1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2008 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 /* Copyright (c) 1990 Mentat Inc. */ 27 28 #ifndef _INET_IP_H 29 #define _INET_IP_H 30 31 #pragma ident "%Z%%M% %I% %E% SMI" 32 33 #ifdef __cplusplus 34 extern "C" { 35 #endif 36 37 #include <sys/isa_defs.h> 38 #include <sys/types.h> 39 #include <inet/mib2.h> 40 #include <inet/nd.h> 41 #include <sys/atomic.h> 42 #include <net/if_dl.h> 43 #include <net/if.h> 44 #include <netinet/ip.h> 45 #include <netinet/igmp.h> 46 #include <sys/neti.h> 47 #include <sys/hook.h> 48 #include <sys/hook_event.h> 49 #include <sys/hook_impl.h> 50 #include <inet/ip_stack.h> 51 52 #ifdef _KERNEL 53 #include <netinet/ip6.h> 54 #include <sys/avl.h> 55 #include <sys/vmem.h> 56 #include <sys/squeue.h> 57 #include <net/route.h> 58 #include <sys/systm.h> 59 #include <sys/multidata.h> 60 #include <net/radix.h> 61 #include <sys/modhash.h> 62 63 #ifdef DEBUG 64 #define CONN_DEBUG 65 #endif 66 67 #define IP_DEBUG 68 /* 69 * The mt-streams(9F) flags for the IP module; put here so that other 70 * "drivers" that are actually IP (e.g., ICMP, UDP) can use the same set 71 * of flags. 72 */ 73 #define IP_DEVMTFLAGS D_MP 74 #endif /* _KERNEL */ 75 76 #define IP_MOD_NAME "ip" 77 #define IP_DEV_NAME "/dev/ip" 78 #define IP6_DEV_NAME "/dev/ip6" 79 80 #define UDP_MOD_NAME "udp" 81 #define UDP_DEV_NAME "/dev/udp" 82 #define UDP6_DEV_NAME "/dev/udp6" 83 84 #define TCP_MOD_NAME "tcp" 85 #define TCP_DEV_NAME "/dev/tcp" 86 #define TCP6_DEV_NAME "/dev/tcp6" 87 88 #define SCTP_MOD_NAME "sctp" 89 90 #ifndef _IPADDR_T 91 #define _IPADDR_T 92 typedef uint32_t ipaddr_t; 93 #endif 94 95 /* Number of bits in an address */ 96 #define IP_ABITS 32 97 #define IPV6_ABITS 128 98 99 #define IP_HOST_MASK (ipaddr_t)0xffffffffU 100 101 #define IP_CSUM(mp, off, sum) (~ip_cksum(mp, off, sum) & 0xFFFF) 102 #define IP_CSUM_PARTIAL(mp, off, sum) ip_cksum(mp, off, sum) 103 #define IP_BCSUM_PARTIAL(bp, len, sum) bcksum(bp, len, sum) 104 #define IP_MD_CSUM(pd, off, sum) (~ip_md_cksum(pd, off, sum) & 0xffff) 105 #define IP_MD_CSUM_PARTIAL(pd, off, sum) ip_md_cksum(pd, off, sum) 106 107 /* 108 * Flag to IP write side to indicate that the appln has sent in a pre-built 109 * IP header. Stored in ipha_ident (which is otherwise zero). 110 */ 111 #define IP_HDR_INCLUDED 0xFFFF 112 113 #define ILL_FRAG_HASH_TBL_COUNT ((unsigned int)64) 114 #define ILL_FRAG_HASH_TBL_SIZE (ILL_FRAG_HASH_TBL_COUNT * sizeof (ipfb_t)) 115 116 #define IPV4_ADDR_LEN 4 117 #define IP_ADDR_LEN IPV4_ADDR_LEN 118 #define IP_ARP_PROTO_TYPE 0x0800 119 120 #define IPV4_VERSION 4 121 #define IP_VERSION IPV4_VERSION 122 #define IP_SIMPLE_HDR_LENGTH_IN_WORDS 5 123 #define IP_SIMPLE_HDR_LENGTH 20 124 #define IP_MAX_HDR_LENGTH 60 125 126 #define IP_MAX_OPT_LENGTH (IP_MAX_HDR_LENGTH-IP_SIMPLE_HDR_LENGTH) 127 128 #define IP_MIN_MTU (IP_MAX_HDR_LENGTH + 8) /* 68 bytes */ 129 130 /* 131 * XXX IP_MAXPACKET is defined in <netinet/ip.h> as well. At some point the 132 * 2 files should be cleaned up to remove all redundant definitions. 133 */ 134 #define IP_MAXPACKET 65535 135 #define IP_SIMPLE_HDR_VERSION \ 136 ((IP_VERSION << 4) | IP_SIMPLE_HDR_LENGTH_IN_WORDS) 137 138 #define UDPH_SIZE 8 139 140 /* Leave room for ip_newroute to tack on the src and target addresses */ 141 #define OK_RESOLVER_MP(mp) \ 142 ((mp) && ((mp)->b_wptr - (mp)->b_rptr) >= (2 * IP_ADDR_LEN)) 143 144 /* 145 * Constants and type definitions to support IP IOCTL commands 146 */ 147 #define IP_IOCTL (('i'<<8)|'p') 148 #define IP_IOC_IRE_DELETE 4 149 #define IP_IOC_IRE_DELETE_NO_REPLY 5 150 #define IP_IOC_IRE_ADVISE_NO_REPLY 6 151 #define IP_IOC_RTS_REQUEST 7 152 153 /* Common definitions used by IP IOCTL data structures */ 154 typedef struct ipllcmd_s { 155 uint_t ipllc_cmd; 156 uint_t ipllc_name_offset; 157 uint_t ipllc_name_length; 158 } ipllc_t; 159 160 /* IP IRE Change Command Structure. */ 161 typedef struct ipic_s { 162 ipllc_t ipic_ipllc; 163 uint_t ipic_ire_type; 164 uint_t ipic_max_frag; 165 uint_t ipic_addr_offset; 166 uint_t ipic_addr_length; 167 uint_t ipic_mask_offset; 168 uint_t ipic_mask_length; 169 uint_t ipic_src_addr_offset; 170 uint_t ipic_src_addr_length; 171 uint_t ipic_ll_hdr_offset; 172 uint_t ipic_ll_hdr_length; 173 uint_t ipic_gateway_addr_offset; 174 uint_t ipic_gateway_addr_length; 175 clock_t ipic_rtt; 176 uint32_t ipic_ssthresh; 177 clock_t ipic_rtt_sd; 178 uchar_t ipic_ire_marks; 179 } ipic_t; 180 181 #define ipic_cmd ipic_ipllc.ipllc_cmd 182 #define ipic_ll_name_length ipic_ipllc.ipllc_name_length 183 #define ipic_ll_name_offset ipic_ipllc.ipllc_name_offset 184 185 /* IP IRE Delete Command Structure. */ 186 typedef struct ipid_s { 187 ipllc_t ipid_ipllc; 188 uint_t ipid_ire_type; 189 uint_t ipid_addr_offset; 190 uint_t ipid_addr_length; 191 uint_t ipid_mask_offset; 192 uint_t ipid_mask_length; 193 } ipid_t; 194 195 #define ipid_cmd ipid_ipllc.ipllc_cmd 196 197 #ifdef _KERNEL 198 /* 199 * Temporary state for ip options parser. 200 */ 201 typedef struct ipoptp_s 202 { 203 uint8_t *ipoptp_next; /* next option to look at */ 204 uint8_t *ipoptp_end; /* end of options */ 205 uint8_t *ipoptp_cur; /* start of current option */ 206 uint8_t ipoptp_len; /* length of current option */ 207 uint32_t ipoptp_flags; 208 } ipoptp_t; 209 210 /* 211 * Flag(s) for ipoptp_flags 212 */ 213 #define IPOPTP_ERROR 0x00000001 214 #endif /* _KERNEL */ 215 216 217 /* Controls forwarding of IP packets, set via ndd */ 218 #define IP_FORWARD_NEVER 0 219 #define IP_FORWARD_ALWAYS 1 220 221 #define WE_ARE_FORWARDING(ipst) ((ipst)->ips_ip_g_forward == IP_FORWARD_ALWAYS) 222 223 #define IPH_HDR_LENGTH(ipha) \ 224 ((int)(((ipha_t *)ipha)->ipha_version_and_hdr_length & 0xF) << 2) 225 226 #define IPH_HDR_VERSION(ipha) \ 227 ((int)(((ipha_t *)ipha)->ipha_version_and_hdr_length) >> 4) 228 229 #ifdef _KERNEL 230 /* 231 * IP reassembly macros. We hide starting and ending offsets in b_next and 232 * b_prev of messages on the reassembly queue. The messages are chained using 233 * b_cont. These macros are used in ip_reassemble() so we don't have to see 234 * the ugly casts and assignments. 235 * Note that the offsets are <= 64k i.e. a uint_t is sufficient to represent 236 * them. 237 */ 238 #define IP_REASS_START(mp) ((uint_t)(uintptr_t)((mp)->b_next)) 239 #define IP_REASS_SET_START(mp, u) \ 240 ((mp)->b_next = (mblk_t *)(uintptr_t)(u)) 241 #define IP_REASS_END(mp) ((uint_t)(uintptr_t)((mp)->b_prev)) 242 #define IP_REASS_SET_END(mp, u) \ 243 ((mp)->b_prev = (mblk_t *)(uintptr_t)(u)) 244 245 #define IP_REASS_COMPLETE 0x1 246 #define IP_REASS_PARTIAL 0x2 247 #define IP_REASS_FAILED 0x4 248 249 /* 250 * Test to determine whether this is a module instance of IP or a 251 * driver instance of IP. 252 */ 253 #define CONN_Q(q) (WR(q)->q_next == NULL) 254 255 #define Q_TO_CONN(q) ((conn_t *)(q)->q_ptr) 256 #define Q_TO_TCP(q) (Q_TO_CONN((q))->conn_tcp) 257 #define Q_TO_UDP(q) (Q_TO_CONN((q))->conn_udp) 258 #define Q_TO_ICMP(q) (Q_TO_CONN((q))->conn_icmp) 259 #define Q_TO_RTS(q) (Q_TO_CONN((q))->conn_rts) 260 261 /* 262 * The following two macros are used by IP to get the appropriate 263 * wq and rq for a conn. If it is a TCP conn, then we need 264 * tcp_wq/tcp_rq else, conn_wq/conn_rq. IP can use conn_wq and conn_rq 265 * from a conn directly if it knows that the conn is not TCP. 266 */ 267 #define CONNP_TO_WQ(connp) \ 268 (IPCL_IS_TCP(connp) ? (connp)->conn_tcp->tcp_wq : (connp)->conn_wq) 269 270 #define CONNP_TO_RQ(connp) RD(CONNP_TO_WQ(connp)) 271 272 #define GRAB_CONN_LOCK(q) { \ 273 if (q != NULL && CONN_Q(q)) \ 274 mutex_enter(&(Q_TO_CONN(q))->conn_lock); \ 275 } 276 277 #define RELEASE_CONN_LOCK(q) { \ 278 if (q != NULL && CONN_Q(q)) \ 279 mutex_exit(&(Q_TO_CONN(q))->conn_lock); \ 280 } 281 282 /* "Congestion controlled" protocol */ 283 #define IP_FLOW_CONTROLLED_ULP(p) ((p) == IPPROTO_TCP || (p) == IPPROTO_SCTP) 284 285 /* 286 * Complete the pending operation. Usually an ioctl. Can also 287 * be a bind or option management request that got enqueued 288 * in an ipsq_t. Called on completion of the operation. 289 */ 290 #define CONN_OPER_PENDING_DONE(connp) { \ 291 mutex_enter(&(connp)->conn_lock); \ 292 (connp)->conn_oper_pending_ill = NULL; \ 293 cv_broadcast(&(connp)->conn_refcv); \ 294 mutex_exit(&(connp)->conn_lock); \ 295 CONN_DEC_REF(connp); \ 296 } 297 298 /* Get the credential of an IP queue of unknown type */ 299 #define GET_QUEUE_CRED(wq) \ 300 ((wq)->q_next ? (((ill_t *)(wq)->q_ptr)->ill_credp) \ 301 : ((Q_TO_CONN((wq)))->conn_cred)) 302 303 /* 304 * Flags for the various ip_fanout_* routines. 305 */ 306 #define IP_FF_SEND_ICMP 0x01 /* Send an ICMP error */ 307 #define IP_FF_HDR_COMPLETE 0x02 /* Call ip_hdr_complete if error */ 308 #define IP_FF_CKSUM 0x04 /* Recompute ipha_cksum if error */ 309 #define IP_FF_RAWIP 0x08 /* Use rawip mib variable */ 310 #define IP_FF_SRC_QUENCH 0x10 /* OK to send ICMP_SOURCE_QUENCH */ 311 #define IP_FF_SYN_ADDIRE 0x20 /* Add IRE if TCP syn packet */ 312 #define IP_FF_IPINFO 0x80 /* Used for both V4 and V6 */ 313 #define IP_FF_SEND_SLLA 0x100 /* Send source link layer info ? */ 314 #define IPV6_REACHABILITY_CONFIRMATION 0x200 /* Flags for ip_xmit_v6 */ 315 #define IP_FF_NO_MCAST_LOOP 0x400 /* No multicasts for sending zone */ 316 317 /* 318 * Following flags are used by IPQoS to determine if policy processing is 319 * required. 320 */ 321 #define IP6_NO_IPPOLICY 0x800 /* Don't do IPQoS processing */ 322 #define IP6_IN_LLMCAST 0x1000 /* Multicast */ 323 324 #define IP_FF_LOOPBACK 0x2000 /* Loopback fanout */ 325 #define IP_FF_SCTP_CSUM_ERR 0x4000 /* sctp pkt has failed chksum */ 326 327 #ifndef IRE_DB_TYPE 328 #define IRE_DB_TYPE M_SIG 329 #endif 330 331 #ifndef IRE_DB_REQ_TYPE 332 #define IRE_DB_REQ_TYPE M_PCSIG 333 #endif 334 335 #ifndef IRE_ARPRESOLVE_TYPE 336 #define IRE_ARPRESOLVE_TYPE M_EVENT 337 #endif 338 339 /* 340 * Values for squeue switch: 341 */ 342 343 #define IP_SQUEUE_ENTER_NODRAIN 1 344 #define IP_SQUEUE_ENTER 2 345 /* 346 * This is part of the interface between Transport provider and 347 * IP which can be used to set policy information. This is usually 348 * accompanied with O_T_BIND_REQ/T_BIND_REQ.ip_bind assumes that 349 * only IPSEC_POLICY_SET is there when it is found in the chain. 350 * The information contained is an struct ipsec_req_t. On success 351 * or failure, either the T_BIND_ACK or the T_ERROR_ACK is returned. 352 * IPSEC_POLICY_SET is never returned. 353 */ 354 #define IPSEC_POLICY_SET M_SETOPTS 355 356 #define IRE_IS_LOCAL(ire) ((ire != NULL) && \ 357 ((ire)->ire_type & (IRE_LOCAL | IRE_LOOPBACK))) 358 359 #define IRE_IS_TARGET(ire) ((ire != NULL) && \ 360 ((ire)->ire_type != IRE_BROADCAST)) 361 362 /* IP Fragmentation Reassembly Header */ 363 typedef struct ipf_s { 364 struct ipf_s *ipf_hash_next; 365 struct ipf_s **ipf_ptphn; /* Pointer to previous hash next. */ 366 uint32_t ipf_ident; /* Ident to match. */ 367 uint8_t ipf_protocol; /* Protocol to match. */ 368 uchar_t ipf_last_frag_seen : 1; /* Last fragment seen ? */ 369 time_t ipf_timestamp; /* Reassembly start time. */ 370 mblk_t *ipf_mp; /* mblk we live in. */ 371 mblk_t *ipf_tail_mp; /* Frag queue tail pointer. */ 372 int ipf_hole_cnt; /* Number of holes (hard-case). */ 373 int ipf_end; /* Tail end offset (0 -> hard-case). */ 374 uint_t ipf_gen; /* Frag queue generation */ 375 size_t ipf_count; /* Count of bytes used by frag */ 376 uint_t ipf_nf_hdr_len; /* Length of nonfragmented header */ 377 in6_addr_t ipf_v6src; /* IPv6 source address */ 378 in6_addr_t ipf_v6dst; /* IPv6 dest address */ 379 uint_t ipf_prev_nexthdr_offset; /* Offset for nexthdr value */ 380 uint8_t ipf_ecn; /* ECN info for the fragments */ 381 uint8_t ipf_num_dups; /* Number of times dup frags recvd */ 382 uint16_t ipf_checksum_flags; /* Hardware checksum flags */ 383 uint32_t ipf_checksum; /* Partial checksum of fragment data */ 384 } ipf_t; 385 386 #define ipf_src V4_PART_OF_V6(ipf_v6src) 387 #define ipf_dst V4_PART_OF_V6(ipf_v6dst) 388 389 typedef enum { 390 IB_PKT = 0x01, 391 OB_PKT = 0x02 392 } ip_pkt_t; 393 394 #define UPDATE_IB_PKT_COUNT(ire)\ 395 { \ 396 (ire)->ire_ib_pkt_count++; \ 397 if ((ire)->ire_ipif != NULL) { \ 398 /* \ 399 * forwarding packet \ 400 */ \ 401 if ((ire)->ire_type & (IRE_LOCAL|IRE_BROADCAST)) \ 402 atomic_add_32(&(ire)->ire_ipif->ipif_ib_pkt_count, 1);\ 403 else \ 404 atomic_add_32(&(ire)->ire_ipif->ipif_fo_pkt_count, 1);\ 405 } \ 406 } 407 #define UPDATE_OB_PKT_COUNT(ire)\ 408 { \ 409 (ire)->ire_ob_pkt_count++;\ 410 if ((ire)->ire_ipif != NULL) { \ 411 atomic_add_32(&(ire)->ire_ipif->ipif_ob_pkt_count, 1); \ 412 } \ 413 } 414 415 416 #define IP_RPUT_LOCAL(q, mp, ipha, ire, recv_ill) \ 417 { \ 418 switch (ipha->ipha_protocol) { \ 419 case IPPROTO_UDP: \ 420 ip_udp_input(q, mp, ipha, ire, recv_ill); \ 421 break; \ 422 default: \ 423 ip_proto_input(q, mp, ipha, ire, recv_ill, B_FALSE); \ 424 break; \ 425 } \ 426 } 427 428 /* 429 * NCE_EXPIRED is TRUE when we have a non-permanent nce that was 430 * found to be REACHABLE more than ip_ire_arp_interval ms ago. 431 * This macro is used to age existing nce_t entries. The 432 * nce's will get cleaned up in the following circumstances: 433 * - ip_ire_trash_reclaim will free nce's using ndp_cache_reclaim 434 * when memory is low, 435 * - ip_arp_news, when updates are received. 436 * - if the nce is NCE_EXPIRED(), it will deleted, so that a new 437 * arp request will need to be triggered from an ND_INITIAL nce. 438 * 439 * Note that the nce state transition follows the pattern: 440 * ND_INITIAL -> ND_INCOMPLETE -> ND_REACHABLE 441 * after which the nce is deleted when it has expired. 442 * 443 * nce_last is the timestamp that indicates when the nce_res_mp in the 444 * nce_t was last updated to a valid link-layer address. nce_last gets 445 * modified/updated : 446 * - when the nce is created 447 * - every time we get a sane arp response for the nce. 448 */ 449 #define NCE_EXPIRED(nce, ipst) (nce->nce_last > 0 && \ 450 ((nce->nce_flags & NCE_F_PERMANENT) == 0) && \ 451 ((TICK_TO_MSEC(lbolt64) - nce->nce_last) > \ 452 (ipst)->ips_ip_ire_arp_interval)) 453 454 #endif /* _KERNEL */ 455 456 /* ICMP types */ 457 #define ICMP_ECHO_REPLY 0 458 #define ICMP_DEST_UNREACHABLE 3 459 #define ICMP_SOURCE_QUENCH 4 460 #define ICMP_REDIRECT 5 461 #define ICMP_ECHO_REQUEST 8 462 #define ICMP_ROUTER_ADVERTISEMENT 9 463 #define ICMP_ROUTER_SOLICITATION 10 464 #define ICMP_TIME_EXCEEDED 11 465 #define ICMP_PARAM_PROBLEM 12 466 #define ICMP_TIME_STAMP_REQUEST 13 467 #define ICMP_TIME_STAMP_REPLY 14 468 #define ICMP_INFO_REQUEST 15 469 #define ICMP_INFO_REPLY 16 470 #define ICMP_ADDRESS_MASK_REQUEST 17 471 #define ICMP_ADDRESS_MASK_REPLY 18 472 473 /* ICMP_TIME_EXCEEDED codes */ 474 #define ICMP_TTL_EXCEEDED 0 475 #define ICMP_REASSEMBLY_TIME_EXCEEDED 1 476 477 /* ICMP_DEST_UNREACHABLE codes */ 478 #define ICMP_NET_UNREACHABLE 0 479 #define ICMP_HOST_UNREACHABLE 1 480 #define ICMP_PROTOCOL_UNREACHABLE 2 481 #define ICMP_PORT_UNREACHABLE 3 482 #define ICMP_FRAGMENTATION_NEEDED 4 483 #define ICMP_SOURCE_ROUTE_FAILED 5 484 #define ICMP_DEST_NET_UNKNOWN 6 485 #define ICMP_DEST_HOST_UNKNOWN 7 486 #define ICMP_SRC_HOST_ISOLATED 8 487 #define ICMP_DEST_NET_UNREACH_ADMIN 9 488 #define ICMP_DEST_HOST_UNREACH_ADMIN 10 489 #define ICMP_DEST_NET_UNREACH_TOS 11 490 #define ICMP_DEST_HOST_UNREACH_TOS 12 491 492 /* ICMP Header Structure */ 493 typedef struct icmph_s { 494 uint8_t icmph_type; 495 uint8_t icmph_code; 496 uint16_t icmph_checksum; 497 union { 498 struct { /* ECHO request/response structure */ 499 uint16_t u_echo_ident; 500 uint16_t u_echo_seqnum; 501 } u_echo; 502 struct { /* Destination unreachable structure */ 503 uint16_t u_du_zero; 504 uint16_t u_du_mtu; 505 } u_du; 506 struct { /* Parameter problem structure */ 507 uint8_t u_pp_ptr; 508 uint8_t u_pp_rsvd[3]; 509 } u_pp; 510 struct { /* Redirect structure */ 511 ipaddr_t u_rd_gateway; 512 } u_rd; 513 } icmph_u; 514 } icmph_t; 515 516 #define icmph_echo_ident icmph_u.u_echo.u_echo_ident 517 #define icmph_echo_seqnum icmph_u.u_echo.u_echo_seqnum 518 #define icmph_du_zero icmph_u.u_du.u_du_zero 519 #define icmph_du_mtu icmph_u.u_du.u_du_mtu 520 #define icmph_pp_ptr icmph_u.u_pp.u_pp_ptr 521 #define icmph_rd_gateway icmph_u.u_rd.u_rd_gateway 522 523 #define ICMPH_SIZE 8 524 525 /* 526 * Minimum length of transport layer header included in an ICMP error 527 * message for it to be considered valid. 