1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 1991, 2010, Oracle and/or its affiliates. All rights reserved. 24 * Copyright (c) 1990 Mentat Inc. 25 */ 26 27 #include <sys/types.h> 28 #include <sys/stream.h> 29 #include <sys/dlpi.h> 30 #include <sys/stropts.h> 31 #include <sys/sysmacros.h> 32 #include <sys/strsubr.h> 33 #include <sys/strlog.h> 34 #include <sys/strsun.h> 35 #include <sys/zone.h> 36 #define _SUN_TPI_VERSION 2 37 #include <sys/tihdr.h> 38 #include <sys/xti_inet.h> 39 #include <sys/ddi.h> 40 #include <sys/suntpi.h> 41 #include <sys/cmn_err.h> 42 #include <sys/debug.h> 43 #include <sys/kobj.h> 44 #include <sys/modctl.h> 45 #include <sys/atomic.h> 46 #include <sys/policy.h> 47 #include <sys/priv.h> 48 #include <sys/taskq.h> 49 50 #include <sys/systm.h> 51 #include <sys/param.h> 52 #include <sys/kmem.h> 53 #include <sys/sdt.h> 54 #include <sys/socket.h> 55 #include <sys/vtrace.h> 56 #include <sys/isa_defs.h> 57 #include <sys/mac.h> 58 #include <net/if.h> 59 #include <net/if_arp.h> 60 #include <net/route.h> 61 #include <sys/sockio.h> 62 #include <netinet/in.h> 63 #include <net/if_dl.h> 64 65 #include <inet/common.h> 66 #include <inet/mi.h> 67 #include <inet/mib2.h> 68 #include <inet/nd.h> 69 #include <inet/arp.h> 70 #include <inet/snmpcom.h> 71 #include <inet/optcom.h> 72 #include <inet/kstatcom.h> 73 74 #include <netinet/igmp_var.h> 75 #include <netinet/ip6.h> 76 #include <netinet/icmp6.h> 77 #include <netinet/sctp.h> 78 79 #include <inet/ip.h> 80 #include <inet/ip_impl.h> 81 #include <inet/ip6.h> 82 #include <inet/ip6_asp.h> 83 #include <inet/tcp.h> 84 #include <inet/tcp_impl.h> 85 #include <inet/ip_multi.h> 86 #include <inet/ip_if.h> 87 #include <inet/ip_ire.h> 88 #include <inet/ip_ftable.h> 89 #include <inet/ip_rts.h> 90 #include <inet/ip_ndp.h> 91 #include <inet/ip_listutils.h> 92 #include <netinet/igmp.h> 93 #include <netinet/ip_mroute.h> 94 #include <inet/ipp_common.h> 95 96 #include <net/pfkeyv2.h> 97 #include <inet/sadb.h> 98 #include <inet/ipsec_impl.h> 99 #include <inet/iptun/iptun_impl.h> 100 #include <inet/ipdrop.h> 101 #include <inet/ip_netinfo.h> 102 #include <inet/ilb_ip.h> 103 104 #include <sys/ethernet.h> 105 #include <net/if_types.h> 106 #include <sys/cpuvar.h> 107 108 #include <ipp/ipp.h> 109 #include <ipp/ipp_impl.h> 110 #include <ipp/ipgpc/ipgpc.h> 111 112 #include <sys/pattr.h> 113 #include <inet/ipclassifier.h> 114 #include <inet/sctp_ip.h> 115 #include <inet/sctp/sctp_impl.h> 116 #include <inet/udp_impl.h> 117 #include <inet/rawip_impl.h> 118 #include <inet/rts_impl.h> 119 120 #include <sys/tsol/label.h> 121 #include <sys/tsol/tnet.h> 122 123 #include <sys/squeue_impl.h> 124 #include <inet/ip_arp.h> 125 126 #include <sys/clock_impl.h> /* For LBOLT_FASTPATH{,64} */ 127 128 /* 129 * Values for squeue switch: 130 * IP_SQUEUE_ENTER_NODRAIN: SQ_NODRAIN 131 * IP_SQUEUE_ENTER: SQ_PROCESS 132 * IP_SQUEUE_FILL: SQ_FILL 133 */ 134 int ip_squeue_enter = IP_SQUEUE_ENTER; /* Setable in /etc/system */ 135 136 int ip_squeue_flag; 137 138 /* 139 * Setable in /etc/system 140 */ 141 int ip_poll_normal_ms = 100; 142 int ip_poll_normal_ticks = 0; 143 int ip_modclose_ackwait_ms = 3000; 144 145 /* 146 * It would be nice to have these present only in DEBUG systems, but the 147 * current design of the global symbol checking logic requires them to be 148 * unconditionally present. 149 */ 150 uint_t ip_thread_data; /* TSD key for debug support */ 151 krwlock_t ip_thread_rwlock; 152 list_t ip_thread_list; 153 154 /* 155 * Structure to represent a linked list of msgblks. Used by ip_snmp_ functions. 156 */ 157 158 struct listptr_s { 159 mblk_t *lp_head; /* pointer to the head of the list */ 160 mblk_t *lp_tail; /* pointer to the tail of the list */ 161 }; 162 163 typedef struct listptr_s listptr_t; 164 165 /* 166 * This is used by ip_snmp_get_mib2_ip_route_media and 167 * ip_snmp_get_mib2_ip6_route_media to carry the lists of return data. 168 */ 169 typedef struct iproutedata_s { 170 uint_t ird_idx; 171 uint_t ird_flags; /* see below */ 172 listptr_t ird_route; /* ipRouteEntryTable */ 173 listptr_t ird_netmedia; /* ipNetToMediaEntryTable */ 174 listptr_t ird_attrs; /* ipRouteAttributeTable */ 175 } iproutedata_t; 176 177 /* Include ire_testhidden and IRE_IF_CLONE routes */ 178 #define IRD_REPORT_ALL 0x01 179 180 /* 181 * Cluster specific hooks. These should be NULL when booted as a non-cluster 182 */ 183 184 /* 185 * Hook functions to enable cluster networking 186 * On non-clustered systems these vectors must always be NULL. 187 * 188 * Hook function to Check ip specified ip address is a shared ip address 189 * in the cluster 190 * 191 */ 192 int (*cl_inet_isclusterwide)(netstackid_t stack_id, uint8_t protocol, 193 sa_family_t addr_family, uint8_t *laddrp, void *args) = NULL; 194 195 /* 196 * Hook function to generate cluster wide ip fragment identifier 197 */ 198 uint32_t (*cl_inet_ipident)(netstackid_t stack_id, uint8_t protocol, 199 sa_family_t addr_family, uint8_t *laddrp, uint8_t *faddrp, 200 void *args) = NULL; 201 202 /* 203 * Hook function to generate cluster wide SPI. 204 */ 205 void (*cl_inet_getspi)(netstackid_t, uint8_t, uint8_t *, size_t, 206 void *) = NULL; 207 208 /* 209 * Hook function to verify if the SPI is already utlized. 210 */ 211 212 int (*cl_inet_checkspi)(netstackid_t, uint8_t, uint32_t, void *) = NULL; 213 214 /* 215 * Hook function to delete the SPI from the cluster wide repository. 216 */ 217 218 void (*cl_inet_deletespi)(netstackid_t, uint8_t, uint32_t, void *) = NULL; 219 220 /* 221 * Hook function to inform the cluster when packet received on an IDLE SA 222 */ 223 224 void (*cl_inet_idlesa)(netstackid_t, uint8_t, uint32_t, sa_family_t, 225 in6_addr_t, in6_addr_t, void *) = NULL; 226 227 /* 228 * Synchronization notes: 229 * 230 * IP is a fully D_MP STREAMS module/driver. Thus it does not depend on any 231 * MT level protection given by STREAMS. IP uses a combination of its own 232 * internal serialization mechanism and standard Solaris locking techniques. 233 * The internal serialization is per phyint. This is used to serialize 234 * plumbing operations, IPMP operations, most set ioctls, etc. 235 * 236 * Plumbing is a long sequence of operations involving message 237 * exchanges between IP, ARP and device drivers. Many set ioctls are typically 238 * involved in plumbing operations. A natural model is to serialize these 239 * ioctls one per ill. For example plumbing of hme0 and qfe0 can go on in 240 * parallel without any interference. But various set ioctls on hme0 are best 241 * serialized, along with IPMP operations and processing of DLPI control 242 * messages received from drivers on a per phyint basis. This serialization is 243 * provided by the ipsq_t and primitives operating on this. Details can 244 * be found in ip_if.c above the core primitives operating on ipsq_t. 245 * 246 * Lookups of an ipif or ill by a thread return a refheld ipif / ill. 247 * Simiarly lookup of an ire by a thread also returns a refheld ire. 248 * In addition ipif's and ill's referenced by the ire are also indirectly 249 * refheld. Thus no ipif or ill can vanish as long as an ipif is refheld 250 * directly or indirectly. For example an SIOCSLIFADDR ioctl that changes the 251 * address of an ipif has to go through the ipsq_t. This ensures that only 252 * one such exclusive operation proceeds at any time on the ipif. It then 253 * waits for all refcnts 254 * associated with this ipif to come down to zero. The address is changed 255 * only after the ipif has been quiesced. Then the ipif is brought up again. 256 * More details are described above the comment in ip_sioctl_flags. 257 * 258 * Packet processing is based mostly on IREs and are fully multi-threaded 259 * using standard Solaris MT techniques. 260 * 261 * There are explicit locks in IP to handle: 262 * - The ip_g_head list maintained by mi_open_link() and friends. 263 * 264 * - The reassembly data structures (one lock per hash bucket) 265 * 266 * - conn_lock is meant to protect conn_t fields. The fields actually 267 * protected by conn_lock are documented in the conn_t definition. 268 * 269 * - ire_lock to protect some of the fields of the ire, IRE tables 270 * (one lock per hash bucket). Refer to ip_ire.c for details. 271 * 272 * - ndp_g_lock and ncec_lock for protecting NCEs. 273 * 274 * - ill_lock protects fields of the ill and ipif. Details in ip.h 275 * 276 * - ill_g_lock: This is a global reader/writer lock. Protects the following 277 * * The AVL tree based global multi list of all ills. 278 * * The linked list of all ipifs of an ill 279 * * The <ipsq-xop> mapping 280 * * <ill-phyint> association 281 * Insertion/deletion of an ill in the system, insertion/deletion of an ipif 282 * into an ill, changing the <ipsq-xop> mapping of an ill, changing the 283 * <ill-phyint> assoc of an ill will all have to hold the ill_g_lock as 284 * writer for the actual duration of the insertion/deletion/change. 285 * 286 * - ill_lock: This is a per ill mutex. 287 * It protects some members of the ill_t struct; see ip.h for details. 288 * It also protects the <ill-phyint> assoc. 289 * It also protects the list of ipifs hanging off the ill. 290 * 291 * - ipsq_lock: This is a per ipsq_t mutex lock. 292 * This protects some members of the ipsq_t struct; see ip.h for details. 293 * It also protects the <ipsq-ipxop> mapping 294 * 295 * - ipx_lock: This is a per ipxop_t mutex lock. 296 * This protects some members of the ipxop_t struct; see ip.h for details. 297 * 298 * - phyint_lock: This is a per phyint mutex lock. Protects just the 299 * phyint_flags 300 * 301 * - ip_addr_avail_lock: This is used to ensure the uniqueness of IP addresses. 302 * This lock is held in ipif_up_done and the ipif is marked IPIF_UP and the 303 * uniqueness check also done atomically. 304 * 305 * - ill_g_usesrc_lock: This readers/writer lock protects the usesrc 306 * group list linked by ill_usesrc_grp_next. It also protects the 307 * ill_usesrc_ifindex field. It is taken as a writer when a member of the 308 * group is being added or deleted. This lock is taken as a reader when 309 * walking the list/group(eg: to get the number of members in a usesrc group). 310 * Note, it is only necessary to take this lock if the ill_usesrc_grp_next 311 * field is changing state i.e from NULL to non-NULL or vice-versa. For 312 * example, it is not necessary to take this lock in the initial portion 313 * of ip_sioctl_slifusesrc or at all in ip_sioctl_flags since these 314 * operations are executed exclusively and that ensures that the "usesrc 315 * group state" cannot change. The "usesrc group state" change can happen 316 * only in the latter part of ip_sioctl_slifusesrc and in ill_delete. 317 * 318 * Changing <ill-phyint>, <ipsq-xop> assocications: 319 * 320 * To change the <ill-phyint> association, the ill_g_lock must be held 321 * as writer, and the ill_locks of both the v4 and v6 instance of the ill 322 * must be held. 323 * 324 * To change the <ipsq-xop> association, the ill_g_lock must be held as 325 * writer, the ipsq_lock must be held, and one must be writer on the ipsq. 326 * This is only done when ills are added or removed from IPMP groups. 327 * 328 * To add or delete an ipif from the list of ipifs hanging off the ill, 329 * ill_g_lock (writer) and ill_lock must be held and the thread must be 330 * a writer on the associated ipsq. 331 * 332 * To add or delete an ill to the system, the ill_g_lock must be held as 333 * writer and the thread must be a writer on the associated ipsq. 334 * 335 * To add or delete an ilm to an ill, the ill_lock must be held and the thread 336 * must be a writer on the associated ipsq. 337 * 338 * Lock hierarchy 339 * 340 * Some lock hierarchy scenarios are listed below. 341 * 342 * ill_g_lock -> conn_lock -> ill_lock -> ipsq_lock -> ipx_lock 343 * ill_g_lock -> ill_lock(s) -> phyint_lock 344 * ill_g_lock -> ndp_g_lock -> ill_lock -> ncec_lock 345 * ill_g_lock -> ip_addr_avail_lock 346 * conn_lock -> irb_lock -> ill_lock -> ire_lock 347 * ill_g_lock -> ip_g_nd_lock 348 * ill_g_lock -> ips_ipmp_lock -> ill_lock -> nce_lock 349 * ill_g_lock -> ndp_g_lock -> ill_lock -> ncec_lock -> nce_lock 350 * arl_lock -> ill_lock 351 * ips_ire_dep_lock -> irb_lock 352 * 353 * When more than 1 ill lock is needed to be held, all ill lock addresses 354 * are sorted on address and locked starting from highest addressed lock 355 * downward. 356 * 357 * Multicast scenarios 358 * ips_ill_g_lock -> ill_mcast_lock 359 * conn_ilg_lock -> ips_ill_g_lock -> ill_lock 360 * ill_mcast_serializer -> ill_mcast_lock -> ips_ipmp_lock -> ill_lock 361 * ill_mcast_serializer -> ill_mcast_lock -> connf_lock -> conn_lock 362 * ill_mcast_serializer -> ill_mcast_lock -> conn_ilg_lock 363 * ill_mcast_serializer -> ill_mcast_lock -> ips_igmp_timer_lock 364 * 365 * IPsec scenarios 366 * 367 * ipsa_lock -> ill_g_lock -> ill_lock 368 * ill_g_usesrc_lock -> ill_g_lock -> ill_lock 369 * 370 * Trusted Solaris scenarios 371 * 372 * igsa_lock -> gcgrp_rwlock -> gcgrp_lock 373 * igsa_lock -> gcdb_lock 374 * gcgrp_rwlock -> ire_lock 375 * gcgrp_rwlock -> gcdb_lock 376 * 377 * squeue(sq_lock), flow related (ft_lock, fe_lock) locking 378 * 379 * cpu_lock --> ill_lock --> sqset_lock --> sq_lock 380 * sq_lock -> conn_lock -> QLOCK(q) 381 * ill_lock -> ft_lock -> fe_lock 382 * 383 * Routing/forwarding table locking notes: 384 * 385 * Lock acquisition order: Radix tree lock, irb_lock. 386 * Requirements: 387 * i. Walker must not hold any locks during the walker callback. 388 * ii Walker must not see a truncated tree during the walk because of any node 389 * deletion. 390 * iii Existing code assumes ire_bucket is valid if it is non-null and is used 391 * in many places in the code to walk the irb list. Thus even if all the 392 * ires in a bucket have been deleted, we still can't free the radix node 393 * until the ires have actually been inactive'd (freed). 394 * 395 * Tree traversal - Need to hold the global tree lock in read mode. 396 * Before dropping the global tree lock, need to either increment the ire_refcnt 397 * to ensure that the radix node can't be deleted. 398 * 399 * Tree add - Need to hold the global tree lock in write mode to add a 400 * radix node. To prevent the node from being deleted, increment the 401 * irb_refcnt, after the node is added to the tree. The ire itself is 402 * added later while holding the irb_lock, but not the tree lock. 403 * 404 * Tree delete - Need to hold the global tree lock and irb_lock in write mode. 405 * All associated ires must be inactive (i.e. freed), and irb_refcnt 406 * must be zero. 407 * 408 * Walker - Increment irb_refcnt before calling the walker callback. Hold the 409 * global tree lock (read mode) for traversal. 410 * 411 * IRE dependencies - In some cases we hold ips_ire_dep_lock across ire_refrele 412 * hence we will acquire irb_lock while holding ips_ire_dep_lock. 413 * 414 * IPsec notes : 415 * 416 * IP interacts with the IPsec code (AH/ESP) by storing IPsec attributes 417 * in the ip_xmit_attr_t ip_recv_attr_t. For outbound datagrams, the 418 * ip_xmit_attr_t has the 419 * information used by the IPsec code for applying the right level of 420 * protection. The information initialized by IP in the ip_xmit_attr_t 421 * is determined by the per-socket policy or global policy in the system. 422 * For inbound datagrams, the ip_recv_attr_t 423 * starts out with nothing in it. It gets filled 424 * with the right information if it goes through the AH/ESP code, which 425 * happens if the incoming packet is secure. The information initialized 426 * by AH/ESP, is later used by IP (during fanouts to ULP) to see whether 427 * the policy requirements needed by per-socket policy or global policy 428 * is met or not. 429 * 430 * For fully connected sockets i.e dst, src [addr, port] is known, 431 * conn_policy_cached is set indicating that policy has been cached. 432 * conn_in_enforce_policy may or may not be set depending on whether 433 * there is a global policy match or per-socket policy match. 434 * Policy inheriting happpens in ip_policy_set once the destination is known. 435 * Once the right policy is set on the conn_t, policy cannot change for 436 * this socket. This makes life simpler for TCP (UDP ?) where 437 * re-transmissions go out with the same policy. For symmetry, policy 438 * is cached for fully connected UDP sockets also. Thus if policy is cached, 439 * it also implies that policy is latched i.e policy cannot change 440 * on these sockets. As we have the right policy on the conn, we don't 441 * have to lookup global policy for every outbound and inbound datagram 442 * and thus serving as an optimization. Note that a global policy change 443 * does not affect fully connected sockets if they have policy. If fully 444 * connected sockets did not have any policy associated with it, global 445 * policy change may affect them. 446 * 447 * IP Flow control notes: 448 * --------------------- 449 * Non-TCP streams are flow controlled by IP. The way this is accomplished 450 * differs when ILL_CAPAB_DLD_DIRECT is enabled for that IP instance. When 451 * ILL_DIRECT_CAPABLE(ill) is TRUE, IP can do direct function calls into 452 * GLDv3. Otherwise packets are sent down to lower layers using STREAMS 453 * functions. 454 * 455 * Per Tx ring udp flow control: 456 * This is applicable only when ILL_CAPAB_DLD_DIRECT capability is set in 457 * the ill (i.e. ILL_DIRECT_CAPABLE(ill) is true). 458 * 459 * The underlying link can expose multiple Tx rings to the GLDv3 mac layer. 460 * To achieve best performance, outgoing traffic need to be fanned out among 461 * these Tx ring. mac_tx() is called (via str_mdata_fastpath_put()) to send 462 * traffic out of the NIC and it takes a fanout hint. UDP connections pass 463 * the address of connp as fanout hint to mac_tx(). Under flow controlled 464 * condition, mac_tx() returns a non-NULL cookie (ip_mac_tx_cookie_t). This 465 * cookie points to a specific Tx ring that is blocked. The cookie is used to 466 * hash into an idl_tx_list[] entry in idl_tx_list[] array. Each idl_tx_list_t 467 * point to drain_lists (idl_t's). These drain list will store the blocked UDP 468 * connp's. The drain list is not a single list but a configurable number of 469 * lists. 470 * 471 * The diagram below shows idl_tx_list_t's and their drain_lists. ip_stack_t 472 * has an array of idl_tx_list_t. The size of the array is TX_FANOUT_SIZE 473 * which is equal to 128. This array in turn contains a pointer to idl_t[], 474 * the ip drain list. The idl_t[] array size is MIN(max_ncpus, 8). The drain 475 * list will point to the list of connp's that are flow controlled. 476 * 477 * --------------- ------- ------- ------- 478 * |->|drain_list[0]|-->|connp|-->|connp|-->|connp|--> 479 * | --------------- ------- ------- ------- 480 * | --------------- ------- ------- ------- 481 * |->|drain_list[1]|-->|connp|-->|connp|-->|connp|--> 482 * ---------------- | --------------- ------- ------- ------- 483 * |idl_tx_list[0]|->| --------------- ------- ------- ------- 484 * ---------------- |->|drain_list[2]|-->|connp|-->|connp|-->|connp|--> 485 * | --------------- ------- ------- ------- 486 * . . . . . 487 * | --------------- ------- ------- ------- 488 * |->|drain_list[n]|-->|connp|-->|connp|-->|connp|--> 489 * --------------- ------- ------- ------- 490 * --------------- ------- ------- ------- 491 * |->|drain_list[0]|-->|connp|-->|connp|-->|connp|--> 492 * | --------------- ------- ------- ------- 493 * | --------------- ------- ------- ------- 494 * ---------------- |->|drain_list[1]|-->|connp|-->|connp|-->|connp|--> 495 * |idl_tx_list[1]|->| --------------- ------- ------- ------- 496 * ---------------- | . . . . 497 * | --------------- ------- ------- ------- 498 * |->|drain_list[n]|-->|connp|-->|connp|-->|connp|--> 499 * --------------- ------- ------- ------- 500 * ..... 501 * ---------------- 502 * |idl_tx_list[n]|-> ... 503 * ---------------- 504 * 505 * When mac_tx() returns a cookie, the cookie is hashed into an index into 506 * ips_idl_tx_list[], and conn_drain_insert() is called with the idl_tx_list 507 * to insert the conn onto. conn_drain_insert() asserts flow control for the 508 * sockets via su_txq_full() (non-STREAMS) or QFULL on conn_wq (STREAMS). 509 * Further, conn_blocked is set to indicate that the conn is blocked. 510 * 511 * GLDv3 calls ill_flow_enable() when flow control is relieved. The cookie 512 * passed in the call to ill_flow_enable() identifies the blocked Tx ring and 513 * is again hashed to locate the appropriate idl_tx_list, which is then 514 * drained via conn_walk_drain(). conn_walk_drain() goes through each conn in 515 * the drain list and calls conn_drain_remove() to clear flow control (via 516 * calling su_txq_full() or clearing QFULL), and remove the conn from the 517 * drain list. 518 * 519 * Note that the drain list is not a single list but a (configurable) array of 520 * lists (8 elements by default). Synchronization between drain insertion and 521 * flow control wakeup is handled by using idl_txl->txl_lock, and only 522 * conn_drain_insert() and conn_drain_remove() manipulate the drain list. 523 * 524 * Flow control via STREAMS is used when ILL_DIRECT_CAPABLE() returns FALSE. 525 * On the send side, if the packet cannot be sent down to the driver by IP 526 * (canput() fails), ip_xmit() drops the packet and returns EWOULDBLOCK to the 527 * caller, who may then invoke ixa_check_drain_insert() to insert the conn on 528 * the 0'th drain list. When ip_wsrv() runs on the ill_wq because flow 529 * control has been relieved, the blocked conns in the 0'th drain list are 530 * drained as in the non-STREAMS case. 531 * 532 * In both the STREAMS and non-STREAMS cases, the sockfs upcall to set QFULL 533 * is done when the conn is inserted into the drain list (conn_drain_insert()) 534 * and cleared when the conn is removed from the it (conn_drain_remove()). 535 * 536 * IPQOS notes: 537 * 538 * IPQoS Policies are applied to packets using IPPF (IP Policy framework) 539 * and IPQoS modules. IPPF includes hooks in IP at different control points 540 * (callout positions) which direct packets to IPQoS modules for policy 541 * processing. Policies, if present, are global. 542 * 543 * The callout positions are located in the following paths: 544 * o local_in (packets destined for this host) 545 * o local_out (packets orginating from this host ) 546 * o fwd_in (packets forwarded by this m/c - inbound) 547 * o fwd_out (packets forwarded by this m/c - outbound) 548 * Hooks at these callout points can be enabled/disabled using the ndd variable 549 * ip_policy_mask (a bit mask with the 4 LSB indicating the callout positions). 550 * By default all the callout positions are enabled. 551 * 552 * Outbound (local_out) 553 * Hooks are placed in ire_send_wire_v4 and ire_send_wire_v6. 554 * 555 * Inbound (local_in) 556 * Hooks are placed in ip_fanout_v4 and ip_fanout_v6. 557 * 558 * Forwarding (in and out) 559 * Hooks are placed in ire_recv_forward_v4/v6. 560 * 561 * IP Policy Framework processing (IPPF processing) 562 * Policy processing for a packet is initiated by ip_process, which ascertains 563 * that the classifier (ipgpc) is loaded and configured, failing which the 564 * packet resumes normal processing in IP. If the clasifier is present, the 565 * packet is acted upon by one or more IPQoS modules (action instances), per 566 * filters configured in ipgpc and resumes normal IP processing thereafter. 567 * An action instance can drop a packet in course of its processing. 568 * 569 * Zones notes: 570 * 571 * The partitioning rules for networking are as follows: 572 * 1) Packets coming from a zone must have a source address belonging to that 573 * zone. 574 * 2) Packets coming from a zone can only be sent on a physical interface on 575 * which the zone has an IP address. 576 * 3) Between two zones on the same machine, packet delivery is only allowed if 577 * there's a matching route for the destination and zone in the forwarding 578 * table. 579 * 4) The TCP and UDP port spaces are per-zone; that is, two processes in 580 * different zones can bind to the same port with the wildcard address 581 * (INADDR_ANY). 582 * 583 * The granularity of interface partitioning is at the logical interface level. 584 * Therefore, every zone has its own IP addresses, and incoming packets can be 585 * attributed to a zone unambiguously. A logical interface is placed into a zone 586 * using the SIOCSLIFZONE ioctl; this sets the ipif_zoneid field in the ipif_t 587 * structure. Rule (1) is implemented by modifying the source address selection 588 * algorithm so that the list of eligible addresses is filtered based on the 589 * sending process zone. 590 * 591 * The Internet Routing Entries (IREs) are either exclusive to a zone or shared 592 * across all zones, depending on their type. Here is the break-up: 593 * 594 * IRE type Shared/exclusive 595 * -------- ---------------- 596 * IRE_BROADCAST Exclusive 597 * IRE_DEFAULT (default routes) Shared (*) 598 * IRE_LOCAL Exclusive (x) 599 * IRE_LOOPBACK Exclusive 600 * IRE_PREFIX (net routes) Shared (*) 601 * IRE_IF_NORESOLVER (interface routes) Exclusive 602 * IRE_IF_RESOLVER (interface routes) Exclusive 603 * IRE_IF_CLONE (interface routes) Exclusive 604 * IRE_HOST (host routes) Shared (*) 605 * 606 * (*) A zone can only use a default or off-subnet route if the gateway is 607 * directly reachable from the zone, that is, if the gateway's address matches 608 * one of the zone's logical interfaces. 609 * 610 * (x) IRE_LOCAL are handled a bit differently. 611 * When ip_restrict_interzone_loopback is set (the default), 612 * ire_route_recursive restricts loopback using an IRE_LOCAL 613 * between zone to the case when L2 would have conceptually looped the packet 614 * back, i.e. the loopback which is required since neither Ethernet drivers 615 * nor Ethernet hardware loops them back. This is the case when the normal 616 * routes (ignoring IREs with different zoneids) would send out the packet on 617 * the same ill as the ill with which is IRE_LOCAL is associated. 618 * 619 * Multiple zones can share a common broadcast address; typically all zones 620 * share the 255.255.255.255 address. Incoming as well as locally originated 621 * broadcast packets must be dispatched to all the zones on the broadcast 622 * network. For directed broadcasts (e.g. 10.16.72.255) this is not trivial 623 * since some zones may not be on the 10.16.72/24 network. To handle this, each 624 * zone has its own set of IRE_BROADCAST entries; then, broadcast packets are 625 * sent to every zone that has an IRE_BROADCAST entry for the destination 626 * address on the input ill, see ip_input_broadcast(). 627 * 628 * Applications in different zones can join the same multicast group address. 629 * The same logic applies for multicast as for broadcast. ip_input_multicast 630 * dispatches packets to all zones that have members on the physical interface. 631 */ 632 633 /* 634 * Squeue Fanout flags: 635 * 0: No fanout. 636 * 1: Fanout across all squeues 637 */ 638 boolean_t ip_squeue_fanout = 0; 639 640 /* 641 * Maximum dups allowed per packet. 642 */ 643 uint_t ip_max_frag_dups = 10; 644 645 static int ip_open(queue_t *q, dev_t *devp, int flag, int sflag, 646 cred_t *credp, boolean_t isv6); 647 static mblk_t *ip_xmit_attach_llhdr(mblk_t *, nce_t *); 648 649 static boolean_t icmp_inbound_verify_v4(mblk_t *, icmph_t *, ip_recv_attr_t *); 650 static void icmp_inbound_too_big_v4(icmph_t *, ip_recv_attr_t *); 651 static void icmp_inbound_error_fanout_v4(mblk_t *, icmph_t *, 652 ip_recv_attr_t *); 653 static void icmp_options_update(ipha_t *); 654 static void icmp_param_problem(mblk_t *, uint8_t, ip_recv_attr_t *); 655 static void icmp_pkt(mblk_t *, void *, size_t, ip_recv_attr_t *); 656 static mblk_t *icmp_pkt_err_ok(mblk_t *, ip_recv_attr_t *); 657 static void icmp_redirect_v4(mblk_t *mp, ipha_t *, icmph_t *, 658 ip_recv_attr_t *); 659 static void icmp_send_redirect(mblk_t *, ipaddr_t, ip_recv_attr_t *); 660 static void icmp_send_reply_v4(mblk_t *, ipha_t *, icmph_t *, 661 ip_recv_attr_t *); 662 663 mblk_t *ip_dlpi_alloc(size_t, t_uscalar_t); 664 char *ip_dot_addr(ipaddr_t, char *); 665 mblk_t *ip_carve_mp(mblk_t **, ssize_t); 666 int ip_close(queue_t *, int); 667 static char *ip_dot_saddr(uchar_t *, char *); 668 static void ip_lrput(queue_t *, mblk_t *); 669 ipaddr_t ip_net_mask(ipaddr_t); 670 char *ip_nv_lookup(nv_t *, int); 671 void ip_rput(queue_t *, mblk_t *); 672 static void ip_rput_dlpi_writer(ipsq_t *dummy_sq, queue_t *q, mblk_t *mp, 673 void *dummy_arg); 674 int ip_snmp_get(queue_t *, mblk_t *, int); 675 static mblk_t *ip_snmp_get_mib2_ip(queue_t *, mblk_t *, 676 mib2_ipIfStatsEntry_t *, ip_stack_t *); 677 static mblk_t *ip_snmp_get_mib2_ip_traffic_stats(queue_t *, mblk_t *, 678 ip_stack_t *); 679 static mblk_t *ip_snmp_get_mib2_ip6(queue_t *, mblk_t *, ip_stack_t *); 680 static mblk_t *ip_snmp_get_mib2_icmp(queue_t *, mblk_t *, ip_stack_t *ipst); 681 static mblk_t *ip_snmp_get_mib2_icmp6(queue_t *, mblk_t *, ip_stack_t *ipst); 682 static mblk_t *ip_snmp_get_mib2_igmp(queue_t *, mblk_t *, ip_stack_t *ipst); 683 static mblk_t *ip_snmp_get_mib2_multi(queue_t *, mblk_t *, ip_stack_t *ipst); 684 static mblk_t *ip_snmp_get_mib2_ip_addr(queue_t *, mblk_t *, 685 ip_stack_t *ipst); 686 static mblk_t *ip_snmp_get_mib2_ip6_addr(queue_t *, mblk_t *, 687 ip_stack_t *ipst); 688 static mblk_t *ip_snmp_get_mib2_ip_group_src(queue_t *, mblk_t *, 689 ip_stack_t *ipst); 690 static mblk_t *ip_snmp_get_mib2_ip6_group_src(queue_t *, mblk_t *, 691 ip_stack_t *ipst); 692 static mblk_t *ip_snmp_get_mib2_ip_group_mem(queue_t *, mblk_t *, 693 ip_stack_t *ipst); 694 static mblk_t *ip_snmp_get_mib2_ip6_group_mem(queue_t *, mblk_t *, 695 ip_stack_t *ipst); 696 static mblk_t *ip_snmp_get_mib2_virt_multi(queue_t *, mblk_t *, 697 ip_stack_t *ipst); 698 static mblk_t *ip_snmp_get_mib2_multi_rtable(queue_t *, mblk_t *, 699 ip_stack_t *ipst); 700 static mblk_t *ip_snmp_get_mib2_ip_route_media(queue_t *, mblk_t *, int, 701 ip_stack_t *ipst); 702 static mblk_t *ip_snmp_get_mib2_ip6_route_media(queue_t *, mblk_t *, int, 703 ip_stack_t *ipst); 704 static void ip_snmp_get2_v4(ire_t *, iproutedata_t *); 705 static void ip_snmp_get2_v6_route(ire_t *, iproutedata_t *); 706 static int ip_snmp_get2_v4_media(ncec_t *, iproutedata_t *); 707 static int ip_snmp_get2_v6_media(ncec_t *, iproutedata_t *); 708 int ip_snmp_set(queue_t *, int, int, uchar_t *, int); 709 710 static mblk_t *ip_fragment_copyhdr(uchar_t *, int, int, ip_stack_t *, 711 mblk_t *); 712 713 static void conn_drain_init(ip_stack_t *); 714 static void conn_drain_fini(ip_stack_t *); 715 static void conn_drain(conn_t *connp, boolean_t closing); 716 717 static void conn_walk_drain(ip_stack_t *, idl_tx_list_t *); 718 static void conn_walk_sctp(pfv_t, void *, zoneid_t, netstack_t *); 719 720 static void *ip_stack_init(netstackid_t stackid, netstack_t *ns); 721 static void ip_stack_shutdown(netstackid_t stackid, void *arg); 722 static void ip_stack_fini(netstackid_t stackid, void *arg); 723 724 static int ip_multirt_apply_membership(int (*fn)(conn_t *, boolean_t, 725 const in6_addr_t *, ipaddr_t, uint_t, mcast_record_t, const in6_addr_t *), 726 ire_t *, conn_t *, boolean_t, const in6_addr_t *, mcast_record_t, 727 const in6_addr_t *); 728 729 static int ip_squeue_switch(int); 730 731 static void *ip_kstat_init(netstackid_t, ip_stack_t *); 732 static void ip_kstat_fini(netstackid_t, kstat_t *); 733 static int ip_kstat_update(kstat_t *kp, int rw); 734 static void *icmp_kstat_init(netstackid_t); 735 static void icmp_kstat_fini(netstackid_t, kstat_t *); 736 static int icmp_kstat_update(kstat_t *kp, int rw); 737 static void *ip_kstat2_init(netstackid_t, ip_stat_t *); 738 static void ip_kstat2_fini(netstackid_t, kstat_t *); 739 740 static void ipobs_init(ip_stack_t *); 741 static void ipobs_fini(ip_stack_t *); 742 743 ipaddr_t ip_g_all_ones = IP_HOST_MASK; 744 745 static long ip_rput_pullups; 746 int dohwcksum = 1; /* use h/w cksum if supported by the hardware */ 747 748 vmem_t *ip_minor_arena_sa; /* for minor nos. from INET_MIN_DEV+2 thru 2^^18-1 */ 749 vmem_t *ip_minor_arena_la; /* for minor nos. from 2^^18 thru 2^^32-1 */ 750 751 int ip_debug; 752 753 /* 754 * Multirouting/CGTP stuff 755 */ 756 int ip_cgtp_filter_rev = CGTP_FILTER_REV; /* CGTP hooks version */ 757 758 /* 759 * IP tunables related declarations. Definitions are in ip_tunables.c 760 */ 761 extern mod_prop_info_t ip_propinfo_tbl[]; 762 extern int ip_propinfo_count; 763 764 /* 765 * Table of IP ioctls encoding the various properties of the ioctl and 766 * indexed based on the last byte of the ioctl command. Occasionally there 767 * is a clash, and there is more than 1 ioctl with the same last byte. 768 * In such a case 1 ioctl is encoded in the ndx table and the remaining 769 * ioctls are encoded in the misc table. An entry in the ndx table is 770 * retrieved by indexing on the last byte of the ioctl command and comparing 771 * the ioctl command with the value in the ndx table. In the event of a 772 * mismatch the misc table is then searched sequentially for the desired 773 * ioctl command. 774 * 775 * Entry: <command> <copyin_size> <flags> <cmd_type> <function> <restart_func> 776 */ 777 ip_ioctl_cmd_t ip_ndx_ioctl_table[] = { 778 /* 000 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 779 /* 001 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 780 /* 002 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 781 /* 003 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 782 /* 004 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 783 /* 005 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 784 /* 006 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 785 /* 007 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 786 /* 008 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 787 /* 009 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 788 789 /* 010 */ { SIOCADDRT, sizeof (struct rtentry), IPI_PRIV, 790 MISC_CMD, ip_siocaddrt, NULL }, 791 /* 011 */ { SIOCDELRT, sizeof (struct rtentry), IPI_PRIV, 792 MISC_CMD, ip_siocdelrt, NULL }, 793 794 /* 012 */ { SIOCSIFADDR, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 795 IF_CMD, ip_sioctl_addr, ip_sioctl_addr_restart }, 796 /* 013 */ { SIOCGIFADDR, sizeof (struct ifreq), IPI_GET_CMD, 797 IF_CMD, ip_sioctl_get_addr, NULL }, 798 799 /* 014 */ { SIOCSIFDSTADDR, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 800 IF_CMD, ip_sioctl_dstaddr, ip_sioctl_dstaddr_restart }, 801 /* 015 */ { SIOCGIFDSTADDR, sizeof (struct ifreq), 802 IPI_GET_CMD, IF_CMD, ip_sioctl_get_dstaddr, NULL }, 803 804 /* 016 */ { SIOCSIFFLAGS, sizeof (struct ifreq), 805 IPI_PRIV | IPI_WR, 806 IF_CMD, ip_sioctl_flags, ip_sioctl_flags_restart }, 807 /* 017 */ { SIOCGIFFLAGS, sizeof (struct ifreq), 808 IPI_MODOK | IPI_GET_CMD, 809 IF_CMD, ip_sioctl_get_flags, NULL }, 810 811 /* 018 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 812 /* 019 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 813 814 /* copyin size cannot be coded for SIOCGIFCONF */ 815 /* 020 */ { O_SIOCGIFCONF, 0, IPI_GET_CMD, 816 MISC_CMD, ip_sioctl_get_ifconf, NULL }, 817 818 /* 021 */ { SIOCSIFMTU, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 819 IF_CMD, ip_sioctl_mtu, NULL }, 820 /* 022 */ { SIOCGIFMTU, sizeof (struct ifreq), IPI_GET_CMD, 821 IF_CMD, ip_sioctl_get_mtu, NULL }, 822 /* 023 */ { SIOCGIFBRDADDR, sizeof (struct ifreq), 823 IPI_GET_CMD, IF_CMD, ip_sioctl_get_brdaddr, NULL }, 824 /* 024 */ { SIOCSIFBRDADDR, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 825 IF_CMD, ip_sioctl_brdaddr, NULL }, 826 /* 025 */ { SIOCGIFNETMASK, sizeof (struct ifreq), 827 IPI_GET_CMD, IF_CMD, ip_sioctl_get_netmask, NULL }, 828 /* 026 */ { SIOCSIFNETMASK, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 829 IF_CMD, ip_sioctl_netmask, ip_sioctl_netmask_restart }, 830 /* 027 */ { SIOCGIFMETRIC, sizeof (struct ifreq), 831 IPI_GET_CMD, IF_CMD, ip_sioctl_get_metric, NULL }, 832 /* 028 */ { SIOCSIFMETRIC, sizeof (struct ifreq), IPI_PRIV, 833 IF_CMD, ip_sioctl_metric, NULL }, 834 /* 029 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 835 836 /* See 166-168 below for extended SIOC*XARP ioctls */ 837 /* 030 */ { SIOCSARP, sizeof (struct arpreq), IPI_PRIV | IPI_WR, 838 ARP_CMD, ip_sioctl_arp, NULL }, 839 /* 031 */ { SIOCGARP, sizeof (struct arpreq), IPI_GET_CMD, 840 ARP_CMD, ip_sioctl_arp, NULL }, 841 /* 032 */ { SIOCDARP, sizeof (struct arpreq), IPI_PRIV | IPI_WR, 842 ARP_CMD, ip_sioctl_arp, NULL }, 843 844 /* 033 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 845 /* 034 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 846 /* 035 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 847 /* 036 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 848 /* 037 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 849 /* 038 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 850 /* 039 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 851 /* 040 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 852 /* 041 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 853 /* 042 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 854 /* 043 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 855 /* 044 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 856 /* 045 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 857 /* 046 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 858 /* 047 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 859 /* 048 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 860 /* 049 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 861 /* 050 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 862 /* 051 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 863 /* 052 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 864 /* 053 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 865 866 /* 054 */ { IF_UNITSEL, sizeof (int), IPI_PRIV | IPI_WR | IPI_MODOK, 867 MISC_CMD, if_unitsel, if_unitsel_restart }, 868 869 /* 055 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 870 /* 056 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 871 /* 057 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 872 /* 058 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 873 /* 059 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 874 /* 060 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 875 /* 061 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 876 /* 062 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 877 /* 063 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 878 /* 064 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 879 /* 065 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 880 /* 066 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 881 /* 067 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 882 /* 068 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 883 /* 069 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 884 /* 070 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 885 /* 071 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 886 /* 072 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 887 888 /* 073 */ { SIOCSIFNAME, sizeof (struct ifreq), 889 IPI_PRIV | IPI_WR | IPI_MODOK, 890 IF_CMD, ip_sioctl_sifname, NULL }, 891 892 /* 074 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 893 /* 075 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 894 /* 076 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 895 /* 077 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 896 /* 078 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 897 /* 079 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 898 /* 080 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 899 /* 081 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 900 /* 082 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 901 /* 083 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 902 /* 084 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 903 /* 085 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 904 /* 086 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 905 906 /* 087 */ { SIOCGIFNUM, sizeof (int), IPI_GET_CMD, 907 MISC_CMD, ip_sioctl_get_ifnum, NULL }, 908 /* 088 */ { SIOCGIFMUXID, sizeof (struct ifreq), IPI_GET_CMD, 909 IF_CMD, ip_sioctl_get_muxid, NULL }, 910 /* 089 */ { SIOCSIFMUXID, sizeof (struct ifreq), 911 IPI_PRIV | IPI_WR, IF_CMD, ip_sioctl_muxid, NULL }, 912 913 /* Both if and lif variants share same func */ 914 /* 090 */ { SIOCGIFINDEX, sizeof (struct ifreq), IPI_GET_CMD, 915 IF_CMD, ip_sioctl_get_lifindex, NULL }, 916 /* Both if and lif variants share same func */ 917 /* 091 */ { SIOCSIFINDEX, sizeof (struct ifreq), 918 IPI_PRIV | IPI_WR, IF_CMD, ip_sioctl_slifindex, NULL }, 919 920 /* copyin size cannot be coded for SIOCGIFCONF */ 921 /* 092 */ { SIOCGIFCONF, 0, IPI_GET_CMD, 922 MISC_CMD, ip_sioctl_get_ifconf, NULL }, 923 /* 093 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 924 /* 094 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 925 /* 095 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 926 /* 096 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 927 /* 097 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 928 /* 098 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 929 /* 099 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 930 /* 100 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 931 /* 101 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 932 /* 102 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 933 /* 103 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 934 /* 104 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 935 /* 105 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 936 /* 106 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 937 /* 107 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 938 /* 108 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 939 /* 109 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 940 941 /* 110 */ { SIOCLIFREMOVEIF, sizeof (struct lifreq), 942 IPI_PRIV | IPI_WR, LIF_CMD, ip_sioctl_removeif, 943 ip_sioctl_removeif_restart }, 944 /* 111 */ { SIOCLIFADDIF, sizeof (struct lifreq), 945 IPI_GET_CMD | IPI_PRIV | IPI_WR, 946 LIF_CMD, ip_sioctl_addif, NULL }, 947 #define SIOCLIFADDR_NDX 112 948 /* 112 */ { SIOCSLIFADDR, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 949 LIF_CMD, ip_sioctl_addr, ip_sioctl_addr_restart }, 950 /* 113 */ { SIOCGLIFADDR, sizeof (struct lifreq), 951 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_addr, NULL }, 952 /* 114 */ { SIOCSLIFDSTADDR, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 953 LIF_CMD, ip_sioctl_dstaddr, ip_sioctl_dstaddr_restart }, 954 /* 115 */ { SIOCGLIFDSTADDR, sizeof (struct lifreq), 955 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_dstaddr, NULL }, 956 /* 116 */ { SIOCSLIFFLAGS, sizeof (struct lifreq), 957 IPI_PRIV | IPI_WR, 958 LIF_CMD, ip_sioctl_flags, ip_sioctl_flags_restart }, 959 /* 117 */ { SIOCGLIFFLAGS, sizeof (struct lifreq), 960 IPI_GET_CMD | IPI_MODOK, 961 LIF_CMD, ip_sioctl_get_flags, NULL }, 962 963 /* 118 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 964 /* 119 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 965 966 /* 120 */ { O_SIOCGLIFCONF, 0, IPI_GET_CMD, MISC_CMD, 967 ip_sioctl_get_lifconf, NULL }, 968 /* 121 */ { SIOCSLIFMTU, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 969 LIF_CMD, ip_sioctl_mtu, NULL }, 970 /* 122 */ { SIOCGLIFMTU, sizeof (struct lifreq), IPI_GET_CMD, 971 LIF_CMD, ip_sioctl_get_mtu, NULL }, 972 /* 123 */ { SIOCGLIFBRDADDR, sizeof (struct lifreq), 973 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_brdaddr, NULL }, 974 /* 124 */ { SIOCSLIFBRDADDR, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 975 LIF_CMD, ip_sioctl_brdaddr, NULL }, 976 /* 125 */ { SIOCGLIFNETMASK, sizeof (struct lifreq), 977 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_netmask, NULL }, 978 /* 126 */ { SIOCSLIFNETMASK, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 979 LIF_CMD, ip_sioctl_netmask, ip_sioctl_netmask_restart }, 980 /* 127 */ { SIOCGLIFMETRIC, sizeof (struct lifreq), 981 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_metric, NULL }, 982 /* 128 */ { SIOCSLIFMETRIC, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 983 LIF_CMD, ip_sioctl_metric, NULL }, 984 /* 129 */ { SIOCSLIFNAME, sizeof (struct lifreq), 985 IPI_PRIV | IPI_WR | IPI_MODOK, 986 LIF_CMD, ip_sioctl_slifname, 987 ip_sioctl_slifname_restart }, 988 989 /* 130 */ { SIOCGLIFNUM, sizeof (struct lifnum), IPI_GET_CMD, 990 MISC_CMD, ip_sioctl_get_lifnum, NULL }, 991 /* 131 */ { SIOCGLIFMUXID, sizeof (struct lifreq), 992 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_muxid, NULL }, 993 /* 132 */ { SIOCSLIFMUXID, sizeof (struct lifreq), 994 IPI_PRIV | IPI_WR, LIF_CMD, ip_sioctl_muxid, NULL }, 995 /* 133 */ { SIOCGLIFINDEX, sizeof (struct lifreq), 996 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_lifindex, 0 }, 997 /* 134 */ { SIOCSLIFINDEX, sizeof (struct lifreq), 998 IPI_PRIV | IPI_WR, LIF_CMD, ip_sioctl_slifindex, 0 }, 999 /* 135 */ { SIOCSLIFTOKEN, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1000 LIF_CMD, ip_sioctl_token, NULL }, 1001 /* 136 */ { SIOCGLIFTOKEN, sizeof (struct lifreq), 1002 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_token, NULL }, 1003 /* 137 */ { SIOCSLIFSUBNET, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1004 LIF_CMD, ip_sioctl_subnet, ip_sioctl_subnet_restart }, 1005 /* 138 */ { SIOCGLIFSUBNET, sizeof (struct lifreq), 1006 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_subnet, NULL }, 1007 /* 139 */ { SIOCSLIFLNKINFO, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1008 LIF_CMD, ip_sioctl_lnkinfo, NULL }, 1009 1010 /* 140 */ { SIOCGLIFLNKINFO, sizeof (struct lifreq), 1011 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_lnkinfo, NULL }, 1012 /* 141 */ { SIOCLIFDELND, sizeof (struct lifreq), IPI_PRIV, 1013 LIF_CMD, ip_siocdelndp_v6, NULL }, 1014 /* 142 */ { SIOCLIFGETND, sizeof (struct lifreq), IPI_GET_CMD, 1015 LIF_CMD, ip_siocqueryndp_v6, NULL }, 1016 /* 143 */ { SIOCLIFSETND, sizeof (struct lifreq), IPI_PRIV, 1017 LIF_CMD, ip_siocsetndp_v6, NULL }, 1018 /* 144 */ { SIOCTMYADDR, sizeof (struct sioc_addrreq), IPI_GET_CMD, 1019 MISC_CMD, ip_sioctl_tmyaddr, NULL }, 1020 /* 145 */ { SIOCTONLINK, sizeof (struct sioc_addrreq), IPI_GET_CMD, 1021 MISC_CMD, ip_sioctl_tonlink, NULL }, 1022 /* 146 */ { SIOCTMYSITE, sizeof (struct sioc_addrreq), 0, 1023 MISC_CMD, ip_sioctl_tmysite, NULL }, 1024 /* 147 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1025 /* 148 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1026 /* IPSECioctls handled in ip_sioctl_copyin_setup itself */ 1027 /* 149 */ { SIOCFIPSECONFIG, 0, IPI_PRIV, MISC_CMD, NULL, NULL }, 1028 /* 150 */ { SIOCSIPSECONFIG, 0, IPI_PRIV, MISC_CMD, NULL, NULL }, 1029 /* 151 */ { SIOCDIPSECONFIG, 0, IPI_PRIV, MISC_CMD, NULL, NULL }, 1030 /* 152 */ { SIOCLIPSECONFIG, 0, IPI_PRIV, MISC_CMD, NULL, NULL }, 1031 1032 /* 153 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1033 1034 /* 154 */ { SIOCGLIFBINDING, sizeof (struct lifreq), IPI_GET_CMD, 1035 LIF_CMD, ip_sioctl_get_binding, NULL }, 1036 /* 155 */ { SIOCSLIFGROUPNAME, sizeof (struct lifreq), 1037 IPI_PRIV | IPI_WR, 1038 LIF_CMD, ip_sioctl_groupname, ip_sioctl_groupname }, 1039 /* 156 */ { SIOCGLIFGROUPNAME, sizeof (struct lifreq), 1040 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_groupname, NULL }, 1041 /* 157 */ { SIOCGLIFGROUPINFO, sizeof (lifgroupinfo_t), 1042 IPI_GET_CMD, MISC_CMD, ip_sioctl_groupinfo, NULL }, 1043 1044 /* Leave 158-160 unused; used to be SIOC*IFARP ioctls */ 1045 /* 158 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1046 /* 159 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1047 /* 160 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1048 1049 /* 161 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1050 1051 /* These are handled in ip_sioctl_copyin_setup itself */ 1052 /* 162 */ { SIOCGIP6ADDRPOLICY, 0, IPI_NULL_BCONT, 1053 MISC_CMD, NULL, NULL }, 1054 /* 163 */ { SIOCSIP6ADDRPOLICY, 0, IPI_PRIV | IPI_NULL_BCONT, 1055 MISC_CMD, NULL, NULL }, 1056 /* 164 */ { SIOCGDSTINFO, 0, IPI_GET_CMD, MISC_CMD, NULL, NULL }, 1057 1058 /* 165 */ { SIOCGLIFCONF, 0, IPI_GET_CMD, MISC_CMD, 1059 ip_sioctl_get_lifconf, NULL }, 1060 1061 /* 166 */ { SIOCSXARP, sizeof (struct xarpreq), IPI_PRIV | IPI_WR, 1062 XARP_CMD, ip_sioctl_arp, NULL }, 1063 /* 167 */ { SIOCGXARP, sizeof (struct xarpreq), IPI_GET_CMD, 1064 XARP_CMD, ip_sioctl_arp, NULL }, 1065 /* 168 */ { SIOCDXARP, sizeof (struct xarpreq), IPI_PRIV | IPI_WR, 1066 XARP_CMD, ip_sioctl_arp, NULL }, 1067 1068 /* SIOCPOPSOCKFS is not handled by IP */ 1069 /* 169 */ { IPI_DONTCARE /* SIOCPOPSOCKFS */, 0, 0, 0, NULL, NULL }, 1070 1071 /* 170 */ { SIOCGLIFZONE, sizeof (struct lifreq), 1072 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_lifzone, NULL }, 1073 /* 171 */ { SIOCSLIFZONE, sizeof (struct lifreq), 1074 IPI_PRIV | IPI_WR, LIF_CMD, ip_sioctl_slifzone, 1075 ip_sioctl_slifzone_restart }, 1076 /* 172-174 are SCTP ioctls and not handled by IP */ 1077 /* 172 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1078 /* 173 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1079 /* 174 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1080 /* 175 */ { SIOCGLIFUSESRC, sizeof (struct lifreq), 1081 IPI_GET_CMD, LIF_CMD, 1082 ip_sioctl_get_lifusesrc, 0 }, 1083 /* 176 */ { SIOCSLIFUSESRC, sizeof (struct lifreq), 1084 IPI_PRIV | IPI_WR, 1085 LIF_CMD, ip_sioctl_slifusesrc, 1086 NULL }, 1087 /* 177 */ { SIOCGLIFSRCOF, 0, IPI_GET_CMD, MISC_CMD, 1088 ip_sioctl_get_lifsrcof, NULL }, 1089 /* 178 */ { SIOCGMSFILTER, sizeof (struct group_filter), IPI_GET_CMD, 1090 MSFILT_CMD, ip_sioctl_msfilter, NULL }, 1091 /* 179 */ { SIOCSMSFILTER, sizeof (struct group_filter), 0, 1092 MSFILT_CMD, ip_sioctl_msfilter, NULL }, 1093 /* 180 */ { SIOCGIPMSFILTER, sizeof (struct ip_msfilter), IPI_GET_CMD, 1094 MSFILT_CMD, ip_sioctl_msfilter, NULL }, 1095 /* 181 */ { SIOCSIPMSFILTER, sizeof (struct ip_msfilter), 0, 1096 MSFILT_CMD, ip_sioctl_msfilter, NULL }, 1097 /* 182 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1098 /* SIOCSENABLESDP is handled by SDP */ 1099 /* 183 */ { IPI_DONTCARE /* SIOCSENABLESDP */, 0, 0, 0, NULL, NULL }, 1100 /* 184 */ { IPI_DONTCARE /* SIOCSQPTR */, 0, 0, 0, NULL, NULL }, 1101 /* 185 */ { IPI_DONTCARE /* SIOCGIFHWADDR */, 0, 0, 0, NULL, NULL }, 1102 /* 186 */ { IPI_DONTCARE /* SIOCGSTAMP */, 0, 0, 0, NULL, NULL }, 1103 /* 187 */ { SIOCILB, 0, IPI_PRIV | IPI_GET_CMD, MISC_CMD, 1104 ip_sioctl_ilb_cmd, NULL }, 1105 /* 188 */ { SIOCGETPROP, 0, IPI_GET_CMD, 0, NULL, NULL }, 1106 /* 189 */ { SIOCSETPROP, 0, IPI_PRIV | IPI_WR, 0, NULL, NULL}, 1107 /* 190 */ { SIOCGLIFDADSTATE, sizeof (struct lifreq), 1108 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_dadstate, NULL }, 1109 /* 191 */ { SIOCSLIFPREFIX, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1110 LIF_CMD, ip_sioctl_prefix, ip_sioctl_prefix_restart } 1111 }; 1112 1113 int ip_ndx_ioctl_count = sizeof (ip_ndx_ioctl_table) / sizeof (ip_ioctl_cmd_t); 1114 1115 ip_ioctl_cmd_t ip_misc_ioctl_table[] = { 1116 { I_LINK, 0, IPI_PRIV | IPI_WR, 0, NULL, NULL }, 1117 { I_UNLINK, 0, IPI_PRIV | IPI_WR, 0, NULL, NULL }, 1118 { I_PLINK, 0, IPI_PRIV | IPI_WR, 0, NULL, NULL }, 1119 { I_PUNLINK, 0, IPI_PRIV | IPI_WR, 0, NULL, NULL }, 1120 { ND_GET, 0, 0, 0, NULL, NULL }, 1121 { ND_SET, 0, IPI_PRIV | IPI_WR, 0, NULL, NULL }, 1122 { IP_IOCTL, 0, 0, 0, NULL, NULL }, 1123 { SIOCGETVIFCNT, sizeof (struct sioc_vif_req), IPI_GET_CMD, 1124 MISC_CMD, mrt_ioctl}, 1125 { SIOCGETSGCNT, sizeof (struct sioc_sg_req), IPI_GET_CMD, 1126 MISC_CMD, mrt_ioctl}, 1127 { SIOCGETLSGCNT, sizeof (struct sioc_lsg_req), IPI_GET_CMD, 1128 MISC_CMD, mrt_ioctl} 1129 }; 1130 1131 int ip_misc_ioctl_count = 1132 sizeof (ip_misc_ioctl_table) / sizeof (ip_ioctl_cmd_t); 1133 1134 int conn_drain_nthreads; /* Number of drainers reqd. */ 1135 /* Settable in /etc/system */ 1136 /* Defined in ip_ire.c */ 1137 extern uint32_t ip_ire_max_bucket_cnt, ip6_ire_max_bucket_cnt; 1138 extern uint32_t ip_ire_min_bucket_cnt, ip6_ire_min_bucket_cnt; 1139 extern uint32_t ip_ire_mem_ratio, ip_ire_cpu_ratio; 1140 1141 static nv_t ire_nv_arr[] = { 1142 { IRE_BROADCAST, "BROADCAST" }, 1143 { IRE_LOCAL, "LOCAL" }, 1144 { IRE_LOOPBACK, "LOOPBACK" }, 1145 { IRE_DEFAULT, "DEFAULT" }, 1146 { IRE_PREFIX, "PREFIX" }, 1147 { IRE_IF_NORESOLVER, "IF_NORESOL" }, 1148 { IRE_IF_RESOLVER, "IF_RESOLV" }, 1149 { IRE_IF_CLONE, "IF_CLONE" }, 1150 { IRE_HOST, "HOST" }, 1151 { IRE_MULTICAST, "MULTICAST" }, 1152 { IRE_NOROUTE, "NOROUTE" }, 1153 { 0 } 1154 }; 1155 1156 nv_t *ire_nv_tbl = ire_nv_arr; 1157 1158 /* Simple ICMP IP Header Template */ 1159 static ipha_t icmp_ipha = { 1160 IP_SIMPLE_HDR_VERSION, 0, 0, 0, 0, 0, IPPROTO_ICMP 1161 }; 1162 1163 struct module_info ip_mod_info = { 1164 IP_MOD_ID, IP_MOD_NAME, IP_MOD_MINPSZ, IP_MOD_MAXPSZ, IP_MOD_HIWAT, 1165 IP_MOD_LOWAT 1166 }; 1167 1168 /* 1169 * Duplicate static symbols within a module confuses mdb; so we avoid the 1170 * problem by making the symbols here distinct from those in udp.c. 1171 */ 1172 1173 /* 1174 * Entry points for IP as a device and as a module. 1175 * We have separate open functions for the /dev/ip and /dev/ip6 devices. 1176 */ 1177 static struct qinit iprinitv4 = { 1178 (pfi_t)ip_rput, NULL, ip_openv4, ip_close, NULL, 1179 &ip_mod_info 1180 }; 1181 1182 struct qinit iprinitv6 = { 1183 (pfi_t)ip_rput_v6, NULL, ip_openv6, ip_close, NULL, 1184 &ip_mod_info 1185 }; 1186 1187 static struct qinit ipwinit = { 1188 (pfi_t)ip_wput_nondata, (pfi_t)ip_wsrv, NULL, NULL, NULL, 1189 &ip_mod_info 1190 }; 1191 1192 static struct qinit iplrinit = { 1193 (pfi_t)ip_lrput, NULL, ip_openv4, ip_close, NULL, 1194 &ip_mod_info 1195 }; 1196 1197 static struct qinit iplwinit = { 1198 (pfi_t)ip_lwput, NULL, NULL, NULL, NULL, 1199 &ip_mod_info 1200 }; 1201 1202 /* For AF_INET aka /dev/ip */ 1203 struct streamtab ipinfov4 = { 1204 &iprinitv4, &ipwinit, &iplrinit, &iplwinit 1205 }; 1206 1207 /* For AF_INET6 aka /dev/ip6 */ 1208 struct streamtab ipinfov6 = { 1209 &iprinitv6, &ipwinit, &iplrinit, &iplwinit 1210 }; 1211 1212 #ifdef DEBUG 1213 boolean_t skip_sctp_cksum = B_FALSE; 1214 #endif 1215 1216 /* 1217 * Generate an ICMP fragmentation needed message. 1218 * When called from ip_output side a minimal ip_recv_attr_t needs to be 1219 * constructed by the caller. 1220 */ 1221 void 1222 icmp_frag_needed(mblk_t *mp, int mtu, ip_recv_attr_t *ira) 1223 { 1224 icmph_t icmph; 1225 ip_stack_t *ipst = ira->ira_ill->ill_ipst; 1226 1227 mp = icmp_pkt_err_ok(mp, ira); 1228 if (mp == NULL) 1229 return; 1230 1231 bzero(&icmph, sizeof (icmph_t)); 1232 icmph.icmph_type = ICMP_DEST_UNREACHABLE; 1233 icmph.icmph_code = ICMP_FRAGMENTATION_NEEDED; 1234 icmph.icmph_du_mtu = htons((uint16_t)mtu); 1235 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutFragNeeded); 1236 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDestUnreachs); 1237 1238 icmp_pkt(mp, &icmph, sizeof (icmph_t), ira); 1239 } 1240 1241 /* 1242 * icmp_inbound_v4 deals with ICMP messages that are handled by IP. 1243 * If the ICMP message is consumed by IP, i.e., it should not be delivered 1244 * to any IPPROTO_ICMP raw sockets, then it returns NULL. 1245 * Likewise, if the ICMP error is misformed (too short, etc), then it 1246 * returns NULL. The caller uses this to determine whether or not to send 1247 * to raw sockets. 1248 * 1249 * All error messages are passed to the matching transport stream. 1250 * 1251 * The following cases are handled by icmp_inbound: 1252 * 1) It needs to send a reply back and possibly delivering it 1253 * to the "interested" upper clients. 1254 * 2) Return the mblk so that the caller can pass it to the RAW socket clients. 1255 * 3) It needs to change some values in IP only. 1256 * 4) It needs to change some values in IP and upper layers e.g TCP 1257 * by delivering an error to the upper layers. 1258 * 1259 * We handle the above three cases in the context of IPsec in the 1260 * following way : 1261 * 1262 * 1) Send the reply back in the same way as the request came in. 1263 * If it came in encrypted, it goes out encrypted. If it came in 1264 * clear, it goes out in clear. Thus, this will prevent chosen 1265 * plain text attack. 1266 * 2) The client may or may not expect things to come in secure. 1267 * If it comes in secure, the policy constraints are checked 1268 * before delivering it to the upper layers. If it comes in 1269 * clear, ipsec_inbound_accept_clear will decide whether to 1270 * accept this in clear or not. In both the cases, if the returned 1271 * message (IP header + 8 bytes) that caused the icmp message has 1272 * AH/ESP headers, it is sent up to AH/ESP for validation before 1273 * sending up. If there are only 8 bytes of returned message, then 1274 * upper client will not be notified. 1275 * 3) Check with global policy to see whether it matches the constaints. 1276 * But this will be done only if icmp_accept_messages_in_clear is 1277 * zero. 1278 * 4) If we need to change both in IP and ULP, then the decision taken 1279 * while affecting the values in IP and while delivering up to TCP 1280 * should be the same. 1281 * 1282 * There are two cases. 1283 * 1284 * a) If we reject data at the IP layer (ipsec_check_global_policy() 1285 * failed), we will not deliver it to the ULP, even though they 1286 * are *willing* to accept in *clear*. This is fine as our global 1287 * disposition to icmp messages asks us reject the datagram. 1288 * 1289 * b) If we accept data at the IP layer (ipsec_check_global_policy() 1290 * succeeded or icmp_accept_messages_in_clear is 1), and not able 1291 * to deliver it to ULP (policy failed), it can lead to 1292 * consistency problems. The cases known at this time are 1293 * ICMP_DESTINATION_UNREACHABLE messages with following code 1294 * values : 1295 * 1296 * - ICMP_FRAGMENTATION_NEEDED : IP adapts to the new value 1297 * and Upper layer rejects. Then the communication will 1298 * come to a stop. This is solved by making similar decisions 1299 * at both levels. Currently, when we are unable to deliver 1300 * to the Upper Layer (due to policy failures) while IP has 1301 * adjusted dce_pmtu, the next outbound datagram would 1302 * generate a local ICMP_FRAGMENTATION_NEEDED message - which 1303 * will be with the right level of protection. Thus the right 1304 * value will be communicated even if we are not able to 1305 * communicate when we get from the wire initially. But this 1306 * assumes there would be at least one outbound datagram after 1307 * IP has adjusted its dce_pmtu value. To make things 1308 * simpler, we accept in clear after the validation of 1309 * AH/ESP headers. 1310 * 1311 * - Other ICMP ERRORS : We may not be able to deliver it to the 1312 * upper layer depending on the level of protection the upper 1313 * layer expects and the disposition in ipsec_inbound_accept_clear(). 1314 * ipsec_inbound_accept_clear() decides whether a given ICMP error 1315 * should be accepted in clear when the Upper layer expects secure. 1316 * Thus the communication may get aborted by some bad ICMP 1317 * packets. 1318 */ 1319 mblk_t * 1320 icmp_inbound_v4(mblk_t *mp, ip_recv_attr_t *ira) 1321 { 1322 icmph_t *icmph; 1323 ipha_t *ipha; /* Outer header */ 1324 int ip_hdr_length; /* Outer header length */ 1325 boolean_t interested; 1326 ipif_t *ipif; 1327 uint32_t ts; 1328 uint32_t *tsp; 1329 timestruc_t now; 1330 ill_t *ill = ira->ira_ill; 1331 ip_stack_t *ipst = ill->ill_ipst; 1332 zoneid_t zoneid = ira->ira_zoneid; 1333 int len_needed; 1334 mblk_t *mp_ret = NULL; 1335 1336 ipha = (ipha_t *)mp->b_rptr; 1337 1338 BUMP_MIB(&ipst->ips_icmp_mib, icmpInMsgs); 1339 1340 ip_hdr_length = ira->ira_ip_hdr_length; 1341 if ((mp->b_wptr - mp->b_rptr) < (ip_hdr_length + ICMPH_SIZE)) { 1342 if (ira->ira_pktlen < (ip_hdr_length + ICMPH_SIZE)) { 1343 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInTruncatedPkts); 1344 ip_drop_input("ipIfStatsInTruncatedPkts", mp, ill); 1345 freemsg(mp); 1346 return (NULL); 1347 } 1348 /* Last chance to get real. */ 1349 ipha = ip_pullup(mp, ip_hdr_length + ICMPH_SIZE, ira); 1350 if (ipha == NULL) { 1351 BUMP_MIB(&ipst->ips_icmp_mib, icmpInErrors); 1352 freemsg(mp); 1353 return (NULL); 1354 } 1355 } 1356 1357 /* The IP header will always be a multiple of four bytes */ 1358 icmph = (icmph_t *)&mp->b_rptr[ip_hdr_length]; 1359 ip2dbg(("icmp_inbound_v4: type %d code %d\n", icmph->icmph_type, 1360 icmph->icmph_code)); 1361 1362 /* 1363 * We will set "interested" to "true" if we should pass a copy to 1364 * the transport or if we handle the packet locally. 