1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2007 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 /* Copyright (c) 1990 Mentat Inc. */ 27 28 #ifndef _INET_IP_H 29 #define _INET_IP_H 30 31 #pragma ident "%Z%%M% %I% %E% SMI" 32 33 #ifdef __cplusplus 34 extern "C" { 35 #endif 36 37 #include <sys/isa_defs.h> 38 #include <sys/types.h> 39 #include <inet/mib2.h> 40 #include <inet/nd.h> 41 #include <sys/atomic.h> 42 #include <net/if_dl.h> 43 #include <net/if.h> 44 #include <netinet/ip.h> 45 #include <netinet/igmp.h> 46 #include <sys/neti.h> 47 #include <sys/hook.h> 48 #include <sys/hook_event.h> 49 #include <sys/hook_impl.h> 50 #include <inet/ip_stack.h> 51 52 #ifdef _KERNEL 53 #include <netinet/ip6.h> 54 #include <sys/avl.h> 55 #include <sys/vmem.h> 56 #include <sys/squeue.h> 57 #include <net/route.h> 58 #include <sys/systm.h> 59 #include <sys/multidata.h> 60 #include <net/radix.h> 61 62 #ifdef DEBUG 63 #define ILL_DEBUG 64 #define IRE_DEBUG 65 #define NCE_DEBUG 66 #define CONN_DEBUG 67 #endif 68 69 #define IP_DEBUG 70 /* 71 * The mt-streams(9F) flags for the IP module; put here so that other 72 * "drivers" that are actually IP (e.g., ICMP, UDP) can use the same set 73 * of flags. 74 */ 75 #define IP_DEVMTFLAGS D_MP 76 #endif /* _KERNEL */ 77 78 #define IP_MOD_NAME "ip" 79 #define IP_DEV_NAME "/dev/ip" 80 #define IP6_DEV_NAME "/dev/ip6" 81 82 #define UDP_MOD_NAME "udp" 83 #define UDP_DEV_NAME "/dev/udp" 84 #define UDP6_DEV_NAME "/dev/udp6" 85 86 #define TCP_MOD_NAME "tcp" 87 #define TCP_DEV_NAME "/dev/tcp" 88 #define TCP6_DEV_NAME "/dev/tcp6" 89 90 #define SCTP_MOD_NAME "sctp" 91 92 /* Minor numbers */ 93 #define IPV4_MINOR 0 94 #define IPV6_MINOR 1 95 #define TCP_MINOR 2 96 #define TCP_MINOR6 3 97 98 #ifndef _IPADDR_T 99 #define _IPADDR_T 100 typedef uint32_t ipaddr_t; 101 #endif 102 103 /* Number of bits in an address */ 104 #define IP_ABITS 32 105 #define IPV6_ABITS 128 106 107 #define IP_HOST_MASK (ipaddr_t)0xffffffffU 108 109 #define IP_CSUM(mp, off, sum) (~ip_cksum(mp, off, sum) & 0xFFFF) 110 #define IP_CSUM_PARTIAL(mp, off, sum) ip_cksum(mp, off, sum) 111 #define IP_BCSUM_PARTIAL(bp, len, sum) bcksum(bp, len, sum) 112 #define IP_MD_CSUM(pd, off, sum) (~ip_md_cksum(pd, off, sum) & 0xffff) 113 #define IP_MD_CSUM_PARTIAL(pd, off, sum) ip_md_cksum(pd, off, sum) 114 115 /* 116 * Flag to IP write side to indicate that the appln has sent in a pre-built 117 * IP header. Stored in ipha_ident (which is otherwise zero). 118 */ 119 #define IP_HDR_INCLUDED 0xFFFF 120 121 #define ILL_FRAG_HASH_TBL_COUNT ((unsigned int)64) 122 #define ILL_FRAG_HASH_TBL_SIZE (ILL_FRAG_HASH_TBL_COUNT * sizeof (ipfb_t)) 123 124 #define IPV4_ADDR_LEN 4 125 #define IP_ADDR_LEN IPV4_ADDR_LEN 126 #define IP_ARP_PROTO_TYPE 0x0800 127 128 #define IPV4_VERSION 4 129 #define IP_VERSION IPV4_VERSION 130 #define IP_SIMPLE_HDR_LENGTH_IN_WORDS 5 131 #define IP_SIMPLE_HDR_LENGTH 20 132 #define IP_MAX_HDR_LENGTH 60 133 134 #define IP_MAX_OPT_LENGTH (IP_MAX_HDR_LENGTH-IP_SIMPLE_HDR_LENGTH) 135 136 #define IP_MIN_MTU (IP_MAX_HDR_LENGTH + 8) /* 68 bytes */ 137 138 /* 139 * XXX IP_MAXPACKET is defined in <netinet/ip.h> as well. At some point the 140 * 2 files should be cleaned up to remove all redundant definitions. 141 */ 142 #define IP_MAXPACKET 65535 143 #define IP_SIMPLE_HDR_VERSION \ 144 ((IP_VERSION << 4) | IP_SIMPLE_HDR_LENGTH_IN_WORDS) 145 146 #define UDPH_SIZE 8 147 148 /* Leave room for ip_newroute to tack on the src and target addresses */ 149 #define OK_RESOLVER_MP(mp) \ 150 ((mp) && ((mp)->b_wptr - (mp)->b_rptr) >= (2 * IP_ADDR_LEN)) 151 152 /* 153 * Constants and type definitions to support IP IOCTL commands 154 */ 155 #define IP_IOCTL (('i'<<8)|'p') 156 #define IP_IOC_IRE_DELETE 4 157 #define IP_IOC_IRE_DELETE_NO_REPLY 5 158 #define IP_IOC_IRE_ADVISE_NO_REPLY 6 159 #define IP_IOC_RTS_REQUEST 7 160 161 /* Common definitions used by IP IOCTL data structures */ 162 typedef struct ipllcmd_s { 163 uint_t ipllc_cmd; 164 uint_t ipllc_name_offset; 165 uint_t ipllc_name_length; 166 } ipllc_t; 167 168 /* IP IRE Change Command Structure. */ 169 typedef struct ipic_s { 170 ipllc_t ipic_ipllc; 171 uint_t ipic_ire_type; 172 uint_t ipic_max_frag; 173 uint_t ipic_addr_offset; 174 uint_t ipic_addr_length; 175 uint_t ipic_mask_offset; 176 uint_t ipic_mask_length; 177 uint_t ipic_src_addr_offset; 178 uint_t ipic_src_addr_length; 179 uint_t ipic_ll_hdr_offset; 180 uint_t ipic_ll_hdr_length; 181 uint_t ipic_gateway_addr_offset; 182 uint_t ipic_gateway_addr_length; 183 clock_t ipic_rtt; 184 uint32_t ipic_ssthresh; 185 clock_t ipic_rtt_sd; 186 uchar_t ipic_ire_marks; 187 } ipic_t; 188 189 #define ipic_cmd ipic_ipllc.ipllc_cmd 190 #define ipic_ll_name_length ipic_ipllc.ipllc_name_length 191 #define ipic_ll_name_offset ipic_ipllc.ipllc_name_offset 192 193 /* IP IRE Delete Command Structure. */ 194 typedef struct ipid_s { 195 ipllc_t ipid_ipllc; 196 uint_t ipid_ire_type; 197 uint_t ipid_addr_offset; 198 uint_t ipid_addr_length; 199 uint_t ipid_mask_offset; 200 uint_t ipid_mask_length; 201 } ipid_t; 202 203 #define ipid_cmd ipid_ipllc.ipllc_cmd 204 205 #ifdef _KERNEL 206 /* 207 * Temporary state for ip options parser. 208 */ 209 typedef struct ipoptp_s 210 { 211 uint8_t *ipoptp_next; /* next option to look at */ 212 uint8_t *ipoptp_end; /* end of options */ 213 uint8_t *ipoptp_cur; /* start of current option */ 214 uint8_t ipoptp_len; /* length of current option */ 215 uint32_t ipoptp_flags; 216 } ipoptp_t; 217 218 /* 219 * Flag(s) for ipoptp_flags 220 */ 221 #define IPOPTP_ERROR 0x00000001 222 #endif /* _KERNEL */ 223 224 225 /* Controls forwarding of IP packets, set via ndd */ 226 #define IP_FORWARD_NEVER 0 227 #define IP_FORWARD_ALWAYS 1 228 229 #define WE_ARE_FORWARDING(ipst) ((ipst)->ips_ip_g_forward == IP_FORWARD_ALWAYS) 230 231 #define IPH_HDR_LENGTH(ipha) \ 232 ((int)(((ipha_t *)ipha)->ipha_version_and_hdr_length & 0xF) << 2) 233 234 #define IPH_HDR_VERSION(ipha) \ 235 ((int)(((ipha_t *)ipha)->ipha_version_and_hdr_length) >> 4) 236 237 #ifdef _KERNEL 238 /* 239 * IP reassembly macros. We hide starting and ending offsets in b_next and 240 * b_prev of messages on the reassembly queue. The messages are chained using 241 * b_cont. These macros are used in ip_reassemble() so we don't have to see 242 * the ugly casts and assignments. 243 * Note that the offsets are <= 64k i.e. a uint_t is sufficient to represent 244 * them. 245 */ 246 #define IP_REASS_START(mp) ((uint_t)(uintptr_t)((mp)->b_next)) 247 #define IP_REASS_SET_START(mp, u) \ 248 ((mp)->b_next = (mblk_t *)(uintptr_t)(u)) 249 #define IP_REASS_END(mp) ((uint_t)(uintptr_t)((mp)->b_prev)) 250 #define IP_REASS_SET_END(mp, u) \ 251 ((mp)->b_prev = (mblk_t *)(uintptr_t)(u)) 252 253 #define IP_REASS_COMPLETE 0x1 254 #define IP_REASS_PARTIAL 0x2 255 #define IP_REASS_FAILED 0x4 256 257 /* 258 * Test to determine whether this is a module instance of IP or a 259 * driver instance of IP. 260 */ 261 #define CONN_Q(q) (WR(q)->q_next == NULL) 262 263 #define Q_TO_CONN(q) ((conn_t *)(q)->q_ptr) 264 #define Q_TO_TCP(q) (Q_TO_CONN((q))->conn_tcp) 265 #define Q_TO_UDP(q) (Q_TO_CONN((q))->conn_udp) 266 267 /* 268 * The following two macros are used by IP to get the appropriate 269 * wq and rq for a conn. If it is a TCP conn, then we need 270 * tcp_wq/tcp_rq else, conn_wq/conn_rq. IP can use conn_wq and conn_rq 271 * from a conn directly if it knows that the conn is not TCP. 272 */ 273 #define CONNP_TO_WQ(connp) \ 274 (IPCL_IS_TCP(connp) ? (connp)->conn_tcp->tcp_wq : (connp)->conn_wq) 275 276 #define CONNP_TO_RQ(connp) RD(CONNP_TO_WQ(connp)) 277 278 #define GRAB_CONN_LOCK(q) { \ 279 if (q != NULL && CONN_Q(q)) \ 280 mutex_enter(&(Q_TO_CONN(q))->conn_lock); \ 281 } 282 283 #define RELEASE_CONN_LOCK(q) { \ 284 if (q != NULL && CONN_Q(q)) \ 285 mutex_exit(&(Q_TO_CONN(q))->conn_lock); \ 286 } 287 288 /* "Congestion controlled" protocol */ 289 #define IP_FLOW_CONTROLLED_ULP(p) ((p) == IPPROTO_TCP || (p) == IPPROTO_SCTP) 290 291 /* 292 * Complete the pending operation. Usually an ioctl. Can also 293 * be a bind or option management request that got enqueued 294 * in an ipsq_t. Called on completion of the operation. 295 */ 296 #define CONN_OPER_PENDING_DONE(connp) { \ 297 mutex_enter(&(connp)->conn_lock); \ 298 (connp)->conn_oper_pending_ill = NULL; \ 299 cv_broadcast(&(connp)->conn_refcv); \ 300 mutex_exit(&(connp)->conn_lock); \ 301 CONN_DEC_REF(connp); \ 302 } 303 304 /* Get the credential of an IP queue of unknown type */ 305 #define GET_QUEUE_CRED(wq) \ 306 ((wq)->q_next ? (((ill_t *)(wq)->q_ptr)->ill_credp) \ 307 : ((Q_TO_CONN((wq)))->conn_cred)) 308 309 /* 310 * Flags for the various ip_fanout_* routines. 311 */ 312 #define IP_FF_SEND_ICMP 0x01 /* Send an ICMP error */ 313 #define IP_FF_HDR_COMPLETE 0x02 /* Call ip_hdr_complete if error */ 314 #define IP_FF_CKSUM 0x04 /* Recompute ipha_cksum if error */ 315 #define IP_FF_RAWIP 0x08 /* Use rawip mib variable */ 316 #define IP_FF_SRC_QUENCH 0x10 /* OK to send ICMP_SOURCE_QUENCH */ 317 #define IP_FF_SYN_ADDIRE 0x20 /* Add IRE if TCP syn packet */ 318 #define IP_FF_IPINFO 0x80 /* Used for both V4 and V6 */ 319 #define IP_FF_SEND_SLLA 0x100 /* Send source link layer info ? */ 320 #define IPV6_REACHABILITY_CONFIRMATION 0x200 /* Flags for ip_xmit_v6 */ 321 #define IP_FF_NO_MCAST_LOOP 0x400 /* No multicasts for sending zone */ 322 323 /* 324 * Following flags are used by IPQoS to determine if policy processing is 325 * required. 326 */ 327 #define IP6_NO_IPPOLICY 0x800 /* Don't do IPQoS processing */ 328 #define IP6_IN_LLMCAST 0x1000 /* Multicast */ 329 330 #define IP_FF_LOOPBACK 0x2000 /* Loopback fanout */ 331 332 #ifndef IRE_DB_TYPE 333 #define IRE_DB_TYPE M_SIG 334 #endif 335 336 #ifndef IRE_DB_REQ_TYPE 337 #define IRE_DB_REQ_TYPE M_PCSIG 338 #endif 339 340 #ifndef IRE_ARPRESOLVE_TYPE 341 #define IRE_ARPRESOLVE_TYPE M_EVENT 342 #endif 343 344 /* 345 * Values for squeue switch: 346 */ 347 348 #define IP_SQUEUE_ENTER_NODRAIN 1 349 #define IP_SQUEUE_ENTER 2 350 /* 351 * This is part of the interface between Transport provider and 352 * IP which can be used to set policy information. This is usually 353 * accompanied with O_T_BIND_REQ/T_BIND_REQ.ip_bind assumes that 354 * only IPSEC_POLICY_SET is there when it is found in the chain. 355 * The information contained is an struct ipsec_req_t. On success 356 * or failure, either the T_BIND_ACK or the T_ERROR_ACK is returned. 357 * IPSEC_POLICY_SET is never returned. 358 */ 359 #define IPSEC_POLICY_SET M_SETOPTS 360 361 #define IRE_IS_LOCAL(ire) ((ire != NULL) && \ 362 ((ire)->ire_type & (IRE_LOCAL | IRE_LOOPBACK))) 363 364 #define IRE_IS_TARGET(ire) ((ire != NULL) && \ 365 ((ire)->ire_type != IRE_BROADCAST)) 366 367 /* IP Fragmentation Reassembly Header */ 368 typedef struct ipf_s { 369 struct ipf_s *ipf_hash_next; 370 struct ipf_s **ipf_ptphn; /* Pointer to previous hash next. */ 371 uint32_t ipf_ident; /* Ident to match. */ 372 uint8_t ipf_protocol; /* Protocol to match. */ 373 uchar_t ipf_last_frag_seen : 1; /* Last fragment seen ? */ 374 time_t ipf_timestamp; /* Reassembly start time. */ 375 mblk_t *ipf_mp; /* mblk we live in. */ 376 mblk_t *ipf_tail_mp; /* Frag queue tail pointer. */ 377 int ipf_hole_cnt; /* Number of holes (hard-case). */ 378 int ipf_end; /* Tail end offset (0 -> hard-case). */ 379 uint_t ipf_gen; /* Frag queue generation */ 380 size_t ipf_count; /* Count of bytes used by frag */ 381 uint_t ipf_nf_hdr_len; /* Length of nonfragmented header */ 382 in6_addr_t ipf_v6src; /* IPv6 source address */ 383 in6_addr_t ipf_v6dst; /* IPv6 dest address */ 384 uint_t ipf_prev_nexthdr_offset; /* Offset for nexthdr value */ 385 uint8_t ipf_ecn; /* ECN info for the fragments */ 386 uint8_t ipf_num_dups; /* Number of times dup frags recvd */ 387 uint16_t ipf_checksum_flags; /* Hardware checksum flags */ 388 uint32_t ipf_checksum; /* Partial checksum of fragment data */ 389 } ipf_t; 390 391 #define ipf_src V4_PART_OF_V6(ipf_v6src) 392 #define ipf_dst V4_PART_OF_V6(ipf_v6dst) 393 394 typedef enum { 395 IB_PKT = 0x01, 396 OB_PKT = 0x02 397 } ip_pkt_t; 398 399 #define UPDATE_IB_PKT_COUNT(ire)\ 400 { \ 401 (ire)->ire_ib_pkt_count++; \ 402 if ((ire)->ire_ipif != NULL) { \ 403 /* \ 404 * forwarding packet \ 405 */ \ 406 if ((ire)->ire_type & (IRE_LOCAL|IRE_BROADCAST)) \ 407 atomic_add_32(&(ire)->ire_ipif->ipif_ib_pkt_count, 1);\ 408 else \ 409 atomic_add_32(&(ire)->ire_ipif->ipif_fo_pkt_count, 1);\ 410 } \ 411 } 412 #define UPDATE_OB_PKT_COUNT(ire)\ 413 { \ 414 (ire)->ire_ob_pkt_count++;\ 415 if ((ire)->ire_ipif != NULL) { \ 416 atomic_add_32(&(ire)->ire_ipif->ipif_ob_pkt_count, 1); \ 417 } \ 418 } 419 420 421 #define IP_RPUT_LOCAL(q, mp, ipha, ire, recv_ill) \ 422 { \ 423 switch (ipha->ipha_protocol) { \ 424 case IPPROTO_UDP: \ 425 ip_udp_input(q, mp, ipha, ire, recv_ill); \ 426 break; \ 427 default: \ 428 ip_proto_input(q, mp, ipha, ire, recv_ill); \ 429 break; \ 430 } \ 431 } 432 433 /* 434 * NCE_EXPIRED is TRUE when we have a non-permanent nce that was 435 * found to be REACHABLE more than ip_ire_arp_interval ms ago. 436 * This macro is used to age existing nce_t entries. The 437 * nce's will get cleaned up in the following circumstances: 438 * - ip_ire_trash_reclaim will free nce's using ndp_cache_reclaim 439 * when memory is low, 440 * - ip_arp_news, when updates are received. 441 * - if the nce is NCE_EXPIRED(), it will deleted, so that a new 442 * arp request will need to be triggered from an ND_INITIAL nce. 443 * 444 * Note that the nce state transition follows the pattern: 445 * ND_INITIAL -> ND_INCOMPLETE -> ND_REACHABLE 446 * after which the nce is deleted when it has expired. 447 * 448 * nce_last is the timestamp that indicates when the nce_res_mp in the 449 * nce_t was last updated to a valid link-layer address. nce_last gets 450 * modified/updated : 451 * - when the nce is created 452 * - every time we get a sane arp response for the nce. 453 */ 454 #define NCE_EXPIRED(nce, ipst) (nce->nce_last > 0 && \ 455 ((nce->nce_flags & NCE_F_PERMANENT) == 0) && \ 456 ((TICK_TO_MSEC(lbolt64) - nce->nce_last) > \ 457 (ipst)->ips_ip_ire_arp_interval)) 458 459 #endif /* _KERNEL */ 460 461 /* ICMP types */ 462 #define ICMP_ECHO_REPLY 0 463 #define ICMP_DEST_UNREACHABLE 3 464 #define ICMP_SOURCE_QUENCH 4 465 #define ICMP_REDIRECT 5 466 #define ICMP_ECHO_REQUEST 8 467 #define ICMP_ROUTER_ADVERTISEMENT 9 468 #define ICMP_ROUTER_SOLICITATION 10 469 #define ICMP_TIME_EXCEEDED 11 470 #define ICMP_PARAM_PROBLEM 12 471 #define ICMP_TIME_STAMP_REQUEST 13 472 #define ICMP_TIME_STAMP_REPLY 14 473 #define ICMP_INFO_REQUEST 15 474 #define ICMP_INFO_REPLY 16 475 #define ICMP_ADDRESS_MASK_REQUEST 17 476 #define ICMP_ADDRESS_MASK_REPLY 18 477 478 /* ICMP_TIME_EXCEEDED codes */ 479 #define ICMP_TTL_EXCEEDED 0 480 #define ICMP_REASSEMBLY_TIME_EXCEEDED 1 481 482 /* ICMP_DEST_UNREACHABLE codes */ 483 #define ICMP_NET_UNREACHABLE 0 484 #define ICMP_HOST_UNREACHABLE 1 485 #define ICMP_PROTOCOL_UNREACHABLE 2 486 #define ICMP_PORT_UNREACHABLE 3 487 #define ICMP_FRAGMENTATION_NEEDED 4 488 #define ICMP_SOURCE_ROUTE_FAILED 5 489 #define ICMP_DEST_NET_UNKNOWN 6 490 #define ICMP_DEST_HOST_UNKNOWN 7 491 #define ICMP_SRC_HOST_ISOLATED 8 492 #define ICMP_DEST_NET_UNREACH_ADMIN 9 493 #define ICMP_DEST_HOST_UNREACH_ADMIN 10 494 #define ICMP_DEST_NET_UNREACH_TOS 11 495 #define ICMP_DEST_HOST_UNREACH_TOS 12 496 497 /* ICMP Header Structure */ 498 typedef struct icmph_s { 499 uint8_t icmph_type; 500 uint8_t icmph_code; 501 uint16_t icmph_checksum; 502 union { 503 struct { /* ECHO request/response structure */ 504 uint16_t u_echo_ident; 505 uint16_t u_echo_seqnum; 506 } u_echo; 507 struct { /* Destination unreachable structure */ 508 uint16_t u_du_zero; 509 uint16_t u_du_mtu; 510 } u_du; 511 struct { /* Parameter problem structure */ 512 uint8_t u_pp_ptr; 513 uint8_t u_pp_rsvd[3]; 514 } u_pp; 515 struct { /* Redirect structure */ 516 ipaddr_t u_rd_gateway; 517 } u_rd; 518 } icmph_u; 519 } icmph_t; 520 521 #define icmph_echo_ident icmph_u.u_echo.u_echo_ident 522 #define icmph_echo_seqnum icmph_u.u_echo.u_echo_seqnum 523 #define icmph_du_zero icmph_u.u_du.u_du_zero 524 #define icmph_du_mtu icmph_u.u_du.u_du_mtu 525 #define icmph_pp_ptr icmph_u.u_pp.u_pp_ptr 526 #define icmph_rd_gateway icmph_u.u_rd.u_rd_gateway 527 528 #define ICMPH_SIZE 8 529 530 /* 531 * Minimum length of transport layer header included in an ICMP error 532 * message for it to be considered valid. 