1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2008 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 /* Copyright (c) 1990 Mentat Inc. */ 27 28 #ifndef _INET_IP_H 29 #define _INET_IP_H 30 31 #ifdef __cplusplus 32 extern "C" { 33 #endif 34 35 #include <sys/isa_defs.h> 36 #include <sys/types.h> 37 #include <inet/mib2.h> 38 #include <inet/nd.h> 39 #include <sys/atomic.h> 40 #include <net/if_dl.h> 41 #include <net/if.h> 42 #include <netinet/ip.h> 43 #include <netinet/igmp.h> 44 #include <sys/neti.h> 45 #include <sys/hook.h> 46 #include <sys/hook_event.h> 47 #include <sys/hook_impl.h> 48 #include <inet/ip_stack.h> 49 50 #ifdef _KERNEL 51 #include <netinet/ip6.h> 52 #include <sys/avl.h> 53 #include <sys/list.h> 54 #include <sys/vmem.h> 55 #include <sys/squeue.h> 56 #include <net/route.h> 57 #include <sys/systm.h> 58 #include <sys/multidata.h> 59 #include <net/radix.h> 60 #include <sys/modhash.h> 61 62 #ifdef DEBUG 63 #define CONN_DEBUG 64 #endif 65 66 #define IP_DEBUG 67 /* 68 * The mt-streams(9F) flags for the IP module; put here so that other 69 * "drivers" that are actually IP (e.g., ICMP, UDP) can use the same set 70 * of flags. 71 */ 72 #define IP_DEVMTFLAGS D_MP 73 #endif /* _KERNEL */ 74 75 #define IP_MOD_NAME "ip" 76 #define IP_DEV_NAME "/dev/ip" 77 #define IP6_DEV_NAME "/dev/ip6" 78 79 #define UDP_MOD_NAME "udp" 80 #define UDP_DEV_NAME "/dev/udp" 81 #define UDP6_DEV_NAME "/dev/udp6" 82 83 #define TCP_MOD_NAME "tcp" 84 #define TCP_DEV_NAME "/dev/tcp" 85 #define TCP6_DEV_NAME "/dev/tcp6" 86 87 #define SCTP_MOD_NAME "sctp" 88 89 #ifndef _IPADDR_T 90 #define _IPADDR_T 91 typedef uint32_t ipaddr_t; 92 #endif 93 94 /* Number of bits in an address */ 95 #define IP_ABITS 32 96 #define IPV6_ABITS 128 97 98 #define IP_HOST_MASK (ipaddr_t)0xffffffffU 99 100 #define IP_CSUM(mp, off, sum) (~ip_cksum(mp, off, sum) & 0xFFFF) 101 #define IP_CSUM_PARTIAL(mp, off, sum) ip_cksum(mp, off, sum) 102 #define IP_BCSUM_PARTIAL(bp, len, sum) bcksum(bp, len, sum) 103 #define IP_MD_CSUM(pd, off, sum) (~ip_md_cksum(pd, off, sum) & 0xffff) 104 #define IP_MD_CSUM_PARTIAL(pd, off, sum) ip_md_cksum(pd, off, sum) 105 106 /* 107 * Flag to IP write side to indicate that the appln has sent in a pre-built 108 * IP header. Stored in ipha_ident (which is otherwise zero). 109 */ 110 #define IP_HDR_INCLUDED 0xFFFF 111 112 #define ILL_FRAG_HASH_TBL_COUNT ((unsigned int)64) 113 #define ILL_FRAG_HASH_TBL_SIZE (ILL_FRAG_HASH_TBL_COUNT * sizeof (ipfb_t)) 114 115 #define IPV4_ADDR_LEN 4 116 #define IP_ADDR_LEN IPV4_ADDR_LEN 117 #define IP_ARP_PROTO_TYPE 0x0800 118 119 #define IPV4_VERSION 4 120 #define IP_VERSION IPV4_VERSION 121 #define IP_SIMPLE_HDR_LENGTH_IN_WORDS 5 122 #define IP_SIMPLE_HDR_LENGTH 20 123 #define IP_MAX_HDR_LENGTH 60 124 125 #define IP_MAX_OPT_LENGTH (IP_MAX_HDR_LENGTH-IP_SIMPLE_HDR_LENGTH) 126 127 #define IP_MIN_MTU (IP_MAX_HDR_LENGTH + 8) /* 68 bytes */ 128 129 /* 130 * XXX IP_MAXPACKET is defined in <netinet/ip.h> as well. At some point the 131 * 2 files should be cleaned up to remove all redundant definitions. 132 */ 133 #define IP_MAXPACKET 65535 134 #define IP_SIMPLE_HDR_VERSION \ 135 ((IP_VERSION << 4) | IP_SIMPLE_HDR_LENGTH_IN_WORDS) 136 137 #define UDPH_SIZE 8 138 139 /* Leave room for ip_newroute to tack on the src and target addresses */ 140 #define OK_RESOLVER_MP(mp) \ 141 ((mp) && ((mp)->b_wptr - (mp)->b_rptr) >= (2 * IP_ADDR_LEN)) 142 143 /* 144 * Constants and type definitions to support IP IOCTL commands 145 */ 146 #define IP_IOCTL (('i'<<8)|'p') 147 #define IP_IOC_IRE_DELETE 4 148 #define IP_IOC_IRE_DELETE_NO_REPLY 5 149 #define IP_IOC_IRE_ADVISE_NO_REPLY 6 150 #define IP_IOC_RTS_REQUEST 7 151 152 /* Common definitions used by IP IOCTL data structures */ 153 typedef struct ipllcmd_s { 154 uint_t ipllc_cmd; 155 uint_t ipllc_name_offset; 156 uint_t ipllc_name_length; 157 } ipllc_t; 158 159 /* IP IRE Change Command Structure. */ 160 typedef struct ipic_s { 161 ipllc_t ipic_ipllc; 162 uint_t ipic_ire_type; 163 uint_t ipic_max_frag; 164 uint_t ipic_addr_offset; 165 uint_t ipic_addr_length; 166 uint_t ipic_mask_offset; 167 uint_t ipic_mask_length; 168 uint_t ipic_src_addr_offset; 169 uint_t ipic_src_addr_length; 170 uint_t ipic_ll_hdr_offset; 171 uint_t ipic_ll_hdr_length; 172 uint_t ipic_gateway_addr_offset; 173 uint_t ipic_gateway_addr_length; 174 clock_t ipic_rtt; 175 uint32_t ipic_ssthresh; 176 clock_t ipic_rtt_sd; 177 uchar_t ipic_ire_marks; 178 } ipic_t; 179 180 #define ipic_cmd ipic_ipllc.ipllc_cmd 181 #define ipic_ll_name_length ipic_ipllc.ipllc_name_length 182 #define ipic_ll_name_offset ipic_ipllc.ipllc_name_offset 183 184 /* IP IRE Delete Command Structure. */ 185 typedef struct ipid_s { 186 ipllc_t ipid_ipllc; 187 uint_t ipid_ire_type; 188 uint_t ipid_addr_offset; 189 uint_t ipid_addr_length; 190 uint_t ipid_mask_offset; 191 uint_t ipid_mask_length; 192 } ipid_t; 193 194 #define ipid_cmd ipid_ipllc.ipllc_cmd 195 196 #ifdef _KERNEL 197 /* 198 * Temporary state for ip options parser. 199 */ 200 typedef struct ipoptp_s 201 { 202 uint8_t *ipoptp_next; /* next option to look at */ 203 uint8_t *ipoptp_end; /* end of options */ 204 uint8_t *ipoptp_cur; /* start of current option */ 205 uint8_t ipoptp_len; /* length of current option */ 206 uint32_t ipoptp_flags; 207 } ipoptp_t; 208 209 /* 210 * Flag(s) for ipoptp_flags 211 */ 212 #define IPOPTP_ERROR 0x00000001 213 #endif /* _KERNEL */ 214 215 /* Controls forwarding of IP packets, set via ndd */ 216 #define IP_FORWARD_NEVER 0 217 #define IP_FORWARD_ALWAYS 1 218 219 #define WE_ARE_FORWARDING(ipst) ((ipst)->ips_ip_g_forward == IP_FORWARD_ALWAYS) 220 221 #define IPH_HDR_LENGTH(ipha) \ 222 ((int)(((ipha_t *)ipha)->ipha_version_and_hdr_length & 0xF) << 2) 223 224 #define IPH_HDR_VERSION(ipha) \ 225 ((int)(((ipha_t *)ipha)->ipha_version_and_hdr_length) >> 4) 226 227 #ifdef _KERNEL 228 /* 229 * IP reassembly macros. We hide starting and ending offsets in b_next and 230 * b_prev of messages on the reassembly queue. The messages are chained using 231 * b_cont. These macros are used in ip_reassemble() so we don't have to see 232 * the ugly casts and assignments. 233 * Note that the offsets are <= 64k i.e. a uint_t is sufficient to represent 234 * them. 235 */ 236 #define IP_REASS_START(mp) ((uint_t)(uintptr_t)((mp)->b_next)) 237 #define IP_REASS_SET_START(mp, u) \ 238 ((mp)->b_next = (mblk_t *)(uintptr_t)(u)) 239 #define IP_REASS_END(mp) ((uint_t)(uintptr_t)((mp)->b_prev)) 240 #define IP_REASS_SET_END(mp, u) \ 241 ((mp)->b_prev = (mblk_t *)(uintptr_t)(u)) 242 243 #define IP_REASS_COMPLETE 0x1 244 #define IP_REASS_PARTIAL 0x2 245 #define IP_REASS_FAILED 0x4 246 247 /* 248 * Test to determine whether this is a module instance of IP or a 249 * driver instance of IP. 250 */ 251 #define CONN_Q(q) (WR(q)->q_next == NULL) 252 253 #define Q_TO_CONN(q) ((conn_t *)(q)->q_ptr) 254 #define Q_TO_TCP(q) (Q_TO_CONN((q))->conn_tcp) 255 #define Q_TO_UDP(q) (Q_TO_CONN((q))->conn_udp) 256 #define Q_TO_ICMP(q) (Q_TO_CONN((q))->conn_icmp) 257 #define Q_TO_RTS(q) (Q_TO_CONN((q))->conn_rts) 258 259 /* 260 * The following two macros are used by IP to get the appropriate 261 * wq and rq for a conn. If it is a TCP conn, then we need 262 * tcp_wq/tcp_rq else, conn_wq/conn_rq. IP can use conn_wq and conn_rq 263 * from a conn directly if it knows that the conn is not TCP. 264 */ 265 #define CONNP_TO_WQ(connp) \ 266 (IPCL_IS_TCP(connp) ? (connp)->conn_tcp->tcp_wq : (connp)->conn_wq) 267 268 #define CONNP_TO_RQ(connp) RD(CONNP_TO_WQ(connp)) 269 270 #define GRAB_CONN_LOCK(q) { \ 271 if (q != NULL && CONN_Q(q)) \ 272 mutex_enter(&(Q_TO_CONN(q))->conn_lock); \ 273 } 274 275 #define RELEASE_CONN_LOCK(q) { \ 276 if (q != NULL && CONN_Q(q)) \ 277 mutex_exit(&(Q_TO_CONN(q))->conn_lock); \ 278 } 279 280 /* "Congestion controlled" protocol */ 281 #define IP_FLOW_CONTROLLED_ULP(p) ((p) == IPPROTO_TCP || (p) == IPPROTO_SCTP) 282 283 /* 284 * Complete the pending operation. Usually an ioctl. Can also 285 * be a bind or option management request that got enqueued 286 * in an ipsq_t. Called on completion of the operation. 287 */ 288 #define CONN_OPER_PENDING_DONE(connp) { \ 289 mutex_enter(&(connp)->conn_lock); \ 290 (connp)->conn_oper_pending_ill = NULL; \ 291 cv_broadcast(&(connp)->conn_refcv); \ 292 mutex_exit(&(connp)->conn_lock); \ 293 CONN_DEC_REF(connp); \ 294 } 295 296 /* Get the credential of an IP queue of unknown type */ 297 #define GET_QUEUE_CRED(wq) \ 298 ((wq)->q_next ? (((ill_t *)(wq)->q_ptr)->ill_credp) \ 299 : ((Q_TO_CONN((wq)))->conn_cred)) 300 301 /* 302 * Flags for the various ip_fanout_* routines. 303 */ 304 #define IP_FF_SEND_ICMP 0x01 /* Send an ICMP error */ 305 #define IP_FF_HDR_COMPLETE 0x02 /* Call ip_hdr_complete if error */ 306 #define IP_FF_CKSUM 0x04 /* Recompute ipha_cksum if error */ 307 #define IP_FF_RAWIP 0x08 /* Use rawip mib variable */ 308 #define IP_FF_SRC_QUENCH 0x10 /* OK to send ICMP_SOURCE_QUENCH */ 309 #define IP_FF_SYN_ADDIRE 0x20 /* Add IRE if TCP syn packet */ 310 #define IP_FF_IPINFO 0x80 /* Used for both V4 and V6 */ 311 #define IP_FF_SEND_SLLA 0x100 /* Send source link layer info ? */ 312 #define IPV6_REACHABILITY_CONFIRMATION 0x200 /* Flags for ip_xmit_v6 */ 313 #define IP_FF_NO_MCAST_LOOP 0x400 /* No multicasts for sending zone */ 314 315 /* 316 * Following flags are used by IPQoS to determine if policy processing is 317 * required. 318 */ 319 #define IP6_NO_IPPOLICY 0x800 /* Don't do IPQoS processing */ 320 #define IP6_IN_LLMCAST 0x1000 /* Multicast */ 321 322 #define IP_FF_LOOPBACK 0x2000 /* Loopback fanout */ 323 #define IP_FF_SCTP_CSUM_ERR 0x4000 /* sctp pkt has failed chksum */ 324 325 #ifndef IRE_DB_TYPE 326 #define IRE_DB_TYPE M_SIG 327 #endif 328 329 #ifndef IRE_DB_REQ_TYPE 330 #define IRE_DB_REQ_TYPE M_PCSIG 331 #endif 332 333 #ifndef IRE_ARPRESOLVE_TYPE 334 #define IRE_ARPRESOLVE_TYPE M_EVENT 335 #endif 336 337 /* 338 * Values for squeue switch: 339 */ 340 341 #define IP_SQUEUE_ENTER_NODRAIN 1 342 #define IP_SQUEUE_ENTER 2 343 /* 344 * This is part of the interface between Transport provider and 345 * IP which can be used to set policy information. This is usually 346 * accompanied with O_T_BIND_REQ/T_BIND_REQ.ip_bind assumes that 347 * only IPSEC_POLICY_SET is there when it is found in the chain. 348 * The information contained is an struct ipsec_req_t. On success 349 * or failure, either the T_BIND_ACK or the T_ERROR_ACK is returned. 350 * IPSEC_POLICY_SET is never returned. 351 */ 352 #define IPSEC_POLICY_SET M_SETOPTS 353 354 #define IRE_IS_LOCAL(ire) ((ire != NULL) && \ 355 ((ire)->ire_type & (IRE_LOCAL | IRE_LOOPBACK))) 356 357 #define IRE_IS_TARGET(ire) ((ire != NULL) && \ 358 ((ire)->ire_type != IRE_BROADCAST)) 359 360 /* IP Fragmentation Reassembly Header */ 361 typedef struct ipf_s { 362 struct ipf_s *ipf_hash_next; 363 struct ipf_s **ipf_ptphn; /* Pointer to previous hash next. */ 364 uint32_t ipf_ident; /* Ident to match. */ 365 uint8_t ipf_protocol; /* Protocol to match. */ 366 uchar_t ipf_last_frag_seen : 1; /* Last fragment seen ? */ 367 time_t ipf_timestamp; /* Reassembly start time. */ 368 mblk_t *ipf_mp; /* mblk we live in. */ 369 mblk_t *ipf_tail_mp; /* Frag queue tail pointer. */ 370 int ipf_hole_cnt; /* Number of holes (hard-case). */ 371 int ipf_end; /* Tail end offset (0 -> hard-case). */ 372 uint_t ipf_gen; /* Frag queue generation */ 373 size_t ipf_count; /* Count of bytes used by frag */ 374 uint_t ipf_nf_hdr_len; /* Length of nonfragmented header */ 375 in6_addr_t ipf_v6src; /* IPv6 source address */ 376 in6_addr_t ipf_v6dst; /* IPv6 dest address */ 377 uint_t ipf_prev_nexthdr_offset; /* Offset for nexthdr value */ 378 uint8_t ipf_ecn; /* ECN info for the fragments */ 379 uint8_t ipf_num_dups; /* Number of times dup frags recvd */ 380 uint16_t ipf_checksum_flags; /* Hardware checksum flags */ 381 uint32_t ipf_checksum; /* Partial checksum of fragment data */ 382 } ipf_t; 383 384 /* 385 * IPv4 Fragments 386 */ 387 #define IS_V4_FRAGMENT(ipha_fragment_offset_and_flags) \ 388 (((ntohs(ipha_fragment_offset_and_flags) & IPH_OFFSET) != 0) || \ 389 ((ntohs(ipha_fragment_offset_and_flags) & IPH_MF) != 0)) 390 391 #define ipf_src V4_PART_OF_V6(ipf_v6src) 392 #define ipf_dst V4_PART_OF_V6(ipf_v6dst) 393 394 typedef enum { 395 IB_PKT = 0x01, 396 OB_PKT = 0x02 397 } ip_pkt_t; 398 399 #define UPDATE_IB_PKT_COUNT(ire)\ 400 { \ 401 (ire)->ire_ib_pkt_count++; \ 402 if ((ire)->ire_ipif != NULL) { \ 403 /* \ 404 * forwarding packet \ 405 */ \ 406 if ((ire)->ire_type & (IRE_LOCAL|IRE_BROADCAST)) \ 407 atomic_add_32(&(ire)->ire_ipif->ipif_ib_pkt_count, 1);\ 408 else \ 409 atomic_add_32(&(ire)->ire_ipif->ipif_fo_pkt_count, 1);\ 410 } \ 411 } 412 413 #define UPDATE_OB_PKT_COUNT(ire)\ 414 { \ 415 (ire)->ire_ob_pkt_count++;\ 416 if ((ire)->ire_ipif != NULL) { \ 417 atomic_add_32(&(ire)->ire_ipif->ipif_ob_pkt_count, 1); \ 418 } \ 419 } 420 421 #define IP_RPUT_LOCAL(q, mp, ipha, ire, recv_ill) \ 422 { \ 423 switch (ipha->ipha_protocol) { \ 424 case IPPROTO_UDP: \ 425 ip_udp_input(q, mp, ipha, ire, recv_ill); \ 426 break; \ 427 default: \ 428 ip_proto_input(q, mp, ipha, ire, recv_ill, 0); \ 429 break; \ 430 } \ 431 } 432 433 /* 434 * NCE_EXPIRED is TRUE when we have a non-permanent nce that was 435 * found to be REACHABLE more than ip_ire_arp_interval ms ago. 436 * This macro is used to age existing nce_t entries. The 437 * nce's will get cleaned up in the following circumstances: 438 * - ip_ire_trash_reclaim will free nce's using ndp_cache_reclaim 439 * when memory is low, 440 * - ip_arp_news, when updates are received. 441 * - if the nce is NCE_EXPIRED(), it will deleted, so that a new 442 * arp request will need to be triggered from an ND_INITIAL nce. 443 * 444 * Note that the nce state transition follows the pattern: 445 * ND_INITIAL -> ND_INCOMPLETE -> ND_REACHABLE 446 * after which the nce is deleted when it has expired. 447 * 448 * nce_last is the timestamp that indicates when the nce_res_mp in the 449 * nce_t was last updated to a valid link-layer address. nce_last gets 450 * modified/updated : 451 * - when the nce is created 452 * - every time we get a sane arp response for the nce. 453 */ 454 #define NCE_EXPIRED(nce, ipst) (nce->nce_last > 0 && \ 455 ((nce->nce_flags & NCE_F_PERMANENT) == 0) && \ 456 ((TICK_TO_MSEC(lbolt64) - nce->nce_last) > \ 457 (ipst)->ips_ip_ire_arp_interval)) 458 459 #endif /* _KERNEL */ 460 461 /* ICMP types */ 462 #define ICMP_ECHO_REPLY 0 463 #define ICMP_DEST_UNREACHABLE 3 464 #define ICMP_SOURCE_QUENCH 4 465 #define ICMP_REDIRECT 5 466 #define ICMP_ECHO_REQUEST 8 467 #define ICMP_ROUTER_ADVERTISEMENT 9 468 #define ICMP_ROUTER_SOLICITATION 10 469 #define ICMP_TIME_EXCEEDED 11 470 #define ICMP_PARAM_PROBLEM 12 471 #define ICMP_TIME_STAMP_REQUEST 13 472 #define ICMP_TIME_STAMP_REPLY 14 473 #define ICMP_INFO_REQUEST 15 474 #define ICMP_INFO_REPLY 16 475 #define ICMP_ADDRESS_MASK_REQUEST 17 476 #define ICMP_ADDRESS_MASK_REPLY 18 477 478 /* ICMP_TIME_EXCEEDED codes */ 479 #define ICMP_TTL_EXCEEDED 0 480 #define ICMP_REASSEMBLY_TIME_EXCEEDED 1 481 482 /* ICMP_DEST_UNREACHABLE codes */ 483 #define ICMP_NET_UNREACHABLE 0 484 #define ICMP_HOST_UNREACHABLE 1 485 #define ICMP_PROTOCOL_UNREACHABLE 2 486 #define ICMP_PORT_UNREACHABLE 3 487 #define ICMP_FRAGMENTATION_NEEDED 4 488 #define ICMP_SOURCE_ROUTE_FAILED 5 489 #define ICMP_DEST_NET_UNKNOWN 6 490 #define ICMP_DEST_HOST_UNKNOWN 7 491 #define ICMP_SRC_HOST_ISOLATED 8 492 #define ICMP_DEST_NET_UNREACH_ADMIN 9 493 #define ICMP_DEST_HOST_UNREACH_ADMIN 10 494 #define ICMP_DEST_NET_UNREACH_TOS 11 495 #define ICMP_DEST_HOST_UNREACH_TOS 12 496 497 /* ICMP Header Structure */ 498 typedef struct icmph_s { 499 uint8_t icmph_type; 500 uint8_t icmph_code; 501 uint16_t icmph_checksum; 502 union { 503 struct { /* ECHO request/response structure */ 504 uint16_t u_echo_ident; 505 uint16_t u_echo_seqnum; 506 } u_echo; 507 struct { /* Destination unreachable structure */ 508 uint16_t u_du_zero; 509 uint16_t u_du_mtu; 510 } u_du; 511 struct { /* Parameter problem structure */ 512 uint8_t u_pp_ptr; 513 uint8_t u_pp_rsvd[3]; 514 } u_pp; 515 struct { /* Redirect structure */ 516 ipaddr_t u_rd_gateway; 517 } u_rd; 518 } icmph_u; 519 } icmph_t; 520 521 #define icmph_echo_ident icmph_u.u_echo.u_echo_ident 522 #define icmph_echo_seqnum icmph_u.u_echo.u_echo_seqnum 523 #define icmph_du_zero icmph_u.u_du.u_du_zero 524 #define icmph_du_mtu icmph_u.u_du.u_du_mtu 525 #define icmph_pp_ptr icmph_u.u_pp.u_pp_ptr 526 #define icmph_rd_gateway icmph_u.u_rd.u_rd_gateway 527 528 #define ICMPH_SIZE 8 529 530 /* 531 * Minimum length of transport layer header included in an ICMP error 532 * message for it to be considered valid. 