1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2009 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 /* Copyright (c) 1990 Mentat Inc. */ 27 28 #include <sys/types.h> 29 #include <sys/stream.h> 30 #include <sys/dlpi.h> 31 #include <sys/stropts.h> 32 #include <sys/sysmacros.h> 33 #include <sys/strsubr.h> 34 #include <sys/strlog.h> 35 #include <sys/strsun.h> 36 #include <sys/zone.h> 37 #define _SUN_TPI_VERSION 2 38 #include <sys/tihdr.h> 39 #include <sys/xti_inet.h> 40 #include <sys/ddi.h> 41 #include <sys/cmn_err.h> 42 #include <sys/debug.h> 43 #include <sys/kobj.h> 44 #include <sys/modctl.h> 45 #include <sys/atomic.h> 46 #include <sys/policy.h> 47 #include <sys/priv.h> 48 #include <sys/taskq.h> 49 50 #include <sys/systm.h> 51 #include <sys/param.h> 52 #include <sys/kmem.h> 53 #include <sys/sdt.h> 54 #include <sys/socket.h> 55 #include <sys/vtrace.h> 56 #include <sys/isa_defs.h> 57 #include <sys/mac.h> 58 #include <net/if.h> 59 #include <net/if_arp.h> 60 #include <net/route.h> 61 #include <sys/sockio.h> 62 #include <netinet/in.h> 63 #include <net/if_dl.h> 64 65 #include <inet/common.h> 66 #include <inet/mi.h> 67 #include <inet/mib2.h> 68 #include <inet/nd.h> 69 #include <inet/arp.h> 70 #include <inet/snmpcom.h> 71 #include <inet/optcom.h> 72 #include <inet/kstatcom.h> 73 74 #include <netinet/igmp_var.h> 75 #include <netinet/ip6.h> 76 #include <netinet/icmp6.h> 77 #include <netinet/sctp.h> 78 79 #include <inet/ip.h> 80 #include <inet/ip_impl.h> 81 #include <inet/ip6.h> 82 #include <inet/ip6_asp.h> 83 #include <inet/tcp.h> 84 #include <inet/tcp_impl.h> 85 #include <inet/ip_multi.h> 86 #include <inet/ip_if.h> 87 #include <inet/ip_ire.h> 88 #include <inet/ip_ftable.h> 89 #include <inet/ip_rts.h> 90 #include <inet/ip_ndp.h> 91 #include <inet/ip_listutils.h> 92 #include <netinet/igmp.h> 93 #include <netinet/ip_mroute.h> 94 #include <inet/ipp_common.h> 95 96 #include <net/pfkeyv2.h> 97 #include <inet/ipsec_info.h> 98 #include <inet/sadb.h> 99 #include <inet/ipsec_impl.h> 100 #include <sys/iphada.h> 101 #include <inet/tun.h> 102 #include <inet/ipdrop.h> 103 #include <inet/ip_netinfo.h> 104 105 #include <sys/ethernet.h> 106 #include <net/if_types.h> 107 #include <sys/cpuvar.h> 108 109 #include <ipp/ipp.h> 110 #include <ipp/ipp_impl.h> 111 #include <ipp/ipgpc/ipgpc.h> 112 113 #include <sys/multidata.h> 114 #include <sys/pattr.h> 115 116 #include <inet/ipclassifier.h> 117 #include <inet/sctp_ip.h> 118 #include <inet/sctp/sctp_impl.h> 119 #include <inet/udp_impl.h> 120 #include <inet/rawip_impl.h> 121 #include <inet/rts_impl.h> 122 123 #include <sys/tsol/label.h> 124 #include <sys/tsol/tnet.h> 125 126 #include <rpc/pmap_prot.h> 127 #include <sys/squeue_impl.h> 128 129 /* 130 * Values for squeue switch: 131 * IP_SQUEUE_ENTER_NODRAIN: SQ_NODRAIN 132 * IP_SQUEUE_ENTER: SQ_PROCESS 133 * IP_SQUEUE_FILL: SQ_FILL 134 */ 135 int ip_squeue_enter = 2; /* Setable in /etc/system */ 136 137 int ip_squeue_flag; 138 #define SET_BPREV_FLAG(x) ((mblk_t *)(uintptr_t)(x)) 139 140 /* 141 * Setable in /etc/system 142 */ 143 int ip_poll_normal_ms = 100; 144 int ip_poll_normal_ticks = 0; 145 int ip_modclose_ackwait_ms = 3000; 146 147 /* 148 * It would be nice to have these present only in DEBUG systems, but the 149 * current design of the global symbol checking logic requires them to be 150 * unconditionally present. 151 */ 152 uint_t ip_thread_data; /* TSD key for debug support */ 153 krwlock_t ip_thread_rwlock; 154 list_t ip_thread_list; 155 156 /* 157 * Structure to represent a linked list of msgblks. Used by ip_snmp_ functions. 158 */ 159 160 struct listptr_s { 161 mblk_t *lp_head; /* pointer to the head of the list */ 162 mblk_t *lp_tail; /* pointer to the tail of the list */ 163 }; 164 165 typedef struct listptr_s listptr_t; 166 167 /* 168 * This is used by ip_snmp_get_mib2_ip_route_media and 169 * ip_snmp_get_mib2_ip6_route_media to carry the lists of return data. 170 */ 171 typedef struct iproutedata_s { 172 uint_t ird_idx; 173 uint_t ird_flags; /* see below */ 174 listptr_t ird_route; /* ipRouteEntryTable */ 175 listptr_t ird_netmedia; /* ipNetToMediaEntryTable */ 176 listptr_t ird_attrs; /* ipRouteAttributeTable */ 177 } iproutedata_t; 178 179 #define IRD_REPORT_TESTHIDDEN 0x01 /* include IRE_MARK_TESTHIDDEN routes */ 180 181 /* 182 * Cluster specific hooks. These should be NULL when booted as a non-cluster 183 */ 184 185 /* 186 * Hook functions to enable cluster networking 187 * On non-clustered systems these vectors must always be NULL. 188 * 189 * Hook function to Check ip specified ip address is a shared ip address 190 * in the cluster 191 * 192 */ 193 int (*cl_inet_isclusterwide)(netstackid_t stack_id, uint8_t protocol, 194 sa_family_t addr_family, uint8_t *laddrp, void *args) = NULL; 195 196 /* 197 * Hook function to generate cluster wide ip fragment identifier 198 */ 199 uint32_t (*cl_inet_ipident)(netstackid_t stack_id, uint8_t protocol, 200 sa_family_t addr_family, uint8_t *laddrp, uint8_t *faddrp, 201 void *args) = NULL; 202 203 /* 204 * Hook function to generate cluster wide SPI. 205 */ 206 void (*cl_inet_getspi)(netstackid_t, uint8_t, uint8_t *, size_t, 207 void *) = NULL; 208 209 /* 210 * Hook function to verify if the SPI is already utlized. 211 */ 212 213 int (*cl_inet_checkspi)(netstackid_t, uint8_t, uint32_t, void *) = NULL; 214 215 /* 216 * Hook function to delete the SPI from the cluster wide repository. 217 */ 218 219 void (*cl_inet_deletespi)(netstackid_t, uint8_t, uint32_t, void *) = NULL; 220 221 /* 222 * Hook function to inform the cluster when packet received on an IDLE SA 223 */ 224 225 void (*cl_inet_idlesa)(netstackid_t, uint8_t, uint32_t, sa_family_t, 226 in6_addr_t, in6_addr_t, void *) = NULL; 227 228 /* 229 * Synchronization notes: 230 * 231 * IP is a fully D_MP STREAMS module/driver. Thus it does not depend on any 232 * MT level protection given by STREAMS. IP uses a combination of its own 233 * internal serialization mechanism and standard Solaris locking techniques. 234 * The internal serialization is per phyint. This is used to serialize 235 * plumbing operations, certain multicast operations, most set ioctls, 236 * igmp/mld timers etc. 237 * 238 * Plumbing is a long sequence of operations involving message 239 * exchanges between IP, ARP and device drivers. Many set ioctls are typically 240 * involved in plumbing operations. A natural model is to serialize these 241 * ioctls one per ill. For example plumbing of hme0 and qfe0 can go on in 242 * parallel without any interference. But various set ioctls on hme0 are best 243 * serialized, along with multicast join/leave operations, igmp/mld timer 244 * operations, and processing of DLPI control messages received from drivers 245 * on a per phyint basis. This serialization is provided by the ipsq_t and 246 * primitives operating on this. Details can be found in ip_if.c above the 247 * core primitives operating on ipsq_t. 248 * 249 * Lookups of an ipif or ill by a thread return a refheld ipif / ill. 250 * Simiarly lookup of an ire by a thread also returns a refheld ire. 251 * In addition ipif's and ill's referenced by the ire are also indirectly 252 * refheld. Thus no ipif or ill can vanish nor can critical parameters like 253 * the ipif's address or netmask change as long as an ipif is refheld 254 * directly or indirectly. For example an SIOCSLIFADDR ioctl that changes the 255 * address of an ipif has to go through the ipsq_t. This ensures that only 256 * 1 such exclusive operation proceeds at any time on the ipif. It then 257 * deletes all ires associated with this ipif, and waits for all refcnts 258 * associated with this ipif to come down to zero. The address is changed 259 * only after the ipif has been quiesced. Then the ipif is brought up again. 260 * More details are described above the comment in ip_sioctl_flags. 261 * 262 * Packet processing is based mostly on IREs and are fully multi-threaded 263 * using standard Solaris MT techniques. 264 * 265 * There are explicit locks in IP to handle: 266 * - The ip_g_head list maintained by mi_open_link() and friends. 267 * 268 * - The reassembly data structures (one lock per hash bucket) 269 * 270 * - conn_lock is meant to protect conn_t fields. The fields actually 271 * protected by conn_lock are documented in the conn_t definition. 272 * 273 * - ire_lock to protect some of the fields of the ire, IRE tables 274 * (one lock per hash bucket). Refer to ip_ire.c for details. 275 * 276 * - ndp_g_lock and nce_lock for protecting NCEs. 277 * 278 * - ill_lock protects fields of the ill and ipif. Details in ip.h 279 * 280 * - ill_g_lock: This is a global reader/writer lock. Protects the following 281 * * The AVL tree based global multi list of all ills. 282 * * The linked list of all ipifs of an ill 283 * * The <ipsq-xop> mapping 284 * * <ill-phyint> association 285 * Insertion/deletion of an ill in the system, insertion/deletion of an ipif 286 * into an ill, changing the <ipsq-xop> mapping of an ill, changing the 287 * <ill-phyint> assoc of an ill will all have to hold the ill_g_lock as 288 * writer for the actual duration of the insertion/deletion/change. 289 * 290 * - ill_lock: This is a per ill mutex. 291 * It protects some members of the ill_t struct; see ip.h for details. 292 * It also protects the <ill-phyint> assoc. 293 * It also protects the list of ipifs hanging off the ill. 294 * 295 * - ipsq_lock: This is a per ipsq_t mutex lock. 296 * This protects some members of the ipsq_t struct; see ip.h for details. 297 * It also protects the <ipsq-ipxop> mapping 298 * 299 * - ipx_lock: This is a per ipxop_t mutex lock. 300 * This protects some members of the ipxop_t struct; see ip.h for details. 301 * 302 * - phyint_lock: This is a per phyint mutex lock. Protects just the 303 * phyint_flags 304 * 305 * - ip_g_nd_lock: This is a global reader/writer lock. 306 * Any call to nd_load to load a new parameter to the ND table must hold the 307 * lock as writer. ND_GET/ND_SET routines that read the ND table hold the lock 308 * as reader. 309 * 310 * - ip_addr_avail_lock: This is used to ensure the uniqueness of IP addresses. 311 * This lock is held in ipif_up_done and the ipif is marked IPIF_UP and the 312 * uniqueness check also done atomically. 313 * 314 * - ipsec_capab_ills_lock: This readers/writer lock protects the global 315 * lists of IPsec capable ills (ipsec_capab_ills_{ah,esp}). It is taken 316 * as a writer when adding or deleting elements from these lists, and 317 * as a reader when walking these lists to send a SADB update to the 318 * IPsec capable ills. 319 * 320 * - ill_g_usesrc_lock: This readers/writer lock protects the usesrc 321 * group list linked by ill_usesrc_grp_next. It also protects the 322 * ill_usesrc_ifindex field. It is taken as a writer when a member of the 323 * group is being added or deleted. This lock is taken as a reader when 324 * walking the list/group(eg: to get the number of members in a usesrc group). 325 * Note, it is only necessary to take this lock if the ill_usesrc_grp_next 326 * field is changing state i.e from NULL to non-NULL or vice-versa. For 327 * example, it is not necessary to take this lock in the initial portion 328 * of ip_sioctl_slifusesrc or at all in ip_sioctl_flags since these 329 * operations are executed exclusively and that ensures that the "usesrc 330 * group state" cannot change. The "usesrc group state" change can happen 331 * only in the latter part of ip_sioctl_slifusesrc and in ill_delete. 332 * 333 * Changing <ill-phyint>, <ipsq-xop> assocications: 334 * 335 * To change the <ill-phyint> association, the ill_g_lock must be held 336 * as writer, and the ill_locks of both the v4 and v6 instance of the ill 337 * must be held. 338 * 339 * To change the <ipsq-xop> association, the ill_g_lock must be held as 340 * writer, the ipsq_lock must be held, and one must be writer on the ipsq. 341 * This is only done when ills are added or removed from IPMP groups. 342 * 343 * To add or delete an ipif from the list of ipifs hanging off the ill, 344 * ill_g_lock (writer) and ill_lock must be held and the thread must be 345 * a writer on the associated ipsq. 346 * 347 * To add or delete an ill to the system, the ill_g_lock must be held as 348 * writer and the thread must be a writer on the associated ipsq. 349 * 350 * To add or delete an ilm to an ill, the ill_lock must be held and the thread 351 * must be a writer on the associated ipsq. 352 * 353 * Lock hierarchy 354 * 355 * Some lock hierarchy scenarios are listed below. 356 * 357 * ill_g_lock -> conn_lock -> ill_lock -> ipsq_lock -> ipx_lock 358 * ill_g_lock -> ill_lock(s) -> phyint_lock 359 * ill_g_lock -> ndp_g_lock -> ill_lock -> nce_lock 360 * ill_g_lock -> ip_addr_avail_lock 361 * conn_lock -> irb_lock -> ill_lock -> ire_lock 362 * ill_g_lock -> ip_g_nd_lock 363 * 364 * When more than 1 ill lock is needed to be held, all ill lock addresses 365 * are sorted on address and locked starting from highest addressed lock 366 * downward. 367 * 368 * IPsec scenarios 369 * 370 * ipsa_lock -> ill_g_lock -> ill_lock 371 * ipsec_capab_ills_lock -> ill_g_lock -> ill_lock 372 * ipsec_capab_ills_lock -> ipsa_lock 373 * ill_g_usesrc_lock -> ill_g_lock -> ill_lock 374 * 375 * Trusted Solaris scenarios 376 * 377 * igsa_lock -> gcgrp_rwlock -> gcgrp_lock 378 * igsa_lock -> gcdb_lock 379 * gcgrp_rwlock -> ire_lock 380 * gcgrp_rwlock -> gcdb_lock 381 * 382 * squeue(sq_lock), flow related (ft_lock, fe_lock) locking 383 * 384 * cpu_lock --> ill_lock --> sqset_lock --> sq_lock 385 * sq_lock -> conn_lock -> QLOCK(q) 386 * ill_lock -> ft_lock -> fe_lock 387 * 388 * Routing/forwarding table locking notes: 389 * 390 * Lock acquisition order: Radix tree lock, irb_lock. 391 * Requirements: 392 * i. Walker must not hold any locks during the walker callback. 393 * ii Walker must not see a truncated tree during the walk because of any node 394 * deletion. 395 * iii Existing code assumes ire_bucket is valid if it is non-null and is used 396 * in many places in the code to walk the irb list. Thus even if all the 397 * ires in a bucket have been deleted, we still can't free the radix node 398 * until the ires have actually been inactive'd (freed). 399 * 400 * Tree traversal - Need to hold the global tree lock in read mode. 401 * Before dropping the global tree lock, need to either increment the ire_refcnt 402 * to ensure that the radix node can't be deleted. 403 * 404 * Tree add - Need to hold the global tree lock in write mode to add a 405 * radix node. To prevent the node from being deleted, increment the 406 * irb_refcnt, after the node is added to the tree. The ire itself is 407 * added later while holding the irb_lock, but not the tree lock. 408 * 409 * Tree delete - Need to hold the global tree lock and irb_lock in write mode. 410 * All associated ires must be inactive (i.e. freed), and irb_refcnt 411 * must be zero. 412 * 413 * Walker - Increment irb_refcnt before calling the walker callback. Hold the 414 * global tree lock (read mode) for traversal. 415 * 416 * IPsec notes : 417 * 418 * IP interacts with the IPsec code (AH/ESP) by tagging a M_CTL message 419 * in front of the actual packet. For outbound datagrams, the M_CTL 420 * contains a ipsec_out_t (defined in ipsec_info.h), which has the 421 * information used by the IPsec code for applying the right level of 422 * protection. The information initialized by IP in the ipsec_out_t 423 * is determined by the per-socket policy or global policy in the system. 424 * For inbound datagrams, the M_CTL contains a ipsec_in_t (defined in 425 * ipsec_info.h) which starts out with nothing in it. It gets filled 426 * with the right information if it goes through the AH/ESP code, which 427 * happens if the incoming packet is secure. The information initialized 428 * by AH/ESP, is later used by IP(during fanouts to ULP) to see whether 429 * the policy requirements needed by per-socket policy or global policy 430 * is met or not. 431 * 432 * If there is both per-socket policy (set using setsockopt) and there 433 * is also global policy match for the 5 tuples of the socket, 434 * ipsec_override_policy() makes the decision of which one to use. 435 * 436 * For fully connected sockets i.e dst, src [addr, port] is known, 437 * conn_policy_cached is set indicating that policy has been cached. 438 * conn_in_enforce_policy may or may not be set depending on whether 439 * there is a global policy match or per-socket policy match. 440 * Policy inheriting happpens in ip_bind during the ipa_conn_t bind. 441 * Once the right policy is set on the conn_t, policy cannot change for 442 * this socket. This makes life simpler for TCP (UDP ?) where 443 * re-transmissions go out with the same policy. For symmetry, policy 444 * is cached for fully connected UDP sockets also. Thus if policy is cached, 445 * it also implies that policy is latched i.e policy cannot change 446 * on these sockets. As we have the right policy on the conn, we don't 447 * have to lookup global policy for every outbound and inbound datagram 448 * and thus serving as an optimization. Note that a global policy change 449 * does not affect fully connected sockets if they have policy. If fully 450 * connected sockets did not have any policy associated with it, global 451 * policy change may affect them. 452 * 453 * IP Flow control notes: 454 * --------------------- 455 * Non-TCP streams are flow controlled by IP. The way this is accomplished 456 * differs when ILL_CAPAB_DLD_DIRECT is enabled for that IP instance. When 457 * ILL_DIRECT_CAPABLE(ill) is TRUE, IP can do direct function calls into 458 * GLDv3. Otherwise packets are sent down to lower layers using STREAMS 459 * functions. 460 * 461 * Per Tx ring udp flow control: 462 * This is applicable only when ILL_CAPAB_DLD_DIRECT capability is set in 463 * the ill (i.e. ILL_DIRECT_CAPABLE(ill) is true). 464 * 465 * The underlying link can expose multiple Tx rings to the GLDv3 mac layer. 466 * To achieve best performance, outgoing traffic need to be fanned out among 467 * these Tx ring. mac_tx() is called (via str_mdata_fastpath_put()) to send 468 * traffic out of the NIC and it takes a fanout hint. UDP connections pass 469 * the address of connp as fanout hint to mac_tx(). Under flow controlled 470 * condition, mac_tx() returns a non-NULL cookie (ip_mac_tx_cookie_t). This 471 * cookie points to a specific Tx ring that is blocked. The cookie is used to 472 * hash into an idl_tx_list[] entry in idl_tx_list[] array. Each idl_tx_list_t 473 * point to drain_lists (idl_t's). These drain list will store the blocked UDP 474 * connp's. The drain list is not a single list but a configurable number of 475 * lists. 476 * 477 * The diagram below shows idl_tx_list_t's and their drain_lists. ip_stack_t 478 * has an array of idl_tx_list_t. The size of the array is TX_FANOUT_SIZE 479 * which is equal to 128. This array in turn contains a pointer to idl_t[], 480 * the ip drain list. The idl_t[] array size is MIN(max_ncpus, 8). The drain 481 * list will point to the list of connp's that are flow controlled. 482 * 483 * --------------- ------- ------- ------- 484 * |->|drain_list[0]|-->|connp|-->|connp|-->|connp|--> 485 * | --------------- ------- ------- ------- 486 * | --------------- ------- ------- ------- 487 * |->|drain_list[1]|-->|connp|-->|connp|-->|connp|--> 488 * ---------------- | --------------- ------- ------- ------- 489 * |idl_tx_list[0]|->| --------------- ------- ------- ------- 490 * ---------------- |->|drain_list[2]|-->|connp|-->|connp|-->|connp|--> 491 * | --------------- ------- ------- ------- 492 * . . . . . 493 * | --------------- ------- ------- ------- 494 * |->|drain_list[n]|-->|connp|-->|connp|-->|connp|--> 495 * --------------- ------- ------- ------- 496 * --------------- ------- ------- ------- 497 * |->|drain_list[0]|-->|connp|-->|connp|-->|connp|--> 498 * | --------------- ------- ------- ------- 499 * | --------------- ------- ------- ------- 500 * ---------------- |->|drain_list[1]|-->|connp|-->|connp|-->|connp|--> 501 * |idl_tx_list[1]|->| --------------- ------- ------- ------- 502 * ---------------- | . . . . 503 * | --------------- ------- ------- ------- 504 * |->|drain_list[n]|-->|connp|-->|connp|-->|connp|--> 505 * --------------- ------- ------- ------- 506 * ..... 507 * ---------------- 508 * |idl_tx_list[n]|-> ... 509 * ---------------- 510 * 511 * When mac_tx() returns a cookie, the cookie is used to hash into a 512 * idl_tx_list in ips_idl_tx_list[] array. Then conn_drain_insert() is 513 * called passing idl_tx_list. The connp gets inserted in a drain list 514 * pointed to by idl_tx_list. conn_drain_list() asserts flow control for 515 * the sockets (non stream based) and sets QFULL condition for conn_wq. 516 * connp->conn_direct_blocked will be set to indicate the blocked 517 * condition. 518 * 519 * GLDv3 mac layer calls ill_flow_enable() when flow control is relieved. 520 * A cookie is passed in the call to ill_flow_enable() that identifies the 521 * blocked Tx ring. This cookie is used to get to the idl_tx_list that 522 * contains the blocked connp's. conn_walk_drain() uses the idl_tx_list_t 523 * and goes through each of the drain list (q)enabling the conn_wq of the 524 * first conn in each of the drain list. This causes ip_wsrv to run for the 525 * conn. ip_wsrv drains the queued messages, and removes the conn from the 526 * drain list, if all messages were drained. It also qenables the next conn 527 * in the drain list to continue the drain process. 528 * 529 * In reality the drain list is not a single list, but a configurable number 530 * of lists. conn_drain_walk() in the IP module, qenables the first conn in 531 * each list. If the ip_wsrv of the next qenabled conn does not run, because 532 * the stream closes, ip_close takes responsibility to qenable the next conn 533 * in the drain list. conn_drain_insert and conn_drain_tail are the only 534 * functions that manipulate this drain list. conn_drain_insert is called in 535 * ip_wput context itself (as opposed to from ip_wsrv context for STREAMS 536 * case -- see below). The synchronization between drain insertion and flow 537 * control wakeup is handled by using idl_txl->txl_lock. 538 * 539 * Flow control using STREAMS: 540 * When ILL_DIRECT_CAPABLE() is not TRUE, STREAMS flow control mechanism 541 * is used. On the send side, if the packet cannot be sent down to the 542 * driver by IP, because of a canput failure, IP does a putq on the conn_wq. 543 * This will cause ip_wsrv to run on the conn_wq. ip_wsrv in turn, inserts 544 * the conn in a list of conn's that need to be drained when the flow 545 * control condition subsides. The blocked connps are put in first member 546 * of ips_idl_tx_list[] array. Ultimately STREAMS backenables the ip_wsrv 547 * on the IP module. It calls conn_walk_drain() passing ips_idl_tx_list[0]. 548 * ips_idl_tx_list[0] contains the drain lists of blocked conns. The 549 * conn_wq of the first conn in the drain lists is (q)enabled to run. 550 * ip_wsrv on this conn drains the queued messages, and removes the conn 551 * from the drain list, if all messages were drained. It also qenables the 552 * next conn in the drain list to continue the drain process. 553 * 554 * If the ip_wsrv of the next qenabled conn does not run, because the 555 * stream closes, ip_close takes responsibility to qenable the next conn in 556 * the drain list. The directly called ip_wput path always does a putq, if 557 * it cannot putnext. Thus synchronization problems are handled between 558 * ip_wsrv and ip_close. conn_drain_insert and conn_drain_tail are the only 559 * functions that manipulate this drain list. Furthermore conn_drain_insert 560 * is called only from ip_wsrv for the STREAMS case, and there can be only 1 561 * instance of ip_wsrv running on a queue at any time. conn_drain_tail can 562 * be simultaneously called from both ip_wsrv and ip_close. 563 * 564 * IPQOS notes: 565 * 566 * IPQoS Policies are applied to packets using IPPF (IP Policy framework) 567 * and IPQoS modules. IPPF includes hooks in IP at different control points 568 * (callout positions) which direct packets to IPQoS modules for policy 569 * processing. Policies, if present, are global. 570 * 571 * The callout positions are located in the following paths: 572 * o local_in (packets destined for this host) 573 * o local_out (packets orginating from this host ) 574 * o fwd_in (packets forwarded by this m/c - inbound) 575 * o fwd_out (packets forwarded by this m/c - outbound) 576 * Hooks at these callout points can be enabled/disabled using the ndd variable 577 * ip_policy_mask (a bit mask with the 4 LSB indicating the callout positions). 578 * By default all the callout positions are enabled. 579 * 580 * Outbound (local_out) 581 * Hooks are placed in ip_wput_ire and ipsec_out_process. 582 * 583 * Inbound (local_in) 584 * Hooks are placed in ip_proto_input, icmp_inbound, ip_fanout_proto and 585 * TCP and UDP fanout routines. 586 * 587 * Forwarding (in and out) 588 * Hooks are placed in ip_rput_forward. 589 * 590 * IP Policy Framework processing (IPPF processing) 591 * Policy processing for a packet is initiated by ip_process, which ascertains 592 * that the classifier (ipgpc) is loaded and configured, failing which the 593 * packet resumes normal processing in IP. If the clasifier is present, the 594 * packet is acted upon by one or more IPQoS modules (action instances), per 595 * filters configured in ipgpc and resumes normal IP processing thereafter. 596 * An action instance can drop a packet in course of its processing. 597 * 598 * A boolean variable, ip_policy, is used in all the fanout routines that can 599 * invoke ip_process for a packet. This variable indicates if the packet should 600 * to be sent for policy processing. The variable is set to B_TRUE by default, 601 * i.e. when the routines are invoked in the normal ip procesing path for a 602 * packet. The two exceptions being ip_wput_local and icmp_inbound_error_fanout; 603 * ip_policy is set to B_FALSE for all the routines called in these two 604 * functions because, in the former case, we don't process loopback traffic 605 * currently while in the latter, the packets have already been processed in 606 * icmp_inbound. 607 * 608 * Zones notes: 609 * 610 * The partitioning rules for networking are as follows: 611 * 1) Packets coming from a zone must have a source address belonging to that 612 * zone. 613 * 2) Packets coming from a zone can only be sent on a physical interface on 614 * which the zone has an IP address. 615 * 3) Between two zones on the same machine, packet delivery is only allowed if 616 * there's a matching route for the destination and zone in the forwarding 617 * table. 618 * 4) The TCP and UDP port spaces are per-zone; that is, two processes in 619 * different zones can bind to the same port with the wildcard address 620 * (INADDR_ANY). 621 * 622 * The granularity of interface partitioning is at the logical interface level. 623 * Therefore, every zone has its own IP addresses, and incoming packets can be 624 * attributed to a zone unambiguously. A logical interface is placed into a zone 625 * using the SIOCSLIFZONE ioctl; this sets the ipif_zoneid field in the ipif_t 626 * structure. Rule (1) is implemented by modifying the source address selection 627 * algorithm so that the list of eligible addresses is filtered based on the 628 * sending process zone. 629 * 630 * The Internet Routing Entries (IREs) are either exclusive to a zone or shared 631 * across all zones, depending on their type. Here is the break-up: 632 * 633 * IRE type Shared/exclusive 634 * -------- ---------------- 635 * IRE_BROADCAST Exclusive 636 * IRE_DEFAULT (default routes) Shared (*) 637 * IRE_LOCAL Exclusive (x) 638 * IRE_LOOPBACK Exclusive 639 * IRE_PREFIX (net routes) Shared (*) 640 * IRE_CACHE Exclusive 641 * IRE_IF_NORESOLVER (interface routes) Exclusive 642 * IRE_IF_RESOLVER (interface routes) Exclusive 643 * IRE_HOST (host routes) Shared (*) 644 * 645 * (*) A zone can only use a default or off-subnet route if the gateway is 646 * directly reachable from the zone, that is, if the gateway's address matches 647 * one of the zone's logical interfaces. 648 * 649 * (x) IRE_LOCAL are handled a bit differently, since for all other entries 650 * in ire_ctable and IRE_INTERFACE, ire_src_addr is what can be used as source 651 * when sending packets using the IRE. For IRE_LOCAL ire_src_addr is the IP 652 * address of the zone itself (the destination). Since IRE_LOCAL is used 653 * for communication between zones, ip_wput_ire has special logic to set 654 * the right source address when sending using an IRE_LOCAL. 655 * 656 * Furthermore, when ip_restrict_interzone_loopback is set (the default), 657 * ire_cache_lookup restricts loopback using an IRE_LOCAL 658 * between zone to the case when L2 would have conceptually looped the packet 659 * back, i.e. the loopback which is required since neither Ethernet drivers 660 * nor Ethernet hardware loops them back. This is the case when the normal 661 * routes (ignoring IREs with different zoneids) would send out the packet on 662 * the same ill as the ill with which is IRE_LOCAL is associated. 663 * 664 * Multiple zones can share a common broadcast address; typically all zones 665 * share the 255.255.255.255 address. Incoming as well as locally originated 666 * broadcast packets must be dispatched to all the zones on the broadcast 667 * network. For directed broadcasts (e.g. 10.16.72.255) this is not trivial 668 * since some zones may not be on the 10.16.72/24 network. To handle this, each 669 * zone has its own set of IRE_BROADCAST entries; then, broadcast packets are 670 * sent to every zone that has an IRE_BROADCAST entry for the destination 671 * address on the input ill, see conn_wantpacket(). 672 * 673 * Applications in different zones can join the same multicast group address. 674 * For IPv4, group memberships are per-logical interface, so they're already 675 * inherently part of a zone. For IPv6, group memberships are per-physical 676 * interface, so we distinguish IPv6 group memberships based on group address, 677 * interface and zoneid. In both cases, received multicast packets are sent to 678 * every zone for which a group membership entry exists. On IPv6 we need to 679 * check that the target zone still has an address on the receiving physical 680 * interface; it could have been removed since the application issued the 681 * IPV6_JOIN_GROUP. 682 */ 683 684 /* 685 * Squeue Fanout flags: 686 * 0: No fanout. 687 * 1: Fanout across all squeues 688 */ 689 boolean_t ip_squeue_fanout = 0; 690 691 /* 692 * Maximum dups allowed per packet. 693 */ 694 uint_t ip_max_frag_dups = 10; 695 696 #define IS_SIMPLE_IPH(ipha) \ 697 ((ipha)->ipha_version_and_hdr_length == IP_SIMPLE_HDR_VERSION) 698 699 /* RFC 1122 Conformance */ 700 #define IP_FORWARD_DEFAULT IP_FORWARD_NEVER 701 702 #define ILL_MAX_NAMELEN LIFNAMSIZ 703 704 static int conn_set_held_ipif(conn_t *, ipif_t **, ipif_t *); 705 706 static int ip_open(queue_t *q, dev_t *devp, int flag, int sflag, 707 cred_t *credp, boolean_t isv6); 708 static mblk_t *ip_wput_attach_llhdr(mblk_t *, ire_t *, ip_proc_t, uint32_t, 709 ipha_t **); 710 711 static void icmp_frag_needed(queue_t *, mblk_t *, int, zoneid_t, 712 ip_stack_t *); 713 static void icmp_inbound(queue_t *, mblk_t *, boolean_t, ill_t *, int, 714 uint32_t, boolean_t, boolean_t, ill_t *, zoneid_t); 715 static ipaddr_t icmp_get_nexthop_addr(ipha_t *, ill_t *, zoneid_t, mblk_t *mp); 716 static boolean_t icmp_inbound_too_big(icmph_t *, ipha_t *, ill_t *, zoneid_t, 717 mblk_t *, int, ip_stack_t *); 718 static void icmp_inbound_error_fanout(queue_t *, ill_t *, mblk_t *, 719 icmph_t *, ipha_t *, int, int, boolean_t, boolean_t, 720 ill_t *, zoneid_t); 721 static void icmp_options_update(ipha_t *); 722 static void icmp_param_problem(queue_t *, mblk_t *, uint8_t, zoneid_t, 723 ip_stack_t *); 724 static void icmp_pkt(queue_t *, mblk_t *, void *, size_t, boolean_t, 725 zoneid_t zoneid, ip_stack_t *); 726 static mblk_t *icmp_pkt_err_ok(mblk_t *, ip_stack_t *); 727 static void icmp_redirect(ill_t *, mblk_t *); 728 static void icmp_send_redirect(queue_t *, mblk_t *, ipaddr_t, 729 ip_stack_t *); 730 731 static void ip_arp_news(queue_t *, mblk_t *); 732 static boolean_t ip_bind_get_ire_v4(mblk_t **, ire_t *, iulp_t *, ip_stack_t *); 733 mblk_t *ip_dlpi_alloc(size_t, t_uscalar_t); 734 char *ip_dot_addr(ipaddr_t, char *); 735 mblk_t *ip_carve_mp(mblk_t **, ssize_t); 736 int ip_close(queue_t *, int); 737 static char *ip_dot_saddr(uchar_t *, char *); 738 static void ip_fanout_proto(queue_t *, mblk_t *, ill_t *, ipha_t *, uint_t, 739 boolean_t, boolean_t, ill_t *, zoneid_t); 740 static void ip_fanout_tcp(queue_t *, mblk_t *, ill_t *, ipha_t *, uint_t, 741 boolean_t, boolean_t, zoneid_t); 742 static void ip_fanout_udp(queue_t *, mblk_t *, ill_t *, ipha_t *, uint32_t, 743 boolean_t, uint_t, boolean_t, boolean_t, ill_t *, zoneid_t); 744 static void ip_lrput(queue_t *, mblk_t *); 745 ipaddr_t ip_net_mask(ipaddr_t); 746 void ip_newroute(queue_t *, mblk_t *, ipaddr_t, conn_t *, zoneid_t, 747 ip_stack_t *); 748 static void ip_newroute_ipif(queue_t *, mblk_t *, ipif_t *, ipaddr_t, 749 conn_t *, uint32_t, zoneid_t, ip_opt_info_t *); 750 char *ip_nv_lookup(nv_t *, int); 751 static boolean_t ip_check_for_ipsec_opt(queue_t *, mblk_t *); 752 static int ip_param_get(queue_t *, mblk_t *, caddr_t, cred_t *); 753 static int ip_param_generic_get(queue_t *, mblk_t *, caddr_t, cred_t *); 754 static boolean_t ip_param_register(IDP *ndp, ipparam_t *, size_t, 755 ipndp_t *, size_t); 756 static int ip_param_set(queue_t *, mblk_t *, char *, caddr_t, cred_t *); 757 void ip_rput(queue_t *, mblk_t *); 758 static void ip_rput_dlpi_writer(ipsq_t *dummy_sq, queue_t *q, mblk_t *mp, 759 void *dummy_arg); 760 void ip_rput_forward(ire_t *, ipha_t *, mblk_t *, ill_t *); 761 static int ip_rput_forward_options(mblk_t *, ipha_t *, ire_t *, 762 ip_stack_t *); 763 static boolean_t ip_rput_local_options(queue_t *, mblk_t *, ipha_t *, 764 ire_t *, ip_stack_t *); 765 static boolean_t ip_rput_multimblk_ipoptions(queue_t *, ill_t *, 766 mblk_t *, ipha_t **, ipaddr_t *, ip_stack_t *); 767 static int ip_rput_options(queue_t *, mblk_t *, ipha_t *, ipaddr_t *, 768 ip_stack_t *); 769 static boolean_t ip_rput_fragment(ill_t *, ill_t *, mblk_t **, ipha_t *, 770 uint32_t *, uint16_t *); 771 int ip_snmp_get(queue_t *, mblk_t *, int); 772 static mblk_t *ip_snmp_get_mib2_ip(queue_t *, mblk_t *, 773 mib2_ipIfStatsEntry_t *, ip_stack_t *); 774 static mblk_t *ip_snmp_get_mib2_ip_traffic_stats(queue_t *, mblk_t *, 775 ip_stack_t *); 776 static mblk_t *ip_snmp_get_mib2_ip6(queue_t *, mblk_t *, ip_stack_t *); 777 static mblk_t *ip_snmp_get_mib2_icmp(queue_t *, mblk_t *, ip_stack_t *ipst); 778 static mblk_t *ip_snmp_get_mib2_icmp6(queue_t *, mblk_t *, ip_stack_t *ipst); 779 static mblk_t *ip_snmp_get_mib2_igmp(queue_t *, mblk_t *, ip_stack_t *ipst); 780 static mblk_t *ip_snmp_get_mib2_multi(queue_t *, mblk_t *, ip_stack_t *ipst); 781 static mblk_t *ip_snmp_get_mib2_ip_addr(queue_t *, mblk_t *, 782 ip_stack_t *ipst); 783 static mblk_t *ip_snmp_get_mib2_ip6_addr(queue_t *, mblk_t *, 784 ip_stack_t *ipst); 785 static mblk_t *ip_snmp_get_mib2_ip_group_src(queue_t *, mblk_t *, 786 ip_stack_t *ipst); 787 static mblk_t *ip_snmp_get_mib2_ip6_group_src(queue_t *, mblk_t *, 788 ip_stack_t *ipst); 789 static mblk_t *ip_snmp_get_mib2_ip_group_mem(queue_t *, mblk_t *, 790 ip_stack_t *ipst); 791 static mblk_t *ip_snmp_get_mib2_ip6_group_mem(queue_t *, mblk_t *, 792 ip_stack_t *ipst); 793 static mblk_t *ip_snmp_get_mib2_virt_multi(queue_t *, mblk_t *, 794 ip_stack_t *ipst); 795 static mblk_t *ip_snmp_get_mib2_multi_rtable(queue_t *, mblk_t *, 796 ip_stack_t *ipst); 797 static mblk_t *ip_snmp_get_mib2_ip_route_media(queue_t *, mblk_t *, int, 798 ip_stack_t *ipst); 799 static mblk_t *ip_snmp_get_mib2_ip6_route_media(queue_t *, mblk_t *, int, 800 ip_stack_t *ipst); 801 static void ip_snmp_get2_v4(ire_t *, iproutedata_t *); 802 static void ip_snmp_get2_v6_route(ire_t *, iproutedata_t *); 803 static int ip_snmp_get2_v6_media(nce_t *, iproutedata_t *); 804 int ip_snmp_set(queue_t *, int, int, uchar_t *, int); 805 static boolean_t ip_source_routed(ipha_t *, ip_stack_t *); 806 static boolean_t ip_source_route_included(ipha_t *); 807 static void ip_trash_ire_reclaim_stack(ip_stack_t *); 808 809 static void ip_wput_frag(ire_t *, mblk_t *, ip_pkt_t, uint32_t, uint32_t, 810 zoneid_t, ip_stack_t *, conn_t *); 811 static mblk_t *ip_wput_frag_copyhdr(uchar_t *, int, int, ip_stack_t *, 812 mblk_t *); 813 static void ip_wput_local_options(ipha_t *, ip_stack_t *); 814 static int ip_wput_options(queue_t *, mblk_t *, ipha_t *, boolean_t, 815 zoneid_t, ip_stack_t *); 816 817 static void conn_drain_init(ip_stack_t *); 818 static void conn_drain_fini(ip_stack_t *); 819 static void conn_drain_tail(conn_t *connp, boolean_t closing); 820 821 static void conn_walk_drain(ip_stack_t *, idl_tx_list_t *); 822 static void conn_setqfull(conn_t *); 823 static void conn_clrqfull(conn_t *); 824 825 static void *ip_stack_init(netstackid_t stackid, netstack_t *ns); 826 static void ip_stack_shutdown(netstackid_t stackid, void *arg); 827 static void ip_stack_fini(netstackid_t stackid, void *arg); 828 829 static boolean_t conn_wantpacket(conn_t *, ill_t *, ipha_t *, int, 830 zoneid_t); 831 static void ip_arp_done(ipsq_t *dummy_sq, queue_t *q, mblk_t *mp, 832 void *dummy_arg); 833 834 static int ip_forward_set(queue_t *, mblk_t *, char *, caddr_t, cred_t *); 835 836 static int ip_multirt_apply_membership(int (*fn)(conn_t *, boolean_t, 837 ipaddr_t, ipaddr_t, uint_t *, mcast_record_t, ipaddr_t, mblk_t *), ire_t *, 838 conn_t *, boolean_t, ipaddr_t, mcast_record_t, ipaddr_t, mblk_t *); 839 static void ip_multirt_bad_mtu(ire_t *, uint32_t); 840 841 static int ip_cgtp_filter_get(queue_t *, mblk_t *, caddr_t, cred_t *); 842 static int ip_cgtp_filter_set(queue_t *, mblk_t *, char *, 843 caddr_t, cred_t *); 844 extern int ip_helper_stream_setup(queue_t *, dev_t *, int, int, 845 cred_t *, boolean_t); 846 static int ip_input_proc_set(queue_t *q, mblk_t *mp, char *value, 847 caddr_t cp, cred_t *cr); 848 static int ip_int_set(queue_t *, mblk_t *, char *, caddr_t, 849 cred_t *); 850 static int ip_squeue_switch(int); 851 852 static void *ip_kstat_init(netstackid_t, ip_stack_t *); 853 static void ip_kstat_fini(netstackid_t, kstat_t *); 854 static int ip_kstat_update(kstat_t *kp, int rw); 855 static void *icmp_kstat_init(netstackid_t); 856 static void icmp_kstat_fini(netstackid_t, kstat_t *); 857 static int icmp_kstat_update(kstat_t *kp, int rw); 858 static void *ip_kstat2_init(netstackid_t, ip_stat_t *); 859 static void ip_kstat2_fini(netstackid_t, kstat_t *); 860 861 static mblk_t *ip_tcp_input(mblk_t *, ipha_t *, ill_t *, boolean_t, 862 ire_t *, mblk_t *, uint_t, queue_t *, ill_rx_ring_t *); 863 864 static void ip_rput_process_forward(queue_t *, mblk_t *, ire_t *, 865 ipha_t *, ill_t *, boolean_t, boolean_t); 866 867 static void ipobs_init(ip_stack_t *); 868 static void ipobs_fini(ip_stack_t *); 869 ipaddr_t ip_g_all_ones = IP_HOST_MASK; 870 871 /* How long, in seconds, we allow frags to hang around. */ 872 #define IP_FRAG_TIMEOUT 15 873 874 /* 875 * Threshold which determines whether MDT should be used when 876 * generating IP fragments; payload size must be greater than 877 * this threshold for MDT to take place. 878 */ 879 #define IP_WPUT_FRAG_MDT_MIN 32768 880 881 /* Setable in /etc/system only */ 882 int ip_wput_frag_mdt_min = IP_WPUT_FRAG_MDT_MIN; 883 884 static long ip_rput_pullups; 885 int dohwcksum = 1; /* use h/w cksum if supported by the hardware */ 886 887 vmem_t *ip_minor_arena_sa; /* for minor nos. from INET_MIN_DEV+2 thru 2^^18-1 */ 888 vmem_t *ip_minor_arena_la; /* for minor nos. from 2^^18 thru 2^^32-1 */ 889 890 int ip_debug; 891 892 #ifdef DEBUG 893 uint32_t ipsechw_debug = 0; 894 #endif 895 896 /* 897 * Multirouting/CGTP stuff 898 */ 899 int ip_cgtp_filter_rev = CGTP_FILTER_REV; /* CGTP hooks version */ 900 901 /* 902 * XXX following really should only be in a header. Would need more 903 * header and .c clean up first. 904 */ 905 extern optdb_obj_t ip_opt_obj; 906 907 ulong_t ip_squeue_enter_unbound = 0; 908 909 /* 910 * Named Dispatch Parameter Table. 911 * All of these are alterable, within the min/max values given, at run time. 912 */ 913 static ipparam_t lcl_param_arr[] = { 914 /* min max value name */ 915 { 0, 1, 0, "ip_respond_to_address_mask_broadcast"}, 916 { 0, 1, 1, "ip_respond_to_echo_broadcast"}, 917 { 0, 1, 1, "ip_respond_to_echo_multicast"}, 918 { 0, 1, 0, "ip_respond_to_timestamp"}, 919 { 0, 1, 0, "ip_respond_to_timestamp_broadcast"}, 920 { 0, 1, 1, "ip_send_redirects"}, 921 { 0, 1, 0, "ip_forward_directed_broadcasts"}, 922 { 0, 10, 0, "ip_mrtdebug"}, 923 { 5000, 999999999, 60000, "ip_ire_timer_interval" }, 924 { 60000, 999999999, 1200000, "ip_ire_arp_interval" }, 925 { 60000, 999999999, 60000, "ip_ire_redirect_interval" }, 926 { 1, 255, 255, "ip_def_ttl" }, 927 { 0, 1, 0, "ip_forward_src_routed"}, 928 { 0, 256, 32, "ip_wroff_extra" }, 929 { 5000, 999999999, 600000, "ip_ire_pathmtu_interval" }, 930 { 8, 65536, 64, "ip_icmp_return_data_bytes" }, 931 { 0, 1, 1, "ip_path_mtu_discovery" }, 932 { 0, 240, 30, "ip_ignore_delete_time" }, 933 { 0, 1, 0, "ip_ignore_redirect" }, 934 { 0, 1, 1, "ip_output_queue" }, 935 { 1, 254, 1, "ip_broadcast_ttl" }, 936 { 0, 99999, 100, "ip_icmp_err_interval" }, 937 { 1, 99999, 10, "ip_icmp_err_burst" }, 938 { 0, 999999999, 1000000, "ip_reass_queue_bytes" }, 939 { 0, 1, 0, "ip_strict_dst_multihoming" }, 940 { 1, MAX_ADDRS_PER_IF, 256, "ip_addrs_per_if"}, 941 { 0, 1, 0, "ipsec_override_persocket_policy" }, 942 { 0, 1, 1, "icmp_accept_clear_messages" }, 943 { 0, 1, 1, "igmp_accept_clear_messages" }, 944 { 2, 999999999, ND_DELAY_FIRST_PROBE_TIME, 945 "ip_ndp_delay_first_probe_time"}, 946 { 1, 999999999, ND_MAX_UNICAST_SOLICIT, 947 "ip_ndp_max_unicast_solicit"}, 948 { 1, 255, IPV6_MAX_HOPS, "ip6_def_hops" }, 949 { 8, IPV6_MIN_MTU, IPV6_MIN_MTU, "ip6_icmp_return_data_bytes" }, 950 { 0, 1, 0, "ip6_forward_src_routed"}, 951 { 0, 1, 1, "ip6_respond_to_echo_multicast"}, 952 { 0, 1, 1, "ip6_send_redirects"}, 953 { 0, 1, 0, "ip6_ignore_redirect" }, 954 { 0, 1, 0, "ip6_strict_dst_multihoming" }, 955 956 { 1, 8, 3, "ip_ire_reclaim_fraction" }, 957 958 { 0, 999999, 1000, "ipsec_policy_log_interval" }, 959 960 { 0, 1, 1, "pim_accept_clear_messages" }, 961 { 1000, 20000, 2000, "ip_ndp_unsolicit_interval" }, 962 { 1, 20, 3, "ip_ndp_unsolicit_count" }, 963 { 0, 1, 1, "ip6_ignore_home_address_opt" }, 964 { 0, 15, 0, "ip_policy_mask" }, 965 { 1000, 60000, 1000, "ip_multirt_resolution_interval" }, 966 { 0, 255, 1, "ip_multirt_ttl" }, 967 { 0, 1, 1, "ip_multidata_outbound" }, 968 { 0, 3600000, 300000, "ip_ndp_defense_interval" }, 969 { 0, 999999, 60*60*24, "ip_max_temp_idle" }, 970 { 0, 1000, 1, "ip_max_temp_defend" }, 971 { 0, 1000, 3, "ip_max_defend" }, 972 { 0, 999999, 30, "ip_defend_interval" }, 973 { 0, 3600000, 300000, "ip_dup_recovery" }, 974 { 0, 1, 1, "ip_restrict_interzone_loopback" }, 975 { 0, 1, 1, "ip_lso_outbound" }, 976 { IGMP_V1_ROUTER, IGMP_V3_ROUTER, IGMP_V3_ROUTER, "igmp_max_version" }, 977 { MLD_V1_ROUTER, MLD_V2_ROUTER, MLD_V2_ROUTER, "mld_max_version" }, 978 { 68, 65535, 576, "ip_pmtu_min" }, 979 #ifdef DEBUG 980 { 0, 1, 0, "ip6_drop_inbound_icmpv6" }, 981 #else 982 { 0, 0, 0, "" }, 983 #endif 984 }; 985 986 /* 987 * Extended NDP table 988 * The addresses for the first two are filled in to be ips_ip_g_forward 989 * and ips_ipv6_forward at init time. 990 */ 991 static ipndp_t lcl_ndp_arr[] = { 992 /* getf setf data name */ 993 #define IPNDP_IP_FORWARDING_OFFSET 0 994 { ip_param_generic_get, ip_forward_set, NULL, 995 "ip_forwarding" }, 996 #define IPNDP_IP6_FORWARDING_OFFSET 1 997 { ip_param_generic_get, ip_forward_set, NULL, 998 "ip6_forwarding" }, 999 { ip_param_generic_get, ip_input_proc_set, 1000 (caddr_t)&ip_squeue_enter, "ip_squeue_enter" }, 1001 { ip_param_generic_get, ip_int_set, 1002 (caddr_t)&ip_squeue_fanout, "ip_squeue_fanout" }, 1003 #define IPNDP_CGTP_FILTER_OFFSET 4 1004 { ip_cgtp_filter_get, ip_cgtp_filter_set, NULL, 1005 "ip_cgtp_filter" }, 1006 { ip_param_generic_get, ip_int_set, (caddr_t)&ip_debug, 1007 "ip_debug" }, 1008 }; 1009 1010 /* 1011 * Table of IP ioctls encoding the various properties of the ioctl and 1012 * indexed based on the last byte of the ioctl command. Occasionally there 1013 * is a clash, and there is more than 1 ioctl with the same last byte. 1014 * In such a case 1 ioctl is encoded in the ndx table and the remaining 1015 * ioctls are encoded in the misc table. An entry in the ndx table is 1016 * retrieved by indexing on the last byte of the ioctl command and comparing 1017 * the ioctl command with the value in the ndx table. In the event of a 1018 * mismatch the misc table is then searched sequentially for the desired 1019 * ioctl command. 1020 * 1021 * Entry: <command> <copyin_size> <flags> <cmd_type> <function> <restart_func> 1022 */ 1023 ip_ioctl_cmd_t ip_ndx_ioctl_table[] = { 1024 /* 000 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1025 /* 001 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1026 /* 002 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1027 /* 003 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1028 /* 004 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1029 /* 005 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1030 /* 006 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1031 /* 007 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1032 /* 008 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1033 /* 009 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1034 1035 /* 010 */ { SIOCADDRT, sizeof (struct rtentry), IPI_PRIV, 1036 MISC_CMD, ip_siocaddrt, NULL }, 1037 /* 011 */ { SIOCDELRT, sizeof (struct rtentry), IPI_PRIV, 1038 MISC_CMD, ip_siocdelrt, NULL }, 1039 1040 /* 012 */ { SIOCSIFADDR, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 1041 IF_CMD, ip_sioctl_addr, ip_sioctl_addr_restart }, 1042 /* 013 */ { SIOCGIFADDR, sizeof (struct ifreq), IPI_GET_CMD, 1043 IF_CMD, ip_sioctl_get_addr, NULL }, 1044 1045 /* 014 */ { SIOCSIFDSTADDR, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 1046 IF_CMD, ip_sioctl_dstaddr, ip_sioctl_dstaddr_restart }, 1047 /* 015 */ { SIOCGIFDSTADDR, sizeof (struct ifreq), 1048 IPI_GET_CMD, IF_CMD, ip_sioctl_get_dstaddr, NULL }, 1049 1050 /* 016 */ { SIOCSIFFLAGS, sizeof (struct ifreq), 1051 IPI_PRIV | IPI_WR, 1052 IF_CMD, ip_sioctl_flags, ip_sioctl_flags_restart }, 1053 /* 017 */ { SIOCGIFFLAGS, sizeof (struct ifreq), 1054 IPI_MODOK | IPI_GET_CMD, 1055 IF_CMD, ip_sioctl_get_flags, NULL }, 1056 1057 /* 018 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1058 /* 019 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1059 1060 /* copyin size cannot be coded for SIOCGIFCONF */ 1061 /* 020 */ { O_SIOCGIFCONF, 0, IPI_GET_CMD, 1062 MISC_CMD, ip_sioctl_get_ifconf, NULL }, 1063 1064 /* 021 */ { SIOCSIFMTU, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 1065 IF_CMD, ip_sioctl_mtu, NULL }, 1066 /* 022 */ { SIOCGIFMTU, sizeof (struct ifreq), IPI_GET_CMD, 1067 IF_CMD, ip_sioctl_get_mtu, NULL }, 1068 /* 023 */ { SIOCGIFBRDADDR, sizeof (struct ifreq), 1069 IPI_GET_CMD, IF_CMD, ip_sioctl_get_brdaddr, NULL }, 1070 /* 024 */ { SIOCSIFBRDADDR, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 1071 IF_CMD, ip_sioctl_brdaddr, NULL }, 1072 /* 025 */ { SIOCGIFNETMASK, sizeof (struct ifreq), 1073 IPI_GET_CMD, IF_CMD, ip_sioctl_get_netmask, NULL }, 1074 /* 026 */ { SIOCSIFNETMASK, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 1075 IF_CMD, ip_sioctl_netmask, ip_sioctl_netmask_restart }, 1076 /* 027 */ { SIOCGIFMETRIC, sizeof (struct ifreq), 1077 IPI_GET_CMD, IF_CMD, ip_sioctl_get_metric, NULL }, 1078 /* 028 */ { SIOCSIFMETRIC, sizeof (struct ifreq), IPI_PRIV, 1079 IF_CMD, ip_sioctl_metric, NULL }, 1080 /* 029 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1081 1082 /* See 166-168 below for extended SIOC*XARP ioctls */ 1083 /* 030 */ { SIOCSARP, sizeof (struct arpreq), IPI_PRIV | IPI_WR, 1084 ARP_CMD, ip_sioctl_arp, NULL }, 1085 /* 031 */ { SIOCGARP, sizeof (struct arpreq), IPI_GET_CMD, 1086 ARP_CMD, ip_sioctl_arp, NULL }, 1087 /* 032 */ { SIOCDARP, sizeof (struct arpreq), IPI_PRIV | IPI_WR, 1088 ARP_CMD, ip_sioctl_arp, NULL }, 1089 1090 /* 033 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1091 /* 034 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1092 /* 035 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1093 /* 036 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1094 /* 037 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1095 /* 038 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1096 /* 039 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1097 /* 040 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1098 /* 041 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1099 /* 042 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1100 /* 043 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1101 /* 044 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1102 /* 045 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1103 /* 046 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1104 /* 047 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1105 /* 048 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1106 /* 049 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1107 /* 050 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1108 /* 051 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1109 /* 052 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1110 /* 053 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1111 1112 /* 054 */ { IF_UNITSEL, sizeof (int), IPI_PRIV | IPI_WR | IPI_MODOK, 1113 MISC_CMD, if_unitsel, if_unitsel_restart }, 1114 1115 /* 055 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1116 /* 056 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1117 /* 057 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1118 /* 058 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1119 /* 059 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1120 /* 060 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1121 /* 061 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1122 /* 062 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1123 /* 063 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1124 /* 064 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1125 /* 065 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1126 /* 066 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1127 /* 067 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1128 /* 068 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1129 /* 069 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1130 /* 070 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1131 /* 071 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1132 /* 072 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1133 1134 /* 073 */ { SIOCSIFNAME, sizeof (struct ifreq), 1135 IPI_PRIV | IPI_WR | IPI_MODOK, 1136 IF_CMD, ip_sioctl_sifname, NULL }, 1137 1138 /* 074 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1139 /* 075 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1140 /* 076 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1141 /* 077 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1142 /* 078 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1143 /* 079 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1144 /* 080 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1145 /* 081 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1146 /* 082 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1147 /* 083 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1148 /* 084 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1149 /* 085 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1150 /* 086 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1151 1152 /* 087 */ { SIOCGIFNUM, sizeof (int), IPI_GET_CMD, 1153 MISC_CMD, ip_sioctl_get_ifnum, NULL }, 1154 /* 088 */ { SIOCGIFMUXID, sizeof (struct ifreq), IPI_GET_CMD, 1155 IF_CMD, ip_sioctl_get_muxid, NULL }, 1156 /* 089 */ { SIOCSIFMUXID, sizeof (struct ifreq), 1157 IPI_PRIV | IPI_WR, IF_CMD, ip_sioctl_muxid, NULL }, 1158 1159 /* Both if and lif variants share same func */ 1160 /* 090 */ { SIOCGIFINDEX, sizeof (struct ifreq), IPI_GET_CMD, 1161 IF_CMD, ip_sioctl_get_lifindex, NULL }, 1162 /* Both if and lif variants share same func */ 1163 /* 091 */ { SIOCSIFINDEX, sizeof (struct ifreq), 1164 IPI_PRIV | IPI_WR, IF_CMD, ip_sioctl_slifindex, NULL }, 1165 1166 /* copyin size cannot be coded for SIOCGIFCONF */ 1167 /* 092 */ { SIOCGIFCONF, 0, IPI_GET_CMD, 1168 MISC_CMD, ip_sioctl_get_ifconf, NULL }, 1169 /* 093 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1170 /* 094 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1171 /* 095 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1172 /* 096 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1173 /* 097 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1174 /* 098 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1175 /* 099 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1176 /* 100 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1177 /* 101 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1178 /* 102 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1179 /* 103 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1180 /* 104 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1181 /* 105 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1182 /* 106 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1183 /* 107 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1184 /* 108 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1185 /* 109 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1186 1187 /* 110 */ { SIOCLIFREMOVEIF, sizeof (struct lifreq), 1188 IPI_PRIV | IPI_WR, LIF_CMD, ip_sioctl_removeif, 1189 ip_sioctl_removeif_restart }, 1190 /* 111 */ { SIOCLIFADDIF, sizeof (struct lifreq), 1191 IPI_GET_CMD | IPI_PRIV | IPI_WR, 1192 LIF_CMD, ip_sioctl_addif, NULL }, 1193 #define SIOCLIFADDR_NDX 112 1194 /* 112 */ { SIOCSLIFADDR, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1195 LIF_CMD, ip_sioctl_addr, ip_sioctl_addr_restart }, 1196 /* 113 */ { SIOCGLIFADDR, sizeof (struct lifreq), 1197 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_addr, NULL }, 1198 /* 114 */ { SIOCSLIFDSTADDR, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1199 LIF_CMD, ip_sioctl_dstaddr, ip_sioctl_dstaddr_restart }, 1200 /* 115 */ { SIOCGLIFDSTADDR, sizeof (struct lifreq), 1201 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_dstaddr, NULL }, 1202 /* 116 */ { SIOCSLIFFLAGS, sizeof (struct lifreq), 1203 IPI_PRIV | IPI_WR, 1204 LIF_CMD, ip_sioctl_flags, ip_sioctl_flags_restart }, 1205 /* 117 */ { SIOCGLIFFLAGS, sizeof (struct lifreq), 1206 IPI_GET_CMD | IPI_MODOK, 1207 LIF_CMD, ip_sioctl_get_flags, NULL }, 1208 1209 /* 118 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1210 /* 119 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1211 1212 /* 120 */ { O_SIOCGLIFCONF, 0, IPI_GET_CMD, MISC_CMD, 1213 ip_sioctl_get_lifconf, NULL }, 1214 /* 121 */ { SIOCSLIFMTU, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1215 LIF_CMD, ip_sioctl_mtu, NULL }, 1216 /* 122 */ { SIOCGLIFMTU, sizeof (struct lifreq), IPI_GET_CMD, 1217 LIF_CMD, ip_sioctl_get_mtu, NULL }, 1218 /* 123 */ { SIOCGLIFBRDADDR, sizeof (struct lifreq), 1219 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_brdaddr, NULL }, 1220 /* 124 */ { SIOCSLIFBRDADDR, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1221 LIF_CMD, ip_sioctl_brdaddr, NULL }, 1222 /* 125 */ { SIOCGLIFNETMASK, sizeof (struct lifreq), 1223 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_netmask, NULL }, 1224 /* 126 */ { SIOCSLIFNETMASK, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1225 LIF_CMD, ip_sioctl_netmask, ip_sioctl_netmask_restart }, 1226 /* 127 */ { SIOCGLIFMETRIC, sizeof (struct lifreq), 1227 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_metric, NULL }, 1228 /* 128 */ { SIOCSLIFMETRIC, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1229 LIF_CMD, ip_sioctl_metric, NULL }, 1230 /* 129 */ { SIOCSLIFNAME, sizeof (struct lifreq), 1231 IPI_PRIV | IPI_WR | IPI_MODOK, 1232 LIF_CMD, ip_sioctl_slifname, 1233 ip_sioctl_slifname_restart }, 1234 1235 /* 130 */ { SIOCGLIFNUM, sizeof (struct lifnum), IPI_GET_CMD, 1236 MISC_CMD, ip_sioctl_get_lifnum, NULL }, 1237 /* 131 */ { SIOCGLIFMUXID, sizeof (struct lifreq), 1238 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_muxid, NULL }, 1239 /* 132 */ { SIOCSLIFMUXID, sizeof (struct lifreq), 1240 IPI_PRIV | IPI_WR, LIF_CMD, ip_sioctl_muxid, NULL }, 1241 /* 133 */ { SIOCGLIFINDEX, sizeof (struct lifreq), 1242 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_lifindex, 0 }, 1243 /* 134 */ { SIOCSLIFINDEX, sizeof (struct lifreq), 1244 IPI_PRIV | IPI_WR, LIF_CMD, ip_sioctl_slifindex, 0 }, 1245 /* 135 */ { SIOCSLIFTOKEN, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1246 LIF_CMD, ip_sioctl_token, NULL }, 1247 /* 136 */ { SIOCGLIFTOKEN, sizeof (struct lifreq), 1248 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_token, NULL }, 1249 /* 137 */ { SIOCSLIFSUBNET, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1250 LIF_CMD, ip_sioctl_subnet, ip_sioctl_subnet_restart }, 1251 /* 138 */ { SIOCGLIFSUBNET, sizeof (struct lifreq), 1252 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_subnet, NULL }, 1253 /* 139 */ { SIOCSLIFLNKINFO, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1254 LIF_CMD, ip_sioctl_lnkinfo, NULL }, 1255 1256 /* 140 */ { SIOCGLIFLNKINFO, sizeof (struct lifreq), 1257 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_lnkinfo, NULL }, 1258 /* 141 */ { SIOCLIFDELND, sizeof (struct lifreq), IPI_PRIV, 1259 LIF_CMD, ip_siocdelndp_v6, NULL }, 1260 /* 142 */ { SIOCLIFGETND, sizeof (struct lifreq), IPI_GET_CMD, 1261 LIF_CMD, ip_siocqueryndp_v6, NULL }, 1262 /* 143 */ { SIOCLIFSETND, sizeof (struct lifreq), IPI_PRIV, 1263 LIF_CMD, ip_siocsetndp_v6, NULL }, 1264 /* 144 */ { SIOCTMYADDR, sizeof (struct sioc_addrreq), IPI_GET_CMD, 1265 MISC_CMD, ip_sioctl_tmyaddr, NULL }, 1266 /* 145 */ { SIOCTONLINK, sizeof (struct sioc_addrreq), IPI_GET_CMD, 1267 MISC_CMD, ip_sioctl_tonlink, NULL }, 1268 /* 146 */ { SIOCTMYSITE, sizeof (struct sioc_addrreq), 0, 1269 MISC_CMD, ip_sioctl_tmysite, NULL }, 1270 /* 147 */ { SIOCGTUNPARAM, sizeof (struct iftun_req), 0, 1271 TUN_CMD, ip_sioctl_tunparam, NULL }, 1272 /* 148 */ { SIOCSTUNPARAM, sizeof (struct iftun_req), 1273 IPI_PRIV | IPI_WR, 1274 TUN_CMD, ip_sioctl_tunparam, NULL }, 1275 1276 /* IPSECioctls handled in ip_sioctl_copyin_setup itself */ 1277 /* 149 */ { SIOCFIPSECONFIG, 0, IPI_PRIV, MISC_CMD, NULL, NULL }, 1278 /* 150 */ { SIOCSIPSECONFIG, 0, IPI_PRIV, MISC_CMD, NULL, NULL }, 1279 /* 151 */ { SIOCDIPSECONFIG, 0, IPI_PRIV, MISC_CMD, NULL, NULL }, 1280 /* 152 */ { SIOCLIPSECONFIG, 0, IPI_PRIV, MISC_CMD, NULL, NULL }, 1281 1282 /* 153 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1283 1284 /* 154 */ { SIOCGLIFBINDING, sizeof (struct lifreq), IPI_GET_CMD, 1285 LIF_CMD, ip_sioctl_get_binding, NULL }, 1286 /* 155 */ { SIOCSLIFGROUPNAME, sizeof (struct lifreq), 1287 IPI_PRIV | IPI_WR, 1288 LIF_CMD, ip_sioctl_groupname, ip_sioctl_groupname }, 1289 /* 156 */ { SIOCGLIFGROUPNAME, sizeof (struct lifreq), 1290 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_groupname, NULL }, 1291 /* 157 */ { SIOCGLIFGROUPINFO, sizeof (lifgroupinfo_t), 1292 IPI_GET_CMD, MISC_CMD, ip_sioctl_groupinfo, NULL }, 1293 1294 /* Leave 158-160 unused; used to be SIOC*IFARP ioctls */ 1295 /* 158 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1296 /* 159 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1297 /* 160 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1298 1299 /* 161 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1300 1301 /* These are handled in ip_sioctl_copyin_setup itself */ 1302 /* 162 */ { SIOCGIP6ADDRPOLICY, 0, IPI_NULL_BCONT, 1303 MISC_CMD, NULL, NULL }, 1304 /* 163 */ { SIOCSIP6ADDRPOLICY, 0, IPI_PRIV | IPI_NULL_BCONT, 1305 MISC_CMD, NULL, NULL }, 1306 /* 164 */ { SIOCGDSTINFO, 0, IPI_GET_CMD, MISC_CMD, NULL, NULL }, 1307 1308 /* 165 */ { SIOCGLIFCONF, 0, IPI_GET_CMD, MISC_CMD, 1309 ip_sioctl_get_lifconf, NULL }, 1310 1311 /* 166 */ { SIOCSXARP, sizeof (struct xarpreq), IPI_PRIV | IPI_WR, 1312 XARP_CMD, ip_sioctl_arp, NULL }, 1313 /* 167 */ { SIOCGXARP, sizeof (struct xarpreq), IPI_GET_CMD, 1314 XARP_CMD, ip_sioctl_arp, NULL }, 1315 /* 168 */ { SIOCDXARP, sizeof (struct xarpreq), IPI_PRIV | IPI_WR, 1316 XARP_CMD, ip_sioctl_arp, NULL }, 1317 1318 /* SIOCPOPSOCKFS is not handled by IP */ 1319 /* 169 */ { IPI_DONTCARE /* SIOCPOPSOCKFS */, 0, 0, 0, NULL, NULL }, 1320 1321 /* 170 */ { SIOCGLIFZONE, sizeof (struct lifreq), 1322 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_lifzone, NULL }, 1323 /* 171 */ { SIOCSLIFZONE, sizeof (struct lifreq), 1324 IPI_PRIV | IPI_WR, LIF_CMD, ip_sioctl_slifzone, 1325 ip_sioctl_slifzone_restart }, 1326 /* 172-174 are SCTP ioctls and not handled by IP */ 1327 /* 172 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1328 /* 173 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1329 /* 174 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1330 /* 175 */ { SIOCGLIFUSESRC, sizeof (struct lifreq), 1331 IPI_GET_CMD, LIF_CMD, 1332 ip_sioctl_get_lifusesrc, 0 }, 1333 /* 176 */ { SIOCSLIFUSESRC, sizeof (struct lifreq), 1334 IPI_PRIV | IPI_WR, 1335 LIF_CMD, ip_sioctl_slifusesrc, 1336 NULL }, 1337 /* 177 */ { SIOCGLIFSRCOF, 0, IPI_GET_CMD, MISC_CMD, 1338 ip_sioctl_get_lifsrcof, NULL }, 1339 /* 178 */ { SIOCGMSFILTER, sizeof (struct group_filter), IPI_GET_CMD, 1340 MSFILT_CMD, ip_sioctl_msfilter, NULL }, 1341 /* 179 */ { SIOCSMSFILTER, sizeof (struct group_filter), IPI_WR, 1342 MSFILT_CMD, ip_sioctl_msfilter, NULL }, 1343 /* 180 */ { SIOCGIPMSFILTER, sizeof (struct ip_msfilter), IPI_GET_CMD, 1344 MSFILT_CMD, ip_sioctl_msfilter, NULL }, 1345 /* 181 */ { SIOCSIPMSFILTER, sizeof (struct ip_msfilter), IPI_WR, 1346 MSFILT_CMD, ip_sioctl_msfilter, NULL }, 1347 /* 182 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1348 /* SIOCSENABLESDP is handled by SDP */ 1349 /* 183 */ { IPI_DONTCARE /* SIOCSENABLESDP */, 0, 0, 0, NULL, NULL }, 1350 /* 184 */ { IPI_DONTCARE /* SIOCSQPTR */, 0, 0, 0, NULL, NULL }, 1351 }; 1352 1353 int ip_ndx_ioctl_count = sizeof (ip_ndx_ioctl_table) / sizeof (ip_ioctl_cmd_t); 1354 1355 ip_ioctl_cmd_t ip_misc_ioctl_table[] = { 1356 { OSIOCGTUNPARAM, sizeof (struct old_iftun_req), 1357 IPI_GET_CMD, TUN_CMD, ip_sioctl_tunparam, NULL }, 1358 { OSIOCSTUNPARAM, sizeof (struct old_iftun_req), IPI_PRIV | IPI_WR, 1359 TUN_CMD, ip_sioctl_tunparam, NULL }, 1360 { I_LINK, 0, IPI_PRIV | IPI_WR | IPI_PASS_DOWN, 0, NULL, NULL }, 1361 { I_UNLINK, 0, IPI_PRIV | IPI_WR | IPI_PASS_DOWN, 0, NULL, NULL }, 1362 { I_PLINK, 0, IPI_PRIV | IPI_WR | IPI_PASS_DOWN, 0, NULL, NULL }, 1363 { I_PUNLINK, 0, IPI_PRIV | IPI_WR | IPI_PASS_DOWN, 0, NULL, NULL }, 1364 { ND_GET, 0, IPI_PASS_DOWN, 0, NULL, NULL }, 1365 { ND_SET, 0, IPI_PRIV | IPI_WR | IPI_PASS_DOWN, 0, NULL, NULL }, 1366 { IP_IOCTL, 0, 0, 0, NULL, NULL }, 1367 { SIOCGETVIFCNT, sizeof (struct sioc_vif_req), IPI_GET_CMD, 1368 MISC_CMD, mrt_ioctl}, 1369 { SIOCGETSGCNT, sizeof (struct sioc_sg_req), IPI_GET_CMD, 1370 MISC_CMD, mrt_ioctl}, 1371 { SIOCGETLSGCNT, sizeof (struct sioc_lsg_req), IPI_GET_CMD, 1372 MISC_CMD, mrt_ioctl} 1373 }; 1374 1375 int ip_misc_ioctl_count = 1376 sizeof (ip_misc_ioctl_table) / sizeof (ip_ioctl_cmd_t); 1377 1378 int conn_drain_nthreads; /* Number of drainers reqd. */ 1379 /* Settable in /etc/system */ 1380 /* Defined in ip_ire.c */ 1381 extern uint32_t ip_ire_max_bucket_cnt, ip6_ire_max_bucket_cnt; 1382 extern uint32_t ip_ire_min_bucket_cnt, ip6_ire_min_bucket_cnt; 1383 extern uint32_t ip_ire_mem_ratio, ip_ire_cpu_ratio; 1384 1385 static nv_t ire_nv_arr[] = { 1386 { IRE_BROADCAST, "BROADCAST" }, 1387 { IRE_LOCAL, "LOCAL" }, 1388 { IRE_LOOPBACK, "LOOPBACK" }, 1389 { IRE_CACHE, "CACHE" }, 1390 { IRE_DEFAULT, "DEFAULT" }, 1391 { IRE_PREFIX, "PREFIX" }, 1392 { IRE_IF_NORESOLVER, "IF_NORESOL" }, 1393 { IRE_IF_RESOLVER, "IF_RESOLV" }, 1394 { IRE_HOST, "HOST" }, 1395 { 0 } 1396 }; 1397 1398 nv_t *ire_nv_tbl = ire_nv_arr; 1399 1400 /* Simple ICMP IP Header Template */ 1401 static ipha_t icmp_ipha = { 1402 IP_SIMPLE_HDR_VERSION, 0, 0, 0, 0, 0, IPPROTO_ICMP 1403 }; 1404 1405 struct module_info ip_mod_info = { 1406 IP_MOD_ID, IP_MOD_NAME, IP_MOD_MINPSZ, IP_MOD_MAXPSZ, IP_MOD_HIWAT, 1407 IP_MOD_LOWAT 1408 }; 1409 1410 /* 1411 * Duplicate static symbols within a module confuses mdb; so we avoid the 1412 * problem by making the symbols here distinct from those in udp.c. 1413 */ 1414 1415 /* 1416 * Entry points for IP as a device and as a module. 1417 * FIXME: down the road we might want a separate module and driver qinit. 1418 * We have separate open functions for the /dev/ip and /dev/ip6 devices. 1419 */ 1420 static struct qinit iprinitv4 = { 1421 (pfi_t)ip_rput, NULL, ip_openv4, ip_close, NULL, 1422 &ip_mod_info 1423 }; 1424 1425 struct qinit iprinitv6 = { 1426 (pfi_t)ip_rput_v6, NULL, ip_openv6, ip_close, NULL, 1427 &ip_mod_info 1428 }; 1429 1430 static struct qinit ipwinitv4 = { 1431 (pfi_t)ip_wput, (pfi_t)ip_wsrv, NULL, NULL, NULL, 1432 &ip_mod_info 1433 }; 1434 1435 struct qinit ipwinitv6 = { 1436 (pfi_t)ip_wput_v6, (pfi_t)ip_wsrv, NULL, NULL, NULL, 1437 &ip_mod_info 1438 }; 1439 1440 static struct qinit iplrinit = { 1441 (pfi_t)ip_lrput, NULL, ip_openv4, ip_close, NULL, 1442 &ip_mod_info 1443 }; 1444 1445 static struct qinit iplwinit = { 1446 (pfi_t)ip_lwput, NULL, NULL, NULL, NULL, 1447 &ip_mod_info 1448 }; 1449 1450 /* For AF_INET aka /dev/ip */ 1451 struct streamtab ipinfov4 = { 1452 &iprinitv4, &ipwinitv4, &iplrinit, &iplwinit 1453 }; 1454 1455 /* For AF_INET6 aka /dev/ip6 */ 1456 struct streamtab ipinfov6 = { 1457 &iprinitv6, &ipwinitv6, &iplrinit, &iplwinit 1458 }; 1459 1460 #ifdef DEBUG 1461 static boolean_t skip_sctp_cksum = B_FALSE; 1462 #endif 1463 1464 /* 1465 * Prepend the zoneid using an ipsec_out_t for later use by functions like 1466 * ip_rput_v6(), ip_output(), etc. If the message 1467 * block already has a M_CTL at the front of it, then simply set the zoneid 1468 * appropriately. 1469 */ 1470 mblk_t * 1471 ip_prepend_zoneid(mblk_t *mp, zoneid_t zoneid, ip_stack_t *ipst) 1472 { 1473 mblk_t *first_mp; 1474 ipsec_out_t *io; 1475 1476 ASSERT(zoneid != ALL_ZONES); 1477 if (mp->b_datap->db_type == M_CTL) { 1478 io = (ipsec_out_t *)mp->b_rptr; 1479 ASSERT(io->ipsec_out_type == IPSEC_OUT); 1480 io->ipsec_out_zoneid = zoneid; 1481 return (mp); 1482 } 1483 1484 first_mp = ipsec_alloc_ipsec_out(ipst->ips_netstack); 1485 if (first_mp == NULL) 1486 return (NULL); 1487 io = (ipsec_out_t *)first_mp->b_rptr; 1488 /* This is not a secure packet */ 1489 io->ipsec_out_secure = B_FALSE; 1490 io->ipsec_out_zoneid = zoneid; 1491 first_mp->b_cont = mp; 1492 return (first_mp); 1493 } 1494 1495 /* 1496 * Copy an M_CTL-tagged message, preserving reference counts appropriately. 1497 */ 1498 mblk_t * 1499 ip_copymsg(mblk_t *mp) 1500 { 1501 mblk_t *nmp; 1502 ipsec_info_t *in; 1503 1504 if (mp->b_datap->db_type != M_CTL) 1505 return (copymsg(mp)); 1506 1507 in = (ipsec_info_t *)mp->b_rptr; 1508 1509 /* 1510 * Note that M_CTL is also used for delivering ICMP error messages 1511 * upstream to transport layers. 1512 */ 1513 if (in->ipsec_info_type != IPSEC_OUT && 1514 in->ipsec_info_type != IPSEC_IN) 1515 return (copymsg(mp)); 1516 1517 nmp = copymsg(mp->b_cont); 1518 1519 if (in->ipsec_info_type == IPSEC_OUT) { 1520 return (ipsec_out_tag(mp, nmp, 1521 ((ipsec_out_t *)in)->ipsec_out_ns)); 1522 } else { 1523 return (ipsec_in_tag(mp, nmp, 1524 ((ipsec_in_t *)in)->ipsec_in_ns)); 1525 } 1526 } 1527 1528 /* Generate an ICMP fragmentation needed message. */ 1529 static void 1530 icmp_frag_needed(queue_t *q, mblk_t *mp, int mtu, zoneid_t zoneid, 1531 ip_stack_t *ipst) 1532 { 1533 icmph_t icmph; 1534 mblk_t *first_mp; 1535 boolean_t mctl_present; 1536 1537 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 1538 1539 if (!(mp = icmp_pkt_err_ok(mp, ipst))) { 1540 if (mctl_present) 1541 freeb(first_mp); 1542 return; 1543 } 1544 1545 bzero(&icmph, sizeof (icmph_t)); 1546 icmph.icmph_type = ICMP_DEST_UNREACHABLE; 1547 icmph.icmph_code = ICMP_FRAGMENTATION_NEEDED; 1548 icmph.icmph_du_mtu = htons((uint16_t)mtu); 1549 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutFragNeeded); 1550 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDestUnreachs); 1551 icmp_pkt(q, first_mp, &icmph, sizeof (icmph_t), mctl_present, zoneid, 1552 ipst); 1553 } 1554 1555 /* 1556 * icmp_inbound deals with ICMP messages in the following ways. 1557 * 1558 * 1) It needs to send a reply back and possibly delivering it 1559 * to the "interested" upper clients. 1560 * 2) It needs to send it to the upper clients only. 1561 * 3) It needs to change some values in IP only. 1562 * 4) It needs to change some values in IP and upper layers e.g TCP. 1563 * 1564 * We need to accomodate icmp messages coming in clear until we get 1565 * everything secure from the wire. If icmp_accept_clear_messages 1566 * is zero we check with the global policy and act accordingly. If 1567 * it is non-zero, we accept the message without any checks. But 1568 * *this does not mean* that this will be delivered to the upper 1569 * clients. By accepting we might send replies back, change our MTU 1570 * value etc. but delivery to the ULP/clients depends on their policy 1571 * dispositions. 1572 * 1573 * We handle the above 4 cases in the context of IPsec in the 1574 * following way : 1575 * 1576 * 1) Send the reply back in the same way as the request came in. 1577 * If it came in encrypted, it goes out encrypted. If it came in 1578 * clear, it goes out in clear. Thus, this will prevent chosen 1579 * plain text attack. 1580 * 2) The client may or may not expect things to come in secure. 1581 * If it comes in secure, the policy constraints are checked 1582 * before delivering it to the upper layers. If it comes in 1583 * clear, ipsec_inbound_accept_clear will decide whether to 1584 * accept this in clear or not. In both the cases, if the returned 1585 * message (IP header + 8 bytes) that caused the icmp message has 1586 * AH/ESP headers, it is sent up to AH/ESP for validation before 1587 * sending up. If there are only 8 bytes of returned message, then 1588 * upper client will not be notified. 1589 * 3) Check with global policy to see whether it matches the constaints. 1590 * But this will be done only if icmp_accept_messages_in_clear is 1591 * zero. 1592 * 4) If we need to change both in IP and ULP, then the decision taken 1593 * while affecting the values in IP and while delivering up to TCP 1594 * should be the same. 1595 * 1596 * There are two cases. 1597 * 1598 * a) If we reject data at the IP layer (ipsec_check_global_policy() 1599 * failed), we will not deliver it to the ULP, even though they 1600 * are *willing* to accept in *clear*. This is fine as our global 1601 * disposition to icmp messages asks us reject the datagram. 1602 * 1603 * b) If we accept data at the IP layer (ipsec_check_global_policy() 1604 * succeeded or icmp_accept_messages_in_clear is 1), and not able 1605 * to deliver it to ULP (policy failed), it can lead to 1606 * consistency problems. The cases known at this time are 1607 * ICMP_DESTINATION_UNREACHABLE messages with following code 1608 * values : 1609 * 1610 * - ICMP_FRAGMENTATION_NEEDED : IP adapts to the new value 1611 * and Upper layer rejects. Then the communication will 1612 * come to a stop. This is solved by making similar decisions 1613 * at both levels. Currently, when we are unable to deliver 1614 * to the Upper Layer (due to policy failures) while IP has 1615 * adjusted ire_max_frag, the next outbound datagram would 1616 * generate a local ICMP_FRAGMENTATION_NEEDED message - which 1617 * will be with the right level of protection. Thus the right 1618 * value will be communicated even if we are not able to 1619 * communicate when we get from the wire initially. But this 1620 * assumes there would be at least one outbound datagram after 1621 * IP has adjusted its ire_max_frag value. To make things 1622 * simpler, we accept in clear after the validation of 1623 * AH/ESP headers. 1624 * 1625 * - Other ICMP ERRORS : We may not be able to deliver it to the 1626 * upper layer depending on the level of protection the upper 1627 * layer expects and the disposition in ipsec_inbound_accept_clear(). 1628 * ipsec_inbound_accept_clear() decides whether a given ICMP error 1629 * should be accepted in clear when the Upper layer expects secure. 1630 * Thus the communication may get aborted by some bad ICMP 1631 * packets. 1632 * 1633 * IPQoS Notes: 1634 * The only instance when a packet is sent for processing is when there 1635 * isn't an ICMP client and if we are interested in it. 1636 * If there is a client, IPPF processing will take place in the 1637 * ip_fanout_proto routine. 1638 * 1639 * Zones notes: 1640 * The packet is only processed in the context of the specified zone: typically 1641 * only this zone will reply to an echo request, and only interested clients in 1642 * this zone will receive a copy of the packet. This means that the caller must 1643 * call icmp_inbound() for each relevant zone. 1644 */ 1645 static void 1646 icmp_inbound(queue_t *q, mblk_t *mp, boolean_t broadcast, ill_t *ill, 1647 int sum_valid, uint32_t sum, boolean_t mctl_present, boolean_t ip_policy, 1648 ill_t *recv_ill, zoneid_t zoneid) 1649 { 1650 icmph_t *icmph; 1651 ipha_t *ipha; 1652 int iph_hdr_length; 1653 int hdr_length; 1654 boolean_t interested; 1655 uint32_t ts; 1656 uchar_t *wptr; 1657 ipif_t *ipif; 1658 mblk_t *first_mp; 1659 ipsec_in_t *ii; 1660 timestruc_t now; 1661 uint32_t ill_index; 1662 ip_stack_t *ipst; 1663 1664 ASSERT(ill != NULL); 1665 ipst = ill->ill_ipst; 1666 1667 first_mp = mp; 1668 if (mctl_present) { 1669 mp = first_mp->b_cont; 1670 ASSERT(mp != NULL); 1671 } 1672 1673 ipha = (ipha_t *)mp->b_rptr; 1674 if (ipst->ips_icmp_accept_clear_messages == 0) { 1675 first_mp = ipsec_check_global_policy(first_mp, NULL, 1676 ipha, NULL, mctl_present, ipst->ips_netstack); 1677 if (first_mp == NULL) 1678 return; 1679 } 1680 1681 /* 1682 * On a labeled system, we have to check whether the zone itself is 1683 * permitted to receive raw traffic. 1684 */ 1685 if (is_system_labeled()) { 1686 if (zoneid == ALL_ZONES) 1687 zoneid = tsol_packet_to_zoneid(mp); 1688 if (!tsol_can_accept_raw(mp, B_FALSE)) { 1689 ip1dbg(("icmp_inbound: zone %d can't receive raw", 1690 zoneid)); 1691 BUMP_MIB(&ipst->ips_icmp_mib, icmpInErrors); 1692 freemsg(first_mp); 1693 return; 1694 } 1695 } 1696 1697 /* 1698 * We have accepted the ICMP message. It means that we will 1699 * respond to the packet if needed. It may not be delivered 1700 * to the upper client depending on the policy constraints 1701 * and the disposition in ipsec_inbound_accept_clear. 1702 */ 1703 1704 ASSERT(ill != NULL); 1705 1706 BUMP_MIB(&ipst->ips_icmp_mib, icmpInMsgs); 1707 iph_hdr_length = IPH_HDR_LENGTH(ipha); 1708 if ((mp->b_wptr - mp->b_rptr) < (iph_hdr_length + ICMPH_SIZE)) { 1709 /* Last chance to get real. */ 1710 if (!pullupmsg(mp, iph_hdr_length + ICMPH_SIZE)) { 1711 BUMP_MIB(&ipst->ips_icmp_mib, icmpInErrors); 1712 freemsg(first_mp); 1713 return; 1714 } 1715 /* Refresh iph following the pullup. */ 1716 ipha = (ipha_t *)mp->b_rptr; 1717 } 1718 /* ICMP header checksum, including checksum field, should be zero. */ 1719 if (sum_valid ? (sum != 0 && sum != 0xFFFF) : 1720 IP_CSUM(mp, iph_hdr_length, 0)) { 1721 BUMP_MIB(&ipst->ips_icmp_mib, icmpInCksumErrs); 1722 freemsg(first_mp); 1723 return; 1724 } 1725 /* The IP header will always be a multiple of four bytes */ 1726 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1727 ip2dbg(("icmp_inbound: type %d code %d\n", icmph->icmph_type, 1728 icmph->icmph_code)); 1729 wptr = (uchar_t *)icmph + ICMPH_SIZE; 1730 /* We will set "interested" to "true" if we want a copy */ 1731 interested = B_FALSE; 1732 switch (icmph->icmph_type) { 1733 case ICMP_ECHO_REPLY: 1734 BUMP_MIB(&ipst->ips_icmp_mib, icmpInEchoReps); 1735 break; 1736 case ICMP_DEST_UNREACHABLE: 1737 if (icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED) 1738 BUMP_MIB(&ipst->ips_icmp_mib, icmpInFragNeeded); 1739 interested = B_TRUE; /* Pass up to transport */ 1740 BUMP_MIB(&ipst->ips_icmp_mib, icmpInDestUnreachs); 1741 break; 1742 case ICMP_SOURCE_QUENCH: 1743 interested = B_TRUE; /* Pass up to transport */ 1744 BUMP_MIB(&ipst->ips_icmp_mib, icmpInSrcQuenchs); 1745 break; 1746 case ICMP_REDIRECT: 1747 if (!ipst->ips_ip_ignore_redirect) 1748 interested = B_TRUE; 1749 BUMP_MIB(&ipst->ips_icmp_mib, icmpInRedirects); 1750 break; 1751 case ICMP_ECHO_REQUEST: 1752 /* 1753 * Whether to respond to echo requests that come in as IP 1754 * broadcasts or as IP multicast is subject to debate 1755 * (what isn't?). We aim to please, you pick it. 1756 * Default is do it. 1757 */ 1758 if (!broadcast && !CLASSD(ipha->ipha_dst)) { 1759 /* unicast: always respond */ 1760 interested = B_TRUE; 1761 } else if (CLASSD(ipha->ipha_dst)) { 1762 /* multicast: respond based on tunable */ 1763 interested = ipst->ips_ip_g_resp_to_echo_mcast; 1764 } else if (broadcast) { 1765 /* broadcast: respond based on tunable */ 1766 interested = ipst->ips_ip_g_resp_to_echo_bcast; 1767 } 1768 BUMP_MIB(&ipst->ips_icmp_mib, icmpInEchos); 1769 break; 1770 case ICMP_ROUTER_ADVERTISEMENT: 1771 case ICMP_ROUTER_SOLICITATION: 1772 break; 1773 case ICMP_TIME_EXCEEDED: 1774 interested = B_TRUE; /* Pass up to transport */ 1775 BUMP_MIB(&ipst->ips_icmp_mib, icmpInTimeExcds); 1776 break; 1777 case ICMP_PARAM_PROBLEM: 1778 interested = B_TRUE; /* Pass up to transport */ 1779 BUMP_MIB(&ipst->ips_icmp_mib, icmpInParmProbs); 1780 break; 1781 case ICMP_TIME_STAMP_REQUEST: 1782 /* Response to Time Stamp Requests is local policy. */ 1783 if (ipst->ips_ip_g_resp_to_timestamp && 1784 /* So is whether to respond if it was an IP broadcast. */ 1785 (!broadcast || ipst->ips_ip_g_resp_to_timestamp_bcast)) { 1786 int tstamp_len = 3 * sizeof (uint32_t); 1787 1788 if (wptr + tstamp_len > mp->b_wptr) { 1789 if (!pullupmsg(mp, wptr + tstamp_len - 1790 mp->b_rptr)) { 1791 BUMP_MIB(ill->ill_ip_mib, 1792 ipIfStatsInDiscards); 1793 freemsg(first_mp); 1794 return; 1795 } 1796 /* Refresh ipha following the pullup. */ 1797 ipha = (ipha_t *)mp->b_rptr; 1798 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1799 wptr = (uchar_t *)icmph + ICMPH_SIZE; 1800 } 1801 interested = B_TRUE; 1802 } 1803 BUMP_MIB(&ipst->ips_icmp_mib, icmpInTimestamps); 1804 break; 1805 case ICMP_TIME_STAMP_REPLY: 1806 BUMP_MIB(&ipst->ips_icmp_mib, icmpInTimestampReps); 1807 break; 1808 case ICMP_INFO_REQUEST: 1809 /* Per RFC 1122 3.2.2.7, ignore this. */ 1810 case ICMP_INFO_REPLY: 1811 break; 1812 case ICMP_ADDRESS_MASK_REQUEST: 1813 if ((ipst->ips_ip_respond_to_address_mask_broadcast || 1814 !broadcast) && 1815 /* TODO m_pullup of complete header? */ 1816 (mp->b_datap->db_lim - wptr) >= IP_ADDR_LEN) { 1817 interested = B_TRUE; 1818 } 1819 BUMP_MIB(&ipst->ips_icmp_mib, icmpInAddrMasks); 1820 break; 1821 case ICMP_ADDRESS_MASK_REPLY: 1822 BUMP_MIB(&ipst->ips_icmp_mib, icmpInAddrMaskReps); 1823 break; 1824 default: 1825 interested = B_TRUE; /* Pass up to transport */ 1826 BUMP_MIB(&ipst->ips_icmp_mib, icmpInUnknowns); 1827 break; 1828 } 1829 /* See if there is an ICMP client. */ 1830 if (ipst->ips_ipcl_proto_fanout[IPPROTO_ICMP].connf_head != NULL) { 1831 /* If there is an ICMP client and we want one too, copy it. */ 1832 mblk_t *first_mp1; 1833 1834 if (!interested) { 1835 ip_fanout_proto(q, first_mp, ill, ipha, 0, mctl_present, 1836 ip_policy, recv_ill, zoneid); 1837 return; 1838 } 1839 first_mp1 = ip_copymsg(first_mp); 1840 if (first_mp1 != NULL) { 1841 ip_fanout_proto(q, first_mp1, ill, ipha, 1842 0, mctl_present, ip_policy, recv_ill, zoneid); 1843 } 1844 } else if (!interested) { 1845 freemsg(first_mp); 1846 return; 1847 } else { 1848 /* 1849 * Initiate policy processing for this packet if ip_policy 1850 * is true. 1851 */ 1852 if (IPP_ENABLED(IPP_LOCAL_IN, ipst) && ip_policy) { 1853 ill_index = ill->ill_phyint->phyint_ifindex; 1854 ip_process(IPP_LOCAL_IN, &mp, ill_index); 1855 if (mp == NULL) { 1856 if (mctl_present) { 1857 freeb(first_mp); 1858 } 1859 BUMP_MIB(&ipst->ips_icmp_mib, icmpInErrors); 1860 return; 1861 } 1862 } 1863 } 1864 /* We want to do something with it. */ 1865 /* Check db_ref to make sure we can modify the packet. */ 1866 if (mp->b_datap->db_ref > 1) { 1867 mblk_t *first_mp1; 1868 1869 first_mp1 = ip_copymsg(first_mp); 1870 freemsg(first_mp); 1871 if (!first_mp1) { 1872 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops); 1873 return; 1874 } 1875 first_mp = first_mp1; 1876 if (mctl_present) { 1877 mp = first_mp->b_cont; 1878 ASSERT(mp != NULL); 1879 } else { 1880 mp = first_mp; 1881 } 1882 ipha = (ipha_t *)mp->b_rptr; 1883 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1884 wptr = (uchar_t *)icmph + ICMPH_SIZE; 1885 } 1886 switch (icmph->icmph_type) { 1887 case ICMP_ADDRESS_MASK_REQUEST: 1888 ipif = ipif_lookup_remote(ill, ipha->ipha_src, zoneid); 1889 if (ipif == NULL) { 1890 freemsg(first_mp); 1891 return; 1892 } 1893 /* 1894 * outging interface must be IPv4 1895 */ 1896 ASSERT(ipif != NULL && !ipif->ipif_isv6); 1897 icmph->icmph_type = ICMP_ADDRESS_MASK_REPLY; 1898 bcopy(&ipif->ipif_net_mask, wptr, IP_ADDR_LEN); 1899 ipif_refrele(ipif); 1900 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutAddrMaskReps); 1901 break; 1902 case ICMP_ECHO_REQUEST: 1903 icmph->icmph_type = ICMP_ECHO_REPLY; 1904 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutEchoReps); 1905 break; 1906 case ICMP_TIME_STAMP_REQUEST: { 1907 uint32_t *tsp; 1908 1909 icmph->icmph_type = ICMP_TIME_STAMP_REPLY; 1910 tsp = (uint32_t *)wptr; 1911 tsp++; /* Skip past 'originate time' */ 1912 /* Compute # of milliseconds since midnight */ 1913 gethrestime(&now); 1914 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 + 1915 now.tv_nsec / (NANOSEC / MILLISEC); 1916 *tsp++ = htonl(ts); /* Lay in 'receive time' */ 1917 *tsp++ = htonl(ts); /* Lay in 'send time' */ 1918 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutTimestampReps); 1919 break; 1920 } 1921 default: 1922 ipha = (ipha_t *)&icmph[1]; 1923 if ((uchar_t *)&ipha[1] > mp->b_wptr) { 1924 if (!pullupmsg(mp, (uchar_t *)&ipha[1] - mp->b_rptr)) { 1925 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 1926 freemsg(first_mp); 1927 return; 1928 } 1929 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1930 ipha = (ipha_t *)&icmph[1]; 1931 } 1932 if ((IPH_HDR_VERSION(ipha) != IPV4_VERSION)) { 1933 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 1934 freemsg(first_mp); 1935 return; 1936 } 1937 hdr_length = IPH_HDR_LENGTH(ipha); 1938 if (hdr_length < sizeof (ipha_t)) { 1939 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 1940 freemsg(first_mp); 1941 return; 1942 } 1943 if ((uchar_t *)ipha + hdr_length > mp->b_wptr) { 1944 if (!pullupmsg(mp, 1945 (uchar_t *)ipha + hdr_length - mp->b_rptr)) { 1946 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 1947 freemsg(first_mp); 1948 return; 1949 } 1950 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1951 ipha = (ipha_t *)&icmph[1]; 1952 } 1953 switch (icmph->icmph_type) { 1954 case ICMP_REDIRECT: 1955 /* 1956 * As there is no upper client to deliver, we don't 1957 * need the first_mp any more. 1958 */ 1959 if (mctl_present) { 1960 freeb(first_mp); 1961 } 1962 icmp_redirect(ill, mp); 1963 return; 1964 case ICMP_DEST_UNREACHABLE: 1965 if (icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED) { 1966 if (!icmp_inbound_too_big(icmph, ipha, ill, 1967 zoneid, mp, iph_hdr_length, ipst)) { 1968 freemsg(first_mp); 1969 return; 1970 } 1971 /* 1972 * icmp_inbound_too_big() may alter mp. 1973 * Resynch ipha and icmph accordingly. 1974 */ 1975 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1976 ipha = (ipha_t *)&icmph[1]; 1977 } 1978 /* FALLTHRU */ 1979 default : 1980 /* 1981 * IPQoS notes: Since we have already done IPQoS 1982 * processing we don't want to do it again in 1983 * the fanout routines called by 1984 * icmp_inbound_error_fanout, hence the last 1985 * argument, ip_policy, is B_FALSE. 1986 */ 1987 icmp_inbound_error_fanout(q, ill, first_mp, icmph, 1988 ipha, iph_hdr_length, hdr_length, mctl_present, 1989 B_FALSE, recv_ill, zoneid); 1990 } 1991 return; 1992 } 1993 /* Send out an ICMP packet */ 1994 icmph->icmph_checksum = 0; 1995 icmph->icmph_checksum = IP_CSUM(mp, iph_hdr_length, 0); 1996 if (broadcast || CLASSD(ipha->ipha_dst)) { 1997 ipif_t *ipif_chosen; 1998 /* 1999 * Make it look like it was directed to us, so we don't look 2000 * like a fool with a broadcast or multicast source address. 2001 */ 2002 ipif = ipif_lookup_remote(ill, ipha->ipha_src, zoneid); 2003 /* 2004 * Make sure that we haven't grabbed an interface that's DOWN. 2005 */ 2006 if (ipif != NULL) { 2007 ipif_chosen = ipif_select_source(ipif->ipif_ill, 2008 ipha->ipha_src, zoneid); 2009 if (ipif_chosen != NULL) { 2010 ipif_refrele(ipif); 2011 ipif = ipif_chosen; 2012 } 2013 } 2014 if (ipif == NULL) { 2015 ip0dbg(("icmp_inbound: " 2016 "No source for broadcast/multicast:\n" 2017 "\tsrc 0x%x dst 0x%x ill %p " 2018 "ipif_lcl_addr 0x%x\n", 2019 ntohl(ipha->ipha_src), ntohl(ipha->ipha_dst), 2020 (void *)ill, 2021 ill->ill_ipif->ipif_lcl_addr)); 2022 freemsg(first_mp); 2023 return; 2024 } 2025 ASSERT(ipif != NULL && !ipif->ipif_isv6); 2026 ipha->ipha_dst = ipif->ipif_src_addr; 2027 ipif_refrele(ipif); 2028 } 2029 /* Reset time to live. */ 2030 ipha->ipha_ttl = ipst->ips_ip_def_ttl; 2031 { 2032 /* Swap source and destination addresses */ 2033 ipaddr_t tmp; 2034 2035 tmp = ipha->ipha_src; 2036 ipha->ipha_src = ipha->ipha_dst; 2037 ipha->ipha_dst = tmp; 2038 } 2039 ipha->ipha_ident = 0; 2040 if (!IS_SIMPLE_IPH(ipha)) 2041 icmp_options_update(ipha); 2042 2043 if (!mctl_present) { 2044 /* 2045 * This packet should go out the same way as it 2046 * came in i.e in clear. To make sure that global 2047 * policy will not be applied to this in ip_wput_ire, 2048 * we attach a IPSEC_IN mp and clear ipsec_in_secure. 2049 */ 2050 ASSERT(first_mp == mp); 2051 first_mp = ipsec_in_alloc(B_TRUE, ipst->ips_netstack); 2052 if (first_mp == NULL) { 2053 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 2054 freemsg(mp); 2055 return; 2056 } 2057 ii = (ipsec_in_t *)first_mp->b_rptr; 2058 2059 /* This is not a secure packet */ 2060 ii->ipsec_in_secure = B_FALSE; 2061 first_mp->b_cont = mp; 2062 } else { 2063 ii = (ipsec_in_t *)first_mp->b_rptr; 2064 ii->ipsec_in_ns = ipst->ips_netstack; /* No netstack_hold */ 2065 } 2066 ii->ipsec_in_zoneid = zoneid; 2067 ASSERT(zoneid != ALL_ZONES); 2068 if (!ipsec_in_to_out(first_mp, ipha, NULL)) { 2069 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 2070 return; 2071 } 2072 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutMsgs); 2073 put(WR(q), first_mp); 2074 } 2075 2076 static ipaddr_t 2077 icmp_get_nexthop_addr(ipha_t *ipha, ill_t *ill, zoneid_t zoneid, mblk_t *mp) 2078 { 2079 conn_t *connp; 2080 connf_t *connfp; 2081 ipaddr_t nexthop_addr = INADDR_ANY; 2082 int hdr_length = IPH_HDR_LENGTH(ipha); 2083 uint16_t *up; 2084 uint32_t ports; 2085 ip_stack_t *ipst = ill->ill_ipst; 2086 2087 up = (uint16_t *)((uchar_t *)ipha + hdr_length); 2088 switch (ipha->ipha_protocol) { 2089 case IPPROTO_TCP: 2090 { 2091 tcph_t *tcph; 2092 2093 /* do a reverse lookup */ 2094 tcph = (tcph_t *)((uchar_t *)ipha + hdr_length); 2095 connp = ipcl_tcp_lookup_reversed_ipv4(ipha, tcph, 2096 TCPS_LISTEN, ipst); 2097 break; 2098 } 2099 case IPPROTO_UDP: 2100 { 2101 uint32_t dstport, srcport; 2102 2103 ((uint16_t *)&ports)[0] = up[1]; 2104 ((uint16_t *)&ports)[1] = up[0]; 2105 2106 /* Extract ports in net byte order */ 2107 dstport = htons(ntohl(ports) & 0xFFFF); 2108 srcport = htons(ntohl(ports) >> 16); 2109 2110 connfp = &ipst->ips_ipcl_udp_fanout[ 2111 IPCL_UDP_HASH(dstport, ipst)]; 2112 mutex_enter(&connfp->connf_lock); 2113 connp = connfp->connf_head; 2114 2115 /* do a reverse lookup */ 2116 while ((connp != NULL) && 2117 (!IPCL_UDP_MATCH(connp, dstport, 2118 ipha->ipha_src, srcport, ipha->ipha_dst) || 2119 !IPCL_ZONE_MATCH(connp, zoneid))) { 2120 connp = connp->conn_next; 2121 } 2122 if (connp != NULL) 2123 CONN_INC_REF(connp); 2124 mutex_exit(&connfp->connf_lock); 2125 break; 2126 } 2127 case IPPROTO_SCTP: 2128 { 2129 in6_addr_t map_src, map_dst; 2130 2131 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &map_src); 2132 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &map_dst); 2133 ((uint16_t *)&ports)[0] = up[1]; 2134 ((uint16_t *)&ports)[1] = up[0]; 2135 2136 connp = sctp_find_conn(&map_src, &map_dst, ports, 2137 zoneid, ipst->ips_netstack->netstack_sctp); 2138 if (connp == NULL) { 2139 connp = ipcl_classify_raw(mp, IPPROTO_SCTP, 2140 zoneid, ports, ipha, ipst); 2141 } else { 2142 CONN_INC_REF(connp); 2143 SCTP_REFRELE(CONN2SCTP(connp)); 2144 } 2145 break; 2146 } 2147 default: 2148 { 2149 ipha_t ripha; 2150 2151 ripha.ipha_src = ipha->ipha_dst; 2152 ripha.ipha_dst = ipha->ipha_src; 2153 ripha.ipha_protocol = ipha->ipha_protocol; 2154 2155 connfp = &ipst->ips_ipcl_proto_fanout[ 2156 ipha->ipha_protocol]; 2157 mutex_enter(&connfp->connf_lock); 2158 connp = connfp->connf_head; 2159 for (connp = connfp->connf_head; connp != NULL; 2160 connp = connp->conn_next) { 2161 if (IPCL_PROTO_MATCH(connp, 2162 ipha->ipha_protocol, &ripha, ill, 2163 0, zoneid)) { 2164 CONN_INC_REF(connp); 2165 break; 2166 } 2167 } 2168 mutex_exit(&connfp->connf_lock); 2169 } 2170 } 2171 if (connp != NULL) { 2172 if (connp->conn_nexthop_set) 2173 nexthop_addr = connp->conn_nexthop_v4; 2174 CONN_DEC_REF(connp); 2175 } 2176 return (nexthop_addr); 2177 } 2178 2179 /* Table from RFC 1191 */ 2180 static int icmp_frag_size_table[] = 2181 { 32000, 17914, 8166, 4352, 2002, 1496, 1006, 508, 296, 68 }; 2182 2183 /* 2184 * Process received ICMP Packet too big. 2185 * After updating any IRE it does the fanout to any matching transport streams. 2186 * Assumes the message has been pulled up till the IP header that caused 2187 * the error. 2188 * 2189 * Returns B_FALSE on failure and B_TRUE on success. 2190 */ 2191 static boolean_t 2192 icmp_inbound_too_big(icmph_t *icmph, ipha_t *ipha, ill_t *ill, 2193 zoneid_t zoneid, mblk_t *mp, int iph_hdr_length, 2194 ip_stack_t *ipst) 2195 { 2196 ire_t *ire, *first_ire; 2197 int mtu, orig_mtu; 2198 int hdr_length; 2199 ipaddr_t nexthop_addr; 2200 boolean_t disable_pmtud; 2201 2202 ASSERT(icmph->icmph_type == ICMP_DEST_UNREACHABLE && 2203 icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED); 2204 ASSERT(ill != NULL); 2205 2206 hdr_length = IPH_HDR_LENGTH(ipha); 2207 2208 /* Drop if the original packet contained a source route */ 2209 if (ip_source_route_included(ipha)) { 2210 return (B_FALSE); 2211 } 2212 /* 2213 * Verify we have atleast ICMP_MIN_TP_HDR_LENGTH bytes of transport 2214 * header. 2215 */ 2216 if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN > 2217 mp->b_wptr) { 2218 if (!pullupmsg(mp, (uchar_t *)ipha + hdr_length + 2219 ICMP_MIN_TP_HDR_LEN - mp->b_rptr)) { 2220 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 2221 ip1dbg(("icmp_inbound_too_big: insufficient hdr\n")); 2222 return (B_FALSE); 2223 } 2224 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2225 ipha = (ipha_t *)&icmph[1]; 2226 } 2227 nexthop_addr = icmp_get_nexthop_addr(ipha, ill, zoneid, mp); 2228 if (nexthop_addr != INADDR_ANY) { 2229 /* nexthop set */ 2230 first_ire = ire_ctable_lookup(ipha->ipha_dst, 2231 nexthop_addr, 0, NULL, ALL_ZONES, msg_getlabel(mp), 2232 MATCH_IRE_MARK_PRIVATE_ADDR | MATCH_IRE_GW, ipst); 2233 } else { 2234 /* nexthop not set */ 2235 first_ire = ire_ctable_lookup(ipha->ipha_dst, 0, IRE_CACHE, 2236 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 2237 } 2238 2239 if (!first_ire) { 2240 ip1dbg(("icmp_inbound_too_big: no route for 0x%x\n", 2241 ntohl(ipha->ipha_dst))); 2242 return (B_FALSE); 2243 } 2244 2245 /* Check for MTU discovery advice as described in RFC 1191 */ 2246 mtu = ntohs(icmph->icmph_du_mtu); 2247 orig_mtu = mtu; 2248 disable_pmtud = B_FALSE; 2249 2250 rw_enter(&first_ire->ire_bucket->irb_lock, RW_READER); 2251 for (ire = first_ire; ire != NULL && ire->ire_addr == ipha->ipha_dst; 2252 ire = ire->ire_next) { 2253 /* 2254 * Look for the connection to which this ICMP message is 2255 * directed. If it has the IP_NEXTHOP option set, then the 2256 * search is limited to IREs with the MATCH_IRE_PRIVATE 2257 * option. Else the search is limited to regular IREs. 2258 */ 2259 if (((ire->ire_marks & IRE_MARK_PRIVATE_ADDR) && 2260 (nexthop_addr != ire->ire_gateway_addr)) || 2261 (!(ire->ire_marks & IRE_MARK_PRIVATE_ADDR) && 2262 (nexthop_addr != INADDR_ANY))) 2263 continue; 2264 2265 mutex_enter(&ire->ire_lock); 2266 if (icmph->icmph_du_zero != 0 || mtu < ipst->ips_ip_pmtu_min) { 2267 uint32_t length; 2268 int i; 2269 2270 /* 2271 * Use the table from RFC 1191 to figure out 2272 * the next "plateau" based on the length in 2273 * the original IP packet. 2274 */ 2275 length = ntohs(ipha->ipha_length); 2276 DTRACE_PROBE2(ip4__pmtu__guess, ire_t *, ire, 2277 uint32_t, length); 2278 if (ire->ire_max_frag <= length && 2279 ire->ire_max_frag >= length - hdr_length) { 2280 /* 2281 * Handle broken BSD 4.2 systems that 2282 * return the wrong iph_length in ICMP 2283 * errors. 2284 */ 2285 length -= hdr_length; 2286 } 2287 for (i = 0; i < A_CNT(icmp_frag_size_table); i++) { 2288 if (length > icmp_frag_size_table[i]) 2289 break; 2290 } 2291 if (i == A_CNT(icmp_frag_size_table)) { 2292 /* Smaller than 68! */ 2293 disable_pmtud = B_TRUE; 2294 mtu = ipst->ips_ip_pmtu_min; 2295 } else { 2296 mtu = icmp_frag_size_table[i]; 2297 if (mtu < ipst->ips_ip_pmtu_min) { 2298 mtu = ipst->ips_ip_pmtu_min; 2299 disable_pmtud = B_TRUE; 2300 } 2301 } 2302 /* Fool the ULP into believing our guessed PMTU. */ 2303 icmph->icmph_du_zero = 0; 2304 icmph->icmph_du_mtu = htons(mtu); 2305 } 2306 if (disable_pmtud) 2307 ire->ire_frag_flag = 0; 2308 /* Reduce the IRE max frag value as advised. */ 2309 ire->ire_max_frag = MIN(ire->ire_max_frag, mtu); 2310 mutex_exit(&ire->ire_lock); 2311 DTRACE_PROBE4(ip4__pmtu__change, icmph_t *, icmph, ire_t *, 2312 ire, int, orig_mtu, int, mtu); 2313 } 2314 rw_exit(&first_ire->ire_bucket->irb_lock); 2315 ire_refrele(first_ire); 2316 return (B_TRUE); 2317 } 2318 2319 /* 2320 * If the packet in error is Self-Encapsulated, icmp_inbound_error_fanout 2321 * calls this function. 2322 */ 2323 static mblk_t * 2324 icmp_inbound_self_encap_error(mblk_t *mp, int iph_hdr_length, int hdr_length) 2325 { 2326 ipha_t *ipha; 2327 icmph_t *icmph; 2328 ipha_t *in_ipha; 2329 int length; 2330 2331 ASSERT(mp->b_datap->db_type == M_DATA); 2332 2333 /* 2334 * For Self-encapsulated packets, we added an extra IP header 2335 * without the options. Inner IP header is the one from which 2336 * the outer IP header was formed. Thus, we need to remove the 2337 * outer IP header. To do this, we pullup the whole message 2338 * and overlay whatever follows the outer IP header over the 2339 * outer IP header. 2340 */ 2341 2342 if (!pullupmsg(mp, -1)) 2343 return (NULL); 2344 2345 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2346 ipha = (ipha_t *)&icmph[1]; 2347 in_ipha = (ipha_t *)((uchar_t *)ipha + hdr_length); 2348 2349 /* 2350 * The length that we want to overlay is following the inner 2351 * IP header. Subtracting the IP header + icmp header + outer 2352 * IP header's length should give us the length that we want to 2353 * overlay. 2354 */ 2355 length = msgdsize(mp) - iph_hdr_length - sizeof (icmph_t) - 2356 hdr_length; 2357 /* 2358 * Overlay whatever follows the inner header over the 2359 * outer header. 2360 */ 2361 bcopy((uchar_t *)in_ipha, (uchar_t *)ipha, length); 2362 2363 /* Set the wptr to account for the outer header */ 2364 mp->b_wptr -= hdr_length; 2365 return (mp); 2366 } 2367 2368 /* 2369 * Try to pass the ICMP message upstream in case the ULP cares. 2370 * 2371 * If the packet that caused the ICMP error is secure, we send 2372 * it to AH/ESP to make sure that the attached packet has a 2373 * valid association. ipha in the code below points to the 2374 * IP header of the packet that caused the error. 2375 * 2376 * We handle ICMP_FRAGMENTATION_NEEDED(IFN) message differently 2377 * in the context of IPsec. Normally we tell the upper layer 2378 * whenever we send the ire (including ip_bind), the IPsec header 2379 * length in ire_ipsec_overhead. TCP can deduce the MSS as it 2380 * has both the MTU (ire_max_frag) and the ire_ipsec_overhead. 2381 * Similarly, we pass the new MTU icmph_du_mtu and TCP does the 2382 * same thing. As TCP has the IPsec options size that needs to be 2383 * adjusted, we just pass the MTU unchanged. 2384 * 2385 * IFN could have been generated locally or by some router. 2386 * 2387 * LOCAL : *ip_wput_ire -> icmp_frag_needed could have generated this. 2388 * This happens because IP adjusted its value of MTU on an 2389 * earlier IFN message and could not tell the upper layer, 2390 * the new adjusted value of MTU e.g. Packet was encrypted 2391 * or there was not enough information to fanout to upper 2392 * layers. Thus on the next outbound datagram, ip_wput_ire 2393 * generates the IFN, where IPsec processing has *not* been 2394 * done. 2395 * 2396 * *ip_wput_ire_fragmentit -> ip_wput_frag -> icmp_frag_needed 2397 * could have generated this. This happens because ire_max_frag 2398 * value in IP was set to a new value, while the IPsec processing 2399 * was being done and after we made the fragmentation check in 2400 * ip_wput_ire. Thus on return from IPsec processing, 2401 * ip_wput_ipsec_out finds that the new length is > ire_max_frag 2402 * and generates the IFN. As IPsec processing is over, we fanout 2403 * to AH/ESP to remove the header. 2404 * 2405 * In both these cases, ipsec_in_loopback will be set indicating 2406 * that IFN was generated locally. 2407 * 2408 * ROUTER : IFN could be secure or non-secure. 2409 * 2410 * * SECURE : We use the IPSEC_IN to fanout to AH/ESP if the 2411 * packet in error has AH/ESP headers to validate the AH/ESP 2412 * headers. AH/ESP will verify whether there is a valid SA or 2413 * not and send it back. We will fanout again if we have more 2414 * data in the packet. 2415 * 2416 * If the packet in error does not have AH/ESP, we handle it 2417 * like any other case. 2418 * 2419 * * NON_SECURE : If the packet in error has AH/ESP headers, 2420 * we attach a dummy ipsec_in and send it up to AH/ESP 2421 * for validation. AH/ESP will verify whether there is a 2422 * valid SA or not and send it back. We will fanout again if 2423 * we have more data in the packet. 2424 * 2425 * If the packet in error does not have AH/ESP, we handle it 2426 * like any other case. 2427 */ 2428 static void 2429 icmp_inbound_error_fanout(queue_t *q, ill_t *ill, mblk_t *mp, 2430 icmph_t *icmph, ipha_t *ipha, int iph_hdr_length, int hdr_length, 2431 boolean_t mctl_present, boolean_t ip_policy, ill_t *recv_ill, 2432 zoneid_t zoneid) 2433 { 2434 uint16_t *up; /* Pointer to ports in ULP header */ 2435 uint32_t ports; /* reversed ports for fanout */ 2436 ipha_t ripha; /* With reversed addresses */ 2437 mblk_t *first_mp; 2438 ipsec_in_t *ii; 2439 tcph_t *tcph; 2440 conn_t *connp; 2441 ip_stack_t *ipst; 2442 2443 ASSERT(ill != NULL); 2444 2445 ASSERT(recv_ill != NULL); 2446 ipst = recv_ill->ill_ipst; 2447 2448 first_mp = mp; 2449 if (mctl_present) { 2450 mp = first_mp->b_cont; 2451 ASSERT(mp != NULL); 2452 2453 ii = (ipsec_in_t *)first_mp->b_rptr; 2454 ASSERT(ii->ipsec_in_type == IPSEC_IN); 2455 } else { 2456 ii = NULL; 2457 } 2458 2459 switch (ipha->ipha_protocol) { 2460 case IPPROTO_UDP: 2461 /* 2462 * Verify we have at least ICMP_MIN_TP_HDR_LEN bytes of 2463 * transport header. 2464 */ 2465 if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN > 2466 mp->b_wptr) { 2467 if (!pullupmsg(mp, (uchar_t *)ipha + hdr_length + 2468 ICMP_MIN_TP_HDR_LEN - mp->b_rptr)) { 2469 goto discard_pkt; 2470 } 2471 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2472 ipha = (ipha_t *)&icmph[1]; 2473 } 2474 up = (uint16_t *)((uchar_t *)ipha + hdr_length); 2475 2476 /* 2477 * Attempt to find a client stream based on port. 2478 * Note that we do a reverse lookup since the header is 2479 * in the form we sent it out. 2480 * The ripha header is only used for the IP_UDP_MATCH and we 2481 * only set the src and dst addresses and protocol. 2482 */ 2483 ripha.ipha_src = ipha->ipha_dst; 2484 ripha.ipha_dst = ipha->ipha_src; 2485 ripha.ipha_protocol = ipha->ipha_protocol; 2486 ((uint16_t *)&ports)[0] = up[1]; 2487 ((uint16_t *)&ports)[1] = up[0]; 2488 ip2dbg(("icmp_inbound_error: UDP %x:%d to %x:%d: %d/%d\n", 2489 ntohl(ipha->ipha_src), ntohs(up[0]), 2490 ntohl(ipha->ipha_dst), ntohs(up[1]), 2491 icmph->icmph_type, icmph->icmph_code)); 2492 2493 /* Have to change db_type after any pullupmsg */ 2494 DB_TYPE(mp) = M_CTL; 2495 2496 ip_fanout_udp(q, first_mp, ill, &ripha, ports, B_FALSE, 0, 2497 mctl_present, ip_policy, recv_ill, zoneid); 2498 return; 2499 2500 case IPPROTO_TCP: 2501 /* 2502 * Verify we have at least ICMP_MIN_TP_HDR_LEN bytes of 2503 * transport header. 2504 */ 2505 if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN > 2506 mp->b_wptr) { 2507 if (!pullupmsg(mp, (uchar_t *)ipha + hdr_length + 2508 ICMP_MIN_TP_HDR_LEN - mp->b_rptr)) { 2509 goto discard_pkt; 2510 } 2511 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2512 ipha = (ipha_t *)&icmph[1]; 2513 } 2514 /* 2515 * Find a TCP client stream for this packet. 2516 * Note that we do a reverse lookup since the header is 2517 * in the form we sent it out. 2518 */ 2519 tcph = (tcph_t *)((uchar_t *)ipha + hdr_length); 2520 connp = ipcl_tcp_lookup_reversed_ipv4(ipha, tcph, TCPS_LISTEN, 2521 ipst); 2522 if (connp == NULL) 2523 goto discard_pkt; 2524 2525 /* Have to change db_type after any pullupmsg */ 2526 DB_TYPE(mp) = M_CTL; 2527 SQUEUE_ENTER_ONE(connp->conn_sqp, first_mp, tcp_input, connp, 2528 SQ_FILL, SQTAG_TCP_INPUT_ICMP_ERR); 2529 return; 2530 2531 case IPPROTO_SCTP: 2532 /* 2533 * Verify we have at least ICMP_MIN_TP_HDR_LEN bytes of 2534 * transport header. 2535 */ 2536 if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN > 2537 mp->b_wptr) { 2538 if (!pullupmsg(mp, (uchar_t *)ipha + hdr_length + 2539 ICMP_MIN_TP_HDR_LEN - mp->b_rptr)) { 2540 goto discard_pkt; 2541 } 2542 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2543 ipha = (ipha_t *)&icmph[1]; 2544 } 2545 up = (uint16_t *)((uchar_t *)ipha + hdr_length); 2546 /* 2547 * Find a SCTP client stream for this packet. 2548 * Note that we do a reverse lookup since the header is 2549 * in the form we sent it out. 2550 * The ripha header is only used for the matching and we 2551 * only set the src and dst addresses, protocol, and version. 2552 */ 2553 ripha.ipha_src = ipha->ipha_dst; 2554 ripha.ipha_dst = ipha->ipha_src; 2555 ripha.ipha_protocol = ipha->ipha_protocol; 2556 ripha.ipha_version_and_hdr_length = 2557 ipha->ipha_version_and_hdr_length; 2558 ((uint16_t *)&ports)[0] = up[1]; 2559 ((uint16_t *)&ports)[1] = up[0]; 2560 2561 /* Have to change db_type after any pullupmsg */ 2562 DB_TYPE(mp) = M_CTL; 2563 ip_fanout_sctp(first_mp, recv_ill, &ripha, ports, 0, 2564 mctl_present, ip_policy, zoneid); 2565 return; 2566 2567 case IPPROTO_ESP: 2568 case IPPROTO_AH: { 2569 int ipsec_rc; 2570 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 2571 2572 /* 2573 * We need a IPSEC_IN in the front to fanout to AH/ESP. 2574 * We will re-use the IPSEC_IN if it is already present as 2575 * AH/ESP will not affect any fields in the IPSEC_IN for 2576 * ICMP errors. If there is no IPSEC_IN, allocate a new 2577 * one and attach it in the front. 2578 */ 2579 if (ii != NULL) { 2580 /* 2581 * ip_fanout_proto_again converts the ICMP errors 2582 * that come back from AH/ESP to M_DATA so that 2583 * if it is non-AH/ESP and we do a pullupmsg in 2584 * this function, it would work. Convert it back 2585 * to M_CTL before we send up as this is a ICMP 2586 * error. This could have been generated locally or 2587 * by some router. Validate the inner IPsec 2588 * headers. 2589 * 2590 * NOTE : ill_index is used by ip_fanout_proto_again 2591 * to locate the ill. 2592 */ 2593 ASSERT(ill != NULL); 2594 ii->ipsec_in_ill_index = 2595 ill->ill_phyint->phyint_ifindex; 2596 ii->ipsec_in_rill_index = 2597 recv_ill->ill_phyint->phyint_ifindex; 2598 DB_TYPE(first_mp->b_cont) = M_CTL; 2599 } else { 2600 /* 2601 * IPSEC_IN is not present. We attach a ipsec_in 2602 * message and send up to IPsec for validating 2603 * and removing the IPsec headers. Clear 2604 * ipsec_in_secure so that when we return 2605 * from IPsec, we don't mistakenly think that this 2606 * is a secure packet came from the network. 2607 * 2608 * NOTE : ill_index is used by ip_fanout_proto_again 2609 * to locate the ill. 2610 */ 2611 ASSERT(first_mp == mp); 2612 first_mp = ipsec_in_alloc(B_TRUE, ipst->ips_netstack); 2613 if (first_mp == NULL) { 2614 freemsg(mp); 2615 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 2616 return; 2617 } 2618 ii = (ipsec_in_t *)first_mp->b_rptr; 2619 2620 /* This is not a secure packet */ 2621 ii->ipsec_in_secure = B_FALSE; 2622 first_mp->b_cont = mp; 2623 DB_TYPE(mp) = M_CTL; 2624 ASSERT(ill != NULL); 2625 ii->ipsec_in_ill_index = 2626 ill->ill_phyint->phyint_ifindex; 2627 ii->ipsec_in_rill_index = 2628 recv_ill->ill_phyint->phyint_ifindex; 2629 } 2630 ip2dbg(("icmp_inbound_error: ipsec\n")); 2631 2632 if (!ipsec_loaded(ipss)) { 2633 ip_proto_not_sup(q, first_mp, 0, zoneid, ipst); 2634 return; 2635 } 2636 2637 if (ipha->ipha_protocol == IPPROTO_ESP) 2638 ipsec_rc = ipsecesp_icmp_error(first_mp); 2639 else 2640 ipsec_rc = ipsecah_icmp_error(first_mp); 2641 if (ipsec_rc == IPSEC_STATUS_FAILED) 2642 return; 2643 2644 ip_fanout_proto_again(first_mp, ill, recv_ill, NULL); 2645 return; 2646 } 2647 default: 2648 /* 2649 * The ripha header is only used for the lookup and we 2650 * only set the src and dst addresses and protocol. 2651 */ 2652 ripha.ipha_src = ipha->ipha_dst; 2653 ripha.ipha_dst = ipha->ipha_src; 2654 ripha.ipha_protocol = ipha->ipha_protocol; 2655 ip2dbg(("icmp_inbound_error: proto %d %x to %x: %d/%d\n", 2656 ripha.ipha_protocol, ntohl(ipha->ipha_src), 2657 ntohl(ipha->ipha_dst), 2658 icmph->icmph_type, icmph->icmph_code)); 2659 if (ipha->ipha_protocol == IPPROTO_ENCAP) { 2660 ipha_t *in_ipha; 2661 2662 if ((uchar_t *)ipha + hdr_length + sizeof (ipha_t) > 2663 mp->b_wptr) { 2664 if (!pullupmsg(mp, (uchar_t *)ipha + 2665 hdr_length + sizeof (ipha_t) - 2666 mp->b_rptr)) { 2667 goto discard_pkt; 2668 } 2669 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2670 ipha = (ipha_t *)&icmph[1]; 2671 } 2672 /* 2673 * Caller has verified that length has to be 2674 * at least the size of IP header. 2675 */ 2676 ASSERT(hdr_length >= sizeof (ipha_t)); 2677 /* 2678 * Check the sanity of the inner IP header like 2679 * we did for the outer header. 2680 */ 2681 in_ipha = (ipha_t *)((uchar_t *)ipha + hdr_length); 2682 if ((IPH_HDR_VERSION(in_ipha) != IPV4_VERSION)) { 2683 goto discard_pkt; 2684 } 2685 if (IPH_HDR_LENGTH(in_ipha) < sizeof (ipha_t)) { 2686 goto discard_pkt; 2687 } 2688 /* Check for Self-encapsulated tunnels */ 2689 if (in_ipha->ipha_src == ipha->ipha_src && 2690 in_ipha->ipha_dst == ipha->ipha_dst) { 2691 2692 mp = icmp_inbound_self_encap_error(mp, 2693 iph_hdr_length, hdr_length); 2694 if (mp == NULL) 2695 goto discard_pkt; 2696 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2697 ipha = (ipha_t *)&icmph[1]; 2698 hdr_length = IPH_HDR_LENGTH(ipha); 2699 /* 2700 * The packet in error is self-encapsualted. 2701 * And we are finding it further encapsulated 2702 * which we could not have possibly generated. 2703 */ 2704 if (ipha->ipha_protocol == IPPROTO_ENCAP) { 2705 goto discard_pkt; 2706 } 2707 icmp_inbound_error_fanout(q, ill, first_mp, 2708 icmph, ipha, iph_hdr_length, hdr_length, 2709 mctl_present, ip_policy, recv_ill, zoneid); 2710 return; 2711 } 2712 } 2713 if ((ipha->ipha_protocol == IPPROTO_ENCAP || 2714 ipha->ipha_protocol == IPPROTO_IPV6) && 2715 icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED && 2716 ii != NULL && 2717 ii->ipsec_in_loopback && 2718 ii->ipsec_in_secure) { 2719 /* 2720 * For IP tunnels that get a looped-back 2721 * ICMP_FRAGMENTATION_NEEDED message, adjust the 2722 * reported new MTU to take into account the IPsec 2723 * headers protecting this configured tunnel. 2724 * 2725 * This allows the tunnel module (tun.c) to blindly 2726 * accept the MTU reported in an ICMP "too big" 2727 * message. 2728 * 2729 * Non-looped back ICMP messages will just be 2730 * handled by the security protocols (if needed), 2731 * and the first subsequent packet will hit this 2732 * path. 2733 */ 2734 icmph->icmph_du_mtu = htons(ntohs(icmph->icmph_du_mtu) - 2735 ipsec_in_extra_length(first_mp)); 2736 } 2737 /* Have to change db_type after any pullupmsg */ 2738 DB_TYPE(mp) = M_CTL; 2739 2740 ip_fanout_proto(q, first_mp, ill, &ripha, 0, mctl_present, 2741 ip_policy, recv_ill, zoneid); 2742 return; 2743 } 2744 /* NOTREACHED */ 2745 discard_pkt: 2746 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 2747 drop_pkt:; 2748 ip1dbg(("icmp_inbound_error_fanout: drop pkt\n")); 2749 freemsg(first_mp); 2750 } 2751 2752 /* 2753 * Common IP options parser. 2754 * 2755 * Setup routine: fill in *optp with options-parsing state, then 2756 * tail-call ipoptp_next to return the first option. 2757 */ 2758 uint8_t 2759 ipoptp_first(ipoptp_t *optp, ipha_t *ipha) 2760 { 2761 uint32_t totallen; /* total length of all options */ 2762 2763 totallen = ipha->ipha_version_and_hdr_length - 2764 (uint8_t)((IP_VERSION << 4) + IP_SIMPLE_HDR_LENGTH_IN_WORDS); 2765 totallen <<= 2; 2766 optp->ipoptp_next = (uint8_t *)(&ipha[1]); 2767 optp->ipoptp_end = optp->ipoptp_next + totallen; 2768 optp->ipoptp_flags = 0; 2769 return (ipoptp_next(optp)); 2770 } 2771 2772 /* 2773 * Common IP options parser: extract next option. 2774 */ 2775 uint8_t 2776 ipoptp_next(ipoptp_t *optp) 2777 { 2778 uint8_t *end = optp->ipoptp_end; 2779 uint8_t *cur = optp->ipoptp_next; 2780 uint8_t opt, len, pointer; 2781 2782 /* 2783 * If cur > end already, then the ipoptp_end or ipoptp_next pointer 2784 * has been corrupted. 2785 */ 2786 ASSERT(cur <= end); 2787 2788 if (cur == end) 2789 return (IPOPT_EOL); 2790 2791 opt = cur[IPOPT_OPTVAL]; 2792 2793 /* 2794 * Skip any NOP options. 2795 */ 2796 while (opt == IPOPT_NOP) { 2797 cur++; 2798 if (cur == end) 2799 return (IPOPT_EOL); 2800 opt = cur[IPOPT_OPTVAL]; 2801 } 2802 2803 if (opt == IPOPT_EOL) 2804 return (IPOPT_EOL); 2805 2806 /* 2807 * Option requiring a length. 2808 */ 2809 if ((cur + 1) >= end) { 2810 optp->ipoptp_flags |= IPOPTP_ERROR; 2811 return (IPOPT_EOL); 2812 } 2813 len = cur[IPOPT_OLEN]; 2814 if (len < 2) { 2815 optp->ipoptp_flags |= IPOPTP_ERROR; 2816 return (IPOPT_EOL); 2817 } 2818 optp->ipoptp_cur = cur; 2819 optp->ipoptp_len = len; 2820 optp->ipoptp_next = cur + len; 2821 if (cur + len > end) { 2822 optp->ipoptp_flags |= IPOPTP_ERROR; 2823 return (IPOPT_EOL); 2824 } 2825 2826 /* 2827 * For the options which require a pointer field, make sure 2828 * its there, and make sure it points to either something 2829 * inside this option, or the end of the option. 2830 */ 2831 switch (opt) { 2832 case IPOPT_RR: 2833 case IPOPT_TS: 2834 case IPOPT_LSRR: 2835 case IPOPT_SSRR: 2836 if (len <= IPOPT_OFFSET) { 2837 optp->ipoptp_flags |= IPOPTP_ERROR; 2838 return (opt); 2839 } 2840 pointer = cur[IPOPT_OFFSET]; 2841 if (pointer - 1 > len) { 2842 optp->ipoptp_flags |= IPOPTP_ERROR; 2843 return (opt); 2844 } 2845 break; 2846 } 2847 2848 /* 2849 * Sanity check the pointer field based on the type of the 2850 * option. 2851 */ 2852 switch (opt) { 2853 case IPOPT_RR: 2854 case IPOPT_SSRR: 2855 case IPOPT_LSRR: 2856 if (pointer < IPOPT_MINOFF_SR) 2857 optp->ipoptp_flags |= IPOPTP_ERROR; 2858 break; 2859 case IPOPT_TS: 2860 if (pointer < IPOPT_MINOFF_IT) 2861 optp->ipoptp_flags |= IPOPTP_ERROR; 2862 /* 2863 * Note that the Internet Timestamp option also 2864 * contains two four bit fields (the Overflow field, 2865 * and the Flag field), which follow the pointer 2866 * field. We don't need to check that these fields 2867 * fall within the length of the option because this 2868 * was implicitely done above. We've checked that the 2869 * pointer value is at least IPOPT_MINOFF_IT, and that 2870 * it falls within the option. Since IPOPT_MINOFF_IT > 2871 * IPOPT_POS_OV_FLG, we don't need the explicit check. 2872 */ 2873 ASSERT(len > IPOPT_POS_OV_FLG); 2874 break; 2875 } 2876 2877 return (opt); 2878 } 2879 2880 /* 2881 * Use the outgoing IP header to create an IP_OPTIONS option the way 2882 * it was passed down from the application. 2883 */ 2884 int 2885 ip_opt_get_user(const ipha_t *ipha, uchar_t *buf) 2886 { 2887 ipoptp_t opts; 2888 const uchar_t *opt; 2889 uint8_t optval; 2890 uint8_t optlen; 2891 uint32_t len = 0; 2892 uchar_t *buf1 = buf; 2893 2894 buf += IP_ADDR_LEN; /* Leave room for final destination */ 2895 len += IP_ADDR_LEN; 2896 bzero(buf1, IP_ADDR_LEN); 2897 2898 /* 2899 * OK to cast away const here, as we don't store through the returned 2900 * opts.ipoptp_cur pointer. 2901 */ 2902 for (optval = ipoptp_first(&opts, (ipha_t *)ipha); 2903 optval != IPOPT_EOL; 2904 optval = ipoptp_next(&opts)) { 2905 int off; 2906 2907 opt = opts.ipoptp_cur; 2908 optlen = opts.ipoptp_len; 2909 switch (optval) { 2910 case IPOPT_SSRR: 2911 case IPOPT_LSRR: 2912 2913 /* 2914 * Insert ipha_dst as the first entry in the source 2915 * route and move down the entries on step. 2916 * The last entry gets placed at buf1. 2917 */ 2918 buf[IPOPT_OPTVAL] = optval; 2919 buf[IPOPT_OLEN] = optlen; 2920 buf[IPOPT_OFFSET] = optlen; 2921 2922 off = optlen - IP_ADDR_LEN; 2923 if (off < 0) { 2924 /* No entries in source route */ 2925 break; 2926 } 2927 /* Last entry in source route */ 2928 bcopy(opt + off, buf1, IP_ADDR_LEN); 2929 off -= IP_ADDR_LEN; 2930 2931 while (off > 0) { 2932 bcopy(opt + off, 2933 buf + off + IP_ADDR_LEN, 2934 IP_ADDR_LEN); 2935 off -= IP_ADDR_LEN; 2936 } 2937 /* ipha_dst into first slot */ 2938 bcopy(&ipha->ipha_dst, 2939 buf + off + IP_ADDR_LEN, 2940 IP_ADDR_LEN); 2941 buf += optlen; 2942 len += optlen; 2943 break; 2944 2945 case IPOPT_COMSEC: 2946 case IPOPT_SECURITY: 2947 /* if passing up a label is not ok, then remove */ 2948 if (is_system_labeled()) 2949 break; 2950 /* FALLTHROUGH */ 2951 default: 2952 bcopy(opt, buf, optlen); 2953 buf += optlen; 2954 len += optlen; 2955 break; 2956 } 2957 } 2958 done: 2959 /* Pad the resulting options */ 2960 while (len & 0x3) { 2961 *buf++ = IPOPT_EOL; 2962 len++; 2963 } 2964 return (len); 2965 } 2966 2967 /* 2968 * Update any record route or timestamp options to include this host. 2969 * Reverse any source route option. 2970 * This routine assumes that the options are well formed i.e. that they 2971 * have already been checked. 2972 */ 2973 static void 2974 icmp_options_update(ipha_t *ipha) 2975 { 2976 ipoptp_t opts; 2977 uchar_t *opt; 2978 uint8_t optval; 2979 ipaddr_t src; /* Our local address */ 2980 ipaddr_t dst; 2981 2982 ip2dbg(("icmp_options_update\n")); 2983 src = ipha->ipha_src; 2984 dst = ipha->ipha_dst; 2985 2986 for (optval = ipoptp_first(&opts, ipha); 2987 optval != IPOPT_EOL; 2988 optval = ipoptp_next(&opts)) { 2989 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 2990 opt = opts.ipoptp_cur; 2991 ip2dbg(("icmp_options_update: opt %d, len %d\n", 2992 optval, opts.ipoptp_len)); 2993 switch (optval) { 2994 int off1, off2; 2995 case IPOPT_SSRR: 2996 case IPOPT_LSRR: 2997 /* 2998 * Reverse the source route. The first entry 2999 * should be the next to last one in the current 3000 * source route (the last entry is our address). 3001 * The last entry should be the final destination. 3002 */ 3003 off1 = IPOPT_MINOFF_SR - 1; 3004 off2 = opt[IPOPT_OFFSET] - IP_ADDR_LEN - 1; 3005 if (off2 < 0) { 3006 /* No entries in source route */ 3007 ip1dbg(( 3008 "icmp_options_update: bad src route\n")); 3009 break; 3010 } 3011 bcopy((char *)opt + off2, &dst, IP_ADDR_LEN); 3012 bcopy(&ipha->ipha_dst, (char *)opt + off2, IP_ADDR_LEN); 3013 bcopy(&dst, &ipha->ipha_dst, IP_ADDR_LEN); 3014 off2 -= IP_ADDR_LEN; 3015 3016 while (off1 < off2) { 3017 bcopy((char *)opt + off1, &src, IP_ADDR_LEN); 3018 bcopy((char *)opt + off2, (char *)opt + off1, 3019 IP_ADDR_LEN); 3020 bcopy(&src, (char *)opt + off2, IP_ADDR_LEN); 3021 off1 += IP_ADDR_LEN; 3022 off2 -= IP_ADDR_LEN; 3023 } 3024 opt[IPOPT_OFFSET] = IPOPT_MINOFF_SR; 3025 break; 3026 } 3027 } 3028 } 3029 3030 /* 3031 * Process received ICMP Redirect messages. 3032 */ 3033 static void 3034 icmp_redirect(ill_t *ill, mblk_t *mp) 3035 { 3036 ipha_t *ipha; 3037 int iph_hdr_length; 3038 icmph_t *icmph; 3039 ipha_t *ipha_err; 3040 ire_t *ire; 3041 ire_t *prev_ire; 3042 ire_t *save_ire; 3043 ipaddr_t src, dst, gateway; 3044 iulp_t ulp_info = { 0 }; 3045 int error; 3046 ip_stack_t *ipst; 3047 3048 ASSERT(ill != NULL); 3049 ipst = ill->ill_ipst; 3050 3051 ipha = (ipha_t *)mp->b_rptr; 3052 iph_hdr_length = IPH_HDR_LENGTH(ipha); 3053 if (((mp->b_wptr - mp->b_rptr) - iph_hdr_length) < 3054 sizeof (icmph_t) + IP_SIMPLE_HDR_LENGTH) { 3055 BUMP_MIB(&ipst->ips_icmp_mib, icmpInErrors); 3056 freemsg(mp); 3057 return; 3058 } 3059 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 3060 ipha_err = (ipha_t *)&icmph[1]; 3061 src = ipha->ipha_src; 3062 dst = ipha_err->ipha_dst; 3063 gateway = icmph->icmph_rd_gateway; 3064 /* Make sure the new gateway is reachable somehow. */ 3065 ire = ire_route_lookup(gateway, 0, 0, IRE_INTERFACE, NULL, NULL, 3066 ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 3067 /* 3068 * Make sure we had a route for the dest in question and that 3069 * that route was pointing to the old gateway (the source of the 3070 * redirect packet.) 3071 */ 3072 prev_ire = ire_route_lookup(dst, 0, src, 0, NULL, NULL, ALL_ZONES, 3073 NULL, MATCH_IRE_GW, ipst); 3074 /* 3075 * Check that 3076 * the redirect was not from ourselves 3077 * the new gateway and the old gateway are directly reachable 3078 */ 3079 if (!prev_ire || 3080 !ire || 3081 ire->ire_type == IRE_LOCAL) { 3082 BUMP_MIB(&ipst->ips_icmp_mib, icmpInBadRedirects); 3083 freemsg(mp); 3084 if (ire != NULL) 3085 ire_refrele(ire); 3086 if (prev_ire != NULL) 3087 ire_refrele(prev_ire); 3088 return; 3089 } 3090 3091 /* 3092 * Should we use the old ULP info to create the new gateway? From 3093 * a user's perspective, we should inherit the info so that it 3094 * is a "smooth" transition. If we do not do that, then new 3095 * connections going thru the new gateway will have no route metrics, 3096 * which is counter-intuitive to user. From a network point of 3097 * view, this may or may not make sense even though the new gateway 3098 * is still directly connected to us so the route metrics should not 3099 * change much. 3100 * 3101 * But if the old ire_uinfo is not initialized, we do another 3102 * recursive lookup on the dest using the new gateway. There may 3103 * be a route to that. If so, use it to initialize the redirect 3104 * route. 3105 */ 3106 if (prev_ire->ire_uinfo.iulp_set) { 3107 bcopy(&prev_ire->ire_uinfo, &ulp_info, sizeof (iulp_t)); 3108 } else { 3109 ire_t *tmp_ire; 3110 ire_t *sire; 3111 3112 tmp_ire = ire_ftable_lookup(dst, 0, gateway, 0, NULL, &sire, 3113 ALL_ZONES, 0, NULL, 3114 (MATCH_IRE_RECURSIVE | MATCH_IRE_GW | MATCH_IRE_DEFAULT), 3115 ipst); 3116 if (sire != NULL) { 3117 bcopy(&sire->ire_uinfo, &ulp_info, sizeof (iulp_t)); 3118 /* 3119 * If sire != NULL, ire_ftable_lookup() should not 3120 * return a NULL value. 3121 */ 3122 ASSERT(tmp_ire != NULL); 3123 ire_refrele(tmp_ire); 3124 ire_refrele(sire); 3125 } else if (tmp_ire != NULL) { 3126 bcopy(&tmp_ire->ire_uinfo, &ulp_info, 3127 sizeof (iulp_t)); 3128 ire_refrele(tmp_ire); 3129 } 3130 } 3131 if (prev_ire->ire_type == IRE_CACHE) 3132 ire_delete(prev_ire); 3133 ire_refrele(prev_ire); 3134 /* 3135 * TODO: more precise handling for cases 0, 2, 3, the latter two 3136 * require TOS routing 3137 */ 3138 switch (icmph->icmph_code) { 3139 case 0: 3140 case 1: 3141 /* TODO: TOS specificity for cases 2 and 3 */ 3142 case 2: 3143 case 3: 3144 break; 3145 default: 3146 freemsg(mp); 3147 BUMP_MIB(&ipst->ips_icmp_mib, icmpInBadRedirects); 3148 ire_refrele(ire); 3149 return; 3150 } 3151 /* 3152 * Create a Route Association. This will allow us to remember that 3153 * someone we believe told us to use the particular gateway. 3154 */ 3155 save_ire = ire; 3156 ire = ire_create( 3157 (uchar_t *)&dst, /* dest addr */ 3158 (uchar_t *)&ip_g_all_ones, /* mask */ 3159 (uchar_t *)&save_ire->ire_src_addr, /* source addr */ 3160 (uchar_t *)&gateway, /* gateway addr */ 3161 &save_ire->ire_max_frag, /* max frag */ 3162 NULL, /* no src nce */ 3163 NULL, /* no rfq */ 3164 NULL, /* no stq */ 3165 IRE_HOST, 3166 NULL, /* ipif */ 3167 0, /* cmask */ 3168 0, /* phandle */ 3169 0, /* ihandle */ 3170 (RTF_DYNAMIC | RTF_GATEWAY | RTF_HOST), 3171 &ulp_info, 3172 NULL, /* tsol_gc_t */ 3173 NULL, /* gcgrp */ 3174 ipst); 3175 3176 if (ire == NULL) { 3177 freemsg(mp); 3178 ire_refrele(save_ire); 3179 return; 3180 } 3181 error = ire_add(&ire, NULL, NULL, NULL, B_FALSE); 3182 ire_refrele(save_ire); 3183 atomic_inc_32(&ipst->ips_ip_redirect_cnt); 3184 3185 if (error == 0) { 3186 ire_refrele(ire); /* Held in ire_add_v4 */ 3187 /* tell routing sockets that we received a redirect */ 3188 ip_rts_change(RTM_REDIRECT, dst, gateway, IP_HOST_MASK, 0, src, 3189 (RTF_DYNAMIC | RTF_GATEWAY | RTF_HOST), 0, 3190 (RTA_DST | RTA_GATEWAY | RTA_NETMASK | RTA_AUTHOR), ipst); 3191 } 3192 3193 /* 3194 * Delete any existing IRE_HOST type redirect ires for this destination. 