1365 */ 1366 interested = B_FALSE; 1367 switch (icmph->icmph_type) { 1368 case ICMP_ECHO_REPLY: 1369 BUMP_MIB(&ipst->ips_icmp_mib, icmpInEchoReps); 1370 break; 1371 case ICMP_DEST_UNREACHABLE: 1372 if (icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED) 1373 BUMP_MIB(&ipst->ips_icmp_mib, icmpInFragNeeded); 1374 interested = B_TRUE; /* Pass up to transport */ 1375 BUMP_MIB(&ipst->ips_icmp_mib, icmpInDestUnreachs); 1376 break; 1377 case ICMP_SOURCE_QUENCH: 1378 interested = B_TRUE; /* Pass up to transport */ 1379 BUMP_MIB(&ipst->ips_icmp_mib, icmpInSrcQuenchs); 1380 break; 1381 case ICMP_REDIRECT: 1382 if (!ipst->ips_ip_ignore_redirect) 1383 interested = B_TRUE; 1384 BUMP_MIB(&ipst->ips_icmp_mib, icmpInRedirects); 1385 break; 1386 case ICMP_ECHO_REQUEST: 1387 /* 1388 * Whether to respond to echo requests that come in as IP 1389 * broadcasts or as IP multicast is subject to debate 1390 * (what isn't?). We aim to please, you pick it. 1391 * Default is do it. 1392 */ 1393 if (ira->ira_flags & IRAF_MULTICAST) { 1394 /* multicast: respond based on tunable */ 1395 interested = ipst->ips_ip_g_resp_to_echo_mcast; 1396 } else if (ira->ira_flags & IRAF_BROADCAST) { 1397 /* broadcast: respond based on tunable */ 1398 interested = ipst->ips_ip_g_resp_to_echo_bcast; 1399 } else { 1400 /* unicast: always respond */ 1401 interested = B_TRUE; 1402 } 1403 BUMP_MIB(&ipst->ips_icmp_mib, icmpInEchos); 1404 if (!interested) { 1405 /* We never pass these to RAW sockets */ 1406 freemsg(mp); 1407 return (NULL); 1408 } 1409 1410 /* Check db_ref to make sure we can modify the packet. */ 1411 if (mp->b_datap->db_ref > 1) { 1412 mblk_t *mp1; 1413 1414 mp1 = copymsg(mp); 1415 freemsg(mp); 1416 if (!mp1) { 1417 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops); 1418 return (NULL); 1419 } 1420 mp = mp1; 1421 ipha = (ipha_t *)mp->b_rptr; 1422 icmph = (icmph_t *)&mp->b_rptr[ip_hdr_length]; 1423 } 1424 icmph->icmph_type = ICMP_ECHO_REPLY; 1425 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutEchoReps); 1426 icmp_send_reply_v4(mp, ipha, icmph, ira); 1427 return (NULL); 1428 1429 case ICMP_ROUTER_ADVERTISEMENT: 1430 case ICMP_ROUTER_SOLICITATION: 1431 break; 1432 case ICMP_TIME_EXCEEDED: 1433 interested = B_TRUE; /* Pass up to transport */ 1434 BUMP_MIB(&ipst->ips_icmp_mib, icmpInTimeExcds); 1435 break; 1436 case ICMP_PARAM_PROBLEM: 1437 interested = B_TRUE; /* Pass up to transport */ 1438 BUMP_MIB(&ipst->ips_icmp_mib, icmpInParmProbs); 1439 break; 1440 case ICMP_TIME_STAMP_REQUEST: 1441 /* Response to Time Stamp Requests is local policy. */ 1442 if (ipst->ips_ip_g_resp_to_timestamp) { 1443 if (ira->ira_flags & IRAF_MULTIBROADCAST) 1444 interested = 1445 ipst->ips_ip_g_resp_to_timestamp_bcast; 1446 else 1447 interested = B_TRUE; 1448 } 1449 if (!interested) { 1450 /* We never pass these to RAW sockets */ 1451 freemsg(mp); 1452 return (NULL); 1453 } 1454 1455 /* Make sure we have enough of the packet */ 1456 len_needed = ip_hdr_length + ICMPH_SIZE + 1457 3 * sizeof (uint32_t); 1458 1459 if (mp->b_wptr - mp->b_rptr < len_needed) { 1460 ipha = ip_pullup(mp, len_needed, ira); 1461 if (ipha == NULL) { 1462 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 1463 ip_drop_input("ipIfStatsInDiscards - ip_pullup", 1464 mp, ill); 1465 freemsg(mp); 1466 return (NULL); 1467 } 1468 /* Refresh following the pullup. */ 1469 icmph = (icmph_t *)&mp->b_rptr[ip_hdr_length]; 1470 } 1471 BUMP_MIB(&ipst->ips_icmp_mib, icmpInTimestamps); 1472 /* Check db_ref to make sure we can modify the packet. */ 1473 if (mp->b_datap->db_ref > 1) { 1474 mblk_t *mp1; 1475 1476 mp1 = copymsg(mp); 1477 freemsg(mp); 1478 if (!mp1) { 1479 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops); 1480 return (NULL); 1481 } 1482 mp = mp1; 1483 ipha = (ipha_t *)mp->b_rptr; 1484 icmph = (icmph_t *)&mp->b_rptr[ip_hdr_length]; 1485 } 1486 icmph->icmph_type = ICMP_TIME_STAMP_REPLY; 1487 tsp = (uint32_t *)&icmph[1]; 1488 tsp++; /* Skip past 'originate time' */ 1489 /* Compute # of milliseconds since midnight */ 1490 gethrestime(&now); 1491 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 + 1492 now.tv_nsec / (NANOSEC / MILLISEC); 1493 *tsp++ = htonl(ts); /* Lay in 'receive time' */ 1494 *tsp++ = htonl(ts); /* Lay in 'send time' */ 1495 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutTimestampReps); 1496 icmp_send_reply_v4(mp, ipha, icmph, ira); 1497 return (NULL); 1498 1499 case ICMP_TIME_STAMP_REPLY: 1500 BUMP_MIB(&ipst->ips_icmp_mib, icmpInTimestampReps); 1501 break; 1502 case ICMP_INFO_REQUEST: 1503 /* Per RFC 1122 3.2.2.7, ignore this. */ 1504 case ICMP_INFO_REPLY: 1505 break; 1506 case ICMP_ADDRESS_MASK_REQUEST: 1507 if (ira->ira_flags & IRAF_MULTIBROADCAST) { 1508 interested = 1509 ipst->ips_ip_respond_to_address_mask_broadcast; 1510 } else { 1511 interested = B_TRUE; 1512 } 1513 if (!interested) { 1514 /* We never pass these to RAW sockets */ 1515 freemsg(mp); 1516 return (NULL); 1517 } 1518 len_needed = ip_hdr_length + ICMPH_SIZE + IP_ADDR_LEN; 1519 if (mp->b_wptr - mp->b_rptr < len_needed) { 1520 ipha = ip_pullup(mp, len_needed, ira); 1521 if (ipha == NULL) { 1522 BUMP_MIB(ill->ill_ip_mib, 1523 ipIfStatsInTruncatedPkts); 1524 ip_drop_input("ipIfStatsInTruncatedPkts", mp, 1525 ill); 1526 freemsg(mp); 1527 return (NULL); 1528 } 1529 /* Refresh following the pullup. */ 1530 icmph = (icmph_t *)&mp->b_rptr[ip_hdr_length]; 1531 } 1532 BUMP_MIB(&ipst->ips_icmp_mib, icmpInAddrMasks); 1533 /* Check db_ref to make sure we can modify the packet. */ 1534 if (mp->b_datap->db_ref > 1) { 1535 mblk_t *mp1; 1536 1537 mp1 = copymsg(mp); 1538 freemsg(mp); 1539 if (!mp1) { 1540 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops); 1541 return (NULL); 1542 } 1543 mp = mp1; 1544 ipha = (ipha_t *)mp->b_rptr; 1545 icmph = (icmph_t *)&mp->b_rptr[ip_hdr_length]; 1546 } 1547 /* 1548 * Need the ipif with the mask be the same as the source 1549 * address of the mask reply. For unicast we have a specific 1550 * ipif. For multicast/broadcast we only handle onlink 1551 * senders, and use the source address to pick an ipif. 1552 */ 1553 ipif = ipif_lookup_addr(ipha->ipha_dst, ill, zoneid, ipst); 1554 if (ipif == NULL) { 1555 /* Broadcast or multicast */ 1556 ipif = ipif_lookup_remote(ill, ipha->ipha_src, zoneid); 1557 if (ipif == NULL) { 1558 freemsg(mp); 1559 return (NULL); 1560 } 1561 } 1562 icmph->icmph_type = ICMP_ADDRESS_MASK_REPLY; 1563 bcopy(&ipif->ipif_net_mask, &icmph[1], IP_ADDR_LEN); 1564 ipif_refrele(ipif); 1565 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutAddrMaskReps); 1566 icmp_send_reply_v4(mp, ipha, icmph, ira); 1567 return (NULL); 1568 1569 case ICMP_ADDRESS_MASK_REPLY: 1570 BUMP_MIB(&ipst->ips_icmp_mib, icmpInAddrMaskReps); 1571 break; 1572 default: 1573 interested = B_TRUE; /* Pass up to transport */ 1574 BUMP_MIB(&ipst->ips_icmp_mib, icmpInUnknowns); 1575 break; 1576 } 1577 /* 1578 * See if there is an ICMP client to avoid an extra copymsg/freemsg 1579 * if there isn't one. 1580 */ 1581 if (ipst->ips_ipcl_proto_fanout_v4[IPPROTO_ICMP].connf_head != NULL) { 1582 /* If there is an ICMP client and we want one too, copy it. */ 1583 1584 if (!interested) { 1585 /* Caller will deliver to RAW sockets */ 1586 return (mp); 1587 } 1588 mp_ret = copymsg(mp); 1589 if (mp_ret == NULL) { 1590 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 1591 ip_drop_input("ipIfStatsInDiscards - copymsg", mp, ill); 1592 } 1593 } else if (!interested) { 1594 /* Neither we nor raw sockets are interested. Drop packet now */ 1595 freemsg(mp); 1596 return (NULL); 1597 } 1598 1599 /* 1600 * ICMP error or redirect packet. Make sure we have enough of 1601 * the header and that db_ref == 1 since we might end up modifying 1602 * the packet. 1603 */ 1604 if (mp->b_cont != NULL) { 1605 if (ip_pullup(mp, -1, ira) == NULL) { 1606 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 1607 ip_drop_input("ipIfStatsInDiscards - ip_pullup", 1608 mp, ill); 1609 freemsg(mp); 1610 return (mp_ret); 1611 } 1612 } 1613 1614 if (mp->b_datap->db_ref > 1) { 1615 mblk_t *mp1; 1616 1617 mp1 = copymsg(mp); 1618 if (mp1 == NULL) { 1619 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 1620 ip_drop_input("ipIfStatsInDiscards - copymsg", mp, ill); 1621 freemsg(mp); 1622 return (mp_ret); 1623 } 1624 freemsg(mp); 1625 mp = mp1; 1626 } 1627 1628 /* 1629 * In case mp has changed, verify the message before any further 1630 * processes. 1631 */ 1632 ipha = (ipha_t *)mp->b_rptr; 1633 icmph = (icmph_t *)&mp->b_rptr[ip_hdr_length]; 1634 if (!icmp_inbound_verify_v4(mp, icmph, ira)) { 1635 freemsg(mp); 1636 return (mp_ret); 1637 } 1638 1639 switch (icmph->icmph_type) { 1640 case ICMP_REDIRECT: 1641 icmp_redirect_v4(mp, ipha, icmph, ira); 1642 break; 1643 case ICMP_DEST_UNREACHABLE: 1644 if (icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED) { 1645 /* Update DCE and adjust MTU is icmp header if needed */ 1646 icmp_inbound_too_big_v4(icmph, ira); 1647 } 1648 /* FALLTHRU */ 1649 default: 1650 icmp_inbound_error_fanout_v4(mp, icmph, ira); 1651 break; 1652 } 1653 return (mp_ret); 1654 } 1655 1656 /* 1657 * Send an ICMP echo, timestamp or address mask reply. 1658 * The caller has already updated the payload part of the packet. 1659 * We handle the ICMP checksum, IP source address selection and feed 1660 * the packet into ip_output_simple. 1661 */ 1662 static void 1663 icmp_send_reply_v4(mblk_t *mp, ipha_t *ipha, icmph_t *icmph, 1664 ip_recv_attr_t *ira) 1665 { 1666 uint_t ip_hdr_length = ira->ira_ip_hdr_length; 1667 ill_t *ill = ira->ira_ill; 1668 ip_stack_t *ipst = ill->ill_ipst; 1669 ip_xmit_attr_t ixas; 1670 1671 /* Send out an ICMP packet */ 1672 icmph->icmph_checksum = 0; 1673 icmph->icmph_checksum = IP_CSUM(mp, ip_hdr_length, 0); 1674 /* Reset time to live. */ 1675 ipha->ipha_ttl = ipst->ips_ip_def_ttl; 1676 { 1677 /* Swap source and destination addresses */ 1678 ipaddr_t tmp; 1679 1680 tmp = ipha->ipha_src; 1681 ipha->ipha_src = ipha->ipha_dst; 1682 ipha->ipha_dst = tmp; 1683 } 1684 ipha->ipha_ident = 0; 1685 if (!IS_SIMPLE_IPH(ipha)) 1686 icmp_options_update(ipha); 1687 1688 bzero(&ixas, sizeof (ixas)); 1689 ixas.ixa_flags = IXAF_BASIC_SIMPLE_V4; 1690 ixas.ixa_zoneid = ira->ira_zoneid; 1691 ixas.ixa_cred = kcred; 1692 ixas.ixa_cpid = NOPID; 1693 ixas.ixa_tsl = ira->ira_tsl; /* Behave as a multi-level responder */ 1694 ixas.ixa_ifindex = 0; 1695 ixas.ixa_ipst = ipst; 1696 ixas.ixa_multicast_ttl = IP_DEFAULT_MULTICAST_TTL; 1697 1698 if (!(ira->ira_flags & IRAF_IPSEC_SECURE)) { 1699 /* 1700 * This packet should go out the same way as it 1701 * came in i.e in clear, independent of the IPsec policy 1702 * for transmitting packets. 1703 */ 1704 ixas.ixa_flags |= IXAF_NO_IPSEC; 1705 } else { 1706 if (!ipsec_in_to_out(ira, &ixas, mp, ipha, NULL)) { 1707 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 1708 /* Note: mp already consumed and ip_drop_packet done */ 1709 return; 1710 } 1711 } 1712 if (ira->ira_flags & IRAF_MULTIBROADCAST) { 1713 /* 1714 * Not one or our addresses (IRE_LOCALs), thus we let 1715 * ip_output_simple pick the source. 1716 */ 1717 ipha->ipha_src = INADDR_ANY; 1718 ixas.ixa_flags |= IXAF_SET_SOURCE; 1719 } 1720 /* Should we send with DF and use dce_pmtu? */ 1721 if (ipst->ips_ipv4_icmp_return_pmtu) { 1722 ixas.ixa_flags |= IXAF_PMTU_DISCOVERY; 1723 ipha->ipha_fragment_offset_and_flags |= IPH_DF_HTONS; 1724 } 1725 1726 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutMsgs); 1727 1728 (void) ip_output_simple(mp, &ixas); 1729 ixa_cleanup(&ixas); 1730 } 1731 1732 /* 1733 * Verify the ICMP messages for either for ICMP error or redirect packet. 1734 * The caller should have fully pulled up the message. If it's a redirect 1735 * packet, only basic checks on IP header will be done; otherwise, verify 1736 * the packet by looking at the included ULP header. 1737 * 1738 * Called before icmp_inbound_error_fanout_v4 is called. 1739 */ 1740 static boolean_t 1741 icmp_inbound_verify_v4(mblk_t *mp, icmph_t *icmph, ip_recv_attr_t *ira) 1742 { 1743 ill_t *ill = ira->ira_ill; 1744 int hdr_length; 1745 ip_stack_t *ipst = ira->ira_ill->ill_ipst; 1746 conn_t *connp; 1747 ipha_t *ipha; /* Inner IP header */ 1748 1749 ipha = (ipha_t *)&icmph[1]; 1750 if ((uchar_t *)ipha + IP_SIMPLE_HDR_LENGTH > mp->b_wptr) 1751 goto truncated; 1752 1753 hdr_length = IPH_HDR_LENGTH(ipha); 1754 1755 if ((IPH_HDR_VERSION(ipha) != IPV4_VERSION)) 1756 goto discard_pkt; 1757 1758 if (hdr_length < sizeof (ipha_t)) 1759 goto truncated; 1760 1761 if ((uchar_t *)ipha + hdr_length > mp->b_wptr) 1762 goto truncated; 1763 1764 /* 1765 * Stop here for ICMP_REDIRECT. 1766 */ 1767 if (icmph->icmph_type == ICMP_REDIRECT) 1768 return (B_TRUE); 1769 1770 /* 1771 * ICMP errors only. 1772 */ 1773 switch (ipha->ipha_protocol) { 1774 case IPPROTO_UDP: 1775 /* 1776 * Verify we have at least ICMP_MIN_TP_HDR_LEN bytes of 1777 * transport header. 1778 */ 1779 if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN > 1780 mp->b_wptr) 1781 goto truncated; 1782 break; 1783 case IPPROTO_TCP: { 1784 tcpha_t *tcpha; 1785 1786 /* 1787 * Verify we have at least ICMP_MIN_TP_HDR_LEN bytes of 1788 * transport header. 1789 */ 1790 if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN > 1791 mp->b_wptr) 1792 goto truncated; 1793 1794 tcpha = (tcpha_t *)((uchar_t *)ipha + hdr_length); 1795 connp = ipcl_tcp_lookup_reversed_ipv4(ipha, tcpha, TCPS_LISTEN, 1796 ipst); 1797 if (connp == NULL) 1798 goto discard_pkt; 1799 1800 if ((connp->conn_verifyicmp != NULL) && 1801 !connp->conn_verifyicmp(connp, tcpha, icmph, NULL, ira)) { 1802 CONN_DEC_REF(connp); 1803 goto discard_pkt; 1804 } 1805 CONN_DEC_REF(connp); 1806 break; 1807 } 1808 case IPPROTO_SCTP: 1809 /* 1810 * Verify we have at least ICMP_MIN_TP_HDR_LEN bytes of 1811 * transport header. 1812 */ 1813 if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN > 1814 mp->b_wptr) 1815 goto truncated; 1816 break; 1817 case IPPROTO_ESP: 1818 case IPPROTO_AH: 1819 break; 1820 case IPPROTO_ENCAP: 1821 if ((uchar_t *)ipha + hdr_length + sizeof (ipha_t) > 1822 mp->b_wptr) 1823 goto truncated; 1824 break; 1825 default: 1826 break; 1827 } 1828 1829 return (B_TRUE); 1830 1831 discard_pkt: 1832 /* Bogus ICMP error. */ 1833 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 1834 return (B_FALSE); 1835 1836 truncated: 1837 /* We pulled up everthing already. Must be truncated */ 1838 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInTruncatedPkts); 1839 ip_drop_input("ipIfStatsInTruncatedPkts", mp, ill); 1840 return (B_FALSE); 1841 } 1842 1843 /* Table from RFC 1191 */ 1844 static int icmp_frag_size_table[] = 1845 { 32000, 17914, 8166, 4352, 2002, 1496, 1006, 508, 296, 68 }; 1846 1847 /* 1848 * Process received ICMP Packet too big. 1849 * Just handles the DCE create/update, including using the above table of 1850 * PMTU guesses. The caller is responsible for validating the packet before 1851 * passing it in and also to fanout the ICMP error to any matching transport 1852 * conns. Assumes the message has been fully pulled up and verified. 1853 * 1854 * Before getting here, the caller has called icmp_inbound_verify_v4() 1855 * that should have verified with ULP to prevent undoing the changes we're 1856 * going to make to DCE. For example, TCP might have verified that the packet 1857 * which generated error is in the send window. 1858 * 1859 * In some cases modified this MTU in the ICMP header packet; the caller 1860 * should pass to the matching ULP after this returns. 1861 */ 1862 static void 1863 icmp_inbound_too_big_v4(icmph_t *icmph, ip_recv_attr_t *ira) 1864 { 1865 dce_t *dce; 1866 int old_mtu; 1867 int mtu, orig_mtu; 1868 ipaddr_t dst; 1869 boolean_t disable_pmtud; 1870 ill_t *ill = ira->ira_ill; 1871 ip_stack_t *ipst = ill->ill_ipst; 1872 uint_t hdr_length; 1873 ipha_t *ipha; 1874 1875 /* Caller already pulled up everything. */ 1876 ipha = (ipha_t *)&icmph[1]; 1877 ASSERT(icmph->icmph_type == ICMP_DEST_UNREACHABLE && 1878 icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED); 1879 ASSERT(ill != NULL); 1880 1881 hdr_length = IPH_HDR_LENGTH(ipha); 1882 1883 /* 1884 * We handle path MTU for source routed packets since the DCE 1885 * is looked up using the final destination. 1886 */ 1887 dst = ip_get_dst(ipha); 1888 1889 dce = dce_lookup_and_add_v4(dst, ipst); 1890 if (dce == NULL) { 1891 /* Couldn't add a unique one - ENOMEM */ 1892 ip1dbg(("icmp_inbound_too_big_v4: no dce for 0x%x\n", 1893 ntohl(dst))); 1894 return; 1895 } 1896 1897 /* Check for MTU discovery advice as described in RFC 1191 */ 1898 mtu = ntohs(icmph->icmph_du_mtu); 1899 orig_mtu = mtu; 1900 disable_pmtud = B_FALSE; 1901 1902 mutex_enter(&dce->dce_lock); 1903 if (dce->dce_flags & DCEF_PMTU) 1904 old_mtu = dce->dce_pmtu; 1905 else 1906 old_mtu = ill->ill_mtu; 1907 1908 if (icmph->icmph_du_zero != 0 || mtu < ipst->ips_ip_pmtu_min) { 1909 uint32_t length; 1910 int i; 1911 1912 /* 1913 * Use the table from RFC 1191 to figure out 1914 * the next "plateau" based on the length in 1915 * the original IP packet. 1916 */ 1917 length = ntohs(ipha->ipha_length); 1918 DTRACE_PROBE2(ip4__pmtu__guess, dce_t *, dce, 1919 uint32_t, length); 1920 if (old_mtu <= length && 1921 old_mtu >= length - hdr_length) { 1922 /* 1923 * Handle broken BSD 4.2 systems that 1924 * return the wrong ipha_length in ICMP 1925 * errors. 1926 */ 1927 ip1dbg(("Wrong mtu: sent %d, dce %d\n", 1928 length, old_mtu)); 1929 length -= hdr_length; 1930 } 1931 for (i = 0; i < A_CNT(icmp_frag_size_table); i++) { 1932 if (length > icmp_frag_size_table[i]) 1933 break; 1934 } 1935 if (i == A_CNT(icmp_frag_size_table)) { 1936 /* Smaller than IP_MIN_MTU! */ 1937 ip1dbg(("Too big for packet size %d\n", 1938 length)); 1939 disable_pmtud = B_TRUE; 1940 mtu = ipst->ips_ip_pmtu_min; 1941 } else { 1942 mtu = icmp_frag_size_table[i]; 1943 ip1dbg(("Calculated mtu %d, packet size %d, " 1944 "before %d\n", mtu, length, old_mtu)); 1945 if (mtu < ipst->ips_ip_pmtu_min) { 1946 mtu = ipst->ips_ip_pmtu_min; 1947 disable_pmtud = B_TRUE; 1948 } 1949 } 1950 } 1951 if (disable_pmtud) 1952 dce->dce_flags |= DCEF_TOO_SMALL_PMTU; 1953 else 1954 dce->dce_flags &= ~DCEF_TOO_SMALL_PMTU; 1955 1956 dce->dce_pmtu = MIN(old_mtu, mtu); 1957 /* Prepare to send the new max frag size for the ULP. */ 1958 icmph->icmph_du_zero = 0; 1959 icmph->icmph_du_mtu = htons((uint16_t)dce->dce_pmtu); 1960 DTRACE_PROBE4(ip4__pmtu__change, icmph_t *, icmph, dce_t *, 1961 dce, int, orig_mtu, int, mtu); 1962 1963 /* We now have a PMTU for sure */ 1964 dce->dce_flags |= DCEF_PMTU; 1965 dce->dce_last_change_time = TICK_TO_SEC(ddi_get_lbolt64()); 1966 mutex_exit(&dce->dce_lock); 1967 /* 1968 * After dropping the lock the new value is visible to everyone. 1969 * Then we bump the generation number so any cached values reinspect 1970 * the dce_t. 1971 */ 1972 dce_increment_generation(dce); 1973 dce_refrele(dce); 1974 } 1975 1976 /* 1977 * If the packet in error is Self-Encapsulated, icmp_inbound_error_fanout_v4 1978 * calls this function. 1979 */ 1980 static mblk_t * 1981 icmp_inbound_self_encap_error_v4(mblk_t *mp, ipha_t *ipha, ipha_t *in_ipha) 1982 { 1983 int length; 1984 1985 ASSERT(mp->b_datap->db_type == M_DATA); 1986 1987 /* icmp_inbound_v4 has already pulled up the whole error packet */ 1988 ASSERT(mp->b_cont == NULL); 1989 1990 /* 1991 * The length that we want to overlay is the inner header 1992 * and what follows it. 1993 */ 1994 length = msgdsize(mp) - ((uchar_t *)in_ipha - mp->b_rptr); 1995 1996 /* 1997 * Overlay the inner header and whatever follows it over the 1998 * outer header. 1999 */ 2000 bcopy((uchar_t *)in_ipha, (uchar_t *)ipha, length); 2001 2002 /* Adjust for what we removed */ 2003 mp->b_wptr -= (uchar_t *)in_ipha - (uchar_t *)ipha; 2004 return (mp); 2005 } 2006 2007 /* 2008 * Try to pass the ICMP message upstream in case the ULP cares. 2009 * 2010 * If the packet that caused the ICMP error is secure, we send 2011 * it to AH/ESP to make sure that the attached packet has a 2012 * valid association. ipha in the code below points to the 2013 * IP header of the packet that caused the error. 2014 * 2015 * For IPsec cases, we let the next-layer-up (which has access to 2016 * cached policy on the conn_t, or can query the SPD directly) 2017 * subtract out any IPsec overhead if they must. We therefore make no 2018 * adjustments here for IPsec overhead. 2019 * 2020 * IFN could have been generated locally or by some router. 2021 * 2022 * LOCAL : ire_send_wire (before calling ipsec_out_process) can call 2023 * icmp_frag_needed/icmp_pkt2big_v6 to generated a local IFN. 2024 * This happens because IP adjusted its value of MTU on an 2025 * earlier IFN message and could not tell the upper layer, 2026 * the new adjusted value of MTU e.g. Packet was encrypted 2027 * or there was not enough information to fanout to upper 2028 * layers. Thus on the next outbound datagram, ire_send_wire 2029 * generates the IFN, where IPsec processing has *not* been 2030 * done. 2031 * 2032 * Note that we retain ixa_fragsize across IPsec thus once 2033 * we have picking ixa_fragsize and entered ipsec_out_process we do 2034 * no change the fragsize even if the path MTU changes before 2035 * we reach ip_output_post_ipsec. 2036 * 2037 * In the local case, IRAF_LOOPBACK will be set indicating 2038 * that IFN was generated locally. 2039 * 2040 * ROUTER : IFN could be secure or non-secure. 2041 * 2042 * * SECURE : We use the IPSEC_IN to fanout to AH/ESP if the 2043 * packet in error has AH/ESP headers to validate the AH/ESP 2044 * headers. AH/ESP will verify whether there is a valid SA or 2045 * not and send it back. We will fanout again if we have more 2046 * data in the packet. 2047 * 2048 * If the packet in error does not have AH/ESP, we handle it 2049 * like any other case. 2050 * 2051 * * NON_SECURE : If the packet in error has AH/ESP headers, we send it 2052 * up to AH/ESP for validation. AH/ESP will verify whether there is a 2053 * valid SA or not and send it back. We will fanout again if 2054 * we have more data in the packet. 2055 * 2056 * If the packet in error does not have AH/ESP, we handle it 2057 * like any other case. 2058 * 2059 * The caller must have called icmp_inbound_verify_v4. 2060 */ 2061 static void 2062 icmp_inbound_error_fanout_v4(mblk_t *mp, icmph_t *icmph, ip_recv_attr_t *ira) 2063 { 2064 uint16_t *up; /* Pointer to ports in ULP header */ 2065 uint32_t ports; /* reversed ports for fanout */ 2066 ipha_t ripha; /* With reversed addresses */ 2067 ipha_t *ipha; /* Inner IP header */ 2068 uint_t hdr_length; /* Inner IP header length */ 2069 tcpha_t *tcpha; 2070 conn_t *connp; 2071 ill_t *ill = ira->ira_ill; 2072 ip_stack_t *ipst = ill->ill_ipst; 2073 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 2074 ill_t *rill = ira->ira_rill; 2075 2076 /* Caller already pulled up everything. */ 2077 ipha = (ipha_t *)&icmph[1]; 2078 ASSERT((uchar_t *)&ipha[1] <= mp->b_wptr); 2079 ASSERT(mp->b_cont == NULL); 2080 2081 hdr_length = IPH_HDR_LENGTH(ipha); 2082 ira->ira_protocol = ipha->ipha_protocol; 2083 2084 /* 2085 * We need a separate IP header with the source and destination 2086 * addresses reversed to do fanout/classification because the ipha in 2087 * the ICMP error is in the form we sent it out. 2088 */ 2089 ripha.ipha_src = ipha->ipha_dst; 2090 ripha.ipha_dst = ipha->ipha_src; 2091 ripha.ipha_protocol = ipha->ipha_protocol; 2092 ripha.ipha_version_and_hdr_length = ipha->ipha_version_and_hdr_length; 2093 2094 ip2dbg(("icmp_inbound_error_v4: proto %d %x to %x: %d/%d\n", 2095 ripha.ipha_protocol, ntohl(ipha->ipha_src), 2096 ntohl(ipha->ipha_dst), 2097 icmph->icmph_type, icmph->icmph_code)); 2098 2099 switch (ipha->ipha_protocol) { 2100 case IPPROTO_UDP: 2101 up = (uint16_t *)((uchar_t *)ipha + hdr_length); 2102 2103 /* Attempt to find a client stream based on port. */ 2104 ip2dbg(("icmp_inbound_error_v4: UDP ports %d to %d\n", 2105 ntohs(up[0]), ntohs(up[1]))); 2106 2107 /* Note that we send error to all matches. */ 2108 ira->ira_flags |= IRAF_ICMP_ERROR; 2109 ip_fanout_udp_multi_v4(mp, &ripha, up[0], up[1], ira); 2110 ira->ira_flags &= ~IRAF_ICMP_ERROR; 2111 return; 2112 2113 case IPPROTO_TCP: 2114 /* 2115 * Find a TCP client stream for this packet. 2116 * Note that we do a reverse lookup since the header is 2117 * in the form we sent it out. 2118 */ 2119 tcpha = (tcpha_t *)((uchar_t *)ipha + hdr_length); 2120 connp = ipcl_tcp_lookup_reversed_ipv4(ipha, tcpha, TCPS_LISTEN, 2121 ipst); 2122 if (connp == NULL) 2123 goto discard_pkt; 2124 2125 if (CONN_INBOUND_POLICY_PRESENT(connp, ipss) || 2126 (ira->ira_flags & IRAF_IPSEC_SECURE)) { 2127 mp = ipsec_check_inbound_policy(mp, connp, 2128 ipha, NULL, ira); 2129 if (mp == NULL) { 2130 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 2131 /* Note that mp is NULL */ 2132 ip_drop_input("ipIfStatsInDiscards", mp, ill); 2133 CONN_DEC_REF(connp); 2134 return; 2135 } 2136 } 2137 2138 ira->ira_flags |= IRAF_ICMP_ERROR; 2139 ira->ira_ill = ira->ira_rill = NULL; 2140 if (IPCL_IS_TCP(connp)) { 2141 SQUEUE_ENTER_ONE(connp->conn_sqp, mp, 2142 connp->conn_recvicmp, connp, ira, SQ_FILL, 2143 SQTAG_TCP_INPUT_ICMP_ERR); 2144 } else { 2145 /* Not TCP; must be SOCK_RAW, IPPROTO_TCP */ 2146 (connp->conn_recv)(connp, mp, NULL, ira); 2147 CONN_DEC_REF(connp); 2148 } 2149 ira->ira_ill = ill; 2150 ira->ira_rill = rill; 2151 ira->ira_flags &= ~IRAF_ICMP_ERROR; 2152 return; 2153 2154 case IPPROTO_SCTP: 2155 up = (uint16_t *)((uchar_t *)ipha + hdr_length); 2156 /* Find a SCTP client stream for this packet. */ 2157 ((uint16_t *)&ports)[0] = up[1]; 2158 ((uint16_t *)&ports)[1] = up[0]; 2159 2160 ira->ira_flags |= IRAF_ICMP_ERROR; 2161 ip_fanout_sctp(mp, &ripha, NULL, ports, ira); 2162 ira->ira_flags &= ~IRAF_ICMP_ERROR; 2163 return; 2164 2165 case IPPROTO_ESP: 2166 case IPPROTO_AH: 2167 if (!ipsec_loaded(ipss)) { 2168 ip_proto_not_sup(mp, ira); 2169 return; 2170 } 2171 2172 if (ipha->ipha_protocol == IPPROTO_ESP) 2173 mp = ipsecesp_icmp_error(mp, ira); 2174 else 2175 mp = ipsecah_icmp_error(mp, ira); 2176 if (mp == NULL) 2177 return; 2178 2179 /* Just in case ipsec didn't preserve the NULL b_cont */ 2180 if (mp->b_cont != NULL) { 2181 if (!pullupmsg(mp, -1)) 2182 goto discard_pkt; 2183 } 2184 2185 /* 2186 * Note that ira_pktlen and ira_ip_hdr_length are no longer 2187 * correct, but we don't use them any more here. 2188 * 2189 * If succesful, the mp has been modified to not include 2190 * the ESP/AH header so we can fanout to the ULP's icmp 2191 * error handler. 2192 */ 2193 if (mp->b_wptr - mp->b_rptr < IP_SIMPLE_HDR_LENGTH) 2194 goto truncated; 2195 2196 /* Verify the modified message before any further processes. */ 2197 ipha = (ipha_t *)mp->b_rptr; 2198 hdr_length = IPH_HDR_LENGTH(ipha); 2199 icmph = (icmph_t *)&mp->b_rptr[hdr_length]; 2200 if (!icmp_inbound_verify_v4(mp, icmph, ira)) { 2201 freemsg(mp); 2202 return; 2203 } 2204 2205 icmp_inbound_error_fanout_v4(mp, icmph, ira); 2206 return; 2207 2208 case IPPROTO_ENCAP: { 2209 /* Look for self-encapsulated packets that caused an error */ 2210 ipha_t *in_ipha; 2211 2212 /* 2213 * Caller has verified that length has to be 2214 * at least the size of IP header. 2215 */ 2216 ASSERT(hdr_length >= sizeof (ipha_t)); 2217 /* 2218 * Check the sanity of the inner IP header like 2219 * we did for the outer header. 2220 */ 2221 in_ipha = (ipha_t *)((uchar_t *)ipha + hdr_length); 2222 if ((IPH_HDR_VERSION(in_ipha) != IPV4_VERSION)) { 2223 goto discard_pkt; 2224 } 2225 if (IPH_HDR_LENGTH(in_ipha) < sizeof (ipha_t)) { 2226 goto discard_pkt; 2227 } 2228 /* Check for Self-encapsulated tunnels */ 2229 if (in_ipha->ipha_src == ipha->ipha_src && 2230 in_ipha->ipha_dst == ipha->ipha_dst) { 2231 2232 mp = icmp_inbound_self_encap_error_v4(mp, ipha, 2233 in_ipha); 2234 if (mp == NULL) 2235 goto discard_pkt; 2236 2237 /* 2238 * Just in case self_encap didn't preserve the NULL 2239 * b_cont 2240 */ 2241 if (mp->b_cont != NULL) { 2242 if (!pullupmsg(mp, -1)) 2243 goto discard_pkt; 2244 } 2245 /* 2246 * Note that ira_pktlen and ira_ip_hdr_length are no 2247 * longer correct, but we don't use them any more here. 2248 */ 2249 if (mp->b_wptr - mp->b_rptr < IP_SIMPLE_HDR_LENGTH) 2250 goto truncated; 2251 2252 /* 2253 * Verify the modified message before any further 2254 * processes. 2255 */ 2256 ipha = (ipha_t *)mp->b_rptr; 2257 hdr_length = IPH_HDR_LENGTH(ipha); 2258 icmph = (icmph_t *)&mp->b_rptr[hdr_length]; 2259 if (!icmp_inbound_verify_v4(mp, icmph, ira)) { 2260 freemsg(mp); 2261 return; 2262 } 2263 2264 /* 2265 * The packet in error is self-encapsualted. 2266 * And we are finding it further encapsulated 2267 * which we could not have possibly generated. 2268 */ 2269 if (ipha->ipha_protocol == IPPROTO_ENCAP) { 2270 goto discard_pkt; 2271 } 2272 icmp_inbound_error_fanout_v4(mp, icmph, ira); 2273 return; 2274 } 2275 /* No self-encapsulated */ 2276 /* FALLTHRU */ 2277 } 2278 case IPPROTO_IPV6: 2279 if ((connp = ipcl_iptun_classify_v4(&ripha.ipha_src, 2280 &ripha.ipha_dst, ipst)) != NULL) { 2281 ira->ira_flags |= IRAF_ICMP_ERROR; 2282 connp->conn_recvicmp(connp, mp, NULL, ira); 2283 CONN_DEC_REF(connp); 2284 ira->ira_flags &= ~IRAF_ICMP_ERROR; 2285 return; 2286 } 2287 /* 2288 * No IP tunnel is interested, fallthrough and see 2289 * if a raw socket will want it. 2290 */ 2291 /* FALLTHRU */ 2292 default: 2293 ira->ira_flags |= IRAF_ICMP_ERROR; 2294 ip_fanout_proto_v4(mp, &ripha, ira); 2295 ira->ira_flags &= ~IRAF_ICMP_ERROR; 2296 return; 2297 } 2298 /* NOTREACHED */ 2299 discard_pkt: 2300 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 2301 ip1dbg(("icmp_inbound_error_fanout_v4: drop pkt\n")); 2302 ip_drop_input("ipIfStatsInDiscards", mp, ill); 2303 freemsg(mp); 2304 return; 2305 2306 truncated: 2307 /* We pulled up everthing already. Must be truncated */ 2308 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInTruncatedPkts); 2309 ip_drop_input("ipIfStatsInTruncatedPkts", mp, ill); 2310 freemsg(mp); 2311 } 2312 2313 /* 2314 * Common IP options parser. 2315 * 2316 * Setup routine: fill in *optp with options-parsing state, then 2317 * tail-call ipoptp_next to return the first option. 2318 */ 2319 uint8_t 2320 ipoptp_first(ipoptp_t *optp, ipha_t *ipha) 2321 { 2322 uint32_t totallen; /* total length of all options */ 2323 2324 totallen = ipha->ipha_version_and_hdr_length - 2325 (uint8_t)((IP_VERSION << 4) + IP_SIMPLE_HDR_LENGTH_IN_WORDS); 2326 totallen <<= 2; 2327 optp->ipoptp_next = (uint8_t *)(&ipha[1]); 2328 optp->ipoptp_end = optp->ipoptp_next + totallen; 2329 optp->ipoptp_flags = 0; 2330 return (ipoptp_next(optp)); 2331 } 2332 2333 /* Like above but without an ipha_t */ 2334 uint8_t 2335 ipoptp_first2(ipoptp_t *optp, uint32_t totallen, uint8_t *opt) 2336 { 2337 optp->ipoptp_next = opt; 2338 optp->ipoptp_end = optp->ipoptp_next + totallen; 2339 optp->ipoptp_flags = 0; 2340 return (ipoptp_next(optp)); 2341 } 2342 2343 /* 2344 * Common IP options parser: extract next option. 2345 */ 2346 uint8_t 2347 ipoptp_next(ipoptp_t *optp) 2348 { 2349 uint8_t *end = optp->ipoptp_end; 2350 uint8_t *cur = optp->ipoptp_next; 2351 uint8_t opt, len, pointer; 2352 2353 /* 2354 * If cur > end already, then the ipoptp_end or ipoptp_next pointer 2355 * has been corrupted. 2356 */ 2357 ASSERT(cur <= end); 2358 2359 if (cur == end) 2360 return (IPOPT_EOL); 2361 2362 opt = cur[IPOPT_OPTVAL]; 2363 2364 /* 2365 * Skip any NOP options. 2366 */ 2367 while (opt == IPOPT_NOP) { 2368 cur++; 2369 if (cur == end) 2370 return (IPOPT_EOL); 2371 opt = cur[IPOPT_OPTVAL]; 2372 } 2373 2374 if (opt == IPOPT_EOL) 2375 return (IPOPT_EOL); 2376 2377 /* 2378 * Option requiring a length. 2379 */ 2380 if ((cur + 1) >= end) { 2381 optp->ipoptp_flags |= IPOPTP_ERROR; 2382 return (IPOPT_EOL); 2383 } 2384 len = cur[IPOPT_OLEN]; 2385 if (len < 2) { 2386 optp->ipoptp_flags |= IPOPTP_ERROR; 2387 return (IPOPT_EOL); 2388 } 2389 optp->ipoptp_cur = cur; 2390 optp->ipoptp_len = len; 2391 optp->ipoptp_next = cur + len; 2392 if (cur + len > end) { 2393 optp->ipoptp_flags |= IPOPTP_ERROR; 2394 return (IPOPT_EOL); 2395 } 2396 2397 /* 2398 * For the options which require a pointer field, make sure 2399 * its there, and make sure it points to either something 2400 * inside this option, or the end of the option. 2401 */ 2402 switch (opt) { 2403 case IPOPT_RR: 2404 case IPOPT_TS: 2405 case IPOPT_LSRR: 2406 case IPOPT_SSRR: 2407 if (len <= IPOPT_OFFSET) { 2408 optp->ipoptp_flags |= IPOPTP_ERROR; 2409 return (opt); 2410 } 2411 pointer = cur[IPOPT_OFFSET]; 2412 if (pointer - 1 > len) { 2413 optp->ipoptp_flags |= IPOPTP_ERROR; 2414 return (opt); 2415 } 2416 break; 2417 } 2418 2419 /* 2420 * Sanity check the pointer field based on the type of the 2421 * option. 2422 */ 2423 switch (opt) { 2424 case IPOPT_RR: 2425 case IPOPT_SSRR: 2426 case IPOPT_LSRR: 2427 if (pointer < IPOPT_MINOFF_SR) 2428 optp->ipoptp_flags |= IPOPTP_ERROR; 2429 break; 2430 case IPOPT_TS: 2431 if (pointer < IPOPT_MINOFF_IT) 2432 optp->ipoptp_flags |= IPOPTP_ERROR; 2433 /* 2434 * Note that the Internet Timestamp option also 2435 * contains two four bit fields (the Overflow field, 2436 * and the Flag field), which follow the pointer 2437 * field. We don't need to check that these fields 2438 * fall within the length of the option because this 2439 * was implicitely done above. We've checked that the 2440 * pointer value is at least IPOPT_MINOFF_IT, and that 2441 * it falls within the option. Since IPOPT_MINOFF_IT > 2442 * IPOPT_POS_OV_FLG, we don't need the explicit check. 2443 */ 2444 ASSERT(len > IPOPT_POS_OV_FLG); 2445 break; 2446 } 2447 2448 return (opt); 2449 } 2450 2451 /* 2452 * Use the outgoing IP header to create an IP_OPTIONS option the way 2453 * it was passed down from the application. 2454 * 2455 * This is compatible with BSD in that it returns 2456 * the reverse source route with the final destination 2457 * as the last entry. The first 4 bytes of the option 2458 * will contain the final destination. 2459 */ 2460 int 2461 ip_opt_get_user(conn_t *connp, uchar_t *buf) 2462 { 2463 ipoptp_t opts; 2464 uchar_t *opt; 2465 uint8_t optval; 2466 uint8_t optlen; 2467 uint32_t len = 0; 2468 uchar_t *buf1 = buf; 2469 uint32_t totallen; 2470 ipaddr_t dst; 2471 ip_pkt_t *ipp = &connp->conn_xmit_ipp; 2472 2473 if (!(ipp->ipp_fields & IPPF_IPV4_OPTIONS)) 2474 return (0); 2475 2476 totallen = ipp->ipp_ipv4_options_len; 2477 if (totallen & 0x3) 2478 return (0); 2479 2480 buf += IP_ADDR_LEN; /* Leave room for final destination */ 2481 len += IP_ADDR_LEN; 2482 bzero(buf1, IP_ADDR_LEN); 2483 2484 dst = connp->conn_faddr_v4; 2485 2486 for (optval = ipoptp_first2(&opts, totallen, ipp->ipp_ipv4_options); 2487 optval != IPOPT_EOL; 2488 optval = ipoptp_next(&opts)) { 2489 int off; 2490 2491 opt = opts.ipoptp_cur; 2492 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 2493 break; 2494 } 2495 optlen = opts.ipoptp_len; 2496 2497 switch (optval) { 2498 case IPOPT_SSRR: 2499 case IPOPT_LSRR: 2500 2501 /* 2502 * Insert destination as the first entry in the source 2503 * route and move down the entries on step. 2504 * The last entry gets placed at buf1. 2505 */ 2506 buf[IPOPT_OPTVAL] = optval; 2507 buf[IPOPT_OLEN] = optlen; 2508 buf[IPOPT_OFFSET] = optlen; 2509 2510 off = optlen - IP_ADDR_LEN; 2511 if (off < 0) { 2512 /* No entries in source route */ 2513 break; 2514 } 2515 /* Last entry in source route if not already set */ 2516 if (dst == INADDR_ANY) 2517 bcopy(opt + off, buf1, IP_ADDR_LEN); 2518 off -= IP_ADDR_LEN; 2519 2520 while (off > 0) { 2521 bcopy(opt + off, 2522 buf + off + IP_ADDR_LEN, 2523 IP_ADDR_LEN); 2524 off -= IP_ADDR_LEN; 2525 } 2526 /* ipha_dst into first slot */ 2527 bcopy(&dst, buf + off + IP_ADDR_LEN, 2528 IP_ADDR_LEN); 2529 buf += optlen; 2530 len += optlen; 2531 break; 2532 2533 default: 2534 bcopy(opt, buf, optlen); 2535 buf += optlen; 2536 len += optlen; 2537 break; 2538 } 2539 } 2540 done: 2541 /* Pad the resulting options */ 2542 while (len & 0x3) { 2543 *buf++ = IPOPT_EOL; 2544 len++; 2545 } 2546 return (len); 2547 } 2548 2549 /* 2550 * Update any record route or timestamp options to include this host. 2551 * Reverse any source route option. 2552 * This routine assumes that the options are well formed i.e. that they 2553 * have already been checked. 2554 */ 2555 static void 2556 icmp_options_update(ipha_t *ipha) 2557 { 2558 ipoptp_t opts; 2559 uchar_t *opt; 2560 uint8_t optval; 2561 ipaddr_t src; /* Our local address */ 2562 ipaddr_t dst; 2563 2564 ip2dbg(("icmp_options_update\n")); 2565 src = ipha->ipha_src; 2566 dst = ipha->ipha_dst; 2567 2568 for (optval = ipoptp_first(&opts, ipha); 2569 optval != IPOPT_EOL; 2570 optval = ipoptp_next(&opts)) { 2571 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 2572 opt = opts.ipoptp_cur; 2573 ip2dbg(("icmp_options_update: opt %d, len %d\n", 2574 optval, opts.ipoptp_len)); 2575 switch (optval) { 2576 int off1, off2; 2577 case IPOPT_SSRR: 2578 case IPOPT_LSRR: 2579 /* 2580 * Reverse the source route. The first entry 2581 * should be the next to last one in the current 2582 * source route (the last entry is our address). 2583 * The last entry should be the final destination. 2584 */ 2585 off1 = IPOPT_MINOFF_SR - 1; 2586 off2 = opt[IPOPT_OFFSET] - IP_ADDR_LEN - 1; 2587 if (off2 < 0) { 2588 /* No entries in source route */ 2589 ip1dbg(( 2590 "icmp_options_update: bad src route\n")); 2591 break; 2592 } 2593 bcopy((char *)opt + off2, &dst, IP_ADDR_LEN); 2594 bcopy(&ipha->ipha_dst, (char *)opt + off2, IP_ADDR_LEN); 2595 bcopy(&dst, &ipha->ipha_dst, IP_ADDR_LEN); 2596 off2 -= IP_ADDR_LEN; 2597 2598 while (off1 < off2) { 2599 bcopy((char *)opt + off1, &src, IP_ADDR_LEN); 2600 bcopy((char *)opt + off2, (char *)opt + off1, 2601 IP_ADDR_LEN); 2602 bcopy(&src, (char *)opt + off2, IP_ADDR_LEN); 2603 off1 += IP_ADDR_LEN; 2604 off2 -= IP_ADDR_LEN; 2605 } 2606 opt[IPOPT_OFFSET] = IPOPT_MINOFF_SR; 2607 break; 2608 } 2609 } 2610 } 2611 2612 /* 2613 * Process received ICMP Redirect messages. 2614 * Assumes the caller has verified that the headers are in the pulled up mblk. 2615 * Consumes mp. 2616 */ 2617 static void 2618 icmp_redirect_v4(mblk_t *mp, ipha_t *ipha, icmph_t *icmph, ip_recv_attr_t *ira) 2619 { 2620 ire_t *ire, *nire; 2621 ire_t *prev_ire; 2622 ipaddr_t src, dst, gateway; 2623 ip_stack_t *ipst = ira->ira_ill->ill_ipst; 2624 ipha_t *inner_ipha; /* Inner IP header */ 2625 2626 /* Caller already pulled up everything. */ 2627 inner_ipha = (ipha_t *)&icmph[1]; 2628 src = ipha->ipha_src; 2629 dst = inner_ipha->ipha_dst; 2630 gateway = icmph->icmph_rd_gateway; 2631 /* Make sure the new gateway is reachable somehow. */ 2632 ire = ire_ftable_lookup_v4(gateway, 0, 0, IRE_ONLINK, NULL, 2633 ALL_ZONES, NULL, MATCH_IRE_TYPE, 0, ipst, NULL); 2634 /* 2635 * Make sure we had a route for the dest in question and that 2636 * that route was pointing to the old gateway (the source of the 2637 * redirect packet.) 2638 * We do longest match and then compare ire_gateway_addr below. 2639 */ 2640 prev_ire = ire_ftable_lookup_v4(dst, 0, 0, 0, NULL, ALL_ZONES, 2641 NULL, MATCH_IRE_DSTONLY, 0, ipst, NULL); 2642 /* 2643 * Check that 2644 * the redirect was not from ourselves 2645 * the new gateway and the old gateway are directly reachable 2646 */ 2647 if (prev_ire == NULL || ire == NULL || 2648 (prev_ire->ire_type & (IRE_LOCAL|IRE_LOOPBACK)) || 2649 (prev_ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) || 2650 !(ire->ire_type & IRE_IF_ALL) || 2651 prev_ire->ire_gateway_addr != src) { 2652 BUMP_MIB(&ipst->ips_icmp_mib, icmpInBadRedirects); 2653 ip_drop_input("icmpInBadRedirects - ire", mp, ira->ira_ill); 2654 freemsg(mp); 2655 if (ire != NULL) 2656 ire_refrele(ire); 2657 if (prev_ire != NULL) 2658 ire_refrele(prev_ire); 2659 return; 2660 } 2661 2662 ire_refrele(prev_ire); 2663 ire_refrele(ire); 2664 2665 /* 2666 * TODO: more precise handling for cases 0, 2, 3, the latter two 2667 * require TOS routing 2668 */ 2669 switch (icmph->icmph_code) { 2670 case 0: 2671 case 1: 2672 /* TODO: TOS specificity for cases 2 and 3 */ 2673 case 2: 2674 case 3: 2675 break; 2676 default: 2677 BUMP_MIB(&ipst->ips_icmp_mib, icmpInBadRedirects); 2678 ip_drop_input("icmpInBadRedirects - code", mp, ira->ira_ill); 2679 freemsg(mp); 2680 return; 2681 } 2682 /* 2683 * Create a Route Association. This will allow us to remember that 2684 * someone we believe told us to use the particular gateway. 2685 */ 2686 ire = ire_create( 2687 (uchar_t *)&dst, /* dest addr */ 2688 (uchar_t *)&ip_g_all_ones, /* mask */ 2689 (uchar_t *)&gateway, /* gateway addr */ 2690 IRE_HOST, 2691 NULL, /* ill */ 2692 ALL_ZONES, 2693 (RTF_DYNAMIC | RTF_GATEWAY | RTF_HOST), 2694 NULL, /* tsol_gc_t */ 2695 ipst); 2696 2697 if (ire == NULL) { 2698 freemsg(mp); 2699 return; 2700 } 2701 nire = ire_add(ire); 2702 /* Check if it was a duplicate entry */ 2703 if (nire != NULL && nire != ire) { 2704 ASSERT(nire->ire_identical_ref > 1); 2705 ire_delete(nire); 2706 ire_refrele(nire); 2707 nire = NULL; 2708 } 2709 ire = nire; 2710 if (ire != NULL) { 2711 ire_refrele(ire); /* Held in ire_add */ 2712 2713 /* tell routing sockets that we received a redirect */ 2714 ip_rts_change(RTM_REDIRECT, dst, gateway, IP_HOST_MASK, 0, src, 2715 (RTF_DYNAMIC | RTF_GATEWAY | RTF_HOST), 0, 2716 (RTA_DST | RTA_GATEWAY | RTA_NETMASK | RTA_AUTHOR), ipst); 2717 } 2718 2719 /* 2720 * Delete any existing IRE_HOST type redirect ires for this destination. 2721 * This together with the added IRE has the effect of 2722 * modifying an existing redirect. 2723 */ 2724 prev_ire = ire_ftable_lookup_v4(dst, 0, src, IRE_HOST, NULL, 2725 ALL_ZONES, NULL, (MATCH_IRE_GW | MATCH_IRE_TYPE), 0, ipst, NULL); 2726 if (prev_ire != NULL) { 2727 if (prev_ire ->ire_flags & RTF_DYNAMIC) 2728 ire_delete(prev_ire); 2729 ire_refrele(prev_ire); 2730 } 2731 2732 freemsg(mp); 2733 } 2734 2735 /* 2736 * Generate an ICMP parameter problem message. 2737 * When called from ip_output side a minimal ip_recv_attr_t needs to be 2738 * constructed by the caller. 2739 */ 2740 static void 2741 icmp_param_problem(mblk_t *mp, uint8_t ptr, ip_recv_attr_t *ira) 2742 { 2743 icmph_t icmph; 2744 ip_stack_t *ipst = ira->ira_ill->ill_ipst; 2745 2746 mp = icmp_pkt_err_ok(mp, ira); 2747 if (mp == NULL) 2748 return; 2749 2750 bzero(&icmph, sizeof (icmph_t)); 2751 icmph.icmph_type = ICMP_PARAM_PROBLEM; 2752 icmph.icmph_pp_ptr = ptr; 2753 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutParmProbs); 2754 icmp_pkt(mp, &icmph, sizeof (icmph_t), ira); 2755 } 2756 2757 /* 2758 * Build and ship an IPv4 ICMP message using the packet data in mp, and 2759 * the ICMP header pointed to by "stuff". (May be called as writer.) 2760 * Note: assumes that icmp_pkt_err_ok has been called to verify that 2761 * an icmp error packet can be sent. 2762 * Assigns an appropriate source address to the packet. If ipha_dst is 2763 * one of our addresses use it for source. Otherwise let ip_output_simple 2764 * pick the source address. 2765 */ 2766 static void 2767 icmp_pkt(mblk_t *mp, void *stuff, size_t len, ip_recv_attr_t *ira) 2768 { 2769 ipaddr_t dst; 2770 icmph_t *icmph; 2771 ipha_t *ipha; 2772 uint_t len_needed; 2773 size_t msg_len; 2774 mblk_t *mp1; 2775 ipaddr_t src; 2776 ire_t *ire; 2777 ip_xmit_attr_t ixas; 2778 ip_stack_t *ipst = ira->ira_ill->ill_ipst; 2779 2780 ipha = (ipha_t *)mp->b_rptr; 2781 2782 bzero(&ixas, sizeof (ixas)); 2783 ixas.ixa_flags = IXAF_BASIC_SIMPLE_V4; 2784 ixas.ixa_zoneid = ira->ira_zoneid; 2785 ixas.ixa_ifindex = 0; 2786 ixas.ixa_ipst = ipst; 2787 ixas.ixa_cred = kcred; 2788 ixas.ixa_cpid = NOPID; 2789 ixas.ixa_tsl = ira->ira_tsl; /* Behave as a multi-level responder */ 2790 ixas.ixa_multicast_ttl = IP_DEFAULT_MULTICAST_TTL; 2791 2792 if (ira->ira_flags & IRAF_IPSEC_SECURE) { 2793 /* 2794 * Apply IPsec based on how IPsec was applied to 2795 * the packet that had the error. 2796 * 2797 * If it was an outbound packet that caused the ICMP 2798 * error, then the caller will have setup the IRA 2799 * appropriately. 2800 */ 2801 if (!ipsec_in_to_out(ira, &ixas, mp, ipha, NULL)) { 2802 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 2803 /* Note: mp already consumed and ip_drop_packet done */ 2804 return; 2805 } 2806 } else { 2807 /* 2808 * This is in clear. The icmp message we are building 2809 * here should go out in clear, independent of our policy. 2810 */ 2811 ixas.ixa_flags |= IXAF_NO_IPSEC; 2812 } 2813 2814 /* Remember our eventual destination */ 2815 dst = ipha->ipha_src; 2816 2817 /* 2818 * If the packet was for one of our unicast addresses, make 2819 * sure we respond with that as the source. Otherwise 2820 * have ip_output_simple pick the source address. 2821 */ 2822 ire = ire_ftable_lookup_v4(ipha->ipha_dst, 0, 0, 2823 (IRE_LOCAL|IRE_LOOPBACK), NULL, ira->ira_zoneid, NULL, 2824 MATCH_IRE_TYPE|MATCH_IRE_ZONEONLY, 0, ipst, NULL); 2825 if (ire != NULL) { 2826 ire_refrele(ire); 2827 src = ipha->ipha_dst; 2828 } else { 2829 src = INADDR_ANY; 2830 ixas.ixa_flags |= IXAF_SET_SOURCE; 2831 } 2832 2833 /* 2834 * Check if we can send back more then 8 bytes in addition to 2835 * the IP header. We try to send 64 bytes of data and the internal 2836 * header in the special cases of ipv4 encapsulated ipv4 or ipv6. 2837 */ 2838 len_needed = IPH_HDR_LENGTH(ipha); 2839 if (ipha->ipha_protocol == IPPROTO_ENCAP || 2840 ipha->ipha_protocol == IPPROTO_IPV6) { 2841 if (!pullupmsg(mp, -1)) { 2842 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 2843 ip_drop_output("ipIfStatsOutDiscards", mp, NULL); 2844 freemsg(mp); 2845 return; 2846 } 2847 ipha = (ipha_t *)mp->b_rptr; 2848 2849 if (ipha->ipha_protocol == IPPROTO_ENCAP) { 2850 len_needed += IPH_HDR_LENGTH(((uchar_t *)ipha + 2851 len_needed)); 2852 } else { 2853 ip6_t *ip6h = (ip6_t *)((uchar_t *)ipha + len_needed); 2854 2855 ASSERT(ipha->ipha_protocol == IPPROTO_IPV6); 2856 len_needed += ip_hdr_length_v6(mp, ip6h); 2857 } 2858 } 2859 len_needed += ipst->ips_ip_icmp_return; 2860 msg_len = msgdsize(mp); 2861 if (msg_len > len_needed) { 2862 (void) adjmsg(mp, len_needed - msg_len); 2863 msg_len = len_needed; 2864 } 2865 mp1 = allocb(sizeof (icmp_ipha) + len, BPRI_MED); 2866 if (mp1 == NULL) { 2867 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutErrors); 2868 freemsg(mp); 2869 return; 2870 } 2871 mp1->b_cont = mp; 2872 mp = mp1; 2873 2874 /* 2875 * Set IXAF_TRUSTED_ICMP so we can let the ICMP messages this 2876 * node generates be accepted in peace by all on-host destinations. 2877 * If we do NOT assume that all on-host destinations trust 2878 * self-generated ICMP messages, then rework here, ip6.c, and spd.c. 2879 * (Look for IXAF_TRUSTED_ICMP). 2880 */ 2881 ixas.ixa_flags |= IXAF_TRUSTED_ICMP; 2882 2883 ipha = (ipha_t *)mp->b_rptr; 2884 mp1->b_wptr = (uchar_t *)ipha + (sizeof (icmp_ipha) + len); 2885 *ipha = icmp_ipha; 2886 ipha->ipha_src = src; 2887 ipha->ipha_dst = dst; 2888 ipha->ipha_ttl = ipst->ips_ip_def_ttl; 2889 msg_len += sizeof (icmp_ipha) + len; 2890 if (msg_len > IP_MAXPACKET) { 2891 (void) adjmsg(mp, IP_MAXPACKET - msg_len); 2892 msg_len = IP_MAXPACKET; 2893 } 2894 ipha->ipha_length = htons((uint16_t)msg_len); 2895 icmph = (icmph_t *)&ipha[1]; 2896 bcopy(stuff, icmph, len); 2897 icmph->icmph_checksum = 0; 2898 icmph->icmph_checksum = IP_CSUM(mp, (int32_t)sizeof (ipha_t), 0); 2899 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutMsgs); 2900 2901 (void) ip_output_simple(mp, &ixas); 2902 ixa_cleanup(&ixas); 2903 } 2904 2905 /* 2906 * Determine if an ICMP error packet can be sent given the rate limit. 2907 * The limit consists of an average frequency (icmp_pkt_err_interval measured 2908 * in milliseconds) and a burst size. Burst size number of packets can 2909 * be sent arbitrarely closely spaced. 2910 * The state is tracked using two variables to implement an approximate 2911 * token bucket filter: 2912 * icmp_pkt_err_last - lbolt value when the last burst started 2913 * icmp_pkt_err_sent - number of packets sent in current burst 2914 */ 2915 boolean_t 2916 icmp_err_rate_limit(ip_stack_t *ipst) 2917 { 2918 clock_t now = TICK_TO_MSEC(ddi_get_lbolt()); 2919 uint_t refilled; /* Number of packets refilled in tbf since last */ 2920 /* Guard against changes by loading into local variable */ 2921 uint_t err_interval = ipst->ips_ip_icmp_err_interval; 2922 2923 if (err_interval == 0) 2924 return (B_FALSE); 2925 2926 if (ipst->ips_icmp_pkt_err_last > now) { 2927 /* 100HZ lbolt in ms for 32bit arch wraps every 49.7 days */ 2928 ipst->ips_icmp_pkt_err_last = 0; 2929 ipst->ips_icmp_pkt_err_sent = 0; 2930 } 2931 /* 2932 * If we are in a burst update the token bucket filter. 2933 * Update the "last" time to be close to "now" but make sure 2934 * we don't loose precision. 2935 */ 2936 if (ipst->ips_icmp_pkt_err_sent != 0) { 2937 refilled = (now - ipst->ips_icmp_pkt_err_last)/err_interval; 2938 if (refilled > ipst->ips_icmp_pkt_err_sent) { 2939 ipst->ips_icmp_pkt_err_sent = 0; 2940 } else { 2941 ipst->ips_icmp_pkt_err_sent -= refilled; 2942 ipst->ips_icmp_pkt_err_last += refilled * err_interval; 2943 } 2944 } 2945 if (ipst->ips_icmp_pkt_err_sent == 0) { 2946 /* Start of new burst */ 2947 ipst->ips_icmp_pkt_err_last = now; 2948 } 2949 if (ipst->ips_icmp_pkt_err_sent < ipst->ips_ip_icmp_err_burst) { 2950 ipst->ips_icmp_pkt_err_sent++; 2951 ip1dbg(("icmp_err_rate_limit: %d sent in burst\n", 2952 ipst->ips_icmp_pkt_err_sent)); 2953 return (B_FALSE); 2954 } 2955 ip1dbg(("icmp_err_rate_limit: dropped\n")); 2956 return (B_TRUE); 2957 } 2958 2959 /* 2960 * Check if it is ok to send an IPv4 ICMP error packet in 2961 * response to the IPv4 packet in mp. 2962 * Free the message and return null if no 2963 * ICMP error packet should be sent. 2964 */ 2965 static mblk_t * 2966 icmp_pkt_err_ok(mblk_t *mp, ip_recv_attr_t *ira) 2967 { 2968 ip_stack_t *ipst = ira->ira_ill->ill_ipst; 2969 icmph_t *icmph; 2970 ipha_t *ipha; 2971 uint_t len_needed; 2972 2973 if (!mp) 2974 return (NULL); 2975 ipha = (ipha_t *)mp->b_rptr; 2976 if (ip_csum_hdr(ipha)) { 2977 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsInCksumErrs); 2978 ip_drop_input("ipIfStatsInCksumErrs", mp, NULL); 2979 freemsg(mp); 2980 return (NULL); 2981 } 2982 if (ip_type_v4(ipha->ipha_dst, ipst) == IRE_BROADCAST || 2983 ip_type_v4(ipha->ipha_src, ipst) == IRE_BROADCAST || 2984 CLASSD(ipha->ipha_dst) || 2985 CLASSD(ipha->ipha_src) || 2986 (ntohs(ipha->ipha_fragment_offset_and_flags) & IPH_OFFSET)) { 2987 /* Note: only errors to the fragment with offset 0 */ 2988 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops); 2989 freemsg(mp); 2990 return (NULL); 2991 } 2992 if (ipha->ipha_protocol == IPPROTO_ICMP) { 2993 /* 2994 * Check the ICMP type. RFC 1122 sez: don't send ICMP 2995 * errors in response to any ICMP errors. 2996 */ 2997 len_needed = IPH_HDR_LENGTH(ipha) + ICMPH_SIZE; 2998 if (mp->b_wptr - mp->b_rptr < len_needed) { 2999 if (!pullupmsg(mp, len_needed)) { 3000 BUMP_MIB(&ipst->ips_icmp_mib, icmpInErrors); 3001 freemsg(mp); 3002 return (NULL); 3003 } 3004 ipha = (ipha_t *)mp->b_rptr; 3005 } 3006 icmph = (icmph_t *) 3007 (&((char *)ipha)[IPH_HDR_LENGTH(ipha)]); 3008 switch (icmph->icmph_type) { 3009 case ICMP_DEST_UNREACHABLE: 3010 case ICMP_SOURCE_QUENCH: 3011 case ICMP_TIME_EXCEEDED: 3012 case ICMP_PARAM_PROBLEM: 3013 case ICMP_REDIRECT: 3014 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops); 3015 freemsg(mp); 3016 return (NULL); 3017 default: 3018 break; 3019 } 3020 } 3021 /* 3022 * If this is a labeled system, then check to see if we're allowed to 3023 * send a response to this particular sender. If not, then just drop. 3024 */ 3025 if (is_system_labeled() && !tsol_can_reply_error(mp, ira)) { 3026 ip2dbg(("icmp_pkt_err_ok: can't respond to packet\n")); 3027 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops); 3028 freemsg(mp); 3029 return (NULL); 3030 } 3031 if (icmp_err_rate_limit(ipst)) { 3032 /* 3033 * Only send ICMP error packets every so often. 3034 * This should be done on a per port/source basis, 3035 * but for now this will suffice. 3036 */ 3037 freemsg(mp); 3038 return (NULL); 3039 } 3040 return (mp); 3041 } 3042 3043 /* 3044 * Called when a packet was sent out the same link that it arrived on. 3045 * Check if it is ok to send a redirect and then send it. 3046 */ 3047 void 3048 ip_send_potential_redirect_v4(mblk_t *mp, ipha_t *ipha, ire_t *ire, 3049 ip_recv_attr_t *ira) 3050 { 3051 ip_stack_t *ipst = ira->ira_ill->ill_ipst; 3052 ipaddr_t src, nhop; 3053 mblk_t *mp1; 3054 ire_t *nhop_ire; 3055 3056 /* 3057 * Check the source address to see if it originated 3058 * on the same logical subnet it is going back out on. 3059 * If so, we should be able to send it a redirect. 3060 * Avoid sending a redirect if the destination 3061 * is directly connected (i.e., we matched an IRE_ONLINK), 3062 * or if the packet was source routed out this interface. 3063 * 3064 * We avoid sending a redirect if the 3065 * destination is directly connected 3066 * because it is possible that multiple 3067 * IP subnets may have been configured on 3068 * the link, and the source may not 3069 * be on the same subnet as ip destination, 3070 * even though they are on the same 3071 * physical link. 3072 */ 3073 if ((ire->ire_type & IRE_ONLINK) || 3074 ip_source_routed(ipha, ipst)) 3075 return; 3076 3077 nhop_ire = ire_nexthop(ire); 3078 if (nhop_ire == NULL) 3079 return; 3080 3081 nhop = nhop_ire->ire_addr; 3082 3083 if (nhop_ire->ire_type & IRE_IF_CLONE) { 3084 ire_t *ire2; 3085 3086 /* Follow ire_dep_parent to find non-clone IRE_INTERFACE */ 3087 mutex_enter(&nhop_ire->ire_lock); 3088 ire2 = nhop_ire->ire_dep_parent; 3089 if (ire2 != NULL) 3090 ire_refhold(ire2); 3091 mutex_exit(&nhop_ire->ire_lock); 3092 ire_refrele(nhop_ire); 3093 nhop_ire = ire2; 3094 } 3095 if (nhop_ire == NULL) 3096 return; 3097 3098 ASSERT(!(nhop_ire->ire_type & IRE_IF_CLONE)); 3099 3100 src = ipha->ipha_src; 3101 3102 /* 3103 * We look at the interface ire for the nexthop, 3104 * to see if ipha_src is in the same subnet 3105 * as the nexthop. 3106 */ 3107 if ((src & nhop_ire->ire_mask) == (nhop & nhop_ire->ire_mask)) { 3108 /* 3109 * The source is directly connected. 3110 */ 3111 mp1 = copymsg(mp); 3112 if (mp1 != NULL) { 3113 icmp_send_redirect(mp1, nhop, ira); 3114 } 3115 } 3116 ire_refrele(nhop_ire); 3117 } 3118 3119 /* 3120 * Generate an ICMP redirect message. 3121 */ 3122 static void 3123 icmp_send_redirect(mblk_t *mp, ipaddr_t gateway, ip_recv_attr_t *ira) 3124 { 3125 icmph_t icmph; 3126 ip_stack_t *ipst = ira->ira_ill->ill_ipst; 3127 3128 mp = icmp_pkt_err_ok(mp, ira); 3129 if (mp == NULL) 3130 return; 3131 3132 bzero(&icmph, sizeof (icmph_t)); 3133 icmph.icmph_type = ICMP_REDIRECT; 3134 icmph.icmph_code = 1; 3135 icmph.icmph_rd_gateway = gateway; 3136 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutRedirects); 3137 icmp_pkt(mp, &icmph, sizeof (icmph_t), ira); 3138 } 3139 3140 /* 3141 * Generate an ICMP time exceeded message. 3142 */ 3143 void 3144 icmp_time_exceeded(mblk_t *mp, uint8_t code, ip_recv_attr_t *ira) 3145 { 3146 icmph_t icmph; 3147 ip_stack_t *ipst = ira->ira_ill->ill_ipst; 3148 3149 mp = icmp_pkt_err_ok(mp, ira); 3150 if (mp == NULL) 3151 return; 3152 3153 bzero(&icmph, sizeof (icmph_t)); 3154 icmph.icmph_type = ICMP_TIME_EXCEEDED; 3155 icmph.icmph_code = code; 3156 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutTimeExcds); 3157 icmp_pkt(mp, &icmph, sizeof (icmph_t), ira); 3158 } 3159 3160 /* 3161 * Generate an ICMP unreachable message. 3162 * When called from ip_output side a minimal ip_recv_attr_t needs to be 3163 * constructed by the caller. 3164 */ 3165 void 3166 icmp_unreachable(mblk_t *mp, uint8_t code, ip_recv_attr_t *ira) 3167 { 3168 icmph_t icmph; 3169 ip_stack_t *ipst = ira->ira_ill->ill_ipst; 3170 3171 mp = icmp_pkt_err_ok(mp, ira); 3172 if (mp == NULL) 3173 return; 3174 3175 bzero(&icmph, sizeof (icmph_t)); 3176 icmph.icmph_type = ICMP_DEST_UNREACHABLE; 3177 icmph.icmph_code = code; 3178 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDestUnreachs); 3179 icmp_pkt(mp, &icmph, sizeof (icmph_t), ira); 3180 } 3181 3182 /* 3183 * Latch in the IPsec state for a stream based the policy in the listener 3184 * and the actions in the ip_recv_attr_t. 3185 * Called directly from TCP and SCTP. 3186 */ 3187 boolean_t 3188 ip_ipsec_policy_inherit(conn_t *connp, conn_t *lconnp, ip_recv_attr_t *ira) 3189 { 3190 ASSERT(lconnp->conn_policy != NULL); 3191 ASSERT(connp->conn_policy == NULL); 3192 3193 IPPH_REFHOLD(lconnp->conn_policy); 3194 connp->conn_policy = lconnp->conn_policy; 3195 3196 if (ira->ira_ipsec_action != NULL) { 3197 if (connp->conn_latch == NULL) { 3198 connp->conn_latch = iplatch_create(); 3199 if (connp->conn_latch == NULL) 3200 return (B_FALSE); 3201 } 3202 ipsec_latch_inbound(connp, ira); 3203 } 3204 return (B_TRUE); 3205 } 3206 3207 /* 3208 * Verify whether or not the IP address is a valid local address. 3209 * Could be a unicast, including one for a down interface. 3210 * If allow_mcbc then a multicast or broadcast address is also 3211 * acceptable. 3212 * 3213 * In the case of a broadcast/multicast address, however, the 3214 * upper protocol is expected to reset the src address 3215 * to zero when we return IPVL_MCAST/IPVL_BCAST so that 3216 * no packets are emitted with broadcast/multicast address as 3217 * source address (that violates hosts requirements RFC 1122) 3218 * The addresses valid for bind are: 3219 * (1) - INADDR_ANY (0) 3220 * (2) - IP address of an UP interface 3221 * (3) - IP address of a DOWN interface 3222 * (4) - valid local IP broadcast addresses. In this case 3223 * the conn will only receive packets destined to 3224 * the specified broadcast address. 3225 * (5) - a multicast address. In this case 3226 * the conn will only receive packets destined to 3227 * the specified multicast address. Note: the 3228 * application still has to issue an 3229 * IP_ADD_MEMBERSHIP socket option. 3230 * 3231 * In all the above cases, the bound address must be valid in the current zone. 3232 * When the address is loopback, multicast or broadcast, there might be many 3233 * matching IREs so bind has to look up based on the zone. 3234 */ 3235 ip_laddr_t 3236 ip_laddr_verify_v4(ipaddr_t src_addr, zoneid_t zoneid, 3237 ip_stack_t *ipst, boolean_t allow_mcbc) 3238 { 3239 ire_t *src_ire; 3240 3241 ASSERT(src_addr != INADDR_ANY); 3242 3243 src_ire = ire_ftable_lookup_v4(src_addr, 0, 0, 0, 3244 NULL, zoneid, NULL, MATCH_IRE_ZONEONLY, 0, ipst, NULL); 3245 3246 /* 3247 * If an address other than in6addr_any is requested, 3248 * we verify that it is a valid address for bind 3249 * Note: Following code is in if-else-if form for 3250 * readability compared to a condition check. 3251 */ 3252 if (src_ire != NULL && (src_ire->ire_type & (IRE_LOCAL|IRE_LOOPBACK))) { 3253 /* 3254 * (2) Bind to address of local UP interface 3255 */ 3256 ire_refrele(src_ire); 3257 return (IPVL_UNICAST_UP); 3258 } else if (src_ire != NULL && src_ire->ire_type & IRE_BROADCAST) { 3259 /* 3260 * (4) Bind to broadcast address 3261 */ 3262 ire_refrele(src_ire); 3263 if (allow_mcbc) 3264 return (IPVL_BCAST); 3265 else 3266 return (IPVL_BAD); 3267 } else if (CLASSD(src_addr)) { 3268 /* (5) bind to multicast address. */ 3269 if (src_ire != NULL) 3270 ire_refrele(src_ire); 3271 3272 if (allow_mcbc) 3273 return (IPVL_MCAST); 3274 else 3275 return (IPVL_BAD); 3276 } else { 3277 ipif_t *ipif; 3278 3279 /* 3280 * (3) Bind to address of local DOWN interface? 3281 * (ipif_lookup_addr() looks up all interfaces 3282 * but we do not get here for UP interfaces 3283 * - case (2) above) 3284 */ 3285 if (src_ire != NULL) 3286 ire_refrele(src_ire); 3287 3288 ipif = ipif_lookup_addr(src_addr, NULL, zoneid, ipst); 3289 if (ipif == NULL) 3290 return (IPVL_BAD); 3291 3292 /* Not a useful source? */ 3293 if (ipif->ipif_flags & (IPIF_NOLOCAL | IPIF_ANYCAST)) { 3294 ipif_refrele(ipif); 3295 return (IPVL_BAD); 3296 } 3297 ipif_refrele(ipif); 3298 return (IPVL_UNICAST_DOWN); 3299 } 3300 } 3301 3302 /* 3303 * Insert in the bind fanout for IPv4 and IPv6. 3304 * The caller should already have used ip_laddr_verify_v*() before calling 3305 * this. 3306 */ 3307 int 3308 ip_laddr_fanout_insert(conn_t *connp) 3309 { 3310 int error; 3311 3312 /* 3313 * Allow setting new policies. For example, disconnects result 3314 * in us being called. As we would have set conn_policy_cached 3315 * to B_TRUE before, we should set it to B_FALSE, so that policy 3316 * can change after the disconnect. 3317 */ 3318 connp->conn_policy_cached = B_FALSE; 3319 3320 error = ipcl_bind_insert(connp); 3321 if (error != 0) { 3322 if (connp->conn_anon_port) { 3323 (void) tsol_mlp_anon(crgetzone(connp->conn_cred), 3324 connp->conn_mlp_type, connp->conn_proto, 3325 ntohs(connp->conn_lport), B_FALSE); 3326 } 3327 connp->conn_mlp_type = mlptSingle; 3328 } 3329 return (error); 3330 } 3331 3332 /* 3333 * Verify that both the source and destination addresses are valid. If 3334 * IPDF_VERIFY_DST is not set, then the destination address may be unreachable, 3335 * i.e. have no route to it. Protocols like TCP want to verify destination 3336 * reachability, while tunnels do not. 3337 * 3338 * Determine the route, the interface, and (optionally) the source address 3339 * to use to reach a given destination. 3340 * Note that we allow connect to broadcast and multicast addresses when 3341 * IPDF_ALLOW_MCBC is set. 3342 * first_hop and dst_addr are normally the same, but if source routing 3343 * they will differ; in that case the first_hop is what we'll use for the 3344 * routing lookup but the dce and label checks will be done on dst_addr, 3345 * 3346 * If uinfo is set, then we fill in the best available information 3347 * we have for the destination. This is based on (in priority order) any 3348 * metrics and path MTU stored in a dce_t, route metrics, and finally the 3349 * ill_mtu. 3350 * 3351 * Tsol note: If we have a source route then dst_addr != firsthop. But we 3352 * always do the label check on dst_addr. 3353 */ 3354 int 3355 ip_set_destination_v4(ipaddr_t *src_addrp, ipaddr_t dst_addr, ipaddr_t firsthop, 3356 ip_xmit_attr_t *ixa, iulp_t *uinfo, uint32_t flags, uint_t mac_mode) 3357 { 3358 ire_t *ire = NULL; 3359 int error = 0; 3360 ipaddr_t setsrc; /* RTF_SETSRC */ 3361 zoneid_t zoneid = ixa->ixa_zoneid; /* Honors SO_ALLZONES */ 3362 ip_stack_t *ipst = ixa->ixa_ipst; 3363 dce_t *dce; 3364 uint_t pmtu; 3365 uint_t generation; 3366 nce_t *nce; 3367 ill_t *ill = NULL; 3368 boolean_t multirt = B_FALSE; 3369 3370 ASSERT(ixa->ixa_flags & IXAF_IS_IPV4); 3371 3372 /* 3373 * We never send to zero; the ULPs map it to the loopback address. 3374 * We can't allow it since we use zero to mean unitialized in some 3375 * places. 