533 */ 534 #define ICMP_MIN_TP_HDR_LEN 8 535 536 /* Aligned IP header */ 537 typedef struct ipha_s { 538 uint8_t ipha_version_and_hdr_length; 539 uint8_t ipha_type_of_service; 540 uint16_t ipha_length; 541 uint16_t ipha_ident; 542 uint16_t ipha_fragment_offset_and_flags; 543 uint8_t ipha_ttl; 544 uint8_t ipha_protocol; 545 uint16_t ipha_hdr_checksum; 546 ipaddr_t ipha_src; 547 ipaddr_t ipha_dst; 548 } ipha_t; 549 550 /* 551 * IP Flags 552 * 553 * Some of these constant names are copied for the DTrace IP provider in 554 * usr/src/lib/libdtrace/common/{ip.d.in, ip.sed.in}, which should be kept 555 * in sync. 556 */ 557 #define IPH_DF 0x4000 /* Don't fragment */ 558 #define IPH_MF 0x2000 /* More fragments to come */ 559 #define IPH_OFFSET 0x1FFF /* Where the offset lives */ 560 #define IPH_FRAG_HDR 0x8000 /* IPv6 don't fragment bit */ 561 562 /* ECN code points for IPv4 TOS byte and IPv6 traffic class octet. */ 563 #define IPH_ECN_NECT 0x0 /* Not ECN-Capable Transport */ 564 #define IPH_ECN_ECT1 0x1 /* ECN-Capable Transport, ECT(1) */ 565 #define IPH_ECN_ECT0 0x2 /* ECN-Capable Transport, ECT(0) */ 566 #define IPH_ECN_CE 0x3 /* ECN-Congestion Experienced (CE) */ 567 568 /* IP Mac info structure */ 569 typedef struct ip_m_s { 570 t_uscalar_t ip_m_mac_type; /* From <sys/dlpi.h> */ 571 int ip_m_type; /* From <net/if_types.h> */ 572 boolean_t (*ip_m_v4mapinfo)(uint_t, uint8_t *, uint8_t *, 573 uint32_t *, ipaddr_t *); 574 boolean_t (*ip_m_v6mapinfo)(uint_t, uint8_t *, uint8_t *, 575 uint32_t *, in6_addr_t *); 576 boolean_t (*ip_m_v6intfid)(uint_t, uint8_t *, in6_addr_t *); 577 } ip_m_t; 578 579 /* 580 * The following functions attempt to reduce the link layer dependency 581 * of the IP stack. The current set of link specific operations are: 582 * a. map from IPv4 class D (224.0/4) multicast address range to the link 583 * layer multicast address range. 584 * b. map from IPv6 multicast address range (ff00::/8) to the link 585 * layer multicast address range. 586 * c. derive the default IPv6 interface identifier from the link layer 587 * address. 588 */ 589 #define MEDIA_V4MINFO(ip_m, plen, bphys, maddr, hwxp, v4ptr) \ 590 (((ip_m)->ip_m_v4mapinfo != NULL) && \ 591 (*(ip_m)->ip_m_v4mapinfo)(plen, bphys, maddr, hwxp, v4ptr)) 592 #define MEDIA_V6INTFID(ip_m, plen, phys, v6ptr) \ 593 (((ip_m)->ip_m_v6intfid != NULL) && \ 594 (*(ip_m)->ip_m_v6intfid)(plen, phys, v6ptr)) 595 #define MEDIA_V6MINFO(ip_m, plen, bphys, maddr, hwxp, v6ptr) \ 596 (((ip_m)->ip_m_v6mapinfo != NULL) && \ 597 (*(ip_m)->ip_m_v6mapinfo)(plen, bphys, maddr, hwxp, v6ptr)) 598 599 /* Router entry types */ 600 #define IRE_BROADCAST 0x0001 /* Route entry for broadcast address */ 601 #define IRE_DEFAULT 0x0002 /* Route entry for default gateway */ 602 #define IRE_LOCAL 0x0004 /* Route entry for local address */ 603 #define IRE_LOOPBACK 0x0008 /* Route entry for loopback address */ 604 #define IRE_PREFIX 0x0010 /* Route entry for prefix routes */ 605 #define IRE_CACHE 0x0020 /* Cached Route entry */ 606 #define IRE_IF_NORESOLVER 0x0040 /* Route entry for local interface */ 607 /* net without any address mapping. */ 608 #define IRE_IF_RESOLVER 0x0080 /* Route entry for local interface */ 609 /* net with resolver. */ 610 #define IRE_HOST 0x0100 /* Host route entry */ 611 #define IRE_HOST_REDIRECT 0x0200 /* only used for T_SVR4_OPTMGMT_REQ */ 612 613 #define IRE_INTERFACE (IRE_IF_NORESOLVER | IRE_IF_RESOLVER) 614 #define IRE_OFFSUBNET (IRE_DEFAULT | IRE_PREFIX | IRE_HOST) 615 #define IRE_CACHETABLE (IRE_CACHE | IRE_BROADCAST | IRE_LOCAL | \ 616 IRE_LOOPBACK) 617 #define IRE_FORWARDTABLE (IRE_INTERFACE | IRE_OFFSUBNET) 618 619 /* 620 * If an IRE is marked with IRE_MARK_CONDEMNED, the last walker of 621 * the bucket should delete this IRE from this bucket. 622 */ 623 #define IRE_MARK_CONDEMNED 0x0001 624 /* 625 * If a broadcast IRE is marked with IRE_MARK_NORECV, ip_rput will drop the 626 * broadcast packets received on that interface. This is marked only 627 * on broadcast ires. Employed by IPMP, where we have multiple NICs on the 628 * same subnet receiving the same broadcast packet. 629 */ 630 #define IRE_MARK_NORECV 0x0002 631 /* 632 * IRE_CACHE marked this way won't be returned by ire_cache_lookup. Need 633 * to look specifically using MATCH_IRE_MARK_HIDDEN. Used by IPMP. 634 */ 635 #define IRE_MARK_HIDDEN 0x0004 /* Typically Used by in.mpathd */ 636 637 /* 638 * An IRE with IRE_MARK_NOADD is created in ip_newroute_ipif when the outgoing 639 * interface is specified by e.g. IP_PKTINFO. The IRE is not added to the IRE 640 * cache table. 641 */ 642 #define IRE_MARK_NOADD 0x0008 /* Mark not to add ire in cache */ 643 644 /* 645 * IRE marked with IRE_MARK_TEMPORARY means that this IRE has been used 646 * either for forwarding a packet or has not been used for sending 647 * traffic on TCP connections terminated on this system. In both 648 * cases, this IRE is the first to go when IRE is being cleaned up. 649 */ 650 #define IRE_MARK_TEMPORARY 0x0010 651 652 /* 653 * IRE marked with IRE_MARK_USESRC_CHECK means that while adding an IRE with 654 * this mark, additional atomic checks need to be performed. For eg: by the 655 * time an IRE_CACHE is created, sent up to ARP and then comes back to IP; the 656 * usesrc grouping could have changed in which case we want to fail adding 657 * the IRE_CACHE entry 658 */ 659 #define IRE_MARK_USESRC_CHECK 0x0020 660 661 /* 662 * IRE_MARK_PRIVATE_ADDR is used for IP_NEXTHOP. When IP_NEXTHOP is set, the 663 * routing table lookup for the destination is bypassed and the packet is 664 * sent directly to the specified nexthop. The associated IRE_CACHE entries 665 * should be marked with IRE_MARK_PRIVATE_ADDR flag so that they don't show up 666 * in regular ire cache lookups. 667 */ 668 #define IRE_MARK_PRIVATE_ADDR 0x0040 669 670 /* 671 * When we send an ARP resolution query for the nexthop gateway's ire, 672 * we use esballoc to create the ire_t in the AR_ENTRY_QUERY mblk 673 * chain, and mark its ire_marks with IRE_MARK_UNCACHED. This flag 674 * indicates that information from ARP has not been transferred to a 675 * permanent IRE_CACHE entry. The flag is reset only when the 676 * information is successfully transferred to an ire_cache entry (in 677 * ire_add()). Attempting to free the AR_ENTRY_QUERY mblk chain prior 678 * to ire_add (e.g., from arp, or from ip`ip_wput_nondata) will 679 * require that the resources (incomplete ire_cache and/or nce) must 680 * be cleaned up. The free callback routine (ire_freemblk()) checks 681 * for IRE_MARK_UNCACHED to see if any resources that are pinned down 682 * will need to be cleaned up or not. 683 */ 684 685 #define IRE_MARK_UNCACHED 0x0080 686 687 /* 688 * The comment below (and for other netstack_t references) refers 689 * to the fact that we only do netstack_hold in particular cases, 690 * such as the references from open streams (ill_t and conn_t's 691 * pointers). Internally within IP we rely on IP's ability to cleanup e.g. 692 * ire_t's when an ill goes away. 693 */ 694 typedef struct ire_expire_arg_s { 695 int iea_flush_flag; 696 ip_stack_t *iea_ipst; /* Does not have a netstack_hold */ 697 } ire_expire_arg_t; 698 699 /* Flags with ire_expire routine */ 700 #define FLUSH_ARP_TIME 0x0001 /* ARP info potentially stale timer */ 701 #define FLUSH_REDIRECT_TIME 0x0002 /* Redirects potentially stale */ 702 #define FLUSH_MTU_TIME 0x0004 /* Include path MTU per RFC 1191 */ 703 704 /* Arguments to ire_flush_cache() */ 705 #define IRE_FLUSH_DELETE 0 706 #define IRE_FLUSH_ADD 1 707 708 /* 709 * Open/close synchronization flags. 710 * These are kept in a separate field in the conn and the synchronization 711 * depends on the atomic 32 bit access to that field. 712 */ 713 #define CONN_CLOSING 0x01 /* ip_close waiting for ip_wsrv */ 714 #define CONN_IPSEC_LOAD_WAIT 0x02 /* waiting for load */ 715 #define CONN_CONDEMNED 0x04 /* conn is closing, no more refs */ 716 #define CONN_INCIPIENT 0x08 /* conn not yet visible, no refs */ 717 #define CONN_QUIESCED 0x10 /* conn is now quiescent */ 718 719 /* Used to check connection state flags before caching the IRE */ 720 #define CONN_CACHE_IRE(connp) \ 721 (!((connp)->conn_state_flags & (CONN_CLOSING|CONN_CONDEMNED))) 722 723 /* 724 * Parameter to ip_output giving the identity of the caller. 725 * IP_WSRV means the packet was enqueued in the STREAMS queue 726 * due to flow control and is now being reprocessed in the context of 727 * the STREAMS service procedure, consequent to flow control relief. 728 * IRE_SEND means the packet is being reprocessed consequent to an 729 * ire cache creation and addition and this may or may not be happening 730 * in the service procedure context. Anything other than the above 2 731 * cases is identified as IP_WPUT. Most commonly this is the case of 732 * packets coming down from the application. 733 */ 734 #ifdef _KERNEL 735 #define IP_WSRV 1 /* Called from ip_wsrv */ 736 #define IP_WPUT 2 /* Called from ip_wput */ 737 #define IRE_SEND 3 /* Called from ire_send */ 738 739 /* 740 * Extra structures need for per-src-addr filtering (IGMPv3/MLDv2) 741 */ 742 #define MAX_FILTER_SIZE 64 743 744 typedef struct slist_s { 745 int sl_numsrc; 746 in6_addr_t sl_addr[MAX_FILTER_SIZE]; 747 } slist_t; 748 749 /* 750 * Following struct is used to maintain retransmission state for 751 * a multicast group. One rtx_state_t struct is an in-line field 752 * of the ilm_t struct; the slist_ts in the rtx_state_t struct are 753 * alloc'd as needed. 754 */ 755 typedef struct rtx_state_s { 756 uint_t rtx_timer; /* retrans timer */ 757 int rtx_cnt; /* retrans count */ 758 int rtx_fmode_cnt; /* retrans count for fmode change */ 759 slist_t *rtx_allow; 760 slist_t *rtx_block; 761 } rtx_state_t; 762 763 /* 764 * Used to construct list of multicast address records that will be 765 * sent in a single listener report. 766 */ 767 typedef struct mrec_s { 768 struct mrec_s *mrec_next; 769 uint8_t mrec_type; 770 uint8_t mrec_auxlen; /* currently unused */ 771 in6_addr_t mrec_group; 772 slist_t mrec_srcs; 773 } mrec_t; 774 775 /* Group membership list per upper conn */ 776 /* 777 * XXX add ilg info for ifaddr/ifindex. 778 * XXX can we make ilg survive an ifconfig unplumb + plumb 779 * by setting the ipif/ill to NULL and recover that later? 780 * 781 * ilg_ipif is used by IPv4 as multicast groups are joined using an interface 782 * address (ipif). 783 * ilg_ill is used by IPv6 as multicast groups are joined using an interface 784 * index (phyint->phyint_ifindex). 785 * ilg_ill is NULL for IPv4 and ilg_ipif is NULL for IPv6. 786 * 787 * ilg records the state of multicast memberships of a socket end point. 788 * ilm records the state of multicast memberships with the driver and is 789 * maintained per interface. 790 * 791 * Notes : 792 * 793 * 1) There is no direct link between a given ilg and ilm. If the 794 * application has joined a group G with ifindex I, we will have 795 * an ilg with ilg_v6group and ilg_ill. There will be a corresponding 796 * ilm with ilm_ill/ilm_v6addr recording the multicast membership. 797 * To delete the membership, 798 * 799 * a) Search for ilg matching on G and I with ilg_v6group 800 * and ilg_ill. Delete ilg_ill. 801 * b) Search the corresponding ilm matching on G and I with 802 * ilm_v6addr and ilm_ill. Delete ilm. 803 * 804 * In IPv4, the only difference is, we look using ipifs instead of 805 * ills. 806 * 807 * 2) With IP multipathing, we want to keep receiving even after the 808 * interface has failed. We do this by moving multicast memberships 809 * to a new_ill within the group. This is achieved by sending 810 * DL_DISABMULTI_REQS on ilg_ill/ilm_ill and sending DL_ENABMULTIREQS 811 * on the new_ill and changing ilg_ill/ilm_ill to new_ill. But, we 812 * need to be able to delete memberships which will still come down 813 * with the ifindex of the old ill which is what the application 814 * knows of. Thus we store the ilm_/ilg_orig_ifindex to keep track 815 * of where we joined initially so that we can lookup even after we 816 * moved the membership. It is also used for moving back the membership 817 * when the old ill has been repaired. This is done by looking up for 818 * ilms with ilm_orig_ifindex matching on the old ill's ifindex. Only 819 * ilms actually move from old ill to new ill. ilgs don't move (just 820 * the ilg_ill is changed when it moves) as it just records the state 821 * of the application that has joined a group G where as ilm records 822 * the state joined with the driver. Thus when we send DL_XXXMULTI_REQs 823 * we also need to keep the ilm in the right ill. 824 * 825 * In IPv4, as ipifs move from old ill to new_ill, ilgs and ilms move 826 * implicitly as we use only ipifs in IPv4. Thus, one can always lookup 827 * a given ilm/ilg even after it fails without the support of 828 * orig_ifindex. We move ilms still to record the driver state as 829 * mentioned above. 830 */ 831 832 /* 833 * The ilg_t and ilm_t members are protected by ipsq. They can be changed only 834 * by a thread executing in the ipsq. In other words add/delete of a 835 * multicast group has to execute in the ipsq. 836 */ 837 #define ILG_DELETED 0x1 /* ilg_flags */ 838 typedef struct ilg_s { 839 in6_addr_t ilg_v6group; 840 struct ipif_s *ilg_ipif; /* Logical interface we are member on */ 841 struct ill_s *ilg_ill; /* Used by IPv6 */ 842 int ilg_orig_ifindex; /* Interface originally joined on */ 843 uint_t ilg_flags; 844 mcast_record_t ilg_fmode; /* MODE_IS_INCLUDE/MODE_IS_EXCLUDE */ 845 slist_t *ilg_filter; 846 } ilg_t; 847 848 /* 849 * Multicast address list entry for ill. 850 * ilm_ipif is used by IPv4 as multicast groups are joined using ipif. 851 * ilm_ill is used by IPv6 as multicast groups are joined using ill. 852 * ilm_ill is NULL for IPv4 and ilm_ipif is NULL for IPv6. 853 * 854 * The comment below (and for other netstack_t references) refers 855 * to the fact that we only do netstack_hold in particular cases, 856 * such as the references from open streams (ill_t and conn_t's 857 * pointers). Internally within IP we rely on IP's ability to cleanup e.g. 858 * ire_t's when an ill goes away. 859 */ 860 #define ILM_DELETED 0x1 /* ilm_flags */ 861 typedef struct ilm_s { 862 in6_addr_t ilm_v6addr; 863 int ilm_refcnt; 864 uint_t ilm_timer; /* IGMP/MLD query resp timer, in msec */ 865 struct ipif_s *ilm_ipif; /* Back pointer to ipif for IPv4 */ 866 struct ilm_s *ilm_next; /* Linked list for each ill */ 867 uint_t ilm_state; /* state of the membership */ 868 struct ill_s *ilm_ill; /* Back pointer to ill for IPv6 */ 869 int ilm_orig_ifindex; /* V6_MULTICAST_IF/ilm_ipif index */ 870 uint_t ilm_flags; 871 boolean_t ilm_is_new; /* new ilm */ 872 boolean_t ilm_notify_driver; /* Need to notify the driver */ 873 zoneid_t ilm_zoneid; 874 int ilm_no_ilg_cnt; /* number of joins w/ no ilg */ 875 mcast_record_t ilm_fmode; /* MODE_IS_INCLUDE/MODE_IS_EXCLUDE */ 876 slist_t *ilm_filter; /* source filter list */ 877 slist_t *ilm_pendsrcs; /* relevant src addrs for pending req */ 878 rtx_state_t ilm_rtx; /* SCR retransmission state */ 879 ip_stack_t *ilm_ipst; /* Does not have a netstack_hold */ 880 } ilm_t; 881 882 #define ilm_addr V4_PART_OF_V6(ilm_v6addr) 883 884 /* 885 * ilm_walker_cleanup needs to execute when the ilm_walker_cnt goes down to 886 * zero. In addition it needs to block new walkers while it is unlinking ilm's 887 * from the list. Thus simple atomics for the ill_ilm_walker_cnt don't suffice. 888 */ 889 #define ILM_WALKER_HOLD(ill) { \ 890 mutex_enter(&(ill)->ill_lock); \ 891 ill->ill_ilm_walker_cnt++; \ 892 mutex_exit(&(ill)->ill_lock); \ 893 } 894 895 /* 896 * ilm_walker_cleanup releases ill_lock 897 */ 898 #define ILM_WALKER_RELE(ill) { \ 899 mutex_enter(&(ill)->ill_lock); \ 900 (ill)->ill_ilm_walker_cnt--; \ 901 if ((ill)->ill_ilm_walker_cnt == 0 && (ill)->ill_ilm_cleanup_reqd) \ 902 ilm_walker_cleanup(ill); \ 903 else \ 904 mutex_exit(&(ill)->ill_lock); \ 905 } 906 907 /* 908 * Soft reference to an IPsec SA. 909 * 910 * On relative terms, conn's can be persistent (living as long as the 911 * processes which create them), while SA's are ephemeral (dying when 912 * they hit their time-based or byte-based lifetimes). 913 * 914 * We could hold a hard reference to an SA from an ipsec_latch_t, 915 * but this would cause expired SA's to linger for a potentially 916 * unbounded time. 917 * 918 * Instead, we remember the hash bucket number and bucket generation 919 * in addition to the pointer. The bucket generation is incremented on 920 * each deletion. 921 */ 922 typedef struct ipsa_ref_s 923 { 924 struct ipsa_s *ipsr_sa; 925 struct isaf_s *ipsr_bucket; 926 uint64_t ipsr_gen; 927 } ipsa_ref_t; 928 929 /* 930 * IPsec "latching" state. 931 * 932 * In the presence of IPsec policy, fully-bound conn's bind a connection 933 * to more than just the 5-tuple, but also a specific IPsec action and 934 * identity-pair. 935 * 936 * As an optimization, we also cache soft references to IPsec SA's 937 * here so that we can fast-path around most of the work needed for 938 * outbound IPsec SA selection. 939 * 940 * Were it not for TCP's detached connections, this state would be 941 * in-line in conn_t; instead, this is in a separate structure so it 942 * can be handed off to TCP when a connection is detached. 943 */ 944 typedef struct ipsec_latch_s 945 { 946 kmutex_t ipl_lock; 947 uint32_t ipl_refcnt; 948 949 uint64_t ipl_unique; 950 struct ipsec_policy_s *ipl_in_policy; /* latched policy (in) */ 951 struct ipsec_policy_s *ipl_out_policy; /* latched policy (out) */ 952 struct ipsec_action_s *ipl_in_action; /* latched action (in) */ 953 struct ipsec_action_s *ipl_out_action; /* latched action (out) */ 954 cred_t *ipl_local_id; 955 struct ipsid_s *ipl_local_cid; 956 struct ipsid_s *ipl_remote_cid; 957 unsigned int 958 ipl_out_action_latched : 1, 959 ipl_in_action_latched : 1, 960 ipl_out_policy_latched : 1, 961 ipl_in_policy_latched : 1, 962 963 ipl_ids_latched : 1, 964 965 ipl_pad_to_bit_31 : 27; 966 967 ipsa_ref_t ipl_ref[2]; /* 0: ESP, 1: AH */ 968 969 } ipsec_latch_t; 970 971 #define IPLATCH_REFHOLD(ipl) { \ 972 atomic_add_32(&(ipl)->ipl_refcnt, 1); \ 973 ASSERT((ipl)->ipl_refcnt != 0); \ 974 } 975 976 #define IPLATCH_REFRELE(ipl, ns) { \ 977 ASSERT((ipl)->ipl_refcnt != 0); \ 978 membar_exit(); \ 979 if (atomic_add_32_nv(&(ipl)->ipl_refcnt, -1) == 0) \ 980 iplatch_free(ipl, ns); \ 981 } 982 983 /* 984 * peer identity structure. 