3195 * This together with the added IRE has the effect of 3196 * modifying an existing redirect. 3197 */ 3198 prev_ire = ire_ftable_lookup(dst, 0, src, IRE_HOST, NULL, NULL, 3199 ALL_ZONES, 0, NULL, (MATCH_IRE_GW | MATCH_IRE_TYPE), ipst); 3200 if (prev_ire != NULL) { 3201 if (prev_ire ->ire_flags & RTF_DYNAMIC) 3202 ire_delete(prev_ire); 3203 ire_refrele(prev_ire); 3204 } 3205 3206 freemsg(mp); 3207 } 3208 3209 /* 3210 * Generate an ICMP parameter problem message. 3211 */ 3212 static void 3213 icmp_param_problem(queue_t *q, mblk_t *mp, uint8_t ptr, zoneid_t zoneid, 3214 ip_stack_t *ipst) 3215 { 3216 icmph_t icmph; 3217 boolean_t mctl_present; 3218 mblk_t *first_mp; 3219 3220 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 3221 3222 if (!(mp = icmp_pkt_err_ok(mp, ipst))) { 3223 if (mctl_present) 3224 freeb(first_mp); 3225 return; 3226 } 3227 3228 bzero(&icmph, sizeof (icmph_t)); 3229 icmph.icmph_type = ICMP_PARAM_PROBLEM; 3230 icmph.icmph_pp_ptr = ptr; 3231 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutParmProbs); 3232 icmp_pkt(q, first_mp, &icmph, sizeof (icmph_t), mctl_present, zoneid, 3233 ipst); 3234 } 3235 3236 /* 3237 * Build and ship an IPv4 ICMP message using the packet data in mp, and 3238 * the ICMP header pointed to by "stuff". (May be called as writer.) 3239 * Note: assumes that icmp_pkt_err_ok has been called to verify that 3240 * an icmp error packet can be sent. 3241 * Assigns an appropriate source address to the packet. If ipha_dst is 3242 * one of our addresses use it for source. Otherwise pick a source based 3243 * on a route lookup back to ipha_src. 3244 * Note that ipha_src must be set here since the 3245 * packet is likely to arrive on an ill queue in ip_wput() which will 3246 * not set a source address. 3247 */ 3248 static void 3249 icmp_pkt(queue_t *q, mblk_t *mp, void *stuff, size_t len, 3250 boolean_t mctl_present, zoneid_t zoneid, ip_stack_t *ipst) 3251 { 3252 ipaddr_t dst; 3253 icmph_t *icmph; 3254 ipha_t *ipha; 3255 uint_t len_needed; 3256 size_t msg_len; 3257 mblk_t *mp1; 3258 ipaddr_t src; 3259 ire_t *ire; 3260 mblk_t *ipsec_mp; 3261 ipsec_out_t *io = NULL; 3262 3263 if (mctl_present) { 3264 /* 3265 * If it is : 3266 * 3267 * 1) a IPSEC_OUT, then this is caused by outbound 3268 * datagram originating on this host. IPsec processing 3269 * may or may not have been done. Refer to comments above 3270 * icmp_inbound_error_fanout for details. 3271 * 3272 * 2) a IPSEC_IN if we are generating a icmp_message 3273 * for an incoming datagram destined for us i.e called 3274 * from ip_fanout_send_icmp. 3275 */ 3276 ipsec_info_t *in; 3277 ipsec_mp = mp; 3278 mp = ipsec_mp->b_cont; 3279 3280 in = (ipsec_info_t *)ipsec_mp->b_rptr; 3281 ipha = (ipha_t *)mp->b_rptr; 3282 3283 ASSERT(in->ipsec_info_type == IPSEC_OUT || 3284 in->ipsec_info_type == IPSEC_IN); 3285 3286 if (in->ipsec_info_type == IPSEC_IN) { 3287 /* 3288 * Convert the IPSEC_IN to IPSEC_OUT. 3289 */ 3290 if (!ipsec_in_to_out(ipsec_mp, ipha, NULL)) { 3291 BUMP_MIB(&ipst->ips_ip_mib, 3292 ipIfStatsOutDiscards); 3293 return; 3294 } 3295 io = (ipsec_out_t *)ipsec_mp->b_rptr; 3296 } else { 3297 ASSERT(in->ipsec_info_type == IPSEC_OUT); 3298 io = (ipsec_out_t *)in; 3299 /* 3300 * Clear out ipsec_out_proc_begin, so we do a fresh 3301 * ire lookup. 3302 */ 3303 io->ipsec_out_proc_begin = B_FALSE; 3304 } 3305 ASSERT(zoneid == io->ipsec_out_zoneid); 3306 ASSERT(zoneid != ALL_ZONES); 3307 } else { 3308 /* 3309 * This is in clear. The icmp message we are building 3310 * here should go out in clear. 3311 * 3312 * Pardon the convolution of it all, but it's easier to 3313 * allocate a "use cleartext" IPSEC_IN message and convert 3314 * it than it is to allocate a new one. 3315 */ 3316 ipsec_in_t *ii; 3317 ASSERT(DB_TYPE(mp) == M_DATA); 3318 ipsec_mp = ipsec_in_alloc(B_TRUE, ipst->ips_netstack); 3319 if (ipsec_mp == NULL) { 3320 freemsg(mp); 3321 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 3322 return; 3323 } 3324 ii = (ipsec_in_t *)ipsec_mp->b_rptr; 3325 3326 /* This is not a secure packet */ 3327 ii->ipsec_in_secure = B_FALSE; 3328 /* 3329 * For trusted extensions using a shared IP address we can 3330 * send using any zoneid. 3331 */ 3332 if (zoneid == ALL_ZONES) 3333 ii->ipsec_in_zoneid = GLOBAL_ZONEID; 3334 else 3335 ii->ipsec_in_zoneid = zoneid; 3336 ipsec_mp->b_cont = mp; 3337 ipha = (ipha_t *)mp->b_rptr; 3338 /* 3339 * Convert the IPSEC_IN to IPSEC_OUT. 3340 */ 3341 if (!ipsec_in_to_out(ipsec_mp, ipha, NULL)) { 3342 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 3343 return; 3344 } 3345 io = (ipsec_out_t *)ipsec_mp->b_rptr; 3346 } 3347 3348 /* Remember our eventual destination */ 3349 dst = ipha->ipha_src; 3350 3351 ire = ire_route_lookup(ipha->ipha_dst, 0, 0, (IRE_LOCAL|IRE_LOOPBACK), 3352 NULL, NULL, zoneid, NULL, MATCH_IRE_TYPE, ipst); 3353 if (ire != NULL && 3354 (ire->ire_zoneid == zoneid || ire->ire_zoneid == ALL_ZONES)) { 3355 src = ipha->ipha_dst; 3356 } else { 3357 if (ire != NULL) 3358 ire_refrele(ire); 3359 ire = ire_route_lookup(dst, 0, 0, 0, NULL, NULL, zoneid, NULL, 3360 (MATCH_IRE_DEFAULT|MATCH_IRE_RECURSIVE|MATCH_IRE_ZONEONLY), 3361 ipst); 3362 if (ire == NULL) { 3363 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutNoRoutes); 3364 freemsg(ipsec_mp); 3365 return; 3366 } 3367 src = ire->ire_src_addr; 3368 } 3369 3370 if (ire != NULL) 3371 ire_refrele(ire); 3372 3373 /* 3374 * Check if we can send back more then 8 bytes in addition to 3375 * the IP header. We try to send 64 bytes of data and the internal 3376 * header in the special cases of ipv4 encapsulated ipv4 or ipv6. 3377 */ 3378 len_needed = IPH_HDR_LENGTH(ipha); 3379 if (ipha->ipha_protocol == IPPROTO_ENCAP || 3380 ipha->ipha_protocol == IPPROTO_IPV6) { 3381 3382 if (!pullupmsg(mp, -1)) { 3383 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 3384 freemsg(ipsec_mp); 3385 return; 3386 } 3387 ipha = (ipha_t *)mp->b_rptr; 3388 3389 if (ipha->ipha_protocol == IPPROTO_ENCAP) { 3390 len_needed += IPH_HDR_LENGTH(((uchar_t *)ipha + 3391 len_needed)); 3392 } else { 3393 ip6_t *ip6h = (ip6_t *)((uchar_t *)ipha + len_needed); 3394 3395 ASSERT(ipha->ipha_protocol == IPPROTO_IPV6); 3396 len_needed += ip_hdr_length_v6(mp, ip6h); 3397 } 3398 } 3399 len_needed += ipst->ips_ip_icmp_return; 3400 msg_len = msgdsize(mp); 3401 if (msg_len > len_needed) { 3402 (void) adjmsg(mp, len_needed - msg_len); 3403 msg_len = len_needed; 3404 } 3405 /* Make sure we propagate the cred/label for TX */ 3406 mp1 = allocb_tmpl(sizeof (icmp_ipha) + len, mp); 3407 if (mp1 == NULL) { 3408 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutErrors); 3409 freemsg(ipsec_mp); 3410 return; 3411 } 3412 mp1->b_cont = mp; 3413 mp = mp1; 3414 ASSERT(ipsec_mp->b_datap->db_type == M_CTL && 3415 ipsec_mp->b_rptr == (uint8_t *)io && 3416 io->ipsec_out_type == IPSEC_OUT); 3417 ipsec_mp->b_cont = mp; 3418 3419 /* 3420 * Set ipsec_out_icmp_loopback so we can let the ICMP messages this 3421 * node generates be accepted in peace by all on-host destinations. 3422 * If we do NOT assume that all on-host destinations trust 3423 * self-generated ICMP messages, then rework here, ip6.c, and spd.c. 3424 * (Look for ipsec_out_icmp_loopback). 3425 */ 3426 io->ipsec_out_icmp_loopback = B_TRUE; 3427 3428 ipha = (ipha_t *)mp->b_rptr; 3429 mp1->b_wptr = (uchar_t *)ipha + (sizeof (icmp_ipha) + len); 3430 *ipha = icmp_ipha; 3431 ipha->ipha_src = src; 3432 ipha->ipha_dst = dst; 3433 ipha->ipha_ttl = ipst->ips_ip_def_ttl; 3434 msg_len += sizeof (icmp_ipha) + len; 3435 if (msg_len > IP_MAXPACKET) { 3436 (void) adjmsg(mp, IP_MAXPACKET - msg_len); 3437 msg_len = IP_MAXPACKET; 3438 } 3439 ipha->ipha_length = htons((uint16_t)msg_len); 3440 icmph = (icmph_t *)&ipha[1]; 3441 bcopy(stuff, icmph, len); 3442 icmph->icmph_checksum = 0; 3443 icmph->icmph_checksum = IP_CSUM(mp, (int32_t)sizeof (ipha_t), 0); 3444 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutMsgs); 3445 put(q, ipsec_mp); 3446 } 3447 3448 /* 3449 * Determine if an ICMP error packet can be sent given the rate limit. 3450 * The limit consists of an average frequency (icmp_pkt_err_interval measured 3451 * in milliseconds) and a burst size. Burst size number of packets can 3452 * be sent arbitrarely closely spaced. 3453 * The state is tracked using two variables to implement an approximate 3454 * token bucket filter: 3455 * icmp_pkt_err_last - lbolt value when the last burst started 3456 * icmp_pkt_err_sent - number of packets sent in current burst 3457 */ 3458 boolean_t 3459 icmp_err_rate_limit(ip_stack_t *ipst) 3460 { 3461 clock_t now = TICK_TO_MSEC(lbolt); 3462 uint_t refilled; /* Number of packets refilled in tbf since last */ 3463 /* Guard against changes by loading into local variable */ 3464 uint_t err_interval = ipst->ips_ip_icmp_err_interval; 3465 3466 if (err_interval == 0) 3467 return (B_FALSE); 3468 3469 if (ipst->ips_icmp_pkt_err_last > now) { 3470 /* 100HZ lbolt in ms for 32bit arch wraps every 49.7 days */ 3471 ipst->ips_icmp_pkt_err_last = 0; 3472 ipst->ips_icmp_pkt_err_sent = 0; 3473 } 3474 /* 3475 * If we are in a burst update the token bucket filter. 3476 * Update the "last" time to be close to "now" but make sure 3477 * we don't loose precision. 3478 */ 3479 if (ipst->ips_icmp_pkt_err_sent != 0) { 3480 refilled = (now - ipst->ips_icmp_pkt_err_last)/err_interval; 3481 if (refilled > ipst->ips_icmp_pkt_err_sent) { 3482 ipst->ips_icmp_pkt_err_sent = 0; 3483 } else { 3484 ipst->ips_icmp_pkt_err_sent -= refilled; 3485 ipst->ips_icmp_pkt_err_last += refilled * err_interval; 3486 } 3487 } 3488 if (ipst->ips_icmp_pkt_err_sent == 0) { 3489 /* Start of new burst */ 3490 ipst->ips_icmp_pkt_err_last = now; 3491 } 3492 if (ipst->ips_icmp_pkt_err_sent < ipst->ips_ip_icmp_err_burst) { 3493 ipst->ips_icmp_pkt_err_sent++; 3494 ip1dbg(("icmp_err_rate_limit: %d sent in burst\n", 3495 ipst->ips_icmp_pkt_err_sent)); 3496 return (B_FALSE); 3497 } 3498 ip1dbg(("icmp_err_rate_limit: dropped\n")); 3499 return (B_TRUE); 3500 } 3501 3502 /* 3503 * Check if it is ok to send an IPv4 ICMP error packet in 3504 * response to the IPv4 packet in mp. 3505 * Free the message and return null if no 3506 * ICMP error packet should be sent. 3507 */ 3508 static mblk_t * 3509 icmp_pkt_err_ok(mblk_t *mp, ip_stack_t *ipst) 3510 { 3511 icmph_t *icmph; 3512 ipha_t *ipha; 3513 uint_t len_needed; 3514 ire_t *src_ire; 3515 ire_t *dst_ire; 3516 3517 if (!mp) 3518 return (NULL); 3519 ipha = (ipha_t *)mp->b_rptr; 3520 if (ip_csum_hdr(ipha)) { 3521 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsInCksumErrs); 3522 freemsg(mp); 3523 return (NULL); 3524 } 3525 src_ire = ire_ctable_lookup(ipha->ipha_dst, 0, IRE_BROADCAST, 3526 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 3527 dst_ire = ire_ctable_lookup(ipha->ipha_src, 0, IRE_BROADCAST, 3528 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 3529 if (src_ire != NULL || dst_ire != NULL || 3530 CLASSD(ipha->ipha_dst) || 3531 CLASSD(ipha->ipha_src) || 3532 (ntohs(ipha->ipha_fragment_offset_and_flags) & IPH_OFFSET)) { 3533 /* Note: only errors to the fragment with offset 0 */ 3534 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops); 3535 freemsg(mp); 3536 if (src_ire != NULL) 3537 ire_refrele(src_ire); 3538 if (dst_ire != NULL) 3539 ire_refrele(dst_ire); 3540 return (NULL); 3541 } 3542 if (ipha->ipha_protocol == IPPROTO_ICMP) { 3543 /* 3544 * Check the ICMP type. RFC 1122 sez: don't send ICMP 3545 * errors in response to any ICMP errors. 3546 */ 3547 len_needed = IPH_HDR_LENGTH(ipha) + ICMPH_SIZE; 3548 if (mp->b_wptr - mp->b_rptr < len_needed) { 3549 if (!pullupmsg(mp, len_needed)) { 3550 BUMP_MIB(&ipst->ips_icmp_mib, icmpInErrors); 3551 freemsg(mp); 3552 return (NULL); 3553 } 3554 ipha = (ipha_t *)mp->b_rptr; 3555 } 3556 icmph = (icmph_t *) 3557 (&((char *)ipha)[IPH_HDR_LENGTH(ipha)]); 3558 switch (icmph->icmph_type) { 3559 case ICMP_DEST_UNREACHABLE: 3560 case ICMP_SOURCE_QUENCH: 3561 case ICMP_TIME_EXCEEDED: 3562 case ICMP_PARAM_PROBLEM: 3563 case ICMP_REDIRECT: 3564 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops); 3565 freemsg(mp); 3566 return (NULL); 3567 default: 3568 break; 3569 } 3570 } 3571 /* 3572 * If this is a labeled system, then check to see if we're allowed to 3573 * send a response to this particular sender. If not, then just drop. 3574 */ 3575 if (is_system_labeled() && !tsol_can_reply_error(mp)) { 3576 ip2dbg(("icmp_pkt_err_ok: can't respond to packet\n")); 3577 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops); 3578 freemsg(mp); 3579 return (NULL); 3580 } 3581 if (icmp_err_rate_limit(ipst)) { 3582 /* 3583 * Only send ICMP error packets every so often. 3584 * This should be done on a per port/source basis, 3585 * but for now this will suffice. 3586 */ 3587 freemsg(mp); 3588 return (NULL); 3589 } 3590 return (mp); 3591 } 3592 3593 /* 3594 * Generate an ICMP redirect message. 3595 */ 3596 static void 3597 icmp_send_redirect(queue_t *q, mblk_t *mp, ipaddr_t gateway, ip_stack_t *ipst) 3598 { 3599 icmph_t icmph; 3600 3601 /* 3602 * We are called from ip_rput where we could 3603 * not have attached an IPSEC_IN. 3604 */ 3605 ASSERT(mp->b_datap->db_type == M_DATA); 3606 3607 if (!(mp = icmp_pkt_err_ok(mp, ipst))) { 3608 return; 3609 } 3610 3611 bzero(&icmph, sizeof (icmph_t)); 3612 icmph.icmph_type = ICMP_REDIRECT; 3613 icmph.icmph_code = 1; 3614 icmph.icmph_rd_gateway = gateway; 3615 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutRedirects); 3616 /* Redirects sent by router, and router is global zone */ 3617 icmp_pkt(q, mp, &icmph, sizeof (icmph_t), B_FALSE, GLOBAL_ZONEID, ipst); 3618 } 3619 3620 /* 3621 * Generate an ICMP time exceeded message. 3622 */ 3623 void 3624 icmp_time_exceeded(queue_t *q, mblk_t *mp, uint8_t code, zoneid_t zoneid, 3625 ip_stack_t *ipst) 3626 { 3627 icmph_t icmph; 3628 boolean_t mctl_present; 3629 mblk_t *first_mp; 3630 3631 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 3632 3633 if (!(mp = icmp_pkt_err_ok(mp, ipst))) { 3634 if (mctl_present) 3635 freeb(first_mp); 3636 return; 3637 } 3638 3639 bzero(&icmph, sizeof (icmph_t)); 3640 icmph.icmph_type = ICMP_TIME_EXCEEDED; 3641 icmph.icmph_code = code; 3642 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutTimeExcds); 3643 icmp_pkt(q, first_mp, &icmph, sizeof (icmph_t), mctl_present, zoneid, 3644 ipst); 3645 } 3646 3647 /* 3648 * Generate an ICMP unreachable message. 3649 */ 3650 void 3651 icmp_unreachable(queue_t *q, mblk_t *mp, uint8_t code, zoneid_t zoneid, 3652 ip_stack_t *ipst) 3653 { 3654 icmph_t icmph; 3655 mblk_t *first_mp; 3656 boolean_t mctl_present; 3657 3658 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 3659 3660 if (!(mp = icmp_pkt_err_ok(mp, ipst))) { 3661 if (mctl_present) 3662 freeb(first_mp); 3663 return; 3664 } 3665 3666 bzero(&icmph, sizeof (icmph_t)); 3667 icmph.icmph_type = ICMP_DEST_UNREACHABLE; 3668 icmph.icmph_code = code; 3669 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDestUnreachs); 3670 ip2dbg(("send icmp destination unreachable code %d\n", code)); 3671 icmp_pkt(q, first_mp, (char *)&icmph, sizeof (icmph_t), mctl_present, 3672 zoneid, ipst); 3673 } 3674 3675 /* 3676 * Attempt to start recovery of an IPv4 interface that's been shut down as a 3677 * duplicate. As long as someone else holds the address, the interface will 3678 * stay down. When that conflict goes away, the interface is brought back up. 3679 * This is done so that accidental shutdowns of addresses aren't made 3680 * permanent. Your server will recover from a failure. 3681 * 3682 * For DHCP, recovery is not done in the kernel. Instead, it's handled by a 3683 * user space process (dhcpagent). 3684 * 3685 * Recovery completes if ARP reports that the address is now ours (via 3686 * AR_CN_READY). In that case, we go to ip_arp_excl to finish the operation. 3687 * 3688 * This function is entered on a timer expiry; the ID is in ipif_recovery_id. 3689 */ 3690 static void 3691 ipif_dup_recovery(void *arg) 3692 { 3693 ipif_t *ipif = arg; 3694 ill_t *ill = ipif->ipif_ill; 3695 mblk_t *arp_add_mp; 3696 mblk_t *arp_del_mp; 3697 ip_stack_t *ipst = ill->ill_ipst; 3698 3699 ipif->ipif_recovery_id = 0; 3700 3701 /* 3702 * No lock needed for moving or condemned check, as this is just an 3703 * optimization. 3704 */ 3705 if (ill->ill_arp_closing || !(ipif->ipif_flags & IPIF_DUPLICATE) || 3706 (ipif->ipif_flags & IPIF_POINTOPOINT) || 3707 (ipif->ipif_state_flags & (IPIF_CONDEMNED))) { 3708 /* No reason to try to bring this address back. */ 3709 return; 3710 } 3711 3712 /* ACE_F_UNVERIFIED restarts DAD */ 3713 if ((arp_add_mp = ipif_area_alloc(ipif, ACE_F_UNVERIFIED)) == NULL) 3714 goto alloc_fail; 3715 3716 if (ipif->ipif_arp_del_mp == NULL) { 3717 if ((arp_del_mp = ipif_ared_alloc(ipif)) == NULL) 3718 goto alloc_fail; 3719 ipif->ipif_arp_del_mp = arp_del_mp; 3720 } 3721 3722 putnext(ill->ill_rq, arp_add_mp); 3723 return; 3724 3725 alloc_fail: 3726 /* 3727 * On allocation failure, just restart the timer. Note that the ipif 3728 * is down here, so no other thread could be trying to start a recovery 3729 * timer. The ill_lock protects the condemned flag and the recovery 3730 * timer ID. 3731 */ 3732 freemsg(arp_add_mp); 3733 mutex_enter(&ill->ill_lock); 3734 if (ipst->ips_ip_dup_recovery > 0 && ipif->ipif_recovery_id == 0 && 3735 !(ipif->ipif_state_flags & IPIF_CONDEMNED)) { 3736 ipif->ipif_recovery_id = timeout(ipif_dup_recovery, ipif, 3737 MSEC_TO_TICK(ipst->ips_ip_dup_recovery)); 3738 } 3739 mutex_exit(&ill->ill_lock); 3740 } 3741 3742 /* 3743 * This is for exclusive changes due to ARP. Either tear down an interface due 3744 * to AR_CN_FAILED and AR_CN_BOGON, or bring one up for successful recovery. 3745 */ 3746 /* ARGSUSED */ 3747 static void 3748 ip_arp_excl(ipsq_t *ipsq, queue_t *rq, mblk_t *mp, void *dummy_arg) 3749 { 3750 ill_t *ill = rq->q_ptr; 3751 arh_t *arh; 3752 ipaddr_t src; 3753 ipif_t *ipif; 3754 char ibuf[LIFNAMSIZ + 10]; /* 10 digits for logical i/f number */ 3755 char hbuf[MAC_STR_LEN]; 3756 char sbuf[INET_ADDRSTRLEN]; 3757 const char *failtype; 3758 boolean_t bring_up; 3759 ip_stack_t *ipst = ill->ill_ipst; 3760 3761 switch (((arcn_t *)mp->b_rptr)->arcn_code) { 3762 case AR_CN_READY: 3763 failtype = NULL; 3764 bring_up = B_TRUE; 3765 break; 3766 case AR_CN_FAILED: 3767 failtype = "in use"; 3768 bring_up = B_FALSE; 3769 break; 3770 default: 3771 failtype = "claimed"; 3772 bring_up = B_FALSE; 3773 break; 3774 } 3775 3776 arh = (arh_t *)mp->b_cont->b_rptr; 3777 bcopy((char *)&arh[1] + arh->arh_hlen, &src, IP_ADDR_LEN); 3778 3779 (void) mac_colon_addr((uint8_t *)(arh + 1), arh->arh_hlen, hbuf, 3780 sizeof (hbuf)); 3781 (void) ip_dot_addr(src, sbuf); 3782 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 3783 3784 if ((ipif->ipif_flags & IPIF_POINTOPOINT) || 3785 ipif->ipif_lcl_addr != src) { 3786 continue; 3787 } 3788 3789 /* 3790 * If we failed on a recovery probe, then restart the timer to 3791 * try again later. 3792 */ 3793 if (!bring_up && (ipif->ipif_flags & IPIF_DUPLICATE) && 3794 !(ipif->ipif_flags & (IPIF_DHCPRUNNING|IPIF_TEMPORARY)) && 3795 ill->ill_net_type == IRE_IF_RESOLVER && 3796 !(ipif->ipif_state_flags & IPIF_CONDEMNED) && 3797 ipst->ips_ip_dup_recovery > 0 && 3798 ipif->ipif_recovery_id == 0) { 3799 ipif->ipif_recovery_id = timeout(ipif_dup_recovery, 3800 ipif, MSEC_TO_TICK(ipst->ips_ip_dup_recovery)); 3801 continue; 3802 } 3803 3804 /* 3805 * If what we're trying to do has already been done, then do 3806 * nothing. 3807 */ 3808 if (bring_up == ((ipif->ipif_flags & IPIF_UP) != 0)) 3809 continue; 3810 3811 ipif_get_name(ipif, ibuf, sizeof (ibuf)); 3812 3813 if (failtype == NULL) { 3814 cmn_err(CE_NOTE, "recovered address %s on %s", sbuf, 3815 ibuf); 3816 } else { 3817 cmn_err(CE_WARN, "%s has duplicate address %s (%s " 3818 "by %s); disabled", ibuf, sbuf, failtype, hbuf); 3819 } 3820 3821 if (bring_up) { 3822 ASSERT(ill->ill_dl_up); 3823 /* 3824 * Free up the ARP delete message so we can allocate 3825 * a fresh one through the normal path. 3826 */ 3827 freemsg(ipif->ipif_arp_del_mp); 3828 ipif->ipif_arp_del_mp = NULL; 3829 if (ipif_resolver_up(ipif, Res_act_initial) != 3830 EINPROGRESS) { 3831 ipif->ipif_addr_ready = 1; 3832 (void) ipif_up_done(ipif); 3833 ASSERT(ill->ill_move_ipif == NULL); 3834 } 3835 continue; 3836 } 3837 3838 mutex_enter(&ill->ill_lock); 3839 ASSERT(!(ipif->ipif_flags & IPIF_DUPLICATE)); 3840 ipif->ipif_flags |= IPIF_DUPLICATE; 3841 ill->ill_ipif_dup_count++; 3842 mutex_exit(&ill->ill_lock); 3843 /* 3844 * Already exclusive on the ill; no need to handle deferred 3845 * processing here. 3846 */ 3847 (void) ipif_down(ipif, NULL, NULL); 3848 ipif_down_tail(ipif); 3849 mutex_enter(&ill->ill_lock); 3850 if (!(ipif->ipif_flags & (IPIF_DHCPRUNNING|IPIF_TEMPORARY)) && 3851 ill->ill_net_type == IRE_IF_RESOLVER && 3852 !(ipif->ipif_state_flags & IPIF_CONDEMNED) && 3853 ipst->ips_ip_dup_recovery > 0) { 3854 ASSERT(ipif->ipif_recovery_id == 0); 3855 ipif->ipif_recovery_id = timeout(ipif_dup_recovery, 3856 ipif, MSEC_TO_TICK(ipst->ips_ip_dup_recovery)); 3857 } 3858 mutex_exit(&ill->ill_lock); 3859 } 3860 freemsg(mp); 3861 } 3862 3863 /* ARGSUSED */ 3864 static void 3865 ip_arp_defend(ipsq_t *ipsq, queue_t *rq, mblk_t *mp, void *dummy_arg) 3866 { 3867 ill_t *ill = rq->q_ptr; 3868 arh_t *arh; 3869 ipaddr_t src; 3870 ipif_t *ipif; 3871 3872 arh = (arh_t *)mp->b_cont->b_rptr; 3873 bcopy((char *)&arh[1] + arh->arh_hlen, &src, IP_ADDR_LEN); 3874 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 3875 if ((ipif->ipif_flags & IPIF_UP) && ipif->ipif_lcl_addr == src) 3876 (void) ipif_resolver_up(ipif, Res_act_defend); 3877 } 3878 freemsg(mp); 3879 } 3880 3881 /* 3882 * News from ARP. ARP sends notification of interesting events down 3883 * to its clients using M_CTL messages with the interesting ARP packet 3884 * attached via b_cont. 3885 * The interesting event from a device comes up the corresponding ARP-IP-DEV 3886 * queue as opposed to ARP sending the message to all the clients, i.e. all 3887 * its ARP-IP-DEV instances. Thus, for AR_CN_ANNOUNCE, we must walk the cache 3888 * table if a cache IRE is found to delete all the entries for the address in 3889 * the packet. 3890 */ 3891 static void 3892 ip_arp_news(queue_t *q, mblk_t *mp) 3893 { 3894 arcn_t *arcn; 3895 arh_t *arh; 3896 ire_t *ire = NULL; 3897 char hbuf[MAC_STR_LEN]; 3898 char sbuf[INET_ADDRSTRLEN]; 3899 ipaddr_t src; 3900 in6_addr_t v6src; 3901 boolean_t isv6 = B_FALSE; 3902 ipif_t *ipif; 3903 ill_t *ill; 3904 ip_stack_t *ipst; 3905 3906 if (CONN_Q(q)) { 3907 conn_t *connp = Q_TO_CONN(q); 3908 3909 ipst = connp->conn_netstack->netstack_ip; 3910 } else { 3911 ill_t *ill = (ill_t *)q->q_ptr; 3912 3913 ipst = ill->ill_ipst; 3914 } 3915 3916 if ((mp->b_wptr - mp->b_rptr) < sizeof (arcn_t) || !mp->b_cont) { 3917 if (q->q_next) { 3918 putnext(q, mp); 3919 } else 3920 freemsg(mp); 3921 return; 3922 } 3923 arh = (arh_t *)mp->b_cont->b_rptr; 3924 /* Is it one we are interested in? */ 3925 if (BE16_TO_U16(arh->arh_proto) == IP6_DL_SAP) { 3926 isv6 = B_TRUE; 3927 bcopy((char *)&arh[1] + (arh->arh_hlen & 0xFF), &v6src, 3928 IPV6_ADDR_LEN); 3929 } else if (BE16_TO_U16(arh->arh_proto) == IP_ARP_PROTO_TYPE) { 3930 bcopy((char *)&arh[1] + (arh->arh_hlen & 0xFF), &src, 3931 IP_ADDR_LEN); 3932 } else { 3933 freemsg(mp); 3934 return; 3935 } 3936 3937 ill = q->q_ptr; 3938 3939 arcn = (arcn_t *)mp->b_rptr; 3940 switch (arcn->arcn_code) { 3941 case AR_CN_BOGON: 3942 /* 3943 * Someone is sending ARP packets with a source protocol 3944 * address that we have published and for which we believe our 3945 * entry is authoritative and (when ill_arp_extend is set) 3946 * verified to be unique on the network. 3947 * 3948 * The ARP module internally handles the cases where the sender 3949 * is just probing (for DAD) and where the hardware address of 3950 * a non-authoritative entry has changed. Thus, these are the 3951 * real conflicts, and we have to do resolution. 3952 * 3953 * We back away quickly from the address if it's from DHCP or 3954 * otherwise temporary and hasn't been used recently (or at 3955 * all). We'd like to include "deprecated" addresses here as 3956 * well (as there's no real reason to defend something we're 3957 * discarding), but IPMP "reuses" this flag to mean something 3958 * other than the standard meaning. 3959 * 3960 * If the ARP module above is not extended (meaning that it 3961 * doesn't know how to defend the address), then we just log 3962 * the problem as we always did and continue on. It's not 3963 * right, but there's little else we can do, and those old ATM 3964 * users are going away anyway. 3965 */ 3966 (void) mac_colon_addr((uint8_t *)(arh + 1), arh->arh_hlen, 3967 hbuf, sizeof (hbuf)); 3968 (void) ip_dot_addr(src, sbuf); 3969 if (isv6) { 3970 ire = ire_cache_lookup_v6(&v6src, ALL_ZONES, NULL, 3971 ipst); 3972 } else { 3973 ire = ire_cache_lookup(src, ALL_ZONES, NULL, ipst); 3974 } 3975 if (ire != NULL && IRE_IS_LOCAL(ire)) { 3976 uint32_t now; 3977 uint32_t maxage; 3978 clock_t lused; 3979 uint_t maxdefense; 3980 uint_t defs; 3981 3982 /* 3983 * First, figure out if this address hasn't been used 3984 * in a while. If it hasn't, then it's a better 3985 * candidate for abandoning. 3986 */ 3987 ipif = ire->ire_ipif; 3988 ASSERT(ipif != NULL); 3989 now = gethrestime_sec(); 3990 maxage = now - ire->ire_create_time; 3991 if (maxage > ipst->ips_ip_max_temp_idle) 3992 maxage = ipst->ips_ip_max_temp_idle; 3993 lused = drv_hztousec(ddi_get_lbolt() - 3994 ire->ire_last_used_time) / MICROSEC + 1; 3995 if (lused >= maxage && (ipif->ipif_flags & 3996 (IPIF_DHCPRUNNING | IPIF_TEMPORARY))) 3997 maxdefense = ipst->ips_ip_max_temp_defend; 3998 else 3999 maxdefense = ipst->ips_ip_max_defend; 4000 4001 /* 4002 * Now figure out how many times we've defended 4003 * ourselves. Ignore defenses that happened long in 4004 * the past. 4005 */ 4006 mutex_enter(&ire->ire_lock); 4007 if ((defs = ire->ire_defense_count) > 0 && 4008 now - ire->ire_defense_time > 4009 ipst->ips_ip_defend_interval) { 4010 ire->ire_defense_count = defs = 0; 4011 } 4012 ire->ire_defense_count++; 4013 ire->ire_defense_time = now; 4014 mutex_exit(&ire->ire_lock); 4015 ill_refhold(ill); 4016 ire_refrele(ire); 4017 4018 /* 4019 * If we've defended ourselves too many times already, 4020 * then give up and tear down the interface(s) using 4021 * this address. Otherwise, defend by sending out a 4022 * gratuitous ARP. 4023 */ 4024 if (defs >= maxdefense && ill->ill_arp_extend) { 4025 qwriter_ip(ill, q, mp, ip_arp_excl, NEW_OP, 4026 B_FALSE); 4027 } else { 4028 cmn_err(CE_WARN, 4029 "node %s is using our IP address %s on %s", 4030 hbuf, sbuf, ill->ill_name); 4031 /* 4032 * If this is an old (ATM) ARP module, then 4033 * don't try to defend the address. Remain 4034 * compatible with the old behavior. Defend 4035 * only with new ARP. 4036 */ 4037 if (ill->ill_arp_extend) { 4038 qwriter_ip(ill, q, mp, ip_arp_defend, 4039 NEW_OP, B_FALSE); 4040 } else { 4041 ill_refrele(ill); 4042 } 4043 } 4044 return; 4045 } 4046 cmn_err(CE_WARN, 4047 "proxy ARP problem? Node '%s' is using %s on %s", 4048 hbuf, sbuf, ill->ill_name); 4049 if (ire != NULL) 4050 ire_refrele(ire); 4051 break; 4052 case AR_CN_ANNOUNCE: 4053 if (isv6) { 4054 /* 4055 * For XRESOLV interfaces. 4056 * Delete the IRE cache entry and NCE for this 4057 * v6 address 4058 */ 4059 ip_ire_clookup_and_delete_v6(&v6src, ipst); 4060 /* 4061 * If v6src is a non-zero, it's a router address 4062 * as below. Do the same sort of thing to clean 4063 * out off-net IRE_CACHE entries that go through 4064 * the router. 4065 */ 4066 if (!IN6_IS_ADDR_UNSPECIFIED(&v6src)) { 4067 ire_walk_v6(ire_delete_cache_gw_v6, 4068 (char *)&v6src, ALL_ZONES, ipst); 4069 } 4070 } else { 4071 nce_hw_map_t hwm; 4072 4073 /* 4074 * ARP gives us a copy of any packet where it thinks 4075 * the address has changed, so that we can update our 4076 * caches. We're responsible for caching known answers 4077 * in the current design. We check whether the 4078 * hardware address really has changed in all of our 4079 * entries that have cached this mapping, and if so, we 4080 * blow them away. This way we will immediately pick 4081 * up the rare case of a host changing hardware 4082 * address. 4083 */ 4084 if (src == 0) 4085 break; 4086 hwm.hwm_addr = src; 4087 hwm.hwm_hwlen = arh->arh_hlen; 4088 hwm.hwm_hwaddr = (uchar_t *)(arh + 1); 4089 NDP_HW_CHANGE_INCR(ipst->ips_ndp4); 4090 ndp_walk_common(ipst->ips_ndp4, NULL, 4091 (pfi_t)nce_delete_hw_changed, &hwm, ALL_ZONES); 4092 NDP_HW_CHANGE_DECR(ipst->ips_ndp4); 4093 } 4094 break; 4095 case AR_CN_READY: 4096 /* No external v6 resolver has a contract to use this */ 4097 if (isv6) 4098 break; 4099 /* If the link is down, we'll retry this later */ 4100 if (!(ill->ill_phyint->phyint_flags & PHYI_RUNNING)) 4101 break; 4102 ipif = ipif_lookup_addr(src, ill, ALL_ZONES, NULL, NULL, 4103 NULL, NULL, ipst); 4104 if (ipif != NULL) { 4105 /* 4106 * If this is a duplicate recovery, then we now need to 4107 * go exclusive to bring this thing back up. 4108 */ 4109 if ((ipif->ipif_flags & (IPIF_UP|IPIF_DUPLICATE)) == 4110 IPIF_DUPLICATE) { 4111 ipif_refrele(ipif); 4112 ill_refhold(ill); 4113 qwriter_ip(ill, q, mp, ip_arp_excl, NEW_OP, 4114 B_FALSE); 4115 return; 4116 } 4117 /* 4118 * If this is the first notice that this address is 4119 * ready, then let the user know now. 4120 */ 4121 if ((ipif->ipif_flags & IPIF_UP) && 4122 !ipif->ipif_addr_ready) { 4123 ipif_mask_reply(ipif); 4124 ipif_up_notify(ipif); 4125 } 4126 ipif->ipif_addr_ready = 1; 4127 ipif_refrele(ipif); 4128 } 4129 ire = ire_cache_lookup(src, ALL_ZONES, msg_getlabel(mp), ipst); 4130 if (ire != NULL) { 4131 ire->ire_defense_count = 0; 4132 ire_refrele(ire); 4133 } 4134 break; 4135 case AR_CN_FAILED: 4136 /* No external v6 resolver has a contract to use this */ 4137 if (isv6) 4138 break; 4139 if (!ill->ill_arp_extend) { 4140 (void) mac_colon_addr((uint8_t *)(arh + 1), 4141 arh->arh_hlen, hbuf, sizeof (hbuf)); 4142 (void) ip_dot_addr(src, sbuf); 4143 4144 cmn_err(CE_WARN, 4145 "node %s is using our IP address %s on %s", 4146 hbuf, sbuf, ill->ill_name); 4147 break; 4148 } 4149 ill_refhold(ill); 4150 qwriter_ip(ill, q, mp, ip_arp_excl, NEW_OP, B_FALSE); 4151 return; 4152 } 4153 freemsg(mp); 4154 } 4155 4156 /* 4157 * Create a mblk suitable for carrying the interface index and/or source link 4158 * address. This mblk is tagged as an M_CTL and is sent to ULP. This is used 4159 * when the IP_RECVIF and/or IP_RECVSLLA socket option is set by the user 4160 * application. 4161 */ 4162 mblk_t * 4163 ip_add_info(mblk_t *data_mp, ill_t *ill, uint_t flags, zoneid_t zoneid, 4164 ip_stack_t *ipst) 4165 { 4166 mblk_t *mp; 4167 ip_pktinfo_t *pinfo; 4168 ipha_t *ipha; 4169 struct ether_header *pether; 4170 boolean_t ipmp_ill_held = B_FALSE; 4171 4172 mp = allocb(sizeof (ip_pktinfo_t), BPRI_MED); 4173 if (mp == NULL) { 4174 ip1dbg(("ip_add_info: allocation failure.\n")); 4175 return (data_mp); 4176 } 4177 4178 ipha = (ipha_t *)data_mp->b_rptr; 4179 pinfo = (ip_pktinfo_t *)mp->b_rptr; 4180 bzero(pinfo, sizeof (ip_pktinfo_t)); 4181 pinfo->ip_pkt_flags = (uchar_t)flags; 4182 pinfo->ip_pkt_ulp_type = IN_PKTINFO; /* Tell ULP what type of info */ 4183 4184 pether = (struct ether_header *)((char *)ipha 4185 - sizeof (struct ether_header)); 4186 4187 /* 4188 * Make sure the interface is an ethernet type, since this option 4189 * is currently supported only on this type of interface. Also make 4190 * sure we are pointing correctly above db_base. 4191 */ 4192 if ((flags & IPF_RECVSLLA) && 4193 ((uchar_t *)pether >= data_mp->b_datap->db_base) && 4194 (ill->ill_type == IFT_ETHER) && 4195 (ill->ill_net_type == IRE_IF_RESOLVER)) { 4196 pinfo->ip_pkt_slla.sdl_type = IFT_ETHER; 4197 bcopy(pether->ether_shost.ether_addr_octet, 4198 pinfo->ip_pkt_slla.sdl_data, ETHERADDRL); 4199 } else { 4200 /* 4201 * Clear the bit. Indicate to upper layer that IP is not 4202 * sending this ancillary info. 4203 */ 4204 pinfo->ip_pkt_flags = pinfo->ip_pkt_flags & ~IPF_RECVSLLA; 4205 } 4206 4207 /* 4208 * If `ill' is in an IPMP group, use the IPMP ill to determine 4209 * IPF_RECVIF and IPF_RECVADDR. (This currently assumes that 4210 * IPF_RECVADDR support on test addresses is not needed.) 4211 * 4212 * Note that `ill' may already be an IPMP ill if e.g. we're 4213 * processing a packet looped back to an IPMP data address 4214 * (since those IRE_LOCALs are tied to IPMP ills). 4215 */ 4216 if (IS_UNDER_IPMP(ill)) { 4217 if ((ill = ipmp_ill_hold_ipmp_ill(ill)) == NULL) { 4218 ip1dbg(("ip_add_info: cannot hold IPMP ill.\n")); 4219 freemsg(mp); 4220 return (data_mp); 4221 } 4222 ipmp_ill_held = B_TRUE; 4223 } 4224 4225 if (flags & (IPF_RECVIF | IPF_RECVADDR)) 4226 pinfo->ip_pkt_ifindex = ill->ill_phyint->phyint_ifindex; 4227 if (flags & IPF_RECVADDR) { 4228 ipif_t *ipif; 4229 ire_t *ire; 4230 4231 /* 4232 * Only valid for V4 4233 */ 4234 ASSERT((ipha->ipha_version_and_hdr_length & 0xf0) == 4235 (IPV4_VERSION << 4)); 4236 4237 ipif = ipif_get_next_ipif(NULL, ill); 4238 if (ipif != NULL) { 4239 /* 4240 * Since a decision has already been made to deliver the 4241 * packet, there is no need to test for SECATTR and 4242 * ZONEONLY. 4243 * When a multicast packet is transmitted 4244 * a cache entry is created for the multicast address. 4245 * When delivering a copy of the packet or when new 4246 * packets are received we do not want to match on the 4247 * cached entry so explicitly match on 4248 * IRE_LOCAL and IRE_LOOPBACK 4249 */ 4250 ire = ire_ctable_lookup(ipha->ipha_dst, 0, 4251 IRE_LOCAL | IRE_LOOPBACK, 4252 ipif, zoneid, NULL, 4253 MATCH_IRE_TYPE | MATCH_IRE_ILL, ipst); 4254 if (ire == NULL) { 4255 /* 4256 * packet must have come on a different 4257 * interface. 4258 * Since a decision has already been made to 4259 * deliver the packet, there is no need to test 4260 * for SECATTR and ZONEONLY. 4261 * Only match on local and broadcast ire's. 4262 * See detailed comment above. 4263 */ 4264 ire = ire_ctable_lookup(ipha->ipha_dst, 0, 4265 IRE_LOCAL | IRE_LOOPBACK, ipif, zoneid, 4266 NULL, MATCH_IRE_TYPE, ipst); 4267 } 4268 4269 if (ire == NULL) { 4270 /* 4271 * This is either a multicast packet or 4272 * the address has been removed since 4273 * the packet was received. 4274 * Return INADDR_ANY so that normal source 4275 * selection occurs for the response. 4276 */ 4277 4278 pinfo->ip_pkt_match_addr.s_addr = INADDR_ANY; 4279 } else { 4280 pinfo->ip_pkt_match_addr.s_addr = 4281 ire->ire_src_addr; 4282 ire_refrele(ire); 4283 } 4284 ipif_refrele(ipif); 4285 } else { 4286 pinfo->ip_pkt_match_addr.s_addr = INADDR_ANY; 4287 } 4288 } 4289 4290 if (ipmp_ill_held) 4291 ill_refrele(ill); 4292 4293 mp->b_datap->db_type = M_CTL; 4294 mp->b_wptr += sizeof (ip_pktinfo_t); 4295 mp->b_cont = data_mp; 4296 4297 return (mp); 4298 } 4299 4300 /* 4301 * Used to determine the most accurate cred_t to use for TX. 4302 * First priority is SCM_UCRED having set the label in the message, 4303 * which is used for MLP on UDP. Second priority is the peers label (aka 4304 * conn_peercred), which is needed for MLP on TCP/SCTP. Last priority is the 4305 * open credentials. 4306 */ 4307 cred_t * 4308 ip_best_cred(mblk_t *mp, conn_t *connp) 4309 { 4310 cred_t *cr; 4311 4312 cr = msg_getcred(mp, NULL); 4313 if (cr != NULL && crgetlabel(cr) != NULL) 4314 return (cr); 4315 return (CONN_CRED(connp)); 4316 } 4317 4318 /* 4319 * Latch in the IPsec state for a stream based on the ipsec_in_t passed in as 4320 * part of the bind request. 4321 */ 4322 4323 boolean_t 4324 ip_bind_ipsec_policy_set(conn_t *connp, mblk_t *policy_mp) 4325 { 4326 ipsec_in_t *ii; 4327 4328 ASSERT(policy_mp != NULL); 4329 ASSERT(policy_mp->b_datap->db_type == IPSEC_POLICY_SET); 4330 4331 ii = (ipsec_in_t *)policy_mp->b_rptr; 4332 ASSERT(ii->ipsec_in_type == IPSEC_IN); 4333 4334 connp->conn_policy = ii->ipsec_in_policy; 4335 ii->ipsec_in_policy = NULL; 4336 4337 if (ii->ipsec_in_action != NULL) { 4338 if (connp->conn_latch == NULL) { 4339 connp->conn_latch = iplatch_create(); 4340 if (connp->conn_latch == NULL) 4341 return (B_FALSE); 4342 } 4343 ipsec_latch_inbound(connp->conn_latch, ii); 4344 } 4345 return (B_TRUE); 4346 } 4347 4348 static void 4349 ip_bind_post_handling(conn_t *connp, mblk_t *mp, boolean_t ire_requested) 4350 { 4351 /* 4352 * Pass the IPsec headers size in ire_ipsec_overhead. 4353 * We can't do this in ip_bind_get_ire because the policy 4354 * may not have been inherited at that point in time and hence 4355 * conn_out_enforce_policy may not be set. 4356 */ 4357 if (ire_requested && connp->conn_out_enforce_policy && 4358 mp != NULL && DB_TYPE(mp) == IRE_DB_REQ_TYPE) { 4359 ire_t *ire = (ire_t *)mp->b_rptr; 4360 ASSERT(MBLKL(mp) >= sizeof (ire_t)); 4361 ire->ire_ipsec_overhead = conn_ipsec_length(connp); 4362 } 4363 } 4364 4365 /* 4366 * Upper level protocols (ULP) pass through bind requests to IP for inspection 4367 * and to arrange for power-fanout assist. The ULP is identified by 4368 * adding a single byte at the end of the original bind message. 4369 * A ULP other than UDP or TCP that wishes to be recognized passes 4370 * down a bind with a zero length address. 4371 * 4372 * The binding works as follows: 4373 * - A zero byte address means just bind to the protocol. 4374 * - A four byte address is treated as a request to validate 4375 * that the address is a valid local address, appropriate for 4376 * an application to bind to. This does not affect any fanout 4377 * information in IP. 4378 * - A sizeof sin_t byte address is used to bind to only the local address 4379 * and port. 4380 * - A sizeof ipa_conn_t byte address contains complete fanout information 4381 * consisting of local and remote addresses and ports. In 4382 * this case, the addresses are both validated as appropriate 4383 * for this operation, and, if so, the information is retained 4384 * for use in the inbound fanout. 4385 * 4386 * The ULP (except in the zero-length bind) can append an 4387 * additional mblk of db_type IRE_DB_REQ_TYPE or IPSEC_POLICY_SET to the 4388 * T_BIND_REQ/O_T_BIND_REQ. IRE_DB_REQ_TYPE indicates that the ULP wants 4389 * a copy of the source or destination IRE (source for local bind; 4390 * destination for complete bind). IPSEC_POLICY_SET indicates that the 4391 * policy information contained should be copied on to the conn. 4392 * 4393 * NOTE : Only one of IRE_DB_REQ_TYPE or IPSEC_POLICY_SET can be present. 4394 */ 4395 mblk_t * 4396 ip_bind_v4(queue_t *q, mblk_t *mp, conn_t *connp) 4397 { 4398 ssize_t len; 4399 struct T_bind_req *tbr; 4400 sin_t *sin; 4401 ipa_conn_t *ac; 4402 uchar_t *ucp; 4403 mblk_t *mp1; 4404 boolean_t ire_requested; 4405 int error = 0; 4406 int protocol; 4407 ipa_conn_x_t *acx; 4408 cred_t *cr; 4409 4410 /* 4411 * All Solaris components should pass a db_credp 4412 * for this TPI message, hence we ASSERT. 4413 * But in case there is some other M_PROTO that looks 4414 * like a TPI message sent by some other kernel 4415 * component, we check and return an error. 4416 */ 4417 cr = msg_getcred(mp, NULL); 4418 ASSERT(cr != NULL); 4419 if (cr == NULL) { 4420 error = EINVAL; 4421 goto bad_addr; 4422 } 4423 4424 ASSERT(!connp->conn_af_isv6); 4425 connp->conn_pkt_isv6 = B_FALSE; 4426 4427 len = MBLKL(mp); 4428 if (len < (sizeof (*tbr) + 1)) { 4429 (void) mi_strlog(q, 1, SL_ERROR|SL_TRACE, 4430 "ip_bind: bogus msg, len %ld", len); 4431 /* XXX: Need to return something better */ 4432 goto bad_addr; 4433 } 4434 /* Back up and extract the protocol identifier. */ 4435 mp->b_wptr--; 4436 protocol = *mp->b_wptr & 0xFF; 4437 tbr = (struct T_bind_req *)mp->b_rptr; 4438 /* Reset the message type in preparation for shipping it back. */ 4439 DB_TYPE(mp) = M_PCPROTO; 4440 4441 connp->conn_ulp = (uint8_t)protocol; 4442 4443 /* 4444 * Check for a zero length address. This is from a protocol that 4445 * wants to register to receive all packets of its type. 4446 */ 4447 if (tbr->ADDR_length == 0) { 4448 /* 4449 * These protocols are now intercepted in ip_bind_v6(). 4450 * Reject protocol-level binds here for now. 4451 * 4452 * For SCTP raw socket, ICMP sends down a bind with sin_t 4453 * so that the protocol type cannot be SCTP. 4454 */ 4455 if (protocol == IPPROTO_TCP || protocol == IPPROTO_AH || 4456 protocol == IPPROTO_ESP || protocol == IPPROTO_SCTP) { 4457 goto bad_addr; 4458 } 4459 4460 /* 4461 * 4462 * The udp module never sends down a zero-length address, 4463 * and allowing this on a labeled system will break MLP 4464 * functionality. 4465 */ 4466 if (is_system_labeled() && protocol == IPPROTO_UDP) 4467 goto bad_addr; 4468 4469 if (connp->conn_mac_exempt) 4470 goto bad_addr; 4471 4472 /* No hash here really. The table is big enough. */ 4473 connp->conn_srcv6 = ipv6_all_zeros; 4474 4475 ipcl_proto_insert(connp, protocol); 4476 4477 tbr->PRIM_type = T_BIND_ACK; 4478 return (mp); 4479 } 4480 4481 /* Extract the address pointer from the message. */ 4482 ucp = (uchar_t *)mi_offset_param(mp, tbr->ADDR_offset, 4483 tbr->ADDR_length); 4484 if (ucp == NULL) { 4485 ip1dbg(("ip_bind: no address\n")); 4486 goto bad_addr; 4487 } 4488 if (!OK_32PTR(ucp)) { 4489 ip1dbg(("ip_bind: unaligned address\n")); 4490 goto bad_addr; 4491 } 4492 /* 4493 * Check for trailing mps. 4494 */ 4495 4496 mp1 = mp->b_cont; 4497 ire_requested = (mp1 != NULL && DB_TYPE(mp1) == IRE_DB_REQ_TYPE); 4498 4499 switch (tbr->ADDR_length) { 4500 default: 4501 ip1dbg(("ip_bind: bad address length %d\n", 4502 (int)tbr->ADDR_length)); 4503 goto bad_addr; 4504 4505 case IP_ADDR_LEN: 4506 /* Verification of local address only */ 4507 error = ip_bind_laddr_v4(connp, &mp1, protocol, 4508 *(ipaddr_t *)ucp, 0, B_FALSE); 4509 break; 4510 4511 case sizeof (sin_t): 4512 sin = (sin_t *)ucp; 4513 error = ip_bind_laddr_v4(connp, &mp1, protocol, 4514 sin->sin_addr.s_addr, sin->sin_port, B_TRUE); 4515 break; 4516 4517 case sizeof (ipa_conn_t): 4518 ac = (ipa_conn_t *)ucp; 4519 /* For raw socket, the local port is not set. */ 4520 if (ac->ac_lport == 0) 4521 ac->ac_lport = connp->conn_lport; 4522 /* Always verify destination reachability. */ 4523 error = ip_bind_connected_v4(connp, &mp1, protocol, 4524 &ac->ac_laddr, ac->ac_lport, ac->ac_faddr, ac->ac_fport, 4525 B_TRUE, B_TRUE, cr); 4526 break; 4527 4528 case sizeof (ipa_conn_x_t): 4529 acx = (ipa_conn_x_t *)ucp; 4530 /* 4531 * Whether or not to verify destination reachability depends 4532 * on the setting of the ACX_VERIFY_DST flag in acx->acx_flags. 4533 */ 4534 error = ip_bind_connected_v4(connp, &mp1, protocol, 4535 &acx->acx_conn.ac_laddr, acx->acx_conn.ac_lport, 4536 acx->acx_conn.ac_faddr, acx->acx_conn.ac_fport, 4537 B_TRUE, (acx->acx_flags & ACX_VERIFY_DST) != 0, cr); 4538 break; 4539 } 4540 ASSERT(error != EINPROGRESS); 4541 if (error != 0) 4542 goto bad_addr; 4543 4544 ip_bind_post_handling(connp, mp->b_cont, ire_requested); 4545 4546 /* Send it home. */ 4547 mp->b_datap->db_type = M_PCPROTO; 4548 tbr->PRIM_type = T_BIND_ACK; 4549 return (mp); 4550 4551 bad_addr: 4552 /* 4553 * If error = -1 then we generate a TBADADDR - otherwise error is 4554 * a unix errno. 4555 */ 4556 if (error > 0) 4557 mp = mi_tpi_err_ack_alloc(mp, TSYSERR, error); 4558 else 4559 mp = mi_tpi_err_ack_alloc(mp, TBADADDR, 0); 4560 return (mp); 4561 } 4562 4563 /* 4564 * Here address is verified to be a valid local address. 4565 * If the IRE_DB_REQ_TYPE mp is present, a broadcast/multicast 4566 * address is also considered a valid local address. 4567 * In the case of a broadcast/multicast address, however, the 4568 * upper protocol is expected to reset the src address 4569 * to 0 if it sees a IRE_BROADCAST type returned so that 4570 * no packets are emitted with broadcast/multicast address as 4571 * source address (that violates hosts requirements RFC 1122) 4572 * The addresses valid for bind are: 4573 * (1) - INADDR_ANY (0) 4574 * (2) - IP address of an UP interface 4575 * (3) - IP address of a DOWN interface 4576 * (4) - valid local IP broadcast addresses. In this case 4577 * the conn will only receive packets destined to 4578 * the specified broadcast address. 4579 * (5) - a multicast address. In this case 4580 * the conn will only receive packets destined to 4581 * the specified multicast address. Note: the 4582 * application still has to issue an 4583 * IP_ADD_MEMBERSHIP socket option. 4584 * 4585 * On error, return -1 for TBADADDR otherwise pass the 4586 * errno with TSYSERR reply. 4587 * 4588 * In all the above cases, the bound address must be valid in the current zone. 4589 * When the address is loopback, multicast or broadcast, there might be many 4590 * matching IREs so bind has to look up based on the zone. 4591 * 4592 * Note: lport is in network byte order. 4593 * 4594 */ 4595 int 4596 ip_bind_laddr_v4(conn_t *connp, mblk_t **mpp, uint8_t protocol, 4597 ipaddr_t src_addr, uint16_t lport, boolean_t fanout_insert) 4598 { 4599 int error = 0; 4600 ire_t *src_ire; 4601 zoneid_t zoneid; 4602 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 4603 mblk_t *mp = NULL; 4604 boolean_t ire_requested = B_FALSE; 4605 boolean_t ipsec_policy_set = B_FALSE; 4606 4607 if (mpp) 4608 mp = *mpp; 4609 4610 if (mp != NULL) { 4611 ire_requested = (DB_TYPE(mp) == IRE_DB_REQ_TYPE); 4612 ipsec_policy_set = (DB_TYPE(mp) == IPSEC_POLICY_SET); 4613 } 4614 4615 /* 4616 * If it was previously connected, conn_fully_bound would have 4617 * been set. 4618 */ 4619 connp->conn_fully_bound = B_FALSE; 4620 4621 src_ire = NULL; 4622 4623 zoneid = IPCL_ZONEID(connp); 4624 4625 if (src_addr) { 4626 src_ire = ire_route_lookup(src_addr, 0, 0, 0, 4627 NULL, NULL, zoneid, NULL, MATCH_IRE_ZONEONLY, ipst); 4628 /* 4629 * If an address other than 0.0.0.0 is requested, 4630 * we verify that it is a valid address for bind 4631 * Note: Following code is in if-else-if form for 4632 * readability compared to a condition check. 4633 */ 4634 /* LINTED - statement has no consequence */ 4635 if (IRE_IS_LOCAL(src_ire)) { 4636 /* 4637 * (2) Bind to address of local UP interface 4638 */ 4639 } else if (src_ire && src_ire->ire_type == IRE_BROADCAST) { 4640 /* 4641 * (4) Bind to broadcast address 4642 * Note: permitted only from transports that 4643 * request IRE 4644 */ 4645 if (!ire_requested) 4646 error = EADDRNOTAVAIL; 4647 } else { 4648 /* 4649 * (3) Bind to address of local DOWN interface 4650 * (ipif_lookup_addr() looks up all interfaces 4651 * but we do not get here for UP interfaces 4652 * - case (2) above) 4653 */ 4654 /* LINTED - statement has no consequent */ 4655 if (ip_addr_exists(src_addr, zoneid, ipst)) { 4656 /* The address exists */ 4657 } else if (CLASSD(src_addr)) { 4658 error = 0; 4659 if (src_ire != NULL) 4660 ire_refrele(src_ire); 4661 /* 4662 * (5) bind to multicast address. 4663 * Fake out the IRE returned to upper 4664 * layer to be a broadcast IRE. 4665 */ 4666 src_ire = ire_ctable_lookup( 4667 INADDR_BROADCAST, INADDR_ANY, 4668 IRE_BROADCAST, NULL, zoneid, NULL, 4669 (MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY), 4670 ipst); 4671 if (src_ire == NULL || !ire_requested) 4672 error = EADDRNOTAVAIL; 4673 } else { 4674 /* 4675 * Not a valid address for bind 4676 */ 4677 error = EADDRNOTAVAIL; 4678 } 4679 } 4680 if (error) { 4681 /* Red Alert! Attempting to be a bogon! */ 4682 ip1dbg(("ip_bind_laddr_v4: bad src address 0x%x\n", 4683 ntohl(src_addr))); 4684 goto bad_addr; 4685 } 4686 } 4687 4688 /* 4689 * Allow setting new policies. For example, disconnects come 4690 * down as ipa_t bind. As we would have set conn_policy_cached 4691 * to B_TRUE before, we should set it to B_FALSE, so that policy 4692 * can change after the disconnect. 4693 */ 4694 connp->conn_policy_cached = B_FALSE; 4695 4696 /* 4697 * If not fanout_insert this was just an address verification 4698 */ 4699 if (fanout_insert) { 4700 /* 4701 * The addresses have been verified. Time to insert in 4702 * the correct fanout list. 4703 */ 4704 IN6_IPADDR_TO_V4MAPPED(src_addr, &connp->conn_srcv6); 4705 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &connp->conn_remv6); 4706 connp->conn_lport = lport; 4707 connp->conn_fport = 0; 4708 /* 4709 * Do we need to add a check to reject Multicast packets 4710 */ 4711 error = ipcl_bind_insert(connp, protocol, src_addr, lport); 4712 } 4713 4714 if (error == 0) { 4715 if (ire_requested) { 4716 if (!ip_bind_get_ire_v4(mpp, src_ire, NULL, ipst)) { 4717 error = -1; 4718 /* Falls through to bad_addr */ 4719 } 4720 } else if (ipsec_policy_set) { 4721 if (!ip_bind_ipsec_policy_set(connp, mp)) { 4722 error = -1; 4723 /* Falls through to bad_addr */ 4724 } 4725 } 4726 } 4727 bad_addr: 4728 if (error != 0) { 4729 if (connp->conn_anon_port) { 4730 (void) tsol_mlp_anon(crgetzone(connp->conn_cred), 4731 connp->conn_mlp_type, connp->conn_ulp, ntohs(lport), 4732 B_FALSE); 4733 } 4734 connp->conn_mlp_type = mlptSingle; 4735 } 4736 if (src_ire != NULL) 4737 IRE_REFRELE(src_ire); 4738 return (error); 4739 } 4740 4741 int 4742 ip_proto_bind_laddr_v4(conn_t *connp, mblk_t **ire_mpp, uint8_t protocol, 4743 ipaddr_t src_addr, uint16_t lport, boolean_t fanout_insert) 4744 { 4745 int error; 4746 mblk_t *mp = NULL; 4747 boolean_t ire_requested; 4748 4749 if (ire_mpp) 4750 mp = *ire_mpp; 4751 ire_requested = (mp != NULL && DB_TYPE(mp) == IRE_DB_REQ_TYPE); 4752 4753 ASSERT(!connp->conn_af_isv6); 4754 connp->conn_pkt_isv6 = B_FALSE; 4755 connp->conn_ulp = protocol; 4756 4757 error = ip_bind_laddr_v4(connp, ire_mpp, protocol, src_addr, lport, 4758 fanout_insert); 4759 if (error == 0) { 4760 ip_bind_post_handling(connp, ire_mpp ? *ire_mpp : NULL, 4761 ire_requested); 4762 } else if (error < 0) { 4763 error = -TBADADDR; 4764 } 4765 return (error); 4766 } 4767 4768 /* 4769 * Verify that both the source and destination addresses 4770 * are valid. If verify_dst is false, then the destination address may be 4771 * unreachable, i.e. have no route to it. Protocols like TCP want to verify 4772 * destination reachability, while tunnels do not. 4773 * Note that we allow connect to broadcast and multicast 4774 * addresses when ire_requested is set. Thus the ULP 4775 * has to check for IRE_BROADCAST and multicast. 4776 * 4777 * Returns zero if ok. 4778 * On error: returns -1 to mean TBADADDR otherwise returns an errno 4779 * (for use with TSYSERR reply). 4780 * 4781 * Note: lport and fport are in network byte order. 4782 */ 4783 int 4784 ip_bind_connected_v4(conn_t *connp, mblk_t **mpp, uint8_t protocol, 4785 ipaddr_t *src_addrp, uint16_t lport, ipaddr_t dst_addr, uint16_t fport, 4786 boolean_t fanout_insert, boolean_t verify_dst, cred_t *cr) 4787 { 4788 4789 ire_t *src_ire; 4790 ire_t *dst_ire; 4791 int error = 0; 4792 ire_t *sire = NULL; 4793 ire_t *md_dst_ire = NULL; 4794 ire_t *lso_dst_ire = NULL; 4795 ill_t *ill = NULL; 4796 zoneid_t zoneid; 4797 ipaddr_t src_addr = *src_addrp; 4798 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 4799 mblk_t *mp = NULL; 4800 boolean_t ire_requested = B_FALSE; 4801 boolean_t ipsec_policy_set = B_FALSE; 4802 ts_label_t *tsl = NULL; 4803 4804 if (mpp) 4805 mp = *mpp; 4806 4807 if (mp != NULL) { 4808 ire_requested = (DB_TYPE(mp) == IRE_DB_REQ_TYPE); 4809 ipsec_policy_set = (DB_TYPE(mp) == IPSEC_POLICY_SET); 4810 } 4811 if (cr != NULL) 4812 tsl = crgetlabel(cr); 4813 4814 src_ire = dst_ire = NULL; 4815 4816 /* 4817 * If we never got a disconnect before, clear it now. 4818 */ 4819 connp->conn_fully_bound = B_FALSE; 4820 4821 zoneid = IPCL_ZONEID(connp); 4822 4823 if (CLASSD(dst_addr)) { 4824 /* Pick up an IRE_BROADCAST */ 4825 dst_ire = ire_route_lookup(ip_g_all_ones, 0, 0, 0, NULL, 4826 NULL, zoneid, tsl, 4827 (MATCH_IRE_RECURSIVE | 4828 MATCH_IRE_DEFAULT | MATCH_IRE_RJ_BHOLE | 4829 MATCH_IRE_SECATTR), ipst); 4830 } else { 4831 /* 4832 * If conn_dontroute is set or if conn_nexthop_set is set, 4833 * and onlink ipif is not found set ENETUNREACH error. 4834 */ 4835 if (connp->conn_dontroute || connp->conn_nexthop_set) { 4836 ipif_t *ipif; 4837 4838 ipif = ipif_lookup_onlink_addr(connp->conn_dontroute ? 4839 dst_addr : connp->conn_nexthop_v4, zoneid, ipst); 4840 if (ipif == NULL) { 4841 error = ENETUNREACH; 4842 goto bad_addr; 4843 } 4844 ipif_refrele(ipif); 4845 } 4846 4847 if (connp->conn_nexthop_set) { 4848 dst_ire = ire_route_lookup(connp->conn_nexthop_v4, 0, 4849 0, 0, NULL, NULL, zoneid, tsl, 4850 MATCH_IRE_SECATTR, ipst); 4851 } else { 4852 dst_ire = ire_route_lookup(dst_addr, 0, 0, 0, NULL, 4853 &sire, zoneid, tsl, 4854 (MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT | 4855 MATCH_IRE_PARENT | MATCH_IRE_RJ_BHOLE | 4856 MATCH_IRE_SECATTR), ipst); 4857 } 4858 } 4859 /* 4860 * dst_ire can't be a broadcast when not ire_requested. 4861 * We also prevent ire's with src address INADDR_ANY to 4862 * be used, which are created temporarily for 4863 * sending out packets from endpoints that have 4864 * conn_unspec_src set. If verify_dst is true, the destination must be 4865 * reachable. If verify_dst is false, the destination needn't be 4866 * reachable. 4867 * 4868 * If we match on a reject or black hole, then we've got a 4869 * local failure. May as well fail out the connect() attempt, 4870 * since it's never going to succeed. 4871 */ 4872 if (dst_ire == NULL || dst_ire->ire_src_addr == INADDR_ANY || 4873 (dst_ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) || 4874 ((dst_ire->ire_type & IRE_BROADCAST) && !ire_requested)) { 4875 /* 4876 * If we're verifying destination reachability, we always want 4877 * to complain here. 4878 * 4879 * If we're not verifying destination reachability but the 4880 * destination has a route, we still want to fail on the 4881 * temporary address and broadcast address tests. 4882 */ 4883 if (verify_dst || (dst_ire != NULL)) { 4884 if (ip_debug > 2) { 4885 pr_addr_dbg("ip_bind_connected_v4:" 4886 "bad connected dst %s\n", 4887 AF_INET, &dst_addr); 4888 } 4889 if (dst_ire == NULL || !(dst_ire->ire_type & IRE_HOST)) 4890 error = ENETUNREACH; 4891 else 4892 error = EHOSTUNREACH; 4893 goto bad_addr; 4894 } 4895 } 4896 4897 /* 4898 * We now know that routing will allow us to reach the destination. 4899 * Check whether Trusted Solaris policy allows communication with this 4900 * host, and pretend that the destination is unreachable if not. 4901 * 4902 * This is never a problem for TCP, since that transport is known to 4903 * compute the label properly as part of the tcp_rput_other T_BIND_ACK 4904 * handling. If the remote is unreachable, it will be detected at that 4905 * point, so there's no reason to check it here. 4906 * 4907 * Note that for sendto (and other datagram-oriented friends), this 4908 * check is done as part of the data path label computation instead. 4909 * The check here is just to make non-TCP connect() report the right 4910 * error. 4911 */ 4912 if (dst_ire != NULL && is_system_labeled() && 4913 !IPCL_IS_TCP(connp) && 4914 tsol_compute_label(cr, dst_addr, NULL, 4915 connp->conn_mac_exempt, ipst) != 0) { 4916 error = EHOSTUNREACH; 4917 if (ip_debug > 2) { 4918 pr_addr_dbg("ip_bind_connected_v4:" 4919 " no label for dst %s\n", 4920 AF_INET, &dst_addr); 4921 } 4922 goto bad_addr; 4923 } 4924 4925 /* 4926 * If the app does a connect(), it means that it will most likely 4927 * send more than 1 packet to the destination. It makes sense 4928 * to clear the temporary flag. 4929 */ 4930 if (dst_ire != NULL && dst_ire->ire_type == IRE_CACHE && 4931 (dst_ire->ire_marks & IRE_MARK_TEMPORARY)) { 4932 irb_t *irb = dst_ire->ire_bucket; 4933 4934 rw_enter(&irb->irb_lock, RW_WRITER); 4935 /* 4936 * We need to recheck for IRE_MARK_TEMPORARY after acquiring 4937 * the lock to guarantee irb_tmp_ire_cnt. 4938 */ 4939 if (dst_ire->ire_marks & IRE_MARK_TEMPORARY) { 4940 dst_ire->ire_marks &= ~IRE_MARK_TEMPORARY; 4941 irb->irb_tmp_ire_cnt--; 4942 } 4943 rw_exit(&irb->irb_lock); 4944 } 4945 4946 /* 4947 * See if we should notify ULP about LSO/MDT; we do this whether or not 4948 * ire_requested is TRUE, in order to handle active connects; LSO/MDT 4949 * eligibility tests for passive connects are handled separately 4950 * through tcp_adapt_ire(). We do this before the source address 4951 * selection, because dst_ire may change after a call to 4952 * ipif_select_source(). This is a best-effort check, as the 4953 * packet for this connection may not actually go through 4954 * dst_ire->ire_stq, and the exact IRE can only be known after 4955 * calling ip_newroute(). This is why we further check on the 4956 * IRE during LSO/Multidata packet transmission in 4957 * tcp_lsosend()/tcp_multisend(). 4958 */ 4959 if (!ipsec_policy_set && dst_ire != NULL && 4960 !(dst_ire->ire_type & (IRE_LOCAL | IRE_LOOPBACK | IRE_BROADCAST)) && 4961 (ill = ire_to_ill(dst_ire), ill != NULL)) { 4962 if (ipst->ips_ip_lso_outbound && ILL_LSO_CAPABLE(ill)) { 4963 lso_dst_ire = dst_ire; 4964 IRE_REFHOLD(lso_dst_ire); 4965 } else if (ipst->ips_ip_multidata_outbound && 4966 ILL_MDT_CAPABLE(ill)) { 4967 md_dst_ire = dst_ire; 4968 IRE_REFHOLD(md_dst_ire); 4969 } 4970 } 4971 4972 if (dst_ire != NULL && dst_ire->ire_type == IRE_LOCAL && 4973 dst_ire->ire_zoneid != zoneid && dst_ire->ire_zoneid != ALL_ZONES) { 4974 /* 4975 * If the IRE belongs to a different zone, look for a matching 4976 * route in the forwarding table and use the source address from 4977 * that route. 4978 */ 4979 src_ire = ire_ftable_lookup(dst_addr, 0, 0, 0, NULL, NULL, 4980 zoneid, 0, NULL, 4981 MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT | 4982 MATCH_IRE_RJ_BHOLE, ipst); 4983 if (src_ire == NULL) { 4984 error = EHOSTUNREACH; 4985 goto bad_addr; 4986 } else if (src_ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) { 4987 if (!(src_ire->ire_type & IRE_HOST)) 4988 error = ENETUNREACH; 4989 else 4990 error = EHOSTUNREACH; 4991 goto bad_addr; 4992 } 4993 if (src_addr == INADDR_ANY) 4994 src_addr = src_ire->ire_src_addr; 4995 ire_refrele(src_ire); 4996 src_ire = NULL; 4997 } else if ((src_addr == INADDR_ANY) && (dst_ire != NULL)) { 4998 if ((sire != NULL) && (sire->ire_flags & RTF_SETSRC)) { 4999 src_addr = sire->ire_src_addr; 5000 ire_refrele(dst_ire); 5001 dst_ire = sire; 5002 sire = NULL; 5003 } else { 5004 /* 5005 * Pick a source address so that a proper inbound 5006 * load spreading would happen. 5007 */ 5008 ill_t *ire_ill = dst_ire->ire_ipif->ipif_ill; 5009 ipif_t *src_ipif = NULL; 5010 ire_t *ipif_ire; 5011 5012 /* 5013 * Supply a local source address such that inbound 5014 * load spreading happens. 5015 * 5016 * Determine the best source address on this ill for 5017 * the destination. 5018 * 5019 * 1) For broadcast, we should return a broadcast ire 5020 * found above so that upper layers know that the 5021 * destination address is a broadcast address. 5022 * 5023 * 2) If the ipif is DEPRECATED, select a better 5024 * source address. Similarly, if the ipif is on 5025 * the IPMP meta-interface, pick a source address 5026 * at random to improve inbound load spreading. 5027 * 5028 * 3) If the outgoing interface is part of a usesrc 5029 * group, then try selecting a source address from 5030 * the usesrc ILL. 5031 */ 5032 if ((dst_ire->ire_zoneid != zoneid && 5033 dst_ire->ire_zoneid != ALL_ZONES) || 5034 (!(dst_ire->ire_flags & RTF_SETSRC)) && 5035 (!(dst_ire->ire_type & IRE_BROADCAST) && 5036 (IS_IPMP(ire_ill) || 5037 (dst_ire->ire_ipif->ipif_flags & IPIF_DEPRECATED) || 5038 (ire_ill->ill_usesrc_ifindex != 0)))) { 5039 /* 5040 * If the destination is reachable via a 5041 * given gateway, the selected source address 5042 * should be in the same subnet as the gateway. 5043 * Otherwise, the destination is not reachable. 5044 * 5045 * If there are no interfaces on the same subnet 5046 * as the destination, ipif_select_source gives 5047 * first non-deprecated interface which might be 5048 * on a different subnet than the gateway. 5049 * This is not desirable. Hence pass the dst_ire 5050 * source address to ipif_select_source. 5051 * It is sure that the destination is reachable 5052 * with the dst_ire source address subnet. 5053 * So passing dst_ire source address to 5054 * ipif_select_source will make sure that the 5055 * selected source will be on the same subnet 5056 * as dst_ire source address. 5057 */ 5058 ipaddr_t saddr = 5059 dst_ire->ire_ipif->ipif_src_addr; 5060 src_ipif = ipif_select_source(ire_ill, 5061 saddr, zoneid); 5062 if (src_ipif != NULL) { 5063 if (IS_VNI(src_ipif->ipif_ill)) { 5064 /* 5065 * For VNI there is no 5066 * interface route 5067 */ 5068 src_addr = 5069 src_ipif->ipif_src_addr; 5070 } else { 5071 ipif_ire = 5072 ipif_to_ire(src_ipif); 5073 if (ipif_ire != NULL) { 5074 IRE_REFRELE(dst_ire); 5075 dst_ire = ipif_ire; 5076 } 5077 src_addr = 5078 dst_ire->ire_src_addr; 5079 } 5080 ipif_refrele(src_ipif); 5081 } else { 5082 src_addr = dst_ire->ire_src_addr; 5083 } 5084 } else { 5085 src_addr = dst_ire->ire_src_addr; 5086 } 5087 } 5088 } 5089 5090 /* 5091 * We do ire_route_lookup() here (and not 5092 * interface lookup as we assert that 5093 * src_addr should only come from an 5094 * UP interface for hard binding. 5095 */ 5096 ASSERT(src_ire == NULL); 5097 src_ire = ire_route_lookup(src_addr, 0, 0, 0, NULL, 5098 NULL, zoneid, NULL, MATCH_IRE_ZONEONLY, ipst); 5099 /* src_ire must be a local|loopback */ 5100 if (!IRE_IS_LOCAL(src_ire)) { 5101 if (ip_debug > 2) { 5102 pr_addr_dbg("ip_bind_connected_v4: bad connected " 5103 "src %s\n", AF_INET, &src_addr); 5104 } 5105 error = EADDRNOTAVAIL; 5106 goto bad_addr; 5107 } 5108 5109 /* 5110 * If the source address is a loopback address, the 5111 * destination had best be local or multicast. 5112 * The transports that can't handle multicast will reject 5113 * those addresses. 5114 */ 5115 if (src_ire->ire_type == IRE_LOOPBACK && 5116 !(IRE_IS_LOCAL(dst_ire) || CLASSD(dst_addr))) { 5117 ip1dbg(("ip_bind_connected_v4: bad connected loopback\n")); 5118 error = -1; 5119 goto bad_addr; 5120 } 5121 5122 /* 5123 * Allow setting new policies. For example, disconnects come 5124 * down as ipa_t bind. As we would have set conn_policy_cached 5125 * to B_TRUE before, we should set it to B_FALSE, so that policy 5126 * can change after the disconnect. 5127 */ 5128 connp->conn_policy_cached = B_FALSE; 5129 5130 /* 5131 * Set the conn addresses/ports immediately, so the IPsec policy calls 5132 * can handle their passed-in conn's. 5133 */ 5134 5135 IN6_IPADDR_TO_V4MAPPED(src_addr, &connp->conn_srcv6); 5136 IN6_IPADDR_TO_V4MAPPED(dst_addr, &connp->conn_remv6); 5137 connp->conn_lport = lport; 5138 connp->conn_fport = fport; 5139 *src_addrp = src_addr; 5140 5141 ASSERT(!(ipsec_policy_set && ire_requested)); 5142 if (ire_requested) { 5143 iulp_t *ulp_info = NULL; 5144 5145 /* 5146 * Note that sire will not be NULL if this is an off-link 5147 * connection and there is not cache for that dest yet. 5148 * 5149 * XXX Because of an existing bug, if there are multiple 5150 * default routes, the IRE returned now may not be the actual 5151 * default route used (default routes are chosen in a 5152 * round robin fashion). So if the metrics for different 5153 * default routes are different, we may return the wrong 5154 * metrics. This will not be a problem if the existing 5155 * bug is fixed. 5156 */ 5157 if (sire != NULL) { 5158 ulp_info = &(sire->ire_uinfo); 5159 } 5160 if (!ip_bind_get_ire_v4(mpp, dst_ire, ulp_info, ipst)) { 5161 error = -1; 5162 goto bad_addr; 5163 } 5164 mp = *mpp; 5165 } else if (ipsec_policy_set) { 5166 if (!ip_bind_ipsec_policy_set(connp, mp)) { 5167 error = -1; 5168 goto bad_addr; 5169 } 5170 } 5171 5172 /* 5173 * Cache IPsec policy in this conn. If we have per-socket policy, 5174 * we'll cache that. If we don't, we'll inherit global policy. 5175 * 5176 * We can't insert until the conn reflects the policy. Note that 5177 * conn_policy_cached is set by ipsec_conn_cache_policy() even for 5178 * connections where we don't have a policy. This is to prevent 5179 * global policy lookups in the inbound path. 5180 * 5181 * If we insert before we set conn_policy_cached, 5182 * CONN_INBOUND_POLICY_PRESENT() check can still evaluate true 5183 * because global policy cound be non-empty. We normally call 5184 * ipsec_check_policy() for conn_policy_cached connections only if 5185 * ipc_in_enforce_policy is set. But in this case, 5186 * conn_policy_cached can get set anytime since we made the 5187 * CONN_INBOUND_POLICY_PRESENT() check and ipsec_check_policy() is 5188 * called, which will make the above assumption false. Thus, we 5189 * need to insert after we set conn_policy_cached. 5190 */ 5191 if ((error = ipsec_conn_cache_policy(connp, B_TRUE)) != 0) 5192 goto bad_addr; 5193 5194 if (fanout_insert) { 5195 /* 5196 * The addresses have been verified. Time to insert in 5197 * the correct fanout list. 5198 */ 5199 error = ipcl_conn_insert(connp, protocol, src_addr, 5200 dst_addr, connp->conn_ports); 5201 } 5202 5203 if (error == 0) { 5204 connp->conn_fully_bound = B_TRUE; 5205 /* 5206 * Our initial checks for LSO/MDT have passed; the IRE is not 5207 * LOCAL/LOOPBACK/BROADCAST, and the link layer seems to 5208 * be supporting LSO/MDT. Pass the IRE, IPC and ILL into 5209 * ip_xxinfo_return(), which performs further checks 5210 * against them and upon success, returns the LSO/MDT info 5211 * mblk which we will attach to the bind acknowledgment. 5212 */ 5213 if (lso_dst_ire != NULL) { 5214 mblk_t *lsoinfo_mp; 5215 5216 ASSERT(ill->ill_lso_capab != NULL); 5217 if ((lsoinfo_mp = ip_lsoinfo_return(lso_dst_ire, connp, 5218 ill->ill_name, ill->ill_lso_capab)) != NULL) { 5219 if (mp == NULL) { 5220 *mpp = lsoinfo_mp; 5221 } else { 5222 linkb(mp, lsoinfo_mp); 5223 } 5224 } 5225 } else if (md_dst_ire != NULL) { 5226 mblk_t *mdinfo_mp; 5227 5228 ASSERT(ill->ill_mdt_capab != NULL); 5229 if ((mdinfo_mp = ip_mdinfo_return(md_dst_ire, connp, 5230 ill->ill_name, ill->ill_mdt_capab)) != NULL) { 5231 if (mp == NULL) { 5232 *mpp = mdinfo_mp; 5233 } else { 5234 linkb(mp, mdinfo_mp); 5235 } 5236 } 5237 } 5238 } 5239 bad_addr: 5240 if (ipsec_policy_set) { 5241 ASSERT(mp != NULL); 5242 freeb(mp); 5243 /* 5244 * As of now assume that nothing else accompanies 5245 * IPSEC_POLICY_SET. 5246 */ 5247 *mpp = NULL; 5248 } 5249 if (src_ire != NULL) 5250 IRE_REFRELE(src_ire); 5251 if (dst_ire != NULL) 5252 IRE_REFRELE(dst_ire); 5253 if (sire != NULL) 5254 IRE_REFRELE(sire); 5255 if (md_dst_ire != NULL) 5256 IRE_REFRELE(md_dst_ire); 5257 if (lso_dst_ire != NULL) 5258 IRE_REFRELE(lso_dst_ire); 5259 return (error); 5260 } 5261 5262 int 5263 ip_proto_bind_connected_v4(conn_t *connp, mblk_t **ire_mpp, uint8_t protocol, 5264 ipaddr_t *src_addrp, uint16_t lport, ipaddr_t dst_addr, uint16_t fport, 5265 boolean_t fanout_insert, boolean_t verify_dst, cred_t *cr) 5266 { 5267 int error; 5268 mblk_t *mp = NULL; 5269 boolean_t ire_requested; 5270 5271 if (ire_mpp) 5272 mp = *ire_mpp; 5273 ire_requested = (mp != NULL && DB_TYPE(mp) == IRE_DB_REQ_TYPE); 5274 5275 ASSERT(!connp->conn_af_isv6); 5276 connp->conn_pkt_isv6 = B_FALSE; 5277 connp->conn_ulp = protocol; 5278 5279 /* For raw socket, the local port is not set. */ 5280 if (lport == 0) 5281 lport = connp->conn_lport; 5282 error = ip_bind_connected_v4(connp, ire_mpp, protocol, 5283 src_addrp, lport, dst_addr, fport, fanout_insert, verify_dst, cr); 5284 if (error == 0) { 5285 ip_bind_post_handling(connp, ire_mpp ? *ire_mpp : NULL, 5286 ire_requested); 5287 } else if (error < 0) { 5288 error = -TBADADDR; 5289 } 5290 return (error); 5291 } 5292 5293 /* 5294 * Get the ire in *mpp. Returns false if it fails (due to lack of space). 5295 * Prefers dst_ire over src_ire. 5296 */ 5297 static boolean_t 5298 ip_bind_get_ire_v4(mblk_t **mpp, ire_t *ire, iulp_t *ulp_info, ip_stack_t *ipst) 5299 { 5300 mblk_t *mp = *mpp; 5301 ire_t *ret_ire; 5302 5303 ASSERT(mp != NULL); 5304 5305 if (ire != NULL) { 5306 /* 5307 * mp initialized above to IRE_DB_REQ_TYPE 5308 * appended mblk. Its <upper protocol>'s 5309 * job to make sure there is room. 5310 */ 5311 if ((mp->b_datap->db_lim - mp->b_rptr) < sizeof (ire_t)) 5312 return (B_FALSE); 5313 5314 mp->b_datap->db_type = IRE_DB_TYPE; 5315 mp->b_wptr = mp->b_rptr + sizeof (ire_t); 5316 bcopy(ire, mp->b_rptr, sizeof (ire_t)); 5317 ret_ire = (ire_t *)mp->b_rptr; 5318 /* 5319 * Pass the latest setting of the ip_path_mtu_discovery and 5320 * copy the ulp info if any. 5321 */ 5322 ret_ire->ire_frag_flag |= (ipst->ips_ip_path_mtu_discovery) ? 5323 IPH_DF : 0; 5324 if (ulp_info != NULL) { 5325 bcopy(ulp_info, &(ret_ire->ire_uinfo), 5326 sizeof (iulp_t)); 5327 } 5328 ret_ire->ire_mp = mp; 5329 } else { 5330 /* 5331 * No IRE was found. Remove IRE mblk. 5332 */ 5333 *mpp = mp->b_cont; 5334 freeb(mp); 5335 } 5336 return (B_TRUE); 5337 } 5338 5339 /* 5340 * Carve "len" bytes out of an mblk chain, consuming any we empty, and duping 5341 * the final piece where we don't. Return a pointer to the first mblk in the 5342 * result, and update the pointer to the next mblk to chew on. If anything 5343 * goes wrong (i.e., dupb fails), we waste everything in sight and return a 5344 * NULL pointer. 5345 */ 5346 mblk_t * 5347 ip_carve_mp(mblk_t **mpp, ssize_t len) 5348 { 5349 mblk_t *mp0; 5350 mblk_t *mp1; 5351 mblk_t *mp2; 5352 5353 if (!len || !mpp || !(mp0 = *mpp)) 5354 return (NULL); 5355 /* If we aren't going to consume the first mblk, we need a dup. */ 5356 if (mp0->b_wptr - mp0->b_rptr > len) { 5357 mp1 = dupb(mp0); 5358 if (mp1) { 5359 /* Partition the data between the two mblks. */ 5360 mp1->b_wptr = mp1->b_rptr + len; 5361 mp0->b_rptr = mp1->b_wptr; 5362 /* 5363 * after adjustments if mblk not consumed is now 5364 * unaligned, try to align it. If this fails free 5365 * all messages and let upper layer recover. 5366 */ 5367 if (!OK_32PTR(mp0->b_rptr)) { 5368 if (!pullupmsg(mp0, -1)) { 5369 freemsg(mp0); 5370 freemsg(mp1); 5371 *mpp = NULL; 5372 return (NULL); 5373 } 5374 } 5375 } 5376 return (mp1); 5377 } 5378 /* Eat through as many mblks as we need to get len bytes. */ 5379 len -= mp0->b_wptr - mp0->b_rptr; 5380 for (mp2 = mp1 = mp0; (mp2 = mp2->b_cont) != 0 && len; mp1 = mp2) { 5381 if (mp2->b_wptr - mp2->b_rptr > len) { 5382 /* 5383 * We won't consume the entire last mblk. Like 5384 * above, dup and partition it. 5385 */ 5386 mp1->b_cont = dupb(mp2); 5387 mp1 = mp1->b_cont; 5388 if (!mp1) { 5389 /* 5390 * Trouble. Rather than go to a lot of 5391 * trouble to clean up, we free the messages. 5392 * This won't be any worse than losing it on 5393 * the wire. 5394 */ 5395 freemsg(mp0); 5396 freemsg(mp2); 5397 *mpp = NULL; 5398 return (NULL); 5399 } 5400 mp1->b_wptr = mp1->b_rptr + len; 5401 mp2->b_rptr = mp1->b_wptr; 5402 /* 5403 * after adjustments if mblk not consumed is now 5404 * unaligned, try to align it. If this fails free 5405 * all messages and let upper layer recover. 5406 */ 5407 if (!OK_32PTR(mp2->b_rptr)) { 5408 if (!pullupmsg(mp2, -1)) { 5409 freemsg(mp0); 5410 freemsg(mp2); 5411 *mpp = NULL; 5412 return (NULL); 5413 } 5414 } 5415 *mpp = mp2; 5416 return (mp0); 5417 } 5418 /* Decrement len by the amount we just got. */ 5419 len -= mp2->b_wptr - mp2->b_rptr; 5420 } 5421 /* 5422 * len should be reduced to zero now. If not our caller has 5423 * screwed up. 5424 */ 5425 if (len) { 5426 /* Shouldn't happen! */ 5427 freemsg(mp0); 5428 *mpp = NULL; 5429 return (NULL); 5430 } 5431 /* 5432 * We consumed up to exactly the end of an mblk. Detach the part 5433 * we are returning from the rest of the chain. 5434 */ 5435 mp1->b_cont = NULL; 5436 *mpp = mp2; 5437 return (mp0); 5438 } 5439 5440 /* The ill stream is being unplumbed. Called from ip_close */ 5441 int 5442 ip_modclose(ill_t *ill) 5443 { 5444 boolean_t success; 5445 ipsq_t *ipsq; 5446 ipif_t *ipif; 5447 queue_t *q = ill->ill_rq; 5448 ip_stack_t *ipst = ill->ill_ipst; 5449 int i; 5450 5451 /* 5452 * The punlink prior to this may have initiated a capability 5453 * negotiation. But ipsq_enter will block until that finishes or 5454 * times out. 5455 */ 5456 success = ipsq_enter(ill, B_FALSE, NEW_OP); 5457 5458 /* 5459 * Open/close/push/pop is guaranteed to be single threaded 5460 * per stream by STREAMS. FS guarantees that all references 5461 * from top are gone before close is called. So there can't 5462 * be another close thread that has set CONDEMNED on this ill. 5463 * and cause ipsq_enter to return failure. 5464 */ 5465 ASSERT(success); 5466 ipsq = ill->ill_phyint->phyint_ipsq; 5467 5468 /* 5469 * Mark it condemned. No new reference will be made to this ill. 5470 * Lookup functions will return an error. Threads that try to 5471 * increment the refcnt must check for ILL_CAN_LOOKUP. This ensures 5472 * that the refcnt will drop down to zero. 5473 */ 5474 mutex_enter(&ill->ill_lock); 5475 ill->ill_state_flags |= ILL_CONDEMNED; 5476 for (ipif = ill->ill_ipif; ipif != NULL; 5477 ipif = ipif->ipif_next) { 5478 ipif->ipif_state_flags |= IPIF_CONDEMNED; 5479 } 5480 /* 5481 * Wake up anybody waiting to enter the ipsq. ipsq_enter 5482 * returns error if ILL_CONDEMNED is set 5483 */ 5484 cv_broadcast(&ill->ill_cv); 5485 mutex_exit(&ill->ill_lock); 5486 5487 /* 5488 * Send all the deferred DLPI messages downstream which came in 5489 * during the small window right before ipsq_enter(). We do this 5490 * without waiting for the ACKs because all the ACKs for M_PROTO 5491 * messages are ignored in ip_rput() when ILL_CONDEMNED is set. 5492 */ 5493 ill_dlpi_send_deferred(ill); 5494 5495 /* 5496 * Shut down fragmentation reassembly. 5497 * ill_frag_timer won't start a timer again. 5498 * Now cancel any existing timer 5499 */ 5500 (void) untimeout(ill->ill_frag_timer_id); 5501 (void) ill_frag_timeout(ill, 0); 5502 5503 /* 5504 * Call ill_delete to bring down the ipifs, ilms and ill on 5505 * this ill. Then wait for the refcnts to drop to zero. 5506 * ill_is_freeable checks whether the ill is really quiescent. 5507 * Then make sure that threads that are waiting to enter the 5508 * ipsq have seen the error returned by ipsq_enter and have 5509 * gone away. Then we call ill_delete_tail which does the 5510 * DL_UNBIND_REQ with the driver and then qprocsoff. 5511 */ 5512 ill_delete(ill); 5513 mutex_enter(&ill->ill_lock); 5514 while (!ill_is_freeable(ill)) 5515 cv_wait(&ill->ill_cv, &ill->ill_lock); 5516 while (ill->ill_waiters) 5517 cv_wait(&ill->ill_cv, &ill->ill_lock); 5518 5519 mutex_exit(&ill->ill_lock); 5520 5521 /* 5522 * ill_delete_tail drops reference on ill_ipst, but we need to keep 5523 * it held until the end of the function since the cleanup 5524 * below needs to be able to use the ip_stack_t. 5525 */ 5526 netstack_hold(ipst->ips_netstack); 5527 5528 /* qprocsoff is done via ill_delete_tail */ 5529 ill_delete_tail(ill); 5530 ASSERT(ill->ill_ipst == NULL); 5531 5532 /* 5533 * Walk through all upper (conn) streams and qenable 5534 * those that have queued data. 5535 * close synchronization needs this to 5536 * be done to ensure that all upper layers blocked 5537 * due to flow control to the closing device 5538 * get unblocked. 5539 */ 5540 ip1dbg(("ip_wsrv: walking\n")); 5541 for (i = 0; i < TX_FANOUT_SIZE; i++) { 5542 conn_walk_drain(ipst, &ipst->ips_idl_tx_list[i]); 5543 } 5544 5545 mutex_enter(&ipst->ips_ip_mi_lock); 5546 mi_close_unlink(&ipst->ips_ip_g_head, (IDP)ill); 5547 mutex_exit(&ipst->ips_ip_mi_lock); 5548 5549 /* 5550 * credp could be null if the open didn't succeed and ip_modopen 5551 * itself calls ip_close. 5552 */ 5553 if (ill->ill_credp != NULL) 5554 crfree(ill->ill_credp); 5555 5556 /* 5557 * Now we are done with the module close pieces that 5558 * need the netstack_t. 5559 */ 5560 netstack_rele(ipst->ips_netstack); 5561 5562 mi_close_free((IDP)ill); 5563 q->q_ptr = WR(q)->q_ptr = NULL; 5564 5565 ipsq_exit(ipsq); 5566 5567 return (0); 5568 } 5569 5570 /* 5571 * This is called as part of close() for IP, UDP, ICMP, and RTS 5572 * in order to quiesce the conn. 5573 */ 5574 void 5575 ip_quiesce_conn(conn_t *connp) 5576 { 5577 boolean_t drain_cleanup_reqd = B_FALSE; 5578 boolean_t conn_ioctl_cleanup_reqd = B_FALSE; 5579 boolean_t ilg_cleanup_reqd = B_FALSE; 5580 ip_stack_t *ipst; 5581 5582 ASSERT(!IPCL_IS_TCP(connp)); 5583 ipst = connp->conn_netstack->netstack_ip; 5584 5585 /* 5586 * Mark the conn as closing, and this conn must not be 5587 * inserted in future into any list. Eg. conn_drain_insert(), 5588 * won't insert this conn into the conn_drain_list. 5589 * Similarly ill_pending_mp_add() will not add any mp to 5590 * the pending mp list, after this conn has started closing. 5591 * 5592 * conn_idl, conn_pending_ill, conn_down_pending_ill, conn_ilg 5593 * cannot get set henceforth. 5594 */ 5595 mutex_enter(&connp->conn_lock); 5596 ASSERT(!(connp->conn_state_flags & CONN_QUIESCED)); 5597 connp->conn_state_flags |= CONN_CLOSING; 5598 if (connp->conn_idl != NULL) 5599 drain_cleanup_reqd = B_TRUE; 5600 if (connp->conn_oper_pending_ill != NULL) 5601 conn_ioctl_cleanup_reqd = B_TRUE; 5602 if (connp->conn_dhcpinit_ill != NULL) { 5603 ASSERT(connp->conn_dhcpinit_ill->ill_dhcpinit != 0); 5604 atomic_dec_32(&connp->conn_dhcpinit_ill->ill_dhcpinit); 5605 connp->conn_dhcpinit_ill = NULL; 5606 } 5607 if (connp->conn_ilg_inuse != 0) 5608 ilg_cleanup_reqd = B_TRUE; 5609 mutex_exit(&connp->conn_lock); 5610 5611 if (conn_ioctl_cleanup_reqd) 5612 conn_ioctl_cleanup(connp); 5613 5614 if (is_system_labeled() && connp->conn_anon_port) { 5615 (void) tsol_mlp_anon(crgetzone(connp->conn_cred), 5616 connp->conn_mlp_type, connp->conn_ulp, 5617 ntohs(connp->conn_lport), B_FALSE); 5618 connp->conn_anon_port = 0; 5619 } 5620 connp->conn_mlp_type = mlptSingle; 5621 5622 /* 5623 * Remove this conn from any fanout list it is on. 5624 * and then wait for any threads currently operating 5625 * on this endpoint to finish 5626 */ 5627 ipcl_hash_remove(connp); 5628 5629 /* 5630 * Remove this conn from the drain list, and do 5631 * any other cleanup that may be required. 5632 * (Only non-tcp streams may have a non-null conn_idl. 5633 * TCP streams are never flow controlled, and 5634 * conn_idl will be null) 5635 */ 5636 if (drain_cleanup_reqd) 5637 conn_drain_tail(connp, B_TRUE); 5638 5639 if (connp == ipst->ips_ip_g_mrouter) 5640 (void) ip_mrouter_done(NULL, ipst); 5641 5642 if (ilg_cleanup_reqd) 5643 ilg_delete_all(connp); 5644 5645 conn_delete_ire(connp, NULL); 5646 5647 /* 5648 * Now conn refcnt can increase only thru CONN_INC_REF_LOCKED. 5649 * callers from write side can't be there now because close 5650 * is in progress. The only other caller is ipcl_walk 5651 * which checks for the condemned flag. 5652 */ 5653 mutex_enter(&connp->conn_lock); 5654 connp->conn_state_flags |= CONN_CONDEMNED; 5655 while (connp->conn_ref != 1) 5656 cv_wait(&connp->conn_cv, &connp->conn_lock); 5657 connp->conn_state_flags |= CONN_QUIESCED; 5658 mutex_exit(&connp->conn_lock); 5659 } 5660 5661 /* ARGSUSED */ 5662 int 5663 ip_close(queue_t *q, int flags) 5664 { 5665 conn_t *connp; 5666 5667 TRACE_1(TR_FAC_IP, TR_IP_CLOSE, "ip_close: q %p", q); 5668 5669 /* 5670 * Call the appropriate delete routine depending on whether this is 5671 * a module or device. 5672 */ 5673 if (WR(q)->q_next != NULL) { 5674 /* This is a module close */ 5675 return (ip_modclose((ill_t *)q->q_ptr)); 5676 } 5677 5678 connp = q->q_ptr; 5679 ip_quiesce_conn(connp); 5680 5681 qprocsoff(q); 5682 5683 /* 5684 * Now we are truly single threaded on this stream, and can 5685 * delete the things hanging off the connp, and finally the connp. 5686 * We removed this connp from the fanout list, it cannot be 5687 * accessed thru the fanouts, and we already waited for the 5688 * conn_ref to drop to 0. We are already in close, so 5689 * there cannot be any other thread from the top. qprocsoff 5690 * has completed, and service has completed or won't run in 5691 * future. 5692 */ 5693 ASSERT(connp->conn_ref == 1); 5694 5695 inet_minor_free(connp->conn_minor_arena, connp->conn_dev); 5696 5697 connp->conn_ref--; 5698 ipcl_conn_destroy(connp); 5699 5700 q->q_ptr = WR(q)->q_ptr = NULL; 5701 return (0); 5702 } 5703 5704 /* 5705 * Wapper around putnext() so that ip_rts_request can merely use 5706 * conn_recv. 5707 */ 5708 /*ARGSUSED2*/ 5709 static void 5710 ip_conn_input(void *arg1, mblk_t *mp, void *arg2) 5711 { 5712 conn_t *connp = (conn_t *)arg1; 5713 5714 putnext(connp->conn_rq, mp); 5715 } 5716 5717 /* 5718 * Called when the module is about to be unloaded 5719 */ 5720 void 5721 ip_ddi_destroy(void) 5722 { 5723 tnet_fini(); 5724 5725 icmp_ddi_g_destroy(); 5726 rts_ddi_g_destroy(); 5727 udp_ddi_g_destroy(); 5728 sctp_ddi_g_destroy(); 5729 tcp_ddi_g_destroy(); 5730 ipsec_policy_g_destroy(); 5731 ipcl_g_destroy(); 5732 ip_net_g_destroy(); 5733 ip_ire_g_fini(); 5734 inet_minor_destroy(ip_minor_arena_sa); 5735 #if defined(_LP64) 5736 inet_minor_destroy(ip_minor_arena_la); 5737 #endif 5738 5739 #ifdef DEBUG 5740 list_destroy(&ip_thread_list); 5741 rw_destroy(&ip_thread_rwlock); 5742 tsd_destroy(&ip_thread_data); 5743 #endif 5744 5745 netstack_unregister(NS_IP); 5746 } 5747 5748 /* 5749 * First step in cleanup. 5750 */ 5751 /* ARGSUSED */ 5752 static void 5753 ip_stack_shutdown(netstackid_t stackid, void *arg) 5754 { 5755 ip_stack_t *ipst = (ip_stack_t *)arg; 5756 5757 #ifdef NS_DEBUG 5758 printf("ip_stack_shutdown(%p, stack %d)\n", (void *)ipst, stackid); 5759 #endif 5760 5761 /* Get rid of loopback interfaces and their IREs */ 5762 ip_loopback_cleanup(ipst); 5763 5764 /* 5765 * The *_hook_shutdown()s start the process of notifying any 5766 * consumers that things are going away.... nothing is destroyed. 5767 */ 5768 ipv4_hook_shutdown(ipst); 5769 ipv6_hook_shutdown(ipst); 5770 5771 mutex_enter(&ipst->ips_capab_taskq_lock); 5772 ipst->ips_capab_taskq_quit = B_TRUE; 5773 cv_signal(&ipst->ips_capab_taskq_cv); 5774 mutex_exit(&ipst->ips_capab_taskq_lock); 5775 5776 mutex_enter(&ipst->ips_mrt_lock); 5777 ipst->ips_mrt_flags |= IP_MRT_STOP; 5778 cv_signal(&ipst->ips_mrt_cv); 5779 mutex_exit(&ipst->ips_mrt_lock); 5780 } 5781 5782 /* 5783 * Free the IP stack instance. 5784 */ 5785 static void 5786 ip_stack_fini(netstackid_t stackid, void *arg) 5787 { 5788 ip_stack_t *ipst = (ip_stack_t *)arg; 5789 int ret; 5790 5791 #ifdef NS_DEBUG 5792 printf("ip_stack_fini(%p, stack %d)\n", (void *)ipst, stackid); 5793 #endif 5794 /* 5795 * At this point, all of the notifications that the events and 5796 * protocols are going away have been run, meaning that we can 5797 * now set about starting to clean things up. 5798 */ 5799 ipv4_hook_destroy(ipst); 5800 ipv6_hook_destroy(ipst); 5801 ip_net_destroy(ipst); 5802 5803 mutex_destroy(&ipst->ips_capab_taskq_lock); 5804 cv_destroy(&ipst->ips_capab_taskq_cv); 5805 list_destroy(&ipst->ips_capab_taskq_list); 5806 5807 mutex_enter(&ipst->ips_mrt_lock); 5808 while (!(ipst->ips_mrt_flags & IP_MRT_DONE)) 5809 cv_wait(&ipst->ips_mrt_done_cv, &ipst->ips_mrt_lock); 5810 mutex_destroy(&ipst->ips_mrt_lock); 5811 cv_destroy(&ipst->ips_mrt_cv); 5812 cv_destroy(&ipst->ips_mrt_done_cv); 5813 5814 ipmp_destroy(ipst); 5815 rw_destroy(&ipst->ips_srcid_lock); 5816 5817 ip_kstat_fini(stackid, ipst->ips_ip_mibkp); 5818 ipst->ips_ip_mibkp = NULL; 5819 icmp_kstat_fini(stackid, ipst->ips_icmp_mibkp); 5820 ipst->ips_icmp_mibkp = NULL; 5821 ip_kstat2_fini(stackid, ipst->ips_ip_kstat); 5822 ipst->ips_ip_kstat = NULL; 5823 bzero(&ipst->ips_ip_statistics, sizeof (ipst->ips_ip_statistics)); 5824 ip6_kstat_fini(stackid, ipst->ips_ip6_kstat); 5825 ipst->ips_ip6_kstat = NULL; 5826 bzero(&ipst->ips_ip6_statistics, sizeof (ipst->ips_ip6_statistics)); 5827 5828 nd_free(&ipst->ips_ip_g_nd); 5829 kmem_free(ipst->ips_param_arr, sizeof (lcl_param_arr)); 5830 ipst->ips_param_arr = NULL; 5831 kmem_free(ipst->ips_ndp_arr, sizeof (lcl_ndp_arr)); 5832 ipst->ips_ndp_arr = NULL; 5833 5834 ip_mrouter_stack_destroy(ipst); 5835 5836 mutex_destroy(&ipst->ips_ip_mi_lock); 5837 rw_destroy(&ipst->ips_ipsec_capab_ills_lock); 5838 rw_destroy(&ipst->ips_ill_g_usesrc_lock); 5839 rw_destroy(&ipst->ips_ip_g_nd_lock); 5840 5841 ret = untimeout(ipst->ips_igmp_timeout_id); 5842 if (ret == -1) { 5843 ASSERT(ipst->ips_igmp_timeout_id == 0); 5844 } else { 5845 ASSERT(ipst->ips_igmp_timeout_id != 0); 5846 ipst->ips_igmp_timeout_id = 0; 5847 } 5848 ret = untimeout(ipst->ips_igmp_slowtimeout_id); 5849 if (ret == -1) { 5850 ASSERT(ipst->ips_igmp_slowtimeout_id == 0); 5851 } else { 5852 ASSERT(ipst->ips_igmp_slowtimeout_id != 0); 5853 ipst->ips_igmp_slowtimeout_id = 0; 5854 } 5855 ret = untimeout(ipst->ips_mld_timeout_id); 5856 if (ret == -1) { 5857 ASSERT(ipst->ips_mld_timeout_id == 0); 5858 } else { 5859 ASSERT(ipst->ips_mld_timeout_id != 0); 5860 ipst->ips_mld_timeout_id = 0; 5861 } 5862 ret = untimeout(ipst->ips_mld_slowtimeout_id); 5863 if (ret == -1) { 5864 ASSERT(ipst->ips_mld_slowtimeout_id == 0); 5865 } else { 5866 ASSERT(ipst->ips_mld_slowtimeout_id != 0); 5867 ipst->ips_mld_slowtimeout_id = 0; 5868 } 5869 ret = untimeout(ipst->ips_ip_ire_expire_id); 5870 if (ret == -1) { 5871 ASSERT(ipst->ips_ip_ire_expire_id == 0); 5872 } else { 5873 ASSERT(ipst->ips_ip_ire_expire_id != 0); 5874 ipst->ips_ip_ire_expire_id = 0; 5875 } 5876 5877 mutex_destroy(&ipst->ips_igmp_timer_lock); 5878 mutex_destroy(&ipst->ips_mld_timer_lock); 5879 mutex_destroy(&ipst->ips_igmp_slowtimeout_lock); 5880 mutex_destroy(&ipst->ips_mld_slowtimeout_lock); 5881 mutex_destroy(&ipst->ips_ip_addr_avail_lock); 5882 rw_destroy(&ipst->ips_ill_g_lock); 5883 5884 ipobs_fini(ipst); 5885 ip_ire_fini(ipst); 5886 ip6_asp_free(ipst); 5887 conn_drain_fini(ipst); 5888 ipcl_destroy(ipst); 5889 5890 mutex_destroy(&ipst->ips_ndp4->ndp_g_lock); 5891 mutex_destroy(&ipst->ips_ndp6->ndp_g_lock); 5892 kmem_free(ipst->ips_ndp4, sizeof (ndp_g_t)); 5893 ipst->ips_ndp4 = NULL; 5894 kmem_free(ipst->ips_ndp6, sizeof (ndp_g_t)); 5895 ipst->ips_ndp6 = NULL; 5896 5897 if (ipst->ips_loopback_ksp != NULL) { 5898 kstat_delete_netstack(ipst->ips_loopback_ksp, stackid); 5899 ipst->ips_loopback_ksp = NULL; 5900 } 5901 5902 kmem_free(ipst->ips_phyint_g_list, sizeof (phyint_list_t)); 5903 ipst->ips_phyint_g_list = NULL; 5904 kmem_free(ipst->ips_ill_g_heads, sizeof (ill_g_head_t) * MAX_G_HEADS); 5905 ipst->ips_ill_g_heads = NULL; 5906 5907 ldi_ident_release(ipst->ips_ldi_ident); 5908 kmem_free(ipst, sizeof (*ipst)); 5909 } 5910 5911 /* 5912 * This function is called from the TSD destructor, and is used to debug 5913 * reference count issues in IP. See block comment in <inet/ip_if.h> for 5914 * details. 5915 */ 5916 static void 5917 ip_thread_exit(void *phash) 5918 { 5919 th_hash_t *thh = phash; 5920 5921 rw_enter(&ip_thread_rwlock, RW_WRITER); 5922 list_remove(&ip_thread_list, thh); 5923 rw_exit(&ip_thread_rwlock); 5924 mod_hash_destroy_hash(thh->thh_hash); 5925 kmem_free(thh, sizeof (*thh)); 5926 } 5927 5928 /* 5929 * Called when the IP kernel module is loaded into the kernel 5930 */ 5931 void 5932 ip_ddi_init(void) 5933 { 5934 ip_squeue_flag = ip_squeue_switch(ip_squeue_enter); 5935 5936 /* 5937 * For IP and TCP the minor numbers should start from 2 since we have 4 5938 * initial devices: ip, ip6, tcp, tcp6. 5939 */ 5940 /* 5941 * If this is a 64-bit kernel, then create two separate arenas - 5942 * one for TLIs in the range of INET_MIN_DEV+2 through 2^^18-1, and the 5943 * other for socket apps in the range 2^^18 through 2^^32-1. 5944 */ 5945 ip_minor_arena_la = NULL; 5946 ip_minor_arena_sa = NULL; 5947 #if defined(_LP64) 5948 if ((ip_minor_arena_sa = inet_minor_create("ip_minor_arena_sa", 5949 INET_MIN_DEV + 2, MAXMIN32, KM_SLEEP)) == NULL) { 5950 cmn_err(CE_PANIC, 5951 "ip_ddi_init: ip_minor_arena_sa creation failed\n"); 5952 } 5953 if ((ip_minor_arena_la = inet_minor_create("ip_minor_arena_la", 5954 MAXMIN32 + 1, MAXMIN64, KM_SLEEP)) == NULL) { 5955 cmn_err(CE_PANIC, 5956 "ip_ddi_init: ip_minor_arena_la creation failed\n"); 5957 } 5958 #else 5959 if ((ip_minor_arena_sa = inet_minor_create("ip_minor_arena_sa", 5960 INET_MIN_DEV + 2, MAXMIN, KM_SLEEP)) == NULL) { 5961 cmn_err(CE_PANIC, 5962 "ip_ddi_init: ip_minor_arena_sa creation failed\n"); 5963 } 5964 #endif 5965 ip_poll_normal_ticks = MSEC_TO_TICK_ROUNDUP(ip_poll_normal_ms); 5966 5967 ipcl_g_init(); 5968 ip_ire_g_init(); 5969 ip_net_g_init(); 5970 5971 #ifdef DEBUG 5972 tsd_create(&ip_thread_data, ip_thread_exit); 5973 rw_init(&ip_thread_rwlock, NULL, RW_DEFAULT, NULL); 5974 list_create(&ip_thread_list, sizeof (th_hash_t), 5975 offsetof(th_hash_t, thh_link)); 5976 #endif 5977 5978 /* 5979 * We want to be informed each time a stack is created or 5980 * destroyed in the kernel, so we can maintain the 5981 * set of udp_stack_t's. 5982 */ 5983 netstack_register(NS_IP, ip_stack_init, ip_stack_shutdown, 5984 ip_stack_fini); 5985 5986 ipsec_policy_g_init(); 5987 tcp_ddi_g_init(); 5988 sctp_ddi_g_init(); 5989 5990 tnet_init(); 5991 5992 udp_ddi_g_init(); 5993 rts_ddi_g_init(); 5994 icmp_ddi_g_init(); 5995 } 5996 5997 /* 5998 * Initialize the IP stack instance. 5999 */ 6000 static void * 6001 ip_stack_init(netstackid_t stackid, netstack_t *ns) 6002 { 6003 ip_stack_t *ipst; 6004 ipparam_t *pa; 6005 ipndp_t *na; 6006 major_t major; 6007 6008 #ifdef NS_DEBUG 6009 printf("ip_stack_init(stack %d)\n", stackid); 6010 #endif 6011 6012 ipst = (ip_stack_t *)kmem_zalloc(sizeof (*ipst), KM_SLEEP); 6013 ipst->ips_netstack = ns; 6014 6015 ipst->ips_ill_g_heads = kmem_zalloc(sizeof (ill_g_head_t) * MAX_G_HEADS, 6016 KM_SLEEP); 6017 ipst->ips_phyint_g_list = kmem_zalloc(sizeof (phyint_list_t), 6018 KM_SLEEP); 6019 ipst->ips_ndp4 = kmem_zalloc(sizeof (ndp_g_t), KM_SLEEP); 6020 ipst->ips_ndp6 = kmem_zalloc(sizeof (ndp_g_t), KM_SLEEP); 6021 mutex_init(&ipst->ips_ndp4->ndp_g_lock, NULL, MUTEX_DEFAULT, NULL); 6022 mutex_init(&ipst->ips_ndp6->ndp_g_lock, NULL, MUTEX_DEFAULT, NULL); 6023 6024 rw_init(&ipst->ips_ip_g_nd_lock, NULL, RW_DEFAULT, NULL); 6025 mutex_init(&ipst->ips_igmp_timer_lock, NULL, MUTEX_DEFAULT, NULL); 6026 ipst->ips_igmp_deferred_next = INFINITY; 6027 mutex_init(&ipst->ips_mld_timer_lock, NULL, MUTEX_DEFAULT, NULL); 6028 ipst->ips_mld_deferred_next = INFINITY; 6029 mutex_init(&ipst->ips_igmp_slowtimeout_lock, NULL, MUTEX_DEFAULT, NULL); 6030 mutex_init(&ipst->ips_mld_slowtimeout_lock, NULL, MUTEX_DEFAULT, NULL); 6031 mutex_init(&ipst->ips_ip_mi_lock, NULL, MUTEX_DEFAULT, NULL); 6032 mutex_init(&ipst->ips_ip_addr_avail_lock, NULL, MUTEX_DEFAULT, NULL); 6033 rw_init(&ipst->ips_ill_g_lock, NULL, RW_DEFAULT, NULL); 6034 rw_init(&ipst->ips_ipsec_capab_ills_lock, NULL, RW_DEFAULT, NULL); 6035 rw_init(&ipst->ips_ill_g_usesrc_lock, NULL, RW_DEFAULT, NULL); 6036 6037 ipcl_init(ipst); 6038 ip_ire_init(ipst); 6039 ip6_asp_init(ipst); 6040 ipif_init(ipst); 6041 conn_drain_init(ipst); 6042 ip_mrouter_stack_init(ipst); 6043 6044 ipst->ips_ip_g_frag_timeout = IP_FRAG_TIMEOUT; 6045 ipst->ips_ip_g_frag_timo_ms = IP_FRAG_TIMEOUT * 1000; 6046 6047 ipst->ips_ip_multirt_log_interval = 1000; 6048 6049 ipst->ips_ip_g_forward = IP_FORWARD_DEFAULT; 6050 ipst->ips_ipv6_forward = IP_FORWARD_DEFAULT; 6051 ipst->ips_ill_index = 1; 6052 6053 ipst->ips_saved_ip_g_forward = -1; 6054 ipst->ips_reg_vif_num = ALL_VIFS; /* Index to Register vif */ 6055 6056 pa = (ipparam_t *)kmem_alloc(sizeof (lcl_param_arr), KM_SLEEP); 6057 ipst->ips_param_arr = pa; 6058 bcopy(lcl_param_arr, ipst->ips_param_arr, sizeof (lcl_param_arr)); 6059 6060 na = (ipndp_t *)kmem_alloc(sizeof (lcl_ndp_arr), KM_SLEEP); 6061 ipst->ips_ndp_arr = na; 6062 bcopy(lcl_ndp_arr, ipst->ips_ndp_arr, sizeof (lcl_ndp_arr)); 6063 ipst->ips_ndp_arr[IPNDP_IP_FORWARDING_OFFSET].ip_ndp_data = 6064 (caddr_t)&ipst->ips_ip_g_forward; 6065 ipst->ips_ndp_arr[IPNDP_IP6_FORWARDING_OFFSET].ip_ndp_data = 6066 (caddr_t)&ipst->ips_ipv6_forward; 6067 ASSERT(strcmp(ipst->ips_ndp_arr[IPNDP_CGTP_FILTER_OFFSET].ip_ndp_name, 6068 "ip_cgtp_filter") == 0); 6069 ipst->ips_ndp_arr[IPNDP_CGTP_FILTER_OFFSET].ip_ndp_data = 6070 (caddr_t)&ipst->ips_ip_cgtp_filter; 6071 6072 (void) ip_param_register(&ipst->ips_ip_g_nd, 6073 ipst->ips_param_arr, A_CNT(lcl_param_arr), 6074 ipst->ips_ndp_arr, A_CNT(lcl_ndp_arr)); 6075 6076 ipst->ips_ip_mibkp = ip_kstat_init(stackid, ipst); 6077 ipst->ips_icmp_mibkp = icmp_kstat_init(stackid); 6078 ipst->ips_ip_kstat = ip_kstat2_init(stackid, &ipst->ips_ip_statistics); 6079 ipst->ips_ip6_kstat = 6080 ip6_kstat_init(stackid, &ipst->ips_ip6_statistics); 6081 6082 ipst->ips_ip_src_id = 1; 6083 rw_init(&ipst->ips_srcid_lock, NULL, RW_DEFAULT, NULL); 6084 6085 ipobs_init(ipst); 6086 ip_net_init(ipst, ns); 6087 ipv4_hook_init(ipst); 6088 ipv6_hook_init(ipst); 6089 ipmp_init(ipst); 6090 6091 /* 6092 * Create the taskq dispatcher thread and initialize related stuff. 6093 */ 6094 ipst->ips_capab_taskq_thread = thread_create(NULL, 0, 6095 ill_taskq_dispatch, ipst, 0, &p0, TS_RUN, minclsyspri); 6096 mutex_init(&ipst->ips_capab_taskq_lock, NULL, MUTEX_DEFAULT, NULL); 6097 cv_init(&ipst->ips_capab_taskq_cv, NULL, CV_DEFAULT, NULL); 6098 list_create(&ipst->ips_capab_taskq_list, sizeof (mblk_t), 6099 offsetof(mblk_t, b_next)); 6100 6101 /* 6102 * Create the mcast_restart_timers_thread() worker thread. 6103 */ 6104 mutex_init(&ipst->ips_mrt_lock, NULL, MUTEX_DEFAULT, NULL); 6105 cv_init(&ipst->ips_mrt_cv, NULL, CV_DEFAULT, NULL); 6106 cv_init(&ipst->ips_mrt_done_cv, NULL, CV_DEFAULT, NULL); 6107 ipst->ips_mrt_thread = thread_create(NULL, 0, 6108 mcast_restart_timers_thread, ipst, 0, &p0, TS_RUN, minclsyspri); 6109 6110 major = mod_name_to_major(INET_NAME); 6111 (void) ldi_ident_from_major(major, &ipst->ips_ldi_ident); 6112 return (ipst); 6113 } 6114 6115 /* 6116 * Allocate and initialize a DLPI template of the specified length. (May be 6117 * called as writer.) 6118 */ 6119 mblk_t * 6120 ip_dlpi_alloc(size_t len, t_uscalar_t prim) 6121 { 6122 mblk_t *mp; 6123 6124 mp = allocb(len, BPRI_MED); 6125 if (!mp) 6126 return (NULL); 6127 6128 /* 6129 * DLPIv2 says that DL_INFO_REQ and DL_TOKEN_REQ (the latter 6130 * of which we don't seem to use) are sent with M_PCPROTO, and 6131 * that other DLPI are M_PROTO. 6132 */ 6133 if (prim == DL_INFO_REQ) { 6134 mp->b_datap->db_type = M_PCPROTO; 6135 } else { 6136 mp->b_datap->db_type = M_PROTO; 6137 } 6138 6139 mp->b_wptr = mp->b_rptr + len; 6140 bzero(mp->b_rptr, len); 6141 ((dl_unitdata_req_t *)mp->b_rptr)->dl_primitive = prim; 6142 return (mp); 6143 } 6144 6145 /* 6146 * Allocate and initialize a DLPI notification. (May be called as writer.) 6147 */ 6148 mblk_t * 6149 ip_dlnotify_alloc(uint_t notification, uint_t data) 6150 { 6151 dl_notify_ind_t *notifyp; 6152 mblk_t *mp; 6153 6154 if ((mp = ip_dlpi_alloc(DL_NOTIFY_IND_SIZE, DL_NOTIFY_IND)) == NULL) 6155 return (NULL); 6156 6157 notifyp = (dl_notify_ind_t *)mp->b_rptr; 6158 notifyp->dl_notification = notification; 6159 notifyp->dl_data = data; 6160 return (mp); 6161 } 6162 6163 /* 6164 * Debug formatting routine. Returns a character string representation of the 6165 * addr in buf, of the form xxx.xxx.xxx.xxx. This routine takes the address 6166 * in the form of a ipaddr_t and calls ip_dot_saddr with a pointer. 6167 * 6168 * Once the ndd table-printing interfaces are removed, this can be changed to 6169 * standard dotted-decimal form. 6170 */ 6171 char * 6172 ip_dot_addr(ipaddr_t addr, char *buf) 6173 { 6174 uint8_t *ap = (uint8_t *)&addr; 6175 6176 (void) mi_sprintf(buf, "%03d.%03d.%03d.%03d", 6177 ap[0] & 0xFF, ap[1] & 0xFF, ap[2] & 0xFF, ap[3] & 0xFF); 6178 return (buf); 6179 } 6180 6181 /* 6182 * Write the given MAC address as a printable string in the usual colon- 6183 * separated format. 6184 */ 6185 const char * 6186 mac_colon_addr(const uint8_t *addr, size_t alen, char *buf, size_t buflen) 6187 { 6188 char *bp; 6189 6190 if (alen == 0 || buflen < 4) 6191 return ("?"); 6192 bp = buf; 6193 for (;;) { 6194 /* 6195 * If there are more MAC address bytes available, but we won't 6196 * have any room to print them, then add "..." to the string 6197 * instead. See below for the 'magic number' explanation. 6198 */ 6199 if ((alen == 2 && buflen < 6) || (alen > 2 && buflen < 7)) { 6200 (void) strcpy(bp, "..."); 6201 break; 6202 } 6203 (void) sprintf(bp, "%02x", *addr++); 6204 bp += 2; 6205 if (--alen == 0) 6206 break; 6207 *bp++ = ':'; 6208 buflen -= 3; 6209 /* 6210 * At this point, based on the first 'if' statement above, 6211 * either alen == 1 and buflen >= 3, or alen > 1 and 6212 * buflen >= 4. The first case leaves room for the final "xx" 6213 * number and trailing NUL byte. The second leaves room for at 6214 * least "...". Thus the apparently 'magic' numbers chosen for 6215 * that statement. 6216 */ 6217 } 6218 return (buf); 6219 } 6220 6221 /* 6222 * Send an ICMP error after patching up the packet appropriately. Returns 6223 * non-zero if the appropriate MIB should be bumped; zero otherwise. 6224 */ 6225 static boolean_t 6226 ip_fanout_send_icmp(queue_t *q, mblk_t *mp, uint_t flags, 6227 uint_t icmp_type, uint_t icmp_code, boolean_t mctl_present, 6228 zoneid_t zoneid, ip_stack_t *ipst) 6229 { 6230 ipha_t *ipha; 6231 mblk_t *first_mp; 6232 boolean_t secure; 6233 unsigned char db_type; 6234 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 6235 6236 first_mp = mp; 6237 if (mctl_present) { 6238 mp = mp->b_cont; 6239 secure = ipsec_in_is_secure(first_mp); 6240 ASSERT(mp != NULL); 6241 } else { 6242 /* 6243 * If this is an ICMP error being reported - which goes 6244 * up as M_CTLs, we need to convert them to M_DATA till 6245 * we finish checking with global policy because 6246 * ipsec_check_global_policy() assumes M_DATA as clear 6247 * and M_CTL as secure. 6248 */ 6249 db_type = DB_TYPE(mp); 6250 DB_TYPE(mp) = M_DATA; 6251 secure = B_FALSE; 6252 } 6253 /* 6254 * We are generating an icmp error for some inbound packet. 6255 * Called from all ip_fanout_(udp, tcp, proto) functions. 6256 * Before we generate an error, check with global policy 6257 * to see whether this is allowed to enter the system. As 6258 * there is no "conn", we are checking with global policy. 6259 */ 6260 ipha = (ipha_t *)mp->b_rptr; 6261 if (secure || ipss->ipsec_inbound_v4_policy_present) { 6262 first_mp = ipsec_check_global_policy(first_mp, NULL, 6263 ipha, NULL, mctl_present, ipst->ips_netstack); 6264 if (first_mp == NULL) 6265 return (B_FALSE); 6266 } 6267 6268 if (!mctl_present) 6269 DB_TYPE(mp) = db_type; 6270 6271 if (flags & IP_FF_SEND_ICMP) { 6272 if (flags & IP_FF_HDR_COMPLETE) { 6273 if (ip_hdr_complete(ipha, zoneid, ipst)) { 6274 freemsg(first_mp); 6275 return (B_TRUE); 6276 } 6277 } 6278 if (flags & IP_FF_CKSUM) { 6279 /* 6280 * Have to correct checksum since 6281 * the packet might have been 6282 * fragmented and the reassembly code in ip_rput 6283 * does not restore the IP checksum. 6284 */ 6285 ipha->ipha_hdr_checksum = 0; 6286 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 6287 } 6288 switch (icmp_type) { 6289 case ICMP_DEST_UNREACHABLE: 6290 icmp_unreachable(WR(q), first_mp, icmp_code, zoneid, 6291 ipst); 6292 break; 6293 default: 6294 freemsg(first_mp); 6295 break; 6296 } 6297 } else { 6298 freemsg(first_mp); 6299 return (B_FALSE); 6300 } 6301 6302 return (B_TRUE); 6303 } 6304 6305 /* 6306 * Used to send an ICMP error message when a packet is received for 6307 * a protocol that is not supported. The mblk passed as argument 6308 * is consumed by this function. 6309 */ 6310 void 6311 ip_proto_not_sup(queue_t *q, mblk_t *ipsec_mp, uint_t flags, zoneid_t zoneid, 6312 ip_stack_t *ipst) 6313 { 6314 mblk_t *mp; 6315 ipha_t *ipha; 6316 ill_t *ill; 6317 ipsec_in_t *ii; 6318 6319 ii = (ipsec_in_t *)ipsec_mp->b_rptr; 6320 ASSERT(ii->ipsec_in_type == IPSEC_IN); 6321 6322 mp = ipsec_mp->b_cont; 6323 ipsec_mp->b_cont = NULL; 6324 ipha = (ipha_t *)mp->b_rptr; 6325 /* Get ill from index in ipsec_in_t. */ 6326 ill = ill_lookup_on_ifindex(ii->ipsec_in_ill_index, 6327 (IPH_HDR_VERSION(ipha) == IPV6_VERSION), NULL, NULL, NULL, NULL, 6328 ipst); 6329 if (ill != NULL) { 6330 if (IPH_HDR_VERSION(ipha) == IP_VERSION) { 6331 if (ip_fanout_send_icmp(q, mp, flags, 6332 ICMP_DEST_UNREACHABLE, 6333 ICMP_PROTOCOL_UNREACHABLE, B_FALSE, zoneid, ipst)) { 6334 BUMP_MIB(ill->ill_ip_mib, 6335 ipIfStatsInUnknownProtos); 6336 } 6337 } else { 6338 if (ip_fanout_send_icmp_v6(q, mp, flags, 6339 ICMP6_PARAM_PROB, ICMP6_PARAMPROB_NEXTHEADER, 6340 0, B_FALSE, zoneid, ipst)) { 6341 BUMP_MIB(ill->ill_ip_mib, 6342 ipIfStatsInUnknownProtos); 6343 } 6344 } 6345 ill_refrele(ill); 6346 } else { /* re-link for the freemsg() below. */ 6347 ipsec_mp->b_cont = mp; 6348 } 6349 6350 /* If ICMP delivered, ipsec_mp will be a singleton (b_cont == NULL). */ 6351 freemsg(ipsec_mp); 6352 } 6353 6354 /* 6355 * See if the inbound datagram has had IPsec processing applied to it. 6356 */ 6357 boolean_t 6358 ipsec_in_is_secure(mblk_t *ipsec_mp) 6359 { 6360 ipsec_in_t *ii; 6361 6362 ii = (ipsec_in_t *)ipsec_mp->b_rptr; 6363 ASSERT(ii->ipsec_in_type == IPSEC_IN); 6364 6365 if (ii->ipsec_in_loopback) { 6366 return (ii->ipsec_in_secure); 6367 } else { 6368 return (ii->ipsec_in_ah_sa != NULL || 6369 ii->ipsec_in_esp_sa != NULL || 6370 ii->ipsec_in_decaps); 6371 } 6372 } 6373 6374 /* 6375 * Handle protocols with which IP is less intimate. There 6376 * can be more than one stream bound to a particular 6377 * protocol. When this is the case, normally each one gets a copy 6378 * of any incoming packets. 6379 * 6380 * IPsec NOTE : 6381 * 6382 * Don't allow a secure packet going up a non-secure connection. 6383 * We don't allow this because 6384 * 6385 * 1) Reply might go out in clear which will be dropped at 6386 * the sending side. 6387 * 2) If the reply goes out in clear it will give the 6388 * adversary enough information for getting the key in 6389 * most of the cases. 6390 * 6391 * Moreover getting a secure packet when we expect clear 6392 * implies that SA's were added without checking for 6393 * policy on both ends. This should not happen once ISAKMP 6394 * is used to negotiate SAs as SAs will be added only after 6395 * verifying the policy. 6396 * 6397 * NOTE : If the packet was tunneled and not multicast we only send 6398 * to it the first match. Unlike TCP and UDP fanouts this doesn't fall 6399 * back to delivering packets to AF_INET6 raw sockets. 6400 * 6401 * IPQoS Notes: 6402 * Once we have determined the client, invoke IPPF processing. 6403 * Policy processing takes place only if the callout_position, IPP_LOCAL_IN, 6404 * is enabled. If we get here from icmp_inbound_error_fanout or ip_wput_local 6405 * ip_policy will be false. 6406 * 6407 * Zones notes: 6408 * Currently only applications in the global zone can create raw sockets for 6409 * protocols other than ICMP. So unlike the broadcast / multicast case of 6410 * ip_fanout_udp(), we only send a copy of the packet to streams in the 6411 * specified zone. For ICMP, this is handled by the callers of icmp_inbound(). 6412 */ 6413 static void 6414 ip_fanout_proto(queue_t *q, mblk_t *mp, ill_t *ill, ipha_t *ipha, uint_t flags, 6415 boolean_t mctl_present, boolean_t ip_policy, ill_t *recv_ill, 6416 zoneid_t zoneid) 6417 { 6418 queue_t *rq; 6419 mblk_t *mp1, *first_mp1; 6420 uint_t protocol = ipha->ipha_protocol; 6421 ipaddr_t dst; 6422 boolean_t one_only; 6423 mblk_t *first_mp = mp; 6424 boolean_t secure; 6425 uint32_t ill_index; 6426 conn_t *connp, *first_connp, *next_connp; 6427 connf_t *connfp; 6428 boolean_t shared_addr; 6429 mib2_ipIfStatsEntry_t *mibptr; 6430 ip_stack_t *ipst = recv_ill->ill_ipst; 6431 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 6432 6433 mibptr = (ill != NULL) ? ill->ill_ip_mib : &ipst->ips_ip_mib; 6434 if (mctl_present) { 6435 mp = first_mp->b_cont; 6436 secure = ipsec_in_is_secure(first_mp); 6437 ASSERT(mp != NULL); 6438 } else { 6439 secure = B_FALSE; 6440 } 6441 dst = ipha->ipha_dst; 6442 /* 6443 * If the packet was tunneled and not multicast we only send to it 6444 * the first match. 6445 */ 6446 one_only = ((protocol == IPPROTO_ENCAP || protocol == IPPROTO_IPV6) && 6447 !CLASSD(dst)); 6448 6449 shared_addr = (zoneid == ALL_ZONES); 6450 if (shared_addr) { 6451 /* 6452 * We don't allow multilevel ports for raw IP, so no need to 6453 * check for that here. 6454 */ 6455 zoneid = tsol_packet_to_zoneid(mp); 6456 } 6457 6458 connfp = &ipst->ips_ipcl_proto_fanout[protocol]; 6459 mutex_enter(&connfp->connf_lock); 6460 connp = connfp->connf_head; 6461 for (connp = connfp->connf_head; connp != NULL; 6462 connp = connp->conn_next) { 6463 if (IPCL_PROTO_MATCH(connp, protocol, ipha, ill, flags, 6464 zoneid) && 6465 (!is_system_labeled() || 6466 tsol_receive_local(mp, &dst, IPV4_VERSION, shared_addr, 6467 connp))) { 6468 break; 6469 } 6470 } 6471 6472 if (connp == NULL) { 6473 /* 6474 * No one bound to these addresses. Is 6475 * there a client that wants all 6476 * unclaimed datagrams? 6477 */ 6478 mutex_exit(&connfp->connf_lock); 6479 /* 6480 * Check for IPPROTO_ENCAP... 6481 */ 6482 if (protocol == IPPROTO_ENCAP && ipst->ips_ip_g_mrouter) { 6483 /* 6484 * If an IPsec mblk is here on a multicast 6485 * tunnel (using ip_mroute stuff), check policy here, 6486 * THEN ship off to ip_mroute_decap(). 6487 * 6488 * BTW, If I match a configured IP-in-IP 6489 * tunnel, this path will not be reached, and 6490 * ip_mroute_decap will never be called. 6491 */ 6492 first_mp = ipsec_check_global_policy(first_mp, connp, 6493 ipha, NULL, mctl_present, ipst->ips_netstack); 6494 if (first_mp != NULL) { 6495 if (mctl_present) 6496 freeb(first_mp); 6497 ip_mroute_decap(q, mp, ill); 6498 } /* Else we already freed everything! */ 6499 } else { 6500 /* 6501 * Otherwise send an ICMP protocol unreachable. 6502 */ 6503 if (ip_fanout_send_icmp(q, first_mp, flags, 6504 ICMP_DEST_UNREACHABLE, ICMP_PROTOCOL_UNREACHABLE, 6505 mctl_present, zoneid, ipst)) { 6506 BUMP_MIB(mibptr, ipIfStatsInUnknownProtos); 6507 } 6508 } 6509 return; 6510 } 6511 6512 ASSERT(IPCL_IS_NONSTR(connp) || connp->conn_upq != NULL); 6513 6514 CONN_INC_REF(connp); 6515 first_connp = connp; 6516 6517 /* 6518 * Only send message to one tunnel driver by immediately 6519 * terminating the loop. 6520 */ 6521 connp = one_only ? NULL : connp->conn_next; 6522 6523 for (;;) { 6524 while (connp != NULL) { 6525 if (IPCL_PROTO_MATCH(connp, protocol, ipha, ill, 6526 flags, zoneid) && 6527 (!is_system_labeled() || 6528 tsol_receive_local(mp, &dst, IPV4_VERSION, 6529 shared_addr, connp))) 6530 break; 6531 connp = connp->conn_next; 6532 } 6533 6534 /* 6535 * Copy the packet. 6536 */ 6537 if (connp == NULL || 6538 (((first_mp1 = dupmsg(first_mp)) == NULL) && 6539 ((first_mp1 = ip_copymsg(first_mp)) == NULL))) { 6540 /* 6541 * No more interested clients or memory 6542 * allocation failed 6543 */ 6544 connp = first_connp; 6545 break; 6546 } 6547 ASSERT(IPCL_IS_NONSTR(connp) || connp->conn_rq != NULL); 6548 mp1 = mctl_present ? first_mp1->b_cont : first_mp1; 6549 CONN_INC_REF(connp); 6550 mutex_exit(&connfp->connf_lock); 6551 rq = connp->conn_rq; 6552 6553 /* 6554 * Check flow control 6555 */ 6556 if ((IPCL_IS_NONSTR(connp) && PROTO_FLOW_CNTRLD(connp)) || 6557 (!IPCL_IS_NONSTR(connp) && !canputnext(rq))) { 6558 if (flags & IP_FF_RAWIP) { 6559 BUMP_MIB(mibptr, rawipIfStatsInOverflows); 6560 } else { 6561 BUMP_MIB(&ipst->ips_icmp_mib, icmpInOverflows); 6562 } 6563 6564 freemsg(first_mp1); 6565 } else { 6566 /* 6567 * Don't enforce here if we're an actual tunnel - 6568 * let "tun" do it instead. 6569 */ 6570 if (!IPCL_IS_IPTUN(connp) && 6571 (CONN_INBOUND_POLICY_PRESENT(connp, ipss) || 6572 secure)) { 6573 first_mp1 = ipsec_check_inbound_policy 6574 (first_mp1, connp, ipha, NULL, 6575 mctl_present); 6576 } 6577 if (first_mp1 != NULL) { 6578 int in_flags = 0; 6579 /* 6580 * ip_fanout_proto also gets called from 6581 * icmp_inbound_error_fanout, in which case 6582 * the msg type is M_CTL. Don't add info 6583 * in this case for the time being. In future 6584 * when there is a need for knowing the 6585 * inbound iface index for ICMP error msgs, 6586 * then this can be changed. 6587 */ 6588 if (connp->conn_recvif) 6589 in_flags = IPF_RECVIF; 6590 /* 6591 * The ULP may support IP_RECVPKTINFO for both 6592 * IP v4 and v6 so pass the appropriate argument 6593 * based on conn IP version. 6594 */ 6595 if (connp->conn_ip_recvpktinfo) { 6596 if (connp->conn_af_isv6) { 6597 /* 6598 * V6 only needs index 6599 */ 6600 in_flags |= IPF_RECVIF; 6601 } else { 6602 /* 6603 * V4 needs index + 6604 * matching address. 6605 */ 6606 in_flags |= IPF_RECVADDR; 6607 } 6608 } 6609 if ((in_flags != 0) && 6610 (mp->b_datap->db_type != M_CTL)) { 6611 /* 6612 * the actual data will be 6613 * contained in b_cont upon 6614 * successful return of the 6615 * following call else 6616 * original mblk is returned 6617 */ 6618 ASSERT(recv_ill != NULL); 6619 mp1 = ip_add_info(mp1, recv_ill, 6620 in_flags, IPCL_ZONEID(connp), ipst); 6621 } 6622 BUMP_MIB(mibptr, ipIfStatsHCInDelivers); 6623 if (mctl_present) 6624 freeb(first_mp1); 6625 (connp->conn_recv)(connp, mp1, NULL); 6626 } 6627 } 6628 mutex_enter(&connfp->connf_lock); 6629 /* Follow the next pointer before releasing the conn. */ 6630 next_connp = connp->conn_next; 6631 CONN_DEC_REF(connp); 6632 connp = next_connp; 6633 } 6634 6635 /* Last one. Send it upstream. */ 6636 mutex_exit(&connfp->connf_lock); 6637 6638 /* 6639 * If this packet is coming from icmp_inbound_error_fanout ip_policy 6640 * will be set to false. 6641 */ 6642 if (IPP_ENABLED(IPP_LOCAL_IN, ipst) && ip_policy) { 6643 ill_index = ill->ill_phyint->phyint_ifindex; 6644 ip_process(IPP_LOCAL_IN, &mp, ill_index); 6645 if (mp == NULL) { 6646 CONN_DEC_REF(connp); 6647 if (mctl_present) { 6648 freeb(first_mp); 6649 } 6650 return; 6651 } 6652 } 6653 6654 rq = connp->conn_rq; 6655 /* 6656 * Check flow control 6657 */ 6658 if ((IPCL_IS_NONSTR(connp) && PROTO_FLOW_CNTRLD(connp)) || 6659 (!IPCL_IS_NONSTR(connp) && !canputnext(rq))) { 6660 if (flags & IP_FF_RAWIP) { 6661 BUMP_MIB(mibptr, rawipIfStatsInOverflows); 6662 } else { 6663 BUMP_MIB(&ipst->ips_icmp_mib, icmpInOverflows); 6664 } 6665 6666 freemsg(first_mp); 6667 } else { 6668 if (IPCL_IS_IPTUN(connp)) { 6669 /* 6670 * Tunneled packet. We enforce policy in the tunnel 6671 * module itself. 6672 * 6673 * Send the WHOLE packet up (incl. IPSEC_IN) without 6674 * a policy check. 6675 * FIXME to use conn_recv for tun later. 6676 */ 6677 putnext(rq, first_mp); 6678 CONN_DEC_REF(connp); 6679 return; 6680 } 6681 6682 if ((CONN_INBOUND_POLICY_PRESENT(connp, ipss) || secure)) { 6683 first_mp = ipsec_check_inbound_policy(first_mp, connp, 6684 ipha, NULL, mctl_present); 6685 } 6686 6687 if (first_mp != NULL) { 6688 int in_flags = 0; 6689 6690 /* 6691 * ip_fanout_proto also gets called 6692 * from icmp_inbound_error_fanout, in 6693 * which case the msg type is M_CTL. 6694 * Don't add info in this case for time 6695 * being. In future when there is a 6696 * need for knowing the inbound iface 6697 * index for ICMP error msgs, then this 6698 * can be changed 6699 */ 6700 if (connp->conn_recvif) 6701 in_flags = IPF_RECVIF; 6702 if (connp->conn_ip_recvpktinfo) { 6703 if (connp->conn_af_isv6) { 6704 /* 6705 * V6 only needs index 6706 */ 6707 in_flags |= IPF_RECVIF; 6708 } else { 6709 /* 6710 * V4 needs index + 6711 * matching address. 6712 */ 6713 in_flags |= IPF_RECVADDR; 6714 } 6715 } 6716 if ((in_flags != 0) && 6717 (mp->b_datap->db_type != M_CTL)) { 6718 6719 /* 6720 * the actual data will be contained in 6721 * b_cont upon successful return 6722 * of the following call else original 6723 * mblk is returned 6724 */ 6725 ASSERT(recv_ill != NULL); 6726 mp = ip_add_info(mp, recv_ill, 6727 in_flags, IPCL_ZONEID(connp), ipst); 6728 } 6729 BUMP_MIB(mibptr, ipIfStatsHCInDelivers); 6730 (connp->conn_recv)(connp, mp, NULL); 6731 if (mctl_present) 6732 freeb(first_mp); 6733 } 6734 } 6735 CONN_DEC_REF(connp); 6736 } 6737 6738 /* 6739 * Serialize tcp resets by calling tcp_xmit_reset_serialize through 6740 * SQUEUE_ENTER_ONE(SQ_FILL). We do this to ensure the reset is handled on 6741 * the correct squeue, in this case the same squeue as a valid listener with 6742 * no current connection state for the packet we are processing. The function 6743 * is called for synchronizing both IPv4 and IPv6. 6744 */ 6745 void 6746 ip_xmit_reset_serialize(mblk_t *mp, int hdrlen, zoneid_t zoneid, 6747 tcp_stack_t *tcps, conn_t *connp) 6748 { 6749 mblk_t *rst_mp; 6750 tcp_xmit_reset_event_t *eventp; 6751 6752 rst_mp = allocb(sizeof (tcp_xmit_reset_event_t), BPRI_HI); 6753 6754 if (rst_mp == NULL) { 6755 freemsg(mp); 6756 return; 6757 } 6758 6759 rst_mp->b_datap->db_type = M_PROTO; 6760 rst_mp->b_wptr += sizeof (tcp_xmit_reset_event_t); 6761 6762 eventp = (tcp_xmit_reset_event_t *)rst_mp->b_rptr; 6763 eventp->tcp_xre_event = TCP_XRE_EVENT_IP_FANOUT_TCP; 6764 eventp->tcp_xre_iphdrlen = hdrlen; 6765 eventp->tcp_xre_zoneid = zoneid; 6766 eventp->tcp_xre_tcps = tcps; 6767 6768 rst_mp->b_cont = mp; 6769 mp = rst_mp; 6770 6771 /* 6772 * Increment the connref, this ref will be released by the squeue 6773 * framework. 6774 */ 6775 CONN_INC_REF(connp); 6776 SQUEUE_ENTER_ONE(connp->conn_sqp, mp, tcp_xmit_reset, connp, 6777 SQ_FILL, SQTAG_XMIT_EARLY_RESET); 6778 } 6779 6780 /* 6781 * Fanout for TCP packets 6782 * The caller puts <fport, lport> in the ports parameter. 6783 * 6784 * IPQoS Notes 6785 * Before sending it to the client, invoke IPPF processing. 6786 * Policy processing takes place only if the callout_position, IPP_LOCAL_IN, 6787 * is enabled. If we get here from icmp_inbound_error_fanout or ip_wput_local 6788 * ip_policy is false. 6789 */ 6790 static void 6791 ip_fanout_tcp(queue_t *q, mblk_t *mp, ill_t *recv_ill, ipha_t *ipha, 6792 uint_t flags, boolean_t mctl_present, boolean_t ip_policy, zoneid_t zoneid) 6793 { 6794 mblk_t *first_mp; 6795 boolean_t secure; 6796 uint32_t ill_index; 6797 int ip_hdr_len; 6798 tcph_t *tcph; 6799 boolean_t syn_present = B_FALSE; 6800 conn_t *connp; 6801 ip_stack_t *ipst = recv_ill->ill_ipst; 6802 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 6803 6804 ASSERT(recv_ill != NULL); 6805 6806 first_mp = mp; 6807 if (mctl_present) { 6808 ASSERT(first_mp->b_datap->db_type == M_CTL); 6809 mp = first_mp->b_cont; 6810 secure = ipsec_in_is_secure(first_mp); 6811 ASSERT(mp != NULL); 6812 } else { 6813 secure = B_FALSE; 6814 } 6815 6816 ip_hdr_len = IPH_HDR_LENGTH(mp->b_rptr); 6817 6818 if ((connp = ipcl_classify_v4(mp, IPPROTO_TCP, ip_hdr_len, 6819 zoneid, ipst)) == NULL) { 6820 /* 6821 * No connected connection or listener. Send a 6822 * TH_RST via tcp_xmit_listeners_reset. 6823 */ 6824 6825 /* Initiate IPPf processing, if needed. */ 6826 if (IPP_ENABLED(IPP_LOCAL_IN, ipst)) { 6827 uint32_t ill_index; 6828 ill_index = recv_ill->ill_phyint->phyint_ifindex; 6829 ip_process(IPP_LOCAL_IN, &first_mp, ill_index); 6830 if (first_mp == NULL) 6831 return; 6832 } 6833 BUMP_MIB(recv_ill->ill_ip_mib, ipIfStatsHCInDelivers); 6834 ip2dbg(("ip_fanout_tcp: no listener; send reset to zone %d\n", 6835 zoneid)); 6836 tcp_xmit_listeners_reset(first_mp, ip_hdr_len, zoneid, 6837 ipst->ips_netstack->netstack_tcp, NULL); 6838 return; 6839 } 6840 6841 /* 6842 * Allocate the SYN for the TCP connection here itself 6843 */ 6844 tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len]; 6845 if ((tcph->th_flags[0] & (TH_SYN|TH_ACK|TH_RST|TH_URG)) == TH_SYN) { 6846 if (IPCL_IS_TCP(connp)) { 6847 squeue_t *sqp; 6848 6849 /* 6850 * For fused tcp loopback, assign the eager's 6851 * squeue to be that of the active connect's. 6852 * Note that we don't check for IP_FF_LOOPBACK 6853 * here since this routine gets called only 6854 * for loopback (unlike the IPv6 counterpart). 6855 */ 6856 ASSERT(Q_TO_CONN(q) != NULL); 6857 if (do_tcp_fusion && 6858 !CONN_INBOUND_POLICY_PRESENT(connp, ipss) && 6859 !secure && 6860 !IPP_ENABLED(IPP_LOCAL_IN, ipst) && !ip_policy && 6861 IPCL_IS_TCP(Q_TO_CONN(q))) { 6862 ASSERT(Q_TO_CONN(q)->conn_sqp != NULL); 6863 sqp = Q_TO_CONN(q)->conn_sqp; 6864 } else { 6865 sqp = IP_SQUEUE_GET(lbolt); 6866 } 6867 6868 mp->b_datap->db_struioflag |= STRUIO_EAGER; 6869 DB_CKSUMSTART(mp) = (intptr_t)sqp; 6870 syn_present = B_TRUE; 6871 } 6872 } 6873 6874 if (IPCL_IS_TCP(connp) && IPCL_IS_BOUND(connp) && !syn_present) { 6875 uint_t flags = (unsigned int)tcph->th_flags[0] & 0xFF; 6876 BUMP_MIB(recv_ill->ill_ip_mib, ipIfStatsHCInDelivers); 6877 if ((flags & TH_RST) || (flags & TH_URG)) { 6878 CONN_DEC_REF(connp); 6879 freemsg(first_mp); 6880 return; 6881 } 6882 if (flags & TH_ACK) { 6883 ip_xmit_reset_serialize(first_mp, ip_hdr_len, zoneid, 6884 ipst->ips_netstack->netstack_tcp, connp); 6885 CONN_DEC_REF(connp); 6886 return; 6887 } 6888 6889 CONN_DEC_REF(connp); 6890 freemsg(first_mp); 6891 return; 6892 } 6893 6894 if (CONN_INBOUND_POLICY_PRESENT(connp, ipss) || secure) { 6895 first_mp = ipsec_check_inbound_policy(first_mp, connp, ipha, 6896 NULL, mctl_present); 6897 if (first_mp == NULL) { 6898 BUMP_MIB(recv_ill->ill_ip_mib, ipIfStatsInDiscards); 6899 CONN_DEC_REF(connp); 6900 return; 6901 } 6902 if (IPCL_IS_TCP(connp) && IPCL_IS_BOUND(connp)) { 6903 ASSERT(syn_present); 6904 if (mctl_present) { 6905 ASSERT(first_mp != mp); 6906 first_mp->b_datap->db_struioflag |= 6907 STRUIO_POLICY; 6908 } else { 6909 ASSERT(first_mp == mp); 6910 mp->b_datap->db_struioflag &= 6911 ~STRUIO_EAGER; 6912 mp->b_datap->db_struioflag |= 6913 STRUIO_POLICY; 6914 } 6915 } else { 6916 /* 6917 * Discard first_mp early since we're dealing with a 6918 * fully-connected conn_t and tcp doesn't do policy in 6919 * this case. 6920 */ 6921 if (mctl_present) { 6922 freeb(first_mp); 6923 mctl_present = B_FALSE; 6924 } 6925 first_mp = mp; 6926 } 6927 } 6928 6929 /* 6930 * Initiate policy processing here if needed. If we get here from 6931 * icmp_inbound_error_fanout, ip_policy is false. 6932 */ 6933 if (IPP_ENABLED(IPP_LOCAL_IN, ipst) && ip_policy) { 6934 ill_index = recv_ill->ill_phyint->phyint_ifindex; 6935 ip_process(IPP_LOCAL_IN, &mp, ill_index); 6936 if (mp == NULL) { 6937 CONN_DEC_REF(connp); 6938 if (mctl_present) 6939 freeb(first_mp); 6940 return; 6941 } else if (mctl_present) { 6942 ASSERT(first_mp != mp); 6943 first_mp->b_cont = mp; 6944 } else { 6945 first_mp = mp; 6946 } 6947 } 6948 6949 /* Handle socket options. */ 6950 if (!syn_present && 6951 connp->conn_ip_recvpktinfo && (flags & IP_FF_IPINFO)) { 6952 /* Add header */ 6953 ASSERT(recv_ill != NULL); 6954 /* 6955 * Since tcp does not support IP_RECVPKTINFO for V4, only pass 6956 * IPF_RECVIF. 6957 */ 6958 mp = ip_add_info(mp, recv_ill, IPF_RECVIF, IPCL_ZONEID(connp), 6959 ipst); 6960 if (mp == NULL) { 6961 BUMP_MIB(recv_ill->ill_ip_mib, ipIfStatsInDiscards); 6962 CONN_DEC_REF(connp); 6963 if (mctl_present) 6964 freeb(first_mp); 6965 return; 6966 } else if (mctl_present) { 6967 /* 6968 * ip_add_info might return a new mp. 6969 */ 6970 ASSERT(first_mp != mp); 6971 first_mp->b_cont = mp; 6972 } else { 6973 first_mp = mp; 6974 } 6975 } 6976 BUMP_MIB(recv_ill->ill_ip_mib, ipIfStatsHCInDelivers); 6977 if (IPCL_IS_TCP(connp)) { 6978 /* do not drain, certain use cases can blow the stack */ 6979 SQUEUE_ENTER_ONE(connp->conn_sqp, first_mp, connp->conn_recv, 6980 connp, ip_squeue_flag, SQTAG_IP_FANOUT_TCP); 6981 } else { 6982 /* Not TCP; must be SOCK_RAW, IPPROTO_TCP */ 6983 (connp->conn_recv)(connp, first_mp, NULL); 6984 CONN_DEC_REF(connp); 6985 } 6986 } 6987 6988 /* 6989 * If we have a IPsec NAT-Traversal packet, strip the zero-SPI or 6990 * pass it along to ESP if the SPI is non-zero. Returns TRUE if the mblk 6991 * is not consumed. 6992 * 6993 * One of four things can happen, all of which affect the passed-in mblk: 6994 * 6995 * 1.) ICMP messages that go through here just get returned TRUE. 6996 * 6997 * 2.) The packet is stock UDP and gets its zero-SPI stripped. Return TRUE. 6998 * 6999 * 3.) The packet is ESP-in-UDP, gets transformed into an equivalent 7000 * ESP packet, and is passed along to ESP for consumption. Return FALSE. 7001 * 7002 * 4.) The packet is an ESP-in-UDP Keepalive. Drop it and return FALSE. 7003 */ 7004 static boolean_t 7005 zero_spi_check(queue_t *q, mblk_t *mp, ire_t *ire, ill_t *recv_ill, 7006 ipsec_stack_t *ipss) 7007 { 7008 int shift, plen, iph_len; 7009 ipha_t *ipha; 7010 udpha_t *udpha; 7011 uint32_t *spi; 7012 uint32_t esp_ports; 7013 uint8_t *orptr; 7014 boolean_t free_ire; 7015 7016 if (DB_TYPE(mp) == M_CTL) { 7017 /* 7018 * ICMP message with UDP inside. Don't bother stripping, just 7019 * send it up. 7020 * 7021 * NOTE: Any app with UDP_NAT_T_ENDPOINT set is probably going 7022 * to ignore errors set by ICMP anyway ('cause they might be 7023 * forged), but that's the app's decision, not ours. 7024 */ 7025 7026 /* Bunch of reality checks for DEBUG kernels... */ 7027 ASSERT(IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION); 7028 ASSERT(((ipha_t *)mp->b_rptr)->ipha_protocol == IPPROTO_ICMP); 7029 7030 return (B_TRUE); 7031 } 7032 7033 ipha = (ipha_t *)mp->b_rptr; 7034 iph_len = IPH_HDR_LENGTH(ipha); 7035 plen = ntohs(ipha->ipha_length); 7036 7037 if (plen - iph_len - sizeof (udpha_t) < sizeof (uint32_t)) { 7038 /* 7039 * Most likely a keepalive for the benefit of an intervening 7040 * NAT. These aren't for us, per se, so drop it. 7041 * 7042 * RFC 3947/8 doesn't say for sure what to do for 2-3 7043 * byte packets (keepalives are 1-byte), but we'll drop them 7044 * also. 7045 */ 7046 ip_drop_packet(mp, B_TRUE, recv_ill, NULL, 7047 DROPPER(ipss, ipds_esp_nat_t_ka), &ipss->ipsec_dropper); 7048 return (B_FALSE); 7049 } 7050 7051 if (MBLKL(mp) < iph_len + sizeof (udpha_t) + sizeof (*spi)) { 7052 /* might as well pull it all up - it might be ESP. */ 7053 if (!pullupmsg(mp, -1)) { 7054 ip_drop_packet(mp, B_TRUE, recv_ill, NULL, 7055 DROPPER(ipss, ipds_esp_nomem), 7056 &ipss->ipsec_dropper); 7057 return (B_FALSE); 7058 } 7059 7060 ipha = (ipha_t *)mp->b_rptr; 7061 } 7062 spi = (uint32_t *)(mp->b_rptr + iph_len + sizeof (udpha_t)); 7063 if (*spi == 0) { 7064 /* UDP packet - remove 0-spi. */ 7065 shift = sizeof (uint32_t); 7066 } else { 7067 /* ESP-in-UDP packet - reduce to ESP. */ 7068 ipha->ipha_protocol = IPPROTO_ESP; 7069 shift = sizeof (udpha_t); 7070 } 7071 7072 /* Fix IP header */ 7073 ipha->ipha_length = htons(plen - shift); 7074 ipha->ipha_hdr_checksum = 0; 7075 7076 orptr = mp->b_rptr; 7077 mp->b_rptr += shift; 7078 7079 udpha = (udpha_t *)(orptr + iph_len); 7080 if (*spi == 0) { 7081 ASSERT((uint8_t *)ipha == orptr); 7082 udpha->uha_length = htons(plen - shift - iph_len); 7083 iph_len += sizeof (udpha_t); /* For the call to ovbcopy(). */ 7084 esp_ports = 0; 7085 } else { 7086 esp_ports = *((uint32_t *)udpha); 7087 ASSERT(esp_ports != 0); 7088 } 7089 ovbcopy(orptr, orptr + shift, iph_len); 7090 if (esp_ports != 0) /* Punt up for ESP processing. */ { 7091 ipha = (ipha_t *)(orptr + shift); 7092 7093 free_ire = (ire == NULL); 7094 if (free_ire) { 7095 /* Re-acquire ire. */ 7096 ire = ire_cache_lookup(ipha->ipha_dst, ALL_ZONES, NULL, 7097 ipss->ipsec_netstack->netstack_ip); 7098 if (ire == NULL || !