1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License, Version 1.0 only 6 * (the "License"). You may not use this file except in compliance 7 * with the License. 8 * 9 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 10 * or http://www.opensolaris.org/os/licensing. 11 * See the License for the specific language governing permissions 12 * and limitations under the License. 13 * 14 * When distributing Covered Code, include this CDDL HEADER in each 15 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 16 * If applicable, add the following below this CDDL HEADER, with the 17 * fields enclosed by brackets "[]" replaced with your own identifying 18 * information: Portions Copyright [yyyy] [name of copyright owner] 19 * 20 * CDDL HEADER END 21 */ 22 /* 23 * Copyright 2005 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 /* Copyright (c) 1990 Mentat Inc. */ 27 28 #pragma ident "%Z%%M% %I% %E% SMI" 29 30 #include <sys/types.h> 31 #include <sys/stream.h> 32 #include <sys/dlpi.h> 33 #include <sys/stropts.h> 34 #include <sys/sysmacros.h> 35 #include <sys/strsubr.h> 36 #include <sys/strlog.h> 37 #include <sys/strsun.h> 38 #include <sys/zone.h> 39 #define _SUN_TPI_VERSION 2 40 #include <sys/tihdr.h> 41 #include <sys/xti_inet.h> 42 #include <sys/ddi.h> 43 #include <sys/sunddi.h> 44 #include <sys/cmn_err.h> 45 #include <sys/debug.h> 46 #include <sys/kobj.h> 47 #include <sys/modctl.h> 48 #include <sys/atomic.h> 49 #include <sys/policy.h> 50 51 #include <sys/systm.h> 52 #include <sys/param.h> 53 #include <sys/kmem.h> 54 #include <sys/socket.h> 55 #include <sys/vtrace.h> 56 #include <sys/isa_defs.h> 57 #include <net/if.h> 58 #include <net/if_arp.h> 59 #include <net/route.h> 60 #include <sys/sockio.h> 61 #include <netinet/in.h> 62 #include <net/if_dl.h> 63 64 #include <inet/common.h> 65 #include <inet/mi.h> 66 #include <inet/mib2.h> 67 #include <inet/nd.h> 68 #include <inet/arp.h> 69 #include <inet/snmpcom.h> 70 #include <inet/kstatcom.h> 71 72 #include <netinet/igmp_var.h> 73 #include <netinet/ip6.h> 74 #include <netinet/icmp6.h> 75 #include <netinet/sctp.h> 76 77 #include <inet/ip.h> 78 #include <inet/ip6.h> 79 #include <inet/ip6_asp.h> 80 #include <inet/tcp.h> 81 #include <inet/ip_multi.h> 82 #include <inet/ip_if.h> 83 #include <inet/ip_ire.h> 84 #include <inet/ip_rts.h> 85 #include <inet/optcom.h> 86 #include <inet/ip_ndp.h> 87 #include <inet/ip_listutils.h> 88 #include <netinet/igmp.h> 89 #include <netinet/ip_mroute.h> 90 #include <inet/ipp_common.h> 91 92 #include <net/pfkeyv2.h> 93 #include <inet/ipsec_info.h> 94 #include <inet/sadb.h> 95 #include <inet/ipsec_impl.h> 96 /* EXPORT DELETE START */ 97 #include <sys/iphada.h> 98 /* EXPORT DELETE END */ 99 #include <inet/tun.h> 100 #include <inet/ipdrop.h> 101 102 #include <sys/ethernet.h> 103 #include <net/if_types.h> 104 #include <sys/cpuvar.h> 105 106 #include <ipp/ipp.h> 107 #include <ipp/ipp_impl.h> 108 #include <ipp/ipgpc/ipgpc.h> 109 110 #include <sys/multidata.h> 111 #include <sys/pattr.h> 112 113 #include <inet/ipclassifier.h> 114 #include <inet/sctp_ip.h> 115 116 /* 117 * Values for squeue switch: 118 * IP_SQUEUE_ENTER_NODRAIN: squeue_enter_nodrain 119 * IP_SQUEUE_ENTER: squeue_enter 120 * IP_SQUEUE_FILL: squeue_fill 121 */ 122 int ip_squeue_enter = 2; 123 squeue_func_t ip_input_proc; 124 /* 125 * IP statistics. 126 */ 127 #define IP_STAT(x) (ip_statistics.x.value.ui64++) 128 129 typedef struct ip_stat { 130 kstat_named_t ipsec_fanout_proto; 131 kstat_named_t ip_udp_fannorm; 132 kstat_named_t ip_udp_fanmb; 133 kstat_named_t ip_udp_fanothers; 134 kstat_named_t ip_udp_fast_path; 135 kstat_named_t ip_udp_slow_path; 136 kstat_named_t ip_udp_input_err; 137 kstat_named_t ip_tcppullup; 138 kstat_named_t ip_tcpoptions; 139 kstat_named_t ip_multipkttcp; 140 kstat_named_t ip_tcp_fast_path; 141 kstat_named_t ip_tcp_slow_path; 142 kstat_named_t ip_tcp_input_error; 143 kstat_named_t ip_db_ref; 144 kstat_named_t ip_notaligned1; 145 kstat_named_t ip_notaligned2; 146 kstat_named_t ip_multimblk3; 147 kstat_named_t ip_multimblk4; 148 kstat_named_t ip_ipoptions; 149 kstat_named_t ip_classify_fail; 150 kstat_named_t ip_opt; 151 kstat_named_t ip_udp_rput_local; 152 kstat_named_t ipsec_proto_ahesp; 153 kstat_named_t ip_conn_flputbq; 154 kstat_named_t ip_conn_walk_drain; 155 kstat_named_t ip_out_sw_cksum; 156 kstat_named_t ip_in_sw_cksum; 157 kstat_named_t ip_trash_ire_reclaim_calls; 158 kstat_named_t ip_trash_ire_reclaim_success; 159 kstat_named_t ip_ire_arp_timer_expired; 160 kstat_named_t ip_ire_redirect_timer_expired; 161 kstat_named_t ip_ire_pmtu_timer_expired; 162 kstat_named_t ip_input_multi_squeue; 163 } ip_stat_t; 164 165 static ip_stat_t ip_statistics = { 166 { "ipsec_fanout_proto", KSTAT_DATA_UINT64 }, 167 { "ip_udp_fannorm", KSTAT_DATA_UINT64 }, 168 { "ip_udp_fanmb", KSTAT_DATA_UINT64 }, 169 { "ip_udp_fanothers", KSTAT_DATA_UINT64 }, 170 { "ip_udp_fast_path", KSTAT_DATA_UINT64 }, 171 { "ip_udp_slow_path", KSTAT_DATA_UINT64 }, 172 { "ip_udp_input_err", KSTAT_DATA_UINT64 }, 173 { "ip_tcppullup", KSTAT_DATA_UINT64 }, 174 { "ip_tcpoptions", KSTAT_DATA_UINT64 }, 175 { "ip_multipkttcp", KSTAT_DATA_UINT64 }, 176 { "ip_tcp_fast_path", KSTAT_DATA_UINT64 }, 177 { "ip_tcp_slow_path", KSTAT_DATA_UINT64 }, 178 { "ip_tcp_input_error", KSTAT_DATA_UINT64 }, 179 { "ip_db_ref", KSTAT_DATA_UINT64 }, 180 { "ip_notaligned1", KSTAT_DATA_UINT64 }, 181 { "ip_notaligned2", KSTAT_DATA_UINT64 }, 182 { "ip_multimblk3", KSTAT_DATA_UINT64 }, 183 { "ip_multimblk4", KSTAT_DATA_UINT64 }, 184 { "ip_ipoptions", KSTAT_DATA_UINT64 }, 185 { "ip_classify_fail", KSTAT_DATA_UINT64 }, 186 { "ip_opt", KSTAT_DATA_UINT64 }, 187 { "ip_udp_rput_local", KSTAT_DATA_UINT64 }, 188 { "ipsec_proto_ahesp", KSTAT_DATA_UINT64 }, 189 { "ip_conn_flputbq", KSTAT_DATA_UINT64 }, 190 { "ip_conn_walk_drain", KSTAT_DATA_UINT64 }, 191 { "ip_out_sw_cksum", KSTAT_DATA_UINT64 }, 192 { "ip_in_sw_cksum", KSTAT_DATA_UINT64 }, 193 { "ip_trash_ire_reclaim_calls", KSTAT_DATA_UINT64 }, 194 { "ip_trash_ire_reclaim_success", KSTAT_DATA_UINT64 }, 195 { "ip_ire_arp_timer_expired", KSTAT_DATA_UINT64 }, 196 { "ip_ire_redirect_timer_expired", KSTAT_DATA_UINT64 }, 197 { "ip_ire_pmtu_timer_expired", KSTAT_DATA_UINT64 }, 198 { "ip_input_multi_squeue", KSTAT_DATA_UINT64 }, 199 }; 200 201 static kstat_t *ip_kstat; 202 203 #define TCP6 "tcp6" 204 #define TCP "tcp" 205 #define SCTP "sctp" 206 #define SCTP6 "sctp6" 207 208 major_t TCP6_MAJ; 209 major_t TCP_MAJ; 210 major_t SCTP_MAJ; 211 major_t SCTP6_MAJ; 212 213 int ip_poll_normal_ms = 100; 214 int ip_poll_normal_ticks = 0; 215 216 /* 217 * Structure to represent a linked list of msgblks. Used by ip_snmp_ functions. 218 */ 219 220 struct listptr_s { 221 mblk_t *lp_head; /* pointer to the head of the list */ 222 mblk_t *lp_tail; /* pointer to the tail of the list */ 223 }; 224 225 typedef struct listptr_s listptr_t; 226 227 /* 228 * Cluster specific hooks. These should be NULL when booted as a non-cluster 229 */ 230 231 /* 232 * Hook functions to enable cluster networking 233 * On non-clustered systems these vectors must always be NULL. 234 * 235 * Hook function to Check ip specified ip address is a shared ip address 236 * in the cluster 237 * 238 */ 239 int (*cl_inet_isclusterwide)(uint8_t protocol, 240 sa_family_t addr_family, uint8_t *laddrp) = NULL; 241 242 /* 243 * Hook function to generate cluster wide ip fragment identifier 244 */ 245 uint32_t (*cl_inet_ipident)(uint8_t protocol, sa_family_t addr_family, 246 uint8_t *laddrp, uint8_t *faddrp) = NULL; 247 248 /* 249 * Synchronization notes: 250 * 251 * IP is a fully D_MP STREAMS module/driver. Thus it does not depend on any 252 * MT level protection given by STREAMS. IP uses a combination of its own 253 * internal serialization mechanism and standard Solaris locking techniques. 254 * The internal serialization is per phyint (no IPMP) or per IPMP group. 255 * This is used to serialize plumbing operations, IPMP operations, certain 256 * multicast operations, most set ioctls, igmp/mld timers etc. 257 * 258 * Plumbing is a long sequence of operations involving message 259 * exchanges between IP, ARP and device drivers. Many set ioctls are typically 260 * involved in plumbing operations. A natural model is to serialize these 261 * ioctls one per ill. For example plumbing of hme0 and qfe0 can go on in 262 * parallel without any interference. But various set ioctls on hme0 are best 263 * serialized. However if the system uses IPMP, the operations are easier if 264 * they are serialized on a per IPMP group basis since IPMP operations 265 * happen across ill's of a group. Thus the lowest common denominator is to 266 * serialize most set ioctls, multicast join/leave operations, IPMP operations 267 * igmp/mld timer operations, and processing of DLPI control messages received 268 * from drivers on a per IPMP group basis. If the system does not employ 269 * IPMP the serialization is on a per phyint basis. This serialization is 270 * provided by the ipsq_t and primitives operating on this. Details can 271 * be found in ip_if.c above the core primitives operating on ipsq_t. 272 * 273 * Lookups of an ipif or ill by a thread return a refheld ipif / ill. 274 * Simiarly lookup of an ire by a thread also returns a refheld ire. 275 * In addition ipif's and ill's referenced by the ire are also indirectly 276 * refheld. Thus no ipif or ill can vanish nor can critical parameters like 277 * the ipif's address or netmask change as long as an ipif is refheld 278 * directly or indirectly. For example an SIOCLIFADDR ioctl that changes the 279 * address of an ipif has to go through the ipsq_t. This ensures that only 280 * 1 such exclusive operation proceeds at any time on the ipif. It then 281 * deletes all ires associated with this ipif, and waits for all refcnts 282 * associated with this ipif to come down to zero. The address is changed 283 * only after the ipif has been quiesced. Then the ipif is brought up again. 284 * More details are described above the comment in ip_sioctl_flags. 285 * 286 * Packet processing is based mostly on IREs and are fully multi-threaded 287 * using standard Solaris MT techniques. 288 * 289 * There are explicit locks in IP to handle: 290 * - The ip_g_head list maintained by mi_open_link() and friends. 291 * 292 * - The reassembly data structures (one lock per hash bucket) 293 * 294 * - conn_lock is meant to protect conn_t fields. The fields actually 295 * protected by conn_lock are documented in the conn_t definition. 296 * 297 * - ire_lock to protect some of the fields of the ire, IRE tables 298 * (one lock per hash bucket). Refer to ip_ire.c for details. 299 * 300 * - ndp_g_lock and nce_lock for protecting NCEs. 301 * 302 * - ill_lock protects fields of the ill and ipif. Details in ip.h 303 * 304 * - ill_g_lock: This is a global reader/writer lock. Protects the following 305 * * The AVL tree based global multi list of all ills. 306 * * The linked list of all ipifs of an ill 307 * * The <ill-ipsq> mapping 308 * * The ipsq->ipsq_phyint_list threaded by phyint_ipsq_next 309 * * The illgroup list threaded by ill_group_next. 310 * * <ill-phyint> association 311 * Insertion/deletion of an ill in the system, insertion/deletion of an ipif 312 * into an ill, changing the <ill-ipsq> mapping of an ill, insertion/deletion 313 * of an ill into the illgrp list, changing the <ill-phyint> assoc of an ill 314 * will all have to hold the ill_g_lock as writer for the actual duration 315 * of the insertion/deletion/change. More details about the <ill-ipsq> mapping 316 * may be found in the IPMP section. 317 * 318 * - ill_lock: This is a per ill mutex. 319 * It protects some members of the ill and is documented below. 320 * It also protects the <ill-ipsq> mapping 321 * It also protects the illgroup list threaded by ill_group_next. 322 * It also protects the <ill-phyint> assoc. 323 * It also protects the list of ipifs hanging off the ill. 324 * 325 * - ipsq_lock: This is a per ipsq_t mutex lock. 326 * This protects all the other members of the ipsq struct except 327 * ipsq_refs and ipsq_phyint_list which are protected by ill_g_lock 328 * 329 * - illgrp_lock: This is a per ill_group mutex lock. 330 * The only thing it protects is the illgrp_ill_schednext member of ill_group 331 * which dictates which is the next ill in an ill_group that is to be chosen 332 * for sending outgoing packets, through creation of an IRE_CACHE that 333 * references this ill. 334 * 335 * - phyint_lock: This is a per phyint mutex lock. Protects just the 336 * phyint_flags 337 * 338 * - ip_g_nd_lock: This is a global reader/writer lock. 339 * Any call to nd_load to load a new parameter to the ND table must hold the 340 * lock as writer. ND_GET/ND_SET routines that read the ND table hold the lock 341 * as reader. 342 * 343 * - ip_addr_avail_lock: This is used to ensure the uniqueness of IP addresses. 344 * This lock is held in ipif_up_done and the ipif is marked IPIF_UP and the 345 * uniqueness check also done atomically. 346 * 347 * - ipsec_capab_ills_lock: This readers/writer lock protects the global 348 * lists of IPsec capable ills (ipsec_capab_ills_{ah,esp}). It is taken 349 * as a writer when adding or deleting elements from these lists, and 350 * as a reader when walking these lists to send a SADB update to the 351 * IPsec capable ills. 352 * 353 * - ill_g_usesrc_lock: This readers/writer lock protects the usesrc 354 * group list linked by ill_usesrc_grp_next. It also protects the 355 * ill_usesrc_ifindex field. It is taken as a writer when a member of the 356 * group is being added or deleted. This lock is taken as a reader when 357 * walking the list/group(eg: to get the number of members in a usesrc group). 358 * Note, it is only necessary to take this lock if the ill_usesrc_grp_next 359 * field is changing state i.e from NULL to non-NULL or vice-versa. For 360 * example, it is not necessary to take this lock in the initial portion 361 * of ip_sioctl_slifusesrc or at all in ip_sioctl_groupname and 362 * ip_sioctl_flags since the these operations are executed exclusively and 363 * that ensures that the "usesrc group state" cannot change. The "usesrc 364 * group state" change can happen only in the latter part of 365 * ip_sioctl_slifusesrc and in ill_delete. 366 * 367 * Changing <ill-phyint>, <ill-ipsq>, <ill-illgroup> assocications. 368 * 369 * To change the <ill-phyint> association, the ill_g_lock must be held 370 * as writer, and the ill_locks of both the v4 and v6 instance of the ill 371 * must be held. 372 * 373 * To change the <ill-ipsq> association the ill_g_lock must be held as writer 374 * and the ill_lock of the ill in question must be held. 375 * 376 * To change the <ill-illgroup> association the ill_g_lock must be held as 377 * writer and the ill_lock of the ill in question must be held. 378 * 379 * To add or delete an ipif from the list of ipifs hanging off the ill, 380 * ill_g_lock (writer) and ill_lock must be held and the thread must be 381 * a writer on the associated ipsq,. 382 * 383 * To add or delete an ill to the system, the ill_g_lock must be held as 384 * writer and the thread must be a writer on the associated ipsq. 385 * 386 * To add or delete an ilm to an ill, the ill_lock must be held and the thread 387 * must be a writer on the associated ipsq. 388 * 389 * Lock hierarchy 390 * 391 * Some lock hierarchy scenarios are listed below. 392 * 393 * ill_g_lock -> conn_lock -> ill_lock -> ipsq_lock 394 * ill_g_lock -> illgrp_lock -> ill_lock 395 * ill_g_lock -> ill_lock(s) -> phyint_lock 396 * ill_g_lock -> ndp_g_lock -> ill_lock -> nce_lock 397 * ill_g_lock -> ip_addr_avail_lock 398 * conn_lock -> irb_lock -> ill_lock -> ire_lock 399 * ipsa_lock -> ill_g_lock -> ill_lock 400 * ill_g_lock -> ip_g_nd_lock 401 * irb_lock -> ill_lock -> ire_mrtun_lock 402 * irb_lock -> ill_lock -> ire_srcif_table_lock 403 * ipsec_capab_ills_lock -> ill_g_lock -> ill_lock 404 * ipsec_capab_ills_lock -> ipsa_lock 405 * ill_g_usesrc_lock -> ill_g_lock -> ill_lock 406 * 407 * When more than 1 ill lock is needed to be held, all ill lock addresses 408 * are sorted on address and locked starting from highest addressed lock 409 * downward. 410 * 411 * IPSEC notes : 412 * 413 * IP interacts with the IPSEC code (AH/ESP) by tagging a M_CTL message 414 * in front of the actual packet. For outbound datagrams, the M_CTL 415 * contains a ipsec_out_t (defined in ipsec_info.h), which has the 416 * information used by the IPSEC code for applying the right level of 417 * protection. The information initialized by IP in the ipsec_out_t 418 * is determined by the per-socket policy or global policy in the system. 419 * For inbound datagrams, the M_CTL contains a ipsec_in_t (defined in 420 * ipsec_info.h) which starts out with nothing in it. It gets filled 421 * with the right information if it goes through the AH/ESP code, which 422 * happens if the incoming packet is secure. The information initialized 423 * by AH/ESP, is later used by IP(during fanouts to ULP) to see whether 424 * the policy requirements needed by per-socket policy or global policy 425 * is met or not. 426 * 427 * If there is both per-socket policy (set using setsockopt) and there 428 * is also global policy match for the 5 tuples of the socket, 429 * ipsec_override_policy() makes the decision of which one to use. 430 * 431 * For fully connected sockets i.e dst, src [addr, port] is known, 432 * conn_policy_cached is set indicating that policy has been cached. 433 * conn_in_enforce_policy may or may not be set depending on whether 434 * there is a global policy match or per-socket policy match. 435 * Policy inheriting happpens in ip_bind during the ipa_conn_t bind. 436 * Once the right policy is set on the conn_t, policy cannot change for 437 * this socket. This makes life simpler for TCP (UDP ?) where 438 * re-transmissions go out with the same policy. For symmetry, policy 439 * is cached for fully connected UDP sockets also. Thus if policy is cached, 440 * it also implies that policy is latched i.e policy cannot change 441 * on these sockets. As we have the right policy on the conn, we don't 442 * have to lookup global policy for every outbound and inbound datagram 443 * and thus serving as an optimization. Note that a global policy change 444 * does not affect fully connected sockets if they have policy. If fully 445 * connected sockets did not have any policy associated with it, global 446 * policy change may affect them. 447 * 448 * IP Flow control notes: 449 * 450 * Non-TCP streams are flow controlled by IP. On the send side, if the packet 451 * cannot be sent down to the driver by IP, because of a canput failure, IP 452 * does a putq on the conn_wq. This will cause ip_wsrv to run on the conn_wq. 453 * ip_wsrv in turn, inserts the conn in a list of conn's that need to be drained 454 * when the flowcontrol condition subsides. Ultimately STREAMS backenables the 455 * ip_wsrv on the IP module, which in turn does a qenable of the conn_wq of the 456 * first conn in the list of conn's to be drained. ip_wsrv on this conn drains 457 * the queued messages, and removes the conn from the drain list, if all 458 * messages were drained. It also qenables the next conn in the drain list to 459 * continue the drain process. 460 * 461 * In reality the drain list is not a single list, but a configurable number 462 * of lists. The ip_wsrv on the IP module, qenables the first conn in each 463 * list. If the ip_wsrv of the next qenabled conn does not run, because the 464 * stream closes, ip_close takes responsibility to qenable the next conn in 465 * the drain list. The directly called ip_wput path always does a putq, if 466 * it cannot putnext. Thus synchronization problems are handled between 467 * ip_wsrv and ip_close. conn_drain_insert and conn_drain_tail are the only 468 * functions that manipulate this drain list. Furthermore conn_drain_insert 469 * is called only from ip_wsrv, and there can be only 1 instance of ip_wsrv 470 * running on a queue at any time. conn_drain_tail can be simultaneously called 471 * from both ip_wsrv and ip_close. 472 * 473 * IPQOS notes: 474 * 475 * IPQoS Policies are applied to packets using IPPF (IP Policy framework) 476 * and IPQoS modules. IPPF includes hooks in IP at different control points 477 * (callout positions) which direct packets to IPQoS modules for policy 478 * processing. Policies, if present, are global. 479 * 480 * The callout positions are located in the following paths: 481 * o local_in (packets destined for this host) 482 * o local_out (packets orginating from this host ) 483 * o fwd_in (packets forwarded by this m/c - inbound) 484 * o fwd_out (packets forwarded by this m/c - outbound) 485 * Hooks at these callout points can be enabled/disabled using the ndd variable 486 * ip_policy_mask (a bit mask with the 4 LSB indicating the callout positions). 487 * By default all the callout positions are enabled. 488 * 489 * Outbound (local_out) 490 * Hooks are placed in ip_wput_ire and ipsec_out_process. 491 * 492 * Inbound (local_in) 493 * Hooks are placed in ip_proto_input, icmp_inbound, ip_fanout_proto and 494 * TCP and UDP fanout routines. 495 * 496 * Forwarding (in and out) 497 * Hooks are placed in ip_rput_forward and ip_mrtun_forward. 498 * 499 * IP Policy Framework processing (IPPF processing) 500 * Policy processing for a packet is initiated by ip_process, which ascertains 501 * that the classifier (ipgpc) is loaded and configured, failing which the 502 * packet resumes normal processing in IP. If the clasifier is present, the 503 * packet is acted upon by one or more IPQoS modules (action instances), per 504 * filters configured in ipgpc and resumes normal IP processing thereafter. 505 * An action instance can drop a packet in course of its processing. 506 * 507 * A boolean variable, ip_policy, is used in all the fanout routines that can 508 * invoke ip_process for a packet. This variable indicates if the packet should 509 * to be sent for policy processing. The variable is set to B_TRUE by default, 510 * i.e. when the routines are invoked in the normal ip procesing path for a 511 * packet. The two exceptions being ip_wput_local and icmp_inbound_error_fanout; 512 * ip_policy is set to B_FALSE for all the routines called in these two 513 * functions because, in the former case, we don't process loopback traffic 514 * currently while in the latter, the packets have already been processed in 515 * icmp_inbound. 516 * 517 * Zones notes: 518 * 519 * The partitioning rules for networking are as follows: 520 * 1) Packets coming from a zone must have a source address belonging to that 521 * zone. 522 * 2) Packets coming from a zone can only be sent on a physical interface on 523 * which the zone has an IP address. 524 * 3) Between two zones on the same machine, packet delivery is only allowed if 525 * there's a matching route for the destination and zone in the forwarding 526 * table. 527 * 4) The TCP and UDP port spaces are per-zone; that is, two processes in 528 * different zones can bind to the same port with the wildcard address 529 * (INADDR_ANY). 530 * 531 * The granularity of interface partitioning is at the logical interface level. 532 * Therefore, every zone has its own IP addresses, and incoming packets can be 533 * attributed to a zone unambiguously. A logical interface is placed into a zone 534 * using the SIOCSLIFZONE ioctl; this sets the ipif_zoneid field in the ipif_t 535 * structure. Rule (1) is implemented by modifying the source address selection 536 * algorithm so that the list of eligible addresses is filtered based on the 537 * sending process zone. 538 * 539 * The Internet Routing Entries (IREs) are either exclusive to a zone or shared 540 * across all zones, depending on their type. Here is the break-up: 541 * 542 * IRE type Shared/exclusive 543 * -------- ---------------- 544 * IRE_BROADCAST Exclusive 545 * IRE_DEFAULT (default routes) Shared (*) 546 * IRE_LOCAL Exclusive 547 * IRE_LOOPBACK Exclusive 548 * IRE_PREFIX (net routes) Shared (*) 549 * IRE_CACHE Exclusive 550 * IRE_IF_NORESOLVER (interface routes) Exclusive 551 * IRE_IF_RESOLVER (interface routes) Exclusive 552 * IRE_HOST (host routes) Shared (*) 553 * 554 * (*) A zone can only use a default or off-subnet route if the gateway is 555 * directly reachable from the zone, that is, if the gateway's address matches 556 * one of the zone's logical interfaces. 557 * 558 * Multiple zones can share a common broadcast address; typically all zones 559 * share the 255.255.255.255 address. Incoming as well as locally originated 560 * broadcast packets must be dispatched to all the zones on the broadcast 561 * network. For directed broadcasts (e.g. 10.16.72.255) this is not trivial 562 * since some zones may not be on the 10.16.72/24 network. To handle this, each 563 * zone has its own set of IRE_BROADCAST entries; then, broadcast packets are 564 * sent to every zone that has an IRE_BROADCAST entry for the destination 565 * address on the input ill, see conn_wantpacket(). 566 * 567 * Applications in different zones can join the same multicast group address. 568 * For IPv4, group memberships are per-logical interface, so they're already 569 * inherently part of a zone. For IPv6, group memberships are per-physical 570 * interface, so we distinguish IPv6 group memberships based on group address, 571 * interface and zoneid. In both cases, received multicast packets are sent to 572 * every zone for which a group membership entry exists. On IPv6 we need to 573 * check that the target zone still has an address on the receiving physical 574 * interface; it could have been removed since the application issued the 575 * IPV6_JOIN_GROUP. 576 */ 577 578 /* 579 * Squeue Fanout flags: 580 * 0: No fanout. 581 * 1: Fanout across all squeues 582 */ 583 boolean_t ip_squeue_fanout = 0; 584 585 /* 586 * Maximum dups allowed per packet. 587 */ 588 uint_t ip_max_frag_dups = 10; 589 590 #define IS_SIMPLE_IPH(ipha) \ 591 ((ipha)->ipha_version_and_hdr_length == IP_SIMPLE_HDR_VERSION) 592 593 /* RFC1122 Conformance */ 594 #define IP_FORWARD_DEFAULT IP_FORWARD_NEVER 595 596 #ifdef _BIG_ENDIAN 597 #define IP_HDR_CSUM_TTL_ADJUST 256 598 #define IP_TCP_CSUM_COMP IPPROTO_TCP 599 #define IP_UDP_CSUM_COMP IPPROTO_UDP 600 #else 601 #define IP_HDR_CSUM_TTL_ADJUST 1 602 #define IP_TCP_CSUM_COMP (IPPROTO_TCP << 8) 603 #define IP_UDP_CSUM_COMP (IPPROTO_UDP << 8) 604 #endif 605 606 #define TCP_CHECKSUM_OFFSET 16 607 #define UDP_CHECKSUM_OFFSET 6 608 609 #define ILL_MAX_NAMELEN LIFNAMSIZ 610 611 #define UDPH_SIZE 8 612 613 /* Leave room for ip_newroute to tack on the src and target addresses */ 614 #define OK_RESOLVER_MP(mp) \ 615 ((mp) && ((mp)->b_wptr - (mp)->b_rptr) >= (2 * IP_ADDR_LEN)) 616 617 static ipif_t *conn_get_held_ipif(conn_t *, ipif_t **, int *); 618 static int conn_set_held_ipif(conn_t *, ipif_t **, ipif_t *); 619 620 static mblk_t *ip_wput_attach_llhdr(mblk_t *, ire_t *, ip_proc_t, uint32_t); 621 static void ip_ipsec_out_prepend(mblk_t *, mblk_t *, ill_t *); 622 623 static void icmp_frag_needed(queue_t *, mblk_t *, int); 624 static void icmp_inbound(queue_t *, mblk_t *, boolean_t, ill_t *, int, 625 uint32_t, boolean_t, boolean_t, ill_t *, zoneid_t); 626 static boolean_t icmp_inbound_too_big(icmph_t *, ipha_t *); 627 static void icmp_inbound_error_fanout(queue_t *, ill_t *, mblk_t *, 628 icmph_t *, ipha_t *, int, int, boolean_t, boolean_t, 629 ill_t *, zoneid_t); 630 static void icmp_options_update(ipha_t *); 631 static void icmp_param_problem(queue_t *, mblk_t *, uint8_t); 632 static void icmp_pkt(queue_t *, mblk_t *, void *, size_t, boolean_t); 633 static mblk_t *icmp_pkt_err_ok(mblk_t *); 634 static void icmp_redirect(mblk_t *); 635 static void icmp_send_redirect(queue_t *, mblk_t *, ipaddr_t); 636 637 static void ip_arp_news(queue_t *, mblk_t *); 638 static boolean_t ip_bind_insert_ire(mblk_t *, ire_t *, iulp_t *); 639 mblk_t *ip_dlpi_alloc(size_t, t_uscalar_t); 640 char *ip_dot_addr(ipaddr_t, char *); 641 mblk_t *ip_carve_mp(mblk_t **, ssize_t); 642 int ip_close(queue_t *, int); 643 static char *ip_dot_saddr(uchar_t *, char *); 644 static void ip_fanout_proto(queue_t *, mblk_t *, ill_t *, ipha_t *, uint_t, 645 boolean_t, boolean_t, ill_t *, zoneid_t); 646 static void ip_fanout_tcp(queue_t *, mblk_t *, ill_t *, ipha_t *, uint_t, 647 boolean_t, boolean_t, zoneid_t); 648 static void ip_fanout_udp(queue_t *, mblk_t *, ill_t *, ipha_t *, uint32_t, 649 boolean_t, uint_t, boolean_t, boolean_t, ill_t *, zoneid_t); 650 static void ip_lrput(queue_t *, mblk_t *); 651 ipaddr_t ip_massage_options(ipha_t *); 652 static void ip_mrtun_forward(ire_t *, ill_t *, mblk_t *); 653 ipaddr_t ip_net_mask(ipaddr_t); 654 void ip_newroute(queue_t *, mblk_t *, ipaddr_t, ill_t *, conn_t *); 655 static void ip_newroute_ipif(queue_t *, mblk_t *, ipif_t *, ipaddr_t, 656 conn_t *, uint32_t); 657 static int ip_hdr_complete(ipha_t *, zoneid_t); 658 char *ip_nv_lookup(nv_t *, int); 659 static boolean_t ip_check_for_ipsec_opt(queue_t *, mblk_t *); 660 static int ip_param_get(queue_t *, mblk_t *, caddr_t, cred_t *); 661 static int ip_param_generic_get(queue_t *, mblk_t *, caddr_t, cred_t *); 662 static boolean_t ip_param_register(ipparam_t *, size_t, ipndp_t *, 663 size_t); 664 static int ip_param_set(queue_t *, mblk_t *, char *, caddr_t, cred_t *); 665 void ip_rput(queue_t *, mblk_t *); 666 static void ip_rput_dlpi_writer(ipsq_t *dummy_sq, queue_t *q, mblk_t *mp, 667 void *dummy_arg); 668 void ip_rput_forward(ire_t *, ipha_t *, mblk_t *, ill_t *); 669 static int ip_rput_forward_options(mblk_t *, ipha_t *, ire_t *); 670 static boolean_t ip_rput_local_options(queue_t *, mblk_t *, ipha_t *, 671 ire_t *); 672 static int ip_rput_options(queue_t *, mblk_t *, ipha_t *, ipaddr_t *); 673 int ip_snmp_get(queue_t *, mblk_t *); 674 static mblk_t *ip_snmp_get_mib2_ip(queue_t *, mblk_t *); 675 static mblk_t *ip_snmp_get_mib2_ip6(queue_t *, mblk_t *); 676 static mblk_t *ip_snmp_get_mib2_icmp(queue_t *, mblk_t *); 677 static mblk_t *ip_snmp_get_mib2_icmp6(queue_t *, mblk_t *); 678 static mblk_t *ip_snmp_get_mib2_igmp(queue_t *, mblk_t *); 679 static mblk_t *ip_snmp_get_mib2_multi(queue_t *, mblk_t *); 680 static mblk_t *ip_snmp_get_mib2_ip_addr(queue_t *, mblk_t *); 681 static mblk_t *ip_snmp_get_mib2_ip6_addr(queue_t *, mblk_t *); 682 static mblk_t *ip_snmp_get_mib2_ip_group_mem(queue_t *, mblk_t *); 683 static mblk_t *ip_snmp_get_mib2_ip6_group_mem(queue_t *, mblk_t *); 684 static mblk_t *ip_snmp_get_mib2_ip_group_src(queue_t *, mblk_t *); 685 static mblk_t *ip_snmp_get_mib2_ip6_group_src(queue_t *, mblk_t *); 686 static mblk_t *ip_snmp_get_mib2_virt_multi(queue_t *, mblk_t *); 687 static mblk_t *ip_snmp_get_mib2_multi_rtable(queue_t *, mblk_t *); 688 static mblk_t *ip_snmp_get_mib2_ip_route_media(queue_t *, mblk_t *); 689 static mblk_t *ip_snmp_get_mib2_ip6_route_media(queue_t *, mblk_t *); 690 static void ip_snmp_get2_v4(ire_t *, listptr_t []); 691 static void ip_snmp_get2_v6_route(ire_t *, listptr_t *); 692 static int ip_snmp_get2_v6_media(nce_t *, listptr_t *); 693 int ip_snmp_set(queue_t *, int, int, uchar_t *, int); 694 static boolean_t ip_source_routed(ipha_t *); 695 static boolean_t ip_source_route_included(ipha_t *); 696 697 static void ip_unbind(queue_t *, mblk_t *); 698 static void ip_wput_frag(ire_t *, mblk_t *, ip_pkt_t, uint32_t, uint32_t); 699 static mblk_t *ip_wput_frag_copyhdr(uchar_t *, int, int); 700 static void ip_wput_local_options(ipha_t *); 701 static int ip_wput_options(queue_t *, mblk_t *, ipha_t *, boolean_t, 702 zoneid_t); 703 704 static void conn_drain_init(void); 705 static void conn_drain_fini(void); 706 static void conn_drain_tail(conn_t *connp, boolean_t closing); 707 708 static void conn_walk_drain(void); 709 static void conn_walk_fanout_table(connf_t *, uint_t, pfv_t, void *, 710 zoneid_t); 711 712 static boolean_t conn_wantpacket(conn_t *, ill_t *, ipha_t *, int, 713 zoneid_t); 714 static void ip_arp_done(ipsq_t *dummy_sq, queue_t *q, mblk_t *mp, 715 void *dummy_arg); 716 717 static int ip_forward_set(queue_t *, mblk_t *, char *, caddr_t, cred_t *); 718 719 static int ip_multirt_apply_membership(int (*fn)(conn_t *, boolean_t, 720 ipaddr_t, ipaddr_t, uint_t *, mcast_record_t, ipaddr_t, mblk_t *), ire_t *, 721 conn_t *, boolean_t, ipaddr_t, mcast_record_t, ipaddr_t, mblk_t *); 722 static void ip_multirt_bad_mtu(ire_t *, uint32_t); 723 724 static int ip_cgtp_filter_get(queue_t *, mblk_t *, caddr_t, cred_t *); 725 static int ip_cgtp_filter_set(queue_t *, mblk_t *, char *, 726 caddr_t, cred_t *); 727 extern int ip_squeue_bind_set(queue_t *q, mblk_t *mp, char *value, 728 caddr_t cp, cred_t *cr); 729 extern int ip_squeue_profile_set(queue_t *, mblk_t *, char *, caddr_t, 730 cred_t *); 731 static int ip_input_proc_set(queue_t *q, mblk_t *mp, char *value, 732 caddr_t cp, cred_t *cr); 733 static int ip_fanout_set(queue_t *, mblk_t *, char *, caddr_t, 734 cred_t *); 735 static squeue_func_t ip_squeue_switch(int); 736 737 static void ip_kstat_init(void); 738 static void ip_kstat_fini(void); 739 static int ip_kstat_update(kstat_t *kp, int rw); 740 static void icmp_kstat_init(void); 741 static void icmp_kstat_fini(void); 742 static int icmp_kstat_update(kstat_t *kp, int rw); 743 744 static int ip_conn_report(queue_t *, mblk_t *, caddr_t, cred_t *); 745 746 static boolean_t ip_no_forward(ipha_t *, ill_t *); 747 static boolean_t ip_loopback_src_or_dst(ipha_t *, ill_t *); 748 749 static mblk_t *ip_tcp_input(mblk_t *, ipha_t *, ill_t *, boolean_t, 750 ire_t *, mblk_t *, uint_t, queue_t *, ill_rx_ring_t *); 751 752 void ip_input(ill_t *, ill_rx_ring_t *, mblk_t *, size_t); 753 754 timeout_id_t ip_ire_expire_id; /* IRE expiration timer. */ 755 static clock_t ip_ire_arp_time_elapsed; /* Time since IRE cache last flushed */ 756 static clock_t ip_ire_rd_time_elapsed; /* ... redirect IREs last flushed */ 757 static clock_t ip_ire_pmtu_time_elapsed; /* Time since path mtu increase */ 758 759 uint_t ip_ire_default_count; /* Number of IPv4 IRE_DEFAULT entries. */ 760 uint_t ip_ire_default_index; /* Walking index used to mod in */ 761 762 ipaddr_t ip_g_all_ones = IP_HOST_MASK; 763 clock_t icmp_pkt_err_last = 0; /* Time since last icmp_pkt_err */ 764 uint_t icmp_pkt_err_sent = 0; /* Number of packets sent in burst */ 765 766 /* How long, in seconds, we allow frags to hang around. */ 767 #define IP_FRAG_TIMEOUT 60 768 769 time_t ip_g_frag_timeout = IP_FRAG_TIMEOUT; 770 clock_t ip_g_frag_timo_ms = IP_FRAG_TIMEOUT * 1000; 771 772 /* Protected by ip_mi_lock */ 773 static void *ip_g_head; /* Instance Data List Head */ 774 kmutex_t ip_mi_lock; /* Lock for list of instances */ 775 776 /* Only modified during _init and _fini thus no locking is needed. */ 777 caddr_t ip_g_nd; /* Named Dispatch List Head */ 778 779 780 static long ip_rput_pullups; 781 int dohwcksum = 1; /* use h/w cksum if supported by the hardware */ 782 783 vmem_t *ip_minor_arena; 784 785 /* 786 * MIB-2 stuff for SNMP (both IP and ICMP) 787 */ 788 mib2_ip_t ip_mib; 789 mib2_icmp_t icmp_mib; 790 791 #ifdef DEBUG 792 uint32_t ipsechw_debug = 0; 793 #endif 794 795 kstat_t *ip_mibkp; /* kstat exporting ip_mib data */ 796 kstat_t *icmp_mibkp; /* kstat exporting icmp_mib data */ 797 798 uint_t loopback_packets = 0; 799 800 /* 801 * Multirouting/CGTP stuff 802 */ 803 cgtp_filter_ops_t *ip_cgtp_filter_ops; /* CGTP hooks */ 804 int ip_cgtp_filter_rev = CGTP_FILTER_REV; /* CGTP hooks version */ 805 boolean_t ip_cgtp_filter; /* Enable/disable CGTP hooks */ 806 /* Interval (in ms) between consecutive 'bad MTU' warnings */ 807 hrtime_t ip_multirt_log_interval = 1000; 808 /* Time since last warning issued. */ 809 static hrtime_t multirt_bad_mtu_last_time = 0; 810 811 kmutex_t ip_trash_timer_lock; 812 krwlock_t ip_g_nd_lock; 813 814 /* 815 * XXX following really should only be in a header. Would need more 816 * header and .c clean up first. 817 */ 818 extern optdb_obj_t ip_opt_obj; 819 820 ulong_t ip_squeue_enter_unbound = 0; 821 822 /* 823 * Named Dispatch Parameter Table. 824 * All of these are alterable, within the min/max values given, at run time. 825 */ 826 static ipparam_t lcl_param_arr[] = { 827 /* min max value name */ 828 { 0, 1, 0, "ip_respond_to_address_mask_broadcast"}, 829 { 0, 1, 1, "ip_respond_to_echo_broadcast"}, 830 { 0, 1, 1, "ip_respond_to_echo_multicast"}, 831 { 0, 1, 0, "ip_respond_to_timestamp"}, 832 { 0, 1, 0, "ip_respond_to_timestamp_broadcast"}, 833 { 0, 1, 1, "ip_send_redirects"}, 834 { 0, 1, 0, "ip_forward_directed_broadcasts"}, 835 { 0, 10, 0, "ip_debug"}, 836 { 0, 10, 0, "ip_mrtdebug"}, 837 { 5000, 999999999, 60000, "ip_ire_timer_interval" }, 838 { 60000, 999999999, 1200000, "ip_ire_arp_interval" }, 839 { 60000, 999999999, 60000, "ip_ire_redirect_interval" }, 840 { 1, 255, 255, "ip_def_ttl" }, 841 { 0, 1, 0, "ip_forward_src_routed"}, 842 { 0, 256, 32, "ip_wroff_extra" }, 843 { 5000, 999999999, 600000, "ip_ire_pathmtu_interval" }, 844 { 8, 65536, 64, "ip_icmp_return_data_bytes" }, 845 { 0, 1, 1, "ip_path_mtu_discovery" }, 846 { 0, 240, 30, "ip_ignore_delete_time" }, 847 { 0, 1, 0, "ip_ignore_redirect" }, 848 { 0, 1, 1, "ip_output_queue" }, 849 { 1, 254, 1, "ip_broadcast_ttl" }, 850 { 0, 99999, 100, "ip_icmp_err_interval" }, 851 { 1, 99999, 10, "ip_icmp_err_burst" }, 852 { 0, 999999999, 1000000, "ip_reass_queue_bytes" }, 853 { 0, 1, 0, "ip_strict_dst_multihoming" }, 854 { 1, MAX_ADDRS_PER_IF, 256, "ip_addrs_per_if"}, 855 { 0, 1, 0, "ipsec_override_persocket_policy" }, 856 { 0, 1, 1, "icmp_accept_clear_messages" }, 857 { 0, 1, 1, "igmp_accept_clear_messages" }, 858 { 2, 999999999, ND_DELAY_FIRST_PROBE_TIME, 859 "ip_ndp_delay_first_probe_time"}, 860 { 1, 999999999, ND_MAX_UNICAST_SOLICIT, 861 "ip_ndp_max_unicast_solicit"}, 862 { 1, 255, IPV6_MAX_HOPS, "ip6_def_hops" }, 863 { 8, IPV6_MIN_MTU, IPV6_MIN_MTU, "ip6_icmp_return_data_bytes" }, 864 { 0, 1, 0, "ip6_forward_src_routed"}, 865 { 0, 1, 1, "ip6_respond_to_echo_multicast"}, 866 { 0, 1, 1, "ip6_send_redirects"}, 867 { 0, 1, 0, "ip6_ignore_redirect" }, 868 { 0, 1, 0, "ip6_strict_dst_multihoming" }, 869 870 { 1, 8, 3, "ip_ire_reclaim_fraction" }, 871 872 { 0, 999999, 1000, "ipsec_policy_log_interval" }, 873 874 { 0, 1, 1, "pim_accept_clear_messages" }, 875 { 1000, 20000, 2000, "ip_ndp_unsolicit_interval" }, 876 { 1, 20, 3, "ip_ndp_unsolicit_count" }, 877 { 0, 1, 1, "ip6_ignore_home_address_opt" }, 878 { 0, 15, 0, "ip_policy_mask" }, 879 { 1000, 60000, 1000, "ip_multirt_resolution_interval" }, 880 { 0, 255, 1, "ip_multirt_ttl" }, 881 { 0, 1, 1, "ip_multidata_outbound" }, 882 #ifdef DEBUG 883 { 0, 1, 0, "ip6_drop_inbound_icmpv6" }, 884 #endif 885 }; 886 887 ipparam_t *ip_param_arr = lcl_param_arr; 888 889 /* Extended NDP table */ 890 static ipndp_t lcl_ndp_arr[] = { 891 /* getf setf data name */ 892 { ip_param_generic_get, ip_forward_set, (caddr_t)&ip_g_forward, 893 "ip_forwarding" }, 894 { ip_param_generic_get, ip_forward_set, (caddr_t)&ipv6_forward, 895 "ip6_forwarding" }, 896 { ip_ill_report, NULL, NULL, 897 "ip_ill_status" }, 898 { ip_ipif_report, NULL, NULL, 899 "ip_ipif_status" }, 900 { ip_ire_report, NULL, NULL, 901 "ipv4_ire_status" }, 902 { ip_ire_report_mrtun, NULL, NULL, 903 "ipv4_mrtun_ire_status" }, 904 { ip_ire_report_srcif, NULL, NULL, 905 "ipv4_srcif_ire_status" }, 906 { ip_ire_report_v6, NULL, NULL, 907 "ipv6_ire_status" }, 908 { ip_conn_report, NULL, NULL, 909 "ip_conn_status" }, 910 { nd_get_long, nd_set_long, (caddr_t)&ip_rput_pullups, 911 "ip_rput_pullups" }, 912 { ndp_report, NULL, NULL, 913 "ip_ndp_cache_report" }, 914 { ip_srcid_report, NULL, NULL, 915 "ip_srcid_status" }, 916 { ip_param_generic_get, ip_squeue_profile_set, 917 (caddr_t)&ip_squeue_profile, "ip_squeue_profile" }, 918 { ip_param_generic_get, ip_squeue_bind_set, 919 (caddr_t)&ip_squeue_bind, "ip_squeue_bind" }, 920 { ip_param_generic_get, ip_input_proc_set, 921 (caddr_t)&ip_squeue_enter, "ip_squeue_enter" }, 922 { ip_param_generic_get, ip_fanout_set, 923 (caddr_t)&ip_squeue_fanout, "ip_squeue_fanout" }, 924 { ip_cgtp_filter_get, ip_cgtp_filter_set, (caddr_t)&ip_cgtp_filter, 925 "ip_cgtp_filter" } 926 }; 927 928 /* 929 * ip_g_forward controls IP forwarding. It takes two values: 930 * 0: IP_FORWARD_NEVER Don't forward packets ever. 931 * 1: IP_FORWARD_ALWAYS Forward packets for elsewhere. 932 * 933 * RFC1122 says there must be a configuration switch to control forwarding, 934 * but that the default MUST be to not forward packets ever. Implicit 935 * control based on configuration of multiple interfaces MUST NOT be 936 * implemented (Section 3.1). SunOS 4.1 did provide the "automatic" capability 937 * and, in fact, it was the default. That capability is now provided in the 938 * /etc/rc2.d/S69inet script. 939 */ 940 int ip_g_forward = IP_FORWARD_DEFAULT; 941 942 /* It also has an IPv6 counterpart. */ 943 944 int ipv6_forward = IP_FORWARD_DEFAULT; 945 946 /* Following line is external, and in ip.h. Normally marked with * *. */ 947 #define ip_respond_to_address_mask_broadcast ip_param_arr[0].ip_param_value 948 #define ip_g_resp_to_echo_bcast ip_param_arr[1].ip_param_value 949 #define ip_g_resp_to_echo_mcast ip_param_arr[2].ip_param_value 950 #define ip_g_resp_to_timestamp ip_param_arr[3].ip_param_value 951 #define ip_g_resp_to_timestamp_bcast ip_param_arr[4].ip_param_value 952 #define ip_g_send_redirects ip_param_arr[5].ip_param_value 953 #define ip_g_forward_directed_bcast ip_param_arr[6].ip_param_value 954 #define ip_debug ip_param_arr[7].ip_param_value /* */ 955 #define ip_mrtdebug ip_param_arr[8].ip_param_value /* */ 956 #define ip_timer_interval ip_param_arr[9].ip_param_value /* */ 957 #define ip_ire_arp_interval ip_param_arr[10].ip_param_value /* */ 958 #define ip_ire_redir_interval ip_param_arr[11].ip_param_value 959 #define ip_def_ttl ip_param_arr[12].ip_param_value 960 #define ip_forward_src_routed ip_param_arr[13].ip_param_value 961 #define ip_wroff_extra ip_param_arr[14].ip_param_value 962 #define ip_ire_pathmtu_interval ip_param_arr[15].ip_param_value 963 #define ip_icmp_return ip_param_arr[16].ip_param_value 964 #define ip_path_mtu_discovery ip_param_arr[17].ip_param_value /* */ 965 #define ip_ignore_delete_time ip_param_arr[18].ip_param_value /* */ 966 #define ip_ignore_redirect ip_param_arr[19].ip_param_value 967 #define ip_output_queue ip_param_arr[20].ip_param_value 968 #define ip_broadcast_ttl ip_param_arr[21].ip_param_value 969 #define ip_icmp_err_interval ip_param_arr[22].ip_param_value 970 #define ip_icmp_err_burst ip_param_arr[23].ip_param_value 971 #define ip_reass_queue_bytes ip_param_arr[24].ip_param_value 972 #define ip_strict_dst_multihoming ip_param_arr[25].ip_param_value 973 #define ip_addrs_per_if ip_param_arr[26].ip_param_value 974 #define ipsec_override_persocket_policy ip_param_arr[27].ip_param_value /* */ 975 #define icmp_accept_clear_messages ip_param_arr[28].ip_param_value 976 #define igmp_accept_clear_messages ip_param_arr[29].ip_param_value 977 978 /* IPv6 configuration knobs */ 979 #define delay_first_probe_time ip_param_arr[30].ip_param_value 980 #define max_unicast_solicit ip_param_arr[31].ip_param_value 981 #define ipv6_def_hops ip_param_arr[32].ip_param_value 982 #define ipv6_icmp_return ip_param_arr[33].ip_param_value 983 #define ipv6_forward_src_routed ip_param_arr[34].ip_param_value 984 #define ipv6_resp_echo_mcast ip_param_arr[35].ip_param_value 985 #define ipv6_send_redirects ip_param_arr[36].ip_param_value 986 #define ipv6_ignore_redirect ip_param_arr[37].ip_param_value 987 #define ipv6_strict_dst_multihoming ip_param_arr[38].ip_param_value 988 #define ip_ire_reclaim_fraction ip_param_arr[39].ip_param_value 989 #define ipsec_policy_log_interval ip_param_arr[40].ip_param_value 990 #define pim_accept_clear_messages ip_param_arr[41].ip_param_value 991 #define ip_ndp_unsolicit_interval ip_param_arr[42].ip_param_value 992 #define ip_ndp_unsolicit_count ip_param_arr[43].ip_param_value 993 #define ipv6_ignore_home_address_opt ip_param_arr[44].ip_param_value 994 #define ip_policy_mask ip_param_arr[45].ip_param_value 995 #define ip_multirt_resolution_interval ip_param_arr[46].ip_param_value 996 #define ip_multirt_ttl ip_param_arr[47].ip_param_value 997 #define ip_multidata_outbound ip_param_arr[48].ip_param_value 998 #ifdef DEBUG 999 #define ipv6_drop_inbound_icmpv6 ip_param_arr[49].ip_param_value 1000 #else 1001 #define ipv6_drop_inbound_icmpv6 0 1002 #endif 1003 1004 1005 /* 1006 * Table of IP ioctls encoding the various properties of the ioctl and 1007 * indexed based on the last byte of the ioctl command. Occasionally there 1008 * is a clash, and there is more than 1 ioctl with the same last byte. 1009 * In such a case 1 ioctl is encoded in the ndx table and the remaining 1010 * ioctls are encoded in the misc table. An entry in the ndx table is 1011 * retrieved by indexing on the last byte of the ioctl command and comparing 1012 * the ioctl command with the value in the ndx table. In the event of a 1013 * mismatch the misc table is then searched sequentially for the desired 1014 * ioctl command. 1015 * 1016 * Entry: <command> <copyin_size> <flags> <cmd_type> <function> <restart_func> 1017 */ 1018 ip_ioctl_cmd_t ip_ndx_ioctl_table[] = { 1019 /* 000 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1020 /* 001 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1021 /* 002 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1022 /* 003 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1023 /* 004 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1024 /* 005 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1025 /* 006 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1026 /* 007 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1027 /* 008 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1028 /* 009 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1029 1030 /* 010 */ { SIOCADDRT, sizeof (struct rtentry), IPI_PRIV, 1031 MISC_CMD, ip_siocaddrt, NULL }, 1032 /* 011 */ { SIOCDELRT, sizeof (struct rtentry), IPI_PRIV, 1033 MISC_CMD, ip_siocdelrt, NULL }, 1034 1035 /* 012 */ { SIOCSIFADDR, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 1036 IF_CMD, ip_sioctl_addr, ip_sioctl_addr_restart }, 1037 /* 013 */ { SIOCGIFADDR, sizeof (struct ifreq), IPI_GET_CMD | IPI_REPL, 1038 IF_CMD, ip_sioctl_get_addr, NULL }, 1039 1040 /* 014 */ { SIOCSIFDSTADDR, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 1041 IF_CMD, ip_sioctl_dstaddr, ip_sioctl_dstaddr_restart }, 1042 /* 015 */ { SIOCGIFDSTADDR, sizeof (struct ifreq), 1043 IPI_GET_CMD | IPI_REPL, 1044 IF_CMD, ip_sioctl_get_dstaddr, NULL }, 1045 1046 /* 016 */ { SIOCSIFFLAGS, sizeof (struct ifreq), 1047 IPI_PRIV | IPI_WR | IPI_REPL, 1048 IF_CMD, ip_sioctl_flags, ip_sioctl_flags_restart }, 1049 /* 017 */ { SIOCGIFFLAGS, sizeof (struct ifreq), 1050 IPI_MODOK | IPI_GET_CMD | IPI_REPL, 1051 IF_CMD, ip_sioctl_get_flags, NULL }, 1052 1053 /* 018 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1054 /* 019 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1055 1056 /* copyin size cannot be coded for SIOCGIFCONF */ 1057 /* 020 */ { O_SIOCGIFCONF, 0, IPI_GET_CMD | IPI_REPL, 1058 MISC_CMD, ip_sioctl_get_ifconf, NULL }, 1059 1060 /* 021 */ { SIOCSIFMTU, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 1061 IF_CMD, ip_sioctl_mtu, NULL }, 1062 /* 022 */ { SIOCGIFMTU, sizeof (struct ifreq), IPI_GET_CMD | IPI_REPL, 1063 IF_CMD, ip_sioctl_get_mtu, NULL }, 1064 /* 023 */ { SIOCGIFBRDADDR, sizeof (struct ifreq), 1065 IPI_GET_CMD | IPI_REPL, 1066 IF_CMD, ip_sioctl_get_brdaddr, NULL }, 1067 /* 024 */ { SIOCSIFBRDADDR, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 1068 IF_CMD, ip_sioctl_brdaddr, NULL }, 1069 /* 025 */ { SIOCGIFNETMASK, sizeof (struct ifreq), 1070 IPI_GET_CMD | IPI_REPL, 1071 IF_CMD, ip_sioctl_get_netmask, NULL }, 1072 /* 026 */ { SIOCSIFNETMASK, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 1073 IF_CMD, ip_sioctl_netmask, ip_sioctl_netmask_restart }, 1074 /* 027 */ { SIOCGIFMETRIC, sizeof (struct ifreq), 1075 IPI_GET_CMD | IPI_REPL, 1076 IF_CMD, ip_sioctl_get_metric, NULL }, 1077 /* 028 */ { SIOCSIFMETRIC, sizeof (struct ifreq), IPI_PRIV, 1078 IF_CMD, ip_sioctl_metric, NULL }, 1079 /* 029 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1080 1081 /* See 166-168 below for extended SIOC*XARP ioctls */ 1082 /* 030 */ { SIOCSARP, sizeof (struct arpreq), IPI_PRIV, 1083 MISC_CMD, ip_sioctl_arp, NULL }, 1084 /* 031 */ { SIOCGARP, sizeof (struct arpreq), IPI_GET_CMD | IPI_REPL, 1085 MISC_CMD, ip_sioctl_arp, NULL }, 1086 /* 032 */ { SIOCDARP, sizeof (struct arpreq), IPI_PRIV, 1087 MISC_CMD, ip_sioctl_arp, NULL }, 1088 1089 /* 033 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1090 /* 034 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1091 /* 035 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1092 /* 036 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1093 /* 037 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1094 /* 038 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1095 /* 039 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1096 /* 040 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1097 /* 041 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1098 /* 042 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1099 /* 043 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1100 /* 044 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1101 /* 045 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1102 /* 046 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1103 /* 047 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1104 /* 048 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1105 /* 049 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1106 /* 050 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1107 /* 051 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1108 /* 052 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1109 /* 053 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1110 1111 /* 054 */ { IF_UNITSEL, sizeof (int), IPI_PRIV | IPI_WR | IPI_MODOK, 1112 MISC_CMD, if_unitsel, if_unitsel_restart }, 1113 1114 /* 055 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1115 /* 056 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1116 /* 057 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1117 /* 058 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1118 /* 059 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1119 /* 060 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1120 /* 061 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1121 /* 062 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1122 /* 063 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1123 /* 064 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1124 /* 065 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1125 /* 066 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1126 /* 067 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1127 /* 068 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1128 /* 069 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1129 /* 070 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1130 /* 071 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1131 /* 072 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1132 1133 /* 073 */ { SIOCSIFNAME, sizeof (struct ifreq), 1134 IPI_PRIV | IPI_WR | IPI_MODOK, 1135 IF_CMD, ip_sioctl_sifname, NULL }, 1136 1137 /* 074 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1138 /* 075 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1139 /* 076 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1140 /* 077 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1141 /* 078 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1142 /* 079 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1143 /* 080 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1144 /* 081 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1145 /* 082 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1146 /* 083 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1147 /* 084 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1148 /* 085 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1149 /* 086 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1150 1151 /* 087 */ { SIOCGIFNUM, sizeof (int), IPI_GET_CMD | IPI_REPL, 1152 MISC_CMD, ip_sioctl_get_ifnum, NULL }, 1153 /* 088 */ { SIOCGIFMUXID, sizeof (struct ifreq), IPI_GET_CMD | IPI_REPL, 1154 IF_CMD, ip_sioctl_get_muxid, NULL }, 1155 /* 089 */ { SIOCSIFMUXID, sizeof (struct ifreq), 1156 IPI_PRIV | IPI_WR | IPI_REPL, 1157 IF_CMD, ip_sioctl_muxid, NULL }, 1158 1159 /* Both if and lif variants share same func */ 1160 /* 090 */ { SIOCGIFINDEX, sizeof (struct ifreq), IPI_GET_CMD | IPI_REPL, 1161 IF_CMD, ip_sioctl_get_lifindex, NULL }, 1162 /* Both if and lif variants share same func */ 1163 /* 091 */ { SIOCSIFINDEX, sizeof (struct ifreq), 1164 IPI_PRIV | IPI_WR | IPI_REPL, 1165 IF_CMD, ip_sioctl_slifindex, NULL }, 1166 1167 /* copyin size cannot be coded for SIOCGIFCONF */ 1168 /* 092 */ { SIOCGIFCONF, 0, IPI_GET_CMD | IPI_REPL, 1169 MISC_CMD, ip_sioctl_get_ifconf, NULL }, 1170 /* 093 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1171 /* 094 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1172 /* 095 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1173 /* 096 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1174 /* 097 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1175 /* 098 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1176 /* 099 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1177 /* 100 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1178 /* 101 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1179 /* 102 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1180 /* 103 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1181 /* 104 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1182 /* 105 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1183 /* 106 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1184 /* 107 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1185 /* 108 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1186 /* 109 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1187 1188 /* 110 */ { SIOCLIFREMOVEIF, sizeof (struct lifreq), 1189 IPI_PRIV | IPI_WR | IPI_REPL, 1190 LIF_CMD, ip_sioctl_removeif, 1191 ip_sioctl_removeif_restart }, 1192 /* 111 */ { SIOCLIFADDIF, sizeof (struct lifreq), 1193 IPI_GET_CMD | IPI_PRIV | IPI_WR | IPI_REPL, 1194 LIF_CMD, ip_sioctl_addif, NULL }, 1195 #define SIOCLIFADDR_NDX 112 1196 /* 112 */ { SIOCSLIFADDR, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1197 LIF_CMD, ip_sioctl_addr, ip_sioctl_addr_restart }, 1198 /* 113 */ { SIOCGLIFADDR, sizeof (struct lifreq), 1199 IPI_GET_CMD | IPI_REPL, 1200 LIF_CMD, ip_sioctl_get_addr, NULL }, 1201 /* 114 */ { SIOCSLIFDSTADDR, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1202 LIF_CMD, ip_sioctl_dstaddr, ip_sioctl_dstaddr_restart }, 1203 /* 115 */ { SIOCGLIFDSTADDR, sizeof (struct lifreq), 1204 IPI_GET_CMD | IPI_REPL, 1205 LIF_CMD, ip_sioctl_get_dstaddr, NULL }, 1206 /* 116 */ { SIOCSLIFFLAGS, sizeof (struct lifreq), 1207 IPI_PRIV | IPI_WR | IPI_REPL, 1208 LIF_CMD, ip_sioctl_flags, ip_sioctl_flags_restart }, 1209 /* 117 */ { SIOCGLIFFLAGS, sizeof (struct lifreq), 1210 IPI_GET_CMD | IPI_MODOK | IPI_REPL, 1211 LIF_CMD, ip_sioctl_get_flags, NULL }, 1212 1213 /* 118 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1214 /* 119 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1215 1216 /* 120 */ { O_SIOCGLIFCONF, 0, IPI_GET_CMD, MISC_CMD | IPI_REPL, 1217 ip_sioctl_get_lifconf, NULL }, 1218 /* 121 */ { SIOCSLIFMTU, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1219 LIF_CMD, ip_sioctl_mtu, NULL }, 1220 /* 122 */ { SIOCGLIFMTU, sizeof (struct lifreq), IPI_GET_CMD | IPI_REPL, 1221 LIF_CMD, ip_sioctl_get_mtu, NULL }, 1222 /* 123 */ { SIOCGLIFBRDADDR, sizeof (struct lifreq), 1223 IPI_GET_CMD | IPI_REPL, 1224 LIF_CMD, ip_sioctl_get_brdaddr, NULL }, 1225 /* 124 */ { SIOCSLIFBRDADDR, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1226 LIF_CMD, ip_sioctl_brdaddr, NULL }, 1227 /* 125 */ { SIOCGLIFNETMASK, sizeof (struct lifreq), 1228 IPI_GET_CMD | IPI_REPL, 1229 LIF_CMD, ip_sioctl_get_netmask, NULL }, 1230 /* 126 */ { SIOCSLIFNETMASK, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1231 LIF_CMD, ip_sioctl_netmask, ip_sioctl_netmask_restart }, 1232 /* 127 */ { SIOCGLIFMETRIC, sizeof (struct lifreq), 1233 IPI_GET_CMD | IPI_REPL, 1234 LIF_CMD, ip_sioctl_get_metric, NULL }, 1235 /* 128 */ { SIOCSLIFMETRIC, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1236 LIF_CMD, ip_sioctl_metric, NULL }, 1237 /* 129 */ { SIOCSLIFNAME, sizeof (struct lifreq), 1238 IPI_PRIV | IPI_WR | IPI_MODOK | IPI_REPL, 1239 LIF_CMD, ip_sioctl_slifname, 1240 ip_sioctl_slifname_restart }, 1241 1242 /* 130 */ { SIOCGLIFNUM, sizeof (struct lifnum), IPI_GET_CMD | IPI_REPL, 1243 MISC_CMD, ip_sioctl_get_lifnum, NULL }, 1244 /* 131 */ { SIOCGLIFMUXID, sizeof (struct lifreq), 1245 IPI_GET_CMD | IPI_REPL, 1246 LIF_CMD, ip_sioctl_get_muxid, NULL }, 1247 /* 132 */ { SIOCSLIFMUXID, sizeof (struct lifreq), 1248 IPI_PRIV | IPI_WR | IPI_REPL, 1249 LIF_CMD, ip_sioctl_muxid, NULL }, 1250 /* 133 */ { SIOCGLIFINDEX, sizeof (struct lifreq), 1251 IPI_GET_CMD | IPI_REPL, 1252 LIF_CMD, ip_sioctl_get_lifindex, 0 }, 1253 /* 134 */ { SIOCSLIFINDEX, sizeof (struct lifreq), 1254 IPI_PRIV | IPI_WR | IPI_REPL, 1255 LIF_CMD, ip_sioctl_slifindex, 0 }, 1256 /* 135 */ { SIOCSLIFTOKEN, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1257 LIF_CMD, ip_sioctl_token, NULL }, 1258 /* 136 */ { SIOCGLIFTOKEN, sizeof (struct lifreq), 1259 IPI_GET_CMD | IPI_REPL, 1260 LIF_CMD, ip_sioctl_get_token, NULL }, 1261 /* 137 */ { SIOCSLIFSUBNET, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1262 LIF_CMD, ip_sioctl_subnet, ip_sioctl_subnet_restart }, 1263 /* 138 */ { SIOCGLIFSUBNET, sizeof (struct lifreq), 1264 IPI_GET_CMD | IPI_REPL, 1265 LIF_CMD, ip_sioctl_get_subnet, NULL }, 1266 /* 139 */ { SIOCSLIFLNKINFO, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1267 LIF_CMD, ip_sioctl_lnkinfo, NULL }, 1268 1269 /* 140 */ { SIOCGLIFLNKINFO, sizeof (struct lifreq), 1270 IPI_GET_CMD | IPI_REPL, 1271 LIF_CMD, ip_sioctl_get_lnkinfo, NULL }, 1272 /* 141 */ { SIOCLIFDELND, sizeof (struct lifreq), IPI_PRIV, 1273 LIF_CMD, ip_siocdelndp_v6, NULL }, 1274 /* 142 */ { SIOCLIFGETND, sizeof (struct lifreq), IPI_GET_CMD, 1275 LIF_CMD, ip_siocqueryndp_v6, NULL }, 1276 /* 143 */ { SIOCLIFSETND, sizeof (struct lifreq), IPI_PRIV, 1277 LIF_CMD, ip_siocsetndp_v6, NULL }, 1278 /* 144 */ { SIOCTMYADDR, sizeof (struct sioc_addrreq), IPI_GET_CMD, 1279 MISC_CMD, ip_sioctl_tmyaddr, NULL }, 1280 /* 145 */ { SIOCTONLINK, sizeof (struct sioc_addrreq), IPI_GET_CMD, 1281 MISC_CMD, ip_sioctl_tonlink, NULL }, 1282 /* 146 */ { SIOCTMYSITE, sizeof (struct sioc_addrreq), 0, 1283 MISC_CMD, ip_sioctl_tmysite, NULL }, 1284 /* 147 */ { SIOCGTUNPARAM, sizeof (struct iftun_req), IPI_REPL, 1285 TUN_CMD, ip_sioctl_tunparam, NULL }, 1286 /* 148 */ { SIOCSTUNPARAM, sizeof (struct iftun_req), 1287 IPI_PRIV | IPI_WR, 1288 TUN_CMD, ip_sioctl_tunparam, NULL }, 1289 1290 /* IPSECioctls handled in ip_sioctl_copyin_setup itself */ 1291 /* 149 */ { SIOCFIPSECONFIG, 0, IPI_PRIV, MISC_CMD, NULL, NULL }, 1292 /* 150 */ { SIOCSIPSECONFIG, 0, IPI_PRIV, MISC_CMD, NULL, NULL }, 1293 /* 151 */ { SIOCDIPSECONFIG, 0, IPI_PRIV, MISC_CMD, NULL, NULL }, 1294 /* 152 */ { SIOCLIPSECONFIG, 0, IPI_PRIV, MISC_CMD, NULL, NULL }, 1295 1296 /* 153 */ { SIOCLIFFAILOVER, sizeof (struct lifreq), 1297 IPI_PRIV | IPI_WR | IPI_REPL, 1298 LIF_CMD, ip_sioctl_move, ip_sioctl_move }, 1299 /* 154 */ { SIOCLIFFAILBACK, sizeof (struct lifreq), 1300 IPI_PRIV | IPI_WR | IPI_REPL, 1301 LIF_CMD, ip_sioctl_move, ip_sioctl_move }, 1302 /* 155 */ { SIOCSLIFGROUPNAME, sizeof (struct lifreq), 1303 IPI_PRIV | IPI_WR, 1304 LIF_CMD, ip_sioctl_groupname, ip_sioctl_groupname }, 1305 /* 156 */ { SIOCGLIFGROUPNAME, sizeof (struct lifreq), 1306 IPI_GET_CMD | IPI_REPL, 1307 LIF_CMD, ip_sioctl_get_groupname, NULL }, 1308 /* 157 */ { SIOCGLIFOINDEX, sizeof (struct lifreq), 1309 IPI_GET_CMD | IPI_REPL, 1310 LIF_CMD, ip_sioctl_get_oindex, NULL }, 1311 1312 /* Leave 158-160 unused; used to be SIOC*IFARP ioctls */ 1313 /* 158 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1314 /* 159 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1315 /* 160 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1316 1317 /* 161 */ { SIOCSLIFOINDEX, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1318 LIF_CMD, ip_sioctl_slifoindex, NULL }, 1319 1320 /* These are handled in ip_sioctl_copyin_setup itself */ 1321 /* 162 */ { SIOCGIP6ADDRPOLICY, 0, IPI_NULL_BCONT, 1322 MISC_CMD, NULL, NULL }, 1323 /* 163 */ { SIOCSIP6ADDRPOLICY, 0, IPI_PRIV | IPI_NULL_BCONT, 1324 MISC_CMD, NULL, NULL }, 1325 /* 164 */ { SIOCGDSTINFO, 0, IPI_GET_CMD, MISC_CMD, NULL, NULL }, 1326 1327 /* 165 */ { SIOCGLIFCONF, 0, IPI_GET_CMD, MISC_CMD | IPI_REPL, 1328 ip_sioctl_get_lifconf, NULL }, 1329 1330 /* 166 */ { SIOCSXARP, sizeof (struct xarpreq), IPI_PRIV, 1331 MISC_CMD, ip_sioctl_xarp, NULL }, 1332 /* 167 */ { SIOCGXARP, sizeof (struct xarpreq), IPI_GET_CMD | IPI_REPL, 1333 MISC_CMD, ip_sioctl_xarp, NULL }, 1334 /* 168 */ { SIOCDXARP, sizeof (struct xarpreq), IPI_PRIV, 1335 MISC_CMD, ip_sioctl_xarp, NULL }, 1336 1337 /* SIOCPOPSOCKFS is not handled by IP */ 1338 /* 169 */ { IPI_DONTCARE /* SIOCPOPSOCKFS */, 0, 0, 0, NULL, NULL }, 1339 1340 /* 170 */ { SIOCGLIFZONE, sizeof (struct lifreq), 1341 IPI_GET_CMD | IPI_REPL, 1342 LIF_CMD, ip_sioctl_get_lifzone, NULL }, 1343 /* 171 */ { SIOCSLIFZONE, sizeof (struct lifreq), 1344 IPI_PRIV | IPI_WR | IPI_REPL, 1345 LIF_CMD, ip_sioctl_slifzone, 1346 ip_sioctl_slifzone_restart }, 1347 /* 172-174 are SCTP ioctls and not handled by IP */ 1348 /* 172 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1349 /* 173 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1350 /* 174 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1351 /* 175 */ { SIOCGLIFUSESRC, sizeof (struct lifreq), 1352 IPI_GET_CMD, LIF_CMD, 1353 ip_sioctl_get_lifusesrc, 0 }, 1354 /* 176 */ { SIOCSLIFUSESRC, sizeof (struct lifreq), 1355 IPI_PRIV | IPI_WR, 1356 LIF_CMD, ip_sioctl_slifusesrc, 1357 NULL }, 1358 /* 177 */ { SIOCGLIFSRCOF, 0, IPI_GET_CMD, MISC_CMD, 1359 ip_sioctl_get_lifsrcof, NULL }, 1360 /* 178 */ { SIOCGMSFILTER, sizeof (struct group_filter), IPI_GET_CMD, 1361 MISC_CMD, ip_sioctl_msfilter, NULL }, 1362 /* 179 */ { SIOCSMSFILTER, sizeof (struct group_filter), IPI_WR, 1363 MISC_CMD, ip_sioctl_msfilter, NULL }, 1364 /* 180 */ { SIOCGIPMSFILTER, sizeof (struct ip_msfilter), IPI_GET_CMD, 1365 MISC_CMD, ip_sioctl_msfilter, NULL }, 1366 /* 181 */ { SIOCSIPMSFILTER, sizeof (struct ip_msfilter), IPI_WR, 1367 MISC_CMD, ip_sioctl_msfilter, NULL } 1368 }; 1369 1370 int ip_ndx_ioctl_count = sizeof (ip_ndx_ioctl_table) / sizeof (ip_ioctl_cmd_t); 1371 1372 ip_ioctl_cmd_t ip_misc_ioctl_table[] = { 1373 { OSIOCGTUNPARAM, sizeof (struct old_iftun_req), 1374 IPI_GET_CMD | IPI_REPL, TUN_CMD, ip_sioctl_tunparam, NULL }, 1375 { OSIOCSTUNPARAM, sizeof (struct old_iftun_req), IPI_PRIV | IPI_WR, 1376 TUN_CMD, ip_sioctl_tunparam, NULL }, 1377 { I_LINK, 0, IPI_PRIV | IPI_WR | IPI_PASS_DOWN, 0, NULL, NULL }, 1378 { I_UNLINK, 0, IPI_PRIV | IPI_WR | IPI_PASS_DOWN, 0, NULL, NULL }, 1379 { I_PLINK, 0, IPI_PRIV | IPI_WR | IPI_PASS_DOWN, 0, NULL, NULL }, 1380 { I_PUNLINK, 0, IPI_PRIV | IPI_WR | IPI_PASS_DOWN, 0, NULL, NULL }, 1381 { ND_GET, 0, IPI_PASS_DOWN, 0, NULL, NULL }, 1382 { ND_SET, 0, IPI_PRIV | IPI_WR | IPI_PASS_DOWN, 0, NULL, NULL }, 1383 { IP_IOCTL, 0, 0, 0, NULL, NULL }, 1384 { SIOCGETVIFCNT, sizeof (struct sioc_vif_req), IPI_REPL | IPI_GET_CMD, 1385 MISC_CMD, mrt_ioctl}, 1386 { SIOCGETSGCNT, sizeof (struct sioc_sg_req), IPI_REPL | IPI_GET_CMD, 1387 MISC_CMD, mrt_ioctl}, 1388 { SIOCGETLSGCNT, sizeof (struct sioc_lsg_req), IPI_REPL | IPI_GET_CMD, 1389 MISC_CMD, mrt_ioctl} 1390 }; 1391 1392 int ip_misc_ioctl_count = 1393 sizeof (ip_misc_ioctl_table) / sizeof (ip_ioctl_cmd_t); 1394 1395 static idl_t *conn_drain_list; /* The array of conn drain lists */ 1396 static uint_t conn_drain_list_cnt; /* Total count of conn_drain_list */ 1397 static int conn_drain_list_index; /* Next drain_list to be used */ 1398 int conn_drain_nthreads; /* Number of drainers reqd. */ 1399 /* Settable in /etc/system */ 1400 1401 /* Defined in ip_ire.c */ 1402 extern uint32_t ip_ire_max_bucket_cnt, ip6_ire_max_bucket_cnt; 1403 extern uint32_t ip_ire_min_bucket_cnt, ip6_ire_min_bucket_cnt; 1404 extern uint32_t ip_ire_mem_ratio, ip_ire_cpu_ratio; 1405 1406 static nv_t ire_nv_arr[] = { 1407 { IRE_BROADCAST, "BROADCAST" }, 1408 { IRE_LOCAL, "LOCAL" }, 1409 { IRE_LOOPBACK, "LOOPBACK" }, 1410 { IRE_CACHE, "CACHE" }, 1411 { IRE_DEFAULT, "DEFAULT" }, 1412 { IRE_PREFIX, "PREFIX" }, 1413 { IRE_IF_NORESOLVER, "IF_NORESOL" }, 1414 { IRE_IF_RESOLVER, "IF_RESOLV" }, 1415 { IRE_HOST, "HOST" }, 1416 { IRE_HOST_REDIRECT, "HOST_REDIRECT" }, 1417 { 0 } 1418 }; 1419 1420 nv_t *ire_nv_tbl = ire_nv_arr; 1421 1422 /* Defined in ip_if.c, protect the list of IPsec capable ills */ 1423 extern krwlock_t ipsec_capab_ills_lock; 1424 1425 /* Packet dropper for IP IPsec processing failures */ 1426 ipdropper_t ip_dropper; 1427 1428 /* Simple ICMP IP Header Template */ 1429 static ipha_t icmp_ipha = { 1430 IP_SIMPLE_HDR_VERSION, 0, 0, 0, 0, 0, IPPROTO_ICMP 1431 }; 1432 1433 struct module_info ip_mod_info = { 1434 5701, "ip", 1, INFPSZ, 65536, 1024 1435 }; 1436 1437 static struct qinit rinit = { 1438 (pfi_t)ip_rput, NULL, ip_open, ip_close, NULL, 1439 &ip_mod_info 1440 }; 1441 1442 static struct qinit winit = { 1443 (pfi_t)ip_wput, (pfi_t)ip_wsrv, ip_open, ip_close, NULL, 1444 &ip_mod_info 1445 }; 1446 1447 static struct qinit lrinit = { 1448 (pfi_t)ip_lrput, NULL, ip_open, ip_close, NULL, 1449 &ip_mod_info 1450 }; 1451 1452 static struct qinit lwinit = { 1453 (pfi_t)ip_lwput, NULL, ip_open, ip_close, NULL, 1454 &ip_mod_info 1455 }; 1456 1457 struct streamtab ipinfo = { 1458 &rinit, &winit, &lrinit, &lwinit 1459 }; 1460 1461 #ifdef DEBUG 1462 static boolean_t skip_sctp_cksum = B_FALSE; 1463 #endif 1464 /* 1465 * Copy an M_CTL-tagged message, preserving reference counts appropriately. 1466 */ 1467 mblk_t * 1468 ip_copymsg(mblk_t *mp) 1469 { 1470 mblk_t *nmp; 1471 ipsec_info_t *in; 1472 1473 if (mp->b_datap->db_type != M_CTL) 1474 return (copymsg(mp)); 1475 1476 in = (ipsec_info_t *)mp->b_rptr; 1477 1478 /* 1479 * Note that M_CTL is also used for delivering ICMP error messages 1480 * upstream to transport layers. 1481 */ 1482 if (in->ipsec_info_type != IPSEC_OUT && 1483 in->ipsec_info_type != IPSEC_IN) 1484 return (copymsg(mp)); 1485 1486 nmp = copymsg(mp->b_cont); 1487 1488 if (in->ipsec_info_type == IPSEC_OUT) 1489 return (ipsec_out_tag(mp, nmp)); 1490 else 1491 return (ipsec_in_tag(mp, nmp)); 1492 } 1493 1494 /* Generate an ICMP fragmentation needed message. */ 1495 static void 1496 icmp_frag_needed(queue_t *q, mblk_t *mp, int mtu) 1497 { 1498 icmph_t icmph; 1499 mblk_t *first_mp; 1500 boolean_t mctl_present; 1501 1502 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 1503 1504 if (!(mp = icmp_pkt_err_ok(mp))) { 1505 if (mctl_present) 1506 freeb(first_mp); 1507 return; 1508 } 1509 1510 bzero(&icmph, sizeof (icmph_t)); 1511 icmph.icmph_type = ICMP_DEST_UNREACHABLE; 1512 icmph.icmph_code = ICMP_FRAGMENTATION_NEEDED; 1513 icmph.icmph_du_mtu = htons((uint16_t)mtu); 1514 BUMP_MIB(&icmp_mib, icmpOutFragNeeded); 1515 BUMP_MIB(&icmp_mib, icmpOutDestUnreachs); 1516 icmp_pkt(q, first_mp, &icmph, sizeof (icmph_t), mctl_present); 1517 } 1518 1519 /* 1520 * icmp_inbound deals with ICMP messages in the following ways. 1521 * 1522 * 1) It needs to send a reply back and possibly delivering it 1523 * to the "interested" upper clients. 1524 * 2) It needs to send it to the upper clients only. 1525 * 3) It needs to change some values in IP only. 1526 * 4) It needs to change some values in IP and upper layers e.g TCP. 1527 * 1528 * We need to accomodate icmp messages coming in clear until we get 1529 * everything secure from the wire. If icmp_accept_clear_messages 1530 * is zero we check with the global policy and act accordingly. If 1531 * it is non-zero, we accept the message without any checks. But 1532 * *this does not mean* that this will be delivered to the upper 1533 * clients. By accepting we might send replies back, change our MTU 1534 * value etc. but delivery to the ULP/clients depends on their policy 1535 * dispositions. 1536 * 1537 * We handle the above 4 cases in the context of IPSEC in the 1538 * following way : 1539 * 1540 * 1) Send the reply back in the same way as the request came in. 1541 * If it came in encrypted, it goes out encrypted. If it came in 1542 * clear, it goes out in clear. Thus, this will prevent chosen 1543 * plain text attack. 1544 * 2) The client may or may not expect things to come in secure. 1545 * If it comes in secure, the policy constraints are checked 1546 * before delivering it to the upper layers. If it comes in 1547 * clear, ipsec_inbound_accept_clear will decide whether to 1548 * accept this in clear or not. In both the cases, if the returned 1549 * message (IP header + 8 bytes) that caused the icmp message has 1550 * AH/ESP headers, it is sent up to AH/ESP for validation before 1551 * sending up. If there are only 8 bytes of returned message, then 1552 * upper client will not be notified. 1553 * 3) Check with global policy to see whether it matches the constaints. 1554 * But this will be done only if icmp_accept_messages_in_clear is 1555 * zero. 1556 * 4) If we need to change both in IP and ULP, then the decision taken 1557 * while affecting the values in IP and while delivering up to TCP 1558 * should be the same. 1559 * 1560 * There are two cases. 1561 * 1562 * a) If we reject data at the IP layer (ipsec_check_global_policy() 1563 * failed), we will not deliver it to the ULP, even though they 1564 * are *willing* to accept in *clear*. This is fine as our global 1565 * disposition to icmp messages asks us reject the datagram. 1566 * 1567 * b) If we accept data at the IP layer (ipsec_check_global_policy() 1568 * succeeded or icmp_accept_messages_in_clear is 1), and not able 1569 * to deliver it to ULP (policy failed), it can lead to 1570 * consistency problems. The cases known at this time are 1571 * ICMP_DESTINATION_UNREACHABLE messages with following code 1572 * values : 1573 * 1574 * - ICMP_FRAGMENTATION_NEEDED : IP adapts to the new value 1575 * and Upper layer rejects. Then the communication will 1576 * come to a stop. This is solved by making similar decisions 1577 * at both levels. Currently, when we are unable to deliver 1578 * to the Upper Layer (due to policy failures) while IP has 1579 * adjusted ire_max_frag, the next outbound datagram would 1580 * generate a local ICMP_FRAGMENTATION_NEEDED message - which 1581 * will be with the right level of protection. Thus the right 1582 * value will be communicated even if we are not able to 1583 * communicate when we get from the wire initially. But this 1584 * assumes there would be at least one outbound datagram after 1585 * IP has adjusted its ire_max_frag value. To make things 1586 * simpler, we accept in clear after the validation of 1587 * AH/ESP headers. 1588 * 1589 * - Other ICMP ERRORS : We may not be able to deliver it to the 1590 * upper layer depending on the level of protection the upper 1591 * layer expects and the disposition in ipsec_inbound_accept_clear(). 1592 * ipsec_inbound_accept_clear() decides whether a given ICMP error 1593 * should be accepted in clear when the Upper layer expects secure. 1594 * Thus the communication may get aborted by some bad ICMP 1595 * packets. 1596 * 1597 * IPQoS Notes: 1598 * The only instance when a packet is sent for processing is when there 1599 * isn't an ICMP client and if we are interested in it. 1600 * If there is a client, IPPF processing will take place in the 1601 * ip_fanout_proto routine. 1602 * 1603 * Zones notes: 1604 * The packet is only processed in the context of the specified zone: typically 1605 * only this zone will reply to an echo request, and only interested clients in 1606 * this zone will receive a copy of the packet. This means that the caller must 1607 * call icmp_inbound() for each relevant zone. 1608 */ 1609 static void 1610 icmp_inbound(queue_t *q, mblk_t *mp, boolean_t broadcast, ill_t *ill, 1611 int sum_valid, uint32_t sum, boolean_t mctl_present, boolean_t ip_policy, 1612 ill_t *recv_ill, zoneid_t zoneid) 1613 { 1614 icmph_t *icmph; 1615 ipha_t *ipha; 1616 int iph_hdr_length; 1617 int hdr_length; 1618 boolean_t interested; 1619 uint32_t ts; 1620 uchar_t *wptr; 1621 ipif_t *ipif; 1622 mblk_t *first_mp; 1623 ipsec_in_t *ii; 1624 ire_t *src_ire; 1625 boolean_t onlink; 1626 timestruc_t now; 1627 uint32_t ill_index; 1628 1629 ASSERT(ill != NULL); 1630 1631 first_mp = mp; 1632 if (mctl_present) { 1633 mp = first_mp->b_cont; 1634 ASSERT(mp != NULL); 1635 } 1636 1637 ipha = (ipha_t *)mp->b_rptr; 1638 if (icmp_accept_clear_messages == 0) { 1639 first_mp = ipsec_check_global_policy(first_mp, NULL, 1640 ipha, NULL, mctl_present); 1641 if (first_mp == NULL) 1642 return; 1643 } 1644 /* 1645 * We have accepted the ICMP message. It means that we will 1646 * respond to the packet if needed. It may not be delivered 1647 * to the upper client depending on the policy constraints 1648 * and the disposition in ipsec_inbound_accept_clear. 1649 */ 1650 1651 ASSERT(ill != NULL); 1652 1653 BUMP_MIB(&icmp_mib, icmpInMsgs); 1654 iph_hdr_length = IPH_HDR_LENGTH(ipha); 1655 if ((mp->b_wptr - mp->b_rptr) < (iph_hdr_length + ICMPH_SIZE)) { 1656 /* Last chance to get real. */ 1657 if (!pullupmsg(mp, iph_hdr_length + ICMPH_SIZE)) { 1658 BUMP_MIB(&icmp_mib, icmpInErrors); 1659 freemsg(first_mp); 1660 return; 1661 } 1662 /* Refresh iph following the pullup. */ 1663 ipha = (ipha_t *)mp->b_rptr; 1664 } 1665 /* ICMP header checksum, including checksum field, should be zero. */ 1666 if (sum_valid ? (sum != 0 && sum != 0xFFFF) : 1667 IP_CSUM(mp, iph_hdr_length, 0)) { 1668 BUMP_MIB(&icmp_mib, icmpInCksumErrs); 1669 freemsg(first_mp); 1670 return; 1671 } 1672 /* The IP header will always be a multiple of four bytes */ 1673 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1674 ip2dbg(("icmp_inbound: type %d code %d\n", icmph->icmph_type, 1675 icmph->icmph_code)); 1676 wptr = (uchar_t *)icmph + ICMPH_SIZE; 1677 /* We will set "interested" to "true" if we want a copy */ 1678 interested = B_FALSE; 1679 switch (icmph->icmph_type) { 1680 case ICMP_ECHO_REPLY: 1681 BUMP_MIB(&icmp_mib, icmpInEchoReps); 1682 break; 1683 case ICMP_DEST_UNREACHABLE: 1684 if (icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED) 1685 BUMP_MIB(&icmp_mib, icmpInFragNeeded); 1686 interested = B_TRUE; /* Pass up to transport */ 1687 BUMP_MIB(&icmp_mib, icmpInDestUnreachs); 1688 break; 1689 case ICMP_SOURCE_QUENCH: 1690 interested = B_TRUE; /* Pass up to transport */ 1691 BUMP_MIB(&icmp_mib, icmpInSrcQuenchs); 1692 break; 1693 case ICMP_REDIRECT: 1694 if (!ip_ignore_redirect) 1695 interested = B_TRUE; 1696 BUMP_MIB(&icmp_mib, icmpInRedirects); 1697 break; 1698 case ICMP_ECHO_REQUEST: 1699 /* 1700 * Whether to respond to echo requests that come in as IP 1701 * broadcasts or as IP multicast is subject to debate 1702 * (what isn't?). We aim to please, you pick it. 1703 * Default is do it. 1704 */ 1705 if (!broadcast && !CLASSD(ipha->ipha_dst)) { 1706 /* unicast: always respond */ 1707 interested = B_TRUE; 1708 } else if (CLASSD(ipha->ipha_dst)) { 1709 /* multicast: respond based on tunable */ 1710 interested = ip_g_resp_to_echo_mcast; 1711 } else if (broadcast) { 1712 /* broadcast: respond based on tunable */ 1713 interested = ip_g_resp_to_echo_bcast; 1714 } 1715 BUMP_MIB(&icmp_mib, icmpInEchos); 1716 break; 1717 case ICMP_ROUTER_ADVERTISEMENT: 1718 case ICMP_ROUTER_SOLICITATION: 1719 break; 1720 case ICMP_TIME_EXCEEDED: 1721 interested = B_TRUE; /* Pass up to transport */ 1722 BUMP_MIB(&icmp_mib, icmpInTimeExcds); 1723 break; 1724 case ICMP_PARAM_PROBLEM: 1725 interested = B_TRUE; /* Pass up to transport */ 1726 BUMP_MIB(&icmp_mib, icmpInParmProbs); 1727 break; 1728 case ICMP_TIME_STAMP_REQUEST: 1729 /* Response to Time Stamp Requests is local policy. */ 1730 if (ip_g_resp_to_timestamp && 1731 /* So is whether to respond if it was an IP broadcast. */ 1732 (!broadcast || ip_g_resp_to_timestamp_bcast)) { 1733 int tstamp_len = 3 * sizeof (uint32_t); 1734 1735 if (wptr + tstamp_len > mp->b_wptr) { 1736 if (!pullupmsg(mp, wptr + tstamp_len - 1737 mp->b_rptr)) { 1738 BUMP_MIB(&ip_mib, ipInDiscards); 1739 freemsg(first_mp); 1740 return; 1741 } 1742 /* Refresh ipha following the pullup. */ 1743 ipha = (ipha_t *)mp->b_rptr; 1744 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1745 wptr = (uchar_t *)icmph + ICMPH_SIZE; 1746 } 1747 interested = B_TRUE; 1748 } 1749 BUMP_MIB(&icmp_mib, icmpInTimestamps); 1750 break; 1751 case ICMP_TIME_STAMP_REPLY: 1752 BUMP_MIB(&icmp_mib, icmpInTimestampReps); 1753 break; 1754 case ICMP_INFO_REQUEST: 1755 /* Per RFC 1122 3.2.2.7, ignore this. */ 1756 case ICMP_INFO_REPLY: 1757 break; 1758 case ICMP_ADDRESS_MASK_REQUEST: 1759 if ((ip_respond_to_address_mask_broadcast || !broadcast) && 1760 /* TODO m_pullup of complete header? */ 1761 (mp->b_datap->db_lim - wptr) >= IP_ADDR_LEN) 1762 interested = B_TRUE; 1763 BUMP_MIB(&icmp_mib, icmpInAddrMasks); 1764 break; 1765 case ICMP_ADDRESS_MASK_REPLY: 1766 BUMP_MIB(&icmp_mib, icmpInAddrMaskReps); 1767 break; 1768 default: 1769 interested = B_TRUE; /* Pass up to transport */ 1770 BUMP_MIB(&icmp_mib, icmpInUnknowns); 1771 break; 1772 } 1773 /* See if there is an ICMP client. */ 1774 if (ipcl_proto_search(IPPROTO_ICMP) != NULL) { 1775 /* If there is an ICMP client and we want one too, copy it. */ 1776 mblk_t *first_mp1; 1777 1778 if (!interested) { 1779 ip_fanout_proto(q, first_mp, ill, ipha, 0, mctl_present, 1780 ip_policy, recv_ill, zoneid); 1781 return; 1782 } 1783 first_mp1 = ip_copymsg(first_mp); 1784 if (first_mp1 != NULL) { 1785 ip_fanout_proto(q, first_mp1, ill, ipha, 1786 0, mctl_present, ip_policy, recv_ill, zoneid); 1787 } 1788 } else if (!interested) { 1789 freemsg(first_mp); 1790 return; 1791 } else { 1792 /* 1793 * Initiate policy processing for this packet if ip_policy 1794 * is true. 1795 */ 1796 if (IPP_ENABLED(IPP_LOCAL_IN) && ip_policy) { 1797 ill_index = ill->ill_phyint->phyint_ifindex; 1798 ip_process(IPP_LOCAL_IN, &mp, ill_index); 1799 if (mp == NULL) { 1800 if (mctl_present) { 1801 freeb(first_mp); 1802 } 1803 BUMP_MIB(&icmp_mib, icmpInErrors); 1804 return; 1805 } 1806 } 1807 } 1808 /* We want to do something with it. */ 1809 /* Check db_ref to make sure we can modify the packet. */ 1810 if (mp->b_datap->db_ref > 1) { 1811 mblk_t *first_mp1; 1812 1813 first_mp1 = ip_copymsg(first_mp); 1814 freemsg(first_mp); 1815 if (!first_mp1) { 1816 BUMP_MIB(&icmp_mib, icmpOutDrops); 1817 return; 1818 } 1819 first_mp = first_mp1; 1820 if (mctl_present) { 1821 mp = first_mp->b_cont; 1822 ASSERT(mp != NULL); 1823 } else { 1824 mp = first_mp; 1825 } 1826 ipha = (ipha_t *)mp->b_rptr; 1827 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1828 wptr = (uchar_t *)icmph + ICMPH_SIZE; 1829 } 1830 switch (icmph->icmph_type) { 1831 case ICMP_ADDRESS_MASK_REQUEST: 1832 ipif = ipif_lookup_remote(ill, ipha->ipha_src, zoneid); 1833 if (ipif == NULL) { 1834 freemsg(first_mp); 1835 return; 1836 } 1837 /* 1838 * outging interface must be IPv4 1839 */ 1840 ASSERT(ipif != NULL && !ipif->ipif_isv6); 1841 icmph->icmph_type = ICMP_ADDRESS_MASK_REPLY; 1842 bcopy(&ipif->ipif_net_mask, wptr, IP_ADDR_LEN); 1843 ipif_refrele(ipif); 1844 BUMP_MIB(&icmp_mib, icmpOutAddrMaskReps); 1845 break; 1846 case ICMP_ECHO_REQUEST: 1847 icmph->icmph_type = ICMP_ECHO_REPLY; 1848 BUMP_MIB(&icmp_mib, icmpOutEchoReps); 1849 break; 1850 case ICMP_TIME_STAMP_REQUEST: { 1851 uint32_t *tsp; 1852 1853 icmph->icmph_type = ICMP_TIME_STAMP_REPLY; 1854 tsp = (uint32_t *)wptr; 1855 tsp++; /* Skip past 'originate time' */ 1856 /* Compute # of milliseconds since midnight */ 1857 gethrestime(&now); 1858 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 + 1859 now.tv_nsec / (NANOSEC / MILLISEC); 1860 *tsp++ = htonl(ts); /* Lay in 'receive time' */ 1861 *tsp++ = htonl(ts); /* Lay in 'send time' */ 1862 BUMP_MIB(&icmp_mib, icmpOutTimestampReps); 1863 break; 1864 } 1865 default: 1866 ipha = (ipha_t *)&icmph[1]; 1867 if ((uchar_t *)&ipha[1] > mp->b_wptr) { 1868 if (!pullupmsg(mp, (uchar_t *)&ipha[1] - mp->b_rptr)) { 1869 BUMP_MIB(&ip_mib, ipInDiscards); 1870 freemsg(first_mp); 1871 return; 1872 } 1873 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1874 ipha = (ipha_t *)&icmph[1]; 1875 } 1876 if ((IPH_HDR_VERSION(ipha) != IPV4_VERSION)) { 1877 BUMP_MIB(&ip_mib, ipInDiscards); 1878 freemsg(first_mp); 1879 return; 1880 } 1881 hdr_length = IPH_HDR_LENGTH(ipha); 1882 if (hdr_length < sizeof (ipha_t)) { 1883 BUMP_MIB(&ip_mib, ipInDiscards); 1884 freemsg(first_mp); 1885 return; 1886 } 1887 if ((uchar_t *)ipha + hdr_length > mp->b_wptr) { 1888 if (!pullupmsg(mp, 1889 (uchar_t *)ipha + hdr_length - mp->b_rptr)) { 1890 BUMP_MIB(&ip_mib, ipInDiscards); 1891 freemsg(first_mp); 1892 return; 1893 } 1894 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1895 ipha = (ipha_t *)&icmph[1]; 1896 } 1897 switch (icmph->icmph_type) { 1898 case ICMP_REDIRECT: 1899 /* 1900 * As there is no upper client to deliver, we don't 1901 * need the first_mp any more. 1902 */ 1903 if (mctl_present) { 1904 freeb(first_mp); 1905 } 1906 icmp_redirect(mp); 1907 return; 1908 case ICMP_DEST_UNREACHABLE: 1909 if (icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED) { 1910 if (!icmp_inbound_too_big(icmph, ipha)) { 1911 freemsg(first_mp); 1912 return; 1913 } 1914 } 1915 /* FALLTHRU */ 1916 default : 1917 /* 1918 * IPQoS notes: Since we have already done IPQoS 1919 * processing we don't want to do it again in 1920 * the fanout routines called by 1921 * icmp_inbound_error_fanout, hence the last 1922 * argument, ip_policy, is B_FALSE. 1923 */ 1924 icmp_inbound_error_fanout(q, ill, first_mp, icmph, 1925 ipha, iph_hdr_length, hdr_length, mctl_present, 1926 B_FALSE, recv_ill, zoneid); 1927 } 1928 return; 1929 } 1930 /* Send out an ICMP packet */ 1931 icmph->icmph_checksum = 0; 1932 icmph->icmph_checksum = IP_CSUM(mp, iph_hdr_length, 0); 1933 if (broadcast || CLASSD(ipha->ipha_dst)) { 1934 ipif_t *ipif_chosen; 1935 /* 1936 * Make it look like it was directed to us, so we don't look 1937 * like a fool with a broadcast or multicast source address. 1938 */ 1939 ipif = ipif_lookup_remote(ill, ipha->ipha_src, zoneid); 1940 /* 1941 * Make sure that we haven't grabbed an interface that's DOWN. 1942 */ 1943 if (ipif != NULL) { 1944 ipif_chosen = ipif_select_source(ipif->ipif_ill, 1945 ipha->ipha_src, zoneid); 1946 if (ipif_chosen != NULL) { 1947 ipif_refrele(ipif); 1948 ipif = ipif_chosen; 1949 } 1950 } 1951 if (ipif == NULL) { 1952 ip0dbg(("icmp_inbound: " 1953 "No source for broadcast/multicast:\n" 1954 "\tsrc 0x%x dst 0x%x ill %p " 1955 "ipif_lcl_addr 0x%x\n", 1956 ntohl(ipha->ipha_src), ntohl(ipha->ipha_dst), 1957 (void *)ill, 1958 ill->ill_ipif->ipif_lcl_addr)); 1959 freemsg(first_mp); 1960 return; 1961 } 1962 ASSERT(ipif != NULL && !ipif->ipif_isv6); 1963 ipha->ipha_dst = ipif->ipif_src_addr; 1964 ipif_refrele(ipif); 1965 } 1966 /* Reset time to live. */ 1967 ipha->ipha_ttl = ip_def_ttl; 1968 { 1969 /* Swap source and destination addresses */ 1970 ipaddr_t tmp; 1971 1972 tmp = ipha->ipha_src; 1973 ipha->ipha_src = ipha->ipha_dst; 1974 ipha->ipha_dst = tmp; 1975 } 1976 ipha->ipha_ident = 0; 1977 if (!IS_SIMPLE_IPH(ipha)) 1978 icmp_options_update(ipha); 1979 1980 /* 1981 * ICMP echo replies should go out on the same interface 1982 * the request came on as probes used by in.mpathd for detecting 1983 * NIC failures are ECHO packets. We turn-off load spreading 1984 * by setting ipsec_in_attach_if to B_TRUE, which is copied 1985 * to ipsec_out_attach_if by ipsec_in_to_out called later in this 1986 * function. This is in turn handled by ip_wput and ip_newroute 1987 * to make sure that the packet goes out on the interface it came 1988 * in on. If we don't turnoff load spreading, the packets might get 1989 * dropped if there are no non-FAILED/INACTIVE interfaces for it 1990 * to go out and in.mpathd would wrongly detect a failure or 1991 * mis-detect a NIC failure for link failure. As load spreading 1992 * can happen only if ill_group is not NULL, we do only for 1993 * that case and this does not affect the normal case. 1994 * 1995 * We turn off load spreading only on echo packets that came from 1996 * on-link hosts. If the interface route has been deleted, this will 1997 * not be enforced as we can't do much. For off-link hosts, as the 1998 * default routes in IPv4 does not typically have an ire_ipif 1999 * pointer, we can't force MATCH_IRE_ILL in ip_wput/ip_newroute. 2000 * Moreover, expecting a default route through this interface may 2001 * not be correct. We use ipha_dst because of the swap above. 2002 */ 2003 onlink = B_FALSE; 2004 if (icmph->icmph_type == ICMP_ECHO_REPLY && ill->ill_group != NULL) { 2005 /* 2006 * First, we need to make sure that it is not one of our 2007 * local addresses. If we set onlink when it is one of 2008 * our local addresses, we will end up creating IRE_CACHES 2009 * for one of our local addresses. Then, we will never 2010 * accept packets for them afterwards. 2011 */ 2012 src_ire = ire_ctable_lookup(ipha->ipha_dst, 0, IRE_LOCAL, 2013 NULL, ALL_ZONES, MATCH_IRE_TYPE); 2014 if (src_ire == NULL) { 2015 ipif = ipif_get_next_ipif(NULL, ill); 2016 if (ipif == NULL) { 2017 BUMP_MIB(&ip_mib, ipInDiscards); 2018 freemsg(mp); 2019 return; 2020 } 2021 src_ire = ire_ftable_lookup(ipha->ipha_dst, 0, 0, 2022 IRE_INTERFACE, ipif, NULL, ALL_ZONES, 0, 2023 MATCH_IRE_ILL | MATCH_IRE_TYPE); 2024 ipif_refrele(ipif); 2025 if (src_ire != NULL) { 2026 onlink = B_TRUE; 2027 ire_refrele(src_ire); 2028 } 2029 } else { 2030 ire_refrele(src_ire); 2031 } 2032 } 2033 if (!mctl_present) { 2034 /* 2035 * This packet should go out the same way as it 2036 * came in i.e in clear. To make sure that global 2037 * policy will not be applied to this in ip_wput_ire, 2038 * we attach a IPSEC_IN mp and clear ipsec_in_secure. 2039 */ 2040 ASSERT(first_mp == mp); 2041 if ((first_mp = ipsec_in_alloc(B_TRUE)) == NULL) { 2042 BUMP_MIB(&ip_mib, ipInDiscards); 2043 freemsg(mp); 2044 return; 2045 } 2046 ii = (ipsec_in_t *)first_mp->b_rptr; 2047 2048 /* This is not a secure packet */ 2049 ii->ipsec_in_secure = B_FALSE; 2050 if (onlink) { 2051 ii->ipsec_in_attach_if = B_TRUE; 2052 ii->ipsec_in_ill_index = 2053 ill->ill_phyint->phyint_ifindex; 2054 ii->ipsec_in_rill_index = 2055 recv_ill->ill_phyint->phyint_ifindex; 2056 } 2057 first_mp->b_cont = mp; 2058 } else if (onlink) { 2059 ii = (ipsec_in_t *)first_mp->b_rptr; 2060 ii->ipsec_in_attach_if = B_TRUE; 2061 ii->ipsec_in_ill_index = ill->ill_phyint->phyint_ifindex; 2062 ii->ipsec_in_rill_index = recv_ill->ill_phyint->phyint_ifindex; 2063 } else { 2064 ii = (ipsec_in_t *)first_mp->b_rptr; 2065 } 2066 ii->ipsec_in_zoneid = zoneid; 2067 if (!ipsec_in_to_out(first_mp, ipha, NULL)) { 2068 BUMP_MIB(&ip_mib, ipInDiscards); 2069 return; 2070 } 2071 BUMP_MIB(&icmp_mib, icmpOutMsgs); 2072 put(WR(q), first_mp); 2073 } 2074 2075 /* Table from RFC 1191 */ 2076 static int icmp_frag_size_table[] = 2077 { 32000, 17914, 8166, 4352, 2002, 1496, 1006, 508, 296, 68 }; 2078 2079 /* 2080 * Process received ICMP Packet too big. 2081 * After updating any IRE it does the fanout to any matching transport streams. 2082 * Assumes the message has been pulled up till the IP header that caused 2083 * the error. 2084 * 2085 * Returns B_FALSE on failure and B_TRUE on success. 2086 */ 2087 static boolean_t 2088 icmp_inbound_too_big(icmph_t *icmph, ipha_t *ipha) 2089 { 2090 ire_t *ire, *first_ire; 2091 int mtu; 2092 int hdr_length; 2093 2094 ASSERT(icmph->icmph_type == ICMP_DEST_UNREACHABLE && 2095 icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED); 2096 2097 hdr_length = IPH_HDR_LENGTH(ipha); 2098 2099 first_ire = ire_ctable_lookup(ipha->ipha_dst, 0, IRE_CACHE, NULL, 2100 ALL_ZONES, MATCH_IRE_TYPE); 2101 2102 if (!first_ire) { 2103 ip1dbg(("icmp_inbound_too_big: no route for 0x%x\n", 2104 ntohl(ipha->ipha_dst))); 2105 return (B_FALSE); 2106 } 2107 /* Drop if the original packet contained a source route */ 2108 if (ip_source_route_included(ipha)) { 2109 ire_refrele(first_ire); 2110 return (B_FALSE); 2111 } 2112 /* Check for MTU discovery advice as described in RFC 1191 */ 2113 mtu = ntohs(icmph->icmph_du_mtu); 2114 rw_enter(&first_ire->ire_bucket->irb_lock, RW_READER); 2115 for (ire = first_ire; ire != NULL && ire->ire_addr == ipha->ipha_dst; 2116 ire = ire->ire_next) { 2117 mutex_enter(&ire->ire_lock); 2118 if (icmph->icmph_du_zero == 0 && mtu > 68) { 2119 /* Reduce the IRE max frag value as advised. */ 2120 ire->ire_max_frag = MIN(ire->ire_max_frag, mtu); 2121 ip1dbg(("Received mtu from router: %d\n", mtu)); 2122 } else { 2123 uint32_t length; 2124 int i; 2125 2126 /* 2127 * Use the table from RFC 1191 to figure out 2128 * the next "plateau" based on the length in 2129 * the original IP packet. 2130 */ 2131 length = ntohs(ipha->ipha_length); 2132 if (ire->ire_max_frag <= length && 2133 ire->ire_max_frag >= length - hdr_length) { 2134 /* 2135 * Handle broken BSD 4.2 systems that 2136 * return the wrong iph_length in ICMP 2137 * errors. 2138 */ 2139 ip1dbg(("Wrong mtu: sent %d, ire %d\n", 2140 length, ire->ire_max_frag)); 2141 length -= hdr_length; 2142 } 2143 for (i = 0; i < A_CNT(icmp_frag_size_table); i++) { 2144 if (length > icmp_frag_size_table[i]) 2145 break; 2146 } 2147 if (i == A_CNT(icmp_frag_size_table)) { 2148 /* Smaller than 68! */ 2149 ip1dbg(("Too big for packet size %d\n", 2150 length)); 2151 ire->ire_max_frag = MIN(ire->ire_max_frag, 576); 2152 ire->ire_frag_flag = 0; 2153 } else { 2154 mtu = icmp_frag_size_table[i]; 2155 ip1dbg(("Calculated mtu %d, packet size %d, " 2156 "before %d", mtu, length, 2157 ire->ire_max_frag)); 2158 ire->ire_max_frag = MIN(ire->ire_max_frag, mtu); 2159 ip1dbg((", after %d\n", ire->ire_max_frag)); 2160 } 2161 /* Record the new max frag size for the ULP. */ 2162 icmph->icmph_du_zero = 0; 2163 icmph->icmph_du_mtu = 2164 htons((uint16_t)ire->ire_max_frag); 2165 } 2166 mutex_exit(&ire->ire_lock); 2167 } 2168 rw_exit(&first_ire->ire_bucket->irb_lock); 2169 ire_refrele(first_ire); 2170 return (B_TRUE); 2171 } 2172 2173 /* 2174 * If the packet in error is Self-Encapsulated, icmp_inbound_error_fanout 2175 * calls this function. 2176 */ 2177 static mblk_t * 2178 icmp_inbound_self_encap_error(mblk_t *mp, int iph_hdr_length, int hdr_length) 2179 { 2180 ipha_t *ipha; 2181 icmph_t *icmph; 2182 ipha_t *in_ipha; 2183 int length; 2184 2185 ASSERT(mp->b_datap->db_type == M_DATA); 2186 2187 /* 2188 * For Self-encapsulated packets, we added an extra IP header 2189 * without the options. Inner IP header is the one from which 2190 * the outer IP header was formed. Thus, we need to remove the 2191 * outer IP header. To do this, we pullup the whole message 2192 * and overlay whatever follows the outer IP header over the 2193 * outer IP header. 2194 */ 2195 2196 if (!pullupmsg(mp, -1)) { 2197 BUMP_MIB(&ip_mib, ipInDiscards); 2198 return (NULL); 2199 } 2200 2201 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2202 ipha = (ipha_t *)&icmph[1]; 2203 in_ipha = (ipha_t *)((uchar_t *)ipha + hdr_length); 2204 2205 /* 2206 * The length that we want to overlay is following the inner 2207 * IP header. Subtracting the IP header + icmp header + outer 2208 * IP header's length should give us the length that we want to 2209 * overlay. 2210 */ 2211 length = msgdsize(mp) - iph_hdr_length - sizeof (icmph_t) - 2212 hdr_length; 2213 /* 2214 * Overlay whatever follows the inner header over the 2215 * outer header. 2216 */ 2217 bcopy((uchar_t *)in_ipha, (uchar_t *)ipha, length); 2218 2219 /* Set the wptr to account for the outer header */ 2220 mp->b_wptr -= hdr_length; 2221 return (mp); 2222 } 2223 2224 /* 2225 * Try to pass the ICMP message upstream in case the ULP cares. 2226 * 2227 * If the packet that caused the ICMP error is secure, we send 2228 * it to AH/ESP to make sure that the attached packet has a 2229 * valid association. ipha in the code below points to the 2230 * IP header of the packet that caused the error. 2231 * 2232 * We handle ICMP_FRAGMENTATION_NEEDED(IFN) message differently 2233 * in the context of IPSEC. Normally we tell the upper layer 2234 * whenever we send the ire (including ip_bind), the IPSEC header 2235 * length in ire_ipsec_overhead. TCP can deduce the MSS as it 2236 * has both the MTU (ire_max_frag) and the ire_ipsec_overhead. 2237 * Similarly, we pass the new MTU icmph_du_mtu and TCP does the 2238 * same thing. As TCP has the IPSEC options size that needs to be 2239 * adjusted, we just pass the MTU unchanged. 2240 * 2241 * IFN could have been generated locally or by some router. 2242 * 2243 * LOCAL : *ip_wput_ire -> icmp_frag_needed could have generated this. 2244 * This happens because IP adjusted its value of MTU on an 2245 * earlier IFN message and could not tell the upper layer, 2246 * the new adjusted value of MTU e.g. Packet was encrypted 2247 * or there was not enough information to fanout to upper 2248 * layers. Thus on the next outbound datagram, ip_wput_ire 2249 * generates the IFN, where IPSEC processing has *not* been 2250 * done. 2251 * 2252 * *ip_wput_ire_fragmentit -> ip_wput_frag -> icmp_frag_needed 2253 * could have generated this. This happens because ire_max_frag 2254 * value in IP was set to a new value, while the IPSEC processing 2255 * was being done and after we made the fragmentation check in 2256 * ip_wput_ire. Thus on return from IPSEC processing, 2257 * ip_wput_ipsec_out finds that the new length is > ire_max_frag 2258 * and generates the IFN. As IPSEC processing is over, we fanout 2259 * to AH/ESP to remove the header. 2260 * 2261 * In both these cases, ipsec_in_loopback will be set indicating 2262 * that IFN was generated locally. 2263 * 2264 * ROUTER : IFN could be secure or non-secure. 2265 * 2266 * * SECURE : We use the IPSEC_IN to fanout to AH/ESP if the 2267 * packet in error has AH/ESP headers to validate the AH/ESP 2268 * headers. AH/ESP will verify whether there is a valid SA or 2269 * not and send it back. We will fanout again if we have more 2270 * data in the packet. 2271 * 2272 * If the packet in error does not have AH/ESP, we handle it 2273 * like any other case. 2274 * 2275 * * NON_SECURE : If the packet in error has AH/ESP headers, 2276 * we attach a dummy ipsec_in and send it up to AH/ESP 2277 * for validation. AH/ESP will verify whether there is a 2278 * valid SA or not and send it back. We will fanout again if 2279 * we have more data in the packet. 2280 * 2281 * If the packet in error does not have AH/ESP, we handle it 2282 * like any other case. 2283 */ 2284 static void 2285 icmp_inbound_error_fanout(queue_t *q, ill_t *ill, mblk_t *mp, 2286 icmph_t *icmph, ipha_t *ipha, int iph_hdr_length, int hdr_length, 2287 boolean_t mctl_present, boolean_t ip_policy, ill_t *recv_ill, 2288 zoneid_t zoneid) 2289 { 2290 uint16_t *up; /* Pointer to ports in ULP header */ 2291 uint32_t ports; /* reversed ports for fanout */ 2292 ipha_t ripha; /* With reversed addresses */ 2293 mblk_t *first_mp; 2294 ipsec_in_t *ii; 2295 tcph_t *tcph; 2296 conn_t *connp; 2297 2298 first_mp = mp; 2299 if (mctl_present) { 2300 mp = first_mp->b_cont; 2301 ASSERT(mp != NULL); 2302 2303 ii = (ipsec_in_t *)first_mp->b_rptr; 2304 ASSERT(ii->ipsec_in_type == IPSEC_IN); 2305 } else { 2306 ii = NULL; 2307 } 2308 2309 switch (ipha->ipha_protocol) { 2310 case IPPROTO_UDP: 2311 /* 2312 * Verify we have at least ICMP_MIN_TP_HDR_LEN bytes of 2313 * transport header. 2314 */ 2315 if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN > 2316 mp->b_wptr) { 2317 if (!pullupmsg(mp, (uchar_t *)ipha + hdr_length + 2318 ICMP_MIN_TP_HDR_LEN - mp->b_rptr)) { 2319 BUMP_MIB(&ip_mib, ipInDiscards); 2320 goto drop_pkt; 2321 } 2322 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2323 ipha = (ipha_t *)&icmph[1]; 2324 } 2325 up = (uint16_t *)((uchar_t *)ipha + hdr_length); 2326 2327 /* 2328 * Attempt to find a client stream based on port. 2329 * Note that we do a reverse lookup since the header is 2330 * in the form we sent it out. 2331 * The ripha header is only used for the IP_UDP_MATCH and we 2332 * only set the src and dst addresses and protocol. 2333 */ 2334 ripha.ipha_src = ipha->ipha_dst; 2335 ripha.ipha_dst = ipha->ipha_src; 2336 ripha.ipha_protocol = ipha->ipha_protocol; 2337 ((uint16_t *)&ports)[0] = up[1]; 2338 ((uint16_t *)&ports)[1] = up[0]; 2339 ip2dbg(("icmp_inbound_error: UDP %x:%d to %x:%d: %d/%d\n", 2340 ntohl(ipha->ipha_src), ntohs(up[0]), 2341 ntohl(ipha->ipha_dst), ntohs(up[1]), 2342 icmph->icmph_type, icmph->icmph_code)); 2343 2344 /* Have to change db_type after any pullupmsg */ 2345 DB_TYPE(mp) = M_CTL; 2346 2347 ip_fanout_udp(q, first_mp, ill, &ripha, ports, B_FALSE, 0, 2348 mctl_present, ip_policy, recv_ill, zoneid); 2349 return; 2350 2351 case IPPROTO_TCP: 2352 /* 2353 * Verify we have at least ICMP_MIN_TP_HDR_LEN bytes of 2354 * transport header. 2355 */ 2356 if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN > 2357 mp->b_wptr) { 2358 if (!pullupmsg(mp, (uchar_t *)ipha + hdr_length + 2359 ICMP_MIN_TP_HDR_LEN - mp->b_rptr)) { 2360 BUMP_MIB(&ip_mib, ipInDiscards); 2361 goto drop_pkt; 2362 } 2363 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2364 ipha = (ipha_t *)&icmph[1]; 2365 } 2366 /* 2367 * Find a TCP client stream for this packet. 2368 * Note that we do a reverse lookup since the header is 2369 * in the form we sent it out. 2370 */ 2371 tcph = (tcph_t *)((uchar_t *)ipha + hdr_length); 2372 connp = ipcl_tcp_lookup_reversed_ipv4(ipha, tcph, TCPS_LISTEN); 2373 if (connp == NULL) { 2374 BUMP_MIB(&ip_mib, ipInDiscards); 2375 goto drop_pkt; 2376 } 2377 2378 /* Have to change db_type after any pullupmsg */ 2379 DB_TYPE(mp) = M_CTL; 2380 squeue_fill(connp->conn_sqp, first_mp, tcp_input, 2381 connp, SQTAG_TCP_INPUT_ICMP_ERR); 2382 return; 2383 2384 case IPPROTO_SCTP: 2385 /* 2386 * Verify we have at least ICMP_MIN_TP_HDR_LEN bytes of 2387 * transport header. 2388 */ 2389 if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN > 2390 mp->b_wptr) { 2391 if (!pullupmsg(mp, (uchar_t *)ipha + hdr_length + 2392 ICMP_MIN_TP_HDR_LEN - mp->b_rptr)) { 2393 BUMP_MIB(&ip_mib, ipInDiscards); 2394 goto drop_pkt; 2395 } 2396 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2397 ipha = (ipha_t *)&icmph[1]; 2398 } 2399 up = (uint16_t *)((uchar_t *)ipha + hdr_length); 2400 /* 2401 * Find a SCTP client stream for this packet. 2402 * Note that we do a reverse lookup since the header is 2403 * in the form we sent it out. 2404 * The ripha header is only used for the matching and we 2405 * only set the src and dst addresses, protocol, and version. 2406 */ 2407 ripha.ipha_src = ipha->ipha_dst; 2408 ripha.ipha_dst = ipha->ipha_src; 2409 ripha.ipha_protocol = ipha->ipha_protocol; 2410 ripha.ipha_version_and_hdr_length = 2411 ipha->ipha_version_and_hdr_length; 2412 ((uint16_t *)&ports)[0] = up[1]; 2413 ((uint16_t *)&ports)[1] = up[0]; 2414 2415 /* Have to change db_type after any pullupmsg */ 2416 DB_TYPE(mp) = M_CTL; 2417 ip_fanout_sctp(first_mp, recv_ill, &ripha, ports, 0, 2418 mctl_present, ip_policy, 0, zoneid); 2419 return; 2420 2421 case IPPROTO_ESP: 2422 case IPPROTO_AH: { 2423 int ipsec_rc; 2424 2425 /* 2426 * We need a IPSEC_IN in the front to fanout to AH/ESP. 2427 * We will re-use the IPSEC_IN if it is already present as 2428 * AH/ESP will not affect any fields in the IPSEC_IN for 2429 * ICMP errors. If there is no IPSEC_IN, allocate a new 2430 * one and attach it in the front. 2431 */ 2432 if (ii != NULL) { 2433 /* 2434 * ip_fanout_proto_again converts the ICMP errors 2435 * that come back from AH/ESP to M_DATA so that 2436 * if it is non-AH/ESP and we do a pullupmsg in 2437 * this function, it would work. Convert it back 2438 * to M_CTL before we send up as this is a ICMP 2439 * error. This could have been generated locally or 2440 * by some router. Validate the inner IPSEC 2441 * headers. 2442 * 2443 * NOTE : ill_index is used by ip_fanout_proto_again 2444 * to locate the ill. 2445 */ 2446 ASSERT(ill != NULL); 2447 ii->ipsec_in_ill_index = 2448 ill->ill_phyint->phyint_ifindex; 2449 ii->ipsec_in_rill_index = 2450 recv_ill->ill_phyint->phyint_ifindex; 2451 DB_TYPE(first_mp->b_cont) = M_CTL; 2452 } else { 2453 /* 2454 * IPSEC_IN is not present. We attach a ipsec_in 2455 * message and send up to IPSEC for validating 2456 * and removing the IPSEC headers. Clear 2457 * ipsec_in_secure so that when we return 2458 * from IPSEC, we don't mistakenly think that this 2459 * is a secure packet came from the network. 2460 * 2461 * NOTE : ill_index is used by ip_fanout_proto_again 2462 * to locate the ill. 2463 */ 2464 ASSERT(first_mp == mp); 2465 first_mp = ipsec_in_alloc(B_TRUE); 2466 if (first_mp == NULL) { 2467 freemsg(mp); 2468 BUMP_MIB(&ip_mib, ipInDiscards); 2469 return; 2470 } 2471 ii = (ipsec_in_t *)first_mp->b_rptr; 2472 2473 /* This is not a secure packet */ 2474 ii->ipsec_in_secure = B_FALSE; 2475 first_mp->b_cont = mp; 2476 DB_TYPE(mp) = M_CTL; 2477 ASSERT(ill != NULL); 2478 ii->ipsec_in_ill_index = 2479 ill->ill_phyint->phyint_ifindex; 2480 ii->ipsec_in_rill_index = 2481 recv_ill->ill_phyint->phyint_ifindex; 2482 } 2483 ip2dbg(("icmp_inbound_error: ipsec\n")); 2484 2485 if (!ipsec_loaded()) { 2486 ip_proto_not_sup(q, first_mp, 0, zoneid); 2487 return; 2488 } 2489 2490 if (ipha->ipha_protocol == IPPROTO_ESP) 2491 ipsec_rc = ipsecesp_icmp_error(first_mp); 2492 else 2493 ipsec_rc = ipsecah_icmp_error(first_mp); 2494 if (ipsec_rc == IPSEC_STATUS_FAILED) 2495 return; 2496 2497 ip_fanout_proto_again(first_mp, ill, recv_ill, NULL); 2498 return; 2499 } 2500 default: 2501 /* 2502 * The ripha header is only used for the lookup and we 2503 * only set the src and dst addresses and protocol. 2504 */ 2505 ripha.ipha_src = ipha->ipha_dst; 2506 ripha.ipha_dst = ipha->ipha_src; 2507 ripha.ipha_protocol = ipha->ipha_protocol; 2508 ip2dbg(("icmp_inbound_error: proto %d %x to %x: %d/%d\n", 2509 ripha.ipha_protocol, ntohl(ipha->ipha_src), 2510 ntohl(ipha->ipha_dst), 2511 icmph->icmph_type, icmph->icmph_code)); 2512 if (ipha->ipha_protocol == IPPROTO_ENCAP) { 2513 ipha_t *in_ipha; 2514 2515 if ((uchar_t *)ipha + hdr_length + sizeof (ipha_t) > 2516 mp->b_wptr) { 2517 if (!pullupmsg(mp, (uchar_t *)ipha + 2518 hdr_length + sizeof (ipha_t) - 2519 mp->b_rptr)) { 2520 2521 BUMP_MIB(&ip_mib, ipInDiscards); 2522 goto drop_pkt; 2523 } 2524 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2525 ipha = (ipha_t *)&icmph[1]; 2526 } 2527 /* 2528 * Caller has verified that length has to be 2529 * at least the size of IP header. 2530 */ 2531 ASSERT(hdr_length >= sizeof (ipha_t)); 2532 /* 2533 * Check the sanity of the inner IP header like 2534 * we did for the outer header. 