xref: /titanic_44/usr/src/uts/common/fs/zfs/zvol.c (revision 744a060193833d1e3b4db51fd9a2ecd996659613)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2008 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 /*
27  * ZFS volume emulation driver.
28  *
29  * Makes a DMU object look like a volume of arbitrary size, up to 2^64 bytes.
30  * Volumes are accessed through the symbolic links named:
31  *
32  * /dev/zvol/dsk/<pool_name>/<dataset_name>
33  * /dev/zvol/rdsk/<pool_name>/<dataset_name>
34  *
35  * These links are created by the ZFS-specific devfsadm link generator.
36  * Volumes are persistent through reboot.  No user command needs to be
37  * run before opening and using a device.
38  */
39 
40 #include <sys/types.h>
41 #include <sys/param.h>
42 #include <sys/errno.h>
43 #include <sys/uio.h>
44 #include <sys/buf.h>
45 #include <sys/modctl.h>
46 #include <sys/open.h>
47 #include <sys/kmem.h>
48 #include <sys/conf.h>
49 #include <sys/cmn_err.h>
50 #include <sys/stat.h>
51 #include <sys/zap.h>
52 #include <sys/spa.h>
53 #include <sys/zio.h>
54 #include <sys/dmu_traverse.h>
55 #include <sys/dnode.h>
56 #include <sys/dsl_dataset.h>
57 #include <sys/dsl_prop.h>
58 #include <sys/dkio.h>
59 #include <sys/efi_partition.h>
60 #include <sys/byteorder.h>
61 #include <sys/pathname.h>
62 #include <sys/ddi.h>
63 #include <sys/sunddi.h>
64 #include <sys/crc32.h>
65 #include <sys/dirent.h>
66 #include <sys/policy.h>
67 #include <sys/fs/zfs.h>
68 #include <sys/zfs_ioctl.h>
69 #include <sys/mkdev.h>
70 #include <sys/zil.h>
71 #include <sys/refcount.h>
72 #include <sys/zfs_znode.h>
73 #include <sys/zfs_rlock.h>
74 #include <sys/vdev_disk.h>
75 #include <sys/vdev_impl.h>
76 #include <sys/zvol.h>
77 #include <sys/dumphdr.h>
78 
79 #include "zfs_namecheck.h"
80 
81 static void *zvol_state;
82 
83 #define	ZVOL_DUMPSIZE		"dumpsize"
84 
85 /*
86  * This lock protects the zvol_state structure from being modified
87  * while it's being used, e.g. an open that comes in before a create
88  * finishes.  It also protects temporary opens of the dataset so that,
89  * e.g., an open doesn't get a spurious EBUSY.
90  */
91 static kmutex_t zvol_state_lock;
92 static uint32_t zvol_minors;
93 
94 typedef struct zvol_extent {
95 	list_node_t	ze_node;
96 	dva_t		ze_dva;		/* dva associated with this extent */
97 	uint64_t	ze_nblks;	/* number of blocks in extent */
98 } zvol_extent_t;
99 
100 /*
101  * The in-core state of each volume.
102  */
103 typedef struct zvol_state {
104 	char		zv_name[MAXPATHLEN]; /* pool/dd name */
105 	uint64_t	zv_volsize;	/* amount of space we advertise */
106 	uint64_t	zv_volblocksize; /* volume block size */
107 	minor_t		zv_minor;	/* minor number */
108 	uint8_t		zv_min_bs;	/* minimum addressable block shift */
109 	uint8_t		zv_flags;	/* readonly; dumpified */
110 	objset_t	*zv_objset;	/* objset handle */
111 	uint32_t	zv_mode;	/* DS_MODE_* flags at open time */
112 	uint32_t	zv_open_count[OTYPCNT];	/* open counts */
113 	uint32_t	zv_total_opens;	/* total open count */
114 	zilog_t		*zv_zilog;	/* ZIL handle */
115 	list_t		zv_extents;	/* List of extents for dump */
116 	uint64_t	zv_txg_assign;	/* txg to assign during ZIL replay */
117 	znode_t		zv_znode;	/* for range locking */
118 } zvol_state_t;
119 
120 /*
121  * zvol specific flags
122  */
123 #define	ZVOL_RDONLY	0x1
124 #define	ZVOL_DUMPIFIED	0x2
125 #define	ZVOL_EXCL	0x4
126 
127 /*
128  * zvol maximum transfer in one DMU tx.
129  */
130 int zvol_maxphys = DMU_MAX_ACCESS/2;
131 
132 extern int zfs_set_prop_nvlist(const char *, nvlist_t *);
133 static int zvol_get_data(void *arg, lr_write_t *lr, char *buf, zio_t *zio);
134 static int zvol_dumpify(zvol_state_t *zv);
135 static int zvol_dump_fini(zvol_state_t *zv);
136 static int zvol_dump_init(zvol_state_t *zv, boolean_t resize);
137 
138 static void
139 zvol_size_changed(zvol_state_t *zv, major_t maj)
140 {
141 	dev_t dev = makedevice(maj, zv->zv_minor);
142 
143 	VERIFY(ddi_prop_update_int64(dev, zfs_dip,
144 	    "Size", zv->zv_volsize) == DDI_SUCCESS);
145 	VERIFY(ddi_prop_update_int64(dev, zfs_dip,
146 	    "Nblocks", lbtodb(zv->zv_volsize)) == DDI_SUCCESS);
147 
148 	/* Notify specfs to invalidate the cached size */
149 	spec_size_invalidate(dev, VBLK);
150 	spec_size_invalidate(dev, VCHR);
151 }
152 
153 int
154 zvol_check_volsize(uint64_t volsize, uint64_t blocksize)
155 {
156 	if (volsize == 0)
157 		return (EINVAL);
158 
159 	if (volsize % blocksize != 0)
160 		return (EINVAL);
161 
162 #ifdef _ILP32
163 	if (volsize - 1 > SPEC_MAXOFFSET_T)
164 		return (EOVERFLOW);
165 #endif
166 	return (0);
167 }
168 
169 int
170 zvol_check_volblocksize(uint64_t volblocksize)
171 {
172 	if (volblocksize < SPA_MINBLOCKSIZE ||
173 	    volblocksize > SPA_MAXBLOCKSIZE ||
174 	    !ISP2(volblocksize))
175 		return (EDOM);
176 
177 	return (0);
178 }
179 
180 static void
181 zvol_readonly_changed_cb(void *arg, uint64_t newval)
182 {
183 	zvol_state_t *zv = arg;
184 
185 	if (newval)
186 		zv->zv_flags |= ZVOL_RDONLY;
187 	else
188 		zv->zv_flags &= ~ZVOL_RDONLY;
189 }
190 
191 int
192 zvol_get_stats(objset_t *os, nvlist_t *nv)
193 {
194 	int error;
195 	dmu_object_info_t doi;
196 	uint64_t val;
197 
198 
199 	error = zap_lookup(os, ZVOL_ZAP_OBJ, "size", 8, 1, &val);
200 	if (error)
201 		return (error);
202 
203 	dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_VOLSIZE, val);
204 
205 	error = dmu_object_info(os, ZVOL_OBJ, &doi);
206 
207 	if (error == 0) {
208 		dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_VOLBLOCKSIZE,
209 		    doi.doi_data_block_size);
210 	}
211 
212 	return (error);
213 }
214 
215 /*
216  * Find a free minor number.
217  */
218 static minor_t
219 zvol_minor_alloc(void)
220 {
221 	minor_t minor;
222 
223 	ASSERT(MUTEX_HELD(&zvol_state_lock));
224 
225 	for (minor = 1; minor <= ZVOL_MAX_MINOR; minor++)
226 		if (ddi_get_soft_state(zvol_state, minor) == NULL)
227 			return (minor);
228 
229 	return (0);
230 }
231 
232 static zvol_state_t *
233 zvol_minor_lookup(const char *name)
234 {
235 	minor_t minor;
236 	zvol_state_t *zv;
237 
238 	ASSERT(MUTEX_HELD(&zvol_state_lock));
239 
240 	for (minor = 1; minor <= ZVOL_MAX_MINOR; minor++) {
241 		zv = ddi_get_soft_state(zvol_state, minor);
242 		if (zv == NULL)
243 			continue;
244 		if (strcmp(zv->zv_name, name) == 0)
245 			break;
246 	}
247 
248 	return (zv);
249 }
250 
251 /* extent mapping arg */
252 struct maparg {
253 	zvol_state_t	*ma_zv;
254 	uint64_t	ma_blks;
255 };
256 
257 /*ARGSUSED*/
258 static int
259 zvol_map_block(spa_t *spa, blkptr_t *bp, const zbookmark_t *zb,
260     const dnode_phys_t *dnp, void *arg)
261 {
262 	struct maparg *ma = arg;
263 	zvol_extent_t *ze;
264 	int bs = ma->ma_zv->zv_volblocksize;
265 
266 	if (bp == NULL || zb->zb_object != ZVOL_OBJ || zb->zb_level != 0)
267 		return (0);
268 
269 	VERIFY3U(ma->ma_blks, ==, zb->zb_blkid);
270 	ma->ma_blks++;
271 
272 	/* Abort immediately if we have encountered gang blocks */
273 	if (BP_IS_GANG(bp))
274 		return (EFRAGS);
275 
276 	/*
277 	 * See if the block is at the end of the previous extent.