985 */ 986 987 typedef struct conn_s conn_t; 988 989 /* 990 * The old IP client structure "ipc_t" is gone. All the data is stored in the 991 * connection structure "conn_t" now. The mapping of old and new fields looks 992 * like this: 993 * 994 * ipc_ulp conn_ulp 995 * ipc_rq conn_rq 996 * ipc_wq conn_wq 997 * 998 * ipc_laddr conn_src 999 * ipc_faddr conn_rem 1000 * ipc_v6laddr conn_srcv6 1001 * ipc_v6faddr conn_remv6 1002 * 1003 * ipc_lport conn_lport 1004 * ipc_fport conn_fport 1005 * ipc_ports conn_ports 1006 * 1007 * ipc_policy conn_policy 1008 * ipc_latch conn_latch 1009 * 1010 * ipc_irc_lock conn_lock 1011 * ipc_ire_cache conn_ire_cache 1012 * 1013 * ipc_state_flags conn_state_flags 1014 * ipc_outgoing_ill conn_outgoing_ill 1015 * 1016 * ipc_dontroute conn_dontroute 1017 * ipc_loopback conn_loopback 1018 * ipc_broadcast conn_broadcast 1019 * ipc_reuseaddr conn_reuseaddr 1020 * 1021 * ipc_multicast_loop conn_multicast_loop 1022 * ipc_multi_router conn_multi_router 1023 * ipc_draining conn_draining 1024 * 1025 * ipc_did_putbq conn_did_putbq 1026 * ipc_unspec_src conn_unspec_src 1027 * ipc_policy_cached conn_policy_cached 1028 * 1029 * ipc_in_enforce_policy conn_in_enforce_policy 1030 * ipc_out_enforce_policy conn_out_enforce_policy 1031 * ipc_af_isv6 conn_af_isv6 1032 * ipc_pkt_isv6 conn_pkt_isv6 1033 * 1034 * ipc_ipv6_recvpktinfo conn_ipv6_recvpktinfo 1035 * 1036 * ipc_ipv6_recvhoplimit conn_ipv6_recvhoplimit 1037 * ipc_ipv6_recvhopopts conn_ipv6_recvhopopts 1038 * ipc_ipv6_recvdstopts conn_ipv6_recvdstopts 1039 * 1040 * ipc_ipv6_recvrthdr conn_ipv6_recvrthdr 1041 * ipc_ipv6_recvrtdstopts conn_ipv6_recvrtdstopts 1042 * ipc_fully_bound conn_fully_bound 1043 * 1044 * ipc_recvif conn_recvif 1045 * 1046 * ipc_recvslla conn_recvslla 1047 * ipc_acking_unbind conn_acking_unbind 1048 * ipc_pad_to_bit_31 conn_pad_to_bit_31 1049 * 1050 * ipc_nofailover_ill conn_nofailover_ill 1051 * 1052 * ipc_proto conn_proto 1053 * ipc_incoming_ill conn_incoming_ill 1054 * ipc_outgoing_pill conn_outgoing_pill 1055 * ipc_pending_ill conn_pending_ill 1056 * ipc_unbind_mp conn_unbind_mp 1057 * ipc_ilg conn_ilg 1058 * ipc_ilg_allocated conn_ilg_allocated 1059 * ipc_ilg_inuse conn_ilg_inuse 1060 * ipc_ilg_walker_cnt conn_ilg_walker_cnt 1061 * ipc_refcv conn_refcv 1062 * ipc_multicast_ipif conn_multicast_ipif 1063 * ipc_multicast_ill conn_multicast_ill 1064 * ipc_orig_bound_ifindex conn_orig_bound_ifindex 1065 * ipc_orig_multicast_ifindex conn_orig_multicast_ifindex 1066 * ipc_drain_next conn_drain_next 1067 * ipc_drain_prev conn_drain_prev 1068 * ipc_idl conn_idl 1069 */ 1070 1071 /* 1072 * This is used to match an inbound/outbound datagram with policy. 1073 */ 1074 typedef struct ipsec_selector { 1075 in6_addr_t ips_local_addr_v6; 1076 in6_addr_t ips_remote_addr_v6; 1077 uint16_t ips_local_port; 1078 uint16_t ips_remote_port; 1079 uint8_t ips_icmp_type; 1080 uint8_t ips_icmp_code; 1081 uint8_t ips_protocol; 1082 uint8_t ips_isv4 : 1, 1083 ips_is_icmp_inv_acq: 1; 1084 } ipsec_selector_t; 1085 1086 /* 1087 * Note that we put v4 addresses in the *first* 32-bit word of the 1088 * selector rather than the last to simplify the prefix match/mask code 1089 * in spd.c 1090 */ 1091 #define ips_local_addr_v4 ips_local_addr_v6.s6_addr32[0] 1092 #define ips_remote_addr_v4 ips_remote_addr_v6.s6_addr32[0] 1093 1094 /* Values used in IP by IPSEC Code */ 1095 #define IPSEC_OUTBOUND B_TRUE 1096 #define IPSEC_INBOUND B_FALSE 1097 1098 /* 1099 * There are two variants in policy failures. The packet may come in 1100 * secure when not needed (IPSEC_POLICY_???_NOT_NEEDED) or it may not 1101 * have the desired level of protection (IPSEC_POLICY_MISMATCH). 1102 */ 1103 #define IPSEC_POLICY_NOT_NEEDED 0 1104 #define IPSEC_POLICY_MISMATCH 1 1105 #define IPSEC_POLICY_AUTH_NOT_NEEDED 2 1106 #define IPSEC_POLICY_ENCR_NOT_NEEDED 3 1107 #define IPSEC_POLICY_SE_NOT_NEEDED 4 1108 #define IPSEC_POLICY_MAX 5 /* Always max + 1. */ 1109 1110 /* 1111 * Folowing macro is used whenever the code does not know whether there 1112 * is a M_CTL present in the front and it needs to examine the actual mp 1113 * i.e the IP header. As a M_CTL message could be in the front, this 1114 * extracts the packet into mp and the M_CTL mp into first_mp. If M_CTL 1115 * mp is not present, both first_mp and mp point to the same message. 1116 */ 1117 #define EXTRACT_PKT_MP(mp, first_mp, mctl_present) \ 1118 (first_mp) = (mp); \ 1119 if ((mp)->b_datap->db_type == M_CTL) { \ 1120 (mp) = (mp)->b_cont; \ 1121 (mctl_present) = B_TRUE; \ 1122 } else { \ 1123 (mctl_present) = B_FALSE; \ 1124 } 1125 1126 /* 1127 * Check with IPSEC inbound policy if 1128 * 1129 * 1) per-socket policy is present - indicated by conn_in_enforce_policy. 1130 * 2) Or if we have not cached policy on the conn and the global policy is 1131 * non-empty. 1132 */ 1133 #define CONN_INBOUND_POLICY_PRESENT(connp, ipss) \ 1134 ((connp)->conn_in_enforce_policy || \ 1135 (!((connp)->conn_policy_cached) && \ 1136 (ipss)->ipsec_inbound_v4_policy_present)) 1137 1138 #define CONN_INBOUND_POLICY_PRESENT_V6(connp, ipss) \ 1139 ((connp)->conn_in_enforce_policy || \ 1140 (!(connp)->conn_policy_cached && \ 1141 (ipss)->ipsec_inbound_v6_policy_present)) 1142 1143 #define CONN_OUTBOUND_POLICY_PRESENT(connp, ipss) \ 1144 ((connp)->conn_out_enforce_policy || \ 1145 (!((connp)->conn_policy_cached) && \ 1146 (ipss)->ipsec_outbound_v4_policy_present)) 1147 1148 #define CONN_OUTBOUND_POLICY_PRESENT_V6(connp, ipss) \ 1149 ((connp)->conn_out_enforce_policy || \ 1150 (!(connp)->conn_policy_cached && \ 1151 (ipss)->ipsec_outbound_v6_policy_present)) 1152 1153 /* 1154 * Information cached in IRE for upper layer protocol (ULP). 1155 * 1156 * Notice that ire_max_frag is not included in the iulp_t structure, which 1157 * it may seem that it should. But ire_max_frag cannot really be cached. It 1158 * is fixed for each interface. For MTU found by PMTUd, we may want to cache 1159 * it. But currently, we do not do that. 1160 */ 1161 typedef struct iulp_s { 1162 boolean_t iulp_set; /* Is any metric set? */ 1163 uint32_t iulp_ssthresh; /* Slow start threshold (TCP). */ 1164 clock_t iulp_rtt; /* Guestimate in millisecs. */ 1165 clock_t iulp_rtt_sd; /* Cached value of RTT variance. */ 1166 uint32_t iulp_spipe; /* Send pipe size. */ 1167 uint32_t iulp_rpipe; /* Receive pipe size. */ 1168 uint32_t iulp_rtomax; /* Max round trip timeout. */ 1169 uint32_t iulp_sack; /* Use SACK option (TCP)? */ 1170 uint32_t 1171 iulp_tstamp_ok : 1, /* Use timestamp option (TCP)? */ 1172 iulp_wscale_ok : 1, /* Use window scale option (TCP)? */ 1173 iulp_ecn_ok : 1, /* Enable ECN (for TCP)? */ 1174 iulp_pmtud_ok : 1, /* Enable PMTUd? */ 1175 1176 iulp_not_used : 28; 1177 } iulp_t; 1178 1179 /* Zero iulp_t. */ 1180 extern const iulp_t ire_uinfo_null; 1181 1182 /* 1183 * The conn drain list structure. 1184 * The list is protected by idl_lock. Each conn_t inserted in the list 1185 * points back at this idl_t using conn_idl. IP primes the draining of the 1186 * conns queued in these lists, by qenabling the 1st conn of each list. This 1187 * occurs when STREAMS backenables ip_wsrv on the IP module. Each conn instance 1188 * of ip_wsrv successively qenables the next conn in the list. 1189 * idl_lock protects all other members of idl_t and conn_drain_next 1190 * and conn_drain_prev of conn_t. The conn_lock protects IPCF_DRAIN_DISABLED 1191 * flag of the conn_t and conn_idl. 1192 */ 1193 typedef struct idl_s { 1194 conn_t *idl_conn; /* Head of drain list */ 1195 kmutex_t idl_lock; /* Lock for this list */ 1196 conn_t *idl_conn_draining; /* conn that is draining */ 1197 uint32_t 1198 idl_repeat : 1, /* Last conn must re-enable */ 1199 /* drain list again */ 1200 idl_unused : 31; 1201 } idl_t; 1202 1203 #define CONN_DRAIN_LIST_LOCK(connp) (&((connp)->conn_idl->idl_lock)) 1204 /* 1205 * Interface route structure which holds the necessary information to recreate 1206 * routes that are tied to an interface (namely where ire_ipif != NULL). 1207 * These routes which were initially created via a routing socket or via the 1208 * SIOCADDRT ioctl may be gateway routes (RTF_GATEWAY being set) or may be 1209 * traditional interface routes. When an interface comes back up after being 1210 * marked down, this information will be used to recreate the routes. These 1211 * are part of an mblk_t chain that hangs off of the IPIF (ipif_saved_ire_mp). 1212 */ 1213 typedef struct ifrt_s { 1214 ushort_t ifrt_type; /* Type of IRE */ 1215 in6_addr_t ifrt_v6addr; /* Address IRE represents. */ 1216 in6_addr_t ifrt_v6gateway_addr; /* Gateway if IRE_OFFSUBNET */ 1217 in6_addr_t ifrt_v6src_addr; /* Src addr if RTF_SETSRC */ 1218 in6_addr_t ifrt_v6mask; /* Mask for matching IRE. */ 1219 uint32_t ifrt_flags; /* flags related to route */ 1220 uint_t ifrt_max_frag; /* MTU (next hop or path). */ 1221 iulp_t ifrt_iulp_info; /* Cached IRE ULP info. */ 1222 } ifrt_t; 1223 1224 #define ifrt_addr V4_PART_OF_V6(ifrt_v6addr) 1225 #define ifrt_gateway_addr V4_PART_OF_V6(ifrt_v6gateway_addr) 1226 #define ifrt_src_addr V4_PART_OF_V6(ifrt_v6src_addr) 1227 #define ifrt_mask V4_PART_OF_V6(ifrt_v6mask) 1228 1229 /* Number of IP addresses that can be hosted on a physical interface */ 1230 #define MAX_ADDRS_PER_IF 8192 1231 /* 1232 * Number of Source addresses to be considered for source address 1233 * selection. Used by ipif_select_source[_v6]. 1234 */ 1235 #define MAX_IPIF_SELECT_SOURCE 50 1236 1237 #ifdef IP_DEBUG 1238 /* 1239 * Trace refholds and refreles for debugging. 1240 */ 1241 #define TR_STACK_DEPTH 14 1242 typedef struct tr_buf_s { 1243 int tr_depth; 1244 clock_t tr_time; 1245 pc_t tr_stack[TR_STACK_DEPTH]; 1246 } tr_buf_t; 1247 1248 typedef struct th_trace_s { 1249 int th_refcnt; 1250 uint_t th_trace_lastref; 1251 kthread_t *th_id; 1252 #define TR_BUF_MAX 38 1253 tr_buf_t th_trbuf[TR_BUF_MAX]; 1254 } th_trace_t; 1255 1256 typedef struct th_hash_s { 1257 list_node_t thh_link; 1258 mod_hash_t *thh_hash; 1259 ip_stack_t *thh_ipst; 1260 } th_hash_t; 1261 #endif 1262 1263 /* The following are ipif_state_flags */ 1264 #define IPIF_CONDEMNED 0x1 /* The ipif is being removed */ 1265 #define IPIF_CHANGING 0x2 /* A critcal ipif field is changing */ 1266 #define IPIF_MOVING 0x8 /* The ipif is being moved */ 1267 #define IPIF_SET_LINKLOCAL 0x10 /* transient flag during bringup */ 1268 #define IPIF_ZERO_SOURCE 0x20 /* transient flag during bringup */ 1269 1270 /* IP interface structure, one per local address */ 1271 typedef struct ipif_s { 1272 struct ipif_s *ipif_next; 1273 struct ill_s *ipif_ill; /* Back pointer to our ill */ 1274 int ipif_id; /* Logical unit number */ 1275 uint_t ipif_mtu; /* Starts at ipif_ill->ill_max_frag */ 1276 uint_t ipif_saved_mtu; /* Save of mtu during ipif_move() */ 1277 in6_addr_t ipif_v6lcl_addr; /* Local IP address for this if. */ 1278 in6_addr_t ipif_v6src_addr; /* Source IP address for this if. */ 1279 in6_addr_t ipif_v6subnet; /* Subnet prefix for this if. */ 1280 in6_addr_t ipif_v6net_mask; /* Net mask for this interface. */ 1281 in6_addr_t ipif_v6brd_addr; /* Broadcast addr for this interface. */ 1282 in6_addr_t ipif_v6pp_dst_addr; /* Point-to-point dest address. */ 1283 uint64_t ipif_flags; /* Interface flags. */ 1284 uint_t ipif_metric; /* BSD if metric, for compatibility. */ 1285 uint_t ipif_ire_type; /* IRE_LOCAL or IRE_LOOPBACK */ 1286 mblk_t *ipif_arp_del_mp; /* Allocated at time arp comes up, to */ 1287 /* prevent awkward out of mem */ 1288 /* condition later */ 1289 mblk_t *ipif_saved_ire_mp; /* Allocated for each extra */ 1290 /* IRE_IF_NORESOLVER/IRE_IF_RESOLVER */ 1291 /* on this interface so that they */ 1292 /* can survive ifconfig down. */ 1293 kmutex_t ipif_saved_ire_lock; /* Protects ipif_saved_ire_mp */ 1294 1295 mrec_t *ipif_igmp_rpt; /* List of group memberships which */ 1296 /* will be reported on. Used when */ 1297 /* handling an igmp timeout. */ 1298 1299 /* 1300 * The packet counts in the ipif contain the sum of the 1301 * packet counts in dead IREs that were affiliated with 1302 * this ipif. 1303 */ 1304 uint_t ipif_fo_pkt_count; /* Forwarded thru our dead IREs */ 1305 uint_t ipif_ib_pkt_count; /* Inbound packets for our dead IREs */ 1306 uint_t ipif_ob_pkt_count; /* Outbound packets to our dead IREs */ 1307 /* Exclusive bit fields, protected by ipsq_t */ 1308 unsigned int 1309 ipif_multicast_up : 1, /* We have joined the allhosts group */ 1310 ipif_replace_zero : 1, /* Replacement for zero */ 1311 ipif_was_up : 1, /* ipif was up before */ 1312 ipif_addr_ready : 1, /* DAD is done */ 1313 1314 ipif_was_dup : 1, /* DAD had failed */ 1315 ipif_pad_to_31 : 27; 1316 1317 int ipif_orig_ifindex; /* ifindex before SLIFFAILOVER */ 1318 uint_t ipif_seqid; /* unique index across all ills */ 1319 uint_t ipif_orig_ipifid; /* ipif_id before SLIFFAILOVER */ 1320 uint_t ipif_state_flags; /* See IPIF_* flag defs above */ 1321 uint_t ipif_refcnt; /* active consistent reader cnt */ 1322 1323 /* Number of ire's and ilm's referencing this ipif */ 1324 uint_t ipif_ire_cnt; 1325 uint_t ipif_ilm_cnt; 1326 1327 uint_t ipif_saved_ire_cnt; 1328 zoneid_t ipif_zoneid; /* zone ID number */ 1329 timeout_id_t ipif_recovery_id; /* Timer for DAD recovery */ 1330 boolean_t ipif_trace_disable; /* True when alloc fails */ 1331 } ipif_t; 1332 1333 /* 1334 * IPIF_FREE_OK() means that there are no incoming references 1335 * to the ipif. Incoming refs would prevent the ipif from being freed. 1336 */ 1337 #define IPIF_FREE_OK(ipif) \ 1338 ((ipif)->ipif_ire_cnt == 0 && (ipif)->ipif_ilm_cnt == 0) 1339 /* 1340 * IPIF_DOWN_OK() determines whether the incoming pointer reference counts 1341 * would permit the ipif to be considered quiescent. In order for 1342 * an ipif or ill to be considered quiescent, the ire and nce references 1343 * to that ipif/ill must be zero. 1344 * 1345 * We do not require the ilm references to go to zero for quiescence 1346 * because the quiescence checks are done to ensure that 1347 * outgoing packets do not use addresses from the ipif/ill after it 1348 * has been marked down, and incoming packets to addresses on a 1349 * queiscent interface are rejected. This implies that all the 1350 * ire/nce's using that source address need to be deleted and future 1351 * creation of any ires using that source address must be prevented. 1352 * Similarly incoming unicast packets destined to the 'down' address 1353 * will not be accepted once that ire is gone. However incoming 1354 * multicast packets are not destined to the downed address. 1355 * They are only related to the ill in question. Furthermore 1356 * the current API behavior allows applications to join or leave 1357 * multicast groups, i.e., IP_ADD_MEMBERSHIP / LEAVE_MEMBERSHIP, using a 1358 * down address. Therefore the ilm references are not included in 1359 * the _DOWN_OK macros. 1360 */ 1361 #define IPIF_DOWN_OK(ipif) ((ipif)->ipif_ire_cnt == 0) 1362 1363 /* 1364 * The following table lists the protection levels of the various members 1365 * of the ipif_t. The following notation is used. 1366 * 1367 * Write once - Written to only once at the time of bringing up 1368 * the interface and can be safely read after the bringup without any lock. 1369 * 1370 * ipsq - Need to execute in the ipsq to perform the indicated access. 1371 * 1372 * ill_lock - Need to hold this mutex to perform the indicated access. 1373 * 1374 * ill_g_lock - Need to hold this rw lock as reader/writer for read access or 1375 * write access respectively. 1376 * 1377 * down ill - Written to only when the ill is down (i.e all ipifs are down) 1378 * up ill - Read only when the ill is up (i.e. at least 1 ipif is up) 1379 * 1380 * Table of ipif_t members and their protection 1381 * 1382 * ipif_next ipsq + ill_lock + ipsq OR ill_lock OR 1383 * ill_g_lock ill_g_lock 1384 * ipif_ill ipsq + down ipif write once 1385 * ipif_id ipsq + down ipif write once 1386 * ipif_mtu ipsq 1387 * ipif_v6lcl_addr ipsq + down ipif up ipif 1388 * ipif_v6src_addr ipsq + down ipif up ipif 1389 * ipif_v6subnet ipsq + down ipif up ipif 1390 * ipif_v6net_mask ipsq + down ipif up ipif 1391 * 1392 * ipif_v6brd_addr 1393 * ipif_v6pp_dst_addr 1394 * ipif_flags ill_lock ill_lock 1395 * ipif_metric 1396 * ipif_ire_type ipsq + down ill up ill 1397 * 1398 * ipif_arp_del_mp ipsq ipsq 1399 * ipif_saved_ire_mp ipif_saved_ire_lock ipif_saved_ire_lock 1400 * ipif_igmp_rpt ipsq ipsq 1401 * 1402 * ipif_fo_pkt_count Approx 1403 * ipif_ib_pkt_count Approx 1404 * ipif_ob_pkt_count Approx 1405 * 1406 * bit fields ill_lock ill_lock 1407 * 1408 * ipif_orig_ifindex ipsq None 1409 * ipif_orig_ipifid ipsq None 1410 * ipif_seqid ipsq Write once 1411 * 1412 * ipif_state_flags ill_lock ill_lock 1413 * ipif_refcnt ill_lock ill_lock 1414 * ipif_ire_cnt ill_lock ill_lock 1415 * ipif_ilm_cnt ill_lock ill_lock 1416 * ipif_saved_ire_cnt 1417 */ 1418 1419 #define IP_TR_HASH(tid) ((((uintptr_t)tid) >> 6) & (IP_TR_HASH_MAX - 1)) 1420 1421 #ifdef DEBUG 1422 #define IPIF_TRACE_REF(ipif) ipif_trace_ref(ipif) 1423 #define ILL_TRACE_REF(ill) ill_trace_ref(ill) 1424 #define IPIF_UNTRACE_REF(ipif) ipif_untrace_ref(ipif) 1425 #define ILL_UNTRACE_REF(ill) ill_untrace_ref(ill) 1426 #else 1427 #define IPIF_TRACE_REF(ipif) 1428 #define ILL_TRACE_REF(ill) 1429 #define IPIF_UNTRACE_REF(ipif) 1430 #define ILL_UNTRACE_REF(ill) 1431 #endif 1432 1433 /* IPv4 compatibility macros */ 1434 #define ipif_lcl_addr V4_PART_OF_V6(ipif_v6lcl_addr) 1435 #define ipif_src_addr V4_PART_OF_V6(ipif_v6src_addr) 1436 #define ipif_subnet V4_PART_OF_V6(ipif_v6subnet) 1437 #define ipif_net_mask V4_PART_OF_V6(ipif_v6net_mask) 1438 #define ipif_brd_addr V4_PART_OF_V6(ipif_v6brd_addr) 1439 #define ipif_pp_dst_addr V4_PART_OF_V6(ipif_v6pp_dst_addr) 1440 1441 /* Macros for easy backreferences to the ill. */ 1442 #define ipif_wq ipif_ill->ill_wq 1443 #define ipif_rq ipif_ill->ill_rq 1444 #define ipif_net_type ipif_ill->ill_net_type 1445 #define ipif_ipif_up_count ipif_ill->ill_ipif_up_count 1446 #define ipif_type ipif_ill->ill_type 1447 #define ipif_isv6 ipif_ill->ill_isv6 1448 1449 #define SIOCLIFADDR_NDX 112 /* ndx of SIOCLIFADDR in the ndx ioctl table */ 1450 1451 /* 1452 * mode value for ip_ioctl_finish for finishing an ioctl 1453 */ 1454 #define CONN_CLOSE 1 /* No mi_copy */ 1455 #define COPYOUT 2 /* do an mi_copyout if needed */ 1456 #define NO_COPYOUT 3 /* do an mi_copy_done */ 1457 #define IPI2MODE(ipi) ((ipi)->ipi_flags & IPI_GET_CMD ? COPYOUT : NO_COPYOUT) 1458 1459 /* 1460 * The IP-MT design revolves around the serialization object ipsq_t. 1461 * It is associated with an IPMP group. If IPMP is not enabled, there is 1462 * 1 ipsq_t per phyint. Eg. an ipsq_t would cover both hme0's IPv4 stream 1463 * 1464 * ipsq_lock protects 1465 * ipsq_reentry_cnt, ipsq_writer, ipsq_xopq_mphead, ipsq_xopq_mptail, 1466 * ipsq_mphead, ipsq_mptail, ipsq_split 1467 * 1468 * ipsq_pending_ipif, ipsq_current_ipif, ipsq_pending_mp, ipsq_flags, 1469 * ipsq_waitfor 1470 * 1471 * The fields in the last line above below are set mostly by a writer thread 1472 * But there is an exception in the last call to ipif_ill_refrele_tail which 1473 * could also race with a conn close which could be cleaning up the 1474 * fields. So we choose to protect using ipsq_lock instead of depending on 1475 * the property of the writer. 