYPE_MULTICAST; 7796 7797 if (ind->dl_dest_addr_offset > sizeof (*ind) && 7798 ind->dl_dest_addr_offset + ind->dl_dest_addr_length < MBLKL(mb) && 7799 (bmp = ill->ill_bcast_mp) != NULL) { 7800 dl_unitdata_req_t *dlur; 7801 uint8_t *bphys_addr; 7802 7803 dlur = (dl_unitdata_req_t *)bmp->b_rptr; 7804 bphys_addr = (uchar_t *)dlur + dlur->dl_dest_addr_offset + 7805 extra_offset; 7806 7807 if (bcmp(mhip->mhi_daddr, bphys_addr, 7808 ind->dl_dest_addr_length) == 0) 7809 mhip->mhi_dsttype = MAC_ADDRTYPE_BROADCAST; 7810 } 7811 } 7812 7813 /* 7814 * This function is used to construct a mac_header_info_s from a 7815 * M_DATA fastpath message from a DLPI driver. 7816 * The address fields in the mhi structure points into the message, 7817 * thus the caller can't use those fields after freeing the message. 7818 * 7819 * We determine whether the packet received is a non-unicast packet 7820 * and in doing so, determine whether or not it is broadcast vs multicast. 7821 * For it to be a broadcast packet, we must have the appropriate mblk_t 7822 * hanging off the ill_t. If this is either not present or doesn't match 7823 * the destination mac address in the DL_UNITDATA_IND, the packet is deemed 7824 * to be multicast. Thus NICs that have no broadcast address (or no 7825 * capability for one, such as point to point links) cannot return as 7826 * the packet being broadcast. 7827 */ 7828 void 7829 ip_mdata_to_mhi(ill_t *ill, mblk_t *mp, struct mac_header_info_s *mhip) 7830 { 7831 mblk_t *bmp; 7832 struct ether_header *pether; 7833 7834 bzero(mhip, sizeof (struct mac_header_info_s)); 7835 7836 mhip->mhi_dsttype = MAC_ADDRTYPE_UNICAST; 7837 7838 pether = (struct ether_header *)((char *)mp->b_rptr 7839 - sizeof (struct ether_header)); 7840 7841 /* 7842 * Make sure the interface is an ethernet type, since we don't 7843 * know the header format for anything but Ethernet. Also make 7844 * sure we are pointing correctly above db_base. 7845 */ 7846 if (ill->ill_type != IFT_ETHER) 7847 return; 7848 7849 retry: 7850 if ((uchar_t *)pether < mp->b_datap->db_base) 7851 return; 7852 7853 /* Is there a VLAN tag? */ 7854 if (ill->ill_isv6) { 7855 if (pether->ether_type != htons(ETHERTYPE_IPV6)) { 7856 pether = (struct ether_header *)((char *)pether - 4); 7857 goto retry; 7858 } 7859 } else { 7860 if (pether->ether_type != htons(ETHERTYPE_IP)) { 7861 pether = (struct ether_header *)((char *)pether - 4); 7862 goto retry; 7863 } 7864 } 7865 mhip->mhi_daddr = (uchar_t *)&pether->ether_dhost; 7866 mhip->mhi_saddr = (uchar_t *)&pether->ether_shost; 7867 7868 if (!(mhip->mhi_daddr[0] & 0x01)) 7869 return; 7870 7871 /* Multicast or broadcast */ 7872 mhip->mhi_dsttype = MAC_ADDRTYPE_MULTICAST; 7873 7874 if ((bmp = ill->ill_bcast_mp) != NULL) { 7875 dl_unitdata_req_t *dlur; 7876 uint8_t *bphys_addr; 7877 uint_t addrlen; 7878 7879 dlur = (dl_unitdata_req_t *)bmp->b_rptr; 7880 addrlen = dlur->dl_dest_addr_length; 7881 if (ill->ill_sap_length < 0) { 7882 bphys_addr = (uchar_t *)dlur + 7883 dlur->dl_dest_addr_offset; 7884 addrlen += ill->ill_sap_length; 7885 } else { 7886 bphys_addr = (uchar_t *)dlur + 7887 dlur->dl_dest_addr_offset + 7888 ill->ill_sap_length; 7889 addrlen -= ill->ill_sap_length; 7890 } 7891 if (bcmp(mhip->mhi_daddr, bphys_addr, addrlen) == 0) 7892 mhip->mhi_dsttype = MAC_ADDRTYPE_BROADCAST; 7893 } 7894 } 7895 7896 /* 7897 * Handle anything but M_DATA messages 7898 * We see the DL_UNITDATA_IND which are part 7899 * of the data path, and also the other messages from the driver. 7900 */ 7901 void 7902 ip_rput_notdata(ill_t *ill, mblk_t *mp) 7903 { 7904 mblk_t *first_mp; 7905 struct iocblk *iocp; 7906 struct mac_header_info_s mhi; 7907 7908 switch (DB_TYPE(mp)) { 7909 case M_PROTO: 7910 case M_PCPROTO: { 7911 if (((dl_unitdata_ind_t *)mp->b_rptr)->dl_primitive != 7912 DL_UNITDATA_IND) { 7913 /* Go handle anything other than data elsewhere. */ 7914 ip_rput_dlpi(ill, mp); 7915 return; 7916 } 7917 7918 first_mp = mp; 7919 mp = first_mp->b_cont; 7920 first_mp->b_cont = NULL; 7921 7922 if (mp == NULL) { 7923 freeb(first_mp); 7924 return; 7925 } 7926 ip_dlur_to_mhi(ill, first_mp, &mhi); 7927 if (ill->ill_isv6) 7928 ip_input_v6(ill, NULL, mp, &mhi); 7929 else 7930 ip_input(ill, NULL, mp, &mhi); 7931 7932 /* Ditch the DLPI header. */ 7933 freeb(first_mp); 7934 return; 7935 } 7936 case M_IOCACK: 7937 iocp = (struct iocblk *)mp->b_rptr; 7938 switch (iocp->ioc_cmd) { 7939 case DL_IOC_HDR_INFO: 7940 ill_fastpath_ack(ill, mp); 7941 return; 7942 default: 7943 putnext(ill->ill_rq, mp); 7944 return; 7945 } 7946 /* FALLTHRU */ 7947 case M_ERROR: 7948 case M_HANGUP: 7949 mutex_enter(&ill->ill_lock); 7950 if (ill->ill_state_flags & ILL_CONDEMNED) { 7951 mutex_exit(&ill->ill_lock); 7952 freemsg(mp); 7953 return; 7954 } 7955 ill_refhold_locked(ill); 7956 mutex_exit(&ill->ill_lock); 7957 qwriter_ip(ill, ill->ill_rq, mp, ip_rput_other, CUR_OP, 7958 B_FALSE); 7959 return; 7960 case M_CTL: 7961 putnext(ill->ill_rq, mp); 7962 return; 7963 case M_IOCNAK: 7964 ip1dbg(("got iocnak ")); 7965 iocp = (struct iocblk *)mp->b_rptr; 7966 switch (iocp->ioc_cmd) { 7967 case DL_IOC_HDR_INFO: 7968 ip_rput_other(NULL, ill->ill_rq, mp, NULL); 7969 return; 7970 default: 7971 break; 7972 } 7973 /* FALLTHRU */ 7974 default: 7975 putnext(ill->ill_rq, mp); 7976 return; 7977 } 7978 } 7979 7980 /* Read side put procedure. Packets coming from the wire arrive here. */ 7981 void 7982 ip_rput(queue_t *q, mblk_t *mp) 7983 { 7984 ill_t *ill; 7985 union DL_primitives *dl; 7986 7987 ill = (ill_t *)q->q_ptr; 7988 7989 if (ill->ill_state_flags & (ILL_CONDEMNED | ILL_LL_SUBNET_PENDING)) { 7990 /* 7991 * If things are opening or closing, only accept high-priority 7992 * DLPI messages. (On open ill->ill_ipif has not yet been 7993 * created; on close, things hanging off the ill may have been 7994 * freed already.) 7995 */ 7996 dl = (union DL_primitives *)mp->b_rptr; 7997 if (DB_TYPE(mp) != M_PCPROTO || 7998 dl->dl_primitive == DL_UNITDATA_IND) { 7999 inet_freemsg(mp); 8000 return; 8001 } 8002 } 8003 if (DB_TYPE(mp) == M_DATA) { 8004 struct mac_header_info_s mhi; 8005 8006 ip_mdata_to_mhi(ill, mp, &mhi); 8007 ip_input(ill, NULL, mp, &mhi); 8008 } else { 8009 ip_rput_notdata(ill, mp); 8010 } 8011 } 8012 8013 /* 8014 * Move the information to a copy. 8015 */ 8016 mblk_t * 8017 ip_fix_dbref(mblk_t *mp, ip_recv_attr_t *ira) 8018 { 8019 mblk_t *mp1; 8020 ill_t *ill = ira->ira_ill; 8021 ip_stack_t *ipst = ill->ill_ipst; 8022 8023 IP_STAT(ipst, ip_db_ref); 8024 8025 /* Make sure we have ira_l2src before we loose the original mblk */ 8026 if (!(ira->ira_flags & IRAF_L2SRC_SET)) 8027 ip_setl2src(mp, ira, ira->ira_rill); 8028 8029 mp1 = copymsg(mp); 8030 if (mp1 == NULL) { 8031 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 8032 ip_drop_input("ipIfStatsInDiscards", mp, ill); 8033 freemsg(mp); 8034 return (NULL); 8035 } 8036 /* preserve the hardware checksum flags and data, if present */ 8037 if (DB_CKSUMFLAGS(mp) != 0) { 8038 DB_CKSUMFLAGS(mp1) = DB_CKSUMFLAGS(mp); 8039 DB_CKSUMSTART(mp1) = DB_CKSUMSTART(mp); 8040 DB_CKSUMSTUFF(mp1) = DB_CKSUMSTUFF(mp); 8041 DB_CKSUMEND(mp1) = DB_CKSUMEND(mp); 8042 DB_CKSUM16(mp1) = DB_CKSUM16(mp); 8043 } 8044 freemsg(mp); 8045 return (mp1); 8046 } 8047 8048 static void 8049 ip_dlpi_error(ill_t *ill, t_uscalar_t prim, t_uscalar_t dl_err, 8050 t_uscalar_t err) 8051 { 8052 if (dl_err == DL_SYSERR) { 8053 (void) mi_strlog(ill->ill_rq, 1, SL_CONSOLE|SL_ERROR|SL_TRACE, 8054 "%s: %s failed: DL_SYSERR (errno %u)\n", 8055 ill->ill_name, dl_primstr(prim), err); 8056 return; 8057 } 8058 8059 (void) mi_strlog(ill->ill_rq, 1, SL_CONSOLE|SL_ERROR|SL_TRACE, 8060 "%s: %s failed: %s\n", ill->ill_name, dl_primstr(prim), 8061 dl_errstr(dl_err)); 8062 } 8063 8064 /* 8065 * ip_rput_dlpi is called by ip_rput to handle all DLPI messages other 8066 * than DL_UNITDATA_IND messages. If we need to process this message 8067 * exclusively, we call qwriter_ip, in which case we also need to call 8068 * ill_refhold before that, since qwriter_ip does an ill_refrele. 8069 */ 8070 void 8071 ip_rput_dlpi(ill_t *ill, mblk_t *mp) 8072 { 8073 dl_ok_ack_t *dloa = (dl_ok_ack_t *)mp->b_rptr; 8074 dl_error_ack_t *dlea = (dl_error_ack_t *)dloa; 8075 queue_t *q = ill->ill_rq; 8076 t_uscalar_t prim = dloa->dl_primitive; 8077 t_uscalar_t reqprim = DL_PRIM_INVAL; 8078 8079 DTRACE_PROBE3(ill__dlpi, char *, "ip_rput_dlpi", 8080 char *, dl_primstr(prim), ill_t *, ill); 8081 ip1dbg(("ip_rput_dlpi")); 8082 8083 /* 8084 * If we received an ACK but didn't send a request for it, then it 8085 * can't be part of any pending operation; discard up-front. 8086 */ 8087 switch (prim) { 8088 case DL_ERROR_ACK: 8089 reqprim = dlea->dl_error_primitive; 8090 ip2dbg(("ip_rput_dlpi(%s): DL_ERROR_ACK for %s (0x%x): %s " 8091 "(0x%x), unix %u\n", ill->ill_name, dl_primstr(reqprim), 8092 reqprim, dl_errstr(dlea->dl_errno), dlea->dl_errno, 8093 dlea->dl_unix_errno)); 8094 break; 8095 case DL_OK_ACK: 8096 reqprim = dloa->dl_correct_primitive; 8097 break; 8098 case DL_INFO_ACK: 8099 reqprim = DL_INFO_REQ; 8100 break; 8101 case DL_BIND_ACK: 8102 reqprim = DL_BIND_REQ; 8103 break; 8104 case DL_PHYS_ADDR_ACK: 8105 reqprim = DL_PHYS_ADDR_REQ; 8106 break; 8107 case DL_NOTIFY_ACK: 8108 reqprim = DL_NOTIFY_REQ; 8109 break; 8110 case DL_CAPABILITY_ACK: 8111 reqprim = DL_CAPABILITY_REQ; 8112 break; 8113 } 8114 8115 if (prim != DL_NOTIFY_IND) { 8116 if (reqprim == DL_PRIM_INVAL || 8117 !ill_dlpi_pending(ill, reqprim)) { 8118 /* Not a DLPI message we support or expected */ 8119 freemsg(mp); 8120 return; 8121 } 8122 ip1dbg(("ip_rput: received %s for %s\n", dl_primstr(prim), 8123 dl_primstr(reqprim))); 8124 } 8125 8126 switch (reqprim) { 8127 case DL_UNBIND_REQ: 8128 /* 8129 * NOTE: we mark the unbind as complete even if we got a 8130 * DL_ERROR_ACK, since there's not much else we can do. 8131 */ 8132 mutex_enter(&ill->ill_lock); 8133 ill->ill_state_flags &= ~ILL_DL_UNBIND_IN_PROGRESS; 8134 cv_signal(&ill->ill_cv); 8135 mutex_exit(&ill->ill_lock); 8136 break; 8137 8138 case DL_ENABMULTI_REQ: 8139 if (prim == DL_OK_ACK) { 8140 if (ill->ill_dlpi_multicast_state == IDS_INPROGRESS) 8141 ill->ill_dlpi_multicast_state = IDS_OK; 8142 } 8143 break; 8144 } 8145 8146 /* 8147 * The message is one we're waiting for (or DL_NOTIFY_IND), but we 8148 * need to become writer to continue to process it. Because an 8149 * exclusive operation doesn't complete until replies to all queued 8150 * DLPI messages have been received, we know we're in the middle of an 8151 * exclusive operation and pass CUR_OP (except for DL_NOTIFY_IND). 8152 * 8153 * As required by qwriter_ip(), we refhold the ill; it will refrele. 8154 * Since this is on the ill stream we unconditionally bump up the 8155 * refcount without doing ILL_CAN_LOOKUP(). 8156 */ 8157 ill_refhold(ill); 8158 if (prim == DL_NOTIFY_IND) 8159 qwriter_ip(ill, q, mp, ip_rput_dlpi_writer, NEW_OP, B_FALSE); 8160 else 8161 qwriter_ip(ill, q, mp, ip_rput_dlpi_writer, CUR_OP, B_FALSE); 8162 } 8163 8164 /* 8165 * Handling of DLPI messages that require exclusive access to the ipsq. 8166 * 8167 * Need to do ipsq_pending_mp_get on ioctl completion, which could 8168 * happen here. (along with mi_copy_done) 8169 */ 8170 /* ARGSUSED */ 8171 static void 8172 ip_rput_dlpi_writer(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 8173 { 8174 dl_ok_ack_t *dloa = (dl_ok_ack_t *)mp->b_rptr; 8175 dl_error_ack_t *dlea = (dl_error_ack_t *)dloa; 8176 int err = 0; 8177 ill_t *ill = (ill_t *)q->q_ptr; 8178 ipif_t *ipif = NULL; 8179 mblk_t *mp1 = NULL; 8180 conn_t *connp = NULL; 8181 t_uscalar_t paddrreq; 8182 mblk_t *mp_hw; 8183 boolean_t success; 8184 boolean_t ioctl_aborted = B_FALSE; 8185 boolean_t log = B_TRUE; 8186 8187 DTRACE_PROBE3(ill__dlpi, char *, "ip_rput_dlpi_writer", 8188 char *, dl_primstr(dloa->dl_primitive), ill_t *, ill); 8189 8190 ip1dbg(("ip_rput_dlpi_writer ..")); 8191 ASSERT(ipsq->ipsq_xop == ill->ill_phyint->phyint_ipsq->ipsq_xop); 8192 ASSERT(IAM_WRITER_ILL(ill)); 8193 8194 ipif = ipsq->ipsq_xop->ipx_pending_ipif; 8195 /* 8196 * The current ioctl could have been aborted by the user and a new 8197 * ioctl to bring up another ill could have started. We could still 8198 * get a response from the driver later. 8199 */ 8200 if (ipif != NULL && ipif->ipif_ill != ill) 8201 ioctl_aborted = B_TRUE; 8202 8203 switch (dloa->dl_primitive) { 8204 case DL_ERROR_ACK: 8205 ip1dbg(("ip_rput_dlpi_writer: got DL_ERROR_ACK for %s\n", 8206 dl_primstr(dlea->dl_error_primitive))); 8207 8208 DTRACE_PROBE3(ill__dlpi, char *, "ip_rput_dlpi_writer error", 8209 char *, dl_primstr(dlea->dl_error_primitive), 8210 ill_t *, ill); 8211 8212 switch (dlea->dl_error_primitive) { 8213 case DL_DISABMULTI_REQ: 8214 ill_dlpi_done(ill, dlea->dl_error_primitive); 8215 break; 8216 case DL_PROMISCON_REQ: 8217 case DL_PROMISCOFF_REQ: 8218 case DL_UNBIND_REQ: 8219 case DL_ATTACH_REQ: 8220 case DL_INFO_REQ: 8221 ill_dlpi_done(ill, dlea->dl_error_primitive); 8222 break; 8223 case DL_NOTIFY_REQ: 8224 ill_dlpi_done(ill, DL_NOTIFY_REQ); 8225 log = B_FALSE; 8226 break; 8227 case DL_PHYS_ADDR_REQ: 8228 /* 8229 * For IPv6 only, there are two additional 8230 * phys_addr_req's sent to the driver to get the 8231 * IPv6 token and lla. This allows IP to acquire 8232 * the hardware address format for a given interface 8233 * without having built in knowledge of the hardware 8234 * address. ill_phys_addr_pend keeps track of the last 8235 * DL_PAR sent so we know which response we are 8236 * dealing with. ill_dlpi_done will update 8237 * ill_phys_addr_pend when it sends the next req. 8238 * We don't complete the IOCTL until all three DL_PARs 8239 * have been attempted, so set *_len to 0 and break. 8240 */ 8241 paddrreq = ill->ill_phys_addr_pend; 8242 ill_dlpi_done(ill, DL_PHYS_ADDR_REQ); 8243 if (paddrreq == DL_IPV6_TOKEN) { 8244 ill->ill_token_length = 0; 8245 log = B_FALSE; 8246 break; 8247 } else if (paddrreq == DL_IPV6_LINK_LAYER_ADDR) { 8248 ill->ill_nd_lla_len = 0; 8249 log = B_FALSE; 8250 break; 8251 } 8252 /* 8253 * Something went wrong with the DL_PHYS_ADDR_REQ. 8254 * We presumably have an IOCTL hanging out waiting 8255 * for completion. Find it and complete the IOCTL 8256 * with the error noted. 8257 * However, ill_dl_phys was called on an ill queue 8258 * (from SIOCSLIFNAME), thus conn_pending_ill is not 8259 * set. But the ioctl is known to be pending on ill_wq. 8260 */ 8261 if (!ill->ill_ifname_pending) 8262 break; 8263 ill->ill_ifname_pending = 0; 8264 if (!ioctl_aborted) 8265 mp1 = ipsq_pending_mp_get(ipsq, &connp); 8266 if (mp1 != NULL) { 8267 /* 8268 * This operation (SIOCSLIFNAME) must have 8269 * happened on the ill. Assert there is no conn 8270 */ 8271 ASSERT(connp == NULL); 8272 q = ill->ill_wq; 8273 } 8274 break; 8275 case DL_BIND_REQ: 8276 ill_dlpi_done(ill, DL_BIND_REQ); 8277 if (ill->ill_ifname_pending) 8278 break; 8279 mutex_enter(&ill->ill_lock); 8280 ill->ill_state_flags &= ~ILL_DOWN_IN_PROGRESS; 8281 mutex_exit(&ill->ill_lock); 8282 /* 8283 * Something went wrong with the bind. We presumably 8284 * have an IOCTL hanging out waiting for completion. 8285 * Find it, take down the interface that was coming 8286 * up, and complete the IOCTL with the error noted. 8287 */ 8288 if (!ioctl_aborted) 8289 mp1 = ipsq_pending_mp_get(ipsq, &connp); 8290 if (mp1 != NULL) { 8291 /* 8292 * This might be a result of a DL_NOTE_REPLUMB 8293 * notification. In that case, connp is NULL. 8294 */ 8295 if (connp != NULL) 8296 q = CONNP_TO_WQ(connp); 8297 8298 (void) ipif_down(ipif, NULL, NULL); 8299 /* error is set below the switch */ 8300 } 8301 break; 8302 case DL_ENABMULTI_REQ: 8303 ill_dlpi_done(ill, DL_ENABMULTI_REQ); 8304 8305 if (ill->ill_dlpi_multicast_state == IDS_INPROGRESS) 8306 ill->ill_dlpi_multicast_state = IDS_FAILED; 8307 if (ill->ill_dlpi_multicast_state == IDS_FAILED) { 8308 8309 printf("ip: joining multicasts failed (%d)" 8310 " on %s - will use link layer " 8311 "broadcasts for multicast\n", 8312 dlea->dl_errno, ill->ill_name); 8313 8314 /* 8315 * Set up for multi_bcast; We are the 8316 * writer, so ok to access ill->ill_ipif 8317 * without any lock. 8318 */ 8319 mutex_enter(&ill->ill_phyint->phyint_lock); 8320 ill->ill_phyint->phyint_flags |= 8321 PHYI_MULTI_BCAST; 8322 mutex_exit(&ill->ill_phyint->phyint_lock); 8323 8324 } 8325 freemsg(mp); /* Don't want to pass this up */ 8326 return; 8327 case DL_CAPABILITY_REQ: 8328 ip1dbg(("ip_rput_dlpi_writer: got DL_ERROR_ACK for " 8329 "DL_CAPABILITY REQ\n")); 8330 if (ill->ill_dlpi_capab_state == IDCS_PROBE_SENT) 8331 ill->ill_dlpi_capab_state = IDCS_FAILED; 8332 ill_capability_done(ill); 8333 freemsg(mp); 8334 return; 8335 } 8336 /* 8337 * Note the error for IOCTL completion (mp1 is set when 8338 * ready to complete ioctl). If ill_ifname_pending_err is 8339 * set, an error occured during plumbing (ill_ifname_pending), 8340 * so we want to report that error. 8341 * 8342 * NOTE: there are two addtional DL_PHYS_ADDR_REQ's 8343 * (DL_IPV6_TOKEN and DL_IPV6_LINK_LAYER_ADDR) that are 8344 * expected to get errack'd if the driver doesn't support 8345 * these flags (e.g. ethernet). log will be set to B_FALSE 8346 * if these error conditions are encountered. 8347 */ 8348 if (mp1 != NULL) { 8349 if (ill->ill_ifname_pending_err != 0) { 8350 err = ill->ill_ifname_pending_err; 8351 ill->ill_ifname_pending_err = 0; 8352 } else { 8353 err = dlea->dl_unix_errno ? 8354 dlea->dl_unix_errno : ENXIO; 8355 } 8356 /* 8357 * If we're plumbing an interface and an error hasn't already 8358 * been saved, set ill_ifname_pending_err to the error passed 8359 * up. Ignore the error if log is B_FALSE (see comment above). 8360 */ 8361 } else if (log && ill->ill_ifname_pending && 8362 ill->ill_ifname_pending_err == 0) { 8363 ill->ill_ifname_pending_err = dlea->dl_unix_errno ? 8364 dlea->dl_unix_errno : ENXIO; 8365 } 8366 8367 if (log) 8368 ip_dlpi_error(ill, dlea->dl_error_primitive, 8369 dlea->dl_errno, dlea->dl_unix_errno); 8370 break; 8371 case DL_CAPABILITY_ACK: 8372 ill_capability_ack(ill, mp); 8373 /* 8374 * The message has been handed off to ill_capability_ack 8375 * and must not be freed below 8376 */ 8377 mp = NULL; 8378 break; 8379 8380 case DL_INFO_ACK: 8381 /* Call a routine to handle this one. */ 8382 ill_dlpi_done(ill, DL_INFO_REQ); 8383 ip_ll_subnet_defaults(ill, mp); 8384 ASSERT(!MUTEX_HELD(&ill->ill_phyint->phyint_ipsq->ipsq_lock)); 8385 return; 8386 case DL_BIND_ACK: 8387 /* 8388 * We should have an IOCTL waiting on this unless 8389 * sent by ill_dl_phys, in which case just return 8390 */ 8391 ill_dlpi_done(ill, DL_BIND_REQ); 8392 8393 if (ill->ill_ifname_pending) { 8394 DTRACE_PROBE2(ip__rput__dlpi__ifname__pending, 8395 ill_t *, ill, mblk_t *, mp); 8396 break; 8397 } 8398 mutex_enter(&ill->ill_lock); 8399 ill->ill_dl_up = 1; 8400 ill->ill_state_flags &= ~ILL_DOWN_IN_PROGRESS; 8401 mutex_exit(&ill->ill_lock); 8402 8403 if (!ioctl_aborted) 8404 mp1 = ipsq_pending_mp_get(ipsq, &connp); 8405 if (mp1 == NULL) { 8406 DTRACE_PROBE1(ip__rput__dlpi__no__mblk, ill_t *, ill); 8407 break; 8408 } 8409 /* 8410 * mp1 was added by ill_dl_up(). if that is a result of 8411 * a DL_NOTE_REPLUMB notification, connp could be NULL. 8412 */ 8413 if (connp != NULL) 8414 q = CONNP_TO_WQ(connp); 8415 /* 8416 * We are exclusive. So nothing can change even after 8417 * we get the pending mp. 8418 */ 8419 ip1dbg(("ip_rput_dlpi: bind_ack %s\n", ill->ill_name)); 8420 DTRACE_PROBE1(ip__rput__dlpi__bind__ack, ill_t *, ill); 8421 ill_nic_event_dispatch(ill, 0, NE_UP, NULL, 0); 8422 8423 /* 8424 * Now bring up the resolver; when that is complete, we'll 8425 * create IREs. Note that we intentionally mirror what 8426 * ipif_up() would have done, because we got here by way of 8427 * ill_dl_up(), which stopped ipif_up()'s processing. 8428 */ 8429 if (ill->ill_isv6) { 8430 /* 8431 * v6 interfaces. 8432 * Unlike ARP which has to do another bind 8433 * and attach, once we get here we are 8434 * done with NDP 8435 */ 8436 (void) ipif_resolver_up(ipif, Res_act_initial); 8437 if ((err = ipif_ndp_up(ipif, B_TRUE)) == 0) 8438 err = ipif_up_done_v6(ipif); 8439 } else if (ill->ill_net_type == IRE_IF_RESOLVER) { 8440 /* 8441 * ARP and other v4 external resolvers. 8442 * Leave the pending mblk intact so that 8443 * the ioctl completes in ip_rput(). 8444 */ 8445 if (connp != NULL) 8446 mutex_enter(&connp->conn_lock); 8447 mutex_enter(&ill->ill_lock); 8448 success = ipsq_pending_mp_add(connp, ipif, q, mp1, 0); 8449 mutex_exit(&ill->ill_lock); 8450 if (connp != NULL) 8451 mutex_exit(&connp->conn_lock); 8452 if (success) { 8453 err = ipif_resolver_up(ipif, Res_act_initial); 8454 if (err == EINPROGRESS) { 8455 freemsg(mp); 8456 return; 8457 } 8458 mp1 = ipsq_pending_mp_get(ipsq, &connp); 8459 } else { 8460 /* The conn has started closing */ 8461 err = EINTR; 8462 } 8463 } else { 8464 /* 8465 * This one is complete. Reply to pending ioctl. 8466 */ 8467 (void) ipif_resolver_up(ipif, Res_act_initial); 8468 err = ipif_up_done(ipif); 8469 } 8470 8471 if ((err == 0) && (ill->ill_up_ipifs)) { 8472 err = ill_up_ipifs(ill, q, mp1); 8473 if (err == EINPROGRESS) { 8474 freemsg(mp); 8475 return; 8476 } 8477 } 8478 8479 /* 8480 * If we have a moved ipif to bring up, and everything has 8481 * succeeded to this point, bring it up on the IPMP ill. 8482 * Otherwise, leave it down -- the admin can try to bring it 8483 * up by hand if need be. 8484 */ 8485 if (ill->ill_move_ipif != NULL) { 8486 if (err != 0) { 8487 ill->ill_move_ipif = NULL; 8488 } else { 8489 ipif = ill->ill_move_ipif; 8490 ill->ill_move_ipif = NULL; 8491 err = ipif_up(ipif, q, mp1); 8492 if (err == EINPROGRESS) { 8493 freemsg(mp); 8494 return; 8495 } 8496 } 8497 } 8498 break; 8499 8500 case DL_NOTIFY_IND: { 8501 dl_notify_ind_t *notify = (dl_notify_ind_t *)mp->b_rptr; 8502 uint_t orig_mtu, orig_mc_mtu; 8503 8504 switch (notify->dl_notification) { 8505 case DL_NOTE_PHYS_ADDR: 8506 err = ill_set_phys_addr(ill, mp); 8507 break; 8508 8509 case DL_NOTE_REPLUMB: 8510 /* 8511 * Directly return after calling ill_replumb(). 8512 * Note that we should not free mp as it is reused 8513 * in the ill_replumb() function. 8514 */ 8515 err = ill_replumb(ill, mp); 8516 return; 8517 8518 case DL_NOTE_FASTPATH_FLUSH: 8519 nce_flush(ill, B_FALSE); 8520 break; 8521 8522 case DL_NOTE_SDU_SIZE: 8523 case DL_NOTE_SDU_SIZE2: 8524 /* 8525 * The dce and fragmentation code can cope with 8526 * this changing while packets are being sent. 8527 * When packets are sent ip_output will discover 8528 * a change. 8529 * 8530 * Change the MTU size of the interface. 8531 */ 8532 mutex_enter(&ill->ill_lock); 8533 orig_mtu = ill->ill_mtu; 8534 orig_mc_mtu = ill->ill_mc_mtu; 8535 switch (notify->dl_notification) { 8536 case DL_NOTE_SDU_SIZE: 8537 ill->ill_current_frag = 8538 (uint_t)notify->dl_data; 8539 ill->ill_mc_mtu = (uint_t)notify->dl_data; 8540 break; 8541 case DL_NOTE_SDU_SIZE2: 8542 ill->ill_current_frag = 8543 (uint_t)notify->dl_data1; 8544 ill->ill_mc_mtu = (uint_t)notify->dl_data2; 8545 break; 8546 } 8547 if (ill->ill_current_frag > ill->ill_max_frag) 8548 ill->ill_max_frag = ill->ill_current_frag; 8549 8550 if (!(ill->ill_flags & ILLF_FIXEDMTU)) { 8551 ill->ill_mtu = ill->ill_current_frag; 8552 8553 /* 8554 * If ill_user_mtu was set (via 8555 * SIOCSLIFLNKINFO), clamp ill_mtu at it. 8556 */ 8557 if (ill->ill_user_mtu != 0 && 8558 ill->ill_user_mtu < ill->ill_mtu) 8559 ill->ill_mtu = ill->ill_user_mtu; 8560 8561 if (ill->ill_user_mtu != 0 && 8562 ill->ill_user_mtu < ill->ill_mc_mtu) 8563 ill->ill_mc_mtu = ill->ill_user_mtu; 8564 8565 if (ill->ill_isv6) { 8566 if (ill->ill_mtu < IPV6_MIN_MTU) 8567 ill->ill_mtu = IPV6_MIN_MTU; 8568 if (ill->ill_mc_mtu < IPV6_MIN_MTU) 8569 ill->ill_mc_mtu = IPV6_MIN_MTU; 8570 } else { 8571 if (ill->ill_mtu < IP_MIN_MTU) 8572 ill->ill_mtu = IP_MIN_MTU; 8573 if (ill->ill_mc_mtu < IP_MIN_MTU) 8574 ill->ill_mc_mtu = IP_MIN_MTU; 8575 } 8576 } else if (ill->ill_mc_mtu > ill->ill_mtu) { 8577 ill->ill_mc_mtu = ill->ill_mtu; 8578 } 8579 8580 mutex_exit(&ill->ill_lock); 8581 /* 8582 * Make sure all dce_generation checks find out 8583 * that ill_mtu/ill_mc_mtu has changed. 8584 */ 8585 if (orig_mtu != ill->ill_mtu || 8586 orig_mc_mtu != ill->ill_mc_mtu) { 8587 dce_increment_all_generations(ill->ill_isv6, 8588 ill->ill_ipst); 8589 } 8590 8591 /* 8592 * Refresh IPMP meta-interface MTU if necessary. 8593 */ 8594 if (IS_UNDER_IPMP(ill)) 8595 ipmp_illgrp_refresh_mtu(ill->ill_grp); 8596 break; 8597 8598 case DL_NOTE_LINK_UP: 8599 case DL_NOTE_LINK_DOWN: { 8600 /* 8601 * We are writer. ill / phyint / ipsq assocs stable. 8602 * The RUNNING flag reflects the state of the link. 8603 */ 8604 phyint_t *phyint = ill->ill_phyint; 8605 uint64_t new_phyint_flags; 8606 boolean_t changed = B_FALSE; 8607 boolean_t went_up; 8608 8609 went_up = notify->dl_notification == DL_NOTE_LINK_UP; 8610 mutex_enter(&phyint->phyint_lock); 8611 8612 new_phyint_flags = went_up ? 8613 phyint->phyint_flags | PHYI_RUNNING : 8614 phyint->phyint_flags & ~PHYI_RUNNING; 8615 8616 if (IS_IPMP(ill)) { 8617 new_phyint_flags = went_up ? 8618 new_phyint_flags & ~PHYI_FAILED : 8619 new_phyint_flags | PHYI_FAILED; 8620 } 8621 8622 if (new_phyint_flags != phyint->phyint_flags) { 8623 phyint->phyint_flags = new_phyint_flags; 8624 changed = B_TRUE; 8625 } 8626 mutex_exit(&phyint->phyint_lock); 8627 /* 8628 * ill_restart_dad handles the DAD restart and routing 8629 * socket notification logic. 8630 */ 8631 if (changed) { 8632 ill_restart_dad(phyint->phyint_illv4, went_up); 8633 ill_restart_dad(phyint->phyint_illv6, went_up); 8634 } 8635 break; 8636 } 8637 case DL_NOTE_PROMISC_ON_PHYS: { 8638 phyint_t *phyint = ill->ill_phyint; 8639 8640 mutex_enter(&phyint->phyint_lock); 8641 phyint->phyint_flags |= PHYI_PROMISC; 8642 mutex_exit(&phyint->phyint_lock); 8643 break; 8644 } 8645 case DL_NOTE_PROMISC_OFF_PHYS: { 8646 phyint_t *phyint = ill->ill_phyint; 8647 8648 mutex_enter(&phyint->phyint_lock); 8649 phyint->phyint_flags &= ~PHYI_PROMISC; 8650 mutex_exit(&phyint->phyint_lock); 8651 break; 8652 } 8653 case DL_NOTE_CAPAB_RENEG: 8654 /* 8655 * Something changed on the driver side. 8656 * It wants us to renegotiate the capabilities 8657 * on this ill. One possible cause is the aggregation 8658 * interface under us where a port got added or 8659 * went away. 8660 * 8661 * If the capability negotiation is already done 8662 * or is in progress, reset the capabilities and 8663 * mark the ill's ill_capab_reneg to be B_TRUE, 8664 * so that when the ack comes back, we can start 8665 * the renegotiation process. 8666 * 8667 * Note that if ill_capab_reneg is already B_TRUE 8668 * (ill_dlpi_capab_state is IDS_UNKNOWN in this case), 8669 * the capability resetting request has been sent 8670 * and the renegotiation has not been started yet; 8671 * nothing needs to be done in this case. 8672 */ 8673 ipsq_current_start(ipsq, ill->ill_ipif, 0); 8674 ill_capability_reset(ill, B_TRUE); 8675 ipsq_current_finish(ipsq); 8676 break; 8677 8678 case DL_NOTE_ALLOWED_IPS: 8679 ill_set_allowed_ips(ill, mp); 8680 break; 8681 default: 8682 ip0dbg(("ip_rput_dlpi_writer: unknown notification " 8683 "type 0x%x for DL_NOTIFY_IND\n", 8684 notify->dl_notification)); 8685 break; 8686 } 8687 8688 /* 8689 * As this is an asynchronous operation, we 8690 * should not call ill_dlpi_done 8691 */ 8692 break; 8693 } 8694 case DL_NOTIFY_ACK: { 8695 dl_notify_ack_t *noteack = (dl_notify_ack_t *)mp->b_rptr; 8696 8697 if (noteack->dl_notifications & DL_NOTE_LINK_UP) 8698 ill->ill_note_link = 1; 8699 ill_dlpi_done(ill, DL_NOTIFY_REQ); 8700 break; 8701 } 8702 case DL_PHYS_ADDR_ACK: { 8703 /* 8704 * As part of plumbing the interface via SIOCSLIFNAME, 8705 * ill_dl_phys() will queue a series of DL_PHYS_ADDR_REQs, 8706 * whose answers we receive here. As each answer is received, 8707 * we call ill_dlpi_done() to dispatch the next request as 8708 * we're processing the current one. Once all answers have 8709 * been received, we use ipsq_pending_mp_get() to dequeue the 8710 * outstanding IOCTL and reply to it. (Because ill_dl_phys() 8711 * is invoked from an ill queue, conn_oper_pending_ill is not 8712 * available, but we know the ioctl is pending on ill_wq.) 8713 */ 8714 uint_t paddrlen, paddroff; 8715 uint8_t *addr; 8716 8717 paddrreq = ill->ill_phys_addr_pend; 8718 paddrlen = ((dl_phys_addr_ack_t *)mp->b_rptr)->dl_addr_length; 8719 paddroff = ((dl_phys_addr_ack_t *)mp->b_rptr)->dl_addr_offset; 8720 addr = mp->b_rptr + paddroff; 8721 8722 ill_dlpi_done(ill, DL_PHYS_ADDR_REQ); 8723 if (paddrreq == DL_IPV6_TOKEN) { 8724 /* 8725 * bcopy to low-order bits of ill_token 8726 * 8727 * XXX Temporary hack - currently, all known tokens 8728 * are 64 bits, so I'll cheat for the moment. 8729 */ 8730 bcopy(addr, &ill->ill_token.s6_addr32[2], paddrlen); 8731 ill->ill_token_length = paddrlen; 8732 break; 8733 } else if (paddrreq == DL_IPV6_LINK_LAYER_ADDR) { 8734 ASSERT(ill->ill_nd_lla_mp == NULL); 8735 ill_set_ndmp(ill, mp, paddroff, paddrlen); 8736 mp = NULL; 8737 break; 8738 } else if (paddrreq == DL_CURR_DEST_ADDR) { 8739 ASSERT(ill->ill_dest_addr_mp == NULL); 8740 ill->ill_dest_addr_mp = mp; 8741 ill->ill_dest_addr = addr; 8742 mp = NULL; 8743 if (ill->ill_isv6) { 8744 ill_setdesttoken(ill); 8745 ipif_setdestlinklocal(ill->ill_ipif); 8746 } 8747 break; 8748 } 8749 8750 ASSERT(paddrreq == DL_CURR_PHYS_ADDR); 8751 ASSERT(ill->ill_phys_addr_mp == NULL); 8752 if (!ill->ill_ifname_pending) 8753 break; 8754 ill->ill_ifname_pending = 0; 8755 if (!ioctl_aborted) 8756 mp1 = ipsq_pending_mp_get(ipsq, &connp); 8757 if (mp1 != NULL) { 8758 ASSERT(connp == NULL); 8759 q = ill->ill_wq; 8760 } 8761 /* 8762 * If any error acks received during the plumbing sequence, 8763 * ill_ifname_pending_err will be set. Break out and send up 8764 * the error to the pending ioctl. 