2535 */ 2536 in_ipha = (ipha_t *)((uchar_t *)ipha + hdr_length); 2537 if ((IPH_HDR_VERSION(in_ipha) != IPV4_VERSION)) { 2538 BUMP_MIB(&ip_mib, ipInDiscards); 2539 goto drop_pkt; 2540 } 2541 if (IPH_HDR_LENGTH(in_ipha) < sizeof (ipha_t)) { 2542 BUMP_MIB(&ip_mib, ipInDiscards); 2543 goto drop_pkt; 2544 } 2545 /* Check for Self-encapsulated tunnels */ 2546 if (in_ipha->ipha_src == ipha->ipha_src && 2547 in_ipha->ipha_dst == ipha->ipha_dst) { 2548 2549 mp = icmp_inbound_self_encap_error(mp, 2550 iph_hdr_length, hdr_length); 2551 if (mp == NULL) 2552 goto drop_pkt; 2553 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2554 ipha = (ipha_t *)&icmph[1]; 2555 hdr_length = IPH_HDR_LENGTH(ipha); 2556 /* 2557 * The packet in error is self-encapsualted. 2558 * And we are finding it further encapsulated 2559 * which we could not have possibly generated. 2560 */ 2561 if (ipha->ipha_protocol == IPPROTO_ENCAP) { 2562 BUMP_MIB(&ip_mib, ipInDiscards); 2563 goto drop_pkt; 2564 } 2565 icmp_inbound_error_fanout(q, ill, first_mp, 2566 icmph, ipha, iph_hdr_length, hdr_length, 2567 mctl_present, ip_policy, recv_ill, zoneid); 2568 return; 2569 } 2570 } 2571 if ((ipha->ipha_protocol == IPPROTO_ENCAP || 2572 ipha->ipha_protocol == IPPROTO_IPV6) && 2573 icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED && 2574 ii != NULL && 2575 ii->ipsec_in_loopback && 2576 ii->ipsec_in_secure) { 2577 /* 2578 * For IP tunnels that get a looped-back 2579 * ICMP_FRAGMENTATION_NEEDED message, adjust the 2580 * reported new MTU to take into account the IPsec 2581 * headers protecting this configured tunnel. 2582 * 2583 * This allows the tunnel module (tun.c) to blindly 2584 * accept the MTU reported in an ICMP "too big" 2585 * message. 2586 * 2587 * Non-looped back ICMP messages will just be 2588 * handled by the security protocols (if needed), 2589 * and the first subsequent packet will hit this 2590 * path. 2591 */ 2592 icmph->icmph_du_mtu = htons(ntohs(icmph->icmph_du_mtu) - 2593 ipsec_in_extra_length(first_mp)); 2594 } 2595 /* Have to change db_type after any pullupmsg */ 2596 DB_TYPE(mp) = M_CTL; 2597 2598 ip_fanout_proto(q, first_mp, ill, &ripha, 0, mctl_present, 2599 ip_policy, recv_ill, zoneid); 2600 return; 2601 } 2602 /* NOTREACHED */ 2603 drop_pkt:; 2604 ip1dbg(("icmp_inbound_error_fanout: drop pkt\n")); 2605 freemsg(first_mp); 2606 } 2607 2608 /* 2609 * Common IP options parser. 2610 * 2611 * Setup routine: fill in *optp with options-parsing state, then 2612 * tail-call ipoptp_next to return the first option. 2613 */ 2614 uint8_t 2615 ipoptp_first(ipoptp_t *optp, ipha_t *ipha) 2616 { 2617 uint32_t totallen; /* total length of all options */ 2618 2619 totallen = ipha->ipha_version_and_hdr_length - 2620 (uint8_t)((IP_VERSION << 4) + IP_SIMPLE_HDR_LENGTH_IN_WORDS); 2621 totallen <<= 2; 2622 optp->ipoptp_next = (uint8_t *)(&ipha[1]); 2623 optp->ipoptp_end = optp->ipoptp_next + totallen; 2624 optp->ipoptp_flags = 0; 2625 return (ipoptp_next(optp)); 2626 } 2627 2628 /* 2629 * Common IP options parser: extract next option. 2630 */ 2631 uint8_t 2632 ipoptp_next(ipoptp_t *optp) 2633 { 2634 uint8_t *end = optp->ipoptp_end; 2635 uint8_t *cur = optp->ipoptp_next; 2636 uint8_t opt, len, pointer; 2637 2638 /* 2639 * If cur > end already, then the ipoptp_end or ipoptp_next pointer 2640 * has been corrupted. 2641 */ 2642 ASSERT(cur <= end); 2643 2644 if (cur == end) 2645 return (IPOPT_EOL); 2646 2647 opt = cur[IPOPT_OPTVAL]; 2648 2649 /* 2650 * Skip any NOP options. 2651 */ 2652 while (opt == IPOPT_NOP) { 2653 cur++; 2654 if (cur == end) 2655 return (IPOPT_EOL); 2656 opt = cur[IPOPT_OPTVAL]; 2657 } 2658 2659 if (opt == IPOPT_EOL) 2660 return (IPOPT_EOL); 2661 2662 /* 2663 * Option requiring a length. 2664 */ 2665 if ((cur + 1) >= end) { 2666 optp->ipoptp_flags |= IPOPTP_ERROR; 2667 return (IPOPT_EOL); 2668 } 2669 len = cur[IPOPT_OLEN]; 2670 if (len < 2) { 2671 optp->ipoptp_flags |= IPOPTP_ERROR; 2672 return (IPOPT_EOL); 2673 } 2674 optp->ipoptp_cur = cur; 2675 optp->ipoptp_len = len; 2676 optp->ipoptp_next = cur + len; 2677 if (cur + len > end) { 2678 optp->ipoptp_flags |= IPOPTP_ERROR; 2679 return (IPOPT_EOL); 2680 } 2681 2682 /* 2683 * For the options which require a pointer field, make sure 2684 * its there, and make sure it points to either something 2685 * inside this option, or the end of the option. 2686 */ 2687 switch (opt) { 2688 case IPOPT_RR: 2689 case IPOPT_TS: 2690 case IPOPT_LSRR: 2691 case IPOPT_SSRR: 2692 if (len <= IPOPT_OFFSET) { 2693 optp->ipoptp_flags |= IPOPTP_ERROR; 2694 return (opt); 2695 } 2696 pointer = cur[IPOPT_OFFSET]; 2697 if (pointer - 1 > len) { 2698 optp->ipoptp_flags |= IPOPTP_ERROR; 2699 return (opt); 2700 } 2701 break; 2702 } 2703 2704 /* 2705 * Sanity check the pointer field based on the type of the 2706 * option. 2707 */ 2708 switch (opt) { 2709 case IPOPT_RR: 2710 case IPOPT_SSRR: 2711 case IPOPT_LSRR: 2712 if (pointer < IPOPT_MINOFF_SR) 2713 optp->ipoptp_flags |= IPOPTP_ERROR; 2714 break; 2715 case IPOPT_TS: 2716 if (pointer < IPOPT_MINOFF_IT) 2717 optp->ipoptp_flags |= IPOPTP_ERROR; 2718 /* 2719 * Note that the Internet Timestamp option also 2720 * contains two four bit fields (the Overflow field, 2721 * and the Flag field), which follow the pointer 2722 * field. We don't need to check that these fields 2723 * fall within the length of the option because this 2724 * was implicitely done above. We've checked that the 2725 * pointer value is at least IPOPT_MINOFF_IT, and that 2726 * it falls within the option. Since IPOPT_MINOFF_IT > 2727 * IPOPT_POS_OV_FLG, we don't need the explicit check. 2728 */ 2729 ASSERT(len > IPOPT_POS_OV_FLG); 2730 break; 2731 } 2732 2733 return (opt); 2734 } 2735 2736 /* 2737 * Update any record route or timestamp options to include this host. 2738 * Reverse any source route option. 2739 * This routine assumes that the options are well formed i.e. that they 2740 * have already been checked. 2741 */ 2742 static void 2743 icmp_options_update(ipha_t *ipha) 2744 { 2745 ipoptp_t opts; 2746 uchar_t *opt; 2747 uint8_t optval; 2748 ipaddr_t src; /* Our local address */ 2749 ipaddr_t dst; 2750 2751 ip2dbg(("icmp_options_update\n")); 2752 src = ipha->ipha_src; 2753 dst = ipha->ipha_dst; 2754 2755 for (optval = ipoptp_first(&opts, ipha); 2756 optval != IPOPT_EOL; 2757 optval = ipoptp_next(&opts)) { 2758 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 2759 opt = opts.ipoptp_cur; 2760 ip2dbg(("icmp_options_update: opt %d, len %d\n", 2761 optval, opts.ipoptp_len)); 2762 switch (optval) { 2763 int off1, off2; 2764 case IPOPT_SSRR: 2765 case IPOPT_LSRR: 2766 /* 2767 * Reverse the source route. The first entry 2768 * should be the next to last one in the current 2769 * source route (the last entry is our address). 2770 * The last entry should be the final destination. 2771 */ 2772 off1 = IPOPT_MINOFF_SR - 1; 2773 off2 = opt[IPOPT_OFFSET] - IP_ADDR_LEN - 1; 2774 if (off2 < 0) { 2775 /* No entries in source route */ 2776 ip1dbg(( 2777 "icmp_options_update: bad src route\n")); 2778 break; 2779 } 2780 bcopy((char *)opt + off2, &dst, IP_ADDR_LEN); 2781 bcopy(&ipha->ipha_dst, (char *)opt + off2, IP_ADDR_LEN); 2782 bcopy(&dst, &ipha->ipha_dst, IP_ADDR_LEN); 2783 off2 -= IP_ADDR_LEN; 2784 2785 while (off1 < off2) { 2786 bcopy((char *)opt + off1, &src, IP_ADDR_LEN); 2787 bcopy((char *)opt + off2, (char *)opt + off1, 2788 IP_ADDR_LEN); 2789 bcopy(&src, (char *)opt + off2, IP_ADDR_LEN); 2790 off1 += IP_ADDR_LEN; 2791 off2 -= IP_ADDR_LEN; 2792 } 2793 opt[IPOPT_OFFSET] = IPOPT_MINOFF_SR; 2794 break; 2795 } 2796 } 2797 } 2798 2799 /* 2800 * Process received ICMP Redirect messages. 2801 */ 2802 /* ARGSUSED */ 2803 static void 2804 icmp_redirect(mblk_t *mp) 2805 { 2806 ipha_t *ipha; 2807 int iph_hdr_length; 2808 icmph_t *icmph; 2809 ipha_t *ipha_err; 2810 ire_t *ire; 2811 ire_t *prev_ire; 2812 ire_t *save_ire; 2813 ipaddr_t src, dst, gateway; 2814 iulp_t ulp_info = { 0 }; 2815 int error; 2816 2817 ipha = (ipha_t *)mp->b_rptr; 2818 iph_hdr_length = IPH_HDR_LENGTH(ipha); 2819 if (((mp->b_wptr - mp->b_rptr) - iph_hdr_length) < 2820 sizeof (icmph_t) + IP_SIMPLE_HDR_LENGTH) { 2821 BUMP_MIB(&icmp_mib, icmpInErrors); 2822 freemsg(mp); 2823 return; 2824 } 2825 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2826 ipha_err = (ipha_t *)&icmph[1]; 2827 src = ipha->ipha_src; 2828 dst = ipha_err->ipha_dst; 2829 gateway = icmph->icmph_rd_gateway; 2830 /* Make sure the new gateway is reachable somehow. */ 2831 ire = ire_route_lookup(gateway, 0, 0, IRE_INTERFACE, NULL, NULL, 2832 ALL_ZONES, MATCH_IRE_TYPE); 2833 /* 2834 * Make sure we had a route for the dest in question and that 2835 * that route was pointing to the old gateway (the source of the 2836 * redirect packet.) 2837 */ 2838 prev_ire = ire_route_lookup(dst, 0, src, 0, NULL, NULL, ALL_ZONES, 2839 MATCH_IRE_GW); 2840 /* 2841 * Check that 2842 * the redirect was not from ourselves 2843 * the new gateway and the old gateway are directly reachable 2844 */ 2845 if (!prev_ire || 2846 !ire || 2847 ire->ire_type == IRE_LOCAL) { 2848 BUMP_MIB(&icmp_mib, icmpInBadRedirects); 2849 freemsg(mp); 2850 if (ire != NULL) 2851 ire_refrele(ire); 2852 if (prev_ire != NULL) 2853 ire_refrele(prev_ire); 2854 return; 2855 } 2856 2857 /* 2858 * Should we use the old ULP info to create the new gateway? From 2859 * a user's perspective, we should inherit the info so that it 2860 * is a "smooth" transition. If we do not do that, then new 2861 * connections going thru the new gateway will have no route metrics, 2862 * which is counter-intuitive to user. From a network point of 2863 * view, this may or may not make sense even though the new gateway 2864 * is still directly connected to us so the route metrics should not 2865 * change much. 2866 * 2867 * But if the old ire_uinfo is not initialized, we do another 2868 * recursive lookup on the dest using the new gateway. There may 2869 * be a route to that. If so, use it to initialize the redirect 2870 * route. 2871 */ 2872 if (prev_ire->ire_uinfo.iulp_set) { 2873 bcopy(&prev_ire->ire_uinfo, &ulp_info, sizeof (iulp_t)); 2874 } else { 2875 ire_t *tmp_ire; 2876 ire_t *sire; 2877 2878 tmp_ire = ire_ftable_lookup(dst, 0, gateway, 0, NULL, &sire, 2879 ALL_ZONES, 0, 2880 (MATCH_IRE_RECURSIVE | MATCH_IRE_GW | MATCH_IRE_DEFAULT)); 2881 if (sire != NULL) { 2882 bcopy(&sire->ire_uinfo, &ulp_info, sizeof (iulp_t)); 2883 /* 2884 * If sire != NULL, ire_ftable_lookup() should not 2885 * return a NULL value. 2886 */ 2887 ASSERT(tmp_ire != NULL); 2888 ire_refrele(tmp_ire); 2889 ire_refrele(sire); 2890 } else if (tmp_ire != NULL) { 2891 bcopy(&tmp_ire->ire_uinfo, &ulp_info, 2892 sizeof (iulp_t)); 2893 ire_refrele(tmp_ire); 2894 } 2895 } 2896 if (prev_ire->ire_type == IRE_CACHE) 2897 ire_delete(prev_ire); 2898 ire_refrele(prev_ire); 2899 /* 2900 * TODO: more precise handling for cases 0, 2, 3, the latter two 2901 * require TOS routing 2902 */ 2903 switch (icmph->icmph_code) { 2904 case 0: 2905 case 1: 2906 /* TODO: TOS specificity for cases 2 and 3 */ 2907 case 2: 2908 case 3: 2909 break; 2910 default: 2911 freemsg(mp); 2912 BUMP_MIB(&icmp_mib, icmpInBadRedirects); 2913 ire_refrele(ire); 2914 return; 2915 } 2916 /* 2917 * Create a Route Association. This will allow us to remember that 2918 * someone we believe told us to use the particular gateway. 2919 */ 2920 save_ire = ire; 2921 ire = ire_create( 2922 (uchar_t *)&dst, /* dest addr */ 2923 (uchar_t *)&ip_g_all_ones, /* mask */ 2924 (uchar_t *)&save_ire->ire_src_addr, /* source addr */ 2925 (uchar_t *)&gateway, /* gateway addr */ 2926 NULL, /* no in_srcaddr */ 2927 &save_ire->ire_max_frag, /* max frag */ 2928 NULL, /* Fast Path header */ 2929 NULL, /* no rfq */ 2930 NULL, /* no stq */ 2931 IRE_HOST_REDIRECT, 2932 NULL, 2933 NULL, 2934 NULL, 2935 0, 2936 0, 2937 0, 2938 (RTF_DYNAMIC | RTF_GATEWAY | RTF_HOST), 2939 &ulp_info); 2940 2941 if (ire == NULL) { 2942 freemsg(mp); 2943 ire_refrele(save_ire); 2944 return; 2945 } 2946 error = ire_add(&ire, NULL, NULL, NULL); 2947 ire_refrele(save_ire); 2948 if (error == 0) { 2949 ire_refrele(ire); /* Held in ire_add_v4 */ 2950 /* tell routing sockets that we received a redirect */ 2951 ip_rts_change(RTM_REDIRECT, dst, gateway, IP_HOST_MASK, 0, src, 2952 (RTF_DYNAMIC | RTF_GATEWAY | RTF_HOST), 0, 2953 (RTA_DST | RTA_GATEWAY | RTA_NETMASK | RTA_AUTHOR)); 2954 } 2955 2956 /* 2957 * Delete any existing IRE_HOST_REDIRECT for this destination. 2958 * This together with the added IRE has the effect of 2959 * modifying an existing redirect. 2960 */ 2961 prev_ire = ire_ftable_lookup(dst, 0, src, IRE_HOST_REDIRECT, NULL, NULL, 2962 ALL_ZONES, 0, (MATCH_IRE_GW | MATCH_IRE_TYPE)); 2963 if (prev_ire) { 2964 ire_delete(prev_ire); 2965 ire_refrele(prev_ire); 2966 } 2967 2968 freemsg(mp); 2969 } 2970 2971 /* 2972 * Generate an ICMP parameter problem message. 2973 */ 2974 static void 2975 icmp_param_problem(queue_t *q, mblk_t *mp, uint8_t ptr) 2976 { 2977 icmph_t icmph; 2978 boolean_t mctl_present; 2979 mblk_t *first_mp; 2980 2981 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 2982 2983 if (!(mp = icmp_pkt_err_ok(mp))) { 2984 if (mctl_present) 2985 freeb(first_mp); 2986 return; 2987 } 2988 2989 bzero(&icmph, sizeof (icmph_t)); 2990 icmph.icmph_type = ICMP_PARAM_PROBLEM; 2991 icmph.icmph_pp_ptr = ptr; 2992 BUMP_MIB(&icmp_mib, icmpOutParmProbs); 2993 icmp_pkt(q, first_mp, &icmph, sizeof (icmph_t), mctl_present); 2994 } 2995 2996 /* 2997 * Build and ship an IPv4 ICMP message using the packet data in mp, and 2998 * the ICMP header pointed to by "stuff". (May be called as writer.) 2999 * Note: assumes that icmp_pkt_err_ok has been called to verify that 3000 * an icmp error packet can be sent. 3001 * Assigns an appropriate source address to the packet. If ipha_dst is 3002 * one of our addresses use it for source. Otherwise pick a source based 3003 * on a route lookup back to ipha_src. 3004 * Note that ipha_src must be set here since the 3005 * packet is likely to arrive on an ill queue in ip_wput() which will 3006 * not set a source address. 3007 */ 3008 static void 3009 icmp_pkt(queue_t *q, mblk_t *mp, void *stuff, size_t len, 3010 boolean_t mctl_present) 3011 { 3012 ipaddr_t dst; 3013 icmph_t *icmph; 3014 ipha_t *ipha; 3015 uint_t len_needed; 3016 size_t msg_len; 3017 mblk_t *mp1; 3018 ipaddr_t src; 3019 ire_t *ire; 3020 mblk_t *ipsec_mp; 3021 ipsec_out_t *io = NULL; 3022 boolean_t xmit_if_on = B_FALSE; 3023 zoneid_t zoneid; 3024 3025 if (mctl_present) { 3026 /* 3027 * If it is : 3028 * 3029 * 1) a IPSEC_OUT, then this is caused by outbound 3030 * datagram originating on this host. IPSEC processing 3031 * may or may not have been done. Refer to comments above 3032 * icmp_inbound_error_fanout for details. 3033 * 3034 * 2) a IPSEC_IN if we are generating a icmp_message 3035 * for an incoming datagram destined for us i.e called 3036 * from ip_fanout_send_icmp. 3037 */ 3038 ipsec_info_t *in; 3039 ipsec_mp = mp; 3040 mp = ipsec_mp->b_cont; 3041 3042 in = (ipsec_info_t *)ipsec_mp->b_rptr; 3043 ipha = (ipha_t *)mp->b_rptr; 3044 3045 ASSERT(in->ipsec_info_type == IPSEC_OUT || 3046 in->ipsec_info_type == IPSEC_IN); 3047 3048 if (in->ipsec_info_type == IPSEC_IN) { 3049 /* 3050 * Convert the IPSEC_IN to IPSEC_OUT. 3051 */ 3052 if (!ipsec_in_to_out(ipsec_mp, ipha, NULL)) { 3053 BUMP_MIB(&ip_mib, ipOutDiscards); 3054 return; 3055 } 3056 io = (ipsec_out_t *)ipsec_mp->b_rptr; 3057 } else { 3058 ASSERT(in->ipsec_info_type == IPSEC_OUT); 3059 io = (ipsec_out_t *)in; 3060 if (io->ipsec_out_xmit_if) 3061 xmit_if_on = B_TRUE; 3062 /* 3063 * Clear out ipsec_out_proc_begin, so we do a fresh 3064 * ire lookup. 3065 */ 3066 io->ipsec_out_proc_begin = B_FALSE; 3067 } 3068 zoneid = io->ipsec_out_zoneid; 3069 ASSERT(zoneid != ALL_ZONES); 3070 } else { 3071 /* 3072 * This is in clear. The icmp message we are building 3073 * here should go out in clear. 3074 * 3075 * Pardon the convolution of it all, but it's easier to 3076 * allocate a "use cleartext" IPSEC_IN message and convert 3077 * it than it is to allocate a new one. 3078 */ 3079 ipsec_in_t *ii; 3080 ASSERT(DB_TYPE(mp) == M_DATA); 3081 if ((ipsec_mp = ipsec_in_alloc(B_TRUE)) == NULL) { 3082 freemsg(mp); 3083 BUMP_MIB(&ip_mib, ipOutDiscards); 3084 return; 3085 } 3086 ii = (ipsec_in_t *)ipsec_mp->b_rptr; 3087 3088 /* This is not a secure packet */ 3089 ii->ipsec_in_secure = B_FALSE; 3090 if (CONN_Q(q)) { 3091 zoneid = Q_TO_CONN(q)->conn_zoneid; 3092 } else { 3093 zoneid = GLOBAL_ZONEID; 3094 } 3095 ii->ipsec_in_zoneid = zoneid; 3096 ipsec_mp->b_cont = mp; 3097 ipha = (ipha_t *)mp->b_rptr; 3098 /* 3099 * Convert the IPSEC_IN to IPSEC_OUT. 3100 */ 3101 if (!ipsec_in_to_out(ipsec_mp, ipha, NULL)) { 3102 BUMP_MIB(&ip_mib, ipOutDiscards); 3103 return; 3104 } 3105 io = (ipsec_out_t *)ipsec_mp->b_rptr; 3106 } 3107 3108 /* Remember our eventual destination */ 3109 dst = ipha->ipha_src; 3110 3111 ire = ire_route_lookup(ipha->ipha_dst, 0, 0, (IRE_LOCAL|IRE_LOOPBACK), 3112 NULL, NULL, zoneid, MATCH_IRE_TYPE); 3113 if (ire != NULL && ire->ire_zoneid == zoneid) { 3114 src = ipha->ipha_dst; 3115 } else if (!xmit_if_on) { 3116 if (ire != NULL) 3117 ire_refrele(ire); 3118 ire = ire_route_lookup(dst, 0, 0, 0, NULL, NULL, zoneid, 3119 (MATCH_IRE_DEFAULT|MATCH_IRE_RECURSIVE|MATCH_IRE_ZONEONLY)); 3120 if (ire == NULL) { 3121 BUMP_MIB(&ip_mib, ipOutNoRoutes); 3122 freemsg(ipsec_mp); 3123 return; 3124 } 3125 src = ire->ire_src_addr; 3126 } else { 3127 ipif_t *ipif = NULL; 3128 ill_t *ill; 3129 /* 3130 * This must be an ICMP error coming from 3131 * ip_mrtun_forward(). The src addr should 3132 * be equal to the IP-addr of the outgoing 3133 * interface. 3134 */ 3135 if (io == NULL) { 3136 /* This is not a IPSEC_OUT type control msg */ 3137 BUMP_MIB(&ip_mib, ipOutNoRoutes); 3138 freemsg(ipsec_mp); 3139 return; 3140 } 3141 ill = ill_lookup_on_ifindex(io->ipsec_out_ill_index, B_FALSE, 3142 NULL, NULL, NULL, NULL); 3143 if (ill != NULL) { 3144 ipif = ipif_get_next_ipif(NULL, ill); 3145 ill_refrele(ill); 3146 } 3147 if (ipif == NULL) { 3148 BUMP_MIB(&ip_mib, ipOutNoRoutes); 3149 freemsg(ipsec_mp); 3150 return; 3151 } 3152 src = ipif->ipif_src_addr; 3153 ipif_refrele(ipif); 3154 } 3155 3156 if (ire != NULL) 3157 ire_refrele(ire); 3158 3159 /* 3160 * Check if we can send back more then 8 bytes in addition 3161 * to the IP header. We will include as much as 64 bytes. 3162 */ 3163 len_needed = IPH_HDR_LENGTH(ipha) + ip_icmp_return; 3164 msg_len = msgdsize(mp); 3165 if (msg_len > len_needed) { 3166 (void) adjmsg(mp, len_needed - msg_len); 3167 msg_len = len_needed; 3168 } 3169 mp1 = allocb(sizeof (icmp_ipha) + len, BPRI_HI); 3170 if (!mp1) { 3171 BUMP_MIB(&icmp_mib, icmpOutErrors); 3172 freemsg(ipsec_mp); 3173 return; 3174 } 3175 mp1->b_cont = mp; 3176 mp = mp1; 3177 ASSERT(ipsec_mp->b_datap->db_type == M_CTL && 3178 ipsec_mp->b_rptr == (uint8_t *)io && 3179 io->ipsec_out_type == IPSEC_OUT); 3180 ipsec_mp->b_cont = mp; 3181 3182 /* 3183 * Set ipsec_out_icmp_loopback so we can let the ICMP messages this 3184 * node generates be accepted in peace by all on-host destinations. 3185 * If we do NOT assume that all on-host destinations trust 3186 * self-generated ICMP messages, then rework here, ip6.c, and spd.c. 3187 * (Look for ipsec_out_icmp_loopback). 3188 */ 3189 io->ipsec_out_icmp_loopback = B_TRUE; 3190 3191 ipha = (ipha_t *)mp->b_rptr; 3192 mp1->b_wptr = (uchar_t *)ipha + (sizeof (icmp_ipha) + len); 3193 *ipha = icmp_ipha; 3194 ipha->ipha_src = src; 3195 ipha->ipha_dst = dst; 3196 ipha->ipha_ttl = ip_def_ttl; 3197 msg_len += sizeof (icmp_ipha) + len; 3198 if (msg_len > IP_MAXPACKET) { 3199 (void) adjmsg(mp, IP_MAXPACKET - msg_len); 3200 msg_len = IP_MAXPACKET; 3201 } 3202 ipha->ipha_length = htons((uint16_t)msg_len); 3203 icmph = (icmph_t *)&ipha[1]; 3204 bcopy(stuff, icmph, len); 3205 icmph->icmph_checksum = 0; 3206 icmph->icmph_checksum = IP_CSUM(mp, (int32_t)sizeof (ipha_t), 0); 3207 BUMP_MIB(&icmp_mib, icmpOutMsgs); 3208 put(q, ipsec_mp); 3209 } 3210 3211 /* 3212 * Determine if an ICMP error packet can be sent given the rate limit. 3213 * The limit consists of an average frequency (icmp_pkt_err_interval measured 3214 * in milliseconds) and a burst size. Burst size number of packets can 3215 * be sent arbitrarely closely spaced. 3216 * The state is tracked using two variables to implement an approximate 3217 * token bucket filter: 3218 * icmp_pkt_err_last - lbolt value when the last burst started 3219 * icmp_pkt_err_sent - number of packets sent in current burst 3220 */ 3221 boolean_t 3222 icmp_err_rate_limit(void) 3223 { 3224 clock_t now = TICK_TO_MSEC(lbolt); 3225 uint_t refilled; /* Number of packets refilled in tbf since last */ 3226 uint_t err_interval = ip_icmp_err_interval; /* Guard against changes */ 3227 3228 if (err_interval == 0) 3229 return (B_FALSE); 3230 3231 if (icmp_pkt_err_last > now) { 3232 /* 100HZ lbolt in ms for 32bit arch wraps every 49.7 days */ 3233 icmp_pkt_err_last = 0; 3234 icmp_pkt_err_sent = 0; 3235 } 3236 /* 3237 * If we are in a burst update the token bucket filter. 3238 * Update the "last" time to be close to "now" but make sure 3239 * we don't loose precision. 3240 */ 3241 if (icmp_pkt_err_sent != 0) { 3242 refilled = (now - icmp_pkt_err_last)/err_interval; 3243 if (refilled > icmp_pkt_err_sent) { 3244 icmp_pkt_err_sent = 0; 3245 } else { 3246 icmp_pkt_err_sent -= refilled; 3247 icmp_pkt_err_last += refilled * err_interval; 3248 } 3249 } 3250 if (icmp_pkt_err_sent == 0) { 3251 /* Start of new burst */ 3252 icmp_pkt_err_last = now; 3253 } 3254 if (icmp_pkt_err_sent < ip_icmp_err_burst) { 3255 icmp_pkt_err_sent++; 3256 ip1dbg(("icmp_err_rate_limit: %d sent in burst\n", 3257 icmp_pkt_err_sent)); 3258 return (B_FALSE); 3259 } 3260 ip1dbg(("icmp_err_rate_limit: dropped\n")); 3261 return (B_TRUE); 3262 } 3263 3264 /* 3265 * Check if it is ok to send an IPv4 ICMP error packet in 3266 * response to the IPv4 packet in mp. 3267 * Free the message and return null if no 3268 * ICMP error packet should be sent. 3269 */ 3270 static mblk_t * 3271 icmp_pkt_err_ok(mblk_t *mp) 3272 { 3273 icmph_t *icmph; 3274 ipha_t *ipha; 3275 uint_t len_needed; 3276 ire_t *src_ire; 3277 ire_t *dst_ire; 3278 3279 if (!mp) 3280 return (NULL); 3281 ipha = (ipha_t *)mp->b_rptr; 3282 if (ip_csum_hdr(ipha)) { 3283 BUMP_MIB(&ip_mib, ipInCksumErrs); 3284 freemsg(mp); 3285 return (NULL); 3286 } 3287 src_ire = ire_ctable_lookup(ipha->ipha_dst, 0, IRE_BROADCAST, 3288 NULL, ALL_ZONES, MATCH_IRE_TYPE); 3289 dst_ire = ire_ctable_lookup(ipha->ipha_src, 0, IRE_BROADCAST, 3290 NULL, ALL_ZONES, MATCH_IRE_TYPE); 3291 if (src_ire != NULL || dst_ire != NULL || 3292 CLASSD(ipha->ipha_dst) || 3293 CLASSD(ipha->ipha_src) || 3294 (ntohs(ipha->ipha_fragment_offset_and_flags) & IPH_OFFSET)) { 3295 /* Note: only errors to the fragment with offset 0 */ 3296 BUMP_MIB(&icmp_mib, icmpOutDrops); 3297 freemsg(mp); 3298 if (src_ire != NULL) 3299 ire_refrele(src_ire); 3300 if (dst_ire != NULL) 3301 ire_refrele(dst_ire); 3302 return (NULL); 3303 } 3304 if (ipha->ipha_protocol == IPPROTO_ICMP) { 3305 /* 3306 * Check the ICMP type. RFC 1122 sez: don't send ICMP 3307 * errors in response to any ICMP errors. 3308 */ 3309 len_needed = IPH_HDR_LENGTH(ipha) + ICMPH_SIZE; 3310 if (mp->b_wptr - mp->b_rptr < len_needed) { 3311 if (!pullupmsg(mp, len_needed)) { 3312 BUMP_MIB(&icmp_mib, icmpInErrors); 3313 freemsg(mp); 3314 return (NULL); 3315 } 3316 ipha = (ipha_t *)mp->b_rptr; 3317 } 3318 icmph = (icmph_t *) 3319 (&((char *)ipha)[IPH_HDR_LENGTH(ipha)]); 3320 switch (icmph->icmph_type) { 3321 case ICMP_DEST_UNREACHABLE: 3322 case ICMP_SOURCE_QUENCH: 3323 case ICMP_TIME_EXCEEDED: 3324 case ICMP_PARAM_PROBLEM: 3325 case ICMP_REDIRECT: 3326 BUMP_MIB(&icmp_mib, icmpOutDrops); 3327 freemsg(mp); 3328 return (NULL); 3329 default: 3330 break; 3331 } 3332 } 3333 if (icmp_err_rate_limit()) { 3334 /* 3335 * Only send ICMP error packets every so often. 3336 * This should be done on a per port/source basis, 3337 * but for now this will suffice. 3338 */ 3339 freemsg(mp); 3340 return (NULL); 3341 } 3342 return (mp); 3343 } 3344 3345 /* 3346 * Generate an ICMP redirect message. 3347 */ 3348 static void 3349 icmp_send_redirect(queue_t *q, mblk_t *mp, ipaddr_t gateway) 3350 { 3351 icmph_t icmph; 3352 3353 /* 3354 * We are called from ip_rput where we could 3355 * not have attached an IPSEC_IN. 3356 */ 3357 ASSERT(mp->b_datap->db_type == M_DATA); 3358 3359 if (!(mp = icmp_pkt_err_ok(mp))) { 3360 return; 3361 } 3362 3363 bzero(&icmph, sizeof (icmph_t)); 3364 icmph.icmph_type = ICMP_REDIRECT; 3365 icmph.icmph_code = 1; 3366 icmph.icmph_rd_gateway = gateway; 3367 BUMP_MIB(&icmp_mib, icmpOutRedirects); 3368 icmp_pkt(q, mp, &icmph, sizeof (icmph_t), B_FALSE); 3369 } 3370 3371 /* 3372 * Generate an ICMP time exceeded message. 3373 */ 3374 void 3375 icmp_time_exceeded(queue_t *q, mblk_t *mp, uint8_t code) 3376 { 3377 icmph_t icmph; 3378 boolean_t mctl_present; 3379 mblk_t *first_mp; 3380 3381 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 3382 3383 if (!(mp = icmp_pkt_err_ok(mp))) { 3384 if (mctl_present) 3385 freeb(first_mp); 3386 return; 3387 } 3388 3389 bzero(&icmph, sizeof (icmph_t)); 3390 icmph.icmph_type = ICMP_TIME_EXCEEDED; 3391 icmph.icmph_code = code; 3392 BUMP_MIB(&icmp_mib, icmpOutTimeExcds); 3393 icmp_pkt(q, first_mp, &icmph, sizeof (icmph_t), mctl_present); 3394 } 3395 3396 /* 3397 * Generate an ICMP unreachable message. 3398 */ 3399 void 3400 icmp_unreachable(queue_t *q, mblk_t *mp, uint8_t code) 3401 { 3402 icmph_t icmph; 3403 mblk_t *first_mp; 3404 boolean_t mctl_present; 3405 3406 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 3407 3408 if (!(mp = icmp_pkt_err_ok(mp))) { 3409 if (mctl_present) 3410 freeb(first_mp); 3411 return; 3412 } 3413 3414 bzero(&icmph, sizeof (icmph_t)); 3415 icmph.icmph_type = ICMP_DEST_UNREACHABLE; 3416 icmph.icmph_code = code; 3417 BUMP_MIB(&icmp_mib, icmpOutDestUnreachs); 3418 ip2dbg(("send icmp destination unreachable code %d\n", code)); 3419 icmp_pkt(q, first_mp, (char *)&icmph, sizeof (icmph_t), mctl_present); 3420 } 3421 3422 /* 3423 * News from ARP. ARP sends notification of interesting events down 3424 * to its clients using M_CTL messages with the interesting ARP packet 3425 * attached via b_cont. 3426 * The interesting event from a device comes up the corresponding ARP-IP-DEV 3427 * queue as opposed to ARP sending the message to all the clients, i.e. all 3428 * its ARP-IP-DEV instances. Thus, for AR_CN_ANNOUNCE, we must walk the cache 3429 * table if a cache IRE is found to delete all the entries for the address in 3430 * the packet. 3431 */ 3432 static void 3433 ip_arp_news(queue_t *q, mblk_t *mp) 3434 { 3435 arcn_t *arcn; 3436 arh_t *arh; 3437 char *cp1; 3438 uchar_t *cp2; 3439 ire_t *ire = NULL; 3440 int i1; 3441 char hbuf[128]; 3442 char sbuf[16]; 3443 ipaddr_t src; 3444 in6_addr_t v6src; 3445 boolean_t isv6 = B_FALSE; 3446 3447 if ((mp->b_wptr - mp->b_rptr) < sizeof (arcn_t) || !mp->b_cont) { 3448 if (q->q_next) { 3449 putnext(q, mp); 3450 } else 3451 freemsg(mp); 3452 return; 3453 } 3454 arh = (arh_t *)mp->b_cont->b_rptr; 3455 /* Is it one we are interested in? */ 3456 if (BE16_TO_U16(arh->arh_proto) == IP6_DL_SAP) { 3457 isv6 = B_TRUE; 3458 bcopy((char *)&arh[1] + (arh->arh_hlen & 0xFF), &v6src, 3459 IPV6_ADDR_LEN); 3460 } else if (BE16_TO_U16(arh->arh_proto) == IP_ARP_PROTO_TYPE) { 3461 bcopy((char *)&arh[1] + (arh->arh_hlen & 0xFF), &src, 3462 IP_ADDR_LEN); 3463 } else { 3464 freemsg(mp); 3465 return; 3466 } 3467 3468 arcn = (arcn_t *)mp->b_rptr; 3469 switch (arcn->arcn_code) { 3470 case AR_CN_BOGON: 3471 /* 3472 * Someone is sending ARP packets with a source protocol 3473 * address which we have published. Either they are 3474 * pretending to be us, or we have been asked to proxy 3475 * for a machine that can do fine for itself, or two 3476 * different machines are providing proxy service for the 3477 * same protocol address, or something. We try and do 3478 * something appropriate here. 3479 */ 3480 cp2 = (uchar_t *)&arh[1]; 3481 cp1 = hbuf; 3482 *cp1 = '\0'; 3483 for (i1 = arh->arh_hlen; i1--; cp1 += 3) 3484 (void) sprintf(cp1, "%02x:", *cp2++ & 0xff); 3485 if (cp1 != hbuf) 3486 cp1[-1] = '\0'; 3487 (void) ip_dot_addr(src, sbuf); 3488 if (isv6) 3489 ire = ire_cache_lookup_v6(&v6src, ALL_ZONES); 3490 else 3491 ire = ire_cache_lookup(src, ALL_ZONES); 3492 3493 if (ire != NULL && IRE_IS_LOCAL(ire)) { 3494 cmn_err(CE_WARN, 3495 "IP: Hardware address '%s' trying" 3496 " to be our address %s!", 3497 hbuf, sbuf); 3498 } else { 3499 cmn_err(CE_WARN, 3500 "IP: Proxy ARP problem? " 3501 "Hardware address '%s' thinks it is %s", 3502 hbuf, sbuf); 3503 } 3504 if (ire != NULL) 3505 ire_refrele(ire); 3506 break; 3507 case AR_CN_ANNOUNCE: 3508 if (isv6) { 3509 /* 3510 * For XRESOLV interfaces. 3511 * Delete the IRE cache entry and NCE for this 3512 * v6 address 3513 */ 3514 ip_ire_clookup_and_delete_v6(&v6src); 3515 /* 3516 * If v6src is a non-zero, it's a router address 3517 * as below. Do the same sort of thing to clean 3518 * out off-net IRE_CACHE entries that go through 3519 * the router. 3520 */ 3521 if (!IN6_IS_ADDR_UNSPECIFIED(&v6src)) { 3522 ire_walk_v6(ire_delete_cache_gw_v6, 3523 (char *)&v6src, ALL_ZONES); 3524 } 3525 break; 3526 } 3527 /* 3528 * ARP gives us a copy of any broadcast packet with identical 3529 * sender and receiver protocol address, in 3530 * case we want to intuit something from it. Such a packet 3531 * usually means that a machine has just come up on the net. 3532 * If we have an IRE_CACHE, we blow it away. This way we will 3533 * immediately pick up the rare case of a host changing 3534 * hardware address. ip_ire_clookup_and_delete achieves this. 3535 * 3536 * The address in "src" may be an entry for a router. 3537 * (Default router, or non-default router.) If 3538 * that's true, then any off-net IRE_CACHE entries 3539 * that go through the router with address "src" 3540 * must be clobbered. Use ire_walk to achieve this 3541 * goal. 3542 * 3543 * It should be possible to determine if the address 3544 * in src is or is not for a router. This way, 3545 * the ire_walk() isn't called all of the time here. 3546 * Do not pass 'src' value of 0 to ire_delete_cache_gw, 3547 * as it would remove all IRE_CACHE entries for onlink 3548 * destinations. All onlink destinations have 3549 * ire_gateway_addr == 0. 3550 */ 3551 if ((ip_ire_clookup_and_delete(src, NULL) || 3552 (ire = ire_ftable_lookup(src, 0, 0, 0, NULL, NULL, NULL, 3553 0, MATCH_IRE_DSTONLY)) != NULL) && src != 0) { 3554 ire_walk_v4(ire_delete_cache_gw, (char *)&src, 3555 ALL_ZONES); 3556 } 3557 /* From ire_ftable_lookup */ 3558 if (ire != NULL) 3559 ire_refrele(ire); 3560 break; 3561 default: 3562 if (ire != NULL) 3563 ire_refrele(ire); 3564 break; 3565 } 3566 freemsg(mp); 3567 } 3568 3569 /* 3570 * Create a mblk suitable for carrying the interface index and/or source link 3571 * address. This mblk is tagged as an M_CTL and is sent to ULP. This is used 3572 * when the IP_RECVIF and/or IP_RECVSLLA socket option is set by the user 3573 * application. 3574 */ 3575 mblk_t * 3576 ip_add_info(mblk_t *data_mp, ill_t *ill, uint_t flags) 3577 { 3578 mblk_t *mp; 3579 in_pktinfo_t *pinfo; 3580 ipha_t *ipha; 3581 struct ether_header *pether; 3582 3583 mp = allocb(sizeof (in_pktinfo_t), BPRI_MED); 3584 if (mp == NULL) { 3585 ip1dbg(("ip_add_info: allocation failure.\n")); 3586 return (data_mp); 3587 } 3588 3589 ipha = (ipha_t *)data_mp->b_rptr; 3590 pinfo = (in_pktinfo_t *)mp->b_rptr; 3591 bzero(pinfo, sizeof (in_pktinfo_t)); 3592 pinfo->in_pkt_flags = (uchar_t)flags; 3593 pinfo->in_pkt_ulp_type = IN_PKTINFO; /* Tell ULP what type of info */ 3594 3595 if (flags & IPF_RECVIF) 3596 pinfo->in_pkt_ifindex = ill->ill_phyint->phyint_ifindex; 3597 3598 pether = (struct ether_header *)((char *)ipha 3599 - sizeof (struct ether_header)); 3600 /* 3601 * Make sure the interface is an ethernet type, since this option 3602 * is currently supported only on this type of interface. Also make 3603 * sure we are pointing correctly above db_base. 3604 */ 3605 3606 if ((flags & IPF_RECVSLLA) && 3607 ((uchar_t *)pether >= data_mp->b_datap->db_base) && 3608 (ill->ill_type == IFT_ETHER) && 3609 (ill->ill_net_type == IRE_IF_RESOLVER)) { 3610 3611 pinfo->in_pkt_slla.sdl_type = IFT_ETHER; 3612 bcopy((uchar_t *)pether->ether_shost.ether_addr_octet, 3613 (uchar_t *)pinfo->in_pkt_slla.sdl_data, ETHERADDRL); 3614 } else { 3615 /* 3616 * Clear the bit. Indicate to upper layer that IP is not 3617 * sending this ancillary info. 3618 */ 3619 pinfo->in_pkt_flags = pinfo->in_pkt_flags & ~IPF_RECVSLLA; 3620 } 3621 3622 mp->b_datap->db_type = M_CTL; 3623 mp->b_wptr += sizeof (in_pktinfo_t); 3624 mp->b_cont = data_mp; 3625 3626 return (mp); 3627 } 3628 3629 /* 3630 * Latch in the IPsec state for a stream based on the ipsec_in_t passed in as 3631 * part of the bind request. 3632 */ 3633 3634 boolean_t 3635 ip_bind_ipsec_policy_set(conn_t *connp, mblk_t *policy_mp) 3636 { 3637 ipsec_in_t *ii; 3638 3639 ASSERT(policy_mp != NULL); 3640 ASSERT(policy_mp->b_datap->db_type == IPSEC_POLICY_SET); 3641 3642 ii = (ipsec_in_t *)policy_mp->b_rptr; 3643 ASSERT(ii->ipsec_in_type == IPSEC_IN); 3644 3645 connp->conn_policy = ii->ipsec_in_policy; 3646 ii->ipsec_in_policy = NULL; 3647 3648 if (ii->ipsec_in_action != NULL) { 3649 if (connp->conn_latch == NULL) { 3650 connp->conn_latch = iplatch_create(); 3651 if (connp->conn_latch == NULL) 3652 return (B_FALSE); 3653 } 3654 ipsec_latch_inbound(connp->conn_latch, ii); 3655 } 3656 return (B_TRUE); 3657 } 3658 3659 /* 3660 * Upper level protocols (ULP) pass through bind requests to IP for inspection 3661 * and to arrange for power-fanout assist. The ULP is identified by 3662 * adding a single byte at the end of the original bind message. 3663 * A ULP other than UDP or TCP that wishes to be recognized passes 3664 * down a bind with a zero length address. 3665 * 3666 * The binding works as follows: 3667 * - A zero byte address means just bind to the protocol. 3668 * - A four byte address is treated as a request to validate 3669 * that the address is a valid local address, appropriate for 3670 * an application to bind to. This does not affect any fanout 3671 * information in IP. 3672 * - A sizeof sin_t byte address is used to bind to only the local address 3673 * and port. 3674 * - A sizeof ipa_conn_t byte address contains complete fanout information 3675 * consisting of local and remote addresses and ports. In 3676 * this case, the addresses are both validated as appropriate 3677 * for this operation, and, if so, the information is retained 3678 * for use in the inbound fanout. 3679 * 3680 * The ULP (except in the zero-length bind) can append an 3681 * additional mblk of db_type IRE_DB_REQ_TYPE or IPSEC_POLICY_SET to the 3682 * T_BIND_REQ/O_T_BIND_REQ. IRE_DB_REQ_TYPE indicates that the ULP wants 3683 * a copy of the source or destination IRE (source for local bind; 3684 * destination for complete bind). IPSEC_POLICY_SET indicates that the 3685 * policy information contained should be copied on to the conn. 3686 * 3687 * NOTE : Only one of IRE_DB_REQ_TYPE or IPSEC_POLICY_SET can be present. 3688 */ 3689 mblk_t * 3690 ip_bind_v4(queue_t *q, mblk_t *mp, conn_t *connp) 3691 { 3692 ssize_t len; 3693 struct T_bind_req *tbr; 3694 sin_t *sin; 3695 ipa_conn_t *ac; 3696 uchar_t *ucp; 3697 mblk_t *mp1; 3698 boolean_t ire_requested; 3699 boolean_t ipsec_policy_set = B_FALSE; 3700 int error = 0; 3701 int protocol; 3702 ipa_conn_x_t *acx; 3703 3704 ASSERT(!connp->conn_af_isv6); 3705 connp->conn_pkt_isv6 = B_FALSE; 3706 3707 len = mp->b_wptr - mp->b_rptr; 3708 if (len < (sizeof (*tbr) + 1)) { 3709 (void) mi_strlog(q, 1, SL_ERROR|SL_TRACE, 3710 "ip_bind: bogus msg, len %ld", len); 3711 /* XXX: Need to return something better */ 3712 goto bad_addr; 3713 } 3714 /* Back up and extract the protocol identifier. */ 3715 mp->b_wptr--; 3716 protocol = *mp->b_wptr & 0xFF; 3717 tbr = (struct T_bind_req *)mp->b_rptr; 3718 /* Reset the message type in preparation for shipping it back. */ 3719 mp->b_datap->db_type = M_PCPROTO; 3720 3721 connp->conn_ulp = (uint8_t)protocol; 3722 3723 /* 3724 * Check for a zero length address. This is from a protocol that 3725 * wants to register to receive all packets of its type. 3726 */ 3727 if (tbr->ADDR_length == 0) { 3728 /* 3729 * These protocols are now intercepted in ip_bind_v6(). 3730 * Reject protocol-level binds here for now. 3731 * 3732 * For SCTP raw socket, ICMP sends down a bind with sin_t 3733 * so that the protocol type cannot be SCTP. 3734 */ 3735 if (protocol == IPPROTO_TCP || protocol == IPPROTO_AH || 3736 protocol == IPPROTO_ESP || protocol == IPPROTO_SCTP) { 3737 goto bad_addr; 3738 } 3739 3740 /* No hash here really. The table is big enough. */ 3741 connp->conn_srcv6 = ipv6_all_zeros; 3742 3743 ipcl_proto_insert(connp, protocol); 3744 3745 tbr->PRIM_type = T_BIND_ACK; 3746 return (mp); 3747 } 3748 3749 /* Extract the address pointer from the message. */ 3750 ucp = (uchar_t *)mi_offset_param(mp, tbr->ADDR_offset, 3751 tbr->ADDR_length); 3752 if (ucp == NULL) { 3753 ip1dbg(("ip_bind: no address\n")); 3754 goto bad_addr; 3755 } 3756 if (!OK_32PTR(ucp)) { 3757 ip1dbg(("ip_bind: unaligned address\n")); 3758 goto bad_addr; 3759 } 3760 /* 3761 * Check for trailing mps. 3762 */ 3763 3764 mp1 = mp->b_cont; 3765 ire_requested = (mp1 && mp1->b_datap->db_type == IRE_DB_REQ_TYPE); 3766 ipsec_policy_set = (mp1 && mp1->b_datap->db_type == IPSEC_POLICY_SET); 3767 3768 switch (tbr->ADDR_length) { 3769 default: 3770 ip1dbg(("ip_bind: bad address length %d\n", 3771 (int)tbr->ADDR_length)); 3772 goto bad_addr; 3773 3774 case IP_ADDR_LEN: 3775 /* Verification of local address only */ 3776 error = ip_bind_laddr(connp, mp, *(ipaddr_t *)ucp, 0, 3777 ire_requested, ipsec_policy_set, B_FALSE); 3778 break; 3779 3780 case sizeof (sin_t): 3781 sin = (sin_t *)ucp; 3782 error = ip_bind_laddr(connp, mp, sin->sin_addr.s_addr, 3783 sin->sin_port, ire_requested, ipsec_policy_set, B_TRUE); 3784 if (protocol == IPPROTO_TCP) 3785 connp->conn_recv = tcp_conn_request; 3786 break; 3787 3788 case sizeof (ipa_conn_t): 3789 ac = (ipa_conn_t *)ucp; 3790 /* For raw socket, the local port is not set. */ 3791 if (ac->ac_lport == 0) 3792 ac->ac_lport = connp->conn_lport; 3793 /* Always verify destination reachability. */ 3794 error = ip_bind_connected(connp, mp, &ac->ac_laddr, 3795 ac->ac_lport, ac->ac_faddr, ac->ac_fport, ire_requested, 3796 ipsec_policy_set, B_TRUE, B_TRUE); 3797 if (protocol == IPPROTO_TCP) 3798 connp->conn_recv = tcp_input; 3799 break; 3800 3801 case sizeof (ipa_conn_x_t): 3802 acx = (ipa_conn_x_t *)ucp; 3803 /* 3804 * Whether or not to verify destination reachability depends 3805 * on the setting of the ACX_VERIFY_DST flag in acx->acx_flags. 3806 */ 3807 error = ip_bind_connected(connp, mp, &acx->acx_conn.ac_laddr, 3808 acx->acx_conn.ac_lport, acx->acx_conn.ac_faddr, 3809 acx->acx_conn.ac_fport, ire_requested, ipsec_policy_set, 3810 B_TRUE, (acx->acx_flags & ACX_VERIFY_DST) != 0); 3811 if (protocol == IPPROTO_TCP) 3812 connp->conn_recv = tcp_input; 3813 break; 3814 } 3815 if (error == EINPROGRESS) 3816 return (NULL); 3817 else if (error != 0) 3818 goto bad_addr; 3819 /* 3820 * Pass the IPSEC headers size in ire_ipsec_overhead. 3821 * We can't do this in ip_bind_insert_ire because the policy 3822 * may not have been inherited at that point in time and hence 3823 * conn_out_enforce_policy may not be set. 3824 */ 3825 mp1 = mp->b_cont; 3826 if (ire_requested && connp->conn_out_enforce_policy && 3827 mp1 != NULL && DB_TYPE(mp1) == IRE_DB_REQ_TYPE) { 3828 ire_t *ire = (ire_t *)mp1->b_rptr; 3829 ASSERT(MBLKL(mp1) >= sizeof (ire_t)); 3830 ire->ire_ipsec_overhead = conn_ipsec_length(connp); 3831 } 3832 3833 /* Send it home. */ 3834 mp->b_datap->db_type = M_PCPROTO; 3835 tbr->PRIM_type = T_BIND_ACK; 3836 return (mp); 3837 3838 bad_addr: 3839 /* 3840 * If error = -1 then we generate a TBADADDR - otherwise error is 3841 * a unix errno. 3842 */ 3843 if (error > 0) 3844 mp = mi_tpi_err_ack_alloc(mp, TSYSERR, error); 3845 else 3846 mp = mi_tpi_err_ack_alloc(mp, TBADADDR, 0); 3847 return (mp); 3848 } 3849 3850 /* 3851 * Here address is verified to be a valid local address. 3852 * If the IRE_DB_REQ_TYPE mp is present, a broadcast/multicast 3853 * address is also considered a valid local address. 3854 * In the case of a broadcast/multicast address, however, the 3855 * upper protocol is expected to reset the src address 3856 * to 0 if it sees a IRE_BROADCAST type returned so that 3857 * no packets are emitted with broadcast/multicast address as 3858 * source address (that violates hosts requirements RFC1122) 3859 * The addresses valid for bind are: 3860 * (1) - INADDR_ANY (0) 3861 * (2) - IP address of an UP interface 3862 * (3) - IP address of a DOWN interface 3863 * (4) - valid local IP broadcast addresses. In this case 3864 * the conn will only receive packets destined to 3865 * the specified broadcast address. 3866 * (5) - a multicast address. In this case 3867 * the conn will only receive packets destined to 3868 * the specified multicast address. Note: the 3869 * application still has to issue an 3870 * IP_ADD_MEMBERSHIP socket option. 3871 * 3872 * On error, return -1 for TBADADDR otherwise pass the 3873 * errno with TSYSERR reply. 3874 * 3875 * In all the above cases, the bound address must be valid in the current zone. 3876 * When the address is loopback, multicast or broadcast, there might be many 3877 * matching IREs so bind has to look up based on the zone. 3878 */ 3879 int 3880 ip_bind_laddr(conn_t *connp, mblk_t *mp, ipaddr_t src_addr, uint16_t lport, 3881 boolean_t ire_requested, boolean_t ipsec_policy_set, 3882 boolean_t fanout_insert) 3883 { 3884 int error = 0; 3885 ire_t *src_ire; 3886 mblk_t *policy_mp; 3887 ipif_t *ipif; 3888 zoneid_t zoneid; 3889 3890 if (ipsec_policy_set) { 3891 policy_mp = mp->b_cont; 3892 } 3893 3894 /* 3895 * If it was previously connected, conn_fully_bound would have 3896 * been set. 3897 */ 3898 connp->conn_fully_bound = B_FALSE; 3899 3900 src_ire = NULL; 3901 ipif = NULL; 3902 3903 zoneid = connp->conn_zoneid; 3904 3905 if (src_addr) { 3906 src_ire = ire_route_lookup(src_addr, 0, 0, 0, 3907 NULL, NULL, zoneid, MATCH_IRE_ZONEONLY); 3908 /* 3909 * If an address other than 0.0.0.0 is requested, 3910 * we verify that it is a valid address for bind 3911 * Note: Following code is in if-else-if form for 3912 * readability compared to a condition check. 3913 */ 3914 /* LINTED - statement has no consequent */ 3915 if (IRE_IS_LOCAL(src_ire)) { 3916 /* 3917 * (2) Bind to address of local UP interface 3918 */ 3919 } else if (src_ire && src_ire->ire_type == IRE_BROADCAST) { 3920 /* 3921 * (4) Bind to broadcast address 3922 * Note: permitted only from transports that 3923 * request IRE 3924 */ 3925 if (!ire_requested) 3926 error = EADDRNOTAVAIL; 3927 } else { 3928 /* 3929 * (3) Bind to address of local DOWN interface 3930 * (ipif_lookup_addr() looks up all interfaces 3931 * but we do not get here for UP interfaces 3932 * - case (2) above) 3933 * We put the protocol byte back into the mblk 3934 * since we may come back via ip_wput_nondata() 3935 * later with this mblk if ipif_lookup_addr chooses 3936 * to defer processing. 3937 */ 3938 *mp->b_wptr++ = (char)connp->conn_ulp; 3939 if ((ipif = ipif_lookup_addr(src_addr, NULL, zoneid, 3940 CONNP_TO_WQ(connp), mp, ip_wput_nondata, 3941 &error)) != NULL) { 3942 ipif_refrele(ipif); 3943 } else if (error == EINPROGRESS) { 3944 if (src_ire != NULL) 3945 ire_refrele(src_ire); 3946 return (EINPROGRESS); 3947 } else if (CLASSD(src_addr)) { 3948 error = 0; 3949 if (src_ire != NULL) 3950 ire_refrele(src_ire); 3951 /* 3952 * (5) bind to multicast address. 3953 * Fake out the IRE returned to upper 3954 * layer to be a broadcast IRE. 3955 */ 3956 src_ire = ire_ctable_lookup( 3957 INADDR_BROADCAST, INADDR_ANY, 3958 IRE_BROADCAST, NULL, zoneid, 3959 (MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY)); 3960 if (src_ire == NULL || !ire_requested) 3961 error = EADDRNOTAVAIL; 3962 } else { 3963 /* 3964 * Not a valid address for bind 3965 */ 3966 error = EADDRNOTAVAIL; 3967 } 3968 /* 3969 * Just to keep it consistent with the processing in 3970 * ip_bind_v4() 3971 */ 3972 mp->b_wptr--; 3973 } 3974 if (error) { 3975 /* Red Alert! Attempting to be a bogon! */ 3976 ip1dbg(("ip_bind: bad src address 0x%x\n", 3977 ntohl(src_addr))); 3978 goto bad_addr; 3979 } 3980 } 3981 3982 /* 3983 * Allow setting new policies. For example, disconnects come 3984 * down as ipa_t bind. As we would have set conn_policy_cached 3985 * to B_TRUE before, we should set it to B_FALSE, so that policy 3986 * can change after the disconnect. 3987 */ 3988 connp->conn_policy_cached = B_FALSE; 3989 3990 /* 3991 * If not fanout_insert this was just an address verification 3992 */ 3993 if (fanout_insert) { 3994 /* 3995 * The addresses have been verified. Time to insert in 3996 * the correct fanout list. 3997 */ 3998 IN6_IPADDR_TO_V4MAPPED(src_addr, &connp->conn_srcv6); 3999 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &connp->conn_remv6); 4000 connp->conn_lport = lport; 4001 connp->conn_fport = 0; 4002 /* 4003 * Do we need to add a check to reject Multicast packets 4004 */ 4005 error = ipcl_bind_insert(connp, *mp->b_wptr, src_addr, lport); 4006 } 4007 done: 4008 if (error == 0) { 4009 if (ire_requested) { 4010 if (!ip_bind_insert_ire(mp, src_ire, NULL)) { 4011 error = -1; 4012 /* Falls through to bad_addr */ 4013 } 4014 } else if (ipsec_policy_set) { 4015 if (!ip_bind_ipsec_policy_set(connp, policy_mp)) { 4016 error = -1; 4017 /* Falls through to bad_addr */ 4018 } 4019 } 4020 } 4021 bad_addr: 4022 if (src_ire != NULL) 4023 IRE_REFRELE(src_ire); 4024 if (ipsec_policy_set) { 4025 ASSERT(policy_mp == mp->b_cont); 4026 ASSERT(policy_mp != NULL); 4027 freeb(policy_mp); 4028 /* 4029 * As of now assume that nothing else accompanies 4030 * IPSEC_POLICY_SET. 4031 */ 4032 mp->b_cont = NULL; 4033 } 4034 return (error); 4035 } 4036 4037 /* 4038 * Verify that both the source and destination addresses 4039 * are valid. If verify_dst is false, then the destination address may be 4040 * unreachable, i.e. have no route to it. Protocols like TCP want to verify 4041 * destination reachability, while tunnels do not. 4042 * Note that we allow connect to broadcast and multicast 4043 * addresses when ire_requested is set. Thus the ULP 4044 * has to check for IRE_BROADCAST and multicast. 4045 * 4046 * Returns zero if ok. 4047 * On error: returns -1 to mean TBADADDR otherwise returns an errno 4048 * (for use with TSYSERR reply). 4049 */ 4050 int 4051 ip_bind_connected(conn_t *connp, mblk_t *mp, ipaddr_t *src_addrp, 4052 uint16_t lport, ipaddr_t dst_addr, uint16_t fport, 4053 boolean_t ire_requested, boolean_t ipsec_policy_set, 4054 boolean_t fanout_insert, boolean_t verify_dst) 4055 { 4056 ire_t *src_ire; 4057 ire_t *dst_ire; 4058 int error = 0; 4059 int protocol; 4060 mblk_t *policy_mp; 4061 ire_t *sire = NULL; 4062 ire_t *md_dst_ire = NULL; 4063 ill_t *md_ill = NULL; 4064 zoneid_t zoneid; 4065 ipaddr_t src_addr = *src_addrp; 4066 4067 src_ire = dst_ire = NULL; 4068 protocol = *mp->b_wptr & 0xFF; 4069 4070 /* 4071 * If we never got a disconnect before, clear it now. 4072 */ 4073 connp->conn_fully_bound = B_FALSE; 4074 4075 if (ipsec_policy_set) { 4076 policy_mp = mp->b_cont; 4077 } 4078 4079 zoneid = connp->conn_zoneid; 4080 4081 if (CLASSD(dst_addr)) { 4082 /* Pick up an IRE_BROADCAST */ 4083 dst_ire = ire_route_lookup(ip_g_all_ones, 0, 0, 0, NULL, 4084 NULL, zoneid, (MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT | 4085 MATCH_IRE_RJ_BHOLE)); 4086 } else { 4087 /* 4088 * If conn_dontroute is set, and onlink ipif is not found 4089 * set ENETUNREACH error 4090 */ 4091 if (connp->conn_dontroute) { 4092 ipif_t *ipif; 4093 4094 ipif = ipif_lookup_onlink_addr(dst_addr, zoneid); 4095 if (ipif == NULL) { 4096 error = ENETUNREACH; 4097 goto bad_addr; 4098 } 4099 ipif_refrele(ipif); 4100 } 4101 dst_ire = ire_route_lookup(dst_addr, 0, 0, 0, NULL, &sire, 4102 zoneid, 4103 (MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT | 4104 MATCH_IRE_PARENT | MATCH_IRE_RJ_BHOLE)); 4105 } 4106 /* 4107 * dst_ire can't be a broadcast when not ire_requested. 4108 * We also prevent ire's with src address INADDR_ANY to 4109 * be used, which are created temporarily for 4110 * sending out packets from endpoints that have 4111 * conn_unspec_src set. If verify_dst is true, the destination must be 4112 * reachable. If verify_dst is false, the destination needn't be 4113 * reachable. 4114 * 4115 * If we match on a reject or black hole, then we've got a 4116 * local failure. May as well fail out the connect() attempt, 4117 * since it's never going to succeed. 4118 */ 4119 if (dst_ire == NULL || dst_ire->ire_src_addr == INADDR_ANY || 4120 (dst_ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) || 4121 ((dst_ire->ire_type & IRE_BROADCAST) && !ire_requested)) { 4122 /* 4123 * If we're verifying destination reachability, we always want 4124 * to complain here. 4125 * 4126 * If we're not verifying destination reachability but the 4127 * destination has a route, we still want to fail on the 4128 * temporary address and broadcast address tests. 4129 */ 4130 if (verify_dst || (dst_ire != NULL)) { 4131 if (ip_debug > 2) { 4132 pr_addr_dbg("ip_bind_connected: bad connected " 4133 "dst %s\n", AF_INET, &dst_addr); 4134 } 4135 if (dst_ire == NULL || !(dst_ire->ire_type & IRE_HOST)) 4136 error = ENETUNREACH; 4137 else 4138 error = EHOSTUNREACH; 4139 goto bad_addr; 4140 } 4141 } 4142 /* 4143 * If the app does a connect(), it means that it will most likely 4144 * send more than 1 packet to the destination. It makes sense 4145 * to clear the temporary flag. 4146 */ 4147 if (dst_ire != NULL && dst_ire->ire_type == IRE_CACHE && 4148 (dst_ire->ire_marks & IRE_MARK_TEMPORARY)) { 4149 irb_t *irb = dst_ire->ire_bucket; 4150 4151 rw_enter(&irb->irb_lock, RW_WRITER); 4152 dst_ire->ire_marks &= ~IRE_MARK_TEMPORARY; 4153 irb->irb_tmp_ire_cnt--; 4154 rw_exit(&irb->irb_lock); 4155 } 4156 4157 /* 4158 * See if we should notify ULP about MDT; we do this whether or not 4159 * ire_requested is TRUE, in order to handle active connects; MDT 4160 * eligibility tests for passive connects are handled separately 4161 * through tcp_adapt_ire(). We do this before the source address 4162 * selection, because dst_ire may change after a call to 4163 * ipif_select_source(). This is a best-effort check, as the 4164 * packet for this connection may not actually go through 4165 * dst_ire->ire_stq, and the exact IRE can only be known after 4166 * calling ip_newroute(). This is why we further check on the 4167 * IRE during Multidata packet transmission in tcp_multisend(). 4168 */ 4169 if (ip_multidata_outbound && !ipsec_policy_set && dst_ire != NULL && 4170 !(dst_ire->ire_type & (IRE_LOCAL | IRE_LOOPBACK | IRE_BROADCAST)) && 4171 (md_ill = ire_to_ill(dst_ire), md_ill != NULL) && 4172 (md_ill->ill_capabilities & ILL_CAPAB_MDT)) { 4173 md_dst_ire = dst_ire; 4174 IRE_REFHOLD(md_dst_ire); 4175 } 4176 4177 if (dst_ire != NULL && 4178 dst_ire->ire_type == IRE_LOCAL && 4179 dst_ire->ire_zoneid != zoneid) { 4180 /* 4181 * If the IRE belongs to a different zone, look for a matching 4182 * route in the forwarding table and use the source address from 4183 * that route. 4184 */ 4185 src_ire = ire_ftable_lookup(dst_addr, 0, 0, 0, NULL, NULL, 4186 zoneid, 0, 4187 MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT | 4188 MATCH_IRE_RJ_BHOLE); 4189 if (src_ire == NULL) { 4190 error = EHOSTUNREACH; 4191 goto bad_addr; 4192 } else if (src_ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) { 4193 if (!(src_ire->ire_type & IRE_HOST)) 4194 error = ENETUNREACH; 4195 else 4196 error = EHOSTUNREACH; 4197 goto bad_addr; 4198 } 4199 if (src_addr == INADDR_ANY) 4200 src_addr = src_ire->ire_src_addr; 4201 ire_refrele(src_ire); 4202 src_ire = NULL; 4203 } else if ((src_addr == INADDR_ANY) && (dst_ire != NULL)) { 4204 if ((sire != NULL) && (sire->ire_flags & RTF_SETSRC)) { 4205 src_addr = sire->ire_src_addr; 4206 ire_refrele(dst_ire); 4207 dst_ire = sire; 4208 sire = NULL; 4209 } else { 4210 /* 4211 * Pick a source address so that a proper inbound 4212 * load spreading would happen. 4213 */ 4214 ill_t *dst_ill = dst_ire->ire_ipif->ipif_ill; 4215 ipif_t *src_ipif = NULL; 4216 ire_t *ipif_ire; 4217 4218 /* 4219 * Supply a local source address such that inbound 4220 * load spreading happens. 4221 * 4222 * Determine the best source address on this ill for 4223 * the destination. 4224 * 4225 * 1) For broadcast, we should return a broadcast ire 4226 * found above so that upper layers know that the 4227 * destination address is a broadcast address. 4228 * 4229 * 2) If this is part of a group, select a better 4230 * source address so that better inbound load 4231 * balancing happens. Do the same if the ipif 4232 * is DEPRECATED. 4233 * 4234 * 3) If the outgoing interface is part of a usesrc 4235 * group, then try selecting a source address from 4236 * the usesrc ILL. 4237 */ 4238 if (!(dst_ire->ire_type & IRE_BROADCAST) && 4239 ((dst_ill->ill_group != NULL) || 4240 (dst_ire->ire_ipif->ipif_flags & 4241 IPIF_DEPRECATED) || 4242 (dst_ill->ill_usesrc_ifindex != 0))) { 4243 src_ipif = ipif_select_source(dst_ill, 4244 dst_addr, zoneid); 4245 if (src_ipif != NULL) { 4246 if (IS_VNI(src_ipif->ipif_ill)) { 4247 /* 4248 * For VNI there is no 4249 * interface route 4250 */ 4251 src_addr = 4252 src_ipif->ipif_src_addr; 4253 } else { 4254 ipif_ire = 4255 ipif_to_ire(src_ipif); 4256 if (ipif_ire != NULL) { 4257 IRE_REFRELE(dst_ire); 4258 dst_ire = ipif_ire; 4259 } 4260 src_addr = 4261 dst_ire->ire_src_addr; 4262 } 4263 ipif_refrele(src_ipif); 4264 } else { 4265 src_addr = dst_ire->ire_src_addr; 4266 } 4267 } else { 4268 src_addr = dst_ire->ire_src_addr; 4269 } 4270 } 4271 } 4272 4273 /* 4274 * We do ire_route_lookup() here (and not 4275 * interface lookup as we assert that 4276 * src_addr should only come from an 4277 * UP interface for hard binding. 4278 */ 4279 ASSERT(src_ire == NULL); 4280 src_ire = ire_route_lookup(src_addr, 0, 0, 0, NULL, 4281 NULL, zoneid, MATCH_IRE_ZONEONLY); 4282 /* src_ire must be a local|loopback */ 4283 if (!IRE_IS_LOCAL(src_ire)) { 4284 if (ip_debug > 2) { 4285 pr_addr_dbg("ip_bind_connected: bad connected " 4286 "src %s\n", AF_INET, &src_addr); 4287 } 4288 error = EADDRNOTAVAIL; 4289 goto bad_addr; 4290 } 4291 4292 /* 4293 * If the source address is a loopback address, the 4294 * destination had best be local or multicast. 4295 * The transports that can't handle multicast will reject 4296 * those addresses. 4297 */ 4298 if (src_ire->ire_type == IRE_LOOPBACK && 4299 !(IRE_IS_LOCAL(dst_ire) || CLASSD(dst_addr))) { 4300 ip1dbg(("ip_bind_connected: bad connected loopback\n")); 4301 error = -1; 4302 goto bad_addr; 4303 } 4304 4305 /* 4306 * Allow setting new policies. For example, disconnects come 4307 * down as ipa_t bind. As we would have set conn_policy_cached 4308 * to B_TRUE before, we should set it to B_FALSE, so that policy 4309 * can change after the disconnect. 4310 */ 4311 connp->conn_policy_cached = B_FALSE; 4312 4313 /* 4314 * Set the conn addresses/ports immediately, so the IPsec policy calls 4315 * can handle their passed-in conn's. 4316 */ 4317 4318 IN6_IPADDR_TO_V4MAPPED(src_addr, &connp->conn_srcv6); 4319 IN6_IPADDR_TO_V4MAPPED(dst_addr, &connp->conn_remv6); 4320 connp->conn_lport = lport; 4321 connp->conn_fport = fport; 4322 *src_addrp = src_addr; 4323 4324 ASSERT(!(ipsec_policy_set && ire_requested)); 4325 if (ire_requested) { 4326 iulp_t *ulp_info = NULL; 4327 4328 /* 4329 * Note that sire will not be NULL if this is an off-link 4330 * connection and there is not cache for that dest yet. 4331 * 4332 * XXX Because of an existing bug, if there are multiple 4333 * default routes, the IRE returned now may not be the actual 4334 * default route used (default routes are chosen in a 4335 * round robin fashion). So if the metrics for different 4336 * default routes are different, we may return the wrong 4337 * metrics. This will not be a problem if the existing 4338 * bug is fixed. 4339 */ 4340 if (sire != NULL) { 4341 ulp_info = &(sire->ire_uinfo); 4342 } 4343 if (!ip_bind_insert_ire(mp, dst_ire, ulp_info)) { 4344 error = -1; 4345 goto bad_addr; 4346 } 4347 } else if (ipsec_policy_set) { 4348 if (!ip_bind_ipsec_policy_set(connp, policy_mp)) { 4349 error = -1; 4350 goto bad_addr; 4351 } 4352 } 4353 4354 /* 4355 * Cache IPsec policy in this conn. If we have per-socket policy, 4356 * we'll cache that. If we don't, we'll inherit global policy. 4357 * 4358 * We can't insert until the conn reflects the policy. Note that 4359 * conn_policy_cached is set by ipsec_conn_cache_policy() even for 4360 * connections where we don't have a policy. This is to prevent 4361 * global policy lookups in the inbound path. 4362 * 4363 * If we insert before we set conn_policy_cached, 4364 * CONN_INBOUND_POLICY_PRESENT() check can still evaluate true 4365 * because global policy cound be non-empty. We normally call 4366 * ipsec_check_policy() for conn_policy_cached connections only if 4367 * ipc_in_enforce_policy is set. But in this case, 4368 * conn_policy_cached can get set anytime since we made the 4369 * CONN_INBOUND_POLICY_PRESENT() check and ipsec_check_policy() is 4370 * called, which will make the above assumption false. Thus, we 4371 * need to insert after we set conn_policy_cached. 4372 */ 4373 if ((error = ipsec_conn_cache_policy(connp, B_TRUE)) != 0) 4374 goto bad_addr; 4375 4376 if (fanout_insert) { 4377 /* 4378 * The addresses have been verified. Time to insert in 4379 * the correct fanout list. 4380 */ 4381 error = ipcl_conn_insert(connp, protocol, src_addr, 4382 dst_addr, connp->conn_ports); 4383 } 4384 4385 if (error == 0) { 4386 connp->conn_fully_bound = B_TRUE; 4387 /* 4388 * Our initial checks for MDT have passed; the IRE is not 4389 * LOCAL/LOOPBACK/BROADCAST, and the link layer seems to 4390 * be supporting MDT. Pass the IRE, IPC and ILL into 4391 * ip_mdinfo_return(), which performs further checks 4392 * against them and upon success, returns the MDT info 4393 * mblk which we will attach to the bind acknowledgment. 4394 */ 4395 if (md_dst_ire != NULL) { 4396 mblk_t *mdinfo_mp; 4397 4398 ASSERT(md_ill != NULL); 4399 ASSERT(md_ill->ill_mdt_capab != NULL); 4400 if ((mdinfo_mp = ip_mdinfo_return(md_dst_ire, connp, 4401 md_ill->ill_name, md_ill->ill_mdt_capab)) != NULL) 4402 linkb(mp, mdinfo_mp); 4403 } 4404 } 4405 bad_addr: 4406 if (ipsec_policy_set) { 4407 ASSERT(policy_mp == mp->b_cont); 4408 ASSERT(policy_mp != NULL); 4409 freeb(policy_mp); 4410 /* 4411 * As of now assume that nothing else accompanies 4412 * IPSEC_POLICY_SET. 4413 */ 4414 mp->b_cont = NULL; 4415 } 4416 if (src_ire != NULL) 4417 IRE_REFRELE(src_ire); 4418 if (dst_ire != NULL) 4419 IRE_REFRELE(dst_ire); 4420 if (sire != NULL) 4421 IRE_REFRELE(sire); 4422 if (md_dst_ire != NULL) 4423 IRE_REFRELE(md_dst_ire); 4424 return (error); 4425 } 4426 4427 /* 4428 * Insert the ire in b_cont. Returns false if it fails (due to lack of space). 4429 * Prefers dst_ire over src_ire. 4430 */ 4431 static boolean_t 4432 ip_bind_insert_ire(mblk_t *mp, ire_t *ire, iulp_t *ulp_info) 4433 { 4434 mblk_t *mp1; 4435 ire_t *ret_ire = NULL; 4436 4437 mp1 = mp->b_cont; 4438 ASSERT(mp1 != NULL); 4439 4440 if (ire != NULL) { 4441 /* 4442 * mp1 initialized above to IRE_DB_REQ_TYPE 4443 * appended mblk. Its <upper protocol>'s 4444 * job to make sure there is room. 4445 */ 4446 if ((mp1->b_datap->db_lim - mp1->b_rptr) < sizeof (ire_t)) 4447 return (0); 4448 4449 mp1->b_datap->db_type = IRE_DB_TYPE; 4450 mp1->b_wptr = mp1->b_rptr + sizeof (ire_t); 4451 bcopy(ire, mp1->b_rptr, sizeof (ire_t)); 4452 ret_ire = (ire_t *)mp1->b_rptr; 4453 /* 4454 * Pass the latest setting of the ip_path_mtu_discovery and 4455 * copy the ulp info if any. 4456 */ 4457 ret_ire->ire_frag_flag |= (ip_path_mtu_discovery) ? 4458 IPH_DF : 0; 4459 if (ulp_info != NULL) { 4460 bcopy(ulp_info, &(ret_ire->ire_uinfo), 4461 sizeof (iulp_t)); 4462 } 4463 ret_ire->ire_mp = mp1; 4464 } else { 4465 /* 4466 * No IRE was found. Remove IRE mblk. 4467 */ 4468 mp->b_cont = mp1->b_cont; 4469 freeb(mp1); 4470 } 4471 4472 return (1); 4473 } 4474 4475 /* 4476 * Carve "len" bytes out of an mblk chain, consuming any we empty, and duping 4477 * the final piece where we don't. Return a pointer to the first mblk in the 4478 * result, and update the pointer to the next mblk to chew on. If anything 4479 * goes wrong (i.e., dupb fails), we waste everything in sight and return a 4480 * NULL pointer. 4481 */ 4482 mblk_t * 4483 ip_carve_mp(mblk_t **mpp, ssize_t len) 4484 { 4485 mblk_t *mp0; 4486 mblk_t *mp1; 4487 mblk_t *mp2; 4488 4489 if (!len || !mpp || !(mp0 = *mpp)) 4490 return (NULL); 4491 /* If we aren't going to consume the first mblk, we need a dup. */ 4492 if (mp0->b_wptr - mp0->b_rptr > len) { 4493 mp1 = dupb(mp0); 4494 if (mp1) { 4495 /* Partition the data between the two mblks. */ 4496 mp1->b_wptr = mp1->b_rptr + len; 4497 mp0->b_rptr = mp1->b_wptr; 4498 /* 4499 * after adjustments if mblk not consumed is now 4500 * unaligned, try to align it. If this fails free 4501 * all messages and let upper layer recover. 4502 */ 4503 if (!OK_32PTR(mp0->b_rptr)) { 4504 if (!pullupmsg(mp0, -1)) { 4505 freemsg(mp0); 4506 freemsg(mp1); 4507 *mpp = NULL; 4508 return (NULL); 4509 } 4510 } 4511 } 4512 return (mp1); 4513 } 4514 /* Eat through as many mblks as we need to get len bytes. */ 4515 len -= mp0->b_wptr - mp0->b_rptr; 4516 for (mp2 = mp1 = mp0; (mp2 = mp2->b_cont) != 0 && len; mp1 = mp2) { 4517 if (mp2->b_wptr - mp2->b_rptr > len) { 4518 /* 4519 * We won't consume the entire last mblk. Like 4520 * above, dup and partition it. 4521 */ 4522 mp1->b_cont = dupb(mp2); 4523 mp1 = mp1->b_cont; 4524 if (!mp1) { 4525 /* 4526 * Trouble. Rather than go to a lot of 4527 * trouble to clean up, we free the messages. 4528 * This won't be any worse than losing it on 4529 * the wire. 4530 */ 4531 freemsg(mp0); 4532 freemsg(mp2); 4533 *mpp = NULL; 4534 return (NULL); 4535 } 4536 mp1->b_wptr = mp1->b_rptr + len; 4537 mp2->b_rptr = mp1->b_wptr; 4538 /* 4539 * after adjustments if mblk not consumed is now 4540 * unaligned, try to align it. If this fails free 4541 * all messages and let upper layer recover. 4542 */ 4543 if (!OK_32PTR(mp2->b_rptr)) { 4544 if (!pullupmsg(mp2, -1)) { 4545 freemsg(mp0); 4546 freemsg(mp2); 4547 *mpp = NULL; 4548 return (NULL); 4549 } 4550 } 4551 *mpp = mp2; 4552 return (mp0); 4553 } 4554 /* Decrement len by the amount we just got. */ 4555 len -= mp2->b_wptr - mp2->b_rptr; 4556 } 4557 /* 4558 * len should be reduced to zero now. If not our caller has 4559 * screwed up. 4560 */ 4561 if (len) { 4562 /* Shouldn't happen! */ 4563 freemsg(mp0); 4564 *mpp = NULL; 4565 return (NULL); 4566 } 4567 /* 4568 * We consumed up to exactly the end of an mblk. Detach the part 4569 * we are returning from the rest of the chain. 4570 */ 4571 mp1->b_cont = NULL; 4572 *mpp = mp2; 4573 return (mp0); 4574 } 4575 4576 /* The ill stream is being unplumbed. Called from ip_close */ 4577 int 4578 ip_modclose(ill_t *ill) 4579 { 4580 4581 boolean_t success; 4582 ipsq_t *ipsq; 4583 ipif_t *ipif; 4584 queue_t *q = ill->ill_rq; 4585 4586 /* 4587 * Forcibly enter the ipsq after some delay. This is to take 4588 * care of the case when some ioctl does not complete because 4589 * we sent a control message to the driver and it did not 4590 * send us a reply. We want to be able to at least unplumb 4591 * and replumb rather than force the user to reboot the system. 4592 */ 4593 success = ipsq_enter(ill, B_FALSE); 4594 4595 /* 4596 * Open/close/push/pop is guaranteed to be single threaded 4597 * per stream by STREAMS. FS guarantees that all references 4598 * from top are gone before close is called. So there can't 4599 * be another close thread that has set CONDEMNED on this ill. 4600 * and cause ipsq_enter to return failure. 4601 */ 4602 ASSERT(success); 4603 ipsq = ill->ill_phyint->phyint_ipsq; 4604 4605 /* 4606 * Mark it condemned. No new reference will be made to this ill. 4607 * Lookup functions will return an error. Threads that try to 4608 * increment the refcnt must check for ILL_CAN_LOOKUP. This ensures 4609 * that the refcnt will drop down to zero. 4610 */ 4611 mutex_enter(&ill->ill_lock); 4612 ill->ill_state_flags |= ILL_CONDEMNED; 4613 for (ipif = ill->ill_ipif; ipif != NULL; 4614 ipif = ipif->ipif_next) { 4615 ipif->ipif_state_flags |= IPIF_CONDEMNED; 4616 } 4617 /* 4618 * Wake up anybody waiting to enter the ipsq. ipsq_enter 4619 * returns error if ILL_CONDEMNED is set 4620 */ 4621 cv_broadcast(&ill->ill_cv); 4622 mutex_exit(&ill->ill_lock); 4623 4624 /* 4625 * Shut down fragmentation reassembly. 4626 * ill_frag_timer won't start a timer again. 4627 * Now cancel any existing timer 4628 */ 4629 (void) untimeout(ill->ill_frag_timer_id); 4630 (void) ill_frag_timeout(ill, 0); 4631 4632 /* 4633 * If MOVE was in progress, clear the 4634 * move_in_progress fields also. 4635 */ 4636 if (ill->ill_move_in_progress) { 4637 ILL_CLEAR_MOVE(ill); 4638 } 4639 4640 /* 4641 * Call ill_delete to bring down the ipifs, ilms and ill on 4642 * this ill. Then wait for the refcnts to drop to zero. 4643 * ill_is_quiescent checks whether the ill is really quiescent. 4644 * Then make sure that threads that are waiting to enter the 4645 * ipsq have seen the error returned by ipsq_enter and have 4646 * gone away. Then we call ill_delete_tail which does the 4647 * DL_UNBIND and DL_DETACH with the driver and then qprocsoff. 4648 */ 4649 ill_delete(ill); 4650 mutex_enter(&ill->ill_lock); 4651 while (!ill_is_quiescent(ill)) 4652 cv_wait(&ill->ill_cv, &ill->ill_lock); 4653 while (ill->ill_waiters) 4654 cv_wait(&ill->ill_cv, &ill->ill_lock); 4655 4656 mutex_exit(&ill->ill_lock); 4657 4658 /* qprocsoff is called in ill_delete_tail */ 4659 ill_delete_tail(ill); 4660 4661 /* 4662 * Walk through all upper (conn) streams and qenable 4663 * those that have queued data. 4664 * close synchronization needs this to 4665 * be done to ensure that all upper layers blocked 4666 * due to flow control to the closing device 4667 * get unblocked. 4668 */ 4669 ip1dbg(("ip_wsrv: walking\n")); 4670 conn_walk_drain(); 4671 4672 mutex_enter(&ip_mi_lock); 4673 mi_close_unlink(&ip_g_head, (IDP)ill); 4674 mutex_exit(&ip_mi_lock); 4675 4676 /* 4677 * credp could be null if the open didn't succeed and ip_modopen 4678 * itself calls ip_close. 4679 */ 4680 if (ill->ill_credp != NULL) 4681 crfree(ill->ill_credp); 4682 4683 mi_close_free((IDP)ill); 4684 q->q_ptr = WR(q)->q_ptr = NULL; 4685 4686 ipsq_exit(ipsq, B_TRUE, B_TRUE); 4687 4688 return (0); 4689 } 4690 4691 /* 4692 * IP has been configured as _D_QNEXTLESS for the client side i.e the driver 4693 * instance. This implies that 4694 * 1. IP cannot access the read side q_next pointer directly - it must 4695 * use routines like putnext and canputnext. 4696 * 2. ip_close must ensure that all sources of messages being putnext upstream 4697 * are gone before qprocsoff is called. 4698 * 4699 * #2 is handled by having ip_close do the ipcl_hash_remove and wait for 4700 * conn_ref to drop to zero before calling qprocsoff. 4701 */ 4702 4703 /* ARGSUSED */ 4704 int 4705 ip_close(queue_t *q, int flags) 4706 { 4707 conn_t *connp; 4708 boolean_t drain_cleanup_reqd = B_FALSE; 4709 boolean_t conn_ioctl_cleanup_reqd = B_FALSE; 4710 boolean_t ilg_cleanup_reqd = B_FALSE; 4711 4712 TRACE_1(TR_FAC_IP, TR_IP_CLOSE, "ip_close: q %p", q); 4713 4714 /* 4715 * Call the appropriate delete routine depending on whether this is 4716 * a module or device. 4717 */ 4718 if (WR(q)->q_next != NULL) { 4719 /* This is a module close */ 4720 return (ip_modclose((ill_t *)q->q_ptr)); 4721 } 4722 4723 connp = Q_TO_CONN(q); 4724 ASSERT(connp->conn_tcp == NULL); 4725 4726 /* 4727 * We are being closed as /dev/ip or /dev/ip6. 4728 * 4729 * Mark the conn as closing, and this conn must not be 4730 * inserted in future into any list. Eg. conn_drain_insert(), 4731 * won't insert this conn into the conn_drain_list. 4732 * Similarly ill_pending_mp_add() will not add any mp to 4733 * the pending mp list, after this conn has started closing. 4734 * 4735 * conn_idl, conn_pending_ill, conn_down_pending_ill, conn_ilg 4736 * cannot get set henceforth. 4737 */ 4738 mutex_enter(&connp->conn_lock); 4739 connp->conn_state_flags |= CONN_CLOSING; 4740 if (connp->conn_idl != NULL) 4741 drain_cleanup_reqd = B_TRUE; 4742 if (connp->conn_oper_pending_ill != NULL) 4743 conn_ioctl_cleanup_reqd = B_TRUE; 4744 if (connp->conn_ilg_inuse != 0) 4745 ilg_cleanup_reqd = B_TRUE; 4746 mutex_exit(&connp->conn_lock); 4747 4748 if (conn_ioctl_cleanup_reqd) 4749 conn_ioctl_cleanup(connp); 4750 4751 /* 4752 * Remove this conn from any fanout list it is on. 4753 * Then wait until the number of pending putnexts from 4754 * the fanout code drops to zero, before calling qprocsoff. 4755 * This is the guarantee a QNEXTLESS driver provides to 4756 * STREAMS, and is mentioned at the top of this function. 4757 */ 4758 4759 ipcl_hash_remove(connp); 4760 4761 /* 4762 * Remove this conn from the drain list, and do 4763 * any other cleanup that may be required. 4764 * (Only non-tcp streams may have a non-null conn_idl. 4765 * TCP streams are never flow controlled, and 4766 * conn_idl will be null) 4767 */ 4768 if (drain_cleanup_reqd) 4769 conn_drain_tail(connp, B_TRUE); 4770 4771 if (connp->conn_rq == ip_g_mrouter || connp->conn_wq == ip_g_mrouter) 4772 (void) ip_mrouter_done(NULL); 4773 4774 if (ilg_cleanup_reqd) 4775 ilg_delete_all(connp); 4776 4777 conn_delete_ire(connp, NULL); 4778 4779 4780 /* 4781 * Now conn refcnt can increase only thru CONN_INC_REF_LOCKED. 4782 * callers from write side can't be there now because close 4783 * is in progress. The only other caller is ipcl_walk 4784 * which checks for the condemned flag. 4785 */ 4786 mutex_enter(&connp->conn_lock); 4787 connp->conn_state_flags |= CONN_CONDEMNED; 4788 while (connp->conn_ref != 1) 4789 cv_wait(&connp->conn_cv, &connp->conn_lock); 4790 mutex_exit(&connp->conn_lock); 4791 4792 qprocsoff(q); 4793 4794 /* 4795 * Now we are truly single threaded on this stream, and can 4796 * delete the things hanging off the connp, and finally the connp. 4797 * We removed this connp from the fanout list, it cannot be 4798 * accessed thru the fanouts, and we already waited for the 4799 * conn_ref to drop to 0. We are already in close, so 4800 * there cannot be any other thread from the top. qprocsoff 4801 * has completed, and service has completed or won't run in 4802 * future. 4803 */ 4804 if (connp->conn_latch != NULL) { 4805 IPLATCH_REFRELE(connp->conn_latch); 4806 connp->conn_latch = NULL; 4807 } 4808 if (connp->conn_policy != NULL) { 4809 IPPH_REFRELE(connp->conn_policy); 4810 connp->conn_policy = NULL; 4811 } 4812 if (connp->conn_ipsec_opt_mp != NULL) { 4813 freemsg(connp->conn_ipsec_opt_mp); 4814 connp->conn_ipsec_opt_mp = NULL; 4815 } 4816 if (connp->conn_cred != NULL) { 4817 crfree(connp->conn_cred); 4818 connp->conn_cred = NULL; 4819 } 4820 4821 inet_minor_free(ip_minor_arena, connp->conn_dev); 4822 4823 connp->conn_ref--; 4824 ipcl_conn_destroy(connp); 4825 4826 q->q_ptr = WR(q)->q_ptr = NULL; 4827 return (0); 4828 } 4829 4830 /* Return the IP checksum for the IP header at "iph". */ 4831 uint16_t 4832 ip_csum_hdr(ipha_t *ipha) 4833 { 4834 uint16_t *uph; 4835 uint32_t sum; 4836 int opt_len; 4837 4838 opt_len = (ipha->ipha_version_and_hdr_length & 0xF) - 4839 IP_SIMPLE_HDR_LENGTH_IN_WORDS; 4840 uph = (uint16_t *)ipha; 4841 sum = uph[0] + uph[1] + uph[2] + uph[3] + uph[4] + 4842 uph[5] + uph[6] + uph[7] + uph[8] + uph[9]; 4843 if (opt_len > 0) { 4844 do { 4845 sum += uph[10]; 4846 sum += uph[11]; 4847 uph += 2; 4848 } while (--opt_len); 4849 } 4850 sum = (sum & 0xFFFF) + (sum >> 16); 4851 sum = ~(sum + (sum >> 16)) & 0xFFFF; 4852 if (sum == 0xffff) 4853 sum = 0; 4854 return ((uint16_t)sum); 4855 } 4856 4857 void 4858 ip_ddi_destroy(void) 4859 { 4860 tcp_ddi_destroy(); 4861 sctp_ddi_destroy(); 4862 ipsec_loader_destroy(); 4863 ipsec_policy_destroy(); 4864 ipsec_kstat_destroy(); 4865 nd_free(&ip_g_nd); 4866 mutex_destroy(&igmp_timer_lock); 4867 mutex_destroy(&mld_timer_lock); 4868 mutex_destroy(&igmp_slowtimeout_lock); 4869 mutex_destroy(&mld_slowtimeout_lock); 4870 mutex_destroy(&ip_mi_lock); 4871 mutex_destroy(&rts_clients.connf_lock); 4872 ip_ire_fini(); 4873 ip6_asp_free(); 4874 conn_drain_fini(); 4875 ipcl_destroy(); 4876 inet_minor_destroy(ip_minor_arena); 4877 icmp_kstat_fini(); 4878 ip_kstat_fini(); 4879 rw_destroy(&ipsec_capab_ills_lock); 4880 rw_destroy(&ill_g_usesrc_lock); 4881 ip_drop_unregister(&ip_dropper); 4882 } 4883 4884 4885 void 4886 ip_ddi_init(void) 4887 { 4888 TCP6_MAJ = ddi_name_to_major(TCP6); 4889 TCP_MAJ = ddi_name_to_major(TCP); 4890 SCTP_MAJ = ddi_name_to_major(SCTP); 4891 SCTP6_MAJ = ddi_name_to_major(SCTP6); 4892 4893 ip_input_proc = ip_squeue_switch(ip_squeue_enter); 4894 4895 /* IP's IPsec code calls the packet dropper */ 4896 ip_drop_register(&ip_dropper, "IP IPsec processing"); 4897 4898 if (!ip_g_nd) { 4899 if (!ip_param_register(lcl_param_arr, A_CNT(lcl_param_arr), 4900 lcl_ndp_arr, A_CNT(lcl_ndp_arr))) { 4901 nd_free(&ip_g_nd); 4902 } 4903 } 4904 4905 ipsec_loader_init(); 4906 ipsec_policy_init(); 4907 ipsec_kstat_init(); 4908 rw_init(&ip_g_nd_lock, NULL, RW_DEFAULT, NULL); 4909 mutex_init(&igmp_timer_lock, NULL, MUTEX_DEFAULT, NULL); 4910 mutex_init(&mld_timer_lock, NULL, MUTEX_DEFAULT, NULL); 4911 mutex_init(&igmp_slowtimeout_lock, NULL, MUTEX_DEFAULT, NULL); 4912 mutex_init(&mld_slowtimeout_lock, NULL, MUTEX_DEFAULT, NULL); 4913 mutex_init(&ip_mi_lock, NULL, MUTEX_DEFAULT, NULL); 4914 mutex_init(&ip_addr_avail_lock, NULL, MUTEX_DEFAULT, NULL); 4915 rw_init(&ill_g_lock, NULL, RW_DEFAULT, NULL); 4916 rw_init(&ipsec_capab_ills_lock, NULL, RW_DEFAULT, NULL); 4917 rw_init(&ill_g_usesrc_lock, NULL, RW_DEFAULT, NULL); 4918 4919 /* 4920 * For IP and TCP the minor numbers should start from 2 since we have 4 4921 * initial devices: ip, ip6, tcp, tcp6. 4922 */ 4923 if ((ip_minor_arena = inet_minor_create("ip_minor_arena", 4924 INET_MIN_DEV + 2, KM_SLEEP)) == NULL) { 4925 cmn_err(CE_PANIC, 4926 "ip_ddi_init: ip_minor_arena creation failed\n"); 4927 } 4928 4929 ipcl_init(); 4930 mutex_init(&rts_clients.connf_lock, NULL, MUTEX_DEFAULT, NULL); 4931 ip_ire_init(); 4932 ip6_asp_init(); 4933 ipif_init(); 4934 conn_drain_init(); 4935 tcp_ddi_init(); 4936 sctp_ddi_init(); 4937 4938 ip_poll_normal_ticks = MSEC_TO_TICK_ROUNDUP(ip_poll_normal_ms); 4939 4940 if ((ip_kstat = kstat_create("ip", 0, "ipstat", 4941 "net", KSTAT_TYPE_NAMED, 4942 sizeof (ip_statistics) / sizeof (kstat_named_t), 4943 KSTAT_FLAG_VIRTUAL)) != NULL) { 4944 ip_kstat->ks_data = &ip_statistics; 4945 kstat_install(ip_kstat); 4946 } 4947 ip_kstat_init(); 4948 ip6_kstat_init(); 4949 icmp_kstat_init(); 4950 4951 ipsec_loader_start(); 4952 } 4953 4954 /* 4955 * Allocate and initialize a DLPI template of the specified length. (May be 4956 * called as writer.) 4957 */ 4958 mblk_t * 4959 ip_dlpi_alloc(size_t len, t_uscalar_t prim) 4960 { 4961 mblk_t *mp; 4962 4963 mp = allocb(len, BPRI_MED); 4964 if (!mp) 4965 return (NULL); 4966 4967 /* 4968 * DLPIv2 says that DL_INFO_REQ and DL_TOKEN_REQ (the latter 4969 * of which we don't seem to use) are sent with M_PCPROTO, and 4970 * that other DLPI are M_PROTO. 4971 */ 4972 if (prim == DL_INFO_REQ) { 4973 mp->b_datap->db_type = M_PCPROTO; 4974 } else { 4975 mp->b_datap->db_type = M_PROTO; 4976 } 4977 4978 mp->b_wptr = mp->b_rptr + len; 4979 bzero(mp->b_rptr, len); 4980 ((dl_unitdata_req_t *)mp->b_rptr)->dl_primitive = prim; 4981 return (mp); 4982 } 4983 4984 const char * 4985 dlpi_prim_str(int prim) 4986 { 4987 switch (prim) { 4988 case DL_INFO_REQ: return ("DL_INFO_REQ"); 4989 case DL_INFO_ACK: return ("DL_INFO_ACK"); 4990 case DL_ATTACH_REQ: return ("DL_ATTACH_REQ"); 4991 case DL_DETACH_REQ: return ("DL_DETACH_REQ"); 4992 case DL_BIND_REQ: return ("DL_BIND_REQ"); 4993 case DL_BIND_ACK: return ("DL_BIND_ACK"); 4994 case DL_UNBIND_REQ: return ("DL_UNBIND_REQ"); 4995 case DL_OK_ACK: return ("DL_OK_ACK"); 4996 case DL_ERROR_ACK: return ("DL_ERROR_ACK"); 4997 case DL_ENABMULTI_REQ: return ("DL_ENABMULTI_REQ"); 4998 case DL_DISABMULTI_REQ: return ("DL_DISABMULTI_REQ"); 4999 case DL_PROMISCON_REQ: return ("DL_PROMISCON_REQ"); 5000 case DL_PROMISCOFF_REQ: return ("DL_PROMISCOFF_REQ"); 5001 case DL_UNITDATA_REQ: return ("DL_UNITDATA_REQ"); 5002 case DL_UNITDATA_IND: return ("DL_UNITDATA_IND"); 5003 case DL_UDERROR_IND: return ("DL_UDERROR_IND"); 5004 case DL_PHYS_ADDR_REQ: return ("DL_PHYS_ADDR_REQ"); 5005 case DL_PHYS_ADDR_ACK: return ("DL_PHYS_ADDR_ACK"); 5006 case DL_SET_PHYS_ADDR_REQ: return ("DL_SET_PHYS_ADDR_REQ"); 5007 case DL_NOTIFY_REQ: return ("DL_NOTIFY_REQ"); 5008 case DL_NOTIFY_ACK: return ("DL_NOTIFY_ACK"); 5009 case DL_NOTIFY_IND: return ("DL_NOTIFY_IND"); 5010 case DL_CAPABILITY_REQ: return ("DL_CAPABILITY_REQ"); 5011 case DL_CAPABILITY_ACK: return ("DL_CAPABILITY_ACK"); 5012 case DL_CONTROL_REQ: return ("DL_CONTROL_REQ"); 5013 case DL_CONTROL_ACK: return ("DL_CONTROL_ACK"); 5014 default: return ("<unknown primitive>"); 5015 } 5016 } 5017 5018 const char * 5019 dlpi_err_str(int err) 5020 { 5021 switch (err) { 5022 case DL_ACCESS: return ("DL_ACCESS"); 5023 case DL_BADADDR: return ("DL_BADADDR"); 5024 case DL_BADCORR: return ("DL_BADCORR"); 5025 case DL_BADDATA: return ("DL_BADDATA"); 5026 case DL_BADPPA: return ("DL_BADPPA"); 5027 case DL_BADPRIM: return ("DL_BADPRIM"); 5028 case DL_BADQOSPARAM: return ("DL_BADQOSPARAM"); 5029 case DL_BADQOSTYPE: return ("DL_BADQOSTYPE"); 5030 case DL_BADSAP: return ("DL_BADSAP"); 5031 case DL_BADTOKEN: return ("DL_BADTOKEN"); 5032 case DL_BOUND: return ("DL_BOUND"); 5033 case DL_INITFAILED: return ("DL_INITFAILED"); 5034 case DL_NOADDR: return ("DL_NOADDR"); 5035 case DL_NOTINIT: return ("DL_NOTINIT"); 5036 case DL_OUTSTATE: return ("DL_OUTSTATE"); 5037 case DL_SYSERR: return ("DL_SYSERR"); 5038 case DL_UNSUPPORTED: return ("DL_UNSUPPORTED"); 5039 case DL_UNDELIVERABLE: return ("DL_UNDELIVERABLE"); 5040 case DL_NOTSUPPORTED : return ("DL_NOTSUPPORTED "); 5041 case DL_TOOMANY: return ("DL_TOOMANY"); 5042 case DL_NOTENAB: return ("DL_NOTENAB"); 5043 case DL_BUSY: return ("DL_BUSY"); 5044 case DL_NOAUTO: return ("DL_NOAUTO"); 5045 case DL_NOXIDAUTO: return ("DL_NOXIDAUTO"); 5046 case DL_NOTESTAUTO: return ("DL_NOTESTAUTO"); 5047 case DL_XIDAUTO: return ("DL_XIDAUTO"); 5048 case DL_TESTAUTO: return ("DL_TESTAUTO"); 5049 case DL_PENDING: return ("DL_PENDING"); 5050 default: return ("<unknown error>"); 5051 } 5052 } 5053 5054 /* 5055 * Debug formatting routine. Returns a character string representation of the 5056 * addr in buf, of the form xxx.xxx.xxx.xxx. This routine takes the address 5057 * in the form of a ipaddr_t and calls ip_dot_saddr with a pointer. 5058 */ 5059 char * 5060 ip_dot_addr(ipaddr_t addr, char *buf) 5061 { 5062 return (ip_dot_saddr((uchar_t *)&addr, buf)); 5063 } 5064 5065 /* 5066 * Debug formatting routine. Returns a character string representation of the 5067 * addr in buf, of the form xxx.xxx.xxx.xxx. This routine takes the address 5068 * as a pointer. The "xxx" parts including left zero padding so the final 5069 * string will fit easily in tables. It would be nice to take a padding 5070 * length argument instead. 5071 */ 5072 static char * 5073 ip_dot_saddr(uchar_t *addr, char *buf) 5074 { 5075 (void) mi_sprintf(buf, "%03d.%03d.%03d.%03d", 5076 addr[0] & 0xFF, addr[1] & 0xFF, addr[2] & 0xFF, addr[3] & 0xFF); 5077 return (buf); 5078 } 5079 5080 /* 5081 * Send an ICMP error after patching up the packet appropriately. Returns 5082 * non-zero if the appropriate MIB should be bumped; zero otherwise. 5083 */ 5084 static int 5085 ip_fanout_send_icmp(queue_t *q, mblk_t *mp, uint_t flags, 5086 uint_t icmp_type, uint_t icmp_code, boolean_t mctl_present, zoneid_t zoneid) 5087 { 5088 ipha_t *ipha; 5089 mblk_t *first_mp; 5090 boolean_t secure; 5091 unsigned char db_type; 5092 5093 first_mp = mp; 5094 if (mctl_present) { 5095 mp = mp->b_cont; 5096 secure = ipsec_in_is_secure(first_mp); 5097 ASSERT(mp != NULL); 5098 } else { 5099 /* 5100 * If this is an ICMP error being reported - which goes 5101 * up as M_CTLs, we need to convert them to M_DATA till 5102 * we finish checking with global policy because 5103 * ipsec_check_global_policy() assumes M_DATA as clear 5104 * and M_CTL as secure. 5105 */ 5106 db_type = mp->b_datap->db_type; 5107 mp->b_datap->db_type = M_DATA; 5108 secure = B_FALSE; 5109 } 5110 /* 5111 * We are generating an icmp error for some inbound packet. 5112 * Called from all ip_fanout_(udp, tcp, proto) functions. 5113 * Before we generate an error, check with global policy 5114 * to see whether this is allowed to enter the system. As 5115 * there is no "conn", we are checking with global policy. 5116 */ 5117 ipha = (ipha_t *)mp->b_rptr; 5118 if (secure || ipsec_inbound_v4_policy_present) { 5119 first_mp = ipsec_check_global_policy(first_mp, NULL, 5120 ipha, NULL, mctl_present); 5121 if (first_mp == NULL) 5122 return (0); 5123 } 5124 5125 if (!mctl_present) 5126 mp->b_datap->db_type = db_type; 5127 5128 if (flags & IP_FF_SEND_ICMP) { 5129 if (flags & IP_FF_HDR_COMPLETE) { 5130 if (ip_hdr_complete(ipha, zoneid)) { 5131 freemsg(first_mp); 5132 return (1); 5133 } 5134 } 5135 if (flags & IP_FF_CKSUM) { 5136 /* 5137 * Have to correct checksum since 5138 * the packet might have been 5139 * fragmented and the reassembly code in ip_rput 5140 * does not restore the IP checksum. 5141 */ 5142 ipha->ipha_hdr_checksum = 0; 5143 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 5144 } 5145 switch (icmp_type) { 5146 case ICMP_DEST_UNREACHABLE: 5147 icmp_unreachable(WR(q), first_mp, icmp_code); 5148 break; 5149 default: 5150 freemsg(first_mp); 5151 break; 5152 } 5153 } else { 5154 freemsg(first_mp); 5155 return (0); 5156 } 5157 5158 return (1); 5159 } 5160 5161 #ifdef DEBUG 5162 /* 5163 * Copy the header into the IPSEC_IN message. 5164 */ 5165 static void 5166 ipsec_inbound_debug_tag(mblk_t *ipsec_mp) 5167 { 5168 mblk_t *data_mp = ipsec_mp->b_cont; 5169 ipsec_in_t *ii = (ipsec_in_t *)ipsec_mp->b_rptr; 5170 ipha_t *ipha; 5171 5172 if (ii->ipsec_in_type != IPSEC_IN) 5173 return; 5174 ASSERT(data_mp != NULL); 5175 5176 ipha = (ipha_t *)data_mp->b_rptr; 5177 bcopy(ipha, ii->ipsec_in_saved_hdr, 5178 (IPH_HDR_VERSION(ipha) == IP_VERSION) ? 5179 sizeof (ipha_t) : sizeof (ip6_t)); 5180 } 5181 #else 5182 #define ipsec_inbound_debug_tag(x) /* NOP */ 5183 #endif /* DEBUG */ 5184 5185 /* 5186 * Used to send an ICMP error message when a packet is received for 5187 * a protocol that is not supported. The mblk passed as argument 5188 * is consumed by this function. 5189 */ 5190 void 5191 ip_proto_not_sup(queue_t *q, mblk_t *ipsec_mp, uint_t flags, zoneid_t zoneid) 5192 { 5193 mblk_t *mp; 5194 ipha_t *ipha; 5195 ill_t *ill; 5196 ipsec_in_t *ii; 5197 5198 ii = (ipsec_in_t *)ipsec_mp->b_rptr; 5199 ASSERT(ii->ipsec_in_type == IPSEC_IN); 5200 5201 mp = ipsec_mp->b_cont; 5202 ipsec_mp->b_cont = NULL; 5203 ipha = (ipha_t *)mp->b_rptr; 5204 if (IPH_HDR_VERSION(ipha) == IP_VERSION) { 5205 if (ip_fanout_send_icmp(q, mp, flags, ICMP_DEST_UNREACHABLE, 5206 ICMP_PROTOCOL_UNREACHABLE, B_FALSE, zoneid)) { 5207 BUMP_MIB(&ip_mib, ipInUnknownProtos); 5208 } 5209 } else { 5210 /* Get ill from index in ipsec_in_t. */ 5211 ill = ill_lookup_on_ifindex(ii->ipsec_in_ill_index, 5212 B_TRUE, NULL, NULL, NULL, NULL); 5213 if (ill != NULL) { 5214 if (ip_fanout_send_icmp_v6(q, mp, flags, 5215 ICMP6_PARAM_PROB, ICMP6_PARAMPROB_NEXTHEADER, 5216 0, B_FALSE, zoneid)) { 5217 BUMP_MIB(ill->ill_ip6_mib, ipv6InUnknownProtos); 5218 } 5219 5220 ill_refrele(ill); 5221 } else { /* re-link for the freemsg() below. */ 5222 ipsec_mp->b_cont = mp; 5223 } 5224 } 5225 5226 /* If ICMP delivered, ipsec_mp will be a singleton (b_cont == NULL). */ 5227 freemsg(ipsec_mp); 5228 } 5229 5230 /* 5231 * See if the inbound datagram has had IPsec processing applied to it. 5232 */ 5233 boolean_t 5234 ipsec_in_is_secure(mblk_t *ipsec_mp) 5235 { 5236 ipsec_in_t *ii; 5237 5238 ii = (ipsec_in_t *)ipsec_mp->b_rptr; 5239 ASSERT(ii->ipsec_in_type == IPSEC_IN); 5240 5241 if (ii->ipsec_in_loopback) { 5242 return (ii->ipsec_in_secure); 5243 } else { 5244 return (ii->ipsec_in_ah_sa != NULL || 5245 ii->ipsec_in_esp_sa != NULL || 5246 ii->ipsec_in_decaps); 5247 } 5248 } 5249 5250 /* 5251 * Handle protocols with which IP is less intimate. There 5252 * can be more than one stream bound to a particular 5253 * protocol. When this is the case, normally each one gets a copy 5254 * of any incoming packets. 5255 * 5256 * IPSEC NOTE : 5257 * 5258 * Don't allow a secure packet going up a non-secure connection. 5259 * We don't allow this because 5260 * 5261 * 1) Reply might go out in clear which will be dropped at 5262 * the sending side. 5263 * 2) If the reply goes out in clear it will give the 5264 * adversary enough information for getting the key in 5265 * most of the cases. 5266 * 5267 * Moreover getting a secure packet when we expect clear 5268 * implies that SA's were added without checking for 5269 * policy on both ends. This should not happen once ISAKMP 5270 * is used to negotiate SAs as SAs will be added only after 5271 * verifying the policy. 5272 * 5273 * NOTE : If the packet was tunneled and not multicast we only send 5274 * to it the first match. Unlike TCP and UDP fanouts this doesn't fall 5275 * back to delivering packets to AF_INET6 raw sockets. 5276 * 5277 * IPQoS Notes: 5278 * Once we have determined the client, invoke IPPF processing. 5279 * Policy processing takes place only if the callout_position, IPP_LOCAL_IN, 5280 * is enabled. If we get here from icmp_inbound_error_fanout or ip_wput_local 5281 * ip_policy will be false. 5282 * 5283 * Zones notes: 5284 * Currently only applications in the global zone can create raw sockets for 5285 * protocols other than ICMP. So unlike the broadcast / multicast case of 5286 * ip_fanout_udp(), we only send a copy of the packet to streams in the 5287 * specified zone. For ICMP, this is handled by the callers of icmp_inbound(). 5288 */ 5289 static void 5290 ip_fanout_proto(queue_t *q, mblk_t *mp, ill_t *ill, ipha_t *ipha, uint_t flags, 5291 boolean_t mctl_present, boolean_t ip_policy, ill_t *recv_ill, 5292 zoneid_t zoneid) 5293 { 5294 queue_t *rq; 5295 mblk_t *mp1, *first_mp1; 5296 uint_t protocol = ipha->ipha_protocol; 5297 ipaddr_t dst; 5298 boolean_t one_only; 5299 mblk_t *first_mp = mp; 5300 boolean_t secure; 5301 uint32_t ill_index; 5302 conn_t *connp, *first_connp, *next_connp; 5303 connf_t *connfp; 5304 5305 if (mctl_present) { 5306 mp = first_mp->b_cont; 5307 secure = ipsec_in_is_secure(first_mp); 5308 ASSERT(mp != NULL); 5309 } else { 5310 secure = B_FALSE; 5311 } 5312 dst = ipha->ipha_dst; 5313 /* 5314 * If the packet was tunneled and not multicast we only send to it 5315 * the first match. 5316 */ 5317 one_only = ((protocol == IPPROTO_ENCAP || protocol == IPPROTO_IPV6) && 5318 !CLASSD(dst)); 5319 5320 connfp = &ipcl_proto_fanout[protocol]; 5321 mutex_enter(&connfp->connf_lock); 5322 connp = connfp->connf_head; 5323 for (connp = connfp->connf_head; connp != NULL; 5324 connp = connp->conn_next) { 5325 if (IPCL_PROTO_MATCH(connp, protocol, ipha, ill, flags, zoneid)) 5326 break; 5327 } 5328 5329 if (connp == NULL || connp->conn_upq == NULL) { 5330 /* 5331 * No one bound to these addresses. Is 5332 * there a client that wants all 5333 * unclaimed datagrams? 5334 */ 5335 mutex_exit(&connfp->connf_lock); 5336 /* 5337 * Check for IPPROTO_ENCAP... 5338 */ 5339 if (protocol == IPPROTO_ENCAP && ip_g_mrouter) { 5340 /* 5341 * XXX If an IPsec mblk is here on a multicast 5342 * tunnel (using ip_mroute stuff), what should 5343 * I do? 5344 * 5345 * For now, just free the IPsec mblk before 5346 * passing it up to the multicast routing 5347 * stuff. 5348 * 5349 * BTW, If I match a configured IP-in-IP 5350 * tunnel, ip_mroute_decap will never be 5351 * called. 5352 */ 5353 if (mp != first_mp) 5354 freeb(first_mp); 5355 ip_mroute_decap(q, mp); 5356 } else { 5357 /* 5358 * Otherwise send an ICMP protocol unreachable. 5359 */ 5360 if (ip_fanout_send_icmp(q, first_mp, flags, 5361 ICMP_DEST_UNREACHABLE, ICMP_PROTOCOL_UNREACHABLE, 5362 mctl_present, zoneid)) { 5363 BUMP_MIB(&ip_mib, ipInUnknownProtos); 5364 } 5365 } 5366 return; 5367 } 5368 CONN_INC_REF(connp); 5369 first_connp = connp; 5370 5371 /* 5372 * Only send message to one tunnel driver by immediately 5373 * terminating the loop. 5374 */ 5375 connp = one_only ? NULL : connp->conn_next; 5376 5377 for (;;) { 5378 while (connp != NULL) { 5379 if (IPCL_PROTO_MATCH(connp, protocol, ipha, ill, 5380 flags, zoneid)) 5381 break; 5382 connp = connp->conn_next; 5383 } 5384 5385 /* 5386 * Copy the packet. 5387 */ 5388 if (connp == NULL || connp->conn_upq == NULL || 5389 (((first_mp1 = dupmsg(first_mp)) == NULL) && 5390 ((first_mp1 = ip_copymsg(first_mp)) == NULL))) { 5391 /* 5392 * No more interested clients or memory 5393 * allocation failed 5394 */ 5395 connp = first_connp; 5396 break; 5397 } 5398 mp1 = mctl_present ? first_mp1->b_cont : first_mp1; 5399 CONN_INC_REF(connp); 5400 mutex_exit(&connfp->connf_lock); 5401 rq = connp->conn_rq; 5402 if (!canputnext(rq)) { 5403 if (flags & IP_FF_RAWIP) { 5404 BUMP_MIB(&ip_mib, rawipInOverflows); 5405 } else { 5406 BUMP_MIB(&icmp_mib, icmpInOverflows); 5407 } 5408 5409 freemsg(first_mp1); 5410 } else { 5411 if (CONN_INBOUND_POLICY_PRESENT(connp) || secure) { 5412 first_mp1 = ipsec_check_inbound_policy 5413 (first_mp1, connp, ipha, NULL, 5414 mctl_present); 5415 } 5416 if (first_mp1 != NULL) { 5417 /* 5418 * ip_fanout_proto also gets called from 5419 * icmp_inbound_error_fanout, in which case 5420 * the msg type is M_CTL. Don't add info 5421 * in this case for the time being. In future 5422 * when there is a need for knowing the 5423 * inbound iface index for ICMP error msgs, 5424 * then this can be changed. 5425 */ 5426 if ((connp->conn_recvif != 0) && 5427 (mp->b_datap->db_type != M_CTL)) { 5428 /* 5429 * the actual data will be 5430 * contained in b_cont upon 5431 * successful return of the 5432 * following call else 5433 * original mblk is returned 5434 */ 5435 ASSERT(recv_ill != NULL); 5436 mp1 = ip_add_info(mp1, recv_ill, 5437 IPF_RECVIF); 5438 } 5439 BUMP_MIB(&ip_mib, ipInDelivers); 5440 if (mctl_present) 5441 freeb(first_mp1); 5442 putnext(rq, mp1); 5443 } 5444 } 5445 mutex_enter(&connfp->connf_lock); 5446 /* Follow the next pointer before releasing the conn. */ 5447 next_connp = connp->conn_next; 5448 CONN_DEC_REF(connp); 5449 connp = next_connp; 5450 } 5451 5452 /* Last one. Send it upstream. */ 5453 mutex_exit(&connfp->connf_lock); 5454 5455 /* 5456 * If this packet is coming from icmp_inbound_error_fanout ip_policy 5457 * will be set to false. 5458 */ 5459 if (IPP_ENABLED(IPP_LOCAL_IN) && ip_policy) { 5460 ill_index = ill->ill_phyint->phyint_ifindex; 5461 ip_process(IPP_LOCAL_IN, &mp, ill_index); 5462 if (mp == NULL) { 5463 CONN_DEC_REF(connp); 5464 if (mctl_present) { 5465 freeb(first_mp); 5466 } 5467 return; 5468 } 5469 } 5470 5471 rq = connp->conn_rq; 5472 if (!canputnext(rq)) { 5473 if (flags & IP_FF_RAWIP) { 5474 BUMP_MIB(&ip_mib, rawipInOverflows); 5475 } else { 5476 BUMP_MIB(&icmp_mib, icmpInOverflows); 5477 } 5478 5479 freemsg(first_mp); 5480 } else { 5481 if (CONN_INBOUND_POLICY_PRESENT(connp) || secure) { 5482 first_mp = ipsec_check_inbound_policy(first_mp, connp, 5483 ipha, NULL, mctl_present); 5484 } 5485 if (first_mp != NULL) { 5486 /* 5487 * ip_fanout_proto also gets called 5488 * from icmp_inbound_error_fanout, in 5489 * which case the msg type is M_CTL. 5490 * Don't add info in this case for time 5491 * being. In future when there is a 5492 * need for knowing the inbound iface 5493 * index for ICMP error msgs, then this 5494 * can be changed 5495 */ 5496 if ((connp->conn_recvif != 0) && 5497 (mp->b_datap->db_type != M_CTL)) { 5498 /* 5499 * the actual data will be contained in 5500 * b_cont upon successful return 5501 * of the following call else original 5502 * mblk is returned 5503 */ 5504 ASSERT(recv_ill != NULL); 5505 mp = ip_add_info(mp, recv_ill, IPF_RECVIF); 5506 } 5507 BUMP_MIB(&ip_mib, ipInDelivers); 5508 putnext(rq, mp); 5509 if (mctl_present) 5510 freeb(first_mp); 5511 } 5512 } 5513 CONN_DEC_REF(connp); 5514 } 5515 5516 /* 5517 * Fanout for TCP packets 5518 * The caller puts <fport, lport> in the ports parameter. 5519 * 5520 * IPQoS Notes 5521 * Before sending it to the client, invoke IPPF processing. 5522 * Policy processing takes place only if the callout_position, IPP_LOCAL_IN, 5523 * is enabled. If we get here from icmp_inbound_error_fanout or ip_wput_local 5524 * ip_policy is false. 5525 */ 5526 static void 5527 ip_fanout_tcp(queue_t *q, mblk_t *mp, ill_t *recv_ill, ipha_t *ipha, 5528 uint_t flags, boolean_t mctl_present, boolean_t ip_policy, zoneid_t zoneid) 5529 { 5530 mblk_t *first_mp; 5531 boolean_t secure; 5532 uint32_t ill_index; 5533 int ip_hdr_len; 5534 tcph_t *tcph; 5535 boolean_t syn_present = B_FALSE; 5536 conn_t *connp; 5537 5538 first_mp = mp; 5539 if (mctl_present) { 5540 ASSERT(first_mp->b_datap->db_type == M_CTL); 5541 mp = first_mp->b_cont; 5542 secure = ipsec_in_is_secure(first_mp); 5543 ASSERT(mp != NULL); 5544 } else { 5545 secure = B_FALSE; 5546 } 5547 5548 ip_hdr_len = IPH_HDR_LENGTH(mp->b_rptr); 5549 5550 if ((connp = ipcl_classify_v4(mp, IPPROTO_TCP, ip_hdr_len, zoneid)) == 5551 NULL) { 5552 /* 5553 * No connected connection or listener. Send a 5554 * TH_RST via tcp_xmit_listeners_reset. 5555 */ 5556 5557 /* Initiate IPPf processing, if needed. */ 5558 if (IPP_ENABLED(IPP_LOCAL_IN)) { 5559 uint32_t ill_index; 5560 ill_index = recv_ill->ill_phyint->phyint_ifindex; 5561 ip_process(IPP_LOCAL_IN, &first_mp, ill_index); 5562 if (first_mp == NULL) 5563 return; 5564 } 5565 BUMP_MIB(&ip_mib, ipInDelivers); 5566 tcp_xmit_listeners_reset(first_mp, ip_hdr_len); 5567 return; 5568 } 5569 5570 /* 5571 * Allocate the SYN for the TCP connection here itself 5572 */ 5573 tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len]; 5574 if ((tcph->th_flags[0] & (TH_SYN|TH_ACK|TH_RST|TH_URG)) == TH_SYN) { 5575 if (IPCL_IS_TCP(connp)) { 5576 squeue_t *sqp; 5577 5578 /* 5579 * For fused tcp loopback, assign the eager's 5580 * squeue to be that of the active connect's. 5581 * Note that we don't check for IP_FF_LOOPBACK 5582 * here since this routine gets called only 5583 * for loopback (unlike the IPv6 counterpart). 5584 */ 5585 if (do_tcp_fusion && 5586 !CONN_INBOUND_POLICY_PRESENT(connp) && !secure && 5587 !IPP_ENABLED(IPP_LOCAL_IN) && !ip_policy) { 5588 ASSERT(Q_TO_CONN(q) != NULL); 5589 sqp = Q_TO_CONN(q)->conn_sqp; 5590 } else { 5591 sqp = IP_SQUEUE_GET(lbolt); 5592 } 5593 5594 mp->b_datap->db_struioflag |= STRUIO_EAGER; 5595 mp->b_datap->db_cksumstart = (intptr_t)sqp; 5596 syn_present = B_TRUE; 5597 } 5598 } 5599 5600 if (IPCL_IS_TCP(connp) && IPCL_IS_BOUND(connp) && !syn_present) { 5601 uint_t flags = (unsigned int)tcph->th_flags[0] & 0xFF; 5602 if ((flags & TH_RST) || (flags & TH_URG)) { 5603 CONN_DEC_REF(connp); 5604 freemsg(first_mp); 5605 return; 5606 } 5607 if (flags & TH_ACK) { 5608 tcp_xmit_listeners_reset(first_mp, ip_hdr_len); 5609 CONN_DEC_REF(connp); 5610 return; 5611 } 5612 5613 CONN_DEC_REF(connp); 5614 freemsg(first_mp); 5615 return; 5616 } 5617 5618 if (CONN_INBOUND_POLICY_PRESENT(connp) || secure) { 5619 first_mp = ipsec_check_inbound_policy(first_mp, connp, ipha, 5620 NULL, mctl_present); 5621 if (first_mp == NULL) { 5622 CONN_DEC_REF(connp); 5623 return; 5624 } 5625 if (IPCL_IS_TCP(connp) && IPCL_IS_BOUND(connp)) { 5626 ASSERT(syn_present); 5627 if (mctl_present) { 5628 ASSERT(first_mp != mp); 5629 first_mp->b_datap->db_struioflag |= 5630 STRUIO_POLICY; 5631 } else { 5632 ASSERT(first_mp == mp); 5633 mp->b_datap->db_struioflag &= 5634 ~STRUIO_EAGER; 5635 mp->b_datap->db_struioflag |= 5636 STRUIO_POLICY; 5637 } 5638 } else { 5639 /* 5640 * Discard first_mp early since we're dealing with a 5641 * fully-connected conn_t and tcp doesn't do policy in 5642 * this case. 5643 */ 5644 if (mctl_present) { 5645 freeb(first_mp); 5646 mctl_present = B_FALSE; 5647 } 5648 first_mp = mp; 5649 } 5650 } 5651 5652 /* 5653 * Initiate policy processing here if needed. If we get here from 5654 * icmp_inbound_error_fanout, ip_policy is false. 5655 */ 5656 if (IPP_ENABLED(IPP_LOCAL_IN) && ip_policy) { 5657 ill_index = recv_ill->ill_phyint->phyint_ifindex; 5658 ip_process(IPP_LOCAL_IN, &mp, ill_index); 5659 if (mp == NULL) { 5660 CONN_DEC_REF(connp); 5661 if (mctl_present) 5662 freeb(first_mp); 5663 return; 5664 } else if (mctl_present) { 5665 ASSERT(first_mp != mp); 5666 first_mp->b_cont = mp; 5667 } else { 5668 first_mp = mp; 5669 } 5670 } 5671 5672 5673 5674 /* Handle IPv6 socket options. */ 5675 if (!syn_present && 5676 connp->conn_ipv6_recvpktinfo && (flags & IP_FF_IP6INFO)) { 5677 /* Add header */ 5678 ASSERT(recv_ill != NULL); 5679 mp = ip_add_info(mp, recv_ill, IPF_RECVIF); 5680 if (mp == NULL) { 5681 CONN_DEC_REF(connp); 5682 if (mctl_present) 5683 freeb(first_mp); 5684 return; 5685 } else if (mctl_present) { 5686 /* 5687 * ip_add_info might return a new mp. 5688 */ 5689 ASSERT(first_mp != mp); 5690 first_mp->b_cont = mp; 5691 } else { 5692 first_mp = mp; 5693 } 5694 } 5695 5696 BUMP_MIB(&ip_mib, ipInDelivers); 5697 if (IPCL_IS_TCP(connp)) { 5698 (*ip_input_proc)(connp->conn_sqp, first_mp, 5699 connp->conn_recv, connp, SQTAG_IP_FANOUT_TCP); 5700 } else { 5701 putnext(connp->conn_rq, first_mp); 5702 CONN_DEC_REF(connp); 5703 } 5704 } 5705 5706 /* 5707 * Deliver a udp packet to the given conn, possibly applying ipsec policy. 5708 * We are responsible for disposing of mp, such as by freemsg() or putnext() 5709 * Caller is responsible for dropping references to the conn, and freeing 5710 * first_mp. 5711 * 5712 * IPQoS Notes 5713 * Before sending it to the client, invoke IPPF processing. Policy processing 5714 * takes place only if the callout_position, IPP_LOCAL_IN, is enabled and 5715 * ip_policy is true. If we get here from icmp_inbound_error_fanout or 5716 * ip_wput_local, ip_policy is false. 5717 */ 5718 static void 5719 ip_fanout_udp_conn(conn_t *connp, mblk_t *first_mp, mblk_t *mp, 5720 boolean_t secure, ipha_t *ipha, uint_t flags, ill_t *recv_ill, 5721 boolean_t ip_policy) 5722 { 5723 queue_t *rq = connp->conn_rq; 5724 boolean_t mctl_present = (first_mp != NULL); 5725 uint32_t in_flags = 0; /* set to IP_RECVSLLA and/or IP_RECVIF */ 5726 uint32_t ill_index; 5727 5728 if (mctl_present) 5729 first_mp->b_cont = mp; 5730 else 5731 first_mp = mp; 5732 5733 if (!canputnext(rq)) { 5734 BUMP_MIB(&ip_mib, udpInOverflows); 5735 freemsg(first_mp); 5736 return; 5737 } 5738 5739 if (CONN_INBOUND_POLICY_PRESENT(connp) || secure) { 5740 first_mp = ipsec_check_inbound_policy(first_mp, connp, ipha, 5741 NULL, mctl_present); 5742 if (first_mp == NULL) 5743 return; /* Freed by ipsec_check_inbound_policy(). */ 5744 } 5745 if (mctl_present) 5746 freeb(first_mp); 5747 5748 if (connp->conn_recvif) 5749 in_flags = IPF_RECVIF; 5750 if (connp->conn_recvslla && !(flags & IP_FF_SEND_SLLA)) 5751 in_flags |= IPF_RECVSLLA; 5752 5753 /* Handle IPv6 options. */ 5754 if (connp->conn_ipv6_recvpktinfo && (flags & IP_FF_IP6INFO)) 5755 in_flags |= IPF_RECVIF; 5756 5757 /* 5758 * Initiate IPPF processing here, if needed. Note first_mp won't be 5759 * freed if the packet is dropped. The caller will do so. 5760 */ 5761 if (IPP_ENABLED(IPP_LOCAL_IN) && ip_policy) { 5762 ill_index = recv_ill->ill_phyint->phyint_ifindex; 5763 ip_process(IPP_LOCAL_IN, &mp, ill_index); 5764 if (mp == NULL) { 5765 return; 5766 } 5767 } 5768 if ((in_flags != 0) && 5769 (mp->b_datap->db_type != M_CTL)) { 5770 /* 5771 * The actual data will be contained in b_cont 5772 * upon successful return of the following call 5773 * else original mblk is returned 5774 */ 5775 ASSERT(recv_ill != NULL); 5776 mp = ip_add_info(mp, recv_ill, in_flags); 5777 } 5778 BUMP_MIB(&ip_mib, ipInDelivers); 5779 putnext(rq, mp); 5780 } 5781 5782 /* 5783 * Fanout for UDP packets. 5784 * The caller puts <fport, lport> in the ports parameter. 5785 * 5786 * If SO_REUSEADDR is set all multicast and broadcast packets 5787 * will be delivered to all streams bound to the same port. 5788 * 5789 * Zones notes: 5790 * Multicast and broadcast packets will be distributed to streams in all zones. 5791 * In the special case where an AF_INET socket binds to 0.0.0.0/<port> and an 5792 * AF_INET6 socket binds to ::/<port>, only the AF_INET socket receives the IPv4 5793 * packets. To maintain this behavior with multiple zones, the conns are grouped 5794 * by zone and the SO_REUSEADDR flag is checked for the first matching conn in 5795 * each zone. If unset, all the following conns in the same zone are skipped. 5796 */ 5797 static void 5798 ip_fanout_udp(queue_t *q, mblk_t *mp, ill_t *ill, ipha_t *ipha, 5799 uint32_t ports, boolean_t broadcast, uint_t flags, boolean_t mctl_present, 5800 boolean_t ip_policy, ill_t *recv_ill, zoneid_t zoneid) 5801 { 5802 uint32_t dstport, srcport; 5803 ipaddr_t dst; 5804 mblk_t *first_mp; 5805 boolean_t secure; 5806 in6_addr_t v6src; 5807 conn_t *connp; 5808 connf_t *connfp; 5809 conn_t *first_connp; 5810 conn_t *next_connp; 5811 mblk_t *mp1, *first_mp1; 5812 ipaddr_t src; 5813 zoneid_t last_zoneid; 5814 boolean_t reuseaddr; 5815 5816 first_mp = mp; 5817 if (mctl_present) { 5818 mp = first_mp->b_cont; 5819 first_mp->b_cont = NULL; 5820 secure = ipsec_in_is_secure(first_mp); 5821 ASSERT(mp != NULL); 5822 } else { 5823 first_mp = NULL; 5824 secure = B_FALSE; 5825 } 5826 5827 /* Extract ports in net byte order */ 5828 dstport = htons(ntohl(ports) & 0xFFFF); 5829 srcport = htons(ntohl(ports) >> 16); 5830 dst = ipha->ipha_dst; 5831 src = ipha->ipha_src; 5832 5833 connfp = &ipcl_udp_fanout[IPCL_UDP_HASH(dstport)]; 5834 mutex_enter(&connfp->connf_lock); 5835 connp = connfp->connf_head; 5836 if (!broadcast && !CLASSD(dst)) { 5837 /* 5838 * Not broadcast or multicast. Send to the one (first) 5839 * client we find. No need to check conn_wantpacket() 5840 * since IP_BOUND_IF/conn_incoming_ill does not apply to 5841 * IPv4 unicast packets. 5842 */ 5843 while ((connp != NULL) && 5844 (!IPCL_UDP_MATCH(connp, dstport, dst, 5845 srcport, src) || connp->conn_zoneid != zoneid)) { 5846 connp = connp->conn_next; 5847 } 5848 5849 if (connp == NULL || connp->conn_upq == NULL) 5850 goto notfound; 5851 CONN_INC_REF(connp); 5852 mutex_exit(&connfp->connf_lock); 5853 ip_fanout_udp_conn(connp, first_mp, mp, secure, ipha, flags, 5854 recv_ill, ip_policy); 5855 IP_STAT(ip_udp_fannorm); 5856 CONN_DEC_REF(connp); 5857 return; 5858 } 5859 5860 /* 5861 * Broadcast and multicast case 5862 * 5863 * Need to check conn_wantpacket(). 