528 */ 529 #define ICMP_MIN_TP_HDR_LEN 8 530 531 /* Aligned IP header */ 532 typedef struct ipha_s { 533 uint8_t ipha_version_and_hdr_length; 534 uint8_t ipha_type_of_service; 535 uint16_t ipha_length; 536 uint16_t ipha_ident; 537 uint16_t ipha_fragment_offset_and_flags; 538 uint8_t ipha_ttl; 539 uint8_t ipha_protocol; 540 uint16_t ipha_hdr_checksum; 541 ipaddr_t ipha_src; 542 ipaddr_t ipha_dst; 543 } ipha_t; 544 545 #define IPH_DF 0x4000 /* Don't fragment */ 546 #define IPH_MF 0x2000 /* More fragments to come */ 547 #define IPH_OFFSET 0x1FFF /* Where the offset lives */ 548 #define IPH_FRAG_HDR 0x8000 /* IPv6 don't fragment bit */ 549 550 /* ECN code points for IPv4 TOS byte and IPv6 traffic class octet. */ 551 #define IPH_ECN_NECT 0x0 /* Not ECN-Capabable Transport */ 552 #define IPH_ECN_ECT1 0x1 /* ECN-Capable Transport, ECT(1) */ 553 #define IPH_ECN_ECT0 0x2 /* ECN-Capable Transport, ECT(0) */ 554 #define IPH_ECN_CE 0x3 /* ECN-Congestion Experienced (CE) */ 555 556 /* IP Mac info structure */ 557 typedef struct ip_m_s { 558 t_uscalar_t ip_m_mac_type; /* From <sys/dlpi.h> */ 559 int ip_m_type; /* From <net/if_types.h> */ 560 boolean_t (*ip_m_v4mapinfo)(uint_t, uint8_t *, uint8_t *, 561 uint32_t *, ipaddr_t *); 562 boolean_t (*ip_m_v6mapinfo)(uint_t, uint8_t *, uint8_t *, 563 uint32_t *, in6_addr_t *); 564 boolean_t (*ip_m_v6intfid)(uint_t, uint8_t *, in6_addr_t *); 565 } ip_m_t; 566 567 /* 568 * The following functions attempt to reduce the link layer dependency 569 * of the IP stack. The current set of link specific operations are: 570 * a. map from IPv4 class D (224.0/4) multicast address range to the link 571 * layer multicast address range. 572 * b. map from IPv6 multicast address range (ff00::/8) to the link 573 * layer multicast address range. 574 * c. derive the default IPv6 interface identifier from the link layer 575 * address. 576 */ 577 #define MEDIA_V4MINFO(ip_m, plen, bphys, maddr, hwxp, v4ptr) \ 578 (((ip_m)->ip_m_v4mapinfo != NULL) && \ 579 (*(ip_m)->ip_m_v4mapinfo)(plen, bphys, maddr, hwxp, v4ptr)) 580 #define MEDIA_V6INTFID(ip_m, plen, phys, v6ptr) \ 581 (((ip_m)->ip_m_v6intfid != NULL) && \ 582 (*(ip_m)->ip_m_v6intfid)(plen, phys, v6ptr)) 583 #define MEDIA_V6MINFO(ip_m, plen, bphys, maddr, hwxp, v6ptr) \ 584 (((ip_m)->ip_m_v6mapinfo != NULL) && \ 585 (*(ip_m)->ip_m_v6mapinfo)(plen, bphys, maddr, hwxp, v6ptr)) 586 587 /* Router entry types */ 588 #define IRE_BROADCAST 0x0001 /* Route entry for broadcast address */ 589 #define IRE_DEFAULT 0x0002 /* Route entry for default gateway */ 590 #define IRE_LOCAL 0x0004 /* Route entry for local address */ 591 #define IRE_LOOPBACK 0x0008 /* Route entry for loopback address */ 592 #define IRE_PREFIX 0x0010 /* Route entry for prefix routes */ 593 #define IRE_CACHE 0x0020 /* Cached Route entry */ 594 #define IRE_IF_NORESOLVER 0x0040 /* Route entry for local interface */ 595 /* net without any address mapping. */ 596 #define IRE_IF_RESOLVER 0x0080 /* Route entry for local interface */ 597 /* net with resolver. */ 598 #define IRE_HOST 0x0100 /* Host route entry */ 599 #define IRE_HOST_REDIRECT 0x0200 /* only used for T_SVR4_OPTMGMT_REQ */ 600 601 #define IRE_INTERFACE (IRE_IF_NORESOLVER | IRE_IF_RESOLVER) 602 #define IRE_OFFSUBNET (IRE_DEFAULT | IRE_PREFIX | IRE_HOST) 603 #define IRE_CACHETABLE (IRE_CACHE | IRE_BROADCAST | IRE_LOCAL | \ 604 IRE_LOOPBACK) 605 #define IRE_FORWARDTABLE (IRE_INTERFACE | IRE_OFFSUBNET) 606 607 /* 608 * If an IRE is marked with IRE_MARK_CONDEMNED, the last walker of 609 * the bucket should delete this IRE from this bucket. 610 */ 611 #define IRE_MARK_CONDEMNED 0x0001 612 /* 613 * If a broadcast IRE is marked with IRE_MARK_NORECV, ip_rput will drop the 614 * broadcast packets received on that interface. This is marked only 615 * on broadcast ires. Employed by IPMP, where we have multiple NICs on the 616 * same subnet receiving the same broadcast packet. 617 */ 618 #define IRE_MARK_NORECV 0x0002 619 /* 620 * IRE_CACHE marked this way won't be returned by ire_cache_lookup. Need 621 * to look specifically using MATCH_IRE_MARK_HIDDEN. Used by IPMP. 622 */ 623 #define IRE_MARK_HIDDEN 0x0004 /* Typically Used by in.mpathd */ 624 625 /* 626 * An IRE with IRE_MARK_NOADD is created in ip_newroute_ipif when the outgoing 627 * interface is specified by e.g. IP_PKTINFO. The IRE is not added to the IRE 628 * cache table. 629 */ 630 #define IRE_MARK_NOADD 0x0008 /* Mark not to add ire in cache */ 631 632 /* 633 * IRE marked with IRE_MARK_TEMPORARY means that this IRE has been used 634 * either for forwarding a packet or has not been used for sending 635 * traffic on TCP connections terminated on this system. In both 636 * cases, this IRE is the first to go when IRE is being cleaned up. 637 */ 638 #define IRE_MARK_TEMPORARY 0x0010 639 640 /* 641 * IRE marked with IRE_MARK_USESRC_CHECK means that while adding an IRE with 642 * this mark, additional atomic checks need to be performed. For eg: by the 643 * time an IRE_CACHE is created, sent up to ARP and then comes back to IP; the 644 * usesrc grouping could have changed in which case we want to fail adding 645 * the IRE_CACHE entry 646 */ 647 #define IRE_MARK_USESRC_CHECK 0x0020 648 649 /* 650 * IRE_MARK_PRIVATE_ADDR is used for IP_NEXTHOP. When IP_NEXTHOP is set, the 651 * routing table lookup for the destination is bypassed and the packet is 652 * sent directly to the specified nexthop. The associated IRE_CACHE entries 653 * should be marked with IRE_MARK_PRIVATE_ADDR flag so that they don't show up 654 * in regular ire cache lookups. 655 */ 656 #define IRE_MARK_PRIVATE_ADDR 0x0040 657 658 /* 659 * When we send an ARP resolution query for the nexthop gateway's ire, 660 * we use esballoc to create the ire_t in the AR_ENTRY_QUERY mblk 661 * chain, and mark its ire_marks with IRE_MARK_UNCACHED. This flag 662 * indicates that information from ARP has not been transferred to a 663 * permanent IRE_CACHE entry. The flag is reset only when the 664 * information is successfully transferred to an ire_cache entry (in 665 * ire_add()). Attempting to free the AR_ENTRY_QUERY mblk chain prior 666 * to ire_add (e.g., from arp, or from ip`ip_wput_nondata) will 667 * require that the resources (incomplete ire_cache and/or nce) must 668 * be cleaned up. The free callback routine (ire_freemblk()) checks 669 * for IRE_MARK_UNCACHED to see if any resources that are pinned down 670 * will need to be cleaned up or not. 671 */ 672 673 #define IRE_MARK_UNCACHED 0x0080 674 675 /* 676 * The comment below (and for other netstack_t references) refers 677 * to the fact that we only do netstack_hold in particular cases, 678 * such as the references from open streams (ill_t and conn_t's 679 * pointers). Internally within IP we rely on IP's ability to cleanup e.g. 680 * ire_t's when an ill goes away. 681 */ 682 typedef struct ire_expire_arg_s { 683 int iea_flush_flag; 684 ip_stack_t *iea_ipst; /* Does not have a netstack_hold */ 685 } ire_expire_arg_t; 686 687 /* Flags with ire_expire routine */ 688 #define FLUSH_ARP_TIME 0x0001 /* ARP info potentially stale timer */ 689 #define FLUSH_REDIRECT_TIME 0x0002 /* Redirects potentially stale */ 690 #define FLUSH_MTU_TIME 0x0004 /* Include path MTU per RFC 1191 */ 691 692 /* Arguments to ire_flush_cache() */ 693 #define IRE_FLUSH_DELETE 0 694 #define IRE_FLUSH_ADD 1 695 696 /* 697 * Open/close synchronization flags. 698 * These are kept in a separate field in the conn and the synchronization 699 * depends on the atomic 32 bit access to that field. 700 */ 701 #define CONN_CLOSING 0x01 /* ip_close waiting for ip_wsrv */ 702 #define CONN_IPSEC_LOAD_WAIT 0x02 /* waiting for load */ 703 #define CONN_CONDEMNED 0x04 /* conn is closing, no more refs */ 704 #define CONN_INCIPIENT 0x08 /* conn not yet visible, no refs */ 705 #define CONN_QUIESCED 0x10 /* conn is now quiescent */ 706 707 /* Used to check connection state flags before caching the IRE */ 708 #define CONN_CACHE_IRE(connp) \ 709 (!((connp)->conn_state_flags & (CONN_CLOSING|CONN_CONDEMNED))) 710 711 /* 712 * Parameter to ip_output giving the identity of the caller. 713 * IP_WSRV means the packet was enqueued in the STREAMS queue 714 * due to flow control and is now being reprocessed in the context of 715 * the STREAMS service procedure, consequent to flow control relief. 716 * IRE_SEND means the packet is being reprocessed consequent to an 717 * ire cache creation and addition and this may or may not be happening 718 * in the service procedure context. Anything other than the above 2 719 * cases is identified as IP_WPUT. Most commonly this is the case of 720 * packets coming down from the application. 721 */ 722 #ifdef _KERNEL 723 #define IP_WSRV 1 /* Called from ip_wsrv */ 724 #define IP_WPUT 2 /* Called from ip_wput */ 725 #define IRE_SEND 3 /* Called from ire_send */ 726 727 /* 728 * Extra structures need for per-src-addr filtering (IGMPv3/MLDv2) 729 */ 730 #define MAX_FILTER_SIZE 64 731 732 typedef struct slist_s { 733 int sl_numsrc; 734 in6_addr_t sl_addr[MAX_FILTER_SIZE]; 735 } slist_t; 736 737 /* 738 * Following struct is used to maintain retransmission state for 739 * a multicast group. One rtx_state_t struct is an in-line field 740 * of the ilm_t struct; the slist_ts in the rtx_state_t struct are 741 * alloc'd as needed. 742 */ 743 typedef struct rtx_state_s { 744 uint_t rtx_timer; /* retrans timer */ 745 int rtx_cnt; /* retrans count */ 746 int rtx_fmode_cnt; /* retrans count for fmode change */ 747 slist_t *rtx_allow; 748 slist_t *rtx_block; 749 } rtx_state_t; 750 751 /* 752 * Used to construct list of multicast address records that will be 753 * sent in a single listener report. 754 */ 755 typedef struct mrec_s { 756 struct mrec_s *mrec_next; 757 uint8_t mrec_type; 758 uint8_t mrec_auxlen; /* currently unused */ 759 in6_addr_t mrec_group; 760 slist_t mrec_srcs; 761 } mrec_t; 762 763 /* Group membership list per upper conn */ 764 /* 765 * XXX add ilg info for ifaddr/ifindex. 766 * XXX can we make ilg survive an ifconfig unplumb + plumb 767 * by setting the ipif/ill to NULL and recover that later? 768 * 769 * ilg_ipif is used by IPv4 as multicast groups are joined using an interface 770 * address (ipif). 771 * ilg_ill is used by IPv6 as multicast groups are joined using an interface 772 * index (phyint->phyint_ifindex). 773 * ilg_ill is NULL for IPv4 and ilg_ipif is NULL for IPv6. 774 * 775 * ilg records the state of multicast memberships of a socket end point. 776 * ilm records the state of multicast memberships with the driver and is 777 * maintained per interface. 778 * 779 * Notes : 780 * 781 * 1) There is no direct link between a given ilg and ilm. If the 782 * application has joined a group G with ifindex I, we will have 783 * an ilg with ilg_v6group and ilg_ill. There will be a corresponding 784 * ilm with ilm_ill/ilm_v6addr recording the multicast membership. 785 * To delete the membership, 786 * 787 * a) Search for ilg matching on G and I with ilg_v6group 788 * and ilg_ill. Delete ilg_ill. 789 * b) Search the corresponding ilm matching on G and I with 790 * ilm_v6addr and ilm_ill. Delete ilm. 791 * 792 * In IPv4, the only difference is, we look using ipifs instead of 793 * ills. 794 * 795 * 2) With IP multipathing, we want to keep receiving even after the 796 * interface has failed. We do this by moving multicast memberships 797 * to a new_ill within the group. This is acheived by sending 798 * DL_DISABMULTI_REQS on ilg_ill/ilm_ill and sending DL_ENABMULTIREQS 799 * on the new_ill and changing ilg_ill/ilm_ill to new_ill. But, we 800 * need to be able to delete memberships which will still come down 801 * with the ifindex of the old ill which is what the application 802 * knows of. Thus we store the ilm_/ilg_orig_ifindex to keep track 803 * of where we joined initially so that we can lookup even after we 804 * moved the membership. It is also used for moving back the membership 805 * when the old ill has been repaired. This is done by looking up for 806 * ilms with ilm_orig_ifindex matching on the old ill's ifindex. Only 807 * ilms actually move from old ill to new ill. ilgs don't move (just 808 * the ilg_ill is changed when it moves) as it just records the state 809 * of the application that has joined a group G where as ilm records 810 * the state joined with the driver. Thus when we send DL_XXXMULTI_REQs 811 * we also need to keep the ilm in the right ill. 812 * 813 * In IPv4, as ipifs move from old ill to new_ill, ilgs and ilms move 814 * implicitly as we use only ipifs in IPv4. Thus, one can always lookup 815 * a given ilm/ilg even after it fails without the support of 816 * orig_ifindex. We move ilms still to record the driver state as 817 * mentioned above. 818 */ 819 820 /* 821 * The ilg_t and ilm_t members are protected by ipsq. They can be changed only 822 * by a thread executing in the ipsq. In other words add/delete of a 823 * multicast group has to execute in the ipsq. 824 */ 825 #define ILG_DELETED 0x1 /* ilg_flags */ 826 typedef struct ilg_s { 827 in6_addr_t ilg_v6group; 828 struct ipif_s *ilg_ipif; /* Logical interface we are member on */ 829 struct ill_s *ilg_ill; /* Used by IPv6 */ 830 int ilg_orig_ifindex; /* Interface originally joined on */ 831 uint_t ilg_flags; 832 mcast_record_t ilg_fmode; /* MODE_IS_INCLUDE/MODE_IS_EXCLUDE */ 833 slist_t *ilg_filter; 834 } ilg_t; 835 836 837 /* 838 * Multicast address list entry for lower ill. 839 * ilm_ipif is used by IPv4 as multicast groups are joined using ipif. 840 * ilm_ill is used by IPv6 as multicast groups are joined using ill. 841 * ilm_ill is NULL for IPv4 and ilm_ipif is NULL for IPv6. 842 * 843 * The comment below (and for other netstack_t references) refers 844 * to the fact that we only do netstack_hold in particular cases, 845 * such as the references from open streams (ill_t and conn_t's 846 * pointers). Internally within IP we rely on IP's ability to cleanup e.g. 847 * ire_t's when an ill goes away. 848 */ 849 #define ILM_DELETED 0x1 /* ilm_flags */ 850 typedef struct ilm_s { 851 in6_addr_t ilm_v6addr; 852 int ilm_refcnt; 853 uint_t ilm_timer; /* IGMP/MLD query resp timer, in msec */ 854 struct ipif_s *ilm_ipif; /* Back pointer to ipif for IPv4 */ 855 struct ilm_s *ilm_next; /* Linked list for each ill */ 856 uint_t ilm_state; /* state of the membership */ 857 struct ill_s *ilm_ill; /* Back pointer to ill for IPv6 */ 858 int ilm_orig_ifindex; /* V6_MULTICAST_IF/ilm_ipif index */ 859 uint_t ilm_flags; 860 boolean_t ilm_is_new; /* new ilm */ 861 boolean_t ilm_notify_driver; /* Need to notify the driver */ 862 zoneid_t ilm_zoneid; 863 int ilm_no_ilg_cnt; /* number of joins w/ no ilg */ 864 mcast_record_t ilm_fmode; /* MODE_IS_INCLUDE/MODE_IS_EXCLUDE */ 865 slist_t *ilm_filter; /* source filter list */ 866 slist_t *ilm_pendsrcs; /* relevant src addrs for pending req */ 867 rtx_state_t ilm_rtx; /* SCR retransmission state */ 868 ip_stack_t *ilm_ipst; /* Does not have a netstack_hold */ 869 } ilm_t; 870 871 #define ilm_addr V4_PART_OF_V6(ilm_v6addr) 872 873 /* 874 * ilm_walker_cleanup needs to execute when the ilm_walker_cnt goes down to 875 * zero. In addition it needs to block new walkers while it is unlinking ilm's 876 * from the list. Thus simple atomics for the ill_ilm_walker_cnt don't suffice. 877 */ 878 #define ILM_WALKER_HOLD(ill) { \ 879 mutex_enter(&(ill)->ill_lock); \ 880 ill->ill_ilm_walker_cnt++; \ 881 mutex_exit(&(ill)->ill_lock); \ 882 } 883 884 /* 885 * ilm_walker_cleanup releases ill_lock 886 */ 887 #define ILM_WALKER_RELE(ill) { \ 888 mutex_enter(&(ill)->ill_lock); \ 889 (ill)->ill_ilm_walker_cnt--; \ 890 if ((ill)->ill_ilm_walker_cnt == 0 && (ill)->ill_ilm_cleanup_reqd) \ 891 ilm_walker_cleanup(ill); \ 892 else \ 893 mutex_exit(&(ill)->ill_lock); \ 894 } 895 896 /* 897 * Soft reference to an IPsec SA. 898 * 899 * On relative terms, conn's can be persistant (living as long as the 900 * processes which create them), while SA's are ephemeral (dying when 901 * they hit their time-based or byte-based lifetimes). 902 * 903 * We could hold a hard reference to an SA from an ipsec_latch_t, 904 * but this would cause expired SA's to linger for a potentially 905 * unbounded time. 906 * 907 * Instead, we remember the hash bucket number and bucket generation 908 * in addition to the pointer. The bucket generation is incremented on 909 * each deletion. 910 */ 911 typedef struct ipsa_ref_s 912 { 913 struct ipsa_s *ipsr_sa; 914 struct isaf_s *ipsr_bucket; 915 uint64_t ipsr_gen; 916 } ipsa_ref_t; 917 918 /* 919 * IPsec "latching" state. 920 * 921 * In the presence of IPsec policy, fully-bound conn's bind a connection 922 * to more than just the 5-tuple, but also a specific IPsec action and 923 * identity-pair. 924 * 925 * As an optimization, we also cache soft references to IPsec SA's 926 * here so that we can fast-path around most of the work needed for 927 * outbound IPsec SA selection. 928 * 929 * Were it not for TCP's detached connections, this state would be 930 * in-line in conn_t; instead, this is in a separate structure so it 931 * can be handed off to TCP when a connection is detached. 