8765 */ 8766 if (ill->ill_ifname_pending_err != 0) { 8767 err = ill->ill_ifname_pending_err; 8768 ill->ill_ifname_pending_err = 0; 8769 break; 8770 } 8771 8772 ill->ill_phys_addr_mp = mp; 8773 ill->ill_phys_addr = (paddrlen == 0 ? NULL : addr); 8774 mp = NULL; 8775 8776 /* 8777 * If paddrlen or ill_phys_addr_length is zero, the DLPI 8778 * provider doesn't support physical addresses. We check both 8779 * paddrlen and ill_phys_addr_length because sppp (PPP) does 8780 * not have physical addresses, but historically adversises a 8781 * physical address length of 0 in its DL_INFO_ACK, but 6 in 8782 * its DL_PHYS_ADDR_ACK. 8783 */ 8784 if (paddrlen == 0 || ill->ill_phys_addr_length == 0) { 8785 ill->ill_phys_addr = NULL; 8786 } else if (paddrlen != ill->ill_phys_addr_length) { 8787 ip0dbg(("DL_PHYS_ADDR_ACK: got addrlen %d, expected %d", 8788 paddrlen, ill->ill_phys_addr_length)); 8789 err = EINVAL; 8790 break; 8791 } 8792 8793 if (ill->ill_nd_lla_mp == NULL) { 8794 if ((mp_hw = copyb(ill->ill_phys_addr_mp)) == NULL) { 8795 err = ENOMEM; 8796 break; 8797 } 8798 ill_set_ndmp(ill, mp_hw, paddroff, paddrlen); 8799 } 8800 8801 if (ill->ill_isv6) { 8802 ill_setdefaulttoken(ill); 8803 ipif_setlinklocal(ill->ill_ipif); 8804 } 8805 break; 8806 } 8807 case DL_OK_ACK: 8808 ip2dbg(("DL_OK_ACK %s (0x%x)\n", 8809 dl_primstr((int)dloa->dl_correct_primitive), 8810 dloa->dl_correct_primitive)); 8811 DTRACE_PROBE3(ill__dlpi, char *, "ip_rput_dlpi_writer ok", 8812 char *, dl_primstr(dloa->dl_correct_primitive), 8813 ill_t *, ill); 8814 8815 switch (dloa->dl_correct_primitive) { 8816 case DL_ENABMULTI_REQ: 8817 case DL_DISABMULTI_REQ: 8818 ill_dlpi_done(ill, dloa->dl_correct_primitive); 8819 break; 8820 case DL_PROMISCON_REQ: 8821 case DL_PROMISCOFF_REQ: 8822 case DL_UNBIND_REQ: 8823 case DL_ATTACH_REQ: 8824 ill_dlpi_done(ill, dloa->dl_correct_primitive); 8825 break; 8826 } 8827 break; 8828 default: 8829 break; 8830 } 8831 8832 freemsg(mp); 8833 if (mp1 == NULL) 8834 return; 8835 8836 /* 8837 * The operation must complete without EINPROGRESS since 8838 * ipsq_pending_mp_get() has removed the mblk (mp1). Otherwise, 8839 * the operation will be stuck forever inside the IPSQ. 8840 */ 8841 ASSERT(err != EINPROGRESS); 8842 8843 DTRACE_PROBE4(ipif__ioctl, char *, "ip_rput_dlpi_writer finish", 8844 int, ipsq->ipsq_xop->ipx_current_ioctl, ill_t *, ill, 8845 ipif_t *, NULL); 8846 8847 switch (ipsq->ipsq_xop->ipx_current_ioctl) { 8848 case 0: 8849 ipsq_current_finish(ipsq); 8850 break; 8851 8852 case SIOCSLIFNAME: 8853 case IF_UNITSEL: { 8854 ill_t *ill_other = ILL_OTHER(ill); 8855 8856 /* 8857 * If SIOCSLIFNAME or IF_UNITSEL is about to succeed, and the 8858 * ill has a peer which is in an IPMP group, then place ill 8859 * into the same group. One catch: although ifconfig plumbs 8860 * the appropriate IPMP meta-interface prior to plumbing this 8861 * ill, it is possible for multiple ifconfig applications to 8862 * race (or for another application to adjust plumbing), in 8863 * which case the IPMP meta-interface we need will be missing. 8864 * If so, kick the phyint out of the group. 8865 */ 8866 if (err == 0 && ill_other != NULL && IS_UNDER_IPMP(ill_other)) { 8867 ipmp_grp_t *grp = ill->ill_phyint->phyint_grp; 8868 ipmp_illgrp_t *illg; 8869 8870 illg = ill->ill_isv6 ? grp->gr_v6 : grp->gr_v4; 8871 if (illg == NULL) 8872 ipmp_phyint_leave_grp(ill->ill_phyint); 8873 else 8874 ipmp_ill_join_illgrp(ill, illg); 8875 } 8876 8877 if (ipsq->ipsq_xop->ipx_current_ioctl == IF_UNITSEL) 8878 ip_ioctl_finish(q, mp1, err, NO_COPYOUT, ipsq); 8879 else 8880 ip_ioctl_finish(q, mp1, err, COPYOUT, ipsq); 8881 break; 8882 } 8883 case SIOCLIFADDIF: 8884 ip_ioctl_finish(q, mp1, err, COPYOUT, ipsq); 8885 break; 8886 8887 default: 8888 ip_ioctl_finish(q, mp1, err, NO_COPYOUT, ipsq); 8889 break; 8890 } 8891 } 8892 8893 /* 8894 * ip_rput_other is called by ip_rput to handle messages modifying the global 8895 * state in IP. If 'ipsq' is non-NULL, caller is writer on it. 8896 */ 8897 /* ARGSUSED */ 8898 void 8899 ip_rput_other(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 8900 { 8901 ill_t *ill = q->q_ptr; 8902 struct iocblk *iocp; 8903 8904 ip1dbg(("ip_rput_other ")); 8905 if (ipsq != NULL) { 8906 ASSERT(IAM_WRITER_IPSQ(ipsq)); 8907 ASSERT(ipsq->ipsq_xop == 8908 ill->ill_phyint->phyint_ipsq->ipsq_xop); 8909 } 8910 8911 switch (mp->b_datap->db_type) { 8912 case M_ERROR: 8913 case M_HANGUP: 8914 /* 8915 * The device has a problem. We force the ILL down. It can 8916 * be brought up again manually using SIOCSIFFLAGS (via 8917 * ifconfig or equivalent). 8918 */ 8919 ASSERT(ipsq != NULL); 8920 if (mp->b_rptr < mp->b_wptr) 8921 ill->ill_error = (int)(*mp->b_rptr & 0xFF); 8922 if (ill->ill_error == 0) 8923 ill->ill_error = ENXIO; 8924 if (!ill_down_start(q, mp)) 8925 return; 8926 ipif_all_down_tail(ipsq, q, mp, NULL); 8927 break; 8928 case M_IOCNAK: { 8929 iocp = (struct iocblk *)mp->b_rptr; 8930 8931 ASSERT(iocp->ioc_cmd == DL_IOC_HDR_INFO); 8932 /* 8933 * If this was the first attempt, turn off the fastpath 8934 * probing. 8935 */ 8936 mutex_enter(&ill->ill_lock); 8937 if (ill->ill_dlpi_fastpath_state == IDS_INPROGRESS) { 8938 ill->ill_dlpi_fastpath_state = IDS_FAILED; 8939 mutex_exit(&ill->ill_lock); 8940 /* 8941 * don't flush the nce_t entries: we use them 8942 * as an index to the ncec itself. 8943 */ 8944 ip1dbg(("ip_rput: DLPI fastpath off on interface %s\n", 8945 ill->ill_name)); 8946 } else { 8947 mutex_exit(&ill->ill_lock); 8948 } 8949 freemsg(mp); 8950 break; 8951 } 8952 default: 8953 ASSERT(0); 8954 break; 8955 } 8956 } 8957 8958 /* 8959 * Update any source route, record route or timestamp options 8960 * When it fails it has consumed the message and BUMPed the MIB. 8961 */ 8962 boolean_t 8963 ip_forward_options(mblk_t *mp, ipha_t *ipha, ill_t *dst_ill, 8964 ip_recv_attr_t *ira) 8965 { 8966 ipoptp_t opts; 8967 uchar_t *opt; 8968 uint8_t optval; 8969 uint8_t optlen; 8970 ipaddr_t dst; 8971 ipaddr_t ifaddr; 8972 uint32_t ts; 8973 timestruc_t now; 8974 ip_stack_t *ipst = ira->ira_ill->ill_ipst; 8975 8976 ip2dbg(("ip_forward_options\n")); 8977 dst = ipha->ipha_dst; 8978 for (optval = ipoptp_first(&opts, ipha); 8979 optval != IPOPT_EOL; 8980 optval = ipoptp_next(&opts)) { 8981 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 8982 opt = opts.ipoptp_cur; 8983 optlen = opts.ipoptp_len; 8984 ip2dbg(("ip_forward_options: opt %d, len %d\n", 8985 optval, opts.ipoptp_len)); 8986 switch (optval) { 8987 uint32_t off; 8988 case IPOPT_SSRR: 8989 case IPOPT_LSRR: 8990 /* Check if adminstratively disabled */ 8991 if (!ipst->ips_ip_forward_src_routed) { 8992 BUMP_MIB(dst_ill->ill_ip_mib, 8993 ipIfStatsForwProhibits); 8994 ip_drop_input("ICMP_SOURCE_ROUTE_FAILED", 8995 mp, dst_ill); 8996 icmp_unreachable(mp, ICMP_SOURCE_ROUTE_FAILED, 8997 ira); 8998 return (B_FALSE); 8999 } 9000 if (ip_type_v4(dst, ipst) != IRE_LOCAL) { 9001 /* 9002 * Must be partial since ip_input_options 9003 * checked for strict. 9004 */ 9005 break; 9006 } 9007 off = opt[IPOPT_OFFSET]; 9008 off--; 9009 redo_srr: 9010 if (optlen < IP_ADDR_LEN || 9011 off > optlen - IP_ADDR_LEN) { 9012 /* End of source route */ 9013 ip1dbg(( 9014 "ip_forward_options: end of SR\n")); 9015 break; 9016 } 9017 /* Pick a reasonable address on the outbound if */ 9018 ASSERT(dst_ill != NULL); 9019 if (ip_select_source_v4(dst_ill, INADDR_ANY, dst, 9020 INADDR_ANY, ALL_ZONES, ipst, &ifaddr, NULL, 9021 NULL) != 0) { 9022 /* No source! Shouldn't happen */ 9023 ifaddr = INADDR_ANY; 9024 } 9025 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 9026 bcopy(&ifaddr, (char *)opt + off, IP_ADDR_LEN); 9027 ip1dbg(("ip_forward_options: next hop 0x%x\n", 9028 ntohl(dst))); 9029 9030 /* 9031 * Check if our address is present more than 9032 * once as consecutive hops in source route. 9033 */ 9034 if (ip_type_v4(dst, ipst) == IRE_LOCAL) { 9035 off += IP_ADDR_LEN; 9036 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 9037 goto redo_srr; 9038 } 9039 ipha->ipha_dst = dst; 9040 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 9041 break; 9042 case IPOPT_RR: 9043 off = opt[IPOPT_OFFSET]; 9044 off--; 9045 if (optlen < IP_ADDR_LEN || 9046 off > optlen - IP_ADDR_LEN) { 9047 /* No more room - ignore */ 9048 ip1dbg(( 9049 "ip_forward_options: end of RR\n")); 9050 break; 9051 } 9052 /* Pick a reasonable address on the outbound if */ 9053 ASSERT(dst_ill != NULL); 9054 if (ip_select_source_v4(dst_ill, INADDR_ANY, dst, 9055 INADDR_ANY, ALL_ZONES, ipst, &ifaddr, NULL, 9056 NULL) != 0) { 9057 /* No source! Shouldn't happen */ 9058 ifaddr = INADDR_ANY; 9059 } 9060 bcopy(&ifaddr, (char *)opt + off, IP_ADDR_LEN); 9061 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 9062 break; 9063 case IPOPT_TS: 9064 /* Insert timestamp if there is room */ 9065 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 9066 case IPOPT_TS_TSONLY: 9067 off = IPOPT_TS_TIMELEN; 9068 break; 9069 case IPOPT_TS_PRESPEC: 9070 case IPOPT_TS_PRESPEC_RFC791: 9071 /* Verify that the address matched */ 9072 off = opt[IPOPT_OFFSET] - 1; 9073 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 9074 if (ip_type_v4(dst, ipst) != IRE_LOCAL) { 9075 /* Not for us */ 9076 break; 9077 } 9078 /* FALLTHRU */ 9079 case IPOPT_TS_TSANDADDR: 9080 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 9081 break; 9082 default: 9083 /* 9084 * ip_*put_options should have already 9085 * dropped this packet. 9086 */ 9087 cmn_err(CE_PANIC, "ip_forward_options: " 9088 "unknown IT - bug in ip_input_options?\n"); 9089 return (B_TRUE); /* Keep "lint" happy */ 9090 } 9091 if (opt[IPOPT_OFFSET] - 1 + off > optlen) { 9092 /* Increase overflow counter */ 9093 off = (opt[IPOPT_POS_OV_FLG] >> 4) + 1; 9094 opt[IPOPT_POS_OV_FLG] = 9095 (uint8_t)((opt[IPOPT_POS_OV_FLG] & 0x0F) | 9096 (off << 4)); 9097 break; 9098 } 9099 off = opt[IPOPT_OFFSET] - 1; 9100 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 9101 case IPOPT_TS_PRESPEC: 9102 case IPOPT_TS_PRESPEC_RFC791: 9103 case IPOPT_TS_TSANDADDR: 9104 /* Pick a reasonable addr on the outbound if */ 9105 ASSERT(dst_ill != NULL); 9106 if (ip_select_source_v4(dst_ill, INADDR_ANY, 9107 dst, INADDR_ANY, ALL_ZONES, ipst, &ifaddr, 9108 NULL, NULL) != 0) { 9109 /* No source! Shouldn't happen */ 9110 ifaddr = INADDR_ANY; 9111 } 9112 bcopy(&ifaddr, (char *)opt + off, IP_ADDR_LEN); 9113 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 9114 /* FALLTHRU */ 9115 case IPOPT_TS_TSONLY: 9116 off = opt[IPOPT_OFFSET] - 1; 9117 /* Compute # of milliseconds since midnight */ 9118 gethrestime(&now); 9119 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 + 9120 NSEC2MSEC(now.tv_nsec); 9121 bcopy(&ts, (char *)opt + off, IPOPT_TS_TIMELEN); 9122 opt[IPOPT_OFFSET] += IPOPT_TS_TIMELEN; 9123 break; 9124 } 9125 break; 9126 } 9127 } 9128 return (B_TRUE); 9129 } 9130 9131 /* 9132 * Call ill_frag_timeout to do garbage collection. ill_frag_timeout 9133 * returns 'true' if there are still fragments left on the queue, in 9134 * which case we restart the timer. 9135 */ 9136 void 9137 ill_frag_timer(void *arg) 9138 { 9139 ill_t *ill = (ill_t *)arg; 9140 boolean_t frag_pending; 9141 ip_stack_t *ipst = ill->ill_ipst; 9142 time_t timeout; 9143 9144 mutex_enter(&ill->ill_lock); 9145 ASSERT(!ill->ill_fragtimer_executing); 9146 if (ill->ill_state_flags & ILL_CONDEMNED) { 9147 ill->ill_frag_timer_id = 0; 9148 mutex_exit(&ill->ill_lock); 9149 return; 9150 } 9151 ill->ill_fragtimer_executing = 1; 9152 mutex_exit(&ill->ill_lock); 9153 9154 timeout = (ill->ill_isv6 ? ipst->ips_ipv6_reassembly_timeout : 9155 ipst->ips_ip_reassembly_timeout); 9156 9157 frag_pending = ill_frag_timeout(ill, timeout); 9158 9159 /* 9160 * Restart the timer, if we have fragments pending or if someone 9161 * wanted us to be scheduled again. 9162 */ 9163 mutex_enter(&ill->ill_lock); 9164 ill->ill_fragtimer_executing = 0; 9165 ill->ill_frag_timer_id = 0; 9166 if (frag_pending || ill->ill_fragtimer_needrestart) 9167 ill_frag_timer_start(ill); 9168 mutex_exit(&ill->ill_lock); 9169 } 9170 9171 void 9172 ill_frag_timer_start(ill_t *ill) 9173 { 9174 ip_stack_t *ipst = ill->ill_ipst; 9175 clock_t timeo_ms; 9176 9177 ASSERT(MUTEX_HELD(&ill->ill_lock)); 9178 9179 /* If the ill is closing or opening don't proceed */ 9180 if (ill->ill_state_flags & ILL_CONDEMNED) 9181 return; 9182 9183 if (ill->ill_fragtimer_executing) { 9184 /* 9185 * ill_frag_timer is currently executing. Just record the 9186 * the fact that we want the timer to be restarted. 9187 * ill_frag_timer will post a timeout before it returns, 9188 * ensuring it will be called again. 9189 */ 9190 ill->ill_fragtimer_needrestart = 1; 9191 return; 9192 } 9193 9194 if (ill->ill_frag_timer_id == 0) { 9195 timeo_ms = (ill->ill_isv6 ? ipst->ips_ipv6_reassembly_timeout : 9196 ipst->ips_ip_reassembly_timeout) * SECONDS; 9197 9198 /* 9199 * The timer is neither running nor is the timeout handler 9200 * executing. Post a timeout so that ill_frag_timer will be 9201 * called 9202 */ 9203 ill->ill_frag_timer_id = timeout(ill_frag_timer, ill, 9204 MSEC_TO_TICK(timeo_ms >> 1)); 9205 ill->ill_fragtimer_needrestart = 0; 9206 } 9207 } 9208 9209 /* 9210 * Update any source route, record route or timestamp options. 9211 * Check that we are at end of strict source route. 9212 * The options have already been checked for sanity in ip_input_options(). 9213 */ 9214 boolean_t 9215 ip_input_local_options(mblk_t *mp, ipha_t *ipha, ip_recv_attr_t *ira) 9216 { 9217 ipoptp_t opts; 9218 uchar_t *opt; 9219 uint8_t optval; 9220 uint8_t optlen; 9221 ipaddr_t dst; 9222 ipaddr_t ifaddr; 9223 uint32_t ts; 9224 timestruc_t now; 9225 ill_t *ill = ira->ira_ill; 9226 ip_stack_t *ipst = ill->ill_ipst; 9227 9228 ip2dbg(("ip_input_local_options\n")); 9229 9230 for (optval = ipoptp_first(&opts, ipha); 9231 optval != IPOPT_EOL; 9232 optval = ipoptp_next(&opts)) { 9233 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 9234 opt = opts.ipoptp_cur; 9235 optlen = opts.ipoptp_len; 9236 ip2dbg(("ip_input_local_options: opt %d, len %d\n", 9237 optval, optlen)); 9238 switch (optval) { 9239 uint32_t off; 9240 case IPOPT_SSRR: 9241 case IPOPT_LSRR: 9242 off = opt[IPOPT_OFFSET]; 9243 off--; 9244 if (optlen < IP_ADDR_LEN || 9245 off > optlen - IP_ADDR_LEN) { 9246 /* End of source route */ 9247 ip1dbg(("ip_input_local_options: end of SR\n")); 9248 break; 9249 } 9250 /* 9251 * This will only happen if two consecutive entries 9252 * in the source route contains our address or if 9253 * it is a packet with a loose source route which 9254 * reaches us before consuming the whole source route 9255 */ 9256 ip1dbg(("ip_input_local_options: not end of SR\n")); 9257 if (optval == IPOPT_SSRR) { 9258 goto bad_src_route; 9259 } 9260 /* 9261 * Hack: instead of dropping the packet truncate the 9262 * source route to what has been used by filling the 9263 * rest with IPOPT_NOP. 9264 */ 9265 opt[IPOPT_OLEN] = (uint8_t)off; 9266 while (off < optlen) { 9267 opt[off++] = IPOPT_NOP; 9268 } 9269 break; 9270 case IPOPT_RR: 9271 off = opt[IPOPT_OFFSET]; 9272 off--; 9273 if (optlen < IP_ADDR_LEN || 9274 off > optlen - IP_ADDR_LEN) { 9275 /* No more room - ignore */ 9276 ip1dbg(( 9277 "ip_input_local_options: end of RR\n")); 9278 break; 9279 } 9280 /* Pick a reasonable address on the outbound if */ 9281 if (ip_select_source_v4(ill, INADDR_ANY, ipha->ipha_dst, 9282 INADDR_ANY, ALL_ZONES, ipst, &ifaddr, NULL, 9283 NULL) != 0) { 9284 /* No source! Shouldn't happen */ 9285 ifaddr = INADDR_ANY; 9286 } 9287 bcopy(&ifaddr, (char *)opt + off, IP_ADDR_LEN); 9288 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 9289 break; 9290 case IPOPT_TS: 9291 /* Insert timestamp if there is romm */ 9292 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 9293 case IPOPT_TS_TSONLY: 9294 off = IPOPT_TS_TIMELEN; 9295 break; 9296 case IPOPT_TS_PRESPEC: 9297 case IPOPT_TS_PRESPEC_RFC791: 9298 /* Verify that the address matched */ 9299 off = opt[IPOPT_OFFSET] - 1; 9300 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 9301 if (ip_type_v4(dst, ipst) != IRE_LOCAL) { 9302 /* Not for us */ 9303 break; 9304 } 9305 /* FALLTHRU */ 9306 case IPOPT_TS_TSANDADDR: 9307 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 9308 break; 9309 default: 9310 /* 9311 * ip_*put_options should have already 9312 * dropped this packet. 9313 */ 9314 cmn_err(CE_PANIC, "ip_input_local_options: " 9315 "unknown IT - bug in ip_input_options?\n"); 9316 return (B_TRUE); /* Keep "lint" happy */ 9317 } 9318 if (opt[IPOPT_OFFSET] - 1 + off > optlen) { 9319 /* Increase overflow counter */ 9320 off = (opt[IPOPT_POS_OV_FLG] >> 4) + 1; 9321 opt[IPOPT_POS_OV_FLG] = 9322 (uint8_t)((opt[IPOPT_POS_OV_FLG] & 0x0F) | 9323 (off << 4)); 9324 break; 9325 } 9326 off = opt[IPOPT_OFFSET] - 1; 9327 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 9328 case IPOPT_TS_PRESPEC: 9329 case IPOPT_TS_PRESPEC_RFC791: 9330 case IPOPT_TS_TSANDADDR: 9331 /* Pick a reasonable addr on the outbound if */ 9332 if (ip_select_source_v4(ill, INADDR_ANY, 9333 ipha->ipha_dst, INADDR_ANY, ALL_ZONES, ipst, 9334 &ifaddr, NULL, NULL) != 0) { 9335 /* No source! Shouldn't happen */ 9336 ifaddr = INADDR_ANY; 9337 } 9338 bcopy(&ifaddr, (char *)opt + off, IP_ADDR_LEN); 9339 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 9340 /* FALLTHRU */ 9341 case IPOPT_TS_TSONLY: 9342 off = opt[IPOPT_OFFSET] - 1; 9343 /* Compute # of milliseconds since midnight */ 9344 gethrestime(&now); 9345 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 + 9346 NSEC2MSEC(now.tv_nsec); 9347 bcopy(&ts, (char *)opt + off, IPOPT_TS_TIMELEN); 9348 opt[IPOPT_OFFSET] += IPOPT_TS_TIMELEN; 9349 break; 9350 } 9351 break; 9352 } 9353 } 9354 return (B_TRUE); 9355 9356 bad_src_route: 9357 /* make sure we clear any indication of a hardware checksum */ 9358 DB_CKSUMFLAGS(mp) = 0; 9359 ip_drop_input("ICMP_SOURCE_ROUTE_FAILED", mp, ill); 9360 icmp_unreachable(mp, ICMP_SOURCE_ROUTE_FAILED, ira); 9361 return (B_FALSE); 9362 9363 } 9364 9365 /* 9366 * Process IP options in an inbound packet. Always returns the nexthop. 9367 * Normally this is the passed in nexthop, but if there is an option 9368 * that effects the nexthop (such as a source route) that will be returned. 9369 * Sets *errorp if there is an error, in which case an ICMP error has been sent 9370 * and mp freed. 9371 */ 9372 ipaddr_t 9373 ip_input_options(ipha_t *ipha, ipaddr_t dst, mblk_t *mp, 9374 ip_recv_attr_t *ira, int *errorp) 9375 { 9376 ip_stack_t *ipst = ira->ira_ill->ill_ipst; 9377 ipoptp_t opts; 9378 uchar_t *opt; 9379 uint8_t optval; 9380 uint8_t optlen; 9381 intptr_t code = 0; 9382 ire_t *ire; 9383 9384 ip2dbg(("ip_input_options\n")); 9385 *errorp = 0; 9386 for (optval = ipoptp_first(&opts, ipha); 9387 optval != IPOPT_EOL; 9388 optval = ipoptp_next(&opts)) { 9389 opt = opts.ipoptp_cur; 9390 optlen = opts.ipoptp_len; 9391 ip2dbg(("ip_input_options: opt %d, len %d\n", 9392 optval, optlen)); 9393 /* 9394 * Note: we need to verify the checksum before we 9395 * modify anything thus this routine only extracts the next 9396 * hop dst from any source route. 9397 */ 9398 switch (optval) { 9399 uint32_t off; 9400 case IPOPT_SSRR: 9401 case IPOPT_LSRR: 9402 if (ip_type_v4(dst, ipst) != IRE_LOCAL) { 9403 if (optval == IPOPT_SSRR) { 9404 ip1dbg(("ip_input_options: not next" 9405 " strict source route 0x%x\n", 9406 ntohl(dst))); 9407 code = (char *)&ipha->ipha_dst - 9408 (char *)ipha; 9409 goto param_prob; /* RouterReq's */ 9410 } 9411 ip2dbg(("ip_input_options: " 9412 "not next source route 0x%x\n", 9413 ntohl(dst))); 9414 break; 9415 } 9416 9417 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 9418 ip1dbg(( 9419 "ip_input_options: bad option offset\n")); 9420 code = (char *)&opt[IPOPT_OLEN] - 9421 (char *)ipha; 9422 goto param_prob; 9423 } 9424 off = opt[IPOPT_OFFSET]; 9425 off--; 9426 redo_srr: 9427 if (optlen < IP_ADDR_LEN || 9428 off > optlen - IP_ADDR_LEN) { 9429 /* End of source route */ 9430 ip1dbg(("ip_input_options: end of SR\n")); 9431 break; 9432 } 9433 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 9434 ip1dbg(("ip_input_options: next hop 0x%x\n", 9435 ntohl(dst))); 9436 9437 /* 9438 * Check if our address is present more than 9439 * once as consecutive hops in source route. 9440 * XXX verify per-interface ip_forwarding 9441 * for source route? 9442 */ 9443 if (ip_type_v4(dst, ipst) == IRE_LOCAL) { 9444 off += IP_ADDR_LEN; 9445 goto redo_srr; 9446 } 9447 9448 if (dst == htonl(INADDR_LOOPBACK)) { 9449 ip1dbg(("ip_input_options: loopback addr in " 9450 "source route!\n")); 9451 goto bad_src_route; 9452 } 9453 /* 9454 * For strict: verify that dst is directly 9455 * reachable. 9456 */ 9457 if (optval == IPOPT_SSRR) { 9458 ire = ire_ftable_lookup_v4(dst, 0, 0, 9459 IRE_INTERFACE, NULL, ALL_ZONES, 9460 ira->ira_tsl, 9461 MATCH_IRE_TYPE | MATCH_IRE_SECATTR, 0, ipst, 9462 NULL); 9463 if (ire == NULL) { 9464 ip1dbg(("ip_input_options: SSRR not " 9465 "directly reachable: 0x%x\n", 9466 ntohl(dst))); 9467 goto bad_src_route; 9468 } 9469 ire_refrele(ire); 9470 } 9471 /* 9472 * Defer update of the offset and the record route 9473 * until the packet is forwarded. 9474 */ 9475 break; 9476 case IPOPT_RR: 9477 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 9478 ip1dbg(( 9479 "ip_input_options: bad option offset\n")); 9480 code = (char *)&opt[IPOPT_OLEN] - 9481 (char *)ipha; 9482 goto param_prob; 9483 } 9484 break; 9485 case IPOPT_TS: 9486 /* 9487 * Verify that length >= 5 and that there is either 9488 * room for another timestamp or that the overflow 9489 * counter is not maxed out. 9490 */ 9491 code = (char *)&opt[IPOPT_OLEN] - (char *)ipha; 9492 if (optlen < IPOPT_MINLEN_IT) { 9493 goto param_prob; 9494 } 9495 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 9496 ip1dbg(( 9497 "ip_input_options: bad option offset\n")); 9498 code = (char *)&opt[IPOPT_OFFSET] - 9499 (char *)ipha; 9500 goto param_prob; 9501 } 9502 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 9503 case IPOPT_TS_TSONLY: 9504 off = IPOPT_TS_TIMELEN; 9505 break; 9506 case IPOPT_TS_TSANDADDR: 9507 case IPOPT_TS_PRESPEC: 9508 case IPOPT_TS_PRESPEC_RFC791: 9509 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 9510 break; 9511 default: 9512 code = (char *)&opt[IPOPT_POS_OV_FLG] - 9513 (char *)ipha; 9514 goto param_prob; 9515 } 9516 if (opt[IPOPT_OFFSET] - 1 + off > optlen && 9517 (opt[IPOPT_POS_OV_FLG] & 0xF0) == 0xF0) { 9518 /* 9519 * No room and the overflow counter is 15 9520 * already. 9521 */ 9522 goto param_prob; 9523 } 9524 break; 9525 } 9526 } 9527 9528 if ((opts.ipoptp_flags & IPOPTP_ERROR) == 0) { 9529 return (dst); 9530 } 9531 9532 ip1dbg(("ip_input_options: error processing IP options.")); 9533 code = (char *)&opt[IPOPT_OFFSET] - (char *)ipha; 9534 9535 param_prob: 9536 /* make sure we clear any indication of a hardware checksum */ 9537 DB_CKSUMFLAGS(mp) = 0; 9538 ip_drop_input("ICMP_PARAM_PROBLEM", mp, ira->ira_ill); 9539 icmp_param_problem(mp, (uint8_t)code, ira); 9540 *errorp = -1; 9541 return (dst); 9542 9543 bad_src_route: 9544 /* make sure we clear any indication of a hardware checksum */ 9545 DB_CKSUMFLAGS(mp) = 0; 9546 ip_drop_input("ICMP_SOURCE_ROUTE_FAILED", mp, ira->ira_ill); 9547 icmp_unreachable(mp, ICMP_SOURCE_ROUTE_FAILED, ira); 9548 *errorp = -1; 9549 return (dst); 9550 } 9551 9552 /* 9553 * IP & ICMP info in >=14 msg's ... 9554 * - ip fixed part (mib2_ip_t) 9555 * - icmp fixed part (mib2_icmp_t) 9556 * - ipAddrEntryTable (ip 20) all IPv4 ipifs 9557 * - ipRouteEntryTable (ip 21) all IPv4 IREs 9558 * - ipNetToMediaEntryTable (ip 22) all IPv4 Neighbor Cache entries 9559 * - ipRouteAttributeTable (ip 102) labeled routes 9560 * - ip multicast membership (ip_member_t) 9561 * - ip multicast source filtering (ip_grpsrc_t) 9562 * - igmp fixed part (struct igmpstat) 9563 * - multicast routing stats (struct mrtstat) 9564 * - multicast routing vifs (array of struct vifctl) 9565 * - multicast routing routes (array of struct mfcctl) 9566 * - ip6 fixed part (mib2_ipv6IfStatsEntry_t) 9567 * One per ill plus one generic 9568 * - icmp6 fixed part (mib2_ipv6IfIcmpEntry_t) 9569 * One per ill plus one generic 9570 * - ipv6RouteEntry all IPv6 IREs 9571 * - ipv6RouteAttributeTable (ip6 102) labeled routes 9572 * - ipv6NetToMediaEntry all IPv6 Neighbor Cache entries 9573 * - ipv6AddrEntry all IPv6 ipifs 9574 * - ipv6 multicast membership (ipv6_member_t) 9575 * - ipv6 multicast source filtering (ipv6_grpsrc_t) 9576 * 9577 * NOTE: original mpctl is copied for msg's 2..N, since its ctl part is 9578 * already filled in by the caller. 9579 * If legacy_req is true then MIB structures needs to be truncated to their 9580 * legacy sizes before being returned. 9581 * Return value of 0 indicates that no messages were sent and caller 9582 * should free mpctl. 9583 */ 9584 int 9585 ip_snmp_get(queue_t *q, mblk_t *mpctl, int level, boolean_t legacy_req) 9586 { 9587 ip_stack_t *ipst; 9588 sctp_stack_t *sctps; 9589 9590 if (q->q_next != NULL) { 9591 ipst = ILLQ_TO_IPST(q); 9592 } else { 9593 ipst = CONNQ_TO_IPST(q); 9594 } 9595 ASSERT(ipst != NULL); 9596 sctps = ipst->ips_netstack->netstack_sctp; 9597 9598 if (mpctl == NULL || mpctl->b_cont == NULL) { 9599 return (0); 9600 } 9601 9602 /* 9603 * For the purposes of the (broken) packet shell use 9604 * of the level we make sure MIB2_TCP/MIB2_UDP can be used 9605 * to make TCP and UDP appear first in the list of mib items. 9606 * TBD: We could expand this and use it in netstat so that 9607 * the kernel doesn't have to produce large tables (connections, 9608 * routes, etc) when netstat only wants the statistics or a particular 9609 * table. 9610 */ 9611 if (!(level == MIB2_TCP || level == MIB2_UDP)) { 9612 if ((mpctl = icmp_snmp_get(q, mpctl)) == NULL) { 9613 return (1); 9614 } 9615 } 9616 9617 if (level != MIB2_TCP) { 9618 if ((mpctl = udp_snmp_get(q, mpctl, legacy_req)) == NULL) { 9619 return (1); 9620 } 9621 } 9622 9623 if (level != MIB2_UDP) { 9624 if ((mpctl = tcp_snmp_get(q, mpctl, legacy_req)) == NULL) { 9625 return (1); 9626 } 9627 } 9628 9629 if ((mpctl = ip_snmp_get_mib2_ip_traffic_stats(q, mpctl, 9630 ipst, legacy_req)) == NULL) { 9631 return (1); 9632 } 9633 9634 if ((mpctl = ip_snmp_get_mib2_ip6(q, mpctl, ipst, 9635 legacy_req)) == NULL) { 9636 return (1); 9637 } 9638 9639 if ((mpctl = ip_snmp_get_mib2_icmp(q, mpctl, ipst)) == NULL) { 9640 return (1); 9641 } 9642 9643 if ((mpctl = ip_snmp_get_mib2_icmp6(q, mpctl, ipst)) == NULL) { 9644 return (1); 9645 } 9646 9647 if ((mpctl = ip_snmp_get_mib2_igmp(q, mpctl, ipst)) == NULL) { 9648 return (1); 9649 } 9650 9651 if ((mpctl = ip_snmp_get_mib2_multi(q, mpctl, ipst)) == NULL) { 9652 return (1); 9653 } 9654 9655 if ((mpctl = ip_snmp_get_mib2_ip_addr(q, mpctl, ipst, 9656 legacy_req)) == NULL) { 9657 return (1); 9658 } 9659 9660 if ((mpctl = ip_snmp_get_mib2_ip6_addr(q, mpctl, ipst, 9661 legacy_req)) == NULL) { 9662 return (1); 9663 } 9664 9665 if ((mpctl = ip_snmp_get_mib2_ip_group_mem(q, mpctl, ipst)) == NULL) { 9666 return (1); 9667 } 9668 9669 if ((mpctl = ip_snmp_get_mib2_ip6_group_mem(q, mpctl, ipst)) == NULL) { 9670 return (1); 9671 } 9672 9673 if ((mpctl = ip_snmp_get_mib2_ip_group_src(q, mpctl, ipst)) == NULL) { 9674 return (1); 9675 } 9676 9677 if ((mpctl = ip_snmp_get_mib2_ip6_group_src(q, mpctl, ipst)) == NULL) { 9678 return (1); 9679 } 9680 9681 if ((mpctl = ip_snmp_get_mib2_virt_multi(q, mpctl, ipst)) == NULL) { 9682 return (1); 9683 } 9684 9685 if ((mpctl = ip_snmp_get_mib2_multi_rtable(q, mpctl, ipst)) == NULL) { 9686 return (1); 9687 } 9688 9689 mpctl = ip_snmp_get_mib2_ip_route_media(q, mpctl, level, ipst); 9690 if (mpctl == NULL) 9691 return (1); 9692 9693 mpctl = ip_snmp_get_mib2_ip6_route_media(q, mpctl, level, ipst); 9694 if (mpctl == NULL) 9695 return (1); 9696 9697 if ((mpctl = sctp_snmp_get_mib2(q, mpctl, sctps)) == NULL) { 9698 return (1); 9699 } 9700 if ((mpctl = ip_snmp_get_mib2_ip_dce(q, mpctl, ipst)) == NULL) { 9701 return (1); 9702 } 9703 freemsg(mpctl); 9704 return (1); 9705 } 9706 9707 /* Get global (legacy) IPv4 statistics */ 9708 static mblk_t * 9709 ip_snmp_get_mib2_ip(queue_t *q, mblk_t *mpctl, mib2_ipIfStatsEntry_t *ipmib, 9710 ip_stack_t *ipst, boolean_t legacy_req) 9711 { 9712 mib2_ip_t old_ip_mib; 9713 struct opthdr *optp; 9714 mblk_t *mp2ctl; 9715 mib2_ipAddrEntry_t mae; 9716 9717 /* 9718 * make a copy of the original message 9719 */ 9720 mp2ctl = copymsg(mpctl); 9721 9722 /* fixed length IP structure... */ 9723 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 9724 optp->level = MIB2_IP; 9725 optp->name = 0; 9726 SET_MIB(old_ip_mib.ipForwarding, 9727 (WE_ARE_FORWARDING(ipst) ? 