533 */ 534 #define ICMP_MIN_TP_HDR_LEN 8 535 536 /* Aligned IP header */ 537 typedef struct ipha_s { 538 uint8_t ipha_version_and_hdr_length; 539 uint8_t ipha_type_of_service; 540 uint16_t ipha_length; 541 uint16_t ipha_ident; 542 uint16_t ipha_fragment_offset_and_flags; 543 uint8_t ipha_ttl; 544 uint8_t ipha_protocol; 545 uint16_t ipha_hdr_checksum; 546 ipaddr_t ipha_src; 547 ipaddr_t ipha_dst; 548 } ipha_t; 549 550 #define IPH_DF 0x4000 /* Don't fragment */ 551 #define IPH_MF 0x2000 /* More fragments to come */ 552 #define IPH_OFFSET 0x1FFF /* Where the offset lives */ 553 #define IPH_FRAG_HDR 0x8000 /* IPv6 don't fragment bit */ 554 555 /* ECN code points for IPv4 TOS byte and IPv6 traffic class octet. */ 556 #define IPH_ECN_NECT 0x0 /* Not ECN-Capabable Transport */ 557 #define IPH_ECN_ECT1 0x1 /* ECN-Capable Transport, ECT(1) */ 558 #define IPH_ECN_ECT0 0x2 /* ECN-Capable Transport, ECT(0) */ 559 #define IPH_ECN_CE 0x3 /* ECN-Congestion Experienced (CE) */ 560 561 /* IP Mac info structure */ 562 typedef struct ip_m_s { 563 t_uscalar_t ip_m_mac_type; /* From <sys/dlpi.h> */ 564 int ip_m_type; /* From <net/if_types.h> */ 565 boolean_t (*ip_m_v4mapinfo)(uint_t, uint8_t *, uint8_t *, 566 uint32_t *, ipaddr_t *); 567 boolean_t (*ip_m_v6mapinfo)(uint_t, uint8_t *, uint8_t *, 568 uint32_t *, in6_addr_t *); 569 boolean_t (*ip_m_v6intfid)(uint_t, uint8_t *, in6_addr_t *); 570 } ip_m_t; 571 572 /* 573 * The following functions attempt to reduce the link layer dependency 574 * of the IP stack. The current set of link specific operations are: 575 * a. map from IPv4 class D (224.0/4) multicast address range to the link 576 * layer multicast address range. 577 * b. map from IPv6 multicast address range (ff00::/8) to the link 578 * layer multicast address range. 579 * c. derive the default IPv6 interface identifier from the link layer 580 * address. 581 */ 582 #define MEDIA_V4MINFO(ip_m, plen, bphys, maddr, hwxp, v4ptr) \ 583 (((ip_m)->ip_m_v4mapinfo != NULL) && \ 584 (*(ip_m)->ip_m_v4mapinfo)(plen, bphys, maddr, hwxp, v4ptr)) 585 #define MEDIA_V6INTFID(ip_m, plen, phys, v6ptr) \ 586 (((ip_m)->ip_m_v6intfid != NULL) && \ 587 (*(ip_m)->ip_m_v6intfid)(plen, phys, v6ptr)) 588 #define MEDIA_V6MINFO(ip_m, plen, bphys, maddr, hwxp, v6ptr) \ 589 (((ip_m)->ip_m_v6mapinfo != NULL) && \ 590 (*(ip_m)->ip_m_v6mapinfo)(plen, bphys, maddr, hwxp, v6ptr)) 591 592 /* Router entry types */ 593 #define IRE_BROADCAST 0x0001 /* Route entry for broadcast address */ 594 #define IRE_DEFAULT 0x0002 /* Route entry for default gateway */ 595 #define IRE_LOCAL 0x0004 /* Route entry for local address */ 596 #define IRE_LOOPBACK 0x0008 /* Route entry for loopback address */ 597 #define IRE_PREFIX 0x0010 /* Route entry for prefix routes */ 598 #define IRE_CACHE 0x0020 /* Cached Route entry */ 599 #define IRE_IF_NORESOLVER 0x0040 /* Route entry for local interface */ 600 /* net without any address mapping. */ 601 #define IRE_IF_RESOLVER 0x0080 /* Route entry for local interface */ 602 /* net with resolver. */ 603 #define IRE_HOST 0x0100 /* Host route entry */ 604 #define IRE_HOST_REDIRECT 0x0200 /* only used for T_SVR4_OPTMGMT_REQ */ 605 606 #define IRE_INTERFACE (IRE_IF_NORESOLVER | IRE_IF_RESOLVER) 607 #define IRE_OFFSUBNET (IRE_DEFAULT | IRE_PREFIX | IRE_HOST) 608 #define IRE_CACHETABLE (IRE_CACHE | IRE_BROADCAST | IRE_LOCAL | \ 609 IRE_LOOPBACK) 610 #define IRE_FORWARDTABLE (IRE_INTERFACE | IRE_OFFSUBNET) 611 612 /* 613 * If an IRE is marked with IRE_MARK_CONDEMNED, the last walker of 614 * the bucket should delete this IRE from this bucket. 615 */ 616 #define IRE_MARK_CONDEMNED 0x0001 617 /* 618 * If a broadcast IRE is marked with IRE_MARK_NORECV, ip_rput will drop the 619 * broadcast packets received on that interface. This is marked only 620 * on broadcast ires. Employed by IPMP, where we have multiple NICs on the 621 * same subnet receiving the same broadcast packet. 622 */ 623 #define IRE_MARK_NORECV 0x0002 624 /* 625 * IRE_CACHE marked this way won't be returned by ire_cache_lookup. Need 626 * to look specifically using MATCH_IRE_MARK_HIDDEN. Used by IPMP. 627 */ 628 #define IRE_MARK_HIDDEN 0x0004 /* Typically Used by in.mpathd */ 629 630 /* 631 * ire with IRE_MARK_NOADD is created in ip_newroute_ipif, when outgoing 632 * interface is specified by IP_XMIT_IF socket option. This ire is not 633 * added in IRE_CACHE. 634 */ 635 #define IRE_MARK_NOADD 0x0008 /* Mark not to add ire in cache */ 636 637 /* 638 * IRE marked with IRE_MARK_TEMPORARY means that this IRE has been used 639 * either for forwarding a packet or has not been used for sending 640 * traffic on TCP connections terminated on this system. In both 641 * cases, this IRE is the first to go when IRE is being cleaned up. 642 */ 643 #define IRE_MARK_TEMPORARY 0x0010 644 645 /* 646 * IRE marked with IRE_MARK_USESRC_CHECK means that while adding an IRE with 647 * this mark, additional atomic checks need to be performed. For eg: by the 648 * time an IRE_CACHE is created, sent up to ARP and then comes back to IP; the 649 * usesrc grouping could have changed in which case we want to fail adding 650 * the IRE_CACHE entry 651 */ 652 #define IRE_MARK_USESRC_CHECK 0x0020 653 654 /* 655 * IRE_MARK_PRIVATE_ADDR is used for IP_NEXTHOP. When IP_NEXTHOP is set, the 656 * routing table lookup for the destination is bypassed and the packet is 657 * sent directly to the specified nexthop. The associated IRE_CACHE entries 658 * should be marked with IRE_MARK_PRIVATE_ADDR flag so that they don't show up 659 * in regular ire cache lookups. 660 */ 661 #define IRE_MARK_PRIVATE_ADDR 0x0040 662 663 /* 664 * When we send an ARP resolution query for the nexthop gateway's ire, 665 * we use esballoc to create the ire_t in the AR_ENTRY_QUERY mblk 666 * chain, and mark its ire_marks with IRE_MARK_UNCACHED. This flag 667 * indicates that information from ARP has not been transferred to a 668 * permanent IRE_CACHE entry. The flag is reset only when the 669 * information is successfully transferred to an ire_cache entry (in 670 * ire_add()). Attempting to free the AR_ENTRY_QUERY mblk chain prior 671 * to ire_add (e.g., from arp, or from ip`ip_wput_nondata) will 672 * require that the resources (incomplete ire_cache and/or nce) must 673 * be cleaned up. The free callback routine (ire_freemblk()) checks 674 * for IRE_MARK_UNCACHED to see if any resources that are pinned down 675 * will need to be cleaned up or not. 676 */ 677 678 #define IRE_MARK_UNCACHED 0x0080 679 680 /* 681 * The comment below (and for other netstack_t references) refers 682 * to the fact that we only do netstack_hold in particular cases, 683 * such as the references from open streams (ill_t and conn_t's 684 * pointers). Internally within IP we rely on IP's ability to cleanup e.g. 685 * ire_t's when an ill goes away. 686 */ 687 typedef struct ire_expire_arg_s { 688 int iea_flush_flag; 689 ip_stack_t *iea_ipst; /* Does not have a netstack_hold */ 690 } ire_expire_arg_t; 691 692 /* Flags with ire_expire routine */ 693 #define FLUSH_ARP_TIME 0x0001 /* ARP info potentially stale timer */ 694 #define FLUSH_REDIRECT_TIME 0x0002 /* Redirects potentially stale */ 695 #define FLUSH_MTU_TIME 0x0004 /* Include path MTU per RFC 1191 */ 696 697 /* Arguments to ire_flush_cache() */ 698 #define IRE_FLUSH_DELETE 0 699 #define IRE_FLUSH_ADD 1 700 701 /* 702 * Open/close synchronization flags. 703 * These are kept in a separate field in the conn and the synchronization 704 * depends on the atomic 32 bit access to that field. 705 */ 706 #define CONN_CLOSING 0x01 /* ip_close waiting for ip_wsrv */ 707 #define CONN_IPSEC_LOAD_WAIT 0x02 /* waiting for load */ 708 #define CONN_CONDEMNED 0x04 /* conn is closing, no more refs */ 709 #define CONN_INCIPIENT 0x08 /* conn not yet visible, no refs */ 710 #define CONN_QUIESCED 0x10 /* conn is now quiescent */ 711 712 /* Used to check connection state flags before caching the IRE */ 713 #define CONN_CACHE_IRE(connp) \ 714 (!((connp)->conn_state_flags & (CONN_CLOSING|CONN_CONDEMNED))) 715 716 /* 717 * Parameter to ip_output giving the identity of the caller. 718 * IP_WSRV means the packet was enqueued in the STREAMS queue 719 * due to flow control and is now being reprocessed in the context of 720 * the STREAMS service procedure, consequent to flow control relief. 721 * IRE_SEND means the packet is being reprocessed consequent to an 722 * ire cache creation and addition and this may or may not be happening 723 * in the service procedure context. Anything other than the above 2 724 * cases is identified as IP_WPUT. Most commonly this is the case of 725 * packets coming down from the application. 726 */ 727 #ifdef _KERNEL 728 #define IP_WSRV 1 /* Called from ip_wsrv */ 729 #define IP_WPUT 2 /* Called from ip_wput */ 730 #define IRE_SEND 3 /* Called from ire_send */ 731 732 /* 733 * Extra structures need for per-src-addr filtering (IGMPv3/MLDv2) 734 */ 735 #define MAX_FILTER_SIZE 64 736 737 typedef struct slist_s { 738 int sl_numsrc; 739 in6_addr_t sl_addr[MAX_FILTER_SIZE]; 740 } slist_t; 741 742 /* 743 * Following struct is used to maintain retransmission state for 744 * a multicast group. One rtx_state_t struct is an in-line field 745 * of the ilm_t struct; the slist_ts in the rtx_state_t struct are 746 * alloc'd as needed. 747 */ 748 typedef struct rtx_state_s { 749 uint_t rtx_timer; /* retrans timer */ 750 int rtx_cnt; /* retrans count */ 751 int rtx_fmode_cnt; /* retrans count for fmode change */ 752 slist_t *rtx_allow; 753 slist_t *rtx_block; 754 } rtx_state_t; 755 756 /* 757 * Used to construct list of multicast address records that will be 758 * sent in a single listener report. 759 */ 760 typedef struct mrec_s { 761 struct mrec_s *mrec_next; 762 uint8_t mrec_type; 763 uint8_t mrec_auxlen; /* currently unused */ 764 in6_addr_t mrec_group; 765 slist_t mrec_srcs; 766 } mrec_t; 767 768 /* Group membership list per upper conn */ 769 /* 770 * XXX add ilg info for ifaddr/ifindex. 771 * XXX can we make ilg survive an ifconfig unplumb + plumb 772 * by setting the ipif/ill to NULL and recover that later? 773 * 774 * ilg_ipif is used by IPv4 as multicast groups are joined using an interface 775 * address (ipif). 776 * ilg_ill is used by IPv6 as multicast groups are joined using an interface 777 * index (phyint->phyint_ifindex). 778 * ilg_ill is NULL for IPv4 and ilg_ipif is NULL for IPv6. 779 * 780 * ilg records the state of multicast memberships of a socket end point. 781 * ilm records the state of multicast memberships with the driver and is 782 * maintained per interface. 783 * 784 * Notes : 785 * 786 * 1) There is no direct link between a given ilg and ilm. If the 787 * application has joined a group G with ifindex I, we will have 788 * an ilg with ilg_v6group and ilg_ill. There will be a corresponding 789 * ilm with ilm_ill/ilm_v6addr recording the multicast membership. 790 * To delete the membership, 791 * 792 * a) Search for ilg matching on G and I with ilg_v6group 793 * and ilg_ill. Delete ilg_ill. 794 * b) Search the corresponding ilm matching on G and I with 795 * ilm_v6addr and ilm_ill. Delete ilm. 796 * 797 * In IPv4, the only difference is, we look using ipifs instead of 798 * ills. 799 * 800 * 2) With IP multipathing, we want to keep receiving even after the 801 * interface has failed. We do this by moving multicast memberships 802 * to a new_ill within the group. This is acheived by sending 803 * DL_DISABMULTI_REQS on ilg_ill/ilm_ill and sending DL_ENABMULTIREQS 804 * on the new_ill and changing ilg_ill/ilm_ill to new_ill. But, we 805 * need to be able to delete memberships which will still come down 806 * with the ifindex of the old ill which is what the application 807 * knows of. Thus we store the ilm_/ilg_orig_ifindex to keep track 808 * of where we joined initially so that we can lookup even after we 809 * moved the membership. It is also used for moving back the membership 810 * when the old ill has been repaired. This is done by looking up for 811 * ilms with ilm_orig_ifindex matching on the old ill's ifindex. Only 812 * ilms actually move from old ill to new ill. ilgs don't move (just 813 * the ilg_ill is changed when it moves) as it just records the state 814 * of the application that has joined a group G where as ilm records 815 * the state joined with the driver. Thus when we send DL_XXXMULTI_REQs 816 * we also need to keep the ilm in the right ill. 817 * 818 * In IPv4, as ipifs move from old ill to new_ill, ilgs and ilms move 819 * implicitly as we use only ipifs in IPv4. Thus, one can always lookup 820 * a given ilm/ilg even after it fails without the support of 821 * orig_ifindex. We move ilms still to record the driver state as 822 * mentioned above. 823 */ 824 825 /* 826 * The ilg_t and ilm_t members are protected by ipsq. They can be changed only 827 * by a thread executing in the ipsq. In other words add/delete of a 828 * multicast group has to execute in the ipsq. 829 */ 830 #define ILG_DELETED 0x1 /* ilg_flags */ 831 typedef struct ilg_s { 832 in6_addr_t ilg_v6group; 833 struct ipif_s *ilg_ipif; /* Logical interface we are member on */ 834 struct ill_s *ilg_ill; /* Used by IPv6 */ 835 int ilg_orig_ifindex; /* Interface originally joined on */ 836 uint_t ilg_flags; 837 mcast_record_t ilg_fmode; /* MODE_IS_INCLUDE/MODE_IS_EXCLUDE */ 838 slist_t *ilg_filter; 839 } ilg_t; 840 841 842 /* 843 * Multicast address list entry for lower ill. 844 * ilm_ipif is used by IPv4 as multicast groups are joined using ipif. 845 * ilm_ill is used by IPv6 as multicast groups are joined using ill. 846 * ilm_ill is NULL for IPv4 and ilm_ipif is NULL for IPv6. 847 * 848 * The comment below (and for other netstack_t references) refers 849 * to the fact that we only do netstack_hold in particular cases, 850 * such as the references from open streams (ill_t and conn_t's 851 * pointers). Internally within IP we rely on IP's ability to cleanup e.g. 852 * ire_t's when an ill goes away. 853 */ 854 #define ILM_DELETED 0x1 /* ilm_flags */ 855 typedef struct ilm_s { 856 in6_addr_t ilm_v6addr; 857 int ilm_refcnt; 858 uint_t ilm_timer; /* IGMP/MLD query resp timer, in msec */ 859 struct ipif_s *ilm_ipif; /* Back pointer to ipif for IPv4 */ 860 struct ilm_s *ilm_next; /* Linked list for each ill */ 861 uint_t ilm_state; /* state of the membership */ 862 struct ill_s *ilm_ill; /* Back pointer to ill for IPv6 */ 863 int ilm_orig_ifindex; /* V6_MULTICAST_IF/ilm_ipif index */ 864 uint_t ilm_flags; 865 boolean_t ilm_is_new; /* new ilm */ 866 boolean_t ilm_notify_driver; /* Need to notify the driver */ 867 zoneid_t ilm_zoneid; 868 int ilm_no_ilg_cnt; /* number of joins w/ no ilg */ 869 mcast_record_t ilm_fmode; /* MODE_IS_INCLUDE/MODE_IS_EXCLUDE */ 870 slist_t *ilm_filter; /* source filter list */ 871 slist_t *ilm_pendsrcs; /* relevant src addrs for pending req */ 872 rtx_state_t ilm_rtx; /* SCR retransmission state */ 873 ip_stack_t *ilm_ipst; /* Does not have a netstack_hold */ 874 } ilm_t; 875 876 #define ilm_addr V4_PART_OF_V6(ilm_v6addr) 877 878 /* 879 * ilm_walker_cleanup needs to execute when the ilm_walker_cnt goes down to 880 * zero. In addition it needs to block new walkers while it is unlinking ilm's 881 * from the list. Thus simple atomics for the ill_ilm_walker_cnt don't suffice. 882 */ 883 #define ILM_WALKER_HOLD(ill) { \ 884 mutex_enter(&(ill)->ill_lock); \ 885 ill->ill_ilm_walker_cnt++; \ 886 mutex_exit(&(ill)->ill_lock); \ 887 } 888 889 #define ILM_WALKER_RELE(ill) { \ 890 mutex_enter(&(ill)->ill_lock); \ 891 (ill)->ill_ilm_walker_cnt--; \ 892 if ((ill)->ill_ilm_walker_cnt == 0 && (ill)->ill_ilm_cleanup_reqd) \ 893 ilm_walker_cleanup(ill); \ 894 mutex_exit(&(ill)->ill_lock); \ 895 } 896 897 /* 898 * Soft reference to an IPsec SA. 899 * 900 * On relative terms, conn's can be persistant (living as long as the 901 * processes which create them), while SA's are ephemeral (dying when 902 * they hit their time-based or byte-based lifetimes). 903 * 904 * We could hold a hard reference to an SA from an ipsec_latch_t, 905 * but this would cause expired SA's to linger for a potentially 906 * unbounded time. 907 * 908 * Instead, we remember the hash bucket number and bucket generation 909 * in addition to the pointer. The bucket generation is incremented on 910 * each deletion. 911 */ 912 typedef struct ipsa_ref_s 913 { 914 struct ipsa_s *ipsr_sa; 915 struct isaf_s *ipsr_bucket; 916 uint64_t ipsr_gen; 917 } ipsa_ref_t; 918 919 /* 920 * IPsec "latching" state. 921 * 922 * In the presence of IPsec policy, fully-bound conn's bind a connection 923 * to more than just the 5-tuple, but also a specific IPsec action and 924 * identity-pair. 925 * 926 * As an optimization, we also cache soft references to IPsec SA's 927 * here so that we can fast-path around most of the work needed for 928 * outbound IPsec SA selection. 929 * 930 * Were it not for TCP's detached connections, this state would be 931 * in-line in conn_t; instead, this is in a separate structure so it 932 * can be handed off to TCP when a connection is detached. 