3376 */ 3377 ASSERT(dst_addr != INADDR_ANY); 3378 3379 if (is_system_labeled()) { 3380 ts_label_t *tsl = NULL; 3381 3382 error = tsol_check_dest(ixa->ixa_tsl, &dst_addr, IPV4_VERSION, 3383 mac_mode, (flags & IPDF_ZONE_IS_GLOBAL) != 0, &tsl); 3384 if (error != 0) 3385 return (error); 3386 if (tsl != NULL) { 3387 /* Update the label */ 3388 ip_xmit_attr_replace_tsl(ixa, tsl); 3389 } 3390 } 3391 3392 setsrc = INADDR_ANY; 3393 /* 3394 * Select a route; For IPMP interfaces, we would only select 3395 * a "hidden" route (i.e., going through a specific under_ill) 3396 * if ixa_ifindex has been specified. 3397 */ 3398 ire = ip_select_route_v4(firsthop, *src_addrp, ixa, 3399 &generation, &setsrc, &error, &multirt); 3400 ASSERT(ire != NULL); /* IRE_NOROUTE if none found */ 3401 if (error != 0) 3402 goto bad_addr; 3403 3404 /* 3405 * ire can't be a broadcast or multicast unless IPDF_ALLOW_MCBC is set. 3406 * If IPDF_VERIFY_DST is set, the destination must be reachable; 3407 * Otherwise the destination needn't be reachable. 3408 * 3409 * If we match on a reject or black hole, then we've got a 3410 * local failure. May as well fail out the connect() attempt, 3411 * since it's never going to succeed. 3412 */ 3413 if (ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) { 3414 /* 3415 * If we're verifying destination reachability, we always want 3416 * to complain here. 3417 * 3418 * If we're not verifying destination reachability but the 3419 * destination has a route, we still want to fail on the 3420 * temporary address and broadcast address tests. 3421 * 3422 * In both cases do we let the code continue so some reasonable 3423 * information is returned to the caller. That enables the 3424 * caller to use (and even cache) the IRE. conn_ip_ouput will 3425 * use the generation mismatch path to check for the unreachable 3426 * case thereby avoiding any specific check in the main path. 3427 */ 3428 ASSERT(generation == IRE_GENERATION_VERIFY); 3429 if (flags & IPDF_VERIFY_DST) { 3430 /* 3431 * Set errno but continue to set up ixa_ire to be 3432 * the RTF_REJECT|RTF_BLACKHOLE IRE. 3433 * That allows callers to use ip_output to get an 3434 * ICMP error back. 3435 */ 3436 if (!(ire->ire_type & IRE_HOST)) 3437 error = ENETUNREACH; 3438 else 3439 error = EHOSTUNREACH; 3440 } 3441 } 3442 3443 if ((ire->ire_type & (IRE_BROADCAST|IRE_MULTICAST)) && 3444 !(flags & IPDF_ALLOW_MCBC)) { 3445 ire_refrele(ire); 3446 ire = ire_reject(ipst, B_FALSE); 3447 generation = IRE_GENERATION_VERIFY; 3448 error = ENETUNREACH; 3449 } 3450 3451 /* Cache things */ 3452 if (ixa->ixa_ire != NULL) 3453 ire_refrele_notr(ixa->ixa_ire); 3454 #ifdef DEBUG 3455 ire_refhold_notr(ire); 3456 ire_refrele(ire); 3457 #endif 3458 ixa->ixa_ire = ire; 3459 ixa->ixa_ire_generation = generation; 3460 3461 /* 3462 * Ensure that ixa_dce is always set any time that ixa_ire is set, 3463 * since some callers will send a packet to conn_ip_output() even if 3464 * there's an error. 3465 */ 3466 if (flags & IPDF_UNIQUE_DCE) { 3467 /* Fallback to the default dce if allocation fails */ 3468 dce = dce_lookup_and_add_v4(dst_addr, ipst); 3469 if (dce != NULL) 3470 generation = dce->dce_generation; 3471 else 3472 dce = dce_lookup_v4(dst_addr, ipst, &generation); 3473 } else { 3474 dce = dce_lookup_v4(dst_addr, ipst, &generation); 3475 } 3476 ASSERT(dce != NULL); 3477 if (ixa->ixa_dce != NULL) 3478 dce_refrele_notr(ixa->ixa_dce); 3479 #ifdef DEBUG 3480 dce_refhold_notr(dce); 3481 dce_refrele(dce); 3482 #endif 3483 ixa->ixa_dce = dce; 3484 ixa->ixa_dce_generation = generation; 3485 3486 /* 3487 * For multicast with multirt we have a flag passed back from 3488 * ire_lookup_multi_ill_v4 since we don't have an IRE for each 3489 * possible multicast address. 3490 * We also need a flag for multicast since we can't check 3491 * whether RTF_MULTIRT is set in ixa_ire for multicast. 3492 */ 3493 if (multirt) { 3494 ixa->ixa_postfragfn = ip_postfrag_multirt_v4; 3495 ixa->ixa_flags |= IXAF_MULTIRT_MULTICAST; 3496 } else { 3497 ixa->ixa_postfragfn = ire->ire_postfragfn; 3498 ixa->ixa_flags &= ~IXAF_MULTIRT_MULTICAST; 3499 } 3500 if (!(ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE))) { 3501 /* Get an nce to cache. */ 3502 nce = ire_to_nce(ire, firsthop, NULL); 3503 if (nce == NULL) { 3504 /* Allocation failure? */ 3505 ixa->ixa_ire_generation = IRE_GENERATION_VERIFY; 3506 } else { 3507 if (ixa->ixa_nce != NULL) 3508 nce_refrele(ixa->ixa_nce); 3509 ixa->ixa_nce = nce; 3510 } 3511 } 3512 3513 /* 3514 * If the source address is a loopback address, the 3515 * destination had best be local or multicast. 3516 * If we are sending to an IRE_LOCAL using a loopback source then 3517 * it had better be the same zoneid. 3518 */ 3519 if (*src_addrp == htonl(INADDR_LOOPBACK)) { 3520 if ((ire->ire_type & IRE_LOCAL) && ire->ire_zoneid != zoneid) { 3521 ire = NULL; /* Stored in ixa_ire */ 3522 error = EADDRNOTAVAIL; 3523 goto bad_addr; 3524 } 3525 if (!(ire->ire_type & (IRE_LOOPBACK|IRE_LOCAL|IRE_MULTICAST))) { 3526 ire = NULL; /* Stored in ixa_ire */ 3527 error = EADDRNOTAVAIL; 3528 goto bad_addr; 3529 } 3530 } 3531 if (ire->ire_type & IRE_BROADCAST) { 3532 /* 3533 * If the ULP didn't have a specified source, then we 3534 * make sure we reselect the source when sending 3535 * broadcasts out different interfaces. 3536 */ 3537 if (flags & IPDF_SELECT_SRC) 3538 ixa->ixa_flags |= IXAF_SET_SOURCE; 3539 else 3540 ixa->ixa_flags &= ~IXAF_SET_SOURCE; 3541 } 3542 3543 /* 3544 * Does the caller want us to pick a source address? 3545 */ 3546 if (flags & IPDF_SELECT_SRC) { 3547 ipaddr_t src_addr; 3548 3549 /* 3550 * We use use ire_nexthop_ill to avoid the under ipmp 3551 * interface for source address selection. Note that for ipmp 3552 * probe packets, ixa_ifindex would have been specified, and 3553 * the ip_select_route() invocation would have picked an ire 3554 * will ire_ill pointing at an under interface. 3555 */ 3556 ill = ire_nexthop_ill(ire); 3557 3558 /* If unreachable we have no ill but need some source */ 3559 if (ill == NULL) { 3560 src_addr = htonl(INADDR_LOOPBACK); 3561 /* Make sure we look for a better source address */ 3562 generation = SRC_GENERATION_VERIFY; 3563 } else { 3564 error = ip_select_source_v4(ill, setsrc, dst_addr, 3565 ixa->ixa_multicast_ifaddr, zoneid, 3566 ipst, &src_addr, &generation, NULL); 3567 if (error != 0) { 3568 ire = NULL; /* Stored in ixa_ire */ 3569 goto bad_addr; 3570 } 3571 } 3572 3573 /* 3574 * We allow the source address to to down. 3575 * However, we check that we don't use the loopback address 3576 * as a source when sending out on the wire. 3577 */ 3578 if ((src_addr == htonl(INADDR_LOOPBACK)) && 3579 !(ire->ire_type & (IRE_LOCAL|IRE_LOOPBACK|IRE_MULTICAST)) && 3580 !(ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE))) { 3581 ire = NULL; /* Stored in ixa_ire */ 3582 error = EADDRNOTAVAIL; 3583 goto bad_addr; 3584 } 3585 3586 *src_addrp = src_addr; 3587 ixa->ixa_src_generation = generation; 3588 } 3589 3590 /* 3591 * Make sure we don't leave an unreachable ixa_nce in place 3592 * since ip_select_route is used when we unplumb i.e., remove 3593 * references on ixa_ire, ixa_nce, and ixa_dce. 3594 */ 3595 nce = ixa->ixa_nce; 3596 if (nce != NULL && nce->nce_is_condemned) { 3597 nce_refrele(nce); 3598 ixa->ixa_nce = NULL; 3599 ixa->ixa_ire_generation = IRE_GENERATION_VERIFY; 3600 } 3601 3602 /* 3603 * The caller has set IXAF_PMTU_DISCOVERY if path MTU is desired. 3604 * However, we can't do it for IPv4 multicast or broadcast. 3605 */ 3606 if (ire->ire_type & (IRE_BROADCAST|IRE_MULTICAST)) 3607 ixa->ixa_flags &= ~IXAF_PMTU_DISCOVERY; 3608 3609 /* 3610 * Set initial value for fragmentation limit. Either conn_ip_output 3611 * or ULP might updates it when there are routing changes. 3612 * Handles a NULL ixa_ire->ire_ill or a NULL ixa_nce for RTF_REJECT. 3613 */ 3614 pmtu = ip_get_pmtu(ixa); 3615 ixa->ixa_fragsize = pmtu; 3616 /* Make sure ixa_fragsize and ixa_pmtu remain identical */ 3617 if (ixa->ixa_flags & IXAF_VERIFY_PMTU) 3618 ixa->ixa_pmtu = pmtu; 3619 3620 /* 3621 * Extract information useful for some transports. 3622 * First we look for DCE metrics. Then we take what we have in 3623 * the metrics in the route, where the offlink is used if we have 3624 * one. 3625 */ 3626 if (uinfo != NULL) { 3627 bzero(uinfo, sizeof (*uinfo)); 3628 3629 if (dce->dce_flags & DCEF_UINFO) 3630 *uinfo = dce->dce_uinfo; 3631 3632 rts_merge_metrics(uinfo, &ire->ire_metrics); 3633 3634 /* Allow ire_metrics to decrease the path MTU from above */ 3635 if (uinfo->iulp_mtu == 0 || uinfo->iulp_mtu > pmtu) 3636 uinfo->iulp_mtu = pmtu; 3637 3638 uinfo->iulp_localnet = (ire->ire_type & IRE_ONLINK) != 0; 3639 uinfo->iulp_loopback = (ire->ire_type & IRE_LOOPBACK) != 0; 3640 uinfo->iulp_local = (ire->ire_type & IRE_LOCAL) != 0; 3641 } 3642 3643 if (ill != NULL) 3644 ill_refrele(ill); 3645 3646 return (error); 3647 3648 bad_addr: 3649 if (ire != NULL) 3650 ire_refrele(ire); 3651 3652 if (ill != NULL) 3653 ill_refrele(ill); 3654 3655 /* 3656 * Make sure we don't leave an unreachable ixa_nce in place 3657 * since ip_select_route is used when we unplumb i.e., remove 3658 * references on ixa_ire, ixa_nce, and ixa_dce. 3659 */ 3660 nce = ixa->ixa_nce; 3661 if (nce != NULL && nce->nce_is_condemned) { 3662 nce_refrele(nce); 3663 ixa->ixa_nce = NULL; 3664 ixa->ixa_ire_generation = IRE_GENERATION_VERIFY; 3665 } 3666 3667 return (error); 3668 } 3669 3670 3671 /* 3672 * Get the base MTU for the case when path MTU discovery is not used. 3673 * Takes the MTU of the IRE into account. 3674 */ 3675 uint_t 3676 ip_get_base_mtu(ill_t *ill, ire_t *ire) 3677 { 3678 uint_t mtu = ill->ill_mtu; 3679 uint_t iremtu = ire->ire_metrics.iulp_mtu; 3680 3681 if (iremtu != 0 && iremtu < mtu) 3682 mtu = iremtu; 3683 3684 return (mtu); 3685 } 3686 3687 /* 3688 * Get the PMTU for the attributes. Handles both IPv4 and IPv6. 3689 * Assumes that ixa_ire, dce, and nce have already been set up. 3690 * 3691 * The caller has set IXAF_PMTU_DISCOVERY if path MTU discovery is desired. 3692 * We avoid path MTU discovery if it is disabled with ndd. 3693 * Furtermore, if the path MTU is too small, then we don't set DF for IPv4. 3694 * 3695 * NOTE: We also used to turn it off for source routed packets. That 3696 * is no longer required since the dce is per final destination. 3697 */ 3698 uint_t 3699 ip_get_pmtu(ip_xmit_attr_t *ixa) 3700 { 3701 ip_stack_t *ipst = ixa->ixa_ipst; 3702 dce_t *dce; 3703 nce_t *nce; 3704 ire_t *ire; 3705 uint_t pmtu; 3706 3707 ire = ixa->ixa_ire; 3708 dce = ixa->ixa_dce; 3709 nce = ixa->ixa_nce; 3710 3711 /* 3712 * If path MTU discovery has been turned off by ndd, then we ignore 3713 * any dce_pmtu and for IPv4 we will not set DF. 3714 */ 3715 if (!ipst->ips_ip_path_mtu_discovery) 3716 ixa->ixa_flags &= ~IXAF_PMTU_DISCOVERY; 3717 3718 pmtu = IP_MAXPACKET; 3719 /* 3720 * Decide whether whether IPv4 sets DF 3721 * For IPv6 "no DF" means to use the 1280 mtu 3722 */ 3723 if (ixa->ixa_flags & IXAF_PMTU_DISCOVERY) { 3724 ixa->ixa_flags |= IXAF_PMTU_IPV4_DF; 3725 } else { 3726 ixa->ixa_flags &= ~IXAF_PMTU_IPV4_DF; 3727 if (!(ixa->ixa_flags & IXAF_IS_IPV4)) 3728 pmtu = IPV6_MIN_MTU; 3729 } 3730 3731 /* Check if the PMTU is to old before we use it */ 3732 if ((dce->dce_flags & DCEF_PMTU) && 3733 TICK_TO_SEC(ddi_get_lbolt64()) - dce->dce_last_change_time > 3734 ipst->ips_ip_pathmtu_interval) { 3735 /* 3736 * Older than 20 minutes. Drop the path MTU information. 3737 */ 3738 mutex_enter(&dce->dce_lock); 3739 dce->dce_flags &= ~(DCEF_PMTU|DCEF_TOO_SMALL_PMTU); 3740 dce->dce_last_change_time = TICK_TO_SEC(ddi_get_lbolt64()); 3741 mutex_exit(&dce->dce_lock); 3742 dce_increment_generation(dce); 3743 } 3744 3745 /* The metrics on the route can lower the path MTU */ 3746 if (ire->ire_metrics.iulp_mtu != 0 && 3747 ire->ire_metrics.iulp_mtu < pmtu) 3748 pmtu = ire->ire_metrics.iulp_mtu; 3749 3750 /* 3751 * If the path MTU is smaller than some minimum, we still use dce_pmtu 3752 * above (would be 576 for IPv4 and 1280 for IPv6), but we clear 3753 * IXAF_PMTU_IPV4_DF so that we avoid setting DF for IPv4. 3754 */ 3755 if (ixa->ixa_flags & IXAF_PMTU_DISCOVERY) { 3756 if (dce->dce_flags & DCEF_PMTU) { 3757 if (dce->dce_pmtu < pmtu) 3758 pmtu = dce->dce_pmtu; 3759 3760 if (dce->dce_flags & DCEF_TOO_SMALL_PMTU) { 3761 ixa->ixa_flags |= IXAF_PMTU_TOO_SMALL; 3762 ixa->ixa_flags &= ~IXAF_PMTU_IPV4_DF; 3763 } else { 3764 ixa->ixa_flags &= ~IXAF_PMTU_TOO_SMALL; 3765 ixa->ixa_flags |= IXAF_PMTU_IPV4_DF; 3766 } 3767 } else { 3768 ixa->ixa_flags &= ~IXAF_PMTU_TOO_SMALL; 3769 ixa->ixa_flags |= IXAF_PMTU_IPV4_DF; 3770 } 3771 } 3772 3773 /* 3774 * If we have an IRE_LOCAL we use the loopback mtu instead of 3775 * the ill for going out the wire i.e., IRE_LOCAL gets the same 3776 * mtu as IRE_LOOPBACK. 3777 */ 3778 if (ire->ire_type & (IRE_LOCAL|IRE_LOOPBACK)) { 3779 uint_t loopback_mtu; 3780 3781 loopback_mtu = (ire->ire_ipversion == IPV6_VERSION) ? 3782 ip_loopback_mtu_v6plus : ip_loopback_mtuplus; 3783 3784 if (loopback_mtu < pmtu) 3785 pmtu = loopback_mtu; 3786 } else if (nce != NULL) { 3787 /* 3788 * Make sure we don't exceed the interface MTU. 3789 * In the case of RTF_REJECT or RTF_BLACKHOLE we might not have 3790 * an ill. We'd use the above IP_MAXPACKET in that case just 3791 * to tell the transport something larger than zero. 3792 */ 3793 if (nce->nce_common->ncec_ill->ill_mtu < pmtu) 3794 pmtu = nce->nce_common->ncec_ill->ill_mtu; 3795 if (nce->nce_common->ncec_ill != nce->nce_ill && 3796 nce->nce_ill->ill_mtu < pmtu) { 3797 /* 3798 * for interfaces in an IPMP group, the mtu of 3799 * the nce_ill (under_ill) could be different 3800 * from the mtu of the ncec_ill, so we take the 3801 * min of the two. 3802 */ 3803 pmtu = nce->nce_ill->ill_mtu; 3804 } 3805 } 3806 3807 /* 3808 * Handle the IPV6_USE_MIN_MTU socket option or ancillary data. 3809 * Only applies to IPv6. 3810 */ 3811 if (!(ixa->ixa_flags & IXAF_IS_IPV4)) { 3812 if (ixa->ixa_flags & IXAF_USE_MIN_MTU) { 3813 switch (ixa->ixa_use_min_mtu) { 3814 case IPV6_USE_MIN_MTU_MULTICAST: 3815 if (ire->ire_type & IRE_MULTICAST) 3816 pmtu = IPV6_MIN_MTU; 3817 break; 3818 case IPV6_USE_MIN_MTU_ALWAYS: 3819 pmtu = IPV6_MIN_MTU; 3820 break; 3821 case IPV6_USE_MIN_MTU_NEVER: 3822 break; 3823 } 3824 } else { 3825 /* Default is IPV6_USE_MIN_MTU_MULTICAST */ 3826 if (ire->ire_type & IRE_MULTICAST) 3827 pmtu = IPV6_MIN_MTU; 3828 } 3829 } 3830 3831 /* 3832 * After receiving an ICMPv6 "packet too big" message with a 3833 * MTU < 1280, and for multirouted IPv6 packets, the IP layer 3834 * will insert a 8-byte fragment header in every packet. We compensate 3835 * for those cases by returning a smaller path MTU to the ULP. 3836 * 3837 * In the case of CGTP then ip_output will add a fragment header. 3838 * Make sure there is room for it by telling a smaller number 3839 * to the transport. 3840 * 3841 * When IXAF_IPV6_ADDR_FRAGHDR we subtract the frag hdr here 3842 * so the ULPs consistently see a iulp_pmtu and ip_get_pmtu() 3843 * which is the size of the packets it can send. 3844 */ 3845 if (!(ixa->ixa_flags & IXAF_IS_IPV4)) { 3846 if ((dce->dce_flags & DCEF_TOO_SMALL_PMTU) || 3847 (ire->ire_flags & RTF_MULTIRT) || 3848 (ixa->ixa_flags & IXAF_MULTIRT_MULTICAST)) { 3849 pmtu -= sizeof (ip6_frag_t); 3850 ixa->ixa_flags |= IXAF_IPV6_ADD_FRAGHDR; 3851 } 3852 } 3853 3854 return (pmtu); 3855 } 3856 3857 /* 3858 * Carve "len" bytes out of an mblk chain, consuming any we empty, and duping 3859 * the final piece where we don't. Return a pointer to the first mblk in the 3860 * result, and update the pointer to the next mblk to chew on. If anything 3861 * goes wrong (i.e., dupb fails), we waste everything in sight and return a 3862 * NULL pointer. 3863 */ 3864 mblk_t * 3865 ip_carve_mp(mblk_t **mpp, ssize_t len) 3866 { 3867 mblk_t *mp0; 3868 mblk_t *mp1; 3869 mblk_t *mp2; 3870 3871 if (!len || !mpp || !(mp0 = *mpp)) 3872 return (NULL); 3873 /* If we aren't going to consume the first mblk, we need a dup. */ 3874 if (mp0->b_wptr - mp0->b_rptr > len) { 3875 mp1 = dupb(mp0); 3876 if (mp1) { 3877 /* Partition the data between the two mblks. */ 3878 mp1->b_wptr = mp1->b_rptr + len; 3879 mp0->b_rptr = mp1->b_wptr; 3880 /* 3881 * after adjustments if mblk not consumed is now 3882 * unaligned, try to align it. If this fails free 3883 * all messages and let upper layer recover. 3884 */ 3885 if (!OK_32PTR(mp0->b_rptr)) { 3886 if (!pullupmsg(mp0, -1)) { 3887 freemsg(mp0); 3888 freemsg(mp1); 3889 *mpp = NULL; 3890 return (NULL); 3891 } 3892 } 3893 } 3894 return (mp1); 3895 } 3896 /* Eat through as many mblks as we need to get len bytes. */ 3897 len -= mp0->b_wptr - mp0->b_rptr; 3898 for (mp2 = mp1 = mp0; (mp2 = mp2->b_cont) != 0 && len; mp1 = mp2) { 3899 if (mp2->b_wptr - mp2->b_rptr > len) { 3900 /* 3901 * We won't consume the entire last mblk. Like 3902 * above, dup and partition it. 3903 */ 3904 mp1->b_cont = dupb(mp2); 3905 mp1 = mp1->b_cont; 3906 if (!mp1) { 3907 /* 3908 * Trouble. Rather than go to a lot of 3909 * trouble to clean up, we free the messages. 3910 * This won't be any worse than losing it on 3911 * the wire. 3912 */ 3913 freemsg(mp0); 3914 freemsg(mp2); 3915 *mpp = NULL; 3916 return (NULL); 3917 } 3918 mp1->b_wptr = mp1->b_rptr + len; 3919 mp2->b_rptr = mp1->b_wptr; 3920 /* 3921 * after adjustments if mblk not consumed is now 3922 * unaligned, try to align it. If this fails free 3923 * all messages and let upper layer recover. 3924 */ 3925 if (!OK_32PTR(mp2->b_rptr)) { 3926 if (!pullupmsg(mp2, -1)) { 3927 freemsg(mp0); 3928 freemsg(mp2); 3929 *mpp = NULL; 3930 return (NULL); 3931 } 3932 } 3933 *mpp = mp2; 3934 return (mp0); 3935 } 3936 /* Decrement len by the amount we just got. */ 3937 len -= mp2->b_wptr - mp2->b_rptr; 3938 } 3939 /* 3940 * len should be reduced to zero now. If not our caller has 3941 * screwed up. 3942 */ 3943 if (len) { 3944 /* Shouldn't happen! */ 3945 freemsg(mp0); 3946 *mpp = NULL; 3947 return (NULL); 3948 } 3949 /* 3950 * We consumed up to exactly the end of an mblk. Detach the part 3951 * we are returning from the rest of the chain. 3952 */ 3953 mp1->b_cont = NULL; 3954 *mpp = mp2; 3955 return (mp0); 3956 } 3957 3958 /* The ill stream is being unplumbed. Called from ip_close */ 3959 int 3960 ip_modclose(ill_t *ill) 3961 { 3962 boolean_t success; 3963 ipsq_t *ipsq; 3964 ipif_t *ipif; 3965 queue_t *q = ill->ill_rq; 3966 ip_stack_t *ipst = ill->ill_ipst; 3967 int i; 3968 arl_ill_common_t *ai = ill->ill_common; 3969 3970 /* 3971 * The punlink prior to this may have initiated a capability 3972 * negotiation. But ipsq_enter will block until that finishes or 3973 * times out. 3974 */ 3975 success = ipsq_enter(ill, B_FALSE, NEW_OP); 3976 3977 /* 3978 * Open/close/push/pop is guaranteed to be single threaded 3979 * per stream by STREAMS. FS guarantees that all references 3980 * from top are gone before close is called. So there can't 3981 * be another close thread that has set CONDEMNED on this ill. 3982 * and cause ipsq_enter to return failure. 3983 */ 3984 ASSERT(success); 3985 ipsq = ill->ill_phyint->phyint_ipsq; 3986 3987 /* 3988 * Mark it condemned. No new reference will be made to this ill. 3989 * Lookup functions will return an error. Threads that try to 3990 * increment the refcnt must check for ILL_CAN_LOOKUP. This ensures 3991 * that the refcnt will drop down to zero. 3992 */ 3993 mutex_enter(&ill->ill_lock); 3994 ill->ill_state_flags |= ILL_CONDEMNED; 3995 for (ipif = ill->ill_ipif; ipif != NULL; 3996 ipif = ipif->ipif_next) { 3997 ipif->ipif_state_flags |= IPIF_CONDEMNED; 3998 } 3999 /* 4000 * Wake up anybody waiting to enter the ipsq. ipsq_enter 4001 * returns error if ILL_CONDEMNED is set 4002 */ 4003 cv_broadcast(&ill->ill_cv); 4004 mutex_exit(&ill->ill_lock); 4005 4006 /* 4007 * Send all the deferred DLPI messages downstream which came in 4008 * during the small window right before ipsq_enter(). We do this 4009 * without waiting for the ACKs because all the ACKs for M_PROTO 4010 * messages are ignored in ip_rput() when ILL_CONDEMNED is set. 4011 */ 4012 ill_dlpi_send_deferred(ill); 4013 4014 /* 4015 * Shut down fragmentation reassembly. 4016 * ill_frag_timer won't start a timer again. 4017 * Now cancel any existing timer 4018 */ 4019 (void) untimeout(ill->ill_frag_timer_id); 4020 (void) ill_frag_timeout(ill, 0); 4021 4022 /* 4023 * Call ill_delete to bring down the ipifs, ilms and ill on 4024 * this ill. Then wait for the refcnts to drop to zero. 4025 * ill_is_freeable checks whether the ill is really quiescent. 4026 * Then make sure that threads that are waiting to enter the 4027 * ipsq have seen the error returned by ipsq_enter and have 4028 * gone away. Then we call ill_delete_tail which does the 4029 * DL_UNBIND_REQ with the driver and then qprocsoff. 4030 */ 4031 ill_delete(ill); 4032 mutex_enter(&ill->ill_lock); 4033 while (!ill_is_freeable(ill)) 4034 cv_wait(&ill->ill_cv, &ill->ill_lock); 4035 4036 while (ill->ill_waiters) 4037 cv_wait(&ill->ill_cv, &ill->ill_lock); 4038 4039 mutex_exit(&ill->ill_lock); 4040 4041 /* 4042 * ill_delete_tail drops reference on ill_ipst, but we need to keep 4043 * it held until the end of the function since the cleanup 4044 * below needs to be able to use the ip_stack_t. 4045 */ 4046 netstack_hold(ipst->ips_netstack); 4047 4048 /* qprocsoff is done via ill_delete_tail */ 4049 ill_delete_tail(ill); 4050 /* 4051 * synchronously wait for arp stream to unbind. After this, we 4052 * cannot get any data packets up from the driver. 4053 */ 4054 arp_unbind_complete(ill); 4055 ASSERT(ill->ill_ipst == NULL); 4056 4057 /* 4058 * Walk through all conns and qenable those that have queued data. 4059 * Close synchronization needs this to 4060 * be done to ensure that all upper layers blocked 4061 * due to flow control to the closing device 4062 * get unblocked. 4063 */ 4064 ip1dbg(("ip_wsrv: walking\n")); 4065 for (i = 0; i < TX_FANOUT_SIZE; i++) { 4066 conn_walk_drain(ipst, &ipst->ips_idl_tx_list[i]); 4067 } 4068 4069 /* 4070 * ai can be null if this is an IPv6 ill, or if the IPv4 4071 * stream is being torn down before ARP was plumbed (e.g., 4072 * /sbin/ifconfig plumbing a stream twice, and encountering 4073 * an error 4074 */ 4075 if (ai != NULL) { 4076 ASSERT(!ill->ill_isv6); 4077 mutex_enter(&ai->ai_lock); 4078 ai->ai_ill = NULL; 4079 if (ai->ai_arl == NULL) { 4080 mutex_destroy(&ai->ai_lock); 4081 kmem_free(ai, sizeof (*ai)); 4082 } else { 4083 cv_signal(&ai->ai_ill_unplumb_done); 4084 mutex_exit(&ai->ai_lock); 4085 } 4086 } 4087 4088 mutex_enter(&ipst->ips_ip_mi_lock); 4089 mi_close_unlink(&ipst->ips_ip_g_head, (IDP)ill); 4090 mutex_exit(&ipst->ips_ip_mi_lock); 4091 4092 /* 4093 * credp could be null if the open didn't succeed and ip_modopen 4094 * itself calls ip_close. 4095 */ 4096 if (ill->ill_credp != NULL) 4097 crfree(ill->ill_credp); 4098 4099 mutex_destroy(&ill->ill_saved_ire_lock); 4100 mutex_destroy(&ill->ill_lock); 4101 rw_destroy(&ill->ill_mcast_lock); 4102 mutex_destroy(&ill->ill_mcast_serializer); 4103 list_destroy(&ill->ill_nce); 4104 4105 /* 4106 * Now we are done with the module close pieces that 4107 * need the netstack_t. 4108 */ 4109 netstack_rele(ipst->ips_netstack); 4110 4111 mi_close_free((IDP)ill); 4112 q->q_ptr = WR(q)->q_ptr = NULL; 4113 4114 ipsq_exit(ipsq); 4115 4116 return (0); 4117 } 4118 4119 /* 4120 * This is called as part of close() for IP, UDP, ICMP, and RTS 4121 * in order to quiesce the conn. 4122 */ 4123 void 4124 ip_quiesce_conn(conn_t *connp) 4125 { 4126 boolean_t drain_cleanup_reqd = B_FALSE; 4127 boolean_t conn_ioctl_cleanup_reqd = B_FALSE; 4128 boolean_t ilg_cleanup_reqd = B_FALSE; 4129 ip_stack_t *ipst; 4130 4131 ASSERT(!IPCL_IS_TCP(connp)); 4132 ipst = connp->conn_netstack->netstack_ip; 4133 4134 /* 4135 * Mark the conn as closing, and this conn must not be 4136 * inserted in future into any list. Eg. conn_drain_insert(), 4137 * won't insert this conn into the conn_drain_list. 4138 * 4139 * conn_idl, and conn_ilg cannot get set henceforth. 4140 */ 4141 mutex_enter(&connp->conn_lock); 4142 ASSERT(!(connp->conn_state_flags & CONN_QUIESCED)); 4143 connp->conn_state_flags |= CONN_CLOSING; 4144 if (connp->conn_idl != NULL) 4145 drain_cleanup_reqd = B_TRUE; 4146 if (connp->conn_oper_pending_ill != NULL) 4147 conn_ioctl_cleanup_reqd = B_TRUE; 4148 if (connp->conn_dhcpinit_ill != NULL) { 4149 ASSERT(connp->conn_dhcpinit_ill->ill_dhcpinit != 0); 4150 atomic_dec_32(&connp->conn_dhcpinit_ill->ill_dhcpinit); 4151 ill_set_inputfn(connp->conn_dhcpinit_ill); 4152 connp->conn_dhcpinit_ill = NULL; 4153 } 4154 if (connp->conn_ilg != NULL) 4155 ilg_cleanup_reqd = B_TRUE; 4156 mutex_exit(&connp->conn_lock); 4157 4158 if (conn_ioctl_cleanup_reqd) 4159 conn_ioctl_cleanup(connp); 4160 4161 if (is_system_labeled() && connp->conn_anon_port) { 4162 (void) tsol_mlp_anon(crgetzone(connp->conn_cred), 4163 connp->conn_mlp_type, connp->conn_proto, 4164 ntohs(connp->conn_lport), B_FALSE); 4165 connp->conn_anon_port = 0; 4166 } 4167 connp->conn_mlp_type = mlptSingle; 4168 4169 /* 4170 * Remove this conn from any fanout list it is on. 4171 * and then wait for any threads currently operating 4172 * on this endpoint to finish 4173 */ 4174 ipcl_hash_remove(connp); 4175 4176 /* 4177 * Remove this conn from the drain list, and do any other cleanup that 4178 * may be required. (TCP conns are never flow controlled, and 4179 * conn_idl will be NULL.) 4180 */ 4181 if (drain_cleanup_reqd && connp->conn_idl != NULL) { 4182 idl_t *idl = connp->conn_idl; 4183 4184 mutex_enter(&idl->idl_lock); 4185 conn_drain(connp, B_TRUE); 4186 mutex_exit(&idl->idl_lock); 4187 } 4188 4189 if (connp == ipst->ips_ip_g_mrouter) 4190 (void) ip_mrouter_done(ipst); 4191 4192 if (ilg_cleanup_reqd) 4193 ilg_delete_all(connp); 4194 4195 /* 4196 * Now conn refcnt can increase only thru CONN_INC_REF_LOCKED. 4197 * callers from write side can't be there now because close 4198 * is in progress. The only other caller is ipcl_walk 4199 * which checks for the condemned flag. 4200 */ 4201 mutex_enter(&connp->conn_lock); 4202 connp->conn_state_flags |= CONN_CONDEMNED; 4203 while (connp->conn_ref != 1) 4204 cv_wait(&connp->conn_cv, &connp->conn_lock); 4205 connp->conn_state_flags |= CONN_QUIESCED; 4206 mutex_exit(&connp->conn_lock); 4207 } 4208 4209 /* ARGSUSED */ 4210 int 4211 ip_close(queue_t *q, int flags) 4212 { 4213 conn_t *connp; 4214 4215 /* 4216 * Call the appropriate delete routine depending on whether this is 4217 * a module or device. 4218 */ 4219 if (WR(q)->q_next != NULL) { 4220 /* This is a module close */ 4221 return (ip_modclose((ill_t *)q->q_ptr)); 4222 } 4223 4224 connp = q->q_ptr; 4225 ip_quiesce_conn(connp); 4226 4227 qprocsoff(q); 4228 4229 /* 4230 * Now we are truly single threaded on this stream, and can 4231 * delete the things hanging off the connp, and finally the connp. 4232 * We removed this connp from the fanout list, it cannot be 4233 * accessed thru the fanouts, and we already waited for the 4234 * conn_ref to drop to 0. We are already in close, so 4235 * there cannot be any other thread from the top. qprocsoff 4236 * has completed, and service has completed or won't run in 4237 * future. 4238 */ 4239 ASSERT(connp->conn_ref == 1); 4240 4241 inet_minor_free(connp->conn_minor_arena, connp->conn_dev); 4242 4243 connp->conn_ref--; 4244 ipcl_conn_destroy(connp); 4245 4246 q->q_ptr = WR(q)->q_ptr = NULL; 4247 return (0); 4248 } 4249 4250 /* 4251 * Wapper around putnext() so that ip_rts_request can merely use 4252 * conn_recv. 4253 */ 4254 /*ARGSUSED2*/ 4255 static void 4256 ip_conn_input(void *arg1, mblk_t *mp, void *arg2, ip_recv_attr_t *ira) 4257 { 4258 conn_t *connp = (conn_t *)arg1; 4259 4260 putnext(connp->conn_rq, mp); 4261 } 4262 4263 /* Dummy in case ICMP error delivery is attempted to a /dev/ip instance */ 4264 /* ARGSUSED */ 4265 static void 4266 ip_conn_input_icmp(void *arg1, mblk_t *mp, void *arg2, ip_recv_attr_t *ira) 4267 { 4268 freemsg(mp); 4269 } 4270 4271 /* 4272 * Called when the module is about to be unloaded 4273 */ 4274 void 4275 ip_ddi_destroy(void) 4276 { 4277 tnet_fini(); 4278 4279 icmp_ddi_g_destroy(); 4280 rts_ddi_g_destroy(); 4281 udp_ddi_g_destroy(); 4282 sctp_ddi_g_destroy(); 4283 tcp_ddi_g_destroy(); 4284 ilb_ddi_g_destroy(); 4285 dce_g_destroy(); 4286 ipsec_policy_g_destroy(); 4287 ipcl_g_destroy(); 4288 ip_net_g_destroy(); 4289 ip_ire_g_fini(); 4290 inet_minor_destroy(ip_minor_arena_sa); 4291 #if defined(_LP64) 4292 inet_minor_destroy(ip_minor_arena_la); 4293 #endif 4294 4295 #ifdef DEBUG 4296 list_destroy(&ip_thread_list); 4297 rw_destroy(&ip_thread_rwlock); 4298 tsd_destroy(&ip_thread_data); 4299 #endif 4300 4301 netstack_unregister(NS_IP); 4302 } 4303 4304 /* 4305 * First step in cleanup. 4306 */ 4307 /* ARGSUSED */ 4308 static void 4309 ip_stack_shutdown(netstackid_t stackid, void *arg) 4310 { 4311 ip_stack_t *ipst = (ip_stack_t *)arg; 4312 4313 #ifdef NS_DEBUG 4314 printf("ip_stack_shutdown(%p, stack %d)\n", (void *)ipst, stackid); 4315 #endif 4316 4317 /* 4318 * Perform cleanup for special interfaces (loopback and IPMP). 4319 */ 4320 ip_interface_cleanup(ipst); 4321 4322 /* 4323 * The *_hook_shutdown()s start the process of notifying any 4324 * consumers that things are going away.... nothing is destroyed. 4325 */ 4326 ipv4_hook_shutdown(ipst); 4327 ipv6_hook_shutdown(ipst); 4328 arp_hook_shutdown(ipst); 4329 4330 mutex_enter(&ipst->ips_capab_taskq_lock); 4331 ipst->ips_capab_taskq_quit = B_TRUE; 4332 cv_signal(&ipst->ips_capab_taskq_cv); 4333 mutex_exit(&ipst->ips_capab_taskq_lock); 4334 } 4335 4336 /* 4337 * Free the IP stack instance. 4338 */ 4339 static void 4340 ip_stack_fini(netstackid_t stackid, void *arg) 4341 { 4342 ip_stack_t *ipst = (ip_stack_t *)arg; 4343 int ret; 4344 4345 #ifdef NS_DEBUG 4346 printf("ip_stack_fini(%p, stack %d)\n", (void *)ipst, stackid); 4347 #endif 4348 /* 4349 * At this point, all of the notifications that the events and 4350 * protocols are going away have been run, meaning that we can 4351 * now set about starting to clean things up. 4352 */ 4353 ipobs_fini(ipst); 4354 ipv4_hook_destroy(ipst); 4355 ipv6_hook_destroy(ipst); 4356 arp_hook_destroy(ipst); 4357 ip_net_destroy(ipst); 4358 4359 mutex_destroy(&ipst->ips_capab_taskq_lock); 4360 cv_destroy(&ipst->ips_capab_taskq_cv); 4361 4362 ipmp_destroy(ipst); 4363 rw_destroy(&ipst->ips_srcid_lock); 4364 4365 ip_kstat_fini(stackid, ipst->ips_ip_mibkp); 4366 ipst->ips_ip_mibkp = NULL; 4367 icmp_kstat_fini(stackid, ipst->ips_icmp_mibkp); 4368 ipst->ips_icmp_mibkp = NULL; 4369 ip_kstat2_fini(stackid, ipst->ips_ip_kstat); 4370 ipst->ips_ip_kstat = NULL; 4371 bzero(&ipst->ips_ip_statistics, sizeof (ipst->ips_ip_statistics)); 4372 ip6_kstat_fini(stackid, ipst->ips_ip6_kstat); 4373 ipst->ips_ip6_kstat = NULL; 4374 bzero(&ipst->ips_ip6_statistics, sizeof (ipst->ips_ip6_statistics)); 4375 4376 kmem_free(ipst->ips_propinfo_tbl, 4377 ip_propinfo_count * sizeof (mod_prop_info_t)); 4378 ipst->ips_propinfo_tbl = NULL; 4379 4380 dce_stack_destroy(ipst); 4381 ip_mrouter_stack_destroy(ipst); 4382 4383 mutex_destroy(&ipst->ips_ip_mi_lock); 4384 rw_destroy(&ipst->ips_ill_g_usesrc_lock); 4385 4386 ret = untimeout(ipst->ips_igmp_timeout_id); 4387 if (ret == -1) { 4388 ASSERT(ipst->ips_igmp_timeout_id == 0); 4389 } else { 4390 ASSERT(ipst->ips_igmp_timeout_id != 0); 4391 ipst->ips_igmp_timeout_id = 0; 4392 } 4393 ret = untimeout(ipst->ips_igmp_slowtimeout_id); 4394 if (ret == -1) { 4395 ASSERT(ipst->ips_igmp_slowtimeout_id == 0); 4396 } else { 4397 ASSERT(ipst->ips_igmp_slowtimeout_id != 0); 4398 ipst->ips_igmp_slowtimeout_id = 0; 4399 } 4400 ret = untimeout(ipst->ips_mld_timeout_id); 4401 if (ret == -1) { 4402 ASSERT(ipst->ips_mld_timeout_id == 0); 4403 } else { 4404 ASSERT(ipst->ips_mld_timeout_id != 0); 4405 ipst->ips_mld_timeout_id = 0; 4406 } 4407 ret = untimeout(ipst->ips_mld_slowtimeout_id); 4408 if (ret == -1) { 4409 ASSERT(ipst->ips_mld_slowtimeout_id == 0); 4410 } else { 4411 ASSERT(ipst->ips_mld_slowtimeout_id != 0); 4412 ipst->ips_mld_slowtimeout_id = 0; 4413 } 4414 4415 mutex_destroy(&ipst->ips_igmp_timer_lock); 4416 mutex_destroy(&ipst->ips_mld_timer_lock); 4417 mutex_destroy(&ipst->ips_igmp_slowtimeout_lock); 4418 mutex_destroy(&ipst->ips_mld_slowtimeout_lock); 4419 mutex_destroy(&ipst->ips_ip_addr_avail_lock); 4420 rw_destroy(&ipst->ips_ill_g_lock); 4421 4422 ip_ire_fini(ipst); 4423 ip6_asp_free(ipst); 4424 conn_drain_fini(ipst); 4425 ipcl_destroy(ipst); 4426 4427 mutex_destroy(&ipst->ips_ndp4->ndp_g_lock); 4428 mutex_destroy(&ipst->ips_ndp6->ndp_g_lock); 4429 kmem_free(ipst->ips_ndp4, sizeof (ndp_g_t)); 4430 ipst->ips_ndp4 = NULL; 4431 kmem_free(ipst->ips_ndp6, sizeof (ndp_g_t)); 4432 ipst->ips_ndp6 = NULL; 4433 4434 if (ipst->ips_loopback_ksp != NULL) { 4435 kstat_delete_netstack(ipst->ips_loopback_ksp, stackid); 4436 ipst->ips_loopback_ksp = NULL; 4437 } 4438 4439 kmem_free(ipst->ips_phyint_g_list, sizeof (phyint_list_t)); 4440 ipst->ips_phyint_g_list = NULL; 4441 kmem_free(ipst->ips_ill_g_heads, sizeof (ill_g_head_t) * MAX_G_HEADS); 4442 ipst->ips_ill_g_heads = NULL; 4443 4444 ldi_ident_release(ipst->ips_ldi_ident); 4445 kmem_free(ipst, sizeof (*ipst)); 4446 } 4447 4448 /* 4449 * This function is called from the TSD destructor, and is used to debug 4450 * reference count issues in IP. See block comment in <inet/ip_if.h> for 4451 * details. 4452 */ 4453 static void 4454 ip_thread_exit(void *phash) 4455 { 4456 th_hash_t *thh = phash; 4457 4458 rw_enter(&ip_thread_rwlock, RW_WRITER); 4459 list_remove(&ip_thread_list, thh); 4460 rw_exit(&ip_thread_rwlock); 4461 mod_hash_destroy_hash(thh->thh_hash); 4462 kmem_free(thh, sizeof (*thh)); 4463 } 4464 4465 /* 4466 * Called when the IP kernel module is loaded into the kernel 4467 */ 4468 void 4469 ip_ddi_init(void) 4470 { 4471 ip_squeue_flag = ip_squeue_switch(ip_squeue_enter); 4472 4473 /* 4474 * For IP and TCP the minor numbers should start from 2 since we have 4 4475 * initial devices: ip, ip6, tcp, tcp6. 4476 */ 4477 /* 4478 * If this is a 64-bit kernel, then create two separate arenas - 4479 * one for TLIs in the range of INET_MIN_DEV+2 through 2^^18-1, and the 4480 * other for socket apps in the range 2^^18 through 2^^32-1. 4481 */ 4482 ip_minor_arena_la = NULL; 4483 ip_minor_arena_sa = NULL; 4484 #if defined(_LP64) 4485 if ((ip_minor_arena_sa = inet_minor_create("ip_minor_arena_sa", 4486 INET_MIN_DEV + 2, MAXMIN32, KM_SLEEP)) == NULL) { 4487 cmn_err(CE_PANIC, 4488 "ip_ddi_init: ip_minor_arena_sa creation failed\n"); 4489 } 4490 if ((ip_minor_arena_la = inet_minor_create("ip_minor_arena_la", 4491 MAXMIN32 + 1, MAXMIN64, KM_SLEEP)) == NULL) { 4492 cmn_err(CE_PANIC, 4493 "ip_ddi_init: ip_minor_arena_la creation failed\n"); 4494 } 4495 #else 4496 if ((ip_minor_arena_sa = inet_minor_create("ip_minor_arena_sa", 4497 INET_MIN_DEV + 2, MAXMIN, KM_SLEEP)) == NULL) { 4498 cmn_err(CE_PANIC, 4499 "ip_ddi_init: ip_minor_arena_sa creation failed\n"); 4500 } 4501 #endif 4502 ip_poll_normal_ticks = MSEC_TO_TICK_ROUNDUP(ip_poll_normal_ms); 4503 4504 ipcl_g_init(); 4505 ip_ire_g_init(); 4506 ip_net_g_init(); 4507 4508 #ifdef DEBUG 4509 tsd_create(&ip_thread_data, ip_thread_exit); 4510 rw_init(&ip_thread_rwlock, NULL, RW_DEFAULT, NULL); 4511 list_create(&ip_thread_list, sizeof (th_hash_t), 4512 offsetof(th_hash_t, thh_link)); 4513 #endif 4514 ipsec_policy_g_init(); 4515 tcp_ddi_g_init(); 4516 sctp_ddi_g_init(); 4517 dce_g_init(); 4518 4519 /* 4520 * We want to be informed each time a stack is created or 4521 * destroyed in the kernel, so we can maintain the 4522 * set of udp_stack_t's. 4523 */ 4524 netstack_register(NS_IP, ip_stack_init, ip_stack_shutdown, 4525 ip_stack_fini); 4526 4527 tnet_init(); 4528 4529 udp_ddi_g_init(); 4530 rts_ddi_g_init(); 4531 icmp_ddi_g_init(); 4532 ilb_ddi_g_init(); 4533 } 4534 4535 /* 4536 * Initialize the IP stack instance. 4537 */ 4538 static void * 4539 ip_stack_init(netstackid_t stackid, netstack_t *ns) 4540 { 4541 ip_stack_t *ipst; 4542 size_t arrsz; 4543 major_t major; 4544 4545 #ifdef NS_DEBUG 4546 printf("ip_stack_init(stack %d)\n", stackid); 4547 #endif 4548 4549 ipst = (ip_stack_t *)kmem_zalloc(sizeof (*ipst), KM_SLEEP); 4550 ipst->ips_netstack = ns; 4551 4552 ipst->ips_ill_g_heads = kmem_zalloc(sizeof (ill_g_head_t) * MAX_G_HEADS, 4553 KM_SLEEP); 4554 ipst->ips_phyint_g_list = kmem_zalloc(sizeof (phyint_list_t), 4555 KM_SLEEP); 4556 ipst->ips_ndp4 = kmem_zalloc(sizeof (ndp_g_t), KM_SLEEP); 4557 ipst->ips_ndp6 = kmem_zalloc(sizeof (ndp_g_t), KM_SLEEP); 4558 mutex_init(&ipst->ips_ndp4->ndp_g_lock, NULL, MUTEX_DEFAULT, NULL); 4559 mutex_init(&ipst->ips_ndp6->ndp_g_lock, NULL, MUTEX_DEFAULT, NULL); 4560 4561 mutex_init(&ipst->ips_igmp_timer_lock, NULL, MUTEX_DEFAULT, NULL); 4562 ipst->ips_igmp_deferred_next = INFINITY; 4563 mutex_init(&ipst->ips_mld_timer_lock, NULL, MUTEX_DEFAULT, NULL); 4564 ipst->ips_mld_deferred_next = INFINITY; 4565 mutex_init(&ipst->ips_igmp_slowtimeout_lock, NULL, MUTEX_DEFAULT, NULL); 4566 mutex_init(&ipst->ips_mld_slowtimeout_lock, NULL, MUTEX_DEFAULT, NULL); 4567 mutex_init(&ipst->ips_ip_mi_lock, NULL, MUTEX_DEFAULT, NULL); 4568 mutex_init(&ipst->ips_ip_addr_avail_lock, NULL, MUTEX_DEFAULT, NULL); 4569 rw_init(&ipst->ips_ill_g_lock, NULL, RW_DEFAULT, NULL); 4570 rw_init(&ipst->ips_ill_g_usesrc_lock, NULL, RW_DEFAULT, NULL); 4571 4572 ipcl_init(ipst); 4573 ip_ire_init(ipst); 4574 ip6_asp_init(ipst); 4575 ipif_init(ipst); 4576 conn_drain_init(ipst); 4577 ip_mrouter_stack_init(ipst); 4578 dce_stack_init(ipst); 4579 4580 ipst->ips_ip_multirt_log_interval = 1000; 4581 4582 ipst->ips_ill_index = 1; 4583 4584 ipst->ips_saved_ip_forwarding = -1; 4585 ipst->ips_reg_vif_num = ALL_VIFS; /* Index to Register vif */ 4586 4587 arrsz = ip_propinfo_count * sizeof (mod_prop_info_t); 4588 ipst->ips_propinfo_tbl = (mod_prop_info_t *)kmem_alloc(arrsz, KM_SLEEP); 4589 bcopy(ip_propinfo_tbl, ipst->ips_propinfo_tbl, arrsz); 4590 4591 ipst->ips_ip_mibkp = ip_kstat_init(stackid, ipst); 4592 ipst->ips_icmp_mibkp = icmp_kstat_init(stackid); 4593 ipst->ips_ip_kstat = ip_kstat2_init(stackid, &ipst->ips_ip_statistics); 4594 ipst->ips_ip6_kstat = 4595 ip6_kstat_init(stackid, &ipst->ips_ip6_statistics); 4596 4597 ipst->ips_ip_src_id = 1; 4598 rw_init(&ipst->ips_srcid_lock, NULL, RW_DEFAULT, NULL); 4599 4600 ipst->ips_src_generation = SRC_GENERATION_INITIAL; 4601 4602 ip_net_init(ipst, ns); 4603 ipv4_hook_init(ipst); 4604 ipv6_hook_init(ipst); 4605 arp_hook_init(ipst); 4606 ipmp_init(ipst); 4607 ipobs_init(ipst); 4608 4609 /* 4610 * Create the taskq dispatcher thread and initialize related stuff. 4611 */ 4612 ipst->ips_capab_taskq_thread = thread_create(NULL, 0, 4613 ill_taskq_dispatch, ipst, 0, &p0, TS_RUN, minclsyspri); 4614 mutex_init(&ipst->ips_capab_taskq_lock, NULL, MUTEX_DEFAULT, NULL); 4615 cv_init(&ipst->ips_capab_taskq_cv, NULL, CV_DEFAULT, NULL); 4616 4617 major = mod_name_to_major(INET_NAME); 4618 (void) ldi_ident_from_major(major, &ipst->ips_ldi_ident); 4619 return (ipst); 4620 } 4621 4622 /* 4623 * Allocate and initialize a DLPI template of the specified length. (May be 4624 * called as writer.) 4625 */ 4626 mblk_t * 4627 ip_dlpi_alloc(size_t len, t_uscalar_t prim) 4628 { 4629 mblk_t *mp; 4630 4631 mp = allocb(len, BPRI_MED); 4632 if (!mp) 4633 return (NULL); 4634 4635 /* 4636 * DLPIv2 says that DL_INFO_REQ and DL_TOKEN_REQ (the latter 4637 * of which we don't seem to use) are sent with M_PCPROTO, and 4638 * that other DLPI are M_PROTO. 4639 */ 4640 if (prim == DL_INFO_REQ) { 4641 mp->b_datap->db_type = M_PCPROTO; 4642 } else { 4643 mp->b_datap->db_type = M_PROTO; 4644 } 4645 4646 mp->b_wptr = mp->b_rptr + len; 4647 bzero(mp->b_rptr, len); 4648 ((dl_unitdata_req_t *)mp->b_rptr)->dl_primitive = prim; 4649 return (mp); 4650 } 4651 4652 /* 4653 * Allocate and initialize a DLPI notification. (May be called as writer.) 4654 */ 4655 mblk_t * 4656 ip_dlnotify_alloc(uint_t notification, uint_t data) 4657 { 4658 dl_notify_ind_t *notifyp; 4659 mblk_t *mp; 4660 4661 if ((mp = ip_dlpi_alloc(DL_NOTIFY_IND_SIZE, DL_NOTIFY_IND)) == NULL) 4662 return (NULL); 4663 4664 notifyp = (dl_notify_ind_t *)mp->b_rptr; 4665 notifyp->dl_notification = notification; 4666 notifyp->dl_data = data; 4667 return (mp); 4668 } 4669 4670 /* 4671 * Debug formatting routine. Returns a character string representation of the 4672 * addr in buf, of the form xxx.xxx.xxx.xxx. This routine takes the address 4673 * in the form of a ipaddr_t and calls ip_dot_saddr with a pointer. 4674 * 4675 * Once the ndd table-printing interfaces are removed, this can be changed to 4676 * standard dotted-decimal form. 4677 */ 4678 char * 4679 ip_dot_addr(ipaddr_t addr, char *buf) 4680 { 4681 uint8_t *ap = (uint8_t *)&addr; 4682 4683 (void) mi_sprintf(buf, "%03d.%03d.%03d.%03d", 4684 ap[0] & 0xFF, ap[1] & 0xFF, ap[2] & 0xFF, ap[3] & 0xFF); 4685 return (buf); 4686 } 4687 4688 /* 4689 * Write the given MAC address as a printable string in the usual colon- 4690 * separated format. 4691 */ 4692 const char * 4693 mac_colon_addr(const uint8_t *addr, size_t alen, char *buf, size_t buflen) 4694 { 4695 char *bp; 4696 4697 if (alen == 0 || buflen < 4) 4698 return ("?"); 4699 bp = buf; 4700 for (;;) { 4701 /* 4702 * If there are more MAC address bytes available, but we won't 4703 * have any room to print them, then add "..." to the string 4704 * instead. See below for the 'magic number' explanation. 4705 */ 4706 if ((alen == 2 && buflen < 6) || (alen > 2 && buflen < 7)) { 4707 (void) strcpy(bp, "..."); 4708 break; 4709 } 4710 (void) sprintf(bp, "%02x", *addr++); 4711 bp += 2; 4712 if (--alen == 0) 4713 break; 4714 *bp++ = ':'; 4715 buflen -= 3; 4716 /* 4717 * At this point, based on the first 'if' statement above, 4718 * either alen == 1 and buflen >= 3, or alen > 1 and 4719 * buflen >= 4. The first case leaves room for the final "xx" 4720 * number and trailing NUL byte. The second leaves room for at 4721 * least "...". Thus the apparently 'magic' numbers chosen for 4722 * that statement. 4723 */ 4724 } 4725 return (buf); 4726 } 4727 4728 /* 4729 * Called when it is conceptually a ULP that would sent the packet 4730 * e.g., port unreachable and protocol unreachable. Check that the packet 4731 * would have passed the IPsec global policy before sending the error. 4732 * 4733 * Send an ICMP error after patching up the packet appropriately. 4734 * Uses ip_drop_input and bumps the appropriate MIB. 4735 */ 4736 void 4737 ip_fanout_send_icmp_v4(mblk_t *mp, uint_t icmp_type, uint_t icmp_code, 4738 ip_recv_attr_t *ira) 4739 { 4740 ipha_t *ipha; 4741 boolean_t secure; 4742 ill_t *ill = ira->ira_ill; 4743 ip_stack_t *ipst = ill->ill_ipst; 4744 netstack_t *ns = ipst->ips_netstack; 4745 ipsec_stack_t *ipss = ns->netstack_ipsec; 4746 4747 secure = ira->ira_flags & IRAF_IPSEC_SECURE; 4748 4749 /* 4750 * We are generating an icmp error for some inbound packet. 4751 * Called from all ip_fanout_(udp, tcp, proto) functions. 4752 * Before we generate an error, check with global policy 4753 * to see whether this is allowed to enter the system. As 4754 * there is no "conn", we are checking with global policy. 4755 */ 4756 ipha = (ipha_t *)mp->b_rptr; 4757 if (secure || ipss->ipsec_inbound_v4_policy_present) { 4758 mp = ipsec_check_global_policy(mp, NULL, ipha, NULL, ira, ns); 4759 if (mp == NULL) 4760 return; 4761 } 4762 4763 /* We never send errors for protocols that we do implement */ 4764 if (ira->ira_protocol == IPPROTO_ICMP || 4765 ira->ira_protocol == IPPROTO_IGMP) { 4766 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 4767 ip_drop_input("ip_fanout_send_icmp_v4", mp, ill); 4768 freemsg(mp); 4769 return; 4770 } 4771 /* 4772 * Have to correct checksum since 4773 * the packet might have been 4774 * fragmented and the reassembly code in ip_rput 4775 * does not restore the IP checksum. 4776 */ 4777 ipha->ipha_hdr_checksum = 0; 4778 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 4779 4780 switch (icmp_type) { 4781 case ICMP_DEST_UNREACHABLE: 4782 switch (icmp_code) { 4783 case ICMP_PROTOCOL_UNREACHABLE: 4784 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInUnknownProtos); 4785 ip_drop_input("ipIfStatsInUnknownProtos", mp, ill); 4786 break; 4787 case ICMP_PORT_UNREACHABLE: 4788 BUMP_MIB(ill->ill_ip_mib, udpIfStatsNoPorts); 4789 ip_drop_input("ipIfStatsNoPorts", mp, ill); 4790 break; 4791 } 4792 4793 icmp_unreachable(mp, icmp_code, ira); 4794 break; 4795 default: 4796 #ifdef DEBUG 4797 panic("ip_fanout_send_icmp_v4: wrong type"); 4798 /*NOTREACHED*/ 4799 #else 4800 freemsg(mp); 4801 break; 4802 #endif 4803 } 4804 } 4805 4806 /* 4807 * Used to send an ICMP error message when a packet is received for 4808 * a protocol that is not supported. The mblk passed as argument 4809 * is consumed by this function. 4810 */ 4811 void 4812 ip_proto_not_sup(mblk_t *mp, ip_recv_attr_t *ira) 4813 { 4814 ipha_t *ipha; 4815 4816 ipha = (ipha_t *)mp->b_rptr; 4817 if (ira->ira_flags & IRAF_IS_IPV4) { 4818 ASSERT(IPH_HDR_VERSION(ipha) == IP_VERSION); 4819 ip_fanout_send_icmp_v4(mp, ICMP_DEST_UNREACHABLE, 4820 ICMP_PROTOCOL_UNREACHABLE, ira); 4821 } else { 4822 ASSERT(IPH_HDR_VERSION(ipha) == IPV6_VERSION); 4823 ip_fanout_send_icmp_v6(mp, ICMP6_PARAM_PROB, 4824 ICMP6_PARAMPROB_NEXTHEADER, ira); 4825 } 4826 } 4827 4828 /* 4829 * Deliver a rawip packet to the given conn, possibly applying ipsec policy. 4830 * Handles IPv4 and IPv6. 4831 * We are responsible for disposing of mp, such as by freemsg() or putnext() 4832 * Caller is responsible for dropping references to the conn. 4833 */ 4834 void 4835 ip_fanout_proto_conn(conn_t *connp, mblk_t *mp, ipha_t *ipha, ip6_t *ip6h, 4836 ip_recv_attr_t *ira) 4837 { 4838 ill_t *ill = ira->ira_ill; 4839 ip_stack_t *ipst = ill->ill_ipst; 4840 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 4841 boolean_t secure; 4842 uint_t protocol = ira->ira_protocol; 4843 iaflags_t iraflags = ira->ira_flags; 4844 queue_t *rq; 4845 4846 secure = iraflags & IRAF_IPSEC_SECURE; 4847 4848 rq = connp->conn_rq; 4849 if (IPCL_IS_NONSTR(connp) ? connp->conn_flow_cntrld : !canputnext(rq)) { 4850 switch (protocol) { 4851 case IPPROTO_ICMPV6: 4852 BUMP_MIB(ill->ill_icmp6_mib, ipv6IfIcmpInOverflows); 4853 break; 4854 case IPPROTO_ICMP: 4855 BUMP_MIB(&ipst->ips_icmp_mib, icmpInOverflows); 4856 break; 4857 default: 4858 BUMP_MIB(ill->ill_ip_mib, rawipIfStatsInOverflows); 4859 break; 4860 } 4861 freemsg(mp); 4862 return; 4863 } 4864 4865 ASSERT(!(IPCL_IS_IPTUN(connp))); 4866 4867 if (((iraflags & IRAF_IS_IPV4) ? 4868 CONN_INBOUND_POLICY_PRESENT(connp, ipss) : 4869 CONN_INBOUND_POLICY_PRESENT_V6(connp, ipss)) || 4870 secure) { 4871 mp = ipsec_check_inbound_policy(mp, connp, ipha, 4872 ip6h, ira); 4873 if (mp == NULL) { 4874 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 4875 /* Note that mp is NULL */ 4876 ip_drop_input("ipIfStatsInDiscards", mp, ill); 4877 return; 4878 } 4879 } 4880 4881 if (iraflags & IRAF_ICMP_ERROR) { 4882 (connp->conn_recvicmp)(connp, mp, NULL, ira); 4883 } else { 4884 ill_t *rill = ira->ira_rill; 4885 4886 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers); 4887 ira->ira_ill = ira->ira_rill = NULL; 4888 /* Send it upstream */ 4889 (connp->conn_recv)(connp, mp, NULL, ira); 4890 ira->ira_ill = ill; 4891 ira->ira_rill = rill; 4892 } 4893 } 4894 4895 /* 4896 * Handle protocols with which IP is less intimate. There 4897 * can be more than one stream bound to a particular 4898 * protocol. When this is the case, normally each one gets a copy 4899 * of any incoming packets. 4900 * 4901 * IPsec NOTE : 4902 * 4903 * Don't allow a secure packet going up a non-secure connection. 4904 * We don't allow this because 4905 * 4906 * 1) Reply might go out in clear which will be dropped at 4907 * the sending side. 4908 * 2) If the reply goes out in clear it will give the 4909 * adversary enough information for getting the key in 4910 * most of the cases. 4911 * 4912 * Moreover getting a secure packet when we expect clear 4913 * implies that SA's were added without checking for 4914 * policy on both ends. This should not happen once ISAKMP 4915 * is used to negotiate SAs as SAs will be added only after 4916 * verifying the policy. 4917 * 4918 * Zones notes: 4919 * Earlier in ip_input on a system with multiple shared-IP zones we 4920 * duplicate the multicast and broadcast packets and send them up 4921 * with each explicit zoneid that exists on that ill. 4922 * This means that here we can match the zoneid with SO_ALLZONES being special. 4923 */ 4924 void 4925 ip_fanout_proto_v4(mblk_t *mp, ipha_t *ipha, ip_recv_attr_t *ira) 4926 { 4927 mblk_t *mp1; 4928 ipaddr_t laddr; 4929 conn_t *connp, *first_connp, *next_connp; 4930 connf_t *connfp; 4931 ill_t *ill = ira->ira_ill; 4932 ip_stack_t *ipst = ill->ill_ipst; 4933 4934 laddr = ipha->ipha_dst; 4935 4936 connfp = &ipst->ips_ipcl_proto_fanout_v4[ira->ira_protocol]; 4937 mutex_enter(&connfp->connf_lock); 4938 connp = connfp->connf_head; 4939 for (connp = connfp->connf_head; connp != NULL; 4940 connp = connp->conn_next) { 4941 /* Note: IPCL_PROTO_MATCH includes conn_wantpacket */ 4942 if (IPCL_PROTO_MATCH(connp, ira, ipha) && 4943 (!(ira->ira_flags & IRAF_SYSTEM_LABELED) || 4944 tsol_receive_local(mp, &laddr, IPV4_VERSION, ira, connp))) { 4945 break; 4946 } 4947 } 4948 4949 if (connp == NULL) { 4950 /* 4951 * No one bound to these addresses. Is 4952 * there a client that wants all 4953 * unclaimed datagrams? 4954 */ 4955 mutex_exit(&connfp->connf_lock); 4956 ip_fanout_send_icmp_v4(mp, ICMP_DEST_UNREACHABLE, 4957 ICMP_PROTOCOL_UNREACHABLE, ira); 4958 return; 4959 } 4960 4961 ASSERT(IPCL_IS_NONSTR(connp) || connp->conn_rq != NULL); 4962 4963 CONN_INC_REF(connp); 4964 first_connp = connp; 4965 connp = connp->conn_next; 4966 4967 for (;;) { 4968 while (connp != NULL) { 4969 /* Note: IPCL_PROTO_MATCH includes conn_wantpacket */ 4970 if (IPCL_PROTO_MATCH(connp, ira, ipha) && 4971 (!(ira->ira_flags & IRAF_SYSTEM_LABELED) || 4972 tsol_receive_local(mp, &laddr, IPV4_VERSION, 4973 ira, connp))) 4974 break; 4975 connp = connp->conn_next; 4976 } 4977 4978 if (connp == NULL) { 4979 /* No more interested clients */ 4980 connp = first_connp; 4981 break; 4982 } 4983 if (((mp1 = dupmsg(mp)) == NULL) && 4984 ((mp1 = copymsg(mp)) == NULL)) { 4985 /* Memory allocation failed */ 4986 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 4987 ip_drop_input("ipIfStatsInDiscards", mp, ill); 4988 connp = first_connp; 4989 break; 4990 } 4991 4992 CONN_INC_REF(connp); 4993 mutex_exit(&connfp->connf_lock); 4994 4995 ip_fanout_proto_conn(connp, mp1, (ipha_t *)mp1->b_rptr, NULL, 4996 ira); 4997 4998 mutex_enter(&connfp->connf_lock); 4999 /* Follow the next pointer before releasing the conn. */ 5000 next_connp = connp->conn_next; 5001 CONN_DEC_REF(connp); 5002 connp = next_connp; 5003 } 5004 5005 /* Last one. Send it upstream. */ 5006 mutex_exit(&connfp->connf_lock); 5007 5008 ip_fanout_proto_conn(connp, mp, ipha, NULL, ira); 5009 5010 CONN_DEC_REF(connp); 5011 } 5012 5013 /* 5014 * If we have a IPsec NAT-Traversal packet, strip the zero-SPI or 5015 * pass it along to ESP if the SPI is non-zero. Returns the mblk if the mblk 5016 * is not consumed. 5017 * 5018 * One of three things can happen, all of which affect the passed-in mblk: 5019 * 5020 * 1.) The packet is stock UDP and gets its zero-SPI stripped. Return mblk.. 5021 * 5022 * 2.) The packet is ESP-in-UDP, gets transformed into an equivalent 5023 * ESP packet, and is passed along to ESP for consumption. Return NULL. 5024 * 5025 * 3.) The packet is an ESP-in-UDP Keepalive. Drop it and return NULL. 5026 */ 5027 mblk_t * 5028 zero_spi_check(mblk_t *mp, ip_recv_attr_t *ira) 5029 { 5030 int shift, plen, iph_len; 5031 ipha_t *ipha; 5032 udpha_t *udpha; 5033 uint32_t *spi; 5034 uint32_t esp_ports; 5035 uint8_t *orptr; 5036 ip_stack_t *ipst = ira->ira_ill->ill_ipst; 5037 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 5038 5039 ipha = (ipha_t *)mp->b_rptr; 5040 iph_len = ira->ira_ip_hdr_length; 5041 plen = ira->ira_pktlen; 5042 5043 if (plen - iph_len - sizeof (udpha_t) < sizeof (uint32_t)) { 5044 /* 5045 * Most likely a keepalive for the benefit of an intervening 5046 * NAT. These aren't for us, per se, so drop it. 5047 * 5048 * RFC 3947/8 doesn't say for sure what to do for 2-3 5049 * byte packets (keepalives are 1-byte), but we'll drop them 5050 * also. 5051 */ 5052 ip_drop_packet(mp, B_TRUE, ira->ira_ill, 5053 DROPPER(ipss, ipds_esp_nat_t_ka), &ipss->ipsec_dropper); 5054 return (NULL); 5055 } 5056 5057 if (MBLKL(mp) < iph_len + sizeof (udpha_t) + sizeof (*spi)) { 5058 /* might as well pull it all up - it might be ESP. */ 5059 if (!pullupmsg(mp, -1)) { 5060 ip_drop_packet(mp, B_TRUE, ira->ira_ill, 5061 DROPPER(ipss, ipds_esp_nomem), 5062 &ipss->ipsec_dropper); 5063 return (NULL); 5064 } 5065 5066 ipha = (ipha_t *)mp->b_rptr; 5067 } 5068 spi = (uint32_t *)(mp->b_rptr + iph_len + sizeof (udpha_t)); 5069 if (*spi == 0) { 5070 /* UDP packet - remove 0-spi. */ 5071 shift = sizeof (uint32_t); 5072 } else { 5073 /* ESP-in-UDP packet - reduce to ESP. */ 5074 ipha->ipha_protocol = IPPROTO_ESP; 5075 shift = sizeof (udpha_t); 5076 } 5077 5078 /* Fix IP header */ 5079 ira->ira_pktlen = (plen - shift); 5080 ipha->ipha_length = htons(ira->ira_pktlen); 5081 ipha->ipha_hdr_checksum = 0; 5082 5083 orptr = mp->b_rptr; 5084 mp->b_rptr += shift; 5085 5086 udpha = (udpha_t *)(orptr + iph_len); 5087 if (*spi == 0) { 5088 ASSERT((uint8_t *)ipha == orptr); 5089 udpha->uha_length = htons(plen - shift - iph_len); 5090 iph_len += sizeof (udpha_t); /* For the call to ovbcopy(). */ 5091 esp_ports = 0; 5092 } else { 5093 esp_ports = *((uint32_t *)udpha); 5094 ASSERT(esp_ports != 0); 5095 } 5096 ovbcopy(orptr, orptr + shift, iph_len); 5097 if (esp_ports != 0) /* Punt up for ESP processing. */ { 5098 ipha = (ipha_t *)(orptr + shift); 5099 5100 ira->ira_flags |= IRAF_ESP_UDP_PORTS; 5101 ira->ira_esp_udp_ports = esp_ports; 5102 ip_fanout_v4(mp, ipha, ira); 5103 return (NULL); 5104 } 5105 return (mp); 5106 } 5107 5108 /* 5109 * Deliver a udp packet to the given conn, possibly applying ipsec policy. 5110 * Handles IPv4 and IPv6. 5111 * We are responsible for disposing of mp, such as by freemsg() or putnext() 5112 * Caller is responsible for dropping references to the conn. 5113 */ 5114 void 5115 ip_fanout_udp_conn(conn_t *connp, mblk_t *mp, ipha_t *ipha, ip6_t *ip6h, 5116 ip_recv_attr_t *ira) 5117 { 5118 ill_t *ill = ira->ira_ill; 5119 ip_stack_t *ipst = ill->ill_ipst; 5120 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 5121 boolean_t secure; 5122 iaflags_t iraflags = ira->ira_flags; 5123 5124 secure = iraflags & IRAF_IPSEC_SECURE; 5125 5126 if (IPCL_IS_NONSTR(connp) ? connp->conn_flow_cntrld : 5127 !canputnext(connp->conn_rq)) { 5128 BUMP_MIB(ill->ill_ip_mib, udpIfStatsInOverflows); 5129 freemsg(mp); 5130 return; 5131 } 5132 5133 if (((iraflags & IRAF_IS_IPV4) ? 5134 CONN_INBOUND_POLICY_PRESENT(connp, ipss) : 5135 CONN_INBOUND_POLICY_PRESENT_V6(connp, ipss)) || 5136 secure) { 5137 mp = ipsec_check_inbound_policy(mp, connp, ipha, 5138 ip6h, ira); 5139 if (mp == NULL) { 5140 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 5141 /* Note that mp is NULL */ 5142 ip_drop_input("ipIfStatsInDiscards", mp, ill); 5143 return; 5144 } 5145 } 5146 5147 /* 5148 * Since this code is not used for UDP unicast we don't need a NAT_T 5149 * check. Only ip_fanout_v4 has that check. 5150 */ 5151 if (ira->ira_flags & IRAF_ICMP_ERROR) { 5152 (connp->conn_recvicmp)(connp, mp, NULL, ira); 5153 } else { 5154 ill_t *rill = ira->ira_rill; 5155 5156 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers); 5157 ira->ira_ill = ira->ira_rill = NULL; 5158 /* Send it upstream */ 5159 (connp->conn_recv)(connp, mp, NULL, ira); 5160 ira->ira_ill = ill; 5161 ira->ira_rill = rill; 5162 } 5163 } 5164 5165 /* 5166 * Fanout for UDP packets that are multicast or broadcast, and ICMP errors. 5167 * (Unicast fanout is handled in ip_input_v4.) 5168 * 5169 * If SO_REUSEADDR is set all multicast and broadcast packets 5170 * will be delivered to all conns bound to the same port. 5171 * 5172 * If there is at least one matching AF_INET receiver, then we will 5173 * ignore any AF_INET6 receivers. 5174 * In the special case where an AF_INET socket binds to 0.0.0.0/<port> and an 5175 * AF_INET6 socket binds to ::/<port>, only the AF_INET socket receives the IPv4 5176 * packets. 5177 * 5178 * Zones notes: 5179 * Earlier in ip_input on a system with multiple shared-IP zones we 5180 * duplicate the multicast and broadcast packets and send them up 5181 * with each explicit zoneid that exists on that ill. 5182 * This means that here we can match the zoneid with SO_ALLZONES being special. 5183 */ 5184 void 5185 ip_fanout_udp_multi_v4(mblk_t *mp, ipha_t *ipha, uint16_t lport, uint16_t fport, 5186 ip_recv_attr_t *ira) 5187 { 5188 ipaddr_t laddr; 5189 in6_addr_t v6faddr; 5190 conn_t *connp; 5191 connf_t *connfp; 5192 ipaddr_t faddr; 5193 ill_t *ill = ira->ira_ill; 5194 ip_stack_t *ipst = ill->ill_ipst; 5195 5196 ASSERT(ira->ira_flags & (IRAF_MULTIBROADCAST|IRAF_ICMP_ERROR)); 5197 5198 laddr = ipha->ipha_dst; 5199 faddr = ipha->ipha_src; 5200 5201 connfp = &ipst->ips_ipcl_udp_fanout[IPCL_UDP_HASH(lport, ipst)]; 5202 mutex_enter(&connfp->connf_lock); 5203 connp = connfp->connf_head; 5204 5205 /* 5206 * If SO_REUSEADDR has been set on the first we send the 5207 * packet to all clients that have joined the group and 5208 * match the port. 5209 */ 5210 while (connp != NULL) { 5211 if ((IPCL_UDP_MATCH(connp, lport, laddr, fport, faddr)) && 5212 conn_wantpacket(connp, ira, ipha) && 5213 (!(ira->ira_flags & IRAF_SYSTEM_LABELED) || 5214 tsol_receive_local(mp, &laddr, IPV4_VERSION, ira, connp))) 5215 break; 5216 connp = connp->conn_next; 5217 } 5218 5219 if (connp == NULL) 5220 goto notfound; 5221 5222 CONN_INC_REF(connp); 5223 5224 if (connp->conn_reuseaddr) { 5225 conn_t *first_connp = connp; 5226 conn_t *next_connp; 5227 mblk_t *mp1; 5228 5229 connp = connp->conn_next; 5230 for (;;) { 5231 while (connp != NULL) { 5232 if (IPCL_UDP_MATCH(connp, lport, laddr, 5233 fport, faddr) && 5234 conn_wantpacket(connp, ira, ipha) && 5235 (!(ira->ira_flags & IRAF_SYSTEM_LABELED) || 5236 tsol_receive_local(mp, &laddr, IPV4_VERSION, 5237 ira, connp))) 5238 break; 5239 connp = connp->conn_next; 5240 } 5241 if (connp == NULL) { 5242 /* No more interested clients */ 5243 connp = first_connp; 5244 break; 5245 } 5246 if (((mp1 = dupmsg(mp)) == NULL) && 5247 ((mp1 = copymsg(mp)) == NULL)) { 5248 /* Memory allocation failed */ 5249 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 5250 ip_drop_input("ipIfStatsInDiscards", mp, ill); 5251 connp = first_connp; 5252 break; 5253 } 5254 CONN_INC_REF(connp); 5255 mutex_exit(&connfp->connf_lock); 5256 5257 IP_STAT(ipst, ip_udp_fanmb); 5258 ip_fanout_udp_conn(connp, mp1, (ipha_t *)mp1->b_rptr, 5259 NULL, ira); 5260 mutex_enter(&connfp->connf_lock); 5261 /* Follow the next pointer before releasing the conn */ 5262 next_connp = connp->conn_next; 5263 CONN_DEC_REF(connp); 5264 connp = next_connp; 5265 } 5266 } 5267 5268 /* Last one. Send it upstream. */ 5269 mutex_exit(&connfp->connf_lock); 5270 IP_STAT(ipst, ip_udp_fanmb); 5271 ip_fanout_udp_conn(connp, mp, ipha, NULL, ira); 5272 CONN_DEC_REF(connp); 5273 return; 5274 5275 notfound: 5276 mutex_exit(&connfp->connf_lock); 5277 /* 5278 * IPv6 endpoints bound to multicast IPv4-mapped addresses 5279 * have already been matched above, since they live in the IPv4 5280 * fanout tables. This implies we only need to 5281 * check for IPv6 in6addr_any endpoints here. 5282 * Thus we compare using ipv6_all_zeros instead of the destination 5283 * address, except for the multicast group membership lookup which 5284 * uses the IPv4 destination. 5285 */ 5286 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &v6faddr); 5287 connfp = &ipst->ips_ipcl_udp_fanout[IPCL_UDP_HASH(lport, ipst)]; 5288 mutex_enter(&connfp->connf_lock); 5289 connp = connfp->connf_head; 5290 /* 5291 * IPv4 multicast packet being delivered to an AF_INET6 5292 * in6addr_any endpoint. 5293 * Need to check conn_wantpacket(). Note that we use conn_wantpacket() 5294 * and not conn_wantpacket_v6() since any multicast membership is 5295 * for an IPv4-mapped multicast address. 5296 */ 5297 while (connp != NULL) { 5298 if (IPCL_UDP_MATCH_V6(connp, lport, ipv6_all_zeros, 5299 fport, v6faddr) && 5300 conn_wantpacket(connp, ira, ipha) && 5301 (!(ira->ira_flags & IRAF_SYSTEM_LABELED) || 5302 tsol_receive_local(mp, &laddr, IPV4_VERSION, ira, connp))) 5303 break; 5304 connp = connp->conn_next; 5305 } 5306 5307 if (connp == NULL) { 5308 /* 5309 * No one bound to this port. Is 5310 * there a client that wants all 5311 * unclaimed datagrams? 5312 */ 5313 mutex_exit(&connfp->connf_lock); 5314 5315 if (ipst->ips_ipcl_proto_fanout_v4[IPPROTO_UDP].connf_head != 5316 NULL) { 5317 ASSERT(ira->ira_protocol == IPPROTO_UDP); 5318 ip_fanout_proto_v4(mp, ipha, ira); 5319 } else { 5320 /* 5321 * We used to attempt to send an icmp error here, but 5322 * since this is known to be a multicast packet 5323 * and we don't send icmp errors in response to 5324 * multicast, just drop the packet and give up sooner. 5325 */ 5326 BUMP_MIB(ill->ill_ip_mib, udpIfStatsNoPorts); 5327 freemsg(mp); 5328 } 5329 return; 5330 } 5331 ASSERT(IPCL_IS_NONSTR(connp) || connp->conn_rq != NULL); 5332 5333 /* 5334 * If SO_REUSEADDR has been set on the first we send the 5335 * packet to all clients that have joined the group and 5336 * match the port. 5337 */ 5338 if (connp->conn_reuseaddr) { 5339 conn_t *first_connp = connp; 5340 conn_t *next_connp; 5341 mblk_t *mp1; 5342 5343 CONN_INC_REF(connp); 5344 connp = connp->conn_next; 5345 for (;;) { 5346 while (connp != NULL) { 5347 if (IPCL_UDP_MATCH_V6(connp, lport, 5348 ipv6_all_zeros, fport, v6faddr) && 5349 conn_wantpacket(connp, ira, ipha) && 5350 (!