1 : 2)); 9728 SET_MIB(old_ip_mib.ipDefaultTTL, 9729 (uint32_t)ipst->ips_ip_def_ttl); 9730 SET_MIB(old_ip_mib.ipReasmTimeout, 9731 ipst->ips_ip_reassembly_timeout); 9732 SET_MIB(old_ip_mib.ipAddrEntrySize, 9733 (legacy_req) ? LEGACY_MIB_SIZE(&mae, mib2_ipAddrEntry_t) : 9734 sizeof (mib2_ipAddrEntry_t)); 9735 SET_MIB(old_ip_mib.ipRouteEntrySize, 9736 sizeof (mib2_ipRouteEntry_t)); 9737 SET_MIB(old_ip_mib.ipNetToMediaEntrySize, 9738 sizeof (mib2_ipNetToMediaEntry_t)); 9739 SET_MIB(old_ip_mib.ipMemberEntrySize, sizeof (ip_member_t)); 9740 SET_MIB(old_ip_mib.ipGroupSourceEntrySize, sizeof (ip_grpsrc_t)); 9741 SET_MIB(old_ip_mib.ipRouteAttributeSize, 9742 sizeof (mib2_ipAttributeEntry_t)); 9743 SET_MIB(old_ip_mib.transportMLPSize, sizeof (mib2_transportMLPEntry_t)); 9744 SET_MIB(old_ip_mib.ipDestEntrySize, sizeof (dest_cache_entry_t)); 9745 9746 /* 9747 * Grab the statistics from the new IP MIB 9748 */ 9749 SET_MIB(old_ip_mib.ipInReceives, 9750 (uint32_t)ipmib->ipIfStatsHCInReceives); 9751 SET_MIB(old_ip_mib.ipInHdrErrors, ipmib->ipIfStatsInHdrErrors); 9752 SET_MIB(old_ip_mib.ipInAddrErrors, ipmib->ipIfStatsInAddrErrors); 9753 SET_MIB(old_ip_mib.ipForwDatagrams, 9754 (uint32_t)ipmib->ipIfStatsHCOutForwDatagrams); 9755 SET_MIB(old_ip_mib.ipInUnknownProtos, 9756 ipmib->ipIfStatsInUnknownProtos); 9757 SET_MIB(old_ip_mib.ipInDiscards, ipmib->ipIfStatsInDiscards); 9758 SET_MIB(old_ip_mib.ipInDelivers, 9759 (uint32_t)ipmib->ipIfStatsHCInDelivers); 9760 SET_MIB(old_ip_mib.ipOutRequests, 9761 (uint32_t)ipmib->ipIfStatsHCOutRequests); 9762 SET_MIB(old_ip_mib.ipOutDiscards, ipmib->ipIfStatsOutDiscards); 9763 SET_MIB(old_ip_mib.ipOutNoRoutes, ipmib->ipIfStatsOutNoRoutes); 9764 SET_MIB(old_ip_mib.ipReasmReqds, ipmib->ipIfStatsReasmReqds); 9765 SET_MIB(old_ip_mib.ipReasmOKs, ipmib->ipIfStatsReasmOKs); 9766 SET_MIB(old_ip_mib.ipReasmFails, ipmib->ipIfStatsReasmFails); 9767 SET_MIB(old_ip_mib.ipFragOKs, ipmib->ipIfStatsOutFragOKs); 9768 SET_MIB(old_ip_mib.ipFragFails, ipmib->ipIfStatsOutFragFails); 9769 SET_MIB(old_ip_mib.ipFragCreates, ipmib->ipIfStatsOutFragCreates); 9770 9771 /* ipRoutingDiscards is not being used */ 9772 SET_MIB(old_ip_mib.ipRoutingDiscards, 0); 9773 SET_MIB(old_ip_mib.tcpInErrs, ipmib->tcpIfStatsInErrs); 9774 SET_MIB(old_ip_mib.udpNoPorts, ipmib->udpIfStatsNoPorts); 9775 SET_MIB(old_ip_mib.ipInCksumErrs, ipmib->ipIfStatsInCksumErrs); 9776 SET_MIB(old_ip_mib.ipReasmDuplicates, 9777 ipmib->ipIfStatsReasmDuplicates); 9778 SET_MIB(old_ip_mib.ipReasmPartDups, ipmib->ipIfStatsReasmPartDups); 9779 SET_MIB(old_ip_mib.ipForwProhibits, ipmib->ipIfStatsForwProhibits); 9780 SET_MIB(old_ip_mib.udpInCksumErrs, ipmib->udpIfStatsInCksumErrs); 9781 SET_MIB(old_ip_mib.udpInOverflows, ipmib->udpIfStatsInOverflows); 9782 SET_MIB(old_ip_mib.rawipInOverflows, 9783 ipmib->rawipIfStatsInOverflows); 9784 9785 SET_MIB(old_ip_mib.ipsecInSucceeded, ipmib->ipsecIfStatsInSucceeded); 9786 SET_MIB(old_ip_mib.ipsecInFailed, ipmib->ipsecIfStatsInFailed); 9787 SET_MIB(old_ip_mib.ipInIPv6, ipmib->ipIfStatsInWrongIPVersion); 9788 SET_MIB(old_ip_mib.ipOutIPv6, ipmib->ipIfStatsOutWrongIPVersion); 9789 SET_MIB(old_ip_mib.ipOutSwitchIPv6, 9790 ipmib->ipIfStatsOutSwitchIPVersion); 9791 9792 if (!snmp_append_data(mpctl->b_cont, (char *)&old_ip_mib, 9793 (int)sizeof (old_ip_mib))) { 9794 ip1dbg(("ip_snmp_get_mib2_ip: failed to allocate %u bytes\n", 9795 (uint_t)sizeof (old_ip_mib))); 9796 } 9797 9798 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 9799 ip3dbg(("ip_snmp_get_mib2_ip: level %d, name %d, len %d\n", 9800 (int)optp->level, (int)optp->name, (int)optp->len)); 9801 qreply(q, mpctl); 9802 return (mp2ctl); 9803 } 9804 9805 /* Per interface IPv4 statistics */ 9806 static mblk_t * 9807 ip_snmp_get_mib2_ip_traffic_stats(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst, 9808 boolean_t legacy_req) 9809 { 9810 struct opthdr *optp; 9811 mblk_t *mp2ctl; 9812 ill_t *ill; 9813 ill_walk_context_t ctx; 9814 mblk_t *mp_tail = NULL; 9815 mib2_ipIfStatsEntry_t global_ip_mib; 9816 mib2_ipAddrEntry_t mae; 9817 9818 /* 9819 * Make a copy of the original message 9820 */ 9821 mp2ctl = copymsg(mpctl); 9822 9823 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 9824 optp->level = MIB2_IP; 9825 optp->name = MIB2_IP_TRAFFIC_STATS; 9826 /* Include "unknown interface" ip_mib */ 9827 ipst->ips_ip_mib.ipIfStatsIPVersion = MIB2_INETADDRESSTYPE_ipv4; 9828 ipst->ips_ip_mib.ipIfStatsIfIndex = 9829 MIB2_UNKNOWN_INTERFACE; /* Flag to netstat */ 9830 SET_MIB(ipst->ips_ip_mib.ipIfStatsForwarding, 9831 (ipst->ips_ip_forwarding ? 1 : 2)); 9832 SET_MIB(ipst->ips_ip_mib.ipIfStatsDefaultTTL, 9833 (uint32_t)ipst->ips_ip_def_ttl); 9834 SET_MIB(ipst->ips_ip_mib.ipIfStatsEntrySize, 9835 sizeof (mib2_ipIfStatsEntry_t)); 9836 SET_MIB(ipst->ips_ip_mib.ipIfStatsAddrEntrySize, 9837 sizeof (mib2_ipAddrEntry_t)); 9838 SET_MIB(ipst->ips_ip_mib.ipIfStatsRouteEntrySize, 9839 sizeof (mib2_ipRouteEntry_t)); 9840 SET_MIB(ipst->ips_ip_mib.ipIfStatsNetToMediaEntrySize, 9841 sizeof (mib2_ipNetToMediaEntry_t)); 9842 SET_MIB(ipst->ips_ip_mib.ipIfStatsMemberEntrySize, 9843 sizeof (ip_member_t)); 9844 SET_MIB(ipst->ips_ip_mib.ipIfStatsGroupSourceEntrySize, 9845 sizeof (ip_grpsrc_t)); 9846 9847 bcopy(&ipst->ips_ip_mib, &global_ip_mib, sizeof (global_ip_mib)); 9848 9849 if (legacy_req) { 9850 SET_MIB(global_ip_mib.ipIfStatsAddrEntrySize, 9851 LEGACY_MIB_SIZE(&mae, mib2_ipAddrEntry_t)); 9852 } 9853 9854 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 9855 (char *)&global_ip_mib, (int)sizeof (global_ip_mib))) { 9856 ip1dbg(("ip_snmp_get_mib2_ip_traffic_stats: " 9857 "failed to allocate %u bytes\n", 9858 (uint_t)sizeof (global_ip_mib))); 9859 } 9860 9861 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 9862 ill = ILL_START_WALK_V4(&ctx, ipst); 9863 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 9864 ill->ill_ip_mib->ipIfStatsIfIndex = 9865 ill->ill_phyint->phyint_ifindex; 9866 SET_MIB(ill->ill_ip_mib->ipIfStatsForwarding, 9867 (ipst->ips_ip_forwarding ? 1 : 2)); 9868 SET_MIB(ill->ill_ip_mib->ipIfStatsDefaultTTL, 9869 (uint32_t)ipst->ips_ip_def_ttl); 9870 9871 ip_mib2_add_ip_stats(&global_ip_mib, ill->ill_ip_mib); 9872 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 9873 (char *)ill->ill_ip_mib, 9874 (int)sizeof (*ill->ill_ip_mib))) { 9875 ip1dbg(("ip_snmp_get_mib2_ip_traffic_stats: " 9876 "failed to allocate %u bytes\n", 9877 (uint_t)sizeof (*ill->ill_ip_mib))); 9878 } 9879 } 9880 rw_exit(&ipst->ips_ill_g_lock); 9881 9882 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 9883 ip3dbg(("ip_snmp_get_mib2_ip_traffic_stats: " 9884 "level %d, name %d, len %d\n", 9885 (int)optp->level, (int)optp->name, (int)optp->len)); 9886 qreply(q, mpctl); 9887 9888 if (mp2ctl == NULL) 9889 return (NULL); 9890 9891 return (ip_snmp_get_mib2_ip(q, mp2ctl, &global_ip_mib, ipst, 9892 legacy_req)); 9893 } 9894 9895 /* Global IPv4 ICMP statistics */ 9896 static mblk_t * 9897 ip_snmp_get_mib2_icmp(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 9898 { 9899 struct opthdr *optp; 9900 mblk_t *mp2ctl; 9901 9902 /* 9903 * Make a copy of the original message 9904 */ 9905 mp2ctl = copymsg(mpctl); 9906 9907 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 9908 optp->level = MIB2_ICMP; 9909 optp->name = 0; 9910 if (!snmp_append_data(mpctl->b_cont, (char *)&ipst->ips_icmp_mib, 9911 (int)sizeof (ipst->ips_icmp_mib))) { 9912 ip1dbg(("ip_snmp_get_mib2_icmp: failed to allocate %u bytes\n", 9913 (uint_t)sizeof (ipst->ips_icmp_mib))); 9914 } 9915 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 9916 ip3dbg(("ip_snmp_get_mib2_icmp: level %d, name %d, len %d\n", 9917 (int)optp->level, (int)optp->name, (int)optp->len)); 9918 qreply(q, mpctl); 9919 return (mp2ctl); 9920 } 9921 9922 /* Global IPv4 IGMP statistics */ 9923 static mblk_t * 9924 ip_snmp_get_mib2_igmp(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 9925 { 9926 struct opthdr *optp; 9927 mblk_t *mp2ctl; 9928 9929 /* 9930 * make a copy of the original message 9931 */ 9932 mp2ctl = copymsg(mpctl); 9933 9934 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 9935 optp->level = EXPER_IGMP; 9936 optp->name = 0; 9937 if (!snmp_append_data(mpctl->b_cont, (char *)&ipst->ips_igmpstat, 9938 (int)sizeof (ipst->ips_igmpstat))) { 9939 ip1dbg(("ip_snmp_get_mib2_igmp: failed to allocate %u bytes\n", 9940 (uint_t)sizeof (ipst->ips_igmpstat))); 9941 } 9942 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 9943 ip3dbg(("ip_snmp_get_mib2_igmp: level %d, name %d, len %d\n", 9944 (int)optp->level, (int)optp->name, (int)optp->len)); 9945 qreply(q, mpctl); 9946 return (mp2ctl); 9947 } 9948 9949 /* Global IPv4 Multicast Routing statistics */ 9950 static mblk_t * 9951 ip_snmp_get_mib2_multi(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 9952 { 9953 struct opthdr *optp; 9954 mblk_t *mp2ctl; 9955 9956 /* 9957 * make a copy of the original message 9958 */ 9959 mp2ctl = copymsg(mpctl); 9960 9961 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 9962 optp->level = EXPER_DVMRP; 9963 optp->name = 0; 9964 if (!ip_mroute_stats(mpctl->b_cont, ipst)) { 9965 ip0dbg(("ip_mroute_stats: failed\n")); 9966 } 9967 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 9968 ip3dbg(("ip_snmp_get_mib2_multi: level %d, name %d, len %d\n", 9969 (int)optp->level, (int)optp->name, (int)optp->len)); 9970 qreply(q, mpctl); 9971 return (mp2ctl); 9972 } 9973 9974 /* IPv4 address information */ 9975 static mblk_t * 9976 ip_snmp_get_mib2_ip_addr(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst, 9977 boolean_t legacy_req) 9978 { 9979 struct opthdr *optp; 9980 mblk_t *mp2ctl; 9981 mblk_t *mp_tail = NULL; 9982 ill_t *ill; 9983 ipif_t *ipif; 9984 uint_t bitval; 9985 mib2_ipAddrEntry_t mae; 9986 size_t mae_size; 9987 zoneid_t zoneid; 9988 ill_walk_context_t ctx; 9989 9990 /* 9991 * make a copy of the original message 9992 */ 9993 mp2ctl = copymsg(mpctl); 9994 9995 mae_size = (legacy_req) ? LEGACY_MIB_SIZE(&mae, mib2_ipAddrEntry_t) : 9996 sizeof (mib2_ipAddrEntry_t); 9997 9998 /* ipAddrEntryTable */ 9999 10000 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 10001 optp->level = MIB2_IP; 10002 optp->name = MIB2_IP_ADDR; 10003 zoneid = Q_TO_CONN(q)->conn_zoneid; 10004 10005 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 10006 ill = ILL_START_WALK_V4(&ctx, ipst); 10007 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 10008 for (ipif = ill->ill_ipif; ipif != NULL; 10009 ipif = ipif->ipif_next) { 10010 if (ipif->ipif_zoneid != zoneid && 10011 ipif->ipif_zoneid != ALL_ZONES) 10012 continue; 10013 /* Sum of count from dead IRE_LO* and our current */ 10014 mae.ipAdEntInfo.ae_ibcnt = ipif->ipif_ib_pkt_count; 10015 if (ipif->ipif_ire_local != NULL) { 10016 mae.ipAdEntInfo.ae_ibcnt += 10017 ipif->ipif_ire_local->ire_ib_pkt_count; 10018 } 10019 mae.ipAdEntInfo.ae_obcnt = 0; 10020 mae.ipAdEntInfo.ae_focnt = 0; 10021 10022 ipif_get_name(ipif, mae.ipAdEntIfIndex.o_bytes, 10023 OCTET_LENGTH); 10024 mae.ipAdEntIfIndex.o_length = 10025 mi_strlen(mae.ipAdEntIfIndex.o_bytes); 10026 mae.ipAdEntAddr = ipif->ipif_lcl_addr; 10027 mae.ipAdEntNetMask = ipif->ipif_net_mask; 10028 mae.ipAdEntInfo.ae_subnet = ipif->ipif_subnet; 10029 mae.ipAdEntInfo.ae_subnet_len = 10030 ip_mask_to_plen(ipif->ipif_net_mask); 10031 mae.ipAdEntInfo.ae_src_addr = ipif->ipif_lcl_addr; 10032 for (bitval = 1; 10033 bitval && 10034 !(bitval & ipif->ipif_brd_addr); 10035 bitval <<= 1) 10036 noop; 10037 mae.ipAdEntBcastAddr = bitval; 10038 mae.ipAdEntReasmMaxSize = IP_MAXPACKET; 10039 mae.ipAdEntInfo.ae_mtu = ipif->ipif_ill->ill_mtu; 10040 mae.ipAdEntInfo.ae_metric = ipif->ipif_ill->ill_metric; 10041 mae.ipAdEntInfo.ae_broadcast_addr = 10042 ipif->ipif_brd_addr; 10043 mae.ipAdEntInfo.ae_pp_dst_addr = 10044 ipif->ipif_pp_dst_addr; 10045 mae.ipAdEntInfo.ae_flags = ipif->ipif_flags | 10046 ill->ill_flags | ill->ill_phyint->phyint_flags; 10047 mae.ipAdEntRetransmitTime = 10048 ill->ill_reachable_retrans_time; 10049 10050 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 10051 (char *)&mae, (int)mae_size)) { 10052 ip1dbg(("ip_snmp_get_mib2_ip_addr: failed to " 10053 "allocate %u bytes\n", (uint_t)mae_size)); 10054 } 10055 } 10056 } 10057 rw_exit(&ipst->ips_ill_g_lock); 10058 10059 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 10060 ip3dbg(("ip_snmp_get_mib2_ip_addr: level %d, name %d, len %d\n", 10061 (int)optp->level, (int)optp->name, (int)optp->len)); 10062 qreply(q, mpctl); 10063 return (mp2ctl); 10064 } 10065 10066 /* IPv6 address information */ 10067 static mblk_t * 10068 ip_snmp_get_mib2_ip6_addr(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst, 10069 boolean_t legacy_req) 10070 { 10071 struct opthdr *optp; 10072 mblk_t *mp2ctl; 10073 mblk_t *mp_tail = NULL; 10074 ill_t *ill; 10075 ipif_t *ipif; 10076 mib2_ipv6AddrEntry_t mae6; 10077 size_t mae6_size; 10078 zoneid_t zoneid; 10079 ill_walk_context_t ctx; 10080 10081 /* 10082 * make a copy of the original message 10083 */ 10084 mp2ctl = copymsg(mpctl); 10085 10086 mae6_size = (legacy_req) ? 10087 LEGACY_MIB_SIZE(&mae6, mib2_ipv6AddrEntry_t) : 10088 sizeof (mib2_ipv6AddrEntry_t); 10089 10090 /* ipv6AddrEntryTable */ 10091 10092 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 10093 optp->level = MIB2_IP6; 10094 optp->name = MIB2_IP6_ADDR; 10095 zoneid = Q_TO_CONN(q)->conn_zoneid; 10096 10097 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 10098 ill = ILL_START_WALK_V6(&ctx, ipst); 10099 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 10100 for (ipif = ill->ill_ipif; ipif != NULL; 10101 ipif = ipif->ipif_next) { 10102 if (ipif->ipif_zoneid != zoneid && 10103 ipif->ipif_zoneid != ALL_ZONES) 10104 continue; 10105 /* Sum of count from dead IRE_LO* and our current */ 10106 mae6.ipv6AddrInfo.ae_ibcnt = ipif->ipif_ib_pkt_count; 10107 if (ipif->ipif_ire_local != NULL) { 10108 mae6.ipv6AddrInfo.ae_ibcnt += 10109 ipif->ipif_ire_local->ire_ib_pkt_count; 10110 } 10111 mae6.ipv6AddrInfo.ae_obcnt = 0; 10112 mae6.ipv6AddrInfo.ae_focnt = 0; 10113 10114 ipif_get_name(ipif, mae6.ipv6AddrIfIndex.o_bytes, 10115 OCTET_LENGTH); 10116 mae6.ipv6AddrIfIndex.o_length = 10117 mi_strlen(mae6.ipv6AddrIfIndex.o_bytes); 10118 mae6.ipv6AddrAddress = ipif->ipif_v6lcl_addr; 10119 mae6.ipv6AddrPfxLength = 10120 ip_mask_to_plen_v6(&ipif->ipif_v6net_mask); 10121 mae6.ipv6AddrInfo.ae_subnet = ipif->ipif_v6subnet; 10122 mae6.ipv6AddrInfo.ae_subnet_len = 10123 mae6.ipv6AddrPfxLength; 10124 mae6.ipv6AddrInfo.ae_src_addr = ipif->ipif_v6lcl_addr; 10125 10126 /* Type: stateless(1), stateful(2), unknown(3) */ 10127 if (ipif->ipif_flags & IPIF_ADDRCONF) 10128 mae6.ipv6AddrType = 1; 10129 else 10130 mae6.ipv6AddrType = 2; 10131 /* Anycast: true(1), false(2) */ 10132 if (ipif->ipif_flags & IPIF_ANYCAST) 10133 mae6.ipv6AddrAnycastFlag = 1; 10134 else 10135 mae6.ipv6AddrAnycastFlag = 2; 10136 10137 /* 10138 * Address status: preferred(1), deprecated(2), 10139 * invalid(3), inaccessible(4), unknown(5) 10140 */ 10141 if (ipif->ipif_flags & IPIF_NOLOCAL) 10142 mae6.ipv6AddrStatus = 3; 10143 else if (ipif->ipif_flags & IPIF_DEPRECATED) 10144 mae6.ipv6AddrStatus = 2; 10145 else 10146 mae6.ipv6AddrStatus = 1; 10147 mae6.ipv6AddrInfo.ae_mtu = ipif->ipif_ill->ill_mtu; 10148 mae6.ipv6AddrInfo.ae_metric = 10149 ipif->ipif_ill->ill_metric; 10150 mae6.ipv6AddrInfo.ae_pp_dst_addr = 10151 ipif->ipif_v6pp_dst_addr; 10152 mae6.ipv6AddrInfo.ae_flags = ipif->ipif_flags | 10153 ill->ill_flags | ill->ill_phyint->phyint_flags; 10154 mae6.ipv6AddrReasmMaxSize = IP_MAXPACKET; 10155 mae6.ipv6AddrIdentifier = ill->ill_token; 10156 mae6.ipv6AddrIdentifierLen = ill->ill_token_length; 10157 mae6.ipv6AddrReachableTime = ill->ill_reachable_time; 10158 mae6.ipv6AddrRetransmitTime = 10159 ill->ill_reachable_retrans_time; 10160 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 10161 (char *)&mae6, (int)mae6_size)) { 10162 ip1dbg(("ip_snmp_get_mib2_ip6_addr: failed to " 10163 "allocate %u bytes\n", 10164 (uint_t)mae6_size)); 10165 } 10166 } 10167 } 10168 rw_exit(&ipst->ips_ill_g_lock); 10169 10170 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 10171 ip3dbg(("ip_snmp_get_mib2_ip6_addr: level %d, name %d, len %d\n", 10172 (int)optp->level, (int)optp->name, (int)optp->len)); 10173 qreply(q, mpctl); 10174 return (mp2ctl); 10175 } 10176 10177 /* IPv4 multicast group membership. */ 10178 static mblk_t * 10179 ip_snmp_get_mib2_ip_group_mem(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 10180 { 10181 struct opthdr *optp; 10182 mblk_t *mp2ctl; 10183 ill_t *ill; 10184 ipif_t *ipif; 10185 ilm_t *ilm; 10186 ip_member_t ipm; 10187 mblk_t *mp_tail = NULL; 10188 ill_walk_context_t ctx; 10189 zoneid_t zoneid; 10190 10191 /* 10192 * make a copy of the original message 10193 */ 10194 mp2ctl = copymsg(mpctl); 10195 zoneid = Q_TO_CONN(q)->conn_zoneid; 10196 10197 /* ipGroupMember table */ 10198 optp = (struct opthdr *)&mpctl->b_rptr[ 10199 sizeof (struct T_optmgmt_ack)]; 10200 optp->level = MIB2_IP; 10201 optp->name = EXPER_IP_GROUP_MEMBERSHIP; 10202 10203 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 10204 ill = ILL_START_WALK_V4(&ctx, ipst); 10205 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 10206 /* Make sure the ill isn't going away. */ 10207 if (!ill_check_and_refhold(ill)) 10208 continue; 10209 rw_exit(&ipst->ips_ill_g_lock); 10210 rw_enter(&ill->ill_mcast_lock, RW_READER); 10211 for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) { 10212 if (ilm->ilm_zoneid != zoneid && 10213 ilm->ilm_zoneid != ALL_ZONES) 10214 continue; 10215 10216 /* Is there an ipif for ilm_ifaddr? */ 10217 for (ipif = ill->ill_ipif; ipif != NULL; 10218 ipif = ipif->ipif_next) { 10219 if (!IPIF_IS_CONDEMNED(ipif) && 10220 ipif->ipif_lcl_addr == ilm->ilm_ifaddr && 10221 ilm->ilm_ifaddr != INADDR_ANY) 10222 break; 10223 } 10224 if (ipif != NULL) { 10225 ipif_get_name(ipif, 10226 ipm.ipGroupMemberIfIndex.o_bytes, 10227 OCTET_LENGTH); 10228 } else { 10229 ill_get_name(ill, 10230 ipm.ipGroupMemberIfIndex.o_bytes, 10231 OCTET_LENGTH); 10232 } 10233 ipm.ipGroupMemberIfIndex.o_length = 10234 mi_strlen(ipm.ipGroupMemberIfIndex.o_bytes); 10235 10236 ipm.ipGroupMemberAddress = ilm->ilm_addr; 10237 ipm.ipGroupMemberRefCnt = ilm->ilm_refcnt; 10238 ipm.ipGroupMemberFilterMode = ilm->ilm_fmode; 10239 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 10240 (char *)&ipm, (int)sizeof (ipm))) { 10241 ip1dbg(("ip_snmp_get_mib2_ip_group: " 10242 "failed to allocate %u bytes\n", 10243 (uint_t)sizeof (ipm))); 10244 } 10245 } 10246 rw_exit(&ill->ill_mcast_lock); 10247 ill_refrele(ill); 10248 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 10249 } 10250 rw_exit(&ipst->ips_ill_g_lock); 10251 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 10252 ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n", 10253 (int)optp->level, (int)optp->name, (int)optp->len)); 10254 qreply(q, mpctl); 10255 return (mp2ctl); 10256 } 10257 10258 /* IPv6 multicast group membership. */ 10259 static mblk_t * 10260 ip_snmp_get_mib2_ip6_group_mem(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 10261 { 10262 struct opthdr *optp; 10263 mblk_t *mp2ctl; 10264 ill_t *ill; 10265 ilm_t *ilm; 10266 ipv6_member_t ipm6; 10267 mblk_t *mp_tail = NULL; 10268 ill_walk_context_t ctx; 10269 zoneid_t zoneid; 10270 10271 /* 10272 * make a copy of the original message 10273 */ 10274 mp2ctl = copymsg(mpctl); 10275 zoneid = Q_TO_CONN(q)->conn_zoneid; 10276 10277 /* ip6GroupMember table */ 10278 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 10279 optp->level = MIB2_IP6; 10280 optp->name = EXPER_IP6_GROUP_MEMBERSHIP; 10281 10282 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 10283 ill = ILL_START_WALK_V6(&ctx, ipst); 10284 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 10285 /* Make sure the ill isn't going away. */ 10286 if (!ill_check_and_refhold(ill)) 10287 continue; 10288 rw_exit(&ipst->ips_ill_g_lock); 10289 /* 10290 * Normally we don't have any members on under IPMP interfaces. 10291 * We report them as a debugging aid. 10292 */ 10293 rw_enter(&ill->ill_mcast_lock, RW_READER); 10294 ipm6.ipv6GroupMemberIfIndex = ill->ill_phyint->phyint_ifindex; 10295 for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) { 10296 if (ilm->ilm_zoneid != zoneid && 10297 ilm->ilm_zoneid != ALL_ZONES) 10298 continue; /* not this zone */ 10299 ipm6.ipv6GroupMemberAddress = ilm->ilm_v6addr; 10300 ipm6.ipv6GroupMemberRefCnt = ilm->ilm_refcnt; 10301 ipm6.ipv6GroupMemberFilterMode = ilm->ilm_fmode; 10302 if (!snmp_append_data2(mpctl->b_cont, 10303 &mp_tail, 10304 (char *)&ipm6, (int)sizeof (ipm6))) { 10305 ip1dbg(("ip_snmp_get_mib2_ip6_group: " 10306 "failed to allocate %u bytes\n", 10307 (uint_t)sizeof (ipm6))); 10308 } 10309 } 10310 rw_exit(&ill->ill_mcast_lock); 10311 ill_refrele(ill); 10312 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 10313 } 10314 rw_exit(&ipst->ips_ill_g_lock); 10315 10316 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 10317 ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n", 10318 (int)optp->level, (int)optp->name, (int)optp->len)); 10319 qreply(q, mpctl); 10320 return (mp2ctl); 10321 } 10322 10323 /* IP multicast filtered sources */ 10324 static mblk_t * 10325 ip_snmp_get_mib2_ip_group_src(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 10326 { 10327 struct opthdr *optp; 10328 mblk_t *mp2ctl; 10329 ill_t *ill; 10330 ipif_t *ipif; 10331 ilm_t *ilm; 10332 ip_grpsrc_t ips; 10333 mblk_t *mp_tail = NULL; 10334 ill_walk_context_t ctx; 10335 zoneid_t zoneid; 10336 int i; 10337 slist_t *sl; 10338 10339 /* 10340 * make a copy of the original message 10341 */ 10342 mp2ctl = copymsg(mpctl); 10343 zoneid = Q_TO_CONN(q)->conn_zoneid; 10344 10345 /* ipGroupSource table */ 10346 optp = (struct opthdr *)&mpctl->b_rptr[ 10347 sizeof (struct T_optmgmt_ack)]; 10348 optp->level = MIB2_IP; 10349 optp->name = EXPER_IP_GROUP_SOURCES; 10350 10351 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 10352 ill = ILL_START_WALK_V4(&ctx, ipst); 10353 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 10354 /* Make sure the ill isn't going away. */ 10355 if (!ill_check_and_refhold(ill)) 10356 continue; 10357 rw_exit(&ipst->ips_ill_g_lock); 10358 rw_enter(&ill->ill_mcast_lock, RW_READER); 10359 for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) { 10360 sl = ilm->ilm_filter; 10361 if (ilm->ilm_zoneid != zoneid && 10362 ilm->ilm_zoneid != ALL_ZONES) 10363 continue; 10364 if (SLIST_IS_EMPTY(sl)) 10365 continue; 10366 10367 /* Is there an ipif for ilm_ifaddr? */ 10368 for (ipif = ill->ill_ipif; ipif != NULL; 10369 ipif = ipif->ipif_next) { 10370 if (!IPIF_IS_CONDEMNED(ipif) && 10371 ipif->ipif_lcl_addr == ilm->ilm_ifaddr && 10372 ilm->ilm_ifaddr != INADDR_ANY) 10373 break; 10374 } 10375 if (ipif != NULL) { 10376 ipif_get_name(ipif, 10377 ips.ipGroupSourceIfIndex.o_bytes, 10378 OCTET_LENGTH); 10379 } else { 10380 ill_get_name(ill, 10381 ips.ipGroupSourceIfIndex.o_bytes, 10382 OCTET_LENGTH); 10383 } 10384 ips.ipGroupSourceIfIndex.o_length = 10385 mi_strlen(ips.ipGroupSourceIfIndex.o_bytes); 10386 10387 ips.ipGroupSourceGroup = ilm->ilm_addr; 10388 for (i = 0; i < sl->sl_numsrc; i++) { 10389 if (!IN6_IS_ADDR_V4MAPPED(&sl->sl_addr[i])) 10390 continue; 10391 IN6_V4MAPPED_TO_IPADDR(&sl->sl_addr[i], 10392 ips.ipGroupSourceAddress); 10393 if (snmp_append_data2(mpctl->b_cont, &mp_tail, 10394 (char *)&ips, (int)sizeof (ips)) == 0) { 10395 ip1dbg(("ip_snmp_get_mib2_ip_group_src:" 10396 " failed to allocate %u bytes\n", 10397 (uint_t)sizeof (ips))); 10398 } 10399 } 10400 } 10401 rw_exit(&ill->ill_mcast_lock); 10402 ill_refrele(ill); 10403 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 10404 } 10405 rw_exit(&ipst->ips_ill_g_lock); 10406 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 10407 ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n", 10408 (int)optp->level, (int)optp->name, (int)optp->len)); 10409 qreply(q, mpctl); 10410 return (mp2ctl); 10411 } 10412 10413 /* IPv6 multicast filtered sources. */ 10414 static mblk_t * 10415 ip_snmp_get_mib2_ip6_group_src(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 10416 { 10417 struct opthdr *optp; 10418 mblk_t *mp2ctl; 10419 ill_t *ill; 10420 ilm_t *ilm; 10421 ipv6_grpsrc_t ips6; 10422 mblk_t *mp_tail = NULL; 10423 ill_walk_context_t ctx; 10424 zoneid_t zoneid; 10425 int i; 10426 slist_t *sl; 10427 10428 /* 10429 * make a copy of the original message 10430 */ 10431 mp2ctl = copymsg(mpctl); 10432 zoneid = Q_TO_CONN(q)->conn_zoneid; 10433 10434 /* ip6GroupMember table */ 10435 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 10436 optp->level = MIB2_IP6; 10437 optp->name = EXPER_IP6_GROUP_SOURCES; 10438 10439 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 10440 ill = ILL_START_WALK_V6(&ctx, ipst); 10441 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 10442 /* Make sure the ill isn't going away. */ 10443 if (!ill_check_and_refhold(ill)) 10444 continue; 10445 rw_exit(&ipst->ips_ill_g_lock); 10446 /* 10447 * Normally we don't have any members on under IPMP interfaces. 10448 * We report them as a debugging aid. 10449 */ 10450 rw_enter(&ill->ill_mcast_lock, RW_READER); 10451 ips6.ipv6GroupSourceIfIndex = ill->ill_phyint->phyint_ifindex; 10452 for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) { 10453 sl = ilm->ilm_filter; 10454 if (ilm->ilm_zoneid != zoneid && 10455 ilm->ilm_zoneid != ALL_ZONES) 10456 continue; 10457 if (SLIST_IS_EMPTY(sl)) 10458 continue; 10459 ips6.ipv6GroupSourceGroup = ilm->ilm_v6addr; 10460 for (i = 0; i < sl->sl_numsrc; i++) { 10461 ips6.ipv6GroupSourceAddress = sl->sl_addr[i]; 10462 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 10463 (char *)&ips6, (int)sizeof (ips6))) { 10464 ip1dbg(("ip_snmp_get_mib2_ip6_" 10465 "group_src: failed to allocate " 10466 "%u bytes\n", 10467 (uint_t)sizeof (ips6))); 10468 } 10469 } 10470 } 10471 rw_exit(&ill->ill_mcast_lock); 10472 ill_refrele(ill); 10473 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 10474 } 10475 rw_exit(&ipst->ips_ill_g_lock); 10476 10477 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 10478 ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n", 10479 (int)optp->level, (int)optp->name, (int)optp->len)); 10480 qreply(q, mpctl); 10481 return (mp2ctl); 10482 } 10483 10484 /* Multicast routing virtual interface table. */ 10485 static mblk_t * 10486 ip_snmp_get_mib2_virt_multi(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 10487 { 10488 struct opthdr *optp; 10489 mblk_t *mp2ctl; 10490 10491 /* 10492 * make a copy of the original message 10493 */ 10494 mp2ctl = copymsg(mpctl); 10495 10496 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 10497 optp->level = EXPER_DVMRP; 10498 optp->name = EXPER_DVMRP_VIF; 10499 if (!ip_mroute_vif(mpctl->b_cont, ipst)) { 10500 ip0dbg(("ip_mroute_vif: failed\n")); 10501 } 10502 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 10503 ip3dbg(("ip_snmp_get_mib2_virt_multi: level %d, name %d, len %d\n", 10504 (int)optp->level, (int)optp->name, (int)optp->len)); 10505 qreply(q, mpctl); 10506 return (mp2ctl); 10507 } 10508 10509 /* Multicast routing table. */ 10510 static mblk_t * 10511 ip_snmp_get_mib2_multi_rtable(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 10512 { 10513 struct opthdr *optp; 10514 mblk_t *mp2ctl; 10515 10516 /* 10517 * make a copy of the original message 10518 */ 10519 mp2ctl = copymsg(mpctl); 10520 10521 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 10522 optp->level = EXPER_DVMRP; 10523 optp->name = EXPER_DVMRP_MRT; 10524 if (!ip_mroute_mrt(mpctl->b_cont, ipst)) { 10525 ip0dbg(("ip_mroute_mrt: failed\n")); 10526 } 10527 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 10528 ip3dbg(("ip_snmp_get_mib2_multi_rtable: level %d, name %d, len %d\n", 10529 (int)optp->level, (int)optp->name, (int)optp->len)); 10530 qreply(q, mpctl); 10531 return (mp2ctl); 10532 } 10533 10534 /* 10535 * Return ipRouteEntryTable, ipNetToMediaEntryTable, and ipRouteAttributeTable 10536 * in one IRE walk. 10537 */ 10538 static mblk_t * 10539 ip_snmp_get_mib2_ip_route_media(queue_t *q, mblk_t *mpctl, int level, 10540 ip_stack_t *ipst) 10541 { 10542 struct opthdr *optp; 10543 mblk_t *mp2ctl; /* Returned */ 10544 mblk_t *mp3ctl; /* nettomedia */ 10545 mblk_t *mp4ctl; /* routeattrs */ 10546 iproutedata_t ird; 10547 zoneid_t zoneid; 10548 10549 /* 10550 * make copies of the original message 10551 * - mp2ctl is returned unchanged to the caller for his use 10552 * - mpctl is sent upstream as ipRouteEntryTable 10553 * - mp3ctl is sent upstream as ipNetToMediaEntryTable 10554 * - mp4ctl is sent upstream as ipRouteAttributeTable 10555 */ 10556 mp2ctl = copymsg(mpctl); 10557 mp3ctl = copymsg(mpctl); 10558 mp4ctl = copymsg(mpctl); 10559 if (mp3ctl == NULL || mp4ctl == NULL) { 10560 freemsg(mp4ctl); 10561 freemsg(mp3ctl); 10562 freemsg(mp2ctl); 10563 freemsg(mpctl); 10564 return (NULL); 10565 } 10566 10567 bzero(&ird, sizeof (ird)); 10568 10569 ird.ird_route.lp_head = mpctl->b_cont; 10570 ird.ird_netmedia.lp_head = mp3ctl->b_cont; 10571 ird.ird_attrs.lp_head = mp4ctl->b_cont; 10572 /* 10573 * If the level has been set the special EXPER_IP_AND_ALL_IRES value, 10574 * then also include ire_testhidden IREs and IRE_IF_CLONE. This is 10575 * intended a temporary solution until a proper MIB API is provided 10576 * that provides complete filtering/caller-opt-in. 10577 */ 10578 if (level == EXPER_IP_AND_ALL_IRES) 10579 ird.ird_flags |= IRD_REPORT_ALL; 10580 10581 zoneid = Q_TO_CONN(q)->conn_zoneid; 10582 ire_walk_v4(ip_snmp_get2_v4, &ird, zoneid, ipst); 10583 10584 /* ipRouteEntryTable in mpctl */ 10585 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 10586 optp->level = MIB2_IP; 10587 optp->name = MIB2_IP_ROUTE; 10588 optp->len = msgdsize(ird.ird_route.lp_head); 10589 ip3dbg(("ip_snmp_get_mib2_ip_route_media: level %d, name %d, len %d\n", 10590 (int)optp->level, (int)optp->name, (int)optp->len)); 10591 qreply(q, mpctl); 10592 10593 /* ipNetToMediaEntryTable in mp3ctl */ 10594 ncec_walk(NULL, ip_snmp_get2_v4_media, &ird, ipst); 10595 10596 optp = (struct opthdr *)&mp3ctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 10597 optp->level = MIB2_IP; 10598 optp->name = MIB2_IP_MEDIA; 10599 optp->len = msgdsize(ird.ird_netmedia.lp_head); 10600 ip3dbg(("ip_snmp_get_mib2_ip_route_media: level %d, name %d, len %d\n", 10601 (int)optp->level, (int)optp->name, (int)optp->len)); 10602 qreply(q, mp3ctl); 10603 10604 /* ipRouteAttributeTable in mp4ctl */ 10605 optp = (struct opthdr *)&mp4ctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 10606 optp->level = MIB2_IP; 10607 optp->name = EXPER_IP_RTATTR; 10608 optp->len = msgdsize(ird.ird_attrs.lp_head); 10609 ip3dbg(("ip_snmp_get_mib2_ip_route_media: level %d, name %d, len %d\n", 10610 (int)optp->level, (int)optp->name, (int)optp->len)); 10611 if (optp->len == 0) 10612 freemsg(mp4ctl); 10613 else 10614 qreply(q, mp4ctl); 10615 10616 return (mp2ctl); 10617 } 10618 10619 /* 10620 * Return ipv6RouteEntryTable and ipv6RouteAttributeTable in one IRE walk, and 10621 * ipv6NetToMediaEntryTable in an NDP walk. 10622 */ 10623 static mblk_t * 10624 ip_snmp_get_mib2_ip6_route_media(queue_t *q, mblk_t *mpctl, int level, 10625 ip_stack_t *ipst) 10626 { 10627 struct opthdr *optp; 10628 mblk_t *mp2ctl; /* Returned */ 10629 mblk_t *mp3ctl; /* nettomedia */ 10630 mblk_t *mp4ctl; /* routeattrs */ 10631 iproutedata_t ird; 10632 zoneid_t zoneid; 10633 10634 /* 10635 * make copies of the original message 10636 * - mp2ctl is returned unchanged to the caller for his use 10637 * - mpctl is sent upstream as ipv6RouteEntryTable 10638 * - mp3ctl is sent upstream as ipv6NetToMediaEntryTable 10639 * - mp4ctl is sent upstream as ipv6RouteAttributeTable 10640 */ 10641 mp2ctl = copymsg(mpctl); 10642 mp3ctl = copymsg(mpctl); 10643 mp4ctl = copymsg(mpctl); 10644 if (mp3ctl == NULL || mp4ctl == NULL) { 10645 freemsg(mp4ctl); 10646 freemsg(mp3ctl); 10647 freemsg(mp2ctl); 10648 freemsg(mpctl); 10649 return (NULL); 10650 } 10651 10652 bzero(&ird, sizeof (ird)); 10653 10654 ird.ird_route.lp_head = mpctl->b_cont; 10655 ird.ird_netmedia.lp_head = mp3ctl->b_cont; 10656 ird.ird_attrs.lp_head = mp4ctl->b_cont; 10657 /* 10658 * If the level has been set the special EXPER_IP_AND_ALL_IRES value, 10659 * then also include ire_testhidden IREs and IRE_IF_CLONE. This is 10660 * intended a temporary solution until a proper MIB API is provided 10661 * that provides complete filtering/caller-opt-in. 10662 */ 10663 if (level == EXPER_IP_AND_ALL_IRES) 10664 ird.ird_flags |= IRD_REPORT_ALL; 10665 10666 zoneid = Q_TO_CONN(q)->conn_zoneid; 10667 ire_walk_v6(ip_snmp_get2_v6_route, &ird, zoneid, ipst); 10668 10669 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 10670 optp->level = MIB2_IP6; 10671 optp->name = MIB2_IP6_ROUTE; 10672 optp->len = msgdsize(ird.ird_route.lp_head); 10673 ip3dbg(("ip_snmp_get_mib2_ip6_route_media: level %d, name %d, len %d\n", 10674 (int)optp->level, (int)optp->name, (int)optp->len)); 10675 qreply(q, mpctl); 10676 10677 /* ipv6NetToMediaEntryTable in mp3ctl */ 10678 ncec_walk(NULL, ip_snmp_get2_v6_media, &ird, ipst); 10679 10680 optp = (struct opthdr *)&mp3ctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 10681 optp->level = MIB2_IP6; 10682 optp->name = MIB2_IP6_MEDIA; 10683 optp->len = msgdsize(ird.ird_netmedia.lp_head); 10684 ip3dbg(("ip_snmp_get_mib2_ip6_route_media: level %d, name %d, len %d\n", 10685 (int)optp->level, (int)optp->name, (int)optp->len)); 10686 qreply(q, mp3ctl); 10687 10688 /* ipv6RouteAttributeTable in mp4ctl */ 10689 optp = (struct opthdr *)&mp4ctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 10690 optp->level = MIB2_IP6; 10691 optp->name = EXPER_IP_RTATTR; 10692 optp->len = msgdsize(ird.ird_attrs.lp_head); 10693 ip3dbg(("ip_snmp_get_mib2_ip6_route_media: level %d, name %d, len %d\n", 10694 (int)optp->level, (int)optp->name, (int)optp->len)); 10695 if (optp->len == 0) 10696 freemsg(mp4ctl); 10697 else 10698 qreply(q, mp4ctl); 10699 10700 return (mp2ctl); 10701 } 10702 10703 /* 10704 * IPv6 mib: One per ill 10705 */ 10706 static mblk_t * 10707 ip_snmp_get_mib2_ip6(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst, 10708 boolean_t legacy_req) 10709 { 10710 struct opthdr *optp; 10711 mblk_t *mp2ctl; 10712 ill_t *ill; 10713 ill_walk_context_t ctx; 10714 mblk_t *mp_tail = NULL; 10715 mib2_ipv6AddrEntry_t mae6; 10716 mib2_ipIfStatsEntry_t *ise; 10717 size_t ise_size, iae_size; 10718 10719 /* 10720 * Make a copy of the original message 10721 */ 10722 mp2ctl = copymsg(mpctl); 10723 10724 /* fixed length IPv6 structure ... */ 10725 10726 if (legacy_req) { 10727 ise_size = LEGACY_MIB_SIZE(&ipst->ips_ip6_mib, 10728 mib2_ipIfStatsEntry_t); 10729 iae_size = LEGACY_MIB_SIZE(&mae6, mib2_ipv6AddrEntry_t); 10730 } else { 10731 ise_size = sizeof (mib2_ipIfStatsEntry_t); 10732 iae_size = sizeof (mib2_ipv6AddrEntry_t); 10733 } 10734 10735 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 10736 optp->level = MIB2_IP6; 10737 optp->name = 0; 10738 /* Include "unknown interface" ip6_mib */ 10739 ipst->ips_ip6_mib.ipIfStatsIPVersion = MIB2_INETADDRESSTYPE_ipv6; 10740 ipst->ips_ip6_mib.ipIfStatsIfIndex = 10741 MIB2_UNKNOWN_INTERFACE; /* Flag to netstat */ 10742 SET_MIB(ipst->ips_ip6_mib.ipIfStatsForwarding, 10743 ipst->ips_ipv6_forwarding ? 