933 */ 934 typedef struct ipsec_latch_s 935 { 936 kmutex_t ipl_lock; 937 uint32_t ipl_refcnt; 938 939 uint64_t ipl_unique; 940 struct ipsec_policy_s *ipl_in_policy; /* latched policy (in) */ 941 struct ipsec_policy_s *ipl_out_policy; /* latched policy (out) */ 942 struct ipsec_action_s *ipl_in_action; /* latched action (in) */ 943 struct ipsec_action_s *ipl_out_action; /* latched action (out) */ 944 cred_t *ipl_local_id; 945 struct ipsid_s *ipl_local_cid; 946 struct ipsid_s *ipl_remote_cid; 947 unsigned int 948 ipl_out_action_latched : 1, 949 ipl_in_action_latched : 1, 950 ipl_out_policy_latched : 1, 951 ipl_in_policy_latched : 1, 952 953 ipl_ids_latched : 1, 954 955 ipl_pad_to_bit_31 : 27; 956 957 ipsa_ref_t ipl_ref[2]; /* 0: ESP, 1: AH */ 958 959 } ipsec_latch_t; 960 961 #define IPLATCH_REFHOLD(ipl) { \ 962 atomic_add_32(&(ipl)->ipl_refcnt, 1); \ 963 ASSERT((ipl)->ipl_refcnt != 0); \ 964 } 965 966 #define IPLATCH_REFRELE(ipl, ns) { \ 967 ASSERT((ipl)->ipl_refcnt != 0); \ 968 membar_exit(); \ 969 if (atomic_add_32_nv(&(ipl)->ipl_refcnt, -1) == 0) \ 970 iplatch_free(ipl, ns); \ 971 } 972 973 /* 974 * peer identity structure. 975 */ 976 977 typedef struct conn_s conn_t; 978 979 /* 980 * The old IP client structure "ipc_t" is gone. All the data is stored in the 981 * connection structure "conn_t" now. The mapping of old and new fields looks 982 * like this: 983 * 984 * ipc_ulp conn_ulp 985 * ipc_rq conn_rq 986 * ipc_wq conn_wq 987 * 988 * ipc_laddr conn_src 989 * ipc_faddr conn_rem 990 * ipc_v6laddr conn_srcv6 991 * ipc_v6faddr conn_remv6 992 * 993 * ipc_lport conn_lport 994 * ipc_fport conn_fport 995 * ipc_ports conn_ports 996 * 997 * ipc_policy conn_policy 998 * ipc_latch conn_latch 999 * 1000 * ipc_irc_lock conn_lock 1001 * ipc_ire_cache conn_ire_cache 1002 * 1003 * ipc_state_flags conn_state_flags 1004 * ipc_outgoing_ill conn_outgoing_ill 1005 * 1006 * ipc_dontroute conn_dontroute 1007 * ipc_loopback conn_loopback 1008 * ipc_broadcast conn_broadcast 1009 * ipc_reuseaddr conn_reuseaddr 1010 * 1011 * ipc_multicast_loop conn_multicast_loop 1012 * ipc_multi_router conn_multi_router 1013 * ipc_priv_stream conn_priv_stream 1014 * ipc_draining conn_draining 1015 * 1016 * ipc_did_putbq conn_did_putbq 1017 * ipc_unspec_src conn_unspec_src 1018 * ipc_policy_cached conn_policy_cached 1019 * 1020 * ipc_in_enforce_policy conn_in_enforce_policy 1021 * ipc_out_enforce_policy conn_out_enforce_policy 1022 * ipc_af_isv6 conn_af_isv6 1023 * ipc_pkt_isv6 conn_pkt_isv6 1024 * 1025 * ipc_ipv6_recvpktinfo conn_ipv6_recvpktinfo 1026 * 1027 * ipc_ipv6_recvhoplimit conn_ipv6_recvhoplimit 1028 * ipc_ipv6_recvhopopts conn_ipv6_recvhopopts 1029 * ipc_ipv6_recvdstopts conn_ipv6_recvdstopts 1030 * 1031 * ipc_ipv6_recvrthdr conn_ipv6_recvrthdr 1032 * ipc_ipv6_recvrtdstopts conn_ipv6_recvrtdstopts 1033 * ipc_fully_bound conn_fully_bound 1034 * 1035 * ipc_recvif conn_recvif 1036 * 1037 * ipc_recvslla conn_recvslla 1038 * ipc_acking_unbind conn_acking_unbind 1039 * ipc_pad_to_bit_31 conn_pad_to_bit_31 1040 * 1041 * ipc_xmit_if_ill conn_xmit_if_ill 1042 * ipc_nofailover_ill conn_nofailover_ill 1043 * 1044 * ipc_proto conn_proto 1045 * ipc_incoming_ill conn_incoming_ill 1046 * ipc_outgoing_pill conn_outgoing_pill 1047 * ipc_pending_ill conn_pending_ill 1048 * ipc_unbind_mp conn_unbind_mp 1049 * ipc_ilg conn_ilg 1050 * ipc_ilg_allocated conn_ilg_allocated 1051 * ipc_ilg_inuse conn_ilg_inuse 1052 * ipc_ilg_walker_cnt conn_ilg_walker_cnt 1053 * ipc_refcv conn_refcv 1054 * ipc_multicast_ipif conn_multicast_ipif 1055 * ipc_multicast_ill conn_multicast_ill 1056 * ipc_orig_bound_ifindex conn_orig_bound_ifindex 1057 * ipc_orig_multicast_ifindex conn_orig_multicast_ifindex 1058 * ipc_orig_xmit_ifindex conn_orig_xmit_ifindex 1059 * ipc_drain_next conn_drain_next 1060 * ipc_drain_prev conn_drain_prev 1061 * ipc_idl conn_idl 1062 */ 1063 1064 /* 1065 * This is used to match an inbound/outbound datagram with 1066 * policy. 1067 */ 1068 1069 typedef struct ipsec_selector { 1070 in6_addr_t ips_local_addr_v6; 1071 in6_addr_t ips_remote_addr_v6; 1072 uint16_t ips_local_port; 1073 uint16_t ips_remote_port; 1074 uint8_t ips_icmp_type; 1075 uint8_t ips_icmp_code; 1076 uint8_t ips_protocol; 1077 uint8_t ips_isv4 : 1, 1078 ips_is_icmp_inv_acq: 1; 1079 } ipsec_selector_t; 1080 1081 /* 1082 * Note that we put v4 addresses in the *first* 32-bit word of the 1083 * selector rather than the last to simplify the prefix match/mask code 1084 * in spd.c 1085 */ 1086 #define ips_local_addr_v4 ips_local_addr_v6.s6_addr32[0] 1087 #define ips_remote_addr_v4 ips_remote_addr_v6.s6_addr32[0] 1088 1089 /* Values used in IP by IPSEC Code */ 1090 #define IPSEC_OUTBOUND B_TRUE 1091 #define IPSEC_INBOUND B_FALSE 1092 1093 /* 1094 * There are two variants in policy failures. The packet may come in 1095 * secure when not needed (IPSEC_POLICY_???_NOT_NEEDED) or it may not 1096 * have the desired level of protection (IPSEC_POLICY_MISMATCH). 1097 */ 1098 #define IPSEC_POLICY_NOT_NEEDED 0 1099 #define IPSEC_POLICY_MISMATCH 1 1100 #define IPSEC_POLICY_AUTH_NOT_NEEDED 2 1101 #define IPSEC_POLICY_ENCR_NOT_NEEDED 3 1102 #define IPSEC_POLICY_SE_NOT_NEEDED 4 1103 #define IPSEC_POLICY_MAX 5 /* Always max + 1. */ 1104 1105 /* 1106 * Folowing macro is used whenever the code does not know whether there 1107 * is a M_CTL present in the front and it needs to examine the actual mp 1108 * i.e the IP header. As a M_CTL message could be in the front, this 1109 * extracts the packet into mp and the M_CTL mp into first_mp. If M_CTL 1110 * mp is not present, both first_mp and mp point to the same message. 1111 */ 1112 #define EXTRACT_PKT_MP(mp, first_mp, mctl_present) \ 1113 (first_mp) = (mp); \ 1114 if ((mp)->b_datap->db_type == M_CTL) { \ 1115 (mp) = (mp)->b_cont; \ 1116 (mctl_present) = B_TRUE; \ 1117 } else { \ 1118 (mctl_present) = B_FALSE; \ 1119 } 1120 1121 /* 1122 * Check with IPSEC inbound policy if 1123 * 1124 * 1) per-socket policy is present - indicated by conn_in_enforce_policy. 1125 * 2) Or if we have not cached policy on the conn and the global policy is 1126 * non-empty. 1127 */ 1128 #define CONN_INBOUND_POLICY_PRESENT(connp, ipss) \ 1129 ((connp)->conn_in_enforce_policy || \ 1130 (!((connp)->conn_policy_cached) && \ 1131 (ipss)->ipsec_inbound_v4_policy_present)) 1132 1133 #define CONN_INBOUND_POLICY_PRESENT_V6(connp, ipss) \ 1134 ((connp)->conn_in_enforce_policy || \ 1135 (!(connp)->conn_policy_cached && \ 1136 (ipss)->ipsec_inbound_v6_policy_present)) 1137 1138 #define CONN_OUTBOUND_POLICY_PRESENT(connp, ipss) \ 1139 ((connp)->conn_out_enforce_policy || \ 1140 (!((connp)->conn_policy_cached) && \ 1141 (ipss)->ipsec_outbound_v4_policy_present)) 1142 1143 #define CONN_OUTBOUND_POLICY_PRESENT_V6(connp, ipss) \ 1144 ((connp)->conn_out_enforce_policy || \ 1145 (!(connp)->conn_policy_cached && \ 1146 (ipss)->ipsec_outbound_v6_policy_present)) 1147 1148 /* 1149 * Information cached in IRE for upper layer protocol (ULP). 1150 * 1151 * Notice that ire_max_frag is not included in the iulp_t structure, which 1152 * it may seem that it should. But ire_max_frag cannot really be cached. It 1153 * is fixed for each interface. For MTU found by PMTUd, we may want to cache 1154 * it. But currently, we do not do that. 1155 */ 1156 typedef struct iulp_s { 1157 boolean_t iulp_set; /* Is any metric set? */ 1158 uint32_t iulp_ssthresh; /* Slow start threshold (TCP). */ 1159 clock_t iulp_rtt; /* Guestimate in millisecs. */ 1160 clock_t iulp_rtt_sd; /* Cached value of RTT variance. */ 1161 uint32_t iulp_spipe; /* Send pipe size. */ 1162 uint32_t iulp_rpipe; /* Receive pipe size. */ 1163 uint32_t iulp_rtomax; /* Max round trip timeout. */ 1164 uint32_t iulp_sack; /* Use SACK option (TCP)? */ 1165 uint32_t 1166 iulp_tstamp_ok : 1, /* Use timestamp option (TCP)? */ 1167 iulp_wscale_ok : 1, /* Use window scale option (TCP)? */ 1168 iulp_ecn_ok : 1, /* Enable ECN (for TCP)? */ 1169 iulp_pmtud_ok : 1, /* Enable PMTUd? */ 1170 1171 iulp_not_used : 28; 1172 } iulp_t; 1173 1174 /* Zero iulp_t. */ 1175 extern const iulp_t ire_uinfo_null; 1176 1177 /* 1178 * The conn drain list structure. 1179 * The list is protected by idl_lock. Each conn_t inserted in the list 1180 * points back at this idl_t using conn_idl. IP primes the draining of the 1181 * conns queued in these lists, by qenabling the 1st conn of each list. This 1182 * occurs when STREAMS backenables ip_wsrv on the IP module. Each conn instance 1183 * of ip_wsrv successively qenables the next conn in the list. 1184 * idl_lock protects all other members of idl_t and conn_drain_next 1185 * and conn_drain_prev of conn_t. The conn_lock protects IPCF_DRAIN_DISABLED 1186 * flag of the conn_t and conn_idl. 1187 */ 1188 typedef struct idl_s { 1189 conn_t *idl_conn; /* Head of drain list */ 1190 kmutex_t idl_lock; /* Lock for this list */ 1191 conn_t *idl_conn_draining; /* conn that is draining */ 1192 uint32_t 1193 idl_repeat : 1, /* Last conn must re-enable */ 1194 /* drain list again */ 1195 idl_unused : 31; 1196 } idl_t; 1197 1198 #define CONN_DRAIN_LIST_LOCK(connp) (&((connp)->conn_idl->idl_lock)) 1199 /* 1200 * Interface route structure which holds the necessary information to recreate 1201 * routes that are tied to an interface (namely where ire_ipif != NULL). 1202 * These routes which were initially created via a routing socket or via the 1203 * SIOCADDRT ioctl may be gateway routes (RTF_GATEWAY being set) or may be 1204 * traditional interface routes. When an interface comes back up after being 1205 * marked down, this information will be used to recreate the routes. These 1206 * are part of an mblk_t chain that hangs off of the IPIF (ipif_saved_ire_mp). 1207 */ 1208 typedef struct ifrt_s { 1209 ushort_t ifrt_type; /* Type of IRE */ 1210 in6_addr_t ifrt_v6addr; /* Address IRE represents. */ 1211 in6_addr_t ifrt_v6gateway_addr; /* Gateway if IRE_OFFSUBNET */ 1212 in6_addr_t ifrt_v6src_addr; /* Src addr if RTF_SETSRC */ 1213 in6_addr_t ifrt_v6mask; /* Mask for matching IRE. */ 1214 uint32_t ifrt_flags; /* flags related to route */ 1215 uint_t ifrt_max_frag; /* MTU (next hop or path). */ 1216 iulp_t ifrt_iulp_info; /* Cached IRE ULP info. */ 1217 } ifrt_t; 1218 1219 #define ifrt_addr V4_PART_OF_V6(ifrt_v6addr) 1220 #define ifrt_gateway_addr V4_PART_OF_V6(ifrt_v6gateway_addr) 1221 #define ifrt_src_addr V4_PART_OF_V6(ifrt_v6src_addr) 1222 #define ifrt_mask V4_PART_OF_V6(ifrt_v6mask) 1223 1224 /* Number of IP addresses that can be hosted on a physical interface */ 1225 #define MAX_ADDRS_PER_IF 8192 1226 /* 1227 * Number of Source addresses to be considered for source address 1228 * selection. Used by ipif_select_source[_v6]. 1229 */ 1230 #define MAX_IPIF_SELECT_SOURCE 50 1231 1232 #ifdef IP_DEBUG 1233 /* 1234 * Tracing refholds and refreleases for debugging. Existing tracing mechanisms 1235 * do not allow the granularity need to trace refrences to ipif/ill/ire's. This 1236 * mechanism should be revisited once dtrace is available. 1237 */ 1238 #define IP_STACK_DEPTH 15 1239 typedef struct tr_buf_s { 1240 int tr_depth; 1241 pc_t tr_stack[IP_STACK_DEPTH]; 1242 } tr_buf_t; 1243 1244 typedef struct th_trace_s { 1245 struct th_trace_s *th_next; 1246 struct th_trace_s **th_prev; 1247 kthread_t *th_id; 1248 int th_refcnt; 1249 uint_t th_trace_lastref; 1250 #define TR_BUF_MAX 38 1251 tr_buf_t th_trbuf[TR_BUF_MAX]; 1252 } th_trace_t; 1253 #endif 1254 1255 /* The following are ipif_state_flags */ 1256 #define IPIF_CONDEMNED 0x1 /* The ipif is being removed */ 1257 #define IPIF_CHANGING 0x2 /* A critcal ipif field is changing */ 1258 #define IPIF_MOVING 0x8 /* The ipif is being moved */ 1259 #define IPIF_SET_LINKLOCAL 0x10 /* transient flag during bringup */ 1260 #define IPIF_ZERO_SOURCE 0x20 /* transient flag during bringup */ 1261 1262 /* IP interface structure, one per local address */ 1263 typedef struct ipif_s { 1264 struct ipif_s *ipif_next; 1265 struct ill_s *ipif_ill; /* Back pointer to our ill */ 1266 int ipif_id; /* Logical unit number */ 1267 uint_t ipif_mtu; /* Starts at ipif_ill->ill_max_frag */ 1268 uint_t ipif_saved_mtu; /* Save of mtu during ipif_move() */ 1269 in6_addr_t ipif_v6lcl_addr; /* Local IP address for this if. */ 1270 in6_addr_t ipif_v6src_addr; /* Source IP address for this if. */ 1271 in6_addr_t ipif_v6subnet; /* Subnet prefix for this if. */ 1272 in6_addr_t ipif_v6net_mask; /* Net mask for this interface. */ 1273 in6_addr_t ipif_v6brd_addr; /* Broadcast addr for this interface. */ 1274 in6_addr_t ipif_v6pp_dst_addr; /* Point-to-point dest address. */ 1275 uint64_t ipif_flags; /* Interface flags. */ 1276 uint_t ipif_metric; /* BSD if metric, for compatibility. */ 1277 uint_t ipif_ire_type; /* IRE_LOCAL or IRE_LOOPBACK */ 1278 mblk_t *ipif_arp_del_mp; /* Allocated at time arp comes up, to */ 1279 /* prevent awkward out of mem */ 1280 /* condition later */ 1281 mblk_t *ipif_saved_ire_mp; /* Allocated for each extra */ 1282 /* IRE_IF_NORESOLVER/IRE_IF_RESOLVER */ 1283 /* on this interface so that they */ 1284 /* can survive ifconfig down. */ 1285 kmutex_t ipif_saved_ire_lock; /* Protects ipif_saved_ire_mp */ 1286 1287 mrec_t *ipif_igmp_rpt; /* List of group memberships which */ 1288 /* will be reported on. Used when */ 1289 /* handling an igmp timeout. */ 1290 1291 /* 1292 * The packet counts in the ipif contain the sum of the 1293 * packet counts in dead IREs that were affiliated with 1294 * this ipif. 1295 */ 1296 uint_t ipif_fo_pkt_count; /* Forwarded thru our dead IREs */ 1297 uint_t ipif_ib_pkt_count; /* Inbound packets for our dead IREs */ 1298 uint_t ipif_ob_pkt_count; /* Outbound packets to our dead IREs */ 1299 /* Exclusive bit fields, protected by ipsq_t */ 1300 unsigned int 1301 ipif_multicast_up : 1, /* We have joined the allhosts group */ 1302 ipif_replace_zero : 1, /* Replacement for zero */ 1303 ipif_was_up : 1, /* ipif was up before */ 1304 ipif_addr_ready : 1, /* DAD is done */ 1305 1306 ipif_was_dup : 1, /* DAD had failed */ 1307 ipif_pad_to_31 : 27; 1308 1309 int ipif_orig_ifindex; /* ifindex before SLIFFAILOVER */ 1310 uint_t ipif_seqid; /* unique index across all ills */ 1311 uint_t ipif_orig_ipifid; /* ipif_id before SLIFFAILOVER */ 1312 uint_t ipif_state_flags; /* See IPIF_* flag defs above */ 1313 uint_t ipif_refcnt; /* active consistent reader cnt */ 1314 uint_t ipif_ire_cnt; /* Number of ire's referencing ipif */ 1315 uint_t ipif_saved_ire_cnt; 1316 zoneid_t 1317 ipif_zoneid; /* zone ID number */ 1318 timeout_id_t ipif_recovery_id; /* Timer for DAD recovery */ 1319 #ifdef ILL_DEBUG 1320 #define IP_TR_HASH_MAX 64 1321 th_trace_t *ipif_trace[IP_TR_HASH_MAX]; 1322 boolean_t ipif_trace_disable; /* True when alloc fails */ 1323 #endif 1324 } ipif_t; 1325 1326 /* 1327 * The following table lists the protection levels of the various members 1328 * of the ipif_t. The following notation is used. 1329 * 1330 * Write once - Written to only once at the time of bringing up 1331 * the interface and can be safely read after the bringup without any lock. 1332 * 1333 * ipsq - Need to execute in the ipsq to perform the indicated access. 1334 * 1335 * ill_lock - Need to hold this mutex to perform the indicated access. 1336 * 1337 * ill_g_lock - Need to hold this rw lock as reader/writer for read access or 1338 * write access respectively. 1339 * 1340 * down ill - Written to only when the ill is down (i.e all ipifs are down) 1341 * up ill - Read only when the ill is up (i.e. at least 1 ipif is up) 1342 * 1343 * Table of ipif_t members and their protection 1344 * 1345 * ipif_next ipsq + ill_lock + ipsq OR ill_lock OR 1346 * ill_g_lock ill_g_lock 1347 * ipif_ill ipsq + down ipif write once 1348 * ipif_id ipsq + down ipif write once 1349 * ipif_mtu ipsq 1350 * ipif_v6lcl_addr ipsq + down ipif up ipif 1351 * ipif_v6src_addr ipsq + down ipif up ipif 1352 * ipif_v6subnet ipsq + down ipif up ipif 1353 * ipif_v6net_mask ipsq + down ipif up ipif 1354 * 1355 * ipif_v6brd_addr 1356 * ipif_v6pp_dst_addr 1357 * ipif_flags ill_lock ill_lock 1358 * ipif_metric 1359 * ipif_ire_type ipsq + down ill up ill 1360 * 1361 * ipif_arp_del_mp ipsq ipsq 1362 * ipif_saved_ire_mp ipif_saved_ire_lock ipif_saved_ire_lock 1363 * ipif_igmp_rpt ipsq ipsq 1364 * 1365 * ipif_fo_pkt_count Approx 1366 * ipif_ib_pkt_count Approx 1367 * ipif_ob_pkt_count Approx 1368 * 1369 * bit fields ill_lock ill_lock 1370 * 1371 * ipif_orig_ifindex ipsq None 1372 * ipif_orig_ipifid ipsq None 1373 * ipif_seqid ipsq Write once 1374 * 1375 * ipif_state_flags ill_lock ill_lock 1376 * ipif_refcnt ill_lock ill_lock 1377 * ipif_ire_cnt ill_lock ill_lock 1378 * ipif_saved_ire_cnt 1379 */ 1380 1381 #define IP_TR_HASH(tid) ((((uintptr_t)tid) >> 6) & (IP_TR_HASH_MAX - 1)) 1382 1383 #ifdef ILL_DEBUG 1384 #define IPIF_TRACE_REF(ipif) ipif_trace_ref(ipif) 1385 #define ILL_TRACE_REF(ill) ill_trace_ref(ill) 1386 #define IPIF_UNTRACE_REF(ipif) ipif_untrace_ref(ipif) 1387 #define ILL_UNTRACE_REF(ill) ill_untrace_ref(ill) 1388 #define ILL_TRACE_CLEANUP(ill) ill_trace_cleanup(ill) 1389 #define IPIF_TRACE_CLEANUP(ipif) ipif_trace_cleanup(ipif) 1390 #else 1391 #define IPIF_TRACE_REF(ipif) 1392 #define ILL_TRACE_REF(ill) 1393 #define IPIF_UNTRACE_REF(ipif) 1394 #define ILL_UNTRACE_REF(ill) 1395 #define ILL_TRACE_CLEANUP(ill) 1396 #define IPIF_TRACE_CLEANUP(ipif) 1397 #endif 1398 1399 /* IPv4 compatability macros */ 1400 #define ipif_lcl_addr V4_PART_OF_V6(ipif_v6lcl_addr) 1401 #define ipif_src_addr V4_PART_OF_V6(ipif_v6src_addr) 1402 #define ipif_subnet V4_PART_OF_V6(ipif_v6subnet) 1403 #define ipif_net_mask V4_PART_OF_V6(ipif_v6net_mask) 1404 #define ipif_brd_addr V4_PART_OF_V6(ipif_v6brd_addr) 1405 #define ipif_pp_dst_addr V4_PART_OF_V6(ipif_v6pp_dst_addr) 1406 1407 /* Macros for easy backreferences to the ill. */ 1408 #define ipif_wq ipif_ill->ill_wq 1409 #define ipif_rq ipif_ill->ill_rq 1410 #define ipif_net_type ipif_ill->ill_net_type 1411 #define ipif_ipif_up_count ipif_ill->ill_ipif_up_count 1412 #define ipif_type ipif_ill->ill_type 1413 #define ipif_isv6 ipif_ill->ill_isv6 1414 1415 #define SIOCLIFADDR_NDX 112 /* ndx of SIOCLIFADDR in the ndx ioctl table */ 1416 1417 /* 1418 * mode value for ip_ioctl_finish for finishing an ioctl 1419 */ 1420 #define CONN_CLOSE 1 /* No mi_copy */ 1421 #define COPYOUT 2 /* do an mi_copyout if needed */ 1422 #define NO_COPYOUT 3 /* do an mi_copy_done */ 1423 #define IPI2MODE(ipi) ((ipi)->ipi_flags & IPI_GET_CMD ? COPYOUT : NO_COPYOUT) 1424 1425 /* 1426 * The IP-MT design revolves around the serialization object ipsq_t. 1427 * It is associated with an IPMP group. If IPMP is not enabled, there is 1428 * 1 ipsq_t per phyint. Eg. an ipsq_t would cover both hme0's IPv4 stream 1429 * 1430 * ipsq_lock protects 1431 * ipsq_reentry_cnt, ipsq_writer, ipsq_xopq_mphead, ipsq_xopq_mptail, 1432 * ipsq_mphead, ipsq_mptail, ipsq_split 1433 * 1434 * ipsq_pending_ipif, ipsq_current_ipif, ipsq_pending_mp, ipsq_flags, 1435 * ipsq_waitfor 1436 * 1437 * The fields in the last line above below are set mostly by a writer thread 1438 * But there is an exception in the last call to ipif_ill_refrele_tail which 1439 * could also race with a conn close which could be cleaning up the 1440 * fields. So we choose to protect using ipsq_lock instead of depending on 1441 * the property of the writer. 