5864 * If SO_REUSEADDR has been set on the first we send the 5865 * packet to all clients that have joined the group and 5866 * match the port. 5867 */ 5868 5869 while (connp != NULL) { 5870 if ((IPCL_UDP_MATCH(connp, dstport, dst, srcport, src)) && 5871 conn_wantpacket(connp, ill, ipha, flags, zoneid)) 5872 break; 5873 connp = connp->conn_next; 5874 } 5875 5876 if (connp == NULL || connp->conn_upq == NULL) 5877 goto notfound; 5878 5879 first_connp = connp; 5880 /* 5881 * When SO_REUSEADDR is not set, send the packet only to the first 5882 * matching connection in its zone by keeping track of the zoneid. 5883 */ 5884 reuseaddr = first_connp->conn_reuseaddr; 5885 last_zoneid = first_connp->conn_zoneid; 5886 5887 CONN_INC_REF(connp); 5888 connp = connp->conn_next; 5889 for (;;) { 5890 while (connp != NULL) { 5891 if (IPCL_UDP_MATCH(connp, dstport, dst, srcport, src) && 5892 (reuseaddr || connp->conn_zoneid != last_zoneid) && 5893 conn_wantpacket(connp, ill, ipha, flags, zoneid)) 5894 break; 5895 connp = connp->conn_next; 5896 } 5897 /* 5898 * Just copy the data part alone. The mctl part is 5899 * needed just for verifying policy and it is never 5900 * sent up. 5901 */ 5902 if (connp == NULL || (((mp1 = dupmsg(mp)) == NULL) && 5903 ((mp1 = copymsg(mp)) == NULL))) { 5904 /* 5905 * No more interested clients or memory 5906 * allocation failed 5907 */ 5908 connp = first_connp; 5909 break; 5910 } 5911 if (connp->conn_zoneid != last_zoneid) { 5912 /* 5913 * Update the zoneid so that the packet isn't sent to 5914 * any more conns in the same zone unless SO_REUSEADDR 5915 * is set. 5916 */ 5917 reuseaddr = connp->conn_reuseaddr; 5918 last_zoneid = connp->conn_zoneid; 5919 } 5920 if (first_mp != NULL) { 5921 ASSERT(((ipsec_info_t *)first_mp->b_rptr)-> 5922 ipsec_info_type == IPSEC_IN); 5923 first_mp1 = ipsec_in_tag(first_mp, NULL); 5924 if (first_mp1 == NULL) { 5925 freemsg(mp1); 5926 connp = first_connp; 5927 break; 5928 } 5929 } else { 5930 first_mp1 = NULL; 5931 } 5932 CONN_INC_REF(connp); 5933 mutex_exit(&connfp->connf_lock); 5934 /* 5935 * IPQoS notes: We don't send the packet for policy 5936 * processing here, will do it for the last one (below). 5937 * i.e. we do it per-packet now, but if we do policy 5938 * processing per-conn, then we would need to do it 5939 * here too. 5940 */ 5941 ip_fanout_udp_conn(connp, first_mp1, mp1, secure, 5942 ipha, flags, recv_ill, B_FALSE); 5943 mutex_enter(&connfp->connf_lock); 5944 /* Follow the next pointer before releasing the conn. */ 5945 next_connp = connp->conn_next; 5946 IP_STAT(ip_udp_fanmb); 5947 CONN_DEC_REF(connp); 5948 connp = next_connp; 5949 } 5950 5951 /* Last one. Send it upstream. */ 5952 mutex_exit(&connfp->connf_lock); 5953 ip_fanout_udp_conn(connp, first_mp, mp, secure, ipha, flags, recv_ill, 5954 ip_policy); 5955 IP_STAT(ip_udp_fanmb); 5956 CONN_DEC_REF(connp); 5957 return; 5958 5959 notfound: 5960 5961 mutex_exit(&connfp->connf_lock); 5962 IP_STAT(ip_udp_fanothers); 5963 /* 5964 * IPv6 endpoints bound to unicast or multicast IPv4-mapped addresses 5965 * have already been matched above, since they live in the IPv4 5966 * fanout tables. This implies we only need to 5967 * check for IPv6 in6addr_any endpoints here. 5968 * Thus we compare using ipv6_all_zeros instead of the destination 5969 * address, except for the multicast group membership lookup which 5970 * uses the IPv4 destination. 5971 */ 5972 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &v6src); 5973 connfp = &ipcl_udp_fanout[IPCL_UDP_HASH(dstport)]; 5974 mutex_enter(&connfp->connf_lock); 5975 connp = connfp->connf_head; 5976 if (!broadcast && !CLASSD(dst)) { 5977 while (connp != NULL) { 5978 if (IPCL_UDP_MATCH_V6(connp, dstport, ipv6_all_zeros, 5979 srcport, v6src) && connp->conn_zoneid == zoneid && 5980 conn_wantpacket(connp, ill, ipha, flags, zoneid) && 5981 !connp->conn_ipv6_v6only) 5982 break; 5983 connp = connp->conn_next; 5984 } 5985 5986 if (connp == NULL || connp->conn_upq == NULL) { 5987 /* 5988 * No one bound to this port. Is 5989 * there a client that wants all 5990 * unclaimed datagrams? 5991 */ 5992 mutex_exit(&connfp->connf_lock); 5993 5994 if (mctl_present) 5995 first_mp->b_cont = mp; 5996 else 5997 first_mp = mp; 5998 if (ipcl_proto_search(IPPROTO_UDP) != NULL) { 5999 ip_fanout_proto(q, first_mp, ill, ipha, 6000 flags | IP_FF_RAWIP, mctl_present, 6001 ip_policy, recv_ill, zoneid); 6002 } else { 6003 if (ip_fanout_send_icmp(q, first_mp, flags, 6004 ICMP_DEST_UNREACHABLE, 6005 ICMP_PORT_UNREACHABLE, 6006 mctl_present, zoneid)) { 6007 BUMP_MIB(&ip_mib, udpNoPorts); 6008 } 6009 } 6010 return; 6011 } 6012 CONN_INC_REF(connp); 6013 mutex_exit(&connfp->connf_lock); 6014 ip_fanout_udp_conn(connp, first_mp, mp, secure, ipha, flags, 6015 recv_ill, ip_policy); 6016 CONN_DEC_REF(connp); 6017 return; 6018 } 6019 /* 6020 * IPv4 multicast packet being delivered to an AF_INET6 6021 * in6addr_any endpoint. 6022 * Need to check conn_wantpacket(). Note that we use conn_wantpacket() 6023 * and not conn_wantpacket_v6() since any multicast membership is 6024 * for an IPv4-mapped multicast address. 6025 * The packet is sent to all clients in all zones that have joined the 6026 * group and match the port. 6027 */ 6028 while (connp != NULL) { 6029 if (IPCL_UDP_MATCH_V6(connp, dstport, ipv6_all_zeros, 6030 srcport, v6src) && 6031 conn_wantpacket(connp, ill, ipha, flags, zoneid)) 6032 break; 6033 connp = connp->conn_next; 6034 } 6035 6036 if (connp == NULL || connp->conn_upq == NULL) { 6037 /* 6038 * No one bound to this port. Is 6039 * there a client that wants all 6040 * unclaimed datagrams? 6041 */ 6042 mutex_exit(&connfp->connf_lock); 6043 6044 if (mctl_present) 6045 first_mp->b_cont = mp; 6046 else 6047 first_mp = mp; 6048 if (ipcl_proto_search(IPPROTO_UDP) != NULL) { 6049 ip_fanout_proto(q, first_mp, ill, ipha, 6050 flags | IP_FF_RAWIP, mctl_present, ip_policy, 6051 recv_ill, zoneid); 6052 } else { 6053 /* 6054 * We used to attempt to send an icmp error here, but 6055 * since this is known to be a multicast packet 6056 * and we don't send icmp errors in response to 6057 * multicast, just drop the packet and give up sooner. 6058 */ 6059 BUMP_MIB(&ip_mib, udpNoPorts); 6060 freemsg(first_mp); 6061 } 6062 return; 6063 } 6064 6065 first_connp = connp; 6066 6067 CONN_INC_REF(connp); 6068 connp = connp->conn_next; 6069 for (;;) { 6070 while (connp != NULL) { 6071 if (IPCL_UDP_MATCH_V6(connp, dstport, 6072 ipv6_all_zeros, srcport, v6src) && 6073 conn_wantpacket(connp, ill, ipha, flags, zoneid)) 6074 break; 6075 connp = connp->conn_next; 6076 } 6077 /* 6078 * Just copy the data part alone. The mctl part is 6079 * needed just for verifying policy and it is never 6080 * sent up. 6081 */ 6082 if (connp == NULL || (((mp1 = dupmsg(mp)) == NULL) && 6083 ((mp1 = copymsg(mp)) == NULL))) { 6084 /* 6085 * No more intested clients or memory 6086 * allocation failed 6087 */ 6088 connp = first_connp; 6089 break; 6090 } 6091 if (first_mp != NULL) { 6092 ASSERT(((ipsec_info_t *)first_mp->b_rptr)-> 6093 ipsec_info_type == IPSEC_IN); 6094 first_mp1 = ipsec_in_tag(first_mp, NULL); 6095 if (first_mp1 == NULL) { 6096 freemsg(mp1); 6097 connp = first_connp; 6098 break; 6099 } 6100 } else { 6101 first_mp1 = NULL; 6102 } 6103 CONN_INC_REF(connp); 6104 mutex_exit(&connfp->connf_lock); 6105 /* 6106 * IPQoS notes: We don't send the packet for policy 6107 * processing here, will do it for the last one (below). 6108 * i.e. we do it per-packet now, but if we do policy 6109 * processing per-conn, then we would need to do it 6110 * here too. 6111 */ 6112 ip_fanout_udp_conn(connp, first_mp1, mp1, secure, 6113 ipha, flags, recv_ill, B_FALSE); 6114 mutex_enter(&connfp->connf_lock); 6115 /* Follow the next pointer before releasing the conn. */ 6116 next_connp = connp->conn_next; 6117 CONN_DEC_REF(connp); 6118 connp = next_connp; 6119 } 6120 6121 /* Last one. Send it upstream. */ 6122 mutex_exit(&connfp->connf_lock); 6123 ip_fanout_udp_conn(connp, first_mp, mp, secure, ipha, flags, recv_ill, 6124 ip_policy); 6125 CONN_DEC_REF(connp); 6126 } 6127 6128 /* 6129 * Complete the ip_wput header so that it 6130 * is possible to generate ICMP 6131 * errors. 6132 */ 6133 static int 6134 ip_hdr_complete(ipha_t *ipha, zoneid_t zoneid) 6135 { 6136 ire_t *ire; 6137 6138 if (ipha->ipha_src == INADDR_ANY) { 6139 ire = ire_lookup_local(zoneid); 6140 if (ire == NULL) { 6141 ip1dbg(("ip_hdr_complete: no source IRE\n")); 6142 return (1); 6143 } 6144 ipha->ipha_src = ire->ire_addr; 6145 ire_refrele(ire); 6146 } 6147 ipha->ipha_ttl = ip_def_ttl; 6148 ipha->ipha_hdr_checksum = 0; 6149 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 6150 return (0); 6151 } 6152 6153 /* 6154 * Nobody should be sending 6155 * packets up this stream 6156 */ 6157 static void 6158 ip_lrput(queue_t *q, mblk_t *mp) 6159 { 6160 mblk_t *mp1; 6161 6162 switch (mp->b_datap->db_type) { 6163 case M_FLUSH: 6164 /* Turn around */ 6165 if (*mp->b_rptr & FLUSHW) { 6166 *mp->b_rptr &= ~FLUSHR; 6167 qreply(q, mp); 6168 return; 6169 } 6170 break; 6171 } 6172 /* Could receive messages that passed through ar_rput */ 6173 for (mp1 = mp; mp1; mp1 = mp1->b_cont) 6174 mp1->b_prev = mp1->b_next = NULL; 6175 freemsg(mp); 6176 } 6177 6178 /* Nobody should be sending packets down this stream */ 6179 /* ARGSUSED */ 6180 void 6181 ip_lwput(queue_t *q, mblk_t *mp) 6182 { 6183 freemsg(mp); 6184 } 6185 6186 /* 6187 * Move the first hop in any source route to ipha_dst and remove that part of 6188 * the source route. Called by other protocols. Errors in option formatting 6189 * are ignored - will be handled by ip_wput_options Return the final 6190 * destination (either ipha_dst or the last entry in a source route.) 6191 */ 6192 ipaddr_t 6193 ip_massage_options(ipha_t *ipha) 6194 { 6195 ipoptp_t opts; 6196 uchar_t *opt; 6197 uint8_t optval; 6198 uint8_t optlen; 6199 ipaddr_t dst; 6200 int i; 6201 ire_t *ire; 6202 6203 ip2dbg(("ip_massage_options\n")); 6204 dst = ipha->ipha_dst; 6205 for (optval = ipoptp_first(&opts, ipha); 6206 optval != IPOPT_EOL; 6207 optval = ipoptp_next(&opts)) { 6208 opt = opts.ipoptp_cur; 6209 switch (optval) { 6210 uint8_t off; 6211 case IPOPT_SSRR: 6212 case IPOPT_LSRR: 6213 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 6214 ip1dbg(("ip_massage_options: bad src route\n")); 6215 break; 6216 } 6217 optlen = opts.ipoptp_len; 6218 off = opt[IPOPT_OFFSET]; 6219 off--; 6220 redo_srr: 6221 if (optlen < IP_ADDR_LEN || 6222 off > optlen - IP_ADDR_LEN) { 6223 /* End of source route */ 6224 ip1dbg(("ip_massage_options: end of SR\n")); 6225 break; 6226 } 6227 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 6228 ip1dbg(("ip_massage_options: next hop 0x%x\n", 6229 ntohl(dst))); 6230 /* 6231 * Check if our address is present more than 6232 * once as consecutive hops in source route. 6233 * XXX verify per-interface ip_forwarding 6234 * for source route? 6235 */ 6236 ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, NULL, 6237 ALL_ZONES, MATCH_IRE_TYPE); 6238 if (ire != NULL) { 6239 ire_refrele(ire); 6240 off += IP_ADDR_LEN; 6241 goto redo_srr; 6242 } 6243 if (dst == htonl(INADDR_LOOPBACK)) { 6244 ip1dbg(("ip_massage_options: loopback addr in " 6245 "source route!\n")); 6246 break; 6247 } 6248 /* 6249 * Update ipha_dst to be the first hop and remove the 6250 * first hop from the source route (by overwriting 6251 * part of the option with NOP options). 6252 */ 6253 ipha->ipha_dst = dst; 6254 /* Put the last entry in dst */ 6255 off = ((optlen - IP_ADDR_LEN - 3) & ~(IP_ADDR_LEN-1)) + 6256 3; 6257 bcopy(&opt[off], &dst, IP_ADDR_LEN); 6258 6259 ip1dbg(("ip_massage_options: last hop 0x%x\n", 6260 ntohl(dst))); 6261 /* Move down and overwrite */ 6262 opt[IP_ADDR_LEN] = opt[0]; 6263 opt[IP_ADDR_LEN+1] = opt[IPOPT_OLEN] - IP_ADDR_LEN; 6264 opt[IP_ADDR_LEN+2] = opt[IPOPT_OFFSET]; 6265 for (i = 0; i < IP_ADDR_LEN; i++) 6266 opt[i] = IPOPT_NOP; 6267 break; 6268 } 6269 } 6270 return (dst); 6271 } 6272 6273 /* 6274 * This function's job is to forward data to the reverse tunnel (FA->HA) 6275 * after doing a few checks. It is assumed that the incoming interface 6276 * of the packet is always different than the outgoing interface and the 6277 * ire_type of the found ire has to be a non-resolver type. 6278 * 6279 * IPQoS notes 6280 * IP policy is invoked twice for a forwarded packet, once on the read side 6281 * and again on the write side if both, IPP_FWD_IN and IPP_FWD_OUT are 6282 * enabled. 6283 */ 6284 static void 6285 ip_mrtun_forward(ire_t *ire, ill_t *in_ill, mblk_t *mp) 6286 { 6287 ipha_t *ipha; 6288 queue_t *q; 6289 uint32_t pkt_len; 6290 #define rptr ((uchar_t *)ipha) 6291 uint32_t sum; 6292 uint32_t max_frag; 6293 mblk_t *first_mp; 6294 uint32_t ill_index; 6295 6296 ASSERT(ire != NULL); 6297 ASSERT(ire->ire_ipif->ipif_net_type == IRE_IF_NORESOLVER); 6298 ASSERT(ire->ire_stq != NULL); 6299 6300 /* Initiate read side IPPF processing */ 6301 if (IPP_ENABLED(IPP_FWD_IN)) { 6302 ill_index = in_ill->ill_phyint->phyint_ifindex; 6303 ip_process(IPP_FWD_IN, &mp, ill_index); 6304 if (mp == NULL) { 6305 ip2dbg(("ip_mrtun_forward: inbound pkt " 6306 "dropped during IPPF processing\n")); 6307 return; 6308 } 6309 } 6310 6311 if (((in_ill->ill_flags & ((ill_t *)ire->ire_stq->q_ptr)->ill_flags & 6312 ILLF_ROUTER) == 0) || 6313 (in_ill == (ill_t *)ire->ire_stq->q_ptr)) { 6314 BUMP_MIB(&ip_mib, ipForwProhibits); 6315 ip0dbg(("ip_mrtun_forward: Can't forward :" 6316 "forwarding is not turned on\n")); 6317 goto drop_pkt; 6318 } 6319 6320 /* 6321 * Don't forward if the interface is down 6322 */ 6323 if (ire->ire_ipif->ipif_ill->ill_ipif_up_count == 0) { 6324 BUMP_MIB(&ip_mib, ipInDiscards); 6325 goto drop_pkt; 6326 } 6327 6328 ipha = (ipha_t *)mp->b_rptr; 6329 pkt_len = ntohs(ipha->ipha_length); 6330 /* Adjust the checksum to reflect the ttl decrement. */ 6331 sum = (int)ipha->ipha_hdr_checksum + IP_HDR_CSUM_TTL_ADJUST; 6332 ipha->ipha_hdr_checksum = (uint16_t)(sum + (sum >> 16)); 6333 if (ipha->ipha_ttl-- <= 1) { 6334 if (ip_csum_hdr(ipha)) { 6335 BUMP_MIB(&ip_mib, ipInCksumErrs); 6336 goto drop_pkt; 6337 } 6338 q = ire->ire_stq; 6339 if ((first_mp = allocb(sizeof (ipsec_info_t), 6340 BPRI_HI)) == NULL) { 6341 goto drop_pkt; 6342 } 6343 ip_ipsec_out_prepend(first_mp, mp, in_ill); 6344 icmp_time_exceeded(q, first_mp, ICMP_TTL_EXCEEDED); 6345 6346 return; 6347 } 6348 6349 /* Get the ill_index of the ILL */ 6350 ill_index = ire->ire_ipif->ipif_ill->ill_phyint->phyint_ifindex; 6351 6352 /* 6353 * ip_mrtun_forward is only used by foreign agent to reverse 6354 * tunnel the incoming packet. So it does not do any option 6355 * processing for source routing. 6356 */ 6357 max_frag = ire->ire_max_frag; 6358 if (pkt_len > max_frag) { 6359 /* 6360 * It needs fragging on its way out. We haven't 6361 * verified the header checksum yet. Since we 6362 * are going to put a surely good checksum in the 6363 * outgoing header, we have to make sure that it 6364 * was good coming in. 6365 */ 6366 if (ip_csum_hdr(ipha)) { 6367 BUMP_MIB(&ip_mib, ipInCksumErrs); 6368 goto drop_pkt; 6369 } 6370 6371 /* Initiate write side IPPF processing */ 6372 if (IPP_ENABLED(IPP_FWD_OUT)) { 6373 ip_process(IPP_FWD_OUT, &mp, ill_index); 6374 if (mp == NULL) { 6375 ip2dbg(("ip_mrtun_forward: outbound pkt "\ 6376 "dropped/deferred during ip policy "\ 6377 "processing\n")); 6378 return; 6379 } 6380 } 6381 if ((first_mp = allocb(sizeof (ipsec_info_t), 6382 BPRI_HI)) == NULL) { 6383 goto drop_pkt; 6384 } 6385 ip_ipsec_out_prepend(first_mp, mp, in_ill); 6386 mp = first_mp; 6387 6388 ip_wput_frag(ire, mp, IB_PKT, max_frag, 0); 6389 return; 6390 } 6391 6392 ip2dbg(("ip_mrtun_forward: ire type (%d)\n", ire->ire_type)); 6393 6394 ASSERT(ire->ire_ipif != NULL); 6395 6396 mp = ip_wput_attach_llhdr(mp, ire, IPP_FWD_OUT, ill_index); 6397 if (mp == NULL) { 6398 BUMP_MIB(&ip_mib, ipInDiscards); 6399 return; 6400 } 6401 6402 /* Now send the packet to the tunnel interface */ 6403 q = ire->ire_stq; 6404 UPDATE_IB_PKT_COUNT(ire); 6405 ire->ire_last_used_time = lbolt; 6406 BUMP_MIB(&ip_mib, ipForwDatagrams); 6407 putnext(q, mp); 6408 ip2dbg(("ip_mrtun_forward: sent packet to ill %p\n", q->q_ptr)); 6409 return; 6410 6411 drop_pkt:; 6412 ip2dbg(("ip_mrtun_forward: dropping pkt\n")); 6413 freemsg(mp); 6414 #undef rptr 6415 } 6416 6417 /* 6418 * Fills the ipsec_out_t data structure with appropriate fields and 6419 * prepends it to mp which contains the IP hdr + data that was meant 6420 * to be forwarded. Please note that ipsec_out_info data structure 6421 * is used here to communicate the outgoing ill path at ip_wput() 6422 * for the ICMP error packet. This has nothing to do with ipsec IP 6423 * security. ipsec_out_t is really used to pass the info to the module 6424 * IP where this information cannot be extracted from conn. 6425 * This functions is called by ip_mrtun_forward(). 6426 */ 6427 void 6428 ip_ipsec_out_prepend(mblk_t *first_mp, mblk_t *mp, ill_t *xmit_ill) 6429 { 6430 ipsec_out_t *io; 6431 6432 ASSERT(xmit_ill != NULL); 6433 first_mp->b_datap->db_type = M_CTL; 6434 first_mp->b_wptr += sizeof (ipsec_info_t); 6435 /* 6436 * This is to pass info to ip_wput in absence of conn. 6437 * ipsec_out_secure will be B_FALSE because of this. 6438 * Thus ipsec_out_secure being B_FALSE indicates that 6439 * this is not IPSEC security related information. 6440 */ 6441 bzero(first_mp->b_rptr, sizeof (ipsec_info_t)); 6442 io = (ipsec_out_t *)first_mp->b_rptr; 6443 io->ipsec_out_type = IPSEC_OUT; 6444 io->ipsec_out_len = sizeof (ipsec_out_t); 6445 first_mp->b_cont = mp; 6446 io->ipsec_out_ill_index = 6447 xmit_ill->ill_phyint->phyint_ifindex; 6448 io->ipsec_out_xmit_if = B_TRUE; 6449 } 6450 6451 /* 6452 * Return the network mask 6453 * associated with the specified address. 6454 */ 6455 ipaddr_t 6456 ip_net_mask(ipaddr_t addr) 6457 { 6458 uchar_t *up = (uchar_t *)&addr; 6459 ipaddr_t mask = 0; 6460 uchar_t *maskp = (uchar_t *)&mask; 6461 6462 #if defined(__i386) || defined(__amd64) 6463 #define TOTALLY_BRAIN_DAMAGED_C_COMPILER 6464 #endif 6465 #ifdef TOTALLY_BRAIN_DAMAGED_C_COMPILER 6466 maskp[0] = maskp[1] = maskp[2] = maskp[3] = 0; 6467 #endif 6468 if (CLASSD(addr)) { 6469 maskp[0] = 0xF0; 6470 return (mask); 6471 } 6472 if (addr == 0) 6473 return (0); 6474 maskp[0] = 0xFF; 6475 if ((up[0] & 0x80) == 0) 6476 return (mask); 6477 6478 maskp[1] = 0xFF; 6479 if ((up[0] & 0xC0) == 0x80) 6480 return (mask); 6481 6482 maskp[2] = 0xFF; 6483 if ((up[0] & 0xE0) == 0xC0) 6484 return (mask); 6485 6486 /* Must be experimental or multicast, indicate as much */ 6487 return ((ipaddr_t)0); 6488 } 6489 6490 /* 6491 * Select an ill for the packet by considering load spreading across 6492 * a different ill in the group if dst_ill is part of some group. 6493 */ 6494 static ill_t * 6495 ip_newroute_get_dst_ill(ill_t *dst_ill) 6496 { 6497 ill_t *ill; 6498 6499 /* 6500 * We schedule irrespective of whether the source address is 6501 * INADDR_ANY or not. illgrp_scheduler returns a held ill. 6502 */ 6503 ill = illgrp_scheduler(dst_ill); 6504 if (ill == NULL) 6505 return (NULL); 6506 6507 /* 6508 * For groups with names ip_sioctl_groupname ensures that all 6509 * ills are of same type. For groups without names, ifgrp_insert 6510 * ensures this. 6511 */ 6512 ASSERT(dst_ill->ill_type == ill->ill_type); 6513 6514 return (ill); 6515 } 6516 6517 /* 6518 * Helper function for the IPIF_NOFAILOVER/ATTACH_IF interface attachment case. 6519 */ 6520 ill_t * 6521 ip_grab_attach_ill(ill_t *ill, mblk_t *first_mp, int ifindex, boolean_t isv6) 6522 { 6523 ill_t *ret_ill; 6524 6525 ASSERT(ifindex != 0); 6526 ret_ill = ill_lookup_on_ifindex(ifindex, isv6, NULL, NULL, NULL, NULL); 6527 if (ret_ill == NULL || 6528 (ret_ill->ill_phyint->phyint_flags & PHYI_OFFLINE)) { 6529 if (isv6) { 6530 if (ill != NULL) { 6531 BUMP_MIB(ill->ill_ip6_mib, ipv6OutDiscards); 6532 } else { 6533 BUMP_MIB(&ip6_mib, ipv6OutDiscards); 6534 } 6535 ip1dbg(("ip_grab_attach_ill (IPv6): " 6536 "bad ifindex %d.\n", ifindex)); 6537 } else { 6538 BUMP_MIB(&ip_mib, ipOutDiscards); 6539 ip1dbg(("ip_grab_attach_ill (IPv4): " 6540 "bad ifindex %d.\n", ifindex)); 6541 } 6542 if (ret_ill != NULL) 6543 ill_refrele(ret_ill); 6544 freemsg(first_mp); 6545 return (NULL); 6546 } 6547 6548 return (ret_ill); 6549 } 6550 6551 /* 6552 * IPv4 - 6553 * ip_newroute is called by ip_rput or ip_wput whenever we need to send 6554 * out a packet to a destination address for which we do not have specific 6555 * (or sufficient) routing information. 6556 * 6557 * NOTE : These are the scopes of some of the variables that point at IRE, 6558 * which needs to be followed while making any future modifications 6559 * to avoid memory leaks. 6560 * 6561 * - ire and sire are the entries looked up initially by 6562 * ire_ftable_lookup. 6563 * - ipif_ire is used to hold the interface ire associated with 6564 * the new cache ire. But it's scope is limited, so we always REFRELE 6565 * it before branching out to error paths. 6566 * - save_ire is initialized before ire_create, so that ire returned 6567 * by ire_create will not over-write the ire. We REFRELE save_ire 6568 * before breaking out of the switch. 6569 * 6570 * Thus on failures, we have to REFRELE only ire and sire, if they 6571 * are not NULL. 6572 */ 6573 void 6574 ip_newroute(queue_t *q, mblk_t *mp, ipaddr_t dst, ill_t *in_ill, conn_t *connp) 6575 { 6576 areq_t *areq; 6577 ipaddr_t gw = 0; 6578 ire_t *ire = NULL; 6579 mblk_t *res_mp; 6580 ipaddr_t *addrp; 6581 ipif_t *src_ipif = NULL; 6582 ill_t *dst_ill = NULL; 6583 ipha_t *ipha; 6584 ire_t *sire = NULL; 6585 mblk_t *first_mp; 6586 ire_t *save_ire; 6587 mblk_t *dlureq_mp; 6588 ill_t *attach_ill = NULL; /* Bind to IPIF_NOFAILOVER address */ 6589 ushort_t ire_marks = 0; 6590 boolean_t mctl_present; 6591 ipsec_out_t *io; 6592 mblk_t *saved_mp; 6593 ire_t *first_sire = NULL; 6594 mblk_t *copy_mp = NULL; 6595 mblk_t *xmit_mp = NULL; 6596 ipaddr_t save_dst; 6597 uint32_t multirt_flags = 6598 MULTIRT_CACHEGW | MULTIRT_USESTAMP | MULTIRT_SETSTAMP; 6599 boolean_t multirt_is_resolvable; 6600 boolean_t multirt_resolve_next; 6601 boolean_t do_attach_ill = B_FALSE; 6602 zoneid_t zoneid; 6603 6604 if (ip_debug > 2) { 6605 /* ip1dbg */ 6606 pr_addr_dbg("ip_newroute: dst %s\n", AF_INET, &dst); 6607 } 6608 6609 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 6610 if (mctl_present) { 6611 io = (ipsec_out_t *)first_mp->b_rptr; 6612 zoneid = io->ipsec_out_zoneid; 6613 ASSERT(zoneid != ALL_ZONES); 6614 } else if (connp != NULL) { 6615 zoneid = connp->conn_zoneid; 6616 } else { 6617 zoneid = GLOBAL_ZONEID; 6618 } 6619 6620 ipha = (ipha_t *)mp->b_rptr; 6621 6622 /* All multicast lookups come through ip_newroute_ipif() */ 6623 if (CLASSD(dst)) { 6624 ip0dbg(("ip_newroute: CLASSD 0x%x (b_prev %p, b_next %p)\n", 6625 ntohl(dst), (void *)mp->b_prev, (void *)mp->b_next)); 6626 freemsg(first_mp); 6627 return; 6628 } 6629 6630 if (mctl_present && io->ipsec_out_attach_if) { 6631 /* ip_grab_attach_ill returns a held ill */ 6632 attach_ill = ip_grab_attach_ill(NULL, first_mp, 6633 io->ipsec_out_ill_index, B_FALSE); 6634 6635 /* Failure case frees things for us. */ 6636 if (attach_ill == NULL) 6637 return; 6638 6639 /* 6640 * Check if we need an ire that will not be 6641 * looked up by anybody else i.e. HIDDEN. 6642 */ 6643 if (ill_is_probeonly(attach_ill)) 6644 ire_marks = IRE_MARK_HIDDEN; 6645 } 6646 /* 6647 * If this IRE is created for forwarding or it is not for 6648 * traffic for congestion controlled protocols, mark it as temporary. 6649 */ 6650 if (mp->b_prev != NULL || !IP_FLOW_CONTROLLED_ULP(ipha->ipha_protocol)) 6651 ire_marks |= IRE_MARK_TEMPORARY; 6652 6653 /* 6654 * Get what we can from ire_ftable_lookup which will follow an IRE 6655 * chain until it gets the most specific information available. 6656 * For example, we know that there is no IRE_CACHE for this dest, 6657 * but there may be an IRE_OFFSUBNET which specifies a gateway. 6658 * ire_ftable_lookup will look up the gateway, etc. 6659 * Check if in_ill != NULL. If it is true, the packet must be 6660 * from an incoming interface where RTA_SRCIFP is set. 6661 * Otherwise, given ire_ftable_lookup algorithm, only one among routes 6662 * to the destination, of equal netmask length in the forward table, 6663 * will be recursively explored. If no information is available 6664 * for the final gateway of that route, we force the returned ire 6665 * to be equal to sire using MATCH_IRE_PARENT. 6666 * At least, in this case we have a starting point (in the buckets) 6667 * to look for other routes to the destination in the forward table. 6668 * This is actually used only for multirouting, where a list 6669 * of routes has to be processed in sequence. 6670 */ 6671 if (in_ill != NULL) { 6672 ire = ire_srcif_table_lookup(dst, IRE_IF_RESOLVER, NULL, 6673 in_ill, MATCH_IRE_TYPE); 6674 } else if (attach_ill == NULL) { 6675 ire = ire_ftable_lookup(dst, 0, 0, 0, 6676 NULL, &sire, zoneid, 0, 6677 MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT | 6678 MATCH_IRE_RJ_BHOLE | MATCH_IRE_PARENT); 6679 } else { 6680 /* 6681 * attach_ill is set only for communicating with 6682 * on-link hosts. So, don't look for DEFAULT. 6683 */ 6684 ipif_t *attach_ipif; 6685 6686 attach_ipif = ipif_get_next_ipif(NULL, attach_ill); 6687 if (attach_ipif == NULL) { 6688 ill_refrele(attach_ill); 6689 goto icmp_err_ret; 6690 } 6691 ire = ire_ftable_lookup(dst, 0, 0, 0, attach_ipif, 6692 &sire, zoneid, 0, 6693 MATCH_IRE_RJ_BHOLE | MATCH_IRE_ILL); 6694 ipif_refrele(attach_ipif); 6695 } 6696 ip3dbg(("ip_newroute: ire_ftable_lookup() " 6697 "returned ire %p, sire %p\n", (void *)ire, (void *)sire)); 6698 6699 /* 6700 * This loop is run only once in most cases. 6701 * We loop to resolve further routes only when the destination 6702 * can be reached through multiple RTF_MULTIRT-flagged ires. 6703 */ 6704 do { 6705 /* Clear the previous iteration's values */ 6706 if (src_ipif != NULL) { 6707 ipif_refrele(src_ipif); 6708 src_ipif = NULL; 6709 } 6710 if (dst_ill != NULL) { 6711 ill_refrele(dst_ill); 6712 dst_ill = NULL; 6713 } 6714 6715 multirt_resolve_next = B_FALSE; 6716 /* 6717 * We check if packets have to be multirouted. 6718 * In this case, given the current <ire, sire> couple, 6719 * we look for the next suitable <ire, sire>. 6720 * This check is done in ire_multirt_lookup(), 6721 * which applies various criteria to find the next route 6722 * to resolve. ire_multirt_lookup() leaves <ire, sire> 6723 * unchanged if it detects it has not been tried yet. 6724 */ 6725 if ((sire != NULL) && (sire->ire_flags & RTF_MULTIRT)) { 6726 ip3dbg(("ip_newroute: starting next_resolution " 6727 "with first_mp %p, tag %d\n", 6728 (void *)first_mp, 6729 MULTIRT_DEBUG_TAGGED(first_mp))); 6730 6731 ASSERT(sire != NULL); 6732 multirt_is_resolvable = 6733 ire_multirt_lookup(&ire, &sire, multirt_flags); 6734 6735 ip3dbg(("ip_newroute: multirt_is_resolvable %d, " 6736 "ire %p, sire %p\n", 6737 multirt_is_resolvable, 6738 (void *)ire, (void *)sire)); 6739 6740 if (!multirt_is_resolvable) { 6741 /* 6742 * No more multirt route to resolve; give up 6743 * (all routes resolved or no more 6744 * resolvable routes). 6745 */ 6746 if (ire != NULL) { 6747 ire_refrele(ire); 6748 ire = NULL; 6749 } 6750 } else { 6751 ASSERT(sire != NULL); 6752 ASSERT(ire != NULL); 6753 /* 6754 * We simply use first_sire as a flag that 6755 * indicates if a resolvable multirt route 6756 * has already been found. 6757 * If it is not the case, we may have to send 6758 * an ICMP error to report that the 6759 * destination is unreachable. 6760 * We do not IRE_REFHOLD first_sire. 6761 */ 6762 if (first_sire == NULL) { 6763 first_sire = sire; 6764 } 6765 } 6766 } 6767 if (ire == NULL) { 6768 if (ip_debug > 3) { 6769 /* ip2dbg */ 6770 pr_addr_dbg("ip_newroute: " 6771 "can't resolve %s\n", AF_INET, &dst); 6772 } 6773 ip3dbg(("ip_newroute: " 6774 "ire %p, sire %p, first_sire %p\n", 6775 (void *)ire, (void *)sire, (void *)first_sire)); 6776 6777 if (sire != NULL) { 6778 ire_refrele(sire); 6779 sire = NULL; 6780 } 6781 6782 if (first_sire != NULL) { 6783 /* 6784 * At least one multirt route has been found 6785 * in the same call to ip_newroute(); 6786 * there is no need to report an ICMP error. 6787 * first_sire was not IRE_REFHOLDed. 6788 */ 6789 MULTIRT_DEBUG_UNTAG(first_mp); 6790 freemsg(first_mp); 6791 return; 6792 } 6793 ip_rts_change(RTM_MISS, dst, 0, 0, 0, 0, 0, 0, 6794 RTA_DST); 6795 if (attach_ill != NULL) 6796 ill_refrele(attach_ill); 6797 goto icmp_err_ret; 6798 } 6799 6800 /* 6801 * When RTA_SRCIFP is used to add a route, then an interface 6802 * route is added in the source interface's routing table. 6803 * If the outgoing interface of this route is of type 6804 * IRE_IF_RESOLVER, then upon creation of the ire, 6805 * ire_dlureq_mp is set to NULL. Later, when this route is 6806 * first used for forwarding packet, ip_newroute() is called 6807 * to resolve the hardware address of the outgoing ipif. 6808 * We do not come here for IRE_IF_NORESOLVER entries in the 6809 * source interface based table. We only come here if the 6810 * outgoing interface is a resolver interface and we don't 6811 * have the ire_dlureq_mp information yet. 6812 * If in_ill is not null that means it is called from 6813 * ip_rput. 6814 */ 6815 6816 ASSERT(ire->ire_in_ill == NULL || 6817 (ire->ire_type == IRE_IF_RESOLVER && 6818 ire->ire_dlureq_mp == NULL)); 6819 6820 /* 6821 * Verify that the returned IRE does not have either 6822 * the RTF_REJECT or RTF_BLACKHOLE flags set and that the IRE is 6823 * either an IRE_CACHE, IRE_IF_NORESOLVER or IRE_IF_RESOLVER. 6824 */ 6825 if ((ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) || 6826 (ire->ire_type & (IRE_CACHE | IRE_INTERFACE)) == 0) { 6827 if (attach_ill != NULL) 6828 ill_refrele(attach_ill); 6829 goto icmp_err_ret; 6830 } 6831 /* 6832 * Increment the ire_ob_pkt_count field for ire if it is an 6833 * INTERFACE (IF_RESOLVER or IF_NORESOLVER) IRE type, and 6834 * increment the same for the parent IRE, sire, if it is some 6835 * sort of prefix IRE (which includes DEFAULT, PREFIX, HOST 6836 * and HOST_REDIRECT). 6837 */ 6838 if ((ire->ire_type & IRE_INTERFACE) != 0) { 6839 UPDATE_OB_PKT_COUNT(ire); 6840 ire->ire_last_used_time = lbolt; 6841 } 6842 6843 if (sire != NULL) { 6844 gw = sire->ire_gateway_addr; 6845 ASSERT((sire->ire_type & (IRE_CACHETABLE | 6846 IRE_INTERFACE)) == 0); 6847 UPDATE_OB_PKT_COUNT(sire); 6848 sire->ire_last_used_time = lbolt; 6849 } 6850 /* 6851 * We have a route to reach the destination. 6852 * 6853 * 1) If the interface is part of ill group, try to get a new 6854 * ill taking load spreading into account. 6855 * 6856 * 2) After selecting the ill, get a source address that 6857 * might create good inbound load spreading. 6858 * ipif_select_source does this for us. 6859 * 6860 * If the application specified the ill (ifindex), we still 6861 * load spread. Only if the packets needs to go out 6862 * specifically on a given ill e.g. binding to 6863 * IPIF_NOFAILOVER address, then we don't try to use a 6864 * different ill for load spreading. 6865 */ 6866 if (attach_ill == NULL) { 6867 /* 6868 * Don't perform outbound load spreading in the 6869 * case of an RTF_MULTIRT route, as we actually 6870 * typically want to replicate outgoing packets 6871 * through particular interfaces. 6872 */ 6873 if ((sire != NULL) && (sire->ire_flags & RTF_MULTIRT)) { 6874 dst_ill = ire->ire_ipif->ipif_ill; 6875 /* for uniformity */ 6876 ill_refhold(dst_ill); 6877 } else { 6878 /* 6879 * If we are here trying to create an IRE_CACHE 6880 * for an offlink destination and have the 6881 * IRE_CACHE for the next hop and the latter is 6882 * using virtual IP source address selection i.e 6883 * it's ire->ire_ipif is pointing to a virtual 6884 * network interface (vni) then 6885 * ip_newroute_get_dst_ll() will return the vni 6886 * interface as the dst_ill. Since the vni is 6887 * virtual i.e not associated with any physical 6888 * interface, it cannot be the dst_ill, hence 6889 * in such a case call ip_newroute_get_dst_ll() 6890 * with the stq_ill instead of the ire_ipif ILL. 6891 * The function returns a refheld ill. 6892 */ 6893 if ((ire->ire_type == IRE_CACHE) && 6894 IS_VNI(ire->ire_ipif->ipif_ill)) 6895 dst_ill = ip_newroute_get_dst_ill( 6896 ire->ire_stq->q_ptr); 6897 else 6898 dst_ill = ip_newroute_get_dst_ill( 6899 ire->ire_ipif->ipif_ill); 6900 } 6901 if (dst_ill == NULL) { 6902 if (ip_debug > 2) { 6903 pr_addr_dbg("ip_newroute: " 6904 "no dst ill for dst" 6905 " %s\n", AF_INET, &dst); 6906 } 6907 goto icmp_err_ret; 6908 } 6909 } else { 6910 dst_ill = ire->ire_ipif->ipif_ill; 6911 /* for uniformity */ 6912 ill_refhold(dst_ill); 6913 /* 6914 * We should have found a route matching ill as we 6915 * called ire_ftable_lookup with MATCH_IRE_ILL. 6916 * Rather than asserting, when there is a mismatch, 6917 * we just drop the packet. 6918 */ 6919 if (dst_ill != attach_ill) { 6920 ip0dbg(("ip_newroute: Packet dropped as " 6921 "IPIF_NOFAILOVER ill is %s, " 6922 "ire->ire_ipif->ipif_ill is %s\n", 6923 attach_ill->ill_name, 6924 dst_ill->ill_name)); 6925 ill_refrele(attach_ill); 6926 goto icmp_err_ret; 6927 } 6928 } 6929 /* attach_ill can't go in loop. IPMP and CGTP are disjoint */ 6930 if (attach_ill != NULL) { 6931 ill_refrele(attach_ill); 6932 attach_ill = NULL; 6933 do_attach_ill = B_TRUE; 6934 } 6935 ASSERT(dst_ill != NULL); 6936 ip2dbg(("ip_newroute: dst_ill %s\n", dst_ill->ill_name)); 6937 6938 /* 6939 * Pick the best source address from dst_ill. 6940 * 6941 * 1) If it is part of a multipathing group, we would 6942 * like to spread the inbound packets across different 6943 * interfaces. ipif_select_source picks a random source 6944 * across the different ills in the group. 6945 * 6946 * 2) If it is not part of a multipathing group, we try 6947 * to pick the source address from the destination 6948 * route. Clustering assumes that when we have multiple 6949 * prefixes hosted on an interface, the prefix of the 6950 * source address matches the prefix of the destination 6951 * route. We do this only if the address is not 6952 * DEPRECATED. 6953 * 6954 * 3) If the conn is in a different zone than the ire, we 6955 * need to pick a source address from the right zone. 6956 * 6957 * NOTE : If we hit case (1) above, the prefix of the source 6958 * address picked may not match the prefix of the 6959 * destination routes prefix as ipif_select_source 6960 * does not look at "dst" while picking a source 6961 * address. 6962 * If we want the same behavior as (2), we will need 6963 * to change the behavior of ipif_select_source. 6964 */ 6965 ASSERT(src_ipif == NULL); 6966 if ((sire != NULL) && (sire->ire_flags & RTF_SETSRC)) { 6967 /* 6968 * The RTF_SETSRC flag is set in the parent ire (sire). 6969 * Check that the ipif matching the requested source 6970 * address still exists. 6971 */ 6972 src_ipif = ipif_lookup_addr(sire->ire_src_addr, NULL, 6973 zoneid, NULL, NULL, NULL, NULL); 6974 } 6975 if (src_ipif == NULL) { 6976 ire_marks |= IRE_MARK_USESRC_CHECK; 6977 if ((dst_ill->ill_group != NULL) || 6978 (ire->ire_ipif->ipif_flags & IPIF_DEPRECATED) || 6979 (connp != NULL && ire->ire_zoneid != zoneid) || 6980 (dst_ill->ill_usesrc_ifindex != 0)) { 6981 src_ipif = ipif_select_source(dst_ill, dst, 6982 zoneid); 6983 if (src_ipif == NULL) { 6984 if (ip_debug > 2) { 6985 pr_addr_dbg("ip_newroute: " 6986 "no src for dst %s ", 6987 AF_INET, &dst); 6988 printf("through interface %s\n", 6989 dst_ill->ill_name); 6990 } 6991 goto icmp_err_ret; 6992 } 6993 } else { 6994 src_ipif = ire->ire_ipif; 6995 ASSERT(src_ipif != NULL); 6996 /* hold src_ipif for uniformity */ 6997 ipif_refhold(src_ipif); 6998 } 6999 } 7000 7001 /* 7002 * Assign a source address while we have the conn. 7003 * We can't have ip_wput_ire pick a source address when the 7004 * packet returns from arp since we need to look at 7005 * conn_unspec_src and conn_zoneid, and we lose the conn when 7006 * going through arp. 7007 * 7008 * NOTE : ip_newroute_v6 does not have this piece of code as 7009 * it uses ip6i to store this information. 7010 */ 7011 if (ipha->ipha_src == INADDR_ANY && 7012 (connp == NULL || !connp->conn_unspec_src)) { 7013 ipha->ipha_src = src_ipif->ipif_src_addr; 7014 } 7015 if (ip_debug > 3) { 7016 /* ip2dbg */ 7017 pr_addr_dbg("ip_newroute: first hop %s\n", 7018 AF_INET, &gw); 7019 } 7020 ip2dbg(("\tire type %s (%d)\n", 7021 ip_nv_lookup(ire_nv_tbl, ire->ire_type), ire->ire_type)); 7022 7023 /* 7024 * The TTL of multirouted packets is bounded by the 7025 * ip_multirt_ttl ndd variable. 7026 */ 7027 if ((sire != NULL) && (sire->ire_flags & RTF_MULTIRT)) { 7028 /* Force TTL of multirouted packets */ 7029 if ((ip_multirt_ttl > 0) && 7030 (ipha->ipha_ttl > ip_multirt_ttl)) { 7031 ip2dbg(("ip_newroute: forcing multirt TTL " 7032 "to %d (was %d), dst 0x%08x\n", 7033 ip_multirt_ttl, ipha->ipha_ttl, 7034 ntohl(sire->ire_addr))); 7035 ipha->ipha_ttl = ip_multirt_ttl; 7036 } 7037 } 7038 /* 7039 * At this point in ip_newroute(), ire is either the 7040 * IRE_CACHE of the next-hop gateway for an off-subnet 7041 * destination or an IRE_INTERFACE type that should be used 7042 * to resolve an on-subnet destination or an on-subnet 7043 * next-hop gateway. 7044 * 7045 * In the IRE_CACHE case, we have the following : 7046 * 7047 * 1) src_ipif - used for getting a source address. 7048 * 7049 * 2) dst_ill - from which we derive ire_stq/ire_rfq. This 7050 * means packets using this IRE_CACHE will go out on 7051 * dst_ill. 7052 * 7053 * 3) The IRE sire will point to the prefix that is the 7054 * longest matching route for the destination. These 7055 * prefix types include IRE_DEFAULT, IRE_PREFIX, IRE_HOST, 7056 * and IRE_HOST_REDIRECT. 7057 * 7058 * The newly created IRE_CACHE entry for the off-subnet 7059 * destination is tied to both the prefix route and the 7060 * interface route used to resolve the next-hop gateway 7061 * via the ire_phandle and ire_ihandle fields, 7062 * respectively. 7063 * 7064 * In the IRE_INTERFACE case, we have the following : 7065 * 7066 * 1) src_ipif - used for getting a source address. 7067 * 7068 * 2) dst_ill - from which we derive ire_stq/ire_rfq. This 7069 * means packets using the IRE_CACHE that we will build 7070 * here will go out on dst_ill. 7071 * 7072 * 3) sire may or may not be NULL. But, the IRE_CACHE that is 7073 * to be created will only be tied to the IRE_INTERFACE 7074 * that was derived from the ire_ihandle field. 7075 * 7076 * If sire is non-NULL, it means the destination is 7077 * off-link and we will first create the IRE_CACHE for the 7078 * gateway. Next time through ip_newroute, we will create 7079 * the IRE_CACHE for the final destination as described 7080 * above. 7081 * 7082 * In both cases, after the current resolution has been 7083 * completed (or possibly initialised, in the IRE_INTERFACE 7084 * case), the loop may be re-entered to attempt the resolution 7085 * of another RTF_MULTIRT route. 7086 * 7087 * When an IRE_CACHE entry for the off-subnet destination is 7088 * created, RTF_SETSRC and RTF_MULTIRT are inherited from sire, 7089 * for further processing in emission loops. 7090 */ 7091 save_ire = ire; 7092 switch (ire->ire_type) { 7093 case IRE_CACHE: { 7094 ire_t *ipif_ire; 7095 mblk_t *ire_fp_mp; 7096 7097 ASSERT(sire != NULL); 7098 if (gw == 0) 7099 gw = ire->ire_gateway_addr; 7100 /* 7101 * We need 3 ire's to create a new cache ire for an 7102 * off-link destination from the cache ire of the 7103 * gateway. 7104 * 7105 * 1. The prefix ire 'sire' 7106 * 2. The cache ire of the gateway 'ire' 7107 * 3. The interface ire 'ipif_ire' 7108 * 7109 * We have (1) and (2). We lookup (3) below. 7110 * 7111 * If there is no interface route to the gateway, 7112 * it is a race condition, where we found the cache 7113 * but the inteface route has been deleted. 7114 */ 7115 ipif_ire = ire_ihandle_lookup_offlink(ire, sire); 7116 if (ipif_ire == NULL) { 7117 ip1dbg(("ip_newroute: " 7118 "ire_ihandle_lookup_offlink failed\n")); 7119 goto icmp_err_ret; 7120 } 7121 /* 7122 * XXX We are using the same dlureq_mp 7123 * (DL_UNITDATA_REQ) though the save_ire is not 7124 * pointing at the same ill. 7125 * This is incorrect. We need to send it up to the 7126 * resolver to get the right dlureq_mp. For ethernets 7127 * this may be okay (ill_type == DL_ETHER). 7128 */ 7129 dlureq_mp = save_ire->ire_dlureq_mp; 7130 ire_fp_mp = NULL; 7131 /* 7132 * save_ire's ire_fp_mp can't change since it is 7133 * not an IRE_MIPRTUN or IRE_BROADCAST 7134 * LOCK_IRE_FP_MP does not do any useful work in 7135 * the case of IRE_CACHE. So we don't use it below. 7136 */ 7137 if (save_ire->ire_stq == dst_ill->ill_wq) 7138 ire_fp_mp = save_ire->ire_fp_mp; 7139 7140 ire = ire_create( 7141 (uchar_t *)&dst, /* dest address */ 7142 (uchar_t *)&ip_g_all_ones, /* mask */ 7143 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 7144 (uchar_t *)&gw, /* gateway address */ 7145 NULL, 7146 &save_ire->ire_max_frag, 7147 ire_fp_mp, /* Fast Path header */ 7148 dst_ill->ill_rq, /* recv-from queue */ 7149 dst_ill->ill_wq, /* send-to queue */ 7150 IRE_CACHE, /* IRE type */ 7151 save_ire->ire_dlureq_mp, 7152 src_ipif, 7153 in_ill, /* incoming ill */ 7154 sire->ire_mask, /* Parent mask */ 7155 sire->ire_phandle, /* Parent handle */ 7156 ipif_ire->ire_ihandle, /* Interface handle */ 7157 sire->ire_flags & 7158 (RTF_SETSRC | RTF_MULTIRT), /* flags if any */ 7159 &(sire->ire_uinfo)); 7160 7161 if (ire == NULL) { 7162 ire_refrele(ipif_ire); 7163 ire_refrele(save_ire); 7164 break; 7165 } 7166 7167 ire->ire_marks |= ire_marks; 7168 7169 /* 7170 * Prevent sire and ipif_ire from getting deleted. 7171 * The newly created ire is tied to both of them via 7172 * the phandle and ihandle respectively. 7173 */ 7174 IRB_REFHOLD(sire->ire_bucket); 7175 /* Has it been removed already ? */ 7176 if (sire->ire_marks & IRE_MARK_CONDEMNED) { 7177 IRB_REFRELE(sire->ire_bucket); 7178 ire_refrele(ipif_ire); 7179 ire_refrele(save_ire); 7180 break; 7181 } 7182 7183 IRB_REFHOLD(ipif_ire->ire_bucket); 7184 /* Has it been removed already ? */ 7185 if (ipif_ire->ire_marks & IRE_MARK_CONDEMNED) { 7186 IRB_REFRELE(ipif_ire->ire_bucket); 7187 IRB_REFRELE(sire->ire_bucket); 7188 ire_refrele(ipif_ire); 7189 ire_refrele(save_ire); 7190 break; 7191 } 7192 7193 xmit_mp = first_mp; 7194 /* 7195 * In the case of multirouting, a copy 7196 * of the packet is done before its sending. 7197 * The copy is used to attempt another 7198 * route resolution, in a next loop. 7199 */ 7200 if (ire->ire_flags & RTF_MULTIRT) { 7201 copy_mp = copymsg(first_mp); 7202 if (copy_mp != NULL) { 7203 xmit_mp = copy_mp; 7204 MULTIRT_DEBUG_TAG(first_mp); 7205 } 7206 } 7207 ire_add_then_send(q, ire, xmit_mp); 7208 ire_refrele(save_ire); 7209 7210 /* Assert that sire is not deleted yet. */ 7211 ASSERT(sire->ire_ptpn != NULL); 7212 IRB_REFRELE(sire->ire_bucket); 7213 7214 /* Assert that ipif_ire is not deleted yet. */ 7215 ASSERT(ipif_ire->ire_ptpn != NULL); 7216 IRB_REFRELE(ipif_ire->ire_bucket); 7217 ire_refrele(ipif_ire); 7218 7219 /* 7220 * If copy_mp is not NULL, multirouting was 7221 * requested. We loop to initiate a next 7222 * route resolution attempt, starting from sire. 7223 */ 7224 if (copy_mp != NULL) { 7225 /* 7226 * Search for the next unresolved 7227 * multirt route. 7228 */ 7229 copy_mp = NULL; 7230 ipif_ire = NULL; 7231 ire = NULL; 7232 multirt_resolve_next = B_TRUE; 7233 continue; 7234 } 7235 7236 ire_refrele(sire); 7237 ipif_refrele(src_ipif); 7238 ill_refrele(dst_ill); 7239 return; 7240 } 7241 case IRE_IF_NORESOLVER: { 7242 /* 7243 * We have what we need to build an IRE_CACHE. 7244 * 7245 * Create a new dlureq_mp with the IP gateway address 7246 * in destination address in the DLPI hdr if the 7247 * physical length is exactly 4 bytes. 7248 */ 7249 if (dst_ill->ill_phys_addr_length == IP_ADDR_LEN) { 7250 uchar_t *addr; 7251 7252 if (gw) 7253 addr = (uchar_t *)&gw; 7254 else 7255 addr = (uchar_t *)&dst; 7256 7257 dlureq_mp = ill_dlur_gen(addr, 7258 dst_ill->ill_phys_addr_length, 7259 dst_ill->ill_sap, 7260 dst_ill->ill_sap_length); 7261 } else { 7262 dlureq_mp = ire->ire_dlureq_mp; 7263 } 7264 7265 if (dlureq_mp == NULL) { 7266 ip1dbg(("ip_newroute: dlureq_mp NULL\n")); 7267 break; 7268 } 7269 7270 ire = ire_create( 7271 (uchar_t *)&dst, /* dest address */ 7272 (uchar_t *)&ip_g_all_ones, /* mask */ 7273 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 7274 (uchar_t *)&gw, /* gateway address */ 7275 NULL, 7276 &save_ire->ire_max_frag, 7277 NULL, /* Fast Path header */ 7278 dst_ill->ill_rq, /* recv-from queue */ 7279 dst_ill->ill_wq, /* send-to queue */ 7280 IRE_CACHE, 7281 dlureq_mp, 7282 src_ipif, 7283 in_ill, /* Incoming ill */ 7284 save_ire->ire_mask, /* Parent mask */ 7285 (sire != NULL) ? /* Parent handle */ 7286 sire->ire_phandle : 0, 7287 save_ire->ire_ihandle, /* Interface handle */ 7288 (sire != NULL) ? sire->ire_flags & 7289 (RTF_SETSRC | RTF_MULTIRT) : 0, /* flags */ 7290 &(save_ire->ire_uinfo)); 7291 7292 if (dst_ill->ill_phys_addr_length == IP_ADDR_LEN) 7293 freeb(dlureq_mp); 7294 7295 if (ire == NULL) { 7296 ire_refrele(save_ire); 7297 break; 7298 } 7299 7300 ire->ire_marks |= ire_marks; 7301 7302 /* Prevent save_ire from getting deleted */ 7303 IRB_REFHOLD(save_ire->ire_bucket); 7304 /* Has it been removed already ? */ 7305 if (save_ire->ire_marks & IRE_MARK_CONDEMNED) { 7306 IRB_REFRELE(save_ire->ire_bucket); 7307 ire_refrele(save_ire); 7308 break; 7309 } 7310 7311 /* 7312 * In the case of multirouting, a copy 7313 * of the packet is made before it is sent. 7314 * The copy is used in the next 7315 * loop to attempt another resolution. 7316 */ 7317 xmit_mp = first_mp; 7318 if ((sire != NULL) && 7319 (sire->ire_flags & RTF_MULTIRT)) { 7320 copy_mp = copymsg(first_mp); 7321 if (copy_mp != NULL) { 7322 xmit_mp = copy_mp; 7323 MULTIRT_DEBUG_TAG(first_mp); 7324 } 7325 } 7326 ire_add_then_send(q, ire, xmit_mp); 7327 7328 /* Assert that it is not deleted yet. */ 7329 ASSERT(save_ire->ire_ptpn != NULL); 7330 IRB_REFRELE(save_ire->ire_bucket); 7331 ire_refrele(save_ire); 7332 7333 if (copy_mp != NULL) { 7334 /* 7335 * If we found a (no)resolver, we ignore any 7336 * trailing top priority IRE_CACHE in further 7337 * loops. This ensures that we do not omit any 7338 * (no)resolver. 7339 * This IRE_CACHE, if any, will be processed 7340 * by another thread entering ip_newroute(). 7341 * IRE_CACHE entries, if any, will be processed 7342 * by another thread entering ip_newroute(), 7343 * (upon resolver response, for instance). 7344 * This aims to force parallel multirt 7345 * resolutions as soon as a packet must be sent. 7346 * In the best case, after the tx of only one 7347 * packet, all reachable routes are resolved. 7348 * Otherwise, the resolution of all RTF_MULTIRT 7349 * routes would require several emissions. 7350 */ 7351 multirt_flags &= ~MULTIRT_CACHEGW; 7352 7353 /* 7354 * Search for the next unresolved multirt 7355 * route. 7356 */ 7357 copy_mp = NULL; 7358 save_ire = NULL; 7359 ire = NULL; 7360 multirt_resolve_next = B_TRUE; 7361 continue; 7362 } 7363 7364 /* 7365 * Don't need sire anymore 7366 */ 7367 if (sire != NULL) 7368 ire_refrele(sire); 7369 7370 ipif_refrele(src_ipif); 7371 ill_refrele(dst_ill); 7372 return; 7373 } 7374 case IRE_IF_RESOLVER: 7375 /* 7376 * We can't build an IRE_CACHE yet, but at least we 7377 * found a resolver that can help. 7378 */ 7379 res_mp = dst_ill->ill_resolver_mp; 7380 if (!OK_RESOLVER_MP(res_mp)) 7381 break; 7382 /* 7383 * To be at this point in the code with a non-zero gw 7384 * means that dst is reachable through a gateway that 7385 * we have never resolved. By changing dst to the gw 7386 * addr we resolve the gateway first. 7387 * When ire_add_then_send() tries to put the IP dg 7388 * to dst, it will reenter ip_newroute() at which 7389 * time we will find the IRE_CACHE for the gw and 7390 * create another IRE_CACHE in case IRE_CACHE above. 7391 */ 7392 if (gw != INADDR_ANY) { 7393 /* 7394 * The source ipif that was determined above was 7395 * relative to the destination address, not the 7396 * gateway's. If src_ipif was not taken out of 7397 * the IRE_IF_RESOLVER entry, we'll need to call 7398 * ipif_select_source() again. 7399 */ 7400 if (src_ipif != ire->ire_ipif) { 7401 ipif_refrele(src_ipif); 7402 src_ipif = ipif_select_source(dst_ill, 7403 gw, zoneid); 7404 if (src_ipif == NULL) { 7405 if (ip_debug > 2) { 7406 pr_addr_dbg( 7407 "ip_newroute: no " 7408 "src for gw %s ", 7409 AF_INET, &gw); 7410 printf("through " 7411 "interface %s\n", 7412 dst_ill->ill_name); 7413 } 7414 goto icmp_err_ret; 7415 } 7416 } 7417 save_dst = dst; 7418 dst = gw; 7419 gw = INADDR_ANY; 7420 } 7421 /* 7422 * We obtain a partial IRE_CACHE which we will pass 7423 * along with the resolver query. When the response 7424 * comes back it will be there ready for us to add. 7425 * The ire_max_frag is atomically set under the 7426 * irebucket lock in ire_add_v[46]. 7427 */ 7428 ire = ire_create_mp( 7429 (uchar_t *)&dst, /* dest address */ 7430 (uchar_t *)&ip_g_all_ones, /* mask */ 7431 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 7432 (uchar_t *)&gw, /* gateway address */ 7433 NULL, /* no in_src_addr */ 7434 NULL, /* ire_max_frag */ 7435 NULL, /* Fast Path header */ 7436 dst_ill->ill_rq, /* recv-from queue */ 7437 dst_ill->ill_wq, /* send-to queue */ 7438 IRE_CACHE, 7439 res_mp, 7440 src_ipif, /* Interface ipif */ 7441 in_ill, /* Incoming ILL */ 7442 save_ire->ire_mask, /* Parent mask */ 7443 0, 7444 save_ire->ire_ihandle, /* Interface handle */ 7445 0, /* flags if any */ 7446 &(save_ire->ire_uinfo)); 7447 7448 if (ire == NULL) { 7449 ire_refrele(save_ire); 7450 break; 7451 } 7452 7453 if ((sire != NULL) && 7454 (sire->ire_flags & RTF_MULTIRT)) { 7455 copy_mp = copymsg(first_mp); 7456 if (copy_mp != NULL) 7457 MULTIRT_DEBUG_TAG(copy_mp); 7458 } 7459 7460 ire->ire_marks |= ire_marks; 7461 7462 /* 7463 * Construct message chain for the resolver 7464 * of the form: 7465 * ARP_REQ_MBLK-->IRE_MBLK-->Packet 7466 * Packet could contain a IPSEC_OUT mp. 7467 * 7468 * NOTE : ire will be added later when the response 7469 * comes back from ARP. If the response does not 7470 * come back, ARP frees the packet. For this reason, 7471 * we can't REFHOLD the bucket of save_ire to prevent 7472 * deletions. We may not be able to REFRELE the bucket 7473 * if the response never comes back. Thus, before 7474 * adding the ire, ire_add_v4 will make sure that the 7475 * interface route does not get deleted. This is the 7476 * only case unlike ip_newroute_v6, ip_newroute_ipif_v6 7477 * where we can always prevent deletions because of 7478 * the synchronous nature of adding IRES i.e 7479 * ire_add_then_send is called after creating the IRE. 7480 */ 7481 ASSERT(ire->ire_mp != NULL); 7482 ire->ire_mp->b_cont = first_mp; 7483 /* Have saved_mp handy, for cleanup if canput fails */ 7484 saved_mp = mp; 7485 mp = ire->ire_dlureq_mp; 7486 ASSERT(mp != NULL); 7487 ire->ire_dlureq_mp = NULL; 7488 linkb(mp, ire->ire_mp); 7489 7490 7491 /* 7492 * Fill in the source and dest addrs for the resolver. 7493 * NOTE: this depends on memory layouts imposed by 7494 * ill_init(). 7495 */ 7496 areq = (areq_t *)mp->b_rptr; 7497 addrp = (ipaddr_t *)((char *)areq + 7498 areq->areq_sender_addr_offset); 7499 if (do_attach_ill) { 7500 /* 7501 * This is bind to no failover case. 7502 * arp packet also must go out on attach_ill. 7503 */ 7504 ASSERT(ipha->ipha_src != NULL); 7505 *addrp = ipha->ipha_src; 7506 } else { 7507 *addrp = save_ire->ire_src_addr; 7508 } 7509 7510 ire_refrele(save_ire); 7511 addrp = (ipaddr_t *)((char *)areq + 7512 areq->areq_target_addr_offset); 7513 *addrp = dst; 7514 /* Up to the resolver. */ 7515 if (canputnext(dst_ill->ill_rq)) { 7516 putnext(dst_ill->ill_rq, mp); 7517 ire = NULL; 7518 if (copy_mp != NULL) { 7519 /* 7520 * If we found a resolver, we ignore 7521 * any trailing top priority IRE_CACHE 7522 * in the further loops. This ensures 7523 * that we do not omit any resolver. 7524 * IRE_CACHE entries, if any, will be 7525 * processed next time we enter 7526 * ip_newroute(). 7527 */ 7528 multirt_flags &= ~MULTIRT_CACHEGW; 7529 /* 7530 * Search for the next unresolved 7531 * multirt route. 7532 */ 7533 first_mp = copy_mp; 7534 copy_mp = NULL; 7535 /* Prepare the next resolution loop. */ 7536 mp = first_mp; 7537 EXTRACT_PKT_MP(mp, first_mp, 7538 mctl_present); 7539 if (mctl_present) 7540 io = (ipsec_out_t *) 7541 first_mp->b_rptr; 7542 ipha = (ipha_t *)mp->b_rptr; 7543 7544 ASSERT(sire != NULL); 7545 7546 dst = save_dst; 7547 multirt_resolve_next = B_TRUE; 7548 continue; 7549 } 7550 7551 if (sire != NULL) 7552 ire_refrele(sire); 7553 7554 /* 7555 * The response will come back in ip_wput 7556 * with db_type IRE_DB_TYPE. 7557 */ 7558 ipif_refrele(src_ipif); 7559 ill_refrele(dst_ill); 7560 return; 7561 } else { 7562 /* Prepare for cleanup */ 7563 ire->ire_dlureq_mp = mp; 7564 mp->b_cont = NULL; 7565 ire_delete(ire); 7566 mp = saved_mp; 7567 ire = NULL; 7568 if (copy_mp != NULL) { 7569 MULTIRT_DEBUG_UNTAG(copy_mp); 7570 freemsg(copy_mp); 7571 copy_mp = NULL; 7572 } 7573 break; 7574 } 7575 default: 7576 break; 7577 } 7578 } while (multirt_resolve_next); 7579 7580 ip1dbg(("ip_newroute: dropped\n")); 7581 /* Did this packet originate externally? */ 7582 if (mp->b_prev) { 7583 mp->b_next = NULL; 7584 mp->b_prev = NULL; 7585 BUMP_MIB(&ip_mib, ipInDiscards); 7586 } else { 7587 BUMP_MIB(&ip_mib, ipOutDiscards); 7588 } 7589 ASSERT(copy_mp == NULL); 7590 MULTIRT_DEBUG_UNTAG(first_mp); 7591 freemsg(first_mp); 7592 if (ire != NULL) 7593 ire_refrele(ire); 7594 if (sire != NULL) 7595 ire_refrele(sire); 7596 if (src_ipif != NULL) 7597 ipif_refrele(src_ipif); 7598 if (dst_ill != NULL) 7599 ill_refrele(dst_ill); 7600 return; 7601 7602 icmp_err_ret: 7603 ip1dbg(("ip_newroute: no route\n")); 7604 if (src_ipif != NULL) 7605 ipif_refrele(src_ipif); 7606 if (dst_ill != NULL) 7607 ill_refrele(dst_ill); 7608 if (sire != NULL) 7609 ire_refrele(sire); 7610 /* Did this packet originate externally? */ 7611 if (mp->b_prev) { 7612 mp->b_next = NULL; 7613 mp->b_prev = NULL; 7614 /* XXX ipInNoRoutes */ 7615 q = WR(q); 7616 } else { 7617 /* 7618 * Since ip_wput() isn't close to finished, we fill 7619 * in enough of the header for credible error reporting. 7620 */ 7621 if (ip_hdr_complete(ipha, zoneid)) { 7622 /* Failed */ 7623 MULTIRT_DEBUG_UNTAG(first_mp); 7624 freemsg(first_mp); 7625 if (ire != NULL) 7626 ire_refrele(ire); 7627 return; 7628 } 7629 } 7630 BUMP_MIB(&ip_mib, ipOutNoRoutes); 7631 7632 /* 7633 * At this point we will have ire only if RTF_BLACKHOLE 7634 * or RTF_REJECT flags are set on the IRE. It will not 7635 * generate ICMP_HOST_UNREACHABLE if RTF_BLACKHOLE is set. 7636 */ 7637 if (ire != NULL) { 7638 if (ire->ire_flags & RTF_BLACKHOLE) { 7639 ire_refrele(ire); 7640 MULTIRT_DEBUG_UNTAG(first_mp); 7641 freemsg(first_mp); 7642 return; 7643 } 7644 ire_refrele(ire); 7645 } 7646 if (ip_source_routed(ipha)) { 7647 icmp_unreachable(q, first_mp, ICMP_SOURCE_ROUTE_FAILED); 7648 return; 7649 } 7650 icmp_unreachable(q, first_mp, ICMP_HOST_UNREACHABLE); 7651 } 7652 7653 /* 7654 * IPv4 - 7655 * ip_newroute_ipif is called by ip_wput_multicast and 7656 * ip_rput_forward_multicast whenever we need to send 7657 * out a packet to a destination address for which we do not have specific 7658 * routing information. It is used when the packet will be sent out 7659 * on a specific interface. It is also called by ip_wput() when IP_XMIT_IF 7660 * socket option is set or icmp error message wants to go out on a particular 7661 * interface for a unicast packet. 7662 * 7663 * In most cases, the destination address is resolved thanks to the ipif 7664 * intrinsic resolver. However, there are some cases where the call to 7665 * ip_newroute_ipif must take into account the potential presence of 7666 * RTF_SETSRC and/or RTF_MULITRT flags in an IRE_OFFSUBNET ire 7667 * that uses the interface. This is specified through flags, 7668 * which can be a combination of: 7669 * - RTF_SETSRC: if an IRE_OFFSUBNET ire exists that has the RTF_SETSRC 7670 * flag, the resulting ire will inherit the IRE_OFFSUBNET source address 7671 * and flags. Additionally, the packet source address has to be set to 7672 * the specified address. The caller is thus expected to set this flag 7673 * if the packet has no specific source address yet. 7674 * - RTF_MULTIRT: if an IRE_OFFSUBNET ire exists that has the RTF_MULTIRT 7675 * flag, the resulting ire will inherit the flag. All unresolved routes 7676 * to the destination must be explored in the same call to 7677 * ip_newroute_ipif(). 7678 */ 7679 static void 7680 ip_newroute_ipif(queue_t *q, mblk_t *mp, ipif_t *ipif, ipaddr_t dst, 7681 conn_t *connp, uint32_t flags) 7682 { 7683 areq_t *areq; 7684 ire_t *ire = NULL; 7685 mblk_t *res_mp; 7686 ipaddr_t *addrp; 7687 mblk_t *first_mp; 7688 ire_t *save_ire = NULL; 7689 ill_t *attach_ill = NULL; /* Bind to IPIF_NOFAILOVER */ 7690 ipif_t *src_ipif = NULL; 7691 ushort_t ire_marks = 0; 7692 ill_t *dst_ill = NULL; 7693 boolean_t mctl_present; 7694 ipsec_out_t *io; 7695 ipha_t *ipha; 7696 int ihandle = 0; 7697 mblk_t *saved_mp; 7698 ire_t *fire = NULL; 7699 mblk_t *copy_mp = NULL; 7700 boolean_t multirt_resolve_next; 7701 ipaddr_t ipha_dst; 7702 zoneid_t zoneid = (connp != NULL ? connp->conn_zoneid : ALL_ZONES); 7703 7704 /* 7705 * CGTP goes in a loop which looks up a new ipif, do an ipif_refhold 7706 * here for uniformity 7707 */ 7708 ipif_refhold(ipif); 7709 7710 /* 7711 * This loop is run only once in most cases. 7712 * We loop to resolve further routes only when the destination 7713 * can be reached through multiple RTF_MULTIRT-flagged ires. 7714 */ 7715 do { 7716 if (dst_ill != NULL) { 7717 ill_refrele(dst_ill); 7718 dst_ill = NULL; 7719 } 7720 if (src_ipif != NULL) { 7721 ipif_refrele(src_ipif); 7722 src_ipif = NULL; 7723 } 7724 multirt_resolve_next = B_FALSE; 7725 7726 ip1dbg(("ip_newroute_ipif: dst 0x%x, if %s\n", ntohl(dst), 7727 ipif->ipif_ill->ill_name)); 7728 7729 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 7730 if (mctl_present) 7731 io = (ipsec_out_t *)first_mp->b_rptr; 7732 7733 ipha = (ipha_t *)mp->b_rptr; 7734 7735 /* 7736 * Save the packet destination address, we may need it after 7737 * the packet has been consumed. 7738 */ 7739 ipha_dst = ipha->ipha_dst; 7740 7741 /* 7742 * If the interface is a pt-pt interface we look for an 7743 * IRE_IF_RESOLVER or IRE_IF_NORESOLVER that matches both the 7744 * local_address and the pt-pt destination address. Otherwise 7745 * we just match the local address. 7746 * NOTE: dst could be different than ipha->ipha_dst in case 7747 * of sending igmp multicast packets over a point-to-point 7748 * connection. 7749 * Thus we must be careful enough to check ipha_dst to be a 7750 * multicast address, otherwise it will take xmit_if path for 7751 * multicast packets resulting into kernel stack overflow by 7752 * repeated calls to ip_newroute_ipif from ire_send(). 7753 */ 7754 if (CLASSD(ipha_dst) && 7755 !(ipif->ipif_ill->ill_flags & ILLF_MULTICAST)) { 7756 goto err_ret; 7757 } 7758 7759 /* 7760 * We check if an IRE_OFFSUBNET for the addr that goes through 7761 * ipif exists. We need it to determine if the RTF_SETSRC and/or 7762 * RTF_MULTIRT flags must be honored. This IRE_OFFSUBNET ire may 7763 * propagate its flags to the new ire. 7764 */ 7765 if (CLASSD(ipha_dst) && (flags & (RTF_MULTIRT | RTF_SETSRC))) { 7766 fire = ipif_lookup_multi_ire(ipif, ipha_dst); 7767 ip2dbg(("ip_newroute_ipif: " 7768 "ipif_lookup_multi_ire(" 7769 "ipif %p, dst %08x) = fire %p\n", 7770 (void *)ipif, ntohl(dst), (void *)fire)); 7771 } 7772 7773 if (mctl_present && io->ipsec_out_attach_if) { 7774 attach_ill = ip_grab_attach_ill(NULL, first_mp, 7775 io->ipsec_out_ill_index, B_FALSE); 7776 7777 /* Failure case frees things for us. */ 7778 if (attach_ill == NULL) { 7779 ipif_refrele(ipif); 7780 if (fire != NULL) 7781 ire_refrele(fire); 7782 return; 7783 } 7784 7785 /* 7786 * Check if we need an ire that will not be 7787 * looked up by anybody else i.e. HIDDEN. 7788 */ 7789 if (ill_is_probeonly(attach_ill)) { 7790 ire_marks = IRE_MARK_HIDDEN; 7791 } 7792 /* 7793 * ip_wput passes the right ipif for IPIF_NOFAILOVER 7794 * case. 7795 */ 7796 dst_ill = ipif->ipif_ill; 7797 /* attach_ill has been refheld by ip_grab_attach_ill */ 7798 ASSERT(dst_ill == attach_ill); 7799 } else { 7800 /* 7801 * If this is set by IP_XMIT_IF, then make sure that 7802 * ipif is pointing to the same ill as the IP_XMIT_IF 7803 * specified ill. 7804 */ 7805 ASSERT((connp == NULL) || 7806 (connp->conn_xmit_if_ill == NULL) || 7807 (connp->conn_xmit_if_ill == ipif->ipif_ill)); 7808 /* 7809 * If the interface belongs to an interface group, 7810 * make sure the next possible interface in the group 7811 * is used. This encourages load spreading among 7812 * peers in an interface group. 7813 * Note: load spreading is disabled for RTF_MULTIRT 7814 * routes. 7815 */ 7816 if ((flags & RTF_MULTIRT) && (fire != NULL) && 7817 (fire->ire_flags & RTF_MULTIRT)) { 7818 /* 7819 * Don't perform outbound load spreading 7820 * in the case of an RTF_MULTIRT issued route, 7821 * we actually typically want to replicate 7822 * outgoing packets through particular 7823 * interfaces. 7824 */ 7825 dst_ill = ipif->ipif_ill; 7826 ill_refhold(dst_ill); 7827 } else { 7828 dst_ill = ip_newroute_get_dst_ill( 7829 ipif->ipif_ill); 7830 } 7831 if (dst_ill == NULL) { 7832 if (ip_debug > 2) { 7833 pr_addr_dbg("ip_newroute_ipif: " 7834 "no dst ill for dst %s\n", 7835 AF_INET, &dst); 7836 } 7837 goto err_ret; 7838 } 7839 } 7840 7841 /* 7842 * Pick a source address preferring non-deprecated ones. 7843 * Unlike ip_newroute, we don't do any source address 7844 * selection here since for multicast it really does not help 7845 * in inbound load spreading as in the unicast case. 7846 */ 7847 if ((flags & RTF_SETSRC) && (fire != NULL) && 7848 (fire->ire_flags & RTF_SETSRC)) { 7849 /* 7850 * As requested by flags, an IRE_OFFSUBNET was looked up 7851 * on that interface. This ire has RTF_SETSRC flag, so 7852 * the source address of the packet must be changed. 7853 * Check that the ipif matching the requested source 7854 * address still exists. 7855 */ 7856 src_ipif = ipif_lookup_addr(fire->ire_src_addr, NULL, 7857 zoneid, NULL, NULL, NULL, NULL); 7858 } 7859 if (((ipif->ipif_flags & IPIF_DEPRECATED) || 7860 (connp != NULL && ipif->ipif_zoneid != zoneid)) && 7861 (src_ipif == NULL)) { 7862 src_ipif = ipif_select_source(dst_ill, dst, zoneid); 7863 if (src_ipif == NULL) { 7864 if (ip_debug > 2) { 7865 /* ip1dbg */ 7866 pr_addr_dbg("ip_newroute_ipif: " 7867 "no src for dst %s", 7868 AF_INET, &dst); 7869 } 7870 ip1dbg((" through interface %s\n", 7871 dst_ill->ill_name)); 7872 goto err_ret; 7873 } 7874 ipif_refrele(ipif); 7875 ipif = src_ipif; 7876 ipif_refhold(ipif); 7877 } 7878 if (src_ipif == NULL) { 7879 src_ipif = ipif; 7880 ipif_refhold(src_ipif); 7881 } 7882 7883 /* 7884 * Assign a source address while we have the conn. 7885 * We can't have ip_wput_ire pick a source address when the 7886 * packet returns from arp since conn_unspec_src might be set 7887 * and we loose the conn when going through arp. 7888 */ 7889 if (ipha->ipha_src == INADDR_ANY && 7890 (connp == NULL || !connp->conn_unspec_src)) { 7891 ipha->ipha_src = src_ipif->ipif_src_addr; 7892 } 7893 7894 /* 7895 * In case of IP_XMIT_IF, it is possible that the outgoing 7896 * interface does not have an interface ire. 7897 * Example: Thousands of mobileip PPP interfaces to mobile 7898 * nodes. We don't want to create interface ires because 7899 * packets from other mobile nodes must not take the route 7900 * via interface ires to the visiting mobile node without 7901 * going through the home agent, in absence of mobileip 7902 * route optimization. 7903 */ 7904 if (CLASSD(ipha_dst) && (connp == NULL || 7905 connp->conn_xmit_if_ill == NULL)) { 7906 /* ipif_to_ire returns an held ire */ 7907 ire = ipif_to_ire(ipif); 7908 if (ire == NULL) 7909 goto err_ret; 7910 if (ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) 7911 goto err_ret; 7912 /* 7913 * ihandle is needed when the ire is added to 7914 * cache table. 7915 */ 7916 save_ire = ire; 7917 ihandle = save_ire->ire_ihandle; 7918 7919 ip2dbg(("ip_newroute_ipif: ire %p, ipif %p, " 7920 "flags %04x\n", 7921 (void *)ire, (void *)ipif, flags)); 7922 if ((flags & RTF_MULTIRT) && (fire != NULL) && 7923 (fire->ire_flags & RTF_MULTIRT)) { 7924 /* 7925 * As requested by flags, an IRE_OFFSUBNET was 7926 * looked up on that interface. This ire has 7927 * RTF_MULTIRT flag, so the resolution loop will 7928 * be re-entered to resolve additional routes on 7929 * other interfaces. For that purpose, a copy of 7930 * the packet is performed at this point. 7931 */ 7932 fire->ire_last_used_time = lbolt; 7933 copy_mp = copymsg(first_mp); 7934 if (copy_mp) { 7935 MULTIRT_DEBUG_TAG(copy_mp); 7936 } 7937 } 7938 if ((flags & RTF_SETSRC) && (fire != NULL) && 7939 (fire->ire_flags & RTF_SETSRC)) { 7940 /* 7941 * As requested by flags, an IRE_OFFSUBET was 7942 * looked up on that interface. This ire has 7943 * RTF_SETSRC flag, so the source address of the 7944 * packet must be changed. 7945 */ 7946 ipha->ipha_src = fire->ire_src_addr; 7947 } 7948 } else { 7949 ASSERT((connp == NULL) || 7950 (connp->conn_xmit_if_ill != NULL) || 7951 (connp->conn_dontroute)); 7952 /* 7953 * The only ways we can come here are: 7954 * 1) IP_XMIT_IF socket option is set 7955 * 2) ICMP error message generated from 7956 * ip_mrtun_forward() routine and it needs 7957 * to go through the specified ill. 7958 * 3) SO_DONTROUTE socket option is set 7959 * In all cases, the new ire will not be added 7960 * into cache table. 7961 */ 7962 ire_marks |= IRE_MARK_NOADD; 7963 } 7964 7965 switch (ipif->ipif_net_type) { 7966 case IRE_IF_NORESOLVER: { 7967 /* We have what we need to build an IRE_CACHE. */ 7968 mblk_t *dlureq_mp; 7969 7970 /* 7971 * Create a new dlureq_mp with the 7972 * IP gateway address as destination address in the 7973 * DLPI hdr if the physical length is exactly 4 bytes. 7974 */ 7975 if (dst_ill->ill_phys_addr_length == IP_ADDR_LEN) { 7976 dlureq_mp = ill_dlur_gen((uchar_t *)&dst, 7977 dst_ill->ill_phys_addr_length, 7978 dst_ill->ill_sap, 7979 dst_ill->ill_sap_length); 7980 } else { 7981 /* use the value set in ip_ll_subnet_defaults */ 7982 dlureq_mp = ill_dlur_gen(NULL, 7983 dst_ill->ill_phys_addr_length, 7984 dst_ill->ill_sap, 7985 dst_ill->ill_sap_length); 7986 } 7987 7988 if (dlureq_mp == NULL) 7989 break; 7990 /* 7991 * The new ire inherits the IRE_OFFSUBNET flags 7992 * and source address, if this was requested. 7993 */ 7994 ire = ire_create( 7995 (uchar_t *)&dst, /* dest address */ 7996 (uchar_t *)&ip_g_all_ones, /* mask */ 7997 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 7998 NULL, /* gateway address */ 7999 NULL, 8000 &ipif->ipif_mtu, 8001 NULL, /* Fast Path header */ 8002 dst_ill->ill_rq, /* recv-from queue */ 8003 dst_ill->ill_wq, /* send-to queue */ 8004 IRE_CACHE, 8005 dlureq_mp, 8006 src_ipif, 8007 NULL, 8008 (save_ire != NULL ? save_ire->ire_mask : 0), 8009 (fire != NULL) ? /* Parent handle */ 8010 fire->ire_phandle : 0, 8011 ihandle, /* Interface handle */ 8012 (fire != NULL) ? 8013 (fire->ire_flags & 8014 (RTF_SETSRC | RTF_MULTIRT)) : 0, 8015 (save_ire == NULL ? &ire_uinfo_null : 8016 &save_ire->ire_uinfo)); 8017 8018 freeb(dlureq_mp); 8019 8020 if (ire == NULL) { 8021 if (save_ire != NULL) 8022 ire_refrele(save_ire); 8023 break; 8024 } 8025 8026 ire->ire_marks |= ire_marks; 8027 8028 /* Prevent save_ire from getting deleted */ 8029 if (save_ire != NULL) { 8030 IRB_REFHOLD(save_ire->ire_bucket); 8031 /* Has it been removed already ? */ 8032 if (save_ire->ire_marks & IRE_MARK_CONDEMNED) { 8033 IRB_REFRELE(save_ire->ire_bucket); 8034 ire_refrele(save_ire); 8035 break; 8036 } 8037 } 8038 8039 ire_add_then_send(q, ire, first_mp); 8040 8041 /* Assert that save_ire is not deleted yet. */ 8042 if (save_ire != NULL) { 8043 ASSERT(save_ire->ire_ptpn != NULL); 8044 IRB_REFRELE(save_ire->ire_bucket); 8045 ire_refrele(save_ire); 8046 save_ire = NULL; 8047 } 8048 if (fire != NULL) { 8049 ire_refrele(fire); 8050 fire = NULL; 8051 } 8052 8053 /* 8054 * the resolution loop is re-entered if this 8055 * was requested through flags and if we 8056 * actually are in a multirouting case. 8057 */ 8058 if ((flags & RTF_MULTIRT) && (copy_mp != NULL)) { 8059 boolean_t need_resolve = 8060 ire_multirt_need_resolve(ipha_dst); 8061 if (!need_resolve) { 8062 MULTIRT_DEBUG_UNTAG(copy_mp); 8063 freemsg(copy_mp); 8064 copy_mp = NULL; 8065 } else { 8066 /* 8067 * ipif_lookup_group() calls 8068 * ire_lookup_multi() that uses 8069 * ire_ftable_lookup() to find 8070 * an IRE_INTERFACE for the group. 8071 * In the multirt case, 8072 * ire_lookup_multi() then invokes 8073 * ire_multirt_lookup() to find 8074 * the next resolvable ire. 8075 * As a result, we obtain an new 8076 * interface, derived from the 8077 * next ire. 8078 */ 8079 ipif_refrele(ipif); 8080 ipif = ipif_lookup_group(ipha_dst, 8081 zoneid); 8082 ip2dbg(("ip_newroute_ipif: " 8083 "multirt dst %08x, ipif %p\n", 8084 htonl(dst), (void *)ipif)); 8085 if (ipif != NULL) { 8086 mp = copy_mp; 8087 copy_mp = NULL; 8088 multirt_resolve_next = B_TRUE; 8089 continue; 8090 } else { 8091 freemsg(copy_mp); 8092 } 8093 } 8094 } 8095 if (ipif != NULL) 8096 ipif_refrele(ipif); 8097 ill_refrele(dst_ill); 8098 ipif_refrele(src_ipif); 8099 return; 8100 } 8101 case IRE_IF_RESOLVER: 8102 /* 8103 * We can't build an IRE_CACHE yet, but at least 8104 * we found a resolver that can help. 8105 */ 8106 res_mp = dst_ill->ill_resolver_mp; 8107 if (!OK_RESOLVER_MP(res_mp)) 8108 break; 8109 8110 /* 8111 * We obtain a partial IRE_CACHE which we will pass 8112 * along with the resolver query. When the response 8113 * comes back it will be there ready for us to add. 8114 * The new ire inherits the IRE_OFFSUBNET flags 8115 * and source address, if this was requested. 8116 * The ire_max_frag is atomically set under the 8117 * irebucket lock in ire_add_v[46]. Only in the 8118 * case of IRE_MARK_NOADD, we set it here itself. 8119 */ 8120 ire = ire_create_mp( 8121 (uchar_t *)&dst, /* dest address */ 8122 (uchar_t *)&ip_g_all_ones, /* mask */ 8123 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 8124 NULL, /* gateway address */ 8125 NULL, /* no in_src_addr */ 8126 (ire_marks & IRE_MARK_NOADD) ? 8127 ipif->ipif_mtu : 0, /* max_frag */ 8128 NULL, /* Fast path header */ 8129 dst_ill->ill_rq, /* recv-from queue */ 8130 dst_ill->ill_wq, /* send-to queue */ 8131 IRE_CACHE, 8132 res_mp, 8133 src_ipif, 8134 NULL, 8135 (save_ire != NULL ? save_ire->ire_mask : 0), 8136 (fire != NULL) ? /* Parent handle */ 8137 fire->ire_phandle : 0, 8138 ihandle, /* Interface handle */ 8139 (fire != NULL) ? /* flags if any */ 8140 (fire->ire_flags & 8141 (RTF_SETSRC | RTF_MULTIRT)) : 0, 8142 (save_ire == NULL ? &ire_uinfo_null : 8143 &save_ire->ire_uinfo)); 8144 8145 if (save_ire != NULL) { 8146 ire_refrele(save_ire); 8147 save_ire = NULL; 8148 } 8149 if (ire == NULL) 8150 break; 8151 8152 ire->ire_marks |= ire_marks; 8153 /* 8154 * Construct message chain for the resolver of the 8155 * form: 8156 * ARP_REQ_MBLK-->IRE_MBLK-->Packet 8157 * 8158 * NOTE : ire will be added later when the response 8159 * comes back from ARP. If the response does not 8160 * come back, ARP frees the packet. For this reason, 8161 * we can't REFHOLD the bucket of save_ire to prevent 8162 * deletions. We may not be able to REFRELE the 8163 * bucket if the response never comes back. 8164 * Thus, before adding the ire, ire_add_v4 will make 8165 * sure that the interface route does not get deleted. 8166 * This is the only case unlike ip_newroute_v6, 8167 * ip_newroute_ipif_v6 where we can always prevent 8168 * deletions because ire_add_then_send is called after 8169 * creating the IRE. 8170 * If IRE_MARK_NOADD is set, then ire_add_then_send 8171 * does not add this IRE into the IRE CACHE. 8172 */ 8173 ASSERT(ire->ire_mp != NULL); 8174 ire->ire_mp->b_cont = first_mp; 8175 /* Have saved_mp handy, for cleanup if canput fails */ 8176 saved_mp = mp; 8177 mp = ire->ire_dlureq_mp; 8178 ASSERT(mp != NULL); 8179 ire->ire_dlureq_mp = NULL; 8180 linkb(mp, ire->ire_mp); 8181 8182 /* 8183 * Fill in the source and dest addrs for the resolver. 8184 * NOTE: this depends on memory layouts imposed by 8185 * ill_init(). 8186 */ 8187 areq = (areq_t *)mp->b_rptr; 8188 addrp = (ipaddr_t *)((char *)areq + 8189 areq->areq_sender_addr_offset); 8190 *addrp = ire->ire_src_addr; 8191 addrp = (ipaddr_t *)((char *)areq + 8192 areq->areq_target_addr_offset); 8193 *addrp = dst; 8194 /* Up to the resolver. */ 8195 if (canputnext(dst_ill->ill_rq)) { 8196 putnext(dst_ill->ill_rq, mp); 8197 /* 8198 * The response will come back in ip_wput 8199 * with db_type IRE_DB_TYPE. 8200 */ 8201 } else { 8202 ire->ire_dlureq_mp = mp; 8203 mp->b_cont = NULL; 8204 ire_delete(ire); 8205 saved_mp->b_next = NULL; 8206 saved_mp->b_prev = NULL; 8207 freemsg(first_mp); 8208 ip2dbg(("ip_newroute_ipif: dropped\n")); 8209 } 8210 8211 if (fire != NULL) { 8212 ire_refrele(fire); 8213 fire = NULL; 8214 } 8215 8216 8217 /* 8218 * The resolution loop is re-entered if this was 8219 * requested through flags and we actually are 8220 * in a multirouting case. 8221 */ 8222 if ((flags & RTF_MULTIRT) && (copy_mp != NULL)) { 8223 boolean_t need_resolve = 8224 ire_multirt_need_resolve(ipha_dst); 8225 if (!need_resolve) { 8226 MULTIRT_DEBUG_UNTAG(copy_mp); 8227 freemsg(copy_mp); 8228 copy_mp = NULL; 8229 } else { 8230 /* 8231 * ipif_lookup_group() calls 8232 * ire_lookup_multi() that uses 8233 * ire_ftable_lookup() to find 8234 * an IRE_INTERFACE for the group. 8235 * In the multirt case, 8236 * ire_lookup_multi() then invokes 8237 * ire_multirt_lookup() to find 8238 * the next resolvable ire. 8239 * As a result, we obtain an new 8240 * interface, derived from the 8241 * next ire. 8242 */ 8243 ipif_refrele(ipif); 8244 ipif = ipif_lookup_group(ipha_dst, 8245 zoneid); 8246 if (ipif != NULL) { 8247 mp = copy_mp; 8248 copy_mp = NULL; 8249 multirt_resolve_next = B_TRUE; 8250 continue; 8251 } else { 8252 freemsg(copy_mp); 8253 } 8254 } 8255 } 8256 if (ipif != NULL) 8257 ipif_refrele(ipif); 8258 ill_refrele(dst_ill); 8259 ipif_refrele(src_ipif); 8260 return; 8261 default: 8262 break; 8263 } 8264 } while (multirt_resolve_next); 8265 8266 err_ret: 8267 ip2dbg(("ip_newroute_ipif: dropped\n")); 8268 if (fire != NULL) 8269 ire_refrele(fire); 8270 ipif_refrele(ipif); 8271 /* Did this packet originate externally? */ 8272 if (dst_ill != NULL) 8273 ill_refrele(dst_ill); 8274 if (src_ipif != NULL) 8275 ipif_refrele(src_ipif); 8276 if (mp->b_prev || mp->b_next) { 8277 mp->b_next = NULL; 8278 mp->b_prev = NULL; 8279 } else { 8280 /* 8281 * Since ip_wput() isn't close to finished, we fill 8282 * in enough of the header for credible error reporting. 8283 */ 8284 if (ip_hdr_complete((ipha_t *)mp->b_rptr, zoneid)) { 8285 /* Failed */ 8286 freemsg(first_mp); 8287 if (ire != NULL) 8288 ire_refrele(ire); 8289 return; 8290 } 8291 } 8292 /* 8293 * At this point we will have ire only if RTF_BLACKHOLE 8294 * or RTF_REJECT flags are set on the IRE. It will not 8295 * generate ICMP_HOST_UNREACHABLE if RTF_BLACKHOLE is set. 8296 */ 8297 if (ire != NULL) { 8298 if (ire->ire_flags & RTF_BLACKHOLE) { 8299 ire_refrele(ire); 8300 freemsg(first_mp); 8301 return; 8302 } 8303 ire_refrele(ire); 8304 } 8305 icmp_unreachable(q, first_mp, ICMP_HOST_UNREACHABLE); 8306 } 8307 8308 /* Name/Value Table Lookup Routine */ 8309 char * 8310 ip_nv_lookup(nv_t *nv, int value) 8311 { 8312 if (!nv) 8313 return (NULL); 8314 for (; nv->nv_name; nv++) { 8315 if (nv->nv_value == value) 8316 return (nv->nv_name); 8317 } 8318 return ("unknown"); 8319 } 8320 8321 /* 8322 * one day it can be patched to 1 from /etc/system for machines that have few 8323 * fast network interfaces feeding multiple cpus. 8324 */ 8325 int ill_stream_putlocks = 0; 8326 8327 /* 8328 * This is a module open, i.e. this is a control stream for access 8329 * to a DLPI device. We allocate an ill_t as the instance data in 8330 * this case. 8331 */ 8332 int 8333 ip_modopen(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp) 8334 { 8335 uint32_t mem_cnt; 8336 uint32_t cpu_cnt; 8337 uint32_t min_cnt; 8338 pgcnt_t mem_avail; 8339 extern uint32_t ip_cache_table_size, ip6_cache_table_size; 8340 ill_t *ill; 8341 int err; 8342 8343 /* 8344 * Prevent unprivileged processes from pushing IP so that 8345 * they can't send raw IP. 8346 */ 8347 if (secpolicy_net_rawaccess(credp) != 0) 8348 return (EPERM); 8349 8350 ill = (ill_t *)mi_open_alloc_sleep(sizeof (ill_t)); 8351 q->q_ptr = WR(q)->q_ptr = ill; 8352 8353 /* 8354 * ill_init initializes the ill fields and then sends down 8355 * down a DL_INFO_REQ after calling qprocson. 8356 */ 8357 err = ill_init(q, ill); 8358 if (err != 0) { 8359 mi_free(ill); 8360 q->q_ptr = NULL; 8361 WR(q)->q_ptr = NULL; 8362 return (err); 8363 } 8364 8365 /* ill_init initializes the ipsq marking this thread as writer */ 8366 ipsq_exit(ill->ill_phyint->phyint_ipsq, B_TRUE, B_TRUE); 8367 /* Wait for the DL_INFO_ACK */ 8368 mutex_enter(&ill->ill_lock); 8369 while (ill->ill_state_flags & ILL_LL_SUBNET_PENDING) { 8370 /* 8371 * Return value of 0 indicates a pending signal. 8372 */ 8373 err = cv_wait_sig(&ill->ill_cv, &ill->ill_lock); 8374 if (err == 0) { 8375 mutex_exit(&ill->ill_lock); 8376 (void) ip_close(q, 0); 8377 return (EINTR); 8378 } 8379 } 8380 mutex_exit(&ill->ill_lock); 8381 8382 /* 8383 * ip_rput_other could have set an error in ill_error on 8384 * receipt of M_ERROR. 8385 */ 8386 8387 err = ill->ill_error; 8388 if (err != 0) { 8389 (void) ip_close(q, 0); 8390 return (err); 8391 } 8392 8393 /* 8394 * ip_ire_max_bucket_cnt is sized below based on the memory 8395 * size and the cpu speed of the machine. This is upper 8396 * bounded by the compile time value of ip_ire_max_bucket_cnt 8397 * and is lower bounded by the compile time value of 8398 * ip_ire_min_bucket_cnt. Similar logic applies to 8399 * ip6_ire_max_bucket_cnt. 8400 */ 8401 mem_avail = kmem_avail(); 8402 mem_cnt = (mem_avail >> ip_ire_mem_ratio) / 8403 ip_cache_table_size / sizeof (ire_t); 8404 cpu_cnt = CPU->cpu_type_info.pi_clock >> ip_ire_cpu_ratio; 8405 8406 min_cnt = MIN(cpu_cnt, mem_cnt); 8407 if (min_cnt < ip_ire_min_bucket_cnt) 8408 min_cnt = ip_ire_min_bucket_cnt; 8409 if (ip_ire_max_bucket_cnt > min_cnt) { 8410 ip_ire_max_bucket_cnt = min_cnt; 8411 } 8412 8413 mem_cnt = (mem_avail >> ip_ire_mem_ratio) / 8414 ip6_cache_table_size / sizeof (ire_t); 8415 min_cnt = MIN(cpu_cnt, mem_cnt); 8416 if (min_cnt < ip6_ire_min_bucket_cnt) 8417 min_cnt = ip6_ire_min_bucket_cnt; 8418 if (ip6_ire_max_bucket_cnt > min_cnt) { 8419 ip6_ire_max_bucket_cnt = min_cnt; 8420 } 8421 8422 ill->ill_credp = credp; 8423 crhold(credp); 8424 8425 mutex_enter(&ip_mi_lock); 8426 err = mi_open_link(&ip_g_head, (IDP)ill, devp, flag, sflag, credp); 8427 mutex_exit(&ip_mi_lock); 8428 if (err) { 8429 (void) ip_close(q, 0); 8430 return (err); 8431 } 8432 return (0); 8433 } 8434 8435 /* IP open routine. */ 8436 int 8437 ip_open(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp) 8438 { 8439 conn_t *connp; 8440 major_t maj; 8441 8442 TRACE_1(TR_FAC_IP, TR_IP_OPEN, "ip_open: q %p", q); 8443 8444 /* Allow reopen. */ 8445 if (q->q_ptr != NULL) 8446 return (0); 8447 8448 if (sflag & MODOPEN) { 8449 /* This is a module open */ 8450 return (ip_modopen(q, devp, flag, sflag, credp)); 8451 } 8452 8453 8454 /* 8455 * We are opening as a device. This is an IP client stream, and we 8456 * allocate an conn_t as the instance data. 8457 */ 8458 connp = ipcl_conn_create(IPCL_IPCCONN, KM_SLEEP); 8459 connp->conn_upq = q; 8460 q->q_ptr = WR(q)->q_ptr = connp; 8461 8462 /* Minor tells us which /dev entry was opened */ 8463 if (geteminor(*devp) == IPV6_MINOR) { 8464 connp->conn_flags |= IPCL_ISV6; 8465 connp->conn_af_isv6 = B_TRUE; 8466 ip_setqinfo(q, geteminor(*devp), B_FALSE); 8467 connp->conn_src_preferences = IPV6_PREFER_SRC_DEFAULT; 8468 } else { 8469 connp->conn_af_isv6 = B_FALSE; 8470 connp->conn_pkt_isv6 = B_FALSE; 8471 } 8472 8473 8474 if ((connp->conn_dev = 8475 inet_minor_alloc(ip_minor_arena)) == 0) { 8476 q->q_ptr = WR(q)->q_ptr = NULL; 8477 CONN_DEC_REF(connp); 8478 return (EBUSY); 8479 } 8480 8481 maj = getemajor(*devp); 8482 *devp = makedevice(maj, (minor_t)connp->conn_dev); 8483 8484 /* 8485 * connp->conn_cred is crfree()ed in ip_close(). 8486 */ 8487 connp->conn_cred = credp; 8488 crhold(connp->conn_cred); 8489 8490 connp->conn_zoneid = getzoneid(); 8491 8492 /* 8493 * This should only happen for ndd, netstat, raw socket or other SCTP 8494 * administrative ops. In these cases, we just need a normal conn_t 8495 * with ulp set to IPPROTO_SCTP. All other ops are trapped and 8496 * an error will be returned. 8497 */ 8498 if (maj != SCTP_MAJ && maj != SCTP6_MAJ) { 8499 connp->conn_rq = q; 8500 connp->conn_wq = WR(q); 8501 } else { 8502 connp->conn_ulp = IPPROTO_SCTP; 8503 connp->conn_rq = connp->conn_wq = NULL; 8504 } 8505 /* Non-zero default values */ 8506 connp->conn_multicast_loop = IP_DEFAULT_MULTICAST_LOOP; 8507 8508 /* 8509 * Make the conn globally visible to walkers 8510 */ 8511 mutex_enter(&connp->conn_lock); 8512 connp->conn_state_flags &= ~CONN_INCIPIENT; 8513 mutex_exit(&connp->conn_lock); 8514 ASSERT(connp->conn_ref == 1); 8515 8516 qprocson(q); 8517 8518 return (0); 8519 } 8520 8521 /* 8522 * Change q_qinfo based on the value of isv6. 8523 * This can not called on an ill queue. 8524 * Note that there is no race since either q_qinfo works for conn queues - it 8525 * is just an optimization to enter the best wput routine directly. 8526 */ 8527 void 8528 ip_setqinfo(queue_t *q, minor_t minor, boolean_t bump_mib) 8529 { 8530 ASSERT(q->q_flag & QREADR); 8531 ASSERT(WR(q)->q_next == NULL); 8532 ASSERT(q->q_ptr != NULL); 8533 8534 if (minor == IPV6_MINOR) { 8535 if (bump_mib) 8536 BUMP_MIB(&ip6_mib, ipv6OutSwitchIPv4); 8537 q->q_qinfo = &rinit_ipv6; 8538 WR(q)->q_qinfo = &winit_ipv6; 8539 (Q_TO_CONN(q))->conn_pkt_isv6 = B_TRUE; 8540 } else { 8541 if (bump_mib) 8542 BUMP_MIB(&ip_mib, ipOutSwitchIPv6); 8543 q->q_qinfo = &rinit; 8544 WR(q)->q_qinfo = &winit; 8545 (Q_TO_CONN(q))->conn_pkt_isv6 = B_FALSE; 8546 } 8547 8548 } 8549 8550 /* 8551 * See if IPsec needs loading because of the options in mp. 8552 */ 8553 static boolean_t 8554 ipsec_opt_present(mblk_t *mp) 8555 { 8556 uint8_t *optcp, *next_optcp, *opt_endcp; 8557 struct opthdr *opt; 8558 struct T_opthdr *topt; 8559 int opthdr_len; 8560 t_uscalar_t optname, optlevel; 8561 struct T_optmgmt_req *tor = (struct T_optmgmt_req *)mp->b_rptr; 8562 ipsec_req_t *ipsr; 8563 8564 /* 8565 * Walk through the mess, and find IP_SEC_OPT. If it's there, 8566 * return TRUE. 8567 */ 8568 8569 optcp = mi_offset_param(mp, tor->OPT_offset, tor->OPT_length); 8570 opt_endcp = optcp + tor->OPT_length; 8571 if (tor->PRIM_type == T_OPTMGMT_REQ) { 8572 opthdr_len = sizeof (struct T_opthdr); 8573 } else { /* O_OPTMGMT_REQ */ 8574 ASSERT(tor->PRIM_type == T_SVR4_OPTMGMT_REQ); 8575 opthdr_len = sizeof (struct opthdr); 8576 } 8577 for (; optcp < opt_endcp; optcp = next_optcp) { 8578 if (optcp + opthdr_len > opt_endcp) 8579 return (B_FALSE); /* Not enough option header. */ 8580 if (tor->PRIM_type == T_OPTMGMT_REQ) { 8581 topt = (struct T_opthdr *)optcp; 8582 optlevel = topt->level; 8583 optname = topt->name; 8584 next_optcp = optcp + _TPI_ALIGN_TOPT(topt->len); 8585 } else { 8586 opt = (struct opthdr *)optcp; 8587 optlevel = opt->level; 8588 optname = opt->name; 8589 next_optcp = optcp + opthdr_len + 8590 _TPI_ALIGN_OPT(opt->len); 8591 } 8592 if ((next_optcp < optcp) || /* wraparound pointer space */ 8593 ((next_optcp >= opt_endcp) && /* last option bad len */ 8594 ((next_optcp - opt_endcp) >= __TPI_ALIGN_SIZE))) 8595 return (B_FALSE); /* bad option buffer */ 8596 if ((optlevel == IPPROTO_IP && optname == IP_SEC_OPT) || 8597 (optlevel == IPPROTO_IPV6 && optname == IPV6_SEC_OPT)) { 8598 /* 8599 * Check to see if it's an all-bypass or all-zeroes 8600 * IPsec request. Don't bother loading IPsec if 8601 * the socket doesn't want to use it. (A good example 8602 * is a bypass request.) 8603 * 8604 * Basically, if any of the non-NEVER bits are set, 8605 * load IPsec. 8606 */ 8607 ipsr = (ipsec_req_t *)(optcp + opthdr_len); 8608 if ((ipsr->ipsr_ah_req & ~IPSEC_PREF_NEVER) != 0 || 8609 (ipsr->ipsr_esp_req & ~IPSEC_PREF_NEVER) != 0 || 8610 (ipsr->ipsr_self_encap_req & ~IPSEC_PREF_NEVER) 8611 != 0) 8612 return (B_TRUE); 8613 } 8614 } 8615 return (B_FALSE); 8616 } 8617 8618 /* 8619 * If conn is is waiting for ipsec to finish loading, kick it. 8620 */ 8621 /* ARGSUSED */ 8622 static void 8623 conn_restart_ipsec_waiter(conn_t *connp, void *arg) 8624 { 8625 t_scalar_t optreq_prim; 8626 mblk_t *mp; 8627 cred_t *cr; 8628 int err = 0; 8629 8630 /* 8631 * This function is called, after ipsec loading is complete. 8632 * Since IP checks exclusively and atomically (i.e it prevents 8633 * ipsec load from completing until ip_optcom_req completes) 8634 * whether ipsec load is complete, there cannot be a race with IP 8635 * trying to set the CONN_IPSEC_LOAD_WAIT flag on any conn now. 8636 */ 8637 mutex_enter(&connp->conn_lock); 8638 if (connp->conn_state_flags & CONN_IPSEC_LOAD_WAIT) { 8639 ASSERT(connp->conn_ipsec_opt_mp != NULL); 8640 mp = connp->conn_ipsec_opt_mp; 8641 connp->conn_ipsec_opt_mp = NULL; 8642 connp->conn_state_flags &= ~CONN_IPSEC_LOAD_WAIT; 8643 cr = DB_CREDDEF(mp, GET_QUEUE_CRED(CONNP_TO_WQ(connp))); 8644 mutex_exit(&connp->conn_lock); 8645 8646 ASSERT(DB_TYPE(mp) == M_PROTO || DB_TYPE(mp) == M_PCPROTO); 8647 8648 optreq_prim = ((union T_primitives *)mp->b_rptr)->type; 8649 if (optreq_prim == T_OPTMGMT_REQ) { 8650 err = tpi_optcom_req(CONNP_TO_WQ(connp), mp, cr, 8651 &ip_opt_obj); 8652 } else { 8653 ASSERT(optreq_prim == T_SVR4_OPTMGMT_REQ); 8654 err = svr4_optcom_req(CONNP_TO_WQ(connp), mp, cr, 8655 &ip_opt_obj); 8656 } 8657 if (err != EINPROGRESS) 8658 CONN_OPER_PENDING_DONE(connp); 8659 return; 8660 } 8661 mutex_exit(&connp->conn_lock); 8662 } 8663 8664 /* 8665 * Called from the ipsec_loader thread, outside any perimeter, to tell 8666 * ip qenable any of the queues waiting for the ipsec loader to 8667 * complete. 8668 * 8669 * Use ip_mi_lock to be safe here: all modifications of the mi lists 8670 * are done with this lock held, so it's guaranteed that none of the 8671 * links will change along the way. 8672 */ 8673 void 8674 ip_ipsec_load_complete() 8675 { 8676 ipcl_walk(conn_restart_ipsec_waiter, NULL); 8677 } 8678 8679 /* 8680 * Can't be used. Need to call svr4* -> optset directly. the leaf routine 8681 * determines the grp on which it has to become exclusive, queues the mp 8682 * and sq draining restarts the optmgmt 8683 */ 8684 static boolean_t 8685 ip_check_for_ipsec_opt(queue_t *q, mblk_t *mp) 8686 { 8687 conn_t *connp; 8688 8689 /* 8690 * Take IPsec requests and treat them special. 8691 */ 8692 if (ipsec_opt_present(mp)) { 8693 /* First check if IPsec is loaded. */ 8694 mutex_enter(&ipsec_loader_lock); 8695 if (ipsec_loader_state != IPSEC_LOADER_WAIT) { 8696 mutex_exit(&ipsec_loader_lock); 8697 return (B_FALSE); 8698 } 8699 connp = Q_TO_CONN(q); 8700 mutex_enter(&connp->conn_lock); 8701 connp->conn_state_flags |= CONN_IPSEC_LOAD_WAIT; 8702 8703 ASSERT(connp->conn_ipsec_opt_mp == NULL); 8704 connp->conn_ipsec_opt_mp = mp; 8705 mutex_exit(&connp->conn_lock); 8706 mutex_exit(&ipsec_loader_lock); 8707 8708 ipsec_loader_loadnow(); 8709 return (B_TRUE); 8710 } 8711 return (B_FALSE); 8712 } 8713 8714 /* 8715 * Set IPsec policy from an ipsec_req_t. If the req is not "zero" and valid, 8716 * all of them are copied to the conn_t. If the req is "zero", the policy is 8717 * zeroed out. A "zero" policy has zero ipsr_{ah,req,self_encap}_req 8718 * fields. 8719 * We keep only the latest setting of the policy and thus policy setting 8720 * is not incremental/cumulative. 8721 * 8722 * Requests to set policies with multiple alternative actions will 8723 * go through a different API. 8724 */ 8725 int 8726 ipsec_set_req(cred_t *cr, conn_t *connp, ipsec_req_t *req) 8727 { 8728 uint_t ah_req = 0; 8729 uint_t esp_req = 0; 8730 uint_t se_req = 0; 8731 ipsec_selkey_t sel; 8732 ipsec_act_t *actp = NULL; 8733 uint_t nact; 8734 ipsec_policy_t *pin4 = NULL, *pout4 = NULL; 8735 ipsec_policy_t *pin6 = NULL, *pout6 = NULL; 8736 ipsec_policy_root_t *pr; 8737 ipsec_policy_head_t *ph; 8738 int fam; 8739 boolean_t is_pol_reset; 8740 int error = 0; 8741 8742 #define REQ_MASK (IPSEC_PREF_REQUIRED|IPSEC_PREF_NEVER) 8743 8744 /* 8745 * The IP_SEC_OPT option does not allow variable length parameters, 8746 * hence a request cannot be NULL. 8747 */ 8748 if (req == NULL) 8749 return (EINVAL); 8750 8751 ah_req = req->ipsr_ah_req; 8752 esp_req = req->ipsr_esp_req; 8753 se_req = req->ipsr_self_encap_req; 8754 8755 /* 8756 * Are we dealing with a request to reset the policy (i.e. 8757 * zero requests). 8758 */ 8759 is_pol_reset = ((ah_req & REQ_MASK) == 0 && 8760 (esp_req & REQ_MASK) == 0 && 8761 (se_req & REQ_MASK) == 0); 8762 8763 if (!is_pol_reset) { 8764 /* 8765 * If we couldn't load IPsec, fail with "protocol 8766 * not supported". 8767 * IPsec may not have been loaded for a request with zero 8768 * policies, so we don't fail in this case. 8769 */ 8770 mutex_enter(&ipsec_loader_lock); 8771 if (ipsec_loader_state != IPSEC_LOADER_SUCCEEDED) { 8772 mutex_exit(&ipsec_loader_lock); 8773 return (EPROTONOSUPPORT); 8774 } 8775 mutex_exit(&ipsec_loader_lock); 8776 8777 /* 8778 * Test for valid requests. Invalid algorithms 8779 * need to be tested by IPSEC code because new 8780 * algorithms can be added dynamically. 8781 */ 8782 if ((ah_req & ~(REQ_MASK|IPSEC_PREF_UNIQUE)) != 0 || 8783 (esp_req & ~(REQ_MASK|IPSEC_PREF_UNIQUE)) != 0 || 8784 (se_req & ~(REQ_MASK|IPSEC_PREF_UNIQUE)) != 0) { 8785 return (EINVAL); 8786 } 8787 8788 /* 8789 * Only privileged users can issue these 8790 * requests. 8791 */ 8792 if (((ah_req & IPSEC_PREF_NEVER) || 8793 (esp_req & IPSEC_PREF_NEVER) || 8794 (se_req & IPSEC_PREF_NEVER)) && 8795 secpolicy_net_config(cr, B_FALSE) != 0) { 8796 return (EPERM); 8797 } 8798 8799 /* 8800 * The IPSEC_PREF_REQUIRED and IPSEC_PREF_NEVER 8801 * are mutually exclusive. 8802 */ 8803 if (((ah_req & REQ_MASK) == REQ_MASK) || 8804 ((esp_req & REQ_MASK) == REQ_MASK) || 8805 ((se_req & REQ_MASK) == REQ_MASK)) { 8806 /* Both of them are set */ 8807 return (EINVAL); 8808 } 8809 } 8810 8811 mutex_enter(&connp->conn_lock); 8812 8813 /* 8814 * If we have already cached policies in ip_bind_connected*(), don't 8815 * let them change now. We cache policies for connections 8816 * whose src,dst [addr, port] is known. The exception to this is 8817 * tunnels. Tunnels are allowed to change policies after having 8818 * become fully bound. 8819 */ 8820 if (connp->conn_policy_cached && !IPCL_IS_IPTUN(connp)) { 8821 mutex_exit(&connp->conn_lock); 8822 return (EINVAL); 8823 } 8824 8825 /* 8826 * We have a zero policies, reset the connection policy if already 8827 * set. This will cause the connection to inherit the 8828 * global policy, if any. 8829 */ 8830 if (is_pol_reset) { 8831 if (connp->conn_policy != NULL) { 8832 IPPH_REFRELE(connp->conn_policy); 8833 connp->conn_policy = NULL; 8834 } 8835 connp->conn_flags &= ~IPCL_CHECK_POLICY; 8836 connp->conn_in_enforce_policy = B_FALSE; 8837 connp->conn_out_enforce_policy = B_FALSE; 8838 mutex_exit(&connp->conn_lock); 8839 return (0); 8840 } 8841 8842 ph = connp->conn_policy = ipsec_polhead_split(connp->conn_policy); 8843 if (ph == NULL) 8844 goto enomem; 8845 8846 ipsec_actvec_from_req(req, &actp, &nact); 8847 if (actp == NULL) 8848 goto enomem; 8849 8850 /* 8851 * Always allocate IPv4 policy entries, since they can also 8852 * apply to ipv6 sockets being used in ipv4-compat mode. 8853 */ 8854 bzero(&sel, sizeof (sel)); 8855 sel.ipsl_valid = IPSL_IPV4; 8856 8857 pin4 = ipsec_policy_create(&sel, actp, nact, IPSEC_PRIO_SOCKET); 8858 if (pin4 == NULL) 8859 goto enomem; 8860 8861 pout4 = ipsec_policy_create(&sel, actp, nact, IPSEC_PRIO_SOCKET); 8862 if (pout4 == NULL) 8863 goto enomem; 8864 8865 if (connp->conn_pkt_isv6) { 8866 /* 8867 * We're looking at a v6 socket, also allocate the 8868 * v6-specific entries... 8869 */ 8870 sel.ipsl_valid = IPSL_IPV6; 8871 pin6 = ipsec_policy_create(&sel, actp, nact, 8872 IPSEC_PRIO_SOCKET); 8873 if (pin6 == NULL) 8874 goto enomem; 8875 8876 pout6 = ipsec_policy_create(&sel, actp, nact, 8877 IPSEC_PRIO_SOCKET); 8878 if (pout6 == NULL) 8879 goto enomem; 8880 8881 /* 8882 * .. and file them away in the right place. 8883 */ 8884 fam = IPSEC_AF_V6; 8885 pr = &ph->iph_root[IPSEC_TYPE_INBOUND]; 8886 pin6->ipsp_links.itl_next = pr->ipr[fam]; 8887 pr->ipr[fam] = pin6; 8888 pr = &ph->iph_root[IPSEC_TYPE_OUTBOUND]; 8889 pout6->ipsp_links.itl_next = pr->ipr[fam]; 8890 pr->ipr[fam] = pout6; 8891 } 8892 8893 ipsec_actvec_free(actp, nact); 8894 8895 /* 8896 * File the v4 policies. 8897 */ 8898 fam = IPSEC_AF_V4; 8899 pr = &ph->iph_root[IPSEC_TYPE_INBOUND]; 8900 pin4->ipsp_links.itl_next = pr->ipr[fam]; 8901 pr->ipr[fam] = pin4; 8902 pr = &ph->iph_root[IPSEC_TYPE_OUTBOUND]; 8903 pout4->ipsp_links.itl_next = pr->ipr[fam]; 8904 pr->ipr[fam] = pout4; 8905 8906 /* 8907 * If the requests need security, set enforce_policy. 8908 * If the requests are IPSEC_PREF_NEVER, one should 8909 * still set conn_out_enforce_policy so that an ipsec_out 8910 * gets attached in ip_wput. This is needed so that 8911 * for connections that we don't cache policy in ip_bind, 8912 * if global policy matches in ip_wput_attach_policy, we 8913 * don't wrongly inherit global policy. Similarly, we need 8914 * to set conn_in_enforce_policy also so that we don't verify 8915 * policy wrongly. 8916 */ 8917 if ((ah_req & REQ_MASK) != 0 || 8918 (esp_req & REQ_MASK) != 0 || 8919 (se_req & REQ_MASK) != 0) { 8920 connp->conn_in_enforce_policy = B_TRUE; 8921 connp->conn_out_enforce_policy = B_TRUE; 8922 connp->conn_flags |= IPCL_CHECK_POLICY; 8923 } 8924 8925 /* 8926 * Tunnels are allowed to set policy after having been fully bound. 8927 * If that's the case, cache policy here. 8928 */ 8929 if (IPCL_IS_IPTUN(connp) && connp->conn_fully_bound) 8930 error = ipsec_conn_cache_policy(connp, !connp->conn_af_isv6); 8931 8932 mutex_exit(&connp->conn_lock); 8933 return (error); 8934 #undef REQ_MASK 8935 8936 /* 8937 * Common memory-allocation-failure exit path. 8938 */ 8939 enomem: 8940 mutex_exit(&connp->conn_lock); 8941 if (actp != NULL) 8942 ipsec_actvec_free(actp, nact); 8943 if (pin4 != NULL) 8944 IPPOL_REFRELE(pin4); 8945 if (pout4 != NULL) 8946 IPPOL_REFRELE(pout4); 8947 if (pin6 != NULL) 8948 IPPOL_REFRELE(pin6); 8949 if (pout6 != NULL) 8950 IPPOL_REFRELE(pout6); 8951 return (ENOMEM); 8952 } 8953 8954 /* 8955 * Only for options that pass in an IP addr. Currently only V4 options 8956 * pass in an ipif. V6 options always pass an ifindex specifying the ill. 8957 * So this function assumes level is IPPROTO_IP 8958 */ 8959 int 8960 ip_opt_set_ipif(conn_t *connp, ipaddr_t addr, boolean_t checkonly, int option, 8961 mblk_t *first_mp) 8962 { 8963 ipif_t *ipif = NULL; 8964 int error; 8965 ill_t *ill; 8966 8967 ip2dbg(("ip_opt_set_ipif: ipaddr %X\n", addr)); 8968 8969 if (addr != INADDR_ANY || checkonly) { 8970 ASSERT(connp != NULL); 8971 ipif = ipif_lookup_addr(addr, NULL, connp->conn_zoneid, 8972 CONNP_TO_WQ(connp), first_mp, ip_restart_optmgmt, &error); 8973 if (ipif == NULL) { 8974 if (error == EINPROGRESS) 8975 return (error); 8976 else if (option == IP_MULTICAST_IF) 8977 return (EHOSTUNREACH); 8978 else 8979 return (EINVAL); 8980 } else if (checkonly) { 8981 if (option == IP_MULTICAST_IF) { 8982 ill = ipif->ipif_ill; 8983 /* not supported by the virtual network iface */ 8984 if (IS_VNI(ill)) { 8985 ipif_refrele(ipif); 8986 return (EINVAL); 8987 } 8988 } 8989 ipif_refrele(ipif); 8990 return (0); 8991 } 8992 ill = ipif->ipif_ill; 8993 mutex_enter(&connp->conn_lock); 8994 mutex_enter(&ill->ill_lock); 8995 if ((ill->ill_state_flags & ILL_CONDEMNED) || 8996 (ipif->ipif_state_flags & IPIF_CONDEMNED)) { 8997 mutex_exit(&ill->ill_lock); 8998 mutex_exit(&connp->conn_lock); 8999 ipif_refrele(ipif); 9000 return (option == IP_MULTICAST_IF ? 9001 EHOSTUNREACH : EINVAL); 9002 } 9003 } else { 9004 mutex_enter(&connp->conn_lock); 9005 } 9006 9007 /* None of the options below are supported on the VNI */ 9008 if (ipif != NULL && IS_VNI(ipif->ipif_ill)) { 9009 mutex_exit(&ill->ill_lock); 9010 mutex_exit(&connp->conn_lock); 9011 ipif_refrele(ipif); 9012 return (EINVAL); 9013 } 9014 9015 switch (option) { 9016 case IP_DONTFAILOVER_IF: 9017 /* 9018 * This option is used by in.mpathd to ensure 9019 * that IPMP probe packets only go out on the 9020 * test interfaces. in.mpathd sets this option 9021 * on the non-failover interfaces. 9022 * For backward compatibility, this option 9023 * implicitly sets IP_MULTICAST_IF, as used 9024 * be done in bind(), so that ip_wput gets 9025 * this ipif to send mcast packets. 9026 */ 9027 if (ipif != NULL) { 9028 ASSERT(addr != INADDR_ANY); 9029 connp->conn_nofailover_ill = ipif->ipif_ill; 9030 connp->conn_multicast_ipif = ipif; 9031 } else { 9032 ASSERT(addr == INADDR_ANY); 9033 connp->conn_nofailover_ill = NULL; 9034 connp->conn_multicast_ipif = NULL; 9035 } 9036 break; 9037 9038 case IP_MULTICAST_IF: 9039 connp->conn_multicast_ipif = ipif; 9040 break; 9041 } 9042 9043 if (ipif != NULL) { 9044 mutex_exit(&ill->ill_lock); 9045 mutex_exit(&connp->conn_lock); 9046 ipif_refrele(ipif); 9047 return (0); 9048 } 9049 mutex_exit(&connp->conn_lock); 9050 /* We succeded in cleared the option */ 9051 return (0); 9052 } 9053 9054 /* 9055 * For options that pass in an ifindex specifying the ill. V6 options always 9056 * pass in an ill. Some v4 options also pass in ifindex specifying the ill. 9057 */ 9058 int 9059 ip_opt_set_ill(conn_t *connp, int ifindex, boolean_t isv6, boolean_t checkonly, 9060 int level, int option, mblk_t *first_mp) 9061 { 9062 ill_t *ill = NULL; 9063 int error = 0; 9064 9065 ip2dbg(("ip_opt_set_ill: ifindex %d\n", ifindex)); 9066 if (ifindex != 0) { 9067 ASSERT(connp != NULL); 9068 ill = ill_lookup_on_ifindex(ifindex, isv6, CONNP_TO_WQ(connp), 9069 first_mp, ip_restart_optmgmt, &error); 9070 if (ill != NULL) { 9071 if (checkonly) { 9072 /* not supported by the virtual network iface */ 9073 if (IS_VNI(ill)) { 9074 ill_refrele(ill); 9075 return (EINVAL); 9076 } 9077 ill_refrele(ill); 9078 return (0); 9079 } 9080 if (!ipif_lookup_zoneid_group(ill, connp->conn_zoneid, 9081 0, NULL)) { 9082 ill_refrele(ill); 9083 ill = NULL; 9084 mutex_enter(&connp->conn_lock); 9085 goto setit; 9086 } 9087 mutex_enter(&connp->conn_lock); 9088 mutex_enter(&ill->ill_lock); 9089 if (ill->ill_state_flags & ILL_CONDEMNED) { 9090 mutex_exit(&ill->ill_lock); 9091 mutex_exit(&connp->conn_lock); 9092 ill_refrele(ill); 9093 ill = NULL; 9094 mutex_enter(&connp->conn_lock); 9095 } 9096 goto setit; 9097 } else if (error == EINPROGRESS) { 9098 return (error); 9099 } else { 9100 error = 0; 9101 } 9102 } 9103 mutex_enter(&connp->conn_lock); 9104 setit: 9105 ASSERT((level == IPPROTO_IP || level == IPPROTO_IPV6)); 9106 9107 /* 9108 * The options below assume that the ILL (if any) transmits and/or 9109 * receives traffic. Neither of which is true for the virtual network 9110 * interface, so fail setting these on a VNI. 9111 */ 9112 if (IS_VNI(ill)) { 9113 ASSERT(ill != NULL); 9114 mutex_exit(&ill->ill_lock); 9115 mutex_exit(&connp->conn_lock); 9116 ill_refrele(ill); 9117 return (EINVAL); 9118 } 9119 9120 if (level == IPPROTO_IP) { 9121 switch (option) { 9122 case IP_BOUND_IF: 9123 connp->conn_incoming_ill = ill; 9124 connp->conn_outgoing_ill = ill; 9125 connp->conn_orig_bound_ifindex = (ill == NULL) ? 9126 0 : ifindex; 9127 break; 9128 9129 case IP_XMIT_IF: 9130 /* 9131 * Similar to IP_BOUND_IF, but this only 9132 * determines the outgoing interface for 9133 * unicast packets. Also no IRE_CACHE entry 9134 * is added for the destination of the 9135 * outgoing packets. This feature is needed 9136 * for mobile IP. 9137 */ 9138 connp->conn_xmit_if_ill = ill; 9139 connp->conn_orig_xmit_ifindex = (ill == NULL) ? 9140 0 : ifindex; 9141 break; 9142 9143 case IP_MULTICAST_IF: 9144 /* 9145 * This option is an internal special. The socket 9146 * level IP_MULTICAST_IF specifies an 'ipaddr' and 9147 * is handled in ip_opt_set_ipif. IPV6_MULTICAST_IF 9148 * specifies an ifindex and we try first on V6 ill's. 9149 * If we don't find one, we they try using on v4 ill's 9150 * intenally and we come here. 9151 */ 9152 if (!checkonly && ill != NULL) { 9153 ipif_t *ipif; 9154 ipif = ill->ill_ipif; 9155 9156 if (ipif->ipif_state_flags & IPIF_CONDEMNED) { 9157 mutex_exit(&ill->ill_lock); 9158 mutex_exit(&connp->conn_lock); 9159 ill_refrele(ill); 9160 ill = NULL; 9161 mutex_enter(&connp->conn_lock); 9162 } else { 9163 connp->conn_multicast_ipif = ipif; 9164 } 9165 } 9166 break; 9167 } 9168 } else { 9169 switch (option) { 9170 case IPV6_BOUND_IF: 9171 connp->conn_incoming_ill = ill; 9172 connp->conn_outgoing_ill = ill; 9173 connp->conn_orig_bound_ifindex = (ill == NULL) ? 9174 0 : ifindex; 9175 break; 9176 9177 case IPV6_BOUND_PIF: 9178 /* 9179 * Limit all transmit to this ill. 9180 * Unlike IPV6_BOUND_IF, using this option 9181 * prevents load spreading and failover from 9182 * happening when the interface is part of the 9183 * group. That's why we don't need to remember 9184 * the ifindex in orig_bound_ifindex as in 9185 * IPV6_BOUND_IF. 9186 */ 9187 connp->conn_outgoing_pill = ill; 9188 break; 9189 9190 case IPV6_DONTFAILOVER_IF: 9191 /* 9192 * This option is used by in.mpathd to ensure 9193 * that IPMP probe packets only go out on the 9194 * test interfaces. in.mpathd sets this option 9195 * on the non-failover interfaces. 9196 */ 9197 connp->conn_nofailover_ill = ill; 9198 /* 9199 * For backward compatibility, this option 9200 * implicitly sets ip_multicast_ill as used in 9201 * IP_MULTICAST_IF so that ip_wput gets 9202 * this ipif to send mcast packets. 9203 */ 9204 connp->conn_multicast_ill = ill; 9205 connp->conn_orig_multicast_ifindex = (ill == NULL) ? 9206 0 : ifindex; 9207 break; 9208 9209 case IPV6_MULTICAST_IF: 9210 /* 9211 * Set conn_multicast_ill to be the IPv6 ill. 9212 * Set conn_multicast_ipif to be an IPv4 ipif 9213 * for ifindex to make IPv4 mapped addresses 9214 * on PF_INET6 sockets honor IPV6_MULTICAST_IF. 9215 * Even if no IPv6 ill exists for the ifindex 9216 * we need to check for an IPv4 ifindex in order 9217 * for this to work with mapped addresses. In that 9218 * case only set conn_multicast_ipif. 9219 */ 9220 if (!checkonly) { 9221 if (ifindex == 0) { 9222 connp->conn_multicast_ill = NULL; 9223 connp->conn_orig_multicast_ifindex = 0; 9224 connp->conn_multicast_ipif = NULL; 9225 } else if (ill != NULL) { 9226 connp->conn_multicast_ill = ill; 9227 connp->conn_orig_multicast_ifindex = 9228 ifindex; 9229 } 9230 } 9231 break; 9232 } 9233 } 9234 9235 if (ill != NULL) { 9236 mutex_exit(&ill->ill_lock); 9237 mutex_exit(&connp->conn_lock); 9238 ill_refrele(ill); 9239 return (0); 9240 } 9241 mutex_exit(&connp->conn_lock); 9242 /* 9243 * We succeeded in clearing the option (ifindex == 0) or failed to 9244 * locate the ill and could not set the option (ifindex != 0) 9245 */ 9246 return (ifindex == 0 ? 