1476 * ill_g_lock protects 1477 * ipsq_refs, ipsq_phyint_list 1478 */ 1479 typedef struct ipsq_s { 1480 kmutex_t ipsq_lock; 1481 int ipsq_reentry_cnt; 1482 kthread_t *ipsq_writer; /* current owner (thread id) */ 1483 int ipsq_flags; 1484 mblk_t *ipsq_xopq_mphead; /* list of excl ops mostly ioctls */ 1485 mblk_t *ipsq_xopq_mptail; 1486 mblk_t *ipsq_mphead; /* msgs on ipsq linked thru b_next */ 1487 mblk_t *ipsq_mptail; /* msgs on ipsq linked thru b_next */ 1488 int ipsq_current_ioctl; /* current ioctl, or 0 if no ioctl */ 1489 boolean_t ipsq_current_done; /* is the current op done? */ 1490 ipif_t *ipsq_current_ipif; /* ipif associated with current op */ 1491 ipif_t *ipsq_pending_ipif; /* ipif associated w. ipsq_pending_mp */ 1492 mblk_t *ipsq_pending_mp; /* current ioctl mp while waiting for */ 1493 /* response from another module */ 1494 struct ipsq_s *ipsq_next; /* list of all syncq's (ipsq_g_list) */ 1495 uint_t ipsq_refs; /* Number of phyints on this ipsq */ 1496 struct phyint *ipsq_phyint_list; /* List of phyints on this ipsq */ 1497 boolean_t ipsq_split; /* ipsq may need to be split */ 1498 int ipsq_waitfor; /* Values encoded below */ 1499 char ipsq_name[LIFNAMSIZ+1]; /* same as phyint_groupname */ 1500 ip_stack_t *ipsq_ipst; /* Does not have a netstack_hold */ 1501 1502 #ifdef DEBUG 1503 int ipsq_depth; /* debugging aid */ 1504 #define IPSQ_STACK_DEPTH 15 1505 pc_t ipsq_stack[IPSQ_STACK_DEPTH]; /* debugging aid */ 1506 #endif 1507 } ipsq_t; 1508 1509 /* ipsq_flags */ 1510 #define IPSQ_GROUP 0x1 /* This ipsq belongs to an IPMP group */ 1511 1512 /* 1513 * ipsq_waitfor: 1514 * 1515 * IPIF_DOWN 1 ipif_down waiting for refcnts to drop 1516 * ILL_DOWN 2 ill_down waiting for refcnts to drop 1517 * IPIF_FREE 3 ipif_free waiting for refcnts to drop 1518 * ILL_FREE 4 ill unplumb waiting for refcnts to drop 1519 * ILL_MOVE_OK 5 failover waiting for refcnts to drop 1520 */ 1521 1522 enum { IPIF_DOWN = 1, ILL_DOWN, IPIF_FREE, ILL_FREE, ILL_MOVE_OK }; 1523 1524 /* Flags passed to ipsq_try_enter */ 1525 #define CUR_OP 0 /* Current ioctl continuing again */ 1526 #define NEW_OP 1 /* New ioctl starting afresh */ 1527 1528 /* 1529 * phyint represents state that is common to both IPv4 and IPv6 interfaces. 1530 * There is a separate ill_t representing IPv4 and IPv6 which has a 1531 * backpointer to the phyint structure for accessing common state. 1532 * 1533 * NOTE : It just stores the group name as there is only one name for 1534 * IPv4 and IPv6 i.e it is a underlying link property. Actually 1535 * IPv4 and IPv6 ill are grouped together when their phyints have 1536 * the same name. 1537 */ 1538 typedef struct phyint { 1539 struct ill_s *phyint_illv4; 1540 struct ill_s *phyint_illv6; 1541 uint_t phyint_ifindex; /* SIOCLSLIFINDEX */ 1542 char *phyint_groupname; /* SIOCSLIFGROUPNAME */ 1543 uint_t phyint_groupname_len; 1544 uint64_t phyint_flags; 1545 avl_node_t phyint_avl_by_index; /* avl tree by index */ 1546 avl_node_t phyint_avl_by_name; /* avl tree by name */ 1547 kmutex_t phyint_lock; 1548 struct ipsq_s *phyint_ipsq; /* back pointer to ipsq */ 1549 struct phyint *phyint_ipsq_next; /* phyint list on this ipsq */ 1550 /* Once Clearview IPMP is added the follow two fields can be removed */ 1551 uint_t phyint_group_ifindex; /* index assigned to group */ 1552 uint_t phyint_hook_ifindex; /* index used with neti/hook */ 1553 } phyint_t; 1554 1555 #define CACHE_ALIGN_SIZE 64 1556 1557 #define CACHE_ALIGN(align_struct) P2ROUNDUP(sizeof (struct align_struct),\ 1558 CACHE_ALIGN_SIZE) 1559 struct _phyint_list_s_ { 1560 avl_tree_t phyint_list_avl_by_index; /* avl tree by index */ 1561 avl_tree_t phyint_list_avl_by_name; /* avl tree by name */ 1562 }; 1563 1564 typedef union phyint_list_u { 1565 struct _phyint_list_s_ phyint_list_s; 1566 char phyint_list_filler[CACHE_ALIGN(_phyint_list_s_)]; 1567 } phyint_list_t; 1568 1569 #define phyint_list_avl_by_index phyint_list_s.phyint_list_avl_by_index 1570 #define phyint_list_avl_by_name phyint_list_s.phyint_list_avl_by_name 1571 /* 1572 * ILL groups. We group ills, 1573 * 1574 * - if the ills have the same group name. (New way) 1575 * 1576 * ill_group locking notes: 1577 * 1578 * illgrp_lock protects ill_grp_ill_schednext. 1579 * 1580 * ill_g_lock protects ill_grp_next, illgrp_ill, illgrp_ill_count. 1581 * Holding ill_g_lock freezes the memberships of ills in IPMP groups. 1582 * It also freezes the global list of ills and all ipifs in all ills. 1583 * 1584 * To remove an ipif from the linked list of ipifs of that ill ipif_free_tail 1585 * holds both ill_g_lock, and ill_lock. Similarly to remove an ill from the 1586 * global list of ills, ill_glist_delete() holds ill_g_lock as writer. 1587 * This simplifies things for ipif_select_source, illgrp_scheduler etc. 1588 * that need to walk the members of an illgrp. They just hold ill_g_lock 1589 * as reader to do the walk. 1590 * 1591 */ 1592 typedef struct ill_group { 1593 kmutex_t illgrp_lock; 1594 struct ill_group *illgrp_next; /* Next ill_group */ 1595 struct ill_s *illgrp_ill_schednext; /* Next ill to be scheduled */ 1596 struct ill_s *illgrp_ill; /* First ill in the group */ 1597 int illgrp_ill_count; 1598 } ill_group_t; 1599 1600 /* 1601 * Fragmentation hash bucket 1602 */ 1603 typedef struct ipfb_s { 1604 struct ipf_s *ipfb_ipf; /* List of ... */ 1605 size_t ipfb_count; /* Count of bytes used by frag(s) */ 1606 kmutex_t ipfb_lock; /* Protect all ipf in list */ 1607 uint_t ipfb_frag_pkts; /* num of distinct fragmented pkts */ 1608 } ipfb_t; 1609 1610 /* 1611 * IRE bucket structure. Usually there is an array of such structures, 1612 * each pointing to a linked list of ires. irb_refcnt counts the number 1613 * of walkers of a given hash bucket. Usually the reference count is 1614 * bumped up if the walker wants no IRES to be DELETED while walking the 1615 * list. Bumping up does not PREVENT ADDITION. This allows walking a given 1616 * hash bucket without stumbling up on a free pointer. 1617 * 1618 * irb_t structures in ip_ftable are dynamically allocated and freed. 1619 * In order to identify the irb_t structures that can be safely kmem_free'd 1620 * we need to ensure that 1621 * - the irb_refcnt is quiescent, indicating no other walkers, 1622 * - no other threads or ire's are holding references to the irb, 1623 * i.e., irb_nire == 0, 1624 * - there are no active ire's in the bucket, i.e., irb_ire_cnt == 0 1625 */ 1626 typedef struct irb { 1627 struct ire_s *irb_ire; /* First ire in this bucket */ 1628 /* Should be first in this struct */ 1629 krwlock_t irb_lock; /* Protect this bucket */ 1630 uint_t irb_refcnt; /* Protected by irb_lock */ 1631 uchar_t irb_marks; /* CONDEMNED ires in this bucket ? */ 1632 #define IRB_MARK_CONDEMNED 0x0001 1633 #define IRB_MARK_FTABLE 0x0002 1634 uint_t irb_ire_cnt; /* Num of active IRE in this bucket */ 1635 uint_t irb_tmp_ire_cnt; /* Num of temporary IRE */ 1636 struct ire_s *irb_rr_origin; /* origin for round-robin */ 1637 int irb_nire; /* Num of ftable ire's that ref irb */ 1638 ip_stack_t *irb_ipst; /* Does not have a netstack_hold */ 1639 } irb_t; 1640 1641 #define IRB2RT(irb) (rt_t *)((caddr_t)(irb) - offsetof(rt_t, rt_irb)) 1642 1643 /* The following are return values of ip_xmit_v4() */ 1644 typedef enum { 1645 SEND_PASSED = 0, /* sent packet out on wire */ 1646 SEND_FAILED, /* sending of packet failed */ 1647 LOOKUP_IN_PROGRESS, /* ire cache found, ARP resolution in progress */ 1648 LLHDR_RESLV_FAILED /* macaddr resl of onlink dst or nexthop failed */ 1649 } ipxmit_state_t; 1650 1651 #define IP_V4_G_HEAD 0 1652 #define IP_V6_G_HEAD 1 1653 1654 #define MAX_G_HEADS 2 1655 1656 /* 1657 * unpadded ill_if structure 1658 */ 1659 struct _ill_if_s_ { 1660 union ill_if_u *illif_next; 1661 union ill_if_u *illif_prev; 1662 avl_tree_t illif_avl_by_ppa; /* AVL tree sorted on ppa */ 1663 vmem_t *illif_ppa_arena; /* ppa index space */ 1664 uint16_t illif_mcast_v1; /* hints for */ 1665 uint16_t illif_mcast_v2; /* [igmp|mld]_slowtimo */ 1666 int illif_name_len; /* name length */ 1667 char illif_name[LIFNAMSIZ]; /* name of interface type */ 1668 }; 1669 1670 /* cache aligned ill_if structure */ 1671 typedef union ill_if_u { 1672 struct _ill_if_s_ ill_if_s; 1673 char illif_filler[CACHE_ALIGN(_ill_if_s_)]; 1674 } ill_if_t; 1675 1676 #define illif_next ill_if_s.illif_next 1677 #define illif_prev ill_if_s.illif_prev 1678 #define illif_avl_by_ppa ill_if_s.illif_avl_by_ppa 1679 #define illif_ppa_arena ill_if_s.illif_ppa_arena 1680 #define illif_mcast_v1 ill_if_s.illif_mcast_v1 1681 #define illif_mcast_v2 ill_if_s.illif_mcast_v2 1682 #define illif_name ill_if_s.illif_name 1683 #define illif_name_len ill_if_s.illif_name_len 1684 1685 typedef struct ill_walk_context_s { 1686 int ctx_current_list; /* current list being searched */ 1687 int ctx_last_list; /* last list to search */ 1688 } ill_walk_context_t; 1689 1690 /* 1691 * ill_g_heads structure, one for IPV4 and one for IPV6 1692 */ 1693 struct _ill_g_head_s_ { 1694 ill_if_t *ill_g_list_head; 1695 ill_if_t *ill_g_list_tail; 1696 }; 1697 1698 typedef union ill_g_head_u { 1699 struct _ill_g_head_s_ ill_g_head_s; 1700 char ill_g_head_filler[CACHE_ALIGN(_ill_g_head_s_)]; 1701 } ill_g_head_t; 1702 1703 #define ill_g_list_head ill_g_head_s.ill_g_list_head 1704 #define ill_g_list_tail ill_g_head_s.ill_g_list_tail 1705 1706 #define IP_V4_ILL_G_LIST(ipst) \ 1707 (ipst)->ips_ill_g_heads[IP_V4_G_HEAD].ill_g_list_head 1708 #define IP_V6_ILL_G_LIST(ipst) \ 1709 (ipst)->ips_ill_g_heads[IP_V6_G_HEAD].ill_g_list_head 1710 #define IP_VX_ILL_G_LIST(i, ipst) \ 1711 (ipst)->ips_ill_g_heads[i].ill_g_list_head 1712 1713 #define ILL_START_WALK_V4(ctx_ptr, ipst) \ 1714 ill_first(IP_V4_G_HEAD, IP_V4_G_HEAD, ctx_ptr, ipst) 1715 #define ILL_START_WALK_V6(ctx_ptr, ipst) \ 1716 ill_first(IP_V6_G_HEAD, IP_V6_G_HEAD, ctx_ptr, ipst) 1717 #define ILL_START_WALK_ALL(ctx_ptr, ipst) \ 1718 ill_first(MAX_G_HEADS, MAX_G_HEADS, ctx_ptr, ipst) 1719 1720 /* 1721 * Capabilities, possible flags for ill_capabilities. 1722 */ 1723 1724 #define ILL_CAPAB_AH 0x01 /* IPsec AH acceleration */ 1725 #define ILL_CAPAB_ESP 0x02 /* IPsec ESP acceleration */ 1726 #define ILL_CAPAB_MDT 0x04 /* Multidata Transmit */ 1727 #define ILL_CAPAB_HCKSUM 0x08 /* Hardware checksumming */ 1728 #define ILL_CAPAB_ZEROCOPY 0x10 /* Zero-copy */ 1729 #define ILL_CAPAB_DLD 0x20 /* DLD capabilities */ 1730 #define ILL_CAPAB_DLD_POLL 0x40 /* Polling */ 1731 #define ILL_CAPAB_DLD_DIRECT 0x80 /* Direct function call */ 1732 #define ILL_CAPAB_DLD_LSO 0x100 /* Large Segment Offload */ 1733 1734 /* 1735 * Per-ill Multidata Transmit capabilities. 1736 */ 1737 typedef struct ill_mdt_capab_s ill_mdt_capab_t; 1738 1739 /* 1740 * Per-ill IPsec capabilities. 1741 */ 1742 typedef struct ill_ipsec_capab_s ill_ipsec_capab_t; 1743 1744 /* 1745 * Per-ill Hardware Checksumming capbilities. 1746 */ 1747 typedef struct ill_hcksum_capab_s ill_hcksum_capab_t; 1748 1749 /* 1750 * Per-ill Zero-copy capabilities. 1751 */ 1752 typedef struct ill_zerocopy_capab_s ill_zerocopy_capab_t; 1753 1754 /* 1755 * DLD capbilities. 1756 */ 1757 typedef struct ill_dld_capab_s ill_dld_capab_t; 1758 1759 /* 1760 * Per-ill polling resource map. 1761 */ 1762 typedef struct ill_rx_ring ill_rx_ring_t; 1763 1764 /* 1765 * Per-ill Large Segment Offload capabilities. 1766 */ 1767 typedef struct ill_lso_capab_s ill_lso_capab_t; 1768 1769 /* The following are ill_state_flags */ 1770 #define ILL_LL_SUBNET_PENDING 0x01 /* Waiting for DL_INFO_ACK from drv */ 1771 #define ILL_CONDEMNED 0x02 /* No more new ref's to the ILL */ 1772 #define ILL_CHANGING 0x04 /* ILL not globally visible */ 1773 #define ILL_DL_UNBIND_IN_PROGRESS 0x08 /* UNBIND_REQ is sent */ 1774 1775 /* Is this an ILL whose source address is used by other ILL's ? */ 1776 #define IS_USESRC_ILL(ill) \ 1777 (((ill)->ill_usesrc_ifindex == 0) && \ 1778 ((ill)->ill_usesrc_grp_next != NULL)) 1779 1780 /* Is this a client/consumer of the usesrc ILL ? */ 1781 #define IS_USESRC_CLI_ILL(ill) \ 1782 (((ill)->ill_usesrc_ifindex != 0) && \ 1783 ((ill)->ill_usesrc_grp_next != NULL)) 1784 1785 /* Is this an virtual network interface (vni) ILL ? */ 1786 #define IS_VNI(ill) \ 1787 (((ill) != NULL) && \ 1788 (((ill)->ill_phyint->phyint_flags & (PHYI_LOOPBACK|PHYI_VIRTUAL)) == \ 1789 PHYI_VIRTUAL)) 1790 1791 /* Is this a loopback ILL? */ 1792 #define IS_LOOPBACK(ill) \ 1793 ((ill)->ill_phyint->phyint_flags & PHYI_LOOPBACK) 1794 1795 /* 1796 * IP Lower level Structure. 1797 * Instance data structure in ip_open when there is a device below us. 1798 */ 1799 typedef struct ill_s { 1800 ill_if_t *ill_ifptr; /* pointer to interface type */ 1801 queue_t *ill_rq; /* Read queue. */ 1802 queue_t *ill_wq; /* Write queue. */ 1803 1804 int ill_error; /* Error value sent up by device. */ 1805 1806 ipif_t *ill_ipif; /* Interface chain for this ILL. */ 1807 1808 uint_t ill_ipif_up_count; /* Number of IPIFs currently up. */ 1809 uint_t ill_max_frag; /* Max IDU from DLPI. */ 1810 char *ill_name; /* Our name. */ 1811 uint_t ill_ipif_dup_count; /* Number of duplicate addresses. */ 1812 uint_t ill_name_length; /* Name length, incl. terminator. */ 1813 char *ill_ndd_name; /* Name + ":ip?_forwarding" for NDD. */ 1814 uint_t ill_net_type; /* IRE_IF_RESOLVER/IRE_IF_NORESOLVER. */ 1815 /* 1816 * Physical Point of Attachment num. If DLPI style 1 provider 1817 * then this is derived from the devname. 1818 */ 1819 uint_t ill_ppa; 1820 t_uscalar_t ill_sap; 1821 t_scalar_t ill_sap_length; /* Including sign (for position) */ 1822 uint_t ill_phys_addr_length; /* Excluding the sap. */ 1823 uint_t ill_bcast_addr_length; /* Only set when the DL provider */ 1824 /* supports broadcast. */ 1825 t_uscalar_t ill_mactype; 1826 uint8_t *ill_frag_ptr; /* Reassembly state. */ 1827 timeout_id_t ill_frag_timer_id; /* timeout id for the frag timer */ 1828 ipfb_t *ill_frag_hash_tbl; /* Fragment hash list head. */ 1829 ipif_t *ill_pending_ipif; /* IPIF waiting for DL operation. */ 1830 1831 ilm_t *ill_ilm; /* Multicast membership for ill */ 1832 uint_t ill_global_timer; /* for IGMPv3/MLDv2 general queries */ 1833 int ill_mcast_type; /* type of router which is querier */ 1834 /* on this interface */ 1835 uint16_t ill_mcast_v1_time; /* # slow timeouts since last v1 qry */ 1836 uint16_t ill_mcast_v2_time; /* # slow timeouts since last v2 qry */ 1837 uint8_t ill_mcast_v1_tset; /* 1 => timer is set; 0 => not set */ 1838 uint8_t ill_mcast_v2_tset; /* 1 => timer is set; 0 => not set */ 1839 1840 uint8_t ill_mcast_rv; /* IGMPv3/MLDv2 robustness variable */ 1841 int ill_mcast_qi; /* IGMPv3/MLDv2 query interval var */ 1842 1843 mblk_t *ill_pending_mp; /* IOCTL/DLPI awaiting completion. */ 1844 /* 1845 * All non-NULL cells between 'ill_first_mp_to_free' and 1846 * 'ill_last_mp_to_free' are freed in ill_delete. 1847 */ 1848 #define ill_first_mp_to_free ill_bcast_mp 1849 mblk_t *ill_bcast_mp; /* DLPI header for broadcasts. */ 1850 mblk_t *ill_resolver_mp; /* Resolver template. */ 1851 mblk_t *ill_unbind_mp; /* unbind mp from ill_dl_up() */ 1852 mblk_t *ill_promiscoff_mp; /* for ill_leave_allmulti() */ 1853 mblk_t *ill_dlpi_deferred; /* b_next chain of control messages */ 1854 mblk_t *ill_phys_addr_mp; /* mblk which holds ill_phys_addr */ 1855 #define ill_last_mp_to_free ill_phys_addr_mp 1856 1857 cred_t *ill_credp; /* opener's credentials */ 1858 uint8_t *ill_phys_addr; /* ill_phys_addr_mp->b_rptr + off */ 1859 1860 uint_t ill_state_flags; /* see ILL_* flags above */ 1861 1862 /* Following bit fields protected by ipsq_t */ 1863 uint_t 1864 ill_needs_attach : 1, 1865 ill_reserved : 1, 1866 ill_isv6 : 1, 1867 ill_dlpi_style_set : 1, 1868 1869 ill_ifname_pending : 1, 1870 ill_move_in_progress : 1, /* FAILOVER/FAILBACK in progress */ 1871 ill_join_allmulti : 1, 1872 ill_logical_down : 1, 1873 1874 ill_is_6to4tun : 1, /* Interface is a 6to4 tunnel */ 1875 ill_promisc_on_phys : 1, /* phys interface in promisc mode */ 1876 ill_dl_up : 1, 1877 ill_up_ipifs : 1, 1878 1879 ill_note_link : 1, /* supports link-up notification */ 1880 ill_capab_reneg : 1, /* capability renegotiation to be done */ 1881 ill_dld_capab_inprog : 1, /* direct dld capab call in prog */ 1882 ill_need_recover_multicast : 1, 1883 1884 ill_pad_to_bit_31 : 16; 1885 1886 /* Following bit fields protected by ill_lock */ 1887 uint_t 1888 ill_fragtimer_executing : 1, 1889 ill_fragtimer_needrestart : 1, 1890 ill_ilm_cleanup_reqd : 1, 1891 ill_arp_closing : 1, 1892 1893 ill_arp_bringup_pending : 1, 1894 ill_mtu_userspecified : 1, /* SIOCSLIFLNKINFO has set the mtu */ 1895 ill_arp_extend : 1, /* ARP has DAD extensions */ 1896 1897 ill_pad_bit_31 : 25; 1898 1899 /* 1900 * Used in SIOCSIFMUXID and SIOCGIFMUXID for 'ifconfig unplumb'. 