1 : 2); 10744 SET_MIB(ipst->ips_ip6_mib.ipIfStatsDefaultHopLimit, 10745 ipst->ips_ipv6_def_hops); 10746 SET_MIB(ipst->ips_ip6_mib.ipIfStatsEntrySize, 10747 sizeof (mib2_ipIfStatsEntry_t)); 10748 SET_MIB(ipst->ips_ip6_mib.ipIfStatsAddrEntrySize, 10749 sizeof (mib2_ipv6AddrEntry_t)); 10750 SET_MIB(ipst->ips_ip6_mib.ipIfStatsRouteEntrySize, 10751 sizeof (mib2_ipv6RouteEntry_t)); 10752 SET_MIB(ipst->ips_ip6_mib.ipIfStatsNetToMediaEntrySize, 10753 sizeof (mib2_ipv6NetToMediaEntry_t)); 10754 SET_MIB(ipst->ips_ip6_mib.ipIfStatsMemberEntrySize, 10755 sizeof (ipv6_member_t)); 10756 SET_MIB(ipst->ips_ip6_mib.ipIfStatsGroupSourceEntrySize, 10757 sizeof (ipv6_grpsrc_t)); 10758 10759 /* 10760 * Synchronize 64- and 32-bit counters 10761 */ 10762 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsInReceives, 10763 ipIfStatsHCInReceives); 10764 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsInDelivers, 10765 ipIfStatsHCInDelivers); 10766 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsOutRequests, 10767 ipIfStatsHCOutRequests); 10768 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsOutForwDatagrams, 10769 ipIfStatsHCOutForwDatagrams); 10770 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsOutMcastPkts, 10771 ipIfStatsHCOutMcastPkts); 10772 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsInMcastPkts, 10773 ipIfStatsHCInMcastPkts); 10774 10775 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 10776 (char *)&ipst->ips_ip6_mib, (int)ise_size)) { 10777 ip1dbg(("ip_snmp_get_mib2_ip6: failed to allocate %u bytes\n", 10778 (uint_t)ise_size)); 10779 } else if (legacy_req) { 10780 /* Adjust the EntrySize fields for legacy requests. */ 10781 ise = 10782 (mib2_ipIfStatsEntry_t *)(mp_tail->b_wptr - (int)ise_size); 10783 SET_MIB(ise->ipIfStatsEntrySize, ise_size); 10784 SET_MIB(ise->ipIfStatsAddrEntrySize, iae_size); 10785 } 10786 10787 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 10788 ill = ILL_START_WALK_V6(&ctx, ipst); 10789 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 10790 ill->ill_ip_mib->ipIfStatsIfIndex = 10791 ill->ill_phyint->phyint_ifindex; 10792 SET_MIB(ill->ill_ip_mib->ipIfStatsForwarding, 10793 ipst->ips_ipv6_forwarding ? 1 : 2); 10794 SET_MIB(ill->ill_ip_mib->ipIfStatsDefaultHopLimit, 10795 ill->ill_max_hops); 10796 10797 /* 10798 * Synchronize 64- and 32-bit counters 10799 */ 10800 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsInReceives, 10801 ipIfStatsHCInReceives); 10802 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsInDelivers, 10803 ipIfStatsHCInDelivers); 10804 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsOutRequests, 10805 ipIfStatsHCOutRequests); 10806 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsOutForwDatagrams, 10807 ipIfStatsHCOutForwDatagrams); 10808 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsOutMcastPkts, 10809 ipIfStatsHCOutMcastPkts); 10810 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsInMcastPkts, 10811 ipIfStatsHCInMcastPkts); 10812 10813 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 10814 (char *)ill->ill_ip_mib, (int)ise_size)) { 10815 ip1dbg(("ip_snmp_get_mib2_ip6: failed to allocate " 10816 "%u bytes\n", (uint_t)ise_size)); 10817 } else if (legacy_req) { 10818 /* Adjust the EntrySize fields for legacy requests. */ 10819 ise = (mib2_ipIfStatsEntry_t *)(mp_tail->b_wptr - 10820 (int)ise_size); 10821 SET_MIB(ise->ipIfStatsEntrySize, ise_size); 10822 SET_MIB(ise->ipIfStatsAddrEntrySize, iae_size); 10823 } 10824 } 10825 rw_exit(&ipst->ips_ill_g_lock); 10826 10827 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 10828 ip3dbg(("ip_snmp_get_mib2_ip6: level %d, name %d, len %d\n", 10829 (int)optp->level, (int)optp->name, (int)optp->len)); 10830 qreply(q, mpctl); 10831 return (mp2ctl); 10832 } 10833 10834 /* 10835 * ICMPv6 mib: One per ill 10836 */ 10837 static mblk_t * 10838 ip_snmp_get_mib2_icmp6(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 10839 { 10840 struct opthdr *optp; 10841 mblk_t *mp2ctl; 10842 ill_t *ill; 10843 ill_walk_context_t ctx; 10844 mblk_t *mp_tail = NULL; 10845 /* 10846 * Make a copy of the original message 10847 */ 10848 mp2ctl = copymsg(mpctl); 10849 10850 /* fixed length ICMPv6 structure ... */ 10851 10852 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 10853 optp->level = MIB2_ICMP6; 10854 optp->name = 0; 10855 /* Include "unknown interface" icmp6_mib */ 10856 ipst->ips_icmp6_mib.ipv6IfIcmpIfIndex = 10857 MIB2_UNKNOWN_INTERFACE; /* netstat flag */ 10858 ipst->ips_icmp6_mib.ipv6IfIcmpEntrySize = 10859 sizeof (mib2_ipv6IfIcmpEntry_t); 10860 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 10861 (char *)&ipst->ips_icmp6_mib, 10862 (int)sizeof (ipst->ips_icmp6_mib))) { 10863 ip1dbg(("ip_snmp_get_mib2_icmp6: failed to allocate %u bytes\n", 10864 (uint_t)sizeof (ipst->ips_icmp6_mib))); 10865 } 10866 10867 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 10868 ill = ILL_START_WALK_V6(&ctx, ipst); 10869 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 10870 ill->ill_icmp6_mib->ipv6IfIcmpIfIndex = 10871 ill->ill_phyint->phyint_ifindex; 10872 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 10873 (char *)ill->ill_icmp6_mib, 10874 (int)sizeof (*ill->ill_icmp6_mib))) { 10875 ip1dbg(("ip_snmp_get_mib2_icmp6: failed to allocate " 10876 "%u bytes\n", 10877 (uint_t)sizeof (*ill->ill_icmp6_mib))); 10878 } 10879 } 10880 rw_exit(&ipst->ips_ill_g_lock); 10881 10882 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 10883 ip3dbg(("ip_snmp_get_mib2_icmp6: level %d, name %d, len %d\n", 10884 (int)optp->level, (int)optp->name, (int)optp->len)); 10885 qreply(q, mpctl); 10886 return (mp2ctl); 10887 } 10888 10889 /* 10890 * ire_walk routine to create both ipRouteEntryTable and 10891 * ipRouteAttributeTable in one IRE walk 10892 */ 10893 static void 10894 ip_snmp_get2_v4(ire_t *ire, iproutedata_t *ird) 10895 { 10896 ill_t *ill; 10897 mib2_ipRouteEntry_t *re; 10898 mib2_ipAttributeEntry_t iaes; 10899 tsol_ire_gw_secattr_t *attrp; 10900 tsol_gc_t *gc = NULL; 10901 tsol_gcgrp_t *gcgrp = NULL; 10902 ip_stack_t *ipst = ire->ire_ipst; 10903 10904 ASSERT(ire->ire_ipversion == IPV4_VERSION); 10905 10906 if (!(ird->ird_flags & IRD_REPORT_ALL)) { 10907 if (ire->ire_testhidden) 10908 return; 10909 if (ire->ire_type & IRE_IF_CLONE) 10910 return; 10911 } 10912 10913 if ((re = kmem_zalloc(sizeof (*re), KM_NOSLEEP)) == NULL) 10914 return; 10915 10916 if ((attrp = ire->ire_gw_secattr) != NULL) { 10917 mutex_enter(&attrp->igsa_lock); 10918 if ((gc = attrp->igsa_gc) != NULL) { 10919 gcgrp = gc->gc_grp; 10920 ASSERT(gcgrp != NULL); 10921 rw_enter(&gcgrp->gcgrp_rwlock, RW_READER); 10922 } 10923 mutex_exit(&attrp->igsa_lock); 10924 } 10925 /* 10926 * Return all IRE types for route table... let caller pick and choose 10927 */ 10928 re->ipRouteDest = ire->ire_addr; 10929 ill = ire->ire_ill; 10930 re->ipRouteIfIndex.o_length = 0; 10931 if (ill != NULL) { 10932 ill_get_name(ill, re->ipRouteIfIndex.o_bytes, OCTET_LENGTH); 10933 re->ipRouteIfIndex.o_length = 10934 mi_strlen(re->ipRouteIfIndex.o_bytes); 10935 } 10936 re->ipRouteMetric1 = -1; 10937 re->ipRouteMetric2 = -1; 10938 re->ipRouteMetric3 = -1; 10939 re->ipRouteMetric4 = -1; 10940 10941 re->ipRouteNextHop = ire->ire_gateway_addr; 10942 /* indirect(4), direct(3), or invalid(2) */ 10943 if (ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) 10944 re->ipRouteType = 2; 10945 else if (ire->ire_type & IRE_ONLINK) 10946 re->ipRouteType = 3; 10947 else 10948 re->ipRouteType = 4; 10949 10950 re->ipRouteProto = -1; 10951 re->ipRouteAge = gethrestime_sec() - ire->ire_create_time; 10952 re->ipRouteMask = ire->ire_mask; 10953 re->ipRouteMetric5 = -1; 10954 re->ipRouteInfo.re_max_frag = ire->ire_metrics.iulp_mtu; 10955 if (ire->ire_ill != NULL && re->ipRouteInfo.re_max_frag == 0) 10956 re->ipRouteInfo.re_max_frag = ire->ire_ill->ill_mtu; 10957 10958 re->ipRouteInfo.re_frag_flag = 0; 10959 re->ipRouteInfo.re_rtt = 0; 10960 re->ipRouteInfo.re_src_addr = 0; 10961 re->ipRouteInfo.re_ref = ire->ire_refcnt; 10962 re->ipRouteInfo.re_obpkt = ire->ire_ob_pkt_count; 10963 re->ipRouteInfo.re_ibpkt = ire->ire_ib_pkt_count; 10964 re->ipRouteInfo.re_flags = ire->ire_flags; 10965 10966 /* Add the IRE_IF_CLONE's counters to their parent IRE_INTERFACE */ 10967 if (ire->ire_type & IRE_INTERFACE) { 10968 ire_t *child; 10969 10970 rw_enter(&ipst->ips_ire_dep_lock, RW_READER); 10971 child = ire->ire_dep_children; 10972 while (child != NULL) { 10973 re->ipRouteInfo.re_obpkt += child->ire_ob_pkt_count; 10974 re->ipRouteInfo.re_ibpkt += child->ire_ib_pkt_count; 10975 child = child->ire_dep_sib_next; 10976 } 10977 rw_exit(&ipst->ips_ire_dep_lock); 10978 } 10979 10980 if (ire->ire_flags & RTF_DYNAMIC) { 10981 re->ipRouteInfo.re_ire_type = IRE_HOST_REDIRECT; 10982 } else { 10983 re->ipRouteInfo.re_ire_type = ire->ire_type; 10984 } 10985 10986 if (!snmp_append_data2(ird->ird_route.lp_head, &ird->ird_route.lp_tail, 10987 (char *)re, (int)sizeof (*re))) { 10988 ip1dbg(("ip_snmp_get2_v4: failed to allocate %u bytes\n", 10989 (uint_t)sizeof (*re))); 10990 } 10991 10992 if (gc != NULL) { 10993 iaes.iae_routeidx = ird->ird_idx; 10994 iaes.iae_doi = gc->gc_db->gcdb_doi; 10995 iaes.iae_slrange = gc->gc_db->gcdb_slrange; 10996 10997 if (!snmp_append_data2(ird->ird_attrs.lp_head, 10998 &ird->ird_attrs.lp_tail, (char *)&iaes, sizeof (iaes))) { 10999 ip1dbg(("ip_snmp_get2_v4: failed to allocate %u " 11000 "bytes\n", (uint_t)sizeof (iaes))); 11001 } 11002 } 11003 11004 /* bump route index for next pass */ 11005 ird->ird_idx++; 11006 11007 kmem_free(re, sizeof (*re)); 11008 if (gcgrp != NULL) 11009 rw_exit(&gcgrp->gcgrp_rwlock); 11010 } 11011 11012 /* 11013 * ire_walk routine to create ipv6RouteEntryTable and ipRouteEntryTable. 11014 */ 11015 static void 11016 ip_snmp_get2_v6_route(ire_t *ire, iproutedata_t *ird) 11017 { 11018 ill_t *ill; 11019 mib2_ipv6RouteEntry_t *re; 11020 mib2_ipAttributeEntry_t iaes; 11021 tsol_ire_gw_secattr_t *attrp; 11022 tsol_gc_t *gc = NULL; 11023 tsol_gcgrp_t *gcgrp = NULL; 11024 ip_stack_t *ipst = ire->ire_ipst; 11025 11026 ASSERT(ire->ire_ipversion == IPV6_VERSION); 11027 11028 if (!(ird->ird_flags & IRD_REPORT_ALL)) { 11029 if (ire->ire_testhidden) 11030 return; 11031 if (ire->ire_type & IRE_IF_CLONE) 11032 return; 11033 } 11034 11035 if ((re = kmem_zalloc(sizeof (*re), KM_NOSLEEP)) == NULL) 11036 return; 11037 11038 if ((attrp = ire->ire_gw_secattr) != NULL) { 11039 mutex_enter(&attrp->igsa_lock); 11040 if ((gc = attrp->igsa_gc) != NULL) { 11041 gcgrp = gc->gc_grp; 11042 ASSERT(gcgrp != NULL); 11043 rw_enter(&gcgrp->gcgrp_rwlock, RW_READER); 11044 } 11045 mutex_exit(&attrp->igsa_lock); 11046 } 11047 /* 11048 * Return all IRE types for route table... let caller pick and choose 11049 */ 11050 re->ipv6RouteDest = ire->ire_addr_v6; 11051 re->ipv6RoutePfxLength = ip_mask_to_plen_v6(&ire->ire_mask_v6); 11052 re->ipv6RouteIndex = 0; /* Unique when multiple with same dest/plen */ 11053 re->ipv6RouteIfIndex.o_length = 0; 11054 ill = ire->ire_ill; 11055 if (ill != NULL) { 11056 ill_get_name(ill, re->ipv6RouteIfIndex.o_bytes, OCTET_LENGTH); 11057 re->ipv6RouteIfIndex.o_length = 11058 mi_strlen(re->ipv6RouteIfIndex.o_bytes); 11059 } 11060 11061 ASSERT(!(ire->ire_type & IRE_BROADCAST)); 11062 11063 mutex_enter(&ire->ire_lock); 11064 re->ipv6RouteNextHop = ire->ire_gateway_addr_v6; 11065 mutex_exit(&ire->ire_lock); 11066 11067 /* remote(4), local(3), or discard(2) */ 11068 if (ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) 11069 re->ipv6RouteType = 2; 11070 else if (ire->ire_type & IRE_ONLINK) 11071 re->ipv6RouteType = 3; 11072 else 11073 re->ipv6RouteType = 4; 11074 11075 re->ipv6RouteProtocol = -1; 11076 re->ipv6RoutePolicy = 0; 11077 re->ipv6RouteAge = gethrestime_sec() - ire->ire_create_time; 11078 re->ipv6RouteNextHopRDI = 0; 11079 re->ipv6RouteWeight = 0; 11080 re->ipv6RouteMetric = 0; 11081 re->ipv6RouteInfo.re_max_frag = ire->ire_metrics.iulp_mtu; 11082 if (ire->ire_ill != NULL && re->ipv6RouteInfo.re_max_frag == 0) 11083 re->ipv6RouteInfo.re_max_frag = ire->ire_ill->ill_mtu; 11084 11085 re->ipv6RouteInfo.re_frag_flag = 0; 11086 re->ipv6RouteInfo.re_rtt = 0; 11087 re->ipv6RouteInfo.re_src_addr = ipv6_all_zeros; 11088 re->ipv6RouteInfo.re_obpkt = ire->ire_ob_pkt_count; 11089 re->ipv6RouteInfo.re_ibpkt = ire->ire_ib_pkt_count; 11090 re->ipv6RouteInfo.re_ref = ire->ire_refcnt; 11091 re->ipv6RouteInfo.re_flags = ire->ire_flags; 11092 11093 /* Add the IRE_IF_CLONE's counters to their parent IRE_INTERFACE */ 11094 if (ire->ire_type & IRE_INTERFACE) { 11095 ire_t *child; 11096 11097 rw_enter(&ipst->ips_ire_dep_lock, RW_READER); 11098 child = ire->ire_dep_children; 11099 while (child != NULL) { 11100 re->ipv6RouteInfo.re_obpkt += child->ire_ob_pkt_count; 11101 re->ipv6RouteInfo.re_ibpkt += child->ire_ib_pkt_count; 11102 child = child->ire_dep_sib_next; 11103 } 11104 rw_exit(&ipst->ips_ire_dep_lock); 11105 } 11106 if (ire->ire_flags & RTF_DYNAMIC) { 11107 re->ipv6RouteInfo.re_ire_type = IRE_HOST_REDIRECT; 11108 } else { 11109 re->ipv6RouteInfo.re_ire_type = ire->ire_type; 11110 } 11111 11112 if (!snmp_append_data2(ird->ird_route.lp_head, &ird->ird_route.lp_tail, 11113 (char *)re, (int)sizeof (*re))) { 11114 ip1dbg(("ip_snmp_get2_v6: failed to allocate %u bytes\n", 11115 (uint_t)sizeof (*re))); 11116 } 11117 11118 if (gc != NULL) { 11119 iaes.iae_routeidx = ird->ird_idx; 11120 iaes.iae_doi = gc->gc_db->gcdb_doi; 11121 iaes.iae_slrange = gc->gc_db->gcdb_slrange; 11122 11123 if (!snmp_append_data2(ird->ird_attrs.lp_head, 11124 &ird->ird_attrs.lp_tail, (char *)&iaes, sizeof (iaes))) { 11125 ip1dbg(("ip_snmp_get2_v6: failed to allocate %u " 11126 "bytes\n", (uint_t)sizeof (iaes))); 11127 } 11128 } 11129 11130 /* bump route index for next pass */ 11131 ird->ird_idx++; 11132 11133 kmem_free(re, sizeof (*re)); 11134 if (gcgrp != NULL) 11135 rw_exit(&gcgrp->gcgrp_rwlock); 11136 } 11137 11138 /* 11139 * ncec_walk routine to create ipv6NetToMediaEntryTable 11140 */ 11141 static int 11142 ip_snmp_get2_v6_media(ncec_t *ncec, iproutedata_t *ird) 11143 { 11144 ill_t *ill; 11145 mib2_ipv6NetToMediaEntry_t ntme; 11146 11147 ill = ncec->ncec_ill; 11148 /* skip arpce entries, and loopback ncec entries */ 11149 if (ill->ill_isv6 == B_FALSE || ill->ill_net_type == IRE_LOOPBACK) 11150 return (0); 11151 /* 11152 * Neighbor cache entry attached to IRE with on-link 11153 * destination. 11154 * We report all IPMP groups on ncec_ill which is normally the upper. 11155 */ 11156 ntme.ipv6NetToMediaIfIndex = ill->ill_phyint->phyint_ifindex; 11157 ntme.ipv6NetToMediaNetAddress = ncec->ncec_addr; 11158 ntme.ipv6NetToMediaPhysAddress.o_length = ill->ill_phys_addr_length; 11159 if (ncec->ncec_lladdr != NULL) { 11160 bcopy(ncec->ncec_lladdr, ntme.ipv6NetToMediaPhysAddress.o_bytes, 11161 ntme.ipv6NetToMediaPhysAddress.o_length); 11162 } 11163 /* 11164 * Note: Returns ND_* states. Should be: 11165 * reachable(1), stale(2), delay(3), probe(4), 11166 * invalid(5), unknown(6) 11167 */ 11168 ntme.ipv6NetToMediaState = ncec->ncec_state; 11169 ntme.ipv6NetToMediaLastUpdated = 0; 11170 11171 /* other(1), dynamic(2), static(3), local(4) */ 11172 if (NCE_MYADDR(ncec)) { 11173 ntme.ipv6NetToMediaType = 4; 11174 } else if (ncec->ncec_flags & NCE_F_PUBLISH) { 11175 ntme.ipv6NetToMediaType = 1; /* proxy */ 11176 } else if (ncec->ncec_flags & NCE_F_STATIC) { 11177 ntme.ipv6NetToMediaType = 3; 11178 } else if (ncec->ncec_flags & (NCE_F_MCAST|NCE_F_BCAST)) { 11179 ntme.ipv6NetToMediaType = 1; 11180 } else { 11181 ntme.ipv6NetToMediaType = 2; 11182 } 11183 11184 if (!snmp_append_data2(ird->ird_netmedia.lp_head, 11185 &ird->ird_netmedia.lp_tail, (char *)&ntme, sizeof (ntme))) { 11186 ip1dbg(("ip_snmp_get2_v6_media: failed to allocate %u bytes\n", 11187 (uint_t)sizeof (ntme))); 11188 } 11189 return (0); 11190 } 11191 11192 int 11193 nce2ace(ncec_t *ncec) 11194 { 11195 int flags = 0; 11196 11197 if (NCE_ISREACHABLE(ncec)) 11198 flags |= ACE_F_RESOLVED; 11199 if (ncec->ncec_flags & NCE_F_AUTHORITY) 11200 flags |= ACE_F_AUTHORITY; 11201 if (ncec->ncec_flags & NCE_F_PUBLISH) 11202 flags |= ACE_F_PUBLISH; 11203 if ((ncec->ncec_flags & NCE_F_NONUD) != 0) 11204 flags |= ACE_F_PERMANENT; 11205 if (NCE_MYADDR(ncec)) 11206 flags |= (ACE_F_MYADDR | ACE_F_AUTHORITY); 11207 if (ncec->ncec_flags & NCE_F_UNVERIFIED) 11208 flags |= ACE_F_UNVERIFIED; 11209 if (ncec->ncec_flags & NCE_F_AUTHORITY) 11210 flags |= ACE_F_AUTHORITY; 11211 if (ncec->ncec_flags & NCE_F_DELAYED) 11212 flags |= ACE_F_DELAYED; 11213 return (flags); 11214 } 11215 11216 /* 11217 * ncec_walk routine to create ipNetToMediaEntryTable 11218 */ 11219 static int 11220 ip_snmp_get2_v4_media(ncec_t *ncec, iproutedata_t *ird) 11221 { 11222 ill_t *ill; 11223 mib2_ipNetToMediaEntry_t ntme; 11224 const char *name = "unknown"; 11225 ipaddr_t ncec_addr; 11226 11227 ill = ncec->ncec_ill; 11228 if (ill->ill_isv6 || (ncec->ncec_flags & NCE_F_BCAST) || 11229 ill->ill_net_type == IRE_LOOPBACK) 11230 return (0); 11231 11232 /* We report all IPMP groups on ncec_ill which is normally the upper. */ 11233 name = ill->ill_name; 11234 /* Based on RFC 4293: other(1), inval(2), dyn(3), stat(4) */ 11235 if (NCE_MYADDR(ncec)) { 11236 ntme.ipNetToMediaType = 4; 11237 } else if (ncec->ncec_flags & (NCE_F_MCAST|NCE_F_BCAST|NCE_F_PUBLISH)) { 11238 ntme.ipNetToMediaType = 1; 11239 } else { 11240 ntme.ipNetToMediaType = 3; 11241 } 11242 ntme.ipNetToMediaIfIndex.o_length = MIN(OCTET_LENGTH, strlen(name)); 11243 bcopy(name, ntme.ipNetToMediaIfIndex.o_bytes, 11244 ntme.ipNetToMediaIfIndex.o_length); 11245 11246 IN6_V4MAPPED_TO_IPADDR(&ncec->ncec_addr, ncec_addr); 11247 bcopy(&ncec_addr, &ntme.ipNetToMediaNetAddress, sizeof (ncec_addr)); 11248 11249 ntme.ipNetToMediaInfo.ntm_mask.o_length = sizeof (ipaddr_t); 11250 ncec_addr = INADDR_BROADCAST; 11251 bcopy(&ncec_addr, ntme.ipNetToMediaInfo.ntm_mask.o_bytes, 11252 sizeof (ncec_addr)); 11253 /* 11254 * map all the flags to the ACE counterpart. 11255 */ 11256 ntme.ipNetToMediaInfo.ntm_flags = nce2ace(ncec); 11257 11258 ntme.ipNetToMediaPhysAddress.o_length = 11259 MIN(OCTET_LENGTH, ill->ill_phys_addr_length); 11260 11261 if (!NCE_ISREACHABLE(ncec)) 11262 ntme.ipNetToMediaPhysAddress.o_length = 0; 11263 else { 11264 if (ncec->ncec_lladdr != NULL) { 11265 bcopy(ncec->ncec_lladdr, 11266 ntme.ipNetToMediaPhysAddress.o_bytes, 11267 ntme.ipNetToMediaPhysAddress.o_length); 11268 } 11269 } 11270 11271 if (!snmp_append_data2(ird->ird_netmedia.lp_head, 11272 &ird->ird_netmedia.lp_tail, (char *)&ntme, sizeof (ntme))) { 11273 ip1dbg(("ip_snmp_get2_v4_media: failed to allocate %u bytes\n", 11274 (uint_t)sizeof (ntme))); 11275 } 11276 return (0); 11277 } 11278 11279 /* 11280 * return (0) if invalid set request, 1 otherwise, including non-tcp requests 11281 */ 11282 /* ARGSUSED */ 11283 int 11284 ip_snmp_set(queue_t *q, int level, int name, uchar_t *ptr, int len) 11285 { 11286 switch (level) { 11287 case MIB2_IP: 11288 case MIB2_ICMP: 11289 switch (name) { 11290 default: 11291 break; 11292 } 11293 return (1); 11294 default: 11295 return (1); 11296 } 11297 } 11298 11299 /* 11300 * When there exists both a 64- and 32-bit counter of a particular type 11301 * (i.e., InReceives), only the 64-bit counters are added. 11302 */ 11303 void 11304 ip_mib2_add_ip_stats(mib2_ipIfStatsEntry_t *o1, mib2_ipIfStatsEntry_t *o2) 11305 { 11306 UPDATE_MIB(o1, ipIfStatsInHdrErrors, o2->ipIfStatsInHdrErrors); 11307 UPDATE_MIB(o1, ipIfStatsInTooBigErrors, o2->ipIfStatsInTooBigErrors); 11308 UPDATE_MIB(o1, ipIfStatsInNoRoutes, o2->ipIfStatsInNoRoutes); 11309 UPDATE_MIB(o1, ipIfStatsInAddrErrors, o2->ipIfStatsInAddrErrors); 11310 UPDATE_MIB(o1, ipIfStatsInUnknownProtos, o2->ipIfStatsInUnknownProtos); 11311 UPDATE_MIB(o1, ipIfStatsInTruncatedPkts, o2->ipIfStatsInTruncatedPkts); 11312 UPDATE_MIB(o1, ipIfStatsInDiscards, o2->ipIfStatsInDiscards); 11313 UPDATE_MIB(o1, ipIfStatsOutDiscards, o2->ipIfStatsOutDiscards); 11314 UPDATE_MIB(o1, ipIfStatsOutFragOKs, o2->ipIfStatsOutFragOKs); 11315 UPDATE_MIB(o1, ipIfStatsOutFragFails, o2->ipIfStatsOutFragFails); 11316 UPDATE_MIB(o1, ipIfStatsOutFragCreates, o2->ipIfStatsOutFragCreates); 11317 UPDATE_MIB(o1, ipIfStatsReasmReqds, o2->ipIfStatsReasmReqds); 11318 UPDATE_MIB(o1, ipIfStatsReasmOKs, o2->ipIfStatsReasmOKs); 11319 UPDATE_MIB(o1, ipIfStatsReasmFails, o2->ipIfStatsReasmFails); 11320 UPDATE_MIB(o1, ipIfStatsOutNoRoutes, o2->ipIfStatsOutNoRoutes); 11321 UPDATE_MIB(o1, ipIfStatsReasmDuplicates, o2->ipIfStatsReasmDuplicates); 11322 UPDATE_MIB(o1, ipIfStatsReasmPartDups, o2->ipIfStatsReasmPartDups); 11323 UPDATE_MIB(o1, ipIfStatsForwProhibits, o2->ipIfStatsForwProhibits); 11324 UPDATE_MIB(o1, udpInCksumErrs, o2->udpInCksumErrs); 11325 UPDATE_MIB(o1, udpInOverflows, o2->udpInOverflows); 11326 UPDATE_MIB(o1, rawipInOverflows, o2->rawipInOverflows); 11327 UPDATE_MIB(o1, ipIfStatsInWrongIPVersion, 11328 o2->ipIfStatsInWrongIPVersion); 11329 UPDATE_MIB(o1, ipIfStatsOutWrongIPVersion, 11330 o2->ipIfStatsInWrongIPVersion); 11331 UPDATE_MIB(o1, ipIfStatsOutSwitchIPVersion, 11332 o2->ipIfStatsOutSwitchIPVersion); 11333 UPDATE_MIB(o1, ipIfStatsHCInReceives, o2->ipIfStatsHCInReceives); 11334 UPDATE_MIB(o1, ipIfStatsHCInOctets, o2->ipIfStatsHCInOctets); 11335 UPDATE_MIB(o1, ipIfStatsHCInForwDatagrams, 11336 o2->ipIfStatsHCInForwDatagrams); 11337 UPDATE_MIB(o1, ipIfStatsHCInDelivers, o2->ipIfStatsHCInDelivers); 11338 UPDATE_MIB(o1, ipIfStatsHCOutRequests, o2->ipIfStatsHCOutRequests); 11339 UPDATE_MIB(o1, ipIfStatsHCOutForwDatagrams, 11340 o2->ipIfStatsHCOutForwDatagrams); 11341 UPDATE_MIB(o1, ipIfStatsOutFragReqds, o2->ipIfStatsOutFragReqds); 11342 UPDATE_MIB(o1, ipIfStatsHCOutTransmits, o2->ipIfStatsHCOutTransmits); 11343 UPDATE_MIB(o1, ipIfStatsHCOutOctets, o2->ipIfStatsHCOutOctets); 11344 UPDATE_MIB(o1, ipIfStatsHCInMcastPkts, o2->ipIfStatsHCInMcastPkts); 11345 UPDATE_MIB(o1, ipIfStatsHCInMcastOctets, o2->ipIfStatsHCInMcastOctets); 11346 UPDATE_MIB(o1, ipIfStatsHCOutMcastPkts, o2->ipIfStatsHCOutMcastPkts); 11347 UPDATE_MIB(o1, ipIfStatsHCOutMcastOctets, 11348 o2->ipIfStatsHCOutMcastOctets); 11349 UPDATE_MIB(o1, ipIfStatsHCInBcastPkts, o2->ipIfStatsHCInBcastPkts); 11350 UPDATE_MIB(o1, ipIfStatsHCOutBcastPkts, o2->ipIfStatsHCOutBcastPkts); 11351 UPDATE_MIB(o1, ipsecInSucceeded, o2->ipsecInSucceeded); 11352 UPDATE_MIB(o1, ipsecInFailed, o2->ipsecInFailed); 11353 UPDATE_MIB(o1, ipInCksumErrs, o2->ipInCksumErrs); 11354 UPDATE_MIB(o1, tcpInErrs, o2->tcpInErrs); 11355 UPDATE_MIB(o1, udpNoPorts, o2->udpNoPorts); 11356 } 11357 11358 void 11359 ip_mib2_add_icmp6_stats(mib2_ipv6IfIcmpEntry_t *o1, mib2_ipv6IfIcmpEntry_t *o2) 11360 { 11361 UPDATE_MIB(o1, ipv6IfIcmpInMsgs, o2->ipv6IfIcmpInMsgs); 11362 UPDATE_MIB(o1, ipv6IfIcmpInErrors, o2->ipv6IfIcmpInErrors); 11363 UPDATE_MIB(o1, ipv6IfIcmpInDestUnreachs, o2->ipv6IfIcmpInDestUnreachs); 11364 UPDATE_MIB(o1, ipv6IfIcmpInAdminProhibs, o2->ipv6IfIcmpInAdminProhibs); 11365 UPDATE_MIB(o1, ipv6IfIcmpInTimeExcds, o2->ipv6IfIcmpInTimeExcds); 11366 UPDATE_MIB(o1, ipv6IfIcmpInParmProblems, o2->ipv6IfIcmpInParmProblems); 11367 UPDATE_MIB(o1, ipv6IfIcmpInPktTooBigs, o2->ipv6IfIcmpInPktTooBigs); 11368 UPDATE_MIB(o1, ipv6IfIcmpInEchos, o2->ipv6IfIcmpInEchos); 11369 UPDATE_MIB(o1, ipv6IfIcmpInEchoReplies, o2->ipv6IfIcmpInEchoReplies); 11370 UPDATE_MIB(o1, ipv6IfIcmpInRouterSolicits, 11371 o2->ipv6IfIcmpInRouterSolicits); 11372 UPDATE_MIB(o1, ipv6IfIcmpInRouterAdvertisements, 11373 o2->ipv6IfIcmpInRouterAdvertisements); 11374 UPDATE_MIB(o1, ipv6IfIcmpInNeighborSolicits, 11375 o2->ipv6IfIcmpInNeighborSolicits); 11376 UPDATE_MIB(o1, ipv6IfIcmpInNeighborAdvertisements, 11377 o2->ipv6IfIcmpInNeighborAdvertisements); 11378 UPDATE_MIB(o1, ipv6IfIcmpInRedirects, o2->ipv6IfIcmpInRedirects); 11379 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembQueries, 11380 o2->ipv6IfIcmpInGroupMembQueries); 11381 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembResponses, 11382 o2->ipv6IfIcmpInGroupMembResponses); 11383 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembReductions, 11384 o2->ipv6IfIcmpInGroupMembReductions); 11385 UPDATE_MIB(o1, ipv6IfIcmpOutMsgs, o2->ipv6IfIcmpOutMsgs); 11386 UPDATE_MIB(o1, ipv6IfIcmpOutErrors, o2->ipv6IfIcmpOutErrors); 11387 UPDATE_MIB(o1, ipv6IfIcmpOutDestUnreachs, 11388 o2->ipv6IfIcmpOutDestUnreachs); 11389 UPDATE_MIB(o1, ipv6IfIcmpOutAdminProhibs, 11390 o2->ipv6IfIcmpOutAdminProhibs); 11391 UPDATE_MIB(o1, ipv6IfIcmpOutTimeExcds, o2->ipv6IfIcmpOutTimeExcds); 11392 UPDATE_MIB(o1, ipv6IfIcmpOutParmProblems, 11393 o2->ipv6IfIcmpOutParmProblems); 11394 UPDATE_MIB(o1, ipv6IfIcmpOutPktTooBigs, o2->ipv6IfIcmpOutPktTooBigs); 11395 UPDATE_MIB(o1, ipv6IfIcmpOutEchos, o2->ipv6IfIcmpOutEchos); 11396 UPDATE_MIB(o1, ipv6IfIcmpOutEchoReplies, o2->ipv6IfIcmpOutEchoReplies); 11397 UPDATE_MIB(o1, ipv6IfIcmpOutRouterSolicits, 11398 o2->ipv6IfIcmpOutRouterSolicits); 11399 UPDATE_MIB(o1, ipv6IfIcmpOutRouterAdvertisements, 11400 o2->ipv6IfIcmpOutRouterAdvertisements); 11401 UPDATE_MIB(o1, ipv6IfIcmpOutNeighborSolicits, 11402 o2->ipv6IfIcmpOutNeighborSolicits); 11403 UPDATE_MIB(o1, ipv6IfIcmpOutNeighborAdvertisements, 11404 o2->ipv6IfIcmpOutNeighborAdvertisements); 11405 UPDATE_MIB(o1, ipv6IfIcmpOutRedirects, o2->ipv6IfIcmpOutRedirects); 11406 UPDATE_MIB(o1, ipv6IfIcmpOutGroupMembQueries, 11407 o2->ipv6IfIcmpOutGroupMembQueries); 11408 UPDATE_MIB(o1, ipv6IfIcmpOutGroupMembResponses, 11409 o2->ipv6IfIcmpOutGroupMembResponses); 11410 UPDATE_MIB(o1, ipv6IfIcmpOutGroupMembReductions, 11411 o2->ipv6IfIcmpOutGroupMembReductions); 11412 UPDATE_MIB(o1, ipv6IfIcmpInOverflows, o2->ipv6IfIcmpInOverflows); 11413 UPDATE_MIB(o1, ipv6IfIcmpBadHoplimit, o2->ipv6IfIcmpBadHoplimit); 11414 UPDATE_MIB(o1, ipv6IfIcmpInBadNeighborAdvertisements, 11415 o2->ipv6IfIcmpInBadNeighborAdvertisements); 11416 UPDATE_MIB(o1, ipv6IfIcmpInBadNeighborSolicitations, 11417 o2->ipv6IfIcmpInBadNeighborSolicitations); 11418 UPDATE_MIB(o1, ipv6IfIcmpInBadRedirects, o2->ipv6IfIcmpInBadRedirects); 11419 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembTotal, 11420 o2->ipv6IfIcmpInGroupMembTotal); 11421 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembBadQueries, 11422 o2->ipv6IfIcmpInGroupMembBadQueries); 11423 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembBadReports, 11424 o2->ipv6IfIcmpInGroupMembBadReports); 11425 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembOurReports, 11426 o2->ipv6IfIcmpInGroupMembOurReports); 11427 } 11428 11429 /* 11430 * Called before the options are updated to check if this packet will 11431 * be source routed from here. 11432 * This routine assumes that the options are well formed i.e. that they 11433 * have already been checked. 11434 */ 11435 boolean_t 11436 ip_source_routed(ipha_t *ipha, ip_stack_t *ipst) 11437 { 11438 ipoptp_t opts; 11439 uchar_t *opt; 11440 uint8_t optval; 11441 uint8_t optlen; 11442 ipaddr_t dst; 11443 11444 if (IS_SIMPLE_IPH(ipha)) { 11445 ip2dbg(("not source routed\n")); 11446 return (B_FALSE); 11447 } 11448 dst = ipha->ipha_dst; 11449 for (optval = ipoptp_first(&opts, ipha); 11450 optval != IPOPT_EOL; 11451 optval = ipoptp_next(&opts)) { 11452 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 11453 opt = opts.ipoptp_cur; 11454 optlen = opts.ipoptp_len; 11455 ip2dbg(("ip_source_routed: opt %d, len %d\n", 11456 optval, optlen)); 11457 switch (optval) { 11458 uint32_t off; 11459 case IPOPT_SSRR: 11460 case IPOPT_LSRR: 11461 /* 11462 * If dst is one of our addresses and there are some 11463 * entries left in the source route return (true). 