(ire->ire_type & IRE_LOCAL)) { 7099 if (ire != NULL) 7100 ire_refrele(ire); 7101 /* 7102 * Do a regular freemsg(), as this is an IP 7103 * error (no local route) not an IPsec one. 7104 */ 7105 freemsg(mp); 7106 } 7107 } 7108 7109 ip_proto_input(q, mp, ipha, ire, recv_ill, esp_ports); 7110 if (free_ire) 7111 ire_refrele(ire); 7112 } 7113 7114 return (esp_ports == 0); 7115 } 7116 7117 /* 7118 * Deliver a udp packet to the given conn, possibly applying ipsec policy. 7119 * We are responsible for disposing of mp, such as by freemsg() or putnext() 7120 * Caller is responsible for dropping references to the conn, and freeing 7121 * first_mp. 7122 * 7123 * IPQoS Notes 7124 * Before sending it to the client, invoke IPPF processing. Policy processing 7125 * takes place only if the callout_position, IPP_LOCAL_IN, is enabled and 7126 * ip_policy is true. If we get here from icmp_inbound_error_fanout or 7127 * ip_wput_local, ip_policy is false. 7128 */ 7129 static void 7130 ip_fanout_udp_conn(conn_t *connp, mblk_t *first_mp, mblk_t *mp, 7131 boolean_t secure, ill_t *ill, ipha_t *ipha, uint_t flags, ill_t *recv_ill, 7132 boolean_t ip_policy) 7133 { 7134 boolean_t mctl_present = (first_mp != NULL); 7135 uint32_t in_flags = 0; /* set to IP_RECVSLLA and/or IP_RECVIF */ 7136 uint32_t ill_index; 7137 ip_stack_t *ipst = recv_ill->ill_ipst; 7138 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 7139 7140 ASSERT(ill != NULL); 7141 7142 if (mctl_present) 7143 first_mp->b_cont = mp; 7144 else 7145 first_mp = mp; 7146 7147 if ((IPCL_IS_NONSTR(connp) && PROTO_FLOW_CNTRLD(connp)) || 7148 (!IPCL_IS_NONSTR(connp) && CONN_UDP_FLOWCTLD(connp))) { 7149 BUMP_MIB(ill->ill_ip_mib, udpIfStatsInOverflows); 7150 freemsg(first_mp); 7151 return; 7152 } 7153 7154 if (CONN_INBOUND_POLICY_PRESENT(connp, ipss) || secure) { 7155 first_mp = ipsec_check_inbound_policy(first_mp, connp, ipha, 7156 NULL, mctl_present); 7157 /* Freed by ipsec_check_inbound_policy(). */ 7158 if (first_mp == NULL) { 7159 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 7160 return; 7161 } 7162 } 7163 if (mctl_present) 7164 freeb(first_mp); 7165 7166 /* Let's hope the compilers utter "branch, predict-not-taken..." ;) */ 7167 if (connp->conn_udp->udp_nat_t_endpoint) { 7168 if (mctl_present) { 7169 /* mctl_present *shouldn't* happen. */ 7170 ip_drop_packet(mp, B_TRUE, NULL, NULL, 7171 DROPPER(ipss, ipds_esp_nat_t_ipsec), 7172 &ipss->ipsec_dropper); 7173 return; 7174 } 7175 7176 if (!zero_spi_check(ill->ill_rq, mp, NULL, recv_ill, ipss)) 7177 return; 7178 } 7179 7180 /* Handle options. */ 7181 if (connp->conn_recvif) 7182 in_flags = IPF_RECVIF; 7183 /* 7184 * UDP supports IP_RECVPKTINFO option for both v4 and v6 so the flag 7185 * passed to ip_add_info is based on IP version of connp. 7186 */ 7187 if (connp->conn_ip_recvpktinfo && (flags & IP_FF_IPINFO)) { 7188 if (connp->conn_af_isv6) { 7189 /* 7190 * V6 only needs index 7191 */ 7192 in_flags |= IPF_RECVIF; 7193 } else { 7194 /* 7195 * V4 needs index + matching address. 7196 */ 7197 in_flags |= IPF_RECVADDR; 7198 } 7199 } 7200 7201 if (connp->conn_recvslla && !(flags & IP_FF_SEND_SLLA)) 7202 in_flags |= IPF_RECVSLLA; 7203 7204 /* 7205 * Initiate IPPF processing here, if needed. Note first_mp won't be 7206 * freed if the packet is dropped. The caller will do so. 7207 */ 7208 if (IPP_ENABLED(IPP_LOCAL_IN, ipst) && ip_policy) { 7209 ill_index = recv_ill->ill_phyint->phyint_ifindex; 7210 ip_process(IPP_LOCAL_IN, &mp, ill_index); 7211 if (mp == NULL) { 7212 return; 7213 } 7214 } 7215 if ((in_flags != 0) && 7216 (mp->b_datap->db_type != M_CTL)) { 7217 /* 7218 * The actual data will be contained in b_cont 7219 * upon successful return of the following call 7220 * else original mblk is returned 7221 */ 7222 ASSERT(recv_ill != NULL); 7223 mp = ip_add_info(mp, recv_ill, in_flags, IPCL_ZONEID(connp), 7224 ipst); 7225 } 7226 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers); 7227 /* Send it upstream */ 7228 (connp->conn_recv)(connp, mp, NULL); 7229 } 7230 7231 /* 7232 * Fanout for UDP packets. 7233 * The caller puts <fport, lport> in the ports parameter. 7234 * 7235 * If SO_REUSEADDR is set all multicast and broadcast packets 7236 * will be delivered to all streams bound to the same port. 7237 * 7238 * Zones notes: 7239 * Multicast and broadcast packets will be distributed to streams in all zones. 7240 * In the special case where an AF_INET socket binds to 0.0.0.0/<port> and an 7241 * AF_INET6 socket binds to ::/<port>, only the AF_INET socket receives the IPv4 7242 * packets. To maintain this behavior with multiple zones, the conns are grouped 7243 * by zone and the SO_REUSEADDR flag is checked for the first matching conn in 7244 * each zone. If unset, all the following conns in the same zone are skipped. 7245 */ 7246 static void 7247 ip_fanout_udp(queue_t *q, mblk_t *mp, ill_t *ill, ipha_t *ipha, 7248 uint32_t ports, boolean_t broadcast, uint_t flags, boolean_t mctl_present, 7249 boolean_t ip_policy, ill_t *recv_ill, zoneid_t zoneid) 7250 { 7251 uint32_t dstport, srcport; 7252 ipaddr_t dst; 7253 mblk_t *first_mp; 7254 boolean_t secure; 7255 in6_addr_t v6src; 7256 conn_t *connp; 7257 connf_t *connfp; 7258 conn_t *first_connp; 7259 conn_t *next_connp; 7260 mblk_t *mp1, *first_mp1; 7261 ipaddr_t src; 7262 zoneid_t last_zoneid; 7263 boolean_t reuseaddr; 7264 boolean_t shared_addr; 7265 boolean_t unlabeled; 7266 ip_stack_t *ipst; 7267 7268 ASSERT(recv_ill != NULL); 7269 ipst = recv_ill->ill_ipst; 7270 7271 first_mp = mp; 7272 if (mctl_present) { 7273 mp = first_mp->b_cont; 7274 first_mp->b_cont = NULL; 7275 secure = ipsec_in_is_secure(first_mp); 7276 ASSERT(mp != NULL); 7277 } else { 7278 first_mp = NULL; 7279 secure = B_FALSE; 7280 } 7281 7282 /* Extract ports in net byte order */ 7283 dstport = htons(ntohl(ports) & 0xFFFF); 7284 srcport = htons(ntohl(ports) >> 16); 7285 dst = ipha->ipha_dst; 7286 src = ipha->ipha_src; 7287 7288 unlabeled = B_FALSE; 7289 if (is_system_labeled()) 7290 /* Cred cannot be null on IPv4 */ 7291 unlabeled = (msg_getlabel(mp)->tsl_flags & 7292 TSLF_UNLABELED) != 0; 7293 shared_addr = (zoneid == ALL_ZONES); 7294 if (shared_addr) { 7295 /* 7296 * No need to handle exclusive-stack zones since ALL_ZONES 7297 * only applies to the shared stack. 7298 */ 7299 zoneid = tsol_mlp_findzone(IPPROTO_UDP, dstport); 7300 /* 7301 * If no shared MLP is found, tsol_mlp_findzone returns 7302 * ALL_ZONES. In that case, we assume it's SLP, and 7303 * search for the zone based on the packet label. 7304 * 7305 * If there is such a zone, we prefer to find a 7306 * connection in it. Otherwise, we look for a 7307 * MAC-exempt connection in any zone whose label 7308 * dominates the default label on the packet. 7309 */ 7310 if (zoneid == ALL_ZONES) 7311 zoneid = tsol_packet_to_zoneid(mp); 7312 else 7313 unlabeled = B_FALSE; 7314 } 7315 7316 connfp = &ipst->ips_ipcl_udp_fanout[IPCL_UDP_HASH(dstport, ipst)]; 7317 mutex_enter(&connfp->connf_lock); 7318 connp = connfp->connf_head; 7319 if (!broadcast && !CLASSD(dst)) { 7320 /* 7321 * Not broadcast or multicast. Send to the one (first) 7322 * client we find. No need to check conn_wantpacket() 7323 * since IP_BOUND_IF/conn_incoming_ill does not apply to 7324 * IPv4 unicast packets. 7325 */ 7326 while ((connp != NULL) && 7327 (!IPCL_UDP_MATCH(connp, dstport, dst, srcport, src) || 7328 (!IPCL_ZONE_MATCH(connp, zoneid) && 7329 !(unlabeled && connp->conn_mac_exempt)))) { 7330 /* 7331 * We keep searching since the conn did not match, 7332 * or its zone did not match and it is not either 7333 * an allzones conn or a mac exempt conn (if the 7334 * sender is unlabeled.) 7335 */ 7336 connp = connp->conn_next; 7337 } 7338 7339 if (connp == NULL || 7340 !IPCL_IS_NONSTR(connp) && connp->conn_upq == NULL) 7341 goto notfound; 7342 7343 ASSERT(IPCL_IS_NONSTR(connp) || connp->conn_upq != NULL); 7344 7345 if (is_system_labeled() && 7346 !tsol_receive_local(mp, &dst, IPV4_VERSION, shared_addr, 7347 connp)) 7348 goto notfound; 7349 7350 CONN_INC_REF(connp); 7351 mutex_exit(&connfp->connf_lock); 7352 ip_fanout_udp_conn(connp, first_mp, mp, secure, ill, ipha, 7353 flags, recv_ill, ip_policy); 7354 IP_STAT(ipst, ip_udp_fannorm); 7355 CONN_DEC_REF(connp); 7356 return; 7357 } 7358 7359 /* 7360 * Broadcast and multicast case 7361 * 7362 * Need to check conn_wantpacket(). 7363 * If SO_REUSEADDR has been set on the first we send the 7364 * packet to all clients that have joined the group and 7365 * match the port. 7366 */ 7367 7368 while (connp != NULL) { 7369 if ((IPCL_UDP_MATCH(connp, dstport, dst, srcport, src)) && 7370 conn_wantpacket(connp, ill, ipha, flags, zoneid) && 7371 (!is_system_labeled() || 7372 tsol_receive_local(mp, &dst, IPV4_VERSION, shared_addr, 7373 connp))) 7374 break; 7375 connp = connp->conn_next; 7376 } 7377 7378 if (connp == NULL || 7379 !IPCL_IS_NONSTR(connp) && connp->conn_upq == NULL) 7380 goto notfound; 7381 7382 ASSERT(IPCL_IS_NONSTR(connp) || connp->conn_upq != NULL); 7383 7384 first_connp = connp; 7385 /* 7386 * When SO_REUSEADDR is not set, send the packet only to the first 7387 * matching connection in its zone by keeping track of the zoneid. 7388 */ 7389 reuseaddr = first_connp->conn_reuseaddr; 7390 last_zoneid = first_connp->conn_zoneid; 7391 7392 CONN_INC_REF(connp); 7393 connp = connp->conn_next; 7394 for (;;) { 7395 while (connp != NULL) { 7396 if (IPCL_UDP_MATCH(connp, dstport, dst, srcport, src) && 7397 (reuseaddr || connp->conn_zoneid != last_zoneid) && 7398 conn_wantpacket(connp, ill, ipha, flags, zoneid) && 7399 (!is_system_labeled() || 7400 tsol_receive_local(mp, &dst, IPV4_VERSION, 7401 shared_addr, connp))) 7402 break; 7403 connp = connp->conn_next; 7404 } 7405 /* 7406 * Just copy the data part alone. The mctl part is 7407 * needed just for verifying policy and it is never 7408 * sent up. 7409 */ 7410 if (connp == NULL || (((mp1 = dupmsg(mp)) == NULL) && 7411 ((mp1 = copymsg(mp)) == NULL))) { 7412 /* 7413 * No more interested clients or memory 7414 * allocation failed 7415 */ 7416 connp = first_connp; 7417 break; 7418 } 7419 if (connp->conn_zoneid != last_zoneid) { 7420 /* 7421 * Update the zoneid so that the packet isn't sent to 7422 * any more conns in the same zone unless SO_REUSEADDR 7423 * is set. 7424 */ 7425 reuseaddr = connp->conn_reuseaddr; 7426 last_zoneid = connp->conn_zoneid; 7427 } 7428 if (first_mp != NULL) { 7429 ASSERT(((ipsec_info_t *)first_mp->b_rptr)-> 7430 ipsec_info_type == IPSEC_IN); 7431 first_mp1 = ipsec_in_tag(first_mp, NULL, 7432 ipst->ips_netstack); 7433 if (first_mp1 == NULL) { 7434 freemsg(mp1); 7435 connp = first_connp; 7436 break; 7437 } 7438 } else { 7439 first_mp1 = NULL; 7440 } 7441 CONN_INC_REF(connp); 7442 mutex_exit(&connfp->connf_lock); 7443 /* 7444 * IPQoS notes: We don't send the packet for policy 7445 * processing here, will do it for the last one (below). 7446 * i.e. we do it per-packet now, but if we do policy 7447 * processing per-conn, then we would need to do it 7448 * here too. 7449 */ 7450 ip_fanout_udp_conn(connp, first_mp1, mp1, secure, ill, 7451 ipha, flags, recv_ill, B_FALSE); 7452 mutex_enter(&connfp->connf_lock); 7453 /* Follow the next pointer before releasing the conn. */ 7454 next_connp = connp->conn_next; 7455 IP_STAT(ipst, ip_udp_fanmb); 7456 CONN_DEC_REF(connp); 7457 connp = next_connp; 7458 } 7459 7460 /* Last one. Send it upstream. */ 7461 mutex_exit(&connfp->connf_lock); 7462 ip_fanout_udp_conn(connp, first_mp, mp, secure, ill, ipha, flags, 7463 recv_ill, ip_policy); 7464 IP_STAT(ipst, ip_udp_fanmb); 7465 CONN_DEC_REF(connp); 7466 return; 7467 7468 notfound: 7469 7470 mutex_exit(&connfp->connf_lock); 7471 IP_STAT(ipst, ip_udp_fanothers); 7472 /* 7473 * IPv6 endpoints bound to unicast or multicast IPv4-mapped addresses 7474 * have already been matched above, since they live in the IPv4 7475 * fanout tables. This implies we only need to 7476 * check for IPv6 in6addr_any endpoints here. 7477 * Thus we compare using ipv6_all_zeros instead of the destination 7478 * address, except for the multicast group membership lookup which 7479 * uses the IPv4 destination. 7480 */ 7481 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &v6src); 7482 connfp = &ipst->ips_ipcl_udp_fanout[IPCL_UDP_HASH(dstport, ipst)]; 7483 mutex_enter(&connfp->connf_lock); 7484 connp = connfp->connf_head; 7485 if (!broadcast && !CLASSD(dst)) { 7486 while (connp != NULL) { 7487 if (IPCL_UDP_MATCH_V6(connp, dstport, ipv6_all_zeros, 7488 srcport, v6src) && IPCL_ZONE_MATCH(connp, zoneid) && 7489 conn_wantpacket(connp, ill, ipha, flags, zoneid) && 7490 !connp->conn_ipv6_v6only) 7491 break; 7492 connp = connp->conn_next; 7493 } 7494 7495 if (connp != NULL && is_system_labeled() && 7496 !tsol_receive_local(mp, &dst, IPV4_VERSION, shared_addr, 7497 connp)) 7498 connp = NULL; 7499 7500 if (connp == NULL || 7501 !IPCL_IS_NONSTR(connp) && connp->conn_upq == NULL) { 7502 /* 7503 * No one bound to this port. Is 7504 * there a client that wants all 7505 * unclaimed datagrams? 7506 */ 7507 mutex_exit(&connfp->connf_lock); 7508 7509 if (mctl_present) 7510 first_mp->b_cont = mp; 7511 else 7512 first_mp = mp; 7513 if (ipst->ips_ipcl_proto_fanout[IPPROTO_UDP]. 7514 connf_head != NULL) { 7515 ip_fanout_proto(q, first_mp, ill, ipha, 7516 flags | IP_FF_RAWIP, mctl_present, 7517 ip_policy, recv_ill, zoneid); 7518 } else { 7519 if (ip_fanout_send_icmp(q, first_mp, flags, 7520 ICMP_DEST_UNREACHABLE, 7521 ICMP_PORT_UNREACHABLE, 7522 mctl_present, zoneid, ipst)) { 7523 BUMP_MIB(ill->ill_ip_mib, 7524 udpIfStatsNoPorts); 7525 } 7526 } 7527 return; 7528 } 7529 ASSERT(IPCL_IS_NONSTR(connp) || connp->conn_upq != NULL); 7530 7531 CONN_INC_REF(connp); 7532 mutex_exit(&connfp->connf_lock); 7533 ip_fanout_udp_conn(connp, first_mp, mp, secure, ill, ipha, 7534 flags, recv_ill, ip_policy); 7535 CONN_DEC_REF(connp); 7536 return; 7537 } 7538 /* 7539 * IPv4 multicast packet being delivered to an AF_INET6 7540 * in6addr_any endpoint. 7541 * Need to check conn_wantpacket(). Note that we use conn_wantpacket() 7542 * and not conn_wantpacket_v6() since any multicast membership is 7543 * for an IPv4-mapped multicast address. 7544 * The packet is sent to all clients in all zones that have joined the 7545 * group and match the port. 7546 */ 7547 while (connp != NULL) { 7548 if (IPCL_UDP_MATCH_V6(connp, dstport, ipv6_all_zeros, 7549 srcport, v6src) && 7550 conn_wantpacket(connp, ill, ipha, flags, zoneid) && 7551 (!is_system_labeled() || 7552 tsol_receive_local(mp, &dst, IPV4_VERSION, shared_addr, 7553 connp))) 7554 break; 7555 connp = connp->conn_next; 7556 } 7557 7558 if (connp == NULL || 7559 !IPCL_IS_NONSTR(connp) && connp->conn_upq == NULL) { 7560 /* 7561 * No one bound to this port. Is 7562 * there a client that wants all 7563 * unclaimed datagrams? 7564 */ 7565 mutex_exit(&connfp->connf_lock); 7566 7567 if (mctl_present) 7568 first_mp->b_cont = mp; 7569 else 7570 first_mp = mp; 7571 if (ipst->ips_ipcl_proto_fanout[IPPROTO_UDP].connf_head != 7572 NULL) { 7573 ip_fanout_proto(q, first_mp, ill, ipha, 7574 flags | IP_FF_RAWIP, mctl_present, ip_policy, 7575 recv_ill, zoneid); 7576 } else { 7577 /* 7578 * We used to attempt to send an icmp error here, but 7579 * since this is known to be a multicast packet 7580 * and we don't send icmp errors in response to 7581 * multicast, just drop the packet and give up sooner. 7582 */ 7583 BUMP_MIB(ill->ill_ip_mib, udpIfStatsNoPorts); 7584 freemsg(first_mp); 7585 } 7586 return; 7587 } 7588 ASSERT(IPCL_IS_NONSTR(connp) || connp->conn_upq != NULL); 7589 7590 first_connp = connp; 7591 7592 CONN_INC_REF(connp); 7593 connp = connp->conn_next; 7594 for (;;) { 7595 while (connp != NULL) { 7596 if (IPCL_UDP_MATCH_V6(connp, dstport, 7597 ipv6_all_zeros, srcport, v6src) && 7598 conn_wantpacket(connp, ill, ipha, flags, zoneid) && 7599 (!is_system_labeled() || 7600 tsol_receive_local(mp, &dst, IPV4_VERSION, 7601 shared_addr, connp))) 7602 break; 7603 connp = connp->conn_next; 7604 } 7605 /* 7606 * Just copy the data part alone. The mctl part is 7607 * needed just for verifying policy and it is never 7608 * sent up. 7609 */ 7610 if (connp == NULL || (((mp1 = dupmsg(mp)) == NULL) && 7611 ((mp1 = copymsg(mp)) == NULL))) { 7612 /* 7613 * No more intested clients or memory 7614 * allocation failed 7615 */ 7616 connp = first_connp; 7617 break; 7618 } 7619 if (first_mp != NULL) { 7620 ASSERT(((ipsec_info_t *)first_mp->b_rptr)-> 7621 ipsec_info_type == IPSEC_IN); 7622 first_mp1 = ipsec_in_tag(first_mp, NULL, 7623 ipst->ips_netstack); 7624 if (first_mp1 == NULL) { 7625 freemsg(mp1); 7626 connp = first_connp; 7627 break; 7628 } 7629 } else { 7630 first_mp1 = NULL; 7631 } 7632 CONN_INC_REF(connp); 7633 mutex_exit(&connfp->connf_lock); 7634 /* 7635 * IPQoS notes: We don't send the packet for policy 7636 * processing here, will do it for the last one (below). 7637 * i.e. we do it per-packet now, but if we do policy 7638 * processing per-conn, then we would need to do it 7639 * here too. 7640 */ 7641 ip_fanout_udp_conn(connp, first_mp1, mp1, secure, ill, 7642 ipha, flags, recv_ill, B_FALSE); 7643 mutex_enter(&connfp->connf_lock); 7644 /* Follow the next pointer before releasing the conn. */ 7645 next_connp = connp->conn_next; 7646 CONN_DEC_REF(connp); 7647 connp = next_connp; 7648 } 7649 7650 /* Last one. Send it upstream. */ 7651 mutex_exit(&connfp->connf_lock); 7652 ip_fanout_udp_conn(connp, first_mp, mp, secure, ill, ipha, flags, 7653 recv_ill, ip_policy); 7654 CONN_DEC_REF(connp); 7655 } 7656 7657 /* 7658 * Complete the ip_wput header so that it 7659 * is possible to generate ICMP 7660 * errors. 7661 */ 7662 int 7663 ip_hdr_complete(ipha_t *ipha, zoneid_t zoneid, ip_stack_t *ipst) 7664 { 7665 ire_t *ire; 7666 7667 if (ipha->ipha_src == INADDR_ANY) { 7668 ire = ire_lookup_local(zoneid, ipst); 7669 if (ire == NULL) { 7670 ip1dbg(("ip_hdr_complete: no source IRE\n")); 7671 return (1); 7672 } 7673 ipha->ipha_src = ire->ire_addr; 7674 ire_refrele(ire); 7675 } 7676 ipha->ipha_ttl = ipst->ips_ip_def_ttl; 7677 ipha->ipha_hdr_checksum = 0; 7678 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 7679 return (0); 7680 } 7681 7682 /* 7683 * Nobody should be sending 7684 * packets up this stream 7685 */ 7686 static void 7687 ip_lrput(queue_t *q, mblk_t *mp) 7688 { 7689 mblk_t *mp1; 7690 7691 switch (mp->b_datap->db_type) { 7692 case M_FLUSH: 7693 /* Turn around */ 7694 if (*mp->b_rptr & FLUSHW) { 7695 *mp->b_rptr &= ~FLUSHR; 7696 qreply(q, mp); 7697 return; 7698 } 7699 break; 7700 } 7701 /* Could receive messages that passed through ar_rput */ 7702 for (mp1 = mp; mp1; mp1 = mp1->b_cont) 7703 mp1->b_prev = mp1->b_next = NULL; 7704 freemsg(mp); 7705 } 7706 7707 /* Nobody should be sending packets down this stream */ 7708 /* ARGSUSED */ 7709 void 7710 ip_lwput(queue_t *q, mblk_t *mp) 7711 { 7712 freemsg(mp); 7713 } 7714 7715 /* 7716 * Move the first hop in any source route to ipha_dst and remove that part of 7717 * the source route. Called by other protocols. Errors in option formatting 7718 * are ignored - will be handled by ip_wput_options Return the final 7719 * destination (either ipha_dst or the last entry in a source route.) 7720 */ 7721 ipaddr_t 7722 ip_massage_options(ipha_t *ipha, netstack_t *ns) 7723 { 7724 ipoptp_t opts; 7725 uchar_t *opt; 7726 uint8_t optval; 7727 uint8_t optlen; 7728 ipaddr_t dst; 7729 int i; 7730 ire_t *ire; 7731 ip_stack_t *ipst = ns->netstack_ip; 7732 7733 ip2dbg(("ip_massage_options\n")); 7734 dst = ipha->ipha_dst; 7735 for (optval = ipoptp_first(&opts, ipha); 7736 optval != IPOPT_EOL; 7737 optval = ipoptp_next(&opts)) { 7738 opt = opts.ipoptp_cur; 7739 switch (optval) { 7740 uint8_t off; 7741 case IPOPT_SSRR: 7742 case IPOPT_LSRR: 7743 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 7744 ip1dbg(("ip_massage_options: bad src route\n")); 7745 break; 7746 } 7747 optlen = opts.ipoptp_len; 7748 off = opt[IPOPT_OFFSET]; 7749 off--; 7750 redo_srr: 7751 if (optlen < IP_ADDR_LEN || 7752 off > optlen - IP_ADDR_LEN) { 7753 /* End of source route */ 7754 ip1dbg(("ip_massage_options: end of SR\n")); 7755 break; 7756 } 7757 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 7758 ip1dbg(("ip_massage_options: next hop 0x%x\n", 7759 ntohl(dst))); 7760 /* 7761 * Check if our address is present more than 7762 * once as consecutive hops in source route. 7763 * XXX verify per-interface ip_forwarding 7764 * for source route? 7765 */ 7766 ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, NULL, 7767 ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 7768 if (ire != NULL) { 7769 ire_refrele(ire); 7770 off += IP_ADDR_LEN; 7771 goto redo_srr; 7772 } 7773 if (dst == htonl(INADDR_LOOPBACK)) { 7774 ip1dbg(("ip_massage_options: loopback addr in " 7775 "source route!\n")); 7776 break; 7777 } 7778 /* 7779 * Update ipha_dst to be the first hop and remove the 7780 * first hop from the source route (by overwriting 7781 * part of the option with NOP options). 7782 */ 7783 ipha->ipha_dst = dst; 7784 /* Put the last entry in dst */ 7785 off = ((optlen - IP_ADDR_LEN - 3) & ~(IP_ADDR_LEN-1)) + 7786 3; 7787 bcopy(&opt[off], &dst, IP_ADDR_LEN); 7788 7789 ip1dbg(("ip_massage_options: last hop 0x%x\n", 7790 ntohl(dst))); 7791 /* Move down and overwrite */ 7792 opt[IP_ADDR_LEN] = opt[0]; 7793 opt[IP_ADDR_LEN+1] = opt[IPOPT_OLEN] - IP_ADDR_LEN; 7794 opt[IP_ADDR_LEN+2] = opt[IPOPT_OFFSET]; 7795 for (i = 0; i < IP_ADDR_LEN; i++) 7796 opt[i] = IPOPT_NOP; 7797 break; 7798 } 7799 } 7800 return (dst); 7801 } 7802 7803 /* 7804 * Return the network mask 7805 * associated with the specified address. 7806 */ 7807 ipaddr_t 7808 ip_net_mask(ipaddr_t addr) 7809 { 7810 uchar_t *up = (uchar_t *)&addr; 7811 ipaddr_t mask = 0; 7812 uchar_t *maskp = (uchar_t *)&mask; 7813 7814 #if defined(__i386) || defined(__amd64) 7815 #define TOTALLY_BRAIN_DAMAGED_C_COMPILER 7816 #endif 7817 #ifdef TOTALLY_BRAIN_DAMAGED_C_COMPILER 7818 maskp[0] = maskp[1] = maskp[2] = maskp[3] = 0; 7819 #endif 7820 if (CLASSD(addr)) { 7821 maskp[0] = 0xF0; 7822 return (mask); 7823 } 7824 7825 /* We assume Class E default netmask to be 32 */ 7826 if (CLASSE(addr)) 7827 return (0xffffffffU); 7828 7829 if (addr == 0) 7830 return (0); 7831 maskp[0] = 0xFF; 7832 if ((up[0] & 0x80) == 0) 7833 return (mask); 7834 7835 maskp[1] = 0xFF; 7836 if ((up[0] & 0xC0) == 0x80) 7837 return (mask); 7838 7839 maskp[2] = 0xFF; 7840 if ((up[0] & 0xE0) == 0xC0) 7841 return (mask); 7842 7843 /* Otherwise return no mask */ 7844 return ((ipaddr_t)0); 7845 } 7846 7847 /* 7848 * Helper ill lookup function used by IPsec. 7849 */ 7850 ill_t * 7851 ip_grab_ill(mblk_t *first_mp, int ifindex, boolean_t isv6, ip_stack_t *ipst) 7852 { 7853 ill_t *ret_ill; 7854 7855 ASSERT(ifindex != 0); 7856 7857 ret_ill = ill_lookup_on_ifindex(ifindex, isv6, NULL, NULL, NULL, NULL, 7858 ipst); 7859 if (ret_ill == NULL) { 7860 if (isv6) { 7861 BUMP_MIB(&ipst->ips_ip6_mib, ipIfStatsOutDiscards); 7862 ip1dbg(("ip_grab_ill (IPv6): bad ifindex %d.\n", 7863 ifindex)); 7864 } else { 7865 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 7866 ip1dbg(("ip_grab_ill (IPv4): bad ifindex %d.\n", 7867 ifindex)); 7868 } 7869 freemsg(first_mp); 7870 return (NULL); 7871 } 7872 return (ret_ill); 7873 } 7874 7875 /* 7876 * IPv4 - 7877 * ip_newroute is called by ip_rput or ip_wput whenever we need to send 7878 * out a packet to a destination address for which we do not have specific 7879 * (or sufficient) routing information. 7880 * 7881 * NOTE : These are the scopes of some of the variables that point at IRE, 7882 * which needs to be followed while making any future modifications 7883 * to avoid memory leaks. 7884 * 7885 * - ire and sire are the entries looked up initially by 7886 * ire_ftable_lookup. 7887 * - ipif_ire is used to hold the interface ire associated with 7888 * the new cache ire. But it's scope is limited, so we always REFRELE 7889 * it before branching out to error paths. 7890 * - save_ire is initialized before ire_create, so that ire returned 7891 * by ire_create will not over-write the ire. We REFRELE save_ire 7892 * before breaking out of the switch. 7893 * 7894 * Thus on failures, we have to REFRELE only ire and sire, if they 7895 * are not NULL. 7896 */ 7897 void 7898 ip_newroute(queue_t *q, mblk_t *mp, ipaddr_t dst, conn_t *connp, 7899 zoneid_t zoneid, ip_stack_t *ipst) 7900 { 7901 areq_t *areq; 7902 ipaddr_t gw = 0; 7903 ire_t *ire = NULL; 7904 mblk_t *res_mp; 7905 ipaddr_t *addrp; 7906 ipaddr_t nexthop_addr; 7907 ipif_t *src_ipif = NULL; 7908 ill_t *dst_ill = NULL; 7909 ipha_t *ipha; 7910 ire_t *sire = NULL; 7911 mblk_t *first_mp; 7912 ire_t *save_ire; 7913 ushort_t ire_marks = 0; 7914 boolean_t mctl_present; 7915 ipsec_out_t *io; 7916 mblk_t *saved_mp; 7917 ire_t *first_sire = NULL; 7918 mblk_t *copy_mp = NULL; 7919 mblk_t *xmit_mp = NULL; 7920 ipaddr_t save_dst; 7921 uint32_t multirt_flags = 7922 MULTIRT_CACHEGW | MULTIRT_USESTAMP | MULTIRT_SETSTAMP; 7923 boolean_t multirt_is_resolvable; 7924 boolean_t multirt_resolve_next; 7925 boolean_t unspec_src; 7926 boolean_t ip_nexthop = B_FALSE; 7927 tsol_ire_gw_secattr_t *attrp = NULL; 7928 tsol_gcgrp_t *gcgrp = NULL; 7929 tsol_gcgrp_addr_t ga; 7930 7931 if (ip_debug > 2) { 7932 /* ip1dbg */ 7933 pr_addr_dbg("ip_newroute: dst %s\n", AF_INET, &dst); 7934 } 7935 7936 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 7937 if (mctl_present) { 7938 io = (ipsec_out_t *)first_mp->b_rptr; 7939 ASSERT(io->ipsec_out_type == IPSEC_OUT); 7940 ASSERT(zoneid == io->ipsec_out_zoneid); 7941 ASSERT(zoneid != ALL_ZONES); 7942 } 7943 7944 ipha = (ipha_t *)mp->b_rptr; 7945 7946 /* All multicast lookups come through ip_newroute_ipif() */ 7947 if (CLASSD(dst)) { 7948 ip0dbg(("ip_newroute: CLASSD 0x%x (b_prev %p, b_next %p)\n", 7949 ntohl(dst), (void *)mp->b_prev, (void *)mp->b_next)); 7950 freemsg(first_mp); 7951 return; 7952 } 7953 7954 if (mctl_present && io->ipsec_out_ip_nexthop) { 7955 ip_nexthop = B_TRUE; 7956 nexthop_addr = io->ipsec_out_nexthop_addr; 7957 } 7958 /* 7959 * If this IRE is created for forwarding or it is not for 7960 * traffic for congestion controlled protocols, mark it as temporary. 7961 */ 7962 if (mp->b_prev != NULL || !IP_FLOW_CONTROLLED_ULP(ipha->ipha_protocol)) 7963 ire_marks |= IRE_MARK_TEMPORARY; 7964 7965 /* 7966 * Get what we can from ire_ftable_lookup which will follow an IRE 7967 * chain until it gets the most specific information available. 7968 * For example, we know that there is no IRE_CACHE for this dest, 7969 * but there may be an IRE_OFFSUBNET which specifies a gateway. 7970 * ire_ftable_lookup will look up the gateway, etc. 7971 * Otherwise, given ire_ftable_lookup algorithm, only one among routes 7972 * to the destination, of equal netmask length in the forward table, 7973 * will be recursively explored. If no information is available 7974 * for the final gateway of that route, we force the returned ire 7975 * to be equal to sire using MATCH_IRE_PARENT. 7976 * At least, in this case we have a starting point (in the buckets) 7977 * to look for other routes to the destination in the forward table. 7978 * This is actually used only for multirouting, where a list 7979 * of routes has to be processed in sequence. 7980 * 7981 * In the process of coming up with the most specific information, 7982 * ire_ftable_lookup may end up with an incomplete IRE_CACHE entry 7983 * for the gateway (i.e., one for which the ire_nce->nce_state is 7984 * not yet ND_REACHABLE, and is in the middle of arp resolution). 7985 * Two caveats when handling incomplete ire's in ip_newroute: 7986 * - we should be careful when accessing its ire_nce (specifically 7987 * the nce_res_mp) ast it might change underneath our feet, and, 7988 * - not all legacy code path callers are prepared to handle 7989 * incomplete ire's, so we should not create/add incomplete 7990 * ire_cache entries here. (See discussion about temporary solution 7991 * further below). 7992 * 7993 * In order to minimize packet dropping, and to preserve existing 7994 * behavior, we treat this case as if there were no IRE_CACHE for the 7995 * gateway, and instead use the IF_RESOLVER ire to send out 7996 * another request to ARP (this is achieved by passing the 7997 * MATCH_IRE_COMPLETE flag to ire_ftable_lookup). When the 7998 * arp response comes back in ip_wput_nondata, we will create 7999 * a per-dst ire_cache that has an ND_COMPLETE ire. 8000 * 8001 * Note that this is a temporary solution; the correct solution is 8002 * to create an incomplete per-dst ire_cache entry, and send the 8003 * packet out when the gw's nce is resolved. In order to achieve this, 8004 * all packet processing must have been completed prior to calling 8005 * ire_add_then_send. Some legacy code paths (e.g. cgtp) would need 8006 * to be modified to accomodate this solution. 8007 */ 8008 if (ip_nexthop) { 8009 /* 8010 * The first time we come here, we look for an IRE_INTERFACE 8011 * entry for the specified nexthop, set the dst to be the 8012 * nexthop address and create an IRE_CACHE entry for the 8013 * nexthop. The next time around, we are able to find an 8014 * IRE_CACHE entry for the nexthop, set the gateway to be the 8015 * nexthop address and create an IRE_CACHE entry for the 8016 * destination address via the specified nexthop. 8017 */ 8018 ire = ire_cache_lookup(nexthop_addr, zoneid, 8019 msg_getlabel(mp), ipst); 8020 if (ire != NULL) { 8021 gw = nexthop_addr; 8022 ire_marks |= IRE_MARK_PRIVATE_ADDR; 8023 } else { 8024 ire = ire_ftable_lookup(nexthop_addr, 0, 0, 8025 IRE_INTERFACE, NULL, NULL, zoneid, 0, 8026 msg_getlabel(mp), 8027 MATCH_IRE_TYPE | MATCH_IRE_SECATTR, 8028 ipst); 8029 if (ire != NULL) { 8030 dst = nexthop_addr; 8031 } 8032 } 8033 } else { 8034 ire = ire_ftable_lookup(dst, 0, 0, 0, 8035 NULL, &sire, zoneid, 0, msg_getlabel(mp), 8036 MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT | 8037 MATCH_IRE_RJ_BHOLE | MATCH_IRE_PARENT | 8038 MATCH_IRE_SECATTR | MATCH_IRE_COMPLETE, 8039 ipst); 8040 } 8041 8042 ip3dbg(("ip_newroute: ire_ftable_lookup() " 8043 "returned ire %p, sire %p\n", (void *)ire, (void *)sire)); 8044 8045 /* 8046 * This loop is run only once in most cases. 8047 * We loop to resolve further routes only when the destination 8048 * can be reached through multiple RTF_MULTIRT-flagged ires. 8049 */ 8050 do { 8051 /* Clear the previous iteration's values */ 8052 if (src_ipif != NULL) { 8053 ipif_refrele(src_ipif); 8054 src_ipif = NULL; 8055 } 8056 if (dst_ill != NULL) { 8057 ill_refrele(dst_ill); 8058 dst_ill = NULL; 8059 } 8060 8061 multirt_resolve_next = B_FALSE; 8062 /* 8063 * We check if packets have to be multirouted. 8064 * In this case, given the current <ire, sire> couple, 8065 * we look for the next suitable <ire, sire>. 8066 * This check is done in ire_multirt_lookup(), 8067 * which applies various criteria to find the next route 8068 * to resolve. ire_multirt_lookup() leaves <ire, sire> 8069 * unchanged if it detects it has not been tried yet. 8070 */ 8071 if ((sire != NULL) && (sire->ire_flags & RTF_MULTIRT)) { 8072 ip3dbg(("ip_newroute: starting next_resolution " 8073 "with first_mp %p, tag %d\n", 8074 (void *)first_mp, 8075 MULTIRT_DEBUG_TAGGED(first_mp))); 8076 8077 ASSERT(sire != NULL); 8078 multirt_is_resolvable = 8079 ire_multirt_lookup(&ire, &sire, multirt_flags, 8080 msg_getlabel(mp), ipst); 8081 8082 ip3dbg(("ip_newroute: multirt_is_resolvable %d, " 8083 "ire %p, sire %p\n", 8084 multirt_is_resolvable, 8085 (void *)ire, (void *)sire)); 8086 8087 if (!multirt_is_resolvable) { 8088 /* 8089 * No more multirt route to resolve; give up 8090 * (all routes resolved or no more 8091 * resolvable routes). 8092 */ 8093 if (ire != NULL) { 8094 ire_refrele(ire); 8095 ire = NULL; 8096 } 8097 } else { 8098 ASSERT(sire != NULL); 8099 ASSERT(ire != NULL); 8100 /* 8101 * We simply use first_sire as a flag that 8102 * indicates if a resolvable multirt route 8103 * has already been found. 8104 * If it is not the case, we may have to send 8105 * an ICMP error to report that the 8106 * destination is unreachable. 8107 * We do not IRE_REFHOLD first_sire. 8108 */ 8109 if (first_sire == NULL) { 8110 first_sire = sire; 8111 } 8112 } 8113 } 8114 if (ire == NULL) { 8115 if (ip_debug > 3) { 8116 /* ip2dbg */ 8117 pr_addr_dbg("ip_newroute: " 8118 "can't resolve %s\n", AF_INET, &dst); 8119 } 8120 ip3dbg(("ip_newroute: " 8121 "ire %p, sire %p, first_sire %p\n", 8122 (void *)ire, (void *)sire, (void *)first_sire)); 8123 8124 if (sire != NULL) { 8125 ire_refrele(sire); 8126 sire = NULL; 8127 } 8128 8129 if (first_sire != NULL) { 8130 /* 8131 * At least one multirt route has been found 8132 * in the same call to ip_newroute(); 8133 * there is no need to report an ICMP error. 8134 * first_sire was not IRE_REFHOLDed. 8135 */ 8136 MULTIRT_DEBUG_UNTAG(first_mp); 8137 freemsg(first_mp); 8138 return; 8139 } 8140 ip_rts_change(RTM_MISS, dst, 0, 0, 0, 0, 0, 0, 8141 RTA_DST, ipst); 8142 goto icmp_err_ret; 8143 } 8144 8145 /* 8146 * Verify that the returned IRE does not have either 8147 * the RTF_REJECT or RTF_BLACKHOLE flags set and that the IRE is 8148 * either an IRE_CACHE, IRE_IF_NORESOLVER or IRE_IF_RESOLVER. 8149 */ 8150 if ((ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) || 8151 (ire->ire_type & (IRE_CACHE | IRE_INTERFACE)) == 0) { 8152 goto icmp_err_ret; 8153 } 8154 /* 8155 * Increment the ire_ob_pkt_count field for ire if it is an 8156 * INTERFACE (IF_RESOLVER or IF_NORESOLVER) IRE type, and 8157 * increment the same for the parent IRE, sire, if it is some 8158 * sort of prefix IRE (which includes DEFAULT, PREFIX, and HOST) 8159 */ 8160 if ((ire->ire_type & IRE_INTERFACE) != 0) { 8161 UPDATE_OB_PKT_COUNT(ire); 8162 ire->ire_last_used_time = lbolt; 8163 } 8164 8165 if (sire != NULL) { 8166 gw = sire->ire_gateway_addr; 8167 ASSERT((sire->ire_type & (IRE_CACHETABLE | 8168 IRE_INTERFACE)) == 0); 8169 UPDATE_OB_PKT_COUNT(sire); 8170 sire->ire_last_used_time = lbolt; 8171 } 8172 /* 8173 * We have a route to reach the destination. Find the 8174 * appropriate ill, then get a source address using 8175 * ipif_select_source(). 8176 * 8177 * If we are here trying to create an IRE_CACHE for an offlink 8178 * destination and have an IRE_CACHE entry for VNI, then use 8179 * ire_stq instead since VNI's queue is a black hole. 8180 */ 8181 if ((ire->ire_type == IRE_CACHE) && 8182 IS_VNI(ire->ire_ipif->ipif_ill)) { 8183 dst_ill = ire->ire_stq->q_ptr; 8184 ill_refhold(dst_ill); 8185 } else { 8186 ill_t *ill = ire->ire_ipif->ipif_ill; 8187 8188 if (IS_IPMP(ill)) { 8189 dst_ill = 8190 ipmp_illgrp_hold_next_ill(ill->ill_grp); 8191 } else { 8192 dst_ill = ill; 8193 ill_refhold(dst_ill); 8194 } 8195 } 8196 8197 if (dst_ill == NULL) { 8198 if (ip_debug > 2) { 8199 pr_addr_dbg("ip_newroute: no dst " 8200 "ill for dst %s\n", AF_INET, &dst); 8201 } 8202 goto icmp_err_ret; 8203 } 8204 ip2dbg(("ip_newroute: dst_ill %s\n", dst_ill->ill_name)); 8205 8206 /* 8207 * Pick the best source address from dst_ill. 8208 * 8209 * 1) Try to pick the source address from the destination 8210 * route. Clustering assumes that when we have multiple 8211 * prefixes hosted on an interface, the prefix of the 8212 * source address matches the prefix of the destination 8213 * route. We do this only if the address is not 8214 * DEPRECATED. 8215 * 8216 * 2) If the conn is in a different zone than the ire, we 8217 * need to pick a source address from the right zone. 8218 */ 8219 ASSERT(src_ipif == NULL); 8220 if ((sire != NULL) && (sire->ire_flags & RTF_SETSRC)) { 8221 /* 8222 * The RTF_SETSRC flag is set in the parent ire (sire). 8223 * Check that the ipif matching the requested source 8224 * address still exists. 8225 */ 8226 src_ipif = ipif_lookup_addr(sire->ire_src_addr, NULL, 8227 zoneid, NULL, NULL, NULL, NULL, ipst); 8228 } 8229 8230 unspec_src = (connp != NULL && connp->conn_unspec_src); 8231 8232 if (src_ipif == NULL && 8233 (!unspec_src || ipha->ipha_src != INADDR_ANY)) { 8234 ire_marks |= IRE_MARK_USESRC_CHECK; 8235 if (!IS_UNDER_IPMP(ire->ire_ipif->ipif_ill) && 8236 IS_IPMP(ire->ire_ipif->ipif_ill) || 8237 (ire->ire_ipif->ipif_flags & IPIF_DEPRECATED) || 8238 (connp != NULL && ire->ire_zoneid != zoneid && 8239 ire->ire_zoneid != ALL_ZONES) || 8240 (dst_ill->ill_usesrc_ifindex != 0)) { 8241 /* 8242 * If the destination is reachable via a 8243 * given gateway, the selected source address 8244 * should be in the same subnet as the gateway. 8245 * Otherwise, the destination is not reachable. 8246 * 8247 * If there are no interfaces on the same subnet 8248 * as the destination, ipif_select_source gives 8249 * first non-deprecated interface which might be 8250 * on a different subnet than the gateway. 8251 * This is not desirable. Hence pass the dst_ire 8252 * source address to ipif_select_source. 8253 * It is sure that the destination is reachable 8254 * with the dst_ire source address subnet. 8255 * So passing dst_ire source address to 8256 * ipif_select_source will make sure that the 8257 * selected source will be on the same subnet 8258 * as dst_ire source address. 8259 */ 8260 ipaddr_t saddr = ire->ire_ipif->ipif_src_addr; 8261 8262 src_ipif = ipif_select_source(dst_ill, saddr, 8263 zoneid); 8264 if (src_ipif == NULL) { 8265 if (ip_debug > 2) { 8266 pr_addr_dbg("ip_newroute: " 8267 "no src for dst %s ", 8268 AF_INET, &dst); 8269 printf("on interface %s\n", 8270 dst_ill->ill_name); 8271 } 8272 goto icmp_err_ret; 8273 } 8274 } else { 8275 src_ipif = ire->ire_ipif; 8276 ASSERT(src_ipif != NULL); 8277 /* hold src_ipif for uniformity */ 8278 ipif_refhold(src_ipif); 8279 } 8280 } 8281 8282 /* 8283 * Assign a source address while we have the conn. 8284 * We can't have ip_wput_ire pick a source address when the 8285 * packet returns from arp since we need to look at 8286 * conn_unspec_src and conn_zoneid, and we lose the conn when 8287 * going through arp. 8288 * 8289 * NOTE : ip_newroute_v6 does not have this piece of code as 8290 * it uses ip6i to store this information. 8291 */ 8292 if (ipha->ipha_src == INADDR_ANY && !unspec_src) 8293 ipha->ipha_src = src_ipif->ipif_src_addr; 8294 8295 if (ip_debug > 3) { 8296 /* ip2dbg */ 8297 pr_addr_dbg("ip_newroute: first hop %s\n", 8298 AF_INET, &gw); 8299 } 8300 ip2dbg(("\tire type %s (%d)\n", 8301 ip_nv_lookup(ire_nv_tbl, ire->ire_type), ire->ire_type)); 8302 8303 /* 8304 * The TTL of multirouted packets is bounded by the 8305 * ip_multirt_ttl ndd variable. 8306 */ 8307 if ((sire != NULL) && (sire->ire_flags & RTF_MULTIRT)) { 8308 /* Force TTL of multirouted packets */ 8309 if ((ipst->ips_ip_multirt_ttl > 0) && 8310 (ipha->ipha_ttl > ipst->ips_ip_multirt_ttl)) { 8311 ip2dbg(("ip_newroute: forcing multirt TTL " 8312 "to %d (was %d), dst 0x%08x\n", 8313 ipst->ips_ip_multirt_ttl, ipha->ipha_ttl, 8314 ntohl(sire->ire_addr))); 8315 ipha->ipha_ttl = ipst->ips_ip_multirt_ttl; 8316 } 8317 } 8318 /* 8319 * At this point in ip_newroute(), ire is either the 8320 * IRE_CACHE of the next-hop gateway for an off-subnet 8321 * destination or an IRE_INTERFACE type that should be used 8322 * to resolve an on-subnet destination or an on-subnet 8323 * next-hop gateway. 8324 * 8325 * In the IRE_CACHE case, we have the following : 8326 * 8327 * 1) src_ipif - used for getting a source address. 8328 * 8329 * 2) dst_ill - from which we derive ire_stq/ire_rfq. This 8330 * means packets using this IRE_CACHE will go out on 8331 * dst_ill. 8332 * 8333 * 3) The IRE sire will point to the prefix that is the 8334 * longest matching route for the destination. These 8335 * prefix types include IRE_DEFAULT, IRE_PREFIX, IRE_HOST. 8336 * 8337 * The newly created IRE_CACHE entry for the off-subnet 8338 * destination is tied to both the prefix route and the 8339 * interface route used to resolve the next-hop gateway 8340 * via the ire_phandle and ire_ihandle fields, 8341 * respectively. 8342 * 8343 * In the IRE_INTERFACE case, we have the following : 8344 * 8345 * 1) src_ipif - used for getting a source address. 8346 * 8347 * 2) dst_ill - from which we derive ire_stq/ire_rfq. This 8348 * means packets using the IRE_CACHE that we will build 8349 * here will go out on dst_ill. 8350 * 8351 * 3) sire may or may not be NULL. But, the IRE_CACHE that is 8352 * to be created will only be tied to the IRE_INTERFACE 8353 * that was derived from the ire_ihandle field. 8354 * 8355 * If sire is non-NULL, it means the destination is 8356 * off-link and we will first create the IRE_CACHE for the 8357 * gateway. Next time through ip_newroute, we will create 8358 * the IRE_CACHE for the final destination as described 8359 * above. 8360 * 8361 * In both cases, after the current resolution has been 8362 * completed (or possibly initialised, in the IRE_INTERFACE 8363 * case), the loop may be re-entered to attempt the resolution 8364 * of another RTF_MULTIRT route. 8365 * 8366 * When an IRE_CACHE entry for the off-subnet destination is 8367 * created, RTF_SETSRC and RTF_MULTIRT are inherited from sire, 8368 * for further processing in emission loops. 8369 */ 8370 save_ire = ire; 8371 switch (ire->ire_type) { 8372 case IRE_CACHE: { 8373 ire_t *ipif_ire; 8374 8375 ASSERT(save_ire->ire_nce->nce_state == ND_REACHABLE); 8376 if (gw == 0) 8377 gw = ire->ire_gateway_addr; 8378 /* 8379 * We need 3 ire's to create a new cache ire for an 8380 * off-link destination from the cache ire of the 8381 * gateway. 8382 * 8383 * 1. The prefix ire 'sire' (Note that this does 8384 * not apply to the conn_nexthop_set case) 8385 * 2. The cache ire of the gateway 'ire' 8386 * 3. The interface ire 'ipif_ire' 8387 * 8388 * We have (1) and (2). We lookup (3) below. 8389 * 8390 * If there is no interface route to the gateway, 8391 * it is a race condition, where we found the cache 8392 * but the interface route has been deleted. 8393 */ 8394 if (ip_nexthop) { 8395 ipif_ire = ire_ihandle_lookup_onlink(ire); 8396 } else { 8397 ipif_ire = 8398 ire_ihandle_lookup_offlink(ire, sire); 8399 } 8400 if (ipif_ire == NULL) { 8401 ip1dbg(("ip_newroute: " 8402 "ire_ihandle_lookup_offlink failed\n")); 8403 goto icmp_err_ret; 8404 } 8405 8406 /* 8407 * Check cached gateway IRE for any security 8408 * attributes; if found, associate the gateway 8409 * credentials group to the destination IRE. 8410 */ 8411 if ((attrp = save_ire->ire_gw_secattr) != NULL) { 8412 mutex_enter(&attrp->igsa_lock); 8413 if ((gcgrp = attrp->igsa_gcgrp) != NULL) 8414 GCGRP_REFHOLD(gcgrp); 8415 mutex_exit(&attrp->igsa_lock); 8416 } 8417 8418 /* 8419 * XXX For the source of the resolver mp, 8420 * we are using the same DL_UNITDATA_REQ 8421 * (from save_ire->ire_nce->nce_res_mp) 8422 * though the save_ire is not pointing at the same ill. 8423 * This is incorrect. We need to send it up to the 8424 * resolver to get the right res_mp. For ethernets 8425 * this may be okay (ill_type == DL_ETHER). 8426 */ 8427 8428 ire = ire_create( 8429 (uchar_t *)&dst, /* dest address */ 8430 (uchar_t *)&ip_g_all_ones, /* mask */ 8431 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 8432 (uchar_t *)&gw, /* gateway address */ 8433 &save_ire->ire_max_frag, 8434 save_ire->ire_nce, /* src nce */ 8435 dst_ill->ill_rq, /* recv-from queue */ 8436 dst_ill->ill_wq, /* send-to queue */ 8437 IRE_CACHE, /* IRE type */ 8438 src_ipif, 8439 (sire != NULL) ? 8440 sire->ire_mask : 0, /* Parent mask */ 8441 (sire != NULL) ? 8442 sire->ire_phandle : 0, /* Parent handle */ 8443 ipif_ire->ire_ihandle, /* Interface handle */ 8444 (sire != NULL) ? (sire->ire_flags & 8445 (RTF_SETSRC | RTF_MULTIRT)) : 0, /* flags */ 8446 (sire != NULL) ? 8447 &(sire->ire_uinfo) : &(save_ire->ire_uinfo), 8448 NULL, 8449 gcgrp, 8450 ipst); 8451 8452 if (ire == NULL) { 8453 if (gcgrp != NULL) { 8454 GCGRP_REFRELE(gcgrp); 8455 gcgrp = NULL; 8456 } 8457 ire_refrele(ipif_ire); 8458 ire_refrele(save_ire); 8459 break; 8460 } 8461 8462 /* reference now held by IRE */ 8463 gcgrp = NULL; 8464 8465 ire->ire_marks |= ire_marks; 8466 8467 /* 8468 * Prevent sire and ipif_ire from getting deleted. 8469 * The newly created ire is tied to both of them via 8470 * the phandle and ihandle respectively. 8471 */ 8472 if (sire != NULL) { 8473 IRB_REFHOLD(sire->ire_bucket); 8474 /* Has it been removed already ? */ 8475 if (sire->ire_marks & IRE_MARK_CONDEMNED) { 8476 IRB_REFRELE(sire->ire_bucket); 8477 ire_refrele(ipif_ire); 8478 ire_refrele(save_ire); 8479 break; 8480 } 8481 } 8482 8483 IRB_REFHOLD(ipif_ire->ire_bucket); 8484 /* Has it been removed already ? */ 8485 if (ipif_ire->ire_marks & IRE_MARK_CONDEMNED) { 8486 IRB_REFRELE(ipif_ire->ire_bucket); 8487 if (sire != NULL) 8488 IRB_REFRELE(sire->ire_bucket); 8489 ire_refrele(ipif_ire); 8490 ire_refrele(save_ire); 8491 break; 8492 } 8493 8494 xmit_mp = first_mp; 8495 /* 8496 * In the case of multirouting, a copy 8497 * of the packet is done before its sending. 8498 * The copy is used to attempt another 8499 * route resolution, in a next loop. 8500 */ 8501 if (ire->ire_flags & RTF_MULTIRT) { 8502 copy_mp = copymsg(first_mp); 8503 if (copy_mp != NULL) { 8504 xmit_mp = copy_mp; 8505 MULTIRT_DEBUG_TAG(first_mp); 8506 } 8507 } 8508 8509 ire_add_then_send(q, ire, xmit_mp); 8510 ire_refrele(save_ire); 8511 8512 /* Assert that sire is not deleted yet. */ 8513 if (sire != NULL) { 8514 ASSERT(sire->ire_ptpn != NULL); 8515 IRB_REFRELE(sire->ire_bucket); 8516 } 8517 8518 /* Assert that ipif_ire is not deleted yet. */ 8519 ASSERT(ipif_ire->ire_ptpn != NULL); 8520 IRB_REFRELE(ipif_ire->ire_bucket); 8521 ire_refrele(ipif_ire); 8522 8523 /* 8524 * If copy_mp is not NULL, multirouting was 8525 * requested. We loop to initiate a next 8526 * route resolution attempt, starting from sire. 8527 */ 8528 if (copy_mp != NULL) { 8529 /* 8530 * Search for the next unresolved 8531 * multirt route. 8532 */ 8533 copy_mp = NULL; 8534 ipif_ire = NULL; 8535 ire = NULL; 8536 multirt_resolve_next = B_TRUE; 8537 continue; 8538 } 8539 if (sire != NULL) 8540 ire_refrele(sire); 8541 ipif_refrele(src_ipif); 8542 ill_refrele(dst_ill); 8543 return; 8544 } 8545 case IRE_IF_NORESOLVER: { 8546 if (dst_ill->ill_phys_addr_length != IP_ADDR_LEN && 8547 dst_ill->ill_resolver_mp == NULL) { 8548 ip1dbg(("ip_newroute: dst_ill %p " 8549 "for IRE_IF_NORESOLVER ire %p has " 8550 "no ill_resolver_mp\n", 8551 (void *)dst_ill, (void *)ire)); 8552 break; 8553 } 8554 8555 /* 8556 * TSol note: We are creating the ire cache for the 8557 * destination 'dst'. If 'dst' is offlink, going 8558 * through the first hop 'gw', the security attributes 8559 * of 'dst' must be set to point to the gateway 8560 * credentials of gateway 'gw'. If 'dst' is onlink, it 8561 * is possible that 'dst' is a potential gateway that is 8562 * referenced by some route that has some security 8563 * attributes. Thus in the former case, we need to do a 8564 * gcgrp_lookup of 'gw' while in the latter case we 8565 * need to do gcgrp_lookup of 'dst' itself. 8566 */ 8567 ga.ga_af = AF_INET; 8568 IN6_IPADDR_TO_V4MAPPED(gw != INADDR_ANY ? gw : dst, 8569 &ga.ga_addr); 8570 gcgrp = gcgrp_lookup(&ga, B_FALSE); 8571 8572 ire = ire_create( 8573 (uchar_t *)&dst, /* dest address */ 8574 (uchar_t *)&ip_g_all_ones, /* mask */ 8575 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 8576 (uchar_t *)&gw, /* gateway address */ 8577 &save_ire->ire_max_frag, 8578 NULL, /* no src nce */ 8579 dst_ill->ill_rq, /* recv-from queue */ 8580 dst_ill->ill_wq, /* send-to queue */ 8581 IRE_CACHE, 8582 src_ipif, 8583 save_ire->ire_mask, /* Parent mask */ 8584 (sire != NULL) ? /* Parent handle */ 8585 sire->ire_phandle : 0, 8586 save_ire->ire_ihandle, /* Interface handle */ 8587 (sire != NULL) ? sire->ire_flags & 8588 (RTF_SETSRC | RTF_MULTIRT) : 0, /* flags */ 8589 &(save_ire->ire_uinfo), 8590 NULL, 8591 gcgrp, 8592 ipst); 8593 8594 if (ire == NULL) { 8595 if (gcgrp != NULL) { 8596 GCGRP_REFRELE(gcgrp); 8597 gcgrp = NULL; 8598 } 8599 ire_refrele(save_ire); 8600 break; 8601 } 8602 8603 /* reference now held by IRE */ 8604 gcgrp = NULL; 8605 8606 ire->ire_marks |= ire_marks; 8607 8608 /* Prevent save_ire from getting deleted */ 8609 IRB_REFHOLD(save_ire->ire_bucket); 8610 /* Has it been removed already ? */ 8611 if (save_ire->ire_marks & IRE_MARK_CONDEMNED) { 8612 IRB_REFRELE(save_ire->ire_bucket); 8613 ire_refrele(save_ire); 8614 break; 8615 } 8616 8617 /* 8618 * In the case of multirouting, a copy 8619 * of the packet is made before it is sent. 8620 * The copy is used in the next 8621 * loop to attempt another resolution. 8622 */ 8623 xmit_mp = first_mp; 8624 if ((sire != NULL) && 8625 (sire->ire_flags & RTF_MULTIRT)) { 8626 copy_mp = copymsg(first_mp); 8627 if (copy_mp != NULL) { 8628 xmit_mp = copy_mp; 8629 MULTIRT_DEBUG_TAG(first_mp); 8630 } 8631 } 8632 ire_add_then_send(q, ire, xmit_mp); 8633 8634 /* Assert that it is not deleted yet. */ 8635 ASSERT(save_ire->ire_ptpn != NULL); 8636 IRB_REFRELE(save_ire->ire_bucket); 8637 ire_refrele(save_ire); 8638 8639 if (copy_mp != NULL) { 8640 /* 8641 * If we found a (no)resolver, we ignore any 8642 * trailing top priority IRE_CACHE in further 8643 * loops. This ensures that we do not omit any 8644 * (no)resolver. 8645 * This IRE_CACHE, if any, will be processed 8646 * by another thread entering ip_newroute(). 8647 * IRE_CACHE entries, if any, will be processed 8648 * by another thread entering ip_newroute(), 8649 * (upon resolver response, for instance). 8650 * This aims to force parallel multirt 8651 * resolutions as soon as a packet must be sent. 8652 * In the best case, after the tx of only one 8653 * packet, all reachable routes are resolved. 8654 * Otherwise, the resolution of all RTF_MULTIRT 8655 * routes would require several emissions. 8656 */ 8657 multirt_flags &= ~MULTIRT_CACHEGW; 8658 8659 /* 8660 * Search for the next unresolved multirt 8661 * route. 8662 */ 8663 copy_mp = NULL; 8664 save_ire = NULL; 8665 ire = NULL; 8666 multirt_resolve_next = B_TRUE; 8667 continue; 8668 } 8669 8670 /* 8671 * Don't need sire anymore 8672 */ 8673 if (sire != NULL) 8674 ire_refrele(sire); 8675 8676 ipif_refrele(src_ipif); 8677 ill_refrele(dst_ill); 8678 return; 8679 } 8680 case IRE_IF_RESOLVER: 8681 /* 8682 * We can't build an IRE_CACHE yet, but at least we 8683 * found a resolver that can help. 8684 */ 8685 res_mp = dst_ill->ill_resolver_mp; 8686 if (!OK_RESOLVER_MP(res_mp)) 8687 break; 8688 8689 /* 8690 * To be at this point in the code with a non-zero gw 8691 * means that dst is reachable through a gateway that 8692 * we have never resolved. By changing dst to the gw 8693 * addr we resolve the gateway first. 8694 * When ire_add_then_send() tries to put the IP dg 8695 * to dst, it will reenter ip_newroute() at which 8696 * time we will find the IRE_CACHE for the gw and 8697 * create another IRE_CACHE in case IRE_CACHE above. 8698 */ 8699 if (gw != INADDR_ANY) { 8700 /* 8701 * The source ipif that was determined above was 8702 * relative to the destination address, not the 8703 * gateway's. If src_ipif was not taken out of 8704 * the IRE_IF_RESOLVER entry, we'll need to call 8705 * ipif_select_source() again. 8706 */ 8707 if (src_ipif != ire->ire_ipif) { 8708 ipif_refrele(src_ipif); 8709 src_ipif = ipif_select_source(dst_ill, 8710 gw, zoneid); 8711 if (src_ipif == NULL) { 8712 if (ip_debug > 2) { 8713 pr_addr_dbg( 8714 "ip_newroute: no " 8715 "src for gw %s ", 8716 AF_INET, &gw); 8717 printf("on " 8718 "interface %s\n", 8719 dst_ill->ill_name); 8720 } 8721 goto icmp_err_ret; 8722 } 8723 } 8724 save_dst = dst; 8725 dst = gw; 8726 gw = INADDR_ANY; 8727 } 8728 8729 /* 8730 * We obtain a partial IRE_CACHE which we will pass 8731 * along with the resolver query. When the response 8732 * comes back it will be there ready for us to add. 8733 * The ire_max_frag is atomically set under the 8734 * irebucket lock in ire_add_v[46]. 8735 */ 8736 8737 ire = ire_create_mp( 8738 (uchar_t *)&dst, /* dest address */ 8739 (uchar_t *)&ip_g_all_ones, /* mask */ 8740 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 8741 (uchar_t *)&gw, /* gateway address */ 8742 NULL, /* ire_max_frag */ 8743 NULL, /* no src nce */ 8744 dst_ill->ill_rq, /* recv-from queue */ 8745 dst_ill->ill_wq, /* send-to queue */ 8746 IRE_CACHE, 8747 src_ipif, /* Interface ipif */ 8748 save_ire->ire_mask, /* Parent mask */ 8749 0, 8750 save_ire->ire_ihandle, /* Interface handle */ 8751 0, /* flags if any */ 8752 &(save_ire->ire_uinfo), 8753 NULL, 8754 NULL, 8755 ipst); 8756 8757 if (ire == NULL) { 8758 ire_refrele(save_ire); 8759 break; 8760 } 8761 8762 if ((sire != NULL) && 8763 (sire->ire_flags & RTF_MULTIRT)) { 8764 copy_mp = copymsg(first_mp); 8765 if (copy_mp != NULL) 8766 MULTIRT_DEBUG_TAG(copy_mp); 8767 } 8768 8769 ire->ire_marks |= ire_marks; 8770 8771 /* 8772 * Construct message chain for the resolver 8773 * of the form: 8774 * ARP_REQ_MBLK-->IRE_MBLK-->Packet 8775 * Packet could contain a IPSEC_OUT mp. 8776 * 8777 * NOTE : ire will be added later when the response 8778 * comes back from ARP. If the response does not 8779 * come back, ARP frees the packet. For this reason, 8780 * we can't REFHOLD the bucket of save_ire to prevent 8781 * deletions. We may not be able to REFRELE the bucket 8782 * if the response never comes back. Thus, before 8783 * adding the ire, ire_add_v4 will make sure that the 8784 * interface route does not get deleted. This is the 8785 * only case unlike ip_newroute_v6, ip_newroute_ipif_v6 8786 * where we can always prevent deletions because of 8787 * the synchronous nature of adding IRES i.e 8788 * ire_add_then_send is called after creating the IRE. 8789 */ 8790 ASSERT(ire->ire_mp != NULL); 8791 ire->ire_mp->b_cont = first_mp; 8792 /* Have saved_mp handy, for cleanup if canput fails */ 8793 saved_mp = mp; 8794 mp = copyb(res_mp); 8795 if (mp == NULL) { 8796 /* Prepare for cleanup */ 8797 mp = saved_mp; /* pkt */ 8798 ire_delete(ire); /* ire_mp */ 8799 ire = NULL; 8800 ire_refrele(save_ire); 8801 if (copy_mp != NULL) { 8802 MULTIRT_DEBUG_UNTAG(copy_mp); 8803 freemsg(copy_mp); 8804 copy_mp = NULL; 8805 } 8806 break; 8807 } 8808 linkb(mp, ire->ire_mp); 8809 8810 /* 8811 * Fill in the source and dest addrs for the resolver. 8812 * NOTE: this depends on memory layouts imposed by 8813 * ill_init(). 8814 */ 8815 areq = (areq_t *)mp->b_rptr; 8816 addrp = (ipaddr_t *)((char *)areq + 8817 areq->areq_sender_addr_offset); 8818 *addrp = save_ire->ire_src_addr; 8819 8820 ire_refrele(save_ire); 8821 addrp = (ipaddr_t *)((char *)areq + 8822 areq->areq_target_addr_offset); 8823 *addrp = dst; 8824 /* Up to the resolver. */ 8825 if (canputnext(dst_ill->ill_rq) && 8826 !(dst_ill->ill_arp_closing)) { 8827 putnext(dst_ill->ill_rq, mp); 8828 ire = NULL; 8829 if (copy_mp != NULL) { 8830 /* 8831 * If we found a resolver, we ignore 8832 * any trailing top priority IRE_CACHE 8833 * in the further loops. This ensures 8834 * that we do not omit any resolver. 8835 * IRE_CACHE entries, if any, will be 8836 * processed next time we enter 8837 * ip_newroute(). 8838 */ 8839 multirt_flags &= ~MULTIRT_CACHEGW; 8840 /* 8841 * Search for the next unresolved 8842 * multirt route. 8843 */ 8844 first_mp = copy_mp; 8845 copy_mp = NULL; 8846 /* Prepare the next resolution loop. */ 8847 mp = first_mp; 8848 EXTRACT_PKT_MP(mp, first_mp, 8849 mctl_present); 8850 if (mctl_present) 8851 io = (ipsec_out_t *) 8852 first_mp->b_rptr; 8853 ipha = (ipha_t *)mp->b_rptr; 8854 8855 ASSERT(sire != NULL); 8856 8857 dst = save_dst; 8858 multirt_resolve_next = B_TRUE; 8859 continue; 8860 } 8861 8862 if (sire != NULL) 8863 ire_refrele(sire); 8864 8865 /* 8866 * The response will come back in ip_wput 8867 * with db_type IRE_DB_TYPE. 8868 */ 8869 ipif_refrele(src_ipif); 8870 ill_refrele(dst_ill); 8871 return; 8872 } else { 8873 /* Prepare for cleanup */ 8874 DTRACE_PROBE1(ip__newroute__drop, mblk_t *, 8875 mp); 8876 mp->b_cont = NULL; 8877 freeb(mp); /* areq */ 8878 /* 8879 * this is an ire that is not added to the 8880 * cache. ire_freemblk will handle the release 8881 * of any resources associated with the ire. 8882 */ 8883 ire_delete(ire); /* ire_mp */ 8884 mp = saved_mp; /* pkt */ 8885 ire = NULL; 8886 if (copy_mp != NULL) { 8887 MULTIRT_DEBUG_UNTAG(copy_mp); 8888 freemsg(copy_mp); 8889 copy_mp = NULL; 8890 } 8891 break; 8892 } 8893 default: 8894 break; 8895 } 8896 } while (multirt_resolve_next); 8897 8898 ip1dbg(("ip_newroute: dropped\n")); 8899 /* Did this packet originate externally? */ 8900 if (mp->b_prev) { 8901 mp->b_next = NULL; 8902 mp->b_prev = NULL; 8903 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsInDiscards); 8904 } else { 8905 if (dst_ill != NULL) { 8906 BUMP_MIB(dst_ill->ill_ip_mib, ipIfStatsOutDiscards); 8907 } else { 8908 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 8909 } 8910 } 8911 ASSERT(copy_mp == NULL); 8912 MULTIRT_DEBUG_UNTAG(first_mp); 8913 freemsg(first_mp); 8914 if (ire != NULL) 8915 ire_refrele(ire); 8916 if (sire != NULL) 8917 ire_refrele(sire); 8918 if (src_ipif != NULL) 8919 ipif_refrele(src_ipif); 8920 if (dst_ill != NULL) 8921 ill_refrele(dst_ill); 8922 return; 8923 8924 icmp_err_ret: 8925 ip1dbg(("ip_newroute: no route\n")); 8926 if (src_ipif != NULL) 8927 ipif_refrele(src_ipif); 8928 if (dst_ill != NULL) 8929 ill_refrele(dst_ill); 8930 if (sire != NULL) 8931 ire_refrele(sire); 8932 /* Did this packet originate externally? */ 8933 if (mp->b_prev) { 8934 mp->b_next = NULL; 8935 mp->b_prev = NULL; 8936 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsInNoRoutes); 8937 q = WR(q); 8938 } else { 8939 /* 8940 * There is no outgoing ill, so just increment the 8941 * system MIB. 8942 */ 8943 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutNoRoutes); 8944 /* 8945 * Since ip_wput() isn't close to finished, we fill 8946 * in enough of the header for credible error reporting. 8947 */ 8948 if (ip_hdr_complete(ipha, zoneid, ipst)) { 8949 /* Failed */ 8950 MULTIRT_DEBUG_UNTAG(first_mp); 8951 freemsg(first_mp); 8952 if (ire != NULL) 8953 ire_refrele(ire); 8954 return; 8955 } 8956 } 8957 8958 /* 8959 * At this point we will have ire only if RTF_BLACKHOLE 8960 * or RTF_REJECT flags are set on the IRE. It will not 8961 * generate ICMP_HOST_UNREACHABLE if RTF_BLACKHOLE is set. 8962 */ 8963 if (ire != NULL) { 8964 if (ire->ire_flags & RTF_BLACKHOLE) { 8965 ire_refrele(ire); 8966 MULTIRT_DEBUG_UNTAG(first_mp); 8967 freemsg(first_mp); 8968 return; 8969 } 8970 ire_refrele(ire); 8971 } 8972 if (ip_source_routed(ipha, ipst)) { 8973 icmp_unreachable(q, first_mp, ICMP_SOURCE_ROUTE_FAILED, 8974 zoneid, ipst); 8975 return; 8976 } 8977 icmp_unreachable(q, first_mp, ICMP_HOST_UNREACHABLE, zoneid, ipst); 8978 } 8979 8980 ip_opt_info_t zero_info; 8981 8982 /* 8983 * IPv4 - 8984 * ip_newroute_ipif is called by ip_wput_multicast and 8985 * ip_rput_forward_multicast whenever we need to send 8986 * out a packet to a destination address for which we do not have specific 8987 * routing information. It is used when the packet will be sent out 8988 * on a specific interface. It is also called by ip_wput() when IP_BOUND_IF 8989 * socket option is set or icmp error message wants to go out on a particular 8990 * interface for a unicast packet. 8991 * 8992 * In most cases, the destination address is resolved thanks to the ipif 8993 * intrinsic resolver. However, there are some cases where the call to 8994 * ip_newroute_ipif must take into account the potential presence of 8995 * RTF_SETSRC and/or RTF_MULITRT flags in an IRE_OFFSUBNET ire 8996 * that uses the interface. This is specified through flags, 8997 * which can be a combination of: 8998 * - RTF_SETSRC: if an IRE_OFFSUBNET ire exists that has the RTF_SETSRC 8999 * flag, the resulting ire will inherit the IRE_OFFSUBNET source address 9000 * and flags. Additionally, the packet source address has to be set to 9001 * the specified address. The caller is thus expected to set this flag 9002 * if the packet has no specific source address yet. 9003 * - RTF_MULTIRT: if an IRE_OFFSUBNET ire exists that has the RTF_MULTIRT 9004 * flag, the resulting ire will inherit the flag. All unresolved routes 9005 * to the destination must be explored in the same call to 9006 * ip_newroute_ipif(). 9007 */ 9008 static void 9009 ip_newroute_ipif(queue_t *q, mblk_t *mp, ipif_t *ipif, ipaddr_t dst, 9010 conn_t *connp, uint32_t flags, zoneid_t zoneid, ip_opt_info_t *infop) 9011 { 9012 areq_t *areq; 9013 ire_t *ire = NULL; 9014 mblk_t *res_mp; 9015 ipaddr_t *addrp; 9016 mblk_t *first_mp; 9017 ire_t *save_ire = NULL; 9018 ipif_t *src_ipif = NULL; 9019 ushort_t ire_marks = 0; 9020 ill_t *dst_ill = NULL; 9021 ipha_t *ipha; 9022 mblk_t *saved_mp; 9023 ire_t *fire = NULL; 9024 mblk_t *copy_mp = NULL; 9025 boolean_t multirt_resolve_next; 9026 boolean_t unspec_src; 9027 ipaddr_t ipha_dst; 9028 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 9029 9030 /* 9031 * CGTP goes in a loop which looks up a new ipif, do an ipif_refhold 9032 * here for uniformity 9033 */ 9034 ipif_refhold(ipif); 9035 9036 /* 9037 * This loop is run only once in most cases. 9038 * We loop to resolve further routes only when the destination 9039 * can be reached through multiple RTF_MULTIRT-flagged ires. 9040 */ 9041 do { 9042 if (dst_ill != NULL) { 9043 ill_refrele(dst_ill); 9044 dst_ill = NULL; 9045 } 9046 if (src_ipif != NULL) { 9047 ipif_refrele(src_ipif); 9048 src_ipif = NULL; 9049 } 9050 multirt_resolve_next = B_FALSE; 9051 9052 ip1dbg(("ip_newroute_ipif: dst 0x%x, if %s\n", ntohl(dst), 9053 ipif->ipif_ill->ill_name)); 9054 9055 first_mp = mp; 9056 if (DB_TYPE(mp) == M_CTL) 9057 mp = mp->b_cont; 9058 ipha = (ipha_t *)mp->b_rptr; 9059 9060 /* 9061 * Save the packet destination address, we may need it after 9062 * the packet has been consumed. 9063 */ 9064 ipha_dst = ipha->ipha_dst; 9065 9066 /* 9067 * If the interface is a pt-pt interface we look for an 9068 * IRE_IF_RESOLVER or IRE_IF_NORESOLVER that matches both the 9069 * local_address and the pt-pt destination address. Otherwise 9070 * we just match the local address. 9071 * NOTE: dst could be different than ipha->ipha_dst in case 9072 * of sending igmp multicast packets over a point-to-point 9073 * connection. 9074 * Thus we must be careful enough to check ipha_dst to be a 9075 * multicast address, otherwise it will take xmit_if path for 9076 * multicast packets resulting into kernel stack overflow by 9077 * repeated calls to ip_newroute_ipif from ire_send(). 9078 */ 9079 if (CLASSD(ipha_dst) && 9080 !(ipif->ipif_ill->ill_flags & ILLF_MULTICAST)) { 9081 goto err_ret; 9082 } 9083 9084 /* 9085 * We check if an IRE_OFFSUBNET for the addr that goes through 9086 * ipif exists. We need it to determine if the RTF_SETSRC and/or 9087 * RTF_MULTIRT flags must be honored. This IRE_OFFSUBNET ire may 9088 * propagate its flags to the new ire. 9089 */ 9090 if (CLASSD(ipha_dst) && (flags & (RTF_MULTIRT | RTF_SETSRC))) { 9091 fire = ipif_lookup_multi_ire(ipif, ipha_dst); 9092 ip2dbg(("ip_newroute_ipif: " 9093 "ipif_lookup_multi_ire(" 9094 "ipif %p, dst %08x) = fire %p\n", 9095 (void *)ipif, ntohl(dst), (void *)fire)); 9096 } 9097 9098 /* 9099 * Note: While we pick a dst_ill we are really only 9100 * interested in the ill for load spreading. The source 9101 * ipif is determined by source address selection below. 9102 */ 9103 if (IS_IPMP(ipif->ipif_ill)) { 9104 ipmp_illgrp_t *illg = ipif->ipif_ill->ill_grp; 9105 9106 if (CLASSD(ipha_dst)) 9107 dst_ill = ipmp_illgrp_hold_cast_ill(illg); 9108 else 9109 dst_ill = ipmp_illgrp_hold_next_ill(illg); 9110 } else { 9111 dst_ill = ipif->ipif_ill; 9112 ill_refhold(dst_ill); 9113 } 9114 9115 if (dst_ill == NULL) { 9116 if (ip_debug > 2) { 9117 pr_addr_dbg("ip_newroute_ipif: no dst ill " 9118 "for dst %s\n", AF_INET, &dst); 9119 } 9120 goto err_ret; 9121 } 9122 9123 /* 9124 * Pick a source address preferring non-deprecated ones. 9125 * Unlike ip_newroute, we don't do any source address 9126 * selection here since for multicast it really does not help 9127 * in inbound load spreading as in the unicast case. 9128 */ 9129 if ((flags & RTF_SETSRC) && (fire != NULL) && 9130 (fire->ire_flags & RTF_SETSRC)) { 9131 /* 9132 * As requested by flags, an IRE_OFFSUBNET was looked up 9133 * on that interface. This ire has RTF_SETSRC flag, so 9134 * the source address of the packet must be changed. 9135 * Check that the ipif matching the requested source 9136 * address still exists. 9137 */ 9138 src_ipif = ipif_lookup_addr(fire->ire_src_addr, NULL, 9139 zoneid, NULL, NULL, NULL, NULL, ipst); 9140 } 9141 9142 unspec_src = (connp != NULL && connp->conn_unspec_src); 9143 9144 if (!IS_UNDER_IPMP(ipif->ipif_ill) && 9145 (IS_IPMP(ipif->ipif_ill) || 9146 (!ipif->ipif_isv6 && ipif->ipif_lcl_addr == INADDR_ANY) || 9147 (ipif->ipif_flags & (IPIF_DEPRECATED|IPIF_UP)) != IPIF_UP || 9148 (connp != NULL && ipif->ipif_zoneid != zoneid && 9149 ipif->ipif_zoneid != ALL_ZONES)) && 9150 (src_ipif == NULL) && 9151 (!unspec_src || ipha->ipha_src != INADDR_ANY)) { 9152 src_ipif = ipif_select_source(dst_ill, dst, zoneid); 9153 if (src_ipif == NULL) { 9154 if (ip_debug > 2) { 9155 /* ip1dbg */ 9156 pr_addr_dbg("ip_newroute_ipif: " 9157 "no src for dst %s", 9158 AF_INET, &dst); 9159 } 9160 ip1dbg((" on interface %s\n", 9161 dst_ill->ill_name)); 9162 goto err_ret; 9163 } 9164 ipif_refrele(ipif); 9165 ipif = src_ipif; 9166 ipif_refhold(ipif); 9167 } 9168 if (src_ipif == NULL) { 9169 src_ipif = ipif; 9170 ipif_refhold(src_ipif); 9171 } 9172 9173 /* 9174 * Assign a source address while we have the conn. 9175 * We can't have ip_wput_ire pick a source address when the 9176 * packet returns from arp since conn_unspec_src might be set 9177 * and we lose the conn when going through arp. 9178 */ 9179 if (ipha->ipha_src == INADDR_ANY && !unspec_src) 9180 ipha->ipha_src = src_ipif->ipif_src_addr; 9181 9182 /* 9183 * In the case of IP_BOUND_IF and IP_PKTINFO, it is possible 9184 * that the outgoing interface does not have an interface ire. 9185 */ 9186 if (CLASSD(ipha_dst) && (connp == NULL || 9187 connp->conn_outgoing_ill == NULL) && 9188 infop->ip_opt_ill_index == 0) { 9189 /* ipif_to_ire returns an held ire */ 9190 ire = ipif_to_ire(ipif); 9191 if (ire == NULL) 9192 goto err_ret; 9193 if (ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) 9194 goto err_ret; 9195 save_ire = ire; 9196 9197 ip2dbg(("ip_newroute_ipif: ire %p, ipif %p, " 9198 "flags %04x\n", 9199 (void *)ire, (void *)ipif, flags)); 9200 if ((flags & RTF_MULTIRT) && (fire != NULL) && 9201 (fire->ire_flags & RTF_MULTIRT)) { 9202 /* 9203 * As requested by flags, an IRE_OFFSUBNET was 9204 * looked up on that interface. This ire has 9205 * RTF_MULTIRT flag, so the resolution loop will 9206 * be re-entered to resolve additional routes on 9207 * other interfaces. For that purpose, a copy of 9208 * the packet is performed at this point. 9209 */ 9210 fire->ire_last_used_time = lbolt; 9211 copy_mp = copymsg(first_mp); 9212 if (copy_mp) { 9213 MULTIRT_DEBUG_TAG(copy_mp); 9214 } 9215 } 9216 if ((flags & RTF_SETSRC) && (fire != NULL) && 9217 (fire->ire_flags & RTF_SETSRC)) { 9218 /* 9219 * As requested by flags, an IRE_OFFSUBET was 9220 * looked up on that interface. This ire has 9221 * RTF_SETSRC flag, so the source address of the 9222 * packet must be changed. 9223 */ 9224 ipha->ipha_src = fire->ire_src_addr; 9225 } 9226 } else { 9227 /* 9228 * The only ways we can come here are: 9229 * 1) IP_BOUND_IF socket option is set 9230 * 2) SO_DONTROUTE socket option is set 9231 * 3) IP_PKTINFO option is passed in as ancillary data. 9232 * In all cases, the new ire will not be added 9233 * into cache table. 9234 */ 9235 ASSERT(connp == NULL || connp->conn_dontroute || 9236 connp->conn_outgoing_ill != NULL || 9237 infop->ip_opt_ill_index != 0); 9238 ire_marks |= IRE_MARK_NOADD; 9239 } 9240 9241 switch (ipif->ipif_net_type) { 9242 case IRE_IF_NORESOLVER: { 9243 /* We have what we need to build an IRE_CACHE. */ 9244 9245 if ((dst_ill->ill_phys_addr_length != IP_ADDR_LEN) && 9246 (dst_ill->ill_resolver_mp == NULL)) { 9247 ip1dbg(("ip_newroute_ipif: dst_ill %p " 9248 "for IRE_IF_NORESOLVER ire %p has " 9249 "no ill_resolver_mp\n", 9250 (void *)dst_ill, (void *)ire)); 9251 break; 9252 } 9253 9254 /* 9255 * The new ire inherits the IRE_OFFSUBNET flags 9256 * and source address, if this was requested. 9257 */ 9258 ire = ire_create( 9259 (uchar_t *)&dst, /* dest address */ 9260 (uchar_t *)&ip_g_all_ones, /* mask */ 9261 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 9262 NULL, /* gateway address */ 9263 &ipif->ipif_mtu, 9264 NULL, /* no src nce */ 9265 dst_ill->ill_rq, /* recv-from queue */ 9266 dst_ill->ill_wq, /* send-to queue */ 9267 IRE_CACHE, 9268 src_ipif, 9269 (save_ire != NULL ? save_ire->ire_mask : 0), 9270 (fire != NULL) ? /* Parent handle */ 9271 fire->ire_phandle : 0, 9272 (save_ire != NULL) ? /* Interface handle */ 9273 save_ire->ire_ihandle : 0, 9274 (fire != NULL) ? 9275 (fire->ire_flags & 9276 (RTF_SETSRC | RTF_MULTIRT)) : 0, 9277 (save_ire == NULL ? &ire_uinfo_null : 9278 &save_ire->ire_uinfo), 9279 NULL, 9280 NULL, 9281 ipst); 9282 9283 if (ire == NULL) { 9284 if (save_ire != NULL) 9285 ire_refrele(save_ire); 9286 break; 9287 } 9288 9289 ire->ire_marks |= ire_marks; 9290 9291 /* 9292 * If IRE_MARK_NOADD is set then we need to convert 9293 * the max_fragp to a useable value now. This is 9294 * normally done in ire_add_v[46]. We also need to 9295 * associate the ire with an nce (normally would be 9296 * done in ip_wput_nondata()). 9297 * 9298 * Note that IRE_MARK_NOADD packets created here 9299 * do not have a non-null ire_mp pointer. The null 9300 * value of ire_bucket indicates that they were 9301 * never added. 9302 */ 9303 if (ire->ire_marks & IRE_MARK_NOADD) { 9304 uint_t max_frag; 9305 9306 max_frag = *ire->ire_max_fragp; 9307 ire->ire_max_fragp = NULL; 9308 ire->ire_max_frag = max_frag; 9309 9310 if ((ire->ire_nce = ndp_lookup_v4( 9311 ire_to_ill(ire), 9312 (ire->ire_gateway_addr != INADDR_ANY ? 9313 &ire->ire_gateway_addr : &ire->ire_addr), 9314 B_FALSE)) == NULL) { 9315 if (save_ire != NULL) 9316 ire_refrele(save_ire); 9317 break; 9318 } 9319 ASSERT(ire->ire_nce->nce_state == 9320 ND_REACHABLE); 9321 NCE_REFHOLD_TO_REFHOLD_NOTR(ire->ire_nce); 9322 } 9323 9324 /* Prevent save_ire from getting deleted */ 9325 if (save_ire != NULL) { 9326 IRB_REFHOLD(save_ire->ire_bucket); 9327 /* Has it been removed already ? */ 9328 if (save_ire->ire_marks & IRE_MARK_CONDEMNED) { 9329 IRB_REFRELE(save_ire->ire_bucket); 9330 ire_refrele(save_ire); 9331 break; 9332 } 9333 } 9334 9335 ire_add_then_send(q, ire, first_mp); 9336 9337 /* Assert that save_ire is not deleted yet. */ 9338 if (save_ire != NULL) { 9339 ASSERT(save_ire->ire_ptpn != NULL); 9340 IRB_REFRELE(save_ire->ire_bucket); 9341 ire_refrele(save_ire); 9342 save_ire = NULL; 9343 } 9344 if (fire != NULL) { 9345 ire_refrele(fire); 9346 fire = NULL; 9347 } 9348 9349 /* 9350 * the resolution loop is re-entered if this 9351 * was requested through flags and if we 9352 * actually are in a multirouting case. 9353 */ 9354 if ((flags & RTF_MULTIRT) && (copy_mp != NULL)) { 9355 boolean_t need_resolve = 9356 ire_multirt_need_resolve(ipha_dst, 9357 msg_getlabel(copy_mp), ipst); 9358 if (!need_resolve) { 9359 MULTIRT_DEBUG_UNTAG(copy_mp); 9360 freemsg(copy_mp); 9361 copy_mp = NULL; 9362 } else { 9363 /* 9364 * ipif_lookup_group() calls 9365 * ire_lookup_multi() that uses 9366 * ire_ftable_lookup() to find 9367 * an IRE_INTERFACE for the group. 9368 * In the multirt case, 9369 * ire_lookup_multi() then invokes 9370 * ire_multirt_lookup() to find 9371 * the next resolvable ire. 9372 * As a result, we obtain an new 9373 * interface, derived from the 9374 * next ire. 9375 */ 9376 ipif_refrele(ipif); 9377 ipif = ipif_lookup_group(ipha_dst, 9378 zoneid, ipst); 9379 ip2dbg(("ip_newroute_ipif: " 9380 "multirt dst %08x, ipif %p\n", 9381 htonl(dst), (void *)ipif)); 9382 if (ipif != NULL) { 9383 mp = copy_mp; 9384 copy_mp = NULL; 9385 multirt_resolve_next = B_TRUE; 9386 continue; 9387 } else { 9388 freemsg(copy_mp); 9389 } 9390 } 9391 } 9392 if (ipif != NULL) 9393 ipif_refrele(ipif); 9394 ill_refrele(dst_ill); 9395 ipif_refrele(src_ipif); 9396 return; 9397 } 9398 case IRE_IF_RESOLVER: 9399 /* 9400 * We can't build an IRE_CACHE yet, but at least 9401 * we found a resolver that can help. 9402 */ 9403 res_mp = dst_ill->ill_resolver_mp; 9404 if (!OK_RESOLVER_MP(res_mp)) 9405 break; 9406 9407 /* 9408 * We obtain a partial IRE_CACHE which we will pass 9409 * along with the resolver query. When the response 9410 * comes back it will be there ready for us to add. 9411 * The new ire inherits the IRE_OFFSUBNET flags 9412 * and source address, if this was requested. 9413 * The ire_max_frag is atomically set under the 9414 * irebucket lock in ire_add_v[46]. Only in the 9415 * case of IRE_MARK_NOADD, we set it here itself. 9416 */ 9417 ire = ire_create_mp( 9418 (uchar_t *)&dst, /* dest address */ 9419 (uchar_t *)&ip_g_all_ones, /* mask */ 9420 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 9421 NULL, /* gateway address */ 9422 (ire_marks & IRE_MARK_NOADD) ? 9423 ipif->ipif_mtu : 0, /* max_frag */ 9424 NULL, /* no src nce */ 9425 dst_ill->ill_rq, /* recv-from queue */ 9426 dst_ill->ill_wq, /* send-to queue */ 9427 IRE_CACHE, 9428 src_ipif, 9429 (save_ire != NULL ? save_ire->ire_mask : 0), 9430 (fire != NULL) ? /* Parent handle */ 9431 fire->ire_phandle : 0, 9432 (save_ire != NULL) ? /* Interface handle */ 9433 save_ire->ire_ihandle : 0, 9434 (fire != NULL) ? /* flags if any */ 9435 (fire->ire_flags & 9436 (RTF_SETSRC | RTF_MULTIRT)) : 0, 9437 (save_ire == NULL ? &ire_uinfo_null : 9438 &save_ire->ire_uinfo), 9439 NULL, 9440 NULL, 9441 ipst); 9442 9443 if (save_ire != NULL) { 9444 ire_refrele(save_ire); 9445 save_ire = NULL; 9446 } 9447 if (ire == NULL) 9448 break; 9449 9450 ire->ire_marks |= ire_marks; 9451 /* 9452 * Construct message chain for the resolver of the 9453 * form: 9454 * ARP_REQ_MBLK-->IRE_MBLK-->Packet 9455 * 9456 * NOTE : ire will be added later when the response 9457 * comes back from ARP. If the response does not 9458 * come back, ARP frees the packet. For this reason, 9459 * we can't REFHOLD the bucket of save_ire to prevent 9460 * deletions. We may not be able to REFRELE the 9461 * bucket if the response never comes back. 9462 * Thus, before adding the ire, ire_add_v4 will make 9463 * sure that the interface route does not get deleted. 9464 * This is the only case unlike ip_newroute_v6, 9465 * ip_newroute_ipif_v6 where we can always prevent 9466 * deletions because ire_add_then_send is called after 9467 * creating the IRE. 9468 * If IRE_MARK_NOADD is set, then ire_add_then_send 9469 * does not add this IRE into the IRE CACHE. 9470 */ 9471 ASSERT(ire->ire_mp != NULL); 9472 ire->ire_mp->b_cont = first_mp; 9473 /* Have saved_mp handy, for cleanup if canput fails */ 9474 saved_mp = mp; 9475 mp = copyb(res_mp); 9476 if (mp == NULL) { 9477 /* Prepare for cleanup */ 9478 mp = saved_mp; /* pkt */ 9479 ire_delete(ire); /* ire_mp */ 9480 ire = NULL; 9481 if (copy_mp != NULL) { 9482 MULTIRT_DEBUG_UNTAG(copy_mp); 9483 freemsg(copy_mp); 9484 copy_mp = NULL; 9485 } 9486 break; 9487 } 9488 linkb(mp, ire->ire_mp); 9489 9490 /* 9491 * Fill in the source and dest addrs for the resolver. 9492 * NOTE: this depends on memory layouts imposed by 9493 * ill_init(). There are corner cases above where we 9494 * might've created the IRE with an INADDR_ANY source 9495 * address (e.g., if the zeroth ipif on an underlying 9496 * ill in an IPMP group is 0.0.0.0, but another ipif 9497 * on the ill has a usable test address). If so, tell 9498 * ARP to use ipha_src as its sender address. 9499 */ 9500 areq = (areq_t *)mp->b_rptr; 9501 addrp = (ipaddr_t *)((char *)areq + 9502 areq->areq_sender_addr_offset); 9503 if (ire->ire_src_addr != INADDR_ANY) 9504 *addrp = ire->ire_src_addr; 9505 else 9506 *addrp = ipha->ipha_src; 9507 addrp = (ipaddr_t *)((char *)areq + 9508 areq->areq_target_addr_offset); 9509 *addrp = dst; 9510 /* Up to the resolver. */ 9511 if (canputnext(dst_ill->ill_rq) && 9512 !(dst_ill->ill_arp_closing)) { 9513 putnext(dst_ill->ill_rq, mp); 9514 /* 9515 * The response will come back in ip_wput 9516 * with db_type IRE_DB_TYPE. 9517 */ 9518 } else { 9519 mp->b_cont = NULL; 9520 freeb(mp); /* areq */ 9521 ire_delete(ire); /* ire_mp */ 9522 saved_mp->b_next = NULL; 9523 saved_mp->b_prev = NULL; 9524 freemsg(first_mp); /* pkt */ 9525 ip2dbg(("ip_newroute_ipif: dropped\n")); 9526 } 9527 9528 if (fire != NULL) { 9529 ire_refrele(fire); 9530 fire = NULL; 9531 } 9532 9533 /* 9534 * The resolution loop is re-entered if this was 9535 * requested through flags and we actually are 9536 * in a multirouting case. 9537 */ 9538 if ((flags & RTF_MULTIRT) && (copy_mp != NULL)) { 9539 boolean_t need_resolve = 9540 ire_multirt_need_resolve(ipha_dst, 9541 msg_getlabel(copy_mp), ipst); 9542 if (!need_resolve) { 9543 MULTIRT_DEBUG_UNTAG(copy_mp); 9544 freemsg(copy_mp); 9545 copy_mp = NULL; 9546 } else { 9547 /* 9548 * ipif_lookup_group() calls 9549 * ire_lookup_multi() that uses 9550 * ire_ftable_lookup() to find 9551 * an IRE_INTERFACE for the group. 9552 * In the multirt case, 9553 * ire_lookup_multi() then invokes 9554 * ire_multirt_lookup() to find 9555 * the next resolvable ire. 9556 * As a result, we obtain an new 9557 * interface, derived from the 9558 * next ire. 9559 */ 9560 ipif_refrele(ipif); 9561 ipif = ipif_lookup_group(ipha_dst, 9562 zoneid, ipst); 9563 if (ipif != NULL) { 9564 mp = copy_mp; 9565 copy_mp = NULL; 9566 multirt_resolve_next = B_TRUE; 9567 continue; 9568 } else { 9569 freemsg(copy_mp); 9570 } 9571 } 9572 } 9573 if (ipif != NULL) 9574 ipif_refrele(ipif); 9575 ill_refrele(dst_ill); 9576 ipif_refrele(src_ipif); 9577 return; 9578 default: 9579 break; 9580 } 9581 } while (multirt_resolve_next); 9582 9583 err_ret: 9584 ip2dbg(("ip_newroute_ipif: dropped\n")); 9585 if (fire != NULL) 9586 ire_refrele(fire); 9587 ipif_refrele(ipif); 9588 /* Did this packet originate externally? */ 9589 if (dst_ill != NULL) 9590 ill_refrele(dst_ill); 9591 if (src_ipif != NULL) 9592 ipif_refrele(src_ipif); 9593 if (mp->b_prev || mp->b_next) { 9594 mp->b_next = NULL; 9595 mp->b_prev = NULL; 9596 } else { 9597 /* 9598 * Since ip_wput() isn't close to finished, we fill 9599 * in enough of the header for credible error reporting. 9600 */ 9601 if (ip_hdr_complete((ipha_t *)mp->b_rptr, zoneid, ipst)) { 9602 /* Failed */ 9603 freemsg(first_mp); 9604 if (ire != NULL) 9605 ire_refrele(ire); 9606 return; 9607 } 9608 } 9609 /* 9610 * At this point we will have ire only if RTF_BLACKHOLE 9611 * or RTF_REJECT flags are set on the IRE. It will not 9612 * generate ICMP_HOST_UNREACHABLE if RTF_BLACKHOLE is set. 9613 */ 9614 if (ire != NULL) { 9615 if (ire->ire_flags & RTF_BLACKHOLE) { 9616 ire_refrele(ire); 9617 freemsg(first_mp); 9618 return; 9619 } 9620 ire_refrele(ire); 9621 } 9622 icmp_unreachable(q, first_mp, ICMP_HOST_UNREACHABLE, zoneid, ipst); 9623 } 9624 9625 /* Name/Value Table Lookup Routine */ 9626 char * 9627 ip_nv_lookup(nv_t *nv, int value) 9628 { 9629 if (!nv) 9630 return (NULL); 9631 for (; nv->nv_name; nv++) { 9632 if (nv->nv_value == value) 9633 return (nv->nv_name); 9634 } 9635 return ("unknown"); 9636 } 9637 9638 /* 9639 * This is a module open, i.e. this is a control stream for access 9640 * to a DLPI device. We allocate an ill_t as the instance data in 9641 * this case. 9642 */ 9643 int 9644 ip_modopen(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp) 9645 { 9646 ill_t *ill; 9647 int err; 9648 zoneid_t zoneid; 9649 netstack_t *ns; 9650 ip_stack_t *ipst; 9651 9652 /* 9653 * Prevent unprivileged processes from pushing IP so that 9654 * they can't send raw IP. 9655 */ 9656 if (secpolicy_net_rawaccess(credp) != 0) 9657 return (EPERM); 9658 9659 ns = netstack_find_by_cred(credp); 9660 ASSERT(ns != NULL); 9661 ipst = ns->netstack_ip; 9662 ASSERT(ipst != NULL); 9663 9664 /* 9665 * For exclusive stacks we set the zoneid to zero 9666 * to make IP operate as if in the global zone. 9667 */ 9668 if (ipst->ips_netstack->netstack_stackid != GLOBAL_NETSTACKID) 9669 zoneid = GLOBAL_ZONEID; 9670 else 9671 zoneid = crgetzoneid(credp); 9672 9673 ill = (ill_t *)mi_open_alloc_sleep(sizeof (ill_t)); 9674 q->q_ptr = WR(q)->q_ptr = ill; 9675 ill->ill_ipst = ipst; 9676 ill->ill_zoneid = zoneid; 9677 9678 /* 9679 * ill_init initializes the ill fields and then sends down 9680 * down a DL_INFO_REQ after calling qprocson. 9681 */ 9682 err = ill_init(q, ill); 9683 if (err != 0) { 9684 mi_free(ill); 9685 netstack_rele(ipst->ips_netstack); 9686 q->q_ptr = NULL; 9687 WR(q)->q_ptr = NULL; 9688 return (err); 9689 } 9690 9691 /* ill_init initializes the ipsq marking this thread as writer */ 9692 ipsq_exit(ill->ill_phyint->phyint_ipsq); 9693 /* Wait for the DL_INFO_ACK */ 9694 mutex_enter(&ill->ill_lock); 9695 while (ill->ill_state_flags & ILL_LL_SUBNET_PENDING) { 9696 /* 9697 * Return value of 0 indicates a pending signal. 9698 */ 9699 err = cv_wait_sig(&ill->ill_cv, &ill->ill_lock); 9700 if (err == 0) { 9701 mutex_exit(&ill->ill_lock); 9702 (void) ip_close(q, 0); 9703 return (EINTR); 9704 } 9705 } 9706 mutex_exit(&ill->ill_lock); 9707 9708 /* 9709 * ip_rput_other could have set an error in ill_error on 9710 * receipt of M_ERROR. 9711 */ 9712 9713 err = ill->ill_error; 9714 if (err != 0) { 9715 (void) ip_close(q, 0); 9716 return (err); 9717 } 9718 9719 ill->ill_credp = credp; 9720 crhold(credp); 9721 9722 mutex_enter(&ipst->ips_ip_mi_lock); 9723 err = mi_open_link(&ipst->ips_ip_g_head, (IDP)ill, devp, flag, sflag, 9724 credp); 9725 mutex_exit(&ipst->ips_ip_mi_lock); 9726 if (err) { 9727 (void) ip_close(q, 0); 9728 return (err); 9729 } 9730 return (0); 9731 } 9732 9733 /* For /dev/ip aka AF_INET open */ 9734 int 9735 ip_openv4(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp) 9736 { 9737 return (ip_open(q, devp, flag, sflag, credp, B_FALSE)); 9738 } 9739 9740 /* For /dev/ip6 aka AF_INET6 open */ 9741 int 9742 ip_openv6(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp) 9743 { 9744 return (ip_open(q, devp, flag, sflag, credp, B_TRUE)); 9745 } 9746 9747 /* IP open routine. */ 9748 int 9749 ip_open(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp, 9750 boolean_t isv6) 9751 { 9752 conn_t *connp; 9753 major_t maj; 9754 zoneid_t zoneid; 9755 netstack_t *ns; 9756 ip_stack_t *ipst; 9757 9758 TRACE_1(TR_FAC_IP, TR_IP_OPEN, "ip_open: q %p", q); 9759 9760 /* Allow reopen. */ 9761 if (q->q_ptr != NULL) 9762 return (0); 9763 9764 if (sflag & MODOPEN) { 9765 /* This is a module open */ 9766 return (ip_modopen(q, devp, flag, sflag, credp)); 9767 } 9768 9769 if ((flag & ~(FKLYR)) == IP_HELPER_STR) { 9770 /* 9771 * Non streams based socket looking for a stream 9772 * to access IP 9773 */ 9774 return (ip_helper_stream_setup(q, devp, flag, sflag, 9775 credp, isv6)); 9776 } 9777 9778 ns = netstack_find_by_cred(credp); 9779 ASSERT(ns != NULL); 9780 ipst = ns->netstack_ip; 9781 ASSERT(ipst != NULL); 9782 9783 /* 9784 * For exclusive stacks we set the zoneid to zero 9785 * to make IP operate as if in the global zone. 9786 */ 9787 if (ipst->ips_netstack->netstack_stackid != GLOBAL_NETSTACKID) 9788 zoneid = GLOBAL_ZONEID; 9789 else 9790 zoneid = crgetzoneid(credp); 9791 9792 /* 9793 * We are opening as a device. This is an IP client stream, and we 9794 * allocate an conn_t as the instance data. 9795 */ 9796 connp = ipcl_conn_create(IPCL_IPCCONN, KM_SLEEP, ipst->ips_netstack); 9797 9798 /* 9799 * ipcl_conn_create did a netstack_hold. Undo the hold that was 9800 * done by netstack_find_by_cred() 9801 */ 9802 netstack_rele(ipst->ips_netstack); 9803 9804 connp->conn_zoneid = zoneid; 9805 connp->conn_sqp = NULL; 9806 connp->conn_initial_sqp = NULL; 9807 connp->conn_final_sqp = NULL; 9808 9809 connp->conn_upq = q; 9810 q->q_ptr = WR(q)->q_ptr = connp; 9811 9812 if (flag & SO_SOCKSTR) 9813 connp->conn_flags |= IPCL_SOCKET; 9814 9815 /* Minor tells us which /dev entry was opened */ 9816 if (isv6) { 9817 connp->conn_flags |= IPCL_ISV6; 9818 connp->conn_af_isv6 = B_TRUE; 9819 ip_setpktversion(connp, isv6, B_FALSE, ipst); 9820 connp->conn_src_preferences = IPV6_PREFER_SRC_DEFAULT; 9821 } else { 9822 connp->conn_af_isv6 = B_FALSE; 9823 connp->conn_pkt_isv6 = B_FALSE; 9824 } 9825 9826 if ((ip_minor_arena_la != NULL) && (flag & SO_SOCKSTR) && 9827 ((connp->conn_dev = inet_minor_alloc(ip_minor_arena_la)) != 0)) { 9828 connp->conn_minor_arena = ip_minor_arena_la; 9829 } else { 9830 /* 9831 * Either minor numbers in the large arena were exhausted 9832 * or a non socket application is doing the open. 9833 * Try to allocate from the small arena. 9834 */ 9835 if ((connp->conn_dev = 9836 inet_minor_alloc(ip_minor_arena_sa)) == 0) { 9837 /* CONN_DEC_REF takes care of netstack_rele() */ 9838 q->q_ptr = WR(q)->q_ptr = NULL; 9839 CONN_DEC_REF(connp); 9840 return (EBUSY); 9841 } 9842 connp->conn_minor_arena = ip_minor_arena_sa; 9843 } 9844 9845 maj = getemajor(*devp); 9846 *devp = makedevice(maj, (minor_t)connp->conn_dev); 9847 9848 /* 9849 * connp->conn_cred is crfree()ed in ipcl_conn_destroy() 9850 */ 9851 connp->conn_cred = credp; 9852 9853 /* 9854 * Handle IP_RTS_REQUEST and other ioctls which use conn_recv 9855 */ 9856 connp->conn_recv = ip_conn_input; 9857 9858 crhold(connp->conn_cred); 9859 9860 /* 9861 * If the caller has the process-wide flag set, then default to MAC 9862 * exempt mode. This allows read-down to unlabeled hosts. 9863 */ 9864 if (getpflags(NET_MAC_AWARE, credp) != 0) 9865 connp->conn_mac_exempt = B_TRUE; 9866 9867 connp->conn_rq = q; 9868 connp->conn_wq = WR(q); 9869 9870 /* Non-zero default values */ 9871 connp->conn_multicast_loop = IP_DEFAULT_MULTICAST_LOOP; 9872 9873 /* 9874 * Make the conn globally visible to walkers 9875 */ 9876 ASSERT(connp->conn_ref == 1); 9877 mutex_enter(&connp->conn_lock); 9878 connp->conn_state_flags &= ~CONN_INCIPIENT; 9879 mutex_exit(&connp->conn_lock); 9880 9881 qprocson(q); 9882 9883 return (0); 9884 } 9885 9886 /* 9887 * Change the output format (IPv4 vs. IPv6) for a conn_t. 9888 * Note that there is no race since either ip_output function works - it 9889 * is just an optimization to enter the best ip_output routine directly. 9890 */ 9891 void 9892 ip_setpktversion(conn_t *connp, boolean_t isv6, boolean_t bump_mib, 9893 ip_stack_t *ipst) 9894 { 9895 if (isv6) { 9896 if (bump_mib) { 9897 BUMP_MIB(&ipst->ips_ip6_mib, 9898 ipIfStatsOutSwitchIPVersion); 9899 } 9900 connp->conn_send = ip_output_v6; 9901 connp->conn_pkt_isv6 = B_TRUE; 9902 } else { 9903 if (bump_mib) { 9904 BUMP_MIB(&ipst->ips_ip_mib, 9905 ipIfStatsOutSwitchIPVersion); 9906 } 9907 connp->conn_send = ip_output; 9908 connp->conn_pkt_isv6 = B_FALSE; 9909 } 9910 9911 } 9912 9913 /* 9914 * See if IPsec needs loading because of the options in mp. 9915 */ 9916 static boolean_t 9917 ipsec_opt_present(mblk_t *mp) 9918 { 9919 uint8_t *optcp, *next_optcp, *opt_endcp; 9920 struct opthdr *opt; 9921 struct T_opthdr *topt; 9922 int opthdr_len; 9923 t_uscalar_t optname, optlevel; 9924 struct T_optmgmt_req *tor = (struct T_optmgmt_req *)mp->b_rptr; 9925 ipsec_req_t *ipsr; 9926 9927 /* 9928 * Walk through the mess, and find IP_SEC_OPT. If it's there, 9929 * return TRUE. 9930 */ 9931 9932 optcp = mi_offset_param(mp, tor->OPT_offset, tor->OPT_length); 9933 opt_endcp = optcp + tor->OPT_length; 9934 if (tor->PRIM_type == T_OPTMGMT_REQ) { 9935 opthdr_len = sizeof (struct T_opthdr); 9936 } else { /* O_OPTMGMT_REQ */ 9937 ASSERT(tor->PRIM_type == T_SVR4_OPTMGMT_REQ); 9938 opthdr_len = sizeof (struct opthdr); 9939 } 9940 for (; optcp < opt_endcp; optcp = next_optcp) { 9941 if (optcp + opthdr_len > opt_endcp) 9942 return (B_FALSE); /* Not enough option header. */ 9943 if (tor->PRIM_type == T_OPTMGMT_REQ) { 9944 topt = (struct T_opthdr *)optcp; 9945 optlevel = topt->level; 9946 optname = topt->name; 9947 next_optcp = optcp + _TPI_ALIGN_TOPT(topt->len); 9948 } else { 9949 opt = (struct opthdr *)optcp; 9950 optlevel = opt->level; 9951 optname = opt->name; 9952 next_optcp = optcp + opthdr_len + 9953 _TPI_ALIGN_OPT(opt->len); 9954 } 9955 if ((next_optcp < optcp) || /* wraparound pointer space */ 9956 ((next_optcp >= opt_endcp) && /* last option bad len */ 9957 ((next_optcp - opt_endcp) >= __TPI_ALIGN_SIZE))) 9958 return (B_FALSE); /* bad option buffer */ 9959 if ((optlevel == IPPROTO_IP && optname == IP_SEC_OPT) || 9960 (optlevel == IPPROTO_IPV6 && optname == IPV6_SEC_OPT)) { 9961 /* 9962 * Check to see if it's an all-bypass or all-zeroes 9963 * IPsec request. Don't bother loading IPsec if 9964 * the socket doesn't want to use it. (A good example 9965 * is a bypass request.) 9966 * 9967 * Basically, if any of the non-NEVER bits are set, 9968 * load IPsec. 9969 */ 9970 ipsr = (ipsec_req_t *)(optcp + opthdr_len); 9971 if ((ipsr->ipsr_ah_req & ~IPSEC_PREF_NEVER) != 0 || 9972 (ipsr->ipsr_esp_req & ~IPSEC_PREF_NEVER) != 0 || 9973 (ipsr->ipsr_self_encap_req & ~IPSEC_PREF_NEVER) 9974 != 0) 9975 return (B_TRUE); 9976 } 9977 } 9978 return (B_FALSE); 9979 } 9980 9981 /* 9982 * If conn is is waiting for ipsec to finish loading, kick it. 9983 */ 9984 /* ARGSUSED */ 9985 static void 9986 conn_restart_ipsec_waiter(conn_t *connp, void *arg) 9987 { 9988 t_scalar_t optreq_prim; 9989 mblk_t *mp; 9990 cred_t *cr; 9991 int err = 0; 9992 9993 /* 9994 * This function is called, after ipsec loading is complete. 9995 * Since IP checks exclusively and atomically (i.e it prevents 9996 * ipsec load from completing until ip_optcom_req completes) 9997 * whether ipsec load is complete, there cannot be a race with IP 9998 * trying to set the CONN_IPSEC_LOAD_WAIT flag on any conn now. 9999 */ 10000 mutex_enter(&connp->conn_lock); 10001 if (connp->conn_state_flags & CONN_IPSEC_LOAD_WAIT) { 10002 ASSERT(connp->conn_ipsec_opt_mp != NULL); 10003 mp = connp->conn_ipsec_opt_mp; 10004 connp->conn_ipsec_opt_mp = NULL; 10005 connp->conn_state_flags &= ~CONN_IPSEC_LOAD_WAIT; 10006 mutex_exit(&connp->conn_lock); 10007 10008 /* 10009 * All Solaris components should pass a db_credp 10010 * for this TPI message, hence we ASSERT. 10011 * But in case there is some other M_PROTO that looks 10012 * like a TPI message sent by some other kernel 10013 * component, we check and return an error. 10014 */ 10015 cr = msg_getcred(mp, NULL); 10016 ASSERT(cr != NULL); 10017 if (cr == NULL) { 10018 mp = mi_tpi_err_ack_alloc(mp, TSYSERR, EINVAL); 10019 if (mp != NULL) 10020 qreply(connp->conn_wq, mp); 10021 return; 10022 } 10023 10024 ASSERT(DB_TYPE(mp) == M_PROTO || DB_TYPE(mp) == M_PCPROTO); 10025 10026 optreq_prim = ((union T_primitives *)mp->b_rptr)->type; 10027 if (optreq_prim == T_OPTMGMT_REQ) { 10028 err = tpi_optcom_req(CONNP_TO_WQ(connp), mp, cr, 10029 &ip_opt_obj, B_FALSE); 10030 } else { 10031 ASSERT(optreq_prim == T_SVR4_OPTMGMT_REQ); 10032 err = svr4_optcom_req(CONNP_TO_WQ(connp), mp, cr, 10033 &ip_opt_obj, B_FALSE); 10034 } 10035 if (err != EINPROGRESS) 10036 CONN_OPER_PENDING_DONE(connp); 10037 return; 10038 } 10039 mutex_exit(&connp->conn_lock); 10040 } 10041 10042 /* 10043 * Called from the ipsec_loader thread, outside any perimeter, to tell 10044 * ip qenable any of the queues waiting for the ipsec loader to 10045 * complete. 10046 */ 10047 void 10048 ip_ipsec_load_complete(ipsec_stack_t *ipss) 10049 { 10050 netstack_t *ns = ipss->ipsec_netstack; 10051 10052 ipcl_walk(conn_restart_ipsec_waiter, NULL, ns->netstack_ip); 10053 } 10054 10055 /* 10056 * Can't be used. Need to call svr4* -> optset directly. the leaf routine 10057 * determines the grp on which it has to become exclusive, queues the mp 10058 * and IPSQ draining restarts the optmgmt 10059 */ 10060 static boolean_t 10061 ip_check_for_ipsec_opt(queue_t *q, mblk_t *mp) 10062 { 10063 conn_t *connp = Q_TO_CONN(q); 10064 ipsec_stack_t *ipss = connp->conn_netstack->netstack_ipsec; 10065 10066 /* 10067 * Take IPsec requests and treat them special. 10068 */ 10069 if (ipsec_opt_present(mp)) { 10070 /* First check if IPsec is loaded. */ 10071 mutex_enter(&ipss->ipsec_loader_lock); 10072 if (ipss->ipsec_loader_state != IPSEC_LOADER_WAIT) { 10073 mutex_exit(&ipss->ipsec_loader_lock); 10074 return (B_FALSE); 10075 } 10076 mutex_enter(&connp->conn_lock); 10077 connp->conn_state_flags |= CONN_IPSEC_LOAD_WAIT; 10078 10079 ASSERT(connp->conn_ipsec_opt_mp == NULL); 10080 connp->conn_ipsec_opt_mp = mp; 10081 mutex_exit(&connp->conn_lock); 10082 mutex_exit(&ipss->ipsec_loader_lock); 10083 10084 ipsec_loader_loadnow(ipss); 10085 return (B_TRUE); 10086 } 10087 return (B_FALSE); 10088 } 10089 10090 /* 10091 * Set IPsec policy from an ipsec_req_t. If the req is not "zero" and valid, 10092 * all of them are copied to the conn_t. If the req is "zero", the policy is 10093 * zeroed out. A "zero" policy has zero ipsr_{ah,req,self_encap}_req 10094 * fields. 10095 * We keep only the latest setting of the policy and thus policy setting 10096 * is not incremental/cumulative. 10097 * 10098 * Requests to set policies with multiple alternative actions will 10099 * go through a different API. 10100 */ 10101 int 10102 ipsec_set_req(cred_t *cr, conn_t *connp, ipsec_req_t *req) 10103 { 10104 uint_t ah_req = 0; 10105 uint_t esp_req = 0; 10106 uint_t se_req = 0; 10107 ipsec_selkey_t sel; 10108 ipsec_act_t *actp = NULL; 10109 uint_t nact; 10110 ipsec_policy_t *pin4 = NULL, *pout4 = NULL; 10111 ipsec_policy_t *pin6 = NULL, *pout6 = NULL; 10112 ipsec_policy_root_t *pr; 10113 ipsec_policy_head_t *ph; 10114 int fam; 10115 boolean_t is_pol_reset; 10116 int error = 0; 10117 netstack_t *ns = connp->conn_netstack; 10118 ip_stack_t *ipst = ns->netstack_ip; 10119 ipsec_stack_t *ipss = ns->netstack_ipsec; 10120 10121 #define REQ_MASK (IPSEC_PREF_REQUIRED|IPSEC_PREF_NEVER) 10122 10123 /* 10124 * The IP_SEC_OPT option does not allow variable length parameters, 10125 * hence a request cannot be NULL. 10126 */ 10127 if (req == NULL) 10128 return (EINVAL); 10129 10130 ah_req = req->ipsr_ah_req; 10131 esp_req = req->ipsr_esp_req; 10132 se_req = req->ipsr_self_encap_req; 10133 10134 /* Don't allow setting self-encap without one or more of AH/ESP. */ 10135 if (se_req != 0 && esp_req == 0 && ah_req == 0) 10136 return (EINVAL); 10137 10138 /* 10139 * Are we dealing with a request to reset the policy (i.e. 10140 * zero requests). 10141 */ 10142 is_pol_reset = ((ah_req & REQ_MASK) == 0 && 10143 (esp_req & REQ_MASK) == 0 && 10144 (se_req & REQ_MASK) == 0); 10145 10146 if (!is_pol_reset) { 10147 /* 10148 * If we couldn't load IPsec, fail with "protocol 10149 * not supported". 10150 * IPsec may not have been loaded for a request with zero 10151 * policies, so we don't fail in this case. 10152 */ 10153 mutex_enter(&ipss->ipsec_loader_lock); 10154 if (ipss->ipsec_loader_state != IPSEC_LOADER_SUCCEEDED) { 10155 mutex_exit(&ipss->ipsec_loader_lock); 10156 return (EPROTONOSUPPORT); 10157 } 10158 mutex_exit(&ipss->ipsec_loader_lock); 10159 10160 /* 10161 * Test for valid requests. Invalid algorithms 10162 * need to be tested by IPsec code because new 10163 * algorithms can be added dynamically. 10164 */ 10165 if ((ah_req & ~(REQ_MASK|IPSEC_PREF_UNIQUE)) != 0 || 10166 (esp_req & ~(REQ_MASK|IPSEC_PREF_UNIQUE)) != 0 || 10167 (se_req & ~(REQ_MASK|IPSEC_PREF_UNIQUE)) != 0) { 10168 return (EINVAL); 10169 } 10170 10171 /* 10172 * Only privileged users can issue these 10173 * requests. 10174 */ 10175 if (((ah_req & IPSEC_PREF_NEVER) || 10176 (esp_req & IPSEC_PREF_NEVER) || 10177 (se_req & IPSEC_PREF_NEVER)) && 10178 secpolicy_ip_config(cr, B_FALSE) != 0) { 10179 return (EPERM); 10180 } 10181 10182 /* 10183 * The IPSEC_PREF_REQUIRED and IPSEC_PREF_NEVER 10184 * are mutually exclusive. 10185 */ 10186 if (((ah_req & REQ_MASK) == REQ_MASK) || 10187 ((esp_req & REQ_MASK) == REQ_MASK) || 10188 ((se_req & REQ_MASK) == REQ_MASK)) { 10189 /* Both of them are set */ 10190 return (EINVAL); 10191 } 10192 } 10193 10194 mutex_enter(&connp->conn_lock); 10195 10196 /* 10197 * If we have already cached policies in ip_bind_connected*(), don't 10198 * let them change now. We cache policies for connections 10199 * whose src,dst [addr, port] is known. 10200 */ 10201 if (connp->conn_policy_cached) { 10202 mutex_exit(&connp->conn_lock); 10203 return (EINVAL); 10204 } 10205 10206 /* 10207 * We have a zero policies, reset the connection policy if already 10208 * set. This will cause the connection to inherit the 10209 * global policy, if any. 10210 */ 10211 if (is_pol_reset) { 10212 if (connp->conn_policy != NULL) { 10213 IPPH_REFRELE(connp->conn_policy, ipst->ips_netstack); 10214 connp->conn_policy = NULL; 10215 } 10216 connp->conn_flags &= ~IPCL_CHECK_POLICY; 10217 connp->conn_in_enforce_policy = B_FALSE; 10218 connp->conn_out_enforce_policy = B_FALSE; 10219 mutex_exit(&connp->conn_lock); 10220 return (0); 10221 } 10222 10223 ph = connp->conn_policy = ipsec_polhead_split(connp->conn_policy, 10224 ipst->ips_netstack); 10225 if (ph == NULL) 10226 goto enomem; 10227 10228 ipsec_actvec_from_req(req, &actp, &nact, ipst->ips_netstack); 10229 if (actp == NULL) 10230 goto enomem; 10231 10232 /* 10233 * Always allocate IPv4 policy entries, since they can also 10234 * apply to ipv6 sockets being used in ipv4-compat mode. 10235 */ 10236 bzero(&sel, sizeof (sel)); 10237 sel.ipsl_valid = IPSL_IPV4; 10238 10239 pin4 = ipsec_policy_create(&sel, actp, nact, IPSEC_PRIO_SOCKET, NULL, 10240 ipst->ips_netstack); 10241 if (pin4 == NULL) 10242 goto enomem; 10243 10244 pout4 = ipsec_policy_create(&sel, actp, nact, IPSEC_PRIO_SOCKET, NULL, 10245 ipst->ips_netstack); 10246 if (pout4 == NULL) 10247 goto enomem; 10248 10249 if (connp->conn_af_isv6) { 10250 /* 10251 * We're looking at a v6 socket, also allocate the 10252 * v6-specific entries... 10253 */ 10254 sel.ipsl_valid = IPSL_IPV6; 10255 pin6 = ipsec_policy_create(&sel, actp, nact, 10256 IPSEC_PRIO_SOCKET, NULL, ipst->ips_netstack); 10257 if (pin6 == NULL) 10258 goto enomem; 10259 10260 pout6 = ipsec_policy_create(&sel, actp, nact, 10261 IPSEC_PRIO_SOCKET, NULL, ipst->ips_netstack); 10262 if (pout6 == NULL) 10263 goto enomem; 10264 10265 /* 10266 * .. and file them away in the right place. 10267 */ 10268 fam = IPSEC_AF_V6; 10269 pr = &ph->iph_root[IPSEC_TYPE_INBOUND]; 10270 HASHLIST_INSERT(pin6, ipsp_hash, pr->ipr_nonhash[fam]); 10271 ipsec_insert_always(&ph->iph_rulebyid, pin6); 10272 pr = &ph->iph_root[IPSEC_TYPE_OUTBOUND]; 10273 HASHLIST_INSERT(pout6, ipsp_hash, pr->ipr_nonhash[fam]); 10274 ipsec_insert_always(&ph->iph_rulebyid, pout6); 10275 } 10276 10277 ipsec_actvec_free(actp, nact); 10278 10279 /* 10280 * File the v4 policies. 10281 */ 10282 fam = IPSEC_AF_V4; 10283 pr = &ph->iph_root[IPSEC_TYPE_INBOUND]; 10284 HASHLIST_INSERT(pin4, ipsp_hash, pr->ipr_nonhash[fam]); 10285 ipsec_insert_always(&ph->iph_rulebyid, pin4); 10286 10287 pr = &ph->iph_root[IPSEC_TYPE_OUTBOUND]; 10288 HASHLIST_INSERT(pout4, ipsp_hash, pr->ipr_nonhash[fam]); 10289 ipsec_insert_always(&ph->iph_rulebyid, pout4); 10290 10291 /* 10292 * If the requests need security, set enforce_policy. 10293 * If the requests are IPSEC_PREF_NEVER, one should 10294 * still set conn_out_enforce_policy so that an ipsec_out 10295 * gets attached in ip_wput. This is needed so that 10296 * for connections that we don't cache policy in ip_bind, 10297 * if global policy matches in ip_wput_attach_policy, we 10298 * don't wrongly inherit global policy. Similarly, we need 10299 * to set conn_in_enforce_policy also so that we don't verify 10300 * policy wrongly. 10301 */ 10302 if ((ah_req & REQ_MASK) != 0 || 10303 (esp_req & REQ_MASK) != 0 || 10304 (se_req & REQ_MASK) != 0) { 10305 connp->conn_in_enforce_policy = B_TRUE; 10306 connp->conn_out_enforce_policy = B_TRUE; 10307 connp->conn_flags |= IPCL_CHECK_POLICY; 10308 } 10309 10310 mutex_exit(&connp->conn_lock); 10311 return (error); 10312 #undef REQ_MASK 10313 10314 /* 10315 * Common memory-allocation-failure exit path. 10316 */ 10317 enomem: 10318 mutex_exit(&connp->conn_lock); 10319 if (actp != NULL) 10320 ipsec_actvec_free(actp, nact); 10321 if (pin4 != NULL) 10322 IPPOL_REFRELE(pin4, ipst->ips_netstack); 10323 if (pout4 != NULL) 10324 IPPOL_REFRELE(pout4, ipst->ips_netstack); 10325 if (pin6 != NULL) 10326 IPPOL_REFRELE(pin6, ipst->ips_netstack); 10327 if (pout6 != NULL) 10328 IPPOL_REFRELE(pout6, ipst->ips_netstack); 10329 return (ENOMEM); 10330 } 10331 10332 /* 10333 * Only for options that pass in an IP addr. Currently only V4 options 10334 * pass in an ipif. V6 options always pass an ifindex specifying the ill. 10335 * So this function assumes level is IPPROTO_IP 10336 */ 10337 int 10338 ip_opt_set_ipif(conn_t *connp, ipaddr_t addr, boolean_t checkonly, int option, 10339 mblk_t *first_mp) 10340 { 10341 ipif_t *ipif = NULL; 10342 int error; 10343 ill_t *ill; 10344 int zoneid; 10345 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 10346 10347 ip2dbg(("ip_opt_set_ipif: ipaddr %X\n", addr)); 10348 10349 if (addr != INADDR_ANY || checkonly) { 10350 ASSERT(connp != NULL); 10351 zoneid = IPCL_ZONEID(connp); 10352 if (option == IP_NEXTHOP) { 10353 ipif = ipif_lookup_onlink_addr(addr, 10354 connp->conn_zoneid, ipst); 10355 } else { 10356 ipif = ipif_lookup_addr(addr, NULL, zoneid, 10357 CONNP_TO_WQ(connp), first_mp, ip_restart_optmgmt, 10358 &error, ipst); 10359 } 10360 if (ipif == NULL) { 10361 if (error == EINPROGRESS) 10362 return (error); 10363 if ((option == IP_MULTICAST_IF) || 10364 (option == IP_NEXTHOP)) 10365 return (EHOSTUNREACH); 10366 else 10367 return (EINVAL); 10368 } else if (checkonly) { 10369 if (option == IP_MULTICAST_IF) { 10370 ill = ipif->ipif_ill; 10371 /* not supported by the virtual network iface */ 10372 if (IS_VNI(ill)) { 10373 ipif_refrele(ipif); 10374 return (EINVAL); 10375 } 10376 } 10377 ipif_refrele(ipif); 10378 return (0); 10379 } 10380 ill = ipif->ipif_ill; 10381 mutex_enter(&connp->conn_lock); 10382 mutex_enter(&ill->ill_lock); 10383 if ((ill->ill_state_flags & ILL_CONDEMNED) || 10384 (ipif->ipif_state_flags & IPIF_CONDEMNED)) { 10385 mutex_exit(&ill->ill_lock); 10386 mutex_exit(&connp->conn_lock); 10387 ipif_refrele(ipif); 10388 return (option == IP_MULTICAST_IF ? 10389 EHOSTUNREACH : EINVAL); 10390 } 10391 } else { 10392 mutex_enter(&connp->conn_lock); 10393 } 10394 10395 /* None of the options below are supported on the VNI */ 10396 if (ipif != NULL && IS_VNI(ipif->ipif_ill)) { 10397 mutex_exit(&ill->ill_lock); 10398 mutex_exit(&connp->conn_lock); 10399 ipif_refrele(ipif); 10400 return (EINVAL); 10401 } 10402 10403 switch (option) { 10404 case IP_MULTICAST_IF: 10405 connp->conn_multicast_ipif = ipif; 10406 break; 10407 case IP_NEXTHOP: 10408 connp->conn_nexthop_v4 = addr; 10409 connp->conn_nexthop_set = B_TRUE; 10410 break; 10411 } 10412 10413 if (ipif != NULL) { 10414 mutex_exit(&ill->ill_lock); 10415 mutex_exit(&connp->conn_lock); 10416 ipif_refrele(ipif); 10417 return (0); 10418 } 10419 mutex_exit(&connp->conn_lock); 10420 /* We succeded in cleared the option */ 10421 return (0); 10422 } 10423 10424 /* 10425 * For options that pass in an ifindex specifying the ill. V6 options always 10426 * pass in an ill. Some v4 options also pass in ifindex specifying the ill. 10427 */ 10428 int 10429 ip_opt_set_ill(conn_t *connp, int ifindex, boolean_t isv6, boolean_t checkonly, 10430 int level, int option, mblk_t *first_mp) 10431 { 10432 ill_t *ill = NULL; 10433 int error = 0; 10434 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 10435 10436 ip2dbg(("ip_opt_set_ill: ifindex %d\n", ifindex)); 10437 if (ifindex != 0) { 10438 ASSERT(connp != NULL); 10439 ill = ill_lookup_on_ifindex(ifindex, isv6, CONNP_TO_WQ(connp), 10440 first_mp, ip_restart_optmgmt, &error, ipst); 10441 if (ill != NULL) { 10442 if (checkonly) { 10443 /* not supported by the virtual network iface */ 10444 if (IS_VNI(ill)) { 10445 ill_refrele(ill); 10446 return (EINVAL); 10447 } 10448 ill_refrele(ill); 10449 return (0); 10450 } 10451 if (!ipif_lookup_zoneid(ill, connp->conn_zoneid, 10452 0, NULL)) { 10453 ill_refrele(ill); 10454 ill = NULL; 10455 mutex_enter(&connp->conn_lock); 10456 goto setit; 10457 } 10458 mutex_enter(&connp->conn_lock); 10459 mutex_enter(&ill->ill_lock); 10460 if (ill->ill_state_flags & ILL_CONDEMNED) { 10461 mutex_exit(&ill->ill_lock); 10462 mutex_exit(&connp->conn_lock); 10463 ill_refrele(ill); 10464 ill = NULL; 10465 mutex_enter(&connp->conn_lock); 10466 } 10467 goto setit; 10468 } else if (error == EINPROGRESS) { 10469 return (error); 10470 } else { 10471 error = 0; 10472 } 10473 } 10474 mutex_enter(&connp->conn_lock); 10475 setit: 10476 ASSERT((level == IPPROTO_IP || level == IPPROTO_IPV6)); 10477 10478 /* 10479 * The options below assume that the ILL (if any) transmits and/or 10480 * receives traffic. Neither of which is true for the virtual network 10481 * interface, so fail setting these on a VNI. 10482 */ 10483 if (IS_VNI(ill)) { 10484 ASSERT(ill != NULL); 10485 mutex_exit(&ill->ill_lock); 10486 mutex_exit(&connp->conn_lock); 10487 ill_refrele(ill); 10488 return (EINVAL); 10489 } 10490 10491 if (level == IPPROTO_IP) { 10492 switch (option) { 10493 case IP_BOUND_IF: 10494 connp->conn_incoming_ill = ill; 10495 connp->conn_outgoing_ill = ill; 10496 break; 10497 10498 case IP_MULTICAST_IF: 10499 /* 10500 * This option is an internal special. The socket 10501 * level IP_MULTICAST_IF specifies an 'ipaddr' and 10502 * is handled in ip_opt_set_ipif. IPV6_MULTICAST_IF 10503 * specifies an ifindex and we try first on V6 ill's. 10504 * If we don't find one, we they try using on v4 ill's 10505 * intenally and we come here. 10506 */ 10507 if (!checkonly && ill != NULL) { 10508 ipif_t *ipif; 10509 ipif = ill->ill_ipif; 10510 10511 if (ipif->ipif_state_flags & IPIF_CONDEMNED) { 10512 mutex_exit(&ill->ill_lock); 10513 mutex_exit(&connp->conn_lock); 10514 ill_refrele(ill); 10515 ill = NULL; 10516 mutex_enter(&connp->conn_lock); 10517 } else { 10518 connp->conn_multicast_ipif = ipif; 10519 } 10520 } 10521 break; 10522 10523 case IP_DHCPINIT_IF: 10524 if (connp->conn_dhcpinit_ill != NULL) { 10525 /* 10526 * We've locked the conn so conn_cleanup_ill() 10527 * cannot clear conn_dhcpinit_ill -- so it's 10528 * safe to access the ill. 10529 */ 10530 ill_t *oill = connp->conn_dhcpinit_ill; 10531 10532 ASSERT(oill->ill_dhcpinit != 0); 10533 atomic_dec_32(&oill->ill_dhcpinit); 10534 connp->conn_dhcpinit_ill = NULL; 10535 } 10536 10537 if (ill != NULL) { 10538 connp->conn_dhcpinit_ill = ill; 10539 atomic_inc_32(&ill->ill_dhcpinit); 10540 } 10541 break; 10542 } 10543 } else { 10544 switch (option) { 10545 case IPV6_BOUND_IF: 10546 connp->conn_incoming_ill = ill; 10547 connp->conn_outgoing_ill = ill; 10548 break; 10549 10550 case IPV6_MULTICAST_IF: 10551 /* 10552 * Set conn_multicast_ill to be the IPv6 ill. 10553 * Set conn_multicast_ipif to be an IPv4 ipif 10554 * for ifindex to make IPv4 mapped addresses 10555 * on PF_INET6 sockets honor IPV6_MULTICAST_IF. 10556 * Even if no IPv6 ill exists for the ifindex 10557 * we need to check for an IPv4 ifindex in order 10558 * for this to work with mapped addresses. In that 10559 * case only set conn_multicast_ipif. 10560 */ 10561 if (!checkonly) { 10562 if (ifindex == 0) { 10563 connp->conn_multicast_ill = NULL; 10564 connp->conn_multicast_ipif = NULL; 10565 } else if (ill != NULL) { 10566 connp->conn_multicast_ill = ill; 10567 } 10568 } 10569 break; 10570 } 10571 } 10572 10573 if (ill != NULL) { 10574 mutex_exit(&ill->ill_lock); 10575 mutex_exit(&connp->conn_lock); 10576 ill_refrele(ill); 10577 return (0); 10578 } 10579 mutex_exit(&connp->conn_lock); 10580 /* 10581 * We succeeded in clearing the option (ifindex == 0) or failed to 10582 * locate the ill and could not set the option (ifindex != 0) 10583 */ 10584 return (ifindex == 0 ? 0 : EINVAL); 10585 } 10586 10587 /* This routine sets socket options. */ 10588 /* ARGSUSED */ 10589 int 10590 ip_opt_set(queue_t *q, uint_t optset_context, int level, int name, 10591 uint_t inlen, uchar_t *invalp, uint_t *outlenp, uchar_t *outvalp, 10592 void *dummy, cred_t *cr, mblk_t *first_mp) 10593 { 10594 int *i1 = (int *)invalp; 10595 conn_t *connp = Q_TO_CONN(q); 10596 int error = 0; 10597 boolean_t checkonly; 10598 ire_t *ire; 10599 boolean_t found; 10600 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 10601 10602 switch (optset_context) { 10603 10604 case SETFN_OPTCOM_CHECKONLY: 10605 checkonly = B_TRUE; 10606 /* 10607 * Note: Implies T_CHECK semantics for T_OPTCOM_REQ 10608 * inlen != 0 implies value supplied and 10609 * we have to "pretend" to set it. 10610 * inlen == 0 implies that there is no 10611 * value part in T_CHECK request and just validation 10612 * done elsewhere should be enough, we just return here. 10613 */ 10614 if (inlen == 0) { 10615 *outlenp = 0; 10616 return (0); 10617 } 10618 break; 10619 case SETFN_OPTCOM_NEGOTIATE: 10620 case SETFN_UD_NEGOTIATE: 10621 case SETFN_CONN_NEGOTIATE: 10622 checkonly = B_FALSE; 10623 break; 10624 default: 10625 /* 10626 * We should never get here 10627 */ 10628 *outlenp = 0; 10629 return (EINVAL); 10630 } 10631 10632 ASSERT((optset_context != SETFN_OPTCOM_CHECKONLY) || 10633 (optset_context == SETFN_OPTCOM_CHECKONLY && inlen != 0)); 10634 10635 /* 10636 * For fixed length options, no sanity check 10637 * of passed in length is done. It is assumed *_optcom_req() 10638 * routines do the right thing. 10639 */ 10640 10641 switch (level) { 10642 case SOL_SOCKET: 10643 /* 10644 * conn_lock protects the bitfields, and is used to 10645 * set the fields atomically. 10646 */ 10647 switch (name) { 10648 case SO_BROADCAST: 10649 if (!checkonly) { 10650 /* TODO: use value someplace? */ 10651 mutex_enter(&connp->conn_lock); 10652 connp->conn_broadcast = *i1 ? 1 : 0; 10653 mutex_exit(&connp->conn_lock); 10654 } 10655 break; /* goto sizeof (int) option return */ 10656 case SO_USELOOPBACK: 10657 if (!checkonly) { 10658 /* TODO: use value someplace? */ 10659 mutex_enter(&connp->conn_lock); 10660 connp->conn_loopback = *i1 ? 1 : 0; 10661 mutex_exit(&connp->conn_lock); 10662 } 10663 break; /* goto sizeof (int) option return */ 10664 case SO_DONTROUTE: 10665 if (!checkonly) { 10666 mutex_enter(&connp->conn_lock); 10667 connp->conn_dontroute = *i1 ? 1 : 0; 10668 mutex_exit(&connp->conn_lock); 10669 } 10670 break; /* goto sizeof (int) option return */ 10671 case SO_REUSEADDR: 10672 if (!checkonly) { 10673 mutex_enter(&connp->conn_lock); 10674 connp->conn_reuseaddr = *i1 ? 1 : 0; 10675 mutex_exit(&connp->conn_lock); 10676 } 10677 break; /* goto sizeof (int) option return */ 10678 case SO_PROTOTYPE: 10679 if (!checkonly) { 10680 mutex_enter(&connp->conn_lock); 10681 connp->conn_proto = *i1; 10682 mutex_exit(&connp->conn_lock); 10683 } 10684 break; /* goto sizeof (int) option return */ 10685 case SO_ALLZONES: 10686 if (!checkonly) { 10687 mutex_enter(&connp->conn_lock); 10688 if (IPCL_IS_BOUND(connp)) { 10689 mutex_exit(&connp->conn_lock); 10690 return (EINVAL); 10691 } 10692 connp->conn_allzones = *i1 != 0 ? 1 : 0; 10693 mutex_exit(&connp->conn_lock); 10694 } 10695 break; /* goto sizeof (int) option return */ 10696 case SO_ANON_MLP: 10697 if (!checkonly) { 10698 mutex_enter(&connp->conn_lock); 10699 connp->conn_anon_mlp = *i1 != 0 ? 1 : 0; 10700 mutex_exit(&connp->conn_lock); 10701 } 10702 break; /* goto sizeof (int) option return */ 10703 case SO_MAC_EXEMPT: 10704 if (secpolicy_net_mac_aware(cr) != 0 || 10705 IPCL_IS_BOUND(connp)) 10706 return (EACCES); 10707 if (!checkonly) { 10708 mutex_enter(&connp->conn_lock); 10709 connp->conn_mac_exempt = *i1 != 0 ? 1 : 0; 10710 mutex_exit(&connp->conn_lock); 10711 } 10712 break; /* goto sizeof (int) option return */ 10713 default: 10714 /* 10715 * "soft" error (negative) 10716 * option not handled at this level 10717 * Note: Do not modify *outlenp 10718 */ 10719 return (-EINVAL); 10720 } 10721 break; 10722 case IPPROTO_IP: 10723 switch (name) { 10724 case IP_NEXTHOP: 10725 if (secpolicy_ip_config(cr, B_FALSE) != 0) 10726 return (EPERM); 10727 /* FALLTHRU */ 10728 case IP_MULTICAST_IF: { 10729 ipaddr_t addr = *i1; 10730 10731 error = ip_opt_set_ipif(connp, addr, checkonly, name, 10732 first_mp); 10733 if (error != 0) 10734 return (error); 10735 break; /* goto sizeof (int) option return */ 10736 } 10737 10738 case IP_MULTICAST_TTL: 10739 /* Recorded in transport above IP */ 10740 *outvalp = *invalp; 10741 *outlenp = sizeof (uchar_t); 10742 return (0); 10743 case IP_MULTICAST_LOOP: 10744 if (!checkonly) { 10745 mutex_enter(&connp->conn_lock); 10746 connp->conn_multicast_loop = *invalp ? 1 : 0; 10747 mutex_exit(&connp->conn_lock); 10748 } 10749 *outvalp = *invalp; 10750 *outlenp = sizeof (uchar_t); 10751 return (0); 10752 case IP_ADD_MEMBERSHIP: 10753 case MCAST_JOIN_GROUP: 10754 case IP_DROP_MEMBERSHIP: 10755 case MCAST_LEAVE_GROUP: { 10756 struct ip_mreq *mreqp; 10757 struct group_req *greqp; 10758 ire_t *ire; 10759 boolean_t done = B_FALSE; 10760 ipaddr_t group, ifaddr; 10761 struct sockaddr_in *sin; 10762 uint32_t *ifindexp; 10763 boolean_t mcast_opt = B_TRUE; 10764 mcast_record_t fmode; 10765 int (*optfn)(conn_t *, boolean_t, ipaddr_t, ipaddr_t, 10766 uint_t *, mcast_record_t, ipaddr_t, mblk_t *); 10767 10768 switch (name) { 10769 case IP_ADD_MEMBERSHIP: 10770 mcast_opt = B_FALSE; 10771 /* FALLTHRU */ 10772 case MCAST_JOIN_GROUP: 10773 fmode = MODE_IS_EXCLUDE; 10774 optfn = ip_opt_add_group; 10775 break; 10776 10777 case IP_DROP_MEMBERSHIP: 10778 mcast_opt = B_FALSE; 10779 /* FALLTHRU */ 10780 case MCAST_LEAVE_GROUP: 10781 fmode = MODE_IS_INCLUDE; 10782 optfn = ip_opt_delete_group; 10783 break; 10784 } 10785 10786 if (mcast_opt) { 10787 greqp = (struct group_req *)i1; 10788 sin = (struct sockaddr_in *)&greqp->gr_group; 10789 if (sin->sin_family != AF_INET) { 10790 *outlenp = 0; 10791 return (ENOPROTOOPT); 10792 } 10793 group = (ipaddr_t)sin->sin_addr.s_addr; 10794 ifaddr = INADDR_ANY; 10795 ifindexp = &greqp->gr_interface; 10796 } else { 10797 mreqp = (struct ip_mreq *)i1; 10798 group = (ipaddr_t)mreqp->imr_multiaddr.s_addr; 10799 ifaddr = (ipaddr_t)mreqp->imr_interface.s_addr; 10800 ifindexp = NULL; 10801 } 10802 10803 /* 10804 * In the multirouting case, we need to replicate 10805 * the request on all interfaces that will take part 10806 * in replication. We do so because multirouting is 10807 * reflective, thus we will probably receive multi- 10808 * casts on those interfaces. 10809 * The ip_multirt_apply_membership() succeeds if the 10810 * operation succeeds on at least one interface. 10811 */ 10812 ire = ire_ftable_lookup(group, IP_HOST_MASK, 0, 10813 IRE_HOST, NULL, NULL, ALL_ZONES, 0, NULL, 10814 MATCH_IRE_MASK | MATCH_IRE_TYPE, ipst); 10815 if (ire != NULL) { 10816 if (ire->ire_flags & RTF_MULTIRT) { 10817 error = ip_multirt_apply_membership( 10818 optfn, ire, connp, checkonly, group, 10819 fmode, INADDR_ANY, first_mp); 10820 done = B_TRUE; 10821 } 10822 ire_refrele(ire); 10823 } 10824 if (!done) { 10825 error = optfn(connp, checkonly, group, ifaddr, 10826 ifindexp, fmode, INADDR_ANY, first_mp); 10827 } 10828 if (error) { 10829 /* 10830 * EINPROGRESS is a soft error, needs retry 10831 * so don't make *outlenp zero. 10832 */ 10833 if (error != EINPROGRESS) 10834 *outlenp = 0; 10835 return (error); 10836 } 10837 /* OK return - copy input buffer into output buffer */ 10838 if (invalp != outvalp) { 10839 /* don't trust bcopy for identical src/dst */ 10840 bcopy(invalp, outvalp, inlen); 10841 } 10842 *outlenp = inlen; 10843 return (0); 10844 } 10845 case IP_BLOCK_SOURCE: 10846 case IP_UNBLOCK_SOURCE: 10847 case IP_ADD_SOURCE_MEMBERSHIP: 10848 case IP_DROP_SOURCE_MEMBERSHIP: 10849 case MCAST_BLOCK_SOURCE: 10850 case MCAST_UNBLOCK_SOURCE: 10851 case MCAST_JOIN_SOURCE_GROUP: 10852 case MCAST_LEAVE_SOURCE_GROUP: { 10853 struct ip_mreq_source *imreqp; 10854 struct group_source_req *gsreqp; 10855 in_addr_t grp, src, ifaddr = INADDR_ANY; 10856 uint32_t ifindex = 0; 10857 mcast_record_t fmode; 10858 struct sockaddr_in *sin; 10859 ire_t *ire; 10860 boolean_t mcast_opt = B_TRUE, done = B_FALSE; 10861 int (*optfn)(conn_t *, boolean_t, ipaddr_t, ipaddr_t, 10862 uint_t *, mcast_record_t, ipaddr_t, mblk_t *); 10863 10864 switch (name) { 10865 case IP_BLOCK_SOURCE: 10866 mcast_opt = B_FALSE; 10867 /* FALLTHRU */ 10868 case MCAST_BLOCK_SOURCE: 10869 fmode = MODE_IS_EXCLUDE; 10870 optfn = ip_opt_add_group; 10871 break; 10872 10873 case IP_UNBLOCK_SOURCE: 10874 mcast_opt = B_FALSE; 10875 /* FALLTHRU */ 10876 case MCAST_UNBLOCK_SOURCE: 10877 fmode = MODE_IS_EXCLUDE; 10878 optfn = ip_opt_delete_group; 10879 break; 10880 10881 case IP_ADD_SOURCE_MEMBERSHIP: 10882 mcast_opt = B_FALSE; 10883 /* FALLTHRU */ 10884 case MCAST_JOIN_SOURCE_GROUP: 10885 fmode = MODE_IS_INCLUDE; 10886 optfn = ip_opt_add_group; 10887 break; 10888 10889 case IP_DROP_SOURCE_MEMBERSHIP: 10890 mcast_opt = B_FALSE; 10891 /* FALLTHRU */ 10892 case MCAST_LEAVE_SOURCE_GROUP: 10893 fmode = MODE_IS_INCLUDE; 10894 optfn = ip_opt_delete_group; 10895 break; 10896 } 10897 10898 if (mcast_opt) { 10899 gsreqp = (struct group_source_req *)i1; 10900 if (gsreqp->gsr_group.ss_family != AF_INET) { 10901 *outlenp = 0; 10902 return (ENOPROTOOPT); 10903 } 10904 sin = (struct sockaddr_in *)&gsreqp->gsr_group; 10905 grp = (ipaddr_t)sin->sin_addr.s_addr; 10906 sin = (struct sockaddr_in *)&gsreqp->gsr_source; 10907 src = (ipaddr_t)sin->sin_addr.s_addr; 10908 ifindex = gsreqp->gsr_interface; 10909 } else { 10910 imreqp = (struct ip_mreq_source *)i1; 10911 grp = (ipaddr_t)imreqp->imr_multiaddr.s_addr; 10912 src = (ipaddr_t)imreqp->imr_sourceaddr.s_addr; 10913 ifaddr = (ipaddr_t)imreqp->imr_interface.s_addr; 10914 } 10915 10916 /* 10917 * In the multirouting case, we need to replicate 10918 * the request as noted in the mcast cases above. 10919 */ 10920 ire = ire_ftable_lookup(grp, IP_HOST_MASK, 0, 10921 IRE_HOST, NULL, NULL, ALL_ZONES, 0, NULL, 10922 MATCH_IRE_MASK | MATCH_IRE_TYPE, ipst); 10923 if (ire != NULL) { 10924 if (ire->ire_flags & RTF_MULTIRT) { 10925 error = ip_multirt_apply_membership( 10926 optfn, ire, connp, checkonly, grp, 10927 fmode, src, first_mp); 10928 done = B_TRUE; 10929 } 10930 ire_refrele(ire); 10931 } 10932 if (!done) { 10933 error = optfn(connp, checkonly, grp, ifaddr, 10934 &ifindex, fmode, src, first_mp); 10935 } 10936 if (error != 0) { 10937 /* 10938 * EINPROGRESS is a soft error, needs retry 10939 * so don't make *outlenp zero. 10940 */ 10941 if (error != EINPROGRESS) 10942 *outlenp = 0; 10943 return (error); 10944 } 10945 /* OK return - copy input buffer into output buffer */ 10946 if (invalp != outvalp) { 10947 bcopy(invalp, outvalp, inlen); 10948 } 10949 *outlenp = inlen; 10950 return (0); 10951 } 10952 case IP_SEC_OPT: 10953 error = ipsec_set_req(cr, connp, (ipsec_req_t *)invalp); 10954 if (error != 0) { 10955 *outlenp = 0; 10956 return (error); 10957 } 10958 break; 10959 case IP_HDRINCL: 10960 case IP_OPTIONS: 10961 case T_IP_OPTIONS: 10962 case IP_TOS: 10963 case T_IP_TOS: 10964 case IP_TTL: 10965 case IP_RECVDSTADDR: 10966 case IP_RECVOPTS: 10967 /* OK return - copy input buffer into output buffer */ 10968 if (invalp != outvalp) { 10969 /* don't trust bcopy for identical src/dst */ 10970 bcopy(invalp, outvalp, inlen); 10971 } 10972 *outlenp = inlen; 10973 return (0); 10974 case IP_RECVIF: 10975 /* Retrieve the inbound interface index */ 10976 if (!checkonly) { 10977 mutex_enter(&connp->conn_lock); 10978 connp->conn_recvif = *i1 ? 1 : 0; 10979 mutex_exit(&connp->conn_lock); 10980 } 10981 break; /* goto sizeof (int) option return */ 10982 case IP_RECVPKTINFO: 10983 if (!checkonly) { 10984 mutex_enter(&connp->conn_lock); 10985 connp->conn_ip_recvpktinfo = *i1 ? 1 : 0; 10986 mutex_exit(&connp->conn_lock); 10987 } 10988 break; /* goto sizeof (int) option return */ 10989 case IP_RECVSLLA: 10990 /* Retrieve the source link layer address */ 10991 if (!checkonly) { 10992 mutex_enter(&connp->conn_lock); 10993 connp->conn_recvslla = *i1 ? 1 : 0; 10994 mutex_exit(&connp->conn_lock); 10995 } 10996 break; /* goto sizeof (int) option return */ 10997 case MRT_INIT: 10998 case MRT_DONE: 10999 case MRT_ADD_VIF: 11000 case MRT_DEL_VIF: 11001 case MRT_ADD_MFC: 11002 case MRT_DEL_MFC: 11003 case MRT_ASSERT: 11004 if ((error = secpolicy_ip_config(cr, B_FALSE)) != 0) { 11005 *outlenp = 0; 11006 return (error); 11007 } 11008 error = ip_mrouter_set((int)name, q, checkonly, 11009 (uchar_t *)invalp, inlen, first_mp); 11010 if (error) { 11011 *outlenp = 0; 11012 return (error); 11013 } 11014 /* OK return - copy input buffer into output buffer */ 11015 if (invalp != outvalp) { 11016 /* don't trust bcopy for identical src/dst */ 11017 bcopy(invalp, outvalp, inlen); 11018 } 11019 *outlenp = inlen; 11020 return (0); 11021 case IP_BOUND_IF: 11022 case IP_DHCPINIT_IF: 11023 error = ip_opt_set_ill(connp, *i1, B_FALSE, checkonly, 11024 level, name, first_mp); 11025 if (error != 0) 11026 return (error); 11027 break; /* goto sizeof (int) option return */ 11028 11029 case IP_UNSPEC_SRC: 11030 /* Allow sending with a zero source address */ 11031 if (!checkonly) { 11032 mutex_enter(&connp->conn_lock); 11033 connp->conn_unspec_src = *i1 ? 