1901 */ 1902 int ill_arp_muxid; /* muxid returned from plink for arp */ 1903 int ill_ip_muxid; /* muxid returned from plink for ip */ 1904 1905 /* Used for IP frag reassembly throttling on a per ILL basis. */ 1906 uint_t ill_ipf_gen; /* Generation of next fragment queue */ 1907 uint_t ill_frag_count; /* Count of all reassembly mblk bytes */ 1908 uint_t ill_frag_free_num_pkts; /* num of fragmented packets to free */ 1909 clock_t ill_last_frag_clean_time; /* time when frag's were pruned */ 1910 int ill_type; /* From <net/if_types.h> */ 1911 uint_t ill_dlpi_multicast_state; /* See below IDS_* */ 1912 uint_t ill_dlpi_fastpath_state; /* See below IDS_* */ 1913 1914 /* 1915 * Capabilities related fields. 1916 */ 1917 uint_t ill_dlpi_capab_state; /* State of capability query, IDCS_* */ 1918 uint_t ill_capab_pending_cnt; 1919 uint64_t ill_capabilities; /* Enabled capabilities, ILL_CAPAB_* */ 1920 ill_mdt_capab_t *ill_mdt_capab; /* Multidata Transmit capabilities */ 1921 ill_ipsec_capab_t *ill_ipsec_capab_ah; /* IPsec AH capabilities */ 1922 ill_ipsec_capab_t *ill_ipsec_capab_esp; /* IPsec ESP capabilities */ 1923 ill_hcksum_capab_t *ill_hcksum_capab; /* H/W cksumming capabilities */ 1924 ill_zerocopy_capab_t *ill_zerocopy_capab; /* Zero-copy capabilities */ 1925 ill_dld_capab_t *ill_dld_capab; /* DLD capabilities */ 1926 ill_lso_capab_t *ill_lso_capab; /* Large Segment Offload capabilities */ 1927 mblk_t *ill_capab_reset_mp; /* Preallocated mblk for capab reset */ 1928 1929 /* 1930 * New fields for IPv6 1931 */ 1932 uint8_t ill_max_hops; /* Maximum hops for any logical interface */ 1933 uint_t ill_max_mtu; /* Maximum MTU for any logical interface */ 1934 uint32_t ill_reachable_time; /* Value for ND algorithm in msec */ 1935 uint32_t ill_reachable_retrans_time; /* Value for ND algorithm msec */ 1936 uint_t ill_max_buf; /* Max # of req to buffer for ND */ 1937 in6_addr_t ill_token; 1938 uint_t ill_token_length; 1939 uint32_t ill_xmit_count; /* ndp max multicast xmits */ 1940 mib2_ipIfStatsEntry_t *ill_ip_mib; /* ver indep. interface mib */ 1941 mib2_ipv6IfIcmpEntry_t *ill_icmp6_mib; /* Per interface mib */ 1942 /* 1943 * Following two mblks are allocated common to all 1944 * the ipifs when the first interface is coming up. 1945 * It is sent up to arp when the last ipif is coming 1946 * down. 1947 */ 1948 mblk_t *ill_arp_down_mp; 1949 mblk_t *ill_arp_del_mapping_mp; 1950 /* 1951 * Used for implementing IFF_NOARP. As IFF_NOARP is used 1952 * to turn off for all the logicals, it is here instead 1953 * of the ipif. 1954 */ 1955 mblk_t *ill_arp_on_mp; 1956 /* Peer ill of an IPMP move operation */ 1957 struct ill_s *ill_move_peer; 1958 1959 phyint_t *ill_phyint; 1960 uint64_t ill_flags; 1961 ill_group_t *ill_group; 1962 struct ill_s *ill_group_next; 1963 1964 kmutex_t ill_lock; /* Please see table below */ 1965 /* 1966 * The ill_nd_lla* fields handle the link layer address option 1967 * from neighbor discovery. This is used for external IPv6 1968 * address resolution. 1969 */ 1970 mblk_t *ill_nd_lla_mp; /* mblk which holds ill_nd_lla */ 1971 uint8_t *ill_nd_lla; /* Link Layer Address */ 1972 uint_t ill_nd_lla_len; /* Link Layer Address length */ 1973 /* 1974 * We now have 3 phys_addr_req's sent down. This field keeps track 1975 * of which one is pending. 1976 */ 1977 t_uscalar_t ill_phys_addr_pend; /* which dl_phys_addr_req pending */ 1978 /* 1979 * Used to save errors that occur during plumbing 1980 */ 1981 uint_t ill_ifname_pending_err; 1982 avl_node_t ill_avl_byppa; /* avl node based on ppa */ 1983 void *ill_fastpath_list; /* both ire and nce hang off this */ 1984 uint_t ill_refcnt; /* active refcnt by threads */ 1985 uint_t ill_ire_cnt; /* ires associated with this ill */ 1986 kcondvar_t ill_cv; 1987 uint_t ill_ilm_walker_cnt; /* snmp ilm walkers */ 1988 uint_t ill_nce_cnt; /* nces associated with this ill */ 1989 uint_t ill_waiters; /* threads waiting in ipsq_enter */ 1990 /* 1991 * Contains the upper read queue pointer of the module immediately 1992 * beneath IP. This field allows IP to validate sub-capability 1993 * acknowledgments coming up from downstream. 1994 */ 1995 queue_t *ill_lmod_rq; /* read queue pointer of module below */ 1996 uint_t ill_lmod_cnt; /* number of modules beneath IP */ 1997 ip_m_t *ill_media; /* media specific params/functions */ 1998 t_uscalar_t ill_dlpi_pending; /* Last DLPI primitive issued */ 1999 uint_t ill_usesrc_ifindex; /* use src addr from this ILL */ 2000 struct ill_s *ill_usesrc_grp_next; /* Next ILL in the usesrc group */ 2001 boolean_t ill_trace_disable; /* True when alloc fails */ 2002 zoneid_t ill_zoneid; 2003 ip_stack_t *ill_ipst; /* Corresponds to a netstack_hold */ 2004 uint32_t ill_dhcpinit; /* IP_DHCPINIT_IFs for ill */ 2005 void *ill_flownotify_mh; /* Tx flow ctl, mac cb handle */ 2006 uint_t ill_ilm_cnt; /* ilms referencing this ill */ 2007 uint_t ill_ipallmulti_cnt; /* ip_join_allmulti() calls */ 2008 } ill_t; 2009 2010 /* 2011 * ILL_FREE_OK() means that there are no incoming pointer references 2012 * to the ill. 2013 */ 2014 #define ILL_FREE_OK(ill) \ 2015 ((ill)->ill_ire_cnt == 0 && (ill)->ill_ilm_cnt == 0 && \ 2016 (ill)->ill_nce_cnt == 0) 2017 2018 /* 2019 * An ipif/ill can be marked down only when the ire and nce references 2020 * to that ipif/ill goes to zero. ILL_DOWN_OK() is a necessary condition 2021 * quiescence checks. See comments above IPIF_DOWN_OK for details 2022 * on why ires and nces are selectively considered for this macro. 2023 */ 2024 #define ILL_DOWN_OK(ill) (ill->ill_ire_cnt == 0 && ill->ill_nce_cnt == 0) 2025 2026 /* 2027 * The following table lists the protection levels of the various members 2028 * of the ill_t. Same notation as that used for ipif_t above is used. 2029 * 2030 * Write Read 2031 * 2032 * ill_ifptr ill_g_lock + s Write once 2033 * ill_rq ipsq Write once 2034 * ill_wq ipsq Write once 2035 * 2036 * ill_error ipsq None 2037 * ill_ipif ill_g_lock + ipsq ill_g_lock OR ipsq 2038 * ill_ipif_up_count ill_lock + ipsq ill_lock OR ipsq 2039 * ill_max_frag ipsq Write once 2040 * 2041 * ill_name ill_g_lock + ipsq Write once 2042 * ill_name_length ill_g_lock + ipsq Write once 2043 * ill_ndd_name ipsq Write once 2044 * ill_net_type ipsq Write once 2045 * ill_ppa ill_g_lock + ipsq Write once 2046 * ill_sap ipsq + down ill Write once 2047 * ill_sap_length ipsq + down ill Write once 2048 * ill_phys_addr_length ipsq + down ill Write once 2049 * 2050 * ill_bcast_addr_length ipsq ipsq 2051 * ill_mactype ipsq ipsq 2052 * ill_frag_ptr ipsq ipsq 2053 * 2054 * ill_frag_timer_id ill_lock ill_lock 2055 * ill_frag_hash_tbl ipsq up ill 2056 * ill_ilm ipsq + ill_lock ill_lock 2057 * ill_mcast_type ill_lock ill_lock 2058 * ill_mcast_v1_time ill_lock ill_lock 2059 * ill_mcast_v2_time ill_lock ill_lock 2060 * ill_mcast_v1_tset ill_lock ill_lock 2061 * ill_mcast_v2_tset ill_lock ill_lock 2062 * ill_mcast_rv ill_lock ill_lock 2063 * ill_mcast_qi ill_lock ill_lock 2064 * ill_pending_mp ill_lock ill_lock 2065 * 2066 * ill_bcast_mp ipsq ipsq 2067 * ill_resolver_mp ipsq only when ill is up 2068 * ill_down_mp ipsq ipsq 2069 * ill_dlpi_deferred ill_lock ill_lock 2070 * ill_dlpi_pending ill_lock ill_lock 2071 * ill_phys_addr_mp ipsq + down ill only when ill is up 2072 * ill_phys_addr ipsq + down ill only when ill is up 2073 * 2074 * ill_state_flags ill_lock ill_lock 2075 * exclusive bit flags ipsq_t ipsq_t 2076 * shared bit flags ill_lock ill_lock 2077 * 2078 * ill_arp_muxid ipsq Not atomic 2079 * ill_ip_muxid ipsq Not atomic 2080 * 2081 * ill_ipf_gen Not atomic 2082 * ill_frag_count atomics atomics 2083 * ill_type ipsq + down ill only when ill is up 2084 * ill_dlpi_multicast_state ill_lock ill_lock 2085 * ill_dlpi_fastpath_state ill_lock ill_lock 2086 * ill_dlpi_capab_state ipsq ipsq 2087 * ill_max_hops ipsq Not atomic 2088 * 2089 * ill_max_mtu 2090 * 2091 * ill_reachable_time ipsq + ill_lock ill_lock 2092 * ill_reachable_retrans_time ipsq + ill_lock ill_lock 2093 * ill_max_buf ipsq + ill_lock ill_lock 2094 * 2095 * Next 2 fields need ill_lock because of the get ioctls. They should not 2096 * report partially updated results without executing in the ipsq. 2097 * ill_token ipsq + ill_lock ill_lock 2098 * ill_token_length ipsq + ill_lock ill_lock 2099 * ill_xmit_count ipsq + down ill write once 2100 * ill_ip6_mib ipsq + down ill only when ill is up 2101 * ill_icmp6_mib ipsq + down ill only when ill is up 2102 * ill_arp_down_mp ipsq ipsq 2103 * ill_arp_del_mapping_mp ipsq ipsq 2104 * ill_arp_on_mp ipsq ipsq 2105 * ill_move_peer ipsq ipsq 2106 * 2107 * ill_phyint ipsq, ill_g_lock, ill_lock Any of them 2108 * ill_flags ill_lock ill_lock 2109 * ill_group ipsq, ill_g_lock, ill_lock Any of them 2110 * ill_group_next ipsq, ill_g_lock, ill_lock Any of them 2111 * ill_nd_lla_mp ipsq + down ill only when ill is up 2112 * ill_nd_lla ipsq + down ill only when ill is up 2113 * ill_nd_lla_len ipsq + down ill only when ill is up 2114 * ill_phys_addr_pend ipsq + down ill only when ill is up 2115 * ill_ifname_pending_err ipsq ipsq 2116 * ill_avl_byppa ipsq, ill_g_lock write once 2117 * 2118 * ill_fastpath_list ill_lock ill_lock 2119 * ill_refcnt ill_lock ill_lock 2120 * ill_ire_cnt ill_lock ill_lock 2121 * ill_cv ill_lock ill_lock 2122 * ill_ilm_walker_cnt ill_lock ill_lock 2123 * ill_nce_cnt ill_lock ill_lock 2124 * ill_ilm_cnt ill_lock ill_lock 2125 * ill_trace ill_lock ill_lock 2126 * ill_usesrc_grp_next ill_g_usesrc_lock ill_g_usesrc_lock 2127 * ill_dhcpinit atomics atomics 2128 * ill_flownotify_mh write once write once 2129 * ill_capab_pending_cnt ipsq ipsq 2130 */ 2131 2132 /* 2133 * For ioctl restart mechanism see ip_reprocess_ioctl() 2134 */ 2135 struct ip_ioctl_cmd_s; 2136 2137 typedef int (*ifunc_t)(ipif_t *, struct sockaddr_in *, queue_t *, mblk_t *, 2138 struct ip_ioctl_cmd_s *, void *); 2139 2140 typedef struct ip_ioctl_cmd_s { 2141 int ipi_cmd; 2142 size_t ipi_copyin_size; 2143 uint_t ipi_flags; 2144 uint_t ipi_cmd_type; 2145 ifunc_t ipi_func; 2146 ifunc_t ipi_func_restart; 2147 } ip_ioctl_cmd_t; 2148 2149 /* 2150 * ipi_cmd_type: 2151 * 2152 * IF_CMD 1 old style ifreq cmd 2153 * LIF_CMD 2 new style lifreq cmd 2154 * TUN_CMD 3 tunnel related 2155 * ARP_CMD 4 arpreq cmd 2156 * XARP_CMD 5 xarpreq cmd 2157 * MSFILT_CMD 6 multicast source filter cmd 2158 * MISC_CMD 7 misc cmd (not a more specific one above) 2159 */ 2160 2161 enum { IF_CMD = 1, LIF_CMD, TUN_CMD, ARP_CMD, XARP_CMD, MSFILT_CMD, MISC_CMD }; 2162 2163 #define IPI_DONTCARE 0 /* For ioctl encoded values that don't matter */ 2164 2165 /* Flag values in ipi_flags */ 2166 #define IPI_PRIV 0x1 /* Root only command */ 2167 #define IPI_MODOK 0x2 /* Permitted on mod instance of IP */ 2168 #define IPI_WR 0x4 /* Need to grab writer access */ 2169 #define IPI_GET_CMD 0x8 /* branch to mi_copyout on success */ 2170 #define IPI_REPL 0x10 /* valid for replacement ipif created in MOVE */ 2171 #define IPI_NULL_BCONT 0x20 /* ioctl has not data and hence no b_cont */ 2172 #define IPI_PASS_DOWN 0x40 /* pass this ioctl down when a module only */ 2173 2174 extern ip_ioctl_cmd_t ip_ndx_ioctl_table[]; 2175 extern ip_ioctl_cmd_t ip_misc_ioctl_table[]; 2176 extern int ip_ndx_ioctl_count; 2177 extern int ip_misc_ioctl_count; 2178 2179 #define ILL_CLEAR_MOVE(ill) { \ 2180 ill_t *peer_ill; \ 2181 \ 2182 peer_ill = (ill)->ill_move_peer; \ 2183 ASSERT(peer_ill != NULL); \ 2184 (ill)->ill_move_in_progress = B_FALSE; \ 2185 peer_ill->ill_move_in_progress = B_FALSE; \ 2186 (ill)->ill_move_peer = NULL; \ 2187 peer_ill->ill_move_peer = NULL; \ 2188 } 2189 2190 /* Passed down by ARP to IP during I_PLINK/I_PUNLINK */ 2191 typedef struct ipmx_s { 2192 char ipmx_name[LIFNAMSIZ]; /* if name */ 2193 uint_t 2194 ipmx_arpdev_stream : 1, /* This is the arp stream */ 2195 ipmx_notused : 31; 2196 } ipmx_t; 2197 2198 /* 2199 * State for detecting if a driver supports certain features. 2200 * Support for DL_ENABMULTI_REQ uses ill_dlpi_multicast_state. 2201 * Support for DLPI M_DATA fastpath uses ill_dlpi_fastpath_state. 2202 */ 2203 #define IDS_UNKNOWN 0 /* No DLPI request sent */ 2204 #define IDS_INPROGRESS 1 /* DLPI request sent */ 2205 #define IDS_OK 2 /* DLPI request completed successfully */ 2206 #define IDS_FAILED 3 /* DLPI request failed */ 2207 2208 /* Support for DL_CAPABILITY_REQ uses ill_dlpi_capab_state. */ 2209 enum { 2210 IDCS_UNKNOWN, 2211 IDCS_PROBE_SENT, 2212 IDCS_OK, 2213 IDCS_RESET_SENT, 2214 IDCS_RENEG, 2215 IDCS_FAILED 2216 }; 2217 2218 /* Named Dispatch Parameter Management Structure */ 2219 typedef struct ipparam_s { 2220 uint_t ip_param_min; 2221 uint_t ip_param_max; 2222 uint_t ip_param_value; 2223 char *ip_param_name; 2224 } ipparam_t; 2225 2226 /* Extended NDP Management Structure */ 2227 typedef struct ipndp_s { 2228 ndgetf_t ip_ndp_getf; 2229 ndsetf_t ip_ndp_setf; 2230 caddr_t ip_ndp_data; 2231 char *ip_ndp_name; 2232 } ipndp_t; 2233 2234 /* 2235 * The kernel stores security attributes of all gateways in a database made 2236 * up of one or more tsol_gcdb_t elements. Each tsol_gcdb_t contains the 2237 * security-related credentials of the gateway. More than one gateways may 2238 * share entries in the database. 2239 * 2240 * The tsol_gc_t structure represents the gateway to credential association, 2241 * and refers to an entry in the database. One or more tsol_gc_t entities are 2242 * grouped together to form one or more tsol_gcgrp_t, each representing the 2243 * list of security attributes specific to the gateway. A gateway may be 2244 * associated with at most one credentials group. 2245 */ 2246 struct tsol_gcgrp_s; 2247 2248 extern uchar_t ip6opt_ls; /* TX IPv6 enabler */ 2249 2250 /* 2251 * Gateway security credential record. 2252 */ 2253 typedef struct tsol_gcdb_s { 2254 uint_t gcdb_refcnt; /* reference count */ 2255 struct rtsa_s gcdb_attr; /* security attributes */ 2256 #define gcdb_mask gcdb_attr.rtsa_mask 2257 #define gcdb_doi gcdb_attr.rtsa_doi 2258 #define gcdb_slrange gcdb_attr.rtsa_slrange 2259 } tsol_gcdb_t; 2260 2261 /* 2262 * Gateway to credential association. 2263 */ 2264 typedef struct tsol_gc_s { 2265 uint_t gc_refcnt; /* reference count */ 2266 struct tsol_gcgrp_s *gc_grp; /* pointer to group */ 2267 struct tsol_gc_s *gc_prev; /* previous in list */ 2268 struct tsol_gc_s *gc_next; /* next in list */ 2269 tsol_gcdb_t *gc_db; /* pointer to actual credentials */ 2270 } tsol_gc_t; 2271 2272 /* 2273 * Gateway credentials group address. 2274 */ 2275 typedef struct tsol_gcgrp_addr_s { 2276 int ga_af; /* address family */ 2277 in6_addr_t ga_addr; /* IPv4 mapped or IPv6 address */ 2278 } tsol_gcgrp_addr_t; 2279 2280 /* 2281 * Gateway credentials group. 2282 */ 2283 typedef struct tsol_gcgrp_s { 2284 uint_t gcgrp_refcnt; /* reference count */ 2285 krwlock_t gcgrp_rwlock; /* lock to protect following */ 2286 uint_t gcgrp_count; /* number of credentials */ 2287 tsol_gc_t *gcgrp_head; /* first credential in list */ 2288 tsol_gc_t *gcgrp_tail; /* last credential in list */ 2289 tsol_gcgrp_addr_t gcgrp_addr; /* next-hop gateway address */ 2290 } tsol_gcgrp_t; 2291 2292 extern kmutex_t gcgrp_lock; 2293 2294 #define GC_REFRELE(p) { \ 2295 ASSERT((p)->gc_grp != NULL); \ 2296 rw_enter(&(p)->gc_grp->gcgrp_rwlock, RW_WRITER); \ 2297 ASSERT((p)->gc_refcnt > 0); \ 2298 if (--((p)->gc_refcnt) == 0) \ 2299 gc_inactive(p); \ 2300 else \ 2301 rw_exit(&(p)->gc_grp->gcgrp_rwlock); \ 2302 } 2303 2304 #define GCGRP_REFHOLD(p) { \ 2305 mutex_enter(&gcgrp_lock); \ 2306 ++((p)->gcgrp_refcnt); \ 2307 ASSERT((p)->gcgrp_refcnt != 0); \ 2308 mutex_exit(&gcgrp_lock); \ 2309 } 2310 2311 #define GCGRP_REFRELE(p) { \ 2312 mutex_enter(&gcgrp_lock); \ 2313 ASSERT((p)->gcgrp_refcnt > 0); \ 2314 if (--((p)->gcgrp_refcnt) == 0) \ 2315 gcgrp_inactive(p); \ 2316 ASSERT(MUTEX_HELD(&gcgrp_lock)); \ 2317 mutex_exit(&gcgrp_lock); \ 2318 } 2319 2320 /* 2321 * IRE gateway security attributes structure, pointed to by tsol_ire_gw_secattr 2322 */ 2323 struct tsol_tnrhc; 2324 2325 typedef struct tsol_ire_gw_secattr_s { 2326 kmutex_t igsa_lock; /* lock to protect following */ 2327 struct tsol_tnrhc *igsa_rhc; /* host entry for gateway */ 2328 tsol_gc_t *igsa_gc; /* for prefix IREs */ 2329 tsol_gcgrp_t *igsa_gcgrp; /* for cache IREs */ 2330 } tsol_ire_gw_secattr_t; 2331 2332 /* 2333 * Following are the macros to increment/decrement the reference 2334 * count of the IREs and IRBs (ire bucket). 