278 	 */
279 	ze = list_tail(&ma->ma_zv->zv_extents);
280 	if (ze &&
281 	    DVA_GET_VDEV(BP_IDENTITY(bp)) == DVA_GET_VDEV(&ze->ze_dva) &&
282 	    DVA_GET_OFFSET(BP_IDENTITY(bp)) ==
283 	    DVA_GET_OFFSET(&ze->ze_dva) + ze->ze_nblks * bs) {
284 		ze->ze_nblks++;
285 		return (0);
286 	}
287 
288 	dprintf_bp(bp, "%s", "next blkptr:");
289 
290 	/* start a new extent */
291 	ze = kmem_zalloc(sizeof (zvol_extent_t), KM_SLEEP);
292 	ze->ze_dva = bp->blk_dva[0];	/* structure assignment */
293 	ze->ze_nblks = 1;
294 	list_insert_tail(&ma->ma_zv->zv_extents, ze);
295 	return (0);
296 }
297 
298 static void
299 zvol_free_extents(zvol_state_t *zv)
300 {
301 	zvol_extent_t *ze;
302 
303 	while (ze = list_head(&zv->zv_extents)) {
304 		list_remove(&zv->zv_extents, ze);
305 		kmem_free(ze, sizeof (zvol_extent_t));
306 	}
307 }
308 
309 static int
310 zvol_get_lbas(zvol_state_t *zv)
311 {
312 	struct maparg	ma;
313 	int		err;
314 
315 	ma.ma_zv = zv;
316 	ma.ma_blks = 0;
317 	zvol_free_extents(zv);
318 
319 	err = traverse_dataset(dmu_objset_ds(zv->zv_objset), 0,
320 	    TRAVERSE_PRE | TRAVERSE_PREFETCH_METADATA, zvol_map_block, &ma);
321 	if (err || ma.ma_blks != (zv->zv_volsize / zv->zv_volblocksize)) {
322 		zvol_free_extents(zv);
323 		return (err ? err : EIO);
324 	}
325 
326 	return (0);
327 }
328 
329 /* ARGSUSED */
330 void
331 zvol_create_cb(objset_t *os, void *arg, cred_t *cr, dmu_tx_t *tx)
332 {
333 	zfs_creat_t *zct = arg;
334 	nvlist_t *nvprops = zct->zct_props;
335 	int error;
336 	uint64_t volblocksize, volsize;
337 
338 	VERIFY(nvlist_lookup_uint64(nvprops,
339 	    zfs_prop_to_name(ZFS_PROP_VOLSIZE), &volsize) == 0);
340 	if (nvlist_lookup_uint64(nvprops,
341 	    zfs_prop_to_name(ZFS_PROP_VOLBLOCKSIZE), &volblocksize) != 0)
342 		volblocksize = zfs_prop_default_numeric(ZFS_PROP_VOLBLOCKSIZE);
343 
344 	/*
345 	 * These properties must be removed from the list so the generic
346 	 * property setting step won't apply to them.
347 	 */
348 	VERIFY(nvlist_remove_all(nvprops,
349 	    zfs_prop_to_name(ZFS_PROP_VOLSIZE)) == 0);
350 	(void) nvlist_remove_all(nvprops,
351 	    zfs_prop_to_name(ZFS_PROP_VOLBLOCKSIZE));
352 
353 	error = dmu_object_claim(os, ZVOL_OBJ, DMU_OT_ZVOL, volblocksize,
354 	    DMU_OT_NONE, 0, tx);
355 	ASSERT(error == 0);
356 
357 	error = zap_create_claim(os, ZVOL_ZAP_OBJ, DMU_OT_ZVOL_PROP,
358 	    DMU_OT_NONE, 0, tx);
359 	ASSERT(error == 0);
360 
361 	error = zap_update(os, ZVOL_ZAP_OBJ, "size", 8, 1, &volsize, tx);
362 	ASSERT(error == 0);
363 }
364 
365 /*
366  * Replay a TX_WRITE ZIL transaction that didn't get committed
367  * after a system failure
368  */
369 static int
370 zvol_replay_write(zvol_state_t *zv, lr_write_t *lr, boolean_t byteswap)
371 {
372 	objset_t *os = zv->zv_objset;
373 	char *data = (char *)(lr + 1);	/* data follows lr_write_t */
374 	uint64_t off = lr->lr_offset;
375 	uint64_t len = lr->lr_length;
376 	dmu_tx_t *tx;
377 	int error;
378 
379 	if (byteswap)
380 		byteswap_uint64_array(lr, sizeof (*lr));
381 
382 	tx = dmu_tx_create(os);
383 	dmu_tx_hold_write(tx, ZVOL_OBJ, off, len);
384 	error = dmu_tx_assign(tx, zv->zv_txg_assign);
385 	if (error) {
386 		dmu_tx_abort(tx);
387 	} else {
388 		dmu_write(os, ZVOL_OBJ, off, len, data, tx);
389 		dmu_tx_commit(tx);
390 	}
391 
392 	return (error);
393 }
394 
395 /* ARGSUSED */
396 static int
397 zvol_replay_err(zvol_state_t *zv, lr_t *lr, boolean_t byteswap)
398 {
399 	return (ENOTSUP);
400 }
401 
402 /*
403  * Callback vectors for replaying records.
404  * Only TX_WRITE is needed for zvol.
405  */
406 zil_replay_func_t *zvol_replay_vector[TX_MAX_TYPE] = {
407 	zvol_replay_err,	/* 0 no such transaction type */
408 	zvol_replay_err,	/* TX_CREATE */
409 	zvol_replay_err,	/* TX_MKDIR */
410 	zvol_replay_err,	/* TX_MKXATTR */
411 	zvol_replay_err,	/* TX_SYMLINK */
412 	zvol_replay_err,	/* TX_REMOVE */
413 	zvol_replay_err,	/* TX_RMDIR */
414 	zvol_replay_err,	/* TX_LINK */
415 	zvol_replay_err,	/* TX_RENAME */
416 	zvol_replay_write,	/* TX_WRITE */
417 	zvol_replay_err,	/* TX_TRUNCATE */
418 	zvol_replay_err,	/* TX_SETATTR */
419 	zvol_replay_err,	/* TX_ACL */
420 };
421 
422 /*
423  * Create a minor node (plus a whole lot more) for the specified volume.
424  */
425 int
426 zvol_create_minor(const char *name, major_t maj)
427 {
428 	zvol_state_t *zv;
429 	objset_t *os;
430 	dmu_object_info_t doi;
431 	uint64_t volsize;
432 	minor_t minor = 0;
433 	struct pathname linkpath;
434 	int ds_mode = DS_MODE_OWNER;
435 	vnode_t *vp = NULL;
436 	char *devpath;
437 	size_t devpathlen = strlen(ZVOL_FULL_DEV_DIR) + strlen(name) + 1;
438 	char chrbuf[30], blkbuf[30];
439 	int error;
440 
441 	mutex_enter(&zvol_state_lock);
442 
443 	if ((zv = zvol_minor_lookup(name)) != NULL) {
444 		mutex_exit(&zvol_state_lock);
445 		return (EEXIST);
446 	}
447 
448 	if (strchr(name, '@') != 0)
449 		ds_mode |= DS_MODE_READONLY;
450 
451 	error = dmu_objset_open(name, DMU_OST_ZVOL, ds_mode, &os);
452 
453 	if (error) {
454 		mutex_exit(&zvol_state_lock);
455 		return (error);
456 	}
457 
458 	error = zap_lookup(os, ZVOL_ZAP_OBJ, "size", 8, 1, &volsize);
459 
460 	if (error) {
461 		dmu_objset_close(os);
462 		mutex_exit(&zvol_state_lock);
463 		return (error);
464 	}
465 
466 	/*
467 	 * If there's an existing /dev/zvol symlink, try to use the
468 	 * same minor number we used last time.