1 : 0; 11034 mutex_exit(&connp->conn_lock); 11035 } 11036 break; /* goto sizeof (int) option return */ 11037 default: 11038 /* 11039 * "soft" error (negative) 11040 * option not handled at this level 11041 * Note: Do not modify *outlenp 11042 */ 11043 return (-EINVAL); 11044 } 11045 break; 11046 case IPPROTO_IPV6: 11047 switch (name) { 11048 case IPV6_BOUND_IF: 11049 error = ip_opt_set_ill(connp, *i1, B_TRUE, checkonly, 11050 level, name, first_mp); 11051 if (error != 0) 11052 return (error); 11053 break; /* goto sizeof (int) option return */ 11054 11055 case IPV6_MULTICAST_IF: 11056 /* 11057 * The only possible errors are EINPROGRESS and 11058 * EINVAL. EINPROGRESS will be restarted and is not 11059 * a hard error. We call this option on both V4 and V6 11060 * If both return EINVAL, then this call returns 11061 * EINVAL. If at least one of them succeeds we 11062 * return success. 11063 */ 11064 found = B_FALSE; 11065 error = ip_opt_set_ill(connp, *i1, B_TRUE, checkonly, 11066 level, name, first_mp); 11067 if (error == EINPROGRESS) 11068 return (error); 11069 if (error == 0) 11070 found = B_TRUE; 11071 error = ip_opt_set_ill(connp, *i1, B_FALSE, checkonly, 11072 IPPROTO_IP, IP_MULTICAST_IF, first_mp); 11073 if (error == 0) 11074 found = B_TRUE; 11075 if (!found) 11076 return (error); 11077 break; /* goto sizeof (int) option return */ 11078 11079 case IPV6_MULTICAST_HOPS: 11080 /* Recorded in transport above IP */ 11081 break; /* goto sizeof (int) option return */ 11082 case IPV6_MULTICAST_LOOP: 11083 if (!checkonly) { 11084 mutex_enter(&connp->conn_lock); 11085 connp->conn_multicast_loop = *i1; 11086 mutex_exit(&connp->conn_lock); 11087 } 11088 break; /* goto sizeof (int) option return */ 11089 case IPV6_JOIN_GROUP: 11090 case MCAST_JOIN_GROUP: 11091 case IPV6_LEAVE_GROUP: 11092 case MCAST_LEAVE_GROUP: { 11093 struct ipv6_mreq *ip_mreqp; 11094 struct group_req *greqp; 11095 ire_t *ire; 11096 boolean_t done = B_FALSE; 11097 in6_addr_t groupv6; 11098 uint32_t ifindex; 11099 boolean_t mcast_opt = B_TRUE; 11100 mcast_record_t fmode; 11101 int (*optfn)(conn_t *, boolean_t, const in6_addr_t *, 11102 int, mcast_record_t, const in6_addr_t *, mblk_t *); 11103 11104 switch (name) { 11105 case IPV6_JOIN_GROUP: 11106 mcast_opt = B_FALSE; 11107 /* FALLTHRU */ 11108 case MCAST_JOIN_GROUP: 11109 fmode = MODE_IS_EXCLUDE; 11110 optfn = ip_opt_add_group_v6; 11111 break; 11112 11113 case IPV6_LEAVE_GROUP: 11114 mcast_opt = B_FALSE; 11115 /* FALLTHRU */ 11116 case MCAST_LEAVE_GROUP: 11117 fmode = MODE_IS_INCLUDE; 11118 optfn = ip_opt_delete_group_v6; 11119 break; 11120 } 11121 11122 if (mcast_opt) { 11123 struct sockaddr_in *sin; 11124 struct sockaddr_in6 *sin6; 11125 greqp = (struct group_req *)i1; 11126 if (greqp->gr_group.ss_family == AF_INET) { 11127 sin = (struct sockaddr_in *) 11128 &(greqp->gr_group); 11129 IN6_INADDR_TO_V4MAPPED(&sin->sin_addr, 11130 &groupv6); 11131 } else { 11132 sin6 = (struct sockaddr_in6 *) 11133 &(greqp->gr_group); 11134 groupv6 = sin6->sin6_addr; 11135 } 11136 ifindex = greqp->gr_interface; 11137 } else { 11138 ip_mreqp = (struct ipv6_mreq *)i1; 11139 groupv6 = ip_mreqp->ipv6mr_multiaddr; 11140 ifindex = ip_mreqp->ipv6mr_interface; 11141 } 11142 /* 11143 * In the multirouting case, we need to replicate 11144 * the request on all interfaces that will take part 11145 * in replication. We do so because multirouting is 11146 * reflective, thus we will probably receive multi- 11147 * casts on those interfaces. 11148 * The ip_multirt_apply_membership_v6() succeeds if 11149 * the operation succeeds on at least one interface. 11150 */ 11151 ire = ire_ftable_lookup_v6(&groupv6, &ipv6_all_ones, 0, 11152 IRE_HOST, NULL, NULL, ALL_ZONES, 0, NULL, 11153 MATCH_IRE_MASK | MATCH_IRE_TYPE, ipst); 11154 if (ire != NULL) { 11155 if (ire->ire_flags & RTF_MULTIRT) { 11156 error = ip_multirt_apply_membership_v6( 11157 optfn, ire, connp, checkonly, 11158 &groupv6, fmode, &ipv6_all_zeros, 11159 first_mp); 11160 done = B_TRUE; 11161 } 11162 ire_refrele(ire); 11163 } 11164 if (!done) { 11165 error = optfn(connp, checkonly, &groupv6, 11166 ifindex, fmode, &ipv6_all_zeros, first_mp); 11167 } 11168 if (error) { 11169 /* 11170 * EINPROGRESS is a soft error, needs retry 11171 * so don't make *outlenp zero. 11172 */ 11173 if (error != EINPROGRESS) 11174 *outlenp = 0; 11175 return (error); 11176 } 11177 /* OK return - copy input buffer into output buffer */ 11178 if (invalp != outvalp) { 11179 /* don't trust bcopy for identical src/dst */ 11180 bcopy(invalp, outvalp, inlen); 11181 } 11182 *outlenp = inlen; 11183 return (0); 11184 } 11185 case MCAST_BLOCK_SOURCE: 11186 case MCAST_UNBLOCK_SOURCE: 11187 case MCAST_JOIN_SOURCE_GROUP: 11188 case MCAST_LEAVE_SOURCE_GROUP: { 11189 struct group_source_req *gsreqp; 11190 in6_addr_t v6grp, v6src; 11191 uint32_t ifindex; 11192 mcast_record_t fmode; 11193 ire_t *ire; 11194 boolean_t done = B_FALSE; 11195 int (*optfn)(conn_t *, boolean_t, const in6_addr_t *, 11196 int, mcast_record_t, const in6_addr_t *, mblk_t *); 11197 11198 switch (name) { 11199 case MCAST_BLOCK_SOURCE: 11200 fmode = MODE_IS_EXCLUDE; 11201 optfn = ip_opt_add_group_v6; 11202 break; 11203 case MCAST_UNBLOCK_SOURCE: 11204 fmode = MODE_IS_EXCLUDE; 11205 optfn = ip_opt_delete_group_v6; 11206 break; 11207 case MCAST_JOIN_SOURCE_GROUP: 11208 fmode = MODE_IS_INCLUDE; 11209 optfn = ip_opt_add_group_v6; 11210 break; 11211 case MCAST_LEAVE_SOURCE_GROUP: 11212 fmode = MODE_IS_INCLUDE; 11213 optfn = ip_opt_delete_group_v6; 11214 break; 11215 } 11216 11217 gsreqp = (struct group_source_req *)i1; 11218 ifindex = gsreqp->gsr_interface; 11219 if (gsreqp->gsr_group.ss_family == AF_INET) { 11220 struct sockaddr_in *s; 11221 s = (struct sockaddr_in *)&gsreqp->gsr_group; 11222 IN6_INADDR_TO_V4MAPPED(&s->sin_addr, &v6grp); 11223 s = (struct sockaddr_in *)&gsreqp->gsr_source; 11224 IN6_INADDR_TO_V4MAPPED(&s->sin_addr, &v6src); 11225 } else { 11226 struct sockaddr_in6 *s6; 11227 s6 = (struct sockaddr_in6 *)&gsreqp->gsr_group; 11228 v6grp = s6->sin6_addr; 11229 s6 = (struct sockaddr_in6 *)&gsreqp->gsr_source; 11230 v6src = s6->sin6_addr; 11231 } 11232 11233 /* 11234 * In the multirouting case, we need to replicate 11235 * the request as noted in the mcast cases above. 11236 */ 11237 ire = ire_ftable_lookup_v6(&v6grp, &ipv6_all_ones, 0, 11238 IRE_HOST, NULL, NULL, ALL_ZONES, 0, NULL, 11239 MATCH_IRE_MASK | MATCH_IRE_TYPE, ipst); 11240 if (ire != NULL) { 11241 if (ire->ire_flags & RTF_MULTIRT) { 11242 error = ip_multirt_apply_membership_v6( 11243 optfn, ire, connp, checkonly, 11244 &v6grp, fmode, &v6src, first_mp); 11245 done = B_TRUE; 11246 } 11247 ire_refrele(ire); 11248 } 11249 if (!done) { 11250 error = optfn(connp, checkonly, &v6grp, 11251 ifindex, fmode, &v6src, first_mp); 11252 } 11253 if (error != 0) { 11254 /* 11255 * EINPROGRESS is a soft error, needs retry 11256 * so don't make *outlenp zero. 11257 */ 11258 if (error != EINPROGRESS) 11259 *outlenp = 0; 11260 return (error); 11261 } 11262 /* OK return - copy input buffer into output buffer */ 11263 if (invalp != outvalp) { 11264 bcopy(invalp, outvalp, inlen); 11265 } 11266 *outlenp = inlen; 11267 return (0); 11268 } 11269 case IPV6_UNICAST_HOPS: 11270 /* Recorded in transport above IP */ 11271 break; /* goto sizeof (int) option return */ 11272 case IPV6_UNSPEC_SRC: 11273 /* Allow sending with a zero source address */ 11274 if (!checkonly) { 11275 mutex_enter(&connp->conn_lock); 11276 connp->conn_unspec_src = *i1 ? 1 : 0; 11277 mutex_exit(&connp->conn_lock); 11278 } 11279 break; /* goto sizeof (int) option return */ 11280 case IPV6_RECVPKTINFO: 11281 if (!checkonly) { 11282 mutex_enter(&connp->conn_lock); 11283 connp->conn_ip_recvpktinfo = *i1 ? 1 : 0; 11284 mutex_exit(&connp->conn_lock); 11285 } 11286 break; /* goto sizeof (int) option return */ 11287 case IPV6_RECVTCLASS: 11288 if (!checkonly) { 11289 if (*i1 < 0 || *i1 > 1) { 11290 return (EINVAL); 11291 } 11292 mutex_enter(&connp->conn_lock); 11293 connp->conn_ipv6_recvtclass = *i1; 11294 mutex_exit(&connp->conn_lock); 11295 } 11296 break; 11297 case IPV6_RECVPATHMTU: 11298 if (!checkonly) { 11299 if (*i1 < 0 || *i1 > 1) { 11300 return (EINVAL); 11301 } 11302 mutex_enter(&connp->conn_lock); 11303 connp->conn_ipv6_recvpathmtu = *i1; 11304 mutex_exit(&connp->conn_lock); 11305 } 11306 break; 11307 case IPV6_RECVHOPLIMIT: 11308 if (!checkonly) { 11309 mutex_enter(&connp->conn_lock); 11310 connp->conn_ipv6_recvhoplimit = *i1 ? 1 : 0; 11311 mutex_exit(&connp->conn_lock); 11312 } 11313 break; /* goto sizeof (int) option return */ 11314 case IPV6_RECVHOPOPTS: 11315 if (!checkonly) { 11316 mutex_enter(&connp->conn_lock); 11317 connp->conn_ipv6_recvhopopts = *i1 ? 1 : 0; 11318 mutex_exit(&connp->conn_lock); 11319 } 11320 break; /* goto sizeof (int) option return */ 11321 case IPV6_RECVDSTOPTS: 11322 if (!checkonly) { 11323 mutex_enter(&connp->conn_lock); 11324 connp->conn_ipv6_recvdstopts = *i1 ? 1 : 0; 11325 mutex_exit(&connp->conn_lock); 11326 } 11327 break; /* goto sizeof (int) option return */ 11328 case IPV6_RECVRTHDR: 11329 if (!checkonly) { 11330 mutex_enter(&connp->conn_lock); 11331 connp->conn_ipv6_recvrthdr = *i1 ? 1 : 0; 11332 mutex_exit(&connp->conn_lock); 11333 } 11334 break; /* goto sizeof (int) option return */ 11335 case IPV6_RECVRTHDRDSTOPTS: 11336 if (!checkonly) { 11337 mutex_enter(&connp->conn_lock); 11338 connp->conn_ipv6_recvrtdstopts = *i1 ? 1 : 0; 11339 mutex_exit(&connp->conn_lock); 11340 } 11341 break; /* goto sizeof (int) option return */ 11342 case IPV6_PKTINFO: 11343 if (inlen == 0) 11344 return (-EINVAL); /* clearing option */ 11345 error = ip6_set_pktinfo(cr, connp, 11346 (struct in6_pktinfo *)invalp); 11347 if (error != 0) 11348 *outlenp = 0; 11349 else 11350 *outlenp = inlen; 11351 return (error); 11352 case IPV6_NEXTHOP: { 11353 struct sockaddr_in6 *sin6; 11354 11355 /* Verify that the nexthop is reachable */ 11356 if (inlen == 0) 11357 return (-EINVAL); /* clearing option */ 11358 11359 sin6 = (struct sockaddr_in6 *)invalp; 11360 ire = ire_route_lookup_v6(&sin6->sin6_addr, 11361 0, 0, 0, NULL, NULL, connp->conn_zoneid, 11362 NULL, MATCH_IRE_DEFAULT, ipst); 11363 11364 if (ire == NULL) { 11365 *outlenp = 0; 11366 return (EHOSTUNREACH); 11367 } 11368 ire_refrele(ire); 11369 return (-EINVAL); 11370 } 11371 case IPV6_SEC_OPT: 11372 error = ipsec_set_req(cr, connp, (ipsec_req_t *)invalp); 11373 if (error != 0) { 11374 *outlenp = 0; 11375 return (error); 11376 } 11377 break; 11378 case IPV6_SRC_PREFERENCES: { 11379 /* 11380 * This is implemented strictly in the ip module 11381 * (here and in tcp_opt_*() to accomodate tcp 11382 * sockets). Modules above ip pass this option 11383 * down here since ip is the only one that needs to 11384 * be aware of source address preferences. 11385 * 11386 * This socket option only affects connected 11387 * sockets that haven't already bound to a specific 11388 * IPv6 address. In other words, sockets that 11389 * don't call bind() with an address other than the 11390 * unspecified address and that call connect(). 11391 * ip_bind_connected_v6() passes these preferences 11392 * to the ipif_select_source_v6() function. 11393 */ 11394 if (inlen != sizeof (uint32_t)) 11395 return (EINVAL); 11396 error = ip6_set_src_preferences(connp, 11397 *(uint32_t *)invalp); 11398 if (error != 0) { 11399 *outlenp = 0; 11400 return (error); 11401 } else { 11402 *outlenp = sizeof (uint32_t); 11403 } 11404 break; 11405 } 11406 case IPV6_V6ONLY: 11407 if (*i1 < 0 || *i1 > 1) { 11408 return (EINVAL); 11409 } 11410 mutex_enter(&connp->conn_lock); 11411 connp->conn_ipv6_v6only = *i1; 11412 mutex_exit(&connp->conn_lock); 11413 break; 11414 default: 11415 return (-EINVAL); 11416 } 11417 break; 11418 default: 11419 /* 11420 * "soft" error (negative) 11421 * option not handled at this level 11422 * Note: Do not modify *outlenp 11423 */ 11424 return (-EINVAL); 11425 } 11426 /* 11427 * Common case of return from an option that is sizeof (int) 11428 */ 11429 *(int *)outvalp = *i1; 11430 *outlenp = sizeof (int); 11431 return (0); 11432 } 11433 11434 /* 11435 * This routine gets default values of certain options whose default 11436 * values are maintained by protocol specific code 11437 */ 11438 /* ARGSUSED */ 11439 int 11440 ip_opt_default(queue_t *q, int level, int name, uchar_t *ptr) 11441 { 11442 int *i1 = (int *)ptr; 11443 ip_stack_t *ipst = CONNQ_TO_IPST(q); 11444 11445 switch (level) { 11446 case IPPROTO_IP: 11447 switch (name) { 11448 case IP_MULTICAST_TTL: 11449 *ptr = (uchar_t)IP_DEFAULT_MULTICAST_TTL; 11450 return (sizeof (uchar_t)); 11451 case IP_MULTICAST_LOOP: 11452 *ptr = (uchar_t)IP_DEFAULT_MULTICAST_LOOP; 11453 return (sizeof (uchar_t)); 11454 default: 11455 return (-1); 11456 } 11457 case IPPROTO_IPV6: 11458 switch (name) { 11459 case IPV6_UNICAST_HOPS: 11460 *i1 = ipst->ips_ipv6_def_hops; 11461 return (sizeof (int)); 11462 case IPV6_MULTICAST_HOPS: 11463 *i1 = IP_DEFAULT_MULTICAST_TTL; 11464 return (sizeof (int)); 11465 case IPV6_MULTICAST_LOOP: 11466 *i1 = IP_DEFAULT_MULTICAST_LOOP; 11467 return (sizeof (int)); 11468 case IPV6_V6ONLY: 11469 *i1 = 1; 11470 return (sizeof (int)); 11471 default: 11472 return (-1); 11473 } 11474 default: 11475 return (-1); 11476 } 11477 /* NOTREACHED */ 11478 } 11479 11480 /* 11481 * Given a destination address and a pointer to where to put the information 11482 * this routine fills in the mtuinfo. 11483 */ 11484 int 11485 ip_fill_mtuinfo(struct in6_addr *in6, in_port_t port, 11486 struct ip6_mtuinfo *mtuinfo, netstack_t *ns) 11487 { 11488 ire_t *ire; 11489 ip_stack_t *ipst = ns->netstack_ip; 11490 11491 if (IN6_IS_ADDR_UNSPECIFIED(in6)) 11492 return (-1); 11493 11494 bzero(mtuinfo, sizeof (*mtuinfo)); 11495 mtuinfo->ip6m_addr.sin6_family = AF_INET6; 11496 mtuinfo->ip6m_addr.sin6_port = port; 11497 mtuinfo->ip6m_addr.sin6_addr = *in6; 11498 11499 ire = ire_cache_lookup_v6(in6, ALL_ZONES, NULL, ipst); 11500 if (ire != NULL) { 11501 mtuinfo->ip6m_mtu = ire->ire_max_frag; 11502 ire_refrele(ire); 11503 } else { 11504 mtuinfo->ip6m_mtu = IPV6_MIN_MTU; 11505 } 11506 return (sizeof (struct ip6_mtuinfo)); 11507 } 11508 11509 /* 11510 * This routine gets socket options. For MRT_VERSION and MRT_ASSERT, error 11511 * checking of cred and that ip_g_mrouter is set should be done and 11512 * isn't. This doesn't matter as the error checking is done properly for the 11513 * other MRT options coming in through ip_opt_set. 11514 */ 11515 int 11516 ip_opt_get(queue_t *q, int level, int name, uchar_t *ptr) 11517 { 11518 conn_t *connp = Q_TO_CONN(q); 11519 ipsec_req_t *req = (ipsec_req_t *)ptr; 11520 11521 switch (level) { 11522 case IPPROTO_IP: 11523 switch (name) { 11524 case MRT_VERSION: 11525 case MRT_ASSERT: 11526 (void) ip_mrouter_get(name, q, ptr); 11527 return (sizeof (int)); 11528 case IP_SEC_OPT: 11529 return (ipsec_req_from_conn(connp, req, IPSEC_AF_V4)); 11530 case IP_NEXTHOP: 11531 if (connp->conn_nexthop_set) { 11532 *(ipaddr_t *)ptr = connp->conn_nexthop_v4; 11533 return (sizeof (ipaddr_t)); 11534 } else 11535 return (0); 11536 case IP_RECVPKTINFO: 11537 *(int *)ptr = connp->conn_ip_recvpktinfo ? 1: 0; 11538 return (sizeof (int)); 11539 default: 11540 break; 11541 } 11542 break; 11543 case IPPROTO_IPV6: 11544 switch (name) { 11545 case IPV6_SEC_OPT: 11546 return (ipsec_req_from_conn(connp, req, IPSEC_AF_V6)); 11547 case IPV6_SRC_PREFERENCES: { 11548 return (ip6_get_src_preferences(connp, 11549 (uint32_t *)ptr)); 11550 } 11551 case IPV6_V6ONLY: 11552 *(int *)ptr = connp->conn_ipv6_v6only ? 1 : 0; 11553 return (sizeof (int)); 11554 case IPV6_PATHMTU: 11555 return (ip_fill_mtuinfo(&connp->conn_remv6, 0, 11556 (struct ip6_mtuinfo *)ptr, connp->conn_netstack)); 11557 default: 11558 break; 11559 } 11560 break; 11561 default: 11562 break; 11563 } 11564 return (-1); 11565 } 11566 /* Named Dispatch routine to get a current value out of our parameter table. */ 11567 /* ARGSUSED */ 11568 static int 11569 ip_param_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *ioc_cr) 11570 { 11571 ipparam_t *ippa = (ipparam_t *)cp; 11572 11573 (void) mi_mpprintf(mp, "%d", ippa->ip_param_value); 11574 return (0); 11575 } 11576 11577 /* ARGSUSED */ 11578 static int 11579 ip_param_generic_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *ioc_cr) 11580 { 11581 11582 (void) mi_mpprintf(mp, "%d", *(int *)cp); 11583 return (0); 11584 } 11585 11586 /* 11587 * Set ip{,6}_forwarding values. This means walking through all of the 11588 * ill's and toggling their forwarding values. 11589 */ 11590 /* ARGSUSED */ 11591 static int 11592 ip_forward_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, cred_t *ioc_cr) 11593 { 11594 long new_value; 11595 int *forwarding_value = (int *)cp; 11596 ill_t *ill; 11597 boolean_t isv6; 11598 ill_walk_context_t ctx; 11599 ip_stack_t *ipst = CONNQ_TO_IPST(q); 11600 11601 isv6 = (forwarding_value == &ipst->ips_ipv6_forward); 11602 11603 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || 11604 new_value < 0 || new_value > 1) { 11605 return (EINVAL); 11606 } 11607 11608 *forwarding_value = new_value; 11609 11610 /* 11611 * Regardless of the current value of ip_forwarding, set all per-ill 11612 * values of ip_forwarding to the value being set. 11613 * 11614 * Bring all the ill's up to date with the new global value. 11615 */ 11616 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 11617 11618 if (isv6) 11619 ill = ILL_START_WALK_V6(&ctx, ipst); 11620 else 11621 ill = ILL_START_WALK_V4(&ctx, ipst); 11622 11623 for (; ill != NULL; ill = ill_next(&ctx, ill)) 11624 (void) ill_forward_set(ill, new_value != 0); 11625 11626 rw_exit(&ipst->ips_ill_g_lock); 11627 return (0); 11628 } 11629 11630 /* 11631 * Walk through the param array specified registering each element with the 11632 * Named Dispatch handler. This is called only during init. So it is ok 11633 * not to acquire any locks 11634 */ 11635 static boolean_t 11636 ip_param_register(IDP *ndp, ipparam_t *ippa, size_t ippa_cnt, 11637 ipndp_t *ipnd, size_t ipnd_cnt) 11638 { 11639 for (; ippa_cnt-- > 0; ippa++) { 11640 if (ippa->ip_param_name && ippa->ip_param_name[0]) { 11641 if (!nd_load(ndp, ippa->ip_param_name, 11642 ip_param_get, ip_param_set, (caddr_t)ippa)) { 11643 nd_free(ndp); 11644 return (B_FALSE); 11645 } 11646 } 11647 } 11648 11649 for (; ipnd_cnt-- > 0; ipnd++) { 11650 if (ipnd->ip_ndp_name && ipnd->ip_ndp_name[0]) { 11651 if (!nd_load(ndp, ipnd->ip_ndp_name, 11652 ipnd->ip_ndp_getf, ipnd->ip_ndp_setf, 11653 ipnd->ip_ndp_data)) { 11654 nd_free(ndp); 11655 return (B_FALSE); 11656 } 11657 } 11658 } 11659 11660 return (B_TRUE); 11661 } 11662 11663 /* Named Dispatch routine to negotiate a new value for one of our parameters. */ 11664 /* ARGSUSED */ 11665 static int 11666 ip_param_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, cred_t *ioc_cr) 11667 { 11668 long new_value; 11669 ipparam_t *ippa = (ipparam_t *)cp; 11670 11671 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || 11672 new_value < ippa->ip_param_min || new_value > ippa->ip_param_max) { 11673 return (EINVAL); 11674 } 11675 ippa->ip_param_value = new_value; 11676 return (0); 11677 } 11678 11679 /* 11680 * Handles both IPv4 and IPv6 reassembly - doing the out-of-order cases, 11681 * When an ipf is passed here for the first time, if 11682 * we already have in-order fragments on the queue, we convert from the fast- 11683 * path reassembly scheme to the hard-case scheme. From then on, additional 11684 * fragments are reassembled here. We keep track of the start and end offsets 11685 * of each piece, and the number of holes in the chain. When the hole count 11686 * goes to zero, we are done! 11687 * 11688 * The ipf_count will be updated to account for any mblk(s) added (pointed to 11689 * by mp) or subtracted (freeb()ed dups), upon return the caller must update 11690 * ipfb_count and ill_frag_count by the difference of ipf_count before and 11691 * after the call to ip_reassemble(). 11692 */ 11693 int 11694 ip_reassemble(mblk_t *mp, ipf_t *ipf, uint_t start, boolean_t more, ill_t *ill, 11695 size_t msg_len) 11696 { 11697 uint_t end; 11698 mblk_t *next_mp; 11699 mblk_t *mp1; 11700 uint_t offset; 11701 boolean_t incr_dups = B_TRUE; 11702 boolean_t offset_zero_seen = B_FALSE; 11703 boolean_t pkt_boundary_checked = B_FALSE; 11704 11705 /* If start == 0 then ipf_nf_hdr_len has to be set. */ 11706 ASSERT(start != 0 || ipf->ipf_nf_hdr_len != 0); 11707 11708 /* Add in byte count */ 11709 ipf->ipf_count += msg_len; 11710 if (ipf->ipf_end) { 11711 /* 11712 * We were part way through in-order reassembly, but now there 11713 * is a hole. We walk through messages already queued, and 11714 * mark them for hard case reassembly. We know that up till 11715 * now they were in order starting from offset zero. 11716 */ 11717 offset = 0; 11718 for (mp1 = ipf->ipf_mp->b_cont; mp1; mp1 = mp1->b_cont) { 11719 IP_REASS_SET_START(mp1, offset); 11720 if (offset == 0) { 11721 ASSERT(ipf->ipf_nf_hdr_len != 0); 11722 offset = -ipf->ipf_nf_hdr_len; 11723 } 11724 offset += mp1->b_wptr - mp1->b_rptr; 11725 IP_REASS_SET_END(mp1, offset); 11726 } 11727 /* One hole at the end. */ 11728 ipf->ipf_hole_cnt = 1; 11729 /* Brand it as a hard case, forever. */ 11730 ipf->ipf_end = 0; 11731 } 11732 /* Walk through all the new pieces. */ 11733 do { 11734 end = start + (mp->b_wptr - mp->b_rptr); 11735 /* 11736 * If start is 0, decrease 'end' only for the first mblk of 11737 * the fragment. Otherwise 'end' can get wrong value in the 11738 * second pass of the loop if first mblk is exactly the 11739 * size of ipf_nf_hdr_len. 11740 */ 11741 if (start == 0 && !offset_zero_seen) { 11742 /* First segment */ 11743 ASSERT(ipf->ipf_nf_hdr_len != 0); 11744 end -= ipf->ipf_nf_hdr_len; 11745 offset_zero_seen = B_TRUE; 11746 } 11747 next_mp = mp->b_cont; 11748 /* 11749 * We are checking to see if there is any interesing data 11750 * to process. If there isn't and the mblk isn't the 11751 * one which carries the unfragmentable header then we 11752 * drop it. It's possible to have just the unfragmentable 11753 * header come through without any data. That needs to be 11754 * saved. 11755 * 11756 * If the assert at the top of this function holds then the 11757 * term "ipf->ipf_nf_hdr_len != 0" isn't needed. This code 11758 * is infrequently traveled enough that the test is left in 11759 * to protect against future code changes which break that 11760 * invariant. 11761 */ 11762 if (start == end && start != 0 && ipf->ipf_nf_hdr_len != 0) { 11763 /* Empty. Blast it. */ 11764 IP_REASS_SET_START(mp, 0); 11765 IP_REASS_SET_END(mp, 0); 11766 /* 11767 * If the ipf points to the mblk we are about to free, 11768 * update ipf to point to the next mblk (or NULL 11769 * if none). 11770 */ 11771 if (ipf->ipf_mp->b_cont == mp) 11772 ipf->ipf_mp->b_cont = next_mp; 11773 freeb(mp); 11774 continue; 11775 } 11776 mp->b_cont = NULL; 11777 IP_REASS_SET_START(mp, start); 11778 IP_REASS_SET_END(mp, end); 11779 if (!ipf->ipf_tail_mp) { 11780 ipf->ipf_tail_mp = mp; 11781 ipf->ipf_mp->b_cont = mp; 11782 if (start == 0 || !more) { 11783 ipf->ipf_hole_cnt = 1; 11784 /* 11785 * if the first fragment comes in more than one 11786 * mblk, this loop will be executed for each 11787 * mblk. Need to adjust hole count so exiting 11788 * this routine will leave hole count at 1. 11789 */ 11790 if (next_mp) 11791 ipf->ipf_hole_cnt++; 11792 } else 11793 ipf->ipf_hole_cnt = 2; 11794 continue; 11795 } else if (ipf->ipf_last_frag_seen && !more && 11796 !pkt_boundary_checked) { 11797 /* 11798 * We check datagram boundary only if this fragment 11799 * claims to be the last fragment and we have seen a 11800 * last fragment in the past too. We do this only 11801 * once for a given fragment. 11802 * 11803 * start cannot be 0 here as fragments with start=0 11804 * and MF=0 gets handled as a complete packet. These 11805 * fragments should not reach here. 11806 */ 11807 11808 if (start + msgdsize(mp) != 11809 IP_REASS_END(ipf->ipf_tail_mp)) { 11810 /* 11811 * We have two fragments both of which claim 11812 * to be the last fragment but gives conflicting 11813 * information about the whole datagram size. 11814 * Something fishy is going on. Drop the 11815 * fragment and free up the reassembly list. 11816 */ 11817 return (IP_REASS_FAILED); 11818 } 11819 11820 /* 11821 * We shouldn't come to this code block again for this 11822 * particular fragment. 11823 */ 11824 pkt_boundary_checked = B_TRUE; 11825 } 11826 11827 /* New stuff at or beyond tail? */ 11828 offset = IP_REASS_END(ipf->ipf_tail_mp); 11829 if (start >= offset) { 11830 if (ipf->ipf_last_frag_seen) { 11831 /* current fragment is beyond last fragment */ 11832 return (IP_REASS_FAILED); 11833 } 11834 /* Link it on end. */ 11835 ipf->ipf_tail_mp->b_cont = mp; 11836 ipf->ipf_tail_mp = mp; 11837 if (more) { 11838 if (start != offset) 11839 ipf->ipf_hole_cnt++; 11840 } else if (start == offset && next_mp == NULL) 11841 ipf->ipf_hole_cnt--; 11842 continue; 11843 } 11844 mp1 = ipf->ipf_mp->b_cont; 11845 offset = IP_REASS_START(mp1); 11846 /* New stuff at the front? */ 11847 if (start < offset) { 11848 if (start == 0) { 11849 if (end >= offset) { 11850 /* Nailed the hole at the begining. */ 11851 ipf->ipf_hole_cnt--; 11852 } 11853 } else if (end < offset) { 11854 /* 11855 * A hole, stuff, and a hole where there used 11856 * to be just a hole. 11857 */ 11858 ipf->ipf_hole_cnt++; 11859 } 11860 mp->b_cont = mp1; 11861 /* Check for overlap. */ 11862 while (end > offset) { 11863 if (end < IP_REASS_END(mp1)) { 11864 mp->b_wptr -= end - offset; 11865 IP_REASS_SET_END(mp, offset); 11866 BUMP_MIB(ill->ill_ip_mib, 11867 ipIfStatsReasmPartDups); 11868 break; 11869 } 11870 /* Did we cover another hole? */ 11871 if ((mp1->b_cont && 11872 IP_REASS_END(mp1) != 11873 IP_REASS_START(mp1->b_cont) && 11874 end >= IP_REASS_START(mp1->b_cont)) || 11875 (!ipf->ipf_last_frag_seen && !more)) { 11876 ipf->ipf_hole_cnt--; 11877 } 11878 /* Clip out mp1. */ 11879 if ((mp->b_cont = mp1->b_cont) == NULL) { 11880 /* 11881 * After clipping out mp1, this guy 11882 * is now hanging off the end. 11883 */ 11884 ipf->ipf_tail_mp = mp; 11885 } 11886 IP_REASS_SET_START(mp1, 0); 11887 IP_REASS_SET_END(mp1, 0); 11888 /* Subtract byte count */ 11889 ipf->ipf_count -= mp1->b_datap->db_lim - 11890 mp1->b_datap->db_base; 11891 freeb(mp1); 11892 BUMP_MIB(ill->ill_ip_mib, 11893 ipIfStatsReasmPartDups); 11894 mp1 = mp->b_cont; 11895 if (!mp1) 11896 break; 11897 offset = IP_REASS_START(mp1); 11898 } 11899 ipf->ipf_mp->b_cont = mp; 11900 continue; 11901 } 11902 /* 11903 * The new piece starts somewhere between the start of the head 11904 * and before the end of the tail. 11905 */ 11906 for (; mp1; mp1 = mp1->b_cont) { 11907 offset = IP_REASS_END(mp1); 11908 if (start < offset) { 11909 if (end <= offset) { 11910 /* Nothing new. */ 11911 IP_REASS_SET_START(mp, 0); 11912 IP_REASS_SET_END(mp, 0); 11913 /* Subtract byte count */ 11914 ipf->ipf_count -= mp->b_datap->db_lim - 11915 mp->b_datap->db_base; 11916 if (incr_dups) { 11917 ipf->ipf_num_dups++; 11918 incr_dups = B_FALSE; 11919 } 11920 freeb(mp); 11921 BUMP_MIB(ill->ill_ip_mib, 11922 ipIfStatsReasmDuplicates); 11923 break; 11924 } 11925 /* 11926 * Trim redundant stuff off beginning of new 11927 * piece. 11928 */ 11929 IP_REASS_SET_START(mp, offset); 11930 mp->b_rptr += offset - start; 11931 BUMP_MIB(ill->ill_ip_mib, 11932 ipIfStatsReasmPartDups); 11933 start = offset; 11934 if (!mp1->b_cont) { 11935 /* 11936 * After trimming, this guy is now 11937 * hanging off the end. 11938 */ 11939 mp1->b_cont = mp; 11940 ipf->ipf_tail_mp = mp; 11941 if (!more) { 11942 ipf->ipf_hole_cnt--; 11943 } 11944 break; 11945 } 11946 } 11947 if (start >= IP_REASS_START(mp1->b_cont)) 11948 continue; 11949 /* Fill a hole */ 11950 if (start > offset) 11951 ipf->ipf_hole_cnt++; 11952 mp->b_cont = mp1->b_cont; 11953 mp1->b_cont = mp; 11954 mp1 = mp->b_cont; 11955 offset = IP_REASS_START(mp1); 11956 if (end >= offset) { 11957 ipf->ipf_hole_cnt--; 11958 /* Check for overlap. */ 11959 while (end > offset) { 11960 if (end < IP_REASS_END(mp1)) { 11961 mp->b_wptr -= end - offset; 11962 IP_REASS_SET_END(mp, offset); 11963 /* 11964 * TODO we might bump 11965 * this up twice if there is 11966 * overlap at both ends. 11967 */ 11968 BUMP_MIB(ill->ill_ip_mib, 11969 ipIfStatsReasmPartDups); 11970 break; 11971 } 11972 /* Did we cover another hole? */ 11973 if ((mp1->b_cont && 11974 IP_REASS_END(mp1) 11975 != IP_REASS_START(mp1->b_cont) && 11976 end >= 11977 IP_REASS_START(mp1->b_cont)) || 11978 (!ipf->ipf_last_frag_seen && 11979 !more)) { 11980 ipf->ipf_hole_cnt--; 11981 } 11982 /* Clip out mp1. */ 11983 if ((mp->b_cont = mp1->b_cont) == 11984 NULL) { 11985 /* 11986 * After clipping out mp1, 11987 * this guy is now hanging 11988 * off the end. 11989 */ 11990 ipf->ipf_tail_mp = mp; 11991 } 11992 IP_REASS_SET_START(mp1, 0); 11993 IP_REASS_SET_END(mp1, 0); 11994 /* Subtract byte count */ 11995 ipf->ipf_count -= 11996 mp1->b_datap->db_lim - 11997 mp1->b_datap->db_base; 11998 freeb(mp1); 11999 BUMP_MIB(ill->ill_ip_mib, 12000 ipIfStatsReasmPartDups); 12001 mp1 = mp->b_cont; 12002 if (!mp1) 12003 break; 12004 offset = IP_REASS_START(mp1); 12005 } 12006 } 12007 break; 12008 } 12009 } while (start = end, mp = next_mp); 12010 12011 /* Fragment just processed could be the last one. Remember this fact */ 12012 if (!more) 12013 ipf->ipf_last_frag_seen = B_TRUE; 12014 12015 /* Still got holes? */ 12016 if (ipf->ipf_hole_cnt) 12017 return (IP_REASS_PARTIAL); 12018 /* Clean up overloaded fields to avoid upstream disasters. */ 12019 for (mp1 = ipf->ipf_mp->b_cont; mp1; mp1 = mp1->b_cont) { 12020 IP_REASS_SET_START(mp1, 0); 12021 IP_REASS_SET_END(mp1, 0); 12022 } 12023 return (IP_REASS_COMPLETE); 12024 } 12025 12026 /* 12027 * ipsec processing for the fast path, used for input UDP Packets 12028 * Returns true if ready for passup to UDP. 12029 * Return false if packet is not passable to UDP (e.g. it failed IPsec policy, 12030 * was an ESP-in-UDP packet, etc.). 12031 */ 12032 static boolean_t 12033 ip_udp_check(queue_t *q, conn_t *connp, ill_t *ill, ipha_t *ipha, 12034 mblk_t **mpp, mblk_t **first_mpp, boolean_t mctl_present, ire_t *ire) 12035 { 12036 uint32_t ill_index; 12037 uint_t in_flags; /* IPF_RECVSLLA and/or IPF_RECVIF */ 12038 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 12039 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 12040 udp_t *udp = connp->conn_udp; 12041 12042 ASSERT(ipha->ipha_protocol == IPPROTO_UDP); 12043 /* The ill_index of the incoming ILL */ 12044 ill_index = ((ill_t *)q->q_ptr)->ill_phyint->phyint_ifindex; 12045 12046 /* pass packet up to the transport */ 12047 if (CONN_INBOUND_POLICY_PRESENT(connp, ipss) || mctl_present) { 12048 *first_mpp = ipsec_check_inbound_policy(*first_mpp, connp, ipha, 12049 NULL, mctl_present); 12050 if (*first_mpp == NULL) { 12051 return (B_FALSE); 12052 } 12053 } 12054 12055 /* Initiate IPPF processing for fastpath UDP */ 12056 if (IPP_ENABLED(IPP_LOCAL_IN, ipst)) { 12057 ip_process(IPP_LOCAL_IN, mpp, ill_index); 12058 if (*mpp == NULL) { 12059 ip2dbg(("ip_input_ipsec_process: UDP pkt " 12060 "deferred/dropped during IPPF processing\n")); 12061 return (B_FALSE); 12062 } 12063 } 12064 /* 12065 * Remove 0-spi if it's 0, or move everything behind 12066 * the UDP header over it and forward to ESP via 12067 * ip_proto_input(). 12068 */ 12069 if (udp->udp_nat_t_endpoint) { 12070 if (mctl_present) { 12071 /* mctl_present *shouldn't* happen. */ 12072 ip_drop_packet(*first_mpp, B_TRUE, NULL, 12073 NULL, DROPPER(ipss, ipds_esp_nat_t_ipsec), 12074 &ipss->ipsec_dropper); 12075 *first_mpp = NULL; 12076 return (B_FALSE); 12077 } 12078 12079 /* "ill" is "recv_ill" in actuality. */ 12080 if (!zero_spi_check(q, *mpp, ire, ill, ipss)) 12081 return (B_FALSE); 12082 12083 /* Else continue like a normal UDP packet. */ 12084 } 12085 12086 /* 12087 * We make the checks as below since we are in the fast path 12088 * and want to minimize the number of checks if the IP_RECVIF and/or 12089 * IP_RECVSLLA and/or IPV6_RECVPKTINFO options are not set 12090 */ 12091 if (connp->conn_recvif || connp->conn_recvslla || 12092 connp->conn_ip_recvpktinfo) { 12093 if (connp->conn_recvif) { 12094 in_flags = IPF_RECVIF; 12095 } 12096 /* 12097 * UDP supports IP_RECVPKTINFO option for both v4 and v6 12098 * so the flag passed to ip_add_info is based on IP version 12099 * of connp. 12100 */ 12101 if (connp->conn_ip_recvpktinfo) { 12102 if (connp->conn_af_isv6) { 12103 /* 12104 * V6 only needs index 12105 */ 12106 in_flags |= IPF_RECVIF; 12107 } else { 12108 /* 12109 * V4 needs index + matching address. 12110 */ 12111 in_flags |= IPF_RECVADDR; 12112 } 12113 } 12114 if (connp->conn_recvslla) { 12115 in_flags |= IPF_RECVSLLA; 12116 } 12117 /* 12118 * since in_flags are being set ill will be 12119 * referenced in ip_add_info, so it better not 12120 * be NULL. 12121 */ 12122 /* 12123 * the actual data will be contained in b_cont 12124 * upon successful return of the following call. 12125 * If the call fails then the original mblk is 12126 * returned. 12127 */ 12128 *mpp = ip_add_info(*mpp, ill, in_flags, IPCL_ZONEID(connp), 12129 ipst); 12130 } 12131 12132 return (B_TRUE); 12133 } 12134 12135 /* 12136 * Fragmentation reassembly. Each ILL has a hash table for 12137 * queuing packets undergoing reassembly for all IPIFs 12138 * associated with the ILL. The hash is based on the packet 12139 * IP ident field. The ILL frag hash table was allocated 12140 * as a timer block at the time the ILL was created. Whenever 12141 * there is anything on the reassembly queue, the timer will 12142 * be running. Returns B_TRUE if successful else B_FALSE; 12143 * frees mp on failure. 12144 */ 12145 static boolean_t 12146 ip_rput_fragment(ill_t *ill, ill_t *recv_ill, mblk_t **mpp, ipha_t *ipha, 12147 uint32_t *cksum_val, uint16_t *cksum_flags) 12148 { 12149 uint32_t frag_offset_flags; 12150 mblk_t *mp = *mpp; 12151 mblk_t *t_mp; 12152 ipaddr_t dst; 12153 uint8_t proto = ipha->ipha_protocol; 12154 uint32_t sum_val; 12155 uint16_t sum_flags; 12156 ipf_t *ipf; 12157 ipf_t **ipfp; 12158 ipfb_t *ipfb; 12159 uint16_t ident; 12160 uint32_t offset; 12161 ipaddr_t src; 12162 uint_t hdr_length; 12163 uint32_t end; 12164 mblk_t *mp1; 12165 mblk_t *tail_mp; 12166 size_t count; 12167 size_t msg_len; 12168 uint8_t ecn_info = 0; 12169 uint32_t packet_size; 12170 boolean_t pruned = B_FALSE; 12171 ip_stack_t *ipst = ill->ill_ipst; 12172 12173 if (cksum_val != NULL) 12174 *cksum_val = 0; 12175 if (cksum_flags != NULL) 12176 *cksum_flags = 0; 12177 12178 /* 12179 * Drop the fragmented as early as possible, if 12180 * we don't have resource(s) to re-assemble. 12181 */ 12182 if (ipst->ips_ip_reass_queue_bytes == 0) { 12183 freemsg(mp); 12184 return (B_FALSE); 12185 } 12186 12187 /* Check for fragmentation offset; return if there's none */ 12188 if ((frag_offset_flags = ntohs(ipha->ipha_fragment_offset_and_flags) & 12189 (IPH_MF | IPH_OFFSET)) == 0) 12190 return (B_TRUE); 12191 12192 /* 12193 * We utilize hardware computed checksum info only for UDP since 12194 * IP fragmentation is a normal occurrence for the protocol. In 12195 * addition, checksum offload support for IP fragments carrying 12196 * UDP payload is commonly implemented across network adapters. 12197 */ 12198 ASSERT(recv_ill != NULL); 12199 if (proto == IPPROTO_UDP && dohwcksum && ILL_HCKSUM_CAPABLE(recv_ill) && 12200 (DB_CKSUMFLAGS(mp) & (HCK_FULLCKSUM | HCK_PARTIALCKSUM))) { 12201 mblk_t *mp1 = mp->b_cont; 12202 int32_t len; 12203 12204 /* Record checksum information from the packet */ 12205 sum_val = (uint32_t)DB_CKSUM16(mp); 12206 sum_flags = DB_CKSUMFLAGS(mp); 12207 12208 /* IP payload offset from beginning of mblk */ 12209 offset = ((uchar_t *)ipha + IPH_HDR_LENGTH(ipha)) - mp->b_rptr; 12210 12211 if ((sum_flags & HCK_PARTIALCKSUM) && 12212 (mp1 == NULL || mp1->b_cont == NULL) && 12213 offset >= DB_CKSUMSTART(mp) && 12214 ((len = offset - DB_CKSUMSTART(mp)) & 1) == 0) { 12215 uint32_t adj; 12216 /* 12217 * Partial checksum has been calculated by hardware 12218 * and attached to the packet; in addition, any 12219 * prepended extraneous data is even byte aligned. 12220 * If any such data exists, we adjust the checksum; 12221 * this would also handle any postpended data. 12222 */ 12223 IP_ADJCKSUM_PARTIAL(mp->b_rptr + DB_CKSUMSTART(mp), 12224 mp, mp1, len, adj); 12225 12226 /* One's complement subtract extraneous checksum */ 12227 if (adj >= sum_val) 12228 sum_val = ~(adj - sum_val) & 0xFFFF; 12229 else 12230 sum_val -= adj; 12231 } 12232 } else { 12233 sum_val = 0; 12234 sum_flags = 0; 12235 } 12236 12237 /* Clear hardware checksumming flag */ 12238 DB_CKSUMFLAGS(mp) = 0; 12239 12240 ident = ipha->ipha_ident; 12241 offset = (frag_offset_flags << 3) & 0xFFFF; 12242 src = ipha->ipha_src; 12243 dst = ipha->ipha_dst; 12244 hdr_length = IPH_HDR_LENGTH(ipha); 12245 end = ntohs(ipha->ipha_length) - hdr_length; 12246 12247 /* If end == 0 then we have a packet with no data, so just free it */ 12248 if (end == 0) { 12249 freemsg(mp); 12250 return (B_FALSE); 12251 } 12252 12253 /* Record the ECN field info. */ 12254 ecn_info = (ipha->ipha_type_of_service & 0x3); 12255 if (offset != 0) { 12256 /* 12257 * If this isn't the first piece, strip the header, and 12258 * add the offset to the end value. 12259 */ 12260 mp->b_rptr += hdr_length; 12261 end += offset; 12262 } 12263 12264 msg_len = MBLKSIZE(mp); 12265 tail_mp = mp; 12266 while (tail_mp->b_cont != NULL) { 12267 tail_mp = tail_mp->b_cont; 12268 msg_len += MBLKSIZE(tail_mp); 12269 } 12270 12271 /* If the reassembly list for this ILL will get too big, prune it */ 12272 if ((msg_len + sizeof (*ipf) + ill->ill_frag_count) >= 12273 ipst->ips_ip_reass_queue_bytes) { 12274 ill_frag_prune(ill, 12275 (ipst->ips_ip_reass_queue_bytes < msg_len) ? 0 : 12276 (ipst->ips_ip_reass_queue_bytes - msg_len)); 12277 pruned = B_TRUE; 12278 } 12279 12280 ipfb = &ill->ill_frag_hash_tbl[ILL_FRAG_HASH(src, ident)]; 12281 mutex_enter(&ipfb->ipfb_lock); 12282 12283 ipfp = &ipfb->ipfb_ipf; 12284 /* Try to find an existing fragment queue for this packet. */ 12285 for (;;) { 12286 ipf = ipfp[0]; 12287 if (ipf != NULL) { 12288 /* 12289 * It has to match on ident and src/dst address. 12290 */ 12291 if (ipf->ipf_ident == ident && 12292 ipf->ipf_src == src && 12293 ipf->ipf_dst == dst && 12294 ipf->ipf_protocol == proto) { 12295 /* 12296 * If we have received too many 12297 * duplicate fragments for this packet 12298 * free it. 12299 */ 12300 if (ipf->ipf_num_dups > ip_max_frag_dups) { 12301 ill_frag_free_pkts(ill, ipfb, ipf, 1); 12302 freemsg(mp); 12303 mutex_exit(&ipfb->ipfb_lock); 12304 return (B_FALSE); 12305 } 12306 /* Found it. */ 12307 break; 12308 } 12309 ipfp = &ipf->ipf_hash_next; 12310 continue; 12311 } 12312 12313 /* 12314 * If we pruned the list, do we want to store this new 12315 * fragment?. We apply an optimization here based on the 12316 * fact that most fragments will be received in order. 12317 * So if the offset of this incoming fragment is zero, 12318 * it is the first fragment of a new packet. We will 12319 * keep it. Otherwise drop the fragment, as we have 12320 * probably pruned the packet already (since the 12321 * packet cannot be found). 12322 */ 12323 if (pruned && offset != 0) { 12324 mutex_exit(&ipfb->ipfb_lock); 12325 freemsg(mp); 12326 return (B_FALSE); 12327 } 12328 12329 if (ipfb->ipfb_frag_pkts >= MAX_FRAG_PKTS(ipst)) { 12330 /* 12331 * Too many fragmented packets in this hash 12332 * bucket. Free the oldest. 12333 */ 12334 ill_frag_free_pkts(ill, ipfb, ipfb->ipfb_ipf, 1); 12335 } 12336 12337 /* New guy. Allocate a frag message. */ 12338 mp1 = allocb(sizeof (*ipf), BPRI_MED); 12339 if (mp1 == NULL) { 12340 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 12341 freemsg(mp); 12342 reass_done: 12343 mutex_exit(&ipfb->ipfb_lock); 12344 return (B_FALSE); 12345 } 12346 12347 BUMP_MIB(ill->ill_ip_mib, ipIfStatsReasmReqds); 12348 mp1->b_cont = mp; 12349 12350 /* Initialize the fragment header. */ 12351 ipf = (ipf_t *)mp1->b_rptr; 12352 ipf->ipf_mp = mp1; 12353 ipf->ipf_ptphn = ipfp; 12354 ipfp[0] = ipf; 12355 ipf->ipf_hash_next = NULL; 12356 ipf->ipf_ident = ident; 12357 ipf->ipf_protocol = proto; 12358 ipf->ipf_src = src; 12359 ipf->ipf_dst = dst; 12360 ipf->ipf_nf_hdr_len = 0; 12361 /* Record reassembly start time. */ 12362 ipf->ipf_timestamp = gethrestime_sec(); 12363 /* Record ipf generation and account for frag header */ 12364 ipf->ipf_gen = ill->ill_ipf_gen++; 12365 ipf->ipf_count = MBLKSIZE(mp1); 12366 ipf->ipf_last_frag_seen = B_FALSE; 12367 ipf->ipf_ecn = ecn_info; 12368 ipf->ipf_num_dups = 0; 12369 ipfb->ipfb_frag_pkts++; 12370 ipf->ipf_checksum = 0; 12371 ipf->ipf_checksum_flags = 0; 12372 12373 /* Store checksum value in fragment header */ 12374 if (sum_flags != 0) { 12375 sum_val = (sum_val & 0xFFFF) + (sum_val >> 16); 12376 sum_val = (sum_val & 0xFFFF) + (sum_val >> 16); 12377 ipf->ipf_checksum = sum_val; 12378 ipf->ipf_checksum_flags = sum_flags; 12379 } 12380 12381 /* 12382 * We handle reassembly two ways. In the easy case, 12383 * where all the fragments show up in order, we do 12384 * minimal bookkeeping, and just clip new pieces on 12385 * the end. If we ever see a hole, then we go off 12386 * to ip_reassemble which has to mark the pieces and 12387 * keep track of the number of holes, etc. Obviously, 12388 * the point of having both mechanisms is so we can 12389 * handle the easy case as efficiently as possible. 12390 */ 12391 if (offset == 0) { 12392 /* Easy case, in-order reassembly so far. */ 12393 ipf->ipf_count += msg_len; 12394 ipf->ipf_tail_mp = tail_mp; 12395 /* 12396 * Keep track of next expected offset in 12397 * ipf_end. 12398 */ 12399 ipf->ipf_end = end; 12400 ipf->ipf_nf_hdr_len = hdr_length; 12401 } else { 12402 /* Hard case, hole at the beginning. */ 12403 ipf->ipf_tail_mp = NULL; 12404 /* 12405 * ipf_end == 0 means that we have given up 12406 * on easy reassembly. 12407 */ 12408 ipf->ipf_end = 0; 12409 12410 /* Forget checksum offload from now on */ 12411 ipf->ipf_checksum_flags = 0; 12412 12413 /* 12414 * ipf_hole_cnt is set by ip_reassemble. 12415 * ipf_count is updated by ip_reassemble. 12416 * No need to check for return value here 12417 * as we don't expect reassembly to complete 12418 * or fail for the first fragment itself. 12419 */ 12420 (void) ip_reassemble(mp, ipf, 12421 (frag_offset_flags & IPH_OFFSET) << 3, 12422 (frag_offset_flags & IPH_MF), ill, msg_len); 12423 } 12424 /* Update per ipfb and ill byte counts */ 12425 ipfb->ipfb_count += ipf->ipf_count; 12426 ASSERT(ipfb->ipfb_count > 0); /* Wraparound */ 12427 atomic_add_32(&ill->ill_frag_count, ipf->ipf_count); 12428 /* If the frag timer wasn't already going, start it. */ 12429 mutex_enter(&ill->ill_lock); 12430 ill_frag_timer_start(ill); 12431 mutex_exit(&ill->ill_lock); 12432 goto reass_done; 12433 } 12434 12435 /* 12436 * If the packet's flag has changed (it could be coming up 12437 * from an interface different than the previous, therefore 12438 * possibly different checksum capability), then forget about 12439 * any stored checksum states. Otherwise add the value to 12440 * the existing one stored in the fragment header. 12441 */ 12442 if (sum_flags != 0 && sum_flags == ipf->ipf_checksum_flags) { 12443 sum_val += ipf->ipf_checksum; 12444 sum_val = (sum_val & 0xFFFF) + (sum_val >> 16); 12445 sum_val = (sum_val & 0xFFFF) + (sum_val >> 16); 12446 ipf->ipf_checksum = sum_val; 12447 } else if (ipf->ipf_checksum_flags != 0) { 12448 /* Forget checksum offload from now on */ 12449 ipf->ipf_checksum_flags = 0; 12450 } 12451 12452 /* 12453 * We have a new piece of a datagram which is already being 12454 * reassembled. Update the ECN info if all IP fragments 12455 * are ECN capable. If there is one which is not, clear 12456 * all the info. If there is at least one which has CE 12457 * code point, IP needs to report that up to transport. 12458 */ 12459 if (ecn_info != IPH_ECN_NECT && ipf->ipf_ecn != IPH_ECN_NECT) { 12460 if (ecn_info == IPH_ECN_CE) 12461 ipf->ipf_ecn = IPH_ECN_CE; 12462 } else { 12463 ipf->ipf_ecn = IPH_ECN_NECT; 12464 } 12465 if (offset && ipf->ipf_end == offset) { 12466 /* The new fragment fits at the end */ 12467 ipf->ipf_tail_mp->b_cont = mp; 12468 /* Update the byte count */ 12469 ipf->ipf_count += msg_len; 12470 /* Update per ipfb and ill byte counts */ 12471 ipfb->ipfb_count += msg_len; 12472 ASSERT(ipfb->ipfb_count > 0); /* Wraparound */ 12473 atomic_add_32(&ill->ill_frag_count, msg_len); 12474 if (frag_offset_flags & IPH_MF) { 12475 /* More to come. */ 12476 ipf->ipf_end = end; 12477 ipf->ipf_tail_mp = tail_mp; 12478 goto reass_done; 12479 } 12480 } else { 12481 /* Go do the hard cases. */ 12482 int ret; 12483 12484 if (offset == 0) 12485 ipf->ipf_nf_hdr_len = hdr_length; 12486 12487 /* Save current byte count */ 12488 count = ipf->ipf_count; 12489 ret = ip_reassemble(mp, ipf, 12490 (frag_offset_flags & IPH_OFFSET) << 3, 12491 (frag_offset_flags & IPH_MF), ill, msg_len); 12492 /* Count of bytes added and subtracted (freeb()ed) */ 12493 count = ipf->ipf_count - count; 12494 if (count) { 12495 /* Update per ipfb and ill byte counts */ 12496 ipfb->ipfb_count += count; 12497 ASSERT(ipfb->ipfb_count > 0); /* Wraparound */ 12498 atomic_add_32(&ill->ill_frag_count, count); 12499 } 12500 if (ret == IP_REASS_PARTIAL) { 12501 goto reass_done; 12502 } else if (ret == IP_REASS_FAILED) { 12503 /* Reassembly failed. Free up all resources */ 12504 ill_frag_free_pkts(ill, ipfb, ipf, 1); 12505 for (t_mp = mp; t_mp != NULL; t_mp = t_mp->b_cont) { 12506 IP_REASS_SET_START(t_mp, 0); 12507 IP_REASS_SET_END(t_mp, 0); 12508 } 12509 freemsg(mp); 12510 goto reass_done; 12511 } 12512 /* We will reach here iff 'ret' is IP_REASS_COMPLETE */ 12513 } 12514 /* 12515 * We have completed reassembly. Unhook the frag header from 12516 * the reassembly list. 12517 * 12518 * Before we free the frag header, record the ECN info 12519 * to report back to the transport. 12520 */ 12521 ecn_info = ipf->ipf_ecn; 12522 BUMP_MIB(ill->ill_ip_mib, ipIfStatsReasmOKs); 12523 ipfp = ipf->ipf_ptphn; 12524 12525 /* We need to supply these to caller */ 12526 if ((sum_flags = ipf->ipf_checksum_flags) != 0) 12527 sum_val = ipf->ipf_checksum; 12528 else 12529 sum_val = 0; 12530 12531 mp1 = ipf->ipf_mp; 12532 count = ipf->ipf_count; 12533 ipf = ipf->ipf_hash_next; 12534 if (ipf != NULL) 12535 ipf->ipf_ptphn = ipfp; 12536 ipfp[0] = ipf; 12537 atomic_add_32(&ill->ill_frag_count, -count); 12538 ASSERT(ipfb->ipfb_count >= count); 12539 ipfb->ipfb_count -= count; 12540 ipfb->ipfb_frag_pkts--; 12541 mutex_exit(&ipfb->ipfb_lock); 12542 /* Ditch the frag header. */ 12543 mp = mp1->b_cont; 12544 12545 freeb(mp1); 12546 12547 /* Restore original IP length in header. */ 12548 packet_size = (uint32_t)msgdsize(mp); 12549 if (packet_size > IP_MAXPACKET) { 12550 freemsg(mp); 12551 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors); 12552 return (B_FALSE); 12553 } 12554 12555 if (DB_REF(mp) > 1) { 12556 mblk_t *mp2 = copymsg(mp); 12557 12558 freemsg(mp); 12559 if (mp2 == NULL) { 12560 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 12561 return (B_FALSE); 12562 } 12563 mp = mp2; 12564 } 12565 ipha = (ipha_t *)mp->b_rptr; 12566 12567 ipha->ipha_length = htons((uint16_t)packet_size); 12568 /* We're now complete, zip the frag state */ 12569 ipha->ipha_fragment_offset_and_flags = 0; 12570 /* Record the ECN info. */ 12571 ipha->ipha_type_of_service &= 0xFC; 12572 ipha->ipha_type_of_service |= ecn_info; 12573 *mpp = mp; 12574 12575 /* Reassembly is successful; return checksum information if needed */ 12576 if (cksum_val != NULL) 12577 *cksum_val = sum_val; 12578 if (cksum_flags != NULL) 12579 *cksum_flags = sum_flags; 12580 12581 return (B_TRUE); 12582 } 12583 12584 /* 12585 * Perform ip header check sum update local options. 12586 * return B_TRUE if all is well, else return B_FALSE and release 12587 * the mp. caller is responsible for decrementing ire ref cnt. 12588 */ 12589 static boolean_t 12590 ip_options_cksum(queue_t *q, ill_t *ill, mblk_t *mp, ipha_t *ipha, ire_t *ire, 12591 ip_stack_t *ipst) 12592 { 12593 mblk_t *first_mp; 12594 boolean_t mctl_present; 12595 uint16_t sum; 12596 12597 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 12598 /* 12599 * Don't do the checksum if it has gone through AH/ESP 12600 * processing. 12601 */ 12602 if (!mctl_present) { 12603 sum = ip_csum_hdr(ipha); 12604 if (sum != 0) { 12605 if (ill != NULL) { 12606 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInCksumErrs); 12607 } else { 12608 BUMP_MIB(&ipst->ips_ip_mib, 12609 ipIfStatsInCksumErrs); 12610 } 12611 freemsg(first_mp); 12612 return (B_FALSE); 12613 } 12614 } 12615 12616 if (!ip_rput_local_options(q, mp, ipha, ire, ipst)) { 12617 if (mctl_present) 12618 freeb(first_mp); 12619 return (B_FALSE); 12620 } 12621 12622 return (B_TRUE); 12623 } 12624 12625 /* 12626 * All udp packet are delivered to the local host via this routine. 12627 */ 12628 void 12629 ip_udp_input(queue_t *q, mblk_t *mp, ipha_t *ipha, ire_t *ire, 12630 ill_t *recv_ill) 12631 { 12632 uint32_t sum; 12633 uint32_t u1; 12634 boolean_t mctl_present; 12635 conn_t *connp; 12636 mblk_t *first_mp; 12637 uint16_t *up; 12638 ill_t *ill = (ill_t *)q->q_ptr; 12639 uint16_t reass_hck_flags = 0; 12640 ip_stack_t *ipst; 12641 12642 ASSERT(recv_ill != NULL); 12643 ipst = recv_ill->ill_ipst; 12644 12645 #define rptr ((uchar_t *)ipha) 12646 12647 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 12648 ASSERT(!mctl_present || ipsec_in_is_secure(first_mp)); 12649 ASSERT(ipha->ipha_protocol == IPPROTO_UDP); 12650 ASSERT(ill != NULL); 12651 12652 /* 12653 * FAST PATH for udp packets 12654 */ 12655 12656 /* u1 is # words of IP options */ 12657 u1 = ipha->ipha_version_and_hdr_length - (uchar_t)((IP_VERSION << 4) + 12658 IP_SIMPLE_HDR_LENGTH_IN_WORDS); 12659 12660 /* IP options present */ 12661 if (u1 != 0) 12662 goto ipoptions; 12663 12664 /* Check the IP header checksum. */ 12665 if (IS_IP_HDR_HWCKSUM(mctl_present, mp, recv_ill)) { 12666 /* Clear the IP header h/w cksum flag */ 12667 DB_CKSUMFLAGS(mp) &= ~HCK_IPV4_HDRCKSUM; 12668 } else if (!mctl_present) { 12669 /* 12670 * Don't verify header checksum if this packet is coming 12671 * back from AH/ESP as we already did it. 12672 */ 12673 #define uph ((uint16_t *)ipha) 12674 sum = uph[0] + uph[1] + uph[2] + uph[3] + uph[4] + uph[5] + 12675 uph[6] + uph[7] + uph[8] + uph[9]; 12676 #undef uph 12677 /* finish doing IP checksum */ 12678 sum = (sum & 0xFFFF) + (sum >> 16); 12679 sum = ~(sum + (sum >> 16)) & 0xFFFF; 12680 if (sum != 0 && sum != 0xFFFF) { 12681 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInCksumErrs); 12682 freemsg(first_mp); 12683 return; 12684 } 12685 } 12686 12687 /* 12688 * Count for SNMP of inbound packets for ire. 12689 * if mctl is present this might be a secure packet and 12690 * has already been counted for in ip_proto_input(). 12691 */ 12692 if (!mctl_present) { 12693 UPDATE_IB_PKT_COUNT(ire); 12694 ire->ire_last_used_time = lbolt; 12695 } 12696 12697 /* packet part of fragmented IP packet? */ 12698 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 12699 if (u1 & (IPH_MF | IPH_OFFSET)) { 12700 goto fragmented; 12701 } 12702 12703 /* u1 = IP header length (20 bytes) */ 12704 u1 = IP_SIMPLE_HDR_LENGTH; 12705 12706 /* packet does not contain complete IP & UDP headers */ 12707 if ((mp->b_wptr - rptr) < (IP_SIMPLE_HDR_LENGTH + UDPH_SIZE)) 12708 goto udppullup; 12709 12710 /* up points to UDP header */ 12711 up = (uint16_t *)((uchar_t *)ipha + IP_SIMPLE_HDR_LENGTH); 12712 #define iphs ((uint16_t *)ipha) 12713 12714 /* if udp hdr cksum != 0, then need to checksum udp packet */ 12715 if (up[3] != 0) { 12716 mblk_t *mp1 = mp->b_cont; 12717 boolean_t cksum_err; 12718 uint16_t hck_flags = 0; 12719 12720 /* Pseudo-header checksum */ 12721 u1 = IP_UDP_CSUM_COMP + iphs[6] + iphs[7] + iphs[8] + 12722 iphs[9] + up[2]; 12723 12724 /* 12725 * Revert to software checksum calculation if the interface 12726 * isn't capable of checksum offload or if IPsec is present. 12727 */ 12728 if (ILL_HCKSUM_CAPABLE(recv_ill) && !mctl_present && dohwcksum) 12729 hck_flags = DB_CKSUMFLAGS(mp); 12730 12731 if ((hck_flags & (HCK_FULLCKSUM|HCK_PARTIALCKSUM)) == 0) 12732 IP_STAT(ipst, ip_in_sw_cksum); 12733 12734 IP_CKSUM_RECV(hck_flags, u1, 12735 (uchar_t *)(rptr + DB_CKSUMSTART(mp)), 12736 (int32_t)((uchar_t *)up - rptr), 12737 mp, mp1, cksum_err); 12738 12739 if (cksum_err) { 12740 BUMP_MIB(ill->ill_ip_mib, udpIfStatsInCksumErrs); 12741 if (hck_flags & HCK_FULLCKSUM) 12742 IP_STAT(ipst, ip_udp_in_full_hw_cksum_err); 12743 else if (hck_flags & HCK_PARTIALCKSUM) 12744 IP_STAT(ipst, ip_udp_in_part_hw_cksum_err); 12745 else 12746 IP_STAT(ipst, ip_udp_in_sw_cksum_err); 12747 12748 freemsg(first_mp); 12749 return; 12750 } 12751 } 12752 12753 /* Non-fragmented broadcast or multicast packet? */ 12754 if (ire->ire_type == IRE_BROADCAST) 12755 goto udpslowpath; 12756 12757 if ((connp = ipcl_classify_v4(mp, IPPROTO_UDP, IP_SIMPLE_HDR_LENGTH, 12758 ire->ire_zoneid, ipst)) != NULL) { 12759 ASSERT(IPCL_IS_NONSTR(connp) || connp->conn_upq != NULL); 12760 IP_STAT(ipst, ip_udp_fast_path); 12761 12762 if ((IPCL_IS_NONSTR(connp) && PROTO_FLOW_CNTRLD(connp)) || 12763 (!IPCL_IS_NONSTR(connp) && CONN_UDP_FLOWCTLD(connp))) { 12764 freemsg(mp); 12765 BUMP_MIB(ill->ill_ip_mib, udpIfStatsInOverflows); 12766 } else { 12767 if (!mctl_present) { 12768 BUMP_MIB(ill->ill_ip_mib, 12769 ipIfStatsHCInDelivers); 12770 } 12771 /* 12772 * mp and first_mp can change. 12773 */ 12774 if (ip_udp_check(q, connp, recv_ill, 12775 ipha, &mp, &first_mp, mctl_present, ire)) { 12776 /* Send it upstream */ 12777 (connp->conn_recv)(connp, mp, NULL); 12778 } 12779 } 12780 /* 12781 * freeb() cannot deal with null mblk being passed 12782 * in and first_mp can be set to null in the call 12783 * ipsec_input_fast_proc()->ipsec_check_inbound_policy. 12784 */ 12785 if (mctl_present && first_mp != NULL) { 12786 freeb(first_mp); 12787 } 12788 CONN_DEC_REF(connp); 12789 return; 12790 } 12791 12792 /* 12793 * if we got here we know the packet is not fragmented and 12794 * has no options. The classifier could not find a conn_t and 12795 * most likely its an icmp packet so send it through slow path. 12796 */ 12797 12798 goto udpslowpath; 12799 12800 ipoptions: 12801 if (!ip_options_cksum(q, ill, mp, ipha, ire, ipst)) { 12802 goto slow_done; 12803 } 12804 12805 UPDATE_IB_PKT_COUNT(ire); 12806 ire->ire_last_used_time = lbolt; 12807 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 12808 if (u1 & (IPH_MF | IPH_OFFSET)) { 12809 fragmented: 12810 /* 12811 * "sum" and "reass_hck_flags" are non-zero if the 12812 * reassembled packet has a valid hardware computed 12813 * checksum information associated with it. 12814 */ 12815 if (!ip_rput_fragment(ill, recv_ill, &mp, ipha, &sum, 12816 &reass_hck_flags)) { 12817 goto slow_done; 12818 } 12819 12820 /* 12821 * Make sure that first_mp points back to mp as 12822 * the mp we came in with could have changed in 12823 * ip_rput_fragment(). 12824 */ 12825 ASSERT(!mctl_present); 12826 ipha = (ipha_t *)mp->b_rptr; 12827 first_mp = mp; 12828 } 12829 12830 /* Now we have a complete datagram, destined for this machine. */ 12831 u1 = IPH_HDR_LENGTH(ipha); 12832 /* Pull up the UDP header, if necessary. */ 12833 if ((MBLKL(mp)) < (u1 + UDPH_SIZE)) { 12834 udppullup: 12835 if (!pullupmsg(mp, u1 + UDPH_SIZE)) { 12836 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 12837 freemsg(first_mp); 12838 goto slow_done; 12839 } 12840 ipha = (ipha_t *)mp->b_rptr; 12841 } 12842 12843 /* 12844 * Validate the checksum for the reassembled packet; for the 12845 * pullup case we calculate the payload checksum in software. 12846 */ 12847 up = (uint16_t *)((uchar_t *)ipha + u1 + UDP_PORTS_OFFSET); 12848 if (up[3] != 0) { 12849 boolean_t cksum_err; 12850 12851 if ((reass_hck_flags & (HCK_FULLCKSUM|HCK_PARTIALCKSUM)) == 0) 12852 IP_STAT(ipst, ip_in_sw_cksum); 12853 12854 IP_CKSUM_RECV_REASS(reass_hck_flags, 12855 (int32_t)((uchar_t *)up - (uchar_t *)ipha), 12856 IP_UDP_CSUM_COMP + iphs[6] + iphs[7] + iphs[8] + 12857 iphs[9] + up[2], sum, cksum_err); 12858 12859 if (cksum_err) { 12860 BUMP_MIB(ill->ill_ip_mib, udpIfStatsInCksumErrs); 12861 12862 if (reass_hck_flags & HCK_FULLCKSUM) 12863 IP_STAT(ipst, ip_udp_in_full_hw_cksum_err); 12864 else if (reass_hck_flags & HCK_PARTIALCKSUM) 12865 IP_STAT(ipst, ip_udp_in_part_hw_cksum_err); 12866 else 12867 IP_STAT(ipst, ip_udp_in_sw_cksum_err); 12868 12869 freemsg(first_mp); 12870 goto slow_done; 12871 } 12872 } 12873 udpslowpath: 12874 12875 /* Clear hardware checksum flag to be safe */ 12876 DB_CKSUMFLAGS(mp) = 0; 12877 12878 ip_fanout_udp(q, first_mp, ill, ipha, *(uint32_t *)up, 12879 (ire->ire_type == IRE_BROADCAST), 12880 IP_FF_SEND_ICMP | IP_FF_CKSUM | IP_FF_IPINFO, 12881 mctl_present, B_TRUE, recv_ill, ire->ire_zoneid); 12882 12883 slow_done: 12884 IP_STAT(ipst, ip_udp_slow_path); 12885 return; 12886 12887 #undef iphs 12888 #undef rptr 12889 } 12890 12891 /* ARGSUSED */ 12892 static mblk_t * 12893 ip_tcp_input(mblk_t *mp, ipha_t *ipha, ill_t *recv_ill, boolean_t mctl_present, 12894 ire_t *ire, mblk_t *first_mp, uint_t flags, queue_t *q, 12895 ill_rx_ring_t *ill_ring) 12896 { 12897 conn_t *connp; 12898 uint32_t sum; 12899 uint32_t u1; 12900 uint16_t *up; 12901 int offset; 12902 ssize_t len; 12903 mblk_t *mp1; 12904 boolean_t syn_present = B_FALSE; 12905 tcph_t *tcph; 12906 uint_t tcph_flags; 12907 uint_t ip_hdr_len; 12908 ill_t *ill = (ill_t *)q->q_ptr; 12909 zoneid_t zoneid = ire->ire_zoneid; 12910 boolean_t cksum_err; 12911 uint16_t hck_flags = 0; 12912 ip_stack_t *ipst = recv_ill->ill_ipst; 12913 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 12914 12915 #define rptr ((uchar_t *)ipha) 12916 12917 ASSERT(ipha->ipha_protocol == IPPROTO_TCP); 12918 ASSERT(ill != NULL); 12919 12920 /* 12921 * FAST PATH for tcp packets 12922 */ 12923 12924 /* u1 is # words of IP options */ 12925 u1 = ipha->ipha_version_and_hdr_length - (uchar_t)((IP_VERSION << 4) 12926 + IP_SIMPLE_HDR_LENGTH_IN_WORDS); 12927 12928 /* IP options present */ 12929 if (u1) { 12930 goto ipoptions; 12931 } else if (!mctl_present) { 12932 /* Check the IP header checksum. */ 12933 if (IS_IP_HDR_HWCKSUM(mctl_present, mp, recv_ill)) { 12934 /* Clear the IP header h/w cksum flag */ 12935 DB_CKSUMFLAGS(mp) &= ~HCK_IPV4_HDRCKSUM; 12936 } else if (!mctl_present) { 12937 /* 12938 * Don't verify header checksum if this packet 12939 * is coming back from AH/ESP as we already did it. 12940 */ 12941 #define uph ((uint16_t *)ipha) 12942 sum = uph[0] + uph[1] + uph[2] + uph[3] + uph[4] + 12943 uph[5] + uph[6] + uph[7] + uph[8] + uph[9]; 12944 #undef uph 12945 /* finish doing IP checksum */ 12946 sum = (sum & 0xFFFF) + (sum >> 16); 12947 sum = ~(sum + (sum >> 16)) & 0xFFFF; 12948 if (sum != 0 && sum != 0xFFFF) { 12949 BUMP_MIB(ill->ill_ip_mib, 12950 ipIfStatsInCksumErrs); 12951 goto error; 12952 } 12953 } 12954 } 12955 12956 if (!mctl_present) { 12957 UPDATE_IB_PKT_COUNT(ire); 12958 ire->ire_last_used_time = lbolt; 12959 } 12960 12961 /* packet part of fragmented IP packet? */ 12962 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 12963 if (u1 & (IPH_MF | IPH_OFFSET)) { 12964 goto fragmented; 12965 } 12966 12967 /* u1 = IP header length (20 bytes) */ 12968 u1 = ip_hdr_len = IP_SIMPLE_HDR_LENGTH; 12969 12970 /* does packet contain IP+TCP headers? */ 12971 len = mp->b_wptr - rptr; 12972 if (len < (IP_SIMPLE_HDR_LENGTH + TCP_MIN_HEADER_LENGTH)) { 12973 IP_STAT(ipst, ip_tcppullup); 12974 goto tcppullup; 12975 } 12976 12977 /* TCP options present? */ 12978 offset = ((uchar_t *)ipha)[IP_SIMPLE_HDR_LENGTH + 12] >> 4; 12979 12980 /* 12981 * If options need to be pulled up, then goto tcpoptions. 12982 * otherwise we are still in the fast path 12983 */ 12984 if (len < (offset << 2) + IP_SIMPLE_HDR_LENGTH) { 12985 IP_STAT(ipst, ip_tcpoptions); 12986 goto tcpoptions; 12987 } 12988 12989 /* multiple mblks of tcp data? */ 12990 if ((mp1 = mp->b_cont) != NULL) { 12991 /* more then two? */ 12992 if (mp1->b_cont != NULL) { 12993 IP_STAT(ipst, ip_multipkttcp); 12994 goto multipkttcp; 12995 } 12996 len += mp1->b_wptr - mp1->b_rptr; 12997 } 12998 12999 up = (uint16_t *)(rptr + IP_SIMPLE_HDR_LENGTH + TCP_PORTS_OFFSET); 13000 13001 /* part of pseudo checksum */ 13002 13003 /* TCP datagram length */ 13004 u1 = len - IP_SIMPLE_HDR_LENGTH; 13005 13006 #define iphs ((uint16_t *)ipha) 13007 13008 #ifdef _BIG_ENDIAN 13009 u1 += IPPROTO_TCP; 13010 #else 13011 u1 = ((u1 >> 8) & 0xFF) + (((u1 & 0xFF) + IPPROTO_TCP) << 8); 13012 #endif 13013 u1 += iphs[6] + iphs[7] + iphs[8] + iphs[9]; 13014 13015 /* 13016 * Revert to software checksum calculation if the interface 13017 * isn't capable of checksum offload or if IPsec is present. 13018 */ 13019 if (ILL_HCKSUM_CAPABLE(recv_ill) && !mctl_present && dohwcksum) 13020 hck_flags = DB_CKSUMFLAGS(mp); 13021 13022 if ((hck_flags & (HCK_FULLCKSUM|HCK_PARTIALCKSUM)) == 0) 13023 IP_STAT(ipst, ip_in_sw_cksum); 13024 13025 IP_CKSUM_RECV(hck_flags, u1, 13026 (uchar_t *)(rptr + DB_CKSUMSTART(mp)), 13027 (int32_t)((uchar_t *)up - rptr), 13028 mp, mp1, cksum_err); 13029 13030 if (cksum_err) { 13031 BUMP_MIB(ill->ill_ip_mib, tcpIfStatsInErrs); 13032 13033 if (hck_flags & HCK_FULLCKSUM) 13034 IP_STAT(ipst, ip_tcp_in_full_hw_cksum_err); 13035 else if (hck_flags & HCK_PARTIALCKSUM) 13036 IP_STAT(ipst, ip_tcp_in_part_hw_cksum_err); 13037 else 13038 IP_STAT(ipst, ip_tcp_in_sw_cksum_err); 13039 13040 goto error; 13041 } 13042 13043 try_again: 13044 13045 if ((connp = ipcl_classify_v4(mp, IPPROTO_TCP, ip_hdr_len, 13046 zoneid, ipst)) == NULL) { 13047 /* Send the TH_RST */ 13048 goto no_conn; 13049 } 13050 13051 tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len]; 13052 tcph_flags = tcph->th_flags[0] & (TH_SYN|TH_ACK|TH_RST|TH_URG); 13053 13054 /* 13055 * TCP FAST PATH for AF_INET socket. 13056 * 13057 * TCP fast path to avoid extra work. An AF_INET socket type 13058 * does not have facility to receive extra information via 13059 * ip_process or ip_add_info. Also, when the connection was 13060 * established, we made a check if this connection is impacted 13061 * by any global IPsec policy or per connection policy (a 13062 * policy that comes in effect later will not apply to this 13063 * connection). Since all this can be determined at the 13064 * connection establishment time, a quick check of flags 13065 * can avoid extra work. 13066 */ 13067 if (IPCL_IS_TCP4_CONNECTED_NO_POLICY(connp) && !mctl_present && 13068 !IPP_ENABLED(IPP_LOCAL_IN, ipst)) { 13069 ASSERT(first_mp == mp); 13070 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers); 13071 if (tcph_flags != (TH_SYN | TH_ACK)) { 13072 SET_SQUEUE(mp, tcp_rput_data, connp); 13073 return (mp); 13074 } 13075 mp->b_datap->db_struioflag |= STRUIO_CONNECT; 13076 DB_CKSUMSTART(mp) = (intptr_t)ip_squeue_get(ill_ring); 13077 SET_SQUEUE(mp, tcp_input, connp); 13078 return (mp); 13079 } 13080 13081 if (tcph_flags == TH_SYN) { 13082 if (IPCL_IS_TCP(connp)) { 13083 mp->b_datap->db_struioflag |= STRUIO_EAGER; 13084 DB_CKSUMSTART(mp) = 13085 (intptr_t)ip_squeue_get(ill_ring); 13086 if (IPCL_IS_FULLY_BOUND(connp) && !mctl_present && 13087 !CONN_INBOUND_POLICY_PRESENT(connp, ipss)) { 13088 BUMP_MIB(ill->ill_ip_mib, 13089 ipIfStatsHCInDelivers); 13090 SET_SQUEUE(mp, connp->conn_recv, connp); 13091 return (mp); 13092 } else if (IPCL_IS_BOUND(connp) && !mctl_present && 13093 !CONN_INBOUND_POLICY_PRESENT(connp, ipss)) { 13094 BUMP_MIB(ill->ill_ip_mib, 13095 ipIfStatsHCInDelivers); 13096 ip_squeue_enter_unbound++; 13097 SET_SQUEUE(mp, tcp_conn_request_unbound, 13098 connp); 13099 return (mp); 13100 } 13101 syn_present = B_TRUE; 13102 } 13103 } 13104 13105 if (IPCL_IS_TCP(connp) && IPCL_IS_BOUND(connp) && !syn_present) { 13106 uint_t flags = (unsigned int)tcph->th_flags[0] & 0xFF; 13107 13108 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers); 13109 /* No need to send this packet to TCP */ 13110 if ((flags & TH_RST) || (flags & TH_URG)) { 13111 CONN_DEC_REF(connp); 13112 freemsg(first_mp); 13113 return (NULL); 13114 } 13115 if (flags & TH_ACK) { 13116 ip_xmit_reset_serialize(first_mp, ip_hdr_len, zoneid, 13117 ipst->ips_netstack->netstack_tcp, connp); 13118 CONN_DEC_REF(connp); 13119 return (NULL); 13120 } 13121 13122 CONN_DEC_REF(connp); 13123 freemsg(first_mp); 13124 return (NULL); 13125 } 13126 13127 if (CONN_INBOUND_POLICY_PRESENT(connp, ipss) || mctl_present) { 13128 first_mp = ipsec_check_inbound_policy(first_mp, connp, 13129 ipha, NULL, mctl_present); 13130 if (first_mp == NULL) { 13131 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13132 CONN_DEC_REF(connp); 13133 return (NULL); 13134 } 13135 if (IPCL_IS_TCP(connp) && IPCL_IS_BOUND(connp)) { 13136 ASSERT(syn_present); 13137 if (mctl_present) { 13138 ASSERT(first_mp != mp); 13139 first_mp->b_datap->db_struioflag |= 13140 STRUIO_POLICY; 13141 } else { 13142 ASSERT(first_mp == mp); 13143 mp->b_datap->db_struioflag &= ~STRUIO_EAGER; 13144 mp->b_datap->db_struioflag |= STRUIO_POLICY; 13145 } 13146 } else { 13147 /* 13148 * Discard first_mp early since we're dealing with a 13149 * fully-connected conn_t and tcp doesn't do policy in 13150 * this case. 13151 */ 13152 if (mctl_present) { 13153 freeb(first_mp); 13154 mctl_present = B_FALSE; 13155 } 13156 first_mp = mp; 13157 } 13158 } 13159 13160 /* Initiate IPPF processing for fastpath */ 13161 if (IPP_ENABLED(IPP_LOCAL_IN, ipst)) { 13162 uint32_t ill_index; 13163 13164 ill_index = recv_ill->ill_phyint->phyint_ifindex; 13165 ip_process(IPP_LOCAL_IN, &mp, ill_index); 13166 if (mp == NULL) { 13167 ip2dbg(("ip_input_ipsec_process: TCP pkt " 13168 "deferred/dropped during IPPF processing\n")); 13169 CONN_DEC_REF(connp); 13170 if (mctl_present) 13171 freeb(first_mp); 13172 return (NULL); 13173 } else if (mctl_present) { 13174 /* 13175 * ip_process might return a new mp. 13176 */ 13177 ASSERT(first_mp != mp); 13178 first_mp->b_cont = mp; 13179 } else { 13180 first_mp = mp; 13181 } 13182 13183 } 13184 13185 if (!syn_present && connp->conn_ip_recvpktinfo) { 13186 /* 13187 * TCP does not support IP_RECVPKTINFO for v4 so lets 13188 * make sure IPF_RECVIF is passed to ip_add_info. 13189 */ 13190 mp = ip_add_info(mp, recv_ill, flags|IPF_RECVIF, 13191 IPCL_ZONEID(connp), ipst); 13192 if (mp == NULL) { 13193 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13194 CONN_DEC_REF(connp); 13195 if (mctl_present) 13196 freeb(first_mp); 13197 return (NULL); 13198 } else if (mctl_present) { 13199 /* 13200 * ip_add_info might return a new mp. 13201 */ 13202 ASSERT(first_mp != mp); 13203 first_mp->b_cont = mp; 13204 } else { 13205 first_mp = mp; 13206 } 13207 } 13208 13209 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers); 13210 if (IPCL_IS_TCP(connp)) { 13211 SET_SQUEUE(first_mp, connp->conn_recv, connp); 13212 return (first_mp); 13213 } else { 13214 /* SOCK_RAW, IPPROTO_TCP case */ 13215 (connp->conn_recv)(connp, first_mp, NULL); 13216 CONN_DEC_REF(connp); 13217 return (NULL); 13218 } 13219 13220 no_conn: 13221 /* Initiate IPPf processing, if needed. */ 13222 if (IPP_ENABLED(IPP_LOCAL_IN, ipst)) { 13223 uint32_t ill_index; 13224 ill_index = recv_ill->ill_phyint->phyint_ifindex; 13225 ip_process(IPP_LOCAL_IN, &first_mp, ill_index); 13226 if (first_mp == NULL) { 13227 return (NULL); 13228 } 13229 } 13230 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers); 13231 13232 tcp_xmit_listeners_reset(first_mp, IPH_HDR_LENGTH(mp->b_rptr), zoneid, 13233 ipst->ips_netstack->netstack_tcp, NULL); 13234 return (NULL); 13235 ipoptions: 13236 if (!ip_options_cksum(q, ill, first_mp, ipha, ire, ipst)) { 13237 goto slow_done; 13238 } 13239 13240 UPDATE_IB_PKT_COUNT(ire); 13241 ire->ire_last_used_time = lbolt; 13242 13243 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 13244 if (u1 & (IPH_MF | IPH_OFFSET)) { 13245 fragmented: 13246 if (!ip_rput_fragment(ill, recv_ill, &mp, ipha, NULL, NULL)) { 13247 if (mctl_present) 13248 freeb(first_mp); 13249 goto slow_done; 13250 } 13251 /* 13252 * Make sure that first_mp points back to mp as 13253 * the mp we came in with could have changed in 13254 * ip_rput_fragment(). 13255 */ 13256 ASSERT(!mctl_present); 13257 ipha = (ipha_t *)mp->b_rptr; 13258 first_mp = mp; 13259 } 13260 13261 /* Now we have a complete datagram, destined for this machine. */ 13262 u1 = ip_hdr_len = IPH_HDR_LENGTH(ipha); 13263 13264 len = mp->b_wptr - mp->b_rptr; 13265 /* Pull up a minimal TCP header, if necessary. */ 13266 if (len < (u1 + 20)) { 13267 tcppullup: 13268 if (!pullupmsg(mp, u1 + 20)) { 13269 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13270 goto error; 13271 } 13272 ipha = (ipha_t *)mp->b_rptr; 13273 len = mp->b_wptr - mp->b_rptr; 13274 } 13275 13276 /* 13277 * Extract the offset field from the TCP header. As usual, we 13278 * try to help the compiler more than the reader. 13279 */ 13280 offset = ((uchar_t *)ipha)[u1 + 12] >> 4; 13281 if (offset != 5) { 13282 tcpoptions: 13283 if (offset < 5) { 13284 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13285 goto error; 13286 } 13287 /* 13288 * There must be TCP options. 13289 * Make sure we can grab them. 13290 */ 13291 offset <<= 2; 13292 offset += u1; 13293 if (len < offset) { 13294 if (!pullupmsg(mp, offset)) { 13295 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13296 goto error; 13297 } 13298 ipha = (ipha_t *)mp->b_rptr; 13299 len = mp->b_wptr - rptr; 13300 } 13301 } 13302 13303 /* Get the total packet length in len, including headers. */ 13304 if (mp->b_cont) { 13305 multipkttcp: 13306 len = msgdsize(mp); 13307 } 13308 13309 /* 13310 * Check the TCP checksum by pulling together the pseudo- 13311 * header checksum, and passing it to ip_csum to be added in 13312 * with the TCP datagram. 13313 * 13314 * Since we are not using the hwcksum if available we must 13315 * clear the flag. We may come here via tcppullup or tcpoptions. 13316 * If either of these fails along the way the mblk is freed. 13317 * If this logic ever changes and mblk is reused to say send 13318 * ICMP's back, then this flag may need to be cleared in 13319 * other places as well. 13320 */ 13321 DB_CKSUMFLAGS(mp) = 0; 13322 13323 up = (uint16_t *)(rptr + u1 + TCP_PORTS_OFFSET); 13324 13325 u1 = (uint32_t)(len - u1); /* TCP datagram length. */ 13326 #ifdef _BIG_ENDIAN 13327 u1 += IPPROTO_TCP; 13328 #else 13329 u1 = ((u1 >> 8) & 0xFF) + (((u1 & 0xFF) + IPPROTO_TCP) << 8); 13330 #endif 13331 u1 += iphs[6] + iphs[7] + iphs[8] + iphs[9]; 13332 /* 13333 * Not M_DATA mblk or its a dup, so do the checksum now. 13334 */ 13335 IP_STAT(ipst, ip_in_sw_cksum); 13336 if (IP_CSUM(mp, (int32_t)((uchar_t *)up - rptr), u1) != 0) { 13337 BUMP_MIB(ill->ill_ip_mib, tcpIfStatsInErrs); 13338 goto error; 13339 } 13340 13341 IP_STAT(ipst, ip_tcp_slow_path); 13342 goto try_again; 13343 #undef iphs 13344 #undef rptr 13345 13346 error: 13347 freemsg(first_mp); 13348 slow_done: 13349 return (NULL); 13350 } 13351 13352 /* ARGSUSED */ 13353 static void 13354 ip_sctp_input(mblk_t *mp, ipha_t *ipha, ill_t *recv_ill, boolean_t mctl_present, 13355 ire_t *ire, mblk_t *first_mp, uint_t flags, queue_t *q, ipaddr_t dst) 13356 { 13357 conn_t *connp; 13358 uint32_t sum; 13359 uint32_t u1; 13360 ssize_t len; 13361 sctp_hdr_t *sctph; 13362 zoneid_t zoneid = ire->ire_zoneid; 13363 uint32_t pktsum; 13364 uint32_t calcsum; 13365 uint32_t ports; 13366 in6_addr_t map_src, map_dst; 13367 ill_t *ill = (ill_t *)q->q_ptr; 13368 ip_stack_t *ipst; 13369 sctp_stack_t *sctps; 13370 boolean_t sctp_csum_err = B_FALSE; 13371 13372 ASSERT(recv_ill != NULL); 13373 ipst = recv_ill->ill_ipst; 13374 sctps = ipst->ips_netstack->netstack_sctp; 13375 13376 #define rptr ((uchar_t *)ipha) 13377 13378 ASSERT(ipha->ipha_protocol == IPPROTO_SCTP); 13379 ASSERT(ill != NULL); 13380 13381 /* u1 is # words of IP options */ 13382 u1 = ipha->ipha_version_and_hdr_length - (uchar_t)((IP_VERSION << 4) 13383 + IP_SIMPLE_HDR_LENGTH_IN_WORDS); 13384 13385 /* IP options present */ 13386 if (u1 > 0) { 13387 goto ipoptions; 13388 } else { 13389 /* Check the IP header checksum. */ 13390 if (!IS_IP_HDR_HWCKSUM(mctl_present, mp, recv_ill) && 13391 !mctl_present) { 13392 #define uph ((uint16_t *)ipha) 13393 sum = uph[0] + uph[1] + uph[2] + uph[3] + uph[4] + 13394 uph[5] + uph[6] + uph[7] + uph[8] + uph[9]; 13395 #undef uph 13396 /* finish doing IP checksum */ 13397 sum = (sum & 0xFFFF) + (sum >> 16); 13398 sum = ~(sum + (sum >> 16)) & 0xFFFF; 13399 /* 13400 * Don't verify header checksum if this packet 13401 * is coming back from AH/ESP as we already did it. 13402 */ 13403 if (sum != 0 && sum != 0xFFFF) { 13404 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInCksumErrs); 13405 goto error; 13406 } 13407 } 13408 /* 13409 * Since there is no SCTP h/w cksum support yet, just 13410 * clear the flag. 13411 */ 13412 DB_CKSUMFLAGS(mp) = 0; 13413 } 13414 13415 /* 13416 * Don't verify header checksum if this packet is coming 13417 * back from AH/ESP as we already did it. 13418 */ 13419 if (!mctl_present) { 13420 UPDATE_IB_PKT_COUNT(ire); 13421 ire->ire_last_used_time = lbolt; 13422 } 13423 13424 /* packet part of fragmented IP packet? */ 13425 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 13426 if (u1 & (IPH_MF | IPH_OFFSET)) 13427 goto fragmented; 13428 13429 /* u1 = IP header length (20 bytes) */ 13430 u1 = IP_SIMPLE_HDR_LENGTH; 13431 13432 find_sctp_client: 13433 /* Pullup if we don't have the sctp common header. */ 13434 len = MBLKL(mp); 13435 if (len < (u1 + SCTP_COMMON_HDR_LENGTH)) { 13436 if (mp->b_cont == NULL || 13437 !pullupmsg(mp, u1 + SCTP_COMMON_HDR_LENGTH)) { 13438 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13439 goto error; 13440 } 13441 ipha = (ipha_t *)mp->b_rptr; 13442 len = MBLKL(mp); 13443 } 13444 13445 sctph = (sctp_hdr_t *)(rptr + u1); 13446 #ifdef DEBUG 13447 if (!skip_sctp_cksum) { 13448 #endif 13449 pktsum = sctph->sh_chksum; 13450 sctph->sh_chksum = 0; 13451 calcsum = sctp_cksum(mp, u1); 13452 sctph->sh_chksum = pktsum; 13453 if (calcsum != pktsum) 13454 sctp_csum_err = B_TRUE; 13455 #ifdef DEBUG /* skip_sctp_cksum */ 13456 } 13457 #endif 13458 /* get the ports */ 13459 ports = *(uint32_t *)&sctph->sh_sport; 13460 13461 IRE_REFRELE(ire); 13462 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &map_dst); 13463 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &map_src); 13464 if (sctp_csum_err) { 13465 /* 13466 * No potential sctp checksum errors go to the Sun 13467 * sctp stack however they might be Adler-32 summed 13468 * packets a userland stack bound to a raw IP socket 13469 * could reasonably use. Note though that Adler-32 is 13470 * a long deprecated algorithm and customer sctp 13471 * networks should eventually migrate to CRC-32 at 13472 * which time this facility should be removed. 13473 */ 13474 flags |= IP_FF_SCTP_CSUM_ERR; 13475 goto no_conn; 13476 } 13477 if ((connp = sctp_fanout(&map_src, &map_dst, ports, zoneid, mp, 13478 sctps)) == NULL) { 13479 /* Check for raw socket or OOTB handling */ 13480 goto no_conn; 13481 } 13482 13483 /* Found a client; up it goes */ 13484 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers); 13485 sctp_input(connp, ipha, mp, first_mp, recv_ill, B_TRUE, mctl_present); 13486 return; 13487 13488 no_conn: 13489 ip_fanout_sctp_raw(first_mp, recv_ill, ipha, B_TRUE, 13490 ports, mctl_present, flags, B_TRUE, zoneid); 13491 return; 13492 13493 ipoptions: 13494 DB_CKSUMFLAGS(mp) = 0; 13495 if (!ip_options_cksum(q, ill, first_mp, ipha, ire, ipst)) 13496 goto slow_done; 13497 13498 UPDATE_IB_PKT_COUNT(ire); 13499 ire->ire_last_used_time = lbolt; 13500 13501 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 13502 if (u1 & (IPH_MF | IPH_OFFSET)) { 13503 fragmented: 13504 if (!ip_rput_fragment(ill, recv_ill, &mp, ipha, NULL, NULL)) 13505 goto slow_done; 13506 /* 13507 * Make sure that first_mp points back to mp as 13508 * the mp we came in with could have changed in 13509 * ip_rput_fragment(). 13510 */ 13511 ASSERT(!mctl_present); 13512 ipha = (ipha_t *)mp->b_rptr; 13513 first_mp = mp; 13514 } 13515 13516 /* Now we have a complete datagram, destined for this machine. */ 13517 u1 = IPH_HDR_LENGTH(ipha); 13518 goto find_sctp_client; 13519 #undef iphs 13520 #undef rptr 13521 13522 error: 13523 freemsg(first_mp); 13524 slow_done: 13525 IRE_REFRELE(ire); 13526 } 13527 13528 #define VER_BITS 0xF0 13529 #define VERSION_6 0x60 13530 13531 static boolean_t 13532 ip_rput_multimblk_ipoptions(queue_t *q, ill_t *ill, mblk_t *mp, ipha_t **iphapp, 13533 ipaddr_t *dstp, ip_stack_t *ipst) 13534 { 13535 uint_t opt_len; 13536 ipha_t *ipha; 13537 ssize_t len; 13538 uint_t pkt_len; 13539 13540 ASSERT(ill != NULL); 13541 IP_STAT(ipst, ip_ipoptions); 13542 ipha = *iphapp; 13543 13544 #define rptr ((uchar_t *)ipha) 13545 /* Assume no IPv6 packets arrive over the IPv4 queue */ 13546 if (IPH_HDR_VERSION(ipha) == IPV6_VERSION) { 13547 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInWrongIPVersion); 13548 freemsg(mp); 13549 return (B_FALSE); 13550 } 13551 13552 /* multiple mblk or too short */ 13553 pkt_len = ntohs(ipha->ipha_length); 13554 13555 /* Get the number of words of IP options in the IP header. */ 13556 opt_len = ipha->ipha_version_and_hdr_length - IP_SIMPLE_HDR_VERSION; 13557 if (opt_len) { 13558 /* IP Options present! Validate and process. */ 13559 if (opt_len > (15 - IP_SIMPLE_HDR_LENGTH_IN_WORDS)) { 13560 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors); 13561 goto done; 13562 } 13563 /* 13564 * Recompute complete header length and make sure we 13565 * have access to all of it. 13566 */ 13567 len = ((size_t)opt_len + IP_SIMPLE_HDR_LENGTH_IN_WORDS) << 2; 13568 if (len > (mp->b_wptr - rptr)) { 13569 if (len > pkt_len) { 13570 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors); 13571 goto done; 13572 } 13573 if (!pullupmsg(mp, len)) { 13574 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13575 goto done; 13576 } 13577 ipha = (ipha_t *)mp->b_rptr; 13578 } 13579 /* 13580 * Go off to ip_rput_options which returns the next hop 13581 * destination address, which may have been affected 13582 * by source routing. 13583 */ 13584 IP_STAT(ipst, ip_opt); 13585 if (ip_rput_options(q, mp, ipha, dstp, ipst) == -1) { 13586 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13587 return (B_FALSE); 13588 } 13589 } 13590 *iphapp = ipha; 13591 return (B_TRUE); 13592 done: 13593 /* clear b_prev - used by ip_mroute_decap */ 13594 mp->b_prev = NULL; 13595 freemsg(mp); 13596 return (B_FALSE); 13597 #undef rptr 13598 } 13599 13600 /* 13601 * Deal with the fact that there is no ire for the destination. 13602 */ 13603 static ire_t * 13604 ip_rput_noire(queue_t *q, mblk_t *mp, int ll_multicast, ipaddr_t dst) 13605 { 13606 ipha_t *ipha; 13607 ill_t *ill; 13608 ire_t *ire; 13609 ip_stack_t *ipst; 13610 enum ire_forward_action ret_action; 13611 13612 ipha = (ipha_t *)mp->b_rptr; 13613 ill = (ill_t *)q->q_ptr; 13614 13615 ASSERT(ill != NULL); 13616 ipst = ill->ill_ipst; 13617 13618 /* 13619 * No IRE for this destination, so it can't be for us. 13620 * Unless we are forwarding, drop the packet. 13621 * We have to let source routed packets through 13622 * since we don't yet know if they are 'ping -l' 13623 * packets i.e. if they will go out over the 13624 * same interface as they came in on. 13625 */ 13626 if (ll_multicast) { 13627 freemsg(mp); 13628 return (NULL); 13629 } 13630 if (!(ill->ill_flags & ILLF_ROUTER) && !ip_source_routed(ipha, ipst)) { 13631 BUMP_MIB(ill->ill_ip_mib, ipIfStatsForwProhibits); 13632 freemsg(mp); 13633 return (NULL); 13634 } 13635 13636 /* 13637 * Mark this packet as having originated externally. 13638 * 13639 * For non-forwarding code path, ire_send later double 13640 * checks this interface to see if it is still exists 13641 * post-ARP resolution. 13642 * 13643 * Also, IPQOS uses this to differentiate between 13644 * IPP_FWD_OUT and IPP_LOCAL_OUT for post-ARP 13645 * QOS packet processing in ip_wput_attach_llhdr(). 13646 * The QoS module can mark the b_band for a fastpath message 13647 * or the dl_priority field in a unitdata_req header for 13648 * CoS marking. This info can only be found in 13649 * ip_wput_attach_llhdr(). 13650 */ 13651 mp->b_prev = (mblk_t *)(uintptr_t)ill->ill_phyint->phyint_ifindex; 13652 /* 13653 * Clear the indication that this may have a hardware checksum 13654 * as we are not using it 13655 */ 13656 DB_CKSUMFLAGS(mp) = 0; 13657 13658 ire = ire_forward(dst, &ret_action, NULL, NULL, 13659 msg_getlabel(mp), ipst); 13660 13661 if (ire == NULL && ret_action == Forward_check_multirt) { 13662 /* Let ip_newroute handle CGTP */ 13663 ip_newroute(q, mp, dst, NULL, GLOBAL_ZONEID, ipst); 13664 return (NULL); 13665 } 13666 13667 if (ire != NULL) 13668 return (ire); 13669 13670 mp->b_prev = mp->b_next = 0; 13671 13672 if (ret_action == Forward_blackhole) { 13673 freemsg(mp); 13674 return (NULL); 13675 } 13676 /* send icmp unreachable */ 13677 q = WR(q); 13678 /* Sent by forwarding path, and router is global zone */ 13679 if (ip_source_routed(ipha, ipst)) { 13680 icmp_unreachable(q, mp, ICMP_SOURCE_ROUTE_FAILED, 13681 GLOBAL_ZONEID, ipst); 13682 } else { 13683 icmp_unreachable(q, mp, ICMP_HOST_UNREACHABLE, GLOBAL_ZONEID, 13684 ipst); 13685 } 13686 13687 return (NULL); 13688 13689 } 13690 13691 /* 13692 * check ip header length and align it. 13693 */ 13694 static boolean_t 13695 ip_check_and_align_header(queue_t *q, mblk_t *mp, ip_stack_t *ipst) 13696 { 13697 ssize_t len; 13698 ill_t *ill; 13699 ipha_t *ipha; 13700 13701 len = MBLKL(mp); 13702 13703 if (!OK_32PTR(mp->b_rptr) || len < IP_SIMPLE_HDR_LENGTH) { 13704 ill = (ill_t *)q->q_ptr; 13705 13706 if (!OK_32PTR(mp->b_rptr)) 13707 IP_STAT(ipst, ip_notaligned1); 13708 else 13709 IP_STAT(ipst, ip_notaligned2); 13710 /* Guard against bogus device drivers */ 13711 if (len < 0) { 13712 /* clear b_prev - used by ip_mroute_decap */ 13713 mp->b_prev = NULL; 13714 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors); 13715 freemsg(mp); 13716 return (B_FALSE); 13717 } 13718 13719 if (ip_rput_pullups++ == 0) { 13720 ipha = (ipha_t *)mp->b_rptr; 13721 (void) mi_strlog(q, 1, SL_ERROR|SL_TRACE, 13722 "ip_check_and_align_header: %s forced us to " 13723 " pullup pkt, hdr len %ld, hdr addr %p", 13724 ill->ill_name, len, (void *)ipha); 13725 } 13726 if (!pullupmsg(mp, IP_SIMPLE_HDR_LENGTH)) { 13727 /* clear b_prev - used by ip_mroute_decap */ 13728 mp->b_prev = NULL; 13729 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13730 freemsg(mp); 13731 return (B_FALSE); 13732 } 13733 } 13734 return (B_TRUE); 13735 } 13736 13737 /* 13738 * Handle the situation where a packet came in on `ill' but matched an IRE 13739 * whose ire_rfq doesn't match `ill'. We return the IRE that should be used 13740 * for interface statistics. 13741 */ 13742 ire_t * 13743 ip_check_multihome(void *addr, ire_t *ire, ill_t *ill) 13744 { 13745 ire_t *new_ire; 13746 ill_t *ire_ill; 13747 uint_t ifindex; 13748 ip_stack_t *ipst = ill->ill_ipst; 13749 boolean_t strict_check = B_FALSE; 13750 13751 /* 13752 * IPMP common case: if IRE and ILL are in the same group, there's no 13753 * issue (e.g. packet received on an underlying interface matched an 13754 * IRE_LOCAL on its associated group interface). 13755 */ 13756 if (ire->ire_rfq != NULL && 13757 IS_IN_SAME_ILLGRP(ill, (ill_t *)ire->ire_rfq->q_ptr)) { 13758 return (ire); 13759 } 13760 13761 /* 13762 * Do another ire lookup here, using the ingress ill, to see if the 13763 * interface is in a usesrc group. 13764 * As long as the ills belong to the same group, we don't consider 13765 * them to be arriving on the wrong interface. Thus, if the switch 13766 * is doing inbound load spreading, we won't drop packets when the 13767 * ip*_strict_dst_multihoming switch is on. 13768 * We also need to check for IPIF_UNNUMBERED point2point interfaces 13769 * where the local address may not be unique. In this case we were 13770 * at the mercy of the initial ire cache lookup and the IRE_LOCAL it 13771 * actually returned. The new lookup, which is more specific, should 13772 * only find the IRE_LOCAL associated with the ingress ill if one 13773 * exists. 13774 */ 13775 13776 if (ire->ire_ipversion == IPV4_VERSION) { 13777 if (ipst->ips_ip_strict_dst_multihoming) 13778 strict_check = B_TRUE; 13779 new_ire = ire_ctable_lookup(*((ipaddr_t *)addr), 0, IRE_LOCAL, 13780 ill->ill_ipif, ALL_ZONES, NULL, 13781 (MATCH_IRE_TYPE|MATCH_IRE_ILL), ipst); 13782 } else { 13783 ASSERT(!IN6_IS_ADDR_MULTICAST((in6_addr_t *)addr)); 13784 if (ipst->ips_ipv6_strict_dst_multihoming) 13785 strict_check = B_TRUE; 13786 new_ire = ire_ctable_lookup_v6((in6_addr_t *)addr, NULL, 13787 IRE_LOCAL, ill->ill_ipif, ALL_ZONES, NULL, 13788 (MATCH_IRE_TYPE|MATCH_IRE_ILL), ipst); 13789 } 13790 /* 13791 * If the same ire that was returned in ip_input() is found then this 13792 * is an indication that usesrc groups are in use. The packet 13793 * arrived on a different ill in the group than the one associated with 13794 * the destination address. If a different ire was found then the same 13795 * IP address must be hosted on multiple ills. This is possible with 13796 * unnumbered point2point interfaces. We switch to use this new ire in 13797 * order to have accurate interface statistics. 13798 */ 13799 if (new_ire != NULL) { 13800 if ((new_ire != ire) && (new_ire->ire_rfq != NULL)) { 13801 ire_refrele(ire); 13802 ire = new_ire; 13803 } else { 13804 ire_refrele(new_ire); 13805 } 13806 return (ire); 13807 } else if ((ire->ire_rfq == NULL) && 13808 (ire->ire_ipversion == IPV4_VERSION)) { 13809 /* 13810 * The best match could have been the original ire which 13811 * was created against an IRE_LOCAL on lo0. In the IPv4 case 13812 * the strict multihoming checks are irrelevant as we consider 13813 * local addresses hosted on lo0 to be interface agnostic. We 13814 * only expect a null ire_rfq on IREs which are associated with 13815 * lo0 hence we can return now. 13816 */ 13817 return (ire); 13818 } 13819 13820 /* 13821 * Chase pointers once and store locally. 13822 */ 13823 ire_ill = (ire->ire_rfq == NULL) ? NULL : 13824 (ill_t *)(ire->ire_rfq->q_ptr); 13825 ifindex = ill->ill_usesrc_ifindex; 13826 13827 /* 13828 * Check if it's a legal address on the 'usesrc' interface. 13829 */ 13830 if ((ifindex != 0) && (ire_ill != NULL) && 13831 (ifindex == ire_ill->ill_phyint->phyint_ifindex)) { 13832 return (ire); 13833 } 13834 13835 /* 13836 * If the ip*_strict_dst_multihoming switch is on then we can 13837 * only accept this packet if the interface is marked as routing. 13838 */ 13839 if (!(strict_check)) 13840 return (ire); 13841 13842 if ((ill->ill_flags & ire->ire_ipif->ipif_ill->ill_flags & 13843 ILLF_ROUTER) != 0) { 13844 return (ire); 13845 } 13846 13847 ire_refrele(ire); 13848 return (NULL); 13849 } 13850 13851 /* 13852 * 13853 * This is the fast forward path. If we are here, we dont need to 13854 * worry about RSVP, CGTP, or TSol. Furthermore the ftable lookup 13855 * needed to find the nexthop in this case is much simpler 13856 */ 13857 ire_t * 13858 ip_fast_forward(ire_t *ire, ipaddr_t dst, ill_t *ill, mblk_t *mp) 13859 { 13860 ipha_t *ipha; 13861 ire_t *src_ire; 13862 ill_t *stq_ill; 13863 uint_t hlen; 13864 uint_t pkt_len; 13865 uint32_t sum; 13866 queue_t *dev_q; 13867 ip_stack_t *ipst = ill->ill_ipst; 13868 mblk_t *fpmp; 13869 enum ire_forward_action ret_action; 13870 13871 ipha = (ipha_t *)mp->b_rptr; 13872 13873 if (ire != NULL && 13874 ire->ire_zoneid != GLOBAL_ZONEID && 13875 ire->ire_zoneid != ALL_ZONES) { 13876 /* 13877 * Should only use IREs that are visible to the global 13878 * zone for forwarding. 13879 */ 13880 ire_refrele(ire); 13881 ire = ire_cache_lookup(dst, GLOBAL_ZONEID, NULL, ipst); 13882 /* 13883 * ire_cache_lookup() can return ire of IRE_LOCAL in 13884 * transient cases. In such case, just drop the packet 13885 */ 13886 if (ire->ire_type != IRE_CACHE) 13887 goto drop; 13888 } 13889 13890 /* 13891 * Martian Address Filtering [RFC 1812, Section 5.3.7] 13892 * The loopback address check for both src and dst has already 13893 * been checked in ip_input 13894 */ 13895 13896 if (dst == INADDR_ANY || CLASSD(ipha->ipha_src)) { 13897 BUMP_MIB(ill->ill_ip_mib, ipIfStatsForwProhibits); 13898 goto drop; 13899 } 13900 src_ire = ire_ctable_lookup(ipha->ipha_src, 0, IRE_BROADCAST, NULL, 13901 ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 13902 13903 if (src_ire != NULL) { 13904 BUMP_MIB(ill->ill_ip_mib, ipIfStatsForwProhibits); 13905 ire_refrele(src_ire); 13906 goto drop; 13907 } 13908 13909 /* No ire cache of nexthop. So first create one */ 13910 if (ire == NULL) { 13911 13912 ire = ire_forward_simple(dst, &ret_action, ipst); 13913 13914 /* 13915 * We only come to ip_fast_forward if ip_cgtp_filter 13916 * is not set. So ire_forward() should not return with 13917 * Forward_check_multirt as the next action. 13918 */ 13919 ASSERT(ret_action != Forward_check_multirt); 13920 if (ire == NULL) { 13921 /* An attempt was made to forward the packet */ 13922 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInForwDatagrams); 13923 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13924 mp->b_prev = mp->b_next = 0; 13925 /* send icmp unreachable */ 13926 /* Sent by forwarding path, and router is global zone */ 13927 if (ret_action == Forward_ret_icmp_err) { 13928 if (ip_source_routed(ipha, ipst)) { 13929 icmp_unreachable(ill->ill_wq, mp, 13930 ICMP_SOURCE_ROUTE_FAILED, 13931 GLOBAL_ZONEID, ipst); 13932 } else { 13933 icmp_unreachable(ill->ill_wq, mp, 13934 ICMP_HOST_UNREACHABLE, 13935 GLOBAL_ZONEID, ipst); 13936 } 13937 } else { 13938 freemsg(mp); 13939 } 13940 return (NULL); 13941 } 13942 } 13943 13944 /* 13945 * Forwarding fastpath exception case: 13946 * If any of the following are true, we take the slowpath: 13947 * o forwarding is not enabled 13948 * o incoming and outgoing interface are the same, or in the same 13949 * IPMP group. 13950 * o corresponding ire is in incomplete state 13951 * o packet needs fragmentation 13952 * o ARP cache is not resolved 13953 * 13954 * The codeflow from here on is thus: 13955 * ip_rput_process_forward->ip_rput_forward->ip_xmit_v4 13956 */ 13957 pkt_len = ntohs(ipha->ipha_length); 13958 stq_ill = (ill_t *)ire->ire_stq->q_ptr; 13959 if (!(stq_ill->ill_flags & ILLF_ROUTER) || 13960 (ill == stq_ill) || IS_IN_SAME_ILLGRP(ill, stq_ill) || 13961 (ire->ire_nce == NULL) || 13962 (pkt_len > ire->ire_max_frag) || 13963 ((fpmp = ire->ire_nce->nce_fp_mp) == NULL) || 13964 ((hlen = MBLKL(fpmp)) > MBLKHEAD(mp)) || 13965 ipha->ipha_ttl <= 1) { 13966 ip_rput_process_forward(ill->ill_rq, mp, ire, 13967 ipha, ill, B_FALSE, B_TRUE); 13968 return (ire); 13969 } 13970 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInForwDatagrams); 13971 13972 DTRACE_PROBE4(ip4__forwarding__start, 13973 ill_t *, ill, ill_t *, stq_ill, ipha_t *, ipha, mblk_t *, mp); 13974 13975 FW_HOOKS(ipst->ips_ip4_forwarding_event, 13976 ipst->ips_ipv4firewall_forwarding, 13977 ill, stq_ill, ipha, mp, mp, 0, ipst); 13978 13979 DTRACE_PROBE1(ip4__forwarding__end, mblk_t *, mp); 13980 13981 if (mp == NULL) 13982 goto drop; 13983 13984 mp->b_datap->db_struioun.cksum.flags = 0; 13985 /* Adjust the checksum to reflect the ttl decrement. */ 13986 sum = (int)ipha->ipha_hdr_checksum + IP_HDR_CSUM_TTL_ADJUST; 13987 ipha->ipha_hdr_checksum = (uint16_t)(sum + (sum >> 16)); 13988 ipha->ipha_ttl--; 13989 13990 /* 13991 * Write the link layer header. We can do this safely here, 13992 * because we have already tested to make sure that the IP 13993 * policy is not set, and that we have a fast path destination 13994 * header. 13995 */ 13996 mp->b_rptr -= hlen; 13997 bcopy(fpmp->b_rptr, mp->b_rptr, hlen); 13998 13999 UPDATE_IB_PKT_COUNT(ire); 14000 ire->ire_last_used_time = lbolt; 14001 BUMP_MIB(stq_ill->ill_ip_mib, ipIfStatsHCOutForwDatagrams); 14002 BUMP_MIB(stq_ill->ill_ip_mib, ipIfStatsHCOutTransmits); 14003 UPDATE_MIB(stq_ill->ill_ip_mib, ipIfStatsHCOutOctets, pkt_len); 14004 14005 if (!ILL_DIRECT_CAPABLE(stq_ill) || DB_TYPE(mp) != M_DATA) { 14006 dev_q = ire->ire_stq->q_next; 14007 if (DEV_Q_FLOW_BLOCKED(dev_q)) 14008 goto indiscard; 14009 } 14010 14011 DTRACE_PROBE4(ip4__physical__out__start, 14012 ill_t *, NULL, ill_t *, stq_ill, ipha_t *, ipha, mblk_t *, mp); 14013 FW_HOOKS(ipst->ips_ip4_physical_out_event, 14014 ipst->ips_ipv4firewall_physical_out, 14015 NULL, stq_ill, ipha, mp, mp, 0, ipst); 14016 DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, mp); 14017 DTRACE_IP7(send, mblk_t *, mp, conn_t *, NULL, void_ip_t *, 14018 ipha, __dtrace_ipsr_ill_t *, stq_ill, ipha_t *, ipha, 14019 ip6_t *, NULL, int, 0); 14020 14021 if (mp != NULL) { 14022 if (ipst->ips_ipobs_enabled) { 14023 zoneid_t szone; 14024 14025 szone = ip_get_zoneid_v4(ipha->ipha_src, mp, 14026 ipst, ALL_ZONES); 14027 ipobs_hook(mp, IPOBS_HOOK_OUTBOUND, szone, 14028 ALL_ZONES, ill, IPV4_VERSION, hlen, ipst); 14029 } 14030 ILL_SEND_TX(stq_ill, ire, dst, mp, IP_DROP_ON_NO_DESC, NULL); 14031 } 14032 return (ire); 14033 14034 indiscard: 14035 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14036 drop: 14037 if (mp != NULL) 14038 freemsg(mp); 14039 return (ire); 14040 14041 } 14042 14043 /* 14044 * This function is called in the forwarding slowpath, when 14045 * either the ire lacks the link-layer address, or the packet needs 14046 * further processing(eg. fragmentation), before transmission. 14047 */ 14048 14049 static void 14050 ip_rput_process_forward(queue_t *q, mblk_t *mp, ire_t *ire, ipha_t *ipha, 14051 ill_t *ill, boolean_t ll_multicast, boolean_t from_ip_fast_forward) 14052 { 14053 queue_t *dev_q; 14054 ire_t *src_ire; 14055 ip_stack_t *ipst = ill->ill_ipst; 14056 boolean_t same_illgrp = B_FALSE; 14057 14058 ASSERT(ire->ire_stq != NULL); 14059 14060 mp->b_prev = NULL; /* ip_rput_noire sets incoming interface here */ 14061 mp->b_next = NULL; /* ip_rput_noire sets dst here */ 14062 14063 /* 14064 * If the caller of this function is ip_fast_forward() skip the 14065 * next three checks as it does not apply. 14066 */ 14067 if (from_ip_fast_forward) 14068 goto skip; 14069 14070 if (ll_multicast != 0) { 14071 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14072 goto drop_pkt; 14073 } 14074 14075 /* 14076 * check if ipha_src is a broadcast address. Note that this 14077 * check is redundant when we get here from ip_fast_forward() 14078 * which has already done this check. However, since we can 14079 * also get here from ip_rput_process_broadcast() or, for 14080 * for the slow path through ip_fast_forward(), we perform 14081 * the check again for code-reusability 14082 */ 14083 src_ire = ire_ctable_lookup(ipha->ipha_src, 0, IRE_BROADCAST, NULL, 14084 ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 14085 if (src_ire != NULL || ipha->ipha_dst == INADDR_ANY) { 14086 if (src_ire != NULL) 14087 ire_refrele(src_ire); 14088 BUMP_MIB(ill->ill_ip_mib, ipIfStatsForwProhibits); 14089 ip2dbg(("ip_rput_process_forward: Received packet with" 14090 " bad src/dst address on %s\n", ill->ill_name)); 14091 goto drop_pkt; 14092 } 14093 14094 /* 14095 * Check if we want to forward this one at this time. 14096 * We allow source routed packets on a host provided that 14097 * they go out the same ill or illgrp as they came in on. 14098 * 14099 * XXX To be quicker, we may wish to not chase pointers to 14100 * get the ILLF_ROUTER flag and instead store the 14101 * forwarding policy in the ire. An unfortunate 14102 * side-effect of that would be requiring an ire flush 14103 * whenever the ILLF_ROUTER flag changes. 14104 */ 14105 skip: 14106 same_illgrp = IS_IN_SAME_ILLGRP(ill, (ill_t *)ire->ire_rfq->q_ptr); 14107 14108 if (((ill->ill_flags & 14109 ((ill_t *)ire->ire_stq->q_ptr)->ill_flags & ILLF_ROUTER) == 0) && 14110 !(ip_source_routed(ipha, ipst) && 14111 (ire->ire_rfq == q || same_illgrp))) { 14112 BUMP_MIB(ill->ill_ip_mib, ipIfStatsForwProhibits); 14113 if (ip_source_routed(ipha, ipst)) { 14114 q = WR(q); 14115 /* 14116 * Clear the indication that this may have 14117 * hardware checksum as we are not using it. 14118 */ 14119 DB_CKSUMFLAGS(mp) = 0; 14120 /* Sent by forwarding path, and router is global zone */ 14121 icmp_unreachable(q, mp, 14122 ICMP_SOURCE_ROUTE_FAILED, GLOBAL_ZONEID, ipst); 14123 return; 14124 } 14125 goto drop_pkt; 14126 } 14127 14128 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInForwDatagrams); 14129 14130 /* Packet is being forwarded. Turning off hwcksum flag. */ 14131 DB_CKSUMFLAGS(mp) = 0; 14132 if (ipst->ips_ip_g_send_redirects) { 14133 /* 14134 * Check whether the incoming interface and outgoing 14135 * interface is part of the same group. If so, 14136 * send redirects. 14137 * 14138 * Check the source address to see if it originated 14139 * on the same logical subnet it is going back out on. 14140 * If so, we should be able to send it a redirect. 14141 * Avoid sending a redirect if the destination 14142 * is directly connected (i.e., ipha_dst is the same 14143 * as ire_gateway_addr or the ire_addr of the 14144 * nexthop IRE_CACHE ), or if the packet was source 14145 * routed out this interface. 14146 */ 14147 ipaddr_t src, nhop; 14148 mblk_t *mp1; 14149 ire_t *nhop_ire = NULL; 14150 14151 /* 14152 * Check whether ire_rfq and q are from the same ill or illgrp. 14153 * If so, send redirects. 14154 */ 14155 if ((ire->ire_rfq == q || same_illgrp) && 14156 !ip_source_routed(ipha, ipst)) { 14157 14158 nhop = (ire->ire_gateway_addr != 0 ? 14159 ire->ire_gateway_addr : ire->ire_addr); 14160 14161 if (ipha->ipha_dst == nhop) { 14162 /* 14163 * We avoid sending a redirect if the 14164 * destination is directly connected 14165 * because it is possible that multiple 14166 * IP subnets may have been configured on 14167 * the link, and the source may not 14168 * be on the same subnet as ip destination, 14169 * even though they are on the same 14170 * physical link. 14171 */ 14172 goto sendit; 14173 } 14174 14175 src = ipha->ipha_src; 14176 14177 /* 14178 * We look up the interface ire for the nexthop, 14179 * to see if ipha_src is in the same subnet 14180 * as the nexthop. 14181 * 14182 * Note that, if, in the future, IRE_CACHE entries 14183 * are obsoleted, this lookup will not be needed, 14184 * as the ire passed to this function will be the 14185 * same as the nhop_ire computed below. 14186 */ 14187 nhop_ire = ire_ftable_lookup(nhop, 0, 0, 14188 IRE_INTERFACE, NULL, NULL, ALL_ZONES, 14189 0, NULL, MATCH_IRE_TYPE, ipst); 14190 14191 if (nhop_ire != NULL) { 14192 if ((src & nhop_ire->ire_mask) == 14193 (nhop & nhop_ire->ire_mask)) { 14194 /* 14195 * The source is directly connected. 14196 * Just copy the ip header (which is 14197 * in the first mblk) 14198 */ 14199 mp1 = copyb(mp); 14200 if (mp1 != NULL) { 14201 icmp_send_redirect(WR(q), mp1, 14202 nhop, ipst); 14203 } 14204 } 14205 ire_refrele(nhop_ire); 14206 } 14207 } 14208 } 14209 sendit: 14210 dev_q = ire->ire_stq->q_next; 14211 if (DEV_Q_FLOW_BLOCKED(dev_q)) { 14212 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14213 freemsg(mp); 14214 return; 14215 } 14216 14217 ip_rput_forward(ire, ipha, mp, ill); 14218 return; 14219 14220 drop_pkt: 14221 ip2dbg(("ip_rput_process_forward: drop pkt\n")); 14222 freemsg(mp); 14223 } 14224 14225 ire_t * 14226 ip_rput_process_broadcast(queue_t **qp, mblk_t *mp, ire_t *ire, ipha_t *ipha, 14227 ill_t *ill, ipaddr_t dst, int cgtp_flt_pkt, int ll_multicast) 14228 { 14229 queue_t *q; 14230 uint16_t hcksumflags; 14231 ip_stack_t *ipst = ill->ill_ipst; 14232 14233 q = *qp; 14234 14235 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInBcastPkts); 14236 14237 /* 14238 * Clear the indication that this may have hardware 14239 * checksum as we are not using it for forwarding. 14240 */ 14241 hcksumflags = DB_CKSUMFLAGS(mp); 14242 DB_CKSUMFLAGS(mp) = 0; 14243 14244 /* 14245 * Directed broadcast forwarding: if the packet came in over a 14246 * different interface then it is routed out over we can forward it. 14247 */ 14248 if (ipha->ipha_protocol == IPPROTO_TCP) { 14249 ire_refrele(ire); 14250 freemsg(mp); 14251 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14252 return (NULL); 14253 } 14254 /* 14255 * For multicast we have set dst to be INADDR_BROADCAST 14256 * for delivering to all STREAMS. 14257 */ 14258 if (!CLASSD(ipha->ipha_dst)) { 14259 ire_t *new_ire; 14260 ipif_t *ipif; 14261 14262 ipif = ipif_get_next_ipif(NULL, ill); 14263 if (ipif == NULL) { 14264 discard: ire_refrele(ire); 14265 freemsg(mp); 14266 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14267 return (NULL); 14268 } 14269 new_ire = ire_ctable_lookup(dst, 0, 0, 14270 ipif, ALL_ZONES, NULL, MATCH_IRE_ILL, ipst); 14271 ipif_refrele(ipif); 14272 14273 if (new_ire != NULL) { 14274 /* 14275 * If the matching IRE_BROADCAST is part of an IPMP 14276 * group, then drop the packet unless our ill has been 14277 * nominated to receive for the group. 14278 */ 14279 if (IS_IPMP(new_ire->ire_ipif->ipif_ill) && 14280 new_ire->ire_rfq != q) { 14281 ire_refrele(new_ire); 14282 goto discard; 14283 } 14284 14285 /* 14286 * In the special case of multirouted broadcast 14287 * packets, we unconditionally need to "gateway" 14288 * them to the appropriate interface here. 14289 * In the normal case, this cannot happen, because 14290 * there is no broadcast IRE tagged with the 14291 * RTF_MULTIRT flag. 14292 */ 14293 if (new_ire->ire_flags & RTF_MULTIRT) { 14294 ire_refrele(new_ire); 14295 if (ire->ire_rfq != NULL) { 14296 q = ire->ire_rfq; 14297 *qp = q; 14298 } 14299 } else { 14300 ire_refrele(ire); 14301 ire = new_ire; 14302 } 14303 } else if (cgtp_flt_pkt == CGTP_IP_PKT_NOT_CGTP) { 14304 if (!ipst->ips_ip_g_forward_directed_bcast) { 14305 /* 14306 * Free the message if 14307 * ip_g_forward_directed_bcast is turned 14308 * off for non-local broadcast. 14309 */ 14310 ire_refrele(ire); 14311 freemsg(mp); 14312 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14313 return (NULL); 14314 } 14315 } else { 14316 /* 14317 * This CGTP packet successfully passed the 14318 * CGTP filter, but the related CGTP 14319 * broadcast IRE has not been found, 14320 * meaning that the redundant ipif is 14321 * probably down. However, if we discarded 14322 * this packet, its duplicate would be 14323 * filtered out by the CGTP filter so none 14324 * of them would get through. So we keep 14325 * going with this one. 14326 */ 14327 ASSERT(cgtp_flt_pkt == CGTP_IP_PKT_PREMIUM); 14328 if (ire->ire_rfq != NULL) { 14329 q = ire->ire_rfq; 14330 *qp = q; 14331 } 14332 } 14333 } 14334 if (ipst->ips_ip_g_forward_directed_bcast && ll_multicast == 0) { 14335 /* 14336 * Verify that there are not more then one 14337 * IRE_BROADCAST with this broadcast address which 14338 * has ire_stq set. 14339 * TODO: simplify, loop over all IRE's 14340 */ 14341 ire_t *ire1; 14342 int num_stq = 0; 14343 mblk_t *mp1; 14344 14345 /* Find the first one with ire_stq set */ 14346 rw_enter(&ire->ire_bucket->irb_lock, RW_READER); 14347 for (ire1 = ire; ire1 && 14348 !ire1->ire_stq && ire1->ire_addr == ire->ire_addr; 14349 ire1 = ire1->ire_next) 14350 ; 14351 if (ire1) { 14352 ire_refrele(ire); 14353 ire = ire1; 14354 IRE_REFHOLD(ire); 14355 } 14356 14357 /* Check if there are additional ones with stq set */ 14358 for (ire1 = ire; ire1; ire1 = ire1->ire_next) { 14359 if (ire->ire_addr != ire1->ire_addr) 14360 break; 14361 if (ire1->ire_stq) { 14362 num_stq++; 14363 break; 14364 } 14365 } 14366 rw_exit(&ire->ire_bucket->irb_lock); 14367 if (num_stq == 1 && ire->ire_stq != NULL) { 14368 ip1dbg(("ip_rput_process_broadcast: directed " 14369 "broadcast to 0x%x\n", 14370 ntohl(ire->ire_addr))); 14371 mp1 = copymsg(mp); 14372 if (mp1) { 14373 switch (ipha->ipha_protocol) { 14374 case IPPROTO_UDP: 14375 ip_udp_input(q, mp1, ipha, ire, ill); 14376 break; 14377 default: 14378 ip_proto_input(q, mp1, ipha, ire, ill, 14379 0); 14380 break; 14381 } 14382 } 14383 /* 14384 * Adjust ttl to 2 (1+1 - the forward engine 14385 * will decrement it by one. 14386 */ 14387 if (ip_csum_hdr(ipha)) { 14388 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInCksumErrs); 14389 ip2dbg(("ip_rput_broadcast:drop pkt\n")); 14390 freemsg(mp); 14391 ire_refrele(ire); 14392 return (NULL); 14393 } 14394 ipha->ipha_ttl = ipst->ips_ip_broadcast_ttl + 1; 14395 ipha->ipha_hdr_checksum = 0; 14396 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 14397 ip_rput_process_forward(q, mp, ire, ipha, 14398 ill, ll_multicast, B_FALSE); 14399 ire_refrele(ire); 14400 return (NULL); 14401 } 14402 ip1dbg(("ip_rput: NO directed broadcast to 0x%x\n", 14403 ntohl(ire->ire_addr))); 14404 } 14405 14406 /* Restore any hardware checksum flags */ 14407 DB_CKSUMFLAGS(mp) = hcksumflags; 14408 return (ire); 14409 } 14410 14411 /* ARGSUSED */ 14412 static boolean_t 14413 ip_rput_process_multicast(queue_t *q, mblk_t *mp, ill_t *ill, ipha_t *ipha, 14414 int *ll_multicast, ipaddr_t *dstp) 14415 { 14416 ip_stack_t *ipst = ill->ill_ipst; 14417 14418 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInMcastPkts); 14419 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCInMcastOctets, 14420 ntohs(ipha->ipha_length)); 14421 14422 /* 14423 * So that we don't end up with dups, only one ill in an IPMP group is 14424 * nominated to receive multicast traffic. 14425 */ 14426 if (IS_UNDER_IPMP(ill) && !ill->ill_nom_cast) 14427 goto drop_pkt; 14428 14429 /* 14430 * Forward packets only if we have joined the allmulti 14431 * group on this interface. 14432 */ 14433 if (ipst->ips_ip_g_mrouter && ill->ill_join_allmulti) { 14434 int retval; 14435 14436 /* 14437 * Clear the indication that this may have hardware 14438 * checksum as we are not using it. 14439 */ 14440 DB_CKSUMFLAGS(mp) = 0; 14441 retval = ip_mforward(ill, ipha, mp); 14442 /* ip_mforward updates mib variables if needed */ 14443 /* clear b_prev - used by ip_mroute_decap */ 14444 mp->b_prev = NULL; 14445 14446 switch (retval) { 14447 case 0: 14448 /* 14449 * pkt is okay and arrived on phyint. 14450 * 14451 * If we are running as a multicast router 14452 * we need to see all IGMP and/or PIM packets. 14453 */ 14454 if ((ipha->ipha_protocol == IPPROTO_IGMP) || 14455 (ipha->ipha_protocol == IPPROTO_PIM)) { 14456 goto done; 14457 } 14458 break; 14459 case -1: 14460 /* pkt is mal-formed, toss it */ 14461 goto drop_pkt; 14462 case 1: 14463 /* pkt is okay and arrived on a tunnel */ 14464 /* 14465 * If we are running a multicast router 14466 * we need to see all igmp packets. 14467 */ 14468 if (ipha->ipha_protocol == IPPROTO_IGMP) { 14469 *dstp = INADDR_BROADCAST; 14470 *ll_multicast = 1; 14471 return (B_FALSE); 14472 } 14473 14474 goto drop_pkt; 14475 } 14476 } 14477 14478 if (ilm_lookup_ill(ill, *dstp, ALL_ZONES) == NULL) { 14479 /* 14480 * This might just be caused by the fact that 14481 * multiple IP Multicast addresses map to the same 14482 * link layer multicast - no need to increment counter! 14483 */ 14484 freemsg(mp); 14485 return (B_TRUE); 14486 } 14487 done: 14488 ip2dbg(("ip_rput: multicast for us: 0x%x\n", ntohl(*dstp))); 14489 /* 14490 * This assumes the we deliver to all streams for multicast 14491 * and broadcast packets. 14492 */ 14493 *dstp = INADDR_BROADCAST; 14494 *ll_multicast = 1; 14495 return (B_FALSE); 14496 drop_pkt: 14497 ip2dbg(("ip_rput: drop pkt\n")); 14498 freemsg(mp); 14499 return (B_TRUE); 14500 } 14501 14502 /* 14503 * This function is used to both return an indication of whether or not 14504 * the packet received is a non-unicast packet (by way of the DL_UNITDATA_IND) 14505 * and in doing so, determine whether or not it is broadcast vs multicast. 14506 * For it to be a broadcast packet, we must have the appropriate mblk_t 14507 * hanging off the ill_t. If this is either not present or doesn't match 14508 * the destination mac address in the DL_UNITDATA_IND, the packet is deemed 14509 * to be multicast. Thus NICs that have no broadcast address (or no 14510 * capability for one, such as point to point links) cannot return as 14511 * the packet being broadcast. The use of HPE_BROADCAST/HPE_MULTICAST as 14512 * the return values simplifies the current use of the return value of this 14513 * function, which is to pass through the multicast/broadcast characteristic 14514 * to consumers of the netinfo/pfhooks API. While this is not cast in stone, 14515 * changing the return value to some other symbol demands the appropriate 14516 * "translation" when hpe_flags is set prior to calling hook_run() for 14517 * packet events. 14518 */ 14519 int 14520 ip_get_dlpi_mbcast(ill_t *ill, mblk_t *mb) 14521 { 14522 dl_unitdata_ind_t *ind = (dl_unitdata_ind_t *)mb->b_rptr; 14523 mblk_t *bmp; 14524 14525 if (ind->dl_group_address) { 14526 if (ind->dl_dest_addr_offset > sizeof (*ind) && 14527 ind->dl_dest_addr_offset + ind->dl_dest_addr_length < 14528 MBLKL(mb) && 14529 (bmp = ill->ill_bcast_mp) != NULL) { 14530 dl_unitdata_req_t *dlur; 14531 uint8_t *bphys_addr; 14532 14533 dlur = (dl_unitdata_req_t *)bmp->b_rptr; 14534 if (ill->ill_sap_length < 0) 14535 bphys_addr = (uchar_t *)dlur + 14536 dlur->dl_dest_addr_offset; 14537 else 14538 bphys_addr = (uchar_t *)dlur + 14539 dlur->dl_dest_addr_offset + 14540 ill->ill_sap_length; 14541 14542 if (bcmp(mb->b_rptr + ind->dl_dest_addr_offset, 14543 bphys_addr, ind->dl_dest_addr_length) == 0) { 14544 return (HPE_BROADCAST); 14545 } 14546 return (HPE_MULTICAST); 14547 } 14548 return (HPE_MULTICAST); 14549 } 14550 return (0); 14551 } 14552 14553 static boolean_t 14554 ip_rput_process_notdata(queue_t *q, mblk_t **first_mpp, ill_t *ill, 14555 int *ll_multicast, mblk_t **mpp) 14556 { 14557 mblk_t *mp1, *from_mp, *to_mp, *mp, *first_mp; 14558 boolean_t must_copy = B_FALSE; 14559 struct iocblk *iocp; 14560 ipha_t *ipha; 14561 ip_stack_t *ipst = ill->ill_ipst; 14562 14563 #define rptr ((uchar_t *)ipha) 14564 14565 first_mp = *first_mpp; 14566 mp = *mpp; 14567 14568 ASSERT(first_mp == mp); 14569 14570 /* 14571 * if db_ref > 1 then copymsg and free original. Packet may be 14572 * changed and do not want other entity who has a reference to this 14573 * message to trip over the changes. This is a blind change because 14574 * trying to catch all places that might change packet is too 14575 * difficult (since it may be a module above this one) 14576 * 14577 * This corresponds to the non-fast path case. We walk down the full 14578 * chain in this case, and check the db_ref count of all the dblks, 14579 * and do a copymsg if required. It is possible that the db_ref counts 14580 * of the data blocks in the mblk chain can be different. 14581 * For Example, we can get a DL_UNITDATA_IND(M_PROTO) with a db_ref 14582 * count of 1, followed by a M_DATA block with a ref count of 2, if 14583 * 'snoop' is running. 14584 */ 14585 for (mp1 = mp; mp1 != NULL; mp1 = mp1->b_cont) { 14586 if (mp1->b_datap->db_ref > 1) { 14587 must_copy = B_TRUE; 14588 break; 14589 } 14590 } 14591 14592 if (must_copy) { 14593 mp1 = copymsg(mp); 14594 if (mp1 == NULL) { 14595 for (mp1 = mp; mp1 != NULL; 14596 mp1 = mp1->b_cont) { 14597 mp1->b_next = NULL; 14598 mp1->b_prev = NULL; 14599 } 14600 freemsg(mp); 14601 if (ill != NULL) { 14602 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14603 } else { 14604 BUMP_MIB(&ipst->ips_ip_mib, 14605 ipIfStatsInDiscards); 14606 } 14607 return (B_TRUE); 14608 } 14609 for (from_mp = mp, to_mp = mp1; from_mp != NULL; 14610 from_mp = from_mp->b_cont, to_mp = to_mp->b_cont) { 14611 /* Copy b_prev - used by ip_mroute_decap */ 14612 to_mp->b_prev = from_mp->b_prev; 14613 from_mp->b_prev = NULL; 14614 } 14615 *first_mpp = first_mp = mp1; 14616 freemsg(mp); 14617 mp = mp1; 14618 *mpp = mp1; 14619 } 14620 14621 ipha = (ipha_t *)mp->b_rptr; 14622 14623 /* 14624 * previous code has a case for M_DATA. 14625 * We want to check how that happens. 14626 */ 14627 ASSERT(first_mp->b_datap->db_type != M_DATA); 14628 switch (first_mp->b_datap->db_type) { 14629 case M_PROTO: 14630 case M_PCPROTO: 14631 if (((dl_unitdata_ind_t *)rptr)->dl_primitive != 14632 DL_UNITDATA_IND) { 14633 /* Go handle anything other than data elsewhere. */ 14634 ip_rput_dlpi(q, mp); 14635 return (B_TRUE); 14636 } 14637 14638 *ll_multicast = ip_get_dlpi_mbcast(ill, mp); 14639 /* Ditch the DLPI header. */ 14640 mp1 = mp->b_cont; 14641 ASSERT(first_mp == mp); 14642 *first_mpp = mp1; 14643 freeb(mp); 14644 *mpp = mp1; 14645 return (B_FALSE); 14646 case M_IOCACK: 14647 ip1dbg(("got iocack ")); 14648 iocp = (struct iocblk *)mp->b_rptr; 14649 switch (iocp->ioc_cmd) { 14650 case DL_IOC_HDR_INFO: 14651 ill = (ill_t *)q->q_ptr; 14652 ill_fastpath_ack(ill, mp); 14653 return (B_TRUE); 14654 case SIOCSTUNPARAM: 14655 case OSIOCSTUNPARAM: 14656 /* Go through qwriter_ip */ 14657 break; 14658 case SIOCGTUNPARAM: 14659 case OSIOCGTUNPARAM: 14660 ip_rput_other(NULL, q, mp, NULL); 14661 return (B_TRUE); 14662 default: 14663 putnext(q, mp); 14664 return (B_TRUE); 14665 } 14666 /* FALLTHRU */ 14667 case M_ERROR: 14668 case M_HANGUP: 14669 /* 14670 * Since this is on the ill stream we unconditionally 14671 * bump up the refcount 14672 */ 14673 ill_refhold(ill); 14674 qwriter_ip(ill, q, mp, ip_rput_other, CUR_OP, B_FALSE); 14675 return (B_TRUE); 14676 case M_CTL: 14677 if ((MBLKL(first_mp) >= sizeof (da_ipsec_t)) && 14678 (((da_ipsec_t *)first_mp->b_rptr)->da_type == 14679 IPHADA_M_CTL)) { 14680 /* 14681 * It's an IPsec accelerated packet. 14682 * Make sure that the ill from which we received the 14683 * packet has enabled IPsec hardware acceleration. 14684 */ 14685 if (!(ill->ill_capabilities & 14686 (ILL_CAPAB_AH|ILL_CAPAB_ESP))) { 14687 /* IPsec kstats: bean counter */ 14688 freemsg(mp); 14689 return (B_TRUE); 14690 } 14691 14692 /* 14693 * Make mp point to the mblk following the M_CTL, 14694 * then process according to type of mp. 14695 * After this processing, first_mp will point to 14696 * the data-attributes and mp to the pkt following 14697 * the M_CTL. 14698 */ 14699 mp = first_mp->b_cont; 14700 if (mp == NULL) { 14701 freemsg(first_mp); 14702 return (B_TRUE); 14703 } 14704 /* 14705 * A Hardware Accelerated packet can only be M_DATA 14706 * ESP or AH packet. 14707 */ 14708 if (mp->b_datap->db_type != M_DATA) { 14709 /* non-M_DATA IPsec accelerated packet */ 14710 IPSECHW_DEBUG(IPSECHW_PKT, 14711 ("non-M_DATA IPsec accelerated pkt\n")); 14712 freemsg(first_mp); 14713 return (B_TRUE); 14714 } 14715 ipha = (ipha_t *)mp->b_rptr; 14716 if (ipha->ipha_protocol != IPPROTO_AH && 14717 ipha->ipha_protocol != IPPROTO_ESP) { 14718 IPSECHW_DEBUG(IPSECHW_PKT, 14719 ("non-M_DATA IPsec accelerated pkt\n")); 14720 freemsg(first_mp); 14721 return (B_TRUE); 14722 } 14723 *mpp = mp; 14724 return (B_FALSE); 14725 } 14726 putnext(q, mp); 14727 return (B_TRUE); 14728 case M_IOCNAK: 14729 ip1dbg(("got iocnak ")); 14730 iocp = (struct iocblk *)mp->b_rptr; 14731 switch (iocp->ioc_cmd) { 14732 case SIOCSTUNPARAM: 14733 case OSIOCSTUNPARAM: 14734 /* 14735 * Since this is on the ill stream we unconditionally 14736 * bump up the refcount 14737 */ 14738 ill_refhold(ill); 14739 qwriter_ip(ill, q, mp, ip_rput_other, CUR_OP, B_FALSE); 14740 return (B_TRUE); 14741 case DL_IOC_HDR_INFO: 14742 case SIOCGTUNPARAM: 14743 case OSIOCGTUNPARAM: 14744 ip_rput_other(NULL, q, mp, NULL); 14745 return (B_TRUE); 14746 default: 14747 break; 14748 } 14749 /* FALLTHRU */ 14750 default: 14751 putnext(q, mp); 14752 return (B_TRUE); 14753 } 14754 } 14755 14756 /* Read side put procedure. Packets coming from the wire arrive here. */ 14757 void 14758 ip_rput(queue_t *q, mblk_t *mp) 14759 { 14760 ill_t *ill; 14761 union DL_primitives *dl; 14762 14763 TRACE_1(TR_FAC_IP, TR_IP_RPUT_START, "ip_rput_start: q %p", q); 14764 14765 ill = (ill_t *)q->q_ptr; 14766 14767 if (ill->ill_state_flags & (ILL_CONDEMNED | ILL_LL_SUBNET_PENDING)) { 14768 /* 14769 * If things are opening or closing, only accept high-priority 14770 * DLPI messages. (On open ill->ill_ipif has not yet been 14771 * created; on close, things hanging off the ill may have been 14772 * freed already.) 14773 */ 14774 dl = (union DL_primitives *)mp->b_rptr; 14775 if (DB_TYPE(mp) != M_PCPROTO || 14776 dl->dl_primitive == DL_UNITDATA_IND) { 14777 /* 14778 * SIOC[GS]TUNPARAM ioctls can come here. 14779 */ 14780 inet_freemsg(mp); 14781 TRACE_2(TR_FAC_IP, TR_IP_RPUT_END, 14782 "ip_rput_end: q %p (%S)", q, "uninit"); 14783 return; 14784 } 14785 } 14786 14787 TRACE_2(TR_FAC_IP, TR_IP_RPUT_END, 14788 "ip_rput_end: q %p (%S)", q, "end"); 14789 14790 ip_input(ill, NULL, mp, NULL); 14791 } 14792 14793 static mblk_t * 14794 ip_fix_dbref(ill_t *ill, mblk_t *mp) 14795 { 14796 mblk_t *mp1; 14797 boolean_t adjusted = B_FALSE; 14798 ip_stack_t *ipst = ill->ill_ipst; 14799 14800 IP_STAT(ipst, ip_db_ref); 14801 /* 14802 * The IP_RECVSLLA option depends on having the 14803 * link layer header. First check that: 14804 * a> the underlying device is of type ether, 14805 * since this option is currently supported only 14806 * over ethernet. 14807 * b> there is enough room to copy over the link 14808 * layer header. 14809 * 14810 * Once the checks are done, adjust rptr so that 14811 * the link layer header will be copied via 14812 * copymsg. Note that, IFT_ETHER may be returned 14813 * by some non-ethernet drivers but in this case 14814 * the second check will fail. 14815 */ 14816 if (ill->ill_type == IFT_ETHER && 14817 (mp->b_rptr - mp->b_datap->db_base) >= 14818 sizeof (struct ether_header)) { 14819 mp->b_rptr -= sizeof (struct ether_header); 14820 adjusted = B_TRUE; 14821 } 14822 mp1 = copymsg(mp); 14823 14824 if (mp1 == NULL) { 14825 mp->b_next = NULL; 14826 /* clear b_prev - used by ip_mroute_decap */ 14827 mp->b_prev = NULL; 14828 freemsg(mp); 14829 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14830 return (NULL); 14831 } 14832 14833 if (adjusted) { 14834 /* 14835 * Copy is done. Restore the pointer in 14836 * the _new_ mblk 14837 */ 14838 mp1->b_rptr += sizeof (struct ether_header); 14839 } 14840 14841 /* Copy b_prev - used by ip_mroute_decap */ 14842 mp1->b_prev = mp->b_prev; 14843 mp->b_prev = NULL; 14844 14845 /* preserve the hardware checksum flags and data, if present */ 14846 if (DB_CKSUMFLAGS(mp) != 0) { 14847 DB_CKSUMFLAGS(mp1) = DB_CKSUMFLAGS(mp); 14848 DB_CKSUMSTART(mp1) = DB_CKSUMSTART(mp); 14849 DB_CKSUMSTUFF(mp1) = DB_CKSUMSTUFF(mp); 14850 DB_CKSUMEND(mp1) = DB_CKSUMEND(mp); 14851 DB_CKSUM16(mp1) = DB_CKSUM16(mp); 14852 } 14853 14854 freemsg(mp); 14855 return (mp1); 14856 } 14857 14858 #define ADD_TO_CHAIN(head, tail, cnt, mp) { \ 14859 if (tail != NULL) \ 14860 tail->b_next = mp; \ 14861 else \ 14862 head = mp; \ 14863 tail = mp; \ 14864 cnt++; \ 14865 } 14866 14867 /* 14868 * Direct read side procedure capable of dealing with chains. GLDv3 based 14869 * drivers call this function directly with mblk chains while STREAMS 14870 * read side procedure ip_rput() calls this for single packet with ip_ring 14871 * set to NULL to process one packet at a time. 14872 * 14873 * The ill will always be valid if this function is called directly from 14874 * the driver. 14875 * 14876 * If ip_input() is called from GLDv3: 14877 * 14878 * - This must be a non-VLAN IP stream. 14879 * - 'mp' is either an untagged or a special priority-tagged packet. 14880 * - Any VLAN tag that was in the MAC header has been stripped. 14881 * 14882 * If the IP header in packet is not 32-bit aligned, every message in the 14883 * chain will be aligned before further operations. This is required on SPARC 14884 * platform. 14885 */ 14886 /* ARGSUSED */ 14887 void 14888 ip_input(ill_t *ill, ill_rx_ring_t *ip_ring, mblk_t *mp_chain, 14889 struct mac_header_info_s *mhip) 14890 { 14891 ipaddr_t dst = NULL; 14892 ipaddr_t prev_dst; 14893 ire_t *ire = NULL; 14894 ipha_t *ipha; 14895 uint_t pkt_len; 14896 ssize_t len; 14897 uint_t opt_len; 14898 int ll_multicast; 14899 int cgtp_flt_pkt; 14900 queue_t *q = ill->ill_rq; 14901 squeue_t *curr_sqp = NULL; 14902 mblk_t *head = NULL; 14903 mblk_t *tail = NULL; 14904 mblk_t *first_mp; 14905 int cnt = 0; 14906 ip_stack_t *ipst = ill->ill_ipst; 14907 mblk_t *mp; 14908 mblk_t *dmp; 14909 uint8_t tag; 14910 14911 ASSERT(mp_chain != NULL); 14912 ASSERT(ill != NULL); 14913 14914 TRACE_1(TR_FAC_IP, TR_IP_RPUT_START, "ip_input_start: q %p", q); 14915 14916 tag = (ip_ring != NULL) ? SQTAG_IP_INPUT_RX_RING : SQTAG_IP_INPUT; 14917 14918 #define rptr ((uchar_t *)ipha) 14919 14920 while (mp_chain != NULL) { 14921 mp = mp_chain; 14922 mp_chain = mp_chain->b_next; 14923 mp->b_next = NULL; 14924 ll_multicast = 0; 14925 14926 /* 14927 * We do ire caching from one iteration to 14928 * another. In the event the packet chain contains 14929 * all packets from the same dst, this caching saves 14930 * an ire_cache_lookup for each of the succeeding 14931 * packets in a packet chain. 14932 */ 14933 prev_dst = dst; 14934 14935 /* 14936 * if db_ref > 1 then copymsg and free original. Packet 14937 * may be changed and we do not want the other entity 14938 * who has a reference to this message to trip over the 14939 * changes. This is a blind change because trying to 14940 * catch all places that might change the packet is too 14941 * difficult. 14942 * 14943 * This corresponds to the fast path case, where we have 14944 * a chain of M_DATA mblks. We check the db_ref count 14945 * of only the 1st data block in the mblk chain. There 14946 * doesn't seem to be a reason why a device driver would 14947 * send up data with varying db_ref counts in the mblk 14948 * chain. In any case the Fast path is a private 14949 * interface, and our drivers don't do such a thing. 