2335 * 2336 * 1) We bump up the reference count of an IRE to make sure that 2337 * it does not get deleted and freed while we are using it. 2338 * Typically all the lookup functions hold the bucket lock, 2339 * and look for the IRE. If it finds an IRE, it bumps up the 2340 * reference count before dropping the lock. Sometimes we *may* want 2341 * to bump up the reference count after we *looked* up i.e without 2342 * holding the bucket lock. So, the IRE_REFHOLD macro does not assert 2343 * on the bucket lock being held. Any thread trying to delete from 2344 * the hash bucket can still do so but cannot free the IRE if 2345 * ire_refcnt is not 0. 2346 * 2347 * 2) We bump up the reference count on the bucket where the IRE resides 2348 * (IRB), when we want to prevent the IREs getting deleted from a given 2349 * hash bucket. This makes life easier for ire_walk type functions which 2350 * wants to walk the IRE list, call a function, but needs to drop 2351 * the bucket lock to prevent recursive rw_enters. While the 2352 * lock is dropped, the list could be changed by other threads or 2353 * the same thread could end up deleting the ire or the ire pointed by 2354 * ire_next. IRE_REFHOLDing the ire or ire_next is not sufficient as 2355 * a delete will still remove the ire from the bucket while we have 2356 * dropped the lock and hence the ire_next would be NULL. Thus, we 2357 * need a mechanism to prevent deletions from a given bucket. 2358 * 2359 * To prevent deletions, we bump up the reference count on the 2360 * bucket. If the bucket is held, ire_delete just marks IRE_MARK_CONDEMNED 2361 * both on the ire's ire_marks and the bucket's irb_marks. When the 2362 * reference count on the bucket drops to zero, all the CONDEMNED ires 2363 * are deleted. We don't have to bump up the reference count on the 2364 * bucket if we are walking the bucket and never have to drop the bucket 2365 * lock. Note that IRB_REFHOLD does not prevent addition of new ires 2366 * in the list. It is okay because addition of new ires will not cause 2367 * ire_next to point to freed memory. We do IRB_REFHOLD only when 2368 * all of the 3 conditions are true : 2369 * 2370 * 1) The code needs to walk the IRE bucket from start to end. 2371 * 2) It may have to drop the bucket lock sometimes while doing (1) 2372 * 3) It does not want any ires to be deleted meanwhile. 2373 */ 2374 2375 /* 2376 * Bump up the reference count on the IRE. We cannot assert that the 2377 * bucket lock is being held as it is legal to bump up the reference 2378 * count after the first lookup has returned the IRE without 2379 * holding the lock. Currently ip_wput does this for caching IRE_CACHEs. 2380 */ 2381 2382 #ifdef DEBUG 2383 #define IRE_UNTRACE_REF(ire) ire_untrace_ref(ire); 2384 #define IRE_TRACE_REF(ire) ire_trace_ref(ire); 2385 #else 2386 #define IRE_UNTRACE_REF(ire) 2387 #define IRE_TRACE_REF(ire) 2388 #endif 2389 2390 #define IRE_REFHOLD_NOTR(ire) { \ 2391 atomic_add_32(&(ire)->ire_refcnt, 1); \ 2392 ASSERT((ire)->ire_refcnt != 0); \ 2393 } 2394 2395 #define IRE_REFHOLD(ire) { \ 2396 IRE_REFHOLD_NOTR(ire); \ 2397 IRE_TRACE_REF(ire); \ 2398 } 2399 2400 #define IRE_REFHOLD_LOCKED(ire) { \ 2401 IRE_TRACE_REF(ire); \ 2402 (ire)->ire_refcnt++; \ 2403 } 2404 2405 /* 2406 * Decrement the reference count on the IRE. 2407 * In architectures e.g sun4u, where atomic_add_32_nv is just 2408 * a cas, we need to maintain the right memory barrier semantics 2409 * as that of mutex_exit i.e all the loads and stores should complete 2410 * before the cas is executed. membar_exit() does that here. 2411 * 2412 * NOTE : This macro is used only in places where we want performance. 2413 * To avoid bloating the code, we use the function "ire_refrele" 2414 * which essentially calls the macro. 2415 */ 2416 #define IRE_REFRELE_NOTR(ire) { \ 2417 ASSERT((ire)->ire_refcnt != 0); \ 2418 membar_exit(); \ 2419 if (atomic_add_32_nv(&(ire)->ire_refcnt, -1) == 0) \ 2420 ire_inactive(ire); \ 2421 } 2422 2423 #define IRE_REFRELE(ire) { \ 2424 if (ire->ire_bucket != NULL) { \ 2425 IRE_UNTRACE_REF(ire); \ 2426 } \ 2427 IRE_REFRELE_NOTR(ire); \ 2428 } 2429 2430 /* 2431 * Bump up the reference count on the hash bucket - IRB to 2432 * prevent ires from being deleted in this bucket. 2433 */ 2434 #define IRB_REFHOLD(irb) { \ 2435 rw_enter(&(irb)->irb_lock, RW_WRITER); \ 2436 (irb)->irb_refcnt++; \ 2437 ASSERT((irb)->irb_refcnt != 0); \ 2438 rw_exit(&(irb)->irb_lock); \ 2439 } 2440 #define IRB_REFHOLD_LOCKED(irb) { \ 2441 ASSERT(RW_WRITE_HELD(&(irb)->irb_lock)); \ 2442 (irb)->irb_refcnt++; \ 2443 ASSERT((irb)->irb_refcnt != 0); \ 2444 } 2445 2446 void irb_refrele_ftable(irb_t *); 2447 /* 2448 * Note: when IRB_MARK_FTABLE (i.e., IRE_CACHETABLE entry), the irb_t 2449 * is statically allocated, so that when the irb_refcnt goes to 0, 2450 * we simply clean up the ire list and continue. 2451 */ 2452 #define IRB_REFRELE(irb) { \ 2453 if ((irb)->irb_marks & IRB_MARK_FTABLE) { \ 2454 irb_refrele_ftable((irb)); \ 2455 } else { \ 2456 rw_enter(&(irb)->irb_lock, RW_WRITER); \ 2457 ASSERT((irb)->irb_refcnt != 0); \ 2458 if (--(irb)->irb_refcnt == 0 && \ 2459 ((irb)->irb_marks & IRE_MARK_CONDEMNED)) { \ 2460 ire_t *ire_list; \ 2461 \ 2462 ire_list = ire_unlink(irb); \ 2463 rw_exit(&(irb)->irb_lock); \ 2464 ASSERT(ire_list != NULL); \ 2465 ire_cleanup(ire_list); \ 2466 } else { \ 2467 rw_exit(&(irb)->irb_lock); \ 2468 } \ 2469 } \ 2470 } 2471 2472 extern struct kmem_cache *rt_entry_cache; 2473 2474 /* 2475 * Lock the fast path mp for access, since the fp_mp can be deleted 2476 * due a DL_NOTE_FASTPATH_FLUSH in the case of IRE_BROADCAST 2477 */ 2478 2479 #define LOCK_IRE_FP_MP(ire) { \ 2480 if ((ire)->ire_type == IRE_BROADCAST) \ 2481 mutex_enter(&ire->ire_nce->nce_lock); \ 2482 } 2483 #define UNLOCK_IRE_FP_MP(ire) { \ 2484 if ((ire)->ire_type == IRE_BROADCAST) \ 2485 mutex_exit(&ire->ire_nce->nce_lock); \ 2486 } 2487 2488 typedef struct ire4 { 2489 ipaddr_t ire4_src_addr; /* Source address to use. */ 2490 ipaddr_t ire4_mask; /* Mask for matching this IRE. */ 2491 ipaddr_t ire4_addr; /* Address this IRE represents. */ 2492 ipaddr_t ire4_gateway_addr; /* Gateway if IRE_CACHE/IRE_OFFSUBNET */ 2493 ipaddr_t ire4_cmask; /* Mask from parent prefix route */ 2494 } ire4_t; 2495 2496 typedef struct ire6 { 2497 in6_addr_t ire6_src_addr; /* Source address to use. */ 2498 in6_addr_t ire6_mask; /* Mask for matching this IRE. */ 2499 in6_addr_t ire6_addr; /* Address this IRE represents. */ 2500 in6_addr_t ire6_gateway_addr; /* Gateway if IRE_CACHE/IRE_OFFSUBNET */ 2501 in6_addr_t ire6_cmask; /* Mask from parent prefix route */ 2502 } ire6_t; 2503 2504 typedef union ire_addr { 2505 ire6_t ire6_u; 2506 ire4_t ire4_u; 2507 } ire_addr_u_t; 2508 2509 /* Internet Routing Entry */ 2510 typedef struct ire_s { 2511 struct ire_s *ire_next; /* The hash chain must be first. */ 2512 struct ire_s **ire_ptpn; /* Pointer to previous next. */ 2513 uint32_t ire_refcnt; /* Number of references */ 2514 mblk_t *ire_mp; /* Non-null if allocated as mblk */ 2515 queue_t *ire_rfq; /* recv from this queue */ 2516 queue_t *ire_stq; /* send to this queue */ 2517 union { 2518 uint_t *max_fragp; /* Used only during ire creation */ 2519 uint_t max_frag; /* MTU (next hop or path). */ 2520 } imf_u; 2521 #define ire_max_frag imf_u.max_frag 2522 #define ire_max_fragp imf_u.max_fragp 2523 uint32_t ire_frag_flag; /* IPH_DF or zero. */ 2524 uint32_t ire_ident; /* Per IRE IP ident. */ 2525 uint32_t ire_tire_mark; /* Used for reclaim of unused. */ 2526 uchar_t ire_ipversion; /* IPv4/IPv6 version */ 2527 uchar_t ire_marks; /* IRE_MARK_CONDEMNED etc. */ 2528 ushort_t ire_type; /* Type of IRE */ 2529 uint_t ire_ib_pkt_count; /* Inbound packets for ire_addr */ 2530 uint_t ire_ob_pkt_count; /* Outbound packets to ire_addr */ 2531 uint_t ire_ll_hdr_length; /* Non-zero if we do M_DATA prepends */ 2532 time_t ire_create_time; /* Time (in secs) IRE was created. */ 2533 uint32_t ire_phandle; /* Associate prefix IREs to cache */ 2534 uint32_t ire_ihandle; /* Associate interface IREs to cache */ 2535 ipif_t *ire_ipif; /* the interface that this ire uses */ 2536 uint32_t ire_flags; /* flags related to route (RTF_*) */ 2537 uint_t ire_ipsec_overhead; /* IPSEC overhead */ 2538 /* 2539 * Neighbor Cache Entry for IPv6; arp info for IPv4 2540 */ 2541 struct nce_s *ire_nce; 2542 uint_t ire_masklen; /* # bits in ire_mask{,_v6} */ 2543 ire_addr_u_t ire_u; /* IPv4/IPv6 address info. */ 2544 2545 irb_t *ire_bucket; /* Hash bucket when ire_ptphn is set */ 2546 iulp_t ire_uinfo; /* Upper layer protocol info. */ 2547 /* 2548 * Protects ire_uinfo, ire_max_frag, and ire_frag_flag. 2549 */ 2550 kmutex_t ire_lock; 2551 uint_t ire_ipif_seqid; /* ipif_seqid of ire_ipif */ 2552 uint_t ire_ipif_ifindex; /* ifindex associated with ipif */ 2553 clock_t ire_last_used_time; /* Last used time */ 2554 tsol_ire_gw_secattr_t *ire_gw_secattr; /* gateway security attributes */ 2555 zoneid_t ire_zoneid; /* for local address discrimination */ 2556 /* 2557 * ire's that are embedded inside mblk_t and sent to the external 2558 * resolver use the ire_stq_ifindex to track the ifindex of the 2559 * ire_stq, so that the ill (if it exists) can be correctly recovered 2560 * for cleanup in the esbfree routine when arp failure occurs. 2561 * Similarly, the ire_stackid is used to recover the ip_stack_t. 2562 */ 2563 uint_t ire_stq_ifindex; 2564 netstackid_t ire_stackid; 2565 uint_t ire_defense_count; /* number of ARP conflicts */ 2566 uint_t ire_defense_time; /* last time defended (secs) */ 2567 boolean_t ire_trace_disable; /* True when alloc fails */ 2568 ip_stack_t *ire_ipst; /* Does not have a netstack_hold */ 2569 } ire_t; 2570 2571 /* IPv4 compatibility macros */ 2572 #define ire_src_addr ire_u.ire4_u.ire4_src_addr 2573 #define ire_mask ire_u.ire4_u.ire4_mask 2574 #define ire_addr ire_u.ire4_u.ire4_addr 2575 #define ire_gateway_addr ire_u.ire4_u.ire4_gateway_addr 2576 #define ire_cmask ire_u.ire4_u.ire4_cmask 2577 2578 #define ire_src_addr_v6 ire_u.ire6_u.ire6_src_addr 2579 #define ire_mask_v6 ire_u.ire6_u.ire6_mask 2580 #define ire_addr_v6 ire_u.ire6_u.ire6_addr 2581 #define ire_gateway_addr_v6 ire_u.ire6_u.ire6_gateway_addr 2582 #define ire_cmask_v6 ire_u.ire6_u.ire6_cmask 2583 2584 /* Convenient typedefs for sockaddrs */ 2585 typedef struct sockaddr_in sin_t; 2586 typedef struct sockaddr_in6 sin6_t; 2587 2588 /* Address structure used for internal bind with IP */ 2589 typedef struct ipa_conn_s { 2590 ipaddr_t ac_laddr; 2591 ipaddr_t ac_faddr; 2592 uint16_t ac_fport; 2593 uint16_t ac_lport; 2594 } ipa_conn_t; 2595 2596 typedef struct ipa6_conn_s { 2597 in6_addr_t ac6_laddr; 2598 in6_addr_t ac6_faddr; 2599 uint16_t ac6_fport; 2600 uint16_t ac6_lport; 2601 } ipa6_conn_t; 2602 2603 /* 2604 * Using ipa_conn_x_t or ipa6_conn_x_t allows us to modify the behavior of IP's 2605 * bind handler. 2606 */ 2607 typedef struct ipa_conn_extended_s { 2608 uint64_t acx_flags; 2609 ipa_conn_t acx_conn; 2610 } ipa_conn_x_t; 2611 2612 typedef struct ipa6_conn_extended_s { 2613 uint64_t ac6x_flags; 2614 ipa6_conn_t ac6x_conn; 2615 } ipa6_conn_x_t; 2616 2617 /* flag values for ipa_conn_x_t and ipa6_conn_x_t. */ 2618 #define ACX_VERIFY_DST 0x1ULL /* verify destination address is reachable */ 2619 2620 /* Name/Value Descriptor. */ 2621 typedef struct nv_s { 2622 uint64_t nv_value; 2623 char *nv_name; 2624 } nv_t; 2625 2626 #define ILL_FRAG_HASH(s, i) \ 2627 ((ntohl(s) ^ ((i) ^ ((i) >> 8))) % ILL_FRAG_HASH_TBL_COUNT) 2628 2629 /* 2630 * The MAX number of allowed fragmented packets per hash bucket 2631 * calculation is based on the most common mtu size of 1500. This limit 2632 * will work well for other mtu sizes as well. 2633 */ 2634 #define COMMON_IP_MTU 1500 2635 #define MAX_FRAG_MIN 10 2636 #define MAX_FRAG_PKTS(ipst) \ 2637 MAX(MAX_FRAG_MIN, (2 * (ipst->ips_ip_reass_queue_bytes / \ 2638 (COMMON_IP_MTU * ILL_FRAG_HASH_TBL_COUNT)))) 2639 2640 /* 2641 * Maximum dups allowed per packet. 2642 */ 2643 extern uint_t ip_max_frag_dups; 2644 2645 /* 2646 * Per-packet information for received packets and transmitted. 2647 * Used by the transport protocols when converting between the packet 2648 * and ancillary data and socket options. 2649 * 2650 * Note: This private data structure and related IPPF_* constant 2651 * definitions are exposed to enable compilation of some debugging tools 2652 * like lsof which use struct tcp_t in <inet/tcp.h>. This is intended to be 2653 * a temporary hack and long term alternate interfaces should be defined 2654 * to support the needs of such tools and private definitions moved to 2655 * private headers. 2656 */ 2657 struct ip6_pkt_s { 2658 uint_t ipp_fields; /* Which fields are valid */ 2659 uint_t ipp_sticky_ignored; /* sticky fields to ignore */ 2660 uint_t ipp_ifindex; /* pktinfo ifindex */ 2661 in6_addr_t ipp_addr; /* pktinfo src/dst addr */ 2662 uint_t ipp_unicast_hops; /* IPV6_UNICAST_HOPS */ 2663 uint_t ipp_multicast_hops; /* IPV6_MULTICAST_HOPS */ 2664 uint_t ipp_hoplimit; /* IPV6_HOPLIMIT */ 2665 uint_t ipp_hopoptslen; 2666 uint_t ipp_rtdstoptslen; 2667 uint_t ipp_rthdrlen; 2668 uint_t ipp_dstoptslen; 2669 uint_t ipp_pathmtulen; 2670 uint_t ipp_fraghdrlen; 2671 ip6_hbh_t *ipp_hopopts; 2672 ip6_dest_t *ipp_rtdstopts; 2673 ip6_rthdr_t *ipp_rthdr; 2674 ip6_dest_t *ipp_dstopts; 2675 ip6_frag_t *ipp_fraghdr; 2676 struct ip6_mtuinfo *ipp_pathmtu; 2677 in6_addr_t ipp_nexthop; /* Transmit only */ 2678 uint8_t ipp_tclass; 2679 int8_t ipp_use_min_mtu; 2680 }; 2681 typedef struct ip6_pkt_s ip6_pkt_t; 2682 2683 extern void ip6_pkt_free(ip6_pkt_t *); /* free storage inside ip6_pkt_t */ 2684 2685 /* 2686 * This struct is used by ULP_opt_set() functions to return value of IPv4 2687 * ancillary options. Currently this is only used by udp and icmp and only 2688 * IP_PKTINFO option is supported. 2689 */ 2690 typedef struct ip4_pkt_s { 2691 uint_t ip4_ill_index; /* interface index */ 2692 ipaddr_t ip4_addr; /* source address */ 2693 } ip4_pkt_t; 2694 2695 /* 2696 * Used by ULP's to pass options info to ip_output 2697 * currently only IP_PKTINFO is supported. 2698 */ 2699 typedef struct ip_opt_info_s { 2700 uint_t ip_opt_ill_index; 2701 uint_t ip_opt_flags; 2702 } ip_opt_info_t; 2703 2704 /* 2705 * value for ip_opt_flags 2706 */ 2707 #define IP_VERIFY_SRC 0x1 2708 2709 /* 2710 * This structure is used to convey information from IP and the ULP. 2711 * Currently used for the IP_RECVSLLA, IP_RECVIF and IP_RECVPKTINFO options. 2712 * The type of information field is set to IN_PKTINFO (i.e inbound pkt info) 2713 */ 2714 typedef struct ip_pktinfo { 2715 uint32_t ip_pkt_ulp_type; /* type of info sent */ 2716 uint32_t ip_pkt_flags; /* what is sent up by IP */ 2717 uint32_t ip_pkt_ifindex; /* inbound interface index */ 2718 struct sockaddr_dl ip_pkt_slla; /* has source link layer addr */ 2719 struct in_addr ip_pkt_match_addr; /* matched address */ 2720 } ip_pktinfo_t; 2721 2722 /* 2723 * flags to tell UDP what IP is sending; in_pkt_flags 2724 */ 2725 #define IPF_RECVIF 0x01 /* inbound interface index */ 2726 #define IPF_RECVSLLA 0x02 /* source link layer address */ 2727 /* 2728 * Inbound interface index + matched address. 2729 * Used only by IPV4. 2730 */ 2731 #define IPF_RECVADDR 0x04 2732 2733 /* ipp_fields values */ 2734 #define IPPF_IFINDEX 0x0001 /* Part of in6_pktinfo: ifindex */ 2735 #define IPPF_ADDR 0x0002 /* Part of in6_pktinfo: src/dst addr */ 2736 #define IPPF_SCOPE_ID 0x0004 /* Add xmit ip6i_t for sin6_scope_id */ 2737 #define IPPF_NO_CKSUM 0x0008 /* Add xmit ip6i_t for IP6I_NO_*_CKSUM */ 2738 2739 #define IPPF_RAW_CKSUM 0x0010 /* Add xmit ip6i_t for IP6I_RAW_CHECKSUM */ 2740 #define IPPF_HOPLIMIT 0x0020 2741 #define IPPF_HOPOPTS 0x0040 2742 #define IPPF_RTHDR 0x0080 2743 2744 #define IPPF_RTDSTOPTS 0x0100 2745 #define IPPF_DSTOPTS 0x0200 2746 #define IPPF_NEXTHOP 0x0400 2747 #define IPPF_PATHMTU 0x0800 2748 2749 #define IPPF_TCLASS 0x1000 2750 #define IPPF_DONTFRAG 0x2000 2751 #define IPPF_USE_MIN_MTU 0x04000 2752 #define IPPF_MULTICAST_HOPS 0x08000 2753 2754 #define IPPF_UNICAST_HOPS 0x10000 2755 #define IPPF_FRAGHDR 0x20000 2756 2757 #define IPPF_HAS_IP6I \ 2758 (IPPF_IFINDEX|IPPF_ADDR|IPPF_NEXTHOP|IPPF_SCOPE_ID| \ 2759 IPPF_NO_CKSUM|IPPF_RAW_CKSUM|IPPF_HOPLIMIT|IPPF_DONTFRAG| \ 2760 IPPF_USE_MIN_MTU|IPPF_MULTICAST_HOPS|IPPF_UNICAST_HOPS) 2761 2762 #define TCP_PORTS_OFFSET 0 2763 #define UDP_PORTS_OFFSET 0 2764 2765 /* 2766 * lookups return the ill/ipif only if the flags are clear OR Iam writer. 2767 * ill / ipif lookup functions increment the refcnt on the ill / ipif only 2768 * after calling these macros. This ensures that the refcnt on the ipif or 2769 * ill will eventually drop down to zero. 2770 */ 2771 #define ILL_LOOKUP_FAILED 1 /* Used as error code */ 2772 #define IPIF_LOOKUP_FAILED 2 /* Used as error code */ 2773 2774 #define ILL_CAN_LOOKUP(ill) \ 2775 (!((ill)->ill_state_flags & (ILL_CONDEMNED | ILL_CHANGING)) || \ 2776 IAM_WRITER_ILL(ill)) 2777 2778 #define ILL_CAN_WAIT(ill, q) \ 2779 (((q) != NULL) && !((ill)->ill_state_flags & (ILL_CONDEMNED))) 2780 2781 #define ILL_CAN_LOOKUP_WALKER(ill) \ 2782 (!((ill)->ill_state_flags & ILL_CONDEMNED)) 2783 2784 #define IPIF_CAN_LOOKUP(ipif) \ 2785 (!((ipif)->ipif_state_flags & (IPIF_CONDEMNED | IPIF_CHANGING)) || \ 2786 IAM_WRITER_IPIF(ipif)) 2787 2788 /* 2789 * If the parameter 'q' is NULL, the caller is not interested in wait and 2790 * restart of the operation if the ILL or IPIF cannot be looked up when it is 2791 * marked as 'CHANGING'. Typically a thread that tries to send out data will 2792 * end up passing NULLs as the last 4 parameters to ill_lookup_on_ifindex and 2793 * in this case 'q' is NULL 2794 */ 2795 #define IPIF_CAN_WAIT(ipif, q) \ 2796 (((q) != NULL) && !((ipif)->ipif_state_flags & (IPIF_CONDEMNED))) 2797 2798 #define IPIF_CAN_LOOKUP_WALKER(ipif) \ 2799 (!