(ira->ira_flags & IRAF_SYSTEM_LABELED) || 5351 tsol_receive_local(mp, &laddr, IPV4_VERSION, 5352 ira, connp))) 5353 break; 5354 connp = connp->conn_next; 5355 } 5356 if (connp == NULL) { 5357 /* No more interested clients */ 5358 connp = first_connp; 5359 break; 5360 } 5361 if (((mp1 = dupmsg(mp)) == NULL) && 5362 ((mp1 = copymsg(mp)) == NULL)) { 5363 /* Memory allocation failed */ 5364 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 5365 ip_drop_input("ipIfStatsInDiscards", mp, ill); 5366 connp = first_connp; 5367 break; 5368 } 5369 CONN_INC_REF(connp); 5370 mutex_exit(&connfp->connf_lock); 5371 5372 IP_STAT(ipst, ip_udp_fanmb); 5373 ip_fanout_udp_conn(connp, mp1, (ipha_t *)mp1->b_rptr, 5374 NULL, ira); 5375 mutex_enter(&connfp->connf_lock); 5376 /* Follow the next pointer before releasing the conn */ 5377 next_connp = connp->conn_next; 5378 CONN_DEC_REF(connp); 5379 connp = next_connp; 5380 } 5381 } 5382 5383 /* Last one. Send it upstream. */ 5384 mutex_exit(&connfp->connf_lock); 5385 IP_STAT(ipst, ip_udp_fanmb); 5386 ip_fanout_udp_conn(connp, mp, ipha, NULL, ira); 5387 CONN_DEC_REF(connp); 5388 } 5389 5390 /* 5391 * Split an incoming packet's IPv4 options into the label and the other options. 5392 * If 'allocate' is set it does memory allocation for the ip_pkt_t, including 5393 * clearing out any leftover label or options. 5394 * Otherwise it just makes ipp point into the packet. 5395 * 5396 * Returns zero if ok; ENOMEM if the buffer couldn't be allocated. 5397 */ 5398 int 5399 ip_find_hdr_v4(ipha_t *ipha, ip_pkt_t *ipp, boolean_t allocate) 5400 { 5401 uchar_t *opt; 5402 uint32_t totallen; 5403 uint32_t optval; 5404 uint32_t optlen; 5405 5406 ipp->ipp_fields |= IPPF_HOPLIMIT | IPPF_TCLASS | IPPF_ADDR; 5407 ipp->ipp_hoplimit = ipha->ipha_ttl; 5408 ipp->ipp_type_of_service = ipha->ipha_type_of_service; 5409 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &ipp->ipp_addr); 5410 5411 /* 5412 * Get length (in 4 byte octets) of IP header options. 5413 */ 5414 totallen = ipha->ipha_version_and_hdr_length - 5415 (uint8_t)((IP_VERSION << 4) + IP_SIMPLE_HDR_LENGTH_IN_WORDS); 5416 5417 if (totallen == 0) { 5418 if (!allocate) 5419 return (0); 5420 5421 /* Clear out anything from a previous packet */ 5422 if (ipp->ipp_fields & IPPF_IPV4_OPTIONS) { 5423 kmem_free(ipp->ipp_ipv4_options, 5424 ipp->ipp_ipv4_options_len); 5425 ipp->ipp_ipv4_options = NULL; 5426 ipp->ipp_ipv4_options_len = 0; 5427 ipp->ipp_fields &= ~IPPF_IPV4_OPTIONS; 5428 } 5429 if (ipp->ipp_fields & IPPF_LABEL_V4) { 5430 kmem_free(ipp->ipp_label_v4, ipp->ipp_label_len_v4); 5431 ipp->ipp_label_v4 = NULL; 5432 ipp->ipp_label_len_v4 = 0; 5433 ipp->ipp_fields &= ~IPPF_LABEL_V4; 5434 } 5435 return (0); 5436 } 5437 5438 totallen <<= 2; 5439 opt = (uchar_t *)&ipha[1]; 5440 if (!is_system_labeled()) { 5441 5442 copyall: 5443 if (!allocate) { 5444 if (totallen != 0) { 5445 ipp->ipp_ipv4_options = opt; 5446 ipp->ipp_ipv4_options_len = totallen; 5447 ipp->ipp_fields |= IPPF_IPV4_OPTIONS; 5448 } 5449 return (0); 5450 } 5451 /* Just copy all of options */ 5452 if (ipp->ipp_fields & IPPF_IPV4_OPTIONS) { 5453 if (totallen == ipp->ipp_ipv4_options_len) { 5454 bcopy(opt, ipp->ipp_ipv4_options, totallen); 5455 return (0); 5456 } 5457 kmem_free(ipp->ipp_ipv4_options, 5458 ipp->ipp_ipv4_options_len); 5459 ipp->ipp_ipv4_options = NULL; 5460 ipp->ipp_ipv4_options_len = 0; 5461 ipp->ipp_fields &= ~IPPF_IPV4_OPTIONS; 5462 } 5463 if (totallen == 0) 5464 return (0); 5465 5466 ipp->ipp_ipv4_options = kmem_alloc(totallen, KM_NOSLEEP); 5467 if (ipp->ipp_ipv4_options == NULL) 5468 return (ENOMEM); 5469 ipp->ipp_ipv4_options_len = totallen; 5470 ipp->ipp_fields |= IPPF_IPV4_OPTIONS; 5471 bcopy(opt, ipp->ipp_ipv4_options, totallen); 5472 return (0); 5473 } 5474 5475 if (allocate && (ipp->ipp_fields & IPPF_LABEL_V4)) { 5476 kmem_free(ipp->ipp_label_v4, ipp->ipp_label_len_v4); 5477 ipp->ipp_label_v4 = NULL; 5478 ipp->ipp_label_len_v4 = 0; 5479 ipp->ipp_fields &= ~IPPF_LABEL_V4; 5480 } 5481 5482 /* 5483 * Search for CIPSO option. 5484 * We assume CIPSO is first in options if it is present. 5485 * If it isn't, then ipp_opt_ipv4_options will not include the options 5486 * prior to the CIPSO option. 5487 */ 5488 while (totallen != 0) { 5489 switch (optval = opt[IPOPT_OPTVAL]) { 5490 case IPOPT_EOL: 5491 return (0); 5492 case IPOPT_NOP: 5493 optlen = 1; 5494 break; 5495 default: 5496 if (totallen <= IPOPT_OLEN) 5497 return (EINVAL); 5498 optlen = opt[IPOPT_OLEN]; 5499 if (optlen < 2) 5500 return (EINVAL); 5501 } 5502 if (optlen > totallen) 5503 return (EINVAL); 5504 5505 switch (optval) { 5506 case IPOPT_COMSEC: 5507 if (!allocate) { 5508 ipp->ipp_label_v4 = opt; 5509 ipp->ipp_label_len_v4 = optlen; 5510 ipp->ipp_fields |= IPPF_LABEL_V4; 5511 } else { 5512 ipp->ipp_label_v4 = kmem_alloc(optlen, 5513 KM_NOSLEEP); 5514 if (ipp->ipp_label_v4 == NULL) 5515 return (ENOMEM); 5516 ipp->ipp_label_len_v4 = optlen; 5517 ipp->ipp_fields |= IPPF_LABEL_V4; 5518 bcopy(opt, ipp->ipp_label_v4, optlen); 5519 } 5520 totallen -= optlen; 5521 opt += optlen; 5522 5523 /* Skip padding bytes until we get to a multiple of 4 */ 5524 while ((totallen & 3) != 0 && opt[0] == IPOPT_NOP) { 5525 totallen--; 5526 opt++; 5527 } 5528 /* Remaining as ipp_ipv4_options */ 5529 goto copyall; 5530 } 5531 totallen -= optlen; 5532 opt += optlen; 5533 } 5534 /* No CIPSO found; return everything as ipp_ipv4_options */ 5535 totallen = ipha->ipha_version_and_hdr_length - 5536 (uint8_t)((IP_VERSION << 4) + IP_SIMPLE_HDR_LENGTH_IN_WORDS); 5537 totallen <<= 2; 5538 opt = (uchar_t *)&ipha[1]; 5539 goto copyall; 5540 } 5541 5542 /* 5543 * Efficient versions of lookup for an IRE when we only 5544 * match the address. 5545 * For RTF_REJECT or BLACKHOLE we return IRE_NOROUTE. 5546 * Does not handle multicast addresses. 5547 */ 5548 uint_t 5549 ip_type_v4(ipaddr_t addr, ip_stack_t *ipst) 5550 { 5551 ire_t *ire; 5552 uint_t result; 5553 5554 ire = ire_ftable_lookup_simple_v4(addr, 0, ipst, NULL); 5555 ASSERT(ire != NULL); 5556 if (ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) 5557 result = IRE_NOROUTE; 5558 else 5559 result = ire->ire_type; 5560 ire_refrele(ire); 5561 return (result); 5562 } 5563 5564 /* 5565 * Efficient versions of lookup for an IRE when we only 5566 * match the address. 5567 * For RTF_REJECT or BLACKHOLE we return IRE_NOROUTE. 5568 * Does not handle multicast addresses. 5569 */ 5570 uint_t 5571 ip_type_v6(const in6_addr_t *addr, ip_stack_t *ipst) 5572 { 5573 ire_t *ire; 5574 uint_t result; 5575 5576 ire = ire_ftable_lookup_simple_v6(addr, 0, ipst, NULL); 5577 ASSERT(ire != NULL); 5578 if (ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) 5579 result = IRE_NOROUTE; 5580 else 5581 result = ire->ire_type; 5582 ire_refrele(ire); 5583 return (result); 5584 } 5585 5586 /* 5587 * Nobody should be sending 5588 * packets up this stream 5589 */ 5590 static void 5591 ip_lrput(queue_t *q, mblk_t *mp) 5592 { 5593 switch (mp->b_datap->db_type) { 5594 case M_FLUSH: 5595 /* Turn around */ 5596 if (*mp->b_rptr & FLUSHW) { 5597 *mp->b_rptr &= ~FLUSHR; 5598 qreply(q, mp); 5599 return; 5600 } 5601 break; 5602 } 5603 freemsg(mp); 5604 } 5605 5606 /* Nobody should be sending packets down this stream */ 5607 /* ARGSUSED */ 5608 void 5609 ip_lwput(queue_t *q, mblk_t *mp) 5610 { 5611 freemsg(mp); 5612 } 5613 5614 /* 5615 * Move the first hop in any source route to ipha_dst and remove that part of 5616 * the source route. Called by other protocols. Errors in option formatting 5617 * are ignored - will be handled by ip_output_options. Return the final 5618 * destination (either ipha_dst or the last entry in a source route.) 5619 */ 5620 ipaddr_t 5621 ip_massage_options(ipha_t *ipha, netstack_t *ns) 5622 { 5623 ipoptp_t opts; 5624 uchar_t *opt; 5625 uint8_t optval; 5626 uint8_t optlen; 5627 ipaddr_t dst; 5628 int i; 5629 ip_stack_t *ipst = ns->netstack_ip; 5630 5631 ip2dbg(("ip_massage_options\n")); 5632 dst = ipha->ipha_dst; 5633 for (optval = ipoptp_first(&opts, ipha); 5634 optval != IPOPT_EOL; 5635 optval = ipoptp_next(&opts)) { 5636 opt = opts.ipoptp_cur; 5637 switch (optval) { 5638 uint8_t off; 5639 case IPOPT_SSRR: 5640 case IPOPT_LSRR: 5641 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 5642 ip1dbg(("ip_massage_options: bad src route\n")); 5643 break; 5644 } 5645 optlen = opts.ipoptp_len; 5646 off = opt[IPOPT_OFFSET]; 5647 off--; 5648 redo_srr: 5649 if (optlen < IP_ADDR_LEN || 5650 off > optlen - IP_ADDR_LEN) { 5651 /* End of source route */ 5652 ip1dbg(("ip_massage_options: end of SR\n")); 5653 break; 5654 } 5655 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 5656 ip1dbg(("ip_massage_options: next hop 0x%x\n", 5657 ntohl(dst))); 5658 /* 5659 * Check if our address is present more than 5660 * once as consecutive hops in source route. 5661 * XXX verify per-interface ip_forwarding 5662 * for source route? 5663 */ 5664 if (ip_type_v4(dst, ipst) == IRE_LOCAL) { 5665 off += IP_ADDR_LEN; 5666 goto redo_srr; 5667 } 5668 if (dst == htonl(INADDR_LOOPBACK)) { 5669 ip1dbg(("ip_massage_options: loopback addr in " 5670 "source route!\n")); 5671 break; 5672 } 5673 /* 5674 * Update ipha_dst to be the first hop and remove the 5675 * first hop from the source route (by overwriting 5676 * part of the option with NOP options). 5677 */ 5678 ipha->ipha_dst = dst; 5679 /* Put the last entry in dst */ 5680 off = ((optlen - IP_ADDR_LEN - 3) & ~(IP_ADDR_LEN-1)) + 5681 3; 5682 bcopy(&opt[off], &dst, IP_ADDR_LEN); 5683 5684 ip1dbg(("ip_massage_options: last hop 0x%x\n", 5685 ntohl(dst))); 5686 /* Move down and overwrite */ 5687 opt[IP_ADDR_LEN] = opt[0]; 5688 opt[IP_ADDR_LEN+1] = opt[IPOPT_OLEN] - IP_ADDR_LEN; 5689 opt[IP_ADDR_LEN+2] = opt[IPOPT_OFFSET]; 5690 for (i = 0; i < IP_ADDR_LEN; i++) 5691 opt[i] = IPOPT_NOP; 5692 break; 5693 } 5694 } 5695 return (dst); 5696 } 5697 5698 /* 5699 * Return the network mask 5700 * associated with the specified address. 5701 */ 5702 ipaddr_t 5703 ip_net_mask(ipaddr_t addr) 5704 { 5705 uchar_t *up = (uchar_t *)&addr; 5706 ipaddr_t mask = 0; 5707 uchar_t *maskp = (uchar_t *)&mask; 5708 5709 #if defined(__i386) || defined(__amd64) 5710 #define TOTALLY_BRAIN_DAMAGED_C_COMPILER 5711 #endif 5712 #ifdef TOTALLY_BRAIN_DAMAGED_C_COMPILER 5713 maskp[0] = maskp[1] = maskp[2] = maskp[3] = 0; 5714 #endif 5715 if (CLASSD(addr)) { 5716 maskp[0] = 0xF0; 5717 return (mask); 5718 } 5719 5720 /* We assume Class E default netmask to be 32 */ 5721 if (CLASSE(addr)) 5722 return (0xffffffffU); 5723 5724 if (addr == 0) 5725 return (0); 5726 maskp[0] = 0xFF; 5727 if ((up[0] & 0x80) == 0) 5728 return (mask); 5729 5730 maskp[1] = 0xFF; 5731 if ((up[0] & 0xC0) == 0x80) 5732 return (mask); 5733 5734 maskp[2] = 0xFF; 5735 if ((up[0] & 0xE0) == 0xC0) 5736 return (mask); 5737 5738 /* Otherwise return no mask */ 5739 return ((ipaddr_t)0); 5740 } 5741 5742 /* Name/Value Table Lookup Routine */ 5743 char * 5744 ip_nv_lookup(nv_t *nv, int value) 5745 { 5746 if (!nv) 5747 return (NULL); 5748 for (; nv->nv_name; nv++) { 5749 if (nv->nv_value == value) 5750 return (nv->nv_name); 5751 } 5752 return ("unknown"); 5753 } 5754 5755 static int 5756 ip_wait_for_info_ack(ill_t *ill) 5757 { 5758 int err; 5759 5760 mutex_enter(&ill->ill_lock); 5761 while (ill->ill_state_flags & ILL_LL_SUBNET_PENDING) { 5762 /* 5763 * Return value of 0 indicates a pending signal. 5764 */ 5765 err = cv_wait_sig(&ill->ill_cv, &ill->ill_lock); 5766 if (err == 0) { 5767 mutex_exit(&ill->ill_lock); 5768 return (EINTR); 5769 } 5770 } 5771 mutex_exit(&ill->ill_lock); 5772 /* 5773 * ip_rput_other could have set an error in ill_error on 5774 * receipt of M_ERROR. 5775 */ 5776 return (ill->ill_error); 5777 } 5778 5779 /* 5780 * This is a module open, i.e. this is a control stream for access 5781 * to a DLPI device. We allocate an ill_t as the instance data in 5782 * this case. 5783 */ 5784 static int 5785 ip_modopen(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp) 5786 { 5787 ill_t *ill; 5788 int err; 5789 zoneid_t zoneid; 5790 netstack_t *ns; 5791 ip_stack_t *ipst; 5792 5793 /* 5794 * Prevent unprivileged processes from pushing IP so that 5795 * they can't send raw IP. 5796 */ 5797 if (secpolicy_net_rawaccess(credp) != 0) 5798 return (EPERM); 5799 5800 ns = netstack_find_by_cred(credp); 5801 ASSERT(ns != NULL); 5802 ipst = ns->netstack_ip; 5803 ASSERT(ipst != NULL); 5804 5805 /* 5806 * For exclusive stacks we set the zoneid to zero 5807 * to make IP operate as if in the global zone. 5808 */ 5809 if (ipst->ips_netstack->netstack_stackid != GLOBAL_NETSTACKID) 5810 zoneid = GLOBAL_ZONEID; 5811 else 5812 zoneid = crgetzoneid(credp); 5813 5814 ill = (ill_t *)mi_open_alloc_sleep(sizeof (ill_t)); 5815 q->q_ptr = WR(q)->q_ptr = ill; 5816 ill->ill_ipst = ipst; 5817 ill->ill_zoneid = zoneid; 5818 5819 /* 5820 * ill_init initializes the ill fields and then sends down 5821 * down a DL_INFO_REQ after calling qprocson. 5822 */ 5823 err = ill_init(q, ill); 5824 5825 if (err != 0) { 5826 mi_free(ill); 5827 netstack_rele(ipst->ips_netstack); 5828 q->q_ptr = NULL; 5829 WR(q)->q_ptr = NULL; 5830 return (err); 5831 } 5832 5833 /* 5834 * Wait for the DL_INFO_ACK if a DL_INFO_REQ was sent. 5835 * 5836 * ill_init initializes the ipsq marking this thread as 5837 * writer 5838 */ 5839 ipsq_exit(ill->ill_phyint->phyint_ipsq); 5840 err = ip_wait_for_info_ack(ill); 5841 if (err == 0) 5842 ill->ill_credp = credp; 5843 else 5844 goto fail; 5845 5846 crhold(credp); 5847 5848 mutex_enter(&ipst->ips_ip_mi_lock); 5849 err = mi_open_link(&ipst->ips_ip_g_head, (IDP)q->q_ptr, devp, flag, 5850 sflag, credp); 5851 mutex_exit(&ipst->ips_ip_mi_lock); 5852 fail: 5853 if (err) { 5854 (void) ip_close(q, 0); 5855 return (err); 5856 } 5857 return (0); 5858 } 5859 5860 /* For /dev/ip aka AF_INET open */ 5861 int 5862 ip_openv4(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp) 5863 { 5864 return (ip_open(q, devp, flag, sflag, credp, B_FALSE)); 5865 } 5866 5867 /* For /dev/ip6 aka AF_INET6 open */ 5868 int 5869 ip_openv6(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp) 5870 { 5871 return (ip_open(q, devp, flag, sflag, credp, B_TRUE)); 5872 } 5873 5874 /* IP open routine. */ 5875 int 5876 ip_open(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp, 5877 boolean_t isv6) 5878 { 5879 conn_t *connp; 5880 major_t maj; 5881 zoneid_t zoneid; 5882 netstack_t *ns; 5883 ip_stack_t *ipst; 5884 5885 /* Allow reopen. */ 5886 if (q->q_ptr != NULL) 5887 return (0); 5888 5889 if (sflag & MODOPEN) { 5890 /* This is a module open */ 5891 return (ip_modopen(q, devp, flag, sflag, credp)); 5892 } 5893 5894 if ((flag & ~(FKLYR)) == IP_HELPER_STR) { 5895 /* 5896 * Non streams based socket looking for a stream 5897 * to access IP 5898 */ 5899 return (ip_helper_stream_setup(q, devp, flag, sflag, 5900 credp, isv6)); 5901 } 5902 5903 ns = netstack_find_by_cred(credp); 5904 ASSERT(ns != NULL); 5905 ipst = ns->netstack_ip; 5906 ASSERT(ipst != NULL); 5907 5908 /* 5909 * For exclusive stacks we set the zoneid to zero 5910 * to make IP operate as if in the global zone. 5911 */ 5912 if (ipst->ips_netstack->netstack_stackid != GLOBAL_NETSTACKID) 5913 zoneid = GLOBAL_ZONEID; 5914 else 5915 zoneid = crgetzoneid(credp); 5916 5917 /* 5918 * We are opening as a device. This is an IP client stream, and we 5919 * allocate an conn_t as the instance data. 5920 */ 5921 connp = ipcl_conn_create(IPCL_IPCCONN, KM_SLEEP, ipst->ips_netstack); 5922 5923 /* 5924 * ipcl_conn_create did a netstack_hold. Undo the hold that was 5925 * done by netstack_find_by_cred() 5926 */ 5927 netstack_rele(ipst->ips_netstack); 5928 5929 connp->conn_ixa->ixa_flags |= IXAF_MULTICAST_LOOP | IXAF_SET_ULP_CKSUM; 5930 /* conn_allzones can not be set this early, hence no IPCL_ZONEID */ 5931 connp->conn_ixa->ixa_zoneid = zoneid; 5932 connp->conn_zoneid = zoneid; 5933 5934 connp->conn_rq = q; 5935 q->q_ptr = WR(q)->q_ptr = connp; 5936 5937 /* Minor tells us which /dev entry was opened */ 5938 if (isv6) { 5939 connp->conn_family = AF_INET6; 5940 connp->conn_ipversion = IPV6_VERSION; 5941 connp->conn_ixa->ixa_flags &= ~IXAF_IS_IPV4; 5942 connp->conn_ixa->ixa_src_preferences = IPV6_PREFER_SRC_DEFAULT; 5943 } else { 5944 connp->conn_family = AF_INET; 5945 connp->conn_ipversion = IPV4_VERSION; 5946 connp->conn_ixa->ixa_flags |= IXAF_IS_IPV4; 5947 } 5948 5949 if ((ip_minor_arena_la != NULL) && (flag & SO_SOCKSTR) && 5950 ((connp->conn_dev = inet_minor_alloc(ip_minor_arena_la)) != 0)) { 5951 connp->conn_minor_arena = ip_minor_arena_la; 5952 } else { 5953 /* 5954 * Either minor numbers in the large arena were exhausted 5955 * or a non socket application is doing the open. 5956 * Try to allocate from the small arena. 5957 */ 5958 if ((connp->conn_dev = 5959 inet_minor_alloc(ip_minor_arena_sa)) == 0) { 5960 /* CONN_DEC_REF takes care of netstack_rele() */ 5961 q->q_ptr = WR(q)->q_ptr = NULL; 5962 CONN_DEC_REF(connp); 5963 return (EBUSY); 5964 } 5965 connp->conn_minor_arena = ip_minor_arena_sa; 5966 } 5967 5968 maj = getemajor(*devp); 5969 *devp = makedevice(maj, (minor_t)connp->conn_dev); 5970 5971 /* 5972 * connp->conn_cred is crfree()ed in ipcl_conn_destroy() 5973 */ 5974 connp->conn_cred = credp; 5975 connp->conn_cpid = curproc->p_pid; 5976 /* Cache things in ixa without an extra refhold */ 5977 ASSERT(!(connp->conn_ixa->ixa_free_flags & IXA_FREE_CRED)); 5978 connp->conn_ixa->ixa_cred = connp->conn_cred; 5979 connp->conn_ixa->ixa_cpid = connp->conn_cpid; 5980 if (is_system_labeled()) 5981 connp->conn_ixa->ixa_tsl = crgetlabel(connp->conn_cred); 5982 5983 /* 5984 * Handle IP_IOC_RTS_REQUEST and other ioctls which use conn_recv 5985 */ 5986 connp->conn_recv = ip_conn_input; 5987 connp->conn_recvicmp = ip_conn_input_icmp; 5988 5989 crhold(connp->conn_cred); 5990 5991 /* 5992 * If the caller has the process-wide flag set, then default to MAC 5993 * exempt mode. This allows read-down to unlabeled hosts. 5994 */ 5995 if (getpflags(NET_MAC_AWARE, credp) != 0) 5996 connp->conn_mac_mode = CONN_MAC_AWARE; 5997 5998 connp->conn_zone_is_global = (crgetzoneid(credp) == GLOBAL_ZONEID); 5999 6000 connp->conn_rq = q; 6001 connp->conn_wq = WR(q); 6002 6003 /* Non-zero default values */ 6004 connp->conn_ixa->ixa_flags |= IXAF_MULTICAST_LOOP; 6005 6006 /* 6007 * Make the conn globally visible to walkers 6008 */ 6009 ASSERT(connp->conn_ref == 1); 6010 mutex_enter(&connp->conn_lock); 6011 connp->conn_state_flags &= ~CONN_INCIPIENT; 6012 mutex_exit(&connp->conn_lock); 6013 6014 qprocson(q); 6015 6016 return (0); 6017 } 6018 6019 /* 6020 * Set IPsec policy from an ipsec_req_t. If the req is not "zero" and valid, 6021 * all of them are copied to the conn_t. If the req is "zero", the policy is 6022 * zeroed out. A "zero" policy has zero ipsr_{ah,req,self_encap}_req 6023 * fields. 6024 * We keep only the latest setting of the policy and thus policy setting 6025 * is not incremental/cumulative. 6026 * 6027 * Requests to set policies with multiple alternative actions will 6028 * go through a different API. 6029 */ 6030 int 6031 ipsec_set_req(cred_t *cr, conn_t *connp, ipsec_req_t *req) 6032 { 6033 uint_t ah_req = 0; 6034 uint_t esp_req = 0; 6035 uint_t se_req = 0; 6036 ipsec_act_t *actp = NULL; 6037 uint_t nact; 6038 ipsec_policy_head_t *ph; 6039 boolean_t is_pol_reset, is_pol_inserted = B_FALSE; 6040 int error = 0; 6041 netstack_t *ns = connp->conn_netstack; 6042 ip_stack_t *ipst = ns->netstack_ip; 6043 ipsec_stack_t *ipss = ns->netstack_ipsec; 6044 6045 #define REQ_MASK (IPSEC_PREF_REQUIRED|IPSEC_PREF_NEVER) 6046 6047 /* 6048 * The IP_SEC_OPT option does not allow variable length parameters, 6049 * hence a request cannot be NULL. 6050 */ 6051 if (req == NULL) 6052 return (EINVAL); 6053 6054 ah_req = req->ipsr_ah_req; 6055 esp_req = req->ipsr_esp_req; 6056 se_req = req->ipsr_self_encap_req; 6057 6058 /* Don't allow setting self-encap without one or more of AH/ESP. */ 6059 if (se_req != 0 && esp_req == 0 && ah_req == 0) 6060 return (EINVAL); 6061 6062 /* 6063 * Are we dealing with a request to reset the policy (i.e. 6064 * zero requests). 6065 */ 6066 is_pol_reset = ((ah_req & REQ_MASK) == 0 && 6067 (esp_req & REQ_MASK) == 0 && 6068 (se_req & REQ_MASK) == 0); 6069 6070 if (!is_pol_reset) { 6071 /* 6072 * If we couldn't load IPsec, fail with "protocol 6073 * not supported". 6074 * IPsec may not have been loaded for a request with zero 6075 * policies, so we don't fail in this case. 6076 */ 6077 mutex_enter(&ipss->ipsec_loader_lock); 6078 if (ipss->ipsec_loader_state != IPSEC_LOADER_SUCCEEDED) { 6079 mutex_exit(&ipss->ipsec_loader_lock); 6080 return (EPROTONOSUPPORT); 6081 } 6082 mutex_exit(&ipss->ipsec_loader_lock); 6083 6084 /* 6085 * Test for valid requests. Invalid algorithms 6086 * need to be tested by IPsec code because new 6087 * algorithms can be added dynamically. 6088 */ 6089 if ((ah_req & ~(REQ_MASK|IPSEC_PREF_UNIQUE)) != 0 || 6090 (esp_req & ~(REQ_MASK|IPSEC_PREF_UNIQUE)) != 0 || 6091 (se_req & ~(REQ_MASK|IPSEC_PREF_UNIQUE)) != 0) { 6092 return (EINVAL); 6093 } 6094 6095 /* 6096 * Only privileged users can issue these 6097 * requests. 6098 */ 6099 if (((ah_req & IPSEC_PREF_NEVER) || 6100 (esp_req & IPSEC_PREF_NEVER) || 6101 (se_req & IPSEC_PREF_NEVER)) && 6102 secpolicy_ip_config(cr, B_FALSE) != 0) { 6103 return (EPERM); 6104 } 6105 6106 /* 6107 * The IPSEC_PREF_REQUIRED and IPSEC_PREF_NEVER 6108 * are mutually exclusive. 6109 */ 6110 if (((ah_req & REQ_MASK) == REQ_MASK) || 6111 ((esp_req & REQ_MASK) == REQ_MASK) || 6112 ((se_req & REQ_MASK) == REQ_MASK)) { 6113 /* Both of them are set */ 6114 return (EINVAL); 6115 } 6116 } 6117 6118 ASSERT(MUTEX_HELD(&connp->conn_lock)); 6119 6120 /* 6121 * If we have already cached policies in conn_connect(), don't 6122 * let them change now. We cache policies for connections 6123 * whose src,dst [addr, port] is known. 6124 */ 6125 if (connp->conn_policy_cached) { 6126 return (EINVAL); 6127 } 6128 6129 /* 6130 * We have a zero policies, reset the connection policy if already 6131 * set. This will cause the connection to inherit the 6132 * global policy, if any. 6133 */ 6134 if (is_pol_reset) { 6135 if (connp->conn_policy != NULL) { 6136 IPPH_REFRELE(connp->conn_policy, ipst->ips_netstack); 6137 connp->conn_policy = NULL; 6138 } 6139 connp->conn_in_enforce_policy = B_FALSE; 6140 connp->conn_out_enforce_policy = B_FALSE; 6141 return (0); 6142 } 6143 6144 ph = connp->conn_policy = ipsec_polhead_split(connp->conn_policy, 6145 ipst->ips_netstack); 6146 if (ph == NULL) 6147 goto enomem; 6148 6149 ipsec_actvec_from_req(req, &actp, &nact, ipst->ips_netstack); 6150 if (actp == NULL) 6151 goto enomem; 6152 6153 /* 6154 * Always insert IPv4 policy entries, since they can also apply to 6155 * ipv6 sockets being used in ipv4-compat mode. 6156 */ 6157 if (!ipsec_polhead_insert(ph, actp, nact, IPSEC_AF_V4, 6158 IPSEC_TYPE_INBOUND, ns)) 6159 goto enomem; 6160 is_pol_inserted = B_TRUE; 6161 if (!ipsec_polhead_insert(ph, actp, nact, IPSEC_AF_V4, 6162 IPSEC_TYPE_OUTBOUND, ns)) 6163 goto enomem; 6164 6165 /* 6166 * We're looking at a v6 socket, also insert the v6-specific 6167 * entries. 6168 */ 6169 if (connp->conn_family == AF_INET6) { 6170 if (!ipsec_polhead_insert(ph, actp, nact, IPSEC_AF_V6, 6171 IPSEC_TYPE_INBOUND, ns)) 6172 goto enomem; 6173 if (!ipsec_polhead_insert(ph, actp, nact, IPSEC_AF_V6, 6174 IPSEC_TYPE_OUTBOUND, ns)) 6175 goto enomem; 6176 } 6177 6178 ipsec_actvec_free(actp, nact); 6179 6180 /* 6181 * If the requests need security, set enforce_policy. 6182 * If the requests are IPSEC_PREF_NEVER, one should 6183 * still set conn_out_enforce_policy so that ip_set_destination 6184 * marks the ip_xmit_attr_t appropriatly. This is needed so that 6185 * for connections that we don't cache policy in at connect time, 6186 * if global policy matches in ip_output_attach_policy, we 6187 * don't wrongly inherit global policy. Similarly, we need 6188 * to set conn_in_enforce_policy also so that we don't verify 6189 * policy wrongly. 6190 */ 6191 if ((ah_req & REQ_MASK) != 0 || 6192 (esp_req & REQ_MASK) != 0 || 6193 (se_req & REQ_MASK) != 0) { 6194 connp->conn_in_enforce_policy = B_TRUE; 6195 connp->conn_out_enforce_policy = B_TRUE; 6196 } 6197 6198 return (error); 6199 #undef REQ_MASK 6200 6201 /* 6202 * Common memory-allocation-failure exit path. 6203 */ 6204 enomem: 6205 if (actp != NULL) 6206 ipsec_actvec_free(actp, nact); 6207 if (is_pol_inserted) 6208 ipsec_polhead_flush(ph, ns); 6209 return (ENOMEM); 6210 } 6211 6212 /* 6213 * Set socket options for joining and leaving multicast groups. 6214 * Common to IPv4 and IPv6; inet6 indicates the type of socket. 6215 * The caller has already check that the option name is consistent with 6216 * the address family of the socket. 6217 */ 6218 int 6219 ip_opt_set_multicast_group(conn_t *connp, t_scalar_t name, 6220 uchar_t *invalp, boolean_t inet6, boolean_t checkonly) 6221 { 6222 int *i1 = (int *)invalp; 6223 int error = 0; 6224 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 6225 struct ip_mreq *v4_mreqp; 6226 struct ipv6_mreq *v6_mreqp; 6227 struct group_req *greqp; 6228 ire_t *ire; 6229 boolean_t done = B_FALSE; 6230 ipaddr_t ifaddr; 6231 in6_addr_t v6group; 6232 uint_t ifindex; 6233 boolean_t mcast_opt = B_TRUE; 6234 mcast_record_t fmode; 6235 int (*optfn)(conn_t *, boolean_t, const in6_addr_t *, 6236 ipaddr_t, uint_t, mcast_record_t, const in6_addr_t *); 6237 6238 switch (name) { 6239 case IP_ADD_MEMBERSHIP: 6240 case IPV6_JOIN_GROUP: 6241 mcast_opt = B_FALSE; 6242 /* FALLTHRU */ 6243 case MCAST_JOIN_GROUP: 6244 fmode = MODE_IS_EXCLUDE; 6245 optfn = ip_opt_add_group; 6246 break; 6247 6248 case IP_DROP_MEMBERSHIP: 6249 case IPV6_LEAVE_GROUP: 6250 mcast_opt = B_FALSE; 6251 /* FALLTHRU */ 6252 case MCAST_LEAVE_GROUP: 6253 fmode = MODE_IS_INCLUDE; 6254 optfn = ip_opt_delete_group; 6255 break; 6256 default: 6257 ASSERT(0); 6258 } 6259 6260 if (mcast_opt) { 6261 struct sockaddr_in *sin; 6262 struct sockaddr_in6 *sin6; 6263 6264 greqp = (struct group_req *)i1; 6265 if (greqp->gr_group.ss_family == AF_INET) { 6266 sin = (struct sockaddr_in *)&(greqp->gr_group); 6267 IN6_INADDR_TO_V4MAPPED(&sin->sin_addr, &v6group); 6268 } else { 6269 if (!inet6) 6270 return (EINVAL); /* Not on INET socket */ 6271 6272 sin6 = (struct sockaddr_in6 *)&(greqp->gr_group); 6273 v6group = sin6->sin6_addr; 6274 } 6275 ifaddr = INADDR_ANY; 6276 ifindex = greqp->gr_interface; 6277 } else if (inet6) { 6278 v6_mreqp = (struct ipv6_mreq *)i1; 6279 v6group = v6_mreqp->ipv6mr_multiaddr; 6280 ifaddr = INADDR_ANY; 6281 ifindex = v6_mreqp->ipv6mr_interface; 6282 } else { 6283 v4_mreqp = (struct ip_mreq *)i1; 6284 IN6_INADDR_TO_V4MAPPED(&v4_mreqp->imr_multiaddr, &v6group); 6285 ifaddr = (ipaddr_t)v4_mreqp->imr_interface.s_addr; 6286 ifindex = 0; 6287 } 6288 6289 /* 6290 * In the multirouting case, we need to replicate 6291 * the request on all interfaces that will take part 6292 * in replication. We do so because multirouting is 6293 * reflective, thus we will probably receive multi- 6294 * casts on those interfaces. 6295 * The ip_multirt_apply_membership() succeeds if 6296 * the operation succeeds on at least one interface. 6297 */ 6298 if (IN6_IS_ADDR_V4MAPPED(&v6group)) { 6299 ipaddr_t group; 6300 6301 IN6_V4MAPPED_TO_IPADDR(&v6group, group); 6302 6303 ire = ire_ftable_lookup_v4(group, IP_HOST_MASK, 0, 6304 IRE_HOST | IRE_INTERFACE, NULL, ALL_ZONES, NULL, 6305 MATCH_IRE_MASK | MATCH_IRE_TYPE, 0, ipst, NULL); 6306 } else { 6307 ire = ire_ftable_lookup_v6(&v6group, &ipv6_all_ones, 0, 6308 IRE_HOST | IRE_INTERFACE, NULL, ALL_ZONES, NULL, 6309 MATCH_IRE_MASK | MATCH_IRE_TYPE, 0, ipst, NULL); 6310 } 6311 if (ire != NULL) { 6312 if (ire->ire_flags & RTF_MULTIRT) { 6313 error = ip_multirt_apply_membership(optfn, ire, connp, 6314 checkonly, &v6group, fmode, &ipv6_all_zeros); 6315 done = B_TRUE; 6316 } 6317 ire_refrele(ire); 6318 } 6319 6320 if (!done) { 6321 error = optfn(connp, checkonly, &v6group, ifaddr, ifindex, 6322 fmode, &ipv6_all_zeros); 6323 } 6324 return (error); 6325 } 6326 6327 /* 6328 * Set socket options for joining and leaving multicast groups 6329 * for specific sources. 6330 * Common to IPv4 and IPv6; inet6 indicates the type of socket. 6331 * The caller has already check that the option name is consistent with 6332 * the address family of the socket. 6333 */ 6334 int 6335 ip_opt_set_multicast_sources(conn_t *connp, t_scalar_t name, 6336 uchar_t *invalp, boolean_t inet6, boolean_t checkonly) 6337 { 6338 int *i1 = (int *)invalp; 6339 int error = 0; 6340 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 6341 struct ip_mreq_source *imreqp; 6342 struct group_source_req *gsreqp; 6343 in6_addr_t v6group, v6src; 6344 uint32_t ifindex; 6345 ipaddr_t ifaddr; 6346 boolean_t mcast_opt = B_TRUE; 6347 mcast_record_t fmode; 6348 ire_t *ire; 6349 boolean_t done = B_FALSE; 6350 int (*optfn)(conn_t *, boolean_t, const in6_addr_t *, 6351 ipaddr_t, uint_t, mcast_record_t, const in6_addr_t *); 6352 6353 switch (name) { 6354 case IP_BLOCK_SOURCE: 6355 mcast_opt = B_FALSE; 6356 /* FALLTHRU */ 6357 case MCAST_BLOCK_SOURCE: 6358 fmode = MODE_IS_EXCLUDE; 6359 optfn = ip_opt_add_group; 6360 break; 6361 6362 case IP_UNBLOCK_SOURCE: 6363 mcast_opt = B_FALSE; 6364 /* FALLTHRU */ 6365 case MCAST_UNBLOCK_SOURCE: 6366 fmode = MODE_IS_EXCLUDE; 6367 optfn = ip_opt_delete_group; 6368 break; 6369 6370 case IP_ADD_SOURCE_MEMBERSHIP: 6371 mcast_opt = B_FALSE; 6372 /* FALLTHRU */ 6373 case MCAST_JOIN_SOURCE_GROUP: 6374 fmode = MODE_IS_INCLUDE; 6375 optfn = ip_opt_add_group; 6376 break; 6377 6378 case IP_DROP_SOURCE_MEMBERSHIP: 6379 mcast_opt = B_FALSE; 6380 /* FALLTHRU */ 6381 case MCAST_LEAVE_SOURCE_GROUP: 6382 fmode = MODE_IS_INCLUDE; 6383 optfn = ip_opt_delete_group; 6384 break; 6385 default: 6386 ASSERT(0); 6387 } 6388 6389 if (mcast_opt) { 6390 gsreqp = (struct group_source_req *)i1; 6391 ifindex = gsreqp->gsr_interface; 6392 if (gsreqp->gsr_group.ss_family == AF_INET) { 6393 struct sockaddr_in *s; 6394 s = (struct sockaddr_in *)&gsreqp->gsr_group; 6395 IN6_INADDR_TO_V4MAPPED(&s->sin_addr, &v6group); 6396 s = (struct sockaddr_in *)&gsreqp->gsr_source; 6397 IN6_INADDR_TO_V4MAPPED(&s->sin_addr, &v6src); 6398 } else { 6399 struct sockaddr_in6 *s6; 6400 6401 if (!inet6) 6402 return (EINVAL); /* Not on INET socket */ 6403 6404 s6 = (struct sockaddr_in6 *)&gsreqp->gsr_group; 6405 v6group = s6->sin6_addr; 6406 s6 = (struct sockaddr_in6 *)&gsreqp->gsr_source; 6407 v6src = s6->sin6_addr; 6408 } 6409 ifaddr = INADDR_ANY; 6410 } else { 6411 imreqp = (struct ip_mreq_source *)i1; 6412 IN6_INADDR_TO_V4MAPPED(&imreqp->imr_multiaddr, &v6group); 6413 IN6_INADDR_TO_V4MAPPED(&imreqp->imr_sourceaddr, &v6src); 6414 ifaddr = (ipaddr_t)imreqp->imr_interface.s_addr; 6415 ifindex = 0; 6416 } 6417 6418 /* 6419 * Handle src being mapped INADDR_ANY by changing it to unspecified. 6420 */ 6421 if (IN6_IS_ADDR_V4MAPPED_ANY(&v6src)) 6422 v6src = ipv6_all_zeros; 6423 6424 /* 6425 * In the multirouting case, we need to replicate 6426 * the request as noted in the mcast cases above. 6427 */ 6428 if (IN6_IS_ADDR_V4MAPPED(&v6group)) { 6429 ipaddr_t group; 6430 6431 IN6_V4MAPPED_TO_IPADDR(&v6group, group); 6432 6433 ire = ire_ftable_lookup_v4(group, IP_HOST_MASK, 0, 6434 IRE_HOST | IRE_INTERFACE, NULL, ALL_ZONES, NULL, 6435 MATCH_IRE_MASK | MATCH_IRE_TYPE, 0, ipst, NULL); 6436 } else { 6437 ire = ire_ftable_lookup_v6(&v6group, &ipv6_all_ones, 0, 6438 IRE_HOST | IRE_INTERFACE, NULL, ALL_ZONES, NULL, 6439 MATCH_IRE_MASK | MATCH_IRE_TYPE, 0, ipst, NULL); 6440 } 6441 if (ire != NULL) { 6442 if (ire->ire_flags & RTF_MULTIRT) { 6443 error = ip_multirt_apply_membership(optfn, ire, connp, 6444 checkonly, &v6group, fmode, &v6src); 6445 done = B_TRUE; 6446 } 6447 ire_refrele(ire); 6448 } 6449 if (!done) { 6450 error = optfn(connp, checkonly, &v6group, ifaddr, ifindex, 6451 fmode, &v6src); 6452 } 6453 return (error); 6454 } 6455 6456 /* 6457 * Given a destination address and a pointer to where to put the information 6458 * this routine fills in the mtuinfo. 6459 * The socket must be connected. 6460 * For sctp conn_faddr is the primary address. 6461 */ 6462 int 6463 ip_fill_mtuinfo(conn_t *connp, ip_xmit_attr_t *ixa, struct ip6_mtuinfo *mtuinfo) 6464 { 6465 uint32_t pmtu = IP_MAXPACKET; 6466 uint_t scopeid; 6467 6468 if (IN6_IS_ADDR_UNSPECIFIED(&connp->conn_faddr_v6)) 6469 return (-1); 6470 6471 /* In case we never sent or called ip_set_destination_v4/v6 */ 6472 if (ixa->ixa_ire != NULL) 6473 pmtu = ip_get_pmtu(ixa); 6474 6475 if (ixa->ixa_flags & IXAF_SCOPEID_SET) 6476 scopeid = ixa->ixa_scopeid; 6477 else 6478 scopeid = 0; 6479 6480 bzero(mtuinfo, sizeof (*mtuinfo)); 6481 mtuinfo->ip6m_addr.sin6_family = AF_INET6; 6482 mtuinfo->ip6m_addr.sin6_port = connp->conn_fport; 6483 mtuinfo->ip6m_addr.sin6_addr = connp->conn_faddr_v6; 6484 mtuinfo->ip6m_addr.sin6_scope_id = scopeid; 6485 mtuinfo->ip6m_mtu = pmtu; 6486 6487 return (sizeof (struct ip6_mtuinfo)); 6488 } 6489 6490 /* 6491 * When the src multihoming is changed from weak to [strong, preferred] 6492 * ip_ire_rebind_walker is called to walk the list of all ire_t entries 6493 * and identify routes that were created by user-applications in the 6494 * unbound state (i.e., without RTA_IFP), and for which an ire_ill is not 6495 * currently defined. These routes are then 'rebound', i.e., their ire_ill 6496 * is selected by finding an interface route for the gateway. 6497 */ 6498 /* ARGSUSED */ 6499 void 6500 ip_ire_rebind_walker(ire_t *ire, void *notused) 6501 { 6502 if (!ire->ire_unbound || ire->ire_ill != NULL) 6503 return; 6504 ire_rebind(ire); 6505 ire_delete(ire); 6506 } 6507 6508 /* 6509 * When the src multihoming is changed from [strong, preferred] to weak, 6510 * ip_ire_unbind_walker is called to walk the list of all ire_t entries, and 6511 * set any entries that were created by user-applications in the unbound state 6512 * (i.e., without RTA_IFP) back to having a NULL ire_ill. 6513 */ 6514 /* ARGSUSED */ 6515 void 6516 ip_ire_unbind_walker(ire_t *ire, void *notused) 6517 { 6518 ire_t *new_ire; 6519 6520 if (!ire->ire_unbound || ire->ire_ill == NULL) 6521 return; 6522 if (ire->ire_ipversion == IPV6_VERSION) { 6523 new_ire = ire_create_v6(&ire->ire_addr_v6, &ire->ire_mask_v6, 6524 &ire->ire_gateway_addr_v6, ire->ire_type, NULL, 6525 ire->ire_zoneid, ire->ire_flags, NULL, ire->ire_ipst); 6526 } else { 6527 new_ire = ire_create((uchar_t *)&ire->ire_addr, 6528 (uchar_t *)&ire->ire_mask, 6529 (uchar_t *)&ire->ire_gateway_addr, ire->ire_type, NULL, 6530 ire->ire_zoneid, ire->ire_flags, NULL, ire->ire_ipst); 6531 } 6532 if (new_ire == NULL) 6533 return; 6534 new_ire->ire_unbound = B_TRUE; 6535 /* 6536 * The bound ire must first be deleted so that we don't return 6537 * the existing one on the attempt to add the unbound new_ire. 6538 */ 6539 ire_delete(ire); 6540 new_ire = ire_add(new_ire); 6541 if (new_ire != NULL) 6542 ire_refrele(new_ire); 6543 } 6544 6545 /* 6546 * When the settings of ip*_strict_src_multihoming tunables are changed, 6547 * all cached routes need to be recomputed. This recomputation needs to be 6548 * done when going from weaker to stronger modes so that the cached ire 6549 * for the connection does not violate the current ip*_strict_src_multihoming 6550 * setting. It also needs to be done when going from stronger to weaker modes, 6551 * so that we fall back to matching on the longest-matching-route (as opposed 6552 * to a shorter match that may have been selected in the strong mode 6553 * to satisfy src_multihoming settings). 6554 * 6555 * The cached ixa_ire entires for all conn_t entries are marked as 6556 * "verify" so that they will be recomputed for the next packet. 6557 */ 6558 void 6559 conn_ire_revalidate(conn_t *connp, void *arg) 6560 { 6561 boolean_t isv6 = (boolean_t)arg; 6562 6563 if ((isv6 && connp->conn_ipversion != IPV6_VERSION) || 6564 (!isv6 && connp->conn_ipversion != IPV4_VERSION)) 6565 return; 6566 connp->conn_ixa->ixa_ire_generation = IRE_GENERATION_VERIFY; 6567 } 6568 6569 /* 6570 * Handles both IPv4 and IPv6 reassembly - doing the out-of-order cases, 6571 * When an ipf is passed here for the first time, if 6572 * we already have in-order fragments on the queue, we convert from the fast- 6573 * path reassembly scheme to the hard-case scheme. From then on, additional 6574 * fragments are reassembled here. We keep track of the start and end offsets 6575 * of each piece, and the number of holes in the chain. When the hole count 6576 * goes to zero, we are done! 6577 * 6578 * The ipf_count will be updated to account for any mblk(s) added (pointed to 6579 * by mp) or subtracted (freeb()ed dups), upon return the caller must update 6580 * ipfb_count and ill_frag_count by the difference of ipf_count before and 6581 * after the call to ip_reassemble(). 6582 */ 6583 int 6584 ip_reassemble(mblk_t *mp, ipf_t *ipf, uint_t start, boolean_t more, ill_t *ill, 6585 size_t msg_len) 6586 { 6587 uint_t end; 6588 mblk_t *next_mp; 6589 mblk_t *mp1; 6590 uint_t offset; 6591 boolean_t incr_dups = B_TRUE; 6592 boolean_t offset_zero_seen = B_FALSE; 6593 boolean_t pkt_boundary_checked = B_FALSE; 6594 6595 /* If start == 0 then ipf_nf_hdr_len has to be set. */ 6596 ASSERT(start != 0 || ipf->ipf_nf_hdr_len != 0); 6597 6598 /* Add in byte count */ 6599 ipf->ipf_count += msg_len; 6600 if (ipf->ipf_end) { 6601 /* 6602 * We were part way through in-order reassembly, but now there 6603 * is a hole. We walk through messages already queued, and 6604 * mark them for hard case reassembly. We know that up till 6605 * now they were in order starting from offset zero. 6606 */ 6607 offset = 0; 6608 for (mp1 = ipf->ipf_mp->b_cont; mp1; mp1 = mp1->b_cont) { 6609 IP_REASS_SET_START(mp1, offset); 6610 if (offset == 0) { 6611 ASSERT(ipf->ipf_nf_hdr_len != 0); 6612 offset = -ipf->ipf_nf_hdr_len; 6613 } 6614 offset += mp1->b_wptr - mp1->b_rptr; 6615 IP_REASS_SET_END(mp1, offset); 6616 } 6617 /* One hole at the end. */ 6618 ipf->ipf_hole_cnt = 1; 6619 /* Brand it as a hard case, forever. */ 6620 ipf->ipf_end = 0; 6621 } 6622 /* Walk through all the new pieces. */ 6623 do { 6624 end = start + (mp->b_wptr - mp->b_rptr); 6625 /* 6626 * If start is 0, decrease 'end' only for the first mblk of 6627 * the fragment. Otherwise 'end' can get wrong value in the 6628 * second pass of the loop if first mblk is exactly the 6629 * size of ipf_nf_hdr_len. 6630 */ 6631 if (start == 0 && !offset_zero_seen) { 6632 /* First segment */ 6633 ASSERT(ipf->ipf_nf_hdr_len != 0); 6634 end -= ipf->ipf_nf_hdr_len; 6635 offset_zero_seen = B_TRUE; 6636 } 6637 next_mp = mp->b_cont; 6638 /* 6639 * We are checking to see if there is any interesing data 6640 * to process. If there isn't and the mblk isn't the 6641 * one which carries the unfragmentable header then we 6642 * drop it. It's possible to have just the unfragmentable 6643 * header come through without any data. That needs to be 6644 * saved. 6645 * 6646 * If the assert at the top of this function holds then the 6647 * term "ipf->ipf_nf_hdr_len != 0" isn't needed. This code 6648 * is infrequently traveled enough that the test is left in 6649 * to protect against future code changes which break that 6650 * invariant. 6651 */ 6652 if (start == end && start != 0 && ipf->ipf_nf_hdr_len != 0) { 6653 /* Empty. Blast it. */ 6654 IP_REASS_SET_START(mp, 0); 6655 IP_REASS_SET_END(mp, 0); 6656 /* 6657 * If the ipf points to the mblk we are about to free, 6658 * update ipf to point to the next mblk (or NULL 6659 * if none). 6660 */ 6661 if (ipf->ipf_mp->b_cont == mp) 6662 ipf->ipf_mp->b_cont = next_mp; 6663 freeb(mp); 6664 continue; 6665 } 6666 mp->b_cont = NULL; 6667 IP_REASS_SET_START(mp, start); 6668 IP_REASS_SET_END(mp, end); 6669 if (!ipf->ipf_tail_mp) { 6670 ipf->ipf_tail_mp = mp; 6671 ipf->ipf_mp->b_cont = mp; 6672 if (start == 0 || !more) { 6673 ipf->ipf_hole_cnt = 1; 6674 /* 6675 * if the first fragment comes in more than one 6676 * mblk, this loop will be executed for each 6677 * mblk. Need to adjust hole count so exiting 6678 * this routine will leave hole count at 1. 6679 */ 6680 if (next_mp) 6681 ipf->ipf_hole_cnt++; 6682 } else 6683 ipf->ipf_hole_cnt = 2; 6684 continue; 6685 } else if (ipf->ipf_last_frag_seen && !more && 6686 !pkt_boundary_checked) { 6687 /* 6688 * We check datagram boundary only if this fragment 6689 * claims to be the last fragment and we have seen a 6690 * last fragment in the past too. We do this only 6691 * once for a given fragment. 6692 * 6693 * start cannot be 0 here as fragments with start=0 6694 * and MF=0 gets handled as a complete packet. These 6695 * fragments should not reach here. 6696 */ 6697 6698 if (start + msgdsize(mp) != 6699 IP_REASS_END(ipf->ipf_tail_mp)) { 6700 /* 6701 * We have two fragments both of which claim 6702 * to be the last fragment but gives conflicting 6703 * information about the whole datagram size. 6704 * Something fishy is going on. Drop the 6705 * fragment and free up the reassembly list. 6706 */ 6707 return (IP_REASS_FAILED); 6708 } 6709 6710 /* 6711 * We shouldn't come to this code block again for this 6712 * particular fragment. 6713 */ 6714 pkt_boundary_checked = B_TRUE; 6715 } 6716 6717 /* New stuff at or beyond tail? */ 6718 offset = IP_REASS_END(ipf->ipf_tail_mp); 6719 if (start >= offset) { 6720 if (ipf->ipf_last_frag_seen) { 6721 /* current fragment is beyond last fragment */ 6722 return (IP_REASS_FAILED); 6723 } 6724 /* Link it on end. */ 6725 ipf->ipf_tail_mp->b_cont = mp; 6726 ipf->ipf_tail_mp = mp; 6727 if (more) { 6728 if (start != offset) 6729 ipf->ipf_hole_cnt++; 6730 } else if (start == offset && next_mp == NULL) 6731 ipf->ipf_hole_cnt--; 6732 continue; 6733 } 6734 mp1 = ipf->ipf_mp->b_cont; 6735 offset = IP_REASS_START(mp1); 6736 /* New stuff at the front? */ 6737 if (start < offset) { 6738 if (start == 0) { 6739 if (end >= offset) { 6740 /* Nailed the hole at the begining. */ 6741 ipf->ipf_hole_cnt--; 6742 } 6743 } else if (end < offset) { 6744 /* 6745 * A hole, stuff, and a hole where there used 6746 * to be just a hole. 6747 */ 6748 ipf->ipf_hole_cnt++; 6749 } 6750 mp->b_cont = mp1; 6751 /* Check for overlap. */ 6752 while (end > offset) { 6753 if (end < IP_REASS_END(mp1)) { 6754 mp->b_wptr -= end - offset; 6755 IP_REASS_SET_END(mp, offset); 6756 BUMP_MIB(ill->ill_ip_mib, 6757 ipIfStatsReasmPartDups); 6758 break; 6759 } 6760 /* Did we cover another hole? */ 6761 if ((mp1->b_cont && 6762 IP_REASS_END(mp1) != 6763 IP_REASS_START(mp1->b_cont) && 6764 end >= IP_REASS_START(mp1->b_cont)) || 6765 (!ipf->ipf_last_frag_seen && !more)) { 6766 ipf->ipf_hole_cnt--; 6767 } 6768 /* Clip out mp1. */ 6769 if ((mp->b_cont = mp1->b_cont) == NULL) { 6770 /* 6771 * After clipping out mp1, this guy 6772 * is now hanging off the end. 6773 */ 6774 ipf->ipf_tail_mp = mp; 6775 } 6776 IP_REASS_SET_START(mp1, 0); 6777 IP_REASS_SET_END(mp1, 0); 6778 /* Subtract byte count */ 6779 ipf->ipf_count -= mp1->b_datap->db_lim - 6780 mp1->b_datap->db_base; 6781 freeb(mp1); 6782 BUMP_MIB(ill->ill_ip_mib, 6783 ipIfStatsReasmPartDups); 6784 mp1 = mp->b_cont; 6785 if (!mp1) 6786 break; 6787 offset = IP_REASS_START(mp1); 6788 } 6789 ipf->ipf_mp->b_cont = mp; 6790 continue; 6791 } 6792 /* 6793 * The new piece starts somewhere between the start of the head 6794 * and before the end of the tail. 6795 */ 6796 for (; mp1; mp1 = mp1->b_cont) { 6797 offset = IP_REASS_END(mp1); 6798 if (start < offset) { 6799 if (end <= offset) { 6800 /* Nothing new. */ 6801 IP_REASS_SET_START(mp, 0); 6802 IP_REASS_SET_END(mp, 0); 6803 /* Subtract byte count */ 6804 ipf->ipf_count -= mp->b_datap->db_lim - 6805 mp->b_datap->db_base; 6806 if (incr_dups) { 6807 ipf->ipf_num_dups++; 6808 incr_dups = B_FALSE; 6809 } 6810 freeb(mp); 6811 BUMP_MIB(ill->ill_ip_mib, 6812 ipIfStatsReasmDuplicates); 6813 break; 6814 } 6815 /* 6816 * Trim redundant stuff off beginning of new 6817 * piece. 6818 */ 6819 IP_REASS_SET_START(mp, offset); 6820 mp->b_rptr += offset - start; 6821 BUMP_MIB(ill->ill_ip_mib, 6822 ipIfStatsReasmPartDups); 6823 start = offset; 6824 if (!mp1->b_cont) { 6825 /* 6826 * After trimming, this guy is now 6827 * hanging off the end. 6828 */ 6829 mp1->b_cont = mp; 6830 ipf->ipf_tail_mp = mp; 6831 if (!more) { 6832 ipf->ipf_hole_cnt--; 6833 } 6834 break; 6835 } 6836 } 6837 if (start >= IP_REASS_START(mp1->b_cont)) 6838 continue; 6839 /* Fill a hole */ 6840 if (start > offset) 6841 ipf->ipf_hole_cnt++; 6842 mp->b_cont = mp1->b_cont; 6843 mp1->b_cont = mp; 6844 mp1 = mp->b_cont; 6845 offset = IP_REASS_START(mp1); 6846 if (end >= offset) { 6847 ipf->ipf_hole_cnt--; 6848 /* Check for overlap. */ 6849 while (end > offset) { 6850 if (end < IP_REASS_END(mp1)) { 6851 mp->b_wptr -= end - offset; 6852 IP_REASS_SET_END(mp, offset); 6853 /* 6854 * TODO we might bump 6855 * this up twice if there is 6856 * overlap at both ends. 6857 */ 6858 BUMP_MIB(ill->ill_ip_mib, 6859 ipIfStatsReasmPartDups); 6860 break; 6861 } 6862 /* Did we cover another hole? */ 6863 if ((mp1->b_cont && 6864 IP_REASS_END(mp1) 6865 != IP_REASS_START(mp1->b_cont) && 6866 end >= 6867 IP_REASS_START(mp1->b_cont)) || 6868 (!ipf->ipf_last_frag_seen && 6869 !more)) { 6870 ipf->ipf_hole_cnt--; 6871 } 6872 /* Clip out mp1. */ 6873 if ((mp->b_cont = mp1->b_cont) == 6874 NULL) { 6875 /* 6876 * After clipping out mp1, 6877 * this guy is now hanging 6878 * off the end. 6879 */ 6880 ipf->ipf_tail_mp = mp; 6881 } 6882 IP_REASS_SET_START(mp1, 0); 6883 IP_REASS_SET_END(mp1, 0); 6884 /* Subtract byte count */ 6885 ipf->ipf_count -= 6886 mp1->b_datap->db_lim - 6887 mp1->b_datap->db_base; 6888 freeb(mp1); 6889 BUMP_MIB(ill->ill_ip_mib, 6890 ipIfStatsReasmPartDups); 6891 mp1 = mp->b_cont; 6892 if (!mp1) 6893 break; 6894 offset = IP_REASS_START(mp1); 6895 } 6896 } 6897 break; 6898 } 6899 } while (start = end, mp = next_mp); 6900 6901 /* Fragment just processed could be the last one. Remember this fact */ 6902 if (!more) 6903 ipf->ipf_last_frag_seen = B_TRUE; 6904 6905 /* Still got holes? */ 6906 if (ipf->ipf_hole_cnt) 6907 return (IP_REASS_PARTIAL); 6908 /* Clean up overloaded fields to avoid upstream disasters. */ 6909 for (mp1 = ipf->ipf_mp->b_cont; mp1; mp1 = mp1->b_cont) { 6910 IP_REASS_SET_START(mp1, 0); 6911 IP_REASS_SET_END(mp1, 0); 6912 } 6913 return (IP_REASS_COMPLETE); 6914 } 6915 6916 /* 6917 * Fragmentation reassembly. Each ILL has a hash table for 6918 * queuing packets undergoing reassembly for all IPIFs 6919 * associated with the ILL. The hash is based on the packet 6920 * IP ident field. The ILL frag hash table was allocated 6921 * as a timer block at the time the ILL was created. Whenever 6922 * there is anything on the reassembly queue, the timer will 6923 * be running. Returns the reassembled packet if reassembly completes. 6924 */ 6925 mblk_t * 6926 ip_input_fragment(mblk_t *mp, ipha_t *ipha, ip_recv_attr_t *ira) 6927 { 6928 uint32_t frag_offset_flags; 6929 mblk_t *t_mp; 6930 ipaddr_t dst; 6931 uint8_t proto = ipha->ipha_protocol; 6932 uint32_t sum_val; 6933 uint16_t sum_flags; 6934 ipf_t *ipf; 6935 ipf_t **ipfp; 6936 ipfb_t *ipfb; 6937 uint16_t ident; 6938 uint32_t offset; 6939 ipaddr_t src; 6940 uint_t hdr_length; 6941 uint32_t end; 6942 mblk_t *mp1; 6943 mblk_t *tail_mp; 6944 size_t count; 6945 size_t msg_len; 6946 uint8_t ecn_info = 0; 6947 uint32_t packet_size; 6948 boolean_t pruned = B_FALSE; 6949 ill_t *ill = ira->ira_ill; 6950 ip_stack_t *ipst = ill->ill_ipst; 6951 6952 /* 6953 * Drop the fragmented as early as possible, if 6954 * we don't have resource(s) to re-assemble. 6955 */ 6956 if (ipst->ips_ip_reass_queue_bytes == 0) { 6957 freemsg(mp); 6958 return (NULL); 6959 } 6960 6961 /* Check for fragmentation offset; return if there's none */ 6962 if ((frag_offset_flags = ntohs(ipha->ipha_fragment_offset_and_flags) & 6963 (IPH_MF | IPH_OFFSET)) == 0) 6964 return (mp); 6965 6966 /* 6967 * We utilize hardware computed checksum info only for UDP since 6968 * IP fragmentation is a normal occurrence for the protocol. In 6969 * addition, checksum offload support for IP fragments carrying 6970 * UDP payload is commonly implemented across network adapters. 6971 */ 6972 ASSERT(ira->ira_rill != NULL); 6973 if (proto == IPPROTO_UDP && dohwcksum && 6974 ILL_HCKSUM_CAPABLE(ira->ira_rill) && 6975 (DB_CKSUMFLAGS(mp) & (HCK_FULLCKSUM | HCK_PARTIALCKSUM))) { 6976 mblk_t *mp1 = mp->b_cont; 6977 int32_t len; 6978 6979 /* Record checksum information from the packet */ 6980 sum_val = (uint32_t)DB_CKSUM16(mp); 6981 sum_flags = DB_CKSUMFLAGS(mp); 6982 6983 /* IP payload offset from beginning of mblk */ 6984 offset = ((uchar_t *)ipha + IPH_HDR_LENGTH(ipha)) - mp->b_rptr; 6985 6986 if ((sum_flags & HCK_PARTIALCKSUM) && 6987 (mp1 == NULL || mp1->b_cont == NULL) && 6988 offset >= DB_CKSUMSTART(mp) && 6989 ((len = offset - DB_CKSUMSTART(mp)) & 1) == 0) { 6990 uint32_t adj; 6991 /* 6992 * Partial checksum has been calculated by hardware 6993 * and attached to the packet; in addition, any 6994 * prepended extraneous data is even byte aligned. 6995 * If any such data exists, we adjust the checksum; 6996 * this would also handle any postpended data. 6997 */ 6998 IP_ADJCKSUM_PARTIAL(mp->b_rptr + DB_CKSUMSTART(mp), 6999 mp, mp1, len, adj); 7000 7001 /* One's complement subtract extraneous checksum */ 7002 if (adj >= sum_val) 7003 sum_val = ~(adj - sum_val) & 0xFFFF; 7004 else 7005 sum_val -= adj; 7006 } 7007 } else { 7008 sum_val = 0; 7009 sum_flags = 0; 7010 } 7011 7012 /* Clear hardware checksumming flag */ 7013 DB_CKSUMFLAGS(mp) = 0; 7014 7015 ident = ipha->ipha_ident; 7016 offset = (frag_offset_flags << 3) & 0xFFFF; 7017 src = ipha->ipha_src; 7018 dst = ipha->ipha_dst; 7019 hdr_length = IPH_HDR_LENGTH(ipha); 7020 end = ntohs(ipha->ipha_length) - hdr_length; 7021 7022 /* If end == 0 then we have a packet with no data, so just free it */ 7023 if (end == 0) { 7024 freemsg(mp); 7025 return (NULL); 7026 } 7027 7028 /* Record the ECN field info. */ 7029 ecn_info = (ipha->ipha_type_of_service & 0x3); 7030 if (offset != 0) { 7031 /* 7032 * If this isn't the first piece, strip the header, and 7033 * add the offset to the end value. 7034 */ 7035 mp->b_rptr += hdr_length; 7036 end += offset; 7037 } 7038 7039 /* Handle vnic loopback of fragments */ 7040 if (mp->b_datap->db_ref > 2) 7041 msg_len = 0; 7042 else 7043 msg_len = MBLKSIZE(mp); 7044 7045 tail_mp = mp; 7046 while (tail_mp->b_cont != NULL) { 7047 tail_mp = tail_mp->b_cont; 7048 if (tail_mp->b_datap->db_ref <= 2) 7049 msg_len += MBLKSIZE(tail_mp); 7050 } 7051 7052 /* If the reassembly list for this ILL will get too big, prune it */ 7053 if ((msg_len + sizeof (*ipf) + ill->ill_frag_count) >= 7054 ipst->ips_ip_reass_queue_bytes) { 7055 DTRACE_PROBE3(ip_reass_queue_bytes, uint_t, msg_len, 7056 uint_t, ill->ill_frag_count, 7057 uint_t, ipst->ips_ip_reass_queue_bytes); 7058 ill_frag_prune(ill, 7059 (ipst->ips_ip_reass_queue_bytes < msg_len) ? 0 : 7060 (ipst->ips_ip_reass_queue_bytes - msg_len)); 7061 pruned = B_TRUE; 7062 } 7063 7064 ipfb = &ill->ill_frag_hash_tbl[ILL_FRAG_HASH(src, ident)]; 7065 mutex_enter(&ipfb->ipfb_lock); 7066 7067 ipfp = &ipfb->ipfb_ipf; 7068 /* Try to find an existing fragment queue for this packet. */ 7069 for (;;) { 7070 ipf = ipfp[0]; 7071 if (ipf != NULL) { 7072 /* 7073 * It has to match on ident and src/dst address. 7074 */ 7075 if (ipf->ipf_ident == ident && 7076 ipf->ipf_src == src && 7077 ipf->ipf_dst == dst && 7078 ipf->ipf_protocol == proto) { 7079 /* 7080 * If we have received too many 7081 * duplicate fragments for this packet 7082 * free it. 7083 */ 7084 if (ipf->ipf_num_dups > ip_max_frag_dups) { 7085 ill_frag_free_pkts(ill, ipfb, ipf, 1); 7086 freemsg(mp); 7087 mutex_exit(&ipfb->ipfb_lock); 7088 return (NULL); 7089 } 7090 /* Found it. */ 7091 break; 7092 } 7093 ipfp = &ipf->ipf_hash_next; 7094 continue; 7095 } 7096 7097 /* 7098 * If we pruned the list, do we want to store this new 7099 * fragment?. We apply an optimization here based on the 7100 * fact that most fragments will be received in order. 7101 * So if the offset of this incoming fragment is zero, 7102 * it is the first fragment of a new packet. We will 7103 * keep it. Otherwise drop the fragment, as we have 7104 * probably pruned the packet already (since the 7105 * packet cannot be found). 7106 */ 7107 if (pruned && offset != 0) { 7108 mutex_exit(&ipfb->ipfb_lock); 7109 freemsg(mp); 7110 return (NULL); 7111 } 7112 7113 if (ipfb->ipfb_frag_pkts >= MAX_FRAG_PKTS(ipst)) { 7114 /* 7115 * Too many fragmented packets in this hash 7116 * bucket. Free the oldest. 7117 */ 7118 ill_frag_free_pkts(ill, ipfb, ipfb->ipfb_ipf, 1); 7119 } 7120 7121 /* New guy. Allocate a frag message. */ 7122 mp1 = allocb(sizeof (*ipf), BPRI_MED); 7123 if (mp1 == NULL) { 7124 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 7125 ip_drop_input("ipIfStatsInDiscards", mp, ill); 7126 freemsg(mp); 7127 reass_done: 7128 mutex_exit(&ipfb->ipfb_lock); 7129 return (NULL); 7130 } 7131 7132 BUMP_MIB(ill->ill_ip_mib, ipIfStatsReasmReqds); 7133 mp1->b_cont = mp; 7134 7135 /* Initialize the fragment header. */ 7136 ipf = (ipf_t *)mp1->b_rptr; 7137 ipf->ipf_mp = mp1; 7138 ipf->ipf_ptphn = ipfp; 7139 ipfp[0] = ipf; 7140 ipf->ipf_hash_next = NULL; 7141 ipf->ipf_ident = ident; 7142 ipf->ipf_protocol = proto; 7143 ipf->ipf_src = src; 7144 ipf->ipf_dst = dst; 7145 ipf->ipf_nf_hdr_len = 0; 7146 /* Record reassembly start time. */ 7147 ipf->ipf_timestamp = gethrestime_sec(); 7148 /* Record ipf generation and account for frag header */ 7149 ipf->ipf_gen = ill->ill_ipf_gen++; 7150 ipf->ipf_count = MBLKSIZE(mp1); 7151 ipf->ipf_last_frag_seen = B_FALSE; 7152 ipf->ipf_ecn = ecn_info; 7153 ipf->ipf_num_dups = 0; 7154 ipfb->ipfb_frag_pkts++; 7155 ipf->ipf_checksum = 0; 7156 ipf->ipf_checksum_flags = 0; 7157 7158 /* Store checksum value in fragment header */ 7159 if (sum_flags != 0) { 7160 sum_val = (sum_val & 0xFFFF) + (sum_val >> 16); 7161 sum_val = (sum_val & 0xFFFF) + (sum_val >> 16); 7162 ipf->ipf_checksum = sum_val; 7163 ipf->ipf_checksum_flags = sum_flags; 7164 } 7165 7166 /* 7167 * We handle reassembly two ways. In the easy case, 7168 * where all the fragments show up in order, we do 7169 * minimal bookkeeping, and just clip new pieces on 7170 * the end. If we ever see a hole, then we go off 7171 * to ip_reassemble which has to mark the pieces and 7172 * keep track of the number of holes, etc. Obviously, 7173 * the point of having both mechanisms is so we can 7174 * handle the easy case as efficiently as possible. 7175 */ 7176 if (offset == 0) { 7177 /* Easy case, in-order reassembly so far. */ 7178 ipf->ipf_count += msg_len; 7179 ipf->ipf_tail_mp = tail_mp; 7180 /* 7181 * Keep track of next expected offset in 7182 * ipf_end. 7183 */ 7184 ipf->ipf_end = end; 7185 ipf->ipf_nf_hdr_len = hdr_length; 7186 } else { 7187 /* Hard case, hole at the beginning. */ 7188 ipf->ipf_tail_mp = NULL; 7189 /* 7190 * ipf_end == 0 means that we have given up 7191 * on easy reassembly. 7192 */ 7193 ipf->ipf_end = 0; 7194 7195 /* Forget checksum offload from now on */ 7196 ipf->ipf_checksum_flags = 0; 7197 7198 /* 7199 * ipf_hole_cnt is set by ip_reassemble. 7200 * ipf_count is updated by ip_reassemble. 7201 * No need to check for return value here 7202 * as we don't expect reassembly to complete 7203 * or fail for the first fragment itself. 7204 */ 7205 (void) ip_reassemble(mp, ipf, 7206 (frag_offset_flags & IPH_OFFSET) << 3, 7207 (frag_offset_flags & IPH_MF), ill, msg_len); 7208 } 7209 /* Update per ipfb and ill byte counts */ 7210 ipfb->ipfb_count += ipf->ipf_count; 7211 ASSERT(ipfb->ipfb_count > 0); /* Wraparound */ 7212 atomic_add_32(&ill->ill_frag_count, ipf->ipf_count); 7213 /* If the frag timer wasn't already going, start it. */ 7214 mutex_enter(&ill->ill_lock); 7215 ill_frag_timer_start(ill); 7216 mutex_exit(&ill->ill_lock); 7217 goto reass_done; 7218 } 7219 7220 /* 7221 * If the packet's flag has changed (it could be coming up 7222 * from an interface different than the previous, therefore 7223 * possibly different checksum capability), then forget about 7224 * any stored checksum states. Otherwise add the value to 7225 * the existing one stored in the fragment header. 7226 */ 7227 if (sum_flags != 0 && sum_flags == ipf->ipf_checksum_flags) { 7228 sum_val += ipf->ipf_checksum; 7229 sum_val = (sum_val & 0xFFFF) + (sum_val >> 16); 7230 sum_val = (sum_val & 0xFFFF) + (sum_val >> 16); 7231 ipf->ipf_checksum = sum_val; 7232 } else if (ipf->ipf_checksum_flags != 0) { 7233 /* Forget checksum offload from now on */ 7234 ipf->ipf_checksum_flags = 0; 7235 } 7236 7237 /* 7238 * We have a new piece of a datagram which is already being 7239 * reassembled. Update the ECN info if all IP fragments 7240 * are ECN capable. If there is one which is not, clear 7241 * all the info. If there is at least one which has CE 7242 * code point, IP needs to report that up to transport. 7243 */ 7244 if (ecn_info != IPH_ECN_NECT && ipf->ipf_ecn != IPH_ECN_NECT) { 7245 if (ecn_info == IPH_ECN_CE) 7246 ipf->ipf_ecn = IPH_ECN_CE; 7247 } else { 7248 ipf->ipf_ecn = IPH_ECN_NECT; 7249 } 7250 if (offset && ipf->ipf_end == offset) { 7251 /* The new fragment fits at the end */ 7252 ipf->ipf_tail_mp->b_cont = mp; 7253 /* Update the byte count */ 7254 ipf->ipf_count += msg_len; 7255 /* Update per ipfb and ill byte counts */ 7256 ipfb->ipfb_count += msg_len; 7257 ASSERT(ipfb->ipfb_count > 0); /* Wraparound */ 7258 atomic_add_32(&ill->ill_frag_count, msg_len); 7259 if (frag_offset_flags & IPH_MF) { 7260 /* More to come. */ 7261 ipf->ipf_end = end; 7262 ipf->ipf_tail_mp = tail_mp; 7263 goto reass_done; 7264 } 7265 } else { 7266 /* Go do the hard cases. */ 7267 int ret; 7268 7269 if (offset == 0) 7270 ipf->ipf_nf_hdr_len = hdr_length; 7271 7272 /* Save current byte count */ 7273 count = ipf->ipf_count; 7274 ret = ip_reassemble(mp, ipf, 7275 (frag_offset_flags & IPH_OFFSET) << 3, 7276 (frag_offset_flags & IPH_MF), ill, msg_len); 7277 /* Count of bytes added and subtracted (freeb()ed) */ 7278 count = ipf->ipf_count - count; 7279 if (count) { 7280 /* Update per ipfb and ill byte counts */ 7281 ipfb->ipfb_count += count; 7282 ASSERT(ipfb->ipfb_count > 0); /* Wraparound */ 7283 atomic_add_32(&ill->ill_frag_count, count); 7284 } 7285 if (ret == IP_REASS_PARTIAL) { 7286 goto reass_done; 7287 } else if (ret == IP_REASS_FAILED) { 7288 /* Reassembly failed. Free up all resources */ 7289 ill_frag_free_pkts(ill, ipfb, ipf, 1); 7290 for (t_mp = mp; t_mp != NULL; t_mp = t_mp->b_cont) { 7291 IP_REASS_SET_START(t_mp, 0); 7292 IP_REASS_SET_END(t_mp, 0); 7293 } 7294 freemsg(mp); 7295 goto reass_done; 7296 } 7297 /* We will reach here iff 'ret' is IP_REASS_COMPLETE */ 7298 } 7299 /* 7300 * We have completed reassembly. Unhook the frag header from 7301 * the reassembly list. 7302 * 7303 * Before we free the frag header, record the ECN info 7304 * to report back to the transport. 7305 */ 7306 ecn_info = ipf->ipf_ecn; 7307 BUMP_MIB(ill->ill_ip_mib, ipIfStatsReasmOKs); 7308 ipfp = ipf->ipf_ptphn; 7309 7310 /* We need to supply these to caller */ 7311 if ((sum_flags = ipf->ipf_checksum_flags) != 0) 7312 sum_val = ipf->ipf_checksum; 7313 else 7314 sum_val = 0; 7315 7316 mp1 = ipf->ipf_mp; 7317 count = ipf->ipf_count; 7318 ipf = ipf->ipf_hash_next; 7319 if (ipf != NULL) 7320 ipf->ipf_ptphn = ipfp; 7321 ipfp[0] = ipf; 7322 atomic_add_32(&ill->ill_frag_count, -count); 7323 ASSERT(ipfb->ipfb_count >= count); 7324 ipfb->ipfb_count -= count; 7325 ipfb->ipfb_frag_pkts--; 7326 mutex_exit(&ipfb->ipfb_lock); 7327 /* Ditch the frag header. */ 7328 mp = mp1->b_cont; 7329 7330 freeb(mp1); 7331 7332 /* Restore original IP length in header. */ 7333 packet_size = (uint32_t)msgdsize(mp); 7334 if (packet_size > IP_MAXPACKET) { 7335 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors); 7336 ip_drop_input("Reassembled packet too large", mp, ill); 7337 freemsg(mp); 7338 return (NULL); 7339 } 7340 7341 if (DB_REF(mp) > 1) { 7342 mblk_t *mp2 = copymsg(mp); 7343 7344 if (mp2 == NULL) { 7345 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 7346 ip_drop_input("ipIfStatsInDiscards", mp, ill); 7347 freemsg(mp); 7348 return (NULL); 7349 } 7350 freemsg(mp); 7351 mp = mp2; 7352 } 7353 ipha = (ipha_t *)mp->b_rptr; 7354 7355 ipha->ipha_length = htons((uint16_t)packet_size); 7356 /* We're now complete, zip the frag state */ 7357 ipha->ipha_fragment_offset_and_flags = 0; 7358 /* Record the ECN info. */ 7359 ipha->ipha_type_of_service &= 0xFC; 7360 ipha->ipha_type_of_service |= ecn_info; 7361 7362 /* Update the receive attributes */ 7363 ira->ira_pktlen = packet_size; 7364 ira->ira_ip_hdr_length = IPH_HDR_LENGTH(ipha); 7365 7366 /* Reassembly is successful; set checksum information in packet */ 7367 DB_CKSUM16(mp) = (uint16_t)sum_val; 7368 DB_CKSUMFLAGS(mp) = sum_flags; 7369 DB_CKSUMSTART(mp) = ira->ira_ip_hdr_length; 7370 7371 return (mp); 7372 } 7373 7374 /* 7375 * Pullup function that should be used for IP input in order to 7376 * ensure we do not loose the L2 source address; we need the l2 source 7377 * address for IP_RECVSLLA and for ndp_input. 7378 * 7379 * We return either NULL or b_rptr. 7380 */ 7381 void * 7382 ip_pullup(mblk_t *mp, ssize_t len, ip_recv_attr_t *ira) 7383 { 7384 ill_t *ill = ira->ira_ill; 7385 7386 if (ip_rput_pullups++ == 0) { 7387 (void) mi_strlog(ill->ill_rq, 1, SL_ERROR|SL_TRACE, 7388 "ip_pullup: %s forced us to " 7389 " pullup pkt, hdr len %ld, hdr addr %p", 7390 ill->ill_name, len, (void *)mp->b_rptr); 7391 } 7392 if (!(ira->ira_flags & IRAF_L2SRC_SET)) 7393 ip_setl2src(mp, ira, ira->ira_rill); 7394 ASSERT(ira->ira_flags & IRAF_L2SRC_SET); 7395 if (!pullupmsg(mp, len)) 7396 return (NULL); 7397 else 7398 return (mp->b_rptr); 7399 } 7400 7401 /* 7402 * Make sure ira_l2src has an address. If we don't have one fill with zeros. 