11464 */ 11465 if (ip_type_v4(dst, ipst) != IRE_LOCAL) { 11466 ip2dbg(("ip_source_routed: not next" 11467 " source route 0x%x\n", 11468 ntohl(dst))); 11469 return (B_FALSE); 11470 } 11471 off = opt[IPOPT_OFFSET]; 11472 off--; 11473 if (optlen < IP_ADDR_LEN || 11474 off > optlen - IP_ADDR_LEN) { 11475 /* End of source route */ 11476 ip1dbg(("ip_source_routed: end of SR\n")); 11477 return (B_FALSE); 11478 } 11479 return (B_TRUE); 11480 } 11481 } 11482 ip2dbg(("not source routed\n")); 11483 return (B_FALSE); 11484 } 11485 11486 /* 11487 * ip_unbind is called by the transports to remove a conn from 11488 * the fanout table. 11489 */ 11490 void 11491 ip_unbind(conn_t *connp) 11492 { 11493 11494 ASSERT(!MUTEX_HELD(&connp->conn_lock)); 11495 11496 if (is_system_labeled() && connp->conn_anon_port) { 11497 (void) tsol_mlp_anon(crgetzone(connp->conn_cred), 11498 connp->conn_mlp_type, connp->conn_proto, 11499 ntohs(connp->conn_lport), B_FALSE); 11500 connp->conn_anon_port = 0; 11501 } 11502 connp->conn_mlp_type = mlptSingle; 11503 11504 ipcl_hash_remove(connp); 11505 } 11506 11507 /* 11508 * Used for deciding the MSS size for the upper layer. Thus 11509 * we need to check the outbound policy values in the conn. 11510 */ 11511 int 11512 conn_ipsec_length(conn_t *connp) 11513 { 11514 ipsec_latch_t *ipl; 11515 11516 ipl = connp->conn_latch; 11517 if (ipl == NULL) 11518 return (0); 11519 11520 if (connp->conn_ixa->ixa_ipsec_policy == NULL) 11521 return (0); 11522 11523 return (connp->conn_ixa->ixa_ipsec_policy->ipsp_act->ipa_ovhd); 11524 } 11525 11526 /* 11527 * Returns an estimate of the IPsec headers size. This is used if 11528 * we don't want to call into IPsec to get the exact size. 11529 */ 11530 int 11531 ipsec_out_extra_length(ip_xmit_attr_t *ixa) 11532 { 11533 ipsec_action_t *a; 11534 11535 if (!(ixa->ixa_flags & IXAF_IPSEC_SECURE)) 11536 return (0); 11537 11538 a = ixa->ixa_ipsec_action; 11539 if (a == NULL) { 11540 ASSERT(ixa->ixa_ipsec_policy != NULL); 11541 a = ixa->ixa_ipsec_policy->ipsp_act; 11542 } 11543 ASSERT(a != NULL); 11544 11545 return (a->ipa_ovhd); 11546 } 11547 11548 /* 11549 * If there are any source route options, return the true final 11550 * destination. Otherwise, return the destination. 11551 */ 11552 ipaddr_t 11553 ip_get_dst(ipha_t *ipha) 11554 { 11555 ipoptp_t opts; 11556 uchar_t *opt; 11557 uint8_t optval; 11558 uint8_t optlen; 11559 ipaddr_t dst; 11560 uint32_t off; 11561 11562 dst = ipha->ipha_dst; 11563 11564 if (IS_SIMPLE_IPH(ipha)) 11565 return (dst); 11566 11567 for (optval = ipoptp_first(&opts, ipha); 11568 optval != IPOPT_EOL; 11569 optval = ipoptp_next(&opts)) { 11570 opt = opts.ipoptp_cur; 11571 optlen = opts.ipoptp_len; 11572 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 11573 switch (optval) { 11574 case IPOPT_SSRR: 11575 case IPOPT_LSRR: 11576 off = opt[IPOPT_OFFSET]; 11577 /* 11578 * If one of the conditions is true, it means 11579 * end of options and dst already has the right 11580 * value. 11581 */ 11582 if (!(optlen < IP_ADDR_LEN || off > optlen - 3)) { 11583 off = optlen - IP_ADDR_LEN; 11584 bcopy(&opt[off], &dst, IP_ADDR_LEN); 11585 } 11586 return (dst); 11587 default: 11588 break; 11589 } 11590 } 11591 11592 return (dst); 11593 } 11594 11595 /* 11596 * Outbound IP fragmentation routine. 11597 * Assumes the caller has checked whether or not fragmentation should 11598 * be allowed. Here we copy the DF bit from the header to all the generated 11599 * fragments. 11600 */ 11601 int 11602 ip_fragment_v4(mblk_t *mp_orig, nce_t *nce, iaflags_t ixaflags, 11603 uint_t pkt_len, uint32_t max_frag, uint32_t xmit_hint, zoneid_t szone, 11604 zoneid_t nolzid, pfirepostfrag_t postfragfn, uintptr_t *ixa_cookie) 11605 { 11606 int i1; 11607 int hdr_len; 11608 mblk_t *hdr_mp; 11609 ipha_t *ipha; 11610 int ip_data_end; 11611 int len; 11612 mblk_t *mp = mp_orig; 11613 int offset; 11614 ill_t *ill = nce->nce_ill; 11615 ip_stack_t *ipst = ill->ill_ipst; 11616 mblk_t *carve_mp; 11617 uint32_t frag_flag; 11618 uint_t priority = mp->b_band; 11619 int error = 0; 11620 11621 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragReqds); 11622 11623 if (pkt_len != msgdsize(mp)) { 11624 ip0dbg(("Packet length mismatch: %d, %ld\n", 11625 pkt_len, msgdsize(mp))); 11626 freemsg(mp); 11627 return (EINVAL); 11628 } 11629 11630 if (max_frag == 0) { 11631 ip1dbg(("ip_fragment_v4: max_frag is zero. Dropping packet\n")); 11632 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragFails); 11633 ip_drop_output("FragFails: zero max_frag", mp, ill); 11634 freemsg(mp); 11635 return (EINVAL); 11636 } 11637 11638 ASSERT(MBLKL(mp) >= sizeof (ipha_t)); 11639 ipha = (ipha_t *)mp->b_rptr; 11640 ASSERT(ntohs(ipha->ipha_length) == pkt_len); 11641 frag_flag = ntohs(ipha->ipha_fragment_offset_and_flags) & IPH_DF; 11642 11643 /* 11644 * Establish the starting offset. May not be zero if we are fragging 11645 * a fragment that is being forwarded. 11646 */ 11647 offset = ntohs(ipha->ipha_fragment_offset_and_flags) & IPH_OFFSET; 11648 11649 /* TODO why is this test needed? */ 11650 if (((max_frag - ntohs(ipha->ipha_length)) & ~7) < 8) { 11651 /* TODO: notify ulp somehow */ 11652 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragFails); 11653 ip_drop_output("FragFails: bad starting offset", mp, ill); 11654 freemsg(mp); 11655 return (EINVAL); 11656 } 11657 11658 hdr_len = IPH_HDR_LENGTH(ipha); 11659 ipha->ipha_hdr_checksum = 0; 11660 11661 /* 11662 * Establish the number of bytes maximum per frag, after putting 11663 * in the header. 11664 */ 11665 len = (max_frag - hdr_len) & ~7; 11666 11667 /* Get a copy of the header for the trailing frags */ 11668 hdr_mp = ip_fragment_copyhdr((uchar_t *)ipha, hdr_len, offset, ipst, 11669 mp); 11670 if (hdr_mp == NULL) { 11671 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragFails); 11672 ip_drop_output("FragFails: no hdr_mp", mp, ill); 11673 freemsg(mp); 11674 return (ENOBUFS); 11675 } 11676 11677 /* Store the starting offset, with the MoreFrags flag. */ 11678 i1 = offset | IPH_MF | frag_flag; 11679 ipha->ipha_fragment_offset_and_flags = htons((uint16_t)i1); 11680 11681 /* Establish the ending byte offset, based on the starting offset. */ 11682 offset <<= 3; 11683 ip_data_end = offset + ntohs(ipha->ipha_length) - hdr_len; 11684 11685 /* Store the length of the first fragment in the IP header. */ 11686 i1 = len + hdr_len; 11687 ASSERT(i1 <= IP_MAXPACKET); 11688 ipha->ipha_length = htons((uint16_t)i1); 11689 11690 /* 11691 * Compute the IP header checksum for the first frag. We have to 11692 * watch out that we stop at the end of the header. 11693 */ 11694 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 11695 11696 /* 11697 * Now carve off the first frag. Note that this will include the 11698 * original IP header. 11699 */ 11700 if (!(mp = ip_carve_mp(&mp_orig, i1))) { 11701 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragFails); 11702 ip_drop_output("FragFails: could not carve mp", mp_orig, ill); 11703 freeb(hdr_mp); 11704 freemsg(mp_orig); 11705 return (ENOBUFS); 11706 } 11707 11708 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragCreates); 11709 11710 error = postfragfn(mp, nce, ixaflags, i1, xmit_hint, szone, nolzid, 11711 ixa_cookie); 11712 if (error != 0 && error != EWOULDBLOCK) { 11713 /* No point in sending the other fragments */ 11714 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragFails); 11715 ip_drop_output("FragFails: postfragfn failed", mp_orig, ill); 11716 freeb(hdr_mp); 11717 freemsg(mp_orig); 11718 return (error); 11719 } 11720 11721 /* No need to redo state machine in loop */ 11722 ixaflags &= ~IXAF_REACH_CONF; 11723 11724 /* Advance the offset to the second frag starting point. */ 11725 offset += len; 11726 /* 11727 * Update hdr_len from the copied header - there might be less options 11728 * in the later fragments. 11729 */ 11730 hdr_len = IPH_HDR_LENGTH(hdr_mp->b_rptr); 11731 /* Loop until done. */ 11732 for (;;) { 11733 uint16_t offset_and_flags; 11734 uint16_t ip_len; 11735 11736 if (ip_data_end - offset > len) { 11737 /* 11738 * Carve off the appropriate amount from the original 11739 * datagram. 11740 */ 11741 if (!(carve_mp = ip_carve_mp(&mp_orig, len))) { 11742 mp = NULL; 11743 break; 11744 } 11745 /* 11746 * More frags after this one. Get another copy 11747 * of the header. 11748 */ 11749 if (carve_mp->b_datap->db_ref == 1 && 11750 hdr_mp->b_wptr - hdr_mp->b_rptr < 11751 carve_mp->b_rptr - carve_mp->b_datap->db_base) { 11752 /* Inline IP header */ 11753 carve_mp->b_rptr -= hdr_mp->b_wptr - 11754 hdr_mp->b_rptr; 11755 bcopy(hdr_mp->b_rptr, carve_mp->b_rptr, 11756 hdr_mp->b_wptr - hdr_mp->b_rptr); 11757 mp = carve_mp; 11758 } else { 11759 if (!(mp = copyb(hdr_mp))) { 11760 freemsg(carve_mp); 11761 break; 11762 } 11763 /* Get priority marking, if any. */ 11764 mp->b_band = priority; 11765 mp->b_cont = carve_mp; 11766 } 11767 ipha = (ipha_t *)mp->b_rptr; 11768 offset_and_flags = IPH_MF; 11769 } else { 11770 /* 11771 * Last frag. Consume the header. Set len to 11772 * the length of this last piece. 11773 */ 11774 len = ip_data_end - offset; 11775 11776 /* 11777 * Carve off the appropriate amount from the original 11778 * datagram. 11779 */ 11780 if (!(carve_mp = ip_carve_mp(&mp_orig, len))) { 11781 mp = NULL; 11782 break; 11783 } 11784 if (carve_mp->b_datap->db_ref == 1 && 11785 hdr_mp->b_wptr - hdr_mp->b_rptr < 11786 carve_mp->b_rptr - carve_mp->b_datap->db_base) { 11787 /* Inline IP header */ 11788 carve_mp->b_rptr -= hdr_mp->b_wptr - 11789 hdr_mp->b_rptr; 11790 bcopy(hdr_mp->b_rptr, carve_mp->b_rptr, 11791 hdr_mp->b_wptr - hdr_mp->b_rptr); 11792 mp = carve_mp; 11793 freeb(hdr_mp); 11794 hdr_mp = mp; 11795 } else { 11796 mp = hdr_mp; 11797 /* Get priority marking, if any. */ 11798 mp->b_band = priority; 11799 mp->b_cont = carve_mp; 11800 } 11801 ipha = (ipha_t *)mp->b_rptr; 11802 /* A frag of a frag might have IPH_MF non-zero */ 11803 offset_and_flags = 11804 ntohs(ipha->ipha_fragment_offset_and_flags) & 11805 IPH_MF; 11806 } 11807 offset_and_flags |= (uint16_t)(offset >> 3); 11808 offset_and_flags |= (uint16_t)frag_flag; 11809 /* Store the offset and flags in the IP header. */ 11810 ipha->ipha_fragment_offset_and_flags = htons(offset_and_flags); 11811 11812 /* Store the length in the IP header. */ 11813 ip_len = (uint16_t)(len + hdr_len); 11814 ipha->ipha_length = htons(ip_len); 11815 11816 /* 11817 * Set the IP header checksum. Note that mp is just 11818 * the header, so this is easy to pass to ip_csum. 11819 */ 11820 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 11821 11822 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragCreates); 11823 11824 error = postfragfn(mp, nce, ixaflags, ip_len, xmit_hint, szone, 11825 nolzid, ixa_cookie); 11826 /* All done if we just consumed the hdr_mp. */ 11827 if (mp == hdr_mp) { 11828 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragOKs); 11829 return (error); 11830 } 11831 if (error != 0 && error != EWOULDBLOCK) { 11832 DTRACE_PROBE2(ip__xmit__frag__fail, ill_t *, ill, 11833 mblk_t *, hdr_mp); 11834 /* No point in sending the other fragments */ 11835 break; 11836 } 11837 11838 /* Otherwise, advance and loop. */ 11839 offset += len; 11840 } 11841 /* Clean up following allocation failure. */ 11842 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragFails); 11843 ip_drop_output("FragFails: loop ended", NULL, ill); 11844 if (mp != hdr_mp) 11845 freeb(hdr_mp); 11846 if (mp != mp_orig) 11847 freemsg(mp_orig); 11848 return (error); 11849 } 11850 11851 /* 11852 * Copy the header plus those options which have the copy bit set 11853 */ 11854 static mblk_t * 11855 ip_fragment_copyhdr(uchar_t *rptr, int hdr_len, int offset, ip_stack_t *ipst, 11856 mblk_t *src) 11857 { 11858 mblk_t *mp; 11859 uchar_t *up; 11860 11861 /* 11862 * Quick check if we need to look for options without the copy bit 11863 * set 11864 */ 11865 mp = allocb_tmpl(ipst->ips_ip_wroff_extra + hdr_len, src); 11866 if (!mp) 11867 return (mp); 11868 mp->b_rptr += ipst->ips_ip_wroff_extra; 11869 if (hdr_len == IP_SIMPLE_HDR_LENGTH || offset != 0) { 11870 bcopy(rptr, mp->b_rptr, hdr_len); 11871 mp->b_wptr += hdr_len + ipst->ips_ip_wroff_extra; 11872 return (mp); 11873 } 11874 up = mp->b_rptr; 11875 bcopy(rptr, up, IP_SIMPLE_HDR_LENGTH); 11876 up += IP_SIMPLE_HDR_LENGTH; 11877 rptr += IP_SIMPLE_HDR_LENGTH; 11878 hdr_len -= IP_SIMPLE_HDR_LENGTH; 11879 while (hdr_len > 0) { 11880 uint32_t optval; 11881 uint32_t optlen; 11882 11883 optval = *rptr; 11884 if (optval == IPOPT_EOL) 11885 break; 11886 if (optval == IPOPT_NOP) 11887 optlen = 1; 11888 else 11889 optlen = rptr[1]; 11890 if (optval & IPOPT_COPY) { 11891 bcopy(rptr, up, optlen); 11892 up += optlen; 11893 } 11894 rptr += optlen; 11895 hdr_len -= optlen; 11896 } 11897 /* 11898 * Make sure that we drop an even number of words by filling 11899 * with EOL to the next word boundary. 11900 */ 11901 for (hdr_len = up - (mp->b_rptr + IP_SIMPLE_HDR_LENGTH); 11902 hdr_len & 0x3; hdr_len++) 11903 *up++ = IPOPT_EOL; 11904 mp->b_wptr = up; 11905 /* Update header length */ 11906 mp->b_rptr[0] = (uint8_t)((IP_VERSION << 4) | ((up - mp->b_rptr) >> 2)); 11907 return (mp); 11908 } 11909 11910 /* 11911 * Update any source route, record route, or timestamp options when 11912 * sending a packet back to ourselves. 11913 * Check that we are at end of strict source route. 11914 * The options have been sanity checked by ip_output_options(). 11915 */ 11916 void 11917 ip_output_local_options(ipha_t *ipha, ip_stack_t *ipst) 11918 { 11919 ipoptp_t opts; 11920 uchar_t *opt; 11921 uint8_t optval; 11922 uint8_t optlen; 11923 ipaddr_t dst; 11924 uint32_t ts; 11925 timestruc_t now; 11926 11927 for (optval = ipoptp_first(&opts, ipha); 11928 optval != IPOPT_EOL; 11929 optval = ipoptp_next(&opts)) { 11930 opt = opts.ipoptp_cur; 11931 optlen = opts.ipoptp_len; 11932 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 11933 switch (optval) { 11934 uint32_t off; 11935 case IPOPT_SSRR: 11936 case IPOPT_LSRR: 11937 off = opt[IPOPT_OFFSET]; 11938 off--; 11939 if (optlen < IP_ADDR_LEN || 11940 off > optlen - IP_ADDR_LEN) { 11941 /* End of source route */ 11942 break; 11943 } 11944 /* 11945 * This will only happen if two consecutive entries 11946 * in the source route contains our address or if 11947 * it is a packet with a loose source route which 11948 * reaches us before consuming the whole source route 11949 */ 11950 11951 if (optval == IPOPT_SSRR) { 11952 return; 11953 } 11954 /* 11955 * Hack: instead of dropping the packet truncate the 11956 * source route to what has been used by filling the 11957 * rest with IPOPT_NOP. 11958 */ 11959 opt[IPOPT_OLEN] = (uint8_t)off; 11960 while (off < optlen) { 11961 opt[off++] = IPOPT_NOP; 11962 } 11963 break; 11964 case IPOPT_RR: 11965 off = opt[IPOPT_OFFSET]; 11966 off--; 11967 if (optlen < IP_ADDR_LEN || 11968 off > optlen - IP_ADDR_LEN) { 11969 /* No more room - ignore */ 11970 ip1dbg(( 11971 "ip_output_local_options: end of RR\n")); 11972 break; 11973 } 11974 dst = htonl(INADDR_LOOPBACK); 11975 bcopy(&dst, (char *)opt + off, IP_ADDR_LEN); 11976 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 11977 break; 11978 case IPOPT_TS: 11979 /* Insert timestamp if there is romm */ 11980 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 11981 case IPOPT_TS_TSONLY: 11982 off = IPOPT_TS_TIMELEN; 11983 break; 11984 case IPOPT_TS_PRESPEC: 11985 case IPOPT_TS_PRESPEC_RFC791: 11986 /* Verify that the address matched */ 11987 off = opt[IPOPT_OFFSET] - 1; 11988 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 11989 if (ip_type_v4(dst, ipst) != IRE_LOCAL) { 11990 /* Not for us */ 11991 break; 11992 } 11993 /* FALLTHRU */ 11994 case IPOPT_TS_TSANDADDR: 11995 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 11996 break; 11997 default: 11998 /* 11999 * ip_*put_options should have already 12000 * dropped this packet. 12001 */ 12002 cmn_err(CE_PANIC, "ip_output_local_options: " 12003 "unknown IT - bug in ip_output_options?\n"); 12004 return; /* Keep "lint" happy */ 12005 } 12006 if (opt[IPOPT_OFFSET] - 1 + off > optlen) { 12007 /* Increase overflow counter */ 12008 off = (opt[IPOPT_POS_OV_FLG] >> 4) + 1; 12009 opt[IPOPT_POS_OV_FLG] = (uint8_t) 12010 (opt[IPOPT_POS_OV_FLG] & 0x0F) | 12011 (off << 4); 12012 break; 12013 } 12014 off = opt[IPOPT_OFFSET] - 1; 12015 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 12016 case IPOPT_TS_PRESPEC: 12017 case IPOPT_TS_PRESPEC_RFC791: 12018 case IPOPT_TS_TSANDADDR: 12019 dst = htonl(INADDR_LOOPBACK); 12020 bcopy(&dst, (char *)opt + off, IP_ADDR_LEN); 12021 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 12022 /* FALLTHRU */ 12023 case IPOPT_TS_TSONLY: 12024 off = opt[IPOPT_OFFSET] - 1; 12025 /* Compute # of milliseconds since midnight */ 12026 gethrestime(&now); 12027 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 + 12028 NSEC2MSEC(now.tv_nsec); 12029 bcopy(&ts, (char *)opt + off, IPOPT_TS_TIMELEN); 12030 opt[IPOPT_OFFSET] += IPOPT_TS_TIMELEN; 12031 break; 12032 } 12033 break; 12034 } 12035 } 12036 } 12037 12038 /* 12039 * Prepend an M_DATA fastpath header, and if none present prepend a 12040 * DL_UNITDATA_REQ. Frees the mblk on failure. 12041 * 12042 * nce_dlur_mp and nce_fp_mp can not disappear once they have been set. 12043 * If there is a change to them, the nce will be deleted (condemned) and 12044 * a new nce_t will be created when packets are sent. Thus we need no locks 12045 * to access those fields. 12046 * 12047 * We preserve b_band to support IPQoS. If a DL_UNITDATA_REQ is prepended 12048 * we place b_band in dl_priority.dl_max. 12049 */ 12050 static mblk_t * 12051 ip_xmit_attach_llhdr(mblk_t *mp, nce_t *nce) 12052 { 12053 uint_t hlen; 12054 mblk_t *mp1; 12055 uint_t priority; 12056 uchar_t *rptr; 12057 12058 rptr = mp->b_rptr; 12059 12060 ASSERT(DB_TYPE(mp) == M_DATA); 12061 priority = mp->b_band; 12062 12063 ASSERT(nce != NULL); 12064 if ((mp1 = nce->nce_fp_mp) != NULL) { 12065 hlen = MBLKL(mp1); 12066 /* 12067 * Check if we have enough room to prepend fastpath 12068 * header 12069 */ 12070 if (hlen != 0 && (rptr - mp->b_datap->db_base) >= hlen) { 12071 rptr -= hlen; 12072 bcopy(mp1->b_rptr, rptr, hlen); 12073 /* 12074 * Set the b_rptr to the start of the link layer 12075 * header 12076 */ 12077 mp->b_rptr = rptr; 12078 return (mp); 12079 } 12080 mp1 = copyb(mp1); 12081 if (mp1 == NULL) { 12082 ill_t *ill = nce->nce_ill; 12083 12084 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 12085 ip_drop_output("ipIfStatsOutDiscards", mp, ill); 12086 freemsg(mp); 12087 return (NULL); 12088 } 12089 mp1->b_band = priority; 12090 mp1->b_cont = mp; 12091 DB_CKSUMSTART(mp1) = DB_CKSUMSTART(mp); 12092 DB_CKSUMSTUFF(mp1) = DB_CKSUMSTUFF(mp); 12093 DB_CKSUMEND(mp1) = DB_CKSUMEND(mp); 12094 DB_CKSUMFLAGS(mp1) = DB_CKSUMFLAGS(mp); 12095 DB_LSOMSS(mp1) = DB_LSOMSS(mp); 12096 DTRACE_PROBE1(ip__xmit__copyb, (mblk_t *), mp1); 12097 /* 12098 * XXX disable ICK_VALID and compute checksum 12099 * here; can happen if nce_fp_mp changes and 12100 * it can't be copied now due to insufficient 12101 * space. (unlikely, fp mp can change, but it 12102 * does not increase in length) 12103 */ 12104 return (mp1); 12105 } 12106 mp1 = copyb(nce->nce_dlur_mp); 12107 12108 if (mp1 == NULL) { 12109 ill_t *ill = nce->nce_ill; 12110 12111 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 12112 ip_drop_output("ipIfStatsOutDiscards", mp, ill); 12113 freemsg(mp); 12114 return (NULL); 12115 } 12116 mp1->b_cont = mp; 12117 if (priority != 0) { 12118 mp1->b_band = priority; 12119 ((dl_unitdata_req_t *)(mp1->b_rptr))->dl_priority.dl_max = 12120 priority; 12121 } 12122 return (mp1); 12123 } 12124 12125 /* 12126 * Finish the outbound IPsec processing. This function is called from 12127 * ipsec_out_process() if the IPsec packet was processed 12128 * synchronously, or from {ah,esp}_kcf_callback_outbound() if it was processed 12129 * asynchronously. 12130 * 12131 * This is common to IPv4 and IPv6. 12132 */ 12133 int 12134 ip_output_post_ipsec(mblk_t *mp, ip_xmit_attr_t *ixa) 12135 { 12136 iaflags_t ixaflags = ixa->ixa_flags; 12137 uint_t pktlen; 12138 12139 12140 /* AH/ESP don't update ixa_pktlen when they modify the packet */ 12141 if (ixaflags & IXAF_IS_IPV4) { 12142 ipha_t *ipha = (ipha_t *)mp->b_rptr; 12143 12144 ASSERT(IPH_HDR_VERSION(ipha) == IPV4_VERSION); 12145 pktlen = ntohs(ipha->ipha_length); 12146 } else { 12147 ip6_t *ip6h = (ip6_t *)mp->b_rptr; 12148 12149 ASSERT(IPH_HDR_VERSION(mp->b_rptr) == IPV6_VERSION); 12150 pktlen = ntohs(ip6h->ip6_plen) + IPV6_HDR_LEN; 12151 } 12152 12153 /* 12154 * We release any hard reference on the SAs here to make 12155 * sure the SAs can be garbage collected. ipsr_sa has a soft reference 12156 * on the SAs. 12157 * If in the future we want the hard latching of the SAs in the 12158 * ip_xmit_attr_t then we should remove this. 12159 */ 12160 if (ixa->ixa_ipsec_esp_sa != NULL) { 12161 IPSA_REFRELE(ixa->ixa_ipsec_esp_sa); 12162 ixa->ixa_ipsec_esp_sa = NULL; 12163 } 12164 if (ixa->ixa_ipsec_ah_sa != NULL) { 12165 IPSA_REFRELE(ixa->ixa_ipsec_ah_sa); 12166 ixa->ixa_ipsec_ah_sa = NULL; 12167 } 12168 12169 /* Do we need to fragment? */ 12170 if ((ixa->ixa_flags & IXAF_IPV6_ADD_FRAGHDR) || 12171 pktlen > ixa->ixa_fragsize) { 12172 if (ixaflags & IXAF_IS_IPV4) { 12173 ASSERT(!(ixa->ixa_flags & IXAF_IPV6_ADD_FRAGHDR)); 12174 /* 12175 * We check for the DF case in ipsec_out_process 12176 * hence this only handles the non-DF case. 12177 */ 12178 return (ip_fragment_v4(mp, ixa->ixa_nce, ixa->ixa_flags, 12179 pktlen, ixa->ixa_fragsize, 12180 ixa->ixa_xmit_hint, ixa->ixa_zoneid, 12181 ixa->ixa_no_loop_zoneid, ixa->ixa_postfragfn, 12182 &ixa->ixa_cookie)); 12183 } else { 12184 mp = ip_fraghdr_add_v6(mp, ixa->ixa_ident, ixa); 12185 if (mp == NULL) { 12186 /* MIB and ip_drop_output already done */ 12187 return (ENOMEM); 12188 } 12189 pktlen += sizeof (ip6_frag_t); 12190 if (pktlen > ixa->ixa_fragsize) { 12191 return (ip_fragment_v6(mp, ixa->ixa_nce, 12192 ixa->ixa_flags, pktlen, 12193 ixa->ixa_fragsize, ixa->ixa_xmit_hint, 12194 ixa->ixa_zoneid, ixa->ixa_no_loop_zoneid, 12195 ixa->ixa_postfragfn, &ixa->ixa_cookie)); 12196 } 12197 } 12198 } 12199 return ((ixa->ixa_postfragfn)(mp, ixa->ixa_nce, ixa->ixa_flags, 12200 pktlen, ixa->ixa_xmit_hint, ixa->ixa_zoneid, 12201 ixa->ixa_no_loop_zoneid, NULL)); 12202 } 12203 12204 /* 12205 * Finish the inbound IPsec processing. This function is called from 12206 * ipsec_out_process() if the IPsec packet was processed 12207 * synchronously, or from {ah,esp}_kcf_callback_outbound() if it was processed 12208 * asynchronously. 12209 * 12210 * This is common to IPv4 and IPv6. 12211 */ 12212 void 12213 ip_input_post_ipsec(mblk_t *mp, ip_recv_attr_t *ira) 12214 { 12215 iaflags_t iraflags = ira->ira_flags; 12216 12217 /* Length might have changed */ 12218 if (iraflags & IRAF_IS_IPV4) { 12219 ipha_t *ipha = (ipha_t *)mp->b_rptr; 12220 12221 ASSERT(IPH_HDR_VERSION(ipha) == IPV4_VERSION); 12222 ira->ira_pktlen = ntohs(ipha->ipha_length); 12223 ira->ira_ip_hdr_length = IPH_HDR_LENGTH(ipha); 12224 ira->ira_protocol = ipha->ipha_protocol; 12225 12226 ip_fanout_v4(mp, ipha, ira); 12227 } else { 12228 ip6_t *ip6h = (ip6_t *)mp->b_rptr; 12229 uint8_t *nexthdrp; 12230 12231 ASSERT(IPH_HDR_VERSION(mp->b_rptr) == IPV6_VERSION); 12232 ira->ira_pktlen = ntohs(ip6h->ip6_plen) + IPV6_HDR_LEN; 12233 if (!ip_hdr_length_nexthdr_v6(mp, ip6h, &ira->ira_ip_hdr_length, 12234 &nexthdrp)) { 12235 /* Malformed packet */ 12236 BUMP_MIB(ira->ira_ill->ill_ip_mib, ipIfStatsInDiscards); 12237 ip_drop_input("ipIfStatsInDiscards", mp, ira->ira_ill); 12238 freemsg(mp); 12239 return; 12240 } 12241 ira->ira_protocol = *nexthdrp; 12242 ip_fanout_v6(mp, ip6h, ira); 12243 } 12244 } 12245 12246 /* 12247 * Select which AH & ESP SA's to use (if any) for the outbound packet. 12248 * 12249 * If this function returns B_TRUE, the requested SA's have been filled 12250 * into the ixa_ipsec_*_sa pointers. 12251 * 12252 * If the function returns B_FALSE, the packet has been "consumed", most 12253 * likely by an ACQUIRE sent up via PF_KEY to a key management daemon. 12254 * 12255 * The SA references created by the protocol-specific "select" 12256 * function will be released in ip_output_post_ipsec. 12257 */ 12258 static boolean_t 12259 ipsec_out_select_sa(mblk_t *mp, ip_xmit_attr_t *ixa) 12260 { 12261 boolean_t need_ah_acquire = B_FALSE, need_esp_acquire = B_FALSE; 12262 ipsec_policy_t *pp; 12263 ipsec_action_t *ap; 12264 12265 ASSERT(ixa->ixa_flags & IXAF_IPSEC_SECURE); 12266 ASSERT((ixa->ixa_ipsec_policy != NULL) || 12267 (ixa->ixa_ipsec_action != NULL)); 12268 12269 ap = ixa->ixa_ipsec_action; 12270 if (ap == NULL) { 12271 pp = ixa->ixa_ipsec_policy; 12272 ASSERT(pp != NULL); 12273 ap = pp->ipsp_act; 12274 ASSERT(ap != NULL); 12275 } 12276 12277 /* 12278 * We have an action. now, let's select SA's. 12279 * A side effect of setting ixa_ipsec_*_sa is that it will 12280 * be cached in the conn_t. 12281 */ 12282 if (ap->ipa_want_esp) { 12283 if (ixa->ixa_ipsec_esp_sa == NULL) { 12284 need_esp_acquire = !ipsec_outbound_sa(mp, ixa, 12285 IPPROTO_ESP); 12286 } 12287 ASSERT(need_esp_acquire || ixa->ixa_ipsec_esp_sa != NULL); 12288 } 12289 12290 if (ap->ipa_want_ah) { 12291 if (ixa->ixa_ipsec_ah_sa == NULL) { 12292 need_ah_acquire = !ipsec_outbound_sa(mp, ixa, 12293 IPPROTO_AH); 12294 } 12295 ASSERT(need_ah_acquire || ixa->ixa_ipsec_ah_sa != NULL); 12296 /* 12297 * The ESP and AH processing order needs to be preserved 12298 * when both protocols are required (ESP should be applied 12299 * before AH for an outbound packet). Force an ESP ACQUIRE 12300 * when both ESP and AH are required, and an AH ACQUIRE 12301 * is needed. 12302 */ 12303 if (ap->ipa_want_esp && need_ah_acquire) 12304 need_esp_acquire = B_TRUE; 12305 } 12306 12307 /* 12308 * Send an ACQUIRE (extended, regular, or both) if we need one. 12309 * Release SAs that got referenced, but will not be used until we 12310 * acquire _all_ of the SAs we need. 12311 */ 12312 if (need_ah_acquire || need_esp_acquire) { 12313 if (ixa->ixa_ipsec_ah_sa != NULL) { 12314 IPSA_REFRELE(ixa->ixa_ipsec_ah_sa); 12315 ixa->ixa_ipsec_ah_sa = NULL; 12316 } 12317 if (ixa->ixa_ipsec_esp_sa != NULL) { 12318 IPSA_REFRELE(ixa->ixa_ipsec_esp_sa); 12319 ixa->ixa_ipsec_esp_sa = NULL; 12320 } 12321 12322 sadb_acquire(mp, ixa, need_ah_acquire, need_esp_acquire); 12323 return (B_FALSE); 12324 } 12325 12326 return (B_TRUE); 12327 } 12328 12329 /* 12330 * Handle IPsec output processing. 12331 * This function is only entered once for a given packet. 12332 * We try to do things synchronously, but if we need to have user-level 12333 * set up SAs, or ESP or AH uses asynchronous kEF, then the operation 12334 * will be completed 12335 * - when the SAs are added in esp_add_sa_finish/ah_add_sa_finish 12336 * - when asynchronous ESP is done it will do AH 12337 * 12338 * In all cases we come back in ip_output_post_ipsec() to fragment and 12339 * send out the packet. 12340 */ 12341 int 12342 ipsec_out_process(mblk_t *mp, ip_xmit_attr_t *ixa) 12343 { 12344 ill_t *ill = ixa->ixa_nce->nce_ill; 12345 ip_stack_t *ipst = ixa->ixa_ipst; 12346 ipsec_stack_t *ipss; 12347 ipsec_policy_t *pp; 12348 ipsec_action_t *ap; 12349 12350 ASSERT(ixa->ixa_flags & IXAF_IPSEC_SECURE); 12351 12352 ASSERT((ixa->ixa_ipsec_policy != NULL) || 12353 (ixa->ixa_ipsec_action != NULL)); 12354 12355 ipss = ipst->ips_netstack->netstack_ipsec; 12356 if (!ipsec_loaded(ipss)) { 12357 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 12358 ip_drop_packet(mp, B_TRUE, ill, 12359 DROPPER(ipss, ipds_ip_ipsec_not_loaded), 12360 &ipss->ipsec_dropper); 12361 return (ENOTSUP); 12362 } 12363 12364 ap = ixa->ixa_ipsec_action; 12365 if (ap == NULL) { 12366 pp = ixa->ixa_ipsec_policy; 12367 ASSERT(pp != NULL); 12368 ap = pp->ipsp_act; 12369 ASSERT(ap != NULL); 12370 } 12371 12372 /* Handle explicit drop action and bypass. */ 12373 switch (ap->ipa_act.ipa_type) { 12374 case IPSEC_ACT_DISCARD: 12375 case IPSEC_ACT_REJECT: 12376 ip_drop_packet(mp, B_FALSE, ill, 12377 DROPPER(ipss, ipds_spd_explicit), &ipss->ipsec_spd_dropper); 12378 return (EHOSTUNREACH); /* IPsec policy failure */ 12379 case IPSEC_ACT_BYPASS: 12380 return (ip_output_post_ipsec(mp, ixa)); 12381 } 12382 12383 /* 12384 * The order of processing is first insert a IP header if needed. 12385 * Then insert the ESP header and then the AH header. 12386 */ 12387 if ((ixa->ixa_flags & IXAF_IS_IPV4) && ap->ipa_want_se) { 12388 /* 12389 * First get the outer IP header before sending 12390 * it to ESP. 12391 */ 12392 ipha_t *oipha, *iipha; 12393 mblk_t *outer_mp, *inner_mp; 12394 12395 if ((outer_mp = allocb(sizeof (ipha_t), BPRI_HI)) == NULL) { 12396 (void) mi_strlog(ill->ill_rq, 0, 12397 SL_ERROR|SL_TRACE|SL_CONSOLE, 12398 "ipsec_out_process: " 12399 "Self-Encapsulation failed: Out of memory\n"); 12400 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 12401 ip_drop_output("ipIfStatsOutDiscards", mp, ill); 12402 freemsg(mp); 12403 return (ENOBUFS); 12404 } 12405 inner_mp = mp; 12406 ASSERT(inner_mp->b_datap->db_type == M_DATA); 12407 oipha = (ipha_t *)outer_mp->b_rptr; 12408 iipha = (ipha_t *)inner_mp->b_rptr; 12409 *oipha = *iipha; 12410 outer_mp->b_wptr += sizeof (ipha_t); 12411 oipha->ipha_length = htons(ntohs(iipha->ipha_length) + 12412 sizeof (ipha_t)); 12413 oipha->ipha_protocol = IPPROTO_ENCAP; 12414 oipha->ipha_version_and_hdr_length = 12415 IP_SIMPLE_HDR_VERSION; 12416 oipha->ipha_hdr_checksum = 0; 12417 oipha->ipha_hdr_checksum = ip_csum_hdr(oipha); 12418 outer_mp->b_cont = inner_mp; 12419 mp = outer_mp; 12420 12421 ixa->ixa_flags |= IXAF_IPSEC_TUNNEL; 12422 } 12423 12424 /* If we need to wait for a SA then we can't return any errno */ 12425 if (((ap->ipa_want_ah && (ixa->ixa_ipsec_ah_sa == NULL)) || 12426 (ap->ipa_want_esp && (ixa->ixa_ipsec_esp_sa == NULL))) && 12427 !ipsec_out_select_sa(mp, ixa)) 12428 return (0); 12429 12430 /* 12431 * By now, we know what SA's to use. Toss over to ESP & AH 12432 * to do the heavy lifting. 