469 	 */
470 	devpath = kmem_alloc(devpathlen, KM_SLEEP);
471 
472 	(void) sprintf(devpath, "%s%s", ZVOL_FULL_DEV_DIR, name);
473 
474 	error = lookupname(devpath, UIO_SYSSPACE, NO_FOLLOW, NULL, &vp);
475 
476 	kmem_free(devpath, devpathlen);
477 
478 	if (error == 0 && vp->v_type != VLNK)
479 		error = EINVAL;
480 
481 	if (error == 0) {
482 		pn_alloc(&linkpath);
483 		error = pn_getsymlink(vp, &linkpath, kcred);
484 		if (error == 0) {
485 			char *ms = strstr(linkpath.pn_path, ZVOL_PSEUDO_DEV);
486 			if (ms != NULL) {
487 				ms += strlen(ZVOL_PSEUDO_DEV);
488 				minor = stoi(&ms);
489 			}
490 		}
491 		pn_free(&linkpath);
492 	}
493 
494 	if (vp != NULL)
495 		VN_RELE(vp);
496 
497 	/*
498 	 * If we found a minor but it's already in use, we must pick a new one.
499 	 */
500 	if (minor != 0 && ddi_get_soft_state(zvol_state, minor) != NULL)
501 		minor = 0;
502 
503 	if (minor == 0)
504 		minor = zvol_minor_alloc();
505 
506 	if (minor == 0) {
507 		dmu_objset_close(os);
508 		mutex_exit(&zvol_state_lock);
509 		return (ENXIO);
510 	}
511 
512 	if (ddi_soft_state_zalloc(zvol_state, minor) != DDI_SUCCESS) {
513 		dmu_objset_close(os);
514 		mutex_exit(&zvol_state_lock);
515 		return (EAGAIN);
516 	}
517 
518 	(void) ddi_prop_update_string(minor, zfs_dip, ZVOL_PROP_NAME,
519 	    (char *)name);
520 
521 	(void) sprintf(chrbuf, "%uc,raw", minor);
522 
523 	if (ddi_create_minor_node(zfs_dip, chrbuf, S_IFCHR,
524 	    minor, DDI_PSEUDO, 0) == DDI_FAILURE) {
525 		ddi_soft_state_free(zvol_state, minor);
526 		dmu_objset_close(os);
527 		mutex_exit(&zvol_state_lock);
528 		return (EAGAIN);
529 	}
530 
531 	(void) sprintf(blkbuf, "%uc", minor);
532 
533 	if (ddi_create_minor_node(zfs_dip, blkbuf, S_IFBLK,
534 	    minor, DDI_PSEUDO, 0) == DDI_FAILURE) {
535 		ddi_remove_minor_node(zfs_dip, chrbuf);
536 		ddi_soft_state_free(zvol_state, minor);
537 		dmu_objset_close(os);
538 		mutex_exit(&zvol_state_lock);
539 		return (EAGAIN);
540 	}
541 
542 	zv = ddi_get_soft_state(zvol_state, minor);
543 
544 	(void) strcpy(zv->zv_name, name);
545 	zv->zv_min_bs = DEV_BSHIFT;
546 	zv->zv_minor = minor;
547 	zv->zv_volsize = volsize;
548 	zv->zv_objset = os;
549 	zv->zv_mode = ds_mode;
550 	zv->zv_zilog = zil_open(os, zvol_get_data);
551 	mutex_init(&zv->zv_znode.z_range_lock, NULL, MUTEX_DEFAULT, NULL);
552 	avl_create(&zv->zv_znode.z_range_avl, zfs_range_compare,
553 	    sizeof (rl_t), offsetof(rl_t, r_node));
554 	list_create(&zv->zv_extents, sizeof (zvol_extent_t),
555 	    offsetof(zvol_extent_t, ze_node));
556 	/* get and cache the blocksize */
557 	error = dmu_object_info(os, ZVOL_OBJ, &doi);
558 	ASSERT(error == 0);
559 	zv->zv_volblocksize = doi.doi_data_block_size;
560 
561 	zil_replay(os, zv, &zv->zv_txg_assign, zvol_replay_vector, NULL);
562 	zvol_size_changed(zv, maj);
563 
564 	/* XXX this should handle the possible i/o error */
565 	VERIFY(dsl_prop_register(dmu_objset_ds(zv->zv_objset),
566 	    "readonly", zvol_readonly_changed_cb, zv) == 0);
567 
568 	zvol_minors++;
569 
570 	mutex_exit(&zvol_state_lock);
571 
572 	return (0);
573 }
574 
575 /*
576  * Remove minor node for the specified volume.
577  */
578 int
579 zvol_remove_minor(const char *name)
580 {
581 	zvol_state_t *zv;
582 	char namebuf[30];
583 
584 	mutex_enter(&zvol_state_lock);
585 
586 	if ((zv = zvol_minor_lookup(name)) == NULL) {
587 		mutex_exit(&zvol_state_lock);
588 		return (ENXIO);
589 	}
590 
591 	if (zv->zv_total_opens != 0) {
592 		mutex_exit(&zvol_state_lock);
593 		return (EBUSY);
594 	}
595 
596 	(void) sprintf(namebuf, "%uc,raw", zv->zv_minor);
597 	ddi_remove_minor_node(zfs_dip, namebuf);
598 
599 	(void) sprintf(namebuf, "%uc", zv->zv_minor);
600 	ddi_remove_minor_node(zfs_dip, namebuf);
601 
602 	VERIFY(dsl_prop_unregister(dmu_objset_ds(zv->zv_objset),
603 	    "readonly", zvol_readonly_changed_cb, zv) == 0);
604 
605 	zil_close(zv->zv_zilog);
606 	zv->zv_zilog = NULL;
607 	dmu_objset_close(zv->zv_objset);
608 	zv->zv_objset = NULL;
609 	avl_destroy(&zv->zv_znode.z_range_avl);
610 	mutex_destroy(&zv->zv_znode.z_range_lock);
611 
612 	ddi_soft_state_free(zvol_state, zv->zv_minor);
613 
614 	zvol_minors--;
615 
616 	mutex_exit(&zvol_state_lock);
617 
618 	return (0);
619 }
620 
621 int
622 zvol_prealloc(zvol_state_t *zv)
623 {
624 	objset_t *os = zv->zv_objset;
625 	dmu_tx_t *tx;
626 	void *data;
627 	uint64_t refd, avail, usedobjs, availobjs;
628 	uint64_t resid = zv->zv_volsize;
629 	uint64_t off = 0;
630 
631 	/* Check the space usage before attempting to allocate the space */
632 	dmu_objset_space(os, &refd, &avail, &usedobjs, &availobjs);
633 	if (avail < zv->zv_volsize)
634 		return (ENOSPC);
635 
636 	/* Free old extents if they exist */
637 	zvol_free_extents(zv);
638 
639 	/* allocate the blocks by writing each one */
640 	data = kmem_zalloc(SPA_MAXBLOCKSIZE, KM_SLEEP);
641 
642 	while (resid != 0) {
643 		int error;
644 		uint64_t bytes = MIN(resid, SPA_MAXBLOCKSIZE);
645 
646 		tx = dmu_tx_create(os);
647 		dmu_tx_hold_write(tx, ZVOL_OBJ, off, bytes);
648 		error = dmu_tx_assign(tx, TXG_WAIT);
649 		if (error) {
650 			dmu_tx_abort(tx);
651 			kmem_free(data, SPA_MAXBLOCKSIZE);
652 			(void) dmu_free_long_range(os, ZVOL_OBJ, 0, off);
653 			return (error);
654 		}
655 		dmu_write(os, ZVOL_OBJ, off, bytes, data, tx);
656 		dmu_tx_commit(tx);
657 		off += bytes;
658 		resid -= bytes;
659 	}
660 	kmem_free(data, SPA_MAXBLOCKSIZE);
661 	txg_wait_synced(dmu_objset_pool(os), 0);
662 
663 	return (0);
664 }
665 
666 int
667 zvol_update_volsize(zvol_state_t *zv, major_t maj, uint64_t volsize)
668 {
669 	dmu_tx_t *tx;
670 	int error;
671 
672 	ASSERT(MUTEX_HELD(&zvol_state_lock));
673 
674 	tx = dmu_tx_create(zv->zv_objset);
675 	dmu_tx_hold_zap(tx, ZVOL_ZAP_OBJ, TRUE, NULL);
676 	error = dmu_tx_assign(tx, TXG_WAIT);
677 	if (error) {
678 		dmu_tx_abort(tx);
679 		return (error);
680 	}
681 
682 	error = zap_update(zv->zv_objset, ZVOL_ZAP_OBJ, "size", 8, 1,
683 	    &volsize, tx);
684 	dmu_tx_commit(tx);
685 
686 	if (error == 0)
687 		error = dmu_free_long_range(zv->zv_objset,
688 		    ZVOL_OBJ, volsize, DMU_OBJECT_END);
689 
690 	/*
691 	 * If we are using a faked-up state (zv_minor == 0) then don't
692 	 * try to update the in-core zvol state.