14950 * Given the above assumption, there is no need to walk 14951 * down the entire mblk chain (which could have a 14952 * potential performance problem) 14953 * 14954 * The "(DB_REF(mp) > 1)" check was moved from ip_rput() 14955 * to here because of exclusive ip stacks and vnics. 14956 * Packets transmitted from exclusive stack over vnic 14957 * can have db_ref > 1 and when it gets looped back to 14958 * another vnic in a different zone, you have ip_input() 14959 * getting dblks with db_ref > 1. So if someone 14960 * complains of TCP performance under this scenario, 14961 * take a serious look here on the impact of copymsg(). 14962 */ 14963 14964 if (DB_REF(mp) > 1) { 14965 if ((mp = ip_fix_dbref(ill, mp)) == NULL) 14966 continue; 14967 } 14968 14969 /* 14970 * Check and align the IP header. 14971 */ 14972 first_mp = mp; 14973 if (DB_TYPE(mp) == M_DATA) { 14974 dmp = mp; 14975 } else if (DB_TYPE(mp) == M_PROTO && 14976 *(t_uscalar_t *)mp->b_rptr == DL_UNITDATA_IND) { 14977 dmp = mp->b_cont; 14978 } else { 14979 dmp = NULL; 14980 } 14981 if (dmp != NULL) { 14982 /* 14983 * IP header ptr not aligned? 14984 * OR IP header not complete in first mblk 14985 */ 14986 if (!OK_32PTR(dmp->b_rptr) || 14987 MBLKL(dmp) < IP_SIMPLE_HDR_LENGTH) { 14988 if (!ip_check_and_align_header(q, dmp, ipst)) 14989 continue; 14990 } 14991 } 14992 14993 /* 14994 * ip_input fast path 14995 */ 14996 14997 /* mblk type is not M_DATA */ 14998 if (DB_TYPE(mp) != M_DATA) { 14999 if (ip_rput_process_notdata(q, &first_mp, ill, 15000 &ll_multicast, &mp)) 15001 continue; 15002 15003 /* 15004 * The only way we can get here is if we had a 15005 * packet that was either a DL_UNITDATA_IND or 15006 * an M_CTL for an IPsec accelerated packet. 15007 * 15008 * In either case, the first_mp will point to 15009 * the leading M_PROTO or M_CTL. 15010 */ 15011 ASSERT(first_mp != NULL); 15012 } else if (mhip != NULL) { 15013 /* 15014 * ll_multicast is set here so that it is ready 15015 * for easy use with FW_HOOKS(). ip_get_dlpi_mbcast 15016 * manipulates ll_multicast in the same fashion when 15017 * called from ip_rput_process_notdata. 15018 */ 15019 switch (mhip->mhi_dsttype) { 15020 case MAC_ADDRTYPE_MULTICAST : 15021 ll_multicast = HPE_MULTICAST; 15022 break; 15023 case MAC_ADDRTYPE_BROADCAST : 15024 ll_multicast = HPE_BROADCAST; 15025 break; 15026 default : 15027 break; 15028 } 15029 } 15030 15031 /* Only M_DATA can come here and it is always aligned */ 15032 ASSERT(DB_TYPE(mp) == M_DATA); 15033 ASSERT(DB_REF(mp) == 1 && OK_32PTR(mp->b_rptr)); 15034 15035 ipha = (ipha_t *)mp->b_rptr; 15036 len = mp->b_wptr - rptr; 15037 pkt_len = ntohs(ipha->ipha_length); 15038 15039 /* 15040 * We must count all incoming packets, even if they end 15041 * up being dropped later on. 15042 */ 15043 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInReceives); 15044 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCInOctets, pkt_len); 15045 15046 /* multiple mblk or too short */ 15047 len -= pkt_len; 15048 if (len != 0) { 15049 /* 15050 * Make sure we have data length consistent 15051 * with the IP header. 15052 */ 15053 if (mp->b_cont == NULL) { 15054 if (len < 0 || pkt_len < IP_SIMPLE_HDR_LENGTH) { 15055 BUMP_MIB(ill->ill_ip_mib, 15056 ipIfStatsInHdrErrors); 15057 ip2dbg(("ip_input: drop pkt\n")); 15058 freemsg(mp); 15059 continue; 15060 } 15061 mp->b_wptr = rptr + pkt_len; 15062 } else if ((len += msgdsize(mp->b_cont)) != 0) { 15063 if (len < 0 || pkt_len < IP_SIMPLE_HDR_LENGTH) { 15064 BUMP_MIB(ill->ill_ip_mib, 15065 ipIfStatsInHdrErrors); 15066 ip2dbg(("ip_input: drop pkt\n")); 15067 freemsg(mp); 15068 continue; 15069 } 15070 (void) adjmsg(mp, -len); 15071 IP_STAT(ipst, ip_multimblk3); 15072 } 15073 } 15074 15075 /* Obtain the dst of the current packet */ 15076 dst = ipha->ipha_dst; 15077 15078 DTRACE_IP7(receive, mblk_t *, first_mp, conn_t *, NULL, 15079 void_ip_t *, ipha, __dtrace_ipsr_ill_t *, ill, ipha_t *, 15080 ipha, ip6_t *, NULL, int, 0); 15081 15082 /* 15083 * The following test for loopback is faster than 15084 * IP_LOOPBACK_ADDR(), because it avoids any bitwise 15085 * operations. 15086 * Note that these addresses are always in network byte order 15087 */ 15088 if (((*(uchar_t *)&ipha->ipha_dst) == 127) || 15089 ((*(uchar_t *)&ipha->ipha_src) == 127)) { 15090 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInAddrErrors); 15091 freemsg(mp); 15092 continue; 15093 } 15094 15095 /* 15096 * The event for packets being received from a 'physical' 15097 * interface is placed after validation of the source and/or 15098 * destination address as being local so that packets can be 15099 * redirected to loopback addresses using ipnat. 15100 */ 15101 DTRACE_PROBE4(ip4__physical__in__start, 15102 ill_t *, ill, ill_t *, NULL, 15103 ipha_t *, ipha, mblk_t *, first_mp); 15104 15105 FW_HOOKS(ipst->ips_ip4_physical_in_event, 15106 ipst->ips_ipv4firewall_physical_in, 15107 ill, NULL, ipha, first_mp, mp, ll_multicast, ipst); 15108 15109 DTRACE_PROBE1(ip4__physical__in__end, mblk_t *, first_mp); 15110 15111 if (first_mp == NULL) { 15112 continue; 15113 } 15114 dst = ipha->ipha_dst; 15115 /* 15116 * Attach any necessary label information to 15117 * this packet 15118 */ 15119 if (is_system_labeled() && 15120 !tsol_get_pkt_label(mp, IPV4_VERSION)) { 15121 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 15122 freemsg(mp); 15123 continue; 15124 } 15125 15126 if (ipst->ips_ipobs_enabled) { 15127 zoneid_t dzone; 15128 15129 /* 15130 * On the inbound path the src zone will be unknown as 15131 * this packet has come from the wire. 15132 */ 15133 dzone = ip_get_zoneid_v4(dst, mp, ipst, ALL_ZONES); 15134 ipobs_hook(mp, IPOBS_HOOK_INBOUND, ALL_ZONES, dzone, 15135 ill, IPV4_VERSION, 0, ipst); 15136 } 15137 15138 /* 15139 * Reuse the cached ire only if the ipha_dst of the previous 15140 * packet is the same as the current packet AND it is not 15141 * INADDR_ANY. 15142 */ 15143 if (!(dst == prev_dst && dst != INADDR_ANY) && 15144 (ire != NULL)) { 15145 ire_refrele(ire); 15146 ire = NULL; 15147 } 15148 15149 opt_len = ipha->ipha_version_and_hdr_length - 15150 IP_SIMPLE_HDR_VERSION; 15151 15152 /* 15153 * Check to see if we can take the fastpath. 15154 * That is possible if the following conditions are met 15155 * o Tsol disabled 15156 * o CGTP disabled 15157 * o ipp_action_count is 0 15158 * o no options in the packet 15159 * o not a RSVP packet 15160 * o not a multicast packet 15161 * o ill not in IP_DHCPINIT_IF mode 15162 */ 15163 if (!is_system_labeled() && 15164 !ipst->ips_ip_cgtp_filter && ipp_action_count == 0 && 15165 opt_len == 0 && ipha->ipha_protocol != IPPROTO_RSVP && 15166 !ll_multicast && !CLASSD(dst) && ill->ill_dhcpinit == 0) { 15167 if (ire == NULL) 15168 ire = ire_cache_lookup_simple(dst, ipst); 15169 /* 15170 * Unless forwarding is enabled, dont call 15171 * ip_fast_forward(). Incoming packet is for forwarding 15172 */ 15173 if ((ill->ill_flags & ILLF_ROUTER) && 15174 (ire == NULL || (ire->ire_type & IRE_CACHE))) { 15175 ire = ip_fast_forward(ire, dst, ill, mp); 15176 continue; 15177 } 15178 /* incoming packet is for local consumption */ 15179 if ((ire != NULL) && (ire->ire_type & IRE_LOCAL)) 15180 goto local; 15181 } 15182 15183 /* 15184 * Disable ire caching for anything more complex 15185 * than the simple fast path case we checked for above. 15186 */ 15187 if (ire != NULL) { 15188 ire_refrele(ire); 15189 ire = NULL; 15190 } 15191 15192 /* 15193 * Brutal hack for DHCPv4 unicast: RFC2131 allows a DHCP 15194 * server to unicast DHCP packets to a DHCP client using the 15195 * IP address it is offering to the client. This can be 15196 * disabled through the "broadcast bit", but not all DHCP 15197 * servers honor that bit. Therefore, to interoperate with as 15198 * many DHCP servers as possible, the DHCP client allows the 15199 * server to unicast, but we treat those packets as broadcast 15200 * here. Note that we don't rewrite the packet itself since 15201 * (a) that would mess up the checksums and (b) the DHCP 15202 * client conn is bound to INADDR_ANY so ip_fanout_udp() will 15203 * hand it the packet regardless. 15204 */ 15205 if (ill->ill_dhcpinit != 0 && 15206 IS_SIMPLE_IPH(ipha) && ipha->ipha_protocol == IPPROTO_UDP && 15207 pullupmsg(mp, sizeof (ipha_t) + sizeof (udpha_t)) == 1) { 15208 udpha_t *udpha; 15209 15210 /* 15211 * Reload ipha since pullupmsg() can change b_rptr. 15212 */ 15213 ipha = (ipha_t *)mp->b_rptr; 15214 udpha = (udpha_t *)&ipha[1]; 15215 15216 if (ntohs(udpha->uha_dst_port) == IPPORT_BOOTPC) { 15217 DTRACE_PROBE2(ip4__dhcpinit__pkt, ill_t *, ill, 15218 mblk_t *, mp); 15219 dst = INADDR_BROADCAST; 15220 } 15221 } 15222 15223 /* Full-blown slow path */ 15224 if (opt_len != 0) { 15225 if (len != 0) 15226 IP_STAT(ipst, ip_multimblk4); 15227 else 15228 IP_STAT(ipst, ip_ipoptions); 15229 if (!ip_rput_multimblk_ipoptions(q, ill, mp, &ipha, 15230 &dst, ipst)) 15231 continue; 15232 } 15233 15234 /* 15235 * Invoke the CGTP (multirouting) filtering module to process 15236 * the incoming packet. Packets identified as duplicates 15237 * must be discarded. Filtering is active only if the 15238 * the ip_cgtp_filter ndd variable is non-zero. 15239 */ 15240 cgtp_flt_pkt = CGTP_IP_PKT_NOT_CGTP; 15241 if (ipst->ips_ip_cgtp_filter && 15242 ipst->ips_ip_cgtp_filter_ops != NULL) { 15243 netstackid_t stackid; 15244 15245 stackid = ipst->ips_netstack->netstack_stackid; 15246 cgtp_flt_pkt = 15247 ipst->ips_ip_cgtp_filter_ops->cfo_filter(stackid, 15248 ill->ill_phyint->phyint_ifindex, mp); 15249 if (cgtp_flt_pkt == CGTP_IP_PKT_DUPLICATE) { 15250 freemsg(first_mp); 15251 continue; 15252 } 15253 } 15254 15255 /* 15256 * If rsvpd is running, let RSVP daemon handle its processing 15257 * and forwarding of RSVP multicast/unicast packets. 15258 * If rsvpd is not running but mrouted is running, RSVP 15259 * multicast packets are forwarded as multicast traffic 15260 * and RSVP unicast packets are forwarded by unicast router. 15261 * If neither rsvpd nor mrouted is running, RSVP multicast 15262 * packets are not forwarded, but the unicast packets are 15263 * forwarded like unicast traffic. 15264 */ 15265 if (ipha->ipha_protocol == IPPROTO_RSVP && 15266 ipst->ips_ipcl_proto_fanout[IPPROTO_RSVP].connf_head != 15267 NULL) { 15268 /* RSVP packet and rsvpd running. Treat as ours */ 15269 ip2dbg(("ip_input: RSVP for us: 0x%x\n", ntohl(dst))); 15270 /* 15271 * This assumes that we deliver to all streams for 15272 * multicast and broadcast packets. 15273 * We have to force ll_multicast to 1 to handle the 15274 * M_DATA messages passed in from ip_mroute_decap. 15275 */ 15276 dst = INADDR_BROADCAST; 15277 ll_multicast = 1; 15278 } else if (CLASSD(dst)) { 15279 /* packet is multicast */ 15280 mp->b_next = NULL; 15281 if (ip_rput_process_multicast(q, mp, ill, ipha, 15282 &ll_multicast, &dst)) 15283 continue; 15284 } 15285 15286 if (ire == NULL) { 15287 ire = ire_cache_lookup(dst, ALL_ZONES, 15288 msg_getlabel(mp), ipst); 15289 } 15290 15291 if (ire != NULL && ire->ire_stq != NULL && 15292 ire->ire_zoneid != GLOBAL_ZONEID && 15293 ire->ire_zoneid != ALL_ZONES) { 15294 /* 15295 * Should only use IREs that are visible from the 15296 * global zone for forwarding. 15297 */ 15298 ire_refrele(ire); 15299 ire = ire_cache_lookup(dst, GLOBAL_ZONEID, 15300 msg_getlabel(mp), ipst); 15301 } 15302 15303 if (ire == NULL) { 15304 /* 15305 * No IRE for this destination, so it can't be for us. 15306 * Unless we are forwarding, drop the packet. 15307 * We have to let source routed packets through 15308 * since we don't yet know if they are 'ping -l' 15309 * packets i.e. if they will go out over the 15310 * same interface as they came in on. 15311 */ 15312 ire = ip_rput_noire(q, mp, ll_multicast, dst); 15313 if (ire == NULL) 15314 continue; 15315 } 15316 15317 /* 15318 * Broadcast IRE may indicate either broadcast or 15319 * multicast packet 15320 */ 15321 if (ire->ire_type == IRE_BROADCAST) { 15322 /* 15323 * Skip broadcast checks if packet is UDP multicast; 15324 * we'd rather not enter ip_rput_process_broadcast() 15325 * unless the packet is broadcast for real, since 15326 * that routine is a no-op for multicast. 15327 */ 15328 if (ipha->ipha_protocol != IPPROTO_UDP || 15329 !CLASSD(ipha->ipha_dst)) { 15330 ire = ip_rput_process_broadcast(&q, mp, 15331 ire, ipha, ill, dst, cgtp_flt_pkt, 15332 ll_multicast); 15333 if (ire == NULL) 15334 continue; 15335 } 15336 } else if (ire->ire_stq != NULL) { 15337 /* fowarding? */ 15338 ip_rput_process_forward(q, mp, ire, ipha, ill, 15339 ll_multicast, B_FALSE); 15340 /* ip_rput_process_forward consumed the packet */ 15341 continue; 15342 } 15343 15344 local: 15345 /* 15346 * If the queue in the ire is different to the ingress queue 15347 * then we need to check to see if we can accept the packet. 15348 * Note that for multicast packets and broadcast packets sent 15349 * to a broadcast address which is shared between multiple 15350 * interfaces we should not do this since we just got a random 15351 * broadcast ire. 15352 */ 15353 if ((ire->ire_rfq != q) && (ire->ire_type != IRE_BROADCAST)) { 15354 ire = ip_check_multihome(&ipha->ipha_dst, ire, ill); 15355 if (ire == NULL) { 15356 /* Drop packet */ 15357 BUMP_MIB(ill->ill_ip_mib, 15358 ipIfStatsForwProhibits); 15359 freemsg(mp); 15360 continue; 15361 } 15362 if (ire->ire_rfq != NULL) 15363 q = ire->ire_rfq; 15364 } 15365 15366 switch (ipha->ipha_protocol) { 15367 case IPPROTO_TCP: 15368 ASSERT(first_mp == mp); 15369 if ((mp = ip_tcp_input(mp, ipha, ill, B_FALSE, ire, 15370 mp, 0, q, ip_ring)) != NULL) { 15371 if (curr_sqp == NULL) { 15372 curr_sqp = GET_SQUEUE(mp); 15373 ASSERT(cnt == 0); 15374 cnt++; 15375 head = tail = mp; 15376 } else if (curr_sqp == GET_SQUEUE(mp)) { 15377 ASSERT(tail != NULL); 15378 cnt++; 15379 tail->b_next = mp; 15380 tail = mp; 15381 } else { 15382 /* 15383 * A different squeue. Send the 15384 * chain for the previous squeue on 15385 * its way. This shouldn't happen 15386 * often unless interrupt binding 15387 * changes. 15388 */ 15389 IP_STAT(ipst, ip_input_multi_squeue); 15390 SQUEUE_ENTER(curr_sqp, head, 15391 tail, cnt, SQ_PROCESS, tag); 15392 curr_sqp = GET_SQUEUE(mp); 15393 head = mp; 15394 tail = mp; 15395 cnt = 1; 15396 } 15397 } 15398 continue; 15399 case IPPROTO_UDP: 15400 ASSERT(first_mp == mp); 15401 ip_udp_input(q, mp, ipha, ire, ill); 15402 continue; 15403 case IPPROTO_SCTP: 15404 ASSERT(first_mp == mp); 15405 ip_sctp_input(mp, ipha, ill, B_FALSE, ire, mp, 0, 15406 q, dst); 15407 /* ire has been released by ip_sctp_input */ 15408 ire = NULL; 15409 continue; 15410 default: 15411 ip_proto_input(q, first_mp, ipha, ire, ill, 0); 15412 continue; 15413 } 15414 } 15415 15416 if (ire != NULL) 15417 ire_refrele(ire); 15418 15419 if (head != NULL) 15420 SQUEUE_ENTER(curr_sqp, head, tail, cnt, SQ_PROCESS, tag); 15421 15422 TRACE_2(TR_FAC_IP, TR_IP_RPUT_END, 15423 "ip_input_end: q %p (%S)", q, "end"); 15424 #undef rptr 15425 } 15426 15427 /* 15428 * ip_accept_tcp() - This function is called by the squeue when it retrieves 15429 * a chain of packets in the poll mode. The packets have gone through the 15430 * data link processing but not IP processing. For performance and latency 15431 * reasons, the squeue wants to process the chain in line instead of feeding 15432 * it back via ip_input path. 15433 * 15434 * So this is a light weight function which checks to see if the packets 15435 * retrived are indeed TCP packets (TCP squeue always polls TCP soft ring 15436 * but we still do the paranoid check) meant for local machine and we don't 15437 * have labels etc enabled. Packets that meet the criterion are returned to 15438 * the squeue and processed inline while the rest go via ip_input path. 15439 */ 15440 /*ARGSUSED*/ 15441 mblk_t * 15442 ip_accept_tcp(ill_t *ill, ill_rx_ring_t *ip_ring, squeue_t *target_sqp, 15443 mblk_t *mp_chain, mblk_t **last, uint_t *cnt) 15444 { 15445 mblk_t *mp; 15446 ipaddr_t dst = NULL; 15447 ipaddr_t prev_dst; 15448 ire_t *ire = NULL; 15449 ipha_t *ipha; 15450 uint_t pkt_len; 15451 ssize_t len; 15452 uint_t opt_len; 15453 queue_t *q = ill->ill_rq; 15454 squeue_t *curr_sqp; 15455 mblk_t *ahead = NULL; /* Accepted head */ 15456 mblk_t *atail = NULL; /* Accepted tail */ 15457 uint_t acnt = 0; /* Accepted count */ 15458 mblk_t *utail = NULL; /* Unaccepted head */ 15459 mblk_t *uhead = NULL; /* Unaccepted tail */ 15460 uint_t ucnt = 0; /* Unaccepted cnt */ 15461 ip_stack_t *ipst = ill->ill_ipst; 15462 15463 *cnt = 0; 15464 15465 ASSERT(ill != NULL); 15466 ASSERT(ip_ring != NULL); 15467 15468 TRACE_1(TR_FAC_IP, TR_IP_RPUT_START, "ip_accept_tcp: q %p", q); 15469 15470 #define rptr ((uchar_t *)ipha) 15471 15472 while (mp_chain != NULL) { 15473 mp = mp_chain; 15474 mp_chain = mp_chain->b_next; 15475 mp->b_next = NULL; 15476 15477 /* 15478 * We do ire caching from one iteration to 15479 * another. In the event the packet chain contains 15480 * all packets from the same dst, this caching saves 15481 * an ire_cache_lookup for each of the succeeding 15482 * packets in a packet chain. 15483 */ 15484 prev_dst = dst; 15485 15486 ipha = (ipha_t *)mp->b_rptr; 15487 len = mp->b_wptr - rptr; 15488 15489 ASSERT(!MBLK_RX_FANOUT_SLOWPATH(mp, ipha)); 15490 15491 /* 15492 * If it is a non TCP packet, or doesn't have H/W cksum, 15493 * or doesn't have min len, reject. 15494 */ 15495 if ((ipha->ipha_protocol != IPPROTO_TCP) || (len < 15496 (IP_SIMPLE_HDR_LENGTH + TCP_MIN_HEADER_LENGTH))) { 15497 ADD_TO_CHAIN(uhead, utail, ucnt, mp); 15498 continue; 15499 } 15500 15501 pkt_len = ntohs(ipha->ipha_length); 15502 if (len != pkt_len) { 15503 if (len > pkt_len) { 15504 mp->b_wptr = rptr + pkt_len; 15505 } else { 15506 ADD_TO_CHAIN(uhead, utail, ucnt, mp); 15507 continue; 15508 } 15509 } 15510 15511 opt_len = ipha->ipha_version_and_hdr_length - 15512 IP_SIMPLE_HDR_VERSION; 15513 dst = ipha->ipha_dst; 15514 15515 /* IP version bad or there are IP options */ 15516 if (opt_len && (!ip_rput_multimblk_ipoptions(q, ill, 15517 mp, &ipha, &dst, ipst))) 15518 continue; 15519 15520 if (is_system_labeled() || (ill->ill_dhcpinit != 0) || 15521 (ipst->ips_ip_cgtp_filter && 15522 ipst->ips_ip_cgtp_filter_ops != NULL)) { 15523 ADD_TO_CHAIN(uhead, utail, ucnt, mp); 15524 continue; 15525 } 15526 15527 /* 15528 * Reuse the cached ire only if the ipha_dst of the previous 15529 * packet is the same as the current packet AND it is not 15530 * INADDR_ANY. 15531 */ 15532 if (!(dst == prev_dst && dst != INADDR_ANY) && 15533 (ire != NULL)) { 15534 ire_refrele(ire); 15535 ire = NULL; 15536 } 15537 15538 if (ire == NULL) 15539 ire = ire_cache_lookup_simple(dst, ipst); 15540 15541 /* 15542 * Unless forwarding is enabled, dont call 15543 * ip_fast_forward(). Incoming packet is for forwarding 15544 */ 15545 if ((ill->ill_flags & ILLF_ROUTER) && 15546 (ire == NULL || (ire->ire_type & IRE_CACHE))) { 15547 15548 DTRACE_PROBE4(ip4__physical__in__start, 15549 ill_t *, ill, ill_t *, NULL, 15550 ipha_t *, ipha, mblk_t *, mp); 15551 15552 FW_HOOKS(ipst->ips_ip4_physical_in_event, 15553 ipst->ips_ipv4firewall_physical_in, 15554 ill, NULL, ipha, mp, mp, 0, ipst); 15555 15556 DTRACE_PROBE1(ip4__physical__in__end, mblk_t *, mp); 15557 15558 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInReceives); 15559 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCInOctets, 15560 pkt_len); 15561 15562 if (mp != NULL) 15563 ire = ip_fast_forward(ire, dst, ill, mp); 15564 continue; 15565 } 15566 15567 /* incoming packet is for local consumption */ 15568 if ((ire != NULL) && (ire->ire_type & IRE_LOCAL)) 15569 goto local_accept; 15570 15571 /* 15572 * Disable ire caching for anything more complex 15573 * than the simple fast path case we checked for above. 15574 */ 15575 if (ire != NULL) { 15576 ire_refrele(ire); 15577 ire = NULL; 15578 } 15579 15580 ire = ire_cache_lookup(dst, ALL_ZONES, msg_getlabel(mp), 15581 ipst); 15582 if (ire == NULL || ire->ire_type == IRE_BROADCAST || 15583 ire->ire_stq != NULL) { 15584 ADD_TO_CHAIN(uhead, utail, ucnt, mp); 15585 if (ire != NULL) { 15586 ire_refrele(ire); 15587 ire = NULL; 15588 } 15589 continue; 15590 } 15591 15592 local_accept: 15593 15594 if (ire->ire_rfq != q) { 15595 ADD_TO_CHAIN(uhead, utail, ucnt, mp); 15596 if (ire != NULL) { 15597 ire_refrele(ire); 15598 ire = NULL; 15599 } 15600 continue; 15601 } 15602 15603 /* 15604 * The event for packets being received from a 'physical' 15605 * interface is placed after validation of the source and/or 15606 * destination address as being local so that packets can be 15607 * redirected to loopback addresses using ipnat. 15608 */ 15609 DTRACE_PROBE4(ip4__physical__in__start, 15610 ill_t *, ill, ill_t *, NULL, 15611 ipha_t *, ipha, mblk_t *, mp); 15612 15613 FW_HOOKS(ipst->ips_ip4_physical_in_event, 15614 ipst->ips_ipv4firewall_physical_in, 15615 ill, NULL, ipha, mp, mp, 0, ipst); 15616 15617 DTRACE_PROBE1(ip4__physical__in__end, mblk_t *, mp); 15618 15619 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInReceives); 15620 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCInOctets, pkt_len); 15621 15622 if (mp != NULL && 15623 (mp = ip_tcp_input(mp, ipha, ill, B_FALSE, ire, mp, 15624 0, q, ip_ring)) != NULL) { 15625 if ((curr_sqp = GET_SQUEUE(mp)) == target_sqp) { 15626 ADD_TO_CHAIN(ahead, atail, acnt, mp); 15627 } else { 15628 SQUEUE_ENTER(curr_sqp, mp, mp, 1, 15629 SQ_FILL, SQTAG_IP_INPUT); 15630 } 15631 } 15632 } 15633 15634 if (ire != NULL) 15635 ire_refrele(ire); 15636 15637 if (uhead != NULL) 15638 ip_input(ill, ip_ring, uhead, NULL); 15639 15640 if (ahead != NULL) { 15641 *last = atail; 15642 *cnt = acnt; 15643 return (ahead); 15644 } 15645 15646 return (NULL); 15647 #undef rptr 15648 } 15649 15650 static void 15651 ip_dlpi_error(ill_t *ill, t_uscalar_t prim, t_uscalar_t dl_err, 15652 t_uscalar_t err) 15653 { 15654 if (dl_err == DL_SYSERR) { 15655 (void) mi_strlog(ill->ill_rq, 1, SL_CONSOLE|SL_ERROR|SL_TRACE, 15656 "%s: %s failed: DL_SYSERR (errno %u)\n", 15657 ill->ill_name, dl_primstr(prim), err); 15658 return; 15659 } 15660 15661 (void) mi_strlog(ill->ill_rq, 1, SL_CONSOLE|SL_ERROR|SL_TRACE, 15662 "%s: %s failed: %s\n", ill->ill_name, dl_primstr(prim), 15663 dl_errstr(dl_err)); 15664 } 15665 15666 /* 15667 * ip_rput_dlpi is called by ip_rput to handle all DLPI messages other 15668 * than DL_UNITDATA_IND messages. If we need to process this message 15669 * exclusively, we call qwriter_ip, in which case we also need to call 15670 * ill_refhold before that, since qwriter_ip does an ill_refrele. 15671 */ 15672 void 15673 ip_rput_dlpi(queue_t *q, mblk_t *mp) 15674 { 15675 dl_ok_ack_t *dloa = (dl_ok_ack_t *)mp->b_rptr; 15676 dl_error_ack_t *dlea = (dl_error_ack_t *)dloa; 15677 ill_t *ill = q->q_ptr; 15678 t_uscalar_t prim = dloa->dl_primitive; 15679 t_uscalar_t reqprim = DL_PRIM_INVAL; 15680 15681 ip1dbg(("ip_rput_dlpi")); 15682 15683 /* 15684 * If we received an ACK but didn't send a request for it, then it 15685 * can't be part of any pending operation; discard up-front. 15686 */ 15687 switch (prim) { 15688 case DL_ERROR_ACK: 15689 reqprim = dlea->dl_error_primitive; 15690 ip2dbg(("ip_rput_dlpi(%s): DL_ERROR_ACK for %s (0x%x): %s " 15691 "(0x%x), unix %u\n", ill->ill_name, dl_primstr(reqprim), 15692 reqprim, dl_errstr(dlea->dl_errno), dlea->dl_errno, 15693 dlea->dl_unix_errno)); 15694 break; 15695 case DL_OK_ACK: 15696 reqprim = dloa->dl_correct_primitive; 15697 break; 15698 case DL_INFO_ACK: 15699 reqprim = DL_INFO_REQ; 15700 break; 15701 case DL_BIND_ACK: 15702 reqprim = DL_BIND_REQ; 15703 break; 15704 case DL_PHYS_ADDR_ACK: 15705 reqprim = DL_PHYS_ADDR_REQ; 15706 break; 15707 case DL_NOTIFY_ACK: 15708 reqprim = DL_NOTIFY_REQ; 15709 break; 15710 case DL_CONTROL_ACK: 15711 reqprim = DL_CONTROL_REQ; 15712 break; 15713 case DL_CAPABILITY_ACK: 15714 reqprim = DL_CAPABILITY_REQ; 15715 break; 15716 } 15717 15718 if (prim != DL_NOTIFY_IND) { 15719 if (reqprim == DL_PRIM_INVAL || 15720 !ill_dlpi_pending(ill, reqprim)) { 15721 /* Not a DLPI message we support or expected */ 15722 freemsg(mp); 15723 return; 15724 } 15725 ip1dbg(("ip_rput: received %s for %s\n", dl_primstr(prim), 15726 dl_primstr(reqprim))); 15727 } 15728 15729 switch (reqprim) { 15730 case DL_UNBIND_REQ: 15731 /* 15732 * NOTE: we mark the unbind as complete even if we got a 15733 * DL_ERROR_ACK, since there's not much else we can do. 15734 */ 15735 mutex_enter(&ill->ill_lock); 15736 ill->ill_state_flags &= ~ILL_DL_UNBIND_IN_PROGRESS; 15737 cv_signal(&ill->ill_cv); 15738 mutex_exit(&ill->ill_lock); 15739 break; 15740 15741 case DL_ENABMULTI_REQ: 15742 if (prim == DL_OK_ACK) { 15743 if (ill->ill_dlpi_multicast_state == IDS_INPROGRESS) 15744 ill->ill_dlpi_multicast_state = IDS_OK; 15745 } 15746 break; 15747 } 15748 15749 /* 15750 * The message is one we're waiting for (or DL_NOTIFY_IND), but we 15751 * need to become writer to continue to process it. Because an 15752 * exclusive operation doesn't complete until replies to all queued 15753 * DLPI messages have been received, we know we're in the middle of an 15754 * exclusive operation and pass CUR_OP (except for DL_NOTIFY_IND). 15755 * 15756 * As required by qwriter_ip(), we refhold the ill; it will refrele. 15757 * Since this is on the ill stream we unconditionally bump up the 15758 * refcount without doing ILL_CAN_LOOKUP(). 15759 */ 15760 ill_refhold(ill); 15761 if (prim == DL_NOTIFY_IND) 15762 qwriter_ip(ill, q, mp, ip_rput_dlpi_writer, NEW_OP, B_FALSE); 15763 else 15764 qwriter_ip(ill, q, mp, ip_rput_dlpi_writer, CUR_OP, B_FALSE); 15765 } 15766 15767 /* 15768 * Handling of DLPI messages that require exclusive access to the ipsq. 15769 * 15770 * Need to do ill_pending_mp_release on ioctl completion, which could 15771 * happen here. (along with mi_copy_done) 15772 */ 15773 /* ARGSUSED */ 15774 static void 15775 ip_rput_dlpi_writer(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 15776 { 15777 dl_ok_ack_t *dloa = (dl_ok_ack_t *)mp->b_rptr; 15778 dl_error_ack_t *dlea = (dl_error_ack_t *)dloa; 15779 int err = 0; 15780 ill_t *ill; 15781 ipif_t *ipif = NULL; 15782 mblk_t *mp1 = NULL; 15783 conn_t *connp = NULL; 15784 t_uscalar_t paddrreq; 15785 mblk_t *mp_hw; 15786 boolean_t success; 15787 boolean_t ioctl_aborted = B_FALSE; 15788 boolean_t log = B_TRUE; 15789 ip_stack_t *ipst; 15790 15791 ip1dbg(("ip_rput_dlpi_writer ..")); 15792 ill = (ill_t *)q->q_ptr; 15793 ASSERT(ipsq->ipsq_xop == ill->ill_phyint->phyint_ipsq->ipsq_xop); 15794 ASSERT(IAM_WRITER_ILL(ill)); 15795 15796 ipst = ill->ill_ipst; 15797 15798 ipif = ipsq->ipsq_xop->ipx_pending_ipif; 15799 /* 15800 * The current ioctl could have been aborted by the user and a new 15801 * ioctl to bring up another ill could have started. We could still 15802 * get a response from the driver later. 15803 */ 15804 if (ipif != NULL && ipif->ipif_ill != ill) 15805 ioctl_aborted = B_TRUE; 15806 15807 switch (dloa->dl_primitive) { 15808 case DL_ERROR_ACK: 15809 ip1dbg(("ip_rput_dlpi_writer: got DL_ERROR_ACK for %s\n", 15810 dl_primstr(dlea->dl_error_primitive))); 15811 15812 switch (dlea->dl_error_primitive) { 15813 case DL_DISABMULTI_REQ: 15814 ill_dlpi_done(ill, dlea->dl_error_primitive); 15815 break; 15816 case DL_PROMISCON_REQ: 15817 case DL_PROMISCOFF_REQ: 15818 case DL_UNBIND_REQ: 15819 case DL_ATTACH_REQ: 15820 case DL_INFO_REQ: 15821 ill_dlpi_done(ill, dlea->dl_error_primitive); 15822 break; 15823 case DL_NOTIFY_REQ: 15824 ill_dlpi_done(ill, DL_NOTIFY_REQ); 15825 log = B_FALSE; 15826 break; 15827 case DL_PHYS_ADDR_REQ: 15828 /* 15829 * For IPv6 only, there are two additional 15830 * phys_addr_req's sent to the driver to get the 15831 * IPv6 token and lla. This allows IP to acquire 15832 * the hardware address format for a given interface 15833 * without having built in knowledge of the hardware 15834 * address. ill_phys_addr_pend keeps track of the last 15835 * DL_PAR sent so we know which response we are 15836 * dealing with. ill_dlpi_done will update 15837 * ill_phys_addr_pend when it sends the next req. 15838 * We don't complete the IOCTL until all three DL_PARs 15839 * have been attempted, so set *_len to 0 and break. 15840 */ 15841 paddrreq = ill->ill_phys_addr_pend; 15842 ill_dlpi_done(ill, DL_PHYS_ADDR_REQ); 15843 if (paddrreq == DL_IPV6_TOKEN) { 15844 ill->ill_token_length = 0; 15845 log = B_FALSE; 15846 break; 15847 } else if (paddrreq == DL_IPV6_LINK_LAYER_ADDR) { 15848 ill->ill_nd_lla_len = 0; 15849 log = B_FALSE; 15850 break; 15851 } 15852 /* 15853 * Something went wrong with the DL_PHYS_ADDR_REQ. 15854 * We presumably have an IOCTL hanging out waiting 15855 * for completion. Find it and complete the IOCTL 15856 * with the error noted. 15857 * However, ill_dl_phys was called on an ill queue 15858 * (from SIOCSLIFNAME), thus conn_pending_ill is not 15859 * set. But the ioctl is known to be pending on ill_wq. 15860 */ 15861 if (!ill->ill_ifname_pending) 15862 break; 15863 ill->ill_ifname_pending = 0; 15864 if (!ioctl_aborted) 15865 mp1 = ipsq_pending_mp_get(ipsq, &connp); 15866 if (mp1 != NULL) { 15867 /* 15868 * This operation (SIOCSLIFNAME) must have 15869 * happened on the ill. Assert there is no conn 15870 */ 15871 ASSERT(connp == NULL); 15872 q = ill->ill_wq; 15873 } 15874 break; 15875 case DL_BIND_REQ: 15876 ill_dlpi_done(ill, DL_BIND_REQ); 15877 if (ill->ill_ifname_pending) 15878 break; 15879 /* 15880 * Something went wrong with the bind. We presumably 15881 * have an IOCTL hanging out waiting for completion. 15882 * Find it, take down the interface that was coming 15883 * up, and complete the IOCTL with the error noted. 15884 */ 15885 if (!ioctl_aborted) 15886 mp1 = ipsq_pending_mp_get(ipsq, &connp); 15887 if (mp1 != NULL) { 15888 /* 15889 * This might be a result of a DL_NOTE_REPLUMB 15890 * notification. In that case, connp is NULL. 15891 */ 15892 if (connp != NULL) 15893 q = CONNP_TO_WQ(connp); 15894 15895 (void) ipif_down(ipif, NULL, NULL); 15896 /* error is set below the switch */ 15897 } 15898 break; 15899 case DL_ENABMULTI_REQ: 15900 ill_dlpi_done(ill, DL_ENABMULTI_REQ); 15901 15902 if (ill->ill_dlpi_multicast_state == IDS_INPROGRESS) 15903 ill->ill_dlpi_multicast_state = IDS_FAILED; 15904 if (ill->ill_dlpi_multicast_state == IDS_FAILED) { 15905 ipif_t *ipif; 15906 15907 printf("ip: joining multicasts failed (%d)" 15908 " on %s - will use link layer " 15909 "broadcasts for multicast\n", 15910 dlea->dl_errno, ill->ill_name); 15911 15912 /* 15913 * Set up the multicast mapping alone. 15914 * writer, so ok to access ill->ill_ipif 15915 * without any lock. 15916 */ 15917 ipif = ill->ill_ipif; 15918 mutex_enter(&ill->ill_phyint->phyint_lock); 15919 ill->ill_phyint->phyint_flags |= 15920 PHYI_MULTI_BCAST; 15921 mutex_exit(&ill->ill_phyint->phyint_lock); 15922 15923 if (!ill->ill_isv6) { 15924 (void) ipif_arp_setup_multicast(ipif, 15925 NULL); 15926 } else { 15927 (void) ipif_ndp_setup_multicast(ipif, 15928 NULL); 15929 } 15930 } 15931 freemsg(mp); /* Don't want to pass this up */ 15932 return; 15933 case DL_CONTROL_REQ: 15934 ip1dbg(("ip_rput_dlpi_writer: got DL_ERROR_ACK for " 15935 "DL_CONTROL_REQ\n")); 15936 ill_dlpi_done(ill, dlea->dl_error_primitive); 15937 freemsg(mp); 15938 return; 15939 case DL_CAPABILITY_REQ: 15940 ip1dbg(("ip_rput_dlpi_writer: got DL_ERROR_ACK for " 15941 "DL_CAPABILITY REQ\n")); 15942 if (ill->ill_dlpi_capab_state == IDCS_PROBE_SENT) 15943 ill->ill_dlpi_capab_state = IDCS_FAILED; 15944 ill_capability_done(ill); 15945 freemsg(mp); 15946 return; 15947 } 15948 /* 15949 * Note the error for IOCTL completion (mp1 is set when 15950 * ready to complete ioctl). If ill_ifname_pending_err is 15951 * set, an error occured during plumbing (ill_ifname_pending), 15952 * so we want to report that error. 15953 * 15954 * NOTE: there are two addtional DL_PHYS_ADDR_REQ's 15955 * (DL_IPV6_TOKEN and DL_IPV6_LINK_LAYER_ADDR) that are 15956 * expected to get errack'd if the driver doesn't support 15957 * these flags (e.g. ethernet). log will be set to B_FALSE 15958 * if these error conditions are encountered. 15959 */ 15960 if (mp1 != NULL) { 15961 if (ill->ill_ifname_pending_err != 0) { 15962 err = ill->ill_ifname_pending_err; 15963 ill->ill_ifname_pending_err = 0; 15964 } else { 15965 err = dlea->dl_unix_errno ? 15966 dlea->dl_unix_errno : ENXIO; 15967 } 15968 /* 15969 * If we're plumbing an interface and an error hasn't already 15970 * been saved, set ill_ifname_pending_err to the error passed 15971 * up. Ignore the error if log is B_FALSE (see comment above). 15972 */ 15973 } else if (log && ill->ill_ifname_pending && 15974 ill->ill_ifname_pending_err == 0) { 15975 ill->ill_ifname_pending_err = dlea->dl_unix_errno ? 15976 dlea->dl_unix_errno : ENXIO; 15977 } 15978 15979 if (log) 15980 ip_dlpi_error(ill, dlea->dl_error_primitive, 15981 dlea->dl_errno, dlea->dl_unix_errno); 15982 break; 15983 case DL_CAPABILITY_ACK: 15984 ill_capability_ack(ill, mp); 15985 /* 15986 * The message has been handed off to ill_capability_ack 15987 * and must not be freed below 15988 */ 15989 mp = NULL; 15990 break; 15991 15992 case DL_CONTROL_ACK: 15993 /* We treat all of these as "fire and forget" */ 15994 ill_dlpi_done(ill, DL_CONTROL_REQ); 15995 break; 15996 case DL_INFO_ACK: 15997 /* Call a routine to handle this one. */ 15998 ill_dlpi_done(ill, DL_INFO_REQ); 15999 ip_ll_subnet_defaults(ill, mp); 16000 ASSERT(!MUTEX_HELD(&ill->ill_phyint->phyint_ipsq->ipsq_lock)); 16001 return; 16002 case DL_BIND_ACK: 16003 /* 16004 * We should have an IOCTL waiting on this unless 16005 * sent by ill_dl_phys, in which case just return 16006 */ 16007 ill_dlpi_done(ill, DL_BIND_REQ); 16008 if (ill->ill_ifname_pending) 16009 break; 16010 16011 if (!ioctl_aborted) 16012 mp1 = ipsq_pending_mp_get(ipsq, &connp); 16013 if (mp1 == NULL) 16014 break; 16015 /* 16016 * mp1 was added by ill_dl_up(). if that is a result of 16017 * a DL_NOTE_REPLUMB notification, connp could be NULL. 16018 */ 16019 if (connp != NULL) 16020 q = CONNP_TO_WQ(connp); 16021 16022 /* 16023 * We are exclusive. So nothing can change even after 16024 * we get the pending mp. If need be we can put it back 16025 * and restart, as in calling ipif_arp_up() below. 16026 */ 16027 ip1dbg(("ip_rput_dlpi: bind_ack %s\n", ill->ill_name)); 16028 16029 mutex_enter(&ill->ill_lock); 16030 ill->ill_dl_up = 1; 16031 ill_nic_event_dispatch(ill, 0, NE_UP, NULL, 0); 16032 mutex_exit(&ill->ill_lock); 16033 16034 /* 16035 * Now bring up the resolver; when that is complete, we'll 16036 * create IREs. Note that we intentionally mirror what 16037 * ipif_up() would have done, because we got here by way of 16038 * ill_dl_up(), which stopped ipif_up()'s processing. 16039 */ 16040 if (ill->ill_isv6) { 16041 if (ill->ill_flags & ILLF_XRESOLV) { 16042 if (connp != NULL) 16043 mutex_enter(&connp->conn_lock); 16044 mutex_enter(&ill->ill_lock); 16045 success = ipsq_pending_mp_add(connp, ipif, q, 16046 mp1, 0); 16047 mutex_exit(&ill->ill_lock); 16048 if (connp != NULL) 16049 mutex_exit(&connp->conn_lock); 16050 if (success) { 16051 err = ipif_resolver_up(ipif, 16052 Res_act_initial); 16053 if (err == EINPROGRESS) { 16054 freemsg(mp); 16055 return; 16056 } 16057 ASSERT(err != 0); 16058 mp1 = ipsq_pending_mp_get(ipsq, &connp); 16059 ASSERT(mp1 != NULL); 16060 } else { 16061 /* conn has started closing */ 16062 err = EINTR; 16063 } 16064 } else { /* Non XRESOLV interface */ 16065 (void) ipif_resolver_up(ipif, Res_act_initial); 16066 if ((err = ipif_ndp_up(ipif, B_TRUE)) == 0) 16067 err = ipif_up_done_v6(ipif); 16068 } 16069 } else if (ill->ill_net_type == IRE_IF_RESOLVER) { 16070 /* 16071 * ARP and other v4 external resolvers. 16072 * Leave the pending mblk intact so that 16073 * the ioctl completes in ip_rput(). 16074 */ 16075 if (connp != NULL) 16076 mutex_enter(&connp->conn_lock); 16077 mutex_enter(&ill->ill_lock); 16078 success = ipsq_pending_mp_add(connp, ipif, q, mp1, 0); 16079 mutex_exit(&ill->ill_lock); 16080 if (connp != NULL) 16081 mutex_exit(&connp->conn_lock); 16082 if (success) { 16083 err = ipif_resolver_up(ipif, Res_act_initial); 16084 if (err == EINPROGRESS) { 16085 freemsg(mp); 16086 return; 16087 } 16088 ASSERT(err != 0); 16089 mp1 = ipsq_pending_mp_get(ipsq, &connp); 16090 } else { 16091 /* The conn has started closing */ 16092 err = EINTR; 16093 } 16094 } else { 16095 /* 16096 * This one is complete. Reply to pending ioctl. 16097 */ 16098 (void) ipif_resolver_up(ipif, Res_act_initial); 16099 err = ipif_up_done(ipif); 16100 } 16101 16102 if ((err == 0) && (ill->ill_up_ipifs)) { 16103 err = ill_up_ipifs(ill, q, mp1); 16104 if (err == EINPROGRESS) { 16105 freemsg(mp); 16106 return; 16107 } 16108 } 16109 16110 /* 16111 * If we have a moved ipif to bring up, and everything has 16112 * succeeded to this point, bring it up on the IPMP ill. 16113 * Otherwise, leave it down -- the admin can try to bring it 16114 * up by hand if need be. 16115 */ 16116 if (ill->ill_move_ipif != NULL) { 16117 if (err != 0) { 16118 ill->ill_move_ipif = NULL; 16119 } else { 16120 ipif = ill->ill_move_ipif; 16121 ill->ill_move_ipif = NULL; 16122 err = ipif_up(ipif, q, mp1); 16123 if (err == EINPROGRESS) { 16124 freemsg(mp); 16125 return; 16126 } 16127 } 16128 } 16129 break; 16130 16131 case DL_NOTIFY_IND: { 16132 dl_notify_ind_t *notify = (dl_notify_ind_t *)mp->b_rptr; 16133 ire_t *ire; 16134 uint_t orig_mtu; 16135 boolean_t need_ire_walk_v4 = B_FALSE; 16136 boolean_t need_ire_walk_v6 = B_FALSE; 16137 16138 switch (notify->dl_notification) { 16139 case DL_NOTE_PHYS_ADDR: 16140 err = ill_set_phys_addr(ill, mp); 16141 break; 16142 16143 case DL_NOTE_REPLUMB: 16144 /* 16145 * Directly return after calling ill_replumb(). 16146 * Note that we should not free mp as it is reused 16147 * in the ill_replumb() function. 16148 */ 16149 err = ill_replumb(ill, mp); 16150 return; 16151 16152 case DL_NOTE_FASTPATH_FLUSH: 16153 ill_fastpath_flush(ill); 16154 break; 16155 16156 case DL_NOTE_SDU_SIZE: 16157 /* 16158 * Change the MTU size of the interface, of all 16159 * attached ipif's, and of all relevant ire's. The 16160 * new value's a uint32_t at notify->dl_data. 16161 * Mtu change Vs. new ire creation - protocol below. 16162 * 16163 * a Mark the ipif as IPIF_CHANGING. 16164 * b Set the new mtu in the ipif. 16165 * c Change the ire_max_frag on all affected ires 16166 * d Unmark the IPIF_CHANGING 16167 * 16168 * To see how the protocol works, assume an interface 16169 * route is also being added simultaneously by 16170 * ip_rt_add and let 'ipif' be the ipif referenced by 16171 * the ire. If the ire is created before step a, 16172 * it will be cleaned up by step c. If the ire is 16173 * created after step d, it will see the new value of 16174 * ipif_mtu. Any attempt to create the ire between 16175 * steps a to d will fail because of the IPIF_CHANGING 16176 * flag. Note that ire_create() is passed a pointer to 16177 * the ipif_mtu, and not the value. During ire_add 16178 * under the bucket lock, the ire_max_frag of the 16179 * new ire being created is set from the ipif/ire from 16180 * which it is being derived. 16181 */ 16182 mutex_enter(&ill->ill_lock); 16183 16184 orig_mtu = ill->ill_max_mtu; 16185 ill->ill_max_frag = (uint_t)notify->dl_data; 16186 ill->ill_max_mtu = (uint_t)notify->dl_data; 16187 16188 /* 16189 * If ill_user_mtu was set (via SIOCSLIFLNKINFO), 16190 * clamp ill_max_mtu at it. 16191 */ 16192 if (ill->ill_user_mtu != 0 && 16193 ill->ill_user_mtu < ill->ill_max_mtu) 16194 ill->ill_max_mtu = ill->ill_user_mtu; 16195 16196 /* 16197 * If the MTU is unchanged, we're done. 16198 */ 16199 if (orig_mtu == ill->ill_max_mtu) { 16200 mutex_exit(&ill->ill_lock); 16201 break; 16202 } 16203 16204 if (ill->ill_isv6) { 16205 if (ill->ill_max_mtu < IPV6_MIN_MTU) 16206 ill->ill_max_mtu = IPV6_MIN_MTU; 16207 } else { 16208 if (ill->ill_max_mtu < IP_MIN_MTU) 16209 ill->ill_max_mtu = IP_MIN_MTU; 16210 } 16211 for (ipif = ill->ill_ipif; ipif != NULL; 16212 ipif = ipif->ipif_next) { 16213 /* 16214 * Don't override the mtu if the user 16215 * has explicitly set it. 16216 */ 16217 if (ipif->ipif_flags & IPIF_FIXEDMTU) 16218 continue; 16219 ipif->ipif_mtu = (uint_t)notify->dl_data; 16220 if (ipif->ipif_isv6) 16221 ire = ipif_to_ire_v6(ipif); 16222 else 16223 ire = ipif_to_ire(ipif); 16224 if (ire != NULL) { 16225 ire->ire_max_frag = ipif->ipif_mtu; 16226 ire_refrele(ire); 16227 } 16228 if (ipif->ipif_flags & IPIF_UP) { 16229 if (ill->ill_isv6) 16230 need_ire_walk_v6 = B_TRUE; 16231 else 16232 need_ire_walk_v4 = B_TRUE; 16233 } 16234 } 16235 mutex_exit(&ill->ill_lock); 16236 if (need_ire_walk_v4) 16237 ire_walk_v4(ill_mtu_change, (char *)ill, 16238 ALL_ZONES, ipst); 16239 if (need_ire_walk_v6) 16240 ire_walk_v6(ill_mtu_change, (char *)ill, 16241 ALL_ZONES, ipst); 16242 16243 /* 16244 * Refresh IPMP meta-interface MTU if necessary. 16245 */ 16246 if (IS_UNDER_IPMP(ill)) 16247 ipmp_illgrp_refresh_mtu(ill->ill_grp); 16248 break; 16249 16250 case DL_NOTE_LINK_UP: 16251 case DL_NOTE_LINK_DOWN: { 16252 /* 16253 * We are writer. ill / phyint / ipsq assocs stable. 16254 * The RUNNING flag reflects the state of the link. 16255 */ 16256 phyint_t *phyint = ill->ill_phyint; 16257 uint64_t new_phyint_flags; 16258 boolean_t changed = B_FALSE; 16259 boolean_t went_up; 16260 16261 went_up = notify->dl_notification == DL_NOTE_LINK_UP; 16262 mutex_enter(&phyint->phyint_lock); 16263 16264 new_phyint_flags = went_up ? 16265 phyint->phyint_flags | PHYI_RUNNING : 16266 phyint->phyint_flags & ~PHYI_RUNNING; 16267 16268 if (IS_IPMP(ill)) { 16269 new_phyint_flags = went_up ? 16270 new_phyint_flags & ~PHYI_FAILED : 16271 new_phyint_flags | PHYI_FAILED; 16272 } 16273 16274 if (new_phyint_flags != phyint->phyint_flags) { 16275 phyint->phyint_flags = new_phyint_flags; 16276 changed = B_TRUE; 16277 } 16278 mutex_exit(&phyint->phyint_lock); 16279 /* 16280 * ill_restart_dad handles the DAD restart and routing 16281 * socket notification logic. 16282 */ 16283 if (changed) { 16284 ill_restart_dad(phyint->phyint_illv4, went_up); 16285 ill_restart_dad(phyint->phyint_illv6, went_up); 16286 } 16287 break; 16288 } 16289 case DL_NOTE_PROMISC_ON_PHYS: 16290 IPSECHW_DEBUG(IPSECHW_PKT, ("ip_rput_dlpi_writer: " 16291 "got a DL_NOTE_PROMISC_ON_PHYS\n")); 16292 mutex_enter(&ill->ill_lock); 16293 ill->ill_promisc_on_phys = B_TRUE; 16294 mutex_exit(&ill->ill_lock); 16295 break; 16296 case DL_NOTE_PROMISC_OFF_PHYS: 16297 IPSECHW_DEBUG(IPSECHW_PKT, ("ip_rput_dlpi_writer: " 16298 "got a DL_NOTE_PROMISC_OFF_PHYS\n")); 16299 mutex_enter(&ill->ill_lock); 16300 ill->ill_promisc_on_phys = B_FALSE; 16301 mutex_exit(&ill->ill_lock); 16302 break; 16303 case DL_NOTE_CAPAB_RENEG: 16304 /* 16305 * Something changed on the driver side. 16306 * It wants us to renegotiate the capabilities 16307 * on this ill. One possible cause is the aggregation 16308 * interface under us where a port got added or 16309 * went away. 16310 * 16311 * If the capability negotiation is already done 16312 * or is in progress, reset the capabilities and 16313 * mark the ill's ill_capab_reneg to be B_TRUE, 16314 * so that when the ack comes back, we can start 16315 * the renegotiation process. 16316 * 16317 * Note that if ill_capab_reneg is already B_TRUE 16318 * (ill_dlpi_capab_state is IDS_UNKNOWN in this case), 16319 * the capability resetting request has been sent 16320 * and the renegotiation has not been started yet; 16321 * nothing needs to be done in this case. 16322 */ 16323 ipsq_current_start(ipsq, ill->ill_ipif, 0); 16324 ill_capability_reset(ill, B_TRUE); 16325 ipsq_current_finish(ipsq); 16326 break; 16327 default: 16328 ip0dbg(("ip_rput_dlpi_writer: unknown notification " 16329 "type 0x%x for DL_NOTIFY_IND\n", 16330 notify->dl_notification)); 16331 break; 16332 } 16333 16334 /* 16335 * As this is an asynchronous operation, we 16336 * should not call ill_dlpi_done 16337 */ 16338 break; 16339 } 16340 case DL_NOTIFY_ACK: { 16341 dl_notify_ack_t *noteack = (dl_notify_ack_t *)mp->b_rptr; 16342 16343 if (noteack->dl_notifications & DL_NOTE_LINK_UP) 16344 ill->ill_note_link = 1; 16345 ill_dlpi_done(ill, DL_NOTIFY_REQ); 16346 break; 16347 } 16348 case DL_PHYS_ADDR_ACK: { 16349 /* 16350 * As part of plumbing the interface via SIOCSLIFNAME, 16351 * ill_dl_phys() will queue a series of DL_PHYS_ADDR_REQs, 16352 * whose answers we receive here. As each answer is received, 16353 * we call ill_dlpi_done() to dispatch the next request as 16354 * we're processing the current one. Once all answers have 16355 * been received, we use ipsq_pending_mp_get() to dequeue the 16356 * outstanding IOCTL and reply to it. (Because ill_dl_phys() 16357 * is invoked from an ill queue, conn_oper_pending_ill is not 16358 * available, but we know the ioctl is pending on ill_wq.) 16359 */ 16360 uint_t paddrlen, paddroff; 16361 16362 paddrreq = ill->ill_phys_addr_pend; 16363 paddrlen = ((dl_phys_addr_ack_t *)mp->b_rptr)->dl_addr_length; 16364 paddroff = ((dl_phys_addr_ack_t *)mp->b_rptr)->dl_addr_offset; 16365 16366 ill_dlpi_done(ill, DL_PHYS_ADDR_REQ); 16367 if (paddrreq == DL_IPV6_TOKEN) { 16368 /* 16369 * bcopy to low-order bits of ill_token 16370 * 16371 * XXX Temporary hack - currently, all known tokens 16372 * are 64 bits, so I'll cheat for the moment. 16373 */ 16374 bcopy(mp->b_rptr + paddroff, 16375 &ill->ill_token.s6_addr32[2], paddrlen); 16376 ill->ill_token_length = paddrlen; 16377 break; 16378 } else if (paddrreq == DL_IPV6_LINK_LAYER_ADDR) { 16379 ASSERT(ill->ill_nd_lla_mp == NULL); 16380 ill_set_ndmp(ill, mp, paddroff, paddrlen); 16381 mp = NULL; 16382 break; 16383 } 16384 16385 ASSERT(paddrreq == DL_CURR_PHYS_ADDR); 16386 ASSERT(ill->ill_phys_addr_mp == NULL); 16387 if (!ill->ill_ifname_pending) 16388 break; 16389 ill->ill_ifname_pending = 0; 16390 if (!ioctl_aborted) 16391 mp1 = ipsq_pending_mp_get(ipsq, &connp); 16392 if (mp1 != NULL) { 16393 ASSERT(connp == NULL); 16394 q = ill->ill_wq; 16395 } 16396 /* 16397 * If any error acks received during the plumbing sequence, 16398 * ill_ifname_pending_err will be set. Break out and send up 16399 * the error to the pending ioctl. 16400 */ 16401 if (ill->ill_ifname_pending_err != 0) { 16402 err = ill->ill_ifname_pending_err; 16403 ill->ill_ifname_pending_err = 0; 16404 break; 16405 } 16406 16407 ill->ill_phys_addr_mp = mp; 16408 ill->ill_phys_addr = mp->b_rptr + paddroff; 16409 mp = NULL; 16410 16411 /* 16412 * If paddrlen is zero, the DLPI provider doesn't support 16413 * physical addresses. The other two tests were historical 16414 * workarounds for bugs in our former PPP implementation, but 16415 * now other things have grown dependencies on them -- e.g., 16416 * the tun module specifies a dl_addr_length of zero in its 16417 * DL_BIND_ACK, but then specifies an incorrect value in its 16418 * DL_PHYS_ADDR_ACK. These bogus checks need to be removed, 16419 * but only after careful testing ensures that all dependent 16420 * broken DLPI providers have been fixed. 16421 */ 16422 if (paddrlen == 0 || ill->ill_phys_addr_length == 0 || 16423 ill->ill_phys_addr_length == IP_ADDR_LEN) { 16424 ill->ill_phys_addr = NULL; 16425 } else if (paddrlen != ill->ill_phys_addr_length) { 16426 ip0dbg(("DL_PHYS_ADDR_ACK: got addrlen %d, expected %d", 16427 paddrlen, ill->ill_phys_addr_length)); 16428 err = EINVAL; 16429 break; 16430 } 16431 16432 if (ill->ill_nd_lla_mp == NULL) { 16433 if ((mp_hw = copyb(ill->ill_phys_addr_mp)) == NULL) { 16434 err = ENOMEM; 16435 break; 16436 } 16437 ill_set_ndmp(ill, mp_hw, paddroff, paddrlen); 16438 } 16439 16440 /* 16441 * Set the interface token. If the zeroth interface address 16442 * is unspecified, then set it to the link local address. 16443 */ 16444 if (IN6_IS_ADDR_UNSPECIFIED(&ill->ill_token)) 16445 (void) ill_setdefaulttoken(ill); 16446 16447 ASSERT(ill->ill_ipif->ipif_id == 0); 16448 if (ipif != NULL && 16449 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr)) { 16450 (void) ipif_setlinklocal(ipif); 16451 } 16452 break; 16453 } 16454 case DL_OK_ACK: 16455 ip2dbg(("DL_OK_ACK %s (0x%x)\n", 16456 dl_primstr((int)dloa->dl_correct_primitive), 16457 dloa->dl_correct_primitive)); 16458 switch (dloa->dl_correct_primitive) { 16459 case DL_ENABMULTI_REQ: 16460 case DL_DISABMULTI_REQ: 16461 ill_dlpi_done(ill, dloa->dl_correct_primitive); 16462 break; 16463 case DL_PROMISCON_REQ: 16464 case DL_PROMISCOFF_REQ: 16465 case DL_UNBIND_REQ: 16466 case DL_ATTACH_REQ: 16467 ill_dlpi_done(ill, dloa->dl_correct_primitive); 16468 break; 16469 } 16470 break; 16471 default: 16472 break; 16473 } 16474 16475 freemsg(mp); 16476 if (mp1 == NULL) 16477 return; 16478 16479 /* 16480 * The operation must complete without EINPROGRESS since 16481 * ipsq_pending_mp_get() has removed the mblk (mp1). Otherwise, 16482 * the operation will be stuck forever inside the IPSQ. 16483 */ 16484 ASSERT(err != EINPROGRESS); 16485 16486 switch (ipsq->ipsq_xop->ipx_current_ioctl) { 16487 case 0: 16488 ipsq_current_finish(ipsq); 16489 break; 16490 16491 case SIOCSLIFNAME: 16492 case IF_UNITSEL: { 16493 ill_t *ill_other = ILL_OTHER(ill); 16494 16495 /* 16496 * If SIOCSLIFNAME or IF_UNITSEL is about to succeed, and the 16497 * ill has a peer which is in an IPMP group, then place ill 16498 * into the same group. One catch: although ifconfig plumbs 16499 * the appropriate IPMP meta-interface prior to plumbing this 16500 * ill, it is possible for multiple ifconfig applications to 16501 * race (or for another application to adjust plumbing), in 16502 * which case the IPMP meta-interface we need will be missing. 16503 * If so, kick the phyint out of the group. 16504 */ 16505 if (err == 0 && ill_other != NULL && IS_UNDER_IPMP(ill_other)) { 16506 ipmp_grp_t *grp = ill->ill_phyint->phyint_grp; 16507 ipmp_illgrp_t *illg; 16508 16509 illg = ill->ill_isv6 ? grp->gr_v6 : grp->gr_v4; 16510 if (illg == NULL) 16511 ipmp_phyint_leave_grp(ill->ill_phyint); 16512 else 16513 ipmp_ill_join_illgrp(ill, illg); 16514 } 16515 16516 if (ipsq->ipsq_xop->ipx_current_ioctl == IF_UNITSEL) 16517 ip_ioctl_finish(q, mp1, err, NO_COPYOUT, ipsq); 16518 else 16519 ip_ioctl_finish(q, mp1, err, COPYOUT, ipsq); 16520 break; 16521 } 16522 case SIOCLIFADDIF: 16523 ip_ioctl_finish(q, mp1, err, COPYOUT, ipsq); 16524 break; 16525 16526 default: 16527 ip_ioctl_finish(q, mp1, err, NO_COPYOUT, ipsq); 16528 break; 16529 } 16530 } 16531 16532 /* 16533 * ip_rput_other is called by ip_rput to handle messages modifying the global 16534 * state in IP. Normally called as writer. Exception SIOCGTUNPARAM (shared) 16535 */ 16536 /* ARGSUSED */ 16537 void 16538 ip_rput_other(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 16539 { 16540 ill_t *ill = q->q_ptr; 16541 struct iocblk *iocp; 16542 mblk_t *mp1; 16543 conn_t *connp = NULL; 16544 16545 ip1dbg(("ip_rput_other ")); 16546 if (ipsq != NULL) { 16547 ASSERT(IAM_WRITER_IPSQ(ipsq)); 16548 ASSERT(ipsq->ipsq_xop == 16549 ill->ill_phyint->phyint_ipsq->ipsq_xop); 16550 } 16551 16552 switch (mp->b_datap->db_type) { 16553 case M_ERROR: 16554 case M_HANGUP: 16555 /* 16556 * The device has a problem. We force the ILL down. It can 16557 * be brought up again manually using SIOCSIFFLAGS (via 16558 * ifconfig or equivalent). 16559 */ 16560 ASSERT(ipsq != NULL); 16561 if (mp->b_rptr < mp->b_wptr) 16562 ill->ill_error = (int)(*mp->b_rptr & 0xFF); 16563 if (ill->ill_error == 0) 16564 ill->ill_error = ENXIO; 16565 if (!ill_down_start(q, mp)) 16566 return; 16567 ipif_all_down_tail(ipsq, q, mp, NULL); 16568 break; 16569 case M_IOCACK: 16570 iocp = (struct iocblk *)mp->b_rptr; 16571 ASSERT(iocp->ioc_cmd != DL_IOC_HDR_INFO); 16572 switch (iocp->ioc_cmd) { 16573 case SIOCSTUNPARAM: 16574 case OSIOCSTUNPARAM: 16575 ASSERT(ipsq != NULL); 16576 /* 16577 * Finish socket ioctl passed through to tun. 16578 * We should have an IOCTL waiting on this. 16579 */ 16580 mp1 = ipsq_pending_mp_get(ipsq, &connp); 16581 if (ill->ill_isv6) { 16582 struct iftun_req *ta; 16583 16584 /* 16585 * if a source or destination is 16586 * being set, try and set the link 16587 * local address for the tunnel 16588 */ 16589 ta = (struct iftun_req *)mp->b_cont-> 16590 b_cont->b_rptr; 16591 if (ta->ifta_flags & (IFTUN_SRC | IFTUN_DST)) { 16592 ipif_set_tun_llink(ill, ta); 16593 } 16594 16595 } 16596 if (mp1 != NULL) { 16597 /* 16598 * Now copy back the b_next/b_prev used by 16599 * mi code for the mi_copy* functions. 16600 * See ip_sioctl_tunparam() for the reason. 16601 * Also protect against missing b_cont. 16602 */ 16603 if (mp->b_cont != NULL) { 16604 mp->b_cont->b_next = 16605 mp1->b_cont->b_next; 16606 mp->b_cont->b_prev = 16607 mp1->b_cont->b_prev; 16608 } 16609 inet_freemsg(mp1); 16610 ASSERT(connp != NULL); 16611 ip_ioctl_finish(CONNP_TO_WQ(connp), mp, 16612 iocp->ioc_error, NO_COPYOUT, ipsq); 16613 } else { 16614 ASSERT(connp == NULL); 16615 putnext(q, mp); 16616 } 16617 break; 16618 case SIOCGTUNPARAM: 16619 case OSIOCGTUNPARAM: 16620 /* 16621 * This is really M_IOCDATA from the tunnel driver. 16622 * convert back and complete the ioctl. 16623 * We should have an IOCTL waiting on this. 16624 */ 16625 mp1 = ill_pending_mp_get(ill, &connp, iocp->ioc_id); 16626 if (mp1) { 16627 /* 16628 * Now copy back the b_next/b_prev used by 16629 * mi code for the mi_copy* functions. 16630 * See ip_sioctl_tunparam() for the reason. 16631 * Also protect against missing b_cont. 16632 */ 16633 if (mp->b_cont != NULL) { 16634 mp->b_cont->b_next = 16635 mp1->b_cont->b_next; 16636 mp->b_cont->b_prev = 16637 mp1->b_cont->b_prev; 16638 } 16639 inet_freemsg(mp1); 16640 if (iocp->ioc_error == 0) 16641 mp->b_datap->db_type = M_IOCDATA; 16642 ASSERT(connp != NULL); 16643 ip_ioctl_finish(CONNP_TO_WQ(connp), mp, 16644 iocp->ioc_error, COPYOUT, NULL); 16645 } else { 16646 ASSERT(connp == NULL); 16647 putnext(q, mp); 16648 } 16649 break; 16650 default: 16651 break; 16652 } 16653 break; 16654 case M_IOCNAK: 16655 iocp = (struct iocblk *)mp->b_rptr; 16656 16657 switch (iocp->ioc_cmd) { 16658 int mode; 16659 16660 case DL_IOC_HDR_INFO: 16661 /* 16662 * If this was the first attempt, turn off the 16663 * fastpath probing. 16664 */ 16665 mutex_enter(&ill->ill_lock); 16666 if (ill->ill_dlpi_fastpath_state == IDS_INPROGRESS) { 16667 ill->ill_dlpi_fastpath_state = IDS_FAILED; 16668 mutex_exit(&ill->ill_lock); 16669 ill_fastpath_nack(ill); 16670 ip1dbg(("ip_rput: DLPI fastpath off on " 16671 "interface %s\n", 16672 ill->ill_name)); 16673 } else { 16674 mutex_exit(&ill->ill_lock); 16675 } 16676 freemsg(mp); 16677 break; 16678 case SIOCSTUNPARAM: 16679 case OSIOCSTUNPARAM: 16680 ASSERT(ipsq != NULL); 16681 /* 16682 * Finish socket ioctl passed through to tun 16683 * We should have an IOCTL waiting on this. 16684 */ 16685 /* FALLTHRU */ 16686 case SIOCGTUNPARAM: 16687 case OSIOCGTUNPARAM: 16688 /* 16689 * This is really M_IOCDATA from the tunnel driver. 16690 * convert back and complete the ioctl. 16691 * We should have an IOCTL waiting on this. 16692 */ 16693 if (iocp->ioc_cmd == SIOCGTUNPARAM || 16694 iocp->ioc_cmd == OSIOCGTUNPARAM) { 16695 mp1 = ill_pending_mp_get(ill, &connp, 16696 iocp->ioc_id); 16697 mode = COPYOUT; 16698 ipsq = NULL; 16699 } else { 16700 mp1 = ipsq_pending_mp_get(ipsq, &connp); 16701 mode = NO_COPYOUT; 16702 } 16703 if (mp1 != NULL) { 16704 /* 16705 * Now copy back the b_next/b_prev used by 16706 * mi code for the mi_copy* functions. 16707 * See ip_sioctl_tunparam() for the reason. 16708 * Also protect against missing b_cont. 16709 */ 16710 if (mp->b_cont != NULL) { 16711 mp->b_cont->b_next = 16712 mp1->b_cont->b_next; 16713 mp->b_cont->b_prev = 16714 mp1->b_cont->b_prev; 16715 } 16716 inet_freemsg(mp1); 16717 if (iocp->ioc_error == 0) 16718 iocp->ioc_error = EINVAL; 16719 ASSERT(connp != NULL); 16720 ip_ioctl_finish(CONNP_TO_WQ(connp), mp, 16721 iocp->ioc_error, mode, ipsq); 16722 } else { 16723 ASSERT(connp == NULL); 16724 putnext(q, mp); 16725 } 16726 break; 16727 default: 16728 break; 16729 } 16730 default: 16731 break; 16732 } 16733 } 16734 16735 /* 16736 * NOTE : This function does not ire_refrele the ire argument passed in. 16737 * 16738 * IPQoS notes 16739 * IP policy is invoked twice for a forwarded packet, once on the read side 16740 * and again on the write side if both, IPP_FWD_IN and IPP_FWD_OUT are 16741 * enabled. An additional parameter, in_ill, has been added for this purpose. 16742 * Note that in_ill could be NULL when called from ip_rput_forward_multicast 16743 * because ip_mroute drops this information. 16744 * 16745 */ 16746 void 16747 ip_rput_forward(ire_t *ire, ipha_t *ipha, mblk_t *mp, ill_t *in_ill) 16748 { 16749 uint32_t old_pkt_len; 16750 uint32_t pkt_len; 16751 queue_t *q; 16752 uint32_t sum; 16753 #define rptr ((uchar_t *)ipha) 16754 uint32_t max_frag; 16755 uint32_t ill_index; 16756 ill_t *out_ill; 16757 mib2_ipIfStatsEntry_t *mibptr; 16758 ip_stack_t *ipst = ((ill_t *)(ire->ire_stq->q_ptr))->ill_ipst; 16759 16760 /* Get the ill_index of the incoming ILL */ 16761 ill_index = (in_ill != NULL) ? in_ill->ill_phyint->phyint_ifindex : 0; 16762 mibptr = (in_ill != NULL) ? in_ill->ill_ip_mib : &ipst->ips_ip_mib; 16763 16764 /* Initiate Read side IPPF processing */ 16765 if (IPP_ENABLED(IPP_FWD_IN, ipst)) { 16766 ip_process(IPP_FWD_IN, &mp, ill_index); 16767 if (mp == NULL) { 16768 ip2dbg(("ip_rput_forward: pkt dropped/deferred "\ 16769 "during IPPF processing\n")); 16770 return; 16771 } 16772 } 16773 16774 /* Adjust the checksum to reflect the ttl decrement. */ 16775 sum = (int)ipha->ipha_hdr_checksum + IP_HDR_CSUM_TTL_ADJUST; 16776 ipha->ipha_hdr_checksum = (uint16_t)(sum + (sum >> 16)); 16777 16778 if (ipha->ipha_ttl-- <= 1) { 16779 if (ip_csum_hdr(ipha)) { 16780 BUMP_MIB(mibptr, ipIfStatsInCksumErrs); 16781 goto drop_pkt; 16782 } 16783 /* 16784 * Note: ire_stq this will be NULL for multicast 16785 * datagrams using the long path through arp (the IRE 16786 * is not an IRE_CACHE). This should not cause 16787 * problems since we don't generate ICMP errors for 16788 * multicast packets. 16789 */ 16790 BUMP_MIB(mibptr, ipIfStatsForwProhibits); 16791 q = ire->ire_stq; 16792 if (q != NULL) { 16793 /* Sent by forwarding path, and router is global zone */ 16794 icmp_time_exceeded(q, mp, ICMP_TTL_EXCEEDED, 16795 GLOBAL_ZONEID, ipst); 16796 } else 16797 freemsg(mp); 16798 return; 16799 } 16800 16801 /* 16802 * Don't forward if the interface is down 16803 */ 16804 if (ire->ire_ipif->ipif_ill->ill_ipif_up_count == 0) { 16805 BUMP_MIB(mibptr, ipIfStatsInDiscards); 16806 ip2dbg(("ip_rput_forward:interface is down\n")); 16807 goto drop_pkt; 16808 } 16809 16810 /* Get the ill_index of the outgoing ILL */ 16811 out_ill = ire_to_ill(ire); 16812 ill_index = out_ill->ill_phyint->phyint_ifindex; 16813 16814 DTRACE_PROBE4(ip4__forwarding__start, 16815 ill_t *, in_ill, ill_t *, out_ill, ipha_t *, ipha, mblk_t *, mp); 16816 16817 FW_HOOKS(ipst->ips_ip4_forwarding_event, 16818 ipst->ips_ipv4firewall_forwarding, 16819 in_ill, out_ill, ipha, mp, mp, 0, ipst); 16820 16821 DTRACE_PROBE1(ip4__forwarding__end, mblk_t *, mp); 16822 16823 if (mp == NULL) 16824 return; 16825 old_pkt_len = pkt_len = ntohs(ipha->ipha_length); 16826 16827 if (is_system_labeled()) { 16828 mblk_t *mp1; 16829 16830 if ((mp1 = tsol_ip_forward(ire, mp)) == NULL) { 16831 BUMP_MIB(mibptr, ipIfStatsForwProhibits); 16832 goto drop_pkt; 16833 } 16834 /* Size may have changed */ 16835 mp = mp1; 16836 ipha = (ipha_t *)mp->b_rptr; 16837 pkt_len = ntohs(ipha->ipha_length); 16838 } 16839 16840 /* Check if there are options to update */ 16841 if (!IS_SIMPLE_IPH(ipha)) { 16842 if (ip_csum_hdr(ipha)) { 16843 BUMP_MIB(mibptr, ipIfStatsInCksumErrs); 16844 goto drop_pkt; 16845 } 16846 if (ip_rput_forward_options(mp, ipha, ire, ipst)) { 16847 BUMP_MIB(mibptr, ipIfStatsForwProhibits); 16848 return; 16849 } 16850 16851 ipha->ipha_hdr_checksum = 0; 16852 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 16853 } 16854 max_frag = ire->ire_max_frag; 16855 if (pkt_len > max_frag) { 16856 /* 16857 * It needs fragging on its way out. We haven't 16858 * verified the header checksum yet. Since we 16859 * are going to put a surely good checksum in the 16860 * outgoing header, we have to make sure that it 16861 * was good coming in. 16862 */ 16863 if (ip_csum_hdr(ipha)) { 16864 BUMP_MIB(mibptr, ipIfStatsInCksumErrs); 16865 goto drop_pkt; 16866 } 16867 /* Initiate Write side IPPF processing */ 16868 if (IPP_ENABLED(IPP_FWD_OUT, ipst)) { 16869 ip_process(IPP_FWD_OUT, &mp, ill_index); 16870 if (mp == NULL) { 16871 ip2dbg(("ip_rput_forward: pkt dropped/deferred"\ 16872 " during IPPF processing\n")); 16873 return; 16874 } 16875 } 16876 /* 16877 * Handle labeled packet resizing. 16878 * 16879 * If we have added a label, inform ip_wput_frag() of its 16880 * effect on the MTU for ICMP messages. 16881 */ 16882 if (pkt_len > old_pkt_len) { 16883 uint32_t secopt_size; 16884 16885 secopt_size = pkt_len - old_pkt_len; 16886 if (secopt_size < max_frag) 16887 max_frag -= secopt_size; 16888 } 16889 16890 ip_wput_frag(ire, mp, IB_PKT, max_frag, 0, 16891 GLOBAL_ZONEID, ipst, NULL); 16892 ip2dbg(("ip_rput_forward:sent to ip_wput_frag\n")); 16893 return; 16894 } 16895 16896 DTRACE_PROBE4(ip4__physical__out__start, ill_t *, NULL, 16897 ill_t *, out_ill, ipha_t *, ipha, mblk_t *, mp); 16898 FW_HOOKS(ipst->ips_ip4_physical_out_event, 16899 ipst->ips_ipv4firewall_physical_out, 16900 NULL, out_ill, ipha, mp, mp, 0, ipst); 16901 DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, mp); 16902 if (mp == NULL) 16903 return; 16904 16905 mp->b_prev = (mblk_t *)IPP_FWD_OUT; 16906 ip1dbg(("ip_rput_forward: Calling ip_xmit_v4\n")); 16907 (void) ip_xmit_v4(mp, ire, NULL, B_FALSE, NULL); 16908 /* ip_xmit_v4 always consumes the packet */ 16909 return; 16910 16911 drop_pkt:; 16912 ip1dbg(("ip_rput_forward: drop pkt\n")); 16913 freemsg(mp); 16914 #undef rptr 16915 } 16916 16917 void 16918 ip_rput_forward_multicast(ipaddr_t dst, mblk_t *mp, ipif_t *ipif) 16919 { 16920 ire_t *ire; 16921 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 16922 16923 ASSERT(!ipif->ipif_isv6); 16924 /* 16925 * Find an IRE which matches the destination and the outgoing 16926 * queue in the cache table. All we need is an IRE_CACHE which 16927 * is pointing at ipif->ipif_ill. 16928 */ 16929 if (ipif->ipif_flags & IPIF_POINTOPOINT) 16930 dst = ipif->ipif_pp_dst_addr; 16931 16932 ire = ire_ctable_lookup(dst, 0, 0, ipif, ALL_ZONES, msg_getlabel(mp), 16933 MATCH_IRE_ILL | MATCH_IRE_SECATTR, ipst); 16934 if (ire == NULL) { 16935 /* 16936 * Mark this packet to make it be delivered to 16937 * ip_rput_forward after the new ire has been 16938 * created. 16939 */ 16940 mp->b_prev = NULL; 16941 mp->b_next = mp; 16942 ip_newroute_ipif(ipif->ipif_ill->ill_wq, mp, ipif, dst, 16943 NULL, 0, GLOBAL_ZONEID, &zero_info); 16944 } else { 16945 ip_rput_forward(ire, (ipha_t *)mp->b_rptr, mp, NULL); 16946 IRE_REFRELE(ire); 16947 } 16948 } 16949 16950 /* Update any source route, record route or timestamp options */ 16951 static int 16952 ip_rput_forward_options(mblk_t *mp, ipha_t *ipha, ire_t *ire, ip_stack_t *ipst) 16953 { 16954 ipoptp_t opts; 16955 uchar_t *opt; 16956 uint8_t optval; 16957 uint8_t optlen; 16958 ipaddr_t dst; 16959 uint32_t ts; 16960 ire_t *dst_ire = NULL; 16961 ire_t *tmp_ire = NULL; 16962 timestruc_t now; 16963 16964 ip2dbg(("ip_rput_forward_options\n")); 16965 dst = ipha->ipha_dst; 16966 for (optval = ipoptp_first(&opts, ipha); 16967 optval != IPOPT_EOL; 16968 optval = ipoptp_next(&opts)) { 16969 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 16970 opt = opts.ipoptp_cur; 16971 optlen = opts.ipoptp_len; 16972 ip2dbg(("ip_rput_forward_options: opt %d, len %d\n", 16973 optval, opts.ipoptp_len)); 16974 switch (optval) { 16975 uint32_t off; 16976 case IPOPT_SSRR: 16977 case IPOPT_LSRR: 16978 /* Check if adminstratively disabled */ 16979 if (!ipst->ips_ip_forward_src_routed) { 16980 if (ire->ire_stq != NULL) { 16981 /* 16982 * Sent by forwarding path, and router 16983 * is global zone 16984 */ 16985 icmp_unreachable(ire->ire_stq, mp, 16986 ICMP_SOURCE_ROUTE_FAILED, 16987 GLOBAL_ZONEID, ipst); 16988 } else { 16989 ip0dbg(("ip_rput_forward_options: " 16990 "unable to send unreach\n")); 16991 freemsg(mp); 16992 } 16993 return (-1); 16994 } 16995 16996 dst_ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, 16997 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 16998 if (dst_ire == NULL) { 16999 /* 17000 * Must be partial since ip_rput_options 17001 * checked for strict. 17002 */ 17003 break; 17004 } 17005 off = opt[IPOPT_OFFSET]; 17006 off--; 17007 redo_srr: 17008 if (optlen < IP_ADDR_LEN || 17009 off > optlen - IP_ADDR_LEN) { 17010 /* End of source route */ 17011 ip1dbg(( 17012 "ip_rput_forward_options: end of SR\n")); 17013 ire_refrele(dst_ire); 17014 break; 17015 } 17016 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 17017 bcopy(&ire->ire_src_addr, (char *)opt + off, 17018 IP_ADDR_LEN); 17019 ip1dbg(("ip_rput_forward_options: next hop 0x%x\n", 17020 ntohl(dst))); 17021 17022 /* 17023 * Check if our address is present more than 17024 * once as consecutive hops in source route. 17025 */ 17026 tmp_ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, 17027 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 17028 if (tmp_ire != NULL) { 17029 ire_refrele(tmp_ire); 17030 off += IP_ADDR_LEN; 17031 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 17032 goto redo_srr; 17033 } 17034 ipha->ipha_dst = dst; 17035 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 17036 ire_refrele(dst_ire); 17037 break; 17038 case IPOPT_RR: 17039 off = opt[IPOPT_OFFSET]; 17040 off--; 17041 if (optlen < IP_ADDR_LEN || 17042 off > optlen - IP_ADDR_LEN) { 17043 /* No more room - ignore */ 17044 ip1dbg(( 17045 "ip_rput_forward_options: end of RR\n")); 17046 break; 17047 } 17048 bcopy(&ire->ire_src_addr, (char *)opt + off, 17049 IP_ADDR_LEN); 17050 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 17051 break; 17052 case IPOPT_TS: 17053 /* Insert timestamp if there is room */ 17054 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 17055 case IPOPT_TS_TSONLY: 17056 off = IPOPT_TS_TIMELEN; 17057 break; 17058 case IPOPT_TS_PRESPEC: 17059 case IPOPT_TS_PRESPEC_RFC791: 17060 /* Verify that the address matched */ 17061 off = opt[IPOPT_OFFSET] - 1; 17062 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 17063 dst_ire = ire_ctable_lookup(dst, 0, 17064 IRE_LOCAL, NULL, ALL_ZONES, NULL, 17065 MATCH_IRE_TYPE, ipst); 17066 if (dst_ire == NULL) { 17067 /* Not for us */ 17068 break; 17069 } 17070 ire_refrele(dst_ire); 17071 /* FALLTHRU */ 17072 case IPOPT_TS_TSANDADDR: 17073 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 17074 break; 17075 default: 17076 /* 17077 * ip_*put_options should have already 17078 * dropped this packet. 17079 */ 17080 cmn_err(CE_PANIC, "ip_rput_forward_options: " 17081 "unknown IT - bug in ip_rput_options?\n"); 17082 return (0); /* Keep "lint" happy */ 17083 } 17084 if (opt[IPOPT_OFFSET] - 1 + off > optlen) { 17085 /* Increase overflow counter */ 17086 off = (opt[IPOPT_POS_OV_FLG] >> 4) + 1; 17087 opt[IPOPT_POS_OV_FLG] = 17088 (uint8_t)((opt[IPOPT_POS_OV_FLG] & 0x0F) | 17089 (off << 4)); 17090 break; 17091 } 17092 off = opt[IPOPT_OFFSET] - 1; 17093 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 17094 case IPOPT_TS_PRESPEC: 17095 case IPOPT_TS_PRESPEC_RFC791: 17096 case IPOPT_TS_TSANDADDR: 17097 bcopy(&ire->ire_src_addr, 17098 (char *)opt + off, IP_ADDR_LEN); 17099 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 17100 /* FALLTHRU */ 17101 case IPOPT_TS_TSONLY: 17102 off = opt[IPOPT_OFFSET] - 1; 17103 /* Compute # of milliseconds since midnight */ 17104 gethrestime(&now); 17105 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 + 17106 now.tv_nsec / (NANOSEC / MILLISEC); 17107 bcopy(&ts, (char *)opt + off, IPOPT_TS_TIMELEN); 17108 opt[IPOPT_OFFSET] += IPOPT_TS_TIMELEN; 17109 break; 17110 } 17111 break; 17112 } 17113 } 17114 return (0); 17115 } 17116 17117 /* 17118 * This is called after processing at least one of AH/ESP headers. 17119 * 17120 * NOTE: the ill corresponding to ipsec_in_ill_index may not be 17121 * the actual, physical interface on which the packet was received, 17122 * but, when ip_strict_dst_multihoming is set to 1, could be the 17123 * interface which had the ipha_dst configured when the packet went 17124 * through ip_rput. The ill_index corresponding to the recv_ill 17125 * is saved in ipsec_in_rill_index 17126 * 17127 * NOTE2: The "ire" argument is only used in IPv4 cases. This function 17128 * cannot assume "ire" points to valid data for any IPv6 cases. 17129 */ 17130 void 17131 ip_fanout_proto_again(mblk_t *ipsec_mp, ill_t *ill, ill_t *recv_ill, ire_t *ire) 17132 { 17133 mblk_t *mp; 17134 ipaddr_t dst; 17135 in6_addr_t *v6dstp; 17136 ipha_t *ipha; 17137 ip6_t *ip6h; 17138 ipsec_in_t *ii; 17139 boolean_t ill_need_rele = B_FALSE; 17140 boolean_t rill_need_rele = B_FALSE; 17141 boolean_t ire_need_rele = B_FALSE; 17142 netstack_t *ns; 17143 ip_stack_t *ipst; 17144 17145 ii = (ipsec_in_t *)ipsec_mp->b_rptr; 17146 ASSERT(ii->ipsec_in_ill_index != 0); 17147 ns = ii->ipsec_in_ns; 17148 ASSERT(ii->ipsec_in_ns != NULL); 17149 ipst = ns->netstack_ip; 17150 17151 mp = ipsec_mp->b_cont; 17152 ASSERT(mp != NULL); 17153 17154 if (ill == NULL) { 17155 ASSERT(recv_ill == NULL); 17156 /* 17157 * We need to get the original queue on which ip_rput_local 17158 * or ip_rput_data_v6 was called. 17159 */ 17160 ill = ill_lookup_on_ifindex(ii->ipsec_in_ill_index, 17161 !ii->ipsec_in_v4, NULL, NULL, NULL, NULL, ipst); 17162 ill_need_rele = B_TRUE; 17163 17164 if (ii->ipsec_in_ill_index != ii->ipsec_in_rill_index) { 17165 recv_ill = ill_lookup_on_ifindex( 17166 ii->ipsec_in_rill_index, !ii->ipsec_in_v4, 17167 NULL, NULL, NULL, NULL, ipst); 17168 rill_need_rele = B_TRUE; 17169 } else { 17170 recv_ill = ill; 17171 } 17172 17173 if ((ill == NULL) || (recv_ill == NULL)) { 17174 ip0dbg(("ip_fanout_proto_again: interface " 17175 "disappeared\n")); 17176 if (ill != NULL) 17177 ill_refrele(ill); 17178 if (recv_ill != NULL) 17179 ill_refrele(recv_ill); 17180 freemsg(ipsec_mp); 17181 return; 17182 } 17183 } 17184 17185 ASSERT(ill != NULL && recv_ill != NULL); 17186 17187 if (mp->b_datap->db_type == M_CTL) { 17188 /* 17189 * AH/ESP is returning the ICMP message after 17190 * removing their headers. Fanout again till 17191 * it gets to the right protocol. 17192 */ 17193 if (ii->ipsec_in_v4) { 17194 icmph_t *icmph; 17195 int iph_hdr_length; 17196 int hdr_length; 17197 17198 ipha = (ipha_t *)mp->b_rptr; 17199 iph_hdr_length = IPH_HDR_LENGTH(ipha); 17200 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 17201 ipha = (ipha_t *)&icmph[1]; 17202 hdr_length = IPH_HDR_LENGTH(ipha); 17203 /* 17204 * icmp_inbound_error_fanout may need to do pullupmsg. 17205 * Reset the type to M_DATA. 17206 */ 17207 mp->b_datap->db_type = M_DATA; 17208 icmp_inbound_error_fanout(ill->ill_rq, ill, ipsec_mp, 17209 icmph, ipha, iph_hdr_length, hdr_length, B_TRUE, 17210 B_FALSE, ill, ii->ipsec_in_zoneid); 17211 } else { 17212 icmp6_t *icmp6; 17213 int hdr_length; 17214 17215 ip6h = (ip6_t *)mp->b_rptr; 17216 /* Don't call hdr_length_v6() unless you have to. */ 17217 if (ip6h->ip6_nxt != IPPROTO_ICMPV6) 17218 hdr_length = ip_hdr_length_v6(mp, ip6h); 17219 else 17220 hdr_length = IPV6_HDR_LEN; 17221 17222 icmp6 = (icmp6_t *)(&mp->b_rptr[hdr_length]); 17223 /* 17224 * icmp_inbound_error_fanout_v6 may need to do 17225 * pullupmsg. Reset the type to M_DATA. 17226 */ 17227 mp->b_datap->db_type = M_DATA; 17228 icmp_inbound_error_fanout_v6(ill->ill_rq, ipsec_mp, 17229 ip6h, icmp6, ill, recv_ill, B_TRUE, 17230 ii->ipsec_in_zoneid); 17231 } 17232 if (ill_need_rele) 17233 ill_refrele(ill); 17234 if (rill_need_rele) 17235 ill_refrele(recv_ill); 17236 return; 17237 } 17238 17239 if (ii->ipsec_in_v4) { 17240 ipha = (ipha_t *)mp->b_rptr; 17241 dst = ipha->ipha_dst; 17242 if (CLASSD(dst)) { 17243 /* 17244 * Multicast has to be delivered to all streams. 17245 */ 17246 dst = INADDR_BROADCAST; 17247 } 17248 17249 if (ire == NULL) { 17250 ire = ire_cache_lookup(dst, ii->ipsec_in_zoneid, 17251 msg_getlabel(mp), ipst); 17252 if (ire == NULL) { 17253 if (ill_need_rele) 17254 ill_refrele(ill); 17255 if (rill_need_rele) 17256 ill_refrele(recv_ill); 17257 ip1dbg(("ip_fanout_proto_again: " 17258 "IRE not found")); 17259 freemsg(ipsec_mp); 17260 return; 17261 } 17262 ire_need_rele = B_TRUE; 17263 } 17264 17265 switch (ipha->ipha_protocol) { 17266 case IPPROTO_UDP: 17267 ip_udp_input(ill->ill_rq, ipsec_mp, ipha, ire, 17268 recv_ill); 17269 if (ire_need_rele) 17270 ire_refrele(ire); 17271 break; 17272 case IPPROTO_TCP: 17273 if (!ire_need_rele) 17274 IRE_REFHOLD(ire); 17275 mp = ip_tcp_input(mp, ipha, ill, B_TRUE, 17276 ire, ipsec_mp, 0, ill->ill_rq, NULL); 17277 IRE_REFRELE(ire); 17278 if (mp != NULL) { 17279 SQUEUE_ENTER(GET_SQUEUE(mp), mp, 17280 mp, 1, SQ_PROCESS, 17281 SQTAG_IP_PROTO_AGAIN); 17282 } 17283 break; 17284 case IPPROTO_SCTP: 17285 if (!ire_need_rele) 17286 IRE_REFHOLD(ire); 17287 ip_sctp_input(mp, ipha, ill, B_TRUE, ire, 17288 ipsec_mp, 0, ill->ill_rq, dst); 17289 break; 17290 default: 17291 ip_proto_input(ill->ill_rq, ipsec_mp, ipha, ire, 17292 recv_ill, 0); 17293 if (ire_need_rele) 17294 ire_refrele(ire); 17295 break; 17296 } 17297 } else { 17298 uint32_t rput_flags = 0; 17299 17300 ip6h = (ip6_t *)mp->b_rptr; 17301 v6dstp = &ip6h->ip6_dst; 17302 /* 17303 * XXX Assumes ip_rput_v6 sets ll_multicast only for multicast 17304 * address. 17305 * 17306 * Currently, we don't store that state in the IPSEC_IN 17307 * message, and we may need to. 17308 */ 17309 rput_flags |= (IN6_IS_ADDR_MULTICAST(v6dstp) ? 17310 IP6_IN_LLMCAST : 0); 17311 ip_rput_data_v6(ill->ill_rq, ill, ipsec_mp, ip6h, rput_flags, 17312 NULL, NULL); 17313 } 17314 if (ill_need_rele) 17315 ill_refrele(ill); 17316 if (rill_need_rele) 17317 ill_refrele(recv_ill); 17318 } 17319 17320 /* 17321 * Call ill_frag_timeout to do garbage collection. ill_frag_timeout 17322 * returns 'true' if there are still fragments left on the queue, in 17323 * which case we restart the timer. 17324 */ 17325 void 17326 ill_frag_timer(void *arg) 17327 { 17328 ill_t *ill = (ill_t *)arg; 17329 boolean_t frag_pending; 17330 ip_stack_t *ipst = ill->ill_ipst; 17331 17332 mutex_enter(&ill->ill_lock); 17333 ASSERT(!ill->ill_fragtimer_executing); 17334 if (ill->ill_state_flags & ILL_CONDEMNED) { 17335 ill->ill_frag_timer_id = 0; 17336 mutex_exit(&ill->ill_lock); 17337 return; 17338 } 17339 ill->ill_fragtimer_executing = 1; 17340 mutex_exit(&ill->ill_lock); 17341 17342 frag_pending = ill_frag_timeout(ill, ipst->ips_ip_g_frag_timeout); 17343 17344 /* 17345 * Restart the timer, if we have fragments pending or if someone 17346 * wanted us to be scheduled again. 17347 */ 17348 mutex_enter(&ill->ill_lock); 17349 ill->ill_fragtimer_executing = 0; 17350 ill->ill_frag_timer_id = 0; 17351 if (frag_pending || ill->ill_fragtimer_needrestart) 17352 ill_frag_timer_start(ill); 17353 mutex_exit(&ill->ill_lock); 17354 } 17355 17356 void 17357 ill_frag_timer_start(ill_t *ill) 17358 { 17359 ip_stack_t *ipst = ill->ill_ipst; 17360 17361 ASSERT(MUTEX_HELD(&ill->ill_lock)); 17362 17363 /* If the ill is closing or opening don't proceed */ 17364 if (ill->ill_state_flags & ILL_CONDEMNED) 17365 return; 17366 17367 if (ill->ill_fragtimer_executing) { 17368 /* 17369 * ill_frag_timer is currently executing. Just record the 17370 * the fact that we want the timer to be restarted. 17371 * ill_frag_timer will post a timeout before it returns, 17372 * ensuring it will be called again. 17373 */ 17374 ill->ill_fragtimer_needrestart = 1; 17375 return; 17376 } 17377 17378 if (ill->ill_frag_timer_id == 0) { 17379 /* 17380 * The timer is neither running nor is the timeout handler 17381 * executing. Post a timeout so that ill_frag_timer will be 17382 * called 17383 */ 17384 ill->ill_frag_timer_id = timeout(ill_frag_timer, ill, 17385 MSEC_TO_TICK(ipst->ips_ip_g_frag_timo_ms >> 1)); 17386 ill->ill_fragtimer_needrestart = 0; 17387 } 17388 } 17389 17390 /* 17391 * This routine is needed for loopback when forwarding multicasts. 17392 * 17393 * IPQoS Notes: 17394 * IPPF processing is done in fanout routines. 17395 * Policy processing is done only if IPP_lOCAL_IN is enabled. Further, 17396 * processing for IPsec packets is done when it comes back in clear. 17397 * NOTE : The callers of this function need to do the ire_refrele for the 17398 * ire that is being passed in. 17399 */ 17400 void 17401 ip_proto_input(queue_t *q, mblk_t *mp, ipha_t *ipha, ire_t *ire, 17402 ill_t *recv_ill, uint32_t esp_udp_ports) 17403 { 17404 boolean_t esp_in_udp_packet = (esp_udp_ports != 0); 17405 ill_t *ill = (ill_t *)q->q_ptr; 17406 uint32_t sum; 17407 uint32_t u1; 17408 uint32_t u2; 17409 int hdr_length; 17410 boolean_t mctl_present; 17411 mblk_t *first_mp = mp; 17412 mblk_t *hada_mp = NULL; 17413 ipha_t *inner_ipha; 17414 ip_stack_t *ipst; 17415 17416 ASSERT(recv_ill != NULL); 17417 ipst = recv_ill->ill_ipst; 17418 17419 TRACE_1(TR_FAC_IP, TR_IP_RPUT_LOCL_START, 17420 "ip_rput_locl_start: q %p", q); 17421 17422 ASSERT(ire->ire_ipversion == IPV4_VERSION); 17423 ASSERT(ill != NULL); 17424 17425 #define rptr ((uchar_t *)ipha) 17426 #define iphs ((uint16_t *)ipha) 17427 17428 /* 17429 * no UDP or TCP packet should come here anymore. 17430 */ 17431 ASSERT(ipha->ipha_protocol != IPPROTO_TCP && 17432 ipha->ipha_protocol != IPPROTO_UDP); 17433 17434 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 17435 if (mctl_present && 17436 ((da_ipsec_t *)first_mp->b_rptr)->da_type == IPHADA_M_CTL) { 17437 ASSERT(MBLKL(first_mp) >= sizeof (da_ipsec_t)); 17438 17439 /* 17440 * It's an IPsec accelerated packet. 17441 * Keep a pointer to the data attributes around until 17442 * we allocate the ipsec_info_t. 17443 */ 17444 IPSECHW_DEBUG(IPSECHW_PKT, 17445 ("ip_rput_local: inbound HW accelerated IPsec pkt\n")); 17446 hada_mp = first_mp; 17447 hada_mp->b_cont = NULL; 17448 /* 17449 * Since it is accelerated, it comes directly from 17450 * the ill and the data attributes is followed by 17451 * the packet data. 17452 */ 17453 ASSERT(mp->b_datap->db_type != M_CTL); 17454 first_mp = mp; 17455 mctl_present = B_FALSE; 17456 } 17457 17458 /* 17459 * IF M_CTL is not present, then ipsec_in_is_secure 17460 * should return B_TRUE. There is a case where loopback 17461 * packets has an M_CTL in the front with all the 17462 * IPsec options set to IPSEC_PREF_NEVER - which means 17463 * ipsec_in_is_secure will return B_FALSE. As loopback 17464 * packets never comes here, it is safe to ASSERT the 17465 * following. 17466 */ 17467 ASSERT(!mctl_present || ipsec_in_is_secure(first_mp)); 17468 17469 /* 17470 * Also, we should never have an mctl_present if this is an 17471 * ESP-in-UDP packet. 17472 */ 17473 ASSERT(!mctl_present || !esp_in_udp_packet); 17474 17475 /* u1 is # words of IP options */ 17476 u1 = ipha->ipha_version_and_hdr_length - (uchar_t)((IP_VERSION << 4) + 17477 IP_SIMPLE_HDR_LENGTH_IN_WORDS); 17478 17479 /* 17480 * Don't verify header checksum if we just removed UDP header or 17481 * packet is coming back from AH/ESP. 17482 */ 17483 if (!esp_in_udp_packet && !mctl_present) { 17484 if (u1) { 17485 if (!ip_options_cksum(q, ill, mp, ipha, ire, ipst)) { 17486 if (hada_mp != NULL) 17487 freemsg(hada_mp); 17488 return; 17489 } 17490 } else { 17491 /* Check the IP header checksum. */ 17492 #define uph ((uint16_t *)ipha) 17493 sum = uph[0] + uph[1] + uph[2] + uph[3] + uph[4] + 17494 uph[5] + uph[6] + uph[7] + uph[8] + uph[9]; 17495 #undef uph 17496 /* finish doing IP checksum */ 17497 sum = (sum & 0xFFFF) + (sum >> 16); 17498 sum = ~(sum + (sum >> 16)) & 0xFFFF; 17499 if (sum && sum != 0xFFFF) { 17500 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInCksumErrs); 17501 goto drop_pkt; 17502 } 17503 } 17504 } 17505 17506 /* 17507 * Count for SNMP of inbound packets for ire. As ip_proto_input 17508 * might be called more than once for secure packets, count only 17509 * the first time. 17510 */ 17511 if (!mctl_present) { 17512 UPDATE_IB_PKT_COUNT(ire); 17513 ire->ire_last_used_time = lbolt; 17514 } 17515 17516 /* Check for fragmentation offset. */ 17517 u2 = ntohs(ipha->ipha_fragment_offset_and_flags); 17518 u1 = u2 & (IPH_MF | IPH_OFFSET); 17519 if (u1) { 17520 /* 17521 * We re-assemble fragments before we do the AH/ESP 17522 * processing. Thus, M_CTL should not be present 17523 * while we are re-assembling. 17524 */ 17525 ASSERT(!mctl_present); 17526 ASSERT(first_mp == mp); 17527 if (!ip_rput_fragment(ill, recv_ill, &mp, ipha, NULL, NULL)) 17528 return; 17529 17530 /* 17531 * Make sure that first_mp points back to mp as 17532 * the mp we came in with could have changed in 17533 * ip_rput_fragment(). 17534 */ 17535 ipha = (ipha_t *)mp->b_rptr; 17536 first_mp = mp; 17537 } 17538 17539 /* 17540 * Clear hardware checksumming flag as it is currently only 17541 * used by TCP and UDP. 17542 */ 17543 DB_CKSUMFLAGS(mp) = 0; 17544 17545 /* Now we have a complete datagram, destined for this machine. */ 17546 u1 = IPH_HDR_LENGTH(ipha); 17547 switch (ipha->ipha_protocol) { 17548 case IPPROTO_ICMP: { 17549 ire_t *ire_zone; 17550 ilm_t *ilm; 17551 mblk_t *mp1; 17552 zoneid_t last_zoneid; 17553 ilm_walker_t ilw; 17554 17555 if (CLASSD(ipha->ipha_dst) && !IS_LOOPBACK(recv_ill)) { 17556 ASSERT(ire->ire_type == IRE_BROADCAST); 17557 17558 /* 17559 * In the multicast case, applications may have joined 17560 * the group from different zones, so we need to deliver 17561 * the packet to each of them. Loop through the 17562 * multicast memberships structures (ilm) on the receive 17563 * ill and send a copy of the packet up each matching 17564 * one. However, we don't do this for multicasts sent on 17565 * the loopback interface (PHYI_LOOPBACK flag set) as 17566 * they must stay in the sender's zone. 17567 * 17568 * ilm_add_v6() ensures that ilms in the same zone are 17569 * contiguous in the ill_ilm list. We use this property 17570 * to avoid sending duplicates needed when two 17571 * applications in the same zone join the same group on 17572 * different logical interfaces: we ignore the ilm if 17573 * its zoneid is the same as the last matching one. 17574 * In addition, the sending of the packet for 17575 * ire_zoneid is delayed until all of the other ilms 17576 * have been exhausted. 17577 */ 17578 last_zoneid = -1; 17579 ilm = ilm_walker_start(&ilw, recv_ill); 17580 for (; ilm != NULL; ilm = ilm_walker_step(&ilw, ilm)) { 17581 if (ipha->ipha_dst != ilm->ilm_addr || 17582 ilm->ilm_zoneid == last_zoneid || 17583 ilm->ilm_zoneid == ire->ire_zoneid || 17584 ilm->ilm_zoneid == ALL_ZONES || 17585 !(ilm->ilm_ipif->ipif_flags & IPIF_UP)) 17586 continue; 17587 mp1 = ip_copymsg(first_mp); 17588 if (mp1 == NULL) 17589 continue; 17590 icmp_inbound(q, mp1, B_TRUE, ilw.ilw_walk_ill, 17591 0, sum, mctl_present, B_TRUE, 17592 recv_ill, ilm->ilm_zoneid); 17593 last_zoneid = ilm->ilm_zoneid; 17594 } 17595 ilm_walker_finish(&ilw); 17596 } else if (ire->ire_type == IRE_BROADCAST) { 17597 /* 17598 * In the broadcast case, there may be many zones 17599 * which need a copy of the packet delivered to them. 17600 * There is one IRE_BROADCAST per broadcast address 17601 * and per zone; we walk those using a helper function. 17602 * In addition, the sending of the packet for ire is 17603 * delayed until all of the other ires have been 17604 * processed. 17605 */ 17606 IRB_REFHOLD(ire->ire_bucket); 17607 ire_zone = NULL; 17608 while ((ire_zone = ire_get_next_bcast_ire(ire_zone, 17609 ire)) != NULL) { 17610 mp1 = ip_copymsg(first_mp); 17611 if (mp1 == NULL) 17612 continue; 17613 17614 UPDATE_IB_PKT_COUNT(ire_zone); 17615 ire_zone->ire_last_used_time = lbolt; 17616 icmp_inbound(q, mp1, B_TRUE, ill, 17617 0, sum, mctl_present, B_TRUE, 17618 recv_ill, ire_zone->ire_zoneid); 17619 } 17620 IRB_REFRELE(ire->ire_bucket); 17621 } 17622 icmp_inbound(q, first_mp, (ire->ire_type == IRE_BROADCAST), 17623 ill, 0, sum, mctl_present, B_TRUE, recv_ill, 17624 ire->ire_zoneid); 17625 TRACE_2(TR_FAC_IP, TR_IP_RPUT_LOCL_END, 17626 "ip_rput_locl_end: q %p (%S)", q, "icmp"); 17627 return; 17628 } 17629 case IPPROTO_IGMP: 17630 /* 17631 * If we are not willing to accept IGMP packets in clear, 17632 * then check with global policy. 17633 */ 17634 if (ipst->ips_igmp_accept_clear_messages == 0) { 17635 first_mp = ipsec_check_global_policy(first_mp, NULL, 17636 ipha, NULL, mctl_present, ipst->ips_netstack); 17637 if (first_mp == NULL) 17638 return; 17639 } 17640 if (is_system_labeled() && !tsol_can_accept_raw(mp, B_TRUE)) { 17641 freemsg(first_mp); 17642 ip1dbg(("ip_proto_input: zone all cannot accept raw")); 17643 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17644 return; 17645 } 17646 if ((mp = igmp_input(q, mp, ill)) == NULL) { 17647 /* Bad packet - discarded by igmp_input */ 17648 TRACE_2(TR_FAC_IP, TR_IP_RPUT_LOCL_END, 17649 "ip_rput_locl_end: q %p (%S)", q, "igmp"); 17650 if (mctl_present) 17651 freeb(first_mp); 17652 return; 17653 } 17654 /* 17655 * igmp_input() may have returned the pulled up message. 17656 * So first_mp and ipha need to be reinitialized. 17657 */ 17658 ipha = (ipha_t *)mp->b_rptr; 17659 if (mctl_present) 17660 first_mp->b_cont = mp; 17661 else 17662 first_mp = mp; 17663 if (ipst->ips_ipcl_proto_fanout[ipha->ipha_protocol]. 17664 connf_head != NULL) { 17665 /* No user-level listener for IGMP packets */ 17666 goto drop_pkt; 17667 } 17668 /* deliver to local raw users */ 17669 break; 17670 case IPPROTO_PIM: 17671 /* 17672 * If we are not willing to accept PIM packets in clear, 17673 * then check with global policy. 17674 */ 17675 if (ipst->ips_pim_accept_clear_messages == 0) { 17676 first_mp = ipsec_check_global_policy(first_mp, NULL, 17677 ipha, NULL, mctl_present, ipst->ips_netstack); 17678 if (first_mp == NULL) 17679 return; 17680 } 17681 if (is_system_labeled() && !tsol_can_accept_raw(mp, B_TRUE)) { 17682 freemsg(first_mp); 17683 ip1dbg(("ip_proto_input: zone all cannot accept PIM")); 17684 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17685 return; 17686 } 17687 if (pim_input(q, mp, ill) != 0) { 17688 /* Bad packet - discarded by pim_input */ 17689 TRACE_2(TR_FAC_IP, TR_IP_RPUT_LOCL_END, 17690 "ip_rput_locl_end: q %p (%S)", q, "pim"); 17691 if (mctl_present) 17692 freeb(first_mp); 17693 return; 17694 } 17695 17696 /* 17697 * pim_input() may have pulled up the message so ipha needs to 17698 * be reinitialized. 17699 */ 17700 ipha = (ipha_t *)mp->b_rptr; 17701 if (ipst->ips_ipcl_proto_fanout[ipha->ipha_protocol]. 17702 connf_head != NULL) { 17703 /* No user-level listener for PIM packets */ 17704 goto drop_pkt; 17705 } 17706 /* deliver to local raw users */ 17707 break; 17708 case IPPROTO_ENCAP: 17709 /* 17710 * Handle self-encapsulated packets (IP-in-IP where 17711 * the inner addresses == the outer addresses). 17712 */ 17713 hdr_length = IPH_HDR_LENGTH(ipha); 17714 if ((uchar_t *)ipha + hdr_length + sizeof (ipha_t) > 17715 mp->b_wptr) { 17716 if (!pullupmsg(mp, (uchar_t *)ipha + hdr_length + 17717 sizeof (ipha_t) - mp->b_rptr)) { 17718 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17719 freemsg(first_mp); 17720 return; 17721 } 17722 ipha = (ipha_t *)mp->b_rptr; 17723 } 17724 inner_ipha = (ipha_t *)((uchar_t *)ipha + hdr_length); 17725 /* 17726 * Check the sanity of the inner IP header. 17727 */ 17728 if ((IPH_HDR_VERSION(inner_ipha) != IPV4_VERSION)) { 17729 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17730 freemsg(first_mp); 17731 return; 17732 } 17733 if (IPH_HDR_LENGTH(inner_ipha) < sizeof (ipha_t)) { 17734 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17735 freemsg(first_mp); 17736 return; 17737 } 17738 if (inner_ipha->ipha_src == ipha->ipha_src && 17739 inner_ipha->ipha_dst == ipha->ipha_dst) { 17740 ipsec_in_t *ii; 17741 17742 /* 17743 * Self-encapsulated tunnel packet. Remove 17744 * the outer IP header and fanout again. 17745 * We also need to make sure that the inner 17746 * header is pulled up until options. 17747 */ 17748 mp->b_rptr = (uchar_t *)inner_ipha; 17749 ipha = inner_ipha; 17750 hdr_length = IPH_HDR_LENGTH(ipha); 17751 if ((uchar_t *)ipha + hdr_length > mp->b_wptr) { 17752 if (!pullupmsg(mp, (uchar_t *)ipha + 17753 + hdr_length - mp->b_rptr)) { 17754 freemsg(first_mp); 17755 return; 17756 } 17757 ipha = (ipha_t *)mp->b_rptr; 17758 } 17759 if (hdr_length > sizeof (ipha_t)) { 17760 /* We got options on the inner packet. */ 17761 ipaddr_t dst = ipha->ipha_dst; 17762 17763 if (ip_rput_options(q, mp, ipha, &dst, ipst) == 17764 -1) { 17765 /* Bad options! */ 17766 return; 17767 } 17768 if (dst != ipha->ipha_dst) { 17769 /* 17770 * Someone put a source-route in 17771 * the inside header of a self- 17772 * encapsulated packet. Drop it 17773 * with extreme prejudice and let 17774 * the sender know. 17775 */ 17776 icmp_unreachable(q, first_mp, 17777 ICMP_SOURCE_ROUTE_FAILED, 17778 recv_ill->ill_zoneid, ipst); 17779 return; 17780 } 17781 } 17782 if (!mctl_present) { 17783 ASSERT(first_mp == mp); 17784 /* 17785 * This means that somebody is sending 17786 * Self-encapsualted packets without AH/ESP. 17787 * If AH/ESP was present, we would have already 17788 * allocated the first_mp. 17789 * 17790 * Send this packet to find a tunnel endpoint. 17791 * if I can't find one, an ICMP 17792 * PROTOCOL_UNREACHABLE will get sent. 17793 */ 17794 goto fanout; 17795 } 17796 /* 17797 * We generally store the ill_index if we need to 17798 * do IPsec processing as we lose the ill queue when 17799 * we come back. But in this case, we never should 17800 * have to store the ill_index here as it should have 17801 * been stored previously when we processed the 17802 * AH/ESP header in this routine or for non-ipsec 17803 * cases, we still have the queue. But for some bad 17804 * packets from the wire, we can get to IPsec after 17805 * this and we better store the index for that case. 17806 */ 17807 ill = (ill_t *)q->q_ptr; 17808 ii = (ipsec_in_t *)first_mp->b_rptr; 17809 ii->ipsec_in_ill_index = 17810 ill->ill_phyint->phyint_ifindex; 17811 ii->ipsec_in_rill_index = 17812 recv_ill->ill_phyint->phyint_ifindex; 17813 if (ii->ipsec_in_decaps) { 17814 /* 17815 * This packet is self-encapsulated multiple 17816 * times. We don't want to recurse infinitely. 17817 * To keep it simple, drop the packet. 17818 */ 17819 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17820 freemsg(first_mp); 17821 return; 17822 } 17823 ii->ipsec_in_decaps = B_TRUE; 17824 ip_fanout_proto_again(first_mp, recv_ill, recv_ill, 17825 ire); 17826 return; 17827 } 17828 break; 17829 case IPPROTO_AH: 17830 case IPPROTO_ESP: { 17831 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 17832 17833 /* 17834 * Fast path for AH/ESP. If this is the first time 17835 * we are sending a datagram to AH/ESP, allocate 17836 * a IPSEC_IN message and prepend it. Otherwise, 17837 * just fanout. 17838 */ 17839 17840 int ipsec_rc; 17841 ipsec_in_t *ii; 17842 netstack_t *ns = ipst->ips_netstack; 17843 17844 IP_STAT(ipst, ipsec_proto_ahesp); 17845 if (!mctl_present) { 17846 ASSERT(first_mp == mp); 17847 first_mp = ipsec_in_alloc(B_TRUE, ns); 17848 if (first_mp == NULL) { 17849 ip1dbg(("ip_proto_input: IPSEC_IN " 17850 "allocation failure.\n")); 17851 freemsg(hada_mp); /* okay ifnull */ 17852 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17853 freemsg(mp); 17854 return; 17855 } 17856 /* 17857 * Store the ill_index so that when we come back 17858 * from IPsec we ride on the same queue. 17859 */ 17860 ill = (ill_t *)q->q_ptr; 17861 ii = (ipsec_in_t *)first_mp->b_rptr; 17862 ii->ipsec_in_ill_index = 17863 ill->ill_phyint->phyint_ifindex; 17864 ii->ipsec_in_rill_index = 17865 recv_ill->ill_phyint->phyint_ifindex; 17866 first_mp->b_cont = mp; 17867 /* 17868 * Cache hardware acceleration info. 17869 */ 17870 if (hada_mp != NULL) { 17871 IPSECHW_DEBUG(IPSECHW_PKT, 17872 ("ip_rput_local: caching data attr.\n")); 17873 ii->ipsec_in_accelerated = B_TRUE; 17874 ii->ipsec_in_da = hada_mp; 17875 hada_mp = NULL; 17876 } 17877 } else { 17878 ii = (ipsec_in_t *)first_mp->b_rptr; 17879 } 17880 17881 ii->ipsec_in_esp_udp_ports = esp_udp_ports; 17882 17883 if (!ipsec_loaded(ipss)) { 17884 ip_proto_not_sup(q, first_mp, IP_FF_SEND_ICMP, 17885 ire->ire_zoneid, ipst); 17886 return; 17887 } 17888 17889 ns = ipst->ips_netstack; 17890 /* select inbound SA and have IPsec process the pkt */ 17891 if (ipha->ipha_protocol == IPPROTO_ESP) { 17892 esph_t *esph = ipsec_inbound_esp_sa(first_mp, ns); 17893 boolean_t esp_in_udp_sa; 17894 if (esph == NULL) 17895 return; 17896 ASSERT(ii->ipsec_in_esp_sa != NULL); 17897 ASSERT(ii->ipsec_in_esp_sa->ipsa_input_func != NULL); 17898 esp_in_udp_sa = ((ii->ipsec_in_esp_sa->ipsa_flags & 17899 IPSA_F_NATT) != 0); 17900 /* 17901 * The following is a fancy, but quick, way of saying: 17902 * ESP-in-UDP SA and Raw ESP packet --> drop 17903 * OR 17904 * ESP SA and ESP-in-UDP packet --> drop 17905 */ 17906 if (esp_in_udp_sa != esp_in_udp_packet) { 17907 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17908 ip_drop_packet(first_mp, B_TRUE, ill, NULL, 17909 DROPPER(ns->netstack_ipsec, ipds_esp_no_sa), 17910 &ns->netstack_ipsec->ipsec_dropper); 17911 return; 17912 } 17913 ipsec_rc = ii->ipsec_in_esp_sa->ipsa_input_func( 17914 first_mp, esph); 17915 } else { 17916 ah_t *ah = ipsec_inbound_ah_sa(first_mp, ns); 17917 if (ah == NULL) 17918 return; 17919 ASSERT(ii->ipsec_in_ah_sa != NULL); 17920 ASSERT(ii->ipsec_in_ah_sa->ipsa_input_func != NULL); 17921 ipsec_rc = ii->ipsec_in_ah_sa->ipsa_input_func( 17922 first_mp, ah); 17923 } 17924 17925 switch (ipsec_rc) { 17926 case IPSEC_STATUS_SUCCESS: 17927 break; 17928 case IPSEC_STATUS_FAILED: 17929 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17930 /* FALLTHRU */ 17931 case IPSEC_STATUS_PENDING: 17932 return; 17933 } 17934 /* we're done with IPsec processing, send it up */ 17935 ip_fanout_proto_again(first_mp, ill, recv_ill, ire); 17936 return; 17937 } 17938 default: 17939 break; 17940 } 17941 if (is_system_labeled() && !tsol_can_accept_raw(mp, B_FALSE)) { 17942 ip1dbg(("ip_proto_input: zone %d cannot accept raw IP", 17943 ire->ire_zoneid)); 17944 goto drop_pkt; 17945 } 17946 /* 17947 * Handle protocols with which IP is less intimate. There 17948 * can be more than one stream bound to a particular 17949 * protocol. When this is the case, each one gets a copy 17950 * of any incoming packets. 17951 */ 17952 fanout: 17953 ip_fanout_proto(q, first_mp, ill, ipha, 17954 IP_FF_SEND_ICMP | IP_FF_CKSUM | IP_FF_RAWIP, mctl_present, 17955 B_TRUE, recv_ill, ire->ire_zoneid); 17956 TRACE_2(TR_FAC_IP, TR_IP_RPUT_LOCL_END, 17957 "ip_rput_locl_end: q %p (%S)", q, "ip_fanout_proto"); 17958 return; 17959 17960 drop_pkt: 17961 freemsg(first_mp); 17962 if (hada_mp != NULL) 17963 freeb(hada_mp); 17964 TRACE_2(TR_FAC_IP, TR_IP_RPUT_LOCL_END, 17965 "ip_rput_locl_end: q %p (%S)", q, "droppkt"); 17966 #undef rptr 17967 #undef iphs 17968 17969 } 17970 17971 /* 17972 * Update any source route, record route or timestamp options. 17973 * Check that we are at end of strict source route. 17974 * The options have already been checked for sanity in ip_rput_options(). 17975 */ 17976 static boolean_t 17977 ip_rput_local_options(queue_t *q, mblk_t *mp, ipha_t *ipha, ire_t *ire, 17978 ip_stack_t *ipst) 17979 { 17980 ipoptp_t opts; 17981 uchar_t *opt; 17982 uint8_t optval; 17983 uint8_t optlen; 17984 ipaddr_t dst; 17985 uint32_t ts; 17986 ire_t *dst_ire; 17987 timestruc_t now; 17988 zoneid_t zoneid; 17989 ill_t *ill; 17990 17991 ASSERT(ire->ire_ipversion == IPV4_VERSION); 17992 17993 ip2dbg(("ip_rput_local_options\n")); 17994 17995 for (optval = ipoptp_first(&opts, ipha); 17996 optval != IPOPT_EOL; 17997 optval = ipoptp_next(&opts)) { 17998 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 17999 opt = opts.ipoptp_cur; 18000 optlen = opts.ipoptp_len; 18001 ip2dbg(("ip_rput_local_options: opt %d, len %d\n", 18002 optval, optlen)); 18003 switch (optval) { 18004 uint32_t off; 18005 case IPOPT_SSRR: 18006 case IPOPT_LSRR: 18007 off = opt[IPOPT_OFFSET]; 18008 off--; 18009 if (optlen < IP_ADDR_LEN || 18010 off > optlen - IP_ADDR_LEN) { 18011 /* End of source route */ 18012 ip1dbg(("ip_rput_local_options: end of SR\n")); 18013 break; 18014 } 18015 /* 18016 * This will only happen if two consecutive entries 18017 * in the source route contains our address or if 18018 * it is a packet with a loose source route which 18019 * reaches us before consuming the whole source route 18020 */ 18021 ip1dbg(("ip_rput_local_options: not end of SR\n")); 18022 if (optval == IPOPT_SSRR) { 18023 goto bad_src_route; 18024 } 18025 /* 18026 * Hack: instead of dropping the packet truncate the 18027 * source route to what has been used by filling the 18028 * rest with IPOPT_NOP. 18029 */ 18030 opt[IPOPT_OLEN] = (uint8_t)off; 18031 while (off < optlen) { 18032 opt[off++] = IPOPT_NOP; 18033 } 18034 break; 18035 case IPOPT_RR: 18036 off = opt[IPOPT_OFFSET]; 18037 off--; 18038 if (optlen < IP_ADDR_LEN || 18039 off > optlen - IP_ADDR_LEN) { 18040 /* No more room - ignore */ 18041 ip1dbg(( 18042 "ip_rput_local_options: end of RR\n")); 18043 break; 18044 } 18045 bcopy(&ire->ire_src_addr, (char *)opt + off, 18046 IP_ADDR_LEN); 18047 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 18048 break; 18049 case IPOPT_TS: 18050 /* Insert timestamp if there is romm */ 18051 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 18052 case IPOPT_TS_TSONLY: 18053 off = IPOPT_TS_TIMELEN; 18054 break; 18055 case IPOPT_TS_PRESPEC: 18056 case IPOPT_TS_PRESPEC_RFC791: 18057 /* Verify that the address matched */ 18058 off = opt[IPOPT_OFFSET] - 1; 18059 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 18060 dst_ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, 18061 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, 18062 ipst); 18063 if (dst_ire == NULL) { 18064 /* Not for us */ 18065 break; 18066 } 18067 ire_refrele(dst_ire); 18068 /* FALLTHRU */ 18069 case IPOPT_TS_TSANDADDR: 18070 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 18071 break; 18072 default: 18073 /* 18074 * ip_*put_options should have already 18075 * dropped this packet. 18076 */ 18077 cmn_err(CE_PANIC, "ip_rput_local_options: " 18078 "unknown IT - bug in ip_rput_options?\n"); 18079 return (B_TRUE); /* Keep "lint" happy */ 18080 } 18081 if (opt[IPOPT_OFFSET] - 1 + off > optlen) { 18082 /* Increase overflow counter */ 18083 off = (opt[IPOPT_POS_OV_FLG] >> 4) + 1; 18084 opt[IPOPT_POS_OV_FLG] = 18085 (uint8_t)((opt[IPOPT_POS_OV_FLG] & 0x0F) | 18086 (off << 4)); 18087 break; 18088 } 18089 off = opt[IPOPT_OFFSET] - 1; 18090 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 18091 case IPOPT_TS_PRESPEC: 18092 case IPOPT_TS_PRESPEC_RFC791: 18093 case IPOPT_TS_TSANDADDR: 18094 bcopy(&ire->ire_src_addr, (char *)opt + off, 18095 IP_ADDR_LEN); 18096 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 18097 /* FALLTHRU */ 18098 case IPOPT_TS_TSONLY: 18099 off = opt[IPOPT_OFFSET] - 1; 18100 /* Compute # of milliseconds since midnight */ 18101 gethrestime(&now); 18102 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 + 18103 now.tv_nsec / (NANOSEC / MILLISEC); 18104 bcopy(&ts, (char *)opt + off, IPOPT_TS_TIMELEN); 18105 opt[IPOPT_OFFSET] += IPOPT_TS_TIMELEN; 18106 break; 18107 } 18108 break; 18109 } 18110 } 18111 return (B_TRUE); 18112 18113 bad_src_route: 18114 q = WR(q); 18115 if (q->q_next != NULL) 18116 ill = q->q_ptr; 18117 else 18118 ill = NULL; 18119 18120 /* make sure we clear any indication of a hardware checksum */ 18121 DB_CKSUMFLAGS(mp) = 0; 18122 zoneid = ipif_lookup_addr_zoneid(ipha->ipha_dst, ill, ipst); 18123 if (zoneid == ALL_ZONES) 18124 freemsg(mp); 18125 else 18126 icmp_unreachable(q, mp, ICMP_SOURCE_ROUTE_FAILED, zoneid, ipst); 18127 return (B_FALSE); 18128 18129 } 18130 18131 /* 18132 * Process IP options in an inbound packet. If an option affects the 18133 * effective destination address, return the next hop address via dstp. 18134 * Returns -1 if something fails in which case an ICMP error has been sent 18135 * and mp freed. 18136 */ 18137 static int 18138 ip_rput_options(queue_t *q, mblk_t *mp, ipha_t *ipha, ipaddr_t *dstp, 18139 ip_stack_t *ipst) 18140 { 18141 ipoptp_t opts; 18142 uchar_t *opt; 18143 uint8_t optval; 18144 uint8_t optlen; 18145 ipaddr_t dst; 18146 intptr_t code = 0; 18147 ire_t *ire = NULL; 18148 zoneid_t zoneid; 18149 ill_t *ill; 18150 18151 ip2dbg(("ip_rput_options\n")); 18152 dst = ipha->ipha_dst; 18153 for (optval = ipoptp_first(&opts, ipha); 18154 optval != IPOPT_EOL; 18155 optval = ipoptp_next(&opts)) { 18156 opt = opts.ipoptp_cur; 18157 optlen = opts.ipoptp_len; 18158 ip2dbg(("ip_rput_options: opt %d, len %d\n", 18159 optval, optlen)); 18160 /* 18161 * Note: we need to verify the checksum before we 18162 * modify anything thus this routine only extracts the next 18163 * hop dst from any source route. 18164 */ 18165 switch (optval) { 18166 uint32_t off; 18167 case IPOPT_SSRR: 18168 case IPOPT_LSRR: 18169 ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, NULL, 18170 ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 18171 if (ire == NULL) { 18172 if (optval == IPOPT_SSRR) { 18173 ip1dbg(("ip_rput_options: not next" 18174 " strict source route 0x%x\n", 18175 ntohl(dst))); 18176 code = (char *)&ipha->ipha_dst - 18177 (char *)ipha; 18178 goto param_prob; /* RouterReq's */ 18179 } 18180 ip2dbg(("ip_rput_options: " 18181 "not next source route 0x%x\n", 18182 ntohl(dst))); 18183 break; 18184 } 18185 ire_refrele(ire); 18186 18187 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 18188 ip1dbg(( 18189 "ip_rput_options: bad option offset\n")); 18190 code = (char *)&opt[IPOPT_OLEN] - 18191 (char *)ipha; 18192 goto param_prob; 18193 } 18194 off = opt[IPOPT_OFFSET]; 18195 off--; 18196 redo_srr: 18197 if (optlen < IP_ADDR_LEN || 18198 off > optlen - IP_ADDR_LEN) { 18199 /* End of source route */ 18200 ip1dbg(("ip_rput_options: end of SR\n")); 18201 break; 18202 } 18203 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 18204 ip1dbg(("ip_rput_options: next hop 0x%x\n", 18205 ntohl(dst))); 18206 18207 /* 18208 * Check if our address is present more than 18209 * once as consecutive hops in source route. 18210 * XXX verify per-interface ip_forwarding 18211 * for source route? 18212 */ 18213 ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, NULL, 18214 ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 18215 18216 if (ire != NULL) { 18217 ire_refrele(ire); 18218 off += IP_ADDR_LEN; 18219 goto redo_srr; 18220 } 18221 18222 if (dst == htonl(INADDR_LOOPBACK)) { 18223 ip1dbg(("ip_rput_options: loopback addr in " 18224 "source route!\n")); 18225 goto bad_src_route; 18226 } 18227 /* 18228 * For strict: verify that dst is directly 18229 * reachable. 18230 */ 18231 if (optval == IPOPT_SSRR) { 18232 ire = ire_ftable_lookup(dst, 0, 0, 18233 IRE_INTERFACE, NULL, NULL, ALL_ZONES, 0, 18234 msg_getlabel(mp), 18235 MATCH_IRE_TYPE | MATCH_IRE_SECATTR, ipst); 18236 if (ire == NULL) { 18237 ip1dbg(("ip_rput_options: SSRR not " 18238 "directly reachable: 0x%x\n", 18239 ntohl(dst))); 18240 goto bad_src_route; 18241 } 18242 ire_refrele(ire); 18243 } 18244 /* 18245 * Defer update of the offset and the record route 18246 * until the packet is forwarded. 18247 */ 18248 break; 18249 case IPOPT_RR: 18250 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 18251 ip1dbg(( 18252 "ip_rput_options: bad option offset\n")); 18253 code = (char *)&opt[IPOPT_OLEN] - 18254 (char *)ipha; 18255 goto param_prob; 18256 } 18257 break; 18258 case IPOPT_TS: 18259 /* 18260 * Verify that length >= 5 and that there is either 18261 * room for another timestamp or that the overflow 18262 * counter is not maxed out. 18263 */ 18264 code = (char *)&opt[IPOPT_OLEN] - (char *)ipha; 18265 if (optlen < IPOPT_MINLEN_IT) { 18266 goto param_prob; 18267 } 18268 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 18269 ip1dbg(( 18270 "ip_rput_options: bad option offset\n")); 18271 code = (char *)&opt[IPOPT_OFFSET] - 18272 (char *)ipha; 18273 goto param_prob; 18274 } 18275 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 18276 case IPOPT_TS_TSONLY: 18277 off = IPOPT_TS_TIMELEN; 18278 break; 18279 case IPOPT_TS_TSANDADDR: 18280 case IPOPT_TS_PRESPEC: 18281 case IPOPT_TS_PRESPEC_RFC791: 18282 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 18283 break; 18284 default: 18285 code = (char *)&opt[IPOPT_POS_OV_FLG] - 18286 (char *)ipha; 18287 goto param_prob; 18288 } 18289 if (opt[IPOPT_OFFSET] - 1 + off > optlen && 18290 (opt[IPOPT_POS_OV_FLG] & 0xF0) == 0xF0) { 18291 /* 18292 * No room and the overflow counter is 15 18293 * already. 18294 */ 18295 goto param_prob; 18296 } 18297 break; 18298 } 18299 } 18300 18301 if ((opts.ipoptp_flags & IPOPTP_ERROR) == 0) { 18302 *dstp = dst; 18303 return (0); 18304 } 18305 18306 ip1dbg(("ip_rput_options: error processing IP options.")); 18307 code = (char *)&opt[IPOPT_OFFSET] - (char *)ipha; 18308 18309 param_prob: 18310 q = WR(q); 18311 if (q->q_next != NULL) 18312 ill = q->q_ptr; 18313 else 18314 ill = NULL; 18315 18316 /* make sure we clear any indication of a hardware checksum */ 18317 DB_CKSUMFLAGS(mp) = 0; 18318 /* Don't know whether this is for non-global or global/forwarding */ 18319 zoneid = ipif_lookup_addr_zoneid(dst, ill, ipst); 18320 if (zoneid == ALL_ZONES) 18321 freemsg(mp); 18322 else 18323 icmp_param_problem(q, mp, (uint8_t)code, zoneid, ipst); 18324 return (-1); 18325 18326 bad_src_route: 18327 q = WR(q); 18328 if (q->q_next != NULL) 18329 ill = q->q_ptr; 18330 else 18331 ill = NULL; 18332 18333 /* make sure we clear any indication of a hardware checksum */ 18334 DB_CKSUMFLAGS(mp) = 0; 18335 zoneid = ipif_lookup_addr_zoneid(dst, ill, ipst); 18336 if (zoneid == ALL_ZONES) 18337 freemsg(mp); 18338 else 18339 icmp_unreachable(q, mp, ICMP_SOURCE_ROUTE_FAILED, zoneid, ipst); 18340 return (-1); 18341 } 18342 18343 /* 18344 * IP & ICMP info in >=14 msg's ... 18345 * - ip fixed part (mib2_ip_t) 18346 * - icmp fixed part (mib2_icmp_t) 18347 * - ipAddrEntryTable (ip 20) all IPv4 ipifs 18348 * - ipRouteEntryTable (ip 21) all IPv4 IREs 18349 * - ipNetToMediaEntryTable (ip 22) [filled in by the arp module] 18350 * - ipRouteAttributeTable (ip 102) labeled routes 18351 * - ip multicast membership (ip_member_t) 18352 * - ip multicast source filtering (ip_grpsrc_t) 18353 * - igmp fixed part (struct igmpstat) 18354 * - multicast routing stats (struct mrtstat) 18355 * - multicast routing vifs (array of struct vifctl) 18356 * - multicast routing routes (array of struct mfcctl) 18357 * - ip6 fixed part (mib2_ipv6IfStatsEntry_t) 18358 * One per ill plus one generic 18359 * - icmp6 fixed part (mib2_ipv6IfIcmpEntry_t) 18360 * One per ill plus one generic 18361 * - ipv6RouteEntry all IPv6 IREs 18362 * - ipv6RouteAttributeTable (ip6 102) labeled routes 18363 * - ipv6NetToMediaEntry all Neighbor Cache entries 18364 * - ipv6AddrEntry all IPv6 ipifs 18365 * - ipv6 multicast membership (ipv6_member_t) 18366 * - ipv6 multicast source filtering (ipv6_grpsrc_t) 18367 * 18368 * MIB2_IP_MEDIA is filled in by the arp module with ARP cache entries. 18369 * 18370 * NOTE: original mpctl is copied for msg's 2..N, since its ctl part is 18371 * already filled in by the caller. 18372 * Return value of 0 indicates that no messages were sent and caller 18373 * should free mpctl. 18374 */ 18375 int 18376 ip_snmp_get(queue_t *q, mblk_t *mpctl, int level) 18377 { 18378 ip_stack_t *ipst; 18379 sctp_stack_t *sctps; 18380 18381 if (q->q_next != NULL) { 18382 ipst = ILLQ_TO_IPST(q); 18383 } else { 18384 ipst = CONNQ_TO_IPST(q); 18385 } 18386 ASSERT(ipst != NULL); 18387 sctps = ipst->ips_netstack->netstack_sctp; 18388 18389 if (mpctl == NULL || mpctl->b_cont == NULL) { 18390 return (0); 18391 } 18392 18393 /* 18394 * For the purposes of the (broken) packet shell use 18395 * of the level we make sure MIB2_TCP/MIB2_UDP can be used 18396 * to make TCP and UDP appear first in the list of mib items. 18397 * TBD: We could expand this and use it in netstat so that 18398 * the kernel doesn't have to produce large tables (connections, 18399 * routes, etc) when netstat only wants the statistics or a particular 18400 * table. 18401 */ 18402 if (!(level == MIB2_TCP || level == MIB2_UDP)) { 18403 if ((mpctl = icmp_snmp_get(q, mpctl)) == NULL) { 18404 return (1); 18405 } 18406 } 18407 18408 if (level != MIB2_TCP) { 18409 if ((mpctl = udp_snmp_get(q, mpctl)) == NULL) { 18410 return (1); 18411 } 18412 } 18413 18414 if (level != MIB2_UDP) { 18415 if ((mpctl = tcp_snmp_get(q, mpctl)) == NULL) { 18416 return (1); 18417 } 18418 } 18419 18420 if ((mpctl = ip_snmp_get_mib2_ip_traffic_stats(q, mpctl, 18421 ipst)) == NULL) { 18422 return (1); 18423 } 18424 18425 if ((mpctl = ip_snmp_get_mib2_ip6(q, mpctl, ipst)) == NULL) { 18426 return (1); 18427 } 18428 18429 if ((mpctl = ip_snmp_get_mib2_icmp(q, mpctl, ipst)) == NULL) { 18430 return (1); 18431 } 18432 18433 if ((mpctl = ip_snmp_get_mib2_icmp6(q, mpctl, ipst)) == NULL) { 18434 return (1); 18435 } 18436 18437 if ((mpctl = ip_snmp_get_mib2_igmp(q, mpctl, ipst)) == NULL) { 18438 return (1); 18439 } 18440 18441 if ((mpctl = ip_snmp_get_mib2_multi(q, mpctl, ipst)) == NULL) { 18442 return (1); 18443 } 18444 18445 if ((mpctl = ip_snmp_get_mib2_ip_addr(q, mpctl, ipst)) == NULL) { 18446 return (1); 18447 } 18448 18449 if ((mpctl = ip_snmp_get_mib2_ip6_addr(q, mpctl, ipst)) == NULL) { 18450 return (1); 18451 } 18452 18453 if ((mpctl = ip_snmp_get_mib2_ip_group_mem(q, mpctl, ipst)) == NULL) { 18454 return (1); 18455 } 18456 18457 if ((mpctl = ip_snmp_get_mib2_ip6_group_mem(q, mpctl, ipst)) == NULL) { 18458 return (1); 18459 } 18460 18461 if ((mpctl = ip_snmp_get_mib2_ip_group_src(q, mpctl, ipst)) == NULL) { 18462 return (1); 18463 } 18464 18465 if ((mpctl = ip_snmp_get_mib2_ip6_group_src(q, mpctl, ipst)) == NULL) { 18466 return (1); 18467 } 18468 18469 if ((mpctl = ip_snmp_get_mib2_virt_multi(q, mpctl, ipst)) == NULL) { 18470 return (1); 18471 } 18472 18473 if ((mpctl = ip_snmp_get_mib2_multi_rtable(q, mpctl, ipst)) == NULL) { 18474 return (1); 18475 } 18476 18477 mpctl = ip_snmp_get_mib2_ip_route_media(q, mpctl, level, ipst); 18478 if (mpctl == NULL) 18479 return (1); 18480 18481 mpctl = ip_snmp_get_mib2_ip6_route_media(q, mpctl, level, ipst); 18482 if (mpctl == NULL) 18483 return (1); 18484 18485 if ((mpctl = sctp_snmp_get_mib2(q, mpctl, sctps)) == NULL) { 18486 return (1); 18487 } 18488 freemsg(mpctl); 18489 return (1); 18490 } 18491 18492 /* Get global (legacy) IPv4 statistics */ 18493 static mblk_t * 18494 ip_snmp_get_mib2_ip(queue_t *q, mblk_t *mpctl, mib2_ipIfStatsEntry_t *ipmib, 18495 ip_stack_t *ipst) 18496 { 18497 mib2_ip_t old_ip_mib; 18498 struct opthdr *optp; 18499 mblk_t *mp2ctl; 18500 18501 /* 18502 * make a copy of the original message 18503 */ 18504 mp2ctl = copymsg(mpctl); 18505 18506 /* fixed length IP structure... */ 18507 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18508 optp->level = MIB2_IP; 18509 optp->name = 0; 18510 SET_MIB(old_ip_mib.ipForwarding, 18511 (WE_ARE_FORWARDING(ipst) ? 1 : 2)); 18512 SET_MIB(old_ip_mib.ipDefaultTTL, 18513 (uint32_t)ipst->ips_ip_def_ttl); 18514 SET_MIB(old_ip_mib.ipReasmTimeout, 18515 ipst->ips_ip_g_frag_timeout); 18516 SET_MIB(old_ip_mib.ipAddrEntrySize, 18517 sizeof (mib2_ipAddrEntry_t)); 18518 SET_MIB(old_ip_mib.ipRouteEntrySize, 18519 sizeof (mib2_ipRouteEntry_t)); 18520 SET_MIB(old_ip_mib.ipNetToMediaEntrySize, 18521 sizeof (mib2_ipNetToMediaEntry_t)); 18522 SET_MIB(old_ip_mib.ipMemberEntrySize, sizeof (ip_member_t)); 18523 SET_MIB(old_ip_mib.ipGroupSourceEntrySize, sizeof (ip_grpsrc_t)); 18524 SET_MIB(old_ip_mib.ipRouteAttributeSize, 18525 sizeof (mib2_ipAttributeEntry_t)); 18526 SET_MIB(old_ip_mib.transportMLPSize, sizeof (mib2_transportMLPEntry_t)); 18527 18528 /* 18529 * Grab the statistics from the new IP MIB 18530 */ 18531 SET_MIB(old_ip_mib.ipInReceives, 18532 (uint32_t)ipmib->ipIfStatsHCInReceives); 18533 SET_MIB(old_ip_mib.ipInHdrErrors, ipmib->ipIfStatsInHdrErrors); 18534 SET_MIB(old_ip_mib.ipInAddrErrors, ipmib->ipIfStatsInAddrErrors); 18535 SET_MIB(old_ip_mib.ipForwDatagrams, 18536 (uint32_t)ipmib->ipIfStatsHCOutForwDatagrams); 18537 SET_MIB(old_ip_mib.ipInUnknownProtos, 18538 ipmib->ipIfStatsInUnknownProtos); 18539 SET_MIB(old_ip_mib.ipInDiscards, ipmib->ipIfStatsInDiscards); 18540 SET_MIB(old_ip_mib.ipInDelivers, 18541 (uint32_t)ipmib->ipIfStatsHCInDelivers); 18542 SET_MIB(old_ip_mib.ipOutRequests, 18543 (uint32_t)ipmib->ipIfStatsHCOutRequests); 18544 SET_MIB(old_ip_mib.ipOutDiscards, ipmib->ipIfStatsOutDiscards); 18545 SET_MIB(old_ip_mib.ipOutNoRoutes, ipmib->ipIfStatsOutNoRoutes); 18546 SET_MIB(old_ip_mib.ipReasmReqds, ipmib->ipIfStatsReasmReqds); 18547 SET_MIB(old_ip_mib.ipReasmOKs, ipmib->ipIfStatsReasmOKs); 18548 SET_MIB(old_ip_mib.ipReasmFails, ipmib->ipIfStatsReasmFails); 18549 SET_MIB(old_ip_mib.ipFragOKs, ipmib->ipIfStatsOutFragOKs); 18550 SET_MIB(old_ip_mib.ipFragFails, ipmib->ipIfStatsOutFragFails); 18551 SET_MIB(old_ip_mib.ipFragCreates, ipmib->ipIfStatsOutFragCreates); 18552 18553 /* ipRoutingDiscards is not being used */ 18554 SET_MIB(old_ip_mib.ipRoutingDiscards, 0); 18555 SET_MIB(old_ip_mib.tcpInErrs, ipmib->tcpIfStatsInErrs); 18556 SET_MIB(old_ip_mib.udpNoPorts, ipmib->udpIfStatsNoPorts); 18557 SET_MIB(old_ip_mib.ipInCksumErrs, ipmib->ipIfStatsInCksumErrs); 18558 SET_MIB(old_ip_mib.ipReasmDuplicates, 18559 ipmib->ipIfStatsReasmDuplicates); 18560 SET_MIB(old_ip_mib.ipReasmPartDups, ipmib->ipIfStatsReasmPartDups); 18561 SET_MIB(old_ip_mib.ipForwProhibits, ipmib->ipIfStatsForwProhibits); 18562 SET_MIB(old_ip_mib.udpInCksumErrs, ipmib->udpIfStatsInCksumErrs); 18563 SET_MIB(old_ip_mib.udpInOverflows, ipmib->udpIfStatsInOverflows); 18564 SET_MIB(old_ip_mib.rawipInOverflows, 18565 ipmib->rawipIfStatsInOverflows); 18566 18567 SET_MIB(old_ip_mib.ipsecInSucceeded, ipmib->ipsecIfStatsInSucceeded); 18568 SET_MIB(old_ip_mib.ipsecInFailed, ipmib->ipsecIfStatsInFailed); 18569 SET_MIB(old_ip_mib.ipInIPv6, ipmib->ipIfStatsInWrongIPVersion); 18570 SET_MIB(old_ip_mib.ipOutIPv6, ipmib->ipIfStatsOutWrongIPVersion); 18571 SET_MIB(old_ip_mib.ipOutSwitchIPv6, 18572 ipmib->ipIfStatsOutSwitchIPVersion); 18573 18574 if (!snmp_append_data(mpctl->b_cont, (char *)&old_ip_mib, 18575 (int)sizeof (old_ip_mib))) { 18576 ip1dbg(("ip_snmp_get_mib2_ip: failed to allocate %u bytes\n", 18577 (uint_t)sizeof (old_ip_mib))); 18578 } 18579 18580 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18581 ip3dbg(("ip_snmp_get_mib2_ip: level %d, name %d, len %d\n", 18582 (int)optp->level, (int)optp->name, (int)optp->len)); 18583 qreply(q, mpctl); 18584 return (mp2ctl); 18585 } 18586 18587 /* Per interface IPv4 statistics */ 18588 static mblk_t * 18589 ip_snmp_get_mib2_ip_traffic_stats(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18590 { 18591 struct opthdr *optp; 18592 mblk_t *mp2ctl; 18593 ill_t *ill; 18594 ill_walk_context_t ctx; 18595 mblk_t *mp_tail = NULL; 18596 mib2_ipIfStatsEntry_t global_ip_mib; 18597 18598 /* 18599 * Make a copy of the original message 18600 */ 18601 mp2ctl = copymsg(mpctl); 18602 18603 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18604 optp->level = MIB2_IP; 18605 optp->name = MIB2_IP_TRAFFIC_STATS; 18606 /* Include "unknown interface" ip_mib */ 18607 ipst->ips_ip_mib.ipIfStatsIPVersion = MIB2_INETADDRESSTYPE_ipv4; 18608 ipst->ips_ip_mib.ipIfStatsIfIndex = 18609 MIB2_UNKNOWN_INTERFACE; /* Flag to netstat */ 18610 SET_MIB(ipst->ips_ip_mib.ipIfStatsForwarding, 18611 (ipst->ips_ip_g_forward ? 1 : 2)); 18612 SET_MIB(ipst->ips_ip_mib.ipIfStatsDefaultTTL, 18613 (uint32_t)ipst->ips_ip_def_ttl); 18614 SET_MIB(ipst->ips_ip_mib.ipIfStatsEntrySize, 18615 sizeof (mib2_ipIfStatsEntry_t)); 18616 SET_MIB(ipst->ips_ip_mib.ipIfStatsAddrEntrySize, 18617 sizeof (mib2_ipAddrEntry_t)); 18618 SET_MIB(ipst->ips_ip_mib.ipIfStatsRouteEntrySize, 18619 sizeof (mib2_ipRouteEntry_t)); 18620 SET_MIB(ipst->ips_ip_mib.ipIfStatsNetToMediaEntrySize, 18621 sizeof (mib2_ipNetToMediaEntry_t)); 18622 SET_MIB(ipst->ips_ip_mib.ipIfStatsMemberEntrySize, 18623 sizeof (ip_member_t)); 18624 SET_MIB(ipst->ips_ip_mib.ipIfStatsGroupSourceEntrySize, 18625 sizeof (ip_grpsrc_t)); 18626 18627 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 18628 (char *)&ipst->ips_ip_mib, (int)sizeof (ipst->ips_ip_mib))) { 18629 ip1dbg(("ip_snmp_get_mib2_ip_traffic_stats: " 18630 "failed to allocate %u bytes\n", 18631 (uint_t)sizeof (ipst->ips_ip_mib))); 18632 } 18633 18634 bcopy(&ipst->ips_ip_mib, &global_ip_mib, sizeof (global_ip_mib)); 18635 18636 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 18637 ill = ILL_START_WALK_V4(&ctx, ipst); 18638 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 18639 ill->ill_ip_mib->ipIfStatsIfIndex = 18640 ill->ill_phyint->phyint_ifindex; 18641 SET_MIB(ill->ill_ip_mib->ipIfStatsForwarding, 18642 (ipst->ips_ip_g_forward ? 1 : 2)); 18643 SET_MIB(ill->ill_ip_mib->ipIfStatsDefaultTTL, 18644 (uint32_t)ipst->ips_ip_def_ttl); 18645 18646 ip_mib2_add_ip_stats(&global_ip_mib, ill->ill_ip_mib); 18647 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 18648 (char *)ill->ill_ip_mib, 18649 (int)sizeof (*ill->ill_ip_mib))) { 18650 ip1dbg(("ip_snmp_get_mib2_ip_traffic_stats: " 18651 "failed to allocate %u bytes\n", 18652 (uint_t)sizeof (*ill->ill_ip_mib))); 18653 } 18654 } 18655 rw_exit(&ipst->ips_ill_g_lock); 18656 18657 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18658 ip3dbg(("ip_snmp_get_mib2_ip_traffic_stats: " 18659 "level %d, name %d, len %d\n", 18660 (int)optp->level, (int)optp->name, (int)optp->len)); 18661 qreply(q, mpctl); 18662 18663 if (mp2ctl == NULL) 18664 return (NULL); 18665 18666 return (ip_snmp_get_mib2_ip(q, mp2ctl, &global_ip_mib, ipst)); 18667 } 18668 18669 /* Global IPv4 ICMP statistics */ 18670 static mblk_t * 18671 ip_snmp_get_mib2_icmp(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18672 { 18673 struct opthdr *optp; 18674 mblk_t *mp2ctl; 18675 18676 /* 18677 * Make a copy of the original message 18678 */ 18679 mp2ctl = copymsg(mpctl); 18680 18681 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18682 optp->level = MIB2_ICMP; 18683 optp->name = 0; 18684 if (!snmp_append_data(mpctl->b_cont, (char *)&ipst->ips_icmp_mib, 18685 (int)sizeof (ipst->ips_icmp_mib))) { 18686 ip1dbg(("ip_snmp_get_mib2_icmp: failed to allocate %u bytes\n", 18687 (uint_t)sizeof (ipst->ips_icmp_mib))); 18688 } 18689 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18690 ip3dbg(("ip_snmp_get_mib2_icmp: level %d, name %d, len %d\n", 18691 (int)optp->level, (int)optp->name, (int)optp->len)); 18692 qreply(q, mpctl); 18693 return (mp2ctl); 18694 } 18695 18696 /* Global IPv4 IGMP statistics */ 18697 static mblk_t * 18698 ip_snmp_get_mib2_igmp(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18699 { 18700 struct opthdr *optp; 18701 mblk_t *mp2ctl; 18702 18703 /* 18704 * make a copy of the original message 18705 */ 18706 mp2ctl = copymsg(mpctl); 18707 18708 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18709 optp->level = EXPER_IGMP; 18710 optp->name = 0; 18711 if (!snmp_append_data(mpctl->b_cont, (char *)&ipst->ips_igmpstat, 18712 (int)sizeof (ipst->ips_igmpstat))) { 18713 ip1dbg(("ip_snmp_get_mib2_igmp: failed to allocate %u bytes\n", 18714 (uint_t)sizeof (ipst->ips_igmpstat))); 18715 } 18716 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18717 ip3dbg(("ip_snmp_get_mib2_igmp: level %d, name %d, len %d\n", 18718 (int)optp->level, (int)optp->name, (int)optp->len)); 18719 qreply(q, mpctl); 18720 return (mp2ctl); 18721 } 18722 18723 /* Global IPv4 Multicast Routing statistics */ 18724 static mblk_t * 18725 ip_snmp_get_mib2_multi(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18726 { 18727 struct opthdr *optp; 18728 mblk_t *mp2ctl; 18729 18730 /* 18731 * make a copy of the original message 18732 */ 18733 mp2ctl = copymsg(mpctl); 18734 18735 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18736 optp->level = EXPER_DVMRP; 18737 optp->name = 0; 18738 if (!ip_mroute_stats(mpctl->b_cont, ipst)) { 18739 ip0dbg(("ip_mroute_stats: failed\n")); 18740 } 18741 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18742 ip3dbg(("ip_snmp_get_mib2_multi: level %d, name %d, len %d\n", 18743 (int)optp->level, (int)optp->name, (int)optp->len)); 18744 qreply(q, mpctl); 18745 return (mp2ctl); 18746 } 18747 18748 /* IPv4 address information */ 18749 static mblk_t * 18750 ip_snmp_get_mib2_ip_addr(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18751 { 18752 struct opthdr *optp; 18753 mblk_t *mp2ctl; 18754 mblk_t *mp_tail = NULL; 18755 ill_t *ill; 18756 ipif_t *ipif; 18757 uint_t bitval; 18758 mib2_ipAddrEntry_t mae; 18759 zoneid_t zoneid; 18760 ill_walk_context_t ctx; 18761 18762 /* 18763 * make a copy of the original message 18764 */ 18765 mp2ctl = copymsg(mpctl); 18766 18767 /* ipAddrEntryTable */ 18768 18769 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18770 optp->level = MIB2_IP; 18771 optp->name = MIB2_IP_ADDR; 18772 zoneid = Q_TO_CONN(q)->conn_zoneid; 18773 18774 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 18775 ill = ILL_START_WALK_V4(&ctx, ipst); 18776 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 18777 for (ipif = ill->ill_ipif; ipif != NULL; 18778 ipif = ipif->ipif_next) { 18779 if (ipif->ipif_zoneid != zoneid && 18780 ipif->ipif_zoneid != ALL_ZONES) 18781 continue; 18782 mae.ipAdEntInfo.ae_ibcnt = ipif->ipif_ib_pkt_count; 18783 mae.ipAdEntInfo.ae_obcnt = ipif->ipif_ob_pkt_count; 18784 mae.ipAdEntInfo.ae_focnt = ipif->ipif_fo_pkt_count; 18785 18786 ipif_get_name(ipif, mae.ipAdEntIfIndex.o_bytes, 18787 OCTET_LENGTH); 18788 mae.ipAdEntIfIndex.o_length = 18789 mi_strlen(mae.ipAdEntIfIndex.o_bytes); 18790 mae.ipAdEntAddr = ipif->ipif_lcl_addr; 18791 mae.ipAdEntNetMask = ipif->ipif_net_mask; 18792 mae.ipAdEntInfo.ae_subnet = ipif->ipif_subnet; 18793 mae.ipAdEntInfo.ae_subnet_len = 18794 ip_mask_to_plen(ipif->ipif_net_mask); 18795 mae.ipAdEntInfo.ae_src_addr = ipif->ipif_src_addr; 18796 for (bitval = 1; 18797 bitval && 18798 !