1442 * ill_g_lock protects 1443 * ipsq_refs, ipsq_phyint_list 1444 */ 1445 typedef struct ipsq_s { 1446 kmutex_t ipsq_lock; 1447 int ipsq_reentry_cnt; 1448 kthread_t *ipsq_writer; /* current owner (thread id) */ 1449 int ipsq_flags; 1450 mblk_t *ipsq_xopq_mphead; /* list of excl ops mostly ioctls */ 1451 mblk_t *ipsq_xopq_mptail; 1452 mblk_t *ipsq_mphead; /* msgs on ipsq linked thru b_next */ 1453 mblk_t *ipsq_mptail; /* msgs on ipsq linked thru b_next */ 1454 int ipsq_current_ioctl; /* current ioctl, or 0 if no ioctl */ 1455 ipif_t *ipsq_current_ipif; /* ipif associated with current op */ 1456 ipif_t *ipsq_pending_ipif; /* ipif associated w. ipsq_pending_mp */ 1457 mblk_t *ipsq_pending_mp; /* current ioctl mp while waiting for */ 1458 /* response from another module */ 1459 struct ipsq_s *ipsq_next; /* list of all syncq's (ipsq_g_list) */ 1460 uint_t ipsq_refs; /* Number of phyints on this ipsq */ 1461 struct phyint *ipsq_phyint_list; /* List of phyints on this ipsq */ 1462 boolean_t ipsq_split; /* ipsq may need to be split */ 1463 int ipsq_waitfor; /* Values encoded below */ 1464 char ipsq_name[LIFNAMSIZ+1]; /* same as phyint_groupname */ 1465 1466 #ifdef ILL_DEBUG 1467 int ipsq_depth; /* debugging aid */ 1468 pc_t ipsq_stack[IP_STACK_DEPTH]; /* debugging aid */ 1469 #endif 1470 ip_stack_t *ipsq_ipst; /* Does not have a netstack_hold */ 1471 } ipsq_t; 1472 1473 /* ipsq_flags */ 1474 #define IPSQ_GROUP 0x1 /* This ipsq belongs to an IPMP group */ 1475 1476 /* 1477 * ipsq_waitfor: 1478 * 1479 * IPIF_DOWN 1 ipif_down waiting for refcnts to drop 1480 * ILL_DOWN 2 ill_down waiting for refcnts to drop 1481 * IPIF_FREE 3 ipif_free waiting for refcnts to drop 1482 * ILL_FREE 4 ill unplumb waiting for refcnts to drop 1483 * ILL_MOVE_OK 5 failover waiting for refcnts to drop 1484 */ 1485 1486 enum { IPIF_DOWN = 1, ILL_DOWN, IPIF_FREE, ILL_FREE, ILL_MOVE_OK }; 1487 1488 /* Flags passed to ipsq_try_enter */ 1489 #define CUR_OP 0 /* Current ioctl continuing again */ 1490 #define NEW_OP 1 /* New ioctl starting afresh */ 1491 1492 /* 1493 * phyint represents state that is common to both IPv4 and IPv6 interfaces. 1494 * There is a separate ill_t representing IPv4 and IPv6 which has a 1495 * backpointer to the phyint structure for acessing common state. 1496 * 1497 * NOTE : It just stores the group name as there is only one name for 1498 * IPv4 and IPv6 i.e it is a underlying link property. Actually 1499 * IPv4 and IPv6 ill are grouped together when their phyints have 1500 * the same name. 1501 */ 1502 typedef struct phyint { 1503 struct ill_s *phyint_illv4; 1504 struct ill_s *phyint_illv6; 1505 uint_t phyint_ifindex; /* SIOCLSLIFINDEX */ 1506 uint_t phyint_notify_delay; /* SIOCSLIFNOTIFYDELAY */ 1507 char *phyint_groupname; /* SIOCSLIFGROUPNAME */ 1508 uint_t phyint_groupname_len; 1509 uint64_t phyint_flags; 1510 avl_node_t phyint_avl_by_index; /* avl tree by index */ 1511 avl_node_t phyint_avl_by_name; /* avl tree by name */ 1512 kmutex_t phyint_lock; 1513 struct ipsq_s *phyint_ipsq; /* back pointer to ipsq */ 1514 struct phyint *phyint_ipsq_next; /* phyint list on this ipsq */ 1515 /* Once Clearview IPMP is added the follow two fields can be removed */ 1516 uint_t phyint_group_ifindex; /* index assigned to group */ 1517 uint_t phyint_hook_ifindex; /* index used with neti/hook */ 1518 } phyint_t; 1519 1520 #define CACHE_ALIGN_SIZE 64 1521 1522 #define CACHE_ALIGN(align_struct) P2ROUNDUP(sizeof (struct align_struct),\ 1523 CACHE_ALIGN_SIZE) 1524 struct _phyint_list_s_ { 1525 avl_tree_t phyint_list_avl_by_index; /* avl tree by index */ 1526 avl_tree_t phyint_list_avl_by_name; /* avl tree by name */ 1527 }; 1528 1529 typedef union phyint_list_u { 1530 struct _phyint_list_s_ phyint_list_s; 1531 char phyint_list_filler[CACHE_ALIGN(_phyint_list_s_)]; 1532 } phyint_list_t; 1533 1534 #define phyint_list_avl_by_index phyint_list_s.phyint_list_avl_by_index 1535 #define phyint_list_avl_by_name phyint_list_s.phyint_list_avl_by_name 1536 /* 1537 * ILL groups. We group ills, 1538 * 1539 * - if the ills have the same group name. (New way) 1540 * 1541 * ill_group locking notes: 1542 * 1543 * illgrp_lock protects ill_grp_ill_schednext. 1544 * 1545 * ill_g_lock protects ill_grp_next, illgrp_ill, illgrp_ill_count. 1546 * Holding ill_g_lock freezes the memberships of ills in IPMP groups. 1547 * It also freezes the global list of ills and all ipifs in all ills. 1548 * 1549 * To remove an ipif from the linked list of ipifs of that ill ipif_free_tail 1550 * holds both ill_g_lock, and ill_lock. Similarly to remove an ill from the 1551 * global list of ills, ill_delete_glist holds ill_g_lock as writer. 1552 * This simplifies things for ipif_select_source, illgrp_scheduler etc. 1553 * that need to walk the members of an illgrp. They just hold ill_g_lock 1554 * as reader to do the walk. 1555 * 1556 */ 1557 typedef struct ill_group { 1558 kmutex_t illgrp_lock; 1559 struct ill_group *illgrp_next; /* Next ill_group */ 1560 struct ill_s *illgrp_ill_schednext; /* Next ill to be scheduled */ 1561 struct ill_s *illgrp_ill; /* First ill in the group */ 1562 int illgrp_ill_count; 1563 } ill_group_t; 1564 1565 /* 1566 * Fragmentation hash bucket 1567 */ 1568 typedef struct ipfb_s { 1569 struct ipf_s *ipfb_ipf; /* List of ... */ 1570 size_t ipfb_count; /* Count of bytes used by frag(s) */ 1571 kmutex_t ipfb_lock; /* Protect all ipf in list */ 1572 uint_t ipfb_frag_pkts; /* num of distinct fragmented pkts */ 1573 } ipfb_t; 1574 1575 /* 1576 * IRE bucket structure. Usually there is an array of such structures, 1577 * each pointing to a linked list of ires. irb_refcnt counts the number 1578 * of walkers of a given hash bucket. Usually the reference count is 1579 * bumped up if the walker wants no IRES to be DELETED while walking the 1580 * list. Bumping up does not PREVENT ADDITION. This allows walking a given 1581 * hash bucket without stumbling up on a free pointer. 1582 * 1583 * irb_t structures in ip_ftable are dynamically allocated and freed. 1584 * In order to identify the irb_t structures that can be safely kmem_free'd 1585 * we need to ensure that 1586 * - the irb_refcnt is quiescent, indicating no other walkers, 1587 * - no other threads or ire's are holding references to the irb, 1588 * i.e., irb_nire == 0, 1589 * - there are no active ire's in the bucket, i.e., irb_ire_cnt == 0 1590 */ 1591 typedef struct irb { 1592 struct ire_s *irb_ire; /* First ire in this bucket */ 1593 /* Should be first in this struct */ 1594 krwlock_t irb_lock; /* Protect this bucket */ 1595 uint_t irb_refcnt; /* Protected by irb_lock */ 1596 uchar_t irb_marks; /* CONDEMNED ires in this bucket ? */ 1597 #define IRB_MARK_CONDEMNED 0x0001 1598 #define IRB_MARK_FTABLE 0x0002 1599 uint_t irb_ire_cnt; /* Num of active IRE in this bucket */ 1600 uint_t irb_tmp_ire_cnt; /* Num of temporary IRE */ 1601 struct ire_s *irb_rr_origin; /* origin for round-robin */ 1602 int irb_nire; /* Num of ftable ire's that ref irb */ 1603 ip_stack_t *irb_ipst; /* Does not have a netstack_hold */ 1604 } irb_t; 1605 1606 #define IRB2RT(irb) (rt_t *)((caddr_t)(irb) - offsetof(rt_t, rt_irb)) 1607 1608 /* The following are return values of ip_xmit_v4() */ 1609 typedef enum { 1610 SEND_PASSED = 0, /* sent packet out on wire */ 1611 SEND_FAILED, /* sending of packet failed */ 1612 LOOKUP_IN_PROGRESS, /* ire cache found, ARP resolution in progress */ 1613 LLHDR_RESLV_FAILED /* macaddr resl of onlink dst or nexthop failed */ 1614 } ipxmit_state_t; 1615 1616 #define IP_V4_G_HEAD 0 1617 #define IP_V6_G_HEAD 1 1618 1619 #define MAX_G_HEADS 2 1620 1621 /* 1622 * unpadded ill_if structure 1623 */ 1624 struct _ill_if_s_ { 1625 union ill_if_u *illif_next; 1626 union ill_if_u *illif_prev; 1627 avl_tree_t illif_avl_by_ppa; /* AVL tree sorted on ppa */ 1628 vmem_t *illif_ppa_arena; /* ppa index space */ 1629 uint16_t illif_mcast_v1; /* hints for */ 1630 uint16_t illif_mcast_v2; /* [igmp|mld]_slowtimo */ 1631 int illif_name_len; /* name length */ 1632 char illif_name[LIFNAMSIZ]; /* name of interface type */ 1633 }; 1634 1635 /* cache aligned ill_if structure */ 1636 typedef union ill_if_u { 1637 struct _ill_if_s_ ill_if_s; 1638 char illif_filler[CACHE_ALIGN(_ill_if_s_)]; 1639 } ill_if_t; 1640 1641 #define illif_next ill_if_s.illif_next 1642 #define illif_prev ill_if_s.illif_prev 1643 #define illif_avl_by_ppa ill_if_s.illif_avl_by_ppa 1644 #define illif_ppa_arena ill_if_s.illif_ppa_arena 1645 #define illif_mcast_v1 ill_if_s.illif_mcast_v1 1646 #define illif_mcast_v2 ill_if_s.illif_mcast_v2 1647 #define illif_name ill_if_s.illif_name 1648 #define illif_name_len ill_if_s.illif_name_len 1649 1650 typedef struct ill_walk_context_s { 1651 int ctx_current_list; /* current list being searched */ 1652 int ctx_last_list; /* last list to search */ 1653 } ill_walk_context_t; 1654 1655 /* 1656 * ill_g_heads structure, one for IPV4 and one for IPV6 1657 */ 1658 struct _ill_g_head_s_ { 1659 ill_if_t *ill_g_list_head; 1660 ill_if_t *ill_g_list_tail; 1661 }; 1662 1663 typedef union ill_g_head_u { 1664 struct _ill_g_head_s_ ill_g_head_s; 1665 char ill_g_head_filler[CACHE_ALIGN(_ill_g_head_s_)]; 1666 } ill_g_head_t; 1667 1668 #define ill_g_list_head ill_g_head_s.ill_g_list_head 1669 #define ill_g_list_tail ill_g_head_s.ill_g_list_tail 1670 1671 #define IP_V4_ILL_G_LIST(ipst) \ 1672 (ipst)->ips_ill_g_heads[IP_V4_G_HEAD].ill_g_list_head 1673 #define IP_V6_ILL_G_LIST(ipst) \ 1674 (ipst)->ips_ill_g_heads[IP_V6_G_HEAD].ill_g_list_head 1675 #define IP_VX_ILL_G_LIST(i, ipst) \ 1676 (ipst)->ips_ill_g_heads[i].ill_g_list_head 1677 1678 #define ILL_START_WALK_V4(ctx_ptr, ipst) \ 1679 ill_first(IP_V4_G_HEAD, IP_V4_G_HEAD, ctx_ptr, ipst) 1680 #define ILL_START_WALK_V6(ctx_ptr, ipst) \ 1681 ill_first(IP_V6_G_HEAD, IP_V6_G_HEAD, ctx_ptr, ipst) 1682 #define ILL_START_WALK_ALL(ctx_ptr, ipst) \ 1683 ill_first(MAX_G_HEADS, MAX_G_HEADS, ctx_ptr, ipst) 1684 1685 /* 1686 * Capabilities, possible flags for ill_capabilities. 1687 */ 1688 1689 #define ILL_CAPAB_AH 0x01 /* IPsec AH acceleration */ 1690 #define ILL_CAPAB_ESP 0x02 /* IPsec ESP acceleration */ 1691 #define ILL_CAPAB_MDT 0x04 /* Multidata Transmit */ 1692 #define ILL_CAPAB_HCKSUM 0x08 /* Hardware checksumming */ 1693 #define ILL_CAPAB_ZEROCOPY 0x10 /* Zero-copy */ 1694 #define ILL_CAPAB_POLL 0x20 /* Polling Toggle */ 1695 #define ILL_CAPAB_SOFT_RING 0x40 /* Soft_Ring capability */ 1696 #define ILL_CAPAB_LSO 0x80 /* Large Segment Offload */ 1697 1698 /* 1699 * Per-ill Multidata Transmit capabilities. 1700 */ 1701 typedef struct ill_mdt_capab_s ill_mdt_capab_t; 1702 1703 /* 1704 * Per-ill IPsec capabilities. 1705 */ 1706 typedef struct ill_ipsec_capab_s ill_ipsec_capab_t; 1707 1708 /* 1709 * Per-ill Hardware Checksumming capbilities. 1710 */ 1711 typedef struct ill_hcksum_capab_s ill_hcksum_capab_t; 1712 1713 /* 1714 * Per-ill Zero-copy capabilities. 1715 */ 1716 typedef struct ill_zerocopy_capab_s ill_zerocopy_capab_t; 1717 1718 /* 1719 * Per-ill Polling/soft ring capbilities. 1720 */ 1721 typedef struct ill_dls_capab_s ill_dls_capab_t; 1722 1723 /* 1724 * Per-ill polling resource map. 1725 */ 1726 typedef struct ill_rx_ring ill_rx_ring_t; 1727 1728 /* 1729 * Per-ill Large Segment Offload capabilities. 1730 */ 1731 typedef struct ill_lso_capab_s ill_lso_capab_t; 1732 1733 /* The following are ill_state_flags */ 1734 #define ILL_LL_SUBNET_PENDING 0x01 /* Waiting for DL_INFO_ACK from drv */ 1735 #define ILL_CONDEMNED 0x02 /* No more new ref's to the ILL */ 1736 #define ILL_CHANGING 0x04 /* ILL not globally visible */ 1737 #define ILL_DL_UNBIND_IN_PROGRESS 0x08 /* UNBIND_REQ is sent */ 1738 #define ILL_SOFT_RING_ASSIGN 0x10 /* Makeing soft ring assigment */ 1739 1740 /* Is this an ILL whose source address is used by other ILL's ? */ 1741 #define IS_USESRC_ILL(ill) \ 1742 (((ill)->ill_usesrc_ifindex == 0) && \ 1743 ((ill)->ill_usesrc_grp_next != NULL)) 1744 1745 /* Is this a client/consumer of the usesrc ILL ? */ 1746 #define IS_USESRC_CLI_ILL(ill) \ 1747 (((ill)->ill_usesrc_ifindex != 0) && \ 1748 ((ill)->ill_usesrc_grp_next != NULL)) 1749 1750 /* Is this an virtual network interface (vni) ILL ? */ 1751 #define IS_VNI(ill) \ 1752 (((ill) != NULL) && \ 1753 (((ill)->ill_phyint->phyint_flags & (PHYI_LOOPBACK|PHYI_VIRTUAL)) == \ 1754 PHYI_VIRTUAL)) 1755 1756 /* Is this a loopback ILL? */ 1757 #define IS_LOOPBACK(ill) \ 1758 ((ill)->ill_phyint->phyint_flags & PHYI_LOOPBACK) 1759 1760 /* 1761 * IP Lower level Structure. 1762 * Instance data structure in ip_open when there is a device below us. 1763 */ 1764 typedef struct ill_s { 1765 ill_if_t *ill_ifptr; /* pointer to interface type */ 1766 queue_t *ill_rq; /* Read queue. */ 1767 queue_t *ill_wq; /* Write queue. */ 1768 1769 int ill_error; /* Error value sent up by device. */ 1770 1771 ipif_t *ill_ipif; /* Interface chain for this ILL. */ 1772 1773 uint_t ill_ipif_up_count; /* Number of IPIFs currently up. */ 1774 uint_t ill_max_frag; /* Max IDU from DLPI. */ 1775 char *ill_name; /* Our name. */ 1776 uint_t ill_ipif_dup_count; /* Number of duplicate addresses. */ 1777 uint_t ill_name_length; /* Name length, incl. terminator. */ 1778 char *ill_ndd_name; /* Name + ":ip?_forwarding" for NDD. */ 1779 uint_t ill_net_type; /* IRE_IF_RESOLVER/IRE_IF_NORESOLVER. */ 1780 /* 1781 * Physical Point of Attachment num. If DLPI style 1 provider 1782 * then this is derived from the devname. 1783 */ 1784 uint_t ill_ppa; 1785 t_uscalar_t ill_sap; 1786 t_scalar_t ill_sap_length; /* Including sign (for position) */ 1787 uint_t ill_phys_addr_length; /* Excluding the sap. */ 1788 uint_t ill_bcast_addr_length; /* Only set when the DL provider */ 1789 /* supports broadcast. */ 1790 t_uscalar_t ill_mactype; 1791 uint8_t *ill_frag_ptr; /* Reassembly state. */ 1792 timeout_id_t ill_frag_timer_id; /* timeout id for the frag timer */ 1793 ipfb_t *ill_frag_hash_tbl; /* Fragment hash list head. */ 1794 ipif_t *ill_pending_ipif; /* IPIF waiting for DL operation. */ 1795 1796 ilm_t *ill_ilm; /* Multicast mebership for lower ill */ 1797 uint_t ill_global_timer; /* for IGMPv3/MLDv2 general queries */ 1798 int ill_mcast_type; /* type of router which is querier */ 1799 /* on this interface */ 1800 uint16_t ill_mcast_v1_time; /* # slow timeouts since last v1 qry */ 1801 uint16_t ill_mcast_v2_time; /* # slow timeouts since last v2 qry */ 1802 uint8_t ill_mcast_v1_tset; /* 1 => timer is set; 0 => not set */ 1803 uint8_t ill_mcast_v2_tset; /* 1 => timer is set; 0 => not set */ 1804 1805 uint8_t ill_mcast_rv; /* IGMPv3/MLDv2 robustness variable */ 1806 int ill_mcast_qi; /* IGMPv3/MLDv2 query interval var */ 1807 1808 mblk_t *ill_pending_mp; /* IOCTL/DLPI awaiting completion. */ 1809 /* 1810 * All non-NULL cells between 'ill_first_mp_to_free' and 1811 * 'ill_last_mp_to_free' are freed in ill_delete. 