693 	 */
694 	if (error == 0 && zv->zv_minor) {
695 		zv->zv_volsize = volsize;
696 		zvol_size_changed(zv, maj);
697 	}
698 	return (error);
699 }
700 
701 int
702 zvol_set_volsize(const char *name, major_t maj, uint64_t volsize)
703 {
704 	zvol_state_t *zv;
705 	int error;
706 	dmu_object_info_t doi;
707 	uint64_t old_volsize = 0ULL;
708 	zvol_state_t state = { 0 };
709 
710 	mutex_enter(&zvol_state_lock);
711 
712 	if ((zv = zvol_minor_lookup(name)) == NULL) {
713 		/*
714 		 * If we are doing a "zfs clone -o volsize=", then the
715 		 * minor node won't exist yet.
716 		 */
717 		error = dmu_objset_open(name, DMU_OST_ZVOL, DS_MODE_OWNER,
718 		    &state.zv_objset);
719 		if (error != 0)
720 			goto out;
721 		zv = &state;
722 	}
723 	old_volsize = zv->zv_volsize;
724 
725 	if ((error = dmu_object_info(zv->zv_objset, ZVOL_OBJ, &doi)) != 0 ||
726 	    (error = zvol_check_volsize(volsize,
727 	    doi.doi_data_block_size)) != 0)
728 		goto out;
729 
730 	if (zv->zv_flags & ZVOL_RDONLY || (zv->zv_mode & DS_MODE_READONLY)) {
731 		error = EROFS;
732 		goto out;
733 	}
734 
735 	error = zvol_update_volsize(zv, maj, volsize);
736 
737 	/*
738 	 * Reinitialize the dump area to the new size. If we
739 	 * failed to resize the dump area then restore the it back to
740 	 * it's original size.
741 	 */
742 	if (error == 0 && zv->zv_flags & ZVOL_DUMPIFIED) {
743 		if ((error = zvol_dumpify(zv)) != 0 ||
744 		    (error = dumpvp_resize()) != 0) {
745 			(void) zvol_update_volsize(zv, maj, old_volsize);
746 			error = zvol_dumpify(zv);
747 		}
748 	}
749 
750 out:
751 	if (state.zv_objset)
752 		dmu_objset_close(state.zv_objset);
753 
754 	mutex_exit(&zvol_state_lock);
755 
756 	return (error);
757 }
758 
759 int
760 zvol_set_volblocksize(const char *name, uint64_t volblocksize)
761 {
762 	zvol_state_t *zv;
763 	dmu_tx_t *tx;
764 	int error;
765 	boolean_t needlock;
766 
767 	/*
768 	 * The lock may already be held if we are being called from
769 	 * zvol_dump_init().
770 	 */
771 	needlock = !MUTEX_HELD(&zvol_state_lock);
772 	if (needlock)
773 		mutex_enter(&zvol_state_lock);
774 
775 	if ((zv = zvol_minor_lookup(name)) == NULL) {
776 		if (needlock)
777 			mutex_exit(&zvol_state_lock);
778 		return (ENXIO);
779 	}
780 	if (zv->zv_flags & ZVOL_RDONLY || (zv->zv_mode & DS_MODE_READONLY)) {
781 		if (needlock)
782 			mutex_exit(&zvol_state_lock);
783 		return (EROFS);
784 	}
785 
786 	tx = dmu_tx_create(zv->zv_objset);
787 	dmu_tx_hold_bonus(tx, ZVOL_OBJ);
788 	error = dmu_tx_assign(tx, TXG_WAIT);
789 	if (error) {
790 		dmu_tx_abort(tx);
791 	} else {
792 		error = dmu_object_set_blocksize(zv->zv_objset, ZVOL_OBJ,
793 		    volblocksize, 0, tx);
794 		if (error == ENOTSUP)
795 			error = EBUSY;
796 		dmu_tx_commit(tx);
797 		if (error == 0)
798 			zv->zv_volblocksize = volblocksize;
799 	}
800 
801 	if (needlock)
802 		mutex_exit(&zvol_state_lock);
803 
804 	return (error);
805 }
806 
807 /*ARGSUSED*/
808 int
809 zvol_open(dev_t *devp, int flag, int otyp, cred_t *cr)
810 {
811 	minor_t minor = getminor(*devp);
812 	zvol_state_t *zv;
813 
814 	if (minor == 0)			/* This is the control device */
815 		return (0);
816 
817 	mutex_enter(&zvol_state_lock);
818 
819 	zv = ddi_get_soft_state(zvol_state, minor);
820 	if (zv == NULL) {
821 		mutex_exit(&zvol_state_lock);
822 		return (ENXIO);
823 	}
824 
825 	ASSERT(zv->zv_objset != NULL);
826 
827 	if ((flag & FWRITE) &&
828 	    (zv->zv_flags & ZVOL_RDONLY || (zv->zv_mode & DS_MODE_READONLY))) {
829 		mutex_exit(&zvol_state_lock);
830 		return (EROFS);
831 	}
832 	if (zv->zv_flags & ZVOL_EXCL) {
833 		mutex_exit(&zvol_state_lock);
834 		return (EBUSY);
835 	}
836 	if (flag & FEXCL) {
837 		if (zv->zv_total_opens != 0) {
838 			mutex_exit(&zvol_state_lock);
839 			return (EBUSY);
840 		}
841 		zv->zv_flags |= ZVOL_EXCL;
842 	}
843 
844 	if (zv->zv_open_count[otyp] == 0 || otyp == OTYP_LYR) {
845 		zv->zv_open_count[otyp]++;
846 		zv->zv_total_opens++;
847 	}
848 
849 	mutex_exit(&zvol_state_lock);
850 
851 	return (0);
852 }
853 
854 /*ARGSUSED*/
855 int
856 zvol_close(dev_t dev, int flag, int otyp, cred_t *cr)
857 {
858 	minor_t minor = getminor(dev);
859 	zvol_state_t *zv;
860 
861 	if (minor == 0)		/* This is the control device */
862 		return (0);
863 
864 	mutex_enter(&zvol_state_lock);
865 
866 	zv = ddi_get_soft_state(zvol_state, minor);
867 	if (zv == NULL) {
868 		mutex_exit(&zvol_state_lock);
869 		return (ENXIO);
870 	}
871 
872 	if (zv->zv_flags & ZVOL_EXCL) {
873 		ASSERT(zv->zv_total_opens == 1);
874 		zv->zv_flags &= ~ZVOL_EXCL;
875 	}
876 
877 	/*
878 	 * If the open count is zero, this is a spurious close.
879 	 * That indicates a bug in the kernel / DDI framework.
880 	 */
881 	ASSERT(zv->zv_open_count[otyp] != 0);
882 	ASSERT(zv->zv_total_opens != 0);
883 
884 	/*
885 	 * You may get multiple opens, but only one close.
886 	 */
887 	zv->zv_open_count[otyp]--;
888 	zv->zv_total_opens--;
889 
890 	mutex_exit(&zvol_state_lock);
891 
892 	return (0);
893 }
894 
895 static void
896 zvol_get_done(dmu_buf_t *db, void *vzgd)
897 {
898 	zgd_t *zgd = (zgd_t *)vzgd;
899 	rl_t *rl = zgd->zgd_rl;
900 
901 	dmu_buf_rele(db, vzgd);
902 	zfs_range_unlock(rl);
903 	zil_add_block(zgd->zgd_zilog, zgd->zgd_bp);
904 	kmem_free(zgd, sizeof (zgd_t));
905 }
906 
907 /*
908  * Get data to generate a TX_WRITE intent log record.
909  */
910 static int
911 zvol_get_data(void *arg, lr_write_t *lr, char *buf, zio_t *zio)
912 {
913 	zvol_state_t *zv = arg;
914 	objset_t *os = zv->zv_objset;
915 	dmu_buf_t *db;
916 	rl_t *rl;
917 	zgd_t *zgd;
918 	uint64_t boff; 			/* block starting offset */
919 	int dlen = lr->lr_length;	/* length of user data */
920 	int error;
921 
922 	ASSERT(zio);
923 	ASSERT(dlen != 0);
924 
925 	/*
926 	 * Write records come in two flavors: immediate and indirect.
927 	 * For small writes it's cheaper to store the data with the
928 	 * log record (immediate); for large writes it's cheaper to
929 	 * sync the data and get a pointer to it (indirect) so that
930 	 * we don't have to write the data twice.
931 	 */
932 	if (buf != NULL) /* immediate write */
933 		return (dmu_read(os, ZVOL_OBJ, lr->lr_offset, dlen, buf));
934 
935 	zgd = (zgd_t *)kmem_alloc(sizeof (zgd_t), KM_SLEEP);
936 	zgd->zgd_zilog = zv->zv_zilog;
937 	zgd->zgd_bp = &lr->lr_blkptr;
938 
939 	/*
940 	 * Lock the range of the block to ensure that when the data is
941 	 * written out and its checksum is being calculated that no other
942 	 * thread can change the block.