(bitval & ipif->ipif_brd_addr); 18799 bitval <<= 1) 18800 noop; 18801 mae.ipAdEntBcastAddr = bitval; 18802 mae.ipAdEntReasmMaxSize = IP_MAXPACKET; 18803 mae.ipAdEntInfo.ae_mtu = ipif->ipif_mtu; 18804 mae.ipAdEntInfo.ae_metric = ipif->ipif_metric; 18805 mae.ipAdEntInfo.ae_broadcast_addr = 18806 ipif->ipif_brd_addr; 18807 mae.ipAdEntInfo.ae_pp_dst_addr = 18808 ipif->ipif_pp_dst_addr; 18809 mae.ipAdEntInfo.ae_flags = ipif->ipif_flags | 18810 ill->ill_flags | ill->ill_phyint->phyint_flags; 18811 mae.ipAdEntRetransmitTime = AR_EQ_DEFAULT_XMIT_INTERVAL; 18812 18813 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 18814 (char *)&mae, (int)sizeof (mib2_ipAddrEntry_t))) { 18815 ip1dbg(("ip_snmp_get_mib2_ip_addr: failed to " 18816 "allocate %u bytes\n", 18817 (uint_t)sizeof (mib2_ipAddrEntry_t))); 18818 } 18819 } 18820 } 18821 rw_exit(&ipst->ips_ill_g_lock); 18822 18823 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18824 ip3dbg(("ip_snmp_get_mib2_ip_addr: level %d, name %d, len %d\n", 18825 (int)optp->level, (int)optp->name, (int)optp->len)); 18826 qreply(q, mpctl); 18827 return (mp2ctl); 18828 } 18829 18830 /* IPv6 address information */ 18831 static mblk_t * 18832 ip_snmp_get_mib2_ip6_addr(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18833 { 18834 struct opthdr *optp; 18835 mblk_t *mp2ctl; 18836 mblk_t *mp_tail = NULL; 18837 ill_t *ill; 18838 ipif_t *ipif; 18839 mib2_ipv6AddrEntry_t mae6; 18840 zoneid_t zoneid; 18841 ill_walk_context_t ctx; 18842 18843 /* 18844 * make a copy of the original message 18845 */ 18846 mp2ctl = copymsg(mpctl); 18847 18848 /* ipv6AddrEntryTable */ 18849 18850 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18851 optp->level = MIB2_IP6; 18852 optp->name = MIB2_IP6_ADDR; 18853 zoneid = Q_TO_CONN(q)->conn_zoneid; 18854 18855 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 18856 ill = ILL_START_WALK_V6(&ctx, ipst); 18857 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 18858 for (ipif = ill->ill_ipif; ipif != NULL; 18859 ipif = ipif->ipif_next) { 18860 if (ipif->ipif_zoneid != zoneid && 18861 ipif->ipif_zoneid != ALL_ZONES) 18862 continue; 18863 mae6.ipv6AddrInfo.ae_ibcnt = ipif->ipif_ib_pkt_count; 18864 mae6.ipv6AddrInfo.ae_obcnt = ipif->ipif_ob_pkt_count; 18865 mae6.ipv6AddrInfo.ae_focnt = ipif->ipif_fo_pkt_count; 18866 18867 ipif_get_name(ipif, mae6.ipv6AddrIfIndex.o_bytes, 18868 OCTET_LENGTH); 18869 mae6.ipv6AddrIfIndex.o_length = 18870 mi_strlen(mae6.ipv6AddrIfIndex.o_bytes); 18871 mae6.ipv6AddrAddress = ipif->ipif_v6lcl_addr; 18872 mae6.ipv6AddrPfxLength = 18873 ip_mask_to_plen_v6(&ipif->ipif_v6net_mask); 18874 mae6.ipv6AddrInfo.ae_subnet = ipif->ipif_v6subnet; 18875 mae6.ipv6AddrInfo.ae_subnet_len = 18876 mae6.ipv6AddrPfxLength; 18877 mae6.ipv6AddrInfo.ae_src_addr = ipif->ipif_v6src_addr; 18878 18879 /* Type: stateless(1), stateful(2), unknown(3) */ 18880 if (ipif->ipif_flags & IPIF_ADDRCONF) 18881 mae6.ipv6AddrType = 1; 18882 else 18883 mae6.ipv6AddrType = 2; 18884 /* Anycast: true(1), false(2) */ 18885 if (ipif->ipif_flags & IPIF_ANYCAST) 18886 mae6.ipv6AddrAnycastFlag = 1; 18887 else 18888 mae6.ipv6AddrAnycastFlag = 2; 18889 18890 /* 18891 * Address status: preferred(1), deprecated(2), 18892 * invalid(3), inaccessible(4), unknown(5) 18893 */ 18894 if (ipif->ipif_flags & IPIF_NOLOCAL) 18895 mae6.ipv6AddrStatus = 3; 18896 else if (ipif->ipif_flags & IPIF_DEPRECATED) 18897 mae6.ipv6AddrStatus = 2; 18898 else 18899 mae6.ipv6AddrStatus = 1; 18900 mae6.ipv6AddrInfo.ae_mtu = ipif->ipif_mtu; 18901 mae6.ipv6AddrInfo.ae_metric = ipif->ipif_metric; 18902 mae6.ipv6AddrInfo.ae_pp_dst_addr = 18903 ipif->ipif_v6pp_dst_addr; 18904 mae6.ipv6AddrInfo.ae_flags = ipif->ipif_flags | 18905 ill->ill_flags | ill->ill_phyint->phyint_flags; 18906 mae6.ipv6AddrReasmMaxSize = IP_MAXPACKET; 18907 mae6.ipv6AddrIdentifier = ill->ill_token; 18908 mae6.ipv6AddrIdentifierLen = ill->ill_token_length; 18909 mae6.ipv6AddrReachableTime = ill->ill_reachable_time; 18910 mae6.ipv6AddrRetransmitTime = 18911 ill->ill_reachable_retrans_time; 18912 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 18913 (char *)&mae6, 18914 (int)sizeof (mib2_ipv6AddrEntry_t))) { 18915 ip1dbg(("ip_snmp_get_mib2_ip6_addr: failed to " 18916 "allocate %u bytes\n", 18917 (uint_t)sizeof (mib2_ipv6AddrEntry_t))); 18918 } 18919 } 18920 } 18921 rw_exit(&ipst->ips_ill_g_lock); 18922 18923 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18924 ip3dbg(("ip_snmp_get_mib2_ip6_addr: level %d, name %d, len %d\n", 18925 (int)optp->level, (int)optp->name, (int)optp->len)); 18926 qreply(q, mpctl); 18927 return (mp2ctl); 18928 } 18929 18930 /* IPv4 multicast group membership. */ 18931 static mblk_t * 18932 ip_snmp_get_mib2_ip_group_mem(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18933 { 18934 struct opthdr *optp; 18935 mblk_t *mp2ctl; 18936 ill_t *ill; 18937 ipif_t *ipif; 18938 ilm_t *ilm; 18939 ip_member_t ipm; 18940 mblk_t *mp_tail = NULL; 18941 ill_walk_context_t ctx; 18942 zoneid_t zoneid; 18943 ilm_walker_t ilw; 18944 18945 /* 18946 * make a copy of the original message 18947 */ 18948 mp2ctl = copymsg(mpctl); 18949 zoneid = Q_TO_CONN(q)->conn_zoneid; 18950 18951 /* ipGroupMember table */ 18952 optp = (struct opthdr *)&mpctl->b_rptr[ 18953 sizeof (struct T_optmgmt_ack)]; 18954 optp->level = MIB2_IP; 18955 optp->name = EXPER_IP_GROUP_MEMBERSHIP; 18956 18957 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 18958 ill = ILL_START_WALK_V4(&ctx, ipst); 18959 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 18960 if (IS_UNDER_IPMP(ill)) 18961 continue; 18962 18963 ilm = ilm_walker_start(&ilw, ill); 18964 for (ipif = ill->ill_ipif; ipif != NULL; 18965 ipif = ipif->ipif_next) { 18966 if (ipif->ipif_zoneid != zoneid && 18967 ipif->ipif_zoneid != ALL_ZONES) 18968 continue; /* not this zone */ 18969 ipif_get_name(ipif, ipm.ipGroupMemberIfIndex.o_bytes, 18970 OCTET_LENGTH); 18971 ipm.ipGroupMemberIfIndex.o_length = 18972 mi_strlen(ipm.ipGroupMemberIfIndex.o_bytes); 18973 for (; ilm != NULL; ilm = ilm_walker_step(&ilw, ilm)) { 18974 ASSERT(ilm->ilm_ipif != NULL); 18975 ASSERT(ilm->ilm_ill == NULL); 18976 if (ilm->ilm_ipif != ipif) 18977 continue; 18978 ipm.ipGroupMemberAddress = ilm->ilm_addr; 18979 ipm.ipGroupMemberRefCnt = ilm->ilm_refcnt; 18980 ipm.ipGroupMemberFilterMode = ilm->ilm_fmode; 18981 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 18982 (char *)&ipm, (int)sizeof (ipm))) { 18983 ip1dbg(("ip_snmp_get_mib2_ip_group: " 18984 "failed to allocate %u bytes\n", 18985 (uint_t)sizeof (ipm))); 18986 } 18987 } 18988 } 18989 ilm_walker_finish(&ilw); 18990 } 18991 rw_exit(&ipst->ips_ill_g_lock); 18992 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18993 ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n", 18994 (int)optp->level, (int)optp->name, (int)optp->len)); 18995 qreply(q, mpctl); 18996 return (mp2ctl); 18997 } 18998 18999 /* IPv6 multicast group membership. */ 19000 static mblk_t * 19001 ip_snmp_get_mib2_ip6_group_mem(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 19002 { 19003 struct opthdr *optp; 19004 mblk_t *mp2ctl; 19005 ill_t *ill; 19006 ilm_t *ilm; 19007 ipv6_member_t ipm6; 19008 mblk_t *mp_tail = NULL; 19009 ill_walk_context_t ctx; 19010 zoneid_t zoneid; 19011 ilm_walker_t ilw; 19012 19013 /* 19014 * make a copy of the original message 19015 */ 19016 mp2ctl = copymsg(mpctl); 19017 zoneid = Q_TO_CONN(q)->conn_zoneid; 19018 19019 /* ip6GroupMember table */ 19020 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 19021 optp->level = MIB2_IP6; 19022 optp->name = EXPER_IP6_GROUP_MEMBERSHIP; 19023 19024 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 19025 ill = ILL_START_WALK_V6(&ctx, ipst); 19026 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 19027 if (IS_UNDER_IPMP(ill)) 19028 continue; 19029 19030 ilm = ilm_walker_start(&ilw, ill); 19031 ipm6.ipv6GroupMemberIfIndex = ill->ill_phyint->phyint_ifindex; 19032 for (; ilm != NULL; ilm = ilm_walker_step(&ilw, ilm)) { 19033 ASSERT(ilm->ilm_ipif == NULL); 19034 ASSERT(ilm->ilm_ill != NULL); 19035 if (ilm->ilm_zoneid != zoneid) 19036 continue; /* not this zone */ 19037 ipm6.ipv6GroupMemberAddress = ilm->ilm_v6addr; 19038 ipm6.ipv6GroupMemberRefCnt = ilm->ilm_refcnt; 19039 ipm6.ipv6GroupMemberFilterMode = ilm->ilm_fmode; 19040 if (!snmp_append_data2(mpctl->b_cont, 19041 &mp_tail, 19042 (char *)&ipm6, (int)sizeof (ipm6))) { 19043 ip1dbg(("ip_snmp_get_mib2_ip6_group: " 19044 "failed to allocate %u bytes\n", 19045 (uint_t)sizeof (ipm6))); 19046 } 19047 } 19048 ilm_walker_finish(&ilw); 19049 } 19050 rw_exit(&ipst->ips_ill_g_lock); 19051 19052 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 19053 ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n", 19054 (int)optp->level, (int)optp->name, (int)optp->len)); 19055 qreply(q, mpctl); 19056 return (mp2ctl); 19057 } 19058 19059 /* IP multicast filtered sources */ 19060 static mblk_t * 19061 ip_snmp_get_mib2_ip_group_src(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 19062 { 19063 struct opthdr *optp; 19064 mblk_t *mp2ctl; 19065 ill_t *ill; 19066 ipif_t *ipif; 19067 ilm_t *ilm; 19068 ip_grpsrc_t ips; 19069 mblk_t *mp_tail = NULL; 19070 ill_walk_context_t ctx; 19071 zoneid_t zoneid; 19072 int i; 19073 slist_t *sl; 19074 ilm_walker_t ilw; 19075 19076 /* 19077 * make a copy of the original message 19078 */ 19079 mp2ctl = copymsg(mpctl); 19080 zoneid = Q_TO_CONN(q)->conn_zoneid; 19081 19082 /* ipGroupSource table */ 19083 optp = (struct opthdr *)&mpctl->b_rptr[ 19084 sizeof (struct T_optmgmt_ack)]; 19085 optp->level = MIB2_IP; 19086 optp->name = EXPER_IP_GROUP_SOURCES; 19087 19088 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 19089 ill = ILL_START_WALK_V4(&ctx, ipst); 19090 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 19091 if (IS_UNDER_IPMP(ill)) 19092 continue; 19093 19094 ilm = ilm_walker_start(&ilw, ill); 19095 for (ipif = ill->ill_ipif; ipif != NULL; 19096 ipif = ipif->ipif_next) { 19097 if (ipif->ipif_zoneid != zoneid) 19098 continue; /* not this zone */ 19099 ipif_get_name(ipif, ips.ipGroupSourceIfIndex.o_bytes, 19100 OCTET_LENGTH); 19101 ips.ipGroupSourceIfIndex.o_length = 19102 mi_strlen(ips.ipGroupSourceIfIndex.o_bytes); 19103 for (; ilm != NULL; ilm = ilm_walker_step(&ilw, ilm)) { 19104 ASSERT(ilm->ilm_ipif != NULL); 19105 ASSERT(ilm->ilm_ill == NULL); 19106 sl = ilm->ilm_filter; 19107 if (ilm->ilm_ipif != ipif || SLIST_IS_EMPTY(sl)) 19108 continue; 19109 ips.ipGroupSourceGroup = ilm->ilm_addr; 19110 for (i = 0; i < sl->sl_numsrc; i++) { 19111 if (!IN6_IS_ADDR_V4MAPPED( 19112 &sl->sl_addr[i])) 19113 continue; 19114 IN6_V4MAPPED_TO_IPADDR(&sl->sl_addr[i], 19115 ips.ipGroupSourceAddress); 19116 if (snmp_append_data2(mpctl->b_cont, 19117 &mp_tail, (char *)&ips, 19118 (int)sizeof (ips)) == 0) { 19119 ip1dbg(("ip_snmp_get_mib2_" 19120 "ip_group_src: failed to " 19121 "allocate %u bytes\n", 19122 (uint_t)sizeof (ips))); 19123 } 19124 } 19125 } 19126 } 19127 ilm_walker_finish(&ilw); 19128 } 19129 rw_exit(&ipst->ips_ill_g_lock); 19130 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 19131 ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n", 19132 (int)optp->level, (int)optp->name, (int)optp->len)); 19133 qreply(q, mpctl); 19134 return (mp2ctl); 19135 } 19136 19137 /* IPv6 multicast filtered sources. */ 19138 static mblk_t * 19139 ip_snmp_get_mib2_ip6_group_src(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 19140 { 19141 struct opthdr *optp; 19142 mblk_t *mp2ctl; 19143 ill_t *ill; 19144 ilm_t *ilm; 19145 ipv6_grpsrc_t ips6; 19146 mblk_t *mp_tail = NULL; 19147 ill_walk_context_t ctx; 19148 zoneid_t zoneid; 19149 int i; 19150 slist_t *sl; 19151 ilm_walker_t ilw; 19152 19153 /* 19154 * make a copy of the original message 19155 */ 19156 mp2ctl = copymsg(mpctl); 19157 zoneid = Q_TO_CONN(q)->conn_zoneid; 19158 19159 /* ip6GroupMember table */ 19160 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 19161 optp->level = MIB2_IP6; 19162 optp->name = EXPER_IP6_GROUP_SOURCES; 19163 19164 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 19165 ill = ILL_START_WALK_V6(&ctx, ipst); 19166 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 19167 if (IS_UNDER_IPMP(ill)) 19168 continue; 19169 19170 ilm = ilm_walker_start(&ilw, ill); 19171 ips6.ipv6GroupSourceIfIndex = ill->ill_phyint->phyint_ifindex; 19172 for (; ilm != NULL; ilm = ilm_walker_step(&ilw, ilm)) { 19173 ASSERT(ilm->ilm_ipif == NULL); 19174 ASSERT(ilm->ilm_ill != NULL); 19175 sl = ilm->ilm_filter; 19176 if (ilm->ilm_zoneid != zoneid || SLIST_IS_EMPTY(sl)) 19177 continue; 19178 ips6.ipv6GroupSourceGroup = ilm->ilm_v6addr; 19179 for (i = 0; i < sl->sl_numsrc; i++) { 19180 ips6.ipv6GroupSourceAddress = sl->sl_addr[i]; 19181 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 19182 (char *)&ips6, (int)sizeof (ips6))) { 19183 ip1dbg(("ip_snmp_get_mib2_ip6_" 19184 "group_src: failed to allocate " 19185 "%u bytes\n", 19186 (uint_t)sizeof (ips6))); 19187 } 19188 } 19189 } 19190 ilm_walker_finish(&ilw); 19191 } 19192 rw_exit(&ipst->ips_ill_g_lock); 19193 19194 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 19195 ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n", 19196 (int)optp->level, (int)optp->name, (int)optp->len)); 19197 qreply(q, mpctl); 19198 return (mp2ctl); 19199 } 19200 19201 /* Multicast routing virtual interface table. */ 19202 static mblk_t * 19203 ip_snmp_get_mib2_virt_multi(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 19204 { 19205 struct opthdr *optp; 19206 mblk_t *mp2ctl; 19207 19208 /* 19209 * make a copy of the original message 19210 */ 19211 mp2ctl = copymsg(mpctl); 19212 19213 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 19214 optp->level = EXPER_DVMRP; 19215 optp->name = EXPER_DVMRP_VIF; 19216 if (!ip_mroute_vif(mpctl->b_cont, ipst)) { 19217 ip0dbg(("ip_mroute_vif: failed\n")); 19218 } 19219 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 19220 ip3dbg(("ip_snmp_get_mib2_virt_multi: level %d, name %d, len %d\n", 19221 (int)optp->level, (int)optp->name, (int)optp->len)); 19222 qreply(q, mpctl); 19223 return (mp2ctl); 19224 } 19225 19226 /* Multicast routing table. */ 19227 static mblk_t * 19228 ip_snmp_get_mib2_multi_rtable(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 19229 { 19230 struct opthdr *optp; 19231 mblk_t *mp2ctl; 19232 19233 /* 19234 * make a copy of the original message 19235 */ 19236 mp2ctl = copymsg(mpctl); 19237 19238 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 19239 optp->level = EXPER_DVMRP; 19240 optp->name = EXPER_DVMRP_MRT; 19241 if (!ip_mroute_mrt(mpctl->b_cont, ipst)) { 19242 ip0dbg(("ip_mroute_mrt: failed\n")); 19243 } 19244 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 19245 ip3dbg(("ip_snmp_get_mib2_multi_rtable: level %d, name %d, len %d\n", 19246 (int)optp->level, (int)optp->name, (int)optp->len)); 19247 qreply(q, mpctl); 19248 return (mp2ctl); 19249 } 19250 19251 /* 19252 * Return ipRouteEntryTable, ipNetToMediaEntryTable, and ipRouteAttributeTable 19253 * in one IRE walk. 19254 */ 19255 static mblk_t * 19256 ip_snmp_get_mib2_ip_route_media(queue_t *q, mblk_t *mpctl, int level, 19257 ip_stack_t *ipst) 19258 { 19259 struct opthdr *optp; 19260 mblk_t *mp2ctl; /* Returned */ 19261 mblk_t *mp3ctl; /* nettomedia */ 19262 mblk_t *mp4ctl; /* routeattrs */ 19263 iproutedata_t ird; 19264 zoneid_t zoneid; 19265 19266 /* 19267 * make copies of the original message 19268 * - mp2ctl is returned unchanged to the caller for his use 19269 * - mpctl is sent upstream as ipRouteEntryTable 19270 * - mp3ctl is sent upstream as ipNetToMediaEntryTable 19271 * - mp4ctl is sent upstream as ipRouteAttributeTable 19272 */ 19273 mp2ctl = copymsg(mpctl); 19274 mp3ctl = copymsg(mpctl); 19275 mp4ctl = copymsg(mpctl); 19276 if (mp3ctl == NULL || mp4ctl == NULL) { 19277 freemsg(mp4ctl); 19278 freemsg(mp3ctl); 19279 freemsg(mp2ctl); 19280 freemsg(mpctl); 19281 return (NULL); 19282 } 19283 19284 bzero(&ird, sizeof (ird)); 19285 19286 ird.ird_route.lp_head = mpctl->b_cont; 19287 ird.ird_netmedia.lp_head = mp3ctl->b_cont; 19288 ird.ird_attrs.lp_head = mp4ctl->b_cont; 19289 /* 19290 * If the level has been set the special EXPER_IP_AND_TESTHIDDEN 19291 * value, then also include IRE_MARK_TESTHIDDEN IREs. This is 19292 * intended a temporary solution until a proper MIB API is provided 19293 * that provides complete filtering/caller-opt-in. 19294 */ 19295 if (level == EXPER_IP_AND_TESTHIDDEN) 19296 ird.ird_flags |= IRD_REPORT_TESTHIDDEN; 19297 19298 zoneid = Q_TO_CONN(q)->conn_zoneid; 19299 ire_walk_v4(ip_snmp_get2_v4, &ird, zoneid, ipst); 19300 19301 /* ipRouteEntryTable in mpctl */ 19302 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 19303 optp->level = MIB2_IP; 19304 optp->name = MIB2_IP_ROUTE; 19305 optp->len = msgdsize(ird.ird_route.lp_head); 19306 ip3dbg(("ip_snmp_get_mib2_ip_route_media: level %d, name %d, len %d\n", 19307 (int)optp->level, (int)optp->name, (int)optp->len)); 19308 qreply(q, mpctl); 19309 19310 /* ipNetToMediaEntryTable in mp3ctl */ 19311 optp = (struct opthdr *)&mp3ctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 19312 optp->level = MIB2_IP; 19313 optp->name = MIB2_IP_MEDIA; 19314 optp->len = msgdsize(ird.ird_netmedia.lp_head); 19315 ip3dbg(("ip_snmp_get_mib2_ip_route_media: level %d, name %d, len %d\n", 19316 (int)optp->level, (int)optp->name, (int)optp->len)); 19317 qreply(q, mp3ctl); 19318 19319 /* ipRouteAttributeTable in mp4ctl */ 19320 optp = (struct opthdr *)&mp4ctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 19321 optp->level = MIB2_IP; 19322 optp->name = EXPER_IP_RTATTR; 19323 optp->len = msgdsize(ird.ird_attrs.lp_head); 19324 ip3dbg(("ip_snmp_get_mib2_ip_route_media: level %d, name %d, len %d\n", 19325 (int)optp->level, (int)optp->name, (int)optp->len)); 19326 if (optp->len == 0) 19327 freemsg(mp4ctl); 19328 else 19329 qreply(q, mp4ctl); 19330 19331 return (mp2ctl); 19332 } 19333 19334 /* 19335 * Return ipv6RouteEntryTable and ipv6RouteAttributeTable in one IRE walk, and 19336 * ipv6NetToMediaEntryTable in an NDP walk. 19337 */ 19338 static mblk_t * 19339 ip_snmp_get_mib2_ip6_route_media(queue_t *q, mblk_t *mpctl, int level, 19340 ip_stack_t *ipst) 19341 { 19342 struct opthdr *optp; 19343 mblk_t *mp2ctl; /* Returned */ 19344 mblk_t *mp3ctl; /* nettomedia */ 19345 mblk_t *mp4ctl; /* routeattrs */ 19346 iproutedata_t ird; 19347 zoneid_t zoneid; 19348 19349 /* 19350 * make copies of the original message 19351 * - mp2ctl is returned unchanged to the caller for his use 19352 * - mpctl is sent upstream as ipv6RouteEntryTable 19353 * - mp3ctl is sent upstream as ipv6NetToMediaEntryTable 19354 * - mp4ctl is sent upstream as ipv6RouteAttributeTable 19355 */ 19356 mp2ctl = copymsg(mpctl); 19357 mp3ctl = copymsg(mpctl); 19358 mp4ctl = copymsg(mpctl); 19359 if (mp3ctl == NULL || mp4ctl == NULL) { 19360 freemsg(mp4ctl); 19361 freemsg(mp3ctl); 19362 freemsg(mp2ctl); 19363 freemsg(mpctl); 19364 return (NULL); 19365 } 19366 19367 bzero(&ird, sizeof (ird)); 19368 19369 ird.ird_route.lp_head = mpctl->b_cont; 19370 ird.ird_netmedia.lp_head = mp3ctl->b_cont; 19371 ird.ird_attrs.lp_head = mp4ctl->b_cont; 19372 /* 19373 * If the level has been set the special EXPER_IP_AND_TESTHIDDEN 19374 * value, then also include IRE_MARK_TESTHIDDEN IREs. This is 19375 * intended a temporary solution until a proper MIB API is provided 19376 * that provides complete filtering/caller-opt-in. 19377 */ 19378 if (level == EXPER_IP_AND_TESTHIDDEN) 19379 ird.ird_flags |= IRD_REPORT_TESTHIDDEN; 19380 19381 zoneid = Q_TO_CONN(q)->conn_zoneid; 19382 ire_walk_v6(ip_snmp_get2_v6_route, &ird, zoneid, ipst); 19383 19384 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 19385 optp->level = MIB2_IP6; 19386 optp->name = MIB2_IP6_ROUTE; 19387 optp->len = msgdsize(ird.ird_route.lp_head); 19388 ip3dbg(("ip_snmp_get_mib2_ip6_route_media: level %d, name %d, len %d\n", 19389 (int)optp->level, (int)optp->name, (int)optp->len)); 19390 qreply(q, mpctl); 19391 19392 /* ipv6NetToMediaEntryTable in mp3ctl */ 19393 ndp_walk(NULL, ip_snmp_get2_v6_media, &ird, ipst); 19394 19395 optp = (struct opthdr *)&mp3ctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 19396 optp->level = MIB2_IP6; 19397 optp->name = MIB2_IP6_MEDIA; 19398 optp->len = msgdsize(ird.ird_netmedia.lp_head); 19399 ip3dbg(("ip_snmp_get_mib2_ip6_route_media: level %d, name %d, len %d\n", 19400 (int)optp->level, (int)optp->name, (int)optp->len)); 19401 qreply(q, mp3ctl); 19402 19403 /* ipv6RouteAttributeTable in mp4ctl */ 19404 optp = (struct opthdr *)&mp4ctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 19405 optp->level = MIB2_IP6; 19406 optp->name = EXPER_IP_RTATTR; 19407 optp->len = msgdsize(ird.ird_attrs.lp_head); 19408 ip3dbg(("ip_snmp_get_mib2_ip6_route_media: level %d, name %d, len %d\n", 19409 (int)optp->level, (int)optp->name, (int)optp->len)); 19410 if (optp->len == 0) 19411 freemsg(mp4ctl); 19412 else 19413 qreply(q, mp4ctl); 19414 19415 return (mp2ctl); 19416 } 19417 19418 /* 19419 * IPv6 mib: One per ill 19420 */ 19421 static mblk_t * 19422 ip_snmp_get_mib2_ip6(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 19423 { 19424 struct opthdr *optp; 19425 mblk_t *mp2ctl; 19426 ill_t *ill; 19427 ill_walk_context_t ctx; 19428 mblk_t *mp_tail = NULL; 19429 19430 /* 19431 * Make a copy of the original message 19432 */ 19433 mp2ctl = copymsg(mpctl); 19434 19435 /* fixed length IPv6 structure ... */ 19436 19437 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 19438 optp->level = MIB2_IP6; 19439 optp->name = 0; 19440 /* Include "unknown interface" ip6_mib */ 19441 ipst->ips_ip6_mib.ipIfStatsIPVersion = MIB2_INETADDRESSTYPE_ipv6; 19442 ipst->ips_ip6_mib.ipIfStatsIfIndex = 19443 MIB2_UNKNOWN_INTERFACE; /* Flag to netstat */ 19444 SET_MIB(ipst->ips_ip6_mib.ipIfStatsForwarding, 19445 ipst->ips_ipv6_forward ? 1 : 2); 19446 SET_MIB(ipst->ips_ip6_mib.ipIfStatsDefaultHopLimit, 19447 ipst->ips_ipv6_def_hops); 19448 SET_MIB(ipst->ips_ip6_mib.ipIfStatsEntrySize, 19449 sizeof (mib2_ipIfStatsEntry_t)); 19450 SET_MIB(ipst->ips_ip6_mib.ipIfStatsAddrEntrySize, 19451 sizeof (mib2_ipv6AddrEntry_t)); 19452 SET_MIB(ipst->ips_ip6_mib.ipIfStatsRouteEntrySize, 19453 sizeof (mib2_ipv6RouteEntry_t)); 19454 SET_MIB(ipst->ips_ip6_mib.ipIfStatsNetToMediaEntrySize, 19455 sizeof (mib2_ipv6NetToMediaEntry_t)); 19456 SET_MIB(ipst->ips_ip6_mib.ipIfStatsMemberEntrySize, 19457 sizeof (ipv6_member_t)); 19458 SET_MIB(ipst->ips_ip6_mib.ipIfStatsGroupSourceEntrySize, 19459 sizeof (ipv6_grpsrc_t)); 19460 19461 /* 19462 * Synchronize 64- and 32-bit counters 19463 */ 19464 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsInReceives, 19465 ipIfStatsHCInReceives); 19466 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsInDelivers, 19467 ipIfStatsHCInDelivers); 19468 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsOutRequests, 19469 ipIfStatsHCOutRequests); 19470 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsOutForwDatagrams, 19471 ipIfStatsHCOutForwDatagrams); 19472 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsOutMcastPkts, 19473 ipIfStatsHCOutMcastPkts); 19474 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsInMcastPkts, 19475 ipIfStatsHCInMcastPkts); 19476 19477 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 19478 (char *)&ipst->ips_ip6_mib, (int)sizeof (ipst->ips_ip6_mib))) { 19479 ip1dbg(("ip_snmp_get_mib2_ip6: failed to allocate %u bytes\n", 19480 (uint_t)sizeof (ipst->ips_ip6_mib))); 19481 } 19482 19483 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 19484 ill = ILL_START_WALK_V6(&ctx, ipst); 19485 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 19486 ill->ill_ip_mib->ipIfStatsIfIndex = 19487 ill->ill_phyint->phyint_ifindex; 19488 SET_MIB(ill->ill_ip_mib->ipIfStatsForwarding, 19489 ipst->ips_ipv6_forward ? 1 : 2); 19490 SET_MIB(ill->ill_ip_mib->ipIfStatsDefaultHopLimit, 19491 ill->ill_max_hops); 19492 19493 /* 19494 * Synchronize 64- and 32-bit counters 19495 */ 19496 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsInReceives, 19497 ipIfStatsHCInReceives); 19498 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsInDelivers, 19499 ipIfStatsHCInDelivers); 19500 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsOutRequests, 19501 ipIfStatsHCOutRequests); 19502 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsOutForwDatagrams, 19503 ipIfStatsHCOutForwDatagrams); 19504 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsOutMcastPkts, 19505 ipIfStatsHCOutMcastPkts); 19506 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsInMcastPkts, 19507 ipIfStatsHCInMcastPkts); 19508 19509 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 19510 (char *)ill->ill_ip_mib, 19511 (int)sizeof (*ill->ill_ip_mib))) { 19512 ip1dbg(("ip_snmp_get_mib2_ip6: failed to allocate " 19513 "%u bytes\n", (uint_t)sizeof (*ill->ill_ip_mib))); 19514 } 19515 } 19516 rw_exit(&ipst->ips_ill_g_lock); 19517 19518 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 19519 ip3dbg(("ip_snmp_get_mib2_ip6: level %d, name %d, len %d\n", 19520 (int)optp->level, (int)optp->name, (int)optp->len)); 19521 qreply(q, mpctl); 19522 return (mp2ctl); 19523 } 19524 19525 /* 19526 * ICMPv6 mib: One per ill 19527 */ 19528 static mblk_t * 19529 ip_snmp_get_mib2_icmp6(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 19530 { 19531 struct opthdr *optp; 19532 mblk_t *mp2ctl; 19533 ill_t *ill; 19534 ill_walk_context_t ctx; 19535 mblk_t *mp_tail = NULL; 19536 /* 19537 * Make a copy of the original message 19538 */ 19539 mp2ctl = copymsg(mpctl); 19540 19541 /* fixed length ICMPv6 structure ... */ 19542 19543 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 19544 optp->level = MIB2_ICMP6; 19545 optp->name = 0; 19546 /* Include "unknown interface" icmp6_mib */ 19547 ipst->ips_icmp6_mib.ipv6IfIcmpIfIndex = 19548 MIB2_UNKNOWN_INTERFACE; /* netstat flag */ 19549 ipst->ips_icmp6_mib.ipv6IfIcmpEntrySize = 19550 sizeof (mib2_ipv6IfIcmpEntry_t); 19551 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 19552 (char *)&ipst->ips_icmp6_mib, 19553 (int)sizeof (ipst->ips_icmp6_mib))) { 19554 ip1dbg(("ip_snmp_get_mib2_icmp6: failed to allocate %u bytes\n", 19555 (uint_t)sizeof (ipst->ips_icmp6_mib))); 19556 } 19557 19558 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 19559 ill = ILL_START_WALK_V6(&ctx, ipst); 19560 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 19561 ill->ill_icmp6_mib->ipv6IfIcmpIfIndex = 19562 ill->ill_phyint->phyint_ifindex; 19563 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 19564 (char *)ill->ill_icmp6_mib, 19565 (int)sizeof (*ill->ill_icmp6_mib))) { 19566 ip1dbg(("ip_snmp_get_mib2_icmp6: failed to allocate " 19567 "%u bytes\n", 19568 (uint_t)sizeof (*ill->ill_icmp6_mib))); 19569 } 19570 } 19571 rw_exit(&ipst->ips_ill_g_lock); 19572 19573 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 19574 ip3dbg(("ip_snmp_get_mib2_icmp6: level %d, name %d, len %d\n", 19575 (int)optp->level, (int)optp->name, (int)optp->len)); 19576 qreply(q, mpctl); 19577 return (mp2ctl); 19578 } 19579 19580 /* 19581 * ire_walk routine to create both ipRouteEntryTable and 19582 * ipRouteAttributeTable in one IRE walk 19583 */ 19584 static void 19585 ip_snmp_get2_v4(ire_t *ire, iproutedata_t *ird) 19586 { 19587 ill_t *ill; 19588 ipif_t *ipif; 19589 mib2_ipRouteEntry_t *re; 19590 mib2_ipAttributeEntry_t *iae, *iaeptr; 19591 ipaddr_t gw_addr; 19592 tsol_ire_gw_secattr_t *attrp; 19593 tsol_gc_t *gc = NULL; 19594 tsol_gcgrp_t *gcgrp = NULL; 19595 uint_t sacnt = 0; 19596 int i; 19597 19598 ASSERT(ire->ire_ipversion == IPV4_VERSION); 19599 19600 if (!(ird->ird_flags & IRD_REPORT_TESTHIDDEN) && 19601 ire->ire_marks & IRE_MARK_TESTHIDDEN) { 19602 return; 19603 } 19604 19605 if ((re = kmem_zalloc(sizeof (*re), KM_NOSLEEP)) == NULL) 19606 return; 19607 19608 if ((attrp = ire->ire_gw_secattr) != NULL) { 19609 mutex_enter(&attrp->igsa_lock); 19610 if ((gc = attrp->igsa_gc) != NULL) { 19611 gcgrp = gc->gc_grp; 19612 ASSERT(gcgrp != NULL); 19613 rw_enter(&gcgrp->gcgrp_rwlock, RW_READER); 19614 sacnt = 1; 19615 } else if ((gcgrp = attrp->igsa_gcgrp) != NULL) { 19616 rw_enter(&gcgrp->gcgrp_rwlock, RW_READER); 19617 gc = gcgrp->gcgrp_head; 19618 sacnt = gcgrp->gcgrp_count; 19619 } 19620 mutex_exit(&attrp->igsa_lock); 19621 19622 /* do nothing if there's no gc to report */ 19623 if (gc == NULL) { 19624 ASSERT(sacnt == 0); 19625 if (gcgrp != NULL) { 19626 /* we might as well drop the lock now */ 19627 rw_exit(&gcgrp->gcgrp_rwlock); 19628 gcgrp = NULL; 19629 } 19630 attrp = NULL; 19631 } 19632 19633 ASSERT(gc == NULL || (gcgrp != NULL && 19634 RW_LOCK_HELD(&gcgrp->gcgrp_rwlock))); 19635 } 19636 ASSERT(sacnt == 0 || gc != NULL); 19637 19638 if (sacnt != 0 && 19639 (iae = kmem_alloc(sacnt * sizeof (*iae), KM_NOSLEEP)) == NULL) { 19640 kmem_free(re, sizeof (*re)); 19641 rw_exit(&gcgrp->gcgrp_rwlock); 19642 return; 19643 } 19644 19645 /* 19646 * Return all IRE types for route table... let caller pick and choose 19647 */ 19648 re->ipRouteDest = ire->ire_addr; 19649 ipif = ire->ire_ipif; 19650 re->ipRouteIfIndex.o_length = 0; 19651 if (ire->ire_type == IRE_CACHE) { 19652 ill = (ill_t *)ire->ire_stq->q_ptr; 19653 re->ipRouteIfIndex.o_length = 19654 ill->ill_name_length == 0 ? 0 : 19655 MIN(OCTET_LENGTH, ill->ill_name_length - 1); 19656 bcopy(ill->ill_name, re->ipRouteIfIndex.o_bytes, 19657 re->ipRouteIfIndex.o_length); 19658 } else if (ipif != NULL) { 19659 ipif_get_name(ipif, re->ipRouteIfIndex.o_bytes, OCTET_LENGTH); 19660 re->ipRouteIfIndex.o_length = 19661 mi_strlen(re->ipRouteIfIndex.o_bytes); 19662 } 19663 re->ipRouteMetric1 = -1; 19664 re->ipRouteMetric2 = -1; 19665 re->ipRouteMetric3 = -1; 19666 re->ipRouteMetric4 = -1; 19667 19668 gw_addr = ire->ire_gateway_addr; 19669 19670 if (ire->ire_type & (IRE_INTERFACE|IRE_LOOPBACK|IRE_BROADCAST)) 19671 re->ipRouteNextHop = ire->ire_src_addr; 19672 else 19673 re->ipRouteNextHop = gw_addr; 19674 /* indirect(4), direct(3), or invalid(2) */ 19675 if (ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) 19676 re->ipRouteType = 2; 19677 else 19678 re->ipRouteType = (gw_addr != 0) ? 4 : 3; 19679 re->ipRouteProto = -1; 19680 re->ipRouteAge = gethrestime_sec() - ire->ire_create_time; 19681 re->ipRouteMask = ire->ire_mask; 19682 re->ipRouteMetric5 = -1; 19683 re->ipRouteInfo.re_max_frag = ire->ire_max_frag; 19684 re->ipRouteInfo.re_frag_flag = ire->ire_frag_flag; 19685 re->ipRouteInfo.re_rtt = ire->ire_uinfo.iulp_rtt; 19686 re->ipRouteInfo.re_ref = ire->ire_refcnt; 19687 re->ipRouteInfo.re_src_addr = ire->ire_src_addr; 19688 re->ipRouteInfo.re_obpkt = ire->ire_ob_pkt_count; 19689 re->ipRouteInfo.re_ibpkt = ire->ire_ib_pkt_count; 19690 re->ipRouteInfo.re_flags = ire->ire_flags; 19691 19692 if (ire->ire_flags & RTF_DYNAMIC) { 19693 re->ipRouteInfo.re_ire_type = IRE_HOST_REDIRECT; 19694 } else { 19695 re->ipRouteInfo.re_ire_type = ire->ire_type; 19696 } 19697 19698 if (!snmp_append_data2(ird->ird_route.lp_head, &ird->ird_route.lp_tail, 19699 (char *)re, (int)sizeof (*re))) { 19700 ip1dbg(("ip_snmp_get2_v4: failed to allocate %u bytes\n", 19701 (uint_t)sizeof (*re))); 19702 } 19703 19704 for (iaeptr = iae, i = 0; i < sacnt; i++, iaeptr++, gc = gc->gc_next) { 19705 iaeptr->iae_routeidx = ird->ird_idx; 19706 iaeptr->iae_doi = gc->gc_db->gcdb_doi; 19707 iaeptr->iae_slrange = gc->gc_db->gcdb_slrange; 19708 } 19709 19710 if (!snmp_append_data2(ird->ird_attrs.lp_head, &ird->ird_attrs.lp_tail, 19711 (char *)iae, sacnt * sizeof (*iae))) { 19712 ip1dbg(("ip_snmp_get2_v4: failed to allocate %u bytes\n", 19713 (unsigned)(sacnt * sizeof (*iae)))); 19714 } 19715 19716 /* bump route index for next pass */ 19717 ird->ird_idx++; 19718 19719 kmem_free(re, sizeof (*re)); 19720 if (sacnt != 0) 19721 kmem_free(iae, sacnt * sizeof (*iae)); 19722 19723 if (gcgrp != NULL) 19724 rw_exit(&gcgrp->gcgrp_rwlock); 19725 } 19726 19727 /* 19728 * ire_walk routine to create ipv6RouteEntryTable and ipRouteEntryTable. 19729 */ 19730 static void 19731 ip_snmp_get2_v6_route(ire_t *ire, iproutedata_t *ird) 19732 { 19733 ill_t *ill; 19734 ipif_t *ipif; 19735 mib2_ipv6RouteEntry_t *re; 19736 mib2_ipAttributeEntry_t *iae, *iaeptr; 19737 in6_addr_t gw_addr_v6; 19738 tsol_ire_gw_secattr_t *attrp; 19739 tsol_gc_t *gc = NULL; 19740 tsol_gcgrp_t *gcgrp = NULL; 19741 uint_t sacnt = 0; 19742 int i; 19743 19744 ASSERT(ire->ire_ipversion == IPV6_VERSION); 19745 19746 if (!(ird->ird_flags & IRD_REPORT_TESTHIDDEN) && 19747 ire->ire_marks & IRE_MARK_TESTHIDDEN) { 19748 return; 19749 } 19750 19751 if ((re = kmem_zalloc(sizeof (*re), KM_NOSLEEP)) == NULL) 19752 return; 19753 19754 if ((attrp = ire->ire_gw_secattr) != NULL) { 19755 mutex_enter(&attrp->igsa_lock); 19756 if ((gc = attrp->igsa_gc) != NULL) { 19757 gcgrp = gc->gc_grp; 19758 ASSERT(gcgrp != NULL); 19759 rw_enter(&gcgrp->gcgrp_rwlock, RW_READER); 19760 sacnt = 1; 19761 } else if ((gcgrp = attrp->igsa_gcgrp) != NULL) { 19762 rw_enter(&gcgrp->gcgrp_rwlock, RW_READER); 19763 gc = gcgrp->gcgrp_head; 19764 sacnt = gcgrp->gcgrp_count; 19765 } 19766 mutex_exit(&attrp->igsa_lock); 19767 19768 /* do nothing if there's no gc to report */ 19769 if (gc == NULL) { 19770 ASSERT(sacnt == 0); 19771 if (gcgrp != NULL) { 19772 /* we might as well drop the lock now */ 19773 rw_exit(&gcgrp->gcgrp_rwlock); 19774 gcgrp = NULL; 19775 } 19776 attrp = NULL; 19777 } 19778 19779 ASSERT(gc == NULL || (gcgrp != NULL && 19780 RW_LOCK_HELD(&gcgrp->gcgrp_rwlock))); 19781 } 19782 ASSERT(sacnt == 0 || gc != NULL); 19783 19784 if (sacnt != 0 && 19785 (iae = kmem_alloc(sacnt * sizeof (*iae), KM_NOSLEEP)) == NULL) { 19786 kmem_free(re, sizeof (*re)); 19787 rw_exit(&gcgrp->gcgrp_rwlock); 19788 return; 19789 } 19790 19791 /* 19792 * Return all IRE types for route table... let caller pick and choose 19793 */ 19794 re->ipv6RouteDest = ire->ire_addr_v6; 19795 re->ipv6RoutePfxLength = ip_mask_to_plen_v6(&ire->ire_mask_v6); 19796 re->ipv6RouteIndex = 0; /* Unique when multiple with same dest/plen */ 19797 re->ipv6RouteIfIndex.o_length = 0; 19798 ipif = ire->ire_ipif; 19799 if (ire->ire_type == IRE_CACHE) { 19800 ill = (ill_t *)ire->ire_stq->q_ptr; 19801 re->ipv6RouteIfIndex.o_length = 19802 ill->ill_name_length == 0 ? 0 : 19803 MIN(OCTET_LENGTH, ill->ill_name_length - 1); 19804 bcopy(ill->ill_name, re->ipv6RouteIfIndex.o_bytes, 19805 re->ipv6RouteIfIndex.o_length); 19806 } else if (ipif != NULL) { 19807 ipif_get_name(ipif, re->ipv6RouteIfIndex.o_bytes, OCTET_LENGTH); 19808 re->ipv6RouteIfIndex.o_length = 19809 mi_strlen(re->ipv6RouteIfIndex.o_bytes); 19810 } 19811 19812 ASSERT(!(ire->ire_type & IRE_BROADCAST)); 19813 19814 mutex_enter(&ire->ire_lock); 19815 gw_addr_v6 = ire->ire_gateway_addr_v6; 19816 mutex_exit(&ire->ire_lock); 19817 19818 if (ire->ire_type & (IRE_INTERFACE|IRE_LOOPBACK)) 19819 re->ipv6RouteNextHop = ire->ire_src_addr_v6; 19820 else 19821 re->ipv6RouteNextHop = gw_addr_v6; 19822 19823 /* remote(4), local(3), or discard(2) */ 19824 if (ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) 19825 re->ipv6RouteType = 2; 19826 else if (IN6_IS_ADDR_UNSPECIFIED(&gw_addr_v6)) 19827 re->ipv6RouteType = 3; 19828 else 19829 re->ipv6RouteType = 4; 19830 19831 re->ipv6RouteProtocol = -1; 19832 re->ipv6RoutePolicy = 0; 19833 re->ipv6RouteAge = gethrestime_sec() - ire->ire_create_time; 19834 re->ipv6RouteNextHopRDI = 0; 19835 re->ipv6RouteWeight = 0; 19836 re->ipv6RouteMetric = 0; 19837 re->ipv6RouteInfo.re_max_frag = ire->ire_max_frag; 19838 re->ipv6RouteInfo.re_frag_flag = ire->ire_frag_flag; 19839 re->ipv6RouteInfo.re_rtt = ire->ire_uinfo.iulp_rtt; 19840 re->ipv6RouteInfo.re_src_addr = ire->ire_src_addr_v6; 19841 re->ipv6RouteInfo.re_obpkt = ire->ire_ob_pkt_count; 19842 re->ipv6RouteInfo.re_ibpkt = ire->ire_ib_pkt_count; 19843 re->ipv6RouteInfo.re_ref = ire->ire_refcnt; 19844 re->ipv6RouteInfo.re_flags = ire->ire_flags; 19845 19846 if (ire->ire_flags & RTF_DYNAMIC) { 19847 re->ipv6RouteInfo.re_ire_type = IRE_HOST_REDIRECT; 19848 } else { 19849 re->ipv6RouteInfo.re_ire_type = ire->ire_type; 19850 } 19851 19852 if (!snmp_append_data2(ird->ird_route.lp_head, &ird->ird_route.lp_tail, 19853 (char *)re, (int)sizeof (*re))) { 19854 ip1dbg(("ip_snmp_get2_v6: failed to allocate %u bytes\n", 19855 (uint_t)sizeof (*re))); 19856 } 19857 19858 for (iaeptr = iae, i = 0; i < sacnt; i++, iaeptr++, gc = gc->gc_next) { 19859 iaeptr->iae_routeidx = ird->ird_idx; 19860 iaeptr->iae_doi = gc->gc_db->gcdb_doi; 19861 iaeptr->iae_slrange = gc->gc_db->gcdb_slrange; 19862 } 19863 19864 if (!snmp_append_data2(ird->ird_attrs.lp_head, &ird->ird_attrs.lp_tail, 19865 (char *)iae, sacnt * sizeof (*iae))) { 19866 ip1dbg(("ip_snmp_get2_v6: failed to allocate %u bytes\n", 19867 (unsigned)(sacnt * sizeof (*iae)))); 19868 } 19869 19870 /* bump route index for next pass */ 19871 ird->ird_idx++; 19872 19873 kmem_free(re, sizeof (*re)); 19874 if (sacnt != 0) 19875 kmem_free(iae, sacnt * sizeof (*iae)); 19876 19877 if (gcgrp != NULL) 19878 rw_exit(&gcgrp->gcgrp_rwlock); 19879 } 19880 19881 /* 19882 * ndp_walk routine to create ipv6NetToMediaEntryTable 19883 */ 19884 static int 19885 ip_snmp_get2_v6_media(nce_t *nce, iproutedata_t *ird) 19886 { 19887 ill_t *ill; 19888 mib2_ipv6NetToMediaEntry_t ntme; 19889 dl_unitdata_req_t *dl; 19890 19891 ill = nce->nce_ill; 19892 if (ill->ill_isv6 == B_FALSE) /* skip arpce entry */ 19893 return (0); 19894 19895 /* 19896 * Neighbor cache entry attached to IRE with on-link 19897 * destination. 19898 */ 19899 ntme.ipv6NetToMediaIfIndex = ill->ill_phyint->phyint_ifindex; 19900 ntme.ipv6NetToMediaNetAddress = nce->nce_addr; 19901 if ((ill->ill_flags & ILLF_XRESOLV) && 19902 (nce->nce_res_mp != NULL)) { 19903 dl = (dl_unitdata_req_t *)(nce->nce_res_mp->b_rptr); 19904 ntme.ipv6NetToMediaPhysAddress.o_length = 19905 dl->dl_dest_addr_length; 19906 } else { 19907 ntme.ipv6NetToMediaPhysAddress.o_length = 19908 ill->ill_phys_addr_length; 19909 } 19910 if (nce->nce_res_mp != NULL) { 19911 bcopy((char *)nce->nce_res_mp->b_rptr + 19912 NCE_LL_ADDR_OFFSET(ill), 19913 ntme.ipv6NetToMediaPhysAddress.o_bytes, 19914 ntme.ipv6NetToMediaPhysAddress.o_length); 19915 } else { 19916 bzero(ntme.ipv6NetToMediaPhysAddress.o_bytes, 19917 ill->ill_phys_addr_length); 19918 } 19919 /* 19920 * Note: Returns ND_* states. Should be: 19921 * reachable(1), stale(2), delay(3), probe(4), 19922 * invalid(5), unknown(6) 19923 */ 19924 ntme.ipv6NetToMediaState = nce->nce_state; 19925 ntme.ipv6NetToMediaLastUpdated = 0; 19926 19927 /* other(1), dynamic(2), static(3), local(4) */ 19928 if (IN6_IS_ADDR_LOOPBACK(&nce->nce_addr)) { 19929 ntme.ipv6NetToMediaType = 4; 19930 } else if (IN6_IS_ADDR_MULTICAST(&nce->nce_addr)) { 19931 ntme.ipv6NetToMediaType = 1; 19932 } else { 19933 ntme.ipv6NetToMediaType = 2; 19934 } 19935 19936 if (!snmp_append_data2(ird->ird_netmedia.lp_head, 19937 &ird->ird_netmedia.lp_tail, (char *)&ntme, sizeof (ntme))) { 19938 ip1dbg(("ip_snmp_get2_v6_media: failed to allocate %u bytes\n", 19939 (uint_t)sizeof (ntme))); 19940 } 19941 return (0); 19942 } 19943 19944 /* 19945 * return (0) if invalid set request, 1 otherwise, including non-tcp requests 19946 */ 19947 /* ARGSUSED */ 19948 int 19949 ip_snmp_set(queue_t *q, int level, int name, uchar_t *ptr, int len) 19950 { 19951 switch (level) { 19952 case MIB2_IP: 19953 case MIB2_ICMP: 19954 switch (name) { 19955 default: 19956 break; 19957 } 19958 return (1); 19959 default: 19960 return (1); 19961 } 19962 } 19963 19964 /* 19965 * When there exists both a 64- and 32-bit counter of a particular type 19966 * (i.e., InReceives), only the 64-bit counters are added. 19967 */ 19968 void 19969 ip_mib2_add_ip_stats(mib2_ipIfStatsEntry_t *o1, mib2_ipIfStatsEntry_t *o2) 19970 { 19971 UPDATE_MIB(o1, ipIfStatsInHdrErrors, o2->ipIfStatsInHdrErrors); 19972 UPDATE_MIB(o1, ipIfStatsInTooBigErrors, o2->ipIfStatsInTooBigErrors); 19973 UPDATE_MIB(o1, ipIfStatsInNoRoutes, o2->ipIfStatsInNoRoutes); 19974 UPDATE_MIB(o1, ipIfStatsInAddrErrors, o2->ipIfStatsInAddrErrors); 19975 UPDATE_MIB(o1, ipIfStatsInUnknownProtos, o2->ipIfStatsInUnknownProtos); 19976 UPDATE_MIB(o1, ipIfStatsInTruncatedPkts, o2->ipIfStatsInTruncatedPkts); 19977 UPDATE_MIB(o1, ipIfStatsInDiscards, o2->ipIfStatsInDiscards); 19978 UPDATE_MIB(o1, ipIfStatsOutDiscards, o2->ipIfStatsOutDiscards); 19979 UPDATE_MIB(o1, ipIfStatsOutFragOKs, o2->ipIfStatsOutFragOKs); 19980 UPDATE_MIB(o1, ipIfStatsOutFragFails, o2->ipIfStatsOutFragFails); 19981 UPDATE_MIB(o1, ipIfStatsOutFragCreates, o2->ipIfStatsOutFragCreates); 19982 UPDATE_MIB(o1, ipIfStatsReasmReqds, o2->ipIfStatsReasmReqds); 19983 UPDATE_MIB(o1, ipIfStatsReasmOKs, o2->ipIfStatsReasmOKs); 19984 UPDATE_MIB(o1, ipIfStatsReasmFails, o2->ipIfStatsReasmFails); 19985 UPDATE_MIB(o1, ipIfStatsOutNoRoutes, o2->ipIfStatsOutNoRoutes); 19986 UPDATE_MIB(o1, ipIfStatsReasmDuplicates, o2->ipIfStatsReasmDuplicates); 19987 UPDATE_MIB(o1, ipIfStatsReasmPartDups, o2->ipIfStatsReasmPartDups); 19988 UPDATE_MIB(o1, ipIfStatsForwProhibits, o2->ipIfStatsForwProhibits); 19989 UPDATE_MIB(o1, udpInCksumErrs, o2->udpInCksumErrs); 19990 UPDATE_MIB(o1, udpInOverflows, o2->udpInOverflows); 19991 UPDATE_MIB(o1, rawipInOverflows, o2->rawipInOverflows); 19992 UPDATE_MIB(o1, ipIfStatsInWrongIPVersion, 19993 o2->ipIfStatsInWrongIPVersion); 19994 UPDATE_MIB(o1, ipIfStatsOutWrongIPVersion, 19995 o2->ipIfStatsInWrongIPVersion); 19996 UPDATE_MIB(o1, ipIfStatsOutSwitchIPVersion, 19997 o2->ipIfStatsOutSwitchIPVersion); 19998 UPDATE_MIB(o1, ipIfStatsHCInReceives, o2->ipIfStatsHCInReceives); 19999 UPDATE_MIB(o1, ipIfStatsHCInOctets, o2->ipIfStatsHCInOctets); 20000 UPDATE_MIB(o1, ipIfStatsHCInForwDatagrams, 20001 o2->ipIfStatsHCInForwDatagrams); 20002 UPDATE_MIB(o1, ipIfStatsHCInDelivers, o2->ipIfStatsHCInDelivers); 20003 UPDATE_MIB(o1, ipIfStatsHCOutRequests, o2->ipIfStatsHCOutRequests); 20004 UPDATE_MIB(o1, ipIfStatsHCOutForwDatagrams, 20005 o2->ipIfStatsHCOutForwDatagrams); 20006 UPDATE_MIB(o1, ipIfStatsOutFragReqds, o2->ipIfStatsOutFragReqds); 20007 UPDATE_MIB(o1, ipIfStatsHCOutTransmits, o2->ipIfStatsHCOutTransmits); 20008 UPDATE_MIB(o1, ipIfStatsHCOutOctets, o2->ipIfStatsHCOutOctets); 20009 UPDATE_MIB(o1, ipIfStatsHCInMcastPkts, o2->ipIfStatsHCInMcastPkts); 20010 UPDATE_MIB(o1, ipIfStatsHCInMcastOctets, o2->ipIfStatsHCInMcastOctets); 20011 UPDATE_MIB(o1, ipIfStatsHCOutMcastPkts, o2->ipIfStatsHCOutMcastPkts); 20012 UPDATE_MIB(o1, ipIfStatsHCOutMcastOctets, 20013 o2->ipIfStatsHCOutMcastOctets); 20014 UPDATE_MIB(o1, ipIfStatsHCInBcastPkts, o2->ipIfStatsHCInBcastPkts); 20015 UPDATE_MIB(o1, ipIfStatsHCOutBcastPkts, o2->ipIfStatsHCOutBcastPkts); 20016 UPDATE_MIB(o1, ipsecInSucceeded, o2->ipsecInSucceeded); 20017 UPDATE_MIB(o1, ipsecInFailed, o2->ipsecInFailed); 20018 UPDATE_MIB(o1, ipInCksumErrs, o2->ipInCksumErrs); 20019 UPDATE_MIB(o1, tcpInErrs, o2->tcpInErrs); 20020 UPDATE_MIB(o1, udpNoPorts, o2->udpNoPorts); 20021 } 20022 20023 void 20024 ip_mib2_add_icmp6_stats(mib2_ipv6IfIcmpEntry_t *o1, mib2_ipv6IfIcmpEntry_t *o2) 20025 { 20026 UPDATE_MIB(o1, ipv6IfIcmpInMsgs, o2->ipv6IfIcmpInMsgs); 20027 UPDATE_MIB(o1, ipv6IfIcmpInErrors, o2->ipv6IfIcmpInErrors); 20028 UPDATE_MIB(o1, ipv6IfIcmpInDestUnreachs, o2->ipv6IfIcmpInDestUnreachs); 20029 UPDATE_MIB(o1, ipv6IfIcmpInAdminProhibs, o2->ipv6IfIcmpInAdminProhibs); 20030 UPDATE_MIB(o1, ipv6IfIcmpInTimeExcds, o2->ipv6IfIcmpInTimeExcds); 20031 UPDATE_MIB(o1, ipv6IfIcmpInParmProblems, o2->ipv6IfIcmpInParmProblems); 20032 UPDATE_MIB(o1, ipv6IfIcmpInPktTooBigs, o2->ipv6IfIcmpInPktTooBigs); 20033 UPDATE_MIB(o1, ipv6IfIcmpInEchos, o2->ipv6IfIcmpInEchos); 20034 UPDATE_MIB(o1, ipv6IfIcmpInEchoReplies, o2->ipv6IfIcmpInEchoReplies); 20035 UPDATE_MIB(o1, ipv6IfIcmpInRouterSolicits, 20036 o2->ipv6IfIcmpInRouterSolicits); 20037 UPDATE_MIB(o1, ipv6IfIcmpInRouterAdvertisements, 20038 o2->ipv6IfIcmpInRouterAdvertisements); 20039 UPDATE_MIB(o1, ipv6IfIcmpInNeighborSolicits, 20040 o2->ipv6IfIcmpInNeighborSolicits); 20041 UPDATE_MIB(o1, ipv6IfIcmpInNeighborAdvertisements, 20042 o2->ipv6IfIcmpInNeighborAdvertisements); 20043 UPDATE_MIB(o1, ipv6IfIcmpInRedirects, o2->ipv6IfIcmpInRedirects); 20044 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembQueries, 20045 o2->ipv6IfIcmpInGroupMembQueries); 20046 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembResponses, 20047 o2->ipv6IfIcmpInGroupMembResponses); 20048 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembReductions, 20049 o2->ipv6IfIcmpInGroupMembReductions); 20050 UPDATE_MIB(o1, ipv6IfIcmpOutMsgs, o2->ipv6IfIcmpOutMsgs); 20051 UPDATE_MIB(o1, ipv6IfIcmpOutErrors, o2->ipv6IfIcmpOutErrors); 20052 UPDATE_MIB(o1, ipv6IfIcmpOutDestUnreachs, 20053 o2->ipv6IfIcmpOutDestUnreachs); 20054 UPDATE_MIB(o1, ipv6IfIcmpOutAdminProhibs, 20055 o2->ipv6IfIcmpOutAdminProhibs); 20056 UPDATE_MIB(o1, ipv6IfIcmpOutTimeExcds, o2->ipv6IfIcmpOutTimeExcds); 20057 UPDATE_MIB(o1, ipv6IfIcmpOutParmProblems, 20058 o2->ipv6IfIcmpOutParmProblems); 20059 UPDATE_MIB(o1, ipv6IfIcmpOutPktTooBigs, o2->ipv6IfIcmpOutPktTooBigs); 20060 UPDATE_MIB(o1, ipv6IfIcmpOutEchos, o2->ipv6IfIcmpOutEchos); 20061 UPDATE_MIB(o1, ipv6IfIcmpOutEchoReplies, o2->ipv6IfIcmpOutEchoReplies); 20062 UPDATE_MIB(o1, ipv6IfIcmpOutRouterSolicits, 20063 o2->ipv6IfIcmpOutRouterSolicits); 20064 UPDATE_MIB(o1, ipv6IfIcmpOutRouterAdvertisements, 20065 o2->ipv6IfIcmpOutRouterAdvertisements); 20066 UPDATE_MIB(o1, ipv6IfIcmpOutNeighborSolicits, 20067 o2->ipv6IfIcmpOutNeighborSolicits); 20068 UPDATE_MIB(o1, ipv6IfIcmpOutNeighborAdvertisements, 20069 o2->ipv6IfIcmpOutNeighborAdvertisements); 20070 UPDATE_MIB(o1, ipv6IfIcmpOutRedirects, o2->ipv6IfIcmpOutRedirects); 20071 UPDATE_MIB(o1, ipv6IfIcmpOutGroupMembQueries, 20072 o2->ipv6IfIcmpOutGroupMembQueries); 20073 UPDATE_MIB(o1, ipv6IfIcmpOutGroupMembResponses, 20074 o2->ipv6IfIcmpOutGroupMembResponses); 20075 UPDATE_MIB(o1, ipv6IfIcmpOutGroupMembReductions, 20076 o2->ipv6IfIcmpOutGroupMembReductions); 20077 UPDATE_MIB(o1, ipv6IfIcmpInOverflows, o2->ipv6IfIcmpInOverflows); 20078 UPDATE_MIB(o1, ipv6IfIcmpBadHoplimit, o2->ipv6IfIcmpBadHoplimit); 20079 UPDATE_MIB(o1, ipv6IfIcmpInBadNeighborAdvertisements, 20080 o2->ipv6IfIcmpInBadNeighborAdvertisements); 20081 UPDATE_MIB(o1, ipv6IfIcmpInBadNeighborSolicitations, 20082 o2->ipv6IfIcmpInBadNeighborSolicitations); 20083 UPDATE_MIB(o1, ipv6IfIcmpInBadRedirects, o2->ipv6IfIcmpInBadRedirects); 20084 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembTotal, 20085 o2->ipv6IfIcmpInGroupMembTotal); 20086 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembBadQueries, 20087 o2->ipv6IfIcmpInGroupMembBadQueries); 20088 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembBadReports, 20089 o2->ipv6IfIcmpInGroupMembBadReports); 20090 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembOurReports, 20091 o2->ipv6IfIcmpInGroupMembOurReports); 20092 } 20093 20094 /* 20095 * Called before the options are updated to check if this packet will 20096 * be source routed from here. 20097 * This routine assumes that the options are well formed i.e. that they 20098 * have already been checked. 20099 */ 20100 static boolean_t 20101 ip_source_routed(ipha_t *ipha, ip_stack_t *ipst) 20102 { 20103 ipoptp_t opts; 20104 uchar_t *opt; 20105 uint8_t optval; 20106 uint8_t optlen; 20107 ipaddr_t dst; 20108 ire_t *ire; 20109 20110 if (IS_SIMPLE_IPH(ipha)) { 20111 ip2dbg(("not source routed\n")); 20112 return (B_FALSE); 20113 } 20114 dst = ipha->ipha_dst; 20115 for (optval = ipoptp_first(&opts, ipha); 20116 optval != IPOPT_EOL; 20117 optval = ipoptp_next(&opts)) { 20118 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 20119 opt = opts.ipoptp_cur; 20120 optlen = opts.ipoptp_len; 20121 ip2dbg(("ip_source_routed: opt %d, len %d\n", 20122 optval, optlen)); 20123 switch (optval) { 20124 uint32_t off; 20125 case IPOPT_SSRR: 20126 case IPOPT_LSRR: 20127 /* 20128 * If dst is one of our addresses and there are some 20129 * entries left in the source route return (true). 20130 */ 20131 ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, NULL, 20132 ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 20133 if (ire == NULL) { 20134 ip2dbg(("ip_source_routed: not next" 20135 " source route 0x%x\n", 20136 ntohl(dst))); 20137 return (B_FALSE); 20138 } 20139 ire_refrele(ire); 20140 off = opt[IPOPT_OFFSET]; 20141 off--; 20142 if (optlen < IP_ADDR_LEN || 20143 off > optlen - IP_ADDR_LEN) { 20144 /* End of source route */ 20145 ip1dbg(("ip_source_routed: end of SR\n")); 20146 return (B_FALSE); 20147 } 20148 return (B_TRUE); 20149 } 20150 } 20151 ip2dbg(("not source routed\n")); 20152 return (B_FALSE); 20153 } 20154 20155 /* 20156 * Check if the packet contains any source route. 20157 */ 20158 static boolean_t 20159 ip_source_route_included(ipha_t *ipha) 20160 { 20161 ipoptp_t opts; 20162 uint8_t optval; 20163 20164 if (IS_SIMPLE_IPH(ipha)) 20165 return (B_FALSE); 20166 for (optval = ipoptp_first(&opts, ipha); 20167 optval != IPOPT_EOL; 20168 optval = ipoptp_next(&opts)) { 20169 switch (optval) { 20170 case IPOPT_SSRR: 20171 case IPOPT_LSRR: 20172 return (B_TRUE); 20173 } 20174 } 20175 return (B_FALSE); 20176 } 20177 20178 /* 20179 * Called when the IRE expiration timer fires. 20180 */ 20181 void 20182 ip_trash_timer_expire(void *args) 20183 { 20184 int flush_flag = 0; 20185 ire_expire_arg_t iea; 20186 ip_stack_t *ipst = (ip_stack_t *)args; 20187 20188 iea.iea_ipst = ipst; /* No netstack_hold */ 20189 20190 /* 20191 * ip_ire_expire_id is protected by ip_trash_timer_lock. 20192 * This lock makes sure that a new invocation of this function 20193 * that occurs due to an almost immediate timer firing will not 20194 * progress beyond this point until the current invocation is done 20195 */ 20196 mutex_enter(&ipst->ips_ip_trash_timer_lock); 20197 ipst->ips_ip_ire_expire_id = 0; 20198 mutex_exit(&ipst->ips_ip_trash_timer_lock); 20199 20200 /* Periodic timer */ 20201 if (ipst->ips_ip_ire_arp_time_elapsed >= 20202 ipst->ips_ip_ire_arp_interval) { 20203 /* 20204 * Remove all IRE_CACHE entries since they might 20205 * contain arp information. 20206 */ 20207 flush_flag |= FLUSH_ARP_TIME; 20208 ipst->ips_ip_ire_arp_time_elapsed = 0; 20209 IP_STAT(ipst, ip_ire_arp_timer_expired); 20210 } 20211 if (ipst->ips_ip_ire_rd_time_elapsed >= 20212 ipst->ips_ip_ire_redir_interval) { 20213 /* Remove all redirects */ 20214 flush_flag |= FLUSH_REDIRECT_TIME; 20215 ipst->ips_ip_ire_rd_time_elapsed = 0; 20216 IP_STAT(ipst, ip_ire_redirect_timer_expired); 20217 } 20218 if (ipst->ips_ip_ire_pmtu_time_elapsed >= 20219 ipst->ips_ip_ire_pathmtu_interval) { 20220 /* Increase path mtu */ 20221 flush_flag |= FLUSH_MTU_TIME; 20222 ipst->ips_ip_ire_pmtu_time_elapsed = 0; 20223 IP_STAT(ipst, ip_ire_pmtu_timer_expired); 20224 } 20225 20226 /* 20227 * Optimize for the case when there are no redirects in the 20228 * ftable, that is, no need to walk the ftable in that case. 20229 */ 20230 if (flush_flag & (FLUSH_MTU_TIME|FLUSH_ARP_TIME)) { 20231 iea.iea_flush_flag = flush_flag; 20232 ire_walk_ill_tables(MATCH_IRE_TYPE, IRE_CACHETABLE, ire_expire, 20233 (char *)(uintptr_t)&iea, IP_MASK_TABLE_SIZE, 0, NULL, 20234 ipst->ips_ip_cache_table_size, ipst->ips_ip_cache_table, 20235 NULL, ALL_ZONES, ipst); 20236 } 20237 if ((flush_flag & FLUSH_REDIRECT_TIME) && 20238 ipst->ips_ip_redirect_cnt > 0) { 20239 iea.iea_flush_flag = flush_flag; 20240 ire_walk_ill_tables(MATCH_IRE_TYPE, IRE_FORWARDTABLE, 20241 ire_expire, (char *)(uintptr_t)&iea, IP_MASK_TABLE_SIZE, 20242 0, NULL, 0, NULL, NULL, ALL_ZONES, ipst); 20243 } 20244 if (flush_flag & FLUSH_MTU_TIME) { 20245 /* 20246 * Walk all IPv6 IRE's and update them 20247 * Note that ARP and redirect timers are not 20248 * needed since NUD handles stale entries. 20249 */ 20250 flush_flag = FLUSH_MTU_TIME; 20251 iea.iea_flush_flag = flush_flag; 20252 ire_walk_v6(ire_expire, (char *)(uintptr_t)&iea, 20253 ALL_ZONES, ipst); 20254 } 20255 20256 ipst->ips_ip_ire_arp_time_elapsed += ipst->ips_ip_timer_interval; 20257 ipst->ips_ip_ire_rd_time_elapsed += ipst->ips_ip_timer_interval; 20258 ipst->ips_ip_ire_pmtu_time_elapsed += ipst->ips_ip_timer_interval; 20259 20260 /* 20261 * Hold the lock to serialize timeout calls and prevent 20262 * stale values in ip_ire_expire_id. Otherwise it is possible 20263 * for the timer to fire and a new invocation of this function 20264 * to start before the return value of timeout has been stored 20265 * in ip_ire_expire_id by the current invocation. 20266 */ 20267 mutex_enter(&ipst->ips_ip_trash_timer_lock); 20268 ipst->ips_ip_ire_expire_id = timeout(ip_trash_timer_expire, 20269 (void *)ipst, MSEC_TO_TICK(ipst->ips_ip_timer_interval)); 20270 mutex_exit(&ipst->ips_ip_trash_timer_lock); 20271 } 20272 20273 /* 20274 * Called by the memory allocator subsystem directly, when the system 20275 * is running low on memory. 20276 */ 20277 /* ARGSUSED */ 20278 void 20279 ip_trash_ire_reclaim(void *args) 20280 { 20281 netstack_handle_t nh; 20282 netstack_t *ns; 20283 20284 netstack_next_init(&nh); 20285 while ((ns = netstack_next(&nh)) != NULL) { 20286 ip_trash_ire_reclaim_stack(ns->netstack_ip); 20287 netstack_rele(ns); 20288 } 20289 netstack_next_fini(&nh); 20290 } 20291 20292 static void 20293 ip_trash_ire_reclaim_stack(ip_stack_t *ipst) 20294 { 20295 ire_cache_count_t icc; 20296 ire_cache_reclaim_t icr; 20297 ncc_cache_count_t ncc; 20298 nce_cache_reclaim_t ncr; 20299 uint_t delete_cnt; 20300 /* 20301 * Memory reclaim call back. 20302 * Count unused, offlink, pmtu, and onlink IRE_CACHE entries. 20303 * Then, with a target of freeing 1/Nth of IRE_CACHE 20304 * entries, determine what fraction to free for 20305 * each category of IRE_CACHE entries giving absolute priority 20306 * in the order of onlink, pmtu, offlink, unused (e.g. no pmtu 20307 * entry will be freed unless all offlink entries are freed). 20308 */ 20309 icc.icc_total = 0; 20310 icc.icc_unused = 0; 20311 icc.icc_offlink = 0; 20312 icc.icc_pmtu = 0; 20313 icc.icc_onlink = 0; 20314 ire_walk(ire_cache_count, (char *)&icc, ipst); 20315 20316 /* 20317 * Free NCEs for IPv6 like the onlink ires. 20318 */ 20319 ncc.ncc_total = 0; 20320 ncc.ncc_host = 0; 20321 ndp_walk(NULL, (pfi_t)ndp_cache_count, (uchar_t *)&ncc, ipst); 20322 20323 ASSERT(icc.icc_total == icc.icc_unused + icc.icc_offlink + 20324 icc.icc_pmtu + icc.icc_onlink); 20325 delete_cnt = icc.icc_total/ipst->ips_ip_ire_reclaim_fraction; 20326 IP_STAT(ipst, ip_trash_ire_reclaim_calls); 20327 if (delete_cnt == 0) 20328 return; 20329 IP_STAT(ipst, ip_trash_ire_reclaim_success); 20330 /* Always delete all unused offlink entries */ 20331 icr.icr_ipst = ipst; 20332 icr.icr_unused = 1; 20333 if (delete_cnt <= icc.icc_unused) { 20334 /* 20335 * Only need to free unused entries. In other words, 20336 * there are enough unused entries to free to meet our 20337 * target number of freed ire cache entries. 20338 */ 20339 icr.icr_offlink = icr.icr_pmtu = icr.icr_onlink = 0; 20340 ncr.ncr_host = 0; 20341 } else if (delete_cnt <= icc.icc_unused + icc.icc_offlink) { 20342 /* 20343 * Only need to free unused entries, plus a fraction of offlink 20344 * entries. It follows from the first if statement that 20345 * icc_offlink is non-zero, and that delete_cnt != icc_unused. 20346 */ 20347 delete_cnt -= icc.icc_unused; 20348 /* Round up # deleted by truncating fraction */ 20349 icr.icr_offlink = icc.icc_offlink / delete_cnt; 20350 icr.icr_pmtu = icr.icr_onlink = 0; 20351 ncr.ncr_host = 0; 20352 } else if (delete_cnt <= 20353 icc.icc_unused + icc.icc_offlink + icc.icc_pmtu) { 20354 /* 20355 * Free all unused and offlink entries, plus a fraction of 20356 * pmtu entries. It follows from the previous if statement 20357 * that icc_pmtu is non-zero, and that 20358 * delete_cnt != icc_unused + icc_offlink. 20359 */ 20360 icr.icr_offlink = 1; 20361 delete_cnt -= icc.icc_unused + icc.icc_offlink; 20362 /* Round up # deleted by truncating fraction */ 20363 icr.icr_pmtu = icc.icc_pmtu / delete_cnt; 20364 icr.icr_onlink = 0; 20365 ncr.ncr_host = 0; 20366 } else { 20367 /* 20368 * Free all unused, offlink, and pmtu entries, plus a fraction 20369 * of onlink entries. If we're here, then we know that 20370 * icc_onlink is non-zero, and that 20371 * delete_cnt != icc_unused + icc_offlink + icc_pmtu. 20372 */ 20373 icr.icr_offlink = icr.icr_pmtu = 1; 20374 delete_cnt -= icc.icc_unused + icc.icc_offlink + 20375 icc.icc_pmtu; 20376 /* Round up # deleted by truncating fraction */ 20377 icr.icr_onlink = icc.icc_onlink / delete_cnt; 20378 /* Using the same delete fraction as for onlink IREs */ 20379 ncr.ncr_host = ncc.ncc_host / delete_cnt; 20380 } 20381 #ifdef DEBUG 20382 ip1dbg(("IP reclaim: target %d out of %d current %d/%d/%d/%d " 20383 "fractions %d/%d/%d/%d\n", 20384 icc.icc_total/ipst->ips_ip_ire_reclaim_fraction, icc.icc_total, 20385 icc.icc_unused, icc.icc_offlink, 20386 icc.icc_pmtu, icc.icc_onlink, 20387 icr.icr_unused, icr.icr_offlink, 20388 icr.icr_pmtu, icr.icr_onlink)); 20389 #endif 20390 ire_walk(ire_cache_reclaim, (char *)&icr, ipst); 20391 if (ncr.ncr_host != 0) 20392 ndp_walk(NULL, (pfi_t)ndp_cache_reclaim, 20393 (uchar_t *)&ncr, ipst); 20394 #ifdef DEBUG 20395 icc.icc_total = 0; icc.icc_unused = 0; icc.icc_offlink = 0; 20396 icc.icc_pmtu = 0; icc.icc_onlink = 0; 20397 ire_walk(ire_cache_count, (char *)&icc, ipst); 20398 ip1dbg(("IP reclaim: result total %d %d/%d/%d/%d\n", 20399 icc.icc_total, icc.icc_unused, icc.icc_offlink, 20400 icc.icc_pmtu, icc.icc_onlink)); 20401 #endif 20402 } 20403 20404 /* 20405 * ip_unbind is called when a copy of an unbind request is received from the 20406 * upper level protocol. We remove this conn from any fanout hash list it is 20407 * on, and zero out the bind information. No reply is expected up above. 20408 */ 20409 void 20410 ip_unbind(conn_t *connp) 20411 { 20412 ASSERT(!MUTEX_HELD(&connp->conn_lock)); 20413 20414 if (is_system_labeled() && connp->conn_anon_port) { 20415 (void) tsol_mlp_anon(crgetzone(connp->conn_cred), 20416 connp->conn_mlp_type, connp->conn_ulp, 20417 ntohs(connp->conn_lport), B_FALSE); 20418 connp->conn_anon_port = 0; 20419 } 20420 connp->conn_mlp_type = mlptSingle; 20421 20422 ipcl_hash_remove(connp); 20423 20424 } 20425 20426 /* 20427 * Write side put procedure. Outbound data, IOCTLs, responses from 20428 * resolvers, etc, come down through here. 20429 * 20430 * arg2 is always a queue_t *. 20431 * When that queue is an ill_t (i.e. q_next != NULL), then arg must be 20432 * the zoneid. 20433 * When that queue is not an ill_t, then arg must be a conn_t pointer. 20434 */ 20435 void 20436 ip_output(void *arg, mblk_t *mp, void *arg2, int caller) 20437 { 20438 ip_output_options(arg, mp, arg2, caller, &zero_info); 20439 } 20440 20441 void 20442 ip_output_options(void *arg, mblk_t *mp, void *arg2, int caller, 20443 ip_opt_info_t *infop) 20444 { 20445 conn_t *connp = NULL; 20446 queue_t *q = (queue_t *)arg2; 20447 ipha_t *ipha; 20448 #define rptr ((uchar_t *)ipha) 20449 ire_t *ire = NULL; 20450 ire_t *sctp_ire = NULL; 20451 uint32_t v_hlen_tos_len; 20452 ipaddr_t dst; 20453 mblk_t *first_mp = NULL; 20454 boolean_t mctl_present; 20455 ipsec_out_t *io; 20456 int match_flags; 20457 ill_t *xmit_ill = NULL; /* IP_PKTINFO etc. */ 20458 ipif_t *dst_ipif; 20459 boolean_t multirt_need_resolve = B_FALSE; 20460 mblk_t *copy_mp = NULL; 20461 int err; 20462 zoneid_t zoneid; 20463 boolean_t need_decref = B_FALSE; 20464 boolean_t ignore_dontroute = B_FALSE; 20465 boolean_t ignore_nexthop = B_FALSE; 20466 boolean_t ip_nexthop = B_FALSE; 20467 ipaddr_t nexthop_addr; 20468 ip_stack_t *ipst; 20469 20470 #ifdef _BIG_ENDIAN 20471 #define V_HLEN (v_hlen_tos_len >> 24) 20472 #else 20473 #define V_HLEN (v_hlen_tos_len & 0xFF) 20474 #endif 20475 20476 TRACE_1(TR_FAC_IP, TR_IP_WPUT_START, 20477 "ip_wput_start: q %p", q); 20478 20479 /* 20480 * ip_wput fast path 20481 */ 20482 20483 /* is packet from ARP ? */ 20484 if (q->q_next != NULL) { 20485 zoneid = (zoneid_t)(uintptr_t)arg; 20486 goto qnext; 20487 } 20488 20489 connp = (conn_t *)arg; 20490 ASSERT(connp != NULL); 20491 zoneid = connp->conn_zoneid; 20492 ipst = connp->conn_netstack->netstack_ip; 20493 ASSERT(ipst != NULL); 20494 20495 /* is queue flow controlled? */ 20496 if ((q->q_first != NULL || connp->conn_draining) && 20497 (caller == IP_WPUT)) { 20498 ASSERT(!need_decref); 20499 ASSERT(!IP_FLOW_CONTROLLED_ULP(connp->conn_ulp)); 20500 (void) putq(q, mp); 20501 return; 20502 } 20503 20504 /* Multidata transmit? */ 20505 if (DB_TYPE(mp) == M_MULTIDATA) { 20506 /* 20507 * We should never get here, since all Multidata messages 20508 * originating from tcp should have been directed over to 20509 * tcp_multisend() in the first place. 20510 */ 20511 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 20512 freemsg(mp); 20513 return; 20514 } else if (DB_TYPE(mp) != M_DATA) 20515 goto notdata; 20516 20517 if (mp->b_flag & MSGHASREF) { 20518 ASSERT(connp->conn_ulp == IPPROTO_SCTP); 20519 mp->b_flag &= ~MSGHASREF; 20520 SCTP_EXTRACT_IPINFO(mp, sctp_ire); 20521 need_decref = B_TRUE; 20522 } 20523 ipha = (ipha_t *)mp->b_rptr; 20524 20525 /* is IP header non-aligned or mblk smaller than basic IP header */ 20526 #ifndef SAFETY_BEFORE_SPEED 20527 if (!OK_32PTR(rptr) || 20528 (mp->b_wptr - rptr) < IP_SIMPLE_HDR_LENGTH) 20529 goto hdrtoosmall; 20530 #endif 20531 20532 ASSERT(OK_32PTR(ipha)); 20533 20534 /* 20535 * This function assumes that mp points to an IPv4 packet. If it's the 20536 * wrong version, we'll catch it again in ip_output_v6. 20537 * 20538 * Note that this is *only* locally-generated output here, and never 20539 * forwarded data, and that we need to deal only with transports that 20540 * don't know how to label. (TCP, UDP, and ICMP/raw-IP all know how to 20541 * label.) 20542 */ 20543 if (is_system_labeled() && 20544 (ipha->ipha_version_and_hdr_length & 0xf0) == (IPV4_VERSION << 4) && 20545 !connp->conn_ulp_labeled) { 20546 err = tsol_check_label(BEST_CRED(mp, connp), &mp, 20547 connp->conn_mac_exempt, ipst); 20548 ipha = (ipha_t *)mp->b_rptr; 20549 if (err != 0) { 20550 first_mp = mp; 20551 if (err == EINVAL) 20552 goto icmp_parameter_problem; 20553 ip2dbg(("ip_wput: label check failed (%d)\n", err)); 20554 goto discard_pkt; 20555 } 20556 } 20557 20558 ASSERT(infop != NULL); 20559 20560 if (infop->ip_opt_flags & IP_VERIFY_SRC) { 20561 /* 20562 * IP_PKTINFO ancillary option is present. 20563 * IPCL_ZONEID is used to honor IP_ALLZONES option which 20564 * allows using address of any zone as the source address. 20565 */ 20566 ire = ire_ctable_lookup(ipha->ipha_src, 0, 20567 (IRE_LOCAL|IRE_LOOPBACK), NULL, IPCL_ZONEID(connp), 20568 NULL, MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY, ipst); 20569 if (ire == NULL) 20570 goto drop_pkt; 20571 ire_refrele(ire); 20572 ire = NULL; 20573 } 20574 20575 /* 20576 * IP_BOUND_IF has precedence over the ill index passed in IP_PKTINFO. 20577 */ 20578 if (infop->ip_opt_ill_index != 0 && connp->conn_outgoing_ill == NULL) { 20579 xmit_ill = ill_lookup_on_ifindex(infop->ip_opt_ill_index, 20580 B_FALSE, NULL, NULL, NULL, NULL, ipst); 20581 20582 if (xmit_ill == NULL || IS_VNI(xmit_ill)) 20583 goto drop_pkt; 20584 /* 20585 * check that there is an ipif belonging 20586 * to our zone. IPCL_ZONEID is not used because 20587 * IP_ALLZONES option is valid only when the ill is 20588 * accessible from all zones i.e has a valid ipif in 20589 * all zones. 20590 */ 20591 if (!ipif_lookup_zoneid(xmit_ill, zoneid, 0, NULL)) { 20592 goto drop_pkt; 20593 } 20594 } 20595 20596 /* 20597 * If there is a policy, try to attach an ipsec_out in 20598 * the front. At the end, first_mp either points to a 20599 * M_DATA message or IPSEC_OUT message linked to a 20600 * M_DATA message. We have to do it now as we might 20601 * lose the "conn" if we go through ip_newroute. 20602 */ 20603 if (connp->conn_out_enforce_policy || (connp->conn_latch != NULL)) { 20604 if (((mp = ipsec_attach_ipsec_out(&mp, connp, NULL, 20605 ipha->ipha_protocol, ipst->ips_netstack)) == NULL)) { 20606 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 20607 if (need_decref) 20608 CONN_DEC_REF(connp); 20609 return; 20610 } else { 20611 ASSERT(mp->b_datap->db_type == M_CTL); 20612 first_mp = mp; 20613 mp = mp->b_cont; 20614 mctl_present = B_TRUE; 20615 } 20616 } else { 20617 first_mp = mp; 20618 mctl_present = B_FALSE; 20619 } 20620 20621 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 20622 20623 /* is wrong version or IP options present */ 20624 if (V_HLEN != IP_SIMPLE_HDR_VERSION) 20625 goto version_hdrlen_check; 20626 dst = ipha->ipha_dst; 20627 20628 /* If IP_BOUND_IF has been set, use that ill. */ 20629 if (connp->conn_outgoing_ill != NULL) { 20630 xmit_ill = conn_get_held_ill(connp, 20631 &connp->conn_outgoing_ill, &err); 20632 if (err == ILL_LOOKUP_FAILED) 20633 goto drop_pkt; 20634 20635 goto send_from_ill; 20636 } 20637 20638 /* is packet multicast? */ 20639 if (CLASSD(dst)) 20640 goto multicast; 20641 20642 /* 20643 * If xmit_ill is set above due to index passed in ip_pkt_info. It 20644 * takes precedence over conn_dontroute and conn_nexthop_set 20645 */ 20646 if (xmit_ill != NULL) 20647 goto send_from_ill; 20648 20649 if (connp->conn_dontroute || connp->conn_nexthop_set) { 20650 /* 20651 * If the destination is a broadcast, local, or loopback 20652 * address, SO_DONTROUTE and IP_NEXTHOP go through the 20653 * standard path. 20654 */ 20655 ire = ire_cache_lookup(dst, zoneid, msg_getlabel(mp), ipst); 20656 if ((ire == NULL) || (ire->ire_type & 20657 (IRE_BROADCAST | IRE_LOCAL | IRE_LOOPBACK)) == 0) { 20658 if (ire != NULL) { 20659 ire_refrele(ire); 20660 /* No more access to ire */ 20661 ire = NULL; 20662 } 20663 /* 20664 * bypass routing checks and go directly to interface. 20665 */ 20666 if (connp->conn_dontroute) 20667 goto dontroute; 20668 20669 ASSERT(connp->conn_nexthop_set); 20670 ip_nexthop = B_TRUE; 20671 nexthop_addr = connp->conn_nexthop_v4; 20672 goto send_from_ill; 20673 } 20674 20675 /* Must be a broadcast, a loopback or a local ire */ 20676 ire_refrele(ire); 20677 /* No more access to ire */ 20678 ire = NULL; 20679 } 20680 20681 /* 20682 * We cache IRE_CACHEs to avoid lookups. We don't do 20683 * this for the tcp global queue and listen end point 20684 * as it does not really have a real destination to 20685 * talk to. This is also true for SCTP. 20686 */ 20687 if (IP_FLOW_CONTROLLED_ULP(connp->conn_ulp) && 20688 !connp->conn_fully_bound) { 20689 ire = ire_cache_lookup(dst, zoneid, msg_getlabel(mp), ipst); 20690 if (ire == NULL) 20691 goto noirefound; 20692 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20693 "ip_wput_end: q %p (%S)", q, "end"); 20694 20695 /* 20696 * Check if the ire has the RTF_MULTIRT flag, inherited 20697 * from an IRE_OFFSUBNET ire entry in ip_newroute(). 20698 */ 20699 if (ire->ire_flags & RTF_MULTIRT) { 20700 20701 /* 20702 * Force the TTL of multirouted packets if required. 20703 * The TTL of such packets is bounded by the 20704 * ip_multirt_ttl ndd variable. 20705 */ 20706 if ((ipst->ips_ip_multirt_ttl > 0) && 20707 (ipha->ipha_ttl > ipst->ips_ip_multirt_ttl)) { 20708 ip2dbg(("ip_wput: forcing multirt TTL to %d " 20709 "(was %d), dst 0x%08x\n", 20710 ipst->ips_ip_multirt_ttl, ipha->ipha_ttl, 20711 ntohl(ire->ire_addr))); 20712 ipha->ipha_ttl = ipst->ips_ip_multirt_ttl; 20713 } 20714 /* 20715 * We look at this point if there are pending 20716 * unresolved routes. ire_multirt_resolvable() 20717 * checks in O(n) that all IRE_OFFSUBNET ire 20718 * entries for the packet's destination and 20719 * flagged RTF_MULTIRT are currently resolved. 20720 * If some remain unresolved, we make a copy 20721 * of the current message. It will be used 20722 * to initiate additional route resolutions. 20723 */ 20724 multirt_need_resolve = 20725 ire_multirt_need_resolve(ire->ire_addr, 20726 msg_getlabel(first_mp), ipst); 20727 ip2dbg(("ip_wput[TCP]: ire %p, " 20728 "multirt_need_resolve %d, first_mp %p\n", 20729 (void *)ire, multirt_need_resolve, 20730 (void *)first_mp)); 20731 if (multirt_need_resolve) { 20732 copy_mp = copymsg(first_mp); 20733 if (copy_mp != NULL) { 20734 MULTIRT_DEBUG_TAG(copy_mp); 20735 } 20736 } 20737 } 20738 20739 ip_wput_ire(q, first_mp, ire, connp, caller, zoneid); 20740 20741 /* 20742 * Try to resolve another multiroute if 20743 * ire_multirt_need_resolve() deemed it necessary. 20744 */ 20745 if (copy_mp != NULL) 20746 ip_newroute(q, copy_mp, dst, connp, zoneid, ipst); 20747 if (need_decref) 20748 CONN_DEC_REF(connp); 20749 return; 20750 } 20751 20752 /* 20753 * Access to conn_ire_cache. (protected by conn_lock) 20754 * 20755 * IRE_MARK_CONDEMNED is marked in ire_delete. We don't grab 20756 * the ire bucket lock here to check for CONDEMNED as it is okay to 20757 * send a packet or two with the IRE_CACHE that is going away. 20758 * Access to the ire requires an ire refhold on the ire prior to 20759 * its use since an interface unplumb thread may delete the cached 20760 * ire and release the refhold at any time. 20761 * 20762 * Caching an ire in the conn_ire_cache 20763 * 20764 * o Caching an ire pointer in the conn requires a strict check for 20765 * IRE_MARK_CONDEMNED. An interface unplumb thread deletes all relevant 20766 * ires before cleaning up the conns. So the caching of an ire pointer 20767 * in the conn is done after making sure under the bucket lock that the 20768 * ire has not yet been marked CONDEMNED. Otherwise we will end up 20769 * caching an ire after the unplumb thread has cleaned up the conn. 20770 * If the conn does not send a packet subsequently the unplumb thread 20771 * will be hanging waiting for the ire count to drop to zero. 20772 * 20773 * o We also need to atomically test for a null conn_ire_cache and 20774 * set the conn_ire_cache under the the protection of the conn_lock 20775 * to avoid races among concurrent threads trying to simultaneously 20776 * cache an ire in the conn_ire_cache. 20777 */ 20778 mutex_enter(&connp->conn_lock); 20779 ire = sctp_ire != NULL ? sctp_ire : connp->conn_ire_cache; 20780 20781 if (ire != NULL && ire->ire_addr == dst && 20782 !(ire->ire_marks & IRE_MARK_CONDEMNED)) { 20783 20784 IRE_REFHOLD(ire); 20785 mutex_exit(&connp->conn_lock); 20786 20787 } else { 20788 boolean_t cached = B_FALSE; 20789 connp->conn_ire_cache = NULL; 20790 mutex_exit(&connp->conn_lock); 20791 /* Release the old ire */ 20792 if (ire != NULL && sctp_ire == NULL) 20793 IRE_REFRELE_NOTR(ire); 20794 20795 ire = ire_cache_lookup(dst, zoneid, msg_getlabel(mp), ipst); 20796 if (ire == NULL) 20797 goto noirefound; 20798 IRE_REFHOLD_NOTR(ire); 20799 20800 mutex_enter(&connp->conn_lock); 20801 if (CONN_CACHE_IRE(connp) && connp->conn_ire_cache == NULL) { 20802 rw_enter(&ire->ire_bucket->irb_lock, RW_READER); 20803 if (!(ire->ire_marks & IRE_MARK_CONDEMNED)) { 20804 if (connp->conn_ulp == IPPROTO_TCP) 20805 TCP_CHECK_IREINFO(connp->conn_tcp, ire); 20806 connp->conn_ire_cache = ire; 20807 cached = B_TRUE; 20808 } 20809 rw_exit(&ire->ire_bucket->irb_lock); 20810 } 20811 mutex_exit(&connp->conn_lock); 20812 20813 /* 20814 * We can continue to use the ire but since it was 20815 * not cached, we should drop the extra reference. 20816 */ 20817 if (!cached) 20818 IRE_REFRELE_NOTR(ire); 20819 } 20820 20821 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20822 "ip_wput_end: q %p (%S)", q, "end"); 20823 20824 /* 20825 * Check if the ire has the RTF_MULTIRT flag, inherited 20826 * from an IRE_OFFSUBNET ire entry in ip_newroute(). 20827 */ 20828 if (ire->ire_flags & RTF_MULTIRT) { 20829 /* 20830 * Force the TTL of multirouted packets if required. 20831 * The TTL of such packets is bounded by the 20832 * ip_multirt_ttl ndd variable. 20833 */ 20834 if ((ipst->ips_ip_multirt_ttl > 0) && 20835 (ipha->ipha_ttl > ipst->ips_ip_multirt_ttl)) { 20836 ip2dbg(("ip_wput: forcing multirt TTL to %d " 20837 "(was %d), dst 0x%08x\n", 20838 ipst->ips_ip_multirt_ttl, ipha->ipha_ttl, 20839 ntohl(ire->ire_addr))); 20840 ipha->ipha_ttl = ipst->ips_ip_multirt_ttl; 20841 } 20842 20843 /* 20844 * At this point, we check to see if there are any pending 20845 * unresolved routes. ire_multirt_resolvable() 20846 * checks in O(n) that all IRE_OFFSUBNET ire 20847 * entries for the packet's destination and 20848 * flagged RTF_MULTIRT are currently resolved. 20849 * If some remain unresolved, we make a copy 20850 * of the current message. It will be used 20851 * to initiate additional route resolutions. 20852 */ 20853 multirt_need_resolve = ire_multirt_need_resolve(ire->ire_addr, 20854 msg_getlabel(first_mp), ipst); 20855 ip2dbg(("ip_wput[not TCP]: ire %p, " 20856 "multirt_need_resolve %d, first_mp %p\n", 20857 (void *)ire, multirt_need_resolve, (void *)first_mp)); 20858 if (multirt_need_resolve) { 20859 copy_mp = copymsg(first_mp); 20860 if (copy_mp != NULL) { 20861 MULTIRT_DEBUG_TAG(copy_mp); 20862 } 20863 } 20864 } 20865 20866 ip_wput_ire(q, first_mp, ire, connp, caller, zoneid); 20867 20868 /* 20869 * Try to resolve another multiroute if 20870 * ire_multirt_resolvable() deemed it necessary 20871 */ 20872 if (copy_mp != NULL) 20873 ip_newroute(q, copy_mp, dst, connp, zoneid, ipst); 20874 if (need_decref) 20875 CONN_DEC_REF(connp); 20876 return; 20877 20878 qnext: 20879 /* 20880 * Upper Level Protocols pass down complete IP datagrams 20881 * as M_DATA messages. Everything else is a sideshow. 20882 * 20883 * 1) We could be re-entering ip_wput because of ip_neworute 20884 * in which case we could have a IPSEC_OUT message. We 20885 * need to pass through ip_wput like other datagrams and 20886 * hence cannot branch to ip_wput_nondata. 20887 * 20888 * 2) ARP, AH, ESP, and other clients who are on the module 20889 * instance of IP stream, give us something to deal with. 20890 * We will handle AH and ESP here and rest in ip_wput_nondata. 20891 * 20892 * 3) ICMP replies also could come here. 20893 */ 20894 ipst = ILLQ_TO_IPST(q); 20895 20896 if (DB_TYPE(mp) != M_DATA) { 20897 notdata: 20898 if (DB_TYPE(mp) == M_CTL) { 20899 /* 20900 * M_CTL messages are used by ARP, AH and ESP to 20901 * communicate with IP. We deal with IPSEC_IN and 20902 * IPSEC_OUT here. ip_wput_nondata handles other 20903 * cases. 20904 */ 20905 ipsec_info_t *ii = (ipsec_info_t *)mp->b_rptr; 20906 if (mp->b_cont && (mp->b_cont->b_flag & MSGHASREF)) { 20907 first_mp = mp->b_cont; 20908 first_mp->b_flag &= ~MSGHASREF; 20909 ASSERT(connp->conn_ulp == IPPROTO_SCTP); 20910 SCTP_EXTRACT_IPINFO(first_mp, sctp_ire); 20911 CONN_DEC_REF(connp); 20912 connp = NULL; 20913 } 20914 if (ii->ipsec_info_type == IPSEC_IN) { 20915 /* 20916 * Either this message goes back to 20917 * IPsec for further processing or to 20918 * ULP after policy checks. 20919 */ 20920 ip_fanout_proto_again(mp, NULL, NULL, NULL); 20921 return; 20922 } else if (ii->ipsec_info_type == IPSEC_OUT) { 20923 io = (ipsec_out_t *)ii; 20924 if (io->ipsec_out_proc_begin) { 20925 /* 20926 * IPsec processing has already started. 20927 * Complete it. 20928 * IPQoS notes: We don't care what is 20929 * in ipsec_out_ill_index since this 20930 * won't be processed for IPQoS policies 20931 * in ipsec_out_process. 20932 */ 20933 ipsec_out_process(q, mp, NULL, 20934 io->ipsec_out_ill_index); 20935 return; 20936 } else { 20937 connp = (q->q_next != NULL) ? 20938 NULL : Q_TO_CONN(q); 20939 first_mp = mp; 20940 mp = mp->b_cont; 20941 mctl_present = B_TRUE; 20942 } 20943 zoneid = io->ipsec_out_zoneid; 20944 ASSERT(zoneid != ALL_ZONES); 20945 } else if (ii->ipsec_info_type == IPSEC_CTL) { 20946 /* 20947 * It's an IPsec control message requesting 20948 * an SADB update to be sent to the IPsec 20949 * hardware acceleration capable ills. 20950 */ 20951 ipsec_ctl_t *ipsec_ctl = 20952 (ipsec_ctl_t *)mp->b_rptr; 20953 ipsa_t *sa = (ipsa_t *)ipsec_ctl->ipsec_ctl_sa; 20954 uint_t satype = ipsec_ctl->ipsec_ctl_sa_type; 20955 mblk_t *cmp = mp->b_cont; 20956 20957 ASSERT(MBLKL(mp) >= sizeof (ipsec_ctl_t)); 20958 ASSERT(cmp != NULL); 20959 20960 freeb(mp); 20961 ill_ipsec_capab_send_all(satype, cmp, sa, 20962 ipst->ips_netstack); 20963 return; 20964 } else { 20965 /* 20966 * This must be ARP or special TSOL signaling. 20967 */ 20968 ip_wput_nondata(NULL, q, mp, NULL); 20969 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20970 "ip_wput_end: q %p (%S)", q, "nondata"); 20971 return; 20972 } 20973 } else { 20974 /* 20975 * This must be non-(ARP/AH/ESP) messages. 20976 */ 20977 ASSERT(!need_decref); 20978 ip_wput_nondata(NULL, q, mp, NULL); 20979 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20980 "ip_wput_end: q %p (%S)", q, "nondata"); 20981 return; 20982 } 20983 } else { 20984 first_mp = mp; 20985 mctl_present = B_FALSE; 20986 } 20987 20988 ASSERT(first_mp != NULL); 20989 20990 if (mctl_present) { 20991 io = (ipsec_out_t *)first_mp->b_rptr; 20992 if (io->ipsec_out_ip_nexthop) { 20993 /* 20994 * We may have lost the conn context if we are 20995 * coming here from ip_newroute(). Copy the 20996 * nexthop information. 20997 */ 20998 ip_nexthop = B_TRUE; 20999 nexthop_addr = io->ipsec_out_nexthop_addr; 21000 21001 ipha = (ipha_t *)mp->b_rptr; 21002 dst = ipha->ipha_dst; 21003 goto send_from_ill; 21004 } 21005 } 21006 21007 ASSERT(xmit_ill == NULL); 21008 21009 /* We have a complete IP datagram heading outbound. */ 21010 ipha = (ipha_t *)mp->b_rptr; 21011 21012 #ifndef SPEED_BEFORE_SAFETY 21013 /* 21014 * Make sure we have a full-word aligned message and that at least 21015 * a simple IP header is accessible in the first message. If not, 21016 * try a pullup. For labeled systems we need to always take this 21017 * path as M_CTLs are "notdata" but have trailing data to process. 21018 */ 21019 if (!OK_32PTR(rptr) || 21020 (mp->b_wptr - rptr) < IP_SIMPLE_HDR_LENGTH || is_system_labeled()) { 21021 hdrtoosmall: 21022 if (!pullupmsg(mp, IP_SIMPLE_HDR_LENGTH)) { 21023 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 21024 "ip_wput_end: q %p (%S)", q, "pullupfailed"); 21025 if (first_mp == NULL) 21026 first_mp = mp; 21027 goto discard_pkt; 21028 } 21029 21030 /* This function assumes that mp points to an IPv4 packet. */ 21031 if (is_system_labeled() && q->q_next == NULL && 21032 (*mp->b_rptr & 0xf0) == (IPV4_VERSION << 4) && 21033 !connp->conn_ulp_labeled) { 21034 err = tsol_check_label(BEST_CRED(mp, connp), &mp, 21035 connp->conn_mac_exempt, ipst); 21036 ipha = (ipha_t *)mp->b_rptr; 21037 if (first_mp != NULL) 21038 first_mp->b_cont = mp; 21039 if (err != 0) { 21040 if (first_mp == NULL) 21041 first_mp = mp; 21042 if (err == EINVAL) 21043 goto icmp_parameter_problem; 21044 ip2dbg(("ip_wput: label check failed (%d)\n", 21045 err)); 21046 goto discard_pkt; 21047 } 21048 } 21049 21050 ipha = (ipha_t *)mp->b_rptr; 21051 if (first_mp == NULL) { 21052 ASSERT(xmit_ill == NULL); 21053 /* 21054 * If we got here because of "goto hdrtoosmall" 21055 * We need to attach a IPSEC_OUT. 21056 */ 21057 if (connp->conn_out_enforce_policy) { 21058 if (((mp = ipsec_attach_ipsec_out(&mp, connp, 21059 NULL, ipha->ipha_protocol, 21060 ipst->ips_netstack)) == NULL)) { 21061 BUMP_MIB(&ipst->ips_ip_mib, 21062 ipIfStatsOutDiscards); 21063 if (need_decref) 21064 CONN_DEC_REF(connp); 21065 return; 21066 } else { 21067 ASSERT(mp->b_datap->db_type == M_CTL); 21068 first_mp = mp; 21069 mp = mp->b_cont; 21070 mctl_present = B_TRUE; 21071 } 21072 } else { 21073 first_mp = mp; 21074 mctl_present = B_FALSE; 21075 } 21076 } 21077 } 21078 #endif 21079 21080 /* Most of the code below is written for speed, not readability */ 21081 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 21082 21083 /* 21084 * If ip_newroute() fails, we're going to need a full 21085 * header for the icmp wraparound. 21086 */ 21087 if (V_HLEN != IP_SIMPLE_HDR_VERSION) { 21088 uint_t v_hlen; 21089 version_hdrlen_check: 21090 ASSERT(first_mp != NULL); 21091 v_hlen = V_HLEN; 21092 /* 21093 * siphon off IPv6 packets coming down from transport 21094 * layer modules here. 21095 * Note: high-order bit carries NUD reachability confirmation 21096 */ 21097 if (((v_hlen >> 4) & 0x7) == IPV6_VERSION) { 21098 /* 21099 * FIXME: assume that callers of ip_output* call 21100 * the right version? 21101 */ 21102 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutWrongIPVersion); 21103 ASSERT(xmit_ill == NULL); 21104 if (need_decref) 21105 mp->b_flag |= MSGHASREF; 21106 (void) ip_output_v6(arg, first_mp, arg2, caller); 21107 return; 21108 } 21109 21110 if ((v_hlen >> 4) != IP_VERSION) { 21111 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 21112 "ip_wput_end: q %p (%S)", q, "badvers"); 21113 goto discard_pkt; 21114 } 21115 /* 21116 * Is the header length at least 20 bytes? 21117 * 21118 * Are there enough bytes accessible in the header? If 21119 * not, try a pullup. 21120 */ 21121 v_hlen &= 0xF; 21122 v_hlen <<= 2; 21123 if (v_hlen < IP_SIMPLE_HDR_LENGTH) { 21124 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 21125 "ip_wput_end: q %p (%S)", q, "badlen"); 21126 goto discard_pkt; 21127 } 21128 if (v_hlen > (mp->b_wptr - rptr)) { 21129 if (!pullupmsg(mp, v_hlen)) { 21130 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 21131 "ip_wput_end: q %p (%S)", q, "badpullup2"); 21132 goto discard_pkt; 21133 } 21134 ipha = (ipha_t *)mp->b_rptr; 21135 } 21136 /* 21137 * Move first entry from any source route into ipha_dst and 21138 * verify the options 21139 */ 21140 if (ip_wput_options(q, first_mp, ipha, mctl_present, 21141 zoneid, ipst)) { 21142 ASSERT(xmit_ill == NULL); 21143 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 21144 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 21145 "ip_wput_end: q %p (%S)", q, "badopts"); 21146 if (need_decref) 21147 CONN_DEC_REF(connp); 21148 return; 21149 } 21150 } 21151 dst = ipha->ipha_dst; 21152 21153 /* 21154 * Try to get an IRE_CACHE for the destination address. If we can't, 21155 * we have to run the packet through ip_newroute which will take 21156 * the appropriate action to arrange for an IRE_CACHE, such as querying 21157 * a resolver, or assigning a default gateway, etc. 21158 */ 21159 if (CLASSD(dst)) { 21160 ipif_t *ipif; 21161 uint32_t setsrc = 0; 21162 21163 multicast: 21164 ASSERT(first_mp != NULL); 21165 ip2dbg(("ip_wput: CLASSD\n")); 21166 if (connp == NULL) { 21167 /* 21168 * Use the first good ipif on the ill. 21169 * XXX Should this ever happen? (Appears 21170 * to show up with just ppp and no ethernet due 21171 * to in.rdisc.) 21172 * However, ire_send should be able to 21173 * call ip_wput_ire directly. 21174 * 21175 * XXX Also, this can happen for ICMP and other packets 21176 * with multicast source addresses. Perhaps we should 21177 * fix things so that we drop the packet in question, 21178 * but for now, just run with it. 21179 */ 21180 ill_t *ill = (ill_t *)q->q_ptr; 21181 21182 ipif = ipif_select_source(ill, dst, GLOBAL_ZONEID); 21183 if (ipif == NULL) { 21184 if (need_decref) 21185 CONN_DEC_REF(connp); 21186 freemsg(first_mp); 21187 return; 21188 } 21189 ip1dbg(("ip_wput: CLASSD no CONN: dst 0x%x on %s\n", 21190 ntohl(dst), ill->ill_name)); 21191 } else { 21192 /* 21193 * The order of precedence is IP_BOUND_IF, IP_PKTINFO 21194 * and IP_MULTICAST_IF. The block comment above this 21195 * function explains the locking mechanism used here. 21196 */ 21197 if (xmit_ill == NULL) { 21198 xmit_ill = conn_get_held_ill(connp, 21199 &connp->conn_outgoing_ill, &err); 21200 if (err == ILL_LOOKUP_FAILED) { 21201 ip1dbg(("ip_wput: No ill for " 21202 "IP_BOUND_IF\n")); 21203 BUMP_MIB(&ipst->ips_ip_mib, 21204 ipIfStatsOutNoRoutes); 21205 goto drop_pkt; 21206 } 21207 } 21208 21209 if (xmit_ill == NULL) { 21210 ipif = conn_get_held_ipif(connp, 21211 &connp->conn_multicast_ipif, &err); 21212 if (err == IPIF_LOOKUP_FAILED) { 21213 ip1dbg(("ip_wput: No ipif for " 21214 "multicast\n")); 21215 BUMP_MIB(&ipst->ips_ip_mib, 21216 ipIfStatsOutNoRoutes); 21217 goto drop_pkt; 21218 } 21219 } 21220 if (xmit_ill != NULL) { 21221 ipif = ipif_get_next_ipif(NULL, xmit_ill); 21222 if (ipif == NULL) { 21223 ip1dbg(("ip_wput: No ipif for " 21224 "xmit_ill\n")); 21225 BUMP_MIB(&ipst->ips_ip_mib, 21226 ipIfStatsOutNoRoutes); 21227 goto drop_pkt; 21228 } 21229 } else if (ipif == NULL || ipif->ipif_isv6) { 21230 /* 21231 * We must do this ipif determination here 21232 * else we could pass through ip_newroute 21233 * and come back here without the conn context. 21234 * 21235 * Note: we do late binding i.e. we bind to 21236 * the interface when the first packet is sent. 21237 * For performance reasons we do not rebind on 21238 * each packet but keep the binding until the 21239 * next IP_MULTICAST_IF option. 21240 * 21241 * conn_multicast_{ipif,ill} are shared between 21242 * IPv4 and IPv6 and AF_INET6 sockets can 21243 * send both IPv4 and IPv6 packets. Hence 21244 * we have to check that "isv6" matches above. 21245 */ 21246 if (ipif != NULL) 21247 ipif_refrele(ipif); 21248 ipif = ipif_lookup_group(dst, zoneid, ipst); 21249 if (ipif == NULL) { 21250 ip1dbg(("ip_wput: No ipif for " 21251 "multicast\n")); 21252 BUMP_MIB(&ipst->ips_ip_mib, 21253 ipIfStatsOutNoRoutes); 21254 goto drop_pkt; 21255 } 21256 err = conn_set_held_ipif(connp, 21257 &connp->conn_multicast_ipif, ipif); 21258 if (err == IPIF_LOOKUP_FAILED) { 21259 ipif_refrele(ipif); 21260 ip1dbg(("ip_wput: No ipif for " 21261 "multicast\n")); 21262 BUMP_MIB(&ipst->ips_ip_mib, 21263 ipIfStatsOutNoRoutes); 21264 goto drop_pkt; 21265 } 21266 } 21267 } 21268 ASSERT(!ipif->ipif_isv6); 21269 /* 21270 * As we may lose the conn by the time we reach ip_wput_ire, 21271 * we copy conn_multicast_loop and conn_dontroute on to an 21272 * ipsec_out. In case if this datagram goes out secure, 21273 * we need the ill_index also. Copy that also into the 21274 * ipsec_out. 21275 */ 21276 if (mctl_present) { 21277 io = (ipsec_out_t *)first_mp->b_rptr; 21278 ASSERT(first_mp->b_datap->db_type == M_CTL); 21279 ASSERT(io->ipsec_out_type == IPSEC_OUT); 21280 } else { 21281 ASSERT(mp == first_mp); 21282 if ((first_mp = allocb(sizeof (ipsec_info_t), 21283 BPRI_HI)) == NULL) { 21284 ipif_refrele(ipif); 21285 first_mp = mp; 21286 goto discard_pkt; 21287 } 21288 first_mp->b_datap->db_type = M_CTL; 21289 first_mp->b_wptr += sizeof (ipsec_info_t); 21290 /* ipsec_out_secure is B_FALSE now */ 21291 bzero(first_mp->b_rptr, sizeof (ipsec_info_t)); 21292 io = (ipsec_out_t *)first_mp->b_rptr; 21293 io->ipsec_out_type = IPSEC_OUT; 21294 io->ipsec_out_len = sizeof (ipsec_out_t); 21295 io->ipsec_out_use_global_policy = B_TRUE; 21296 io->ipsec_out_ns = ipst->ips_netstack; 21297 first_mp->b_cont = mp; 21298 mctl_present = B_TRUE; 21299 } 21300 21301 match_flags = MATCH_IRE_ILL | MATCH_IRE_SECATTR; 21302 io->ipsec_out_ill_index = 21303 ipif->ipif_ill->ill_phyint->phyint_ifindex; 21304 21305 if (connp != NULL) { 21306 io->ipsec_out_multicast_loop = 21307 connp->conn_multicast_loop; 21308 io->ipsec_out_dontroute = connp->conn_dontroute; 21309 io->ipsec_out_zoneid = connp->conn_zoneid; 21310 } 21311 /* 21312 * If the application uses IP_MULTICAST_IF with 21313 * different logical addresses of the same ILL, we 21314 * need to make sure that the soruce address of 21315 * the packet matches the logical IP address used 21316 * in the option. We do it by initializing ipha_src 21317 * here. This should keep IPsec also happy as 21318 * when we return from IPsec processing, we don't 21319 * have to worry about getting the right address on 21320 * the packet. Thus it is sufficient to look for 21321 * IRE_CACHE using MATCH_IRE_ILL rathen than 21322 * MATCH_IRE_IPIF. 21323 * 21324 * NOTE : We need to do it for non-secure case also as 21325 * this might go out secure if there is a global policy 21326 * match in ip_wput_ire. 21327 * 21328 * As we do not have the ire yet, it is possible that 21329 * we set the source address here and then later discover 21330 * that the ire implies the source address to be assigned 21331 * through the RTF_SETSRC flag. 21332 * In that case, the setsrc variable will remind us 21333 * that overwritting the source address by the one 21334 * of the RTF_SETSRC-flagged ire is allowed. 21335 */ 21336 if (ipha->ipha_src == INADDR_ANY && 21337 (connp == NULL || !connp->conn_unspec_src)) { 21338 ipha->ipha_src = ipif->ipif_src_addr; 21339 setsrc = RTF_SETSRC; 21340 } 21341 /* 21342 * Find an IRE which matches the destination and the outgoing 21343 * queue (i.e. the outgoing interface.) 21344 * For loopback use a unicast IP address for 21345 * the ire lookup. 21346 */ 21347 if (IS_LOOPBACK(ipif->ipif_ill)) 21348 dst = ipif->ipif_lcl_addr; 21349 21350 /* 21351 * If xmit_ill is set, we branch out to ip_newroute_ipif. 21352 * We don't need to lookup ire in ctable as the packet 21353 * needs to be sent to the destination through the specified 21354 * ill irrespective of ires in the cache table. 21355 */ 21356 ire = NULL; 21357 if (xmit_ill == NULL) { 21358 ire = ire_ctable_lookup(dst, 0, 0, ipif, 21359 zoneid, msg_getlabel(mp), match_flags, ipst); 21360 } 21361 21362 if (ire == NULL) { 21363 /* 21364 * Multicast loopback and multicast forwarding is 21365 * done in ip_wput_ire. 21366 * 21367 * Mark this packet to make it be delivered to 21368 * ip_wput_ire after the new ire has been 21369 * created. 21370 * 21371 * The call to ip_newroute_ipif takes into account 21372 * the setsrc reminder. In any case, we take care 21373 * of the RTF_MULTIRT flag. 21374 */ 21375 mp->b_prev = mp->b_next = NULL; 21376 if (xmit_ill == NULL || 21377 xmit_ill->ill_ipif_up_count > 0) { 21378 ip_newroute_ipif(q, first_mp, ipif, dst, connp, 21379 setsrc | RTF_MULTIRT, zoneid, infop); 21380 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 21381 "ip_wput_end: q %p (%S)", q, "noire"); 21382 } else { 21383 freemsg(first_mp); 21384 } 21385 ipif_refrele(ipif); 21386 if (xmit_ill != NULL) 21387 ill_refrele(xmit_ill); 21388 if (need_decref) 21389 CONN_DEC_REF(connp); 21390 return; 21391 } 21392 21393 ipif_refrele(ipif); 21394 ipif = NULL; 21395 ASSERT(xmit_ill == NULL); 21396 21397 /* 21398 * Honor the RTF_SETSRC flag for multicast packets, 21399 * if allowed by the setsrc reminder. 21400 */ 21401 if ((ire->ire_flags & RTF_SETSRC) && setsrc) { 21402 ipha->ipha_src = ire->ire_src_addr; 21403 } 21404 21405 /* 21406 * Unconditionally force the TTL to 1 for 21407 * multirouted multicast packets: 21408 * multirouted multicast should not cross 21409 * multicast routers. 21410 */ 21411 if (ire->ire_flags & RTF_MULTIRT) { 21412 if (ipha->ipha_ttl > 1) { 21413 ip2dbg(("ip_wput: forcing multicast " 21414 "multirt TTL to 1 (was %d), dst 0x%08x\n", 21415 ipha->ipha_ttl, ntohl(ire->ire_addr))); 21416 ipha->ipha_ttl = 1; 21417 } 21418 } 21419 } else { 21420 ire = ire_cache_lookup(dst, zoneid, msg_getlabel(mp), ipst); 21421 if ((ire != NULL) && (ire->ire_type & 21422 (IRE_BROADCAST | IRE_LOCAL | IRE_LOOPBACK))) { 21423 ignore_dontroute = B_TRUE; 21424 ignore_nexthop = B_TRUE; 21425 } 21426 if (ire != NULL) { 21427 ire_refrele(ire); 21428 ire = NULL; 21429 } 21430 /* 21431 * Guard against coming in from arp in which case conn is NULL. 21432 * Also guard against non M_DATA with dontroute set but 21433 * destined to local, loopback or broadcast addresses. 21434 */ 21435 if (connp != NULL && connp->conn_dontroute && 21436 !ignore_dontroute) { 21437 dontroute: 21438 /* 21439 * Set TTL to 1 if SO_DONTROUTE is set to prevent 21440 * routing protocols from seeing false direct 21441 * connectivity. 21442 */ 21443 ipha->ipha_ttl = 1; 21444 /* If suitable ipif not found, drop packet */ 21445 dst_ipif = ipif_lookup_onlink_addr(dst, zoneid, ipst); 21446 if (dst_ipif == NULL) { 21447 noroute: 21448 ip1dbg(("ip_wput: no route for dst using" 21449 " SO_DONTROUTE\n")); 21450 BUMP_MIB(&ipst->ips_ip_mib, 21451 ipIfStatsOutNoRoutes); 21452 mp->b_prev = mp->b_next = NULL; 21453 if (first_mp == NULL) 21454 first_mp = mp; 21455 goto drop_pkt; 21456 } else { 21457 /* 21458 * If suitable ipif has been found, set 21459 * xmit_ill to the corresponding 21460 * ipif_ill because we'll be using the 21461 * send_from_ill logic below. 21462 */ 21463 ASSERT(xmit_ill == NULL); 21464 xmit_ill = dst_ipif->ipif_ill; 21465 mutex_enter(&xmit_ill->ill_lock); 21466 if (!ILL_CAN_LOOKUP(xmit_ill)) { 21467 mutex_exit(&xmit_ill->ill_lock); 21468 xmit_ill = NULL; 21469 ipif_refrele(dst_ipif); 21470 goto noroute; 21471 } 21472 ill_refhold_locked(xmit_ill); 21473 mutex_exit(&xmit_ill->ill_lock); 21474 ipif_refrele(dst_ipif); 21475 } 21476 } 21477 21478 send_from_ill: 21479 if (xmit_ill != NULL) { 21480 ipif_t *ipif; 21481 21482 /* 21483 * Mark this packet as originated locally 21484 */ 21485 mp->b_prev = mp->b_next = NULL; 21486 21487 /* 21488 * Could be SO_DONTROUTE case also. 21489 * Verify that at least one ipif is up on the ill. 21490 */ 21491 if (xmit_ill->ill_ipif_up_count == 0) { 21492 ip1dbg(("ip_output: xmit_ill %s is down\n", 21493 xmit_ill->ill_name)); 21494 goto drop_pkt; 21495 } 21496 21497 ipif = ipif_get_next_ipif(NULL, xmit_ill); 21498 if (ipif == NULL) { 21499 ip1dbg(("ip_output: xmit_ill %s NULL ipif\n", 21500 xmit_ill->ill_name)); 21501 goto drop_pkt; 21502 } 21503 21504 match_flags = 0; 21505 if (IS_UNDER_IPMP(xmit_ill)) 21506 match_flags |= MATCH_IRE_MARK_TESTHIDDEN; 21507 21508 /* 21509 * Look for a ire that is part of the group, 21510 * if found use it else call ip_newroute_ipif. 21511 * IPCL_ZONEID is not used for matching because 21512 * IP_ALLZONES option is valid only when the 21513 * ill is accessible from all zones i.e has a 21514 * valid ipif in all zones. 21515 */ 21516 match_flags |= MATCH_IRE_ILL | MATCH_IRE_SECATTR; 21517 ire = ire_ctable_lookup(dst, 0, 0, ipif, zoneid, 21518 msg_getlabel(mp), match_flags, ipst); 21519 /* 21520 * If an ire exists use it or else create 21521 * an ire but don't add it to the cache. 21522 * Adding an ire may cause issues with 21523 * asymmetric routing. 21524 * In case of multiroute always act as if 21525 * ire does not exist. 21526 */ 21527 if (ire == NULL || ire->ire_flags & RTF_MULTIRT) { 21528 if (ire != NULL) 21529 ire_refrele(ire); 21530 ip_newroute_ipif(q, first_mp, ipif, 21531 dst, connp, 0, zoneid, infop); 21532 ipif_refrele(ipif); 21533 ip1dbg(("ip_output: xmit_ill via %s\n", 21534 xmit_ill->ill_name)); 21535 ill_refrele(xmit_ill); 21536 if (need_decref) 21537 CONN_DEC_REF(connp); 21538 return; 21539 } 21540 ipif_refrele(ipif); 21541 } else if (ip_nexthop || (connp != NULL && 21542 (connp->conn_nexthop_set)) && !ignore_nexthop) { 21543 if (!ip_nexthop) { 21544 ip_nexthop = B_TRUE; 21545 nexthop_addr = connp->conn_nexthop_v4; 21546 } 21547 match_flags = MATCH_IRE_MARK_PRIVATE_ADDR | 21548 MATCH_IRE_GW; 21549 ire = ire_ctable_lookup(dst, nexthop_addr, 0, 21550 NULL, zoneid, msg_getlabel(mp), match_flags, ipst); 21551 } else { 21552 ire = ire_cache_lookup(dst, zoneid, msg_getlabel(mp), 21553 ipst); 21554 } 21555 if (!ire) { 21556 if (ip_nexthop && !ignore_nexthop) { 21557 if (mctl_present) { 21558 io = (ipsec_out_t *)first_mp->b_rptr; 21559 ASSERT(first_mp->b_datap->db_type == 21560 M_CTL); 21561 ASSERT(io->ipsec_out_type == IPSEC_OUT); 21562 } else { 21563 ASSERT(mp == first_mp); 21564 first_mp = allocb( 21565 sizeof (ipsec_info_t), BPRI_HI); 21566 if (first_mp == NULL) { 21567 first_mp = mp; 21568 goto discard_pkt; 21569 } 21570 first_mp->b_datap->db_type = M_CTL; 21571 first_mp->b_wptr += 21572 sizeof (ipsec_info_t); 21573 /* ipsec_out_secure is B_FALSE now */ 21574 bzero(first_mp->b_rptr, 21575 sizeof (ipsec_info_t)); 21576 io = (ipsec_out_t *)first_mp->b_rptr; 21577 io->ipsec_out_type = IPSEC_OUT; 21578 io->ipsec_out_len = 21579 sizeof (ipsec_out_t); 21580 io->ipsec_out_use_global_policy = 21581 B_TRUE; 21582 io->ipsec_out_ns = ipst->ips_netstack; 21583 first_mp->b_cont = mp; 21584 mctl_present = B_TRUE; 21585 } 21586 io->ipsec_out_ip_nexthop = ip_nexthop; 21587 io->ipsec_out_nexthop_addr = nexthop_addr; 21588 } 21589 noirefound: 21590 /* 21591 * Mark this packet as having originated on 21592 * this machine. This will be noted in 21593 * ire_add_then_send, which needs to know 21594 * whether to run it back through ip_wput or 21595 * ip_rput following successful resolution. 21596 */ 21597 mp->b_prev = NULL; 21598 mp->b_next = NULL; 21599 ip_newroute(q, first_mp, dst, connp, zoneid, ipst); 21600 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 21601 "ip_wput_end: q %p (%S)", q, "newroute"); 21602 if (xmit_ill != NULL) 21603 ill_refrele(xmit_ill); 21604 if (need_decref) 21605 CONN_DEC_REF(connp); 21606 return; 21607 } 21608 } 21609 21610 /* We now know where we are going with it. */ 21611 21612 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 21613 "ip_wput_end: q %p (%S)", q, "end"); 21614 21615 /* 21616 * Check if the ire has the RTF_MULTIRT flag, inherited 21617 * from an IRE_OFFSUBNET ire entry in ip_newroute. 21618 */ 21619 if (ire->ire_flags & RTF_MULTIRT) { 21620 /* 21621 * Force the TTL of multirouted packets if required. 21622 * The TTL of such packets is bounded by the 21623 * ip_multirt_ttl ndd variable. 21624 */ 21625 if ((ipst->ips_ip_multirt_ttl > 0) && 21626 (ipha->ipha_ttl > ipst->ips_ip_multirt_ttl)) { 21627 ip2dbg(("ip_wput: forcing multirt TTL to %d " 21628 "(was %d), dst 0x%08x\n", 21629 ipst->ips_ip_multirt_ttl, ipha->ipha_ttl, 21630 ntohl(ire->ire_addr))); 21631 ipha->ipha_ttl = ipst->ips_ip_multirt_ttl; 21632 } 21633 /* 21634 * At this point, we check to see if there are any pending 21635 * unresolved routes. ire_multirt_resolvable() 21636 * checks in O(n) that all IRE_OFFSUBNET ire 21637 * entries for the packet's destination and 21638 * flagged RTF_MULTIRT are currently resolved. 21639 * If some remain unresolved, we make a copy 21640 * of the current message. It will be used 21641 * to initiate additional route resolutions. 21642 */ 21643 multirt_need_resolve = ire_multirt_need_resolve(ire->ire_addr, 21644 msg_getlabel(first_mp), ipst); 21645 ip2dbg(("ip_wput[noirefound]: ire %p, " 21646 "multirt_need_resolve %d, first_mp %p\n", 21647 (void *)ire, multirt_need_resolve, (void *)first_mp)); 21648 if (multirt_need_resolve) { 21649 copy_mp = copymsg(first_mp); 21650 if (copy_mp != NULL) { 21651 MULTIRT_DEBUG_TAG(copy_mp); 21652 } 21653 } 21654 } 21655 21656 ip_wput_ire(q, first_mp, ire, connp, caller, zoneid); 21657 /* 21658 * Try to resolve another multiroute if 21659 * ire_multirt_resolvable() deemed it necessary. 21660 * At this point, we need to distinguish 21661 * multicasts from other packets. For multicasts, 21662 * we call ip_newroute_ipif() and request that both 21663 * multirouting and setsrc flags are checked. 21664 */ 21665 if (copy_mp != NULL) { 21666 if (CLASSD(dst)) { 21667 ipif_t *ipif = ipif_lookup_group(dst, zoneid, ipst); 21668 if (ipif) { 21669 ASSERT(infop->ip_opt_ill_index == 0); 21670 ip_newroute_ipif(q, copy_mp, ipif, dst, connp, 21671 RTF_SETSRC | RTF_MULTIRT, zoneid, infop); 21672 ipif_refrele(ipif); 21673 } else { 21674 MULTIRT_DEBUG_UNTAG(copy_mp); 21675 freemsg(copy_mp); 21676 copy_mp = NULL; 21677 } 21678 } else { 21679 ip_newroute(q, copy_mp, dst, connp, zoneid, ipst); 21680 } 21681 } 21682 if (xmit_ill != NULL) 21683 ill_refrele(xmit_ill); 21684 if (need_decref) 21685 CONN_DEC_REF(connp); 21686 return; 21687 21688 icmp_parameter_problem: 21689 /* could not have originated externally */ 21690 ASSERT(mp->b_prev == NULL); 21691 if (ip_hdr_complete(ipha, zoneid, ipst) == 0) { 21692 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutNoRoutes); 21693 /* it's the IP header length that's in trouble */ 21694 icmp_param_problem(q, first_mp, 0, zoneid, ipst); 21695 first_mp = NULL; 21696 } 21697 21698 discard_pkt: 21699 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 21700 drop_pkt: 21701 ip1dbg(("ip_wput: dropped packet\n")); 21702 if (ire != NULL) 21703 ire_refrele(ire); 21704 if (need_decref) 21705 CONN_DEC_REF(connp); 21706 freemsg(first_mp); 21707 if (xmit_ill != NULL) 21708 ill_refrele(xmit_ill); 21709 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 21710 "ip_wput_end: q %p (%S)", q, "droppkt"); 21711 } 21712 21713 /* 21714 * If this is a conn_t queue, then we pass in the conn. This includes the 21715 * zoneid. 21716 * Otherwise, this is a message coming back from ARP or for an ill_t queue, 21717 * in which case we use the global zoneid since those are all part of 21718 * the global zone. 21719 */ 21720 void 21721 ip_wput(queue_t *q, mblk_t *mp) 21722 { 21723 if (CONN_Q(q)) 21724 ip_output(Q_TO_CONN(q), mp, q, IP_WPUT); 21725 else 21726 ip_output(GLOBAL_ZONEID, mp, q, IP_WPUT); 21727 } 21728 21729 /* 21730 * 21731 * The following rules must be observed when accessing any ipif or ill 21732 * that has been cached in the conn. Typically conn_outgoing_ill, 21733 * conn_multicast_ipif and conn_multicast_ill. 21734 * 21735 * Access: The ipif or ill pointed to from the conn can be accessed under 21736 * the protection of the conn_lock or after it has been refheld under the 21737 * protection of the conn lock. In addition the IPIF_CAN_LOOKUP or 21738 * ILL_CAN_LOOKUP macros must be used before actually doing the refhold. 21739 * The reason for this is that a concurrent unplumb could actually be 21740 * cleaning up these cached pointers by walking the conns and might have 21741 * finished cleaning up the conn in question. The macros check that an 21742 * unplumb has not yet started on the ipif or ill. 21743 * 21744 * Caching: An ipif or ill pointer may be cached in the conn only after 21745 * making sure that an unplumb has not started. So the caching is done 21746 * while holding both the conn_lock and the ill_lock and after using the 21747 * ILL_CAN_LOOKUP/IPIF_CAN_LOOKUP macro. An unplumb will set the ILL_CONDEMNED 21748 * flag before starting the cleanup of conns. 21749 * 21750 * The list of ipifs hanging off the ill is protected by ill_g_lock and ill_lock 21751 * On the other hand to access ipif->ipif_ill, we need one of either ill_g_lock 21752 * or a reference to the ipif or a reference to an ire that references the 21753 * ipif. An ipif only changes its ill when migrating from an underlying ill 21754 * to an IPMP ill in ipif_up(). 21755 */ 21756 ipif_t * 21757 conn_get_held_ipif(conn_t *connp, ipif_t **ipifp, int *err) 21758 { 21759 ipif_t *ipif; 21760 ill_t *ill; 21761 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 21762 21763 *err = 0; 21764 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 21765 mutex_enter(&connp->conn_lock); 21766 ipif = *ipifp; 21767 if (ipif != NULL) { 21768 ill = ipif->ipif_ill; 21769 mutex_enter(&ill->ill_lock); 21770 if (IPIF_CAN_LOOKUP(ipif)) { 21771 ipif_refhold_locked(ipif); 21772 mutex_exit(&ill->ill_lock); 21773 mutex_exit(&connp->conn_lock); 21774 rw_exit(&ipst->ips_ill_g_lock); 21775 return (ipif); 21776 } else { 21777 *err = IPIF_LOOKUP_FAILED; 21778 } 21779 mutex_exit(&ill->ill_lock); 21780 } 21781 mutex_exit(&connp->conn_lock); 21782 rw_exit(&ipst->ips_ill_g_lock); 21783 return (NULL); 21784 } 21785 21786 ill_t * 21787 conn_get_held_ill(conn_t *connp, ill_t **illp, int *err) 21788 { 21789 ill_t *ill; 21790 21791 *err = 0; 21792 mutex_enter(&connp->conn_lock); 21793 ill = *illp; 21794 if (ill != NULL) { 21795 mutex_enter(&ill->ill_lock); 21796 if (ILL_CAN_LOOKUP(ill)) { 21797 ill_refhold_locked(ill); 21798 mutex_exit(&ill->ill_lock); 21799 mutex_exit(&connp->conn_lock); 21800 return (ill); 21801 } else { 21802 *err = ILL_LOOKUP_FAILED; 21803 } 21804 mutex_exit(&ill->ill_lock); 21805 } 21806 mutex_exit(&connp->conn_lock); 21807 return (NULL); 21808 } 21809 21810 static int 21811 conn_set_held_ipif(conn_t *connp, ipif_t **ipifp, ipif_t *ipif) 21812 { 21813 ill_t *ill; 21814 21815 ill = ipif->ipif_ill; 21816 mutex_enter(&connp->conn_lock); 21817 mutex_enter(&ill->ill_lock); 21818 if (IPIF_CAN_LOOKUP(ipif)) { 21819 *ipifp = ipif; 21820 mutex_exit(&ill->ill_lock); 21821 mutex_exit(&connp->conn_lock); 21822 return (0); 21823 } 21824 mutex_exit(&ill->ill_lock); 21825 mutex_exit(&connp->conn_lock); 21826 return (IPIF_LOOKUP_FAILED); 21827 } 21828 21829 /* 21830 * This is called if the outbound datagram needs fragmentation. 21831 * 21832 * NOTE : This function does not ire_refrele the ire argument passed in. 21833 */ 21834 static void 21835 ip_wput_ire_fragmentit(mblk_t *ipsec_mp, ire_t *ire, zoneid_t zoneid, 21836 ip_stack_t *ipst, conn_t *connp) 21837 { 21838 ipha_t *ipha; 21839 mblk_t *mp; 21840 uint32_t v_hlen_tos_len; 21841 uint32_t max_frag; 21842 uint32_t frag_flag; 21843 boolean_t dont_use; 21844 21845 if (ipsec_mp->b_datap->db_type == M_CTL) { 21846 mp = ipsec_mp->b_cont; 21847 } else { 21848 mp = ipsec_mp; 21849 } 21850 21851 ipha = (ipha_t *)mp->b_rptr; 21852 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 21853 21854 #ifdef _BIG_ENDIAN 21855 #define V_HLEN (v_hlen_tos_len >> 24) 21856 #define LENGTH (v_hlen_tos_len & 0xFFFF) 21857 #else 21858 #define V_HLEN (v_hlen_tos_len & 0xFF) 21859 #define LENGTH ((v_hlen_tos_len >> 24) | ((v_hlen_tos_len >> 8) & 0xFF00)) 21860 #endif 21861 21862 #ifndef SPEED_BEFORE_SAFETY 21863 /* 21864 * Check that ipha_length is consistent with 21865 * the mblk length 21866 */ 21867 if (LENGTH != (mp->b_cont ? msgdsize(mp) : mp->b_wptr - rptr)) { 21868 ip0dbg(("Packet length mismatch: %d, %ld\n", 21869 LENGTH, msgdsize(mp))); 21870 freemsg(ipsec_mp); 21871 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 21872 "ip_wput_ire_fragmentit: mp %p (%S)", mp, 21873 "packet length mismatch"); 21874 return; 21875 } 21876 #endif 21877 /* 21878 * Don't use frag_flag if pre-built packet or source 21879 * routed or if multicast (since multicast packets do not solicit 21880 * ICMP "packet too big" messages). Get the values of 21881 * max_frag and frag_flag atomically by acquiring the 21882 * ire_lock. 21883 */ 21884 mutex_enter(&ire->ire_lock); 21885 max_frag = ire->ire_max_frag; 21886 frag_flag = ire->ire_frag_flag; 21887 mutex_exit(&ire->ire_lock); 21888 21889 dont_use = ((ipha->ipha_ident == IP_HDR_INCLUDED) || 21890 (V_HLEN != IP_SIMPLE_HDR_VERSION && 21891 ip_source_route_included(ipha)) || CLASSD(ipha->ipha_dst)); 21892 21893 ip_wput_frag(ire, ipsec_mp, OB_PKT, max_frag, 21894 (dont_use ? 0 : frag_flag), zoneid, ipst, connp); 21895 } 21896 21897 /* 21898 * Used for deciding the MSS size for the upper layer. Thus 21899 * we need to check the outbound policy values in the conn. 21900 */ 21901 int 21902 conn_ipsec_length(conn_t *connp) 21903 { 21904 ipsec_latch_t *ipl; 21905 21906 ipl = connp->conn_latch; 21907 if (ipl == NULL) 21908 return (0); 21909 21910 if (ipl->ipl_out_policy == NULL) 21911 return (0); 21912 21913 return (ipl->ipl_out_policy->ipsp_act->ipa_ovhd); 21914 } 21915 21916 /* 21917 * Returns an estimate of the IPsec headers size. This is used if 21918 * we don't want to call into IPsec to get the exact size. 21919 */ 21920 int 21921 ipsec_out_extra_length(mblk_t *ipsec_mp) 21922 { 21923 ipsec_out_t *io = (ipsec_out_t *)ipsec_mp->b_rptr; 21924 ipsec_action_t *a; 21925 21926 ASSERT(io->ipsec_out_type == IPSEC_OUT); 21927 if (!io->ipsec_out_secure) 21928 return (0); 21929 21930 a = io->ipsec_out_act; 21931 21932 if (a == NULL) { 21933 ASSERT(io->ipsec_out_policy != NULL); 21934 a = io->ipsec_out_policy->ipsp_act; 21935 } 21936 ASSERT(a != NULL); 21937 21938 return (a->ipa_ovhd); 21939 } 21940 21941 /* 21942 * Returns an estimate of the IPsec headers size. This is used if 21943 * we don't want to call into IPsec to get the exact size. 21944 */ 21945 int 21946 ipsec_in_extra_length(mblk_t *ipsec_mp) 21947 { 21948 ipsec_in_t *ii = (ipsec_in_t *)ipsec_mp->b_rptr; 21949 ipsec_action_t *a; 21950 21951 ASSERT(ii->ipsec_in_type == IPSEC_IN); 21952 21953 a = ii->ipsec_in_action; 21954 return (a == NULL ? 0 : a->ipa_ovhd); 21955 } 21956 21957 /* 21958 * If there are any source route options, return the true final 21959 * destination. Otherwise, return the destination. 21960 */ 21961 ipaddr_t 21962 ip_get_dst(ipha_t *ipha) 21963 { 21964 ipoptp_t opts; 21965 uchar_t *opt; 21966 uint8_t optval; 21967 uint8_t optlen; 21968 ipaddr_t dst; 21969 uint32_t off; 21970 21971 dst = ipha->ipha_dst; 21972 21973 if (IS_SIMPLE_IPH(ipha)) 21974 return (dst); 21975 21976 for (optval = ipoptp_first(&opts, ipha); 21977 optval != IPOPT_EOL; 21978 optval = ipoptp_next(&opts)) { 21979 opt = opts.ipoptp_cur; 21980 optlen = opts.ipoptp_len; 21981 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 21982 switch (optval) { 21983 case IPOPT_SSRR: 21984 case IPOPT_LSRR: 21985 off = opt[IPOPT_OFFSET]; 21986 /* 21987 * If one of the conditions is true, it means 21988 * end of options and dst already has the right 21989 * value. 21990 */ 21991 if (!(optlen < IP_ADDR_LEN || off > optlen - 3)) { 21992 off = optlen - IP_ADDR_LEN; 21993 bcopy(&opt[off], &dst, IP_ADDR_LEN); 21994 } 21995 return (dst); 21996 default: 21997 break; 21998 } 21999 } 22000 22001 return (dst); 22002 } 22003 22004 mblk_t * 22005 ip_wput_ire_parse_ipsec_out(mblk_t *mp, ipha_t *ipha, ip6_t *ip6h, ire_t *ire, 22006 conn_t *connp, boolean_t unspec_src, zoneid_t zoneid) 22007 { 22008 ipsec_out_t *io; 22009 mblk_t *first_mp; 22010 boolean_t policy_present; 22011 ip_stack_t *ipst; 22012 ipsec_stack_t *ipss; 22013 22014 ASSERT(ire != NULL); 22015 ipst = ire->ire_ipst; 22016 ipss = ipst->ips_netstack->netstack_ipsec; 22017 22018 first_mp = mp; 22019 if (mp->b_datap->db_type == M_CTL) { 22020 io = (ipsec_out_t *)first_mp->b_rptr; 22021 /* 22022 * ip_wput[_v6] attaches an IPSEC_OUT in two cases. 22023 * 22024 * 1) There is per-socket policy (including cached global 22025 * policy) or a policy on the IP-in-IP tunnel. 22026 * 2) There is no per-socket policy, but it is 22027 * a multicast packet that needs to go out 22028 * on a specific interface. This is the case 22029 * where (ip_wput and ip_wput_multicast) attaches 22030 * an IPSEC_OUT and sets ipsec_out_secure B_FALSE. 22031 * 22032 * In case (2) we check with global policy to 22033 * see if there is a match and set the ill_index 22034 * appropriately so that we can lookup the ire 22035 * properly in ip_wput_ipsec_out. 22036 */ 22037 22038 /* 22039 * ipsec_out_use_global_policy is set to B_FALSE 22040 * in ipsec_in_to_out(). Refer to that function for 22041 * details. 22042 */ 22043 if ((io->ipsec_out_latch == NULL) && 22044 (io->ipsec_out_use_global_policy)) { 22045 return (ip_wput_attach_policy(first_mp, ipha, ip6h, 22046 ire, connp, unspec_src, zoneid)); 22047 } 22048 if (!io->ipsec_out_secure) { 22049 /* 22050 * If this is not a secure packet, drop 22051 * the IPSEC_OUT mp and treat it as a clear 22052 * packet. This happens when we are sending 22053 * a ICMP reply back to a clear packet. See 22054 * ipsec_in_to_out() for details. 22055 */ 22056 mp = first_mp->b_cont; 22057 freeb(first_mp); 22058 } 22059 return (mp); 22060 } 22061 /* 22062 * See whether we need to attach a global policy here. We 22063 * don't depend on the conn (as it could be null) for deciding 22064 * what policy this datagram should go through because it 22065 * should have happened in ip_wput if there was some 22066 * policy. This normally happens for connections which are not 22067 * fully bound preventing us from caching policies in 22068 * ip_bind. Packets coming from the TCP listener/global queue 22069 * - which are non-hard_bound - could also be affected by 22070 * applying policy here. 22071 * 22072 * If this packet is coming from tcp global queue or listener, 22073 * we will be applying policy here. This may not be *right* 22074 * if these packets are coming from the detached connection as 22075 * it could have gone in clear before. This happens only if a 22076 * TCP connection started when there is no policy and somebody 22077 * added policy before it became detached. Thus packets of the 22078 * detached connection could go out secure and the other end 22079 * would drop it because it will be expecting in clear. The 22080 * converse is not true i.e if somebody starts a TCP 22081 * connection and deletes the policy, all the packets will 22082 * still go out with the policy that existed before deleting 22083 * because ip_unbind sends up policy information which is used 22084 * by TCP on subsequent ip_wputs. The right solution is to fix 22085 * TCP to attach a dummy IPSEC_OUT and set 22086 * ipsec_out_use_global_policy to B_FALSE. As this might 22087 * affect performance for normal cases, we are not doing it. 22088 * Thus, set policy before starting any TCP connections. 22089 * 22090 * NOTE - We might apply policy even for a hard bound connection 22091 * - for which we cached policy in ip_bind - if somebody added 22092 * global policy after we inherited the policy in ip_bind. 22093 * This means that the packets that were going out in clear 22094 * previously would start going secure and hence get dropped 22095 * on the other side. To fix this, TCP attaches a dummy 22096 * ipsec_out and make sure that we don't apply global policy. 22097 */ 22098 if (ipha != NULL) 22099 policy_present = ipss->ipsec_outbound_v4_policy_present; 22100 else 22101 policy_present = ipss->ipsec_outbound_v6_policy_present; 22102 if (!policy_present) 22103 return (mp); 22104 22105 return (ip_wput_attach_policy(mp, ipha, ip6h, ire, connp, unspec_src, 22106 zoneid)); 22107 } 22108 22109 /* 22110 * This function does the ire_refrele of the ire passed in as the 22111 * argument. As this function looks up more ires i.e broadcast ires, 22112 * it needs to REFRELE them. Currently, for simplicity we don't 22113 * differentiate the one passed in and looked up here. We always 22114 * REFRELE. 22115 * IPQoS Notes: 22116 * IP policy is invoked if IPP_LOCAL_OUT is enabled. Processing for 22117 * IPsec packets are done in ipsec_out_process. 22118 */ 22119 void 22120 ip_wput_ire(queue_t *q, mblk_t *mp, ire_t *ire, conn_t *connp, int caller, 22121 zoneid_t zoneid) 22122 { 22123 ipha_t *ipha; 22124 #define rptr ((uchar_t *)ipha) 22125 queue_t *stq; 22126 #define Q_TO_INDEX(stq) (((ill_t *)stq->q_ptr)->ill_phyint->phyint_ifindex) 22127 uint32_t v_hlen_tos_len; 22128 uint32_t ttl_protocol; 22129 ipaddr_t src; 22130 ipaddr_t dst; 22131 uint32_t cksum; 22132 ipaddr_t orig_src; 22133 ire_t *ire1; 22134 mblk_t *next_mp; 22135 uint_t hlen; 22136 uint16_t *up; 22137 uint32_t max_frag = ire->ire_max_frag; 22138 ill_t *ill = ire_to_ill(ire); 22139 int clusterwide; 22140 uint16_t ip_hdr_included; /* IP header included by ULP? */ 22141 int ipsec_len; 22142 mblk_t *first_mp; 22143 ipsec_out_t *io; 22144 boolean_t conn_dontroute; /* conn value for multicast */ 22145 boolean_t conn_multicast_loop; /* conn value for multicast */ 22146 boolean_t multicast_forward; /* Should we forward ? */ 22147 boolean_t unspec_src; 22148 ill_t *conn_outgoing_ill = NULL; 22149 ill_t *ire_ill; 22150 ill_t *ire1_ill; 22151 ill_t *out_ill; 22152 uint32_t ill_index = 0; 22153 boolean_t multirt_send = B_FALSE; 22154 int err; 22155 ipxmit_state_t pktxmit_state; 22156 ip_stack_t *ipst = ire->ire_ipst; 22157 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 22158 22159 TRACE_1(TR_FAC_IP, TR_IP_WPUT_IRE_START, 22160 "ip_wput_ire_start: q %p", q); 22161 22162 multicast_forward = B_FALSE; 22163 unspec_src = (connp != NULL && connp->conn_unspec_src); 22164 22165 if (ire->ire_flags & RTF_MULTIRT) { 22166 /* 22167 * Multirouting case. The bucket where ire is stored 22168 * probably holds other RTF_MULTIRT flagged ire 22169 * to the destination. In this call to ip_wput_ire, 22170 * we attempt to send the packet through all 22171 * those ires. Thus, we first ensure that ire is the 22172 * first RTF_MULTIRT ire in the bucket, 22173 * before walking the ire list. 22174 */ 22175 ire_t *first_ire; 22176 irb_t *irb = ire->ire_bucket; 22177 ASSERT(irb != NULL); 22178 22179 /* Make sure we do not omit any multiroute ire. */ 22180 IRB_REFHOLD(irb); 22181 for (first_ire = irb->irb_ire; 22182 first_ire != NULL; 22183 first_ire = first_ire->ire_next) { 22184 if ((first_ire->ire_flags & RTF_MULTIRT) && 22185 (first_ire->ire_addr == ire->ire_addr) && 22186 !(first_ire->ire_marks & 22187 (IRE_MARK_CONDEMNED | IRE_MARK_TESTHIDDEN))) 22188 break; 22189 } 22190 22191 if ((first_ire != NULL) && (first_ire != ire)) { 22192 IRE_REFHOLD(first_ire); 22193 ire_refrele(ire); 22194 ire = first_ire; 22195 ill = ire_to_ill(ire); 22196 } 22197 IRB_REFRELE(irb); 22198 } 22199 22200 /* 22201 * conn_outgoing_ill variable is used only in the broadcast loop. 22202 * for performance we don't grab the mutexs in the fastpath 22203 */ 22204 if (ire->ire_type == IRE_BROADCAST && connp != NULL && 22205 connp->conn_outgoing_ill != NULL) { 22206 conn_outgoing_ill = conn_get_held_ill(connp, 22207 &connp->conn_outgoing_ill, &err); 22208 if (err == ILL_LOOKUP_FAILED) { 22209 ire_refrele(ire); 22210 freemsg(mp); 22211 return; 22212 } 22213 } 22214 22215 if (mp->b_datap->db_type != M_CTL) { 22216 ipha = (ipha_t *)mp->b_rptr; 22217 } else { 22218 io = (ipsec_out_t *)mp->b_rptr; 22219 ASSERT(io->ipsec_out_type == IPSEC_OUT); 22220 ASSERT(zoneid == io->ipsec_out_zoneid); 22221 ASSERT(zoneid != ALL_ZONES); 22222 ipha = (ipha_t *)mp->b_cont->b_rptr; 22223 dst = ipha->ipha_dst; 22224 /* 22225 * For the multicast case, ipsec_out carries conn_dontroute and 22226 * conn_multicast_loop as conn may not be available here. We 22227 * need this for multicast loopback and forwarding which is done 22228 * later in the code. 22229 */ 22230 if (CLASSD(dst)) { 22231 conn_dontroute = io->ipsec_out_dontroute; 22232 conn_multicast_loop = io->ipsec_out_multicast_loop; 22233 /* 22234 * If conn_dontroute is not set or conn_multicast_loop 22235 * is set, we need to do forwarding/loopback. For 22236 * datagrams from ip_wput_multicast, conn_dontroute is 22237 * set to B_TRUE and conn_multicast_loop is set to 22238 * B_FALSE so that we neither do forwarding nor 22239 * loopback. 22240 */ 22241 if (!conn_dontroute || conn_multicast_loop) 22242 multicast_forward = B_TRUE; 22243 } 22244 } 22245 22246 if (ire->ire_type == IRE_LOCAL && ire->ire_zoneid != zoneid && 22247 ire->ire_zoneid != ALL_ZONES) { 22248 /* 22249 * When a zone sends a packet to another zone, we try to deliver 22250 * the packet under the same conditions as if the destination 22251 * was a real node on the network. To do so, we look for a 22252 * matching route in the forwarding table. 22253 * RTF_REJECT and RTF_BLACKHOLE are handled just like 22254 * ip_newroute() does. 22255 * Note that IRE_LOCAL are special, since they are used 22256 * when the zoneid doesn't match in some cases. This means that 22257 * we need to handle ipha_src differently since ire_src_addr 22258 * belongs to the receiving zone instead of the sending zone. 22259 * When ip_restrict_interzone_loopback is set, then 22260 * ire_cache_lookup() ensures that IRE_LOCAL are only used 22261 * for loopback between zones when the logical "Ethernet" would 22262 * have looped them back. 22263 */ 22264 ire_t *src_ire; 22265 22266 src_ire = ire_ftable_lookup(ipha->ipha_dst, 0, 0, 0, 22267 NULL, NULL, zoneid, 0, NULL, (MATCH_IRE_RECURSIVE | 22268 MATCH_IRE_DEFAULT | MATCH_IRE_RJ_BHOLE), ipst); 22269 if (src_ire != NULL && 22270 !(src_ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) && 22271 (!ipst->ips_ip_restrict_interzone_loopback || 22272 ire_local_same_lan(ire, src_ire))) { 22273 if (ipha->ipha_src == INADDR_ANY && !unspec_src) 22274 ipha->ipha_src = src_ire->ire_src_addr; 22275 ire_refrele(src_ire); 22276 } else { 22277 ire_refrele(ire); 22278 if (conn_outgoing_ill != NULL) 22279 ill_refrele(conn_outgoing_ill); 22280 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutNoRoutes); 22281 if (src_ire != NULL) { 22282 if (src_ire->ire_flags & RTF_BLACKHOLE) { 22283 ire_refrele(src_ire); 22284 freemsg(mp); 22285 return; 22286 } 22287 ire_refrele(src_ire); 22288 } 22289 if (ip_hdr_complete(ipha, zoneid, ipst)) { 22290 /* Failed */ 22291 freemsg(mp); 22292 return; 22293 } 22294 icmp_unreachable(q, mp, ICMP_HOST_UNREACHABLE, zoneid, 22295 ipst); 22296 return; 22297 } 22298 } 22299 22300 if (mp->b_datap->db_type == M_CTL || 22301 ipss->ipsec_outbound_v4_policy_present) { 22302 mp = ip_wput_ire_parse_ipsec_out(mp, ipha, NULL, ire, connp, 22303 unspec_src, zoneid); 22304 if (mp == NULL) { 22305 ire_refrele(ire); 22306 if (conn_outgoing_ill != NULL) 22307 ill_refrele(conn_outgoing_ill); 22308 return; 22309 } 22310 /* 22311 * Trusted Extensions supports all-zones interfaces, so 22312 * zoneid == ALL_ZONES is valid, but IPsec maps ALL_ZONES to 22313 * the global zone. 22314 */ 22315 if (zoneid == ALL_ZONES && mp->b_datap->db_type == M_CTL) { 22316 io = (ipsec_out_t *)mp->b_rptr; 22317 ASSERT(io->ipsec_out_type == IPSEC_OUT); 22318 zoneid = io->ipsec_out_zoneid; 22319 } 22320 } 22321 22322 first_mp = mp; 22323 ipsec_len = 0; 22324 22325 if (first_mp->b_datap->db_type == M_CTL) { 22326 io = (ipsec_out_t *)first_mp->b_rptr; 22327 ASSERT(io->ipsec_out_type == IPSEC_OUT); 22328 mp = first_mp->b_cont; 22329 ipsec_len = ipsec_out_extra_length(first_mp); 22330 ASSERT(ipsec_len >= 0); 22331 /* We already picked up the zoneid from the M_CTL above */ 22332 ASSERT(zoneid == io->ipsec_out_zoneid); 22333 ASSERT(zoneid != ALL_ZONES); 22334 22335 /* 22336 * Drop M_CTL here if IPsec processing is not needed. 22337 * (Non-IPsec use of M_CTL extracted any information it 22338 * needed above). 22339 */ 22340 if (ipsec_len == 0) { 22341 freeb(first_mp); 22342 first_mp = mp; 22343 } 22344 } 22345 22346 /* 22347 * Fast path for ip_wput_ire 22348 */ 22349 22350 ipha = (ipha_t *)mp->b_rptr; 22351 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 22352 dst = ipha->ipha_dst; 22353 22354 /* 22355 * ICMP(RAWIP) module should set the ipha_ident to IP_HDR_INCLUDED 22356 * if the socket is a SOCK_RAW type. The transport checksum should 22357 * be provided in the pre-built packet, so we don't need to compute it. 22358 * Also, other application set flags, like DF, should not be altered. 