932 */ 933 typedef struct ipsec_latch_s 934 { 935 kmutex_t ipl_lock; 936 uint32_t ipl_refcnt; 937 938 uint64_t ipl_unique; 939 struct ipsec_policy_s *ipl_in_policy; /* latched policy (in) */ 940 struct ipsec_policy_s *ipl_out_policy; /* latched policy (out) */ 941 struct ipsec_action_s *ipl_in_action; /* latched action (in) */ 942 struct ipsec_action_s *ipl_out_action; /* latched action (out) */ 943 cred_t *ipl_local_id; 944 struct ipsid_s *ipl_local_cid; 945 struct ipsid_s *ipl_remote_cid; 946 unsigned int 947 ipl_out_action_latched : 1, 948 ipl_in_action_latched : 1, 949 ipl_out_policy_latched : 1, 950 ipl_in_policy_latched : 1, 951 952 ipl_ids_latched : 1, 953 954 ipl_pad_to_bit_31 : 27; 955 956 ipsa_ref_t ipl_ref[2]; /* 0: ESP, 1: AH */ 957 958 } ipsec_latch_t; 959 960 #define IPLATCH_REFHOLD(ipl) { \ 961 atomic_add_32(&(ipl)->ipl_refcnt, 1); \ 962 ASSERT((ipl)->ipl_refcnt != 0); \ 963 } 964 965 #define IPLATCH_REFRELE(ipl, ns) { \ 966 ASSERT((ipl)->ipl_refcnt != 0); \ 967 membar_exit(); \ 968 if (atomic_add_32_nv(&(ipl)->ipl_refcnt, -1) == 0) \ 969 iplatch_free(ipl, ns); \ 970 } 971 972 /* 973 * peer identity structure. 974 */ 975 976 typedef struct conn_s conn_t; 977 978 /* 979 * The old IP client structure "ipc_t" is gone. All the data is stored in the 980 * connection structure "conn_t" now. The mapping of old and new fields looks 981 * like this: 982 * 983 * ipc_ulp conn_ulp 984 * ipc_rq conn_rq 985 * ipc_wq conn_wq 986 * 987 * ipc_laddr conn_src 988 * ipc_faddr conn_rem 989 * ipc_v6laddr conn_srcv6 990 * ipc_v6faddr conn_remv6 991 * 992 * ipc_lport conn_lport 993 * ipc_fport conn_fport 994 * ipc_ports conn_ports 995 * 996 * ipc_policy conn_policy 997 * ipc_latch conn_latch 998 * 999 * ipc_irc_lock conn_lock 1000 * ipc_ire_cache conn_ire_cache 1001 * 1002 * ipc_state_flags conn_state_flags 1003 * ipc_outgoing_ill conn_outgoing_ill 1004 * 1005 * ipc_dontroute conn_dontroute 1006 * ipc_loopback conn_loopback 1007 * ipc_broadcast conn_broadcast 1008 * ipc_reuseaddr conn_reuseaddr 1009 * 1010 * ipc_multicast_loop conn_multicast_loop 1011 * ipc_multi_router conn_multi_router 1012 * ipc_draining conn_draining 1013 * 1014 * ipc_did_putbq conn_did_putbq 1015 * ipc_unspec_src conn_unspec_src 1016 * ipc_policy_cached conn_policy_cached 1017 * 1018 * ipc_in_enforce_policy conn_in_enforce_policy 1019 * ipc_out_enforce_policy conn_out_enforce_policy 1020 * ipc_af_isv6 conn_af_isv6 1021 * ipc_pkt_isv6 conn_pkt_isv6 1022 * 1023 * ipc_ipv6_recvpktinfo conn_ipv6_recvpktinfo 1024 * 1025 * ipc_ipv6_recvhoplimit conn_ipv6_recvhoplimit 1026 * ipc_ipv6_recvhopopts conn_ipv6_recvhopopts 1027 * ipc_ipv6_recvdstopts conn_ipv6_recvdstopts 1028 * 1029 * ipc_ipv6_recvrthdr conn_ipv6_recvrthdr 1030 * ipc_ipv6_recvrtdstopts conn_ipv6_recvrtdstopts 1031 * ipc_fully_bound conn_fully_bound 1032 * 1033 * ipc_recvif conn_recvif 1034 * 1035 * ipc_recvslla conn_recvslla 1036 * ipc_acking_unbind conn_acking_unbind 1037 * ipc_pad_to_bit_31 conn_pad_to_bit_31 1038 * 1039 * ipc_nofailover_ill conn_nofailover_ill 1040 * 1041 * ipc_proto conn_proto 1042 * ipc_incoming_ill conn_incoming_ill 1043 * ipc_outgoing_pill conn_outgoing_pill 1044 * ipc_pending_ill conn_pending_ill 1045 * ipc_unbind_mp conn_unbind_mp 1046 * ipc_ilg conn_ilg 1047 * ipc_ilg_allocated conn_ilg_allocated 1048 * ipc_ilg_inuse conn_ilg_inuse 1049 * ipc_ilg_walker_cnt conn_ilg_walker_cnt 1050 * ipc_refcv conn_refcv 1051 * ipc_multicast_ipif conn_multicast_ipif 1052 * ipc_multicast_ill conn_multicast_ill 1053 * ipc_orig_bound_ifindex conn_orig_bound_ifindex 1054 * ipc_orig_multicast_ifindex conn_orig_multicast_ifindex 1055 * ipc_drain_next conn_drain_next 1056 * ipc_drain_prev conn_drain_prev 1057 * ipc_idl conn_idl 1058 */ 1059 1060 /* 1061 * This is used to match an inbound/outbound datagram with 1062 * policy. 1063 */ 1064 1065 typedef struct ipsec_selector { 1066 in6_addr_t ips_local_addr_v6; 1067 in6_addr_t ips_remote_addr_v6; 1068 uint16_t ips_local_port; 1069 uint16_t ips_remote_port; 1070 uint8_t ips_icmp_type; 1071 uint8_t ips_icmp_code; 1072 uint8_t ips_protocol; 1073 uint8_t ips_isv4 : 1, 1074 ips_is_icmp_inv_acq: 1; 1075 } ipsec_selector_t; 1076 1077 /* 1078 * Note that we put v4 addresses in the *first* 32-bit word of the 1079 * selector rather than the last to simplify the prefix match/mask code 1080 * in spd.c 1081 */ 1082 #define ips_local_addr_v4 ips_local_addr_v6.s6_addr32[0] 1083 #define ips_remote_addr_v4 ips_remote_addr_v6.s6_addr32[0] 1084 1085 /* Values used in IP by IPSEC Code */ 1086 #define IPSEC_OUTBOUND B_TRUE 1087 #define IPSEC_INBOUND B_FALSE 1088 1089 /* 1090 * There are two variants in policy failures. The packet may come in 1091 * secure when not needed (IPSEC_POLICY_???_NOT_NEEDED) or it may not 1092 * have the desired level of protection (IPSEC_POLICY_MISMATCH). 1093 */ 1094 #define IPSEC_POLICY_NOT_NEEDED 0 1095 #define IPSEC_POLICY_MISMATCH 1 1096 #define IPSEC_POLICY_AUTH_NOT_NEEDED 2 1097 #define IPSEC_POLICY_ENCR_NOT_NEEDED 3 1098 #define IPSEC_POLICY_SE_NOT_NEEDED 4 1099 #define IPSEC_POLICY_MAX 5 /* Always max + 1. */ 1100 1101 /* 1102 * Folowing macro is used whenever the code does not know whether there 1103 * is a M_CTL present in the front and it needs to examine the actual mp 1104 * i.e the IP header. As a M_CTL message could be in the front, this 1105 * extracts the packet into mp and the M_CTL mp into first_mp. If M_CTL 1106 * mp is not present, both first_mp and mp point to the same message. 1107 */ 1108 #define EXTRACT_PKT_MP(mp, first_mp, mctl_present) \ 1109 (first_mp) = (mp); \ 1110 if ((mp)->b_datap->db_type == M_CTL) { \ 1111 (mp) = (mp)->b_cont; \ 1112 (mctl_present) = B_TRUE; \ 1113 } else { \ 1114 (mctl_present) = B_FALSE; \ 1115 } 1116 1117 /* 1118 * Check with IPSEC inbound policy if 1119 * 1120 * 1) per-socket policy is present - indicated by conn_in_enforce_policy. 1121 * 2) Or if we have not cached policy on the conn and the global policy is 1122 * non-empty. 1123 */ 1124 #define CONN_INBOUND_POLICY_PRESENT(connp, ipss) \ 1125 ((connp)->conn_in_enforce_policy || \ 1126 (!((connp)->conn_policy_cached) && \ 1127 (ipss)->ipsec_inbound_v4_policy_present)) 1128 1129 #define CONN_INBOUND_POLICY_PRESENT_V6(connp, ipss) \ 1130 ((connp)->conn_in_enforce_policy || \ 1131 (!(connp)->conn_policy_cached && \ 1132 (ipss)->ipsec_inbound_v6_policy_present)) 1133 1134 #define CONN_OUTBOUND_POLICY_PRESENT(connp, ipss) \ 1135 ((connp)->conn_out_enforce_policy || \ 1136 (!((connp)->conn_policy_cached) && \ 1137 (ipss)->ipsec_outbound_v4_policy_present)) 1138 1139 #define CONN_OUTBOUND_POLICY_PRESENT_V6(connp, ipss) \ 1140 ((connp)->conn_out_enforce_policy || \ 1141 (!(connp)->conn_policy_cached && \ 1142 (ipss)->ipsec_outbound_v6_policy_present)) 1143 1144 /* 1145 * Information cached in IRE for upper layer protocol (ULP). 1146 * 1147 * Notice that ire_max_frag is not included in the iulp_t structure, which 1148 * it may seem that it should. But ire_max_frag cannot really be cached. It 1149 * is fixed for each interface. For MTU found by PMTUd, we may want to cache 1150 * it. But currently, we do not do that. 1151 */ 1152 typedef struct iulp_s { 1153 boolean_t iulp_set; /* Is any metric set? */ 1154 uint32_t iulp_ssthresh; /* Slow start threshold (TCP). */ 1155 clock_t iulp_rtt; /* Guestimate in millisecs. */ 1156 clock_t iulp_rtt_sd; /* Cached value of RTT variance. */ 1157 uint32_t iulp_spipe; /* Send pipe size. */ 1158 uint32_t iulp_rpipe; /* Receive pipe size. */ 1159 uint32_t iulp_rtomax; /* Max round trip timeout. */ 1160 uint32_t iulp_sack; /* Use SACK option (TCP)? */ 1161 uint32_t 1162 iulp_tstamp_ok : 1, /* Use timestamp option (TCP)? */ 1163 iulp_wscale_ok : 1, /* Use window scale option (TCP)? */ 1164 iulp_ecn_ok : 1, /* Enable ECN (for TCP)? */ 1165 iulp_pmtud_ok : 1, /* Enable PMTUd? */ 1166 1167 iulp_not_used : 28; 1168 } iulp_t; 1169 1170 /* Zero iulp_t. */ 1171 extern const iulp_t ire_uinfo_null; 1172 1173 /* 1174 * The conn drain list structure. 1175 * The list is protected by idl_lock. Each conn_t inserted in the list 1176 * points back at this idl_t using conn_idl. IP primes the draining of the 1177 * conns queued in these lists, by qenabling the 1st conn of each list. This 1178 * occurs when STREAMS backenables ip_wsrv on the IP module. Each conn instance 1179 * of ip_wsrv successively qenables the next conn in the list. 1180 * idl_lock protects all other members of idl_t and conn_drain_next 1181 * and conn_drain_prev of conn_t. The conn_lock protects IPCF_DRAIN_DISABLED 1182 * flag of the conn_t and conn_idl. 1183 */ 1184 typedef struct idl_s { 1185 conn_t *idl_conn; /* Head of drain list */ 1186 kmutex_t idl_lock; /* Lock for this list */ 1187 conn_t *idl_conn_draining; /* conn that is draining */ 1188 uint32_t 1189 idl_repeat : 1, /* Last conn must re-enable */ 1190 /* drain list again */ 1191 idl_unused : 31; 1192 } idl_t; 1193 1194 #define CONN_DRAIN_LIST_LOCK(connp) (&((connp)->conn_idl->idl_lock)) 1195 /* 1196 * Interface route structure which holds the necessary information to recreate 1197 * routes that are tied to an interface (namely where ire_ipif != NULL). 1198 * These routes which were initially created via a routing socket or via the 1199 * SIOCADDRT ioctl may be gateway routes (RTF_GATEWAY being set) or may be 1200 * traditional interface routes. When an interface comes back up after being 1201 * marked down, this information will be used to recreate the routes. These 1202 * are part of an mblk_t chain that hangs off of the IPIF (ipif_saved_ire_mp). 1203 */ 1204 typedef struct ifrt_s { 1205 ushort_t ifrt_type; /* Type of IRE */ 1206 in6_addr_t ifrt_v6addr; /* Address IRE represents. */ 1207 in6_addr_t ifrt_v6gateway_addr; /* Gateway if IRE_OFFSUBNET */ 1208 in6_addr_t ifrt_v6src_addr; /* Src addr if RTF_SETSRC */ 1209 in6_addr_t ifrt_v6mask; /* Mask for matching IRE. */ 1210 uint32_t ifrt_flags; /* flags related to route */ 1211 uint_t ifrt_max_frag; /* MTU (next hop or path). */ 1212 iulp_t ifrt_iulp_info; /* Cached IRE ULP info. */ 1213 } ifrt_t; 1214 1215 #define ifrt_addr V4_PART_OF_V6(ifrt_v6addr) 1216 #define ifrt_gateway_addr V4_PART_OF_V6(ifrt_v6gateway_addr) 1217 #define ifrt_src_addr V4_PART_OF_V6(ifrt_v6src_addr) 1218 #define ifrt_mask V4_PART_OF_V6(ifrt_v6mask) 1219 1220 /* Number of IP addresses that can be hosted on a physical interface */ 1221 #define MAX_ADDRS_PER_IF 8192 1222 /* 1223 * Number of Source addresses to be considered for source address 1224 * selection. Used by ipif_select_source[_v6]. 1225 */ 1226 #define MAX_IPIF_SELECT_SOURCE 50 1227 1228 #ifdef IP_DEBUG 1229 /* 1230 * Tracing refholds and refreleases for debugging. Existing tracing mechanisms 1231 * do not allow the granularity need to trace refrences to ipif/ill/ire's. This 1232 * mechanism should be revisited once dtrace is available. 1233 */ 1234 #define TR_STACK_DEPTH 14 1235 typedef struct tr_buf_s { 1236 int tr_depth; 1237 clock_t tr_time; 1238 pc_t tr_stack[TR_STACK_DEPTH]; 1239 } tr_buf_t; 1240 1241 typedef struct th_trace_s { 1242 int th_refcnt; 1243 uint_t th_trace_lastref; 1244 kthread_t *th_id; 1245 #define TR_BUF_MAX 38 1246 tr_buf_t th_trbuf[TR_BUF_MAX]; 1247 } th_trace_t; 1248 1249 typedef struct th_hash_s { 1250 list_node_t thh_link; 1251 mod_hash_t *thh_hash; 1252 ip_stack_t *thh_ipst; 1253 } th_hash_t; 1254 #endif 1255 1256 /* The following are ipif_state_flags */ 1257 #define IPIF_CONDEMNED 0x1 /* The ipif is being removed */ 1258 #define IPIF_CHANGING 0x2 /* A critcal ipif field is changing */ 1259 #define IPIF_MOVING 0x8 /* The ipif is being moved */ 1260 #define IPIF_SET_LINKLOCAL 0x10 /* transient flag during bringup */ 1261 #define IPIF_ZERO_SOURCE 0x20 /* transient flag during bringup */ 1262 1263 /* IP interface structure, one per local address */ 1264 typedef struct ipif_s { 1265 struct ipif_s *ipif_next; 1266 struct ill_s *ipif_ill; /* Back pointer to our ill */ 1267 int ipif_id; /* Logical unit number */ 1268 uint_t ipif_mtu; /* Starts at ipif_ill->ill_max_frag */ 1269 uint_t ipif_saved_mtu; /* Save of mtu during ipif_move() */ 1270 in6_addr_t ipif_v6lcl_addr; /* Local IP address for this if. */ 1271 in6_addr_t ipif_v6src_addr; /* Source IP address for this if. */ 1272 in6_addr_t ipif_v6subnet; /* Subnet prefix for this if. */ 1273 in6_addr_t ipif_v6net_mask; /* Net mask for this interface. */ 1274 in6_addr_t ipif_v6brd_addr; /* Broadcast addr for this interface. */ 1275 in6_addr_t ipif_v6pp_dst_addr; /* Point-to-point dest address. */ 1276 uint64_t ipif_flags; /* Interface flags. */ 1277 uint_t ipif_metric; /* BSD if metric, for compatibility. */ 1278 uint_t ipif_ire_type; /* IRE_LOCAL or IRE_LOOPBACK */ 1279 mblk_t *ipif_arp_del_mp; /* Allocated at time arp comes up, to */ 1280 /* prevent awkward out of mem */ 1281 /* condition later */ 1282 mblk_t *ipif_saved_ire_mp; /* Allocated for each extra */ 1283 /* IRE_IF_NORESOLVER/IRE_IF_RESOLVER */ 1284 /* on this interface so that they */ 1285 /* can survive ifconfig down. */ 1286 kmutex_t ipif_saved_ire_lock; /* Protects ipif_saved_ire_mp */ 1287 1288 mrec_t *ipif_igmp_rpt; /* List of group memberships which */ 1289 /* will be reported on. Used when */ 1290 /* handling an igmp timeout. */ 1291 1292 /* 1293 * The packet counts in the ipif contain the sum of the 1294 * packet counts in dead IREs that were affiliated with 1295 * this ipif. 1296 */ 1297 uint_t ipif_fo_pkt_count; /* Forwarded thru our dead IREs */ 1298 uint_t ipif_ib_pkt_count; /* Inbound packets for our dead IREs */ 1299 uint_t ipif_ob_pkt_count; /* Outbound packets to our dead IREs */ 1300 /* Exclusive bit fields, protected by ipsq_t */ 1301 unsigned int 1302 ipif_multicast_up : 1, /* We have joined the allhosts group */ 1303 ipif_replace_zero : 1, /* Replacement for zero */ 1304 ipif_was_up : 1, /* ipif was up before */ 1305 ipif_addr_ready : 1, /* DAD is done */ 1306 1307 ipif_was_dup : 1, /* DAD had failed */ 1308 ipif_pad_to_31 : 27; 1309 1310 int ipif_orig_ifindex; /* ifindex before SLIFFAILOVER */ 1311 uint_t ipif_seqid; /* unique index across all ills */ 1312 uint_t ipif_orig_ipifid; /* ipif_id before SLIFFAILOVER */ 1313 uint_t ipif_state_flags; /* See IPIF_* flag defs above */ 1314 uint_t ipif_refcnt; /* active consistent reader cnt */ 1315 1316 /* Number of ire's and ilm's referencing ipif */ 1317 uint_t ipif_cnt_ire; 1318 uint_t ipif_cnt_ilm; 1319 1320 uint_t ipif_saved_ire_cnt; 1321 zoneid_t ipif_zoneid; /* zone ID number */ 1322 timeout_id_t ipif_recovery_id; /* Timer for DAD recovery */ 1323 boolean_t ipif_trace_disable; /* True when alloc fails */ 1324 } ipif_t; 1325 1326 /* 1327 * IPIF_FREE_OK() means that there are no incoming references 1328 * to the ipif. Incoming refs would prevent the ipif from being freed. 1329 */ 1330 #define IPIF_FREE_OK(ipif) \ 1331 ((ipif)->ipif_cnt_ire == 0 && (ipif)->ipif_cnt_ilm == 0) 1332 /* 1333 * IPIF_DOWN_OK() determines whether the incoming pointer reference counts 1334 * would permit the ipif to be considered quiescent. In order for 1335 * an ipif or ill to be considered quiescent, the ire and nce references 1336 * to that ipif/ill must be zero. 1337 * 1338 * We do not require the ilm references to go to zero for quiescence 1339 * because the quiescence checks are done to ensure that 1340 * outgoing packets do not use addresses from the ipif/ill after it 1341 * has been marked down, and incoming packets to addresses on a 1342 * queiscent interface are rejected. This implies that all the 1343 * ire/nce's using that source address need to be deleted and future 1344 * creation of any ires using that source address must be prevented. 1345 * Similarly incoming unicast packets destined to the 'down' address 1346 * will not be accepted once that ire is gone. However incoming 1347 * multicast packets are not destined to the downed address. 1348 * They are only related to the ill in question. Furthermore 1349 * the current API behavior allows applications to join or leave 1350 * multicast groups, i.e., IP_ADD_MEMBERSHIP / LEAVE_MEMBERSHIP, using a 1351 * down address. Therefore the ilm references are not included in 1352 * the _DOWN_OK macros. 1353 */ 1354 #define IPIF_DOWN_OK(ipif) ((ipif)->ipif_cnt_ire == 0) 1355 1356 1357 /* 1358 * The following table lists the protection levels of the various members 1359 * of the ipif_t. The following notation is used. 1360 * 1361 * Write once - Written to only once at the time of bringing up 1362 * the interface and can be safely read after the bringup without any lock. 1363 * 1364 * ipsq - Need to execute in the ipsq to perform the indicated access. 1365 * 1366 * ill_lock - Need to hold this mutex to perform the indicated access. 1367 * 1368 * ill_g_lock - Need to hold this rw lock as reader/writer for read access or 1369 * write access respectively. 