7403 * When called from the ULP ira_rill will be NULL hence the caller has to 7404 * pass in the ill. 7405 */ 7406 /* ARGSUSED */ 7407 void 7408 ip_setl2src(mblk_t *mp, ip_recv_attr_t *ira, ill_t *ill) 7409 { 7410 const uchar_t *addr; 7411 int alen; 7412 7413 if (ira->ira_flags & IRAF_L2SRC_SET) 7414 return; 7415 7416 ASSERT(ill != NULL); 7417 alen = ill->ill_phys_addr_length; 7418 ASSERT(alen <= sizeof (ira->ira_l2src)); 7419 if (ira->ira_mhip != NULL && 7420 (addr = ira->ira_mhip->mhi_saddr) != NULL) { 7421 bcopy(addr, ira->ira_l2src, alen); 7422 } else if ((ira->ira_flags & IRAF_L2SRC_LOOPBACK) && 7423 (addr = ill->ill_phys_addr) != NULL) { 7424 bcopy(addr, ira->ira_l2src, alen); 7425 } else { 7426 bzero(ira->ira_l2src, alen); 7427 } 7428 ira->ira_flags |= IRAF_L2SRC_SET; 7429 } 7430 7431 /* 7432 * check ip header length and align it. 7433 */ 7434 mblk_t * 7435 ip_check_and_align_header(mblk_t *mp, uint_t min_size, ip_recv_attr_t *ira) 7436 { 7437 ill_t *ill = ira->ira_ill; 7438 ssize_t len; 7439 7440 len = MBLKL(mp); 7441 7442 if (!OK_32PTR(mp->b_rptr)) 7443 IP_STAT(ill->ill_ipst, ip_notaligned); 7444 else 7445 IP_STAT(ill->ill_ipst, ip_recv_pullup); 7446 7447 /* Guard against bogus device drivers */ 7448 if (len < 0) { 7449 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors); 7450 ip_drop_input("ipIfStatsInHdrErrors", mp, ill); 7451 freemsg(mp); 7452 return (NULL); 7453 } 7454 7455 if (len == 0) { 7456 /* GLD sometimes sends up mblk with b_rptr == b_wptr! */ 7457 mblk_t *mp1 = mp->b_cont; 7458 7459 if (!(ira->ira_flags & IRAF_L2SRC_SET)) 7460 ip_setl2src(mp, ira, ira->ira_rill); 7461 ASSERT(ira->ira_flags & IRAF_L2SRC_SET); 7462 7463 freeb(mp); 7464 mp = mp1; 7465 if (mp == NULL) 7466 return (NULL); 7467 7468 if (OK_32PTR(mp->b_rptr) && MBLKL(mp) >= min_size) 7469 return (mp); 7470 } 7471 if (ip_pullup(mp, min_size, ira) == NULL) { 7472 if (msgdsize(mp) < min_size) { 7473 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors); 7474 ip_drop_input("ipIfStatsInHdrErrors", mp, ill); 7475 } else { 7476 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 7477 ip_drop_input("ipIfStatsInDiscards", mp, ill); 7478 } 7479 freemsg(mp); 7480 return (NULL); 7481 } 7482 return (mp); 7483 } 7484 7485 /* 7486 * Common code for IPv4 and IPv6 to check and pullup multi-mblks 7487 */ 7488 mblk_t * 7489 ip_check_length(mblk_t *mp, uchar_t *rptr, ssize_t len, uint_t pkt_len, 7490 uint_t min_size, ip_recv_attr_t *ira) 7491 { 7492 ill_t *ill = ira->ira_ill; 7493 7494 /* 7495 * Make sure we have data length consistent 7496 * with the IP header. 7497 */ 7498 if (mp->b_cont == NULL) { 7499 /* pkt_len is based on ipha_len, not the mblk length */ 7500 if (pkt_len < min_size) { 7501 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors); 7502 ip_drop_input("ipIfStatsInHdrErrors", mp, ill); 7503 freemsg(mp); 7504 return (NULL); 7505 } 7506 if (len < 0) { 7507 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInTruncatedPkts); 7508 ip_drop_input("ipIfStatsInTruncatedPkts", mp, ill); 7509 freemsg(mp); 7510 return (NULL); 7511 } 7512 /* Drop any pad */ 7513 mp->b_wptr = rptr + pkt_len; 7514 } else if ((len += msgdsize(mp->b_cont)) != 0) { 7515 ASSERT(pkt_len >= min_size); 7516 if (pkt_len < min_size) { 7517 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors); 7518 ip_drop_input("ipIfStatsInHdrErrors", mp, ill); 7519 freemsg(mp); 7520 return (NULL); 7521 } 7522 if (len < 0) { 7523 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInTruncatedPkts); 7524 ip_drop_input("ipIfStatsInTruncatedPkts", mp, ill); 7525 freemsg(mp); 7526 return (NULL); 7527 } 7528 /* Drop any pad */ 7529 (void) adjmsg(mp, -len); 7530 /* 7531 * adjmsg may have freed an mblk from the chain, hence 7532 * invalidate any hw checksum here. This will force IP to 7533 * calculate the checksum in sw, but only for this packet. 7534 */ 7535 DB_CKSUMFLAGS(mp) = 0; 7536 IP_STAT(ill->ill_ipst, ip_multimblk); 7537 } 7538 return (mp); 7539 } 7540 7541 /* 7542 * Check that the IPv4 opt_len is consistent with the packet and pullup 7543 * the options. 7544 */ 7545 mblk_t * 7546 ip_check_optlen(mblk_t *mp, ipha_t *ipha, uint_t opt_len, uint_t pkt_len, 7547 ip_recv_attr_t *ira) 7548 { 7549 ill_t *ill = ira->ira_ill; 7550 ssize_t len; 7551 7552 /* Assume no IPv6 packets arrive over the IPv4 queue */ 7553 if (IPH_HDR_VERSION(ipha) != IPV4_VERSION) { 7554 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors); 7555 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInWrongIPVersion); 7556 ip_drop_input("IPvN packet on IPv4 ill", mp, ill); 7557 freemsg(mp); 7558 return (NULL); 7559 } 7560 7561 if (opt_len > (15 - IP_SIMPLE_HDR_LENGTH_IN_WORDS)) { 7562 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors); 7563 ip_drop_input("ipIfStatsInHdrErrors", mp, ill); 7564 freemsg(mp); 7565 return (NULL); 7566 } 7567 /* 7568 * Recompute complete header length and make sure we 7569 * have access to all of it. 7570 */ 7571 len = ((size_t)opt_len + IP_SIMPLE_HDR_LENGTH_IN_WORDS) << 2; 7572 if (len > (mp->b_wptr - mp->b_rptr)) { 7573 if (len > pkt_len) { 7574 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors); 7575 ip_drop_input("ipIfStatsInHdrErrors", mp, ill); 7576 freemsg(mp); 7577 return (NULL); 7578 } 7579 if (ip_pullup(mp, len, ira) == NULL) { 7580 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 7581 ip_drop_input("ipIfStatsInDiscards", mp, ill); 7582 freemsg(mp); 7583 return (NULL); 7584 } 7585 } 7586 return (mp); 7587 } 7588 7589 /* 7590 * Returns a new ire, or the same ire, or NULL. 7591 * If a different IRE is returned, then it is held; the caller 7592 * needs to release it. 7593 * In no case is there any hold/release on the ire argument. 7594 */ 7595 ire_t * 7596 ip_check_multihome(void *addr, ire_t *ire, ill_t *ill) 7597 { 7598 ire_t *new_ire; 7599 ill_t *ire_ill; 7600 uint_t ifindex; 7601 ip_stack_t *ipst = ill->ill_ipst; 7602 boolean_t strict_check = B_FALSE; 7603 7604 /* 7605 * IPMP common case: if IRE and ILL are in the same group, there's no 7606 * issue (e.g. packet received on an underlying interface matched an 7607 * IRE_LOCAL on its associated group interface). 7608 */ 7609 ASSERT(ire->ire_ill != NULL); 7610 if (IS_IN_SAME_ILLGRP(ill, ire->ire_ill)) 7611 return (ire); 7612 7613 /* 7614 * Do another ire lookup here, using the ingress ill, to see if the 7615 * interface is in a usesrc group. 7616 * As long as the ills belong to the same group, we don't consider 7617 * them to be arriving on the wrong interface. Thus, if the switch 7618 * is doing inbound load spreading, we won't drop packets when the 7619 * ip*_strict_dst_multihoming switch is on. 7620 * We also need to check for IPIF_UNNUMBERED point2point interfaces 7621 * where the local address may not be unique. In this case we were 7622 * at the mercy of the initial ire lookup and the IRE_LOCAL it 7623 * actually returned. The new lookup, which is more specific, should 7624 * only find the IRE_LOCAL associated with the ingress ill if one 7625 * exists. 7626 */ 7627 if (ire->ire_ipversion == IPV4_VERSION) { 7628 if (ipst->ips_ip_strict_dst_multihoming) 7629 strict_check = B_TRUE; 7630 new_ire = ire_ftable_lookup_v4(*((ipaddr_t *)addr), 0, 0, 7631 IRE_LOCAL, ill, ALL_ZONES, NULL, 7632 (MATCH_IRE_TYPE|MATCH_IRE_ILL), 0, ipst, NULL); 7633 } else { 7634 ASSERT(!IN6_IS_ADDR_MULTICAST((in6_addr_t *)addr)); 7635 if (ipst->ips_ipv6_strict_dst_multihoming) 7636 strict_check = B_TRUE; 7637 new_ire = ire_ftable_lookup_v6((in6_addr_t *)addr, NULL, NULL, 7638 IRE_LOCAL, ill, ALL_ZONES, NULL, 7639 (MATCH_IRE_TYPE|MATCH_IRE_ILL), 0, ipst, NULL); 7640 } 7641 /* 7642 * If the same ire that was returned in ip_input() is found then this 7643 * is an indication that usesrc groups are in use. The packet 7644 * arrived on a different ill in the group than the one associated with 7645 * the destination address. If a different ire was found then the same 7646 * IP address must be hosted on multiple ills. This is possible with 7647 * unnumbered point2point interfaces. We switch to use this new ire in 7648 * order to have accurate interface statistics. 7649 */ 7650 if (new_ire != NULL) { 7651 /* Note: held in one case but not the other? Caller handles */ 7652 if (new_ire != ire) 7653 return (new_ire); 7654 /* Unchanged */ 7655 ire_refrele(new_ire); 7656 return (ire); 7657 } 7658 7659 /* 7660 * Chase pointers once and store locally. 7661 */ 7662 ASSERT(ire->ire_ill != NULL); 7663 ire_ill = ire->ire_ill; 7664 ifindex = ill->ill_usesrc_ifindex; 7665 7666 /* 7667 * Check if it's a legal address on the 'usesrc' interface. 7668 * For IPMP data addresses the IRE_LOCAL is the upper, hence we 7669 * can just check phyint_ifindex. 7670 */ 7671 if (ifindex != 0 && ifindex == ire_ill->ill_phyint->phyint_ifindex) { 7672 return (ire); 7673 } 7674 7675 /* 7676 * If the ip*_strict_dst_multihoming switch is on then we can 7677 * only accept this packet if the interface is marked as routing. 7678 */ 7679 if (!(strict_check)) 7680 return (ire); 7681 7682 if ((ill->ill_flags & ire->ire_ill->ill_flags & ILLF_ROUTER) != 0) { 7683 return (ire); 7684 } 7685 return (NULL); 7686 } 7687 7688 /* 7689 * This function is used to construct a mac_header_info_s from a 7690 * DL_UNITDATA_IND message. 7691 * The address fields in the mhi structure points into the message, 7692 * thus the caller can't use those fields after freeing the message. 7693 * 7694 * We determine whether the packet received is a non-unicast packet 7695 * and in doing so, determine whether or not it is broadcast vs multicast. 7696 * For it to be a broadcast packet, we must have the appropriate mblk_t 7697 * hanging off the ill_t. If this is either not present or doesn't match 7698 * the destination mac address in the DL_UNITDATA_IND, the packet is deemed 7699 * to be multicast. Thus NICs that have no broadcast address (or no 7700 * capability for one, such as point to point links) cannot return as 7701 * the packet being broadcast. 7702 */ 7703 void 7704 ip_dlur_to_mhi(ill_t *ill, mblk_t *mb, struct mac_header_info_s *mhip) 7705 { 7706 dl_unitdata_ind_t *ind = (dl_unitdata_ind_t *)mb->b_rptr; 7707 mblk_t *bmp; 7708 uint_t extra_offset; 7709 7710 bzero(mhip, sizeof (struct mac_header_info_s)); 7711 7712 mhip->mhi_dsttype = MAC_ADDRTYPE_UNICAST; 7713 7714 if (ill->ill_sap_length < 0) 7715 extra_offset = 0; 7716 else 7717 extra_offset = ill->ill_sap_length; 7718 7719 mhip->mhi_daddr = (uchar_t *)ind + ind->dl_dest_addr_offset + 7720 extra_offset; 7721 mhip->mhi_saddr = (uchar_t *)ind + ind->dl_src_addr_offset + 7722 extra_offset; 7723 7724 if (!ind->dl_group_address) 7725 return; 7726 7727 /* Multicast or broadcast */ 7728 mhip->mhi_dsttype = MAC_ADDRTYPE_MULTICAST; 7729 7730 if (ind->dl_dest_addr_offset > sizeof (*ind) && 7731 ind->dl_dest_addr_offset + ind->dl_dest_addr_length < MBLKL(mb) && 7732 (bmp = ill->ill_bcast_mp) != NULL) { 7733 dl_unitdata_req_t *dlur; 7734 uint8_t *bphys_addr; 7735 7736 dlur = (dl_unitdata_req_t *)bmp->b_rptr; 7737 bphys_addr = (uchar_t *)dlur + dlur->dl_dest_addr_offset + 7738 extra_offset; 7739 7740 if (bcmp(mhip->mhi_daddr, bphys_addr, 7741 ind->dl_dest_addr_length) == 0) 7742 mhip->mhi_dsttype = MAC_ADDRTYPE_BROADCAST; 7743 } 7744 } 7745 7746 /* 7747 * This function is used to construct a mac_header_info_s from a 7748 * M_DATA fastpath message from a DLPI driver. 7749 * The address fields in the mhi structure points into the message, 7750 * thus the caller can't use those fields after freeing the message. 7751 * 7752 * We determine whether the packet received is a non-unicast packet 7753 * and in doing so, determine whether or not it is broadcast vs multicast. 7754 * For it to be a broadcast packet, we must have the appropriate mblk_t 7755 * hanging off the ill_t. If this is either not present or doesn't match 7756 * the destination mac address in the DL_UNITDATA_IND, the packet is deemed 7757 * to be multicast. Thus NICs that have no broadcast address (or no 7758 * capability for one, such as point to point links) cannot return as 7759 * the packet being broadcast. 7760 */ 7761 void 7762 ip_mdata_to_mhi(ill_t *ill, mblk_t *mp, struct mac_header_info_s *mhip) 7763 { 7764 mblk_t *bmp; 7765 struct ether_header *pether; 7766 7767 bzero(mhip, sizeof (struct mac_header_info_s)); 7768 7769 mhip->mhi_dsttype = MAC_ADDRTYPE_UNICAST; 7770 7771 pether = (struct ether_header *)((char *)mp->b_rptr 7772 - sizeof (struct ether_header)); 7773 7774 /* 7775 * Make sure the interface is an ethernet type, since we don't 7776 * know the header format for anything but Ethernet. Also make 7777 * sure we are pointing correctly above db_base. 7778 */ 7779 if (ill->ill_type != IFT_ETHER) 7780 return; 7781 7782 retry: 7783 if ((uchar_t *)pether < mp->b_datap->db_base) 7784 return; 7785 7786 /* Is there a VLAN tag? */ 7787 if (ill->ill_isv6) { 7788 if (pether->ether_type != htons(ETHERTYPE_IPV6)) { 7789 pether = (struct ether_header *)((char *)pether - 4); 7790 goto retry; 7791 } 7792 } else { 7793 if (pether->ether_type != htons(ETHERTYPE_IP)) { 7794 pether = (struct ether_header *)((char *)pether - 4); 7795 goto retry; 7796 } 7797 } 7798 mhip->mhi_daddr = (uchar_t *)&pether->ether_dhost; 7799 mhip->mhi_saddr = (uchar_t *)&pether->ether_shost; 7800 7801 if (!(mhip->mhi_daddr[0] & 0x01)) 7802 return; 7803 7804 /* Multicast or broadcast */ 7805 mhip->mhi_dsttype = MAC_ADDRTYPE_MULTICAST; 7806 7807 if ((bmp = ill->ill_bcast_mp) != NULL) { 7808 dl_unitdata_req_t *dlur; 7809 uint8_t *bphys_addr; 7810 uint_t addrlen; 7811 7812 dlur = (dl_unitdata_req_t *)bmp->b_rptr; 7813 addrlen = dlur->dl_dest_addr_length; 7814 if (ill->ill_sap_length < 0) { 7815 bphys_addr = (uchar_t *)dlur + 7816 dlur->dl_dest_addr_offset; 7817 addrlen += ill->ill_sap_length; 7818 } else { 7819 bphys_addr = (uchar_t *)dlur + 7820 dlur->dl_dest_addr_offset + 7821 ill->ill_sap_length; 7822 addrlen -= ill->ill_sap_length; 7823 } 7824 if (bcmp(mhip->mhi_daddr, bphys_addr, addrlen) == 0) 7825 mhip->mhi_dsttype = MAC_ADDRTYPE_BROADCAST; 7826 } 7827 } 7828 7829 /* 7830 * Handle anything but M_DATA messages 7831 * We see the DL_UNITDATA_IND which are part 7832 * of the data path, and also the other messages from the driver. 7833 */ 7834 void 7835 ip_rput_notdata(ill_t *ill, mblk_t *mp) 7836 { 7837 mblk_t *first_mp; 7838 struct iocblk *iocp; 7839 struct mac_header_info_s mhi; 7840 7841 switch (DB_TYPE(mp)) { 7842 case M_PROTO: 7843 case M_PCPROTO: { 7844 if (((dl_unitdata_ind_t *)mp->b_rptr)->dl_primitive != 7845 DL_UNITDATA_IND) { 7846 /* Go handle anything other than data elsewhere. */ 7847 ip_rput_dlpi(ill, mp); 7848 return; 7849 } 7850 7851 first_mp = mp; 7852 mp = first_mp->b_cont; 7853 first_mp->b_cont = NULL; 7854 7855 if (mp == NULL) { 7856 freeb(first_mp); 7857 return; 7858 } 7859 ip_dlur_to_mhi(ill, first_mp, &mhi); 7860 if (ill->ill_isv6) 7861 ip_input_v6(ill, NULL, mp, &mhi); 7862 else 7863 ip_input(ill, NULL, mp, &mhi); 7864 7865 /* Ditch the DLPI header. */ 7866 freeb(first_mp); 7867 return; 7868 } 7869 case M_IOCACK: 7870 iocp = (struct iocblk *)mp->b_rptr; 7871 switch (iocp->ioc_cmd) { 7872 case DL_IOC_HDR_INFO: 7873 ill_fastpath_ack(ill, mp); 7874 return; 7875 default: 7876 putnext(ill->ill_rq, mp); 7877 return; 7878 } 7879 /* FALLTHRU */ 7880 case M_ERROR: 7881 case M_HANGUP: 7882 mutex_enter(&ill->ill_lock); 7883 if (ill->ill_state_flags & ILL_CONDEMNED) { 7884 mutex_exit(&ill->ill_lock); 7885 freemsg(mp); 7886 return; 7887 } 7888 ill_refhold_locked(ill); 7889 mutex_exit(&ill->ill_lock); 7890 qwriter_ip(ill, ill->ill_rq, mp, ip_rput_other, CUR_OP, 7891 B_FALSE); 7892 return; 7893 case M_CTL: 7894 putnext(ill->ill_rq, mp); 7895 return; 7896 case M_IOCNAK: 7897 ip1dbg(("got iocnak ")); 7898 iocp = (struct iocblk *)mp->b_rptr; 7899 switch (iocp->ioc_cmd) { 7900 case DL_IOC_HDR_INFO: 7901 ip_rput_other(NULL, ill->ill_rq, mp, NULL); 7902 return; 7903 default: 7904 break; 7905 } 7906 /* FALLTHRU */ 7907 default: 7908 putnext(ill->ill_rq, mp); 7909 return; 7910 } 7911 } 7912 7913 /* Read side put procedure. Packets coming from the wire arrive here. */ 7914 void 7915 ip_rput(queue_t *q, mblk_t *mp) 7916 { 7917 ill_t *ill; 7918 union DL_primitives *dl; 7919 7920 ill = (ill_t *)q->q_ptr; 7921 7922 if (ill->ill_state_flags & (ILL_CONDEMNED | ILL_LL_SUBNET_PENDING)) { 7923 /* 7924 * If things are opening or closing, only accept high-priority 7925 * DLPI messages. (On open ill->ill_ipif has not yet been 7926 * created; on close, things hanging off the ill may have been 7927 * freed already.) 7928 */ 7929 dl = (union DL_primitives *)mp->b_rptr; 7930 if (DB_TYPE(mp) != M_PCPROTO || 7931 dl->dl_primitive == DL_UNITDATA_IND) { 7932 inet_freemsg(mp); 7933 return; 7934 } 7935 } 7936 if (DB_TYPE(mp) == M_DATA) { 7937 struct mac_header_info_s mhi; 7938 7939 ip_mdata_to_mhi(ill, mp, &mhi); 7940 ip_input(ill, NULL, mp, &mhi); 7941 } else { 7942 ip_rput_notdata(ill, mp); 7943 } 7944 } 7945 7946 /* 7947 * Move the information to a copy. 7948 */ 7949 mblk_t * 7950 ip_fix_dbref(mblk_t *mp, ip_recv_attr_t *ira) 7951 { 7952 mblk_t *mp1; 7953 ill_t *ill = ira->ira_ill; 7954 ip_stack_t *ipst = ill->ill_ipst; 7955 7956 IP_STAT(ipst, ip_db_ref); 7957 7958 /* Make sure we have ira_l2src before we loose the original mblk */ 7959 if (!(ira->ira_flags & IRAF_L2SRC_SET)) 7960 ip_setl2src(mp, ira, ira->ira_rill); 7961 7962 mp1 = copymsg(mp); 7963 if (mp1 == NULL) { 7964 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 7965 ip_drop_input("ipIfStatsInDiscards", mp, ill); 7966 freemsg(mp); 7967 return (NULL); 7968 } 7969 /* preserve the hardware checksum flags and data, if present */ 7970 if (DB_CKSUMFLAGS(mp) != 0) { 7971 DB_CKSUMFLAGS(mp1) = DB_CKSUMFLAGS(mp); 7972 DB_CKSUMSTART(mp1) = DB_CKSUMSTART(mp); 7973 DB_CKSUMSTUFF(mp1) = DB_CKSUMSTUFF(mp); 7974 DB_CKSUMEND(mp1) = DB_CKSUMEND(mp); 7975 DB_CKSUM16(mp1) = DB_CKSUM16(mp); 7976 } 7977 freemsg(mp); 7978 return (mp1); 7979 } 7980 7981 static void 7982 ip_dlpi_error(ill_t *ill, t_uscalar_t prim, t_uscalar_t dl_err, 7983 t_uscalar_t err) 7984 { 7985 if (dl_err == DL_SYSERR) { 7986 (void) mi_strlog(ill->ill_rq, 1, SL_CONSOLE|SL_ERROR|SL_TRACE, 7987 "%s: %s failed: DL_SYSERR (errno %u)\n", 7988 ill->ill_name, dl_primstr(prim), err); 7989 return; 7990 } 7991 7992 (void) mi_strlog(ill->ill_rq, 1, SL_CONSOLE|SL_ERROR|SL_TRACE, 7993 "%s: %s failed: %s\n", ill->ill_name, dl_primstr(prim), 7994 dl_errstr(dl_err)); 7995 } 7996 7997 /* 7998 * ip_rput_dlpi is called by ip_rput to handle all DLPI messages other 7999 * than DL_UNITDATA_IND messages. If we need to process this message 8000 * exclusively, we call qwriter_ip, in which case we also need to call 8001 * ill_refhold before that, since qwriter_ip does an ill_refrele. 8002 */ 8003 void 8004 ip_rput_dlpi(ill_t *ill, mblk_t *mp) 8005 { 8006 dl_ok_ack_t *dloa = (dl_ok_ack_t *)mp->b_rptr; 8007 dl_error_ack_t *dlea = (dl_error_ack_t *)dloa; 8008 queue_t *q = ill->ill_rq; 8009 t_uscalar_t prim = dloa->dl_primitive; 8010 t_uscalar_t reqprim = DL_PRIM_INVAL; 8011 8012 DTRACE_PROBE3(ill__dlpi, char *, "ip_rput_dlpi", 8013 char *, dl_primstr(prim), ill_t *, ill); 8014 ip1dbg(("ip_rput_dlpi")); 8015 8016 /* 8017 * If we received an ACK but didn't send a request for it, then it 8018 * can't be part of any pending operation; discard up-front. 8019 */ 8020 switch (prim) { 8021 case DL_ERROR_ACK: 8022 reqprim = dlea->dl_error_primitive; 8023 ip2dbg(("ip_rput_dlpi(%s): DL_ERROR_ACK for %s (0x%x): %s " 8024 "(0x%x), unix %u\n", ill->ill_name, dl_primstr(reqprim), 8025 reqprim, dl_errstr(dlea->dl_errno), dlea->dl_errno, 8026 dlea->dl_unix_errno)); 8027 break; 8028 case DL_OK_ACK: 8029 reqprim = dloa->dl_correct_primitive; 8030 break; 8031 case DL_INFO_ACK: 8032 reqprim = DL_INFO_REQ; 8033 break; 8034 case DL_BIND_ACK: 8035 reqprim = DL_BIND_REQ; 8036 break; 8037 case DL_PHYS_ADDR_ACK: 8038 reqprim = DL_PHYS_ADDR_REQ; 8039 break; 8040 case DL_NOTIFY_ACK: 8041 reqprim = DL_NOTIFY_REQ; 8042 break; 8043 case DL_CAPABILITY_ACK: 8044 reqprim = DL_CAPABILITY_REQ; 8045 break; 8046 } 8047 8048 if (prim != DL_NOTIFY_IND) { 8049 if (reqprim == DL_PRIM_INVAL || 8050 !ill_dlpi_pending(ill, reqprim)) { 8051 /* Not a DLPI message we support or expected */ 8052 freemsg(mp); 8053 return; 8054 } 8055 ip1dbg(("ip_rput: received %s for %s\n", dl_primstr(prim), 8056 dl_primstr(reqprim))); 8057 } 8058 8059 switch (reqprim) { 8060 case DL_UNBIND_REQ: 8061 /* 8062 * NOTE: we mark the unbind as complete even if we got a 8063 * DL_ERROR_ACK, since there's not much else we can do. 8064 */ 8065 mutex_enter(&ill->ill_lock); 8066 ill->ill_state_flags &= ~ILL_DL_UNBIND_IN_PROGRESS; 8067 cv_signal(&ill->ill_cv); 8068 mutex_exit(&ill->ill_lock); 8069 break; 8070 8071 case DL_ENABMULTI_REQ: 8072 if (prim == DL_OK_ACK) { 8073 if (ill->ill_dlpi_multicast_state == IDS_INPROGRESS) 8074 ill->ill_dlpi_multicast_state = IDS_OK; 8075 } 8076 break; 8077 } 8078 8079 /* 8080 * The message is one we're waiting for (or DL_NOTIFY_IND), but we 8081 * need to become writer to continue to process it. Because an 8082 * exclusive operation doesn't complete until replies to all queued 8083 * DLPI messages have been received, we know we're in the middle of an 8084 * exclusive operation and pass CUR_OP (except for DL_NOTIFY_IND). 8085 * 8086 * As required by qwriter_ip(), we refhold the ill; it will refrele. 8087 * Since this is on the ill stream we unconditionally bump up the 8088 * refcount without doing ILL_CAN_LOOKUP(). 8089 */ 8090 ill_refhold(ill); 8091 if (prim == DL_NOTIFY_IND) 8092 qwriter_ip(ill, q, mp, ip_rput_dlpi_writer, NEW_OP, B_FALSE); 8093 else 8094 qwriter_ip(ill, q, mp, ip_rput_dlpi_writer, CUR_OP, B_FALSE); 8095 } 8096 8097 /* 8098 * Handling of DLPI messages that require exclusive access to the ipsq. 8099 * 8100 * Need to do ipsq_pending_mp_get on ioctl completion, which could 8101 * happen here. (along with mi_copy_done) 8102 */ 8103 /* ARGSUSED */ 8104 static void 8105 ip_rput_dlpi_writer(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 8106 { 8107 dl_ok_ack_t *dloa = (dl_ok_ack_t *)mp->b_rptr; 8108 dl_error_ack_t *dlea = (dl_error_ack_t *)dloa; 8109 int err = 0; 8110 ill_t *ill = (ill_t *)q->q_ptr; 8111 ipif_t *ipif = NULL; 8112 mblk_t *mp1 = NULL; 8113 conn_t *connp = NULL; 8114 t_uscalar_t paddrreq; 8115 mblk_t *mp_hw; 8116 boolean_t success; 8117 boolean_t ioctl_aborted = B_FALSE; 8118 boolean_t log = B_TRUE; 8119 8120 DTRACE_PROBE3(ill__dlpi, char *, "ip_rput_dlpi_writer", 8121 char *, dl_primstr(dloa->dl_primitive), ill_t *, ill); 8122 8123 ip1dbg(("ip_rput_dlpi_writer ..")); 8124 ASSERT(ipsq->ipsq_xop == ill->ill_phyint->phyint_ipsq->ipsq_xop); 8125 ASSERT(IAM_WRITER_ILL(ill)); 8126 8127 ipif = ipsq->ipsq_xop->ipx_pending_ipif; 8128 /* 8129 * The current ioctl could have been aborted by the user and a new 8130 * ioctl to bring up another ill could have started. We could still 8131 * get a response from the driver later. 8132 */ 8133 if (ipif != NULL && ipif->ipif_ill != ill) 8134 ioctl_aborted = B_TRUE; 8135 8136 switch (dloa->dl_primitive) { 8137 case DL_ERROR_ACK: 8138 ip1dbg(("ip_rput_dlpi_writer: got DL_ERROR_ACK for %s\n", 8139 dl_primstr(dlea->dl_error_primitive))); 8140 8141 DTRACE_PROBE3(ill__dlpi, char *, "ip_rput_dlpi_writer error", 8142 char *, dl_primstr(dlea->dl_error_primitive), 8143 ill_t *, ill); 8144 8145 switch (dlea->dl_error_primitive) { 8146 case DL_DISABMULTI_REQ: 8147 ill_dlpi_done(ill, dlea->dl_error_primitive); 8148 break; 8149 case DL_PROMISCON_REQ: 8150 case DL_PROMISCOFF_REQ: 8151 case DL_UNBIND_REQ: 8152 case DL_ATTACH_REQ: 8153 case DL_INFO_REQ: 8154 ill_dlpi_done(ill, dlea->dl_error_primitive); 8155 break; 8156 case DL_NOTIFY_REQ: 8157 ill_dlpi_done(ill, DL_NOTIFY_REQ); 8158 log = B_FALSE; 8159 break; 8160 case DL_PHYS_ADDR_REQ: 8161 /* 8162 * For IPv6 only, there are two additional 8163 * phys_addr_req's sent to the driver to get the 8164 * IPv6 token and lla. This allows IP to acquire 8165 * the hardware address format for a given interface 8166 * without having built in knowledge of the hardware 8167 * address. ill_phys_addr_pend keeps track of the last 8168 * DL_PAR sent so we know which response we are 8169 * dealing with. ill_dlpi_done will update 8170 * ill_phys_addr_pend when it sends the next req. 8171 * We don't complete the IOCTL until all three DL_PARs 8172 * have been attempted, so set *_len to 0 and break. 8173 */ 8174 paddrreq = ill->ill_phys_addr_pend; 8175 ill_dlpi_done(ill, DL_PHYS_ADDR_REQ); 8176 if (paddrreq == DL_IPV6_TOKEN) { 8177 ill->ill_token_length = 0; 8178 log = B_FALSE; 8179 break; 8180 } else if (paddrreq == DL_IPV6_LINK_LAYER_ADDR) { 8181 ill->ill_nd_lla_len = 0; 8182 log = B_FALSE; 8183 break; 8184 } 8185 /* 8186 * Something went wrong with the DL_PHYS_ADDR_REQ. 8187 * We presumably have an IOCTL hanging out waiting 8188 * for completion. Find it and complete the IOCTL 8189 * with the error noted. 8190 * However, ill_dl_phys was called on an ill queue 8191 * (from SIOCSLIFNAME), thus conn_pending_ill is not 8192 * set. But the ioctl is known to be pending on ill_wq. 8193 */ 8194 if (!ill->ill_ifname_pending) 8195 break; 8196 ill->ill_ifname_pending = 0; 8197 if (!ioctl_aborted) 8198 mp1 = ipsq_pending_mp_get(ipsq, &connp); 8199 if (mp1 != NULL) { 8200 /* 8201 * This operation (SIOCSLIFNAME) must have 8202 * happened on the ill. Assert there is no conn 8203 */ 8204 ASSERT(connp == NULL); 8205 q = ill->ill_wq; 8206 } 8207 break; 8208 case DL_BIND_REQ: 8209 ill_dlpi_done(ill, DL_BIND_REQ); 8210 if (ill->ill_ifname_pending) 8211 break; 8212 /* 8213 * Something went wrong with the bind. We presumably 8214 * have an IOCTL hanging out waiting for completion. 8215 * Find it, take down the interface that was coming 8216 * up, and complete the IOCTL with the error noted. 8217 */ 8218 if (!ioctl_aborted) 8219 mp1 = ipsq_pending_mp_get(ipsq, &connp); 8220 if (mp1 != NULL) { 8221 /* 8222 * This might be a result of a DL_NOTE_REPLUMB 8223 * notification. In that case, connp is NULL. 8224 */ 8225 if (connp != NULL) 8226 q = CONNP_TO_WQ(connp); 8227 8228 (void) ipif_down(ipif, NULL, NULL); 8229 /* error is set below the switch */ 8230 } 8231 break; 8232 case DL_ENABMULTI_REQ: 8233 ill_dlpi_done(ill, DL_ENABMULTI_REQ); 8234 8235 if (ill->ill_dlpi_multicast_state == IDS_INPROGRESS) 8236 ill->ill_dlpi_multicast_state = IDS_FAILED; 8237 if (ill->ill_dlpi_multicast_state == IDS_FAILED) { 8238 8239 printf("ip: joining multicasts failed (%d)" 8240 " on %s - will use link layer " 8241 "broadcasts for multicast\n", 8242 dlea->dl_errno, ill->ill_name); 8243 8244 /* 8245 * Set up for multi_bcast; We are the 8246 * writer, so ok to access ill->ill_ipif 8247 * without any lock. 8248 */ 8249 mutex_enter(&ill->ill_phyint->phyint_lock); 8250 ill->ill_phyint->phyint_flags |= 8251 PHYI_MULTI_BCAST; 8252 mutex_exit(&ill->ill_phyint->phyint_lock); 8253 8254 } 8255 freemsg(mp); /* Don't want to pass this up */ 8256 return; 8257 case DL_CAPABILITY_REQ: 8258 ip1dbg(("ip_rput_dlpi_writer: got DL_ERROR_ACK for " 8259 "DL_CAPABILITY REQ\n")); 8260 if (ill->ill_dlpi_capab_state == IDCS_PROBE_SENT) 8261 ill->ill_dlpi_capab_state = IDCS_FAILED; 8262 ill_capability_done(ill); 8263 freemsg(mp); 8264 return; 8265 } 8266 /* 8267 * Note the error for IOCTL completion (mp1 is set when 8268 * ready to complete ioctl). If ill_ifname_pending_err is 8269 * set, an error occured during plumbing (ill_ifname_pending), 8270 * so we want to report that error. 8271 * 8272 * NOTE: there are two addtional DL_PHYS_ADDR_REQ's 8273 * (DL_IPV6_TOKEN and DL_IPV6_LINK_LAYER_ADDR) that are 8274 * expected to get errack'd if the driver doesn't support 8275 * these flags (e.g. ethernet). log will be set to B_FALSE 8276 * if these error conditions are encountered. 8277 */ 8278 if (mp1 != NULL) { 8279 if (ill->ill_ifname_pending_err != 0) { 8280 err = ill->ill_ifname_pending_err; 8281 ill->ill_ifname_pending_err = 0; 8282 } else { 8283 err = dlea->dl_unix_errno ? 8284 dlea->dl_unix_errno : ENXIO; 8285 } 8286 /* 8287 * If we're plumbing an interface and an error hasn't already 8288 * been saved, set ill_ifname_pending_err to the error passed 8289 * up. Ignore the error if log is B_FALSE (see comment above). 8290 */ 8291 } else if (log && ill->ill_ifname_pending && 8292 ill->ill_ifname_pending_err == 0) { 8293 ill->ill_ifname_pending_err = dlea->dl_unix_errno ? 8294 dlea->dl_unix_errno : ENXIO; 8295 } 8296 8297 if (log) 8298 ip_dlpi_error(ill, dlea->dl_error_primitive, 8299 dlea->dl_errno, dlea->dl_unix_errno); 8300 break; 8301 case DL_CAPABILITY_ACK: 8302 ill_capability_ack(ill, mp); 8303 /* 8304 * The message has been handed off to ill_capability_ack 8305 * and must not be freed below 8306 */ 8307 mp = NULL; 8308 break; 8309 8310 case DL_INFO_ACK: 8311 /* Call a routine to handle this one. */ 8312 ill_dlpi_done(ill, DL_INFO_REQ); 8313 ip_ll_subnet_defaults(ill, mp); 8314 ASSERT(!MUTEX_HELD(&ill->ill_phyint->phyint_ipsq->ipsq_lock)); 8315 return; 8316 case DL_BIND_ACK: 8317 /* 8318 * We should have an IOCTL waiting on this unless 8319 * sent by ill_dl_phys, in which case just return 8320 */ 8321 ill_dlpi_done(ill, DL_BIND_REQ); 8322 if (ill->ill_ifname_pending) { 8323 DTRACE_PROBE2(ip__rput__dlpi__ifname__pending, 8324 ill_t *, ill, mblk_t *, mp); 8325 break; 8326 } 8327 if (!ioctl_aborted) 8328 mp1 = ipsq_pending_mp_get(ipsq, &connp); 8329 if (mp1 == NULL) { 8330 DTRACE_PROBE1(ip__rput__dlpi__no__mblk, ill_t *, ill); 8331 break; 8332 } 8333 /* 8334 * mp1 was added by ill_dl_up(). if that is a result of 8335 * a DL_NOTE_REPLUMB notification, connp could be NULL. 8336 */ 8337 if (connp != NULL) 8338 q = CONNP_TO_WQ(connp); 8339 /* 8340 * We are exclusive. So nothing can change even after 8341 * we get the pending mp. 8342 */ 8343 ip1dbg(("ip_rput_dlpi: bind_ack %s\n", ill->ill_name)); 8344 DTRACE_PROBE1(ip__rput__dlpi__bind__ack, ill_t *, ill); 8345 8346 mutex_enter(&ill->ill_lock); 8347 ill->ill_dl_up = 1; 8348 ill->ill_state_flags &= ~ILL_DOWN_IN_PROGRESS; 8349 ill_nic_event_dispatch(ill, 0, NE_UP, NULL, 0); 8350 mutex_exit(&ill->ill_lock); 8351 8352 /* 8353 * Now bring up the resolver; when that is complete, we'll 8354 * create IREs. Note that we intentionally mirror what 8355 * ipif_up() would have done, because we got here by way of 8356 * ill_dl_up(), which stopped ipif_up()'s processing. 8357 */ 8358 if (ill->ill_isv6) { 8359 /* 8360 * v6 interfaces. 8361 * Unlike ARP which has to do another bind 8362 * and attach, once we get here we are 8363 * done with NDP 8364 */ 8365 (void) ipif_resolver_up(ipif, Res_act_initial); 8366 if ((err = ipif_ndp_up(ipif, B_TRUE)) == 0) 8367 err = ipif_up_done_v6(ipif); 8368 } else if (ill->ill_net_type == IRE_IF_RESOLVER) { 8369 /* 8370 * ARP and other v4 external resolvers. 8371 * Leave the pending mblk intact so that 8372 * the ioctl completes in ip_rput(). 8373 */ 8374 if (connp != NULL) 8375 mutex_enter(&connp->conn_lock); 8376 mutex_enter(&ill->ill_lock); 8377 success = ipsq_pending_mp_add(connp, ipif, q, mp1, 0); 8378 mutex_exit(&ill->ill_lock); 8379 if (connp != NULL) 8380 mutex_exit(&connp->conn_lock); 8381 if (success) { 8382 err = ipif_resolver_up(ipif, Res_act_initial); 8383 if (err == EINPROGRESS) { 8384 freemsg(mp); 8385 return; 8386 } 8387 mp1 = ipsq_pending_mp_get(ipsq, &connp); 8388 } else { 8389 /* The conn has started closing */ 8390 err = EINTR; 8391 } 8392 } else { 8393 /* 8394 * This one is complete. Reply to pending ioctl. 8395 */ 8396 (void) ipif_resolver_up(ipif, Res_act_initial); 8397 err = ipif_up_done(ipif); 8398 } 8399 8400 if ((err == 0) && (ill->ill_up_ipifs)) { 8401 err = ill_up_ipifs(ill, q, mp1); 8402 if (err == EINPROGRESS) { 8403 freemsg(mp); 8404 return; 8405 } 8406 } 8407 8408 /* 8409 * If we have a moved ipif to bring up, and everything has 8410 * succeeded to this point, bring it up on the IPMP ill. 8411 * Otherwise, leave it down -- the admin can try to bring it 8412 * up by hand if need be. 8413 */ 8414 if (ill->ill_move_ipif != NULL) { 8415 if (err != 0) { 8416 ill->ill_move_ipif = NULL; 8417 } else { 8418 ipif = ill->ill_move_ipif; 8419 ill->ill_move_ipif = NULL; 8420 err = ipif_up(ipif, q, mp1); 8421 if (err == EINPROGRESS) { 8422 freemsg(mp); 8423 return; 8424 } 8425 } 8426 } 8427 break; 8428 8429 case DL_NOTIFY_IND: { 8430 dl_notify_ind_t *notify = (dl_notify_ind_t *)mp->b_rptr; 8431 uint_t orig_mtu; 8432 8433 switch (notify->dl_notification) { 8434 case DL_NOTE_PHYS_ADDR: 8435 err = ill_set_phys_addr(ill, mp); 8436 break; 8437 8438 case DL_NOTE_REPLUMB: 8439 /* 8440 * Directly return after calling ill_replumb(). 8441 * Note that we should not free mp as it is reused 8442 * in the ill_replumb() function. 8443 */ 8444 err = ill_replumb(ill, mp); 8445 return; 8446 8447 case DL_NOTE_FASTPATH_FLUSH: 8448 nce_flush(ill, B_FALSE); 8449 break; 8450 8451 case DL_NOTE_SDU_SIZE: 8452 /* 8453 * The dce and fragmentation code can cope with 8454 * this changing while packets are being sent. 8455 * When packets are sent ip_output will discover 8456 * a change. 8457 * 8458 * Change the MTU size of the interface. 8459 */ 8460 mutex_enter(&ill->ill_lock); 8461 ill->ill_current_frag = (uint_t)notify->dl_data; 8462 if (ill->ill_current_frag > ill->ill_max_frag) 8463 ill->ill_max_frag = ill->ill_current_frag; 8464 8465 orig_mtu = ill->ill_mtu; 8466 if (!(ill->ill_flags & ILLF_FIXEDMTU)) { 8467 ill->ill_mtu = ill->ill_current_frag; 8468 8469 /* 8470 * If ill_user_mtu was set (via 8471 * SIOCSLIFLNKINFO), clamp ill_mtu at it. 8472 */ 8473 if (ill->ill_user_mtu != 0 && 8474 ill->ill_user_mtu < ill->ill_mtu) 8475 ill->ill_mtu = ill->ill_user_mtu; 8476 8477 if (ill->ill_isv6) { 8478 if (ill->ill_mtu < IPV6_MIN_MTU) 8479 ill->ill_mtu = IPV6_MIN_MTU; 8480 } else { 8481 if (ill->ill_mtu < IP_MIN_MTU) 8482 ill->ill_mtu = IP_MIN_MTU; 8483 } 8484 } 8485 mutex_exit(&ill->ill_lock); 8486 /* 8487 * Make sure all dce_generation checks find out 8488 * that ill_mtu has changed. 8489 */ 8490 if (orig_mtu != ill->ill_mtu) { 8491 dce_increment_all_generations(ill->ill_isv6, 8492 ill->ill_ipst); 8493 } 8494 8495 /* 8496 * Refresh IPMP meta-interface MTU if necessary. 8497 */ 8498 if (IS_UNDER_IPMP(ill)) 8499 ipmp_illgrp_refresh_mtu(ill->ill_grp); 8500 break; 8501 8502 case DL_NOTE_LINK_UP: 8503 case DL_NOTE_LINK_DOWN: { 8504 /* 8505 * We are writer. ill / phyint / ipsq assocs stable. 8506 * The RUNNING flag reflects the state of the link. 8507 */ 8508 phyint_t *phyint = ill->ill_phyint; 8509 uint64_t new_phyint_flags; 8510 boolean_t changed = B_FALSE; 8511 boolean_t went_up; 8512 8513 went_up = notify->dl_notification == DL_NOTE_LINK_UP; 8514 mutex_enter(&phyint->phyint_lock); 8515 8516 new_phyint_flags = went_up ? 8517 phyint->phyint_flags | PHYI_RUNNING : 8518 phyint->phyint_flags & ~PHYI_RUNNING; 8519 8520 if (IS_IPMP(ill)) { 8521 new_phyint_flags = went_up ? 8522 new_phyint_flags & ~PHYI_FAILED : 8523 new_phyint_flags | PHYI_FAILED; 8524 } 8525 8526 if (new_phyint_flags != phyint->phyint_flags) { 8527 phyint->phyint_flags = new_phyint_flags; 8528 changed = B_TRUE; 8529 } 8530 mutex_exit(&phyint->phyint_lock); 8531 /* 8532 * ill_restart_dad handles the DAD restart and routing 8533 * socket notification logic. 8534 */ 8535 if (changed) { 8536 ill_restart_dad(phyint->phyint_illv4, went_up); 8537 ill_restart_dad(phyint->phyint_illv6, went_up); 8538 } 8539 break; 8540 } 8541 case DL_NOTE_PROMISC_ON_PHYS: { 8542 phyint_t *phyint = ill->ill_phyint; 8543 8544 mutex_enter(&phyint->phyint_lock); 8545 phyint->phyint_flags |= PHYI_PROMISC; 8546 mutex_exit(&phyint->phyint_lock); 8547 break; 8548 } 8549 case DL_NOTE_PROMISC_OFF_PHYS: { 8550 phyint_t *phyint = ill->ill_phyint; 8551 8552 mutex_enter(&phyint->phyint_lock); 8553 phyint->phyint_flags &= ~PHYI_PROMISC; 8554 mutex_exit(&phyint->phyint_lock); 8555 break; 8556 } 8557 case DL_NOTE_CAPAB_RENEG: 8558 /* 8559 * Something changed on the driver side. 8560 * It wants us to renegotiate the capabilities 8561 * on this ill. One possible cause is the aggregation 8562 * interface under us where a port got added or 8563 * went away. 8564 * 8565 * If the capability negotiation is already done 8566 * or is in progress, reset the capabilities and 8567 * mark the ill's ill_capab_reneg to be B_TRUE, 8568 * so that when the ack comes back, we can start 8569 * the renegotiation process. 8570 * 8571 * Note that if ill_capab_reneg is already B_TRUE 8572 * (ill_dlpi_capab_state is IDS_UNKNOWN in this case), 8573 * the capability resetting request has been sent 8574 * and the renegotiation has not been started yet; 8575 * nothing needs to be done in this case. 8576 */ 8577 ipsq_current_start(ipsq, ill->ill_ipif, 0); 8578 ill_capability_reset(ill, B_TRUE); 8579 ipsq_current_finish(ipsq); 8580 break; 8581 default: 8582 ip0dbg(("ip_rput_dlpi_writer: unknown notification " 8583 "type 0x%x for DL_NOTIFY_IND\n", 8584 notify->dl_notification)); 8585 break; 8586 } 8587 8588 /* 8589 * As this is an asynchronous operation, we 8590 * should not call ill_dlpi_done 8591 */ 8592 break; 8593 } 8594 case DL_NOTIFY_ACK: { 8595 dl_notify_ack_t *noteack = (dl_notify_ack_t *)mp->b_rptr; 8596 8597 if (noteack->dl_notifications & DL_NOTE_LINK_UP) 8598 ill->ill_note_link = 1; 8599 ill_dlpi_done(ill, DL_NOTIFY_REQ); 8600 break; 8601 } 8602 case DL_PHYS_ADDR_ACK: { 8603 /* 8604 * As part of plumbing the interface via SIOCSLIFNAME, 8605 * ill_dl_phys() will queue a series of DL_PHYS_ADDR_REQs, 8606 * whose answers we receive here. As each answer is received, 8607 * we call ill_dlpi_done() to dispatch the next request as 8608 * we're processing the current one. Once all answers have 8609 * been received, we use ipsq_pending_mp_get() to dequeue the 8610 * outstanding IOCTL and reply to it. (Because ill_dl_phys() 8611 * is invoked from an ill queue, conn_oper_pending_ill is not 8612 * available, but we know the ioctl is pending on ill_wq.) 8613 */ 8614 uint_t paddrlen, paddroff; 8615 uint8_t *addr; 8616 8617 paddrreq = ill->ill_phys_addr_pend; 8618 paddrlen = ((dl_phys_addr_ack_t *)mp->b_rptr)->dl_addr_length; 8619 paddroff = ((dl_phys_addr_ack_t *)mp->b_rptr)->dl_addr_offset; 8620 addr = mp->b_rptr + paddroff; 8621 8622 ill_dlpi_done(ill, DL_PHYS_ADDR_REQ); 8623 if (paddrreq == DL_IPV6_TOKEN) { 8624 /* 8625 * bcopy to low-order bits of ill_token 8626 * 8627 * XXX Temporary hack - currently, all known tokens 8628 * are 64 bits, so I'll cheat for the moment. 8629 */ 8630 bcopy(addr, &ill->ill_token.s6_addr32[2], paddrlen); 8631 ill->ill_token_length = paddrlen; 8632 break; 8633 } else if (paddrreq == DL_IPV6_LINK_LAYER_ADDR) { 8634 ASSERT(ill->ill_nd_lla_mp == NULL); 8635 ill_set_ndmp(ill, mp, paddroff, paddrlen); 8636 mp = NULL; 8637 break; 8638 } else if (paddrreq == DL_CURR_DEST_ADDR) { 8639 ASSERT(ill->ill_dest_addr_mp == NULL); 8640 ill->ill_dest_addr_mp = mp; 8641 ill->ill_dest_addr = addr; 8642 mp = NULL; 8643 if (ill->ill_isv6) { 8644 ill_setdesttoken(ill); 8645 ipif_setdestlinklocal(ill->ill_ipif); 8646 } 8647 break; 8648 } 8649 8650 ASSERT(paddrreq == DL_CURR_PHYS_ADDR); 8651 ASSERT(ill->ill_phys_addr_mp == NULL); 8652 if (!ill->ill_ifname_pending) 8653 break; 8654 ill->ill_ifname_pending = 0; 8655 if (!ioctl_aborted) 8656 mp1 = ipsq_pending_mp_get(ipsq, &connp); 8657 if (mp1 != NULL) { 8658 ASSERT(connp == NULL); 8659 q = ill->ill_wq; 8660 } 8661 /* 8662 * If any error acks received during the plumbing sequence, 8663 * ill_ifname_pending_err will be set. Break out and send up 8664 * the error to the pending ioctl. 8665 */ 8666 if (ill->ill_ifname_pending_err != 0) { 8667 err = ill->ill_ifname_pending_err; 8668 ill->ill_ifname_pending_err = 0; 8669 break; 8670 } 8671 8672 ill->ill_phys_addr_mp = mp; 8673 ill->ill_phys_addr = (paddrlen == 0 ? NULL : addr); 8674 mp = NULL; 8675 8676 /* 8677 * If paddrlen or ill_phys_addr_length is zero, the DLPI 8678 * provider doesn't support physical addresses. We check both 8679 * paddrlen and ill_phys_addr_length because sppp (PPP) does 8680 * not have physical addresses, but historically adversises a 8681 * physical address length of 0 in its DL_INFO_ACK, but 6 in 8682 * its DL_PHYS_ADDR_ACK. 8683 */ 8684 if (paddrlen == 0 || ill->ill_phys_addr_length == 0) { 8685 ill->ill_phys_addr = NULL; 8686 } else if (paddrlen != ill->ill_phys_addr_length) { 8687 ip0dbg(("DL_PHYS_ADDR_ACK: got addrlen %d, expected %d", 8688 paddrlen, ill->ill_phys_addr_length)); 8689 err = EINVAL; 8690 break; 8691 } 8692 8693 if (ill->ill_nd_lla_mp == NULL) { 8694 if ((mp_hw = copyb(ill->ill_phys_addr_mp)) == NULL) { 8695 err = ENOMEM; 8696 break; 8697 } 8698 ill_set_ndmp(ill, mp_hw, paddroff, paddrlen); 8699 } 8700 8701 if (ill->ill_isv6) { 8702 ill_setdefaulttoken(ill); 8703 ipif_setlinklocal(ill->ill_ipif); 8704 } 8705 break; 8706 } 8707 case DL_OK_ACK: 8708 ip2dbg(("DL_OK_ACK %s (0x%x)\n", 8709 dl_primstr((int)dloa->dl_correct_primitive), 8710 dloa->dl_correct_primitive)); 8711 DTRACE_PROBE3(ill__dlpi, char *, "ip_rput_dlpi_writer ok", 8712 char *, dl_primstr(dloa->dl_correct_primitive), 8713 ill_t *, ill); 8714 8715 switch (dloa->dl_correct_primitive) { 8716 case DL_ENABMULTI_REQ: 8717 case DL_DISABMULTI_REQ: 8718 ill_dlpi_done(ill, dloa->dl_correct_primitive); 8719 break; 8720 case DL_PROMISCON_REQ: 8721 case DL_PROMISCOFF_REQ: 8722 case DL_UNBIND_REQ: 8723 case DL_ATTACH_REQ: 8724 ill_dlpi_done(ill, dloa->dl_correct_primitive); 8725 break; 8726 } 8727 break; 8728 default: 8729 break; 8730 } 8731 8732 freemsg(mp); 8733 if (mp1 == NULL) 8734 return; 8735 8736 /* 8737 * The operation must complete without EINPROGRESS since 8738 * ipsq_pending_mp_get() has removed the mblk (mp1). Otherwise, 8739 * the operation will be stuck forever inside the IPSQ. 8740 */ 8741 ASSERT(err != EINPROGRESS); 8742 8743 DTRACE_PROBE4(ipif__ioctl, char *, "ip_rput_dlpi_writer finish", 8744 int, ipsq->ipsq_xop->ipx_current_ioctl, ill_t *, ill, 8745 ipif_t *, NULL); 8746 8747 switch (ipsq->ipsq_xop->ipx_current_ioctl) { 8748 case 0: 8749 ipsq_current_finish(ipsq); 8750 break; 8751 8752 case SIOCSLIFNAME: 8753 case IF_UNITSEL: { 8754 ill_t *ill_other = ILL_OTHER(ill); 8755 8756 /* 8757 * If SIOCSLIFNAME or IF_UNITSEL is about to succeed, and the 8758 * ill has a peer which is in an IPMP group, then place ill 8759 * into the same group. One catch: although ifconfig plumbs 8760 * the appropriate IPMP meta-interface prior to plumbing this 8761 * ill, it is possible for multiple ifconfig applications to 8762 * race (or for another application to adjust plumbing), in 8763 * which case the IPMP meta-interface we need will be missing. 8764 * If so, kick the phyint out of the group. 8765 */ 8766 if (err == 0 && ill_other != NULL && IS_UNDER_IPMP(ill_other)) { 8767 ipmp_grp_t *grp = ill->ill_phyint->phyint_grp; 8768 ipmp_illgrp_t *illg; 8769 8770 illg = ill->ill_isv6 ? grp->gr_v6 : grp->gr_v4; 8771 if (illg == NULL) 8772 ipmp_phyint_leave_grp(ill->ill_phyint); 8773 else 8774 ipmp_ill_join_illgrp(ill, illg); 8775 } 8776 8777 if (ipsq->ipsq_xop->ipx_current_ioctl == IF_UNITSEL) 8778 ip_ioctl_finish(q, mp1, err, NO_COPYOUT, ipsq); 8779 else 8780 ip_ioctl_finish(q, mp1, err, COPYOUT, ipsq); 8781 break; 8782 } 8783 case SIOCLIFADDIF: 8784 ip_ioctl_finish(q, mp1, err, COPYOUT, ipsq); 8785 break; 8786 8787 default: 8788 ip_ioctl_finish(q, mp1, err, NO_COPYOUT, ipsq); 8789 break; 8790 } 8791 } 8792 8793 /* 8794 * ip_rput_other is called by ip_rput to handle messages modifying the global 8795 * state in IP. If 'ipsq' is non-NULL, caller is writer on it. 8796 */ 8797 /* ARGSUSED */ 8798 void 8799 ip_rput_other(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 8800 { 8801 ill_t *ill = q->q_ptr; 8802 struct iocblk *iocp; 8803 8804 ip1dbg(("ip_rput_other ")); 8805 if (ipsq != NULL) { 8806 ASSERT(IAM_WRITER_IPSQ(ipsq)); 8807 ASSERT(ipsq->ipsq_xop == 8808 ill->ill_phyint->phyint_ipsq->ipsq_xop); 8809 } 8810 8811 switch (mp->b_datap->db_type) { 8812 case M_ERROR: 8813 case M_HANGUP: 8814 /* 8815 * The device has a problem. We force the ILL down. It can 8816 * be brought up again manually using SIOCSIFFLAGS (via 8817 * ifconfig or equivalent). 8818 */ 8819 ASSERT(ipsq != NULL); 8820 if (mp->b_rptr < mp->b_wptr) 8821 ill->ill_error = (int)(*mp->b_rptr & 0xFF); 8822 if (ill->ill_error == 0) 8823 ill->ill_error = ENXIO; 8824 if (!ill_down_start(q, mp)) 8825 return; 8826 ipif_all_down_tail(ipsq, q, mp, NULL); 8827 break; 8828 case M_IOCNAK: { 8829 iocp = (struct iocblk *)mp->b_rptr; 8830 8831 ASSERT(iocp->ioc_cmd == DL_IOC_HDR_INFO); 8832 /* 8833 * If this was the first attempt, turn off the fastpath 8834 * probing. 8835 */ 8836 mutex_enter(&ill->ill_lock); 8837 if (ill->ill_dlpi_fastpath_state == IDS_INPROGRESS) { 8838 ill->ill_dlpi_fastpath_state = IDS_FAILED; 8839 mutex_exit(&ill->ill_lock); 8840 /* 8841 * don't flush the nce_t entries: we use them 8842 * as an index to the ncec itself. 8843 */ 8844 ip1dbg(("ip_rput: DLPI fastpath off on interface %s\n", 8845 ill->ill_name)); 8846 } else { 8847 mutex_exit(&ill->ill_lock); 8848 } 8849 freemsg(mp); 8850 break; 8851 } 8852 default: 8853 ASSERT(0); 8854 break; 8855 } 8856 } 8857 8858 /* 8859 * Update any source route, record route or timestamp options 8860 * When it fails it has consumed the message and BUMPed the MIB. 8861 */ 8862 boolean_t 8863 ip_forward_options(mblk_t *mp, ipha_t *ipha, ill_t *dst_ill, 8864 ip_recv_attr_t *ira) 8865 { 8866 ipoptp_t opts; 8867 uchar_t *opt; 8868 uint8_t optval; 8869 uint8_t optlen; 8870 ipaddr_t dst; 8871 ipaddr_t ifaddr; 8872 uint32_t ts; 8873 timestruc_t now; 8874 ip_stack_t *ipst = ira->ira_ill->ill_ipst; 8875 8876 ip2dbg(("ip_forward_options\n")); 8877 dst = ipha->ipha_dst; 8878 for (optval = ipoptp_first(&opts, ipha); 8879 optval != IPOPT_EOL; 8880 optval = ipoptp_next(&opts)) { 8881 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 8882 opt = opts.ipoptp_cur; 8883 optlen = opts.ipoptp_len; 8884 ip2dbg(("ip_forward_options: opt %d, len %d\n", 8885 optval, opts.ipoptp_len)); 8886 switch (optval) { 8887 uint32_t off; 8888 case IPOPT_SSRR: 8889 case IPOPT_LSRR: 8890 /* Check if adminstratively disabled */ 8891 if (!ipst->ips_ip_forward_src_routed) { 8892 BUMP_MIB(dst_ill->ill_ip_mib, 8893 ipIfStatsForwProhibits); 8894 ip_drop_input("ICMP_SOURCE_ROUTE_FAILED", 8895 mp, dst_ill); 8896 icmp_unreachable(mp, ICMP_SOURCE_ROUTE_FAILED, 8897 ira); 8898 return (B_FALSE); 8899 } 8900 if (ip_type_v4(dst, ipst) != IRE_LOCAL) { 8901 /* 8902 * Must be partial since ip_input_options 8903 * checked for strict. 8904 */ 8905 break; 8906 } 8907 off = opt[IPOPT_OFFSET]; 8908 off--; 8909 redo_srr: 8910 if (optlen < IP_ADDR_LEN || 8911 off > optlen - IP_ADDR_LEN) { 8912 /* End of source route */ 8913 ip1dbg(( 8914 "ip_forward_options: end of SR\n")); 8915 break; 8916 } 8917 /* Pick a reasonable address on the outbound if */ 8918 ASSERT(dst_ill != NULL); 8919 if (ip_select_source_v4(dst_ill, INADDR_ANY, dst, 8920 INADDR_ANY, ALL_ZONES, ipst, &ifaddr, NULL, 8921 NULL) != 0) { 8922 /* No source! Shouldn't happen */ 8923 ifaddr = INADDR_ANY; 8924 } 8925 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 8926 bcopy(&ifaddr, (char *)opt + off, IP_ADDR_LEN); 8927 ip1dbg(("ip_forward_options: next hop 0x%x\n", 8928 ntohl(dst))); 8929 8930 /* 8931 * Check if our address is present more than 8932 * once as consecutive hops in source route. 8933 */ 8934 if (ip_type_v4(dst, ipst) == IRE_LOCAL) { 8935 off += IP_ADDR_LEN; 8936 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 8937 goto redo_srr; 8938 } 8939 ipha->ipha_dst = dst; 8940 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 8941 break; 8942 case IPOPT_RR: 8943 off = opt[IPOPT_OFFSET]; 8944 off--; 8945 if (optlen < IP_ADDR_LEN || 8946 off > optlen - IP_ADDR_LEN) { 8947 /* No more room - ignore */ 8948 ip1dbg(( 8949 "ip_forward_options: end of RR\n")); 8950 break; 8951 } 8952 /* Pick a reasonable address on the outbound if */ 8953 ASSERT(dst_ill != NULL); 8954 if (ip_select_source_v4(dst_ill, INADDR_ANY, dst, 8955 INADDR_ANY, ALL_ZONES, ipst, &ifaddr, NULL, 8956 NULL) != 0) { 8957 /* No source! Shouldn't happen */ 8958 ifaddr = INADDR_ANY; 8959 } 8960 bcopy(&ifaddr, (char *)opt + off, IP_ADDR_LEN); 8961 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 8962 break; 8963 case IPOPT_TS: 8964 /* Insert timestamp if there is room */ 8965 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 8966 case IPOPT_TS_TSONLY: 8967 off = IPOPT_TS_TIMELEN; 8968 break; 8969 case IPOPT_TS_PRESPEC: 8970 case IPOPT_TS_PRESPEC_RFC791: 8971 /* Verify that the address matched */ 8972 off = opt[IPOPT_OFFSET] - 1; 8973 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 8974 if (ip_type_v4(dst, ipst) != IRE_LOCAL) { 8975 /* Not for us */ 8976 break; 8977 } 8978 /* FALLTHRU */ 8979 case IPOPT_TS_TSANDADDR: 8980 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 8981 break; 8982 default: 8983 /* 8984 * ip_*put_options should have already 8985 * dropped this packet. 8986 */ 8987 cmn_err(CE_PANIC, "ip_forward_options: " 8988 "unknown IT - bug in ip_input_options?\n"); 8989 return (B_TRUE); /* Keep "lint" happy */ 8990 } 8991 if (opt[IPOPT_OFFSET] - 1 + off > optlen) { 8992 /* Increase overflow counter */ 8993 off = (opt[IPOPT_POS_OV_FLG] >> 4) + 1; 8994 opt[IPOPT_POS_OV_FLG] = 8995 (uint8_t)((opt[IPOPT_POS_OV_FLG] & 0x0F) | 8996 (off << 4)); 8997 break; 8998 } 8999 off = opt[IPOPT_OFFSET] - 1; 9000 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 9001 case IPOPT_TS_PRESPEC: 9002 case IPOPT_TS_PRESPEC_RFC791: 9003 case IPOPT_TS_TSANDADDR: 9004 /* Pick a reasonable addr on the outbound if */ 9005 ASSERT(dst_ill != NULL); 9006 if (ip_select_source_v4(dst_ill, INADDR_ANY, 9007 dst, INADDR_ANY, ALL_ZONES, ipst, &ifaddr, 9008 NULL, NULL) != 0) { 9009 /* No source! Shouldn't happen */ 9010 ifaddr = INADDR_ANY; 9011 } 9012 bcopy(&ifaddr, (char *)opt + off, IP_ADDR_LEN); 9013 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 9014 /* FALLTHRU */ 9015 case IPOPT_TS_TSONLY: 9016 off = opt[IPOPT_OFFSET] - 1; 9017 /* Compute # of milliseconds since midnight */ 9018 gethrestime(&now); 9019 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 + 9020 now.tv_nsec / (NANOSEC / MILLISEC); 9021 bcopy(&ts, (char *)opt + off, IPOPT_TS_TIMELEN); 9022 opt[IPOPT_OFFSET] += IPOPT_TS_TIMELEN; 9023 break; 9024 } 9025 break; 9026 } 9027 } 9028 return (B_TRUE); 9029 } 9030 9031 /* 9032 * Call ill_frag_timeout to do garbage collection. ill_frag_timeout 9033 * returns 'true' if there are still fragments left on the queue, in 9034 * which case we restart the timer. 9035 */ 9036 void 9037 ill_frag_timer(void *arg) 9038 { 9039 ill_t *ill = (ill_t *)arg; 9040 boolean_t frag_pending; 9041 ip_stack_t *ipst = ill->ill_ipst; 9042 time_t timeout; 9043 9044 mutex_enter(&ill->ill_lock); 9045 ASSERT(!ill->ill_fragtimer_executing); 9046 if (ill->ill_state_flags & ILL_CONDEMNED) { 9047 ill->ill_frag_timer_id = 0; 9048 mutex_exit(&ill->ill_lock); 9049 return; 9050 } 9051 ill->ill_fragtimer_executing = 1; 9052 mutex_exit(&ill->ill_lock); 9053 9054 timeout = (ill->ill_isv6 ? ipst->ips_ipv6_reassembly_timeout : 9055 ipst->ips_ip_reassembly_timeout); 9056 9057 frag_pending = ill_frag_timeout(ill, timeout); 9058 9059 /* 9060 * Restart the timer, if we have fragments pending or if someone 9061 * wanted us to be scheduled again. 9062 */ 9063 mutex_enter(&ill->ill_lock); 9064 ill->ill_fragtimer_executing = 0; 9065 ill->ill_frag_timer_id = 0; 9066 if (frag_pending || ill->ill_fragtimer_needrestart) 9067 ill_frag_timer_start(ill); 9068 mutex_exit(&ill->ill_lock); 9069 } 9070 9071 void 9072 ill_frag_timer_start(ill_t *ill) 9073 { 9074 ip_stack_t *ipst = ill->ill_ipst; 9075 clock_t timeo_ms; 9076 9077 ASSERT(MUTEX_HELD(&ill->ill_lock)); 9078 9079 /* If the ill is closing or opening don't proceed */ 9080 if (ill->ill_state_flags & ILL_CONDEMNED) 9081 return; 9082 9083 if (ill->ill_fragtimer_executing) { 9084 /* 9085 * ill_frag_timer is currently executing. Just record the 9086 * the fact that we want the timer to be restarted. 9087 * ill_frag_timer will post a timeout before it returns, 9088 * ensuring it will be called again. 9089 */ 9090 ill->ill_fragtimer_needrestart = 1; 9091 return; 9092 } 9093 9094 if (ill->ill_frag_timer_id == 0) { 9095 timeo_ms = (ill->ill_isv6 ? ipst->ips_ipv6_reassembly_timeout : 9096 ipst->ips_ip_reassembly_timeout) * SECONDS; 9097 9098 /* 9099 * The timer is neither running nor is the timeout handler 9100 * executing. Post a timeout so that ill_frag_timer will be 9101 * called 9102 */ 9103 ill->ill_frag_timer_id = timeout(ill_frag_timer, ill, 9104 MSEC_TO_TICK(timeo_ms >> 1)); 9105 ill->ill_fragtimer_needrestart = 0; 9106 } 9107 } 9108 9109 /* 9110 * Update any source route, record route or timestamp options. 9111 * Check that we are at end of strict source route. 9112 * The options have already been checked for sanity in ip_input_options(). 9113 */ 9114 boolean_t 9115 ip_input_local_options(mblk_t *mp, ipha_t *ipha, ip_recv_attr_t *ira) 9116 { 9117 ipoptp_t opts; 9118 uchar_t *opt; 9119 uint8_t optval; 9120 uint8_t optlen; 9121 ipaddr_t dst; 9122 ipaddr_t ifaddr; 9123 uint32_t ts; 9124 timestruc_t now; 9125 ill_t *ill = ira->ira_ill; 9126 ip_stack_t *ipst = ill->ill_ipst; 9127 9128 ip2dbg(("ip_input_local_options\n")); 9129 9130 for (optval = ipoptp_first(&opts, ipha); 9131 optval != IPOPT_EOL; 9132 optval = ipoptp_next(&opts)) { 9133 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 9134 opt = opts.ipoptp_cur; 9135 optlen = opts.ipoptp_len; 9136 ip2dbg(("ip_input_local_options: opt %d, len %d\n", 9137 optval, optlen)); 9138 switch (optval) { 9139 uint32_t off; 9140 case IPOPT_SSRR: 9141 case IPOPT_LSRR: 9142 off = opt[IPOPT_OFFSET]; 9143 off--; 9144 if (optlen < IP_ADDR_LEN || 9145 off > optlen - IP_ADDR_LEN) { 9146 /* End of source route */ 9147 ip1dbg(("ip_input_local_options: end of SR\n")); 9148 break; 9149 } 9150 /* 9151 * This will only happen if two consecutive entries 9152 * in the source route contains our address or if 9153 * it is a packet with a loose source route which 9154 * reaches us before consuming the whole source route 9155 */ 9156 ip1dbg(("ip_input_local_options: not end of SR\n")); 9157 if (optval == IPOPT_SSRR) { 9158 goto bad_src_route; 9159 } 9160 /* 9161 * Hack: instead of dropping the packet truncate the 9162 * source route to what has been used by filling the 9163 * rest with IPOPT_NOP. 9164 */ 9165 opt[IPOPT_OLEN] = (uint8_t)off; 9166 while (off < optlen) { 9167 opt[off++] = IPOPT_NOP; 9168 } 9169 break; 9170 case IPOPT_RR: 9171 off = opt[IPOPT_OFFSET]; 9172 off--; 9173 if (optlen < IP_ADDR_LEN || 9174 off > optlen - IP_ADDR_LEN) { 9175 /* No more room - ignore */ 9176 ip1dbg(( 9177 "ip_input_local_options: end of RR\n")); 9178 break; 9179 } 9180 /* Pick a reasonable address on the outbound if */ 9181 if (ip_select_source_v4(ill, INADDR_ANY, ipha->ipha_dst, 9182 INADDR_ANY, ALL_ZONES, ipst, &ifaddr, NULL, 9183 NULL) != 0) { 9184 /* No source! Shouldn't happen */ 9185 ifaddr = INADDR_ANY; 9186 } 9187 bcopy(&ifaddr, (char *)opt + off, IP_ADDR_LEN); 9188 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 9189 break; 9190 case IPOPT_TS: 9191 /* Insert timestamp if there is romm */ 9192 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 9193 case IPOPT_TS_TSONLY: 9194 off = IPOPT_TS_TIMELEN; 9195 break; 9196 case IPOPT_TS_PRESPEC: 9197 case IPOPT_TS_PRESPEC_RFC791: 9198 /* Verify that the address matched */ 9199 off = opt[IPOPT_OFFSET] - 1; 9200 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 9201 if (ip_type_v4(dst, ipst) != IRE_LOCAL) { 9202 /* Not for us */ 9203 break; 9204 } 9205 /* FALLTHRU */ 9206 case IPOPT_TS_TSANDADDR: 9207 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 9208 break; 9209 default: 9210 /* 9211 * ip_*put_options should have already 9212 * dropped this packet. 9213 */ 9214 cmn_err(CE_PANIC, "ip_input_local_options: " 9215 "unknown IT - bug in ip_input_options?\n"); 9216 return (B_TRUE); /* Keep "lint" happy */ 9217 } 9218 if (opt[IPOPT_OFFSET] - 1 + off > optlen) { 9219 /* Increase overflow counter */ 9220 off = (opt[IPOPT_POS_OV_FLG] >> 4) + 1; 9221 opt[IPOPT_POS_OV_FLG] = 9222 (uint8_t)((opt[IPOPT_POS_OV_FLG] & 0x0F) | 9223 (off << 4)); 9224 break; 9225 } 9226 off = opt[IPOPT_OFFSET] - 1; 9227 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 9228 case IPOPT_TS_PRESPEC: 9229 case IPOPT_TS_PRESPEC_RFC791: 9230 case IPOPT_TS_TSANDADDR: 9231 /* Pick a reasonable addr on the outbound if */ 9232 if (ip_select_source_v4(ill, INADDR_ANY, 9233 ipha->ipha_dst, INADDR_ANY, ALL_ZONES, ipst, 9234 &ifaddr, NULL, NULL) != 0) { 9235 /* No source! Shouldn't happen */ 9236 ifaddr = INADDR_ANY; 9237 } 9238 bcopy(&ifaddr, (char *)opt + off, IP_ADDR_LEN); 9239 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 9240 /* FALLTHRU */ 9241 case IPOPT_TS_TSONLY: 9242 off = opt[IPOPT_OFFSET] - 1; 9243 /* Compute # of milliseconds since midnight */ 9244 gethrestime(&now); 9245 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 + 9246 now.tv_nsec / (NANOSEC / MILLISEC); 9247 bcopy(&ts, (char *)opt + off, IPOPT_TS_TIMELEN); 9248 opt[IPOPT_OFFSET] += IPOPT_TS_TIMELEN; 9249 break; 9250 } 9251 break; 9252 } 9253 } 9254 return (B_TRUE); 9255 9256 bad_src_route: 9257 /* make sure we clear any indication of a hardware checksum */ 9258 DB_CKSUMFLAGS(mp) = 0; 9259 ip_drop_input("ICMP_SOURCE_ROUTE_FAILED", mp, ill); 9260 icmp_unreachable(mp, ICMP_SOURCE_ROUTE_FAILED, ira); 9261 return (B_FALSE); 9262 9263 } 9264 9265 /* 9266 * Process IP options in an inbound packet. Always returns the nexthop. 9267 * Normally this is the passed in nexthop, but if there is an option 9268 * that effects the nexthop (such as a source route) that will be returned. 9269 * Sets *errorp if there is an error, in which case an ICMP error has been sent 9270 * and mp freed. 9271 */ 9272 ipaddr_t 9273 ip_input_options(ipha_t *ipha, ipaddr_t dst, mblk_t *mp, 9274 ip_recv_attr_t *ira, int *errorp) 9275 { 9276 ip_stack_t *ipst = ira->ira_ill->ill_ipst; 9277 ipoptp_t opts; 9278 uchar_t *opt; 9279 uint8_t optval; 9280 uint8_t optlen; 9281 intptr_t code = 0; 9282 ire_t *ire; 9283 9284 ip2dbg(("ip_input_options\n")); 9285 *errorp = 0; 9286 for (optval = ipoptp_first(&opts, ipha); 9287 optval != IPOPT_EOL; 9288 optval = ipoptp_next(&opts)) { 9289 opt = opts.ipoptp_cur; 9290 optlen = opts.ipoptp_len; 9291 ip2dbg(("ip_input_options: opt %d, len %d\n", 9292 optval, optlen)); 9293 /* 9294 * Note: we need to verify the checksum before we 9295 * modify anything thus this routine only extracts the next 9296 * hop dst from any source route. 9297 */ 9298 switch (optval) { 9299 uint32_t off; 9300 case IPOPT_SSRR: 9301 case IPOPT_LSRR: 9302 if (ip_type_v4(dst, ipst) != IRE_LOCAL) { 9303 if (optval == IPOPT_SSRR) { 9304 ip1dbg(("ip_input_options: not next" 9305 " strict source route 0x%x\n", 9306 ntohl(dst))); 9307 code = (char *)&ipha->ipha_dst - 9308 (char *)ipha; 9309 goto param_prob; /* RouterReq's */ 9310 } 9311 ip2dbg(("ip_input_options: " 9312 "not next source route 0x%x\n", 9313 ntohl(dst))); 9314 break; 9315 } 9316 9317 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 9318 ip1dbg(( 9319 "ip_input_options: bad option offset\n")); 9320 code = (char *)&opt[IPOPT_OLEN] - 9321 (char *)ipha; 9322 goto param_prob; 9323 } 9324 off = opt[IPOPT_OFFSET]; 9325 off--; 9326 redo_srr: 9327 if (optlen < IP_ADDR_LEN || 9328 off > optlen - IP_ADDR_LEN) { 9329 /* End of source route */ 9330 ip1dbg(("ip_input_options: end of SR\n")); 9331 break; 9332 } 9333 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 9334 ip1dbg(("ip_input_options: next hop 0x%x\n", 9335 ntohl(dst))); 9336 9337 /* 9338 * Check if our address is present more than 9339 * once as consecutive hops in source route. 9340 * XXX verify per-interface ip_forwarding 9341 * for source route? 9342 */ 9343 if (ip_type_v4(dst, ipst) == IRE_LOCAL) { 9344 off += IP_ADDR_LEN; 9345 goto redo_srr; 9346 } 9347 9348 if (dst == htonl(INADDR_LOOPBACK)) { 9349 ip1dbg(("ip_input_options: loopback addr in " 9350 "source route!\n")); 9351 goto bad_src_route; 9352 } 9353 /* 9354 * For strict: verify that dst is directly 9355 * reachable. 9356 */ 9357 if (optval == IPOPT_SSRR) { 9358 ire = ire_ftable_lookup_v4(dst, 0, 0, 9359 IRE_IF_ALL, NULL, ALL_ZONES, 9360 ira->ira_tsl, 9361 MATCH_IRE_TYPE | MATCH_IRE_SECATTR, 0, ipst, 9362 NULL); 9363 if (ire == NULL) { 9364 ip1dbg(("ip_input_options: SSRR not " 9365 "directly reachable: 0x%x\n", 9366 ntohl(dst))); 9367 goto bad_src_route; 9368 } 9369 ire_refrele(ire); 9370 } 9371 /* 9372 * Defer update of the offset and the record route 9373 * until the packet is forwarded. 9374 */ 9375 break; 9376 case IPOPT_RR: 9377 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 9378 ip1dbg(( 9379 "ip_input_options: bad option offset\n")); 9380 code = (char *)&opt[IPOPT_OLEN] - 9381 (char *)ipha; 9382 goto param_prob; 9383 } 9384 break; 9385 case IPOPT_TS: 9386 /* 9387 * Verify that length >= 5 and that there is either 9388 * room for another timestamp or that the overflow 9389 * counter is not maxed out. 9390 */ 9391 code = (char *)&opt[IPOPT_OLEN] - (char *)ipha; 9392 if (optlen < IPOPT_MINLEN_IT) { 9393 goto param_prob; 9394 } 9395 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 9396 ip1dbg(( 9397 "ip_input_options: bad option offset\n")); 9398 code = (char *)&opt[IPOPT_OFFSET] - 9399 (char *)ipha; 9400 goto param_prob; 9401 } 9402 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 9403 case IPOPT_TS_TSONLY: 9404 off = IPOPT_TS_TIMELEN; 9405 break; 9406 case IPOPT_TS_TSANDADDR: 9407 case IPOPT_TS_PRESPEC: 9408 case IPOPT_TS_PRESPEC_RFC791: 9409 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 9410 break; 9411 default: 9412 code = (char *)&opt[IPOPT_POS_OV_FLG] - 9413 (char *)ipha; 9414 goto param_prob; 9415 } 9416 if (opt[IPOPT_OFFSET] - 1 + off > optlen && 9417 (opt[IPOPT_POS_OV_FLG] & 0xF0) == 0xF0) { 9418 /* 9419 * No room and the overflow counter is 15 9420 * already. 9421 */ 9422 goto param_prob; 9423 } 9424 break; 9425 } 9426 } 9427 9428 if ((opts.ipoptp_flags & IPOPTP_ERROR) == 0) { 9429 return (dst); 9430 } 9431 9432 ip1dbg(("ip_input_options: error processing IP options.")); 9433 code = (char *)&opt[IPOPT_OFFSET] - (char *)ipha; 9434 9435 param_prob: 9436 /* make sure we clear any indication of a hardware checksum */ 9437 DB_CKSUMFLAGS(mp) = 0; 9438 ip_drop_input("ICMP_PARAM_PROBLEM", mp, ira->ira_ill); 9439 icmp_param_problem(mp, (uint8_t)code, ira); 9440 *errorp = -1; 9441 return (dst); 9442 9443 bad_src_route: 9444 /* make sure we clear any indication of a hardware checksum */ 9445 DB_CKSUMFLAGS(mp) = 0; 9446 ip_drop_input("ICMP_SOURCE_ROUTE_FAILED", mp, ira->ira_ill); 9447 icmp_unreachable(mp, ICMP_SOURCE_ROUTE_FAILED, ira); 9448 *errorp = -1; 9449 return (dst); 9450 } 9451 9452 /* 9453 * IP & ICMP info in >=14 msg's ... 