12433 */ 12434 if (ap->ipa_want_esp) { 12435 ASSERT(ixa->ixa_ipsec_esp_sa != NULL); 12436 12437 mp = ixa->ixa_ipsec_esp_sa->ipsa_output_func(mp, ixa); 12438 if (mp == NULL) { 12439 /* 12440 * Either it failed or is pending. In the former case 12441 * ipIfStatsInDiscards was increased. 12442 */ 12443 return (0); 12444 } 12445 } 12446 12447 if (ap->ipa_want_ah) { 12448 ASSERT(ixa->ixa_ipsec_ah_sa != NULL); 12449 12450 mp = ixa->ixa_ipsec_ah_sa->ipsa_output_func(mp, ixa); 12451 if (mp == NULL) { 12452 /* 12453 * Either it failed or is pending. In the former case 12454 * ipIfStatsInDiscards was increased. 12455 */ 12456 return (0); 12457 } 12458 } 12459 /* 12460 * We are done with IPsec processing. Send it over 12461 * the wire. 12462 */ 12463 return (ip_output_post_ipsec(mp, ixa)); 12464 } 12465 12466 /* 12467 * ioctls that go through a down/up sequence may need to wait for the down 12468 * to complete. This involves waiting for the ire and ipif refcnts to go down 12469 * to zero. Subsequently the ioctl is restarted from ipif_ill_refrele_tail. 12470 */ 12471 /* ARGSUSED */ 12472 void 12473 ip_reprocess_ioctl(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 12474 { 12475 struct iocblk *iocp; 12476 mblk_t *mp1; 12477 ip_ioctl_cmd_t *ipip; 12478 int err; 12479 sin_t *sin; 12480 struct lifreq *lifr; 12481 struct ifreq *ifr; 12482 12483 iocp = (struct iocblk *)mp->b_rptr; 12484 ASSERT(ipsq != NULL); 12485 /* Existence of mp1 verified in ip_wput_nondata */ 12486 mp1 = mp->b_cont->b_cont; 12487 ipip = ip_sioctl_lookup(iocp->ioc_cmd); 12488 if (ipip->ipi_cmd == SIOCSLIFNAME || ipip->ipi_cmd == IF_UNITSEL) { 12489 /* 12490 * Special case where ipx_current_ipif is not set: 12491 * ill_phyint_reinit merged the v4 and v6 into a single ipsq. 12492 * We are here as were not able to complete the operation in 12493 * ipif_set_values because we could not become exclusive on 12494 * the new ipsq. 12495 */ 12496 ill_t *ill = q->q_ptr; 12497 ipsq_current_start(ipsq, ill->ill_ipif, ipip->ipi_cmd); 12498 } 12499 ASSERT(ipsq->ipsq_xop->ipx_current_ipif != NULL); 12500 12501 if (ipip->ipi_cmd_type == IF_CMD) { 12502 /* This a old style SIOC[GS]IF* command */ 12503 ifr = (struct ifreq *)mp1->b_rptr; 12504 sin = (sin_t *)&ifr->ifr_addr; 12505 } else if (ipip->ipi_cmd_type == LIF_CMD) { 12506 /* This a new style SIOC[GS]LIF* command */ 12507 lifr = (struct lifreq *)mp1->b_rptr; 12508 sin = (sin_t *)&lifr->lifr_addr; 12509 } else { 12510 sin = NULL; 12511 } 12512 12513 err = (*ipip->ipi_func_restart)(ipsq->ipsq_xop->ipx_current_ipif, sin, 12514 q, mp, ipip, mp1->b_rptr); 12515 12516 DTRACE_PROBE4(ipif__ioctl, char *, "ip_reprocess_ioctl finish", 12517 int, ipip->ipi_cmd, 12518 ill_t *, ipsq->ipsq_xop->ipx_current_ipif->ipif_ill, 12519 ipif_t *, ipsq->ipsq_xop->ipx_current_ipif); 12520 12521 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), ipsq); 12522 } 12523 12524 /* 12525 * ioctl processing 12526 * 12527 * ioctl processing starts with ip_sioctl_copyin_setup(), which looks up 12528 * the ioctl command in the ioctl tables, determines the copyin data size 12529 * from the ipi_copyin_size field, and does an mi_copyin() of that size. 12530 * 12531 * ioctl processing then continues when the M_IOCDATA makes its way down to 12532 * ip_wput_nondata(). The ioctl is looked up again in the ioctl table, its 12533 * associated 'conn' is refheld till the end of the ioctl and the general 12534 * ioctl processing function ip_process_ioctl() is called to extract the 12535 * arguments and process the ioctl. To simplify extraction, ioctl commands 12536 * are "typed" based on the arguments they take (e.g., LIF_CMD which takes a 12537 * `struct lifreq'), and a common extract function (e.g., ip_extract_lifreq()) 12538 * is used to extract the ioctl's arguments. 12539 * 12540 * ip_process_ioctl determines if the ioctl needs to be serialized, and if 12541 * so goes thru the serialization primitive ipsq_try_enter. Then the 12542 * appropriate function to handle the ioctl is called based on the entry in 12543 * the ioctl table. ioctl completion is encapsulated in ip_ioctl_finish 12544 * which also refreleases the 'conn' that was refheld at the start of the 12545 * ioctl. Finally ipsq_exit is called if needed to exit the ipsq. 12546 * 12547 * Many exclusive ioctls go thru an internal down up sequence as part of 12548 * the operation. For example an attempt to change the IP address of an 12549 * ipif entails ipif_down, set address, ipif_up. Bringing down the interface 12550 * does all the cleanup such as deleting all ires that use this address. 12551 * Then we need to wait till all references to the interface go away. 12552 */ 12553 void 12554 ip_process_ioctl(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *arg) 12555 { 12556 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 12557 ip_ioctl_cmd_t *ipip = arg; 12558 ip_extract_func_t *extract_funcp; 12559 cmd_info_t ci; 12560 int err; 12561 boolean_t entered_ipsq = B_FALSE; 12562 12563 ip3dbg(("ip_process_ioctl: ioctl %X\n", iocp->ioc_cmd)); 12564 12565 if (ipip == NULL) 12566 ipip = ip_sioctl_lookup(iocp->ioc_cmd); 12567 12568 /* 12569 * SIOCLIFADDIF needs to go thru a special path since the 12570 * ill may not exist yet. This happens in the case of lo0 12571 * which is created using this ioctl. 12572 */ 12573 if (ipip->ipi_cmd == SIOCLIFADDIF) { 12574 err = ip_sioctl_addif(NULL, NULL, q, mp, NULL, NULL); 12575 DTRACE_PROBE4(ipif__ioctl, char *, "ip_process_ioctl finish", 12576 int, ipip->ipi_cmd, ill_t *, NULL, ipif_t *, NULL); 12577 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), NULL); 12578 return; 12579 } 12580 12581 ci.ci_ipif = NULL; 12582 switch (ipip->ipi_cmd_type) { 12583 case MISC_CMD: 12584 case MSFILT_CMD: 12585 /* 12586 * All MISC_CMD ioctls come in here -- e.g. SIOCGLIFCONF. 12587 */ 12588 if (ipip->ipi_cmd == IF_UNITSEL) { 12589 /* ioctl comes down the ill */ 12590 ci.ci_ipif = ((ill_t *)q->q_ptr)->ill_ipif; 12591 ipif_refhold(ci.ci_ipif); 12592 } 12593 err = 0; 12594 ci.ci_sin = NULL; 12595 ci.ci_sin6 = NULL; 12596 ci.ci_lifr = NULL; 12597 extract_funcp = NULL; 12598 break; 12599 12600 case IF_CMD: 12601 case LIF_CMD: 12602 extract_funcp = ip_extract_lifreq; 12603 break; 12604 12605 case ARP_CMD: 12606 case XARP_CMD: 12607 extract_funcp = ip_extract_arpreq; 12608 break; 12609 12610 default: 12611 ASSERT(0); 12612 } 12613 12614 if (extract_funcp != NULL) { 12615 err = (*extract_funcp)(q, mp, ipip, &ci); 12616 if (err != 0) { 12617 DTRACE_PROBE4(ipif__ioctl, 12618 char *, "ip_process_ioctl finish err", 12619 int, ipip->ipi_cmd, ill_t *, NULL, ipif_t *, NULL); 12620 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), NULL); 12621 return; 12622 } 12623 12624 /* 12625 * All of the extraction functions return a refheld ipif. 12626 */ 12627 ASSERT(ci.ci_ipif != NULL); 12628 } 12629 12630 if (!(ipip->ipi_flags & IPI_WR)) { 12631 /* 12632 * A return value of EINPROGRESS means the ioctl is 12633 * either queued and waiting for some reason or has 12634 * already completed. 12635 */ 12636 err = (*ipip->ipi_func)(ci.ci_ipif, ci.ci_sin, q, mp, ipip, 12637 ci.ci_lifr); 12638 if (ci.ci_ipif != NULL) { 12639 DTRACE_PROBE4(ipif__ioctl, 12640 char *, "ip_process_ioctl finish RD", 12641 int, ipip->ipi_cmd, ill_t *, ci.ci_ipif->ipif_ill, 12642 ipif_t *, ci.ci_ipif); 12643 ipif_refrele(ci.ci_ipif); 12644 } else { 12645 DTRACE_PROBE4(ipif__ioctl, 12646 char *, "ip_process_ioctl finish RD", 12647 int, ipip->ipi_cmd, ill_t *, NULL, ipif_t *, NULL); 12648 } 12649 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), NULL); 12650 return; 12651 } 12652 12653 ASSERT(ci.ci_ipif != NULL); 12654 12655 /* 12656 * If ipsq is non-NULL, we are already being called exclusively 12657 */ 12658 ASSERT(ipsq == NULL || IAM_WRITER_IPSQ(ipsq)); 12659 if (ipsq == NULL) { 12660 ipsq = ipsq_try_enter(ci.ci_ipif, NULL, q, mp, ip_process_ioctl, 12661 NEW_OP, B_TRUE); 12662 if (ipsq == NULL) { 12663 ipif_refrele(ci.ci_ipif); 12664 return; 12665 } 12666 entered_ipsq = B_TRUE; 12667 } 12668 /* 12669 * Release the ipif so that ipif_down and friends that wait for 12670 * references to go away are not misled about the current ipif_refcnt 12671 * values. We are writer so we can access the ipif even after releasing 12672 * the ipif. 12673 */ 12674 ipif_refrele(ci.ci_ipif); 12675 12676 ipsq_current_start(ipsq, ci.ci_ipif, ipip->ipi_cmd); 12677 12678 /* 12679 * A return value of EINPROGRESS means the ioctl is 12680 * either queued and waiting for some reason or has 12681 * already completed. 12682 */ 12683 err = (*ipip->ipi_func)(ci.ci_ipif, ci.ci_sin, q, mp, ipip, ci.ci_lifr); 12684 12685 DTRACE_PROBE4(ipif__ioctl, char *, "ip_process_ioctl finish WR", 12686 int, ipip->ipi_cmd, 12687 ill_t *, ci.ci_ipif == NULL ? NULL : ci.ci_ipif->ipif_ill, 12688 ipif_t *, ci.ci_ipif); 12689 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), ipsq); 12690 12691 if (entered_ipsq) 12692 ipsq_exit(ipsq); 12693 } 12694 12695 /* 12696 * Complete the ioctl. Typically ioctls use the mi package and need to 12697 * do mi_copyout/mi_copy_done. 12698 */ 12699 void 12700 ip_ioctl_finish(queue_t *q, mblk_t *mp, int err, int mode, ipsq_t *ipsq) 12701 { 12702 conn_t *connp = NULL; 12703 12704 if (err == EINPROGRESS) 12705 return; 12706 12707 if (CONN_Q(q)) { 12708 connp = Q_TO_CONN(q); 12709 ASSERT(connp->conn_ref >= 2); 12710 } 12711 12712 switch (mode) { 12713 case COPYOUT: 12714 if (err == 0) 12715 mi_copyout(q, mp); 12716 else 12717 mi_copy_done(q, mp, err); 12718 break; 12719 12720 case NO_COPYOUT: 12721 mi_copy_done(q, mp, err); 12722 break; 12723 12724 default: 12725 ASSERT(mode == CONN_CLOSE); /* aborted through CONN_CLOSE */ 12726 break; 12727 } 12728 12729 /* 12730 * The conn refhold and ioctlref placed on the conn at the start of the 12731 * ioctl are released here. 12732 */ 12733 if (connp != NULL) { 12734 CONN_DEC_IOCTLREF(connp); 12735 CONN_OPER_PENDING_DONE(connp); 12736 } 12737 12738 if (ipsq != NULL) 12739 ipsq_current_finish(ipsq); 12740 } 12741 12742 /* Handles all non data messages */ 12743 void 12744 ip_wput_nondata(queue_t *q, mblk_t *mp) 12745 { 12746 mblk_t *mp1; 12747 struct iocblk *iocp; 12748 ip_ioctl_cmd_t *ipip; 12749 conn_t *connp; 12750 cred_t *cr; 12751 char *proto_str; 12752 12753 if (CONN_Q(q)) 12754 connp = Q_TO_CONN(q); 12755 else 12756 connp = NULL; 12757 12758 switch (DB_TYPE(mp)) { 12759 case M_IOCTL: 12760 /* 12761 * IOCTL processing begins in ip_sioctl_copyin_setup which 12762 * will arrange to copy in associated control structures. 12763 */ 12764 ip_sioctl_copyin_setup(q, mp); 12765 return; 12766 case M_IOCDATA: 12767 /* 12768 * Ensure that this is associated with one of our trans- 12769 * parent ioctls. If it's not ours, discard it if we're 12770 * running as a driver, or pass it on if we're a module. 12771 */ 12772 iocp = (struct iocblk *)mp->b_rptr; 12773 ipip = ip_sioctl_lookup(iocp->ioc_cmd); 12774 if (ipip == NULL) { 12775 if (q->q_next == NULL) { 12776 goto nak; 12777 } else { 12778 putnext(q, mp); 12779 } 12780 return; 12781 } 12782 if ((q->q_next != NULL) && !(ipip->ipi_flags & IPI_MODOK)) { 12783 /* 12784 * The ioctl is one we recognise, but is not consumed 12785 * by IP as a module and we are a module, so we drop 12786 */ 12787 goto nak; 12788 } 12789 12790 /* IOCTL continuation following copyin or copyout. */ 12791 if (mi_copy_state(q, mp, NULL) == -1) { 12792 /* 12793 * The copy operation failed. mi_copy_state already 12794 * cleaned up, so we're out of here. 12795 */ 12796 return; 12797 } 12798 /* 12799 * If we just completed a copy in, we become writer and 12800 * continue processing in ip_sioctl_copyin_done. If it 12801 * was a copy out, we call mi_copyout again. If there is 12802 * nothing more to copy out, it will complete the IOCTL. 12803 */ 12804 if (MI_COPY_DIRECTION(mp) == MI_COPY_IN) { 12805 if (!(mp1 = mp->b_cont) || !(mp1 = mp1->b_cont)) { 12806 mi_copy_done(q, mp, EPROTO); 12807 return; 12808 } 12809 /* 12810 * Check for cases that need more copying. A return 12811 * value of 0 means a second copyin has been started, 12812 * so we return; a return value of 1 means no more 12813 * copying is needed, so we continue. 12814 */ 12815 if (ipip->ipi_cmd_type == MSFILT_CMD && 12816 MI_COPY_COUNT(mp) == 1) { 12817 if (ip_copyin_msfilter(q, mp) == 0) 12818 return; 12819 } 12820 /* 12821 * Refhold the conn, till the ioctl completes. This is 12822 * needed in case the ioctl ends up in the pending mp 12823 * list. Every mp in the ipx_pending_mp list must have 12824 * a refhold on the conn to resume processing. The 12825 * refhold is released when the ioctl completes 12826 * (whether normally or abnormally). An ioctlref is also 12827 * placed on the conn to prevent TCP from removing the 12828 * queue needed to send the ioctl reply back. 12829 * In all cases ip_ioctl_finish is called to finish 12830 * the ioctl and release the refholds. 12831 */ 12832 if (connp != NULL) { 12833 /* This is not a reentry */ 12834 CONN_INC_REF(connp); 12835 CONN_INC_IOCTLREF(connp); 12836 } else { 12837 if (!(ipip->ipi_flags & IPI_MODOK)) { 12838 mi_copy_done(q, mp, EINVAL); 12839 return; 12840 } 12841 } 12842 12843 ip_process_ioctl(NULL, q, mp, ipip); 12844 12845 } else { 12846 mi_copyout(q, mp); 12847 } 12848 return; 12849 12850 case M_IOCNAK: 12851 /* 12852 * The only way we could get here is if a resolver didn't like 12853 * an IOCTL we sent it. This shouldn't happen. 12854 */ 12855 (void) mi_strlog(q, 1, SL_ERROR|SL_TRACE, 12856 "ip_wput_nondata: unexpected M_IOCNAK, ioc_cmd 0x%x", 12857 ((struct iocblk *)mp->b_rptr)->ioc_cmd); 12858 freemsg(mp); 12859 return; 12860 case M_IOCACK: 12861 /* /dev/ip shouldn't see this */ 12862 goto nak; 12863 case M_FLUSH: 12864 if (*mp->b_rptr & FLUSHW) 12865 flushq(q, FLUSHALL); 12866 if (q->q_next) { 12867 putnext(q, mp); 12868 return; 12869 } 12870 if (*mp->b_rptr & FLUSHR) { 12871 *mp->b_rptr &= ~FLUSHW; 12872 qreply(q, mp); 12873 return; 12874 } 12875 freemsg(mp); 12876 return; 12877 case M_CTL: 12878 break; 12879 case M_PROTO: 12880 case M_PCPROTO: 12881 /* 12882 * The only PROTO messages we expect are SNMP-related. 12883 */ 12884 switch (((union T_primitives *)mp->b_rptr)->type) { 12885 case T_SVR4_OPTMGMT_REQ: 12886 ip2dbg(("ip_wput_nondata: T_SVR4_OPTMGMT_REQ " 12887 "flags %x\n", 12888 ((struct T_optmgmt_req *)mp->b_rptr)->MGMT_flags)); 12889 12890 if (connp == NULL) { 12891 proto_str = "T_SVR4_OPTMGMT_REQ"; 12892 goto protonak; 12893 } 12894 12895 /* 12896 * All Solaris components should pass a db_credp 12897 * for this TPI message, hence we ASSERT. 12898 * But in case there is some other M_PROTO that looks 12899 * like a TPI message sent by some other kernel 12900 * component, we check and return an error. 12901 */ 12902 cr = msg_getcred(mp, NULL); 12903 ASSERT(cr != NULL); 12904 if (cr == NULL) { 12905 mp = mi_tpi_err_ack_alloc(mp, TSYSERR, EINVAL); 12906 if (mp != NULL) 12907 qreply(q, mp); 12908 return; 12909 } 12910 12911 if (!snmpcom_req(q, mp, ip_snmp_set, ip_snmp_get, cr)) { 12912 proto_str = "Bad SNMPCOM request?"; 12913 goto protonak; 12914 } 12915 return; 12916 default: 12917 ip1dbg(("ip_wput_nondata: dropping M_PROTO prim %u\n", 12918 (int)*(uint_t *)mp->b_rptr)); 12919 freemsg(mp); 12920 return; 12921 } 12922 default: 12923 break; 12924 } 12925 if (q->q_next) { 12926 putnext(q, mp); 12927 } else 12928 freemsg(mp); 12929 return; 12930 12931 nak: 12932 iocp->ioc_error = EINVAL; 12933 mp->b_datap->db_type = M_IOCNAK; 12934 iocp->ioc_count = 0; 12935 qreply(q, mp); 12936 return; 12937 12938 protonak: 12939 cmn_err(CE_NOTE, "IP doesn't process %s as a module", proto_str); 12940 if ((mp = mi_tpi_err_ack_alloc(mp, TPROTO, EINVAL)) != NULL) 12941 qreply(q, mp); 12942 } 12943 12944 /* 12945 * Process IP options in an outbound packet. Verify that the nexthop in a 12946 * strict source route is onlink. 12947 * Returns non-zero if something fails in which case an ICMP error has been 12948 * sent and mp freed. 12949 * 12950 * Assumes the ULP has called ip_massage_options to move nexthop into ipha_dst. 12951 */ 12952 int 12953 ip_output_options(mblk_t *mp, ipha_t *ipha, ip_xmit_attr_t *ixa, ill_t *ill) 12954 { 12955 ipoptp_t opts; 12956 uchar_t *opt; 12957 uint8_t optval; 12958 uint8_t optlen; 12959 ipaddr_t dst; 12960 intptr_t code = 0; 12961 ire_t *ire; 12962 ip_stack_t *ipst = ixa->ixa_ipst; 12963 ip_recv_attr_t iras; 12964 12965 ip2dbg(("ip_output_options\n")); 12966 12967 dst = ipha->ipha_dst; 12968 for (optval = ipoptp_first(&opts, ipha); 12969 optval != IPOPT_EOL; 12970 optval = ipoptp_next(&opts)) { 12971 opt = opts.ipoptp_cur; 12972 optlen = opts.ipoptp_len; 12973 ip2dbg(("ip_output_options: opt %d, len %d\n", 12974 optval, optlen)); 12975 switch (optval) { 12976 uint32_t off; 12977 case IPOPT_SSRR: 12978 case IPOPT_LSRR: 12979 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 12980 ip1dbg(( 12981 "ip_output_options: bad option offset\n")); 12982 code = (char *)&opt[IPOPT_OLEN] - 12983 (char *)ipha; 12984 goto param_prob; 12985 } 12986 off = opt[IPOPT_OFFSET]; 12987 ip1dbg(("ip_output_options: next hop 0x%x\n", 12988 ntohl(dst))); 12989 /* 12990 * For strict: verify that dst is directly 12991 * reachable. 12992 */ 12993 if (optval == IPOPT_SSRR) { 12994 ire = ire_ftable_lookup_v4(dst, 0, 0, 12995 IRE_INTERFACE, NULL, ALL_ZONES, 12996 ixa->ixa_tsl, 12997 MATCH_IRE_TYPE | MATCH_IRE_SECATTR, 0, ipst, 12998 NULL); 12999 if (ire == NULL) { 13000 ip1dbg(("ip_output_options: SSRR not" 13001 " directly reachable: 0x%x\n", 13002 ntohl(dst))); 13003 goto bad_src_route; 13004 } 13005 ire_refrele(ire); 13006 } 13007 break; 13008 case IPOPT_RR: 13009 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 13010 ip1dbg(( 13011 "ip_output_options: bad option offset\n")); 13012 code = (char *)&opt[IPOPT_OLEN] - 13013 (char *)ipha; 13014 goto param_prob; 13015 } 13016 break; 13017 case IPOPT_TS: 13018 /* 13019 * Verify that length >=5 and that there is either 13020 * room for another timestamp or that the overflow 13021 * counter is not maxed out. 13022 */ 13023 code = (char *)&opt[IPOPT_OLEN] - (char *)ipha; 13024 if (optlen < IPOPT_MINLEN_IT) { 13025 goto param_prob; 13026 } 13027 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 13028 ip1dbg(( 13029 "ip_output_options: bad option offset\n")); 13030 code = (char *)&opt[IPOPT_OFFSET] - 13031 (char *)ipha; 13032 goto param_prob; 13033 } 13034 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 13035 case IPOPT_TS_TSONLY: 13036 off = IPOPT_TS_TIMELEN; 13037 break; 13038 case IPOPT_TS_TSANDADDR: 13039 case IPOPT_TS_PRESPEC: 13040 case IPOPT_TS_PRESPEC_RFC791: 13041 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 13042 break; 13043 default: 13044 code = (char *)&opt[IPOPT_POS_OV_FLG] - 13045 (char *)ipha; 13046 goto param_prob; 13047 } 13048 if (opt[IPOPT_OFFSET] - 1 + off > optlen && 13049 (opt[IPOPT_POS_OV_FLG] & 0xF0) == 0xF0) { 13050 /* 13051 * No room and the overflow counter is 15 13052 * already. 13053 */ 13054 goto param_prob; 13055 } 13056 break; 13057 } 13058 } 13059 13060 if ((opts.ipoptp_flags & IPOPTP_ERROR) == 0) 13061 return (0); 13062 13063 ip1dbg(("ip_output_options: error processing IP options.")); 13064 code = (char *)&opt[IPOPT_OFFSET] - (char *)ipha; 13065 13066 param_prob: 13067 bzero(&iras, sizeof (iras)); 13068 iras.ira_ill = iras.ira_rill = ill; 13069 iras.ira_ruifindex = ill->ill_phyint->phyint_ifindex; 13070 iras.ira_rifindex = iras.ira_ruifindex; 13071 iras.ira_flags = IRAF_IS_IPV4; 13072 13073 ip_drop_output("ip_output_options", mp, ill); 13074 icmp_param_problem(mp, (uint8_t)code, &iras); 13075 ASSERT(!(iras.ira_flags & IRAF_IPSEC_SECURE)); 13076 return (-1); 13077 13078 bad_src_route: 13079 bzero(&iras, sizeof (iras)); 13080 iras.ira_ill = iras.ira_rill = ill; 13081 iras.ira_ruifindex = ill->ill_phyint->phyint_ifindex; 13082 iras.ira_rifindex = iras.ira_ruifindex; 13083 iras.ira_flags = IRAF_IS_IPV4; 13084 13085 ip_drop_input("ICMP_SOURCE_ROUTE_FAILED", mp, ill); 13086 icmp_unreachable(mp, ICMP_SOURCE_ROUTE_FAILED, &iras); 13087 ASSERT(!(iras.ira_flags & IRAF_IPSEC_SECURE)); 13088 return (-1); 13089 } 13090 13091 /* 13092 * The maximum value of conn_drain_list_cnt is CONN_MAXDRAINCNT. 13093 * conn_drain_list_cnt can be changed by setting conn_drain_nthreads 13094 * thru /etc/system. 13095 */ 13096 #define CONN_MAXDRAINCNT 64 13097 13098 static void 13099 conn_drain_init(ip_stack_t *ipst) 13100 { 13101 int i, j; 13102 idl_tx_list_t *itl_tx; 13103 13104 ipst->ips_conn_drain_list_cnt = conn_drain_nthreads; 13105 13106 if ((ipst->ips_conn_drain_list_cnt == 0) || 13107 (ipst->ips_conn_drain_list_cnt > CONN_MAXDRAINCNT)) { 13108 /* 13109 * Default value of the number of drainers is the 13110 * number of cpus, subject to maximum of 8 drainers. 13111 */ 13112 if (boot_max_ncpus != -1) 13113 ipst->ips_conn_drain_list_cnt = MIN(boot_max_ncpus, 8); 13114 else 13115 ipst->ips_conn_drain_list_cnt = MIN(max_ncpus, 8); 13116 } 13117 13118 ipst->ips_idl_tx_list = 13119 kmem_zalloc(TX_FANOUT_SIZE * sizeof (idl_tx_list_t), KM_SLEEP); 13120 for (i = 0; i < TX_FANOUT_SIZE; i++) { 13121 itl_tx = &ipst->ips_idl_tx_list[i]; 13122 itl_tx->txl_drain_list = 13123 kmem_zalloc(ipst->ips_conn_drain_list_cnt * 13124 sizeof (idl_t), KM_SLEEP); 13125 mutex_init(&itl_tx->txl_lock, NULL, MUTEX_DEFAULT, NULL); 13126 for (j = 0; j < ipst->ips_conn_drain_list_cnt; j++) { 13127 mutex_init(&itl_tx->txl_drain_list[j].idl_lock, NULL, 13128 MUTEX_DEFAULT, NULL); 13129 itl_tx->txl_drain_list[j].idl_itl = itl_tx; 13130 } 13131 } 13132 } 13133 13134 static void 13135 conn_drain_fini(ip_stack_t *ipst) 13136 { 13137 int i; 13138 idl_tx_list_t *itl_tx; 13139 13140 for (i = 0; i < TX_FANOUT_SIZE; i++) { 13141 itl_tx = &ipst->ips_idl_tx_list[i]; 13142 kmem_free(itl_tx->txl_drain_list, 13143 ipst->ips_conn_drain_list_cnt * sizeof (idl_t)); 13144 } 13145 kmem_free(ipst->ips_idl_tx_list, 13146 TX_FANOUT_SIZE * sizeof (idl_tx_list_t)); 13147 ipst->ips_idl_tx_list = NULL; 13148 } 13149 13150 /* 13151 * Flow control has blocked us from proceeding. Insert the given conn in one 13152 * of the conn drain lists. When flow control is unblocked, either ip_wsrv() 13153 * (STREAMS) or ill_flow_enable() (direct) will be called back, which in turn 13154 * will call conn_walk_drain(). See the flow control notes at the top of this 13155 * file for more details. 13156 */ 13157 void 13158 conn_drain_insert(conn_t *connp, idl_tx_list_t *tx_list) 13159 { 13160 idl_t *idl = tx_list->txl_drain_list; 13161 uint_t index; 13162 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 13163 13164 mutex_enter(&connp->conn_lock); 13165 if (connp->conn_state_flags & CONN_CLOSING) { 13166 /* 13167 * The conn is closing as a result of which CONN_CLOSING 13168 * is set. Return. 13169 */ 13170 mutex_exit(&connp->conn_lock); 13171 return; 13172 } else if (connp->conn_idl == NULL) { 13173 /* 13174 * Assign the next drain list round robin. We dont' use 13175 * a lock, and thus it may not be strictly round robin. 13176 * Atomicity of load/stores is enough to make sure that 13177 * conn_drain_list_index is always within bounds. 13178 */ 13179 index = tx_list->txl_drain_index; 13180 ASSERT(index < ipst->ips_conn_drain_list_cnt); 13181 connp->conn_idl = &tx_list->txl_drain_list[index]; 13182 index++; 13183 if (index == ipst->ips_conn_drain_list_cnt) 13184 index = 0; 13185 tx_list->txl_drain_index = index; 13186 } else { 13187 ASSERT(connp->conn_idl->idl_itl == tx_list); 13188 } 13189 mutex_exit(&connp->conn_lock); 13190 13191 idl = connp->conn_idl; 13192 mutex_enter(&idl->idl_lock); 13193 if ((connp->conn_drain_prev != NULL) || 13194 (connp->conn_state_flags & CONN_CLOSING)) { 13195 /* 13196 * The conn is either already in the drain list or closing. 13197 * (We needed to check for CONN_CLOSING again since close can 13198 * sneak in between dropping conn_lock and acquiring idl_lock.) 13199 */ 13200 mutex_exit(&idl->idl_lock); 13201 return; 13202 } 13203 13204 /* 13205 * The conn is not in the drain list. Insert it at the 13206 * tail of the drain list. The drain list is circular 13207 * and doubly linked. idl_conn points to the 1st element 13208 * in the list. 13209 */ 13210 if (idl->idl_conn == NULL) { 13211 idl->idl_conn = connp; 13212 connp->conn_drain_next = connp; 13213 connp->conn_drain_prev = connp; 13214 } else { 13215 conn_t *head = idl->idl_conn; 13216 13217 connp->conn_drain_next = head; 13218 connp->conn_drain_prev = head->conn_drain_prev; 13219 head->conn_drain_prev->conn_drain_next = connp; 13220 head->conn_drain_prev = connp; 13221 } 13222 /* 13223 * For non streams based sockets assert flow control. 13224 */ 13225 conn_setqfull(connp, NULL); 13226 mutex_exit(&idl->idl_lock); 13227 } 13228 13229 static void 13230 conn_drain_remove(conn_t *connp) 13231 { 13232 idl_t *idl = connp->conn_idl; 13233 13234 if (idl != NULL) { 13235 /* 13236 * Remove ourself from the drain list. 13237 */ 13238 if (connp->conn_drain_next == connp) { 13239 /* Singleton in the list */ 13240 ASSERT(connp->conn_drain_prev == connp); 13241 idl->idl_conn = NULL; 13242 } else { 13243 connp->conn_drain_prev->conn_drain_next = 13244 connp->conn_drain_next; 13245 connp->conn_drain_next->conn_drain_prev = 13246 connp->conn_drain_prev; 13247 if (idl->idl_conn == connp) 13248 idl->idl_conn = connp->conn_drain_next; 13249 } 13250 13251 /* 13252 * NOTE: because conn_idl is associated with a specific drain 13253 * list which in turn is tied to the index the TX ring 13254 * (txl_cookie) hashes to, and because the TX ring can change 13255 * over the lifetime of the conn_t, we must clear conn_idl so 13256 * a subsequent conn_drain_insert() will set conn_idl again 13257 * based on the latest txl_cookie. 13258 */ 13259 connp->conn_idl = NULL; 13260 } 13261 connp->conn_drain_next = NULL; 13262 connp->conn_drain_prev = NULL; 13263 13264 conn_clrqfull(connp, NULL); 13265 /* 13266 * For streams based sockets open up flow control. 13267 */ 13268 if (!IPCL_IS_NONSTR(connp)) 13269 enableok(connp->conn_wq); 13270 } 13271 13272 /* 13273 * This conn is closing, and we are called from ip_close. OR 13274 * this conn is draining because flow-control on the ill has been relieved. 13275 * 13276 * We must also need to remove conn's on this idl from the list, and also 13277 * inform the sockfs upcalls about the change in flow-control. 13278 */ 13279 static void 13280 conn_drain(conn_t *connp, boolean_t closing) 13281 { 13282 idl_t *idl; 13283 conn_t *next_connp; 13284 13285 /* 13286 * connp->conn_idl is stable at this point, and no lock is needed 13287 * to check it. If we are called from ip_close, close has already 13288 * set CONN_CLOSING, thus freezing the value of conn_idl, and 13289 * called us only because conn_idl is non-null. If we are called thru 13290 * service, conn_idl could be null, but it cannot change because 13291 * service is single-threaded per queue, and there cannot be another 13292 * instance of service trying to call conn_drain_insert on this conn 13293 * now. 13294 */ 13295 ASSERT(!closing || connp == NULL || connp->conn_idl != NULL); 13296 13297 /* 13298 * If the conn doesn't exist or is not on a drain list, bail. 13299 */ 13300 if (connp == NULL || connp->conn_idl == NULL || 13301 connp->conn_drain_prev == NULL) { 13302 return; 13303 } 13304 13305 idl = connp->conn_idl; 13306 ASSERT(MUTEX_HELD(&idl->idl_lock)); 13307 13308 if (!closing) { 13309 next_connp = connp->conn_drain_next; 13310 while (next_connp != connp) { 13311 conn_t *delconnp = next_connp; 13312 13313 next_connp = next_connp->conn_drain_next; 13314 conn_drain_remove(delconnp); 13315 } 13316 ASSERT(connp->conn_drain_next == idl->idl_conn); 13317 } 13318 conn_drain_remove(connp); 13319 } 13320 13321 /* 13322 * Write service routine. Shared perimeter entry point. 13323 * The device queue's messages has fallen below the low water mark and STREAMS 13324 * has backenabled the ill_wq. Send sockfs notification about flow-control on 13325 * each waiting conn. 13326 */ 13327 void 13328 ip_wsrv(queue_t *q) 13329 { 13330 ill_t *ill; 13331 13332 ill = (ill_t *)q->q_ptr; 13333 if (ill->ill_state_flags == 0) { 13334 ip_stack_t *ipst = ill->ill_ipst; 13335 13336 /* 13337 * The device flow control has opened up. 13338 * Walk through conn drain lists and qenable the 13339 * first conn in each list. This makes sense only 13340 * if the stream is fully plumbed and setup. 13341 * Hence the ill_state_flags check above. 13342 */ 13343 ip1dbg(("ip_wsrv: walking\n")); 13344 conn_walk_drain(ipst, &ipst->ips_idl_tx_list[0]); 13345 enableok(ill->ill_wq); 13346 } 13347 } 13348 13349 /* 13350 * Callback to disable flow control in IP. 13351 * 13352 * This is a mac client callback added when the DLD_CAPAB_DIRECT capability 13353 * is enabled. 13354 * 13355 * When MAC_TX() is not able to send any more packets, dld sets its queue 13356 * to QFULL and enable the STREAMS flow control. Later, when the underlying 13357 * driver is able to continue to send packets, it calls mac_tx_(ring_)update() 13358 * function and wakes up corresponding mac worker threads, which in turn 13359 * calls this callback function, and disables flow control. 13360 */ 13361 void 13362 ill_flow_enable(void *arg, ip_mac_tx_cookie_t cookie) 13363 { 13364 ill_t *ill = (ill_t *)arg; 13365 ip_stack_t *ipst = ill->ill_ipst; 13366 idl_tx_list_t *idl_txl; 13367 13368 idl_txl = &ipst->ips_idl_tx_list[IDLHASHINDEX(cookie)]; 13369 mutex_enter(&idl_txl->txl_lock); 13370 /* add code to to set a flag to indicate idl_txl is enabled */ 13371 conn_walk_drain(ipst, idl_txl); 13372 mutex_exit(&idl_txl->txl_lock); 13373 } 13374 13375 /* 13376 * Flow control has been relieved and STREAMS has backenabled us; drain 13377 * all the conn lists on `tx_list'. 