1370 * 1371 * down ill - Written to only when the ill is down (i.e all ipifs are down) 1372 * up ill - Read only when the ill is up (i.e. at least 1 ipif is up) 1373 * 1374 * Table of ipif_t members and their protection 1375 * 1376 * ipif_next ipsq + ill_lock + ipsq OR ill_lock OR 1377 * ill_g_lock ill_g_lock 1378 * ipif_ill ipsq + down ipif write once 1379 * ipif_id ipsq + down ipif write once 1380 * ipif_mtu ipsq 1381 * ipif_v6lcl_addr ipsq + down ipif up ipif 1382 * ipif_v6src_addr ipsq + down ipif up ipif 1383 * ipif_v6subnet ipsq + down ipif up ipif 1384 * ipif_v6net_mask ipsq + down ipif up ipif 1385 * 1386 * ipif_v6brd_addr 1387 * ipif_v6pp_dst_addr 1388 * ipif_flags ill_lock ill_lock 1389 * ipif_metric 1390 * ipif_ire_type ipsq + down ill up ill 1391 * 1392 * ipif_arp_del_mp ipsq ipsq 1393 * ipif_saved_ire_mp ipif_saved_ire_lock ipif_saved_ire_lock 1394 * ipif_igmp_rpt ipsq ipsq 1395 * 1396 * ipif_fo_pkt_count Approx 1397 * ipif_ib_pkt_count Approx 1398 * ipif_ob_pkt_count Approx 1399 * 1400 * bit fields ill_lock ill_lock 1401 * 1402 * ipif_orig_ifindex ipsq None 1403 * ipif_orig_ipifid ipsq None 1404 * ipif_seqid ipsq Write once 1405 * 1406 * ipif_state_flags ill_lock ill_lock 1407 * ipif_refcnt ill_lock ill_lock 1408 * ipif_cnt_ire ill_lock ill_lock 1409 * ipif_cnt_ilm ill_lock ill_lock 1410 * ipif_saved_ire_cnt 1411 */ 1412 1413 #define IP_TR_HASH(tid) ((((uintptr_t)tid) >> 6) & (IP_TR_HASH_MAX - 1)) 1414 1415 #ifdef DEBUG 1416 #define IPIF_TRACE_REF(ipif) ipif_trace_ref(ipif) 1417 #define ILL_TRACE_REF(ill) ill_trace_ref(ill) 1418 #define IPIF_UNTRACE_REF(ipif) ipif_untrace_ref(ipif) 1419 #define ILL_UNTRACE_REF(ill) ill_untrace_ref(ill) 1420 #else 1421 #define IPIF_TRACE_REF(ipif) 1422 #define ILL_TRACE_REF(ill) 1423 #define IPIF_UNTRACE_REF(ipif) 1424 #define ILL_UNTRACE_REF(ill) 1425 #endif 1426 1427 /* IPv4 compatability macros */ 1428 #define ipif_lcl_addr V4_PART_OF_V6(ipif_v6lcl_addr) 1429 #define ipif_src_addr V4_PART_OF_V6(ipif_v6src_addr) 1430 #define ipif_subnet V4_PART_OF_V6(ipif_v6subnet) 1431 #define ipif_net_mask V4_PART_OF_V6(ipif_v6net_mask) 1432 #define ipif_brd_addr V4_PART_OF_V6(ipif_v6brd_addr) 1433 #define ipif_pp_dst_addr V4_PART_OF_V6(ipif_v6pp_dst_addr) 1434 1435 /* Macros for easy backreferences to the ill. */ 1436 #define ipif_wq ipif_ill->ill_wq 1437 #define ipif_rq ipif_ill->ill_rq 1438 #define ipif_net_type ipif_ill->ill_net_type 1439 #define ipif_ipif_up_count ipif_ill->ill_ipif_up_count 1440 #define ipif_type ipif_ill->ill_type 1441 #define ipif_isv6 ipif_ill->ill_isv6 1442 1443 #define SIOCLIFADDR_NDX 112 /* ndx of SIOCLIFADDR in the ndx ioctl table */ 1444 1445 /* 1446 * mode value for ip_ioctl_finish for finishing an ioctl 1447 */ 1448 #define CONN_CLOSE 1 /* No mi_copy */ 1449 #define COPYOUT 2 /* do an mi_copyout if needed */ 1450 #define NO_COPYOUT 3 /* do an mi_copy_done */ 1451 #define IPI2MODE(ipi) ((ipi)->ipi_flags & IPI_GET_CMD ? COPYOUT : NO_COPYOUT) 1452 1453 /* 1454 * The IP-MT design revolves around the serialization object ipsq_t. 1455 * It is associated with an IPMP group. If IPMP is not enabled, there is 1456 * 1 ipsq_t per phyint. Eg. an ipsq_t would cover both hme0's IPv4 stream 1457 * 1458 * ipsq_lock protects 1459 * ipsq_reentry_cnt, ipsq_writer, ipsq_xopq_mphead, ipsq_xopq_mptail, 1460 * ipsq_mphead, ipsq_mptail, ipsq_split 1461 * 1462 * ipsq_pending_ipif, ipsq_current_ipif, ipsq_pending_mp, ipsq_flags, 1463 * ipsq_waitfor 1464 * 1465 * The fields in the last line above below are set mostly by a writer thread 1466 * But there is an exception in the last call to ipif_ill_refrele_tail which 1467 * could also race with a conn close which could be cleaning up the 1468 * fields. So we choose to protect using ipsq_lock instead of depending on 1469 * the property of the writer. 1470 * ill_g_lock protects 1471 * ipsq_refs, ipsq_phyint_list 1472 */ 1473 typedef struct ipsq_s { 1474 kmutex_t ipsq_lock; 1475 int ipsq_reentry_cnt; 1476 kthread_t *ipsq_writer; /* current owner (thread id) */ 1477 int ipsq_flags; 1478 mblk_t *ipsq_xopq_mphead; /* list of excl ops mostly ioctls */ 1479 mblk_t *ipsq_xopq_mptail; 1480 mblk_t *ipsq_mphead; /* msgs on ipsq linked thru b_next */ 1481 mblk_t *ipsq_mptail; /* msgs on ipsq linked thru b_next */ 1482 int ipsq_current_ioctl; /* current ioctl, or 0 if no ioctl */ 1483 ipif_t *ipsq_current_ipif; /* ipif associated with current op */ 1484 ipif_t *ipsq_pending_ipif; /* ipif associated w. ipsq_pending_mp */ 1485 mblk_t *ipsq_pending_mp; /* current ioctl mp while waiting for */ 1486 /* response from another module */ 1487 struct ipsq_s *ipsq_next; /* list of all syncq's (ipsq_g_list) */ 1488 uint_t ipsq_refs; /* Number of phyints on this ipsq */ 1489 struct phyint *ipsq_phyint_list; /* List of phyints on this ipsq */ 1490 boolean_t ipsq_split; /* ipsq may need to be split */ 1491 int ipsq_waitfor; /* Values encoded below */ 1492 char ipsq_name[LIFNAMSIZ+1]; /* same as phyint_groupname */ 1493 ip_stack_t *ipsq_ipst; /* Does not have a netstack_hold */ 1494 1495 #ifdef DEBUG 1496 int ipsq_depth; /* debugging aid */ 1497 #define IPSQ_STACK_DEPTH 15 1498 pc_t ipsq_stack[IPSQ_STACK_DEPTH]; /* debugging aid */ 1499 #endif 1500 } ipsq_t; 1501 1502 /* ipsq_flags */ 1503 #define IPSQ_GROUP 0x1 /* This ipsq belongs to an IPMP group */ 1504 1505 /* 1506 * ipsq_waitfor: 1507 * 1508 * IPIF_DOWN 1 ipif_down waiting for refcnts to drop 1509 * ILL_DOWN 2 ill_down waiting for refcnts to drop 1510 * IPIF_FREE 3 ipif_free waiting for refcnts to drop 1511 * ILL_FREE 4 ill unplumb waiting for refcnts to drop 1512 * ILL_MOVE_OK 5 failover waiting for refcnts to drop 1513 */ 1514 1515 enum { IPIF_DOWN = 1, ILL_DOWN, IPIF_FREE, ILL_FREE, ILL_MOVE_OK }; 1516 1517 /* Flags passed to ipsq_try_enter */ 1518 #define CUR_OP 0 /* Current ioctl continuing again */ 1519 #define NEW_OP 1 /* New ioctl starting afresh */ 1520 1521 /* 1522 * phyint represents state that is common to both IPv4 and IPv6 interfaces. 1523 * There is a separate ill_t representing IPv4 and IPv6 which has a 1524 * backpointer to the phyint structure for acessing common state. 1525 * 1526 * NOTE : It just stores the group name as there is only one name for 1527 * IPv4 and IPv6 i.e it is a underlying link property. Actually 1528 * IPv4 and IPv6 ill are grouped together when their phyints have 1529 * the same name. 1530 */ 1531 typedef struct phyint { 1532 struct ill_s *phyint_illv4; 1533 struct ill_s *phyint_illv6; 1534 uint_t phyint_ifindex; /* SIOCLSLIFINDEX */ 1535 char *phyint_groupname; /* SIOCSLIFGROUPNAME */ 1536 uint_t phyint_groupname_len; 1537 uint64_t phyint_flags; 1538 avl_node_t phyint_avl_by_index; /* avl tree by index */ 1539 avl_node_t phyint_avl_by_name; /* avl tree by name */ 1540 kmutex_t phyint_lock; 1541 struct ipsq_s *phyint_ipsq; /* back pointer to ipsq */ 1542 struct phyint *phyint_ipsq_next; /* phyint list on this ipsq */ 1543 /* Once Clearview IPMP is added the follow two fields can be removed */ 1544 uint_t phyint_group_ifindex; /* index assigned to group */ 1545 uint_t phyint_hook_ifindex; /* index used with neti/hook */ 1546 } phyint_t; 1547 1548 #define CACHE_ALIGN_SIZE 64 1549 1550 #define CACHE_ALIGN(align_struct) P2ROUNDUP(sizeof (struct align_struct),\ 1551 CACHE_ALIGN_SIZE) 1552 struct _phyint_list_s_ { 1553 avl_tree_t phyint_list_avl_by_index; /* avl tree by index */ 1554 avl_tree_t phyint_list_avl_by_name; /* avl tree by name */ 1555 }; 1556 1557 typedef union phyint_list_u { 1558 struct _phyint_list_s_ phyint_list_s; 1559 char phyint_list_filler[CACHE_ALIGN(_phyint_list_s_)]; 1560 } phyint_list_t; 1561 1562 #define phyint_list_avl_by_index phyint_list_s.phyint_list_avl_by_index 1563 #define phyint_list_avl_by_name phyint_list_s.phyint_list_avl_by_name 1564 /* 1565 * ILL groups. We group ills, 1566 * 1567 * - if the ills have the same group name. (New way) 1568 * 1569 * ill_group locking notes: 1570 * 1571 * illgrp_lock protects ill_grp_ill_schednext. 1572 * 1573 * ill_g_lock protects ill_grp_next, illgrp_ill, illgrp_ill_count. 1574 * Holding ill_g_lock freezes the memberships of ills in IPMP groups. 1575 * It also freezes the global list of ills and all ipifs in all ills. 1576 * 1577 * To remove an ipif from the linked list of ipifs of that ill ipif_free_tail 1578 * holds both ill_g_lock, and ill_lock. Similarly to remove an ill from the 1579 * global list of ills, ill_glist_delete() holds ill_g_lock as writer. 1580 * This simplifies things for ipif_select_source, illgrp_scheduler etc. 1581 * that need to walk the members of an illgrp. They just hold ill_g_lock 1582 * as reader to do the walk. 1583 * 1584 */ 1585 typedef struct ill_group { 1586 kmutex_t illgrp_lock; 1587 struct ill_group *illgrp_next; /* Next ill_group */ 1588 struct ill_s *illgrp_ill_schednext; /* Next ill to be scheduled */ 1589 struct ill_s *illgrp_ill; /* First ill in the group */ 1590 int illgrp_ill_count; 1591 } ill_group_t; 1592 1593 /* 1594 * Fragmentation hash bucket 1595 */ 1596 typedef struct ipfb_s { 1597 struct ipf_s *ipfb_ipf; /* List of ... */ 1598 size_t ipfb_count; /* Count of bytes used by frag(s) */ 1599 kmutex_t ipfb_lock; /* Protect all ipf in list */ 1600 uint_t ipfb_frag_pkts; /* num of distinct fragmented pkts */ 1601 } ipfb_t; 1602 1603 /* 1604 * IRE bucket structure. Usually there is an array of such structures, 1605 * each pointing to a linked list of ires. irb_refcnt counts the number 1606 * of walkers of a given hash bucket. Usually the reference count is 1607 * bumped up if the walker wants no IRES to be DELETED while walking the 1608 * list. Bumping up does not PREVENT ADDITION. This allows walking a given 1609 * hash bucket without stumbling up on a free pointer. 1610 * 1611 * irb_t structures in ip_ftable are dynamically allocated and freed. 1612 * In order to identify the irb_t structures that can be safely kmem_free'd 1613 * we need to ensure that 1614 * - the irb_refcnt is quiescent, indicating no other walkers, 1615 * - no other threads or ire's are holding references to the irb, 1616 * i.e., irb_nire == 0, 1617 * - there are no active ire's in the bucket, i.e., irb_ire_cnt == 0 1618 */ 1619 typedef struct irb { 1620 struct ire_s *irb_ire; /* First ire in this bucket */ 1621 /* Should be first in this struct */ 1622 krwlock_t irb_lock; /* Protect this bucket */ 1623 uint_t irb_refcnt; /* Protected by irb_lock */ 1624 uchar_t irb_marks; /* CONDEMNED ires in this bucket ? */ 1625 #define IRB_MARK_CONDEMNED 0x0001 1626 #define IRB_MARK_FTABLE 0x0002 1627 uint_t irb_ire_cnt; /* Num of active IRE in this bucket */ 1628 uint_t irb_tmp_ire_cnt; /* Num of temporary IRE */ 1629 struct ire_s *irb_rr_origin; /* origin for round-robin */ 1630 int irb_nire; /* Num of ftable ire's that ref irb */ 1631 ip_stack_t *irb_ipst; /* Does not have a netstack_hold */ 1632 } irb_t; 1633 1634 #define IRB2RT(irb) (rt_t *)((caddr_t)(irb) - offsetof(rt_t, rt_irb)) 1635 1636 /* The following are return values of ip_xmit_v4() */ 1637 typedef enum { 1638 SEND_PASSED = 0, /* sent packet out on wire */ 1639 SEND_FAILED, /* sending of packet failed */ 1640 LOOKUP_IN_PROGRESS, /* ire cache found, ARP resolution in progress */ 1641 LLHDR_RESLV_FAILED /* macaddr resl of onlink dst or nexthop failed */ 1642 } ipxmit_state_t; 1643 1644 #define IP_V4_G_HEAD 0 1645 #define IP_V6_G_HEAD 1 1646 1647 #define MAX_G_HEADS 2 1648 1649 /* 1650 * unpadded ill_if structure 1651 */ 1652 struct _ill_if_s_ { 1653 union ill_if_u *illif_next; 1654 union ill_if_u *illif_prev; 1655 avl_tree_t illif_avl_by_ppa; /* AVL tree sorted on ppa */ 1656 vmem_t *illif_ppa_arena; /* ppa index space */ 1657 uint16_t illif_mcast_v1; /* hints for */ 1658 uint16_t illif_mcast_v2; /* [igmp|mld]_slowtimo */ 1659 int illif_name_len; /* name length */ 1660 char illif_name[LIFNAMSIZ]; /* name of interface type */ 1661 }; 1662 1663 /* cache aligned ill_if structure */ 1664 typedef union ill_if_u { 1665 struct _ill_if_s_ ill_if_s; 1666 char illif_filler[CACHE_ALIGN(_ill_if_s_)]; 1667 } ill_if_t; 1668 1669 #define illif_next ill_if_s.illif_next 1670 #define illif_prev ill_if_s.illif_prev 1671 #define illif_avl_by_ppa ill_if_s.illif_avl_by_ppa 1672 #define illif_ppa_arena ill_if_s.illif_ppa_arena 1673 #define illif_mcast_v1 ill_if_s.illif_mcast_v1 1674 #define illif_mcast_v2 ill_if_s.illif_mcast_v2 1675 #define illif_name ill_if_s.illif_name 1676 #define illif_name_len ill_if_s.illif_name_len 1677 1678 typedef struct ill_walk_context_s { 1679 int ctx_current_list; /* current list being searched */ 1680 int ctx_last_list; /* last list to search */ 1681 } ill_walk_context_t; 1682 1683 /* 1684 * ill_g_heads structure, one for IPV4 and one for IPV6 1685 */ 1686 struct _ill_g_head_s_ { 1687 ill_if_t *ill_g_list_head; 1688 ill_if_t *ill_g_list_tail; 1689 }; 1690 1691 typedef union ill_g_head_u { 1692 struct _ill_g_head_s_ ill_g_head_s; 1693 char ill_g_head_filler[CACHE_ALIGN(_ill_g_head_s_)]; 1694 } ill_g_head_t; 1695 1696 #define ill_g_list_head ill_g_head_s.ill_g_list_head 1697 #define ill_g_list_tail ill_g_head_s.ill_g_list_tail 1698 1699 #define IP_V4_ILL_G_LIST(ipst) \ 1700 (ipst)->ips_ill_g_heads[IP_V4_G_HEAD].ill_g_list_head 1701 #define IP_V6_ILL_G_LIST(ipst) \ 1702 (ipst)->ips_ill_g_heads[IP_V6_G_HEAD].ill_g_list_head 1703 #define IP_VX_ILL_G_LIST(i, ipst) \ 1704 (ipst)->ips_ill_g_heads[i].ill_g_list_head 1705 1706 #define ILL_START_WALK_V4(ctx_ptr, ipst) \ 1707 ill_first(IP_V4_G_HEAD, IP_V4_G_HEAD, ctx_ptr, ipst) 1708 #define ILL_START_WALK_V6(ctx_ptr, ipst) \ 1709 ill_first(IP_V6_G_HEAD, IP_V6_G_HEAD, ctx_ptr, ipst) 1710 #define ILL_START_WALK_ALL(ctx_ptr, ipst) \ 1711 ill_first(MAX_G_HEADS, MAX_G_HEADS, ctx_ptr, ipst) 1712 1713 /* 1714 * Capabilities, possible flags for ill_capabilities. 1715 */ 1716 1717 #define ILL_CAPAB_AH 0x01 /* IPsec AH acceleration */ 1718 #define ILL_CAPAB_ESP 0x02 /* IPsec ESP acceleration */ 1719 #define ILL_CAPAB_MDT 0x04 /* Multidata Transmit */ 1720 #define ILL_CAPAB_HCKSUM 0x08 /* Hardware checksumming */ 1721 #define ILL_CAPAB_ZEROCOPY 0x10 /* Zero-copy */ 1722 #define ILL_CAPAB_POLL 0x20 /* Polling Toggle */ 1723 #define ILL_CAPAB_SOFT_RING 0x40 /* Soft_Ring capability */ 1724 #define ILL_CAPAB_LSO 0x80 /* Large Segment Offload */ 1725 1726 /* 1727 * Per-ill Multidata Transmit capabilities. 1728 */ 1729 typedef struct ill_mdt_capab_s ill_mdt_capab_t; 1730 1731 /* 1732 * Per-ill IPsec capabilities. 1733 */ 1734 typedef struct ill_ipsec_capab_s ill_ipsec_capab_t; 1735 1736 /* 1737 * Per-ill Hardware Checksumming capbilities. 1738 */ 1739 typedef struct ill_hcksum_capab_s ill_hcksum_capab_t; 1740 1741 /* 1742 * Per-ill Zero-copy capabilities. 1743 */ 1744 typedef struct ill_zerocopy_capab_s ill_zerocopy_capab_t; 1745 1746 /* 1747 * Per-ill Polling/soft ring capbilities. 1748 */ 1749 typedef struct ill_dls_capab_s ill_dls_capab_t; 1750 1751 /* 1752 * Per-ill polling resource map. 1753 */ 1754 typedef struct ill_rx_ring ill_rx_ring_t; 1755 1756 /* 1757 * Per-ill Large Segment Offload capabilities. 1758 */ 1759 typedef struct ill_lso_capab_s ill_lso_capab_t; 1760 1761 /* The following are ill_state_flags */ 1762 #define ILL_LL_SUBNET_PENDING 0x01 /* Waiting for DL_INFO_ACK from drv */ 1763 #define ILL_CONDEMNED 0x02 /* No more new ref's to the ILL */ 1764 #define ILL_CHANGING 0x04 /* ILL not globally visible */ 1765 #define ILL_DL_UNBIND_IN_PROGRESS 0x08 /* UNBIND_REQ is sent */ 1766 #define ILL_SOFT_RING_ASSIGN 0x10 /* Makeing soft ring assigment */ 1767 1768 /* Is this an ILL whose source address is used by other ILL's ? */ 1769 #define IS_USESRC_ILL(ill) \ 1770 (((ill)->ill_usesrc_ifindex == 0) && \ 1771 ((ill)->ill_usesrc_grp_next != NULL)) 1772 1773 /* Is this a client/consumer of the usesrc ILL ? */ 1774 #define IS_USESRC_CLI_ILL(ill) \ 1775 (((ill)->ill_usesrc_ifindex != 0) && \ 1776 ((ill)->ill_usesrc_grp_next != NULL)) 1777 1778 /* Is this an virtual network interface (vni) ILL ? */ 1779 #define IS_VNI(ill) \ 1780 (((ill) != NULL) && \ 1781 (((ill)->ill_phyint->phyint_flags & (PHYI_LOOPBACK|PHYI_VIRTUAL)) == \ 1782 PHYI_VIRTUAL)) 1783 1784 /* Is this a loopback ILL? */ 1785 #define IS_LOOPBACK(ill) \ 1786 ((ill)->ill_phyint->phyint_flags & PHYI_LOOPBACK) 1787 1788 /* 1789 * IP Lower level Structure. 1790 * Instance data structure in ip_open when there is a device below us. 1791 */ 1792 typedef struct ill_s { 1793 ill_if_t *ill_ifptr; /* pointer to interface type */ 1794 queue_t *ill_rq; /* Read queue. */ 1795 queue_t *ill_wq; /* Write queue. */ 1796 1797 int ill_error; /* Error value sent up by device. */ 1798 1799 ipif_t *ill_ipif; /* Interface chain for this ILL. */ 1800 1801 uint_t ill_ipif_up_count; /* Number of IPIFs currently up. */ 1802 uint_t ill_max_frag; /* Max IDU from DLPI. */ 1803 char *ill_name; /* Our name. */ 1804 uint_t ill_ipif_dup_count; /* Number of duplicate addresses. */ 1805 uint_t ill_name_length; /* Name length, incl. terminator. */ 1806 char *ill_ndd_name; /* Name + ":ip?_forwarding" for NDD. */ 1807 uint_t ill_net_type; /* IRE_IF_RESOLVER/IRE_IF_NORESOLVER. */ 1808 /* 1809 * Physical Point of Attachment num. If DLPI style 1 provider 1810 * then this is derived from the devname. 