9454 * - ip fixed part (mib2_ip_t) 9455 * - icmp fixed part (mib2_icmp_t) 9456 * - ipAddrEntryTable (ip 20) all IPv4 ipifs 9457 * - ipRouteEntryTable (ip 21) all IPv4 IREs 9458 * - ipNetToMediaEntryTable (ip 22) all IPv4 Neighbor Cache entries 9459 * - ipRouteAttributeTable (ip 102) labeled routes 9460 * - ip multicast membership (ip_member_t) 9461 * - ip multicast source filtering (ip_grpsrc_t) 9462 * - igmp fixed part (struct igmpstat) 9463 * - multicast routing stats (struct mrtstat) 9464 * - multicast routing vifs (array of struct vifctl) 9465 * - multicast routing routes (array of struct mfcctl) 9466 * - ip6 fixed part (mib2_ipv6IfStatsEntry_t) 9467 * One per ill plus one generic 9468 * - icmp6 fixed part (mib2_ipv6IfIcmpEntry_t) 9469 * One per ill plus one generic 9470 * - ipv6RouteEntry all IPv6 IREs 9471 * - ipv6RouteAttributeTable (ip6 102) labeled routes 9472 * - ipv6NetToMediaEntry all IPv6 Neighbor Cache entries 9473 * - ipv6AddrEntry all IPv6 ipifs 9474 * - ipv6 multicast membership (ipv6_member_t) 9475 * - ipv6 multicast source filtering (ipv6_grpsrc_t) 9476 * 9477 * NOTE: original mpctl is copied for msg's 2..N, since its ctl part is 9478 * already filled in by the caller. 9479 * Return value of 0 indicates that no messages were sent and caller 9480 * should free mpctl. 9481 */ 9482 int 9483 ip_snmp_get(queue_t *q, mblk_t *mpctl, int level) 9484 { 9485 ip_stack_t *ipst; 9486 sctp_stack_t *sctps; 9487 9488 if (q->q_next != NULL) { 9489 ipst = ILLQ_TO_IPST(q); 9490 } else { 9491 ipst = CONNQ_TO_IPST(q); 9492 } 9493 ASSERT(ipst != NULL); 9494 sctps = ipst->ips_netstack->netstack_sctp; 9495 9496 if (mpctl == NULL || mpctl->b_cont == NULL) { 9497 return (0); 9498 } 9499 9500 /* 9501 * For the purposes of the (broken) packet shell use 9502 * of the level we make sure MIB2_TCP/MIB2_UDP can be used 9503 * to make TCP and UDP appear first in the list of mib items. 9504 * TBD: We could expand this and use it in netstat so that 9505 * the kernel doesn't have to produce large tables (connections, 9506 * routes, etc) when netstat only wants the statistics or a particular 9507 * table. 9508 */ 9509 if (!(level == MIB2_TCP || level == MIB2_UDP)) { 9510 if ((mpctl = icmp_snmp_get(q, mpctl)) == NULL) { 9511 return (1); 9512 } 9513 } 9514 9515 if (level != MIB2_TCP) { 9516 if ((mpctl = udp_snmp_get(q, mpctl)) == NULL) { 9517 return (1); 9518 } 9519 } 9520 9521 if (level != MIB2_UDP) { 9522 if ((mpctl = tcp_snmp_get(q, mpctl)) == NULL) { 9523 return (1); 9524 } 9525 } 9526 9527 if ((mpctl = ip_snmp_get_mib2_ip_traffic_stats(q, mpctl, 9528 ipst)) == NULL) { 9529 return (1); 9530 } 9531 9532 if ((mpctl = ip_snmp_get_mib2_ip6(q, mpctl, ipst)) == NULL) { 9533 return (1); 9534 } 9535 9536 if ((mpctl = ip_snmp_get_mib2_icmp(q, mpctl, ipst)) == NULL) { 9537 return (1); 9538 } 9539 9540 if ((mpctl = ip_snmp_get_mib2_icmp6(q, mpctl, ipst)) == NULL) { 9541 return (1); 9542 } 9543 9544 if ((mpctl = ip_snmp_get_mib2_igmp(q, mpctl, ipst)) == NULL) { 9545 return (1); 9546 } 9547 9548 if ((mpctl = ip_snmp_get_mib2_multi(q, mpctl, ipst)) == NULL) { 9549 return (1); 9550 } 9551 9552 if ((mpctl = ip_snmp_get_mib2_ip_addr(q, mpctl, ipst)) == NULL) { 9553 return (1); 9554 } 9555 9556 if ((mpctl = ip_snmp_get_mib2_ip6_addr(q, mpctl, ipst)) == NULL) { 9557 return (1); 9558 } 9559 9560 if ((mpctl = ip_snmp_get_mib2_ip_group_mem(q, mpctl, ipst)) == NULL) { 9561 return (1); 9562 } 9563 9564 if ((mpctl = ip_snmp_get_mib2_ip6_group_mem(q, mpctl, ipst)) == NULL) { 9565 return (1); 9566 } 9567 9568 if ((mpctl = ip_snmp_get_mib2_ip_group_src(q, mpctl, ipst)) == NULL) { 9569 return (1); 9570 } 9571 9572 if ((mpctl = ip_snmp_get_mib2_ip6_group_src(q, mpctl, ipst)) == NULL) { 9573 return (1); 9574 } 9575 9576 if ((mpctl = ip_snmp_get_mib2_virt_multi(q, mpctl, ipst)) == NULL) { 9577 return (1); 9578 } 9579 9580 if ((mpctl = ip_snmp_get_mib2_multi_rtable(q, mpctl, ipst)) == NULL) { 9581 return (1); 9582 } 9583 9584 mpctl = ip_snmp_get_mib2_ip_route_media(q, mpctl, level, ipst); 9585 if (mpctl == NULL) 9586 return (1); 9587 9588 mpctl = ip_snmp_get_mib2_ip6_route_media(q, mpctl, level, ipst); 9589 if (mpctl == NULL) 9590 return (1); 9591 9592 if ((mpctl = sctp_snmp_get_mib2(q, mpctl, sctps)) == NULL) { 9593 return (1); 9594 } 9595 if ((mpctl = ip_snmp_get_mib2_ip_dce(q, mpctl, ipst)) == NULL) { 9596 return (1); 9597 } 9598 freemsg(mpctl); 9599 return (1); 9600 } 9601 9602 /* Get global (legacy) IPv4 statistics */ 9603 static mblk_t * 9604 ip_snmp_get_mib2_ip(queue_t *q, mblk_t *mpctl, mib2_ipIfStatsEntry_t *ipmib, 9605 ip_stack_t *ipst) 9606 { 9607 mib2_ip_t old_ip_mib; 9608 struct opthdr *optp; 9609 mblk_t *mp2ctl; 9610 9611 /* 9612 * make a copy of the original message 9613 */ 9614 mp2ctl = copymsg(mpctl); 9615 9616 /* fixed length IP structure... */ 9617 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 9618 optp->level = MIB2_IP; 9619 optp->name = 0; 9620 SET_MIB(old_ip_mib.ipForwarding, 9621 (WE_ARE_FORWARDING(ipst) ? 1 : 2)); 9622 SET_MIB(old_ip_mib.ipDefaultTTL, 9623 (uint32_t)ipst->ips_ip_def_ttl); 9624 SET_MIB(old_ip_mib.ipReasmTimeout, 9625 ipst->ips_ip_reassembly_timeout); 9626 SET_MIB(old_ip_mib.ipAddrEntrySize, 9627 sizeof (mib2_ipAddrEntry_t)); 9628 SET_MIB(old_ip_mib.ipRouteEntrySize, 9629 sizeof (mib2_ipRouteEntry_t)); 9630 SET_MIB(old_ip_mib.ipNetToMediaEntrySize, 9631 sizeof (mib2_ipNetToMediaEntry_t)); 9632 SET_MIB(old_ip_mib.ipMemberEntrySize, sizeof (ip_member_t)); 9633 SET_MIB(old_ip_mib.ipGroupSourceEntrySize, sizeof (ip_grpsrc_t)); 9634 SET_MIB(old_ip_mib.ipRouteAttributeSize, 9635 sizeof (mib2_ipAttributeEntry_t)); 9636 SET_MIB(old_ip_mib.transportMLPSize, sizeof (mib2_transportMLPEntry_t)); 9637 SET_MIB(old_ip_mib.ipDestEntrySize, sizeof (dest_cache_entry_t)); 9638 9639 /* 9640 * Grab the statistics from the new IP MIB 9641 */ 9642 SET_MIB(old_ip_mib.ipInReceives, 9643 (uint32_t)ipmib->ipIfStatsHCInReceives); 9644 SET_MIB(old_ip_mib.ipInHdrErrors, ipmib->ipIfStatsInHdrErrors); 9645 SET_MIB(old_ip_mib.ipInAddrErrors, ipmib->ipIfStatsInAddrErrors); 9646 SET_MIB(old_ip_mib.ipForwDatagrams, 9647 (uint32_t)ipmib->ipIfStatsHCOutForwDatagrams); 9648 SET_MIB(old_ip_mib.ipInUnknownProtos, 9649 ipmib->ipIfStatsInUnknownProtos); 9650 SET_MIB(old_ip_mib.ipInDiscards, ipmib->ipIfStatsInDiscards); 9651 SET_MIB(old_ip_mib.ipInDelivers, 9652 (uint32_t)ipmib->ipIfStatsHCInDelivers); 9653 SET_MIB(old_ip_mib.ipOutRequests, 9654 (uint32_t)ipmib->ipIfStatsHCOutRequests); 9655 SET_MIB(old_ip_mib.ipOutDiscards, ipmib->ipIfStatsOutDiscards); 9656 SET_MIB(old_ip_mib.ipOutNoRoutes, ipmib->ipIfStatsOutNoRoutes); 9657 SET_MIB(old_ip_mib.ipReasmReqds, ipmib->ipIfStatsReasmReqds); 9658 SET_MIB(old_ip_mib.ipReasmOKs, ipmib->ipIfStatsReasmOKs); 9659 SET_MIB(old_ip_mib.ipReasmFails, ipmib->ipIfStatsReasmFails); 9660 SET_MIB(old_ip_mib.ipFragOKs, ipmib->ipIfStatsOutFragOKs); 9661 SET_MIB(old_ip_mib.ipFragFails, ipmib->ipIfStatsOutFragFails); 9662 SET_MIB(old_ip_mib.ipFragCreates, ipmib->ipIfStatsOutFragCreates); 9663 9664 /* ipRoutingDiscards is not being used */ 9665 SET_MIB(old_ip_mib.ipRoutingDiscards, 0); 9666 SET_MIB(old_ip_mib.tcpInErrs, ipmib->tcpIfStatsInErrs); 9667 SET_MIB(old_ip_mib.udpNoPorts, ipmib->udpIfStatsNoPorts); 9668 SET_MIB(old_ip_mib.ipInCksumErrs, ipmib->ipIfStatsInCksumErrs); 9669 SET_MIB(old_ip_mib.ipReasmDuplicates, 9670 ipmib->ipIfStatsReasmDuplicates); 9671 SET_MIB(old_ip_mib.ipReasmPartDups, ipmib->ipIfStatsReasmPartDups); 9672 SET_MIB(old_ip_mib.ipForwProhibits, ipmib->ipIfStatsForwProhibits); 9673 SET_MIB(old_ip_mib.udpInCksumErrs, ipmib->udpIfStatsInCksumErrs); 9674 SET_MIB(old_ip_mib.udpInOverflows, ipmib->udpIfStatsInOverflows); 9675 SET_MIB(old_ip_mib.rawipInOverflows, 9676 ipmib->rawipIfStatsInOverflows); 9677 9678 SET_MIB(old_ip_mib.ipsecInSucceeded, ipmib->ipsecIfStatsInSucceeded); 9679 SET_MIB(old_ip_mib.ipsecInFailed, ipmib->ipsecIfStatsInFailed); 9680 SET_MIB(old_ip_mib.ipInIPv6, ipmib->ipIfStatsInWrongIPVersion); 9681 SET_MIB(old_ip_mib.ipOutIPv6, ipmib->ipIfStatsOutWrongIPVersion); 9682 SET_MIB(old_ip_mib.ipOutSwitchIPv6, 9683 ipmib->ipIfStatsOutSwitchIPVersion); 9684 9685 if (!snmp_append_data(mpctl->b_cont, (char *)&old_ip_mib, 9686 (int)sizeof (old_ip_mib))) { 9687 ip1dbg(("ip_snmp_get_mib2_ip: failed to allocate %u bytes\n", 9688 (uint_t)sizeof (old_ip_mib))); 9689 } 9690 9691 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 9692 ip3dbg(("ip_snmp_get_mib2_ip: level %d, name %d, len %d\n", 9693 (int)optp->level, (int)optp->name, (int)optp->len)); 9694 qreply(q, mpctl); 9695 return (mp2ctl); 9696 } 9697 9698 /* Per interface IPv4 statistics */ 9699 static mblk_t * 9700 ip_snmp_get_mib2_ip_traffic_stats(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 9701 { 9702 struct opthdr *optp; 9703 mblk_t *mp2ctl; 9704 ill_t *ill; 9705 ill_walk_context_t ctx; 9706 mblk_t *mp_tail = NULL; 9707 mib2_ipIfStatsEntry_t global_ip_mib; 9708 9709 /* 9710 * Make a copy of the original message 9711 */ 9712 mp2ctl = copymsg(mpctl); 9713 9714 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 9715 optp->level = MIB2_IP; 9716 optp->name = MIB2_IP_TRAFFIC_STATS; 9717 /* Include "unknown interface" ip_mib */ 9718 ipst->ips_ip_mib.ipIfStatsIPVersion = MIB2_INETADDRESSTYPE_ipv4; 9719 ipst->ips_ip_mib.ipIfStatsIfIndex = 9720 MIB2_UNKNOWN_INTERFACE; /* Flag to netstat */ 9721 SET_MIB(ipst->ips_ip_mib.ipIfStatsForwarding, 9722 (ipst->ips_ip_forwarding ? 1 : 2)); 9723 SET_MIB(ipst->ips_ip_mib.ipIfStatsDefaultTTL, 9724 (uint32_t)ipst->ips_ip_def_ttl); 9725 SET_MIB(ipst->ips_ip_mib.ipIfStatsEntrySize, 9726 sizeof (mib2_ipIfStatsEntry_t)); 9727 SET_MIB(ipst->ips_ip_mib.ipIfStatsAddrEntrySize, 9728 sizeof (mib2_ipAddrEntry_t)); 9729 SET_MIB(ipst->ips_ip_mib.ipIfStatsRouteEntrySize, 9730 sizeof (mib2_ipRouteEntry_t)); 9731 SET_MIB(ipst->ips_ip_mib.ipIfStatsNetToMediaEntrySize, 9732 sizeof (mib2_ipNetToMediaEntry_t)); 9733 SET_MIB(ipst->ips_ip_mib.ipIfStatsMemberEntrySize, 9734 sizeof (ip_member_t)); 9735 SET_MIB(ipst->ips_ip_mib.ipIfStatsGroupSourceEntrySize, 9736 sizeof (ip_grpsrc_t)); 9737 9738 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 9739 (char *)&ipst->ips_ip_mib, (int)sizeof (ipst->ips_ip_mib))) { 9740 ip1dbg(("ip_snmp_get_mib2_ip_traffic_stats: " 9741 "failed to allocate %u bytes\n", 9742 (uint_t)sizeof (ipst->ips_ip_mib))); 9743 } 9744 9745 bcopy(&ipst->ips_ip_mib, &global_ip_mib, sizeof (global_ip_mib)); 9746 9747 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 9748 ill = ILL_START_WALK_V4(&ctx, ipst); 9749 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 9750 ill->ill_ip_mib->ipIfStatsIfIndex = 9751 ill->ill_phyint->phyint_ifindex; 9752 SET_MIB(ill->ill_ip_mib->ipIfStatsForwarding, 9753 (ipst->ips_ip_forwarding ? 1 : 2)); 9754 SET_MIB(ill->ill_ip_mib->ipIfStatsDefaultTTL, 9755 (uint32_t)ipst->ips_ip_def_ttl); 9756 9757 ip_mib2_add_ip_stats(&global_ip_mib, ill->ill_ip_mib); 9758 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 9759 (char *)ill->ill_ip_mib, 9760 (int)sizeof (*ill->ill_ip_mib))) { 9761 ip1dbg(("ip_snmp_get_mib2_ip_traffic_stats: " 9762 "failed to allocate %u bytes\n", 9763 (uint_t)sizeof (*ill->ill_ip_mib))); 9764 } 9765 } 9766 rw_exit(&ipst->ips_ill_g_lock); 9767 9768 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 9769 ip3dbg(("ip_snmp_get_mib2_ip_traffic_stats: " 9770 "level %d, name %d, len %d\n", 9771 (int)optp->level, (int)optp->name, (int)optp->len)); 9772 qreply(q, mpctl); 9773 9774 if (mp2ctl == NULL) 9775 return (NULL); 9776 9777 return (ip_snmp_get_mib2_ip(q, mp2ctl, &global_ip_mib, ipst)); 9778 } 9779 9780 /* Global IPv4 ICMP statistics */ 9781 static mblk_t * 9782 ip_snmp_get_mib2_icmp(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 9783 { 9784 struct opthdr *optp; 9785 mblk_t *mp2ctl; 9786 9787 /* 9788 * Make a copy of the original message 9789 */ 9790 mp2ctl = copymsg(mpctl); 9791 9792 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 9793 optp->level = MIB2_ICMP; 9794 optp->name = 0; 9795 if (!snmp_append_data(mpctl->b_cont, (char *)&ipst->ips_icmp_mib, 9796 (int)sizeof (ipst->ips_icmp_mib))) { 9797 ip1dbg(("ip_snmp_get_mib2_icmp: failed to allocate %u bytes\n", 9798 (uint_t)sizeof (ipst->ips_icmp_mib))); 9799 } 9800 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 9801 ip3dbg(("ip_snmp_get_mib2_icmp: level %d, name %d, len %d\n", 9802 (int)optp->level, (int)optp->name, (int)optp->len)); 9803 qreply(q, mpctl); 9804 return (mp2ctl); 9805 } 9806 9807 /* Global IPv4 IGMP statistics */ 9808 static mblk_t * 9809 ip_snmp_get_mib2_igmp(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 9810 { 9811 struct opthdr *optp; 9812 mblk_t *mp2ctl; 9813 9814 /* 9815 * make a copy of the original message 9816 */ 9817 mp2ctl = copymsg(mpctl); 9818 9819 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 9820 optp->level = EXPER_IGMP; 9821 optp->name = 0; 9822 if (!snmp_append_data(mpctl->b_cont, (char *)&ipst->ips_igmpstat, 9823 (int)sizeof (ipst->ips_igmpstat))) { 9824 ip1dbg(("ip_snmp_get_mib2_igmp: failed to allocate %u bytes\n", 9825 (uint_t)sizeof (ipst->ips_igmpstat))); 9826 } 9827 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 9828 ip3dbg(("ip_snmp_get_mib2_igmp: level %d, name %d, len %d\n", 9829 (int)optp->level, (int)optp->name, (int)optp->len)); 9830 qreply(q, mpctl); 9831 return (mp2ctl); 9832 } 9833 9834 /* Global IPv4 Multicast Routing statistics */ 9835 static mblk_t * 9836 ip_snmp_get_mib2_multi(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 9837 { 9838 struct opthdr *optp; 9839 mblk_t *mp2ctl; 9840 9841 /* 9842 * make a copy of the original message 9843 */ 9844 mp2ctl = copymsg(mpctl); 9845 9846 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 9847 optp->level = EXPER_DVMRP; 9848 optp->name = 0; 9849 if (!ip_mroute_stats(mpctl->b_cont, ipst)) { 9850 ip0dbg(("ip_mroute_stats: failed\n")); 9851 } 9852 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 9853 ip3dbg(("ip_snmp_get_mib2_multi: level %d, name %d, len %d\n", 9854 (int)optp->level, (int)optp->name, (int)optp->len)); 9855 qreply(q, mpctl); 9856 return (mp2ctl); 9857 } 9858 9859 /* IPv4 address information */ 9860 static mblk_t * 9861 ip_snmp_get_mib2_ip_addr(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 9862 { 9863 struct opthdr *optp; 9864 mblk_t *mp2ctl; 9865 mblk_t *mp_tail = NULL; 9866 ill_t *ill; 9867 ipif_t *ipif; 9868 uint_t bitval; 9869 mib2_ipAddrEntry_t mae; 9870 zoneid_t zoneid; 9871 ill_walk_context_t ctx; 9872 9873 /* 9874 * make a copy of the original message 9875 */ 9876 mp2ctl = copymsg(mpctl); 9877 9878 /* ipAddrEntryTable */ 9879 9880 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 9881 optp->level = MIB2_IP; 9882 optp->name = MIB2_IP_ADDR; 9883 zoneid = Q_TO_CONN(q)->conn_zoneid; 9884 9885 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 9886 ill = ILL_START_WALK_V4(&ctx, ipst); 9887 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 9888 for (ipif = ill->ill_ipif; ipif != NULL; 9889 ipif = ipif->ipif_next) { 9890 if (ipif->ipif_zoneid != zoneid && 9891 ipif->ipif_zoneid != ALL_ZONES) 9892 continue; 9893 /* Sum of count from dead IRE_LO* and our current */ 9894 mae.ipAdEntInfo.ae_ibcnt = ipif->ipif_ib_pkt_count; 9895 if (ipif->ipif_ire_local != NULL) { 9896 mae.ipAdEntInfo.ae_ibcnt += 9897 ipif->ipif_ire_local->ire_ib_pkt_count; 9898 } 9899 mae.ipAdEntInfo.ae_obcnt = 0; 9900 mae.ipAdEntInfo.ae_focnt = 0; 9901 9902 ipif_get_name(ipif, mae.ipAdEntIfIndex.o_bytes, 9903 OCTET_LENGTH); 9904 mae.ipAdEntIfIndex.o_length = 9905 mi_strlen(mae.ipAdEntIfIndex.o_bytes); 9906 mae.ipAdEntAddr = ipif->ipif_lcl_addr; 9907 mae.ipAdEntNetMask = ipif->ipif_net_mask; 9908 mae.ipAdEntInfo.ae_subnet = ipif->ipif_subnet; 9909 mae.ipAdEntInfo.ae_subnet_len = 9910 ip_mask_to_plen(ipif->ipif_net_mask); 9911 mae.ipAdEntInfo.ae_src_addr = ipif->ipif_lcl_addr; 9912 for (bitval = 1; 9913 bitval && 9914 !(bitval & ipif->ipif_brd_addr); 9915 bitval <<= 1) 9916 noop; 9917 mae.ipAdEntBcastAddr = bitval; 9918 mae.ipAdEntReasmMaxSize = IP_MAXPACKET; 9919 mae.ipAdEntInfo.ae_mtu = ipif->ipif_ill->ill_mtu; 9920 mae.ipAdEntInfo.ae_metric = ipif->ipif_ill->ill_metric; 9921 mae.ipAdEntInfo.ae_broadcast_addr = 9922 ipif->ipif_brd_addr; 9923 mae.ipAdEntInfo.ae_pp_dst_addr = 9924 ipif->ipif_pp_dst_addr; 9925 mae.ipAdEntInfo.ae_flags = ipif->ipif_flags | 9926 ill->ill_flags | ill->ill_phyint->phyint_flags; 9927 mae.ipAdEntRetransmitTime = 9928 ill->ill_reachable_retrans_time; 9929 9930 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 9931 (char *)&mae, (int)sizeof (mib2_ipAddrEntry_t))) { 9932 ip1dbg(("ip_snmp_get_mib2_ip_addr: failed to " 9933 "allocate %u bytes\n", 9934 (uint_t)sizeof (mib2_ipAddrEntry_t))); 9935 } 9936 } 9937 } 9938 rw_exit(&ipst->ips_ill_g_lock); 9939 9940 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 9941 ip3dbg(("ip_snmp_get_mib2_ip_addr: level %d, name %d, len %d\n", 9942 (int)optp->level, (int)optp->name, (int)optp->len)); 9943 qreply(q, mpctl); 9944 return (mp2ctl); 9945 } 9946 9947 /* IPv6 address information */ 9948 static mblk_t * 9949 ip_snmp_get_mib2_ip6_addr(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 9950 { 9951 struct opthdr *optp; 9952 mblk_t *mp2ctl; 9953 mblk_t *mp_tail = NULL; 9954 ill_t *ill; 9955 ipif_t *ipif; 9956 mib2_ipv6AddrEntry_t mae6; 9957 zoneid_t zoneid; 9958 ill_walk_context_t ctx; 9959 9960 /* 9961 * make a copy of the original message 9962 */ 9963 mp2ctl = copymsg(mpctl); 9964 9965 /* ipv6AddrEntryTable */ 9966 9967 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 9968 optp->level = MIB2_IP6; 9969 optp->name = MIB2_IP6_ADDR; 9970 zoneid = Q_TO_CONN(q)->conn_zoneid; 9971 9972 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 9973 ill = ILL_START_WALK_V6(&ctx, ipst); 9974 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 9975 for (ipif = ill->ill_ipif; ipif != NULL; 9976 ipif = ipif->ipif_next) { 9977 if (ipif->ipif_zoneid != zoneid && 9978 ipif->ipif_zoneid != ALL_ZONES) 9979 continue; 9980 /* Sum of count from dead IRE_LO* and our current */ 9981 mae6.ipv6AddrInfo.ae_ibcnt = ipif->ipif_ib_pkt_count; 9982 if (ipif->ipif_ire_local != NULL) { 9983 mae6.ipv6AddrInfo.ae_ibcnt += 9984 ipif->ipif_ire_local->ire_ib_pkt_count; 9985 } 9986 mae6.ipv6AddrInfo.ae_obcnt = 0; 9987 mae6.ipv6AddrInfo.ae_focnt = 0; 9988 9989 ipif_get_name(ipif, mae6.ipv6AddrIfIndex.o_bytes, 9990 OCTET_LENGTH); 9991 mae6.ipv6AddrIfIndex.o_length = 9992 mi_strlen(mae6.ipv6AddrIfIndex.o_bytes); 9993 mae6.ipv6AddrAddress = ipif->ipif_v6lcl_addr; 9994 mae6.ipv6AddrPfxLength = 9995 ip_mask_to_plen_v6(&ipif->ipif_v6net_mask); 9996 mae6.ipv6AddrInfo.ae_subnet = ipif->ipif_v6subnet; 9997 mae6.ipv6AddrInfo.ae_subnet_len = 9998 mae6.ipv6AddrPfxLength; 9999 mae6.ipv6AddrInfo.ae_src_addr = ipif->ipif_v6lcl_addr; 10000 10001 /* Type: stateless(1), stateful(2), unknown(3) */ 10002 if (ipif->ipif_flags & IPIF_ADDRCONF) 10003 mae6.ipv6AddrType = 1; 10004 else 10005 mae6.ipv6AddrType = 2; 10006 /* Anycast: true(1), false(2) */ 10007 if (ipif->ipif_flags & IPIF_ANYCAST) 10008 mae6.ipv6AddrAnycastFlag = 1; 10009 else 10010 mae6.ipv6AddrAnycastFlag = 2; 10011 10012 /* 10013 * Address status: preferred(1), deprecated(2), 10014 * invalid(3), inaccessible(4), unknown(5) 10015 */ 10016 if (ipif->ipif_flags & IPIF_NOLOCAL) 10017 mae6.ipv6AddrStatus = 3; 10018 else if (ipif->ipif_flags & IPIF_DEPRECATED) 10019 mae6.ipv6AddrStatus = 2; 10020 else 10021 mae6.ipv6AddrStatus = 1; 10022 mae6.ipv6AddrInfo.ae_mtu = ipif->ipif_ill->ill_mtu; 10023 mae6.ipv6AddrInfo.ae_metric = 10024 ipif->ipif_ill->ill_metric; 10025 mae6.ipv6AddrInfo.ae_pp_dst_addr = 10026 ipif->ipif_v6pp_dst_addr; 10027 mae6.ipv6AddrInfo.ae_flags = ipif->ipif_flags | 10028 ill->ill_flags | ill->ill_phyint->phyint_flags; 10029 mae6.ipv6AddrReasmMaxSize = IP_MAXPACKET; 10030 mae6.ipv6AddrIdentifier = ill->ill_token; 10031 mae6.ipv6AddrIdentifierLen = ill->ill_token_length; 10032 mae6.ipv6AddrReachableTime = ill->ill_reachable_time; 10033 mae6.ipv6AddrRetransmitTime = 10034 ill->ill_reachable_retrans_time; 10035 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 10036 (char *)&mae6, 10037 (int)sizeof (mib2_ipv6AddrEntry_t))) { 10038 ip1dbg(("ip_snmp_get_mib2_ip6_addr: failed to " 10039 "allocate %u bytes\n", 10040 (uint_t)sizeof (mib2_ipv6AddrEntry_t))); 10041 } 10042 } 10043 } 10044 rw_exit(&ipst->ips_ill_g_lock); 10045 10046 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 10047 ip3dbg(("ip_snmp_get_mib2_ip6_addr: level %d, name %d, len %d\n", 10048 (int)optp->level, (int)optp->name, (int)optp->len)); 10049 qreply(q, mpctl); 10050 return (mp2ctl); 10051 } 10052 10053 /* IPv4 multicast group membership. */ 10054 static mblk_t * 10055 ip_snmp_get_mib2_ip_group_mem(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 10056 { 10057 struct opthdr *optp; 10058 mblk_t *mp2ctl; 10059 ill_t *ill; 10060 ipif_t *ipif; 10061 ilm_t *ilm; 10062 ip_member_t ipm; 10063 mblk_t *mp_tail = NULL; 10064 ill_walk_context_t ctx; 10065 zoneid_t zoneid; 10066 10067 /* 10068 * make a copy of the original message 10069 */ 10070 mp2ctl = copymsg(mpctl); 10071 zoneid = Q_TO_CONN(q)->conn_zoneid; 10072 10073 /* ipGroupMember table */ 10074 optp = (struct opthdr *)&mpctl->b_rptr[ 10075 sizeof (struct T_optmgmt_ack)]; 10076 optp->level = MIB2_IP; 10077 optp->name = EXPER_IP_GROUP_MEMBERSHIP; 10078 10079 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 10080 ill = ILL_START_WALK_V4(&ctx, ipst); 10081 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 10082 /* Make sure the ill isn't going away. */ 10083 if (!ill_check_and_refhold(ill)) 10084 continue; 10085 rw_exit(&ipst->ips_ill_g_lock); 10086 rw_enter(&ill->ill_mcast_lock, RW_READER); 10087 for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) { 10088 if (ilm->ilm_zoneid != zoneid && 10089 ilm->ilm_zoneid != ALL_ZONES) 10090 continue; 10091 10092 /* Is there an ipif for ilm_ifaddr? */ 10093 for (ipif = ill->ill_ipif; ipif != NULL; 10094 ipif = ipif->ipif_next) { 10095 if (!IPIF_IS_CONDEMNED(ipif) && 10096 ipif->ipif_lcl_addr == ilm->ilm_ifaddr && 10097 ilm->ilm_ifaddr != INADDR_ANY) 10098 break; 10099 } 10100 if (ipif != NULL) { 10101 ipif_get_name(ipif, 10102 ipm.ipGroupMemberIfIndex.o_bytes, 10103 OCTET_LENGTH); 10104 } else { 10105 ill_get_name(ill, 10106 ipm.ipGroupMemberIfIndex.o_bytes, 10107 OCTET_LENGTH); 10108 } 10109 ipm.ipGroupMemberIfIndex.o_length = 10110 mi_strlen(ipm.ipGroupMemberIfIndex.o_bytes); 10111 10112 ipm.ipGroupMemberAddress = ilm->ilm_addr; 10113 ipm.ipGroupMemberRefCnt = ilm->ilm_refcnt; 10114 ipm.ipGroupMemberFilterMode = ilm->ilm_fmode; 10115 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 10116 (char *)&ipm, (int)sizeof (ipm))) { 10117 ip1dbg(("ip_snmp_get_mib2_ip_group: " 10118 "failed to allocate %u bytes\n", 10119 (uint_t)sizeof (ipm))); 10120 } 10121 } 10122 rw_exit(&ill->ill_mcast_lock); 10123 ill_refrele(ill); 10124 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 10125 } 10126 rw_exit(&ipst->ips_ill_g_lock); 10127 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 10128 ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n", 10129 (int)optp->level, (int)optp->name, (int)optp->len)); 10130 qreply(q, mpctl); 10131 return (mp2ctl); 10132 } 10133 10134 /* IPv6 multicast group membership. */ 10135 static mblk_t * 10136 ip_snmp_get_mib2_ip6_group_mem(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 10137 { 10138 struct opthdr *optp; 10139 mblk_t *mp2ctl; 10140 ill_t *ill; 10141 ilm_t *ilm; 10142 ipv6_member_t ipm6; 10143 mblk_t *mp_tail = NULL; 10144 ill_walk_context_t ctx; 10145 zoneid_t zoneid; 10146 10147 /* 10148 * make a copy of the original message 10149 */ 10150 mp2ctl = copymsg(mpctl); 10151 zoneid = Q_TO_CONN(q)->conn_zoneid; 10152 10153 /* ip6GroupMember table */ 10154 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 10155 optp->level = MIB2_IP6; 10156 optp->name = EXPER_IP6_GROUP_MEMBERSHIP; 10157 10158 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 10159 ill = ILL_START_WALK_V6(&ctx, ipst); 10160 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 10161 /* Make sure the ill isn't going away. */ 10162 if (!ill_check_and_refhold(ill)) 10163 continue; 10164 rw_exit(&ipst->ips_ill_g_lock); 10165 /* 10166 * Normally we don't have any members on under IPMP interfaces. 10167 * We report them as a debugging aid. 10168 */ 10169 rw_enter(&ill->ill_mcast_lock, RW_READER); 10170 ipm6.ipv6GroupMemberIfIndex = ill->ill_phyint->phyint_ifindex; 10171 for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) { 10172 if (ilm->ilm_zoneid != zoneid && 10173 ilm->ilm_zoneid != ALL_ZONES) 10174 continue; /* not this zone */ 10175 ipm6.ipv6GroupMemberAddress = ilm->ilm_v6addr; 10176 ipm6.ipv6GroupMemberRefCnt = ilm->ilm_refcnt; 10177 ipm6.ipv6GroupMemberFilterMode = ilm->ilm_fmode; 10178 if (!snmp_append_data2(mpctl->b_cont, 10179 &mp_tail, 10180 (char *)&ipm6, (int)sizeof (ipm6))) { 10181 ip1dbg(("ip_snmp_get_mib2_ip6_group: " 10182 "failed to allocate %u bytes\n", 10183 (uint_t)sizeof (ipm6))); 10184 } 10185 } 10186 rw_exit(&ill->ill_mcast_lock); 10187 ill_refrele(ill); 10188 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 10189 } 10190 rw_exit(&ipst->ips_ill_g_lock); 10191 10192 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 10193 ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n", 10194 (int)optp->level, (int)optp->name, (int)optp->len)); 10195 qreply(q, mpctl); 10196 return (mp2ctl); 10197 } 10198 10199 /* IP multicast filtered sources */ 10200 static mblk_t * 10201 ip_snmp_get_mib2_ip_group_src(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 10202 { 10203 struct opthdr *optp; 10204 mblk_t *mp2ctl; 10205 ill_t *ill; 10206 ipif_t *ipif; 10207 ilm_t *ilm; 10208 ip_grpsrc_t ips; 10209 mblk_t *mp_tail = NULL; 10210 ill_walk_context_t ctx; 10211 zoneid_t zoneid; 10212 int i; 10213 slist_t *sl; 10214 10215 /* 10216 * make a copy of the original message 10217 */ 10218 mp2ctl = copymsg(mpctl); 10219 zoneid = Q_TO_CONN(q)->conn_zoneid; 10220 10221 /* ipGroupSource table */ 10222 optp = (struct opthdr *)&mpctl->b_rptr[ 10223 sizeof (struct T_optmgmt_ack)]; 10224 optp->level = MIB2_IP; 10225 optp->name = EXPER_IP_GROUP_SOURCES; 10226 10227 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 10228 ill = ILL_START_WALK_V4(&ctx, ipst); 10229 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 10230 /* Make sure the ill isn't going away. */ 10231 if (!ill_check_and_refhold(ill)) 10232 continue; 10233 rw_exit(&ipst->ips_ill_g_lock); 10234 rw_enter(&ill->ill_mcast_lock, RW_READER); 10235 for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) { 10236 sl = ilm->ilm_filter; 10237 if (ilm->ilm_zoneid != zoneid && 10238 ilm->ilm_zoneid != ALL_ZONES) 10239 continue; 10240 if (SLIST_IS_EMPTY(sl)) 10241 continue; 10242 10243 /* Is there an ipif for ilm_ifaddr? */ 10244 for (ipif = ill->ill_ipif; ipif != NULL; 10245 ipif = ipif->ipif_next) { 10246 if (!IPIF_IS_CONDEMNED(ipif) && 10247 ipif->ipif_lcl_addr == ilm->ilm_ifaddr && 10248 ilm->ilm_ifaddr != INADDR_ANY) 10249 break; 10250 } 10251 if (ipif != NULL) { 10252 ipif_get_name(ipif, 10253 ips.ipGroupSourceIfIndex.o_bytes, 10254 OCTET_LENGTH); 10255 } else { 10256 ill_get_name(ill, 10257 ips.ipGroupSourceIfIndex.o_bytes, 10258 OCTET_LENGTH); 10259 } 10260 ips.ipGroupSourceIfIndex.o_length = 10261 mi_strlen(ips.ipGroupSourceIfIndex.o_bytes); 10262 10263 ips.ipGroupSourceGroup = ilm->ilm_addr; 10264 for (i = 0; i < sl->sl_numsrc; i++) { 10265 if (!IN6_IS_ADDR_V4MAPPED(&sl->sl_addr[i])) 10266 continue; 10267 IN6_V4MAPPED_TO_IPADDR(&sl->sl_addr[i], 10268 ips.ipGroupSourceAddress); 10269 if (snmp_append_data2(mpctl->b_cont, &mp_tail, 10270 (char *)&ips, (int)sizeof (ips)) == 0) { 10271 ip1dbg(("ip_snmp_get_mib2_ip_group_src:" 10272 " failed to allocate %u bytes\n", 10273 (uint_t)sizeof (ips))); 10274 } 10275 } 10276 } 10277 rw_exit(&ill->ill_mcast_lock); 10278 ill_refrele(ill); 10279 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 10280 } 10281 rw_exit(&ipst->ips_ill_g_lock); 10282 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 10283 ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n", 10284 (int)optp->level, (int)optp->name, (int)optp->len)); 10285 qreply(q, mpctl); 10286 return (mp2ctl); 10287 } 10288 10289 /* IPv6 multicast filtered sources. */ 10290 static mblk_t * 10291 ip_snmp_get_mib2_ip6_group_src(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 10292 { 10293 struct opthdr *optp; 10294 mblk_t *mp2ctl; 10295 ill_t *ill; 10296 ilm_t *ilm; 10297 ipv6_grpsrc_t ips6; 10298 mblk_t *mp_tail = NULL; 10299 ill_walk_context_t ctx; 10300 zoneid_t zoneid; 10301 int i; 10302 slist_t *sl; 10303 10304 /* 10305 * make a copy of the original message 10306 */ 10307 mp2ctl = copymsg(mpctl); 10308 zoneid = Q_TO_CONN(q)->conn_zoneid; 10309 10310 /* ip6GroupMember table */ 10311 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 10312 optp->level = MIB2_IP6; 10313 optp->name = EXPER_IP6_GROUP_SOURCES; 10314 10315 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 10316 ill = ILL_START_WALK_V6(&ctx, ipst); 10317 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 10318 /* Make sure the ill isn't going away. */ 10319 if (!ill_check_and_refhold(ill)) 10320 continue; 10321 rw_exit(&ipst->ips_ill_g_lock); 10322 /* 10323 * Normally we don't have any members on under IPMP interfaces. 10324 * We report them as a debugging aid. 10325 */ 10326 rw_enter(&ill->ill_mcast_lock, RW_READER); 10327 ips6.ipv6GroupSourceIfIndex = ill->ill_phyint->phyint_ifindex; 10328 for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) { 10329 sl = ilm->ilm_filter; 10330 if (ilm->ilm_zoneid != zoneid && 10331 ilm->ilm_zoneid != ALL_ZONES) 10332 continue; 10333 if (SLIST_IS_EMPTY(sl)) 10334 continue; 10335 ips6.ipv6GroupSourceGroup = ilm->ilm_v6addr; 10336 for (i = 0; i < sl->sl_numsrc; i++) { 10337 ips6.ipv6GroupSourceAddress = sl->sl_addr[i]; 10338 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 10339 (char *)&ips6, (int)sizeof (ips6))) { 10340 ip1dbg(("ip_snmp_get_mib2_ip6_" 10341 "group_src: failed to allocate " 10342 "%u bytes\n", 10343 (uint_t)sizeof (ips6))); 10344 } 10345 } 10346 } 10347 rw_exit(&ill->ill_mcast_lock); 10348 ill_refrele(ill); 10349 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 10350 } 10351 rw_exit(&ipst->ips_ill_g_lock); 10352 10353 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 10354 ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n", 10355 (int)optp->level, (int)optp->name, (int)optp->len)); 10356 qreply(q, mpctl); 10357 return (mp2ctl); 10358 } 10359 10360 /* Multicast routing virtual interface table. */ 10361 static mblk_t * 10362 ip_snmp_get_mib2_virt_multi(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 10363 { 10364 struct opthdr *optp; 10365 mblk_t *mp2ctl; 10366 10367 /* 10368 * make a copy of the original message 10369 */ 10370 mp2ctl = copymsg(mpctl); 10371 10372 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 10373 optp->level = EXPER_DVMRP; 10374 optp->name = EXPER_DVMRP_VIF; 10375 if (!ip_mroute_vif(mpctl->b_cont, ipst)) { 10376 ip0dbg(("ip_mroute_vif: failed\n")); 10377 } 10378 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 10379 ip3dbg(("ip_snmp_get_mib2_virt_multi: level %d, name %d, len %d\n", 10380 (int)optp->level, (int)optp->name, (int)optp->len)); 10381 qreply(q, mpctl); 10382 return (mp2ctl); 10383 } 10384 10385 /* Multicast routing table. */ 10386 static mblk_t * 10387 ip_snmp_get_mib2_multi_rtable(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 10388 { 10389 struct opthdr *optp; 10390 mblk_t *mp2ctl; 10391 10392 /* 10393 * make a copy of the original message 10394 */ 10395 mp2ctl = copymsg(mpctl); 10396 10397 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 10398 optp->level = EXPER_DVMRP; 10399 optp->name = EXPER_DVMRP_MRT; 10400 if (!ip_mroute_mrt(mpctl->b_cont, ipst)) { 10401 ip0dbg(("ip_mroute_mrt: failed\n")); 10402 } 10403 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 10404 ip3dbg(("ip_snmp_get_mib2_multi_rtable: level %d, name %d, len %d\n", 10405 (int)optp->level, (int)optp->name, (int)optp->len)); 10406 qreply(q, mpctl); 10407 return (mp2ctl); 10408 } 10409 10410 /* 10411 * Return ipRouteEntryTable, ipNetToMediaEntryTable, and ipRouteAttributeTable 10412 * in one IRE walk. 10413 */ 10414 static mblk_t * 10415 ip_snmp_get_mib2_ip_route_media(queue_t *q, mblk_t *mpctl, int level, 10416 ip_stack_t *ipst) 10417 { 10418 struct opthdr *optp; 10419 mblk_t *mp2ctl; /* Returned */ 10420 mblk_t *mp3ctl; /* nettomedia */ 10421 mblk_t *mp4ctl; /* routeattrs */ 10422 iproutedata_t ird; 10423 zoneid_t zoneid; 10424 10425 /* 10426 * make copies of the original message 10427 * - mp2ctl is returned unchanged to the caller for his use 10428 * - mpctl is sent upstream as ipRouteEntryTable 10429 * - mp3ctl is sent upstream as ipNetToMediaEntryTable 10430 * - mp4ctl is sent upstream as ipRouteAttributeTable 10431 */ 10432 mp2ctl = copymsg(mpctl); 10433 mp3ctl = copymsg(mpctl); 10434 mp4ctl = copymsg(mpctl); 10435 if (mp3ctl == NULL || mp4ctl == NULL) { 10436 freemsg(mp4ctl); 10437 freemsg(mp3ctl); 10438 freemsg(mp2ctl); 10439 freemsg(mpctl); 10440 return (NULL); 10441 } 10442 10443 bzero(&ird, sizeof (ird)); 10444 10445 ird.ird_route.lp_head = mpctl->b_cont; 10446 ird.ird_netmedia.lp_head = mp3ctl->b_cont; 10447 ird.ird_attrs.lp_head = mp4ctl->b_cont; 10448 /* 10449 * If the level has been set the special EXPER_IP_AND_ALL_IRES value, 10450 * then also include ire_testhidden IREs and IRE_IF_CLONE. This is 10451 * intended a temporary solution until a proper MIB API is provided 10452 * that provides complete filtering/caller-opt-in. 10453 */ 10454 if (level == EXPER_IP_AND_ALL_IRES) 10455 ird.ird_flags |= IRD_REPORT_ALL; 10456 10457 zoneid = Q_TO_CONN(q)->conn_zoneid; 10458 ire_walk_v4(ip_snmp_get2_v4, &ird, zoneid, ipst); 10459 10460 /* ipRouteEntryTable in mpctl */ 10461 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 10462 optp->level = MIB2_IP; 10463 optp->name = MIB2_IP_ROUTE; 10464 optp->len = msgdsize(ird.ird_route.lp_head); 10465 ip3dbg(("ip_snmp_get_mib2_ip_route_media: level %d, name %d, len %d\n", 10466 (int)optp->level, (int)optp->name, (int)optp->len)); 10467 qreply(q, mpctl); 10468 10469 /* ipNetToMediaEntryTable in mp3ctl */ 10470 ncec_walk(NULL, ip_snmp_get2_v4_media, &ird, ipst); 10471 10472 optp = (struct opthdr *)&mp3ctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 10473 optp->level = MIB2_IP; 10474 optp->name = MIB2_IP_MEDIA; 10475 optp->len = msgdsize(ird.ird_netmedia.lp_head); 10476 ip3dbg(("ip_snmp_get_mib2_ip_route_media: level %d, name %d, len %d\n", 10477 (int)optp->level, (int)optp->name, (int)optp->len)); 10478 qreply(q, mp3ctl); 10479 10480 /* ipRouteAttributeTable in mp4ctl */ 10481 optp = (struct opthdr *)&mp4ctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 10482 optp->level = MIB2_IP; 10483 optp->name = EXPER_IP_RTATTR; 10484 optp->len = msgdsize(ird.ird_attrs.lp_head); 10485 ip3dbg(("ip_snmp_get_mib2_ip_route_media: level %d, name %d, len %d\n", 10486 (int)optp->level, (int)optp->name, (int)optp->len)); 10487 if (optp->len == 0) 10488 freemsg(mp4ctl); 10489 else 10490 qreply(q, mp4ctl); 10491 10492 return (mp2ctl); 10493 } 10494 10495 /* 10496 * Return ipv6RouteEntryTable and ipv6RouteAttributeTable in one IRE walk, and 10497 * ipv6NetToMediaEntryTable in an NDP walk. 10498 */ 10499 static mblk_t * 10500 ip_snmp_get_mib2_ip6_route_media(queue_t *q, mblk_t *mpctl, int level, 10501 ip_stack_t *ipst) 10502 { 10503 struct opthdr *optp; 10504 mblk_t *mp2ctl; /* Returned */ 10505 mblk_t *mp3ctl; /* nettomedia */ 10506 mblk_t *mp4ctl; /* routeattrs */ 10507 iproutedata_t ird; 10508 zoneid_t zoneid; 10509 10510 /* 10511 * make copies of the original message 10512 * - mp2ctl is returned unchanged to the caller for his use 10513 * - mpctl is sent upstream as ipv6RouteEntryTable 10514 * - mp3ctl is sent upstream as ipv6NetToMediaEntryTable 10515 * - mp4ctl is sent upstream as ipv6RouteAttributeTable 10516 */ 10517 mp2ctl = copymsg(mpctl); 10518 mp3ctl = copymsg(mpctl); 10519 mp4ctl = copymsg(mpctl); 10520 if (mp3ctl == NULL || mp4ctl == NULL) { 10521 freemsg(mp4ctl); 10522 freemsg(mp3ctl); 10523 freemsg(mp2ctl); 10524 freemsg(mpctl); 10525 return (NULL); 10526 } 10527 10528 bzero(&ird, sizeof (ird)); 10529 10530 ird.ird_route.lp_head = mpctl->b_cont; 10531 ird.ird_netmedia.lp_head = mp3ctl->b_cont; 10532 ird.ird_attrs.lp_head = mp4ctl->b_cont; 10533 /* 10534 * If the level has been set the special EXPER_IP_AND_ALL_IRES value, 10535 * then also include ire_testhidden IREs and IRE_IF_CLONE. This is 10536 * intended a temporary solution until a proper MIB API is provided 10537 * that provides complete filtering/caller-opt-in. 10538 */ 10539 if (level == EXPER_IP_AND_ALL_IRES) 10540 ird.ird_flags |= IRD_REPORT_ALL; 10541 10542 zoneid = Q_TO_CONN(q)->conn_zoneid; 10543 ire_walk_v6(ip_snmp_get2_v6_route, &ird, zoneid, ipst); 10544 10545 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 10546 optp->level = MIB2_IP6; 10547 optp->name = MIB2_IP6_ROUTE; 10548 optp->len = msgdsize(ird.ird_route.lp_head); 10549 ip3dbg(("ip_snmp_get_mib2_ip6_route_media: level %d, name %d, len %d\n", 10550 (int)optp->level, (int)optp->name, (int)optp->len)); 10551 qreply(q, mpctl); 10552 10553 /* ipv6NetToMediaEntryTable in mp3ctl */ 10554 ncec_walk(NULL, ip_snmp_get2_v6_media, &ird, ipst); 10555 10556 optp = (struct opthdr *)&mp3ctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 10557 optp->level = MIB2_IP6; 10558 optp->name = MIB2_IP6_MEDIA; 10559 optp->len = msgdsize(ird.ird_netmedia.lp_head); 10560 ip3dbg(("ip_snmp_get_mib2_ip6_route_media: level %d, name %d, len %d\n", 10561 (int)optp->level, (int)optp->name, (int)optp->len)); 10562 qreply(q, mp3ctl); 10563 10564 /* ipv6RouteAttributeTable in mp4ctl */ 10565 optp = (struct opthdr *)&mp4ctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 10566 optp->level = MIB2_IP6; 10567 optp->name = EXPER_IP_RTATTR; 10568 optp->len = msgdsize(ird.ird_attrs.lp_head); 10569 ip3dbg(("ip_snmp_get_mib2_ip6_route_media: level %d, name %d, len %d\n", 10570 (int)optp->level, (int)optp->name, (int)optp->len)); 10571 if (optp->len == 0) 10572 freemsg(mp4ctl); 10573 else 10574 qreply(q, mp4ctl); 10575 10576 return (mp2ctl); 10577 } 10578 10579 /* 10580 * IPv6 mib: One per ill 10581 */ 10582 static mblk_t * 10583 ip_snmp_get_mib2_ip6(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 10584 { 10585 struct opthdr *optp; 10586 mblk_t *mp2ctl; 10587 ill_t *ill; 10588 ill_walk_context_t ctx; 10589 mblk_t *mp_tail = NULL; 10590 10591 /* 10592 * Make a copy of the original message 10593 */ 10594 mp2ctl = copymsg(mpctl); 10595 10596 /* fixed length IPv6 structure ... */ 10597 10598 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 10599 optp->level = MIB2_IP6; 10600 optp->name = 0; 10601 /* Include "unknown interface" ip6_mib */ 10602 ipst->ips_ip6_mib.ipIfStatsIPVersion = MIB2_INETADDRESSTYPE_ipv6; 10603 ipst->ips_ip6_mib.ipIfStatsIfIndex = 10604 MIB2_UNKNOWN_INTERFACE; /* Flag to netstat */ 10605 SET_MIB(ipst->ips_ip6_mib.ipIfStatsForwarding, 10606 ipst->ips_ipv6_forwarding ? 1 : 2); 10607 SET_MIB(ipst->ips_ip6_mib.ipIfStatsDefaultHopLimit, 10608 ipst->ips_ipv6_def_hops); 10609 SET_MIB(ipst->ips_ip6_mib.ipIfStatsEntrySize, 10610 sizeof (mib2_ipIfStatsEntry_t)); 10611 SET_MIB(ipst->ips_ip6_mib.ipIfStatsAddrEntrySize, 10612 sizeof (mib2_ipv6AddrEntry_t)); 10613 SET_MIB(ipst->ips_ip6_mib.ipIfStatsRouteEntrySize, 10614 sizeof (mib2_ipv6RouteEntry_t)); 10615 SET_MIB(ipst->ips_ip6_mib.ipIfStatsNetToMediaEntrySize, 10616 sizeof (mib2_ipv6NetToMediaEntry_t)); 10617 SET_MIB(ipst->ips_ip6_mib.ipIfStatsMemberEntrySize, 10618 sizeof (ipv6_member_t)); 10619 SET_MIB(ipst->ips_ip6_mib.ipIfStatsGroupSourceEntrySize, 10620 sizeof (ipv6_grpsrc_t)); 10621 10622 /* 10623 * Synchronize 64- and 32-bit counters 10624 */ 10625 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsInReceives, 10626 ipIfStatsHCInReceives); 10627 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsInDelivers, 10628 ipIfStatsHCInDelivers); 10629 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsOutRequests, 10630 ipIfStatsHCOutRequests); 10631 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsOutForwDatagrams, 10632 ipIfStatsHCOutForwDatagrams); 10633 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsOutMcastPkts, 10634 ipIfStatsHCOutMcastPkts); 10635 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsInMcastPkts, 10636 ipIfStatsHCInMcastPkts); 10637 10638 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 10639 (char *)&ipst->ips_ip6_mib, (int)sizeof (ipst->ips_ip6_mib))) { 10640 ip1dbg(("ip_snmp_get_mib2_ip6: failed to allocate %u bytes\n", 10641 (uint_t)sizeof (ipst->ips_ip6_mib))); 10642 } 10643 10644 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 10645 ill = ILL_START_WALK_V6(&ctx, ipst); 10646 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 10647 ill->ill_ip_mib->ipIfStatsIfIndex = 10648 ill->ill_phyint->phyint_ifindex; 10649 SET_MIB(ill->ill_ip_mib->ipIfStatsForwarding, 10650 ipst->ips_ipv6_forwarding ? 1 : 2); 10651 SET_MIB(ill->ill_ip_mib->ipIfStatsDefaultHopLimit, 10652 ill->ill_max_hops); 10653 10654 /* 10655 * Synchronize 64- and 32-bit counters 10656 */ 10657 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsInReceives, 10658 ipIfStatsHCInReceives); 10659 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsInDelivers, 10660 ipIfStatsHCInDelivers); 10661 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsOutRequests, 10662 ipIfStatsHCOutRequests); 10663 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsOutForwDatagrams, 10664 ipIfStatsHCOutForwDatagrams); 10665 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsOutMcastPkts, 10666 ipIfStatsHCOutMcastPkts); 10667 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsInMcastPkts, 10668 ipIfStatsHCInMcastPkts); 10669 10670 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 10671 (char *)ill->ill_ip_mib, 10672 (int)sizeof (*ill->ill_ip_mib))) { 10673 ip1dbg(("ip_snmp_get_mib2_ip6: failed to allocate " 10674 "%u bytes\n", (uint_t)sizeof (*ill->ill_ip_mib))); 10675 } 10676 } 10677 rw_exit(&ipst->ips_ill_g_lock); 10678 10679 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 10680 ip3dbg(("ip_snmp_get_mib2_ip6: level %d, name %d, len %d\n", 10681 (int)optp->level, (int)optp->name, (int)optp->len)); 10682 qreply(q, mpctl); 10683 return (mp2ctl); 10684 } 10685 10686 /* 10687 * ICMPv6 mib: One per ill 10688 */ 10689 static mblk_t * 10690 ip_snmp_get_mib2_icmp6(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 10691 { 10692 struct opthdr *optp; 10693 mblk_t *mp2ctl; 10694 ill_t *ill; 10695 ill_walk_context_t ctx; 10696 mblk_t *mp_tail = NULL; 10697 /* 10698 * Make a copy of the original message 10699 */ 10700 mp2ctl = copymsg(mpctl); 10701 10702 /* fixed length ICMPv6 structure ... */ 10703 10704 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 10705 optp->level = MIB2_ICMP6; 10706 optp->name = 0; 10707 /* Include "unknown interface" icmp6_mib */ 10708 ipst->ips_icmp6_mib.ipv6IfIcmpIfIndex = 10709 MIB2_UNKNOWN_INTERFACE; /* netstat flag */ 10710 ipst->ips_icmp6_mib.ipv6IfIcmpEntrySize = 10711 sizeof (mib2_ipv6IfIcmpEntry_t); 10712 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 10713 (char *)&ipst->ips_icmp6_mib, 10714 (int)sizeof (ipst->ips_icmp6_mib))) { 10715 ip1dbg(("ip_snmp_get_mib2_icmp6: failed to allocate %u bytes\n", 10716 (uint_t)sizeof (ipst->ips_icmp6_mib))); 10717 } 10718 10719 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 10720 ill = ILL_START_WALK_V6(&ctx, ipst); 10721 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 10722 ill->ill_icmp6_mib->ipv6IfIcmpIfIndex = 10723 ill->ill_phyint->phyint_ifindex; 10724 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 10725 (char *)ill->ill_icmp6_mib, 10726 (int)sizeof (*ill->ill_icmp6_mib))) { 10727 ip1dbg(("ip_snmp_get_mib2_icmp6: failed to allocate " 10728 "%u bytes\n", 10729 (uint_t)sizeof (*ill->ill_icmp6_mib))); 10730 } 10731 } 10732 rw_exit(&ipst->ips_ill_g_lock); 10733 10734 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 10735 ip3dbg(("ip_snmp_get_mib2_icmp6: level %d, name %d, len %d\n", 10736 (int)optp->level, (int)optp->name, (int)optp->len)); 10737 qreply(q, mpctl); 10738 return (mp2ctl); 10739 } 10740 10741 /* 10742 * ire_walk routine to create both ipRouteEntryTable and 10743 * ipRouteAttributeTable in one IRE walk 10744 */ 10745 static void 10746 ip_snmp_get2_v4(ire_t *ire, iproutedata_t *ird) 10747 { 10748 ill_t *ill; 10749 mib2_ipRouteEntry_t *re; 10750 mib2_ipAttributeEntry_t iaes; 10751 tsol_ire_gw_secattr_t *attrp; 10752 tsol_gc_t *gc = NULL; 10753 tsol_gcgrp_t *gcgrp = NULL; 10754 ip_stack_t *ipst = ire->ire_ipst; 10755 10756 ASSERT(ire->ire_ipversion == IPV4_VERSION); 10757 10758 if (!(ird->ird_flags & IRD_REPORT_ALL)) { 10759 if (ire->ire_testhidden) 10760 return; 10761 if (ire->ire_type & IRE_IF_CLONE) 10762 return; 10763 } 10764 10765 if ((re = kmem_zalloc(sizeof (*re), KM_NOSLEEP)) == NULL) 10766 return; 10767 10768 if ((attrp = ire->ire_gw_secattr) != NULL) { 10769 mutex_enter(&attrp->igsa_lock); 10770 if ((gc = attrp->igsa_gc) != NULL) { 10771 gcgrp = gc->gc_grp; 10772 ASSERT(gcgrp != NULL); 10773 rw_enter(&gcgrp->gcgrp_rwlock, RW_READER); 10774 } 10775 mutex_exit(&attrp->igsa_lock); 10776 } 10777 /* 10778 * Return all IRE types for route table... let caller pick and choose 10779 */ 10780 re->ipRouteDest = ire->ire_addr; 10781 ill = ire->ire_ill; 10782 re->ipRouteIfIndex.o_length = 0; 10783 if (ill != NULL) { 10784 ill_get_name(ill, re->ipRouteIfIndex.o_bytes, OCTET_LENGTH); 10785 re->ipRouteIfIndex.o_length = 10786 mi_strlen(re->ipRouteIfIndex.o_bytes); 10787 } 10788 re->ipRouteMetric1 = -1; 10789 re->ipRouteMetric2 = -1; 10790 re->ipRouteMetric3 = -1; 10791 re->ipRouteMetric4 = -1; 10792 10793 re->ipRouteNextHop = ire->ire_gateway_addr; 10794 /* indirect(4), direct(3), or invalid(2) */ 10795 if (ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) 10796 re->ipRouteType = 2; 10797 else if (ire->ire_type & IRE_ONLINK) 10798 re->ipRouteType = 3; 10799 else 10800 re->ipRouteType = 4; 10801 10802 re->ipRouteProto = -1; 10803 re->ipRouteAge = gethrestime_sec() - ire->ire_create_time; 10804 re->ipRouteMask = ire->ire_mask; 10805 re->ipRouteMetric5 = -1; 10806 re->ipRouteInfo.re_max_frag = ire->ire_metrics.iulp_mtu; 10807 if (ire->ire_ill != NULL && re->ipRouteInfo.re_max_frag == 0) 10808 re->ipRouteInfo.re_max_frag = ire->ire_ill->ill_mtu; 10809 10810 re->ipRouteInfo.re_frag_flag = 0; 10811 re->ipRouteInfo.re_rtt = 0; 10812 re->ipRouteInfo.re_src_addr = 0; 10813 re->ipRouteInfo.re_ref = ire->ire_refcnt; 10814 re->ipRouteInfo.re_obpkt = ire->ire_ob_pkt_count; 10815 re->ipRouteInfo.re_ibpkt = ire->ire_ib_pkt_count; 10816 re->ipRouteInfo.re_flags = ire->ire_flags; 10817 10818 /* Add the IRE_IF_CLONE's counters to their parent IRE_INTERFACE */ 10819 if (ire->ire_type & IRE_INTERFACE) { 10820 ire_t *child; 10821 10822 rw_enter(&ipst->ips_ire_dep_lock, RW_READER); 10823 child = ire->ire_dep_children; 10824 while (child != NULL) { 10825 re->ipRouteInfo.re_obpkt += child->ire_ob_pkt_count; 10826 re->ipRouteInfo.re_ibpkt += child->ire_ib_pkt_count; 10827 child = child->ire_dep_sib_next; 10828 } 10829 rw_exit(&ipst->ips_ire_dep_lock); 10830 } 10831 10832 if (ire->ire_flags & RTF_DYNAMIC) { 10833 re->ipRouteInfo.re_ire_type = IRE_HOST_REDIRECT; 10834 } else { 10835 re->ipRouteInfo.re_ire_type = ire->ire_type; 10836 } 10837 10838 if (!snmp_append_data2(ird->ird_route.lp_head, &ird->ird_route.lp_tail, 10839 (char *)re, (int)sizeof (*re))) { 10840 ip1dbg(("ip_snmp_get2_v4: failed to allocate %u bytes\n", 10841 (uint_t)sizeof (*re))); 10842 } 10843 10844 if (gc != NULL) { 10845 iaes.iae_routeidx = ird->ird_idx; 10846 iaes.iae_doi = gc->gc_db->gcdb_doi; 10847 iaes.iae_slrange = gc->gc_db->gcdb_slrange; 10848 10849 if (!snmp_append_data2(ird->ird_attrs.lp_head, 10850 &ird->ird_attrs.lp_tail, (char *)&iaes, sizeof (iaes))) { 10851 ip1dbg(("ip_snmp_get2_v4: failed to allocate %u " 10852 "bytes\n", (uint_t)sizeof (iaes))); 10853 } 10854 } 10855 10856 /* bump route index for next pass */ 10857 ird->ird_idx++; 10858 10859 kmem_free(re, sizeof (*re)); 10860 if (gcgrp != NULL) 10861 rw_exit(&gcgrp->gcgrp_rwlock); 10862 } 10863 10864 /* 10865 * ire_walk routine to create ipv6RouteEntryTable and ipRouteEntryTable. 10866 */ 10867 static void 10868 ip_snmp_get2_v6_route(ire_t *ire, iproutedata_t *ird) 10869 { 10870 ill_t *ill; 10871 mib2_ipv6RouteEntry_t *re; 10872 mib2_ipAttributeEntry_t iaes; 10873 tsol_ire_gw_secattr_t *attrp; 10874 tsol_gc_t *gc = NULL; 10875 tsol_gcgrp_t *gcgrp = NULL; 10876 ip_stack_t *ipst = ire->ire_ipst; 10877 10878 ASSERT(ire->ire_ipversion == IPV6_VERSION); 10879 10880 if (!(ird->ird_flags & IRD_REPORT_ALL)) { 10881 if (ire->ire_testhidden) 10882 return; 10883 if (ire->ire_type & IRE_IF_CLONE) 10884 return; 10885 } 10886 10887 if ((re = kmem_zalloc(sizeof (*re), KM_NOSLEEP)) == NULL) 10888 return; 10889 10890 if ((attrp = ire->ire_gw_secattr) != NULL) { 10891 mutex_enter(&attrp->igsa_lock); 10892 if ((gc = attrp->igsa_gc) != NULL) { 10893 gcgrp = gc->gc_grp; 10894 ASSERT(gcgrp != NULL); 10895 rw_enter(&gcgrp->gcgrp_rwlock, RW_READER); 10896 } 10897 mutex_exit(&attrp->igsa_lock); 10898 } 10899 /* 10900 * Return all IRE types for route table... let caller pick and choose 10901 */ 10902 re->ipv6RouteDest = ire->ire_addr_v6; 10903 re->ipv6RoutePfxLength = ip_mask_to_plen_v6(&ire->ire_mask_v6); 10904 re->ipv6RouteIndex = 0; /* Unique when multiple with same dest/plen */ 10905 re->ipv6RouteIfIndex.o_length = 0; 10906 ill = ire->ire_ill; 10907 if (ill != NULL) { 10908 ill_get_name(ill, re->ipv6RouteIfIndex.o_bytes, OCTET_LENGTH); 10909 re->ipv6RouteIfIndex.o_length = 10910 mi_strlen(re->ipv6RouteIfIndex.o_bytes); 10911 } 10912 10913 ASSERT(!(ire->ire_type & IRE_BROADCAST)); 10914 10915 mutex_enter(&ire->ire_lock); 10916 re->ipv6RouteNextHop = ire->ire_gateway_addr_v6; 10917 mutex_exit(&ire->ire_lock); 10918 10919 /* remote(4), local(3), or discard(2) */ 10920 if (ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) 10921 re->ipv6RouteType = 2; 10922 else if (ire->ire_type & IRE_ONLINK) 10923 re->ipv6RouteType = 3; 10924 else 10925 re->ipv6RouteType = 4; 10926 10927 re->ipv6RouteProtocol = -1; 10928 re->ipv6RoutePolicy = 0; 10929 re->ipv6RouteAge = gethrestime_sec() - ire->ire_create_time; 10930 re->ipv6RouteNextHopRDI = 0; 10931 re->ipv6RouteWeight = 0; 10932 re->ipv6RouteMetric = 0; 10933 re->ipv6RouteInfo.re_max_frag = ire->ire_metrics.iulp_mtu; 10934 if (ire->ire_ill != NULL && re->ipv6RouteInfo.re_max_frag == 0) 10935 re->ipv6RouteInfo.re_max_frag = ire->ire_ill->ill_mtu; 10936 10937 re->ipv6RouteInfo.re_frag_flag = 0; 10938 re->ipv6RouteInfo.re_rtt = 0; 10939 re->ipv6RouteInfo.re_src_addr = ipv6_all_zeros; 10940 re->ipv6RouteInfo.re_obpkt = ire->ire_ob_pkt_count; 10941 re->ipv6RouteInfo.re_ibpkt = ire->ire_ib_pkt_count; 10942 re->ipv6RouteInfo.re_ref = ire->ire_refcnt; 10943 re->ipv6RouteInfo.re_flags = ire->ire_flags; 10944 10945 /* Add the IRE_IF_CLONE's counters to their parent IRE_INTERFACE */ 10946 if (ire->ire_type & IRE_INTERFACE) { 10947 ire_t *child; 10948 10949 rw_enter(&ipst->ips_ire_dep_lock, RW_READER); 10950 child = ire->ire_dep_children; 10951 while (child != NULL) { 10952 re->ipv6RouteInfo.re_obpkt += child->ire_ob_pkt_count; 10953 re->ipv6RouteInfo.re_ibpkt += child->ire_ib_pkt_count; 10954 child = child->ire_dep_sib_next; 10955 } 10956 rw_exit(&ipst->ips_ire_dep_lock); 10957 } 10958 if (ire->ire_flags & RTF_DYNAMIC) { 10959 re->ipv6RouteInfo.re_ire_type = IRE_HOST_REDIRECT; 10960 } else { 10961 re->ipv6RouteInfo.re_ire_type = ire->ire_type; 10962 } 10963 10964 if (!snmp_append_data2(ird->ird_route.lp_head, &ird->ird_route.lp_tail, 10965 (char *)re, (int)sizeof (*re))) { 10966 ip1dbg(("ip_snmp_get2_v6: failed to allocate %u bytes\n", 10967 (uint_t)sizeof (*re))); 10968 } 10969 10970 if (gc != NULL) { 10971 iaes.iae_routeidx = ird->ird_idx; 10972 iaes.iae_doi = gc->gc_db->gcdb_doi; 10973 iaes.iae_slrange = gc->gc_db->gcdb_slrange; 10974 10975 if (!snmp_append_data2(ird->ird_attrs.lp_head, 10976 &ird->ird_attrs.lp_tail, (char *)&iaes, sizeof (iaes))) { 10977 ip1dbg(("ip_snmp_get2_v6: failed to allocate %u " 10978 "bytes\n", (uint_t)sizeof (iaes))); 10979 } 10980 } 10981 10982 /* bump route index for next pass */ 10983 ird->ird_idx++; 10984 10985 kmem_free(re, sizeof (*re)); 10986 if (gcgrp != NULL) 10987 rw_exit(&gcgrp->gcgrp_rwlock); 10988 } 10989 10990 /* 10991 * ncec_walk routine to create ipv6NetToMediaEntryTable 10992 */ 10993 static int 10994 ip_snmp_get2_v6_media(ncec_t *ncec, iproutedata_t *ird) 10995 { 10996 ill_t *ill; 10997 mib2_ipv6NetToMediaEntry_t ntme; 10998 10999 ill = ncec->ncec_ill; 11000 /* skip arpce entries, and loopback ncec entries */ 11001 if (ill->ill_isv6 == B_FALSE || ill->ill_net_type == IRE_LOOPBACK) 11002 return (0); 11003 /* 11004 * Neighbor cache entry attached to IRE with on-link 11005 * destination. 11006 * We report all IPMP groups on ncec_ill which is normally the upper. 11007 */ 11008 ntme.ipv6NetToMediaIfIndex = ill->ill_phyint->phyint_ifindex; 11009 ntme.ipv6NetToMediaNetAddress = ncec->ncec_addr; 11010 ntme.ipv6NetToMediaPhysAddress.o_length = ill->ill_phys_addr_length; 11011 if (ncec->ncec_lladdr != NULL) { 11012 bcopy(ncec->ncec_lladdr, ntme.ipv6NetToMediaPhysAddress.o_bytes, 11013 ntme.ipv6NetToMediaPhysAddress.o_length); 11014 } 11015 /* 11016 * Note: Returns ND_* states. Should be: 11017 * reachable(1), stale(2), delay(3), probe(4), 11018 * invalid(5), unknown(6) 11019 */ 11020 ntme.ipv6NetToMediaState = ncec->ncec_state; 11021 ntme.ipv6NetToMediaLastUpdated = 0; 11022 11023 /* other(1), dynamic(2), static(3), local(4) */ 11024 if (NCE_MYADDR(ncec)) { 11025 ntme.ipv6NetToMediaType = 4; 11026 } else if (ncec->ncec_flags & NCE_F_PUBLISH) { 11027 ntme.ipv6NetToMediaType = 1; /* proxy */ 11028 } else if (ncec->ncec_flags & NCE_F_STATIC) { 11029 ntme.ipv6NetToMediaType = 3; 11030 } else if (ncec->ncec_flags & (NCE_F_MCAST|NCE_F_BCAST)) { 11031 ntme.ipv6NetToMediaType = 1; 11032 } else { 11033 ntme.ipv6NetToMediaType = 2; 11034 } 11035 11036 if (!snmp_append_data2(ird->ird_netmedia.lp_head, 11037 &ird->ird_netmedia.lp_tail, (char *)&ntme, sizeof (ntme))) { 11038 ip1dbg(("ip_snmp_get2_v6_media: failed to allocate %u bytes\n", 11039 (uint_t)sizeof (ntme))); 11040 } 11041 return (0); 11042 } 11043 11044 int 11045 nce2ace(ncec_t *ncec) 11046 { 11047 int flags = 0; 11048 11049 if (NCE_ISREACHABLE(ncec)) 11050 flags |= ACE_F_RESOLVED; 11051 if (ncec->ncec_flags & NCE_F_AUTHORITY) 11052 flags |= ACE_F_AUTHORITY; 11053 if (ncec->ncec_flags & NCE_F_PUBLISH) 11054 flags |= ACE_F_PUBLISH; 11055 if ((ncec->ncec_flags & NCE_F_NONUD) != 0) 11056 flags |= ACE_F_PERMANENT; 11057 if (NCE_MYADDR(ncec)) 11058 flags |= (ACE_F_MYADDR | ACE_F_AUTHORITY); 11059 if (ncec->ncec_flags & NCE_F_UNVERIFIED) 11060 flags |= ACE_F_UNVERIFIED; 11061 if (ncec->ncec_flags & NCE_F_AUTHORITY) 11062 flags |= ACE_F_AUTHORITY; 11063 if (ncec->ncec_flags & NCE_F_DELAYED) 11064 flags |= ACE_F_DELAYED; 11065 return (flags); 11066 } 11067 11068 /* 11069 * ncec_walk routine to create ipNetToMediaEntryTable 11070 */ 11071 static int 11072 ip_snmp_get2_v4_media(ncec_t *ncec, iproutedata_t *ird) 11073 { 11074 ill_t *ill; 11075 mib2_ipNetToMediaEntry_t ntme; 11076 const char *name = "unknown"; 11077 ipaddr_t ncec_addr; 11078 11079 ill = ncec->ncec_ill; 11080 if (ill->ill_isv6 || (ncec->ncec_flags & NCE_F_BCAST) || 11081 ill->ill_net_type == IRE_LOOPBACK) 11082 return (0); 11083 11084 /* We report all IPMP groups on ncec_ill which is normally the upper. */ 11085 name = ill->ill_name; 11086 /* Based on RFC 4293: other(1), inval(2), dyn(3), stat(4) */ 11087 if (NCE_MYADDR(ncec)) { 11088 ntme.ipNetToMediaType = 4; 11089 } else if (ncec->ncec_flags & (NCE_F_MCAST|NCE_F_BCAST|NCE_F_PUBLISH)) { 11090 ntme.ipNetToMediaType = 1; 11091 } else { 11092 ntme.ipNetToMediaType = 3; 11093 } 11094 ntme.ipNetToMediaIfIndex.o_length = MIN(OCTET_LENGTH, strlen(name)); 11095 bcopy(name, ntme.ipNetToMediaIfIndex.o_bytes, 11096 ntme.ipNetToMediaIfIndex.o_length); 11097 11098 IN6_V4MAPPED_TO_IPADDR(&ncec->ncec_addr, ncec_addr); 11099 bcopy(&ncec_addr, &ntme.ipNetToMediaNetAddress, sizeof (ncec_addr)); 11100 11101 ntme.ipNetToMediaInfo.ntm_mask.o_length = sizeof (ipaddr_t); 11102 ncec_addr = INADDR_BROADCAST; 11103 bcopy(&ncec_addr, ntme.ipNetToMediaInfo.ntm_mask.o_bytes, 11104 sizeof (ncec_addr)); 11105 /* 11106 * map all the flags to the ACE counterpart. 11107 */ 11108 ntme.ipNetToMediaInfo.ntm_flags = nce2ace(ncec); 11109 11110 ntme.ipNetToMediaPhysAddress.o_length = 11111 MIN(OCTET_LENGTH, ill->ill_phys_addr_length); 11112 11113 if (!NCE_ISREACHABLE(ncec)) 11114 ntme.ipNetToMediaPhysAddress.o_length = 0; 11115 else { 11116 if (ncec->ncec_lladdr != NULL) { 11117 bcopy(ncec->ncec_lladdr, 11118 ntme.ipNetToMediaPhysAddress.o_bytes, 11119 ntme.ipNetToMediaPhysAddress.o_length); 11120 } 11121 } 11122 11123 if (!snmp_append_data2(ird->ird_netmedia.lp_head, 11124 &ird->ird_netmedia.lp_tail, (char *)&ntme, sizeof (ntme))) { 11125 ip1dbg(("ip_snmp_get2_v4_media: failed to allocate %u bytes\n", 11126 (uint_t)sizeof (ntme))); 11127 } 11128 return (0); 11129 } 11130 11131 /* 11132 * return (0) if invalid set request, 1 otherwise, including non-tcp requests 11133 */ 11134 /* ARGSUSED */ 11135 int 11136 ip_snmp_set(queue_t *q, int level, int name, uchar_t *ptr, int len) 11137 { 11138 switch (level) { 11139 case MIB2_IP: 11140 case MIB2_ICMP: 11141 switch (name) { 11142 default: 11143 break; 11144 } 11145 return (1); 11146 default: 11147 return (1); 11148 } 11149 } 11150 11151 /* 11152 * When there exists both a 64- and 32-bit counter of a particular type 11153 * (i.e., InReceives), only the 64-bit counters are added. 11154 */ 11155 void 11156 ip_mib2_add_ip_stats(mib2_ipIfStatsEntry_t *o1, mib2_ipIfStatsEntry_t *o2) 11157 { 11158 UPDATE_MIB(o1, ipIfStatsInHdrErrors, o2->ipIfStatsInHdrErrors); 11159 UPDATE_MIB(o1, ipIfStatsInTooBigErrors, o2->ipIfStatsInTooBigErrors); 11160 UPDATE_MIB(o1, ipIfStatsInNoRoutes, o2->ipIfStatsInNoRoutes); 11161 UPDATE_MIB(o1, ipIfStatsInAddrErrors, o2->ipIfStatsInAddrErrors); 11162 UPDATE_MIB(o1, ipIfStatsInUnknownProtos, o2->ipIfStatsInUnknownProtos); 11163 UPDATE_MIB(o1, ipIfStatsInTruncatedPkts, o2->ipIfStatsInTruncatedPkts); 11164 UPDATE_MIB(o1, ipIfStatsInDiscards, o2->ipIfStatsInDiscards); 11165 UPDATE_MIB(o1, ipIfStatsOutDiscards, o2->ipIfStatsOutDiscards); 11166 UPDATE_MIB(o1, ipIfStatsOutFragOKs, o2->ipIfStatsOutFragOKs); 11167 UPDATE_MIB(o1, ipIfStatsOutFragFails, o2->ipIfStatsOutFragFails); 11168 UPDATE_MIB(o1, ipIfStatsOutFragCreates, o2->ipIfStatsOutFragCreates); 11169 UPDATE_MIB(o1, ipIfStatsReasmReqds, o2->ipIfStatsReasmReqds); 11170 UPDATE_MIB(o1, ipIfStatsReasmOKs, o2->ipIfStatsReasmOKs); 11171 UPDATE_MIB(o1, ipIfStatsReasmFails, o2->ipIfStatsReasmFails); 11172 UPDATE_MIB(o1, ipIfStatsOutNoRoutes, o2->ipIfStatsOutNoRoutes); 11173 UPDATE_MIB(o1, ipIfStatsReasmDuplicates, o2->ipIfStatsReasmDuplicates); 11174 UPDATE_MIB(o1, ipIfStatsReasmPartDups, o2->ipIfStatsReasmPartDups); 11175 UPDATE_MIB(o1, ipIfStatsForwProhibits, o2->ipIfStatsForwProhibits); 11176 UPDATE_MIB(o1, udpInCksumErrs, o2->udpInCksumErrs); 11177 UPDATE_MIB(o1, udpInOverflows, o2->udpInOverflows); 11178 UPDATE_MIB(o1, rawipInOverflows, o2->rawipInOverflows); 11179 UPDATE_MIB(o1, ipIfStatsInWrongIPVersion, 11180 o2->ipIfStatsInWrongIPVersion); 11181 UPDATE_MIB(o1, ipIfStatsOutWrongIPVersion, 11182 o2->ipIfStatsInWrongIPVersion); 11183 UPDATE_MIB(o1, ipIfStatsOutSwitchIPVersion, 11184 o2->ipIfStatsOutSwitchIPVersion); 11185 UPDATE_MIB(o1, ipIfStatsHCInReceives, o2->ipIfStatsHCInReceives); 11186 UPDATE_MIB(o1, ipIfStatsHCInOctets, o2->ipIfStatsHCInOctets); 11187 UPDATE_MIB(o1, ipIfStatsHCInForwDatagrams, 11188 o2->ipIfStatsHCInForwDatagrams); 11189 UPDATE_MIB(o1, ipIfStatsHCInDelivers, o2->ipIfStatsHCInDelivers); 11190 UPDATE_MIB(o1, ipIfStatsHCOutRequests, o2->ipIfStatsHCOutRequests); 11191 UPDATE_MIB(o1, ipIfStatsHCOutForwDatagrams, 11192 o2->ipIfStatsHCOutForwDatagrams); 11193 UPDATE_MIB(o1, ipIfStatsOutFragReqds, o2->ipIfStatsOutFragReqds); 11194 UPDATE_MIB(o1, ipIfStatsHCOutTransmits, o2->ipIfStatsHCOutTransmits); 11195 UPDATE_MIB(o1, ipIfStatsHCOutOctets, o2->ipIfStatsHCOutOctets); 11196 UPDATE_MIB(o1, ipIfStatsHCInMcastPkts, o2->ipIfStatsHCInMcastPkts); 11197 UPDATE_MIB(o1, ipIfStatsHCInMcastOctets, o2->ipIfStatsHCInMcastOctets); 11198 UPDATE_MIB(o1, ipIfStatsHCOutMcastPkts, o2->ipIfStatsHCOutMcastPkts); 11199 UPDATE_MIB(o1, ipIfStatsHCOutMcastOctets, 11200 o2->ipIfStatsHCOutMcastOctets); 11201 UPDATE_MIB(o1, ipIfStatsHCInBcastPkts, o2->ipIfStatsHCInBcastPkts); 11202 UPDATE_MIB(o1, ipIfStatsHCOutBcastPkts, o2->ipIfStatsHCOutBcastPkts); 11203 UPDATE_MIB(o1, ipsecInSucceeded, o2->ipsecInSucceeded); 11204 UPDATE_MIB(o1, ipsecInFailed, o2->ipsecInFailed); 11205 UPDATE_MIB(o1, ipInCksumErrs, o2->ipInCksumErrs); 11206 UPDATE_MIB(o1, tcpInErrs, o2->tcpInErrs); 11207 UPDATE_MIB(o1, udpNoPorts, o2->udpNoPorts); 11208 } 11209 11210 void 11211 ip_mib2_add_icmp6_stats(mib2_ipv6IfIcmpEntry_t *o1, mib2_ipv6IfIcmpEntry_t *o2) 11212 { 11213 UPDATE_MIB(o1, ipv6IfIcmpInMsgs, o2->ipv6IfIcmpInMsgs); 11214 UPDATE_MIB(o1, ipv6IfIcmpInErrors, o2->ipv6IfIcmpInErrors); 11215 UPDATE_MIB(o1, ipv6IfIcmpInDestUnreachs, o2->ipv6IfIcmpInDestUnreachs); 11216 UPDATE_MIB(o1, ipv6IfIcmpInAdminProhibs, o2->ipv6IfIcmpInAdminProhibs); 11217 UPDATE_MIB(o1, ipv6IfIcmpInTimeExcds, o2->ipv6IfIcmpInTimeExcds); 11218 UPDATE_MIB(o1, ipv6IfIcmpInParmProblems, o2->ipv6IfIcmpInParmProblems); 11219 UPDATE_MIB(o1, ipv6IfIcmpInPktTooBigs, o2->ipv6IfIcmpInPktTooBigs); 11220 UPDATE_MIB(o1, ipv6IfIcmpInEchos, o2->ipv6IfIcmpInEchos); 11221 UPDATE_MIB(o1, ipv6IfIcmpInEchoReplies, o2->ipv6IfIcmpInEchoReplies); 11222 UPDATE_MIB(o1, ipv6IfIcmpInRouterSolicits, 11223 o2->ipv6IfIcmpInRouterSolicits); 11224 UPDATE_MIB(o1, ipv6IfIcmpInRouterAdvertisements, 11225 o2->ipv6IfIcmpInRouterAdvertisements); 11226 UPDATE_MIB(o1, ipv6IfIcmpInNeighborSolicits, 11227 o2->ipv6IfIcmpInNeighborSolicits); 11228 UPDATE_MIB(o1, ipv6IfIcmpInNeighborAdvertisements, 11229 o2->ipv6IfIcmpInNeighborAdvertisements); 11230 UPDATE_MIB(o1, ipv6IfIcmpInRedirects, o2->ipv6IfIcmpInRedirects); 11231 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembQueries, 11232 o2->ipv6IfIcmpInGroupMembQueries); 11233 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembResponses, 11234 o2->ipv6IfIcmpInGroupMembResponses); 11235 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembReductions, 11236 o2->ipv6IfIcmpInGroupMembReductions); 11237 UPDATE_MIB(o1, ipv6IfIcmpOutMsgs, o2->ipv6IfIcmpOutMsgs); 11238 UPDATE_MIB(o1, ipv6IfIcmpOutErrors, o2->ipv6IfIcmpOutErrors); 11239 UPDATE_MIB(o1, ipv6IfIcmpOutDestUnreachs, 11240 o2->ipv6IfIcmpOutDestUnreachs); 11241 UPDATE_MIB(o1, ipv6IfIcmpOutAdminProhibs, 11242 o2->ipv6IfIcmpOutAdminProhibs); 11243 UPDATE_MIB(o1, ipv6IfIcmpOutTimeExcds, o2->ipv6IfIcmpOutTimeExcds); 11244 UPDATE_MIB(o1, ipv6IfIcmpOutParmProblems, 11245 o2->ipv6IfIcmpOutParmProblems); 11246 UPDATE_MIB(o1, ipv6IfIcmpOutPktTooBigs, o2->ipv6IfIcmpOutPktTooBigs); 11247 UPDATE_MIB(o1, ipv6IfIcmpOutEchos, o2->ipv6IfIcmpOutEchos); 11248 UPDATE_MIB(o1, ipv6IfIcmpOutEchoReplies, o2->ipv6IfIcmpOutEchoReplies); 11249 UPDATE_MIB(o1, ipv6IfIcmpOutRouterSolicits, 11250 o2->ipv6IfIcmpOutRouterSolicits); 11251 UPDATE_MIB(o1, ipv6IfIcmpOutRouterAdvertisements, 11252 o2->ipv6IfIcmpOutRouterAdvertisements); 11253 UPDATE_MIB(o1, ipv6IfIcmpOutNeighborSolicits, 11254 o2->ipv6IfIcmpOutNeighborSolicits); 11255 UPDATE_MIB(o1, ipv6IfIcmpOutNeighborAdvertisements, 11256 o2->ipv6IfIcmpOutNeighborAdvertisements); 11257 UPDATE_MIB(o1, ipv6IfIcmpOutRedirects, o2->ipv6IfIcmpOutRedirects); 11258 UPDATE_MIB(o1, ipv6IfIcmpOutGroupMembQueries, 11259 o2->ipv6IfIcmpOutGroupMembQueries); 11260 UPDATE_MIB(o1, ipv6IfIcmpOutGroupMembResponses, 11261 o2->ipv6IfIcmpOutGroupMembResponses); 11262 UPDATE_MIB(o1, ipv6IfIcmpOutGroupMembReductions, 11263 o2->ipv6IfIcmpOutGroupMembReductions); 11264 UPDATE_MIB(o1, ipv6IfIcmpInOverflows, o2->ipv6IfIcmpInOverflows); 11265 UPDATE_MIB(o1, ipv6IfIcmpBadHoplimit, o2->ipv6IfIcmpBadHoplimit); 11266 UPDATE_MIB(o1, ipv6IfIcmpInBadNeighborAdvertisements, 11267 o2->ipv6IfIcmpInBadNeighborAdvertisements); 11268 UPDATE_MIB(o1, ipv6IfIcmpInBadNeighborSolicitations, 11269 o2->ipv6IfIcmpInBadNeighborSolicitations); 11270 UPDATE_MIB(o1, ipv6IfIcmpInBadRedirects, o2->ipv6IfIcmpInBadRedirects); 11271 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembTotal, 11272 o2->ipv6IfIcmpInGroupMembTotal); 11273 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembBadQueries, 11274 o2->ipv6IfIcmpInGroupMembBadQueries); 11275 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembBadReports, 11276 o2->ipv6IfIcmpInGroupMembBadReports); 11277 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembOurReports, 11278 o2->ipv6IfIcmpInGroupMembOurReports); 11279 } 11280 11281 /* 11282 * Called before the options are updated to check if this packet will 11283 * be source routed from here. 11284 * This routine assumes that the options are well formed i.e. that they 11285 * have already been checked. 