13378 */ 13379 static void 13380 conn_walk_drain(ip_stack_t *ipst, idl_tx_list_t *tx_list) 13381 { 13382 int i; 13383 idl_t *idl; 13384 13385 IP_STAT(ipst, ip_conn_walk_drain); 13386 13387 for (i = 0; i < ipst->ips_conn_drain_list_cnt; i++) { 13388 idl = &tx_list->txl_drain_list[i]; 13389 mutex_enter(&idl->idl_lock); 13390 conn_drain(idl->idl_conn, B_FALSE); 13391 mutex_exit(&idl->idl_lock); 13392 } 13393 } 13394 13395 /* 13396 * Determine if the ill and multicast aspects of that packets 13397 * "matches" the conn. 13398 */ 13399 boolean_t 13400 conn_wantpacket(conn_t *connp, ip_recv_attr_t *ira, ipha_t *ipha) 13401 { 13402 ill_t *ill = ira->ira_rill; 13403 zoneid_t zoneid = ira->ira_zoneid; 13404 uint_t in_ifindex; 13405 ipaddr_t dst, src; 13406 13407 dst = ipha->ipha_dst; 13408 src = ipha->ipha_src; 13409 13410 /* 13411 * conn_incoming_ifindex is set by IP_BOUND_IF which limits 13412 * unicast, broadcast and multicast reception to 13413 * conn_incoming_ifindex. 13414 * conn_wantpacket is called for unicast, broadcast and 13415 * multicast packets. 13416 */ 13417 in_ifindex = connp->conn_incoming_ifindex; 13418 13419 /* mpathd can bind to the under IPMP interface, which we allow */ 13420 if (in_ifindex != 0 && in_ifindex != ill->ill_phyint->phyint_ifindex) { 13421 if (!IS_UNDER_IPMP(ill)) 13422 return (B_FALSE); 13423 13424 if (in_ifindex != ipmp_ill_get_ipmp_ifindex(ill)) 13425 return (B_FALSE); 13426 } 13427 13428 if (!IPCL_ZONE_MATCH(connp, zoneid)) 13429 return (B_FALSE); 13430 13431 if (!(ira->ira_flags & IRAF_MULTICAST)) 13432 return (B_TRUE); 13433 13434 if (connp->conn_multi_router) { 13435 /* multicast packet and multicast router socket: send up */ 13436 return (B_TRUE); 13437 } 13438 13439 if (ipha->ipha_protocol == IPPROTO_PIM || 13440 ipha->ipha_protocol == IPPROTO_RSVP) 13441 return (B_TRUE); 13442 13443 return (conn_hasmembers_ill_withsrc_v4(connp, dst, src, ira->ira_ill)); 13444 } 13445 13446 void 13447 conn_setqfull(conn_t *connp, boolean_t *flow_stopped) 13448 { 13449 if (IPCL_IS_NONSTR(connp)) { 13450 (*connp->conn_upcalls->su_txq_full) 13451 (connp->conn_upper_handle, B_TRUE); 13452 if (flow_stopped != NULL) 13453 *flow_stopped = B_TRUE; 13454 } else { 13455 queue_t *q = connp->conn_wq; 13456 13457 ASSERT(q != NULL); 13458 if (!(q->q_flag & QFULL)) { 13459 mutex_enter(QLOCK(q)); 13460 if (!(q->q_flag & QFULL)) { 13461 /* still need to set QFULL */ 13462 q->q_flag |= QFULL; 13463 /* set flow_stopped to true under QLOCK */ 13464 if (flow_stopped != NULL) 13465 *flow_stopped = B_TRUE; 13466 mutex_exit(QLOCK(q)); 13467 } else { 13468 /* flow_stopped is left unchanged */ 13469 mutex_exit(QLOCK(q)); 13470 } 13471 } 13472 } 13473 } 13474 13475 void 13476 conn_clrqfull(conn_t *connp, boolean_t *flow_stopped) 13477 { 13478 if (IPCL_IS_NONSTR(connp)) { 13479 (*connp->conn_upcalls->su_txq_full) 13480 (connp->conn_upper_handle, B_FALSE); 13481 if (flow_stopped != NULL) 13482 *flow_stopped = B_FALSE; 13483 } else { 13484 queue_t *q = connp->conn_wq; 13485 13486 ASSERT(q != NULL); 13487 if (q->q_flag & QFULL) { 13488 mutex_enter(QLOCK(q)); 13489 if (q->q_flag & QFULL) { 13490 q->q_flag &= ~QFULL; 13491 /* set flow_stopped to false under QLOCK */ 13492 if (flow_stopped != NULL) 13493 *flow_stopped = B_FALSE; 13494 mutex_exit(QLOCK(q)); 13495 if (q->q_flag & QWANTW) 13496 qbackenable(q, 0); 13497 } else { 13498 /* flow_stopped is left unchanged */ 13499 mutex_exit(QLOCK(q)); 13500 } 13501 } 13502 } 13503 13504 mutex_enter(&connp->conn_lock); 13505 connp->conn_blocked = B_FALSE; 13506 mutex_exit(&connp->conn_lock); 13507 } 13508 13509 /* 13510 * Return the length in bytes of the IPv4 headers (base header, label, and 13511 * other IP options) that will be needed based on the 13512 * ip_pkt_t structure passed by the caller. 13513 * 13514 * The returned length does not include the length of the upper level 13515 * protocol (ULP) header. 13516 * The caller needs to check that the length doesn't exceed the max for IPv4. 13517 */ 13518 int 13519 ip_total_hdrs_len_v4(const ip_pkt_t *ipp) 13520 { 13521 int len; 13522 13523 len = IP_SIMPLE_HDR_LENGTH; 13524 if (ipp->ipp_fields & IPPF_LABEL_V4) { 13525 ASSERT(ipp->ipp_label_len_v4 != 0); 13526 /* We need to round up here */ 13527 len += (ipp->ipp_label_len_v4 + 3) & ~3; 13528 } 13529 13530 if (ipp->ipp_fields & IPPF_IPV4_OPTIONS) { 13531 ASSERT(ipp->ipp_ipv4_options_len != 0); 13532 ASSERT((ipp->ipp_ipv4_options_len & 3) == 0); 13533 len += ipp->ipp_ipv4_options_len; 13534 } 13535 return (len); 13536 } 13537 13538 /* 13539 * All-purpose routine to build an IPv4 header with options based 13540 * on the abstract ip_pkt_t. 13541 * 13542 * The caller has to set the source and destination address as well as 13543 * ipha_length. The caller has to massage any source route and compensate 13544 * for the ULP pseudo-header checksum due to the source route. 13545 */ 13546 void 13547 ip_build_hdrs_v4(uchar_t *buf, uint_t buf_len, const ip_pkt_t *ipp, 13548 uint8_t protocol) 13549 { 13550 ipha_t *ipha = (ipha_t *)buf; 13551 uint8_t *cp; 13552 13553 /* Initialize IPv4 header */ 13554 ipha->ipha_type_of_service = ipp->ipp_type_of_service; 13555 ipha->ipha_length = 0; /* Caller will set later */ 13556 ipha->ipha_ident = 0; 13557 ipha->ipha_fragment_offset_and_flags = 0; 13558 ipha->ipha_ttl = ipp->ipp_unicast_hops; 13559 ipha->ipha_protocol = protocol; 13560 ipha->ipha_hdr_checksum = 0; 13561 13562 if ((ipp->ipp_fields & IPPF_ADDR) && 13563 IN6_IS_ADDR_V4MAPPED(&ipp->ipp_addr)) 13564 ipha->ipha_src = ipp->ipp_addr_v4; 13565 13566 cp = (uint8_t *)&ipha[1]; 13567 if (ipp->ipp_fields & IPPF_LABEL_V4) { 13568 ASSERT(ipp->ipp_label_len_v4 != 0); 13569 bcopy(ipp->ipp_label_v4, cp, ipp->ipp_label_len_v4); 13570 cp += ipp->ipp_label_len_v4; 13571 /* We need to round up here */ 13572 while ((uintptr_t)cp & 0x3) { 13573 *cp++ = IPOPT_NOP; 13574 } 13575 } 13576 13577 if (ipp->ipp_fields & IPPF_IPV4_OPTIONS) { 13578 ASSERT(ipp->ipp_ipv4_options_len != 0); 13579 ASSERT((ipp->ipp_ipv4_options_len & 3) == 0); 13580 bcopy(ipp->ipp_ipv4_options, cp, ipp->ipp_ipv4_options_len); 13581 cp += ipp->ipp_ipv4_options_len; 13582 } 13583 ipha->ipha_version_and_hdr_length = 13584 (uint8_t)((IP_VERSION << 4) + buf_len / 4); 13585 13586 ASSERT((int)(cp - buf) == buf_len); 13587 } 13588 13589 /* Allocate the private structure */ 13590 static int 13591 ip_priv_alloc(void **bufp) 13592 { 13593 void *buf; 13594 13595 if ((buf = kmem_alloc(sizeof (ip_priv_t), KM_NOSLEEP)) == NULL) 13596 return (ENOMEM); 13597 13598 *bufp = buf; 13599 return (0); 13600 } 13601 13602 /* Function to delete the private structure */ 13603 void 13604 ip_priv_free(void *buf) 13605 { 13606 ASSERT(buf != NULL); 13607 kmem_free(buf, sizeof (ip_priv_t)); 13608 } 13609 13610 /* 13611 * The entry point for IPPF processing. 13612 * If the classifier (IPGPC_CLASSIFY) is not loaded and configured, the 13613 * routine just returns. 13614 * 13615 * When called, ip_process generates an ipp_packet_t structure 13616 * which holds the state information for this packet and invokes the 13617 * the classifier (via ipp_packet_process). The classification, depending on 13618 * configured filters, results in a list of actions for this packet. Invoking 13619 * an action may cause the packet to be dropped, in which case we return NULL. 13620 * proc indicates the callout position for 13621 * this packet and ill is the interface this packet arrived on or will leave 13622 * on (inbound and outbound resp.). 13623 * 13624 * We do the processing on the rill (mapped to the upper if ipmp), but MIB 13625 * on the ill corrsponding to the destination IP address. 13626 */ 13627 mblk_t * 13628 ip_process(ip_proc_t proc, mblk_t *mp, ill_t *rill, ill_t *ill) 13629 { 13630 ip_priv_t *priv; 13631 ipp_action_id_t aid; 13632 int rc = 0; 13633 ipp_packet_t *pp; 13634 13635 /* If the classifier is not loaded, return */ 13636 if ((aid = ipp_action_lookup(IPGPC_CLASSIFY)) == IPP_ACTION_INVAL) { 13637 return (mp); 13638 } 13639 13640 ASSERT(mp != NULL); 13641 13642 /* Allocate the packet structure */ 13643 rc = ipp_packet_alloc(&pp, "ip", aid); 13644 if (rc != 0) 13645 goto drop; 13646 13647 /* Allocate the private structure */ 13648 rc = ip_priv_alloc((void **)&priv); 13649 if (rc != 0) { 13650 ipp_packet_free(pp); 13651 goto drop; 13652 } 13653 priv->proc = proc; 13654 priv->ill_index = ill_get_upper_ifindex(rill); 13655 13656 ipp_packet_set_private(pp, priv, ip_priv_free); 13657 ipp_packet_set_data(pp, mp); 13658 13659 /* Invoke the classifier */ 13660 rc = ipp_packet_process(&pp); 13661 if (pp != NULL) { 13662 mp = ipp_packet_get_data(pp); 13663 ipp_packet_free(pp); 13664 if (rc != 0) 13665 goto drop; 13666 return (mp); 13667 } else { 13668 /* No mp to trace in ip_drop_input/ip_drop_output */ 13669 mp = NULL; 13670 } 13671 drop: 13672 if (proc == IPP_LOCAL_IN || proc == IPP_FWD_IN) { 13673 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13674 ip_drop_input("ip_process", mp, ill); 13675 } else { 13676 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 13677 ip_drop_output("ip_process", mp, ill); 13678 } 13679 freemsg(mp); 13680 return (NULL); 13681 } 13682 13683 /* 13684 * Propagate a multicast group membership operation (add/drop) on 13685 * all the interfaces crossed by the related multirt routes. 13686 * The call is considered successful if the operation succeeds 13687 * on at least one interface. 13688 * 13689 * This assumes that a set of IRE_HOST/RTF_MULTIRT has been created for the 13690 * multicast addresses with the ire argument being the first one. 13691 * We walk the bucket to find all the of those. 13692 * 13693 * Common to IPv4 and IPv6. 13694 */ 13695 static int 13696 ip_multirt_apply_membership(int (*fn)(conn_t *, boolean_t, 13697 const in6_addr_t *, ipaddr_t, uint_t, mcast_record_t, const in6_addr_t *), 13698 ire_t *ire, conn_t *connp, boolean_t checkonly, const in6_addr_t *v6group, 13699 mcast_record_t fmode, const in6_addr_t *v6src) 13700 { 13701 ire_t *ire_gw; 13702 irb_t *irb; 13703 int ifindex; 13704 int error = 0; 13705 int result; 13706 ip_stack_t *ipst = ire->ire_ipst; 13707 ipaddr_t group; 13708 boolean_t isv6; 13709 int match_flags; 13710 13711 if (IN6_IS_ADDR_V4MAPPED(v6group)) { 13712 IN6_V4MAPPED_TO_IPADDR(v6group, group); 13713 isv6 = B_FALSE; 13714 } else { 13715 isv6 = B_TRUE; 13716 } 13717 13718 irb = ire->ire_bucket; 13719 ASSERT(irb != NULL); 13720 13721 result = 0; 13722 irb_refhold(irb); 13723 for (; ire != NULL; ire = ire->ire_next) { 13724 if ((ire->ire_flags & RTF_MULTIRT) == 0) 13725 continue; 13726 13727 /* We handle -ifp routes by matching on the ill if set */ 13728 match_flags = MATCH_IRE_TYPE; 13729 if (ire->ire_ill != NULL) 13730 match_flags |= MATCH_IRE_ILL; 13731 13732 if (isv6) { 13733 if (!IN6_ARE_ADDR_EQUAL(&ire->ire_addr_v6, v6group)) 13734 continue; 13735 13736 ire_gw = ire_ftable_lookup_v6(&ire->ire_gateway_addr_v6, 13737 0, 0, IRE_INTERFACE, ire->ire_ill, ALL_ZONES, NULL, 13738 match_flags, 0, ipst, NULL); 13739 } else { 13740 if (ire->ire_addr != group) 13741 continue; 13742 13743 ire_gw = ire_ftable_lookup_v4(ire->ire_gateway_addr, 13744 0, 0, IRE_INTERFACE, ire->ire_ill, ALL_ZONES, NULL, 13745 match_flags, 0, ipst, NULL); 13746 } 13747 /* No interface route exists for the gateway; skip this ire. */ 13748 if (ire_gw == NULL) 13749 continue; 13750 if (ire_gw->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) { 13751 ire_refrele(ire_gw); 13752 continue; 13753 } 13754 ASSERT(ire_gw->ire_ill != NULL); /* IRE_INTERFACE */ 13755 ifindex = ire_gw->ire_ill->ill_phyint->phyint_ifindex; 13756 13757 /* 13758 * The operation is considered a success if 13759 * it succeeds at least once on any one interface. 13760 */ 13761 error = fn(connp, checkonly, v6group, INADDR_ANY, ifindex, 13762 fmode, v6src); 13763 if (error == 0) 13764 result = CGTP_MCAST_SUCCESS; 13765 13766 ire_refrele(ire_gw); 13767 } 13768 irb_refrele(irb); 13769 /* 13770 * Consider the call as successful if we succeeded on at least 13771 * one interface. Otherwise, return the last encountered error. 13772 */ 13773 return (result == CGTP_MCAST_SUCCESS ? 0 : error); 13774 } 13775 13776 /* 13777 * Return the expected CGTP hooks version number. 13778 */ 13779 int 13780 ip_cgtp_filter_supported(void) 13781 { 13782 return (ip_cgtp_filter_rev); 13783 } 13784 13785 /* 13786 * CGTP hooks can be registered by invoking this function. 13787 * Checks that the version number matches. 13788 */ 13789 int 13790 ip_cgtp_filter_register(netstackid_t stackid, cgtp_filter_ops_t *ops) 13791 { 13792 netstack_t *ns; 13793 ip_stack_t *ipst; 13794 13795 if (ops->cfo_filter_rev != CGTP_FILTER_REV) 13796 return (ENOTSUP); 13797 13798 ns = netstack_find_by_stackid(stackid); 13799 if (ns == NULL) 13800 return (EINVAL); 13801 ipst = ns->netstack_ip; 13802 ASSERT(ipst != NULL); 13803 13804 if (ipst->ips_ip_cgtp_filter_ops != NULL) { 13805 netstack_rele(ns); 13806 return (EALREADY); 13807 } 13808 13809 ipst->ips_ip_cgtp_filter_ops = ops; 13810 13811 ill_set_inputfn_all(ipst); 13812 13813 netstack_rele(ns); 13814 return (0); 13815 } 13816 13817 /* 13818 * CGTP hooks can be unregistered by invoking this function. 13819 * Returns ENXIO if there was no registration. 13820 * Returns EBUSY if the ndd variable has not been turned off. 13821 */ 13822 int 13823 ip_cgtp_filter_unregister(netstackid_t stackid) 13824 { 13825 netstack_t *ns; 13826 ip_stack_t *ipst; 13827 13828 ns = netstack_find_by_stackid(stackid); 13829 if (ns == NULL) 13830 return (EINVAL); 13831 ipst = ns->netstack_ip; 13832 ASSERT(ipst != NULL); 13833 13834 if (ipst->ips_ip_cgtp_filter) { 13835 netstack_rele(ns); 13836 return (EBUSY); 13837 } 13838 13839 if (ipst->ips_ip_cgtp_filter_ops == NULL) { 13840 netstack_rele(ns); 13841 return (ENXIO); 13842 } 13843 ipst->ips_ip_cgtp_filter_ops = NULL; 13844 13845 ill_set_inputfn_all(ipst); 13846 13847 netstack_rele(ns); 13848 return (0); 13849 } 13850 13851 /* 13852 * Check whether there is a CGTP filter registration. 13853 * Returns non-zero if there is a registration, otherwise returns zero. 13854 * Note: returns zero if bad stackid. 13855 */ 13856 int 13857 ip_cgtp_filter_is_registered(netstackid_t stackid) 13858 { 13859 netstack_t *ns; 13860 ip_stack_t *ipst; 13861 int ret; 13862 13863 ns = netstack_find_by_stackid(stackid); 13864 if (ns == NULL) 13865 return (0); 13866 ipst = ns->netstack_ip; 13867 ASSERT(ipst != NULL); 13868 13869 if (ipst->ips_ip_cgtp_filter_ops != NULL) 13870 ret = 1; 13871 else 13872 ret = 0; 13873 13874 netstack_rele(ns); 13875 return (ret); 13876 } 13877 13878 static int 13879 ip_squeue_switch(int val) 13880 { 13881 int rval; 13882 13883 switch (val) { 13884 case IP_SQUEUE_ENTER_NODRAIN: 13885 rval = SQ_NODRAIN; 13886 break; 13887 case IP_SQUEUE_ENTER: 13888 rval = SQ_PROCESS; 13889 break; 13890 case IP_SQUEUE_FILL: 13891 default: 13892 rval = SQ_FILL; 13893 break; 13894 } 13895 return (rval); 13896 } 13897 13898 static void * 13899 ip_kstat2_init(netstackid_t stackid, ip_stat_t *ip_statisticsp) 13900 { 13901 kstat_t *ksp; 13902 13903 ip_stat_t template = { 13904 { "ip_udp_fannorm", KSTAT_DATA_UINT64 }, 13905 { "ip_udp_fanmb", KSTAT_DATA_UINT64 }, 13906 { "ip_recv_pullup", KSTAT_DATA_UINT64 }, 13907 { "ip_db_ref", KSTAT_DATA_UINT64 }, 13908 { "ip_notaligned", KSTAT_DATA_UINT64 }, 13909 { "ip_multimblk", KSTAT_DATA_UINT64 }, 13910 { "ip_opt", KSTAT_DATA_UINT64 }, 13911 { "ipsec_proto_ahesp", KSTAT_DATA_UINT64 }, 13912 { "ip_conn_flputbq", KSTAT_DATA_UINT64 }, 13913 { "ip_conn_walk_drain", KSTAT_DATA_UINT64 }, 13914 { "ip_out_sw_cksum", KSTAT_DATA_UINT64 }, 13915 { "ip_out_sw_cksum_bytes", KSTAT_DATA_UINT64 }, 13916 { "ip_in_sw_cksum", KSTAT_DATA_UINT64 }, 13917 { "ip_ire_reclaim_calls", KSTAT_DATA_UINT64 }, 13918 { "ip_ire_reclaim_deleted", KSTAT_DATA_UINT64 }, 13919 { "ip_nce_reclaim_calls", KSTAT_DATA_UINT64 }, 13920 { "ip_nce_reclaim_deleted", KSTAT_DATA_UINT64 }, 13921 { "ip_dce_reclaim_calls", KSTAT_DATA_UINT64 }, 13922 { "ip_dce_reclaim_deleted", KSTAT_DATA_UINT64 }, 13923 { "ip_tcp_in_full_hw_cksum_err", KSTAT_DATA_UINT64 }, 13924 { "ip_tcp_in_part_hw_cksum_err", KSTAT_DATA_UINT64 }, 13925 { "ip_tcp_in_sw_cksum_err", KSTAT_DATA_UINT64 }, 13926 { "ip_udp_in_full_hw_cksum_err", KSTAT_DATA_UINT64 }, 13927 { "ip_udp_in_part_hw_cksum_err", KSTAT_DATA_UINT64 }, 13928 { "ip_udp_in_sw_cksum_err", KSTAT_DATA_UINT64 }, 13929 { "conn_in_recvdstaddr", KSTAT_DATA_UINT64 }, 13930 { "conn_in_recvopts", KSTAT_DATA_UINT64 }, 13931 { "conn_in_recvif", KSTAT_DATA_UINT64 }, 13932 { "conn_in_recvslla", KSTAT_DATA_UINT64 }, 13933 { "conn_in_recvucred", KSTAT_DATA_UINT64 }, 13934 { "conn_in_recvttl", KSTAT_DATA_UINT64 }, 13935 { "conn_in_recvhopopts", KSTAT_DATA_UINT64 }, 13936 { "conn_in_recvhoplimit", KSTAT_DATA_UINT64 }, 13937 { "conn_in_recvdstopts", KSTAT_DATA_UINT64 }, 13938 { "conn_in_recvrthdrdstopts", KSTAT_DATA_UINT64 }, 13939 { "conn_in_recvrthdr", KSTAT_DATA_UINT64 }, 13940 { "conn_in_recvpktinfo", KSTAT_DATA_UINT64 }, 13941 { "conn_in_recvtclass", KSTAT_DATA_UINT64 }, 13942 { "conn_in_timestamp", KSTAT_DATA_UINT64 }, 13943 }; 13944 13945 ksp = kstat_create_netstack("ip", 0, "ipstat", "net", 13946 KSTAT_TYPE_NAMED, sizeof (template) / sizeof (kstat_named_t), 13947 KSTAT_FLAG_VIRTUAL, stackid); 13948 13949 if (ksp == NULL) 13950 return (NULL); 13951 13952 bcopy(&template, ip_statisticsp, sizeof (template)); 13953 ksp->ks_data = (void *)ip_statisticsp; 13954 ksp->ks_private = (void *)(uintptr_t)stackid; 13955 13956 kstat_install(ksp); 13957 return (ksp); 13958 } 13959 13960 static void 13961 ip_kstat2_fini(netstackid_t stackid, kstat_t *ksp) 13962 { 13963 if (ksp != NULL) { 13964 ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private); 13965 kstat_delete_netstack(ksp, stackid); 13966 } 13967 } 13968 13969 static void * 13970 ip_kstat_init(netstackid_t stackid, ip_stack_t *ipst) 13971 { 13972 kstat_t *ksp; 13973 13974 ip_named_kstat_t template = { 13975 { "forwarding", KSTAT_DATA_UINT32, 0 }, 13976 { "defaultTTL", KSTAT_DATA_UINT32, 0 }, 13977 { "inReceives", KSTAT_DATA_UINT64, 0 }, 13978 { "inHdrErrors", KSTAT_DATA_UINT32, 0 }, 13979 { "inAddrErrors", KSTAT_DATA_UINT32, 0 }, 13980 { "forwDatagrams", KSTAT_DATA_UINT64, 0 }, 13981 { "inUnknownProtos", KSTAT_DATA_UINT32, 0 }, 13982 { "inDiscards", KSTAT_DATA_UINT32, 0 }, 13983 { "inDelivers", KSTAT_DATA_UINT64, 0 }, 13984 { "outRequests", KSTAT_DATA_UINT64, 0 }, 13985 { "outDiscards", KSTAT_DATA_UINT32, 0 }, 13986 { "outNoRoutes", KSTAT_DATA_UINT32, 0 }, 13987 { "reasmTimeout", KSTAT_DATA_UINT32, 0 }, 13988 { "reasmReqds", KSTAT_DATA_UINT32, 0 }, 13989 { "reasmOKs", KSTAT_DATA_UINT32, 0 }, 13990 { "reasmFails", KSTAT_DATA_UINT32, 0 }, 13991 { "fragOKs", KSTAT_DATA_UINT32, 0 }, 13992 { "fragFails", KSTAT_DATA_UINT32, 0 }, 13993 { "fragCreates", KSTAT_DATA_UINT32, 0 }, 13994 { "addrEntrySize", KSTAT_DATA_INT32, 0 }, 13995 { "routeEntrySize", KSTAT_DATA_INT32, 0 }, 13996 { "netToMediaEntrySize", KSTAT_DATA_INT32, 0 }, 13997 { "routingDiscards", KSTAT_DATA_UINT32, 0 }, 13998 { "inErrs", KSTAT_DATA_UINT32, 0 }, 13999 { "noPorts", KSTAT_DATA_UINT32, 0 }, 14000 { "inCksumErrs", KSTAT_DATA_UINT32, 0 }, 14001 { "reasmDuplicates", KSTAT_DATA_UINT32, 0 }, 14002 { "reasmPartDups", KSTAT_DATA_UINT32, 0 }, 14003 { "forwProhibits", KSTAT_DATA_UINT32, 0 }, 14004 { "udpInCksumErrs", KSTAT_DATA_UINT32, 0 }, 14005 { "udpInOverflows", KSTAT_DATA_UINT32, 0 }, 14006 { "rawipInOverflows", KSTAT_DATA_UINT32, 0 }, 14007 { "ipsecInSucceeded", KSTAT_DATA_UINT32, 0 }, 14008 { "ipsecInFailed", KSTAT_DATA_INT32, 0 }, 14009 { "memberEntrySize", KSTAT_DATA_INT32, 0 }, 14010 { "inIPv6", KSTAT_DATA_UINT32, 0 }, 14011 { "outIPv6", KSTAT_DATA_UINT32, 0 }, 14012 { "outSwitchIPv6", KSTAT_DATA_UINT32, 0 }, 14013 }; 14014 14015 ksp = kstat_create_netstack("ip", 0, "ip", "mib2", KSTAT_TYPE_NAMED, 14016 NUM_OF_FIELDS(ip_named_kstat_t), 0, stackid); 14017 if (ksp == NULL || ksp->ks_data == NULL) 14018 return (NULL); 14019 14020 template.forwarding.value.ui32 = WE_ARE_FORWARDING(ipst) ? 1:2; 14021 template.defaultTTL.value.ui32 = (uint32_t)ipst->ips_ip_def_ttl; 14022 template.reasmTimeout.value.ui32 = ipst->ips_ip_reassembly_timeout; 14023 template.addrEntrySize.value.i32 = sizeof (mib2_ipAddrEntry_t); 14024 template.routeEntrySize.value.i32 = sizeof (mib2_ipRouteEntry_t); 14025 14026 template.netToMediaEntrySize.value.i32 = 14027 sizeof (mib2_ipNetToMediaEntry_t); 14028 14029 template.memberEntrySize.value.i32 = sizeof (ipv6_member_t); 14030 14031 bcopy(&template, ksp->ks_data, sizeof (template)); 14032 ksp->ks_update = ip_kstat_update; 14033 ksp->ks_private = (void *)(uintptr_t)stackid; 14034 14035 kstat_install(ksp); 14036 return (ksp); 14037 } 14038 14039 static void 14040 ip_kstat_fini(netstackid_t stackid, kstat_t *ksp) 14041 { 14042 if (ksp != NULL) { 14043 ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private); 14044 kstat_delete_netstack(ksp, stackid); 14045 } 14046 } 14047 14048 static int 14049 ip_kstat_update(kstat_t *kp, int rw) 14050 { 14051 ip_named_kstat_t *ipkp; 14052 mib2_ipIfStatsEntry_t ipmib; 14053 ill_walk_context_t ctx; 14054 ill_t *ill; 14055 netstackid_t stackid = (zoneid_t)(uintptr_t)kp->ks_private; 14056 netstack_t *ns; 14057 ip_stack_t *ipst; 14058 14059 if (kp == NULL || kp->ks_data == NULL) 14060 return (EIO); 14061 14062 if (rw == KSTAT_WRITE) 14063 return (EACCES); 14064 14065 ns = netstack_find_by_stackid(stackid); 14066 if (ns == NULL) 14067 return (-1); 14068 ipst = ns->netstack_ip; 14069 if (ipst == NULL) { 14070 netstack_rele(ns); 14071 return (-1); 14072 } 14073 ipkp = (ip_named_kstat_t *)kp->ks_data; 14074 14075 bcopy(&ipst->ips_ip_mib, &ipmib, sizeof (ipmib)); 14076 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 14077 ill = ILL_START_WALK_V4(&ctx, ipst); 14078 for (; ill != NULL; ill = ill_next(&ctx, ill)) 14079 ip_mib2_add_ip_stats(&ipmib, ill->ill_ip_mib); 14080 rw_exit(&ipst->ips_ill_g_lock); 14081 14082 ipkp->forwarding.value.ui32 = ipmib.ipIfStatsForwarding; 14083 ipkp->defaultTTL.value.ui32 = ipmib.ipIfStatsDefaultTTL; 14084 ipkp->inReceives.value.ui64 = ipmib.ipIfStatsHCInReceives; 14085 ipkp->inHdrErrors.value.ui32 = ipmib.ipIfStatsInHdrErrors; 14086 ipkp->inAddrErrors.value.ui32 = ipmib.ipIfStatsInAddrErrors; 14087 ipkp->forwDatagrams.value.ui64 = ipmib.ipIfStatsHCOutForwDatagrams; 14088 ipkp->inUnknownProtos.value.ui32 = ipmib.ipIfStatsInUnknownProtos; 14089 ipkp->inDiscards.value.ui32 = ipmib.ipIfStatsInDiscards; 14090 ipkp->inDelivers.value.ui64 = ipmib.ipIfStatsHCInDelivers; 14091 ipkp->outRequests.value.ui64 = ipmib.ipIfStatsHCOutRequests; 14092 ipkp->outDiscards.value.ui32 = ipmib.ipIfStatsOutDiscards; 14093 ipkp->outNoRoutes.value.ui32 = ipmib.ipIfStatsOutNoRoutes; 14094 ipkp->reasmTimeout.value.ui32 = ipst->ips_ip_reassembly_timeout; 14095 ipkp->reasmReqds.value.ui32 = ipmib.ipIfStatsReasmReqds; 14096 ipkp->reasmOKs.value.ui32 = ipmib.ipIfStatsReasmOKs; 14097 ipkp->reasmFails.value.ui32 = ipmib.ipIfStatsReasmFails; 14098 ipkp->fragOKs.value.ui32 = ipmib.ipIfStatsOutFragOKs; 14099 ipkp->fragFails.value.ui32 = ipmib.ipIfStatsOutFragFails; 14100 ipkp->fragCreates.value.ui32 = ipmib.ipIfStatsOutFragCreates; 14101 14102 ipkp->routingDiscards.value.ui32 = 0; 14103 ipkp->inErrs.value.ui32 = ipmib.tcpIfStatsInErrs; 14104 ipkp->noPorts.value.ui32 = ipmib.udpIfStatsNoPorts; 14105 ipkp->inCksumErrs.value.ui32 = ipmib.ipIfStatsInCksumErrs; 14106 ipkp->reasmDuplicates.value.ui32 = ipmib.ipIfStatsReasmDuplicates; 14107 ipkp->reasmPartDups.value.ui32 = ipmib.ipIfStatsReasmPartDups; 14108 ipkp->forwProhibits.value.ui32 = ipmib.ipIfStatsForwProhibits; 14109 ipkp->udpInCksumErrs.value.ui32 = ipmib.udpIfStatsInCksumErrs; 14110 ipkp->udpInOverflows.value.ui32 = ipmib.udpIfStatsInOverflows; 14111 ipkp->rawipInOverflows.value.ui32 = ipmib.rawipIfStatsInOverflows; 14112 ipkp->ipsecInSucceeded.value.ui32 = ipmib.ipsecIfStatsInSucceeded; 14113 ipkp->ipsecInFailed.value.i32 = ipmib.ipsecIfStatsInFailed; 14114 14115 ipkp->inIPv6.value.ui32 = ipmib.ipIfStatsInWrongIPVersion; 14116 ipkp->outIPv6.value.ui32 = ipmib.ipIfStatsOutWrongIPVersion; 14117 ipkp->outSwitchIPv6.value.ui32 = ipmib.ipIfStatsOutSwitchIPVersion; 14118 14119 netstack_rele(ns); 14120 14121 return (0); 14122 } 14123 14124 static void * 14125 icmp_kstat_init(netstackid_t stackid) 14126 { 14127 kstat_t *ksp; 14128 14129 icmp_named_kstat_t template = { 14130 { "inMsgs", KSTAT_DATA_UINT32 }, 14131 { "inErrors", KSTAT_DATA_UINT32 }, 14132 { "inDestUnreachs", KSTAT_DATA_UINT32 }, 14133 { "inTimeExcds", KSTAT_DATA_UINT32 }, 14134 { "inParmProbs", KSTAT_DATA_UINT32 }, 14135 { "inSrcQuenchs", KSTAT_DATA_UINT32 }, 14136 { "inRedirects", KSTAT_DATA_UINT32 }, 14137 { "inEchos", KSTAT_DATA_UINT32 }, 14138 { "inEchoReps", KSTAT_DATA_UINT32 }, 14139 { "inTimestamps", KSTAT_DATA_UINT32 }, 14140 { "inTimestampReps", KSTAT_DATA_UINT32 }, 14141 { "inAddrMasks", KSTAT_DATA_UINT32 }, 14142 { "inAddrMaskReps", KSTAT_DATA_UINT32 }, 14143 { "outMsgs", KSTAT_DATA_UINT32 }, 14144 { "outErrors", KSTAT_DATA_UINT32 }, 14145 { "outDestUnreachs", KSTAT_DATA_UINT32 }, 14146 { "outTimeExcds", KSTAT_DATA_UINT32 }, 14147 { "outParmProbs", KSTAT_DATA_UINT32 }, 14148 { "outSrcQuenchs", KSTAT_DATA_UINT32 }, 14149 { "outRedirects", KSTAT_DATA_UINT32 }, 14150 { "outEchos", KSTAT_DATA_UINT32 }, 14151 { "outEchoReps", KSTAT_DATA_UINT32 }, 14152 { "outTimestamps", KSTAT_DATA_UINT32 }, 14153 { "outTimestampReps", KSTAT_DATA_UINT32 }, 14154 { "outAddrMasks", KSTAT_DATA_UINT32 }, 14155 { "outAddrMaskReps", KSTAT_DATA_UINT32 }, 14156 { "inChksumErrs", KSTAT_DATA_UINT32 }, 14157 { "inUnknowns", KSTAT_DATA_UINT32 }, 14158 { "inFragNeeded", KSTAT_DATA_UINT32 }, 14159 { "outFragNeeded", KSTAT_DATA_UINT32 }, 14160 { "outDrops", KSTAT_DATA_UINT32 }, 14161 { "inOverFlows", KSTAT_DATA_UINT32 }, 14162 { "inBadRedirects", KSTAT_DATA_UINT32 }, 14163 }; 14164 14165 ksp = kstat_create_netstack("ip", 0, "icmp", "mib2", KSTAT_TYPE_NAMED, 14166 NUM_OF_FIELDS(icmp_named_kstat_t), 0, stackid); 14167 if (ksp == NULL || ksp->ks_data == NULL) 14168 return (NULL); 14169 14170 bcopy(&template, ksp->ks_data, sizeof (template)); 14171 14172 ksp->ks_update = icmp_kstat_update; 14173 ksp->ks_private = (void *)(uintptr_t)stackid; 14174 14175 kstat_install(ksp); 14176 return (ksp); 14177 } 14178 14179 static void 14180 icmp_kstat_fini(netstackid_t stackid, kstat_t *ksp) 14181 { 14182 if (ksp != NULL) { 14183 ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private); 14184 kstat_delete_netstack(ksp, stackid); 14185 } 14186 } 14187 14188 static int 14189 icmp_kstat_update(kstat_t *kp, int rw) 14190 { 14191 icmp_named_kstat_t *icmpkp; 14192 netstackid_t stackid = (zoneid_t)(uintptr_t)kp->ks_private; 14193 netstack_t *ns; 14194 ip_stack_t *ipst; 14195 14196 if ((kp == NULL) || (kp->ks_data == NULL)) 14197 return (EIO); 14198 14199 if (rw == KSTAT_WRITE) 14200 return (EACCES); 14201 14202 ns = netstack_find_by_stackid(stackid); 14203 if (ns == NULL) 14204 return (-1); 14205 ipst = ns->netstack_ip; 14206 if (ipst == NULL) { 14207 netstack_rele(ns); 14208 return (-1); 14209 } 14210 icmpkp = (icmp_named_kstat_t *)kp->ks_data; 14211 14212 icmpkp->inMsgs.value.ui32 = ipst->ips_icmp_mib.icmpInMsgs; 14213 icmpkp->inErrors.value.ui32 = ipst->ips_icmp_mib.icmpInErrors; 14214 icmpkp->inDestUnreachs.value.ui32 = 14215 ipst->ips_icmp_mib.icmpInDestUnreachs; 14216 icmpkp->inTimeExcds.value.ui32 = ipst->ips_icmp_mib.icmpInTimeExcds; 14217 icmpkp->inParmProbs.value.ui32 = ipst->ips_icmp_mib.icmpInParmProbs; 14218 icmpkp->inSrcQuenchs.value.ui32 = ipst->ips_icmp_mib.icmpInSrcQuenchs; 14219 icmpkp->inRedirects.value.ui32 = ipst->ips_icmp_mib.icmpInRedirects; 14220 icmpkp->inEchos.value.ui32 = ipst->ips_icmp_mib.icmpInEchos; 14221 icmpkp->inEchoReps.value.ui32 = ipst->ips_icmp_mib.icmpInEchoReps; 14222 icmpkp->inTimestamps.value.ui32 = ipst->ips_icmp_mib.icmpInTimestamps; 14223 icmpkp->inTimestampReps.value.ui32 = 14224 ipst->ips_icmp_mib.icmpInTimestampReps; 14225 icmpkp->inAddrMasks.value.ui32 = ipst->ips_icmp_mib.icmpInAddrMasks; 14226 icmpkp->inAddrMaskReps.value.ui32 = 14227 ipst->ips_icmp_mib.icmpInAddrMaskReps; 14228 icmpkp->outMsgs.value.ui32 = ipst->ips_icmp_mib.icmpOutMsgs; 14229 icmpkp->outErrors.value.ui32 = ipst->ips_icmp_mib.icmpOutErrors; 14230 icmpkp->outDestUnreachs.value.ui32 = 14231 ipst->ips_icmp_mib.icmpOutDestUnreachs; 14232 icmpkp->outTimeExcds.value.ui32 = ipst->ips_icmp_mib.icmpOutTimeExcds; 14233 icmpkp->outParmProbs.value.ui32 = ipst->ips_icmp_mib.icmpOutParmProbs; 14234 icmpkp->outSrcQuenchs.value.ui32 = 14235 ipst->ips_icmp_mib.icmpOutSrcQuenchs; 14236 icmpkp->outRedirects.value.ui32 = ipst->ips_icmp_mib.icmpOutRedirects; 14237 icmpkp->outEchos.value.ui32 = ipst->ips_icmp_mib.icmpOutEchos; 14238 icmpkp->outEchoReps.value.ui32 = ipst->ips_icmp_mib.icmpOutEchoReps; 14239 icmpkp->outTimestamps.value.ui32 = 14240 ipst->ips_icmp_mib.icmpOutTimestamps; 14241 icmpkp->outTimestampReps.value.ui32 = 14242 ipst->ips_icmp_mib.icmpOutTimestampReps; 14243 icmpkp->outAddrMasks.value.ui32 = 14244 ipst->ips_icmp_mib.icmpOutAddrMasks; 14245 icmpkp->outAddrMaskReps.value.ui32 = 14246 ipst->ips_icmp_mib.icmpOutAddrMaskReps; 14247 icmpkp->inCksumErrs.value.ui32 = ipst->ips_icmp_mib.icmpInCksumErrs; 14248 icmpkp->inUnknowns.value.ui32 = ipst->ips_icmp_mib.icmpInUnknowns; 14249 icmpkp->inFragNeeded.value.ui32 = ipst->ips_icmp_mib.icmpInFragNeeded; 14250 icmpkp->outFragNeeded.value.ui32 = 14251 ipst->ips_icmp_mib.icmpOutFragNeeded; 14252 icmpkp->outDrops.value.ui32 = ipst->ips_icmp_mib.icmpOutDrops; 14253 icmpkp->inOverflows.value.ui32 = ipst->ips_icmp_mib.icmpInOverflows; 14254 icmpkp->inBadRedirects.value.ui32 = 14255 ipst->ips_icmp_mib.icmpInBadRedirects; 14256 14257 netstack_rele(ns); 14258 return (0); 14259 } 14260 14261 /* 14262 * This is the fanout function for raw socket opened for SCTP. Note 14263 * that it is called after SCTP checks that there is no socket which 14264 * wants a packet. Then before SCTP handles this out of the blue packet, 14265 * this function is called to see if there is any raw socket for SCTP. 14266 * If there is and it is bound to the correct address, the packet will 14267 * be sent to that socket. Note that only one raw socket can be bound to 14268 * a port. This is assured in ipcl_sctp_hash_insert(); 14269 */ 14270 void 14271 ip_fanout_sctp_raw(mblk_t *mp, ipha_t *ipha, ip6_t *ip6h, uint32_t ports, 14272 ip_recv_attr_t *ira) 14273 { 14274 conn_t *connp; 14275 queue_t *rq; 14276 boolean_t secure; 14277 ill_t *ill = ira->ira_ill; 14278 ip_stack_t *ipst = ill->ill_ipst; 14279 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 14280 sctp_stack_t *sctps = ipst->ips_netstack->netstack_sctp; 14281 iaflags_t iraflags = ira->ira_flags; 14282 ill_t *rill = ira->ira_rill; 14283 14284 secure = iraflags & IRAF_IPSEC_SECURE; 14285 14286 connp = ipcl_classify_raw(mp, IPPROTO_SCTP, ports, ipha, ip6h, 14287 ira, ipst); 14288 if (connp == NULL) { 14289 /* 14290 * Although raw sctp is not summed, OOB chunks must be. 14291 * Drop the packet here if the sctp checksum failed. 