1811 */ 1812 uint_t ill_ppa; 1813 t_uscalar_t ill_sap; 1814 t_scalar_t ill_sap_length; /* Including sign (for position) */ 1815 uint_t ill_phys_addr_length; /* Excluding the sap. */ 1816 uint_t ill_bcast_addr_length; /* Only set when the DL provider */ 1817 /* supports broadcast. */ 1818 t_uscalar_t ill_mactype; 1819 uint8_t *ill_frag_ptr; /* Reassembly state. */ 1820 timeout_id_t ill_frag_timer_id; /* timeout id for the frag timer */ 1821 ipfb_t *ill_frag_hash_tbl; /* Fragment hash list head. */ 1822 ipif_t *ill_pending_ipif; /* IPIF waiting for DL operation. */ 1823 1824 ilm_t *ill_ilm; /* Multicast mebership for lower ill */ 1825 uint_t ill_global_timer; /* for IGMPv3/MLDv2 general queries */ 1826 int ill_mcast_type; /* type of router which is querier */ 1827 /* on this interface */ 1828 uint16_t ill_mcast_v1_time; /* # slow timeouts since last v1 qry */ 1829 uint16_t ill_mcast_v2_time; /* # slow timeouts since last v2 qry */ 1830 uint8_t ill_mcast_v1_tset; /* 1 => timer is set; 0 => not set */ 1831 uint8_t ill_mcast_v2_tset; /* 1 => timer is set; 0 => not set */ 1832 1833 uint8_t ill_mcast_rv; /* IGMPv3/MLDv2 robustness variable */ 1834 int ill_mcast_qi; /* IGMPv3/MLDv2 query interval var */ 1835 1836 mblk_t *ill_pending_mp; /* IOCTL/DLPI awaiting completion. */ 1837 /* 1838 * All non-NULL cells between 'ill_first_mp_to_free' and 1839 * 'ill_last_mp_to_free' are freed in ill_delete. 1840 */ 1841 #define ill_first_mp_to_free ill_bcast_mp 1842 mblk_t *ill_bcast_mp; /* DLPI header for broadcasts. */ 1843 mblk_t *ill_resolver_mp; /* Resolver template. */ 1844 mblk_t *ill_unbind_mp; /* unbind mp from ill_dl_up() */ 1845 mblk_t *ill_dlpi_deferred; /* b_next chain of control messages */ 1846 mblk_t *ill_phys_addr_mp; /* mblk which holds ill_phys_addr */ 1847 #define ill_last_mp_to_free ill_phys_addr_mp 1848 1849 cred_t *ill_credp; /* opener's credentials */ 1850 uint8_t *ill_phys_addr; /* ill_phys_addr_mp->b_rptr + off */ 1851 1852 uint_t ill_state_flags; /* see ILL_* flags above */ 1853 1854 /* Following bit fields protected by ipsq_t */ 1855 uint_t 1856 ill_needs_attach : 1, 1857 ill_reserved : 1, 1858 ill_isv6 : 1, 1859 ill_dlpi_style_set : 1, 1860 1861 ill_ifname_pending : 1, 1862 ill_move_in_progress : 1, /* FAILOVER/FAILBACK in progress */ 1863 ill_join_allmulti : 1, 1864 ill_logical_down : 1, 1865 1866 ill_is_6to4tun : 1, /* Interface is a 6to4 tunnel */ 1867 ill_promisc_on_phys : 1, /* phys interface in promisc mode */ 1868 ill_dl_up : 1, 1869 ill_up_ipifs : 1, 1870 1871 ill_note_link : 1, /* supports link-up notification */ 1872 ill_capab_reneg : 1, /* capability renegotiation to be done */ 1873 ill_pad_to_bit_31 : 18; 1874 1875 /* Following bit fields protected by ill_lock */ 1876 uint_t 1877 ill_fragtimer_executing : 1, 1878 ill_fragtimer_needrestart : 1, 1879 ill_ilm_cleanup_reqd : 1, 1880 ill_arp_closing : 1, 1881 1882 ill_arp_bringup_pending : 1, 1883 ill_mtu_userspecified : 1, /* SIOCSLIFLNKINFO has set the mtu */ 1884 ill_arp_extend : 1, /* ARP has DAD extensions */ 1885 ill_pad_bit_31 : 25; 1886 1887 /* 1888 * Used in SIOCSIFMUXID and SIOCGIFMUXID for 'ifconfig unplumb'. 1889 */ 1890 int ill_arp_muxid; /* muxid returned from plink for arp */ 1891 int ill_ip_muxid; /* muxid returned from plink for ip */ 1892 1893 /* 1894 * NIC event information attached, to be used by nic event hooks. 1895 */ 1896 hook_nic_event_t *ill_nic_event_info; 1897 1898 /* 1899 * Used for IP frag reassembly throttling on a per ILL basis. 1900 * 1901 * Note: frag_count is approximate, its added to and subtracted from 1902 * without any locking, so simultaneous load/modify/stores can 1903 * collide, also ill_frag_purge() recalculates its value by 1904 * summing all the ipfb_count's without locking out updates 1905 * to the ipfb's. 1906 */ 1907 uint_t ill_ipf_gen; /* Generation of next fragment queue */ 1908 uint_t ill_frag_count; /* Approx count of all mblk bytes */ 1909 uint_t ill_frag_free_num_pkts; /* num of fragmented packets to free */ 1910 clock_t ill_last_frag_clean_time; /* time when frag's were pruned */ 1911 int ill_type; /* From <net/if_types.h> */ 1912 uint_t ill_dlpi_multicast_state; /* See below IDS_* */ 1913 uint_t ill_dlpi_fastpath_state; /* See below IDS_* */ 1914 1915 /* 1916 * Capabilities related fields. 1917 */ 1918 uint_t ill_dlpi_capab_state; /* State of capability query, IDS_* */ 1919 uint64_t ill_capabilities; /* Enabled capabilities, ILL_CAPAB_* */ 1920 ill_mdt_capab_t *ill_mdt_capab; /* Multidata Transmit capabilities */ 1921 ill_ipsec_capab_t *ill_ipsec_capab_ah; /* IPsec AH capabilities */ 1922 ill_ipsec_capab_t *ill_ipsec_capab_esp; /* IPsec ESP capabilities */ 1923 ill_hcksum_capab_t *ill_hcksum_capab; /* H/W cksumming capabilities */ 1924 ill_zerocopy_capab_t *ill_zerocopy_capab; /* Zero-copy capabilities */ 1925 ill_dls_capab_t *ill_dls_capab; /* Polling, soft ring capabilities */ 1926 ill_lso_capab_t *ill_lso_capab; /* Large Segment Offload capabilities */ 1927 1928 /* 1929 * New fields for IPv6 1930 */ 1931 uint8_t ill_max_hops; /* Maximum hops for any logical interface */ 1932 uint_t ill_max_mtu; /* Maximum MTU for any logical interface */ 1933 uint32_t ill_reachable_time; /* Value for ND algorithm in msec */ 1934 uint32_t ill_reachable_retrans_time; /* Value for ND algorithm msec */ 1935 uint_t ill_max_buf; /* Max # of req to buffer for ND */ 1936 in6_addr_t ill_token; 1937 uint_t ill_token_length; 1938 uint32_t ill_xmit_count; /* ndp max multicast xmits */ 1939 mib2_ipIfStatsEntry_t *ill_ip_mib; /* ver indep. interface mib */ 1940 mib2_ipv6IfIcmpEntry_t *ill_icmp6_mib; /* Per interface mib */ 1941 /* 1942 * Following two mblks are allocated common to all 1943 * the ipifs when the first interface is coming up. 1944 * It is sent up to arp when the last ipif is coming 1945 * down. 1946 */ 1947 mblk_t *ill_arp_down_mp; 1948 mblk_t *ill_arp_del_mapping_mp; 1949 /* 1950 * Used for implementing IFF_NOARP. As IFF_NOARP is used 1951 * to turn off for all the logicals, it is here instead 1952 * of the ipif. 1953 */ 1954 mblk_t *ill_arp_on_mp; 1955 /* Peer ill of an IPMP move operation */ 1956 struct ill_s *ill_move_peer; 1957 1958 phyint_t *ill_phyint; 1959 uint64_t ill_flags; 1960 ill_group_t *ill_group; 1961 struct ill_s *ill_group_next; 1962 1963 kmutex_t ill_lock; /* Please see table below */ 1964 /* 1965 * The ill_nd_lla* fields handle the link layer address option 1966 * from neighbor discovery. This is used for external IPv6 1967 * address resolution. 1968 */ 1969 mblk_t *ill_nd_lla_mp; /* mblk which holds ill_nd_lla */ 1970 uint8_t *ill_nd_lla; /* Link Layer Address */ 1971 uint_t ill_nd_lla_len; /* Link Layer Address length */ 1972 /* 1973 * We now have 3 phys_addr_req's sent down. This field keeps track 1974 * of which one is pending. 1975 */ 1976 t_uscalar_t ill_phys_addr_pend; /* which dl_phys_addr_req pending */ 1977 /* 1978 * Used to save errors that occur during plumbing 1979 */ 1980 uint_t ill_ifname_pending_err; 1981 avl_node_t ill_avl_byppa; /* avl node based on ppa */ 1982 void *ill_fastpath_list; /* both ire and nce hang off this */ 1983 uint_t ill_refcnt; /* active refcnt by threads */ 1984 uint_t ill_cnt_ire; /* ires associated with this ill */ 1985 kcondvar_t ill_cv; 1986 uint_t ill_ilm_walker_cnt; /* snmp ilm walkers */ 1987 uint_t ill_cnt_nce; /* nces associated with this ill */ 1988 uint_t ill_waiters; /* threads waiting in ipsq_enter */ 1989 /* 1990 * Contains the upper read queue pointer of the module immediately 1991 * beneath IP. This field allows IP to validate sub-capability 1992 * acknowledgments coming up from downstream. 1993 */ 1994 queue_t *ill_lmod_rq; /* read queue pointer of module below */ 1995 uint_t ill_lmod_cnt; /* number of modules beneath IP */ 1996 ip_m_t *ill_media; /* media specific params/functions */ 1997 t_uscalar_t ill_dlpi_pending; /* Last DLPI primitive issued */ 1998 uint_t ill_usesrc_ifindex; /* use src addr from this ILL */ 1999 struct ill_s *ill_usesrc_grp_next; /* Next ILL in the usesrc group */ 2000 boolean_t ill_trace_disable; /* True when alloc fails */ 2001 zoneid_t ill_zoneid; 2002 ip_stack_t *ill_ipst; /* Corresponds to a netstack_hold */ 2003 uint32_t ill_dhcpinit; /* IP_DHCPINIT_IFs for ill */ 2004 uint_t ill_cnt_ilm; 2005 } ill_t; 2006 2007 /* 2008 * ILL_FREE_OK() means that there are no incoming references 2009 * to the ill. 2010 */ 2011 #define ILL_FREE_OK(ill) \ 2012 ((ill)->ill_cnt_ire == 0 && (ill)->ill_cnt_ilm == 0 && \ 2013 (ill)->ill_cnt_nce == 0) 2014 2015 /* 2016 * An ipif/ill can be marked down only when the ire and nce references 2017 * to that ipif/ill goes to zero. ILL_DOWN_OK() is a necessary condition 2018 * quiescence checks. See comments above IPIF_DOWN_OK for details 2019 * on why ires and nces are selectively considered for this macro. 2020 */ 2021 #define ILL_DOWN_OK(ill) (ill->ill_cnt_ire == 0 && ill->ill_cnt_nce == 0) 2022 2023 /* 2024 * The following table lists the protection levels of the various members 2025 * of the ill_t. Same notation as that used for ipif_t above is used. 2026 * 2027 * Write Read 2028 * 2029 * ill_ifptr ill_g_lock + s Write once 2030 * ill_rq ipsq Write once 2031 * ill_wq ipsq Write once 2032 * 2033 * ill_error ipsq None 2034 * ill_ipif ill_g_lock + ipsq ill_g_lock OR ipsq 2035 * ill_ipif_up_count ill_lock + ipsq ill_lock OR ipsq 2036 * ill_max_frag ipsq Write once 2037 * 2038 * ill_name ill_g_lock + ipsq Write once 2039 * ill_name_length ill_g_lock + ipsq Write once 2040 * ill_ndd_name ipsq Write once 2041 * ill_net_type ipsq Write once 2042 * ill_ppa ill_g_lock + ipsq Write once 2043 * ill_sap ipsq + down ill Write once 2044 * ill_sap_length ipsq + down ill Write once 2045 * ill_phys_addr_length ipsq + down ill Write once 2046 * 2047 * ill_bcast_addr_length ipsq ipsq 2048 * ill_mactype ipsq ipsq 2049 * ill_frag_ptr ipsq ipsq 2050 * 2051 * ill_frag_timer_id ill_lock ill_lock 2052 * ill_frag_hash_tbl ipsq up ill 2053 * ill_ilm ipsq + ill_lock ill_lock 2054 * ill_mcast_type ill_lock ill_lock 2055 * ill_mcast_v1_time ill_lock ill_lock 2056 * ill_mcast_v2_time ill_lock ill_lock 2057 * ill_mcast_v1_tset ill_lock ill_lock 2058 * ill_mcast_v2_tset ill_lock ill_lock 2059 * ill_mcast_rv ill_lock ill_lock 2060 * ill_mcast_qi ill_lock ill_lock 2061 * ill_pending_mp ill_lock ill_lock 2062 * 2063 * ill_bcast_mp ipsq ipsq 2064 * ill_resolver_mp ipsq only when ill is up 2065 * ill_down_mp ipsq ipsq 2066 * ill_dlpi_deferred ill_lock ill_lock 2067 * ill_dlpi_pending ill_lock ill_lock 2068 * ill_phys_addr_mp ipsq + down ill only when ill is up 2069 * ill_phys_addr ipsq + down ill only when ill is up 2070 * 2071 * ill_state_flags ill_lock ill_lock 2072 * exclusive bit flags ipsq_t ipsq_t 2073 * shared bit flags ill_lock ill_lock 2074 * 2075 * ill_arp_muxid ipsq Not atomic 2076 * ill_ip_muxid ipsq Not atomic 2077 * 2078 * ill_ipf_gen Not atomic 2079 * ill_frag_count Approx. not protected 2080 * ill_type ipsq + down ill only when ill is up 2081 * ill_dlpi_multicast_state ill_lock ill_lock 2082 * ill_dlpi_fastpath_state ill_lock ill_lock 2083 * ill_max_hops ipsq Not atomic 2084 * 2085 * ill_max_mtu 2086 * 2087 * ill_reachable_time ipsq + ill_lock ill_lock 2088 * ill_reachable_retrans_time ipsq + ill_lock ill_lock 2089 * ill_max_buf ipsq + ill_lock ill_lock 2090 * 2091 * Next 2 fields need ill_lock because of the get ioctls. They should not 2092 * report partially updated results without executing in the ipsq. 2093 * ill_token ipsq + ill_lock ill_lock 2094 * ill_token_length ipsq + ill_lock ill_lock 2095 * ill_xmit_count ipsq + down ill write once 2096 * ill_ip6_mib ipsq + down ill only when ill is up 2097 * ill_icmp6_mib ipsq + down ill only when ill is up 2098 * ill_arp_down_mp ipsq ipsq 2099 * ill_arp_del_mapping_mp ipsq ipsq 2100 * ill_arp_on_mp ipsq ipsq 2101 * ill_move_peer ipsq ipsq 2102 * 2103 * ill_phyint ipsq, ill_g_lock, ill_lock Any of them 2104 * ill_flags ill_lock ill_lock 2105 * ill_group ipsq, ill_g_lock, ill_lock Any of them 2106 * ill_group_next ipsq, ill_g_lock, ill_lock Any of them 2107 * ill_nd_lla_mp ipsq + down ill only when ill is up 2108 * ill_nd_lla ipsq + down ill only when ill is up 2109 * ill_nd_lla_len ipsq + down ill only when ill is up 2110 * ill_phys_addr_pend ipsq + down ill only when ill is up 2111 * ill_ifname_pending_err ipsq ipsq 2112 * ill_avl_byppa ipsq, ill_g_lock write once 2113 * 2114 * ill_fastpath_list ill_lock ill_lock 2115 * ill_refcnt ill_lock ill_lock 2116 * ill_cnt_ire ill_lock ill_lock 2117 * ill_cv ill_lock ill_lock 2118 * ill_ilm_walker_cnt ill_lock ill_lock 2119 * ill_cnt_nce ill_lock ill_lock 2120 * ill_cnt_ilm ill_lock ill_lock 2121 * ill_trace ill_lock ill_lock 2122 * ill_usesrc_grp_next ill_g_usesrc_lock ill_g_usesrc_lock 2123 * ill_dhcpinit atomics atomics 2124 */ 2125 2126 /* 2127 * For ioctl restart mechanism see ip_reprocess_ioctl() 2128 */ 2129 struct ip_ioctl_cmd_s; 2130 2131 typedef int (*ifunc_t)(ipif_t *, struct sockaddr_in *, queue_t *, mblk_t *, 2132 struct ip_ioctl_cmd_s *, void *); 2133 2134 typedef struct ip_ioctl_cmd_s { 2135 int ipi_cmd; 2136 size_t ipi_copyin_size; 2137 uint_t ipi_flags; 2138 uint_t ipi_cmd_type; 2139 ifunc_t ipi_func; 2140 ifunc_t ipi_func_restart; 2141 } ip_ioctl_cmd_t; 2142 2143 /* 2144 * ipi_cmd_type: 2145 * 2146 * IF_CMD 1 old style ifreq cmd 2147 * LIF_CMD 2 new style lifreq cmd 2148 * TUN_CMD 3 tunnel related 2149 * ARP_CMD 4 arpreq cmd 2150 * XARP_CMD 5 xarpreq cmd 2151 * MSFILT_CMD 6 multicast source filter cmd 2152 * MISC_CMD 7 misc cmd (not a more specific one above) 2153 */ 2154 2155 enum { IF_CMD = 1, LIF_CMD, TUN_CMD, ARP_CMD, XARP_CMD, MSFILT_CMD, MISC_CMD }; 2156 2157 #define IPI_DONTCARE 0 /* For ioctl encoded values that don't matter */ 2158 2159 /* Flag values in ipi_flags */ 2160 #define IPI_PRIV 0x1 /* Root only command */ 2161 #define IPI_MODOK 0x2 /* Permitted on mod instance of IP */ 2162 #define IPI_WR 0x4 /* Need to grab writer access */ 2163 #define IPI_GET_CMD 0x8 /* branch to mi_copyout on success */ 2164 #define IPI_REPL 0x10 /* valid for replacement ipif created in MOVE */ 2165 #define IPI_NULL_BCONT 0x20 /* ioctl has not data and hence no b_cont */ 2166 #define IPI_PASS_DOWN 0x40 /* pass this ioctl down when a module only */ 2167 2168 extern ip_ioctl_cmd_t ip_ndx_ioctl_table[]; 2169 extern ip_ioctl_cmd_t ip_misc_ioctl_table[]; 2170 extern int ip_ndx_ioctl_count; 2171 extern int ip_misc_ioctl_count; 2172 2173 #define ILL_CLEAR_MOVE(ill) { \ 2174 ill_t *peer_ill; \ 2175 \ 2176 peer_ill = (ill)->ill_move_peer; \ 2177 ASSERT(peer_ill != NULL); \ 2178 (ill)->ill_move_in_progress = B_FALSE; \ 2179 peer_ill->ill_move_in_progress = B_FALSE; \ 2180 (ill)->ill_move_peer = NULL; \ 2181 peer_ill->ill_move_peer = NULL; \ 2182 } 2183 2184 /* Passed down by ARP to IP during I_PLINK/I_PUNLINK */ 2185 typedef struct ipmx_s { 2186 char ipmx_name[LIFNAMSIZ]; /* if name */ 2187 uint_t 2188 ipmx_arpdev_stream : 1, /* This is the arp stream */ 2189 ipmx_notused : 31; 2190 } ipmx_t; 2191 2192 /* 2193 * State for detecting if a driver supports certain features. 2194 * Support for DL_ENABMULTI_REQ uses ill_dlpi_multicast_state. 2195 * Support for DLPI M_DATA fastpath uses ill_dlpi_fastpath_state. 2196 * Support for DL_CAPABILITY_REQ uses ill_dlpi_capab_state. 2197 */ 2198 #define IDS_UNKNOWN 0 /* No DLPI request sent */ 2199 #define IDS_INPROGRESS 1 /* DLPI request sent */ 2200 #define IDS_OK 2 /* DLPI request completed successfully */ 2201 #define IDS_FAILED 3 /* DLPI request failed */ 2202 2203 /* Named Dispatch Parameter Management Structure */ 2204 typedef struct ipparam_s { 2205 uint_t ip_param_min; 2206 uint_t ip_param_max; 2207 uint_t ip_param_value; 2208 char *ip_param_name; 2209 } ipparam_t; 2210 2211 /* Extended NDP Management Structure */ 2212 typedef struct ipndp_s { 2213 ndgetf_t ip_ndp_getf; 2214 ndsetf_t ip_ndp_setf; 2215 caddr_t ip_ndp_data; 2216 char *ip_ndp_name; 2217 } ipndp_t; 2218 2219 /* 2220 * The kernel stores security attributes of all gateways in a database made 2221 * up of one or more tsol_gcdb_t elements. Each tsol_gcdb_t contains the 2222 * security-related credentials of the gateway. More than one gateways may 2223 * share entries in the database. 2224 * 2225 * The tsol_gc_t structure represents the gateway to credential association, 2226 * and refers to an entry in the database. One or more tsol_gc_t entities are 2227 * grouped together to form one or more tsol_gcgrp_t, each representing the 2228 * list of security attributes specific to the gateway. A gateway may be 2229 * associated with at most one credentials group. 2230 */ 2231 struct tsol_gcgrp_s; 2232 2233 extern uchar_t ip6opt_ls; /* TX IPv6 enabler */ 2234 2235 /* 2236 * Gateway security credential record. 2237 */ 2238 typedef struct tsol_gcdb_s { 2239 uint_t gcdb_refcnt; /* reference count */ 2240 struct rtsa_s gcdb_attr; /* security attributes */ 2241 #define gcdb_mask gcdb_attr.rtsa_mask 2242 #define gcdb_doi gcdb_attr.rtsa_doi 2243 #define gcdb_slrange gcdb_attr.rtsa_slrange 2244 } tsol_gcdb_t; 2245 2246 /* 2247 * Gateway to credential association. 2248 */ 2249 typedef struct tsol_gc_s { 2250 uint_t gc_refcnt; /* reference count */ 2251 struct tsol_gcgrp_s *gc_grp; /* pointer to group */ 2252 struct tsol_gc_s *gc_prev; /* previous in list */ 2253 struct tsol_gc_s *gc_next; /* next in list */ 2254 tsol_gcdb_t *gc_db; /* pointer to actual credentials */ 2255 } tsol_gc_t; 2256 2257 /* 2258 * Gateway credentials group address. 2259 */ 2260 typedef struct tsol_gcgrp_addr_s { 2261 int ga_af; /* address family */ 2262 in6_addr_t ga_addr; /* IPv4 mapped or IPv6 address */ 2263 } tsol_gcgrp_addr_t; 2264 2265 /* 2266 * Gateway credentials group. 