22359 * Other transport MUST pass down zero. 22360 */ 22361 ip_hdr_included = ipha->ipha_ident; 22362 ASSERT(ipha->ipha_ident == 0 || ipha->ipha_ident == IP_HDR_INCLUDED); 22363 22364 if (CLASSD(dst)) { 22365 ip1dbg(("ip_wput_ire: to 0x%x ire %s addr 0x%x\n", 22366 ntohl(dst), 22367 ip_nv_lookup(ire_nv_tbl, ire->ire_type), 22368 ntohl(ire->ire_addr))); 22369 } 22370 22371 /* Macros to extract header fields from data already in registers */ 22372 #ifdef _BIG_ENDIAN 22373 #define V_HLEN (v_hlen_tos_len >> 24) 22374 #define LENGTH (v_hlen_tos_len & 0xFFFF) 22375 #define PROTO (ttl_protocol & 0xFF) 22376 #else 22377 #define V_HLEN (v_hlen_tos_len & 0xFF) 22378 #define LENGTH ((v_hlen_tos_len >> 24) | ((v_hlen_tos_len >> 8) & 0xFF00)) 22379 #define PROTO (ttl_protocol >> 8) 22380 #endif 22381 22382 orig_src = src = ipha->ipha_src; 22383 /* (The loop back to "another" is explained down below.) */ 22384 another:; 22385 /* 22386 * Assign an ident value for this packet. We assign idents on 22387 * a per destination basis out of the IRE. There could be 22388 * other threads targeting the same destination, so we have to 22389 * arrange for a atomic increment. Note that we use a 32-bit 22390 * atomic add because it has better performance than its 22391 * 16-bit sibling. 22392 * 22393 * If running in cluster mode and if the source address 22394 * belongs to a replicated service then vector through 22395 * cl_inet_ipident vector to allocate ip identifier 22396 * NOTE: This is a contract private interface with the 22397 * clustering group. 22398 */ 22399 clusterwide = 0; 22400 if (cl_inet_ipident) { 22401 ASSERT(cl_inet_isclusterwide); 22402 netstackid_t stack_id = ipst->ips_netstack->netstack_stackid; 22403 22404 if ((*cl_inet_isclusterwide)(stack_id, IPPROTO_IP, 22405 AF_INET, (uint8_t *)(uintptr_t)src, NULL)) { 22406 ipha->ipha_ident = (*cl_inet_ipident)(stack_id, 22407 IPPROTO_IP, AF_INET, (uint8_t *)(uintptr_t)src, 22408 (uint8_t *)(uintptr_t)dst, NULL); 22409 clusterwide = 1; 22410 } 22411 } 22412 if (!clusterwide) { 22413 ipha->ipha_ident = 22414 (uint16_t)atomic_add_32_nv(&ire->ire_ident, 1); 22415 } 22416 22417 #ifndef _BIG_ENDIAN 22418 ipha->ipha_ident = (ipha->ipha_ident << 8) | (ipha->ipha_ident >> 8); 22419 #endif 22420 22421 /* 22422 * Set source address unless sent on an ill or conn_unspec_src is set. 22423 * This is needed to obey conn_unspec_src when packets go through 22424 * ip_newroute + arp. 22425 * Assumes ip_newroute{,_multi} sets the source address as well. 22426 */ 22427 if (src == INADDR_ANY && !unspec_src) { 22428 /* 22429 * Assign the appropriate source address from the IRE if none 22430 * was specified. 22431 */ 22432 ASSERT(ire->ire_ipversion == IPV4_VERSION); 22433 22434 src = ire->ire_src_addr; 22435 if (connp == NULL) { 22436 ip1dbg(("ip_wput_ire: no connp and no src " 22437 "address for dst 0x%x, using src 0x%x\n", 22438 ntohl(dst), 22439 ntohl(src))); 22440 } 22441 ipha->ipha_src = src; 22442 } 22443 stq = ire->ire_stq; 22444 22445 /* 22446 * We only allow ire chains for broadcasts since there will 22447 * be multiple IRE_CACHE entries for the same multicast 22448 * address (one per ipif). 22449 */ 22450 next_mp = NULL; 22451 22452 /* broadcast packet */ 22453 if (ire->ire_type == IRE_BROADCAST) 22454 goto broadcast; 22455 22456 /* loopback ? */ 22457 if (stq == NULL) 22458 goto nullstq; 22459 22460 /* The ill_index for outbound ILL */ 22461 ill_index = Q_TO_INDEX(stq); 22462 22463 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutRequests); 22464 ttl_protocol = ((uint16_t *)ipha)[4]; 22465 22466 /* pseudo checksum (do it in parts for IP header checksum) */ 22467 cksum = (dst >> 16) + (dst & 0xFFFF) + (src >> 16) + (src & 0xFFFF); 22468 22469 if (!IP_FLOW_CONTROLLED_ULP(PROTO)) { 22470 queue_t *dev_q = stq->q_next; 22471 22472 /* 22473 * For DIRECT_CAPABLE, we do flow control at 22474 * the time of sending the packet. See 22475 * ILL_SEND_TX(). 22476 */ 22477 if (!ILL_DIRECT_CAPABLE((ill_t *)stq->q_ptr) && 22478 (DEV_Q_FLOW_BLOCKED(dev_q))) 22479 goto blocked; 22480 22481 if ((PROTO == IPPROTO_UDP) && 22482 (ip_hdr_included != IP_HDR_INCLUDED)) { 22483 hlen = (V_HLEN & 0xF) << 2; 22484 up = IPH_UDPH_CHECKSUMP(ipha, hlen); 22485 if (*up != 0) { 22486 IP_CKSUM_XMIT(ill, ire, mp, ipha, up, PROTO, 22487 hlen, LENGTH, max_frag, ipsec_len, cksum); 22488 /* Software checksum? */ 22489 if (DB_CKSUMFLAGS(mp) == 0) { 22490 IP_STAT(ipst, ip_out_sw_cksum); 22491 IP_STAT_UPDATE(ipst, 22492 ip_udp_out_sw_cksum_bytes, 22493 LENGTH - hlen); 22494 } 22495 } 22496 } 22497 } else if (ip_hdr_included != IP_HDR_INCLUDED) { 22498 hlen = (V_HLEN & 0xF) << 2; 22499 if (PROTO == IPPROTO_TCP) { 22500 up = IPH_TCPH_CHECKSUMP(ipha, hlen); 22501 /* 22502 * The packet header is processed once and for all, even 22503 * in the multirouting case. We disable hardware 22504 * checksum if the packet is multirouted, as it will be 22505 * replicated via several interfaces, and not all of 22506 * them may have this capability. 22507 */ 22508 IP_CKSUM_XMIT(ill, ire, mp, ipha, up, PROTO, hlen, 22509 LENGTH, max_frag, ipsec_len, cksum); 22510 /* Software checksum? */ 22511 if (DB_CKSUMFLAGS(mp) == 0) { 22512 IP_STAT(ipst, ip_out_sw_cksum); 22513 IP_STAT_UPDATE(ipst, ip_tcp_out_sw_cksum_bytes, 22514 LENGTH - hlen); 22515 } 22516 } else { 22517 sctp_hdr_t *sctph; 22518 22519 ASSERT(PROTO == IPPROTO_SCTP); 22520 ASSERT(MBLKL(mp) >= (hlen + sizeof (*sctph))); 22521 sctph = (sctp_hdr_t *)(mp->b_rptr + hlen); 22522 /* 22523 * Zero out the checksum field to ensure proper 22524 * checksum calculation. 22525 */ 22526 sctph->sh_chksum = 0; 22527 #ifdef DEBUG 22528 if (!skip_sctp_cksum) 22529 #endif 22530 sctph->sh_chksum = sctp_cksum(mp, hlen); 22531 } 22532 } 22533 22534 /* 22535 * If this is a multicast packet and originated from ip_wput 22536 * we need to do loopback and forwarding checks. If it comes 22537 * from ip_wput_multicast, we SHOULD not do this. 22538 */ 22539 if (CLASSD(ipha->ipha_dst) && multicast_forward) goto multi_loopback; 22540 22541 /* checksum */ 22542 cksum += ttl_protocol; 22543 22544 /* fragment the packet */ 22545 if (max_frag < (uint_t)(LENGTH + ipsec_len)) 22546 goto fragmentit; 22547 /* 22548 * Don't use frag_flag if packet is pre-built or source 22549 * routed or if multicast (since multicast packets do 22550 * not solicit ICMP "packet too big" messages). 22551 */ 22552 if ((ip_hdr_included != IP_HDR_INCLUDED) && 22553 (V_HLEN == IP_SIMPLE_HDR_VERSION || 22554 !ip_source_route_included(ipha)) && 22555 !CLASSD(ipha->ipha_dst)) 22556 ipha->ipha_fragment_offset_and_flags |= 22557 htons(ire->ire_frag_flag); 22558 22559 if (!(DB_CKSUMFLAGS(mp) & HCK_IPV4_HDRCKSUM)) { 22560 /* calculate IP header checksum */ 22561 cksum += ipha->ipha_ident; 22562 cksum += (v_hlen_tos_len >> 16)+(v_hlen_tos_len & 0xFFFF); 22563 cksum += ipha->ipha_fragment_offset_and_flags; 22564 22565 /* IP options present */ 22566 hlen = (V_HLEN & 0xF) - IP_SIMPLE_HDR_LENGTH_IN_WORDS; 22567 if (hlen) 22568 goto checksumoptions; 22569 22570 /* calculate hdr checksum */ 22571 cksum = ((cksum & 0xFFFF) + (cksum >> 16)); 22572 cksum = ~(cksum + (cksum >> 16)); 22573 ipha->ipha_hdr_checksum = (uint16_t)cksum; 22574 } 22575 if (ipsec_len != 0) { 22576 /* 22577 * We will do the rest of the processing after 22578 * we come back from IPsec in ip_wput_ipsec_out(). 22579 */ 22580 ASSERT(MBLKL(first_mp) >= sizeof (ipsec_out_t)); 22581 22582 io = (ipsec_out_t *)first_mp->b_rptr; 22583 io->ipsec_out_ill_index = 22584 ire->ire_ipif->ipif_ill->ill_phyint->phyint_ifindex; 22585 ipsec_out_process(q, first_mp, ire, 0); 22586 ire_refrele(ire); 22587 if (conn_outgoing_ill != NULL) 22588 ill_refrele(conn_outgoing_ill); 22589 return; 22590 } 22591 22592 /* 22593 * In most cases, the emission loop below is entered only 22594 * once. Only in the case where the ire holds the 22595 * RTF_MULTIRT flag, do we loop to process all RTF_MULTIRT 22596 * flagged ires in the bucket, and send the packet 22597 * through all crossed RTF_MULTIRT routes. 22598 */ 22599 if (ire->ire_flags & RTF_MULTIRT) { 22600 multirt_send = B_TRUE; 22601 } 22602 do { 22603 if (multirt_send) { 22604 irb_t *irb; 22605 /* 22606 * We are in a multiple send case, need to get 22607 * the next ire and make a duplicate of the packet. 22608 * ire1 holds here the next ire to process in the 22609 * bucket. If multirouting is expected, 22610 * any non-RTF_MULTIRT ire that has the 22611 * right destination address is ignored. 22612 */ 22613 irb = ire->ire_bucket; 22614 ASSERT(irb != NULL); 22615 22616 IRB_REFHOLD(irb); 22617 for (ire1 = ire->ire_next; 22618 ire1 != NULL; 22619 ire1 = ire1->ire_next) { 22620 if ((ire1->ire_flags & RTF_MULTIRT) == 0) 22621 continue; 22622 if (ire1->ire_addr != ire->ire_addr) 22623 continue; 22624 if (ire1->ire_marks & 22625 (IRE_MARK_CONDEMNED | IRE_MARK_TESTHIDDEN)) 22626 continue; 22627 22628 /* Got one */ 22629 IRE_REFHOLD(ire1); 22630 break; 22631 } 22632 IRB_REFRELE(irb); 22633 22634 if (ire1 != NULL) { 22635 next_mp = copyb(mp); 22636 if ((next_mp == NULL) || 22637 ((mp->b_cont != NULL) && 22638 ((next_mp->b_cont = 22639 dupmsg(mp->b_cont)) == NULL))) { 22640 freemsg(next_mp); 22641 next_mp = NULL; 22642 ire_refrele(ire1); 22643 ire1 = NULL; 22644 } 22645 } 22646 22647 /* Last multiroute ire; don't loop anymore. */ 22648 if (ire1 == NULL) { 22649 multirt_send = B_FALSE; 22650 } 22651 } 22652 22653 DTRACE_PROBE4(ip4__physical__out__start, ill_t *, NULL, 22654 ill_t *, ire->ire_ipif->ipif_ill, ipha_t *, ipha, 22655 mblk_t *, mp); 22656 FW_HOOKS(ipst->ips_ip4_physical_out_event, 22657 ipst->ips_ipv4firewall_physical_out, 22658 NULL, ire->ire_ipif->ipif_ill, ipha, mp, mp, 0, ipst); 22659 DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, mp); 22660 22661 if (mp == NULL) 22662 goto release_ire_and_ill; 22663 22664 if (ipst->ips_ipobs_enabled) { 22665 zoneid_t szone; 22666 22667 /* 22668 * On the outbound path the destination zone will be 22669 * unknown as we're sending this packet out on the 22670 * wire. 22671 */ 22672 szone = ip_get_zoneid_v4(ipha->ipha_src, mp, ipst, 22673 ALL_ZONES); 22674 ipobs_hook(mp, IPOBS_HOOK_OUTBOUND, szone, ALL_ZONES, 22675 ire->ire_ipif->ipif_ill, IPV4_VERSION, 0, ipst); 22676 } 22677 mp->b_prev = SET_BPREV_FLAG(IPP_LOCAL_OUT); 22678 DTRACE_PROBE2(ip__xmit__1, mblk_t *, mp, ire_t *, ire); 22679 22680 pktxmit_state = ip_xmit_v4(mp, ire, NULL, B_TRUE, connp); 22681 22682 if ((pktxmit_state == SEND_FAILED) || 22683 (pktxmit_state == LLHDR_RESLV_FAILED)) { 22684 ip2dbg(("ip_wput_ire: ip_xmit_v4 failed" 22685 "- packet dropped\n")); 22686 release_ire_and_ill: 22687 ire_refrele(ire); 22688 if (next_mp != NULL) { 22689 freemsg(next_mp); 22690 ire_refrele(ire1); 22691 } 22692 if (conn_outgoing_ill != NULL) 22693 ill_refrele(conn_outgoing_ill); 22694 return; 22695 } 22696 22697 if (CLASSD(dst)) { 22698 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutMcastPkts); 22699 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutMcastOctets, 22700 LENGTH); 22701 } 22702 22703 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 22704 "ip_wput_ire_end: q %p (%S)", 22705 q, "last copy out"); 22706 IRE_REFRELE(ire); 22707 22708 if (multirt_send) { 22709 ASSERT(ire1); 22710 /* 22711 * Proceed with the next RTF_MULTIRT ire, 22712 * Also set up the send-to queue accordingly. 22713 */ 22714 ire = ire1; 22715 ire1 = NULL; 22716 stq = ire->ire_stq; 22717 mp = next_mp; 22718 next_mp = NULL; 22719 ipha = (ipha_t *)mp->b_rptr; 22720 ill_index = Q_TO_INDEX(stq); 22721 ill = (ill_t *)stq->q_ptr; 22722 } 22723 } while (multirt_send); 22724 if (conn_outgoing_ill != NULL) 22725 ill_refrele(conn_outgoing_ill); 22726 return; 22727 22728 /* 22729 * ire->ire_type == IRE_BROADCAST (minimize diffs) 22730 */ 22731 broadcast: 22732 { 22733 /* 22734 * To avoid broadcast storms, we usually set the TTL to 1 for 22735 * broadcasts. However, if SO_DONTROUTE isn't set, this value 22736 * can be overridden stack-wide through the ip_broadcast_ttl 22737 * ndd tunable, or on a per-connection basis through the 22738 * IP_BROADCAST_TTL socket option. 22739 * 22740 * In the event that we are replying to incoming ICMP packets, 22741 * connp could be NULL. 22742 */ 22743 ipha->ipha_ttl = ipst->ips_ip_broadcast_ttl; 22744 if (connp != NULL) { 22745 if (connp->conn_dontroute) 22746 ipha->ipha_ttl = 1; 22747 else if (connp->conn_broadcast_ttl != 0) 22748 ipha->ipha_ttl = connp->conn_broadcast_ttl; 22749 } 22750 22751 /* 22752 * Note that we are not doing a IRB_REFHOLD here. 22753 * Actually we don't care if the list changes i.e 22754 * if somebody deletes an IRE from the list while 22755 * we drop the lock, the next time we come around 22756 * ire_next will be NULL and hence we won't send 22757 * out multiple copies which is fine. 22758 */ 22759 rw_enter(&ire->ire_bucket->irb_lock, RW_READER); 22760 ire1 = ire->ire_next; 22761 if (conn_outgoing_ill != NULL) { 22762 while (ire->ire_ipif->ipif_ill != conn_outgoing_ill) { 22763 ASSERT(ire1 == ire->ire_next); 22764 if (ire1 != NULL && ire1->ire_addr == dst) { 22765 ire_refrele(ire); 22766 ire = ire1; 22767 IRE_REFHOLD(ire); 22768 ire1 = ire->ire_next; 22769 continue; 22770 } 22771 rw_exit(&ire->ire_bucket->irb_lock); 22772 /* Did not find a matching ill */ 22773 ip1dbg(("ip_wput_ire: broadcast with no " 22774 "matching IP_BOUND_IF ill %s dst %x\n", 22775 conn_outgoing_ill->ill_name, dst)); 22776 freemsg(first_mp); 22777 if (ire != NULL) 22778 ire_refrele(ire); 22779 ill_refrele(conn_outgoing_ill); 22780 return; 22781 } 22782 } else if (ire1 != NULL && ire1->ire_addr == dst) { 22783 /* 22784 * If the next IRE has the same address and is not one 22785 * of the two copies that we need to send, try to see 22786 * whether this copy should be sent at all. This 22787 * assumes that we insert loopbacks first and then 22788 * non-loopbacks. This is acheived by inserting the 22789 * loopback always before non-loopback. 22790 * This is used to send a single copy of a broadcast 22791 * packet out all physical interfaces that have an 22792 * matching IRE_BROADCAST while also looping 22793 * back one copy (to ip_wput_local) for each 22794 * matching physical interface. However, we avoid 22795 * sending packets out different logical that match by 22796 * having ipif_up/ipif_down supress duplicate 22797 * IRE_BROADCASTS. 22798 * 22799 * This feature is currently used to get broadcasts 22800 * sent to multiple interfaces, when the broadcast 22801 * address being used applies to multiple interfaces. 22802 * For example, a whole net broadcast will be 22803 * replicated on every connected subnet of 22804 * the target net. 22805 * 22806 * Each zone has its own set of IRE_BROADCASTs, so that 22807 * we're able to distribute inbound packets to multiple 22808 * zones who share a broadcast address. We avoid looping 22809 * back outbound packets in different zones but on the 22810 * same ill, as the application would see duplicates. 22811 * 22812 * This logic assumes that ire_add_v4() groups the 22813 * IRE_BROADCAST entries so that those with the same 22814 * ire_addr are kept together. 22815 */ 22816 ire_ill = ire->ire_ipif->ipif_ill; 22817 if (ire->ire_stq != NULL || ire1->ire_stq == NULL) { 22818 while (ire1 != NULL && ire1->ire_addr == dst) { 22819 ire1_ill = ire1->ire_ipif->ipif_ill; 22820 if (ire1_ill != ire_ill) 22821 break; 22822 ire1 = ire1->ire_next; 22823 } 22824 } 22825 } 22826 ASSERT(multirt_send == B_FALSE); 22827 if (ire1 != NULL && ire1->ire_addr == dst) { 22828 if ((ire->ire_flags & RTF_MULTIRT) && 22829 (ire1->ire_flags & RTF_MULTIRT)) { 22830 /* 22831 * We are in the multirouting case. 22832 * The message must be sent at least 22833 * on both ires. These ires have been 22834 * inserted AFTER the standard ones 22835 * in ip_rt_add(). There are thus no 22836 * other ire entries for the destination 22837 * address in the rest of the bucket 22838 * that do not have the RTF_MULTIRT 22839 * flag. We don't process a copy 22840 * of the message here. This will be 22841 * done in the final sending loop. 22842 */ 22843 multirt_send = B_TRUE; 22844 } else { 22845 next_mp = ip_copymsg(first_mp); 22846 if (next_mp != NULL) 22847 IRE_REFHOLD(ire1); 22848 } 22849 } 22850 rw_exit(&ire->ire_bucket->irb_lock); 22851 } 22852 22853 if (stq) { 22854 /* 22855 * A non-NULL send-to queue means this packet is going 22856 * out of this machine. 22857 */ 22858 out_ill = (ill_t *)stq->q_ptr; 22859 22860 BUMP_MIB(out_ill->ill_ip_mib, ipIfStatsHCOutRequests); 22861 ttl_protocol = ((uint16_t *)ipha)[4]; 22862 /* 22863 * We accumulate the pseudo header checksum in cksum. 22864 * This is pretty hairy code, so watch close. One 22865 * thing to keep in mind is that UDP and TCP have 22866 * stored their respective datagram lengths in their 22867 * checksum fields. This lines things up real nice. 22868 */ 22869 cksum = (dst >> 16) + (dst & 0xFFFF) + 22870 (src >> 16) + (src & 0xFFFF); 22871 /* 22872 * We assume the udp checksum field contains the 22873 * length, so to compute the pseudo header checksum, 22874 * all we need is the protocol number and src/dst. 22875 */ 22876 /* Provide the checksums for UDP and TCP. */ 22877 if ((PROTO == IPPROTO_TCP) && 22878 (ip_hdr_included != IP_HDR_INCLUDED)) { 22879 /* hlen gets the number of uchar_ts in the IP header */ 22880 hlen = (V_HLEN & 0xF) << 2; 22881 up = IPH_TCPH_CHECKSUMP(ipha, hlen); 22882 IP_STAT(ipst, ip_out_sw_cksum); 22883 IP_STAT_UPDATE(ipst, ip_tcp_out_sw_cksum_bytes, 22884 LENGTH - hlen); 22885 *up = IP_CSUM(mp, hlen, cksum + IP_TCP_CSUM_COMP); 22886 } else if (PROTO == IPPROTO_SCTP && 22887 (ip_hdr_included != IP_HDR_INCLUDED)) { 22888 sctp_hdr_t *sctph; 22889 22890 hlen = (V_HLEN & 0xF) << 2; 22891 ASSERT(MBLKL(mp) >= (hlen + sizeof (*sctph))); 22892 sctph = (sctp_hdr_t *)(mp->b_rptr + hlen); 22893 sctph->sh_chksum = 0; 22894 #ifdef DEBUG 22895 if (!skip_sctp_cksum) 22896 #endif 22897 sctph->sh_chksum = sctp_cksum(mp, hlen); 22898 } else { 22899 queue_t *dev_q = stq->q_next; 22900 22901 if (!ILL_DIRECT_CAPABLE((ill_t *)stq->q_ptr) && 22902 (DEV_Q_FLOW_BLOCKED(dev_q))) { 22903 blocked: 22904 ipha->ipha_ident = ip_hdr_included; 22905 /* 22906 * If we don't have a conn to apply 22907 * backpressure, free the message. 22908 * In the ire_send path, we don't know 22909 * the position to requeue the packet. Rather 22910 * than reorder packets, we just drop this 22911 * packet. 22912 */ 22913 if (ipst->ips_ip_output_queue && 22914 connp != NULL && 22915 caller != IRE_SEND) { 22916 if (caller == IP_WSRV) { 22917 idl_tx_list_t *idl_txl; 22918 22919 idl_txl = 22920 &ipst->ips_idl_tx_list[0]; 22921 connp->conn_did_putbq = 1; 22922 (void) putbq(connp->conn_wq, 22923 first_mp); 22924 conn_drain_insert(connp, 22925 idl_txl); 22926 /* 22927 * This is the service thread, 22928 * and the queue is already 22929 * noenabled. The check for 22930 * canput and the putbq is not 22931 * atomic. So we need to check 22932 * again. 22933 */ 22934 if (canput(stq->q_next)) 22935 connp->conn_did_putbq 22936 = 0; 22937 IP_STAT(ipst, ip_conn_flputbq); 22938 } else { 22939 /* 22940 * We are not the service proc. 22941 * ip_wsrv will be scheduled or 22942 * is already running. 22943 */ 22944 22945 (void) putq(connp->conn_wq, 22946 first_mp); 22947 } 22948 } else { 22949 out_ill = (ill_t *)stq->q_ptr; 22950 BUMP_MIB(out_ill->ill_ip_mib, 22951 ipIfStatsOutDiscards); 22952 freemsg(first_mp); 22953 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 22954 "ip_wput_ire_end: q %p (%S)", 22955 q, "discard"); 22956 } 22957 ire_refrele(ire); 22958 if (next_mp) { 22959 ire_refrele(ire1); 22960 freemsg(next_mp); 22961 } 22962 if (conn_outgoing_ill != NULL) 22963 ill_refrele(conn_outgoing_ill); 22964 return; 22965 } 22966 if ((PROTO == IPPROTO_UDP) && 22967 (ip_hdr_included != IP_HDR_INCLUDED)) { 22968 /* 22969 * hlen gets the number of uchar_ts in the 22970 * IP header 22971 */ 22972 hlen = (V_HLEN & 0xF) << 2; 22973 up = IPH_UDPH_CHECKSUMP(ipha, hlen); 22974 max_frag = ire->ire_max_frag; 22975 if (*up != 0) { 22976 IP_CKSUM_XMIT(out_ill, ire, mp, ipha, 22977 up, PROTO, hlen, LENGTH, max_frag, 22978 ipsec_len, cksum); 22979 /* Software checksum? */ 22980 if (DB_CKSUMFLAGS(mp) == 0) { 22981 IP_STAT(ipst, ip_out_sw_cksum); 22982 IP_STAT_UPDATE(ipst, 22983 ip_udp_out_sw_cksum_bytes, 22984 LENGTH - hlen); 22985 } 22986 } 22987 } 22988 } 22989 /* 22990 * Need to do this even when fragmenting. The local 22991 * loopback can be done without computing checksums 22992 * but forwarding out other interface must be done 22993 * after the IP checksum (and ULP checksums) have been 22994 * computed. 22995 * 22996 * NOTE : multicast_forward is set only if this packet 22997 * originated from ip_wput. For packets originating from 22998 * ip_wput_multicast, it is not set. 22999 */ 23000 if (CLASSD(ipha->ipha_dst) && multicast_forward) { 23001 multi_loopback: 23002 ip2dbg(("ip_wput: multicast, loop %d\n", 23003 conn_multicast_loop)); 23004 23005 /* Forget header checksum offload */ 23006 DB_CKSUMFLAGS(mp) &= ~HCK_IPV4_HDRCKSUM; 23007 23008 /* 23009 * Local loopback of multicasts? Check the 23010 * ill. 23011 * 23012 * Note that the loopback function will not come 23013 * in through ip_rput - it will only do the 23014 * client fanout thus we need to do an mforward 23015 * as well. The is different from the BSD 23016 * logic. 23017 */ 23018 if (ill != NULL) { 23019 if (ilm_lookup_ill(ill, ipha->ipha_dst, 23020 ALL_ZONES) != NULL) { 23021 /* 23022 * Pass along the virtual output q. 23023 * ip_wput_local() will distribute the 23024 * packet to all the matching zones, 23025 * except the sending zone when 23026 * IP_MULTICAST_LOOP is false. 23027 */ 23028 ip_multicast_loopback(q, ill, first_mp, 23029 conn_multicast_loop ? 0 : 23030 IP_FF_NO_MCAST_LOOP, zoneid); 23031 } 23032 } 23033 if (ipha->ipha_ttl == 0) { 23034 /* 23035 * 0 => only to this host i.e. we are 23036 * done. We are also done if this was the 23037 * loopback interface since it is sufficient 23038 * to loopback one copy of a multicast packet. 23039 */ 23040 freemsg(first_mp); 23041 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 23042 "ip_wput_ire_end: q %p (%S)", 23043 q, "loopback"); 23044 ire_refrele(ire); 23045 if (conn_outgoing_ill != NULL) 23046 ill_refrele(conn_outgoing_ill); 23047 return; 23048 } 23049 /* 23050 * ILLF_MULTICAST is checked in ip_newroute 23051 * i.e. we don't need to check it here since 23052 * all IRE_CACHEs come from ip_newroute. 23053 * For multicast traffic, SO_DONTROUTE is interpreted 23054 * to mean only send the packet out the interface 23055 * (optionally specified with IP_MULTICAST_IF) 23056 * and do not forward it out additional interfaces. 23057 * RSVP and the rsvp daemon is an example of a 23058 * protocol and user level process that 23059 * handles it's own routing. Hence, it uses the 23060 * SO_DONTROUTE option to accomplish this. 23061 */ 23062 23063 if (ipst->ips_ip_g_mrouter && !conn_dontroute && 23064 ill != NULL) { 23065 /* Unconditionally redo the checksum */ 23066 ipha->ipha_hdr_checksum = 0; 23067 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 23068 23069 /* 23070 * If this needs to go out secure, we need 23071 * to wait till we finish the IPsec 23072 * processing. 23073 */ 23074 if (ipsec_len == 0 && 23075 ip_mforward(ill, ipha, mp)) { 23076 freemsg(first_mp); 23077 ip1dbg(("ip_wput: mforward failed\n")); 23078 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 23079 "ip_wput_ire_end: q %p (%S)", 23080 q, "mforward failed"); 23081 ire_refrele(ire); 23082 if (conn_outgoing_ill != NULL) 23083 ill_refrele(conn_outgoing_ill); 23084 return; 23085 } 23086 } 23087 } 23088 max_frag = ire->ire_max_frag; 23089 cksum += ttl_protocol; 23090 if (max_frag >= (uint_t)(LENGTH + ipsec_len)) { 23091 /* No fragmentation required for this one. */ 23092 /* 23093 * Don't use frag_flag if packet is pre-built or source 23094 * routed or if multicast (since multicast packets do 23095 * not solicit ICMP "packet too big" messages). 23096 */ 23097 if ((ip_hdr_included != IP_HDR_INCLUDED) && 23098 (V_HLEN == IP_SIMPLE_HDR_VERSION || 23099 !ip_source_route_included(ipha)) && 23100 !CLASSD(ipha->ipha_dst)) 23101 ipha->ipha_fragment_offset_and_flags |= 23102 htons(ire->ire_frag_flag); 23103 23104 if (!(DB_CKSUMFLAGS(mp) & HCK_IPV4_HDRCKSUM)) { 23105 /* Complete the IP header checksum. */ 23106 cksum += ipha->ipha_ident; 23107 cksum += (v_hlen_tos_len >> 16)+ 23108 (v_hlen_tos_len & 0xFFFF); 23109 cksum += ipha->ipha_fragment_offset_and_flags; 23110 hlen = (V_HLEN & 0xF) - 23111 IP_SIMPLE_HDR_LENGTH_IN_WORDS; 23112 if (hlen) { 23113 checksumoptions: 23114 /* 23115 * Account for the IP Options in the IP 23116 * header checksum. 23117 */ 23118 up = (uint16_t *)(rptr+ 23119 IP_SIMPLE_HDR_LENGTH); 23120 do { 23121 cksum += up[0]; 23122 cksum += up[1]; 23123 up += 2; 23124 } while (--hlen); 23125 } 23126 cksum = ((cksum & 0xFFFF) + (cksum >> 16)); 23127 cksum = ~(cksum + (cksum >> 16)); 23128 ipha->ipha_hdr_checksum = (uint16_t)cksum; 23129 } 23130 if (ipsec_len != 0) { 23131 ipsec_out_process(q, first_mp, ire, ill_index); 23132 if (!next_mp) { 23133 ire_refrele(ire); 23134 if (conn_outgoing_ill != NULL) 23135 ill_refrele(conn_outgoing_ill); 23136 return; 23137 } 23138 goto next; 23139 } 23140 23141 /* 23142 * multirt_send has already been handled 23143 * for broadcast, but not yet for multicast 23144 * or IP options. 23145 */ 23146 if (next_mp == NULL) { 23147 if (ire->ire_flags & RTF_MULTIRT) { 23148 multirt_send = B_TRUE; 23149 } 23150 } 23151 23152 /* 23153 * In most cases, the emission loop below is 23154 * entered only once. Only in the case where 23155 * the ire holds the RTF_MULTIRT flag, do we loop 23156 * to process all RTF_MULTIRT ires in the bucket, 23157 * and send the packet through all crossed 23158 * RTF_MULTIRT routes. 23159 */ 23160 do { 23161 if (multirt_send) { 23162 irb_t *irb; 23163 23164 irb = ire->ire_bucket; 23165 ASSERT(irb != NULL); 23166 /* 23167 * We are in a multiple send case, 23168 * need to get the next IRE and make 23169 * a duplicate of the packet. 23170 */ 23171 IRB_REFHOLD(irb); 23172 for (ire1 = ire->ire_next; 23173 ire1 != NULL; 23174 ire1 = ire1->ire_next) { 23175 if (!(ire1->ire_flags & 23176 RTF_MULTIRT)) 23177 continue; 23178 23179 if (ire1->ire_addr != 23180 ire->ire_addr) 23181 continue; 23182 23183 if (ire1->ire_marks & 23184 (IRE_MARK_CONDEMNED | 23185 IRE_MARK_TESTHIDDEN)) 23186 continue; 23187 23188 /* Got one */ 23189 IRE_REFHOLD(ire1); 23190 break; 23191 } 23192 IRB_REFRELE(irb); 23193 23194 if (ire1 != NULL) { 23195 next_mp = copyb(mp); 23196 if ((next_mp == NULL) || 23197 ((mp->b_cont != NULL) && 23198 ((next_mp->b_cont = 23199 dupmsg(mp->b_cont)) 23200 == NULL))) { 23201 freemsg(next_mp); 23202 next_mp = NULL; 23203 ire_refrele(ire1); 23204 ire1 = NULL; 23205 } 23206 } 23207 23208 /* 23209 * Last multiroute ire; don't loop 23210 * anymore. The emission is over 23211 * and next_mp is NULL. 23212 */ 23213 if (ire1 == NULL) { 23214 multirt_send = B_FALSE; 23215 } 23216 } 23217 23218 out_ill = ire_to_ill(ire); 23219 DTRACE_PROBE4(ip4__physical__out__start, 23220 ill_t *, NULL, 23221 ill_t *, out_ill, 23222 ipha_t *, ipha, mblk_t *, mp); 23223 FW_HOOKS(ipst->ips_ip4_physical_out_event, 23224 ipst->ips_ipv4firewall_physical_out, 23225 NULL, out_ill, ipha, mp, mp, 0, ipst); 23226 DTRACE_PROBE1(ip4__physical__out__end, 23227 mblk_t *, mp); 23228 if (mp == NULL) 23229 goto release_ire_and_ill_2; 23230 23231 ASSERT(ipsec_len == 0); 23232 mp->b_prev = 23233 SET_BPREV_FLAG(IPP_LOCAL_OUT); 23234 DTRACE_PROBE2(ip__xmit__2, 23235 mblk_t *, mp, ire_t *, ire); 23236 pktxmit_state = ip_xmit_v4(mp, ire, 23237 NULL, B_TRUE, connp); 23238 if ((pktxmit_state == SEND_FAILED) || 23239 (pktxmit_state == LLHDR_RESLV_FAILED)) { 23240 release_ire_and_ill_2: 23241 if (next_mp) { 23242 freemsg(next_mp); 23243 ire_refrele(ire1); 23244 } 23245 ire_refrele(ire); 23246 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 23247 "ip_wput_ire_end: q %p (%S)", 23248 q, "discard MDATA"); 23249 if (conn_outgoing_ill != NULL) 23250 ill_refrele(conn_outgoing_ill); 23251 return; 23252 } 23253 23254 if (CLASSD(dst)) { 23255 BUMP_MIB(out_ill->ill_ip_mib, 23256 ipIfStatsHCOutMcastPkts); 23257 UPDATE_MIB(out_ill->ill_ip_mib, 23258 ipIfStatsHCOutMcastOctets, 23259 LENGTH); 23260 } else if (ire->ire_type == IRE_BROADCAST) { 23261 BUMP_MIB(out_ill->ill_ip_mib, 23262 ipIfStatsHCOutBcastPkts); 23263 } 23264 23265 if (multirt_send) { 23266 /* 23267 * We are in a multiple send case, 23268 * need to re-enter the sending loop 23269 * using the next ire. 23270 */ 23271 ire_refrele(ire); 23272 ire = ire1; 23273 stq = ire->ire_stq; 23274 mp = next_mp; 23275 next_mp = NULL; 23276 ipha = (ipha_t *)mp->b_rptr; 23277 ill_index = Q_TO_INDEX(stq); 23278 } 23279 } while (multirt_send); 23280 23281 if (!next_mp) { 23282 /* 23283 * Last copy going out (the ultra-common 23284 * case). Note that we intentionally replicate 23285 * the putnext rather than calling it before 23286 * the next_mp check in hopes of a little 23287 * tail-call action out of the compiler. 23288 */ 23289 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 23290 "ip_wput_ire_end: q %p (%S)", 23291 q, "last copy out(1)"); 23292 ire_refrele(ire); 23293 if (conn_outgoing_ill != NULL) 23294 ill_refrele(conn_outgoing_ill); 23295 return; 23296 } 23297 /* More copies going out below. */ 23298 } else { 23299 int offset; 23300 fragmentit: 23301 offset = ntohs(ipha->ipha_fragment_offset_and_flags); 23302 /* 23303 * If this would generate a icmp_frag_needed message, 23304 * we need to handle it before we do the IPsec 23305 * processing. Otherwise, we need to strip the IPsec 23306 * headers before we send up the message to the ULPs 23307 * which becomes messy and difficult. 23308 */ 23309 if (ipsec_len != 0) { 23310 if ((max_frag < (unsigned int)(LENGTH + 23311 ipsec_len)) && (offset & IPH_DF)) { 23312 out_ill = (ill_t *)stq->q_ptr; 23313 BUMP_MIB(out_ill->ill_ip_mib, 23314 ipIfStatsOutFragFails); 23315 BUMP_MIB(out_ill->ill_ip_mib, 23316 ipIfStatsOutFragReqds); 23317 ipha->ipha_hdr_checksum = 0; 23318 ipha->ipha_hdr_checksum = 23319 (uint16_t)ip_csum_hdr(ipha); 23320 icmp_frag_needed(ire->ire_stq, first_mp, 23321 max_frag, zoneid, ipst); 23322 if (!next_mp) { 23323 ire_refrele(ire); 23324 if (conn_outgoing_ill != NULL) { 23325 ill_refrele( 23326 conn_outgoing_ill); 23327 } 23328 return; 23329 } 23330 } else { 23331 /* 23332 * This won't cause a icmp_frag_needed 23333 * message. to be generated. Send it on 23334 * the wire. Note that this could still 23335 * cause fragmentation and all we 23336 * do is the generation of the message 23337 * to the ULP if needed before IPsec. 23338 */ 23339 if (!next_mp) { 23340 ipsec_out_process(q, first_mp, 23341 ire, ill_index); 23342 TRACE_2(TR_FAC_IP, 23343 TR_IP_WPUT_IRE_END, 23344 "ip_wput_ire_end: q %p " 23345 "(%S)", q, 23346 "last ipsec_out_process"); 23347 ire_refrele(ire); 23348 if (conn_outgoing_ill != NULL) { 23349 ill_refrele( 23350 conn_outgoing_ill); 23351 } 23352 return; 23353 } 23354 ipsec_out_process(q, first_mp, 23355 ire, ill_index); 23356 } 23357 } else { 23358 /* 23359 * Initiate IPPF processing. For 23360 * fragmentable packets we finish 23361 * all QOS packet processing before 23362 * calling: 23363 * ip_wput_ire_fragmentit->ip_wput_frag 23364 */ 23365 23366 if (IPP_ENABLED(IPP_LOCAL_OUT, ipst)) { 23367 ip_process(IPP_LOCAL_OUT, &mp, 23368 ill_index); 23369 if (mp == NULL) { 23370 out_ill = (ill_t *)stq->q_ptr; 23371 BUMP_MIB(out_ill->ill_ip_mib, 23372 ipIfStatsOutDiscards); 23373 if (next_mp != NULL) { 23374 freemsg(next_mp); 23375 ire_refrele(ire1); 23376 } 23377 ire_refrele(ire); 23378 TRACE_2(TR_FAC_IP, 23379 TR_IP_WPUT_IRE_END, 23380 "ip_wput_ire: q %p (%S)", 23381 q, "discard MDATA"); 23382 if (conn_outgoing_ill != NULL) { 23383 ill_refrele( 23384 conn_outgoing_ill); 23385 } 23386 return; 23387 } 23388 } 23389 if (!next_mp) { 23390 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 23391 "ip_wput_ire_end: q %p (%S)", 23392 q, "last fragmentation"); 23393 ip_wput_ire_fragmentit(mp, ire, 23394 zoneid, ipst, connp); 23395 ire_refrele(ire); 23396 if (conn_outgoing_ill != NULL) 23397 ill_refrele(conn_outgoing_ill); 23398 return; 23399 } 23400 ip_wput_ire_fragmentit(mp, ire, 23401 zoneid, ipst, connp); 23402 } 23403 } 23404 } else { 23405 nullstq: 23406 /* A NULL stq means the destination address is local. */ 23407 UPDATE_OB_PKT_COUNT(ire); 23408 ire->ire_last_used_time = lbolt; 23409 ASSERT(ire->ire_ipif != NULL); 23410 if (!next_mp) { 23411 /* 23412 * Is there an "in" and "out" for traffic local 23413 * to a host (loopback)? The code in Solaris doesn't 23414 * explicitly draw a line in its code for in vs out, 23415 * so we've had to draw a line in the sand: ip_wput_ire 23416 * is considered to be the "output" side and 23417 * ip_wput_local to be the "input" side. 23418 */ 23419 out_ill = ire_to_ill(ire); 23420 23421 /* 23422 * DTrace this as ip:::send. A blocked packet will 23423 * fire the send probe, but not the receive probe. 23424 */ 23425 DTRACE_IP7(send, mblk_t *, first_mp, conn_t *, NULL, 23426 void_ip_t *, ipha, __dtrace_ipsr_ill_t *, out_ill, 23427 ipha_t *, ipha, ip6_t *, NULL, int, 1); 23428 23429 DTRACE_PROBE4(ip4__loopback__out__start, 23430 ill_t *, NULL, ill_t *, out_ill, 23431 ipha_t *, ipha, mblk_t *, first_mp); 23432 23433 FW_HOOKS(ipst->ips_ip4_loopback_out_event, 23434 ipst->ips_ipv4firewall_loopback_out, 23435 NULL, out_ill, ipha, first_mp, mp, 0, ipst); 23436 23437 DTRACE_PROBE1(ip4__loopback__out_end, 23438 mblk_t *, first_mp); 23439 23440 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 23441 "ip_wput_ire_end: q %p (%S)", 23442 q, "local address"); 23443 23444 if (first_mp != NULL) 23445 ip_wput_local(q, out_ill, ipha, 23446 first_mp, ire, 0, ire->ire_zoneid); 23447 ire_refrele(ire); 23448 if (conn_outgoing_ill != NULL) 23449 ill_refrele(conn_outgoing_ill); 23450 return; 23451 } 23452 23453 out_ill = ire_to_ill(ire); 23454 23455 /* 23456 * DTrace this as ip:::send. A blocked packet will fire the 23457 * send probe, but not the receive probe. 23458 */ 23459 DTRACE_IP7(send, mblk_t *, first_mp, conn_t *, NULL, 23460 void_ip_t *, ipha, __dtrace_ipsr_ill_t *, out_ill, 23461 ipha_t *, ipha, ip6_t *, NULL, int, 1); 23462 23463 DTRACE_PROBE4(ip4__loopback__out__start, 23464 ill_t *, NULL, ill_t *, out_ill, 23465 ipha_t *, ipha, mblk_t *, first_mp); 23466 23467 FW_HOOKS(ipst->ips_ip4_loopback_out_event, 23468 ipst->ips_ipv4firewall_loopback_out, 23469 NULL, out_ill, ipha, first_mp, mp, 0, ipst); 23470 23471 DTRACE_PROBE1(ip4__loopback__out__end, mblk_t *, first_mp); 23472 23473 if (first_mp != NULL) 23474 ip_wput_local(q, out_ill, ipha, 23475 first_mp, ire, 0, ire->ire_zoneid); 23476 } 23477 next: 23478 /* 23479 * More copies going out to additional interfaces. 23480 * ire1 has already been held. We don't need the 23481 * "ire" anymore. 23482 */ 23483 ire_refrele(ire); 23484 ire = ire1; 23485 ASSERT(ire != NULL && ire->ire_refcnt >= 1 && next_mp != NULL); 23486 mp = next_mp; 23487 ASSERT(ire->ire_ipversion == IPV4_VERSION); 23488 ill = ire_to_ill(ire); 23489 first_mp = mp; 23490 if (ipsec_len != 0) { 23491 ASSERT(first_mp->b_datap->db_type == M_CTL); 23492 mp = mp->b_cont; 23493 } 23494 dst = ire->ire_addr; 23495 ipha = (ipha_t *)mp->b_rptr; 23496 /* 23497 * Restore src so that we will pick up ire->ire_src_addr if src was 0. 23498 * Restore ipha_ident "no checksum" flag. 23499 */ 23500 src = orig_src; 23501 ipha->ipha_ident = ip_hdr_included; 23502 goto another; 23503 23504 #undef rptr 23505 #undef Q_TO_INDEX 23506 } 23507 23508 /* 23509 * Routine to allocate a message that is used to notify the ULP about MDT. 23510 * The caller may provide a pointer to the link-layer MDT capabilities, 23511 * or NULL if MDT is to be disabled on the stream. 23512 */ 23513 mblk_t * 23514 ip_mdinfo_alloc(ill_mdt_capab_t *isrc) 23515 { 23516 mblk_t *mp; 23517 ip_mdt_info_t *mdti; 23518 ill_mdt_capab_t *idst; 23519 23520 if ((mp = allocb(sizeof (*mdti), BPRI_HI)) != NULL) { 23521 DB_TYPE(mp) = M_CTL; 23522 mp->b_wptr = mp->b_rptr + sizeof (*mdti); 23523 mdti = (ip_mdt_info_t *)mp->b_rptr; 23524 mdti->mdt_info_id = MDT_IOC_INFO_UPDATE; 23525 idst = &(mdti->mdt_capab); 23526 23527 /* 23528 * If the caller provides us with the capability, copy 23529 * it over into our notification message; otherwise 23530 * we zero out the capability portion. 23531 */ 23532 if (isrc != NULL) 23533 bcopy((caddr_t)isrc, (caddr_t)idst, sizeof (*idst)); 23534 else 23535 bzero((caddr_t)idst, sizeof (*idst)); 23536 } 23537 return (mp); 23538 } 23539 23540 /* 23541 * Routine which determines whether MDT can be enabled on the destination 23542 * IRE and IPC combination, and if so, allocates and returns the MDT 23543 * notification mblk that may be used by ULP. We also check if we need to 23544 * turn MDT back to 'on' when certain restrictions prohibiting us to allow 23545 * MDT usage in the past have been lifted. This gets called during IP 23546 * and ULP binding. 23547 */ 23548 mblk_t * 23549 ip_mdinfo_return(ire_t *dst_ire, conn_t *connp, char *ill_name, 23550 ill_mdt_capab_t *mdt_cap) 23551 { 23552 mblk_t *mp; 23553 boolean_t rc = B_FALSE; 23554 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 23555 23556 ASSERT(dst_ire != NULL); 23557 ASSERT(connp != NULL); 23558 ASSERT(mdt_cap != NULL); 23559 23560 /* 23561 * Currently, we only support simple TCP/{IPv4,IPv6} with 23562 * Multidata, which is handled in tcp_multisend(). This 23563 * is the reason why we do all these checks here, to ensure 23564 * that we don't enable Multidata for the cases which we 23565 * can't handle at the moment. 23566 */ 23567 do { 23568 /* Only do TCP at the moment */ 23569 if (connp->conn_ulp != IPPROTO_TCP) 23570 break; 23571 23572 /* 23573 * IPsec outbound policy present? Note that we get here 23574 * after calling ipsec_conn_cache_policy() where the global 23575 * policy checking is performed. conn_latch will be 23576 * non-NULL as long as there's a policy defined, 23577 * i.e. conn_out_enforce_policy may be NULL in such case 23578 * when the connection is non-secure, and hence we check 23579 * further if the latch refers to an outbound policy. 23580 */ 23581 if (CONN_IPSEC_OUT_ENCAPSULATED(connp)) 23582 break; 23583 23584 /* CGTP (multiroute) is enabled? */ 23585 if (dst_ire->ire_flags & RTF_MULTIRT) 23586 break; 23587 23588 /* Outbound IPQoS enabled? */ 23589 if (IPP_ENABLED(IPP_LOCAL_OUT, ipst)) { 23590 /* 23591 * In this case, we disable MDT for this and all 23592 * future connections going over the interface. 23593 */ 23594 mdt_cap->ill_mdt_on = 0; 23595 break; 23596 } 23597 23598 /* socket option(s) present? */ 23599 if (!CONN_IS_LSO_MD_FASTPATH(connp)) 23600 break; 23601 23602 rc = B_TRUE; 23603 /* CONSTCOND */ 23604 } while (0); 23605 23606 /* Remember the result */ 23607 connp->conn_mdt_ok = rc; 23608 23609 if (!rc) 23610 return (NULL); 23611 else if (!mdt_cap->ill_mdt_on) { 23612 /* 23613 * If MDT has been previously turned off in the past, and we 23614 * currently can do MDT (due to IPQoS policy removal, etc.) 23615 * then enable it for this interface. 23616 */ 23617 mdt_cap->ill_mdt_on = 1; 23618 ip1dbg(("ip_mdinfo_return: reenabling MDT for " 23619 "interface %s\n", ill_name)); 23620 } 23621 23622 /* Allocate the MDT info mblk */ 23623 if ((mp = ip_mdinfo_alloc(mdt_cap)) == NULL) { 23624 ip0dbg(("ip_mdinfo_return: can't enable Multidata for " 23625 "conn %p on %s (ENOMEM)\n", (void *)connp, ill_name)); 23626 return (NULL); 23627 } 23628 return (mp); 23629 } 23630 23631 /* 23632 * Routine to allocate a message that is used to notify the ULP about LSO. 23633 * The caller may provide a pointer to the link-layer LSO capabilities, 23634 * or NULL if LSO is to be disabled on the stream. 23635 */ 23636 mblk_t * 23637 ip_lsoinfo_alloc(ill_lso_capab_t *isrc) 23638 { 23639 mblk_t *mp; 23640 ip_lso_info_t *lsoi; 23641 ill_lso_capab_t *idst; 23642 23643 if ((mp = allocb(sizeof (*lsoi), BPRI_HI)) != NULL) { 23644 DB_TYPE(mp) = M_CTL; 23645 mp->b_wptr = mp->b_rptr + sizeof (*lsoi); 23646 lsoi = (ip_lso_info_t *)mp->b_rptr; 23647 lsoi->lso_info_id = LSO_IOC_INFO_UPDATE; 23648 idst = &(lsoi->lso_capab); 23649 23650 /* 23651 * If the caller provides us with the capability, copy 23652 * it over into our notification message; otherwise 23653 * we zero out the capability portion. 23654 */ 23655 if (isrc != NULL) 23656 bcopy((caddr_t)isrc, (caddr_t)idst, sizeof (*idst)); 23657 else 23658 bzero((caddr_t)idst, sizeof (*idst)); 23659 } 23660 return (mp); 23661 } 23662 23663 /* 23664 * Routine which determines whether LSO can be enabled on the destination 23665 * IRE and IPC combination, and if so, allocates and returns the LSO 23666 * notification mblk that may be used by ULP. We also check if we need to 23667 * turn LSO back to 'on' when certain restrictions prohibiting us to allow 23668 * LSO usage in the past have been lifted. This gets called during IP 23669 * and ULP binding. 23670 */ 23671 mblk_t * 23672 ip_lsoinfo_return(ire_t *dst_ire, conn_t *connp, char *ill_name, 23673 ill_lso_capab_t *lso_cap) 23674 { 23675 mblk_t *mp; 23676 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 23677 23678 ASSERT(dst_ire != NULL); 23679 ASSERT(connp != NULL); 23680 ASSERT(lso_cap != NULL); 23681 23682 connp->conn_lso_ok = B_TRUE; 23683 23684 if ((connp->conn_ulp != IPPROTO_TCP) || 23685 CONN_IPSEC_OUT_ENCAPSULATED(connp) || 23686 (dst_ire->ire_flags & RTF_MULTIRT) || 23687 !CONN_IS_LSO_MD_FASTPATH(connp) || 23688 (IPP_ENABLED(IPP_LOCAL_OUT, ipst))) { 23689 connp->conn_lso_ok = B_FALSE; 23690 if (IPP_ENABLED(IPP_LOCAL_OUT, ipst)) { 23691 /* 23692 * Disable LSO for this and all future connections going 23693 * over the interface. 23694 */ 23695 lso_cap->ill_lso_on = 0; 23696 } 23697 } 23698 23699 if (!connp->conn_lso_ok) 23700 return (NULL); 23701 else if (!lso_cap->ill_lso_on) { 23702 /* 23703 * If LSO has been previously turned off in the past, and we 23704 * currently can do LSO (due to IPQoS policy removal, etc.) 23705 * then enable it for this interface. 23706 */ 23707 lso_cap->ill_lso_on = 1; 23708 ip1dbg(("ip_mdinfo_return: reenabling LSO for interface %s\n", 23709 ill_name)); 23710 } 23711 23712 /* Allocate the LSO info mblk */ 23713 if ((mp = ip_lsoinfo_alloc(lso_cap)) == NULL) 23714 ip0dbg(("ip_lsoinfo_return: can't enable LSO for " 23715 "conn %p on %s (ENOMEM)\n", (void *)connp, ill_name)); 23716 23717 return (mp); 23718 } 23719 23720 /* 23721 * Create destination address attribute, and fill it with the physical 23722 * destination address and SAP taken from the template DL_UNITDATA_REQ 23723 * message block. 23724 */ 23725 boolean_t 23726 ip_md_addr_attr(multidata_t *mmd, pdesc_t *pd, const mblk_t *dlmp) 23727 { 23728 dl_unitdata_req_t *dlurp; 23729 pattr_t *pa; 23730 pattrinfo_t pa_info; 23731 pattr_addr_t **das = (pattr_addr_t **)&pa_info.buf; 23732 uint_t das_len, das_off; 23733 23734 ASSERT(dlmp != NULL); 23735 23736 dlurp = (dl_unitdata_req_t *)dlmp->b_rptr; 23737 das_len = dlurp->dl_dest_addr_length; 23738 das_off = dlurp->dl_dest_addr_offset; 23739 23740 pa_info.type = PATTR_DSTADDRSAP; 23741 pa_info.len = sizeof (**das) + das_len - 1; 23742 23743 /* create and associate the attribute */ 23744 pa = mmd_addpattr(mmd, pd, &pa_info, B_TRUE, KM_NOSLEEP); 23745 if (pa != NULL) { 23746 ASSERT(*das != NULL); 23747 (*das)->addr_is_group = 0; 23748 (*das)->addr_len = (uint8_t)das_len; 23749 bcopy((caddr_t)dlurp + das_off, (*das)->addr, das_len); 23750 } 23751 23752 return (pa != NULL); 23753 } 23754 23755 /* 23756 * Create hardware checksum attribute and fill it with the values passed. 23757 */ 23758 boolean_t 23759 ip_md_hcksum_attr(multidata_t *mmd, pdesc_t *pd, uint32_t start_offset, 23760 uint32_t stuff_offset, uint32_t end_offset, uint32_t flags) 23761 { 23762 pattr_t *pa; 23763 pattrinfo_t pa_info; 23764 23765 ASSERT(mmd != NULL); 23766 23767 pa_info.type = PATTR_HCKSUM; 23768 pa_info.len = sizeof (pattr_hcksum_t); 23769 23770 /* create and associate the attribute */ 23771 pa = mmd_addpattr(mmd, pd, &pa_info, B_TRUE, KM_NOSLEEP); 23772 if (pa != NULL) { 23773 pattr_hcksum_t *hck = (pattr_hcksum_t *)pa_info.buf; 23774 23775 hck->hcksum_start_offset = start_offset; 23776 hck->hcksum_stuff_offset = stuff_offset; 23777 hck->hcksum_end_offset = end_offset; 23778 hck->hcksum_flags = flags; 23779 } 23780 return (pa != NULL); 23781 } 23782 23783 /* 23784 * Create zerocopy attribute and fill it with the specified flags 23785 */ 23786 boolean_t 23787 ip_md_zcopy_attr(multidata_t *mmd, pdesc_t *pd, uint_t flags) 23788 { 23789 pattr_t *pa; 23790 pattrinfo_t pa_info; 23791 23792 ASSERT(mmd != NULL); 23793 pa_info.type = PATTR_ZCOPY; 23794 pa_info.len = sizeof (pattr_zcopy_t); 23795 23796 /* create and associate the attribute */ 23797 pa = mmd_addpattr(mmd, pd, &pa_info, B_TRUE, KM_NOSLEEP); 23798 if (pa != NULL) { 23799 pattr_zcopy_t *zcopy = (pattr_zcopy_t *)pa_info.buf; 23800 23801 zcopy->zcopy_flags = flags; 23802 } 23803 return (pa != NULL); 23804 } 23805 23806 /* 23807 * Check if ip_wput_frag_mdt() and ip_wput_frag_mdt_v6() can handle a message 23808 * block chain. We could rewrite to handle arbitrary message block chains but 23809 * that would make the code complicated and slow. Right now there three 23810 * restrictions: 23811 * 23812 * 1. The first message block must contain the complete IP header and 23813 * at least 1 byte of payload data. 23814 * 2. At most MULTIDATA_MAX_PBUFS non-empty message blocks are allowed 23815 * so that we can use a single Multidata message. 23816 * 3. No frag must be distributed over two or more message blocks so 23817 * that we don't need more than two packet descriptors per frag. 23818 * 23819 * The above restrictions allow us to support userland applications (which 23820 * will send down a single message block) and NFS over UDP (which will 23821 * send down a chain of at most three message blocks). 23822 * 23823 * We also don't use MDT for payloads with less than or equal to 23824 * ip_wput_frag_mdt_min bytes because it would cause too much overhead. 23825 */ 23826 boolean_t 23827 ip_can_frag_mdt(mblk_t *mp, ssize_t hdr_len, ssize_t len) 23828 { 23829 int blocks; 23830 ssize_t total, missing, size; 23831 23832 ASSERT(mp != NULL); 23833 ASSERT(hdr_len > 0); 23834 23835 size = MBLKL(mp) - hdr_len; 23836 if (size <= 0) 23837 return (B_FALSE); 23838 23839 /* The first mblk contains the header and some payload. */ 23840 blocks = 1; 23841 total = size; 23842 size %= len; 23843 missing = (size == 0) ? 0 : (len - size); 23844 mp = mp->b_cont; 23845 23846 while (mp != NULL) { 23847 /* 23848 * Give up if we encounter a zero length message block. 23849 * In practice, this should rarely happen and therefore 23850 * not worth the trouble of freeing and re-linking the 23851 * mblk from the chain to handle such case. 23852 */ 23853 if ((size = MBLKL(mp)) == 0) 23854 return (B_FALSE); 23855 23856 /* Too many payload buffers for a single Multidata message? */ 23857 if (++blocks > MULTIDATA_MAX_PBUFS) 23858 return (B_FALSE); 23859 23860 total += size; 23861 /* Is a frag distributed over two or more message blocks? */ 23862 if (missing > size) 23863 return (B_FALSE); 23864 size -= missing; 23865 23866 size %= len; 23867 missing = (size == 0) ? 0 : (len - size); 23868 23869 mp = mp->b_cont; 23870 } 23871 23872 return (total > ip_wput_frag_mdt_min); 23873 } 23874 23875 /* 23876 * Outbound IPv4 fragmentation routine using MDT. 23877 */ 23878 static void 23879 ip_wput_frag_mdt(ire_t *ire, mblk_t *mp, ip_pkt_t pkt_type, int len, 23880 uint32_t frag_flag, int offset) 23881 { 23882 ipha_t *ipha_orig; 23883 int i1, ip_data_end; 23884 uint_t pkts, wroff, hdr_chunk_len, pbuf_idx; 23885 mblk_t *hdr_mp, *md_mp = NULL; 23886 unsigned char *hdr_ptr, *pld_ptr; 23887 multidata_t *mmd; 23888 ip_pdescinfo_t pdi; 23889 ill_t *ill; 23890 ip_stack_t *ipst = ire->ire_ipst; 23891 23892 ASSERT(DB_TYPE(mp) == M_DATA); 23893 ASSERT(MBLKL(mp) > sizeof (ipha_t)); 23894 23895 ill = ire_to_ill(ire); 23896 ASSERT(ill != NULL); 23897 23898 ipha_orig = (ipha_t *)mp->b_rptr; 23899 mp->b_rptr += sizeof (ipha_t); 23900 23901 /* Calculate how many packets we will send out */ 23902 i1 = (mp->b_cont == NULL) ? MBLKL(mp) : msgsize(mp); 23903 pkts = (i1 + len - 1) / len; 23904 ASSERT(pkts > 1); 23905 23906 /* Allocate a message block which will hold all the IP Headers. */ 23907 wroff = ipst->ips_ip_wroff_extra; 23908 hdr_chunk_len = wroff + IP_SIMPLE_HDR_LENGTH; 23909 23910 i1 = pkts * hdr_chunk_len; 23911 /* 23912 * Create the header buffer, Multidata and destination address 23913 * and SAP attribute that should be associated with it. 23914 */ 23915 if ((hdr_mp = allocb(i1, BPRI_HI)) == NULL || 23916 ((hdr_mp->b_wptr += i1), 23917 (mmd = mmd_alloc(hdr_mp, &md_mp, KM_NOSLEEP)) == NULL) || 23918 !ip_md_addr_attr(mmd, NULL, ire->ire_nce->nce_res_mp)) { 23919 freemsg(mp); 23920 if (md_mp == NULL) { 23921 freemsg(hdr_mp); 23922 } else { 23923 free_mmd: IP_STAT(ipst, ip_frag_mdt_discarded); 23924 freemsg(md_mp); 23925 } 23926 IP_STAT(ipst, ip_frag_mdt_allocfail); 23927 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragFails); 23928 return; 23929 } 23930 IP_STAT(ipst, ip_frag_mdt_allocd); 23931 23932 /* 23933 * Add a payload buffer to the Multidata; this operation must not 23934 * fail, or otherwise our logic in this routine is broken. There 23935 * is no memory allocation done by the routine, so any returned 23936 * failure simply tells us that we've done something wrong. 23937 * 23938 * A failure tells us that either we're adding the same payload 23939 * buffer more than once, or we're trying to add more buffers than 23940 * allowed. None of the above cases should happen, and we panic 23941 * because either there's horrible heap corruption, and/or 23942 * programming mistake. 23943 */ 23944 if ((pbuf_idx = mmd_addpldbuf(mmd, mp)) < 0) 23945 goto pbuf_panic; 23946 23947 hdr_ptr = hdr_mp->b_rptr; 23948 pld_ptr = mp->b_rptr; 23949 23950 /* Establish the ending byte offset, based on the starting offset. */ 23951 offset <<= 3; 23952 ip_data_end = offset + ntohs(ipha_orig->ipha_length) - 23953 IP_SIMPLE_HDR_LENGTH; 23954 23955 pdi.flags = PDESC_HBUF_REF | PDESC_PBUF_REF; 23956 23957 while (pld_ptr < mp->b_wptr) { 23958 ipha_t *ipha; 23959 uint16_t offset_and_flags; 23960 uint16_t ip_len; 23961 int error; 23962 23963 ASSERT((hdr_ptr + hdr_chunk_len) <= hdr_mp->b_wptr); 23964 ipha = (ipha_t *)(hdr_ptr + wroff); 23965 ASSERT(OK_32PTR(ipha)); 23966 *ipha = *ipha_orig; 23967 23968 if (ip_data_end - offset > len) { 23969 offset_and_flags = IPH_MF; 23970 } else { 23971 /* 23972 * Last frag. Set len to the length of this last piece. 23973 */ 23974 len = ip_data_end - offset; 23975 /* A frag of a frag might have IPH_MF non-zero */ 23976 offset_and_flags = 23977 ntohs(ipha->ipha_fragment_offset_and_flags) & 23978 IPH_MF; 23979 } 23980 offset_and_flags |= (uint16_t)(offset >> 3); 23981 offset_and_flags |= (uint16_t)frag_flag; 23982 /* Store the offset and flags in the IP header. */ 23983 ipha->ipha_fragment_offset_and_flags = htons(offset_and_flags); 23984 23985 /* Store the length in the IP header. */ 23986 ip_len = (uint16_t)(len + IP_SIMPLE_HDR_LENGTH); 23987 ipha->ipha_length = htons(ip_len); 23988 23989 /* 23990 * Set the IP header checksum. Note that mp is just 23991 * the header, so this is easy to pass to ip_csum. 23992 */ 23993 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 23994 23995 DTRACE_IP7(send, mblk_t *, md_mp, conn_t *, NULL, void_ip_t *, 23996 ipha, __dtrace_ipsr_ill_t *, ill, ipha_t *, ipha, ip6_t *, 23997 NULL, int, 0); 23998 23999 /* 24000 * Record offset and size of header and data of the next packet 24001 * in the multidata message. 24002 */ 24003 PDESC_HDR_ADD(&pdi, hdr_ptr, wroff, IP_SIMPLE_HDR_LENGTH, 0); 24004 PDESC_PLD_INIT(&pdi); 24005 i1 = MIN(mp->b_wptr - pld_ptr, len); 24006 ASSERT(i1 > 0); 24007 PDESC_PLD_SPAN_ADD(&pdi, pbuf_idx, pld_ptr, i1); 24008 if (i1 == len) { 24009 pld_ptr += len; 24010 } else { 24011 i1 = len - i1; 24012 mp = mp->b_cont; 24013 ASSERT(mp != NULL); 24014 ASSERT(MBLKL(mp) >= i1); 24015 /* 24016 * Attach the next payload message block to the 24017 * multidata message. 24018 */ 24019 if ((pbuf_idx = mmd_addpldbuf(mmd, mp)) < 0) 24020 goto pbuf_panic; 24021 PDESC_PLD_SPAN_ADD(&pdi, pbuf_idx, mp->b_rptr, i1); 24022 pld_ptr = mp->b_rptr + i1; 24023 } 24024 24025 if ((mmd_addpdesc(mmd, (pdescinfo_t *)&pdi, &error, 24026 KM_NOSLEEP)) == NULL) { 24027 /* 24028 * Any failure other than ENOMEM indicates that we 24029 * have passed in invalid pdesc info or parameters 24030 * to mmd_addpdesc, which must not happen. 24031 * 24032 * EINVAL is a result of failure on boundary checks 24033 * against the pdesc info contents. It should not 24034 * happen, and we panic because either there's 24035 * horrible heap corruption, and/or programming 24036 * mistake. 24037 */ 24038 if (error != ENOMEM) { 24039 cmn_err(CE_PANIC, "ip_wput_frag_mdt: " 24040 "pdesc logic error detected for " 24041 "mmd %p pinfo %p (%d)\n", 24042 (void *)mmd, (void *)&pdi, error); 24043 /* NOTREACHED */ 24044 } 24045 IP_STAT(ipst, ip_frag_mdt_addpdescfail); 24046 /* Free unattached payload message blocks as well */ 24047 md_mp->b_cont = mp->b_cont; 24048 goto free_mmd; 24049 } 24050 24051 /* Advance fragment offset. */ 24052 offset += len; 24053 24054 /* Advance to location for next header in the buffer. */ 24055 hdr_ptr += hdr_chunk_len; 24056 24057 /* Did we reach the next payload message block? */ 24058 if (pld_ptr == mp->b_wptr && mp->b_cont != NULL) { 24059 mp = mp->b_cont; 24060 /* 24061 * Attach the next message block with payload 24062 * data to the multidata message. 24063 */ 24064 if ((pbuf_idx = mmd_addpldbuf(mmd, mp)) < 0) 24065 goto pbuf_panic; 24066 pld_ptr = mp->b_rptr; 24067 } 24068 } 24069 24070 ASSERT(hdr_mp->b_wptr == hdr_ptr); 24071 ASSERT(mp->b_wptr == pld_ptr); 24072 24073 /* Update IP statistics */ 24074 IP_STAT_UPDATE(ipst, ip_frag_mdt_pkt_out, pkts); 24075 24076 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsOutFragCreates, pkts); 24077 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragOKs); 24078 24079 len = ntohs(ipha_orig->ipha_length) + (pkts - 1) * IP_SIMPLE_HDR_LENGTH; 24080 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutTransmits, pkts); 24081 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutOctets, len); 24082 24083 if (pkt_type == OB_PKT) { 24084 ire->ire_ob_pkt_count += pkts; 24085 if (ire->ire_ipif != NULL) 24086 atomic_add_32(&ire->ire_ipif->ipif_ob_pkt_count, pkts); 24087 } else { 24088 /* The type is IB_PKT in the forwarding path. */ 24089 ire->ire_ib_pkt_count += pkts; 24090 ASSERT(!IRE_IS_LOCAL(ire)); 24091 if (ire->ire_type & IRE_BROADCAST) { 24092 atomic_add_32(&ire->ire_ipif->ipif_ib_pkt_count, pkts); 24093 } else { 24094 UPDATE_MIB(ill->ill_ip_mib, 24095 ipIfStatsHCOutForwDatagrams, pkts); 24096 atomic_add_32(&ire->ire_ipif->ipif_fo_pkt_count, pkts); 24097 } 24098 } 24099 ire->ire_last_used_time = lbolt; 24100 /* Send it down */ 24101 putnext(ire->ire_stq, md_mp); 24102 return; 24103 24104 pbuf_panic: 24105 cmn_err(CE_PANIC, "ip_wput_frag_mdt: payload buffer logic " 24106 "error for mmd %p pbuf %p (%d)", (void *)mmd, (void *)mp, 24107 pbuf_idx); 24108 /* NOTREACHED */ 24109 } 24110 24111 /* 24112 * Outbound IP fragmentation routine. 24113 * 24114 * NOTE : This routine does not ire_refrele the ire that is passed in 24115 * as the argument. 24116 */ 24117 static void 24118 ip_wput_frag(ire_t *ire, mblk_t *mp_orig, ip_pkt_t pkt_type, uint32_t max_frag, 24119 uint32_t frag_flag, zoneid_t zoneid, ip_stack_t *ipst, conn_t *connp) 24120 { 24121 int i1; 24122 mblk_t *ll_hdr_mp; 24123 int ll_hdr_len; 24124 int hdr_len; 24125 mblk_t *hdr_mp; 24126 ipha_t *ipha; 24127 int ip_data_end; 24128 int len; 24129 mblk_t *mp = mp_orig, *mp1; 24130 int offset; 24131 queue_t *q; 24132 uint32_t v_hlen_tos_len; 24133 mblk_t *first_mp; 24134 boolean_t mctl_present; 24135 ill_t *ill; 24136 ill_t *out_ill; 24137 mblk_t *xmit_mp; 24138 mblk_t *carve_mp; 24139 ire_t *ire1 = NULL; 24140 ire_t *save_ire = NULL; 24141 mblk_t *next_mp = NULL; 24142 boolean_t last_frag = B_FALSE; 24143 boolean_t multirt_send = B_FALSE; 24144 ire_t *first_ire = NULL; 24145 irb_t *irb = NULL; 24146 mib2_ipIfStatsEntry_t *mibptr = NULL; 24147 24148 ill = ire_to_ill(ire); 24149 mibptr = (ill != NULL) ? ill->ill_ip_mib : &ipst->ips_ip_mib; 24150 24151 BUMP_MIB(mibptr, ipIfStatsOutFragReqds); 24152 24153 if (max_frag == 0) { 24154 ip1dbg(("ip_wput_frag: ire frag size is 0" 24155 " - dropping packet\n")); 24156 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 24157 freemsg(mp); 24158 return; 24159 } 24160 24161 /* 24162 * IPsec does not allow hw accelerated packets to be fragmented 24163 * This check is made in ip_wput_ipsec_out prior to coming here 24164 * via ip_wput_ire_fragmentit. 24165 * 24166 * If at this point we have an ire whose ARP request has not 24167 * been sent out, we call ip_xmit_v4->ire_arpresolve to trigger 24168 * sending of ARP query and change ire's state to ND_INCOMPLETE. 24169 * This packet and all fragmentable packets for this ire will 24170 * continue to get dropped while ire_nce->nce_state remains in 24171 * ND_INCOMPLETE. Post-ARP resolution, after ire's nce_state changes to 24172 * ND_REACHABLE, all subsquent large packets for this ire will 24173 * get fragemented and sent out by this function. 24174 */ 24175 if (ire->ire_nce && ire->ire_nce->nce_state != ND_REACHABLE) { 24176 /* If nce_state is ND_INITIAL, trigger ARP query */ 24177 (void) ip_xmit_v4(NULL, ire, NULL, B_FALSE, NULL); 24178 ip1dbg(("ip_wput_frag: mac address for ire is unresolved" 24179 " - dropping packet\n")); 24180 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 24181 freemsg(mp); 24182 return; 24183 } 24184 24185 TRACE_0(TR_FAC_IP, TR_IP_WPUT_FRAG_START, 24186 "ip_wput_frag_start:"); 24187 24188 if (mp->b_datap->db_type == M_CTL) { 24189 first_mp = mp; 24190 mp_orig = mp = mp->b_cont; 24191 mctl_present = B_TRUE; 24192 } else { 24193 first_mp = mp; 24194 mctl_present = B_FALSE; 24195 } 24196 24197 ASSERT(MBLKL(mp) >= sizeof (ipha_t)); 24198 ipha = (ipha_t *)mp->b_rptr; 24199 24200 /* 24201 * If the Don't Fragment flag is on, generate an ICMP destination 24202 * unreachable, fragmentation needed. 24203 */ 24204 offset = ntohs(ipha->ipha_fragment_offset_and_flags); 24205 if (offset & IPH_DF) { 24206 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 24207 if (is_system_labeled()) { 24208 max_frag = tsol_pmtu_adjust(mp, ire->ire_max_frag, 24209 ire->ire_max_frag - max_frag, AF_INET); 24210 } 24211 /* 24212 * Need to compute hdr checksum if called from ip_wput_ire. 24213 * Note that ip_rput_forward verifies the checksum before 24214 * calling this routine so in that case this is a noop. 24215 */ 24216 ipha->ipha_hdr_checksum = 0; 24217 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 24218 icmp_frag_needed(ire->ire_stq, first_mp, max_frag, zoneid, 24219 ipst); 24220 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 24221 "ip_wput_frag_end:(%S)", 24222 "don't fragment"); 24223 return; 24224 } 24225 /* 24226 * Labeled systems adjust max_frag if they add a label 24227 * to send the correct path mtu. We need the real mtu since we 24228 * are fragmenting the packet after label adjustment. 24229 */ 24230 if (is_system_labeled()) 24231 max_frag = ire->ire_max_frag; 24232 if (mctl_present) 24233 freeb(first_mp); 24234 /* 24235 * Establish the starting offset. May not be zero if we are fragging 24236 * a fragment that is being forwarded. 24237 */ 24238 offset = offset & IPH_OFFSET; 24239 24240 /* TODO why is this test needed? */ 24241 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 24242 if (((max_frag - LENGTH) & ~7) < 8) { 24243 /* TODO: notify ulp somehow */ 24244 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 24245 freemsg(mp); 24246 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 24247 "ip_wput_frag_end:(%S)", 24248 "len < 8"); 24249 return; 24250 } 24251 24252 hdr_len = (V_HLEN & 0xF) << 2; 24253 24254 ipha->ipha_hdr_checksum = 0; 24255 24256 /* 24257 * Establish the number of bytes maximum per frag, after putting 24258 * in the header. 24259 */ 24260 len = (max_frag - hdr_len) & ~7; 24261 24262 /* Check if we can use MDT to send out the frags. */ 24263 ASSERT(!IRE_IS_LOCAL(ire)); 24264 if (hdr_len == IP_SIMPLE_HDR_LENGTH && 24265 ipst->ips_ip_multidata_outbound && 24266 !(ire->ire_flags & RTF_MULTIRT) && 24267 !IPP_ENABLED(IPP_LOCAL_OUT, ipst) && 24268 ill != NULL && ILL_MDT_CAPABLE(ill) && 24269 IP_CAN_FRAG_MDT(mp, IP_SIMPLE_HDR_LENGTH, len)) { 24270 ASSERT(ill->ill_mdt_capab != NULL); 24271 if (!ill->ill_mdt_capab->ill_mdt_on) { 24272 /* 24273 * If MDT has been previously turned off in the past, 24274 * and we currently can do MDT (due to IPQoS policy 24275 * removal, etc.) then enable it for this interface. 24276 */ 24277 ill->ill_mdt_capab->ill_mdt_on = 1; 24278 ip1dbg(("ip_wput_frag: enabled MDT for interface %s\n", 24279 ill->ill_name)); 24280 } 24281 ip_wput_frag_mdt(ire, mp, pkt_type, len, frag_flag, 24282 offset); 24283 return; 24284 } 24285 24286 /* Get a copy of the header for the trailing frags */ 24287 hdr_mp = ip_wput_frag_copyhdr((uchar_t *)ipha, hdr_len, offset, ipst, 24288 mp); 24289 if (!hdr_mp) { 24290 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 24291 freemsg(mp); 24292 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 24293 "ip_wput_frag_end:(%S)", 24294 "couldn't copy hdr"); 24295 return; 24296 } 24297 24298 /* Store the starting offset, with the MoreFrags flag. */ 24299 i1 = offset | IPH_MF | frag_flag; 24300 ipha->ipha_fragment_offset_and_flags = htons((uint16_t)i1); 24301 24302 /* Establish the ending byte offset, based on the starting offset. */ 24303 offset <<= 3; 24304 ip_data_end = offset + ntohs(ipha->ipha_length) - hdr_len; 24305 24306 /* Store the length of the first fragment in the IP header. */ 24307 i1 = len + hdr_len; 24308 ASSERT(i1 <= IP_MAXPACKET); 24309 ipha->ipha_length = htons((uint16_t)i1); 24310 24311 /* 24312 * Compute the IP header checksum for the first frag. We have to 24313 * watch out that we stop at the end of the header. 24314 */ 24315 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 24316 24317 /* 24318 * Now carve off the first frag. Note that this will include the 24319 * original IP header. 24320 */ 24321 if (!(mp = ip_carve_mp(&mp_orig, i1))) { 24322 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 24323 freeb(hdr_mp); 24324 freemsg(mp_orig); 24325 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 24326 "ip_wput_frag_end:(%S)", 24327 "couldn't carve first"); 24328 return; 24329 } 24330 24331 /* 24332 * Multirouting case. Each fragment is replicated 24333 * via all non-condemned RTF_MULTIRT routes 24334 * currently resolved. 24335 * We ensure that first_ire is the first RTF_MULTIRT 24336 * ire in the bucket. 24337 */ 24338 if (ire->ire_flags & RTF_MULTIRT) { 24339 irb = ire->ire_bucket; 24340 ASSERT(irb != NULL); 24341 24342 multirt_send = B_TRUE; 24343 24344 /* Make sure we do not omit any multiroute ire. */ 24345 IRB_REFHOLD(irb); 24346 for (first_ire = irb->irb_ire; 24347 first_ire != NULL; 24348 first_ire = first_ire->ire_next) { 24349 if ((first_ire->ire_flags & RTF_MULTIRT) && 24350 (first_ire->ire_addr == ire->ire_addr) && 24351 !(first_ire->ire_marks & 24352 (IRE_MARK_CONDEMNED | IRE_MARK_TESTHIDDEN))) 24353 break; 24354 } 24355 24356 if (first_ire != NULL) { 24357 if (first_ire != ire) { 24358 IRE_REFHOLD(first_ire); 24359 /* 24360 * Do not release the ire passed in 24361 * as the argument. 24362 */ 24363 ire = first_ire; 24364 } else { 24365 first_ire = NULL; 24366 } 24367 } 24368 IRB_REFRELE(irb); 24369 24370 /* 24371 * Save the first ire; we will need to restore it 24372 * for the trailing frags. 24373 * We REFHOLD save_ire, as each iterated ire will be 24374 * REFRELEd. 24375 */ 24376 save_ire = ire; 24377 IRE_REFHOLD(save_ire); 24378 } 24379 24380 /* 24381 * First fragment emission loop. 24382 * In most cases, the emission loop below is entered only 24383 * once. Only in the case where the ire holds the RTF_MULTIRT 24384 * flag, do we loop to process all RTF_MULTIRT ires in the 24385 * bucket, and send the fragment through all crossed 24386 * RTF_MULTIRT routes. 24387 */ 24388 do { 24389 if (ire->ire_flags & RTF_MULTIRT) { 24390 /* 24391 * We are in a multiple send case, need to get 24392 * the next ire and make a copy of the packet. 24393 * ire1 holds here the next ire to process in the 24394 * bucket. If multirouting is expected, 24395 * any non-RTF_MULTIRT ire that has the 24396 * right destination address is ignored. 24397 * 24398 * We have to take into account the MTU of 24399 * each walked ire. max_frag is set by the 24400 * the caller and generally refers to 24401 * the primary ire entry. Here we ensure that 24402 * no route with a lower MTU will be used, as 24403 * fragments are carved once for all ires, 24404 * then replicated. 24405 */ 24406 ASSERT(irb != NULL); 24407 IRB_REFHOLD(irb); 24408 for (ire1 = ire->ire_next; 24409 ire1 != NULL; 24410 ire1 = ire1->ire_next) { 24411 if ((ire1->ire_flags & RTF_MULTIRT) == 0) 24412 continue; 24413 if (ire1->ire_addr != ire->ire_addr) 24414 continue; 24415 if (ire1->ire_marks & 24416 (IRE_MARK_CONDEMNED | IRE_MARK_TESTHIDDEN)) 24417 continue; 24418 /* 24419 * Ensure we do not exceed the MTU 24420 * of the next route. 24421 */ 24422 if (ire1->ire_max_frag < max_frag) { 24423 ip_multirt_bad_mtu(ire1, max_frag); 24424 continue; 24425 } 24426 24427 /* Got one. */ 24428 IRE_REFHOLD(ire1); 24429 break; 24430 } 24431 IRB_REFRELE(irb); 24432 24433 if (ire1 != NULL) { 24434 next_mp = copyb(mp); 24435 if ((next_mp == NULL) || 24436 ((mp->b_cont != NULL) && 24437 ((next_mp->b_cont = 24438 dupmsg(mp->b_cont)) == NULL))) { 24439 freemsg(next_mp); 24440 next_mp = NULL; 24441 ire_refrele(ire1); 24442 ire1 = NULL; 24443 } 24444 } 24445 24446 /* Last multiroute ire; don't loop anymore. */ 24447 if (ire1 == NULL) { 24448 multirt_send = B_FALSE; 24449 } 24450 } 24451 24452 ll_hdr_len = 0; 24453 LOCK_IRE_FP_MP(ire); 24454 ll_hdr_mp = ire->ire_nce->nce_fp_mp; 24455 if (ll_hdr_mp != NULL) { 24456 ASSERT(ll_hdr_mp->b_datap->db_type == M_DATA); 24457 ll_hdr_len = ll_hdr_mp->b_wptr - ll_hdr_mp->b_rptr; 24458 } else { 24459 ll_hdr_mp = ire->ire_nce->nce_res_mp; 24460 } 24461 24462 /* If there is a transmit header, get a copy for this frag. */ 24463 /* 24464 * TODO: should check db_ref before calling ip_carve_mp since 24465 * it might give us a dup. 24466 */ 24467 if (!ll_hdr_mp) { 24468 /* No xmit header. */ 24469 xmit_mp = mp; 24470 24471 /* We have a link-layer header that can fit in our mblk. */ 24472 } else if (mp->b_datap->db_ref == 1 && 24473 ll_hdr_len != 0 && 24474 ll_hdr_len <= mp->b_rptr - mp->b_datap->db_base) { 24475 /* M_DATA fastpath */ 24476 mp->b_rptr -= ll_hdr_len; 24477 bcopy(ll_hdr_mp->b_rptr, mp->b_rptr, ll_hdr_len); 24478 xmit_mp = mp; 24479 24480 /* Corner case if copyb has failed */ 24481 } else if (!(xmit_mp = copyb(ll_hdr_mp))) { 24482 UNLOCK_IRE_FP_MP(ire); 24483 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 24484 freeb(hdr_mp); 24485 freemsg(mp); 24486 freemsg(mp_orig); 24487 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 24488 "ip_wput_frag_end:(%S)", 24489 "discard"); 24490 24491 if (multirt_send) { 24492 ASSERT(ire1); 24493 ASSERT(next_mp); 24494 24495 freemsg(next_mp); 24496 ire_refrele(ire1); 24497 } 24498 if (save_ire != NULL) 24499 IRE_REFRELE(save_ire); 24500 24501 if (first_ire != NULL) 24502 ire_refrele(first_ire); 24503 return; 24504 24505 /* 24506 * Case of res_mp OR the fastpath mp can't fit 24507 * in the mblk 24508 */ 24509 } else { 24510 xmit_mp->b_cont = mp; 24511 24512 /* 24513 * Get priority marking, if any. 24514 * We propagate the CoS marking from the 24515 * original packet that went to QoS processing 24516 * in ip_wput_ire to the newly carved mp. 24517 */ 24518 if (DB_TYPE(xmit_mp) == M_DATA) 24519 xmit_mp->b_band = mp->b_band; 24520 } 24521 UNLOCK_IRE_FP_MP(ire); 24522 24523 q = ire->ire_stq; 24524 out_ill = (ill_t *)q->q_ptr; 24525 24526 BUMP_MIB(out_ill->ill_ip_mib, ipIfStatsOutFragCreates); 24527 24528 DTRACE_PROBE4(ip4__physical__out__start, 24529 ill_t *, NULL, ill_t *, out_ill, 24530 ipha_t *, ipha, mblk_t *, xmit_mp); 24531 24532 FW_HOOKS(ipst->ips_ip4_physical_out_event, 24533 ipst->ips_ipv4firewall_physical_out, 24534 NULL, out_ill, ipha, xmit_mp, mp, 0, ipst); 24535 24536 DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, xmit_mp); 24537 24538 if (xmit_mp != NULL) { 24539 DTRACE_IP7(send, mblk_t *, xmit_mp, conn_t *, NULL, 24540 void_ip_t *, ipha, __dtrace_ipsr_ill_t *, out_ill, 24541 ipha_t *, ipha, ip6_t *, NULL, int, 0); 24542 24543 ILL_SEND_TX(out_ill, ire, connp, xmit_mp, 0, connp); 24544 24545 BUMP_MIB(out_ill->ill_ip_mib, ipIfStatsHCOutTransmits); 24546 UPDATE_MIB(out_ill->ill_ip_mib, 24547 ipIfStatsHCOutOctets, i1); 24548 24549 if (pkt_type != OB_PKT) { 24550 /* 24551 * Update the packet count and MIB stats 24552 * of trailing RTF_MULTIRT ires. 24553 */ 24554 UPDATE_OB_PKT_COUNT(ire); 24555 BUMP_MIB(out_ill->ill_ip_mib, 24556 ipIfStatsOutFragReqds); 24557 } 24558 } 24559 24560 if (multirt_send) { 24561 /* 24562 * We are in a multiple send case; look for 24563 * the next ire and re-enter the loop. 24564 */ 24565 ASSERT(ire1); 24566 ASSERT(next_mp); 24567 /* REFRELE the current ire before looping */ 24568 ire_refrele(ire); 24569 ire = ire1; 24570 ire1 = NULL; 24571 mp = next_mp; 24572 next_mp = NULL; 24573 } 24574 } while (multirt_send); 24575 24576 ASSERT(ire1 == NULL); 24577 24578 /* Restore the original ire; we need it for the trailing frags */ 24579 if (save_ire != NULL) { 24580 /* REFRELE the last iterated ire */ 24581 ire_refrele(ire); 24582 /* save_ire has been REFHOLDed */ 24583 ire = save_ire; 24584 save_ire = NULL; 24585 q = ire->ire_stq; 24586 } 24587 24588 if (pkt_type == OB_PKT) { 24589 UPDATE_OB_PKT_COUNT(ire); 24590 } else { 24591 out_ill = (ill_t *)q->q_ptr; 24592 BUMP_MIB(out_ill->ill_ip_mib, ipIfStatsHCOutForwDatagrams); 24593 UPDATE_IB_PKT_COUNT(ire); 24594 } 24595 24596 /* Advance the offset to the second frag starting point. */ 24597 offset += len; 24598 /* 24599 * Update hdr_len from the copied header - there might be less options 24600 * in the later fragments. 24601 */ 24602 hdr_len = IPH_HDR_LENGTH(hdr_mp->b_rptr); 24603 /* Loop until done. */ 24604 for (;;) { 24605 uint16_t offset_and_flags; 24606 uint16_t ip_len; 24607 24608 if (ip_data_end - offset > len) { 24609 /* 24610 * Carve off the appropriate amount from the original 24611 * datagram. 24612 */ 24613 if (!(carve_mp = ip_carve_mp(&mp_orig, len))) { 24614 mp = NULL; 24615 break; 24616 } 24617 /* 24618 * More frags after this one. Get another copy 24619 * of the header. 24620 */ 24621 if (carve_mp->b_datap->db_ref == 1 && 24622 hdr_mp->b_wptr - hdr_mp->b_rptr < 24623 carve_mp->b_rptr - carve_mp->b_datap->db_base) { 24624 /* Inline IP header */ 24625 carve_mp->b_rptr -= hdr_mp->b_wptr - 24626 hdr_mp->b_rptr; 24627 bcopy(hdr_mp->b_rptr, carve_mp->b_rptr, 24628 hdr_mp->b_wptr - hdr_mp->b_rptr); 24629 mp = carve_mp; 24630 } else { 24631 if (!(mp = copyb(hdr_mp))) { 24632 freemsg(carve_mp); 24633 break; 24634 } 24635 /* Get priority marking, if any. */ 24636 mp->b_band = carve_mp->b_band; 24637 mp->b_cont = carve_mp; 24638 } 24639 ipha = (ipha_t *)mp->b_rptr; 24640 offset_and_flags = IPH_MF; 24641 } else { 24642 /* 24643 * Last frag. Consume the header. Set len to 24644 * the length of this last piece. 24645 */ 24646 len = ip_data_end - offset; 24647 24648 /* 24649 * Carve off the appropriate amount from the original 24650 * datagram. 24651 */ 24652 if (!(carve_mp = ip_carve_mp(&mp_orig, len))) { 24653 mp = NULL; 24654 break; 24655 } 24656 if (carve_mp->b_datap->db_ref == 1 && 24657 hdr_mp->b_wptr - hdr_mp->b_rptr < 24658 carve_mp->b_rptr - carve_mp->b_datap->db_base) { 24659 /* Inline IP header */ 24660 carve_mp->b_rptr -= hdr_mp->b_wptr - 24661 hdr_mp->b_rptr; 24662 bcopy(hdr_mp->b_rptr, carve_mp->b_rptr, 24663 hdr_mp->b_wptr - hdr_mp->b_rptr); 24664 mp = carve_mp; 24665 freeb(hdr_mp); 24666 hdr_mp = mp; 24667 } else { 24668 mp = hdr_mp; 24669 /* Get priority marking, if any. */ 24670 mp->b_band = carve_mp->b_band; 24671 mp->b_cont = carve_mp; 24672 } 24673 ipha = (ipha_t *)mp->b_rptr; 24674 /* A frag of a frag might have IPH_MF non-zero */ 24675 offset_and_flags = 24676 ntohs(ipha->ipha_fragment_offset_and_flags) & 24677 IPH_MF; 24678 } 24679 offset_and_flags |= (uint16_t)(offset >> 3); 24680 offset_and_flags |= (uint16_t)frag_flag; 24681 /* Store the offset and flags in the IP header. */ 24682 ipha->ipha_fragment_offset_and_flags = htons(offset_and_flags); 24683 24684 /* Store the length in the IP header. */ 24685 ip_len = (uint16_t)(len + hdr_len); 24686 ipha->ipha_length = htons(ip_len); 24687 24688 /* 24689 * Set the IP header checksum. Note that mp is just 24690 * the header, so this is easy to pass to ip_csum. 24691 */ 24692 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 24693 24694 /* Attach a transmit header, if any, and ship it. */ 24695 if (pkt_type == OB_PKT) { 24696 UPDATE_OB_PKT_COUNT(ire); 24697 } else { 24698 out_ill = (ill_t *)q->q_ptr; 24699 BUMP_MIB(out_ill->ill_ip_mib, 24700 ipIfStatsHCOutForwDatagrams); 24701 UPDATE_IB_PKT_COUNT(ire); 24702 } 24703 24704 if (ire->ire_flags & RTF_MULTIRT) { 24705 irb = ire->ire_bucket; 24706 ASSERT(irb != NULL); 24707 24708 multirt_send = B_TRUE; 24709 24710 /* 24711 * Save the original ire; we will need to restore it 24712 * for the tailing frags. 24713 */ 24714 save_ire = ire; 24715 IRE_REFHOLD(save_ire); 24716 } 24717 /* 24718 * Emission loop for this fragment, similar 24719 * to what is done for the first fragment. 24720 */ 24721 do { 24722 if (multirt_send) { 24723 /* 24724 * We are in a multiple send case, need to get 24725 * the next ire and make a copy of the packet. 24726 */ 24727 ASSERT(irb != NULL); 24728 IRB_REFHOLD(irb); 24729 for (ire1 = ire->ire_next; 24730 ire1 != NULL; 24731 ire1 = ire1->ire_next) { 24732 if (!(ire1->ire_flags & RTF_MULTIRT)) 24733 continue; 24734 if (ire1->ire_addr != ire->ire_addr) 24735 continue; 24736 if (ire1->ire_marks & 24737 (IRE_MARK_CONDEMNED | 24738 IRE_MARK_TESTHIDDEN)) 24739 continue; 24740 /* 24741 * Ensure we do not exceed the MTU 24742 * of the next route. 24743 */ 24744 if (ire1->ire_max_frag < max_frag) { 24745 ip_multirt_bad_mtu(ire1, 24746 max_frag); 24747 continue; 24748 } 24749 24750 /* Got one. */ 24751 IRE_REFHOLD(ire1); 24752 break; 24753 } 24754 IRB_REFRELE(irb); 24755 24756 if (ire1 != NULL) { 24757 next_mp = copyb(mp); 24758 if ((next_mp == NULL) || 24759 ((mp->b_cont != NULL) && 24760 ((next_mp->b_cont = 24761 dupmsg(mp->b_cont)) == NULL))) { 24762 freemsg(next_mp); 24763 next_mp = NULL; 24764 ire_refrele(ire1); 24765 ire1 = NULL; 24766 } 24767 } 24768 24769 /* Last multiroute ire; don't loop anymore. */ 24770 if (ire1 == NULL) { 24771 multirt_send = B_FALSE; 24772 } 24773 } 24774 24775 /* Update transmit header */ 24776 ll_hdr_len = 0; 24777 LOCK_IRE_FP_MP(ire); 24778 ll_hdr_mp = ire->ire_nce->nce_fp_mp; 24779 if (ll_hdr_mp != NULL) { 24780 ASSERT(ll_hdr_mp->b_datap->db_type == M_DATA); 24781 ll_hdr_len = MBLKL(ll_hdr_mp); 24782 } else { 24783 ll_hdr_mp = ire->ire_nce->nce_res_mp; 24784 } 24785 24786 if (!ll_hdr_mp) { 24787 xmit_mp = mp; 24788 24789 /* 24790 * We have link-layer header that can fit in 24791 * our mblk. 24792 */ 24793 } else if (mp->b_datap->db_ref == 1 && 24794 ll_hdr_len != 0 && 24795 ll_hdr_len <= mp->b_rptr - mp->b_datap->db_base) { 24796 /* M_DATA fastpath */ 24797 mp->b_rptr -= ll_hdr_len; 24798 bcopy(ll_hdr_mp->b_rptr, mp->b_rptr, 24799 ll_hdr_len); 24800 xmit_mp = mp; 24801 24802 /* 24803 * Case of res_mp OR the fastpath mp can't fit 24804 * in the mblk 24805 */ 24806 } else if ((xmit_mp = copyb(ll_hdr_mp)) != NULL) { 24807 xmit_mp->b_cont = mp; 24808 /* Get priority marking, if any. */ 24809 if (DB_TYPE(xmit_mp) == M_DATA) 24810 xmit_mp->b_band = mp->b_band; 24811 24812 /* Corner case if copyb failed */ 24813 } else { 24814 /* 24815 * Exit both the replication and 24816 * fragmentation loops. 24817 */ 24818 UNLOCK_IRE_FP_MP(ire); 24819 goto drop_pkt; 24820 } 24821 UNLOCK_IRE_FP_MP(ire); 24822 24823 mp1 = mp; 24824 out_ill = (ill_t *)q->q_ptr; 24825 24826 BUMP_MIB(out_ill->ill_ip_mib, ipIfStatsOutFragCreates); 24827 24828 DTRACE_PROBE4(ip4__physical__out__start, 24829 ill_t *, NULL, ill_t *, out_ill, 24830 ipha_t *, ipha, mblk_t *, xmit_mp); 24831 24832 FW_HOOKS(ipst->ips_ip4_physical_out_event, 24833 ipst->ips_ipv4firewall_physical_out, 24834 NULL, out_ill, ipha, xmit_mp, mp, 0, ipst); 24835 24836 DTRACE_PROBE1(ip4__physical__out__end, 24837 mblk_t *, xmit_mp); 24838 24839 if (mp != mp1 && hdr_mp == mp1) 24840 hdr_mp = mp; 24841 if (mp != mp1 && mp_orig == mp1) 24842 mp_orig = mp; 24843 24844 if (xmit_mp != NULL) { 24845 DTRACE_IP7(send, mblk_t *, xmit_mp, conn_t *, 24846 NULL, void_ip_t *, ipha, 24847 __dtrace_ipsr_ill_t *, out_ill, ipha_t *, 24848 ipha, ip6_t *, NULL, int, 0); 24849 24850 ILL_SEND_TX(out_ill, ire, connp, 24851 xmit_mp, 0, connp); 24852 24853 BUMP_MIB(out_ill->ill_ip_mib, 24854 ipIfStatsHCOutTransmits); 24855 UPDATE_MIB(out_ill->ill_ip_mib, 24856 ipIfStatsHCOutOctets, ip_len); 24857 24858 if (pkt_type != OB_PKT) { 24859 /* 24860 * Update the packet count of trailing 24861 * RTF_MULTIRT ires. 24862 */ 24863 UPDATE_OB_PKT_COUNT(ire); 24864 } 24865 } 24866 24867 /* All done if we just consumed the hdr_mp. */ 24868 if (mp == hdr_mp) { 24869 last_frag = B_TRUE; 24870 BUMP_MIB(out_ill->ill_ip_mib, 24871 ipIfStatsOutFragOKs); 24872 } 24873 24874 if (multirt_send) { 24875 /* 24876 * We are in a multiple send case; look for 24877 * the next ire and re-enter the loop. 24878 */ 24879 ASSERT(ire1); 24880 ASSERT(next_mp); 24881 /* REFRELE the current ire before looping */ 24882 ire_refrele(ire); 24883 ire = ire1; 24884 ire1 = NULL; 24885 q = ire->ire_stq; 24886 mp = next_mp; 24887 next_mp = NULL; 24888 } 24889 } while (multirt_send); 24890 /* 24891 * Restore the original ire; we need it for the 24892 * trailing frags 24893 */ 24894 if (save_ire != NULL) { 24895 ASSERT(ire1 == NULL); 24896 /* REFRELE the last iterated ire */ 24897 ire_refrele(ire); 24898 /* save_ire has been REFHOLDed */ 24899 ire = save_ire; 24900 q = ire->ire_stq; 24901 save_ire = NULL; 24902 } 24903 24904 if (last_frag) { 24905 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 24906 "ip_wput_frag_end:(%S)", 24907 "consumed hdr_mp"); 24908 24909 if (first_ire != NULL) 24910 ire_refrele(first_ire); 24911 return; 24912 } 24913 /* Otherwise, advance and loop. */ 24914 offset += len; 24915 } 24916 24917 drop_pkt: 24918 /* Clean up following allocation failure. */ 24919 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 24920 freemsg(mp); 24921 if (mp != hdr_mp) 24922 freeb(hdr_mp); 24923 if (mp != mp_orig) 24924 freemsg(mp_orig); 24925 24926 if (save_ire != NULL) 24927 IRE_REFRELE(save_ire); 24928 if (first_ire != NULL) 24929 ire_refrele(first_ire); 24930 24931 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 24932 "ip_wput_frag_end:(%S)", 24933 "end--alloc failure"); 24934 } 24935 24936 /* 24937 * Copy the header plus those options which have the copy bit set 24938 * src is the template to make sure we preserve the cred for TX purposes. 24939 */ 24940 static mblk_t * 24941 ip_wput_frag_copyhdr(uchar_t *rptr, int hdr_len, int offset, ip_stack_t *ipst, 24942 mblk_t *src) 24943 { 24944 mblk_t *mp; 24945 uchar_t *up; 24946 24947 /* 24948 * Quick check if we need to look for options without the copy bit 24949 * set 24950 */ 24951 mp = allocb_tmpl(ipst->ips_ip_wroff_extra + hdr_len, src); 24952 if (!mp) 24953 return (mp); 24954 mp->b_rptr += ipst->ips_ip_wroff_extra; 24955 if (hdr_len == IP_SIMPLE_HDR_LENGTH || offset != 0) { 24956 bcopy(rptr, mp->b_rptr, hdr_len); 24957 mp->b_wptr += hdr_len + ipst->ips_ip_wroff_extra; 24958 return (mp); 24959 } 24960 up = mp->b_rptr; 24961 bcopy(rptr, up, IP_SIMPLE_HDR_LENGTH); 24962 up += IP_SIMPLE_HDR_LENGTH; 24963 rptr += IP_SIMPLE_HDR_LENGTH; 24964 hdr_len -= IP_SIMPLE_HDR_LENGTH; 24965 while (hdr_len > 0) { 24966 uint32_t optval; 24967 uint32_t optlen; 24968 24969 optval = *rptr; 24970 if (optval == IPOPT_EOL) 24971 break; 24972 if (optval == IPOPT_NOP) 24973 optlen = 1; 24974 else 24975 optlen = rptr[1]; 24976 if (optval & IPOPT_COPY) { 24977 bcopy(rptr, up, optlen); 24978 up += optlen; 24979 } 24980 rptr += optlen; 24981 hdr_len -= optlen; 24982 } 24983 /* 24984 * Make sure that we drop an even number of words by filling 24985 * with EOL to the next word boundary. 24986 */ 24987 for (hdr_len = up - (mp->b_rptr + IP_SIMPLE_HDR_LENGTH); 24988 hdr_len & 0x3; hdr_len++) 24989 *up++ = IPOPT_EOL; 24990 mp->b_wptr = up; 24991 /* Update header length */ 24992 mp->b_rptr[0] = (uint8_t)((IP_VERSION << 4) | ((up - mp->b_rptr) >> 2)); 24993 return (mp); 24994 } 24995 24996 /* 24997 * Delivery to local recipients including fanout to multiple recipients. 24998 * Does not do checksumming of UDP/TCP. 24999 * Note: q should be the read side queue for either the ill or conn. 25000 * Note: rq should be the read side q for the lower (ill) stream. 25001 * We don't send packets to IPPF processing, thus the last argument 25002 * to all the fanout calls are B_FALSE. 25003 */ 25004 void 25005 ip_wput_local(queue_t *q, ill_t *ill, ipha_t *ipha, mblk_t *mp, ire_t *ire, 25006 int fanout_flags, zoneid_t zoneid) 25007 { 25008 uint32_t protocol; 25009 mblk_t *first_mp; 25010 boolean_t mctl_present; 25011 int ire_type; 25012 #define rptr ((uchar_t *)ipha) 25013 ip_stack_t *ipst = ill->ill_ipst; 25014 25015 TRACE_1(TR_FAC_IP, TR_IP_WPUT_LOCAL_START, 25016 "ip_wput_local_start: q %p", q); 25017 25018 if (ire != NULL) { 25019 ire_type = ire->ire_type; 25020 } else { 25021 /* 25022 * Only ip_multicast_loopback() calls us with a NULL ire. If the 25023 * packet is not multicast, we can't tell the ire type. 25024 */ 25025 ASSERT(CLASSD(ipha->ipha_dst)); 25026 ire_type = IRE_BROADCAST; 25027 } 25028 25029 first_mp = mp; 25030 if (first_mp->b_datap->db_type == M_CTL) { 25031 ipsec_out_t *io = (ipsec_out_t *)first_mp->b_rptr; 25032 if (!io->ipsec_out_secure) { 25033 /* 25034 * This ipsec_out_t was allocated in ip_wput 25035 * for multicast packets to store the ill_index. 25036 * As this is being delivered locally, we don't 25037 * need this anymore. 25038 */ 25039 mp = first_mp->b_cont; 25040 freeb(first_mp); 25041 first_mp = mp; 25042 mctl_present = B_FALSE; 25043 } else { 25044 /* 25045 * Convert IPSEC_OUT to IPSEC_IN, preserving all 25046 * security properties for the looped-back packet. 25047 */ 25048 mctl_present = B_TRUE; 25049 mp = first_mp->b_cont; 25050 ASSERT(mp != NULL); 25051 ipsec_out_to_in(first_mp); 25052 } 25053 } else { 25054 mctl_present = B_FALSE; 25055 } 25056 25057 DTRACE_PROBE4(ip4__loopback__in__start, 25058 ill_t *, ill, ill_t *, NULL, 25059 ipha_t *, ipha, mblk_t *, first_mp); 25060 25061 FW_HOOKS(ipst->ips_ip4_loopback_in_event, 25062 ipst->ips_ipv4firewall_loopback_in, 25063 ill, NULL, ipha, first_mp, mp, 0, ipst); 25064 25065 DTRACE_PROBE1(ip4__loopback__in__end, mblk_t *, first_mp); 25066 25067 if (first_mp == NULL) 25068 return; 25069 25070 if (ipst->ips_ipobs_enabled) { 25071 zoneid_t szone, dzone, lookup_zoneid = ALL_ZONES; 25072 zoneid_t stackzoneid = netstackid_to_zoneid( 25073 ipst->ips_netstack->netstack_stackid); 25074 25075 dzone = (stackzoneid == GLOBAL_ZONEID) ? zoneid : stackzoneid; 25076 /* 25077 * 127.0.0.1 is special, as we cannot lookup its zoneid by 25078 * address. Restrict the lookup below to the destination zone. 25079 */ 25080 if (ipha->ipha_src == ntohl(INADDR_LOOPBACK)) 25081 lookup_zoneid = zoneid; 25082 szone = ip_get_zoneid_v4(ipha->ipha_src, mp, ipst, 25083 lookup_zoneid); 25084 ipobs_hook(mp, IPOBS_HOOK_LOCAL, szone, dzone, ill, 25085 IPV4_VERSION, 0, ipst); 25086 } 25087 25088 DTRACE_IP7(receive, mblk_t *, first_mp, conn_t *, NULL, void_ip_t *, 25089 ipha, __dtrace_ipsr_ill_t *, ill, ipha_t *, ipha, ip6_t *, NULL, 25090 int, 1); 25091 25092 ipst->ips_loopback_packets++; 25093 25094 ip2dbg(("ip_wput_local: from 0x%x to 0x%x in zone %d\n", 25095 ntohl(ipha->ipha_src), ntohl(ipha->ipha_dst), zoneid)); 25096 if (!IS_SIMPLE_IPH(ipha)) { 25097 ip_wput_local_options(ipha, ipst); 25098 } 25099 25100 protocol = ipha->ipha_protocol; 25101 switch (protocol) { 25102 case IPPROTO_ICMP: { 25103 ire_t *ire_zone; 25104 ilm_t *ilm; 25105 mblk_t *mp1; 25106 zoneid_t last_zoneid; 25107 ilm_walker_t ilw; 25108 25109 if (CLASSD(ipha->ipha_dst) && !IS_LOOPBACK(ill)) { 25110 ASSERT(ire_type == IRE_BROADCAST); 25111 /* 25112 * In the multicast case, applications may have joined 25113 * the group from different zones, so we need to deliver 25114 * the packet to each of them. Loop through the 25115 * multicast memberships structures (ilm) on the receive 25116 * ill and send a copy of the packet up each matching 25117 * one. However, we don't do this for multicasts sent on 25118 * the loopback interface (PHYI_LOOPBACK flag set) as 25119 * they must stay in the sender's zone. 25120 * 25121 * ilm_add_v6() ensures that ilms in the same zone are 25122 * contiguous in the ill_ilm list. We use this property 25123 * to avoid sending duplicates needed when two 25124 * applications in the same zone join the same group on 25125 * different logical interfaces: we ignore the ilm if 25126 * it's zoneid is the same as the last matching one. 25127 * In addition, the sending of the packet for 25128 * ire_zoneid is delayed until all of the other ilms 25129 * have been exhausted. 25130 */ 25131 last_zoneid = -1; 25132 ilm = ilm_walker_start(&ilw, ill); 25133 for (; ilm != NULL; ilm = ilm_walker_step(&ilw, ilm)) { 25134 if (ipha->ipha_dst != ilm->ilm_addr || 25135 ilm->ilm_zoneid == last_zoneid || 25136 ilm->ilm_zoneid == zoneid || 25137 !(ilm->ilm_ipif->ipif_flags & IPIF_UP)) 25138 continue; 25139 mp1 = ip_copymsg(first_mp); 25140 if (mp1 == NULL) 25141 continue; 25142 icmp_inbound(q, mp1, B_TRUE, ilw.ilw_walk_ill, 25143 0, 0, mctl_present, B_FALSE, ill, 25144 ilm->ilm_zoneid); 25145 last_zoneid = ilm->ilm_zoneid; 25146 } 25147 ilm_walker_finish(&ilw); 25148 /* 25149 * Loopback case: the sending endpoint has 25150 * IP_MULTICAST_LOOP disabled, therefore we don't 25151 * dispatch the multicast packet to the sending zone. 25152 */ 25153 if (fanout_flags & IP_FF_NO_MCAST_LOOP) { 25154 freemsg(first_mp); 25155 return; 25156 } 25157 } else if (ire_type == IRE_BROADCAST) { 25158 /* 25159 * In the broadcast case, there may be many zones 25160 * which need a copy of the packet delivered to them. 25161 * There is one IRE_BROADCAST per broadcast address 25162 * and per zone; we walk those using a helper function. 25163 * In addition, the sending of the packet for zoneid is 25164 * delayed until all of the other ires have been 25165 * processed. 25166 */ 25167 IRB_REFHOLD(ire->ire_bucket); 25168 ire_zone = NULL; 25169 while ((ire_zone = ire_get_next_bcast_ire(ire_zone, 25170 ire)) != NULL) { 25171 mp1 = ip_copymsg(first_mp); 25172 if (mp1 == NULL) 25173 continue; 25174 25175 UPDATE_IB_PKT_COUNT(ire_zone); 25176 ire_zone->ire_last_used_time = lbolt; 25177 icmp_inbound(q, mp1, B_TRUE, ill, 0, 0, 25178 mctl_present, B_FALSE, ill, 25179 ire_zone->ire_zoneid); 25180 } 25181 IRB_REFRELE(ire->ire_bucket); 25182 } 25183 icmp_inbound(q, first_mp, (ire_type == IRE_BROADCAST), ill, 0, 25184 0, mctl_present, B_FALSE, ill, zoneid); 25185 TRACE_2(TR_FAC_IP, TR_IP_WPUT_LOCAL_END, 25186 "ip_wput_local_end: q %p (%S)", 25187 q, "icmp"); 25188 return; 25189 } 25190 case IPPROTO_IGMP: 25191 if ((mp = igmp_input(q, mp, ill)) == NULL) { 25192 /* Bad packet - discarded by igmp_input */ 25193 TRACE_2(TR_FAC_IP, TR_IP_WPUT_LOCAL_END, 25194 "ip_wput_local_end: q %p (%S)", 25195 q, "igmp_input--bad packet"); 25196 if (mctl_present) 25197 freeb(first_mp); 25198 return; 25199 } 25200 /* 25201 * igmp_input() may have returned the pulled up message. 25202 * So first_mp and ipha need to be reinitialized. 25203 */ 25204 ipha = (ipha_t *)mp->b_rptr; 25205 if (mctl_present) 25206 first_mp->b_cont = mp; 25207 else 25208 first_mp = mp; 25209 /* deliver to local raw users */ 25210 break; 25211 case IPPROTO_ENCAP: 25212 /* 25213 * This case is covered by either ip_fanout_proto, or by 25214 * the above security processing for self-tunneled packets. 25215 */ 25216 break; 25217 case IPPROTO_UDP: { 25218 uint16_t *up; 25219 uint32_t ports; 25220 25221 up = (uint16_t *)(rptr + IPH_HDR_LENGTH(ipha) + 25222 UDP_PORTS_OFFSET); 25223 /* Force a 'valid' checksum. */ 25224 up[3] = 0; 25225 25226 ports = *(uint32_t *)up; 25227 ip_fanout_udp(q, first_mp, ill, ipha, ports, 25228 (ire_type == IRE_BROADCAST), 25229 fanout_flags | IP_FF_SEND_ICMP | IP_FF_HDR_COMPLETE | 25230 IP_FF_SEND_SLLA | IP_FF_IPINFO, mctl_present, B_FALSE, 25231 ill, zoneid); 25232 TRACE_2(TR_FAC_IP, TR_IP_WPUT_LOCAL_END, 25233 "ip_wput_local_end: q %p (%S)", q, "ip_fanout_udp"); 25234 return; 25235 } 25236 case IPPROTO_TCP: { 25237 25238 /* 25239 * For TCP, discard broadcast packets. 25240 */ 25241 if ((ushort_t)ire_type == IRE_BROADCAST) { 25242 freemsg(first_mp); 25243 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 25244 ip2dbg(("ip_wput_local: discard broadcast\n")); 25245 return; 25246 } 25247 25248 if (mp->b_datap->db_type == M_DATA) { 25249 /* 25250 * M_DATA mblk, so init mblk (chain) for no struio(). 25251 */ 25252 mblk_t *mp1 = mp; 25253 25254 do { 25255 mp1->b_datap->db_struioflag = 0; 25256 } while ((mp1 = mp1->b_cont) != NULL); 25257 } 25258 ASSERT((rptr + IPH_HDR_LENGTH(ipha) + TCP_PORTS_OFFSET + 4) 25259 <= mp->b_wptr); 25260 ip_fanout_tcp(q, first_mp, ill, ipha, 25261 fanout_flags | IP_FF_SEND_ICMP | IP_FF_HDR_COMPLETE | 25262 IP_FF_SYN_ADDIRE | IP_FF_IPINFO, 25263 mctl_present, B_FALSE, zoneid); 25264 TRACE_2(TR_FAC_IP, TR_IP_WPUT_LOCAL_END, 25265 "ip_wput_local_end: q %p (%S)", q, "ip_fanout_tcp"); 25266 return; 25267 } 25268 case IPPROTO_SCTP: 25269 { 25270 uint32_t ports; 25271 25272 bcopy(rptr + IPH_HDR_LENGTH(ipha), &ports, sizeof (ports)); 25273 ip_fanout_sctp(first_mp, ill, ipha, ports, 25274 fanout_flags | IP_FF_SEND_ICMP | IP_FF_HDR_COMPLETE | 25275 IP_FF_IPINFO, mctl_present, B_FALSE, zoneid); 25276 return; 25277 } 25278 25279 default: 25280 break; 25281 } 25282 /* 25283 * Find a client for some other protocol. We give 25284 * copies to multiple clients, if more than one is 25285 * bound. 25286 */ 25287 ip_fanout_proto(q, first_mp, ill, ipha, 25288 fanout_flags | IP_FF_SEND_ICMP | IP_FF_HDR_COMPLETE | IP_FF_RAWIP, 25289 mctl_present, B_FALSE, ill, zoneid); 25290 TRACE_2(TR_FAC_IP, TR_IP_WPUT_LOCAL_END, 25291 "ip_wput_local_end: q %p (%S)", q, "ip_fanout_proto"); 25292 #undef rptr 25293 } 25294 25295 /* 25296 * Update any source route, record route, or timestamp options. 25297 * Check that we are at end of strict source route. 25298 * The options have been sanity checked by ip_wput_options(). 25299 */ 25300 static void 25301 ip_wput_local_options(ipha_t *ipha, ip_stack_t *ipst) 25302 { 25303 ipoptp_t opts; 25304 uchar_t *opt; 25305 uint8_t optval; 25306 uint8_t optlen; 25307 ipaddr_t dst; 25308 uint32_t ts; 25309 ire_t *ire; 25310 timestruc_t now; 25311 25312 ip2dbg(("ip_wput_local_options\n")); 25313 for (optval = ipoptp_first(&opts, ipha); 25314 optval != IPOPT_EOL; 25315 optval = ipoptp_next(&opts)) { 25316 opt = opts.ipoptp_cur; 25317 optlen = opts.ipoptp_len; 25318 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 25319 switch (optval) { 25320 uint32_t off; 25321 case IPOPT_SSRR: 25322 case IPOPT_LSRR: 25323 off = opt[IPOPT_OFFSET]; 25324 off--; 25325 if (optlen < IP_ADDR_LEN || 25326 off > optlen - IP_ADDR_LEN) { 25327 /* End of source route */ 25328 break; 25329 } 25330 /* 25331 * This will only happen if two consecutive entries 25332 * in the source route contains our address or if 25333 * it is a packet with a loose source route which 25334 * reaches us before consuming the whole source route 25335 */ 25336 ip1dbg(("ip_wput_local_options: not end of SR\n")); 25337 if (optval == IPOPT_SSRR) { 25338 return; 25339 } 25340 /* 25341 * Hack: instead of dropping the packet truncate the 25342 * source route to what has been used by filling the 25343 * rest with IPOPT_NOP. 25344 */ 25345 opt[IPOPT_OLEN] = (uint8_t)off; 25346 while (off < optlen) { 25347 opt[off++] = IPOPT_NOP; 25348 } 25349 break; 25350 case IPOPT_RR: 25351 off = opt[IPOPT_OFFSET]; 25352 off--; 25353 if (optlen < IP_ADDR_LEN || 25354 off > optlen - IP_ADDR_LEN) { 25355 /* No more room - ignore */ 25356 ip1dbg(( 25357 "ip_wput_forward_options: end of RR\n")); 25358 break; 25359 } 25360 dst = htonl(INADDR_LOOPBACK); 25361 bcopy(&dst, (char *)opt + off, IP_ADDR_LEN); 25362 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 25363 break; 25364 case IPOPT_TS: 25365 /* Insert timestamp if there is romm */ 25366 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 25367 case IPOPT_TS_TSONLY: 25368 off = IPOPT_TS_TIMELEN; 25369 break; 25370 case IPOPT_TS_PRESPEC: 25371 case IPOPT_TS_PRESPEC_RFC791: 25372 /* Verify that the address matched */ 25373 off = opt[IPOPT_OFFSET] - 1; 25374 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 25375 ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, 25376 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, 25377 ipst); 25378 if (ire == NULL) { 25379 /* Not for us */ 25380 break; 25381 } 25382 ire_refrele(ire); 25383 /* FALLTHRU */ 25384 case IPOPT_TS_TSANDADDR: 25385 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 25386 break; 25387 default: 25388 /* 25389 * ip_*put_options should have already 25390 * dropped this packet. 25391 */ 25392 cmn_err(CE_PANIC, "ip_wput_local_options: " 25393 "unknown IT - bug in ip_wput_options?\n"); 25394 return; /* Keep "lint" happy */ 25395 } 25396 if (opt[IPOPT_OFFSET] - 1 + off > optlen) { 25397 /* Increase overflow counter */ 25398 off = (opt[IPOPT_POS_OV_FLG] >> 4) + 1; 25399 opt[IPOPT_POS_OV_FLG] = (uint8_t) 25400 (opt[IPOPT_POS_OV_FLG] & 0x0F) | 25401 (off << 4); 25402 break; 25403 } 25404 off = opt[IPOPT_OFFSET] - 1; 25405 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 25406 case IPOPT_TS_PRESPEC: 25407 case IPOPT_TS_PRESPEC_RFC791: 25408 case IPOPT_TS_TSANDADDR: 25409 dst = htonl(INADDR_LOOPBACK); 25410 bcopy(&dst, (char *)opt + off, IP_ADDR_LEN); 25411 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 25412 /* FALLTHRU */ 25413 case IPOPT_TS_TSONLY: 25414 off = opt[IPOPT_OFFSET] - 1; 25415 /* Compute # of milliseconds since midnight */ 25416 gethrestime(&now); 25417 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 + 25418 now.tv_nsec / (NANOSEC / MILLISEC); 25419 bcopy(&ts, (char *)opt + off, IPOPT_TS_TIMELEN); 25420 opt[IPOPT_OFFSET] += IPOPT_TS_TIMELEN; 25421 break; 25422 } 25423 break; 25424 } 25425 } 25426 } 25427 25428 /* 25429 * Send out a multicast packet on interface ipif. 25430 * The sender does not have an conn. 25431 * Caller verifies that this isn't a PHYI_LOOPBACK. 25432 */ 25433 void 25434 ip_wput_multicast(queue_t *q, mblk_t *mp, ipif_t *ipif, zoneid_t zoneid) 25435 { 25436 ipha_t *ipha; 25437 ire_t *ire; 25438 ipaddr_t dst; 25439 mblk_t *first_mp; 25440 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 25441 25442 /* igmp_sendpkt always allocates a ipsec_out_t */ 25443 ASSERT(mp->b_datap->db_type == M_CTL); 25444 ASSERT(!ipif->ipif_isv6); 25445 ASSERT(!IS_LOOPBACK(ipif->ipif_ill)); 25446 25447 first_mp = mp; 25448 mp = first_mp->b_cont; 25449 ASSERT(mp->b_datap->db_type == M_DATA); 25450 ipha = (ipha_t *)mp->b_rptr; 25451 25452 /* 25453 * Find an IRE which matches the destination and the outgoing 25454 * queue (i.e. the outgoing interface.) 25455 */ 25456 if (ipif->ipif_flags & IPIF_POINTOPOINT) 25457 dst = ipif->ipif_pp_dst_addr; 25458 else 25459 dst = ipha->ipha_dst; 25460 /* 25461 * The source address has already been initialized by the 25462 * caller and hence matching on ILL (MATCH_IRE_ILL) would 25463 * be sufficient rather than MATCH_IRE_IPIF. 25464 * 25465 * This function is used for sending IGMP packets. For IPMP, 25466 * we sidestep IGMP snooping issues by sending all multicast 25467 * traffic on a single interface in the IPMP group. 25468 */ 25469 ire = ire_ctable_lookup(dst, 0, 0, ipif, zoneid, NULL, 25470 MATCH_IRE_ILL, ipst); 25471 if (!ire) { 25472 /* 25473 * Mark this packet to make it be delivered to 25474 * ip_wput_ire after the new ire has been 25475 * created. 25476 */ 25477 mp->b_prev = NULL; 25478 mp->b_next = NULL; 25479 ip_newroute_ipif(q, first_mp, ipif, dst, NULL, RTF_SETSRC, 25480 zoneid, &zero_info); 25481 return; 25482 } 25483 25484 /* 25485 * Honor the RTF_SETSRC flag; this is the only case 25486 * where we force this addr whatever the current src addr is, 25487 * because this address is set by igmp_sendpkt(), and 25488 * cannot be specified by any user. 25489 */ 25490 if (ire->ire_flags & RTF_SETSRC) { 25491 ipha->ipha_src = ire->ire_src_addr; 25492 } 25493 25494 ip_wput_ire(q, first_mp, ire, NULL, B_FALSE, zoneid); 25495 } 25496 25497 /* 25498 * NOTE : This function does not ire_refrele the ire argument passed in. 25499 * 25500 * Copy the link layer header and do IPQoS if needed. Frees the mblk on 25501 * failure. The nce_fp_mp can vanish any time in the case of 25502 * IRE_BROADCAST due to DL_NOTE_FASTPATH_FLUSH. Hence we have to hold 25503 * the ire_lock to access the nce_fp_mp in this case. 25504 * IPQoS assumes that the first M_DATA contains the IP header. So, if we are 25505 * prepending a fastpath message IPQoS processing must precede it, we also set 25506 * the b_band of the fastpath message to that of the mblk returned by IPQoS 25507 * (IPQoS might have set the b_band for CoS marking). 25508 * However, if we are prepending DL_UNITDATA_REQ message, IPQoS processing 25509 * must follow it so that IPQoS can mark the dl_priority field for CoS 25510 * marking, if needed. 25511 */ 25512 static mblk_t * 25513 ip_wput_attach_llhdr(mblk_t *mp, ire_t *ire, ip_proc_t proc, 25514 uint32_t ill_index, ipha_t **iphap) 25515 { 25516 uint_t hlen; 25517 ipha_t *ipha; 25518 mblk_t *mp1; 25519 boolean_t qos_done = B_FALSE; 25520 uchar_t *ll_hdr; 25521 ip_stack_t *ipst = ire->ire_ipst; 25522 25523 #define rptr ((uchar_t *)ipha) 25524 25525 ipha = (ipha_t *)mp->b_rptr; 25526 hlen = 0; 25527 LOCK_IRE_FP_MP(ire); 25528 if ((mp1 = ire->ire_nce->nce_fp_mp) != NULL) { 25529 ASSERT(DB_TYPE(mp1) == M_DATA); 25530 /* Initiate IPPF processing */ 25531 if ((proc != 0) && IPP_ENABLED(proc, ipst)) { 25532 UNLOCK_IRE_FP_MP(ire); 25533 ip_process(proc, &mp, ill_index); 25534 if (mp == NULL) 25535 return (NULL); 25536 25537 ipha = (ipha_t *)mp->b_rptr; 25538 LOCK_IRE_FP_MP(ire); 25539 if ((mp1 = ire->ire_nce->nce_fp_mp) == NULL) { 25540 qos_done = B_TRUE; 25541 goto no_fp_mp; 25542 } 25543 ASSERT(DB_TYPE(mp1) == M_DATA); 25544 } 25545 hlen = MBLKL(mp1); 25546 /* 25547 * Check if we have enough room to prepend fastpath 25548 * header 25549 */ 25550 if (hlen != 0 && (rptr - mp->b_datap->db_base) >= hlen) { 25551 ll_hdr = rptr - hlen; 25552 bcopy(mp1->b_rptr, ll_hdr, hlen); 25553 /* 25554 * Set the b_rptr to the start of the link layer 25555 * header 25556 */ 25557 mp->b_rptr = ll_hdr; 25558 mp1 = mp; 25559 } else { 25560 mp1 = copyb(mp1); 25561 if (mp1 == NULL) 25562 goto unlock_err; 25563 mp1->b_band = mp->b_band; 25564 mp1->b_cont = mp; 25565 /* 25566 * XXX disable ICK_VALID and compute checksum 25567 * here; can happen if nce_fp_mp changes and 25568 * it can't be copied now due to insufficient 25569 * space. (unlikely, fp mp can change, but it 25570 * does not increase in length) 25571 */ 25572 } 25573 UNLOCK_IRE_FP_MP(ire); 25574 } else { 25575 no_fp_mp: 25576 mp1 = copyb(ire->ire_nce->nce_res_mp); 25577 if (mp1 == NULL) { 25578 unlock_err: 25579 UNLOCK_IRE_FP_MP(ire); 25580 freemsg(mp); 25581 return (NULL); 25582 } 25583 UNLOCK_IRE_FP_MP(ire); 25584 mp1->b_cont = mp; 25585 if (!qos_done && (proc != 0) && IPP_ENABLED(proc, ipst)) { 25586 ip_process(proc, &mp1, ill_index); 25587 if (mp1 == NULL) 25588 return (NULL); 25589 25590 if (mp1->b_cont == NULL) 25591 ipha = NULL; 25592 else 25593 ipha = (ipha_t *)mp1->b_cont->b_rptr; 25594 } 25595 } 25596 25597 *iphap = ipha; 25598 return (mp1); 25599 #undef rptr 25600 } 25601 25602 /* 25603 * Finish the outbound IPsec processing for an IPv6 packet. This function 25604 * is called from ipsec_out_process() if the IPsec packet was processed 25605 * synchronously, or from {ah,esp}_kcf_callback() if it was processed 25606 * asynchronously. 25607 */ 25608 void 25609 ip_wput_ipsec_out_v6(queue_t *q, mblk_t *ipsec_mp, ip6_t *ip6h, ill_t *ill, 25610 ire_t *ire_arg) 25611 { 25612 in6_addr_t *v6dstp; 25613 ire_t *ire; 25614 mblk_t *mp; 25615 ip6_t *ip6h1; 25616 uint_t ill_index; 25617 ipsec_out_t *io; 25618 boolean_t hwaccel; 25619 uint32_t flags = IP6_NO_IPPOLICY; 25620 int match_flags; 25621 zoneid_t zoneid; 25622 boolean_t ill_need_rele = B_FALSE; 25623 boolean_t ire_need_rele = B_FALSE; 25624 ip_stack_t *ipst; 25625 25626 mp = ipsec_mp->b_cont; 25627 ip6h1 = (ip6_t *)mp->b_rptr; 25628 io = (ipsec_out_t *)ipsec_mp->b_rptr; 25629 ASSERT(io->ipsec_out_ns != NULL); 25630 ipst = io->ipsec_out_ns->netstack_ip; 25631 ill_index = io->ipsec_out_ill_index; 25632 if (io->ipsec_out_reachable) { 25633 flags |= IPV6_REACHABILITY_CONFIRMATION; 25634 } 25635 hwaccel = io->ipsec_out_accelerated; 25636 zoneid = io->ipsec_out_zoneid; 25637 ASSERT(zoneid != ALL_ZONES); 25638 match_flags = MATCH_IRE_ILL | MATCH_IRE_SECATTR; 25639 /* Multicast addresses should have non-zero ill_index. */ 25640 v6dstp = &ip6h->ip6_dst; 25641 ASSERT(ip6h->ip6_nxt != IPPROTO_RAW); 25642 ASSERT(!IN6_IS_ADDR_MULTICAST(v6dstp) || ill_index != 0); 25643 25644 if (ill == NULL && ill_index != 0) { 25645 ill = ip_grab_ill(ipsec_mp, ill_index, B_TRUE, ipst); 25646 /* Failure case frees things for us. */ 25647 if (ill == NULL) 25648 return; 25649 25650 ill_need_rele = B_TRUE; 25651 } 25652 ASSERT(mp != NULL); 25653 25654 if (IN6_IS_ADDR_MULTICAST(v6dstp)) { 25655 boolean_t unspec_src; 25656 ipif_t *ipif; 25657 25658 /* 25659 * Use the ill_index to get the right ill. 25660 */ 25661 unspec_src = io->ipsec_out_unspec_src; 25662 (void) ipif_lookup_zoneid(ill, zoneid, 0, &ipif); 25663 if (ipif == NULL) { 25664 if (ill_need_rele) 25665 ill_refrele(ill); 25666 freemsg(ipsec_mp); 25667 return; 25668 } 25669 25670 if (ire_arg != NULL) { 25671 ire = ire_arg; 25672 } else { 25673 ire = ire_ctable_lookup_v6(v6dstp, 0, 0, ipif, 25674 zoneid, msg_getlabel(mp), match_flags, ipst); 25675 ire_need_rele = B_TRUE; 25676 } 25677 if (ire != NULL) { 25678 ipif_refrele(ipif); 25679 /* 25680 * XXX Do the multicast forwarding now, as the IPsec 25681 * processing has been done. 25682 */ 25683 goto send; 25684 } 25685 25686 ip0dbg(("ip_wput_ipsec_out_v6: multicast: IRE disappeared\n")); 25687 mp->b_prev = NULL; 25688 mp->b_next = NULL; 25689 25690 /* 25691 * If the IPsec packet was processed asynchronously, 25692 * drop it now. 25693 */ 25694 if (q == NULL) { 25695 if (ill_need_rele) 25696 ill_refrele(ill); 25697 freemsg(ipsec_mp); 25698 return; 25699 } 25700 25701 ip_newroute_ipif_v6(q, ipsec_mp, ipif, v6dstp, &ip6h->ip6_src, 25702 unspec_src, zoneid); 25703 ipif_refrele(ipif); 25704 } else { 25705 if (ire_arg != NULL) { 25706 ire = ire_arg; 25707 } else { 25708 ire = ire_cache_lookup_v6(v6dstp, zoneid, NULL, ipst); 25709 ire_need_rele = B_TRUE; 25710 } 25711 if (ire != NULL) 25712 goto send; 25713 /* 25714 * ire disappeared underneath. 25715 * 25716 * What we need to do here is the ip_newroute 25717 * logic to get the ire without doing the IPsec 25718 * processing. Follow the same old path. But this 25719 * time, ip_wput or ire_add_then_send will call us 25720 * directly as all the IPsec operations are done. 25721 */ 25722 ip1dbg(("ip_wput_ipsec_out_v6: IRE disappeared\n")); 25723 mp->b_prev = NULL; 25724 mp->b_next = NULL; 25725 25726 /* 25727 * If the IPsec packet was processed asynchronously, 25728 * drop it now. 25729 */ 25730 if (q == NULL) { 25731 if (ill_need_rele) 25732 ill_refrele(ill); 25733 freemsg(ipsec_mp); 25734 return; 25735 } 25736 25737 ip_newroute_v6(q, ipsec_mp, v6dstp, &ip6h->ip6_src, ill, 25738 zoneid, ipst); 25739 } 25740 if (ill != NULL && ill_need_rele) 25741 ill_refrele(ill); 25742 return; 25743 send: 25744 if (ill != NULL && ill_need_rele) 25745 ill_refrele(ill); 25746 25747 /* Local delivery */ 25748 if (ire->ire_stq == NULL) { 25749 ill_t *out_ill; 25750 ASSERT(q != NULL); 25751 25752 /* PFHooks: LOOPBACK_OUT */ 25753 out_ill = ire_to_ill(ire); 25754 25755 /* 25756 * DTrace this as ip:::send. A blocked packet will fire the 25757 * send probe, but not the receive probe. 25758 */ 25759 DTRACE_IP7(send, mblk_t *, ipsec_mp, conn_t *, NULL, 25760 void_ip_t *, ip6h, __dtrace_ipsr_ill_t *, out_ill, 25761 ipha_t *, NULL, ip6_t *, ip6h, int, 1); 25762 25763 DTRACE_PROBE4(ip6__loopback__out__start, 25764 ill_t *, NULL, ill_t *, out_ill, 25765 ip6_t *, ip6h1, mblk_t *, ipsec_mp); 25766 25767 FW_HOOKS6(ipst->ips_ip6_loopback_out_event, 25768 ipst->ips_ipv6firewall_loopback_out, 25769 NULL, out_ill, ip6h1, ipsec_mp, mp, 0, ipst); 25770 25771 DTRACE_PROBE1(ip6__loopback__out__end, mblk_t *, ipsec_mp); 25772 25773 if (ipsec_mp != NULL) { 25774 ip_wput_local_v6(RD(q), out_ill, 25775 ip6h, ipsec_mp, ire, 0, zoneid); 25776 } 25777 if (ire_need_rele) 25778 ire_refrele(ire); 25779 return; 25780 } 25781 /* 25782 * Everything is done. Send it out on the wire. 25783 * We force the insertion of a fragment header using the 25784 * IPH_FRAG_HDR flag in two cases: 25785 * - after reception of an ICMPv6 "packet too big" message 25786 * with a MTU < 1280 (cf. RFC 2460 section 5) 25787 * - for multirouted IPv6 packets, so that the receiver can 25788 * discard duplicates according to their fragment identifier 25789 */ 25790 /* XXX fix flow control problems. */ 25791 if (ntohs(ip6h->ip6_plen) + IPV6_HDR_LEN > ire->ire_max_frag || 25792 (ire->ire_frag_flag & IPH_FRAG_HDR)) { 25793 if (hwaccel) { 25794 /* 25795 * hardware acceleration does not handle these 25796 * "slow path" cases. 25797 */ 25798 /* IPsec KSTATS: should bump bean counter here. */ 25799 if (ire_need_rele) 25800 ire_refrele(ire); 25801 freemsg(ipsec_mp); 25802 return; 25803 } 25804 if (ntohs(ip6h->ip6_plen) + IPV6_HDR_LEN != 25805 (mp->b_cont ? msgdsize(mp) : 25806 mp->b_wptr - (uchar_t *)ip6h)) { 25807 /* IPsec KSTATS: should bump bean counter here. */ 25808 ip0dbg(("Packet length mismatch: %d, %ld\n", 25809 ntohs(ip6h->ip6_plen) + IPV6_HDR_LEN, 25810 msgdsize(mp))); 25811 if (ire_need_rele) 25812 ire_refrele(ire); 25813 freemsg(ipsec_mp); 25814 return; 25815 } 25816 ASSERT(mp->b_prev == NULL); 25817 ip2dbg(("Fragmenting Size = %d, mtu = %d\n", 25818 ntohs(ip6h->ip6_plen) + 25819 IPV6_HDR_LEN, ire->ire_max_frag)); 25820 ip_wput_frag_v6(mp, ire, flags, NULL, B_FALSE, 25821 ire->ire_max_frag); 25822 } else { 25823 UPDATE_OB_PKT_COUNT(ire); 25824 ire->ire_last_used_time = lbolt; 25825 ip_xmit_v6(mp, ire, flags, NULL, B_FALSE, hwaccel ? io : NULL); 25826 } 25827 if (ire_need_rele) 25828 ire_refrele(ire); 25829 freeb(ipsec_mp); 25830 } 25831 25832 void 25833 ipsec_hw_putnext(queue_t *q, mblk_t *mp) 25834 { 25835 mblk_t *hada_mp; /* attributes M_CTL mblk */ 25836 da_ipsec_t *hada; /* data attributes */ 25837 ill_t *ill = (ill_t *)q->q_ptr; 25838 25839 IPSECHW_DEBUG(IPSECHW_PKT, ("ipsec_hw_putnext: accelerated packet\n")); 25840 25841 if ((ill->ill_capabilities & (ILL_CAPAB_AH | ILL_CAPAB_ESP)) == 0) { 25842 /* IPsec KSTATS: Bump lose counter here! */ 25843 freemsg(mp); 25844 return; 25845 } 25846 25847 /* 25848 * It's an IPsec packet that must be 25849 * accelerated by the Provider, and the 25850 * outbound ill is IPsec acceleration capable. 25851 * Prepends the mblk with an IPHADA_M_CTL, and ship it 25852 * to the ill. 25853 * IPsec KSTATS: should bump packet counter here. 25854 */ 25855 25856 hada_mp = allocb(sizeof (da_ipsec_t), BPRI_HI); 25857 if (hada_mp == NULL) { 25858 /* IPsec KSTATS: should bump packet counter here. */ 25859 freemsg(mp); 25860 return; 25861 } 25862 25863 hada_mp->b_datap->db_type = M_CTL; 25864 hada_mp->b_wptr = hada_mp->b_rptr + sizeof (*hada); 25865 hada_mp->b_cont = mp; 25866 25867 hada = (da_ipsec_t *)hada_mp->b_rptr; 25868 bzero(hada, sizeof (da_ipsec_t)); 25869 hada->da_type = IPHADA_M_CTL; 25870 25871 putnext(q, hada_mp); 25872 } 25873 25874 /* 25875 * Finish the outbound IPsec processing. This function is called from 25876 * ipsec_out_process() if the IPsec packet was processed 25877 * synchronously, or from {ah,esp}_kcf_callback() if it was processed 25878 * asynchronously. 25879 */ 25880 void 25881 ip_wput_ipsec_out(queue_t *q, mblk_t *ipsec_mp, ipha_t *ipha, ill_t *ill, 25882 ire_t *ire_arg) 25883 { 25884 uint32_t v_hlen_tos_len; 25885 ipaddr_t dst; 25886 ipif_t *ipif = NULL; 25887 ire_t *ire; 25888 ire_t *ire1 = NULL; 25889 mblk_t *next_mp = NULL; 25890 uint32_t max_frag; 25891 boolean_t multirt_send = B_FALSE; 25892 mblk_t *mp; 25893 ipha_t *ipha1; 25894 uint_t ill_index; 25895 ipsec_out_t *io; 25896 int match_flags; 25897 irb_t *irb = NULL; 25898 boolean_t ill_need_rele = B_FALSE, ire_need_rele = B_TRUE; 25899 zoneid_t zoneid; 25900 ipxmit_state_t pktxmit_state; 25901 ip_stack_t *ipst; 25902 25903 #ifdef _BIG_ENDIAN 25904 #define LENGTH (v_hlen_tos_len & 0xFFFF) 25905 #else 25906 #define LENGTH ((v_hlen_tos_len >> 24) | ((v_hlen_tos_len >> 8) & 0xFF00)) 25907 #endif 25908 25909 mp = ipsec_mp->b_cont; 25910 ipha1 = (ipha_t *)mp->b_rptr; 25911 ASSERT(mp != NULL); 25912 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 25913 dst = ipha->ipha_dst; 25914 25915 io = (ipsec_out_t *)ipsec_mp->b_rptr; 25916 ill_index = io->ipsec_out_ill_index; 25917 zoneid = io->ipsec_out_zoneid; 25918 ASSERT(zoneid != ALL_ZONES); 25919 ipst = io->ipsec_out_ns->netstack_ip; 25920 ASSERT(io->ipsec_out_ns != NULL); 25921 25922 match_flags = MATCH_IRE_ILL | MATCH_IRE_SECATTR; 25923 if (ill == NULL && ill_index != 0) { 25924 ill = ip_grab_ill(ipsec_mp, ill_index, B_FALSE, ipst); 25925 /* Failure case frees things for us. */ 25926 if (ill == NULL) 25927 return; 25928 25929 ill_need_rele = B_TRUE; 25930 } 25931 25932 if (CLASSD(dst)) { 25933 boolean_t conn_dontroute; 25934 /* 25935 * Use the ill_index to get the right ipif. 25936 */ 25937 conn_dontroute = io->ipsec_out_dontroute; 25938 if (ill_index == 0) 25939 ipif = ipif_lookup_group(dst, zoneid, ipst); 25940 else 25941 (void) ipif_lookup_zoneid(ill, zoneid, 0, &ipif); 25942 if (ipif == NULL) { 25943 ip1dbg(("ip_wput_ipsec_out: No ipif for" 25944 " multicast\n")); 25945 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutNoRoutes); 25946 freemsg(ipsec_mp); 25947 goto done; 25948 } 25949 /* 25950 * ipha_src has already been intialized with the 25951 * value of the ipif in ip_wput. All we need now is 25952 * an ire to send this downstream. 25953 */ 25954 ire = ire_ctable_lookup(dst, 0, 0, ipif, zoneid, 25955 msg_getlabel(mp), match_flags, ipst); 25956 if (ire != NULL) { 25957 ill_t *ill1; 25958 /* 25959 * Do the multicast forwarding now, as the IPsec 25960 * processing has been done. 25961 */ 25962 if (ipst->ips_ip_g_mrouter && !conn_dontroute && 25963 (ill1 = ire_to_ill(ire))) { 25964 if (ip_mforward(ill1, ipha, mp)) { 25965 freemsg(ipsec_mp); 25966 ip1dbg(("ip_wput_ipsec_out: mforward " 25967 "failed\n")); 25968 ire_refrele(ire); 25969 goto done; 25970 } 25971 } 25972 goto send; 25973 } 25974 25975 ip0dbg(("ip_wput_ipsec_out: multicast: IRE disappeared\n")); 25976 mp->b_prev = NULL; 25977 mp->b_next = NULL; 25978 25979 /* 25980 * If the IPsec packet was processed asynchronously, 25981 * drop it now. 25982 */ 25983 if (q == NULL) { 25984 freemsg(ipsec_mp); 25985 goto done; 25986 } 25987 25988 /* 25989 * We may be using a wrong ipif to create the ire. 25990 * But it is okay as the source address is assigned 25991 * for the packet already. Next outbound packet would 25992 * create the IRE with the right IPIF in ip_wput. 25993 * 25994 * Also handle RTF_MULTIRT routes. 25995 */ 25996 ip_newroute_ipif(q, ipsec_mp, ipif, dst, NULL, RTF_MULTIRT, 25997 zoneid, &zero_info); 25998 } else { 25999 if (ire_arg != NULL) { 26000 ire = ire_arg; 26001 ire_need_rele = B_FALSE; 26002 } else { 26003 ire = ire_cache_lookup(dst, zoneid, 26004 msg_getlabel(mp), ipst); 26005 } 26006 if (ire != NULL) { 26007 goto send; 26008 } 26009 26010 /* 26011 * ire disappeared underneath. 26012 * 26013 * What we need to do here is the ip_newroute 26014 * logic to get the ire without doing the IPsec 26015 * processing. Follow the same old path. But this 26016 * time, ip_wput or ire_add_then_put will call us 26017 * directly as all the IPsec operations are done. 26018 */ 26019 ip1dbg(("ip_wput_ipsec_out: IRE disappeared\n")); 26020 mp->b_prev = NULL; 26021 mp->b_next = NULL; 26022 26023 /* 26024 * If the IPsec packet was processed asynchronously, 26025 * drop it now. 26026 */ 26027 if (q == NULL) { 26028 freemsg(ipsec_mp); 26029 goto done; 26030 } 26031 26032 /* 26033 * Since we're going through ip_newroute() again, we 26034 * need to make sure we don't: 26035 * 26036 * 1.) Trigger the ASSERT() with the ipha_ident 26037 * overloading. 26038 * 2.) Redo transport-layer checksumming, since we've 26039 * already done all that to get this far. 26040 * 26041 * The easiest way not do either of the above is to set 26042 * the ipha_ident field to IP_HDR_INCLUDED. 26043 */ 26044 ipha->ipha_ident = IP_HDR_INCLUDED; 26045 ip_newroute(q, ipsec_mp, dst, (CONN_Q(q) ? Q_TO_CONN(q) : NULL), 26046 zoneid, ipst); 26047 } 26048 goto done; 26049 send: 26050 if (ire->ire_stq == NULL) { 26051 ill_t *out_ill; 26052 /* 26053 * Loopbacks go through ip_wput_local except for one case. 26054 * We come here if we generate a icmp_frag_needed message 26055 * after IPsec processing is over. When this function calls 26056 * ip_wput_ire_fragmentit, ip_wput_frag might end up calling 26057 * icmp_frag_needed. The message generated comes back here 26058 * through icmp_frag_needed -> icmp_pkt -> ip_wput -> 26059 * ipsec_out_process -> ip_wput_ipsec_out. We need to set the 26060 * source address as it is usually set in ip_wput_ire. As 26061 * ipsec_out_proc_begin is set, ip_wput calls ipsec_out_process 26062 * and we end up here. We can't enter ip_wput_ire once the 26063 * IPsec processing is over and hence we need to do it here. 26064 */ 26065 ASSERT(q != NULL); 26066 UPDATE_OB_PKT_COUNT(ire); 26067 ire->ire_last_used_time = lbolt; 26068 if (ipha->ipha_src == 0) 26069 ipha->ipha_src = ire->ire_src_addr; 26070 26071 /* PFHooks: LOOPBACK_OUT */ 26072 out_ill = ire_to_ill(ire); 26073 26074 /* 26075 * DTrace this as ip:::send. A blocked packet will fire the 26076 * send probe, but not the receive probe. 26077 */ 26078 DTRACE_IP7(send, mblk_t *, ipsec_mp, conn_t *, NULL, 26079 void_ip_t *, ipha, __dtrace_ipsr_ill_t *, out_ill, 26080 ipha_t *, ipha, ip6_t *, NULL, int, 1); 26081 26082 DTRACE_PROBE4(ip4__loopback__out__start, 26083 ill_t *, NULL, ill_t *, out_ill, 26084 ipha_t *, ipha1, mblk_t *, ipsec_mp); 26085 26086 FW_HOOKS(ipst->ips_ip4_loopback_out_event, 26087 ipst->ips_ipv4firewall_loopback_out, 26088 NULL, out_ill, ipha1, ipsec_mp, mp, 0, ipst); 26089 26090 DTRACE_PROBE1(ip4__loopback__out__end, mblk_t *, ipsec_mp); 26091 26092 if (ipsec_mp != NULL) 26093 ip_wput_local(RD(q), out_ill, 26094 ipha, ipsec_mp, ire, 0, zoneid); 26095 if (ire_need_rele) 26096 ire_refrele(ire); 26097 goto done; 26098 } 26099 26100 if (ire->ire_max_frag < (unsigned int)LENGTH) { 26101 /* 26102 * We are through with IPsec processing. 26103 * Fragment this and send it on the wire. 26104 */ 26105 if (io->ipsec_out_accelerated) { 26106 /* 26107 * The packet has been accelerated but must 26108 * be fragmented. This should not happen 26109 * since AH and ESP must not accelerate 26110 * packets that need fragmentation, however 26111 * the configuration could have changed 26112 * since the AH or ESP processing. 26113 * Drop packet. 26114 * IPsec KSTATS: bump bean counter here. 26115 */ 26116 IPSECHW_DEBUG(IPSECHW_PKT, ("ipsec_wput_ipsec_out: " 26117 "fragmented accelerated packet!\n")); 26118 freemsg(ipsec_mp); 26119 } else { 26120 ip_wput_ire_fragmentit(ipsec_mp, ire, 26121 zoneid, ipst, NULL); 26122 } 26123 if (ire_need_rele) 26124 ire_refrele(ire); 26125 goto done; 26126 } 26127 26128 ip2dbg(("ip_wput_ipsec_out: ipsec_mp %p, ire %p, ire_ipif %p, " 26129 "ipif %p\n", (void *)ipsec_mp, (void *)ire, 26130 (void *)ire->ire_ipif, (void *)ipif)); 26131 26132 /* 26133 * Multiroute the secured packet. 26134 */ 26135 if (ire->ire_flags & RTF_MULTIRT) { 26136 ire_t *first_ire; 26137 irb = ire->ire_bucket; 26138 ASSERT(irb != NULL); 26139 /* 26140 * This ire has been looked up as the one that 26141 * goes through the given ipif; 26142 * make sure we do not omit any other multiroute ire 26143 * that may be present in the bucket before this one. 26144 */ 26145 IRB_REFHOLD(irb); 26146 for (first_ire = irb->irb_ire; 26147 first_ire != NULL; 26148 first_ire = first_ire->ire_next) { 26149 if ((first_ire->ire_flags & RTF_MULTIRT) && 26150 (first_ire->ire_addr == ire->ire_addr) && 26151 !(first_ire->ire_marks & 26152 (IRE_MARK_CONDEMNED | IRE_MARK_TESTHIDDEN))) 26153 break; 26154 } 26155 26156 if ((first_ire != NULL) && (first_ire != ire)) { 26157 /* 26158 * Don't change the ire if the packet must 26159 * be fragmented if sent via this new one. 26160 */ 26161 if (first_ire->ire_max_frag >= (unsigned int)LENGTH) { 26162 IRE_REFHOLD(first_ire); 26163 if (ire_need_rele) 26164 ire_refrele(ire); 26165 else 26166 ire_need_rele = B_TRUE; 26167 ire = first_ire; 26168 } 26169 } 26170 IRB_REFRELE(irb); 26171 26172 multirt_send = B_TRUE; 26173 max_frag = ire->ire_max_frag; 26174 } 26175 26176 /* 26177 * In most cases, the emission loop below is entered only once. 26178 * Only in the case where the ire holds the RTF_MULTIRT 26179 * flag, we loop to process all RTF_MULTIRT ires in the 26180 * bucket, and send the packet through all crossed 26181 * RTF_MULTIRT routes. 26182 */ 26183 do { 26184 if (multirt_send) { 26185 /* 26186 * ire1 holds here the next ire to process in the 26187 * bucket. If multirouting is expected, 26188 * any non-RTF_MULTIRT ire that has the 26189 * right destination address is ignored. 26190 */ 26191 ASSERT(irb != NULL); 26192 IRB_REFHOLD(irb); 26193 for (ire1 = ire->ire_next; 26194 ire1 != NULL; 26195 ire1 = ire1->ire_next) { 26196 if ((ire1->ire_flags & RTF_MULTIRT) == 0) 26197 continue; 26198 if (ire1->ire_addr != ire->ire_addr) 26199 continue; 26200 if (ire1->ire_marks & 26201 (IRE_MARK_CONDEMNED | IRE_MARK_TESTHIDDEN)) 26202 continue; 26203 /* No loopback here */ 26204 if (ire1->ire_stq == NULL) 26205 continue; 26206 /* 26207 * Ensure we do not exceed the MTU 26208 * of the next route. 26209 */ 26210 if (ire1->ire_max_frag < (unsigned int)LENGTH) { 26211 ip_multirt_bad_mtu(ire1, max_frag); 26212 continue; 26213 } 26214 26215 IRE_REFHOLD(ire1); 26216 break; 26217 } 26218 IRB_REFRELE(irb); 26219 if (ire1 != NULL) { 26220 /* 26221 * We are in a multiple send case, need to 26222 * make a copy of the packet. 26223 */ 26224 next_mp = copymsg(ipsec_mp); 26225 if (next_mp == NULL) { 26226 ire_refrele(ire1); 26227 ire1 = NULL; 26228 } 26229 } 26230 } 26231 /* 26232 * Everything is done. Send it out on the wire 26233 * 26234 * ip_xmit_v4 will call ip_wput_attach_llhdr and then 26235 * either send it on the wire or, in the case of 26236 * HW acceleration, call ipsec_hw_putnext. 26237 */ 26238 if (ire->ire_nce && 26239 ire->ire_nce->nce_state != ND_REACHABLE) { 26240 DTRACE_PROBE2(ip__wput__ipsec__bail, 26241 (ire_t *), ire, (mblk_t *), ipsec_mp); 26242 /* 26243 * If ire's link-layer is unresolved (this 26244 * would only happen if the incomplete ire 26245 * was added to cachetable via forwarding path) 26246 * don't bother going to ip_xmit_v4. Just drop the 26247 * packet. 26248 * There is a slight risk here, in that, if we 26249 * have the forwarding path create an incomplete 26250 * IRE, then until the IRE is completed, any 26251 * transmitted IPsec packets will be dropped 26252 * instead of being queued waiting for resolution. 26253 * 26254 * But the likelihood of a forwarding packet and a wput 26255 * packet sending to the same dst at the same time 26256 * and there not yet be an ARP entry for it is small. 26257 * Furthermore, if this actually happens, it might 26258 * be likely that wput would generate multiple 26259 * packets (and forwarding would also have a train 26260 * of packets) for that destination. If this is 26261 * the case, some of them would have been dropped 26262 * anyway, since ARP only queues a few packets while 26263 * waiting for resolution 26264 * 26265 * NOTE: We should really call ip_xmit_v4, 26266 * and let it queue the packet and send the 26267 * ARP query and have ARP come back thus: 26268 * <ARP> ip_wput->ip_output->ip-wput_nondata-> 26269 * ip_xmit_v4->ip_wput_attach_llhdr + ipsec 26270 * hw accel work. But it's too complex to get 26271 * the IPsec hw acceleration approach to fit 26272 * well with ip_xmit_v4 doing ARP without 26273 * doing IPsec simplification. For now, we just 26274 * poke ip_xmit_v4 to trigger the arp resolve, so 26275 * that we can continue with the send on the next 26276 * attempt. 