943 	 */
944 	boff = P2ALIGN_TYPED(lr->lr_offset, zv->zv_volblocksize, uint64_t);
945 	rl = zfs_range_lock(&zv->zv_znode, boff, zv->zv_volblocksize,
946 	    RL_READER);
947 	zgd->zgd_rl = rl;
948 
949 	VERIFY(0 == dmu_buf_hold(os, ZVOL_OBJ, lr->lr_offset, zgd, &db));
950 	error = dmu_sync(zio, db, &lr->lr_blkptr,
951 	    lr->lr_common.lrc_txg, zvol_get_done, zgd);
952 	if (error == 0)
953 		zil_add_block(zv->zv_zilog, &lr->lr_blkptr);
954 	/*
955 	 * If we get EINPROGRESS, then we need to wait for a
956 	 * write IO initiated by dmu_sync() to complete before
957 	 * we can release this dbuf.  We will finish everything
958 	 * up in the zvol_get_done() callback.
959 	 */
960 	if (error == EINPROGRESS)
961 		return (0);
962 	dmu_buf_rele(db, zgd);
963 	zfs_range_unlock(rl);
964 	kmem_free(zgd, sizeof (zgd_t));
965 	return (error);
966 }
967 
968 /*
969  * zvol_log_write() handles synchronous writes using TX_WRITE ZIL transactions.
970  *
971  * We store data in the log buffers if it's small enough.
972  * Otherwise we will later flush the data out via dmu_sync().
973  */
974 ssize_t zvol_immediate_write_sz = 32768;
975 
976 static void
977 zvol_log_write(zvol_state_t *zv, dmu_tx_t *tx, offset_t off, ssize_t len)
978 {
979 	uint32_t blocksize = zv->zv_volblocksize;
980 	lr_write_t *lr;
981 
982 	while (len) {
983 		ssize_t nbytes = MIN(len, blocksize - P2PHASE(off, blocksize));
984 		itx_t *itx = zil_itx_create(TX_WRITE, sizeof (*lr));
985 
986 		itx->itx_wr_state =
987 		    len > zvol_immediate_write_sz ?  WR_INDIRECT : WR_NEED_COPY;
988 		itx->itx_private = zv;
989 		lr = (lr_write_t *)&itx->itx_lr;
990 		lr->lr_foid = ZVOL_OBJ;
991 		lr->lr_offset = off;
992 		lr->lr_length = nbytes;
993 		lr->lr_blkoff = off - P2ALIGN_TYPED(off, blocksize, uint64_t);
994 		BP_ZERO(&lr->lr_blkptr);
995 
996 		(void) zil_itx_assign(zv->zv_zilog, itx, tx);
997 		len -= nbytes;
998 		off += nbytes;
999 	}
1000 }
1001 
1002 static int
1003 zvol_dumpio_vdev(vdev_t *vd, void *addr, uint64_t offset, uint64_t size,
1004     boolean_t doread, boolean_t isdump)
1005 {
1006 	vdev_disk_t *dvd;
1007 	int c;
1008 	int numerrors = 0;
1009 
1010 	for (c = 0; c < vd->vdev_children; c++) {
1011 		ASSERT(vd->vdev_ops == &vdev_mirror_ops);
1012 		int err = zvol_dumpio_vdev(vd->vdev_child[c],
1013 		    addr, offset, size, doread, isdump);
1014 		ASSERT3U(err, ==, 0);
1015 		if (err != 0) {
1016 			numerrors++;
1017 		} else if (doread) {
1018 			break;
1019 		}
1020 	}
1021 
1022 	if (!vd->vdev_ops->vdev_op_leaf)
1023 		return (numerrors < vd->vdev_children ? 0 : EIO);
1024 
1025 	ASSERT(vdev_writeable(vd));
1026 	if (!vdev_writeable(vd))
1027 		return (EIO);
1028 
1029 	dvd = vd->vdev_tsd;
1030 	ASSERT3P(dvd, !=, NULL);
1031 	offset += VDEV_LABEL_START_SIZE;
1032 
1033 	if (ddi_in_panic() || isdump) {
1034 		ASSERT(!doread);
1035 		if (doread)
1036 			return (EIO);
1037 		return (ldi_dump(dvd->vd_lh, addr, lbtodb(offset),
1038 		    lbtodb(size)));
1039 	} else {
1040 		return (vdev_disk_physio(dvd->vd_lh, addr, size, offset,
1041 		    doread ? B_READ : B_WRITE));
1042 	}
1043 }
1044 
1045 static int
1046 zvol_dumpio(zvol_state_t *zv, void *addr, uint64_t offset, uint64_t size,
1047     boolean_t doread, boolean_t isdump)
1048 {
1049 	vdev_t *vd;
1050 	int error;
1051 	zvol_extent_t *ze;
1052 	spa_t *spa = dmu_objset_spa(zv->zv_objset);
1053 
1054 	/* Must be sector aligned, and not stradle a block boundary. */
1055 	if (P2PHASE(offset, DEV_BSIZE) || P2PHASE(size, DEV_BSIZE) ||
1056 	    P2BOUNDARY(offset, size, zv->zv_volblocksize)) {
1057 		return (EINVAL);
1058 	}
1059 	ASSERT(size <= zv->zv_volblocksize);
1060 
1061 	/* Locate the extent this belongs to */
1062 	ze = list_head(&zv->zv_extents);
1063 	while (offset >= ze->ze_nblks * zv->zv_volblocksize) {
1064 		offset -= ze->ze_nblks * zv->zv_volblocksize;
1065 		ze = list_next(&zv->zv_extents, ze);
1066 	}
1067 	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
1068 	vd = vdev_lookup_top(spa, DVA_GET_VDEV(&ze->ze_dva));
1069 	offset += DVA_GET_OFFSET(&ze->ze_dva);
1070 	error = zvol_dumpio_vdev(vd, addr, offset, size, doread, isdump);
1071 	spa_config_exit(spa, SCL_STATE, FTAG);
1072 	return (error);
1073 }
1074 
1075 int
1076 zvol_strategy(buf_t *bp)
1077 {
1078 	zvol_state_t *zv = ddi_get_soft_state(zvol_state, getminor(bp->b_edev));
1079 	uint64_t off, volsize;
1080 	size_t resid;
1081 	char *addr;
1082 	objset_t *os;
1083 	rl_t *rl;
1084 	int error = 0;
1085 	boolean_t doread = bp->b_flags & B_READ;
1086 	boolean_t is_dump = zv->zv_flags & ZVOL_DUMPIFIED;
1087 
1088 	if (zv == NULL) {
1089 		bioerror(bp, ENXIO);
1090 		biodone(bp);
1091 		return (0);
1092 	}
1093 
1094 	if (getminor(bp->b_edev) == 0) {
1095 		bioerror(bp, EINVAL);
1096 		biodone(bp);
1097 		return (0);
1098 	}
1099 
1100 	if (!(bp->b_flags & B_READ) &&
1101 	    (zv->zv_flags & ZVOL_RDONLY ||
1102 	    zv->zv_mode & DS_MODE_READONLY)) {
1103 		bioerror(bp, EROFS);
1104 		biodone(bp);
1105 		return (0);
1106 	}
1107 
1108 	off = ldbtob(bp->b_blkno);
1109 	volsize = zv->zv_volsize;
1110 
1111 	os = zv->zv_objset;
1112 	ASSERT(os != NULL);
1113 
1114 	bp_mapin(bp);
1115 	addr = bp->b_un.b_addr;
1116 	resid = bp->b_bcount;
1117 
1118 	if (resid > 0 && (off < 0 || off >= volsize)) {
1119 		bioerror(bp, EIO);
1120 		biodone(bp);
1121 		return (0);
1122 	}
1123 
1124 	/*
1125 	 * There must be no buffer changes when doing a dmu_sync() because
1126 	 * we can't change the data whilst calculating the checksum.