14292 */ 14293 if (iraflags & IRAF_SCTP_CSUM_ERR) { 14294 SCTPS_BUMP_MIB(sctps, sctpChecksumError); 14295 freemsg(mp); 14296 return; 14297 } 14298 ira->ira_ill = ira->ira_rill = NULL; 14299 sctp_ootb_input(mp, ira, ipst); 14300 ira->ira_ill = ill; 14301 ira->ira_rill = rill; 14302 return; 14303 } 14304 rq = connp->conn_rq; 14305 if (IPCL_IS_NONSTR(connp) ? connp->conn_flow_cntrld : !canputnext(rq)) { 14306 CONN_DEC_REF(connp); 14307 BUMP_MIB(ill->ill_ip_mib, rawipIfStatsInOverflows); 14308 freemsg(mp); 14309 return; 14310 } 14311 if (((iraflags & IRAF_IS_IPV4) ? 14312 CONN_INBOUND_POLICY_PRESENT(connp, ipss) : 14313 CONN_INBOUND_POLICY_PRESENT_V6(connp, ipss)) || 14314 secure) { 14315 mp = ipsec_check_inbound_policy(mp, connp, ipha, 14316 ip6h, ira); 14317 if (mp == NULL) { 14318 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14319 /* Note that mp is NULL */ 14320 ip_drop_input("ipIfStatsInDiscards", mp, ill); 14321 CONN_DEC_REF(connp); 14322 return; 14323 } 14324 } 14325 14326 if (iraflags & IRAF_ICMP_ERROR) { 14327 (connp->conn_recvicmp)(connp, mp, NULL, ira); 14328 } else { 14329 ill_t *rill = ira->ira_rill; 14330 14331 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers); 14332 /* This is the SOCK_RAW, IPPROTO_SCTP case. */ 14333 ira->ira_ill = ira->ira_rill = NULL; 14334 (connp->conn_recv)(connp, mp, NULL, ira); 14335 ira->ira_ill = ill; 14336 ira->ira_rill = rill; 14337 } 14338 CONN_DEC_REF(connp); 14339 } 14340 14341 /* 14342 * Free a packet that has the link-layer dl_unitdata_req_t or fast-path 14343 * header before the ip payload. 14344 */ 14345 static void 14346 ip_xmit_flowctl_drop(ill_t *ill, mblk_t *mp, boolean_t is_fp_mp, int fp_mp_len) 14347 { 14348 int len = (mp->b_wptr - mp->b_rptr); 14349 mblk_t *ip_mp; 14350 14351 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 14352 if (is_fp_mp || len != fp_mp_len) { 14353 if (len > fp_mp_len) { 14354 /* 14355 * fastpath header and ip header in the first mblk 14356 */ 14357 mp->b_rptr += fp_mp_len; 14358 } else { 14359 /* 14360 * ip_xmit_attach_llhdr had to prepend an mblk to 14361 * attach the fastpath header before ip header. 14362 */ 14363 ip_mp = mp->b_cont; 14364 freeb(mp); 14365 mp = ip_mp; 14366 mp->b_rptr += (fp_mp_len - len); 14367 } 14368 } else { 14369 ip_mp = mp->b_cont; 14370 freeb(mp); 14371 mp = ip_mp; 14372 } 14373 ip_drop_output("ipIfStatsOutDiscards - flow ctl", mp, ill); 14374 freemsg(mp); 14375 } 14376 14377 /* 14378 * Normal post fragmentation function. 14379 * 14380 * Send a packet using the passed in nce. This handles both IPv4 and IPv6 14381 * using the same state machine. 14382 * 14383 * We return an error on failure. In particular we return EWOULDBLOCK 14384 * when the driver flow controls. In that case this ensures that ip_wsrv runs 14385 * (currently by canputnext failure resulting in backenabling from GLD.) 14386 * This allows the callers of conn_ip_output() to use EWOULDBLOCK as an 14387 * indication that they can flow control until ip_wsrv() tells then to restart. 14388 * 14389 * If the nce passed by caller is incomplete, this function 14390 * queues the packet and if necessary, sends ARP request and bails. 14391 * If the Neighbor Cache passed is fully resolved, we simply prepend 14392 * the link-layer header to the packet, do ipsec hw acceleration 14393 * work if necessary, and send the packet out on the wire. 14394 */ 14395 /* ARGSUSED6 */ 14396 int 14397 ip_xmit(mblk_t *mp, nce_t *nce, iaflags_t ixaflags, uint_t pkt_len, 14398 uint32_t xmit_hint, zoneid_t szone, zoneid_t nolzid, uintptr_t *ixacookie) 14399 { 14400 queue_t *wq; 14401 ill_t *ill = nce->nce_ill; 14402 ip_stack_t *ipst = ill->ill_ipst; 14403 uint64_t delta; 14404 boolean_t isv6 = ill->ill_isv6; 14405 boolean_t fp_mp; 14406 ncec_t *ncec = nce->nce_common; 14407 int64_t now = LBOLT_FASTPATH64; 14408 boolean_t is_probe; 14409 14410 DTRACE_PROBE1(ip__xmit, nce_t *, nce); 14411 14412 ASSERT(mp != NULL); 14413 ASSERT(mp->b_datap->db_type == M_DATA); 14414 ASSERT(pkt_len == msgdsize(mp)); 14415 14416 /* 14417 * If we have already been here and are coming back after ARP/ND. 14418 * the IXAF_NO_TRACE flag is set. We skip FW_HOOKS, DTRACE and ipobs 14419 * in that case since they have seen the packet when it came here 14420 * the first time. 14421 */ 14422 if (ixaflags & IXAF_NO_TRACE) 14423 goto sendit; 14424 14425 if (ixaflags & IXAF_IS_IPV4) { 14426 ipha_t *ipha = (ipha_t *)mp->b_rptr; 14427 14428 ASSERT(!isv6); 14429 ASSERT(pkt_len == ntohs(((ipha_t *)mp->b_rptr)->ipha_length)); 14430 if (HOOKS4_INTERESTED_PHYSICAL_OUT(ipst) && 14431 !(ixaflags & IXAF_NO_PFHOOK)) { 14432 int error; 14433 14434 FW_HOOKS(ipst->ips_ip4_physical_out_event, 14435 ipst->ips_ipv4firewall_physical_out, 14436 NULL, ill, ipha, mp, mp, 0, ipst, error); 14437 DTRACE_PROBE1(ip4__physical__out__end, 14438 mblk_t *, mp); 14439 if (mp == NULL) 14440 return (error); 14441 14442 /* The length could have changed */ 14443 pkt_len = msgdsize(mp); 14444 } 14445 if (ipst->ips_ip4_observe.he_interested) { 14446 /* 14447 * Note that for TX the zoneid is the sending 14448 * zone, whether or not MLP is in play. 14449 * Since the szone argument is the IP zoneid (i.e., 14450 * zero for exclusive-IP zones) and ipobs wants 14451 * the system zoneid, we map it here. 14452 */ 14453 szone = IP_REAL_ZONEID(szone, ipst); 14454 14455 /* 14456 * On the outbound path the destination zone will be 14457 * unknown as we're sending this packet out on the 14458 * wire. 14459 */ 14460 ipobs_hook(mp, IPOBS_HOOK_OUTBOUND, szone, ALL_ZONES, 14461 ill, ipst); 14462 } 14463 DTRACE_IP7(send, mblk_t *, mp, conn_t *, NULL, 14464 void_ip_t *, ipha, __dtrace_ipsr_ill_t *, ill, 14465 ipha_t *, ipha, ip6_t *, NULL, int, 0); 14466 } else { 14467 ip6_t *ip6h = (ip6_t *)mp->b_rptr; 14468 14469 ASSERT(isv6); 14470 ASSERT(pkt_len == 14471 ntohs(((ip6_t *)mp->b_rptr)->ip6_plen) + IPV6_HDR_LEN); 14472 if (HOOKS6_INTERESTED_PHYSICAL_OUT(ipst) && 14473 !(ixaflags & IXAF_NO_PFHOOK)) { 14474 int error; 14475 14476 FW_HOOKS6(ipst->ips_ip6_physical_out_event, 14477 ipst->ips_ipv6firewall_physical_out, 14478 NULL, ill, ip6h, mp, mp, 0, ipst, error); 14479 DTRACE_PROBE1(ip6__physical__out__end, 14480 mblk_t *, mp); 14481 if (mp == NULL) 14482 return (error); 14483 14484 /* The length could have changed */ 14485 pkt_len = msgdsize(mp); 14486 } 14487 if (ipst->ips_ip6_observe.he_interested) { 14488 /* See above */ 14489 szone = IP_REAL_ZONEID(szone, ipst); 14490 14491 ipobs_hook(mp, IPOBS_HOOK_OUTBOUND, szone, ALL_ZONES, 14492 ill, ipst); 14493 } 14494 DTRACE_IP7(send, mblk_t *, mp, conn_t *, NULL, 14495 void_ip_t *, ip6h, __dtrace_ipsr_ill_t *, ill, 14496 ipha_t *, NULL, ip6_t *, ip6h, int, 0); 14497 } 14498 14499 sendit: 14500 /* 14501 * We check the state without a lock because the state can never 14502 * move "backwards" to initial or incomplete. 14503 */ 14504 switch (ncec->ncec_state) { 14505 case ND_REACHABLE: 14506 case ND_STALE: 14507 case ND_DELAY: 14508 case ND_PROBE: 14509 mp = ip_xmit_attach_llhdr(mp, nce); 14510 if (mp == NULL) { 14511 /* 14512 * ip_xmit_attach_llhdr has increased 14513 * ipIfStatsOutDiscards and called ip_drop_output() 14514 */ 14515 return (ENOBUFS); 14516 } 14517 /* 14518 * check if nce_fastpath completed and we tagged on a 14519 * copy of nce_fp_mp in ip_xmit_attach_llhdr(). 14520 */ 14521 fp_mp = (mp->b_datap->db_type == M_DATA); 14522 14523 if (fp_mp && 14524 (ill->ill_capabilities & ILL_CAPAB_DLD_DIRECT)) { 14525 ill_dld_direct_t *idd; 14526 14527 idd = &ill->ill_dld_capab->idc_direct; 14528 /* 14529 * Send the packet directly to DLD, where it 14530 * may be queued depending on the availability 14531 * of transmit resources at the media layer. 14532 * Return value should be taken into 14533 * account and flow control the TCP. 14534 */ 14535 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutTransmits); 14536 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutOctets, 14537 pkt_len); 14538 14539 if (ixaflags & IXAF_NO_DEV_FLOW_CTL) { 14540 (void) idd->idd_tx_df(idd->idd_tx_dh, mp, 14541 (uintptr_t)xmit_hint, IP_DROP_ON_NO_DESC); 14542 } else { 14543 uintptr_t cookie; 14544 14545 if ((cookie = idd->idd_tx_df(idd->idd_tx_dh, 14546 mp, (uintptr_t)xmit_hint, 0)) != 0) { 14547 if (ixacookie != NULL) 14548 *ixacookie = cookie; 14549 return (EWOULDBLOCK); 14550 } 14551 } 14552 } else { 14553 wq = ill->ill_wq; 14554 14555 if (!(ixaflags & IXAF_NO_DEV_FLOW_CTL) && 14556 !canputnext(wq)) { 14557 if (ixacookie != NULL) 14558 *ixacookie = 0; 14559 ip_xmit_flowctl_drop(ill, mp, fp_mp, 14560 nce->nce_fp_mp != NULL ? 14561 MBLKL(nce->nce_fp_mp) : 0); 14562 return (EWOULDBLOCK); 14563 } 14564 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutTransmits); 14565 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutOctets, 14566 pkt_len); 14567 putnext(wq, mp); 14568 } 14569 14570 /* 14571 * The rest of this function implements Neighbor Unreachability 14572 * detection. Determine if the ncec is eligible for NUD. 14573 */ 14574 if (ncec->ncec_flags & NCE_F_NONUD) 14575 return (0); 14576 14577 ASSERT(ncec->ncec_state != ND_INCOMPLETE); 14578 14579 /* 14580 * Check for upper layer advice 14581 */ 14582 if (ixaflags & IXAF_REACH_CONF) { 14583 timeout_id_t tid; 14584 14585 /* 14586 * It should be o.k. to check the state without 14587 * a lock here, at most we lose an advice. 14588 */ 14589 ncec->ncec_last = TICK_TO_MSEC(now); 14590 if (ncec->ncec_state != ND_REACHABLE) { 14591 mutex_enter(&ncec->ncec_lock); 14592 ncec->ncec_state = ND_REACHABLE; 14593 tid = ncec->ncec_timeout_id; 14594 ncec->ncec_timeout_id = 0; 14595 mutex_exit(&ncec->ncec_lock); 14596 (void) untimeout(tid); 14597 if (ip_debug > 2) { 14598 /* ip1dbg */ 14599 pr_addr_dbg("ip_xmit: state" 14600 " for %s changed to" 14601 " REACHABLE\n", AF_INET6, 14602 &ncec->ncec_addr); 14603 } 14604 } 14605 return (0); 14606 } 14607 14608 delta = TICK_TO_MSEC(now) - ncec->ncec_last; 14609 ip1dbg(("ip_xmit: delta = %" PRId64 14610 " ill_reachable_time = %d \n", delta, 14611 ill->ill_reachable_time)); 14612 if (delta > (uint64_t)ill->ill_reachable_time) { 14613 mutex_enter(&ncec->ncec_lock); 14614 switch (ncec->ncec_state) { 14615 case ND_REACHABLE: 14616 ASSERT((ncec->ncec_flags & NCE_F_NONUD) == 0); 14617 /* FALLTHROUGH */ 14618 case ND_STALE: 14619 /* 14620 * ND_REACHABLE is identical to 14621 * ND_STALE in this specific case. If 14622 * reachable time has expired for this 14623 * neighbor (delta is greater than 14624 * reachable time), conceptually, the 14625 * neighbor cache is no longer in 14626 * REACHABLE state, but already in 14627 * STALE state. So the correct 14628 * transition here is to ND_DELAY. 14629 */ 14630 ncec->ncec_state = ND_DELAY; 14631 mutex_exit(&ncec->ncec_lock); 14632 nce_restart_timer(ncec, 14633 ipst->ips_delay_first_probe_time); 14634 if (ip_debug > 3) { 14635 /* ip2dbg */ 14636 pr_addr_dbg("ip_xmit: state" 14637 " for %s changed to" 14638 " DELAY\n", AF_INET6, 14639 &ncec->ncec_addr); 14640 } 14641 break; 14642 case ND_DELAY: 14643 case ND_PROBE: 14644 mutex_exit(&ncec->ncec_lock); 14645 /* Timers have already started */ 14646 break; 14647 case ND_UNREACHABLE: 14648 /* 14649 * nce_timer has detected that this ncec 14650 * is unreachable and initiated deleting 14651 * this ncec. 14652 * This is a harmless race where we found the 14653 * ncec before it was deleted and have 14654 * just sent out a packet using this 14655 * unreachable ncec. 14656 */ 14657 mutex_exit(&ncec->ncec_lock); 14658 break; 14659 default: 14660 ASSERT(0); 14661 mutex_exit(&ncec->ncec_lock); 14662 } 14663 } 14664 return (0); 14665 14666 case ND_INCOMPLETE: 14667 /* 14668 * the state could have changed since we didn't hold the lock. 14669 * Re-verify state under lock. 14670 */ 14671 is_probe = ipmp_packet_is_probe(mp, nce->nce_ill); 14672 mutex_enter(&ncec->ncec_lock); 14673 if (NCE_ISREACHABLE(ncec)) { 14674 mutex_exit(&ncec->ncec_lock); 14675 goto sendit; 14676 } 14677 /* queue the packet */ 14678 nce_queue_mp(ncec, mp, is_probe); 14679 mutex_exit(&ncec->ncec_lock); 14680 DTRACE_PROBE2(ip__xmit__incomplete, 14681 (ncec_t *), ncec, (mblk_t *), mp); 14682 return (0); 14683 14684 case ND_INITIAL: 14685 /* 14686 * State could have changed since we didn't hold the lock, so 14687 * re-verify state. 14688 */ 14689 is_probe = ipmp_packet_is_probe(mp, nce->nce_ill); 14690 mutex_enter(&ncec->ncec_lock); 14691 if (NCE_ISREACHABLE(ncec)) { 14692 mutex_exit(&ncec->ncec_lock); 14693 goto sendit; 14694 } 14695 nce_queue_mp(ncec, mp, is_probe); 14696 if (ncec->ncec_state == ND_INITIAL) { 14697 ncec->ncec_state = ND_INCOMPLETE; 14698 mutex_exit(&ncec->ncec_lock); 14699 /* 14700 * figure out the source we want to use 14701 * and resolve it. 14702 */ 14703 ip_ndp_resolve(ncec); 14704 } else { 14705 mutex_exit(&ncec->ncec_lock); 14706 } 14707 return (0); 14708 14709 case ND_UNREACHABLE: 14710 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 14711 ip_drop_output("ipIfStatsOutDiscards - ND_UNREACHABLE", 14712 mp, ill); 14713 freemsg(mp); 14714 return (0); 14715 14716 default: 14717 ASSERT(0); 14718 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 14719 ip_drop_output("ipIfStatsOutDiscards - ND_other", 14720 mp, ill); 14721 freemsg(mp); 14722 return (ENETUNREACH); 14723 } 14724 } 14725 14726 /* 14727 * Return B_TRUE if the buffers differ in length or content. 14728 * This is used for comparing extension header buffers. 14729 * Note that an extension header would be declared different 14730 * even if all that changed was the next header value in that header i.e. 14731 * what really changed is the next extension header. 14732 */ 14733 boolean_t 14734 ip_cmpbuf(const void *abuf, uint_t alen, boolean_t b_valid, const void *bbuf, 14735 uint_t blen) 14736 { 14737 if (!b_valid) 14738 blen = 0; 14739 14740 if (alen != blen) 14741 return (B_TRUE); 14742 if (alen == 0) 14743 return (B_FALSE); /* Both zero length */ 14744 return (bcmp(abuf, bbuf, alen)); 14745 } 14746 14747 /* 14748 * Preallocate memory for ip_savebuf(). Returns B_TRUE if ok. 14749 * Return B_FALSE if memory allocation fails - don't change any state! 14750 */ 14751 boolean_t 14752 ip_allocbuf(void **dstp, uint_t *dstlenp, boolean_t src_valid, 14753 const void *src, uint_t srclen) 14754 { 14755 void *dst; 14756 14757 if (!src_valid) 14758 srclen = 0; 14759 14760 ASSERT(*dstlenp == 0); 14761 if (src != NULL && srclen != 0) { 14762 dst = mi_alloc(srclen, BPRI_MED); 14763 if (dst == NULL) 14764 return (B_FALSE); 14765 } else { 14766 dst = NULL; 14767 } 14768 if (*dstp != NULL) 14769 mi_free(*dstp); 14770 *dstp = dst; 14771 *dstlenp = dst == NULL ? 0 : srclen; 14772 return (B_TRUE); 14773 } 14774 14775 /* 14776 * Replace what is in *dst, *dstlen with the source. 14777 * Assumes ip_allocbuf has already been called. 14778 */ 14779 void 14780 ip_savebuf(void **dstp, uint_t *dstlenp, boolean_t src_valid, 14781 const void *src, uint_t srclen) 14782 { 14783 if (!src_valid) 14784 srclen = 0; 14785 14786 ASSERT(*dstlenp == srclen); 14787 if (src != NULL && srclen != 0) 14788 bcopy(src, *dstp, srclen); 14789 } 14790 14791 /* 14792 * Free the storage pointed to by the members of an ip_pkt_t. 14793 */ 14794 void 14795 ip_pkt_free(ip_pkt_t *ipp) 14796 { 14797 uint_t fields = ipp->ipp_fields; 14798 14799 if (fields & IPPF_HOPOPTS) { 14800 kmem_free(ipp->ipp_hopopts, ipp->ipp_hopoptslen); 14801 ipp->ipp_hopopts = NULL; 14802 ipp->ipp_hopoptslen = 0; 14803 } 14804 if (fields & IPPF_RTHDRDSTOPTS) { 14805 kmem_free(ipp->ipp_rthdrdstopts, ipp->ipp_rthdrdstoptslen); 14806 ipp->ipp_rthdrdstopts = NULL; 14807 ipp->ipp_rthdrdstoptslen = 0; 14808 } 14809 if (fields & IPPF_DSTOPTS) { 14810 kmem_free(ipp->ipp_dstopts, ipp->ipp_dstoptslen); 14811 ipp->ipp_dstopts = NULL; 14812 ipp->ipp_dstoptslen = 0; 14813 } 14814 if (fields & IPPF_RTHDR) { 14815 kmem_free(ipp->ipp_rthdr, ipp->ipp_rthdrlen); 14816 ipp->ipp_rthdr = NULL; 14817 ipp->ipp_rthdrlen = 0; 14818 } 14819 if (fields & IPPF_IPV4_OPTIONS) { 14820 kmem_free(ipp->ipp_ipv4_options, ipp->ipp_ipv4_options_len); 14821 ipp->ipp_ipv4_options = NULL; 14822 ipp->ipp_ipv4_options_len = 0; 14823 } 14824 if (fields & IPPF_LABEL_V4) { 14825 kmem_free(ipp->ipp_label_v4, ipp->ipp_label_len_v4); 14826 ipp->ipp_label_v4 = NULL; 14827 ipp->ipp_label_len_v4 = 0; 14828 } 14829 if (fields & IPPF_LABEL_V6) { 14830 kmem_free(ipp->ipp_label_v6, ipp->ipp_label_len_v6); 14831 ipp->ipp_label_v6 = NULL; 14832 ipp->ipp_label_len_v6 = 0; 14833 } 14834 ipp->ipp_fields &= ~(IPPF_HOPOPTS | IPPF_RTHDRDSTOPTS | IPPF_DSTOPTS | 14835 IPPF_RTHDR | IPPF_IPV4_OPTIONS | IPPF_LABEL_V4 | IPPF_LABEL_V6); 14836 } 14837 14838 /* 14839 * Copy from src to dst and allocate as needed. 14840 * Returns zero or ENOMEM. 14841 * 14842 * The caller must initialize dst to zero. 14843 */ 14844 int 14845 ip_pkt_copy(ip_pkt_t *src, ip_pkt_t *dst, int kmflag) 14846 { 14847 uint_t fields = src->ipp_fields; 14848 14849 /* Start with fields that don't require memory allocation */ 14850 dst->ipp_fields = fields & 14851 ~(IPPF_HOPOPTS | IPPF_RTHDRDSTOPTS | IPPF_DSTOPTS | 14852 IPPF_RTHDR | IPPF_IPV4_OPTIONS | IPPF_LABEL_V4 | IPPF_LABEL_V6); 14853 14854 dst->ipp_addr = src->ipp_addr; 14855 dst->ipp_unicast_hops = src->ipp_unicast_hops; 14856 dst->ipp_hoplimit = src->ipp_hoplimit; 14857 dst->ipp_tclass = src->ipp_tclass; 14858 dst->ipp_type_of_service = src->ipp_type_of_service; 14859 14860 if (!(fields & (IPPF_HOPOPTS | IPPF_RTHDRDSTOPTS | IPPF_DSTOPTS | 14861 IPPF_RTHDR | IPPF_IPV4_OPTIONS | IPPF_LABEL_V4 | IPPF_LABEL_V6))) 14862 return (0); 14863 14864 if (fields & IPPF_HOPOPTS) { 14865 dst->ipp_hopopts = kmem_alloc(src->ipp_hopoptslen, kmflag); 14866 if (dst->ipp_hopopts == NULL) { 14867 ip_pkt_free(dst); 14868 return (ENOMEM); 14869 } 14870 dst->ipp_fields |= IPPF_HOPOPTS; 14871 bcopy(src->ipp_hopopts, dst->ipp_hopopts, 14872 src->ipp_hopoptslen); 14873 dst->ipp_hopoptslen = src->ipp_hopoptslen; 14874 } 14875 if (fields & IPPF_RTHDRDSTOPTS) { 14876 dst->ipp_rthdrdstopts = kmem_alloc(src->ipp_rthdrdstoptslen, 14877 kmflag); 14878 if (dst->ipp_rthdrdstopts == NULL) { 14879 ip_pkt_free(dst); 14880 return (ENOMEM); 14881 } 14882 dst->ipp_fields |= IPPF_RTHDRDSTOPTS; 14883 bcopy(src->ipp_rthdrdstopts, dst->ipp_rthdrdstopts, 14884 src->ipp_rthdrdstoptslen); 14885 dst->ipp_rthdrdstoptslen = src->ipp_rthdrdstoptslen; 14886 } 14887 if (fields & IPPF_DSTOPTS) { 14888 dst->ipp_dstopts = kmem_alloc(src->ipp_dstoptslen, kmflag); 14889 if (dst->ipp_dstopts == NULL) { 14890 ip_pkt_free(dst); 14891 return (ENOMEM); 14892 } 14893 dst->ipp_fields |= IPPF_DSTOPTS; 14894 bcopy(src->ipp_dstopts, dst->ipp_dstopts, 14895 src->ipp_dstoptslen); 14896 dst->ipp_dstoptslen = src->ipp_dstoptslen; 14897 } 14898 if (fields & IPPF_RTHDR) { 14899 dst->ipp_rthdr = kmem_alloc(src->ipp_rthdrlen, kmflag); 14900 if (dst->ipp_rthdr == NULL) { 14901 ip_pkt_free(dst); 14902 return (ENOMEM); 14903 } 14904 dst->ipp_fields |= IPPF_RTHDR; 14905 bcopy(src->ipp_rthdr, dst->ipp_rthdr, 14906 src->ipp_rthdrlen); 14907 dst->ipp_rthdrlen = src->ipp_rthdrlen; 14908 } 14909 if (fields & IPPF_IPV4_OPTIONS) { 14910 dst->ipp_ipv4_options = kmem_alloc(src->ipp_ipv4_options_len, 14911 kmflag); 14912 if (dst->ipp_ipv4_options == NULL) { 14913 ip_pkt_free(dst); 14914 return (ENOMEM); 14915 } 14916 dst->ipp_fields |= IPPF_IPV4_OPTIONS; 14917 bcopy(src->ipp_ipv4_options, dst->ipp_ipv4_options, 14918 src->ipp_ipv4_options_len); 14919 dst->ipp_ipv4_options_len = src->ipp_ipv4_options_len; 14920 } 14921 if (fields & IPPF_LABEL_V4) { 14922 dst->ipp_label_v4 = kmem_alloc(src->ipp_label_len_v4, kmflag); 14923 if (dst->ipp_label_v4 == NULL) { 14924 ip_pkt_free(dst); 14925 return (ENOMEM); 14926 } 14927 dst->ipp_fields |= IPPF_LABEL_V4; 14928 bcopy(src->ipp_label_v4, dst->ipp_label_v4, 14929 src->ipp_label_len_v4); 14930 dst->ipp_label_len_v4 = src->ipp_label_len_v4; 14931 } 14932 if (fields & IPPF_LABEL_V6) { 14933 dst->ipp_label_v6 = kmem_alloc(src->ipp_label_len_v6, kmflag); 14934 if (dst->ipp_label_v6 == NULL) { 14935 ip_pkt_free(dst); 14936 return (ENOMEM); 14937 } 14938 dst->ipp_fields |= IPPF_LABEL_V6; 14939 bcopy(src->ipp_label_v6, dst->ipp_label_v6, 14940 src->ipp_label_len_v6); 14941 dst->ipp_label_len_v6 = src->ipp_label_len_v6; 14942 } 14943 if (fields & IPPF_FRAGHDR) { 14944 dst->ipp_fraghdr = kmem_alloc(src->ipp_fraghdrlen, kmflag); 14945 if (dst->ipp_fraghdr == NULL) { 14946 ip_pkt_free(dst); 14947 return (ENOMEM); 14948 } 14949 dst->ipp_fields |= IPPF_FRAGHDR; 14950 bcopy(src->ipp_fraghdr, dst->ipp_fraghdr, 14951 src->ipp_fraghdrlen); 14952 dst->ipp_fraghdrlen = src->ipp_fraghdrlen; 14953 } 14954 return (0); 14955 } 14956 14957 /* 14958 * Returns INADDR_ANY if no source route 14959 */ 14960 ipaddr_t 14961 ip_pkt_source_route_v4(const ip_pkt_t *ipp) 14962 { 14963 ipaddr_t nexthop = INADDR_ANY; 14964 ipoptp_t opts; 14965 uchar_t *opt; 14966 uint8_t optval; 14967 uint8_t optlen; 14968 uint32_t totallen; 14969 14970 if (!(ipp->ipp_fields & IPPF_IPV4_OPTIONS)) 14971 return (INADDR_ANY); 14972 14973 totallen = ipp->ipp_ipv4_options_len; 14974 if (totallen & 0x3) 14975 return (INADDR_ANY); 14976 14977 for (optval = ipoptp_first2(&opts, totallen, ipp->ipp_ipv4_options); 14978 optval != IPOPT_EOL; 14979 optval = ipoptp_next(&opts)) { 14980 opt = opts.ipoptp_cur; 14981 switch (optval) { 14982 uint8_t off; 14983 case IPOPT_SSRR: 14984 case IPOPT_LSRR: 14985 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 14986 break; 14987 } 14988 optlen = opts.ipoptp_len; 14989 off = opt[IPOPT_OFFSET]; 14990 off--; 14991 if (optlen < IP_ADDR_LEN || 14992 off > optlen - IP_ADDR_LEN) { 14993 /* End of source route */ 14994 break; 14995 } 14996 bcopy((char *)opt + off, &nexthop, IP_ADDR_LEN); 14997 if (nexthop == htonl(INADDR_LOOPBACK)) { 14998 /* Ignore */ 14999 nexthop = INADDR_ANY; 15000 break; 15001 } 15002 break; 15003 } 15004 } 15005 return (nexthop); 15006 } 15007 15008 /* 15009 * Reverse a source route. 15010 */ 15011 void 15012 ip_pkt_source_route_reverse_v4(ip_pkt_t *ipp) 15013 { 15014 ipaddr_t tmp; 15015 ipoptp_t opts; 15016 uchar_t *opt; 15017 uint8_t optval; 15018 uint32_t totallen; 15019 15020 if (!(ipp->ipp_fields & IPPF_IPV4_OPTIONS)) 15021 return; 15022 15023 totallen = ipp->ipp_ipv4_options_len; 15024 if (totallen & 0x3) 15025 return; 15026 15027 for (optval = ipoptp_first2(&opts, totallen, ipp->ipp_ipv4_options); 15028 optval != IPOPT_EOL; 15029 optval = ipoptp_next(&opts)) { 15030 uint8_t off1, off2; 15031 15032 opt = opts.ipoptp_cur; 15033 switch (optval) { 15034 case IPOPT_SSRR: 15035 case IPOPT_LSRR: 15036 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 15037 break; 15038 } 15039 off1 = IPOPT_MINOFF_SR - 1; 15040 off2 = opt[IPOPT_OFFSET] - IP_ADDR_LEN - 1; 15041 while (off2 > off1) { 15042 bcopy(opt + off2, &tmp, IP_ADDR_LEN); 15043 bcopy(opt + off1, opt + off2, IP_ADDR_LEN); 15044 bcopy(&tmp, opt + off2, IP_ADDR_LEN); 15045 off2 -= IP_ADDR_LEN; 15046 off1 += IP_ADDR_LEN; 15047 } 15048 opt[IPOPT_OFFSET] = IPOPT_MINOFF_SR; 15049 break; 15050 } 15051 } 15052 } 15053 15054 /* 15055 * Returns NULL if no routing header 15056 */ 15057 in6_addr_t * 15058 ip_pkt_source_route_v6(const ip_pkt_t *ipp) 15059 { 15060 in6_addr_t *nexthop = NULL; 15061 ip6_rthdr0_t *rthdr; 15062 15063 if (!(ipp->ipp_fields & IPPF_RTHDR)) 15064 return (NULL); 15065 15066 rthdr = (ip6_rthdr0_t *)ipp->ipp_rthdr; 15067 if (rthdr->ip6r0_segleft == 0) 15068 return (NULL); 15069 15070 nexthop = (in6_addr_t *)((char *)rthdr + sizeof (*rthdr)); 15071 return (nexthop); 15072 } 15073 15074 zoneid_t 15075 ip_get_zoneid_v4(ipaddr_t addr, mblk_t *mp, ip_recv_attr_t *ira, 15076 zoneid_t lookup_zoneid) 15077 { 15078 ip_stack_t *ipst = ira->ira_ill->ill_ipst; 15079 ire_t *ire; 15080 int ire_flags = MATCH_IRE_TYPE; 15081 zoneid_t zoneid = ALL_ZONES; 15082 15083 if (is_system_labeled() && !tsol_can_accept_raw(mp, ira, B_FALSE)) 15084 return (ALL_ZONES); 15085 15086 if (lookup_zoneid != ALL_ZONES) 15087 ire_flags |= MATCH_IRE_ZONEONLY; 15088 ire = ire_ftable_lookup_v4(addr, NULL, NULL, IRE_LOCAL | IRE_LOOPBACK, 15089 NULL, lookup_zoneid, NULL, ire_flags, 0, ipst, NULL); 15090 if (ire != NULL) { 15091 zoneid = IP_REAL_ZONEID(ire->ire_zoneid, ipst); 15092 ire_refrele(ire); 15093 } 15094 return (zoneid); 15095 } 15096 15097 zoneid_t 15098 ip_get_zoneid_v6(in6_addr_t *addr, mblk_t *mp, const ill_t *ill, 15099 ip_recv_attr_t *ira, zoneid_t lookup_zoneid) 15100 { 15101 ip_stack_t *ipst = ira->ira_ill->ill_ipst; 15102 ire_t *ire; 15103 int ire_flags = MATCH_IRE_TYPE; 15104 zoneid_t zoneid = ALL_ZONES; 15105 15106 if (is_system_labeled() && !tsol_can_accept_raw(mp, ira, B_FALSE)) 15107 return (ALL_ZONES); 15108 15109 if (IN6_IS_ADDR_LINKLOCAL(addr)) 15110 ire_flags |= MATCH_IRE_ILL; 15111 15112 if (lookup_zoneid != ALL_ZONES) 15113 ire_flags |= MATCH_IRE_ZONEONLY; 15114 ire = ire_ftable_lookup_v6(addr, NULL, NULL, IRE_LOCAL | IRE_LOOPBACK, 15115 ill, lookup_zoneid, NULL, ire_flags, 0, ipst, NULL); 15116 if (ire != NULL) { 15117 zoneid = IP_REAL_ZONEID(ire->ire_zoneid, ipst); 15118 ire_refrele(ire); 15119 } 15120 return (zoneid); 15121 } 15122 15123 /* 15124 * IP obserability hook support functions. 15125 */ 15126 static void 15127 ipobs_init(ip_stack_t *ipst) 15128 { 15129 netid_t id; 15130 15131 id = net_getnetidbynetstackid(ipst->ips_netstack->netstack_stackid); 15132 15133 ipst->ips_ip4_observe_pr = net_protocol_lookup(id, NHF_INET); 15134 VERIFY(ipst->ips_ip4_observe_pr != NULL); 15135 15136 ipst->ips_ip6_observe_pr = net_protocol_lookup(id, NHF_INET6); 15137 VERIFY(ipst->ips_ip6_observe_pr != NULL); 15138 } 15139 15140 static void 15141 ipobs_fini(ip_stack_t *ipst) 15142 { 15143 15144 VERIFY(net_protocol_release(ipst->ips_ip4_observe_pr) == 0); 15145 VERIFY(net_protocol_release(ipst->ips_ip6_observe_pr) == 0); 15146 } 15147 15148 /* 15149 * hook_pkt_observe_t is composed in network byte order so that the 15150 * entire mblk_t chain handed into hook_run can be used as-is. 15151 * The caveat is that use of the fields, such as the zone fields, 15152 * requires conversion into host byte order first. 15153 */ 15154 void 15155 ipobs_hook(mblk_t *mp, int htype, zoneid_t zsrc, zoneid_t zdst, 15156 const ill_t *ill, ip_stack_t *ipst) 15157 { 15158 hook_pkt_observe_t *hdr; 15159 uint64_t grifindex; 15160 mblk_t *imp; 15161 15162 imp = allocb(sizeof (*hdr), BPRI_HI); 15163 if (imp == NULL) 15164 return; 15165 15166 hdr = (hook_pkt_observe_t *)imp->b_rptr; 15167 /* 15168 * b_wptr is set to make the apparent size of the data in the mblk_t 15169 * to exclude the pointers at the end of hook_pkt_observer_t. 15170 */ 15171 imp->b_wptr = imp->b_rptr + sizeof (dl_ipnetinfo_t); 15172 imp->b_cont = mp; 15173 15174 ASSERT(DB_TYPE(mp) == M_DATA); 15175 15176 if (IS_UNDER_IPMP(ill)) 15177 grifindex = ipmp_ill_get_ipmp_ifindex(ill); 15178 else 15179 grifindex = 0; 15180 15181 hdr->hpo_version = 1; 15182 hdr->hpo_htype = htons(htype); 15183 hdr->hpo_pktlen = htonl((ulong_t)msgdsize(mp)); 15184 hdr->hpo_ifindex = htonl(ill->ill_phyint->phyint_ifindex); 15185 hdr->hpo_grifindex = htonl(grifindex); 15186 hdr->hpo_zsrc = htonl(zsrc); 15187 hdr->hpo_zdst = htonl(zdst); 15188 hdr->hpo_pkt = imp; 15189 hdr->hpo_ctx = ipst->ips_netstack; 15190 15191 if (ill->ill_isv6) { 15192 hdr->hpo_family = AF_INET6; 15193 (void) hook_run(ipst->ips_ipv6_net_data->netd_hooks, 15194 ipst->ips_ipv6observing, (hook_data_t)hdr); 15195 } else { 15196 hdr->hpo_family = AF_INET; 15197 (void) hook_run(ipst->ips_ipv4_net_data->netd_hooks, 15198 ipst->ips_ipv4observing, (hook_data_t)hdr); 15199 } 15200 15201 imp->b_cont = NULL; 15202 freemsg(imp); 15203 } 15204 15205 /* 15206 * Utility routine that checks if `v4srcp' is a valid address on underlying 15207 * interface `ill'. If `ipifp' is non-NULL, it's set to a held ipif 15208 * associated with `v4srcp' on success. NOTE: if this is not called from 15209 * inside the IPSQ (ill_g_lock is not held), `ill' may be removed from the 15210 * group during or after this lookup. 15211 */ 15212 boolean_t 15213 ipif_lookup_testaddr_v4(ill_t *ill, const in_addr_t *v4srcp, ipif_t **ipifp) 15214 { 15215 ipif_t *ipif; 15216 15217 ipif = ipif_lookup_addr_exact(*v4srcp, ill, ill->ill_ipst); 15218 if (ipif != NULL) { 15219 if (ipifp != NULL) 15220 *ipifp = ipif; 15221 else 15222 ipif_refrele(ipif); 15223 return (B_TRUE); 15224 } 15225 15226 ip1dbg(("ipif_lookup_testaddr_v4: cannot find ipif for src %x\n", 15227 *v4srcp)); 15228 return (B_FALSE); 15229 } 15230 15231 /* 15232 * Transport protocol call back function for CPU state change. 15233 */ 15234 /* ARGSUSED */ 15235 static int 15236 ip_tp_cpu_update(cpu_setup_t what, int id, void *arg) 15237 { 15238 processorid_t cpu_seqid; 15239 netstack_handle_t nh; 15240 netstack_t *ns; 15241 15242 ASSERT(MUTEX_HELD(&cpu_lock)); 15243 15244 switch (what) { 15245 case CPU_CONFIG: 15246 case CPU_ON: 15247 case CPU_INIT: 15248 case CPU_CPUPART_IN: 15249 cpu_seqid = cpu[id]->cpu_seqid; 15250 netstack_next_init(&nh); 15251 while ((ns = netstack_next(&nh)) != NULL) { 15252 tcp_stack_cpu_add(ns->netstack_tcp, cpu_seqid); 15253 sctp_stack_cpu_add(ns->netstack_sctp, cpu_seqid); 15254 udp_stack_cpu_add(ns->netstack_udp, cpu_seqid); 15255 netstack_rele(ns); 15256 } 15257 netstack_next_fini(&nh); 15258 break; 15259 case CPU_UNCONFIG: 15260 case CPU_OFF: 15261 case CPU_CPUPART_OUT: 15262 /* 15263 * Nothing to do. We don't remove the per CPU stats from 15264 * the IP stack even when the CPU goes offline. 15265 */ 15266 break; 15267 default: 15268 break; 15269 } 15270 return (0); 15271 } 15272