1812 */ 1813 #define ill_first_mp_to_free ill_bcast_mp 1814 mblk_t *ill_bcast_mp; /* DLPI header for broadcasts. */ 1815 mblk_t *ill_resolver_mp; /* Resolver template. */ 1816 mblk_t *ill_unbind_mp; /* unbind mp from ill_dl_up() */ 1817 mblk_t *ill_dlpi_deferred; /* b_next chain of control messages */ 1818 mblk_t *ill_phys_addr_mp; /* mblk which holds ill_phys_addr */ 1819 #define ill_last_mp_to_free ill_phys_addr_mp 1820 1821 cred_t *ill_credp; /* opener's credentials */ 1822 uint8_t *ill_phys_addr; /* ill_phys_addr_mp->b_rptr + off */ 1823 1824 uint_t ill_state_flags; /* see ILL_* flags above */ 1825 1826 /* Following bit fields protected by ipsq_t */ 1827 uint_t 1828 ill_needs_attach : 1, 1829 ill_reserved : 1, 1830 ill_isv6 : 1, 1831 ill_dlpi_style_set : 1, 1832 1833 ill_ifname_pending : 1, 1834 ill_move_in_progress : 1, /* FAILOVER/FAILBACK in progress */ 1835 ill_join_allmulti : 1, 1836 ill_logical_down : 1, 1837 1838 ill_is_6to4tun : 1, /* Interface is a 6to4 tunnel */ 1839 ill_promisc_on_phys : 1, /* phys interface in promisc mode */ 1840 ill_dl_up : 1, 1841 ill_up_ipifs : 1, 1842 1843 ill_note_link : 1, /* supports link-up notification */ 1844 1845 ill_pad_to_bit_31 : 19; 1846 1847 /* Following bit fields protected by ill_lock */ 1848 uint_t 1849 ill_fragtimer_executing : 1, 1850 ill_fragtimer_needrestart : 1, 1851 ill_ilm_cleanup_reqd : 1, 1852 ill_arp_closing : 1, 1853 1854 ill_arp_bringup_pending : 1, 1855 ill_mtu_userspecified : 1, /* SIOCSLNKINFO has set the mtu */ 1856 ill_arp_extend : 1, /* ARP has DAD extensions */ 1857 ill_pad_bit_31 : 25; 1858 1859 /* 1860 * Used in SIOCSIFMUXID and SIOCGIFMUXID for 'ifconfig unplumb'. 1861 */ 1862 int ill_arp_muxid; /* muxid returned from plink for arp */ 1863 int ill_ip_muxid; /* muxid returned from plink for ip */ 1864 1865 /* 1866 * NIC event information attached, to be used by nic event hooks. 1867 */ 1868 hook_nic_event_t *ill_nic_event_info; 1869 1870 /* 1871 * Used for IP frag reassembly throttling on a per ILL basis. 1872 * 1873 * Note: frag_count is approximate, its added to and subtracted from 1874 * without any locking, so simultaneous load/modify/stores can 1875 * collide, also ill_frag_purge() recalculates its value by 1876 * summing all the ipfb_count's without locking out updates 1877 * to the ipfb's. 1878 */ 1879 uint_t ill_ipf_gen; /* Generation of next fragment queue */ 1880 uint_t ill_frag_count; /* Approx count of all mblk bytes */ 1881 uint_t ill_frag_free_num_pkts; /* num of fragmented packets to free */ 1882 clock_t ill_last_frag_clean_time; /* time when frag's were pruned */ 1883 int ill_type; /* From <net/if_types.h> */ 1884 uint_t ill_dlpi_multicast_state; /* See below IDS_* */ 1885 uint_t ill_dlpi_fastpath_state; /* See below IDS_* */ 1886 1887 /* 1888 * Capabilities related fields. 1889 */ 1890 uint_t ill_dlpi_capab_state; /* State of capability query, IDS_* */ 1891 uint64_t ill_capabilities; /* Enabled capabilities, ILL_CAPAB_* */ 1892 ill_mdt_capab_t *ill_mdt_capab; /* Multidata Transmit capabilities */ 1893 ill_ipsec_capab_t *ill_ipsec_capab_ah; /* IPsec AH capabilities */ 1894 ill_ipsec_capab_t *ill_ipsec_capab_esp; /* IPsec ESP capabilities */ 1895 ill_hcksum_capab_t *ill_hcksum_capab; /* H/W cksumming capabilities */ 1896 ill_zerocopy_capab_t *ill_zerocopy_capab; /* Zero-copy capabilities */ 1897 ill_dls_capab_t *ill_dls_capab; /* Polling, soft ring capabilities */ 1898 ill_lso_capab_t *ill_lso_capab; /* Large Segment Offload capabilities */ 1899 1900 /* 1901 * New fields for IPv6 1902 */ 1903 uint8_t ill_max_hops; /* Maximum hops for any logical interface */ 1904 uint_t ill_max_mtu; /* Maximum MTU for any logical interface */ 1905 uint32_t ill_reachable_time; /* Value for ND algorithm in msec */ 1906 uint32_t ill_reachable_retrans_time; /* Value for ND algorithm msec */ 1907 uint_t ill_max_buf; /* Max # of req to buffer for ND */ 1908 in6_addr_t ill_token; 1909 uint_t ill_token_length; 1910 uint32_t ill_xmit_count; /* ndp max multicast xmits */ 1911 mib2_ipIfStatsEntry_t *ill_ip_mib; /* ver indep. interface mib */ 1912 mib2_ipv6IfIcmpEntry_t *ill_icmp6_mib; /* Per interface mib */ 1913 /* 1914 * Following two mblks are allocated common to all 1915 * the ipifs when the first interface is coming up. 1916 * It is sent up to arp when the last ipif is coming 1917 * down. 1918 */ 1919 mblk_t *ill_arp_down_mp; 1920 mblk_t *ill_arp_del_mapping_mp; 1921 /* 1922 * Used for implementing IFF_NOARP. As IFF_NOARP is used 1923 * to turn off for all the logicals, it is here instead 1924 * of the ipif. 1925 */ 1926 mblk_t *ill_arp_on_mp; 1927 /* Peer ill of an IPMP move operation */ 1928 struct ill_s *ill_move_peer; 1929 1930 phyint_t *ill_phyint; 1931 uint64_t ill_flags; 1932 ill_group_t *ill_group; 1933 struct ill_s *ill_group_next; 1934 1935 kmutex_t ill_lock; /* Please see table below */ 1936 /* 1937 * The ill_nd_lla* fields handle the link layer address option 1938 * from neighbor discovery. This is used for external IPv6 1939 * address resolution. 1940 */ 1941 mblk_t *ill_nd_lla_mp; /* mblk which holds ill_nd_lla */ 1942 uint8_t *ill_nd_lla; /* Link Layer Address */ 1943 uint_t ill_nd_lla_len; /* Link Layer Address length */ 1944 /* 1945 * We now have 3 phys_addr_req's sent down. This field keeps track 1946 * of which one is pending. 1947 */ 1948 t_uscalar_t ill_phys_addr_pend; /* which dl_phys_addr_req pending */ 1949 /* 1950 * Used to save errors that occur during plumbing 1951 */ 1952 uint_t ill_ifname_pending_err; 1953 avl_node_t ill_avl_byppa; /* avl node based on ppa */ 1954 void *ill_fastpath_list; /* both ire and nce hang off this */ 1955 uint_t ill_refcnt; /* active refcnt by threads */ 1956 uint_t ill_ire_cnt; /* ires associated with this ill */ 1957 kcondvar_t ill_cv; 1958 uint_t ill_ilm_walker_cnt; /* snmp ilm walkers */ 1959 uint_t ill_nce_cnt; /* nces associated with this ill */ 1960 uint_t ill_waiters; /* threads waiting in ipsq_enter */ 1961 /* 1962 * Contains the upper read queue pointer of the module immediately 1963 * beneath IP. This field allows IP to validate sub-capability 1964 * acknowledgments coming up from downstream. 1965 */ 1966 queue_t *ill_lmod_rq; /* read queue pointer of module below */ 1967 uint_t ill_lmod_cnt; /* number of modules beneath IP */ 1968 ip_m_t *ill_media; /* media specific params/functions */ 1969 t_uscalar_t ill_dlpi_pending; /* Last DLPI primitive issued */ 1970 uint_t ill_usesrc_ifindex; /* use src addr from this ILL */ 1971 struct ill_s *ill_usesrc_grp_next; /* Next ILL in the usesrc group */ 1972 #ifdef ILL_DEBUG 1973 th_trace_t *ill_trace[IP_TR_HASH_MAX]; 1974 boolean_t ill_trace_disable; /* True when alloc fails */ 1975 #endif 1976 zoneid_t ill_zoneid; 1977 ip_stack_t *ill_ipst; /* Corresponds to a netstack_hold */ 1978 } ill_t; 1979 1980 extern void ill_delete_glist(ill_t *); 1981 1982 /* 1983 * The following table lists the protection levels of the various members 1984 * of the ill_t. Same notation as that used for ipif_t above is used. 1985 * 1986 * Write Read 1987 * 1988 * ill_ifptr ill_g_lock + s Write once 1989 * ill_rq ipsq Write once 1990 * ill_wq ipsq Write once 1991 * 1992 * ill_error ipsq None 1993 * ill_ipif ill_g_lock + ipsq ill_g_lock OR ipsq 1994 * ill_ipif_up_count ill_lock + ipsq ill_lock OR ipsq 1995 * ill_max_frag ipsq Write once 1996 * 1997 * ill_name ill_g_lock + ipsq Write once 1998 * ill_name_length ill_g_lock + ipsq Write once 1999 * ill_ndd_name ipsq Write once 2000 * ill_net_type ipsq Write once 2001 * ill_ppa ill_g_lock + ipsq Write once 2002 * ill_sap ipsq + down ill Write once 2003 * ill_sap_length ipsq + down ill Write once 2004 * ill_phys_addr_length ipsq + down ill Write once 2005 * 2006 * ill_bcast_addr_length ipsq ipsq 2007 * ill_mactype ipsq ipsq 2008 * ill_frag_ptr ipsq ipsq 2009 * 2010 * ill_frag_timer_id ill_lock ill_lock 2011 * ill_frag_hash_tbl ipsq up ill 2012 * ill_ilm ipsq + ill_lock ill_lock 2013 * ill_mcast_type ill_lock ill_lock 2014 * ill_mcast_v1_time ill_lock ill_lock 2015 * ill_mcast_v2_time ill_lock ill_lock 2016 * ill_mcast_v1_tset ill_lock ill_lock 2017 * ill_mcast_v2_tset ill_lock ill_lock 2018 * ill_mcast_rv ill_lock ill_lock 2019 * ill_mcast_qi ill_lock ill_lock 2020 * ill_pending_mp ill_lock ill_lock 2021 * 2022 * ill_bcast_mp ipsq ipsq 2023 * ill_resolver_mp ipsq only when ill is up 2024 * ill_down_mp ipsq ipsq 2025 * ill_dlpi_deferred ill_lock ill_lock 2026 * ill_dlpi_pending ill_lock ill_lock 2027 * ill_phys_addr_mp ipsq + down ill only when ill is up 2028 * ill_phys_addr ipsq + down ill only when ill is up 2029 * 2030 * ill_state_flags ill_lock ill_lock 2031 * exclusive bit flags ipsq_t ipsq_t 2032 * shared bit flags ill_lock ill_lock 2033 * 2034 * ill_arp_muxid ipsq Not atomic 2035 * ill_ip_muxid ipsq Not atomic 2036 * 2037 * ill_ipf_gen Not atomic 2038 * ill_frag_count Approx. not protected 2039 * ill_type ipsq + down ill only when ill is up 2040 * ill_dlpi_multicast_state ill_lock ill_lock 2041 * ill_dlpi_fastpath_state ill_lock ill_lock 2042 * ill_max_hops ipsq Not atomic 2043 * 2044 * ill_max_mtu 2045 * 2046 * ill_reachable_time ipsq + ill_lock ill_lock 2047 * ill_reachable_retrans_time ipsq + ill_lock ill_lock 2048 * ill_max_buf ipsq + ill_lock ill_lock 2049 * 2050 * Next 2 fields need ill_lock because of the get ioctls. They should not 2051 * report partially updated results without executing in the ipsq. 2052 * ill_token ipsq + ill_lock ill_lock 2053 * ill_token_length ipsq + ill_lock ill_lock 2054 * ill_xmit_count ipsq + down ill write once 2055 * ill_ip6_mib ipsq + down ill only when ill is up 2056 * ill_icmp6_mib ipsq + down ill only when ill is up 2057 * ill_arp_down_mp ipsq ipsq 2058 * ill_arp_del_mapping_mp ipsq ipsq 2059 * ill_arp_on_mp ipsq ipsq 2060 * ill_move_peer ipsq ipsq 2061 * 2062 * ill_phyint ipsq, ill_g_lock, ill_lock Any of them 2063 * ill_flags ill_lock ill_lock 2064 * ill_group ipsq, ill_g_lock, ill_lock Any of them 2065 * ill_group_next ipsq, ill_g_lock, ill_lock Any of them 2066 * ill_nd_lla_mp ipsq + down ill only when ill is up 2067 * ill_nd_lla ipsq + down ill only when ill is up 2068 * ill_nd_lla_len ipsq + down ill only when ill is up 2069 * ill_phys_addr_pend ipsq + down ill only when ill is up 2070 * ill_ifname_pending_err ipsq ipsq 2071 * ill_avl_byppa ipsq, ill_g_lock write once 2072 * 2073 * ill_fastpath_list ill_lock ill_lock 2074 * ill_refcnt ill_lock ill_lock 2075 * ill_ire_cnt ill_lock ill_lock 2076 * ill_cv ill_lock ill_lock 2077 * ill_ilm_walker_cnt ill_lock ill_lock 2078 * ill_nce_cnt ill_lock ill_lock 2079 * ill_trace ill_lock ill_lock 2080 * ill_usesrc_grp_next ill_g_usesrc_lock ill_g_usesrc_lock 2081 */ 2082 2083 /* 2084 * For ioctl restart mechanism see ip_reprocess_ioctl() 2085 */ 2086 struct ip_ioctl_cmd_s; 2087 2088 typedef int (*ifunc_t)(ipif_t *, struct sockaddr_in *, queue_t *, mblk_t *, 2089 struct ip_ioctl_cmd_s *, void *); 2090 2091 typedef struct ip_ioctl_cmd_s { 2092 int ipi_cmd; 2093 size_t ipi_copyin_size; 2094 uint_t ipi_flags; 2095 uint_t ipi_cmd_type; 2096 ifunc_t ipi_func; 2097 ifunc_t ipi_func_restart; 2098 } ip_ioctl_cmd_t; 2099 2100 /* 2101 * ipi_cmd_type: 2102 * 2103 * IF_CMD 1 old style ifreq cmd 2104 * LIF_CMD 2 new style lifreq cmd 2105 * MISC_CMD 3 Misc. (non [l]ifreq, tun) cmds 2106 * TUN_CMD 4 tunnel related 2107 */ 2108 2109 enum { IF_CMD = 1, LIF_CMD, MISC_CMD, TUN_CMD }; 2110 2111 #define IPI_DONTCARE 0 /* For ioctl encoded values that don't matter */ 2112 2113 /* Flag values in ipi_flags */ 2114 #define IPI_PRIV 0x1 /* Root only command */ 2115 #define IPI_MODOK 0x2 /* Permitted on mod instance of IP */ 2116 #define IPI_WR 0x4 /* Need to grab writer access */ 2117 #define IPI_GET_CMD 0x8 /* branch to mi_copyout on success */ 2118 #define IPI_REPL 0x10 /* valid for replacement ipif created in MOVE */ 2119 #define IPI_NULL_BCONT 0x20 /* ioctl has not data and hence no b_cont */ 2120 #define IPI_PASS_DOWN 0x40 /* pass this ioctl down when a module only */ 2121 2122 extern ip_ioctl_cmd_t ip_ndx_ioctl_table[]; 2123 extern ip_ioctl_cmd_t ip_misc_ioctl_table[]; 2124 extern int ip_ndx_ioctl_count; 2125 extern int ip_misc_ioctl_count; 2126 2127 #define ILL_CLEAR_MOVE(ill) { \ 2128 ill_t *peer_ill; \ 2129 \ 2130 peer_ill = (ill)->ill_move_peer; \ 2131 ASSERT(peer_ill != NULL); \ 2132 (ill)->ill_move_in_progress = B_FALSE; \ 2133 peer_ill->ill_move_in_progress = B_FALSE; \ 2134 (ill)->ill_move_peer = NULL; \ 2135 peer_ill->ill_move_peer = NULL; \ 2136 } 2137 2138 /* Passed down by ARP to IP during I_PLINK/I_PUNLINK */ 2139 typedef struct ipmx_s { 2140 char ipmx_name[LIFNAMSIZ]; /* if name */ 2141 uint_t 2142 ipmx_arpdev_stream : 1, /* This is the arp stream */ 2143 ipmx_notused : 31; 2144 } ipmx_t; 2145 2146 /* 2147 * State for detecting if a driver supports certain features. 2148 * Support for DL_ENABMULTI_REQ uses ill_dlpi_multicast_state. 2149 * Support for DLPI M_DATA fastpath uses ill_dlpi_fastpath_state. 2150 * Support for DL_CAPABILITY_REQ uses ill_dlpi_capab_state. 2151 */ 2152 #define IDS_UNKNOWN 0 /* No DLPI request sent */ 2153 #define IDS_INPROGRESS 1 /* DLPI request sent */ 2154 #define IDS_OK 2 /* DLPI request completed successfully */ 2155 #define IDS_FAILED 3 /* DLPI request failed */ 2156 #define IDS_RENEG 4 /* Driver asked for a renegotiation */ 2157 2158 /* Named Dispatch Parameter Management Structure */ 2159 typedef struct ipparam_s { 2160 uint_t ip_param_min; 2161 uint_t ip_param_max; 2162 uint_t ip_param_value; 2163 char *ip_param_name; 2164 } ipparam_t; 2165 2166 /* Extended NDP Management Structure */ 2167 typedef struct ipndp_s { 2168 ndgetf_t ip_ndp_getf; 2169 ndsetf_t ip_ndp_setf; 2170 caddr_t ip_ndp_data; 2171 char *ip_ndp_name; 2172 } ipndp_t; 2173 2174 /* 2175 * The kernel stores security attributes of all gateways in a database made 2176 * up of one or more tsol_gcdb_t elements. Each tsol_gcdb_t contains the 2177 * security-related credentials of the gateway. More than one gateways may 2178 * share entries in the database. 2179 * 2180 * The tsol_gc_t structure represents the gateway to credential association, 2181 * and refers to an entry in the database. One or more tsol_gc_t entities are 2182 * grouped together to form one or more tsol_gcgrp_t, each representing the 2183 * list of security attributes specific to the gateway. A gateway may be 2184 * associated with at most one credentials group. 2185 */ 2186 struct tsol_gcgrp_s; 2187 2188 extern uchar_t ip6opt_ls; /* TX IPv6 enabler */ 2189 2190 /* 2191 * Gateway security credential record. 2192 */ 2193 typedef struct tsol_gcdb_s { 2194 uint_t gcdb_refcnt; /* reference count */ 2195 struct rtsa_s gcdb_attr; /* security attributes */ 2196 #define gcdb_mask gcdb_attr.rtsa_mask 2197 #define gcdb_doi gcdb_attr.rtsa_doi 2198 #define gcdb_slrange gcdb_attr.rtsa_slrange 2199 } tsol_gcdb_t; 2200 2201 /* 2202 * Gateway to credential association. 2203 */ 2204 typedef struct tsol_gc_s { 2205 uint_t gc_refcnt; /* reference count */ 2206 struct tsol_gcgrp_s *gc_grp; /* pointer to group */ 2207 struct tsol_gc_s *gc_prev; /* previous in list */ 2208 struct tsol_gc_s *gc_next; /* next in list */ 2209 tsol_gcdb_t *gc_db; /* pointer to actual credentials */ 2210 } tsol_gc_t; 2211 2212 /* 2213 * Gateway credentials group address. 2214 */ 2215 typedef struct tsol_gcgrp_addr_s { 2216 int ga_af; /* address family */ 2217 in6_addr_t ga_addr; /* IPv4 mapped or IPv6 address */ 2218 } tsol_gcgrp_addr_t; 2219 2220 /* 2221 * Gateway credentials group. 2222 */ 2223 typedef struct tsol_gcgrp_s { 2224 uint_t gcgrp_refcnt; /* reference count */ 2225 krwlock_t gcgrp_rwlock; /* lock to protect following */ 2226 uint_t gcgrp_count; /* number of credentials */ 2227 tsol_gc_t *gcgrp_head; /* first credential in list */ 2228 tsol_gc_t *gcgrp_tail; /* last credential in list */ 2229 tsol_gcgrp_addr_t gcgrp_addr; /* next-hop gateway address */ 2230 } tsol_gcgrp_t; 2231 2232 extern kmutex_t gcgrp_lock; 2233 2234 #define GC_REFRELE(p) { \ 2235 ASSERT((p)->gc_grp != NULL); \ 2236 rw_enter(&(p)->gc_grp->gcgrp_rwlock, RW_WRITER); \ 2237 ASSERT((p)->gc_refcnt > 0); \ 2238 if (--((p)->gc_refcnt) == 0) \ 2239 gc_inactive(p); \ 2240 else \ 2241 rw_exit(&(p)->gc_grp->gcgrp_rwlock); \ 2242 } 2243 2244 #define GCGRP_REFHOLD(p) { \ 2245 mutex_enter(&gcgrp_lock); \ 2246 ++((p)->gcgrp_refcnt); \ 2247 ASSERT((p)->gcgrp_refcnt != 0); \ 2248 mutex_exit(&gcgrp_lock); \ 2249 } 2250 2251 #define GCGRP_REFRELE(p) { \ 2252 mutex_enter(&gcgrp_lock); \ 2253 ASSERT((p)->gcgrp_refcnt > 0); \ 2254 if (--((p)->gcgrp_refcnt) == 0) \ 2255 gcgrp_inactive(p); \ 2256 ASSERT(MUTEX_HELD(&gcgrp_lock)); \ 2257 mutex_exit(&gcgrp_lock); \ 2258 } 2259 2260 /* 2261 * IRE gateway security attributes structure, pointed to by tsol_ire_gw_secattr 2262 */ 2263 struct tsol_tnrhc; 2264 2265 typedef struct tsol_ire_gw_secattr_s { 2266 kmutex_t igsa_lock; /* lock to protect following */ 2267 struct tsol_tnrhc *igsa_rhc; /* host entry for gateway */ 2268 tsol_gc_t *igsa_gc; /* for prefix IREs */ 2269 tsol_gcgrp_t *igsa_gcgrp; /* for cache IREs */ 2270 } tsol_ire_gw_secattr_t; 2271 2272 /* 2273 * Following are the macros to increment/decrement the reference 2274 * count of the IREs and IRBs (ire bucket). 