1127 	 */
1128 	rl = zfs_range_lock(&zv->zv_znode, off, resid,
1129 	    doread ? RL_READER : RL_WRITER);
1130 
1131 	while (resid != 0 && off < volsize) {
1132 		size_t size = MIN(resid, zvol_maxphys);
1133 		if (is_dump) {
1134 			size = MIN(size, P2END(off, zv->zv_volblocksize) - off);
1135 			error = zvol_dumpio(zv, addr, off, size,
1136 			    doread, B_FALSE);
1137 		} else if (doread) {
1138 			error = dmu_read(os, ZVOL_OBJ, off, size, addr);
1139 		} else {
1140 			dmu_tx_t *tx = dmu_tx_create(os);
1141 			dmu_tx_hold_write(tx, ZVOL_OBJ, off, size);
1142 			error = dmu_tx_assign(tx, TXG_WAIT);
1143 			if (error) {
1144 				dmu_tx_abort(tx);
1145 			} else {
1146 				dmu_write(os, ZVOL_OBJ, off, size, addr, tx);
1147 				zvol_log_write(zv, tx, off, size);
1148 				dmu_tx_commit(tx);
1149 			}
1150 		}
1151 		if (error) {
1152 			/* convert checksum errors into IO errors */
1153 			if (error == ECKSUM)
1154 				error = EIO;
1155 			break;
1156 		}
1157 		off += size;
1158 		addr += size;
1159 		resid -= size;
1160 	}
1161 	zfs_range_unlock(rl);
1162 
1163 	if ((bp->b_resid = resid) == bp->b_bcount)
1164 		bioerror(bp, off > volsize ? EINVAL : error);
1165 
1166 	if (!(bp->b_flags & B_ASYNC) && !doread && !zil_disable && !is_dump)
1167 		zil_commit(zv->zv_zilog, UINT64_MAX, ZVOL_OBJ);
1168 	biodone(bp);
1169 
1170 	return (0);
1171 }
1172 
1173 /*
1174  * Set the buffer count to the zvol maximum transfer.
1175  * Using our own routine instead of the default minphys()
1176  * means that for larger writes we write bigger buffers on X86
1177  * (128K instead of 56K) and flush the disk write cache less often
1178  * (every zvol_maxphys - currently 1MB) instead of minphys (currently
1179  * 56K on X86 and 128K on sparc).
1180  */
1181 void
1182 zvol_minphys(struct buf *bp)
1183 {
1184 	if (bp->b_bcount > zvol_maxphys)
1185 		bp->b_bcount = zvol_maxphys;
1186 }
1187 
1188 int
1189 zvol_dump(dev_t dev, caddr_t addr, daddr_t blkno, int nblocks)
1190 {
1191 	minor_t minor = getminor(dev);
1192 	zvol_state_t *zv;
1193 	int error = 0;
1194 	uint64_t size;
1195 	uint64_t boff;
1196 	uint64_t resid;
1197 
1198 	if (minor == 0)			/* This is the control device */
1199 		return (ENXIO);
1200 
1201 	zv = ddi_get_soft_state(zvol_state, minor);
1202 	if (zv == NULL)
1203 		return (ENXIO);
1204 
1205 	boff = ldbtob(blkno);
1206 	resid = ldbtob(nblocks);
1207 
1208 	VERIFY3U(boff + resid, <=, zv->zv_volsize);
1209 
1210 	while (resid) {
1211 		size = MIN(resid, P2END(boff, zv->zv_volblocksize) - boff);
1212 		error = zvol_dumpio(zv, addr, boff, size, B_FALSE, B_TRUE);
1213 		if (error)
1214 			break;
1215 		boff += size;
1216 		addr += size;
1217 		resid -= size;
1218 	}
1219 
1220 	return (error);
1221 }
1222 
1223 /*ARGSUSED*/
1224 int
1225 zvol_read(dev_t dev, uio_t *uio, cred_t *cr)
1226 {
1227 	minor_t minor = getminor(dev);
1228 	zvol_state_t *zv;
1229 	uint64_t volsize;
1230 	rl_t *rl;
1231 	int error = 0;
1232 
1233 	if (minor == 0)			/* This is the control device */
1234 		return (ENXIO);
1235 
1236 	zv = ddi_get_soft_state(zvol_state, minor);
1237 	if (zv == NULL)
1238 		return (ENXIO);
1239 
1240 	volsize = zv->zv_volsize;
1241 	if (uio->uio_resid > 0 &&
1242 	    (uio->uio_loffset < 0 || uio->uio_loffset >= volsize))
1243 		return (EIO);
1244 
1245 	if (zv->zv_flags & ZVOL_DUMPIFIED) {
1246 		error = physio(zvol_strategy, NULL, dev, B_READ,
1247 		    zvol_minphys, uio);
1248 		return (error);
1249 	}
1250 
1251 	rl = zfs_range_lock(&zv->zv_znode, uio->uio_loffset, uio->uio_resid,
1252 	    RL_READER);
1253 	while (uio->uio_resid > 0 && uio->uio_loffset < volsize) {
1254 		uint64_t bytes = MIN(uio->uio_resid, DMU_MAX_ACCESS >> 1);
1255 
1256 		/* don't read past the end */
1257 		if (bytes > volsize - uio->uio_loffset)
1258 			bytes = volsize - uio->uio_loffset;
1259 
1260 		error =  dmu_read_uio(zv->zv_objset, ZVOL_OBJ, uio, bytes);
1261 		if (error) {
1262 			/* convert checksum errors into IO errors */
1263 			if (error == ECKSUM)
1264 				error = EIO;
1265 			break;
1266 		}
1267 	}
1268 	zfs_range_unlock(rl);
1269 	return (error);
1270 }
1271 
1272 /*ARGSUSED*/
1273 int
1274 zvol_write(dev_t dev, uio_t *uio, cred_t *cr)
1275 {
1276 	minor_t minor = getminor(dev);
1277 	zvol_state_t *zv;
1278 	uint64_t volsize;
1279 	rl_t *rl;
1280 	int error = 0;
1281 
1282 	if (minor == 0)			/* This is the control device */
1283 		return (ENXIO);
1284 
1285 	zv = ddi_get_soft_state(zvol_state, minor);
1286 	if (zv == NULL)
1287 		return (ENXIO);
1288 
1289 	volsize = zv->zv_volsize;
1290 	if (uio->uio_resid > 0 &&
1291 	    (uio->uio_loffset < 0 || uio->uio_loffset >= volsize))
1292 		return (EIO);
1293 
1294 	if (zv->zv_flags & ZVOL_DUMPIFIED) {
1295 		error = physio(zvol_strategy, NULL, dev, B_WRITE,
1296 		    zvol_minphys, uio);
1297 		return (error);
1298 	}
1299 
1300 	rl = zfs_range_lock(&zv->zv_znode, uio->uio_loffset, uio->uio_resid,
1301 	    RL_WRITER);
1302 	while (uio->uio_resid > 0 && uio->uio_loffset < volsize) {
1303 		uint64_t bytes = MIN(uio->uio_resid, DMU_MAX_ACCESS >> 1);
1304 		uint64_t off = uio->uio_loffset;
1305 		dmu_tx_t *tx = dmu_tx_create(zv->zv_objset);
1306 
1307 		if (bytes > volsize - off)	/* don't write past the end */
1308 			bytes = volsize - off;
1309 
1310 		dmu_tx_hold_write(tx, ZVOL_OBJ, off, bytes);
1311 		error = dmu_tx_assign(tx, TXG_WAIT);
1312 		if (error) {
1313 			dmu_tx_abort(tx);
1314 			break;
1315 		}
1316 		error = dmu_write_uio(zv->zv_objset, ZVOL_OBJ, uio, bytes, tx);
1317 		if (error == 0)
1318 			zvol_log_write(zv, tx, off, bytes);
1319 		dmu_tx_commit(tx);
1320 
1321 		if (error)
1322 			break;
1323 	}
1324 	zfs_range_unlock(rl);
1325 	return (error);
1326 }
1327 
1328 int
1329 zvol_getefi(void *arg, int flag, uint64_t vs, uint8_t bs)
1330 {
1331 	struct uuid uuid = EFI_RESERVED;
1332 	efi_gpe_t gpe = { 0 };
1333 	uint32_t crc;
1334 	dk_efi_t efi;
1335 	int length;
1336 	char *ptr;
1337 
1338 	if (ddi_copyin(arg, &efi, sizeof (dk_efi_t), flag))
1339 		return (EFAULT);
1340 	ptr = (char *)(uintptr_t)efi.dki_data_64;
1341 	length = efi.dki_length;
1342 	/*
1343 	 * Some clients may attempt to request a PMBR for the
1344 	 * zvol.  Currently this interface will return EINVAL to
1345 	 * such requests.  These requests could be supported by
1346 	 * adding a check for lba == 0 and consing up an appropriate
1347 	 * PMBR.