0 : EINVAL); 9247 } 9248 9249 /* This routine sets socket options. */ 9250 /* ARGSUSED */ 9251 int 9252 ip_opt_set(queue_t *q, uint_t optset_context, int level, int name, 9253 uint_t inlen, uchar_t *invalp, uint_t *outlenp, uchar_t *outvalp, 9254 void *dummy, cred_t *cr, mblk_t *first_mp) 9255 { 9256 int *i1 = (int *)invalp; 9257 conn_t *connp = Q_TO_CONN(q); 9258 int error = 0; 9259 boolean_t checkonly; 9260 ire_t *ire; 9261 boolean_t found; 9262 9263 switch (optset_context) { 9264 9265 case SETFN_OPTCOM_CHECKONLY: 9266 checkonly = B_TRUE; 9267 /* 9268 * Note: Implies T_CHECK semantics for T_OPTCOM_REQ 9269 * inlen != 0 implies value supplied and 9270 * we have to "pretend" to set it. 9271 * inlen == 0 implies that there is no 9272 * value part in T_CHECK request and just validation 9273 * done elsewhere should be enough, we just return here. 9274 */ 9275 if (inlen == 0) { 9276 *outlenp = 0; 9277 return (0); 9278 } 9279 break; 9280 case SETFN_OPTCOM_NEGOTIATE: 9281 case SETFN_UD_NEGOTIATE: 9282 case SETFN_CONN_NEGOTIATE: 9283 checkonly = B_FALSE; 9284 break; 9285 default: 9286 /* 9287 * We should never get here 9288 */ 9289 *outlenp = 0; 9290 return (EINVAL); 9291 } 9292 9293 ASSERT((optset_context != SETFN_OPTCOM_CHECKONLY) || 9294 (optset_context == SETFN_OPTCOM_CHECKONLY && inlen != 0)); 9295 9296 /* 9297 * For fixed length options, no sanity check 9298 * of passed in length is done. It is assumed *_optcom_req() 9299 * routines do the right thing. 9300 */ 9301 9302 switch (level) { 9303 case SOL_SOCKET: 9304 /* 9305 * conn_lock protects the bitfields, and is used to 9306 * set the fields atomically. 9307 */ 9308 switch (name) { 9309 case SO_BROADCAST: 9310 if (!checkonly) { 9311 /* TODO: use value someplace? */ 9312 mutex_enter(&connp->conn_lock); 9313 connp->conn_broadcast = *i1 ? 1 : 0; 9314 mutex_exit(&connp->conn_lock); 9315 } 9316 break; /* goto sizeof (int) option return */ 9317 case SO_USELOOPBACK: 9318 if (!checkonly) { 9319 /* TODO: use value someplace? */ 9320 mutex_enter(&connp->conn_lock); 9321 connp->conn_loopback = *i1 ? 1 : 0; 9322 mutex_exit(&connp->conn_lock); 9323 } 9324 break; /* goto sizeof (int) option return */ 9325 case SO_DONTROUTE: 9326 if (!checkonly) { 9327 mutex_enter(&connp->conn_lock); 9328 connp->conn_dontroute = *i1 ? 1 : 0; 9329 mutex_exit(&connp->conn_lock); 9330 } 9331 break; /* goto sizeof (int) option return */ 9332 case SO_REUSEADDR: 9333 if (!checkonly) { 9334 mutex_enter(&connp->conn_lock); 9335 connp->conn_reuseaddr = *i1 ? 1 : 0; 9336 mutex_exit(&connp->conn_lock); 9337 } 9338 break; /* goto sizeof (int) option return */ 9339 case SO_PROTOTYPE: 9340 if (!checkonly) { 9341 mutex_enter(&connp->conn_lock); 9342 connp->conn_proto = *i1; 9343 mutex_exit(&connp->conn_lock); 9344 } 9345 break; /* goto sizeof (int) option return */ 9346 default: 9347 /* 9348 * "soft" error (negative) 9349 * option not handled at this level 9350 * Note: Do not modify *outlenp 9351 */ 9352 return (-EINVAL); 9353 } 9354 break; 9355 case IPPROTO_IP: 9356 switch (name) { 9357 case IP_MULTICAST_IF: 9358 case IP_DONTFAILOVER_IF: { 9359 ipaddr_t addr = *i1; 9360 9361 error = ip_opt_set_ipif(connp, addr, checkonly, name, 9362 first_mp); 9363 if (error != 0) 9364 return (error); 9365 break; /* goto sizeof (int) option return */ 9366 } 9367 9368 case IP_MULTICAST_TTL: 9369 /* Recorded in transport above IP */ 9370 *outvalp = *invalp; 9371 *outlenp = sizeof (uchar_t); 9372 return (0); 9373 case IP_MULTICAST_LOOP: 9374 if (!checkonly) { 9375 mutex_enter(&connp->conn_lock); 9376 connp->conn_multicast_loop = *invalp ? 1 : 0; 9377 mutex_exit(&connp->conn_lock); 9378 } 9379 *outvalp = *invalp; 9380 *outlenp = sizeof (uchar_t); 9381 return (0); 9382 case IP_ADD_MEMBERSHIP: 9383 case MCAST_JOIN_GROUP: 9384 case IP_DROP_MEMBERSHIP: 9385 case MCAST_LEAVE_GROUP: { 9386 struct ip_mreq *mreqp; 9387 struct group_req *greqp; 9388 ire_t *ire; 9389 boolean_t done = B_FALSE; 9390 ipaddr_t group, ifaddr; 9391 struct sockaddr_in *sin; 9392 uint32_t *ifindexp; 9393 boolean_t mcast_opt = B_TRUE; 9394 mcast_record_t fmode; 9395 int (*optfn)(conn_t *, boolean_t, ipaddr_t, ipaddr_t, 9396 uint_t *, mcast_record_t, ipaddr_t, mblk_t *); 9397 9398 switch (name) { 9399 case IP_ADD_MEMBERSHIP: 9400 mcast_opt = B_FALSE; 9401 /* FALLTHRU */ 9402 case MCAST_JOIN_GROUP: 9403 fmode = MODE_IS_EXCLUDE; 9404 optfn = ip_opt_add_group; 9405 break; 9406 9407 case IP_DROP_MEMBERSHIP: 9408 mcast_opt = B_FALSE; 9409 /* FALLTHRU */ 9410 case MCAST_LEAVE_GROUP: 9411 fmode = MODE_IS_INCLUDE; 9412 optfn = ip_opt_delete_group; 9413 break; 9414 } 9415 9416 if (mcast_opt) { 9417 greqp = (struct group_req *)i1; 9418 sin = (struct sockaddr_in *)&greqp->gr_group; 9419 if (sin->sin_family != AF_INET) { 9420 *outlenp = 0; 9421 return (ENOPROTOOPT); 9422 } 9423 group = (ipaddr_t)sin->sin_addr.s_addr; 9424 ifaddr = INADDR_ANY; 9425 ifindexp = &greqp->gr_interface; 9426 } else { 9427 mreqp = (struct ip_mreq *)i1; 9428 group = (ipaddr_t)mreqp->imr_multiaddr.s_addr; 9429 ifaddr = (ipaddr_t)mreqp->imr_interface.s_addr; 9430 ifindexp = NULL; 9431 } 9432 9433 /* 9434 * In the multirouting case, we need to replicate 9435 * the request on all interfaces that will take part 9436 * in replication. We do so because multirouting is 9437 * reflective, thus we will probably receive multi- 9438 * casts on those interfaces. 9439 * The ip_multirt_apply_membership() succeeds if the 9440 * operation succeeds on at least one interface. 9441 */ 9442 ire = ire_ftable_lookup(group, IP_HOST_MASK, 0, 9443 IRE_HOST, NULL, NULL, ALL_ZONES, 0, 9444 MATCH_IRE_MASK | MATCH_IRE_TYPE); 9445 if (ire != NULL) { 9446 if (ire->ire_flags & RTF_MULTIRT) { 9447 error = ip_multirt_apply_membership( 9448 optfn, ire, connp, checkonly, group, 9449 fmode, INADDR_ANY, first_mp); 9450 done = B_TRUE; 9451 } 9452 ire_refrele(ire); 9453 } 9454 if (!done) { 9455 error = optfn(connp, checkonly, group, ifaddr, 9456 ifindexp, fmode, INADDR_ANY, first_mp); 9457 } 9458 if (error) { 9459 /* 9460 * EINPROGRESS is a soft error, needs retry 9461 * so don't make *outlenp zero. 9462 */ 9463 if (error != EINPROGRESS) 9464 *outlenp = 0; 9465 return (error); 9466 } 9467 /* OK return - copy input buffer into output buffer */ 9468 if (invalp != outvalp) { 9469 /* don't trust bcopy for identical src/dst */ 9470 bcopy(invalp, outvalp, inlen); 9471 } 9472 *outlenp = inlen; 9473 return (0); 9474 } 9475 case IP_BLOCK_SOURCE: 9476 case IP_UNBLOCK_SOURCE: 9477 case IP_ADD_SOURCE_MEMBERSHIP: 9478 case IP_DROP_SOURCE_MEMBERSHIP: 9479 case MCAST_BLOCK_SOURCE: 9480 case MCAST_UNBLOCK_SOURCE: 9481 case MCAST_JOIN_SOURCE_GROUP: 9482 case MCAST_LEAVE_SOURCE_GROUP: { 9483 struct ip_mreq_source *imreqp; 9484 struct group_source_req *gsreqp; 9485 in_addr_t grp, src, ifaddr = INADDR_ANY; 9486 uint32_t ifindex = 0; 9487 mcast_record_t fmode; 9488 struct sockaddr_in *sin; 9489 ire_t *ire; 9490 boolean_t mcast_opt = B_TRUE, done = B_FALSE; 9491 int (*optfn)(conn_t *, boolean_t, ipaddr_t, ipaddr_t, 9492 uint_t *, mcast_record_t, ipaddr_t, mblk_t *); 9493 9494 switch (name) { 9495 case IP_BLOCK_SOURCE: 9496 mcast_opt = B_FALSE; 9497 /* FALLTHRU */ 9498 case MCAST_BLOCK_SOURCE: 9499 fmode = MODE_IS_EXCLUDE; 9500 optfn = ip_opt_add_group; 9501 break; 9502 9503 case IP_UNBLOCK_SOURCE: 9504 mcast_opt = B_FALSE; 9505 /* FALLTHRU */ 9506 case MCAST_UNBLOCK_SOURCE: 9507 fmode = MODE_IS_EXCLUDE; 9508 optfn = ip_opt_delete_group; 9509 break; 9510 9511 case IP_ADD_SOURCE_MEMBERSHIP: 9512 mcast_opt = B_FALSE; 9513 /* FALLTHRU */ 9514 case MCAST_JOIN_SOURCE_GROUP: 9515 fmode = MODE_IS_INCLUDE; 9516 optfn = ip_opt_add_group; 9517 break; 9518 9519 case IP_DROP_SOURCE_MEMBERSHIP: 9520 mcast_opt = B_FALSE; 9521 /* FALLTHRU */ 9522 case MCAST_LEAVE_SOURCE_GROUP: 9523 fmode = MODE_IS_INCLUDE; 9524 optfn = ip_opt_delete_group; 9525 break; 9526 } 9527 9528 if (mcast_opt) { 9529 gsreqp = (struct group_source_req *)i1; 9530 if (gsreqp->gsr_group.ss_family != AF_INET) { 9531 *outlenp = 0; 9532 return (ENOPROTOOPT); 9533 } 9534 sin = (struct sockaddr_in *)&gsreqp->gsr_group; 9535 grp = (ipaddr_t)sin->sin_addr.s_addr; 9536 sin = (struct sockaddr_in *)&gsreqp->gsr_source; 9537 src = (ipaddr_t)sin->sin_addr.s_addr; 9538 ifindex = gsreqp->gsr_interface; 9539 } else { 9540 imreqp = (struct ip_mreq_source *)i1; 9541 grp = (ipaddr_t)imreqp->imr_multiaddr.s_addr; 9542 src = (ipaddr_t)imreqp->imr_sourceaddr.s_addr; 9543 ifaddr = (ipaddr_t)imreqp->imr_interface.s_addr; 9544 } 9545 9546 /* 9547 * In the multirouting case, we need to replicate 9548 * the request as noted in the mcast cases above. 9549 */ 9550 ire = ire_ftable_lookup(grp, IP_HOST_MASK, 0, 9551 IRE_HOST, NULL, NULL, ALL_ZONES, 0, 9552 MATCH_IRE_MASK | MATCH_IRE_TYPE); 9553 if (ire != NULL) { 9554 if (ire->ire_flags & RTF_MULTIRT) { 9555 error = ip_multirt_apply_membership( 9556 optfn, ire, connp, checkonly, grp, 9557 fmode, src, first_mp); 9558 done = B_TRUE; 9559 } 9560 ire_refrele(ire); 9561 } 9562 if (!done) { 9563 error = optfn(connp, checkonly, grp, ifaddr, 9564 &ifindex, fmode, src, first_mp); 9565 } 9566 if (error != 0) { 9567 /* 9568 * EINPROGRESS is a soft error, needs retry 9569 * so don't make *outlenp zero. 9570 */ 9571 if (error != EINPROGRESS) 9572 *outlenp = 0; 9573 return (error); 9574 } 9575 /* OK return - copy input buffer into output buffer */ 9576 if (invalp != outvalp) { 9577 bcopy(invalp, outvalp, inlen); 9578 } 9579 *outlenp = inlen; 9580 return (0); 9581 } 9582 case IP_SEC_OPT: 9583 error = ipsec_set_req(cr, connp, (ipsec_req_t *)invalp); 9584 if (error != 0) { 9585 *outlenp = 0; 9586 return (error); 9587 } 9588 break; 9589 case IP_HDRINCL: 9590 case IP_OPTIONS: 9591 case T_IP_OPTIONS: 9592 case IP_TOS: 9593 case T_IP_TOS: 9594 case IP_TTL: 9595 case IP_RECVDSTADDR: 9596 case IP_RECVOPTS: 9597 /* OK return - copy input buffer into output buffer */ 9598 if (invalp != outvalp) { 9599 /* don't trust bcopy for identical src/dst */ 9600 bcopy(invalp, outvalp, inlen); 9601 } 9602 *outlenp = inlen; 9603 return (0); 9604 case IP_RECVIF: 9605 /* Retrieve the inbound interface index */ 9606 if (!checkonly) { 9607 mutex_enter(&connp->conn_lock); 9608 connp->conn_recvif = *i1 ? 1 : 0; 9609 mutex_exit(&connp->conn_lock); 9610 } 9611 break; /* goto sizeof (int) option return */ 9612 case IP_RECVSLLA: 9613 /* Retrieve the source link layer address */ 9614 if (!checkonly) { 9615 mutex_enter(&connp->conn_lock); 9616 connp->conn_recvslla = *i1 ? 1 : 0; 9617 mutex_exit(&connp->conn_lock); 9618 } 9619 break; /* goto sizeof (int) option return */ 9620 case MRT_INIT: 9621 case MRT_DONE: 9622 case MRT_ADD_VIF: 9623 case MRT_DEL_VIF: 9624 case MRT_ADD_MFC: 9625 case MRT_DEL_MFC: 9626 case MRT_ASSERT: 9627 if ((error = secpolicy_net_config(cr, B_FALSE)) != 0) { 9628 *outlenp = 0; 9629 return (error); 9630 } 9631 error = ip_mrouter_set((int)name, q, checkonly, 9632 (uchar_t *)invalp, inlen, first_mp); 9633 if (error) { 9634 *outlenp = 0; 9635 return (error); 9636 } 9637 /* OK return - copy input buffer into output buffer */ 9638 if (invalp != outvalp) { 9639 /* don't trust bcopy for identical src/dst */ 9640 bcopy(invalp, outvalp, inlen); 9641 } 9642 *outlenp = inlen; 9643 return (0); 9644 case IP_BOUND_IF: 9645 case IP_XMIT_IF: 9646 error = ip_opt_set_ill(connp, *i1, B_FALSE, checkonly, 9647 level, name, first_mp); 9648 if (error != 0) 9649 return (error); 9650 break; /* goto sizeof (int) option return */ 9651 9652 case IP_UNSPEC_SRC: 9653 /* Allow sending with a zero source address */ 9654 if (!checkonly) { 9655 mutex_enter(&connp->conn_lock); 9656 connp->conn_unspec_src = *i1 ? 1 : 0; 9657 mutex_exit(&connp->conn_lock); 9658 } 9659 break; /* goto sizeof (int) option return */ 9660 default: 9661 /* 9662 * "soft" error (negative) 9663 * option not handled at this level 9664 * Note: Do not modify *outlenp 9665 */ 9666 return (-EINVAL); 9667 } 9668 break; 9669 case IPPROTO_IPV6: 9670 switch (name) { 9671 case IPV6_BOUND_IF: 9672 case IPV6_BOUND_PIF: 9673 case IPV6_DONTFAILOVER_IF: 9674 error = ip_opt_set_ill(connp, *i1, B_TRUE, checkonly, 9675 level, name, first_mp); 9676 if (error != 0) 9677 return (error); 9678 break; /* goto sizeof (int) option return */ 9679 9680 case IPV6_MULTICAST_IF: 9681 /* 9682 * The only possible errors are EINPROGRESS and 9683 * EINVAL. EINPROGRESS will be restarted and is not 9684 * a hard error. We call this option on both V4 and V6 9685 * If both return EINVAL, then this call returns 9686 * EINVAL. If at least one of them succeeds we 9687 * return success. 9688 */ 9689 found = B_FALSE; 9690 error = ip_opt_set_ill(connp, *i1, B_TRUE, checkonly, 9691 level, name, first_mp); 9692 if (error == EINPROGRESS) 9693 return (error); 9694 if (error == 0) 9695 found = B_TRUE; 9696 error = ip_opt_set_ill(connp, *i1, B_FALSE, checkonly, 9697 IPPROTO_IP, IP_MULTICAST_IF, first_mp); 9698 if (error == 0) 9699 found = B_TRUE; 9700 if (!found) 9701 return (error); 9702 break; /* goto sizeof (int) option return */ 9703 9704 case IPV6_MULTICAST_HOPS: 9705 /* Recorded in transport above IP */ 9706 break; /* goto sizeof (int) option return */ 9707 case IPV6_MULTICAST_LOOP: 9708 if (!checkonly) { 9709 mutex_enter(&connp->conn_lock); 9710 connp->conn_multicast_loop = *i1; 9711 mutex_exit(&connp->conn_lock); 9712 } 9713 break; /* goto sizeof (int) option return */ 9714 case IPV6_JOIN_GROUP: 9715 case MCAST_JOIN_GROUP: 9716 case IPV6_LEAVE_GROUP: 9717 case MCAST_LEAVE_GROUP: { 9718 struct ipv6_mreq *ip_mreqp; 9719 struct group_req *greqp; 9720 ire_t *ire; 9721 boolean_t done = B_FALSE; 9722 in6_addr_t groupv6; 9723 uint32_t ifindex; 9724 boolean_t mcast_opt = B_TRUE; 9725 mcast_record_t fmode; 9726 int (*optfn)(conn_t *, boolean_t, const in6_addr_t *, 9727 int, mcast_record_t, const in6_addr_t *, mblk_t *); 9728 9729 switch (name) { 9730 case IPV6_JOIN_GROUP: 9731 mcast_opt = B_FALSE; 9732 /* FALLTHRU */ 9733 case MCAST_JOIN_GROUP: 9734 fmode = MODE_IS_EXCLUDE; 9735 optfn = ip_opt_add_group_v6; 9736 break; 9737 9738 case IPV6_LEAVE_GROUP: 9739 mcast_opt = B_FALSE; 9740 /* FALLTHRU */ 9741 case MCAST_LEAVE_GROUP: 9742 fmode = MODE_IS_INCLUDE; 9743 optfn = ip_opt_delete_group_v6; 9744 break; 9745 } 9746 9747 if (mcast_opt) { 9748 struct sockaddr_in *sin; 9749 struct sockaddr_in6 *sin6; 9750 greqp = (struct group_req *)i1; 9751 if (greqp->gr_group.ss_family == AF_INET) { 9752 sin = (struct sockaddr_in *) 9753 &(greqp->gr_group); 9754 IN6_INADDR_TO_V4MAPPED(&sin->sin_addr, 9755 &groupv6); 9756 } else { 9757 sin6 = (struct sockaddr_in6 *) 9758 &(greqp->gr_group); 9759 groupv6 = sin6->sin6_addr; 9760 } 9761 ifindex = greqp->gr_interface; 9762 } else { 9763 ip_mreqp = (struct ipv6_mreq *)i1; 9764 groupv6 = ip_mreqp->ipv6mr_multiaddr; 9765 ifindex = ip_mreqp->ipv6mr_interface; 9766 } 9767 /* 9768 * In the multirouting case, we need to replicate 9769 * the request on all interfaces that will take part 9770 * in replication. We do so because multirouting is 9771 * reflective, thus we will probably receive multi- 9772 * casts on those interfaces. 9773 * The ip_multirt_apply_membership_v6() succeeds if 9774 * the operation succeeds on at least one interface. 9775 */ 9776 ire = ire_ftable_lookup_v6(&groupv6, &ipv6_all_ones, 0, 9777 IRE_HOST, NULL, NULL, ALL_ZONES, 0, 9778 MATCH_IRE_MASK | MATCH_IRE_TYPE); 9779 if (ire != NULL) { 9780 if (ire->ire_flags & RTF_MULTIRT) { 9781 error = ip_multirt_apply_membership_v6( 9782 optfn, ire, connp, checkonly, 9783 &groupv6, fmode, &ipv6_all_zeros, 9784 first_mp); 9785 done = B_TRUE; 9786 } 9787 ire_refrele(ire); 9788 } 9789 if (!done) { 9790 error = optfn(connp, checkonly, &groupv6, 9791 ifindex, fmode, &ipv6_all_zeros, first_mp); 9792 } 9793 if (error) { 9794 /* 9795 * EINPROGRESS is a soft error, needs retry 9796 * so don't make *outlenp zero. 9797 */ 9798 if (error != EINPROGRESS) 9799 *outlenp = 0; 9800 return (error); 9801 } 9802 /* OK return - copy input buffer into output buffer */ 9803 if (invalp != outvalp) { 9804 /* don't trust bcopy for identical src/dst */ 9805 bcopy(invalp, outvalp, inlen); 9806 } 9807 *outlenp = inlen; 9808 return (0); 9809 } 9810 case MCAST_BLOCK_SOURCE: 9811 case MCAST_UNBLOCK_SOURCE: 9812 case MCAST_JOIN_SOURCE_GROUP: 9813 case MCAST_LEAVE_SOURCE_GROUP: { 9814 struct group_source_req *gsreqp; 9815 in6_addr_t v6grp, v6src; 9816 uint32_t ifindex; 9817 mcast_record_t fmode; 9818 ire_t *ire; 9819 boolean_t done = B_FALSE; 9820 int (*optfn)(conn_t *, boolean_t, const in6_addr_t *, 9821 int, mcast_record_t, const in6_addr_t *, mblk_t *); 9822 9823 switch (name) { 9824 case MCAST_BLOCK_SOURCE: 9825 fmode = MODE_IS_EXCLUDE; 9826 optfn = ip_opt_add_group_v6; 9827 break; 9828 case MCAST_UNBLOCK_SOURCE: 9829 fmode = MODE_IS_EXCLUDE; 9830 optfn = ip_opt_delete_group_v6; 9831 break; 9832 case MCAST_JOIN_SOURCE_GROUP: 9833 fmode = MODE_IS_INCLUDE; 9834 optfn = ip_opt_add_group_v6; 9835 break; 9836 case MCAST_LEAVE_SOURCE_GROUP: 9837 fmode = MODE_IS_INCLUDE; 9838 optfn = ip_opt_delete_group_v6; 9839 break; 9840 } 9841 9842 gsreqp = (struct group_source_req *)i1; 9843 ifindex = gsreqp->gsr_interface; 9844 if (gsreqp->gsr_group.ss_family == AF_INET) { 9845 struct sockaddr_in *s; 9846 s = (struct sockaddr_in *)&gsreqp->gsr_group; 9847 IN6_INADDR_TO_V4MAPPED(&s->sin_addr, &v6grp); 9848 s = (struct sockaddr_in *)&gsreqp->gsr_source; 9849 IN6_INADDR_TO_V4MAPPED(&s->sin_addr, &v6src); 9850 } else { 9851 struct sockaddr_in6 *s6; 9852 s6 = (struct sockaddr_in6 *)&gsreqp->gsr_group; 9853 v6grp = s6->sin6_addr; 9854 s6 = (struct sockaddr_in6 *)&gsreqp->gsr_source; 9855 v6src = s6->sin6_addr; 9856 } 9857 9858 /* 9859 * In the multirouting case, we need to replicate 9860 * the request as noted in the mcast cases above. 9861 */ 9862 ire = ire_ftable_lookup_v6(&v6grp, &ipv6_all_ones, 0, 9863 IRE_HOST, NULL, NULL, ALL_ZONES, 0, 9864 MATCH_IRE_MASK | MATCH_IRE_TYPE); 9865 if (ire != NULL) { 9866 if (ire->ire_flags & RTF_MULTIRT) { 9867 error = ip_multirt_apply_membership_v6( 9868 optfn, ire, connp, checkonly, 9869 &v6grp, fmode, &v6src, first_mp); 9870 done = B_TRUE; 9871 } 9872 ire_refrele(ire); 9873 } 9874 if (!done) { 9875 error = optfn(connp, checkonly, &v6grp, 9876 ifindex, fmode, &v6src, first_mp); 9877 } 9878 if (error != 0) { 9879 /* 9880 * EINPROGRESS is a soft error, needs retry 9881 * so don't make *outlenp zero. 9882 */ 9883 if (error != EINPROGRESS) 9884 *outlenp = 0; 9885 return (error); 9886 } 9887 /* OK return - copy input buffer into output buffer */ 9888 if (invalp != outvalp) { 9889 bcopy(invalp, outvalp, inlen); 9890 } 9891 *outlenp = inlen; 9892 return (0); 9893 } 9894 case IPV6_UNICAST_HOPS: 9895 /* Recorded in transport above IP */ 9896 break; /* goto sizeof (int) option return */ 9897 case IPV6_UNSPEC_SRC: 9898 /* Allow sending with a zero source address */ 9899 if (!checkonly) { 9900 mutex_enter(&connp->conn_lock); 9901 connp->conn_unspec_src = *i1 ? 1 : 0; 9902 mutex_exit(&connp->conn_lock); 9903 } 9904 break; /* goto sizeof (int) option return */ 9905 case IPV6_RECVPKTINFO: 9906 if (!checkonly) { 9907 mutex_enter(&connp->conn_lock); 9908 connp->conn_ipv6_recvpktinfo = *i1 ? 1 : 0; 9909 mutex_exit(&connp->conn_lock); 9910 } 9911 break; /* goto sizeof (int) option return */ 9912 case IPV6_RECVTCLASS: 9913 if (!checkonly) { 9914 if (*i1 < 0 || *i1 > 1) { 9915 return (EINVAL); 9916 } 9917 mutex_enter(&connp->conn_lock); 9918 connp->conn_ipv6_recvtclass = *i1; 9919 mutex_exit(&connp->conn_lock); 9920 } 9921 break; 9922 case IPV6_RECVPATHMTU: 9923 if (!checkonly) { 9924 if (*i1 < 0 || *i1 > 1) { 9925 return (EINVAL); 9926 } 9927 mutex_enter(&connp->conn_lock); 9928 connp->conn_ipv6_recvpathmtu = *i1; 9929 mutex_exit(&connp->conn_lock); 9930 } 9931 break; 9932 case IPV6_RECVHOPLIMIT: 9933 if (!checkonly) { 9934 mutex_enter(&connp->conn_lock); 9935 connp->conn_ipv6_recvhoplimit = *i1 ? 1 : 0; 9936 mutex_exit(&connp->conn_lock); 9937 } 9938 break; /* goto sizeof (int) option return */ 9939 case IPV6_RECVHOPOPTS: 9940 if (!checkonly) { 9941 mutex_enter(&connp->conn_lock); 9942 connp->conn_ipv6_recvhopopts = *i1 ? 1 : 0; 9943 mutex_exit(&connp->conn_lock); 9944 } 9945 break; /* goto sizeof (int) option return */ 9946 case IPV6_RECVDSTOPTS: 9947 if (!checkonly) { 9948 mutex_enter(&connp->conn_lock); 9949 connp->conn_ipv6_recvdstopts = *i1 ? 1 : 0; 9950 mutex_exit(&connp->conn_lock); 9951 } 9952 break; /* goto sizeof (int) option return */ 9953 case IPV6_RECVRTHDR: 9954 if (!checkonly) { 9955 mutex_enter(&connp->conn_lock); 9956 connp->conn_ipv6_recvrthdr = *i1 ? 1 : 0; 9957 mutex_exit(&connp->conn_lock); 9958 } 9959 break; /* goto sizeof (int) option return */ 9960 case IPV6_RECVRTHDRDSTOPTS: 9961 if (!checkonly) { 9962 mutex_enter(&connp->conn_lock); 9963 connp->conn_ipv6_recvrtdstopts = *i1 ? 1 : 0; 9964 mutex_exit(&connp->conn_lock); 9965 } 9966 break; /* goto sizeof (int) option return */ 9967 case IPV6_PKTINFO: 9968 if (inlen == 0) 9969 return (-EINVAL); /* clearing option */ 9970 error = ip6_set_pktinfo(cr, connp, 9971 (struct in6_pktinfo *)invalp, first_mp); 9972 if (error != 0) 9973 *outlenp = 0; 9974 else 9975 *outlenp = inlen; 9976 return (error); 9977 case IPV6_NEXTHOP: { 9978 struct sockaddr_in6 *sin6; 9979 9980 /* Verify that the nexthop is reachable */ 9981 if (inlen == 0) 9982 return (-EINVAL); /* clearing option */ 9983 9984 sin6 = (struct sockaddr_in6 *)invalp; 9985 ire = ire_route_lookup_v6(&sin6->sin6_addr, 9986 0, 0, 0, NULL, NULL, connp->conn_zoneid, 9987 MATCH_IRE_DEFAULT); 9988 9989 if (ire == NULL) { 9990 *outlenp = 0; 9991 return (EHOSTUNREACH); 9992 } 9993 ire_refrele(ire); 9994 return (-EINVAL); 9995 } 9996 case IPV6_SEC_OPT: 9997 error = ipsec_set_req(cr, connp, (ipsec_req_t *)invalp); 9998 if (error != 0) { 9999 *outlenp = 0; 10000 return (error); 10001 } 10002 break; 10003 case IPV6_SRC_PREFERENCES: { 10004 /* 10005 * This is implemented strictly in the ip module 10006 * (here and in tcp_opt_*() to accomodate tcp 10007 * sockets). Modules above ip pass this option 10008 * down here since ip is the only one that needs to 10009 * be aware of source address preferences. 10010 * 10011 * This socket option only affects connected 10012 * sockets that haven't already bound to a specific 10013 * IPv6 address. In other words, sockets that 10014 * don't call bind() with an address other than the 10015 * unspecified address and that call connect(). 10016 * ip_bind_connected_v6() passes these preferences 10017 * to the ipif_select_source_v6() function. 10018 */ 10019 if (inlen != sizeof (uint32_t)) 10020 return (EINVAL); 10021 error = ip6_set_src_preferences(connp, 10022 *(uint32_t *)invalp); 10023 if (error != 0) { 10024 *outlenp = 0; 10025 return (error); 10026 } else { 10027 *outlenp = sizeof (uint32_t); 10028 } 10029 break; 10030 } 10031 case IPV6_V6ONLY: 10032 if (*i1 < 0 || *i1 > 1) { 10033 return (EINVAL); 10034 } 10035 mutex_enter(&connp->conn_lock); 10036 connp->conn_ipv6_v6only = *i1; 10037 mutex_exit(&connp->conn_lock); 10038 break; 10039 default: 10040 return (-EINVAL); 10041 } 10042 break; 10043 default: 10044 /* 10045 * "soft" error (negative) 10046 * option not handled at this level 10047 * Note: Do not modify *outlenp 10048 */ 10049 return (-EINVAL); 10050 } 10051 /* 10052 * Common case of return from an option that is sizeof (int) 10053 */ 10054 *(int *)outvalp = *i1; 10055 *outlenp = sizeof (int); 10056 return (0); 10057 } 10058 10059 /* 10060 * This routine gets default values of certain options whose default 10061 * values are maintained by protocol specific code 10062 */ 10063 /* ARGSUSED */ 10064 int 10065 ip_opt_default(queue_t *q, int level, int name, uchar_t *ptr) 10066 { 10067 int *i1 = (int *)ptr; 10068 10069 switch (level) { 10070 case IPPROTO_IP: 10071 switch (name) { 10072 case IP_MULTICAST_TTL: 10073 *ptr = (uchar_t)IP_DEFAULT_MULTICAST_TTL; 10074 return (sizeof (uchar_t)); 10075 case IP_MULTICAST_LOOP: 10076 *ptr = (uchar_t)IP_DEFAULT_MULTICAST_LOOP; 10077 return (sizeof (uchar_t)); 10078 default: 10079 return (-1); 10080 } 10081 case IPPROTO_IPV6: 10082 switch (name) { 10083 case IPV6_UNICAST_HOPS: 10084 *i1 = ipv6_def_hops; 10085 return (sizeof (int)); 10086 case IPV6_MULTICAST_HOPS: 10087 *i1 = IP_DEFAULT_MULTICAST_TTL; 10088 return (sizeof (int)); 10089 case IPV6_MULTICAST_LOOP: 10090 *i1 = IP_DEFAULT_MULTICAST_LOOP; 10091 return (sizeof (int)); 10092 case IPV6_V6ONLY: 10093 *i1 = 1; 10094 return (sizeof (int)); 10095 default: 10096 return (-1); 10097 } 10098 default: 10099 return (-1); 10100 } 10101 /* NOTREACHED */ 10102 } 10103 10104 /* 10105 * Given a destination address and a pointer to where to put the information 10106 * this routine fills in the mtuinfo. 10107 */ 10108 int 10109 ip_fill_mtuinfo(struct in6_addr *in6, in_port_t port, 10110 struct ip6_mtuinfo *mtuinfo) 10111 { 10112 ire_t *ire; 10113 10114 if (IN6_IS_ADDR_UNSPECIFIED(in6)) 10115 return (-1); 10116 10117 bzero(mtuinfo, sizeof (*mtuinfo)); 10118 mtuinfo->ip6m_addr.sin6_family = AF_INET6; 10119 mtuinfo->ip6m_addr.sin6_port = port; 10120 mtuinfo->ip6m_addr.sin6_addr = *in6; 10121 10122 ire = ire_cache_lookup_v6(in6, ALL_ZONES); 10123 if (ire != NULL) { 10124 mtuinfo->ip6m_mtu = ire->ire_max_frag; 10125 ire_refrele(ire); 10126 } else { 10127 mtuinfo->ip6m_mtu = IPV6_MIN_MTU; 10128 } 10129 return (sizeof (struct ip6_mtuinfo)); 10130 } 10131 10132 /* 10133 * This routine gets socket options. For MRT_VERSION and MRT_ASSERT, error 10134 * checking of GET_QUEUE_CRED(q) and that ip_g_mrouter is set should be done and 10135 * isn't. This doesn't matter as the error checking is done properly for the 10136 * other MRT options coming in through ip_opt_set. 10137 */ 10138 int 10139 ip_opt_get(queue_t *q, int level, int name, uchar_t *ptr) 10140 { 10141 conn_t *connp = Q_TO_CONN(q); 10142 ipsec_req_t *req = (ipsec_req_t *)ptr; 10143 10144 switch (level) { 10145 case IPPROTO_IP: 10146 switch (name) { 10147 case MRT_VERSION: 10148 case MRT_ASSERT: 10149 (void) ip_mrouter_get(name, q, ptr); 10150 return (sizeof (int)); 10151 case IP_SEC_OPT: 10152 return (ipsec_req_from_conn(connp, req, IPSEC_AF_V4)); 10153 default: 10154 break; 10155 } 10156 break; 10157 case IPPROTO_IPV6: 10158 switch (name) { 10159 case IPV6_SEC_OPT: 10160 return (ipsec_req_from_conn(connp, req, IPSEC_AF_V6)); 10161 case IPV6_SRC_PREFERENCES: { 10162 return (ip6_get_src_preferences(connp, 10163 (uint32_t *)ptr)); 10164 } 10165 case IPV6_V6ONLY: 10166 *(int *)ptr = connp->conn_ipv6_v6only ? 1 : 0; 10167 return (sizeof (int)); 10168 case IPV6_PATHMTU: 10169 return (ip_fill_mtuinfo(&connp->conn_remv6, 0, 10170 (struct ip6_mtuinfo *)ptr)); 10171 default: 10172 break; 10173 } 10174 break; 10175 default: 10176 break; 10177 } 10178 return (-1); 10179 } 10180 10181 /* Named Dispatch routine to get a current value out of our parameter table. */ 10182 /* ARGSUSED */ 10183 static int 10184 ip_param_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *ioc_cr) 10185 { 10186 ipparam_t *ippa = (ipparam_t *)cp; 10187 10188 (void) mi_mpprintf(mp, "%d", ippa->ip_param_value); 10189 return (0); 10190 } 10191 10192 /* ARGSUSED */ 10193 static int 10194 ip_param_generic_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *ioc_cr) 10195 { 10196 10197 (void) mi_mpprintf(mp, "%d", *(int *)cp); 10198 return (0); 10199 } 10200 10201 /* 10202 * Set ip{,6}_forwarding values. This means walking through all of the 10203 * ill's and toggling their forwarding values. 10204 */ 10205 /* ARGSUSED */ 10206 static int 10207 ip_forward_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, cred_t *ioc_cr) 10208 { 10209 long new_value; 10210 int *forwarding_value = (int *)cp; 10211 ill_t *walker; 10212 boolean_t isv6 = (forwarding_value == &ipv6_forward); 10213 ill_walk_context_t ctx; 10214 10215 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || 10216 new_value < 0 || new_value > 1) { 10217 return (EINVAL); 10218 } 10219 10220 *forwarding_value = new_value; 10221 10222 /* 10223 * Regardless of the current value of ip_forwarding, set all per-ill 10224 * values of ip_forwarding to the value being set. 10225 * 10226 * Bring all the ill's up to date with the new global value. 10227 */ 10228 rw_enter(&ill_g_lock, RW_READER); 10229 10230 if (isv6) 10231 walker = ILL_START_WALK_V6(&ctx); 10232 else 10233 walker = ILL_START_WALK_V4(&ctx); 10234 for (; walker != NULL; walker = ill_next(&ctx, walker)) { 10235 (void) ill_forward_set(q, mp, (new_value != 0), 10236 (caddr_t)walker); 10237 } 10238 rw_exit(&ill_g_lock); 10239 10240 return (0); 10241 } 10242 10243 /* 10244 * Walk through the param array specified registering each element with the 10245 * Named Dispatch handler. This is called only during init. So it is ok 10246 * not to acquire any locks 10247 */ 10248 static boolean_t 10249 ip_param_register(ipparam_t *ippa, size_t ippa_cnt, 10250 ipndp_t *ipnd, size_t ipnd_cnt) 10251 { 10252 for (; ippa_cnt-- > 0; ippa++) { 10253 if (ippa->ip_param_name && ippa->ip_param_name[0]) { 10254 if (!nd_load(&ip_g_nd, ippa->ip_param_name, 10255 ip_param_get, ip_param_set, (caddr_t)ippa)) { 10256 nd_free(&ip_g_nd); 10257 return (B_FALSE); 10258 } 10259 } 10260 } 10261 10262 for (; ipnd_cnt-- > 0; ipnd++) { 10263 if (ipnd->ip_ndp_name && ipnd->ip_ndp_name[0]) { 10264 if (!nd_load(&ip_g_nd, ipnd->ip_ndp_name, 10265 ipnd->ip_ndp_getf, ipnd->ip_ndp_setf, 10266 ipnd->ip_ndp_data)) { 10267 nd_free(&ip_g_nd); 10268 return (B_FALSE); 10269 } 10270 } 10271 } 10272 10273 return (B_TRUE); 10274 } 10275 10276 /* Named Dispatch routine to negotiate a new value for one of our parameters. */ 10277 /* ARGSUSED */ 10278 static int 10279 ip_param_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, cred_t *ioc_cr) 10280 { 10281 long new_value; 10282 ipparam_t *ippa = (ipparam_t *)cp; 10283 10284 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || 10285 new_value < ippa->ip_param_min || new_value > ippa->ip_param_max) { 10286 return (EINVAL); 10287 } 10288 ippa->ip_param_value = new_value; 10289 return (0); 10290 } 10291 10292 /* 10293 * Handles both IPv4 and IPv6 reassembly - doing the out-of-order cases, 10294 * When an ipf is passed here for the first time, if 10295 * we already have in-order fragments on the queue, we convert from the fast- 10296 * path reassembly scheme to the hard-case scheme. From then on, additional 10297 * fragments are reassembled here. We keep track of the start and end offsets 10298 * of each piece, and the number of holes in the chain. When the hole count 10299 * goes to zero, we are done! 10300 * 10301 * The ipf_count will be updated to account for any mblk(s) added (pointed to 10302 * by mp) or subtracted (freeb()ed dups), upon return the caller must update 10303 * ipfb_count and ill_frag_count by the difference of ipf_count before and 10304 * after the call to ip_reassemble(). 10305 */ 10306 int 10307 ip_reassemble(mblk_t *mp, ipf_t *ipf, uint_t start, boolean_t more, ill_t *ill, 10308 size_t msg_len) 10309 { 10310 uint_t end; 10311 mblk_t *next_mp; 10312 mblk_t *mp1; 10313 uint_t offset; 10314 boolean_t incr_dups = B_TRUE; 10315 boolean_t offset_zero_seen = B_FALSE; 10316 boolean_t pkt_boundary_checked = B_FALSE; 10317 10318 /* If start == 0 then ipf_nf_hdr_len has to be set. */ 10319 ASSERT(start != 0 || ipf->ipf_nf_hdr_len != 0); 10320 10321 /* Add in byte count */ 10322 ipf->ipf_count += msg_len; 10323 if (ipf->ipf_end) { 10324 /* 10325 * We were part way through in-order reassembly, but now there 10326 * is a hole. We walk through messages already queued, and 10327 * mark them for hard case reassembly. We know that up till 10328 * now they were in order starting from offset zero. 10329 */ 10330 offset = 0; 10331 for (mp1 = ipf->ipf_mp->b_cont; mp1; mp1 = mp1->b_cont) { 10332 IP_REASS_SET_START(mp1, offset); 10333 if (offset == 0) { 10334 ASSERT(ipf->ipf_nf_hdr_len != 0); 10335 offset = -ipf->ipf_nf_hdr_len; 10336 } 10337 offset += mp1->b_wptr - mp1->b_rptr; 10338 IP_REASS_SET_END(mp1, offset); 10339 } 10340 /* One hole at the end. */ 10341 ipf->ipf_hole_cnt = 1; 10342 /* Brand it as a hard case, forever. */ 10343 ipf->ipf_end = 0; 10344 } 10345 /* Walk through all the new pieces. */ 10346 do { 10347 end = start + (mp->b_wptr - mp->b_rptr); 10348 /* 10349 * If start is 0, decrease 'end' only for the first mblk of 10350 * the fragment. Otherwise 'end' can get wrong value in the 10351 * second pass of the loop if first mblk is exactly the 10352 * size of ipf_nf_hdr_len. 10353 */ 10354 if (start == 0 && !offset_zero_seen) { 10355 /* First segment */ 10356 ASSERT(ipf->ipf_nf_hdr_len != 0); 10357 end -= ipf->ipf_nf_hdr_len; 10358 offset_zero_seen = B_TRUE; 10359 } 10360 next_mp = mp->b_cont; 10361 /* 10362 * We are checking to see if there is any interesing data 10363 * to process. If there isn't and the mblk isn't the 10364 * one which carries the unfragmentable header then we 10365 * drop it. It's possible to have just the unfragmentable 10366 * header come through without any data. That needs to be 10367 * saved. 10368 * 10369 * If the assert at the top of this function holds then the 10370 * term "ipf->ipf_nf_hdr_len != 0" isn't needed. This code 10371 * is infrequently traveled enough that the test is left in 10372 * to protect against future code changes which break that 10373 * invariant. 10374 */ 10375 if (start == end && start != 0 && ipf->ipf_nf_hdr_len != 0) { 10376 /* Empty. Blast it. */ 10377 IP_REASS_SET_START(mp, 0); 10378 IP_REASS_SET_END(mp, 0); 10379 /* 10380 * If the ipf points to the mblk we are about to free, 10381 * update ipf to point to the next mblk (or NULL 10382 * if none). 10383 */ 10384 if (ipf->ipf_mp->b_cont == mp) 10385 ipf->ipf_mp->b_cont = next_mp; 10386 freeb(mp); 10387 continue; 10388 } 10389 mp->b_cont = NULL; 10390 IP_REASS_SET_START(mp, start); 10391 IP_REASS_SET_END(mp, end); 10392 if (!ipf->ipf_tail_mp) { 10393 ipf->ipf_tail_mp = mp; 10394 ipf->ipf_mp->b_cont = mp; 10395 if (start == 0 || !more) { 10396 ipf->ipf_hole_cnt = 1; 10397 /* 10398 * if the first fragment comes in more than one 10399 * mblk, this loop will be executed for each 10400 * mblk. Need to adjust hole count so exiting 10401 * this routine will leave hole count at 1. 10402 */ 10403 if (next_mp) 10404 ipf->ipf_hole_cnt++; 10405 } else 10406 ipf->ipf_hole_cnt = 2; 10407 continue; 10408 } else if (ipf->ipf_last_frag_seen && !more && 10409 !pkt_boundary_checked) { 10410 /* 10411 * We check datagram boundary only if this fragment 10412 * claims to be the last fragment and we have seen a 10413 * last fragment in the past too. We do this only 10414 * once for a given fragment. 10415 * 10416 * start cannot be 0 here as fragments with start=0 10417 * and MF=0 gets handled as a complete packet. These 10418 * fragments should not reach here. 10419 */ 10420 10421 if (start + msgdsize(mp) != 10422 IP_REASS_END(ipf->ipf_tail_mp)) { 10423 /* 10424 * We have two fragments both of which claim 10425 * to be the last fragment but gives conflicting 10426 * information about the whole datagram size. 10427 * Something fishy is going on. Drop the 10428 * fragment and free up the reassembly list. 10429 */ 10430 return (IP_REASS_FAILED); 10431 } 10432 10433 /* 10434 * We shouldn't come to this code block again for this 10435 * particular fragment. 10436 */ 10437 pkt_boundary_checked = B_TRUE; 10438 } 10439 10440 /* New stuff at or beyond tail? */ 10441 offset = IP_REASS_END(ipf->ipf_tail_mp); 10442 if (start >= offset) { 10443 if (ipf->ipf_last_frag_seen) { 10444 /* current fragment is beyond last fragment */ 10445 return (IP_REASS_FAILED); 10446 } 10447 /* Link it on end. */ 10448 ipf->ipf_tail_mp->b_cont = mp; 10449 ipf->ipf_tail_mp = mp; 10450 if (more) { 10451 if (start != offset) 10452 ipf->ipf_hole_cnt++; 10453 } else if (start == offset && next_mp == NULL) 10454 ipf->ipf_hole_cnt--; 10455 continue; 10456 } 10457 mp1 = ipf->ipf_mp->b_cont; 10458 offset = IP_REASS_START(mp1); 10459 /* New stuff at the front? */ 10460 if (start < offset) { 10461 if (start == 0) { 10462 if (end >= offset) { 10463 /* Nailed the hole at the begining. */ 10464 ipf->ipf_hole_cnt--; 10465 } 10466 } else if (end < offset) { 10467 /* 10468 * A hole, stuff, and a hole where there used 10469 * to be just a hole. 10470 */ 10471 ipf->ipf_hole_cnt++; 10472 } 10473 mp->b_cont = mp1; 10474 /* Check for overlap. */ 10475 while (end > offset) { 10476 if (end < IP_REASS_END(mp1)) { 10477 mp->b_wptr -= end - offset; 10478 IP_REASS_SET_END(mp, offset); 10479 if (ill->ill_isv6) { 10480 BUMP_MIB(ill->ill_ip6_mib, 10481 ipv6ReasmPartDups); 10482 } else { 10483 BUMP_MIB(&ip_mib, 10484 ipReasmPartDups); 10485 } 10486 break; 10487 } 10488 /* Did we cover another hole? */ 10489 if ((mp1->b_cont && 10490 IP_REASS_END(mp1) != 10491 IP_REASS_START(mp1->b_cont) && 10492 end >= IP_REASS_START(mp1->b_cont)) || 10493 (!ipf->ipf_last_frag_seen && !more)) { 10494 ipf->ipf_hole_cnt--; 10495 } 10496 /* Clip out mp1. */ 10497 if ((mp->b_cont = mp1->b_cont) == NULL) { 10498 /* 10499 * After clipping out mp1, this guy 10500 * is now hanging off the end. 10501 */ 10502 ipf->ipf_tail_mp = mp; 10503 } 10504 IP_REASS_SET_START(mp1, 0); 10505 IP_REASS_SET_END(mp1, 0); 10506 /* Subtract byte count */ 10507 ipf->ipf_count -= mp1->b_datap->db_lim - 10508 mp1->b_datap->db_base; 10509 freeb(mp1); 10510 if (ill->ill_isv6) { 10511 BUMP_MIB(ill->ill_ip6_mib, 10512 ipv6ReasmPartDups); 10513 } else { 10514 BUMP_MIB(&ip_mib, ipReasmPartDups); 10515 } 10516 mp1 = mp->b_cont; 10517 if (!mp1) 10518 break; 10519 offset = IP_REASS_START(mp1); 10520 } 10521 ipf->ipf_mp->b_cont = mp; 10522 continue; 10523 } 10524 /* 10525 * The new piece starts somewhere between the start of the head 10526 * and before the end of the tail. 10527 */ 10528 for (; mp1; mp1 = mp1->b_cont) { 10529 offset = IP_REASS_END(mp1); 10530 if (start < offset) { 10531 if (end <= offset) { 10532 /* Nothing new. */ 10533 IP_REASS_SET_START(mp, 0); 10534 IP_REASS_SET_END(mp, 0); 10535 /* Subtract byte count */ 10536 ipf->ipf_count -= mp->b_datap->db_lim - 10537 mp->b_datap->db_base; 10538 if (incr_dups) { 10539 ipf->ipf_num_dups++; 10540 incr_dups = B_FALSE; 10541 } 10542 freeb(mp); 10543 if (ill->ill_isv6) { 10544 BUMP_MIB(ill->ill_ip6_mib, 10545 ipv6ReasmDuplicates); 10546 } else { 10547 BUMP_MIB(&ip_mib, 10548 ipReasmDuplicates); 10549 } 10550 break; 10551 } 10552 /* 10553 * Trim redundant stuff off beginning of new 10554 * piece. 10555 */ 10556 IP_REASS_SET_START(mp, offset); 10557 mp->b_rptr += offset - start; 10558 if (ill->ill_isv6) { 10559 BUMP_MIB(ill->ill_ip6_mib, 10560 ipv6ReasmPartDups); 10561 } else { 10562 BUMP_MIB(&ip_mib, ipReasmPartDups); 10563 } 10564 start = offset; 10565 if (!mp1->b_cont) { 10566 /* 10567 * After trimming, this guy is now 10568 * hanging off the end. 10569 */ 10570 mp1->b_cont = mp; 10571 ipf->ipf_tail_mp = mp; 10572 if (!more) { 10573 ipf->ipf_hole_cnt--; 10574 } 10575 break; 10576 } 10577 } 10578 if (start >= IP_REASS_START(mp1->b_cont)) 10579 continue; 10580 /* Fill a hole */ 10581 if (start > offset) 10582 ipf->ipf_hole_cnt++; 10583 mp->b_cont = mp1->b_cont; 10584 mp1->b_cont = mp; 10585 mp1 = mp->b_cont; 10586 offset = IP_REASS_START(mp1); 10587 if (end >= offset) { 10588 ipf->ipf_hole_cnt--; 10589 /* Check for overlap. */ 10590 while (end > offset) { 10591 if (end < IP_REASS_END(mp1)) { 10592 mp->b_wptr -= end - offset; 10593 IP_REASS_SET_END(mp, offset); 10594 /* 10595 * TODO we might bump 10596 * this up twice if there is 10597 * overlap at both ends. 10598 */ 10599 if (ill->ill_isv6) { 10600 BUMP_MIB( 10601 ill->ill_ip6_mib, 10602 ipv6ReasmPartDups); 10603 } else { 10604 BUMP_MIB(&ip_mib, 10605 ipReasmPartDups); 10606 } 10607 break; 10608 } 10609 /* Did we cover another hole? */ 10610 if ((mp1->b_cont && 10611 IP_REASS_END(mp1) 10612 != IP_REASS_START(mp1->b_cont) && 10613 end >= 10614 IP_REASS_START(mp1->b_cont)) || 10615 (!ipf->ipf_last_frag_seen && 10616 !more)) { 10617 ipf->ipf_hole_cnt--; 10618 } 10619 /* Clip out mp1. */ 10620 if ((mp->b_cont = mp1->b_cont) == 10621 NULL) { 10622 /* 10623 * After clipping out mp1, 10624 * this guy is now hanging 10625 * off the end. 10626 */ 10627 ipf->ipf_tail_mp = mp; 10628 } 10629 IP_REASS_SET_START(mp1, 0); 10630 IP_REASS_SET_END(mp1, 0); 10631 /* Subtract byte count */ 10632 ipf->ipf_count -= 10633 mp1->b_datap->db_lim - 10634 mp1->b_datap->db_base; 10635 freeb(mp1); 10636 if (ill->ill_isv6) { 10637 BUMP_MIB(ill->ill_ip6_mib, 10638 ipv6ReasmPartDups); 10639 } else { 10640 BUMP_MIB(&ip_mib, 10641 ipReasmPartDups); 10642 } 10643 mp1 = mp->b_cont; 10644 if (!mp1) 10645 break; 10646 offset = IP_REASS_START(mp1); 10647 } 10648 } 10649 break; 10650 } 10651 } while (start = end, mp = next_mp); 10652 10653 /* Fragment just processed could be the last one. Remember this fact */ 10654 if (!more) 10655 ipf->ipf_last_frag_seen = B_TRUE; 10656 10657 /* Still got holes? */ 10658 if (ipf->ipf_hole_cnt) 10659 return (IP_REASS_PARTIAL); 10660 /* Clean up overloaded fields to avoid upstream disasters. */ 10661 for (mp1 = ipf->ipf_mp->b_cont; mp1; mp1 = mp1->b_cont) { 10662 IP_REASS_SET_START(mp1, 0); 10663 IP_REASS_SET_END(mp1, 0); 10664 } 10665 return (IP_REASS_COMPLETE); 10666 } 10667 10668 /* 10669 * ipsec processing for the fast path, used for input UDP Packets 10670 */ 10671 static boolean_t 10672 ip_udp_check(queue_t *q, conn_t *connp, ill_t *ill, ipha_t *ipha, 10673 mblk_t **mpp, mblk_t **first_mpp, boolean_t mctl_present) 10674 { 10675 uint32_t ill_index; 10676 uint_t in_flags; /* IPF_RECVSLLA and/or IPF_RECVIF */ 10677 10678 ASSERT(ipha->ipha_protocol == IPPROTO_UDP); 10679 /* The ill_index of the incoming ILL */ 10680 ill_index = ((ill_t *)q->q_ptr)->ill_phyint->phyint_ifindex; 10681 10682 /* pass packet up to the transport */ 10683 if (CONN_INBOUND_POLICY_PRESENT(connp) || mctl_present) { 10684 *first_mpp = ipsec_check_inbound_policy(*first_mpp, connp, ipha, 10685 NULL, mctl_present); 10686 if (*first_mpp == NULL) { 10687 return (B_FALSE); 10688 } 10689 } 10690 10691 /* Initiate IPPF processing for fastpath UDP */ 10692 if (IPP_ENABLED(IPP_LOCAL_IN)) { 10693 ip_process(IPP_LOCAL_IN, mpp, ill_index); 10694 if (*mpp == NULL) { 10695 ip2dbg(("ip_input_ipsec_process: UDP pkt " 10696 "deferred/dropped during IPPF processing\n")); 10697 return (B_FALSE); 10698 } 10699 } 10700 /* 10701 * We make the checks as below since we are in the fast path 10702 * and want to minimize the number of checks if the IP_RECVIF and/or 10703 * IP_RECVSLLA and/or IPV6_RECVPKTINFO options are not set 10704 */ 10705 if (connp->conn_recvif || connp->conn_recvslla || 10706 connp->conn_ipv6_recvpktinfo) { 10707 if (connp->conn_recvif || 10708 connp->conn_ipv6_recvpktinfo) { 10709 in_flags = IPF_RECVIF; 10710 } 10711 if (connp->conn_recvslla) { 10712 in_flags |= IPF_RECVSLLA; 10713 } 10714 /* 10715 * since in_flags are being set ill will be 10716 * referenced in ip_add_info, so it better not 10717 * be NULL. 10718 */ 10719 /* 10720 * the actual data will be contained in b_cont 10721 * upon successful return of the following call. 10722 * If the call fails then the original mblk is 10723 * returned. 10724 */ 10725 *mpp = ip_add_info(*mpp, ill, in_flags); 10726 } 10727 10728 return (B_TRUE); 10729 } 10730 10731 /* 10732 * Do fragmentation reassembly. 10733 * returns B_TRUE if successful else B_FALSE. 10734 * frees mp on failure. 10735 */ 10736 static boolean_t 10737 ip_rput_fragment(queue_t *q, mblk_t **mpp, ipha_t *ipha) 10738 { 10739 uint32_t frag_offset_flags; 10740 ill_t *ill = (ill_t *)q->q_ptr; 10741 mblk_t *mp = *mpp; 10742 mblk_t *t_mp; 10743 ipaddr_t dst; 10744 10745 /* 10746 * Drop the fragmented as early as possible, if 10747 * we don't have resource(s) to re-assemble. 10748 */ 10749 10750 if (ip_reass_queue_bytes == 0) { 10751 freemsg(mp); 10752 return (B_FALSE); 10753 } 10754 10755 dst = ipha->ipha_dst; 10756 10757 /* Clear hardware checksumming flag if set */ 10758 mp->b_datap->db_struioun.cksum.flags = 0; 10759 10760 /* Check for fragmentation offset. */ 10761 frag_offset_flags = ntohs(ipha->ipha_fragment_offset_and_flags) & 10762 (IPH_MF | IPH_OFFSET); 10763 if (frag_offset_flags) { 10764 ipf_t *ipf; 10765 ipf_t **ipfp; 10766 ipfb_t *ipfb; 10767 uint16_t ident; 10768 uint32_t offset; 10769 ipaddr_t src; 10770 uint_t hdr_length; 10771 uint32_t end; 10772 uint8_t proto; 10773 mblk_t *mp1; 10774 mblk_t *tail_mp; 10775 size_t count; 10776 size_t msg_len; 10777 uint8_t ecn_info = 0; 10778 uint32_t packet_size; 10779 boolean_t pruned = B_FALSE; 10780 10781 ident = ipha->ipha_ident; 10782 offset = (frag_offset_flags << 3) & 0xFFFF; 10783 src = ipha->ipha_src; 10784 hdr_length = IPH_HDR_LENGTH(ipha); 10785 end = ntohs(ipha->ipha_length) - hdr_length; 10786 10787 /* 10788 * if end == 0 then we have a packet with no data, so just 10789 * free it. 10790 */ 10791 if (end == 0) { 10792 freemsg(mp); 10793 return (B_FALSE); 10794 } 10795 proto = ipha->ipha_protocol; 10796 10797 /* 10798 * Fragmentation reassembly. Each ILL has a hash table for 10799 * queuing packets undergoing reassembly for all IPIFs 10800 * associated with the ILL. The hash is based on the packet 10801 * IP ident field. The ILL frag hash table was allocated 10802 * as a timer block at the time the ILL was created. Whenever 10803 * there is anything on the reassembly queue, the timer will 10804 * be running. 10805 */ 10806 ASSERT(ill != NULL); 10807 10808 /* Record the ECN field info. */ 10809 ecn_info = (ipha->ipha_type_of_service & 0x3); 10810 if (offset != 0) { 10811 /* 10812 * If this isn't the first piece, strip the header, and 10813 * add the offset to the end value. 10814 */ 10815 mp->b_rptr += hdr_length; 10816 end += offset; 10817 } 10818 10819 msg_len = mp->b_datap->db_lim - mp->b_datap->db_base; 10820 tail_mp = mp; 10821 while (tail_mp->b_cont != NULL) { 10822 tail_mp = tail_mp->b_cont; 10823 msg_len += tail_mp->b_datap->db_lim - 10824 tail_mp->b_datap->db_base; 10825 } 10826 10827 /* 10828 * If the reassembly list for this ILL will get too big 10829 * prune it. 10830 */ 10831 if ((msg_len + sizeof (*ipf) + ill->ill_frag_count) >= 10832 ip_reass_queue_bytes) { 10833 ill_frag_prune(ill, 10834 (ip_reass_queue_bytes < msg_len) ? 0 : 10835 (ip_reass_queue_bytes - msg_len)); 10836 pruned = B_TRUE; 10837 } 10838 10839 ipfb = &ill->ill_frag_hash_tbl[ILL_FRAG_HASH(src, ident)]; 10840 mutex_enter(&ipfb->ipfb_lock); 10841 10842 ipfp = &ipfb->ipfb_ipf; 10843 /* Try to find an existing fragment queue for this packet. */ 10844 for (;;) { 10845 ipf = ipfp[0]; 10846 if (ipf != NULL) { 10847 /* 10848 * It has to match on ident and src/dst address. 10849 */ 10850 if (ipf->ipf_ident == ident && 10851 ipf->ipf_src == src && 10852 ipf->ipf_dst == dst && 10853 ipf->ipf_protocol == proto) { 10854 /* 10855 * If we have received too many 10856 * duplicate fragments for this packet 10857 * free it. 10858 */ 10859 if (ipf->ipf_num_dups > 10860 ip_max_frag_dups) { 10861 ill_frag_free_pkts(ill, ipfb, 10862 ipf, 1); 10863 freemsg(mp); 10864 mutex_exit(&ipfb->ipfb_lock); 10865 return (B_FALSE); 10866 } 10867 /* Found it. */ 10868 break; 10869 } 10870 ipfp = &ipf->ipf_hash_next; 10871 continue; 10872 } 10873 10874 /* 10875 * If we pruned the list, do we want to store this new 10876 * fragment?. We apply an optimization here based on the 10877 * fact that most fragments will be received in order. 10878 * So if the offset of this incoming fragment is zero, 10879 * it is the first fragment of a new packet. We will 10880 * keep it. Otherwise drop the fragment, as we have 10881 * probably pruned the packet already (since the 10882 * packet cannot be found). 10883 */ 10884 if (pruned && offset != 0) { 10885 mutex_exit(&ipfb->ipfb_lock); 10886 freemsg(mp); 10887 return (B_FALSE); 10888 } 10889 10890 if (ipfb->ipfb_frag_pkts >= MAX_FRAG_PKTS) { 10891 /* 10892 * Too many fragmented packets in this hash 10893 * bucket. Free the oldest. 10894 */ 10895 ill_frag_free_pkts(ill, ipfb, ipfb->ipfb_ipf, 10896 1); 10897 } 10898 10899 /* New guy. Allocate a frag message. */ 10900 mp1 = allocb(sizeof (*ipf), BPRI_MED); 10901 if (mp1 == NULL) { 10902 BUMP_MIB(&ip_mib, ipInDiscards); 10903 freemsg(mp); 10904 reass_done: 10905 mutex_exit(&ipfb->ipfb_lock); 10906 return (B_FALSE); 10907 } 10908 10909 10910 BUMP_MIB(&ip_mib, ipReasmReqds); 10911 mp1->b_cont = mp; 10912 10913 /* Initialize the fragment header. */ 10914 ipf = (ipf_t *)mp1->b_rptr; 10915 ipf->ipf_mp = mp1; 10916 ipf->ipf_ptphn = ipfp; 10917 ipfp[0] = ipf; 10918 ipf->ipf_hash_next = NULL; 10919 ipf->ipf_ident = ident; 10920 ipf->ipf_protocol = proto; 10921 ipf->ipf_src = src; 10922 ipf->ipf_dst = dst; 10923 ipf->ipf_nf_hdr_len = 0; 10924 /* Record reassembly start time. */ 10925 ipf->ipf_timestamp = gethrestime_sec(); 10926 /* Record ipf generation and account for frag header */ 10927 ipf->ipf_gen = ill->ill_ipf_gen++; 10928 ipf->ipf_count = mp1->b_datap->db_lim - 10929 mp1->b_datap->db_base; 10930 ipf->ipf_last_frag_seen = B_FALSE; 10931 ipf->ipf_ecn = ecn_info; 10932 ipf->ipf_num_dups = 0; 10933 ipfb->ipfb_frag_pkts++; 10934 10935 /* 10936 * We handle reassembly two ways. In the easy case, 10937 * where all the fragments show up in order, we do 10938 * minimal bookkeeping, and just clip new pieces on 10939 * the end. If we ever see a hole, then we go off 10940 * to ip_reassemble which has to mark the pieces and 10941 * keep track of the number of holes, etc. Obviously, 10942 * the point of having both mechanisms is so we can 10943 * handle the easy case as efficiently as possible. 10944 */ 10945 if (offset == 0) { 10946 /* Easy case, in-order reassembly so far. */ 10947 ipf->ipf_count += msg_len; 10948 ipf->ipf_tail_mp = tail_mp; 10949 /* 10950 * Keep track of next expected offset in 10951 * ipf_end. 10952 */ 10953 ipf->ipf_end = end; 10954 ipf->ipf_nf_hdr_len = hdr_length; 10955 } else { 10956 /* Hard case, hole at the beginning. */ 10957 ipf->ipf_tail_mp = NULL; 10958 /* 10959 * ipf_end == 0 means that we have given up 10960 * on easy reassembly. 10961 */ 10962 ipf->ipf_end = 0; 10963 /* 10964 * ipf_hole_cnt is set by ip_reassemble. 10965 * ipf_count is updated by ip_reassemble. 10966 * No need to check for return value here 10967 * as we don't expect reassembly to complete 10968 * or fail for the first fragment itself. 10969 */ 10970 (void) ip_reassemble(mp, ipf, 10971 (frag_offset_flags & IPH_OFFSET) << 3, 10972 (frag_offset_flags & IPH_MF), ill, msg_len); 10973 } 10974 /* Update per ipfb and ill byte counts */ 10975 ipfb->ipfb_count += ipf->ipf_count; 10976 ASSERT(ipfb->ipfb_count > 0); /* Wraparound */ 10977 ill->ill_frag_count += ipf->ipf_count; 10978 ASSERT(ill->ill_frag_count > 0); /* Wraparound */ 10979 /* If the frag timer wasn't already going, start it. */ 10980 mutex_enter(&ill->ill_lock); 10981 ill_frag_timer_start(ill); 10982 mutex_exit(&ill->ill_lock); 10983 goto reass_done; 10984 } 10985 10986 /* 10987 * We have a new piece of a datagram which is already being 10988 * reassembled. Update the ECN info if all IP fragments 10989 * are ECN capable. If there is one which is not, clear 10990 * all the info. If there is at least one which has CE 10991 * code point, IP needs to report that up to transport. 10992 */ 10993 if (ecn_info != IPH_ECN_NECT && ipf->ipf_ecn != IPH_ECN_NECT) { 10994 if (ecn_info == IPH_ECN_CE) 10995 ipf->ipf_ecn = IPH_ECN_CE; 10996 } else { 10997 ipf->ipf_ecn = IPH_ECN_NECT; 10998 } 10999 if (offset && ipf->ipf_end == offset) { 11000 /* The new fragment fits at the end */ 11001 ipf->ipf_tail_mp->b_cont = mp; 11002 /* Update the byte count */ 11003 ipf->ipf_count += msg_len; 11004 /* Update per ipfb and ill byte counts */ 11005 ipfb->ipfb_count += msg_len; 11006 ASSERT(ipfb->ipfb_count > 0); /* Wraparound */ 11007 ill->ill_frag_count += msg_len; 11008 ASSERT(ill->ill_frag_count > 0); /* Wraparound */ 11009 if (frag_offset_flags & IPH_MF) { 11010 /* More to come. */ 11011 ipf->ipf_end = end; 11012 ipf->ipf_tail_mp = tail_mp; 11013 goto reass_done; 11014 } 11015 } else { 11016 /* Go do the hard cases. */ 11017 int ret; 11018 11019 if (offset == 0) 11020 ipf->ipf_nf_hdr_len = hdr_length; 11021 11022 /* Save current byte count */ 11023 count = ipf->ipf_count; 11024 ret = ip_reassemble(mp, ipf, 11025 (frag_offset_flags & IPH_OFFSET) << 3, 11026 (frag_offset_flags & IPH_MF), ill, msg_len); 11027 /* Count of bytes added and subtracted (freeb()ed) */ 11028 count = ipf->ipf_count - count; 11029 if (count) { 11030 /* Update per ipfb and ill byte counts */ 11031 ipfb->ipfb_count += count; 11032 ASSERT(ipfb->ipfb_count > 0); /* Wraparound */ 11033 ill->ill_frag_count += count; 11034 ASSERT(ill->ill_frag_count > 0); 11035 } 11036 if (ret == IP_REASS_PARTIAL) { 11037 goto reass_done; 11038 } else if (ret == IP_REASS_FAILED) { 11039 /* Reassembly failed. Free up all resources */ 11040 ill_frag_free_pkts(ill, ipfb, ipf, 1); 11041 for (t_mp = mp; t_mp != NULL; 11042 t_mp = t_mp->b_cont) { 11043 IP_REASS_SET_START(t_mp, 0); 11044 IP_REASS_SET_END(t_mp, 0); 11045 } 11046 freemsg(mp); 11047 goto reass_done; 11048 } 11049 /* We will reach here iff 'ret' is IP_REASS_COMPLETE */ 11050 } 11051 /* 11052 * We have completed reassembly. Unhook the frag header from 11053 * the reassembly list. 11054 * 11055 * Before we free the frag header, record the ECN info 11056 * to report back to the transport. 11057 */ 11058 ecn_info = ipf->ipf_ecn; 11059 BUMP_MIB(&ip_mib, ipReasmOKs); 11060 ipfp = ipf->ipf_ptphn; 11061 mp1 = ipf->ipf_mp; 11062 count = ipf->ipf_count; 11063 ipf = ipf->ipf_hash_next; 11064 if (ipf) 11065 ipf->ipf_ptphn = ipfp; 11066 ipfp[0] = ipf; 11067 ill->ill_frag_count -= count; 11068 ASSERT(ipfb->ipfb_count >= count); 11069 ipfb->ipfb_count -= count; 11070 ipfb->ipfb_frag_pkts--; 11071 mutex_exit(&ipfb->ipfb_lock); 11072 /* Ditch the frag header. */ 11073 mp = mp1->b_cont; 11074 11075 freeb(mp1); 11076 11077 /* Restore original IP length in header. */ 11078 packet_size = (uint32_t)msgdsize(mp); 11079 if (packet_size > IP_MAXPACKET) { 11080 freemsg(mp); 11081 BUMP_MIB(&ip_mib, ipInHdrErrors); 11082 return (B_FALSE); 11083 } 11084 11085 if (mp->b_datap->db_ref > 1) { 11086 mblk_t *mp2; 11087 11088 mp2 = copymsg(mp); 11089 freemsg(mp); 11090 if (!mp2) { 11091 BUMP_MIB(&ip_mib, ipInDiscards); 11092 return (B_FALSE); 11093 } 11094 mp = mp2; 11095 } 11096 ipha = (ipha_t *)mp->b_rptr; 11097 11098 ipha->ipha_length = htons((uint16_t)packet_size); 11099 /* We're now complete, zip the frag state */ 11100 ipha->ipha_fragment_offset_and_flags = 0; 11101 /* Record the ECN info. */ 11102 ipha->ipha_type_of_service &= 0xFC; 11103 ipha->ipha_type_of_service |= ecn_info; 11104 *mpp = mp; 11105 11106 } 11107 return (B_TRUE); 11108 } 11109 11110 /* 11111 * Perform ip header check sum update local options. 11112 * return B_TRUE if all is well, else return B_FALSE and release 11113 * the mp. caller is responsible for decrementing ire ref cnt. 11114 */ 11115 static boolean_t 11116 ip_options_cksum(queue_t *q, mblk_t *mp, ipha_t *ipha, ire_t *ire) 11117 { 11118 mblk_t *first_mp; 11119 boolean_t mctl_present; 11120 uint16_t sum; 11121 11122 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 11123 /* 11124 * Don't do the checksum if it has gone through AH/ESP 11125 * processing. 11126 */ 11127 if (!mctl_present) { 11128 sum = ip_csum_hdr(ipha); 11129 if (sum != 0) { 11130 BUMP_MIB(&ip_mib, ipInCksumErrs); 11131 freemsg(first_mp); 11132 return (B_FALSE); 11133 } 11134 } 11135 11136 if (!ip_rput_local_options(q, mp, ipha, ire)) { 11137 if (mctl_present) 11138 freeb(first_mp); 11139 return (B_FALSE); 11140 } 11141 11142 return (B_TRUE); 11143 } 11144 11145 /* 11146 * All udp packet are delivered to the local host via this routine. 11147 */ 11148 void 11149 ip_udp_input(queue_t *q, mblk_t *mp, ipha_t *ipha, ire_t *ire, 11150 ill_t *recv_ill) 11151 { 11152 uint32_t sum; 11153 uint32_t u1; 11154 uint32_t u2; 11155 boolean_t mctl_present; 11156 conn_t *connp; 11157 mblk_t *first_mp; 11158 mblk_t *mp1; 11159 dblk_t *dp; 11160 uint16_t *up; 11161 ill_t *ill = (ill_t *)q->q_ptr; 11162 uint32_t ports; 11163 boolean_t cksum_computed = B_FALSE; 11164 11165 #define rptr ((uchar_t *)ipha) 11166 11167 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 11168 ASSERT(!mctl_present || ipsec_in_is_secure(first_mp)); 11169 ASSERT(ipha->ipha_protocol == IPPROTO_UDP); 11170 11171 /* 11172 * FAST PATH for udp packets 11173 */ 11174 11175 /* u1 is # words of IP options */ 11176 u1 = ipha->ipha_version_and_hdr_length - (uchar_t)((IP_VERSION << 4) + 11177 IP_SIMPLE_HDR_LENGTH_IN_WORDS); 11178 11179 /* IP options present */ 11180 if (u1) 11181 goto ipoptions; 11182 11183 #define IS_IPHDR_HWCKSUM(mctl_present, mp, ill) \ 11184 ((!mctl_present) && (mp->b_datap->db_struioun.cksum.flags & \ 11185 HCK_IPV4_HDRCKSUM) && (ill->ill_capabilities & \ 11186 ILL_CAPAB_HCKSUM) && dohwcksum) 11187 11188 /* Check the IP header checksum. */ 11189 if (IS_IPHDR_HWCKSUM(mctl_present, mp, ill)) { 11190 /* Clear the IP header h/w cksum flag */ 11191 mp->b_datap->db_struioun.cksum.flags &= 11192 ~HCK_IPV4_HDRCKSUM; 11193 } else { 11194 #define uph ((uint16_t *)ipha) 11195 sum = uph[0] + uph[1] + uph[2] + uph[3] + uph[4] + uph[5] + 11196 uph[6] + uph[7] + uph[8] + uph[9]; 11197 #undef uph 11198 /* finish doing IP checksum */ 11199 sum = (sum & 0xFFFF) + (sum >> 16); 11200 sum = ~(sum + (sum >> 16)) & 0xFFFF; 11201 /* 11202 * Don't verify header checksum if this packet is coming 11203 * back from AH/ESP as we already did it. 11204 */ 11205 if (!mctl_present && (sum && sum != 0xFFFF)) { 11206 BUMP_MIB(&ip_mib, ipInCksumErrs); 11207 freemsg(first_mp); 11208 return; 11209 } 11210 } 11211 11212 /* 11213 * Count for SNMP of inbound packets for ire. 11214 * if mctl is present this might be a secure packet and 11215 * has already been counted for in ip_proto_input(). 11216 */ 11217 if (!mctl_present) { 11218 UPDATE_IB_PKT_COUNT(ire); 11219 ire->ire_last_used_time = lbolt; 11220 } 11221 11222 /* packet part of fragmented IP packet? */ 11223 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 11224 if (u1 & (IPH_MF | IPH_OFFSET)) { 11225 goto fragmented; 11226 } 11227 11228 /* u1 = IP header length (20 bytes) */ 11229 u1 = IP_SIMPLE_HDR_LENGTH; 11230 11231 /* packet does not contain complete IP & UDP headers */ 11232 if ((mp->b_wptr - rptr) < (IP_SIMPLE_HDR_LENGTH + UDPH_SIZE)) 11233 goto udppullup; 11234 /* up points to UDP header */ 11235 up = (uint16_t *)((uchar_t *)ipha + IP_SIMPLE_HDR_LENGTH); 11236 #define iphs ((uint16_t *)ipha) 11237 11238 #define IP_CKSUM_RECV(len, u1, u2, mp, mp1, error, dp) { \ 11239 boolean_t doswcksum = B_TRUE; \ 11240 uint_t hcksumflags = 0; \ 11241 \ 11242 hcksumflags = dp->db_struioun.cksum.flags; \ 11243 \ 11244 /* Clear the hardware checksum flags; they have been consumed */\ 11245 dp->db_struioun.cksum.flags = 0; \ 11246 if (hcksumflags && (ill->ill_capabilities & ILL_CAPAB_HCKSUM) &&\ 11247 dohwcksum) { \ 11248 if (hcksumflags & HCK_FULLCKSUM) { \ 11249 /* \ 11250 * Full checksum has been computed by the \ 11251 * hardware and has been attached. \ 11252 */ \ 11253 doswcksum = B_FALSE; \ 11254 if (!(hcksumflags & HCK_FULLCKSUM_OK) && \ 11255 (dp->db_cksum16 != 0xffff)) { \ 11256 ipcsumdbg("full hwcksumerr\n", mp); \ 11257 goto error; \ 11258 } \ 11259 } else if ((hcksumflags & HCK_PARTIALCKSUM) && \ 11260 (((len = (IP_SIMPLE_HDR_LENGTH - dp->db_cksumstart))\ 11261 & 1) == 0)) { \ 11262 uint32_t tot_len = 0; \ 11263 \ 11264 doswcksum = B_FALSE; \ 11265 /* Partial checksum computed */ \ 11266 u1 += dp->db_cksum16; \ 11267 tot_len = mp->b_wptr - mp->b_rptr; \ 11268 if (!mp1) \ 11269 mp1 = mp; \ 11270 else \ 11271 tot_len += mp1->b_wptr - mp1->b_rptr; \ 11272 if (len > 0) { \ 11273 /* \ 11274 * Prepended extraneous data. Adjust \ 11275 * checksum. \ 11276 */ \ 11277 u2 = IP_BCSUM_PARTIAL((uchar_t *)(rptr +\ 11278 dp->db_cksumstart), (int32_t)len, \ 11279 0); \ 11280 } else \ 11281 u2 = 0; \ 11282 if ((len = (dp->db_cksumend - tot_len)) > 0) { \ 11283 /* \ 11284 * Postpended extraneous data. Adjust \ 11285 * checksum. \ 11286 */ \ 11287 uint32_t u3; \ 11288 \ 11289 u3 = IP_BCSUM_PARTIAL(mp1->b_wptr, \ 11290 (int32_t)len, 0); \ 11291 if ((uintptr_t)mp1->b_wptr & 1) \ 11292 /* \ 11293 * Postpended extraneous data \ 11294 * was odd byte aligned, so \ 11295 * swap resulting checksum \ 11296 * bytes. \ 11297 */ \ 11298 u2 += ((u3 << 8) & 0xffff) | \ 11299 (u3 >> 8); \ 11300 else \ 11301 u2 += u3; \ 11302 u2 = (u2 & 0xFFFF) + ((int)(u2) >> 16); \ 11303 } \ 11304 /* \ 11305 * One's complement subtract extraneous checksum\ 11306 */ \ 11307 if (u2 >= u1) \ 11308 u1 = ~(u2 - u1) & 0xFFFF; \ 11309 else \ 11310 u1 -= u2; \ 11311 u1 = (u1 & 0xFFFF) + ((int)u1 >> 16); \ 11312 if (~(u1) & 0xFFFF) { \ 11313 ipcsumdbg("partial hwcksumerr\n", mp); \ 11314 goto error; \ 11315 } \ 11316 } \ 11317 } \ 11318 if (doswcksum) { \ 11319 IP_STAT(ip_in_sw_cksum); \ 11320 if ((IP_CSUM(mp, (int32_t)((uchar_t *)up - \ 11321 (uchar_t *)ipha), u1)) != 0) { \ 11322 ipcsumdbg("swcksumerr\n", mp); \ 11323 goto error; \ 11324 } \ 11325 } \ 11326 } 11327 11328 dp = mp->b_datap; 11329 /* if udp hdr cksum != 0, then need to checksum udp packet */ 11330 if (up[3]) { 11331 cksum_computed = B_TRUE; 11332 /* multiple mblks of udp data? */ 11333 if ((mp1 = mp->b_cont) != NULL) { 11334 /* more than two? */ 11335 if (mp1->b_cont) 11336 goto multipktudp; 11337 } 11338 11339 /* Pseudo-header checksum */ 11340 u1 = IP_UDP_CSUM_COMP + iphs[6] + iphs[7] + iphs[8] + 11341 iphs[9] + up[2]; 11342 if (!mctl_present) { 11343 ssize_t len = 0; 11344 11345 IP_CKSUM_RECV(len, u1, u2, mp, mp1, udpcksumerr, dp); 11346 } else { 11347 multipktudp: 11348 IP_STAT(ip_in_sw_cksum); 11349 if ((IP_CSUM(mp, (int32_t)((uchar_t *)up - 11350 (uchar_t *)ipha), u1)) != 0) { 11351 udpcksumerr: 11352 ip1dbg(("ip_udp_input: bad udp checksum\n")); 11353 BUMP_MIB(&ip_mib, udpInCksumErrs); 11354 freemsg(first_mp); 11355 return; 11356 } 11357 } 11358 } 11359 11360 /* broadcast IP packet? */ 11361 if (ire->ire_type == IRE_BROADCAST) 11362 goto udpslowpath; 11363 11364 if ((connp = ipcl_classify_v4(mp, IPPROTO_UDP, IP_SIMPLE_HDR_LENGTH, 11365 ire->ire_zoneid)) != NULL) { 11366 ASSERT(connp->conn_upq != NULL); 11367 IP_STAT(ip_udp_fast_path); 11368 11369 if (!canputnext(connp->conn_upq)) { 11370 freemsg(mp); 11371 BUMP_MIB(&ip_mib, udpInOverflows); 11372 } else { 11373 if (!mctl_present) { 11374 BUMP_MIB(&ip_mib, ipInDelivers); 11375 } 11376 /* 11377 * mp and first_mp can change. 11378 */ 11379 if (ip_udp_check(q, connp, recv_ill, 11380 ipha, &mp, &first_mp, mctl_present)) { 11381 putnext(connp->conn_upq, mp); 11382 } 11383 } 11384 /* 11385 * freeb() cannot deal with null mblk being passed 11386 * in and first_mp can be set to null in the call 11387 * ipsec_input_fast_proc()->ipsec_check_inbound_policy. 11388 */ 11389 if (mctl_present && first_mp != NULL) { 11390 freeb(first_mp); 11391 } 11392 CONN_DEC_REF(connp); 11393 return; 11394 } 11395 11396 /* 11397 * if we got here we know the packet is not fragmented and 11398 * has no options. The classifier could not find a conn_t and 11399 * most likely its an icmp packet so send it through slow path. 11400 */ 11401 11402 goto udpslowpath; 11403 11404 ipoptions: 11405 if (!ip_options_cksum(q, mp, ipha, ire)) { 11406 goto slow_done; 11407 } 11408 11409 UPDATE_IB_PKT_COUNT(ire); 11410 ire->ire_last_used_time = lbolt; 11411 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 11412 if (u1 & (IPH_MF | IPH_OFFSET)) { 11413 fragmented: 11414 if (!ip_rput_fragment(q, &mp, ipha)) { 11415 goto slow_done; 11416 } 11417 /* 11418 * Make sure that first_mp points back to mp as 11419 * the mp we came in with could have changed in 11420 * ip_rput_fragment(). 11421 */ 11422 ASSERT(!mctl_present); 11423 ipha = (ipha_t *)mp->b_rptr; 11424 first_mp = mp; 11425 } 11426 11427 /* Now we have a complete datagram, destined for this machine. */ 11428 u1 = IPH_HDR_LENGTH(ipha); 11429 /* Pull up the UDP header, if necessary. */ 11430 if ((mp->b_wptr - mp->b_rptr) < (u1 + UDPH_SIZE)) { 11431 udppullup: 11432 if (!pullupmsg(mp, u1 + UDPH_SIZE)) { 11433 BUMP_MIB(&ip_mib, ipInDiscards); 11434 freemsg(first_mp); 11435 goto slow_done; 11436 } 11437 ipha = (ipha_t *)mp->b_rptr; 11438 } 11439 /* 11440 * Validate the checksum. This code is a bit funny looking 11441 * but may help out the compiler in this crucial spot. 11442 */ 11443 up = (uint16_t *)((uchar_t *)ipha + u1 + UDP_PORTS_OFFSET); 11444 if (!cksum_computed && up[3]) { 11445 IP_STAT(ip_in_sw_cksum); 11446 sum = IP_CSUM(mp, (int32_t)((uchar_t *)up - (uchar_t *)ipha), 11447 IP_UDP_CSUM_COMP + iphs[6] + 11448 iphs[7] + iphs[8] + 11449 iphs[9] + up[2]); 11450 if (sum != 0) { 11451 ip1dbg(("ip_udp_input: bad udp checksum\n")); 11452 BUMP_MIB(&ip_mib, udpInCksumErrs); 11453 freemsg(first_mp); 11454 goto slow_done; 11455 } 11456 } 11457 udpslowpath: 11458 11459 ports = *(uint32_t *)up; 11460 /* Clear hardware checksum flag */ 11461 mp->b_datap->db_struioun.cksum.flags = 0; 11462 ip_fanout_udp(q, first_mp, ill, ipha, ports, 11463 (ire->ire_type == IRE_BROADCAST), 11464 IP_FF_SEND_ICMP | IP_FF_CKSUM | IP_FF_IP6INFO, 11465 mctl_present, B_TRUE, recv_ill, ire->ire_zoneid); 11466 11467 slow_done: 11468 IP_STAT(ip_udp_slow_path); 11469 return; 11470 11471 #undef rptr 11472 } 11473 11474 /* ARGSUSED */ 11475 static mblk_t * 11476 ip_tcp_input(mblk_t *mp, ipha_t *ipha, ill_t *recv_ill, boolean_t mctl_present, 11477 ire_t *ire, mblk_t *first_mp, uint_t flags, queue_t *q, 11478 ill_rx_ring_t *ill_ring) 11479 { 11480 conn_t *connp; 11481 uint32_t sum; 11482 uint32_t u1; 11483 uint32_t u2; 11484 uint16_t *up; 11485 int offset; 11486 ssize_t len; 11487 mblk_t *mp1; 11488 dblk_t *dp; 11489 boolean_t syn_present = B_FALSE; 11490 tcph_t *tcph; 11491 uint_t ip_hdr_len; 11492 ill_t *ill = (ill_t *)q->q_ptr; 11493 zoneid_t zoneid = ire->ire_zoneid; 11494 11495 #define rptr ((uchar_t *)ipha) 11496 11497 ASSERT(ipha->ipha_protocol == IPPROTO_TCP); 11498 11499 /* 11500 * FAST PATH for tcp packets 11501 */ 11502 11503 /* u1 is # words of IP options */ 11504 u1 = ipha->ipha_version_and_hdr_length - (uchar_t)((IP_VERSION << 4) 11505 + IP_SIMPLE_HDR_LENGTH_IN_WORDS); 11506 11507 /* IP options present */ 11508 if (u1) { 11509 goto ipoptions; 11510 } else { 11511 /* Check the IP header checksum. */ 11512 if (IS_IPHDR_HWCKSUM(mctl_present, mp, ill)) { 11513 /* Clear the IP header h/w cksum flag */ 11514 mp->b_datap->db_struioun.cksum.flags &= 11515 ~HCK_IPV4_HDRCKSUM; 11516 } else { 11517 #define uph ((uint16_t *)ipha) 11518 sum = uph[0] + uph[1] + uph[2] + uph[3] + uph[4] + 11519 uph[5] + uph[6] + uph[7] + uph[8] + uph[9]; 11520 #undef uph 11521 /* finish doing IP checksum */ 11522 sum = (sum & 0xFFFF) + (sum >> 16); 11523 sum = ~(sum + (sum >> 16)) & 0xFFFF; 11524 /* 11525 * Don't verify header checksum if this packet 11526 * is coming back from AH/ESP as we already did it. 11527 */ 11528 if (!mctl_present && (sum != 0) && sum != 0xFFFF) { 11529 BUMP_MIB(&ip_mib, ipInCksumErrs); 11530 goto error; 11531 } 11532 } 11533 } 11534 11535 if (!mctl_present) { 11536 UPDATE_IB_PKT_COUNT(ire); 11537 ire->ire_last_used_time = lbolt; 11538 } 11539 11540 /* packet part of fragmented IP packet? */ 11541 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 11542 if (u1 & (IPH_MF | IPH_OFFSET)) { 11543 goto fragmented; 11544 } 11545 11546 /* u1 = IP header length (20 bytes) */ 11547 u1 = ip_hdr_len = IP_SIMPLE_HDR_LENGTH; 11548 11549 /* does packet contain IP+TCP headers? */ 11550 len = mp->b_wptr - rptr; 11551 if (len < (IP_SIMPLE_HDR_LENGTH + TCP_MIN_HEADER_LENGTH)) { 11552 IP_STAT(ip_tcppullup); 11553 goto tcppullup; 11554 } 11555 11556 /* TCP options present? */ 11557 offset = ((uchar_t *)ipha)[IP_SIMPLE_HDR_LENGTH + 12] >> 4; 11558 11559 /* 11560 * If options need to be pulled up, then goto tcpoptions. 11561 * otherwise we are still in the fast path 11562 */ 11563 if (len < (offset << 2) + IP_SIMPLE_HDR_LENGTH) { 11564 IP_STAT(ip_tcpoptions); 11565 goto tcpoptions; 11566 } 11567 11568 /* multiple mblks of tcp data? */ 11569 if ((mp1 = mp->b_cont) != NULL) { 11570 /* more then two? */ 11571 if (mp1->b_cont != NULL) { 11572 IP_STAT(ip_multipkttcp); 11573 goto multipkttcp; 11574 } 11575 len += mp1->b_wptr - mp1->b_rptr; 11576 } 11577 11578 up = (uint16_t *)(rptr + IP_SIMPLE_HDR_LENGTH + TCP_PORTS_OFFSET); 11579 11580 /* part of pseudo checksum */ 11581 11582 /* TCP datagram length */ 11583 u1 = len - IP_SIMPLE_HDR_LENGTH; 11584 11585 #define iphs ((uint16_t *)ipha) 11586 11587 #ifdef _BIG_ENDIAN 11588 u1 += IPPROTO_TCP; 11589 #else 11590 u1 = ((u1 >> 8) & 0xFF) + (((u1 & 0xFF) + IPPROTO_TCP) << 8); 11591 #endif 11592 u1 += iphs[6] + iphs[7] + iphs[8] + iphs[9]; 11593 11594 11595 /* 11596 * If the packet has gone through AH/ESP, do the checksum here 11597 * itself. 11598 * 11599 * If it has not gone through IPSEC processing and not a duped 11600 * mblk, then look for driver checksummed mblk. We validate or 11601 * postpone the checksum to TCP for single copy checksum. 11602 * 11603 * Note that we only honor HW cksum in the fastpath. 11604 */ 11605 dp = mp->b_datap; 11606 if (!mctl_present) { 11607 IP_CKSUM_RECV(len, u1, u2, mp, mp1, tcpcksumerr, dp); 11608 } else { 11609 IP_STAT(ip_in_sw_cksum); 11610 if ((IP_CSUM(mp, (int32_t)((uchar_t *)up - rptr), 11611 u1)) != 0) { 11612 tcpcksumerr: 11613 BUMP_MIB(&ip_mib, tcpInErrs); 11614 ip1dbg(("ip_tcp_input: bad tcp checksum \n")); 11615 freemsg(first_mp); 11616 goto slow_done; 11617 } 11618 } 11619 11620 try_again: 11621 11622 if ((connp = ipcl_classify_v4(mp, IPPROTO_TCP, ip_hdr_len, zoneid)) == 11623 NULL) { 11624 /* Send the TH_RST */ 11625 goto no_conn; 11626 } 11627 11628 /* 11629 * TCP FAST PATH for AF_INET socket. 11630 * 11631 * TCP fast path to avoid extra work. An AF_INET socket type 11632 * does not have facility to receive extra information via 11633 * ip_process or ip_add_info. Also, when the connection was 11634 * established, we made a check if this connection is impacted 11635 * by any global IPSec policy or per connection policy (a 11636 * policy that comes in effect later will not apply to this 11637 * connection). Since all this can be determined at the 11638 * connection establishment time, a quick check of flags 11639 * can avoid extra work. 11640 */ 11641 if (IPCL_IS_TCP4_CONNECTED_NO_POLICY(connp) && !mctl_present && 11642 !IPP_ENABLED(IPP_LOCAL_IN)) { 11643 ASSERT(first_mp == mp); 11644 SET_SQUEUE(mp, tcp_rput_data, connp); 11645 return (mp); 11646 } 11647 11648 tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len]; 11649 if ((tcph->th_flags[0] & (TH_SYN|TH_ACK|TH_RST|TH_URG)) == TH_SYN) { 11650 if (IPCL_IS_TCP(connp)) { 11651 mp->b_datap->db_struioflag |= STRUIO_EAGER; 11652 mp->b_datap->db_cksumstart = 11653 (intptr_t)ip_squeue_get(ill_ring); 11654 if (IPCL_IS_FULLY_BOUND(connp) && !mctl_present && 11655 !CONN_INBOUND_POLICY_PRESENT(connp)) { 11656 SET_SQUEUE(mp, connp->conn_recv, connp); 11657 return (mp); 11658 } else if (IPCL_IS_BOUND(connp) && !mctl_present && 11659 !CONN_INBOUND_POLICY_PRESENT(connp)) { 11660 ip_squeue_enter_unbound++; 11661 SET_SQUEUE(mp, tcp_conn_request_unbound, 11662 connp); 11663 return (mp); 11664 } 11665 syn_present = B_TRUE; 11666 } 11667 11668 } 11669 11670 if (IPCL_IS_TCP(connp) && IPCL_IS_BOUND(connp) && !syn_present) { 11671 uint_t flags = (unsigned int)tcph->th_flags[0] & 0xFF; 11672 11673 /* No need to send this packet to TCP */ 11674 if ((flags & TH_RST) || (flags & TH_URG)) { 11675 CONN_DEC_REF(connp); 11676 freemsg(first_mp); 11677 return (NULL); 11678 } 11679 if (flags & TH_ACK) { 11680 tcp_xmit_listeners_reset(first_mp, ip_hdr_len); 11681 CONN_DEC_REF(connp); 11682 return (NULL); 11683 } 11684 11685 CONN_DEC_REF(connp); 11686 freemsg(first_mp); 11687 return (NULL); 11688 } 11689 11690 if (CONN_INBOUND_POLICY_PRESENT(connp) || mctl_present) { 11691 first_mp = ipsec_check_inbound_policy(first_mp, connp, 11692 ipha, NULL, mctl_present); 11693 if (first_mp == NULL) { 11694 CONN_DEC_REF(connp); 11695 return (NULL); 11696 } 11697 if (IPCL_IS_TCP(connp) && IPCL_IS_BOUND(connp)) { 11698 ASSERT(syn_present); 11699 if (mctl_present) { 11700 ASSERT(first_mp != mp); 11701 first_mp->b_datap->db_struioflag |= 11702 STRUIO_POLICY; 11703 } else { 11704 ASSERT(first_mp == mp); 11705 mp->b_datap->db_struioflag &= ~STRUIO_EAGER; 11706 mp->b_datap->db_struioflag |= STRUIO_POLICY; 11707 } 11708 } else { 11709 /* 11710 * Discard first_mp early since we're dealing with a 11711 * fully-connected conn_t and tcp doesn't do policy in 11712 * this case. 11713 */ 11714 if (mctl_present) { 11715 freeb(first_mp); 11716 mctl_present = B_FALSE; 11717 } 11718 first_mp = mp; 11719 } 11720 } 11721 11722 /* Initiate IPPF processing for fastpath */ 11723 if (IPP_ENABLED(IPP_LOCAL_IN)) { 11724 uint32_t ill_index; 11725 11726 ill_index = recv_ill->ill_phyint->phyint_ifindex; 11727 ip_process(IPP_LOCAL_IN, &mp, ill_index); 11728 if (mp == NULL) { 11729 ip2dbg(("ip_input_ipsec_process: TCP pkt " 11730 "deferred/dropped during IPPF processing\n")); 11731 CONN_DEC_REF(connp); 11732 if (mctl_present) 11733 freeb(first_mp); 11734 return (NULL); 11735 } else if (mctl_present) { 11736 /* 11737 * ip_process might return a new mp. 11738 */ 11739 ASSERT(first_mp != mp); 11740 first_mp->b_cont = mp; 11741 } else { 11742 first_mp = mp; 11743 } 11744 11745 } 11746 11747 if (!syn_present && connp->conn_ipv6_recvpktinfo) { 11748 mp = ip_add_info(mp, recv_ill, flags); 11749 if (mp == NULL) { 11750 CONN_DEC_REF(connp); 11751 if (mctl_present) 11752 freeb(first_mp); 11753 return (NULL); 11754 } else if (mctl_present) { 11755 /* 11756 * ip_add_info might return a new mp. 11757 */ 11758 ASSERT(first_mp != mp); 11759 first_mp->b_cont = mp; 11760 } else { 11761 first_mp = mp; 11762 } 11763 } 11764 11765 if (IPCL_IS_TCP(connp)) { 11766 SET_SQUEUE(first_mp, connp->conn_recv, connp); 11767 return (first_mp); 11768 } else { 11769 putnext(connp->conn_rq, first_mp); 11770 CONN_DEC_REF(connp); 11771 return (NULL); 11772 } 11773 11774 no_conn: 11775 /* Initiate IPPf processing, if needed. */ 11776 if (IPP_ENABLED(IPP_LOCAL_IN)) { 11777 uint32_t ill_index; 11778 ill_index = recv_ill->ill_phyint->phyint_ifindex; 11779 ip_process(IPP_LOCAL_IN, &first_mp, ill_index); 11780 if (first_mp == NULL) { 11781 return (NULL); 11782 } 11783 } 11784 BUMP_MIB(&ip_mib, ipInDelivers); 11785 tcp_xmit_listeners_reset(first_mp, IPH_HDR_LENGTH(mp->b_rptr)); 11786 return (NULL); 11787 ipoptions: 11788 if (!ip_options_cksum(q, first_mp, ipha, ire)) { 11789 goto slow_done; 11790 } 11791 11792 UPDATE_IB_PKT_COUNT(ire); 11793 ire->ire_last_used_time = lbolt; 11794 11795 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 11796 if (u1 & (IPH_MF | IPH_OFFSET)) { 11797 fragmented: 11798 if (!ip_rput_fragment(q, &mp, ipha)) { 11799 if (mctl_present) 11800 freeb(first_mp); 11801 goto slow_done; 11802 } 11803 /* 11804 * Make sure that first_mp points back to mp as 11805 * the mp we came in with could have changed in 11806 * ip_rput_fragment(). 11807 */ 11808 ASSERT(!mctl_present); 11809 ipha = (ipha_t *)mp->b_rptr; 11810 first_mp = mp; 11811 } 11812 11813 tcp_slow: 11814 /* Now we have a complete datagram, destined for this machine. */ 11815 u1 = ip_hdr_len = IPH_HDR_LENGTH(ipha); 11816 11817 len = mp->b_wptr - mp->b_rptr; 11818 /* Pull up a minimal TCP header, if necessary. */ 11819 if (len < (u1 + 20)) { 11820 tcppullup: 11821 if (!pullupmsg(mp, u1 + 20)) { 11822 BUMP_MIB(&ip_mib, ipInDiscards); 11823 goto error; 11824 } 11825 ipha = (ipha_t *)mp->b_rptr; 11826 len = mp->b_wptr - mp->b_rptr; 11827 } 11828 11829 /* 11830 * Extract the offset field from the TCP header. As usual, we 11831 * try to help the compiler more than the reader. 11832 */ 11833 offset = ((uchar_t *)ipha)[u1 + 12] >> 4; 11834 if (offset != 5) { 11835 tcpoptions: 11836 if (offset < 5) { 11837 BUMP_MIB(&ip_mib, ipInDiscards); 11838 goto error; 11839 } 11840 /* 11841 * There must be TCP options. 11842 * Make sure we can grab them. 11843 */ 11844 offset <<= 2; 11845 offset += u1; 11846 if (len < offset) { 11847 if (!pullupmsg(mp, offset)) { 11848 BUMP_MIB(&ip_mib, ipInDiscards); 11849 goto error; 11850 } 11851 ipha = (ipha_t *)mp->b_rptr; 11852 len = mp->b_wptr - rptr; 11853 } 11854 } 11855 11856 /* Get the total packet length in len, including headers. */ 11857 if (mp->b_cont) { 11858 multipkttcp: 11859 len = msgdsize(mp); 11860 } 11861 11862 /* 11863 * Check the TCP checksum by pulling together the pseudo- 11864 * header checksum, and passing it to ip_csum to be added in 11865 * with the TCP datagram. 11866 * 11867 * Since we are not using the hwcksum if available we must 11868 * clear the flag. We may come here via tcppullup or tcpoptions. 11869 * If either of these fails along the way the mblk is freed. 11870 * If this logic ever changes and mblk is reused to say send 11871 * ICMP's back, then this flag may need to be cleared in 11872 * other places as well. 11873 */ 11874 mp->b_datap->db_struioun.cksum.flags = 0; 11875 11876 up = (uint16_t *)(rptr + u1 + TCP_PORTS_OFFSET); 11877 u1 = (uint32_t)(len - u1); /* TCP datagram length. */ 11878 #ifdef _BIG_ENDIAN 11879 u1 += IPPROTO_TCP; 11880 #else 11881 u1 = ((u1 >> 8) & 0xFF) + (((u1 & 0xFF) + IPPROTO_TCP) << 8); 11882 #endif 11883 u1 += iphs[6] + iphs[7] + iphs[8] + iphs[9]; 11884 /* 11885 * Not M_DATA mblk or its a dup, so do the checksum now. 11886 */ 11887 IP_STAT(ip_in_sw_cksum); 11888 if (IP_CSUM(mp, (int32_t)((uchar_t *)up - rptr), u1)) { 11889 BUMP_MIB(&ip_mib, tcpInErrs); 11890 goto error; 11891 } 11892 11893 IP_STAT(ip_tcp_slow_path); 11894 goto try_again; 11895 #undef iphs 11896 #undef rptr 11897 11898 error: 11899 freemsg(first_mp); 11900 slow_done: 11901 return (NULL); 11902 } 11903 11904 /* ARGSUSED */ 11905 static void 11906 ip_sctp_input(mblk_t *mp, ipha_t *ipha, ill_t *recv_ill, boolean_t mctl_present, 11907 ire_t *ire, mblk_t *first_mp, uint_t flags, queue_t *q, ipaddr_t dst) 11908 { 11909 conn_t *connp; 11910 uint32_t sum; 11911 uint32_t u1; 11912 ssize_t len; 11913 sctp_hdr_t *sctph; 11914 zoneid_t zoneid = ire->ire_zoneid; 11915 uint32_t pktsum; 11916 uint32_t calcsum; 11917 uint32_t ports; 11918 uint_t ipif_seqid; 11919 in6_addr_t map_src, map_dst; 11920 ill_t *ill = (ill_t *)q->q_ptr; 11921 11922 #define rptr ((uchar_t *)ipha) 11923 11924 ASSERT(ipha->ipha_protocol == IPPROTO_SCTP); 11925 11926 /* u1 is # words of IP options */ 11927 u1 = ipha->ipha_version_and_hdr_length - (uchar_t)((IP_VERSION << 4) 11928 + IP_SIMPLE_HDR_LENGTH_IN_WORDS); 11929 11930 /* IP options present */ 11931 if (u1 > 0) { 11932 goto ipoptions; 11933 } else { 11934 /* Check the IP header checksum. */ 11935 if (IS_IPHDR_HWCKSUM(mctl_present, mp, ill)) { 11936 /* 11937 * Since there is no SCTP h/w cksum support yet, just 11938 * clear the flag. 11939 */ 11940 mp->b_datap->db_struioun.cksum.flags = 0; 11941 } else { 11942 #define uph ((uint16_t *)ipha) 11943 sum = uph[0] + uph[1] + uph[2] + uph[3] + uph[4] + 11944 uph[5] + uph[6] + uph[7] + uph[8] + uph[9]; 11945 #undef uph 11946 /* finish doing IP checksum */ 11947 sum = (sum & 0xFFFF) + (sum >> 16); 11948 sum = ~(sum + (sum >> 16)) & 0xFFFF; 11949 /* 11950 * Don't verify header checksum if this packet 11951 * is coming back from AH/ESP as we already did it. 11952 */ 11953 if (!mctl_present && (sum != 0) && sum != 0xFFFF) { 11954 BUMP_MIB(&ip_mib, ipInCksumErrs); 11955 goto error; 11956 } 11957 } 11958 } 11959 11960 /* 11961 * Don't verify header checksum if this packet is coming 11962 * back from AH/ESP as we already did it. 11963 */ 11964 if (!mctl_present) { 11965 UPDATE_IB_PKT_COUNT(ire); 11966 ire->ire_last_used_time = lbolt; 11967 } 11968 11969 /* packet part of fragmented IP packet? */ 11970 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 11971 if (u1 & (IPH_MF | IPH_OFFSET)) 11972 goto fragmented; 11973 11974 /* u1 = IP header length (20 bytes) */ 11975 u1 = IP_SIMPLE_HDR_LENGTH; 11976 11977 find_sctp_client: 11978 /* Pullup if we don't have the sctp common header. */ 11979 len = MBLKL(mp); 11980 if (len < (u1 + SCTP_COMMON_HDR_LENGTH)) { 11981 if (mp->b_cont == NULL || 11982 !pullupmsg(mp, u1 + SCTP_COMMON_HDR_LENGTH)) { 11983 BUMP_MIB(&ip_mib, ipInDiscards); 11984 goto error; 11985 } 11986 ipha = (ipha_t *)mp->b_rptr; 11987 len = MBLKL(mp); 11988 } 11989 11990 sctph = (sctp_hdr_t *)(rptr + u1); 11991 #ifdef DEBUG 11992 if (!skip_sctp_cksum) { 11993 #endif 11994 pktsum = sctph->sh_chksum; 11995 sctph->sh_chksum = 0; 11996 calcsum = sctp_cksum(mp, u1); 11997 if (calcsum != pktsum) { 11998 BUMP_MIB(&sctp_mib, sctpChecksumError); 11999 goto error; 12000 } 12001 sctph->sh_chksum = pktsum; 12002 #ifdef DEBUG /* skip_sctp_cksum */ 12003 } 12004 #endif 12005 /* get the ports */ 12006 ports = *(uint32_t *)&sctph->sh_sport; 12007 12008 ipif_seqid = ire->ire_ipif->ipif_seqid; 12009 IRE_REFRELE(ire); 12010 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &map_dst); 12011 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &map_src); 12012 if ((connp = sctp_find_conn(&map_src, &map_dst, ports, ipif_seqid, 12013 zoneid)) == NULL) { 12014 /* Check for raw socket or OOTB handling */ 12015 goto no_conn; 12016 } 12017 12018 /* Found a client; up it goes */ 12019 BUMP_MIB(&ip_mib, ipInDelivers); 12020 sctp_input(connp, ipha, mp, first_mp, recv_ill, B_TRUE, mctl_present); 12021 return; 12022 12023 no_conn: 12024 ip_fanout_sctp_raw(first_mp, recv_ill, ipha, B_TRUE, 12025 ports, mctl_present, flags, B_TRUE, ipif_seqid, zoneid); 12026 return; 12027 12028 ipoptions: 12029 mp->b_datap->db_struioun.cksum.flags = 0; 12030 if (!ip_options_cksum(q, first_mp, ipha, ire)) 12031 goto slow_done; 12032 12033 UPDATE_IB_PKT_COUNT(ire); 12034 ire->ire_last_used_time = lbolt; 12035 12036 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 12037 if (u1 & (IPH_MF | IPH_OFFSET)) { 12038 fragmented: 12039 if (!ip_rput_fragment(q, &mp, ipha)) 12040 goto slow_done; 12041 /* 12042 * Make sure that first_mp points back to mp as 12043 * the mp we came in with could have changed in 12044 * ip_rput_fragment(). 12045 */ 12046 ASSERT(!mctl_present); 12047 ipha = (ipha_t *)mp->b_rptr; 12048 first_mp = mp; 12049 } 12050 12051 /* Now we have a complete datagram, destined for this machine. */ 12052 u1 = IPH_HDR_LENGTH(ipha); 12053 goto find_sctp_client; 12054 #undef iphs 12055 #undef rptr 12056 12057 error: 12058 freemsg(first_mp); 12059 slow_done: 12060 IRE_REFRELE(ire); 12061 } 12062 12063 #define VER_BITS 0xF0 12064 #define VERSION_6 0x60 12065 12066 static boolean_t 12067 ip_rput_multimblk_ipoptions(queue_t *q, mblk_t *mp, ipha_t **iphapp, 12068 ipaddr_t *dstp) 12069 { 12070 uint_t opt_len; 12071 ipha_t *ipha; 12072 ssize_t len; 12073 uint_t pkt_len; 12074 12075 IP_STAT(ip_ipoptions); 12076 ipha = *iphapp; 12077 12078 #define rptr ((uchar_t *)ipha) 12079 /* Assume no IPv6 packets arrive over the IPv4 queue */ 12080 if (IPH_HDR_VERSION(ipha) == IPV6_VERSION) { 12081 BUMP_MIB(&ip_mib, ipInIPv6); 12082 freemsg(mp); 12083 return (B_FALSE); 12084 } 12085 12086 /* multiple mblk or too short */ 12087 pkt_len = ntohs(ipha->ipha_length); 12088 12089 /* Get the number of words of IP options in the IP header. */ 12090 opt_len = ipha->ipha_version_and_hdr_length - IP_SIMPLE_HDR_VERSION; 12091 if (opt_len) { 12092 /* IP Options present! Validate and process. */ 12093 if (opt_len > (15 - IP_SIMPLE_HDR_LENGTH_IN_WORDS)) { 12094 BUMP_MIB(&ip_mib, ipInHdrErrors); 12095 goto done; 12096 } 12097 /* 12098 * Recompute complete header length and make sure we 12099 * have access to all of it. 12100 */ 12101 len = ((size_t)opt_len + IP_SIMPLE_HDR_LENGTH_IN_WORDS) << 2; 12102 if (len > (mp->b_wptr - rptr)) { 12103 if (len > pkt_len) { 12104 BUMP_MIB(&ip_mib, ipInHdrErrors); 12105 goto done; 12106 } 12107 if (!pullupmsg(mp, len)) { 12108 BUMP_MIB(&ip_mib, ipInDiscards); 12109 goto done; 12110 } 12111 ipha = (ipha_t *)mp->b_rptr; 12112 } 12113 /* 12114 * Go off to ip_rput_options which returns the next hop 12115 * destination address, which may have been affected 12116 * by source routing. 12117 */ 12118 IP_STAT(ip_opt); 12119 if (ip_rput_options(q, mp, ipha, dstp) == -1) { 12120 return (B_FALSE); 12121 } 12122 } 12123 *iphapp = ipha; 12124 return (B_TRUE); 12125 done: 12126 /* clear b_prev - used by ip_mroute_decap */ 12127 mp->b_prev = NULL; 12128 freemsg(mp); 12129 return (B_FALSE); 12130 #undef rptr 12131 } 12132 12133 /* 12134 * Deal with the fact that there is no ire for the destination. 12135 * The incoming ill (in_ill) is passed in to ip_newroute only 12136 * in the case of packets coming from mobile ip forward tunnel. 12137 * It must be null otherwise. 12138 */ 12139 static void 12140 ip_rput_noire(queue_t *q, ill_t *in_ill, mblk_t *mp, int ll_multicast, 12141 ipaddr_t dst) 12142 { 12143 ipha_t *ipha; 12144 ill_t *ill; 12145 12146 ipha = (ipha_t *)mp->b_rptr; 12147 ill = (ill_t *)q->q_ptr; 12148 12149 ASSERT(ill != NULL); 12150 /* 12151 * No IRE for this destination, so it can't be for us. 12152 * Unless we are forwarding, drop the packet. 12153 * We have to let source routed packets through 12154 * since we don't yet know if they are 'ping -l' 12155 * packets i.e. if they will go out over the 12156 * same interface as they came in on. 12157 */ 12158 if (ll_multicast) { 12159 freemsg(mp); 12160 return; 12161 } 12162 if (!(ill->ill_flags & ILLF_ROUTER) && !ip_source_routed(ipha)) { 12163 BUMP_MIB(&ip_mib, ipForwProhibits); 12164 freemsg(mp); 12165 return; 12166 } 12167 12168 /* Check for Martian addresses */ 12169 if ((in_ill == NULL) && (ip_no_forward(ipha, ill))) { 12170 freemsg(mp); 12171 return; 12172 } 12173 12174 /* Mark this packet as having originated externally */ 12175 mp->b_prev = (mblk_t *)(uintptr_t)ill->ill_phyint->phyint_ifindex; 12176 12177 /* 12178 * Clear the indication that this may have a hardware checksum 12179 * as we are not using it 12180 */ 12181 mp->b_datap->db_struioun.cksum.flags = 0; 12182 12183 /* 12184 * Now hand the packet to ip_newroute. 12185 */ 12186 ip_newroute(q, mp, dst, in_ill, NULL); 12187 } 12188 12189 /* 12190 * check ip header length and align it. 12191 */ 12192 static boolean_t 12193 ip_check_and_align_header(queue_t *q, mblk_t *mp) 12194 { 12195 ssize_t len; 12196 ill_t *ill; 12197 ipha_t *ipha; 12198 12199 len = MBLKL(mp); 12200 12201 if (!OK_32PTR(mp->b_rptr) || len < IP_SIMPLE_HDR_LENGTH) { 12202 if (!OK_32PTR(mp->b_rptr)) 12203 IP_STAT(ip_notaligned1); 12204 else 12205 IP_STAT(ip_notaligned2); 12206 /* Guard against bogus device drivers */ 12207 if (len < 0) { 12208 /* clear b_prev - used by ip_mroute_decap */ 12209 mp->b_prev = NULL; 12210 BUMP_MIB(&ip_mib, ipInHdrErrors); 12211 freemsg(mp); 12212 return (B_FALSE); 12213 } 12214 12215 if (ip_rput_pullups++ == 0) { 12216 ill = (ill_t *)q->q_ptr; 12217 ipha = (ipha_t *)mp->b_rptr; 12218 (void) mi_strlog(q, 1, SL_ERROR|SL_TRACE, 12219 "ip_check_and_align_header: %s forced us to " 12220 " pullup pkt, hdr len %ld, hdr addr %p", 12221 ill->ill_name, len, ipha); 12222 } 12223 if (!pullupmsg(mp, IP_SIMPLE_HDR_LENGTH)) { 12224 /* clear b_prev - used by ip_mroute_decap */ 12225 mp->b_prev = NULL; 12226 BUMP_MIB(&ip_mib, ipInDiscards); 12227 freemsg(mp); 12228 return (B_FALSE); 12229 } 12230 } 12231 return (B_TRUE); 12232 } 12233 12234 static boolean_t 12235 ip_rput_notforus(queue_t **qp, mblk_t *mp, ire_t *ire, ill_t *ill) 12236 { 12237 ill_group_t *ill_group; 12238 ill_group_t *ire_group; 12239 queue_t *q; 12240 ill_t *ire_ill; 12241 uint_t ill_ifindex; 12242 12243 q = *qp; 12244 /* 12245 * We need to check to make sure the packet came in 12246 * on the queue associated with the destination IRE. 12247 * Note that for multicast packets and broadcast packets sent to 12248 * a broadcast address which is shared between multiple interfaces 12249 * we should not do this since we just got a random broadcast ire. 12250 */ 12251 if (ire->ire_rfq && ire->ire_type != IRE_BROADCAST) { 12252 boolean_t check_multi = B_TRUE; 12253 12254 /* 12255 * This packet came in on an interface other than the 12256 * one associated with the destination address. 12257 * "Gateway" it to the appropriate interface here. 12258 * As long as the ills belong to the same group, 12259 * we don't consider them to arriving on the wrong 12260 * interface. Thus, when the switch is doing inbound 12261 * load spreading, we won't drop packets when we 12262 * are doing strict multihoming checks. Note, the 12263 * same holds true for 'usesrc groups' where the 12264 * destination address may belong to another interface 12265 * to allow multipathing to happen 12266 */ 12267 ill_group = ill->ill_group; 12268 ire_ill = (ill_t *)(ire->ire_rfq)->q_ptr; 12269 ill_ifindex = ill->ill_usesrc_ifindex; 12270 ire_group = ire_ill->ill_group; 12271 12272 /* 12273 * If it's part of the same IPMP group, or if it's a legal 12274 * address on the 'usesrc' interface, then bypass strict 12275 * checks. 12276 */ 12277 if (ill_group != NULL && ill_group == ire_group) { 12278 check_multi = B_FALSE; 12279 } else if (ill_ifindex != 0 && 12280 ill_ifindex == ire_ill->ill_phyint->phyint_ifindex) { 12281 check_multi = B_FALSE; 12282 } 12283 12284 if (check_multi && 12285 ip_strict_dst_multihoming && 12286 ((ill->ill_flags & 12287 ire->ire_ipif->ipif_ill->ill_flags & 12288 ILLF_ROUTER) == 0)) { 12289 /* Drop packet */ 12290 BUMP_MIB(&ip_mib, ipForwProhibits); 12291 freemsg(mp); 12292 ire_refrele(ire); 12293 return (B_TRUE); 12294 } 12295 12296 /* 12297 * Change the queue (for non-virtual destination network 12298 * interfaces) and ip_rput_local will be called with the right 12299 * queue 12300 */ 12301 q = ire->ire_rfq; 12302 } 12303 /* Must be broadcast. We'll take it. */ 12304 *qp = q; 12305 return (B_FALSE); 12306 } 12307 12308 static void 12309 ip_rput_process_forward(queue_t *q, mblk_t *mp, ire_t *ire, ipha_t *ipha, 12310 ill_t *ill, int ll_multicast) 12311 { 12312 ill_group_t *ill_group; 12313 ill_group_t *ire_group; 12314 queue_t *dev_q; 12315 12316 ASSERT(ire->ire_stq != NULL); 12317 if (ll_multicast != 0) 12318 goto drop_pkt; 12319 12320 if (ip_no_forward(ipha, ill)) 12321 goto drop_pkt; 12322 12323 ill_group = ill->ill_group; 12324 ire_group = ((ill_t *)(ire->ire_rfq)->q_ptr)->ill_group; 12325 /* 12326 * Check if we want to forward this one at this time. 12327 * We allow source routed packets on a host provided that 12328 * they go out the same interface or same interface group 12329 * as they came in on. 12330 * 12331 * XXX To be quicker, we may wish to not chase pointers to 12332 * get the ILLF_ROUTER flag and instead store the 12333 * forwarding policy in the ire. An unfortunate 12334 * side-effect of that would be requiring an ire flush 12335 * whenever the ILLF_ROUTER flag changes. 12336 */ 12337 if (((ill->ill_flags & 12338 ((ill_t *)ire->ire_stq->q_ptr)->ill_flags & 12339 ILLF_ROUTER) == 0) && 12340 !(ip_source_routed(ipha) && (ire->ire_rfq == q || 12341 (ill_group != NULL && ill_group == ire_group)))) { 12342 BUMP_MIB(&ip_mib, ipForwProhibits); 12343 if (ip_source_routed(ipha)) { 12344 q = WR(q); 12345 /* 12346 * Clear the indication that this may have 12347 * hardware checksum as we are not using it. 12348 */ 12349 mp->b_datap->db_struioun.cksum.flags = 0; 12350 icmp_unreachable(q, mp, 12351 ICMP_SOURCE_ROUTE_FAILED); 12352 ire_refrele(ire); 12353 return; 12354 } 12355 goto drop_pkt; 12356 } 12357 12358 /* Packet is being forwarded. Turning off hwcksum flag. */ 12359 mp->b_datap->db_struioun.cksum.flags = 0; 12360 if (ip_g_send_redirects) { 12361 /* 12362 * Check whether the incoming interface and outgoing 12363 * interface is part of the same group. If so, 12364 * send redirects. 12365 * 12366 * Check the source address to see if it originated 12367 * on the same logical subnet it is going back out on. 12368 * If so, we should be able to send it a redirect. 12369 * Avoid sending a redirect if the destination 12370 * is directly connected (gw_addr == 0), 12371 * or if the packet was source routed out this 12372 * interface. 12373 */ 12374 ipaddr_t src; 12375 mblk_t *mp1; 12376 ire_t *src_ire = NULL; 12377 12378 /* 12379 * Check whether ire_rfq and q are from the same ill 12380 * or if they are not same, they at least belong 12381 * to the same group. If so, send redirects. 12382 */ 12383 if ((ire->ire_rfq == q || 12384 (ill_group != NULL && ill_group == ire_group)) && 12385 (ire->ire_gateway_addr != 0) && 12386 !ip_source_routed(ipha)) { 12387 12388 src = ipha->ipha_src; 12389 src_ire = ire_ftable_lookup(src, 0, 0, 12390 IRE_INTERFACE, ire->ire_ipif, NULL, ALL_ZONES, 12391 0, MATCH_IRE_IPIF | MATCH_IRE_TYPE); 12392 12393 if (src_ire != NULL) { 12394 /* 12395 * The source is directly connected. 12396 * Just copy the ip header (which is 12397 * in the first mblk) 12398 */ 12399 mp1 = copyb(mp); 12400 if (mp1 != NULL) { 12401 icmp_send_redirect(WR(q), mp1, 12402 ire->ire_gateway_addr); 12403 } 12404 ire_refrele(src_ire); 12405 } 12406 } 12407 } 12408 12409 dev_q = ire->ire_stq->q_next; 12410 if ((dev_q->q_next || dev_q->q_first) && !canput(dev_q)) { 12411 BUMP_MIB(&ip_mib, ipInDiscards); 12412 freemsg(mp); 12413 ire_refrele(ire); 12414 return; 12415 } 12416 12417 ip_rput_forward(ire, ipha, mp, ill); 12418 IRE_REFRELE(ire); 12419 return; 12420 12421 drop_pkt: 12422 ire_refrele(ire); 12423 ip2dbg(("ip_rput_forward: drop pkt\n")); 12424 freemsg(mp); 12425 } 12426 12427 static boolean_t 12428 ip_rput_process_broadcast(queue_t **qp, mblk_t *mp, ire_t **irep, ipha_t *ipha, 12429 ill_t *ill, ipaddr_t dst, int cgtp_flt_pkt, int ll_multicast) 12430 { 12431 queue_t *q; 12432 ire_t *ire; 12433 12434 q = *qp; 12435 ire = *irep; 12436 12437 /* 12438 * Clear the indication that this may have hardware 12439 * checksum as we are not using it. 12440 */ 12441 mp->b_datap->db_struioun.cksum.flags = 0; 12442 12443 /* 12444 * Directed broadcast forwarding: if the packet came in over a 12445 * different interface then it is routed out over we can forward it. 12446 */ 12447 if (ipha->ipha_protocol == IPPROTO_TCP) { 12448 ire_refrele(ire); 12449 freemsg(mp); 12450 BUMP_MIB(&ip_mib, ipInDiscards); 12451 return (B_TRUE); 12452 } 12453 /* 12454 * For multicast we have set dst to be INADDR_BROADCAST 12455 * for delivering to all STREAMS. IRE_MARK_NORECV is really 12456 * only for broadcast packets. 12457 */ 12458 if (!CLASSD(ipha->ipha_dst)) { 12459 ire_t *new_ire; 12460 ipif_t *ipif; 12461 /* 12462 * For ill groups, as the switch duplicates broadcasts 12463 * across all the ports, we need to filter out and 12464 * send up only one copy. There is one copy for every 12465 * broadcast address on each ill. Thus, we look for a 12466 * specific IRE on this ill and look at IRE_MARK_NORECV 12467 * later to see whether this ill is eligible to receive 12468 * them or not. ill_nominate_bcast_rcv() nominates only 12469 * one set of IREs for receiving. 12470 */ 12471 12472 ipif = ipif_get_next_ipif(NULL, ill); 12473 if (ipif == NULL) { 12474 ire_refrele(ire); 12475 freemsg(mp); 12476 BUMP_MIB(&ip_mib, ipInDiscards); 12477 return (B_TRUE); 12478 } 12479 new_ire = ire_ctable_lookup(dst, 0, 0, 12480 ipif, ALL_ZONES, MATCH_IRE_ILL); 12481 ipif_refrele(ipif); 12482 12483 if (new_ire != NULL) { 12484 if (new_ire->ire_marks & IRE_MARK_NORECV) { 12485 ire_refrele(ire); 12486 ire_refrele(new_ire); 12487 freemsg(mp); 12488 BUMP_MIB(&ip_mib, ipInDiscards); 12489 return (B_TRUE); 12490 } 12491 /* 12492 * In the special case of multirouted broadcast 12493 * packets, we unconditionally need to "gateway" 12494 * them to the appropriate interface here. 12495 * In the normal case, this cannot happen, because 12496 * there is no broadcast IRE tagged with the 12497 * RTF_MULTIRT flag. 12498 */ 12499 if (new_ire->ire_flags & RTF_MULTIRT) { 12500 ire_refrele(new_ire); 12501 if (ire->ire_rfq != NULL) { 12502 q = ire->ire_rfq; 12503 *qp = q; 12504 } 12505 } else { 12506 ire_refrele(ire); 12507 ire = new_ire; 12508 } 12509 } else if (cgtp_flt_pkt == CGTP_IP_PKT_NOT_CGTP) { 12510 if (!ip_g_forward_directed_bcast) { 12511 /* 12512 * Free the message if 12513 * ip_g_forward_directed_bcast is turned 12514 * off for non-local broadcast. 12515 */ 12516 ire_refrele(ire); 12517 freemsg(mp); 12518 BUMP_MIB(&ip_mib, ipInDiscards); 12519 return (B_TRUE); 12520 } 12521 } else { 12522 /* 12523 * This CGTP packet successfully passed the 12524 * CGTP filter, but the related CGTP 12525 * broadcast IRE has not been found, 12526 * meaning that the redundant ipif is 12527 * probably down. However, if we discarded 12528 * this packet, its duplicate would be 12529 * filtered out by the CGTP filter so none 12530 * of them would get through. So we keep 12531 * going with this one. 12532 */ 12533 ASSERT(cgtp_flt_pkt == CGTP_IP_PKT_PREMIUM); 12534 if (ire->ire_rfq != NULL) { 12535 q = ire->ire_rfq; 12536 *qp = q; 12537 } 12538 } 12539 } 12540 if (ip_g_forward_directed_bcast && ll_multicast == 0) { 12541 /* 12542 * Verify that there are not more then one 12543 * IRE_BROADCAST with this broadcast address which 12544 * has ire_stq set. 12545 * TODO: simplify, loop over all IRE's 12546 */ 12547 ire_t *ire1; 12548 int num_stq = 0; 12549 mblk_t *mp1; 12550 12551 /* Find the first one with ire_stq set */ 12552 rw_enter(&ire->ire_bucket->irb_lock, RW_READER); 12553 for (ire1 = ire; ire1 && 12554 !ire1->ire_stq && ire1->ire_addr == ire->ire_addr; 12555 ire1 = ire1->ire_next) 12556 ; 12557 if (ire1) { 12558 ire_refrele(ire); 12559 ire = ire1; 12560 IRE_REFHOLD(ire); 12561 } 12562 12563 /* Check if there are additional ones with stq set */ 12564 for (ire1 = ire; ire1; ire1 = ire1->ire_next) { 12565 if (ire->ire_addr != ire1->ire_addr) 12566 break; 12567 if (ire1->ire_stq) { 12568 num_stq++; 12569 break; 12570 } 12571 } 12572 rw_exit(&ire->ire_bucket->irb_lock); 12573 if (num_stq == 1 && ire->ire_stq != NULL) { 12574 ip1dbg(("ip_rput_process_broadcast: directed " 12575 "broadcast to 0x%x\n", 12576 ntohl(ire->ire_addr))); 12577 mp1 = copymsg(mp); 12578 if (mp1) { 12579 switch (ipha->ipha_protocol) { 12580 case IPPROTO_UDP: 12581 ip_udp_input(q, mp1, ipha, ire, ill); 12582 break; 12583 default: 12584 ip_proto_input(q, mp1, ipha, ire, ill); 12585 break; 12586 } 12587 } 12588 /* 12589 * Adjust ttl to 2 (1+1 - the forward engine 12590 * will decrement it by one. 12591 */ 12592 if (ip_csum_hdr(ipha)) { 12593 BUMP_MIB(&ip_mib, ipInCksumErrs); 12594 ip2dbg(("ip_rput_broadcast:drop pkt\n")); 12595 freemsg(mp); 12596 ire_refrele(ire); 12597 return (B_TRUE); 12598 } 12599 ipha->ipha_ttl = ip_broadcast_ttl + 1; 12600 ipha->ipha_hdr_checksum = 0; 12601 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 12602 ip_rput_process_forward(q, mp, ire, ipha, 12603 ill, ll_multicast); 12604 return (B_TRUE); 12605 } 12606 ip1dbg(("ip_rput: NO directed broadcast to 0x%x\n", 12607 ntohl(ire->ire_addr))); 12608 } 12609 12610 *irep = ire; 12611 return (B_FALSE); 12612 } 12613 12614 /* ARGSUSED */ 12615 static boolean_t 12616 ip_rput_process_multicast(queue_t *q, mblk_t *mp, ill_t *ill, ipha_t *ipha, 12617 int *ll_multicast, ipaddr_t *dstp) 12618 { 12619 /* 12620 * Forward packets only if we have joined the allmulti 12621 * group on this interface. 12622 */ 12623 if (ip_g_mrouter && ill->ill_join_allmulti) { 12624 int retval; 12625 12626 /* 12627 * Clear the indication that this may have hardware 12628 * checksum as we are not using it. 12629 */ 12630 mp->b_datap->db_struioun.cksum.flags = 0; 12631 retval = ip_mforward(ill, ipha, mp); 12632 /* ip_mforward updates mib variables if needed */ 12633 /* clear b_prev - used by ip_mroute_decap */ 12634 mp->b_prev = NULL; 12635 12636 switch (retval) { 12637 case 0: 12638 /* 12639 * pkt is okay and arrived on phyint. 12640 * 12641 * If we are running as a multicast router 12642 * we need to see all IGMP and/or PIM packets. 12643 */ 12644 if ((ipha->ipha_protocol == IPPROTO_IGMP) || 12645 (ipha->ipha_protocol == IPPROTO_PIM)) { 12646 goto done; 12647 } 12648 break; 12649 case -1: 12650 /* pkt is mal-formed, toss it */ 12651 goto drop_pkt; 12652 case 1: 12653 /* pkt is okay and arrived on a tunnel */ 12654 /* 12655 * If we are running a multicast router 12656 * we need to see all igmp packets. 12657 */ 12658 if (ipha->ipha_protocol == IPPROTO_IGMP) { 12659 *dstp = INADDR_BROADCAST; 12660 *ll_multicast = 1; 12661 return (B_FALSE); 12662 } 12663 12664 goto drop_pkt; 12665 } 12666 } 12667 12668 ILM_WALKER_HOLD(ill); 12669 if (ilm_lookup_ill(ill, *dstp, ALL_ZONES) == NULL) { 12670 /* 12671 * This might just be caused by the fact that 12672 * multiple IP Multicast addresses map to the same 12673 * link layer multicast - no need to increment counter! 12674 */ 12675 ILM_WALKER_RELE(ill); 12676 freemsg(mp); 12677 return (B_TRUE); 12678 } 12679 ILM_WALKER_RELE(ill); 12680 done: 12681 ip2dbg(("ip_rput: multicast for us: 0x%x\n", ntohl(*dstp))); 12682 /* 12683 * This assumes the we deliver to all streams for multicast 12684 * and broadcast packets. 12685 */ 12686 *dstp = INADDR_BROADCAST; 12687 *ll_multicast = 1; 12688 return (B_FALSE); 12689 drop_pkt: 12690 ip2dbg(("ip_rput: drop pkt\n")); 12691 freemsg(mp); 12692 return (B_TRUE); 12693 } 12694 12695 static boolean_t 12696 ip_rput_process_notdata(queue_t *q, mblk_t **first_mpp, ill_t *ill, 12697 int *ll_multicast, mblk_t **mpp) 12698 { 12699 mblk_t *mp1, *from_mp, *to_mp, *mp, *first_mp; 12700 boolean_t must_copy = B_FALSE; 12701 struct iocblk *iocp; 12702 ipha_t *ipha; 12703 12704 #define rptr ((uchar_t *)ipha) 12705 12706 first_mp = *first_mpp; 12707 mp = *mpp; 12708 12709 ASSERT(first_mp == mp); 12710 12711 /* 12712 * if db_ref > 1 then copymsg and free original. Packet may be 12713 * changed and do not want other entity who has a reference to this 12714 * message to trip over the changes. This is a blind change because 12715 * trying to catch all places that might change packet is too 12716 * difficult (since it may be a module above this one) 12717 * 12718 * This corresponds to the non-fast path case. We walk down the full 12719 * chain in this case, and check the db_ref count of all the dblks, 12720 * and do a copymsg if required. It is possible that the db_ref counts 12721 * of the data blocks in the mblk chain can be different. 12722 * For Example, we can get a DL_UNITDATA_IND(M_PROTO) with a db_ref 12723 * count of 1, followed by a M_DATA block with a ref count of 2, if 12724 * 'snoop' is running. 12725 */ 12726 for (mp1 = mp; mp1 != NULL; mp1 = mp1->b_cont) { 12727 if (mp1->b_datap->db_ref > 1) { 12728 must_copy = B_TRUE; 12729 break; 12730 } 12731 } 12732 12733 if (must_copy) { 12734 mp1 = copymsg(mp); 12735 if (mp1 == NULL) { 12736 for (mp1 = mp; mp1 != NULL; 12737 mp1 = mp1->b_cont) { 12738 mp1->b_next = NULL; 12739 mp1->b_prev = NULL; 12740 } 12741 freemsg(mp); 12742 BUMP_MIB(&ip_mib, ipInDiscards); 12743 return (B_TRUE); 12744 } 12745 for (from_mp = mp, to_mp = mp1; from_mp != NULL; 12746 from_mp = from_mp->b_cont, to_mp = to_mp->b_cont) { 12747 /* Copy b_next - used in M_BREAK messages */ 12748 to_mp->b_next = from_mp->b_next; 12749 from_mp->b_next = NULL; 12750 /* Copy b_prev - used by ip_mroute_decap */ 12751 to_mp->b_prev = from_mp->b_prev; 12752 from_mp->b_prev = NULL; 12753 } 12754 *first_mpp = first_mp = mp1; 12755 freemsg(mp); 12756 mp = mp1; 12757 *mpp = mp1; 12758 } 12759 12760 ipha = (ipha_t *)mp->b_rptr; 12761 12762 /* 12763 * previous code has a case for M_DATA. 12764 * We want to check how that happens. 