26277 * 26278 * XXX THis should be revisited, when 26279 * the IPsec/IP interaction is cleaned up 26280 */ 26281 ip1dbg(("ip_wput_ipsec_out: ire is incomplete" 26282 " - dropping packet\n")); 26283 freemsg(ipsec_mp); 26284 /* 26285 * Call ip_xmit_v4() to trigger ARP query 26286 * in case the nce_state is ND_INITIAL 26287 */ 26288 (void) ip_xmit_v4(NULL, ire, NULL, B_FALSE, NULL); 26289 goto drop_pkt; 26290 } 26291 26292 DTRACE_PROBE4(ip4__physical__out__start, ill_t *, NULL, 26293 ill_t *, ire->ire_ipif->ipif_ill, ipha_t *, ipha1, 26294 mblk_t *, ipsec_mp); 26295 FW_HOOKS(ipst->ips_ip4_physical_out_event, 26296 ipst->ips_ipv4firewall_physical_out, NULL, 26297 ire->ire_ipif->ipif_ill, ipha1, ipsec_mp, mp, 0, ipst); 26298 DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, ipsec_mp); 26299 if (ipsec_mp == NULL) 26300 goto drop_pkt; 26301 26302 ip1dbg(("ip_wput_ipsec_out: calling ip_xmit_v4\n")); 26303 pktxmit_state = ip_xmit_v4(mp, ire, 26304 (io->ipsec_out_accelerated ? io : NULL), B_FALSE, NULL); 26305 26306 if ((pktxmit_state == SEND_FAILED) || 26307 (pktxmit_state == LLHDR_RESLV_FAILED)) { 26308 26309 freeb(ipsec_mp); /* ip_xmit_v4 frees the mp */ 26310 drop_pkt: 26311 BUMP_MIB(((ill_t *)ire->ire_stq->q_ptr)->ill_ip_mib, 26312 ipIfStatsOutDiscards); 26313 if (ire_need_rele) 26314 ire_refrele(ire); 26315 if (ire1 != NULL) { 26316 ire_refrele(ire1); 26317 freemsg(next_mp); 26318 } 26319 goto done; 26320 } 26321 26322 freeb(ipsec_mp); 26323 if (ire_need_rele) 26324 ire_refrele(ire); 26325 26326 if (ire1 != NULL) { 26327 ire = ire1; 26328 ire_need_rele = B_TRUE; 26329 ASSERT(next_mp); 26330 ipsec_mp = next_mp; 26331 mp = ipsec_mp->b_cont; 26332 ire1 = NULL; 26333 next_mp = NULL; 26334 io = (ipsec_out_t *)ipsec_mp->b_rptr; 26335 } else { 26336 multirt_send = B_FALSE; 26337 } 26338 } while (multirt_send); 26339 done: 26340 if (ill != NULL && ill_need_rele) 26341 ill_refrele(ill); 26342 if (ipif != NULL) 26343 ipif_refrele(ipif); 26344 } 26345 26346 /* 26347 * Get the ill corresponding to the specified ire, and compare its 26348 * capabilities with the protocol and algorithms specified by the 26349 * the SA obtained from ipsec_out. If they match, annotate the 26350 * ipsec_out structure to indicate that the packet needs acceleration. 26351 * 26352 * 26353 * A packet is eligible for outbound hardware acceleration if the 26354 * following conditions are satisfied: 26355 * 26356 * 1. the packet will not be fragmented 26357 * 2. the provider supports the algorithm 26358 * 3. there is no pending control message being exchanged 26359 * 4. snoop is not attached 26360 * 5. the destination address is not a broadcast or multicast address. 26361 * 26362 * Rationale: 26363 * - Hardware drivers do not support fragmentation with 26364 * the current interface. 26365 * - snoop, multicast, and broadcast may result in exposure of 26366 * a cleartext datagram. 26367 * We check all five of these conditions here. 26368 * 26369 * XXX would like to nuke "ire_t *" parameter here; problem is that 26370 * IRE is only way to figure out if a v4 address is a broadcast and 26371 * thus ineligible for acceleration... 26372 */ 26373 static void 26374 ipsec_out_is_accelerated(mblk_t *ipsec_mp, ipsa_t *sa, ill_t *ill, ire_t *ire) 26375 { 26376 ipsec_out_t *io; 26377 mblk_t *data_mp; 26378 uint_t plen, overhead; 26379 ip_stack_t *ipst; 26380 26381 if ((sa->ipsa_flags & IPSA_F_HW) == 0) 26382 return; 26383 26384 if (ill == NULL) 26385 return; 26386 ipst = ill->ill_ipst; 26387 /* 26388 * Destination address is a broadcast or multicast. Punt. 26389 */ 26390 if ((ire != NULL) && (ire->ire_type & (IRE_BROADCAST|IRE_LOOPBACK| 26391 IRE_LOCAL))) 26392 return; 26393 26394 data_mp = ipsec_mp->b_cont; 26395 26396 if (ill->ill_isv6) { 26397 ip6_t *ip6h = (ip6_t *)data_mp->b_rptr; 26398 26399 if (IN6_IS_ADDR_MULTICAST(&ip6h->ip6_dst)) 26400 return; 26401 26402 plen = ip6h->ip6_plen; 26403 } else { 26404 ipha_t *ipha = (ipha_t *)data_mp->b_rptr; 26405 26406 if (CLASSD(ipha->ipha_dst)) 26407 return; 26408 26409 plen = ipha->ipha_length; 26410 } 26411 /* 26412 * Is there a pending DLPI control message being exchanged 26413 * between IP/IPsec and the DLS Provider? If there is, it 26414 * could be a SADB update, and the state of the DLS Provider 26415 * SADB might not be in sync with the SADB maintained by 26416 * IPsec. To avoid dropping packets or using the wrong keying 26417 * material, we do not accelerate this packet. 26418 */ 26419 if (ill->ill_dlpi_pending != DL_PRIM_INVAL) { 26420 IPSECHW_DEBUG(IPSECHW_PKT, ("ipsec_out_check_is_accelerated: " 26421 "ill_dlpi_pending! don't accelerate packet\n")); 26422 return; 26423 } 26424 26425 /* 26426 * Is the Provider in promiscous mode? If it does, we don't 26427 * accelerate the packet since it will bounce back up to the 26428 * listeners in the clear. 26429 */ 26430 if (ill->ill_promisc_on_phys) { 26431 IPSECHW_DEBUG(IPSECHW_PKT, ("ipsec_out_check_is_accelerated: " 26432 "ill in promiscous mode, don't accelerate packet\n")); 26433 return; 26434 } 26435 26436 /* 26437 * Will the packet require fragmentation? 26438 */ 26439 26440 /* 26441 * IPsec ESP note: this is a pessimistic estimate, but the same 26442 * as is used elsewhere. 26443 * SPI + sequence + MAC + IV(blocksize) + padding(blocksize-1) 26444 * + 2-byte trailer 26445 */ 26446 overhead = (sa->ipsa_type == SADB_SATYPE_AH) ? IPSEC_MAX_AH_HDR_SIZE : 26447 IPSEC_BASE_ESP_HDR_SIZE(sa); 26448 26449 if ((plen + overhead) > ill->ill_max_mtu) 26450 return; 26451 26452 io = (ipsec_out_t *)ipsec_mp->b_rptr; 26453 26454 /* 26455 * Can the ill accelerate this IPsec protocol and algorithm 26456 * specified by the SA? 26457 */ 26458 if (!ipsec_capab_match(ill, io->ipsec_out_capab_ill_index, 26459 ill->ill_isv6, sa, ipst->ips_netstack)) { 26460 return; 26461 } 26462 26463 /* 26464 * Tell AH or ESP that the outbound ill is capable of 26465 * accelerating this packet. 26466 */ 26467 io->ipsec_out_is_capab_ill = B_TRUE; 26468 } 26469 26470 /* 26471 * Select which AH & ESP SA's to use (if any) for the outbound packet. 26472 * 26473 * If this function returns B_TRUE, the requested SA's have been filled 26474 * into the ipsec_out_*_sa pointers. 26475 * 26476 * If the function returns B_FALSE, the packet has been "consumed", most 26477 * likely by an ACQUIRE sent up via PF_KEY to a key management daemon. 26478 * 26479 * The SA references created by the protocol-specific "select" 26480 * function will be released when the ipsec_mp is freed, thanks to the 26481 * ipsec_out_free destructor -- see spd.c. 26482 */ 26483 static boolean_t 26484 ipsec_out_select_sa(mblk_t *ipsec_mp) 26485 { 26486 boolean_t need_ah_acquire = B_FALSE, need_esp_acquire = B_FALSE; 26487 ipsec_out_t *io; 26488 ipsec_policy_t *pp; 26489 ipsec_action_t *ap; 26490 io = (ipsec_out_t *)ipsec_mp->b_rptr; 26491 ASSERT(io->ipsec_out_type == IPSEC_OUT); 26492 ASSERT(io->ipsec_out_len == sizeof (ipsec_out_t)); 26493 26494 if (!io->ipsec_out_secure) { 26495 /* 26496 * We came here by mistake. 26497 * Don't bother with ipsec processing 26498 * We should "discourage" this path in the future. 26499 */ 26500 ASSERT(io->ipsec_out_proc_begin == B_FALSE); 26501 return (B_FALSE); 26502 } 26503 ASSERT(io->ipsec_out_need_policy == B_FALSE); 26504 ASSERT((io->ipsec_out_policy != NULL) || 26505 (io->ipsec_out_act != NULL)); 26506 26507 ASSERT(io->ipsec_out_failed == B_FALSE); 26508 26509 /* 26510 * IPsec processing has started. 26511 */ 26512 io->ipsec_out_proc_begin = B_TRUE; 26513 ap = io->ipsec_out_act; 26514 if (ap == NULL) { 26515 pp = io->ipsec_out_policy; 26516 ASSERT(pp != NULL); 26517 ap = pp->ipsp_act; 26518 ASSERT(ap != NULL); 26519 } 26520 26521 /* 26522 * We have an action. now, let's select SA's. 26523 * (In the future, we can cache this in the conn_t..) 26524 */ 26525 if (ap->ipa_want_esp) { 26526 if (io->ipsec_out_esp_sa == NULL) { 26527 need_esp_acquire = !ipsec_outbound_sa(ipsec_mp, 26528 IPPROTO_ESP); 26529 } 26530 ASSERT(need_esp_acquire || io->ipsec_out_esp_sa != NULL); 26531 } 26532 26533 if (ap->ipa_want_ah) { 26534 if (io->ipsec_out_ah_sa == NULL) { 26535 need_ah_acquire = !ipsec_outbound_sa(ipsec_mp, 26536 IPPROTO_AH); 26537 } 26538 ASSERT(need_ah_acquire || io->ipsec_out_ah_sa != NULL); 26539 /* 26540 * The ESP and AH processing order needs to be preserved 26541 * when both protocols are required (ESP should be applied 26542 * before AH for an outbound packet). Force an ESP ACQUIRE 26543 * when both ESP and AH are required, and an AH ACQUIRE 26544 * is needed. 26545 */ 26546 if (ap->ipa_want_esp && need_ah_acquire) 26547 need_esp_acquire = B_TRUE; 26548 } 26549 26550 /* 26551 * Send an ACQUIRE (extended, regular, or both) if we need one. 26552 * Release SAs that got referenced, but will not be used until we 26553 * acquire _all_ of the SAs we need. 26554 */ 26555 if (need_ah_acquire || need_esp_acquire) { 26556 if (io->ipsec_out_ah_sa != NULL) { 26557 IPSA_REFRELE(io->ipsec_out_ah_sa); 26558 io->ipsec_out_ah_sa = NULL; 26559 } 26560 if (io->ipsec_out_esp_sa != NULL) { 26561 IPSA_REFRELE(io->ipsec_out_esp_sa); 26562 io->ipsec_out_esp_sa = NULL; 26563 } 26564 26565 sadb_acquire(ipsec_mp, io, need_ah_acquire, need_esp_acquire); 26566 return (B_FALSE); 26567 } 26568 26569 return (B_TRUE); 26570 } 26571 26572 /* 26573 * Process an IPSEC_OUT message and see what you can 26574 * do with it. 26575 * IPQoS Notes: 26576 * We do IPPF processing if IPP_LOCAL_OUT is enabled before processing for 26577 * IPsec. 26578 * XXX would like to nuke ire_t. 26579 * XXX ill_index better be "real" 26580 */ 26581 void 26582 ipsec_out_process(queue_t *q, mblk_t *ipsec_mp, ire_t *ire, uint_t ill_index) 26583 { 26584 ipsec_out_t *io; 26585 ipsec_policy_t *pp; 26586 ipsec_action_t *ap; 26587 ipha_t *ipha; 26588 ip6_t *ip6h; 26589 mblk_t *mp; 26590 ill_t *ill; 26591 zoneid_t zoneid; 26592 ipsec_status_t ipsec_rc; 26593 boolean_t ill_need_rele = B_FALSE; 26594 ip_stack_t *ipst; 26595 ipsec_stack_t *ipss; 26596 26597 io = (ipsec_out_t *)ipsec_mp->b_rptr; 26598 ASSERT(io->ipsec_out_type == IPSEC_OUT); 26599 ASSERT(io->ipsec_out_len == sizeof (ipsec_out_t)); 26600 ipst = io->ipsec_out_ns->netstack_ip; 26601 mp = ipsec_mp->b_cont; 26602 26603 /* 26604 * Initiate IPPF processing. We do it here to account for packets 26605 * coming here that don't have any policy (i.e. !io->ipsec_out_secure). 26606 * We can check for ipsec_out_proc_begin even for such packets, as 26607 * they will always be false (asserted below). 26608 */ 26609 if (IPP_ENABLED(IPP_LOCAL_OUT, ipst) && !io->ipsec_out_proc_begin) { 26610 ip_process(IPP_LOCAL_OUT, &mp, io->ipsec_out_ill_index != 0 ? 26611 io->ipsec_out_ill_index : ill_index); 26612 if (mp == NULL) { 26613 ip2dbg(("ipsec_out_process: packet dropped "\ 26614 "during IPPF processing\n")); 26615 freeb(ipsec_mp); 26616 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 26617 return; 26618 } 26619 } 26620 26621 if (!io->ipsec_out_secure) { 26622 /* 26623 * We came here by mistake. 26624 * Don't bother with ipsec processing 26625 * Should "discourage" this path in the future. 26626 */ 26627 ASSERT(io->ipsec_out_proc_begin == B_FALSE); 26628 goto done; 26629 } 26630 ASSERT(io->ipsec_out_need_policy == B_FALSE); 26631 ASSERT((io->ipsec_out_policy != NULL) || 26632 (io->ipsec_out_act != NULL)); 26633 ASSERT(io->ipsec_out_failed == B_FALSE); 26634 26635 ipss = ipst->ips_netstack->netstack_ipsec; 26636 if (!ipsec_loaded(ipss)) { 26637 ipha = (ipha_t *)ipsec_mp->b_cont->b_rptr; 26638 if (IPH_HDR_VERSION(ipha) == IP_VERSION) { 26639 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 26640 } else { 26641 BUMP_MIB(&ipst->ips_ip6_mib, ipIfStatsOutDiscards); 26642 } 26643 ip_drop_packet(ipsec_mp, B_FALSE, NULL, ire, 26644 DROPPER(ipss, ipds_ip_ipsec_not_loaded), 26645 &ipss->ipsec_dropper); 26646 return; 26647 } 26648 26649 /* 26650 * IPsec processing has started. 26651 */ 26652 io->ipsec_out_proc_begin = B_TRUE; 26653 ap = io->ipsec_out_act; 26654 if (ap == NULL) { 26655 pp = io->ipsec_out_policy; 26656 ASSERT(pp != NULL); 26657 ap = pp->ipsp_act; 26658 ASSERT(ap != NULL); 26659 } 26660 26661 /* 26662 * Save the outbound ill index. When the packet comes back 26663 * from IPsec, we make sure the ill hasn't changed or disappeared 26664 * before sending it the accelerated packet. 26665 */ 26666 if ((ire != NULL) && (io->ipsec_out_capab_ill_index == 0)) { 26667 ill = ire_to_ill(ire); 26668 io->ipsec_out_capab_ill_index = ill->ill_phyint->phyint_ifindex; 26669 } 26670 26671 /* 26672 * The order of processing is first insert a IP header if needed. 26673 * Then insert the ESP header and then the AH header. 26674 */ 26675 if ((io->ipsec_out_se_done == B_FALSE) && 26676 (ap->ipa_want_se)) { 26677 /* 26678 * First get the outer IP header before sending 26679 * it to ESP. 26680 */ 26681 ipha_t *oipha, *iipha; 26682 mblk_t *outer_mp, *inner_mp; 26683 26684 if ((outer_mp = allocb(sizeof (ipha_t), BPRI_HI)) == NULL) { 26685 (void) mi_strlog(q, 0, SL_ERROR|SL_TRACE|SL_CONSOLE, 26686 "ipsec_out_process: " 26687 "Self-Encapsulation failed: Out of memory\n"); 26688 freemsg(ipsec_mp); 26689 if (ill != NULL) { 26690 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 26691 } else { 26692 BUMP_MIB(&ipst->ips_ip_mib, 26693 ipIfStatsOutDiscards); 26694 } 26695 return; 26696 } 26697 inner_mp = ipsec_mp->b_cont; 26698 ASSERT(inner_mp->b_datap->db_type == M_DATA); 26699 oipha = (ipha_t *)outer_mp->b_rptr; 26700 iipha = (ipha_t *)inner_mp->b_rptr; 26701 *oipha = *iipha; 26702 outer_mp->b_wptr += sizeof (ipha_t); 26703 oipha->ipha_length = htons(ntohs(iipha->ipha_length) + 26704 sizeof (ipha_t)); 26705 oipha->ipha_protocol = IPPROTO_ENCAP; 26706 oipha->ipha_version_and_hdr_length = 26707 IP_SIMPLE_HDR_VERSION; 26708 oipha->ipha_hdr_checksum = 0; 26709 oipha->ipha_hdr_checksum = ip_csum_hdr(oipha); 26710 outer_mp->b_cont = inner_mp; 26711 ipsec_mp->b_cont = outer_mp; 26712 26713 io->ipsec_out_se_done = B_TRUE; 26714 io->ipsec_out_tunnel = B_TRUE; 26715 } 26716 26717 if (((ap->ipa_want_ah && (io->ipsec_out_ah_sa == NULL)) || 26718 (ap->ipa_want_esp && (io->ipsec_out_esp_sa == NULL))) && 26719 !ipsec_out_select_sa(ipsec_mp)) 26720 return; 26721 26722 /* 26723 * By now, we know what SA's to use. Toss over to ESP & AH 26724 * to do the heavy lifting. 26725 */ 26726 zoneid = io->ipsec_out_zoneid; 26727 ASSERT(zoneid != ALL_ZONES); 26728 if ((io->ipsec_out_esp_done == B_FALSE) && (ap->ipa_want_esp)) { 26729 ASSERT(io->ipsec_out_esp_sa != NULL); 26730 io->ipsec_out_esp_done = B_TRUE; 26731 /* 26732 * Note that since hw accel can only apply one transform, 26733 * not two, we skip hw accel for ESP if we also have AH 26734 * This is an design limitation of the interface 26735 * which should be revisited. 26736 */ 26737 ASSERT(ire != NULL); 26738 if (io->ipsec_out_ah_sa == NULL) { 26739 ill = (ill_t *)ire->ire_stq->q_ptr; 26740 ipsec_out_is_accelerated(ipsec_mp, 26741 io->ipsec_out_esp_sa, ill, ire); 26742 } 26743 26744 ipsec_rc = io->ipsec_out_esp_sa->ipsa_output_func(ipsec_mp); 26745 switch (ipsec_rc) { 26746 case IPSEC_STATUS_SUCCESS: 26747 break; 26748 case IPSEC_STATUS_FAILED: 26749 if (ill != NULL) { 26750 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 26751 } else { 26752 BUMP_MIB(&ipst->ips_ip_mib, 26753 ipIfStatsOutDiscards); 26754 } 26755 /* FALLTHRU */ 26756 case IPSEC_STATUS_PENDING: 26757 return; 26758 } 26759 } 26760 26761 if ((io->ipsec_out_ah_done == B_FALSE) && (ap->ipa_want_ah)) { 26762 ASSERT(io->ipsec_out_ah_sa != NULL); 26763 io->ipsec_out_ah_done = B_TRUE; 26764 if (ire == NULL) { 26765 int idx = io->ipsec_out_capab_ill_index; 26766 ill = ill_lookup_on_ifindex(idx, B_FALSE, 26767 NULL, NULL, NULL, NULL, ipst); 26768 ill_need_rele = B_TRUE; 26769 } else { 26770 ill = (ill_t *)ire->ire_stq->q_ptr; 26771 } 26772 ipsec_out_is_accelerated(ipsec_mp, io->ipsec_out_ah_sa, ill, 26773 ire); 26774 26775 ipsec_rc = io->ipsec_out_ah_sa->ipsa_output_func(ipsec_mp); 26776 switch (ipsec_rc) { 26777 case IPSEC_STATUS_SUCCESS: 26778 break; 26779 case IPSEC_STATUS_FAILED: 26780 if (ill != NULL) { 26781 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 26782 } else { 26783 BUMP_MIB(&ipst->ips_ip_mib, 26784 ipIfStatsOutDiscards); 26785 } 26786 /* FALLTHRU */ 26787 case IPSEC_STATUS_PENDING: 26788 if (ill != NULL && ill_need_rele) 26789 ill_refrele(ill); 26790 return; 26791 } 26792 } 26793 /* 26794 * We are done with IPsec processing. Send it over the wire. 26795 */ 26796 done: 26797 mp = ipsec_mp->b_cont; 26798 ipha = (ipha_t *)mp->b_rptr; 26799 if (IPH_HDR_VERSION(ipha) == IP_VERSION) { 26800 ip_wput_ipsec_out(q, ipsec_mp, ipha, ire->ire_ipif->ipif_ill, 26801 ire); 26802 } else { 26803 ip6h = (ip6_t *)ipha; 26804 ip_wput_ipsec_out_v6(q, ipsec_mp, ip6h, ire->ire_ipif->ipif_ill, 26805 ire); 26806 } 26807 if (ill != NULL && ill_need_rele) 26808 ill_refrele(ill); 26809 } 26810 26811 /* ARGSUSED */ 26812 void 26813 ip_restart_optmgmt(ipsq_t *dummy_sq, queue_t *q, mblk_t *first_mp, void *dummy) 26814 { 26815 opt_restart_t *or; 26816 int err; 26817 conn_t *connp; 26818 cred_t *cr; 26819 26820 ASSERT(CONN_Q(q)); 26821 connp = Q_TO_CONN(q); 26822 26823 ASSERT(first_mp->b_datap->db_type == M_CTL); 26824 or = (opt_restart_t *)first_mp->b_rptr; 26825 /* 26826 * We checked for a db_credp the first time svr4_optcom_req 26827 * was called (from ip_wput_nondata). So we can just ASSERT here. 26828 */ 26829 cr = msg_getcred(first_mp, NULL); 26830 ASSERT(cr != NULL); 26831 26832 if (or->or_type == T_SVR4_OPTMGMT_REQ) { 26833 err = svr4_optcom_req(q, first_mp, cr, 26834 &ip_opt_obj, B_FALSE); 26835 } else { 26836 ASSERT(or->or_type == T_OPTMGMT_REQ); 26837 err = tpi_optcom_req(q, first_mp, cr, 26838 &ip_opt_obj, B_FALSE); 26839 } 26840 if (err != EINPROGRESS) { 26841 /* operation is done */ 26842 CONN_OPER_PENDING_DONE(connp); 26843 } 26844 } 26845 26846 /* 26847 * ioctls that go through a down/up sequence may need to wait for the down 26848 * to complete. This involves waiting for the ire and ipif refcnts to go down 26849 * to zero. Subsequently the ioctl is restarted from ipif_ill_refrele_tail. 26850 */ 26851 /* ARGSUSED */ 26852 void 26853 ip_reprocess_ioctl(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 26854 { 26855 struct iocblk *iocp; 26856 mblk_t *mp1; 26857 ip_ioctl_cmd_t *ipip; 26858 int err; 26859 sin_t *sin; 26860 struct lifreq *lifr; 26861 struct ifreq *ifr; 26862 26863 iocp = (struct iocblk *)mp->b_rptr; 26864 ASSERT(ipsq != NULL); 26865 /* Existence of mp1 verified in ip_wput_nondata */ 26866 mp1 = mp->b_cont->b_cont; 26867 ipip = ip_sioctl_lookup(iocp->ioc_cmd); 26868 if (ipip->ipi_cmd == SIOCSLIFNAME || ipip->ipi_cmd == IF_UNITSEL) { 26869 /* 26870 * Special case where ipx_current_ipif is not set: 26871 * ill_phyint_reinit merged the v4 and v6 into a single ipsq. 26872 * We are here as were not able to complete the operation in 26873 * ipif_set_values because we could not become exclusive on 26874 * the new ipsq. 26875 */ 26876 ill_t *ill = q->q_ptr; 26877 ipsq_current_start(ipsq, ill->ill_ipif, ipip->ipi_cmd); 26878 } 26879 ASSERT(ipsq->ipsq_xop->ipx_current_ipif != NULL); 26880 26881 if (ipip->ipi_cmd_type == IF_CMD) { 26882 /* This a old style SIOC[GS]IF* command */ 26883 ifr = (struct ifreq *)mp1->b_rptr; 26884 sin = (sin_t *)&ifr->ifr_addr; 26885 } else if (ipip->ipi_cmd_type == LIF_CMD) { 26886 /* This a new style SIOC[GS]LIF* command */ 26887 lifr = (struct lifreq *)mp1->b_rptr; 26888 sin = (sin_t *)&lifr->lifr_addr; 26889 } else { 26890 sin = NULL; 26891 } 26892 26893 err = (*ipip->ipi_func_restart)(ipsq->ipsq_xop->ipx_current_ipif, sin, 26894 q, mp, ipip, mp1->b_rptr); 26895 26896 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), ipsq); 26897 } 26898 26899 /* 26900 * ioctl processing 26901 * 26902 * ioctl processing starts with ip_sioctl_copyin_setup(), which looks up 26903 * the ioctl command in the ioctl tables, determines the copyin data size 26904 * from the ipi_copyin_size field, and does an mi_copyin() of that size. 26905 * 26906 * ioctl processing then continues when the M_IOCDATA makes its way down to 26907 * ip_wput_nondata(). The ioctl is looked up again in the ioctl table, its 26908 * associated 'conn' is refheld till the end of the ioctl and the general 26909 * ioctl processing function ip_process_ioctl() is called to extract the 26910 * arguments and process the ioctl. To simplify extraction, ioctl commands 26911 * are "typed" based on the arguments they take (e.g., LIF_CMD which takes a 26912 * `struct lifreq'), and a common extract function (e.g., ip_extract_lifreq()) 26913 * is used to extract the ioctl's arguments. 26914 * 26915 * ip_process_ioctl determines if the ioctl needs to be serialized, and if 26916 * so goes thru the serialization primitive ipsq_try_enter. Then the 26917 * appropriate function to handle the ioctl is called based on the entry in 26918 * the ioctl table. ioctl completion is encapsulated in ip_ioctl_finish 26919 * which also refreleases the 'conn' that was refheld at the start of the 26920 * ioctl. Finally ipsq_exit is called if needed to exit the ipsq. 26921 * 26922 * Many exclusive ioctls go thru an internal down up sequence as part of 26923 * the operation. For example an attempt to change the IP address of an 26924 * ipif entails ipif_down, set address, ipif_up. Bringing down the interface 26925 * does all the cleanup such as deleting all ires that use this address. 26926 * Then we need to wait till all references to the interface go away. 26927 */ 26928 void 26929 ip_process_ioctl(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *arg) 26930 { 26931 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 26932 ip_ioctl_cmd_t *ipip = arg; 26933 ip_extract_func_t *extract_funcp; 26934 cmd_info_t ci; 26935 int err; 26936 boolean_t entered_ipsq = B_FALSE; 26937 26938 ip3dbg(("ip_process_ioctl: ioctl %X\n", iocp->ioc_cmd)); 26939 26940 if (ipip == NULL) 26941 ipip = ip_sioctl_lookup(iocp->ioc_cmd); 26942 26943 /* 26944 * SIOCLIFADDIF needs to go thru a special path since the 26945 * ill may not exist yet. This happens in the case of lo0 26946 * which is created using this ioctl. 26947 */ 26948 if (ipip->ipi_cmd == SIOCLIFADDIF) { 26949 err = ip_sioctl_addif(NULL, NULL, q, mp, NULL, NULL); 26950 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), NULL); 26951 return; 26952 } 26953 26954 ci.ci_ipif = NULL; 26955 if (ipip->ipi_cmd_type == MISC_CMD) { 26956 /* 26957 * All MISC_CMD ioctls come in here -- e.g. SIOCGLIFCONF. 26958 */ 26959 if (ipip->ipi_cmd == IF_UNITSEL) { 26960 /* ioctl comes down the ill */ 26961 ci.ci_ipif = ((ill_t *)q->q_ptr)->ill_ipif; 26962 ipif_refhold(ci.ci_ipif); 26963 } 26964 err = 0; 26965 ci.ci_sin = NULL; 26966 ci.ci_sin6 = NULL; 26967 ci.ci_lifr = NULL; 26968 } else { 26969 switch (ipip->ipi_cmd_type) { 26970 case IF_CMD: 26971 case LIF_CMD: 26972 extract_funcp = ip_extract_lifreq; 26973 break; 26974 26975 case ARP_CMD: 26976 case XARP_CMD: 26977 extract_funcp = ip_extract_arpreq; 26978 break; 26979 26980 case TUN_CMD: 26981 extract_funcp = ip_extract_tunreq; 26982 break; 26983 26984 case MSFILT_CMD: 26985 extract_funcp = ip_extract_msfilter; 26986 break; 26987 26988 default: 26989 ASSERT(0); 26990 } 26991 26992 err = (*extract_funcp)(q, mp, ipip, &ci, ip_process_ioctl); 26993 if (err != 0) { 26994 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), NULL); 26995 return; 26996 } 26997 26998 /* 26999 * All of the extraction functions return a refheld ipif. 27000 */ 27001 ASSERT(ci.ci_ipif != NULL); 27002 } 27003 27004 if (!(ipip->ipi_flags & IPI_WR)) { 27005 /* 27006 * A return value of EINPROGRESS means the ioctl is 27007 * either queued and waiting for some reason or has 27008 * already completed. 27009 */ 27010 err = (*ipip->ipi_func)(ci.ci_ipif, ci.ci_sin, q, mp, ipip, 27011 ci.ci_lifr); 27012 if (ci.ci_ipif != NULL) 27013 ipif_refrele(ci.ci_ipif); 27014 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), NULL); 27015 return; 27016 } 27017 27018 ASSERT(ci.ci_ipif != NULL); 27019 27020 /* 27021 * If ipsq is non-NULL, we are already being called exclusively. 27022 */ 27023 ASSERT(ipsq == NULL || IAM_WRITER_IPSQ(ipsq)); 27024 if (ipsq == NULL) { 27025 ipsq = ipsq_try_enter(ci.ci_ipif, NULL, q, mp, ip_process_ioctl, 27026 NEW_OP, B_TRUE); 27027 if (ipsq == NULL) { 27028 ipif_refrele(ci.ci_ipif); 27029 return; 27030 } 27031 entered_ipsq = B_TRUE; 27032 } 27033 27034 /* 27035 * Release the ipif so that ipif_down and friends that wait for 27036 * references to go away are not misled about the current ipif_refcnt 27037 * values. We are writer so we can access the ipif even after releasing 27038 * the ipif. 27039 */ 27040 ipif_refrele(ci.ci_ipif); 27041 27042 ipsq_current_start(ipsq, ci.ci_ipif, ipip->ipi_cmd); 27043 27044 /* 27045 * A return value of EINPROGRESS means the ioctl is 27046 * either queued and waiting for some reason or has 27047 * already completed. 27048 */ 27049 err = (*ipip->ipi_func)(ci.ci_ipif, ci.ci_sin, q, mp, ipip, ci.ci_lifr); 27050 27051 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), ipsq); 27052 27053 if (entered_ipsq) 27054 ipsq_exit(ipsq); 27055 } 27056 27057 /* 27058 * Complete the ioctl. Typically ioctls use the mi package and need to 27059 * do mi_copyout/mi_copy_done. 27060 */ 27061 void 27062 ip_ioctl_finish(queue_t *q, mblk_t *mp, int err, int mode, ipsq_t *ipsq) 27063 { 27064 conn_t *connp = NULL; 27065 27066 if (err == EINPROGRESS) 27067 return; 27068 27069 if (CONN_Q(q)) { 27070 connp = Q_TO_CONN(q); 27071 ASSERT(connp->conn_ref >= 2); 27072 } 27073 27074 switch (mode) { 27075 case COPYOUT: 27076 if (err == 0) 27077 mi_copyout(q, mp); 27078 else 27079 mi_copy_done(q, mp, err); 27080 break; 27081 27082 case NO_COPYOUT: 27083 mi_copy_done(q, mp, err); 27084 break; 27085 27086 default: 27087 ASSERT(mode == CONN_CLOSE); /* aborted through CONN_CLOSE */ 27088 break; 27089 } 27090 27091 /* 27092 * The refhold placed at the start of the ioctl is released here. 27093 */ 27094 if (connp != NULL) 27095 CONN_OPER_PENDING_DONE(connp); 27096 27097 if (ipsq != NULL) 27098 ipsq_current_finish(ipsq); 27099 } 27100 27101 /* Called from ip_wput for all non data messages */ 27102 /* ARGSUSED */ 27103 void 27104 ip_wput_nondata(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 27105 { 27106 mblk_t *mp1; 27107 ire_t *ire, *fake_ire; 27108 ill_t *ill; 27109 struct iocblk *iocp; 27110 ip_ioctl_cmd_t *ipip; 27111 cred_t *cr; 27112 conn_t *connp; 27113 int err; 27114 nce_t *nce; 27115 ipif_t *ipif; 27116 ip_stack_t *ipst; 27117 char *proto_str; 27118 27119 if (CONN_Q(q)) { 27120 connp = Q_TO_CONN(q); 27121 ipst = connp->conn_netstack->netstack_ip; 27122 } else { 27123 connp = NULL; 27124 ipst = ILLQ_TO_IPST(q); 27125 } 27126 27127 switch (DB_TYPE(mp)) { 27128 case M_IOCTL: 27129 /* 27130 * IOCTL processing begins in ip_sioctl_copyin_setup which 27131 * will arrange to copy in associated control structures. 27132 */ 27133 ip_sioctl_copyin_setup(q, mp); 27134 return; 27135 case M_IOCDATA: 27136 /* 27137 * Ensure that this is associated with one of our trans- 27138 * parent ioctls. If it's not ours, discard it if we're 27139 * running as a driver, or pass it on if we're a module. 27140 */ 27141 iocp = (struct iocblk *)mp->b_rptr; 27142 ipip = ip_sioctl_lookup(iocp->ioc_cmd); 27143 if (ipip == NULL) { 27144 if (q->q_next == NULL) { 27145 goto nak; 27146 } else { 27147 putnext(q, mp); 27148 } 27149 return; 27150 } 27151 if ((q->q_next != NULL) && !(ipip->ipi_flags & IPI_MODOK)) { 27152 /* 27153 * the ioctl is one we recognise, but is not 27154 * consumed by IP as a module, pass M_IOCDATA 27155 * for processing downstream, but only for 27156 * common Streams ioctls. 27157 */ 27158 if (ipip->ipi_flags & IPI_PASS_DOWN) { 27159 putnext(q, mp); 27160 return; 27161 } else { 27162 goto nak; 27163 } 27164 } 27165 27166 /* IOCTL continuation following copyin or copyout. */ 27167 if (mi_copy_state(q, mp, NULL) == -1) { 27168 /* 27169 * The copy operation failed. mi_copy_state already 27170 * cleaned up, so we're out of here. 27171 */ 27172 return; 27173 } 27174 /* 27175 * If we just completed a copy in, we become writer and 27176 * continue processing in ip_sioctl_copyin_done. If it 27177 * was a copy out, we call mi_copyout again. If there is 27178 * nothing more to copy out, it will complete the IOCTL. 27179 */ 27180 if (MI_COPY_DIRECTION(mp) == MI_COPY_IN) { 27181 if (!(mp1 = mp->b_cont) || !(mp1 = mp1->b_cont)) { 27182 mi_copy_done(q, mp, EPROTO); 27183 return; 27184 } 27185 /* 27186 * Check for cases that need more copying. A return 27187 * value of 0 means a second copyin has been started, 27188 * so we return; a return value of 1 means no more 27189 * copying is needed, so we continue. 27190 */ 27191 if (ipip->ipi_cmd_type == MSFILT_CMD && 27192 MI_COPY_COUNT(mp) == 1) { 27193 if (ip_copyin_msfilter(q, mp) == 0) 27194 return; 27195 } 27196 /* 27197 * Refhold the conn, till the ioctl completes. This is 27198 * needed in case the ioctl ends up in the pending mp 27199 * list. Every mp in the ill_pending_mp list and 27200 * the ipx_pending_mp must have a refhold on the conn 27201 * to resume processing. The refhold is released when 27202 * the ioctl completes. (normally or abnormally) 27203 * In all cases ip_ioctl_finish is called to finish 27204 * the ioctl. 27205 */ 27206 if (connp != NULL) { 27207 /* This is not a reentry */ 27208 ASSERT(ipsq == NULL); 27209 CONN_INC_REF(connp); 27210 } else { 27211 if (!(ipip->ipi_flags & IPI_MODOK)) { 27212 mi_copy_done(q, mp, EINVAL); 27213 return; 27214 } 27215 } 27216 27217 ip_process_ioctl(ipsq, q, mp, ipip); 27218 27219 } else { 27220 mi_copyout(q, mp); 27221 } 27222 return; 27223 nak: 27224 iocp->ioc_error = EINVAL; 27225 mp->b_datap->db_type = M_IOCNAK; 27226 iocp->ioc_count = 0; 27227 qreply(q, mp); 27228 return; 27229 27230 case M_IOCNAK: 27231 /* 27232 * The only way we could get here is if a resolver didn't like 27233 * an IOCTL we sent it. This shouldn't happen. 27234 */ 27235 (void) mi_strlog(q, 1, SL_ERROR|SL_TRACE, 27236 "ip_wput: unexpected M_IOCNAK, ioc_cmd 0x%x", 27237 ((struct iocblk *)mp->b_rptr)->ioc_cmd); 27238 freemsg(mp); 27239 return; 27240 case M_IOCACK: 27241 /* /dev/ip shouldn't see this */ 27242 if (CONN_Q(q)) 27243 goto nak; 27244 27245 /* 27246 * Finish socket ioctls passed through to ARP. We use the 27247 * ioc_cmd values we set in ip_sioctl_arp() to decide whether 27248 * we need to become writer before calling ip_sioctl_iocack(). 27249 * Note that qwriter_ip() will release the refhold, and that a 27250 * refhold is OK without ILL_CAN_LOOKUP() since we're on the 27251 * ill stream. 27252 */ 27253 iocp = (struct iocblk *)mp->b_rptr; 27254 if (iocp->ioc_cmd == AR_ENTRY_SQUERY) { 27255 ip_sioctl_iocack(NULL, q, mp, NULL); 27256 return; 27257 } 27258 27259 ASSERT(iocp->ioc_cmd == AR_ENTRY_DELETE || 27260 iocp->ioc_cmd == AR_ENTRY_ADD); 27261 ill = q->q_ptr; 27262 ill_refhold(ill); 27263 qwriter_ip(ill, q, mp, ip_sioctl_iocack, CUR_OP, B_FALSE); 27264 return; 27265 case M_FLUSH: 27266 if (*mp->b_rptr & FLUSHW) 27267 flushq(q, FLUSHALL); 27268 if (q->q_next) { 27269 putnext(q, mp); 27270 return; 27271 } 27272 if (*mp->b_rptr & FLUSHR) { 27273 *mp->b_rptr &= ~FLUSHW; 27274 qreply(q, mp); 27275 return; 27276 } 27277 freemsg(mp); 27278 return; 27279 case IRE_DB_REQ_TYPE: 27280 if (connp == NULL) { 27281 proto_str = "IRE_DB_REQ_TYPE"; 27282 goto protonak; 27283 } 27284 /* An Upper Level Protocol wants a copy of an IRE. */ 27285 ip_ire_req(q, mp); 27286 return; 27287 case M_CTL: 27288 if (mp->b_wptr - mp->b_rptr < sizeof (uint32_t)) 27289 break; 27290 27291 if (((ipsec_info_t *)mp->b_rptr)->ipsec_info_type == 27292 TUN_HELLO) { 27293 ASSERT(connp != NULL); 27294 connp->conn_flags |= IPCL_IPTUN; 27295 freeb(mp); 27296 return; 27297 } 27298 27299 /* M_CTL messages are used by ARP to tell us things. */ 27300 if ((mp->b_wptr - mp->b_rptr) < sizeof (arc_t)) 27301 break; 27302 switch (((arc_t *)mp->b_rptr)->arc_cmd) { 27303 case AR_ENTRY_SQUERY: 27304 putnext(q, mp); 27305 return; 27306 case AR_CLIENT_NOTIFY: 27307 ip_arp_news(q, mp); 27308 return; 27309 case AR_DLPIOP_DONE: 27310 ASSERT(q->q_next != NULL); 27311 ill = (ill_t *)q->q_ptr; 27312 /* qwriter_ip releases the refhold */ 27313 /* refhold on ill stream is ok without ILL_CAN_LOOKUP */ 27314 ill_refhold(ill); 27315 qwriter_ip(ill, q, mp, ip_arp_done, CUR_OP, B_FALSE); 27316 return; 27317 case AR_ARP_CLOSING: 27318 /* 27319 * ARP (above us) is closing. If no ARP bringup is 27320 * currently pending, ack the message so that ARP 27321 * can complete its close. Also mark ill_arp_closing 27322 * so that new ARP bringups will fail. If any 27323 * ARP bringup is currently in progress, we will 27324 * ack this when the current ARP bringup completes. 27325 */ 27326 ASSERT(q->q_next != NULL); 27327 ill = (ill_t *)q->q_ptr; 27328 mutex_enter(&ill->ill_lock); 27329 ill->ill_arp_closing = 1; 27330 if (!ill->ill_arp_bringup_pending) { 27331 mutex_exit(&ill->ill_lock); 27332 qreply(q, mp); 27333 } else { 27334 mutex_exit(&ill->ill_lock); 27335 freemsg(mp); 27336 } 27337 return; 27338 case AR_ARP_EXTEND: 27339 /* 27340 * The ARP module above us is capable of duplicate 27341 * address detection. Old ATM drivers will not send 27342 * this message. 27343 */ 27344 ASSERT(q->q_next != NULL); 27345 ill = (ill_t *)q->q_ptr; 27346 ill->ill_arp_extend = B_TRUE; 27347 freemsg(mp); 27348 return; 27349 default: 27350 break; 27351 } 27352 break; 27353 case M_PROTO: 27354 case M_PCPROTO: 27355 /* 27356 * The only PROTO messages we expect are copies of option 27357 * negotiation acknowledgements, AH and ESP bind requests 27358 * are also expected. 27359 */ 27360 switch (((union T_primitives *)mp->b_rptr)->type) { 27361 case O_T_BIND_REQ: 27362 case T_BIND_REQ: { 27363 /* Request can get queued in bind */ 27364 if (connp == NULL) { 27365 proto_str = "O_T_BIND_REQ/T_BIND_REQ"; 27366 goto protonak; 27367 } 27368 /* 27369 * The transports except SCTP call ip_bind_{v4,v6}() 27370 * directly instead of a a putnext. SCTP doesn't 27371 * generate any T_BIND_REQ since it has its own 27372 * fanout data structures. However, ESP and AH 27373 * come in for regular binds; all other cases are 27374 * bind retries. 27375 */ 27376 ASSERT(!IPCL_IS_SCTP(connp)); 27377 27378 /* Don't increment refcnt if this is a re-entry */ 27379 if (ipsq == NULL) 27380 CONN_INC_REF(connp); 27381 27382 mp = connp->conn_af_isv6 ? ip_bind_v6(q, mp, 27383 connp, NULL) : ip_bind_v4(q, mp, connp); 27384 ASSERT(mp != NULL); 27385 27386 ASSERT(!IPCL_IS_TCP(connp)); 27387 ASSERT(!IPCL_IS_UDP(connp)); 27388 ASSERT(!IPCL_IS_RAWIP(connp)); 27389 27390 /* The case of AH and ESP */ 27391 qreply(q, mp); 27392 CONN_OPER_PENDING_DONE(connp); 27393 return; 27394 } 27395 case T_SVR4_OPTMGMT_REQ: 27396 ip2dbg(("ip_wput: T_SVR4_OPTMGMT_REQ flags %x\n", 27397 ((struct T_optmgmt_req *)mp->b_rptr)->MGMT_flags)); 27398 27399 if (connp == NULL) { 27400 proto_str = "T_SVR4_OPTMGMT_REQ"; 27401 goto protonak; 27402 } 27403 27404 /* 27405 * All Solaris components should pass a db_credp 27406 * for this TPI message, hence we ASSERT. 27407 * But in case there is some other M_PROTO that looks 27408 * like a TPI message sent by some other kernel 27409 * component, we check and return an error. 27410 */ 27411 cr = msg_getcred(mp, NULL); 27412 ASSERT(cr != NULL); 27413 if (cr == NULL) { 27414 mp = mi_tpi_err_ack_alloc(mp, TSYSERR, EINVAL); 27415 if (mp != NULL) 27416 qreply(q, mp); 27417 return; 27418 } 27419 27420 if (!snmpcom_req(q, mp, ip_snmp_set, 27421 ip_snmp_get, cr)) { 27422 /* 27423 * Call svr4_optcom_req so that it can 27424 * generate the ack. We don't come here 27425 * if this operation is being restarted. 27426 * ip_restart_optmgmt will drop the conn ref. 27427 * In the case of ipsec option after the ipsec 27428 * load is complete conn_restart_ipsec_waiter 27429 * drops the conn ref. 27430 */ 27431 ASSERT(ipsq == NULL); 27432 CONN_INC_REF(connp); 27433 if (ip_check_for_ipsec_opt(q, mp)) 27434 return; 27435 err = svr4_optcom_req(q, mp, cr, &ip_opt_obj, 27436 B_FALSE); 27437 if (err != EINPROGRESS) { 27438 /* Operation is done */ 27439 CONN_OPER_PENDING_DONE(connp); 27440 } 27441 } 27442 return; 27443 case T_OPTMGMT_REQ: 27444 ip2dbg(("ip_wput: T_OPTMGMT_REQ\n")); 27445 /* 27446 * Note: No snmpcom_req support through new 27447 * T_OPTMGMT_REQ. 27448 * Call tpi_optcom_req so that it can 27449 * generate the ack. 27450 */ 27451 if (connp == NULL) { 27452 proto_str = "T_OPTMGMT_REQ"; 27453 goto protonak; 27454 } 27455 27456 /* 27457 * All Solaris components should pass a db_credp 27458 * for this TPI message, hence we ASSERT. 27459 * But in case there is some other M_PROTO that looks 27460 * like a TPI message sent by some other kernel 27461 * component, we check and return an error. 27462 */ 27463 cr = msg_getcred(mp, NULL); 27464 ASSERT(cr != NULL); 27465 if (cr == NULL) { 27466 mp = mi_tpi_err_ack_alloc(mp, TSYSERR, EINVAL); 27467 if (mp != NULL) 27468 qreply(q, mp); 27469 return; 27470 } 27471 ASSERT(ipsq == NULL); 27472 /* 27473 * We don't come here for restart. ip_restart_optmgmt 27474 * will drop the conn ref. In the case of ipsec option 27475 * after the ipsec load is complete 27476 * conn_restart_ipsec_waiter drops the conn ref. 27477 */ 27478 CONN_INC_REF(connp); 27479 if (ip_check_for_ipsec_opt(q, mp)) 27480 return; 27481 err = tpi_optcom_req(q, mp, cr, &ip_opt_obj, B_FALSE); 27482 if (err != EINPROGRESS) { 27483 /* Operation is done */ 27484 CONN_OPER_PENDING_DONE(connp); 27485 } 27486 return; 27487 case T_UNBIND_REQ: 27488 if (connp == NULL) { 27489 proto_str = "T_UNBIND_REQ"; 27490 goto protonak; 27491 } 27492 ip_unbind(Q_TO_CONN(q)); 27493 mp = mi_tpi_ok_ack_alloc(mp); 27494 qreply(q, mp); 27495 return; 27496 default: 27497 /* 27498 * Have to drop any DLPI messages coming down from 27499 * arp (such as an info_req which would cause ip 27500 * to receive an extra info_ack if it was passed 27501 * through. 27502 */ 27503 ip1dbg(("ip_wput_nondata: dropping M_PROTO %d\n", 27504 (int)*(uint_t *)mp->b_rptr)); 27505 freemsg(mp); 27506 return; 27507 } 27508 /* NOTREACHED */ 27509 case IRE_DB_TYPE: { 27510 nce_t *nce; 27511 ill_t *ill; 27512 in6_addr_t gw_addr_v6; 27513 27514 /* 27515 * This is a response back from a resolver. It 27516 * consists of a message chain containing: 27517 * IRE_MBLK-->LL_HDR_MBLK->pkt 27518 * The IRE_MBLK is the one we allocated in ip_newroute. 27519 * The LL_HDR_MBLK is the DLPI header to use to get 27520 * the attached packet, and subsequent ones for the 27521 * same destination, transmitted. 27522 */ 27523 if ((mp->b_wptr - mp->b_rptr) != sizeof (ire_t)) /* ire */ 27524 break; 27525 /* 27526 * First, check to make sure the resolution succeeded. 27527 * If it failed, the second mblk will be empty. 27528 * If it is, free the chain, dropping the packet. 27529 * (We must ire_delete the ire; that frees the ire mblk) 27530 * We're doing this now to support PVCs for ATM; it's 27531 * a partial xresolv implementation. When we fully implement 27532 * xresolv interfaces, instead of freeing everything here 27533 * we'll initiate neighbor discovery. 27534 * 27535 * For v4 (ARP and other external resolvers) the resolver 27536 * frees the message, so no check is needed. This check 27537 * is required, though, for a full xresolve implementation. 27538 * Including this code here now both shows how external 27539 * resolvers can NACK a resolution request using an 27540 * existing design that has no specific provisions for NACKs, 27541 * and also takes into account that the current non-ARP 27542 * external resolver has been coded to use this method of 27543 * NACKing for all IPv6 (xresolv) cases, 27544 * whether our xresolv implementation is complete or not. 27545 * 27546 */ 27547 ire = (ire_t *)mp->b_rptr; 27548 ill = ire_to_ill(ire); 27549 mp1 = mp->b_cont; /* dl_unitdata_req */ 27550 if (mp1->b_rptr == mp1->b_wptr) { 27551 if (ire->ire_ipversion == IPV6_VERSION) { 27552 /* 27553 * XRESOLV interface. 27554 */ 27555 ASSERT(ill->ill_flags & ILLF_XRESOLV); 27556 mutex_enter(&ire->ire_lock); 27557 gw_addr_v6 = ire->ire_gateway_addr_v6; 27558 mutex_exit(&ire->ire_lock); 27559 if (IN6_IS_ADDR_UNSPECIFIED(&gw_addr_v6)) { 27560 nce = ndp_lookup_v6(ill, B_FALSE, 27561 &ire->ire_addr_v6, B_FALSE); 27562 } else { 27563 nce = ndp_lookup_v6(ill, B_FALSE, 27564 &gw_addr_v6, B_FALSE); 27565 } 27566 if (nce != NULL) { 27567 nce_resolv_failed(nce); 27568 ndp_delete(nce); 27569 NCE_REFRELE(nce); 27570 } 27571 } 27572 mp->b_cont = NULL; 27573 freemsg(mp1); /* frees the pkt as well */ 27574 ASSERT(ire->ire_nce == NULL); 27575 ire_delete((ire_t *)mp->b_rptr); 27576 return; 27577 } 27578 27579 /* 27580 * Split them into IRE_MBLK and pkt and feed it into 27581 * ire_add_then_send. Then in ire_add_then_send 27582 * the IRE will be added, and then the packet will be 27583 * run back through ip_wput. This time it will make 27584 * it to the wire. 27585 */ 27586 mp->b_cont = NULL; 27587 mp = mp1->b_cont; /* now, mp points to pkt */ 27588 mp1->b_cont = NULL; 27589 ip1dbg(("ip_wput_nondata: reply from external resolver \n")); 27590 if (ire->ire_ipversion == IPV6_VERSION) { 27591 /* 27592 * XRESOLV interface. Find the nce and put a copy 27593 * of the dl_unitdata_req in nce_res_mp 27594 */ 27595 ASSERT(ill->ill_flags & ILLF_XRESOLV); 27596 mutex_enter(&ire->ire_lock); 27597 gw_addr_v6 = ire->ire_gateway_addr_v6; 27598 mutex_exit(&ire->ire_lock); 27599 if (IN6_IS_ADDR_UNSPECIFIED(&gw_addr_v6)) { 27600 nce = ndp_lookup_v6(ill, B_FALSE, 27601 &ire->ire_addr_v6, B_FALSE); 27602 } else { 27603 nce = ndp_lookup_v6(ill, B_FALSE, 27604 &gw_addr_v6, B_FALSE); 27605 } 27606 if (nce != NULL) { 27607 /* 27608 * We have to protect nce_res_mp here 27609 * from being accessed by other threads 27610 * while we change the mblk pointer. 27611 * Other functions will also lock the nce when 27612 * accessing nce_res_mp. 27613 * 27614 * The reason we change the mblk pointer 27615 * here rather than copying the resolved address 27616 * into the template is that, unlike with 27617 * ethernet, we have no guarantee that the 27618 * resolved address length will be 27619 * smaller than or equal to the lla length 27620 * with which the template was allocated, 27621 * (for ethernet, they're equal) 27622 * so we have to use the actual resolved 27623 * address mblk - which holds the real 27624 * dl_unitdata_req with the resolved address. 27625 * 27626 * Doing this is the same behavior as was 27627 * previously used in the v4 ARP case. 27628 */ 27629 mutex_enter(&nce->nce_lock); 27630 if (nce->nce_res_mp != NULL) 27631 freemsg(nce->nce_res_mp); 27632 nce->nce_res_mp = mp1; 27633 mutex_exit(&nce->nce_lock); 27634 /* 27635 * We do a fastpath probe here because 27636 * we have resolved the address without 27637 * using Neighbor Discovery. 27638 * In the non-XRESOLV v6 case, the fastpath 27639 * probe is done right after neighbor 27640 * discovery completes. 27641 */ 27642 if (nce->nce_res_mp != NULL) { 27643 int res; 27644 nce_fastpath_list_add(nce); 27645 res = ill_fastpath_probe(ill, 27646 nce->nce_res_mp); 27647 if (res != 0 && res != EAGAIN) 27648 nce_fastpath_list_delete(nce); 27649 } 27650 27651 ire_add_then_send(q, ire, mp); 27652 /* 27653 * Now we have to clean out any packets 27654 * that may have been queued on the nce 27655 * while it was waiting for address resolution 27656 * to complete. 27657 */ 27658 mutex_enter(&nce->nce_lock); 27659 mp1 = nce->nce_qd_mp; 27660 nce->nce_qd_mp = NULL; 27661 mutex_exit(&nce->nce_lock); 27662 while (mp1 != NULL) { 27663 mblk_t *nxt_mp; 27664 queue_t *fwdq = NULL; 27665 ill_t *inbound_ill; 27666 uint_t ifindex; 27667 27668 nxt_mp = mp1->b_next; 27669 mp1->b_next = NULL; 27670 /* 27671 * Retrieve ifindex stored in 27672 * ip_rput_data_v6() 27673 */ 27674 ifindex = 27675 (uint_t)(uintptr_t)mp1->b_prev; 27676 inbound_ill = 27677 ill_lookup_on_ifindex(ifindex, 27678 B_TRUE, NULL, NULL, NULL, 27679 NULL, ipst); 27680 mp1->b_prev = NULL; 27681 if (inbound_ill != NULL) 27682 fwdq = inbound_ill->ill_rq; 27683 27684 if (fwdq != NULL) { 27685 put(fwdq, mp1); 27686 ill_refrele(inbound_ill); 27687 } else 27688 put(WR(ill->ill_rq), mp1); 27689 mp1 = nxt_mp; 27690 } 27691 NCE_REFRELE(nce); 27692 } else { /* nce is NULL; clean up */ 27693 ire_delete(ire); 27694 freemsg(mp); 27695 freemsg(mp1); 27696 return; 27697 } 27698 } else { 27699 nce_t *arpce; 27700 /* 27701 * Link layer resolution succeeded. Recompute the 27702 * ire_nce. 27703 */ 27704 ASSERT(ire->ire_type & (IRE_CACHE|IRE_BROADCAST)); 27705 if ((arpce = ndp_lookup_v4(ill, 27706 (ire->ire_gateway_addr != INADDR_ANY ? 27707 &ire->ire_gateway_addr : &ire->ire_addr), 27708 B_FALSE)) == NULL) { 27709 freeb(ire->ire_mp); 27710 freeb(mp1); 27711 freemsg(mp); 27712 return; 27713 } 27714 mutex_enter(&arpce->nce_lock); 27715 arpce->nce_last = TICK_TO_MSEC(lbolt64); 27716 if (arpce->nce_state == ND_REACHABLE) { 27717 /* 27718 * Someone resolved this before us; 27719 * cleanup the res_mp. Since ire has 27720 * not been added yet, the call to ire_add_v4 27721 * from ire_add_then_send (when a dup is 27722 * detected) will clean up the ire. 27723 */ 27724 freeb(mp1); 27725 } else { 27726 ASSERT(arpce->nce_res_mp == NULL); 27727 arpce->nce_res_mp = mp1; 27728 arpce->nce_state = ND_REACHABLE; 27729 } 27730 mutex_exit(&arpce->nce_lock); 27731 if (ire->ire_marks & IRE_MARK_NOADD) { 27732 /* 27733 * this ire will not be added to the ire 27734 * cache table, so we can set the ire_nce 27735 * here, as there are no atomicity constraints. 27736 */ 27737 ire->ire_nce = arpce; 27738 /* 27739 * We are associating this nce with the ire 27740 * so change the nce ref taken in 27741 * ndp_lookup_v4() from 27742 * NCE_REFHOLD to NCE_REFHOLD_NOTR 27743 */ 27744 NCE_REFHOLD_TO_REFHOLD_NOTR(ire->ire_nce); 27745 } else { 27746 NCE_REFRELE(arpce); 27747 } 27748 ire_add_then_send(q, ire, mp); 27749 } 27750 return; /* All is well, the packet has been sent. */ 27751 } 27752 case IRE_ARPRESOLVE_TYPE: { 27753 27754 if ((mp->b_wptr - mp->b_rptr) != sizeof (ire_t)) /* fake_ire */ 27755 break; 27756 mp1 = mp->b_cont; /* dl_unitdata_req */ 27757 mp->b_cont = NULL; 27758 /* 27759 * First, check to make sure the resolution succeeded. 27760 * If it failed, the second mblk will be empty. 27761 */ 27762 if (mp1->b_rptr == mp1->b_wptr) { 27763 /* cleanup the incomplete ire, free queued packets */ 27764 freemsg(mp); /* fake ire */ 27765 freeb(mp1); /* dl_unitdata response */ 27766 return; 27767 } 27768 27769 /* 27770 * Update any incomplete nce_t found. We search the ctable 27771 * and find the nce from the ire->ire_nce because we need 27772 * to pass the ire to ip_xmit_v4 later, and can find both 27773 * ire and nce in one lookup. 27774 */ 27775 fake_ire = (ire_t *)mp->b_rptr; 27776 27777 /* 27778 * By the time we come back here from ARP the logical outgoing 27779 * interface of the incomplete ire we added in ire_forward() 27780 * could have disappeared, causing the incomplete ire to also 27781 * disappear. So we need to retreive the proper ipif for the 27782 * ire before looking in ctable. In the case of IPMP, the 27783 * ipif may be on the IPMP ill, so look it up based on the 27784 * ire_ipif_ifindex we stashed back in ire_init_common(). 27785 * Then, we can verify that ire_ipif_seqid still exists. 27786 */ 27787 ill = ill_lookup_on_ifindex(fake_ire->ire_ipif_ifindex, B_FALSE, 27788 NULL, NULL, NULL, NULL, ipst); 27789 if (ill == NULL) { 27790 ip1dbg(("ill for incomplete ire vanished\n")); 27791 freemsg(mp); /* fake ire */ 27792 freeb(mp1); /* dl_unitdata response */ 27793 return; 27794 } 27795 27796 /* Get the outgoing ipif */ 27797 mutex_enter(&ill->ill_lock); 27798 ipif = ipif_lookup_seqid(ill, fake_ire->ire_ipif_seqid); 27799 if (ipif == NULL) { 27800 mutex_exit(&ill->ill_lock); 27801 ill_refrele(ill); 27802 ip1dbg(("logical intrf to incomplete ire vanished\n")); 27803 freemsg(mp); /* fake_ire */ 27804 freeb(mp1); /* dl_unitdata response */ 27805 return; 27806 } 27807 27808 ipif_refhold_locked(ipif); 27809 mutex_exit(&ill->ill_lock); 27810 ill_refrele(ill); 27811 ire = ire_arpresolve_lookup(fake_ire->ire_addr, 27812 fake_ire->ire_gateway_addr, ipif, fake_ire->ire_zoneid, 27813 ipst, ((ill_t *)q->q_ptr)->ill_wq); 27814 ipif_refrele(ipif); 27815 if (ire == NULL) { 27816 /* 27817 * no ire was found; check if there is an nce 27818 * for this lookup; if it has no ire's pointing at it 27819 * cleanup. 27820 */ 27821 if ((nce = ndp_lookup_v4(q->q_ptr, 27822 (fake_ire->ire_gateway_addr != INADDR_ANY ? 27823 &fake_ire->ire_gateway_addr : &fake_ire->ire_addr), 27824 B_FALSE)) != NULL) { 27825 /* 27826 * cleanup: 27827 * We check for refcnt 2 (one for the nce 27828 * hash list + 1 for the ref taken by 27829 * ndp_lookup_v4) to check that there are 27830 * no ire's pointing at the nce. 27831 */ 27832 if (nce->nce_refcnt == 2) 27833 ndp_delete(nce); 27834 NCE_REFRELE(nce); 27835 } 27836 freeb(mp1); /* dl_unitdata response */ 27837 freemsg(mp); /* fake ire */ 27838 return; 27839 } 27840 27841 nce = ire->ire_nce; 27842 DTRACE_PROBE2(ire__arpresolve__type, 27843 ire_t *, ire, nce_t *, nce); 27844 ASSERT(nce->nce_state != ND_INITIAL); 27845 mutex_enter(&nce->nce_lock); 27846 nce->nce_last = TICK_TO_MSEC(lbolt64); 27847 if (nce->nce_state == ND_REACHABLE) { 27848 /* 27849 * Someone resolved this before us; 27850 * our response is not needed any more. 27851 */ 27852 mutex_exit(&nce->nce_lock); 27853 freeb(mp1); /* dl_unitdata response */ 27854 } else { 27855 ASSERT(nce->nce_res_mp == NULL); 27856 nce->nce_res_mp = mp1; 27857 nce->nce_state = ND_REACHABLE; 27858 mutex_exit(&nce->nce_lock); 27859 nce_fastpath(nce); 27860 } 27861 /* 27862 * The cached nce_t has been updated to be reachable; 27863 * Clear the IRE_MARK_UNCACHED flag and free the fake_ire. 27864 */ 27865 fake_ire->ire_marks &= ~IRE_MARK_UNCACHED; 27866 freemsg(mp); 27867 /* 27868 * send out queued packets. 27869 */ 27870 (void) ip_xmit_v4(NULL, ire, NULL, B_FALSE, NULL); 27871 27872 IRE_REFRELE(ire); 27873 return; 27874 } 27875 default: 27876 break; 27877 } 27878 if (q->q_next) { 27879 putnext(q, mp); 27880 } else 27881 freemsg(mp); 27882 return; 27883 27884 protonak: 27885 cmn_err(CE_NOTE, "IP doesn't process %s as a module", proto_str); 27886 if ((mp = mi_tpi_err_ack_alloc(mp, TPROTO, EINVAL)) != NULL) 27887 qreply(q, mp); 27888 } 27889 27890 /* 27891 * Process IP options in an outbound packet. Modify the destination if there 27892 * is a source route option. 27893 * Returns non-zero if something fails in which case an ICMP error has been 27894 * sent and mp freed. 27895 */ 27896 static int 27897 ip_wput_options(queue_t *q, mblk_t *ipsec_mp, ipha_t *ipha, 27898 boolean_t mctl_present, zoneid_t zoneid, ip_stack_t *ipst) 27899 { 27900 ipoptp_t opts; 27901 uchar_t *opt; 27902 uint8_t optval; 27903 uint8_t optlen; 27904 ipaddr_t dst; 27905 intptr_t code = 0; 27906 mblk_t *mp; 27907 ire_t *ire = NULL; 27908 27909 ip2dbg(("ip_wput_options\n")); 27910 mp = ipsec_mp; 27911 if (mctl_present) { 27912 mp = ipsec_mp->b_cont; 27913 } 27914 27915 dst = ipha->ipha_dst; 27916 for (optval = ipoptp_first(&opts, ipha); 27917 optval != IPOPT_EOL; 27918 optval = ipoptp_next(&opts)) { 27919 opt = opts.ipoptp_cur; 27920 optlen = opts.ipoptp_len; 27921 ip2dbg(("ip_wput_options: opt %d, len %d\n", 27922 optval, optlen)); 27923 switch (optval) { 27924 uint32_t off; 27925 case IPOPT_SSRR: 27926 case IPOPT_LSRR: 27927 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 27928 ip1dbg(( 27929 "ip_wput_options: bad option offset\n")); 27930 code = (char *)&opt[IPOPT_OLEN] - 27931 (char *)ipha; 27932 goto param_prob; 27933 } 27934 off = opt[IPOPT_OFFSET]; 27935 ip1dbg(("ip_wput_options: next hop 0x%x\n", 27936 ntohl(dst))); 27937 /* 27938 * For strict: verify that dst is directly 27939 * reachable. 27940 */ 27941 if (optval == IPOPT_SSRR) { 27942 ire = ire_ftable_lookup(dst, 0, 0, 27943 IRE_INTERFACE, NULL, NULL, ALL_ZONES, 0, 27944 msg_getlabel(mp), 27945 MATCH_IRE_TYPE | MATCH_IRE_SECATTR, ipst); 27946 if (ire == NULL) { 27947 ip1dbg(("ip_wput_options: SSRR not" 27948 " directly reachable: 0x%x\n", 27949 ntohl(dst))); 27950 goto bad_src_route; 27951 } 27952 ire_refrele(ire); 27953 } 27954 break; 27955 case IPOPT_RR: 27956 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 27957 ip1dbg(( 27958 "ip_wput_options: bad option offset\n")); 27959 code = (char *)&opt[IPOPT_OLEN] - 27960 (char *)ipha; 27961 goto param_prob; 27962 } 27963 break; 27964 case IPOPT_TS: 27965 /* 27966 * Verify that length >=5 and that there is either 27967 * room for another timestamp or that the overflow 27968 * counter is not maxed out. 27969 */ 27970 code = (char *)&opt[IPOPT_OLEN] - (char *)ipha; 27971 if (optlen < IPOPT_MINLEN_IT) { 27972 goto param_prob; 27973 } 27974 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 27975 ip1dbg(( 27976 "ip_wput_options: bad option offset\n")); 27977 code = (char *)&opt[IPOPT_OFFSET] - 27978 (char *)ipha; 27979 goto param_prob; 27980 } 27981 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 27982 case IPOPT_TS_TSONLY: 27983 off = IPOPT_TS_TIMELEN; 27984 break; 27985 case IPOPT_TS_TSANDADDR: 27986 case IPOPT_TS_PRESPEC: 27987 case IPOPT_TS_PRESPEC_RFC791: 27988 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 27989 break; 27990 default: 27991 code = (char *)&opt[IPOPT_POS_OV_FLG] - 27992 (char *)ipha; 27993 goto param_prob; 27994 } 27995 if (opt[IPOPT_OFFSET] - 1 + off > optlen && 27996 (opt[IPOPT_POS_OV_FLG] & 0xF0) == 0xF0) { 27997 /* 27998 * No room and the overflow counter is 15 27999 * already. 28000 */ 28001 goto param_prob; 28002 } 28003 break; 28004 } 28005 } 28006 28007 if ((opts.ipoptp_flags & IPOPTP_ERROR) == 0) 28008 return (0); 28009 28010 ip1dbg(("ip_wput_options: error processing IP options.")); 28011 code = (char *)&opt[IPOPT_OFFSET] - (char *)ipha; 28012 28013 param_prob: 28014 /* 28015 * Since ip_wput() isn't close to finished, we fill 28016 * in enough of the header for credible error reporting. 28017 */ 28018 if (ip_hdr_complete((ipha_t *)mp->b_rptr, zoneid, ipst)) { 28019 /* Failed */ 28020 freemsg(ipsec_mp); 28021 return (-1); 28022 } 28023 icmp_param_problem(q, ipsec_mp, (uint8_t)code, zoneid, ipst); 28024 return (-1); 28025 28026 bad_src_route: 28027 /* 28028 * Since ip_wput() isn't close to finished, we fill 28029 * in enough of the header for credible error reporting. 28030 */ 28031 if (ip_hdr_complete((ipha_t *)mp->b_rptr, zoneid, ipst)) { 28032 /* Failed */ 28033 freemsg(ipsec_mp); 28034 return (-1); 28035 } 28036 icmp_unreachable(q, ipsec_mp, ICMP_SOURCE_ROUTE_FAILED, zoneid, ipst); 28037 return (-1); 28038 } 28039 28040 /* 28041 * The maximum value of conn_drain_list_cnt is CONN_MAXDRAINCNT. 28042 * conn_drain_list_cnt can be changed by setting conn_drain_nthreads 28043 * thru /etc/system. 28044 */ 28045 #define CONN_MAXDRAINCNT 64 28046 28047 static void 28048 conn_drain_init(ip_stack_t *ipst) 28049 { 28050 int i, j; 28051 idl_tx_list_t *itl_tx; 28052 28053 ipst->ips_conn_drain_list_cnt = conn_drain_nthreads; 28054 28055 if ((ipst->ips_conn_drain_list_cnt == 0) || 28056 (ipst->ips_conn_drain_list_cnt > CONN_MAXDRAINCNT)) { 28057 /* 28058 * Default value of the number of drainers is the 28059 * number of cpus, subject to maximum of 8 drainers. 28060 */ 28061 if (boot_max_ncpus != -1) 28062 ipst->ips_conn_drain_list_cnt = MIN(boot_max_ncpus, 8); 28063 else 28064 ipst->ips_conn_drain_list_cnt = MIN(max_ncpus, 8); 28065 } 28066 28067 ipst->ips_idl_tx_list = 28068 kmem_zalloc(TX_FANOUT_SIZE * sizeof (idl_tx_list_t), KM_SLEEP); 28069 for (i = 0; i < TX_FANOUT_SIZE; i++) { 28070 itl_tx = &ipst->ips_idl_tx_list[i]; 28071 itl_tx->txl_drain_list = 28072 kmem_zalloc(ipst->ips_conn_drain_list_cnt * 28073 sizeof (idl_t), KM_SLEEP); 28074 mutex_init(&itl_tx->txl_lock, NULL, MUTEX_DEFAULT, NULL); 28075 for (j = 0; j < ipst->ips_conn_drain_list_cnt; j++) { 28076 mutex_init(&itl_tx->txl_drain_list[j].idl_lock, NULL, 28077 MUTEX_DEFAULT, NULL); 28078 itl_tx->txl_drain_list[j].idl_itl = itl_tx; 28079 } 28080 } 28081 } 28082 28083 static void 28084 conn_drain_fini(ip_stack_t *ipst) 28085 { 28086 int i; 28087 idl_tx_list_t *itl_tx; 28088 28089 for (i = 0; i < TX_FANOUT_SIZE; i++) { 28090 itl_tx = &ipst->ips_idl_tx_list[i]; 28091 kmem_free(itl_tx->txl_drain_list, 28092 ipst->ips_conn_drain_list_cnt * sizeof (idl_t)); 28093 } 28094 kmem_free(ipst->ips_idl_tx_list, 28095 TX_FANOUT_SIZE * sizeof (idl_tx_list_t)); 28096 ipst->ips_idl_tx_list = NULL; 28097 } 28098 28099 /* 28100 * Note: For an overview of how flowcontrol is handled in IP please see the 28101 * IP Flowcontrol notes at the top of this file. 28102 * 28103 * Flow control has blocked us from proceeding. Insert the given conn in one 28104 * of the conn drain lists. These conn wq's will be qenabled later on when 28105 * STREAMS flow control does a backenable. conn_walk_drain will enable 28106 * the first conn in each of these drain lists. Each of these qenabled conns 28107 * in turn enables the next in the list, after it runs, or when it closes, 28108 * thus sustaining the drain process. 28109 */ 28110 void 28111 conn_drain_insert(conn_t *connp, idl_tx_list_t *tx_list) 28112 { 28113 idl_t *idl = tx_list->txl_drain_list; 28114 uint_t index; 28115 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 28116 28117 mutex_enter(&connp->conn_lock); 28118 if (connp->conn_state_flags & CONN_CLOSING) { 28119 /* 28120 * The conn is closing as a result of which CONN_CLOSING 28121 * is set. Return. 28122 */ 28123 mutex_exit(&connp->conn_lock); 28124 return; 28125 } else if (connp->conn_idl == NULL) { 28126 /* 28127 * Assign the next drain list round robin. We dont' use 28128 * a lock, and thus it may not be strictly round robin. 28129 * Atomicity of load/stores is enough to make sure that 28130 * conn_drain_list_index is always within bounds. 28131 */ 28132 index = tx_list->txl_drain_index; 28133 ASSERT(index < ipst->ips_conn_drain_list_cnt); 28134 connp->conn_idl = &tx_list->txl_drain_list[index]; 28135 index++; 28136 if (index == ipst->ips_conn_drain_list_cnt) 28137 index = 0; 28138 tx_list->txl_drain_index = index; 28139 } 28140 mutex_exit(&connp->conn_lock); 28141 28142 mutex_enter(CONN_DRAIN_LIST_LOCK(connp)); 28143 if ((connp->conn_drain_prev != NULL) || 28144 (connp->conn_state_flags & CONN_CLOSING)) { 28145 /* 28146 * The conn is already in the drain list, OR 28147 * the conn is closing. We need to check again for 28148 * the closing case again since close can happen 28149 * after we drop the conn_lock, and before we 28150 * acquire the CONN_DRAIN_LIST_LOCK. 28151 */ 28152 mutex_exit(CONN_DRAIN_LIST_LOCK(connp)); 28153 return; 28154 } else { 28155 idl = connp->conn_idl; 28156 } 28157 28158 /* 28159 * The conn is not in the drain list. Insert it at the 28160 * tail of the drain list. The drain list is circular 28161 * and doubly linked. idl_conn points to the 1st element 28162 * in the list. 28163 */ 28164 if (idl->idl_conn == NULL) { 28165 idl->idl_conn = connp; 28166 connp->conn_drain_next = connp; 28167 connp->conn_drain_prev = connp; 28168 } else { 28169 conn_t *head = idl->idl_conn; 28170 28171 connp->conn_drain_next = head; 28172 connp->conn_drain_prev = head->conn_drain_prev; 28173 head->conn_drain_prev->conn_drain_next = connp; 28174 head->conn_drain_prev = connp; 28175 } 28176 /* 28177 * For non streams based sockets assert flow control. 28178 */ 28179 if (IPCL_IS_NONSTR(connp)) { 28180 DTRACE_PROBE1(su__txq__full, conn_t *, connp); 28181 (*connp->conn_upcalls->su_txq_full) 28182 (connp->conn_upper_handle, B_TRUE); 28183 } else { 28184 conn_setqfull(connp); 28185 noenable(connp->conn_wq); 28186 } 28187 mutex_exit(CONN_DRAIN_LIST_LOCK(connp)); 28188 } 28189 28190 /* 28191 * This conn is closing, and we are called from ip_close. OR 28192 * This conn has been serviced by ip_wsrv, and we need to do the tail 28193 * processing. 28194 * If this conn is part of the drain list, we may need to sustain the drain 28195 * process by qenabling the next conn in the drain list. We may also need to 28196 * remove this conn from the list, if it is done. 28197 */ 28198 static void 28199 conn_drain_tail(conn_t *connp, boolean_t closing) 28200 { 28201 idl_t *idl; 28202 28203 /* 28204 * connp->conn_idl is stable at this point, and no lock is needed 28205 * to check it. If we are called from ip_close, close has already 28206 * set CONN_CLOSING, thus freezing the value of conn_idl, and 28207 * called us only because conn_idl is non-null. If we are called thru 28208 * service, conn_idl could be null, but it cannot change because 28209 * service is single-threaded per queue, and there cannot be another 28210 * instance of service trying to call conn_drain_insert on this conn 28211 * now. 28212 */ 28213 ASSERT(!closing || (connp->conn_idl != NULL)); 28214 28215 /* 28216 * If connp->conn_idl is null, the conn has not been inserted into any 28217 * drain list even once since creation of the conn. Just return. 28218 */ 28219 if (connp->conn_idl == NULL) 28220 return; 28221 28222 mutex_enter(CONN_DRAIN_LIST_LOCK(connp)); 28223 28224 if (connp->conn_drain_prev == NULL) { 28225 /* This conn is currently not in the drain list. */ 28226 mutex_exit(CONN_DRAIN_LIST_LOCK(connp)); 28227 return; 28228 } 28229 idl = connp->conn_idl; 28230 if (idl->idl_conn_draining == connp) { 28231 /* 28232 * This conn is the current drainer. If this is the last conn 28233 * in the drain list, we need to do more checks, in the 'if' 28234 * below. Otherwwise we need to just qenable the next conn, 28235 * to sustain the draining, and is handled in the 'else' 28236 * below. 28237 */ 28238 if (connp->conn_drain_next == idl->idl_conn) { 28239 /* 28240 * This conn is the last in this list. This round 28241 * of draining is complete. If idl_repeat is set, 28242 * it means another flow enabling has happened from 28243 * the driver/streams and we need to another round 28244 * of draining. 28245 * If there are more than 2 conns in the drain list, 28246 * do a left rotate by 1, so that all conns except the 28247 * conn at the head move towards the head by 1, and the 28248 * the conn at the head goes to the tail. This attempts 28249 * a more even share for all queues that are being 28250 * drained. 28251 */ 28252 if ((connp->conn_drain_next != connp) && 28253 (idl->idl_conn->conn_drain_next != connp)) { 28254 idl->idl_conn = idl->idl_conn->conn_drain_next; 28255 } 28256 if (idl->idl_repeat) { 28257 qenable(idl->idl_conn->conn_wq); 28258 idl->idl_conn_draining = idl->idl_conn; 28259 idl->idl_repeat = 0; 28260 } else { 28261 idl->idl_conn_draining = NULL; 28262 } 28263 } else { 28264 /* 28265 * If the next queue that we are now qenable'ing, 28266 * is closing, it will remove itself from this list 28267 * and qenable the subsequent queue in ip_close(). 28268 * Serialization is acheived thru idl_lock. 28269 */ 28270 qenable(connp->conn_drain_next->conn_wq); 28271 idl->idl_conn_draining = connp->conn_drain_next; 28272 } 28273 } 28274 if (!connp->conn_did_putbq || closing) { 28275 /* 28276 * Remove ourself from the drain list, if we did not do 28277 * a putbq, or if the conn is closing. 28278 * Note: It is possible that q->q_first is non-null. It means 28279 * that these messages landed after we did a enableok() in 28280 * ip_wsrv. Thus STREAMS will call ip_wsrv once again to 28281 * service them. 28282 */ 28283 if (connp->conn_drain_next == connp) { 28284 /* Singleton in the list */ 28285 ASSERT(connp->conn_drain_prev == connp); 28286 idl->idl_conn = NULL; 28287 idl->idl_conn_draining = NULL; 28288 } else { 28289 connp->conn_drain_prev->conn_drain_next = 28290 connp->conn_drain_next; 28291 connp->conn_drain_next->conn_drain_prev = 28292 connp->conn_drain_prev; 28293 if (idl->idl_conn == connp) 28294 idl->idl_conn = connp->conn_drain_next; 28295 ASSERT(idl->idl_conn_draining != connp); 28296 28297 } 28298 connp->conn_drain_next = NULL; 28299 connp->conn_drain_prev = NULL; 28300 28301 /* 28302 * For non streams based sockets open up flow control. 28303 */ 28304 if (IPCL_IS_NONSTR(connp)) { 28305 (*connp->conn_upcalls->su_txq_full) 28306 (connp->conn_upper_handle, B_FALSE); 28307 } else { 28308 conn_clrqfull(connp); 28309 enableok(connp->conn_wq); 28310 } 28311 } 28312 28313 mutex_exit(CONN_DRAIN_LIST_LOCK(connp)); 28314 } 28315 28316 /* 28317 * Write service routine. Shared perimeter entry point. 28318 * ip_wsrv can be called in any of the following ways. 28319 * 1. The device queue's messages has fallen below the low water mark 28320 * and STREAMS has backenabled the ill_wq. We walk thru all the 28321 * the drain lists and backenable the first conn in each list. 28322 * 2. The above causes STREAMS to run ip_wsrv on the conn_wq of the 28323 * qenabled non-tcp upper layers. We start dequeing messages and call 28324 * ip_wput for each message. 28325 */ 28326 28327 void 28328 ip_wsrv(queue_t *q) 28329 { 28330 conn_t *connp; 28331 ill_t *ill; 28332 mblk_t *mp; 28333 28334 if (q->q_next) { 28335 ill = (ill_t *)q->q_ptr; 28336 if (ill->ill_state_flags == 0) { 28337 ip_stack_t *ipst = ill->ill_ipst; 28338 28339 /* 28340 * The device flow control has opened up. 28341 * Walk through conn drain lists and qenable the 28342 * first conn in each list. This makes sense only 28343 * if the stream is fully plumbed and setup. 28344 * Hence the if check above. 28345 */ 28346 ip1dbg(("ip_wsrv: walking\n")); 28347 conn_walk_drain(ipst, &ipst->ips_idl_tx_list[0]); 28348 } 28349 return; 28350 } 28351 28352 connp = Q_TO_CONN(q); 28353 ip1dbg(("ip_wsrv: %p %p\n", (void *)q, (void *)connp)); 28354 28355 /* 28356 * 1. Set conn_draining flag to signal that service is active. 28357 * 28358 * 2. ip_output determines whether it has been called from service, 28359 * based on the last parameter. If it is IP_WSRV it concludes it 28360 * has been called from service. 28361 * 28362 * 3. Message ordering is preserved by the following logic. 28363 * i. A directly called ip_output (i.e. not thru service) will queue 28364 * the message at the tail, if conn_draining is set (i.e. service 28365 * is running) or if q->q_first is non-null. 28366 * 28367 * ii. If ip_output is called from service, and if ip_output cannot 28368 * putnext due to flow control, it does a putbq. 28369 * 28370 * 4. noenable the queue so that a putbq from ip_wsrv does not reenable 28371 * (causing an infinite loop). 28372 */ 28373 ASSERT(!connp->conn_did_putbq); 28374 28375 while ((q->q_first != NULL) && !connp->conn_did_putbq) { 28376 connp->conn_draining = 1; 28377 noenable(q); 28378 while ((mp = getq(q)) != NULL) { 28379 ASSERT(CONN_Q(q)); 28380 28381 DTRACE_PROBE1(ip__wsrv__ip__output, conn_t *, connp); 28382 ip_output(Q_TO_CONN(q), mp, q, IP_WSRV); 28383 if (connp->conn_did_putbq) { 28384 /* ip_wput did a putbq */ 28385 break; 28386 } 28387 } 28388 /* 28389 * At this point, a thread coming down from top, calling 28390 * ip_wput, may end up queueing the message. We have not yet 28391 * enabled the queue, so ip_wsrv won't be called again. 28392 * To avoid this race, check q->q_first again (in the loop) 28393 * If the other thread queued the message before we call 28394 * enableok(), we will catch it in the q->q_first check. 28395 * If the other thread queues the message after we call 28396 * enableok(), ip_wsrv will be called again by STREAMS. 28397 */ 28398 connp->conn_draining = 0; 28399 enableok(q); 28400 } 28401 28402 /* Enable the next conn for draining */ 28403 conn_drain_tail(connp, B_FALSE); 28404 28405 /* 28406 * conn_direct_blocked is used to indicate blocked 28407 * condition for direct path (ILL_DIRECT_CAPABLE()). 28408 * This is the only place where it is set without 28409 * checking for ILL_DIRECT_CAPABLE() and setting it 28410 * to 0 is ok even if it is not ILL_DIRECT_CAPABLE(). 28411 */ 28412 if (!connp->conn_did_putbq && connp->conn_direct_blocked) { 28413 DTRACE_PROBE1(ip__wsrv__direct__blocked, conn_t *, connp); 28414 connp->conn_direct_blocked = B_FALSE; 28415 } 28416 28417 connp->conn_did_putbq = 0; 28418 } 28419 28420 /* 28421 * Callback to disable flow control in IP. 28422 * 28423 * This is a mac client callback added when the DLD_CAPAB_DIRECT capability 28424 * is enabled. 28425 * 28426 * When MAC_TX() is not able to send any more packets, dld sets its queue 28427 * to QFULL and enable the STREAMS flow control. Later, when the underlying 28428 * driver is able to continue to send packets, it calls mac_tx_(ring_)update() 28429 * function and wakes up corresponding mac worker threads, which in turn 28430 * calls this callback function, and disables flow control. 28431 */ 28432 void 28433 ill_flow_enable(void *arg, ip_mac_tx_cookie_t cookie) 28434 { 28435 ill_t *ill = (ill_t *)arg; 28436 ip_stack_t *ipst = ill->ill_ipst; 28437 idl_tx_list_t *idl_txl; 28438 28439 idl_txl = &ipst->ips_idl_tx_list[IDLHASHINDEX(cookie)]; 28440 mutex_enter(&idl_txl->txl_lock); 28441 /* add code to to set a flag to indicate idl_txl is enabled */ 28442 conn_walk_drain(ipst, idl_txl); 28443 mutex_exit(&idl_txl->txl_lock); 28444 } 28445 28446 /* 28447 * Flowcontrol has relieved, and STREAMS has backenabled us. For each list 28448 * of conns that need to be drained, check if drain is already in progress. 28449 * If so set the idl_repeat bit, indicating that the last conn in the list 28450 * needs to reinitiate the drain once again, for the list. If drain is not 28451 * in progress for the list, initiate the draining, by qenabling the 1st 28452 * conn in the list. The drain is self-sustaining, each qenabled conn will 28453 * in turn qenable the next conn, when it is done/blocked/closing. 28454 */ 28455 static void 28456 conn_walk_drain(ip_stack_t *ipst, idl_tx_list_t *tx_list) 28457 { 28458 int i; 28459 idl_t *idl; 28460 28461 IP_STAT(ipst, ip_conn_walk_drain); 28462 28463 for (i = 0; i < ipst->ips_conn_drain_list_cnt; i++) { 28464 idl = &tx_list->txl_drain_list[i]; 28465 mutex_enter(&idl->idl_lock); 28466 if (idl->idl_conn == NULL) { 28467 mutex_exit(&idl->idl_lock); 28468 continue; 28469 } 28470 /* 28471 * If this list is not being drained currently by 28472 * an ip_wsrv thread, start the process. 28473 */ 28474 if (idl->idl_conn_draining == NULL) { 28475 ASSERT(idl->idl_repeat == 0); 28476 qenable(idl->idl_conn->conn_wq); 28477 idl->idl_conn_draining = idl->idl_conn; 28478 } else { 28479 idl->idl_repeat = 1; 28480 } 28481 mutex_exit(&idl->idl_lock); 28482 } 28483 } 28484 28485 /* 28486 * Determine if the ill and multicast aspects of that packets 28487 * "matches" the conn. 28488 */ 28489 boolean_t 28490 conn_wantpacket(conn_t *connp, ill_t *ill, ipha_t *ipha, int fanout_flags, 28491 zoneid_t zoneid) 28492 { 28493 ill_t *bound_ill; 28494 boolean_t found; 28495 ipif_t *ipif; 28496 ire_t *ire; 28497 ipaddr_t dst, src; 28498 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 28499 28500 dst = ipha->ipha_dst; 28501 src = ipha->ipha_src; 28502 28503 /* 28504 * conn_incoming_ill is set by IP_BOUND_IF which limits 28505 * unicast, broadcast and multicast reception to 28506 * conn_incoming_ill. conn_wantpacket itself is called 28507 * only for BROADCAST and multicast. 28508 */ 28509 bound_ill = connp->conn_incoming_ill; 28510 if (bound_ill != NULL) { 28511 if (IS_IPMP(bound_ill)) { 28512 if (bound_ill->ill_grp != ill->ill_grp) 28513 return (B_FALSE); 28514 } else { 28515 if (bound_ill != ill) 28516 return (B_FALSE); 28517 } 28518 } 28519 28520 if (!CLASSD(dst)) { 28521 if (IPCL_ZONE_MATCH(connp, zoneid)) 28522 return (B_TRUE); 28523 /* 28524 * The conn is in a different zone; we need to check that this 28525 * broadcast address is configured in the application's zone. 28526 */ 28527 ipif = ipif_get_next_ipif(NULL, ill); 28528 if (ipif == NULL) 28529 return (B_FALSE); 28530 ire = ire_ctable_lookup(dst, 0, IRE_BROADCAST, ipif, 28531 connp->conn_zoneid, NULL, 28532 (MATCH_IRE_TYPE | MATCH_IRE_ILL), ipst); 28533 ipif_refrele(ipif); 28534 if (ire != NULL) { 28535 ire_refrele(ire); 28536 return (B_TRUE); 28537 } else { 28538 return (B_FALSE); 28539 } 28540 } 28541 28542 if ((fanout_flags & IP_FF_NO_MCAST_LOOP) && 28543 connp->conn_zoneid == zoneid) { 28544 /* 28545 * Loopback case: the sending endpoint has IP_MULTICAST_LOOP 28546 * disabled, therefore we don't dispatch the multicast packet to 28547 * the sending zone. 28548 */ 28549 return (B_FALSE); 28550 } 28551 28552 if (IS_LOOPBACK(ill) && connp->conn_zoneid != zoneid) { 28553 /* 28554 * Multicast packet on the loopback interface: we only match 28555 * conns who joined the group in the specified zone. 28556 */ 28557 return (B_FALSE); 28558 } 28559 28560 if (connp->conn_multi_router) { 28561 /* multicast packet and multicast router socket: send up */ 28562 return (B_TRUE); 28563 } 28564 28565 mutex_enter(&connp->conn_lock); 28566 found = (ilg_lookup_ill_withsrc(connp, dst, src, ill) != NULL); 28567 mutex_exit(&connp->conn_lock); 28568 return (found); 28569 } 28570 28571 static void 28572 conn_setqfull(conn_t *connp) 28573 { 28574 queue_t *q = connp->conn_wq; 28575 28576 if (!(q->q_flag & QFULL)) { 28577 mutex_enter(QLOCK(q)); 28578 if (!(q->q_flag & QFULL)) { 28579 /* still need to set QFULL */ 28580 q->q_flag |= QFULL; 28581 mutex_exit(QLOCK(q)); 28582 } else { 28583 mutex_exit(QLOCK(q)); 28584 } 28585 } 28586 } 28587 28588 static void 28589 conn_clrqfull(conn_t *connp) 28590 { 28591 queue_t *q = connp->conn_wq; 28592 28593 if (q->q_flag & QFULL) { 28594 mutex_enter(QLOCK(q)); 28595 if (q->q_flag & QFULL) { 28596 q->q_flag &= ~QFULL; 28597 mutex_exit(QLOCK(q)); 28598 if (q->q_flag & QWANTW) 28599 qbackenable(q, 0); 28600 } else { 28601 mutex_exit(QLOCK(q)); 28602 } 28603 } 28604 } 28605 28606 /* 28607 * Finish processing of "arp_up" when AR_DLPIOP_DONE is received from arp. 28608 */ 28609 /* ARGSUSED */ 28610 static void 28611 ip_arp_done(ipsq_t *dummy_sq, queue_t *q, mblk_t *mp, void *dummy_arg) 28612 { 28613 ill_t *ill = (ill_t *)q->q_ptr; 28614 mblk_t *mp1, *mp2; 28615 ipif_t *ipif; 28616 int err = 0; 28617 conn_t *connp = NULL; 28618 ipsq_t *ipsq; 28619 arc_t *arc; 28620 28621 ip1dbg(("ip_arp_done(%s)\n", ill->ill_name)); 28622 28623 ASSERT((mp->b_wptr - mp->b_rptr) >= sizeof (arc_t)); 28624 ASSERT(((arc_t *)mp->b_rptr)->arc_cmd == AR_DLPIOP_DONE); 28625 28626 ASSERT(IAM_WRITER_ILL(ill)); 28627 mp2 = mp->b_cont; 28628 mp->b_cont = NULL; 28629 28630 /* 28631 * We have now received the arp bringup completion message 28632 * from ARP. Mark the arp bringup as done. Also if the arp 28633 * stream has already started closing, send up the AR_ARP_CLOSING 28634 * ack now since ARP is waiting in close for this ack. 28635 */ 28636 mutex_enter(&ill->ill_lock); 28637 ill->ill_arp_bringup_pending = 0; 28638 if (ill->ill_arp_closing) { 28639 mutex_exit(&ill->ill_lock); 28640 /* Let's reuse the mp for sending the ack */ 28641 arc = (arc_t *)mp->b_rptr; 28642 mp->b_wptr = mp->b_rptr + sizeof (arc_t); 28643 arc->arc_cmd = AR_ARP_CLOSING; 28644 qreply(q, mp); 28645 } else { 28646 mutex_exit(&ill->ill_lock); 28647 freeb(mp); 28648 } 28649 28650 ipsq = ill->ill_phyint->phyint_ipsq; 28651 ipif = ipsq->ipsq_xop->ipx_pending_ipif; 28652 mp1 = ipsq_pending_mp_get(ipsq, &connp); 28653 ASSERT(!((mp1 != NULL) ^ (ipif != NULL))); 28654 if (mp1 == NULL) { 28655 /* bringup was aborted by the user */ 28656 freemsg(mp2); 28657 return; 28658 } 28659 28660 /* 28661 * If an IOCTL is waiting on this (ipx_current_ioctl != 0), then we 28662 * must have an associated conn_t. Otherwise, we're bringing this 28663 * interface back up as part of handling an asynchronous event (e.g., 28664 * physical address change). 28665 */ 28666 if (ipsq->ipsq_xop->ipx_current_ioctl != 0) { 28667 ASSERT(connp != NULL); 28668 q = CONNP_TO_WQ(connp); 28669 } else { 28670 ASSERT(connp == NULL); 28671 q = ill->ill_rq; 28672 } 28673 28674 /* 28675 * If the DL_BIND_REQ fails, it is noted 28676 * in arc_name_offset. 28677 */ 28678 err = *((int *)mp2->b_rptr); 28679 if (err == 0) { 28680 if (ipif->ipif_isv6) { 28681 if ((err = ipif_up_done_v6(ipif)) != 0) 28682 ip0dbg(("ip_arp_done: init failed\n")); 28683 } else { 28684 if ((err = ipif_up_done(ipif)) != 0) 28685 ip0dbg(("ip_arp_done: init failed\n")); 28686 } 28687 } else { 28688 ip0dbg(("ip_arp_done: DL_BIND_REQ failed\n")); 28689 } 28690 28691 freemsg(mp2); 28692 28693 if ((err == 0) && (ill->ill_up_ipifs)) { 28694 err = ill_up_ipifs(ill, q, mp1); 28695 if (err == EINPROGRESS) 28696 return; 28697 } 28698 28699 /* 28700 * If we have a moved ipif to bring up, and everything has succeeded 28701 * to this point, bring it up on the IPMP ill. Otherwise, leave it 28702 * down -- the admin can try to bring it up by hand if need be. 28703 */ 28704 if (ill->ill_move_ipif != NULL) { 28705 ipif = ill->ill_move_ipif; 28706 ill->ill_move_ipif = NULL; 28707 if (err == 0) { 28708 err = ipif_up(ipif, q, mp1); 28709 if (err == EINPROGRESS) 28710 return; 28711 } 28712 } 28713 28714 /* 28715 * The operation must complete without EINPROGRESS since 28716 * ipsq_pending_mp_get() has removed the mblk. Otherwise, the 28717 * operation will be stuck forever in the ipsq. 28718 */ 28719 ASSERT(err != EINPROGRESS); 28720 if (ipsq->ipsq_xop->ipx_current_ioctl != 0) 28721 ip_ioctl_finish(q, mp1, err, NO_COPYOUT, ipsq); 28722 else 28723 ipsq_current_finish(ipsq); 28724 } 28725 28726 /* Allocate the private structure */ 28727 static int 28728 ip_priv_alloc(void **bufp) 28729 { 28730 void *buf; 28731 28732 if ((buf = kmem_alloc(sizeof (ip_priv_t), KM_NOSLEEP)) == NULL) 28733 return (ENOMEM); 28734 28735 *bufp = buf; 28736 return (0); 28737 } 28738 28739 /* Function to delete the private structure */ 28740 void 28741 ip_priv_free(void *buf) 28742 { 28743 ASSERT(buf != NULL); 28744 kmem_free(buf, sizeof (ip_priv_t)); 28745 } 28746 28747 /* 28748 * The entry point for IPPF processing. 28749 * If the classifier (IPGPC_CLASSIFY) is not loaded and configured, the 28750 * routine just returns. 28751 * 28752 * When called, ip_process generates an ipp_packet_t structure 28753 * which holds the state information for this packet and invokes the 28754 * the classifier (via ipp_packet_process). The classification, depending on 28755 * configured filters, results in a list of actions for this packet. Invoking 28756 * an action may cause the packet to be dropped, in which case the resulting 28757 * mblk (*mpp) is NULL. proc indicates the callout position for 28758 * this packet and ill_index is the interface this packet on or will leave 28759 * on (inbound and outbound resp.). 28760 */ 28761 void 28762 ip_process(ip_proc_t proc, mblk_t **mpp, uint32_t ill_index) 28763 { 28764 mblk_t *mp; 28765 ip_priv_t *priv; 28766 ipp_action_id_t aid; 28767 int rc = 0; 28768 ipp_packet_t *pp; 28769 #define IP_CLASS "ip" 28770 28771 /* If the classifier is not loaded, return */ 28772 if ((aid = ipp_action_lookup(IPGPC_CLASSIFY)) == IPP_ACTION_INVAL) { 28773 return; 28774 } 28775 28776 mp = *mpp; 28777 ASSERT(mp != NULL); 28778 28779 /* Allocate the packet structure */ 28780 rc = ipp_packet_alloc(&pp, IP_CLASS, aid); 28781 if (rc != 0) { 28782 *mpp = NULL; 28783 freemsg(mp); 28784 return; 28785 } 28786 28787 /* Allocate the private structure */ 28788 rc = ip_priv_alloc((void **)&priv); 28789 if (rc != 0) { 28790 *mpp = NULL; 28791 freemsg(mp); 28792 ipp_packet_free(pp); 28793 return; 28794 } 28795 priv->proc = proc; 28796 priv->ill_index = ill_index; 28797 ipp_packet_set_private(pp, priv, ip_priv_free); 28798 ipp_packet_set_data(pp, mp); 28799 28800 /* Invoke the classifier */ 28801 rc = ipp_packet_process(&pp); 28802 if (pp != NULL) { 28803 mp = ipp_packet_get_data(pp); 28804 ipp_packet_free(pp); 28805 if (rc != 0) { 28806 freemsg(mp); 28807 *mpp = NULL; 28808 } 28809 } else { 28810 *mpp = NULL; 28811 } 28812 #undef IP_CLASS 28813 } 28814 28815 /* 28816 * Propagate a multicast group membership operation (add/drop) on 28817 * all the interfaces crossed by the related multirt routes. 28818 * The call is considered successful if the operation succeeds 28819 * on at least one interface. 28820 */ 28821 static int 28822 ip_multirt_apply_membership(int (*fn)(conn_t *, boolean_t, ipaddr_t, ipaddr_t, 28823 uint_t *, mcast_record_t, ipaddr_t, mblk_t *), ire_t *ire, conn_t *connp, 28824 boolean_t checkonly, ipaddr_t group, mcast_record_t fmode, ipaddr_t src, 28825 mblk_t *first_mp) 28826 { 28827 ire_t *ire_gw; 28828 irb_t *irb; 28829 int error = 0; 28830 opt_restart_t *or; 28831 ip_stack_t *ipst = ire->ire_ipst; 28832 28833 irb = ire->ire_bucket; 28834 ASSERT(irb != NULL); 28835 28836 ASSERT(DB_TYPE(first_mp) == M_CTL); 28837 28838 or = (opt_restart_t *)first_mp->b_rptr; 28839 IRB_REFHOLD(irb); 28840 for (; ire != NULL; ire = ire->ire_next) { 28841 if ((ire->ire_flags & RTF_MULTIRT) == 0) 28842 continue; 28843 if (ire->ire_addr != group) 28844 continue; 28845 28846 ire_gw = ire_ftable_lookup(ire->ire_gateway_addr, 0, 0, 28847 IRE_INTERFACE, NULL, NULL, ALL_ZONES, 0, NULL, 28848 MATCH_IRE_RECURSIVE | MATCH_IRE_TYPE, ipst); 28849 /* No resolver exists for the gateway; skip this ire. */ 28850 if (ire_gw == NULL) 28851 continue; 28852 28853 /* 28854 * This function can return EINPROGRESS. If so the operation 28855 * will be restarted from ip_restart_optmgmt which will 28856 * call ip_opt_set and option processing will restart for 28857 * this option. So we may end up calling 'fn' more than once. 28858 * This requires that 'fn' is idempotent except for the 28859 * return value. The operation is considered a success if 28860 * it succeeds at least once on any one interface. 28861 */ 28862 error = fn(connp, checkonly, group, ire_gw->ire_src_addr, 28863 NULL, fmode, src, first_mp); 28864 if (error == 0) 28865 or->or_private = CGTP_MCAST_SUCCESS; 28866 28867 if (ip_debug > 0) { 28868 ulong_t off; 28869 char *ksym; 28870 ksym = kobj_getsymname((uintptr_t)fn, &off); 28871 ip2dbg(("ip_multirt_apply_membership: " 28872 "called %s, multirt group 0x%08x via itf 0x%08x, " 28873 "error %d [success %u]\n", 28874 ksym ? ksym : "?", 28875 ntohl(group), ntohl(ire_gw->ire_src_addr), 28876 error, or->or_private)); 28877 } 28878 28879 ire_refrele(ire_gw); 28880 if (error == EINPROGRESS) { 28881 IRB_REFRELE(irb); 28882 return (error); 28883 } 28884 } 28885 IRB_REFRELE(irb); 28886 /* 28887 * Consider the call as successful if we succeeded on at least 28888 * one interface. Otherwise, return the last encountered error. 28889 */ 28890 return (or->or_private == CGTP_MCAST_SUCCESS ? 0 : error); 28891 } 28892 28893 /* 28894 * Issue a warning regarding a route crossing an interface with an 28895 * incorrect MTU. Only one message every 'ip_multirt_log_interval' 28896 * amount of time is logged. 28897 */ 28898 static void 28899 ip_multirt_bad_mtu(ire_t *ire, uint32_t max_frag) 28900 { 28901 hrtime_t current = gethrtime(); 28902 char buf[INET_ADDRSTRLEN]; 28903 ip_stack_t *ipst = ire->ire_ipst; 28904 28905 /* Convert interval in ms to hrtime in ns */ 28906 if (ipst->ips_multirt_bad_mtu_last_time + 28907 ((hrtime_t)ipst->ips_ip_multirt_log_interval * (hrtime_t)1000000) <= 28908 current) { 28909 cmn_err(CE_WARN, "ip: ignoring multiroute " 28910 "to %s, incorrect MTU %u (expected %u)\n", 28911 ip_dot_addr(ire->ire_addr, buf), 28912 ire->ire_max_frag, max_frag); 28913 28914 ipst->ips_multirt_bad_mtu_last_time = current; 28915 } 28916 } 28917 28918 /* 28919 * Get the CGTP (multirouting) filtering status. 28920 * If 0, the CGTP hooks are transparent. 28921 */ 28922 /* ARGSUSED */ 28923 static int 28924 ip_cgtp_filter_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *ioc_cr) 28925 { 28926 boolean_t *ip_cgtp_filter_value = (boolean_t *)cp; 28927 28928 (void) mi_mpprintf(mp, "%d", (int)*ip_cgtp_filter_value); 28929 return (0); 28930 } 28931 28932 /* 28933 * Set the CGTP (multirouting) filtering status. 28934 * If the status is changed from active to transparent 28935 * or from transparent to active, forward the new status 28936 * to the filtering module (if loaded). 28937 */ 28938 /* ARGSUSED */ 28939 static int 28940 ip_cgtp_filter_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, 28941 cred_t *ioc_cr) 28942 { 28943 long new_value; 28944 boolean_t *ip_cgtp_filter_value = (boolean_t *)cp; 28945 ip_stack_t *ipst = CONNQ_TO_IPST(q); 28946 28947 if (secpolicy_ip_config(ioc_cr, B_FALSE) != 0) 28948 return (EPERM); 28949 28950 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || 28951 new_value < 0 || new_value > 1) { 28952 return (EINVAL); 28953 } 28954 28955 if ((!*ip_cgtp_filter_value) && new_value) { 28956 cmn_err(CE_NOTE, "IP: enabling CGTP filtering%s", 28957 ipst->ips_ip_cgtp_filter_ops == NULL ? 28958 " (module not loaded)" : ""); 28959 } 28960 if (*ip_cgtp_filter_value && (!new_value)) { 28961 cmn_err(CE_NOTE, "IP: disabling CGTP filtering%s", 28962 ipst->ips_ip_cgtp_filter_ops == NULL ? 28963 " (module not loaded)" : ""); 28964 } 28965 28966 if (ipst->ips_ip_cgtp_filter_ops != NULL) { 28967 int res; 28968 netstackid_t stackid; 28969 28970 stackid = ipst->ips_netstack->netstack_stackid; 28971 res = ipst->ips_ip_cgtp_filter_ops->cfo_change_state(stackid, 28972 new_value); 28973 if (res) 28974 return (res); 28975 } 28976 28977 *ip_cgtp_filter_value = (boolean_t)new_value; 28978 28979 return (0); 28980 } 28981 28982 /* 28983 * Return the expected CGTP hooks version number. 28984 */ 28985 int 28986 ip_cgtp_filter_supported(void) 28987 { 28988 return (ip_cgtp_filter_rev); 28989 } 28990 28991 /* 28992 * CGTP hooks can be registered by invoking this function. 28993 * Checks that the version number matches. 28994 */ 28995 int 28996 ip_cgtp_filter_register(netstackid_t stackid, cgtp_filter_ops_t *ops) 28997 { 28998 netstack_t *ns; 28999 ip_stack_t *ipst; 29000 29001 if (ops->cfo_filter_rev != CGTP_FILTER_REV) 29002 return (ENOTSUP); 29003 29004 ns = netstack_find_by_stackid(stackid); 29005 if (ns == NULL) 29006 return (EINVAL); 29007 ipst = ns->netstack_ip; 29008 ASSERT(ipst != NULL); 29009 29010 if (ipst->ips_ip_cgtp_filter_ops != NULL) { 29011 netstack_rele(ns); 29012 return (EALREADY); 29013 } 29014 29015 ipst->ips_ip_cgtp_filter_ops = ops; 29016 netstack_rele(ns); 29017 return (0); 29018 } 29019 29020 /* 29021 * CGTP hooks can be unregistered by invoking this function. 29022 * Returns ENXIO if there was no registration. 29023 * Returns EBUSY if the ndd variable has not been turned off. 29024 */ 29025 int 29026 ip_cgtp_filter_unregister(netstackid_t stackid) 29027 { 29028 netstack_t *ns; 29029 ip_stack_t *ipst; 29030 29031 ns = netstack_find_by_stackid(stackid); 29032 if (ns == NULL) 29033 return (EINVAL); 29034 ipst = ns->netstack_ip; 29035 ASSERT(ipst != NULL); 29036 29037 if (ipst->ips_ip_cgtp_filter) { 29038 netstack_rele(ns); 29039 return (EBUSY); 29040 } 29041 29042 if (ipst->ips_ip_cgtp_filter_ops == NULL) { 29043 netstack_rele(ns); 29044 return (ENXIO); 29045 } 29046 ipst->ips_ip_cgtp_filter_ops = NULL; 29047 netstack_rele(ns); 29048 return (0); 29049 } 29050 29051 /* 29052 * Check whether there is a CGTP filter registration. 29053 * Returns non-zero if there is a registration, otherwise returns zero. 29054 * Note: returns zero if bad stackid. 29055 */ 29056 int 29057 ip_cgtp_filter_is_registered(netstackid_t stackid) 29058 { 29059 netstack_t *ns; 29060 ip_stack_t *ipst; 29061 int ret; 29062 29063 ns = netstack_find_by_stackid(stackid); 29064 if (ns == NULL) 29065 return (0); 29066 ipst = ns->netstack_ip; 29067 ASSERT(ipst != NULL); 29068 29069 if (ipst->ips_ip_cgtp_filter_ops != NULL) 29070 ret = 1; 29071 else 29072 ret = 0; 29073 29074 netstack_rele(ns); 29075 return (ret); 29076 } 29077 29078 static int 29079 ip_squeue_switch(int val) 29080 { 29081 int rval = SQ_FILL; 29082 29083 switch (val) { 29084 case IP_SQUEUE_ENTER_NODRAIN: 29085 rval = SQ_NODRAIN; 29086 break; 29087 case IP_SQUEUE_ENTER: 29088 rval = SQ_PROCESS; 29089 break; 29090 default: 29091 break; 29092 } 29093 return (rval); 29094 } 29095 29096 /* ARGSUSED */ 29097 static int 29098 ip_input_proc_set(queue_t *q, mblk_t *mp, char *value, 29099 caddr_t addr, cred_t *cr) 29100 { 29101 int *v = (int *)addr; 29102 long new_value; 29103 29104 if (secpolicy_net_config(cr, B_FALSE) != 0) 29105 return (EPERM); 29106 29107 if (ddi_strtol(value, NULL, 10, &new_value) != 0) 29108 return (EINVAL); 29109 29110 ip_squeue_flag = ip_squeue_switch(new_value); 29111 *v = new_value; 29112 return (0); 29113 } 29114 29115 /* 29116 * Handle ndd set of variables which require PRIV_SYS_NET_CONFIG such as 29117 * ip_debug. 29118 */ 29119 /* ARGSUSED */ 29120 static int 29121 ip_int_set(queue_t *q, mblk_t *mp, char *value, 29122 caddr_t addr, cred_t *cr) 29123 { 29124 int *v = (int *)addr; 29125 long new_value; 29126 29127 if (secpolicy_net_config(cr, B_FALSE) != 0) 29128 return (EPERM); 29129 29130 if (ddi_strtol(value, NULL, 10, &new_value) != 0) 29131 return (EINVAL); 29132 29133 *v = new_value; 29134 return (0); 29135 } 29136 29137 static void * 29138 ip_kstat2_init(netstackid_t stackid, ip_stat_t *ip_statisticsp) 29139 { 29140 kstat_t *ksp; 29141 29142 ip_stat_t template = { 29143 { "ipsec_fanout_proto", KSTAT_DATA_UINT64 }, 29144 { "ip_udp_fannorm", KSTAT_DATA_UINT64 }, 29145 { "ip_udp_fanmb", KSTAT_DATA_UINT64 }, 29146 { "ip_udp_fanothers", KSTAT_DATA_UINT64 }, 29147 { "ip_udp_fast_path", KSTAT_DATA_UINT64 }, 29148 { "ip_udp_slow_path", KSTAT_DATA_UINT64 }, 29149 { "ip_udp_input_err", KSTAT_DATA_UINT64 }, 29150 { "ip_tcppullup", KSTAT_DATA_UINT64 }, 29151 { "ip_tcpoptions", KSTAT_DATA_UINT64 }, 29152 { "ip_multipkttcp", KSTAT_DATA_UINT64 }, 29153 { "ip_tcp_fast_path", KSTAT_DATA_UINT64 }, 29154 { "ip_tcp_slow_path", KSTAT_DATA_UINT64 }, 29155 { "ip_tcp_input_error", KSTAT_DATA_UINT64 }, 29156 { "ip_db_ref", KSTAT_DATA_UINT64 }, 29157 { "ip_notaligned1", KSTAT_DATA_UINT64 }, 29158 { "ip_notaligned2", KSTAT_DATA_UINT64 }, 29159 { "ip_multimblk3", KSTAT_DATA_UINT64 }, 29160 { "ip_multimblk4", KSTAT_DATA_UINT64 }, 29161 { "ip_ipoptions", KSTAT_DATA_UINT64 }, 29162 { "ip_classify_fail", KSTAT_DATA_UINT64 }, 29163 { "ip_opt", KSTAT_DATA_UINT64 }, 29164 { "ip_udp_rput_local", KSTAT_DATA_UINT64 }, 29165 { "ipsec_proto_ahesp", KSTAT_DATA_UINT64 }, 29166 { "ip_conn_flputbq", KSTAT_DATA_UINT64 }, 29167 { "ip_conn_walk_drain", KSTAT_DATA_UINT64 }, 29168 { "ip_out_sw_cksum", KSTAT_DATA_UINT64 }, 29169 { "ip_in_sw_cksum", KSTAT_DATA_UINT64 }, 29170 { "ip_trash_ire_reclaim_calls", KSTAT_DATA_UINT64 }, 29171 { "ip_trash_ire_reclaim_success", KSTAT_DATA_UINT64 }, 29172 { "ip_ire_arp_timer_expired", KSTAT_DATA_UINT64 }, 29173 { "ip_ire_redirect_timer_expired", KSTAT_DATA_UINT64 }, 29174 { "ip_ire_pmtu_timer_expired", KSTAT_DATA_UINT64 }, 29175 { "ip_input_multi_squeue", KSTAT_DATA_UINT64 }, 29176 { "ip_tcp_in_full_hw_cksum_err", KSTAT_DATA_UINT64 }, 29177 { "ip_tcp_in_part_hw_cksum_err", KSTAT_DATA_UINT64 }, 29178 { "ip_tcp_in_sw_cksum_err", KSTAT_DATA_UINT64 }, 29179 { "ip_tcp_out_sw_cksum_bytes", KSTAT_DATA_UINT64 }, 29180 { "ip_udp_in_full_hw_cksum_err", KSTAT_DATA_UINT64 }, 29181 { "ip_udp_in_part_hw_cksum_err", KSTAT_DATA_UINT64 }, 29182 { "ip_udp_in_sw_cksum_err", KSTAT_DATA_UINT64 }, 29183 { "ip_udp_out_sw_cksum_bytes", KSTAT_DATA_UINT64 }, 29184 { "ip_frag_mdt_pkt_out", KSTAT_DATA_UINT64 }, 29185 { "ip_frag_mdt_discarded", KSTAT_DATA_UINT64 }, 29186 { "ip_frag_mdt_allocfail", KSTAT_DATA_UINT64 }, 29187 { "ip_frag_mdt_addpdescfail", KSTAT_DATA_UINT64 }, 29188 { "ip_frag_mdt_allocd", KSTAT_DATA_UINT64 }, 29189 }; 29190 29191 ksp = kstat_create_netstack("ip", 0, "ipstat", "net", 29192 KSTAT_TYPE_NAMED, sizeof (template) / sizeof (kstat_named_t), 29193 KSTAT_FLAG_VIRTUAL, stackid); 29194 29195 if (ksp == NULL) 29196 return (NULL); 29197 29198 bcopy(&template, ip_statisticsp, sizeof (template)); 29199 ksp->ks_data = (void *)ip_statisticsp; 29200 ksp->ks_private = (void *)(uintptr_t)stackid; 29201 29202 kstat_install(ksp); 29203 return (ksp); 29204 } 29205 29206 static void 29207 ip_kstat2_fini(netstackid_t stackid, kstat_t *ksp) 29208 { 29209 if (ksp != NULL) { 29210 ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private); 29211 kstat_delete_netstack(ksp, stackid); 29212 } 29213 } 29214 29215 static void * 29216 ip_kstat_init(netstackid_t stackid, ip_stack_t *ipst) 29217 { 29218 kstat_t *ksp; 29219 29220 ip_named_kstat_t template = { 29221 { "forwarding", KSTAT_DATA_UINT32, 0 }, 29222 { "defaultTTL", KSTAT_DATA_UINT32, 0 }, 29223 { "inReceives", KSTAT_DATA_UINT64, 0 }, 29224 { "inHdrErrors", KSTAT_DATA_UINT32, 0 }, 29225 { "inAddrErrors", KSTAT_DATA_UINT32, 0 }, 29226 { "forwDatagrams", KSTAT_DATA_UINT64, 0 }, 29227 { "inUnknownProtos", KSTAT_DATA_UINT32, 0 }, 29228 { "inDiscards", KSTAT_DATA_UINT32, 0 }, 29229 { "inDelivers", KSTAT_DATA_UINT64, 0 }, 29230 { "outRequests", KSTAT_DATA_UINT64, 0 }, 29231 { "outDiscards", KSTAT_DATA_UINT32, 0 }, 29232 { "outNoRoutes", KSTAT_DATA_UINT32, 0 }, 29233 { "reasmTimeout", KSTAT_DATA_UINT32, 0 }, 29234 { "reasmReqds", KSTAT_DATA_UINT32, 0 }, 29235 { "reasmOKs", KSTAT_DATA_UINT32, 0 }, 29236 { "reasmFails", KSTAT_DATA_UINT32, 0 }, 29237 { "fragOKs", KSTAT_DATA_UINT32, 0 }, 29238 { "fragFails", KSTAT_DATA_UINT32, 0 }, 29239 { "fragCreates", KSTAT_DATA_UINT32, 0 }, 29240 { "addrEntrySize", KSTAT_DATA_INT32, 0 }, 29241 { "routeEntrySize", KSTAT_DATA_INT32, 0 }, 29242 { "netToMediaEntrySize", KSTAT_DATA_INT32, 0 }, 29243 { "routingDiscards", KSTAT_DATA_UINT32, 0 }, 29244 { "inErrs", KSTAT_DATA_UINT32, 0 }, 29245 { "noPorts", KSTAT_DATA_UINT32, 0 }, 29246 { "inCksumErrs", KSTAT_DATA_UINT32, 0 }, 29247 { "reasmDuplicates", KSTAT_DATA_UINT32, 0 }, 29248 { "reasmPartDups", KSTAT_DATA_UINT32, 0 }, 29249 { "forwProhibits", KSTAT_DATA_UINT32, 0 }, 29250 { "udpInCksumErrs", KSTAT_DATA_UINT32, 0 }, 29251 { "udpInOverflows", KSTAT_DATA_UINT32, 0 }, 29252 { "rawipInOverflows", KSTAT_DATA_UINT32, 0 }, 29253 { "ipsecInSucceeded", KSTAT_DATA_UINT32, 0 }, 29254 { "ipsecInFailed", KSTAT_DATA_INT32, 0 }, 29255 { "memberEntrySize", KSTAT_DATA_INT32, 0 }, 29256 { "inIPv6", KSTAT_DATA_UINT32, 0 }, 29257 { "outIPv6", KSTAT_DATA_UINT32, 0 }, 29258 { "outSwitchIPv6", KSTAT_DATA_UINT32, 0 }, 29259 }; 29260 29261 ksp = kstat_create_netstack("ip", 0, "ip", "mib2", KSTAT_TYPE_NAMED, 29262 NUM_OF_FIELDS(ip_named_kstat_t), 0, stackid); 29263 if (ksp == NULL || ksp->ks_data == NULL) 29264 return (NULL); 29265 29266 template.forwarding.value.ui32 = WE_ARE_FORWARDING(ipst) ? 1:2; 29267 template.defaultTTL.value.ui32 = (uint32_t)ipst->ips_ip_def_ttl; 29268 template.reasmTimeout.value.ui32 = ipst->ips_ip_g_frag_timeout; 29269 template.addrEntrySize.value.i32 = sizeof (mib2_ipAddrEntry_t); 29270 template.routeEntrySize.value.i32 = sizeof (mib2_ipRouteEntry_t); 29271 29272 template.netToMediaEntrySize.value.i32 = 29273 sizeof (mib2_ipNetToMediaEntry_t); 29274 29275 template.memberEntrySize.value.i32 = sizeof (ipv6_member_t); 29276 29277 bcopy(&template, ksp->ks_data, sizeof (template)); 29278 ksp->ks_update = ip_kstat_update; 29279 ksp->ks_private = (void *)(uintptr_t)stackid; 29280 29281 kstat_install(ksp); 29282 return (ksp); 29283 } 29284 29285 static void 29286 ip_kstat_fini(netstackid_t stackid, kstat_t *ksp) 29287 { 29288 if (ksp != NULL) { 29289 ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private); 29290 kstat_delete_netstack(ksp, stackid); 29291 } 29292 } 29293 29294 static int 29295 ip_kstat_update(kstat_t *kp, int rw) 29296 { 29297 ip_named_kstat_t *ipkp; 29298 mib2_ipIfStatsEntry_t ipmib; 29299 ill_walk_context_t ctx; 29300 ill_t *ill; 29301 netstackid_t stackid = (zoneid_t)(uintptr_t)kp->ks_private; 29302 netstack_t *ns; 29303 ip_stack_t *ipst; 29304 29305 if (kp == NULL || kp->ks_data == NULL) 29306 return (EIO); 29307 29308 if (rw == KSTAT_WRITE) 29309 return (EACCES); 29310 29311 ns = netstack_find_by_stackid(stackid); 29312 if (ns == NULL) 29313 return (-1); 29314 ipst = ns->netstack_ip; 29315 if (ipst == NULL) { 29316 netstack_rele(ns); 29317 return (-1); 29318 } 29319 ipkp = (ip_named_kstat_t *)kp->ks_data; 29320 29321 bcopy(&ipst->ips_ip_mib, &ipmib, sizeof (ipmib)); 29322 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 29323 ill = ILL_START_WALK_V4(&ctx, ipst); 29324 for (; ill != NULL; ill = ill_next(&ctx, ill)) 29325 ip_mib2_add_ip_stats(&ipmib, ill->ill_ip_mib); 29326 rw_exit(&ipst->ips_ill_g_lock); 29327 29328 ipkp->forwarding.value.ui32 = ipmib.ipIfStatsForwarding; 29329 ipkp->defaultTTL.value.ui32 = ipmib.ipIfStatsDefaultTTL; 29330 ipkp->inReceives.value.ui64 = ipmib.ipIfStatsHCInReceives; 29331 ipkp->inHdrErrors.value.ui32 = ipmib.ipIfStatsInHdrErrors; 29332 ipkp->inAddrErrors.value.ui32 = ipmib.ipIfStatsInAddrErrors; 29333 ipkp->forwDatagrams.value.ui64 = ipmib.ipIfStatsHCOutForwDatagrams; 29334 ipkp->inUnknownProtos.value.ui32 = ipmib.ipIfStatsInUnknownProtos; 29335 ipkp->inDiscards.value.ui32 = ipmib.ipIfStatsInDiscards; 29336 ipkp->inDelivers.value.ui64 = ipmib.ipIfStatsHCInDelivers; 29337 ipkp->outRequests.value.ui64 = ipmib.ipIfStatsHCOutRequests; 29338 ipkp->outDiscards.value.ui32 = ipmib.ipIfStatsOutDiscards; 29339 ipkp->outNoRoutes.value.ui32 = ipmib.ipIfStatsOutNoRoutes; 29340 ipkp->reasmTimeout.value.ui32 = ipst->ips_ip_g_frag_timeout; 29341 ipkp->reasmReqds.value.ui32 = ipmib.ipIfStatsReasmReqds; 29342 ipkp->reasmOKs.value.ui32 = ipmib.ipIfStatsReasmOKs; 29343 ipkp->reasmFails.value.ui32 = ipmib.ipIfStatsReasmFails; 29344 ipkp->fragOKs.value.ui32 = ipmib.ipIfStatsOutFragOKs; 29345 ipkp->fragFails.value.ui32 = ipmib.ipIfStatsOutFragFails; 29346 ipkp->fragCreates.value.ui32 = ipmib.ipIfStatsOutFragCreates; 29347 29348 ipkp->routingDiscards.value.ui32 = 0; 29349 ipkp->inErrs.value.ui32 = ipmib.tcpIfStatsInErrs; 29350 ipkp->noPorts.value.ui32 = ipmib.udpIfStatsNoPorts; 29351 ipkp->inCksumErrs.value.ui32 = ipmib.ipIfStatsInCksumErrs; 29352 ipkp->reasmDuplicates.value.ui32 = ipmib.ipIfStatsReasmDuplicates; 29353 ipkp->reasmPartDups.value.ui32 = ipmib.ipIfStatsReasmPartDups; 29354 ipkp->forwProhibits.value.ui32 = ipmib.ipIfStatsForwProhibits; 29355 ipkp->udpInCksumErrs.value.ui32 = ipmib.udpIfStatsInCksumErrs; 29356 ipkp->udpInOverflows.value.ui32 = ipmib.udpIfStatsInOverflows; 29357 ipkp->rawipInOverflows.value.ui32 = ipmib.rawipIfStatsInOverflows; 29358 ipkp->ipsecInSucceeded.value.ui32 = ipmib.ipsecIfStatsInSucceeded; 29359 ipkp->ipsecInFailed.value.i32 = ipmib.ipsecIfStatsInFailed; 29360 29361 ipkp->inIPv6.value.ui32 = ipmib.ipIfStatsInWrongIPVersion; 29362 ipkp->outIPv6.value.ui32 = ipmib.ipIfStatsOutWrongIPVersion; 29363 ipkp->outSwitchIPv6.value.ui32 = ipmib.ipIfStatsOutSwitchIPVersion; 29364 29365 netstack_rele(ns); 29366 29367 return (0); 29368 } 29369 29370 static void * 29371 icmp_kstat_init(netstackid_t stackid) 29372 { 29373 kstat_t *ksp; 29374 29375 icmp_named_kstat_t template = { 29376 { "inMsgs", KSTAT_DATA_UINT32 }, 29377 { "inErrors", KSTAT_DATA_UINT32 }, 29378 { "inDestUnreachs", KSTAT_DATA_UINT32 }, 29379 { "inTimeExcds", KSTAT_DATA_UINT32 }, 29380 { "inParmProbs", KSTAT_DATA_UINT32 }, 29381 { "inSrcQuenchs", KSTAT_DATA_UINT32 }, 29382 { "inRedirects", KSTAT_DATA_UINT32 }, 29383 { "inEchos", KSTAT_DATA_UINT32 }, 29384 { "inEchoReps", KSTAT_DATA_UINT32 }, 29385 { "inTimestamps", KSTAT_DATA_UINT32 }, 29386 { "inTimestampReps", KSTAT_DATA_UINT32 }, 29387 { "inAddrMasks", KSTAT_DATA_UINT32 }, 29388 { "inAddrMaskReps", KSTAT_DATA_UINT32 }, 29389 { "outMsgs", KSTAT_DATA_UINT32 }, 29390 { "outErrors", KSTAT_DATA_UINT32 }, 29391 { "outDestUnreachs", KSTAT_DATA_UINT32 }, 29392 { "outTimeExcds", KSTAT_DATA_UINT32 }, 29393 { "outParmProbs", KSTAT_DATA_UINT32 }, 29394 { "outSrcQuenchs", KSTAT_DATA_UINT32 }, 29395 { "outRedirects", KSTAT_DATA_UINT32 }, 29396 { "outEchos", KSTAT_DATA_UINT32 }, 29397 { "outEchoReps", KSTAT_DATA_UINT32 }, 29398 { "outTimestamps", KSTAT_DATA_UINT32 }, 29399 { "outTimestampReps", KSTAT_DATA_UINT32 }, 29400 { "outAddrMasks", KSTAT_DATA_UINT32 }, 29401 { "outAddrMaskReps", KSTAT_DATA_UINT32 }, 29402 { "inChksumErrs", KSTAT_DATA_UINT32 }, 29403 { "inUnknowns", KSTAT_DATA_UINT32 }, 29404 { "inFragNeeded", KSTAT_DATA_UINT32 }, 29405 { "outFragNeeded", KSTAT_DATA_UINT32 }, 29406 { "outDrops", KSTAT_DATA_UINT32 }, 29407 { "inOverFlows", KSTAT_DATA_UINT32 }, 29408 { "inBadRedirects", KSTAT_DATA_UINT32 }, 29409 }; 29410 29411 ksp = kstat_create_netstack("ip", 0, "icmp", "mib2", KSTAT_TYPE_NAMED, 29412 NUM_OF_FIELDS(icmp_named_kstat_t), 0, stackid); 29413 if (ksp == NULL || ksp->ks_data == NULL) 29414 return (NULL); 29415 29416 bcopy(&template, ksp->ks_data, sizeof (template)); 29417 29418 ksp->ks_update = icmp_kstat_update; 29419 ksp->ks_private = (void *)(uintptr_t)stackid; 29420 29421 kstat_install(ksp); 29422 return (ksp); 29423 } 29424 29425 static void 29426 icmp_kstat_fini(netstackid_t stackid, kstat_t *ksp) 29427 { 29428 if (ksp != NULL) { 29429 ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private); 29430 kstat_delete_netstack(ksp, stackid); 29431 } 29432 } 29433 29434 static int 29435 icmp_kstat_update(kstat_t *kp, int rw) 29436 { 29437 icmp_named_kstat_t *icmpkp; 29438 netstackid_t stackid = (zoneid_t)(uintptr_t)kp->ks_private; 29439 netstack_t *ns; 29440 ip_stack_t *ipst; 29441 29442 if ((kp == NULL) || (kp->ks_data == NULL)) 29443 return (EIO); 29444 29445 if (rw == KSTAT_WRITE) 29446 return (EACCES); 29447 29448 ns = netstack_find_by_stackid(stackid); 29449 if (ns == NULL) 29450 return (-1); 29451 ipst = ns->netstack_ip; 29452 if (ipst == NULL) { 29453 netstack_rele(ns); 29454 return (-1); 29455 } 29456 icmpkp = (icmp_named_kstat_t *)kp->ks_data; 29457 29458 icmpkp->inMsgs.value.ui32 = ipst->ips_icmp_mib.icmpInMsgs; 29459 icmpkp->inErrors.value.ui32 = ipst->ips_icmp_mib.icmpInErrors; 29460 icmpkp->inDestUnreachs.value.ui32 = 29461 ipst->ips_icmp_mib.icmpInDestUnreachs; 29462 icmpkp->inTimeExcds.value.ui32 = ipst->ips_icmp_mib.icmpInTimeExcds; 29463 icmpkp->inParmProbs.value.ui32 = ipst->ips_icmp_mib.icmpInParmProbs; 29464 icmpkp->inSrcQuenchs.value.ui32 = ipst->ips_icmp_mib.icmpInSrcQuenchs; 29465 icmpkp->inRedirects.value.ui32 = ipst->ips_icmp_mib.icmpInRedirects; 29466 icmpkp->inEchos.value.ui32 = ipst->ips_icmp_mib.icmpInEchos; 29467 icmpkp->inEchoReps.value.ui32 = ipst->ips_icmp_mib.icmpInEchoReps; 29468 icmpkp->inTimestamps.value.ui32 = ipst->ips_icmp_mib.icmpInTimestamps; 29469 icmpkp->inTimestampReps.value.ui32 = 29470 ipst->ips_icmp_mib.icmpInTimestampReps; 29471 icmpkp->inAddrMasks.value.ui32 = ipst->ips_icmp_mib.icmpInAddrMasks; 29472 icmpkp->inAddrMaskReps.value.ui32 = 29473 ipst->ips_icmp_mib.icmpInAddrMaskReps; 29474 icmpkp->outMsgs.value.ui32 = ipst->ips_icmp_mib.icmpOutMsgs; 29475 icmpkp->outErrors.value.ui32 = ipst->ips_icmp_mib.icmpOutErrors; 29476 icmpkp->outDestUnreachs.value.ui32 = 29477 ipst->ips_icmp_mib.icmpOutDestUnreachs; 29478 icmpkp->outTimeExcds.value.ui32 = ipst->ips_icmp_mib.icmpOutTimeExcds; 29479 icmpkp->outParmProbs.value.ui32 = ipst->ips_icmp_mib.icmpOutParmProbs; 29480 icmpkp->outSrcQuenchs.value.ui32 = 29481 ipst->ips_icmp_mib.icmpOutSrcQuenchs; 29482 icmpkp->outRedirects.value.ui32 = ipst->ips_icmp_mib.icmpOutRedirects; 29483 icmpkp->outEchos.value.ui32 = ipst->ips_icmp_mib.icmpOutEchos; 29484 icmpkp->outEchoReps.value.ui32 = ipst->ips_icmp_mib.icmpOutEchoReps; 29485 icmpkp->outTimestamps.value.ui32 = 29486 ipst->ips_icmp_mib.icmpOutTimestamps; 29487 icmpkp->outTimestampReps.value.ui32 = 29488 ipst->ips_icmp_mib.icmpOutTimestampReps; 29489 icmpkp->outAddrMasks.value.ui32 = 29490 ipst->ips_icmp_mib.icmpOutAddrMasks; 29491 icmpkp->outAddrMaskReps.value.ui32 = 29492 ipst->ips_icmp_mib.icmpOutAddrMaskReps; 29493 icmpkp->inCksumErrs.value.ui32 = ipst->ips_icmp_mib.icmpInCksumErrs; 29494 icmpkp->inUnknowns.value.ui32 = ipst->ips_icmp_mib.icmpInUnknowns; 29495 icmpkp->inFragNeeded.value.ui32 = ipst->ips_icmp_mib.icmpInFragNeeded; 29496 icmpkp->outFragNeeded.value.ui32 = 29497 ipst->ips_icmp_mib.icmpOutFragNeeded; 29498 icmpkp->outDrops.value.ui32 = ipst->ips_icmp_mib.icmpOutDrops; 29499 icmpkp->inOverflows.value.ui32 = ipst->ips_icmp_mib.icmpInOverflows; 29500 icmpkp->inBadRedirects.value.ui32 = 29501 ipst->ips_icmp_mib.icmpInBadRedirects; 29502 29503 netstack_rele(ns); 29504 return (0); 29505 } 29506 29507 /* 29508 * This is the fanout function for raw socket opened for SCTP. Note 29509 * that it is called after SCTP checks that there is no socket which 29510 * wants a packet. Then before SCTP handles this out of the blue packet, 29511 * this function is called to see if there is any raw socket for SCTP. 29512 * If there is and it is bound to the correct address, the packet will 29513 * be sent to that socket. Note that only one raw socket can be bound to 29514 * a port. This is assured in ipcl_sctp_hash_insert(); 29515 */ 29516 void 29517 ip_fanout_sctp_raw(mblk_t *mp, ill_t *recv_ill, ipha_t *ipha, boolean_t isv4, 29518 uint32_t ports, boolean_t mctl_present, uint_t flags, boolean_t ip_policy, 29519 zoneid_t zoneid) 29520 { 29521 conn_t *connp; 29522 queue_t *rq; 29523 mblk_t *first_mp; 29524 boolean_t secure; 29525 ip6_t *ip6h; 29526 ip_stack_t *ipst = recv_ill->ill_ipst; 29527 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 29528 sctp_stack_t *sctps = ipst->ips_netstack->netstack_sctp; 29529 boolean_t sctp_csum_err = B_FALSE; 29530 29531 if (flags & IP_FF_SCTP_CSUM_ERR) { 29532 sctp_csum_err = B_TRUE; 29533 flags &= ~IP_FF_SCTP_CSUM_ERR; 29534 } 29535 29536 first_mp = mp; 29537 if (mctl_present) { 29538 mp = first_mp->b_cont; 29539 secure = ipsec_in_is_secure(first_mp); 29540 ASSERT(mp != NULL); 29541 } else { 29542 secure = B_FALSE; 29543 } 29544 ip6h = (isv4) ? NULL : (ip6_t *)ipha; 29545 29546 connp = ipcl_classify_raw(mp, IPPROTO_SCTP, zoneid, ports, ipha, ipst); 29547 if (connp == NULL) { 29548 /* 29549 * Although raw sctp is not summed, OOB chunks must be. 29550 * Drop the packet here if the sctp checksum failed. 29551 */ 29552 if (sctp_csum_err) { 29553 BUMP_MIB(&sctps->sctps_mib, sctpChecksumError); 29554 freemsg(first_mp); 29555 return; 29556 } 29557 sctp_ootb_input(first_mp, recv_ill, zoneid, mctl_present); 29558 return; 29559 } 29560 rq = connp->conn_rq; 29561 if (!canputnext(rq)) { 29562 CONN_DEC_REF(connp); 29563 BUMP_MIB(recv_ill->ill_ip_mib, rawipIfStatsInOverflows); 29564 freemsg(first_mp); 29565 return; 29566 } 29567 if ((isv4 ? CONN_INBOUND_POLICY_PRESENT(connp, ipss) : 29568 CONN_INBOUND_POLICY_PRESENT_V6(connp, ipss)) || secure) { 29569 first_mp = ipsec_check_inbound_policy(first_mp, connp, 29570 (isv4 ? ipha : NULL), ip6h, mctl_present); 29571 if (first_mp == NULL) { 29572 BUMP_MIB(recv_ill->ill_ip_mib, ipIfStatsInDiscards); 29573 CONN_DEC_REF(connp); 29574 return; 29575 } 29576 } 29577 /* 29578 * We probably should not send M_CTL message up to 29579 * raw socket. 29580 */ 29581 if (mctl_present) 29582 freeb(first_mp); 29583 29584 /* Initiate IPPF processing here if needed. */ 29585 if ((isv4 && IPP_ENABLED(IPP_LOCAL_IN, ipst) && ip_policy) || 29586 (!isv4 && IP6_IN_IPP(flags, ipst))) { 29587 ip_process(IPP_LOCAL_IN, &mp, 29588 recv_ill->ill_phyint->phyint_ifindex); 29589 if (mp == NULL) { 29590 CONN_DEC_REF(connp); 29591 return; 29592 } 29593 } 29594 29595 if (connp->conn_recvif || connp->conn_recvslla || 29596 ((connp->conn_ip_recvpktinfo || 29597 (!isv4 && IN6_IS_ADDR_LINKLOCAL(&ip6h->ip6_src))) && 29598 (flags & IP_FF_IPINFO))) { 29599 int in_flags = 0; 29600 29601 /* 29602 * Since sctp does not support IP_RECVPKTINFO for v4, only pass 29603 * IPF_RECVIF. 29604 */ 29605 if (connp->conn_recvif || connp->conn_ip_recvpktinfo) { 29606 in_flags = IPF_RECVIF; 29607 } 29608 if (connp->conn_recvslla) { 29609 in_flags |= IPF_RECVSLLA; 29610 } 29611 if (isv4) { 29612 mp = ip_add_info(mp, recv_ill, in_flags, 29613 IPCL_ZONEID(connp), ipst); 29614 } else { 29615 mp = ip_add_info_v6(mp, recv_ill, &ip6h->ip6_dst); 29616 if (mp == NULL) { 29617 BUMP_MIB(recv_ill->ill_ip_mib, 29618 ipIfStatsInDiscards); 29619 CONN_DEC_REF(connp); 29620 return; 29621 } 29622 } 29623 } 29624 29625 BUMP_MIB(recv_ill->ill_ip_mib, ipIfStatsHCInDelivers); 29626 /* 29627 * We are sending the IPSEC_IN message also up. Refer 29628 * to comments above this function. 29629 * This is the SOCK_RAW, IPPROTO_SCTP case. 29630 */ 29631 (connp->conn_recv)(connp, mp, NULL); 29632 CONN_DEC_REF(connp); 29633 } 29634 29635 #define UPDATE_IP_MIB_OB_COUNTERS(ill, len) \ 29636 { \ 29637 BUMP_MIB((ill)->ill_ip_mib, ipIfStatsHCOutTransmits); \ 29638 UPDATE_MIB((ill)->ill_ip_mib, ipIfStatsHCOutOctets, (len)); \ 29639 } 29640 /* 29641 * This function should be called only if all packet processing 29642 * including fragmentation is complete. Callers of this function 29643 * must set mp->b_prev to one of these values: 29644 * {0, IPP_FWD_OUT, IPP_LOCAL_OUT} 29645 * prior to handing over the mp as first argument to this function. 29646 * 29647 * If the ire passed by caller is incomplete, this function 29648 * queues the packet and if necessary, sends ARP request and bails. 29649 * If the ire passed is fully resolved, we simply prepend 29650 * the link-layer header to the packet, do ipsec hw acceleration 29651 * work if necessary, and send the packet out on the wire. 29652 * 29653 * NOTE: IPsec will only call this function with fully resolved 29654 * ires if hw acceleration is involved. 29655 * TODO list : 29656 * a Handle M_MULTIDATA so that 29657 * tcp_multisend->tcp_multisend_data can 29658 * call ip_xmit_v4 directly 29659 * b Handle post-ARP work for fragments so that 29660 * ip_wput_frag can call this function. 29661 */ 29662 ipxmit_state_t 29663 ip_xmit_v4(mblk_t *mp, ire_t *ire, ipsec_out_t *io, 29664 boolean_t flow_ctl_enabled, conn_t *connp) 29665 { 29666 nce_t *arpce; 29667 ipha_t *ipha; 29668 queue_t *q; 29669 int ill_index; 29670 mblk_t *nxt_mp, *first_mp; 29671 boolean_t xmit_drop = B_FALSE; 29672 ip_proc_t proc; 29673 ill_t *out_ill; 29674 int pkt_len; 29675 29676 arpce = ire->ire_nce; 29677 ASSERT(arpce != NULL); 29678 29679 DTRACE_PROBE2(ip__xmit__v4, ire_t *, ire, nce_t *, arpce); 29680 29681 mutex_enter(&arpce->nce_lock); 29682 switch (arpce->nce_state) { 29683 case ND_REACHABLE: 29684 /* If there are other queued packets, queue this packet */ 29685 if (arpce->nce_qd_mp != NULL) { 29686 if (mp != NULL) 29687 nce_queue_mp_common(arpce, mp, B_FALSE); 29688 mp = arpce->nce_qd_mp; 29689 } 29690 arpce->nce_qd_mp = NULL; 29691 mutex_exit(&arpce->nce_lock); 29692 29693 /* 29694 * Flush the queue. In the common case, where the 29695 * ARP is already resolved, it will go through the 29696 * while loop only once. 29697 */ 29698 while (mp != NULL) { 29699 29700 nxt_mp = mp->b_next; 29701 mp->b_next = NULL; 29702 ASSERT(mp->b_datap->db_type != M_CTL); 29703 pkt_len = ntohs(((ipha_t *)mp->b_rptr)->ipha_length); 29704 /* 29705 * This info is needed for IPQOS to do COS marking 29706 * in ip_wput_attach_llhdr->ip_process. 29707 */ 29708 proc = (ip_proc_t)(uintptr_t)mp->b_prev; 29709 mp->b_prev = NULL; 29710 29711 /* set up ill index for outbound qos processing */ 29712 out_ill = ire_to_ill(ire); 29713 ill_index = out_ill->ill_phyint->phyint_ifindex; 29714 first_mp = ip_wput_attach_llhdr(mp, ire, proc, 29715 ill_index, &ipha); 29716 if (first_mp == NULL) { 29717 xmit_drop = B_TRUE; 29718 BUMP_MIB(out_ill->ill_ip_mib, 29719 ipIfStatsOutDiscards); 29720 goto next_mp; 29721 } 29722 29723 /* non-ipsec hw accel case */ 29724 if (io == NULL || !io->ipsec_out_accelerated) { 29725 /* send it */ 29726 q = ire->ire_stq; 29727 if (proc == IPP_FWD_OUT) { 29728 UPDATE_IB_PKT_COUNT(ire); 29729 } else { 29730 UPDATE_OB_PKT_COUNT(ire); 29731 } 29732 ire->ire_last_used_time = lbolt; 29733 29734 if (flow_ctl_enabled || canputnext(q)) { 29735 if (proc == IPP_FWD_OUT) { 29736 29737 BUMP_MIB(out_ill->ill_ip_mib, 29738 ipIfStatsHCOutForwDatagrams); 29739 29740 } 29741 UPDATE_IP_MIB_OB_COUNTERS(out_ill, 29742 pkt_len); 29743 29744 DTRACE_IP7(send, mblk_t *, first_mp, 29745 conn_t *, NULL, void_ip_t *, ipha, 29746 __dtrace_ipsr_ill_t *, out_ill, 29747 ipha_t *, ipha, ip6_t *, NULL, int, 29748 0); 29749 29750 ILL_SEND_TX(out_ill, 29751 ire, connp, first_mp, 0, connp); 29752 } else { 29753 BUMP_MIB(out_ill->ill_ip_mib, 29754 ipIfStatsOutDiscards); 29755 xmit_drop = B_TRUE; 29756 freemsg(first_mp); 29757 } 29758 } else { 29759 /* 29760 * Safety Pup says: make sure this 29761 * is going to the right interface! 29762 */ 29763 ill_t *ill1 = 29764 (ill_t *)ire->ire_stq->q_ptr; 29765 int ifindex = 29766 ill1->ill_phyint->phyint_ifindex; 29767 if (ifindex != 29768 io->ipsec_out_capab_ill_index) { 29769 xmit_drop = B_TRUE; 29770 freemsg(mp); 29771 } else { 29772 UPDATE_IP_MIB_OB_COUNTERS(ill1, 29773 pkt_len); 29774 29775 DTRACE_IP7(send, mblk_t *, first_mp, 29776 conn_t *, NULL, void_ip_t *, ipha, 29777 __dtrace_ipsr_ill_t *, ill1, 29778 ipha_t *, ipha, ip6_t *, NULL, 29779 int, 0); 29780 29781 ipsec_hw_putnext(ire->ire_stq, mp); 29782 } 29783 } 29784 next_mp: 29785 mp = nxt_mp; 29786 } /* while (mp != NULL) */ 29787 if (xmit_drop) 29788 return (SEND_FAILED); 29789 else 29790 return (SEND_PASSED); 29791 29792 case ND_INITIAL: 29793 case ND_INCOMPLETE: 29794 29795 /* 29796 * While we do send off packets to dests that 29797 * use fully-resolved CGTP routes, we do not 29798 * handle unresolved CGTP routes. 29799 */ 29800 ASSERT(!(ire->ire_flags & RTF_MULTIRT)); 29801 ASSERT(io == NULL || !io->ipsec_out_accelerated); 29802 29803 if (mp != NULL) { 29804 /* queue the packet */ 29805 nce_queue_mp_common(arpce, mp, B_FALSE); 29806 } 29807 29808 if (arpce->nce_state == ND_INCOMPLETE) { 29809 mutex_exit(&arpce->nce_lock); 29810 DTRACE_PROBE3(ip__xmit__incomplete, 29811 (ire_t *), ire, (mblk_t *), mp, 29812 (ipsec_out_t *), io); 29813 return (LOOKUP_IN_PROGRESS); 29814 } 29815 29816 arpce->nce_state = ND_INCOMPLETE; 29817 mutex_exit(&arpce->nce_lock); 29818 29819 /* 29820 * Note that ire_add() (called from ire_forward()) 29821 * holds a ref on the ire until ARP is completed. 29822 */ 29823 ire_arpresolve(ire); 29824 return (LOOKUP_IN_PROGRESS); 29825 default: 29826 ASSERT(0); 29827 mutex_exit(&arpce->nce_lock); 29828 return (LLHDR_RESLV_FAILED); 29829 } 29830 } 29831 29832 #undef UPDATE_IP_MIB_OB_COUNTERS 29833 29834 /* 29835 * Return B_TRUE if the buffers differ in length or content. 29836 * This is used for comparing extension header buffers. 29837 * Note that an extension header would be declared different 29838 * even if all that changed was the next header value in that header i.e. 29839 * what really changed is the next extension header. 29840 */ 29841 boolean_t 29842 ip_cmpbuf(const void *abuf, uint_t alen, boolean_t b_valid, const void *bbuf, 29843 uint_t blen) 29844 { 29845 if (!b_valid) 29846 blen = 0; 29847 29848 if (alen != blen) 29849 return (B_TRUE); 29850 if (alen == 0) 29851 return (B_FALSE); /* Both zero length */ 29852 return (bcmp(abuf, bbuf, alen)); 29853 } 29854 29855 /* 29856 * Preallocate memory for ip_savebuf(). Returns B_TRUE if ok. 29857 * Return B_FALSE if memory allocation fails - don't change any state! 29858 */ 29859 boolean_t 29860 ip_allocbuf(void **dstp, uint_t *dstlenp, boolean_t src_valid, 29861 const void *src, uint_t srclen) 29862 { 29863 void *dst; 29864 29865 if (!src_valid) 29866 srclen = 0; 29867 29868 ASSERT(*dstlenp == 0); 29869 if (src != NULL && srclen != 0) { 29870 dst = mi_alloc(srclen, BPRI_MED); 29871 if (dst == NULL) 29872 return (B_FALSE); 29873 } else { 29874 dst = NULL; 29875 } 29876 if (*dstp != NULL) 29877 mi_free(*dstp); 29878 *dstp = dst; 29879 *dstlenp = dst == NULL ? 0 : srclen; 29880 return (B_TRUE); 29881 } 29882 29883 /* 29884 * Replace what is in *dst, *dstlen with the source. 29885 * Assumes ip_allocbuf has already been called. 29886 */ 29887 void 29888 ip_savebuf(void **dstp, uint_t *dstlenp, boolean_t src_valid, 29889 const void *src, uint_t srclen) 29890 { 29891 if (!src_valid) 29892 srclen = 0; 29893 29894 ASSERT(*dstlenp == srclen); 29895 if (src != NULL && srclen != 0) 29896 bcopy(src, *dstp, srclen); 29897 } 29898 29899 /* 29900 * Free the storage pointed to by the members of an ip6_pkt_t. 29901 */ 29902 void 29903 ip6_pkt_free(ip6_pkt_t *ipp) 29904 { 29905 ASSERT(ipp->ipp_pathmtu == NULL && !(ipp->ipp_fields & IPPF_PATHMTU)); 29906 29907 if (ipp->ipp_fields & IPPF_HOPOPTS) { 29908 kmem_free(ipp->ipp_hopopts, ipp->ipp_hopoptslen); 29909 ipp->ipp_hopopts = NULL; 29910 ipp->ipp_hopoptslen = 0; 29911 } 29912 if (ipp->ipp_fields & IPPF_RTDSTOPTS) { 29913 kmem_free(ipp->ipp_rtdstopts, ipp->ipp_rtdstoptslen); 29914 ipp->ipp_rtdstopts = NULL; 29915 ipp->ipp_rtdstoptslen = 0; 29916 } 29917 if (ipp->ipp_fields & IPPF_DSTOPTS) { 29918 kmem_free(ipp->ipp_dstopts, ipp->ipp_dstoptslen); 29919 ipp->ipp_dstopts = NULL; 29920 ipp->ipp_dstoptslen = 0; 29921 } 29922 if (ipp->ipp_fields & IPPF_RTHDR) { 29923 kmem_free(ipp->ipp_rthdr, ipp->ipp_rthdrlen); 29924 ipp->ipp_rthdr = NULL; 29925 ipp->ipp_rthdrlen = 0; 29926 } 29927 ipp->ipp_fields &= ~(IPPF_HOPOPTS | IPPF_RTDSTOPTS | IPPF_DSTOPTS | 29928 IPPF_RTHDR); 29929 } 29930 29931 zoneid_t 29932 ip_get_zoneid_v4(ipaddr_t addr, mblk_t *mp, ip_stack_t *ipst, 29933 zoneid_t lookup_zoneid) 29934 { 29935 ire_t *ire; 29936 int ire_flags = MATCH_IRE_TYPE; 29937 zoneid_t zoneid = ALL_ZONES; 29938 29939 if (is_system_labeled() && !tsol_can_accept_raw(mp, B_FALSE)) 29940 return (ALL_ZONES); 29941 29942 if (lookup_zoneid != ALL_ZONES) 29943 ire_flags |= MATCH_IRE_ZONEONLY; 29944 ire = ire_ctable_lookup(addr, NULL, IRE_LOCAL | IRE_LOOPBACK, NULL, 29945 lookup_zoneid, NULL, ire_flags, ipst); 29946 if (ire != NULL) { 29947 zoneid = IP_REAL_ZONEID(ire->ire_zoneid, ipst); 29948 ire_refrele(ire); 29949 } 29950 return (zoneid); 29951 } 29952 29953 zoneid_t 29954 ip_get_zoneid_v6(in6_addr_t *addr, mblk_t *mp, const ill_t *ill, 29955 ip_stack_t *ipst, zoneid_t lookup_zoneid) 29956 { 29957 ire_t *ire; 29958 int ire_flags = MATCH_IRE_TYPE; 29959 zoneid_t zoneid = ALL_ZONES; 29960 ipif_t *ipif_arg = NULL; 29961 29962 if (is_system_labeled() && !tsol_can_accept_raw(mp, B_FALSE)) 29963 return (ALL_ZONES); 29964 29965 if (IN6_IS_ADDR_LINKLOCAL(addr)) { 29966 ire_flags |= MATCH_IRE_ILL; 29967 ipif_arg = ill->ill_ipif; 29968 } 29969 if (lookup_zoneid != ALL_ZONES) 29970 ire_flags |= MATCH_IRE_ZONEONLY; 29971 ire = ire_ctable_lookup_v6(addr, NULL, IRE_LOCAL | IRE_LOOPBACK, 29972 ipif_arg, lookup_zoneid, NULL, ire_flags, ipst); 29973 if (ire != NULL) { 29974 zoneid = IP_REAL_ZONEID(ire->ire_zoneid, ipst); 29975 ire_refrele(ire); 29976 } 29977 return (zoneid); 29978 } 29979 29980 /* 29981 * IP obserability hook support functions. 29982 */ 29983 29984 static void 29985 ipobs_init(ip_stack_t *ipst) 29986 { 29987 ipst->ips_ipobs_enabled = B_FALSE; 29988 list_create(&ipst->ips_ipobs_cb_list, sizeof (ipobs_cb_t), 29989 offsetof(ipobs_cb_t, ipobs_cbnext)); 29990 mutex_init(&ipst->ips_ipobs_cb_lock, NULL, MUTEX_DEFAULT, NULL); 29991 ipst->ips_ipobs_cb_nwalkers = 0; 29992 cv_init(&ipst->ips_ipobs_cb_cv, NULL, CV_DRIVER, NULL); 29993 } 29994 29995 static void 29996 ipobs_fini(ip_stack_t *ipst) 29997 { 29998 ipobs_cb_t *cb; 29999 30000 mutex_enter(&ipst->ips_ipobs_cb_lock); 30001 while (ipst->ips_ipobs_cb_nwalkers != 0) 30002 cv_wait(&ipst->ips_ipobs_cb_cv, &ipst->ips_ipobs_cb_lock); 30003 30004 while ((cb = list_head(&ipst->ips_ipobs_cb_list)) != NULL) { 30005 list_remove(&ipst->ips_ipobs_cb_list, cb); 30006 kmem_free(cb, sizeof (*cb)); 30007 } 30008 list_destroy(&ipst->ips_ipobs_cb_list); 30009 mutex_exit(&ipst->ips_ipobs_cb_lock); 30010 mutex_destroy(&ipst->ips_ipobs_cb_lock); 30011 cv_destroy(&ipst->ips_ipobs_cb_cv); 30012 } 30013 30014 void 30015 ipobs_hook(mblk_t *mp, int htype, zoneid_t zsrc, zoneid_t zdst, 30016 const ill_t *ill, int ipver, uint32_t hlen, ip_stack_t *ipst) 30017 { 30018 mblk_t *mp2; 30019 ipobs_cb_t *ipobs_cb; 30020 ipobs_hook_data_t *ihd; 30021 uint64_t grifindex = 0; 30022 30023 ASSERT(DB_TYPE(mp) == M_DATA); 30024 30025 if (IS_UNDER_IPMP(ill)) 30026 grifindex = ipmp_ill_get_ipmp_ifindex(ill); 30027 30028 mutex_enter(&ipst->ips_ipobs_cb_lock); 30029 ipst->ips_ipobs_cb_nwalkers++; 30030 mutex_exit(&ipst->ips_ipobs_cb_lock); 30031 for (ipobs_cb = list_head(&ipst->ips_ipobs_cb_list); ipobs_cb != NULL; 30032 ipobs_cb = list_next(&ipst->ips_ipobs_cb_list, ipobs_cb)) { 30033 mp2 = allocb(sizeof (ipobs_hook_data_t), BPRI_HI); 30034 if (mp2 != NULL) { 30035 ihd = (ipobs_hook_data_t *)mp2->b_rptr; 30036 if (((ihd->ihd_mp = dupmsg(mp)) == NULL) && 30037 ((ihd->ihd_mp = copymsg(mp)) == NULL)) { 30038 freemsg(mp2); 30039 continue; 30040 } 30041 ihd->ihd_mp->b_rptr += hlen; 30042 ihd->ihd_htype = htype; 30043 ihd->ihd_ipver = ipver; 30044 ihd->ihd_zsrc = zsrc; 30045 ihd->ihd_zdst = zdst; 30046 ihd->ihd_ifindex = ill->ill_phyint->phyint_ifindex; 30047 ihd->ihd_grifindex = grifindex; 30048 ihd->ihd_stack = ipst->ips_netstack; 30049 mp2->b_wptr += sizeof (*ihd); 30050 ipobs_cb->ipobs_cbfunc(mp2); 30051 } 30052 } 30053 mutex_enter(&ipst->ips_ipobs_cb_lock); 30054 ipst->ips_ipobs_cb_nwalkers--; 30055 if (ipst->ips_ipobs_cb_nwalkers == 0) 30056 cv_broadcast(&ipst->ips_ipobs_cb_cv); 30057 mutex_exit(&ipst->ips_ipobs_cb_lock); 30058 } 30059 30060 void 30061 ipobs_register_hook(netstack_t *ns, pfv_t func) 30062 { 30063 ipobs_cb_t *cb; 30064 ip_stack_t *ipst = ns->netstack_ip; 30065 30066 cb = kmem_alloc(sizeof (*cb), KM_SLEEP); 30067 30068 mutex_enter(&ipst->ips_ipobs_cb_lock); 30069 while (ipst->ips_ipobs_cb_nwalkers != 0) 30070 cv_wait(&ipst->ips_ipobs_cb_cv, &ipst->ips_ipobs_cb_lock); 30071 ASSERT(ipst->ips_ipobs_cb_nwalkers == 0); 30072 30073 cb->ipobs_cbfunc = func; 30074 list_insert_head(&ipst->ips_ipobs_cb_list, cb); 30075 ipst->ips_ipobs_enabled = B_TRUE; 30076 mutex_exit(&ipst->ips_ipobs_cb_lock); 30077 } 30078 30079 void 30080 ipobs_unregister_hook(netstack_t *ns, pfv_t func) 30081 { 30082 ipobs_cb_t *curcb; 30083 ip_stack_t *ipst = ns->netstack_ip; 30084 30085 mutex_enter(&ipst->ips_ipobs_cb_lock); 30086 while (ipst->ips_ipobs_cb_nwalkers != 0) 30087 cv_wait(&ipst->ips_ipobs_cb_cv, &ipst->ips_ipobs_cb_lock); 30088 30089 for (curcb = list_head(&ipst->ips_ipobs_cb_list); curcb != NULL; 30090 curcb = list_next(&ipst->ips_ipobs_cb_list, curcb)) { 30091 if (func == curcb->ipobs_cbfunc) { 30092 list_remove(&ipst->ips_ipobs_cb_list, curcb); 30093 kmem_free(curcb, sizeof (*curcb)); 30094 break; 30095 } 30096 } 30097 if (list_is_empty(&ipst->ips_ipobs_cb_list)) 30098 ipst->ips_ipobs_enabled = B_FALSE; 30099 mutex_exit(&ipst->ips_ipobs_cb_lock); 30100 } 30101