1348 	 */
1349 	if (efi.dki_lba < 1 || efi.dki_lba > 2 || length <= 0)
1350 		return (EINVAL);
1351 
1352 	gpe.efi_gpe_StartingLBA = LE_64(34ULL);
1353 	gpe.efi_gpe_EndingLBA = LE_64((vs >> bs) - 1);
1354 	UUID_LE_CONVERT(gpe.efi_gpe_PartitionTypeGUID, uuid);
1355 
1356 	if (efi.dki_lba == 1) {
1357 		efi_gpt_t gpt = { 0 };
1358 
1359 		gpt.efi_gpt_Signature = LE_64(EFI_SIGNATURE);
1360 		gpt.efi_gpt_Revision = LE_32(EFI_VERSION_CURRENT);
1361 		gpt.efi_gpt_HeaderSize = LE_32(sizeof (gpt));
1362 		gpt.efi_gpt_MyLBA = LE_64(1ULL);
1363 		gpt.efi_gpt_FirstUsableLBA = LE_64(34ULL);
1364 		gpt.efi_gpt_LastUsableLBA = LE_64((vs >> bs) - 1);
1365 		gpt.efi_gpt_PartitionEntryLBA = LE_64(2ULL);
1366 		gpt.efi_gpt_NumberOfPartitionEntries = LE_32(1);
1367 		gpt.efi_gpt_SizeOfPartitionEntry =
1368 		    LE_32(sizeof (efi_gpe_t));
1369 		CRC32(crc, &gpe, sizeof (gpe), -1U, crc32_table);
1370 		gpt.efi_gpt_PartitionEntryArrayCRC32 = LE_32(~crc);
1371 		CRC32(crc, &gpt, sizeof (gpt), -1U, crc32_table);
1372 		gpt.efi_gpt_HeaderCRC32 = LE_32(~crc);
1373 		if (ddi_copyout(&gpt, ptr, MIN(sizeof (gpt), length),
1374 		    flag))
1375 			return (EFAULT);
1376 		ptr += sizeof (gpt);
1377 		length -= sizeof (gpt);
1378 	}
1379 	if (length > 0 && ddi_copyout(&gpe, ptr, MIN(sizeof (gpe),
1380 	    length), flag))
1381 		return (EFAULT);
1382 	return (0);
1383 }
1384 
1385 /*
1386  * Dirtbag ioctls to support mkfs(1M) for UFS filesystems.  See dkio(7I).
1387  */
1388 /*ARGSUSED*/
1389 int
1390 zvol_ioctl(dev_t dev, int cmd, intptr_t arg, int flag, cred_t *cr, int *rvalp)
1391 {
1392 	zvol_state_t *zv;
1393 	struct dk_cinfo dki;
1394 	struct dk_minfo dkm;
1395 	struct dk_callback *dkc;
1396 	int error = 0;
1397 	rl_t *rl;
1398 
1399 	mutex_enter(&zvol_state_lock);
1400 
1401 	zv = ddi_get_soft_state(zvol_state, getminor(dev));
1402 
1403 	if (zv == NULL) {
1404 		mutex_exit(&zvol_state_lock);
1405 		return (ENXIO);
1406 	}
1407 
1408 	switch (cmd) {
1409 
1410 	case DKIOCINFO:
1411 		bzero(&dki, sizeof (dki));
1412 		(void) strcpy(dki.dki_cname, "zvol");
1413 		(void) strcpy(dki.dki_dname, "zvol");
1414 		dki.dki_ctype = DKC_UNKNOWN;
1415 		dki.dki_maxtransfer = 1 << (SPA_MAXBLOCKSHIFT - zv->zv_min_bs);
1416 		mutex_exit(&zvol_state_lock);
1417 		if (ddi_copyout(&dki, (void *)arg, sizeof (dki), flag))
1418 			error = EFAULT;
1419 		return (error);
1420 
1421 	case DKIOCGMEDIAINFO:
1422 		bzero(&dkm, sizeof (dkm));
1423 		dkm.dki_lbsize = 1U << zv->zv_min_bs;
1424 		dkm.dki_capacity = zv->zv_volsize >> zv->zv_min_bs;
1425 		dkm.dki_media_type = DK_UNKNOWN;
1426 		mutex_exit(&zvol_state_lock);
1427 		if (ddi_copyout(&dkm, (void *)arg, sizeof (dkm), flag))
1428 			error = EFAULT;
1429 		return (error);
1430 
1431 	case DKIOCGETEFI:
1432 		{
1433 			uint64_t vs = zv->zv_volsize;
1434 			uint8_t bs = zv->zv_min_bs;
1435 
1436 			mutex_exit(&zvol_state_lock);
1437 			error = zvol_getefi((void *)arg, flag, vs, bs);
1438 			return (error);
1439 		}
1440 
1441 	case DKIOCFLUSHWRITECACHE:
1442 		dkc = (struct dk_callback *)arg;
1443 		zil_commit(zv->zv_zilog, UINT64_MAX, ZVOL_OBJ);
1444 		if ((flag & FKIOCTL) && dkc != NULL && dkc->dkc_callback) {
1445 			(*dkc->dkc_callback)(dkc->dkc_cookie, error);
1446 			error = 0;
1447 		}
1448 		break;
1449 
1450 	case DKIOCGGEOM:
1451 	case DKIOCGVTOC:
1452 		/*
1453 		 * commands using these (like prtvtoc) expect ENOTSUP
1454 		 * since we're emulating an EFI label
1455 		 */
1456 		error = ENOTSUP;
1457 		break;
1458 
1459 	case DKIOCDUMPINIT:
1460 		rl = zfs_range_lock(&zv->zv_znode, 0, zv->zv_volsize,
1461 		    RL_WRITER);
1462 		error = zvol_dumpify(zv);
1463 		zfs_range_unlock(rl);
1464 		break;
1465 
1466 	case DKIOCDUMPFINI:
1467 		rl = zfs_range_lock(&zv->zv_znode, 0, zv->zv_volsize,
1468 		    RL_WRITER);
1469 		error = zvol_dump_fini(zv);
1470 		zfs_range_unlock(rl);
1471 		break;
1472 
1473 	default:
1474 		error = ENOTTY;
1475 		break;
1476 
1477 	}
1478 	mutex_exit(&zvol_state_lock);
1479 	return (error);
1480 }
1481 
1482 int
1483 zvol_busy(void)
1484 {
1485 	return (zvol_minors != 0);
1486 }
1487 
1488 void
1489 zvol_init(void)
1490 {
1491 	VERIFY(ddi_soft_state_init(&zvol_state, sizeof (zvol_state_t), 1) == 0);
1492 	mutex_init(&zvol_state_lock, NULL, MUTEX_DEFAULT, NULL);
1493 }
1494 
1495 void
1496 zvol_fini(void)
1497 {
1498 	mutex_destroy(&zvol_state_lock);
1499 	ddi_soft_state_fini(&zvol_state);
1500 }
1501 
1502 static boolean_t
1503 zvol_is_swap(zvol_state_t *zv)
1504 {
1505 	vnode_t *vp;
1506 	boolean_t ret = B_FALSE;
1507 	char *devpath;
1508 	size_t devpathlen;
1509 	int error;
1510 
1511 	devpathlen = strlen(ZVOL_FULL_DEV_DIR) + strlen(zv->zv_name) + 1;
1512 	devpath = kmem_alloc(devpathlen, KM_SLEEP);
1513 	(void) sprintf(devpath, "%s%s", ZVOL_FULL_DEV_DIR, zv->zv_name);
1514 	error = lookupname(devpath, UIO_SYSSPACE, FOLLOW, NULLVPP, &vp);
1515 	kmem_free(devpath, devpathlen);
1516 
1517 	ret = !error && IS_SWAPVP(common_specvp(vp));
1518 
1519 	if (vp != NULL)
1520 		VN_RELE(vp);
1521 
1522 	return (ret);
1523 }
1524 
1525 static int
1526 zvol_dump_init(zvol_state_t *zv, boolean_t resize)
1527 {
1528 	dmu_tx_t *tx;
1529 	int error = 0;
1530 	objset_t *os = zv->zv_objset;
1531 	nvlist_t *nv = NULL;
1532 
1533 	ASSERT(MUTEX_HELD(&zvol_state_lock));
1534 
1535 	tx = dmu_tx_create(os);
1536 	dmu_tx_hold_zap(tx, ZVOL_ZAP_OBJ, TRUE, NULL);
1537 	error = dmu_tx_assign(tx, TXG_WAIT);
1538 	if (error) {
1539 		dmu_tx_abort(tx);
1540 		return (error);
1541 	}
1542 
1543 	/*
1544 	 * If we are resizing the dump device then we only need to
1545 	 * update the refreservation to match the newly updated
1546 	 * zvolsize. Otherwise, we save off the original state of the
1547 	 * zvol so that we can restore them if the zvol is ever undumpified.