12765 */ 12766 ASSERT(first_mp->b_datap->db_type != M_DATA); 12767 switch (first_mp->b_datap->db_type) { 12768 case M_PROTO: 12769 case M_PCPROTO: 12770 if (((dl_unitdata_ind_t *)rptr)->dl_primitive != 12771 DL_UNITDATA_IND) { 12772 /* Go handle anything other than data elsewhere. */ 12773 ip_rput_dlpi(q, mp); 12774 return (B_TRUE); 12775 } 12776 *ll_multicast = ((dl_unitdata_ind_t *)rptr)->dl_group_address; 12777 /* Ditch the DLPI header. */ 12778 mp1 = mp->b_cont; 12779 ASSERT(first_mp == mp); 12780 *first_mpp = mp1; 12781 freeb(mp); 12782 *mpp = mp1; 12783 return (B_FALSE); 12784 case M_BREAK: 12785 /* 12786 * A packet arrives as M_BREAK following a cycle through 12787 * ip_rput, ip_newroute, ... and finally ire_add_then_send. 12788 * This is an IP datagram sans lower level header. 12789 * M_BREAK are also used to pass back in multicast packets 12790 * that are encapsulated with a source route. 12791 */ 12792 /* Ditch the M_BREAK mblk */ 12793 mp1 = mp->b_cont; 12794 ASSERT(first_mp == mp); 12795 *first_mpp = mp1; 12796 freeb(mp); 12797 mp = mp1; 12798 mp->b_next = NULL; 12799 *mpp = mp; 12800 *ll_multicast = 0; 12801 return (B_FALSE); 12802 case M_IOCACK: 12803 ip1dbg(("got iocack ")); 12804 iocp = (struct iocblk *)mp->b_rptr; 12805 switch (iocp->ioc_cmd) { 12806 case DL_IOC_HDR_INFO: 12807 ill = (ill_t *)q->q_ptr; 12808 ill_fastpath_ack(ill, mp); 12809 return (B_TRUE); 12810 case SIOCSTUNPARAM: 12811 case OSIOCSTUNPARAM: 12812 /* Go through qwriter_ip */ 12813 break; 12814 case SIOCGTUNPARAM: 12815 case OSIOCGTUNPARAM: 12816 ip_rput_other(NULL, q, mp, NULL); 12817 return (B_TRUE); 12818 default: 12819 putnext(q, mp); 12820 return (B_TRUE); 12821 } 12822 /* FALLTHRU */ 12823 case M_ERROR: 12824 case M_HANGUP: 12825 /* 12826 * Since this is on the ill stream we unconditionally 12827 * bump up the refcount 12828 */ 12829 ill_refhold(ill); 12830 (void) qwriter_ip(NULL, ill, q, mp, ip_rput_other, CUR_OP, 12831 B_FALSE); 12832 return (B_TRUE); 12833 case M_CTL: 12834 /* EXPORT DELETE START */ 12835 if ((MBLKL(first_mp) >= sizeof (da_ipsec_t)) && 12836 (((da_ipsec_t *)first_mp->b_rptr)->da_type == 12837 IPHADA_M_CTL)) { 12838 /* 12839 * It's an IPsec accelerated packet. 12840 * Make sure that the ill from which we received the 12841 * packet has enabled IPsec hardware acceleration. 12842 */ 12843 if (!(ill->ill_capabilities & 12844 (ILL_CAPAB_AH|ILL_CAPAB_ESP))) { 12845 /* IPsec kstats: bean counter */ 12846 freemsg(mp); 12847 return (B_TRUE); 12848 } 12849 12850 /* 12851 * Make mp point to the mblk following the M_CTL, 12852 * then process according to type of mp. 12853 * After this processing, first_mp will point to 12854 * the data-attributes and mp to the pkt following 12855 * the M_CTL. 12856 */ 12857 mp = first_mp->b_cont; 12858 if (mp == NULL) { 12859 freemsg(first_mp); 12860 return (B_TRUE); 12861 } 12862 /* 12863 * A Hardware Accelerated packet can only be M_DATA 12864 * ESP or AH packet. 12865 */ 12866 if (mp->b_datap->db_type != M_DATA) { 12867 /* non-M_DATA IPsec accelerated packet */ 12868 IPSECHW_DEBUG(IPSECHW_PKT, 12869 ("non-M_DATA IPsec accelerated pkt\n")); 12870 freemsg(first_mp); 12871 return (B_TRUE); 12872 } 12873 ipha = (ipha_t *)mp->b_rptr; 12874 if (ipha->ipha_protocol != IPPROTO_AH && 12875 ipha->ipha_protocol != IPPROTO_ESP) { 12876 IPSECHW_DEBUG(IPSECHW_PKT, 12877 ("non-M_DATA IPsec accelerated pkt\n")); 12878 freemsg(first_mp); 12879 return (B_TRUE); 12880 } 12881 *mpp = mp; 12882 return (B_FALSE); 12883 } 12884 /* EXPORT DELETE END */ 12885 putnext(q, mp); 12886 return (B_TRUE); 12887 case M_FLUSH: 12888 if (*mp->b_rptr & FLUSHW) { 12889 *mp->b_rptr &= ~FLUSHR; 12890 qreply(q, mp); 12891 return (B_TRUE); 12892 } 12893 freemsg(mp); 12894 return (B_TRUE); 12895 case M_IOCNAK: 12896 ip1dbg(("got iocnak ")); 12897 iocp = (struct iocblk *)mp->b_rptr; 12898 switch (iocp->ioc_cmd) { 12899 case DL_IOC_HDR_INFO: 12900 case SIOCSTUNPARAM: 12901 case OSIOCSTUNPARAM: 12902 /* 12903 * Since this is on the ill stream we unconditionally 12904 * bump up the refcount 12905 */ 12906 ill_refhold(ill); 12907 (void) qwriter_ip(NULL, ill, q, mp, ip_rput_other, 12908 CUR_OP, B_FALSE); 12909 return (B_TRUE); 12910 case SIOCGTUNPARAM: 12911 case OSIOCGTUNPARAM: 12912 ip_rput_other(NULL, q, mp, NULL); 12913 return (B_TRUE); 12914 default: 12915 break; 12916 } 12917 /* FALLTHRU */ 12918 default: 12919 putnext(q, mp); 12920 return (B_TRUE); 12921 } 12922 } 12923 12924 /* Read side put procedure. Packets coming from the wire arrive here. */ 12925 void 12926 ip_rput(queue_t *q, mblk_t *mp) 12927 { 12928 ill_t *ill; 12929 12930 TRACE_1(TR_FAC_IP, TR_IP_RPUT_START, "ip_rput_start: q %p", q); 12931 12932 ill = (ill_t *)q->q_ptr; 12933 12934 if (ill->ill_state_flags & (ILL_CONDEMNED | ILL_LL_SUBNET_PENDING)) { 12935 union DL_primitives *dl; 12936 12937 /* 12938 * Things are opening or closing. Only accept DLPI control 12939 * messages. In the open case, the ill->ill_ipif has not yet 12940 * been created. In the close case, things hanging off the 12941 * ill could have been freed already. In either case it 12942 * may not be safe to proceed further. 12943 */ 12944 12945 dl = (union DL_primitives *)mp->b_rptr; 12946 if ((mp->b_datap->db_type != M_PCPROTO) || 12947 (dl->dl_primitive == DL_UNITDATA_IND)) { 12948 /* 12949 * Also SIOC[GS]TUN* ioctls can come here. 12950 */ 12951 ip_ioctl_freemsg(mp); 12952 TRACE_2(TR_FAC_IP, TR_IP_RPUT_END, 12953 "ip_input_end: q %p (%S)", q, "uninit"); 12954 return; 12955 } 12956 } 12957 12958 /* 12959 * if db_ref > 1 then copymsg and free original. Packet may be 12960 * changed and we do not want the other entity who has a reference to 12961 * this message to trip over the changes. This is a blind change because 12962 * trying to catch all places that might change the packet is too 12963 * difficult. 12964 * 12965 * This corresponds to the fast path case, where we have a chain of 12966 * M_DATA mblks. We check the db_ref count of only the 1st data block 12967 * in the mblk chain. There doesn't seem to be a reason why a device 12968 * driver would send up data with varying db_ref counts in the mblk 12969 * chain. In any case the Fast path is a private interface, and our 12970 * drivers don't do such a thing. Given the above assumption, there is 12971 * no need to walk down the entire mblk chain (which could have a 12972 * potential performance problem) 12973 */ 12974 if (mp->b_datap->db_ref > 1) { 12975 mblk_t *mp1; 12976 boolean_t adjusted = B_FALSE; 12977 IP_STAT(ip_db_ref); 12978 12979 /* 12980 * The IP_RECVSLLA option depends on having the link layer 12981 * header. First check that: 12982 * a> the underlying device is of type ether, since this 12983 * option is currently supported only over ethernet. 12984 * b> there is enough room to copy over the link layer header. 12985 * 12986 * Once the checks are done, adjust rptr so that the link layer 12987 * header will be copied via copymsg. Note that, IFT_ETHER may 12988 * be returned by some non-ethernet drivers but in this case the 12989 * second check will fail. 12990 */ 12991 if (ill->ill_type == IFT_ETHER && 12992 (mp->b_rptr - mp->b_datap->db_base) >= 12993 sizeof (struct ether_header)) { 12994 mp->b_rptr -= sizeof (struct ether_header); 12995 adjusted = B_TRUE; 12996 } 12997 mp1 = copymsg(mp); 12998 if (mp1 == NULL) { 12999 /* Clear b_next - used in M_BREAK messages */ 13000 mp->b_next = NULL; 13001 /* clear b_prev - used by ip_mroute_decap */ 13002 mp->b_prev = NULL; 13003 freemsg(mp); 13004 BUMP_MIB(&ip_mib, ipInDiscards); 13005 TRACE_2(TR_FAC_IP, TR_IP_RPUT_END, 13006 "ip_rput_end: q %p (%S)", q, "copymsg"); 13007 return; 13008 } 13009 if (adjusted) { 13010 /* 13011 * Copy is done. Restore the pointer in the _new_ mblk 13012 */ 13013 mp1->b_rptr += sizeof (struct ether_header); 13014 } 13015 /* Copy b_next - used in M_BREAK messages */ 13016 mp1->b_next = mp->b_next; 13017 mp->b_next = NULL; 13018 /* Copy b_prev - used by ip_mroute_decap */ 13019 mp1->b_prev = mp->b_prev; 13020 mp->b_prev = NULL; 13021 freemsg(mp); 13022 mp = mp1; 13023 } 13024 13025 TRACE_2(TR_FAC_IP, TR_IP_RPUT_END, 13026 "ip_rput_end: q %p (%S)", q, "end"); 13027 13028 ip_input(ill, NULL, mp, 0); 13029 } 13030 13031 /* 13032 * Direct read side procedure capable of dealing with chains. GLDv3 based 13033 * drivers call this function directly with mblk chains while STREAMS 13034 * read side procedure ip_rput() calls this for single packet with ip_ring 13035 * set to NULL to process one packet at a time. 13036 * 13037 * The ill will always be valid if this function is called directly from 13038 * the driver. 13039 */ 13040 /*ARGSUSED*/ 13041 void 13042 ip_input(ill_t *ill, ill_rx_ring_t *ip_ring, mblk_t *mp_chain, size_t hdrlen) 13043 { 13044 ipaddr_t dst; 13045 ire_t *ire; 13046 ipha_t *ipha; 13047 uint_t pkt_len; 13048 ssize_t len; 13049 uint_t opt_len; 13050 int ll_multicast; 13051 int cgtp_flt_pkt; 13052 queue_t *q = ill->ill_rq; 13053 squeue_t *curr_sqp = NULL; 13054 mblk_t *head = NULL; 13055 mblk_t *tail = NULL; 13056 mblk_t *first_mp; 13057 mblk_t *mp; 13058 int cnt = 0; 13059 13060 ASSERT(mp_chain != NULL); 13061 ASSERT(ill != NULL); 13062 13063 TRACE_1(TR_FAC_IP, TR_IP_RPUT_START, "ip_input_start: q %p", q); 13064 13065 #define rptr ((uchar_t *)ipha) 13066 13067 while (mp_chain != NULL) { 13068 first_mp = mp = mp_chain; 13069 mp_chain = mp_chain->b_next; 13070 mp->b_next = NULL; 13071 ll_multicast = 0; 13072 ire = NULL; 13073 13074 /* 13075 * ip_input fast path 13076 */ 13077 13078 /* mblk type is not M_DATA */ 13079 if (mp->b_datap->db_type != M_DATA) { 13080 if (ip_rput_process_notdata(q, &first_mp, ill, 13081 &ll_multicast, &mp)) 13082 continue; 13083 } 13084 13085 ASSERT(mp->b_datap->db_type == M_DATA); 13086 ASSERT(mp->b_datap->db_ref == 1); 13087 13088 /* 13089 * Invoke the CGTP (multirouting) filtering module to process 13090 * the incoming packet. Packets identified as duplicates 13091 * must be discarded. Filtering is active only if the 13092 * the ip_cgtp_filter ndd variable is non-zero. 13093 */ 13094 cgtp_flt_pkt = CGTP_IP_PKT_NOT_CGTP; 13095 if (ip_cgtp_filter && (ip_cgtp_filter_ops != NULL)) { 13096 cgtp_flt_pkt = 13097 ip_cgtp_filter_ops->cfo_filter_fp(q, mp); 13098 if (cgtp_flt_pkt == CGTP_IP_PKT_DUPLICATE) { 13099 freemsg(first_mp); 13100 continue; 13101 } 13102 } 13103 13104 ipha = (ipha_t *)mp->b_rptr; 13105 len = mp->b_wptr - rptr; 13106 13107 BUMP_MIB(&ip_mib, ipInReceives); 13108 13109 /* 13110 * IP header ptr not aligned? 13111 * OR IP header not complete in first mblk 13112 */ 13113 if (!OK_32PTR(rptr) || len < IP_SIMPLE_HDR_LENGTH) { 13114 if (!ip_check_and_align_header(q, mp)) 13115 continue; 13116 ipha = (ipha_t *)mp->b_rptr; 13117 len = mp->b_wptr - rptr; 13118 } 13119 13120 /* multiple mblk or too short */ 13121 pkt_len = ntohs(ipha->ipha_length); 13122 len -= pkt_len; 13123 if (len != 0) { 13124 /* 13125 * Make sure we have data length consistent 13126 * with the IP header. 13127 */ 13128 if (mp->b_cont == NULL) { 13129 if (len < 0 || pkt_len < IP_SIMPLE_HDR_LENGTH) { 13130 BUMP_MIB(&ip_mib, ipInHdrErrors); 13131 ip2dbg(("ip_input: drop pkt\n")); 13132 freemsg(mp); 13133 continue; 13134 } 13135 mp->b_wptr = rptr + pkt_len; 13136 } else if (len += msgdsize(mp->b_cont)) { 13137 if (len < 0 || pkt_len < IP_SIMPLE_HDR_LENGTH) { 13138 BUMP_MIB(&ip_mib, ipInHdrErrors); 13139 ip2dbg(("ip_input: drop pkt\n")); 13140 freemsg(mp); 13141 continue; 13142 } 13143 (void) adjmsg(mp, -len); 13144 IP_STAT(ip_multimblk3); 13145 } 13146 } 13147 13148 if (ip_loopback_src_or_dst(ipha, ill)) { 13149 ip2dbg(("ip_input: drop pkt\n")); 13150 freemsg(mp); 13151 continue; 13152 } 13153 13154 opt_len = ipha->ipha_version_and_hdr_length - 13155 IP_SIMPLE_HDR_VERSION; 13156 /* IP version bad or there are IP options */ 13157 if (opt_len) { 13158 if (len != 0) 13159 IP_STAT(ip_multimblk4); 13160 else 13161 IP_STAT(ip_ipoptions); 13162 if (!ip_rput_multimblk_ipoptions(q, mp, &ipha, &dst)) 13163 continue; 13164 } else { 13165 dst = ipha->ipha_dst; 13166 } 13167 13168 /* 13169 * If rsvpd is running, let RSVP daemon handle its processing 13170 * and forwarding of RSVP multicast/unicast packets. 13171 * If rsvpd is not running but mrouted is running, RSVP 13172 * multicast packets are forwarded as multicast traffic 13173 * and RSVP unicast packets are forwarded by unicast router. 13174 * If neither rsvpd nor mrouted is running, RSVP multicast 13175 * packets are not forwarded, but the unicast packets are 13176 * forwarded like unicast traffic. 13177 */ 13178 if (ipha->ipha_protocol == IPPROTO_RSVP && 13179 ipcl_proto_search(IPPROTO_RSVP) != NULL) { 13180 /* RSVP packet and rsvpd running. Treat as ours */ 13181 ip2dbg(("ip_input: RSVP for us: 0x%x\n", ntohl(dst))); 13182 /* 13183 * This assumes that we deliver to all streams for 13184 * multicast and broadcast packets. 13185 * We have to force ll_multicast to 1 to handle the 13186 * M_DATA messages passed in from ip_mroute_decap. 13187 */ 13188 dst = INADDR_BROADCAST; 13189 ll_multicast = 1; 13190 } else if (CLASSD(dst)) { 13191 /* packet is multicast */ 13192 mp->b_next = NULL; 13193 if (ip_rput_process_multicast(q, mp, ill, ipha, 13194 &ll_multicast, &dst)) 13195 continue; 13196 } 13197 13198 13199 /* 13200 * Check if the packet is coming from the Mobile IP 13201 * forward tunnel interface 13202 */ 13203 if (ill->ill_srcif_refcnt > 0) { 13204 ire = ire_srcif_table_lookup(dst, IRE_INTERFACE, 13205 NULL, ill, MATCH_IRE_TYPE); 13206 if (ire != NULL && ire->ire_dlureq_mp == NULL && 13207 ire->ire_ipif->ipif_net_type == 13208 IRE_IF_RESOLVER) { 13209 /* We need to resolve the link layer info */ 13210 ire_refrele(ire); 13211 ip_rput_noire(q, (ill_t *)q->q_ptr, mp, 13212 ll_multicast, dst); 13213 continue; 13214 } 13215 } 13216 13217 if (ire == NULL) 13218 ire = ire_cache_lookup(dst, ALL_ZONES); 13219 13220 /* 13221 * If mipagent is running and reverse tunnel is created as per 13222 * mobile node request, then any packet coming through the 13223 * incoming interface from the mobile-node, should be reverse 13224 * tunneled to it's home agent except those that are destined 13225 * to foreign agent only. 13226 * This needs source address based ire lookup. The routing 13227 * entries for source address based lookup are only created by 13228 * mipagent program only when a reverse tunnel is created. 13229 * Reference : RFC2002, RFC2344 13230 */ 13231 if (ill->ill_mrtun_refcnt > 0) { 13232 ipaddr_t srcaddr; 13233 ire_t *tmp_ire; 13234 13235 tmp_ire = ire; /* Save, we might need it later */ 13236 if (ire == NULL || (ire->ire_type != IRE_LOCAL && 13237 ire->ire_type != IRE_BROADCAST)) { 13238 srcaddr = ipha->ipha_src; 13239 ire = ire_mrtun_lookup(srcaddr, ill); 13240 if (ire != NULL) { 13241 /* 13242 * Should not be getting iphada packet 13243 * here. we should only get those for 13244 * IRE_LOCAL traffic, excluded above. 13245 * Fail-safe (drop packet) in the event 13246 * hardware is misbehaving. 13247 */ 13248 if (first_mp != mp) { 13249 /* IPsec KSTATS: beancount me */ 13250 freemsg(first_mp); 13251 } else { 13252 /* 13253 * This packet must be forwarded 13254 * to Reverse Tunnel 13255 */ 13256 ip_mrtun_forward(ire, ill, mp); 13257 } 13258 ire_refrele(ire); 13259 if (tmp_ire != NULL) 13260 ire_refrele(tmp_ire); 13261 TRACE_2(TR_FAC_IP, TR_IP_RPUT_END, 13262 "ip_input_end: q %p (%S)", 13263 q, "uninit"); 13264 continue; 13265 } 13266 } 13267 /* 13268 * If this packet is from a non-mobilenode or a 13269 * mobile-node which does not request reverse 13270 * tunnel service 13271 */ 13272 ire = tmp_ire; 13273 } 13274 13275 13276 /* 13277 * If we reach here that means the incoming packet satisfies 13278 * one of the following conditions: 13279 * - packet is from a mobile node which does not request 13280 * reverse tunnel 13281 * - packet is from a non-mobile node, which is the most 13282 * common case 13283 * - packet is from a reverse tunnel enabled mobile node 13284 * and destined to foreign agent only 13285 */ 13286 13287 if (ire == NULL) { 13288 /* 13289 * No IRE for this destination, so it can't be for us. 13290 * Unless we are forwarding, drop the packet. 13291 * We have to let source routed packets through 13292 * since we don't yet know if they are 'ping -l' 13293 * packets i.e. if they will go out over the 13294 * same interface as they came in on. 13295 */ 13296 ip_rput_noire(q, NULL, mp, ll_multicast, dst); 13297 continue; 13298 } 13299 13300 /* broadcast? */ 13301 if (ire->ire_type == IRE_BROADCAST) { 13302 if (ip_rput_process_broadcast(&q, mp, &ire, ipha, ill, 13303 dst, cgtp_flt_pkt, ll_multicast)) { 13304 continue; 13305 } 13306 } else if (ire->ire_stq != NULL) { 13307 /* fowarding? */ 13308 ip_rput_process_forward(q, mp, ire, ipha, ill, 13309 ll_multicast); 13310 continue; 13311 } 13312 13313 /* packet not for us */ 13314 if (ire->ire_rfq != q) { 13315 if (ip_rput_notforus(&q, mp, ire, ill)) { 13316 continue; 13317 } 13318 } 13319 13320 switch (ipha->ipha_protocol) { 13321 case IPPROTO_TCP: 13322 ASSERT(first_mp == mp); 13323 if ((mp = ip_tcp_input(mp, ipha, ill, B_FALSE, ire, 13324 mp, 0, q, ip_ring)) != NULL) { 13325 if (curr_sqp == NULL) { 13326 curr_sqp = GET_SQUEUE(mp); 13327 ASSERT(cnt == 0); 13328 cnt++; 13329 head = tail = mp; 13330 } else if (curr_sqp == GET_SQUEUE(mp)) { 13331 ASSERT(tail != NULL); 13332 cnt++; 13333 tail->b_next = mp; 13334 tail = mp; 13335 } else { 13336 /* 13337 * A different squeue. Send the 13338 * chain for the previous squeue on 13339 * its way. This shouldn't happen 13340 * often unless interrupt binding 13341 * changes. 13342 */ 13343 IP_STAT(ip_input_multi_squeue); 13344 squeue_enter_chain(curr_sqp, head, 13345 tail, cnt, SQTAG_IP_INPUT); 13346 curr_sqp = GET_SQUEUE(mp); 13347 head = mp; 13348 tail = mp; 13349 cnt = 1; 13350 } 13351 } 13352 IRE_REFRELE(ire); 13353 continue; 13354 case IPPROTO_UDP: 13355 ASSERT(first_mp == mp); 13356 ip_udp_input(q, mp, ipha, ire, ill); 13357 IRE_REFRELE(ire); 13358 continue; 13359 case IPPROTO_SCTP: 13360 ASSERT(first_mp == mp); 13361 ip_sctp_input(mp, ipha, ill, B_FALSE, ire, mp, 0, 13362 q, dst); 13363 continue; 13364 default: 13365 ip_proto_input(q, first_mp, ipha, ire, ill); 13366 IRE_REFRELE(ire); 13367 continue; 13368 } 13369 } 13370 13371 if (head != NULL) 13372 squeue_enter_chain(curr_sqp, head, tail, cnt, SQTAG_IP_INPUT); 13373 13374 /* 13375 * This code is there just to make netperf/ttcp look good. 13376 * 13377 * Its possible that after being in polling mode (and having cleared 13378 * the backlog), squeues have turned the interrupt frequency higher 13379 * to improve latency at the expense of more CPU utilization (less 13380 * packets per interrupts or more number of interrupts). Workloads 13381 * like ttcp/netperf do manage to tickle polling once in a while 13382 * but for the remaining time, stay in higher interrupt mode since 13383 * their packet arrival rate is pretty uniform and this shows up 13384 * as higher CPU utilization. Since people care about CPU utilization 13385 * while running netperf/ttcp, turn the interrupt frequency back to 13386 * normal/default if polling has not been used in ip_poll_normal_ticks. 13387 */ 13388 if (ip_ring != NULL && (ip_ring->rr_poll_state & ILL_POLLING)) { 13389 if (lbolt >= (ip_ring->rr_poll_time + ip_poll_normal_ticks)) { 13390 ip_ring->rr_poll_state &= ~ILL_POLLING; 13391 ip_ring->rr_blank(ip_ring->rr_handle, 13392 ip_ring->rr_normal_blank_time, 13393 ip_ring->rr_normal_pkt_cnt); 13394 } 13395 } 13396 13397 TRACE_2(TR_FAC_IP, TR_IP_RPUT_END, 13398 "ip_input_end: q %p (%S)", q, "end"); 13399 #undef rptr 13400 } 13401 13402 static void 13403 ip_dlpi_error(ill_t *ill, t_uscalar_t prim, t_uscalar_t dl_err, 13404 t_uscalar_t err) 13405 { 13406 if (dl_err == DL_SYSERR) { 13407 (void) mi_strlog(ill->ill_rq, 1, SL_CONSOLE|SL_ERROR|SL_TRACE, 13408 "%s: %s failed: DL_SYSERR (errno %u)\n", 13409 ill->ill_name, dlpi_prim_str(prim), err); 13410 return; 13411 } 13412 13413 (void) mi_strlog(ill->ill_rq, 1, SL_CONSOLE|SL_ERROR|SL_TRACE, 13414 "%s: %s failed: %s\n", ill->ill_name, dlpi_prim_str(prim), 13415 dlpi_err_str(dl_err)); 13416 } 13417 13418 /* 13419 * ip_rput_dlpi is called by ip_rput to handle all DLPI messages other 13420 * than DL_UNITDATA_IND messages. If we need to process this message 13421 * exclusively, we call qwriter_ip, in which case we also need to call 13422 * ill_refhold before that, since qwriter_ip does an ill_refrele. 13423 */ 13424 void 13425 ip_rput_dlpi(queue_t *q, mblk_t *mp) 13426 { 13427 dl_ok_ack_t *dloa = (dl_ok_ack_t *)mp->b_rptr; 13428 dl_error_ack_t *dlea = (dl_error_ack_t *)dloa; 13429 ill_t *ill; 13430 13431 ip1dbg(("ip_rput_dlpi")); 13432 ill = (ill_t *)q->q_ptr; 13433 switch (dloa->dl_primitive) { 13434 case DL_ERROR_ACK: 13435 ip2dbg(("ip_rput_dlpi(%s): DL_ERROR_ACK %s (0x%x): " 13436 "%s (0x%x), unix %u\n", ill->ill_name, 13437 dlpi_prim_str(dlea->dl_error_primitive), 13438 dlea->dl_error_primitive, 13439 dlpi_err_str(dlea->dl_errno), 13440 dlea->dl_errno, 13441 dlea->dl_unix_errno)); 13442 switch (dlea->dl_error_primitive) { 13443 case DL_NOTIFY_REQ: 13444 case DL_UNBIND_REQ: 13445 case DL_ATTACH_REQ: 13446 case DL_DETACH_REQ: 13447 case DL_INFO_REQ: 13448 case DL_BIND_REQ: 13449 case DL_ENABMULTI_REQ: 13450 case DL_PHYS_ADDR_REQ: 13451 case DL_CAPABILITY_REQ: 13452 case DL_CONTROL_REQ: 13453 /* 13454 * Refhold the ill to match qwriter_ip which does a 13455 * refrele. Since this is on the ill stream we 13456 * unconditionally bump up the refcount without 13457 * checking for ILL_CAN_LOOKUP 13458 */ 13459 ill_refhold(ill); 13460 (void) qwriter_ip(NULL, ill, q, mp, ip_rput_dlpi_writer, 13461 CUR_OP, B_FALSE); 13462 return; 13463 case DL_DISABMULTI_REQ: 13464 freemsg(mp); /* Don't want to pass this up */ 13465 return; 13466 default: 13467 break; 13468 } 13469 ip_dlpi_error(ill, dlea->dl_error_primitive, 13470 dlea->dl_errno, dlea->dl_unix_errno); 13471 freemsg(mp); 13472 return; 13473 case DL_INFO_ACK: 13474 case DL_BIND_ACK: 13475 case DL_PHYS_ADDR_ACK: 13476 case DL_NOTIFY_ACK: 13477 case DL_CAPABILITY_ACK: 13478 case DL_CONTROL_ACK: 13479 /* 13480 * Refhold the ill to match qwriter_ip which does a refrele 13481 * Since this is on the ill stream we unconditionally 13482 * bump up the refcount without doing ILL_CAN_LOOKUP. 13483 */ 13484 ill_refhold(ill); 13485 (void) qwriter_ip(NULL, ill, q, mp, ip_rput_dlpi_writer, 13486 CUR_OP, B_FALSE); 13487 return; 13488 case DL_NOTIFY_IND: 13489 ill_refhold(ill); 13490 /* 13491 * The DL_NOTIFY_IND is an asynchronous message that has no 13492 * relation to the current ioctl in progress (if any). Hence we 13493 * pass in NEW_OP in this case. 13494 */ 13495 (void) qwriter_ip(NULL, ill, q, mp, ip_rput_dlpi_writer, 13496 NEW_OP, B_FALSE); 13497 return; 13498 case DL_OK_ACK: 13499 ip1dbg(("ip_rput: DL_OK_ACK for %s\n", 13500 dlpi_prim_str((int)dloa->dl_correct_primitive))); 13501 switch (dloa->dl_correct_primitive) { 13502 case DL_UNBIND_REQ: 13503 mutex_enter(&ill->ill_lock); 13504 ill->ill_state_flags |= ILL_DL_UNBIND_DONE; 13505 cv_signal(&ill->ill_cv); 13506 mutex_exit(&ill->ill_lock); 13507 /* FALLTHRU */ 13508 case DL_ATTACH_REQ: 13509 case DL_DETACH_REQ: 13510 /* 13511 * Refhold the ill to match qwriter_ip which does a 13512 * refrele. Since this is on the ill stream we 13513 * unconditionally bump up the refcount 13514 */ 13515 ill_refhold(ill); 13516 qwriter_ip(NULL, ill, q, mp, ip_rput_dlpi_writer, 13517 CUR_OP, B_FALSE); 13518 return; 13519 case DL_ENABMULTI_REQ: 13520 if (ill->ill_dlpi_multicast_state == IDMS_INPROGRESS) 13521 ill->ill_dlpi_multicast_state = IDMS_OK; 13522 break; 13523 13524 } 13525 break; 13526 default: 13527 break; 13528 } 13529 freemsg(mp); 13530 } 13531 13532 /* 13533 * This function is used to free a message that has gone through 13534 * mi_copyin processing which modifies the M_IOCTL mblk's b_next 13535 * and b_prev pointers. We use this function to set b_next/b_prev 13536 * to NULL and free them. 13537 */ 13538 void 13539 ip_ioctl_freemsg(mblk_t *mp) 13540 { 13541 mblk_t *bp = mp; 13542 13543 for (; bp != NULL; bp = bp->b_cont) { 13544 bp->b_prev = NULL; 13545 bp->b_next = NULL; 13546 } 13547 freemsg(mp); 13548 } 13549 13550 /* 13551 * Handling of DLPI messages that require exclusive access to the ipsq. 13552 * 13553 * Need to do ill_pending_mp_release on ioctl completion, which could 13554 * happen here. (along with mi_copy_done) 13555 */ 13556 /* ARGSUSED */ 13557 static void 13558 ip_rput_dlpi_writer(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 13559 { 13560 dl_ok_ack_t *dloa = (dl_ok_ack_t *)mp->b_rptr; 13561 dl_error_ack_t *dlea = (dl_error_ack_t *)dloa; 13562 int err = 0; 13563 ill_t *ill; 13564 ipif_t *ipif = NULL; 13565 mblk_t *mp1 = NULL; 13566 conn_t *connp = NULL; 13567 t_uscalar_t physaddr_req; 13568 mblk_t *mp_hw; 13569 union DL_primitives *dlp; 13570 boolean_t success; 13571 boolean_t ioctl_aborted = B_FALSE; 13572 boolean_t log = B_TRUE; 13573 13574 ip1dbg(("ip_rput_dlpi_writer ..")); 13575 ill = (ill_t *)q->q_ptr; 13576 ASSERT(ipsq == ill->ill_phyint->phyint_ipsq); 13577 13578 ASSERT(IAM_WRITER_ILL(ill)); 13579 13580 /* 13581 * ipsq_pending_mp and ipsq_pending_ipif track each other. i.e. 13582 * both are null or non-null. However we can assert that only 13583 * after grabbing the ipsq_lock. So we don't make any assertion 13584 * here and in other places in the code. 13585 */ 13586 ipif = ipsq->ipsq_pending_ipif; 13587 /* 13588 * The current ioctl could have been aborted by the user and a new 13589 * ioctl to bring up another ill could have started. We could still 13590 * get a response from the driver later. 13591 */ 13592 if (ipif != NULL && ipif->ipif_ill != ill) 13593 ioctl_aborted = B_TRUE; 13594 13595 switch (dloa->dl_primitive) { 13596 case DL_ERROR_ACK: 13597 switch (dlea->dl_error_primitive) { 13598 case DL_UNBIND_REQ: 13599 case DL_ATTACH_REQ: 13600 case DL_DETACH_REQ: 13601 case DL_INFO_REQ: 13602 ill_dlpi_done(ill, dlea->dl_error_primitive); 13603 break; 13604 case DL_NOTIFY_REQ: 13605 ill_dlpi_done(ill, DL_NOTIFY_REQ); 13606 log = B_FALSE; 13607 break; 13608 case DL_PHYS_ADDR_REQ: 13609 /* 13610 * For IPv6 only, there are two additional 13611 * phys_addr_req's sent to the driver to get the 13612 * IPv6 token and lla. This allows IP to acquire 13613 * the hardware address format for a given interface 13614 * without having built in knowledge of the hardware 13615 * address. ill_phys_addr_pend keeps track of the last 13616 * DL_PAR sent so we know which response we are 13617 * dealing with. ill_dlpi_done will update 13618 * ill_phys_addr_pend when it sends the next req. 13619 * We don't complete the IOCTL until all three DL_PARs 13620 * have been attempted, so set *_len to 0 and break. 13621 */ 13622 physaddr_req = ill->ill_phys_addr_pend; 13623 ill_dlpi_done(ill, DL_PHYS_ADDR_REQ); 13624 if (physaddr_req == DL_IPV6_TOKEN) { 13625 ill->ill_token_length = 0; 13626 log = B_FALSE; 13627 break; 13628 } else if (physaddr_req == DL_IPV6_LINK_LAYER_ADDR) { 13629 ill->ill_nd_lla_len = 0; 13630 log = B_FALSE; 13631 break; 13632 } 13633 /* 13634 * Something went wrong with the DL_PHYS_ADDR_REQ. 13635 * We presumably have an IOCTL hanging out waiting 13636 * for completion. Find it and complete the IOCTL 13637 * with the error noted. 13638 * However, ill_dl_phys was called on an ill queue 13639 * (from SIOCSLIFNAME), thus conn_pending_ill is not 13640 * set. But the ioctl is known to be pending on ill_wq. 13641 */ 13642 if (!ill->ill_ifname_pending) 13643 break; 13644 ill->ill_ifname_pending = 0; 13645 if (!ioctl_aborted) 13646 mp1 = ipsq_pending_mp_get(ipsq, &connp); 13647 if (mp1 != NULL) { 13648 /* 13649 * This operation (SIOCSLIFNAME) must have 13650 * happened on the ill. Assert there is no conn 13651 */ 13652 ASSERT(connp == NULL); 13653 q = ill->ill_wq; 13654 } 13655 break; 13656 case DL_BIND_REQ: 13657 ill_dlpi_done(ill, DL_BIND_REQ); 13658 if (ill->ill_ifname_pending) 13659 break; 13660 /* 13661 * Something went wrong with the bind. We presumably 13662 * have an IOCTL hanging out waiting for completion. 13663 * Find it, take down the interface that was coming 13664 * up, and complete the IOCTL with the error noted. 13665 */ 13666 if (!ioctl_aborted) 13667 mp1 = ipsq_pending_mp_get(ipsq, &connp); 13668 if (mp1 != NULL) { 13669 /* 13670 * This operation (SIOCSLIFFLAGS) must have 13671 * happened from a conn. 13672 */ 13673 ASSERT(connp != NULL); 13674 q = CONNP_TO_WQ(connp); 13675 if (ill->ill_move_in_progress) { 13676 ILL_CLEAR_MOVE(ill); 13677 } 13678 (void) ipif_down(ipif, NULL, NULL); 13679 /* error is set below the switch */ 13680 } 13681 break; 13682 case DL_ENABMULTI_REQ: 13683 ip1dbg(("DL_ERROR_ACK to enabmulti\n")); 13684 13685 if (ill->ill_dlpi_multicast_state == IDMS_INPROGRESS) 13686 ill->ill_dlpi_multicast_state = IDMS_FAILED; 13687 if (ill->ill_dlpi_multicast_state == IDMS_FAILED) { 13688 ipif_t *ipif; 13689 13690 log = B_FALSE; 13691 printf("ip: joining multicasts failed (%d)" 13692 " on %s - will use link layer " 13693 "broadcasts for multicast\n", 13694 dlea->dl_errno, ill->ill_name); 13695 13696 /* 13697 * Set up the multicast mapping alone. 13698 * writer, so ok to access ill->ill_ipif 13699 * without any lock. 13700 */ 13701 ipif = ill->ill_ipif; 13702 mutex_enter(&ill->ill_phyint->phyint_lock); 13703 ill->ill_phyint->phyint_flags |= 13704 PHYI_MULTI_BCAST; 13705 mutex_exit(&ill->ill_phyint->phyint_lock); 13706 13707 if (!ill->ill_isv6) { 13708 (void) ipif_arp_setup_multicast(ipif, 13709 NULL); 13710 } else { 13711 (void) ipif_ndp_setup_multicast(ipif, 13712 NULL); 13713 } 13714 } 13715 freemsg(mp); /* Don't want to pass this up */ 13716 return; 13717 case DL_CAPABILITY_REQ: 13718 case DL_CONTROL_REQ: 13719 ip1dbg(("ip_rput_dlpi_writer: got DL_ERROR_ACK for " 13720 "DL_CAPABILITY/CONTROL REQ\n")); 13721 ill_dlpi_done(ill, dlea->dl_error_primitive); 13722 ill->ill_capab_state = IDMS_FAILED; 13723 freemsg(mp); 13724 return; 13725 } 13726 /* 13727 * Note the error for IOCTL completion (mp1 is set when 13728 * ready to complete ioctl). If ill_ifname_pending_err is 13729 * set, an error occured during plumbing (ill_ifname_pending), 13730 * so we want to report that error. 13731 * 13732 * NOTE: there are two addtional DL_PHYS_ADDR_REQ's 13733 * (DL_IPV6_TOKEN and DL_IPV6_LINK_LAYER_ADDR) that are 13734 * expected to get errack'd if the driver doesn't support 13735 * these flags (e.g. ethernet). log will be set to B_FALSE 13736 * if these error conditions are encountered. 13737 */ 13738 if (mp1 != NULL) { 13739 if (ill->ill_ifname_pending_err != 0) { 13740 err = ill->ill_ifname_pending_err; 13741 ill->ill_ifname_pending_err = 0; 13742 } else { 13743 err = dlea->dl_unix_errno ? 13744 dlea->dl_unix_errno : ENXIO; 13745 } 13746 /* 13747 * If we're plumbing an interface and an error hasn't already 13748 * been saved, set ill_ifname_pending_err to the error passed 13749 * up. Ignore the error if log is B_FALSE (see comment above). 13750 */ 13751 } else if (log && ill->ill_ifname_pending && 13752 ill->ill_ifname_pending_err == 0) { 13753 ill->ill_ifname_pending_err = dlea->dl_unix_errno ? 13754 dlea->dl_unix_errno : ENXIO; 13755 } 13756 13757 if (log) 13758 ip_dlpi_error(ill, dlea->dl_error_primitive, 13759 dlea->dl_errno, dlea->dl_unix_errno); 13760 break; 13761 case DL_CAPABILITY_ACK: { 13762 boolean_t reneg_flag = B_FALSE; 13763 /* Call a routine to handle this one. */ 13764 ill_dlpi_done(ill, DL_CAPABILITY_REQ); 13765 /* 13766 * Check if the ACK is due to renegotiation case since we 13767 * will need to send a new CAPABILITY_REQ later. 13768 */ 13769 if (ill->ill_capab_state == IDMS_RENEG) { 13770 /* This is the ack for a renogiation case */ 13771 reneg_flag = B_TRUE; 13772 ill->ill_capab_state = IDMS_UNKNOWN; 13773 } 13774 ill_capability_ack(ill, mp); 13775 if (reneg_flag) 13776 ill_capability_probe(ill); 13777 break; 13778 } 13779 case DL_CONTROL_ACK: 13780 /* We treat all of these as "fire and forget" */ 13781 ill_dlpi_done(ill, DL_CONTROL_REQ); 13782 break; 13783 case DL_INFO_ACK: 13784 /* Call a routine to handle this one. */ 13785 ill_dlpi_done(ill, DL_INFO_REQ); 13786 ip_ll_subnet_defaults(ill, mp); 13787 ASSERT(!MUTEX_HELD(&ill->ill_phyint->phyint_ipsq->ipsq_lock)); 13788 return; 13789 case DL_BIND_ACK: 13790 /* 13791 * We should have an IOCTL waiting on this unless 13792 * sent by ill_dl_phys, in which case just return 13793 */ 13794 ill_dlpi_done(ill, DL_BIND_REQ); 13795 if (ill->ill_ifname_pending) 13796 break; 13797 13798 if (!ioctl_aborted) 13799 mp1 = ipsq_pending_mp_get(ipsq, &connp); 13800 if (mp1 == NULL) 13801 break; 13802 ASSERT(connp != NULL); 13803 q = CONNP_TO_WQ(connp); 13804 13805 /* 13806 * We are exclusive. So nothing can change even after 13807 * we get the pending mp. If need be we can put it back 13808 * and restart, as in calling ipif_arp_up() below. 13809 */ 13810 ip1dbg(("ip_rput_dlpi: bind_ack %s\n", ill->ill_name)); 13811 13812 mutex_enter(&ill->ill_lock); 13813 ill->ill_dl_up = 1; 13814 mutex_exit(&ill->ill_lock); 13815 13816 /* 13817 * Now bring up the resolver, when that is 13818 * done we'll create IREs and we are done. 13819 */ 13820 if (ill->ill_isv6) { 13821 /* 13822 * v6 interfaces. 13823 * Unlike ARP which has to do another bind 13824 * and attach, once we get here we are 13825 * done withh NDP. Except in the case of 13826 * ILLF_XRESOLV, in which case we send an 13827 * AR_INTERFACE_UP to the external resolver. 13828 * If all goes well, the ioctl will complete 13829 * in ip_rput(). If there's an error, we 13830 * complete it here. 13831 */ 13832 err = ipif_ndp_up(ipif, &ipif->ipif_v6lcl_addr, 13833 B_FALSE); 13834 if (err == 0) { 13835 if (ill->ill_flags & ILLF_XRESOLV) { 13836 mutex_enter(&connp->conn_lock); 13837 mutex_enter(&ill->ill_lock); 13838 success = ipsq_pending_mp_add( 13839 connp, ipif, q, mp1, 0); 13840 mutex_exit(&ill->ill_lock); 13841 mutex_exit(&connp->conn_lock); 13842 if (success) { 13843 err = ipif_resolver_up(ipif, 13844 B_FALSE); 13845 if (err == EINPROGRESS) { 13846 freemsg(mp); 13847 return; 13848 } 13849 ASSERT(err != 0); 13850 mp1 = ipsq_pending_mp_get(ipsq, 13851 &connp); 13852 ASSERT(mp1 != NULL); 13853 } else { 13854 /* conn has started closing */ 13855 err = EINTR; 13856 } 13857 } else { /* Non XRESOLV interface */ 13858 err = ipif_up_done_v6(ipif); 13859 } 13860 } 13861 } else if (ill->ill_net_type == IRE_IF_RESOLVER) { 13862 /* 13863 * ARP and other v4 external resolvers. 13864 * Leave the pending mblk intact so that 13865 * the ioctl completes in ip_rput(). 13866 */ 13867 mutex_enter(&connp->conn_lock); 13868 mutex_enter(&ill->ill_lock); 13869 success = ipsq_pending_mp_add(connp, ipif, q, mp1, 0); 13870 mutex_exit(&ill->ill_lock); 13871 mutex_exit(&connp->conn_lock); 13872 if (success) { 13873 err = ipif_resolver_up(ipif, B_FALSE); 13874 if (err == EINPROGRESS) { 13875 freemsg(mp); 13876 return; 13877 } 13878 ASSERT(err != 0); 13879 mp1 = ipsq_pending_mp_get(ipsq, &connp); 13880 } else { 13881 /* The conn has started closing */ 13882 err = EINTR; 13883 } 13884 } else { 13885 /* 13886 * This one is complete. Reply to pending ioctl. 13887 */ 13888 err = ipif_up_done(ipif); 13889 } 13890 13891 if ((err == 0) && (ill->ill_up_ipifs)) { 13892 err = ill_up_ipifs(ill, q, mp1); 13893 if (err == EINPROGRESS) { 13894 freemsg(mp); 13895 return; 13896 } 13897 } 13898 13899 if (ill->ill_up_ipifs) { 13900 ill_group_cleanup(ill); 13901 } 13902 13903 break; 13904 case DL_NOTIFY_IND: { 13905 dl_notify_ind_t *notify = (dl_notify_ind_t *)mp->b_rptr; 13906 ire_t *ire; 13907 boolean_t need_ire_walk_v4 = B_FALSE; 13908 boolean_t need_ire_walk_v6 = B_FALSE; 13909 13910 /* 13911 * Change the address everywhere we need to. 13912 * What we're getting here is a link-level addr or phys addr. 13913 * The new addr is at notify + notify->dl_addr_offset 13914 * The address length is notify->dl_addr_length; 13915 */ 13916 switch (notify->dl_notification) { 13917 case DL_NOTE_PHYS_ADDR: 13918 mp_hw = copyb(mp); 13919 if (mp_hw == NULL) { 13920 err = ENOMEM; 13921 break; 13922 } 13923 dlp = (union DL_primitives *)mp_hw->b_rptr; 13924 /* 13925 * We currently don't support changing 13926 * the token via DL_NOTIFY_IND. 13927 * When we do support it, we have to consider 13928 * what the implications are with respect to 13929 * the token and the link local address. 13930 */ 13931 mutex_enter(&ill->ill_lock); 13932 if (dlp->notify_ind.dl_data == 13933 DL_IPV6_LINK_LAYER_ADDR) { 13934 if (ill->ill_nd_lla_mp != NULL) 13935 freemsg(ill->ill_nd_lla_mp); 13936 ill->ill_nd_lla_mp = mp_hw; 13937 ill->ill_nd_lla = (uchar_t *)mp_hw->b_rptr + 13938 dlp->notify_ind.dl_addr_offset; 13939 ill->ill_nd_lla_len = 13940 dlp->notify_ind.dl_addr_length - 13941 ABS(ill->ill_sap_length); 13942 mutex_exit(&ill->ill_lock); 13943 break; 13944 } else if (dlp->notify_ind.dl_data == 13945 DL_CURR_PHYS_ADDR) { 13946 if (ill->ill_phys_addr_mp != NULL) 13947 freemsg(ill->ill_phys_addr_mp); 13948 ill->ill_phys_addr_mp = mp_hw; 13949 ill->ill_phys_addr = (uchar_t *)mp_hw->b_rptr + 13950 dlp->notify_ind.dl_addr_offset; 13951 ill->ill_phys_addr_length = 13952 dlp->notify_ind.dl_addr_length - 13953 ABS(ill->ill_sap_length); 13954 if (ill->ill_isv6 && 13955 !(ill->ill_flags & ILLF_XRESOLV)) { 13956 if (ill->ill_nd_lla_mp != NULL) 13957 freemsg(ill->ill_nd_lla_mp); 13958 ill->ill_nd_lla_mp = copyb(mp_hw); 13959 ill->ill_nd_lla = (uchar_t *) 13960 ill->ill_nd_lla_mp->b_rptr + 13961 dlp->notify_ind.dl_addr_offset; 13962 ill->ill_nd_lla_len = 13963 ill->ill_phys_addr_length; 13964 } 13965 } 13966 mutex_exit(&ill->ill_lock); 13967 /* 13968 * Send out gratuitous arp request for our new 13969 * hardware address. 13970 */ 13971 for (ipif = ill->ill_ipif; ipif != NULL; 13972 ipif = ipif->ipif_next) { 13973 if (!(ipif->ipif_flags & IPIF_UP)) 13974 continue; 13975 if (ill->ill_isv6) { 13976 ipif_ndp_down(ipif); 13977 /* 13978 * Set B_TRUE to enable 13979 * ipif_ndp_up() to send out 13980 * unsolicited advertisements. 13981 */ 13982 err = ipif_ndp_up(ipif, 13983 &ipif->ipif_v6lcl_addr, 13984 B_TRUE); 13985 if (err) { 13986 ip1dbg(( 13987 "ip_rput_dlpi_writer: " 13988 "Failed to update ndp " 13989 "err %d\n", err)); 13990 } 13991 } else { 13992 /* 13993 * IPv4 ARP case 13994 * 13995 * Set B_TRUE, as we only want 13996 * ipif_resolver_up to send an 13997 * AR_ENTRY_ADD request up to 13998 * ARP. 13999 */ 14000 err = ipif_resolver_up(ipif, 14001 B_TRUE); 14002 if (err) { 14003 ip1dbg(( 14004 "ip_rput_dlpi_writer: " 14005 "Failed to update arp " 14006 "err %d\n", err)); 14007 } 14008 } 14009 } 14010 /* 14011 * Allow "fall through" to the DL_NOTE_FASTPATH_FLUSH 14012 * case so that all old fastpath information can be 14013 * purged from IRE caches. 14014 */ 14015 /* FALLTHRU */ 14016 case DL_NOTE_FASTPATH_FLUSH: 14017 /* 14018 * Any fastpath probe sent henceforth will get the 14019 * new fp mp. So we first delete any ires that are 14020 * waiting for the fastpath. Then walk all ires and 14021 * delete the ire or delete the fp mp. In the case of 14022 * IRE_MIPRTUN and IRE_BROADCAST it is difficult to 14023 * recreate the ire's without going through a complex 14024 * ipif up/down dance. So we don't delete the ire 14025 * itself, but just the ire_fp_mp for these 2 ire's 14026 * In the case of the other ire's we delete the ire's 14027 * themselves. Access to ire_fp_mp is completely 14028 * protected by ire_lock for IRE_MIPRTUN and 14029 * IRE_BROADCAST. Deleting the ire is preferable in the 14030 * other cases for performance. 14031 */ 14032 if (ill->ill_isv6) { 14033 nce_fastpath_list_dispatch(ill, NULL, NULL); 14034 ndp_walk(ill, (pfi_t)ndp_fastpath_flush, 14035 NULL); 14036 } else { 14037 ire_fastpath_list_dispatch(ill, NULL, NULL); 14038 ire_walk_ill_v4(MATCH_IRE_WQ | MATCH_IRE_TYPE, 14039 IRE_CACHE | IRE_BROADCAST, 14040 ire_fastpath_flush, NULL, ill); 14041 mutex_enter(&ire_mrtun_lock); 14042 if (ire_mrtun_count != 0) { 14043 mutex_exit(&ire_mrtun_lock); 14044 ire_walk_ill_mrtun(MATCH_IRE_WQ, 14045 IRE_MIPRTUN, ire_fastpath_flush, 14046 NULL, ill); 14047 } else { 14048 mutex_exit(&ire_mrtun_lock); 14049 } 14050 } 14051 break; 14052 case DL_NOTE_SDU_SIZE: 14053 /* 14054 * Change the MTU size of the interface, of all 14055 * attached ipif's, and of all relevant ire's. The 14056 * new value's a uint32_t at notify->dl_data. 14057 * Mtu change Vs. new ire creation - protocol below. 14058 * 14059 * a Mark the ipif as IPIF_CHANGING. 14060 * b Set the new mtu in the ipif. 14061 * c Change the ire_max_frag on all affected ires 14062 * d Unmark the IPIF_CHANGING 14063 * 14064 * To see how the protocol works, assume an interface 14065 * route is also being added simultaneously by 14066 * ip_rt_add and let 'ipif' be the ipif referenced by 14067 * the ire. If the ire is created before step a, 14068 * it will be cleaned up by step c. If the ire is 14069 * created after step d, it will see the new value of 14070 * ipif_mtu. Any attempt to create the ire between 14071 * steps a to d will fail because of the IPIF_CHANGING 14072 * flag. Note that ire_create() is passed a pointer to 14073 * the ipif_mtu, and not the value. During ire_add 14074 * under the bucket lock, the ire_max_frag of the 14075 * new ire being created is set from the ipif/ire from 14076 * which it is being derived. 14077 */ 14078 mutex_enter(&ill->ill_lock); 14079 ill->ill_max_frag = (uint_t)notify->dl_data; 14080 14081 /* 14082 * If an SIOCSLIFLNKINFO has changed the ill_max_mtu 14083 * leave it alone 14084 */ 14085 if (ill->ill_mtu_userspecified) { 14086 mutex_exit(&ill->ill_lock); 14087 break; 14088 } 14089 ill->ill_max_mtu = ill->ill_max_frag; 14090 if (ill->ill_isv6) { 14091 if (ill->ill_max_mtu < IPV6_MIN_MTU) 14092 ill->ill_max_mtu = IPV6_MIN_MTU; 14093 } else { 14094 if (ill->ill_max_mtu < IP_MIN_MTU) 14095 ill->ill_max_mtu = IP_MIN_MTU; 14096 } 14097 for (ipif = ill->ill_ipif; ipif != NULL; 14098 ipif = ipif->ipif_next) { 14099 /* 14100 * Don't override the mtu if the user 14101 * has explicitly set it. 14102 */ 14103 if (ipif->ipif_flags & IPIF_FIXEDMTU) 14104 continue; 14105 ipif->ipif_mtu = (uint_t)notify->dl_data; 14106 if (ipif->ipif_isv6) 14107 ire = ipif_to_ire_v6(ipif); 14108 else 14109 ire = ipif_to_ire(ipif); 14110 if (ire != NULL) { 14111 ire->ire_max_frag = ipif->ipif_mtu; 14112 ire_refrele(ire); 14113 } 14114 if (ipif->ipif_flags & IPIF_UP) { 14115 if (ill->ill_isv6) 14116 need_ire_walk_v6 = B_TRUE; 14117 else 14118 need_ire_walk_v4 = B_TRUE; 14119 } 14120 } 14121 mutex_exit(&ill->ill_lock); 14122 if (need_ire_walk_v4) 14123 ire_walk_v4(ill_mtu_change, (char *)ill, 14124 ALL_ZONES); 14125 if (need_ire_walk_v6) 14126 ire_walk_v6(ill_mtu_change, (char *)ill, 14127 ALL_ZONES); 14128 break; 14129 case DL_NOTE_LINK_UP: 14130 case DL_NOTE_LINK_DOWN: { 14131 /* 14132 * We are writer. ill / phyint / ipsq assocs stable. 14133 * The RUNNING flag reflects the state of the link. 14134 */ 14135 phyint_t *phyint = ill->ill_phyint; 14136 uint64_t new_phyint_flags; 14137 boolean_t changed = B_FALSE; 14138 14139 mutex_enter(&phyint->phyint_lock); 14140 new_phyint_flags = 14141 (notify->dl_notification == DL_NOTE_LINK_UP) ? 14142 phyint->phyint_flags | PHYI_RUNNING : 14143 phyint->phyint_flags & ~PHYI_RUNNING; 14144 if (new_phyint_flags != phyint->phyint_flags) { 14145 phyint->phyint_flags = new_phyint_flags; 14146 changed = B_TRUE; 14147 } 14148 mutex_exit(&phyint->phyint_lock); 14149 /* 14150 * If the flags have changed, send a message to 14151 * the routing socket. 14152 */ 14153 if (changed) { 14154 if (phyint->phyint_illv4 != NULL) { 14155 ip_rts_ifmsg( 14156 phyint->phyint_illv4->ill_ipif); 14157 } 14158 if (phyint->phyint_illv6 != NULL) { 14159 ip_rts_ifmsg( 14160 phyint->phyint_illv6->ill_ipif); 14161 } 14162 } 14163 break; 14164 } 14165 case DL_NOTE_PROMISC_ON_PHYS: 14166 IPSECHW_DEBUG(IPSECHW_PKT, ("ip_rput_dlpi_writer: " 14167 "got a DL_NOTE_PROMISC_ON_PHYS\n")); 14168 mutex_enter(&ill->ill_lock); 14169 ill->ill_promisc_on_phys = B_TRUE; 14170 mutex_exit(&ill->ill_lock); 14171 break; 14172 case DL_NOTE_PROMISC_OFF_PHYS: 14173 IPSECHW_DEBUG(IPSECHW_PKT, ("ip_rput_dlpi_writer: " 14174 "got a DL_NOTE_PROMISC_OFF_PHYS\n")); 14175 mutex_enter(&ill->ill_lock); 14176 ill->ill_promisc_on_phys = B_FALSE; 14177 mutex_exit(&ill->ill_lock); 14178 break; 14179 case DL_NOTE_CAPAB_RENEG: 14180 /* 14181 * Something changed on the driver side. 14182 * It wants us to renegotiate the capabilities 14183 * on this ill. The most likely cause is the 14184 * aggregation interface under us where a 14185 * port got added or went away. 14186 * 14187 * We reset the capabilities and set the 14188 * state to IDMS_RENG so that when the ack 14189 * comes back, we can start the 14190 * renegotiation process. 14191 */ 14192 ill_capability_reset(ill); 14193 ill->ill_capab_state = IDMS_RENEG; 14194 break; 14195 default: 14196 ip0dbg(("ip_rput_dlpi_writer: unknown notification " 14197 "type 0x%x for DL_NOTIFY_IND\n", 14198 notify->dl_notification)); 14199 break; 14200 } 14201 14202 /* 14203 * As this is an asynchronous operation, we 14204 * should not call ill_dlpi_done 14205 */ 14206 break; 14207 } 14208 case DL_NOTIFY_ACK: 14209 /* 14210 * Don't really need to check for what notifications 14211 * are supported; we'll process what gets sent upstream, 14212 * and we know it'll be something we support changing 14213 * based on our DL_NOTIFY_REQ. 14214 */ 14215 ill_dlpi_done(ill, DL_NOTIFY_REQ); 14216 break; 14217 case DL_PHYS_ADDR_ACK: { 14218 /* 14219 * We should have an IOCTL waiting on this when request 14220 * sent by ill_dl_phys. 14221 * However, ill_dl_phys was called on an ill queue (from 14222 * SIOCSLIFNAME), thus conn_pending_ill is not set. But the 14223 * ioctl is known to be pending on ill_wq. 14224 * There are two additional phys_addr_req's sent to the 14225 * driver to get the token and lla. ill_phys_addr_pend 14226 * keeps track of the last one sent so we know which 14227 * response we are dealing with. ill_dlpi_done will 14228 * update ill_phys_addr_pend when it sends the next req. 14229 * We don't complete the IOCTL until all three DL_PARs 14230 * have been attempted. 14231 * 14232 * We don't need any lock to update ill_nd_lla* fields, 14233 * since the ill is not yet up, We grab the lock just 14234 * for uniformity with other code that accesses ill_nd_lla. 14235 */ 14236 physaddr_req = ill->ill_phys_addr_pend; 14237 ill_dlpi_done(ill, DL_PHYS_ADDR_REQ); 14238 if (physaddr_req == DL_IPV6_TOKEN || 14239 physaddr_req == DL_IPV6_LINK_LAYER_ADDR) { 14240 if (physaddr_req == DL_IPV6_TOKEN) { 14241 /* 14242 * bcopy to low-order bits of ill_token 14243 * 14244 * XXX Temporary hack - currently, 14245 * all known tokens are 64 bits, 14246 * so I'll cheat for the moment. 14247 */ 14248 dlp = (union DL_primitives *)mp->b_rptr; 14249 14250 mutex_enter(&ill->ill_lock); 14251 bcopy((uchar_t *)(mp->b_rptr + 14252 dlp->physaddr_ack.dl_addr_offset), 14253 (void *)&ill->ill_token.s6_addr32[2], 14254 dlp->physaddr_ack.dl_addr_length); 14255 ill->ill_token_length = 14256 dlp->physaddr_ack.dl_addr_length; 14257 mutex_exit(&ill->ill_lock); 14258 } else { 14259 ASSERT(ill->ill_nd_lla_mp == NULL); 14260 mp_hw = copyb(mp); 14261 if (mp_hw == NULL) { 14262 err = ENOMEM; 14263 break; 14264 } 14265 dlp = (union DL_primitives *)mp_hw->b_rptr; 14266 mutex_enter(&ill->ill_lock); 14267 ill->ill_nd_lla_mp = mp_hw; 14268 ill->ill_nd_lla = (uchar_t *)mp_hw->b_rptr + 14269 dlp->physaddr_ack.dl_addr_offset; 14270 ill->ill_nd_lla_len = 14271 dlp->physaddr_ack.dl_addr_length; 14272 mutex_exit(&ill->ill_lock); 14273 } 14274 break; 14275 } 14276 ASSERT(physaddr_req == DL_CURR_PHYS_ADDR); 14277 ASSERT(ill->ill_phys_addr_mp == NULL); 14278 if (!ill->ill_ifname_pending) 14279 break; 14280 ill->ill_ifname_pending = 0; 14281 if (!ioctl_aborted) 14282 mp1 = ipsq_pending_mp_get(ipsq, &connp); 14283 if (mp1 != NULL) { 14284 ASSERT(connp == NULL); 14285 q = ill->ill_wq; 14286 } 14287 /* 14288 * If any error acks received during the plumbing sequence, 14289 * ill_ifname_pending_err will be set. Break out and send up 14290 * the error to the pending ioctl. 14291 */ 14292 if (ill->ill_ifname_pending_err != 0) { 14293 err = ill->ill_ifname_pending_err; 14294 ill->ill_ifname_pending_err = 0; 14295 break; 14296 } 14297 /* 14298 * Get the interface token. If the zeroth interface 14299 * address is zero then set the address to the link local 14300 * address 14301 */ 14302 mp_hw = copyb(mp); 14303 if (mp_hw == NULL) { 14304 err = ENOMEM; 14305 break; 14306 } 14307 dlp = (union DL_primitives *)mp_hw->b_rptr; 14308 ill->ill_phys_addr_mp = mp_hw; 14309 ill->ill_phys_addr = (uchar_t *)mp_hw->b_rptr + 14310 dlp->physaddr_ack.dl_addr_offset; 14311 if (dlp->physaddr_ack.dl_addr_length == 0 || 14312 ill->ill_phys_addr_length == 0 || 14313 ill->ill_phys_addr_length == IP_ADDR_LEN) { 14314 /* 14315 * Compatibility: atun driver returns a length of 0. 14316 * ipdptp has an ill_phys_addr_length of zero(from 14317 * DL_BIND_ACK) but a non-zero length here. 14318 * ipd has an ill_phys_addr_length of 4(from 14319 * DL_BIND_ACK) but a non-zero length here. 14320 */ 14321 ill->ill_phys_addr = NULL; 14322 } else if (dlp->physaddr_ack.dl_addr_length != 14323 ill->ill_phys_addr_length) { 14324 ip0dbg(("DL_PHYS_ADDR_ACK: " 14325 "Address length mismatch %d %d\n", 14326 dlp->physaddr_ack.dl_addr_length, 14327 ill->ill_phys_addr_length)); 14328 err = EINVAL; 14329 break; 14330 } 14331 mutex_enter(&ill->ill_lock); 14332 if (ill->ill_nd_lla_mp == NULL) { 14333 ill->ill_nd_lla_mp = copyb(mp_hw); 14334 if (ill->ill_nd_lla_mp == NULL) { 14335 err = ENOMEM; 14336 mutex_exit(&ill->ill_lock); 14337 break; 14338 } 14339 ill->ill_nd_lla = 14340 (uchar_t *)ill->ill_nd_lla_mp->b_rptr + 14341 dlp->physaddr_ack.dl_addr_offset; 14342 ill->ill_nd_lla_len = ill->ill_phys_addr_length; 14343 } 14344 mutex_exit(&ill->ill_lock); 14345 if (IN6_IS_ADDR_UNSPECIFIED(&ill->ill_token)) 14346 (void) ill_setdefaulttoken(ill); 14347 14348 /* 14349 * If the ill zero interface has a zero address assign 14350 * it the proper link local address. 14351 */ 14352 ASSERT(ill->ill_ipif->ipif_id == 0); 14353 if (ipif != NULL && 14354 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr)) 14355 (void) ipif_setlinklocal(ipif); 14356 break; 14357 } 14358 case DL_OK_ACK: 14359 ip2dbg(("DL_OK_ACK %s (0x%x)\n", 14360 dlpi_prim_str((int)dloa->dl_correct_primitive), 14361 dloa->dl_correct_primitive)); 14362 switch (dloa->dl_correct_primitive) { 14363 case DL_UNBIND_REQ: 14364 case DL_ATTACH_REQ: 14365 case DL_DETACH_REQ: 14366 ill_dlpi_done(ill, dloa->dl_correct_primitive); 14367 break; 14368 } 14369 break; 14370 default: 14371 break; 14372 } 14373 14374 freemsg(mp); 14375 if (mp1) { 14376 struct iocblk *iocp; 14377 int mode; 14378 14379 /* 14380 * Complete the waiting IOCTL. For SIOCLIFADDIF or 14381 * SIOCSLIFNAME do a copyout. 14382 */ 14383 iocp = (struct iocblk *)mp1->b_rptr; 14384 14385 if (iocp->ioc_cmd == SIOCLIFADDIF || 14386 iocp->ioc_cmd == SIOCSLIFNAME) 14387 mode = COPYOUT; 14388 else 14389 mode = NO_COPYOUT; 14390 /* 14391 * The ioctl must complete now without EINPROGRESS 14392 * since ipsq_pending_mp_get has removed the ioctl mblk 14393 * from ipsq_pending_mp. Otherwise the ioctl will be 14394 * stuck for ever in the ipsq. 14395 */ 14396 ASSERT(err != EINPROGRESS); 14397 ip_ioctl_finish(q, mp1, err, mode, ipif, ipsq); 14398 14399 } 14400 } 14401 14402 /* 14403 * ip_rput_other is called by ip_rput to handle messages modifying the global 14404 * state in IP. Normally called as writer. Exception SIOCGTUNPARAM (shared) 14405 */ 14406 /* ARGSUSED */ 14407 void 14408 ip_rput_other(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 14409 { 14410 ill_t *ill; 14411 struct iocblk *iocp; 14412 mblk_t *mp1; 14413 conn_t *connp = NULL; 14414 14415 ip1dbg(("ip_rput_other ")); 14416 ill = (ill_t *)q->q_ptr; 14417 /* 14418 * This routine is not a writer in the case of SIOCGTUNPARAM 14419 * in which case ipsq is NULL. 14420 */ 14421 if (ipsq != NULL) { 14422 ASSERT(IAM_WRITER_IPSQ(ipsq)); 14423 ASSERT(ipsq == ill->ill_phyint->phyint_ipsq); 14424 } 14425 14426 switch (mp->b_datap->db_type) { 14427 case M_ERROR: 14428 case M_HANGUP: 14429 /* 14430 * The device has a problem. We force the ILL down. It can 14431 * be brought up again manually using SIOCSIFFLAGS (via 14432 * ifconfig or equivalent). 14433 */ 14434 ASSERT(ipsq != NULL); 14435 if (mp->b_rptr < mp->b_wptr) 14436 ill->ill_error = (int)(*mp->b_rptr & 0xFF); 14437 if (ill->ill_error == 0) 14438 ill->ill_error = ENXIO; 14439 if (!ill_down_start(q, mp)) 14440 return; 14441 ipif_all_down_tail(ipsq, q, mp, NULL); 14442 break; 14443 case M_IOCACK: 14444 iocp = (struct iocblk *)mp->b_rptr; 14445 ASSERT(iocp->ioc_cmd != DL_IOC_HDR_INFO); 14446 switch (iocp->ioc_cmd) { 14447 case SIOCSTUNPARAM: 14448 case OSIOCSTUNPARAM: 14449 ASSERT(ipsq != NULL); 14450 /* 14451 * Finish socket ioctl passed through to tun. 14452 * We should have an IOCTL waiting on this. 14453 */ 14454 mp1 = ipsq_pending_mp_get(ipsq, &connp); 14455 if (ill->ill_isv6) { 14456 struct iftun_req *ta; 14457 14458 /* 14459 * if a source or destination is 14460 * being set, try and set the link 14461 * local address for the tunnel 14462 */ 14463 ta = (struct iftun_req *)mp->b_cont-> 14464 b_cont->b_rptr; 14465 if (ta->ifta_flags & (IFTUN_SRC | IFTUN_DST)) { 14466 ipif_set_tun_llink(ill, ta); 14467 } 14468 14469 } 14470 if (mp1 != NULL) { 14471 /* 14472 * Now copy back the b_next/b_prev used by 14473 * mi code for the mi_copy* functions. 14474 * See ip_sioctl_tunparam() for the reason. 14475 * Also protect against missing b_cont. 14476 */ 14477 if (mp->b_cont != NULL) { 14478 mp->b_cont->b_next = 14479 mp1->b_cont->b_next; 14480 mp->b_cont->b_prev = 14481 mp1->b_cont->b_prev; 14482 } 14483 ip_ioctl_freemsg(mp1); 14484 ASSERT(ipsq->ipsq_current_ipif != NULL); 14485 ASSERT(connp != NULL); 14486 ip_ioctl_finish(CONNP_TO_WQ(connp), mp, 14487 iocp->ioc_error, NO_COPYOUT, 14488 ipsq->ipsq_current_ipif, ipsq); 14489 } else { 14490 ASSERT(connp == NULL); 14491 putnext(q, mp); 14492 } 14493 break; 14494 case SIOCGTUNPARAM: 14495 case OSIOCGTUNPARAM: 14496 /* 14497 * This is really M_IOCDATA from the tunnel driver. 14498 * convert back and complete the ioctl. 14499 * We should have an IOCTL waiting on this. 14500 */ 14501 mp1 = ill_pending_mp_get(ill, &connp, iocp->ioc_id); 14502 if (mp1) { 14503 /* 14504 * Now copy back the b_next/b_prev used by 14505 * mi code for the mi_copy* functions. 14506 * See ip_sioctl_tunparam() for the reason. 14507 * Also protect against missing b_cont. 14508 */ 14509 if (mp->b_cont != NULL) { 14510 mp->b_cont->b_next = 14511 mp1->b_cont->b_next; 14512 mp->b_cont->b_prev = 14513 mp1->b_cont->b_prev; 14514 } 14515 ip_ioctl_freemsg(mp1); 14516 if (iocp->ioc_error == 0) 14517 mp->b_datap->db_type = M_IOCDATA; 14518 ASSERT(connp != NULL); 14519 ip_ioctl_finish(CONNP_TO_WQ(connp), mp, 14520 iocp->ioc_error, COPYOUT, NULL, NULL); 14521 } else { 14522 ASSERT(connp == NULL); 14523 putnext(q, mp); 14524 } 14525 break; 14526 default: 14527 break; 14528 } 14529 break; 14530 case M_IOCNAK: 14531 iocp = (struct iocblk *)mp->b_rptr; 14532 14533 switch (iocp->ioc_cmd) { 14534 int mode; 14535 ipif_t *ipif; 14536 14537 case DL_IOC_HDR_INFO: 14538 /* 14539 * If this was the first attempt turn of the 14540 * fastpath probing. 14541 */ 14542 mutex_enter(&ill->ill_lock); 14543 if (ill->ill_dlpi_fastpath_state == IDMS_INPROGRESS) { 14544 ill->ill_dlpi_fastpath_state = IDMS_FAILED; 14545 mutex_exit(&ill->ill_lock); 14546 ill_fastpath_nack(ill); 14547 ip1dbg(("ip_rput: DLPI fastpath off on " 14548 "interface %s\n", 14549 ill->ill_name)); 14550 } else { 14551 mutex_exit(&ill->ill_lock); 14552 } 14553 freemsg(mp); 14554 break; 14555 case SIOCSTUNPARAM: 14556 case OSIOCSTUNPARAM: 14557 ASSERT(ipsq != NULL); 14558 /* 14559 * Finish socket ioctl passed through to tun 14560 * We should have an IOCTL waiting on this. 14561 */ 14562 /* FALLTHRU */ 14563 case SIOCGTUNPARAM: 14564 case OSIOCGTUNPARAM: 14565 /* 14566 * This is really M_IOCDATA from the tunnel driver. 14567 * convert back and complete the ioctl. 14568 * We should have an IOCTL waiting on this. 14569 */ 14570 if (iocp->ioc_cmd == SIOCGTUNPARAM || 14571 iocp->ioc_cmd == OSIOCGTUNPARAM) { 14572 mp1 = ill_pending_mp_get(ill, &connp, 14573 iocp->ioc_id); 14574 mode = COPYOUT; 14575 ipsq = NULL; 14576 ipif = NULL; 14577 } else { 14578 mp1 = ipsq_pending_mp_get(ipsq, &connp); 14579 mode = NO_COPYOUT; 14580 ASSERT(ipsq->ipsq_current_ipif != NULL); 14581 ipif = ipsq->ipsq_current_ipif; 14582 } 14583 if (mp1 != NULL) { 14584 /* 14585 * Now copy back the b_next/b_prev used by 14586 * mi code for the mi_copy* functions. 14587 * See ip_sioctl_tunparam() for the reason. 14588 * Also protect against missing b_cont. 14589 */ 14590 if (mp->b_cont != NULL) { 14591 mp->b_cont->b_next = 14592 mp1->b_cont->b_next; 14593 mp->b_cont->b_prev = 14594 mp1->b_cont->b_prev; 14595 } 14596 ip_ioctl_freemsg(mp1); 14597 if (iocp->ioc_error == 0) 14598 iocp->ioc_error = EINVAL; 14599 ASSERT(connp != NULL); 14600 ip_ioctl_finish(CONNP_TO_WQ(connp), mp, 14601 iocp->ioc_error, mode, ipif, ipsq); 14602 } else { 14603 ASSERT(connp == NULL); 14604 putnext(q, mp); 14605 } 14606 break; 14607 default: 14608 break; 14609 } 14610 default: 14611 break; 14612 } 14613 } 14614 14615 /* 14616 * NOTE : This function does not ire_refrele the ire argument passed in. 14617 * 14618 * IPQoS notes 14619 * IP policy is invoked twice for a forwarded packet, once on the read side 14620 * and again on the write side if both, IPP_FWD_IN and IPP_FWD_OUT are 14621 * enabled. An additional parameter, in_ill, has been added for this purpose. 14622 * Note that in_ill could be NULL when called from ip_rput_forward_multicast 14623 * because ip_mroute drops this information. 14624 * 14625 */ 14626 void 14627 ip_rput_forward(ire_t *ire, ipha_t *ipha, mblk_t *mp, ill_t *in_ill) 14628 { 14629 uint32_t pkt_len; 14630 queue_t *q; 14631 uint32_t sum; 14632 #define rptr ((uchar_t *)ipha) 14633 uint32_t max_frag; 14634 uint32_t ill_index; 14635 14636 /* Get the ill_index of the incoming ILL */ 14637 ill_index = (in_ill != NULL) ? in_ill->ill_phyint->phyint_ifindex : 0; 14638 14639 /* Initiate Read side IPPF processing */ 14640 if (IPP_ENABLED(IPP_FWD_IN)) { 14641 ip_process(IPP_FWD_IN, &mp, ill_index); 14642 if (mp == NULL) { 14643 ip2dbg(("ip_rput_forward: pkt dropped/deferred "\ 14644 "during IPPF processing\n")); 14645 return; 14646 } 14647 } 14648 pkt_len = ntohs(ipha->ipha_length); 14649 14650 /* Adjust the checksum to reflect the ttl decrement. */ 14651 sum = (int)ipha->ipha_hdr_checksum + IP_HDR_CSUM_TTL_ADJUST; 14652 ipha->ipha_hdr_checksum = (uint16_t)(sum + (sum >> 16)); 14653 14654 if (ipha->ipha_ttl-- <= 1) { 14655 if (ip_csum_hdr(ipha)) { 14656 BUMP_MIB(&ip_mib, ipInCksumErrs); 14657 goto drop_pkt; 14658 } 14659 /* 14660 * Note: ire_stq this will be NULL for multicast 14661 * datagrams using the long path through arp (the IRE 14662 * is not an IRE_CACHE). This should not cause 14663 * problems since we don't generate ICMP errors for 14664 * multicast packets. 14665 */ 14666 q = ire->ire_stq; 14667 if (q) 14668 icmp_time_exceeded(q, mp, ICMP_TTL_EXCEEDED); 14669 else 14670 freemsg(mp); 14671 return; 14672 } 14673 14674 /* 14675 * Don't forward if the interface is down 14676 */ 14677 if (ire->ire_ipif->ipif_ill->ill_ipif_up_count == 0) { 14678 BUMP_MIB(&ip_mib, ipInDiscards); 14679 goto drop_pkt; 14680 } 14681 14682 /* Get the ill_index of the outgoing ILL */ 14683 ill_index = ire->ire_ipif->ipif_ill->ill_phyint->phyint_ifindex; 14684 14685 /* Check if there are options to update */ 14686 if (!IS_SIMPLE_IPH(ipha)) { 14687 if (ip_csum_hdr(ipha)) { 14688 BUMP_MIB(&ip_mib, ipInCksumErrs); 14689 goto drop_pkt; 14690 } 14691 if (ip_rput_forward_options(mp, ipha, ire)) { 14692 return; 14693 } 14694 14695 ipha->ipha_hdr_checksum = 0; 14696 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 14697 } 14698 max_frag = ire->ire_max_frag; 14699 if (pkt_len > max_frag) { 14700 /* 14701 * It needs fragging on its way out. We haven't 14702 * verified the header checksum yet. Since we 14703 * are going to put a surely good checksum in the 14704 * outgoing header, we have to make sure that it 14705 * was good coming in. 14706 */ 14707 if (ip_csum_hdr(ipha)) { 14708 BUMP_MIB(&ip_mib, ipInCksumErrs); 14709 goto drop_pkt; 14710 } 14711 /* Initiate Write side IPPF processing */ 14712 if (IPP_ENABLED(IPP_FWD_OUT)) { 14713 ip_process(IPP_FWD_OUT, &mp, ill_index); 14714 if (mp == NULL) { 14715 ip2dbg(("ip_rput_forward: pkt dropped/deferred"\ 14716 " during IPPF processing\n")); 14717 return; 14718 } 14719 } 14720 ip_wput_frag(ire, mp, IB_PKT, max_frag, 0); 14721 return; 14722 } 14723 14724 mp = ip_wput_attach_llhdr(mp, ire, IPP_FWD_OUT, ill_index); 14725 if (mp == NULL) { 14726 BUMP_MIB(&ip_mib, ipInDiscards); 14727 return; 14728 } 14729 14730 q = ire->ire_stq; 14731 UPDATE_IB_PKT_COUNT(ire); 14732 ire->ire_last_used_time = lbolt; 14733 BUMP_MIB(&ip_mib, ipForwDatagrams); 14734 putnext(q, mp); 14735 return; 14736 14737 drop_pkt:; 14738 ip1dbg(("ip_rput_forward: drop pkt\n")); 14739 freemsg(mp); 14740 #undef rptr 14741 } 14742 14743 void 14744 ip_rput_forward_multicast(ipaddr_t dst, mblk_t *mp, ipif_t *ipif) 14745 { 14746 ire_t *ire; 14747 14748 ASSERT(!ipif->ipif_isv6); 14749 /* 14750 * Find an IRE which matches the destination and the outgoing 14751 * queue in the cache table. All we need is an IRE_CACHE which 14752 * is pointing at ipif->ipif_ill. If it is part of some ill group, 14753 * then it is enough to have some IRE_CACHE in the group. 14754 */ 14755 if (ipif->ipif_flags & IPIF_POINTOPOINT) 14756 dst = ipif->ipif_pp_dst_addr; 14757 ire = ire_ctable_lookup(dst, 0, 0, ipif, ALL_ZONES, 14758 MATCH_IRE_ILL_GROUP); 14759 if (!ire) { 14760 /* 14761 * Mark this packet to make it be delivered to 14762 * ip_rput_forward after the new ire has been 14763 * created. 14764 */ 14765 mp->b_prev = NULL; 14766 mp->b_next = mp; 14767 ip_newroute_ipif(ipif->ipif_ill->ill_wq, mp, ipif, dst, 14768 NULL, 0); 14769 } else { 14770 ip_rput_forward(ire, (ipha_t *)mp->b_rptr, mp, NULL); 14771 IRE_REFRELE(ire); 14772 } 14773 } 14774 14775 /* Update any source route, record route or timestamp options */ 14776 static int 14777 ip_rput_forward_options(mblk_t *mp, ipha_t *ipha, ire_t *ire) 14778 { 14779 ipoptp_t opts; 14780 uchar_t *opt; 14781 uint8_t optval; 14782 uint8_t optlen; 14783 ipaddr_t dst; 14784 uint32_t ts; 14785 ire_t *dst_ire = NULL; 14786 ire_t *tmp_ire = NULL; 14787 timestruc_t now; 14788 14789 ip2dbg(("ip_rput_forward_options\n")); 14790 dst = ipha->ipha_dst; 14791 for (optval = ipoptp_first(&opts, ipha); 14792 optval != IPOPT_EOL; 14793 optval = ipoptp_next(&opts)) { 14794 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 14795 opt = opts.ipoptp_cur; 14796 optlen = opts.ipoptp_len; 14797 ip2dbg(("ip_rput_forward_options: opt %d, len %d\n", 14798 optval, opts.ipoptp_len)); 14799 switch (optval) { 14800 uint32_t off; 14801 case IPOPT_SSRR: 14802 case IPOPT_LSRR: 14803 /* Check if adminstratively disabled */ 14804 if (!ip_forward_src_routed) { 14805 BUMP_MIB(&ip_mib, ipForwProhibits); 14806 if (ire->ire_stq) 14807 icmp_unreachable(ire->ire_stq, mp, 14808 ICMP_SOURCE_ROUTE_FAILED); 14809 else { 14810 ip0dbg(("ip_rput_forward_options: " 14811 "unable to send unreach\n")); 14812 freemsg(mp); 14813 } 14814 return (-1); 14815 } 14816 14817 dst_ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, 14818 NULL, ALL_ZONES, MATCH_IRE_TYPE); 14819 if (dst_ire == NULL) { 14820 /* 14821 * Must be partial since ip_rput_options 14822 * checked for strict. 14823 */ 14824 break; 14825 } 14826 off = opt[IPOPT_OFFSET]; 14827 off--; 14828 redo_srr: 14829 if (optlen < IP_ADDR_LEN || 14830 off > optlen - IP_ADDR_LEN) { 14831 /* End of source route */ 14832 ip1dbg(( 14833 "ip_rput_forward_options: end of SR\n")); 14834 ire_refrele(dst_ire); 14835 break; 14836 } 14837 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 14838 bcopy(&ire->ire_src_addr, (char *)opt + off, 14839 IP_ADDR_LEN); 14840 ip1dbg(("ip_rput_forward_options: next hop 0x%x\n", 14841 ntohl(dst))); 14842 14843 /* 14844 * Check if our address is present more than 14845 * once as consecutive hops in source route. 14846 */ 14847 tmp_ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, 14848 NULL, ALL_ZONES, MATCH_IRE_TYPE); 14849 if (tmp_ire != NULL) { 14850 ire_refrele(tmp_ire); 14851 off += IP_ADDR_LEN; 14852 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 14853 goto redo_srr; 14854 } 14855 ipha->ipha_dst = dst; 14856 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 14857 ire_refrele(dst_ire); 14858 break; 14859 case IPOPT_RR: 14860 off = opt[IPOPT_OFFSET]; 14861 off--; 14862 if (optlen < IP_ADDR_LEN || 14863 off > optlen - IP_ADDR_LEN) { 14864 /* No more room - ignore */ 14865 ip1dbg(( 14866 "ip_rput_forward_options: end of RR\n")); 14867 break; 14868 } 14869 bcopy(&ire->ire_src_addr, (char *)opt + off, 14870 IP_ADDR_LEN); 14871 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 14872 break; 14873 case IPOPT_TS: 14874 /* Insert timestamp if there is room */ 14875 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 14876 case IPOPT_TS_TSONLY: 14877 off = IPOPT_TS_TIMELEN; 14878 break; 14879 case IPOPT_TS_PRESPEC: 14880 case IPOPT_TS_PRESPEC_RFC791: 14881 /* Verify that the address matched */ 14882 off = opt[IPOPT_OFFSET] - 1; 14883 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 14884 dst_ire = ire_ctable_lookup(dst, 0, 14885 IRE_LOCAL, NULL, ALL_ZONES, MATCH_IRE_TYPE); 14886 if (dst_ire == NULL) { 14887 /* Not for us */ 14888 break; 14889 } 14890 ire_refrele(dst_ire); 14891 /* FALLTHRU */ 14892 case IPOPT_TS_TSANDADDR: 14893 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 14894 break; 14895 default: 14896 /* 14897 * ip_*put_options should have already 14898 * dropped this packet. 14899 */ 14900 cmn_err(CE_PANIC, "ip_rput_forward_options: " 14901 "unknown IT - bug in ip_rput_options?\n"); 14902 return (0); /* Keep "lint" happy */ 14903 } 14904 if (opt[IPOPT_OFFSET] - 1 + off > optlen) { 14905 /* Increase overflow counter */ 14906 off = (opt[IPOPT_POS_OV_FLG] >> 4) + 1; 14907 opt[IPOPT_POS_OV_FLG] = 14908 (uint8_t)((opt[IPOPT_POS_OV_FLG] & 0x0F) | 14909 (off << 4)); 14910 break; 14911 } 14912 off = opt[IPOPT_OFFSET] - 1; 14913 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 14914 case IPOPT_TS_PRESPEC: 14915 case IPOPT_TS_PRESPEC_RFC791: 14916 case IPOPT_TS_TSANDADDR: 14917 bcopy(&ire->ire_src_addr, 14918 (char *)opt + off, IP_ADDR_LEN); 14919 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 14920 /* FALLTHRU */ 14921 case IPOPT_TS_TSONLY: 14922 off = opt[IPOPT_OFFSET] - 1; 14923 /* Compute # of milliseconds since midnight */ 14924 gethrestime(&now); 14925 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 + 14926 now.tv_nsec / (NANOSEC / MILLISEC); 14927 bcopy(&ts, (char *)opt + off, IPOPT_TS_TIMELEN); 14928 opt[IPOPT_OFFSET] += IPOPT_TS_TIMELEN; 14929 break; 14930 } 14931 break; 14932 } 14933 } 14934 return (0); 14935 } 14936 14937 /* 14938 * This is called after processing at least one of AH/ESP headers. 14939 * 14940 * NOTE: the ill corresponding to ipsec_in_ill_index may not be 14941 * the actual, physical interface on which the packet was received, 14942 * but, when ip_strict_dst_multihoming is set to 1, could be the 14943 * interface which had the ipha_dst configured when the packet went 14944 * through ip_rput. The ill_index corresponding to the recv_ill 14945 * is saved in ipsec_in_rill_index 14946 */ 14947 void 14948 ip_fanout_proto_again(mblk_t *ipsec_mp, ill_t *ill, ill_t *recv_ill, ire_t *ire) 14949 { 14950 mblk_t *mp; 14951 ipaddr_t dst; 14952 in6_addr_t *v6dstp; 14953 ipha_t *ipha; 14954 ip6_t *ip6h; 14955 ipsec_in_t *ii; 14956 boolean_t ill_need_rele = B_FALSE; 14957 boolean_t rill_need_rele = B_FALSE; 14958 boolean_t ire_need_rele = B_FALSE; 14959 14960 ii = (ipsec_in_t *)ipsec_mp->b_rptr; 14961 ASSERT(ii->ipsec_in_ill_index != 0); 14962 14963 mp = ipsec_mp->b_cont; 14964 ASSERT(mp != NULL); 14965 14966 14967 if (ill == NULL) { 14968 ASSERT(recv_ill == NULL); 14969 /* 14970 * We need to get the original queue on which ip_rput_local 14971 * or ip_rput_data_v6 was called. 14972 */ 14973 ill = ill_lookup_on_ifindex(ii->ipsec_in_ill_index, 14974 !ii->ipsec_in_v4, NULL, NULL, NULL, NULL); 14975 ill_need_rele = B_TRUE; 14976 14977 if (ii->ipsec_in_ill_index != ii->ipsec_in_rill_index) { 14978 recv_ill = ill_lookup_on_ifindex( 14979 ii->ipsec_in_rill_index, !ii->ipsec_in_v4, 14980 NULL, NULL, NULL, NULL); 14981 rill_need_rele = B_TRUE; 14982 } else { 14983 recv_ill = ill; 14984 } 14985 14986 if ((ill == NULL) || (recv_ill == NULL)) { 14987 ip0dbg(("ip_fanout_proto_again: interface " 14988 "disappeared\n")); 14989 if (ill != NULL) 14990 ill_refrele(ill); 14991 if (recv_ill != NULL) 14992 ill_refrele(recv_ill); 14993 freemsg(ipsec_mp); 14994 return; 14995 } 14996 } 14997 14998 ASSERT(ill != NULL && recv_ill != NULL); 14999 15000 if (mp->b_datap->db_type == M_CTL) { 15001 /* 15002 * AH/ESP is returning the ICMP message after 15003 * removing their headers. Fanout again till 15004 * it gets to the right protocol. 15005 */ 15006 if (ii->ipsec_in_v4) { 15007 icmph_t *icmph; 15008 int iph_hdr_length; 15009 int hdr_length; 15010 15011 ipha = (ipha_t *)mp->b_rptr; 15012 iph_hdr_length = IPH_HDR_LENGTH(ipha); 15013 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 15014 ipha = (ipha_t *)&icmph[1]; 15015 hdr_length = IPH_HDR_LENGTH(ipha); 15016 /* 15017 * icmp_inbound_error_fanout may need to do pullupmsg. 15018 * Reset the type to M_DATA. 15019 */ 15020 mp->b_datap->db_type = M_DATA; 15021 icmp_inbound_error_fanout(ill->ill_rq, ill, ipsec_mp, 15022 icmph, ipha, iph_hdr_length, hdr_length, B_TRUE, 15023 B_FALSE, ill, ii->ipsec_in_zoneid); 15024 } else { 15025 icmp6_t *icmp6; 15026 int hdr_length; 15027 15028 ip6h = (ip6_t *)mp->b_rptr; 15029 /* Don't call hdr_length_v6() unless you have to. */ 15030 if (ip6h->ip6_nxt != IPPROTO_ICMPV6) 15031 hdr_length = ip_hdr_length_v6(mp, ip6h); 15032 else 15033 hdr_length = IPV6_HDR_LEN; 15034 15035 icmp6 = (icmp6_t *)(&mp->b_rptr[hdr_length]); 15036 /* 15037 * icmp_inbound_error_fanout_v6 may need to do 15038 * pullupmsg. Reset the type to M_DATA. 15039 */ 15040 mp->b_datap->db_type = M_DATA; 15041 icmp_inbound_error_fanout_v6(ill->ill_rq, ipsec_mp, 15042 ip6h, icmp6, ill, B_TRUE, ii->ipsec_in_zoneid); 15043 } 15044 if (ill_need_rele) 15045 ill_refrele(ill); 15046 if (rill_need_rele) 15047 ill_refrele(recv_ill); 15048 return; 15049 } 15050 15051 if (ii->ipsec_in_v4) { 15052 ipha = (ipha_t *)mp->b_rptr; 15053 dst = ipha->ipha_dst; 15054 if (CLASSD(dst)) { 15055 /* 15056 * Multicast has to be delivered to all streams. 15057 */ 15058 dst = INADDR_BROADCAST; 15059 } 15060 15061 if (ire == NULL) { 15062 ire = ire_cache_lookup(dst, ii->ipsec_in_zoneid); 15063 if (ire == NULL) { 15064 if (ill_need_rele) 15065 ill_refrele(ill); 15066 if (rill_need_rele) 15067 ill_refrele(recv_ill); 15068 ip1dbg(("ip_fanout_proto_again: " 15069 "IRE not found")); 15070 freemsg(ipsec_mp); 15071 return; 15072 } 15073 ire_need_rele = B_TRUE; 15074 } 15075 15076 switch (ipha->ipha_protocol) { 15077 case IPPROTO_UDP: 15078 ip_udp_input(ill->ill_rq, ipsec_mp, ipha, ire, 15079 recv_ill); 15080 if (ire_need_rele) 15081 ire_refrele(ire); 15082 break; 15083 case IPPROTO_TCP: 15084 if (!ire_need_rele) 15085 IRE_REFHOLD(ire); 15086 mp = ip_tcp_input(mp, ipha, ill, B_TRUE, 15087 ire, ipsec_mp, 0, ill->ill_rq, NULL); 15088 IRE_REFRELE(ire); 15089 if (mp != NULL) 15090 squeue_enter_chain(GET_SQUEUE(mp), mp, 15091 mp, 1, SQTAG_IP_PROTO_AGAIN); 15092 break; 15093 case IPPROTO_SCTP: 15094 if (!ire_need_rele) 15095 IRE_REFHOLD(ire); 15096 ip_sctp_input(mp, ipha, ill, B_TRUE, ire, 15097 ipsec_mp, 0, ill->ill_rq, dst); 15098 break; 15099 default: 15100 ip_proto_input(ill->ill_rq, ipsec_mp, ipha, ire, 15101 recv_ill); 15102 if (ire_need_rele) 15103 ire_refrele(ire); 15104 break; 15105 } 15106 } else { 15107 uint32_t rput_flags = 0; 15108 15109 ip6h = (ip6_t *)mp->b_rptr; 15110 v6dstp = &ip6h->ip6_dst; 15111 /* 15112 * XXX Assumes ip_rput_v6 sets ll_multicast only for multicast 15113 * address. 15114 * 15115 * Currently, we don't store that state in the IPSEC_IN 15116 * message, and we may need to. 15117 */ 15118 rput_flags |= (IN6_IS_ADDR_MULTICAST(v6dstp) ? 15119 IP6_IN_LLMCAST : 0); 15120 ip_rput_data_v6(ill->ill_rq, ill, ipsec_mp, ip6h, rput_flags, 15121 NULL); 15122 } 15123 if (ill_need_rele) 15124 ill_refrele(ill); 15125 if (rill_need_rele) 15126 ill_refrele(recv_ill); 15127 } 15128 15129 /* 15130 * Call ill_frag_timeout to do garbage collection. ill_frag_timeout 15131 * returns 'true' if there are still fragments left on the queue, in 15132 * which case we restart the timer. 15133 */ 15134 void 15135 ill_frag_timer(void *arg) 15136 { 15137 ill_t *ill = (ill_t *)arg; 15138 boolean_t frag_pending; 15139 15140 mutex_enter(&ill->ill_lock); 15141 ASSERT(!ill->ill_fragtimer_executing); 15142 if (ill->ill_state_flags & ILL_CONDEMNED) { 15143 ill->ill_frag_timer_id = 0; 15144 mutex_exit(&ill->ill_lock); 15145 return; 15146 } 15147 ill->ill_fragtimer_executing = 1; 15148 mutex_exit(&ill->ill_lock); 15149 15150 frag_pending = ill_frag_timeout(ill, ip_g_frag_timeout); 15151 15152 /* 15153 * Restart the timer, if we have fragments pending or if someone 15154 * wanted us to be scheduled again. 15155 */ 15156 mutex_enter(&ill->ill_lock); 15157 ill->ill_fragtimer_executing = 0; 15158 ill->ill_frag_timer_id = 0; 15159 if (frag_pending || ill->ill_fragtimer_needrestart) 15160 ill_frag_timer_start(ill); 15161 mutex_exit(&ill->ill_lock); 15162 } 15163 15164 void 15165 ill_frag_timer_start(ill_t *ill) 15166 { 15167 ASSERT(MUTEX_HELD(&ill->ill_lock)); 15168 15169 /* If the ill is closing or opening don't proceed */ 15170 if (ill->ill_state_flags & ILL_CONDEMNED) 15171 return; 15172 15173 if (ill->ill_fragtimer_executing) { 15174 /* 15175 * ill_frag_timer is currently executing. Just record the 15176 * the fact that we want the timer to be restarted. 15177 * ill_frag_timer will post a timeout before it returns, 15178 * ensuring it will be called again. 15179 */ 15180 ill->ill_fragtimer_needrestart = 1; 15181 return; 15182 } 15183 15184 if (ill->ill_frag_timer_id == 0) { 15185 /* 15186 * The timer is neither running nor is the timeout handler 15187 * executing. Post a timeout so that ill_frag_timer will be 15188 * called 15189 */ 15190 ill->ill_frag_timer_id = timeout(ill_frag_timer, ill, 15191 MSEC_TO_TICK(ip_g_frag_timo_ms >> 1)); 15192 ill->ill_fragtimer_needrestart = 0; 15193 } 15194 } 15195 15196 /* 15197 * This routine is needed for loopback when forwarding multicasts. 15198 * 15199 * IPQoS Notes: 15200 * IPPF processing is done in fanout routines. 15201 * Policy processing is done only if IPP_lOCAL_IN is enabled. Further, 15202 * processing for IPSec packets is done when it comes back in clear. 15203 * NOTE : The callers of this function need to do the ire_refrele for the 15204 * ire that is being passed in. 15205 */ 15206 void 15207 ip_proto_input(queue_t *q, mblk_t *mp, ipha_t *ipha, ire_t *ire, 15208 ill_t *recv_ill) 15209 { 15210 ill_t *ill = (ill_t *)q->q_ptr; 15211 uint32_t sum; 15212 uint32_t u1; 15213 uint32_t u2; 15214 int hdr_length; 15215 boolean_t mctl_present; 15216 mblk_t *first_mp = mp; 15217 mblk_t *hada_mp = NULL; 15218 ipha_t *inner_ipha; 15219 15220 TRACE_1(TR_FAC_IP, TR_IP_RPUT_LOCL_START, 15221 "ip_rput_locl_start: q %p", q); 15222 15223 ASSERT(ire->ire_ipversion == IPV4_VERSION); 15224 15225 15226 #define rptr ((uchar_t *)ipha) 15227 #define iphs ((uint16_t *)ipha) 15228 15229 /* 15230 * no UDP or TCP packet should come here anymore. 15231 */ 15232 ASSERT((ipha->ipha_protocol != IPPROTO_TCP) && 15233 (ipha->ipha_protocol != IPPROTO_UDP)); 15234 15235 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 15236 /* EXPORT DELETE START */ 15237 if (mctl_present && 15238 ((da_ipsec_t *)first_mp->b_rptr)->da_type == IPHADA_M_CTL) { 15239 ASSERT(MBLKL(first_mp) >= sizeof (da_ipsec_t)); 15240 15241 /* 15242 * It's an IPsec accelerated packet. 15243 * Keep a pointer to the data attributes around until 15244 * we allocate the ipsec_info_t. 15245 */ 15246 IPSECHW_DEBUG(IPSECHW_PKT, 15247 ("ip_rput_local: inbound HW accelerated IPsec pkt\n")); 15248 hada_mp = first_mp; 15249 hada_mp->b_cont = NULL; 15250 /* 15251 * Since it is accelerated, it comes directly from 15252 * the ill and the data attributes is followed by 15253 * the packet data. 15254 */ 15255 ASSERT(mp->b_datap->db_type != M_CTL); 15256 first_mp = mp; 15257 mctl_present = B_FALSE; 15258 } 15259 /* EXPORT DELETE END */ 15260 15261 /* 15262 * IF M_CTL is not present, then ipsec_in_is_secure 15263 * should return B_TRUE. There is a case where loopback 15264 * packets has an M_CTL in the front with all the 15265 * IPSEC options set to IPSEC_PREF_NEVER - which means 15266 * ipsec_in_is_secure will return B_FALSE. As loopback 15267 * packets never comes here, it is safe to ASSERT the 15268 * following. 15269 */ 15270 ASSERT(!mctl_present || ipsec_in_is_secure(first_mp)); 15271 15272 15273 /* u1 is # words of IP options */ 15274 u1 = ipha->ipha_version_and_hdr_length - (uchar_t)((IP_VERSION << 4) 15275 + IP_SIMPLE_HDR_LENGTH_IN_WORDS); 15276 15277 if (u1) { 15278 if (!ip_options_cksum(q, mp, ipha, ire)) { 15279 if (hada_mp != NULL) 15280 freemsg(hada_mp); 15281 return; 15282 } 15283 } else { 15284 /* Check the IP header checksum. */ 15285 #define uph ((uint16_t *)ipha) 15286 sum = uph[0] + uph[1] + uph[2] + uph[3] + uph[4] + uph[5] + 15287 uph[6] + uph[7] + uph[8] + uph[9]; 15288 #undef uph 15289 /* finish doing IP checksum */ 15290 sum = (sum & 0xFFFF) + (sum >> 16); 15291 sum = ~(sum + (sum >> 16)) & 0xFFFF; 15292 /* 15293 * Don't verify header checksum if this packet is coming 15294 * back from AH/ESP as we already did it. 15295 */ 15296 if (!mctl_present && (sum && sum != 0xFFFF)) { 15297 BUMP_MIB(&ip_mib, ipInCksumErrs); 15298 goto drop_pkt; 15299 } 15300 } 15301 15302 /* 15303 * Count for SNMP of inbound packets for ire. As ip_proto_input 15304 * might be called more than once for secure packets, count only 15305 * the first time. 15306 */ 15307 if (!mctl_present) { 15308 UPDATE_IB_PKT_COUNT(ire); 15309 ire->ire_last_used_time = lbolt; 15310 } 15311 15312 /* Check for fragmentation offset. */ 15313 u2 = ntohs(ipha->ipha_fragment_offset_and_flags); 15314 u1 = u2 & (IPH_MF | IPH_OFFSET); 15315 if (u1) { 15316 /* 15317 * We re-assemble fragments before we do the AH/ESP 15318 * processing. Thus, M_CTL should not be present 15319 * while we are re-assembling. 15320 */ 15321 ASSERT(!mctl_present); 15322 ASSERT(first_mp == mp); 15323 if (!ip_rput_fragment(q, &mp, ipha)) { 15324 return; 15325 } 15326 /* 15327 * Make sure that first_mp points back to mp as 15328 * the mp we came in with could have changed in 15329 * ip_rput_fragment(). 15330 */ 15331 ipha = (ipha_t *)mp->b_rptr; 15332 first_mp = mp; 15333 } 15334 15335 /* 15336 * Clear hardware checksumming flag as it is currently only 15337 * used by TCP and UDP. 15338 */ 15339 mp->b_datap->db_struioun.cksum.flags = 0; 15340 15341 /* Now we have a complete datagram, destined for this machine. */ 15342 u1 = IPH_HDR_LENGTH(ipha); 15343 switch (ipha->ipha_protocol) { 15344 case IPPROTO_ICMP: { 15345 ire_t *ire_zone; 15346 ilm_t *ilm; 15347 mblk_t *mp1; 15348 zoneid_t last_zoneid; 15349 15350 if (CLASSD(ipha->ipha_dst) && 15351 !(recv_ill->ill_phyint->phyint_flags & PHYI_LOOPBACK)) { 15352 ASSERT(ire->ire_type == IRE_BROADCAST); 15353 /* 15354 * In the multicast case, applications may have joined 15355 * the group from different zones, so we need to deliver 15356 * the packet to each of them. Loop through the 15357 * multicast memberships structures (ilm) on the receive 15358 * ill and send a copy of the packet up each matching 15359 * one. However, we don't do this for multicasts sent on 15360 * the loopback interface (PHYI_LOOPBACK flag set) as 15361 * they must stay in the sender's zone. 15362 * 15363 * ilm_add_v6() ensures that ilms in the same zone are 15364 * contiguous in the ill_ilm list. We use this property 15365 * to avoid sending duplicates needed when two 15366 * applications in the same zone join the same group on 15367 * different logical interfaces: we ignore the ilm if 15368 * its zoneid is the same as the last matching one. 15369 * In addition, the sending of the packet for 15370 * ire_zoneid is delayed until all of the other ilms 15371 * have been exhausted. 15372 */ 15373 last_zoneid = -1; 15374 ILM_WALKER_HOLD(recv_ill); 15375 for (ilm = recv_ill->ill_ilm; ilm != NULL; 15376 ilm = ilm->ilm_next) { 15377 if ((ilm->ilm_flags & ILM_DELETED) || 15378 ipha->ipha_dst != ilm->ilm_addr || 15379 ilm->ilm_zoneid == last_zoneid || 15380 ilm->ilm_zoneid == ire->ire_zoneid || 15381 !(ilm->ilm_ipif->ipif_flags & IPIF_UP)) 15382 continue; 15383 mp1 = ip_copymsg(first_mp); 15384 if (mp1 == NULL) 15385 continue; 15386 icmp_inbound(q, mp1, B_TRUE, ill, 15387 0, sum, mctl_present, B_TRUE, 15388 recv_ill, ilm->ilm_zoneid); 15389 last_zoneid = ilm->ilm_zoneid; 15390 } 15391 ILM_WALKER_RELE(recv_ill); 15392 } else if (ire->ire_type == IRE_BROADCAST) { 15393 /* 15394 * In the broadcast case, there may be many zones 15395 * which need a copy of the packet delivered to them. 15396 * There is one IRE_BROADCAST per broadcast address 15397 * and per zone; we walk those using a helper function. 15398 * In addition, the sending of the packet for ire is 15399 * delayed until all of the other ires have been 15400 * processed. 15401 */ 15402 IRB_REFHOLD(ire->ire_bucket); 15403 ire_zone = NULL; 15404 while ((ire_zone = ire_get_next_bcast_ire(ire_zone, 15405 ire)) != NULL) { 15406 mp1 = ip_copymsg(first_mp); 15407 if (mp1 == NULL) 15408 continue; 15409 15410 UPDATE_IB_PKT_COUNT(ire_zone); 15411 ire_zone->ire_last_used_time = lbolt; 15412 icmp_inbound(q, mp1, B_TRUE, ill, 15413 0, sum, mctl_present, B_TRUE, 15414 recv_ill, ire_zone->ire_zoneid); 15415 } 15416 IRB_REFRELE(ire->ire_bucket); 15417 } 15418 icmp_inbound(q, first_mp, (ire->ire_type == IRE_BROADCAST), 15419 ill, 0, sum, mctl_present, B_TRUE, recv_ill, 15420 ire->ire_zoneid); 15421 TRACE_2(TR_FAC_IP, TR_IP_RPUT_LOCL_END, 15422 "ip_rput_locl_end: q %p (%S)", q, "icmp"); 15423 return; 15424 } 15425 case IPPROTO_IGMP: 15426 /* 15427 * If we are not willing to accept IGMP packets in clear, 15428 * then check with global policy. 15429 */ 15430 if (igmp_accept_clear_messages == 0) { 15431 first_mp = ipsec_check_global_policy(first_mp, NULL, 15432 ipha, NULL, mctl_present); 15433 if (first_mp == NULL) 15434 return; 15435 } 15436 if (igmp_input(q, mp, ill)) { 15437 /* Bad packet - discarded by igmp_input */ 15438 TRACE_2(TR_FAC_IP, TR_IP_RPUT_LOCL_END, 15439 "ip_rput_locl_end: q %p (%S)", q, "igmp"); 15440 if (mctl_present) 15441 freeb(first_mp); 15442 return; 15443 } 15444 /* 15445 * igmp_input() may have pulled up the message so ipha needs to 15446 * be reinitialized. 15447 */ 15448 ipha = (ipha_t *)mp->b_rptr; 15449 if (ipcl_proto_search(ipha->ipha_protocol) == NULL) { 15450 /* No user-level listener for IGMP packets */ 15451 goto drop_pkt; 15452 } 15453 /* deliver to local raw users */ 15454 break; 15455 case IPPROTO_PIM: 15456 /* 15457 * If we are not willing to accept PIM packets in clear, 15458 * then check with global policy. 15459 */ 15460 if (pim_accept_clear_messages == 0) { 15461 first_mp = ipsec_check_global_policy(first_mp, NULL, 15462 ipha, NULL, mctl_present); 15463 if (first_mp == NULL) 15464 return; 15465 } 15466 if (pim_input(q, mp) != 0) { 15467 /* Bad packet - discarded by pim_input */ 15468 TRACE_2(TR_FAC_IP, TR_IP_RPUT_LOCL_END, 15469 "ip_rput_locl_end: q %p (%S)", q, "pim"); 15470 if (mctl_present) 15471 freeb(first_mp); 15472 return; 15473 } 15474 15475 /* 15476 * pim_input() may have pulled up the message so ipha needs to 15477 * be reinitialized. 15478 */ 15479 ipha = (ipha_t *)mp->b_rptr; 15480 if (ipcl_proto_search(ipha->ipha_protocol) == NULL) { 15481 /* No user-level listener for PIM packets */ 15482 goto drop_pkt; 15483 } 15484 /* deliver to local raw users */ 15485 break; 15486 case IPPROTO_ENCAP: 15487 /* 15488 * Handle self-encapsulated packets (IP-in-IP where 15489 * the inner addresses == the outer addresses). 15490 */ 15491 hdr_length = IPH_HDR_LENGTH(ipha); 15492 if ((uchar_t *)ipha + hdr_length + sizeof (ipha_t) > 15493 mp->b_wptr) { 15494 if (!pullupmsg(mp, (uchar_t *)ipha + hdr_length + 15495 sizeof (ipha_t) - mp->b_rptr)) { 15496 BUMP_MIB(&ip_mib, ipInDiscards); 15497 freemsg(first_mp); 15498 return; 15499 } 15500 ipha = (ipha_t *)mp->b_rptr; 15501 } 15502 inner_ipha = (ipha_t *)((uchar_t *)ipha + hdr_length); 15503 /* 15504 * Check the sanity of the inner IP header. 15505 */ 15506 if ((IPH_HDR_VERSION(inner_ipha) != IPV4_VERSION)) { 15507 BUMP_MIB(&ip_mib, ipInDiscards); 15508 freemsg(first_mp); 15509 return; 15510 } 15511 if (IPH_HDR_LENGTH(inner_ipha) < sizeof (ipha_t)) { 15512 BUMP_MIB(&ip_mib, ipInDiscards); 15513 freemsg(first_mp); 15514 return; 15515 } 15516 if (inner_ipha->ipha_src == ipha->ipha_src && 15517 inner_ipha->ipha_dst == ipha->ipha_dst) { 15518 ipsec_in_t *ii; 15519 15520 /* 15521 * Self-encapsulated tunnel packet. Remove 15522 * the outer IP header and fanout again. 15523 * We also need to make sure that the inner 15524 * header is pulled up until options. 15525 */ 15526 mp->b_rptr = (uchar_t *)inner_ipha; 15527 ipha = inner_ipha; 15528 hdr_length = IPH_HDR_LENGTH(ipha); 15529 if ((uchar_t *)ipha + hdr_length > mp->b_wptr) { 15530 if (!pullupmsg(mp, (uchar_t *)ipha + 15531 + hdr_length - mp->b_rptr)) { 15532 freemsg(first_mp); 15533 return; 15534 } 15535 ipha = (ipha_t *)mp->b_rptr; 15536 } 15537 if (!mctl_present) { 15538 ASSERT(first_mp == mp); 15539 /* 15540 * This means that somebody is sending 15541 * Self-encapsualted packets without AH/ESP. 15542 * If AH/ESP was present, we would have already 15543 * allocated the first_mp. 15544 */ 15545 if ((first_mp = ipsec_in_alloc(B_TRUE)) == 15546 NULL) { 15547 ip1dbg(("ip_proto_input: IPSEC_IN " 15548 "allocation failure.\n")); 15549 BUMP_MIB(&ip_mib, ipInDiscards); 15550 freemsg(mp); 15551 return; 15552 } 15553 first_mp->b_cont = mp; 15554 } 15555 /* 15556 * We generally store the ill_index if we need to 15557 * do IPSEC processing as we lose the ill queue when 15558 * we come back. But in this case, we never should 15559 * have to store the ill_index here as it should have 15560 * been stored previously when we processed the 15561 * AH/ESP header in this routine or for non-ipsec 15562 * cases, we still have the queue. But for some bad 15563 * packets from the wire, we can get to IPSEC after 15564 * this and we better store the index for that case. 15565 */ 15566 ill = (ill_t *)q->q_ptr; 15567 ii = (ipsec_in_t *)first_mp->b_rptr; 15568 ii->ipsec_in_ill_index = 15569 ill->ill_phyint->phyint_ifindex; 15570 ii->ipsec_in_rill_index = 15571 recv_ill->ill_phyint->phyint_ifindex; 15572 if (ii->ipsec_in_decaps) { 15573 /* 15574 * This packet is self-encapsulated multiple 15575 * times. We don't want to recurse infinitely. 15576 * To keep it simple, drop the packet. 15577 */ 15578 BUMP_MIB(&ip_mib, ipInDiscards); 15579 freemsg(first_mp); 15580 return; 15581 } 15582 ii->ipsec_in_decaps = B_TRUE; 15583 ip_proto_input(q, first_mp, ipha, ire, recv_ill); 15584 return; 15585 } 15586 break; 15587 case IPPROTO_AH: 15588 case IPPROTO_ESP: { 15589 /* 15590 * Fast path for AH/ESP. If this is the first time 15591 * we are sending a datagram to AH/ESP, allocate 15592 * a IPSEC_IN message and prepend it. Otherwise, 15593 * just fanout. 15594 */ 15595 15596 int ipsec_rc; 15597 ipsec_in_t *ii; 15598 15599 IP_STAT(ipsec_proto_ahesp); 15600 if (!mctl_present) { 15601 ASSERT(first_mp == mp); 15602 if ((first_mp = ipsec_in_alloc(B_TRUE)) == NULL) { 15603 ip1dbg(("ip_proto_input: IPSEC_IN " 15604 "allocation failure.\n")); 15605 freemsg(hada_mp); /* okay ifnull */ 15606 BUMP_MIB(&ip_mib, ipInDiscards); 15607 freemsg(mp); 15608 return; 15609 } 15610 /* 15611 * Store the ill_index so that when we come back 15612 * from IPSEC we ride on the same queue. 15613 */ 15614 ill = (ill_t *)q->q_ptr; 15615 ii = (ipsec_in_t *)first_mp->b_rptr; 15616 ii->ipsec_in_ill_index = 15617 ill->ill_phyint->phyint_ifindex; 15618 ii->ipsec_in_rill_index = 15619 recv_ill->ill_phyint->phyint_ifindex; 15620 first_mp->b_cont = mp; 15621 /* 15622 * Cache hardware acceleration info. 15623 */ 15624 if (hada_mp != NULL) { 15625 IPSECHW_DEBUG(IPSECHW_PKT, 15626 ("ip_rput_local: caching data attr.\n")); 15627 ii->ipsec_in_accelerated = B_TRUE; 15628 ii->ipsec_in_da = hada_mp; 15629 hada_mp = NULL; 15630 } 15631 } else { 15632 ii = (ipsec_in_t *)first_mp->b_rptr; 15633 } 15634 15635 if (!ipsec_loaded()) { 15636 ip_proto_not_sup(q, first_mp, IP_FF_SEND_ICMP, 15637 ire->ire_zoneid); 15638 return; 15639 } 15640 15641 /* select inbound SA and have IPsec process the pkt */ 15642 if (ipha->ipha_protocol == IPPROTO_ESP) { 15643 esph_t *esph = ipsec_inbound_esp_sa(first_mp); 15644 if (esph == NULL) 15645 return; 15646 ASSERT(ii->ipsec_in_esp_sa != NULL); 15647 ASSERT(ii->ipsec_in_esp_sa->ipsa_input_func != NULL); 15648 ipsec_rc = ii->ipsec_in_esp_sa->ipsa_input_func( 15649 first_mp, esph); 15650 } else { 15651 ah_t *ah = ipsec_inbound_ah_sa(first_mp); 15652 if (ah == NULL) 15653 return; 15654 ASSERT(ii->ipsec_in_ah_sa != NULL); 15655 ASSERT(ii->ipsec_in_ah_sa->ipsa_input_func != NULL); 15656 ipsec_rc = ii->ipsec_in_ah_sa->ipsa_input_func( 15657 first_mp, ah); 15658 } 15659 15660 switch (ipsec_rc) { 15661 case IPSEC_STATUS_SUCCESS: 15662 break; 15663 case IPSEC_STATUS_FAILED: 15664 BUMP_MIB(&ip_mib, ipInDiscards); 15665 /* FALLTHRU */ 15666 case IPSEC_STATUS_PENDING: 15667 return; 15668 } 15669 /* we're done with IPsec processing, send it up */ 15670 ip_fanout_proto_again(first_mp, ill, recv_ill, ire); 15671 return; 15672 } 15673 default: 15674 break; 15675 } 15676 /* 15677 * Handle protocols with which IP is less intimate. There 15678 * can be more than one stream bound to a particular 15679 * protocol. When this is the case, each one gets a copy 15680 * of any incoming packets. 15681 */ 15682 ip_fanout_proto(q, first_mp, ill, ipha, 15683 IP_FF_SEND_ICMP | IP_FF_CKSUM | IP_FF_RAWIP, mctl_present, 15684 B_TRUE, recv_ill, ire->ire_zoneid); 15685 TRACE_2(TR_FAC_IP, TR_IP_RPUT_LOCL_END, 15686 "ip_rput_locl_end: q %p (%S)", q, "ip_fanout_proto"); 15687 return; 15688 15689 drop_pkt: 15690 freemsg(first_mp); 15691 if (hada_mp != NULL) 15692 freeb(hada_mp); 15693 TRACE_2(TR_FAC_IP, TR_IP_RPUT_LOCL_END, 15694 "ip_rput_locl_end: q %p (%S)", q, "droppkt"); 15695 #undef rptr 15696 #undef iphs 15697 15698 } 15699 15700 /* 15701 * Update any source route, record route or timestamp options. 15702 * Check that we are at end of strict source route. 15703 * The options have already been checked for sanity in ip_rput_options(). 15704 */ 15705 static boolean_t 15706 ip_rput_local_options(queue_t *q, mblk_t *mp, ipha_t *ipha, ire_t *ire) 15707 { 15708 ipoptp_t opts; 15709 uchar_t *opt; 15710 uint8_t optval; 15711 uint8_t optlen; 15712 ipaddr_t dst; 15713 uint32_t ts; 15714 ire_t *dst_ire; 15715 timestruc_t now; 15716 15717 ASSERT(ire->ire_ipversion == IPV4_VERSION); 15718 15719 ip2dbg(("ip_rput_local_options\n")); 15720 15721 for (optval = ipoptp_first(&opts, ipha); 15722 optval != IPOPT_EOL; 15723 optval = ipoptp_next(&opts)) { 15724 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 15725 opt = opts.ipoptp_cur; 15726 optlen = opts.ipoptp_len; 15727 ip2dbg(("ip_rput_local_options: opt %d, len %d\n", 15728 optval, optlen)); 15729 switch (optval) { 15730 uint32_t off; 15731 case IPOPT_SSRR: 15732 case IPOPT_LSRR: 15733 off = opt[IPOPT_OFFSET]; 15734 off--; 15735 if (optlen < IP_ADDR_LEN || 15736 off > optlen - IP_ADDR_LEN) { 15737 /* End of source route */ 15738 ip1dbg(("ip_rput_local_options: end of SR\n")); 15739 break; 15740 } 15741 /* 15742 * This will only happen if two consecutive entries 15743 * in the source route contains our address or if 15744 * it is a packet with a loose source route which 15745 * reaches us before consuming the whole source route 15746 */ 15747 ip1dbg(("ip_rput_local_options: not end of SR\n")); 15748 if (optval == IPOPT_SSRR) { 15749 goto bad_src_route; 15750 } 15751 /* 15752 * Hack: instead of dropping the packet truncate the 15753 * source route to what has been used by filling the 15754 * rest with IPOPT_NOP. 15755 */ 15756 opt[IPOPT_OLEN] = (uint8_t)off; 15757 while (off < optlen) { 15758 opt[off++] = IPOPT_NOP; 15759 } 15760 break; 15761 case IPOPT_RR: 15762 off = opt[IPOPT_OFFSET]; 15763 off--; 15764 if (optlen < IP_ADDR_LEN || 15765 off > optlen - IP_ADDR_LEN) { 15766 /* No more room - ignore */ 15767 ip1dbg(( 15768 "ip_rput_local_options: end of RR\n")); 15769 break; 15770 } 15771 bcopy(&ire->ire_src_addr, (char *)opt + off, 15772 IP_ADDR_LEN); 15773 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 15774 break; 15775 case IPOPT_TS: 15776 /* Insert timestamp if there is romm */ 15777 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 15778 case IPOPT_TS_TSONLY: 15779 off = IPOPT_TS_TIMELEN; 15780 break; 15781 case IPOPT_TS_PRESPEC: 15782 case IPOPT_TS_PRESPEC_RFC791: 15783 /* Verify that the address matched */ 15784 off = opt[IPOPT_OFFSET] - 1; 15785 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 15786 dst_ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, 15787 NULL, ALL_ZONES, MATCH_IRE_TYPE); 15788 if (dst_ire == NULL) { 15789 /* Not for us */ 15790 break; 15791 } 15792 ire_refrele(dst_ire); 15793 /* FALLTHRU */ 15794 case IPOPT_TS_TSANDADDR: 15795 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 15796 break; 15797 default: 15798 /* 15799 * ip_*put_options should have already 15800 * dropped this packet. 15801 */ 15802 cmn_err(CE_PANIC, "ip_rput_local_options: " 15803 "unknown IT - bug in ip_rput_options?\n"); 15804 return (B_TRUE); /* Keep "lint" happy */ 15805 } 15806 if (opt[IPOPT_OFFSET] - 1 + off > optlen) { 15807 /* Increase overflow counter */ 15808 off = (opt[IPOPT_POS_OV_FLG] >> 4) + 1; 15809 opt[IPOPT_POS_OV_FLG] = 15810 (uint8_t)((opt[IPOPT_POS_OV_FLG] & 0x0F) | 15811 (off << 4)); 15812 break; 15813 } 15814 off = opt[IPOPT_OFFSET] - 1; 15815 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 15816 case IPOPT_TS_PRESPEC: 15817 case IPOPT_TS_PRESPEC_RFC791: 15818 case IPOPT_TS_TSANDADDR: 15819 bcopy(&ire->ire_src_addr, (char *)opt + off, 15820 IP_ADDR_LEN); 15821 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 15822 /* FALLTHRU */ 15823 case IPOPT_TS_TSONLY: 15824 off = opt[IPOPT_OFFSET] - 1; 15825 /* Compute # of milliseconds since midnight */ 15826 gethrestime(&now); 15827 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 + 15828 now.tv_nsec / (NANOSEC / MILLISEC); 15829 bcopy(&ts, (char *)opt + off, IPOPT_TS_TIMELEN); 15830 opt[IPOPT_OFFSET] += IPOPT_TS_TIMELEN; 15831 break; 15832 } 15833 break; 15834 } 15835 } 15836 return (B_TRUE); 15837 15838 bad_src_route: 15839 q = WR(q); 15840 /* make sure we clear any indication of a hardware checksum */ 15841 mp->b_datap->db_struioun.cksum.flags = 0; 15842 icmp_unreachable(q, mp, ICMP_SOURCE_ROUTE_FAILED); 15843 return (B_FALSE); 15844 15845 } 15846 15847 /* 15848 * Process IP options in an inbound packet. If an option affects the 15849 * effective destination address, return the next hop address via dstp. 15850 * Returns -1 if something fails in which case an ICMP error has been sent 15851 * and mp freed. 15852 */ 15853 static int 15854 ip_rput_options(queue_t *q, mblk_t *mp, ipha_t *ipha, ipaddr_t *dstp) 15855 { 15856 ipoptp_t opts; 15857 uchar_t *opt; 15858 uint8_t optval; 15859 uint8_t optlen; 15860 ipaddr_t dst; 15861 intptr_t code = 0; 15862 ire_t *ire = NULL; 15863 15864 ip2dbg(("ip_rput_options\n")); 15865 dst = ipha->ipha_dst; 15866 for (optval = ipoptp_first(&opts, ipha); 15867 optval != IPOPT_EOL; 15868 optval = ipoptp_next(&opts)) { 15869 opt = opts.ipoptp_cur; 15870 optlen = opts.ipoptp_len; 15871 ip2dbg(("ip_rput_options: opt %d, len %d\n", 15872 optval, optlen)); 15873 /* 15874 * Note: we need to verify the checksum before we 15875 * modify anything thus this routine only extracts the next 15876 * hop dst from any source route. 15877 */ 15878 switch (optval) { 15879 uint32_t off; 15880 case IPOPT_SSRR: 15881 case IPOPT_LSRR: 15882 ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, NULL, 15883 ALL_ZONES, MATCH_IRE_TYPE); 15884 if (ire == NULL) { 15885 if (optval == IPOPT_SSRR) { 15886 ip1dbg(("ip_rput_options: not next" 15887 " strict source route 0x%x\n", 15888 ntohl(dst))); 15889 code = (char *)&ipha->ipha_dst - 15890 (char *)ipha; 15891 goto param_prob; /* RouterReq's */ 15892 } 15893 ip2dbg(("ip_rput_options: " 15894 "not next source route 0x%x\n", 15895 ntohl(dst))); 15896 break; 15897 } 15898 ire_refrele(ire); 15899 15900 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 15901 ip1dbg(( 15902 "ip_rput_options: bad option offset\n")); 15903 code = (char *)&opt[IPOPT_OLEN] - 15904 (char *)ipha; 15905 goto param_prob; 15906 } 15907 off = opt[IPOPT_OFFSET]; 15908 off--; 15909 redo_srr: 15910 if (optlen < IP_ADDR_LEN || 15911 off > optlen - IP_ADDR_LEN) { 15912 /* End of source route */ 15913 ip1dbg(("ip_rput_options: end of SR\n")); 15914 break; 15915 } 15916 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 15917 ip1dbg(("ip_rput_options: next hop 0x%x\n", 15918 ntohl(dst))); 15919 15920 /* 15921 * Check if our address is present more than 15922 * once as consecutive hops in source route. 15923 * XXX verify per-interface ip_forwarding 15924 * for source route? 15925 */ 15926 ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, NULL, 15927 ALL_ZONES, MATCH_IRE_TYPE); 15928 15929 if (ire != NULL) { 15930 ire_refrele(ire); 15931 off += IP_ADDR_LEN; 15932 goto redo_srr; 15933 } 15934 15935 if (dst == htonl(INADDR_LOOPBACK)) { 15936 ip1dbg(("ip_rput_options: loopback addr in " 15937 "source route!\n")); 15938 goto bad_src_route; 15939 } 15940 /* 15941 * For strict: verify that dst is directly 15942 * reachable. 15943 */ 15944 if (optval == IPOPT_SSRR) { 15945 ire = ire_ftable_lookup(dst, 0, 0, 15946 IRE_INTERFACE, NULL, NULL, ALL_ZONES, 0, 15947 MATCH_IRE_TYPE); 15948 if (ire == NULL) { 15949 ip1dbg(("ip_rput_options: SSRR not " 15950 "directly reachable: 0x%x\n", 15951 ntohl(dst))); 15952 goto bad_src_route; 15953 } 15954 ire_refrele(ire); 15955 } 15956 /* 15957 * Defer update of the offset and the record route 15958 * until the packet is forwarded. 15959 */ 15960 break; 15961 case IPOPT_RR: 15962 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 15963 ip1dbg(( 15964 "ip_rput_options: bad option offset\n")); 15965 code = (char *)&opt[IPOPT_OLEN] - 15966 (char *)ipha; 15967 goto param_prob; 15968 } 15969 break; 15970 case IPOPT_TS: 15971 /* 15972 * Verify that length >= 5 and that there is either 15973 * room for another timestamp or that the overflow 15974 * counter is not maxed out. 15975 */ 15976 code = (char *)&opt[IPOPT_OLEN] - (char *)ipha; 15977 if (optlen < IPOPT_MINLEN_IT) { 15978 goto param_prob; 15979 } 15980 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 15981 ip1dbg(( 15982 "ip_rput_options: bad option offset\n")); 15983 code = (char *)&opt[IPOPT_OFFSET] - 15984 (char *)ipha; 15985 goto param_prob; 15986 } 15987 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 15988 case IPOPT_TS_TSONLY: 15989 off = IPOPT_TS_TIMELEN; 15990 break; 15991 case IPOPT_TS_TSANDADDR: 15992 case IPOPT_TS_PRESPEC: 15993 case IPOPT_TS_PRESPEC_RFC791: 15994 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 15995 break; 15996 default: 15997 code = (char *)&opt[IPOPT_POS_OV_FLG] - 15998 (char *)ipha; 15999 goto param_prob; 16000 } 16001 if (opt[IPOPT_OFFSET] - 1 + off > optlen && 16002 (opt[IPOPT_POS_OV_FLG] & 0xF0) == 0xF0) { 16003 /* 16004 * No room and the overflow counter is 15 16005 * already. 16006 */ 16007 goto param_prob; 16008 } 16009 break; 16010 } 16011 } 16012 16013 if ((opts.ipoptp_flags & IPOPTP_ERROR) == 0) { 16014 *dstp = dst; 16015 return (0); 16016 } 16017 16018 ip1dbg(("ip_rput_options: error processing IP options.")); 16019 code = (char *)&opt[IPOPT_OFFSET] - (char *)ipha; 16020 16021 param_prob: 16022 q = WR(q); 16023 /* make sure we clear any indication of a hardware checksum */ 16024 mp->b_datap->db_struioun.cksum.flags = 0; 16025 icmp_param_problem(q, mp, (uint8_t)code); 16026 return (-1); 16027 16028 bad_src_route: 16029 q = WR(q); 16030 /* make sure we clear any indication of a hardware checksum */ 16031 mp->b_datap->db_struioun.cksum.flags = 0; 16032 icmp_unreachable(q, mp, ICMP_SOURCE_ROUTE_FAILED); 16033 return (-1); 16034 } 16035 16036 /* 16037 * IP & ICMP info in >=14 msg's ... 16038 * - ip fixed part (mib2_ip_t) 16039 * - icmp fixed part (mib2_icmp_t) 16040 * - ipAddrEntryTable (ip 20) all IPv4 ipifs 16041 * - ipRouteEntryTable (ip 21) all IPv4 IREs 16042 * - ipNetToMediaEntryTable (ip 22) IPv4 IREs for on-link destinations 16043 * - ip multicast membership (ip_member_t) 16044 * - ip multicast source filtering (ip_grpsrc_t) 16045 * - igmp fixed part (struct igmpstat) 16046 * - multicast routing stats (struct mrtstat) 16047 * - multicast routing vifs (array of struct vifctl) 16048 * - multicast routing routes (array of struct mfcctl) 16049 * - ip6 fixed part (mib2_ipv6IfStatsEntry_t) 16050 * One per ill plus one generic 16051 * - icmp6 fixed part (mib2_ipv6IfIcmpEntry_t) 16052 * One per ill plus one generic 16053 * - ipv6RouteEntry all IPv6 IREs 16054 * - ipv6NetToMediaEntry all Neighbor Cache entries 16055 * - ipv6AddrEntry all IPv6 ipifs 16056 * - ipv6 multicast membership (ipv6_member_t) 16057 * - ipv6 multicast source filtering (ipv6_grpsrc_t) 16058 * 16059 * IP_ROUTE and IP_MEDIA are augmented in arp to include arp cache entries not 16060 * already present. 16061 * NOTE: original mpctl is copied for msg's 2..N, since its ctl part 16062 * already filled in by caller. 16063 * Return value of 0 indicates that no messages were sent and caller 16064 * should free mpctl. 