2275 * 2276 * 1) We bump up the reference count of an IRE to make sure that 2277 * it does not get deleted and freed while we are using it. 2278 * Typically all the lookup functions hold the bucket lock, 2279 * and look for the IRE. If it finds an IRE, it bumps up the 2280 * reference count before dropping the lock. Sometimes we *may* want 2281 * to bump up the reference count after we *looked* up i.e without 2282 * holding the bucket lock. So, the IRE_REFHOLD macro does not assert 2283 * on the bucket lock being held. Any thread trying to delete from 2284 * the hash bucket can still do so but cannot free the IRE if 2285 * ire_refcnt is not 0. 2286 * 2287 * 2) We bump up the reference count on the bucket where the IRE resides 2288 * (IRB), when we want to prevent the IREs getting deleted from a given 2289 * hash bucket. This makes life easier for ire_walk type functions which 2290 * wants to walk the IRE list, call a function, but needs to drop 2291 * the bucket lock to prevent recursive rw_enters. While the 2292 * lock is dropped, the list could be changed by other threads or 2293 * the same thread could end up deleting the ire or the ire pointed by 2294 * ire_next. IRE_REFHOLDing the ire or ire_next is not sufficient as 2295 * a delete will still remove the ire from the bucket while we have 2296 * dropped the lock and hence the ire_next would be NULL. Thus, we 2297 * need a mechanism to prevent deletions from a given bucket. 2298 * 2299 * To prevent deletions, we bump up the reference count on the 2300 * bucket. If the bucket is held, ire_delete just marks IRE_MARK_CONDEMNED 2301 * both on the ire's ire_marks and the bucket's irb_marks. When the 2302 * reference count on the bucket drops to zero, all the CONDEMNED ires 2303 * are deleted. We don't have to bump up the reference count on the 2304 * bucket if we are walking the bucket and never have to drop the bucket 2305 * lock. Note that IRB_REFHOLD does not prevent addition of new ires 2306 * in the list. It is okay because addition of new ires will not cause 2307 * ire_next to point to freed memory. We do IRB_REFHOLD only when 2308 * all of the 3 conditions are true : 2309 * 2310 * 1) The code needs to walk the IRE bucket from start to end. 2311 * 2) It may have to drop the bucket lock sometimes while doing (1) 2312 * 3) It does not want any ires to be deleted meanwhile. 2313 */ 2314 2315 /* 2316 * Bump up the reference count on the IRE. We cannot assert that the 2317 * bucket lock is being held as it is legal to bump up the reference 2318 * count after the first lookup has returned the IRE without 2319 * holding the lock. Currently ip_wput does this for caching IRE_CACHEs. 2320 */ 2321 2322 #ifndef IRE_DEBUG 2323 2324 #define IRE_REFHOLD_NOTR(ire) IRE_REFHOLD(ire) 2325 #define IRE_UNTRACE_REF(ire) 2326 #define IRE_TRACE_REF(ire) 2327 2328 #else 2329 2330 #define IRE_REFHOLD_NOTR(ire) { \ 2331 atomic_add_32(&(ire)->ire_refcnt, 1); \ 2332 ASSERT((ire)->ire_refcnt != 0); \ 2333 } 2334 2335 #define IRE_UNTRACE_REF(ire) ire_untrace_ref(ire); 2336 #define IRE_TRACE_REF(ire) ire_trace_ref(ire); 2337 #endif 2338 2339 #define IRE_REFHOLD(ire) { \ 2340 atomic_add_32(&(ire)->ire_refcnt, 1); \ 2341 ASSERT((ire)->ire_refcnt != 0); \ 2342 IRE_TRACE_REF(ire); \ 2343 } 2344 2345 #define IRE_REFHOLD_LOCKED(ire) { \ 2346 IRE_TRACE_REF(ire); \ 2347 (ire)->ire_refcnt++; \ 2348 } 2349 2350 /* 2351 * Decrement the reference count on the IRE. 2352 * In architectures e.g sun4u, where atomic_add_32_nv is just 2353 * a cas, we need to maintain the right memory barrier semantics 2354 * as that of mutex_exit i.e all the loads and stores should complete 2355 * before the cas is executed. membar_exit() does that here. 2356 * 2357 * NOTE : This macro is used only in places where we want performance. 2358 * To avoid bloating the code, we use the function "ire_refrele" 2359 * which essentially calls the macro. 2360 */ 2361 #ifndef IRE_DEBUG 2362 #define IRE_REFRELE(ire) { \ 2363 ASSERT((ire)->ire_refcnt != 0); \ 2364 membar_exit(); \ 2365 if (atomic_add_32_nv(&(ire)->ire_refcnt, -1) == 0) \ 2366 ire_inactive(ire); \ 2367 } 2368 #define IRE_REFRELE_NOTR(ire) IRE_REFRELE(ire) 2369 #else 2370 #define IRE_REFRELE(ire) { \ 2371 if (ire->ire_bucket != NULL) \ 2372 ire_untrace_ref(ire); \ 2373 ASSERT((ire)->ire_refcnt != 0); \ 2374 membar_exit(); \ 2375 if (atomic_add_32_nv(&(ire)->ire_refcnt, -1) == 0) \ 2376 ire_inactive(ire); \ 2377 } 2378 #define IRE_REFRELE_NOTR(ire) { \ 2379 ASSERT((ire)->ire_refcnt != 0); \ 2380 membar_exit(); \ 2381 if (atomic_add_32_nv(&(ire)->ire_refcnt, -1) == 0) \ 2382 ire_inactive(ire); \ 2383 } 2384 #endif 2385 2386 /* 2387 * Bump up the reference count on the hash bucket - IRB to 2388 * prevent ires from being deleted in this bucket. 2389 */ 2390 #define IRB_REFHOLD(irb) { \ 2391 rw_enter(&(irb)->irb_lock, RW_WRITER); \ 2392 (irb)->irb_refcnt++; \ 2393 ASSERT((irb)->irb_refcnt != 0); \ 2394 rw_exit(&(irb)->irb_lock); \ 2395 } 2396 #define IRB_REFHOLD_LOCKED(irb) { \ 2397 ASSERT(RW_WRITE_HELD(&(irb)->irb_lock)); \ 2398 (irb)->irb_refcnt++; \ 2399 ASSERT((irb)->irb_refcnt != 0); \ 2400 } 2401 2402 void irb_refrele_ftable(irb_t *); 2403 /* 2404 * Note: when IRB_MARK_FTABLE (i.e., IRE_CACHETABLE entry), the irb_t 2405 * is statically allocated, so that when the irb_refcnt goes to 0, 2406 * we simply clean up the ire list and continue. 2407 */ 2408 #define IRB_REFRELE(irb) { \ 2409 if ((irb)->irb_marks & IRB_MARK_FTABLE) { \ 2410 irb_refrele_ftable((irb)); \ 2411 } else { \ 2412 rw_enter(&(irb)->irb_lock, RW_WRITER); \ 2413 ASSERT((irb)->irb_refcnt != 0); \ 2414 if (--(irb)->irb_refcnt == 0 && \ 2415 ((irb)->irb_marks & IRE_MARK_CONDEMNED)) { \ 2416 ire_t *ire_list; \ 2417 \ 2418 ire_list = ire_unlink(irb); \ 2419 rw_exit(&(irb)->irb_lock); \ 2420 ASSERT(ire_list != NULL); \ 2421 ire_cleanup(ire_list); \ 2422 } else { \ 2423 rw_exit(&(irb)->irb_lock); \ 2424 } \ 2425 } \ 2426 } 2427 2428 extern struct kmem_cache *rt_entry_cache; 2429 2430 /* 2431 * Lock the fast path mp for access, since the fp_mp can be deleted 2432 * due a DL_NOTE_FASTPATH_FLUSH in the case of IRE_BROADCAST 2433 */ 2434 2435 #define LOCK_IRE_FP_MP(ire) { \ 2436 if ((ire)->ire_type == IRE_BROADCAST) \ 2437 mutex_enter(&ire->ire_nce->nce_lock); \ 2438 } 2439 #define UNLOCK_IRE_FP_MP(ire) { \ 2440 if ((ire)->ire_type == IRE_BROADCAST) \ 2441 mutex_exit(&ire->ire_nce->nce_lock); \ 2442 } 2443 2444 typedef struct ire4 { 2445 ipaddr_t ire4_src_addr; /* Source address to use. */ 2446 ipaddr_t ire4_mask; /* Mask for matching this IRE. */ 2447 ipaddr_t ire4_addr; /* Address this IRE represents. */ 2448 ipaddr_t ire4_gateway_addr; /* Gateway if IRE_CACHE/IRE_OFFSUBNET */ 2449 ipaddr_t ire4_cmask; /* Mask from parent prefix route */ 2450 } ire4_t; 2451 2452 typedef struct ire6 { 2453 in6_addr_t ire6_src_addr; /* Source address to use. */ 2454 in6_addr_t ire6_mask; /* Mask for matching this IRE. */ 2455 in6_addr_t ire6_addr; /* Address this IRE represents. */ 2456 in6_addr_t ire6_gateway_addr; /* Gateway if IRE_CACHE/IRE_OFFSUBNET */ 2457 in6_addr_t ire6_cmask; /* Mask from parent prefix route */ 2458 } ire6_t; 2459 2460 typedef union ire_addr { 2461 ire6_t ire6_u; 2462 ire4_t ire4_u; 2463 } ire_addr_u_t; 2464 2465 /* Internet Routing Entry */ 2466 typedef struct ire_s { 2467 struct ire_s *ire_next; /* The hash chain must be first. */ 2468 struct ire_s **ire_ptpn; /* Pointer to previous next. */ 2469 uint32_t ire_refcnt; /* Number of references */ 2470 mblk_t *ire_mp; /* Non-null if allocated as mblk */ 2471 queue_t *ire_rfq; /* recv from this queue */ 2472 queue_t *ire_stq; /* send to this queue */ 2473 union { 2474 uint_t *max_fragp; /* Used only during ire creation */ 2475 uint_t max_frag; /* MTU (next hop or path). */ 2476 } imf_u; 2477 #define ire_max_frag imf_u.max_frag 2478 #define ire_max_fragp imf_u.max_fragp 2479 uint32_t ire_frag_flag; /* IPH_DF or zero. */ 2480 uint32_t ire_ident; /* Per IRE IP ident. */ 2481 uint32_t ire_tire_mark; /* Used for reclaim of unused. */ 2482 uchar_t ire_ipversion; /* IPv4/IPv6 version */ 2483 uchar_t ire_marks; /* IRE_MARK_CONDEMNED etc. */ 2484 ushort_t ire_type; /* Type of IRE */ 2485 uint_t ire_ib_pkt_count; /* Inbound packets for ire_addr */ 2486 uint_t ire_ob_pkt_count; /* Outbound packets to ire_addr */ 2487 uint_t ire_ll_hdr_length; /* Non-zero if we do M_DATA prepends */ 2488 time_t ire_create_time; /* Time (in secs) IRE was created. */ 2489 uint32_t ire_phandle; /* Associate prefix IREs to cache */ 2490 uint32_t ire_ihandle; /* Associate interface IREs to cache */ 2491 ipif_t *ire_ipif; /* the interface that this ire uses */ 2492 uint32_t ire_flags; /* flags related to route (RTF_*) */ 2493 uint_t ire_ipsec_overhead; /* IPSEC overhead */ 2494 /* 2495 * Neighbor Cache Entry for IPv6; arp info for IPv4 2496 */ 2497 struct nce_s *ire_nce; 2498 uint_t ire_masklen; /* # bits in ire_mask{,_v6} */ 2499 ire_addr_u_t ire_u; /* IPv4/IPv6 address info. */ 2500 2501 irb_t *ire_bucket; /* Hash bucket when ire_ptphn is set */ 2502 iulp_t ire_uinfo; /* Upper layer protocol info. */ 2503 /* 2504 * Protects ire_uinfo, ire_max_frag, and ire_frag_flag. 2505 */ 2506 kmutex_t ire_lock; 2507 uint_t ire_ipif_seqid; /* ipif_seqid of ire_ipif */ 2508 clock_t ire_last_used_time; /* Last used time */ 2509 tsol_ire_gw_secattr_t *ire_gw_secattr; /* gateway security attributes */ 2510 zoneid_t ire_zoneid; /* for local address discrimination */ 2511 /* 2512 * ire's that are embedded inside mblk_t and sent to the external 2513 * resolver use the ire_stq_ifindex to track the ifindex of the 2514 * ire_stq, so that the ill (if it exists) can be correctly recovered 2515 * for cleanup in the esbfree routine when arp failure occurs 2516 */ 2517 uint_t ire_stq_ifindex; 2518 uint_t ire_defense_count; /* number of ARP conflicts */ 2519 uint_t ire_defense_time; /* last time defended (secs) */ 2520 ip_stack_t *ire_ipst; /* Does not have a netstack_hold */ 2521 #ifdef IRE_DEBUG 2522 th_trace_t *ire_trace[IP_TR_HASH_MAX]; 2523 boolean_t ire_trace_disable; /* True when alloc fails */ 2524 #endif 2525 } ire_t; 2526 2527 /* IPv4 compatiblity macros */ 2528 #define ire_src_addr ire_u.ire4_u.ire4_src_addr 2529 #define ire_mask ire_u.ire4_u.ire4_mask 2530 #define ire_addr ire_u.ire4_u.ire4_addr 2531 #define ire_gateway_addr ire_u.ire4_u.ire4_gateway_addr 2532 #define ire_cmask ire_u.ire4_u.ire4_cmask 2533 2534 #define ire_src_addr_v6 ire_u.ire6_u.ire6_src_addr 2535 #define ire_mask_v6 ire_u.ire6_u.ire6_mask 2536 #define ire_addr_v6 ire_u.ire6_u.ire6_addr 2537 #define ire_gateway_addr_v6 ire_u.ire6_u.ire6_gateway_addr 2538 #define ire_cmask_v6 ire_u.ire6_u.ire6_cmask 2539 2540 /* Convenient typedefs for sockaddrs */ 2541 typedef struct sockaddr_in sin_t; 2542 typedef struct sockaddr_in6 sin6_t; 2543 2544 /* Address structure used for internal bind with IP */ 2545 typedef struct ipa_conn_s { 2546 ipaddr_t ac_laddr; 2547 ipaddr_t ac_faddr; 2548 uint16_t ac_fport; 2549 uint16_t ac_lport; 2550 } ipa_conn_t; 2551 2552 typedef struct ipa6_conn_s { 2553 in6_addr_t ac6_laddr; 2554 in6_addr_t ac6_faddr; 2555 uint16_t ac6_fport; 2556 uint16_t ac6_lport; 2557 } ipa6_conn_t; 2558 2559 /* 2560 * Using ipa_conn_x_t or ipa6_conn_x_t allows us to modify the behavior of IP's 2561 * bind handler. 2562 */ 2563 typedef struct ipa_conn_extended_s { 2564 uint64_t acx_flags; 2565 ipa_conn_t acx_conn; 2566 } ipa_conn_x_t; 2567 2568 typedef struct ipa6_conn_extended_s { 2569 uint64_t ac6x_flags; 2570 ipa6_conn_t ac6x_conn; 2571 } ipa6_conn_x_t; 2572 2573 /* flag values for ipa_conn_x_t and ipa6_conn_x_t. */ 2574 #define ACX_VERIFY_DST 0x1ULL /* verify destination address is reachable */ 2575 2576 /* Name/Value Descriptor. */ 2577 typedef struct nv_s { 2578 uint64_t nv_value; 2579 char *nv_name; 2580 } nv_t; 2581 2582 /* IP Forwarding Ticket */ 2583 typedef struct ipftk_s { 2584 queue_t *ipftk_queue; 2585 ipaddr_t ipftk_dst; 2586 } ipftk_t; 2587 2588 typedef struct ipt_s { 2589 pfv_t func; /* Routine to call */ 2590 uchar_t *arg; /* ire or nce passed in */ 2591 } ipt_t; 2592 2593 #define ILL_FRAG_HASH(s, i) \ 2594 ((ntohl(s) ^ ((i) ^ ((i) >> 8))) % ILL_FRAG_HASH_TBL_COUNT) 2595 2596 /* 2597 * The MAX number of allowed fragmented packets per hash bucket 2598 * calculation is based on the most common mtu size of 1500. This limit 2599 * will work well for other mtu sizes as well. 2600 */ 2601 #define COMMON_IP_MTU 1500 2602 #define MAX_FRAG_MIN 10 2603 #define MAX_FRAG_PKTS(ipst) \ 2604 MAX(MAX_FRAG_MIN, (2 * (ipst->ips_ip_reass_queue_bytes / \ 2605 (COMMON_IP_MTU * ILL_FRAG_HASH_TBL_COUNT)))) 2606 2607 /* 2608 * Maximum dups allowed per packet. 2609 */ 2610 extern uint_t ip_max_frag_dups; 2611 2612 /* 2613 * Per-packet information for received packets and transmitted. 2614 * Used by the transport protocols when converting between the packet 2615 * and ancillary data and socket options. 2616 * 2617 * Note: This private data structure and related IPPF_* constant 2618 * definitions are exposed to enable compilation of some debugging tools 2619 * like lsof which use struct tcp_t in <inet/tcp.h>. This is intended to be 2620 * a temporary hack and long term alternate interfaces should be defined 2621 * to support the needs of such tools and private definitions moved to 2622 * private headers. 2623 */ 2624 struct ip6_pkt_s { 2625 uint_t ipp_fields; /* Which fields are valid */ 2626 uint_t ipp_sticky_ignored; /* sticky fields to ignore */ 2627 uint_t ipp_ifindex; /* pktinfo ifindex */ 2628 in6_addr_t ipp_addr; /* pktinfo src/dst addr */ 2629 uint_t ipp_unicast_hops; /* IPV6_UNICAST_HOPS */ 2630 uint_t ipp_multicast_hops; /* IPV6_MULTICAST_HOPS */ 2631 uint_t ipp_hoplimit; /* IPV6_HOPLIMIT */ 2632 uint_t ipp_hopoptslen; 2633 uint_t ipp_rtdstoptslen; 2634 uint_t ipp_rthdrlen; 2635 uint_t ipp_dstoptslen; 2636 uint_t ipp_pathmtulen; 2637 uint_t ipp_fraghdrlen; 2638 ip6_hbh_t *ipp_hopopts; 2639 ip6_dest_t *ipp_rtdstopts; 2640 ip6_rthdr_t *ipp_rthdr; 2641 ip6_dest_t *ipp_dstopts; 2642 ip6_frag_t *ipp_fraghdr; 2643 struct ip6_mtuinfo *ipp_pathmtu; 2644 in6_addr_t ipp_nexthop; /* Transmit only */ 2645 uint8_t ipp_tclass; 2646 int8_t ipp_use_min_mtu; 2647 }; 2648 typedef struct ip6_pkt_s ip6_pkt_t; 2649 2650 extern void ip6_pkt_free(ip6_pkt_t *); /* free storage inside ip6_pkt_t */ 2651 2652 /* 2653 * This struct is used by ULP_opt_set() functions to return value of IPv4 2654 * ancillary options. Currently this is only used by udp and icmp and only 2655 * IP_PKTINFO option is supported. 2656 */ 2657 typedef struct ip4_pkt_s { 2658 uint_t ip4_ill_index; /* interface index */ 2659 ipaddr_t ip4_addr; /* source address */ 2660 } ip4_pkt_t; 2661 2662 /* 2663 * Used by ULP's to pass options info to ip_output 2664 * currently only IP_PKTINFO is supported. 2665 */ 2666 typedef struct ip_opt_info_s { 2667 uint_t ip_opt_ill_index; 2668 uint_t ip_opt_flags; 2669 } ip_opt_info_t; 2670 2671 /* 2672 * value for ip_opt_flags 2673 */ 2674 #define IP_VERIFY_SRC 0x1 2675 2676 /* 2677 * This structure is used to convey information from IP and the ULP. 2678 * Currently used for the IP_RECVSLLA, IP_RECVIF and IP_RECVPKTINFO options. 2679 * The type of information field is set to IN_PKTINFO (i.e inbound pkt info) 2680 */ 2681 typedef struct ip_pktinfo { 2682 uint32_t ip_pkt_ulp_type; /* type of info sent */ 2683 uint32_t ip_pkt_flags; /* what is sent up by IP */ 2684 uint32_t ip_pkt_ifindex; /* inbound interface index */ 2685 struct sockaddr_dl ip_pkt_slla; /* has source link layer addr */ 2686 struct in_addr ip_pkt_match_addr; /* matched address */ 2687 } ip_pktinfo_t; 2688 2689 /* 2690 * flags to tell UDP what IP is sending; in_pkt_flags 2691 */ 2692 #define IPF_RECVIF 0x01 /* inbound interface index */ 2693 #define IPF_RECVSLLA 0x02 /* source link layer address */ 2694 /* 2695 * Inbound interface index + matched address. 2696 * Used only by IPV4. 2697 */ 2698 #define IPF_RECVADDR 0x04 2699 2700 /* ipp_fields values */ 2701 #define IPPF_IFINDEX 0x0001 /* Part of in6_pktinfo: ifindex */ 2702 #define IPPF_ADDR 0x0002 /* Part of in6_pktinfo: src/dst addr */ 2703 #define IPPF_SCOPE_ID 0x0004 /* Add xmit ip6i_t for sin6_scope_id */ 2704 #define IPPF_NO_CKSUM 0x0008 /* Add xmit ip6i_t for IP6I_NO_*_CKSUM */ 2705 2706 #define IPPF_RAW_CKSUM 0x0010 /* Add xmit ip6i_t for IP6I_RAW_CHECKSUM */ 2707 #define IPPF_HOPLIMIT 0x0020 2708 #define IPPF_HOPOPTS 0x0040 2709 #define IPPF_RTHDR 0x0080 2710 2711 #define IPPF_RTDSTOPTS 0x0100 2712 #define IPPF_DSTOPTS 0x0200 2713 #define IPPF_NEXTHOP 0x0400 2714 #define IPPF_PATHMTU 0x0800 2715 2716 #define IPPF_TCLASS 0x1000 2717 #define IPPF_DONTFRAG 0x2000 2718 #define IPPF_USE_MIN_MTU 0x04000 2719 #define IPPF_MULTICAST_HOPS 0x08000 2720 2721 #define IPPF_UNICAST_HOPS 0x10000 2722 #define IPPF_FRAGHDR 0x20000 2723 2724 #define IPPF_HAS_IP6I \ 2725 (IPPF_IFINDEX|IPPF_ADDR|IPPF_NEXTHOP|IPPF_SCOPE_ID| \ 2726 IPPF_NO_CKSUM|IPPF_RAW_CKSUM|IPPF_HOPLIMIT|IPPF_DONTFRAG| \ 2727 IPPF_USE_MIN_MTU|IPPF_MULTICAST_HOPS|IPPF_UNICAST_HOPS) 2728 2729 #define TCP_PORTS_OFFSET 0 2730 #define UDP_PORTS_OFFSET 0 2731 2732 /* 2733 * lookups return the ill/ipif only if the flags are clear OR Iam writer. 