((ipif)->ipif_state_flags & (IPIF_CONDEMNED)) || \ 2800 IAM_WRITER_IPIF(ipif)) 2801 2802 /* 2803 * These macros are used by critical set ioctls and failover ioctls to 2804 * mark the ipif appropriately before starting the operation and to clear the 2805 * marks after completing the operation. 2806 */ 2807 #define IPIF_UNMARK_MOVING(ipif) \ 2808 (ipif)->ipif_state_flags &= ~IPIF_MOVING & ~IPIF_CHANGING; 2809 2810 #define ILL_UNMARK_CHANGING(ill) \ 2811 (ill)->ill_state_flags &= ~ILL_CHANGING; 2812 2813 /* Macros used to assert that this thread is a writer */ 2814 #define IAM_WRITER_IPSQ(ipsq) ((ipsq)->ipsq_writer == curthread) 2815 #define IAM_WRITER_ILL(ill) IAM_WRITER_IPSQ((ill)->ill_phyint->phyint_ipsq) 2816 #define IAM_WRITER_IPIF(ipif) IAM_WRITER_ILL((ipif)->ipif_ill) 2817 2818 /* 2819 * Grab ill locks in the proper order. The order is highest addressed 2820 * ill is locked first. 2821 */ 2822 #define GRAB_ILL_LOCKS(ill_1, ill_2) \ 2823 { \ 2824 if ((ill_1) > (ill_2)) { \ 2825 if (ill_1 != NULL) \ 2826 mutex_enter(&(ill_1)->ill_lock); \ 2827 if (ill_2 != NULL) \ 2828 mutex_enter(&(ill_2)->ill_lock); \ 2829 } else { \ 2830 if (ill_2 != NULL) \ 2831 mutex_enter(&(ill_2)->ill_lock); \ 2832 if (ill_1 != NULL && ill_1 != ill_2) \ 2833 mutex_enter(&(ill_1)->ill_lock); \ 2834 } \ 2835 } 2836 2837 #define RELEASE_ILL_LOCKS(ill_1, ill_2) \ 2838 { \ 2839 if (ill_1 != NULL) \ 2840 mutex_exit(&(ill_1)->ill_lock); \ 2841 if (ill_2 != NULL && ill_2 != ill_1) \ 2842 mutex_exit(&(ill_2)->ill_lock); \ 2843 } 2844 2845 /* Get the other protocol instance ill */ 2846 #define ILL_OTHER(ill) \ 2847 ((ill)->ill_isv6 ? (ill)->ill_phyint->phyint_illv4 : \ 2848 (ill)->ill_phyint->phyint_illv6) 2849 2850 #define MATCH_V4_ONLY 0x1 2851 #define MATCH_V6_ONLY 0x2 2852 #define MATCH_ILL_ONLY 0x4 2853 2854 /* ioctl command info: Ioctl properties extracted and stored in here */ 2855 typedef struct cmd_info_s 2856 { 2857 char ci_groupname[LIFNAMSIZ + 1]; /* SIOCSLIFGROUPNAME */ 2858 ipif_t *ci_ipif; /* ipif associated with [l]ifreq ioctl's */ 2859 sin_t *ci_sin; /* the sin struct passed down */ 2860 sin6_t *ci_sin6; /* the sin6_t struct passed down */ 2861 struct lifreq *ci_lifr; /* the lifreq struct passed down */ 2862 } cmd_info_t; 2863 2864 /* 2865 * List of AH and ESP IPsec acceleration capable ills 2866 */ 2867 typedef struct ipsec_capab_ill_s { 2868 uint_t ill_index; 2869 boolean_t ill_isv6; 2870 struct ipsec_capab_ill_s *next; 2871 } ipsec_capab_ill_t; 2872 2873 extern struct kmem_cache *ire_cache; 2874 2875 extern ipaddr_t ip_g_all_ones; 2876 2877 extern uint_t ip_loopback_mtu; /* /etc/system */ 2878 2879 extern vmem_t *ip_minor_arena_sa; 2880 extern vmem_t *ip_minor_arena_la; 2881 2882 /* 2883 * ip_g_forward controls IP forwarding. It takes two values: 2884 * 0: IP_FORWARD_NEVER Don't forward packets ever. 2885 * 1: IP_FORWARD_ALWAYS Forward packets for elsewhere. 2886 * 2887 * RFC1122 says there must be a configuration switch to control forwarding, 2888 * but that the default MUST be to not forward packets ever. Implicit 2889 * control based on configuration of multiple interfaces MUST NOT be 2890 * implemented (Section 3.1). SunOS 4.1 did provide the "automatic" capability 2891 * and, in fact, it was the default. That capability is now provided in the 2892 * /etc/rc2.d/S69inet script. 2893 */ 2894 2895 #define ips_ip_respond_to_address_mask_broadcast ips_param_arr[0].ip_param_value 2896 #define ips_ip_g_resp_to_echo_bcast ips_param_arr[1].ip_param_value 2897 #define ips_ip_g_resp_to_echo_mcast ips_param_arr[2].ip_param_value 2898 #define ips_ip_g_resp_to_timestamp ips_param_arr[3].ip_param_value 2899 #define ips_ip_g_resp_to_timestamp_bcast ips_param_arr[4].ip_param_value 2900 #define ips_ip_g_send_redirects ips_param_arr[5].ip_param_value 2901 #define ips_ip_g_forward_directed_bcast ips_param_arr[6].ip_param_value 2902 #define ips_ip_mrtdebug ips_param_arr[7].ip_param_value 2903 #define ips_ip_timer_interval ips_param_arr[8].ip_param_value 2904 #define ips_ip_ire_arp_interval ips_param_arr[9].ip_param_value 2905 #define ips_ip_ire_redir_interval ips_param_arr[10].ip_param_value 2906 #define ips_ip_def_ttl ips_param_arr[11].ip_param_value 2907 #define ips_ip_forward_src_routed ips_param_arr[12].ip_param_value 2908 #define ips_ip_wroff_extra ips_param_arr[13].ip_param_value 2909 #define ips_ip_ire_pathmtu_interval ips_param_arr[14].ip_param_value 2910 #define ips_ip_icmp_return ips_param_arr[15].ip_param_value 2911 #define ips_ip_path_mtu_discovery ips_param_arr[16].ip_param_value 2912 #define ips_ip_ignore_delete_time ips_param_arr[17].ip_param_value 2913 #define ips_ip_ignore_redirect ips_param_arr[18].ip_param_value 2914 #define ips_ip_output_queue ips_param_arr[19].ip_param_value 2915 #define ips_ip_broadcast_ttl ips_param_arr[20].ip_param_value 2916 #define ips_ip_icmp_err_interval ips_param_arr[21].ip_param_value 2917 #define ips_ip_icmp_err_burst ips_param_arr[22].ip_param_value 2918 #define ips_ip_reass_queue_bytes ips_param_arr[23].ip_param_value 2919 #define ips_ip_strict_dst_multihoming ips_param_arr[24].ip_param_value 2920 #define ips_ip_addrs_per_if ips_param_arr[25].ip_param_value 2921 #define ips_ipsec_override_persocket_policy ips_param_arr[26].ip_param_value 2922 #define ips_icmp_accept_clear_messages ips_param_arr[27].ip_param_value 2923 #define ips_igmp_accept_clear_messages ips_param_arr[28].ip_param_value 2924 2925 /* IPv6 configuration knobs */ 2926 #define ips_delay_first_probe_time ips_param_arr[29].ip_param_value 2927 #define ips_max_unicast_solicit ips_param_arr[30].ip_param_value 2928 #define ips_ipv6_def_hops ips_param_arr[31].ip_param_value 2929 #define ips_ipv6_icmp_return ips_param_arr[32].ip_param_value 2930 #define ips_ipv6_forward_src_routed ips_param_arr[33].ip_param_value 2931 #define ips_ipv6_resp_echo_mcast ips_param_arr[34].ip_param_value 2932 #define ips_ipv6_send_redirects ips_param_arr[35].ip_param_value 2933 #define ips_ipv6_ignore_redirect ips_param_arr[36].ip_param_value 2934 #define ips_ipv6_strict_dst_multihoming ips_param_arr[37].ip_param_value 2935 #define ips_ip_ire_reclaim_fraction ips_param_arr[38].ip_param_value 2936 #define ips_ipsec_policy_log_interval ips_param_arr[39].ip_param_value 2937 #define ips_pim_accept_clear_messages ips_param_arr[40].ip_param_value 2938 #define ips_ip_ndp_unsolicit_interval ips_param_arr[41].ip_param_value 2939 #define ips_ip_ndp_unsolicit_count ips_param_arr[42].ip_param_value 2940 #define ips_ipv6_ignore_home_address_opt ips_param_arr[43].ip_param_value 2941 2942 /* Misc IP configuration knobs */ 2943 #define ips_ip_policy_mask ips_param_arr[44].ip_param_value 2944 #define ips_ip_multirt_resolution_interval ips_param_arr[45].ip_param_value 2945 #define ips_ip_multirt_ttl ips_param_arr[46].ip_param_value 2946 #define ips_ip_multidata_outbound ips_param_arr[47].ip_param_value 2947 #define ips_ip_ndp_defense_interval ips_param_arr[48].ip_param_value 2948 #define ips_ip_max_temp_idle ips_param_arr[49].ip_param_value 2949 #define ips_ip_max_temp_defend ips_param_arr[50].ip_param_value 2950 #define ips_ip_max_defend ips_param_arr[51].ip_param_value 2951 #define ips_ip_defend_interval ips_param_arr[52].ip_param_value 2952 #define ips_ip_dup_recovery ips_param_arr[53].ip_param_value 2953 #define ips_ip_restrict_interzone_loopback ips_param_arr[54].ip_param_value 2954 #define ips_ip_lso_outbound ips_param_arr[55].ip_param_value 2955 #define ips_igmp_max_version ips_param_arr[56].ip_param_value 2956 #define ips_mld_max_version ips_param_arr[57].ip_param_value 2957 #define ips_ip_pmtu_min ips_param_arr[58].ip_param_value 2958 #define ips_ipv6_drop_inbound_icmpv6 ips_param_arr[59].ip_param_value 2959 2960 extern int dohwcksum; /* use h/w cksum if supported by the h/w */ 2961 #ifdef ZC_TEST 2962 extern int noswcksum; 2963 #endif 2964 2965 extern char ipif_loopback_name[]; 2966 2967 extern nv_t *ire_nv_tbl; 2968 2969 extern struct module_info ip_mod_info; 2970 2971 #define HOOKS4_INTERESTED_PHYSICAL_IN(ipst) \ 2972 ((ipst)->ips_ip4_physical_in_event.he_interested) 2973 #define HOOKS6_INTERESTED_PHYSICAL_IN(ipst) \ 2974 ((ipst)->ips_ip6_physical_in_event.he_interested) 2975 #define HOOKS4_INTERESTED_PHYSICAL_OUT(ipst) \ 2976 ((ipst)->ips_ip4_physical_out_event.he_interested) 2977 #define HOOKS6_INTERESTED_PHYSICAL_OUT(ipst) \ 2978 ((ipst)->ips_ip6_physical_out_event.he_interested) 2979 #define HOOKS4_INTERESTED_FORWARDING(ipst) \ 2980 ((ipst)->ips_ip4_forwarding_event.he_interested) 2981 #define HOOKS6_INTERESTED_FORWARDING(ipst) \ 2982 ((ipst)->ips_ip6_forwarding_event.he_interested) 2983 #define HOOKS4_INTERESTED_LOOPBACK_IN(ipst) \ 2984 ((ipst)->ips_ip4_loopback_in_event.he_interested) 2985 #define HOOKS6_INTERESTED_LOOPBACK_IN(ipst) \ 2986 ((ipst)->ips_ip6_loopback_in_event.he_interested) 2987 #define HOOKS4_INTERESTED_LOOPBACK_OUT(ipst) \ 2988 ((ipst)->ips_ip4_loopback_out_event.he_interested) 2989 #define HOOKS6_INTERESTED_LOOPBACK_OUT(ipst) \ 2990 ((ipst)->ips_ip6_loopback_out_event.he_interested) 2991 2992 /* 2993 * Hooks marcos used inside of ip 2994 */ 2995 #define IPHA_VHL ipha_version_and_hdr_length 2996 2997 #define FW_HOOKS(_hook, _event, _ilp, _olp, _iph, _fm, _m, _llm, ipst) \ 2998 \ 2999 if ((_hook).he_interested) { \ 3000 hook_pkt_event_t info; \ 3001 \ 3002 _NOTE(CONSTCOND) \ 3003 ASSERT((_ilp != NULL) || (_olp != NULL)); \ 3004 \ 3005 _NOTE(CONSTCOND) \ 3006 if ((_ilp != NULL) && \ 3007 (((ill_t *)(_ilp))->ill_phyint != NULL)) \ 3008 info.hpe_ifp = (phy_if_t)((ill_t *) \ 3009 (_ilp))->ill_phyint->phyint_hook_ifindex; \ 3010 else \ 3011 info.hpe_ifp = 0; \ 3012 \ 3013 _NOTE(CONSTCOND) \ 3014 if ((_olp != NULL) && \ 3015 (((ill_t *)(_olp))->ill_phyint != NULL)) \ 3016 info.hpe_ofp = (phy_if_t)((ill_t *) \ 3017 (_olp))->ill_phyint->phyint_hook_ifindex; \ 3018 else \ 3019 info.hpe_ofp = 0; \ 3020 info.hpe_protocol = ipst->ips_ipv4_net_data; \ 3021 info.hpe_hdr = _iph; \ 3022 info.hpe_mp = &(_fm); \ 3023 info.hpe_mb = _m; \ 3024 info.hpe_flags = _llm; \ 3025 if (hook_run(ipst->ips_ipv4_net_data->netd_hooks, \ 3026 _event, (hook_data_t)&info) != 0) { \ 3027 ip2dbg(("%s hook dropped mblk chain %p hdr %p\n",\ 3028 (_hook).he_name, (void *)_fm, (void *)_m)); \ 3029 if (_fm != NULL) { \ 3030 freemsg(_fm); \ 3031 _fm = NULL; \ 3032 } \ 3033 _iph = NULL; \ 3034 _m = NULL; \ 3035 } else { \ 3036 _iph = info.hpe_hdr; \ 3037 _m = info.hpe_mb; \ 3038 } \ 3039 } 3040 3041 #define FW_HOOKS6(_hook, _event, _ilp, _olp, _iph, _fm, _m, _llm, ipst) \ 3042 \ 3043 if ((_hook).he_interested) { \ 3044 hook_pkt_event_t info; \ 3045 \ 3046 _NOTE(CONSTCOND) \ 3047 ASSERT((_ilp != NULL) || (_olp != NULL)); \ 3048 \ 3049 _NOTE(CONSTCOND) \ 3050 if ((_ilp != NULL) && \ 3051 (((ill_t *)(_ilp))->ill_phyint != NULL)) \ 3052 info.hpe_ifp = (phy_if_t)((ill_t *) \ 3053 (_ilp))->ill_phyint->phyint_hook_ifindex; \ 3054 else \ 3055 info.hpe_ifp = 0; \ 3056 \ 3057 _NOTE(CONSTCOND) \ 3058 if ((_olp != NULL) && \ 3059 (((ill_t *)(_olp))->ill_phyint != NULL)) \ 3060 info.hpe_ofp = (phy_if_t)((ill_t *) \ 3061 (_olp))->ill_phyint->phyint_hook_ifindex; \ 3062 else \ 3063 info.hpe_ofp = 0; \ 3064 info.hpe_protocol = ipst->ips_ipv6_net_data; \ 3065 info.hpe_hdr = _iph; \ 3066 info.hpe_mp = &(_fm); \ 3067 info.hpe_mb = _m; \ 3068 info.hpe_flags = _llm; \ 3069 if (hook_run(ipst->ips_ipv6_net_data->netd_hooks, \ 3070 _event, (hook_data_t)&info) != 0) { \ 3071 ip2dbg(("%s hook dropped mblk chain %p hdr %p\n",\ 3072 (_hook).he_name, (void *)_fm, (void *)_m)); \ 3073 if (_fm != NULL) { \ 3074 freemsg(_fm); \ 3075 _fm = NULL; \ 3076 } \ 3077 _iph = NULL; \ 3078 _m = NULL; \ 3079 } else { \ 3080 _iph = info.hpe_hdr; \ 3081 _m = info.hpe_mb; \ 3082 } \ 3083 } 3084 3085 /* 3086 * Network byte order macros 3087 */ 3088 #ifdef _BIG_ENDIAN 3089 #define N_IN_CLASSA_NET IN_CLASSA_NET 3090 #define N_IN_CLASSD_NET IN_CLASSD_NET 3091 #define N_INADDR_UNSPEC_GROUP INADDR_UNSPEC_GROUP 3092 #define N_IN_LOOPBACK_NET (ipaddr_t)0x7f000000U 3093 #else /* _BIG_ENDIAN */ 3094 #define N_IN_CLASSA_NET (ipaddr_t)0x000000ffU 3095 #define N_IN_CLASSD_NET (ipaddr_t)0x000000f0U 3096 #define N_INADDR_UNSPEC_GROUP (ipaddr_t)0x000000e0U 3097 #define N_IN_LOOPBACK_NET (ipaddr_t)0x0000007fU 3098 #endif /* _BIG_ENDIAN */ 3099 #define CLASSD(addr) (((addr) & N_IN_CLASSD_NET) == N_INADDR_UNSPEC_GROUP) 3100 #define CLASSE(addr) (((addr) & N_IN_CLASSD_NET) == N_IN_CLASSD_NET) 3101 #define IP_LOOPBACK_ADDR(addr) \ 3102 (((addr) & N_IN_CLASSA_NET == N_IN_LOOPBACK_NET)) 3103 3104 #ifdef DEBUG 3105 /* IPsec HW acceleration debugging support */ 3106 3107 #define IPSECHW_CAPAB 0x0001 /* capability negotiation */ 3108 #define IPSECHW_SADB 0x0002 /* SADB exchange */ 3109 #define IPSECHW_PKT 0x0004 /* general packet flow */ 3110 #define IPSECHW_PKTIN 0x0008 /* driver in pkt processing details */ 3111 #define IPSECHW_PKTOUT 0x0010 /* driver out pkt processing details */ 3112 3113 #define IPSECHW_DEBUG(f, x) if (ipsechw_debug & (f)) { (void) printf x; } 3114 #define IPSECHW_CALL(f, r, x) if (ipsechw_debug & (f)) { (void) r x; } 3115 3116 extern uint32_t ipsechw_debug; 3117 #else 3118 #define IPSECHW_DEBUG(f, x) {} 3119 #define IPSECHW_CALL(f, r, x) {} 3120 #endif 3121 3122 extern int ip_debug; 3123 extern uint_t ip_thread_data; 3124 extern krwlock_t ip_thread_rwlock; 3125 extern list_t ip_thread_list; 3126 3127 #ifdef IP_DEBUG 3128 #include <sys/debug.h> 3129 #include <sys/promif.h> 3130 3131 #define ip0dbg(a) printf a 3132 #define ip1dbg(a) if (ip_debug > 2) printf a 3133 #define ip2dbg(a) if (ip_debug > 3) printf a 3134 #define ip3dbg(a) if (ip_debug > 4) printf a 3135 #else 3136 #define ip0dbg(a) /* */ 3137 #define ip1dbg(a) /* */ 3138 #define ip2dbg(a) /* */ 3139 #define ip3dbg(a) /* */ 3140 #endif /* IP_DEBUG */ 3141 3142 /* Default MAC-layer address string length for mac_colon_addr */ 3143 #define MAC_STR_LEN 128 3144 3145 struct ipsec_out_s; 3146 3147 struct mac_header_info_s; 3148 3149 extern boolean_t ip_assign_ifindex(uint_t *, ip_stack_t *); 3150 extern void ill_frag_timer(void *); 3151 extern ill_t *ill_first(int, int, ill_walk_context_t *, ip_stack_t *); 3152 extern ill_t *ill_next(ill_walk_context_t *, ill_t *); 3153 extern void ill_frag_timer_start(ill_t *); 3154 extern void ill_nic_event_dispatch(ill_t *, lif_if_t, nic_event_t, 3155 nic_event_data_t, size_t); 3156 extern void ill_nic_event_plumb(ill_t *, boolean_t); 3157 extern mblk_t *ip_carve_mp(mblk_t **, ssize_t); 3158 extern mblk_t *ip_dlpi_alloc(size_t, t_uscalar_t); 3159 extern char *ip_dot_addr(ipaddr_t, char *); 3160 extern const char *mac_colon_addr(const uint8_t *, size_t, char *, size_t); 3161 extern void ip_lwput(queue_t *, mblk_t *); 3162 extern boolean_t icmp_err_rate_limit(ip_stack_t *); 3163 extern void icmp_time_exceeded(queue_t *, mblk_t *, uint8_t, zoneid_t, 3164 ip_stack_t *); 3165 extern void icmp_unreachable(queue_t *, mblk_t *, uint8_t, zoneid_t, 3166 ip_stack_t *); 3167 extern mblk_t *ip_add_info(mblk_t *, ill_t *, uint_t, zoneid_t, ip_stack_t *); 3168 extern mblk_t *ip_bind_v4(queue_t *, mblk_t *, conn_t *); 3169 extern boolean_t ip_bind_ipsec_policy_set(conn_t *, mblk_t *); 3170 extern int ip_bind_laddr_v4(conn_t *, mblk_t **, uint8_t, ipaddr_t, 3171 uint16_t, boolean_t); 3172 extern int ip_proto_bind_laddr_v4(conn_t *, mblk_t **, uint8_t, ipaddr_t, 3173 uint16_t, boolean_t); 3174 extern int ip_proto_bind_connected_v4(conn_t *, mblk_t **, 3175 uint8_t, ipaddr_t *, uint16_t, ipaddr_t, uint16_t, boolean_t, boolean_t); 3176 extern int ip_bind_connected_v4(conn_t *, mblk_t **, uint8_t, ipaddr_t *, 3177 uint16_t, ipaddr_t, uint16_t, boolean_t, boolean_t); 3178 extern uint_t ip_cksum(mblk_t *, int, uint32_t); 3179 extern int ip_close(queue_t *, int); 3180 extern uint16_t ip_csum_hdr(ipha_t *); 3181 extern void ip_proto_not_sup(queue_t *, mblk_t *, uint_t, zoneid_t, 3182 ip_stack_t *); 3183 extern void ip_ire_g_fini(void); 3184 extern void ip_ire_g_init(void); 3185 extern void ip_ire_fini(ip_stack_t *); 3186 extern void ip_ire_init(ip_stack_t *); 3187 extern int ip_openv4(queue_t *q, dev_t *devp, int flag, int sflag, 3188 cred_t *credp); 3189 extern int ip_openv6(queue_t *q, dev_t *devp, int flag, int sflag, 3190 cred_t *credp); 3191 extern int ip_reassemble(mblk_t *, ipf_t *, uint_t, boolean_t, ill_t *, 3192 size_t); 3193 extern int ip_opt_set_ill(conn_t *, int, boolean_t, boolean_t, 3194 int, int, mblk_t *); 3195 extern void ip_rput(queue_t *, mblk_t *); 3196 extern void ip_input(ill_t *, ill_rx_ring_t *, mblk_t *, 3197 struct mac_header_info_s *); 3198 extern mblk_t *ip_accept_tcp(ill_t *, ill_rx_ring_t *, squeue_t *, 3199 mblk_t *, mblk_t **, uint_t *cnt); 3200 extern void ip_rput_dlpi(queue_t *, mblk_t *); 3201 extern void ip_rput_forward(ire_t *, ipha_t *, mblk_t *, ill_t *); 3202 extern void ip_rput_forward_multicast(ipaddr_t, mblk_t *, ipif_t *); 3203 3204 extern void ip_mib2_add_ip_stats(mib2_ipIfStatsEntry_t *, 3205 mib2_ipIfStatsEntry_t *); 3206 extern void ip_mib2_add_icmp6_stats(mib2_ipv6IfIcmpEntry_t *, 3207 mib2_ipv6IfIcmpEntry_t *); 3208 extern void ip_udp_input(queue_t *, mblk_t *, ipha_t *, ire_t *, ill_t *); 3209 extern void ip_proto_input(queue_t *, mblk_t *, ipha_t *, ire_t *, ill_t *, 3210 uint32_t); 3211 extern void ip_rput_other(ipsq_t *, queue_t *, mblk_t *, void *); 3212 extern ire_t *ip_check_multihome(void *, ire_t *, ill_t *); 3213 extern void ip_setpktversion(conn_t *, boolean_t, boolean_t, ip_stack_t *); 3214 extern void ip_trash_ire_reclaim(void *); 3215 extern void ip_trash_timer_expire(void *); 3216 extern void