16065 */ 16066 int 16067 ip_snmp_get(queue_t *q, mblk_t *mpctl) 16068 { 16069 16070 if (mpctl == NULL || mpctl->b_cont == NULL) { 16071 return (0); 16072 } 16073 16074 if ((mpctl = ip_snmp_get_mib2_ip(q, mpctl)) == NULL) { 16075 return (1); 16076 } 16077 16078 if ((mpctl = ip_snmp_get_mib2_ip6(q, mpctl)) == NULL) { 16079 return (1); 16080 } 16081 16082 if ((mpctl = ip_snmp_get_mib2_icmp(q, mpctl)) == NULL) { 16083 return (1); 16084 } 16085 16086 if ((mpctl = ip_snmp_get_mib2_icmp6(q, mpctl)) == NULL) { 16087 return (1); 16088 } 16089 16090 if ((mpctl = ip_snmp_get_mib2_igmp(q, mpctl)) == NULL) { 16091 return (1); 16092 } 16093 16094 if ((mpctl = ip_snmp_get_mib2_multi(q, mpctl)) == NULL) { 16095 return (1); 16096 } 16097 16098 if ((mpctl = ip_snmp_get_mib2_ip_addr(q, mpctl)) == NULL) { 16099 return (1); 16100 } 16101 16102 if ((mpctl = ip_snmp_get_mib2_ip6_addr(q, mpctl)) == NULL) { 16103 return (1); 16104 } 16105 16106 if ((mpctl = ip_snmp_get_mib2_ip_group_mem(q, mpctl)) == NULL) { 16107 return (1); 16108 } 16109 16110 if ((mpctl = ip_snmp_get_mib2_ip6_group_mem(q, mpctl)) == NULL) { 16111 return (1); 16112 } 16113 16114 if ((mpctl = ip_snmp_get_mib2_ip_group_src(q, mpctl)) == NULL) { 16115 return (1); 16116 } 16117 16118 if ((mpctl = ip_snmp_get_mib2_ip6_group_src(q, mpctl)) == NULL) { 16119 return (1); 16120 } 16121 16122 if ((mpctl = ip_snmp_get_mib2_virt_multi(q, mpctl)) == NULL) { 16123 return (1); 16124 } 16125 16126 if ((mpctl = ip_snmp_get_mib2_multi_rtable(q, mpctl)) == NULL) { 16127 return (1); 16128 } 16129 16130 if ((mpctl = ip_snmp_get_mib2_ip_route_media(q, mpctl)) == NULL) { 16131 return (1); 16132 } 16133 16134 if ((mpctl = ip_snmp_get_mib2_ip6_route_media(q, mpctl)) == NULL) { 16135 return (1); 16136 } 16137 16138 if ((mpctl = sctp_snmp_get_mib2(q, mpctl)) == NULL) { 16139 return (1); 16140 } 16141 freemsg(mpctl); 16142 return (1); 16143 } 16144 16145 16146 /* Get global IPv4 statistics */ 16147 static mblk_t * 16148 ip_snmp_get_mib2_ip(queue_t *q, mblk_t *mpctl) 16149 { 16150 struct opthdr *optp; 16151 mblk_t *mp2ctl; 16152 16153 /* 16154 * make a copy of the original message 16155 */ 16156 mp2ctl = copymsg(mpctl); 16157 16158 /* fixed length IP structure... */ 16159 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 16160 optp->level = MIB2_IP; 16161 optp->name = 0; 16162 SET_MIB(ip_mib.ipForwarding, 16163 (WE_ARE_FORWARDING ? 1 : 2)); 16164 SET_MIB(ip_mib.ipDefaultTTL, 16165 (uint32_t)ip_def_ttl); 16166 SET_MIB(ip_mib.ipReasmTimeout, 16167 ip_g_frag_timeout); 16168 SET_MIB(ip_mib.ipAddrEntrySize, 16169 sizeof (mib2_ipAddrEntry_t)); 16170 SET_MIB(ip_mib.ipRouteEntrySize, 16171 sizeof (mib2_ipRouteEntry_t)); 16172 SET_MIB(ip_mib.ipNetToMediaEntrySize, 16173 sizeof (mib2_ipNetToMediaEntry_t)); 16174 SET_MIB(ip_mib.ipMemberEntrySize, sizeof (ip_member_t)); 16175 SET_MIB(ip_mib.ipGroupSourceEntrySize, sizeof (ip_grpsrc_t)); 16176 if (!snmp_append_data(mpctl->b_cont, (char *)&ip_mib, 16177 (int)sizeof (ip_mib))) { 16178 ip1dbg(("ip_snmp_get_mib2_ip: failed to allocate %u bytes\n", 16179 (uint_t)sizeof (ip_mib))); 16180 } 16181 16182 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 16183 ip3dbg(("ip_snmp_get_mib2_ip: level %d, name %d, len %d\n", 16184 (int)optp->level, (int)optp->name, (int)optp->len)); 16185 qreply(q, mpctl); 16186 return (mp2ctl); 16187 } 16188 16189 /* Global IPv4 ICMP statistics */ 16190 static mblk_t * 16191 ip_snmp_get_mib2_icmp(queue_t *q, mblk_t *mpctl) 16192 { 16193 struct opthdr *optp; 16194 mblk_t *mp2ctl; 16195 16196 /* 16197 * Make a copy of the original message 16198 */ 16199 mp2ctl = copymsg(mpctl); 16200 16201 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 16202 optp->level = MIB2_ICMP; 16203 optp->name = 0; 16204 if (!snmp_append_data(mpctl->b_cont, (char *)&icmp_mib, 16205 (int)sizeof (icmp_mib))) { 16206 ip1dbg(("ip_snmp_get_mib2_icmp: failed to allocate %u bytes\n", 16207 (uint_t)sizeof (icmp_mib))); 16208 } 16209 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 16210 ip3dbg(("ip_snmp_get_mib2_icmp: level %d, name %d, len %d\n", 16211 (int)optp->level, (int)optp->name, (int)optp->len)); 16212 qreply(q, mpctl); 16213 return (mp2ctl); 16214 } 16215 16216 /* Global IPv4 IGMP statistics */ 16217 static mblk_t * 16218 ip_snmp_get_mib2_igmp(queue_t *q, mblk_t *mpctl) 16219 { 16220 struct opthdr *optp; 16221 mblk_t *mp2ctl; 16222 16223 /* 16224 * make a copy of the original message 16225 */ 16226 mp2ctl = copymsg(mpctl); 16227 16228 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 16229 optp->level = EXPER_IGMP; 16230 optp->name = 0; 16231 if (!snmp_append_data(mpctl->b_cont, (char *)&igmpstat, 16232 (int)sizeof (igmpstat))) { 16233 ip1dbg(("ip_snmp_get_mib2_igmp: failed to allocate %u bytes\n", 16234 (uint_t)sizeof (igmpstat))); 16235 } 16236 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 16237 ip3dbg(("ip_snmp_get_mib2_igmp: level %d, name %d, len %d\n", 16238 (int)optp->level, (int)optp->name, (int)optp->len)); 16239 qreply(q, mpctl); 16240 return (mp2ctl); 16241 } 16242 16243 /* Global IPv4 Multicast Routing statistics */ 16244 static mblk_t * 16245 ip_snmp_get_mib2_multi(queue_t *q, mblk_t *mpctl) 16246 { 16247 struct opthdr *optp; 16248 mblk_t *mp2ctl; 16249 16250 /* 16251 * make a copy of the original message 16252 */ 16253 mp2ctl = copymsg(mpctl); 16254 16255 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 16256 optp->level = EXPER_DVMRP; 16257 optp->name = 0; 16258 if (!ip_mroute_stats(mpctl->b_cont)) { 16259 ip0dbg(("ip_mroute_stats: failed\n")); 16260 } 16261 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 16262 ip3dbg(("ip_snmp_get_mib2_multi: level %d, name %d, len %d\n", 16263 (int)optp->level, (int)optp->name, (int)optp->len)); 16264 qreply(q, mpctl); 16265 return (mp2ctl); 16266 } 16267 16268 /* IPv4 address information */ 16269 static mblk_t * 16270 ip_snmp_get_mib2_ip_addr(queue_t *q, mblk_t *mpctl) 16271 { 16272 struct opthdr *optp; 16273 mblk_t *mp2ctl; 16274 mblk_t *mp_tail = NULL; 16275 ill_t *ill; 16276 ipif_t *ipif; 16277 uint_t bitval; 16278 mib2_ipAddrEntry_t mae; 16279 zoneid_t zoneid; 16280 ill_walk_context_t ctx; 16281 16282 /* 16283 * make a copy of the original message 16284 */ 16285 mp2ctl = copymsg(mpctl); 16286 16287 /* ipAddrEntryTable */ 16288 16289 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 16290 optp->level = MIB2_IP; 16291 optp->name = MIB2_IP_ADDR; 16292 zoneid = Q_TO_CONN(q)->conn_zoneid; 16293 16294 rw_enter(&ill_g_lock, RW_READER); 16295 ill = ILL_START_WALK_V4(&ctx); 16296 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 16297 for (ipif = ill->ill_ipif; ipif != NULL; 16298 ipif = ipif->ipif_next) { 16299 if (ipif->ipif_zoneid != zoneid) 16300 continue; 16301 mae.ipAdEntInfo.ae_ibcnt = ipif->ipif_ib_pkt_count; 16302 mae.ipAdEntInfo.ae_obcnt = ipif->ipif_ob_pkt_count; 16303 mae.ipAdEntInfo.ae_focnt = ipif->ipif_fo_pkt_count; 16304 16305 (void) ipif_get_name(ipif, 16306 mae.ipAdEntIfIndex.o_bytes, 16307 OCTET_LENGTH); 16308 mae.ipAdEntIfIndex.o_length = 16309 mi_strlen(mae.ipAdEntIfIndex.o_bytes); 16310 mae.ipAdEntAddr = ipif->ipif_lcl_addr; 16311 mae.ipAdEntNetMask = ipif->ipif_net_mask; 16312 mae.ipAdEntInfo.ae_subnet = ipif->ipif_subnet; 16313 mae.ipAdEntInfo.ae_subnet_len = 16314 ip_mask_to_plen(ipif->ipif_net_mask); 16315 mae.ipAdEntInfo.ae_src_addr = ipif->ipif_src_addr; 16316 for (bitval = 1; 16317 bitval && 16318 !(bitval & ipif->ipif_brd_addr); 16319 bitval <<= 1) 16320 noop; 16321 mae.ipAdEntBcastAddr = bitval; 16322 mae.ipAdEntReasmMaxSize = 65535; 16323 mae.ipAdEntInfo.ae_mtu = ipif->ipif_mtu; 16324 mae.ipAdEntInfo.ae_metric = ipif->ipif_metric; 16325 mae.ipAdEntInfo.ae_broadcast_addr = 16326 ipif->ipif_brd_addr; 16327 mae.ipAdEntInfo.ae_pp_dst_addr = 16328 ipif->ipif_pp_dst_addr; 16329 mae.ipAdEntInfo.ae_flags = ipif->ipif_flags | 16330 ill->ill_flags | ill->ill_phyint->phyint_flags; 16331 16332 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 16333 (char *)&mae, (int)sizeof (mib2_ipAddrEntry_t))) { 16334 ip1dbg(("ip_snmp_get_mib2_ip_addr: failed to " 16335 "allocate %u bytes\n", 16336 (uint_t)sizeof (mib2_ipAddrEntry_t))); 16337 } 16338 } 16339 } 16340 rw_exit(&ill_g_lock); 16341 16342 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 16343 ip3dbg(("ip_snmp_get_mib2_ip_addr: level %d, name %d, len %d\n", 16344 (int)optp->level, (int)optp->name, (int)optp->len)); 16345 qreply(q, mpctl); 16346 return (mp2ctl); 16347 } 16348 16349 /* IPv6 address information */ 16350 static mblk_t * 16351 ip_snmp_get_mib2_ip6_addr(queue_t *q, mblk_t *mpctl) 16352 { 16353 struct opthdr *optp; 16354 mblk_t *mp2ctl; 16355 mblk_t *mp_tail = NULL; 16356 ill_t *ill; 16357 ipif_t *ipif; 16358 mib2_ipv6AddrEntry_t mae6; 16359 zoneid_t zoneid; 16360 ill_walk_context_t ctx; 16361 16362 /* 16363 * make a copy of the original message 16364 */ 16365 mp2ctl = copymsg(mpctl); 16366 16367 /* ipv6AddrEntryTable */ 16368 16369 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 16370 optp->level = MIB2_IP6; 16371 optp->name = MIB2_IP6_ADDR; 16372 zoneid = Q_TO_CONN(q)->conn_zoneid; 16373 16374 rw_enter(&ill_g_lock, RW_READER); 16375 ill = ILL_START_WALK_V6(&ctx); 16376 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 16377 for (ipif = ill->ill_ipif; ipif; ipif = ipif->ipif_next) { 16378 if (ipif->ipif_zoneid != zoneid) 16379 continue; 16380 mae6.ipv6AddrInfo.ae_ibcnt = ipif->ipif_ib_pkt_count; 16381 mae6.ipv6AddrInfo.ae_obcnt = ipif->ipif_ob_pkt_count; 16382 mae6.ipv6AddrInfo.ae_focnt = ipif->ipif_fo_pkt_count; 16383 16384 (void) ipif_get_name(ipif, 16385 mae6.ipv6AddrIfIndex.o_bytes, 16386 OCTET_LENGTH); 16387 mae6.ipv6AddrIfIndex.o_length = 16388 mi_strlen(mae6.ipv6AddrIfIndex.o_bytes); 16389 mae6.ipv6AddrAddress = ipif->ipif_v6lcl_addr; 16390 mae6.ipv6AddrPfxLength = 16391 ip_mask_to_plen_v6(&ipif->ipif_v6net_mask); 16392 mae6.ipv6AddrInfo.ae_subnet = ipif->ipif_v6subnet; 16393 mae6.ipv6AddrInfo.ae_subnet_len = 16394 mae6.ipv6AddrPfxLength; 16395 mae6.ipv6AddrInfo.ae_src_addr = ipif->ipif_v6src_addr; 16396 16397 /* Type: stateless(1), stateful(2), unknown(3) */ 16398 if (ipif->ipif_flags & IPIF_ADDRCONF) 16399 mae6.ipv6AddrType = 1; 16400 else 16401 mae6.ipv6AddrType = 2; 16402 /* Anycast: true(1), false(2) */ 16403 if (ipif->ipif_flags & IPIF_ANYCAST) 16404 mae6.ipv6AddrAnycastFlag = 1; 16405 else 16406 mae6.ipv6AddrAnycastFlag = 2; 16407 16408 /* 16409 * Address status: preferred(1), deprecated(2), 16410 * invalid(3), inaccessible(4), unknown(5) 16411 */ 16412 if (ipif->ipif_flags & IPIF_NOLOCAL) 16413 mae6.ipv6AddrStatus = 3; 16414 else if (ipif->ipif_flags & IPIF_DEPRECATED) 16415 mae6.ipv6AddrStatus = 2; 16416 else 16417 mae6.ipv6AddrStatus = 1; 16418 mae6.ipv6AddrInfo.ae_mtu = ipif->ipif_mtu; 16419 mae6.ipv6AddrInfo.ae_metric = ipif->ipif_metric; 16420 mae6.ipv6AddrInfo.ae_pp_dst_addr = 16421 ipif->ipif_v6pp_dst_addr; 16422 mae6.ipv6AddrInfo.ae_flags = ipif->ipif_flags | 16423 ill->ill_flags | ill->ill_phyint->phyint_flags; 16424 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 16425 (char *)&mae6, 16426 (int)sizeof (mib2_ipv6AddrEntry_t))) { 16427 ip1dbg(("ip_snmp_get_mib2_ip6_addr: failed to " 16428 "allocate %u bytes\n", 16429 (uint_t)sizeof (mib2_ipv6AddrEntry_t))); 16430 } 16431 } 16432 } 16433 rw_exit(&ill_g_lock); 16434 16435 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 16436 ip3dbg(("ip_snmp_get_mib2_ip6_addr: level %d, name %d, len %d\n", 16437 (int)optp->level, (int)optp->name, (int)optp->len)); 16438 qreply(q, mpctl); 16439 return (mp2ctl); 16440 } 16441 16442 /* IPv4 multicast group membership. */ 16443 static mblk_t * 16444 ip_snmp_get_mib2_ip_group_mem(queue_t *q, mblk_t *mpctl) 16445 { 16446 struct opthdr *optp; 16447 mblk_t *mp2ctl; 16448 ill_t *ill; 16449 ipif_t *ipif; 16450 ilm_t *ilm; 16451 ip_member_t ipm; 16452 mblk_t *mp_tail = NULL; 16453 ill_walk_context_t ctx; 16454 zoneid_t zoneid; 16455 16456 /* 16457 * make a copy of the original message 16458 */ 16459 mp2ctl = copymsg(mpctl); 16460 zoneid = Q_TO_CONN(q)->conn_zoneid; 16461 16462 /* ipGroupMember table */ 16463 optp = (struct opthdr *)&mpctl->b_rptr[ 16464 sizeof (struct T_optmgmt_ack)]; 16465 optp->level = MIB2_IP; 16466 optp->name = EXPER_IP_GROUP_MEMBERSHIP; 16467 16468 rw_enter(&ill_g_lock, RW_READER); 16469 ill = ILL_START_WALK_V4(&ctx); 16470 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 16471 ILM_WALKER_HOLD(ill); 16472 for (ipif = ill->ill_ipif; ipif != NULL; 16473 ipif = ipif->ipif_next) { 16474 if (ipif->ipif_zoneid != zoneid) 16475 continue; /* not this zone */ 16476 (void) ipif_get_name(ipif, 16477 ipm.ipGroupMemberIfIndex.o_bytes, 16478 OCTET_LENGTH); 16479 ipm.ipGroupMemberIfIndex.o_length = 16480 mi_strlen(ipm.ipGroupMemberIfIndex.o_bytes); 16481 for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) { 16482 ASSERT(ilm->ilm_ipif != NULL); 16483 ASSERT(ilm->ilm_ill == NULL); 16484 if (ilm->ilm_ipif != ipif) 16485 continue; 16486 ipm.ipGroupMemberAddress = ilm->ilm_addr; 16487 ipm.ipGroupMemberRefCnt = ilm->ilm_refcnt; 16488 ipm.ipGroupMemberFilterMode = ilm->ilm_fmode; 16489 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 16490 (char *)&ipm, (int)sizeof (ipm))) { 16491 ip1dbg(("ip_snmp_get_mib2_ip_group: " 16492 "failed to allocate %u bytes\n", 16493 (uint_t)sizeof (ipm))); 16494 } 16495 } 16496 } 16497 ILM_WALKER_RELE(ill); 16498 } 16499 rw_exit(&ill_g_lock); 16500 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 16501 ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n", 16502 (int)optp->level, (int)optp->name, (int)optp->len)); 16503 qreply(q, mpctl); 16504 return (mp2ctl); 16505 } 16506 16507 /* IPv6 multicast group membership. */ 16508 static mblk_t * 16509 ip_snmp_get_mib2_ip6_group_mem(queue_t *q, mblk_t *mpctl) 16510 { 16511 struct opthdr *optp; 16512 mblk_t *mp2ctl; 16513 ill_t *ill; 16514 ilm_t *ilm; 16515 ipv6_member_t ipm6; 16516 mblk_t *mp_tail = NULL; 16517 ill_walk_context_t ctx; 16518 zoneid_t zoneid; 16519 16520 /* 16521 * make a copy of the original message 16522 */ 16523 mp2ctl = copymsg(mpctl); 16524 zoneid = Q_TO_CONN(q)->conn_zoneid; 16525 16526 /* ip6GroupMember table */ 16527 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 16528 optp->level = MIB2_IP6; 16529 optp->name = EXPER_IP6_GROUP_MEMBERSHIP; 16530 16531 rw_enter(&ill_g_lock, RW_READER); 16532 ill = ILL_START_WALK_V6(&ctx); 16533 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 16534 ILM_WALKER_HOLD(ill); 16535 ipm6.ipv6GroupMemberIfIndex = ill->ill_phyint->phyint_ifindex; 16536 for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) { 16537 ASSERT(ilm->ilm_ipif == NULL); 16538 ASSERT(ilm->ilm_ill != NULL); 16539 if (ilm->ilm_zoneid != zoneid) 16540 continue; /* not this zone */ 16541 ipm6.ipv6GroupMemberAddress = ilm->ilm_v6addr; 16542 ipm6.ipv6GroupMemberRefCnt = ilm->ilm_refcnt; 16543 ipm6.ipv6GroupMemberFilterMode = ilm->ilm_fmode; 16544 if (!snmp_append_data2(mpctl->b_cont, 16545 &mp_tail, 16546 (char *)&ipm6, (int)sizeof (ipm6))) { 16547 ip1dbg(("ip_snmp_get_mib2_ip6_group: " 16548 "failed to allocate %u bytes\n", 16549 (uint_t)sizeof (ipm6))); 16550 } 16551 } 16552 ILM_WALKER_RELE(ill); 16553 } 16554 rw_exit(&ill_g_lock); 16555 16556 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 16557 ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n", 16558 (int)optp->level, (int)optp->name, (int)optp->len)); 16559 qreply(q, mpctl); 16560 return (mp2ctl); 16561 } 16562 16563 /* IP multicast filtered sources */ 16564 static mblk_t * 16565 ip_snmp_get_mib2_ip_group_src(queue_t *q, mblk_t *mpctl) 16566 { 16567 struct opthdr *optp; 16568 mblk_t *mp2ctl; 16569 ill_t *ill; 16570 ipif_t *ipif; 16571 ilm_t *ilm; 16572 ip_grpsrc_t ips; 16573 mblk_t *mp_tail = NULL; 16574 ill_walk_context_t ctx; 16575 zoneid_t zoneid; 16576 int i; 16577 slist_t *sl; 16578 16579 /* 16580 * make a copy of the original message 16581 */ 16582 mp2ctl = copymsg(mpctl); 16583 zoneid = Q_TO_CONN(q)->conn_zoneid; 16584 16585 /* ipGroupSource table */ 16586 optp = (struct opthdr *)&mpctl->b_rptr[ 16587 sizeof (struct T_optmgmt_ack)]; 16588 optp->level = MIB2_IP; 16589 optp->name = EXPER_IP_GROUP_SOURCES; 16590 16591 rw_enter(&ill_g_lock, RW_READER); 16592 ill = ILL_START_WALK_V4(&ctx); 16593 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 16594 ILM_WALKER_HOLD(ill); 16595 for (ipif = ill->ill_ipif; ipif != NULL; 16596 ipif = ipif->ipif_next) { 16597 if (ipif->ipif_zoneid != zoneid) 16598 continue; /* not this zone */ 16599 (void) ipif_get_name(ipif, 16600 ips.ipGroupSourceIfIndex.o_bytes, 16601 OCTET_LENGTH); 16602 ips.ipGroupSourceIfIndex.o_length = 16603 mi_strlen(ips.ipGroupSourceIfIndex.o_bytes); 16604 for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) { 16605 ASSERT(ilm->ilm_ipif != NULL); 16606 ASSERT(ilm->ilm_ill == NULL); 16607 sl = ilm->ilm_filter; 16608 if (ilm->ilm_ipif != ipif || SLIST_IS_EMPTY(sl)) 16609 continue; 16610 ips.ipGroupSourceGroup = ilm->ilm_addr; 16611 for (i = 0; i < sl->sl_numsrc; i++) { 16612 if (!IN6_IS_ADDR_V4MAPPED( 16613 &sl->sl_addr[i])) 16614 continue; 16615 IN6_V4MAPPED_TO_IPADDR(&sl->sl_addr[i], 16616 ips.ipGroupSourceAddress); 16617 if (snmp_append_data2(mpctl->b_cont, 16618 &mp_tail, (char *)&ips, 16619 (int)sizeof (ips)) == 0) { 16620 ip1dbg(("ip_snmp_get_mib2_" 16621 "ip_group_src: failed to " 16622 "allocate %u bytes\n", 16623 (uint_t)sizeof (ips))); 16624 } 16625 } 16626 } 16627 } 16628 ILM_WALKER_RELE(ill); 16629 } 16630 rw_exit(&ill_g_lock); 16631 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 16632 ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n", 16633 (int)optp->level, (int)optp->name, (int)optp->len)); 16634 qreply(q, mpctl); 16635 return (mp2ctl); 16636 } 16637 16638 /* IPv6 multicast filtered sources. */ 16639 static mblk_t * 16640 ip_snmp_get_mib2_ip6_group_src(queue_t *q, mblk_t *mpctl) 16641 { 16642 struct opthdr *optp; 16643 mblk_t *mp2ctl; 16644 ill_t *ill; 16645 ilm_t *ilm; 16646 ipv6_grpsrc_t ips6; 16647 mblk_t *mp_tail = NULL; 16648 ill_walk_context_t ctx; 16649 zoneid_t zoneid; 16650 int i; 16651 slist_t *sl; 16652 16653 /* 16654 * make a copy of the original message 16655 */ 16656 mp2ctl = copymsg(mpctl); 16657 zoneid = Q_TO_CONN(q)->conn_zoneid; 16658 16659 /* ip6GroupMember table */ 16660 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 16661 optp->level = MIB2_IP6; 16662 optp->name = EXPER_IP6_GROUP_SOURCES; 16663 16664 rw_enter(&ill_g_lock, RW_READER); 16665 ill = ILL_START_WALK_V6(&ctx); 16666 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 16667 ILM_WALKER_HOLD(ill); 16668 ips6.ipv6GroupSourceIfIndex = ill->ill_phyint->phyint_ifindex; 16669 for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) { 16670 ASSERT(ilm->ilm_ipif == NULL); 16671 ASSERT(ilm->ilm_ill != NULL); 16672 sl = ilm->ilm_filter; 16673 if (ilm->ilm_zoneid != zoneid || SLIST_IS_EMPTY(sl)) 16674 continue; 16675 ips6.ipv6GroupSourceGroup = ilm->ilm_v6addr; 16676 for (i = 0; i < sl->sl_numsrc; i++) { 16677 ips6.ipv6GroupSourceAddress = sl->sl_addr[i]; 16678 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 16679 (char *)&ips6, (int)sizeof (ips6))) { 16680 ip1dbg(("ip_snmp_get_mib2_ip6_" 16681 "group_src: failed to allocate " 16682 "%u bytes\n", 16683 (uint_t)sizeof (ips6))); 16684 } 16685 } 16686 } 16687 ILM_WALKER_RELE(ill); 16688 } 16689 rw_exit(&ill_g_lock); 16690 16691 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 16692 ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n", 16693 (int)optp->level, (int)optp->name, (int)optp->len)); 16694 qreply(q, mpctl); 16695 return (mp2ctl); 16696 } 16697 16698 /* Multicast routing virtual interface table. */ 16699 static mblk_t * 16700 ip_snmp_get_mib2_virt_multi(queue_t *q, mblk_t *mpctl) 16701 { 16702 struct opthdr *optp; 16703 mblk_t *mp2ctl; 16704 16705 /* 16706 * make a copy of the original message 16707 */ 16708 mp2ctl = copymsg(mpctl); 16709 16710 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 16711 optp->level = EXPER_DVMRP; 16712 optp->name = EXPER_DVMRP_VIF; 16713 if (!ip_mroute_vif(mpctl->b_cont)) { 16714 ip0dbg(("ip_mroute_vif: failed\n")); 16715 } 16716 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 16717 ip3dbg(("ip_snmp_get_mib2_virt_multi: level %d, name %d, len %d\n", 16718 (int)optp->level, (int)optp->name, (int)optp->len)); 16719 qreply(q, mpctl); 16720 return (mp2ctl); 16721 } 16722 16723 /* Multicast routing table. */ 16724 static mblk_t * 16725 ip_snmp_get_mib2_multi_rtable(queue_t *q, mblk_t *mpctl) 16726 { 16727 struct opthdr *optp; 16728 mblk_t *mp2ctl; 16729 16730 /* 16731 * make a copy of the original message 16732 */ 16733 mp2ctl = copymsg(mpctl); 16734 16735 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 16736 optp->level = EXPER_DVMRP; 16737 optp->name = EXPER_DVMRP_MRT; 16738 if (!ip_mroute_mrt(mpctl->b_cont)) { 16739 ip0dbg(("ip_mroute_mrt: failed\n")); 16740 } 16741 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 16742 ip3dbg(("ip_snmp_get_mib2_multi_rtable: level %d, name %d, len %d\n", 16743 (int)optp->level, (int)optp->name, (int)optp->len)); 16744 qreply(q, mpctl); 16745 return (mp2ctl); 16746 } 16747 16748 /* 16749 * Return both ipRouteEntryTable, and ipNetToMediaEntryTable 16750 * in one IRE walk. 16751 */ 16752 static mblk_t * 16753 ip_snmp_get_mib2_ip_route_media(queue_t *q, mblk_t *mpctl) 16754 { 16755 struct opthdr *optp; 16756 mblk_t *mp2ctl; /* Returned */ 16757 mblk_t *mp3ctl; /* nettomedia */ 16758 /* 16759 * We need two listptrs, for ipRouteEntryTable and 16760 * ipNetToMediaEntryTable to pass to ip_snmp_get2_v4() 16761 */ 16762 listptr_t re_ntme_v4[2]; 16763 zoneid_t zoneid; 16764 16765 /* 16766 * make a copy of the original message 16767 */ 16768 mp2ctl = copymsg(mpctl); 16769 mp3ctl = copymsg(mpctl); 16770 if (mp3ctl == NULL) { 16771 freemsg(mp2ctl); 16772 freemsg(mpctl); 16773 return (NULL); 16774 } 16775 16776 re_ntme_v4[0].lp_head = mpctl->b_cont; /* ipRouteEntryTable */ 16777 re_ntme_v4[1].lp_head = mp3ctl->b_cont; /* ipNetToMediaEntryTable */ 16778 /* 16779 * We assign NULL to tail ptrs as snmp_append_data2() will assign 16780 * proper values when called. 16781 */ 16782 re_ntme_v4[0].lp_tail = NULL; 16783 re_ntme_v4[1].lp_tail = NULL; 16784 16785 zoneid = Q_TO_CONN(q)->conn_zoneid; 16786 ire_walk_v4(ip_snmp_get2_v4, (char *)re_ntme_v4, zoneid); 16787 if (zoneid == GLOBAL_ZONEID) { 16788 /* 16789 * Those IREs are used by Mobile-IP; since mipagent(1M) requires 16790 * the sys_net_config privilege, it can only run in the global 16791 * zone, so we don't display these IREs in the other zones. 16792 */ 16793 ire_walk_srcif_table_v4(ip_snmp_get2_v4, (char *)re_ntme_v4); 16794 ire_walk_ill_mrtun(0, 0, ip_snmp_get2_v4, (char *)re_ntme_v4, 16795 NULL); 16796 } 16797 16798 /* ipRouteEntryTable in mpctl */ 16799 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 16800 optp->level = MIB2_IP; 16801 optp->name = MIB2_IP_ROUTE; 16802 optp->len = (t_uscalar_t)msgdsize(re_ntme_v4[0].lp_head); 16803 ip3dbg(("ip_snmp_get_mib2_ip_route_media: level %d, name %d, len %d\n", 16804 (int)optp->level, (int)optp->name, (int)optp->len)); 16805 qreply(q, mpctl); 16806 16807 /* ipNetToMediaEntryTable in mp3ctl */ 16808 optp = (struct opthdr *)&mp3ctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 16809 optp->level = MIB2_IP; 16810 optp->name = MIB2_IP_MEDIA; 16811 optp->len = (t_uscalar_t)msgdsize(re_ntme_v4[1].lp_head); 16812 ip3dbg(("ip_snmp_get_mib2_ip_route_media: level %d, name %d, len %d\n", 16813 (int)optp->level, (int)optp->name, (int)optp->len)); 16814 qreply(q, mp3ctl); 16815 return (mp2ctl); 16816 } 16817 16818 /* 16819 * Return both ipv6RouteEntryTable, and ipv6NetToMediaEntryTable 16820 * in one IRE walk. 16821 */ 16822 static mblk_t * 16823 ip_snmp_get_mib2_ip6_route_media(queue_t *q, mblk_t *mpctl) 16824 { 16825 struct opthdr *optp; 16826 mblk_t *mp2ctl; /* Returned */ 16827 mblk_t *mp3ctl; /* nettomedia */ 16828 listptr_t re_ntme_v6; 16829 zoneid_t zoneid; 16830 16831 /* 16832 * make a copy of the original message 16833 */ 16834 mp2ctl = copymsg(mpctl); 16835 mp3ctl = copymsg(mpctl); 16836 if (mp3ctl == NULL) { 16837 freemsg(mp2ctl); 16838 freemsg(mpctl); 16839 return (NULL); 16840 } 16841 16842 /* 16843 * We assign NULL to tail ptrs as snmp_append_data2() will assign 16844 * proper values when called. ipv6RouteEntryTable in is placed 16845 * in mpctl. 16846 */ 16847 re_ntme_v6.lp_head = mpctl->b_cont; /* ip6RouteEntryTable */ 16848 re_ntme_v6.lp_tail = NULL; 16849 zoneid = Q_TO_CONN(q)->conn_zoneid; 16850 ire_walk_v6(ip_snmp_get2_v6_route, (char *)&re_ntme_v6, zoneid); 16851 16852 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 16853 optp->level = MIB2_IP6; 16854 optp->name = MIB2_IP6_ROUTE; 16855 optp->len = (t_uscalar_t)msgdsize(re_ntme_v6.lp_head); 16856 ip3dbg(("ip_snmp_get_mib2_ip6_route_media: level %d, name %d, len %d\n", 16857 (int)optp->level, (int)optp->name, (int)optp->len)); 16858 qreply(q, mpctl); 16859 16860 /* ipv6NetToMediaEntryTable in mp3ctl */ 16861 re_ntme_v6.lp_head = mp3ctl->b_cont; /* ip6NetToMediaEntryTable */ 16862 re_ntme_v6.lp_tail = NULL; 16863 ndp_walk(NULL, ip_snmp_get2_v6_media, (uchar_t *)&re_ntme_v6); 16864 16865 optp = (struct opthdr *)&mp3ctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 16866 optp->level = MIB2_IP6; 16867 optp->name = MIB2_IP6_MEDIA; 16868 optp->len = (t_uscalar_t)msgdsize(re_ntme_v6.lp_head); 16869 ip3dbg(("ip_snmp_get_mib2_ip6_route_media: level %d, name %d, len %d\n", 16870 (int)optp->level, (int)optp->name, (int)optp->len)); 16871 qreply(q, mp3ctl); 16872 return (mp2ctl); 16873 } 16874 16875 /* 16876 * ICMPv6 mib: One per ill 16877 */ 16878 static mblk_t * 16879 ip_snmp_get_mib2_ip6(queue_t *q, mblk_t *mpctl) 16880 { 16881 struct opthdr *optp; 16882 mblk_t *mp2ctl; 16883 ill_t *ill; 16884 ill_walk_context_t ctx; 16885 mblk_t *mp_tail = NULL; 16886 16887 /* 16888 * Make a copy of the original message 16889 */ 16890 mp2ctl = copymsg(mpctl); 16891 16892 /* fixed length IPv6 structure ... */ 16893 16894 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 16895 optp->level = MIB2_IP6; 16896 optp->name = 0; 16897 /* Include "unknown interface" ip6_mib */ 16898 ip6_mib.ipv6IfIndex = 0; /* Flag to netstat */ 16899 SET_MIB(ip6_mib.ipv6Forwarding, ipv6_forward ? 1 : 2); 16900 SET_MIB(ip6_mib.ipv6DefaultHopLimit, ipv6_def_hops); 16901 SET_MIB(ip6_mib.ipv6IfStatsEntrySize, 16902 sizeof (mib2_ipv6IfStatsEntry_t)); 16903 SET_MIB(ip6_mib.ipv6AddrEntrySize, sizeof (mib2_ipv6AddrEntry_t)); 16904 SET_MIB(ip6_mib.ipv6RouteEntrySize, sizeof (mib2_ipv6RouteEntry_t)); 16905 SET_MIB(ip6_mib.ipv6NetToMediaEntrySize, 16906 sizeof (mib2_ipv6NetToMediaEntry_t)); 16907 SET_MIB(ip6_mib.ipv6MemberEntrySize, sizeof (ipv6_member_t)); 16908 SET_MIB(ip6_mib.ipv6GroupSourceEntrySize, sizeof (ipv6_grpsrc_t)); 16909 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, (char *)&ip6_mib, 16910 (int)sizeof (ip6_mib))) { 16911 ip1dbg(("ip_snmp_get_mib2_ip6: failed to allocate %u bytes\n", 16912 (uint_t)sizeof (ip6_mib))); 16913 } 16914 16915 rw_enter(&ill_g_lock, RW_READER); 16916 ill = ILL_START_WALK_V6(&ctx); 16917 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 16918 ill->ill_ip6_mib->ipv6IfIndex = 16919 ill->ill_phyint->phyint_ifindex; 16920 SET_MIB(ill->ill_ip6_mib->ipv6Forwarding, 16921 ipv6_forward ? 1 : 2); 16922 SET_MIB(ill->ill_ip6_mib->ipv6DefaultHopLimit, 16923 ill->ill_max_hops); 16924 SET_MIB(ill->ill_ip6_mib->ipv6IfStatsEntrySize, 16925 sizeof (mib2_ipv6IfStatsEntry_t)); 16926 SET_MIB(ill->ill_ip6_mib->ipv6AddrEntrySize, 16927 sizeof (mib2_ipv6AddrEntry_t)); 16928 SET_MIB(ill->ill_ip6_mib->ipv6RouteEntrySize, 16929 sizeof (mib2_ipv6RouteEntry_t)); 16930 SET_MIB(ill->ill_ip6_mib->ipv6NetToMediaEntrySize, 16931 sizeof (mib2_ipv6NetToMediaEntry_t)); 16932 SET_MIB(ill->ill_ip6_mib->ipv6MemberEntrySize, 16933 sizeof (ipv6_member_t)); 16934 16935 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 16936 (char *)ill->ill_ip6_mib, 16937 (int)sizeof (*ill->ill_ip6_mib))) { 16938 ip1dbg(("ip_snmp_get_mib2_ip6: failed to allocate " 16939 "%u bytes\n", 16940 (uint_t)sizeof (*ill->ill_ip6_mib))); 16941 } 16942 } 16943 rw_exit(&ill_g_lock); 16944 16945 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 16946 ip3dbg(("ip_snmp_get_mib2_ip6: level %d, name %d, len %d\n", 16947 (int)optp->level, (int)optp->name, (int)optp->len)); 16948 qreply(q, mpctl); 16949 return (mp2ctl); 16950 } 16951 16952 /* 16953 * ICMPv6 mib: One per ill 16954 */ 16955 static mblk_t * 16956 ip_snmp_get_mib2_icmp6(queue_t *q, mblk_t *mpctl) 16957 { 16958 struct opthdr *optp; 16959 mblk_t *mp2ctl; 16960 ill_t *ill; 16961 ill_walk_context_t ctx; 16962 mblk_t *mp_tail = NULL; 16963 /* 16964 * Make a copy of the original message 16965 */ 16966 mp2ctl = copymsg(mpctl); 16967 16968 /* fixed length ICMPv6 structure ... */ 16969 16970 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 16971 optp->level = MIB2_ICMP6; 16972 optp->name = 0; 16973 /* Include "unknown interface" icmp6_mib */ 16974 icmp6_mib.ipv6IfIcmpIfIndex = 0; /* Flag to netstat */ 16975 icmp6_mib.ipv6IfIcmpEntrySize = sizeof (mib2_ipv6IfIcmpEntry_t); 16976 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, (char *)&icmp6_mib, 16977 (int)sizeof (icmp6_mib))) { 16978 ip1dbg(("ip_snmp_get_mib2_icmp6: failed to allocate %u bytes\n", 16979 (uint_t)sizeof (icmp6_mib))); 16980 } 16981 16982 rw_enter(&ill_g_lock, RW_READER); 16983 ill = ILL_START_WALK_V6(&ctx); 16984 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 16985 ill->ill_icmp6_mib->ipv6IfIcmpIfIndex = 16986 ill->ill_phyint->phyint_ifindex; 16987 ill->ill_icmp6_mib->ipv6IfIcmpEntrySize = 16988 sizeof (mib2_ipv6IfIcmpEntry_t); 16989 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 16990 (char *)ill->ill_icmp6_mib, 16991 (int)sizeof (*ill->ill_icmp6_mib))) { 16992 ip1dbg(("ip_snmp_get_mib2_icmp6: failed to allocate " 16993 "%u bytes\n", 16994 (uint_t)sizeof (*ill->ill_icmp6_mib))); 16995 } 16996 } 16997 rw_exit(&ill_g_lock); 16998 16999 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 17000 ip3dbg(("ip_snmp_get_mib2_icmp6: level %d, name %d, len %d\n", 17001 (int)optp->level, (int)optp->name, (int)optp->len)); 17002 qreply(q, mpctl); 17003 return (mp2ctl); 17004 } 17005 17006 /* 17007 * ire_walk routine to create both ipRouteEntryTable and 17008 * ipNetToMediaEntryTable in one IRE walk 17009 */ 17010 static void 17011 ip_snmp_get2_v4(ire_t *ire, listptr_t re_ntme[]) 17012 { 17013 ill_t *ill; 17014 ipif_t *ipif; 17015 mblk_t *llmp; 17016 dl_unitdata_req_t *dlup; 17017 mib2_ipRouteEntry_t re; 17018 mib2_ipNetToMediaEntry_t ntme; 17019 ipaddr_t gw_addr; 17020 17021 ASSERT(ire->ire_ipversion == IPV4_VERSION); 17022 17023 /* 17024 * Return all IRE types for route table... let caller pick and choose 17025 */ 17026 re.ipRouteDest = ire->ire_addr; 17027 ipif = ire->ire_ipif; 17028 re.ipRouteIfIndex.o_length = 0; 17029 if (ire->ire_type == IRE_CACHE) { 17030 ill = (ill_t *)ire->ire_stq->q_ptr; 17031 re.ipRouteIfIndex.o_length = 17032 ill->ill_name_length == 0 ? 0 : 17033 MIN(OCTET_LENGTH, ill->ill_name_length - 1); 17034 bcopy(ill->ill_name, re.ipRouteIfIndex.o_bytes, 17035 re.ipRouteIfIndex.o_length); 17036 } else if (ipif != NULL) { 17037 (void) ipif_get_name(ipif, re.ipRouteIfIndex.o_bytes, 17038 OCTET_LENGTH); 17039 re.ipRouteIfIndex.o_length = 17040 mi_strlen(re.ipRouteIfIndex.o_bytes); 17041 } 17042 re.ipRouteMetric1 = -1; 17043 re.ipRouteMetric2 = -1; 17044 re.ipRouteMetric3 = -1; 17045 re.ipRouteMetric4 = -1; 17046 17047 gw_addr = ire->ire_gateway_addr; 17048 17049 if (ire->ire_type & (IRE_INTERFACE|IRE_LOOPBACK|IRE_BROADCAST)) 17050 re.ipRouteNextHop = ire->ire_src_addr; 17051 else 17052 re.ipRouteNextHop = gw_addr; 17053 /* indirect(4), direct(3), or invalid(2) */ 17054 if (ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) 17055 re.ipRouteType = 2; 17056 else 17057 re.ipRouteType = (gw_addr != 0) ? 4 : 3; 17058 re.ipRouteProto = -1; 17059 re.ipRouteAge = gethrestime_sec() - ire->ire_create_time; 17060 re.ipRouteMask = ire->ire_mask; 17061 re.ipRouteMetric5 = -1; 17062 re.ipRouteInfo.re_max_frag = ire->ire_max_frag; 17063 re.ipRouteInfo.re_frag_flag = ire->ire_frag_flag; 17064 re.ipRouteInfo.re_rtt = ire->ire_uinfo.iulp_rtt; 17065 llmp = ire->ire_dlureq_mp; 17066 re.ipRouteInfo.re_ref = ire->ire_refcnt; 17067 re.ipRouteInfo.re_src_addr = ire->ire_src_addr; 17068 re.ipRouteInfo.re_ire_type = ire->ire_type; 17069 re.ipRouteInfo.re_obpkt = ire->ire_ob_pkt_count; 17070 re.ipRouteInfo.re_ibpkt = ire->ire_ib_pkt_count; 17071 re.ipRouteInfo.re_flags = ire->ire_flags; 17072 re.ipRouteInfo.re_in_ill.o_length = 0; 17073 if (ire->ire_in_ill != NULL) { 17074 re.ipRouteInfo.re_in_ill.o_length = 17075 ire->ire_in_ill->ill_name_length == 0 ? 0 : 17076 MIN(OCTET_LENGTH, ire->ire_in_ill->ill_name_length - 1); 17077 bcopy(ire->ire_in_ill->ill_name, 17078 re.ipRouteInfo.re_in_ill.o_bytes, 17079 re.ipRouteInfo.re_in_ill.o_length); 17080 } 17081 re.ipRouteInfo.re_in_src_addr = ire->ire_in_src_addr; 17082 if (!snmp_append_data2(re_ntme[0].lp_head, &(re_ntme[0].lp_tail), 17083 (char *)&re, (int)sizeof (re))) { 17084 ip1dbg(("ip_snmp_get2_v4: failed to allocate %u bytes\n", 17085 (uint_t)sizeof (re))); 17086 } 17087 17088 if (ire->ire_type != IRE_CACHE || gw_addr != 0) 17089 return; 17090 /* 17091 * only IRE_CACHE entries that are for a directly connected subnet 17092 * get appended to net -> phys addr table 17093 * (others in arp) 17094 */ 17095 ntme.ipNetToMediaIfIndex.o_length = 0; 17096 ill = ire_to_ill(ire); 17097 ASSERT(ill != NULL); 17098 ntme.ipNetToMediaIfIndex.o_length = 17099 ill->ill_name_length == 0 ? 0 : 17100 MIN(OCTET_LENGTH, ill->ill_name_length - 1); 17101 bcopy(ill->ill_name, ntme.ipNetToMediaIfIndex.o_bytes, 17102 ntme.ipNetToMediaIfIndex.o_length); 17103 17104 ntme.ipNetToMediaPhysAddress.o_length = 0; 17105 if (llmp) { 17106 uchar_t *addr; 17107 17108 dlup = (dl_unitdata_req_t *)llmp->b_rptr; 17109 /* Remove sap from address */ 17110 if (ill->ill_sap_length < 0) 17111 addr = llmp->b_rptr + dlup->dl_dest_addr_offset; 17112 else 17113 addr = llmp->b_rptr + dlup->dl_dest_addr_offset + 17114 ill->ill_sap_length; 17115 17116 ntme.ipNetToMediaPhysAddress.o_length = 17117 MIN(OCTET_LENGTH, ill->ill_phys_addr_length); 17118 bcopy(addr, ntme.ipNetToMediaPhysAddress.o_bytes, 17119 ntme.ipNetToMediaPhysAddress.o_length); 17120 } 17121 ntme.ipNetToMediaNetAddress = ire->ire_addr; 17122 /* assume dynamic (may be changed in arp) */ 17123 ntme.ipNetToMediaType = 3; 17124 ntme.ipNetToMediaInfo.ntm_mask.o_length = sizeof (uint32_t); 17125 bcopy(&ire->ire_mask, ntme.ipNetToMediaInfo.ntm_mask.o_bytes, 17126 ntme.ipNetToMediaInfo.ntm_mask.o_length); 17127 ntme.ipNetToMediaInfo.ntm_flags = ACE_F_RESOLVED; 17128 if (!snmp_append_data2(re_ntme[1].lp_head, &(re_ntme[1].lp_tail), 17129 (char *)&ntme, (int)sizeof (ntme))) { 17130 ip1dbg(("ip_snmp_get2_v4: failed to allocate %u bytes\n", 17131 (uint_t)sizeof (ntme))); 17132 } 17133 } 17134 17135 /* 17136 * ire_walk routine to create ipv6RouteEntryTable. 17137 */ 17138 static void 17139 ip_snmp_get2_v6_route(ire_t *ire, listptr_t *re_ntme) 17140 { 17141 ill_t *ill; 17142 ipif_t *ipif; 17143 mib2_ipv6RouteEntry_t re; 17144 in6_addr_t gw_addr_v6; 17145 17146 ASSERT(ire->ire_ipversion == IPV6_VERSION); 17147 17148 /* 17149 * Return all IRE types for route table... let caller pick and choose 17150 */ 17151 re.ipv6RouteDest = ire->ire_addr_v6; 17152 re.ipv6RoutePfxLength = ip_mask_to_plen_v6(&ire->ire_mask_v6); 17153 re.ipv6RouteIndex = 0; /* Unique when multiple with same dest/plen */ 17154 re.ipv6RouteIfIndex.o_length = 0; 17155 ipif = ire->ire_ipif; 17156 if (ire->ire_type == IRE_CACHE) { 17157 ill = (ill_t *)ire->ire_stq->q_ptr; 17158 re.ipv6RouteIfIndex.o_length = 17159 ill->ill_name_length == 0 ? 0 : 17160 MIN(OCTET_LENGTH, ill->ill_name_length - 1); 17161 bcopy(ill->ill_name, re.ipv6RouteIfIndex.o_bytes, 17162 re.ipv6RouteIfIndex.o_length); 17163 } else if (ipif != NULL) { 17164 (void) ipif_get_name(ipif, re.ipv6RouteIfIndex.o_bytes, 17165 OCTET_LENGTH); 17166 re.ipv6RouteIfIndex.o_length = 17167 mi_strlen(re.ipv6RouteIfIndex.o_bytes); 17168 } 17169 17170 ASSERT(!(ire->ire_type & IRE_BROADCAST)); 17171 17172 mutex_enter(&ire->ire_lock); 17173 gw_addr_v6 = ire->ire_gateway_addr_v6; 17174 mutex_exit(&ire->ire_lock); 17175 17176 if (ire->ire_type & (IRE_INTERFACE|IRE_LOOPBACK)) 17177 re.ipv6RouteNextHop = ire->ire_src_addr_v6; 17178 else 17179 re.ipv6RouteNextHop = gw_addr_v6; 17180 17181 /* remote(4), local(3), or discard(2) */ 17182 if (ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) 17183 re.ipv6RouteType = 2; 17184 else if (IN6_IS_ADDR_UNSPECIFIED(&gw_addr_v6)) 17185 re.ipv6RouteType = 3; 17186 else 17187 re.ipv6RouteType = 4; 17188 17189 re.ipv6RouteProtocol = -1; 17190 re.ipv6RoutePolicy = 0; 17191 re.ipv6RouteAge = gethrestime_sec() - ire->ire_create_time; 17192 re.ipv6RouteNextHopRDI = 0; 17193 re.ipv6RouteWeight = 0; 17194 re.ipv6RouteMetric = 0; 17195 re.ipv6RouteInfo.re_max_frag = ire->ire_max_frag; 17196 re.ipv6RouteInfo.re_frag_flag = ire->ire_frag_flag; 17197 re.ipv6RouteInfo.re_rtt = ire->ire_uinfo.iulp_rtt; 17198 re.ipv6RouteInfo.re_src_addr = ire->ire_src_addr_v6; 17199 re.ipv6RouteInfo.re_ire_type = ire->ire_type; 17200 re.ipv6RouteInfo.re_obpkt = ire->ire_ob_pkt_count; 17201 re.ipv6RouteInfo.re_ibpkt = ire->ire_ib_pkt_count; 17202 re.ipv6RouteInfo.re_ref = ire->ire_refcnt; 17203 re.ipv6RouteInfo.re_flags = ire->ire_flags; 17204 17205 if (!snmp_append_data2(re_ntme->lp_head, &(re_ntme->lp_tail), 17206 (char *)&re, (int)sizeof (re))) { 17207 ip1dbg(("ip_snmp_get2_v6: failed to allocate %u bytes\n", 17208 (uint_t)sizeof (re))); 17209 } 17210 } 17211 17212 /* 17213 * ndp_walk routine to create ipv6NetToMediaEntryTable 17214 */ 17215 static int 17216 ip_snmp_get2_v6_media(nce_t *nce, listptr_t *re_ntme) 17217 { 17218 ill_t *ill; 17219 mib2_ipv6NetToMediaEntry_t ntme; 17220 dl_unitdata_req_t *dl; 17221 17222 ill = nce->nce_ill; 17223 ASSERT(ill->ill_isv6); 17224 17225 /* 17226 * Neighbor cache entry attached to IRE with on-link 17227 * destination. 17228 */ 17229 ntme.ipv6NetToMediaIfIndex = ill->ill_phyint->phyint_ifindex; 17230 ntme.ipv6NetToMediaNetAddress = nce->nce_addr; 17231 if ((ill->ill_flags & ILLF_XRESOLV) && 17232 (nce->nce_res_mp != NULL)) { 17233 dl = (dl_unitdata_req_t *)(nce->nce_res_mp->b_rptr); 17234 ntme.ipv6NetToMediaPhysAddress.o_length = 17235 dl->dl_dest_addr_length; 17236 } else { 17237 ntme.ipv6NetToMediaPhysAddress.o_length = 17238 ill->ill_phys_addr_length; 17239 } 17240 if (nce->nce_res_mp != NULL) { 17241 bcopy((char *)nce->nce_res_mp->b_rptr + 17242 NCE_LL_ADDR_OFFSET(ill), 17243 ntme.ipv6NetToMediaPhysAddress.o_bytes, 17244 ntme.ipv6NetToMediaPhysAddress.o_length); 17245 } else { 17246 bzero(ntme.ipv6NetToMediaPhysAddress.o_bytes, 17247 ill->ill_phys_addr_length); 17248 } 17249 /* 17250 * Note: Returns ND_* states. Should be: 17251 * reachable(1), stale(2), delay(3), probe(4), 17252 * invalid(5), unknown(6) 17253 */ 17254 ntme.ipv6NetToMediaState = nce->nce_state; 17255 ntme.ipv6NetToMediaLastUpdated = 0; 17256 17257 /* other(1), dynamic(2), static(3), local(4) */ 17258 if (IN6_IS_ADDR_LOOPBACK(&nce->nce_addr)) { 17259 ntme.ipv6NetToMediaType = 4; 17260 } else if (IN6_IS_ADDR_MULTICAST(&nce->nce_addr)) { 17261 ntme.ipv6NetToMediaType = 1; 17262 } else { 17263 ntme.ipv6NetToMediaType = 2; 17264 } 17265 17266 if (!snmp_append_data2(re_ntme->lp_head, 17267 &(re_ntme->lp_tail), (char *)&ntme, (int)sizeof (ntme))) { 17268 ip1dbg(("ip_snmp_get2_v6_media: failed to allocate %u bytes\n", 17269 (uint_t)sizeof (ntme))); 17270 } 17271 return (0); 17272 } 17273 17274 /* 17275 * return (0) if invalid set request, 1 otherwise, including non-tcp requests 17276 */ 17277 /* ARGSUSED */ 17278 int 17279 ip_snmp_set(queue_t *q, int level, int name, uchar_t *ptr, int len) 17280 { 17281 switch (level) { 17282 case MIB2_IP: 17283 case MIB2_ICMP: 17284 switch (name) { 17285 default: 17286 break; 17287 } 17288 return (1); 17289 default: 17290 return (1); 17291 } 17292 } 17293 17294 /* 17295 * Called before the options are updated to check if this packet will 17296 * be source routed from here. 17297 * This routine assumes that the options are well formed i.e. that they 17298 * have already been checked. 17299 */ 17300 static boolean_t 17301 ip_source_routed(ipha_t *ipha) 17302 { 17303 ipoptp_t opts; 17304 uchar_t *opt; 17305 uint8_t optval; 17306 uint8_t optlen; 17307 ipaddr_t dst; 17308 ire_t *ire; 17309 17310 if (IS_SIMPLE_IPH(ipha)) { 17311 ip2dbg(("not source routed\n")); 17312 return (B_FALSE); 17313 } 17314 dst = ipha->ipha_dst; 17315 for (optval = ipoptp_first(&opts, ipha); 17316 optval != IPOPT_EOL; 17317 optval = ipoptp_next(&opts)) { 17318 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 17319 opt = opts.ipoptp_cur; 17320 optlen = opts.ipoptp_len; 17321 ip2dbg(("ip_source_routed: opt %d, len %d\n", 17322 optval, optlen)); 17323 switch (optval) { 17324 uint32_t off; 17325 case IPOPT_SSRR: 17326 case IPOPT_LSRR: 17327 /* 17328 * If dst is one of our addresses and there are some 17329 * entries left in the source route return (true). 17330 */ 17331 ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, NULL, 17332 ALL_ZONES, MATCH_IRE_TYPE); 17333 if (ire == NULL) { 17334 ip2dbg(("ip_source_routed: not next" 17335 " source route 0x%x\n", 17336 ntohl(dst))); 17337 return (B_FALSE); 17338 } 17339 ire_refrele(ire); 17340 off = opt[IPOPT_OFFSET]; 17341 off--; 17342 if (optlen < IP_ADDR_LEN || 17343 off > optlen - IP_ADDR_LEN) { 17344 /* End of source route */ 17345 ip1dbg(("ip_source_routed: end of SR\n")); 17346 return (B_FALSE); 17347 } 17348 return (B_TRUE); 17349 } 17350 } 17351 ip2dbg(("not source routed\n")); 17352 return (B_FALSE); 17353 } 17354 17355 /* 17356 * Check if the packet contains any source route. 17357 */ 17358 static boolean_t 17359 ip_source_route_included(ipha_t *ipha) 17360 { 17361 ipoptp_t opts; 17362 uint8_t optval; 17363 17364 if (IS_SIMPLE_IPH(ipha)) 17365 return (B_FALSE); 17366 for (optval = ipoptp_first(&opts, ipha); 17367 optval != IPOPT_EOL; 17368 optval = ipoptp_next(&opts)) { 17369 switch (optval) { 17370 case IPOPT_SSRR: 17371 case IPOPT_LSRR: 17372 return (B_TRUE); 17373 } 17374 } 17375 return (B_FALSE); 17376 } 17377 17378 /* 17379 * Called when the IRE expiration timer fires. 17380 */ 17381 /* ARGSUSED */ 17382 void 17383 ip_trash_timer_expire(void *args) 17384 { 17385 int flush_flag = 0; 17386 17387 /* 17388 * ip_ire_expire_id is protected by ip_trash_timer_lock. 17389 * This lock makes sure that a new invocation of this function 17390 * that occurs due to an almost immediate timer firing will not 17391 * progress beyond this point until the current invocation is done 17392 */ 17393 mutex_enter(&ip_trash_timer_lock); 17394 ip_ire_expire_id = 0; 17395 mutex_exit(&ip_trash_timer_lock); 17396 17397 /* Periodic timer */ 17398 if (ip_ire_arp_time_elapsed >= ip_ire_arp_interval) { 17399 /* 17400 * Remove all IRE_CACHE entries since they might 17401 * contain arp information. 17402 */ 17403 flush_flag |= FLUSH_ARP_TIME; 17404 ip_ire_arp_time_elapsed = 0; 17405 IP_STAT(ip_ire_arp_timer_expired); 17406 } 17407 if (ip_ire_rd_time_elapsed >= ip_ire_redir_interval) { 17408 /* Remove all redirects */ 17409 flush_flag |= FLUSH_REDIRECT_TIME; 17410 ip_ire_rd_time_elapsed = 0; 17411 IP_STAT(ip_ire_redirect_timer_expired); 17412 } 17413 if (ip_ire_pmtu_time_elapsed >= ip_ire_pathmtu_interval) { 17414 /* Increase path mtu */ 17415 flush_flag |= FLUSH_MTU_TIME; 17416 ip_ire_pmtu_time_elapsed = 0; 17417 IP_STAT(ip_ire_pmtu_timer_expired); 17418 } 17419 if (flush_flag != 0) { 17420 /* Walk all IPv4 IRE's and update them */ 17421 ire_walk_v4(ire_expire, (char *)(uintptr_t)flush_flag, 17422 ALL_ZONES); 17423 } 17424 if (flush_flag & FLUSH_MTU_TIME) { 17425 /* 17426 * Walk all IPv6 IRE's and update them 17427 * Note that ARP and redirect timers are not 17428 * needed since NUD handles stale entries. 17429 */ 17430 flush_flag = FLUSH_MTU_TIME; 17431 ire_walk_v6(ire_expire, (char *)(uintptr_t)flush_flag, 17432 ALL_ZONES); 17433 } 17434 17435 ip_ire_arp_time_elapsed += ip_timer_interval; 17436 ip_ire_rd_time_elapsed += ip_timer_interval; 17437 ip_ire_pmtu_time_elapsed += ip_timer_interval; 17438 17439 /* 17440 * Hold the lock to serialize timeout calls and prevent 17441 * stale values in ip_ire_expire_id. Otherwise it is possible 17442 * for the timer to fire and a new invocation of this function 17443 * to start before the return value of timeout has been stored 17444 * in ip_ire_expire_id by the current invocation. 17445 */ 17446 mutex_enter(&ip_trash_timer_lock); 17447 ip_ire_expire_id = timeout(ip_trash_timer_expire, NULL, 17448 MSEC_TO_TICK(ip_timer_interval)); 17449 mutex_exit(&ip_trash_timer_lock); 17450 } 17451 17452 /* 17453 * Called by the memory allocator subsystem directly, when the system 17454 * is running low on memory. 17455 */ 17456 /* ARGSUSED */ 17457 void 17458 ip_trash_ire_reclaim(void *args) 17459 { 17460 ire_cache_count_t icc; 17461 ire_cache_reclaim_t icr; 17462 ncc_cache_count_t ncc; 17463 nce_cache_reclaim_t ncr; 17464 uint_t delete_cnt; 17465 /* 17466 * Memory reclaim call back. 17467 * Count unused, offlink, pmtu, and onlink IRE_CACHE entries. 17468 * Then, with a target of freeing 1/Nth of IRE_CACHE 17469 * entries, determine what fraction to free for 17470 * each category of IRE_CACHE entries giving absolute priority 17471 * in the order of onlink, pmtu, offlink, unused (e.g. no pmtu 17472 * entry will be freed unless all offlink entries are freed). 17473 */ 17474 icc.icc_total = 0; 17475 icc.icc_unused = 0; 17476 icc.icc_offlink = 0; 17477 icc.icc_pmtu = 0; 17478 icc.icc_onlink = 0; 17479 ire_walk(ire_cache_count, (char *)&icc); 17480 17481 /* 17482 * Free NCEs for IPv6 like the onlink ires. 17483 */ 17484 ncc.ncc_total = 0; 17485 ncc.ncc_host = 0; 17486 ndp_walk(NULL, (pfi_t)ndp_cache_count, (uchar_t *)&ncc); 17487 17488 ASSERT(icc.icc_total == icc.icc_unused + icc.icc_offlink + 17489 icc.icc_pmtu + icc.icc_onlink); 17490 delete_cnt = icc.icc_total/ip_ire_reclaim_fraction; 17491 IP_STAT(ip_trash_ire_reclaim_calls); 17492 if (delete_cnt == 0) 17493 return; 17494 IP_STAT(ip_trash_ire_reclaim_success); 17495 /* Always delete all unused offlink entries */ 17496 icr.icr_unused = 1; 17497 if (delete_cnt <= icc.icc_unused) { 17498 /* 17499 * Only need to free unused entries. In other words, 17500 * there are enough unused entries to free to meet our 17501 * target number of freed ire cache entries. 17502 */ 17503 icr.icr_offlink = icr.icr_pmtu = icr.icr_onlink = 0; 17504 ncr.ncr_host = 0; 17505 } else if (delete_cnt <= icc.icc_unused + icc.icc_offlink) { 17506 /* 17507 * Only need to free unused entries, plus a fraction of offlink 17508 * entries. It follows from the first if statement that 17509 * icc_offlink is non-zero, and that delete_cnt != icc_unused. 17510 */ 17511 delete_cnt -= icc.icc_unused; 17512 /* Round up # deleted by truncating fraction */ 17513 icr.icr_offlink = icc.icc_offlink / delete_cnt; 17514 icr.icr_pmtu = icr.icr_onlink = 0; 17515 ncr.ncr_host = 0; 17516 } else if (delete_cnt <= 17517 icc.icc_unused + icc.icc_offlink + icc.icc_pmtu) { 17518 /* 17519 * Free all unused and offlink entries, plus a fraction of 17520 * pmtu entries. It follows from the previous if statement 17521 * that icc_pmtu is non-zero, and that 17522 * delete_cnt != icc_unused + icc_offlink. 17523 */ 17524 icr.icr_offlink = 1; 17525 delete_cnt -= icc.icc_unused + icc.icc_offlink; 17526 /* Round up # deleted by truncating fraction */ 17527 icr.icr_pmtu = icc.icc_pmtu / delete_cnt; 17528 icr.icr_onlink = 0; 17529 ncr.ncr_host = 0; 17530 } else { 17531 /* 17532 * Free all unused, offlink, and pmtu entries, plus a fraction 17533 * of onlink entries. If we're here, then we know that 17534 * icc_onlink is non-zero, and that 17535 * delete_cnt != icc_unused + icc_offlink + icc_pmtu. 17536 */ 17537 icr.icr_offlink = icr.icr_pmtu = 1; 17538 delete_cnt -= icc.icc_unused + icc.icc_offlink + 17539 icc.icc_pmtu; 17540 /* Round up # deleted by truncating fraction */ 17541 icr.icr_onlink = icc.icc_onlink / delete_cnt; 17542 /* Using the same delete fraction as for onlink IREs */ 17543 ncr.ncr_host = ncc.ncc_host / delete_cnt; 17544 } 17545 #ifdef DEBUG 17546 ip1dbg(("IP reclaim: target %d out of %d current %d/%d/%d/%d " 17547 "fractions %d/%d/%d/%d\n", 17548 icc.icc_total/ip_ire_reclaim_fraction, icc.icc_total, 17549 icc.icc_unused, icc.icc_offlink, 17550 icc.icc_pmtu, icc.icc_onlink, 17551 icr.icr_unused, icr.icr_offlink, 17552 icr.icr_pmtu, icr.icr_onlink)); 17553 #endif 17554 ire_walk(ire_cache_reclaim, (char *)&icr); 17555 if (ncr.ncr_host != 0) 17556 ndp_walk(NULL, (pfi_t)ndp_cache_reclaim, 17557 (uchar_t *)&ncr); 17558 #ifdef DEBUG 17559 icc.icc_total = 0; icc.icc_unused = 0; icc.icc_offlink = 0; 17560 icc.icc_pmtu = 0; icc.icc_onlink = 0; 17561 ire_walk(ire_cache_count, (char *)&icc); 17562 ip1dbg(("IP reclaim: result total %d %d/%d/%d/%d\n", 17563 icc.icc_total, icc.icc_unused, icc.icc_offlink, 17564 icc.icc_pmtu, icc.icc_onlink)); 17565 #endif 17566 } 17567 17568 /* 17569 * ip_unbind is called when a copy of an unbind request is received from the 17570 * upper level protocol. We remove this conn from any fanout hash list it is 17571 * on, and zero out the bind information. No reply is expected up above. 17572 */ 17573 static void 17574 ip_unbind(queue_t *q, mblk_t *mp) 17575 { 17576 conn_t *connp = Q_TO_CONN(q); 17577 17578 ASSERT(!MUTEX_HELD(&connp->conn_lock)); 17579 17580 ipcl_hash_remove(connp); 17581 17582 ASSERT(mp->b_cont == NULL); 17583 /* 17584 * Convert mp into a T_OK_ACK 17585 */ 17586 mp = mi_tpi_ok_ack_alloc(mp); 17587 17588 /* 17589 * should not happen in practice... T_OK_ACK is smaller than the 17590 * original message. 17591 */ 17592 if (mp == NULL) 17593 return; 17594 17595 /* 17596 * Don't bzero the ports if its TCP since TCP still needs the 17597 * lport to remove it from its own bind hash. TCP will do the 17598 * cleanup. 17599 */ 17600 if (!IPCL_IS_TCP(connp)) 17601 bzero(&connp->u_port, sizeof (connp->u_port)); 17602 17603 qreply(q, mp); 17604 } 17605 17606 /* 17607 * Write side put procedure. Outbound data, IOCTLs, responses from 17608 * resolvers, etc, come down through here. 17609 */ 17610 void 17611 ip_output(void *arg, mblk_t *mp, void *arg2, int caller) 17612 { 17613 conn_t *connp = NULL; 17614 queue_t *q = (queue_t *)arg2; 17615 ipha_t *ipha; 17616 #define rptr ((uchar_t *)ipha) 17617 ire_t *ire = NULL; 17618 ire_t *sctp_ire = NULL; 17619 uint32_t v_hlen_tos_len; 17620 ipaddr_t dst; 17621 mblk_t *first_mp = NULL; 17622 boolean_t mctl_present; 17623 ipsec_out_t *io; 17624 int match_flags; 17625 ill_t *attach_ill = NULL; 17626 /* Bind to IPIF_NOFAILOVER ill etc. */ 17627 ill_t *xmit_ill = NULL; /* IP_XMIT_IF etc. */ 17628 ipif_t *dst_ipif; 17629 boolean_t multirt_need_resolve = B_FALSE; 17630 mblk_t *copy_mp = NULL; 17631 int err; 17632 zoneid_t zoneid; 17633 boolean_t need_decref = B_FALSE; 17634 boolean_t ignore_dontroute = B_FALSE; 17635 17636 #ifdef _BIG_ENDIAN 17637 #define V_HLEN (v_hlen_tos_len >> 24) 17638 #else 17639 #define V_HLEN (v_hlen_tos_len & 0xFF) 17640 #endif 17641 17642 TRACE_1(TR_FAC_IP, TR_IP_WPUT_START, 17643 "ip_wput_start: q %p", q); 17644 17645 /* 17646 * ip_wput fast path 17647 */ 17648 17649 /* is packet from ARP ? */ 17650 if (q->q_next != NULL) 17651 goto qnext; 17652 17653 connp = (conn_t *)arg; 17654 zoneid = (connp != NULL ? connp->conn_zoneid : ALL_ZONES); 17655 17656 /* is queue flow controlled? */ 17657 if ((q->q_first != NULL || connp->conn_draining) && 17658 (caller == IP_WPUT)) { 17659 goto doputq; 17660 } 17661 17662 /* Multidata transmit? */ 17663 if (DB_TYPE(mp) == M_MULTIDATA) { 17664 /* 17665 * We should never get here, since all Multidata messages 17666 * originating from tcp should have been directed over to 17667 * tcp_multisend() in the first place. 17668 */ 17669 BUMP_MIB(&ip_mib, ipOutDiscards); 17670 freemsg(mp); 17671 return; 17672 } else if (DB_TYPE(mp) != M_DATA) 17673 goto notdata; 17674 if (mp->b_flag & MSGHASREF) { 17675 ASSERT(connp->conn_ulp == IPPROTO_SCTP); 17676 mp->b_flag &= ~MSGHASREF; 17677 SCTP_EXTRACT_IPINFO(mp, sctp_ire); 17678 need_decref = B_TRUE; 17679 } 17680 ipha = (ipha_t *)mp->b_rptr; 17681 17682 /* is IP header non-aligned or mblk smaller than basic IP header */ 17683 #ifndef SAFETY_BEFORE_SPEED 17684 if (!OK_32PTR(rptr) || 17685 (mp->b_wptr - rptr) < IP_SIMPLE_HDR_LENGTH) 17686 goto hdrtoosmall; 17687 #endif 17688 17689 /* 17690 * If there is a policy, try to attach an ipsec_out in 17691 * the front. At the end, first_mp either points to a 17692 * M_DATA message or IPSEC_OUT message linked to a 17693 * M_DATA message. We have to do it now as we might 17694 * lose the "conn" if we go through ip_newroute. 17695 */ 17696 if (connp->conn_out_enforce_policy || (connp->conn_latch != NULL)) { 17697 if (((mp = ipsec_attach_ipsec_out(mp, connp, NULL, 17698 ipha->ipha_protocol)) == NULL)) { 17699 if (need_decref) 17700 CONN_DEC_REF(connp); 17701 return; 17702 } else { 17703 ASSERT(mp->b_datap->db_type == M_CTL); 17704 first_mp = mp; 17705 mp = mp->b_cont; 17706 mctl_present = B_TRUE; 17707 } 17708 } else { 17709 first_mp = mp; 17710 mctl_present = B_FALSE; 17711 } 17712 17713 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 17714 17715 /* is wrong version or IP options present */ 17716 if (V_HLEN != IP_SIMPLE_HDR_VERSION) 17717 goto version_hdrlen_check; 17718 dst = ipha->ipha_dst; 17719 17720 if (connp->conn_nofailover_ill != NULL) { 17721 attach_ill = conn_get_held_ill(connp, 17722 &connp->conn_nofailover_ill, &err); 17723 if (err == ILL_LOOKUP_FAILED) { 17724 if (need_decref) 17725 CONN_DEC_REF(connp); 17726 freemsg(first_mp); 17727 return; 17728 } 17729 } 17730 17731 /* is packet multicast? */ 17732 if (CLASSD(dst)) 17733 goto multicast; 17734 17735 if ((connp->conn_dontroute) || (connp->conn_xmit_if_ill != NULL)) { 17736 /* 17737 * If the destination is a broadcast or a loopback 17738 * address, both SO_DONTROUTE and IP_XMIT_IF go 17739 * through the standard path. But in the case of local 17740 * destination only SO_DONTROUTE goes through the 17741 * standard path not IP_XMIT_IF. 17742 */ 17743 ire = ire_cache_lookup(dst, zoneid); 17744 if ((ire == NULL) || ((ire->ire_type != IRE_BROADCAST) && 17745 (ire->ire_type != IRE_LOOPBACK))) { 17746 17747 if ((connp->conn_dontroute) && (ire != NULL) && 17748 (ire->ire_type == IRE_LOCAL)) 17749 goto standard_path; 17750 17751 if (ire != NULL) { 17752 ire_refrele(ire); 17753 /* No more access to ire */ 17754 ire = NULL; 17755 } 17756 /* 17757 * bypass routing checks and go directly to 17758 * interface. 17759 */ 17760 if (connp->conn_dontroute) 17761 goto dontroute; 17762 17763 /* 17764 * If IP_XMIT_IF socket option is set, 17765 * then we allow unicast and multicast 17766 * packets to go through the ill. It is 17767 * quite possible that the destination 17768 * is not in the ire cache table and we 17769 * do not want to go to ip_newroute() 17770 * instead we call ip_newroute_ipif. 17771 */ 17772 xmit_ill = conn_get_held_ill(connp, 17773 &connp->conn_xmit_if_ill, &err); 17774 if (err == ILL_LOOKUP_FAILED) { 17775 if (attach_ill != NULL) 17776 ill_refrele(attach_ill); 17777 if (need_decref) 17778 CONN_DEC_REF(connp); 17779 freemsg(first_mp); 17780 return; 17781 } 17782 goto send_from_ill; 17783 } 17784 standard_path: 17785 /* Must be a broadcast, a loopback or a local ire */ 17786 if (ire != NULL) { 17787 ire_refrele(ire); 17788 /* No more access to ire */ 17789 ire = NULL; 17790 } 17791 } 17792 17793 if (attach_ill != NULL) 17794 goto send_from_ill; 17795 17796 /* 17797 * We cache IRE_CACHEs to avoid lookups. We don't do 17798 * this for the tcp global queue and listen end point 17799 * as it does not really have a real destination to 17800 * talk to. This is also true for SCTP. 17801 */ 17802 if (IP_FLOW_CONTROLLED_ULP(connp->conn_ulp) && 17803 !connp->conn_fully_bound) { 17804 ire = ire_cache_lookup(dst, zoneid); 17805 if (ire == NULL) 17806 goto noirefound; 17807 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 17808 "ip_wput_end: q %p (%S)", q, "end"); 17809 17810 /* 17811 * Check if the ire has the RTF_MULTIRT flag, inherited 17812 * from an IRE_OFFSUBNET ire entry in ip_newroute(). 17813 */ 17814 if (ire->ire_flags & RTF_MULTIRT) { 17815 17816 /* 17817 * Force the TTL of multirouted packets if required. 17818 * The TTL of such packets is bounded by the 17819 * ip_multirt_ttl ndd variable. 17820 */ 17821 if ((ip_multirt_ttl > 0) && 17822 (ipha->ipha_ttl > ip_multirt_ttl)) { 17823 ip2dbg(("ip_wput: forcing multirt TTL to %d " 17824 "(was %d), dst 0x%08x\n", 17825 ip_multirt_ttl, ipha->ipha_ttl, 17826 ntohl(ire->ire_addr))); 17827 ipha->ipha_ttl = ip_multirt_ttl; 17828 } 17829 /* 17830 * We look at this point if there are pending 17831 * unresolved routes. ire_multirt_resolvable() 17832 * checks in O(n) that all IRE_OFFSUBNET ire 17833 * entries for the packet's destination and 17834 * flagged RTF_MULTIRT are currently resolved. 17835 * If some remain unresolved, we make a copy 17836 * of the current message. It will be used 17837 * to initiate additional route resolutions. 17838 */ 17839 multirt_need_resolve = 17840 ire_multirt_need_resolve(ire->ire_addr); 17841 ip2dbg(("ip_wput[TCP]: ire %p, " 17842 "multirt_need_resolve %d, first_mp %p\n", 17843 (void *)ire, multirt_need_resolve, 17844 (void *)first_mp)); 17845 if (multirt_need_resolve) { 17846 copy_mp = copymsg(first_mp); 17847 if (copy_mp != NULL) { 17848 MULTIRT_DEBUG_TAG(copy_mp); 17849 } 17850 } 17851 } 17852 17853 ip_wput_ire(q, first_mp, ire, connp, caller); 17854 17855 /* 17856 * Try to resolve another multiroute if 17857 * ire_multirt_need_resolve() deemed it necessary. 17858 */ 17859 if (copy_mp != NULL) { 17860 ip_newroute(q, copy_mp, dst, NULL, connp); 17861 } 17862 if (need_decref) 17863 CONN_DEC_REF(connp); 17864 return; 17865 } 17866 17867 /* 17868 * Access to conn_ire_cache. (protected by conn_lock) 17869 * 17870 * IRE_MARK_CONDEMNED is marked in ire_delete. We don't grab 17871 * the ire bucket lock here to check for CONDEMNED as it is okay to 17872 * send a packet or two with the IRE_CACHE that is going away. 17873 * Access to the ire requires an ire refhold on the ire prior to 17874 * its use since an interface unplumb thread may delete the cached 17875 * ire and release the refhold at any time. 17876 * 17877 * Caching an ire in the conn_ire_cache 17878 * 17879 * o Caching an ire pointer in the conn requires a strict check for 17880 * IRE_MARK_CONDEMNED. An interface unplumb thread deletes all relevant 17881 * ires before cleaning up the conns. So the caching of an ire pointer 17882 * in the conn is done after making sure under the bucket lock that the 17883 * ire has not yet been marked CONDEMNED. Otherwise we will end up 17884 * caching an ire after the unplumb thread has cleaned up the conn. 17885 * If the conn does not send a packet subsequently the unplumb thread 17886 * will be hanging waiting for the ire count to drop to zero. 17887 * 17888 * o We also need to atomically test for a null conn_ire_cache and 17889 * set the conn_ire_cache under the the protection of the conn_lock 17890 * to avoid races among concurrent threads trying to simultaneously 17891 * cache an ire in the conn_ire_cache. 17892 */ 17893 mutex_enter(&connp->conn_lock); 17894 ire = sctp_ire != NULL ? sctp_ire : connp->conn_ire_cache; 17895 17896 if (ire != NULL && ire->ire_addr == dst && 17897 !(ire->ire_marks & IRE_MARK_CONDEMNED)) { 17898 17899 IRE_REFHOLD(ire); 17900 mutex_exit(&connp->conn_lock); 17901 17902 } else { 17903 boolean_t cached = B_FALSE; 17904 connp->conn_ire_cache = NULL; 17905 mutex_exit(&connp->conn_lock); 17906 /* Release the old ire */ 17907 if (ire != NULL && sctp_ire == NULL) 17908 IRE_REFRELE_NOTR(ire); 17909 17910 ire = (ire_t *)ire_cache_lookup(dst, zoneid); 17911 if (ire == NULL) 17912 goto noirefound; 17913 IRE_REFHOLD_NOTR(ire); 17914 17915 mutex_enter(&connp->conn_lock); 17916 if (!(connp->conn_state_flags & CONN_CLOSING) && 17917 connp->conn_ire_cache == NULL) { 17918 rw_enter(&ire->ire_bucket->irb_lock, RW_READER); 17919 if (!(ire->ire_marks & IRE_MARK_CONDEMNED)) { 17920 connp->conn_ire_cache = ire; 17921 cached = B_TRUE; 17922 } 17923 rw_exit(&ire->ire_bucket->irb_lock); 17924 } 17925 mutex_exit(&connp->conn_lock); 17926 17927 /* 17928 * We can continue to use the ire but since it was 17929 * not cached, we should drop the extra reference. 17930 */ 17931 if (!cached) 17932 IRE_REFRELE_NOTR(ire); 17933 } 17934 17935 17936 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 17937 "ip_wput_end: q %p (%S)", q, "end"); 17938 17939 /* 17940 * Check if the ire has the RTF_MULTIRT flag, inherited 17941 * from an IRE_OFFSUBNET ire entry in ip_newroute(). 17942 */ 17943 if (ire->ire_flags & RTF_MULTIRT) { 17944 17945 /* 17946 * Force the TTL of multirouted packets if required. 17947 * The TTL of such packets is bounded by the 17948 * ip_multirt_ttl ndd variable. 17949 */ 17950 if ((ip_multirt_ttl > 0) && 17951 (ipha->ipha_ttl > ip_multirt_ttl)) { 17952 ip2dbg(("ip_wput: forcing multirt TTL to %d " 17953 "(was %d), dst 0x%08x\n", 17954 ip_multirt_ttl, ipha->ipha_ttl, 17955 ntohl(ire->ire_addr))); 17956 ipha->ipha_ttl = ip_multirt_ttl; 17957 } 17958 17959 /* 17960 * At this point, we check to see if there are any pending 17961 * unresolved routes. ire_multirt_resolvable() 17962 * checks in O(n) that all IRE_OFFSUBNET ire 17963 * entries for the packet's destination and 17964 * flagged RTF_MULTIRT are currently resolved. 17965 * If some remain unresolved, we make a copy 17966 * of the current message. It will be used 17967 * to initiate additional route resolutions. 17968 */ 17969 multirt_need_resolve = ire_multirt_need_resolve(ire->ire_addr); 17970 ip2dbg(("ip_wput[not TCP]: ire %p, " 17971 "multirt_need_resolve %d, first_mp %p\n", 17972 (void *)ire, multirt_need_resolve, (void *)first_mp)); 17973 if (multirt_need_resolve) { 17974 copy_mp = copymsg(first_mp); 17975 if (copy_mp != NULL) { 17976 MULTIRT_DEBUG_TAG(copy_mp); 17977 } 17978 } 17979 } 17980 17981 ip_wput_ire(q, first_mp, ire, connp, caller); 17982 17983 /* 17984 * Try to resolve another multiroute if 17985 * ire_multirt_resolvable() deemed it necessary 17986 */ 17987 if (copy_mp != NULL) { 17988 ip_newroute(q, copy_mp, dst, NULL, connp); 17989 } 17990 if (need_decref) 17991 CONN_DEC_REF(connp); 17992 return; 17993 17994 doputq: 17995 ASSERT(!need_decref); 17996 (void) putq(q, mp); 17997 return; 17998 17999 qnext: 18000 /* 18001 * Upper Level Protocols pass down complete IP datagrams 18002 * as M_DATA messages. Everything else is a sideshow. 18003 * 18004 * 1) We could be re-entering ip_wput because of ip_neworute 18005 * in which case we could have a IPSEC_OUT message. We 18006 * need to pass through ip_wput like other datagrams and 18007 * hence cannot branch to ip_wput_nondata. 18008 * 18009 * 2) ARP, AH, ESP, and other clients who are on the module 18010 * instance of IP stream, give us something to deal with. 18011 * We will handle AH and ESP here and rest in ip_wput_nondata. 18012 * 18013 * 3) ICMP replies also could come here. 18014 */ 18015 if (DB_TYPE(mp) != M_DATA) { 18016 notdata: 18017 if (DB_TYPE(mp) == M_CTL) { 18018 /* 18019 * M_CTL messages are used by ARP, AH and ESP to 18020 * communicate with IP. We deal with IPSEC_IN and 18021 * IPSEC_OUT here. ip_wput_nondata handles other 18022 * cases. 18023 */ 18024 ipsec_info_t *ii = (ipsec_info_t *)mp->b_rptr; 18025 if (mp->b_cont && (mp->b_cont->b_flag & MSGHASREF)) { 18026 first_mp = mp->b_cont; 18027 first_mp->b_flag &= ~MSGHASREF; 18028 ASSERT(connp->conn_ulp == IPPROTO_SCTP); 18029 SCTP_EXTRACT_IPINFO(first_mp, sctp_ire); 18030 CONN_DEC_REF(connp); 18031 connp = NULL; 18032 } 18033 if (ii->ipsec_info_type == IPSEC_IN) { 18034 /* 18035 * Either this message goes back to 18036 * IPSEC for further processing or to 18037 * ULP after policy checks. 18038 */ 18039 ip_fanout_proto_again(mp, NULL, NULL, NULL); 18040 return; 18041 } else if (ii->ipsec_info_type == IPSEC_OUT) { 18042 io = (ipsec_out_t *)ii; 18043 if (io->ipsec_out_proc_begin) { 18044 /* 18045 * IPSEC processing has already started. 18046 * Complete it. 18047 * IPQoS notes: We don't care what is 18048 * in ipsec_out_ill_index since this 18049 * won't be processed for IPQoS policies 18050 * in ipsec_out_process. 18051 */ 18052 ipsec_out_process(q, mp, NULL, 18053 io->ipsec_out_ill_index); 18054 return; 18055 } else { 18056 connp = (q->q_next != NULL) ? 18057 NULL : Q_TO_CONN(q); 18058 first_mp = mp; 18059 mp = mp->b_cont; 18060 mctl_present = B_TRUE; 18061 } 18062 zoneid = io->ipsec_out_zoneid; 18063 ASSERT(zoneid != ALL_ZONES); 18064 } else if (ii->ipsec_info_type == IPSEC_CTL) { 18065 /* 18066 * It's an IPsec control message requesting 18067 * an SADB update to be sent to the IPsec 18068 * hardware acceleration capable ills. 18069 */ 18070 ipsec_ctl_t *ipsec_ctl = 18071 (ipsec_ctl_t *)mp->b_rptr; 18072 ipsa_t *sa = (ipsa_t *)ipsec_ctl->ipsec_ctl_sa; 18073 uint_t satype = ipsec_ctl->ipsec_ctl_sa_type; 18074 mblk_t *cmp = mp->b_cont; 18075 18076 ASSERT(MBLKL(mp) >= sizeof (ipsec_ctl_t)); 18077 ASSERT(cmp != NULL); 18078 18079 freeb(mp); 18080 ill_ipsec_capab_send_all(satype, cmp, sa); 18081 return; 18082 } else { 18083 /* 18084 * This must be ARP. 18085 */ 18086 ip_wput_nondata(NULL, q, mp, NULL); 18087 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 18088 "ip_wput_end: q %p (%S)", q, "nondata"); 18089 return; 18090 } 18091 } else { 18092 /* 18093 * This must be non-(ARP/AH/ESP) messages. 18094 */ 18095 ASSERT(!need_decref); 18096 ip_wput_nondata(NULL, q, mp, NULL); 18097 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 18098 "ip_wput_end: q %p (%S)", q, "nondata"); 18099 return; 18100 } 18101 } else { 18102 first_mp = mp; 18103 mctl_present = B_FALSE; 18104 } 18105 18106 ASSERT(first_mp != NULL); 18107 /* 18108 * ICMP echo replies attach an ipsec_out and set ipsec_out_attach_if 18109 * to make sure that this packet goes out on the same interface it 18110 * came in. We handle that here. 18111 */ 18112 if (mctl_present) { 18113 uint_t ifindex; 18114 18115 io = (ipsec_out_t *)first_mp->b_rptr; 18116 if (io->ipsec_out_attach_if || 18117 io->ipsec_out_xmit_if) { 18118 ill_t *ill; 18119 18120 ASSERT(io->ipsec_out_ill_index != 0); 18121 ifindex = io->ipsec_out_ill_index; 18122 ill = ill_lookup_on_ifindex(ifindex, B_FALSE, 18123 NULL, NULL, NULL, NULL); 18124 /* 18125 * ipsec_out_xmit_if bit is used to tell 18126 * ip_wput to use the ill to send outgoing data 18127 * as we have no conn when data comes from ICMP 18128 * error msg routines. Currently this feature is 18129 * only used by ip_mrtun_forward routine. 18130 */ 18131 if (io->ipsec_out_xmit_if) { 18132 xmit_ill = ill; 18133 if (xmit_ill == NULL) { 18134 ip1dbg(("ip_wput: bad ifindex for" 18135 "xmit_ill %d\n", ifindex)); 18136 freemsg(first_mp); 18137 BUMP_MIB(&ip_mib, ipOutDiscards); 18138 ASSERT(!need_decref); 18139 return; 18140 } 18141 /* Free up the ipsec_out_t mblk */ 18142 ASSERT(first_mp->b_cont == mp); 18143 first_mp->b_cont = NULL; 18144 freeb(first_mp); 18145 /* Just send the IP header+ICMP+data */ 18146 first_mp = mp; 18147 ipha = (ipha_t *)mp->b_rptr; 18148 dst = ipha->ipha_dst; 18149 goto send_from_ill; 18150 18151 } else { 18152 attach_ill = ill; 18153 } 18154 18155 if (attach_ill == NULL) { 18156 ASSERT(xmit_ill == NULL); 18157 ip1dbg(("ip_wput : bad ifindex for " 18158 "(BIND TO IPIF_NOFAILOVER) %d\n", ifindex)); 18159 freemsg(first_mp); 18160 BUMP_MIB(&ip_mib, ipOutDiscards); 18161 ASSERT(!need_decref); 18162 return; 18163 } 18164 } 18165 } 18166 18167 ASSERT(xmit_ill == NULL); 18168 18169 /* We have a complete IP datagram heading outbound. */ 18170 ipha = (ipha_t *)mp->b_rptr; 18171 18172 #ifndef SPEED_BEFORE_SAFETY 18173 /* 18174 * Make sure we have a full-word aligned message and that at least 18175 * a simple IP header is accessible in the first message. If not, 18176 * try a pullup. 18177 */ 18178 if (!OK_32PTR(rptr) || 18179 (mp->b_wptr - rptr) < IP_SIMPLE_HDR_LENGTH) { 18180 hdrtoosmall: 18181 if (!pullupmsg(mp, IP_SIMPLE_HDR_LENGTH)) { 18182 BUMP_MIB(&ip_mib, ipOutDiscards); 18183 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 18184 "ip_wput_end: q %p (%S)", q, "pullupfailed"); 18185 if (first_mp == NULL) 18186 first_mp = mp; 18187 goto drop_pkt; 18188 } 18189 ipha = (ipha_t *)mp->b_rptr; 18190 if (first_mp == NULL) { 18191 ASSERT(attach_ill == NULL && xmit_ill == NULL); 18192 /* 18193 * If we got here because of "goto hdrtoosmall" 18194 * We need to attach a IPSEC_OUT. 18195 */ 18196 if (connp->conn_out_enforce_policy) { 18197 if (((mp = ipsec_attach_ipsec_out(mp, connp, 18198 NULL, ipha->ipha_protocol)) == NULL)) { 18199 if (need_decref) 18200 CONN_DEC_REF(connp); 18201 return; 18202 } else { 18203 ASSERT(mp->b_datap->db_type == M_CTL); 18204 first_mp = mp; 18205 mp = mp->b_cont; 18206 mctl_present = B_TRUE; 18207 } 18208 } else { 18209 first_mp = mp; 18210 mctl_present = B_FALSE; 18211 } 18212 } 18213 } 18214 #endif 18215 18216 /* Most of the code below is written for speed, not readability */ 18217 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 18218 18219 /* 18220 * If ip_newroute() fails, we're going to need a full 18221 * header for the icmp wraparound. 18222 */ 18223 if (V_HLEN != IP_SIMPLE_HDR_VERSION) { 18224 uint_t v_hlen; 18225 version_hdrlen_check: 18226 ASSERT(first_mp != NULL); 18227 v_hlen = V_HLEN; 18228 /* 18229 * siphon off IPv6 packets coming down from transport 18230 * layer modules here. 18231 * Note: high-order bit carries NUD reachability confirmation 18232 */ 18233 if (((v_hlen >> 4) & 0x7) == IPV6_VERSION) { 18234 /* 18235 * XXX implement a IPv4 and IPv6 packet counter per 18236 * conn and switch when ratio exceeds e.g. 10:1 18237 */ 18238 #ifdef notyet 18239 if (q->q_next == NULL) /* Avoid ill queue */ 18240 ip_setqinfo(RD(q), B_TRUE, B_TRUE); 18241 #endif 18242 BUMP_MIB(&ip_mib, ipOutIPv6); 18243 ASSERT(xmit_ill == NULL); 18244 if (attach_ill != NULL) 18245 ill_refrele(attach_ill); 18246 if (need_decref) 18247 mp->b_flag |= MSGHASREF; 18248 (void) ip_output_v6(connp, first_mp, q, caller); 18249 return; 18250 } 18251 18252 if ((v_hlen >> 4) != IP_VERSION) { 18253 BUMP_MIB(&ip_mib, ipOutDiscards); 18254 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 18255 "ip_wput_end: q %p (%S)", q, "badvers"); 18256 goto drop_pkt; 18257 } 18258 /* 18259 * Is the header length at least 20 bytes? 18260 * 18261 * Are there enough bytes accessible in the header? If 18262 * not, try a pullup. 18263 */ 18264 v_hlen &= 0xF; 18265 v_hlen <<= 2; 18266 if (v_hlen < IP_SIMPLE_HDR_LENGTH) { 18267 BUMP_MIB(&ip_mib, ipOutDiscards); 18268 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 18269 "ip_wput_end: q %p (%S)", q, "badlen"); 18270 goto drop_pkt; 18271 } 18272 if (v_hlen > (mp->b_wptr - rptr)) { 18273 if (!pullupmsg(mp, v_hlen)) { 18274 BUMP_MIB(&ip_mib, ipOutDiscards); 18275 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 18276 "ip_wput_end: q %p (%S)", q, "badpullup2"); 18277 goto drop_pkt; 18278 } 18279 ipha = (ipha_t *)mp->b_rptr; 18280 } 18281 /* 18282 * Move first entry from any source route into ipha_dst and 18283 * verify the options 18284 */ 18285 if (ip_wput_options(q, first_mp, ipha, mctl_present, zoneid)) { 18286 ASSERT(xmit_ill == NULL); 18287 if (attach_ill != NULL) 18288 ill_refrele(attach_ill); 18289 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 18290 "ip_wput_end: q %p (%S)", q, "badopts"); 18291 if (need_decref) 18292 CONN_DEC_REF(connp); 18293 return; 18294 } 18295 } 18296 dst = ipha->ipha_dst; 18297 18298 /* 18299 * Try to get an IRE_CACHE for the destination address. If we can't, 18300 * we have to run the packet through ip_newroute which will take 18301 * the appropriate action to arrange for an IRE_CACHE, such as querying 18302 * a resolver, or assigning a default gateway, etc. 18303 */ 18304 if (CLASSD(dst)) { 18305 ipif_t *ipif; 18306 uint32_t setsrc = 0; 18307 18308 multicast: 18309 ASSERT(first_mp != NULL); 18310 ASSERT(xmit_ill == NULL); 18311 ip2dbg(("ip_wput: CLASSD\n")); 18312 if (connp == NULL) { 18313 /* 18314 * Use the first good ipif on the ill. 18315 * XXX Should this ever happen? (Appears 18316 * to show up with just ppp and no ethernet due 18317 * to in.rdisc.) 18318 * However, ire_send should be able to 18319 * call ip_wput_ire directly. 18320 * 18321 * XXX Also, this can happen for ICMP and other packets 18322 * with multicast source addresses. Perhaps we should 18323 * fix things so that we drop the packet in question, 18324 * but for now, just run with it. 18325 */ 18326 ill_t *ill = (ill_t *)q->q_ptr; 18327 18328 /* 18329 * Don't honor attach_if for this case. If ill 18330 * is part of the group, ipif could belong to 18331 * any ill and we cannot maintain attach_ill 18332 * and ipif_ill same anymore and the assert 18333 * below would fail. 18334 */ 18335 if (mctl_present) { 18336 io->ipsec_out_ill_index = 0; 18337 io->ipsec_out_attach_if = B_FALSE; 18338 ASSERT(attach_ill != NULL); 18339 ill_refrele(attach_ill); 18340 attach_ill = NULL; 18341 } 18342 18343 ASSERT(attach_ill == NULL); 18344 ipif = ipif_select_source(ill, dst, GLOBAL_ZONEID); 18345 if (ipif == NULL) { 18346 if (need_decref) 18347 CONN_DEC_REF(connp); 18348 freemsg(first_mp); 18349 return; 18350 } 18351 ip1dbg(("ip_wput: CLASSD no CONN: dst 0x%x on %s\n", 18352 ntohl(dst), ill->ill_name)); 18353 } else { 18354 /* 18355 * If both IP_MULTICAST_IF and IP_XMIT_IF are set, 18356 * IP_XMIT_IF is honoured. 18357 * Block comment above this function explains the 18358 * locking mechanism used here 18359 */ 18360 xmit_ill = conn_get_held_ill(connp, 18361 &connp->conn_xmit_if_ill, &err); 18362 if (err == ILL_LOOKUP_FAILED) { 18363 ip1dbg(("ip_wput: No ill for IP_XMIT_IF\n")); 18364 goto drop_pkt; 18365 } 18366 if (xmit_ill == NULL) { 18367 ipif = conn_get_held_ipif(connp, 18368 &connp->conn_multicast_ipif, &err); 18369 if (err == IPIF_LOOKUP_FAILED) { 18370 ip1dbg(("ip_wput: No ipif for " 18371 "multicast\n")); 18372 BUMP_MIB(&ip_mib, ipOutNoRoutes); 18373 goto drop_pkt; 18374 } 18375 } 18376 if (xmit_ill != NULL) { 18377 ipif = ipif_get_next_ipif(NULL, xmit_ill); 18378 if (ipif == NULL) { 18379 ip1dbg(("ip_wput: No ipif for " 18380 "IP_XMIT_IF\n")); 18381 BUMP_MIB(&ip_mib, ipOutNoRoutes); 18382 goto drop_pkt; 18383 } 18384 } else if (ipif == NULL || ipif->ipif_isv6) { 18385 /* 18386 * We must do this ipif determination here 18387 * else we could pass through ip_newroute 18388 * and come back here without the conn context. 18389 * 18390 * Note: we do late binding i.e. we bind to 18391 * the interface when the first packet is sent. 18392 * For performance reasons we do not rebind on 18393 * each packet but keep the binding until the 18394 * next IP_MULTICAST_IF option. 18395 * 18396 * conn_multicast_{ipif,ill} are shared between 18397 * IPv4 and IPv6 and AF_INET6 sockets can 18398 * send both IPv4 and IPv6 packets. Hence 18399 * we have to check that "isv6" matches above. 18400 */ 18401 if (ipif != NULL) 18402 ipif_refrele(ipif); 18403 ipif = ipif_lookup_group(dst, zoneid); 18404 if (ipif == NULL) { 18405 ip1dbg(("ip_wput: No ipif for " 18406 "multicast\n")); 18407 BUMP_MIB(&ip_mib, ipOutNoRoutes); 18408 goto drop_pkt; 18409 } 18410 err = conn_set_held_ipif(connp, 18411 &connp->conn_multicast_ipif, ipif); 18412 if (err == IPIF_LOOKUP_FAILED) { 18413 ipif_refrele(ipif); 18414 ip1dbg(("ip_wput: No ipif for " 18415 "multicast\n")); 18416 BUMP_MIB(&ip_mib, ipOutNoRoutes); 18417 goto drop_pkt; 18418 } 18419 } 18420 } 18421 ASSERT(!ipif->ipif_isv6); 18422 /* 18423 * As we may lose the conn by the time we reach ip_wput_ire, 18424 * we copy conn_multicast_loop and conn_dontroute on to an 18425 * ipsec_out. In case if this datagram goes out secure, 18426 * we need the ill_index also. Copy that also into the 18427 * ipsec_out. 18428 */ 18429 if (mctl_present) { 18430 io = (ipsec_out_t *)first_mp->b_rptr; 18431 ASSERT(first_mp->b_datap->db_type == M_CTL); 18432 ASSERT(io->ipsec_out_type == IPSEC_OUT); 18433 } else { 18434 ASSERT(mp == first_mp); 18435 if ((first_mp = allocb(sizeof (ipsec_info_t), 18436 BPRI_HI)) == NULL) { 18437 ipif_refrele(ipif); 18438 first_mp = mp; 18439 goto drop_pkt; 18440 } 18441 first_mp->b_datap->db_type = M_CTL; 18442 first_mp->b_wptr += sizeof (ipsec_info_t); 18443 /* ipsec_out_secure is B_FALSE now */ 18444 bzero(first_mp->b_rptr, sizeof (ipsec_info_t)); 18445 io = (ipsec_out_t *)first_mp->b_rptr; 18446 io->ipsec_out_type = IPSEC_OUT; 18447 io->ipsec_out_len = sizeof (ipsec_out_t); 18448 io->ipsec_out_use_global_policy = B_TRUE; 18449 first_mp->b_cont = mp; 18450 mctl_present = B_TRUE; 18451 } 18452 if (attach_ill != NULL) { 18453 ASSERT(attach_ill == ipif->ipif_ill); 18454 match_flags = MATCH_IRE_ILL; 18455 18456 /* 18457 * Check if we need an ire that will not be 18458 * looked up by anybody else i.e. HIDDEN. 18459 */ 18460 if (ill_is_probeonly(attach_ill)) { 18461 match_flags |= MATCH_IRE_MARK_HIDDEN; 18462 } 18463 io->ipsec_out_ill_index = 18464 attach_ill->ill_phyint->phyint_ifindex; 18465 io->ipsec_out_attach_if = B_TRUE; 18466 } else { 18467 match_flags = MATCH_IRE_ILL_GROUP; 18468 io->ipsec_out_ill_index = 18469 ipif->ipif_ill->ill_phyint->phyint_ifindex; 18470 } 18471 if (connp != NULL) { 18472 io->ipsec_out_multicast_loop = 18473 connp->conn_multicast_loop; 18474 io->ipsec_out_dontroute = connp->conn_dontroute; 18475 io->ipsec_out_zoneid = connp->conn_zoneid; 18476 } 18477 /* 18478 * If the application uses IP_MULTICAST_IF with 18479 * different logical addresses of the same ILL, we 18480 * need to make sure that the soruce address of 18481 * the packet matches the logical IP address used 18482 * in the option. We do it by initializing ipha_src 18483 * here. This should keep IPSEC also happy as 18484 * when we return from IPSEC processing, we don't 18485 * have to worry about getting the right address on 18486 * the packet. Thus it is sufficient to look for 18487 * IRE_CACHE using MATCH_IRE_ILL rathen than 18488 * MATCH_IRE_IPIF. 18489 * 18490 * NOTE : We need to do it for non-secure case also as 18491 * this might go out secure if there is a global policy 18492 * match in ip_wput_ire. For bind to IPIF_NOFAILOVER 18493 * address, the source should be initialized already and 18494 * hence we won't be initializing here. 18495 * 18496 * As we do not have the ire yet, it is possible that 18497 * we set the source address here and then later discover 18498 * that the ire implies the source address to be assigned 18499 * through the RTF_SETSRC flag. 18500 * In that case, the setsrc variable will remind us 18501 * that overwritting the source address by the one 18502 * of the RTF_SETSRC-flagged ire is allowed. 18503 */ 18504 if (ipha->ipha_src == INADDR_ANY && 18505 (connp == NULL || !connp->conn_unspec_src)) { 18506 ipha->ipha_src = ipif->ipif_src_addr; 18507 setsrc = RTF_SETSRC; 18508 } 18509 /* 18510 * Find an IRE which matches the destination and the outgoing 18511 * queue (i.e. the outgoing interface.) 18512 * For loopback use a unicast IP address for 18513 * the ire lookup. 18514 */ 18515 if (ipif->ipif_ill->ill_phyint->phyint_flags & 18516 PHYI_LOOPBACK) { 18517 dst = ipif->ipif_lcl_addr; 18518 } 18519 /* 18520 * If IP_XMIT_IF is set, we branch out to ip_newroute_ipif. 18521 * We don't need to lookup ire in ctable as the packet 18522 * needs to be sent to the destination through the specified 18523 * ill irrespective of ires in the cache table. 18524 */ 18525 ire = NULL; 18526 if (xmit_ill == NULL) { 18527 ire = ire_ctable_lookup(dst, 0, 0, ipif, 18528 zoneid, match_flags); 18529 } 18530 18531 /* 18532 * refrele attach_ill as its not needed anymore. 18533 */ 18534 if (attach_ill != NULL) { 18535 ill_refrele(attach_ill); 18536 attach_ill = NULL; 18537 } 18538 18539 if (ire == NULL) { 18540 /* 18541 * Multicast loopback and multicast forwarding is 18542 * done in ip_wput_ire. 18543 * 18544 * Mark this packet to make it be delivered to 18545 * ip_wput_ire after the new ire has been 18546 * created. 18547 * 18548 * The call to ip_newroute_ipif takes into account 18549 * the setsrc reminder. In any case, we take care 18550 * of the RTF_MULTIRT flag. 18551 */ 18552 mp->b_prev = mp->b_next = NULL; 18553 if (xmit_ill == NULL || 18554 xmit_ill->ill_ipif_up_count > 0) { 18555 ip_newroute_ipif(q, first_mp, ipif, dst, connp, 18556 setsrc | RTF_MULTIRT); 18557 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 18558 "ip_wput_end: q %p (%S)", q, "noire"); 18559 } else { 18560 freemsg(first_mp); 18561 } 18562 ipif_refrele(ipif); 18563 if (xmit_ill != NULL) 18564 ill_refrele(xmit_ill); 18565 if (need_decref) 18566 CONN_DEC_REF(connp); 18567 return; 18568 } 18569 18570 ipif_refrele(ipif); 18571 ipif = NULL; 18572 ASSERT(xmit_ill == NULL); 18573 18574 /* 18575 * Honor the RTF_SETSRC flag for multicast packets, 18576 * if allowed by the setsrc reminder. 18577 */ 18578 if ((ire->ire_flags & RTF_SETSRC) && setsrc) { 18579 ipha->ipha_src = ire->ire_src_addr; 18580 } 18581 18582 /* 18583 * Unconditionally force the TTL to 1 for 18584 * multirouted multicast packets: 18585 * multirouted multicast should not cross 18586 * multicast routers. 18587 */ 18588 if (ire->ire_flags & RTF_MULTIRT) { 18589 if (ipha->ipha_ttl > 1) { 18590 ip2dbg(("ip_wput: forcing multicast " 18591 "multirt TTL to 1 (was %d), dst 0x%08x\n", 18592 ipha->ipha_ttl, ntohl(ire->ire_addr))); 18593 ipha->ipha_ttl = 1; 18594 } 18595 } 18596 } else { 18597 ire = ire_cache_lookup(dst, zoneid); 18598 if ((ire != NULL) && (ire->ire_type & 18599 (IRE_BROADCAST | IRE_LOCAL | IRE_LOOPBACK))) { 18600 ignore_dontroute = B_TRUE; 18601 } 18602 if (ire != NULL) { 18603 ire_refrele(ire); 18604 ire = NULL; 18605 } 18606 /* 18607 * Guard against coming in from arp in which case conn is NULL. 18608 * Also guard against non M_DATA with dontroute set but 18609 * destined to local, loopback or broadcast addresses. 18610 */ 18611 if (connp != NULL && connp->conn_dontroute && 18612 !ignore_dontroute) { 18613 dontroute: 18614 /* 18615 * Set TTL to 1 if SO_DONTROUTE is set to prevent 18616 * routing protocols from seeing false direct 18617 * connectivity. 18618 */ 18619 ipha->ipha_ttl = 1; 18620 /* 18621 * If IP_XMIT_IF is also set (conn_xmit_if_ill != NULL) 18622 * along with SO_DONTROUTE, higher precedence is 18623 * given to IP_XMIT_IF and the IP_XMIT_IF ipif is used. 18624 */ 18625 if (connp->conn_xmit_if_ill == NULL) { 18626 /* If suitable ipif not found, drop packet */ 18627 dst_ipif = ipif_lookup_onlink_addr(dst, zoneid); 18628 if (dst_ipif == NULL) { 18629 ip1dbg(("ip_wput: no route for " 18630 "dst using SO_DONTROUTE\n")); 18631 BUMP_MIB(&ip_mib, ipOutNoRoutes); 18632 mp->b_prev = mp->b_next = NULL; 18633 if (first_mp == NULL) 18634 first_mp = mp; 18635 goto drop_pkt; 18636 } else { 18637 /* 18638 * If suitable ipif has been found, set 18639 * xmit_ill to the corresponding 18640 * ipif_ill because we'll be following 18641 * the IP_XMIT_IF logic. 18642 */ 18643 ASSERT(xmit_ill == NULL); 18644 xmit_ill = dst_ipif->ipif_ill; 18645 mutex_enter(&xmit_ill->ill_lock); 18646 if (!ILL_CAN_LOOKUP(xmit_ill)) { 18647 mutex_exit(&xmit_ill->ill_lock); 18648 xmit_ill = NULL; 18649 ipif_refrele(dst_ipif); 18650 ip1dbg(("ip_wput: no route for" 18651 " dst using" 18652 " SO_DONTROUTE\n")); 18653 BUMP_MIB(&ip_mib, 18654 ipOutNoRoutes); 18655 mp->b_prev = mp->b_next = NULL; 18656 if (first_mp == NULL) 18657 first_mp = mp; 18658 goto drop_pkt; 18659 } 18660 ill_refhold_locked(xmit_ill); 18661 mutex_exit(&xmit_ill->ill_lock); 18662 ipif_refrele(dst_ipif); 18663 } 18664 } 18665 18666 } 18667 /* 18668 * If we are bound to IPIF_NOFAILOVER address, look for 18669 * an IRE_CACHE matching the ill. 18670 */ 18671 send_from_ill: 18672 if (attach_ill != NULL) { 18673 ipif_t *attach_ipif; 18674 18675 match_flags = MATCH_IRE_ILL; 18676 18677 /* 18678 * Check if we need an ire that will not be 18679 * looked up by anybody else i.e. HIDDEN. 18680 */ 18681 if (ill_is_probeonly(attach_ill)) { 18682 match_flags |= MATCH_IRE_MARK_HIDDEN; 18683 } 18684 18685 attach_ipif = ipif_get_next_ipif(NULL, attach_ill); 18686 if (attach_ipif == NULL) { 18687 ip1dbg(("ip_wput: No ipif for attach_ill\n")); 18688 goto drop_pkt; 18689 } 18690 ire = ire_ctable_lookup(dst, 0, 0, attach_ipif, 18691 zoneid, match_flags); 18692 ipif_refrele(attach_ipif); 18693 } else if (xmit_ill != NULL || (connp != NULL && 18694 connp->conn_xmit_if_ill != NULL)) { 18695 /* 18696 * Mark this packet as originated locally 18697 */ 18698 mp->b_prev = mp->b_next = NULL; 18699 /* 18700 * xmit_ill could be NULL if SO_DONTROUTE 18701 * is also set. 18702 */ 18703 if (xmit_ill == NULL) { 18704 xmit_ill = conn_get_held_ill(connp, 18705 &connp->conn_xmit_if_ill, &err); 18706 if (err == ILL_LOOKUP_FAILED) { 18707 if (need_decref) 18708 CONN_DEC_REF(connp); 18709 freemsg(first_mp); 18710 return; 18711 } 18712 if (xmit_ill == NULL) { 18713 if (connp->conn_dontroute) 18714 goto dontroute; 18715 goto send_from_ill; 18716 } 18717 } 18718 /* 18719 * could be SO_DONTROUTE case also. 18720 * check at least one interface is UP as 18721 * spcified by this ILL, and then call 18722 * ip_newroute_ipif() 18723 */ 18724 if (xmit_ill->ill_ipif_up_count > 0) { 18725 ipif_t *ipif; 18726 18727 ipif = ipif_get_next_ipif(NULL, xmit_ill); 18728 if (ipif != NULL) { 18729 ip_newroute_ipif(q, first_mp, ipif, 18730 dst, connp, 0); 18731 ipif_refrele(ipif); 18732 ip1dbg(("ip_wput: ip_unicast_if\n")); 18733 } 18734 } else { 18735 freemsg(first_mp); 18736 } 18737 ill_refrele(xmit_ill); 18738 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 18739 "ip_wput_end: q %p (%S)", q, "unicast_if"); 18740 if (need_decref) 18741 CONN_DEC_REF(connp); 18742 return; 18743 } else { 18744 ire = ire_cache_lookup(dst, zoneid); 18745 } 18746 if (!ire) { 18747 /* 18748 * Make sure we don't load spread if this 18749 * is IPIF_NOFAILOVER case. 18750 */ 18751 if (attach_ill != NULL) { 18752 if (mctl_present) { 18753 io = (ipsec_out_t *)first_mp->b_rptr; 18754 ASSERT(first_mp->b_datap->db_type == 18755 M_CTL); 18756 ASSERT(io->ipsec_out_type == IPSEC_OUT); 18757 } else { 18758 ASSERT(mp == first_mp); 18759 first_mp = allocb( 18760 sizeof (ipsec_info_t), BPRI_HI); 18761 if (first_mp == NULL) { 18762 first_mp = mp; 18763 goto drop_pkt; 18764 } 18765 first_mp->b_datap->db_type = M_CTL; 18766 first_mp->b_wptr += 18767 sizeof (ipsec_info_t); 18768 /* ipsec_out_secure is B_FALSE now */ 18769 bzero(first_mp->b_rptr, 18770 sizeof (ipsec_info_t)); 18771 io = (ipsec_out_t *)first_mp->b_rptr; 18772 io->ipsec_out_type = IPSEC_OUT; 18773 io->ipsec_out_len = 18774 sizeof (ipsec_out_t); 18775 io->ipsec_out_use_global_policy = 18776 B_TRUE; 18777 first_mp->b_cont = mp; 18778 mctl_present = B_TRUE; 18779 } 18780 io->ipsec_out_ill_index = attach_ill-> 18781 ill_phyint->phyint_ifindex; 18782 io->ipsec_out_attach_if = B_TRUE; 18783 } 18784 noirefound: 18785 /* 18786 * Mark this packet as having originated on 18787 * this machine. This will be noted in 18788 * ire_add_then_send, which needs to know 18789 * whether to run it back through ip_wput or 18790 * ip_rput following successful resolution. 18791 */ 18792 mp->b_prev = NULL; 18793 mp->b_next = NULL; 18794 ip_newroute(q, first_mp, dst, NULL, connp); 18795 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 18796 "ip_wput_end: q %p (%S)", q, "newroute"); 18797 if (attach_ill != NULL) 18798 ill_refrele(attach_ill); 18799 if (xmit_ill != NULL) 18800 ill_refrele(xmit_ill); 18801 if (need_decref) 18802 CONN_DEC_REF(connp); 18803 return; 18804 } 18805 } 18806 18807 /* We now know where we are going with it. */ 18808 18809 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 18810 "ip_wput_end: q %p (%S)", q, "end"); 18811 18812 /* 18813 * Check if the ire has the RTF_MULTIRT flag, inherited 18814 * from an IRE_OFFSUBNET ire entry in ip_newroute. 18815 */ 18816 if (ire->ire_flags & RTF_MULTIRT) { 18817 /* 18818 * Force the TTL of multirouted packets if required. 18819 * The TTL of such packets is bounded by the 18820 * ip_multirt_ttl ndd variable. 18821 */ 18822 if ((ip_multirt_ttl > 0) && 18823 (ipha->ipha_ttl > ip_multirt_ttl)) { 18824 ip2dbg(("ip_wput: forcing multirt TTL to %d " 18825 "(was %d), dst 0x%08x\n", 18826 ip_multirt_ttl, ipha->ipha_ttl, 18827 ntohl(ire->ire_addr))); 18828 ipha->ipha_ttl = ip_multirt_ttl; 18829 } 18830 /* 18831 * At this point, we check to see if there are any pending 18832 * unresolved routes. ire_multirt_resolvable() 18833 * checks in O(n) that all IRE_OFFSUBNET ire 18834 * entries for the packet's destination and 18835 * flagged RTF_MULTIRT are currently resolved. 18836 * If some remain unresolved, we make a copy 18837 * of the current message. It will be used 18838 * to initiate additional route resolutions. 18839 */ 18840 multirt_need_resolve = ire_multirt_need_resolve(ire->ire_addr); 18841 ip2dbg(("ip_wput[noirefound]: ire %p, " 18842 "multirt_need_resolve %d, first_mp %p\n", 18843 (void *)ire, multirt_need_resolve, (void *)first_mp)); 18844 if (multirt_need_resolve) { 18845 copy_mp = copymsg(first_mp); 18846 if (copy_mp != NULL) { 18847 MULTIRT_DEBUG_TAG(copy_mp); 18848 } 18849 } 18850 } 18851 18852 ip_wput_ire(q, first_mp, ire, connp, caller); 18853 /* 18854 * Try to resolve another multiroute if 18855 * ire_multirt_resolvable() deemed it necessary. 18856 * At this point, we need to distinguish 18857 * multicasts from other packets. For multicasts, 18858 * we call ip_newroute_ipif() and request that both 18859 * multirouting and setsrc flags are checked. 18860 */ 18861 if (copy_mp != NULL) { 18862 if (CLASSD(dst)) { 18863 ipif_t *ipif = ipif_lookup_group(dst, zoneid); 18864 if (ipif) { 18865 ip_newroute_ipif(q, copy_mp, ipif, dst, connp, 18866 RTF_SETSRC | RTF_MULTIRT); 18867 ipif_refrele(ipif); 18868 } else { 18869 MULTIRT_DEBUG_UNTAG(copy_mp); 18870 freemsg(copy_mp); 18871 copy_mp = NULL; 18872 } 18873 } else { 18874 ip_newroute(q, copy_mp, dst, NULL, connp); 18875 } 18876 } 18877 if (attach_ill != NULL) 18878 ill_refrele(attach_ill); 18879 if (xmit_ill != NULL) 18880 ill_refrele(xmit_ill); 18881 if (need_decref) 18882 CONN_DEC_REF(connp); 18883 return; 18884 18885 drop_pkt: 18886 ip1dbg(("ip_wput: dropped packet\n")); 18887 if (ire != NULL) 18888 ire_refrele(ire); 18889 if (need_decref) 18890 CONN_DEC_REF(connp); 18891 freemsg(first_mp); 18892 if (attach_ill != NULL) 18893 ill_refrele(attach_ill); 18894 if (xmit_ill != NULL) 18895 ill_refrele(xmit_ill); 18896 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 18897 "ip_wput_end: q %p (%S)", q, "droppkt"); 18898 } 18899 18900 void 18901 ip_wput(queue_t *q, mblk_t *mp) 18902 { 18903 ip_output(Q_TO_CONN(q), mp, q, IP_WPUT); 18904 } 18905 18906 /* 18907 * 18908 * The following rules must be observed when accessing any ipif or ill 18909 * that has been cached in the conn. Typically conn_nofailover_ill, 18910 * conn_xmit_if_ill, conn_multicast_ipif and conn_multicast_ill. 18911 * 18912 * Access: The ipif or ill pointed to from the conn can be accessed under 18913 * the protection of the conn_lock or after it has been refheld under the 18914 * protection of the conn lock. In addition the IPIF_CAN_LOOKUP or 18915 * ILL_CAN_LOOKUP macros must be used before actually doing the refhold. 18916 * The reason for this is that a concurrent unplumb could actually be 18917 * cleaning up these cached pointers by walking the conns and might have 18918 * finished cleaning up the conn in question. The macros check that an 18919 * unplumb has not yet started on the ipif or ill. 18920 * 18921 * Caching: An ipif or ill pointer may be cached in the conn only after 18922 * making sure that an unplumb has not started. So the caching is done 18923 * while holding both the conn_lock and the ill_lock and after using the 18924 * ILL_CAN_LOOKUP/IPIF_CAN_LOOKUP macro. An unplumb will set the ILL_CONDEMNED 18925 * flag before starting the cleanup of conns. 18926 * 18927 * The list of ipifs hanging off the ill is protected by ill_g_lock and ill_lock 18928 * On the other hand to access ipif->ipif_ill, we need one of either ill_g_lock 18929 * or a reference to the ipif or a reference to an ire that references the 18930 * ipif. An ipif does not change its ill except for failover/failback. Since 18931 * failover/failback happens only after bringing down the ipif and making sure 18932 * the ipif refcnt has gone to zero and holding the ill_g_lock and ill_lock 18933 * the above holds. 18934 */ 18935 static ipif_t * 18936 conn_get_held_ipif(conn_t *connp, ipif_t **ipifp, int *err) 18937 { 18938 ipif_t *ipif; 18939 ill_t *ill; 18940 18941 *err = 0; 18942 rw_enter(&ill_g_lock, RW_READER); 18943 mutex_enter(&connp->conn_lock); 18944 ipif = *ipifp; 18945 if (ipif != NULL) { 18946 ill = ipif->ipif_ill; 18947 mutex_enter(&ill->ill_lock); 18948 if (IPIF_CAN_LOOKUP(ipif)) { 18949 ipif_refhold_locked(ipif); 18950 mutex_exit(&ill->ill_lock); 18951 mutex_exit(&connp->conn_lock); 18952 rw_exit(&ill_g_lock); 18953 return (ipif); 18954 } else { 18955 *err = IPIF_LOOKUP_FAILED; 18956 } 18957 mutex_exit(&ill->ill_lock); 18958 } 18959 mutex_exit(&connp->conn_lock); 18960 rw_exit(&ill_g_lock); 18961 return (NULL); 18962 } 18963 18964 ill_t * 18965 conn_get_held_ill(conn_t *connp, ill_t **illp, int *err) 18966 { 18967 ill_t *ill; 18968 18969 *err = 0; 18970 mutex_enter(&connp->conn_lock); 18971 ill = *illp; 18972 if (ill != NULL) { 18973 mutex_enter(&ill->ill_lock); 18974 if (ILL_CAN_LOOKUP(ill)) { 18975 ill_refhold_locked(ill); 18976 mutex_exit(&ill->ill_lock); 18977 mutex_exit(&connp->conn_lock); 18978 return (ill); 18979 } else { 18980 *err = ILL_LOOKUP_FAILED; 18981 } 18982 mutex_exit(&ill->ill_lock); 18983 } 18984 mutex_exit(&connp->conn_lock); 18985 return (NULL); 18986 } 18987 18988 static int 18989 conn_set_held_ipif(conn_t *connp, ipif_t **ipifp, ipif_t *ipif) 18990 { 18991 ill_t *ill; 18992 18993 ill = ipif->ipif_ill; 18994 mutex_enter(&connp->conn_lock); 18995 mutex_enter(&ill->ill_lock); 18996 if (IPIF_CAN_LOOKUP(ipif)) { 18997 *ipifp = ipif; 18998 mutex_exit(&ill->ill_lock); 18999 mutex_exit(&connp->conn_lock); 19000 return (0); 19001 } 19002 mutex_exit(&ill->ill_lock); 19003 mutex_exit(&connp->conn_lock); 19004 return (IPIF_LOOKUP_FAILED); 19005 } 19006 19007 /* 19008 * This is called if the outbound datagram needs fragmentation. 19009 * 19010 * NOTE : This function does not ire_refrele the ire argument passed in. 19011 */ 19012 static void 19013 ip_wput_ire_fragmentit(mblk_t *ipsec_mp, ire_t *ire) 19014 { 19015 ipha_t *ipha; 19016 mblk_t *mp; 19017 uint32_t v_hlen_tos_len; 19018 uint32_t max_frag; 19019 uint32_t frag_flag; 19020 boolean_t dont_use; 19021 19022 if (ipsec_mp->b_datap->db_type == M_CTL) { 19023 mp = ipsec_mp->b_cont; 19024 } else { 19025 mp = ipsec_mp; 19026 } 19027 19028 ipha = (ipha_t *)mp->b_rptr; 19029 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 19030 19031 #ifdef _BIG_ENDIAN 19032 #define V_HLEN (v_hlen_tos_len >> 24) 19033 #define LENGTH (v_hlen_tos_len & 0xFFFF) 19034 #else 19035 #define V_HLEN (v_hlen_tos_len & 0xFF) 19036 #define LENGTH ((v_hlen_tos_len >> 24) | ((v_hlen_tos_len >> 8) & 0xFF00)) 19037 #endif 19038 19039 #ifndef SPEED_BEFORE_SAFETY 19040 /* 19041 * Check that ipha_length is consistent with 19042 * the mblk length 19043 */ 19044 if (LENGTH != (mp->b_cont ? msgdsize(mp) : mp->b_wptr - rptr)) { 19045 ip0dbg(("Packet length mismatch: %d, %ld\n", 19046 LENGTH, msgdsize(mp))); 19047 freemsg(ipsec_mp); 19048 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 19049 "ip_wput_ire_fragmentit: mp %p (%S)", mp, 19050 "packet length mismatch"); 19051 return; 19052 } 19053 #endif 19054 /* 19055 * Don't use frag_flag if pre-built packet or source 19056 * routed or if multicast (since multicast packets do not solicit 19057 * ICMP "packet too big" messages). Get the values of 19058 * max_frag and frag_flag atomically by acquiring the 19059 * ire_lock. 19060 */ 19061 mutex_enter(&ire->ire_lock); 19062 max_frag = ire->ire_max_frag; 19063 frag_flag = ire->ire_frag_flag; 19064 mutex_exit(&ire->ire_lock); 19065 19066 dont_use = ((ipha->ipha_ident == IP_HDR_INCLUDED) || 19067 (V_HLEN != IP_SIMPLE_HDR_VERSION && 19068 ip_source_route_included(ipha)) || CLASSD(ipha->ipha_dst)); 19069 19070 ip_wput_frag(ire, ipsec_mp, OB_PKT, max_frag, 19071 (dont_use ? 0 : frag_flag)); 19072 } 19073 19074 /* 19075 * Used for deciding the MSS size for the upper layer. Thus 19076 * we need to check the outbound policy values in the conn. 19077 */ 19078 int 19079 conn_ipsec_length(conn_t *connp) 19080 { 19081 ipsec_latch_t *ipl; 19082 19083 ipl = connp->conn_latch; 19084 if (ipl == NULL) 19085 return (0); 19086 19087 if (ipl->ipl_out_policy == NULL) 19088 return (0); 19089 19090 return (ipl->ipl_out_policy->ipsp_act->ipa_ovhd); 19091 } 19092 19093 /* 19094 * Returns an estimate of the IPSEC headers size. This is used if 19095 * we don't want to call into IPSEC to get the exact size. 19096 */ 19097 int 19098 ipsec_out_extra_length(mblk_t *ipsec_mp) 19099 { 19100 ipsec_out_t *io = (ipsec_out_t *)ipsec_mp->b_rptr; 19101 ipsec_action_t *a; 19102 19103 ASSERT(io->ipsec_out_type == IPSEC_OUT); 19104 if (!io->ipsec_out_secure) 19105 return (0); 19106 19107 a = io->ipsec_out_act; 19108 19109 if (a == NULL) { 19110 ASSERT(io->ipsec_out_policy != NULL); 19111 a = io->ipsec_out_policy->ipsp_act; 19112 } 19113 ASSERT(a != NULL); 19114 19115 return (a->ipa_ovhd); 19116 } 19117 19118 /* 19119 * Returns an estimate of the IPSEC headers size. This is used if 19120 * we don't want to call into IPSEC to get the exact size. 19121 */ 19122 int 19123 ipsec_in_extra_length(mblk_t *ipsec_mp) 19124 { 19125 ipsec_in_t *ii = (ipsec_in_t *)ipsec_mp->b_rptr; 19126 ipsec_action_t *a; 19127 19128 ASSERT(ii->ipsec_in_type == IPSEC_IN); 19129 19130 a = ii->ipsec_in_action; 19131 return (a == NULL ? 0 : a->ipa_ovhd); 19132 } 19133 19134 /* 19135 * If there are any source route options, return the true final 19136 * destination. Otherwise, return the destination. 19137 */ 19138 ipaddr_t 19139 ip_get_dst(ipha_t *ipha) 19140 { 19141 ipoptp_t opts; 19142 uchar_t *opt; 19143 uint8_t optval; 19144 uint8_t optlen; 19145 ipaddr_t dst; 19146 uint32_t off; 19147 19148 dst = ipha->ipha_dst; 19149 19150 if (IS_SIMPLE_IPH(ipha)) 19151 return (dst); 19152 19153 for (optval = ipoptp_first(&opts, ipha); 19154 optval != IPOPT_EOL; 19155 optval = ipoptp_next(&opts)) { 19156 opt = opts.ipoptp_cur; 19157 optlen = opts.ipoptp_len; 19158 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 19159 switch (optval) { 19160 case IPOPT_SSRR: 19161 case IPOPT_LSRR: 19162 off = opt[IPOPT_OFFSET]; 19163 /* 19164 * If one of the conditions is true, it means 19165 * end of options and dst already has the right 19166 * value. 19167 */ 19168 if (!(optlen < IP_ADDR_LEN || off > optlen - 3)) { 19169 off = optlen - IP_ADDR_LEN; 19170 bcopy(&opt[off], &dst, IP_ADDR_LEN); 19171 } 19172 return (dst); 19173 default: 19174 break; 19175 } 19176 } 19177 19178 return (dst); 19179 } 19180 19181 mblk_t * 19182 ip_wput_ire_parse_ipsec_out(mblk_t *mp, ipha_t *ipha, ip6_t *ip6h, ire_t *ire, 19183 conn_t *connp, boolean_t unspec_src) 19184 { 19185 ipsec_out_t *io; 19186 mblk_t *first_mp; 19187 boolean_t policy_present; 19188 19189 first_mp = mp; 19190 if (mp->b_datap->db_type == M_CTL) { 19191 io = (ipsec_out_t *)first_mp->b_rptr; 19192 /* 19193 * ip_wput[_v6] attaches an IPSEC_OUT in two cases. 19194 * 19195 * 1) There is per-socket policy (including cached global 19196 * policy). 19197 * 2) There is no per-socket policy, but it is 19198 * a multicast packet that needs to go out 19199 * on a specific interface. This is the case 19200 * where (ip_wput and ip_wput_multicast) attaches 19201 * an IPSEC_OUT and sets ipsec_out_secure B_FALSE. 19202 * 19203 * In case (2) we check with global policy to 19204 * see if there is a match and set the ill_index 19205 * appropriately so that we can lookup the ire 19206 * properly in ip_wput_ipsec_out. 19207 */ 19208 19209 /* 19210 * ipsec_out_use_global_policy is set to B_FALSE 19211 * in ipsec_in_to_out(). Refer to that function for 19212 * details. 19213 */ 19214 if ((io->ipsec_out_latch == NULL) && 19215 (io->ipsec_out_use_global_policy)) { 19216 return (ip_wput_attach_policy(first_mp, ipha, ip6h, 19217 ire, connp, unspec_src)); 19218 } 19219 if (!io->ipsec_out_secure) { 19220 /* 19221 * If this is not a secure packet, drop 19222 * the IPSEC_OUT mp and treat it as a clear 19223 * packet. This happens when we are sending 19224 * a ICMP reply back to a clear packet. See 19225 * ipsec_in_to_out() for details. 19226 */ 19227 mp = first_mp->b_cont; 19228 freeb(first_mp); 19229 } 19230 return (mp); 19231 } 19232 /* 19233 * See whether we need to attach a global policy here. We 19234 * don't depend on the conn (as it could be null) for deciding 19235 * what policy this datagram should go through because it 19236 * should have happened in ip_wput if there was some 19237 * policy. This normally happens for connections which are not 19238 * fully bound preventing us from caching policies in 19239 * ip_bind. Packets coming from the TCP listener/global queue 19240 * - which are non-hard_bound - could also be affected by 19241 * applying policy here. 19242 * 19243 * If this packet is coming from tcp global queue or listener, 19244 * we will be applying policy here. This may not be *right* 19245 * if these packets are coming from the detached connection as 19246 * it could have gone in clear before. This happens only if a 19247 * TCP connection started when there is no policy and somebody 19248 * added policy before it became detached. Thus packets of the 19249 * detached connection could go out secure and the other end 19250 * would drop it because it will be expecting in clear. The 19251 * converse is not true i.e if somebody starts a TCP 19252 * connection and deletes the policy, all the packets will 19253 * still go out with the policy that existed before deleting 19254 * because ip_unbind sends up policy information which is used 19255 * by TCP on subsequent ip_wputs. The right solution is to fix 19256 * TCP to attach a dummy IPSEC_OUT and set 19257 * ipsec_out_use_global_policy to B_FALSE. As this might 19258 * affect performance for normal cases, we are not doing it. 19259 * Thus, set policy before starting any TCP connections. 19260 * 19261 * NOTE - We might apply policy even for a hard bound connection 19262 * - for which we cached policy in ip_bind - if somebody added 19263 * global policy after we inherited the policy in ip_bind. 19264 * This means that the packets that were going out in clear 19265 * previously would start going secure and hence get dropped 19266 * on the other side. To fix this, TCP attaches a dummy 19267 * ipsec_out and make sure that we don't apply global policy. 19268 */ 19269 if (ipha != NULL) 19270 policy_present = ipsec_outbound_v4_policy_present; 19271 else 19272 policy_present = ipsec_outbound_v6_policy_present; 19273 if (!policy_present) 19274 return (mp); 19275 19276 return (ip_wput_attach_policy(mp, ipha, ip6h, ire, connp, unspec_src)); 19277 } 19278 19279 ire_t * 19280 conn_set_outgoing_ill(conn_t *connp, ire_t *ire, ill_t **conn_outgoing_ill) 19281 { 19282 ipaddr_t addr; 19283 ire_t *save_ire; 19284 irb_t *irb; 19285 ill_group_t *illgrp; 19286 int err; 19287 19288 save_ire = ire; 19289 addr = ire->ire_addr; 19290 19291 ASSERT(ire->ire_type == IRE_BROADCAST); 19292 19293 illgrp = connp->conn_outgoing_ill->ill_group; 19294 if (illgrp == NULL) { 19295 *conn_outgoing_ill = conn_get_held_ill(connp, 19296 &connp->conn_outgoing_ill, &err); 19297 if (err == ILL_LOOKUP_FAILED) { 19298 ire_refrele(save_ire); 19299 return (NULL); 19300 } 19301 return (save_ire); 19302 } 19303 /* 19304 * If IP_BOUND_IF has been done, conn_outgoing_ill will be set. 19305 * If it is part of the group, we need to send on the ire 19306 * that has been cleared of IRE_MARK_NORECV and that belongs 19307 * to this group. This is okay as IP_BOUND_IF really means 19308 * any ill in the group. We depend on the fact that the 19309 * first ire in the group is always cleared of IRE_MARK_NORECV 19310 * if such an ire exists. This is possible only if you have 19311 * at least one ill in the group that has not failed. 