2734 * ill / ipif lookup functions increment the refcnt on the ill / ipif only 2735 * after calling these macros. This ensures that the refcnt on the ipif or 2736 * ill will eventually drop down to zero. 2737 */ 2738 #define ILL_LOOKUP_FAILED 1 /* Used as error code */ 2739 #define IPIF_LOOKUP_FAILED 2 /* Used as error code */ 2740 2741 #define ILL_CAN_LOOKUP(ill) \ 2742 (!((ill)->ill_state_flags & (ILL_CONDEMNED | ILL_CHANGING)) || \ 2743 IAM_WRITER_ILL(ill)) 2744 2745 #define ILL_CAN_WAIT(ill, q) \ 2746 (((q) != NULL) && !((ill)->ill_state_flags & (ILL_CONDEMNED))) 2747 2748 #define ILL_CAN_LOOKUP_WALKER(ill) \ 2749 (!((ill)->ill_state_flags & ILL_CONDEMNED)) 2750 2751 #define IPIF_CAN_LOOKUP(ipif) \ 2752 (!((ipif)->ipif_state_flags & (IPIF_CONDEMNED | IPIF_CHANGING)) || \ 2753 IAM_WRITER_IPIF(ipif)) 2754 2755 /* 2756 * If the parameter 'q' is NULL, the caller is not interested in wait and 2757 * restart of the operation if the ILL or IPIF cannot be looked up when it is 2758 * marked as 'CHANGING'. Typically a thread that tries to send out data will 2759 * end up passing NULLs as the last 4 parameters to ill_lookup_on_ifindex and 2760 * in this case 'q' is NULL 2761 */ 2762 #define IPIF_CAN_WAIT(ipif, q) \ 2763 (((q) != NULL) && !((ipif)->ipif_state_flags & (IPIF_CONDEMNED))) 2764 2765 #define IPIF_CAN_LOOKUP_WALKER(ipif) \ 2766 (!((ipif)->ipif_state_flags & (IPIF_CONDEMNED)) || \ 2767 IAM_WRITER_IPIF(ipif)) 2768 2769 /* 2770 * These macros are used by critical set ioctls and failover ioctls to 2771 * mark the ipif appropriately before starting the operation and to clear the 2772 * marks after completing the operation. 2773 */ 2774 #define IPIF_UNMARK_MOVING(ipif) \ 2775 (ipif)->ipif_state_flags &= ~IPIF_MOVING & ~IPIF_CHANGING; 2776 2777 #define ILL_UNMARK_CHANGING(ill) \ 2778 (ill)->ill_state_flags &= ~ILL_CHANGING; 2779 2780 /* Macros used to assert that this thread is a writer */ 2781 #define IAM_WRITER_IPSQ(ipsq) ((ipsq)->ipsq_writer == curthread) 2782 #define IAM_WRITER_ILL(ill) \ 2783 ((ill)->ill_phyint->phyint_ipsq->ipsq_writer == curthread) 2784 #define IAM_WRITER_IPIF(ipif) \ 2785 ((ipif)->ipif_ill->ill_phyint->phyint_ipsq->ipsq_writer == curthread) 2786 2787 /* 2788 * Grab ill locks in the proper order. The order is highest addressed 2789 * ill is locked first. 2790 */ 2791 #define GRAB_ILL_LOCKS(ill_1, ill_2) \ 2792 { \ 2793 if ((ill_1) > (ill_2)) { \ 2794 if (ill_1 != NULL) \ 2795 mutex_enter(&(ill_1)->ill_lock); \ 2796 if (ill_2 != NULL) \ 2797 mutex_enter(&(ill_2)->ill_lock); \ 2798 } else { \ 2799 if (ill_2 != NULL) \ 2800 mutex_enter(&(ill_2)->ill_lock); \ 2801 if (ill_1 != NULL && ill_1 != ill_2) \ 2802 mutex_enter(&(ill_1)->ill_lock); \ 2803 } \ 2804 } 2805 2806 #define RELEASE_ILL_LOCKS(ill_1, ill_2) \ 2807 { \ 2808 if (ill_1 != NULL) \ 2809 mutex_exit(&(ill_1)->ill_lock); \ 2810 if (ill_2 != NULL && ill_2 != ill_1) \ 2811 mutex_exit(&(ill_2)->ill_lock); \ 2812 } 2813 2814 /* Get the other protocol instance ill */ 2815 #define ILL_OTHER(ill) \ 2816 ((ill)->ill_isv6 ? (ill)->ill_phyint->phyint_illv4 : \ 2817 (ill)->ill_phyint->phyint_illv6) 2818 2819 #define MATCH_V4_ONLY 0x1 2820 #define MATCH_V6_ONLY 0x2 2821 #define MATCH_ILL_ONLY 0x4 2822 2823 /* ioctl command info: Ioctl properties extracted and stored in here */ 2824 typedef struct cmd_info_s 2825 { 2826 char ci_groupname[LIFNAMSIZ + 1]; /* SIOCSLIFGROUPNAME */ 2827 ipif_t *ci_ipif; /* ipif associated with [l]ifreq ioctl's */ 2828 sin_t *ci_sin; /* the sin struct passed down */ 2829 sin6_t *ci_sin6; /* the sin6_t struct passed down */ 2830 struct lifreq *ci_lifr; /* the lifreq struct passed down */ 2831 } cmd_info_t; 2832 2833 /* 2834 * List of AH and ESP IPsec acceleration capable ills 2835 */ 2836 typedef struct ipsec_capab_ill_s { 2837 uint_t ill_index; 2838 boolean_t ill_isv6; 2839 struct ipsec_capab_ill_s *next; 2840 } ipsec_capab_ill_t; 2841 2842 extern struct kmem_cache *ire_cache; 2843 2844 extern ipaddr_t ip_g_all_ones; 2845 2846 extern uint_t ip_loopback_mtu; /* /etc/system */ 2847 2848 extern vmem_t *ip_minor_arena; 2849 2850 /* 2851 * ip_g_forward controls IP forwarding. It takes two values: 2852 * 0: IP_FORWARD_NEVER Don't forward packets ever. 2853 * 1: IP_FORWARD_ALWAYS Forward packets for elsewhere. 2854 * 2855 * RFC1122 says there must be a configuration switch to control forwarding, 2856 * but that the default MUST be to not forward packets ever. Implicit 2857 * control based on configuration of multiple interfaces MUST NOT be 2858 * implemented (Section 3.1). SunOS 4.1 did provide the "automatic" capability 2859 * and, in fact, it was the default. That capability is now provided in the 2860 * /etc/rc2.d/S69inet script. 2861 */ 2862 2863 #define ips_ip_respond_to_address_mask_broadcast ips_param_arr[0].ip_param_value 2864 #define ips_ip_g_resp_to_echo_bcast ips_param_arr[1].ip_param_value 2865 #define ips_ip_g_resp_to_echo_mcast ips_param_arr[2].ip_param_value 2866 #define ips_ip_g_resp_to_timestamp ips_param_arr[3].ip_param_value 2867 #define ips_ip_g_resp_to_timestamp_bcast ips_param_arr[4].ip_param_value 2868 #define ips_ip_g_send_redirects ips_param_arr[5].ip_param_value 2869 #define ips_ip_g_forward_directed_bcast ips_param_arr[6].ip_param_value 2870 #define ips_ip_debug ips_param_arr[7].ip_param_value 2871 #define ips_ip_mrtdebug ips_param_arr[8].ip_param_value 2872 #define ips_ip_timer_interval ips_param_arr[9].ip_param_value 2873 #define ips_ip_ire_arp_interval ips_param_arr[10].ip_param_value 2874 #define ips_ip_ire_redir_interval ips_param_arr[11].ip_param_value 2875 #define ips_ip_def_ttl ips_param_arr[12].ip_param_value 2876 #define ips_ip_forward_src_routed ips_param_arr[13].ip_param_value 2877 #define ips_ip_wroff_extra ips_param_arr[14].ip_param_value 2878 #define ips_ip_ire_pathmtu_interval ips_param_arr[15].ip_param_value 2879 #define ips_ip_icmp_return ips_param_arr[16].ip_param_value 2880 #define ips_ip_path_mtu_discovery ips_param_arr[17].ip_param_value 2881 #define ips_ip_ignore_delete_time ips_param_arr[18].ip_param_value 2882 #define ips_ip_ignore_redirect ips_param_arr[19].ip_param_value 2883 #define ips_ip_output_queue ips_param_arr[20].ip_param_value 2884 #define ips_ip_broadcast_ttl ips_param_arr[21].ip_param_value 2885 #define ips_ip_icmp_err_interval ips_param_arr[22].ip_param_value 2886 #define ips_ip_icmp_err_burst ips_param_arr[23].ip_param_value 2887 #define ips_ip_reass_queue_bytes ips_param_arr[24].ip_param_value 2888 #define ips_ip_strict_dst_multihoming ips_param_arr[25].ip_param_value 2889 #define ips_ip_addrs_per_if ips_param_arr[26].ip_param_value 2890 #define ips_ipsec_override_persocket_policy ips_param_arr[27].ip_param_value 2891 #define ips_icmp_accept_clear_messages ips_param_arr[28].ip_param_value 2892 #define ips_igmp_accept_clear_messages ips_param_arr[29].ip_param_value 2893 2894 /* IPv6 configuration knobs */ 2895 #define ips_delay_first_probe_time ips_param_arr[30].ip_param_value 2896 #define ips_max_unicast_solicit ips_param_arr[31].ip_param_value 2897 #define ips_ipv6_def_hops ips_param_arr[32].ip_param_value 2898 #define ips_ipv6_icmp_return ips_param_arr[33].ip_param_value 2899 #define ips_ipv6_forward_src_routed ips_param_arr[34].ip_param_value 2900 #define ips_ipv6_resp_echo_mcast ips_param_arr[35].ip_param_value 2901 #define ips_ipv6_send_redirects ips_param_arr[36].ip_param_value 2902 #define ips_ipv6_ignore_redirect ips_param_arr[37].ip_param_value 2903 #define ips_ipv6_strict_dst_multihoming ips_param_arr[38].ip_param_value 2904 #define ips_ip_ire_reclaim_fraction ips_param_arr[39].ip_param_value 2905 #define ips_ipsec_policy_log_interval ips_param_arr[40].ip_param_value 2906 #define ips_pim_accept_clear_messages ips_param_arr[41].ip_param_value 2907 #define ips_ip_ndp_unsolicit_interval ips_param_arr[42].ip_param_value 2908 #define ips_ip_ndp_unsolicit_count ips_param_arr[43].ip_param_value 2909 #define ips_ipv6_ignore_home_address_opt ips_param_arr[44].ip_param_value 2910 #define ips_ip_policy_mask ips_param_arr[45].ip_param_value 2911 #define ips_ip_multirt_resolution_interval ips_param_arr[46].ip_param_value 2912 #define ips_ip_multirt_ttl ips_param_arr[47].ip_param_value 2913 #define ips_ip_multidata_outbound ips_param_arr[48].ip_param_value 2914 #define ips_ip_ndp_defense_interval ips_param_arr[49].ip_param_value 2915 #define ips_ip_max_temp_idle ips_param_arr[50].ip_param_value 2916 #define ips_ip_max_temp_defend ips_param_arr[51].ip_param_value 2917 #define ips_ip_max_defend ips_param_arr[52].ip_param_value 2918 #define ips_ip_defend_interval ips_param_arr[53].ip_param_value 2919 #define ips_ip_dup_recovery ips_param_arr[54].ip_param_value 2920 #define ips_ip_restrict_interzone_loopback ips_param_arr[55].ip_param_value 2921 #define ips_ip_lso_outbound ips_param_arr[56].ip_param_value 2922 #define ips_igmp_max_version ips_param_arr[57].ip_param_value 2923 #define ips_mld_max_version ips_param_arr[58].ip_param_value 2924 #define ips_ipv6_drop_inbound_icmpv6 ips_param_arr[59].ip_param_value 2925 2926 extern int dohwcksum; /* use h/w cksum if supported by the h/w */ 2927 #ifdef ZC_TEST 2928 extern int noswcksum; 2929 #endif 2930 2931 extern char ipif_loopback_name[]; 2932 2933 extern nv_t *ire_nv_tbl; 2934 2935 extern struct module_info ip_mod_info; 2936 2937 #define HOOKS4_INTERESTED_PHYSICAL_IN(ipst) \ 2938 ((ipst)->ips_ip4_physical_in_event.he_interested) 2939 #define HOOKS6_INTERESTED_PHYSICAL_IN(ipst) \ 2940 ((ipst)->ips_ip6_physical_in_event.he_interested) 2941 #define HOOKS4_INTERESTED_PHYSICAL_OUT(ipst) \ 2942 ((ipst)->ips_ip4_physical_out_event.he_interested) 2943 #define HOOKS6_INTERESTED_PHYSICAL_OUT(ipst) \ 2944 ((ipst)->ips_ip6_physical_out_event.he_interested) 2945 #define HOOKS4_INTERESTED_FORWARDING(ipst) \ 2946 ((ipst)->ips_ip4_forwarding_event.he_interested) 2947 #define HOOKS6_INTERESTED_FORWARDING(ipst) \ 2948 ((ipst)->ips_ip6_forwarding_event.he_interested) 2949 #define HOOKS4_INTERESTED_LOOPBACK_IN(ipst) \ 2950 ((ipst)->ips_ip4_loopback_in_event.he_interested) 2951 #define HOOKS6_INTERESTED_LOOPBACK_IN(ipst) \ 2952 ((ipst)->ips_ip6_loopback_in_event.he_interested) 2953 #define HOOKS4_INTERESTED_LOOPBACK_OUT(ipst) \ 2954 ((ipst)->ips_ip4_loopback_out_event.he_interested) 2955 #define HOOKS6_INTERESTED_LOOPBACK_OUT(ipst) \ 2956 ((ipst)->ips_ip6_loopback_out_event.he_interested) 2957 2958 /* 2959 * Hooks marcos used inside of ip 2960 */ 2961 #define IPHA_VHL ipha_version_and_hdr_length 2962 2963 #define FW_HOOKS(_hook, _event, _ilp, _olp, _iph, _fm, _m, ipst) \ 2964 \ 2965 if ((_hook).he_interested) { \ 2966 hook_pkt_event_t info; \ 2967 \ 2968 _NOTE(CONSTCOND) \ 2969 ASSERT((_ilp != NULL) || (_olp != NULL)); \ 2970 \ 2971 _NOTE(CONSTCOND) \ 2972 if ((_ilp != NULL) && \ 2973 (((ill_t *)(_ilp))->ill_phyint != NULL)) \ 2974 info.hpe_ifp = (phy_if_t)((ill_t *) \ 2975 (_ilp))->ill_phyint->phyint_hook_ifindex; \ 2976 else \ 2977 info.hpe_ifp = 0; \ 2978 \ 2979 _NOTE(CONSTCOND) \ 2980 if ((_olp != NULL) && \ 2981 (((ill_t *)(_olp))->ill_phyint != NULL)) \ 2982 info.hpe_ofp = (phy_if_t)((ill_t *) \ 2983 (_olp))->ill_phyint->phyint_hook_ifindex; \ 2984 else \ 2985 info.hpe_ofp = 0; \ 2986 info.hpe_hdr = _iph; \ 2987 info.hpe_mp = &(_fm); \ 2988 info.hpe_mb = _m; \ 2989 if (hook_run(_event, (hook_data_t)&info, \ 2990 ipst->ips_netstack) != 0) { \ 2991 ip2dbg(("%s hook dropped mblk chain %p hdr %p\n",\ 2992 (_hook).he_name, (void *)_fm, (void *)_m)); \ 2993 if (_fm != NULL) { \ 2994 freemsg(_fm); \ 2995 _fm = NULL; \ 2996 } \ 2997 _iph = NULL; \ 2998 _m = NULL; \ 2999 } else { \ 3000 _iph = info.hpe_hdr; \ 3001 _m = info.hpe_mb; \ 3002 } \ 3003 } 3004 3005 #define FW_HOOKS6(_hook, _event, _ilp, _olp, _iph, _fm, _m, ipst) \ 3006 \ 3007 if ((_hook).he_interested) { \ 3008 hook_pkt_event_t info; \ 3009 \ 3010 _NOTE(CONSTCOND) \ 3011 ASSERT((_ilp != NULL) || (_olp != NULL)); \ 3012 \ 3013 _NOTE(CONSTCOND) \ 3014 if ((_ilp != NULL) && \ 3015 (((ill_t *)(_ilp))->ill_phyint != NULL)) \ 3016 info.hpe_ifp = (phy_if_t)((ill_t *) \ 3017 (_ilp))->ill_phyint->phyint_hook_ifindex; \ 3018 else \ 3019 info.hpe_ifp = 0; \ 3020 \ 3021 _NOTE(CONSTCOND) \ 3022 if ((_olp != NULL) && \ 3023 (((ill_t *)(_olp))->ill_phyint != NULL)) \ 3024 info.hpe_ofp = (phy_if_t)((ill_t *) \ 3025 (_olp))->ill_phyint->phyint_hook_ifindex; \ 3026 else \ 3027 info.hpe_ofp = 0; \ 3028 info.hpe_hdr = _iph; \ 3029 info.hpe_mp = &(_fm); \ 3030 info.hpe_mb = _m; \ 3031 if (hook_run(_event, (hook_data_t)&info, \ 3032 ipst->ips_netstack) != 0) { \ 3033 ip2dbg(("%s hook dropped mblk chain %p hdr %p\n",\ 3034 (_hook).he_name, (void *)_fm, (void *)_m)); \ 3035 if (_fm != NULL) { \ 3036 freemsg(_fm); \ 3037 _fm = NULL; \ 3038 } \ 3039 _iph = NULL; \ 3040 _m = NULL; \ 3041 } else { \ 3042 _iph = info.hpe_hdr; \ 3043 _m = info.hpe_mb; \ 3044 } \ 3045 } 3046 3047 /* 3048 * Network byte order macros 3049 */ 3050 #ifdef _BIG_ENDIAN 3051 #define N_IN_CLASSD_NET IN_CLASSD_NET 3052 #define N_INADDR_UNSPEC_GROUP INADDR_UNSPEC_GROUP 3053 #else /* _BIG_ENDIAN */ 3054 #define N_IN_CLASSD_NET (ipaddr_t)0x000000f0U 3055 #define N_INADDR_UNSPEC_GROUP (ipaddr_t)0x000000e0U 3056 #endif /* _BIG_ENDIAN */ 3057 #define CLASSD(addr) (((addr) & N_IN_CLASSD_NET) == N_INADDR_UNSPEC_GROUP) 3058 3059 #define IP_LOOPBACK_ADDR(addr) \ 3060 ((ntohl(addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET) 3061 3062 #ifdef DEBUG 3063 /* IPsec HW acceleration debugging support */ 3064 3065 #define IPSECHW_CAPAB 0x0001 /* capability negotiation */ 3066 #define IPSECHW_SADB 0x0002 /* SADB exchange */ 3067 #define IPSECHW_PKT 0x0004 /* general packet flow */ 3068 #define IPSECHW_PKTIN 0x0008 /* driver in pkt processing details */ 3069 #define IPSECHW_PKTOUT 0x0010 /* driver out pkt processing details */ 3070 3071 #define IPSECHW_DEBUG(f, x) if (ipsechw_debug & (f)) { (void) printf x; } 3072 #define IPSECHW_CALL(f, r, x) if (ipsechw_debug & (f)) { (void) r x; } 3073 3074 extern uint32_t ipsechw_debug; 3075 #else 3076 #define IPSECHW_DEBUG(f, x) {} 3077 #define IPSECHW_CALL(f, r, x) {} 3078 #endif 3079 3080 extern int ip_debug; 3081 3082 #ifdef IP_DEBUG 3083 #include <sys/debug.h> 3084 #include <sys/promif.h> 3085 3086 #define ip0dbg(a) printf a 3087 #define ip1dbg(a) if (ip_debug > 2) printf a 3088 #define ip2dbg(a) if (ip_debug > 3) printf a 3089 #define ip3dbg(a) if (ip_debug > 4) printf a 3090 #else 3091 #define ip0dbg(a) /* */ 3092 #define ip1dbg(a) /* */ 3093 #define ip2dbg(a) /* */ 3094 #define ip3dbg(a) /* */ 3095 #endif /* IP_DEBUG */ 3096 3097 /* Default MAC-layer address string length for mac_colon_addr */ 3098 #define MAC_STR_LEN 128 3099 3100 struct ipsec_out_s; 3101 3102 struct mac_header_info_s; 3103 3104 extern boolean_t ip_assign_ifindex(uint_t *, ip_stack_t *); 3105 extern const char *dlpi_prim_str(int); 3106 extern const char *dlpi_err_str(int); 3107 extern void ill_frag_timer(void *); 3108 extern ill_t *ill_first(int, int, ill_walk_context_t *, ip_stack_t *); 3109 extern ill_t *ill_next(ill_walk_context_t *, ill_t *); 3110 extern void ill_frag_timer_start(ill_t *); 3111 extern void ill_nic_info_dispatch(ill_t *); 3112 extern void ill_nic_info_plumb(ill_t *, boolean_t); 3113 extern mblk_t *ip_carve_mp(mblk_t **, ssize_t); 3114 extern mblk_t *ip_dlpi_alloc(size_t, t_uscalar_t); 3115 extern char *ip_dot_addr(ipaddr_t, char *); 3116 extern const char *mac_colon_addr(const uint8_t *, size_t, char *, size_t); 3117 extern void ip_lwput(queue_t *, mblk_t *); 3118 extern boolean_t icmp_err_rate_limit(ip_stack_t *); 3119 extern void icmp_time_exceeded(queue_t *, mblk_t *, uint8_t, zoneid_t, 3120 ip_stack_t *); 3121 extern void icmp_unreachable(queue_t *, mblk_t *, uint8_t, zoneid_t, 3122 ip_stack_t *); 3123 extern mblk_t *ip_add_info(mblk_t *, ill_t *, uint_t, zoneid_t, ip_stack_t *); 3124 extern mblk_t *ip_bind_v4(queue_t *, mblk_t *, conn_t *); 3125 extern int ip_bind_connected(conn_t *, mblk_t *, ipaddr_t *, uint16_t, 3126 ipaddr_t, uint16_t, boolean_t, boolean_t, boolean_t, 3127 boolean_t); 3128 extern boolean_t ip_bind_ipsec_policy_set(conn_t *, mblk_t *); 3129 extern int ip_bind_laddr(conn_t *, mblk_t *, ipaddr_t, uint16_t, 3130 boolean_t, boolean_t, boolean_t); 3131 extern uint_t ip_cksum(mblk_t *, int, uint32_t); 3132 extern int ip_close(queue_t *, int); 3133 extern uint16_t ip_csum_hdr(ipha_t *); 3134 extern void ip_proto_not_sup(queue_t *, mblk_t *, uint_t, zoneid_t, 3135 ip_stack_t *); 3136 extern void ip_ire_g_fini(void); 3137 extern void ip_ire_g_init(void); 3138 extern void ip_ire_fini(ip_stack_t *); 3139 extern void