ip_wput(queue_t *, mblk_t *); 3217 extern void ip_output(void *, mblk_t *, void *, int); 3218 extern void ip_output_options(void *, mblk_t *, void *, int, 3219 ip_opt_info_t *); 3220 3221 extern void ip_wput_ire(queue_t *, mblk_t *, ire_t *, conn_t *, int, 3222 zoneid_t); 3223 extern void ip_wput_local(queue_t *, ill_t *, ipha_t *, mblk_t *, ire_t *, 3224 int, zoneid_t); 3225 extern void ip_wput_multicast(queue_t *, mblk_t *, ipif_t *, zoneid_t); 3226 extern void ip_wput_nondata(ipsq_t *, queue_t *, mblk_t *, void *); 3227 extern void ip_wsrv(queue_t *); 3228 extern char *ip_nv_lookup(nv_t *, int); 3229 extern boolean_t ip_local_addr_ok_v6(const in6_addr_t *, const in6_addr_t *); 3230 extern boolean_t ip_remote_addr_ok_v6(const in6_addr_t *, const in6_addr_t *); 3231 extern ipaddr_t ip_massage_options(ipha_t *, netstack_t *); 3232 extern ipaddr_t ip_net_mask(ipaddr_t); 3233 extern void ip_newroute(queue_t *, mblk_t *, ipaddr_t, conn_t *, zoneid_t, 3234 ip_stack_t *); 3235 extern ipxmit_state_t ip_xmit_v4(mblk_t *, ire_t *, struct ipsec_out_s *, 3236 boolean_t, conn_t *); 3237 extern int ip_hdr_complete(ipha_t *, zoneid_t, ip_stack_t *); 3238 3239 extern struct qinit iprinitv6; 3240 extern struct qinit ipwinitv6; 3241 3242 extern void conn_drain_insert(conn_t *connp); 3243 extern int conn_ipsec_length(conn_t *connp); 3244 extern void ip_wput_ipsec_out(queue_t *, mblk_t *, ipha_t *, ill_t *, 3245 ire_t *); 3246 extern ipaddr_t ip_get_dst(ipha_t *); 3247 extern int ipsec_out_extra_length(mblk_t *); 3248 extern int ipsec_in_extra_length(mblk_t *); 3249 extern mblk_t *ipsec_in_alloc(boolean_t, netstack_t *); 3250 extern boolean_t ipsec_in_is_secure(mblk_t *); 3251 extern void ipsec_out_process(queue_t *, mblk_t *, ire_t *, uint_t); 3252 extern void ipsec_out_to_in(mblk_t *); 3253 extern void ip_fanout_proto_again(mblk_t *, ill_t *, ill_t *, ire_t *); 3254 3255 extern void ire_cleanup(ire_t *); 3256 extern void ire_inactive(ire_t *); 3257 extern boolean_t irb_inactive(irb_t *); 3258 extern ire_t *ire_unlink(irb_t *); 3259 3260 #ifdef DEBUG 3261 extern boolean_t th_trace_ref(const void *, ip_stack_t *); 3262 extern void th_trace_unref(const void *); 3263 extern void th_trace_cleanup(const void *, boolean_t); 3264 extern void ire_trace_ref(ire_t *); 3265 extern void ire_untrace_ref(ire_t *); 3266 #endif 3267 3268 extern int ip_srcid_insert(const in6_addr_t *, zoneid_t, ip_stack_t *); 3269 extern int ip_srcid_remove(const in6_addr_t *, zoneid_t, ip_stack_t *); 3270 extern void ip_srcid_find_id(uint_t, in6_addr_t *, zoneid_t, netstack_t *); 3271 extern uint_t ip_srcid_find_addr(const in6_addr_t *, zoneid_t, netstack_t *); 3272 extern int ip_srcid_report(queue_t *, mblk_t *, caddr_t, cred_t *); 3273 3274 extern uint8_t ipoptp_next(ipoptp_t *); 3275 extern uint8_t ipoptp_first(ipoptp_t *, ipha_t *); 3276 extern int ip_opt_get_user(const ipha_t *, uchar_t *); 3277 extern ill_t *ip_grab_attach_ill(ill_t *, mblk_t *, int, boolean_t, 3278 ip_stack_t *); 3279 extern ire_t *conn_set_outgoing_ill(conn_t *, ire_t *, ill_t **); 3280 extern int ipsec_req_from_conn(conn_t *, ipsec_req_t *, int); 3281 extern int ip_snmp_get(queue_t *q, mblk_t *mctl, int level); 3282 extern int ip_snmp_set(queue_t *q, int, int, uchar_t *, int); 3283 extern void ip_process_ioctl(ipsq_t *, queue_t *, mblk_t *, void *); 3284 extern void ip_quiesce_conn(conn_t *); 3285 extern void ip_reprocess_ioctl(ipsq_t *, queue_t *, mblk_t *, void *); 3286 extern void ip_restart_optmgmt(ipsq_t *, queue_t *, mblk_t *, void *); 3287 extern void ip_ioctl_finish(queue_t *, mblk_t *, int, int, ipsq_t *); 3288 3289 extern boolean_t ip_cmpbuf(const void *, uint_t, boolean_t, const void *, 3290 uint_t); 3291 extern boolean_t ip_allocbuf(void **, uint_t *, boolean_t, const void *, 3292 uint_t); 3293 extern void ip_savebuf(void **, uint_t *, boolean_t, const void *, uint_t); 3294 3295 extern boolean_t ipsq_pending_mp_cleanup(ill_t *, conn_t *); 3296 extern void conn_ioctl_cleanup(conn_t *); 3297 extern ill_t *conn_get_held_ill(conn_t *, ill_t **, int *); 3298 extern ill_t *ip_newroute_get_dst_ill(ill_t *); 3299 3300 struct multidata_s; 3301 struct pdesc_s; 3302 3303 extern mblk_t *ip_mdinfo_alloc(ill_mdt_capab_t *); 3304 extern mblk_t *ip_mdinfo_return(ire_t *, conn_t *, char *, ill_mdt_capab_t *); 3305 extern mblk_t *ip_lsoinfo_alloc(ill_lso_capab_t *); 3306 extern mblk_t *ip_lsoinfo_return(ire_t *, conn_t *, char *, 3307 ill_lso_capab_t *); 3308 extern uint_t ip_md_cksum(struct pdesc_s *, int, uint_t); 3309 extern boolean_t ip_md_addr_attr(struct multidata_s *, struct pdesc_s *, 3310 const mblk_t *); 3311 extern boolean_t ip_md_hcksum_attr(struct multidata_s *, struct pdesc_s *, 3312 uint32_t, uint32_t, uint32_t, uint32_t); 3313 extern boolean_t ip_md_zcopy_attr(struct multidata_s *, struct pdesc_s *, 3314 uint_t); 3315 extern void ip_unbind(conn_t *connp); 3316 3317 extern phyint_t *phyint_lookup_group(char *, boolean_t, ip_stack_t *); 3318 extern phyint_t *phyint_lookup_group_ifindex(uint_t, ip_stack_t *); 3319 3320 extern void tnet_init(void); 3321 extern void tnet_fini(void); 3322 3323 /* Hooks for CGTP (multirt routes) filtering module */ 3324 #define CGTP_FILTER_REV_1 1 3325 #define CGTP_FILTER_REV_2 2 3326 #define CGTP_FILTER_REV_3 3 3327 #define CGTP_FILTER_REV CGTP_FILTER_REV_3 3328 3329 /* cfo_filter and cfo_filter_v6 hooks return values */ 3330 #define CGTP_IP_PKT_NOT_CGTP 0 3331 #define CGTP_IP_PKT_PREMIUM 1 3332 #define CGTP_IP_PKT_DUPLICATE 2 3333 3334 /* Version 3 of the filter interface */ 3335 typedef struct cgtp_filter_ops { 3336 int cfo_filter_rev; /* CGTP_FILTER_REV_3 */ 3337 int (*cfo_change_state)(netstackid_t, int); 3338 int (*cfo_add_dest_v4)(netstackid_t, ipaddr_t, ipaddr_t, 3339 ipaddr_t, ipaddr_t); 3340 int (*cfo_del_dest_v4)(netstackid_t, ipaddr_t, ipaddr_t); 3341 int (*cfo_add_dest_v6)(netstackid_t, in6_addr_t *, in6_addr_t *, 3342 in6_addr_t *, in6_addr_t *); 3343 int (*cfo_del_dest_v6)(netstackid_t, in6_addr_t *, in6_addr_t *); 3344 int (*cfo_filter)(netstackid_t, uint_t, mblk_t *); 3345 int (*cfo_filter_v6)(netstackid_t, uint_t, ip6_t *, 3346 ip6_frag_t *); 3347 } cgtp_filter_ops_t; 3348 3349 #define CGTP_MCAST_SUCCESS 1 3350 3351 /* 3352 * The separate CGTP module needs this global symbol so that it 3353 * can check the version and determine whether to use the old or the new 3354 * version of the filtering interface. 3355 */ 3356 extern int ip_cgtp_filter_rev; 3357 3358 extern int ip_cgtp_filter_supported(void); 3359 extern int ip_cgtp_filter_register(netstackid_t, cgtp_filter_ops_t *); 3360 extern int ip_cgtp_filter_unregister(netstackid_t); 3361 extern int ip_cgtp_filter_is_registered(netstackid_t); 3362 3363 /* Flags for ire_multirt_lookup() */ 3364 3365 #define MULTIRT_USESTAMP 0x0001 3366 #define MULTIRT_SETSTAMP 0x0002 3367 #define MULTIRT_CACHEGW 0x0004 3368 3369 /* Debug stuff for multirt route resolution. */ 3370 #if defined(DEBUG) && !defined(__lint) 3371 /* Our "don't send, rather drop" flag. */ 3372 #define MULTIRT_DEBUG_FLAG 0x8000 3373 3374 #define MULTIRT_TRACE(x) ip2dbg(x) 3375 3376 #define MULTIRT_DEBUG_TAG(mblk) \ 3377 do { \ 3378 ASSERT(mblk != NULL); \ 3379 MULTIRT_TRACE(("%s[%d]: tagging mblk %p, tag was %d\n", \ 3380 __FILE__, __LINE__, \ 3381 (void *)(mblk), (mblk)->b_flag & MULTIRT_DEBUG_FLAG)); \ 3382 (mblk)->b_flag |= MULTIRT_DEBUG_FLAG; \ 3383 } while (0) 3384 3385 #define MULTIRT_DEBUG_UNTAG(mblk) \ 3386 do { \ 3387 ASSERT(mblk != NULL); \ 3388 MULTIRT_TRACE(("%s[%d]: untagging mblk %p, tag was %d\n", \ 3389 __FILE__, __LINE__, \ 3390 (void *)(mblk), (mblk)->b_flag & MULTIRT_DEBUG_FLAG)); \ 3391 (mblk)->b_flag &= ~MULTIRT_DEBUG_FLAG; \ 3392 } while (0) 3393 3394 #define MULTIRT_DEBUG_TAGGED(mblk) \ 3395 (((mblk)->b_flag & MULTIRT_DEBUG_FLAG) ? B_TRUE : B_FALSE) 3396 #else 3397 #define MULTIRT_DEBUG_TAG(mblk) ASSERT(mblk != NULL) 3398 #define MULTIRT_DEBUG_UNTAG(mblk) ASSERT(mblk != NULL) 3399 #define MULTIRT_DEBUG_TAGGED(mblk) B_FALSE 3400 #endif 3401 3402 /* 3403 * IP observability hook support 3404 */ 3405 3406 /* 3407 * ipobs_hooktype_t describes the hook types supported 3408 * by the ip module. IPOBS_HOOK_LOCAL refers to packets 3409 * which are looped back internally within the ip module. 3410 */ 3411 3412 typedef enum ipobs_hook_type { 3413 IPOBS_HOOK_LOCAL, 3414 IPOBS_HOOK_OUTBOUND, 3415 IPOBS_HOOK_INBOUND 3416 } ipobs_hook_type_t; 3417 3418 typedef void ipobs_cbfunc_t(mblk_t *); 3419 3420 typedef struct ipobs_cb { 3421 ipobs_cbfunc_t *ipobs_cbfunc; 3422 list_node_t ipobs_cbnext; 3423 } ipobs_cb_t; 3424 3425 /* 3426 * This structure holds the data passed back from the ip module to 3427 * observability consumers. 3428 * 3429 * ihd_mp Pointer to the IP packet. 3430 * ihd_zsrc Source zoneid; set to ALL_ZONES when unknown. 3431 * ihd_zdst Destination zoneid; set to ALL_ZONES when unknown. 3432 * ihd_htype IPobs hook type, see above for the defined types. 3433 * ihd_ipver IP version of the packet. 3434 * ihd_ifindex Interface index that the packet was received/sent over. 3435 * For local packets, this is the index of the interface 3436 * associated with the local destination address. 3437 * ihd_stack Netstack the packet is from. 3438 */ 3439 typedef struct ipobs_hook_data { 3440 mblk_t *ihd_mp; 3441 zoneid_t ihd_zsrc; 3442 zoneid_t ihd_zdst; 3443 ipobs_hook_type_t ihd_htype; 3444 uint16_t ihd_ipver; 3445 uint64_t ihd_ifindex; 3446 netstack_t *ihd_stack; 3447 } ipobs_hook_data_t; 3448 3449 /* 3450 * Per-ILL Multidata Transmit capabilities. 3451 */ 3452 struct ill_mdt_capab_s { 3453 uint_t ill_mdt_version; /* interface version */ 3454 uint_t ill_mdt_on; /* on/off switch for MDT on this ILL */ 3455 uint_t ill_mdt_hdr_head; /* leading header fragment extra space */ 3456 uint_t ill_mdt_hdr_tail; /* trailing header fragment extra space */ 3457 uint_t ill_mdt_max_pld; /* maximum payload buffers per Multidata */ 3458 uint_t ill_mdt_span_limit; /* maximum payload span per packet */ 3459 }; 3460 3461 struct ill_hcksum_capab_s { 3462 uint_t ill_hcksum_version; /* interface version */ 3463 uint_t ill_hcksum_txflags; /* capabilities on transmit */ 3464 }; 3465 3466 struct ill_zerocopy_capab_s { 3467 uint_t ill_zerocopy_version; /* interface version */ 3468 uint_t ill_zerocopy_flags; /* capabilities */ 3469 }; 3470 3471 struct ill_lso_capab_s { 3472 uint_t ill_lso_on; /* on/off switch for LSO on this ILL */ 3473 uint_t ill_lso_flags; /* capabilities */ 3474 uint_t ill_lso_max; /* maximum size of payload */ 3475 }; 3476 3477 /* 3478 * rr_ring_state cycles in the order shown below from RR_FREE through 3479 * RR_FREE_IN_PROG and back to RR_FREE. 3480 */ 3481 typedef enum { 3482 RR_FREE, /* Free slot */ 3483 RR_SQUEUE_UNBOUND, /* Ring's squeue is unbound */ 3484 RR_SQUEUE_BIND_INPROG, /* Ring's squeue bind in progress */ 3485 RR_SQUEUE_BOUND, /* Ring's squeue bound to cpu */ 3486 RR_FREE_INPROG /* Ring is being freed */ 3487 } ip_ring_state_t; 3488 3489 #define ILL_MAX_RINGS 256 /* Max num of rx rings we can manage */ 3490 #define ILL_POLLING 0x01 /* Polling in use */ 3491 3492 /* 3493 * These functions pointer types are exported by the mac/dls layer. 3494 * we need to duplicate the definitions here because we cannot 3495 * include mac/dls header files here. 3496 */ 3497 typedef void *ip_mac_tx_cookie_t; 3498 typedef void (*ip_mac_intr_disable_t)(void *); 3499 typedef void (*ip_mac_intr_enable_t)(void *); 3500 typedef void *(*ip_dld_tx_t)(void *, mblk_t *, uint64_t, uint16_t); 3501 typedef void (*ip_flow_enable_t)(void *, ip_mac_tx_cookie_t); 3502 typedef void *(*ip_dld_callb_t)(void *, ip_flow_enable_t, void *); 3503 typedef int (*ip_capab_func_t)(void *, uint_t, void *, uint_t); 3504 3505 /* 3506 * POLLING README 3507 * sq_get_pkts() is called to pick packets from softring in poll mode. It 3508 * calls rr_rx to get the chain and process it with rr_ip_accept. 3509 * rr_rx = mac_soft_ring_poll() to pick packets 3510 * rr_ip_accept = ip_accept_tcp() to process packets 3511 */ 3512 3513 /* 3514 * XXX: With protocol, service specific squeues, they will have 3515 * specific acceptor functions. 3516 */ 3517 typedef mblk_t *(*ip_mac_rx_t)(void *, size_t); 3518 typedef mblk_t *(*ip_accept_t)(ill_t *, ill_rx_ring_t *, 3519 squeue_t *, mblk_t *, mblk_t **, uint_t *); 3520 3521 /* 3522 * rr_intr_enable, rr_intr_disable, rr_rx_handle, rr_rx: 3523 * May be accessed while in the squeue AND after checking that SQS_POLL_CAPAB 3524 * is set. 3525 * 3526 * rr_ring_state: Protected by ill_lock. 3527 */ 3528 struct ill_rx_ring { 3529 ip_mac_intr_disable_t rr_intr_disable; /* Interrupt disabling func */ 3530 ip_mac_intr_enable_t rr_intr_enable; /* Interrupt enabling func */ 3531 void *rr_intr_handle; /* Handle interrupt funcs */ 3532 ip_mac_rx_t rr_rx; /* Driver receive function */ 3533 ip_accept_t rr_ip_accept; /* IP accept function */ 3534 void *rr_rx_handle; /* Handle for Rx ring */ 3535 squeue_t *rr_sqp; /* Squeue the ring is bound to */ 3536 ill_t *rr_ill; /* back pointer to ill */ 3537 ip_ring_state_t rr_ring_state; /* State of this ring */ 3538 }; 3539 3540 /* 3541 * IP - DLD direct function call capability 3542 * Suffixes, df - dld function, dh - dld handle, 3543 * cf - client (IP) function, ch - client handle 3544 */ 3545 typedef struct ill_dld_direct_s { /* DLD provided driver Tx */ 3546 ip_dld_tx_t idd_tx_df; /* str_mdata_fastpath_put */ 3547 void *idd_tx_dh; /* dld_str_t *dsp */ 3548 ip_dld_callb_t idd_tx_cb_df; /* mac_tx_srs_notify */ 3549 void *idd_tx_cb_dh; /* mac_client_handle_t *mch */ 3550 } ill_dld_direct_t; 3551 3552 /* IP - DLD polling capability */ 3553 typedef struct ill_dld_poll_s { 3554 ill_rx_ring_t idp_ring_tbl[ILL_MAX_RINGS]; 3555 } ill_dld_poll_t; 3556 3557 /* Describes ill->ill_dld_capab */ 3558 struct ill_dld_capab_s { 3559 ip_capab_func_t idc_capab_df; /* dld_capab_func */ 3560 void *idc_capab_dh; /* dld_str_t *dsp */ 3561 ill_dld_direct_t idc_direct; 3562 ill_dld_poll_t idc_poll; 3563 }; 3564 3565 /* 3566 * IP squeues exports 3567 */ 3568 extern boolean_t ip_squeue_fanout; 3569 3570 #define IP_SQUEUE_GET(hint) ip_squeue_random(hint) 3571 3572 extern void ip_squeue_init(void (*)(squeue_t *)); 3573 extern squeue_t *ip_squeue_random(uint_t); 3574 extern squeue_t *ip_squeue_get(ill_rx_ring_t *); 3575 extern squeue_t *ip_squeue_getfree(pri_t); 3576 extern int ip_squeue_cpu_move(squeue_t *, processorid_t); 3577 extern void *ip_squeue_add_ring(ill_t *, void *); 3578 extern void ip_squeue_bind_ring(ill_t *, ill_rx_ring_t *, processorid_t); 3579 extern void ip_squeue_clean_ring(ill_t *, ill_rx_ring_t *); 3580 extern void ip_squeue_quiesce_ring(ill_t *, ill_rx_ring_t *); 3581 extern void ip_squeue_restart_ring(ill_t *, ill_rx_ring_t *); 3582 extern void ip_squeue_clean_all(ill_t *); 3583 3584 extern void tcp_wput(queue_t *, mblk_t *); 3585 3586 extern int ip_fill_mtuinfo(struct in6_addr *, in_port_t, 3587 struct ip6_mtuinfo *, netstack_t *); 3588 extern ipif_t *conn_get_held_ipif(conn_t *, ipif_t **, int *); 3589 extern void ipobs_register_hook(netstack_t *, ipobs_cbfunc_t *); 3590 extern void ipobs_unregister_hook(netstack_t *, ipobs_cbfunc_t *); 3591 extern void ipobs_hook(mblk_t *, int, zoneid_t, zoneid_t, const ill_t *, int, 3592 uint32_t, ip_stack_t *); 3593 typedef void (*ipsq_func_t)(ipsq_t *, queue_t *, mblk_t *, void *); 3594 3595 /* 3596 * Squeue tags. Tags only need to be unique when the callback function is the 3597 * same to distinguish between different calls, but we use unique tags for 3598 * convenience anyway. 3599 */ 3600 #define SQTAG_IP_INPUT 1 3601 #define SQTAG_TCP_INPUT_ICMP_ERR 2 3602 #define SQTAG_TCP6_INPUT_ICMP_ERR 3 3603 #define SQTAG_IP_TCP_INPUT 4 3604 #define SQTAG_IP6_TCP_INPUT 5 3605 #define SQTAG_IP_TCP_CLOSE 6 3606 #define SQTAG_TCP_OUTPUT 7 3607 #define SQTAG_TCP_TIMER 8 3608 #define SQTAG_TCP_TIMEWAIT 9 3609 #define SQTAG_TCP_ACCEPT_FINISH 10 3610 #define SQTAG_TCP_ACCEPT_FINISH_Q0 11 3611 #define SQTAG_TCP_ACCEPT_PENDING 12 3612 #define SQTAG_TCP_LISTEN_DISCON 13 3613 #define SQTAG_TCP_CONN_REQ_1 14 3614 #define SQTAG_TCP_EAGER_BLOWOFF 15 3615 #define SQTAG_TCP_EAGER_CLEANUP 16 3616 #define SQTAG_TCP_EAGER_CLEANUP_Q0 17 3617 #define SQTAG_TCP_CONN_IND 18 3618 #define SQTAG_TCP_RSRV 19 3619 #define SQTAG_TCP_ABORT_BUCKET 20 3620 #define SQTAG_TCP_REINPUT 21 3621 #define SQTAG_TCP_REINPUT_EAGER 22 3622 #define SQTAG_TCP_INPUT_MCTL 23 3623 #define SQTAG_TCP_RPUTOTHER 24 3624 #define SQTAG_IP_PROTO_AGAIN 25 3625 #define SQTAG_IP_FANOUT_TCP 26 3626 #define SQTAG_IPSQ_CLEAN_RING 27 3627 #define SQTAG_TCP_WPUT_OTHER 28 3628 #define SQTAG_TCP_CONN_REQ_UNBOUND 29 3629 #define SQTAG_TCP_SEND_PENDING 30 3630 #define SQTAG_BIND_RETRY 31 3631 #define SQTAG_UDP_FANOUT 32 3632 #define SQTAG_UDP_INPUT 33 3633 #define SQTAG_UDP_WPUT 34 3634 #define SQTAG_UDP_OUTPUT 35 3635 #define SQTAG_TCP_KSSL_INPUT 36 3636 #define SQTAG_TCP_DROP_Q0 37 3637 #define SQTAG_TCP_CONN_REQ_2 38 3638 #define SQTAG_IP_INPUT_RX_RING 39 3639 #define SQTAG_SQUEUE_CHANGE 40 3640 #define SQTAG_CONNECT_FINISH 41 3641 #define SQTAG_SYNCHRONOUS_OP 42 3642 #define SQTAG_TCP_SHUTDOWN_OUTPUT 43 3643 3644 #define NOT_OVER_IP(ip_wq) \ 3645 (ip_wq->q_next != NULL || \ 3646 (ip_wq->q_qinfo->qi_minfo->mi_idname) == NULL || \ 3647 strcmp(ip_wq->q_qinfo->qi_minfo->mi_idname, \ 3648 IP_MOD_NAME) != 0 || \ 3649 ip_wq->q_qinfo->qi_minfo->mi_idnum != IP_MOD_ID) 3650 3651 #define PROTO_FLOW_CNTRLD(connp) (connp->conn_flow_cntrld) 3652 #endif /* _KERNEL */ 3653 3654 #ifdef __cplusplus 3655 } 3656 #endif 3657 3658 #endif /* _INET_IP_H */ 3659