2267 */ 2268 typedef struct tsol_gcgrp_s { 2269 uint_t gcgrp_refcnt; /* reference count */ 2270 krwlock_t gcgrp_rwlock; /* lock to protect following */ 2271 uint_t gcgrp_count; /* number of credentials */ 2272 tsol_gc_t *gcgrp_head; /* first credential in list */ 2273 tsol_gc_t *gcgrp_tail; /* last credential in list */ 2274 tsol_gcgrp_addr_t gcgrp_addr; /* next-hop gateway address */ 2275 } tsol_gcgrp_t; 2276 2277 extern kmutex_t gcgrp_lock; 2278 2279 #define GC_REFRELE(p) { \ 2280 ASSERT((p)->gc_grp != NULL); \ 2281 rw_enter(&(p)->gc_grp->gcgrp_rwlock, RW_WRITER); \ 2282 ASSERT((p)->gc_refcnt > 0); \ 2283 if (--((p)->gc_refcnt) == 0) \ 2284 gc_inactive(p); \ 2285 else \ 2286 rw_exit(&(p)->gc_grp->gcgrp_rwlock); \ 2287 } 2288 2289 #define GCGRP_REFHOLD(p) { \ 2290 mutex_enter(&gcgrp_lock); \ 2291 ++((p)->gcgrp_refcnt); \ 2292 ASSERT((p)->gcgrp_refcnt != 0); \ 2293 mutex_exit(&gcgrp_lock); \ 2294 } 2295 2296 #define GCGRP_REFRELE(p) { \ 2297 mutex_enter(&gcgrp_lock); \ 2298 ASSERT((p)->gcgrp_refcnt > 0); \ 2299 if (--((p)->gcgrp_refcnt) == 0) \ 2300 gcgrp_inactive(p); \ 2301 ASSERT(MUTEX_HELD(&gcgrp_lock)); \ 2302 mutex_exit(&gcgrp_lock); \ 2303 } 2304 2305 /* 2306 * IRE gateway security attributes structure, pointed to by tsol_ire_gw_secattr 2307 */ 2308 struct tsol_tnrhc; 2309 2310 typedef struct tsol_ire_gw_secattr_s { 2311 kmutex_t igsa_lock; /* lock to protect following */ 2312 struct tsol_tnrhc *igsa_rhc; /* host entry for gateway */ 2313 tsol_gc_t *igsa_gc; /* for prefix IREs */ 2314 tsol_gcgrp_t *igsa_gcgrp; /* for cache IREs */ 2315 } tsol_ire_gw_secattr_t; 2316 2317 /* 2318 * Following are the macros to increment/decrement the reference 2319 * count of the IREs and IRBs (ire bucket). 2320 * 2321 * 1) We bump up the reference count of an IRE to make sure that 2322 * it does not get deleted and freed while we are using it. 2323 * Typically all the lookup functions hold the bucket lock, 2324 * and look for the IRE. If it finds an IRE, it bumps up the 2325 * reference count before dropping the lock. Sometimes we *may* want 2326 * to bump up the reference count after we *looked* up i.e without 2327 * holding the bucket lock. So, the IRE_REFHOLD macro does not assert 2328 * on the bucket lock being held. Any thread trying to delete from 2329 * the hash bucket can still do so but cannot free the IRE if 2330 * ire_refcnt is not 0. 2331 * 2332 * 2) We bump up the reference count on the bucket where the IRE resides 2333 * (IRB), when we want to prevent the IREs getting deleted from a given 2334 * hash bucket. This makes life easier for ire_walk type functions which 2335 * wants to walk the IRE list, call a function, but needs to drop 2336 * the bucket lock to prevent recursive rw_enters. While the 2337 * lock is dropped, the list could be changed by other threads or 2338 * the same thread could end up deleting the ire or the ire pointed by 2339 * ire_next. IRE_REFHOLDing the ire or ire_next is not sufficient as 2340 * a delete will still remove the ire from the bucket while we have 2341 * dropped the lock and hence the ire_next would be NULL. Thus, we 2342 * need a mechanism to prevent deletions from a given bucket. 2343 * 2344 * To prevent deletions, we bump up the reference count on the 2345 * bucket. If the bucket is held, ire_delete just marks IRE_MARK_CONDEMNED 2346 * both on the ire's ire_marks and the bucket's irb_marks. When the 2347 * reference count on the bucket drops to zero, all the CONDEMNED ires 2348 * are deleted. We don't have to bump up the reference count on the 2349 * bucket if we are walking the bucket and never have to drop the bucket 2350 * lock. Note that IRB_REFHOLD does not prevent addition of new ires 2351 * in the list. It is okay because addition of new ires will not cause 2352 * ire_next to point to freed memory. We do IRB_REFHOLD only when 2353 * all of the 3 conditions are true : 2354 * 2355 * 1) The code needs to walk the IRE bucket from start to end. 2356 * 2) It may have to drop the bucket lock sometimes while doing (1) 2357 * 3) It does not want any ires to be deleted meanwhile. 2358 */ 2359 2360 /* 2361 * Bump up the reference count on the IRE. We cannot assert that the 2362 * bucket lock is being held as it is legal to bump up the reference 2363 * count after the first lookup has returned the IRE without 2364 * holding the lock. Currently ip_wput does this for caching IRE_CACHEs. 2365 */ 2366 2367 #ifdef DEBUG 2368 #define IRE_UNTRACE_REF(ire) ire_untrace_ref(ire); 2369 #define IRE_TRACE_REF(ire) ire_trace_ref(ire); 2370 #else 2371 #define IRE_UNTRACE_REF(ire) 2372 #define IRE_TRACE_REF(ire) 2373 #endif 2374 2375 #define IRE_REFHOLD_NOTR(ire) { \ 2376 atomic_add_32(&(ire)->ire_refcnt, 1); \ 2377 ASSERT((ire)->ire_refcnt != 0); \ 2378 } 2379 2380 #define IRE_REFHOLD(ire) { \ 2381 IRE_REFHOLD_NOTR(ire); \ 2382 IRE_TRACE_REF(ire); \ 2383 } 2384 2385 #define IRE_REFHOLD_LOCKED(ire) { \ 2386 IRE_TRACE_REF(ire); \ 2387 (ire)->ire_refcnt++; \ 2388 } 2389 2390 /* 2391 * Decrement the reference count on the IRE. 2392 * In architectures e.g sun4u, where atomic_add_32_nv is just 2393 * a cas, we need to maintain the right memory barrier semantics 2394 * as that of mutex_exit i.e all the loads and stores should complete 2395 * before the cas is executed. membar_exit() does that here. 2396 * 2397 * NOTE : This macro is used only in places where we want performance. 2398 * To avoid bloating the code, we use the function "ire_refrele" 2399 * which essentially calls the macro. 2400 */ 2401 #define IRE_REFRELE_NOTR(ire) { \ 2402 ASSERT((ire)->ire_refcnt != 0); \ 2403 membar_exit(); \ 2404 if (atomic_add_32_nv(&(ire)->ire_refcnt, -1) == 0) \ 2405 ire_inactive(ire); \ 2406 } 2407 2408 #define IRE_REFRELE(ire) { \ 2409 if (ire->ire_bucket != NULL) { \ 2410 IRE_UNTRACE_REF(ire); \ 2411 } \ 2412 IRE_REFRELE_NOTR(ire); \ 2413 } 2414 2415 /* 2416 * Bump up the reference count on the hash bucket - IRB to 2417 * prevent ires from being deleted in this bucket. 2418 */ 2419 #define IRB_REFHOLD(irb) { \ 2420 rw_enter(&(irb)->irb_lock, RW_WRITER); \ 2421 (irb)->irb_refcnt++; \ 2422 ASSERT((irb)->irb_refcnt != 0); \ 2423 rw_exit(&(irb)->irb_lock); \ 2424 } 2425 #define IRB_REFHOLD_LOCKED(irb) { \ 2426 ASSERT(RW_WRITE_HELD(&(irb)->irb_lock)); \ 2427 (irb)->irb_refcnt++; \ 2428 ASSERT((irb)->irb_refcnt != 0); \ 2429 } 2430 2431 void irb_refrele_ftable(irb_t *); 2432 /* 2433 * Note: when IRB_MARK_FTABLE (i.e., IRE_CACHETABLE entry), the irb_t 2434 * is statically allocated, so that when the irb_refcnt goes to 0, 2435 * we simply clean up the ire list and continue. 2436 */ 2437 #define IRB_REFRELE(irb) { \ 2438 if ((irb)->irb_marks & IRB_MARK_FTABLE) { \ 2439 irb_refrele_ftable((irb)); \ 2440 } else { \ 2441 rw_enter(&(irb)->irb_lock, RW_WRITER); \ 2442 ASSERT((irb)->irb_refcnt != 0); \ 2443 if (--(irb)->irb_refcnt == 0 && \ 2444 ((irb)->irb_marks & IRE_MARK_CONDEMNED)) { \ 2445 ire_t *ire_list; \ 2446 \ 2447 ire_list = ire_unlink(irb); \ 2448 rw_exit(&(irb)->irb_lock); \ 2449 ASSERT(ire_list != NULL); \ 2450 ire_cleanup(ire_list); \ 2451 } else { \ 2452 rw_exit(&(irb)->irb_lock); \ 2453 } \ 2454 } \ 2455 } 2456 2457 extern struct kmem_cache *rt_entry_cache; 2458 2459 /* 2460 * Lock the fast path mp for access, since the fp_mp can be deleted 2461 * due a DL_NOTE_FASTPATH_FLUSH in the case of IRE_BROADCAST 2462 */ 2463 2464 #define LOCK_IRE_FP_MP(ire) { \ 2465 if ((ire)->ire_type == IRE_BROADCAST) \ 2466 mutex_enter(&ire->ire_nce->nce_lock); \ 2467 } 2468 #define UNLOCK_IRE_FP_MP(ire) { \ 2469 if ((ire)->ire_type == IRE_BROADCAST) \ 2470 mutex_exit(&ire->ire_nce->nce_lock); \ 2471 } 2472 2473 typedef struct ire4 { 2474 ipaddr_t ire4_src_addr; /* Source address to use. */ 2475 ipaddr_t ire4_mask; /* Mask for matching this IRE. */ 2476 ipaddr_t ire4_addr; /* Address this IRE represents. */ 2477 ipaddr_t ire4_gateway_addr; /* Gateway if IRE_CACHE/IRE_OFFSUBNET */ 2478 ipaddr_t ire4_cmask; /* Mask from parent prefix route */ 2479 } ire4_t; 2480 2481 typedef struct ire6 { 2482 in6_addr_t ire6_src_addr; /* Source address to use. */ 2483 in6_addr_t ire6_mask; /* Mask for matching this IRE. */ 2484 in6_addr_t ire6_addr; /* Address this IRE represents. */ 2485 in6_addr_t ire6_gateway_addr; /* Gateway if IRE_CACHE/IRE_OFFSUBNET */ 2486 in6_addr_t ire6_cmask; /* Mask from parent prefix route */ 2487 } ire6_t; 2488 2489 typedef union ire_addr { 2490 ire6_t ire6_u; 2491 ire4_t ire4_u; 2492 } ire_addr_u_t; 2493 2494 /* Internet Routing Entry */ 2495 typedef struct ire_s { 2496 struct ire_s *ire_next; /* The hash chain must be first. */ 2497 struct ire_s **ire_ptpn; /* Pointer to previous next. */ 2498 uint32_t ire_refcnt; /* Number of references */ 2499 mblk_t *ire_mp; /* Non-null if allocated as mblk */ 2500 queue_t *ire_rfq; /* recv from this queue */ 2501 queue_t *ire_stq; /* send to this queue */ 2502 union { 2503 uint_t *max_fragp; /* Used only during ire creation */ 2504 uint_t max_frag; /* MTU (next hop or path). */ 2505 } imf_u; 2506 #define ire_max_frag imf_u.max_frag 2507 #define ire_max_fragp imf_u.max_fragp 2508 uint32_t ire_frag_flag; /* IPH_DF or zero. */ 2509 uint32_t ire_ident; /* Per IRE IP ident. */ 2510 uint32_t ire_tire_mark; /* Used for reclaim of unused. */ 2511 uchar_t ire_ipversion; /* IPv4/IPv6 version */ 2512 uchar_t ire_marks; /* IRE_MARK_CONDEMNED etc. */ 2513 ushort_t ire_type; /* Type of IRE */ 2514 uint_t ire_ib_pkt_count; /* Inbound packets for ire_addr */ 2515 uint_t ire_ob_pkt_count; /* Outbound packets to ire_addr */ 2516 uint_t ire_ll_hdr_length; /* Non-zero if we do M_DATA prepends */ 2517 time_t ire_create_time; /* Time (in secs) IRE was created. */ 2518 uint32_t ire_phandle; /* Associate prefix IREs to cache */ 2519 uint32_t ire_ihandle; /* Associate interface IREs to cache */ 2520 ipif_t *ire_ipif; /* the interface that this ire uses */ 2521 uint32_t ire_flags; /* flags related to route (RTF_*) */ 2522 uint_t ire_ipsec_overhead; /* IPSEC overhead */ 2523 /* 2524 * Neighbor Cache Entry for IPv6; arp info for IPv4 2525 */ 2526 struct nce_s *ire_nce; 2527 uint_t ire_masklen; /* # bits in ire_mask{,_v6} */ 2528 ire_addr_u_t ire_u; /* IPv4/IPv6 address info. */ 2529 2530 irb_t *ire_bucket; /* Hash bucket when ire_ptphn is set */ 2531 iulp_t ire_uinfo; /* Upper layer protocol info. */ 2532 /* 2533 * Protects ire_uinfo, ire_max_frag, and ire_frag_flag. 2534 */ 2535 kmutex_t ire_lock; 2536 uint_t ire_ipif_seqid; /* ipif_seqid of ire_ipif */ 2537 clock_t ire_last_used_time; /* Last used time */ 2538 tsol_ire_gw_secattr_t *ire_gw_secattr; /* gateway security attributes */ 2539 zoneid_t ire_zoneid; /* for local address discrimination */ 2540 /* 2541 * ire's that are embedded inside mblk_t and sent to the external 2542 * resolver use the ire_stq_ifindex to track the ifindex of the 2543 * ire_stq, so that the ill (if it exists) can be correctly recovered 2544 * for cleanup in the esbfree routine when arp failure occurs 2545 */ 2546 uint_t ire_stq_ifindex; 2547 uint_t ire_defense_count; /* number of ARP conflicts */ 2548 uint_t ire_defense_time; /* last time defended (secs) */ 2549 boolean_t ire_trace_disable; /* True when alloc fails */ 2550 ip_stack_t *ire_ipst; /* Does not have a netstack_hold */ 2551 } ire_t; 2552 2553 /* IPv4 compatiblity macros */ 2554 #define ire_src_addr ire_u.ire4_u.ire4_src_addr 2555 #define ire_mask ire_u.ire4_u.ire4_mask 2556 #define ire_addr ire_u.ire4_u.ire4_addr 2557 #define ire_gateway_addr ire_u.ire4_u.ire4_gateway_addr 2558 #define ire_cmask ire_u.ire4_u.ire4_cmask 2559 2560 #define ire_src_addr_v6 ire_u.ire6_u.ire6_src_addr 2561 #define ire_mask_v6 ire_u.ire6_u.ire6_mask 2562 #define ire_addr_v6 ire_u.ire6_u.ire6_addr 2563 #define ire_gateway_addr_v6 ire_u.ire6_u.ire6_gateway_addr 2564 #define ire_cmask_v6 ire_u.ire6_u.ire6_cmask 2565 2566 /* Convenient typedefs for sockaddrs */ 2567 typedef struct sockaddr_in sin_t; 2568 typedef struct sockaddr_in6 sin6_t; 2569 2570 /* Address structure used for internal bind with IP */ 2571 typedef struct ipa_conn_s { 2572 ipaddr_t ac_laddr; 2573 ipaddr_t ac_faddr; 2574 uint16_t ac_fport; 2575 uint16_t ac_lport; 2576 } ipa_conn_t; 2577 2578 typedef struct ipa6_conn_s { 2579 in6_addr_t ac6_laddr; 2580 in6_addr_t ac6_faddr; 2581 uint16_t ac6_fport; 2582 uint16_t ac6_lport; 2583 } ipa6_conn_t; 2584 2585 /* 2586 * Using ipa_conn_x_t or ipa6_conn_x_t allows us to modify the behavior of IP's 2587 * bind handler. 2588 */ 2589 typedef struct ipa_conn_extended_s { 2590 uint64_t acx_flags; 2591 ipa_conn_t acx_conn; 2592 } ipa_conn_x_t; 2593 2594 typedef struct ipa6_conn_extended_s { 2595 uint64_t ac6x_flags; 2596 ipa6_conn_t ac6x_conn; 2597 } ipa6_conn_x_t; 2598 2599 /* flag values for ipa_conn_x_t and ipa6_conn_x_t. */ 2600 #define ACX_VERIFY_DST 0x1ULL /* verify destination address is reachable */ 2601 2602 /* Name/Value Descriptor. */ 2603 typedef struct nv_s { 2604 uint64_t nv_value; 2605 char *nv_name; 2606 } nv_t; 2607 2608 #define ILL_FRAG_HASH(s, i) \ 2609 ((ntohl(s) ^ ((i) ^ ((i) >> 8))) % ILL_FRAG_HASH_TBL_COUNT) 2610 2611 /* 2612 * The MAX number of allowed fragmented packets per hash bucket 2613 * calculation is based on the most common mtu size of 1500. This limit 2614 * will work well for other mtu sizes as well. 2615 */ 2616 #define COMMON_IP_MTU 1500 2617 #define MAX_FRAG_MIN 10 2618 #define MAX_FRAG_PKTS(ipst) \ 2619 MAX(MAX_FRAG_MIN, (2 * (ipst->ips_ip_reass_queue_bytes / \ 2620 (COMMON_IP_MTU * ILL_FRAG_HASH_TBL_COUNT)))) 2621 2622 /* 2623 * Maximum dups allowed per packet. 2624 */ 2625 extern uint_t ip_max_frag_dups; 2626 2627 /* 2628 * Per-packet information for received packets and transmitted. 2629 * Used by the transport protocols when converting between the packet 2630 * and ancillary data and socket options. 2631 * 2632 * Note: This private data structure and related IPPF_* constant 2633 * definitions are exposed to enable compilation of some debugging tools 2634 * like lsof which use struct tcp_t in <inet/tcp.h>. This is intended to be 2635 * a temporary hack and long term alternate interfaces should be defined 2636 * to support the needs of such tools and private definitions moved to 2637 * private headers. 2638 */ 2639 struct ip6_pkt_s { 2640 uint_t ipp_fields; /* Which fields are valid */ 2641 uint_t ipp_sticky_ignored; /* sticky fields to ignore */ 2642 uint_t ipp_ifindex; /* pktinfo ifindex */ 2643 in6_addr_t ipp_addr; /* pktinfo src/dst addr */ 2644 uint_t ipp_unicast_hops; /* IPV6_UNICAST_HOPS */ 2645 uint_t ipp_multicast_hops; /* IPV6_MULTICAST_HOPS */ 2646 uint_t ipp_hoplimit; /* IPV6_HOPLIMIT */ 2647 uint_t ipp_hopoptslen; 2648 uint_t ipp_rtdstoptslen; 2649 uint_t ipp_rthdrlen; 2650 uint_t ipp_dstoptslen; 2651 uint_t ipp_pathmtulen; 2652 uint_t ipp_fraghdrlen; 2653 ip6_hbh_t *ipp_hopopts; 2654 ip6_dest_t *ipp_rtdstopts; 2655 ip6_rthdr_t *ipp_rthdr; 2656 ip6_dest_t *ipp_dstopts; 2657 ip6_frag_t *ipp_fraghdr; 2658 struct ip6_mtuinfo *ipp_pathmtu; 2659 in6_addr_t ipp_nexthop; /* Transmit only */ 2660 uint8_t ipp_tclass; 2661 int8_t ipp_use_min_mtu; 2662 }; 2663 typedef struct ip6_pkt_s ip6_pkt_t; 2664 2665 extern void ip6_pkt_free(ip6_pkt_t *); /* free storage inside ip6_pkt_t */ 2666 2667 /* 2668 * This struct is used by ULP_opt_set() functions to return value of IPv4 2669 * ancillary options. Currently this is only used by udp and icmp and only 2670 * IP_PKTINFO option is supported. 2671 */ 2672 typedef struct ip4_pkt_s { 2673 uint_t ip4_ill_index; /* interface index */ 2674 ipaddr_t ip4_addr; /* source address */ 2675 } ip4_pkt_t; 2676 2677 /* 2678 * Used by ULP's to pass options info to ip_output 2679 * currently only IP_PKTINFO is supported. 2680 */ 2681 typedef struct ip_opt_info_s { 2682 uint_t ip_opt_ill_index; 2683 uint_t ip_opt_flags; 2684 } ip_opt_info_t; 2685 2686 /* 2687 * value for ip_opt_flags 2688 */ 2689 #define IP_VERIFY_SRC 0x1 2690 2691 /* 2692 * This structure is used to convey information from IP and the ULP. 2693 * Currently used for the IP_RECVSLLA, IP_RECVIF and IP_RECVPKTINFO options. 2694 * The type of information field is set to IN_PKTINFO (i.e inbound pkt info) 2695 */ 2696 typedef struct ip_pktinfo { 2697 uint32_t ip_pkt_ulp_type; /* type of info sent */ 2698 uint32_t ip_pkt_flags; /* what is sent up by IP */ 2699 uint32_t ip_pkt_ifindex; /* inbound interface index */ 2700 struct sockaddr_dl ip_pkt_slla; /* has source link layer addr */ 2701 struct in_addr ip_pkt_match_addr; /* matched address */ 2702 } ip_pktinfo_t; 2703 2704 /* 2705 * flags to tell UDP what IP is sending; in_pkt_flags 2706 */ 2707 #define IPF_RECVIF 0x01 /* inbound interface index */ 2708 #define IPF_RECVSLLA 0x02 /* source link layer address */ 2709 /* 2710 * Inbound interface index + matched address. 2711 * Used only by IPV4. 