19312 * 19313 * First get to the ire that matches the address and group. 19314 * 19315 * We don't look for an ire with a matching zoneid because a given zone 19316 * won't always have broadcast ires on all ills in the group. 19317 */ 19318 irb = ire->ire_bucket; 19319 rw_enter(&irb->irb_lock, RW_READER); 19320 if (ire->ire_marks & IRE_MARK_NORECV) { 19321 /* 19322 * If the current zone only has an ire broadcast for this 19323 * address marked NORECV, the ire we want is ahead in the 19324 * bucket, so we look it up deliberately ignoring the zoneid. 19325 */ 19326 for (ire = irb->irb_ire; ire != NULL; ire = ire->ire_next) { 19327 if (ire->ire_addr != addr) 19328 continue; 19329 /* skip over deleted ires */ 19330 if (ire->ire_marks & IRE_MARK_CONDEMNED) 19331 continue; 19332 } 19333 } 19334 while (ire != NULL) { 19335 /* 19336 * If a new interface is coming up, we could end up 19337 * seeing the loopback ire and the non-loopback ire 19338 * may not have been added yet. So check for ire_stq 19339 */ 19340 if (ire->ire_stq != NULL && (ire->ire_addr != addr || 19341 ire->ire_ipif->ipif_ill->ill_group == illgrp)) { 19342 break; 19343 } 19344 ire = ire->ire_next; 19345 } 19346 if (ire != NULL && ire->ire_addr == addr && 19347 ire->ire_ipif->ipif_ill->ill_group == illgrp) { 19348 IRE_REFHOLD(ire); 19349 rw_exit(&irb->irb_lock); 19350 ire_refrele(save_ire); 19351 *conn_outgoing_ill = ire_to_ill(ire); 19352 /* 19353 * Refhold the ill to make the conn_outgoing_ill 19354 * independent of the ire. ip_wput_ire goes in a loop 19355 * and may refrele the ire. Since we have an ire at this 19356 * point we don't need to use ILL_CAN_LOOKUP on the ill. 19357 */ 19358 ill_refhold(*conn_outgoing_ill); 19359 return (ire); 19360 } 19361 rw_exit(&irb->irb_lock); 19362 ip1dbg(("conn_set_outgoing_ill: No matching ire\n")); 19363 /* 19364 * If we can't find a suitable ire, return the original ire. 19365 */ 19366 return (save_ire); 19367 } 19368 19369 /* 19370 * This function does the ire_refrele of the ire passed in as the 19371 * argument. As this function looks up more ires i.e broadcast ires, 19372 * it needs to REFRELE them. Currently, for simplicity we don't 19373 * differentiate the one passed in and looked up here. We always 19374 * REFRELE. 19375 * IPQoS Notes: 19376 * IP policy is invoked if IPP_LOCAL_OUT is enabled. Processing for 19377 * IPSec packets are done in ipsec_out_process. 19378 * 19379 */ 19380 void 19381 ip_wput_ire(queue_t *q, mblk_t *mp, ire_t *ire, conn_t *connp, int caller) 19382 { 19383 ipha_t *ipha; 19384 #define rptr ((uchar_t *)ipha) 19385 mblk_t *mp1; 19386 queue_t *stq; 19387 #define Q_TO_INDEX(stq) (((ill_t *)stq->q_ptr)->ill_phyint->phyint_ifindex) 19388 uint32_t v_hlen_tos_len; 19389 uint32_t ttl_protocol; 19390 ipaddr_t src; 19391 ipaddr_t dst; 19392 uint32_t cksum; 19393 ipaddr_t orig_src; 19394 ire_t *ire1; 19395 mblk_t *next_mp; 19396 uint_t hlen; 19397 uint16_t *up; 19398 uint32_t max_frag = ire->ire_max_frag; 19399 ill_t *ill = ire_to_ill(ire); 19400 int clusterwide; 19401 uint16_t ip_hdr_included; /* IP header included by ULP? */ 19402 int ipsec_len; 19403 mblk_t *first_mp; 19404 ipsec_out_t *io; 19405 boolean_t conn_dontroute; /* conn value for multicast */ 19406 boolean_t conn_multicast_loop; /* conn value for multicast */ 19407 boolean_t multicast_forward; /* Should we forward ? */ 19408 boolean_t unspec_src; 19409 ill_t *conn_outgoing_ill = NULL; 19410 ill_t *ire_ill; 19411 ill_t *ire1_ill; 19412 uint32_t ill_index = 0; 19413 boolean_t multirt_send = B_FALSE; 19414 int err; 19415 zoneid_t zoneid; 19416 boolean_t iphdrhwcksum = B_FALSE; 19417 19418 TRACE_1(TR_FAC_IP, TR_IP_WPUT_IRE_START, 19419 "ip_wput_ire_start: q %p", q); 19420 19421 multicast_forward = B_FALSE; 19422 unspec_src = (connp != NULL && connp->conn_unspec_src); 19423 19424 if (ire->ire_flags & RTF_MULTIRT) { 19425 /* 19426 * Multirouting case. The bucket where ire is stored 19427 * probably holds other RTF_MULTIRT flagged ire 19428 * to the destination. In this call to ip_wput_ire, 19429 * we attempt to send the packet through all 19430 * those ires. Thus, we first ensure that ire is the 19431 * first RTF_MULTIRT ire in the bucket, 19432 * before walking the ire list. 19433 */ 19434 ire_t *first_ire; 19435 irb_t *irb = ire->ire_bucket; 19436 ASSERT(irb != NULL); 19437 19438 /* Make sure we do not omit any multiroute ire. */ 19439 IRB_REFHOLD(irb); 19440 for (first_ire = irb->irb_ire; 19441 first_ire != NULL; 19442 first_ire = first_ire->ire_next) { 19443 if ((first_ire->ire_flags & RTF_MULTIRT) && 19444 (first_ire->ire_addr == ire->ire_addr) && 19445 !(first_ire->ire_marks & 19446 (IRE_MARK_CONDEMNED | IRE_MARK_HIDDEN))) 19447 break; 19448 } 19449 19450 if ((first_ire != NULL) && (first_ire != ire)) { 19451 IRE_REFHOLD(first_ire); 19452 ire_refrele(ire); 19453 ire = first_ire; 19454 ill = ire_to_ill(ire); 19455 } 19456 IRB_REFRELE(irb); 19457 } 19458 19459 /* 19460 * conn_outgoing_ill is used only in the broadcast loop. 19461 * for performance we don't grab the mutexs in the fastpath 19462 */ 19463 if ((connp != NULL) && 19464 (connp->conn_xmit_if_ill == NULL) && 19465 (ire->ire_type == IRE_BROADCAST) && 19466 ((connp->conn_nofailover_ill != NULL) || 19467 (connp->conn_outgoing_ill != NULL))) { 19468 /* 19469 * Bind to IPIF_NOFAILOVER address overrides IP_BOUND_IF 19470 * option. So, see if this endpoint is bound to a 19471 * IPIF_NOFAILOVER address. If so, honor it. This implies 19472 * that if the interface is failed, we will still send 19473 * the packet on the same ill which is what we want. 19474 */ 19475 conn_outgoing_ill = conn_get_held_ill(connp, 19476 &connp->conn_nofailover_ill, &err); 19477 if (err == ILL_LOOKUP_FAILED) { 19478 ire_refrele(ire); 19479 freemsg(mp); 19480 return; 19481 } 19482 if (conn_outgoing_ill == NULL) { 19483 /* 19484 * Choose a good ill in the group to send the 19485 * packets on. 19486 */ 19487 ire = conn_set_outgoing_ill(connp, ire, 19488 &conn_outgoing_ill); 19489 if (ire == NULL) { 19490 freemsg(mp); 19491 return; 19492 } 19493 } 19494 } 19495 19496 if (mp->b_datap->db_type != M_CTL) { 19497 ipha = (ipha_t *)mp->b_rptr; 19498 zoneid = (connp != NULL ? connp->conn_zoneid : ALL_ZONES); 19499 } else { 19500 io = (ipsec_out_t *)mp->b_rptr; 19501 ASSERT(io->ipsec_out_type == IPSEC_OUT); 19502 zoneid = io->ipsec_out_zoneid; 19503 ASSERT(zoneid != ALL_ZONES); 19504 ipha = (ipha_t *)mp->b_cont->b_rptr; 19505 dst = ipha->ipha_dst; 19506 /* 19507 * For the multicast case, ipsec_out carries conn_dontroute and 19508 * conn_multicast_loop as conn may not be available here. We 19509 * need this for multicast loopback and forwarding which is done 19510 * later in the code. 19511 */ 19512 if (CLASSD(dst)) { 19513 conn_dontroute = io->ipsec_out_dontroute; 19514 conn_multicast_loop = io->ipsec_out_multicast_loop; 19515 /* 19516 * If conn_dontroute is not set or conn_multicast_loop 19517 * is set, we need to do forwarding/loopback. For 19518 * datagrams from ip_wput_multicast, conn_dontroute is 19519 * set to B_TRUE and conn_multicast_loop is set to 19520 * B_FALSE so that we neither do forwarding nor 19521 * loopback. 19522 */ 19523 if (!conn_dontroute || conn_multicast_loop) 19524 multicast_forward = B_TRUE; 19525 } 19526 } 19527 19528 if (ire->ire_type == IRE_LOCAL && ire->ire_zoneid != zoneid) { 19529 /* 19530 * When a zone sends a packet to another zone, we try to deliver 19531 * the packet under the same conditions as if the destination 19532 * was a real node on the network. To do so, we look for a 19533 * matching route in the forwarding table. 19534 * RTF_REJECT and RTF_BLACKHOLE are handled just like 19535 * ip_newroute() does. 19536 */ 19537 ire_t *src_ire = ire_ftable_lookup(ipha->ipha_dst, 0, 0, 0, 19538 NULL, NULL, zoneid, 0, (MATCH_IRE_RECURSIVE | 19539 MATCH_IRE_DEFAULT | MATCH_IRE_RJ_BHOLE)); 19540 if (src_ire != NULL && 19541 !(src_ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE))) { 19542 if (ipha->ipha_src == INADDR_ANY && !unspec_src) 19543 ipha->ipha_src = src_ire->ire_src_addr; 19544 ire_refrele(src_ire); 19545 } else { 19546 ire_refrele(ire); 19547 if (conn_outgoing_ill != NULL) 19548 ill_refrele(conn_outgoing_ill); 19549 BUMP_MIB(&ip_mib, ipOutNoRoutes); 19550 if (src_ire != NULL) { 19551 if (src_ire->ire_flags & RTF_BLACKHOLE) { 19552 ire_refrele(src_ire); 19553 freemsg(mp); 19554 return; 19555 } 19556 ire_refrele(src_ire); 19557 } 19558 if (ip_hdr_complete(ipha, zoneid)) { 19559 /* Failed */ 19560 freemsg(mp); 19561 return; 19562 } 19563 icmp_unreachable(q, mp, ICMP_HOST_UNREACHABLE); 19564 return; 19565 } 19566 } 19567 19568 if (mp->b_datap->db_type == M_CTL || 19569 ipsec_outbound_v4_policy_present) { 19570 mp = ip_wput_ire_parse_ipsec_out(mp, ipha, NULL, ire, connp, 19571 unspec_src); 19572 if (mp == NULL) { 19573 ire_refrele(ire); 19574 if (conn_outgoing_ill != NULL) 19575 ill_refrele(conn_outgoing_ill); 19576 return; 19577 } 19578 } 19579 19580 first_mp = mp; 19581 ipsec_len = 0; 19582 19583 if (first_mp->b_datap->db_type == M_CTL) { 19584 io = (ipsec_out_t *)first_mp->b_rptr; 19585 ASSERT(io->ipsec_out_type == IPSEC_OUT); 19586 mp = first_mp->b_cont; 19587 ipsec_len = ipsec_out_extra_length(first_mp); 19588 ASSERT(ipsec_len >= 0); 19589 zoneid = io->ipsec_out_zoneid; 19590 ASSERT(zoneid != ALL_ZONES); 19591 19592 /* 19593 * Drop M_CTL here if IPsec processing is not needed. 19594 * (Non-IPsec use of M_CTL extracted any information it 19595 * needed above). 19596 */ 19597 if (ipsec_len == 0) { 19598 freeb(first_mp); 19599 first_mp = mp; 19600 } 19601 } 19602 19603 /* 19604 * Fast path for ip_wput_ire 19605 */ 19606 19607 ipha = (ipha_t *)mp->b_rptr; 19608 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 19609 dst = ipha->ipha_dst; 19610 19611 /* 19612 * ICMP(RAWIP) module should set the ipha_ident to IP_HDR_INCLUDED 19613 * if the socket is a SOCK_RAW type. The transport checksum should 19614 * be provided in the pre-built packet, so we don't need to compute it. 19615 * Also, other application set flags, like DF, should not be altered. 19616 * Other transport MUST pass down zero. 19617 */ 19618 ip_hdr_included = ipha->ipha_ident; 19619 ASSERT(ipha->ipha_ident == 0 || ipha->ipha_ident == IP_HDR_INCLUDED); 19620 19621 if (CLASSD(dst)) { 19622 ip1dbg(("ip_wput_ire: to 0x%x ire %s addr 0x%x\n", 19623 ntohl(dst), 19624 ip_nv_lookup(ire_nv_tbl, ire->ire_type), 19625 ntohl(ire->ire_addr))); 19626 } 19627 19628 /* Macros to extract header fields from data already in registers */ 19629 #ifdef _BIG_ENDIAN 19630 #define V_HLEN (v_hlen_tos_len >> 24) 19631 #define LENGTH (v_hlen_tos_len & 0xFFFF) 19632 #define PROTO (ttl_protocol & 0xFF) 19633 #else 19634 #define V_HLEN (v_hlen_tos_len & 0xFF) 19635 #define LENGTH ((v_hlen_tos_len >> 24) | ((v_hlen_tos_len >> 8) & 0xFF00)) 19636 #define PROTO (ttl_protocol >> 8) 19637 #endif 19638 19639 19640 orig_src = src = ipha->ipha_src; 19641 /* (The loop back to "another" is explained down below.) */ 19642 another:; 19643 /* 19644 * Assign an ident value for this packet. We assign idents on 19645 * a per destination basis out of the IRE. There could be 19646 * other threads targeting the same destination, so we have to 19647 * arrange for a atomic increment. Note that we use a 32-bit 19648 * atomic add because it has better performance than its 19649 * 16-bit sibling. 19650 * 19651 * If running in cluster mode and if the source address 19652 * belongs to a replicated service then vector through 19653 * cl_inet_ipident vector to allocate ip identifier 19654 * NOTE: This is a contract private interface with the 19655 * clustering group. 19656 */ 19657 clusterwide = 0; 19658 if (cl_inet_ipident) { 19659 ASSERT(cl_inet_isclusterwide); 19660 if ((*cl_inet_isclusterwide)(IPPROTO_IP, 19661 AF_INET, (uint8_t *)(uintptr_t)src)) { 19662 ipha->ipha_ident = (*cl_inet_ipident)(IPPROTO_IP, 19663 AF_INET, (uint8_t *)(uintptr_t)src, 19664 (uint8_t *)(uintptr_t)dst); 19665 clusterwide = 1; 19666 } 19667 } 19668 if (!clusterwide) { 19669 ipha->ipha_ident = 19670 (uint16_t)atomic_add_32_nv(&ire->ire_ident, 1); 19671 } 19672 19673 #ifndef _BIG_ENDIAN 19674 ipha->ipha_ident = (ipha->ipha_ident << 8) | (ipha->ipha_ident >> 8); 19675 #endif 19676 19677 /* 19678 * Set source address unless sent on an ill or conn_unspec_src is set. 19679 * This is needed to obey conn_unspec_src when packets go through 19680 * ip_newroute + arp. 19681 * Assumes ip_newroute{,_multi} sets the source address as well. 19682 */ 19683 if (src == INADDR_ANY && !unspec_src) { 19684 /* 19685 * Assign the appropriate source address from the IRE if none 19686 * was specified. 19687 */ 19688 ASSERT(ire->ire_ipversion == IPV4_VERSION); 19689 19690 /* 19691 * With IP multipathing, broadcast packets are sent on the ire 19692 * that has been cleared of IRE_MARK_NORECV and that belongs to 19693 * the group. However, this ire might not be in the same zone so 19694 * we can't always use its source address. We look for a 19695 * broadcast ire in the same group and in the right zone. 19696 */ 19697 if (ire->ire_type == IRE_BROADCAST && 19698 ire->ire_zoneid != zoneid) { 19699 ire_t *src_ire = ire_ctable_lookup(dst, 0, 19700 IRE_BROADCAST, ire->ire_ipif, zoneid, 19701 (MATCH_IRE_TYPE | MATCH_IRE_ILL_GROUP)); 19702 if (src_ire != NULL) { 19703 src = src_ire->ire_src_addr; 19704 ire_refrele(src_ire); 19705 } else { 19706 ire_refrele(ire); 19707 if (conn_outgoing_ill != NULL) 19708 ill_refrele(conn_outgoing_ill); 19709 freemsg(first_mp); 19710 BUMP_MIB(&ip_mib, ipOutDiscards); 19711 return; 19712 } 19713 } else { 19714 src = ire->ire_src_addr; 19715 } 19716 19717 if (connp == NULL) { 19718 ip1dbg(("ip_wput_ire: no connp and no src " 19719 "address for dst 0x%x, using src 0x%x\n", 19720 ntohl(dst), 19721 ntohl(src))); 19722 } 19723 ipha->ipha_src = src; 19724 } 19725 stq = ire->ire_stq; 19726 19727 /* 19728 * We only allow ire chains for broadcasts since there will 19729 * be multiple IRE_CACHE entries for the same multicast 19730 * address (one per ipif). 19731 */ 19732 next_mp = NULL; 19733 19734 /* broadcast packet */ 19735 if (ire->ire_type == IRE_BROADCAST) 19736 goto broadcast; 19737 19738 /* loopback ? */ 19739 if (stq == NULL) 19740 goto nullstq; 19741 19742 /* The ill_index for outbound ILL */ 19743 ill_index = Q_TO_INDEX(stq); 19744 19745 BUMP_MIB(&ip_mib, ipOutRequests); 19746 ttl_protocol = ((uint16_t *)ipha)[4]; 19747 19748 /* pseudo checksum (do it in parts for IP header checksum) */ 19749 cksum = (dst >> 16) + (dst & 0xFFFF) + (src >> 16) + (src & 0xFFFF); 19750 19751 #define FRAGMENT_NEEDED(mtu, size) \ 19752 (((mtu) < (unsigned int)(size)) ? B_TRUE : B_FALSE) 19753 19754 #define IS_FASTPATH(ire, bp) \ 19755 ((ire)->ire_fp_mp != NULL && \ 19756 (MBLKHEAD((bp)) >= (MBLKL((ire)->ire_fp_mp)))) \ 19757 19758 #define IPH_UDPH_CHECKSUMP(ipha, hlen) \ 19759 ((uint16_t *)(((uchar_t *)ipha)+(hlen + UDP_CHECKSUM_OFFSET))) 19760 #define IPH_TCPH_CHECKSUMP(ipha, hlen) \ 19761 ((uint16_t *)(((uchar_t *)ipha)+(hlen+TCP_CHECKSUM_OFFSET))) 19762 19763 #define IP_CKSUM_XMIT(ill, ire, mp, up, proto, hlen, max_frag, \ 19764 ipsec_len) { \ 19765 uint32_t sum; \ 19766 uint32_t xmit_capab = HCKSUM_INET_FULL_V4 | \ 19767 HCKSUM_INET_PARTIAL | HCKSUM_IPHDRCKSUM; \ 19768 boolean_t cksum_offload = B_FALSE; \ 19769 \ 19770 /* \ 19771 * The ire fp mp can change due to the arrival of a \ 19772 * DL_NOTE_FASTPATH_FLUSH in the case of IRE_BROADCAST \ 19773 * and IRE_MIPRTUN. Hence the ire_fp_mp has to be accessed \ 19774 * only under the ire_lock in such cases. \ 19775 */ \ 19776 LOCK_IRE_FP_MP(ire); \ 19777 if ((ill) && (ill->ill_capabilities & ILL_CAPAB_HCKSUM) && \ 19778 (ill->ill_hcksum_capab->ill_hcksum_txflags & \ 19779 xmit_capab) && (!FRAGMENT_NEEDED(max_frag, \ 19780 (LENGTH + ipsec_len))) && (!(ire->ire_flags & \ 19781 RTF_MULTIRT)) && (ipsec_len == 0) && \ 19782 IS_FASTPATH((ire), (mp)) && (dohwcksum)) { \ 19783 /* \ 19784 * Underlying interface supports hardware checksumming. \ 19785 * So postpone the checksum to the interface driver \ 19786 */ \ 19787 \ 19788 if ((hlen) == IP_SIMPLE_HDR_LENGTH) { \ 19789 if (ill->ill_hcksum_capab->ill_hcksum_txflags & \ 19790 HCKSUM_IPHDRCKSUM) { \ 19791 mp->b_datap->db_struioun.cksum.flags |= \ 19792 HCK_IPV4_HDRCKSUM; \ 19793 /* seed the cksum field to 0 */ \ 19794 ipha->ipha_hdr_checksum = 0; \ 19795 iphdrhwcksum = B_TRUE; \ 19796 } \ 19797 /* \ 19798 * If underlying h/w supports full h/w checksumming \ 19799 * and no IP options are present, then offload \ 19800 * full checksumming to the hardware. \ 19801 * \ 19802 * If h/w can do partial checksumming then offload \ 19803 * unless the startpoint offset, including mac-header, \ 19804 * is too big for the interface to some of our \ 19805 * hardware (CE and ERI) which have 6 bit fields. \ 19806 * Sigh. \ 19807 * Unhappily we don't have the mac-header size here \ 19808 * so punt for any options. \ 19809 */ \ 19810 if (ill->ill_hcksum_capab->ill_hcksum_txflags & \ 19811 HCKSUM_INET_FULL_V4) { \ 19812 UNLOCK_IRE_FP_MP(ire); \ 19813 /* Seed the checksum field to 0 */ \ 19814 *up = 0; \ 19815 mp->b_datap->db_struioun.cksum.flags |= \ 19816 HCK_FULLCKSUM; \ 19817 cksum_offload = B_TRUE; \ 19818 } else if (ill->ill_hcksum_capab->ill_hcksum_txflags & \ 19819 HCKSUM_INET_PARTIAL) { \ 19820 UNLOCK_IRE_FP_MP(ire); \ 19821 sum = *up + cksum + proto; \ 19822 sum = (sum & 0xFFFF) + (sum >> 16); \ 19823 *up = (sum & 0xFFFF) + (sum >> 16); \ 19824 /* \ 19825 * All offsets are relative to the beginning \ 19826 * of the IP header. \ 19827 */ \ 19828 mp->b_datap->db_cksumstart = hlen; \ 19829 mp->b_datap->db_cksumstuff = \ 19830 (PROTO == IPPROTO_UDP) ? \ 19831 (hlen) + UDP_CHECKSUM_OFFSET : \ 19832 (hlen) + TCP_CHECKSUM_OFFSET; \ 19833 mp->b_datap->db_cksumend = ipha->ipha_length; \ 19834 mp->b_datap->db_struioun.cksum.flags |= \ 19835 HCK_PARTIALCKSUM; \ 19836 cksum_offload = B_TRUE; \ 19837 } \ 19838 } \ 19839 } \ 19840 if (!cksum_offload) { \ 19841 UNLOCK_IRE_FP_MP(ire); \ 19842 IP_STAT(ip_out_sw_cksum); \ 19843 (sum) = IP_CSUM((mp), (hlen), cksum + proto); \ 19844 *(up) = (uint16_t)((sum) ? (sum) : ~(sum)); \ 19845 } \ 19846 } 19847 if (!IP_FLOW_CONTROLLED_ULP(PROTO)) { 19848 queue_t *dev_q = stq->q_next; 19849 19850 /* flow controlled */ 19851 if ((dev_q->q_next || dev_q->q_first) && 19852 !canput(dev_q)) 19853 goto blocked; 19854 if ((PROTO == IPPROTO_UDP) && 19855 (ip_hdr_included != IP_HDR_INCLUDED)) { 19856 hlen = (V_HLEN & 0xF) << 2; 19857 up = IPH_UDPH_CHECKSUMP(ipha, hlen); 19858 if (*up) { 19859 IP_CKSUM_XMIT(ill, ire, mp, up, 19860 IP_UDP_CSUM_COMP, hlen, max_frag, 19861 ipsec_len); 19862 } 19863 } 19864 } else if (ip_hdr_included != IP_HDR_INCLUDED) { 19865 hlen = (V_HLEN & 0xF) << 2; 19866 if (PROTO == IPPROTO_TCP) { 19867 up = IPH_TCPH_CHECKSUMP(ipha, hlen); 19868 /* 19869 * The packet header is processed once and for all, even 19870 * in the multirouting case. We disable hardware 19871 * checksum if the packet is multirouted, as it will be 19872 * replicated via several interfaces, and not all of 19873 * them may have this capability. 19874 */ 19875 IP_CKSUM_XMIT(ill, ire, mp, up, 19876 IP_TCP_CSUM_COMP, hlen, max_frag, ipsec_len); 19877 } else { 19878 sctp_hdr_t *sctph; 19879 19880 ASSERT(PROTO == IPPROTO_SCTP); 19881 ASSERT(MBLKL(mp) >= (hlen + sizeof (*sctph))); 19882 sctph = (sctp_hdr_t *)(mp->b_rptr + hlen); 19883 /* 19884 * Zero out the checksum field to ensure proper 19885 * checksum calculation. 19886 */ 19887 sctph->sh_chksum = 0; 19888 #ifdef DEBUG 19889 if (!skip_sctp_cksum) 19890 #endif 19891 sctph->sh_chksum = sctp_cksum(mp, hlen); 19892 } 19893 } 19894 19895 /* 19896 * If this is a multicast packet and originated from ip_wput 19897 * we need to do loopback and forwarding checks. If it comes 19898 * from ip_wput_multicast, we SHOULD not do this. 19899 */ 19900 if (CLASSD(ipha->ipha_dst) && multicast_forward) goto multi_loopback; 19901 19902 /* checksum */ 19903 cksum += ttl_protocol; 19904 19905 /* fragment the packet */ 19906 if (FRAGMENT_NEEDED(max_frag, (LENGTH + ipsec_len))) 19907 goto fragmentit; 19908 /* 19909 * Don't use frag_flag if packet is pre-built or source 19910 * routed or if multicast (since multicast packets do 19911 * not solicit ICMP "packet too big" messages). 19912 */ 19913 if ((ip_hdr_included != IP_HDR_INCLUDED) && 19914 (V_HLEN == IP_SIMPLE_HDR_VERSION || 19915 !ip_source_route_included(ipha)) && 19916 !CLASSD(ipha->ipha_dst)) 19917 ipha->ipha_fragment_offset_and_flags |= 19918 htons(ire->ire_frag_flag); 19919 19920 if (!iphdrhwcksum) { 19921 /* checksum */ 19922 cksum += ipha->ipha_ident; 19923 cksum += (v_hlen_tos_len >> 16)+(v_hlen_tos_len & 0xFFFF); 19924 cksum += ipha->ipha_fragment_offset_and_flags; 19925 19926 /* IP options present */ 19927 hlen = (V_HLEN & 0xF) - IP_SIMPLE_HDR_LENGTH_IN_WORDS; 19928 if (hlen) 19929 goto checksumoptions; 19930 19931 /* calculate hdr checksum */ 19932 cksum = ((cksum & 0xFFFF) + (cksum >> 16)); 19933 cksum = ~(cksum + (cksum >> 16)); 19934 ipha->ipha_hdr_checksum = (uint16_t)cksum; 19935 } 19936 if (ipsec_len != 0) { 19937 /* 19938 * We will do the rest of the processing after 19939 * we come back from IPSEC in ip_wput_ipsec_out(). 19940 */ 19941 ASSERT(MBLKL(first_mp) >= sizeof (ipsec_out_t)); 19942 19943 io = (ipsec_out_t *)first_mp->b_rptr; 19944 io->ipsec_out_ill_index = ((ill_t *)stq->q_ptr)-> 19945 ill_phyint->phyint_ifindex; 19946 19947 ipsec_out_process(q, first_mp, ire, ill_index); 19948 ire_refrele(ire); 19949 if (conn_outgoing_ill != NULL) 19950 ill_refrele(conn_outgoing_ill); 19951 return; 19952 } 19953 19954 /* 19955 * In most cases, the emission loop below is entered only 19956 * once. Only in the case where the ire holds the 19957 * RTF_MULTIRT flag, do we loop to process all RTF_MULTIRT 19958 * flagged ires in the bucket, and send the packet 19959 * through all crossed RTF_MULTIRT routes. 19960 */ 19961 if (ire->ire_flags & RTF_MULTIRT) { 19962 multirt_send = B_TRUE; 19963 } 19964 do { 19965 if (multirt_send) { 19966 irb_t *irb; 19967 /* 19968 * We are in a multiple send case, need to get 19969 * the next ire and make a duplicate of the packet. 19970 * ire1 holds here the next ire to process in the 19971 * bucket. If multirouting is expected, 19972 * any non-RTF_MULTIRT ire that has the 19973 * right destination address is ignored. 19974 */ 19975 irb = ire->ire_bucket; 19976 ASSERT(irb != NULL); 19977 19978 IRB_REFHOLD(irb); 19979 for (ire1 = ire->ire_next; 19980 ire1 != NULL; 19981 ire1 = ire1->ire_next) { 19982 if ((ire1->ire_flags & RTF_MULTIRT) == 0) 19983 continue; 19984 if (ire1->ire_addr != ire->ire_addr) 19985 continue; 19986 if (ire1->ire_marks & 19987 (IRE_MARK_CONDEMNED | IRE_MARK_HIDDEN)) 19988 continue; 19989 19990 /* Got one */ 19991 IRE_REFHOLD(ire1); 19992 break; 19993 } 19994 IRB_REFRELE(irb); 19995 19996 if (ire1 != NULL) { 19997 next_mp = copyb(mp); 19998 if ((next_mp == NULL) || 19999 ((mp->b_cont != NULL) && 20000 ((next_mp->b_cont = 20001 dupmsg(mp->b_cont)) == NULL))) { 20002 freemsg(next_mp); 20003 next_mp = NULL; 20004 ire_refrele(ire1); 20005 ire1 = NULL; 20006 } 20007 } 20008 20009 /* Last multiroute ire; don't loop anymore. */ 20010 if (ire1 == NULL) { 20011 multirt_send = B_FALSE; 20012 } 20013 } 20014 mp = ip_wput_attach_llhdr(mp, ire, IPP_LOCAL_OUT, ill_index); 20015 if (mp == NULL) { 20016 BUMP_MIB(&ip_mib, ipOutDiscards); 20017 ip2dbg(("ip_wput_ire: fastpath wput pkt dropped "\ 20018 "during IPPF processing\n")); 20019 ire_refrele(ire); 20020 if (next_mp != NULL) { 20021 freemsg(next_mp); 20022 ire_refrele(ire1); 20023 } 20024 if (conn_outgoing_ill != NULL) 20025 ill_refrele(conn_outgoing_ill); 20026 return; 20027 } 20028 UPDATE_OB_PKT_COUNT(ire); 20029 ire->ire_last_used_time = lbolt; 20030 20031 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 20032 "ip_wput_ire_end: q %p (%S)", 20033 q, "last copy out"); 20034 putnext(stq, mp); 20035 IRE_REFRELE(ire); 20036 20037 if (multirt_send) { 20038 ASSERT(ire1); 20039 /* 20040 * Proceed with the next RTF_MULTIRT ire, 20041 * Also set up the send-to queue accordingly. 20042 */ 20043 ire = ire1; 20044 ire1 = NULL; 20045 stq = ire->ire_stq; 20046 mp = next_mp; 20047 next_mp = NULL; 20048 ipha = (ipha_t *)mp->b_rptr; 20049 ill_index = Q_TO_INDEX(stq); 20050 } 20051 } while (multirt_send); 20052 if (conn_outgoing_ill != NULL) 20053 ill_refrele(conn_outgoing_ill); 20054 return; 20055 20056 /* 20057 * ire->ire_type == IRE_BROADCAST (minimize diffs) 20058 */ 20059 broadcast: 20060 { 20061 /* 20062 * Avoid broadcast storms by setting the ttl to 1 20063 * for broadcasts. This parameter can be set 20064 * via ndd, so make sure that for the SO_DONTROUTE 20065 * case that ipha_ttl is always set to 1. 20066 * In the event that we are replying to incoming 20067 * ICMP packets, conn could be NULL. 20068 */ 20069 if ((connp != NULL) && connp->conn_dontroute) 20070 ipha->ipha_ttl = 1; 20071 else 20072 ipha->ipha_ttl = ip_broadcast_ttl; 20073 20074 /* 20075 * Note that we are not doing a IRB_REFHOLD here. 20076 * Actually we don't care if the list changes i.e 20077 * if somebody deletes an IRE from the list while 20078 * we drop the lock, the next time we come around 20079 * ire_next will be NULL and hence we won't send 20080 * out multiple copies which is fine. 20081 */ 20082 rw_enter(&ire->ire_bucket->irb_lock, RW_READER); 20083 ire1 = ire->ire_next; 20084 if (conn_outgoing_ill != NULL) { 20085 while (ire->ire_ipif->ipif_ill != conn_outgoing_ill) { 20086 ASSERT(ire1 == ire->ire_next); 20087 if (ire1 != NULL && ire1->ire_addr == dst) { 20088 ire_refrele(ire); 20089 ire = ire1; 20090 IRE_REFHOLD(ire); 20091 ire1 = ire->ire_next; 20092 continue; 20093 } 20094 rw_exit(&ire->ire_bucket->irb_lock); 20095 /* Did not find a matching ill */ 20096 ip1dbg(("ip_wput_ire: broadcast with no " 20097 "matching IP_BOUND_IF ill %s\n", 20098 conn_outgoing_ill->ill_name)); 20099 freemsg(first_mp); 20100 if (ire != NULL) 20101 ire_refrele(ire); 20102 ill_refrele(conn_outgoing_ill); 20103 return; 20104 } 20105 } else if (ire1 != NULL && ire1->ire_addr == dst) { 20106 /* 20107 * If the next IRE has the same address and is not one 20108 * of the two copies that we need to send, try to see 20109 * whether this copy should be sent at all. This 20110 * assumes that we insert loopbacks first and then 20111 * non-loopbacks. This is acheived by inserting the 20112 * loopback always before non-loopback. 20113 * This is used to send a single copy of a broadcast 20114 * packet out all physical interfaces that have an 20115 * matching IRE_BROADCAST while also looping 20116 * back one copy (to ip_wput_local) for each 20117 * matching physical interface. However, we avoid 20118 * sending packets out different logical that match by 20119 * having ipif_up/ipif_down supress duplicate 20120 * IRE_BROADCASTS. 20121 * 20122 * This feature is currently used to get broadcasts 20123 * sent to multiple interfaces, when the broadcast 20124 * address being used applies to multiple interfaces. 20125 * For example, a whole net broadcast will be 20126 * replicated on every connected subnet of 20127 * the target net. 20128 * 20129 * Each zone has its own set of IRE_BROADCASTs, so that 20130 * we're able to distribute inbound packets to multiple 20131 * zones who share a broadcast address. We avoid looping 20132 * back outbound packets in different zones but on the 20133 * same ill, as the application would see duplicates. 20134 * 20135 * If the interfaces are part of the same group, 20136 * we would want to send only one copy out for 20137 * whole group. 20138 * 20139 * This logic assumes that ire_add_v4() groups the 20140 * IRE_BROADCAST entries so that those with the same 20141 * ire_addr and ill_group are kept together. 20142 */ 20143 ire_ill = ire->ire_ipif->ipif_ill; 20144 if (ire->ire_stq == NULL && ire1->ire_stq != NULL) { 20145 if (ire_ill->ill_group != NULL && 20146 (ire->ire_marks & IRE_MARK_NORECV)) { 20147 /* 20148 * If the current zone only has an ire 20149 * broadcast for this address marked 20150 * NORECV, the ire we want is ahead in 20151 * the bucket, so we look it up 20152 * deliberately ignoring the zoneid. 20153 */ 20154 for (ire1 = ire->ire_bucket->irb_ire; 20155 ire1 != NULL; 20156 ire1 = ire1->ire_next) { 20157 ire1_ill = 20158 ire1->ire_ipif->ipif_ill; 20159 if (ire1->ire_addr != dst) 20160 continue; 20161 /* skip over the current ire */ 20162 if (ire1 == ire) 20163 continue; 20164 /* skip over deleted ires */ 20165 if (ire1->ire_marks & 20166 IRE_MARK_CONDEMNED) 20167 continue; 20168 /* 20169 * non-loopback ire in our 20170 * group: use it for the next 20171 * pass in the loop 20172 */ 20173 if (ire1->ire_stq != NULL && 20174 ire1_ill->ill_group == 20175 ire_ill->ill_group) 20176 break; 20177 } 20178 } 20179 } else { 20180 while (ire1 != NULL && ire1->ire_addr == dst) { 20181 ire1_ill = ire1->ire_ipif->ipif_ill; 20182 /* 20183 * We can have two broadcast ires on the 20184 * same ill in different zones; here 20185 * we'll send a copy of the packet on 20186 * each ill and the fanout code will 20187 * call conn_wantpacket() to check that 20188 * the zone has the broadcast address 20189 * configured on the ill. If the two 20190 * ires are in the same group we only 20191 * send one copy up. 20192 */ 20193 if (ire1_ill != ire_ill && 20194 (ire1_ill->ill_group == NULL || 20195 ire_ill->ill_group == NULL || 20196 ire1_ill->ill_group != 20197 ire_ill->ill_group)) { 20198 break; 20199 } 20200 ire1 = ire1->ire_next; 20201 } 20202 } 20203 } 20204 ASSERT(multirt_send == B_FALSE); 20205 if (ire1 != NULL && ire1->ire_addr == dst) { 20206 if ((ire->ire_flags & RTF_MULTIRT) && 20207 (ire1->ire_flags & RTF_MULTIRT)) { 20208 /* 20209 * We are in the multirouting case. 20210 * The message must be sent at least 20211 * on both ires. These ires have been 20212 * inserted AFTER the standard ones 20213 * in ip_rt_add(). There are thus no 20214 * other ire entries for the destination 20215 * address in the rest of the bucket 20216 * that do not have the RTF_MULTIRT 20217 * flag. We don't process a copy 20218 * of the message here. This will be 20219 * done in the final sending loop. 20220 */ 20221 multirt_send = B_TRUE; 20222 } else { 20223 next_mp = ip_copymsg(first_mp); 20224 if (next_mp != NULL) 20225 IRE_REFHOLD(ire1); 20226 } 20227 } 20228 rw_exit(&ire->ire_bucket->irb_lock); 20229 } 20230 20231 if (stq) { 20232 /* 20233 * A non-NULL send-to queue means this packet is going 20234 * out of this machine. 20235 */ 20236 20237 BUMP_MIB(&ip_mib, ipOutRequests); 20238 ttl_protocol = ((uint16_t *)ipha)[4]; 20239 /* 20240 * We accumulate the pseudo header checksum in cksum. 20241 * This is pretty hairy code, so watch close. One 20242 * thing to keep in mind is that UDP and TCP have 20243 * stored their respective datagram lengths in their 20244 * checksum fields. This lines things up real nice. 20245 */ 20246 cksum = (dst >> 16) + (dst & 0xFFFF) + 20247 (src >> 16) + (src & 0xFFFF); 20248 /* 20249 * We assume the udp checksum field contains the 20250 * length, so to compute the pseudo header checksum, 20251 * all we need is the protocol number and src/dst. 20252 */ 20253 /* Provide the checksums for UDP and TCP. */ 20254 if ((PROTO == IPPROTO_TCP) && 20255 (ip_hdr_included != IP_HDR_INCLUDED)) { 20256 /* hlen gets the number of uchar_ts in the IP header */ 20257 hlen = (V_HLEN & 0xF) << 2; 20258 up = IPH_TCPH_CHECKSUMP(ipha, hlen); 20259 IP_STAT(ip_out_sw_cksum); 20260 *up = IP_CSUM(mp, hlen, cksum + IP_TCP_CSUM_COMP); 20261 } else if (PROTO == IPPROTO_SCTP && 20262 (ip_hdr_included != IP_HDR_INCLUDED)) { 20263 sctp_hdr_t *sctph; 20264 20265 hlen = (V_HLEN & 0xF) << 2; 20266 ASSERT(MBLKL(mp) >= (hlen + sizeof (*sctph))); 20267 sctph = (sctp_hdr_t *)(mp->b_rptr + hlen); 20268 sctph->sh_chksum = 0; 20269 #ifdef DEBUG 20270 if (!skip_sctp_cksum) 20271 #endif 20272 sctph->sh_chksum = sctp_cksum(mp, hlen); 20273 } else { 20274 queue_t *dev_q = stq->q_next; 20275 20276 if ((dev_q->q_next || dev_q->q_first) && 20277 !canput(dev_q)) { 20278 blocked: 20279 ipha->ipha_ident = ip_hdr_included; 20280 /* 20281 * If we don't have a conn to apply 20282 * backpressure, free the message. 20283 * In the ire_send path, we don't know 20284 * the position to requeue the packet. Rather 20285 * than reorder packets, we just drop this 20286 * packet. 20287 */ 20288 if (ip_output_queue && connp != NULL && 20289 caller != IRE_SEND) { 20290 if (caller == IP_WSRV) { 20291 connp->conn_did_putbq = 1; 20292 (void) putbq(connp->conn_wq, 20293 first_mp); 20294 conn_drain_insert(connp); 20295 /* 20296 * This is the service thread, 20297 * and the queue is already 20298 * noenabled. The check for 20299 * canput and the putbq is not 20300 * atomic. So we need to check 20301 * again. 20302 */ 20303 if (canput(stq->q_next)) 20304 connp->conn_did_putbq 20305 = 0; 20306 IP_STAT(ip_conn_flputbq); 20307 } else { 20308 /* 20309 * We are not the service proc. 20310 * ip_wsrv will be scheduled or 20311 * is already running. 20312 */ 20313 (void) putq(connp->conn_wq, 20314 first_mp); 20315 } 20316 } else { 20317 BUMP_MIB(&ip_mib, ipOutDiscards); 20318 freemsg(first_mp); 20319 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 20320 "ip_wput_ire_end: q %p (%S)", 20321 q, "discard"); 20322 } 20323 ire_refrele(ire); 20324 if (next_mp) { 20325 ire_refrele(ire1); 20326 freemsg(next_mp); 20327 } 20328 if (conn_outgoing_ill != NULL) 20329 ill_refrele(conn_outgoing_ill); 20330 return; 20331 } 20332 if ((PROTO == IPPROTO_UDP) && 20333 (ip_hdr_included != IP_HDR_INCLUDED)) { 20334 /* 20335 * hlen gets the number of uchar_ts in the 20336 * IP header 20337 */ 20338 hlen = (V_HLEN & 0xF) << 2; 20339 up = IPH_UDPH_CHECKSUMP(ipha, hlen); 20340 if (*up) { 20341 uint_t sum; 20342 20343 /* 20344 * NOTE: watch out for compiler high 20345 * bits 20346 */ 20347 IP_STAT(ip_out_sw_cksum); 20348 sum = IP_CSUM(mp, hlen, 20349 cksum + IP_UDP_CSUM_COMP); 20350 *up = (uint16_t)(sum ? sum : ~sum); 20351 } 20352 } 20353 } 20354 /* 20355 * Need to do this even when fragmenting. The local 20356 * loopback can be done without computing checksums 20357 * but forwarding out other interface must be done 20358 * after the IP checksum (and ULP checksums) have been 20359 * computed. 20360 * 20361 * NOTE : multicast_forward is set only if this packet 20362 * originated from ip_wput. For packets originating from 20363 * ip_wput_multicast, it is not set. 20364 */ 20365 if (CLASSD(ipha->ipha_dst) && multicast_forward) { 20366 multi_loopback: 20367 ip2dbg(("ip_wput: multicast, loop %d\n", 20368 conn_multicast_loop)); 20369 20370 /* Forget header checksum offload */ 20371 mp->b_datap->db_struioun.cksum.flags &= 20372 ~HCK_IPV4_HDRCKSUM; 20373 iphdrhwcksum = B_FALSE; 20374 20375 /* 20376 * Local loopback of multicasts? Check the 20377 * ill. 20378 * 20379 * Note that the loopback function will not come 20380 * in through ip_rput - it will only do the 20381 * client fanout thus we need to do an mforward 20382 * as well. The is different from the BSD 20383 * logic. 20384 */ 20385 if (ill != NULL) { 20386 ilm_t *ilm; 20387 20388 ILM_WALKER_HOLD(ill); 20389 ilm = ilm_lookup_ill(ill, ipha->ipha_dst, 20390 ALL_ZONES); 20391 ILM_WALKER_RELE(ill); 20392 if (ilm != NULL) { 20393 /* 20394 * Pass along the virtual output q. 20395 * ip_wput_local() will distribute the 20396 * packet to all the matching zones, 20397 * except the sending zone when 20398 * IP_MULTICAST_LOOP is false. 20399 */ 20400 ip_multicast_loopback(q, ill, first_mp, 20401 conn_multicast_loop ? 0 : 20402 IP_FF_NO_MCAST_LOOP, zoneid); 20403 } 20404 } 20405 if (ipha->ipha_ttl == 0) { 20406 /* 20407 * 0 => only to this host i.e. we are 20408 * done. We are also done if this was the 20409 * loopback interface since it is sufficient 20410 * to loopback one copy of a multicast packet. 20411 */ 20412 freemsg(first_mp); 20413 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 20414 "ip_wput_ire_end: q %p (%S)", 20415 q, "loopback"); 20416 ire_refrele(ire); 20417 if (conn_outgoing_ill != NULL) 20418 ill_refrele(conn_outgoing_ill); 20419 return; 20420 } 20421 /* 20422 * ILLF_MULTICAST is checked in ip_newroute 20423 * i.e. we don't need to check it here since 20424 * all IRE_CACHEs come from ip_newroute. 20425 * For multicast traffic, SO_DONTROUTE is interpreted 20426 * to mean only send the packet out the interface 20427 * (optionally specified with IP_MULTICAST_IF) 20428 * and do not forward it out additional interfaces. 20429 * RSVP and the rsvp daemon is an example of a 20430 * protocol and user level process that 20431 * handles it's own routing. Hence, it uses the 20432 * SO_DONTROUTE option to accomplish this. 20433 */ 20434 20435 if (ip_g_mrouter && !conn_dontroute && ill != NULL) { 20436 /* Unconditionally redo the checksum */ 20437 ipha->ipha_hdr_checksum = 0; 20438 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 20439 20440 /* 20441 * If this needs to go out secure, we need 20442 * to wait till we finish the IPSEC 20443 * processing. 20444 */ 20445 if (ipsec_len == 0 && 20446 ip_mforward(ill, ipha, mp)) { 20447 freemsg(first_mp); 20448 ip1dbg(("ip_wput: mforward failed\n")); 20449 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 20450 "ip_wput_ire_end: q %p (%S)", 20451 q, "mforward failed"); 20452 ire_refrele(ire); 20453 if (conn_outgoing_ill != NULL) 20454 ill_refrele(conn_outgoing_ill); 20455 return; 20456 } 20457 } 20458 } 20459 max_frag = ire->ire_max_frag; 20460 cksum += ttl_protocol; 20461 if (!FRAGMENT_NEEDED(max_frag, (LENGTH + ipsec_len))) { 20462 /* No fragmentation required for this one. */ 20463 /* Complete the IP header checksum. */ 20464 cksum += ipha->ipha_ident; 20465 /* 20466 * Don't use frag_flag if packet is pre-built or source 20467 * routed or if multicast (since multicast packets do 20468 * not solicit ICMP "packet too big" messages). 20469 */ 20470 if ((ip_hdr_included != IP_HDR_INCLUDED) && 20471 (V_HLEN == IP_SIMPLE_HDR_VERSION || 20472 !ip_source_route_included(ipha)) && 20473 !CLASSD(ipha->ipha_dst)) 20474 ipha->ipha_fragment_offset_and_flags |= 20475 htons(ire->ire_frag_flag); 20476 20477 cksum += (v_hlen_tos_len >> 16)+ 20478 (v_hlen_tos_len & 0xFFFF); 20479 cksum += ipha->ipha_fragment_offset_and_flags; 20480 hlen = (V_HLEN & 0xF) - IP_SIMPLE_HDR_LENGTH_IN_WORDS; 20481 if (hlen) { 20482 checksumoptions: 20483 /* 20484 * Account for the IP Options in the IP 20485 * header checksum. 20486 */ 20487 up = (uint16_t *)(rptr+IP_SIMPLE_HDR_LENGTH); 20488 do { 20489 cksum += up[0]; 20490 cksum += up[1]; 20491 up += 2; 20492 } while (--hlen); 20493 } 20494 cksum = ((cksum & 0xFFFF) + (cksum >> 16)); 20495 cksum = ~(cksum + (cksum >> 16)); 20496 ipha->ipha_hdr_checksum = (uint16_t)cksum; 20497 if (ipsec_len != 0) { 20498 ipsec_out_process(q, first_mp, ire, ill_index); 20499 if (!next_mp) { 20500 ire_refrele(ire); 20501 if (conn_outgoing_ill != NULL) 20502 ill_refrele(conn_outgoing_ill); 20503 return; 20504 } 20505 goto next; 20506 } 20507 20508 /* 20509 * multirt_send has already been handled 20510 * for broadcast, but not yet for multicast 20511 * or IP options. 20512 */ 20513 if (next_mp == NULL) { 20514 if (ire->ire_flags & RTF_MULTIRT) { 20515 multirt_send = B_TRUE; 20516 } 20517 } 20518 20519 /* 20520 * In most cases, the emission loop below is 20521 * entered only once. Only in the case where 20522 * the ire holds the RTF_MULTIRT flag, do we loop 20523 * to process all RTF_MULTIRT ires in the bucket, 20524 * and send the packet through all crossed 20525 * RTF_MULTIRT routes. 20526 */ 20527 do { 20528 if (multirt_send) { 20529 irb_t *irb; 20530 20531 irb = ire->ire_bucket; 20532 ASSERT(irb != NULL); 20533 /* 20534 * We are in a multiple send case, 20535 * need to get the next IRE and make 20536 * a duplicate of the packet. 20537 */ 20538 IRB_REFHOLD(irb); 20539 for (ire1 = ire->ire_next; 20540 ire1 != NULL; 20541 ire1 = ire1->ire_next) { 20542 if (!(ire1->ire_flags & 20543 RTF_MULTIRT)) 20544 continue; 20545 if (ire1->ire_addr != 20546 ire->ire_addr) 20547 continue; 20548 if (ire1->ire_marks & 20549 (IRE_MARK_CONDEMNED| 20550 IRE_MARK_HIDDEN)) 20551 continue; 20552 20553 /* Got one */ 20554 IRE_REFHOLD(ire1); 20555 break; 20556 } 20557 IRB_REFRELE(irb); 20558 20559 if (ire1 != NULL) { 20560 next_mp = copyb(mp); 20561 if ((next_mp == NULL) || 20562 ((mp->b_cont != NULL) && 20563 ((next_mp->b_cont = 20564 dupmsg(mp->b_cont)) 20565 == NULL))) { 20566 freemsg(next_mp); 20567 next_mp = NULL; 20568 ire_refrele(ire1); 20569 ire1 = NULL; 20570 } 20571 } 20572 20573 /* 20574 * Last multiroute ire; don't loop 20575 * anymore. The emission is over 20576 * and next_mp is NULL. 20577 */ 20578 if (ire1 == NULL) { 20579 multirt_send = B_FALSE; 20580 } 20581 } 20582 20583 noprepend: 20584 ASSERT(ipsec_len == 0); 20585 mp1 = ip_wput_attach_llhdr(mp, ire, 20586 IPP_LOCAL_OUT, ill_index); 20587 if (mp1 == NULL) { 20588 BUMP_MIB(&ip_mib, ipOutDiscards); 20589 if (next_mp) { 20590 freemsg(next_mp); 20591 ire_refrele(ire1); 20592 } 20593 ire_refrele(ire); 20594 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 20595 "ip_wput_ire_end: q %p (%S)", 20596 q, "discard MDATA"); 20597 if (conn_outgoing_ill != NULL) 20598 ill_refrele(conn_outgoing_ill); 20599 return; 20600 } 20601 UPDATE_OB_PKT_COUNT(ire); 20602 ire->ire_last_used_time = lbolt; 20603 20604 if (multirt_send) { 20605 /* 20606 * We are in a multiple send case, 20607 * need to re-enter the sending loop 20608 * using the next ire. 20609 */ 20610 putnext(stq, mp1); 20611 ire_refrele(ire); 20612 ire = ire1; 20613 stq = ire->ire_stq; 20614 mp = next_mp; 20615 next_mp = NULL; 20616 ipha = (ipha_t *)mp->b_rptr; 20617 ill_index = Q_TO_INDEX(stq); 20618 } 20619 } while (multirt_send); 20620 20621 if (!next_mp) { 20622 /* 20623 * Last copy going out (the ultra-common 20624 * case). Note that we intentionally replicate 20625 * the putnext rather than calling it before 20626 * the next_mp check in hopes of a little 20627 * tail-call action out of the compiler. 20628 */ 20629 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 20630 "ip_wput_ire_end: q %p (%S)", 20631 q, "last copy out(1)"); 20632 putnext(stq, mp1); 20633 ire_refrele(ire); 20634 if (conn_outgoing_ill != NULL) 20635 ill_refrele(conn_outgoing_ill); 20636 return; 20637 } 20638 /* More copies going out below. */ 20639 putnext(stq, mp1); 20640 } else { 20641 int offset; 20642 fragmentit: 20643 offset = ntohs(ipha->ipha_fragment_offset_and_flags); 20644 /* 20645 * If this would generate a icmp_frag_needed message, 20646 * we need to handle it before we do the IPSEC 20647 * processing. Otherwise, we need to strip the IPSEC 20648 * headers before we send up the message to the ULPs 20649 * which becomes messy and difficult. 20650 */ 20651 if (ipsec_len != 0) { 20652 if ((max_frag < (unsigned int)(LENGTH + 20653 ipsec_len)) && (offset & IPH_DF)) { 20654 20655 BUMP_MIB(&ip_mib, ipFragFails); 20656 ipha->ipha_hdr_checksum = 0; 20657 ipha->ipha_hdr_checksum = 20658 (uint16_t)ip_csum_hdr(ipha); 20659 icmp_frag_needed(ire->ire_stq, first_mp, 20660 max_frag); 20661 if (!next_mp) { 20662 ire_refrele(ire); 20663 if (conn_outgoing_ill != NULL) { 20664 ill_refrele( 20665 conn_outgoing_ill); 20666 } 20667 return; 20668 } 20669 } else { 20670 /* 20671 * This won't cause a icmp_frag_needed 20672 * message. to be gnerated. Send it on 20673 * the wire. Note that this could still 20674 * cause fragmentation and all we 20675 * do is the generation of the message 20676 * to the ULP if needed before IPSEC. 20677 */ 20678 if (!next_mp) { 20679 ipsec_out_process(q, first_mp, 20680 ire, ill_index); 20681 TRACE_2(TR_FAC_IP, 20682 TR_IP_WPUT_IRE_END, 20683 "ip_wput_ire_end: q %p " 20684 "(%S)", q, 20685 "last ipsec_out_process"); 20686 ire_refrele(ire); 20687 if (conn_outgoing_ill != NULL) { 20688 ill_refrele( 20689 conn_outgoing_ill); 20690 } 20691 return; 20692 } 20693 ipsec_out_process(q, first_mp, 20694 ire, ill_index); 20695 } 20696 } else { 20697 /* Initiate IPPF processing */ 20698 if (IPP_ENABLED(IPP_LOCAL_OUT)) { 20699 ip_process(IPP_LOCAL_OUT, &mp, 20700 ill_index); 20701 if (mp == NULL) { 20702 BUMP_MIB(&ip_mib, 20703 ipOutDiscards); 20704 if (next_mp != NULL) { 20705 freemsg(next_mp); 20706 ire_refrele(ire1); 20707 } 20708 ire_refrele(ire); 20709 TRACE_2(TR_FAC_IP, 20710 TR_IP_WPUT_IRE_END, 20711 "ip_wput_ire: q %p (%S)", 20712 q, "discard MDATA"); 20713 if (conn_outgoing_ill != NULL) { 20714 ill_refrele( 20715 conn_outgoing_ill); 20716 } 20717 return; 20718 } 20719 } 20720 if (!next_mp) { 20721 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 20722 "ip_wput_ire_end: q %p (%S)", 20723 q, "last fragmentation"); 20724 ip_wput_ire_fragmentit(mp, ire); 20725 ire_refrele(ire); 20726 if (conn_outgoing_ill != NULL) 20727 ill_refrele(conn_outgoing_ill); 20728 return; 20729 } 20730 ip_wput_ire_fragmentit(mp, ire); 20731 } 20732 } 20733 } else { 20734 nullstq: 20735 /* A NULL stq means the destination address is local. */ 20736 UPDATE_OB_PKT_COUNT(ire); 20737 ire->ire_last_used_time = lbolt; 20738 ASSERT(ire->ire_ipif != NULL); 20739 if (!next_mp) { 20740 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 20741 "ip_wput_ire_end: q %p (%S)", 20742 q, "local address"); 20743 ip_wput_local(q, ire->ire_ipif->ipif_ill, ipha, 20744 first_mp, ire, 0, ire->ire_zoneid); 20745 ire_refrele(ire); 20746 if (conn_outgoing_ill != NULL) 20747 ill_refrele(conn_outgoing_ill); 20748 return; 20749 } 20750 ip_wput_local(q, ire->ire_ipif->ipif_ill, ipha, first_mp, 20751 ire, 0, ire->ire_zoneid); 20752 } 20753 next: 20754 /* 20755 * More copies going out to additional interfaces. 20756 * ire1 has already been held. We don't need the 20757 * "ire" anymore. 20758 */ 20759 ire_refrele(ire); 20760 ire = ire1; 20761 ASSERT(ire != NULL && ire->ire_refcnt >= 1 && next_mp != NULL); 20762 mp = next_mp; 20763 ASSERT(ire->ire_ipversion == IPV4_VERSION); 20764 ill = ire_to_ill(ire); 20765 first_mp = mp; 20766 if (ipsec_len != 0) { 20767 ASSERT(first_mp->b_datap->db_type == M_CTL); 20768 mp = mp->b_cont; 20769 } 20770 dst = ire->ire_addr; 20771 ipha = (ipha_t *)mp->b_rptr; 20772 /* 20773 * Restore src so that we will pick up ire->ire_src_addr if src was 0. 20774 * Restore ipha_ident "no checksum" flag. 20775 */ 20776 src = orig_src; 20777 ipha->ipha_ident = ip_hdr_included; 20778 goto another; 20779 20780 #undef rptr 20781 #undef Q_TO_INDEX 20782 } 20783 20784 /* 20785 * Routine to allocate a message that is used to notify the ULP about MDT. 20786 * The caller may provide a pointer to the link-layer MDT capabilities, 20787 * or NULL if MDT is to be disabled on the stream. 20788 */ 20789 mblk_t * 20790 ip_mdinfo_alloc(ill_mdt_capab_t *isrc) 20791 { 20792 mblk_t *mp; 20793 ip_mdt_info_t *mdti; 20794 ill_mdt_capab_t *idst; 20795 20796 if ((mp = allocb(sizeof (*mdti), BPRI_HI)) != NULL) { 20797 DB_TYPE(mp) = M_CTL; 20798 mp->b_wptr = mp->b_rptr + sizeof (*mdti); 20799 mdti = (ip_mdt_info_t *)mp->b_rptr; 20800 mdti->mdt_info_id = MDT_IOC_INFO_UPDATE; 20801 idst = &(mdti->mdt_capab); 20802 20803 /* 20804 * If the caller provides us with the capability, copy 20805 * it over into our notification message; otherwise 20806 * we zero out the capability portion. 20807 */ 20808 if (isrc != NULL) 20809 bcopy((caddr_t)isrc, (caddr_t)idst, sizeof (*idst)); 20810 else 20811 bzero((caddr_t)idst, sizeof (*idst)); 20812 } 20813 return (mp); 20814 } 20815 20816 /* 20817 * Routine which determines whether MDT can be enabled on the destination 20818 * IRE and IPC combination, and if so, allocates and returns the MDT 20819 * notification mblk that may be used by ULP. We also check if we need to 20820 * turn MDT back to 'on' when certain restrictions prohibiting us to allow 20821 * MDT usage in the past have been lifted. This gets called during IP 20822 * and ULP binding. 20823 */ 20824 mblk_t * 20825 ip_mdinfo_return(ire_t *dst_ire, conn_t *connp, char *ill_name, 20826 ill_mdt_capab_t *mdt_cap) 20827 { 20828 mblk_t *mp; 20829 boolean_t rc = B_FALSE; 20830 20831 ASSERT(dst_ire != NULL); 20832 ASSERT(connp != NULL); 20833 ASSERT(mdt_cap != NULL); 20834 20835 /* 20836 * Currently, we only support simple TCP/{IPv4,IPv6} with 20837 * Multidata, which is handled in tcp_multisend(). This 20838 * is the reason why we do all these checks here, to ensure 20839 * that we don't enable Multidata for the cases which we 20840 * can't handle at the moment. 20841 */ 20842 do { 20843 /* Only do TCP at the moment */ 20844 if (connp->conn_ulp != IPPROTO_TCP) 20845 break; 20846 20847 /* 20848 * IPSEC outbound policy present? Note that we get here 20849 * after calling ipsec_conn_cache_policy() where the global 20850 * policy checking is performed. conn_latch will be 20851 * non-NULL as long as there's a policy defined, 20852 * i.e. conn_out_enforce_policy may be NULL in such case 20853 * when the connection is non-secure, and hence we check 20854 * further if the latch refers to an outbound policy. 20855 */ 20856 if (CONN_IPSEC_OUT_ENCAPSULATED(connp)) 20857 break; 20858 20859 /* CGTP (multiroute) is enabled? */ 20860 if (dst_ire->ire_flags & RTF_MULTIRT) 20861 break; 20862 20863 /* Outbound IPQoS enabled? */ 20864 if (IPP_ENABLED(IPP_LOCAL_OUT)) { 20865 /* 20866 * In this case, we disable MDT for this and all 20867 * future connections going over the interface. 20868 */ 20869 mdt_cap->ill_mdt_on = 0; 20870 break; 20871 } 20872 20873 /* socket option(s) present? */ 20874 if (!CONN_IS_MD_FASTPATH(connp)) 20875 break; 20876 20877 rc = B_TRUE; 20878 /* CONSTCOND */ 20879 } while (0); 20880 20881 /* Remember the result */ 20882 connp->conn_mdt_ok = rc; 20883 20884 if (!rc) 20885 return (NULL); 20886 else if (!mdt_cap->ill_mdt_on) { 20887 /* 20888 * If MDT has been previously turned off in the past, and we 20889 * currently can do MDT (due to IPQoS policy removal, etc.) 20890 * then enable it for this interface. 20891 */ 20892 mdt_cap->ill_mdt_on = 1; 20893 ip1dbg(("ip_mdinfo_return: reenabling MDT for " 20894 "interface %s\n", ill_name)); 20895 } 20896 20897 /* Allocate the MDT info mblk */ 20898 if ((mp = ip_mdinfo_alloc(mdt_cap)) == NULL) { 20899 ip0dbg(("ip_mdinfo_return: can't enable Multidata for " 20900 "conn %p on %s (ENOMEM)\n", (void *)connp, ill_name)); 20901 return (NULL); 20902 } 20903 return (mp); 20904 } 20905 20906 /* 20907 * Create destination address attribute, and fill it with the physical 20908 * destination address and SAP taken from the template DL_UNITDATA_REQ 20909 * message block. 20910 */ 20911 boolean_t 20912 ip_md_addr_attr(multidata_t *mmd, pdesc_t *pd, const mblk_t *dlmp) 20913 { 20914 dl_unitdata_req_t *dlurp; 20915 pattr_t *pa; 20916 pattrinfo_t pa_info; 20917 pattr_addr_t **das = (pattr_addr_t **)&pa_info.buf; 20918 uint_t das_len, das_off; 20919 20920 ASSERT(dlmp != NULL); 20921 20922 dlurp = (dl_unitdata_req_t *)dlmp->b_rptr; 20923 das_len = dlurp->dl_dest_addr_length; 20924 das_off = dlurp->dl_dest_addr_offset; 20925 20926 pa_info.type = PATTR_DSTADDRSAP; 20927 pa_info.len = sizeof (**das) + das_len - 1; 20928 20929 /* create and associate the attribute */ 20930 pa = mmd_addpattr(mmd, pd, &pa_info, B_TRUE, KM_NOSLEEP); 20931 if (pa != NULL) { 20932 ASSERT(*das != NULL); 20933 (*das)->addr_is_group = 0; 20934 (*das)->addr_len = (uint8_t)das_len; 20935 bcopy((caddr_t)dlurp + das_off, (*das)->addr, das_len); 20936 } 20937 20938 return (pa != NULL); 20939 } 20940 20941 /* 20942 * Create hardware checksum attribute and fill it with the values passed. 20943 */ 20944 boolean_t 20945 ip_md_hcksum_attr(multidata_t *mmd, pdesc_t *pd, uint32_t start_offset, 20946 uint32_t stuff_offset, uint32_t end_offset, uint32_t flags) 20947 { 20948 pattr_t *pa; 20949 pattrinfo_t pa_info; 20950 20951 ASSERT(mmd != NULL); 20952 20953 pa_info.type = PATTR_HCKSUM; 20954 pa_info.len = sizeof (pattr_hcksum_t); 20955 20956 /* create and associate the attribute */ 20957 pa = mmd_addpattr(mmd, pd, &pa_info, B_TRUE, KM_NOSLEEP); 20958 if (pa != NULL) { 20959 pattr_hcksum_t *hck = (pattr_hcksum_t *)pa_info.buf; 20960 20961 hck->hcksum_start_offset = start_offset; 20962 hck->hcksum_stuff_offset = stuff_offset; 20963 hck->hcksum_end_offset = end_offset; 20964 hck->hcksum_flags = flags; 20965 } 20966 return (pa != NULL); 20967 } 20968 20969 /* 20970 * Create zerocopy attribute and fill it with the specified flags 20971 */ 20972 boolean_t 20973 ip_md_zcopy_attr(multidata_t *mmd, pdesc_t *pd, uint_t flags) 20974 { 20975 pattr_t *pa; 20976 pattrinfo_t pa_info; 20977 20978 ASSERT(mmd != NULL); 20979 pa_info.type = PATTR_ZCOPY; 20980 pa_info.len = sizeof (pattr_zcopy_t); 20981 20982 /* create and associate the attribute */ 20983 pa = mmd_addpattr(mmd, pd, &pa_info, B_TRUE, KM_NOSLEEP); 20984 if (pa != NULL) { 20985 pattr_zcopy_t *zcopy = (pattr_zcopy_t *)pa_info.buf; 20986 20987 zcopy->zcopy_flags = flags; 20988 } 20989 return (pa != NULL); 20990 } 20991 20992 /* 20993 * Outbound IP fragmentation routine. 20994 * 20995 * NOTE : This routine does not ire_refrele the ire that is passed in 20996 * as the argument. 20997 */ 20998 static void 20999 ip_wput_frag(ire_t *ire, mblk_t *mp_orig, ip_pkt_t pkt_type, uint32_t max_frag, 21000 uint32_t frag_flag) 21001 { 21002 int i1; 21003 mblk_t *ll_hdr_mp; 21004 int ll_hdr_len; 21005 int hdr_len; 21006 mblk_t *hdr_mp; 21007 ipha_t *ipha; 21008 int ip_data_end; 21009 int len; 21010 mblk_t *mp = mp_orig; 21011 int offset; 21012 queue_t *q; 21013 uint32_t v_hlen_tos_len; 21014 mblk_t *first_mp; 21015 boolean_t mctl_present; 21016 mblk_t *xmit_mp; 21017 mblk_t *carve_mp; 21018 ire_t *ire1 = NULL; 21019 ire_t *save_ire = NULL; 21020 mblk_t *next_mp = NULL; 21021 boolean_t last_frag = B_FALSE; 21022 boolean_t multirt_send = B_FALSE; 21023 ire_t *first_ire = NULL; 21024 irb_t *irb = NULL; 21025 21026 TRACE_0(TR_FAC_IP, TR_IP_WPUT_FRAG_START, 21027 "ip_wput_frag_start:"); 21028 21029 if (mp->b_datap->db_type == M_CTL) { 21030 first_mp = mp; 21031 mp_orig = mp = mp->b_cont; 21032 mctl_present = B_TRUE; 21033 } else { 21034 first_mp = mp; 21035 mctl_present = B_FALSE; 21036 } 21037 21038 ipha = (ipha_t *)mp->b_rptr; 21039 21040 /* 21041 * If the Don't Fragment flag is on, generate an ICMP destination 21042 * unreachable, fragmentation needed. 21043 */ 21044 offset = ntohs(ipha->ipha_fragment_offset_and_flags); 21045 if (offset & IPH_DF) { 21046 BUMP_MIB(&ip_mib, ipFragFails); 21047 /* 21048 * Need to compute hdr checksum if called from ip_wput_ire. 21049 * Note that ip_rput_forward verifies the checksum before 21050 * calling this routine so in that case this is a noop. 21051 */ 21052 ipha->ipha_hdr_checksum = 0; 21053 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 21054 icmp_frag_needed(ire->ire_stq, first_mp, max_frag); 21055 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 21056 "ip_wput_frag_end:(%S)", 21057 "don't fragment"); 21058 return; 21059 } 21060 if (mctl_present) 21061 freeb(first_mp); 21062 /* 21063 * Establish the starting offset. May not be zero if we are fragging 21064 * a fragment that is being forwarded. 21065 */ 21066 offset = offset & IPH_OFFSET; 21067 21068 /* TODO why is this test needed? */ 21069 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 21070 if (((max_frag - LENGTH) & ~7) < 8) { 21071 /* TODO: notify ulp somehow */ 21072 BUMP_MIB(&ip_mib, ipFragFails); 21073 freemsg(mp); 21074 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 21075 "ip_wput_frag_end:(%S)", 21076 "len < 8"); 21077 return; 21078 } 21079 21080 hdr_len = (V_HLEN & 0xF) << 2; 21081 ipha->ipha_hdr_checksum = 0; 21082 21083 /* Get a copy of the header for the trailing frags */ 21084 hdr_mp = ip_wput_frag_copyhdr((uchar_t *)ipha, hdr_len, offset); 21085 if (!hdr_mp) { 21086 BUMP_MIB(&ip_mib, ipOutDiscards); 21087 freemsg(mp); 21088 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 21089 "ip_wput_frag_end:(%S)", 21090 "couldn't copy hdr"); 21091 return; 21092 } 21093 21094 /* Store the starting offset, with the MoreFrags flag. */ 21095 i1 = offset | IPH_MF | frag_flag; 21096 ipha->ipha_fragment_offset_and_flags = htons((uint16_t)i1); 21097 21098 /* Establish the ending byte offset, based on the starting offset. */ 21099 offset <<= 3; 21100 ip_data_end = offset + ntohs(ipha->ipha_length) - hdr_len; 21101 21102 /* 21103 * Establish the number of bytes maximum per frag, after putting 21104 * in the header. 21105 */ 21106 len = (max_frag - hdr_len) & ~7; 21107 21108 /* Store the length of the first fragment in the IP header. */ 21109 i1 = len + hdr_len; 21110 ASSERT(i1 <= IP_MAXPACKET); 21111 ipha->ipha_length = htons((uint16_t)i1); 21112 21113 /* 21114 * Compute the IP header checksum for the first frag. We have to 21115 * watch out that we stop at the end of the header. 21116 */ 21117 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 21118 21119 /* 21120 * Now carve off the first frag. Note that this will include the 21121 * original IP header. 21122 */ 21123 if (!(mp = ip_carve_mp(&mp_orig, i1))) { 21124 BUMP_MIB(&ip_mib, ipOutDiscards); 21125 freeb(hdr_mp); 21126 freemsg(mp_orig); 21127 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 21128 "ip_wput_frag_end:(%S)", 21129 "couldn't carve first"); 21130 return; 21131 } 21132 21133 /* 21134 * Multirouting case. Each fragment is replicated 21135 * via all non-condemned RTF_MULTIRT routes 21136 * currently resolved. 21137 * We ensure that first_ire is the first RTF_MULTIRT 21138 * ire in the bucket. 21139 */ 21140 if (ire->ire_flags & RTF_MULTIRT) { 21141 irb = ire->ire_bucket; 21142 ASSERT(irb != NULL); 21143 21144 multirt_send = B_TRUE; 21145 21146 /* Make sure we do not omit any multiroute ire. */ 21147 IRB_REFHOLD(irb); 21148 for (first_ire = irb->irb_ire; 21149 first_ire != NULL; 21150 first_ire = first_ire->ire_next) { 21151 if ((first_ire->ire_flags & RTF_MULTIRT) && 21152 (first_ire->ire_addr == ire->ire_addr) && 21153 !(first_ire->ire_marks & 21154 (IRE_MARK_CONDEMNED | IRE_MARK_HIDDEN))) 21155 break; 21156 } 21157 21158 if (first_ire != NULL) { 21159 if (first_ire != ire) { 21160 IRE_REFHOLD(first_ire); 21161 /* 21162 * Do not release the ire passed in 21163 * as the argument. 21164 */ 21165 ire = first_ire; 21166 } else { 21167 first_ire = NULL; 21168 } 21169 } 21170 IRB_REFRELE(irb); 21171 21172 /* 21173 * Save the first ire; we will need to restore it 21174 * for the trailing frags. 21175 * We REFHOLD save_ire, as each iterated ire will be 21176 * REFRELEd. 21177 */ 21178 save_ire = ire; 21179 IRE_REFHOLD(save_ire); 21180 } 21181 21182 /* 21183 * First fragment emission loop. 21184 * In most cases, the emission loop below is entered only 21185 * once. Only in the case where the ire holds the RTF_MULTIRT 21186 * flag, do we loop to process all RTF_MULTIRT ires in the 21187 * bucket, and send the fragment through all crossed 21188 * RTF_MULTIRT routes. 21189 */ 21190 do { 21191 if (ire->ire_flags & RTF_MULTIRT) { 21192 /* 21193 * We are in a multiple send case, need to get 21194 * the next ire and make a copy of the packet. 21195 * ire1 holds here the next ire to process in the 21196 * bucket. If multirouting is expected, 21197 * any non-RTF_MULTIRT ire that has the 21198 * right destination address is ignored. 21199 * 21200 * We have to take into account the MTU of 21201 * each walked ire. max_frag is set by the 21202 * the caller and generally refers to 21203 * the primary ire entry. Here we ensure that 21204 * no route with a lower MTU will be used, as 21205 * fragments are carved once for all ires, 21206 * then replicated. 21207 */ 21208 ASSERT(irb != NULL); 21209 IRB_REFHOLD(irb); 21210 for (ire1 = ire->ire_next; 21211 ire1 != NULL; 21212 ire1 = ire1->ire_next) { 21213 if ((ire1->ire_flags & RTF_MULTIRT) == 0) 21214 continue; 21215 if (ire1->ire_addr != ire->ire_addr) 21216 continue; 21217 if (ire1->ire_marks & 21218 (IRE_MARK_CONDEMNED | IRE_MARK_HIDDEN)) 21219 continue; 21220 /* 21221 * Ensure we do not exceed the MTU 21222 * of the next route. 21223 */ 21224 if (ire1->ire_max_frag < max_frag) { 21225 ip_multirt_bad_mtu(ire1, max_frag); 21226 continue; 21227 } 21228 21229 /* Got one. */ 21230 IRE_REFHOLD(ire1); 21231 break; 21232 } 21233 IRB_REFRELE(irb); 21234 21235 if (ire1 != NULL) { 21236 next_mp = copyb(mp); 21237 if ((next_mp == NULL) || 21238 ((mp->b_cont != NULL) && 21239 ((next_mp->b_cont = 21240 dupmsg(mp->b_cont)) == NULL))) { 21241 freemsg(next_mp); 21242 next_mp = NULL; 21243 ire_refrele(ire1); 21244 ire1 = NULL; 21245 } 21246 } 21247 21248 /* Last multiroute ire; don't loop anymore. */ 21249 if (ire1 == NULL) { 21250 multirt_send = B_FALSE; 21251 } 21252 } 21253 21254 ll_hdr_len = 0; 21255 LOCK_IRE_FP_MP(ire); 21256 ll_hdr_mp = ire->ire_fp_mp; 21257 if (ll_hdr_mp != NULL) { 21258 ASSERT(ll_hdr_mp->b_datap->db_type == M_DATA); 21259 ll_hdr_len = ll_hdr_mp->b_wptr - ll_hdr_mp->b_rptr; 21260 } else { 21261 ll_hdr_mp = ire->ire_dlureq_mp; 21262 } 21263 21264 /* If there is a transmit header, get a copy for this frag. */ 21265 /* 21266 * TODO: should check db_ref before calling ip_carve_mp since 21267 * it might give us a dup. 21268 */ 21269 if (!ll_hdr_mp) { 21270 /* No xmit header. */ 21271 xmit_mp = mp; 21272 } else if (mp->b_datap->db_ref == 1 && 21273 ll_hdr_len != 0 && 21274 ll_hdr_len <= mp->b_rptr - mp->b_datap->db_base) { 21275 /* M_DATA fastpath */ 21276 mp->b_rptr -= ll_hdr_len; 21277 bcopy(ll_hdr_mp->b_rptr, mp->b_rptr, ll_hdr_len); 21278 xmit_mp = mp; 21279 } else if (!(xmit_mp = copyb(ll_hdr_mp))) { 21280 UNLOCK_IRE_FP_MP(ire); 21281 BUMP_MIB(&ip_mib, ipOutDiscards); 21282 freeb(hdr_mp); 21283 freemsg(mp); 21284 freemsg(mp_orig); 21285 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 21286 "ip_wput_frag_end:(%S)", 21287 "discard"); 21288 21289 if (multirt_send) { 21290 ASSERT(ire1); 21291 ASSERT(next_mp); 21292 21293 freemsg(next_mp); 21294 ire_refrele(ire1); 21295 } 21296 if (save_ire != NULL) 21297 IRE_REFRELE(save_ire); 21298 21299 if (first_ire != NULL) 21300 ire_refrele(first_ire); 21301 return; 21302 } else { 21303 xmit_mp->b_cont = mp; 21304 /* Get priority marking, if any. */ 21305 if (DB_TYPE(xmit_mp) == M_DATA) 21306 xmit_mp->b_band = mp->b_band; 21307 } 21308 UNLOCK_IRE_FP_MP(ire); 21309 q = ire->ire_stq; 21310 BUMP_MIB(&ip_mib, ipFragCreates); 21311 putnext(q, xmit_mp); 21312 if (pkt_type != OB_PKT) { 21313 /* 21314 * Update the packet count of trailing 21315 * RTF_MULTIRT ires. 21316 */ 21317 UPDATE_OB_PKT_COUNT(ire); 21318 } 21319 21320 if (multirt_send) { 21321 /* 21322 * We are in a multiple send case; look for 21323 * the next ire and re-enter the loop. 21324 */ 21325 ASSERT(ire1); 21326 ASSERT(next_mp); 21327 /* REFRELE the current ire before looping */ 21328 ire_refrele(ire); 21329 ire = ire1; 21330 ire1 = NULL; 21331 mp = next_mp; 21332 next_mp = NULL; 21333 } 21334 } while (multirt_send); 21335 21336 ASSERT(ire1 == NULL); 21337 21338 /* Restore the original ire; we need it for the trailing frags */ 21339 if (save_ire != NULL) { 21340 /* REFRELE the last iterated ire */ 21341 ire_refrele(ire); 21342 /* save_ire has been REFHOLDed */ 21343 ire = save_ire; 21344 save_ire = NULL; 21345 q = ire->ire_stq; 21346 } 21347 21348 if (pkt_type == OB_PKT) { 21349 UPDATE_OB_PKT_COUNT(ire); 21350 } else { 21351 UPDATE_IB_PKT_COUNT(ire); 21352 } 21353 21354 /* Advance the offset to the second frag starting point. */ 21355 offset += len; 21356 /* 21357 * Update hdr_len from the copied header - there might be less options 21358 * in the later fragments. 21359 */ 21360 hdr_len = IPH_HDR_LENGTH(hdr_mp->b_rptr); 21361 /* Loop until done. */ 21362 for (;;) { 21363 uint16_t offset_and_flags; 21364 uint16_t ip_len; 21365 21366 if (ip_data_end - offset > len) { 21367 /* 21368 * Carve off the appropriate amount from the original 21369 * datagram. 21370 */ 21371 if (!(carve_mp = ip_carve_mp(&mp_orig, len))) { 21372 mp = NULL; 21373 break; 21374 } 21375 /* 21376 * More frags after this one. Get another copy 21377 * of the header. 21378 */ 21379 if (carve_mp->b_datap->db_ref == 1 && 21380 hdr_mp->b_wptr - hdr_mp->b_rptr < 21381 carve_mp->b_rptr - carve_mp->b_datap->db_base) { 21382 /* Inline IP header */ 21383 carve_mp->b_rptr -= hdr_mp->b_wptr - 21384 hdr_mp->b_rptr; 21385 bcopy(hdr_mp->b_rptr, carve_mp->b_rptr, 21386 hdr_mp->b_wptr - hdr_mp->b_rptr); 21387 mp = carve_mp; 21388 } else { 21389 if (!(mp = copyb(hdr_mp))) { 21390 freemsg(carve_mp); 21391 break; 21392 } 21393 /* Get priority marking, if any. */ 21394 mp->b_band = carve_mp->b_band; 21395 mp->b_cont = carve_mp; 21396 } 21397 ipha = (ipha_t *)mp->b_rptr; 21398 offset_and_flags = IPH_MF; 21399 } else { 21400 /* 21401 * Last frag. Consume the header. Set len to 21402 * the length of this last piece. 21403 */ 21404 len = ip_data_end - offset; 21405 21406 /* 21407 * Carve off the appropriate amount from the original 21408 * datagram. 21409 */ 21410 if (!(carve_mp = ip_carve_mp(&mp_orig, len))) { 21411 mp = NULL; 21412 break; 21413 } 21414 if (carve_mp->b_datap->db_ref == 1 && 21415 hdr_mp->b_wptr - hdr_mp->b_rptr < 21416 carve_mp->b_rptr - carve_mp->b_datap->db_base) { 21417 /* Inline IP header */ 21418 carve_mp->b_rptr -= hdr_mp->b_wptr - 21419 hdr_mp->b_rptr; 21420 bcopy(hdr_mp->b_rptr, carve_mp->b_rptr, 21421 hdr_mp->b_wptr - hdr_mp->b_rptr); 21422 mp = carve_mp; 21423 freeb(hdr_mp); 21424 hdr_mp = mp; 21425 } else { 21426 mp = hdr_mp; 21427 /* Get priority marking, if any. */ 21428 mp->b_band = carve_mp->b_band; 21429 mp->b_cont = carve_mp; 21430 } 21431 ipha = (ipha_t *)mp->b_rptr; 21432 /* A frag of a frag might have IPH_MF non-zero */ 21433 offset_and_flags = 21434 ntohs(ipha->ipha_fragment_offset_and_flags) & 21435 IPH_MF; 21436 } 21437 offset_and_flags |= (uint16_t)(offset >> 3); 21438 offset_and_flags |= (uint16_t)frag_flag; 21439 /* Store the offset and flags in the IP header. */ 21440 ipha->ipha_fragment_offset_and_flags = htons(offset_and_flags); 21441 21442 /* Store the length in the IP header. */ 21443 ip_len = (uint16_t)(len + hdr_len); 21444 ipha->ipha_length = htons(ip_len); 21445 21446 /* 21447 * Set the IP header checksum. Note that mp is just 21448 * the header, so this is easy to pass to ip_csum. 21449 */ 21450 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 21451 21452 /* Attach a transmit header, if any, and ship it. */ 21453 if (pkt_type == OB_PKT) { 21454 UPDATE_OB_PKT_COUNT(ire); 21455 } else { 21456 UPDATE_IB_PKT_COUNT(ire); 21457 } 21458 21459 if (ire->ire_flags & RTF_MULTIRT) { 21460 irb = ire->ire_bucket; 21461 ASSERT(irb != NULL); 21462 21463 multirt_send = B_TRUE; 21464 21465 /* 21466 * Save the original ire; we will need to restore it 21467 * for the tailing frags. 21468 */ 21469 save_ire = ire; 21470 IRE_REFHOLD(save_ire); 21471 } 21472 /* 21473 * Emission loop for this fragment, similar 21474 * to what is done for the first fragment. 21475 */ 21476 do { 21477 if (multirt_send) { 21478 /* 21479 * We are in a multiple send case, need to get 21480 * the next ire and make a copy of the packet. 21481 */ 21482 ASSERT(irb != NULL); 21483 IRB_REFHOLD(irb); 21484 for (ire1 = ire->ire_next; 21485 ire1 != NULL; 21486 ire1 = ire1->ire_next) { 21487 if (!(ire1->ire_flags & RTF_MULTIRT)) 21488 continue; 21489 if (ire1->ire_addr != ire->ire_addr) 21490 continue; 21491 if (ire1->ire_marks & 21492 (IRE_MARK_CONDEMNED| 21493 IRE_MARK_HIDDEN)) 21494 continue; 21495 /* 21496 * Ensure we do not exceed the MTU 21497 * of the next route. 21498 */ 21499 if (ire1->ire_max_frag < max_frag) { 21500 ip_multirt_bad_mtu(ire1, 21501 max_frag); 21502 continue; 21503 } 21504 21505 /* Got one. */ 21506 IRE_REFHOLD(ire1); 21507 break; 21508 } 21509 IRB_REFRELE(irb); 21510 21511 if (ire1 != NULL) { 21512 next_mp = copyb(mp); 21513 if ((next_mp == NULL) || 21514 ((mp->b_cont != NULL) && 21515 ((next_mp->b_cont = 21516 dupmsg(mp->b_cont)) == NULL))) { 21517 freemsg(next_mp); 21518 next_mp = NULL; 21519 ire_refrele(ire1); 21520 ire1 = NULL; 21521 } 21522 } 21523 21524 /* Last multiroute ire; don't loop anymore. */ 21525 if (ire1 == NULL) { 21526 multirt_send = B_FALSE; 21527 } 21528 } 21529 21530 /* Update transmit header */ 21531 ll_hdr_len = 0; 21532 LOCK_IRE_FP_MP(ire); 21533 ll_hdr_mp = ire->ire_fp_mp; 21534 if (ll_hdr_mp != NULL) { 21535 ASSERT(ll_hdr_mp->b_datap->db_type == M_DATA); 21536 ll_hdr_len = MBLKL(ll_hdr_mp); 21537 } else { 21538 ll_hdr_mp = ire->ire_dlureq_mp; 21539 } 21540 21541 if (!ll_hdr_mp) { 21542 xmit_mp = mp; 21543 } else if (mp->b_datap->db_ref == 1 && 21544 ll_hdr_len != 0 && 21545 ll_hdr_len <= mp->b_rptr - mp->b_datap->db_base) { 21546 /* M_DATA fastpath */ 21547 mp->b_rptr -= ll_hdr_len; 21548 bcopy(ll_hdr_mp->b_rptr, mp->b_rptr, 21549 ll_hdr_len); 21550 xmit_mp = mp; 21551 } else if ((xmit_mp = copyb(ll_hdr_mp)) != NULL) { 21552 xmit_mp->b_cont = mp; 21553 /* Get priority marking, if any. */ 21554 if (DB_TYPE(xmit_mp) == M_DATA) 21555 xmit_mp->b_band = mp->b_band; 21556 } else { 21557 /* 21558 * Exit both the replication and 21559 * fragmentation loops. 21560 */ 21561 UNLOCK_IRE_FP_MP(ire); 21562 goto drop_pkt; 21563 } 21564 UNLOCK_IRE_FP_MP(ire); 21565 BUMP_MIB(&ip_mib, ipFragCreates); 21566 putnext(q, xmit_mp); 21567 21568 if (pkt_type != OB_PKT) { 21569 /* 21570 * Update the packet count of trailing 21571 * RTF_MULTIRT ires. 21572 */ 21573 UPDATE_OB_PKT_COUNT(ire); 21574 } 21575 21576 /* All done if we just consumed the hdr_mp. */ 21577 if (mp == hdr_mp) { 21578 last_frag = B_TRUE; 21579 } 21580 21581 if (multirt_send) { 21582 /* 21583 * We are in a multiple send case; look for 21584 * the next ire and re-enter the loop. 21585 */ 21586 ASSERT(ire1); 21587 ASSERT(next_mp); 21588 /* REFRELE the current ire before looping */ 21589 ire_refrele(ire); 21590 ire = ire1; 21591 ire1 = NULL; 21592 q = ire->ire_stq; 21593 mp = next_mp; 21594 next_mp = NULL; 21595 } 21596 } while (multirt_send); 21597 /* 21598 * Restore the original ire; we need it for the 21599 * trailing frags 21600 */ 21601 if (save_ire != NULL) { 21602 ASSERT(ire1 == NULL); 21603 /* REFRELE the last iterated ire */ 21604 ire_refrele(ire); 21605 /* save_ire has been REFHOLDed */ 21606 ire = save_ire; 21607 q = ire->ire_stq; 21608 save_ire = NULL; 21609 } 21610 21611 if (last_frag) { 21612 BUMP_MIB(&ip_mib, ipFragOKs); 21613 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 21614 "ip_wput_frag_end:(%S)", 21615 "consumed hdr_mp"); 21616 21617 if (first_ire != NULL) 21618 ire_refrele(first_ire); 21619 return; 21620 } 21621 /* Otherwise, advance and loop. */ 21622 offset += len; 21623 } 21624 21625 drop_pkt: 21626 /* Clean up following allocation failure. */ 21627 BUMP_MIB(&ip_mib, ipOutDiscards); 21628 freemsg(mp); 21629 if (mp != hdr_mp) 21630 freeb(hdr_mp); 21631 if (mp != mp_orig) 21632 freemsg(mp_orig); 21633 21634 if (save_ire != NULL) 21635 IRE_REFRELE(save_ire); 21636 if (first_ire != NULL) 21637 ire_refrele(first_ire); 21638 21639 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 21640 "ip_wput_frag_end:(%S)", 21641 "end--alloc failure"); 21642 } 21643 21644 /* 21645 * Copy the header plus those options which have the copy bit set 21646 */ 21647 static mblk_t * 21648 ip_wput_frag_copyhdr(uchar_t *rptr, int hdr_len, int offset) 21649 { 21650 mblk_t *mp; 21651 uchar_t *up; 21652 21653 /* 21654 * Quick check if we need to look for options without the copy bit 21655 * set 21656 */ 21657 mp = allocb(ip_wroff_extra + hdr_len, BPRI_HI); 21658 if (!mp) 21659 return (mp); 21660 mp->b_rptr += ip_wroff_extra; 21661 if (hdr_len == IP_SIMPLE_HDR_LENGTH || offset != 0) { 21662 bcopy(rptr, mp->b_rptr, hdr_len); 21663 mp->b_wptr += hdr_len + ip_wroff_extra; 21664 return (mp); 21665 } 21666 up = mp->b_rptr; 21667 bcopy(rptr, up, IP_SIMPLE_HDR_LENGTH); 21668 up += IP_SIMPLE_HDR_LENGTH; 21669 rptr += IP_SIMPLE_HDR_LENGTH; 21670 hdr_len -= IP_SIMPLE_HDR_LENGTH; 21671 while (hdr_len > 0) { 21672 uint32_t optval; 21673 uint32_t optlen; 21674 21675 optval = *rptr; 21676 if (optval == IPOPT_EOL) 21677 break; 21678 if (optval == IPOPT_NOP) 21679 optlen = 1; 21680 else 21681 optlen = rptr[1]; 21682 if (optval & IPOPT_COPY) { 21683 bcopy(rptr, up, optlen); 21684 up += optlen; 21685 } 21686 rptr += optlen; 21687 hdr_len -= optlen; 21688 } 21689 /* 21690 * Make sure that we drop an even number of words by filling 21691 * with EOL to the next word boundary. 21692 */ 21693 for (hdr_len = up - (mp->b_rptr + IP_SIMPLE_HDR_LENGTH); 21694 hdr_len & 0x3; hdr_len++) 21695 *up++ = IPOPT_EOL; 21696 mp->b_wptr = up; 21697 /* Update header length */ 21698 mp->b_rptr[0] = (uint8_t)((IP_VERSION << 4) | ((up - mp->b_rptr) >> 2)); 21699 return (mp); 21700 } 21701 21702 /* 21703 * Delivery to local recipients including fanout to multiple recipients. 21704 * Does not do checksumming of UDP/TCP. 21705 * Note: q should be the read side queue for either the ill or conn. 21706 * Note: rq should be the read side q for the lower (ill) stream. 21707 * We don't send packets to IPPF processing, thus the last argument 21708 * to all the fanout calls are B_FALSE. 21709 */ 21710 void 21711 ip_wput_local(queue_t *q, ill_t *ill, ipha_t *ipha, mblk_t *mp, ire_t *ire, 21712 int fanout_flags, zoneid_t zoneid) 21713 { 21714 uint32_t protocol; 21715 mblk_t *first_mp; 21716 boolean_t mctl_present; 21717 int ire_type; 21718 #define rptr ((uchar_t *)ipha) 21719 21720 TRACE_1(TR_FAC_IP, TR_IP_WPUT_LOCAL_START, 21721 "ip_wput_local_start: q %p", q); 21722 21723 if (ire != NULL) { 21724 ire_type = ire->ire_type; 21725 } else { 21726 /* 21727 * Only ip_multicast_loopback() calls us with a NULL ire. If the 21728 * packet is not multicast, we can't tell the ire type. 21729 */ 21730 ASSERT(CLASSD(ipha->ipha_dst)); 21731 ire_type = IRE_BROADCAST; 21732 } 21733 21734 first_mp = mp; 21735 if (first_mp->b_datap->db_type == M_CTL) { 21736 ipsec_out_t *io = (ipsec_out_t *)first_mp->b_rptr; 21737 if (!io->ipsec_out_secure) { 21738 /* 21739 * This ipsec_out_t was allocated in ip_wput 21740 * for multicast packets to store the ill_index. 21741 * As this is being delivered locally, we don't 21742 * need this anymore. 21743 */ 21744 mp = first_mp->b_cont; 21745 freeb(first_mp); 21746 first_mp = mp; 21747 mctl_present = B_FALSE; 21748 } else { 21749 mctl_present = B_TRUE; 21750 mp = first_mp->b_cont; 21751 ASSERT(mp != NULL); 21752 ipsec_out_to_in(first_mp); 21753 } 21754 } else { 21755 mctl_present = B_FALSE; 21756 } 21757 21758 loopback_packets++; 21759 21760 ip2dbg(("ip_wput_local: from 0x%x to 0x%x in zone %d\n", 21761 ntohl(ipha->ipha_src), ntohl(ipha->ipha_dst), zoneid)); 21762 if (!IS_SIMPLE_IPH(ipha)) { 21763 ip_wput_local_options(ipha); 21764 } 21765 21766 protocol = ipha->ipha_protocol; 21767 switch (protocol) { 21768 case IPPROTO_ICMP: { 21769 ire_t *ire_zone; 21770 ilm_t *ilm; 21771 mblk_t *mp1; 21772 zoneid_t last_zoneid; 21773 21774 if (CLASSD(ipha->ipha_dst) && 21775 !(ill->ill_phyint->phyint_flags & PHYI_LOOPBACK)) { 21776 ASSERT(ire_type == IRE_BROADCAST); 21777 /* 21778 * In the multicast case, applications may have joined 21779 * the group from different zones, so we need to deliver 21780 * the packet to each of them. Loop through the 21781 * multicast memberships structures (ilm) on the receive 21782 * ill and send a copy of the packet up each matching 21783 * one. However, we don't do this for multicasts sent on 21784 * the loopback interface (PHYI_LOOPBACK flag set) as 21785 * they must stay in the sender's zone. 21786 * 21787 * ilm_add_v6() ensures that ilms in the same zone are 21788 * contiguous in the ill_ilm list. We use this property 21789 * to avoid sending duplicates needed when two 21790 * applications in the same zone join the same group on 21791 * different logical interfaces: we ignore the ilm if 21792 * its zoneid is the same as the last matching one. 21793 * In addition, the sending of the packet for 21794 * ire_zoneid is delayed until all of the other ilms 21795 * have been exhausted. 21796 */ 21797 last_zoneid = -1; 21798 ILM_WALKER_HOLD(ill); 21799 for (ilm = ill->ill_ilm; ilm != NULL; 21800 ilm = ilm->ilm_next) { 21801 if ((ilm->ilm_flags & ILM_DELETED) || 21802 ipha->ipha_dst != ilm->ilm_addr || 21803 ilm->ilm_zoneid == last_zoneid || 21804 ilm->ilm_zoneid == zoneid || 21805 !(ilm->ilm_ipif->ipif_flags & IPIF_UP)) 21806 continue; 21807 mp1 = ip_copymsg(first_mp); 21808 if (mp1 == NULL) 21809 continue; 21810 icmp_inbound(q, mp1, B_TRUE, ill, 0, 0, 21811 mctl_present, B_FALSE, ill, 21812 ilm->ilm_zoneid); 21813 last_zoneid = ilm->ilm_zoneid; 21814 } 21815 ILM_WALKER_RELE(ill); 21816 /* 21817 * Loopback case: the sending endpoint has 21818 * IP_MULTICAST_LOOP disabled, therefore we don't 21819 * dispatch the multicast packet to the sending zone. 21820 */ 21821 if (fanout_flags & IP_FF_NO_MCAST_LOOP) { 21822 freemsg(first_mp); 21823 return; 21824 } 21825 } else if (ire_type == IRE_BROADCAST) { 21826 /* 21827 * In the broadcast case, there may be many zones 21828 * which need a copy of the packet delivered to them. 21829 * There is one IRE_BROADCAST per broadcast address 21830 * and per zone; we walk those using a helper function. 21831 * In addition, the sending of the packet for zoneid is 21832 * delayed until all of the other ires have been 21833 * processed. 21834 */ 21835 IRB_REFHOLD(ire->ire_bucket); 21836 ire_zone = NULL; 21837 while ((ire_zone = ire_get_next_bcast_ire(ire_zone, 21838 ire)) != NULL) { 21839 mp1 = ip_copymsg(first_mp); 21840 if (mp1 == NULL) 21841 continue; 21842 21843 UPDATE_IB_PKT_COUNT(ire_zone); 21844 ire_zone->ire_last_used_time = lbolt; 21845 icmp_inbound(q, mp1, B_TRUE, ill, 0, 0, 21846 mctl_present, B_FALSE, ill, 21847 ire_zone->ire_zoneid); 21848 } 21849 IRB_REFRELE(ire->ire_bucket); 21850 } 21851 icmp_inbound(q, first_mp, (ire_type == IRE_BROADCAST), ill, 0, 21852 0, mctl_present, B_FALSE, ill, zoneid); 21853 TRACE_2(TR_FAC_IP, TR_IP_WPUT_LOCAL_END, 21854 "ip_wput_local_end: q %p (%S)", 21855 q, "icmp"); 21856 return; 21857 } 21858 case IPPROTO_IGMP: 21859 if (igmp_input(q, mp, ill)) { 21860 /* Bad packet - discarded by igmp_input */ 21861 TRACE_2(TR_FAC_IP, TR_IP_WPUT_LOCAL_END, 21862 "ip_wput_local_end: q %p (%S)", 21863 q, "igmp_input--bad packet"); 21864 if (mctl_present) 21865 freeb(first_mp); 21866 return; 21867 } 21868 /* 21869 * igmp_input() may have pulled up the message so ipha needs to 21870 * be reinitialized. 21871 */ 21872 ipha = (ipha_t *)mp->b_rptr; 21873 /* deliver to local raw users */ 21874 break; 21875 case IPPROTO_ENCAP: 21876 /* 21877 * This case is covered by either ip_fanout_proto, or by 21878 * the above security processing for self-tunneled packets. 21879 */ 21880 break; 21881 case IPPROTO_UDP: { 21882 uint16_t *up; 21883 uint32_t ports; 21884 21885 up = (uint16_t *)(rptr + IPH_HDR_LENGTH(ipha) + 21886 UDP_PORTS_OFFSET); 21887 /* Force a 'valid' checksum. */ 21888 up[3] = 0; 21889 21890 ports = *(uint32_t *)up; 21891 ip_fanout_udp(q, first_mp, ill, ipha, ports, 21892 (ire_type == IRE_BROADCAST), 21893 fanout_flags | IP_FF_SEND_ICMP | IP_FF_HDR_COMPLETE | 21894 IP_FF_SEND_SLLA | IP_FF_IP6INFO, mctl_present, B_FALSE, 21895 ill, zoneid); 21896 TRACE_2(TR_FAC_IP, TR_IP_WPUT_LOCAL_END, 21897 "ip_wput_local_end: q %p (%S)", q, "ip_fanout_udp"); 21898 return; 21899 } 21900 case IPPROTO_TCP: { 21901 21902 /* 21903 * For TCP, discard broadcast packets. 21904 */ 21905 if ((ushort_t)ire_type == IRE_BROADCAST) { 21906 freemsg(first_mp); 21907 BUMP_MIB(&ip_mib, ipInDiscards); 21908 return; 21909 } 21910 21911 if (mp->b_datap->db_type == M_DATA) { 21912 /* 21913 * M_DATA mblk, so init mblk (chain) for no struio(). 21914 */ 21915 mblk_t *mp1 = mp; 21916 21917 do 21918 mp1->b_datap->db_struioflag = 0; 21919 while ((mp1 = mp1->b_cont) != NULL); 21920 } 21921 ASSERT((rptr + IPH_HDR_LENGTH(ipha) + TCP_PORTS_OFFSET + 4) 21922 <= mp->b_wptr); 21923 ip_fanout_tcp(q, first_mp, ill, ipha, 21924 fanout_flags | IP_FF_SEND_ICMP | IP_FF_HDR_COMPLETE | 21925 IP_FF_SYN_ADDIRE | IP_FF_IP6INFO, 21926 mctl_present, B_FALSE, zoneid); 21927 TRACE_2(TR_FAC_IP, TR_IP_WPUT_LOCAL_END, 21928 "ip_wput_local_end: q %p (%S)", q, "ip_fanout_tcp"); 21929 return; 21930 } 21931 case IPPROTO_SCTP: 21932 { 21933 uint32_t ports; 21934 21935 bcopy(rptr + IPH_HDR_LENGTH(ipha), &ports, sizeof (ports)); 21936 ip_fanout_sctp(first_mp, ill, ipha, ports, 21937 fanout_flags | IP_FF_SEND_ICMP | IP_FF_HDR_COMPLETE | 21938 IP_FF_IP6INFO, 21939 mctl_present, B_FALSE, 0, zoneid); 21940 return; 21941 } 21942 21943 default: 21944 break; 21945 } 21946 /* 21947 * Find a client for some other protocol. We give 21948 * copies to multiple clients, if more than one is 21949 * bound. 21950 */ 21951 ip_fanout_proto(q, first_mp, ill, ipha, 21952 fanout_flags | IP_FF_SEND_ICMP | IP_FF_HDR_COMPLETE | IP_FF_RAWIP, 21953 mctl_present, B_FALSE, ill, zoneid); 21954 TRACE_2(TR_FAC_IP, TR_IP_WPUT_LOCAL_END, 21955 "ip_wput_local_end: q %p (%S)", q, "ip_fanout_proto"); 21956 #undef rptr 21957 } 21958 21959 /* 21960 * Update any source route, record route, or timestamp options. 21961 * Check that we are at end of strict source route. 21962 * The options have been sanity checked by ip_wput_options(). 21963 */ 21964 static void 21965 ip_wput_local_options(ipha_t *ipha) 21966 { 21967 ipoptp_t opts; 21968 uchar_t *opt; 21969 uint8_t optval; 21970 uint8_t optlen; 21971 ipaddr_t dst; 21972 uint32_t ts; 21973 ire_t *ire; 21974 timestruc_t now; 21975 21976 ip2dbg(("ip_wput_local_options\n")); 21977 for (optval = ipoptp_first(&opts, ipha); 21978 optval != IPOPT_EOL; 21979 optval = ipoptp_next(&opts)) { 21980 opt = opts.ipoptp_cur; 21981 optlen = opts.ipoptp_len; 21982 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 21983 switch (optval) { 21984 uint32_t off; 21985 case IPOPT_SSRR: 21986 case IPOPT_LSRR: 21987 off = opt[IPOPT_OFFSET]; 21988 off--; 21989 if (optlen < IP_ADDR_LEN || 21990 off > optlen - IP_ADDR_LEN) { 21991 /* End of source route */ 21992 break; 21993 } 21994 /* 21995 * This will only happen if two consecutive entries 21996 * in the source route contains our address or if 21997 * it is a packet with a loose source route which 21998 * reaches us before consuming the whole source route 21999 */ 22000 ip1dbg(("ip_wput_local_options: not end of SR\n")); 22001 if (optval == IPOPT_SSRR) { 22002 return; 22003 } 22004 /* 22005 * Hack: instead of dropping the packet truncate the 22006 * source route to what has been used by filling the 22007 * rest with IPOPT_NOP. 22008 */ 22009 opt[IPOPT_OLEN] = (uint8_t)off; 22010 while (off < optlen) { 22011 opt[off++] = IPOPT_NOP; 22012 } 22013 break; 22014 case IPOPT_RR: 22015 off = opt[IPOPT_OFFSET]; 22016 off--; 22017 if (optlen < IP_ADDR_LEN || 22018 off > optlen - IP_ADDR_LEN) { 22019 /* No more room - ignore */ 22020 ip1dbg(( 22021 "ip_wput_forward_options: end of RR\n")); 22022 break; 22023 } 22024 dst = htonl(INADDR_LOOPBACK); 22025 bcopy(&dst, (char *)opt + off, IP_ADDR_LEN); 22026 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 22027 break; 22028 case IPOPT_TS: 22029 /* Insert timestamp if there is romm */ 22030 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 22031 case IPOPT_TS_TSONLY: 22032 off = IPOPT_TS_TIMELEN; 22033 break; 22034 case IPOPT_TS_PRESPEC: 22035 case IPOPT_TS_PRESPEC_RFC791: 22036 /* Verify that the address matched */ 22037 off = opt[IPOPT_OFFSET] - 1; 22038 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 22039 ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, 22040 NULL, ALL_ZONES, MATCH_IRE_TYPE); 22041 if (ire == NULL) { 22042 /* Not for us */ 22043 break; 22044 } 22045 ire_refrele(ire); 22046 /* FALLTHRU */ 22047 case IPOPT_TS_TSANDADDR: 22048 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 22049 break; 22050 default: 22051 /* 22052 * ip_*put_options should have already 22053 * dropped this packet. 22054 */ 22055 cmn_err(CE_PANIC, "ip_wput_local_options: " 22056 "unknown IT - bug in ip_wput_options?\n"); 22057 return; /* Keep "lint" happy */ 22058 } 22059 if (opt[IPOPT_OFFSET] - 1 + off > optlen) { 22060 /* Increase overflow counter */ 22061 off = (opt[IPOPT_POS_OV_FLG] >> 4) + 1; 22062 opt[IPOPT_POS_OV_FLG] = (uint8_t) 22063 (opt[IPOPT_POS_OV_FLG] & 0x0F) | 22064 (off << 4); 22065 break; 22066 } 22067 off = opt[IPOPT_OFFSET] - 1; 22068 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 22069 case IPOPT_TS_PRESPEC: 22070 case IPOPT_TS_PRESPEC_RFC791: 22071 case IPOPT_TS_TSANDADDR: 22072 dst = htonl(INADDR_LOOPBACK); 22073 bcopy(&dst, (char *)opt + off, IP_ADDR_LEN); 22074 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 22075 /* FALLTHRU */ 22076 case IPOPT_TS_TSONLY: 22077 off = opt[IPOPT_OFFSET] - 1; 22078 /* Compute # of milliseconds since midnight */ 22079 gethrestime(&now); 22080 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 + 22081 now.tv_nsec / (NANOSEC / MILLISEC); 22082 bcopy(&ts, (char *)opt + off, IPOPT_TS_TIMELEN); 22083 opt[IPOPT_OFFSET] += IPOPT_TS_TIMELEN; 22084 break; 22085 } 22086 break; 22087 } 22088 } 22089 } 22090 22091 /* 22092 * Send out a multicast packet on interface ipif. 22093 * The sender does not have an conn. 22094 * Caller verifies that this isn't a PHYI_LOOPBACK. 22095 */ 22096 void 22097 ip_wput_multicast(queue_t *q, mblk_t *mp, ipif_t *ipif) 22098 { 22099 ipha_t *ipha; 22100 ire_t *ire; 22101 ipaddr_t dst; 22102 mblk_t *first_mp; 22103 22104 /* igmp_sendpkt always allocates a ipsec_out_t */ 22105 ASSERT(mp->b_datap->db_type == M_CTL); 22106 ASSERT(!ipif->ipif_isv6); 22107 ASSERT(!(ipif->ipif_ill->ill_phyint->phyint_flags & PHYI_LOOPBACK)); 22108 22109 first_mp = mp; 22110 mp = first_mp->b_cont; 22111 ASSERT(mp->b_datap->db_type == M_DATA); 22112 ipha = (ipha_t *)mp->b_rptr; 22113 22114 /* 22115 * Find an IRE which matches the destination and the outgoing 22116 * queue (i.e. the outgoing interface.) 22117 */ 22118 if (ipif->ipif_flags & IPIF_POINTOPOINT) 22119 dst = ipif->ipif_pp_dst_addr; 22120 else 22121 dst = ipha->ipha_dst; 22122 /* 22123 * The source address has already been initialized by the 22124 * caller and hence matching on ILL (MATCH_IRE_ILL) would 22125 * be sufficient rather than MATCH_IRE_IPIF. 22126 * 22127 * This function is used for sending IGMP packets. We need 22128 * to make sure that we send the packet out of the interface 22129 * (ipif->ipif_ill) where we joined the group. This is to 22130 * prevent from switches doing IGMP snooping to send us multicast 22131 * packets for a given group on the interface we have joined. 22132 * If we can't find an ire, igmp_sendpkt has already initialized 22133 * ipsec_out_attach_if so that this will not be load spread in 22134 * ip_newroute_ipif. 22135 */ 22136 ire = ire_ctable_lookup(dst, 0, 0, ipif, ALL_ZONES, MATCH_IRE_ILL); 22137 if (!ire) { 22138 /* 22139 * Mark this packet to make it be delivered to 22140 * ip_wput_ire after the new ire has been 22141 * created. 22142 */ 22143 mp->b_prev = NULL; 22144 mp->b_next = NULL; 22145 ip_newroute_ipif(q, first_mp, ipif, dst, NULL, RTF_SETSRC); 22146 return; 22147 } 22148 22149 /* 22150 * Honor the RTF_SETSRC flag; this is the only case 22151 * where we force this addr whatever the current src addr is, 22152 * because this address is set by igmp_sendpkt(), and 22153 * cannot be specified by any user. 22154 */ 22155 if (ire->ire_flags & RTF_SETSRC) { 22156 ipha->ipha_src = ire->ire_src_addr; 22157 } 22158 22159 ip_wput_ire(q, first_mp, ire, NULL, B_FALSE); 22160 } 22161 22162 /* 22163 * NOTE : This function does not ire_refrele the ire argument passed in. 22164 * 22165 * Copy the link layer header and do IPQoS if needed. Frees the mblk on 22166 * failure. The ire_fp_mp can vanish any time in the case of IRE_MIPRTUN 22167 * and IRE_BROADCAST due to DL_NOTE_FASTPATH_FLUSH. Hence we have to hold 22168 * the ire_lock to access the ire_fp_mp in this case. 22169 * IPQoS assumes that the first M_DATA contains the IP header. So, if we are 22170 * prepending a fastpath message IPQoS processing must precede it, we also set 22171 * the b_band of the fastpath message to that of the mblk returned by IPQoS 22172 * (IPQoS might have set the b_band for CoS marking). 22173 * However, if we are prepending DL_UNITDATA_REQ message, IPQoS processing 22174 * must follow it so that IPQoS can mark the dl_priority field for CoS 22175 * marking, if needed. 22176 */ 22177 static mblk_t * 22178 ip_wput_attach_llhdr(mblk_t *mp, ire_t *ire, ip_proc_t proc, uint32_t ill_index) 22179 { 22180 uint_t hlen; 22181 ipha_t *ipha; 22182 mblk_t *mp1; 22183 boolean_t qos_done = B_FALSE; 22184 uchar_t *ll_hdr; 22185 22186 #define rptr ((uchar_t *)ipha) 22187 22188 ipha = (ipha_t *)mp->b_rptr; 22189 hlen = 0; 22190 LOCK_IRE_FP_MP(ire); 22191 if ((mp1 = ire->ire_fp_mp) != NULL) { 22192 ASSERT(DB_TYPE(mp1) == M_DATA); 22193 /* Initiate IPPF processing */ 22194 if ((proc != 0) && IPP_ENABLED(proc)) { 22195 UNLOCK_IRE_FP_MP(ire); 22196 ip_process(proc, &mp, ill_index); 22197 if (mp == NULL) 22198 return (NULL); 22199 22200 ipha = (ipha_t *)mp->b_rptr; 22201 LOCK_IRE_FP_MP(ire); 22202 if ((mp1 = ire->ire_fp_mp) == NULL) { 22203 qos_done = B_TRUE; 22204 goto no_fp_mp; 22205 } 22206 ASSERT(DB_TYPE(mp1) == M_DATA); 22207 } 22208 hlen = MBLKL(mp1); 22209 /* 22210 * Check if we have enough room to prepend fastpath 22211 * header 22212 */ 22213 if (hlen != 0 && (rptr - mp->b_datap->db_base) >= hlen) { 22214 ll_hdr = rptr - hlen; 22215 bcopy(mp1->b_rptr, ll_hdr, hlen); 22216 /* XXX ipha is not aligned here */ 22217 ipha = (ipha_t *)(rptr - hlen); 22218 /* 22219 * Set the b_rptr to the start of the link layer 22220 * header 22221 */ 22222 mp->b_rptr = rptr; 22223 mp1 = mp; 22224 } else { 22225 mp1 = copyb(mp1); 22226 if (mp1 == NULL) 22227 goto unlock_err; 22228 mp1->b_band = mp->b_band; 22229 mp1->b_cont = mp; 22230 /* 22231 * XXX disable ICK_VALID and compute checksum 22232 * here; can happen if ire_fp_mp changes and 22233 * it can't be copied now due to insufficient 22234 * space. (unlikely, fp mp can change, but it 22235 * does not increase in length) 22236 */ 22237 } 22238 UNLOCK_IRE_FP_MP(ire); 22239 } else { 22240 no_fp_mp: 22241 mp1 = copyb(ire->ire_dlureq_mp); 22242 if (mp1 == NULL) { 22243 unlock_err: 22244 UNLOCK_IRE_FP_MP(ire); 22245 freemsg(mp); 22246 return (NULL); 22247 } 22248 UNLOCK_IRE_FP_MP(ire); 22249 mp1->b_cont = mp; 22250 if (!qos_done && (proc != 0) && IPP_ENABLED(proc)) { 22251 ip_process(proc, &mp1, ill_index); 22252 if (mp1 == NULL) 22253 return (NULL); 22254 } 22255 } 22256 return (mp1); 22257 #undef rptr 22258 } 22259 22260 /* 22261 * Finish the outbound IPsec processing for an IPv6 packet. This function 22262 * is called from ipsec_out_process() if the IPsec packet was processed 22263 * synchronously, or from {ah,esp}_kcf_callback() if it was processed 22264 * asynchronously. 22265 */ 22266 void 22267 ip_wput_ipsec_out_v6(queue_t *q, mblk_t *ipsec_mp, ip6_t *ip6h, ill_t *ill, 22268 ire_t *ire_arg) 22269 { 22270 in6_addr_t *v6dstp; 22271 ire_t *ire; 22272 mblk_t *mp; 22273 uint_t ill_index; 22274 ipsec_out_t *io; 22275 boolean_t attach_if, hwaccel; 22276 uint32_t flags = IP6_NO_IPPOLICY; 22277 int match_flags; 22278 zoneid_t zoneid; 22279 boolean_t ill_need_rele = B_FALSE; 22280 boolean_t ire_need_rele = B_FALSE; 22281 22282 mp = ipsec_mp->b_cont; 22283 io = (ipsec_out_t *)ipsec_mp->b_rptr; 22284 ill_index = io->ipsec_out_ill_index; 22285 if (io->ipsec_out_reachable) { 22286 flags |= IPV6_REACHABILITY_CONFIRMATION; 22287 } 22288 attach_if = io->ipsec_out_attach_if; 22289 hwaccel = io->ipsec_out_accelerated; 22290 zoneid = io->ipsec_out_zoneid; 22291 ASSERT(zoneid != ALL_ZONES); 22292 match_flags = MATCH_IRE_ILL_GROUP; 22293 /* Multicast addresses should have non-zero ill_index. */ 22294 v6dstp = &ip6h->ip6_dst; 22295 ASSERT(ip6h->ip6_nxt != IPPROTO_RAW); 22296 ASSERT(!IN6_IS_ADDR_MULTICAST(v6dstp) || ill_index != 0); 22297 ASSERT(!attach_if || ill_index != 0); 22298 if (ill_index != 0) { 22299 if (ill == NULL) { 22300 ill = ip_grab_attach_ill(NULL, ipsec_mp, ill_index, 22301 B_TRUE); 22302 22303 /* Failure case frees things for us. */ 22304 if (ill == NULL) 22305 return; 22306 22307 ill_need_rele = B_TRUE; 22308 } 22309 /* 22310 * If this packet needs to go out on a particular interface 22311 * honor it. 22312 */ 22313 if (attach_if) { 22314 match_flags = MATCH_IRE_ILL; 22315 22316 /* 22317 * Check if we need an ire that will not be 22318 * looked up by anybody else i.e. HIDDEN. 22319 */ 22320 if (ill_is_probeonly(ill)) { 22321 match_flags |= MATCH_IRE_MARK_HIDDEN; 22322 } 22323 } 22324 } 22325 ASSERT(mp != NULL); 22326 22327 if (IN6_IS_ADDR_MULTICAST(v6dstp)) { 22328 boolean_t unspec_src; 22329 ipif_t *ipif; 22330 22331 /* 22332 * Use the ill_index to get the right ill. 22333 */ 22334 unspec_src = io->ipsec_out_unspec_src; 22335 (void) ipif_lookup_zoneid(ill, zoneid, 0, &ipif); 22336 if (ipif == NULL) { 22337 if (ill_need_rele) 22338 ill_refrele(ill); 22339 freemsg(ipsec_mp); 22340 return; 22341 } 22342 22343 if (ire_arg != NULL) { 22344 ire = ire_arg; 22345 } else { 22346 ire = ire_ctable_lookup_v6(v6dstp, 0, 0, ipif, 22347 zoneid, match_flags); 22348 ire_need_rele = B_TRUE; 22349 } 22350 if (ire != NULL) { 22351 ipif_refrele(ipif); 22352 /* 22353 * XXX Do the multicast forwarding now, as the IPSEC 22354 * processing has been done. 22355 */ 22356 goto send; 22357 } 22358 22359 ip0dbg(("ip_wput_ipsec_out_v6: multicast: IRE disappeared\n")); 22360 mp->b_prev = NULL; 22361 mp->b_next = NULL; 22362 22363 /* 22364 * If the IPsec packet was processed asynchronously, 22365 * drop it now. 22366 */ 22367 if (q == NULL) { 22368 if (ill_need_rele) 22369 ill_refrele(ill); 22370 freemsg(ipsec_mp); 22371 return; 22372 } 22373 22374 ip_newroute_ipif_v6(q, ipsec_mp, ipif, *v6dstp, 22375 unspec_src, zoneid); 22376 ipif_refrele(ipif); 22377 } else { 22378 if (attach_if) { 22379 ipif_t *ipif; 22380 22381 ipif = ipif_get_next_ipif(NULL, ill); 22382 if (ipif == NULL) { 22383 if (ill_need_rele) 22384 ill_refrele(ill); 22385 freemsg(ipsec_mp); 22386 return; 22387 } 22388 ire = ire_ctable_lookup_v6(v6dstp, 0, 0, ipif, 22389 zoneid, match_flags); 22390 ire_need_rele = B_TRUE; 22391 ipif_refrele(ipif); 22392 } else { 22393 if (ire_arg != NULL) { 22394 ire = ire_arg; 22395 } else { 22396 ire = ire_cache_lookup_v6(v6dstp, zoneid); 22397 ire_need_rele = B_TRUE; 22398 } 22399 } 22400 if (ire != NULL) 22401 goto send; 22402 /* 22403 * ire disappeared underneath. 22404 * 22405 * What we need to do here is the ip_newroute 22406 * logic to get the ire without doing the IPSEC 22407 * processing. Follow the same old path. But this 22408 * time, ip_wput or ire_add_then_send will call us 22409 * directly as all the IPSEC operations are done. 22410 */ 22411 ip1dbg(("ip_wput_ipsec_out_v6: IRE disappeared\n")); 22412 mp->b_prev = NULL; 22413 mp->b_next = NULL; 22414 22415 /* 22416 * If the IPsec packet was processed asynchronously, 22417 * drop it now. 22418 */ 22419 if (q == NULL) { 22420 if (ill_need_rele) 22421 ill_refrele(ill); 22422 freemsg(ipsec_mp); 22423 return; 22424 } 22425 22426 ip_newroute_v6(q, ipsec_mp, v6dstp, &ip6h->ip6_src, ill, 22427 zoneid); 22428 } 22429 if (ill != NULL && ill_need_rele) 22430 ill_refrele(ill); 22431 return; 22432 send: 22433 if (ill != NULL && ill_need_rele) 22434 ill_refrele(ill); 22435 22436 /* Local delivery */ 22437 if (ire->ire_stq == NULL) { 22438 ASSERT(q != NULL); 22439 ip_wput_local_v6(RD(q), ire->ire_ipif->ipif_ill, ip6h, ipsec_mp, 22440 ire, 0); 22441 if (ire_need_rele) 22442 ire_refrele(ire); 22443 return; 22444 } 22445 /* 22446 * Everything is done. Send it out on the wire. 22447 * We force the insertion of a fragment header using the 22448 * IPH_FRAG_HDR flag in two cases: 22449 * - after reception of an ICMPv6 "packet too big" message 22450 * with a MTU < 1280 (cf. RFC 2460 section 5) 22451 * - for multirouted IPv6 packets, so that the receiver can 22452 * discard duplicates according to their fragment identifier 22453 */ 22454 /* XXX fix flow control problems. */ 22455 if (ntohs(ip6h->ip6_plen) + IPV6_HDR_LEN > ire->ire_max_frag || 22456 (ire->ire_frag_flag & IPH_FRAG_HDR)) { 22457 if (hwaccel) { 22458 /* 22459 * hardware acceleration does not handle these 22460 * "slow path" cases. 22461 */ 22462 /* IPsec KSTATS: should bump bean counter here. */ 22463 if (ire_need_rele) 22464 ire_refrele(ire); 22465 freemsg(ipsec_mp); 22466 return; 22467 } 22468 if (ntohs(ip6h->ip6_plen) + IPV6_HDR_LEN != 22469 (mp->b_cont ? msgdsize(mp) : 22470 mp->b_wptr - (uchar_t *)ip6h)) { 22471 /* IPsec KSTATS: should bump bean counter here. */ 22472 ip0dbg(("Packet length mismatch: %d, %ld\n", 22473 ntohs(ip6h->ip6_plen) + IPV6_HDR_LEN, 22474 msgdsize(mp))); 22475 if (ire_need_rele) 22476 ire_refrele(ire); 22477 freemsg(ipsec_mp); 22478 return; 22479 } 22480 ASSERT(mp->b_prev == NULL); 22481 ip2dbg(("Fragmenting Size = %d, mtu = %d\n", 22482 ntohs(ip6h->ip6_plen) + 22483 IPV6_HDR_LEN, ire->ire_max_frag)); 22484 ip_wput_frag_v6(mp, ire, flags, NULL, B_FALSE, 22485 ire->ire_max_frag); 22486 } else { 22487 UPDATE_OB_PKT_COUNT(ire); 22488 ire->ire_last_used_time = lbolt; 22489 ip_xmit_v6(mp, ire, flags, NULL, B_FALSE, hwaccel ? io : NULL); 22490 } 22491 if (ire_need_rele) 22492 ire_refrele(ire); 22493 freeb(ipsec_mp); 22494 } 22495 22496 void 22497 ipsec_hw_putnext(queue_t *q, mblk_t *mp) 22498 { 22499 /* EXPORT DELETE START */ 22500 mblk_t *hada_mp; /* attributes M_CTL mblk */ 22501 da_ipsec_t *hada; /* data attributes */ 22502 ill_t *ill = (ill_t *)q->q_ptr; 22503 22504 IPSECHW_DEBUG(IPSECHW_PKT, ("ipsec_hw_putnext: accelerated packet\n")); 22505 22506 if ((ill->ill_capabilities & (ILL_CAPAB_AH | ILL_CAPAB_ESP)) == 0) { 22507 /* IPsec KSTATS: Bump lose counter here! */ 22508 /* EXPORT DELETE END */ 22509 freemsg(mp); 22510 /* EXPORT DELETE START */ 22511 return; 22512 } 22513 22514 /* 22515 * It's an IPsec packet that must be 22516 * accelerated by the Provider, and the 22517 * outbound ill is IPsec acceleration capable. 22518 * Prepends the mblk with an IPHADA_M_CTL, and ship it 22519 * to the ill. 22520 * IPsec KSTATS: should bump packet counter here. 22521 */ 22522 22523 hada_mp = allocb(sizeof (da_ipsec_t), BPRI_HI); 22524 if (hada_mp == NULL) { 22525 /* IPsec KSTATS: should bump packet counter here. */ 22526 freemsg(mp); 22527 return; 22528 } 22529 22530 hada_mp->b_datap->db_type = M_CTL; 22531 hada_mp->b_wptr = hada_mp->b_rptr + sizeof (*hada); 22532 hada_mp->b_cont = mp; 22533 22534 hada = (da_ipsec_t *)hada_mp->b_rptr; 22535 bzero(hada, sizeof (da_ipsec_t)); 22536 hada->da_type = IPHADA_M_CTL; 22537 22538 putnext(q, hada_mp); 22539 /* EXPORT DELETE END */ 22540 } 22541 22542 /* 22543 * Finish the outbound IPsec processing. This function is called from 22544 * ipsec_out_process() if the IPsec packet was processed 22545 * synchronously, or from {ah,esp}_kcf_callback() if it was processed 22546 * asynchronously. 22547 */ 22548 void 22549 ip_wput_ipsec_out(queue_t *q, mblk_t *ipsec_mp, ipha_t *ipha, ill_t *ill, 22550 ire_t *ire_arg) 22551 { 22552 uint32_t v_hlen_tos_len; 22553 ipaddr_t dst; 22554 ipif_t *ipif = NULL; 22555 ire_t *ire; 22556 ire_t *ire1 = NULL; 22557 mblk_t *next_mp = NULL; 22558 uint32_t max_frag; 22559 boolean_t multirt_send = B_FALSE; 22560 mblk_t *mp; 22561 mblk_t *mp1; 22562 uint_t ill_index; 22563 ipsec_out_t *io; 22564 boolean_t attach_if; 22565 int match_flags, offset; 22566 irb_t *irb = NULL; 22567 boolean_t ill_need_rele = B_FALSE, ire_need_rele = B_TRUE; 22568 zoneid_t zoneid; 22569 uint32_t cksum; 22570 uint16_t *up; 22571 /* Hack until the UDP merge into IP happens. */ 22572 extern boolean_t udp_compute_checksum(void); 22573 #ifdef _BIG_ENDIAN 22574 #define LENGTH (v_hlen_tos_len & 0xFFFF) 22575 #else 22576 #define LENGTH ((v_hlen_tos_len >> 24) | ((v_hlen_tos_len >> 8) & 0xFF00)) 22577 #endif 22578 22579 mp = ipsec_mp->b_cont; 22580 ASSERT(mp != NULL); 22581 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 22582 dst = ipha->ipha_dst; 22583 22584 io = (ipsec_out_t *)ipsec_mp->b_rptr; 22585 ill_index = io->ipsec_out_ill_index; 22586 attach_if = io->ipsec_out_attach_if; 22587 zoneid = io->ipsec_out_zoneid; 22588 ASSERT(zoneid != ALL_ZONES); 22589 match_flags = MATCH_IRE_ILL_GROUP; 22590 if (ill_index != 0) { 22591 if (ill == NULL) { 22592 ill = ip_grab_attach_ill(NULL, ipsec_mp, 22593 ill_index, B_FALSE); 22594 22595 /* Failure case frees things for us. */ 22596 if (ill == NULL) 22597 return; 22598 22599 ill_need_rele = B_TRUE; 22600 } 22601 /* 22602 * If this packet needs to go out on a particular interface 22603 * honor it. 22604 */ 22605 if (attach_if) { 22606 match_flags = MATCH_IRE_ILL; 22607 22608 /* 22609 * Check if we need an ire that will not be 22610 * looked up by anybody else i.e. HIDDEN. 22611 */ 22612 if (ill_is_probeonly(ill)) { 22613 match_flags |= MATCH_IRE_MARK_HIDDEN; 22614 } 22615 } 22616 } 22617 22618 if (CLASSD(dst)) { 22619 boolean_t conn_dontroute; 22620 /* 22621 * Use the ill_index to get the right ipif. 22622 */ 22623 conn_dontroute = io->ipsec_out_dontroute; 22624 if (ill_index == 0) 22625 ipif = ipif_lookup_group(dst, zoneid); 22626 else 22627 (void) ipif_lookup_zoneid(ill, zoneid, 0, &ipif); 22628 if (ipif == NULL) { 22629 ip1dbg(("ip_wput_ipsec_out: No ipif for" 22630 " multicast\n")); 22631 BUMP_MIB(&ip_mib, ipOutNoRoutes); 22632 freemsg(ipsec_mp); 22633 goto done; 22634 } 22635 /* 22636 * ipha_src has already been intialized with the 22637 * value of the ipif in ip_wput. All we need now is 22638 * an ire to send this downstream. 22639 */ 22640 ire = ire_ctable_lookup(dst, 0, 0, ipif, zoneid, match_flags); 22641 if (ire != NULL) { 22642 ill_t *ill1; 22643 /* 22644 * Do the multicast forwarding now, as the IPSEC 22645 * processing has been done. 22646 */ 22647 if (ip_g_mrouter && !conn_dontroute && 22648 (ill1 = ire_to_ill(ire))) { 22649 if (ip_mforward(ill1, ipha, mp)) { 22650 freemsg(ipsec_mp); 22651 ip1dbg(("ip_wput_ipsec_out: mforward " 22652 "failed\n")); 22653 ire_refrele(ire); 22654 goto done; 22655 } 22656 } 22657 goto send; 22658 } 22659 22660 ip0dbg(("ip_wput_ipsec_out: multicast: IRE disappeared\n")); 22661 mp->b_prev = NULL; 22662 mp->b_next = NULL; 22663 22664 /* 22665 * If the IPsec packet was processed asynchronously, 22666 * drop it now. 22667 */ 22668 if (q == NULL) { 22669 freemsg(ipsec_mp); 22670 goto done; 22671 } 22672 22673 /* 22674 * We may be using a wrong ipif to create the ire. 22675 * But it is okay as the source address is assigned 22676 * for the packet already. Next outbound packet would 22677 * create the IRE with the right IPIF in ip_wput. 22678 * 22679 * Also handle RTF_MULTIRT routes. 22680 */ 22681 ip_newroute_ipif(q, ipsec_mp, ipif, dst, NULL, RTF_MULTIRT); 22682 } else { 22683 if (attach_if) { 22684 ire = ire_ctable_lookup(dst, 0, 0, ill->ill_ipif, 22685 zoneid, match_flags); 22686 } else { 22687 if (ire_arg != NULL) { 22688 ire = ire_arg; 22689 ire_need_rele = B_FALSE; 22690 } else { 22691 ire = ire_cache_lookup(dst, zoneid); 22692 } 22693 } 22694 if (ire != NULL) { 22695 goto send; 22696 } 22697 22698 /* 22699 * ire disappeared underneath. 