11286 */ 11287 boolean_t 11288 ip_source_routed(ipha_t *ipha, ip_stack_t *ipst) 11289 { 11290 ipoptp_t opts; 11291 uchar_t *opt; 11292 uint8_t optval; 11293 uint8_t optlen; 11294 ipaddr_t dst; 11295 11296 if (IS_SIMPLE_IPH(ipha)) { 11297 ip2dbg(("not source routed\n")); 11298 return (B_FALSE); 11299 } 11300 dst = ipha->ipha_dst; 11301 for (optval = ipoptp_first(&opts, ipha); 11302 optval != IPOPT_EOL; 11303 optval = ipoptp_next(&opts)) { 11304 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 11305 opt = opts.ipoptp_cur; 11306 optlen = opts.ipoptp_len; 11307 ip2dbg(("ip_source_routed: opt %d, len %d\n", 11308 optval, optlen)); 11309 switch (optval) { 11310 uint32_t off; 11311 case IPOPT_SSRR: 11312 case IPOPT_LSRR: 11313 /* 11314 * If dst is one of our addresses and there are some 11315 * entries left in the source route return (true). 11316 */ 11317 if (ip_type_v4(dst, ipst) != IRE_LOCAL) { 11318 ip2dbg(("ip_source_routed: not next" 11319 " source route 0x%x\n", 11320 ntohl(dst))); 11321 return (B_FALSE); 11322 } 11323 off = opt[IPOPT_OFFSET]; 11324 off--; 11325 if (optlen < IP_ADDR_LEN || 11326 off > optlen - IP_ADDR_LEN) { 11327 /* End of source route */ 11328 ip1dbg(("ip_source_routed: end of SR\n")); 11329 return (B_FALSE); 11330 } 11331 return (B_TRUE); 11332 } 11333 } 11334 ip2dbg(("not source routed\n")); 11335 return (B_FALSE); 11336 } 11337 11338 /* 11339 * ip_unbind is called by the transports to remove a conn from 11340 * the fanout table. 11341 */ 11342 void 11343 ip_unbind(conn_t *connp) 11344 { 11345 11346 ASSERT(!MUTEX_HELD(&connp->conn_lock)); 11347 11348 if (is_system_labeled() && connp->conn_anon_port) { 11349 (void) tsol_mlp_anon(crgetzone(connp->conn_cred), 11350 connp->conn_mlp_type, connp->conn_proto, 11351 ntohs(connp->conn_lport), B_FALSE); 11352 connp->conn_anon_port = 0; 11353 } 11354 connp->conn_mlp_type = mlptSingle; 11355 11356 ipcl_hash_remove(connp); 11357 } 11358 11359 /* 11360 * Used for deciding the MSS size for the upper layer. Thus 11361 * we need to check the outbound policy values in the conn. 11362 */ 11363 int 11364 conn_ipsec_length(conn_t *connp) 11365 { 11366 ipsec_latch_t *ipl; 11367 11368 ipl = connp->conn_latch; 11369 if (ipl == NULL) 11370 return (0); 11371 11372 if (connp->conn_ixa->ixa_ipsec_policy == NULL) 11373 return (0); 11374 11375 return (connp->conn_ixa->ixa_ipsec_policy->ipsp_act->ipa_ovhd); 11376 } 11377 11378 /* 11379 * Returns an estimate of the IPsec headers size. This is used if 11380 * we don't want to call into IPsec to get the exact size. 11381 */ 11382 int 11383 ipsec_out_extra_length(ip_xmit_attr_t *ixa) 11384 { 11385 ipsec_action_t *a; 11386 11387 if (!(ixa->ixa_flags & IXAF_IPSEC_SECURE)) 11388 return (0); 11389 11390 a = ixa->ixa_ipsec_action; 11391 if (a == NULL) { 11392 ASSERT(ixa->ixa_ipsec_policy != NULL); 11393 a = ixa->ixa_ipsec_policy->ipsp_act; 11394 } 11395 ASSERT(a != NULL); 11396 11397 return (a->ipa_ovhd); 11398 } 11399 11400 /* 11401 * If there are any source route options, return the true final 11402 * destination. Otherwise, return the destination. 11403 */ 11404 ipaddr_t 11405 ip_get_dst(ipha_t *ipha) 11406 { 11407 ipoptp_t opts; 11408 uchar_t *opt; 11409 uint8_t optval; 11410 uint8_t optlen; 11411 ipaddr_t dst; 11412 uint32_t off; 11413 11414 dst = ipha->ipha_dst; 11415 11416 if (IS_SIMPLE_IPH(ipha)) 11417 return (dst); 11418 11419 for (optval = ipoptp_first(&opts, ipha); 11420 optval != IPOPT_EOL; 11421 optval = ipoptp_next(&opts)) { 11422 opt = opts.ipoptp_cur; 11423 optlen = opts.ipoptp_len; 11424 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 11425 switch (optval) { 11426 case IPOPT_SSRR: 11427 case IPOPT_LSRR: 11428 off = opt[IPOPT_OFFSET]; 11429 /* 11430 * If one of the conditions is true, it means 11431 * end of options and dst already has the right 11432 * value. 11433 */ 11434 if (!(optlen < IP_ADDR_LEN || off > optlen - 3)) { 11435 off = optlen - IP_ADDR_LEN; 11436 bcopy(&opt[off], &dst, IP_ADDR_LEN); 11437 } 11438 return (dst); 11439 default: 11440 break; 11441 } 11442 } 11443 11444 return (dst); 11445 } 11446 11447 /* 11448 * Outbound IP fragmentation routine. 11449 * Assumes the caller has checked whether or not fragmentation should 11450 * be allowed. Here we copy the DF bit from the header to all the generated 11451 * fragments. 11452 */ 11453 int 11454 ip_fragment_v4(mblk_t *mp_orig, nce_t *nce, iaflags_t ixaflags, 11455 uint_t pkt_len, uint32_t max_frag, uint32_t xmit_hint, zoneid_t szone, 11456 zoneid_t nolzid, pfirepostfrag_t postfragfn, uintptr_t *ixa_cookie) 11457 { 11458 int i1; 11459 int hdr_len; 11460 mblk_t *hdr_mp; 11461 ipha_t *ipha; 11462 int ip_data_end; 11463 int len; 11464 mblk_t *mp = mp_orig; 11465 int offset; 11466 ill_t *ill = nce->nce_ill; 11467 ip_stack_t *ipst = ill->ill_ipst; 11468 mblk_t *carve_mp; 11469 uint32_t frag_flag; 11470 uint_t priority = mp->b_band; 11471 int error = 0; 11472 11473 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragReqds); 11474 11475 if (pkt_len != msgdsize(mp)) { 11476 ip0dbg(("Packet length mismatch: %d, %ld\n", 11477 pkt_len, msgdsize(mp))); 11478 freemsg(mp); 11479 return (EINVAL); 11480 } 11481 11482 if (max_frag == 0) { 11483 ip1dbg(("ip_fragment_v4: max_frag is zero. Dropping packet\n")); 11484 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragFails); 11485 ip_drop_output("FragFails: zero max_frag", mp, ill); 11486 freemsg(mp); 11487 return (EINVAL); 11488 } 11489 11490 ASSERT(MBLKL(mp) >= sizeof (ipha_t)); 11491 ipha = (ipha_t *)mp->b_rptr; 11492 ASSERT(ntohs(ipha->ipha_length) == pkt_len); 11493 frag_flag = ntohs(ipha->ipha_fragment_offset_and_flags) & IPH_DF; 11494 11495 /* 11496 * Establish the starting offset. May not be zero if we are fragging 11497 * a fragment that is being forwarded. 11498 */ 11499 offset = ntohs(ipha->ipha_fragment_offset_and_flags) & IPH_OFFSET; 11500 11501 /* TODO why is this test needed? */ 11502 if (((max_frag - ntohs(ipha->ipha_length)) & ~7) < 8) { 11503 /* TODO: notify ulp somehow */ 11504 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragFails); 11505 ip_drop_output("FragFails: bad starting offset", mp, ill); 11506 freemsg(mp); 11507 return (EINVAL); 11508 } 11509 11510 hdr_len = IPH_HDR_LENGTH(ipha); 11511 ipha->ipha_hdr_checksum = 0; 11512 11513 /* 11514 * Establish the number of bytes maximum per frag, after putting 11515 * in the header. 11516 */ 11517 len = (max_frag - hdr_len) & ~7; 11518 11519 /* Get a copy of the header for the trailing frags */ 11520 hdr_mp = ip_fragment_copyhdr((uchar_t *)ipha, hdr_len, offset, ipst, 11521 mp); 11522 if (hdr_mp == NULL) { 11523 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragFails); 11524 ip_drop_output("FragFails: no hdr_mp", mp, ill); 11525 freemsg(mp); 11526 return (ENOBUFS); 11527 } 11528 11529 /* Store the starting offset, with the MoreFrags flag. */ 11530 i1 = offset | IPH_MF | frag_flag; 11531 ipha->ipha_fragment_offset_and_flags = htons((uint16_t)i1); 11532 11533 /* Establish the ending byte offset, based on the starting offset. */ 11534 offset <<= 3; 11535 ip_data_end = offset + ntohs(ipha->ipha_length) - hdr_len; 11536 11537 /* Store the length of the first fragment in the IP header. */ 11538 i1 = len + hdr_len; 11539 ASSERT(i1 <= IP_MAXPACKET); 11540 ipha->ipha_length = htons((uint16_t)i1); 11541 11542 /* 11543 * Compute the IP header checksum for the first frag. We have to 11544 * watch out that we stop at the end of the header. 11545 */ 11546 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 11547 11548 /* 11549 * Now carve off the first frag. Note that this will include the 11550 * original IP header. 11551 */ 11552 if (!(mp = ip_carve_mp(&mp_orig, i1))) { 11553 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragFails); 11554 ip_drop_output("FragFails: could not carve mp", mp_orig, ill); 11555 freeb(hdr_mp); 11556 freemsg(mp_orig); 11557 return (ENOBUFS); 11558 } 11559 11560 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragCreates); 11561 11562 error = postfragfn(mp, nce, ixaflags, i1, xmit_hint, szone, nolzid, 11563 ixa_cookie); 11564 if (error != 0 && error != EWOULDBLOCK) { 11565 /* No point in sending the other fragments */ 11566 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragFails); 11567 ip_drop_output("FragFails: postfragfn failed", mp_orig, ill); 11568 freeb(hdr_mp); 11569 freemsg(mp_orig); 11570 return (error); 11571 } 11572 11573 /* No need to redo state machine in loop */ 11574 ixaflags &= ~IXAF_REACH_CONF; 11575 11576 /* Advance the offset to the second frag starting point. */ 11577 offset += len; 11578 /* 11579 * Update hdr_len from the copied header - there might be less options 11580 * in the later fragments. 11581 */ 11582 hdr_len = IPH_HDR_LENGTH(hdr_mp->b_rptr); 11583 /* Loop until done. */ 11584 for (;;) { 11585 uint16_t offset_and_flags; 11586 uint16_t ip_len; 11587 11588 if (ip_data_end - offset > len) { 11589 /* 11590 * Carve off the appropriate amount from the original 11591 * datagram. 11592 */ 11593 if (!(carve_mp = ip_carve_mp(&mp_orig, len))) { 11594 mp = NULL; 11595 break; 11596 } 11597 /* 11598 * More frags after this one. Get another copy 11599 * of the header. 11600 */ 11601 if (carve_mp->b_datap->db_ref == 1 && 11602 hdr_mp->b_wptr - hdr_mp->b_rptr < 11603 carve_mp->b_rptr - carve_mp->b_datap->db_base) { 11604 /* Inline IP header */ 11605 carve_mp->b_rptr -= hdr_mp->b_wptr - 11606 hdr_mp->b_rptr; 11607 bcopy(hdr_mp->b_rptr, carve_mp->b_rptr, 11608 hdr_mp->b_wptr - hdr_mp->b_rptr); 11609 mp = carve_mp; 11610 } else { 11611 if (!(mp = copyb(hdr_mp))) { 11612 freemsg(carve_mp); 11613 break; 11614 } 11615 /* Get priority marking, if any. */ 11616 mp->b_band = priority; 11617 mp->b_cont = carve_mp; 11618 } 11619 ipha = (ipha_t *)mp->b_rptr; 11620 offset_and_flags = IPH_MF; 11621 } else { 11622 /* 11623 * Last frag. Consume the header. Set len to 11624 * the length of this last piece. 11625 */ 11626 len = ip_data_end - offset; 11627 11628 /* 11629 * Carve off the appropriate amount from the original 11630 * datagram. 11631 */ 11632 if (!(carve_mp = ip_carve_mp(&mp_orig, len))) { 11633 mp = NULL; 11634 break; 11635 } 11636 if (carve_mp->b_datap->db_ref == 1 && 11637 hdr_mp->b_wptr - hdr_mp->b_rptr < 11638 carve_mp->b_rptr - carve_mp->b_datap->db_base) { 11639 /* Inline IP header */ 11640 carve_mp->b_rptr -= hdr_mp->b_wptr - 11641 hdr_mp->b_rptr; 11642 bcopy(hdr_mp->b_rptr, carve_mp->b_rptr, 11643 hdr_mp->b_wptr - hdr_mp->b_rptr); 11644 mp = carve_mp; 11645 freeb(hdr_mp); 11646 hdr_mp = mp; 11647 } else { 11648 mp = hdr_mp; 11649 /* Get priority marking, if any. */ 11650 mp->b_band = priority; 11651 mp->b_cont = carve_mp; 11652 } 11653 ipha = (ipha_t *)mp->b_rptr; 11654 /* A frag of a frag might have IPH_MF non-zero */ 11655 offset_and_flags = 11656 ntohs(ipha->ipha_fragment_offset_and_flags) & 11657 IPH_MF; 11658 } 11659 offset_and_flags |= (uint16_t)(offset >> 3); 11660 offset_and_flags |= (uint16_t)frag_flag; 11661 /* Store the offset and flags in the IP header. */ 11662 ipha->ipha_fragment_offset_and_flags = htons(offset_and_flags); 11663 11664 /* Store the length in the IP header. */ 11665 ip_len = (uint16_t)(len + hdr_len); 11666 ipha->ipha_length = htons(ip_len); 11667 11668 /* 11669 * Set the IP header checksum. Note that mp is just 11670 * the header, so this is easy to pass to ip_csum. 11671 */ 11672 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 11673 11674 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragCreates); 11675 11676 error = postfragfn(mp, nce, ixaflags, ip_len, xmit_hint, szone, 11677 nolzid, ixa_cookie); 11678 /* All done if we just consumed the hdr_mp. */ 11679 if (mp == hdr_mp) { 11680 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragOKs); 11681 return (error); 11682 } 11683 if (error != 0 && error != EWOULDBLOCK) { 11684 DTRACE_PROBE2(ip__xmit__frag__fail, ill_t *, ill, 11685 mblk_t *, hdr_mp); 11686 /* No point in sending the other fragments */ 11687 break; 11688 } 11689 11690 /* Otherwise, advance and loop. */ 11691 offset += len; 11692 } 11693 /* Clean up following allocation failure. */ 11694 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragFails); 11695 ip_drop_output("FragFails: loop ended", NULL, ill); 11696 if (mp != hdr_mp) 11697 freeb(hdr_mp); 11698 if (mp != mp_orig) 11699 freemsg(mp_orig); 11700 return (error); 11701 } 11702 11703 /* 11704 * Copy the header plus those options which have the copy bit set 11705 */ 11706 static mblk_t * 11707 ip_fragment_copyhdr(uchar_t *rptr, int hdr_len, int offset, ip_stack_t *ipst, 11708 mblk_t *src) 11709 { 11710 mblk_t *mp; 11711 uchar_t *up; 11712 11713 /* 11714 * Quick check if we need to look for options without the copy bit 11715 * set 11716 */ 11717 mp = allocb_tmpl(ipst->ips_ip_wroff_extra + hdr_len, src); 11718 if (!mp) 11719 return (mp); 11720 mp->b_rptr += ipst->ips_ip_wroff_extra; 11721 if (hdr_len == IP_SIMPLE_HDR_LENGTH || offset != 0) { 11722 bcopy(rptr, mp->b_rptr, hdr_len); 11723 mp->b_wptr += hdr_len + ipst->ips_ip_wroff_extra; 11724 return (mp); 11725 } 11726 up = mp->b_rptr; 11727 bcopy(rptr, up, IP_SIMPLE_HDR_LENGTH); 11728 up += IP_SIMPLE_HDR_LENGTH; 11729 rptr += IP_SIMPLE_HDR_LENGTH; 11730 hdr_len -= IP_SIMPLE_HDR_LENGTH; 11731 while (hdr_len > 0) { 11732 uint32_t optval; 11733 uint32_t optlen; 11734 11735 optval = *rptr; 11736 if (optval == IPOPT_EOL) 11737 break; 11738 if (optval == IPOPT_NOP) 11739 optlen = 1; 11740 else 11741 optlen = rptr[1]; 11742 if (optval & IPOPT_COPY) { 11743 bcopy(rptr, up, optlen); 11744 up += optlen; 11745 } 11746 rptr += optlen; 11747 hdr_len -= optlen; 11748 } 11749 /* 11750 * Make sure that we drop an even number of words by filling 11751 * with EOL to the next word boundary. 11752 */ 11753 for (hdr_len = up - (mp->b_rptr + IP_SIMPLE_HDR_LENGTH); 11754 hdr_len & 0x3; hdr_len++) 11755 *up++ = IPOPT_EOL; 11756 mp->b_wptr = up; 11757 /* Update header length */ 11758 mp->b_rptr[0] = (uint8_t)((IP_VERSION << 4) | ((up - mp->b_rptr) >> 2)); 11759 return (mp); 11760 } 11761 11762 /* 11763 * Update any source route, record route, or timestamp options when 11764 * sending a packet back to ourselves. 11765 * Check that we are at end of strict source route. 11766 * The options have been sanity checked by ip_output_options(). 11767 */ 11768 void 11769 ip_output_local_options(ipha_t *ipha, ip_stack_t *ipst) 11770 { 11771 ipoptp_t opts; 11772 uchar_t *opt; 11773 uint8_t optval; 11774 uint8_t optlen; 11775 ipaddr_t dst; 11776 uint32_t ts; 11777 timestruc_t now; 11778 11779 for (optval = ipoptp_first(&opts, ipha); 11780 optval != IPOPT_EOL; 11781 optval = ipoptp_next(&opts)) { 11782 opt = opts.ipoptp_cur; 11783 optlen = opts.ipoptp_len; 11784 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 11785 switch (optval) { 11786 uint32_t off; 11787 case IPOPT_SSRR: 11788 case IPOPT_LSRR: 11789 off = opt[IPOPT_OFFSET]; 11790 off--; 11791 if (optlen < IP_ADDR_LEN || 11792 off > optlen - IP_ADDR_LEN) { 11793 /* End of source route */ 11794 break; 11795 } 11796 /* 11797 * This will only happen if two consecutive entries 11798 * in the source route contains our address or if 11799 * it is a packet with a loose source route which 11800 * reaches us before consuming the whole source route 11801 */ 11802 11803 if (optval == IPOPT_SSRR) { 11804 return; 11805 } 11806 /* 11807 * Hack: instead of dropping the packet truncate the 11808 * source route to what has been used by filling the 11809 * rest with IPOPT_NOP. 11810 */ 11811 opt[IPOPT_OLEN] = (uint8_t)off; 11812 while (off < optlen) { 11813 opt[off++] = IPOPT_NOP; 11814 } 11815 break; 11816 case IPOPT_RR: 11817 off = opt[IPOPT_OFFSET]; 11818 off--; 11819 if (optlen < IP_ADDR_LEN || 11820 off > optlen - IP_ADDR_LEN) { 11821 /* No more room - ignore */ 11822 ip1dbg(( 11823 "ip_output_local_options: end of RR\n")); 11824 break; 11825 } 11826 dst = htonl(INADDR_LOOPBACK); 11827 bcopy(&dst, (char *)opt + off, IP_ADDR_LEN); 11828 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 11829 break; 11830 case IPOPT_TS: 11831 /* Insert timestamp if there is romm */ 11832 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 11833 case IPOPT_TS_TSONLY: 11834 off = IPOPT_TS_TIMELEN; 11835 break; 11836 case IPOPT_TS_PRESPEC: 11837 case IPOPT_TS_PRESPEC_RFC791: 11838 /* Verify that the address matched */ 11839 off = opt[IPOPT_OFFSET] - 1; 11840 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 11841 if (ip_type_v4(dst, ipst) != IRE_LOCAL) { 11842 /* Not for us */ 11843 break; 11844 } 11845 /* FALLTHRU */ 11846 case IPOPT_TS_TSANDADDR: 11847 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 11848 break; 11849 default: 11850 /* 11851 * ip_*put_options should have already 11852 * dropped this packet. 11853 */ 11854 cmn_err(CE_PANIC, "ip_output_local_options: " 11855 "unknown IT - bug in ip_output_options?\n"); 11856 return; /* Keep "lint" happy */ 11857 } 11858 if (opt[IPOPT_OFFSET] - 1 + off > optlen) { 11859 /* Increase overflow counter */ 11860 off = (opt[IPOPT_POS_OV_FLG] >> 4) + 1; 11861 opt[IPOPT_POS_OV_FLG] = (uint8_t) 11862 (opt[IPOPT_POS_OV_FLG] & 0x0F) | 11863 (off << 4); 11864 break; 11865 } 11866 off = opt[IPOPT_OFFSET] - 1; 11867 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 11868 case IPOPT_TS_PRESPEC: 11869 case IPOPT_TS_PRESPEC_RFC791: 11870 case IPOPT_TS_TSANDADDR: 11871 dst = htonl(INADDR_LOOPBACK); 11872 bcopy(&dst, (char *)opt + off, IP_ADDR_LEN); 11873 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 11874 /* FALLTHRU */ 11875 case IPOPT_TS_TSONLY: 11876 off = opt[IPOPT_OFFSET] - 1; 11877 /* Compute # of milliseconds since midnight */ 11878 gethrestime(&now); 11879 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 + 11880 now.tv_nsec / (NANOSEC / MILLISEC); 11881 bcopy(&ts, (char *)opt + off, IPOPT_TS_TIMELEN); 11882 opt[IPOPT_OFFSET] += IPOPT_TS_TIMELEN; 11883 break; 11884 } 11885 break; 11886 } 11887 } 11888 } 11889 11890 /* 11891 * Prepend an M_DATA fastpath header, and if none present prepend a 11892 * DL_UNITDATA_REQ. Frees the mblk on failure. 11893 * 11894 * nce_dlur_mp and nce_fp_mp can not disappear once they have been set. 11895 * If there is a change to them, the nce will be deleted (condemned) and 11896 * a new nce_t will be created when packets are sent. Thus we need no locks 11897 * to access those fields. 11898 * 11899 * We preserve b_band to support IPQoS. If a DL_UNITDATA_REQ is prepended 11900 * we place b_band in dl_priority.dl_max. 11901 */ 11902 static mblk_t * 11903 ip_xmit_attach_llhdr(mblk_t *mp, nce_t *nce) 11904 { 11905 uint_t hlen; 11906 mblk_t *mp1; 11907 uint_t priority; 11908 uchar_t *rptr; 11909 11910 rptr = mp->b_rptr; 11911 11912 ASSERT(DB_TYPE(mp) == M_DATA); 11913 priority = mp->b_band; 11914 11915 ASSERT(nce != NULL); 11916 if ((mp1 = nce->nce_fp_mp) != NULL) { 11917 hlen = MBLKL(mp1); 11918 /* 11919 * Check if we have enough room to prepend fastpath 11920 * header 11921 */ 11922 if (hlen != 0 && (rptr - mp->b_datap->db_base) >= hlen) { 11923 rptr -= hlen; 11924 bcopy(mp1->b_rptr, rptr, hlen); 11925 /* 11926 * Set the b_rptr to the start of the link layer 11927 * header 11928 */ 11929 mp->b_rptr = rptr; 11930 return (mp); 11931 } 11932 mp1 = copyb(mp1); 11933 if (mp1 == NULL) { 11934 ill_t *ill = nce->nce_ill; 11935 11936 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 11937 ip_drop_output("ipIfStatsOutDiscards", mp, ill); 11938 freemsg(mp); 11939 return (NULL); 11940 } 11941 mp1->b_band = priority; 11942 mp1->b_cont = mp; 11943 DB_CKSUMSTART(mp1) = DB_CKSUMSTART(mp); 11944 DB_CKSUMSTUFF(mp1) = DB_CKSUMSTUFF(mp); 11945 DB_CKSUMEND(mp1) = DB_CKSUMEND(mp); 11946 DB_CKSUMFLAGS(mp1) = DB_CKSUMFLAGS(mp); 11947 DB_LSOMSS(mp1) = DB_LSOMSS(mp); 11948 DTRACE_PROBE1(ip__xmit__copyb, (mblk_t *), mp1); 11949 /* 11950 * XXX disable ICK_VALID and compute checksum 11951 * here; can happen if nce_fp_mp changes and 11952 * it can't be copied now due to insufficient 11953 * space. (unlikely, fp mp can change, but it 11954 * does not increase in length) 11955 */ 11956 return (mp1); 11957 } 11958 mp1 = copyb(nce->nce_dlur_mp); 11959 11960 if (mp1 == NULL) { 11961 ill_t *ill = nce->nce_ill; 11962 11963 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 11964 ip_drop_output("ipIfStatsOutDiscards", mp, ill); 11965 freemsg(mp); 11966 return (NULL); 11967 } 11968 mp1->b_cont = mp; 11969 if (priority != 0) { 11970 mp1->b_band = priority; 11971 ((dl_unitdata_req_t *)(mp1->b_rptr))->dl_priority.dl_max = 11972 priority; 11973 } 11974 return (mp1); 11975 #undef rptr 11976 } 11977 11978 /* 11979 * Finish the outbound IPsec processing. This function is called from 11980 * ipsec_out_process() if the IPsec packet was processed 11981 * synchronously, or from {ah,esp}_kcf_callback_outbound() if it was processed 11982 * asynchronously. 11983 * 11984 * This is common to IPv4 and IPv6. 11985 */ 11986 int 11987 ip_output_post_ipsec(mblk_t *mp, ip_xmit_attr_t *ixa) 11988 { 11989 iaflags_t ixaflags = ixa->ixa_flags; 11990 uint_t pktlen; 11991 11992 11993 /* AH/ESP don't update ixa_pktlen when they modify the packet */ 11994 if (ixaflags & IXAF_IS_IPV4) { 11995 ipha_t *ipha = (ipha_t *)mp->b_rptr; 11996 11997 ASSERT(IPH_HDR_VERSION(ipha) == IPV4_VERSION); 11998 pktlen = ntohs(ipha->ipha_length); 11999 } else { 12000 ip6_t *ip6h = (ip6_t *)mp->b_rptr; 12001 12002 ASSERT(IPH_HDR_VERSION(mp->b_rptr) == IPV6_VERSION); 12003 pktlen = ntohs(ip6h->ip6_plen) + IPV6_HDR_LEN; 12004 } 12005 12006 /* 12007 * We release any hard reference on the SAs here to make 12008 * sure the SAs can be garbage collected. ipsr_sa has a soft reference 12009 * on the SAs. 12010 * If in the future we want the hard latching of the SAs in the 12011 * ip_xmit_attr_t then we should remove this. 12012 */ 12013 if (ixa->ixa_ipsec_esp_sa != NULL) { 12014 IPSA_REFRELE(ixa->ixa_ipsec_esp_sa); 12015 ixa->ixa_ipsec_esp_sa = NULL; 12016 } 12017 if (ixa->ixa_ipsec_ah_sa != NULL) { 12018 IPSA_REFRELE(ixa->ixa_ipsec_ah_sa); 12019 ixa->ixa_ipsec_ah_sa = NULL; 12020 } 12021 12022 /* Do we need to fragment? */ 12023 if ((ixa->ixa_flags & IXAF_IPV6_ADD_FRAGHDR) || 12024 pktlen > ixa->ixa_fragsize) { 12025 if (ixaflags & IXAF_IS_IPV4) { 12026 ASSERT(!(ixa->ixa_flags & IXAF_IPV6_ADD_FRAGHDR)); 12027 /* 12028 * We check for the DF case in ipsec_out_process 12029 * hence this only handles the non-DF case. 12030 */ 12031 return (ip_fragment_v4(mp, ixa->ixa_nce, ixa->ixa_flags, 12032 pktlen, ixa->ixa_fragsize, 12033 ixa->ixa_xmit_hint, ixa->ixa_zoneid, 12034 ixa->ixa_no_loop_zoneid, ixa->ixa_postfragfn, 12035 &ixa->ixa_cookie)); 12036 } else { 12037 mp = ip_fraghdr_add_v6(mp, ixa->ixa_ident, ixa); 12038 if (mp == NULL) { 12039 /* MIB and ip_drop_output already done */ 12040 return (ENOMEM); 12041 } 12042 pktlen += sizeof (ip6_frag_t); 12043 if (pktlen > ixa->ixa_fragsize) { 12044 return (ip_fragment_v6(mp, ixa->ixa_nce, 12045 ixa->ixa_flags, pktlen, 12046 ixa->ixa_fragsize, ixa->ixa_xmit_hint, 12047 ixa->ixa_zoneid, ixa->ixa_no_loop_zoneid, 12048 ixa->ixa_postfragfn, &ixa->ixa_cookie)); 12049 } 12050 } 12051 } 12052 return ((ixa->ixa_postfragfn)(mp, ixa->ixa_nce, ixa->ixa_flags, 12053 pktlen, ixa->ixa_xmit_hint, ixa->ixa_zoneid, 12054 ixa->ixa_no_loop_zoneid, NULL)); 12055 } 12056 12057 /* 12058 * Finish the inbound IPsec processing. This function is called from 12059 * ipsec_out_process() if the IPsec packet was processed 12060 * synchronously, or from {ah,esp}_kcf_callback_outbound() if it was processed 12061 * asynchronously. 12062 * 12063 * This is common to IPv4 and IPv6. 12064 */ 12065 void 12066 ip_input_post_ipsec(mblk_t *mp, ip_recv_attr_t *ira) 12067 { 12068 iaflags_t iraflags = ira->ira_flags; 12069 12070 /* Length might have changed */ 12071 if (iraflags & IRAF_IS_IPV4) { 12072 ipha_t *ipha = (ipha_t *)mp->b_rptr; 12073 12074 ASSERT(IPH_HDR_VERSION(ipha) == IPV4_VERSION); 12075 ira->ira_pktlen = ntohs(ipha->ipha_length); 12076 ira->ira_ip_hdr_length = IPH_HDR_LENGTH(ipha); 12077 ira->ira_protocol = ipha->ipha_protocol; 12078 12079 ip_fanout_v4(mp, ipha, ira); 12080 } else { 12081 ip6_t *ip6h = (ip6_t *)mp->b_rptr; 12082 uint8_t *nexthdrp; 12083 12084 ASSERT(IPH_HDR_VERSION(mp->b_rptr) == IPV6_VERSION); 12085 ira->ira_pktlen = ntohs(ip6h->ip6_plen) + IPV6_HDR_LEN; 12086 if (!ip_hdr_length_nexthdr_v6(mp, ip6h, &ira->ira_ip_hdr_length, 12087 &nexthdrp)) { 12088 /* Malformed packet */ 12089 BUMP_MIB(ira->ira_ill->ill_ip_mib, ipIfStatsInDiscards); 12090 ip_drop_input("ipIfStatsInDiscards", mp, ira->ira_ill); 12091 freemsg(mp); 12092 return; 12093 } 12094 ira->ira_protocol = *nexthdrp; 12095 ip_fanout_v6(mp, ip6h, ira); 12096 } 12097 } 12098 12099 /* 12100 * Select which AH & ESP SA's to use (if any) for the outbound packet. 12101 * 12102 * If this function returns B_TRUE, the requested SA's have been filled 12103 * into the ixa_ipsec_*_sa pointers. 12104 * 12105 * If the function returns B_FALSE, the packet has been "consumed", most 12106 * likely by an ACQUIRE sent up via PF_KEY to a key management daemon. 12107 * 12108 * The SA references created by the protocol-specific "select" 12109 * function will be released in ip_output_post_ipsec. 12110 */ 12111 static boolean_t 12112 ipsec_out_select_sa(mblk_t *mp, ip_xmit_attr_t *ixa) 12113 { 12114 boolean_t need_ah_acquire = B_FALSE, need_esp_acquire = B_FALSE; 12115 ipsec_policy_t *pp; 12116 ipsec_action_t *ap; 12117 12118 ASSERT(ixa->ixa_flags & IXAF_IPSEC_SECURE); 12119 ASSERT((ixa->ixa_ipsec_policy != NULL) || 12120 (ixa->ixa_ipsec_action != NULL)); 12121 12122 ap = ixa->ixa_ipsec_action; 12123 if (ap == NULL) { 12124 pp = ixa->ixa_ipsec_policy; 12125 ASSERT(pp != NULL); 12126 ap = pp->ipsp_act; 12127 ASSERT(ap != NULL); 12128 } 12129 12130 /* 12131 * We have an action. now, let's select SA's. 12132 * A side effect of setting ixa_ipsec_*_sa is that it will 12133 * be cached in the conn_t. 12134 */ 12135 if (ap->ipa_want_esp) { 12136 if (ixa->ixa_ipsec_esp_sa == NULL) { 12137 need_esp_acquire = !ipsec_outbound_sa(mp, ixa, 12138 IPPROTO_ESP); 12139 } 12140 ASSERT(need_esp_acquire || ixa->ixa_ipsec_esp_sa != NULL); 12141 } 12142 12143 if (ap->ipa_want_ah) { 12144 if (ixa->ixa_ipsec_ah_sa == NULL) { 12145 need_ah_acquire = !ipsec_outbound_sa(mp, ixa, 12146 IPPROTO_AH); 12147 } 12148 ASSERT(need_ah_acquire || ixa->ixa_ipsec_ah_sa != NULL); 12149 /* 12150 * The ESP and AH processing order needs to be preserved 12151 * when both protocols are required (ESP should be applied 12152 * before AH for an outbound packet). Force an ESP ACQUIRE 12153 * when both ESP and AH are required, and an AH ACQUIRE 12154 * is needed. 12155 */ 12156 if (ap->ipa_want_esp && need_ah_acquire) 12157 need_esp_acquire = B_TRUE; 12158 } 12159 12160 /* 12161 * Send an ACQUIRE (extended, regular, or both) if we need one. 12162 * Release SAs that got referenced, but will not be used until we 12163 * acquire _all_ of the SAs we need. 12164 */ 12165 if (need_ah_acquire || need_esp_acquire) { 12166 if (ixa->ixa_ipsec_ah_sa != NULL) { 12167 IPSA_REFRELE(ixa->ixa_ipsec_ah_sa); 12168 ixa->ixa_ipsec_ah_sa = NULL; 12169 } 12170 if (ixa->ixa_ipsec_esp_sa != NULL) { 12171 IPSA_REFRELE(ixa->ixa_ipsec_esp_sa); 12172 ixa->ixa_ipsec_esp_sa = NULL; 12173 } 12174 12175 sadb_acquire(mp, ixa, need_ah_acquire, need_esp_acquire); 12176 return (B_FALSE); 12177 } 12178 12179 return (B_TRUE); 12180 } 12181 12182 /* 12183 * Handle IPsec output processing. 12184 * This function is only entered once for a given packet. 12185 * We try to do things synchronously, but if we need to have user-level 12186 * set up SAs, or ESP or AH uses asynchronous kEF, then the operation 12187 * will be completed 12188 * - when the SAs are added in esp_add_sa_finish/ah_add_sa_finish 12189 * - when asynchronous ESP is done it will do AH 12190 * 12191 * In all cases we come back in ip_output_post_ipsec() to fragment and 12192 * send out the packet. 12193 */ 12194 int 12195 ipsec_out_process(mblk_t *mp, ip_xmit_attr_t *ixa) 12196 { 12197 ill_t *ill = ixa->ixa_nce->nce_ill; 12198 ip_stack_t *ipst = ixa->ixa_ipst; 12199 ipsec_stack_t *ipss; 12200 ipsec_policy_t *pp; 12201 ipsec_action_t *ap; 12202 12203 ASSERT(ixa->ixa_flags & IXAF_IPSEC_SECURE); 12204 12205 ASSERT((ixa->ixa_ipsec_policy != NULL) || 12206 (ixa->ixa_ipsec_action != NULL)); 12207 12208 ipss = ipst->ips_netstack->netstack_ipsec; 12209 if (!ipsec_loaded(ipss)) { 12210 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 12211 ip_drop_packet(mp, B_TRUE, ill, 12212 DROPPER(ipss, ipds_ip_ipsec_not_loaded), 12213 &ipss->ipsec_dropper); 12214 return (ENOTSUP); 12215 } 12216 12217 ap = ixa->ixa_ipsec_action; 12218 if (ap == NULL) { 12219 pp = ixa->ixa_ipsec_policy; 12220 ASSERT(pp != NULL); 12221 ap = pp->ipsp_act; 12222 ASSERT(ap != NULL); 12223 } 12224 12225 /* Handle explicit drop action and bypass. */ 12226 switch (ap->ipa_act.ipa_type) { 12227 case IPSEC_ACT_DISCARD: 12228 case IPSEC_ACT_REJECT: 12229 ip_drop_packet(mp, B_FALSE, ill, 12230 DROPPER(ipss, ipds_spd_explicit), &ipss->ipsec_spd_dropper); 12231 return (EHOSTUNREACH); /* IPsec policy failure */ 12232 case IPSEC_ACT_BYPASS: 12233 return (ip_output_post_ipsec(mp, ixa)); 12234 } 12235 12236 /* 12237 * The order of processing is first insert a IP header if needed. 12238 * Then insert the ESP header and then the AH header. 12239 */ 12240 if ((ixa->ixa_flags & IXAF_IS_IPV4) && ap->ipa_want_se) { 12241 /* 12242 * First get the outer IP header before sending 12243 * it to ESP. 12244 */ 12245 ipha_t *oipha, *iipha; 12246 mblk_t *outer_mp, *inner_mp; 12247 12248 if ((outer_mp = allocb(sizeof (ipha_t), BPRI_HI)) == NULL) { 12249 (void) mi_strlog(ill->ill_rq, 0, 12250 SL_ERROR|SL_TRACE|SL_CONSOLE, 12251 "ipsec_out_process: " 12252 "Self-Encapsulation failed: Out of memory\n"); 12253 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 12254 ip_drop_output("ipIfStatsOutDiscards", mp, ill); 12255 freemsg(mp); 12256 return (ENOBUFS); 12257 } 12258 inner_mp = mp; 12259 ASSERT(inner_mp->b_datap->db_type == M_DATA); 12260 oipha = (ipha_t *)outer_mp->b_rptr; 12261 iipha = (ipha_t *)inner_mp->b_rptr; 12262 *oipha = *iipha; 12263 outer_mp->b_wptr += sizeof (ipha_t); 12264 oipha->ipha_length = htons(ntohs(iipha->ipha_length) + 12265 sizeof (ipha_t)); 12266 oipha->ipha_protocol = IPPROTO_ENCAP; 12267 oipha->ipha_version_and_hdr_length = 12268 IP_SIMPLE_HDR_VERSION; 12269 oipha->ipha_hdr_checksum = 0; 12270 oipha->ipha_hdr_checksum = ip_csum_hdr(oipha); 12271 outer_mp->b_cont = inner_mp; 12272 mp = outer_mp; 12273 12274 ixa->ixa_flags |= IXAF_IPSEC_TUNNEL; 12275 } 12276 12277 /* If we need to wait for a SA then we can't return any errno */ 12278 if (((ap->ipa_want_ah && (ixa->ixa_ipsec_ah_sa == NULL)) || 12279 (ap->ipa_want_esp && (ixa->ixa_ipsec_esp_sa == NULL))) && 12280 !ipsec_out_select_sa(mp, ixa)) 12281 return (0); 12282 12283 /* 12284 * By now, we know what SA's to use. Toss over to ESP & AH 12285 * to do the heavy lifting. 12286 */ 12287 if (ap->ipa_want_esp) { 12288 ASSERT(ixa->ixa_ipsec_esp_sa != NULL); 12289 12290 mp = ixa->ixa_ipsec_esp_sa->ipsa_output_func(mp, ixa); 12291 if (mp == NULL) { 12292 /* 12293 * Either it failed or is pending. In the former case 12294 * ipIfStatsInDiscards was increased. 12295 */ 12296 return (0); 12297 } 12298 } 12299 12300 if (ap->ipa_want_ah) { 12301 ASSERT(ixa->ixa_ipsec_ah_sa != NULL); 12302 12303 mp = ixa->ixa_ipsec_ah_sa->ipsa_output_func(mp, ixa); 12304 if (mp == NULL) { 12305 /* 12306 * Either it failed or is pending. In the former case 12307 * ipIfStatsInDiscards was increased. 12308 */ 12309 return (0); 12310 } 12311 } 12312 /* 12313 * We are done with IPsec processing. Send it over 12314 * the wire. 12315 */ 12316 return (ip_output_post_ipsec(mp, ixa)); 12317 } 12318 12319 /* 12320 * ioctls that go through a down/up sequence may need to wait for the down 12321 * to complete. This involves waiting for the ire and ipif refcnts to go down 12322 * to zero. Subsequently the ioctl is restarted from ipif_ill_refrele_tail. 12323 */ 12324 /* ARGSUSED */ 12325 void 12326 ip_reprocess_ioctl(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 12327 { 12328 struct iocblk *iocp; 12329 mblk_t *mp1; 12330 ip_ioctl_cmd_t *ipip; 12331 int err; 12332 sin_t *sin; 12333 struct lifreq *lifr; 12334 struct ifreq *ifr; 12335 12336 iocp = (struct iocblk *)mp->b_rptr; 12337 ASSERT(ipsq != NULL); 12338 /* Existence of mp1 verified in ip_wput_nondata */ 12339 mp1 = mp->b_cont->b_cont; 12340 ipip = ip_sioctl_lookup(iocp->ioc_cmd); 12341 if (ipip->ipi_cmd == SIOCSLIFNAME || ipip->ipi_cmd == IF_UNITSEL) { 12342 /* 12343 * Special case where ipx_current_ipif is not set: 12344 * ill_phyint_reinit merged the v4 and v6 into a single ipsq. 12345 * We are here as were not able to complete the operation in 12346 * ipif_set_values because we could not become exclusive on 12347 * the new ipsq. 12348 */ 12349 ill_t *ill = q->q_ptr; 12350 ipsq_current_start(ipsq, ill->ill_ipif, ipip->ipi_cmd); 12351 } 12352 ASSERT(ipsq->ipsq_xop->ipx_current_ipif != NULL); 12353 12354 if (ipip->ipi_cmd_type == IF_CMD) { 12355 /* This a old style SIOC[GS]IF* command */ 12356 ifr = (struct ifreq *)mp1->b_rptr; 12357 sin = (sin_t *)&ifr->ifr_addr; 12358 } else if (ipip->ipi_cmd_type == LIF_CMD) { 12359 /* This a new style SIOC[GS]LIF* command */ 12360 lifr = (struct lifreq *)mp1->b_rptr; 12361 sin = (sin_t *)&lifr->lifr_addr; 12362 } else { 12363 sin = NULL; 12364 } 12365 12366 err = (*ipip->ipi_func_restart)(ipsq->ipsq_xop->ipx_current_ipif, sin, 12367 q, mp, ipip, mp1->b_rptr); 12368 12369 DTRACE_PROBE4(ipif__ioctl, char *, "ip_reprocess_ioctl finish", 12370 int, ipip->ipi_cmd, 12371 ill_t *, ipsq->ipsq_xop->ipx_current_ipif->ipif_ill, 12372 ipif_t *, ipsq->ipsq_xop->ipx_current_ipif); 12373 12374 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), ipsq); 12375 } 12376 12377 /* 12378 * ioctl processing 12379 * 12380 * ioctl processing starts with ip_sioctl_copyin_setup(), which looks up 12381 * the ioctl command in the ioctl tables, determines the copyin data size 12382 * from the ipi_copyin_size field, and does an mi_copyin() of that size. 12383 * 12384 * ioctl processing then continues when the M_IOCDATA makes its way down to 12385 * ip_wput_nondata(). The ioctl is looked up again in the ioctl table, its 12386 * associated 'conn' is refheld till the end of the ioctl and the general 12387 * ioctl processing function ip_process_ioctl() is called to extract the 12388 * arguments and process the ioctl. To simplify extraction, ioctl commands 12389 * are "typed" based on the arguments they take (e.g., LIF_CMD which takes a 12390 * `struct lifreq'), and a common extract function (e.g., ip_extract_lifreq()) 12391 * is used to extract the ioctl's arguments. 12392 * 12393 * ip_process_ioctl determines if the ioctl needs to be serialized, and if 12394 * so goes thru the serialization primitive ipsq_try_enter. Then the 12395 * appropriate function to handle the ioctl is called based on the entry in 12396 * the ioctl table. ioctl completion is encapsulated in ip_ioctl_finish 12397 * which also refreleases the 'conn' that was refheld at the start of the 12398 * ioctl. Finally ipsq_exit is called if needed to exit the ipsq. 12399 * 12400 * Many exclusive ioctls go thru an internal down up sequence as part of 12401 * the operation. For example an attempt to change the IP address of an 12402 * ipif entails ipif_down, set address, ipif_up. Bringing down the interface 12403 * does all the cleanup such as deleting all ires that use this address. 12404 * Then we need to wait till all references to the interface go away. 12405 */ 12406 void 12407 ip_process_ioctl(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *arg) 12408 { 12409 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 12410 ip_ioctl_cmd_t *ipip = arg; 12411 ip_extract_func_t *extract_funcp; 12412 cmd_info_t ci; 12413 int err; 12414 boolean_t entered_ipsq = B_FALSE; 12415 12416 ip3dbg(("ip_process_ioctl: ioctl %X\n", iocp->ioc_cmd)); 12417 12418 if (ipip == NULL) 12419 ipip = ip_sioctl_lookup(iocp->ioc_cmd); 12420 12421 /* 12422 * SIOCLIFADDIF needs to go thru a special path since the 12423 * ill may not exist yet. This happens in the case of lo0 12424 * which is created using this ioctl. 12425 */ 12426 if (ipip->ipi_cmd == SIOCLIFADDIF) { 12427 err = ip_sioctl_addif(NULL, NULL, q, mp, NULL, NULL); 12428 DTRACE_PROBE4(ipif__ioctl, char *, "ip_process_ioctl finish", 12429 int, ipip->ipi_cmd, ill_t *, NULL, ipif_t *, NULL); 12430 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), NULL); 12431 return; 12432 } 12433 12434 ci.ci_ipif = NULL; 12435 switch (ipip->ipi_cmd_type) { 12436 case MISC_CMD: 12437 case MSFILT_CMD: 12438 /* 12439 * All MISC_CMD ioctls come in here -- e.g. SIOCGLIFCONF. 12440 */ 12441 if (ipip->ipi_cmd == IF_UNITSEL) { 12442 /* ioctl comes down the ill */ 12443 ci.ci_ipif = ((ill_t *)q->q_ptr)->ill_ipif; 12444 ipif_refhold(ci.ci_ipif); 12445 } 12446 err = 0; 12447 ci.ci_sin = NULL; 12448 ci.ci_sin6 = NULL; 12449 ci.ci_lifr = NULL; 12450 extract_funcp = NULL; 12451 break; 12452 12453 case IF_CMD: 12454 case LIF_CMD: 12455 extract_funcp = ip_extract_lifreq; 12456 break; 12457 12458 case ARP_CMD: 12459 case XARP_CMD: 12460 extract_funcp = ip_extract_arpreq; 12461 break; 12462 12463 default: 12464 ASSERT(0); 12465 } 12466 12467 if (extract_funcp != NULL) { 12468 err = (*extract_funcp)(q, mp, ipip, &ci); 12469 if (err != 0) { 12470 DTRACE_PROBE4(ipif__ioctl, 12471 char *, "ip_process_ioctl finish err", 12472 int, ipip->ipi_cmd, ill_t *, NULL, ipif_t *, NULL); 12473 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), NULL); 12474 return; 12475 } 12476 12477 /* 12478 * All of the extraction functions return a refheld ipif. 12479 */ 12480 ASSERT(ci.ci_ipif != NULL); 12481 } 12482 12483 if (!(ipip->ipi_flags & IPI_WR)) { 12484 /* 12485 * A return value of EINPROGRESS means the ioctl is 12486 * either queued and waiting for some reason or has 12487 * already completed. 12488 */ 12489 err = (*ipip->ipi_func)(ci.ci_ipif, ci.ci_sin, q, mp, ipip, 12490 ci.ci_lifr); 12491 if (ci.ci_ipif != NULL) { 12492 DTRACE_PROBE4(ipif__ioctl, 12493 char *, "ip_process_ioctl finish RD", 12494 int, ipip->ipi_cmd, ill_t *, ci.ci_ipif->ipif_ill, 12495 ipif_t *, ci.ci_ipif); 12496 ipif_refrele(ci.ci_ipif); 12497 } else { 12498 DTRACE_PROBE4(ipif__ioctl, 12499 char *, "ip_process_ioctl finish RD", 12500 int, ipip->ipi_cmd, ill_t *, NULL, ipif_t *, NULL); 12501 } 12502 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), NULL); 12503 return; 12504 } 12505 12506 ASSERT(ci.ci_ipif != NULL); 12507 12508 /* 12509 * If ipsq is non-NULL, we are already being called exclusively 12510 */ 12511 ASSERT(ipsq == NULL || IAM_WRITER_IPSQ(ipsq)); 12512 if (ipsq == NULL) { 12513 ipsq = ipsq_try_enter(ci.ci_ipif, NULL, q, mp, ip_process_ioctl, 12514 NEW_OP, B_TRUE); 12515 if (ipsq == NULL) { 12516 ipif_refrele(ci.ci_ipif); 12517 return; 12518 } 12519 entered_ipsq = B_TRUE; 12520 } 12521 /* 12522 * Release the ipif so that ipif_down and friends that wait for 12523 * references to go away are not misled about the current ipif_refcnt 12524 * values. We are writer so we can access the ipif even after releasing 12525 * the ipif. 12526 */ 12527 ipif_refrele(ci.ci_ipif); 12528 12529 ipsq_current_start(ipsq, ci.ci_ipif, ipip->ipi_cmd); 12530 12531 /* 12532 * A return value of EINPROGRESS means the ioctl is 12533 * either queued and waiting for some reason or has 12534 * already completed. 12535 */ 12536 err = (*ipip->ipi_func)(ci.ci_ipif, ci.ci_sin, q, mp, ipip, ci.ci_lifr); 12537 12538 DTRACE_PROBE4(ipif__ioctl, char *, "ip_process_ioctl finish WR", 12539 int, ipip->ipi_cmd, 12540 ill_t *, ci.ci_ipif == NULL ? NULL : ci.ci_ipif->ipif_ill, 12541 ipif_t *, ci.ci_ipif); 12542 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), ipsq); 12543 12544 if (entered_ipsq) 12545 ipsq_exit(ipsq); 12546 } 12547 12548 /* 12549 * Complete the ioctl. Typically ioctls use the mi package and need to 12550 * do mi_copyout/mi_copy_done. 12551 */ 12552 void 12553 ip_ioctl_finish(queue_t *q, mblk_t *mp, int err, int mode, ipsq_t *ipsq) 12554 { 12555 conn_t *connp = NULL; 12556 12557 if (err == EINPROGRESS) 12558 return; 12559 12560 if (CONN_Q(q)) { 12561 connp = Q_TO_CONN(q); 12562 ASSERT(connp->conn_ref >= 2); 12563 } 12564 12565 switch (mode) { 12566 case COPYOUT: 12567 if (err == 0) 12568 mi_copyout(q, mp); 12569 else 12570 mi_copy_done(q, mp, err); 12571 break; 12572 12573 case NO_COPYOUT: 12574 mi_copy_done(q, mp, err); 12575 break; 12576 12577 default: 12578 ASSERT(mode == CONN_CLOSE); /* aborted through CONN_CLOSE */ 12579 break; 12580 } 12581 12582 /* 12583 * The conn refhold and ioctlref placed on the conn at the start of the 12584 * ioctl are released here. 12585 */ 12586 if (connp != NULL) { 12587 CONN_DEC_IOCTLREF(connp); 12588 CONN_OPER_PENDING_DONE(connp); 12589 } 12590 12591 if (ipsq != NULL) 12592 ipsq_current_finish(ipsq); 12593 } 12594 12595 /* Handles all non data messages */ 12596 void 12597 ip_wput_nondata(queue_t *q, mblk_t *mp) 12598 { 12599 mblk_t *mp1; 12600 struct iocblk *iocp; 12601 ip_ioctl_cmd_t *ipip; 12602 conn_t *connp; 12603 cred_t *cr; 12604 char *proto_str; 12605 12606 if (CONN_Q(q)) 12607 connp = Q_TO_CONN(q); 12608 else 12609 connp = NULL; 12610 12611 switch (DB_TYPE(mp)) { 12612 case M_IOCTL: 12613 /* 12614 * IOCTL processing begins in ip_sioctl_copyin_setup which 12615 * will arrange to copy in associated control structures. 12616 */ 12617 ip_sioctl_copyin_setup(q, mp); 12618 return; 12619 case M_IOCDATA: 12620 /* 12621 * Ensure that this is associated with one of our trans- 12622 * parent ioctls. If it's not ours, discard it if we're 12623 * running as a driver, or pass it on if we're a module. 12624 */ 12625 iocp = (struct iocblk *)mp->b_rptr; 12626 ipip = ip_sioctl_lookup(iocp->ioc_cmd); 12627 if (ipip == NULL) { 12628 if (q->q_next == NULL) { 12629 goto nak; 12630 } else { 12631 putnext(q, mp); 12632 } 12633 return; 12634 } 12635 if ((q->q_next != NULL) && !(ipip->ipi_flags & IPI_MODOK)) { 12636 /* 12637 * The ioctl is one we recognise, but is not consumed 12638 * by IP as a module and we are a module, so we drop 12639 */ 12640 goto nak; 12641 } 12642 12643 /* IOCTL continuation following copyin or copyout. */ 12644 if (mi_copy_state(q, mp, NULL) == -1) { 12645 /* 12646 * The copy operation failed. mi_copy_state already 12647 * cleaned up, so we're out of here. 12648 */ 12649 return; 12650 } 12651 /* 12652 * If we just completed a copy in, we become writer and 12653 * continue processing in ip_sioctl_copyin_done. If it 12654 * was a copy out, we call mi_copyout again. If there is 12655 * nothing more to copy out, it will complete the IOCTL. 12656 */ 12657 if (MI_COPY_DIRECTION(mp) == MI_COPY_IN) { 12658 if (!(mp1 = mp->b_cont) || !(mp1 = mp1->b_cont)) { 12659 mi_copy_done(q, mp, EPROTO); 12660 return; 12661 } 12662 /* 12663 * Check for cases that need more copying. A return 12664 * value of 0 means a second copyin has been started, 12665 * so we return; a return value of 1 means no more 12666 * copying is needed, so we continue. 12667 */ 12668 if (ipip->ipi_cmd_type == MSFILT_CMD && 12669 MI_COPY_COUNT(mp) == 1) { 12670 if (ip_copyin_msfilter(q, mp) == 0) 12671 return; 12672 } 12673 /* 12674 * Refhold the conn, till the ioctl completes. This is 12675 * needed in case the ioctl ends up in the pending mp 12676 * list. Every mp in the ipx_pending_mp list must have 12677 * a refhold on the conn to resume processing. The 12678 * refhold is released when the ioctl completes 12679 * (whether normally or abnormally). An ioctlref is also 12680 * placed on the conn to prevent TCP from removing the 12681 * queue needed to send the ioctl reply back. 12682 * In all cases ip_ioctl_finish is called to finish 12683 * the ioctl and release the refholds. 12684 */ 12685 if (connp != NULL) { 12686 /* This is not a reentry */ 12687 CONN_INC_REF(connp); 12688 CONN_INC_IOCTLREF(connp); 12689 } else { 12690 if (!(ipip->ipi_flags & IPI_MODOK)) { 12691 mi_copy_done(q, mp, EINVAL); 12692 return; 12693 } 12694 } 12695 12696 ip_process_ioctl(NULL, q, mp, ipip); 12697 12698 } else { 12699 mi_copyout(q, mp); 12700 } 12701 return; 12702 12703 case M_IOCNAK: 12704 /* 12705 * The only way we could get here is if a resolver didn't like 12706 * an IOCTL we sent it. This shouldn't happen. 12707 */ 12708 (void) mi_strlog(q, 1, SL_ERROR|SL_TRACE, 12709 "ip_wput_nondata: unexpected M_IOCNAK, ioc_cmd 0x%x", 12710 ((struct iocblk *)mp->b_rptr)->ioc_cmd); 12711 freemsg(mp); 12712 return; 12713 case M_IOCACK: 12714 /* /dev/ip shouldn't see this */ 12715 goto nak; 12716 case M_FLUSH: 12717 if (*mp->b_rptr & FLUSHW) 12718 flushq(q, FLUSHALL); 12719 if (q->q_next) { 12720 putnext(q, mp); 12721 return; 12722 } 12723 if (*mp->b_rptr & FLUSHR) { 12724 *mp->b_rptr &= ~FLUSHW; 12725 qreply(q, mp); 12726 return; 12727 } 12728 freemsg(mp); 12729 return; 12730 case M_CTL: 12731 break; 12732 case M_PROTO: 12733 case M_PCPROTO: 12734 /* 12735 * The only PROTO messages we expect are SNMP-related. 12736 */ 12737 switch (((union T_primitives *)mp->b_rptr)->type) { 12738 case T_SVR4_OPTMGMT_REQ: 12739 ip2dbg(("ip_wput_nondata: T_SVR4_OPTMGMT_REQ " 12740 "flags %x\n", 12741 ((struct T_optmgmt_req *)mp->b_rptr)->MGMT_flags)); 12742 12743 if (connp == NULL) { 12744 proto_str = "T_SVR4_OPTMGMT_REQ"; 12745 goto protonak; 12746 } 12747 12748 /* 12749 * All Solaris components should pass a db_credp 12750 * for this TPI message, hence we ASSERT. 12751 * But in case there is some other M_PROTO that looks 12752 * like a TPI message sent by some other kernel 12753 * component, we check and return an error. 12754 */ 12755 cr = msg_getcred(mp, NULL); 12756 ASSERT(cr != NULL); 12757 if (cr == NULL) { 12758 mp = mi_tpi_err_ack_alloc(mp, TSYSERR, EINVAL); 12759 if (mp != NULL) 12760 qreply(q, mp); 12761 return; 12762 } 12763 12764 if (!snmpcom_req(q, mp, ip_snmp_set, ip_snmp_get, cr)) { 12765 proto_str = "Bad SNMPCOM request?"; 12766 goto protonak; 12767 } 12768 return; 12769 default: 12770 ip1dbg(("ip_wput_nondata: dropping M_PROTO prim %u\n", 12771 (int)*(uint_t *)mp->b_rptr)); 12772 freemsg(mp); 12773 return; 12774 } 12775 default: 12776 break; 12777 } 12778 if (q->q_next) { 12779 putnext(q, mp); 12780 } else 12781 freemsg(mp); 12782 return; 12783 12784 nak: 12785 iocp->ioc_error = EINVAL; 12786 mp->b_datap->db_type = M_IOCNAK; 12787 iocp->ioc_count = 0; 12788 qreply(q, mp); 12789 return; 12790 12791 protonak: 12792 cmn_err(CE_NOTE, "IP doesn't process %s as a module", proto_str); 12793 if ((mp = mi_tpi_err_ack_alloc(mp, TPROTO, EINVAL)) != NULL) 12794 qreply(q, mp); 12795 } 12796 12797 /* 12798 * Process IP options in an outbound packet. Verify that the nexthop in a 12799 * strict source route is onlink. 12800 * Returns non-zero if something fails in which case an ICMP error has been 12801 * sent and mp freed. 12802 * 12803 * Assumes the ULP has called ip_massage_options to move nexthop into ipha_dst. 12804 */ 12805 int 12806 ip_output_options(mblk_t *mp, ipha_t *ipha, ip_xmit_attr_t *ixa, ill_t *ill) 12807 { 12808 ipoptp_t opts; 12809 uchar_t *opt; 12810 uint8_t optval; 12811 uint8_t optlen; 12812 ipaddr_t dst; 12813 intptr_t code = 0; 12814 ire_t *ire; 12815 ip_stack_t *ipst = ixa->ixa_ipst; 12816 ip_recv_attr_t iras; 12817 12818 ip2dbg(("ip_output_options\n")); 12819 12820 dst = ipha->ipha_dst; 12821 for (optval = ipoptp_first(&opts, ipha); 12822 optval != IPOPT_EOL; 12823 optval = ipoptp_next(&opts)) { 12824 opt = opts.ipoptp_cur; 12825 optlen = opts.ipoptp_len; 12826 ip2dbg(("ip_output_options: opt %d, len %d\n", 12827 optval, optlen)); 12828 switch (optval) { 12829 uint32_t off; 12830 case IPOPT_SSRR: 12831 case IPOPT_LSRR: 12832 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 12833 ip1dbg(( 12834 "ip_output_options: bad option offset\n")); 12835 code = (char *)&opt[IPOPT_OLEN] - 12836 (char *)ipha; 12837 goto param_prob; 12838 } 12839 off = opt[IPOPT_OFFSET]; 12840 ip1dbg(("ip_output_options: next hop 0x%x\n", 12841 ntohl(dst))); 12842 /* 12843 * For strict: verify that dst is directly 12844 * reachable. 12845 */ 12846 if (optval == IPOPT_SSRR) { 12847 ire = ire_ftable_lookup_v4(dst, 0, 0, 12848 IRE_IF_ALL, NULL, ALL_ZONES, ixa->ixa_tsl, 12849 MATCH_IRE_TYPE | MATCH_IRE_SECATTR, 0, ipst, 12850 NULL); 12851 if (ire == NULL) { 12852 ip1dbg(("ip_output_options: SSRR not" 12853 " directly reachable: 0x%x\n", 12854 ntohl(dst))); 12855 goto bad_src_route; 12856 } 12857 ire_refrele(ire); 12858 } 12859 break; 12860 case IPOPT_RR: 12861 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 12862 ip1dbg(( 12863 "ip_output_options: bad option offset\n")); 12864 code = (char *)&opt[IPOPT_OLEN] - 12865 (char *)ipha; 12866 goto param_prob; 12867 } 12868 break; 12869 case IPOPT_TS: 12870 /* 12871 * Verify that length >=5 and that there is either 12872 * room for another timestamp or that the overflow 12873 * counter is not maxed out. 12874 */ 12875 code = (char *)&opt[IPOPT_OLEN] - (char *)ipha; 12876 if (optlen < IPOPT_MINLEN_IT) { 12877 goto param_prob; 12878 } 12879 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 12880 ip1dbg(( 12881 "ip_output_options: bad option offset\n")); 12882 code = (char *)&opt[IPOPT_OFFSET] - 12883 (char *)ipha; 12884 goto param_prob; 12885 } 12886 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 12887 case IPOPT_TS_TSONLY: 12888 off = IPOPT_TS_TIMELEN; 12889 break; 12890 case IPOPT_TS_TSANDADDR: 12891 case IPOPT_TS_PRESPEC: 12892 case IPOPT_TS_PRESPEC_RFC791: 12893 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 12894 break; 12895 default: 12896 code = (char *)&opt[IPOPT_POS_OV_FLG] - 12897 (char *)ipha; 12898 goto param_prob; 12899 } 12900 if (opt[IPOPT_OFFSET] - 1 + off > optlen && 12901 (opt[IPOPT_POS_OV_FLG] & 0xF0) == 0xF0) { 12902 /* 12903 * No room and the overflow counter is 15 12904 * already. 12905 */ 12906 goto param_prob; 12907 } 12908 break; 12909 } 12910 } 12911 12912 if ((opts.ipoptp_flags & IPOPTP_ERROR) == 0) 12913 return (0); 12914 12915 ip1dbg(("ip_output_options: error processing IP options.")); 12916 code = (char *)&opt[IPOPT_OFFSET] - (char *)ipha; 12917 12918 param_prob: 12919 bzero(&iras, sizeof (iras)); 12920 iras.ira_ill = iras.ira_rill = ill; 12921 iras.ira_ruifindex = ill->ill_phyint->phyint_ifindex; 12922 iras.ira_rifindex = iras.ira_ruifindex; 12923 iras.ira_flags = IRAF_IS_IPV4; 12924 12925 ip_drop_output("ip_output_options", mp, ill); 12926 icmp_param_problem(mp, (uint8_t)code, &iras); 12927 ASSERT(!(iras.ira_flags & IRAF_IPSEC_SECURE)); 12928 return (-1); 12929 12930 bad_src_route: 12931 bzero(&iras, sizeof (iras)); 12932 iras.ira_ill = iras.ira_rill = ill; 12933 iras.ira_ruifindex = ill->ill_phyint->phyint_ifindex; 12934 iras.ira_rifindex = iras.ira_ruifindex; 12935 iras.ira_flags = IRAF_IS_IPV4; 12936 12937 ip_drop_input("ICMP_SOURCE_ROUTE_FAILED", mp, ill); 12938 icmp_unreachable(mp, ICMP_SOURCE_ROUTE_FAILED, &iras); 12939 ASSERT(!(iras.ira_flags & IRAF_IPSEC_SECURE)); 12940 return (-1); 12941 } 12942 12943 /* 12944 * The maximum value of conn_drain_list_cnt is CONN_MAXDRAINCNT. 12945 * conn_drain_list_cnt can be changed by setting conn_drain_nthreads 12946 * thru /etc/system. 12947 */ 12948 #define CONN_MAXDRAINCNT 64 12949 12950 static void 12951 conn_drain_init(ip_stack_t *ipst) 12952 { 12953 int i, j; 12954 idl_tx_list_t *itl_tx; 12955 12956 ipst->ips_conn_drain_list_cnt = conn_drain_nthreads; 12957 12958 if ((ipst->ips_conn_drain_list_cnt == 0) || 12959 (ipst->ips_conn_drain_list_cnt > CONN_MAXDRAINCNT)) { 12960 /* 12961 * Default value of the number of drainers is the 12962 * number of cpus, subject to maximum of 8 drainers. 12963 */ 12964 if (boot_max_ncpus != -1) 12965 ipst->ips_conn_drain_list_cnt = MIN(boot_max_ncpus, 8); 12966 else 12967 ipst->ips_conn_drain_list_cnt = MIN(max_ncpus, 8); 12968 } 12969 12970 ipst->ips_idl_tx_list = 12971 kmem_zalloc(TX_FANOUT_SIZE * sizeof (idl_tx_list_t), KM_SLEEP); 12972 for (i = 0; i < TX_FANOUT_SIZE; i++) { 12973 itl_tx = &ipst->ips_idl_tx_list[i]; 12974 itl_tx->txl_drain_list = 12975 kmem_zalloc(ipst->ips_conn_drain_list_cnt * 12976 sizeof (idl_t), KM_SLEEP); 12977 mutex_init(&itl_tx->txl_lock, NULL, MUTEX_DEFAULT, NULL); 12978 for (j = 0; j < ipst->ips_conn_drain_list_cnt; j++) { 12979 mutex_init(&itl_tx->txl_drain_list[j].idl_lock, NULL, 12980 MUTEX_DEFAULT, NULL); 12981 itl_tx->txl_drain_list[j].idl_itl = itl_tx; 12982 } 12983 } 12984 } 12985 12986 static void 12987 conn_drain_fini(ip_stack_t *ipst) 12988 { 12989 int i; 12990 idl_tx_list_t *itl_tx; 12991 12992 for (i = 0; i < TX_FANOUT_SIZE; i++) { 12993 itl_tx = &ipst->ips_idl_tx_list[i]; 12994 kmem_free(itl_tx->txl_drain_list, 12995 ipst->ips_conn_drain_list_cnt * sizeof (idl_t)); 12996 } 12997 kmem_free(ipst->ips_idl_tx_list, 12998 TX_FANOUT_SIZE * sizeof (idl_tx_list_t)); 12999 ipst->ips_idl_tx_list = NULL; 13000 } 13001 13002 /* 13003 * Flow control has blocked us from proceeding. Insert the given conn in one 13004 * of the conn drain lists. When flow control is unblocked, either ip_wsrv() 13005 * (STREAMS) or ill_flow_enable() (direct) will be called back, which in turn 13006 * will call conn_walk_drain(). See the flow control notes at the top of this 13007 * file for more details. 13008 */ 13009 void 13010 conn_drain_insert(conn_t *connp, idl_tx_list_t *tx_list) 13011 { 13012 idl_t *idl = tx_list->txl_drain_list; 13013 uint_t index; 13014 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 13015 13016 mutex_enter(&connp->conn_lock); 13017 if (connp->conn_state_flags & CONN_CLOSING) { 13018 /* 13019 * The conn is closing as a result of which CONN_CLOSING 13020 * is set. Return. 13021 */ 13022 mutex_exit(&connp->conn_lock); 13023 return; 13024 } else if (connp->conn_idl == NULL) { 13025 /* 13026 * Assign the next drain list round robin. We dont' use 13027 * a lock, and thus it may not be strictly round robin. 13028 * Atomicity of load/stores is enough to make sure that 13029 * conn_drain_list_index is always within bounds. 13030 */ 13031 index = tx_list->txl_drain_index; 13032 ASSERT(index < ipst->ips_conn_drain_list_cnt); 13033 connp->conn_idl = &tx_list->txl_drain_list[index]; 13034 index++; 13035 if (index == ipst->ips_conn_drain_list_cnt) 13036 index = 0; 13037 tx_list->txl_drain_index = index; 13038 } else { 13039 ASSERT(connp->conn_idl->idl_itl == tx_list); 13040 } 13041 mutex_exit(&connp->conn_lock); 13042 13043 idl = connp->conn_idl; 13044 mutex_enter(&idl->idl_lock); 13045 if ((connp->conn_drain_prev != NULL) || 13046 (connp->conn_state_flags & CONN_CLOSING)) { 13047 /* 13048 * The conn is either already in the drain list or closing. 13049 * (We needed to check for CONN_CLOSING again since close can 13050 * sneak in between dropping conn_lock and acquiring idl_lock.) 13051 */ 13052 mutex_exit(&idl->idl_lock); 13053 return; 13054 } 13055 13056 /* 13057 * The conn is not in the drain list. Insert it at the 13058 * tail of the drain list. The drain list is circular 13059 * and doubly linked. idl_conn points to the 1st element 13060 * in the list. 13061 */ 13062 if (idl->idl_conn == NULL) { 13063 idl->idl_conn = connp; 13064 connp->conn_drain_next = connp; 13065 connp->conn_drain_prev = connp; 13066 } else { 13067 conn_t *head = idl->idl_conn; 13068 13069 connp->conn_drain_next = head; 13070 connp->conn_drain_prev = head->conn_drain_prev; 13071 head->conn_drain_prev->conn_drain_next = connp; 13072 head->conn_drain_prev = connp; 13073 } 13074 /* 13075 * For non streams based sockets assert flow control. 13076 */ 13077 conn_setqfull(connp, NULL); 13078 mutex_exit(&idl->idl_lock); 13079 } 13080 13081 static void 13082 conn_drain_remove(conn_t *connp) 13083 { 13084 idl_t *idl = connp->conn_idl; 13085 13086 if (idl != NULL) { 13087 /* 13088 * Remove ourself from the drain list. 13089 */ 13090 if (connp->conn_drain_next == connp) { 13091 /* Singleton in the list */ 13092 ASSERT(connp->conn_drain_prev == connp); 13093 idl->idl_conn = NULL; 13094 } else { 13095 connp->conn_drain_prev->conn_drain_next = 13096 connp->conn_drain_next; 13097 connp->conn_drain_next->conn_drain_prev = 13098 connp->conn_drain_prev; 13099 if (idl->idl_conn == connp) 13100 idl->idl_conn = connp->conn_drain_next; 13101 } 13102 13103 /* 13104 * NOTE: because conn_idl is associated with a specific drain 13105 * list which in turn is tied to the index the TX ring 13106 * (txl_cookie) hashes to, and because the TX ring can change 13107 * over the lifetime of the conn_t, we must clear conn_idl so 13108 * a subsequent conn_drain_insert() will set conn_idl again 13109 * based on the latest txl_cookie. 13110 */ 13111 connp->conn_idl = NULL; 13112 } 13113 connp->conn_drain_next = NULL; 13114 connp->conn_drain_prev = NULL; 13115 13116 conn_clrqfull(connp, NULL); 13117 /* 13118 * For streams based sockets open up flow control. 13119 */ 13120 if (!IPCL_IS_NONSTR(connp)) 13121 enableok(connp->conn_wq); 13122 } 13123 13124 /* 13125 * This conn is closing, and we are called from ip_close. OR 13126 * this conn is draining because flow-control on the ill has been relieved. 13127 * 13128 * We must also need to remove conn's on this idl from the list, and also 13129 * inform the sockfs upcalls about the change in flow-control. 13130 */ 13131 static void 13132 conn_drain(conn_t *connp, boolean_t closing) 13133 { 13134 idl_t *idl; 13135 conn_t *next_connp; 13136 13137 /* 13138 * connp->conn_idl is stable at this point, and no lock is needed 13139 * to check it. If we are called from ip_close, close has already 13140 * set CONN_CLOSING, thus freezing the value of conn_idl, and 13141 * called us only because conn_idl is non-null. If we are called thru 13142 * service, conn_idl could be null, but it cannot change because 13143 * service is single-threaded per queue, and there cannot be another 13144 * instance of service trying to call conn_drain_insert on this conn 13145 * now. 13146 */ 13147 ASSERT(!closing || connp == NULL || connp->conn_idl != NULL); 13148 13149 /* 13150 * If the conn doesn't exist or is not on a drain list, bail. 13151 */ 13152 if (connp == NULL || connp->conn_idl == NULL || 13153 connp->conn_drain_prev == NULL) { 13154 return; 13155 } 13156 13157 idl = connp->conn_idl; 13158 ASSERT(MUTEX_HELD(&idl->idl_lock)); 13159 13160 if (!closing) { 13161 next_connp = connp->conn_drain_next; 13162 while (next_connp != connp) { 13163 conn_t *delconnp = next_connp; 13164 13165 next_connp = next_connp->conn_drain_next; 13166 conn_drain_remove(delconnp); 13167 } 13168 ASSERT(connp->conn_drain_next == idl->idl_conn); 13169 } 13170 conn_drain_remove(connp); 13171 } 13172 13173 /* 13174 * Write service routine. Shared perimeter entry point. 