2712 */ 2713 #define IPF_RECVADDR 0x04 2714 2715 /* ipp_fields values */ 2716 #define IPPF_IFINDEX 0x0001 /* Part of in6_pktinfo: ifindex */ 2717 #define IPPF_ADDR 0x0002 /* Part of in6_pktinfo: src/dst addr */ 2718 #define IPPF_SCOPE_ID 0x0004 /* Add xmit ip6i_t for sin6_scope_id */ 2719 #define IPPF_NO_CKSUM 0x0008 /* Add xmit ip6i_t for IP6I_NO_*_CKSUM */ 2720 2721 #define IPPF_RAW_CKSUM 0x0010 /* Add xmit ip6i_t for IP6I_RAW_CHECKSUM */ 2722 #define IPPF_HOPLIMIT 0x0020 2723 #define IPPF_HOPOPTS 0x0040 2724 #define IPPF_RTHDR 0x0080 2725 2726 #define IPPF_RTDSTOPTS 0x0100 2727 #define IPPF_DSTOPTS 0x0200 2728 #define IPPF_NEXTHOP 0x0400 2729 #define IPPF_PATHMTU 0x0800 2730 2731 #define IPPF_TCLASS 0x1000 2732 #define IPPF_DONTFRAG 0x2000 2733 #define IPPF_USE_MIN_MTU 0x04000 2734 #define IPPF_MULTICAST_HOPS 0x08000 2735 2736 #define IPPF_UNICAST_HOPS 0x10000 2737 #define IPPF_FRAGHDR 0x20000 2738 2739 #define IPPF_HAS_IP6I \ 2740 (IPPF_IFINDEX|IPPF_ADDR|IPPF_NEXTHOP|IPPF_SCOPE_ID| \ 2741 IPPF_NO_CKSUM|IPPF_RAW_CKSUM|IPPF_HOPLIMIT|IPPF_DONTFRAG| \ 2742 IPPF_USE_MIN_MTU|IPPF_MULTICAST_HOPS|IPPF_UNICAST_HOPS) 2743 2744 #define TCP_PORTS_OFFSET 0 2745 #define UDP_PORTS_OFFSET 0 2746 2747 /* 2748 * lookups return the ill/ipif only if the flags are clear OR Iam writer. 2749 * ill / ipif lookup functions increment the refcnt on the ill / ipif only 2750 * after calling these macros. This ensures that the refcnt on the ipif or 2751 * ill will eventually drop down to zero. 2752 */ 2753 #define ILL_LOOKUP_FAILED 1 /* Used as error code */ 2754 #define IPIF_LOOKUP_FAILED 2 /* Used as error code */ 2755 2756 #define ILL_CAN_LOOKUP(ill) \ 2757 (!((ill)->ill_state_flags & (ILL_CONDEMNED | ILL_CHANGING)) || \ 2758 IAM_WRITER_ILL(ill)) 2759 2760 #define ILL_CAN_WAIT(ill, q) \ 2761 (((q) != NULL) && !((ill)->ill_state_flags & (ILL_CONDEMNED))) 2762 2763 #define ILL_CAN_LOOKUP_WALKER(ill) \ 2764 (!((ill)->ill_state_flags & ILL_CONDEMNED)) 2765 2766 #define IPIF_CAN_LOOKUP(ipif) \ 2767 (!((ipif)->ipif_state_flags & (IPIF_CONDEMNED | IPIF_CHANGING)) || \ 2768 IAM_WRITER_IPIF(ipif)) 2769 2770 /* 2771 * If the parameter 'q' is NULL, the caller is not interested in wait and 2772 * restart of the operation if the ILL or IPIF cannot be looked up when it is 2773 * marked as 'CHANGING'. Typically a thread that tries to send out data will 2774 * end up passing NULLs as the last 4 parameters to ill_lookup_on_ifindex and 2775 * in this case 'q' is NULL 2776 */ 2777 #define IPIF_CAN_WAIT(ipif, q) \ 2778 (((q) != NULL) && !((ipif)->ipif_state_flags & (IPIF_CONDEMNED))) 2779 2780 #define IPIF_CAN_LOOKUP_WALKER(ipif) \ 2781 (!((ipif)->ipif_state_flags & (IPIF_CONDEMNED)) || \ 2782 IAM_WRITER_IPIF(ipif)) 2783 2784 /* 2785 * These macros are used by critical set ioctls and failover ioctls to 2786 * mark the ipif appropriately before starting the operation and to clear the 2787 * marks after completing the operation. 2788 */ 2789 #define IPIF_UNMARK_MOVING(ipif) \ 2790 (ipif)->ipif_state_flags &= ~IPIF_MOVING & ~IPIF_CHANGING; 2791 2792 #define ILL_UNMARK_CHANGING(ill) \ 2793 (ill)->ill_state_flags &= ~ILL_CHANGING; 2794 2795 /* Macros used to assert that this thread is a writer */ 2796 #define IAM_WRITER_IPSQ(ipsq) ((ipsq)->ipsq_writer == curthread) 2797 #define IAM_WRITER_ILL(ill) \ 2798 ((ill)->ill_phyint->phyint_ipsq->ipsq_writer == curthread) 2799 #define IAM_WRITER_IPIF(ipif) \ 2800 ((ipif)->ipif_ill->ill_phyint->phyint_ipsq->ipsq_writer == curthread) 2801 2802 /* 2803 * Grab ill locks in the proper order. The order is highest addressed 2804 * ill is locked first. 2805 */ 2806 #define GRAB_ILL_LOCKS(ill_1, ill_2) \ 2807 { \ 2808 if ((ill_1) > (ill_2)) { \ 2809 if (ill_1 != NULL) \ 2810 mutex_enter(&(ill_1)->ill_lock); \ 2811 if (ill_2 != NULL) \ 2812 mutex_enter(&(ill_2)->ill_lock); \ 2813 } else { \ 2814 if (ill_2 != NULL) \ 2815 mutex_enter(&(ill_2)->ill_lock); \ 2816 if (ill_1 != NULL && ill_1 != ill_2) \ 2817 mutex_enter(&(ill_1)->ill_lock); \ 2818 } \ 2819 } 2820 2821 #define RELEASE_ILL_LOCKS(ill_1, ill_2) \ 2822 { \ 2823 if (ill_1 != NULL) \ 2824 mutex_exit(&(ill_1)->ill_lock); \ 2825 if (ill_2 != NULL && ill_2 != ill_1) \ 2826 mutex_exit(&(ill_2)->ill_lock); \ 2827 } 2828 2829 /* Get the other protocol instance ill */ 2830 #define ILL_OTHER(ill) \ 2831 ((ill)->ill_isv6 ? (ill)->ill_phyint->phyint_illv4 : \ 2832 (ill)->ill_phyint->phyint_illv6) 2833 2834 #define MATCH_V4_ONLY 0x1 2835 #define MATCH_V6_ONLY 0x2 2836 #define MATCH_ILL_ONLY 0x4 2837 2838 /* ioctl command info: Ioctl properties extracted and stored in here */ 2839 typedef struct cmd_info_s 2840 { 2841 char ci_groupname[LIFNAMSIZ + 1]; /* SIOCSLIFGROUPNAME */ 2842 ipif_t *ci_ipif; /* ipif associated with [l]ifreq ioctl's */ 2843 sin_t *ci_sin; /* the sin struct passed down */ 2844 sin6_t *ci_sin6; /* the sin6_t struct passed down */ 2845 struct lifreq *ci_lifr; /* the lifreq struct passed down */ 2846 } cmd_info_t; 2847 2848 /* 2849 * List of AH and ESP IPsec acceleration capable ills 2850 */ 2851 typedef struct ipsec_capab_ill_s { 2852 uint_t ill_index; 2853 boolean_t ill_isv6; 2854 struct ipsec_capab_ill_s *next; 2855 } ipsec_capab_ill_t; 2856 2857 extern struct kmem_cache *ire_cache; 2858 2859 extern ipaddr_t ip_g_all_ones; 2860 2861 extern uint_t ip_loopback_mtu; /* /etc/system */ 2862 2863 extern vmem_t *ip_minor_arena_sa; 2864 extern vmem_t *ip_minor_arena_la; 2865 2866 /* 2867 * ip_g_forward controls IP forwarding. It takes two values: 2868 * 0: IP_FORWARD_NEVER Don't forward packets ever. 2869 * 1: IP_FORWARD_ALWAYS Forward packets for elsewhere. 2870 * 2871 * RFC1122 says there must be a configuration switch to control forwarding, 2872 * but that the default MUST be to not forward packets ever. Implicit 2873 * control based on configuration of multiple interfaces MUST NOT be 2874 * implemented (Section 3.1). SunOS 4.1 did provide the "automatic" capability 2875 * and, in fact, it was the default. That capability is now provided in the 2876 * /etc/rc2.d/S69inet script. 2877 */ 2878 2879 #define ips_ip_respond_to_address_mask_broadcast ips_param_arr[0].ip_param_value 2880 #define ips_ip_g_resp_to_echo_bcast ips_param_arr[1].ip_param_value 2881 #define ips_ip_g_resp_to_echo_mcast ips_param_arr[2].ip_param_value 2882 #define ips_ip_g_resp_to_timestamp ips_param_arr[3].ip_param_value 2883 #define ips_ip_g_resp_to_timestamp_bcast ips_param_arr[4].ip_param_value 2884 #define ips_ip_g_send_redirects ips_param_arr[5].ip_param_value 2885 #define ips_ip_g_forward_directed_bcast ips_param_arr[6].ip_param_value 2886 #define ips_ip_mrtdebug ips_param_arr[7].ip_param_value 2887 #define ips_ip_timer_interval ips_param_arr[8].ip_param_value 2888 #define ips_ip_ire_arp_interval ips_param_arr[9].ip_param_value 2889 #define ips_ip_ire_redir_interval ips_param_arr[10].ip_param_value 2890 #define ips_ip_def_ttl ips_param_arr[11].ip_param_value 2891 #define ips_ip_forward_src_routed ips_param_arr[12].ip_param_value 2892 #define ips_ip_wroff_extra ips_param_arr[13].ip_param_value 2893 #define ips_ip_ire_pathmtu_interval ips_param_arr[14].ip_param_value 2894 #define ips_ip_icmp_return ips_param_arr[15].ip_param_value 2895 #define ips_ip_path_mtu_discovery ips_param_arr[16].ip_param_value 2896 #define ips_ip_ignore_delete_time ips_param_arr[17].ip_param_value 2897 #define ips_ip_ignore_redirect ips_param_arr[18].ip_param_value 2898 #define ips_ip_output_queue ips_param_arr[19].ip_param_value 2899 #define ips_ip_broadcast_ttl ips_param_arr[20].ip_param_value 2900 #define ips_ip_icmp_err_interval ips_param_arr[21].ip_param_value 2901 #define ips_ip_icmp_err_burst ips_param_arr[22].ip_param_value 2902 #define ips_ip_reass_queue_bytes ips_param_arr[23].ip_param_value 2903 #define ips_ip_strict_dst_multihoming ips_param_arr[24].ip_param_value 2904 #define ips_ip_addrs_per_if ips_param_arr[25].ip_param_value 2905 #define ips_ipsec_override_persocket_policy ips_param_arr[26].ip_param_value 2906 #define ips_icmp_accept_clear_messages ips_param_arr[27].ip_param_value 2907 #define ips_igmp_accept_clear_messages ips_param_arr[28].ip_param_value 2908 2909 /* IPv6 configuration knobs */ 2910 #define ips_delay_first_probe_time ips_param_arr[29].ip_param_value 2911 #define ips_max_unicast_solicit ips_param_arr[30].ip_param_value 2912 #define ips_ipv6_def_hops ips_param_arr[31].ip_param_value 2913 #define ips_ipv6_icmp_return ips_param_arr[32].ip_param_value 2914 #define ips_ipv6_forward_src_routed ips_param_arr[33].ip_param_value 2915 #define ips_ipv6_resp_echo_mcast ips_param_arr[34].ip_param_value 2916 #define ips_ipv6_send_redirects ips_param_arr[35].ip_param_value 2917 #define ips_ipv6_ignore_redirect ips_param_arr[36].ip_param_value 2918 #define ips_ipv6_strict_dst_multihoming ips_param_arr[37].ip_param_value 2919 #define ips_ip_ire_reclaim_fraction ips_param_arr[38].ip_param_value 2920 #define ips_ipsec_policy_log_interval ips_param_arr[39].ip_param_value 2921 #define ips_pim_accept_clear_messages ips_param_arr[40].ip_param_value 2922 #define ips_ip_ndp_unsolicit_interval ips_param_arr[41].ip_param_value 2923 #define ips_ip_ndp_unsolicit_count ips_param_arr[42].ip_param_value 2924 #define ips_ipv6_ignore_home_address_opt ips_param_arr[43].ip_param_value 2925 #define ips_ip_policy_mask ips_param_arr[44].ip_param_value 2926 #define ips_ip_multirt_resolution_interval ips_param_arr[45].ip_param_value 2927 #define ips_ip_multirt_ttl ips_param_arr[46].ip_param_value 2928 #define ips_ip_multidata_outbound ips_param_arr[47].ip_param_value 2929 #define ips_ip_ndp_defense_interval ips_param_arr[48].ip_param_value 2930 #define ips_ip_max_temp_idle ips_param_arr[49].ip_param_value 2931 #define ips_ip_max_temp_defend ips_param_arr[50].ip_param_value 2932 #define ips_ip_max_defend ips_param_arr[51].ip_param_value 2933 #define ips_ip_defend_interval ips_param_arr[52].ip_param_value 2934 #define ips_ip_dup_recovery ips_param_arr[53].ip_param_value 2935 #define ips_ip_restrict_interzone_loopback ips_param_arr[54].ip_param_value 2936 #define ips_ip_lso_outbound ips_param_arr[55].ip_param_value 2937 #define ips_igmp_max_version ips_param_arr[56].ip_param_value 2938 #define ips_mld_max_version ips_param_arr[57].ip_param_value 2939 #define ips_ipv6_drop_inbound_icmpv6 ips_param_arr[58].ip_param_value 2940 2941 extern int dohwcksum; /* use h/w cksum if supported by the h/w */ 2942 #ifdef ZC_TEST 2943 extern int noswcksum; 2944 #endif 2945 2946 extern char ipif_loopback_name[]; 2947 2948 extern nv_t *ire_nv_tbl; 2949 2950 extern struct module_info ip_mod_info; 2951 2952 #define HOOKS4_INTERESTED_PHYSICAL_IN(ipst) \ 2953 ((ipst)->ips_ip4_physical_in_event.he_interested) 2954 #define HOOKS6_INTERESTED_PHYSICAL_IN(ipst) \ 2955 ((ipst)->ips_ip6_physical_in_event.he_interested) 2956 #define HOOKS4_INTERESTED_PHYSICAL_OUT(ipst) \ 2957 ((ipst)->ips_ip4_physical_out_event.he_interested) 2958 #define HOOKS6_INTERESTED_PHYSICAL_OUT(ipst) \ 2959 ((ipst)->ips_ip6_physical_out_event.he_interested) 2960 #define HOOKS4_INTERESTED_FORWARDING(ipst) \ 2961 ((ipst)->ips_ip4_forwarding_event.he_interested) 2962 #define HOOKS6_INTERESTED_FORWARDING(ipst) \ 2963 ((ipst)->ips_ip6_forwarding_event.he_interested) 2964 #define HOOKS4_INTERESTED_LOOPBACK_IN(ipst) \ 2965 ((ipst)->ips_ip4_loopback_in_event.he_interested) 2966 #define HOOKS6_INTERESTED_LOOPBACK_IN(ipst) \ 2967 ((ipst)->ips_ip6_loopback_in_event.he_interested) 2968 #define HOOKS4_INTERESTED_LOOPBACK_OUT(ipst) \ 2969 ((ipst)->ips_ip4_loopback_out_event.he_interested) 2970 #define HOOKS6_INTERESTED_LOOPBACK_OUT(ipst) \ 2971 ((ipst)->ips_ip6_loopback_out_event.he_interested) 2972 2973 /* 2974 * Hooks marcos used inside of ip 2975 */ 2976 #define IPHA_VHL ipha_version_and_hdr_length 2977 2978 #define FW_HOOKS(_hook, _event, _ilp, _olp, _iph, _fm, _m, _llm, ipst) \ 2979 \ 2980 if ((_hook).he_interested) { \ 2981 hook_pkt_event_t info; \ 2982 \ 2983 _NOTE(CONSTCOND) \ 2984 ASSERT((_ilp != NULL) || (_olp != NULL)); \ 2985 \ 2986 _NOTE(CONSTCOND) \ 2987 if ((_ilp != NULL) && \ 2988 (((ill_t *)(_ilp))->ill_phyint != NULL)) \ 2989 info.hpe_ifp = (phy_if_t)((ill_t *) \ 2990 (_ilp))->ill_phyint->phyint_hook_ifindex; \ 2991 else \ 2992 info.hpe_ifp = 0; \ 2993 \ 2994 _NOTE(CONSTCOND) \ 2995 if ((_olp != NULL) && \ 2996 (((ill_t *)(_olp))->ill_phyint != NULL)) \ 2997 info.hpe_ofp = (phy_if_t)((ill_t *) \ 2998 (_olp))->ill_phyint->phyint_hook_ifindex; \ 2999 else \ 3000 info.hpe_ofp = 0; \ 3001 info.hpe_hdr = _iph; \ 3002 info.hpe_mp = &(_fm); \ 3003 info.hpe_mb = _m; \ 3004 info.hpe_flags = _llm; \ 3005 if (hook_run(_event, (hook_data_t)&info, \ 3006 ipst->ips_netstack) != 0) { \ 3007 ip2dbg(("%s hook dropped mblk chain %p hdr %p\n",\ 3008 (_hook).he_name, (void *)_fm, (void *)_m)); \ 3009 if (_fm != NULL) { \ 3010 freemsg(_fm); \ 3011 _fm = NULL; \ 3012 } \ 3013 _iph = NULL; \ 3014 _m = NULL; \ 3015 } else { \ 3016 _iph = info.hpe_hdr; \ 3017 _m = info.hpe_mb; \ 3018 } \ 3019 } 3020 3021 #define FW_HOOKS6(_hook, _event, _ilp, _olp, _iph, _fm, _m, _llm, ipst) \ 3022 \ 3023 if ((_hook).he_interested) { \ 3024 hook_pkt_event_t info; \ 3025 \ 3026 _NOTE(CONSTCOND) \ 3027 ASSERT((_ilp != NULL) || (_olp != NULL)); \ 3028 \ 3029 _NOTE(CONSTCOND) \ 3030 if ((_ilp != NULL) && \ 3031 (((ill_t *)(_ilp))->ill_phyint != NULL)) \ 3032 info.hpe_ifp = (phy_if_t)((ill_t *) \ 3033 (_ilp))->ill_phyint->phyint_hook_ifindex; \ 3034 else \ 3035 info.hpe_ifp = 0; \ 3036 \ 3037 _NOTE(CONSTCOND) \ 3038 if ((_olp != NULL) && \ 3039 (((ill_t *)(_olp))->ill_phyint != NULL)) \ 3040 info.hpe_ofp = (phy_if_t)((ill_t *) \ 3041 (_olp))->ill_phyint->phyint_hook_ifindex; \ 3042 else \ 3043 info.hpe_ofp = 0; \ 3044 info.hpe_hdr = _iph; \ 3045 info.hpe_mp = &(_fm); \ 3046 info.hpe_mb = _m; \ 3047 info.hpe_flags = _llm; \ 3048 if (hook_run(_event, (hook_data_t)&info, \ 3049 ipst->ips_netstack) != 0) { \ 3050 ip2dbg(("%s hook dropped mblk chain %p hdr %p\n",\ 3051 (_hook).he_name, (void *)_fm, (void *)_m)); \ 3052 if (_fm != NULL) { \ 3053 freemsg(_fm); \ 3054 _fm = NULL; \ 3055 } \ 3056 _iph = NULL; \ 3057 _m = NULL; \ 3058 } else { \ 3059 _iph = info.hpe_hdr; \ 3060 _m = info.hpe_mb; \ 3061 } \ 3062 } 3063 3064 /* 3065 * Network byte order macros 3066 */ 3067 #ifdef _BIG_ENDIAN 3068 #define N_IN_CLASSA_NET IN_CLASSA_NET 3069 #define N_IN_CLASSD_NET IN_CLASSD_NET 3070 #define N_INADDR_UNSPEC_GROUP INADDR_UNSPEC_GROUP 3071 #define N_IN_LOOPBACK_NET (ipaddr_t)0x7f000000U 3072 #else /* _BIG_ENDIAN */ 3073 #define N_IN_CLASSA_NET (ipaddr_t)0x000000ffU 3074 #define N_IN_CLASSD_NET (ipaddr_t)0x000000f0U 3075 #define N_INADDR_UNSPEC_GROUP (ipaddr_t)0x000000e0U 3076 #define N_IN_LOOPBACK_NET (ipaddr_t)0x0000007fU 3077 #endif /* _BIG_ENDIAN */ 3078 #define CLASSD(addr) (((addr) & N_IN_CLASSD_NET) == N_INADDR_UNSPEC_GROUP) 3079 #define CLASSE(addr) (((addr) & N_IN_CLASSD_NET) == N_IN_CLASSD_NET) 3080 #define IP_LOOPBACK_ADDR(addr) \ 3081 (((addr) & N_IN_CLASSA_NET == N_IN_LOOPBACK_NET)) 3082 3083 #ifdef DEBUG 3084 /* IPsec HW acceleration debugging support */ 3085 3086 #define IPSECHW_CAPAB 0x0001 /* capability negotiation */ 3087 #define IPSECHW_SADB 0x0002 /* SADB exchange */ 3088 #define IPSECHW_PKT 0x0004 /* general packet flow */ 3089 #define IPSECHW_PKTIN 0x0008 /* driver in pkt processing details */ 3090 #define IPSECHW_PKTOUT 0x0010 /* driver out pkt processing details */ 3091 3092 #define IPSECHW_DEBUG(f, x) if (ipsechw_debug & (f)) { (void) printf x; } 3093 #define IPSECHW_CALL(f, r, x) if (ipsechw_debug & (f)) { (void) r x; } 3094 3095 extern uint32_t ipsechw_debug; 3096 #else 3097 #define IPSECHW_DEBUG(f, x) {} 3098 #define IPSECHW_CALL(f, r, x) {} 3099 #endif 3100 3101 extern int ip_debug; 3102 extern uint_t ip_thread_data; 3103 extern krwlock_t ip_thread_rwlock; 3104 extern list_t ip_thread_list; 3105 3106 #ifdef IP_DEBUG 3107 #include <sys/debug.h> 3108 #include <sys/promif.h> 3109 3110 #define ip0dbg(a) printf a 3111 #define ip1dbg(a) if (ip_debug > 2) printf a 3112 #define ip2dbg(a) if (ip_debug > 3) printf a 3113 #define ip3dbg(a) if (ip_debug > 4) printf a 3114 #else 3115 #define ip0dbg(a) /* */ 3116 #define ip1dbg(a) /* */ 3117 #define ip2dbg(a) /* */ 3118 #define ip3dbg(a) /* */ 3119 #endif /* IP_DEBUG */ 3120 3121 /* Default MAC-layer address string length for mac_colon_addr */ 3122 #define MAC_STR_LEN 128 3123 3124 struct ipsec_out_s; 3125 3126 struct mac_header_info_s; 3127 3128 extern boolean_t ip_assign_ifindex(uint_t *, ip_stack_t *); 3129 extern void ill_frag_timer(void *); 3130 extern ill_t *ill_first(int, int, ill_walk_context_t *, ip_stack_t *); 3131 extern ill_t *ill_next(ill_walk_context_t *, ill_t *); 3132 extern void ill_frag_timer_start(ill_t *); 3133 extern void ill_nic_info_dispatch(ill_t *); 3134 extern void ill_nic_info_plumb(ill_t *, boolean_t); 3135 extern mblk_t *ip_carve_mp(mblk_t **, ssize_t); 3136 extern mblk_t *ip_dlpi_alloc(size_t, t_uscalar_t); 3137 extern char *ip_dot_addr(ipaddr_t, char *); 3138 extern const char *mac_colon_addr(const uint8_t *, size_t, char *, size_t); 3139 extern void ip_lwput(queue_t *, mblk_t *); 3140 extern boolean_t icmp_err_rate_limit(ip_stack_t *); 3141 extern void icmp_time_exceeded(queue_t *, mblk_t *, uint8_t, zoneid_t, 3142 ip_stack_t *); 3143 extern void icmp_unreachable(queue_t *, mblk_t *, uint8_t, zoneid_t, 3144 ip_stack_t *); 3145 extern mblk_t *ip_add_info(mblk_t *, ill_t *, uint_t, zoneid_t, ip_stack_t *); 3146 extern mblk_t *ip_bind_v4(queue_t *, mblk_t *, conn_t *); 3147 extern int ip_bind_connected(conn_t *, mblk_t *, ipaddr_t *, uint16_t, 3148 ipaddr_t, uint16_t, boolean_t, boolean_t, boolean_t, 3149 boolean_t); 3150 extern boolean_t ip_bind_ipsec_policy_set(conn_t *, mblk_t *); 3151 extern int ip_bind_laddr(conn_t *, mblk_t *, ipaddr_t, uint16_t, 3152 boolean_t, boolean_t, boolean_t); 3153 extern uint_t ip_cksum(mblk_t *, int, uint32_t); 3154 extern int ip_close(queue_t *, int); 3155 extern uint16_t ip_csum_hdr(ipha_t *); 3156 extern void ip_proto_not_sup(queue_t *, mblk_t *, uint_t, zoneid_t, 3157 ip_stack_t *); 3158 extern void ip_ire_g_fini(void); 3159 extern void ip_ire_g_init(void); 3160 extern void ip_ire_fini(ip_stack_t *); 3161 extern void ip_ire_init(ip_stack_t *); 3162 extern int ip_openv4(queue_t *q, dev_t *devp, int flag, int sflag, 3163 cred_t *credp); 3164 extern int ip_openv6(queue_t *q, dev_t *devp, int flag, int sflag, 3165 cred_t *credp); 3166 extern int ip_reassemble(mblk_t *, ipf_t *, uint_t, boolean_t, ill_t *, 3167 size_t); 3168 extern int ip_opt_set_ill(conn_t *, int, boolean_t, boolean_t, 3169 int, int, mblk_t *); 3170 extern void ip_rput(queue_t *, mblk_t *); 3171 extern void ip_input(ill_t *, ill_rx_ring_t *, mblk_t *, 3172 struct mac_header_info_s *); 3173 extern void ip_rput_dlpi(queue_t *, mblk_t *); 3174 extern void ip_rput_forward(ire_t *, ipha_t *, mblk_t *, ill_t *); 3175 extern void ip_rput_forward_multicast(ipaddr_t, mblk_t *, ipif_t *); 3176 3177 extern void ip_mib2_add_ip_stats(mib2_ipIfStatsEntry_t *, 3178 mib2_ipIfStatsEntry_t *); 3179 extern void ip_mib2_add_icmp6_stats(mib2_ipv6IfIcmpEntry_t *, 3180 mib2_ipv6IfIcmpEntry_t *); 3181 extern void ip_udp_input(queue_t *, mblk_t *, ipha_t *, ire_t *, ill_t *); 3182 extern void ip_proto_input(queue_t *, mblk_t *, ipha_t *, ire_t *, ill_t *, 3183 boolean_t); 3184 extern void ip_rput_other(ipsq_t *, queue_t *, mblk_t *, void *); 3185 extern ire_t *ip_check_multihome(void *, ire_t *, ill_t *); 3186 extern void ip_setpktversion(conn_t *, boolean_t, boolean_t, ip_stack_t *); 3187 extern void ip_trash_ire_reclaim(void *); 3188 extern void ip_trash_timer_expire(void *); 3189 extern void ip_wput(queue_t *, mblk_t *); 3190 extern void ip_output(void *, mblk_t *, void *, int); 3191 extern void ip_output_options(void *, mblk_t *, void *, int, 3192 ip_opt_info_t *); 3193 3194 extern void ip_wput_ire(queue_t *, mblk_t *, ire_t *, conn_t *, int, 3195 zoneid_t); 3196 extern void ip_wput_local(queue_t *, ill_t *, ipha_t *, mblk_t *, ire_t *, 3197 int, zoneid_t); 3198 extern void ip_wput_multicast(queue_t *, mblk_t *, ipif_t *, zoneid_t); 3199 extern void ip_wput_nondata(ipsq_t *, queue_t *, mblk_t *, void *); 3200 extern void ip_wsrv(queue_t *); 3201 extern char *ip_nv_lookup(nv_t *, int); 3202 extern boolean_t ip_local_addr_ok_v6(const in6_addr_t *, const in6_addr_t *); 3203 extern boolean_t ip_remote_addr_ok_v6(const in6_addr_t *, const in6_addr_t *); 3204 extern ipaddr_t ip_massage_options(ipha_t *, netstack_t *); 3205 extern ipaddr_t ip_net_mask(ipaddr_t); 3206 extern void ip_newroute(queue_t *, mblk_t *, ipaddr_t, conn_t *, zoneid_t, 3207 ip_stack_t *); 3208 extern ipxmit_state_t ip_xmit_v4(mblk_t *, ire_t *, struct ipsec_out_s *, 3209 boolean_t); 3210 extern int ip_hdr_complete(ipha_t *, zoneid_t, ip_stack_t *); 3211 3212 extern struct qinit iprinitv6; 3213 extern struct qinit ipwinitv6; 3214 3215 extern void conn_drain_insert(conn_t *connp); 3216 extern int conn_ipsec_length(conn_t *connp); 3217 extern void ip_wput_ipsec_out(queue_t *, mblk_t *, ipha_t *, ill_t *, 3218 ire_t *); 3219 extern ipaddr_t ip_get_dst(ipha_t *); 3220 extern int ipsec_out_extra_length(mblk_t *); 3221 extern int ipsec_in_extra_length(mblk_t *); 3222 extern mblk_t *ipsec_in_alloc(boolean_t, netstack_t *); 3223 extern boolean_t ipsec_in_is_secure(mblk_t *); 3224 extern void ipsec_out_process(queue_t *, mblk_t *, ire_t *, uint_t); 3225 extern void ipsec_out_to_in(mblk_t *); 3226 extern void ip_fanout_proto_again(mblk_t *, ill_t *, ill_t *, ire_t *); 3227 3228 extern void ire_cleanup(ire_t *); 3229 extern void ire_inactive(ire_t *); 3230 extern boolean_t irb_inactive(irb_t *); 3231 extern ire_t *ire_unlink(irb_t *); 3232 3233 #ifdef DEBUG 3234 extern boolean_t th_trace_ref(const void *, ip_stack_t *); 3235 extern void th_trace_unref(const void *); 3236 extern void th_trace_cleanup(const void *, boolean_t); 3237 extern void ire_trace_ref(ire_t *); 3238 extern void ire_untrace_ref(ire_t *); 3239 #endif 3240 3241 extern int ip_srcid_insert(const in6_addr_t *, zoneid_t, ip_stack_t *); 3242 extern int ip_srcid_remove(const in6_addr_t *, zoneid_t, ip_stack_t *); 3243 extern void ip_srcid_find_id(uint_t, in6_addr_t *, zoneid_t, netstack_t *); 3244 extern uint_t ip_srcid_find_addr(const in6_addr_t *, zoneid_t, netstack_t *); 3245 extern int ip_srcid_report(queue_t *, mblk_t *, caddr_t, cred_t *); 3246 3247 extern uint8_t ipoptp_next(ipoptp_t *); 3248 extern uint8_t ipoptp_first(ipoptp_t *, ipha_t *); 3249 extern int ip_opt_get_user(const ipha_t *, uchar_t *); 3250 extern ill_t *ip_grab_attach_ill(ill_t *, mblk_t *, int, boolean_t, 3251 ip_stack_t *); 3252 extern ire_t *conn_set_outgoing_ill(conn_t *, ire_t *, ill_t **); 3253 extern int ipsec_req_from_conn(conn_t *, ipsec_req_t *, int); 3254 extern int ip_snmp_get(queue_t *q, mblk_t *mctl, int level); 3255 extern int ip_snmp_set(queue_t *q, int, int, uchar_t *, int); 3256 extern void ip_process_ioctl(ipsq_t *, queue_t *, mblk_t *, void *); 3257 extern void ip_quiesce_conn(conn_t *); 3258 extern void ip_reprocess_ioctl(ipsq_t *, queue_t *, mblk_t *, void *); 3259 extern void ip_restart_optmgmt(ipsq_t *, queue_t *, mblk_t *, void *); 3260 extern void ip_ioctl_finish(queue_t *, mblk_t *, int, int, ipsq_t *); 3261 3262 extern boolean_t ip_cmpbuf(const void *, uint_t, boolean_t, const void *, 3263 uint_t); 3264 extern boolean_t ip_allocbuf(void **, uint_t *, boolean_t, const void *, 3265 uint_t); 3266 extern void ip_savebuf(void **, uint_t *, boolean_t, const void *, uint_t); 3267 3268 extern boolean_t ipsq_pending_mp_cleanup(ill_t *, conn_t *); 3269 extern void conn_ioctl_cleanup(conn_t *); 3270 extern ill_t *conn_get_held_ill(conn_t *, ill_t **, int *); 3271 extern ill_t *ip_newroute_get_dst_ill(ill_t *); 3272 3273 struct multidata_s; 3274 struct pdesc_s; 3275 3276 extern mblk_t *ip_mdinfo_alloc(ill_mdt_capab_t *); 3277 extern mblk_t *ip_mdinfo_return(ire_t *, conn_t *, char *, ill_mdt_capab_t *); 3278 extern mblk_t *ip_lsoinfo_alloc(ill_lso_capab_t *); 3279 extern mblk_t *ip_lsoinfo_return(ire_t *, conn_t *, char *, 3280 ill_lso_capab_t *); 3281 extern uint_t ip_md_cksum(struct pdesc_s *, int, uint_t); 3282 extern boolean_t ip_md_addr_attr(struct multidata_s *, struct pdesc_s *, 3283 const mblk_t *); 3284 extern boolean_t ip_md_hcksum_attr(struct multidata_s *, struct pdesc_s *, 3285 uint32_t, uint32_t, uint32_t, uint32_t); 3286 extern boolean_t ip_md_zcopy_attr(struct multidata_s *, struct pdesc_s *, 3287 uint_t); 3288 extern mblk_t *ip_unbind(queue_t *, mblk_t *); 3289 3290 extern phyint_t *phyint_lookup_group(char *, boolean_t, ip_stack_t *); 3291 extern phyint_t *phyint_lookup_group_ifindex(uint_t, ip_stack_t *); 3292 3293 extern void tnet_init(void); 3294 extern void tnet_fini(void); 3295 3296 /* Hooks for CGTP (multirt routes) filtering module */ 3297 #define CGTP_FILTER_REV_1 1 3298 #define CGTP_FILTER_REV_2 2 3299 #define CGTP_FILTER_REV_3 3 3300 #define CGTP_FILTER_REV CGTP_FILTER_REV_3 3301 3302 /* cfo_filter and cfo_filter_v6 hooks return values */ 3303 #define CGTP_IP_PKT_NOT_CGTP 0 3304 #define CGTP_IP_PKT_PREMIUM 1 3305 #define CGTP_IP_PKT_DUPLICATE 2 3306 3307 /* Version 3 of the filter interface */ 3308 typedef struct cgtp_filter_ops { 3309 int cfo_filter_rev; /* CGTP_FILTER_REV_3 */ 3310 int (*cfo_change_state)(netstackid_t, int); 3311 int (*cfo_add_dest_v4)(netstackid_t, ipaddr_t, ipaddr_t, 3312 ipaddr_t, ipaddr_t); 3313 int (*cfo_del_dest_v4)(netstackid_t, ipaddr_t, ipaddr_t); 3314 int (*cfo_add_dest_v6)(netstackid_t, in6_addr_t *, in6_addr_t *, 3315 in6_addr_t *, in6_addr_t *); 3316 int (*cfo_del_dest_v6)(netstackid_t, in6_addr_t *, in6_addr_t *); 3317 int (*cfo_filter)(netstackid_t, uint_t, mblk_t *); 3318 int (*cfo_filter_v6)(netstackid_t, uint_t, ip6_t *, 3319 ip6_frag_t *); 3320 } cgtp_filter_ops_t; 3321 3322 #define CGTP_MCAST_SUCCESS 1 3323 3324 /* 3325 * The separate CGTP module needs this global symbol so that it 3326 * can check the version and determine whether to use the old or the new 3327 * version of the filtering interface. 3328 */ 3329 extern int ip_cgtp_filter_rev; 3330 3331 extern int ip_cgtp_filter_supported(void); 3332 extern int ip_cgtp_filter_register(netstackid_t, cgtp_filter_ops_t *); 3333 extern int ip_cgtp_filter_unregister(netstackid_t); 3334 extern int ip_cgtp_filter_is_registered(netstackid_t); 3335 3336 /* Flags for ire_multirt_lookup() */ 3337 3338 #define MULTIRT_USESTAMP 0x0001 3339 #define MULTIRT_SETSTAMP 0x0002 3340 #define MULTIRT_CACHEGW 0x0004 3341 3342 /* Debug stuff for multirt route resolution. */ 3343 #if defined(DEBUG) && !defined(__lint) 3344 /* Our "don't send, rather drop" flag. */ 3345 #define MULTIRT_DEBUG_FLAG 0x8000 3346 3347 #define MULTIRT_TRACE(x) ip2dbg(x) 3348 3349 #define MULTIRT_DEBUG_TAG(mblk) \ 3350 do { \ 3351 ASSERT(mblk != NULL); \ 3352 MULTIRT_TRACE(("%s[%d]: tagging mblk %p, tag was %d\n", \ 3353 __FILE__, __LINE__, \ 3354 (void *)(mblk), (mblk)->b_flag & MULTIRT_DEBUG_FLAG)); \ 3355 (mblk)->b_flag |= MULTIRT_DEBUG_FLAG; \ 3356 } while (0) 3357 3358 #define MULTIRT_DEBUG_UNTAG(mblk) \ 3359 do { \ 3360 ASSERT(mblk != NULL); \ 3361 MULTIRT_TRACE(("%s[%d]: untagging mblk %p, tag was %d\n", \ 3362 __FILE__, __LINE__, \ 3363 (void *)(mblk), (mblk)->b_flag & MULTIRT_DEBUG_FLAG)); \ 3364 (mblk)->b_flag &= ~MULTIRT_DEBUG_FLAG; \ 3365 } while (0) 3366 3367 #define MULTIRT_DEBUG_TAGGED(mblk) \ 3368 (((mblk)->b_flag & MULTIRT_DEBUG_FLAG) ? B_TRUE : B_FALSE) 3369 #else 3370 #define MULTIRT_DEBUG_TAG(mblk) ASSERT(mblk != NULL) 3371 #define MULTIRT_DEBUG_UNTAG(mblk) ASSERT(mblk != NULL) 3372 #define MULTIRT_DEBUG_TAGGED(mblk) B_FALSE 3373 #endif 3374 3375 /* 3376 * Per-ILL Multidata Transmit capabilities. 3377 */ 3378 struct ill_mdt_capab_s { 3379 uint_t ill_mdt_version; /* interface version */ 3380 uint_t ill_mdt_on; /* on/off switch for MDT on this ILL */ 3381 uint_t ill_mdt_hdr_head; /* leading header fragment extra space */ 3382 uint_t ill_mdt_hdr_tail; /* trailing header fragment extra space */ 3383 uint_t ill_mdt_max_pld; /* maximum payload buffers per Multidata */ 3384 uint_t ill_mdt_span_limit; /* maximum payload span per packet */ 3385 }; 3386 3387 struct ill_hcksum_capab_s { 3388 uint_t ill_hcksum_version; /* interface version */ 3389 uint_t ill_hcksum_txflags; /* capabilities on transmit */ 3390 }; 3391 3392 struct ill_zerocopy_capab_s { 3393 uint_t ill_zerocopy_version; /* interface version */ 3394 uint_t ill_zerocopy_flags; /* capabilities */ 3395 }; 3396 3397 struct ill_lso_capab_s { 3398 uint_t ill_lso_version; /* interface version */ 3399 uint_t ill_lso_on; /* on/off switch for LSO on this ILL */ 3400 uint_t ill_lso_flags; /* capabilities */ 3401 uint_t ill_lso_max; /* maximum size of payload */ 3402 }; 3403 3404 /* Possible ill_states */ 3405 #define ILL_RING_INPROC 3 /* Being assigned to squeue */ 3406 #define ILL_RING_INUSE 2 /* Already Assigned to Rx Ring */ 3407 #define ILL_RING_BEING_FREED 1 /* Being Unassigned */ 3408 #define ILL_RING_FREE 0 /* Available to be assigned to Ring */ 3409 3410 #define ILL_MAX_RINGS 256 /* Max num of rx rings we can manage */ 3411 #define ILL_POLLING 0x01 /* Polling in use */ 3412 3413 /* 3414 * These functions pointer types are exported by the mac/dls layer. 3415 * we need to duplicate the definitions here because we cannot 3416 * include mac/dls header files here. 3417 */ 3418 typedef void (*ip_mac_blank_t)(void *, time_t, uint_t); 3419 typedef void (*ip_dld_tx_t)(void *, mblk_t *); 3420 3421 typedef void (*ip_dls_chg_soft_ring_t)(void *, int); 3422 typedef void (*ip_dls_bind_t)(void *, processorid_t); 3423 typedef void (*ip_dls_unbind_t)(void *); 3424 3425 struct ill_rx_ring { 3426 ip_mac_blank_t rr_blank; /* Driver interrupt blanking func */ 3427 void *rr_handle; /* Handle for Rx ring */ 3428 squeue_t *rr_sqp; /* Squeue the ring is bound to */ 3429 ill_t *rr_ill; /* back pointer to ill */ 3430 clock_t rr_poll_time; /* Last lbolt polling was used */ 3431 uint32_t rr_poll_state; /* polling state flags */ 3432 uint32_t rr_max_blank_time; /* Max interrupt blank */ 3433 uint32_t rr_min_blank_time; /* Min interrupt blank */ 3434 uint32_t rr_max_pkt_cnt; /* Max pkts before interrupt */ 3435 uint32_t rr_min_pkt_cnt; /* Mix pkts before interrupt */ 3436 uint32_t rr_normal_blank_time; /* Normal intr freq */ 3437 uint32_t rr_normal_pkt_cnt; /* Normal intr pkt cnt */ 3438 uint32_t rr_ring_state; /* State of this ring */ 3439 }; 3440 3441 struct ill_dls_capab_s { 3442 ip_dld_tx_t ill_tx; /* Driver Tx routine */ 3443 void *ill_tx_handle; /* Driver Tx handle */ 3444 ip_dls_chg_soft_ring_t ill_dls_change_status; 3445 /* change soft ring fanout */ 3446 ip_dls_bind_t ill_dls_bind; /* to add CPU affinity */ 3447 ip_dls_unbind_t ill_dls_unbind; /* remove CPU affinity */ 3448 ill_rx_ring_t *ill_ring_tbl; /* Ring to Sqp mapping table */ 3449 uint_t ill_dls_soft_ring_cnt; /* Number of soft ring */ 3450 conn_t *ill_unbind_conn; /* Conn used during unplumb */ 3451 }; 3452 3453 /* 3454 * IP squeues exports 3455 */ 3456 extern int ip_squeue_profile; 3457 extern int ip_squeue_bind; 3458 extern boolean_t ip_squeue_fanout; 3459 extern boolean_t ip_squeue_soft_ring; 3460 extern uint_t ip_threads_per_cpu; 3461 extern uint_t ip_squeues_per_cpu; 3462 extern uint_t ip_soft_rings_cnt; 3463 3464 typedef struct squeue_set_s { 3465 kmutex_t sqs_lock; 3466 struct squeue_s **sqs_list; 3467 int sqs_size; 3468 int sqs_max_size; 3469 processorid_t sqs_bind; 3470 } squeue_set_t; 3471 3472 #define IP_SQUEUE_GET(hint) \ 3473 ((!ip_squeue_fanout) ? (CPU->cpu_squeue_set->sqs_list[0]) : \ 3474 ip_squeue_random(hint)) 3475 3476 typedef void (*squeue_func_t)(squeue_t *, mblk_t *, sqproc_t, void *, uint8_t); 3477 3478 extern void ip_squeue_init(void (*)(squeue_t *)); 3479 extern squeue_t *ip_squeue_random(uint_t); 3480 extern squeue_t *ip_squeue_get(ill_rx_ring_t *); 3481 extern int ip_squeue_bind_set(queue_t *, mblk_t *, char *, caddr_t, cred_t *); 3482 extern void ip_squeue_clean_all(ill_t *); 3483 extern void ip_soft_ring_assignment(ill_t *, ill_rx_ring_t *, 3484 mblk_t *, struct mac_header_info_s *); 3485 3486 extern void ip_resume_tcp_bind(void *, mblk_t *, void *); 3487 extern void tcp_wput(queue_t *, mblk_t *); 3488 3489 extern int ip_fill_mtuinfo(struct in6_addr *, in_port_t, 3490 struct ip6_mtuinfo *, netstack_t *); 3491 extern ipif_t *conn_get_held_ipif(conn_t *, ipif_t **, int *); 3492 3493 typedef void (*ipsq_func_t)(ipsq_t *, queue_t *, mblk_t *, void *); 3494 3495 /* 3496 * Squeue tags. Tags only need to be unique when the callback function is the 3497 * same to distinguish between different calls, but we use unique tags for 3498 * convenience anyway. 3499 */ 3500 #define SQTAG_IP_INPUT 1 3501 #define SQTAG_TCP_INPUT_ICMP_ERR 2 3502 #define SQTAG_TCP6_INPUT_ICMP_ERR 3 3503 #define SQTAG_IP_TCP_INPUT 4 3504 #define SQTAG_IP6_TCP_INPUT 5 3505 #define SQTAG_IP_TCP_CLOSE 6 3506 #define SQTAG_TCP_OUTPUT 7 3507 #define SQTAG_TCP_TIMER 8 3508 #define SQTAG_TCP_TIMEWAIT 9 3509 #define SQTAG_TCP_ACCEPT_FINISH 10 3510 #define SQTAG_TCP_ACCEPT_FINISH_Q0 11 3511 #define SQTAG_TCP_ACCEPT_PENDING 12 3512 #define SQTAG_TCP_LISTEN_DISCON 13 3513 #define SQTAG_TCP_CONN_REQ_1 14 3514 #define SQTAG_TCP_EAGER_BLOWOFF 15 3515 #define SQTAG_TCP_EAGER_CLEANUP 16 3516 #define SQTAG_TCP_EAGER_CLEANUP_Q0 17 3517 #define SQTAG_TCP_CONN_IND 18 3518 #define SQTAG_TCP_RSRV 19 3519 #define SQTAG_TCP_ABORT_BUCKET 20 3520 #define SQTAG_TCP_REINPUT 21 3521 #define SQTAG_TCP_REINPUT_EAGER 22 3522 #define SQTAG_TCP_INPUT_MCTL 23 3523 #define SQTAG_TCP_RPUTOTHER 24 3524 #define SQTAG_IP_PROTO_AGAIN 25 3525 #define SQTAG_IP_FANOUT_TCP 26 3526 #define SQTAG_IPSQ_CLEAN_RING 27 3527 #define SQTAG_TCP_WPUT_OTHER 28 3528 #define SQTAG_TCP_CONN_REQ_UNBOUND 29 3529 #define SQTAG_TCP_SEND_PENDING 30 3530 #define SQTAG_BIND_RETRY 31 3531 #define SQTAG_UDP_FANOUT 32 3532 #define SQTAG_UDP_INPUT 33 3533 #define SQTAG_UDP_WPUT 34 3534 #define SQTAG_UDP_OUTPUT 35 3535 #define SQTAG_TCP_KSSL_INPUT 36 3536 #define SQTAG_TCP_DROP_Q0 37 3537 #define SQTAG_TCP_CONN_REQ_2 38 3538 3539 #define NOT_OVER_IP(ip_wq) \ 3540 (ip_wq->q_next != NULL || \ 3541 (ip_wq->q_qinfo->qi_minfo->mi_idname) == NULL || \ 3542 strcmp(ip_wq->q_qinfo->qi_minfo->mi_idname, \ 3543 IP_MOD_NAME) != 0 || \ 3544 ip_wq->q_qinfo->qi_minfo->mi_idnum != IP_MOD_ID) 3545 3546 #endif /* _KERNEL */ 3547 3548 #ifdef __cplusplus 3549 } 3550 #endif 3551 3552 #endif /* _INET_IP_H */ 3553