1548 	 */
1549 	if (resize) {
1550 		error = zap_update(os, ZVOL_ZAP_OBJ,
1551 		    zfs_prop_to_name(ZFS_PROP_REFRESERVATION), 8, 1,
1552 		    &zv->zv_volsize, tx);
1553 	} else {
1554 		uint64_t checksum, compress, refresrv, vbs;
1555 
1556 		error = dsl_prop_get_integer(zv->zv_name,
1557 		    zfs_prop_to_name(ZFS_PROP_COMPRESSION), &compress, NULL);
1558 		error = error ? error : dsl_prop_get_integer(zv->zv_name,
1559 		    zfs_prop_to_name(ZFS_PROP_CHECKSUM), &checksum, NULL);
1560 		error = error ? error : dsl_prop_get_integer(zv->zv_name,
1561 		    zfs_prop_to_name(ZFS_PROP_REFRESERVATION), &refresrv, NULL);
1562 		error = error ? error : dsl_prop_get_integer(zv->zv_name,
1563 		    zfs_prop_to_name(ZFS_PROP_VOLBLOCKSIZE), &vbs, NULL);
1564 
1565 		error = error ? error : zap_update(os, ZVOL_ZAP_OBJ,
1566 		    zfs_prop_to_name(ZFS_PROP_COMPRESSION), 8, 1,
1567 		    &compress, tx);
1568 		error = error ? error : zap_update(os, ZVOL_ZAP_OBJ,
1569 		    zfs_prop_to_name(ZFS_PROP_CHECKSUM), 8, 1, &checksum, tx);
1570 		error = error ? error : zap_update(os, ZVOL_ZAP_OBJ,
1571 		    zfs_prop_to_name(ZFS_PROP_REFRESERVATION), 8, 1,
1572 		    &refresrv, tx);
1573 		error = error ? error : zap_update(os, ZVOL_ZAP_OBJ,
1574 		    zfs_prop_to_name(ZFS_PROP_VOLBLOCKSIZE), 8, 1,
1575 		    &vbs, tx);
1576 	}
1577 	dmu_tx_commit(tx);
1578 
1579 	/* Truncate the file */
1580 	if (!error)
1581 		error = dmu_free_long_range(zv->zv_objset,
1582 		    ZVOL_OBJ, 0, DMU_OBJECT_END);
1583 
1584 	if (error)
1585 		return (error);
1586 
1587 	/*
1588 	 * We only need update the zvol's property if we are initializing
1589 	 * the dump area for the first time.
1590 	 */
1591 	if (!resize) {
1592 		VERIFY(nvlist_alloc(&nv, NV_UNIQUE_NAME, KM_SLEEP) == 0);
1593 		VERIFY(nvlist_add_uint64(nv,
1594 		    zfs_prop_to_name(ZFS_PROP_REFRESERVATION), 0) == 0);
1595 		VERIFY(nvlist_add_uint64(nv,
1596 		    zfs_prop_to_name(ZFS_PROP_COMPRESSION),
1597 		    ZIO_COMPRESS_OFF) == 0);
1598 		VERIFY(nvlist_add_uint64(nv,
1599 		    zfs_prop_to_name(ZFS_PROP_CHECKSUM),
1600 		    ZIO_CHECKSUM_OFF) == 0);
1601 		VERIFY(nvlist_add_uint64(nv,
1602 		    zfs_prop_to_name(ZFS_PROP_VOLBLOCKSIZE),
1603 		    SPA_MAXBLOCKSIZE) == 0);
1604 
1605 		error = zfs_set_prop_nvlist(zv->zv_name, nv);
1606 		nvlist_free(nv);
1607 
1608 		if (error)
1609 			return (error);
1610 	}
1611 
1612 	/* Allocate the space for the dump */
1613 	error = zvol_prealloc(zv);
1614 	return (error);
1615 }
1616 
1617 static int
1618 zvol_dumpify(zvol_state_t *zv)
1619 {
1620 	int error = 0;
1621 	uint64_t dumpsize = 0;
1622 	dmu_tx_t *tx;
1623 	objset_t *os = zv->zv_objset;
1624 
1625 	if (zv->zv_flags & ZVOL_RDONLY || (zv->zv_mode & DS_MODE_READONLY))
1626 		return (EROFS);
1627 
1628 	/*
1629 	 * We do not support swap devices acting as dump devices.
1630 	 */
1631 	if (zvol_is_swap(zv))
1632 		return (ENOTSUP);
1633 
1634 	if (zap_lookup(zv->zv_objset, ZVOL_ZAP_OBJ, ZVOL_DUMPSIZE,
1635 	    8, 1, &dumpsize) != 0 || dumpsize != zv->zv_volsize) {
1636 		boolean_t resize = (dumpsize > 0) ? B_TRUE : B_FALSE;
1637 
1638 		if ((error = zvol_dump_init(zv, resize)) != 0) {
1639 			(void) zvol_dump_fini(zv);
1640 			return (error);
1641 		}
1642 	}
1643 
1644 	/*
1645 	 * Build up our lba mapping.
1646 	 */
1647 	error = zvol_get_lbas(zv);
1648 	if (error) {
1649 		(void) zvol_dump_fini(zv);
1650 		return (error);
1651 	}
1652 
1653 	tx = dmu_tx_create(os);
1654 	dmu_tx_hold_zap(tx, ZVOL_ZAP_OBJ, TRUE, NULL);
1655 	error = dmu_tx_assign(tx, TXG_WAIT);
1656 	if (error) {
1657 		dmu_tx_abort(tx);
1658 		(void) zvol_dump_fini(zv);
1659 		return (error);
1660 	}
1661 
1662 	zv->zv_flags |= ZVOL_DUMPIFIED;
1663 	error = zap_update(os, ZVOL_ZAP_OBJ, ZVOL_DUMPSIZE, 8, 1,
1664 	    &zv->zv_volsize, tx);
1665 	dmu_tx_commit(tx);
1666 
1667 	if (error) {
1668 		(void) zvol_dump_fini(zv);
1669 		return (error);
1670 	}
1671 
1672 	txg_wait_synced(dmu_objset_pool(os), 0);
1673 	return (0);
1674 }
1675 
1676 static int
1677 zvol_dump_fini(zvol_state_t *zv)
1678 {
1679 	dmu_tx_t *tx;
1680 	objset_t *os = zv->zv_objset;
1681 	nvlist_t *nv;
1682 	int error = 0;
1683 	uint64_t checksum, compress, refresrv, vbs;
1684 
1685 	/*
1686 	 * Attempt to restore the zvol back to its pre-dumpified state.
1687 	 * This is a best-effort attempt as it's possible that not all
1688 	 * of these properties were initialized during the dumpify process
1689 	 * (i.e. error during zvol_dump_init).
1690 	 */
1691 
1692 	tx = dmu_tx_create(os);
1693 	dmu_tx_hold_zap(tx, ZVOL_ZAP_OBJ, TRUE, NULL);
1694 	error = dmu_tx_assign(tx, TXG_WAIT);
1695 	if (error) {
1696 		dmu_tx_abort(tx);
1697 		return (error);
1698 	}
1699 	(void) zap_remove(os, ZVOL_ZAP_OBJ, ZVOL_DUMPSIZE, tx);
1700 	dmu_tx_commit(tx);
1701 
1702 	(void) zap_lookup(zv->zv_objset, ZVOL_ZAP_OBJ,
1703 	    zfs_prop_to_name(ZFS_PROP_CHECKSUM), 8, 1, &checksum);
1704 	(void) zap_lookup(zv->zv_objset, ZVOL_ZAP_OBJ,
1705 	    zfs_prop_to_name(ZFS_PROP_COMPRESSION), 8, 1, &compress);
1706 	(void) zap_lookup(zv->zv_objset, ZVOL_ZAP_OBJ,
1707 	    zfs_prop_to_name(ZFS_PROP_REFRESERVATION), 8, 1, &refresrv);
1708 	(void) zap_lookup(zv->zv_objset, ZVOL_ZAP_OBJ,
1709 	    zfs_prop_to_name(ZFS_PROP_VOLBLOCKSIZE), 8, 1, &vbs);
1710 
1711 	VERIFY(nvlist_alloc(&nv, NV_UNIQUE_NAME, KM_SLEEP) == 0);
1712 	(void) nvlist_add_uint64(nv,
1713 	    zfs_prop_to_name(ZFS_PROP_CHECKSUM), checksum);
1714 	(void) nvlist_add_uint64(nv,
1715 	    zfs_prop_to_name(ZFS_PROP_COMPRESSION), compress);
1716 	(void) nvlist_add_uint64(nv,
1717 	    zfs_prop_to_name(ZFS_PROP_REFRESERVATION), refresrv);
1718 	(void) nvlist_add_uint64(nv,
1719 	    zfs_prop_to_name(ZFS_PROP_VOLBLOCKSIZE), vbs);
1720 	(void) zfs_set_prop_nvlist(zv->zv_name, nv);
1721 	nvlist_free(nv);
1722 
1723 	zvol_free_extents(zv);
1724 	zv->zv_flags &= ~ZVOL_DUMPIFIED;
1725 	(void) dmu_free_long_range(os, ZVOL_OBJ, 0, DMU_OBJECT_END);
1726 
1727 	return (0);
1728 }
1729