22700 * 22701 * What we need to do here is the ip_newroute 22702 * logic to get the ire without doing the IPSEC 22703 * processing. Follow the same old path. But this 22704 * time, ip_wput or ire_add_then_put will call us 22705 * directly as all the IPSEC operations are done. 22706 */ 22707 ip1dbg(("ip_wput_ipsec_out: IRE disappeared\n")); 22708 mp->b_prev = NULL; 22709 mp->b_next = NULL; 22710 22711 /* 22712 * If the IPsec packet was processed asynchronously, 22713 * drop it now. 22714 */ 22715 if (q == NULL) { 22716 freemsg(ipsec_mp); 22717 goto done; 22718 } 22719 22720 /* 22721 * Since we're going through ip_newroute() again, we 22722 * need to make sure we don't: 22723 * 22724 * 1.) Trigger the ASSERT() with the ipha_ident 22725 * overloading. 22726 * 2.) Redo transport-layer checksumming, since we've 22727 * already done all that to get this far. 22728 * 22729 * The easiest way not do either of the above is to set 22730 * the ipha_ident field to IP_HDR_INCLUDED. 22731 */ 22732 ipha->ipha_ident = IP_HDR_INCLUDED; 22733 ip_newroute(q, ipsec_mp, dst, NULL, 22734 (CONN_Q(q) ? Q_TO_CONN(q) : NULL)); 22735 } 22736 goto done; 22737 send: 22738 if (ipha->ipha_protocol == IPPROTO_UDP && udp_compute_checksum()) { 22739 /* 22740 * ESP NAT-Traversal packet. 22741 * 22742 * Just do software checksum for now. 22743 */ 22744 22745 offset = IP_SIMPLE_HDR_LENGTH + UDP_CHECKSUM_OFFSET; 22746 IP_STAT(ip_out_sw_cksum); 22747 #define iphs ((uint16_t *)ipha) 22748 cksum = IP_UDP_CSUM_COMP + iphs[6] + iphs[7] + iphs[8] + 22749 iphs[9] + ntohs(htons(ipha->ipha_length) - 22750 IP_SIMPLE_HDR_LENGTH); 22751 #undef iphs 22752 if ((cksum = IP_CSUM(mp, IP_SIMPLE_HDR_LENGTH, cksum)) == 0) 22753 cksum = 0xFFFF; 22754 for (mp1 = mp; mp1 != NULL; mp1 = mp1->b_cont) 22755 if (mp1->b_wptr - mp1->b_rptr >= 22756 offset + sizeof (uint16_t)) { 22757 up = (uint16_t *)(mp1->b_rptr + offset); 22758 *up = cksum; 22759 break; /* out of for loop */ 22760 } else { 22761 offset -= (mp->b_wptr - mp->b_rptr); 22762 } 22763 } /* Otherwise, just keep the all-zero checksum. */ 22764 22765 if (ire->ire_stq == NULL) { 22766 /* 22767 * Loopbacks go through ip_wput_local except for one case. 22768 * We come here if we generate a icmp_frag_needed message 22769 * after IPSEC processing is over. When this function calls 22770 * ip_wput_ire_fragmentit, ip_wput_frag might end up calling 22771 * icmp_frag_needed. The message generated comes back here 22772 * through icmp_frag_needed -> icmp_pkt -> ip_wput -> 22773 * ipsec_out_process -> ip_wput_ipsec_out. We need to set the 22774 * source address as it is usually set in ip_wput_ire. As 22775 * ipsec_out_proc_begin is set, ip_wput calls ipsec_out_process 22776 * and we end up here. We can't enter ip_wput_ire once the 22777 * IPSEC processing is over and hence we need to do it here. 22778 */ 22779 ASSERT(q != NULL); 22780 UPDATE_OB_PKT_COUNT(ire); 22781 ire->ire_last_used_time = lbolt; 22782 if (ipha->ipha_src == 0) 22783 ipha->ipha_src = ire->ire_src_addr; 22784 ip_wput_local(RD(q), ire->ire_ipif->ipif_ill, ipha, ipsec_mp, 22785 ire, 0, zoneid); 22786 if (ire_need_rele) 22787 ire_refrele(ire); 22788 goto done; 22789 } 22790 22791 if (ire->ire_max_frag < (unsigned int)LENGTH) { 22792 /* 22793 * We are through with IPSEC processing. 22794 * Fragment this and send it on the wire. 22795 */ 22796 if (io->ipsec_out_accelerated) { 22797 /* 22798 * The packet has been accelerated but must 22799 * be fragmented. This should not happen 22800 * since AH and ESP must not accelerate 22801 * packets that need fragmentation, however 22802 * the configuration could have changed 22803 * since the AH or ESP processing. 22804 * Drop packet. 22805 * IPsec KSTATS: bump bean counter here. 22806 */ 22807 IPSECHW_DEBUG(IPSECHW_PKT, ("ipsec_wput_ipsec_out: " 22808 "fragmented accelerated packet!\n")); 22809 freemsg(ipsec_mp); 22810 } else { 22811 ip_wput_ire_fragmentit(ipsec_mp, ire); 22812 } 22813 if (ire_need_rele) 22814 ire_refrele(ire); 22815 goto done; 22816 } 22817 22818 ip2dbg(("ip_wput_ipsec_out: ipsec_mp %p, ire %p, ire_ipif %p, " 22819 "ipif %p\n", (void *)ipsec_mp, (void *)ire, 22820 (void *)ire->ire_ipif, (void *)ipif)); 22821 22822 /* 22823 * Multiroute the secured packet, unless IPsec really 22824 * requires the packet to go out only through a particular 22825 * interface. 22826 */ 22827 if ((ire->ire_flags & RTF_MULTIRT) && !attach_if) { 22828 ire_t *first_ire; 22829 irb = ire->ire_bucket; 22830 ASSERT(irb != NULL); 22831 /* 22832 * This ire has been looked up as the one that 22833 * goes through the given ipif; 22834 * make sure we do not omit any other multiroute ire 22835 * that may be present in the bucket before this one. 22836 */ 22837 IRB_REFHOLD(irb); 22838 for (first_ire = irb->irb_ire; 22839 first_ire != NULL; 22840 first_ire = first_ire->ire_next) { 22841 if ((first_ire->ire_flags & RTF_MULTIRT) && 22842 (first_ire->ire_addr == ire->ire_addr) && 22843 !(first_ire->ire_marks & 22844 (IRE_MARK_CONDEMNED | IRE_MARK_HIDDEN))) 22845 break; 22846 } 22847 22848 if ((first_ire != NULL) && (first_ire != ire)) { 22849 /* 22850 * Don't change the ire if the packet must 22851 * be fragmented if sent via this new one. 22852 */ 22853 if (first_ire->ire_max_frag >= (unsigned int)LENGTH) { 22854 IRE_REFHOLD(first_ire); 22855 if (ire_need_rele) 22856 ire_refrele(ire); 22857 else 22858 ire_need_rele = B_TRUE; 22859 ire = first_ire; 22860 } 22861 } 22862 IRB_REFRELE(irb); 22863 22864 multirt_send = B_TRUE; 22865 max_frag = ire->ire_max_frag; 22866 } else { 22867 if ((ire->ire_flags & RTF_MULTIRT) && attach_if) { 22868 ip1dbg(("ip_wput_ipsec_out: ignoring multirouting " 22869 "flag, attach_if %d\n", attach_if)); 22870 } 22871 } 22872 22873 /* 22874 * In most cases, the emission loop below is entered only once. 22875 * Only in the case where the ire holds the RTF_MULTIRT 22876 * flag, we loop to process all RTF_MULTIRT ires in the 22877 * bucket, and send the packet through all crossed 22878 * RTF_MULTIRT routes. 22879 */ 22880 do { 22881 if (multirt_send) { 22882 /* 22883 * ire1 holds here the next ire to process in the 22884 * bucket. If multirouting is expected, 22885 * any non-RTF_MULTIRT ire that has the 22886 * right destination address is ignored. 22887 */ 22888 ASSERT(irb != NULL); 22889 IRB_REFHOLD(irb); 22890 for (ire1 = ire->ire_next; 22891 ire1 != NULL; 22892 ire1 = ire1->ire_next) { 22893 if ((ire1->ire_flags & RTF_MULTIRT) == 0) 22894 continue; 22895 if (ire1->ire_addr != ire->ire_addr) 22896 continue; 22897 if (ire1->ire_marks & 22898 (IRE_MARK_CONDEMNED | IRE_MARK_HIDDEN)) 22899 continue; 22900 /* No loopback here */ 22901 if (ire1->ire_stq == NULL) 22902 continue; 22903 /* 22904 * Ensure we do not exceed the MTU 22905 * of the next route. 22906 */ 22907 if (ire1->ire_max_frag < (unsigned int)LENGTH) { 22908 ip_multirt_bad_mtu(ire1, max_frag); 22909 continue; 22910 } 22911 22912 IRE_REFHOLD(ire1); 22913 break; 22914 } 22915 IRB_REFRELE(irb); 22916 if (ire1 != NULL) { 22917 /* 22918 * We are in a multiple send case, need to 22919 * make a copy of the packet. 22920 */ 22921 next_mp = copymsg(ipsec_mp); 22922 if (next_mp == NULL) { 22923 ire_refrele(ire1); 22924 ire1 = NULL; 22925 } 22926 } 22927 } 22928 22929 /* Everything is done. Send it out on the wire */ 22930 mp1 = ip_wput_attach_llhdr(mp, ire, 0, 0); 22931 if (mp1 == NULL) { 22932 BUMP_MIB(&ip_mib, ipOutDiscards); 22933 freemsg(ipsec_mp); 22934 if (ire_need_rele) 22935 ire_refrele(ire); 22936 if (ire1 != NULL) { 22937 ire_refrele(ire1); 22938 freemsg(next_mp); 22939 } 22940 goto done; 22941 } 22942 UPDATE_OB_PKT_COUNT(ire); 22943 ire->ire_last_used_time = lbolt; 22944 if (!io->ipsec_out_accelerated) { 22945 putnext(ire->ire_stq, mp1); 22946 } else { 22947 /* 22948 * Safety Pup says: make sure this is going to 22949 * the right interface! 22950 */ 22951 ill_t *ill1 = (ill_t *)ire->ire_stq->q_ptr; 22952 int ifindex = ill1->ill_phyint->phyint_ifindex; 22953 22954 if (ifindex != io->ipsec_out_capab_ill_index) { 22955 /* IPsec kstats: bump lose counter */ 22956 freemsg(mp1); 22957 } else { 22958 ipsec_hw_putnext(ire->ire_stq, mp1); 22959 } 22960 } 22961 22962 freeb(ipsec_mp); 22963 if (ire_need_rele) 22964 ire_refrele(ire); 22965 22966 if (ire1 != NULL) { 22967 ire = ire1; 22968 ire_need_rele = B_TRUE; 22969 ASSERT(next_mp); 22970 ipsec_mp = next_mp; 22971 mp = ipsec_mp->b_cont; 22972 ire1 = NULL; 22973 next_mp = NULL; 22974 io = (ipsec_out_t *)ipsec_mp->b_rptr; 22975 } else { 22976 multirt_send = B_FALSE; 22977 } 22978 } while (multirt_send); 22979 done: 22980 if (ill != NULL && ill_need_rele) 22981 ill_refrele(ill); 22982 if (ipif != NULL) 22983 ipif_refrele(ipif); 22984 } 22985 22986 /* 22987 * Get the ill corresponding to the specified ire, and compare its 22988 * capabilities with the protocol and algorithms specified by the 22989 * the SA obtained from ipsec_out. If they match, annotate the 22990 * ipsec_out structure to indicate that the packet needs acceleration. 22991 * 22992 * 22993 * A packet is eligible for outbound hardware acceleration if the 22994 * following conditions are satisfied: 22995 * 22996 * 1. the packet will not be fragmented 22997 * 2. the provider supports the algorithm 22998 * 3. there is no pending control message being exchanged 22999 * 4. snoop is not attached 23000 * 5. the destination address is not a broadcast or multicast address. 23001 * 23002 * Rationale: 23003 * - Hardware drivers do not support fragmentation with 23004 * the current interface. 23005 * - snoop, multicast, and broadcast may result in exposure of 23006 * a cleartext datagram. 23007 * We check all five of these conditions here. 23008 * 23009 * XXX would like to nuke "ire_t *" parameter here; problem is that 23010 * IRE is only way to figure out if a v4 address is a broadcast and 23011 * thus ineligible for acceleration... 23012 */ 23013 static void 23014 ipsec_out_is_accelerated(mblk_t *ipsec_mp, ipsa_t *sa, ill_t *ill, ire_t *ire) 23015 { 23016 ipsec_out_t *io; 23017 mblk_t *data_mp; 23018 uint_t plen, overhead; 23019 23020 if ((sa->ipsa_flags & IPSA_F_HW) == 0) 23021 return; 23022 23023 if (ill == NULL) 23024 return; 23025 23026 /* 23027 * Destination address is a broadcast or multicast. Punt. 23028 */ 23029 if ((ire != NULL) && (ire->ire_type & (IRE_BROADCAST|IRE_LOOPBACK| 23030 IRE_LOCAL))) 23031 return; 23032 23033 data_mp = ipsec_mp->b_cont; 23034 23035 if (ill->ill_isv6) { 23036 ip6_t *ip6h = (ip6_t *)data_mp->b_rptr; 23037 23038 if (IN6_IS_ADDR_MULTICAST(&ip6h->ip6_dst)) 23039 return; 23040 23041 plen = ip6h->ip6_plen; 23042 } else { 23043 ipha_t *ipha = (ipha_t *)data_mp->b_rptr; 23044 23045 if (CLASSD(ipha->ipha_dst)) 23046 return; 23047 23048 plen = ipha->ipha_length; 23049 } 23050 /* 23051 * Is there a pending DLPI control message being exchanged 23052 * between IP/IPsec and the DLS Provider? If there is, it 23053 * could be a SADB update, and the state of the DLS Provider 23054 * SADB might not be in sync with the SADB maintained by 23055 * IPsec. To avoid dropping packets or using the wrong keying 23056 * material, we do not accelerate this packet. 23057 */ 23058 if (ill->ill_dlpi_pending != DL_PRIM_INVAL) { 23059 IPSECHW_DEBUG(IPSECHW_PKT, ("ipsec_out_check_is_accelerated: " 23060 "ill_dlpi_pending! don't accelerate packet\n")); 23061 return; 23062 } 23063 23064 /* 23065 * Is the Provider in promiscous mode? If it does, we don't 23066 * accelerate the packet since it will bounce back up to the 23067 * listeners in the clear. 23068 */ 23069 if (ill->ill_promisc_on_phys) { 23070 IPSECHW_DEBUG(IPSECHW_PKT, ("ipsec_out_check_is_accelerated: " 23071 "ill in promiscous mode, don't accelerate packet\n")); 23072 return; 23073 } 23074 23075 /* 23076 * Will the packet require fragmentation? 23077 */ 23078 23079 /* 23080 * IPsec ESP note: this is a pessimistic estimate, but the same 23081 * as is used elsewhere. 23082 * SPI + sequence + MAC + IV(blocksize) + padding(blocksize-1) 23083 * + 2-byte trailer 23084 */ 23085 overhead = (sa->ipsa_type == SADB_SATYPE_AH) ? IPSEC_MAX_AH_HDR_SIZE : 23086 IPSEC_BASE_ESP_HDR_SIZE(sa); 23087 23088 if ((plen + overhead) > ill->ill_max_mtu) 23089 return; 23090 23091 io = (ipsec_out_t *)ipsec_mp->b_rptr; 23092 23093 /* 23094 * Can the ill accelerate this IPsec protocol and algorithm 23095 * specified by the SA? 23096 */ 23097 if (!ipsec_capab_match(ill, io->ipsec_out_capab_ill_index, 23098 ill->ill_isv6, sa)) { 23099 return; 23100 } 23101 23102 /* 23103 * Tell AH or ESP that the outbound ill is capable of 23104 * accelerating this packet. 23105 */ 23106 io->ipsec_out_is_capab_ill = B_TRUE; 23107 } 23108 23109 /* 23110 * Select which AH & ESP SA's to use (if any) for the outbound packet. 23111 * 23112 * If this function returns B_TRUE, the requested SA's have been filled 23113 * into the ipsec_out_*_sa pointers. 23114 * 23115 * If the function returns B_FALSE, the packet has been "consumed", most 23116 * likely by an ACQUIRE sent up via PF_KEY to a key management daemon. 23117 * 23118 * The SA references created by the protocol-specific "select" 23119 * function will be released when the ipsec_mp is freed, thanks to the 23120 * ipsec_out_free destructor -- see spd.c. 23121 */ 23122 static boolean_t 23123 ipsec_out_select_sa(mblk_t *ipsec_mp) 23124 { 23125 boolean_t need_ah_acquire = B_FALSE, need_esp_acquire = B_FALSE; 23126 ipsec_out_t *io; 23127 ipsec_policy_t *pp; 23128 ipsec_action_t *ap; 23129 io = (ipsec_out_t *)ipsec_mp->b_rptr; 23130 ASSERT(io->ipsec_out_type == IPSEC_OUT); 23131 ASSERT(io->ipsec_out_len == sizeof (ipsec_out_t)); 23132 23133 if (!io->ipsec_out_secure) { 23134 /* 23135 * We came here by mistake. 23136 * Don't bother with ipsec processing 23137 * We should "discourage" this path in the future. 23138 */ 23139 ASSERT(io->ipsec_out_proc_begin == B_FALSE); 23140 return (B_FALSE); 23141 } 23142 ASSERT(io->ipsec_out_need_policy == B_FALSE); 23143 ASSERT((io->ipsec_out_policy != NULL) || 23144 (io->ipsec_out_act != NULL)); 23145 23146 ASSERT(io->ipsec_out_failed == B_FALSE); 23147 23148 /* 23149 * IPSEC processing has started. 23150 */ 23151 io->ipsec_out_proc_begin = B_TRUE; 23152 ap = io->ipsec_out_act; 23153 if (ap == NULL) { 23154 pp = io->ipsec_out_policy; 23155 ASSERT(pp != NULL); 23156 ap = pp->ipsp_act; 23157 ASSERT(ap != NULL); 23158 } 23159 23160 /* 23161 * We have an action. now, let's select SA's. 23162 * (In the future, we can cache this in the conn_t..) 23163 */ 23164 if (ap->ipa_want_esp) { 23165 if (io->ipsec_out_esp_sa == NULL) { 23166 need_esp_acquire = !ipsec_outbound_sa(ipsec_mp, 23167 IPPROTO_ESP); 23168 } 23169 ASSERT(need_esp_acquire || io->ipsec_out_esp_sa != NULL); 23170 } 23171 23172 if (ap->ipa_want_ah) { 23173 if (io->ipsec_out_ah_sa == NULL) { 23174 need_ah_acquire = !ipsec_outbound_sa(ipsec_mp, 23175 IPPROTO_AH); 23176 } 23177 ASSERT(need_ah_acquire || io->ipsec_out_ah_sa != NULL); 23178 /* 23179 * The ESP and AH processing order needs to be preserved 23180 * when both protocols are required (ESP should be applied 23181 * before AH for an outbound packet). Force an ESP ACQUIRE 23182 * when both ESP and AH are required, and an AH ACQUIRE 23183 * is needed. 23184 */ 23185 if (ap->ipa_want_esp && need_ah_acquire) 23186 need_esp_acquire = B_TRUE; 23187 } 23188 23189 /* 23190 * Send an ACQUIRE (extended, regular, or both) if we need one. 23191 * Release SAs that got referenced, but will not be used until we 23192 * acquire _all_ of the SAs we need. 23193 */ 23194 if (need_ah_acquire || need_esp_acquire) { 23195 if (io->ipsec_out_ah_sa != NULL) { 23196 IPSA_REFRELE(io->ipsec_out_ah_sa); 23197 io->ipsec_out_ah_sa = NULL; 23198 } 23199 if (io->ipsec_out_esp_sa != NULL) { 23200 IPSA_REFRELE(io->ipsec_out_esp_sa); 23201 io->ipsec_out_esp_sa = NULL; 23202 } 23203 23204 sadb_acquire(ipsec_mp, io, need_ah_acquire, need_esp_acquire); 23205 return (B_FALSE); 23206 } 23207 23208 return (B_TRUE); 23209 } 23210 23211 /* 23212 * Process an IPSEC_OUT message and see what you can 23213 * do with it. 23214 * IPQoS Notes: 23215 * We do IPPF processing if IPP_LOCAL_OUT is enabled before processing for 23216 * IPSec. 23217 * XXX would like to nuke ire_t. 23218 * XXX ill_index better be "real" 23219 */ 23220 void 23221 ipsec_out_process(queue_t *q, mblk_t *ipsec_mp, ire_t *ire, uint_t ill_index) 23222 { 23223 ipsec_out_t *io; 23224 ipsec_policy_t *pp; 23225 ipsec_action_t *ap; 23226 ipha_t *ipha; 23227 ip6_t *ip6h; 23228 mblk_t *mp; 23229 ill_t *ill; 23230 zoneid_t zoneid; 23231 ipsec_status_t ipsec_rc; 23232 boolean_t ill_need_rele = B_FALSE; 23233 23234 io = (ipsec_out_t *)ipsec_mp->b_rptr; 23235 ASSERT(io->ipsec_out_type == IPSEC_OUT); 23236 ASSERT(io->ipsec_out_len == sizeof (ipsec_out_t)); 23237 mp = ipsec_mp->b_cont; 23238 23239 /* 23240 * Initiate IPPF processing. We do it here to account for packets 23241 * coming here that don't have any policy (i.e. !io->ipsec_out_secure). 23242 * We can check for ipsec_out_proc_begin even for such packets, as 23243 * they will always be false (asserted below). 23244 */ 23245 if (IPP_ENABLED(IPP_LOCAL_OUT) && !io->ipsec_out_proc_begin) { 23246 ip_process(IPP_LOCAL_OUT, &mp, io->ipsec_out_ill_index != 0 ? 23247 io->ipsec_out_ill_index : ill_index); 23248 if (mp == NULL) { 23249 ip2dbg(("ipsec_out_process: packet dropped "\ 23250 "during IPPF processing\n")); 23251 freeb(ipsec_mp); 23252 BUMP_MIB(&ip_mib, ipOutDiscards); 23253 return; 23254 } 23255 } 23256 23257 if (!io->ipsec_out_secure) { 23258 /* 23259 * We came here by mistake. 23260 * Don't bother with ipsec processing 23261 * Should "discourage" this path in the future. 23262 */ 23263 ASSERT(io->ipsec_out_proc_begin == B_FALSE); 23264 goto done; 23265 } 23266 ASSERT(io->ipsec_out_need_policy == B_FALSE); 23267 ASSERT((io->ipsec_out_policy != NULL) || 23268 (io->ipsec_out_act != NULL)); 23269 ASSERT(io->ipsec_out_failed == B_FALSE); 23270 23271 if (!ipsec_loaded()) { 23272 ipha = (ipha_t *)ipsec_mp->b_cont->b_rptr; 23273 if (IPH_HDR_VERSION(ipha) == IP_VERSION) { 23274 BUMP_MIB(&ip_mib, ipOutDiscards); 23275 } else { 23276 BUMP_MIB(&ip6_mib, ipv6OutDiscards); 23277 } 23278 ip_drop_packet(ipsec_mp, B_FALSE, NULL, ire, 23279 &ipdrops_ip_ipsec_not_loaded, &ip_dropper); 23280 return; 23281 } 23282 23283 /* 23284 * IPSEC processing has started. 23285 */ 23286 io->ipsec_out_proc_begin = B_TRUE; 23287 ap = io->ipsec_out_act; 23288 if (ap == NULL) { 23289 pp = io->ipsec_out_policy; 23290 ASSERT(pp != NULL); 23291 ap = pp->ipsp_act; 23292 ASSERT(ap != NULL); 23293 } 23294 23295 /* 23296 * Save the outbound ill index. When the packet comes back 23297 * from IPsec, we make sure the ill hasn't changed or disappeared 23298 * before sending it the accelerated packet. 23299 */ 23300 if ((ire != NULL) && (io->ipsec_out_capab_ill_index == 0)) { 23301 int ifindex; 23302 ill = ire_to_ill(ire); 23303 ifindex = ill->ill_phyint->phyint_ifindex; 23304 io->ipsec_out_capab_ill_index = ifindex; 23305 } 23306 23307 /* 23308 * The order of processing is first insert a IP header if needed. 23309 * Then insert the ESP header and then the AH header. 23310 */ 23311 if ((io->ipsec_out_se_done == B_FALSE) && 23312 (ap->ipa_want_se)) { 23313 /* 23314 * First get the outer IP header before sending 23315 * it to ESP. 23316 */ 23317 ipha_t *oipha, *iipha; 23318 mblk_t *outer_mp, *inner_mp; 23319 23320 if ((outer_mp = allocb(sizeof (ipha_t), BPRI_HI)) == NULL) { 23321 (void) mi_strlog(q, 0, SL_ERROR|SL_TRACE|SL_CONSOLE, 23322 "ipsec_out_process: " 23323 "Self-Encapsulation failed: Out of memory\n"); 23324 freemsg(ipsec_mp); 23325 BUMP_MIB(&ip_mib, ipOutDiscards); 23326 return; 23327 } 23328 inner_mp = ipsec_mp->b_cont; 23329 ASSERT(inner_mp->b_datap->db_type == M_DATA); 23330 oipha = (ipha_t *)outer_mp->b_rptr; 23331 iipha = (ipha_t *)inner_mp->b_rptr; 23332 *oipha = *iipha; 23333 outer_mp->b_wptr += sizeof (ipha_t); 23334 oipha->ipha_length = htons(ntohs(iipha->ipha_length) + 23335 sizeof (ipha_t)); 23336 oipha->ipha_protocol = IPPROTO_ENCAP; 23337 oipha->ipha_version_and_hdr_length = 23338 IP_SIMPLE_HDR_VERSION; 23339 oipha->ipha_hdr_checksum = 0; 23340 oipha->ipha_hdr_checksum = ip_csum_hdr(oipha); 23341 outer_mp->b_cont = inner_mp; 23342 ipsec_mp->b_cont = outer_mp; 23343 23344 io->ipsec_out_se_done = B_TRUE; 23345 io->ipsec_out_encaps = B_TRUE; 23346 } 23347 23348 if (((ap->ipa_want_ah && (io->ipsec_out_ah_sa == NULL)) || 23349 (ap->ipa_want_esp && (io->ipsec_out_esp_sa == NULL))) && 23350 !ipsec_out_select_sa(ipsec_mp)) 23351 return; 23352 23353 /* 23354 * By now, we know what SA's to use. Toss over to ESP & AH 23355 * to do the heavy lifting. 23356 */ 23357 zoneid = io->ipsec_out_zoneid; 23358 ASSERT(zoneid != ALL_ZONES); 23359 if ((io->ipsec_out_esp_done == B_FALSE) && (ap->ipa_want_esp)) { 23360 ASSERT(io->ipsec_out_esp_sa != NULL); 23361 io->ipsec_out_esp_done = B_TRUE; 23362 /* 23363 * Note that since hw accel can only apply one transform, 23364 * not two, we skip hw accel for ESP if we also have AH 23365 * This is an design limitation of the interface 23366 * which should be revisited. 23367 */ 23368 ASSERT(ire != NULL); 23369 if (io->ipsec_out_ah_sa == NULL) { 23370 ill = (ill_t *)ire->ire_stq->q_ptr; 23371 ipsec_out_is_accelerated(ipsec_mp, 23372 io->ipsec_out_esp_sa, ill, ire); 23373 } 23374 23375 ipsec_rc = io->ipsec_out_esp_sa->ipsa_output_func(ipsec_mp); 23376 switch (ipsec_rc) { 23377 case IPSEC_STATUS_SUCCESS: 23378 break; 23379 case IPSEC_STATUS_FAILED: 23380 BUMP_MIB(&ip_mib, ipOutDiscards); 23381 /* FALLTHRU */ 23382 case IPSEC_STATUS_PENDING: 23383 return; 23384 } 23385 } 23386 23387 if ((io->ipsec_out_ah_done == B_FALSE) && (ap->ipa_want_ah)) { 23388 ASSERT(io->ipsec_out_ah_sa != NULL); 23389 io->ipsec_out_ah_done = B_TRUE; 23390 if (ire == NULL) { 23391 int idx = io->ipsec_out_capab_ill_index; 23392 ill = ill_lookup_on_ifindex(idx, B_FALSE, 23393 NULL, NULL, NULL, NULL); 23394 ill_need_rele = B_TRUE; 23395 } else { 23396 ill = (ill_t *)ire->ire_stq->q_ptr; 23397 } 23398 ipsec_out_is_accelerated(ipsec_mp, io->ipsec_out_ah_sa, ill, 23399 ire); 23400 23401 ipsec_rc = io->ipsec_out_ah_sa->ipsa_output_func(ipsec_mp); 23402 switch (ipsec_rc) { 23403 case IPSEC_STATUS_SUCCESS: 23404 break; 23405 case IPSEC_STATUS_FAILED: 23406 BUMP_MIB(&ip_mib, ipOutDiscards); 23407 /* FALLTHRU */ 23408 case IPSEC_STATUS_PENDING: 23409 if (ill != NULL && ill_need_rele) 23410 ill_refrele(ill); 23411 return; 23412 } 23413 } 23414 /* 23415 * We are done with IPSEC processing. Send it over 23416 * the wire. 23417 */ 23418 done: 23419 mp = ipsec_mp->b_cont; 23420 ipha = (ipha_t *)mp->b_rptr; 23421 if (IPH_HDR_VERSION(ipha) == IP_VERSION) { 23422 ip_wput_ipsec_out(q, ipsec_mp, ipha, ill, ire); 23423 } else { 23424 ip6h = (ip6_t *)ipha; 23425 ip_wput_ipsec_out_v6(q, ipsec_mp, ip6h, ill, ire); 23426 } 23427 if (ill != NULL && ill_need_rele) 23428 ill_refrele(ill); 23429 } 23430 23431 /* ARGSUSED */ 23432 void 23433 ip_restart_optmgmt(ipsq_t *dummy_sq, queue_t *q, mblk_t *first_mp, void *dummy) 23434 { 23435 opt_restart_t *or; 23436 int err; 23437 conn_t *connp; 23438 23439 ASSERT(CONN_Q(q)); 23440 connp = Q_TO_CONN(q); 23441 23442 ASSERT(first_mp->b_datap->db_type == M_CTL); 23443 or = (opt_restart_t *)first_mp->b_rptr; 23444 /* 23445 * We don't need to pass any credentials here since this is just 23446 * a restart. The credentials are passed in when svr4_optcom_req 23447 * is called the first time (from ip_wput_nondata). 23448 */ 23449 if (or->or_type == T_SVR4_OPTMGMT_REQ) { 23450 err = svr4_optcom_req(q, first_mp, NULL, 23451 &ip_opt_obj); 23452 } else { 23453 ASSERT(or->or_type == T_OPTMGMT_REQ); 23454 err = tpi_optcom_req(q, first_mp, NULL, 23455 &ip_opt_obj); 23456 } 23457 if (err != EINPROGRESS) { 23458 /* operation is done */ 23459 CONN_OPER_PENDING_DONE(connp); 23460 } 23461 } 23462 23463 /* 23464 * ioctls that go through a down/up sequence may need to wait for the down 23465 * to complete. This involves waiting for the ire and ipif refcnts to go down 23466 * to zero. Subsequently the ioctl is restarted from ipif_ill_refrele_tail. 23467 */ 23468 /* ARGSUSED */ 23469 void 23470 ip_reprocess_ioctl(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 23471 { 23472 struct iocblk *iocp; 23473 mblk_t *mp1; 23474 ipif_t *ipif; 23475 ip_ioctl_cmd_t *ipip; 23476 int err; 23477 sin_t *sin; 23478 struct lifreq *lifr; 23479 struct ifreq *ifr; 23480 23481 iocp = (struct iocblk *)mp->b_rptr; 23482 ASSERT(ipsq != NULL); 23483 /* Existence of mp1 verified in ip_wput_nondata */ 23484 mp1 = mp->b_cont->b_cont; 23485 ipip = ip_sioctl_lookup(iocp->ioc_cmd); 23486 if (ipip->ipi_cmd == SIOCSLIFNAME || ipip->ipi_cmd == IF_UNITSEL) { 23487 ill_t *ill; 23488 /* 23489 * Special case where ipsq_current_ipif may not be set. 23490 * ill_phyint_reinit merged the v4 and v6 into a single ipsq. 23491 * ill could also have become part of a ipmp group in the 23492 * process, we are here as were not able to complete the 23493 * operation in ipif_set_values because we could not become 23494 * exclusive on the new ipsq, In such a case ipsq_current_ipif 23495 * will not be set so we need to set it. 23496 */ 23497 ill = (ill_t *)q->q_ptr; 23498 ipsq->ipsq_current_ipif = ill->ill_ipif; 23499 ipsq->ipsq_last_cmd = ipip->ipi_cmd; 23500 } 23501 23502 ipif = ipsq->ipsq_current_ipif; 23503 ASSERT(ipif != NULL); 23504 if (ipip->ipi_cmd_type == IF_CMD) { 23505 /* This a old style SIOC[GS]IF* command */ 23506 ifr = (struct ifreq *)mp1->b_rptr; 23507 sin = (sin_t *)&ifr->ifr_addr; 23508 } else if (ipip->ipi_cmd_type == LIF_CMD) { 23509 /* This a new style SIOC[GS]LIF* command */ 23510 lifr = (struct lifreq *)mp1->b_rptr; 23511 sin = (sin_t *)&lifr->lifr_addr; 23512 } else { 23513 sin = NULL; 23514 } 23515 23516 err = (*ipip->ipi_func_restart)(ipif, sin, q, mp, ipip, 23517 (void *)mp1->b_rptr); 23518 23519 /* SIOCLIFREMOVEIF could have removed the ipif */ 23520 ip_ioctl_finish(q, mp, err, 23521 ipip->ipi_flags & IPI_GET_CMD ? COPYOUT : NO_COPYOUT, 23522 ipip->ipi_cmd == SIOCLIFREMOVEIF ? NULL : ipif, ipsq); 23523 } 23524 23525 /* 23526 * ioctl processing 23527 * 23528 * ioctl processing starts with ip_sioctl_copyin_setup which looks up 23529 * the ioctl command in the ioctl tables and determines the copyin data size 23530 * from the ioctl property ipi_copyin_size, and does an mi_copyin() of that 23531 * size. 23532 * 23533 * ioctl processing then continues when the M_IOCDATA makes its way down. 23534 * Now the ioctl is looked up again in the ioctl table, and its properties are 23535 * extracted. The associated 'conn' is then refheld till the end of the ioctl 23536 * and the general ioctl processing function ip_process_ioctl is called. 23537 * ip_process_ioctl determines if the ioctl needs to be serialized, and if 23538 * so goes thru the serialization primitive ipsq_try_enter. Then the 23539 * appropriate function to handle the ioctl is called based on the entry in 23540 * the ioctl table. ioctl completion is encapsulated in ip_ioctl_finish 23541 * which also refreleases the 'conn' that was refheld at the start of the 23542 * ioctl. Finally ipsq_exit is called if needed to exit the ipsq. 23543 * ip_extract_lifreq_cmn extracts the interface name from the lifreq/ifreq 23544 * struct and looks up the ipif. ip_extract_tunreq handles the case of tunnel. 23545 * 23546 * Many exclusive ioctls go thru an internal down up sequence as part of 23547 * the operation. For example an attempt to change the IP address of an 23548 * ipif entails ipif_down, set address, ipif_up. Bringing down the interface 23549 * does all the cleanup such as deleting all ires that use this address. 23550 * Then we need to wait till all references to the interface go away. 23551 */ 23552 void 23553 ip_process_ioctl(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *arg) 23554 { 23555 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 23556 ip_ioctl_cmd_t *ipip = (ip_ioctl_cmd_t *)arg; 23557 cmd_info_t ci; 23558 int err; 23559 boolean_t entered_ipsq = B_FALSE; 23560 23561 ip3dbg(("ip_process_ioctl: ioctl %X\n", iocp->ioc_cmd)); 23562 23563 if (ipip == NULL) 23564 ipip = ip_sioctl_lookup(iocp->ioc_cmd); 23565 23566 /* 23567 * SIOCLIFADDIF needs to go thru a special path since the 23568 * ill may not exist yet. This happens in the case of lo0 23569 * which is created using this ioctl. 23570 */ 23571 if (ipip->ipi_cmd == SIOCLIFADDIF) { 23572 err = ip_sioctl_addif(NULL, NULL, q, mp, NULL, NULL); 23573 ip_ioctl_finish(q, mp, err, 23574 ipip->ipi_flags & IPI_GET_CMD ? COPYOUT : NO_COPYOUT, 23575 NULL, NULL); 23576 return; 23577 } 23578 23579 ci.ci_ipif = NULL; 23580 switch (ipip->ipi_cmd_type) { 23581 case IF_CMD: 23582 case LIF_CMD: 23583 /* 23584 * ioctls that pass in a [l]ifreq appear here. 23585 * ip_extract_lifreq_cmn returns a refheld ipif in 23586 * ci.ci_ipif 23587 */ 23588 err = ip_extract_lifreq_cmn(q, mp, ipip->ipi_cmd_type, 23589 ipip->ipi_flags, &ci, ip_process_ioctl); 23590 if (err != 0) { 23591 ip_ioctl_finish(q, mp, err, 23592 ipip->ipi_flags & IPI_GET_CMD ? 23593 COPYOUT : NO_COPYOUT, NULL, NULL); 23594 return; 23595 } 23596 ASSERT(ci.ci_ipif != NULL); 23597 break; 23598 23599 case TUN_CMD: 23600 /* 23601 * SIOC[GS]TUNPARAM appear here. ip_extract_tunreq returns 23602 * a refheld ipif in ci.ci_ipif 23603 */ 23604 err = ip_extract_tunreq(q, mp, &ci.ci_ipif, ip_process_ioctl); 23605 if (err != 0) { 23606 ip_ioctl_finish(q, mp, err, 23607 ipip->ipi_flags & IPI_GET_CMD ? 23608 COPYOUT : NO_COPYOUT, NULL, NULL); 23609 return; 23610 } 23611 ASSERT(ci.ci_ipif != NULL); 23612 break; 23613 23614 case MISC_CMD: 23615 /* 23616 * ioctls that neither pass in [l]ifreq or iftun_req come here 23617 * For eg. SIOCGLIFCONF will appear here. 23618 */ 23619 switch (ipip->ipi_cmd) { 23620 case IF_UNITSEL: 23621 /* ioctl comes down the ill */ 23622 ci.ci_ipif = ((ill_t *)q->q_ptr)->ill_ipif; 23623 ipif_refhold(ci.ci_ipif); 23624 break; 23625 case SIOCGMSFILTER: 23626 case SIOCSMSFILTER: 23627 case SIOCGIPMSFILTER: 23628 case SIOCSIPMSFILTER: 23629 err = ip_extract_msfilter(q, mp, &ci.ci_ipif, 23630 ip_process_ioctl); 23631 if (err != 0) { 23632 ip_ioctl_finish(q, mp, err, 23633 ipip->ipi_flags & IPI_GET_CMD ? 23634 COPYOUT : NO_COPYOUT, NULL, NULL); 23635 return; 23636 } 23637 break; 23638 } 23639 err = 0; 23640 ci.ci_sin = NULL; 23641 ci.ci_sin6 = NULL; 23642 ci.ci_lifr = NULL; 23643 break; 23644 } 23645 23646 /* 23647 * If ipsq is non-null, we are already being called exclusively 23648 */ 23649 ASSERT(ipsq == NULL || IAM_WRITER_IPSQ(ipsq)); 23650 if (!(ipip->ipi_flags & IPI_WR)) { 23651 /* 23652 * A return value of EINPROGRESS means the ioctl is 23653 * either queued and waiting for some reason or has 23654 * already completed. 23655 */ 23656 err = (*ipip->ipi_func)(ci.ci_ipif, ci.ci_sin, q, mp, ipip, 23657 ci.ci_lifr); 23658 if (ci.ci_ipif != NULL) 23659 ipif_refrele(ci.ci_ipif); 23660 ip_ioctl_finish(q, mp, err, 23661 ipip->ipi_flags & IPI_GET_CMD ? COPYOUT : NO_COPYOUT, 23662 NULL, NULL); 23663 return; 23664 } 23665 23666 ASSERT(ci.ci_ipif != NULL); 23667 23668 if (ipsq == NULL) { 23669 ipsq = ipsq_try_enter(ci.ci_ipif, NULL, q, mp, 23670 ip_process_ioctl, NEW_OP, B_TRUE); 23671 entered_ipsq = B_TRUE; 23672 } 23673 /* 23674 * Release the ipif so that ipif_down and friends that wait for 23675 * references to go away are not misled about the current ipif_refcnt 23676 * values. We are writer so we can access the ipif even after releasing 23677 * the ipif. 23678 */ 23679 ipif_refrele(ci.ci_ipif); 23680 if (ipsq == NULL) 23681 return; 23682 23683 mutex_enter(&ipsq->ipsq_lock); 23684 ASSERT(ipsq->ipsq_current_ipif == NULL); 23685 ipsq->ipsq_current_ipif = ci.ci_ipif; 23686 ipsq->ipsq_last_cmd = ipip->ipi_cmd; 23687 mutex_exit(&ipsq->ipsq_lock); 23688 mutex_enter(&(ci.ci_ipif)->ipif_ill->ill_lock); 23689 /* 23690 * For most set ioctls that come here, this serves as a single point 23691 * where we set the IPIF_CHANGING flag. This ensures that there won't 23692 * be any new references to the ipif. This helps functions that go 23693 * through this path and end up trying to wait for the refcnts 23694 * associated with the ipif to go down to zero. Some exceptions are 23695 * Failover, Failback, and Groupname commands that operate on more than 23696 * just the ci.ci_ipif. These commands internally determine the 23697 * set of ipif's they operate on and set and clear the IPIF_CHANGING 23698 * flags on that set. Another exception is the Removeif command that 23699 * sets the IPIF_CONDEMNED flag internally after identifying the right 23700 * ipif to operate on. 23701 */ 23702 if (ipip->ipi_cmd != SIOCLIFREMOVEIF && 23703 ipip->ipi_cmd != SIOCLIFFAILOVER && 23704 ipip->ipi_cmd != SIOCLIFFAILBACK && 23705 ipip->ipi_cmd != SIOCSLIFGROUPNAME) 23706 (ci.ci_ipif)->ipif_state_flags |= IPIF_CHANGING; 23707 mutex_exit(&(ci.ci_ipif)->ipif_ill->ill_lock); 23708 23709 /* 23710 * A return value of EINPROGRESS means the ioctl is 23711 * either queued and waiting for some reason or has 23712 * already completed. 23713 */ 23714 err = (*ipip->ipi_func)(ci.ci_ipif, ci.ci_sin, q, mp, ipip, 23715 ci.ci_lifr); 23716 23717 /* SIOCLIFREMOVEIF could have removed the ipif */ 23718 ip_ioctl_finish(q, mp, err, 23719 ipip->ipi_flags & IPI_GET_CMD ? COPYOUT : NO_COPYOUT, 23720 ipip->ipi_cmd == SIOCLIFREMOVEIF ? NULL : ci.ci_ipif, ipsq); 23721 23722 if (entered_ipsq) 23723 ipsq_exit(ipsq, B_TRUE, B_TRUE); 23724 } 23725 23726 /* 23727 * Complete the ioctl. Typically ioctls use the mi package and need to 23728 * do mi_copyout/mi_copy_done. 23729 */ 23730 void 23731 ip_ioctl_finish(queue_t *q, mblk_t *mp, int err, int mode, 23732 ipif_t *ipif, ipsq_t *ipsq) 23733 { 23734 conn_t *connp = NULL; 23735 23736 if (err == EINPROGRESS) 23737 return; 23738 23739 if (CONN_Q(q)) { 23740 connp = Q_TO_CONN(q); 23741 ASSERT(connp->conn_ref >= 2); 23742 } 23743 23744 switch (mode) { 23745 case COPYOUT: 23746 if (err == 0) 23747 mi_copyout(q, mp); 23748 else 23749 mi_copy_done(q, mp, err); 23750 break; 23751 23752 case NO_COPYOUT: 23753 mi_copy_done(q, mp, err); 23754 break; 23755 23756 default: 23757 /* An ioctl aborted through a conn close would take this path */ 23758 break; 23759 } 23760 23761 /* 23762 * The refhold placed at the start of the ioctl is released here. 23763 */ 23764 if (connp != NULL) 23765 CONN_OPER_PENDING_DONE(connp); 23766 23767 /* 23768 * If the ioctl were an exclusive ioctl it would have set 23769 * IPIF_CHANGING at the start of the ioctl which is undone here. 23770 */ 23771 if (ipif != NULL) { 23772 mutex_enter(&(ipif)->ipif_ill->ill_lock); 23773 ipif->ipif_state_flags &= ~IPIF_CHANGING; 23774 mutex_exit(&(ipif)->ipif_ill->ill_lock); 23775 } 23776 23777 /* 23778 * Clear the current ipif in the ipsq at the completion of the ioctl. 23779 * Note that a non-null ipsq_current_ipif prevents new ioctls from 23780 * entering the ipsq 23781 */ 23782 if (ipsq != NULL) { 23783 mutex_enter(&ipsq->ipsq_lock); 23784 ipsq->ipsq_current_ipif = NULL; 23785 mutex_exit(&ipsq->ipsq_lock); 23786 } 23787 } 23788 23789 /* 23790 * This is called from ip_wput_nondata to resume a deferred TCP bind. 23791 */ 23792 /* ARGSUSED */ 23793 void 23794 ip_resume_tcp_bind(void *arg, mblk_t *mp, void *arg2) 23795 { 23796 conn_t *connp = (conn_t *)arg; 23797 tcp_t *tcp; 23798 23799 ASSERT(connp != NULL && connp->conn_tcp != NULL); 23800 tcp = connp->conn_tcp; 23801 23802 if (connp->conn_tcp->tcp_state == TCPS_CLOSED) 23803 freemsg(mp); 23804 else 23805 tcp_rput_other(tcp, mp); 23806 CONN_OPER_PENDING_DONE(connp); 23807 23808 } 23809 23810 /* Called from ip_wput for all non data messages */ 23811 /* ARGSUSED */ 23812 void 23813 ip_wput_nondata(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 23814 { 23815 mblk_t *mp1; 23816 ire_t *ire; 23817 ill_t *ill; 23818 struct iocblk *iocp; 23819 ip_ioctl_cmd_t *ipip; 23820 cred_t *cr; 23821 conn_t *connp = NULL; 23822 int cmd, err; 23823 23824 if (CONN_Q(q)) 23825 connp = Q_TO_CONN(q); 23826 23827 cr = DB_CREDDEF(mp, GET_QUEUE_CRED(q)); 23828 23829 /* Check if it is a queue to /dev/sctp. */ 23830 if (connp != NULL && connp->conn_ulp == IPPROTO_SCTP && 23831 connp->conn_rq == NULL) { 23832 sctp_wput(q, mp); 23833 return; 23834 } 23835 23836 switch (DB_TYPE(mp)) { 23837 case M_IOCTL: 23838 /* 23839 * IOCTL processing begins in ip_sioctl_copyin_setup which 23840 * will arrange to copy in associated control structures. 23841 */ 23842 ip_sioctl_copyin_setup(q, mp); 23843 return; 23844 case M_IOCDATA: 23845 /* 23846 * Ensure that this is associated with one of our trans- 23847 * parent ioctls. If it's not ours, discard it if we're 23848 * running as a driver, or pass it on if we're a module. 23849 */ 23850 iocp = (struct iocblk *)mp->b_rptr; 23851 ipip = ip_sioctl_lookup(iocp->ioc_cmd); 23852 if (ipip == NULL) { 23853 if (q->q_next == NULL) { 23854 goto nak; 23855 } else { 23856 putnext(q, mp); 23857 } 23858 return; 23859 } else if ((q->q_next != NULL) && 23860 !(ipip->ipi_flags & IPI_MODOK)) { 23861 /* 23862 * the ioctl is one we recognise, but is not 23863 * consumed by IP as a module, pass M_IOCDATA 23864 * for processing downstream, but only for 23865 * common Streams ioctls. 23866 */ 23867 if (ipip->ipi_flags & IPI_PASS_DOWN) { 23868 putnext(q, mp); 23869 return; 23870 } else { 23871 goto nak; 23872 } 23873 } 23874 23875 /* IOCTL continuation following copyin or copyout. */ 23876 if (mi_copy_state(q, mp, NULL) == -1) { 23877 /* 23878 * The copy operation failed. mi_copy_state already 23879 * cleaned up, so we're out of here. 23880 */ 23881 return; 23882 } 23883 /* 23884 * If we just completed a copy in, we become writer and 23885 * continue processing in ip_sioctl_copyin_done. If it 23886 * was a copy out, we call mi_copyout again. If there is 23887 * nothing more to copy out, it will complete the IOCTL. 23888 */ 23889 if (MI_COPY_DIRECTION(mp) == MI_COPY_IN) { 23890 if (!(mp1 = mp->b_cont) || !(mp1 = mp1->b_cont)) { 23891 mi_copy_done(q, mp, EPROTO); 23892 return; 23893 } 23894 /* 23895 * Check for cases that need more copying. A return 23896 * value of 0 means a second copyin has been started, 23897 * so we return; a return value of 1 means no more 23898 * copying is needed, so we continue. 23899 */ 23900 cmd = iocp->ioc_cmd; 23901 if ((cmd == SIOCGMSFILTER || cmd == SIOCSMSFILTER || 23902 cmd == SIOCGIPMSFILTER || cmd == SIOCSIPMSFILTER) && 23903 MI_COPY_COUNT(mp) == 1) { 23904 if (ip_copyin_msfilter(q, mp) == 0) 23905 return; 23906 } 23907 /* 23908 * Refhold the conn, till the ioctl completes. This is 23909 * needed in case the ioctl ends up in the pending mp 23910 * list. Every mp in the ill_pending_mp list and 23911 * the ipsq_pending_mp must have a refhold on the conn 23912 * to resume processing. The refhold is released when 23913 * the ioctl completes. (normally or abnormally) 23914 * In all cases ip_ioctl_finish is called to finish 23915 * the ioctl. 23916 */ 23917 if (connp != NULL) { 23918 /* This is not a reentry */ 23919 ASSERT(ipsq == NULL); 23920 CONN_INC_REF(connp); 23921 } else { 23922 if (!(ipip->ipi_flags & IPI_MODOK)) { 23923 mi_copy_done(q, mp, EINVAL); 23924 return; 23925 } 23926 } 23927 23928 ip_process_ioctl(ipsq, q, mp, ipip); 23929 23930 } else { 23931 mi_copyout(q, mp); 23932 } 23933 return; 23934 nak: 23935 iocp->ioc_error = EINVAL; 23936 mp->b_datap->db_type = M_IOCNAK; 23937 iocp->ioc_count = 0; 23938 qreply(q, mp); 23939 return; 23940 23941 case M_IOCNAK: 23942 /* 23943 * The only way we could get here is if a resolver didn't like 23944 * an IOCTL we sent it. This shouldn't happen. 23945 */ 23946 (void) mi_strlog(q, 1, SL_ERROR|SL_TRACE, 23947 "ip_wput: unexpected M_IOCNAK, ioc_cmd 0x%x", 23948 ((struct iocblk *)mp->b_rptr)->ioc_cmd); 23949 freemsg(mp); 23950 return; 23951 case M_IOCACK: 23952 /* Finish socket ioctls passed through to ARP. */ 23953 ip_sioctl_iocack(q, mp); 23954 return; 23955 case M_FLUSH: 23956 if (*mp->b_rptr & FLUSHW) 23957 flushq(q, FLUSHALL); 23958 if (q->q_next) { 23959 /* 23960 * M_FLUSH is sent up to IP by some drivers during 23961 * unbind. ip_rput has already replied to it. We are 23962 * here for the M_FLUSH that we originated in IP 23963 * before sending the unbind request to the driver. 23964 * Just free it as we don't queue packets in IP 23965 * on the write side of the device instance. 23966 */ 23967 freemsg(mp); 23968 return; 23969 } 23970 if (*mp->b_rptr & FLUSHR) { 23971 *mp->b_rptr &= ~FLUSHW; 23972 qreply(q, mp); 23973 return; 23974 } 23975 freemsg(mp); 23976 return; 23977 case IRE_DB_REQ_TYPE: 23978 /* An Upper Level Protocol wants a copy of an IRE. */ 23979 ip_ire_req(q, mp); 23980 return; 23981 case M_CTL: 23982 /* M_CTL messages are used by ARP to tell us things. */ 23983 if ((mp->b_wptr - mp->b_rptr) < sizeof (arc_t)) 23984 break; 23985 switch (((arc_t *)mp->b_rptr)->arc_cmd) { 23986 case AR_ENTRY_SQUERY: 23987 ip_wput_ctl(q, mp); 23988 return; 23989 case AR_CLIENT_NOTIFY: 23990 ip_arp_news(q, mp); 23991 return; 23992 case AR_DLPIOP_DONE: 23993 ASSERT(q->q_next != NULL); 23994 ill = (ill_t *)q->q_ptr; 23995 /* qwriter_ip releases the refhold */ 23996 /* refhold on ill stream is ok without ILL_CAN_LOOKUP */ 23997 ill_refhold(ill); 23998 (void) qwriter_ip(NULL, ill, q, mp, ip_arp_done, 23999 CUR_OP, B_FALSE); 24000 return; 24001 case AR_ARP_CLOSING: 24002 /* 24003 * ARP (above us) is closing. If no ARP bringup is 24004 * currently pending, ack the message so that ARP 24005 * can complete its close. Also mark ill_arp_closing 24006 * so that new ARP bringups will fail. If any 24007 * ARP bringup is currently in progress, we will 24008 * ack this when the current ARP bringup completes. 24009 */ 24010 ASSERT(q->q_next != NULL); 24011 ill = (ill_t *)q->q_ptr; 24012 mutex_enter(&ill->ill_lock); 24013 ill->ill_arp_closing = 1; 24014 if (!ill->ill_arp_bringup_pending) { 24015 mutex_exit(&ill->ill_lock); 24016 qreply(q, mp); 24017 } else { 24018 mutex_exit(&ill->ill_lock); 24019 freemsg(mp); 24020 } 24021 return; 24022 default: 24023 break; 24024 } 24025 break; 24026 case M_PROTO: 24027 case M_PCPROTO: 24028 /* 24029 * The only PROTO messages we expect are ULP binds and 24030 * copies of option negotiation acknowledgements. 24031 */ 24032 switch (((union T_primitives *)mp->b_rptr)->type) { 24033 case O_T_BIND_REQ: 24034 case T_BIND_REQ: { 24035 /* Request can get queued in bind */ 24036 ASSERT(connp != NULL); 24037 /* Don't increment refcnt if this is a re-entry */ 24038 if (ipsq == NULL) 24039 CONN_INC_REF(connp); 24040 mp = connp->conn_af_isv6 ? 24041 ip_bind_v6(q, mp, connp, NULL) : 24042 ip_bind_v4(q, mp, connp); 24043 if (mp != NULL) { 24044 tcp_t *tcp; 24045 24046 tcp = connp->conn_tcp; 24047 if (tcp != NULL) { 24048 if (ipsq == NULL) { 24049 tcp_rput_other(tcp, mp); 24050 } else { 24051 CONN_INC_REF(connp); 24052 squeue_fill(connp->conn_sqp, mp, 24053 ip_resume_tcp_bind, 24054 connp, SQTAG_TCP_RPUTOTHER); 24055 return; 24056 } 24057 } else { 24058 qreply(q, mp); 24059 } 24060 CONN_OPER_PENDING_DONE(connp); 24061 } 24062 return; 24063 } 24064 case T_SVR4_OPTMGMT_REQ: 24065 ip2dbg(("ip_wput: T_SVR4_OPTMGMT_REQ flags %x\n", 24066 ((struct T_optmgmt_req *)mp->b_rptr)->MGMT_flags)); 24067 24068 ASSERT(connp != NULL); 24069 if (!snmpcom_req(q, mp, ip_snmp_set, 24070 ip_snmp_get, cr)) { 24071 /* 24072 * Call svr4_optcom_req so that it can 24073 * generate the ack. We don't come here 24074 * if this operation is being restarted. 24075 * ip_restart_optmgmt will drop the conn ref. 24076 * In the case of ipsec option after the ipsec 24077 * load is complete conn_restart_ipsec_waiter 24078 * drops the conn ref. 24079 */ 24080 ASSERT(ipsq == NULL); 24081 CONN_INC_REF(connp); 24082 if (ip_check_for_ipsec_opt(q, mp)) 24083 return; 24084 err = svr4_optcom_req(q, mp, cr, &ip_opt_obj); 24085 if (err != EINPROGRESS) { 24086 /* Operation is done */ 24087 CONN_OPER_PENDING_DONE(connp); 24088 } 24089 } 24090 return; 24091 case T_OPTMGMT_REQ: 24092 ip2dbg(("ip_wput: T_OPTMGMT_REQ\n")); 24093 /* 24094 * Note: No snmpcom_req support through new 24095 * T_OPTMGMT_REQ. 24096 * Call tpi_optcom_req so that it can 24097 * generate the ack. 24098 */ 24099 ASSERT(connp != NULL); 24100 ASSERT(ipsq == NULL); 24101 /* 24102 * We don't come here for restart. ip_restart_optmgmt 24103 * will drop the conn ref. In the case of ipsec option 24104 * after the ipsec load is complete 24105 * conn_restart_ipsec_waiter drops the conn ref. 24106 */ 24107 CONN_INC_REF(connp); 24108 if (ip_check_for_ipsec_opt(q, mp)) 24109 return; 24110 err = tpi_optcom_req(q, mp, cr, &ip_opt_obj); 24111 if (err != EINPROGRESS) { 24112 /* Operation is done */ 24113 CONN_OPER_PENDING_DONE(connp); 24114 } 24115 return; 24116 case T_UNBIND_REQ: 24117 ip_unbind(q, mp); 24118 return; 24119 default: 24120 /* 24121 * Have to drop any DLPI messages coming down from 24122 * arp (such as an info_req which would cause ip 24123 * to receive an extra info_ack if it was passed 24124 * through. 24125 */ 24126 ip1dbg(("ip_wput_nondata: dropping M_PROTO %d\n", 24127 (int)*(uint_t *)mp->b_rptr)); 24128 freemsg(mp); 24129 return; 24130 } 24131 /* NOTREACHED */ 24132 case IRE_DB_TYPE: { 24133 nce_t *nce; 24134 ill_t *ill; 24135 in6_addr_t gw_addr_v6; 24136 24137 24138 /* 24139 * This is a response back from a resolver. It 24140 * consists of a message chain containing: 24141 * IRE_MBLK-->LL_HDR_MBLK->pkt 24142 * The IRE_MBLK is the one we allocated in ip_newroute. 24143 * The LL_HDR_MBLK is the DLPI header to use to get 24144 * the attached packet, and subsequent ones for the 24145 * same destination, transmitted. 24146 */ 24147 if ((mp->b_wptr - mp->b_rptr) != sizeof (ire_t)) /* ire */ 24148 break; 24149 /* 24150 * First, check to make sure the resolution succeeded. 24151 * If it failed, the second mblk will be empty. 24152 * If it is, free the chain, dropping the packet. 24153 * (We must ire_delete the ire; that frees the ire mblk) 24154 * We're doing this now to support PVCs for ATM; it's 24155 * a partial xresolv implementation. When we fully implement 24156 * xresolv interfaces, instead of freeing everything here 24157 * we'll initiate neighbor discovery. 24158 * 24159 * For v4 (ARP and other external resolvers) the resolver 24160 * frees the message, so no check is needed. This check 24161 * is required, though, for a full xresolve implementation. 24162 * Including this code here now both shows how external 24163 * resolvers can NACK a resolution request using an 24164 * existing design that has no specific provisions for NACKs, 24165 * and also takes into account that the current non-ARP 24166 * external resolver has been coded to use this method of 24167 * NACKing for all IPv6 (xresolv) cases, 24168 * whether our xresolv implementation is complete or not. 24169 * 24170 */ 24171 ire = (ire_t *)mp->b_rptr; 24172 ill = ire_to_ill(ire); 24173 mp1 = mp->b_cont; /* dl_unitdata_req */ 24174 if (mp1->b_rptr == mp1->b_wptr) { 24175 if (ire->ire_ipversion == IPV6_VERSION) { 24176 /* 24177 * XRESOLV interface. 24178 */ 24179 ASSERT(ill->ill_flags & ILLF_XRESOLV); 24180 mutex_enter(&ire->ire_lock); 24181 gw_addr_v6 = ire->ire_gateway_addr_v6; 24182 mutex_exit(&ire->ire_lock); 24183 if (IN6_IS_ADDR_UNSPECIFIED(&gw_addr_v6)) { 24184 nce = ndp_lookup(ill, 24185 &ire->ire_addr_v6, B_FALSE); 24186 } else { 24187 nce = ndp_lookup(ill, &gw_addr_v6, 24188 B_FALSE); 24189 } 24190 if (nce != NULL) { 24191 nce_resolv_failed(nce); 24192 ndp_delete(nce); 24193 NCE_REFRELE(nce); 24194 } 24195 } 24196 mp->b_cont = NULL; 24197 freemsg(mp1); /* frees the pkt as well */ 24198 ire_delete((ire_t *)mp->b_rptr); 24199 return; 24200 } 24201 /* 24202 * Split them into IRE_MBLK and pkt and feed it into 24203 * ire_add_then_send. Then in ire_add_then_send 24204 * the IRE will be added, and then the packet will be 24205 * run back through ip_wput. This time it will make 24206 * it to the wire. 24207 */ 24208 mp->b_cont = NULL; 24209 mp = mp1->b_cont; /* now, mp points to pkt */ 24210 mp1->b_cont = NULL; 24211 ip1dbg(("ip_wput_nondata: reply from external resolver \n")); 24212 if (ire->ire_ipversion == IPV6_VERSION) { 24213 /* 24214 * XRESOLV interface. Find the nce and put a copy 24215 * of the dl_unitdata_req in nce_res_mp 24216 */ 24217 ASSERT(ill->ill_flags & ILLF_XRESOLV); 24218 mutex_enter(&ire->ire_lock); 24219 gw_addr_v6 = ire->ire_gateway_addr_v6; 24220 mutex_exit(&ire->ire_lock); 24221 if (IN6_IS_ADDR_UNSPECIFIED(&gw_addr_v6)) { 24222 nce = ndp_lookup(ill, &ire->ire_addr_v6, 24223 B_FALSE); 24224 } else { 24225 nce = ndp_lookup(ill, &gw_addr_v6, B_FALSE); 24226 } 24227 if (nce != NULL) { 24228 /* 24229 * We have to protect nce_res_mp here 24230 * from being accessed by other threads 24231 * while we change the mblk pointer. 24232 * Other functions will also lock the nce when 24233 * accessing nce_res_mp. 24234 * 24235 * The reason we change the mblk pointer 24236 * here rather than copying the resolved address 24237 * into the template is that, unlike with 24238 * ethernet, we have no guarantee that the 24239 * resolved address length will be 24240 * smaller than or equal to the lla length 24241 * with which the template was allocated, 24242 * (for ethernet, they're equal) 24243 * so we have to use the actual resolved 24244 * address mblk - which holds the real 24245 * dl_unitdata_req with the resolved address. 24246 * 24247 * Doing this is the same behavior as was 24248 * previously used in the v4 ARP case. 24249 */ 24250 mutex_enter(&nce->nce_lock); 24251 if (nce->nce_res_mp != NULL) 24252 freemsg(nce->nce_res_mp); 24253 nce->nce_res_mp = mp1; 24254 mutex_exit(&nce->nce_lock); 24255 /* 24256 * We do a fastpath probe here because 24257 * we have resolved the address without 24258 * using Neighbor Discovery. 24259 * In the non-XRESOLV v6 case, the fastpath 24260 * probe is done right after neighbor 24261 * discovery completes. 24262 */ 24263 if (nce->nce_res_mp != NULL) { 24264 int res; 24265 nce_fastpath_list_add(nce); 24266 res = ill_fastpath_probe(ill, 24267 nce->nce_res_mp); 24268 if (res != 0 && res != EAGAIN) 24269 nce_fastpath_list_delete(nce); 24270 } 24271 24272 ire_add_then_send(q, ire, mp); 24273 /* 24274 * Now we have to clean out any packets 24275 * that may have been queued on the nce 24276 * while it was waiting for address resolution 24277 * to complete. 24278 */ 24279 mutex_enter(&nce->nce_lock); 24280 mp1 = nce->nce_qd_mp; 24281 nce->nce_qd_mp = NULL; 24282 mutex_exit(&nce->nce_lock); 24283 while (mp1 != NULL) { 24284 mblk_t *nxt_mp; 24285 queue_t *fwdq = NULL; 24286 ill_t *inbound_ill; 24287 uint_t ifindex; 24288 24289 nxt_mp = mp1->b_next; 24290 mp1->b_next = NULL; 24291 /* 24292 * Retrieve ifindex stored in 24293 * ip_rput_data_v6() 24294 */ 24295 ifindex = 24296 (uint_t)(uintptr_t)mp1->b_prev; 24297 inbound_ill = 24298 ill_lookup_on_ifindex(ifindex, 24299 B_TRUE, NULL, NULL, NULL, 24300 NULL); 24301 mp1->b_prev = NULL; 24302 if (inbound_ill != NULL) 24303 fwdq = inbound_ill->ill_rq; 24304 24305 if (fwdq != NULL) { 24306 put(fwdq, mp1); 24307 ill_refrele(inbound_ill); 24308 } else 24309 put(WR(ill->ill_rq), mp1); 24310 mp1 = nxt_mp; 24311 } 24312 NCE_REFRELE(nce); 24313 } else { /* nce is NULL; clean up */ 24314 ire_delete(ire); 24315 freemsg(mp); 24316 freemsg(mp1); 24317 return; 24318 } 24319 } else { 24320 ire->ire_dlureq_mp = mp1; 24321 ire_add_then_send(q, ire, mp); 24322 } 24323 return; /* All is well, the packet has been sent. */ 24324 } 24325 default: 24326 break; 24327 } 24328 if (q->q_next) { 24329 putnext(q, mp); 24330 } else 24331 freemsg(mp); 24332 } 24333 24334 /* 24335 * Process IP options in an outbound packet. Modify the destination if there 24336 * is a source route option. 24337 * Returns non-zero if something fails in which case an ICMP error has been 24338 * sent and mp freed. 24339 */ 24340 static int 24341 ip_wput_options(queue_t *q, mblk_t *ipsec_mp, ipha_t *ipha, 24342 boolean_t mctl_present, zoneid_t zoneid) 24343 { 24344 ipoptp_t opts; 24345 uchar_t *opt; 24346 uint8_t optval; 24347 uint8_t optlen; 24348 ipaddr_t dst; 24349 intptr_t code = 0; 24350 mblk_t *mp; 24351 ire_t *ire = NULL; 24352 24353 ip2dbg(("ip_wput_options\n")); 24354 mp = ipsec_mp; 24355 if (mctl_present) { 24356 mp = ipsec_mp->b_cont; 24357 } 24358 24359 dst = ipha->ipha_dst; 24360 for (optval = ipoptp_first(&opts, ipha); 24361 optval != IPOPT_EOL; 24362 optval = ipoptp_next(&opts)) { 24363 opt = opts.ipoptp_cur; 24364 optlen = opts.ipoptp_len; 24365 ip2dbg(("ip_wput_options: opt %d, len %d\n", 24366 optval, optlen)); 24367 switch (optval) { 24368 uint32_t off; 24369 case IPOPT_SSRR: 24370 case IPOPT_LSRR: 24371 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 24372 ip1dbg(( 24373 "ip_wput_options: bad option offset\n")); 24374 code = (char *)&opt[IPOPT_OLEN] - 24375 (char *)ipha; 24376 goto param_prob; 24377 } 24378 off = opt[IPOPT_OFFSET]; 24379 ip1dbg(("ip_wput_options: next hop 0x%x\n", 24380 ntohl(dst))); 24381 /* 24382 * For strict: verify that dst is directly 24383 * reachable. 24384 */ 24385 if (optval == IPOPT_SSRR) { 24386 ire = ire_ftable_lookup(dst, 0, 0, 24387 IRE_INTERFACE, NULL, NULL, ALL_ZONES, 0, 24388 MATCH_IRE_TYPE); 24389 if (ire == NULL) { 24390 ip1dbg(("ip_wput_options: SSRR not" 24391 " directly reachable: 0x%x\n", 24392 ntohl(dst))); 24393 goto bad_src_route; 24394 } 24395 ire_refrele(ire); 24396 } 24397 break; 24398 case IPOPT_RR: 24399 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 24400 ip1dbg(( 24401 "ip_wput_options: bad option offset\n")); 24402 code = (char *)&opt[IPOPT_OLEN] - 24403 (char *)ipha; 24404 goto param_prob; 24405 } 24406 break; 24407 case IPOPT_TS: 24408 /* 24409 * Verify that length >=5 and that there is either 24410 * room for another timestamp or that the overflow 24411 * counter is not maxed out. 24412 */ 24413 code = (char *)&opt[IPOPT_OLEN] - (char *)ipha; 24414 if (optlen < IPOPT_MINLEN_IT) { 24415 goto param_prob; 24416 } 24417 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 24418 ip1dbg(( 24419 "ip_wput_options: bad option offset\n")); 24420 code = (char *)&opt[IPOPT_OFFSET] - 24421 (char *)ipha; 24422 goto param_prob; 24423 } 24424 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 24425 case IPOPT_TS_TSONLY: 24426 off = IPOPT_TS_TIMELEN; 24427 break; 24428 case IPOPT_TS_TSANDADDR: 24429 case IPOPT_TS_PRESPEC: 24430 case IPOPT_TS_PRESPEC_RFC791: 24431 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 24432 break; 24433 default: 24434 code = (char *)&opt[IPOPT_POS_OV_FLG] - 24435 (char *)ipha; 24436 goto param_prob; 24437 } 24438 if (opt[IPOPT_OFFSET] - 1 + off > optlen && 24439 (opt[IPOPT_POS_OV_FLG] & 0xF0) == 0xF0) { 24440 /* 24441 * No room and the overflow counter is 15 24442 * already. 24443 */ 24444 goto param_prob; 24445 } 24446 break; 24447 } 24448 } 24449 24450 if ((opts.ipoptp_flags & IPOPTP_ERROR) == 0) 24451 return (0); 24452 24453 ip1dbg(("ip_wput_options: error processing IP options.")); 24454 code = (char *)&opt[IPOPT_OFFSET] - (char *)ipha; 24455 24456 param_prob: 24457 /* 24458 * Since ip_wput() isn't close to finished, we fill 24459 * in enough of the header for credible error reporting. 24460 */ 24461 if (ip_hdr_complete((ipha_t *)mp->b_rptr, zoneid)) { 24462 /* Failed */ 24463 freemsg(ipsec_mp); 24464 return (-1); 24465 } 24466 icmp_param_problem(q, ipsec_mp, (uint8_t)code); 24467 return (-1); 24468 24469 bad_src_route: 24470 /* 24471 * Since ip_wput() isn't close to finished, we fill 24472 * in enough of the header for credible error reporting. 24473 */ 24474 if (ip_hdr_complete((ipha_t *)mp->b_rptr, zoneid)) { 24475 /* Failed */ 24476 freemsg(ipsec_mp); 24477 return (-1); 24478 } 24479 icmp_unreachable(q, ipsec_mp, ICMP_SOURCE_ROUTE_FAILED); 24480 return (-1); 24481 } 24482 24483 /* 24484 * The maximum value of conn_drain_list_cnt is CONN_MAXDRAINCNT. 24485 * conn_drain_list_cnt can be changed by setting conn_drain_nthreads 24486 * thru /etc/system. 24487 */ 24488 #define CONN_MAXDRAINCNT 64 24489 24490 static void 24491 conn_drain_init(void) 24492 { 24493 int i; 24494 24495 conn_drain_list_cnt = conn_drain_nthreads; 24496 24497 if ((conn_drain_list_cnt == 0) || 24498 (conn_drain_list_cnt > CONN_MAXDRAINCNT)) { 24499 /* 24500 * Default value of the number of drainers is the 24501 * number of cpus, subject to maximum of 8 drainers. 24502 */ 24503 if (boot_max_ncpus != -1) 24504 conn_drain_list_cnt = MIN(boot_max_ncpus, 8); 24505 else 24506 conn_drain_list_cnt = MIN(max_ncpus, 8); 24507 } 24508 24509 conn_drain_list = kmem_zalloc(conn_drain_list_cnt * sizeof (idl_t), 24510 KM_SLEEP); 24511 24512 for (i = 0; i < conn_drain_list_cnt; i++) { 24513 mutex_init(&conn_drain_list[i].idl_lock, NULL, 24514 MUTEX_DEFAULT, NULL); 24515 } 24516 } 24517 24518 static void 24519 conn_drain_fini(void) 24520 { 24521 int i; 24522 24523 for (i = 0; i < conn_drain_list_cnt; i++) 24524 mutex_destroy(&conn_drain_list[i].idl_lock); 24525 kmem_free(conn_drain_list, conn_drain_list_cnt * sizeof (idl_t)); 24526 conn_drain_list = NULL; 24527 } 24528 24529 /* 24530 * Note: For an overview of how flowcontrol is handled in IP please see the 24531 * IP Flowcontrol notes at the top of this file. 24532 * 24533 * Flow control has blocked us from proceeding. Insert the given conn in one 24534 * of the conn drain lists. These conn wq's will be qenabled later on when 24535 * STREAMS flow control does a backenable. conn_walk_drain will enable 24536 * the first conn in each of these drain lists. Each of these qenabled conns 24537 * in turn enables the next in the list, after it runs, or when it closes, 24538 * thus sustaining the drain process. 24539 * 24540 * The only possible calling sequence is ip_wsrv (on conn) -> ip_wput -> 24541 * conn_drain_insert. Thus there can be only 1 instance of conn_drain_insert 24542 * running at any time, on a given conn, since there can be only 1 service proc 24543 * running on a queue at any time. 24544 */ 24545 void 24546 conn_drain_insert(conn_t *connp) 24547 { 24548 idl_t *idl; 24549 uint_t index; 24550 24551 mutex_enter(&connp->conn_lock); 24552 if (connp->conn_state_flags & CONN_CLOSING) { 24553 /* 24554 * The conn is closing as a result of which CONN_CLOSING 24555 * is set. Return. 24556 */ 24557 mutex_exit(&connp->conn_lock); 24558 return; 24559 } else if (connp->conn_idl == NULL) { 24560 /* 24561 * Assign the next drain list round robin. We dont' use 24562 * a lock, and thus it may not be strictly round robin. 24563 * Atomicity of load/stores is enough to make sure that 24564 * conn_drain_list_index is always within bounds. 24565 */ 24566 index = conn_drain_list_index; 24567 ASSERT(index < conn_drain_list_cnt); 24568 connp->conn_idl = &conn_drain_list[index]; 24569 index++; 24570 if (index == conn_drain_list_cnt) 24571 index = 0; 24572 conn_drain_list_index = index; 24573 } 24574 mutex_exit(&connp->conn_lock); 24575 24576 mutex_enter(CONN_DRAIN_LIST_LOCK(connp)); 24577 if ((connp->conn_drain_prev != NULL) || 24578 (connp->conn_state_flags & CONN_CLOSING)) { 24579 /* 24580 * The conn is already in the drain list, OR 24581 * the conn is closing. We need to check again for 24582 * the closing case again since close can happen 24583 * after we drop the conn_lock, and before we 24584 * acquire the CONN_DRAIN_LIST_LOCK. 24585 */ 24586 mutex_exit(CONN_DRAIN_LIST_LOCK(connp)); 24587 return; 24588 } else { 24589 idl = connp->conn_idl; 24590 } 24591 24592 /* 24593 * The conn is not in the drain list. Insert it at the 24594 * tail of the drain list. The drain list is circular 24595 * and doubly linked. idl_conn points to the 1st element 24596 * in the list. 24597 */ 24598 if (idl->idl_conn == NULL) { 24599 idl->idl_conn = connp; 24600 connp->conn_drain_next = connp; 24601 connp->conn_drain_prev = connp; 24602 } else { 24603 conn_t *head = idl->idl_conn; 24604 24605 connp->conn_drain_next = head; 24606 connp->conn_drain_prev = head->conn_drain_prev; 24607 head->conn_drain_prev->conn_drain_next = connp; 24608 head->conn_drain_prev = connp; 24609 } 24610 mutex_exit(CONN_DRAIN_LIST_LOCK(connp)); 24611 } 24612 24613 /* 24614 * This conn is closing, and we are called from ip_close. OR 24615 * This conn has been serviced by ip_wsrv, and we need to do the tail 24616 * processing. 24617 * If this conn is part of the drain list, we may need to sustain the drain 24618 * process by qenabling the next conn in the drain list. We may also need to 24619 * remove this conn from the list, if it is done. 24620 */ 24621 static void 24622 conn_drain_tail(conn_t *connp, boolean_t closing) 24623 { 24624 idl_t *idl; 24625 24626 /* 24627 * connp->conn_idl is stable at this point, and no lock is needed 24628 * to check it. If we are called from ip_close, close has already 24629 * set CONN_CLOSING, thus freezing the value of conn_idl, and 24630 * called us only because conn_idl is non-null. If we are called thru 24631 * service, conn_idl could be null, but it cannot change because 24632 * service is single-threaded per queue, and there cannot be another 24633 * instance of service trying to call conn_drain_insert on this conn 24634 * now. 24635 */ 24636 ASSERT(!closing || (connp->conn_idl != NULL)); 24637 24638 /* 24639 * If connp->conn_idl is null, the conn has not been inserted into any 24640 * drain list even once since creation of the conn. Just return. 24641 */ 24642 if (connp->conn_idl == NULL) 24643 return; 24644 24645 mutex_enter(CONN_DRAIN_LIST_LOCK(connp)); 24646 24647 if (connp->conn_drain_prev == NULL) { 24648 /* This conn is currently not in the drain list. */ 24649 mutex_exit(CONN_DRAIN_LIST_LOCK(connp)); 24650 return; 24651 } 24652 idl = connp->conn_idl; 24653 if (idl->idl_conn_draining == connp) { 24654 /* 24655 * This conn is the current drainer. If this is the last conn 24656 * in the drain list, we need to do more checks, in the 'if' 24657 * below. Otherwwise we need to just qenable the next conn, 24658 * to sustain the draining, and is handled in the 'else' 24659 * below. 24660 */ 24661 if (connp->conn_drain_next == idl->idl_conn) { 24662 /* 24663 * This conn is the last in this list. This round 24664 * of draining is complete. If idl_repeat is set, 24665 * it means another flow enabling has happened from 24666 * the driver/streams and we need to another round 24667 * of draining. 24668 * If there are more than 2 conns in the drain list, 24669 * do a left rotate by 1, so that all conns except the 24670 * conn at the head move towards the head by 1, and the 24671 * the conn at the head goes to the tail. This attempts 24672 * a more even share for all queues that are being 24673 * drained. 24674 */ 24675 if ((connp->conn_drain_next != connp) && 24676 (idl->idl_conn->conn_drain_next != connp)) { 24677 idl->idl_conn = idl->idl_conn->conn_drain_next; 24678 } 24679 if (idl->idl_repeat) { 24680 qenable(idl->idl_conn->conn_wq); 24681 idl->idl_conn_draining = idl->idl_conn; 24682 idl->idl_repeat = 0; 24683 } else { 24684 idl->idl_conn_draining = NULL; 24685 } 24686 } else { 24687 /* 24688 * If the next queue that we are now qenable'ing, 24689 * is closing, it will remove itself from this list 24690 * and qenable the subsequent queue in ip_close(). 24691 * Serialization is acheived thru idl_lock. 24692 */ 24693 qenable(connp->conn_drain_next->conn_wq); 24694 idl->idl_conn_draining = connp->conn_drain_next; 24695 } 24696 } 24697 if (!connp->conn_did_putbq || closing) { 24698 /* 24699 * Remove ourself from the drain list, if we did not do 24700 * a putbq, or if the conn is closing. 24701 * Note: It is possible that q->q_first is non-null. It means 24702 * that these messages landed after we did a enableok() in 24703 * ip_wsrv. Thus STREAMS will call ip_wsrv once again to 24704 * service them. 24705 */ 24706 if (connp->conn_drain_next == connp) { 24707 /* Singleton in the list */ 24708 ASSERT(connp->conn_drain_prev == connp); 24709 idl->idl_conn = NULL; 24710 idl->idl_conn_draining = NULL; 24711 } else { 24712 connp->conn_drain_prev->conn_drain_next = 24713 connp->conn_drain_next; 24714 connp->conn_drain_next->conn_drain_prev = 24715 connp->conn_drain_prev; 24716 if (idl->idl_conn == connp) 24717 idl->idl_conn = connp->conn_drain_next; 24718 ASSERT(idl->idl_conn_draining != connp); 24719 24720 } 24721 connp->conn_drain_next = NULL; 24722 connp->conn_drain_prev = NULL; 24723 } 24724 mutex_exit(CONN_DRAIN_LIST_LOCK(connp)); 24725 } 24726 24727 /* 24728 * Write service routine. Shared perimeter entry point. 24729 * ip_wsrv can be called in any of the following ways. 24730 * 1. The device queue's messages has fallen below the low water mark 24731 * and STREAMS has backenabled the ill_wq. We walk thru all the 24732 * the drain lists and backenable the first conn in each list. 24733 * 2. The above causes STREAMS to run ip_wsrv on the conn_wq of the 24734 * qenabled non-tcp upper layers. We start dequeing messages and call 24735 * ip_wput for each message. 24736 */ 24737 24738 void 24739 ip_wsrv(queue_t *q) 24740 { 24741 conn_t *connp; 24742 ill_t *ill; 24743 mblk_t *mp; 24744 24745 if (q->q_next) { 24746 ill = (ill_t *)q->q_ptr; 24747 if (ill->ill_state_flags == 0) { 24748 /* 24749 * The device flow control has opened up. 24750 * Walk through conn drain lists and qenable the 24751 * first conn in each list. This makes sense only 24752 * if the stream is fully plumbed and setup. 24753 * Hence the if check above. 24754 */ 24755 ip1dbg(("ip_wsrv: walking\n")); 24756 conn_walk_drain(); 24757 } 24758 return; 24759 } 24760 24761 connp = Q_TO_CONN(q); 24762 ip1dbg(("ip_wsrv: %p %p\n", (void *)q, (void *)connp)); 24763 24764 /* 24765 * 1. Set conn_draining flag to signal that service is active. 24766 * 24767 * 2. ip_output determines whether it has been called from service, 24768 * based on the last parameter. If it is IP_WSRV it concludes it 24769 * has been called from service. 24770 * 24771 * 3. Message ordering is preserved by the following logic. 24772 * i. A directly called ip_output (i.e. not thru service) will queue 24773 * the message at the tail, if conn_draining is set (i.e. service 24774 * is running) or if q->q_first is non-null. 24775 * 24776 * ii. If ip_output is called from service, and if ip_output cannot 24777 * putnext due to flow control, it does a putbq. 24778 * 24779 * 4. noenable the queue so that a putbq from ip_wsrv does not reenable 24780 * (causing an infinite loop). 24781 */ 24782 ASSERT(!connp->conn_did_putbq); 24783 while ((q->q_first != NULL) && !connp->conn_did_putbq) { 24784 connp->conn_draining = 1; 24785 noenable(q); 24786 while ((mp = getq(q)) != NULL) { 24787 ip_output(Q_TO_CONN(q), mp, q, IP_WSRV); 24788 if (connp->conn_did_putbq) { 24789 /* ip_wput did a putbq */ 24790 break; 24791 } 24792 } 24793 /* 24794 * At this point, a thread coming down from top, calling 24795 * ip_wput, may end up queueing the message. We have not yet 24796 * enabled the queue, so ip_wsrv won't be called again. 24797 * To avoid this race, check q->q_first again (in the loop) 24798 * If the other thread queued the message before we call 24799 * enableok(), we will catch it in the q->q_first check. 24800 * If the other thread queues the message after we call 24801 * enableok(), ip_wsrv will be called again by STREAMS. 24802 */ 24803 connp->conn_draining = 0; 24804 enableok(q); 24805 } 24806 24807 /* Enable the next conn for draining */ 24808 conn_drain_tail(connp, B_FALSE); 24809 24810 connp->conn_did_putbq = 0; 24811 } 24812 24813 /* 24814 * Walk the list of all conn's calling the function provided with the 24815 * specified argument for each. Note that this only walks conn's that 24816 * have been bound. 24817 * Applies to both IPv4 and IPv6. 24818 */ 24819 static void 24820 conn_walk_fanout(pfv_t func, void *arg, zoneid_t zoneid) 24821 { 24822 conn_walk_fanout_table(ipcl_udp_fanout, ipcl_udp_fanout_size, 24823 func, arg, zoneid); 24824 conn_walk_fanout_table(ipcl_conn_fanout, ipcl_conn_fanout_size, 24825 func, arg, zoneid); 24826 conn_walk_fanout_table(ipcl_bind_fanout, ipcl_bind_fanout_size, 24827 func, arg, zoneid); 24828 conn_walk_fanout_table(ipcl_proto_fanout, 24829 A_CNT(ipcl_proto_fanout), func, arg, zoneid); 24830 conn_walk_fanout_table(ipcl_proto_fanout_v6, 24831 A_CNT(ipcl_proto_fanout_v6), func, arg, zoneid); 24832 } 24833 24834 /* 24835 * Flowcontrol has relieved, and STREAMS has backenabled us. For each list 24836 * of conns that need to be drained, check if drain is already in progress. 24837 * If so set the idl_repeat bit, indicating that the last conn in the list 24838 * needs to reinitiate the drain once again, for the list. If drain is not 24839 * in progress for the list, initiate the draining, by qenabling the 1st 24840 * conn in the list. The drain is self-sustaining, each qenabled conn will 24841 * in turn qenable the next conn, when it is done/blocked/closing. 24842 */ 24843 static void 24844 conn_walk_drain(void) 24845 { 24846 int i; 24847 idl_t *idl; 24848 24849 IP_STAT(ip_conn_walk_drain); 24850 24851 for (i = 0; i < conn_drain_list_cnt; i++) { 24852 idl = &conn_drain_list[i]; 24853 mutex_enter(&idl->idl_lock); 24854 if (idl->idl_conn == NULL) { 24855 mutex_exit(&idl->idl_lock); 24856 continue; 24857 } 24858 /* 24859 * If this list is not being drained currently by 24860 * an ip_wsrv thread, start the process. 24861 */ 24862 if (idl->idl_conn_draining == NULL) { 24863 ASSERT(idl->idl_repeat == 0); 24864 qenable(idl->idl_conn->conn_wq); 24865 idl->idl_conn_draining = idl->idl_conn; 24866 } else { 24867 idl->idl_repeat = 1; 24868 } 24869 mutex_exit(&idl->idl_lock); 24870 } 24871 } 24872 24873 /* 24874 * Walk an conn hash table of `count' buckets, calling func for each entry. 24875 */ 24876 static void 24877 conn_walk_fanout_table(connf_t *connfp, uint_t count, pfv_t func, void *arg, 24878 zoneid_t zoneid) 24879 { 24880 conn_t *connp; 24881 24882 while (count-- > 0) { 24883 mutex_enter(&connfp->connf_lock); 24884 for (connp = connfp->connf_head; connp != NULL; 24885 connp = connp->conn_next) { 24886 if (zoneid == GLOBAL_ZONEID || 24887 zoneid == connp->conn_zoneid) { 24888 CONN_INC_REF(connp); 24889 mutex_exit(&connfp->connf_lock); 24890 (*func)(connp, arg); 24891 mutex_enter(&connfp->connf_lock); 24892 CONN_DEC_REF(connp); 24893 } 24894 } 24895 mutex_exit(&connfp->connf_lock); 24896 connfp++; 24897 } 24898 } 24899 24900 /* ipcl_walk routine invoked for ip_conn_report for each conn. */ 24901 static void 24902 conn_report1(conn_t *connp, void *mp) 24903 { 24904 char buf1[INET6_ADDRSTRLEN]; 24905 char buf2[INET6_ADDRSTRLEN]; 24906 uint_t print_len, buf_len; 24907 24908 ASSERT(connp != NULL); 24909 24910 buf_len = ((mblk_t *)mp)->b_datap->db_lim - ((mblk_t *)mp)->b_wptr; 24911 if (buf_len <= 0) 24912 return; 24913 (void) inet_ntop(AF_INET6, &connp->conn_srcv6, buf1, sizeof (buf1)), 24914 (void) inet_ntop(AF_INET6, &connp->conn_remv6, buf2, sizeof (buf2)), 24915 print_len = snprintf((char *)((mblk_t *)mp)->b_wptr, buf_len, 24916 MI_COL_PTRFMT_STR MI_COL_PTRFMT_STR MI_COL_PTRFMT_STR 24917 "%5d %s/%05d %s/%05d\n", 24918 (void *)connp, (void *)CONNP_TO_RQ(connp), 24919 (void *)CONNP_TO_WQ(connp), connp->conn_zoneid, 24920 buf1, connp->conn_lport, 24921 buf2, connp->conn_fport); 24922 if (print_len < buf_len) { 24923 ((mblk_t *)mp)->b_wptr += print_len; 24924 } else { 24925 ((mblk_t *)mp)->b_wptr += buf_len; 24926 } 24927 } 24928 24929 /* 24930 * Named Dispatch routine to produce a formatted report on all conns 24931 * that are listed in one of the fanout tables. 24932 * This report is accessed by using the ndd utility to "get" ND variable 24933 * "ip_conn_status". 24934 */ 24935 /* ARGSUSED */ 24936 static int 24937 ip_conn_report(queue_t *q, mblk_t *mp, caddr_t arg, cred_t *ioc_cr) 24938 { 24939 (void) mi_mpprintf(mp, 24940 "CONN " MI_COL_HDRPAD_STR 24941 "rfq " MI_COL_HDRPAD_STR 24942 "stq " MI_COL_HDRPAD_STR 24943 " zone local remote"); 24944 24945 /* 24946 * Because of the ndd constraint, at most we can have 64K buffer 24947 * to put in all conn info. So to be more efficient, just 24948 * allocate a 64K buffer here, assuming we need that large buffer. 24949 * This should be OK as only privileged processes can do ndd /dev/ip. 24950 */ 24951 if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) { 24952 /* The following may work even if we cannot get a large buf. */ 24953 (void) mi_mpprintf(mp, "<< Out of buffer >>\n"); 24954 return (0); 24955 } 24956 24957 conn_walk_fanout(conn_report1, mp->b_cont, Q_TO_CONN(q)->conn_zoneid); 24958 return (0); 24959 } 24960 24961 /* 24962 * Determine if the ill and multicast aspects of that packets 24963 * "matches" the conn. 24964 */ 24965 boolean_t 24966 conn_wantpacket(conn_t *connp, ill_t *ill, ipha_t *ipha, int fanout_flags, 24967 zoneid_t zoneid) 24968 { 24969 ill_t *in_ill; 24970 boolean_t found; 24971 ipif_t *ipif; 24972 ire_t *ire; 24973 ipaddr_t dst, src; 24974 24975 dst = ipha->ipha_dst; 24976 src = ipha->ipha_src; 24977 24978 /* 24979 * conn_incoming_ill is set by IP_BOUND_IF which limits 24980 * unicast, broadcast and multicast reception to 24981 * conn_incoming_ill. conn_wantpacket itself is called 24982 * only for BROADCAST and multicast. 24983 * 24984 * 1) ip_rput supresses duplicate broadcasts if the ill 24985 * is part of a group. Hence, we should be receiving 24986 * just one copy of broadcast for the whole group. 24987 * Thus, if it is part of the group the packet could 24988 * come on any ill of the group and hence we need a 24989 * match on the group. Otherwise, match on ill should 24990 * be sufficient. 24991 * 24992 * 2) ip_rput does not suppress duplicate multicast packets. 24993 * If there are two interfaces in a ill group and we have 24994 * 2 applications (conns) joined a multicast group G on 24995 * both the interfaces, ilm_lookup_ill filter in ip_rput 24996 * will give us two packets because we join G on both the 24997 * interfaces rather than nominating just one interface 24998 * for receiving multicast like broadcast above. So, 24999 * we have to call ilg_lookup_ill to filter out duplicate 25000 * copies, if ill is part of a group. 25001 */ 25002 in_ill = connp->conn_incoming_ill; 25003 if (in_ill != NULL) { 25004 if (in_ill->ill_group == NULL) { 25005 if (in_ill != ill) 25006 return (B_FALSE); 25007 } else if (in_ill->ill_group != ill->ill_group) { 25008 return (B_FALSE); 25009 } 25010 } 25011 25012 if (!CLASSD(dst)) { 25013 if (connp->conn_zoneid == zoneid) 25014 return (B_TRUE); 25015 /* 25016 * The conn is in a different zone; we need to check that this 25017 * broadcast address is configured in the application's zone and 25018 * on one ill in the group. 25019 */ 25020 ipif = ipif_get_next_ipif(NULL, ill); 25021 if (ipif == NULL) 25022 return (B_FALSE); 25023 ire = ire_ctable_lookup(dst, 0, IRE_BROADCAST, ipif, 25024 connp->conn_zoneid, (MATCH_IRE_TYPE | MATCH_IRE_ILL_GROUP)); 25025 ipif_refrele(ipif); 25026 if (ire != NULL) { 25027 ire_refrele(ire); 25028 return (B_TRUE); 25029 } else { 25030 return (B_FALSE); 25031 } 25032 } 25033 25034 if ((fanout_flags & IP_FF_NO_MCAST_LOOP) && 25035 connp->conn_zoneid == zoneid) { 25036 /* 25037 * Loopback case: the sending endpoint has IP_MULTICAST_LOOP 25038 * disabled, therefore we don't dispatch the multicast packet to 25039 * the sending zone. 25040 */ 25041 return (B_FALSE); 25042 } 25043 25044 if ((ill->ill_phyint->phyint_flags & PHYI_LOOPBACK) && 25045 connp->conn_zoneid != zoneid) { 25046 /* 25047 * Multicast packet on the loopback interface: we only match 25048 * conns who joined the group in the specified zone. 25049 */ 25050 return (B_FALSE); 25051 } 25052 25053 if (connp->conn_multi_router) { 25054 /* multicast packet and multicast router socket: send up */ 25055 return (B_TRUE); 25056 } 25057 25058 mutex_enter(&connp->conn_lock); 25059 found = (ilg_lookup_ill_withsrc(connp, dst, src, ill) != NULL); 25060 mutex_exit(&connp->conn_lock); 25061 return (found); 25062 } 25063 25064 /* 25065 * Finish processing of "arp_up" when AR_DLPIOP_DONE is received from arp. 25066 */ 25067 /* ARGSUSED */ 25068 static void 25069 ip_arp_done(ipsq_t *dummy_sq, queue_t *q, mblk_t *mp, void *dummy_arg) 25070 { 25071 ill_t *ill = (ill_t *)q->q_ptr; 25072 mblk_t *mp1, *mp2; 25073 ipif_t *ipif; 25074 int err = 0; 25075 conn_t *connp = NULL; 25076 ipsq_t *ipsq; 25077 arc_t *arc; 25078 25079 ip1dbg(("ip_arp_done(%s)\n", ill->ill_name)); 25080 25081 ASSERT((mp->b_wptr - mp->b_rptr) >= sizeof (arc_t)); 25082 ASSERT(((arc_t *)mp->b_rptr)->arc_cmd == AR_DLPIOP_DONE); 25083 25084 ASSERT(IAM_WRITER_ILL(ill)); 25085 mp2 = mp->b_cont; 25086 mp->b_cont = NULL; 25087 25088 /* 25089 * We have now received the arp bringup completion message 25090 * from ARP. Mark the arp bringup as done. Also if the arp 25091 * stream has already started closing, send up the AR_ARP_CLOSING 25092 * ack now since ARP is waiting in close for this ack. 25093 */ 25094 mutex_enter(&ill->ill_lock); 25095 ill->ill_arp_bringup_pending = 0; 25096 if (ill->ill_arp_closing) { 25097 mutex_exit(&ill->ill_lock); 25098 /* Let's reuse the mp for sending the ack */ 25099 arc = (arc_t *)mp->b_rptr; 25100 mp->b_wptr = mp->b_rptr + sizeof (arc_t); 25101 arc->arc_cmd = AR_ARP_CLOSING; 25102 qreply(q, mp); 25103 } else { 25104 mutex_exit(&ill->ill_lock); 25105 freeb(mp); 25106 } 25107 25108 /* We should have an IOCTL waiting on this. */ 25109 ipsq = ill->ill_phyint->phyint_ipsq; 25110 ipif = ipsq->ipsq_pending_ipif; 25111 mp1 = ipsq_pending_mp_get(ipsq, &connp); 25112 ASSERT(!((mp1 != NULL) ^ (ipif != NULL))); 25113 if (mp1 == NULL) { 25114 /* bringup was aborted by the user */ 25115 freemsg(mp2); 25116 return; 25117 } 25118 ASSERT(connp != NULL); 25119 q = CONNP_TO_WQ(connp); 25120 /* 25121 * If the DL_BIND_REQ fails, it is noted 25122 * in arc_name_offset. 25123 */ 25124 err = *((int *)mp2->b_rptr); 25125 if (err == 0) { 25126 if (ipif->ipif_isv6) { 25127 if ((err = ipif_up_done_v6(ipif)) != 0) 25128 ip0dbg(("ip_arp_done: init failed\n")); 25129 } else { 25130 if ((err = ipif_up_done(ipif)) != 0) 25131 ip0dbg(("ip_arp_done: init failed\n")); 25132 } 25133 } else { 25134 ip0dbg(("ip_arp_done: DL_BIND_REQ failed\n")); 25135 } 25136 25137 freemsg(mp2); 25138 25139 if ((err == 0) && (ill->ill_up_ipifs)) { 25140 err = ill_up_ipifs(ill, q, mp1); 25141 if (err == EINPROGRESS) 25142 return; 25143 } 25144 25145 if (ill->ill_up_ipifs) { 25146 ill_group_cleanup(ill); 25147 } 25148 25149 /* 25150 * The ioctl must complete now without EINPROGRESS 25151 * since ipsq_pending_mp_get has removed the ioctl mblk 25152 * from ipsq_pending_mp. Otherwise the ioctl will be 25153 * stuck for ever in the ipsq. 25154 */ 25155 ASSERT(err != EINPROGRESS); 25156 ip_ioctl_finish(q, mp1, err, NO_COPYOUT, ipif, ipsq); 25157 } 25158 25159 /* Allocate the private structure */ 25160 static int 25161 ip_priv_alloc(void **bufp) 25162 { 25163 void *buf; 25164 25165 if ((buf = kmem_alloc(sizeof (ip_priv_t), KM_NOSLEEP)) == NULL) 25166 return (ENOMEM); 25167 25168 *bufp = buf; 25169 return (0); 25170 } 25171 25172 /* Function to delete the private structure */ 25173 void 25174 ip_priv_free(void *buf) 25175 { 25176 ASSERT(buf != NULL); 25177 kmem_free(buf, sizeof (ip_priv_t)); 25178 } 25179 25180 /* 25181 * The entry point for IPPF processing. 25182 * If the classifier (IPGPC_CLASSIFY) is not loaded and configured, the 25183 * routine just returns. 25184 * 25185 * When called, ip_process generates an ipp_packet_t structure 25186 * which holds the state information for this packet and invokes the 25187 * the classifier (via ipp_packet_process). The classification, depending on 25188 * configured filters, results in a list of actions for this packet. Invoking 25189 * an action may cause the packet to be dropped, in which case the resulting 25190 * mblk (*mpp) is NULL. proc indicates the callout position for 25191 * this packet and ill_index is the interface this packet on or will leave 25192 * on (inbound and outbound resp.). 25193 */ 25194 void 25195 ip_process(ip_proc_t proc, mblk_t **mpp, uint32_t ill_index) 25196 { 25197 mblk_t *mp; 25198 ip_priv_t *priv; 25199 ipp_action_id_t aid; 25200 int rc = 0; 25201 ipp_packet_t *pp; 25202 #define IP_CLASS "ip" 25203 25204 /* If the classifier is not loaded, return */ 25205 if ((aid = ipp_action_lookup(IPGPC_CLASSIFY)) == IPP_ACTION_INVAL) { 25206 return; 25207 } 25208 25209 mp = *mpp; 25210 ASSERT(mp != NULL); 25211 25212 /* Allocate the packet structure */ 25213 rc = ipp_packet_alloc(&pp, IP_CLASS, aid); 25214 if (rc != 0) { 25215 *mpp = NULL; 25216 freemsg(mp); 25217 return; 25218 } 25219 25220 /* Allocate the private structure */ 25221 rc = ip_priv_alloc((void **)&priv); 25222 if (rc != 0) { 25223 *mpp = NULL; 25224 freemsg(mp); 25225 ipp_packet_free(pp); 25226 return; 25227 } 25228 priv->proc = proc; 25229 priv->ill_index = ill_index; 25230 ipp_packet_set_private(pp, priv, ip_priv_free); 25231 ipp_packet_set_data(pp, mp); 25232 25233 /* Invoke the classifier */ 25234 rc = ipp_packet_process(&pp); 25235 if (pp != NULL) { 25236 mp = ipp_packet_get_data(pp); 25237 ipp_packet_free(pp); 25238 if (rc != 0) { 25239 freemsg(mp); 25240 *mpp = NULL; 25241 } 25242 } else { 25243 *mpp = NULL; 25244 } 25245 #undef IP_CLASS 25246 } 25247 25248 /* 25249 * Propagate a multicast group membership operation (add/drop) on 25250 * all the interfaces crossed by the related multirt routes. 25251 * The call is considered successful if the operation succeeds 25252 * on at least one interface. 25253 */ 25254 static int 25255 ip_multirt_apply_membership(int (*fn)(conn_t *, boolean_t, ipaddr_t, ipaddr_t, 25256 uint_t *, mcast_record_t, ipaddr_t, mblk_t *), ire_t *ire, conn_t *connp, 25257 boolean_t checkonly, ipaddr_t group, mcast_record_t fmode, ipaddr_t src, 25258 mblk_t *first_mp) 25259 { 25260 ire_t *ire_gw; 25261 irb_t *irb; 25262 int error = 0; 25263 opt_restart_t *or; 25264 25265 irb = ire->ire_bucket; 25266 ASSERT(irb != NULL); 25267 25268 ASSERT(DB_TYPE(first_mp) == M_CTL); 25269 25270 or = (opt_restart_t *)first_mp->b_rptr; 25271 IRB_REFHOLD(irb); 25272 for (; ire != NULL; ire = ire->ire_next) { 25273 if ((ire->ire_flags & RTF_MULTIRT) == 0) 25274 continue; 25275 if (ire->ire_addr != group) 25276 continue; 25277 25278 ire_gw = ire_ftable_lookup(ire->ire_gateway_addr, 0, 0, 25279 IRE_INTERFACE, NULL, NULL, ALL_ZONES, 0, 25280 MATCH_IRE_RECURSIVE | MATCH_IRE_TYPE); 25281 /* No resolver exists for the gateway; skip this ire. */ 25282 if (ire_gw == NULL) 25283 continue; 25284 25285 /* 25286 * This function can return EINPROGRESS. If so the operation 25287 * will be restarted from ip_restart_optmgmt which will 25288 * call ip_opt_set and option processing will restart for 25289 * this option. So we may end up calling 'fn' more than once. 25290 * This requires that 'fn' is idempotent except for the 25291 * return value. The operation is considered a success if 25292 * it succeeds at least once on any one interface. 25293 */ 25294 error = fn(connp, checkonly, group, ire_gw->ire_src_addr, 25295 NULL, fmode, src, first_mp); 25296 if (error == 0) 25297 or->or_private = CGTP_MCAST_SUCCESS; 25298 25299 if (ip_debug > 0) { 25300 ulong_t off; 25301 char *ksym; 25302 ksym = kobj_getsymname((uintptr_t)fn, &off); 25303 ip2dbg(("ip_multirt_apply_membership: " 25304 "called %s, multirt group 0x%08x via itf 0x%08x, " 25305 "error %d [success %u]\n", 25306 ksym ? ksym : "?", 25307 ntohl(group), ntohl(ire_gw->ire_src_addr), 25308 error, or->or_private)); 25309 } 25310 25311 ire_refrele(ire_gw); 25312 if (error == EINPROGRESS) { 25313 IRB_REFRELE(irb); 25314 return (error); 25315 } 25316 } 25317 IRB_REFRELE(irb); 25318 /* 25319 * Consider the call as successful if we succeeded on at least 25320 * one interface. Otherwise, return the last encountered error. 25321 */ 25322 return (or->or_private == CGTP_MCAST_SUCCESS ? 0 : error); 25323 } 25324 25325 25326 /* 25327 * Issue a warning regarding a route crossing an interface with an 25328 * incorrect MTU. Only one message every 'ip_multirt_log_interval' 25329 * amount of time is logged. 25330 */ 25331 static void 25332 ip_multirt_bad_mtu(ire_t *ire, uint32_t max_frag) 25333 { 25334 hrtime_t current = gethrtime(); 25335 char buf[16]; 25336 25337 /* Convert interval in ms to hrtime in ns */ 25338 if (multirt_bad_mtu_last_time + 25339 ((hrtime_t)ip_multirt_log_interval * (hrtime_t)1000000) <= 25340 current) { 25341 cmn_err(CE_WARN, "ip: ignoring multiroute " 25342 "to %s, incorrect MTU %u (expected %u)\n", 25343 ip_dot_addr(ire->ire_addr, buf), 25344 ire->ire_max_frag, max_frag); 25345 25346 multirt_bad_mtu_last_time = current; 25347 } 25348 } 25349 25350 25351 /* 25352 * Get the CGTP (multirouting) filtering status. 25353 * If 0, the CGTP hooks are transparent. 25354 */ 25355 /* ARGSUSED */ 25356 static int 25357 ip_cgtp_filter_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *ioc_cr) 25358 { 25359 boolean_t *ip_cgtp_filter_value = (boolean_t *)cp; 25360 25361 (void) mi_mpprintf(mp, "%d", (int)*ip_cgtp_filter_value); 25362 return (0); 25363 } 25364 25365 25366 /* 25367 * Set the CGTP (multirouting) filtering status. 25368 * If the status is changed from active to transparent 25369 * or from transparent to active, forward the new status 25370 * to the filtering module (if loaded). 25371 */ 25372 /* ARGSUSED */ 25373 static int 25374 ip_cgtp_filter_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, 25375 cred_t *ioc_cr) 25376 { 25377 long new_value; 25378 boolean_t *ip_cgtp_filter_value = (boolean_t *)cp; 25379 25380 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || 25381 new_value < 0 || new_value > 1) { 25382 return (EINVAL); 25383 } 25384 25385 /* 25386 * Do not enable CGTP filtering - thus preventing the hooks 25387 * from being invoked - if the version number of the 25388 * filtering module hooks does not match. 25389 */ 25390 if ((ip_cgtp_filter_ops != NULL) && 25391 (ip_cgtp_filter_ops->cfo_filter_rev != CGTP_FILTER_REV)) { 25392 cmn_err(CE_WARN, "IP: CGTP filtering version mismatch " 25393 "(module hooks version %d, expecting %d)\n", 25394 ip_cgtp_filter_ops->cfo_filter_rev, CGTP_FILTER_REV); 25395 return (ENOTSUP); 25396 } 25397 25398 if ((!*ip_cgtp_filter_value) && new_value) { 25399 cmn_err(CE_NOTE, "IP: enabling CGTP filtering%s", 25400 ip_cgtp_filter_ops == NULL ? 25401 " (module not loaded)" : ""); 25402 } 25403 if (*ip_cgtp_filter_value && (!new_value)) { 25404 cmn_err(CE_NOTE, "IP: disabling CGTP filtering%s", 25405 ip_cgtp_filter_ops == NULL ? 25406 " (module not loaded)" : ""); 25407 } 25408 25409 if (ip_cgtp_filter_ops != NULL) { 25410 int res; 25411 if ((res = ip_cgtp_filter_ops->cfo_change_state(new_value))) { 25412 return (res); 25413 } 25414 } 25415 25416 *ip_cgtp_filter_value = (boolean_t)new_value; 25417 25418 return (0); 25419 } 25420 25421 25422 /* 25423 * Return the expected CGTP hooks version number. 25424 */ 25425 int 25426 ip_cgtp_filter_supported(void) 25427 { 25428 return (ip_cgtp_filter_rev); 25429 } 25430 25431 25432 /* 25433 * CGTP hooks can be registered by directly touching ip_cgtp_filter_ops 25434 * or by invoking this function. In the first case, the version number 25435 * of the registered structure is checked at hooks activation time 25436 * in ip_cgtp_filter_set(). 25437 */ 25438 int 25439 ip_cgtp_filter_register(cgtp_filter_ops_t *ops) 25440 { 25441 if (ops->cfo_filter_rev != CGTP_FILTER_REV) 25442 return (ENOTSUP); 25443 25444 ip_cgtp_filter_ops = ops; 25445 return (0); 25446 } 25447 25448 static squeue_func_t 25449 ip_squeue_switch(int val) 25450 { 25451 squeue_func_t rval = squeue_fill; 25452 25453 switch (val) { 25454 case IP_SQUEUE_ENTER_NODRAIN: 25455 rval = squeue_enter_nodrain; 25456 break; 25457 case IP_SQUEUE_ENTER: 25458 rval = squeue_enter; 25459 break; 25460 default: 25461 break; 25462 } 25463 return (rval); 25464 } 25465 25466 /* ARGSUSED */ 25467 static int 25468 ip_input_proc_set(queue_t *q, mblk_t *mp, char *value, 25469 caddr_t addr, cred_t *cr) 25470 { 25471 int *v = (int *)addr; 25472 long new_value; 25473 25474 if (ddi_strtol(value, NULL, 10, &new_value) != 0) 25475 return (EINVAL); 25476 25477 ip_input_proc = ip_squeue_switch(new_value); 25478 *v = new_value; 25479 return (0); 25480 } 25481 25482 /* ARGSUSED */ 25483 static int 25484 ip_fanout_set(queue_t *q, mblk_t *mp, char *value, 25485 caddr_t addr, cred_t *cr) 25486 { 25487 int *v = (int *)addr; 25488 long new_value; 25489 25490 if (ddi_strtol(value, NULL, 10, &new_value) != 0) 25491 return (EINVAL); 25492 25493 *v = new_value; 25494 return (0); 25495 } 25496 25497 25498 static void 25499 ip_kstat_init(void) 25500 { 25501 ip_named_kstat_t template = { 25502 { "forwarding", KSTAT_DATA_UINT32, 0 }, 25503 { "defaultTTL", KSTAT_DATA_UINT32, 0 }, 25504 { "inReceives", KSTAT_DATA_UINT32, 0 }, 25505 { "inHdrErrors", KSTAT_DATA_UINT32, 0 }, 25506 { "inAddrErrors", KSTAT_DATA_UINT32, 0 }, 25507 { "forwDatagrams", KSTAT_DATA_UINT32, 0 }, 25508 { "inUnknownProtos", KSTAT_DATA_UINT32, 0 }, 25509 { "inDiscards", KSTAT_DATA_UINT32, 0 }, 25510 { "inDelivers", KSTAT_DATA_UINT32, 0 }, 25511 { "outRequests", KSTAT_DATA_UINT32, 0 }, 25512 { "outDiscards", KSTAT_DATA_UINT32, 0 }, 25513 { "outNoRoutes", KSTAT_DATA_UINT32, 0 }, 25514 { "reasmTimeout", KSTAT_DATA_UINT32, 0 }, 25515 { "reasmReqds", KSTAT_DATA_UINT32, 0 }, 25516 { "reasmOKs", KSTAT_DATA_UINT32, 0 }, 25517 { "reasmFails", KSTAT_DATA_UINT32, 0 }, 25518 { "fragOKs", KSTAT_DATA_UINT32, 0 }, 25519 { "fragFails", KSTAT_DATA_UINT32, 0 }, 25520 { "fragCreates", KSTAT_DATA_UINT32, 0 }, 25521 { "addrEntrySize", KSTAT_DATA_INT32, 0 }, 25522 { "routeEntrySize", KSTAT_DATA_INT32, 0 }, 25523 { "netToMediaEntrySize", KSTAT_DATA_INT32, 0 }, 25524 { "routingDiscards", KSTAT_DATA_UINT32, 0 }, 25525 { "inErrs", KSTAT_DATA_UINT32, 0 }, 25526 { "noPorts", KSTAT_DATA_UINT32, 0 }, 25527 { "inCksumErrs", KSTAT_DATA_UINT32, 0 }, 25528 { "reasmDuplicates", KSTAT_DATA_UINT32, 0 }, 25529 { "reasmPartDups", KSTAT_DATA_UINT32, 0 }, 25530 { "forwProhibits", KSTAT_DATA_UINT32, 0 }, 25531 { "udpInCksumErrs", KSTAT_DATA_UINT32, 0 }, 25532 { "udpInOverflows", KSTAT_DATA_UINT32, 0 }, 25533 { "rawipInOverflows", KSTAT_DATA_UINT32, 0 }, 25534 { "ipsecInSucceeded", KSTAT_DATA_UINT32, 0 }, 25535 { "ipsecInFailed", KSTAT_DATA_INT32, 0 }, 25536 { "memberEntrySize", KSTAT_DATA_INT32, 0 }, 25537 { "inIPv6", KSTAT_DATA_UINT32, 0 }, 25538 { "outIPv6", KSTAT_DATA_UINT32, 0 }, 25539 { "outSwitchIPv6", KSTAT_DATA_UINT32, 0 }, 25540 }; 25541 25542 ip_mibkp = kstat_create("ip", 0, "ip", "mib2", KSTAT_TYPE_NAMED, 25543 NUM_OF_FIELDS(ip_named_kstat_t), 25544 0); 25545 if (!ip_mibkp) 25546 return; 25547 25548 template.forwarding.value.ui32 = WE_ARE_FORWARDING ? 1:2; 25549 template.defaultTTL.value.ui32 = (uint32_t)ip_def_ttl; 25550 template.reasmTimeout.value.ui32 = ip_g_frag_timeout; 25551 template.addrEntrySize.value.i32 = sizeof (mib2_ipAddrEntry_t); 25552 template.routeEntrySize.value.i32 = sizeof (mib2_ipRouteEntry_t); 25553 25554 template.netToMediaEntrySize.value.i32 = 25555 sizeof (mib2_ipNetToMediaEntry_t); 25556 25557 template.memberEntrySize.value.i32 = sizeof (ipv6_member_t); 25558 25559 bcopy(&template, ip_mibkp->ks_data, sizeof (template)); 25560 25561 ip_mibkp->ks_update = ip_kstat_update; 25562 25563 kstat_install(ip_mibkp); 25564 } 25565 25566 static void 25567 ip_kstat_fini(void) 25568 { 25569 25570 if (ip_mibkp != NULL) { 25571 kstat_delete(ip_mibkp); 25572 ip_mibkp = NULL; 25573 } 25574 } 25575 25576 static int 25577 ip_kstat_update(kstat_t *kp, int rw) 25578 { 25579 ip_named_kstat_t *ipkp; 25580 25581 if (!kp || !kp->ks_data) 25582 return (EIO); 25583 25584 if (rw == KSTAT_WRITE) 25585 return (EACCES); 25586 25587 ipkp = (ip_named_kstat_t *)kp->ks_data; 25588 25589 ipkp->forwarding.value.ui32 = ip_mib.ipForwarding; 25590 ipkp->defaultTTL.value.ui32 = ip_mib.ipDefaultTTL; 25591 ipkp->inReceives.value.ui32 = ip_mib.ipInReceives; 25592 ipkp->inHdrErrors.value.ui32 = ip_mib.ipInHdrErrors; 25593 ipkp->inAddrErrors.value.ui32 = ip_mib.ipInAddrErrors; 25594 ipkp->forwDatagrams.value.ui32 = ip_mib.ipForwDatagrams; 25595 ipkp->inUnknownProtos.value.ui32 = ip_mib.ipInUnknownProtos; 25596 ipkp->inDiscards.value.ui32 = ip_mib.ipInDiscards; 25597 ipkp->inDelivers.value.ui32 = ip_mib.ipInDelivers; 25598 ipkp->outRequests.value.ui32 = ip_mib.ipOutRequests; 25599 ipkp->outDiscards.value.ui32 = ip_mib.ipOutDiscards; 25600 ipkp->outNoRoutes.value.ui32 = ip_mib.ipOutNoRoutes; 25601 ipkp->reasmTimeout.value.ui32 = ip_mib.ipReasmTimeout; 25602 ipkp->reasmReqds.value.ui32 = ip_mib.ipReasmReqds; 25603 ipkp->reasmOKs.value.ui32 = ip_mib.ipReasmOKs; 25604 ipkp->reasmFails.value.ui32 = ip_mib.ipReasmFails; 25605 ipkp->fragOKs.value.ui32 = ip_mib.ipFragOKs; 25606 ipkp->fragFails.value.ui32 = ip_mib.ipFragFails; 25607 ipkp->fragCreates.value.ui32 = ip_mib.ipFragCreates; 25608 25609 ipkp->routingDiscards.value.ui32 = ip_mib.ipRoutingDiscards; 25610 ipkp->inErrs.value.ui32 = ip_mib.tcpInErrs; 25611 ipkp->noPorts.value.ui32 = ip_mib.udpNoPorts; 25612 ipkp->inCksumErrs.value.ui32 = ip_mib.ipInCksumErrs; 25613 ipkp->reasmDuplicates.value.ui32 = ip_mib.ipReasmDuplicates; 25614 ipkp->reasmPartDups.value.ui32 = ip_mib.ipReasmPartDups; 25615 ipkp->forwProhibits.value.ui32 = ip_mib.ipForwProhibits; 25616 ipkp->udpInCksumErrs.value.ui32 = ip_mib.udpInCksumErrs; 25617 ipkp->udpInOverflows.value.ui32 = ip_mib.udpInOverflows; 25618 ipkp->rawipInOverflows.value.ui32 = ip_mib.rawipInOverflows; 25619 ipkp->ipsecInSucceeded.value.ui32 = ip_mib.ipsecInSucceeded; 25620 ipkp->ipsecInFailed.value.i32 = ip_mib.ipsecInFailed; 25621 25622 ipkp->inIPv6.value.ui32 = ip_mib.ipInIPv6; 25623 ipkp->outIPv6.value.ui32 = ip_mib.ipOutIPv6; 25624 ipkp->outSwitchIPv6.value.ui32 = ip_mib.ipOutSwitchIPv6; 25625 25626 return (0); 25627 } 25628 25629 static void 25630 icmp_kstat_init(void) 25631 { 25632 icmp_named_kstat_t template = { 25633 { "inMsgs", KSTAT_DATA_UINT32 }, 25634 { "inErrors", KSTAT_DATA_UINT32 }, 25635 { "inDestUnreachs", KSTAT_DATA_UINT32 }, 25636 { "inTimeExcds", KSTAT_DATA_UINT32 }, 25637 { "inParmProbs", KSTAT_DATA_UINT32 }, 25638 { "inSrcQuenchs", KSTAT_DATA_UINT32 }, 25639 { "inRedirects", KSTAT_DATA_UINT32 }, 25640 { "inEchos", KSTAT_DATA_UINT32 }, 25641 { "inEchoReps", KSTAT_DATA_UINT32 }, 25642 { "inTimestamps", KSTAT_DATA_UINT32 }, 25643 { "inTimestampReps", KSTAT_DATA_UINT32 }, 25644 { "inAddrMasks", KSTAT_DATA_UINT32 }, 25645 { "inAddrMaskReps", KSTAT_DATA_UINT32 }, 25646 { "outMsgs", KSTAT_DATA_UINT32 }, 25647 { "outErrors", KSTAT_DATA_UINT32 }, 25648 { "outDestUnreachs", KSTAT_DATA_UINT32 }, 25649 { "outTimeExcds", KSTAT_DATA_UINT32 }, 25650 { "outParmProbs", KSTAT_DATA_UINT32 }, 25651 { "outSrcQuenchs", KSTAT_DATA_UINT32 }, 25652 { "outRedirects", KSTAT_DATA_UINT32 }, 25653 { "outEchos", KSTAT_DATA_UINT32 }, 25654 { "outEchoReps", KSTAT_DATA_UINT32 }, 25655 { "outTimestamps", KSTAT_DATA_UINT32 }, 25656 { "outTimestampReps", KSTAT_DATA_UINT32 }, 25657 { "outAddrMasks", KSTAT_DATA_UINT32 }, 25658 { "outAddrMaskReps", KSTAT_DATA_UINT32 }, 25659 { "inChksumErrs", KSTAT_DATA_UINT32 }, 25660 { "inUnknowns", KSTAT_DATA_UINT32 }, 25661 { "inFragNeeded", KSTAT_DATA_UINT32 }, 25662 { "outFragNeeded", KSTAT_DATA_UINT32 }, 25663 { "outDrops", KSTAT_DATA_UINT32 }, 25664 { "inOverFlows", KSTAT_DATA_UINT32 }, 25665 { "inBadRedirects", KSTAT_DATA_UINT32 }, 25666 }; 25667 25668 icmp_mibkp = kstat_create("ip", 0, "icmp", "mib2", KSTAT_TYPE_NAMED, 25669 NUM_OF_FIELDS(icmp_named_kstat_t), 25670 0); 25671 if (icmp_mibkp == NULL) 25672 return; 25673 25674 bcopy(&template, icmp_mibkp->ks_data, sizeof (template)); 25675 25676 icmp_mibkp->ks_update = icmp_kstat_update; 25677 25678 kstat_install(icmp_mibkp); 25679 } 25680 25681 static void 25682 icmp_kstat_fini(void) 25683 { 25684 25685 if (icmp_mibkp != NULL) { 25686 kstat_delete(icmp_mibkp); 25687 icmp_mibkp = NULL; 25688 } 25689 } 25690 25691 static int 25692 icmp_kstat_update(kstat_t *kp, int rw) 25693 { 25694 icmp_named_kstat_t *icmpkp; 25695 25696 if ((kp == NULL) || (kp->ks_data == NULL)) 25697 return (EIO); 25698 25699 if (rw == KSTAT_WRITE) 25700 return (EACCES); 25701 25702 icmpkp = (icmp_named_kstat_t *)kp->ks_data; 25703 25704 icmpkp->inMsgs.value.ui32 = icmp_mib.icmpInMsgs; 25705 icmpkp->inErrors.value.ui32 = icmp_mib.icmpInErrors; 25706 icmpkp->inDestUnreachs.value.ui32 = icmp_mib.icmpInDestUnreachs; 25707 icmpkp->inTimeExcds.value.ui32 = icmp_mib.icmpInTimeExcds; 25708 icmpkp->inParmProbs.value.ui32 = icmp_mib.icmpInParmProbs; 25709 icmpkp->inSrcQuenchs.value.ui32 = icmp_mib.icmpInSrcQuenchs; 25710 icmpkp->inRedirects.value.ui32 = icmp_mib.icmpInRedirects; 25711 icmpkp->inEchos.value.ui32 = icmp_mib.icmpInEchos; 25712 icmpkp->inEchoReps.value.ui32 = icmp_mib.icmpInEchoReps; 25713 icmpkp->inTimestamps.value.ui32 = icmp_mib.icmpInTimestamps; 25714 icmpkp->inTimestampReps.value.ui32 = icmp_mib.icmpInTimestampReps; 25715 icmpkp->inAddrMasks.value.ui32 = icmp_mib.icmpInAddrMasks; 25716 icmpkp->inAddrMaskReps.value.ui32 = icmp_mib.icmpInAddrMaskReps; 25717 icmpkp->outMsgs.value.ui32 = icmp_mib.icmpOutMsgs; 25718 icmpkp->outErrors.value.ui32 = icmp_mib.icmpOutErrors; 25719 icmpkp->outDestUnreachs.value.ui32 = icmp_mib.icmpOutDestUnreachs; 25720 icmpkp->outTimeExcds.value.ui32 = icmp_mib.icmpOutTimeExcds; 25721 icmpkp->outParmProbs.value.ui32 = icmp_mib.icmpOutParmProbs; 25722 icmpkp->outSrcQuenchs.value.ui32 = icmp_mib.icmpOutSrcQuenchs; 25723 icmpkp->outRedirects.value.ui32 = icmp_mib.icmpOutRedirects; 25724 icmpkp->outEchos.value.ui32 = icmp_mib.icmpOutEchos; 25725 icmpkp->outEchoReps.value.ui32 = icmp_mib.icmpOutEchoReps; 25726 icmpkp->outTimestamps.value.ui32 = icmp_mib.icmpOutTimestamps; 25727 icmpkp->outTimestampReps.value.ui32 = icmp_mib.icmpOutTimestampReps; 25728 icmpkp->outAddrMasks.value.ui32 = icmp_mib.icmpOutAddrMasks; 25729 icmpkp->outAddrMaskReps.value.ui32 = icmp_mib.icmpOutAddrMaskReps; 25730 icmpkp->inCksumErrs.value.ui32 = icmp_mib.icmpInCksumErrs; 25731 icmpkp->inUnknowns.value.ui32 = icmp_mib.icmpInUnknowns; 25732 icmpkp->inFragNeeded.value.ui32 = icmp_mib.icmpInFragNeeded; 25733 icmpkp->outFragNeeded.value.ui32 = icmp_mib.icmpOutFragNeeded; 25734 icmpkp->outDrops.value.ui32 = icmp_mib.icmpOutDrops; 25735 icmpkp->inOverflows.value.ui32 = icmp_mib.icmpInOverflows; 25736 icmpkp->inBadRedirects.value.ui32 = icmp_mib.icmpInBadRedirects; 25737 25738 return (0); 25739 } 25740 25741 /* 25742 * This is the fanout function for raw socket opened for SCTP. Note 25743 * that it is called after SCTP checks that there is no socket which 25744 * wants a packet. Then before SCTP handles this out of the blue packet, 25745 * this function is called to see if there is any raw socket for SCTP. 25746 * If there is and it is bound to the correct address, the packet will 25747 * be sent to that socket. Note that only one raw socket can be bound to 25748 * a port. This is assured in ipcl_sctp_hash_insert(); 25749 */ 25750 void 25751 ip_fanout_sctp_raw(mblk_t *mp, ill_t *recv_ill, ipha_t *ipha, boolean_t isv4, 25752 uint32_t ports, boolean_t mctl_present, uint_t flags, boolean_t ip_policy, 25753 uint_t ipif_seqid, zoneid_t zoneid) 25754 { 25755 conn_t *connp; 25756 queue_t *rq; 25757 mblk_t *first_mp; 25758 boolean_t secure; 25759 ip6_t *ip6h; 25760 25761 first_mp = mp; 25762 if (mctl_present) { 25763 mp = first_mp->b_cont; 25764 secure = ipsec_in_is_secure(first_mp); 25765 ASSERT(mp != NULL); 25766 } else { 25767 secure = B_FALSE; 25768 } 25769 ip6h = (isv4) ? NULL : (ip6_t *)ipha; 25770 25771 connp = ipcl_classify_raw(IPPROTO_SCTP, zoneid, ports, ipha); 25772 if (connp == NULL) { 25773 sctp_ootb_input(first_mp, recv_ill, ipif_seqid, zoneid, 25774 mctl_present); 25775 return; 25776 } 25777 rq = connp->conn_rq; 25778 if (!canputnext(rq)) { 25779 CONN_DEC_REF(connp); 25780 BUMP_MIB(&ip_mib, rawipInOverflows); 25781 freemsg(first_mp); 25782 return; 25783 } 25784 if ((isv4 ? CONN_INBOUND_POLICY_PRESENT(connp) : 25785 CONN_INBOUND_POLICY_PRESENT_V6(connp)) || secure) { 25786 first_mp = ipsec_check_inbound_policy(first_mp, connp, 25787 (isv4 ? ipha : NULL), ip6h, mctl_present); 25788 if (first_mp == NULL) { 25789 CONN_DEC_REF(connp); 25790 return; 25791 } 25792 } 25793 /* 25794 * We probably should not send M_CTL message up to 25795 * raw socket. 25796 */ 25797 if (mctl_present) 25798 freeb(first_mp); 25799 25800 /* Initiate IPPF processing here if needed. */ 25801 if ((isv4 && IPP_ENABLED(IPP_LOCAL_IN) && ip_policy) || 25802 (!isv4 && IP6_IN_IPP(flags))) { 25803 ip_process(IPP_LOCAL_IN, &mp, 25804 recv_ill->ill_phyint->phyint_ifindex); 25805 if (mp == NULL) { 25806 CONN_DEC_REF(connp); 25807 return; 25808 } 25809 } 25810 25811 if (connp->conn_recvif || connp->conn_recvslla || 25812 ((connp->conn_ipv6_recvpktinfo || 25813 (!isv4 && IN6_IS_ADDR_LINKLOCAL(&ip6h->ip6_src))) && 25814 (flags & IP_FF_IP6INFO))) { 25815 int in_flags = 0; 25816 25817 if (connp->conn_recvif || connp->conn_ipv6_recvpktinfo) { 25818 in_flags = IPF_RECVIF; 25819 } 25820 if (connp->conn_recvslla) { 25821 in_flags |= IPF_RECVSLLA; 25822 } 25823 if (isv4) { 25824 mp = ip_add_info(mp, recv_ill, in_flags); 25825 } else { 25826 mp = ip_add_info_v6(mp, recv_ill, &ip6h->ip6_dst); 25827 if (mp == NULL) { 25828 CONN_DEC_REF(connp); 25829 return; 25830 } 25831 } 25832 } 25833 25834 BUMP_MIB(&ip_mib, ipInDelivers); 25835 /* 25836 * We are sending the IPSEC_IN message also up. Refer 25837 * to comments above this function. 25838 */ 25839 putnext(rq, mp); 25840 CONN_DEC_REF(connp); 25841 } 25842 25843 /* 25844 * Martian Address Filtering [RFC 1812, Section 5.3.7] 25845 */ 25846 static boolean_t 25847 ip_no_forward(ipha_t *ipha, ill_t *ill) 25848 { 25849 ipaddr_t ip_src, ip_dst; 25850 ire_t *src_ire = NULL; 25851 25852 ip_src = ntohl(ipha->ipha_src); 25853 ip_dst = ntohl(ipha->ipha_dst); 25854 25855 if (ip_dst == INADDR_ANY) 25856 goto dont_forward; 25857 25858 if (IN_CLASSD(ip_src)) 25859 goto dont_forward; 25860 25861 if ((ip_src >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET) 25862 goto dont_forward; 25863 25864 if (IN_BADCLASS(ip_dst)) 25865 goto dont_forward; 25866 25867 src_ire = ire_ctable_lookup(ipha->ipha_src, 0, IRE_BROADCAST, NULL, 25868 ALL_ZONES, MATCH_IRE_TYPE); 25869 if (src_ire != NULL) { 25870 ire_refrele(src_ire); 25871 goto dont_forward; 25872 } 25873 25874 return (B_FALSE); 25875 25876 dont_forward: 25877 if (ip_debug > 2) { 25878 printf("ip_no_forward: dropping packet received on %s\n", 25879 ill->ill_name); 25880 pr_addr_dbg("ip_no_forward: from src %s\n", 25881 AF_INET, &ipha->ipha_src); 25882 pr_addr_dbg("ip_no_forward: to dst %s\n", 25883 AF_INET, &ipha->ipha_dst); 25884 } 25885 BUMP_MIB(&ip_mib, ipForwProhibits); 25886 return (B_TRUE); 25887 } 25888 25889 static boolean_t 25890 ip_loopback_src_or_dst(ipha_t *ipha, ill_t *ill) 25891 { 25892 if (((ntohl(ipha->ipha_src) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET) || 25893 ((ntohl(ipha->ipha_dst) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET)) { 25894 if (ip_debug > 2) { 25895 printf("ip_loopback_src_or_dst: " 25896 "dropping packet received on %s\n", 25897 ill->ill_name); 25898 pr_addr_dbg( 25899 "ip_loopback_src_or_dst: from src %s\n", 25900 AF_INET, &ipha->ipha_src); 25901 pr_addr_dbg( 25902 "ip_loopback_src_or_dst: to dst %s\n", 25903 AF_INET, &ipha->ipha_dst); 25904 } 25905 25906 BUMP_MIB(&ip_mib, ipInAddrErrors); 25907 return (B_TRUE); 25908 } 25909 return (B_FALSE); 25910 } 25911