ip_ire_init(ip_stack_t *); 3140 extern int ip_open(queue_t *, dev_t *, int, int, cred_t *); 3141 extern int ip_reassemble(mblk_t *, ipf_t *, uint_t, boolean_t, ill_t *, 3142 size_t); 3143 extern int ip_opt_set_ill(conn_t *, int, boolean_t, boolean_t, 3144 int, int, mblk_t *); 3145 extern void ip_rput(queue_t *, mblk_t *); 3146 extern void ip_input(ill_t *, ill_rx_ring_t *, mblk_t *, 3147 struct mac_header_info_s *); 3148 extern void ip_rput_dlpi(queue_t *, mblk_t *); 3149 extern void ip_rput_forward(ire_t *, ipha_t *, mblk_t *, ill_t *); 3150 extern void ip_rput_forward_multicast(ipaddr_t, mblk_t *, ipif_t *); 3151 3152 extern int ip_snmpmod_close(queue_t *); 3153 extern void ip_snmpmod_wput(queue_t *, mblk_t *); 3154 extern void ip_mib2_add_ip_stats(mib2_ipIfStatsEntry_t *, 3155 mib2_ipIfStatsEntry_t *); 3156 extern void ip_mib2_add_icmp6_stats(mib2_ipv6IfIcmpEntry_t *, 3157 mib2_ipv6IfIcmpEntry_t *); 3158 extern void ip_udp_input(queue_t *, mblk_t *, ipha_t *, ire_t *, ill_t *); 3159 extern void ip_proto_input(queue_t *, mblk_t *, ipha_t *, ire_t *, ill_t *); 3160 extern void ip_rput_other(ipsq_t *, queue_t *, mblk_t *, void *); 3161 extern ire_t *ip_check_multihome(void *, ire_t *, ill_t *); 3162 extern void ip_setqinfo(queue_t *, minor_t, boolean_t, ip_stack_t *); 3163 extern void ip_trash_ire_reclaim(void *); 3164 extern void ip_trash_timer_expire(void *); 3165 extern void ip_wput(queue_t *, mblk_t *); 3166 extern void ip_output(void *, mblk_t *, void *, int); 3167 extern void ip_output_options(void *, mblk_t *, void *, int, 3168 ip_opt_info_t *); 3169 extern void ip_wput_md(queue_t *, mblk_t *, conn_t *); 3170 3171 extern void ip_wput_ire(queue_t *, mblk_t *, ire_t *, conn_t *, int, 3172 zoneid_t); 3173 extern void ip_wput_local(queue_t *, ill_t *, ipha_t *, mblk_t *, ire_t *, 3174 int, zoneid_t); 3175 extern void ip_wput_multicast(queue_t *, mblk_t *, ipif_t *, zoneid_t); 3176 extern void ip_wput_nondata(ipsq_t *, queue_t *, mblk_t *, void *); 3177 extern void ip_wsrv(queue_t *); 3178 extern char *ip_nv_lookup(nv_t *, int); 3179 extern boolean_t ip_local_addr_ok_v6(const in6_addr_t *, const in6_addr_t *); 3180 extern boolean_t ip_remote_addr_ok_v6(const in6_addr_t *, const in6_addr_t *); 3181 extern ipaddr_t ip_massage_options(ipha_t *, netstack_t *); 3182 extern ipaddr_t ip_net_mask(ipaddr_t); 3183 extern void ip_newroute(queue_t *, mblk_t *, ipaddr_t, conn_t *, zoneid_t, 3184 ip_stack_t *); 3185 extern ipxmit_state_t ip_xmit_v4(mblk_t *, ire_t *, struct ipsec_out_s *, 3186 boolean_t); 3187 extern int ip_hdr_complete(ipha_t *, zoneid_t, ip_stack_t *); 3188 3189 extern struct qinit rinit_ipv6; 3190 extern struct qinit winit_ipv6; 3191 extern struct qinit rinit_tcp; 3192 extern struct qinit rinit_tcp6; 3193 extern struct qinit winit_tcp; 3194 extern struct qinit rinit_acceptor_tcp; 3195 extern struct qinit winit_acceptor_tcp; 3196 3197 extern void conn_drain_insert(conn_t *connp); 3198 extern int conn_ipsec_length(conn_t *connp); 3199 extern void ip_wput_ipsec_out(queue_t *, mblk_t *, ipha_t *, ill_t *, 3200 ire_t *); 3201 extern ipaddr_t ip_get_dst(ipha_t *); 3202 extern int ipsec_out_extra_length(mblk_t *); 3203 extern int ipsec_in_extra_length(mblk_t *); 3204 extern mblk_t *ipsec_in_alloc(boolean_t, netstack_t *); 3205 extern boolean_t ipsec_in_is_secure(mblk_t *); 3206 extern void ipsec_out_process(queue_t *, mblk_t *, ire_t *, uint_t); 3207 extern void ipsec_out_to_in(mblk_t *); 3208 extern void ip_fanout_proto_again(mblk_t *, ill_t *, ill_t *, ire_t *); 3209 3210 extern void ire_cleanup(ire_t *); 3211 extern void ire_inactive(ire_t *); 3212 extern boolean_t irb_inactive(irb_t *); 3213 extern ire_t *ire_unlink(irb_t *); 3214 #ifdef IRE_DEBUG 3215 extern void ire_trace_ref(ire_t *ire); 3216 extern void ire_untrace_ref(ire_t *ire); 3217 extern void ire_thread_exit(ire_t *ire, caddr_t); 3218 #endif 3219 #ifdef ILL_DEBUG 3220 extern void ill_trace_cleanup(ill_t *); 3221 extern void ipif_trace_cleanup(ipif_t *); 3222 #endif 3223 3224 extern int ip_srcid_insert(const in6_addr_t *, zoneid_t, ip_stack_t *); 3225 extern int ip_srcid_remove(const in6_addr_t *, zoneid_t, ip_stack_t *); 3226 extern void ip_srcid_find_id(uint_t, in6_addr_t *, zoneid_t, netstack_t *); 3227 extern uint_t ip_srcid_find_addr(const in6_addr_t *, zoneid_t, netstack_t *); 3228 extern int ip_srcid_report(queue_t *, mblk_t *, caddr_t, cred_t *); 3229 3230 extern uint8_t ipoptp_next(ipoptp_t *); 3231 extern uint8_t ipoptp_first(ipoptp_t *, ipha_t *); 3232 extern int ip_opt_get_user(const ipha_t *, uchar_t *); 3233 extern ill_t *ip_grab_attach_ill(ill_t *, mblk_t *, int, boolean_t, 3234 ip_stack_t *); 3235 extern ire_t *conn_set_outgoing_ill(conn_t *, ire_t *, ill_t **); 3236 extern int ipsec_req_from_conn(conn_t *, ipsec_req_t *, int); 3237 extern int ip_snmp_get(queue_t *q, mblk_t *mctl); 3238 extern int ip_snmp_set(queue_t *q, int, int, uchar_t *, int); 3239 extern void ip_process_ioctl(ipsq_t *, queue_t *, mblk_t *, void *); 3240 extern void ip_quiesce_conn(conn_t *); 3241 extern void ip_reprocess_ioctl(ipsq_t *, queue_t *, mblk_t *, void *); 3242 extern void ip_restart_optmgmt(ipsq_t *, queue_t *, mblk_t *, void *); 3243 extern void ip_ioctl_finish(queue_t *, mblk_t *, int, int, ipsq_t *); 3244 3245 extern boolean_t ip_cmpbuf(const void *, uint_t, boolean_t, const void *, 3246 uint_t); 3247 extern boolean_t ip_allocbuf(void **, uint_t *, boolean_t, const void *, 3248 uint_t); 3249 extern void ip_savebuf(void **, uint_t *, boolean_t, const void *, uint_t); 3250 3251 extern boolean_t ipsq_pending_mp_cleanup(ill_t *, conn_t *); 3252 extern void conn_ioctl_cleanup(conn_t *); 3253 extern ill_t *conn_get_held_ill(conn_t *, ill_t **, int *); 3254 extern ill_t *ip_newroute_get_dst_ill(ill_t *); 3255 3256 struct multidata_s; 3257 struct pdesc_s; 3258 3259 extern mblk_t *ip_mdinfo_alloc(ill_mdt_capab_t *); 3260 extern mblk_t *ip_mdinfo_return(ire_t *, conn_t *, char *, ill_mdt_capab_t *); 3261 extern mblk_t *ip_lsoinfo_alloc(ill_lso_capab_t *); 3262 extern mblk_t *ip_lsoinfo_return(ire_t *, conn_t *, char *, 3263 ill_lso_capab_t *); 3264 extern uint_t ip_md_cksum(struct pdesc_s *, int, uint_t); 3265 extern boolean_t ip_md_addr_attr(struct multidata_s *, struct pdesc_s *, 3266 const mblk_t *); 3267 extern boolean_t ip_md_hcksum_attr(struct multidata_s *, struct pdesc_s *, 3268 uint32_t, uint32_t, uint32_t, uint32_t); 3269 extern boolean_t ip_md_zcopy_attr(struct multidata_s *, struct pdesc_s *, 3270 uint_t); 3271 extern mblk_t *ip_unbind(queue_t *, mblk_t *); 3272 3273 extern phyint_t *phyint_lookup_group(char *, boolean_t, ip_stack_t *); 3274 extern phyint_t *phyint_lookup_group_ifindex(uint_t, ip_stack_t *); 3275 3276 extern void tnet_init(void); 3277 extern void tnet_fini(void); 3278 3279 /* Hooks for CGTP (multirt routes) filtering module */ 3280 #define CGTP_FILTER_REV_1 1 3281 #define CGTP_FILTER_REV_2 2 3282 #define CGTP_FILTER_REV_3 3 3283 #define CGTP_FILTER_REV CGTP_FILTER_REV_3 3284 3285 /* cfo_filter and cfo_filter_v6 hooks return values */ 3286 #define CGTP_IP_PKT_NOT_CGTP 0 3287 #define CGTP_IP_PKT_PREMIUM 1 3288 #define CGTP_IP_PKT_DUPLICATE 2 3289 3290 /* Version 3 of the filter interface */ 3291 typedef struct cgtp_filter_ops { 3292 int cfo_filter_rev; /* CGTP_FILTER_REV_3 */ 3293 int (*cfo_change_state)(netstackid_t, int); 3294 int (*cfo_add_dest_v4)(netstackid_t, ipaddr_t, ipaddr_t, 3295 ipaddr_t, ipaddr_t); 3296 int (*cfo_del_dest_v4)(netstackid_t, ipaddr_t, ipaddr_t); 3297 int (*cfo_add_dest_v6)(netstackid_t, in6_addr_t *, in6_addr_t *, 3298 in6_addr_t *, in6_addr_t *); 3299 int (*cfo_del_dest_v6)(netstackid_t, in6_addr_t *, in6_addr_t *); 3300 int (*cfo_filter)(netstackid_t, uint_t, mblk_t *); 3301 int (*cfo_filter_v6)(netstackid_t, uint_t, ip6_t *, 3302 ip6_frag_t *); 3303 } cgtp_filter_ops_t; 3304 3305 #define CGTP_MCAST_SUCCESS 1 3306 3307 /* 3308 * The separate CGTP module needs this global symbol so that it 3309 * can check the version and determine whether to use the old or the new 3310 * version of the filtering interface. 3311 */ 3312 extern int ip_cgtp_filter_rev; 3313 3314 extern int ip_cgtp_filter_supported(void); 3315 extern int ip_cgtp_filter_register(netstackid_t, cgtp_filter_ops_t *); 3316 extern int ip_cgtp_filter_unregister(netstackid_t); 3317 extern int ip_cgtp_filter_is_registered(netstackid_t); 3318 3319 /* Flags for ire_multirt_lookup() */ 3320 3321 #define MULTIRT_USESTAMP 0x0001 3322 #define MULTIRT_SETSTAMP 0x0002 3323 #define MULTIRT_CACHEGW 0x0004 3324 3325 /* Debug stuff for multirt route resolution. */ 3326 #if defined(DEBUG) && !defined(__lint) 3327 /* Our "don't send, rather drop" flag. */ 3328 #define MULTIRT_DEBUG_FLAG 0x8000 3329 3330 #define MULTIRT_TRACE(x) ip2dbg(x) 3331 3332 #define MULTIRT_DEBUG_TAG(mblk) \ 3333 do { \ 3334 ASSERT(mblk != NULL); \ 3335 MULTIRT_TRACE(("%s[%d]: tagging mblk %p, tag was %d\n", \ 3336 __FILE__, __LINE__, \ 3337 (void *)(mblk), (mblk)->b_flag & MULTIRT_DEBUG_FLAG)); \ 3338 (mblk)->b_flag |= MULTIRT_DEBUG_FLAG; \ 3339 } while (0) 3340 3341 #define MULTIRT_DEBUG_UNTAG(mblk) \ 3342 do { \ 3343 ASSERT(mblk != NULL); \ 3344 MULTIRT_TRACE(("%s[%d]: untagging mblk %p, tag was %d\n", \ 3345 __FILE__, __LINE__, \ 3346 (void *)(mblk), (mblk)->b_flag & MULTIRT_DEBUG_FLAG)); \ 3347 (mblk)->b_flag &= ~MULTIRT_DEBUG_FLAG; \ 3348 } while (0) 3349 3350 #define MULTIRT_DEBUG_TAGGED(mblk) \ 3351 (((mblk)->b_flag & MULTIRT_DEBUG_FLAG) ? B_TRUE : B_FALSE) 3352 #else 3353 #define MULTIRT_DEBUG_TAG(mblk) ASSERT(mblk != NULL) 3354 #define MULTIRT_DEBUG_UNTAG(mblk) ASSERT(mblk != NULL) 3355 #define MULTIRT_DEBUG_TAGGED(mblk) B_FALSE 3356 #endif 3357 3358 /* 3359 * Per-ILL Multidata Transmit capabilities. 3360 */ 3361 struct ill_mdt_capab_s { 3362 uint_t ill_mdt_version; /* interface version */ 3363 uint_t ill_mdt_on; /* on/off switch for MDT on this ILL */ 3364 uint_t ill_mdt_hdr_head; /* leading header fragment extra space */ 3365 uint_t ill_mdt_hdr_tail; /* trailing header fragment extra space */ 3366 uint_t ill_mdt_max_pld; /* maximum payload buffers per Multidata */ 3367 uint_t ill_mdt_span_limit; /* maximum payload span per packet */ 3368 }; 3369 3370 struct ill_hcksum_capab_s { 3371 uint_t ill_hcksum_version; /* interface version */ 3372 uint_t ill_hcksum_txflags; /* capabilities on transmit */ 3373 }; 3374 3375 struct ill_zerocopy_capab_s { 3376 uint_t ill_zerocopy_version; /* interface version */ 3377 uint_t ill_zerocopy_flags; /* capabilities */ 3378 }; 3379 3380 struct ill_lso_capab_s { 3381 uint_t ill_lso_version; /* interface version */ 3382 uint_t ill_lso_on; /* on/off switch for LSO on this ILL */ 3383 uint_t ill_lso_flags; /* capabilities */ 3384 uint_t ill_lso_max; /* maximum size of payload */ 3385 }; 3386 3387 /* Possible ill_states */ 3388 #define ILL_RING_INPROC 3 /* Being assigned to squeue */ 3389 #define ILL_RING_INUSE 2 /* Already Assigned to Rx Ring */ 3390 #define ILL_RING_BEING_FREED 1 /* Being Unassigned */ 3391 #define ILL_RING_FREE 0 /* Available to be assigned to Ring */ 3392 3393 #define ILL_MAX_RINGS 256 /* Max num of rx rings we can manage */ 3394 #define ILL_POLLING 0x01 /* Polling in use */ 3395 3396 /* 3397 * These functions pointer types are exported by the mac/dls layer. 3398 * we need to duplicate the definitions here because we cannot 3399 * include mac/dls header files here. 3400 */ 3401 typedef void (*ip_mac_blank_t)(void *, time_t, uint_t); 3402 typedef void (*ip_dld_tx_t)(void *, mblk_t *); 3403 3404 typedef void (*ip_dls_chg_soft_ring_t)(void *, int); 3405 typedef void (*ip_dls_bind_t)(void *, processorid_t); 3406 typedef void (*ip_dls_unbind_t)(void *); 3407 3408 struct ill_rx_ring { 3409 ip_mac_blank_t rr_blank; /* Driver interrupt blanking func */ 3410 void *rr_handle; /* Handle for Rx ring */ 3411 squeue_t *rr_sqp; /* Squeue the ring is bound to */ 3412 ill_t *rr_ill; /* back pointer to ill */ 3413 clock_t rr_poll_time; /* Last lbolt polling was used */ 3414 uint32_t rr_poll_state; /* polling state flags */ 3415 uint32_t rr_max_blank_time; /* Max interrupt blank */ 3416 uint32_t rr_min_blank_time; /* Min interrupt blank */ 3417 uint32_t rr_max_pkt_cnt; /* Max pkts before interrupt */ 3418 uint32_t rr_min_pkt_cnt; /* Mix pkts before interrupt */ 3419 uint32_t rr_normal_blank_time; /* Normal intr freq */ 3420 uint32_t rr_normal_pkt_cnt; /* Normal intr pkt cnt */ 3421 uint32_t rr_ring_state; /* State of this ring */ 3422 }; 3423 3424 struct ill_dls_capab_s { 3425 ip_dld_tx_t ill_tx; /* Driver Tx routine */ 3426 void *ill_tx_handle; /* Driver Tx handle */ 3427 ip_dls_chg_soft_ring_t ill_dls_change_status; 3428 /* change soft ring fanout */ 3429 ip_dls_bind_t ill_dls_bind; /* to add CPU affinity */ 3430 ip_dls_unbind_t ill_dls_unbind; /* remove CPU affinity */ 3431 ill_rx_ring_t *ill_ring_tbl; /* Ring to Sqp mapping table */ 3432 uint_t ill_dls_soft_ring_cnt; /* Number of soft ring */ 3433 conn_t *ill_unbind_conn; /* Conn used during unplumb */ 3434 }; 3435 3436 /* 3437 * This message is sent by an upper-layer protocol to tell IP that it knows all 3438 * about labels and will construct them itself. IP takes the slow path and 3439 * recomputes the label on every packet when this isn't true. 3440 */ 3441 #define IP_ULP_OUT_LABELED (('O' << 8) + 'L') 3442 typedef struct out_labeled_s { 3443 uint32_t out_labeled_type; /* OUT_LABELED */ 3444 queue_t *out_qnext; /* intermediate detection */ 3445 } out_labeled_t; 3446 3447 /* 3448 * IP squeues exports 3449 */ 3450 extern int ip_squeue_profile; 3451 extern int ip_squeue_bind; 3452 extern boolean_t ip_squeue_fanout; 3453 extern boolean_t ip_squeue_soft_ring; 3454 extern uint_t ip_threads_per_cpu; 3455 extern uint_t ip_squeues_per_cpu; 3456 extern uint_t ip_soft_rings_cnt; 3457 3458 typedef struct squeue_set_s { 3459 kmutex_t sqs_lock; 3460 struct squeue_s **sqs_list; 3461 int sqs_size; 3462 int sqs_max_size; 3463 processorid_t sqs_bind; 3464 } squeue_set_t; 3465 3466 #define IP_SQUEUE_GET(hint) \ 3467 ((!ip_squeue_fanout) ? (CPU->cpu_squeue_set->sqs_list[0]) : \ 3468 ip_squeue_random(hint)) 3469 3470 typedef void (*squeue_func_t)(squeue_t *, mblk_t *, sqproc_t, void *, uint8_t); 3471 3472 extern void ip_squeue_init(void (*)(squeue_t *)); 3473 extern squeue_t *ip_squeue_random(uint_t); 3474 extern squeue_t *ip_squeue_get(ill_rx_ring_t *); 3475 extern int ip_squeue_bind_set(queue_t *, mblk_t *, char *, caddr_t, cred_t *); 3476 extern void ip_squeue_clean_all(ill_t *); 3477 extern void ip_soft_ring_assignment(ill_t *, ill_rx_ring_t *, 3478 mblk_t *, struct mac_header_info_s *); 3479 3480 extern void ip_resume_tcp_bind(void *, mblk_t *, void *); 3481 extern void tcp_wput(queue_t *, mblk_t *); 3482 3483 extern int ip_fill_mtuinfo(struct in6_addr *, in_port_t, 3484 struct ip6_mtuinfo *, netstack_t *); 3485 extern ipif_t *conn_get_held_ipif(conn_t *, ipif_t **, int *); 3486 3487 typedef void (*ipsq_func_t)(ipsq_t *, queue_t *, mblk_t *, void *); 3488 3489 /* 3490 * Squeue tags. Tags only need to be unique when the callback function is the 3491 * same to distinguish between different calls, but we use unique tags for 3492 * convenience anyway. 3493 */ 3494 #define SQTAG_IP_INPUT 1 3495 #define SQTAG_TCP_INPUT_ICMP_ERR 2 3496 #define SQTAG_TCP6_INPUT_ICMP_ERR 3 3497 #define SQTAG_IP_TCP_INPUT 4 3498 #define SQTAG_IP6_TCP_INPUT 5 3499 #define SQTAG_IP_TCP_CLOSE 6 3500 #define SQTAG_TCP_OUTPUT 7 3501 #define SQTAG_TCP_TIMER 8 3502 #define SQTAG_TCP_TIMEWAIT 9 3503 #define SQTAG_TCP_ACCEPT_FINISH 10 3504 #define SQTAG_TCP_ACCEPT_FINISH_Q0 11 3505 #define SQTAG_TCP_ACCEPT_PENDING 12 3506 #define SQTAG_TCP_LISTEN_DISCON 13 3507 #define SQTAG_TCP_CONN_REQ_1 14 3508 #define SQTAG_TCP_EAGER_BLOWOFF 15 3509 #define SQTAG_TCP_EAGER_CLEANUP 16 3510 #define SQTAG_TCP_EAGER_CLEANUP_Q0 17 3511 #define SQTAG_TCP_CONN_IND 18 3512 #define SQTAG_TCP_RSRV 19 3513 #define SQTAG_TCP_ABORT_BUCKET 20 3514 #define SQTAG_TCP_REINPUT 21 3515 #define SQTAG_TCP_REINPUT_EAGER 22 3516 #define SQTAG_TCP_INPUT_MCTL 23 3517 #define SQTAG_TCP_RPUTOTHER 24 3518 #define SQTAG_IP_PROTO_AGAIN 25 3519 #define SQTAG_IP_FANOUT_TCP 26 3520 #define SQTAG_IPSQ_CLEAN_RING 27 3521 #define SQTAG_TCP_WPUT_OTHER 28 3522 #define SQTAG_TCP_CONN_REQ_UNBOUND 29 3523 #define SQTAG_TCP_SEND_PENDING 30 3524 #define SQTAG_BIND_RETRY 31 3525 #define SQTAG_UDP_FANOUT 32 3526 #define SQTAG_UDP_INPUT 33 3527 #define SQTAG_UDP_WPUT 34 3528 #define SQTAG_UDP_OUTPUT 35 3529 #define SQTAG_TCP_KSSL_INPUT 36 3530 #define SQTAG_TCP_DROP_Q0 37 3531 #define SQTAG_TCP_CONN_REQ_2 38 3532 3533 #define NOT_OVER_IP(ip_wq) \ 3534 (ip_wq->q_next != NULL || \ 3535 (ip_wq->q_qinfo->qi_minfo->mi_idname) == NULL || \ 3536 strcmp(ip_wq->q_qinfo->qi_minfo->mi_idname, \ 3537 IP_MOD_NAME) != 0 || \ 3538 ip_wq->q_qinfo->qi_minfo->mi_idnum != IP_MOD_ID) 3539 3540 #endif /* _KERNEL */ 3541 3542 #ifdef __cplusplus 3543 } 3544 #endif 3545 3546 #endif /* _INET_IP_H */ 3547