13175 * The device queue's messages has fallen below the low water mark and STREAMS 13176 * has backenabled the ill_wq. Send sockfs notification about flow-control on 13177 * each waiting conn. 13178 */ 13179 void 13180 ip_wsrv(queue_t *q) 13181 { 13182 ill_t *ill; 13183 13184 ill = (ill_t *)q->q_ptr; 13185 if (ill->ill_state_flags == 0) { 13186 ip_stack_t *ipst = ill->ill_ipst; 13187 13188 /* 13189 * The device flow control has opened up. 13190 * Walk through conn drain lists and qenable the 13191 * first conn in each list. This makes sense only 13192 * if the stream is fully plumbed and setup. 13193 * Hence the ill_state_flags check above. 13194 */ 13195 ip1dbg(("ip_wsrv: walking\n")); 13196 conn_walk_drain(ipst, &ipst->ips_idl_tx_list[0]); 13197 enableok(ill->ill_wq); 13198 } 13199 } 13200 13201 /* 13202 * Callback to disable flow control in IP. 13203 * 13204 * This is a mac client callback added when the DLD_CAPAB_DIRECT capability 13205 * is enabled. 13206 * 13207 * When MAC_TX() is not able to send any more packets, dld sets its queue 13208 * to QFULL and enable the STREAMS flow control. Later, when the underlying 13209 * driver is able to continue to send packets, it calls mac_tx_(ring_)update() 13210 * function and wakes up corresponding mac worker threads, which in turn 13211 * calls this callback function, and disables flow control. 13212 */ 13213 void 13214 ill_flow_enable(void *arg, ip_mac_tx_cookie_t cookie) 13215 { 13216 ill_t *ill = (ill_t *)arg; 13217 ip_stack_t *ipst = ill->ill_ipst; 13218 idl_tx_list_t *idl_txl; 13219 13220 idl_txl = &ipst->ips_idl_tx_list[IDLHASHINDEX(cookie)]; 13221 mutex_enter(&idl_txl->txl_lock); 13222 /* add code to to set a flag to indicate idl_txl is enabled */ 13223 conn_walk_drain(ipst, idl_txl); 13224 mutex_exit(&idl_txl->txl_lock); 13225 } 13226 13227 /* 13228 * Flow control has been relieved and STREAMS has backenabled us; drain 13229 * all the conn lists on `tx_list'. 13230 */ 13231 static void 13232 conn_walk_drain(ip_stack_t *ipst, idl_tx_list_t *tx_list) 13233 { 13234 int i; 13235 idl_t *idl; 13236 13237 IP_STAT(ipst, ip_conn_walk_drain); 13238 13239 for (i = 0; i < ipst->ips_conn_drain_list_cnt; i++) { 13240 idl = &tx_list->txl_drain_list[i]; 13241 mutex_enter(&idl->idl_lock); 13242 conn_drain(idl->idl_conn, B_FALSE); 13243 mutex_exit(&idl->idl_lock); 13244 } 13245 } 13246 13247 /* 13248 * Determine if the ill and multicast aspects of that packets 13249 * "matches" the conn. 13250 */ 13251 boolean_t 13252 conn_wantpacket(conn_t *connp, ip_recv_attr_t *ira, ipha_t *ipha) 13253 { 13254 ill_t *ill = ira->ira_rill; 13255 zoneid_t zoneid = ira->ira_zoneid; 13256 uint_t in_ifindex; 13257 ipaddr_t dst, src; 13258 13259 dst = ipha->ipha_dst; 13260 src = ipha->ipha_src; 13261 13262 /* 13263 * conn_incoming_ifindex is set by IP_BOUND_IF which limits 13264 * unicast, broadcast and multicast reception to 13265 * conn_incoming_ifindex. 13266 * conn_wantpacket is called for unicast, broadcast and 13267 * multicast packets. 13268 */ 13269 in_ifindex = connp->conn_incoming_ifindex; 13270 13271 /* mpathd can bind to the under IPMP interface, which we allow */ 13272 if (in_ifindex != 0 && in_ifindex != ill->ill_phyint->phyint_ifindex) { 13273 if (!IS_UNDER_IPMP(ill)) 13274 return (B_FALSE); 13275 13276 if (in_ifindex != ipmp_ill_get_ipmp_ifindex(ill)) 13277 return (B_FALSE); 13278 } 13279 13280 if (!IPCL_ZONE_MATCH(connp, zoneid)) 13281 return (B_FALSE); 13282 13283 if (!(ira->ira_flags & IRAF_MULTICAST)) 13284 return (B_TRUE); 13285 13286 if (connp->conn_multi_router) { 13287 /* multicast packet and multicast router socket: send up */ 13288 return (B_TRUE); 13289 } 13290 13291 if (ipha->ipha_protocol == IPPROTO_PIM || 13292 ipha->ipha_protocol == IPPROTO_RSVP) 13293 return (B_TRUE); 13294 13295 return (conn_hasmembers_ill_withsrc_v4(connp, dst, src, ira->ira_ill)); 13296 } 13297 13298 void 13299 conn_setqfull(conn_t *connp, boolean_t *flow_stopped) 13300 { 13301 if (IPCL_IS_NONSTR(connp)) { 13302 (*connp->conn_upcalls->su_txq_full) 13303 (connp->conn_upper_handle, B_TRUE); 13304 if (flow_stopped != NULL) 13305 *flow_stopped = B_TRUE; 13306 } else { 13307 queue_t *q = connp->conn_wq; 13308 13309 ASSERT(q != NULL); 13310 if (!(q->q_flag & QFULL)) { 13311 mutex_enter(QLOCK(q)); 13312 if (!(q->q_flag & QFULL)) { 13313 /* still need to set QFULL */ 13314 q->q_flag |= QFULL; 13315 /* set flow_stopped to true under QLOCK */ 13316 if (flow_stopped != NULL) 13317 *flow_stopped = B_TRUE; 13318 mutex_exit(QLOCK(q)); 13319 } else { 13320 /* flow_stopped is left unchanged */ 13321 mutex_exit(QLOCK(q)); 13322 } 13323 } 13324 } 13325 } 13326 13327 void 13328 conn_clrqfull(conn_t *connp, boolean_t *flow_stopped) 13329 { 13330 if (IPCL_IS_NONSTR(connp)) { 13331 (*connp->conn_upcalls->su_txq_full) 13332 (connp->conn_upper_handle, B_FALSE); 13333 if (flow_stopped != NULL) 13334 *flow_stopped = B_FALSE; 13335 } else { 13336 queue_t *q = connp->conn_wq; 13337 13338 ASSERT(q != NULL); 13339 if (q->q_flag & QFULL) { 13340 mutex_enter(QLOCK(q)); 13341 if (q->q_flag & QFULL) { 13342 q->q_flag &= ~QFULL; 13343 /* set flow_stopped to false under QLOCK */ 13344 if (flow_stopped != NULL) 13345 *flow_stopped = B_FALSE; 13346 mutex_exit(QLOCK(q)); 13347 if (q->q_flag & QWANTW) 13348 qbackenable(q, 0); 13349 } else { 13350 /* flow_stopped is left unchanged */ 13351 mutex_exit(QLOCK(q)); 13352 } 13353 } 13354 } 13355 13356 mutex_enter(&connp->conn_lock); 13357 connp->conn_blocked = B_FALSE; 13358 mutex_exit(&connp->conn_lock); 13359 } 13360 13361 /* 13362 * Return the length in bytes of the IPv4 headers (base header, label, and 13363 * other IP options) that will be needed based on the 13364 * ip_pkt_t structure passed by the caller. 13365 * 13366 * The returned length does not include the length of the upper level 13367 * protocol (ULP) header. 13368 * The caller needs to check that the length doesn't exceed the max for IPv4. 13369 */ 13370 int 13371 ip_total_hdrs_len_v4(const ip_pkt_t *ipp) 13372 { 13373 int len; 13374 13375 len = IP_SIMPLE_HDR_LENGTH; 13376 if (ipp->ipp_fields & IPPF_LABEL_V4) { 13377 ASSERT(ipp->ipp_label_len_v4 != 0); 13378 /* We need to round up here */ 13379 len += (ipp->ipp_label_len_v4 + 3) & ~3; 13380 } 13381 13382 if (ipp->ipp_fields & IPPF_IPV4_OPTIONS) { 13383 ASSERT(ipp->ipp_ipv4_options_len != 0); 13384 ASSERT((ipp->ipp_ipv4_options_len & 3) == 0); 13385 len += ipp->ipp_ipv4_options_len; 13386 } 13387 return (len); 13388 } 13389 13390 /* 13391 * All-purpose routine to build an IPv4 header with options based 13392 * on the abstract ip_pkt_t. 13393 * 13394 * The caller has to set the source and destination address as well as 13395 * ipha_length. The caller has to massage any source route and compensate 13396 * for the ULP pseudo-header checksum due to the source route. 13397 */ 13398 void 13399 ip_build_hdrs_v4(uchar_t *buf, uint_t buf_len, const ip_pkt_t *ipp, 13400 uint8_t protocol) 13401 { 13402 ipha_t *ipha = (ipha_t *)buf; 13403 uint8_t *cp; 13404 13405 /* Initialize IPv4 header */ 13406 ipha->ipha_type_of_service = ipp->ipp_type_of_service; 13407 ipha->ipha_length = 0; /* Caller will set later */ 13408 ipha->ipha_ident = 0; 13409 ipha->ipha_fragment_offset_and_flags = 0; 13410 ipha->ipha_ttl = ipp->ipp_unicast_hops; 13411 ipha->ipha_protocol = protocol; 13412 ipha->ipha_hdr_checksum = 0; 13413 13414 if ((ipp->ipp_fields & IPPF_ADDR) && 13415 IN6_IS_ADDR_V4MAPPED(&ipp->ipp_addr)) 13416 ipha->ipha_src = ipp->ipp_addr_v4; 13417 13418 cp = (uint8_t *)&ipha[1]; 13419 if (ipp->ipp_fields & IPPF_LABEL_V4) { 13420 ASSERT(ipp->ipp_label_len_v4 != 0); 13421 bcopy(ipp->ipp_label_v4, cp, ipp->ipp_label_len_v4); 13422 cp += ipp->ipp_label_len_v4; 13423 /* We need to round up here */ 13424 while ((uintptr_t)cp & 0x3) { 13425 *cp++ = IPOPT_NOP; 13426 } 13427 } 13428 13429 if (ipp->ipp_fields & IPPF_IPV4_OPTIONS) { 13430 ASSERT(ipp->ipp_ipv4_options_len != 0); 13431 ASSERT((ipp->ipp_ipv4_options_len & 3) == 0); 13432 bcopy(ipp->ipp_ipv4_options, cp, ipp->ipp_ipv4_options_len); 13433 cp += ipp->ipp_ipv4_options_len; 13434 } 13435 ipha->ipha_version_and_hdr_length = 13436 (uint8_t)((IP_VERSION << 4) + buf_len / 4); 13437 13438 ASSERT((int)(cp - buf) == buf_len); 13439 } 13440 13441 /* Allocate the private structure */ 13442 static int 13443 ip_priv_alloc(void **bufp) 13444 { 13445 void *buf; 13446 13447 if ((buf = kmem_alloc(sizeof (ip_priv_t), KM_NOSLEEP)) == NULL) 13448 return (ENOMEM); 13449 13450 *bufp = buf; 13451 return (0); 13452 } 13453 13454 /* Function to delete the private structure */ 13455 void 13456 ip_priv_free(void *buf) 13457 { 13458 ASSERT(buf != NULL); 13459 kmem_free(buf, sizeof (ip_priv_t)); 13460 } 13461 13462 /* 13463 * The entry point for IPPF processing. 13464 * If the classifier (IPGPC_CLASSIFY) is not loaded and configured, the 13465 * routine just returns. 13466 * 13467 * When called, ip_process generates an ipp_packet_t structure 13468 * which holds the state information for this packet and invokes the 13469 * the classifier (via ipp_packet_process). The classification, depending on 13470 * configured filters, results in a list of actions for this packet. Invoking 13471 * an action may cause the packet to be dropped, in which case we return NULL. 13472 * proc indicates the callout position for 13473 * this packet and ill is the interface this packet arrived on or will leave 13474 * on (inbound and outbound resp.). 13475 * 13476 * We do the processing on the rill (mapped to the upper if ipmp), but MIB 13477 * on the ill corrsponding to the destination IP address. 13478 */ 13479 mblk_t * 13480 ip_process(ip_proc_t proc, mblk_t *mp, ill_t *rill, ill_t *ill) 13481 { 13482 ip_priv_t *priv; 13483 ipp_action_id_t aid; 13484 int rc = 0; 13485 ipp_packet_t *pp; 13486 13487 /* If the classifier is not loaded, return */ 13488 if ((aid = ipp_action_lookup(IPGPC_CLASSIFY)) == IPP_ACTION_INVAL) { 13489 return (mp); 13490 } 13491 13492 ASSERT(mp != NULL); 13493 13494 /* Allocate the packet structure */ 13495 rc = ipp_packet_alloc(&pp, "ip", aid); 13496 if (rc != 0) 13497 goto drop; 13498 13499 /* Allocate the private structure */ 13500 rc = ip_priv_alloc((void **)&priv); 13501 if (rc != 0) { 13502 ipp_packet_free(pp); 13503 goto drop; 13504 } 13505 priv->proc = proc; 13506 priv->ill_index = ill_get_upper_ifindex(rill); 13507 13508 ipp_packet_set_private(pp, priv, ip_priv_free); 13509 ipp_packet_set_data(pp, mp); 13510 13511 /* Invoke the classifier */ 13512 rc = ipp_packet_process(&pp); 13513 if (pp != NULL) { 13514 mp = ipp_packet_get_data(pp); 13515 ipp_packet_free(pp); 13516 if (rc != 0) 13517 goto drop; 13518 return (mp); 13519 } else { 13520 /* No mp to trace in ip_drop_input/ip_drop_output */ 13521 mp = NULL; 13522 } 13523 drop: 13524 if (proc == IPP_LOCAL_IN || proc == IPP_FWD_IN) { 13525 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13526 ip_drop_input("ip_process", mp, ill); 13527 } else { 13528 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 13529 ip_drop_output("ip_process", mp, ill); 13530 } 13531 freemsg(mp); 13532 return (NULL); 13533 } 13534 13535 /* 13536 * Propagate a multicast group membership operation (add/drop) on 13537 * all the interfaces crossed by the related multirt routes. 13538 * The call is considered successful if the operation succeeds 13539 * on at least one interface. 13540 * 13541 * This assumes that a set of IRE_HOST/RTF_MULTIRT has been created for the 13542 * multicast addresses with the ire argument being the first one. 13543 * We walk the bucket to find all the of those. 13544 * 13545 * Common to IPv4 and IPv6. 13546 */ 13547 static int 13548 ip_multirt_apply_membership(int (*fn)(conn_t *, boolean_t, 13549 const in6_addr_t *, ipaddr_t, uint_t, mcast_record_t, const in6_addr_t *), 13550 ire_t *ire, conn_t *connp, boolean_t checkonly, const in6_addr_t *v6group, 13551 mcast_record_t fmode, const in6_addr_t *v6src) 13552 { 13553 ire_t *ire_gw; 13554 irb_t *irb; 13555 int ifindex; 13556 int error = 0; 13557 int result; 13558 ip_stack_t *ipst = ire->ire_ipst; 13559 ipaddr_t group; 13560 boolean_t isv6; 13561 int match_flags; 13562 13563 if (IN6_IS_ADDR_V4MAPPED(v6group)) { 13564 IN6_V4MAPPED_TO_IPADDR(v6group, group); 13565 isv6 = B_FALSE; 13566 } else { 13567 isv6 = B_TRUE; 13568 } 13569 13570 irb = ire->ire_bucket; 13571 ASSERT(irb != NULL); 13572 13573 result = 0; 13574 irb_refhold(irb); 13575 for (; ire != NULL; ire = ire->ire_next) { 13576 if ((ire->ire_flags & RTF_MULTIRT) == 0) 13577 continue; 13578 13579 /* We handle -ifp routes by matching on the ill if set */ 13580 match_flags = MATCH_IRE_TYPE; 13581 if (ire->ire_ill != NULL) 13582 match_flags |= MATCH_IRE_ILL; 13583 13584 if (isv6) { 13585 if (!IN6_ARE_ADDR_EQUAL(&ire->ire_addr_v6, v6group)) 13586 continue; 13587 13588 ire_gw = ire_ftable_lookup_v6(&ire->ire_gateway_addr_v6, 13589 0, 0, IRE_INTERFACE, ire->ire_ill, ALL_ZONES, NULL, 13590 match_flags, 0, ipst, NULL); 13591 } else { 13592 if (ire->ire_addr != group) 13593 continue; 13594 13595 ire_gw = ire_ftable_lookup_v4(ire->ire_gateway_addr, 13596 0, 0, IRE_INTERFACE, ire->ire_ill, ALL_ZONES, NULL, 13597 match_flags, 0, ipst, NULL); 13598 } 13599 /* No interface route exists for the gateway; skip this ire. */ 13600 if (ire_gw == NULL) 13601 continue; 13602 if (ire_gw->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) { 13603 ire_refrele(ire_gw); 13604 continue; 13605 } 13606 ASSERT(ire_gw->ire_ill != NULL); /* IRE_INTERFACE */ 13607 ifindex = ire_gw->ire_ill->ill_phyint->phyint_ifindex; 13608 13609 /* 13610 * The operation is considered a success if 13611 * it succeeds at least once on any one interface. 13612 */ 13613 error = fn(connp, checkonly, v6group, INADDR_ANY, ifindex, 13614 fmode, v6src); 13615 if (error == 0) 13616 result = CGTP_MCAST_SUCCESS; 13617 13618 ire_refrele(ire_gw); 13619 } 13620 irb_refrele(irb); 13621 /* 13622 * Consider the call as successful if we succeeded on at least 13623 * one interface. Otherwise, return the last encountered error. 13624 */ 13625 return (result == CGTP_MCAST_SUCCESS ? 0 : error); 13626 } 13627 13628 /* 13629 * Return the expected CGTP hooks version number. 13630 */ 13631 int 13632 ip_cgtp_filter_supported(void) 13633 { 13634 return (ip_cgtp_filter_rev); 13635 } 13636 13637 /* 13638 * CGTP hooks can be registered by invoking this function. 13639 * Checks that the version number matches. 13640 */ 13641 int 13642 ip_cgtp_filter_register(netstackid_t stackid, cgtp_filter_ops_t *ops) 13643 { 13644 netstack_t *ns; 13645 ip_stack_t *ipst; 13646 13647 if (ops->cfo_filter_rev != CGTP_FILTER_REV) 13648 return (ENOTSUP); 13649 13650 ns = netstack_find_by_stackid(stackid); 13651 if (ns == NULL) 13652 return (EINVAL); 13653 ipst = ns->netstack_ip; 13654 ASSERT(ipst != NULL); 13655 13656 if (ipst->ips_ip_cgtp_filter_ops != NULL) { 13657 netstack_rele(ns); 13658 return (EALREADY); 13659 } 13660 13661 ipst->ips_ip_cgtp_filter_ops = ops; 13662 13663 ill_set_inputfn_all(ipst); 13664 13665 netstack_rele(ns); 13666 return (0); 13667 } 13668 13669 /* 13670 * CGTP hooks can be unregistered by invoking this function. 13671 * Returns ENXIO if there was no registration. 13672 * Returns EBUSY if the ndd variable has not been turned off. 13673 */ 13674 int 13675 ip_cgtp_filter_unregister(netstackid_t stackid) 13676 { 13677 netstack_t *ns; 13678 ip_stack_t *ipst; 13679 13680 ns = netstack_find_by_stackid(stackid); 13681 if (ns == NULL) 13682 return (EINVAL); 13683 ipst = ns->netstack_ip; 13684 ASSERT(ipst != NULL); 13685 13686 if (ipst->ips_ip_cgtp_filter) { 13687 netstack_rele(ns); 13688 return (EBUSY); 13689 } 13690 13691 if (ipst->ips_ip_cgtp_filter_ops == NULL) { 13692 netstack_rele(ns); 13693 return (ENXIO); 13694 } 13695 ipst->ips_ip_cgtp_filter_ops = NULL; 13696 13697 ill_set_inputfn_all(ipst); 13698 13699 netstack_rele(ns); 13700 return (0); 13701 } 13702 13703 /* 13704 * Check whether there is a CGTP filter registration. 13705 * Returns non-zero if there is a registration, otherwise returns zero. 13706 * Note: returns zero if bad stackid. 13707 */ 13708 int 13709 ip_cgtp_filter_is_registered(netstackid_t stackid) 13710 { 13711 netstack_t *ns; 13712 ip_stack_t *ipst; 13713 int ret; 13714 13715 ns = netstack_find_by_stackid(stackid); 13716 if (ns == NULL) 13717 return (0); 13718 ipst = ns->netstack_ip; 13719 ASSERT(ipst != NULL); 13720 13721 if (ipst->ips_ip_cgtp_filter_ops != NULL) 13722 ret = 1; 13723 else 13724 ret = 0; 13725 13726 netstack_rele(ns); 13727 return (ret); 13728 } 13729 13730 static int 13731 ip_squeue_switch(int val) 13732 { 13733 int rval; 13734 13735 switch (val) { 13736 case IP_SQUEUE_ENTER_NODRAIN: 13737 rval = SQ_NODRAIN; 13738 break; 13739 case IP_SQUEUE_ENTER: 13740 rval = SQ_PROCESS; 13741 break; 13742 case IP_SQUEUE_FILL: 13743 default: 13744 rval = SQ_FILL; 13745 break; 13746 } 13747 return (rval); 13748 } 13749 13750 static void * 13751 ip_kstat2_init(netstackid_t stackid, ip_stat_t *ip_statisticsp) 13752 { 13753 kstat_t *ksp; 13754 13755 ip_stat_t template = { 13756 { "ip_udp_fannorm", KSTAT_DATA_UINT64 }, 13757 { "ip_udp_fanmb", KSTAT_DATA_UINT64 }, 13758 { "ip_recv_pullup", KSTAT_DATA_UINT64 }, 13759 { "ip_db_ref", KSTAT_DATA_UINT64 }, 13760 { "ip_notaligned", KSTAT_DATA_UINT64 }, 13761 { "ip_multimblk", KSTAT_DATA_UINT64 }, 13762 { "ip_opt", KSTAT_DATA_UINT64 }, 13763 { "ipsec_proto_ahesp", KSTAT_DATA_UINT64 }, 13764 { "ip_conn_flputbq", KSTAT_DATA_UINT64 }, 13765 { "ip_conn_walk_drain", KSTAT_DATA_UINT64 }, 13766 { "ip_out_sw_cksum", KSTAT_DATA_UINT64 }, 13767 { "ip_out_sw_cksum_bytes", KSTAT_DATA_UINT64 }, 13768 { "ip_in_sw_cksum", KSTAT_DATA_UINT64 }, 13769 { "ip_ire_reclaim_calls", KSTAT_DATA_UINT64 }, 13770 { "ip_ire_reclaim_deleted", KSTAT_DATA_UINT64 }, 13771 { "ip_nce_reclaim_calls", KSTAT_DATA_UINT64 }, 13772 { "ip_nce_reclaim_deleted", KSTAT_DATA_UINT64 }, 13773 { "ip_dce_reclaim_calls", KSTAT_DATA_UINT64 }, 13774 { "ip_dce_reclaim_deleted", KSTAT_DATA_UINT64 }, 13775 { "ip_tcp_in_full_hw_cksum_err", KSTAT_DATA_UINT64 }, 13776 { "ip_tcp_in_part_hw_cksum_err", KSTAT_DATA_UINT64 }, 13777 { "ip_tcp_in_sw_cksum_err", KSTAT_DATA_UINT64 }, 13778 { "ip_udp_in_full_hw_cksum_err", KSTAT_DATA_UINT64 }, 13779 { "ip_udp_in_part_hw_cksum_err", KSTAT_DATA_UINT64 }, 13780 { "ip_udp_in_sw_cksum_err", KSTAT_DATA_UINT64 }, 13781 { "conn_in_recvdstaddr", KSTAT_DATA_UINT64 }, 13782 { "conn_in_recvopts", KSTAT_DATA_UINT64 }, 13783 { "conn_in_recvif", KSTAT_DATA_UINT64 }, 13784 { "conn_in_recvslla", KSTAT_DATA_UINT64 }, 13785 { "conn_in_recvucred", KSTAT_DATA_UINT64 }, 13786 { "conn_in_recvttl", KSTAT_DATA_UINT64 }, 13787 { "conn_in_recvhopopts", KSTAT_DATA_UINT64 }, 13788 { "conn_in_recvhoplimit", KSTAT_DATA_UINT64 }, 13789 { "conn_in_recvdstopts", KSTAT_DATA_UINT64 }, 13790 { "conn_in_recvrthdrdstopts", KSTAT_DATA_UINT64 }, 13791 { "conn_in_recvrthdr", KSTAT_DATA_UINT64 }, 13792 { "conn_in_recvpktinfo", KSTAT_DATA_UINT64 }, 13793 { "conn_in_recvtclass", KSTAT_DATA_UINT64 }, 13794 { "conn_in_timestamp", KSTAT_DATA_UINT64 }, 13795 }; 13796 13797 ksp = kstat_create_netstack("ip", 0, "ipstat", "net", 13798 KSTAT_TYPE_NAMED, sizeof (template) / sizeof (kstat_named_t), 13799 KSTAT_FLAG_VIRTUAL, stackid); 13800 13801 if (ksp == NULL) 13802 return (NULL); 13803 13804 bcopy(&template, ip_statisticsp, sizeof (template)); 13805 ksp->ks_data = (void *)ip_statisticsp; 13806 ksp->ks_private = (void *)(uintptr_t)stackid; 13807 13808 kstat_install(ksp); 13809 return (ksp); 13810 } 13811 13812 static void 13813 ip_kstat2_fini(netstackid_t stackid, kstat_t *ksp) 13814 { 13815 if (ksp != NULL) { 13816 ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private); 13817 kstat_delete_netstack(ksp, stackid); 13818 } 13819 } 13820 13821 static void * 13822 ip_kstat_init(netstackid_t stackid, ip_stack_t *ipst) 13823 { 13824 kstat_t *ksp; 13825 13826 ip_named_kstat_t template = { 13827 { "forwarding", KSTAT_DATA_UINT32, 0 }, 13828 { "defaultTTL", KSTAT_DATA_UINT32, 0 }, 13829 { "inReceives", KSTAT_DATA_UINT64, 0 }, 13830 { "inHdrErrors", KSTAT_DATA_UINT32, 0 }, 13831 { "inAddrErrors", KSTAT_DATA_UINT32, 0 }, 13832 { "forwDatagrams", KSTAT_DATA_UINT64, 0 }, 13833 { "inUnknownProtos", KSTAT_DATA_UINT32, 0 }, 13834 { "inDiscards", KSTAT_DATA_UINT32, 0 }, 13835 { "inDelivers", KSTAT_DATA_UINT64, 0 }, 13836 { "outRequests", KSTAT_DATA_UINT64, 0 }, 13837 { "outDiscards", KSTAT_DATA_UINT32, 0 }, 13838 { "outNoRoutes", KSTAT_DATA_UINT32, 0 }, 13839 { "reasmTimeout", KSTAT_DATA_UINT32, 0 }, 13840 { "reasmReqds", KSTAT_DATA_UINT32, 0 }, 13841 { "reasmOKs", KSTAT_DATA_UINT32, 0 }, 13842 { "reasmFails", KSTAT_DATA_UINT32, 0 }, 13843 { "fragOKs", KSTAT_DATA_UINT32, 0 }, 13844 { "fragFails", KSTAT_DATA_UINT32, 0 }, 13845 { "fragCreates", KSTAT_DATA_UINT32, 0 }, 13846 { "addrEntrySize", KSTAT_DATA_INT32, 0 }, 13847 { "routeEntrySize", KSTAT_DATA_INT32, 0 }, 13848 { "netToMediaEntrySize", KSTAT_DATA_INT32, 0 }, 13849 { "routingDiscards", KSTAT_DATA_UINT32, 0 }, 13850 { "inErrs", KSTAT_DATA_UINT32, 0 }, 13851 { "noPorts", KSTAT_DATA_UINT32, 0 }, 13852 { "inCksumErrs", KSTAT_DATA_UINT32, 0 }, 13853 { "reasmDuplicates", KSTAT_DATA_UINT32, 0 }, 13854 { "reasmPartDups", KSTAT_DATA_UINT32, 0 }, 13855 { "forwProhibits", KSTAT_DATA_UINT32, 0 }, 13856 { "udpInCksumErrs", KSTAT_DATA_UINT32, 0 }, 13857 { "udpInOverflows", KSTAT_DATA_UINT32, 0 }, 13858 { "rawipInOverflows", KSTAT_DATA_UINT32, 0 }, 13859 { "ipsecInSucceeded", KSTAT_DATA_UINT32, 0 }, 13860 { "ipsecInFailed", KSTAT_DATA_INT32, 0 }, 13861 { "memberEntrySize", KSTAT_DATA_INT32, 0 }, 13862 { "inIPv6", KSTAT_DATA_UINT32, 0 }, 13863 { "outIPv6", KSTAT_DATA_UINT32, 0 }, 13864 { "outSwitchIPv6", KSTAT_DATA_UINT32, 0 }, 13865 }; 13866 13867 ksp = kstat_create_netstack("ip", 0, "ip", "mib2", KSTAT_TYPE_NAMED, 13868 NUM_OF_FIELDS(ip_named_kstat_t), 0, stackid); 13869 if (ksp == NULL || ksp->ks_data == NULL) 13870 return (NULL); 13871 13872 template.forwarding.value.ui32 = WE_ARE_FORWARDING(ipst) ? 1:2; 13873 template.defaultTTL.value.ui32 = (uint32_t)ipst->ips_ip_def_ttl; 13874 template.reasmTimeout.value.ui32 = ipst->ips_ip_reassembly_timeout; 13875 template.addrEntrySize.value.i32 = sizeof (mib2_ipAddrEntry_t); 13876 template.routeEntrySize.value.i32 = sizeof (mib2_ipRouteEntry_t); 13877 13878 template.netToMediaEntrySize.value.i32 = 13879 sizeof (mib2_ipNetToMediaEntry_t); 13880 13881 template.memberEntrySize.value.i32 = sizeof (ipv6_member_t); 13882 13883 bcopy(&template, ksp->ks_data, sizeof (template)); 13884 ksp->ks_update = ip_kstat_update; 13885 ksp->ks_private = (void *)(uintptr_t)stackid; 13886 13887 kstat_install(ksp); 13888 return (ksp); 13889 } 13890 13891 static void 13892 ip_kstat_fini(netstackid_t stackid, kstat_t *ksp) 13893 { 13894 if (ksp != NULL) { 13895 ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private); 13896 kstat_delete_netstack(ksp, stackid); 13897 } 13898 } 13899 13900 static int 13901 ip_kstat_update(kstat_t *kp, int rw) 13902 { 13903 ip_named_kstat_t *ipkp; 13904 mib2_ipIfStatsEntry_t ipmib; 13905 ill_walk_context_t ctx; 13906 ill_t *ill; 13907 netstackid_t stackid = (zoneid_t)(uintptr_t)kp->ks_private; 13908 netstack_t *ns; 13909 ip_stack_t *ipst; 13910 13911 if (kp == NULL || kp->ks_data == NULL) 13912 return (EIO); 13913 13914 if (rw == KSTAT_WRITE) 13915 return (EACCES); 13916 13917 ns = netstack_find_by_stackid(stackid); 13918 if (ns == NULL) 13919 return (-1); 13920 ipst = ns->netstack_ip; 13921 if (ipst == NULL) { 13922 netstack_rele(ns); 13923 return (-1); 13924 } 13925 ipkp = (ip_named_kstat_t *)kp->ks_data; 13926 13927 bcopy(&ipst->ips_ip_mib, &ipmib, sizeof (ipmib)); 13928 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 13929 ill = ILL_START_WALK_V4(&ctx, ipst); 13930 for (; ill != NULL; ill = ill_next(&ctx, ill)) 13931 ip_mib2_add_ip_stats(&ipmib, ill->ill_ip_mib); 13932 rw_exit(&ipst->ips_ill_g_lock); 13933 13934 ipkp->forwarding.value.ui32 = ipmib.ipIfStatsForwarding; 13935 ipkp->defaultTTL.value.ui32 = ipmib.ipIfStatsDefaultTTL; 13936 ipkp->inReceives.value.ui64 = ipmib.ipIfStatsHCInReceives; 13937 ipkp->inHdrErrors.value.ui32 = ipmib.ipIfStatsInHdrErrors; 13938 ipkp->inAddrErrors.value.ui32 = ipmib.ipIfStatsInAddrErrors; 13939 ipkp->forwDatagrams.value.ui64 = ipmib.ipIfStatsHCOutForwDatagrams; 13940 ipkp->inUnknownProtos.value.ui32 = ipmib.ipIfStatsInUnknownProtos; 13941 ipkp->inDiscards.value.ui32 = ipmib.ipIfStatsInDiscards; 13942 ipkp->inDelivers.value.ui64 = ipmib.ipIfStatsHCInDelivers; 13943 ipkp->outRequests.value.ui64 = ipmib.ipIfStatsHCOutRequests; 13944 ipkp->outDiscards.value.ui32 = ipmib.ipIfStatsOutDiscards; 13945 ipkp->outNoRoutes.value.ui32 = ipmib.ipIfStatsOutNoRoutes; 13946 ipkp->reasmTimeout.value.ui32 = ipst->ips_ip_reassembly_timeout; 13947 ipkp->reasmReqds.value.ui32 = ipmib.ipIfStatsReasmReqds; 13948 ipkp->reasmOKs.value.ui32 = ipmib.ipIfStatsReasmOKs; 13949 ipkp->reasmFails.value.ui32 = ipmib.ipIfStatsReasmFails; 13950 ipkp->fragOKs.value.ui32 = ipmib.ipIfStatsOutFragOKs; 13951 ipkp->fragFails.value.ui32 = ipmib.ipIfStatsOutFragFails; 13952 ipkp->fragCreates.value.ui32 = ipmib.ipIfStatsOutFragCreates; 13953 13954 ipkp->routingDiscards.value.ui32 = 0; 13955 ipkp->inErrs.value.ui32 = ipmib.tcpIfStatsInErrs; 13956 ipkp->noPorts.value.ui32 = ipmib.udpIfStatsNoPorts; 13957 ipkp->inCksumErrs.value.ui32 = ipmib.ipIfStatsInCksumErrs; 13958 ipkp->reasmDuplicates.value.ui32 = ipmib.ipIfStatsReasmDuplicates; 13959 ipkp->reasmPartDups.value.ui32 = ipmib.ipIfStatsReasmPartDups; 13960 ipkp->forwProhibits.value.ui32 = ipmib.ipIfStatsForwProhibits; 13961 ipkp->udpInCksumErrs.value.ui32 = ipmib.udpIfStatsInCksumErrs; 13962 ipkp->udpInOverflows.value.ui32 = ipmib.udpIfStatsInOverflows; 13963 ipkp->rawipInOverflows.value.ui32 = ipmib.rawipIfStatsInOverflows; 13964 ipkp->ipsecInSucceeded.value.ui32 = ipmib.ipsecIfStatsInSucceeded; 13965 ipkp->ipsecInFailed.value.i32 = ipmib.ipsecIfStatsInFailed; 13966 13967 ipkp->inIPv6.value.ui32 = ipmib.ipIfStatsInWrongIPVersion; 13968 ipkp->outIPv6.value.ui32 = ipmib.ipIfStatsOutWrongIPVersion; 13969 ipkp->outSwitchIPv6.value.ui32 = ipmib.ipIfStatsOutSwitchIPVersion; 13970 13971 netstack_rele(ns); 13972 13973 return (0); 13974 } 13975 13976 static void * 13977 icmp_kstat_init(netstackid_t stackid) 13978 { 13979 kstat_t *ksp; 13980 13981 icmp_named_kstat_t template = { 13982 { "inMsgs", KSTAT_DATA_UINT32 }, 13983 { "inErrors", KSTAT_DATA_UINT32 }, 13984 { "inDestUnreachs", KSTAT_DATA_UINT32 }, 13985 { "inTimeExcds", KSTAT_DATA_UINT32 }, 13986 { "inParmProbs", KSTAT_DATA_UINT32 }, 13987 { "inSrcQuenchs", KSTAT_DATA_UINT32 }, 13988 { "inRedirects", KSTAT_DATA_UINT32 }, 13989 { "inEchos", KSTAT_DATA_UINT32 }, 13990 { "inEchoReps", KSTAT_DATA_UINT32 }, 13991 { "inTimestamps", KSTAT_DATA_UINT32 }, 13992 { "inTimestampReps", KSTAT_DATA_UINT32 }, 13993 { "inAddrMasks", KSTAT_DATA_UINT32 }, 13994 { "inAddrMaskReps", KSTAT_DATA_UINT32 }, 13995 { "outMsgs", KSTAT_DATA_UINT32 }, 13996 { "outErrors", KSTAT_DATA_UINT32 }, 13997 { "outDestUnreachs", KSTAT_DATA_UINT32 }, 13998 { "outTimeExcds", KSTAT_DATA_UINT32 }, 13999 { "outParmProbs", KSTAT_DATA_UINT32 }, 14000 { "outSrcQuenchs", KSTAT_DATA_UINT32 }, 14001 { "outRedirects", KSTAT_DATA_UINT32 }, 14002 { "outEchos", KSTAT_DATA_UINT32 }, 14003 { "outEchoReps", KSTAT_DATA_UINT32 }, 14004 { "outTimestamps", KSTAT_DATA_UINT32 }, 14005 { "outTimestampReps", KSTAT_DATA_UINT32 }, 14006 { "outAddrMasks", KSTAT_DATA_UINT32 }, 14007 { "outAddrMaskReps", KSTAT_DATA_UINT32 }, 14008 { "inChksumErrs", KSTAT_DATA_UINT32 }, 14009 { "inUnknowns", KSTAT_DATA_UINT32 }, 14010 { "inFragNeeded", KSTAT_DATA_UINT32 }, 14011 { "outFragNeeded", KSTAT_DATA_UINT32 }, 14012 { "outDrops", KSTAT_DATA_UINT32 }, 14013 { "inOverFlows", KSTAT_DATA_UINT32 }, 14014 { "inBadRedirects", KSTAT_DATA_UINT32 }, 14015 }; 14016 14017 ksp = kstat_create_netstack("ip", 0, "icmp", "mib2", KSTAT_TYPE_NAMED, 14018 NUM_OF_FIELDS(icmp_named_kstat_t), 0, stackid); 14019 if (ksp == NULL || ksp->ks_data == NULL) 14020 return (NULL); 14021 14022 bcopy(&template, ksp->ks_data, sizeof (template)); 14023 14024 ksp->ks_update = icmp_kstat_update; 14025 ksp->ks_private = (void *)(uintptr_t)stackid; 14026 14027 kstat_install(ksp); 14028 return (ksp); 14029 } 14030 14031 static void 14032 icmp_kstat_fini(netstackid_t stackid, kstat_t *ksp) 14033 { 14034 if (ksp != NULL) { 14035 ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private); 14036 kstat_delete_netstack(ksp, stackid); 14037 } 14038 } 14039 14040 static int 14041 icmp_kstat_update(kstat_t *kp, int rw) 14042 { 14043 icmp_named_kstat_t *icmpkp; 14044 netstackid_t stackid = (zoneid_t)(uintptr_t)kp->ks_private; 14045 netstack_t *ns; 14046 ip_stack_t *ipst; 14047 14048 if ((kp == NULL) || (kp->ks_data == NULL)) 14049 return (EIO); 14050 14051 if (rw == KSTAT_WRITE) 14052 return (EACCES); 14053 14054 ns = netstack_find_by_stackid(stackid); 14055 if (ns == NULL) 14056 return (-1); 14057 ipst = ns->netstack_ip; 14058 if (ipst == NULL) { 14059 netstack_rele(ns); 14060 return (-1); 14061 } 14062 icmpkp = (icmp_named_kstat_t *)kp->ks_data; 14063 14064 icmpkp->inMsgs.value.ui32 = ipst->ips_icmp_mib.icmpInMsgs; 14065 icmpkp->inErrors.value.ui32 = ipst->ips_icmp_mib.icmpInErrors; 14066 icmpkp->inDestUnreachs.value.ui32 = 14067 ipst->ips_icmp_mib.icmpInDestUnreachs; 14068 icmpkp->inTimeExcds.value.ui32 = ipst->ips_icmp_mib.icmpInTimeExcds; 14069 icmpkp->inParmProbs.value.ui32 = ipst->ips_icmp_mib.icmpInParmProbs; 14070 icmpkp->inSrcQuenchs.value.ui32 = ipst->ips_icmp_mib.icmpInSrcQuenchs; 14071 icmpkp->inRedirects.value.ui32 = ipst->ips_icmp_mib.icmpInRedirects; 14072 icmpkp->inEchos.value.ui32 = ipst->ips_icmp_mib.icmpInEchos; 14073 icmpkp->inEchoReps.value.ui32 = ipst->ips_icmp_mib.icmpInEchoReps; 14074 icmpkp->inTimestamps.value.ui32 = ipst->ips_icmp_mib.icmpInTimestamps; 14075 icmpkp->inTimestampReps.value.ui32 = 14076 ipst->ips_icmp_mib.icmpInTimestampReps; 14077 icmpkp->inAddrMasks.value.ui32 = ipst->ips_icmp_mib.icmpInAddrMasks; 14078 icmpkp->inAddrMaskReps.value.ui32 = 14079 ipst->ips_icmp_mib.icmpInAddrMaskReps; 14080 icmpkp->outMsgs.value.ui32 = ipst->ips_icmp_mib.icmpOutMsgs; 14081 icmpkp->outErrors.value.ui32 = ipst->ips_icmp_mib.icmpOutErrors; 14082 icmpkp->outDestUnreachs.value.ui32 = 14083 ipst->ips_icmp_mib.icmpOutDestUnreachs; 14084 icmpkp->outTimeExcds.value.ui32 = ipst->ips_icmp_mib.icmpOutTimeExcds; 14085 icmpkp->outParmProbs.value.ui32 = ipst->ips_icmp_mib.icmpOutParmProbs; 14086 icmpkp->outSrcQuenchs.value.ui32 = 14087 ipst->ips_icmp_mib.icmpOutSrcQuenchs; 14088 icmpkp->outRedirects.value.ui32 = ipst->ips_icmp_mib.icmpOutRedirects; 14089 icmpkp->outEchos.value.ui32 = ipst->ips_icmp_mib.icmpOutEchos; 14090 icmpkp->outEchoReps.value.ui32 = ipst->ips_icmp_mib.icmpOutEchoReps; 14091 icmpkp->outTimestamps.value.ui32 = 14092 ipst->ips_icmp_mib.icmpOutTimestamps; 14093 icmpkp->outTimestampReps.value.ui32 = 14094 ipst->ips_icmp_mib.icmpOutTimestampReps; 14095 icmpkp->outAddrMasks.value.ui32 = 14096 ipst->ips_icmp_mib.icmpOutAddrMasks; 14097 icmpkp->outAddrMaskReps.value.ui32 = 14098 ipst->ips_icmp_mib.icmpOutAddrMaskReps; 14099 icmpkp->inCksumErrs.value.ui32 = ipst->ips_icmp_mib.icmpInCksumErrs; 14100 icmpkp->inUnknowns.value.ui32 = ipst->ips_icmp_mib.icmpInUnknowns; 14101 icmpkp->inFragNeeded.value.ui32 = ipst->ips_icmp_mib.icmpInFragNeeded; 14102 icmpkp->outFragNeeded.value.ui32 = 14103 ipst->ips_icmp_mib.icmpOutFragNeeded; 14104 icmpkp->outDrops.value.ui32 = ipst->ips_icmp_mib.icmpOutDrops; 14105 icmpkp->inOverflows.value.ui32 = ipst->ips_icmp_mib.icmpInOverflows; 14106 icmpkp->inBadRedirects.value.ui32 = 14107 ipst->ips_icmp_mib.icmpInBadRedirects; 14108 14109 netstack_rele(ns); 14110 return (0); 14111 } 14112 14113 /* 14114 * This is the fanout function for raw socket opened for SCTP. Note 14115 * that it is called after SCTP checks that there is no socket which 14116 * wants a packet. Then before SCTP handles this out of the blue packet, 14117 * this function is called to see if there is any raw socket for SCTP. 14118 * If there is and it is bound to the correct address, the packet will 14119 * be sent to that socket. Note that only one raw socket can be bound to 14120 * a port. This is assured in ipcl_sctp_hash_insert(); 14121 */ 14122 void 14123 ip_fanout_sctp_raw(mblk_t *mp, ipha_t *ipha, ip6_t *ip6h, uint32_t ports, 14124 ip_recv_attr_t *ira) 14125 { 14126 conn_t *connp; 14127 queue_t *rq; 14128 boolean_t secure; 14129 ill_t *ill = ira->ira_ill; 14130 ip_stack_t *ipst = ill->ill_ipst; 14131 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 14132 sctp_stack_t *sctps = ipst->ips_netstack->netstack_sctp; 14133 iaflags_t iraflags = ira->ira_flags; 14134 ill_t *rill = ira->ira_rill; 14135 14136 secure = iraflags & IRAF_IPSEC_SECURE; 14137 14138 connp = ipcl_classify_raw(mp, IPPROTO_SCTP, ports, ipha, ip6h, 14139 ira, ipst); 14140 if (connp == NULL) { 14141 /* 14142 * Although raw sctp is not summed, OOB chunks must be. 14143 * Drop the packet here if the sctp checksum failed. 14144 */ 14145 if (iraflags & IRAF_SCTP_CSUM_ERR) { 14146 BUMP_MIB(&sctps->sctps_mib, sctpChecksumError); 14147 freemsg(mp); 14148 return; 14149 } 14150 ira->ira_ill = ira->ira_rill = NULL; 14151 sctp_ootb_input(mp, ira, ipst); 14152 ira->ira_ill = ill; 14153 ira->ira_rill = rill; 14154 return; 14155 } 14156 rq = connp->conn_rq; 14157 if (IPCL_IS_NONSTR(connp) ? connp->conn_flow_cntrld : !canputnext(rq)) { 14158 CONN_DEC_REF(connp); 14159 BUMP_MIB(ill->ill_ip_mib, rawipIfStatsInOverflows); 14160 freemsg(mp); 14161 return; 14162 } 14163 if (((iraflags & IRAF_IS_IPV4) ? 14164 CONN_INBOUND_POLICY_PRESENT(connp, ipss) : 14165 CONN_INBOUND_POLICY_PRESENT_V6(connp, ipss)) || 14166 secure) { 14167 mp = ipsec_check_inbound_policy(mp, connp, ipha, 14168 ip6h, ira); 14169 if (mp == NULL) { 14170 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14171 /* Note that mp is NULL */ 14172 ip_drop_input("ipIfStatsInDiscards", mp, ill); 14173 CONN_DEC_REF(connp); 14174 return; 14175 } 14176 } 14177 14178 if (iraflags & IRAF_ICMP_ERROR) { 14179 (connp->conn_recvicmp)(connp, mp, NULL, ira); 14180 } else { 14181 ill_t *rill = ira->ira_rill; 14182 14183 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers); 14184 /* This is the SOCK_RAW, IPPROTO_SCTP case. */ 14185 ira->ira_ill = ira->ira_rill = NULL; 14186 (connp->conn_recv)(connp, mp, NULL, ira); 14187 ira->ira_ill = ill; 14188 ira->ira_rill = rill; 14189 } 14190 CONN_DEC_REF(connp); 14191 } 14192 14193 /* 14194 * Free a packet that has the link-layer dl_unitdata_req_t or fast-path 14195 * header before the ip payload. 14196 */ 14197 static void 14198 ip_xmit_flowctl_drop(ill_t *ill, mblk_t *mp, boolean_t is_fp_mp, int fp_mp_len) 14199 { 14200 int len = (mp->b_wptr - mp->b_rptr); 14201 mblk_t *ip_mp; 14202 14203 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 14204 if (is_fp_mp || len != fp_mp_len) { 14205 if (len > fp_mp_len) { 14206 /* 14207 * fastpath header and ip header in the first mblk 14208 */ 14209 mp->b_rptr += fp_mp_len; 14210 } else { 14211 /* 14212 * ip_xmit_attach_llhdr had to prepend an mblk to 14213 * attach the fastpath header before ip header. 14214 */ 14215 ip_mp = mp->b_cont; 14216 freeb(mp); 14217 mp = ip_mp; 14218 mp->b_rptr += (fp_mp_len - len); 14219 } 14220 } else { 14221 ip_mp = mp->b_cont; 14222 freeb(mp); 14223 mp = ip_mp; 14224 } 14225 ip_drop_output("ipIfStatsOutDiscards - flow ctl", mp, ill); 14226 freemsg(mp); 14227 } 14228 14229 /* 14230 * Normal post fragmentation function. 14231 * 14232 * Send a packet using the passed in nce. This handles both IPv4 and IPv6 14233 * using the same state machine. 14234 * 14235 * We return an error on failure. In particular we return EWOULDBLOCK 14236 * when the driver flow controls. In that case this ensures that ip_wsrv runs 14237 * (currently by canputnext failure resulting in backenabling from GLD.) 14238 * This allows the callers of conn_ip_output() to use EWOULDBLOCK as an 14239 * indication that they can flow control until ip_wsrv() tells then to restart. 14240 * 14241 * If the nce passed by caller is incomplete, this function 14242 * queues the packet and if necessary, sends ARP request and bails. 14243 * If the Neighbor Cache passed is fully resolved, we simply prepend 14244 * the link-layer header to the packet, do ipsec hw acceleration 14245 * work if necessary, and send the packet out on the wire. 14246 */ 14247 /* ARGSUSED6 */ 14248 int 14249 ip_xmit(mblk_t *mp, nce_t *nce, iaflags_t ixaflags, uint_t pkt_len, 14250 uint32_t xmit_hint, zoneid_t szone, zoneid_t nolzid, uintptr_t *ixacookie) 14251 { 14252 queue_t *wq; 14253 ill_t *ill = nce->nce_ill; 14254 ip_stack_t *ipst = ill->ill_ipst; 14255 uint64_t delta; 14256 boolean_t isv6 = ill->ill_isv6; 14257 boolean_t fp_mp; 14258 ncec_t *ncec = nce->nce_common; 14259 int64_t now = LBOLT_FASTPATH64; 14260 boolean_t is_probe; 14261 14262 DTRACE_PROBE1(ip__xmit, nce_t *, nce); 14263 14264 ASSERT(mp != NULL); 14265 ASSERT(mp->b_datap->db_type == M_DATA); 14266 ASSERT(pkt_len == msgdsize(mp)); 14267 14268 /* 14269 * If we have already been here and are coming back after ARP/ND. 14270 * the IXAF_NO_TRACE flag is set. We skip FW_HOOKS, DTRACE and ipobs 14271 * in that case since they have seen the packet when it came here 14272 * the first time. 14273 */ 14274 if (ixaflags & IXAF_NO_TRACE) 14275 goto sendit; 14276 14277 if (ixaflags & IXAF_IS_IPV4) { 14278 ipha_t *ipha = (ipha_t *)mp->b_rptr; 14279 14280 ASSERT(!isv6); 14281 ASSERT(pkt_len == ntohs(((ipha_t *)mp->b_rptr)->ipha_length)); 14282 if (HOOKS4_INTERESTED_PHYSICAL_OUT(ipst) && 14283 !(ixaflags & IXAF_NO_PFHOOK)) { 14284 int error; 14285 14286 FW_HOOKS(ipst->ips_ip4_physical_out_event, 14287 ipst->ips_ipv4firewall_physical_out, 14288 NULL, ill, ipha, mp, mp, 0, ipst, error); 14289 DTRACE_PROBE1(ip4__physical__out__end, 14290 mblk_t *, mp); 14291 if (mp == NULL) 14292 return (error); 14293 14294 /* The length could have changed */ 14295 pkt_len = msgdsize(mp); 14296 } 14297 if (ipst->ips_ip4_observe.he_interested) { 14298 /* 14299 * Note that for TX the zoneid is the sending 14300 * zone, whether or not MLP is in play. 14301 * Since the szone argument is the IP zoneid (i.e., 14302 * zero for exclusive-IP zones) and ipobs wants 14303 * the system zoneid, we map it here. 14304 */ 14305 szone = IP_REAL_ZONEID(szone, ipst); 14306 14307 /* 14308 * On the outbound path the destination zone will be 14309 * unknown as we're sending this packet out on the 14310 * wire. 14311 */ 14312 ipobs_hook(mp, IPOBS_HOOK_OUTBOUND, szone, ALL_ZONES, 14313 ill, ipst); 14314 } 14315 DTRACE_IP7(send, mblk_t *, mp, conn_t *, NULL, 14316 void_ip_t *, ipha, __dtrace_ipsr_ill_t *, ill, 14317 ipha_t *, ipha, ip6_t *, NULL, int, 0); 14318 } else { 14319 ip6_t *ip6h = (ip6_t *)mp->b_rptr; 14320 14321 ASSERT(isv6); 14322 ASSERT(pkt_len == 14323 ntohs(((ip6_t *)mp->b_rptr)->ip6_plen) + IPV6_HDR_LEN); 14324 if (HOOKS6_INTERESTED_PHYSICAL_OUT(ipst) && 14325 !(ixaflags & IXAF_NO_PFHOOK)) { 14326 int error; 14327 14328 FW_HOOKS6(ipst->ips_ip6_physical_out_event, 14329 ipst->ips_ipv6firewall_physical_out, 14330 NULL, ill, ip6h, mp, mp, 0, ipst, error); 14331 DTRACE_PROBE1(ip6__physical__out__end, 14332 mblk_t *, mp); 14333 if (mp == NULL) 14334 return (error); 14335 14336 /* The length could have changed */ 14337 pkt_len = msgdsize(mp); 14338 } 14339 if (ipst->ips_ip6_observe.he_interested) { 14340 /* See above */ 14341 szone = IP_REAL_ZONEID(szone, ipst); 14342 14343 ipobs_hook(mp, IPOBS_HOOK_OUTBOUND, szone, ALL_ZONES, 14344 ill, ipst); 14345 } 14346 DTRACE_IP7(send, mblk_t *, mp, conn_t *, NULL, 14347 void_ip_t *, ip6h, __dtrace_ipsr_ill_t *, ill, 14348 ipha_t *, NULL, ip6_t *, ip6h, int, 0); 14349 } 14350 14351 sendit: 14352 /* 14353 * We check the state without a lock because the state can never 14354 * move "backwards" to initial or incomplete. 14355 */ 14356 switch (ncec->ncec_state) { 14357 case ND_REACHABLE: 14358 case ND_STALE: 14359 case ND_DELAY: 14360 case ND_PROBE: 14361 mp = ip_xmit_attach_llhdr(mp, nce); 14362 if (mp == NULL) { 14363 /* 14364 * ip_xmit_attach_llhdr has increased 14365 * ipIfStatsOutDiscards and called ip_drop_output() 14366 */ 14367 return (ENOBUFS); 14368 } 14369 /* 14370 * check if nce_fastpath completed and we tagged on a 14371 * copy of nce_fp_mp in ip_xmit_attach_llhdr(). 14372 */ 14373 fp_mp = (mp->b_datap->db_type == M_DATA); 14374 14375 if (fp_mp && 14376 (ill->ill_capabilities & ILL_CAPAB_DLD_DIRECT)) { 14377 ill_dld_direct_t *idd; 14378 14379 idd = &ill->ill_dld_capab->idc_direct; 14380 /* 14381 * Send the packet directly to DLD, where it 14382 * may be queued depending on the availability 14383 * of transmit resources at the media layer. 14384 * Return value should be taken into 14385 * account and flow control the TCP. 14386 */ 14387 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutTransmits); 14388 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutOctets, 14389 pkt_len); 14390 14391 if (ixaflags & IXAF_NO_DEV_FLOW_CTL) { 14392 (void) idd->idd_tx_df(idd->idd_tx_dh, mp, 14393 (uintptr_t)xmit_hint, IP_DROP_ON_NO_DESC); 14394 } else { 14395 uintptr_t cookie; 14396 14397 if ((cookie = idd->idd_tx_df(idd->idd_tx_dh, 14398 mp, (uintptr_t)xmit_hint, 0)) != 0) { 14399 if (ixacookie != NULL) 14400 *ixacookie = cookie; 14401 return (EWOULDBLOCK); 14402 } 14403 } 14404 } else { 14405 wq = ill->ill_wq; 14406 14407 if (!(ixaflags & IXAF_NO_DEV_FLOW_CTL) && 14408 !canputnext(wq)) { 14409 if (ixacookie != NULL) 14410 *ixacookie = 0; 14411 ip_xmit_flowctl_drop(ill, mp, fp_mp, 14412 nce->nce_fp_mp != NULL ? 14413 MBLKL(nce->nce_fp_mp) : 0); 14414 return (EWOULDBLOCK); 14415 } 14416 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutTransmits); 14417 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutOctets, 14418 pkt_len); 14419 putnext(wq, mp); 14420 } 14421 14422 /* 14423 * The rest of this function implements Neighbor Unreachability 14424 * detection. Determine if the ncec is eligible for NUD. 14425 */ 14426 if (ncec->ncec_flags & NCE_F_NONUD) 14427 return (0); 14428 14429 ASSERT(ncec->ncec_state != ND_INCOMPLETE); 14430 14431 /* 14432 * Check for upper layer advice 14433 */ 14434 if (ixaflags & IXAF_REACH_CONF) { 14435 timeout_id_t tid; 14436 14437 /* 14438 * It should be o.k. to check the state without 14439 * a lock here, at most we lose an advice. 14440 */ 14441 ncec->ncec_last = TICK_TO_MSEC(now); 14442 if (ncec->ncec_state != ND_REACHABLE) { 14443 mutex_enter(&ncec->ncec_lock); 14444 ncec->ncec_state = ND_REACHABLE; 14445 tid = ncec->ncec_timeout_id; 14446 ncec->ncec_timeout_id = 0; 14447 mutex_exit(&ncec->ncec_lock); 14448 (void) untimeout(tid); 14449 if (ip_debug > 2) { 14450 /* ip1dbg */ 14451 pr_addr_dbg("ip_xmit: state" 14452 " for %s changed to" 14453 " REACHABLE\n", AF_INET6, 14454 &ncec->ncec_addr); 14455 } 14456 } 14457 return (0); 14458 } 14459 14460 delta = TICK_TO_MSEC(now) - ncec->ncec_last; 14461 ip1dbg(("ip_xmit: delta = %" PRId64 14462 " ill_reachable_time = %d \n", delta, 14463 ill->ill_reachable_time)); 14464 if (delta > (uint64_t)ill->ill_reachable_time) { 14465 mutex_enter(&ncec->ncec_lock); 14466 switch (ncec->ncec_state) { 14467 case ND_REACHABLE: 14468 ASSERT((ncec->ncec_flags & NCE_F_NONUD) == 0); 14469 /* FALLTHROUGH */ 14470 case ND_STALE: 14471 /* 14472 * ND_REACHABLE is identical to 14473 * ND_STALE in this specific case. If 14474 * reachable time has expired for this 14475 * neighbor (delta is greater than 14476 * reachable time), conceptually, the 14477 * neighbor cache is no longer in 14478 * REACHABLE state, but already in 14479 * STALE state. So the correct 14480 * transition here is to ND_DELAY. 14481 */ 14482 ncec->ncec_state = ND_DELAY; 14483 mutex_exit(&ncec->ncec_lock); 14484 nce_restart_timer(ncec, 14485 ipst->ips_delay_first_probe_time); 14486 if (ip_debug > 3) { 14487 /* ip2dbg */ 14488 pr_addr_dbg("ip_xmit: state" 14489 " for %s changed to" 14490 " DELAY\n", AF_INET6, 14491 &ncec->ncec_addr); 14492 } 14493 break; 14494 case ND_DELAY: 14495 case ND_PROBE: 14496 mutex_exit(&ncec->ncec_lock); 14497 /* Timers have already started */ 14498 break; 14499 case ND_UNREACHABLE: 14500 /* 14501 * nce_timer has detected that this ncec 14502 * is unreachable and initiated deleting 14503 * this ncec. 14504 * This is a harmless race where we found the 14505 * ncec before it was deleted and have 14506 * just sent out a packet using this 14507 * unreachable ncec. 14508 */ 14509 mutex_exit(&ncec->ncec_lock); 14510 break; 14511 default: 14512 ASSERT(0); 14513 mutex_exit(&ncec->ncec_lock); 14514 } 14515 } 14516 return (0); 14517 14518 case ND_INCOMPLETE: 14519 /* 14520 * the state could have changed since we didn't hold the lock. 14521 * Re-verify state under lock. 14522 */ 14523 is_probe = ipmp_packet_is_probe(mp, nce->nce_ill); 14524 mutex_enter(&ncec->ncec_lock); 14525 if (NCE_ISREACHABLE(ncec)) { 14526 mutex_exit(&ncec->ncec_lock); 14527 goto sendit; 14528 } 14529 /* queue the packet */ 14530 nce_queue_mp(ncec, mp, is_probe); 14531 mutex_exit(&ncec->ncec_lock); 14532 DTRACE_PROBE2(ip__xmit__incomplete, 14533 (ncec_t *), ncec, (mblk_t *), mp); 14534 return (0); 14535 14536 case ND_INITIAL: 14537 /* 14538 * State could have changed since we didn't hold the lock, so 14539 * re-verify state. 14540 */ 14541 is_probe = ipmp_packet_is_probe(mp, nce->nce_ill); 14542 mutex_enter(&ncec->ncec_lock); 14543 if (NCE_ISREACHABLE(ncec)) { 14544 mutex_exit(&ncec->ncec_lock); 14545 goto sendit; 14546 } 14547 nce_queue_mp(ncec, mp, is_probe); 14548 if (ncec->ncec_state == ND_INITIAL) { 14549 ncec->ncec_state = ND_INCOMPLETE; 14550 mutex_exit(&ncec->ncec_lock); 14551 /* 14552 * figure out the source we want to use 14553 * and resolve it. 14554 */ 14555 ip_ndp_resolve(ncec); 14556 } else { 14557 mutex_exit(&ncec->ncec_lock); 14558 } 14559 return (0); 14560 14561 case ND_UNREACHABLE: 14562 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 14563 ip_drop_output("ipIfStatsOutDiscards - ND_UNREACHABLE", 14564 mp, ill); 14565 freemsg(mp); 14566 return (0); 14567 14568 default: 14569 ASSERT(0); 14570 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 14571 ip_drop_output("ipIfStatsOutDiscards - ND_other", 14572 mp, ill); 14573 freemsg(mp); 14574 return (ENETUNREACH); 14575 } 14576 } 14577 14578 /* 14579 * Return B_TRUE if the buffers differ in length or content. 14580 * This is used for comparing extension header buffers. 14581 * Note that an extension header would be declared different 14582 * even if all that changed was the next header value in that header i.e. 14583 * what really changed is the next extension header. 14584 */ 14585 boolean_t 14586 ip_cmpbuf(const void *abuf, uint_t alen, boolean_t b_valid, const void *bbuf, 14587 uint_t blen) 14588 { 14589 if (!b_valid) 14590 blen = 0; 14591 14592 if (alen != blen) 14593 return (B_TRUE); 14594 if (alen == 0) 14595 return (B_FALSE); /* Both zero length */ 14596 return (bcmp(abuf, bbuf, alen)); 14597 } 14598 14599 /* 14600 * Preallocate memory for ip_savebuf(). Returns B_TRUE if ok. 14601 * Return B_FALSE if memory allocation fails - don't change any state! 14602 */ 14603 boolean_t 14604 ip_allocbuf(void **dstp, uint_t *dstlenp, boolean_t src_valid, 14605 const void *src, uint_t srclen) 14606 { 14607 void *dst; 14608 14609 if (!src_valid) 14610 srclen = 0; 14611 14612 ASSERT(*dstlenp == 0); 14613 if (src != NULL && srclen != 0) { 14614 dst = mi_alloc(srclen, BPRI_MED); 14615 if (dst == NULL) 14616 return (B_FALSE); 14617 } else { 14618 dst = NULL; 14619 } 14620 if (*dstp != NULL) 14621 mi_free(*dstp); 14622 *dstp = dst; 14623 *dstlenp = dst == NULL ? 0 : srclen; 14624 return (B_TRUE); 14625 } 14626 14627 /* 14628 * Replace what is in *dst, *dstlen with the source. 14629 * Assumes ip_allocbuf has already been called. 14630 */ 14631 void 14632 ip_savebuf(void **dstp, uint_t *dstlenp, boolean_t src_valid, 14633 const void *src, uint_t srclen) 14634 { 14635 if (!src_valid) 14636 srclen = 0; 14637 14638 ASSERT(*dstlenp == srclen); 14639 if (src != NULL && srclen != 0) 14640 bcopy(src, *dstp, srclen); 14641 } 14642 14643 /* 14644 * Free the storage pointed to by the members of an ip_pkt_t. 14645 */ 14646 void 14647 ip_pkt_free(ip_pkt_t *ipp) 14648 { 14649 uint_t fields = ipp->ipp_fields; 14650 14651 if (fields & IPPF_HOPOPTS) { 14652 kmem_free(ipp->ipp_hopopts, ipp->ipp_hopoptslen); 14653 ipp->ipp_hopopts = NULL; 14654 ipp->ipp_hopoptslen = 0; 14655 } 14656 if (fields & IPPF_RTHDRDSTOPTS) { 14657 kmem_free(ipp->ipp_rthdrdstopts, ipp->ipp_rthdrdstoptslen); 14658 ipp->ipp_rthdrdstopts = NULL; 14659 ipp->ipp_rthdrdstoptslen = 0; 14660 } 14661 if (fields & IPPF_DSTOPTS) { 14662 kmem_free(ipp->ipp_dstopts, ipp->ipp_dstoptslen); 14663 ipp->ipp_dstopts = NULL; 14664 ipp->ipp_dstoptslen = 0; 14665 } 14666 if (fields & IPPF_RTHDR) { 14667 kmem_free(ipp->ipp_rthdr, ipp->ipp_rthdrlen); 14668 ipp->ipp_rthdr = NULL; 14669 ipp->ipp_rthdrlen = 0; 14670 } 14671 if (fields & IPPF_IPV4_OPTIONS) { 14672 kmem_free(ipp->ipp_ipv4_options, ipp->ipp_ipv4_options_len); 14673 ipp->ipp_ipv4_options = NULL; 14674 ipp->ipp_ipv4_options_len = 0; 14675 } 14676 if (fields & IPPF_LABEL_V4) { 14677 kmem_free(ipp->ipp_label_v4, ipp->ipp_label_len_v4); 14678 ipp->ipp_label_v4 = NULL; 14679 ipp->ipp_label_len_v4 = 0; 14680 } 14681 if (fields & IPPF_LABEL_V6) { 14682 kmem_free(ipp->ipp_label_v6, ipp->ipp_label_len_v6); 14683 ipp->ipp_label_v6 = NULL; 14684 ipp->ipp_label_len_v6 = 0; 14685 } 14686 ipp->ipp_fields &= ~(IPPF_HOPOPTS | IPPF_RTHDRDSTOPTS | IPPF_DSTOPTS | 14687 IPPF_RTHDR | IPPF_IPV4_OPTIONS | IPPF_LABEL_V4 | IPPF_LABEL_V6); 14688 } 14689 14690 /* 14691 * Copy from src to dst and allocate as needed. 14692 * Returns zero or ENOMEM. 14693 * 14694 * The caller must initialize dst to zero. 14695 */ 14696 int 14697 ip_pkt_copy(ip_pkt_t *src, ip_pkt_t *dst, int kmflag) 14698 { 14699 uint_t fields = src->ipp_fields; 14700 14701 /* Start with fields that don't require memory allocation */ 14702 dst->ipp_fields = fields & 14703 ~(IPPF_HOPOPTS | IPPF_RTHDRDSTOPTS | IPPF_DSTOPTS | 14704 IPPF_RTHDR | IPPF_IPV4_OPTIONS | IPPF_LABEL_V4 | IPPF_LABEL_V6); 14705 14706 dst->ipp_addr = src->ipp_addr; 14707 dst->ipp_unicast_hops = src->ipp_unicast_hops; 14708 dst->ipp_hoplimit = src->ipp_hoplimit; 14709 dst->ipp_tclass = src->ipp_tclass; 14710 dst->ipp_type_of_service = src->ipp_type_of_service; 14711 14712 if (!(fields & (IPPF_HOPOPTS | IPPF_RTHDRDSTOPTS | IPPF_DSTOPTS | 14713 IPPF_RTHDR | IPPF_IPV4_OPTIONS | IPPF_LABEL_V4 | IPPF_LABEL_V6))) 14714 return (0); 14715 14716 if (fields & IPPF_HOPOPTS) { 14717 dst->ipp_hopopts = kmem_alloc(src->ipp_hopoptslen, kmflag); 14718 if (dst->ipp_hopopts == NULL) { 14719 ip_pkt_free(dst); 14720 return (ENOMEM); 14721 } 14722 dst->ipp_fields |= IPPF_HOPOPTS; 14723 bcopy(src->ipp_hopopts, dst->ipp_hopopts, 14724 src->ipp_hopoptslen); 14725 dst->ipp_hopoptslen = src->ipp_hopoptslen; 14726 } 14727 if (fields & IPPF_RTHDRDSTOPTS) { 14728 dst->ipp_rthdrdstopts = kmem_alloc(src->ipp_rthdrdstoptslen, 14729 kmflag); 14730 if (dst->ipp_rthdrdstopts == NULL) { 14731 ip_pkt_free(dst); 14732 return (ENOMEM); 14733 } 14734 dst->ipp_fields |= IPPF_RTHDRDSTOPTS; 14735 bcopy(src->ipp_rthdrdstopts, dst->ipp_rthdrdstopts, 14736 src->ipp_rthdrdstoptslen); 14737 dst->ipp_rthdrdstoptslen = src->ipp_rthdrdstoptslen; 14738 } 14739 if (fields & IPPF_DSTOPTS) { 14740 dst->ipp_dstopts = kmem_alloc(src->ipp_dstoptslen, kmflag); 14741 if (dst->ipp_dstopts == NULL) { 14742 ip_pkt_free(dst); 14743 return (ENOMEM); 14744 } 14745 dst->ipp_fields |= IPPF_DSTOPTS; 14746 bcopy(src->ipp_dstopts, dst->ipp_dstopts, 14747 src->ipp_dstoptslen); 14748 dst->ipp_dstoptslen = src->ipp_dstoptslen; 14749 } 14750 if (fields & IPPF_RTHDR) { 14751 dst->ipp_rthdr = kmem_alloc(src->ipp_rthdrlen, kmflag); 14752 if (dst->ipp_rthdr == NULL) { 14753 ip_pkt_free(dst); 14754 return (ENOMEM); 14755 } 14756 dst->ipp_fields |= IPPF_RTHDR; 14757 bcopy(src->ipp_rthdr, dst->ipp_rthdr, 14758 src->ipp_rthdrlen); 14759 dst->ipp_rthdrlen = src->ipp_rthdrlen; 14760 } 14761 if (fields & IPPF_IPV4_OPTIONS) { 14762 dst->ipp_ipv4_options = kmem_alloc(src->ipp_ipv4_options_len, 14763 kmflag); 14764 if (dst->ipp_ipv4_options == NULL) { 14765 ip_pkt_free(dst); 14766 return (ENOMEM); 14767 } 14768 dst->ipp_fields |= IPPF_IPV4_OPTIONS; 14769 bcopy(src->ipp_ipv4_options, dst->ipp_ipv4_options, 14770 src->ipp_ipv4_options_len); 14771 dst->ipp_ipv4_options_len = src->ipp_ipv4_options_len; 14772 } 14773 if (fields & IPPF_LABEL_V4) { 14774 dst->ipp_label_v4 = kmem_alloc(src->ipp_label_len_v4, kmflag); 14775 if (dst->ipp_label_v4 == NULL) { 14776 ip_pkt_free(dst); 14777 return (ENOMEM); 14778 } 14779 dst->ipp_fields |= IPPF_LABEL_V4; 14780 bcopy(src->ipp_label_v4, dst->ipp_label_v4, 14781 src->ipp_label_len_v4); 14782 dst->ipp_label_len_v4 = src->ipp_label_len_v4; 14783 } 14784 if (fields & IPPF_LABEL_V6) { 14785 dst->ipp_label_v6 = kmem_alloc(src->ipp_label_len_v6, kmflag); 14786 if (dst->ipp_label_v6 == NULL) { 14787 ip_pkt_free(dst); 14788 return (ENOMEM); 14789 } 14790 dst->ipp_fields |= IPPF_LABEL_V6; 14791 bcopy(src->ipp_label_v6, dst->ipp_label_v6, 14792 src->ipp_label_len_v6); 14793 dst->ipp_label_len_v6 = src->ipp_label_len_v6; 14794 } 14795 if (fields & IPPF_FRAGHDR) { 14796 dst->ipp_fraghdr = kmem_alloc(src->ipp_fraghdrlen, kmflag); 14797 if (dst->ipp_fraghdr == NULL) { 14798 ip_pkt_free(dst); 14799 return (ENOMEM); 14800 } 14801 dst->ipp_fields |= IPPF_FRAGHDR; 14802 bcopy(src->ipp_fraghdr, dst->ipp_fraghdr, 14803 src->ipp_fraghdrlen); 14804 dst->ipp_fraghdrlen = src->ipp_fraghdrlen; 14805 } 14806 return (0); 14807 } 14808 14809 /* 14810 * Returns INADDR_ANY if no source route 14811 */ 14812 ipaddr_t 14813 ip_pkt_source_route_v4(const ip_pkt_t *ipp) 14814 { 14815 ipaddr_t nexthop = INADDR_ANY; 14816 ipoptp_t opts; 14817 uchar_t *opt; 14818 uint8_t optval; 14819 uint8_t optlen; 14820 uint32_t totallen; 14821 14822 if (!(ipp->ipp_fields & IPPF_IPV4_OPTIONS)) 14823 return (INADDR_ANY); 14824 14825 totallen = ipp->ipp_ipv4_options_len; 14826 if (totallen & 0x3) 14827 return (INADDR_ANY); 14828 14829 for (optval = ipoptp_first2(&opts, totallen, ipp->ipp_ipv4_options); 14830 optval != IPOPT_EOL; 14831 optval = ipoptp_next(&opts)) { 14832 opt = opts.ipoptp_cur; 14833 switch (optval) { 14834 uint8_t off; 14835 case IPOPT_SSRR: 14836 case IPOPT_LSRR: 14837 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 14838 break; 14839 } 14840 optlen = opts.ipoptp_len; 14841 off = opt[IPOPT_OFFSET]; 14842 off--; 14843 if (optlen < IP_ADDR_LEN || 14844 off > optlen - IP_ADDR_LEN) { 14845 /* End of source route */ 14846 break; 14847 } 14848 bcopy((char *)opt + off, &nexthop, IP_ADDR_LEN); 14849 if (nexthop == htonl(INADDR_LOOPBACK)) { 14850 /* Ignore */ 14851 nexthop = INADDR_ANY; 14852 break; 14853 } 14854 break; 14855 } 14856 } 14857 return (nexthop); 14858 } 14859 14860 /* 14861 * Reverse a source route. 14862 */ 14863 void 14864 ip_pkt_source_route_reverse_v4(ip_pkt_t *ipp) 14865 { 14866 ipaddr_t tmp; 14867 ipoptp_t opts; 14868 uchar_t *opt; 14869 uint8_t optval; 14870 uint32_t totallen; 14871 14872 if (!(ipp->ipp_fields & IPPF_IPV4_OPTIONS)) 14873 return; 14874 14875 totallen = ipp->ipp_ipv4_options_len; 14876 if (totallen & 0x3) 14877 return; 14878 14879 for (optval = ipoptp_first2(&opts, totallen, ipp->ipp_ipv4_options); 14880 optval != IPOPT_EOL; 14881 optval = ipoptp_next(&opts)) { 14882 uint8_t off1, off2; 14883 14884 opt = opts.ipoptp_cur; 14885 switch (optval) { 14886 case IPOPT_SSRR: 14887 case IPOPT_LSRR: 14888 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 14889 break; 14890 } 14891 off1 = IPOPT_MINOFF_SR - 1; 14892 off2 = opt[IPOPT_OFFSET] - IP_ADDR_LEN - 1; 14893 while (off2 > off1) { 14894 bcopy(opt + off2, &tmp, IP_ADDR_LEN); 14895 bcopy(opt + off1, opt + off2, IP_ADDR_LEN); 14896 bcopy(&tmp, opt + off2, IP_ADDR_LEN); 14897 off2 -= IP_ADDR_LEN; 14898 off1 += IP_ADDR_LEN; 14899 } 14900 opt[IPOPT_OFFSET] = IPOPT_MINOFF_SR; 14901 break; 14902 } 14903 } 14904 } 14905 14906 /* 14907 * Returns NULL if no routing header 14908 */ 14909 in6_addr_t * 14910 ip_pkt_source_route_v6(const ip_pkt_t *ipp) 14911 { 14912 in6_addr_t *nexthop = NULL; 14913 ip6_rthdr0_t *rthdr; 14914 14915 if (!(ipp->ipp_fields & IPPF_RTHDR)) 14916 return (NULL); 14917 14918 rthdr = (ip6_rthdr0_t *)ipp->ipp_rthdr; 14919 if (rthdr->ip6r0_segleft == 0) 14920 return (NULL); 14921 14922 nexthop = (in6_addr_t *)((char *)rthdr + sizeof (*rthdr)); 14923 return (nexthop); 14924 } 14925 14926 zoneid_t 14927 ip_get_zoneid_v4(ipaddr_t addr, mblk_t *mp, ip_recv_attr_t *ira, 14928 zoneid_t lookup_zoneid) 14929 { 14930 ip_stack_t *ipst = ira->ira_ill->ill_ipst; 14931 ire_t *ire; 14932 int ire_flags = MATCH_IRE_TYPE; 14933 zoneid_t zoneid = ALL_ZONES; 14934 14935 if (is_system_labeled() && !tsol_can_accept_raw(mp, ira, B_FALSE)) 14936 return (ALL_ZONES); 14937 14938 if (lookup_zoneid != ALL_ZONES) 14939 ire_flags |= MATCH_IRE_ZONEONLY; 14940 ire = ire_ftable_lookup_v4(addr, NULL, NULL, IRE_LOCAL | IRE_LOOPBACK, 14941 NULL, lookup_zoneid, NULL, ire_flags, 0, ipst, NULL); 14942 if (ire != NULL) { 14943 zoneid = IP_REAL_ZONEID(ire->ire_zoneid, ipst); 14944 ire_refrele(ire); 14945 } 14946 return (zoneid); 14947 } 14948 14949 zoneid_t 14950 ip_get_zoneid_v6(in6_addr_t *addr, mblk_t *mp, const ill_t *ill, 14951 ip_recv_attr_t *ira, zoneid_t lookup_zoneid) 14952 { 14953 ip_stack_t *ipst = ira->ira_ill->ill_ipst; 14954 ire_t *ire; 14955 int ire_flags = MATCH_IRE_TYPE; 14956 zoneid_t zoneid = ALL_ZONES; 14957 14958 if (is_system_labeled() && !tsol_can_accept_raw(mp, ira, B_FALSE)) 14959 return (ALL_ZONES); 14960 14961 if (IN6_IS_ADDR_LINKLOCAL(addr)) 14962 ire_flags |= MATCH_IRE_ILL; 14963 14964 if (lookup_zoneid != ALL_ZONES) 14965 ire_flags |= MATCH_IRE_ZONEONLY; 14966 ire = ire_ftable_lookup_v6(addr, NULL, NULL, IRE_LOCAL | IRE_LOOPBACK, 14967 ill, lookup_zoneid, NULL, ire_flags, 0, ipst, NULL); 14968 if (ire != NULL) { 14969 zoneid = IP_REAL_ZONEID(ire->ire_zoneid, ipst); 14970 ire_refrele(ire); 14971 } 14972 return (zoneid); 14973 } 14974 14975 /* 14976 * IP obserability hook support functions. 14977 */ 14978 static void 14979 ipobs_init(ip_stack_t *ipst) 14980 { 14981 netid_t id; 14982 14983 id = net_getnetidbynetstackid(ipst->ips_netstack->netstack_stackid); 14984 14985 ipst->ips_ip4_observe_pr = net_protocol_lookup(id, NHF_INET); 14986 VERIFY(ipst->ips_ip4_observe_pr != NULL); 14987 14988 ipst->ips_ip6_observe_pr = net_protocol_lookup(id, NHF_INET6); 14989 VERIFY(ipst->ips_ip6_observe_pr != NULL); 14990 } 14991 14992 static void 14993 ipobs_fini(ip_stack_t *ipst) 14994 { 14995 14996 VERIFY(net_protocol_release(ipst->ips_ip4_observe_pr) == 0); 14997 VERIFY(net_protocol_release(ipst->ips_ip6_observe_pr) == 0); 14998 } 14999 15000 /* 15001 * hook_pkt_observe_t is composed in network byte order so that the 15002 * entire mblk_t chain handed into hook_run can be used as-is. 15003 * The caveat is that use of the fields, such as the zone fields, 15004 * requires conversion into host byte order first. 15005 */ 15006 void 15007 ipobs_hook(mblk_t *mp, int htype, zoneid_t zsrc, zoneid_t zdst, 15008 const ill_t *ill, ip_stack_t *ipst) 15009 { 15010 hook_pkt_observe_t *hdr; 15011 uint64_t grifindex; 15012 mblk_t *imp; 15013 15014 imp = allocb(sizeof (*hdr), BPRI_HI); 15015 if (imp == NULL) 15016 return; 15017 15018 hdr = (hook_pkt_observe_t *)imp->b_rptr; 15019 /* 15020 * b_wptr is set to make the apparent size of the data in the mblk_t 15021 * to exclude the pointers at the end of hook_pkt_observer_t. 15022 */ 15023 imp->b_wptr = imp->b_rptr + sizeof (dl_ipnetinfo_t); 15024 imp->b_cont = mp; 15025 15026 ASSERT(DB_TYPE(mp) == M_DATA); 15027 15028 if (IS_UNDER_IPMP(ill)) 15029 grifindex = ipmp_ill_get_ipmp_ifindex(ill); 15030 else 15031 grifindex = 0; 15032 15033 hdr->hpo_version = 1; 15034 hdr->hpo_htype = htons(htype); 15035 hdr->hpo_pktlen = htonl((ulong_t)msgdsize(mp)); 15036 hdr->hpo_ifindex = htonl(ill->ill_phyint->phyint_ifindex); 15037 hdr->hpo_grifindex = htonl(grifindex); 15038 hdr->hpo_zsrc = htonl(zsrc); 15039 hdr->hpo_zdst = htonl(zdst); 15040 hdr->hpo_pkt = imp; 15041 hdr->hpo_ctx = ipst->ips_netstack; 15042 15043 if (ill->ill_isv6) { 15044 hdr->hpo_family = AF_INET6; 15045 (void) hook_run(ipst->ips_ipv6_net_data->netd_hooks, 15046 ipst->ips_ipv6observing, (hook_data_t)hdr); 15047 } else { 15048 hdr->hpo_family = AF_INET; 15049 (void) hook_run(ipst->ips_ipv4_net_data->netd_hooks, 15050 ipst->ips_ipv4observing, (hook_data_t)hdr); 15051 } 15052 15053 imp->b_cont = NULL; 15054 freemsg(imp); 15055 } 15056 15057 /* 15058 * Utility routine that checks if `v4srcp' is a valid address on underlying 15059 * interface `ill'. If `ipifp' is non-NULL, it's set to a held ipif 15060 * associated with `v4srcp' on success. NOTE: if this is not called from 15061 * inside the IPSQ (ill_g_lock is not held), `ill' may be removed from the 15062 * group during or after this lookup. 15063 */ 15064 boolean_t 15065 ipif_lookup_testaddr_v4(ill_t *ill, const in_addr_t *v4srcp, ipif_t **ipifp) 15066 { 15067 ipif_t *ipif; 15068 15069 ipif = ipif_lookup_addr_exact(*v4srcp, ill, ill->ill_ipst); 15070 if (ipif != NULL) { 15071 if (ipifp != NULL) 15072 *ipifp = ipif; 15073 else 15074 ipif_refrele(ipif); 15075 return (B_TRUE); 15076 } 15077 15078 ip1dbg(("ipif_lookup_testaddr_v4: cannot find ipif for src %x\n", 15079 *v4srcp)); 15080 return (B_FALSE); 15081 } 15082